* WATER POLLUTION CONTROL RESEARCH SERIES •16130 FDQ 03/71^
Effect of Geographical Location
on Cooling Pond Requirements
and Performance
ENVIRONMENTAL PROTECTION AGENCY • WATER QUALITY OFFICE
-------
WATER POLLUTION CONTROL RESEARCH SERIES
The Water Pollution Control Research Series describes
the results and progress in the control and abatement
of pollution in our Nation's waters. They provide a
central source of information on the research , develop-
ment, and demonstration activities in the Water Quality
Office, Environmental Protection Agency, through inhouse
research and grants and contracts with Federal, State,
and local agencies, research institutions, and industrial
organizations.
Inquiries pertaining to Water Pollution Control Research
Reports should be directed to the Head, Project Reports
System, Office of Research and Development, Water Quality
Office, Environmental Protection Agency, Room 1108,
Washington, D. C. 20242.
-------
EFFECT OF GEOGRAPHICAL LOCATION ON
COOLING POND REQUIREMENTS AND PERFORMANCE
Vanderbilt University
Department of Environmental and Water Resources Engineering
Nashville, Tennessee 37203
for the
WATER QUALITY OFFICE
ENVIRONMENTAL PROTECTION AGENCY
Project No. 16130 FDQ
March 1971
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.O. 20402 - Price $2.00
Stock Number 5501-0138
-------
EPA Review Notice
This report has been reviewed by the Water Quality
Office, EPA, and approved for publication. Approval
does not signify that the contents necessarily
reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or
recommendation for use.
11
-------
ABSTRACT
The energy budget approach to cooling ponds has been outlined and applied
to cooling ponds. Monthly average weather data from 88 stations through-
out the U. S. were used to calculate equilibrium temperatures, heat ex-
change coefficients, and amount of cooling in various sized ponds receiving
the effluent from a standard power plant of 1000-mw capacity, both for
average and extreme weather conditions. The data for each station is
shown on a chart, and the variation of these results across the U. S. is
depicted by a series of 28 maps of the U. S. with contours connecting
equal values of the parameters. The results may also be used to estimate
cooling pond performance for other sized power plants.
The maps disclose variations across the U. S., on a given date, of up to
55°F in equilibrium temperature, up to 100% difference in heat exchange
coefficients, up to 50% difference in heat lost from a given sized pond,
and up to 200% difference in the size of a pond necessary to produce an
equal cooling effect.
This report was a production of the National Center for Research and
Training in the Hydraulic and Hydrologic Aspects of Pollution Control at
Vanderbilt University, sponsored under contract number 16130 FDQ by the
Federal Water Quality Administration of the Environmental Protection
Agency.
Key Words: Ponds*, Cooling*, Heat transfer*, Thermal pollution*, Water
temperature, Temperature, Thermal powerplants, Mathematical
models, United States, Geographic regions, Meteorology,
Cooling ponds, Heat transfer coefficient, Equilibrium tempera-
ture, Geographic variation.
111
-------
ACKNOWLEDGMENTS
This report is issued under the aegis of the National Center for Research
and Training in the Hydraulic and Hydrologic Aspects of Water Pollution
Control at Vanderbilt University, sponsored under contract number 16130
FDQ by the Water Quality Office of the Environmental Protection Agency.
The support of the Water Quality Office and the help and encouragement
of Frank Rainwater, Director of the National Thermal Pollution Research
Program, the Project Officer, and Arnold Joseph, Assistant Director of
Engineering, Division of Water Quality Research, EPA.
Edward L. Thackston was principal investigator for the research project
and principal author of this report. Frank L. Parker is director of
the Research Center and was a contributor and co-author of this report.
The authors wish to acknowledge the contributions of several research
assistants who were of great value in the execution of this project.
Larry Elliot was responsible for most of the data processing. Martha
Cogbill helped with the programming and the production of methods to
calculate solar radiation and longwave radiation. Data plotting was
performed by Larry Elliot and Miss Julie Hsieh, and Mmes. Vita Rietveld
and Ann Rees did the drafting. Mrs. Peggie Bush typed the final manu-
script.
v
-------
TABLE OF CONTENTS
Page
ABSTRACT iii
ACKNOWLEDGMENTS v
LIST OF FIGURES ix
LIST OF TABLES xv
INTRODUCTION 1
DATA TO BE PRESENTED 3
Equilibrium Temperature 3
Surface Heat Exchange Coefficient 3
Pond Effluent Temperature at Standard Plant 4
METHODS OF CALCULATION 7
Heat Budget 7
Equilibrium Temperature 14
Heat Exchange Coefficient 15
Amount of Cooling in Ponds 15
SOURCE OF METEOROLOGICAL INFORMATION 17
SENSITIVITY ANALYSIS 19
Effect of Time Averaging 19
Effect of Pond Depth 21
Effect of Season 21
Effect of Pond Size 21
RELATION OF COMPLETELY MIXED POND TO PLUG FLOW POND 25
RESULTS FOR EACH STATION 29
Effect of Geographical Location on Pond Performance 32
Accuracy of Contour Lines 49
EXAMPLE CALCULATIONS 51
REFERENCES 53
APPENDIX I - WEATHER INFORMATION FOR INDIVIDUAL STATIONS 55
APPENDIX II - RESULTS OF COMPUTATIONS FOR INDIVIDUAL STATIONS ... 145
vn
-------
LIST OF FIGURES
No. Page
1 ABSORBED SOLAR RADIATION AS A FUNCTION OF SOLAR ALTITUDE FOR
CLEAR SKY CONDITIONS 9
2 AVERAGE DAILY ABSORBED RADIATION FOR CLEAR SKY CONDITIONS AS A
FUNCTION OF DAY OF YEAR 11
3 EFFECT OF TEMPERATURE ON VAPOR PRESSURE 13
4 EFFECT OF TIME AVERAGING ON POND TEMPERATURE 20
5 EFFECT OF DEPTH OF COMPLETELY MIXED POND ON AMOUNT OF COOLING,
NASHVILLE, TENNESSEE 22
6 EFFECT OF POND SURFACE AREA ON AMOUNT OF COOLING FOR VARIOUS
SEASONS, NASHVILLE, TENNESSEE 23
7 SAMPLE DATA SHEET FOR METEOROLOGICAL INFORMATION 30
8 SAMPLE GRAPH OF RESULTS FOR A SINGLE STATION 31
9 EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE FOR
AVERAGE WEATHER CONDITIONS 33
10 EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE FOR
EXTREME WEATHER CONDITIONS 33
11 EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE FOR
AVERAGE WEATHER CONDITIONS 34
12 EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE FOR
EXTREME WEATHER CONDITIONS 34
13 EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE FOR AVERAGE
WEATHER CONDITIONS 35
14 EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE FOR EXTREME
WEATHER CONDITIONS 35
15 EQUILIBRIUM TEMPERATURE ON OCTOBER 1 - MONTHLY AVERAGE FOR
AVERAGE WEATHER CONDITIONS 36
16 EQUILIBRIUM TEMPERATURE ON OCTOBER 1 - MONTHLY AVERAGE FOR
EXTREME WEATHER CONDITIONS 36
17 TIME (IN DAYS) THAT MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE FOR
AVERAGE WEATHER CONDITIONS IS ABOVE 75°F 37
IX
-------
LIST OF FIGURES (Continued)
No.
18 DATE ON WHICH MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE FOR
AVERAGE WEATHER CONDITIONS RISES THROUGH 60°F IN THE SPRING 37
19 HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE FOR
AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F) 38
20 HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE FOR
EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F) 38
21 HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE FOR
AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F) 39
22 HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE FOR
EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F) 39
23 NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1 - MONTHLY
AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F) 41
24 NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1 - MONTHLY
AVERAGE FOR EXTREME WEATHER CONDITIONS (°F) 41
25 NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1 - MONTHLY
AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F) 42
26 NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1 - MONTHLY
AVERAGE FOR EXTREME WEATHER CONDITIONS (°F) 42
27 NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1 - MONTHLY
AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F) 43
28 NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1 - MONTHLY
AVERAGE FOR EXTREME WEATHER CONDITIONS (°F) 43
29 NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1 - MONTHLY
AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F) 44
30 NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1 - MONTHLY
AVERAGE FOR EXTREME WEATHER CONDITIONS (°F) 44
31 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER
CONDITIONS 46
32 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1 - EXTREME WEATHER
CONDITIONS 46
-------
LIST OF FIGURES (Continued)
No. Page
33 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER
CONDITIONS 47
34 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JULY 1 - EXTREME WEATHER
CONDITIONS 47
35 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
(5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER
CONDITIONS 48
36 SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
(5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER
CONDITIONS 48
37 RESULTS FOR HUNTSVILLE, ALABAMA 146
38 RESULTS FOR MOBILE, ALABAMA 147
39 RESULTS FOR PHOENIX, ARIZONA 148
40 RESULTS FOR FORT SMITH, ARKANSAS 149
41 RESULTS FOR LITTLE ROCK, ARKANSAS 150
42 RESULTS FOR BURBANK, CALIFORNIA 151
43 RESULTS FOR FRESNO, CALIFORNIA 152
44 RESULTS FOR OAKLAND, CALIFORNIA 153
45 RESULTS FOR DENVER, COLORADO 154
46 RESULTS FOR GRAND JUNCTION, COLORADO 155
47 RESULTS FOR HARTFORD, CONNECTICUT 156
48 RESULTS FOR WILMINGTON, DELAWARE 157
49 RESULTS FOR WASHINGTON, D. C. 158
50 RESULTS FOR JACKSONVILLE, FLORIDA 159
51 RESULTS FOR MIAMI, FLORIDA 160
52 RESULTS FOR TAMPA, FLORIDA 161
XI
-------
LIST OF FIGURES (Continued)
No. Page
53 RESULTS FOR ATLANTA, GEORGIA 162
54 RESULTS FOR BOISE, IDAHO 163
55 RESULTS FOR CHICAGO, ILLINOIS 164
56 RESULTS FOR SPRINGFIELD, ILLINOIS 165
57 RESULTS FOR EVANSVILLE, INDIANA 166
58 RESULTS FOR INDIANAPOLIS, INDIANA 167
59 RESULTS FOR SOUTH BEND, INDIANA 168
60 RESULTS FOR DBS MOINES, IOWA 169
61 RESULTS FOR SIOUX CITY, IOWA 170
62 RESULTS FOR DODGE CITY, KANSAS 171
63 RESULTS FOR TOPEKA, KANSAS 172
64 RESULTS FOR LEXINGTON, KENTUCKY 173
65 RESULTS FOR LOUISVILLE, KENTUCKY 174
66 RESULTS FOR NEW ORLEANS, LOUISIANA 175
67 RESULTS FOR SHREVEPORT, LOUISIANA 176
68 RESULTS FOR CARIBOU, MAINE 177
69 RESULTS FOR PORTLAND, MAINE 178
70 RESULTS FOR BALTIMORE, MARYLAND 179
71 RESULTS FOR BOSTON, MASSACHUSETTS 180
72 RESULTS FOR DETROIT, MICHIGAN 181
73 RESULTS FOR MUSKEGON, MICHIGAN 182
74 RESULTS FOR SAULT STE. MARIE, MICHIGAN 183
75 RESULTS FOR DULUTH, MINNESOTA 184
76 RESULTS FOR MINNEAPOLIS-ST. PAUL, MINNESOTA 185
XII
-------
LIST OF FIGURES (Continued)
Np^. Page
77 RESULTS FOR JACKSON, MISSISSIPPI 186
78 RESULTS FOR ST. LOUIS, MISSOURI 187
79 RESULTS FOR SPRINGFIELD, MISSOURI 188
80 RESULTS FOR BILLINGS, MONTANA 189
81 RESULTS FOR HELENA, MONTANA 190
82 RESULTS FOR NORTH PLATTE, NEBRASKA 191
83 RESULTS FOR OMAHA, NEBRASKA 192
84 RESULTS FOR ELKO, NEVADA 193
85 RESULTS FOR LAS VEGAS, NEVADA 194
86 RESULTS FOR RENO, NEVADA 195
87 RESULTS FOR CONCORD, NEW HAMPSHIRE 196
88 RESULTS FOR NEWARK, NEW JERSEY 197
89 RESULTS FOR ALBUQUERQUE, NEW MEXICO 198
90 RESULTS FOR ALBANY, NEW YORK 199
91 RESULTS FOR BUFFALO, NEW YORK 200
92 RESULTS FOR NEW YORK, NEW YORK 201
93 RESULTS FOR CHARLOTTE, NORTH CAROLINA 202
94 RESULTS FOR WILMINGTON, NORTH CAROLINA 203
95 RESULTS FOR BISMARCK, NORTH DAKOTA 204
96 RESULTS FOR CLEVELAND, OHIO 205
97 RESULTS FOR COLUMBUS, OHIO 206
98 RESULTS FOR OKLAHOMA CITY, OKLAHOMA 207
99 RESULTS FOR ASTORIA, OREGON 208
100 RESULTS FOR PENDLETON, OREGON 209
Xlll
-------
LIST OF FIGURES (Continued)
N(p.
101 RESULTS FOR PORTLAND, OREGON 21°
102 RESULTS FOR AVOCA, PENNSYLVANIA 211
103 RESULTS FOR PHILADELPHIA, PENNSYLVANIA 212
104 RESULTS FOR SCRANTON, PENNSYLVANIA 213
105 RESULTS FOR CHARLESTON, SOUTH CAROLINA 214
106 RESULTS FOR COLUMBIA, SOUTH CAROLINA 215
107 RESULTS FOR GREER, SOUTH CAROLINA, AVERAGE CONDITION 216
108 RESULTS FOR HURON, SOUTH DAKOTA 217
109 RESULTS FOR RAPID CITY, SOUTH DAKOTA 218
110 RESULTS FOR KNOXVILLE, TENNESSEE 219
111 RESULTS FOR MEMPHIS, TENNESSEE 220
112 RESULTS FOR NASHVILLE, TENNESSEE 221
113 RESULTS FOR BROWNSVILLE, TEXAS 222
114 RESULTS FOR DALLAS, TEXAS 223
115 RESULTS FOR EL PASO, TEXAS 224
116 RESULTS FOR HOUSTON, TEXAS 225
117 RESULTS FOR SALT LAKE CITY, UTAH 226
118 RESULTS FOR BURLINGTON, VERMONT 227
119 RESULTS FOR NORFOLK, VIRGINIA 228
120 RESULTS FOR ROANOKE, VIRGINIA 229
121 RESULTS FOR SEATTLE, WASHINGTON 230
122 RESULTS FOR SPOKANE, WASHINGTON 231
123 RESULTS FOR HUNTINGTON, WEST VIRGINIA 232
124 RESULTS FOR GREEN BAY, WISCONSIN 233
125 RESULTS FOR CASPER, WYOMING 234
xiv
-------
LIST OF TABLES
No. Page
1 EQUATIONS FOR AVERAGE DAILY ABSORBED SOLAR RADIATION
(BTU/SQ FT-HR) FOR CLEAR SKY CONDITIONS 10
2 EQUATIONS USED FOR CALCULATION OF CONSTANT 3 IN EQUATION FOR
ATMOSPHERIC RADIATION 12
3 RATIO OF AREA REQUIRED BY PLUG-FLOW POND TO THAT REQUIRED BY
COMPLETELY MIXED POND TO PRODUCE EQUIVALENT COOLING UNDER
SAME CONDITIONS 26
4 WEATHER INFORMATION FOR HUNTSVILLE, ALABAMA 56
5 WEATHER INFORMATION FOR MOBILE, ALABAMA 57
6 WEATHER INFORMATION FOR PHOENIX, ARIZONA 58
7 WEATHER INFORMATION FOR FORT SMITH, ARKANSAS 59
8 WEATHER INFORMATION FOR LITTLE ROCK, ARKANSAS 60
9 WEATHER INFORMATION FOR BURBANK, CALIFORNIA 61
10 WEATHER INFORMATION FOR FRESNO, CALIFORNIA 62
11 WEATHER INFORMATION FOR OAKLAND, CALIFORNIA 63
12 WEATHER INFORMATION FOR DENVER, COLORADO 64
13 WEATHER INFORMATION FOR GRAND JUNCTION, COLORADO 65
14 WEATHER INFORMATION FOR HARTFORD, CONNECTICUT 66
15 WEATHER INFORMATION FOR WILMINGTON, DELAWARE 67
16 WEATHER INFORMATION FOR WASHINGTON, D. C. 68
17 WEATHER INFORMATION FOR JACKSONVILLE, FLORIDA 69
18 WEATHER INFORMATION FOR MIAMI, FLORIDA 70
19 WEATHER INFORMATION FOR TAMPA, FLORIDA 71
20 WEATHER INFORMATION FOR ATLANTA, GEORGIA 72
21 WEATHER INFORMATION FOR BOISE, IDAHO 73
22 WEATHER INFORMATION FOR CHICAGO, ILLINOIS 74
xv
-------
LIST OF TABLES (Continued)
No. Page
23 WEATHER INFORMATION FOR SPRINGFIELD, ILLINOIS 75
24 WEATHER INFORMATION FOR EVANSVILLE, INDIANA 76
25 WEATHER INFORMATION FOR INDIANAPOLIS, INDIANA 77
26 WEATHER INFORMATION FOR SOUTH BEND, INDIANA 78
27 WEATHER INFORMATION FOR DES MOINES, IOWA 79
28 WEATHER INFORMATION FOR SIOUX CITY, IOWA 80
29 WEATHER INFORMATION FOR DODGE CITY, KANSAS 81
30 WEATHER INFORMATION FOR TOPEKA, KANSAS 82
31 WEATHER INFORMATION FOR LEXINGTON, KENTUCKY 83
32 WEATHER INFORMATION FOR LOUISVILLE, KENTUCKY 84
33 WEATHER INFORMATION FOR NEW ORLEANS, LOUISIANA 85
34 WEATHER INFORMATION FOR SHREVEPORT, LOUISIANA 86
35 WEATHER INFORMATION FOR CARIBOU, MAINE 87
36 WEATHER INFORMATION FOR PORTLAND, MAINE 88
37 WEATHER INFORMATION FOR BALTIMORE, MARYLAND 89
38 WEATHER INFORMATION FOR BOSTON, MASSACHUSETTS 90
39 WEATHER INFORMATION FOR DETROIT, MICHIGAN 91
40 WEATHER INFORMATION FOR MUSKEGON, MICHIGAN 92
41 WEATHER INFORMATION FOR SAULT STE. MARIE, MICHIGAN 93
42 WEATHER INFORMATION FOR DULUTH, MINNESOTA 94
43 WEATHER INFORMATION FOR MINNEAPOLIS-ST. PAUL, MINNESOTA 95
44 WEATHER INFORMATION FOR JACKSON, MISSISSIPPI 96
45 WEATHER INFORMATION FOR ST. LOUIS, MISSOURI 97
46 WEATHER INFORMATION FOR SPRINGFIELD, MISSOURI 98
xvi
-------
LIST OF TABLES (Continued)
q^ Page
47 WEATHER INFORMATION FOR BILLINGS, MONTANA 99
48 WEATHER INFORMATION FOR HELENA, MONTANA 100
49 WEATHER INFORMATION FOR NORTH PLATTE, NEBRASKA 101
50 WEATHER INFORMATION FOR OMAHA, NEBRASKA 102
51 WEATHER INFORMATION FOR ELKO, NEVADA 103
52 WEATHER INFORMATION FOR LAS VEGAS, NEVADA 104
53 WEATHER INFORMATION FOR RENO, NEVADA 105
54 WEATHER INFORMATION FOR CONCORD, NEW HAMPSHIRE 106
55 WEATHER INFORMATION FOR NEWARK, NEW JERSEY 107
56 WEATHER INFORMATION FOR ALBUQUERQUE, NEW MEXICO 108
57 WEATHER INFORMATION FOR ALBANY, NEW YORK 109
58 WEATHER INFORMATION FOR BUFFALO, NEW YORK 110
59 WEATHER INFORMATION FOR NEW YORK, NEW YORK 111
60 WEATHER INFORMATION FOR CHARLOTTE, NORTH CAROLINA 112
61 WEATHER INFORMATION FOR WILMINGTON, NORTH CAROLINA 113
62 WEATHER INFORMATION FOR BISMARCK, NORTH DAKOTA 114
63 WEATHER INFORMATION FOR CLEVELAND, OHIO 115
64 WEATHER INFORMATION FOR COLUMBUS, OHIO 116
65 WEATHER INFORMATION FOR OKLAHOMA CITY, OKLAHOMA 117
66 WEATHER INFORMATION FOR ASTORIA, OREGON 118
67 WEATHER INFORMATION FOR PENDLETON, OREGON 119
68 WEATHER INFORMATION FOR PORTLAND, OREGON 120
69 WEATHER INFORMATION FOR AVOCA, PENNSYLVANIA 121
70 WEATHER INFORMATION FOR PHILADELPHIA, PENNSYLVANIA 122
xvi i
-------
LIST OF TABLES (Continued)
No. Page
71 WEATHER INFORMATION FOR SCRANTON, PENNSYLVANIA 123
72 WEATHER INFORMATION FOR CHARLESTON, SOUTH CAROLINA 124
73 WEATHER INFORMATION FOR COLUMBIA, SOUTH CAROLINA 125
74 WEATHER INFORMATION FOR GREER, SOUTH CAROLINA 126
75 WEATHER INFORMATION FOR HURON, SOUTH DAKOTA 127
76 WEATHER INFORMATION FOR RAPID CITY, SOUTH DAKOTA
77 WEATHER INFORMATION FOR KNOXVILLE, TENNESSEE
78 WEATHER INFORMATION FOR MEMPHIS, TENNESSEE 130
79 WEATHER INFORMATION FOR NASHVILLE, TENNESSEE 131
80 WEATHER INFORMATION FOR BROWNSVILLE, TEXAS 132
81 WEATHER INFORMATION FOR DALLAS, TEXAS 133
82 WEATHER INFORMATION FOR EL PASO, TEXAS 134
83 WEATHER INFORMATION FOR HOUSTON, TEXAS 135
84 WEATHER INFORMATION FOR SALT LAKE CITY, UTAH 136
85 WEATHER INFORMATION FOR BURLINGTON, VERMONT 137
86 WEATHER INFORMATION FOR NORFOLK, VIRGINIA 138
87 WEATHER INFORMATION FOR ROANOKE, VIRGINIA 139
88 WEATHER INFORMATION FOR SEATTLE, WASHINGTON 140
89 WEATHER INFORMATION FOR SPOKANE, WASHINGTON 141
90 WEATHER INFORMATION FOR HUNTINGTON, WEST VIRGINIA 142
91 WEATHER INFORMATION FOR GREEN BAY, WISCONSIN 143
92 WEATHER INFORMATION FOR CASPER, WYOMING 144
XV 111
-------
INTRODUCTION
Cooling of heated condenser water from power stations before discharge to
the environment will probably be much more common in the future than it is
now. Stricter water quality standards, increased pressure from state and
federal regulatory agencies, and greater amounts of heat brought about by
larger generating stations are all combining to make this trend inevitable.
Water may be cooled by dry cooling towers, wet cooling towers, or cooling
ponds. The dry cooling tower depends almost solely on conduction for heat
dissipation, and the wet cooling tower depends almost solely on evapora-
tion. Both involve high capital costs, although wet cooling towers are
considerably cheaper than dry towers.
Cooling ponds dissipate heat by radiation, evaporation, and conduction.
By relying less heavily on evaporation, they do not consume as much water
as towers for the dissipation of the excess heat. However, by not having
a forced draft, either structurally or mechanically induced, they require
much greater areas. In localities where sufficient area is available,
cooling ponds frequently are the cheapest and simplest method for cooling
water before discharge or reuse.
The design of cooling ponds is sometimes based on rules of thumb, such as
1 to 2 acres per megawatt of installed capacity, according to Berman (1),
or 75 to 150 BTU of heat loss per hour per square foot coupled with engi-
neering judgment and experience. However, rational design should be
based on the total energy budget, since regional or local meteorological
conditions can greatly influence the rate of heat transfer, and, thus,
the size of ponds necessary to produce a given cooling effect.
Many references are available in the literature on the energy budget ap-
proach to heat transfer calculations, and some give illustrative examples.
However, none provide the engineer with a quick estimate at a specific
locality of pond size and performance necessary to make preliminary fea-
sibility determinations, or to check the reasonableness of calculations.
This is the purpose of the present investigation. Calculated energy bud-
get data will be presented for sites representing the contiguous United
States.
A consultant or a power company may use this data to determine approximate
pond sizes necessary to produce a specified cooling effect at a given
site; to investigate the effect on pond size of different cooling require-
ments; to determine the influence of season on pond performance; to esti-
mate the effect of different geometrical configurations; and to estimate
the effect of possible alternate sites.
The engineer for a regulatory agency can use this data as an independent
check on the reasonableness and/or adequacy of proposed designs which he
is charged with reviewing, by determining or estimating the same param-
eters of performance.
-------
DATA TO BE PRESENTED
In investigating the feasibility of a cooling pond, or in evaluating the
design of a proposed pond, certain questions always need to be considered.
Among these are:
(1) What will be the temperature of the power plant intake?
(2) What will be the temperature of the cooling pond inlet?
(3) What will be the temperature of the cooling pond outlet, for a
given pond size?
(4) What is the limit to which the heated water can be cooled?
(5) What size pond will be necessary to achieve a certain degree of
cooling?
(6) What effect will the variability of weather conditions at a site
have on the pond performance? How much will abnormal heating
conditions raise the pond effluent temperature?
Most of these questions can be answered by calculating three parameters -
the equilibrium temperature, the heat exchange coefficient, and the pond
effluent temperature. All three should be calculated for different times
during the year; all three should be calculated for both "normal" (aver-
age) meteorological conditions and "critical" heating conditions (those
expected to occur with some predetermined critical frequency); and the
pond effluent temperature should be claculated for various pond sizes.
Equilibrium Temperature
The equilibrium temperature is the temperature to which a body of water
would eventually come if exposed to constant meteorological conditions.
It is, therefore, a function of the particular conditions at a given lo-
cation. A body of water not at the equilibrium temperature will tend to
approach equilibrium asymptotically. The equilibrium temperature will
vary throughout the day and throughout the year as the solar radiation,
air temperature, wind speed, and other meteorological variables vary.
A very shallow body of water will vary widely in temperature during the
day as it follows the changing equilibrium temperature. However, the
heat content of water is so great that the temperature of large, deep
bodies of water does not fluctuate greatly during the day. Thus, average
daily conditions are reasonably descriptive for large bodies of water,
and the equilibrium temperature may be calculated on an average daily
basis.
The temperature of natural water bodies continually approaches the equi-
librium temperature but lags behind any changes. It is usually very close
to equilibrium during the summer and winter, but is lower during the
spring as the equilibrium temperature rises rapidly, and higher during
the fall as the equilibrium temperature falls rapidly.
Surface Heat Exchange Coefficient
An isolated body of water not at equilibrium will approach equilibrium at
a rate approximately proportional to the difference between actual surface
temperature and equilibrium temperature (the forcing function), and to a
rate constant which is a function of meteorological conditions (the heat
exchange coefficient). This can be expressed as
-------
= -K dw - Te) (1)
where H = enthalpy, BTU's,
t = time, days,
K = surface heat exchange coefficient BTU/ft2-day-°F
Tw = water surface temperature, °F,
Te = equilibrium temperature, °F-
Equation 1 is not an exact description of the process (if K is a constant),
because all of the heat exchange processes are not truly linear functions
of temperature, but it is close enough to be descriptive of relative mag-
nitudes and trends. Comparison of the heat exchange coefficient calculated
for various seasons, locations, and frequencies of occurrence will provide
insight into the relative efficiency of cooling ponds under different con-
ditions .
Pond Effluent Temperature at Standard Plant
Equation 1 may be used to calculate rates of surface heat exchange for
given time increments (after calculating K and Te from average meteorolog-
ical conditions for that time increment) and applied to the water volume
to compute the temperature change. This approach to computing water tem-
peratures has been used extensively by Duttweiler (2) and Edinger, et al.
(3,4,5). Because of its mathematical simplicity; it is the preferred ap-
proach to be used in many situations of complex geometry and hydraulics.
Another approach is to compute the heat transfer during a given time in-
crement due to each mechanism of heat exchange and sum them to obtain the
total heat gain or loss. An example of this approach is given by Raphael
(6) . This calculation approach is more accurate, because the individual
expressions for heat transfer do not need to be linearized, but its math-
ematical complexity limits its application to simple hydraulic configura-
tions, such as plug flow or backmix flow in ponds or reservoirs, or one-
dimensional flow in streams.
Since the object of this work is to compare the influence of location on
cooling pond performance, a standard pond configuration will be assumed.
This standard configuration should be as simple as possible, in order to
facilitate comparison of conditions. Therefore, a completely mixed pond
was assumed. Most one-cell ponds approach this condition in practice.
For this simple configuration, Raphael's approach (6), calculating each
individual energy transfer component, can be easily used. In addition,
this approach allows one to tabulate the heat transfer due to different
mechanisms under different conditions, and thereby to determine the effect
of meteorological conditions on the individual mechanisms.
The "standard plant" assumed for all cases was of 1,000-megawatt capacity.
The flow of cooling water was 1350 cfs, and the temperature rise across
the condensers was 15°F. This is equivalent to a plant efficiency of 37
to 38 percent, and is a function of the thermodynamic efficiency and the
amount of heat lost from the boilers, through the stack, etc.
The pond effluent temperature was calculated for 15-foot deep completely
mixed ponds of various surface areas for each month at each site, under
both "normal" and "critical" meteorological conditions. The data will be
-------
presented as "net plant temperature rise," that is, 15°F minus the cooling
effect of the pond. For simplicity, the intake temperature is assumed to
be the equilibrium temperature; therefore, the pond effluent temperature
will be equilibrium plus the net plant rise.
-------
METHODS OF CALCULATION
Heat Budget
The net, or total surface heat exchange, H^, of a body of water is
H=H+H+H,+H+H (2)
tsaoec
where Hs is the absorbed solar radiation, Ha is the absorbed longwave
atmospheric radiation, H^ is the longwave back radiation of the water body
to space, He is the heat lost by evaporation, and Hc is the heat gained or
lost by conduction. The individual terms will be defined so that they are
positive when heat is being gained by the water body and negative when
heat is being lost by the water body. Since all the signs in Equation 2
are positive, the same convention will hold for the net surface heat ex-
change, Ht.
Calculation of individual components of the heat budget generally followed
the procedures outlined by Raphael (6). Much of his methodology was, in
turn, derived from the Lake Hefner Studies of the U. S. Geological Survey
reported by Anderson (7). Certain modifications to Raphael's procedure
had to be made, however, to adapt it to machine computation. The calcu-
lation procedure was designed to require only the standard information
tabulated by the weather bureau - temperature, relative humidity, wind
speed, and cloud cover, plus the location of the site and the time of year.
Solar Radiation - Several tabulations or graphs of average daily solar
radiation as a function of latitude and time of year are available (8,9,
10). Differences among them are generally in the order of 5 percent, but
may be as much as 20 percent of the low values experienced in December
and January. All three of these references give only average daily
incident radiation. Absorbed radiation, however, is incident radiation
minus reflected radiation. There is no simple way to calculate the re-
flected radiation from these data, because the fraction reflected is a
function of solar altitude, which varies throughout the day. The average
solar altitude varies throughout the year- and the reflectivity is not a
linear function of solar altitude.
The use of Raphael's calculation procedure allows reflected radiation to
be calculated easily, and a set of tables or curves similar to those in
the references above can be constructed, but for actual absorbed radiation,
not just incident radiation. It also will allow separation of direct and
diffuse solar radiation for those situations where shading of part of the
water surface is significant. Furthermore, the use of Raphael's procedure
will allow calculation of radiation variation during the day.
The altitude of the sun above the horizon was calculated from the equation
sin a = sin $ sin & + cos ()> cos 6 cos h (3)
where a is the solar altitude, is the latitude of the site, 6 is the
declination of the sun, and h is the hour angle of the sun, which is
positive before noon and negative after noon.
An equation for 6 was fitted to data from a current solar ephemeris by a
non-linear least squares method derived by Marquardt (11) . Thackston,
-------
et al. (12), outlined its use in hydraulic and environmental engineering
problems. The equation is
6 = -23.28 cos[(2Trday/365) + 0.164]
where day is the day of the year.
Raphael tabulated the total radiation (direct solar radiation plus diffuse,
or sky, radiation) on a horizontal surface as a function of solar altitude,
taken from the tables prepared by Moon (13) from U. S. Weather Bureau data.
Reflected solar radiation is a function of solar altitude, being greatest
at the low altitudes. It is also a function of sky condition, being greater
for clear skies than for overcast skies at low solar altitudes, and the
reverse at high solar altitudes. However, the differences are negligible
except at low solar altitudes, where the total radiation is very small
anyway, and at high solar altitudes, which are rarely reached in the U.S.
Therefore, the curve of average reflectivity as a function of solar alti-
tude was applied to the total radiation tabulated by Raphael to obtain the
net absorbed radiation as a function of solar altitude. A simple poly-
nomial was fit to the data by nonlinear least squares methods to produce
the equation
H = 2.044ot + 0.1296a2 0.0019a3 + 0.0000076^ (5)
o
where H0 is the absorbed solar radiation for clear sky in BTU per square
foot per hour. The standard error of this equation was 2.01. The fit of
the equation to the data is shown in Figure 1. The absorbed solar radia-
tion for other sky conditions was calculated from the equation
H = (1 - 0.0071 C2)H0 (6)
where Hs is the actual absorbed solar radiation, and C is the cloud cover,
in tenths of sky.
The procedure described above will calculate only the instantaneous radia-
tion at a particular time. The instantaneous radiation may be assumed to
represent the average radiation over a given time increment, but above an
increment of three or four hours, the accuracy is unacceptable, due to the
cyclic variation of radiation throughout the day. For longer averaging
periods, a different procedure is required. Since this project used the
day as the working time period, values of total daily radiation were com-
puted for every tenth day of the year for every degree of latitude from
25° to 46°. The radiation intensity was computed by the procedure outlined
above for every six minutes throughout the day and the total daily radia-
tion was obtained by numerical integration. The total was divided by 24
to obtain average daily radiation values in BTU per square foot per hour.
For each latitude, an equation was fitted to the calculated values by
non-linear least squares procedures. The resulting equations are tabu-
lated in Table 1. An example of the fit of three of the equations to the
calculated data is shown in Figure 2. The equations were all inserted
into the computer program for the heat budget, along with a procedure to
select the equation for the latitude closest to the latitude of the site.
The program also included provisions for calculating the instantaneous
solar radiation, if conditions at a particular hour are desired.
The values of absorbed solar radiation calculated by this method are, of
-------
350
cc
X
I
.8
ID
h-
00
I
Q
CC
CC
O
CO
Q
LU
00
£T
O
CO
00
300 •
250 -
Q 200 -
150 -
100 -
50 •
0
•H = 2.044of- 0.1296a2
-0.001941 a3-0.000007591 a4
20 40 60 80
SOLAR ALTITUDE - DEGREES
FIGURE 1 - ABSORBED SOLAR RADIATION AS A FUNCTION
OF SOLAR ALTITUDE FOR CLEAR SKY CONDITIONS
-------
TABLE 1 - EQUATIONS FOR AVERAGE DAILY ABSORBED SOLAR RADIATION
(BTU/sq ft-hr) FOR CLEAR SKY CONDITIONS
Lati-
tude
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Equation
H
o
H
0
H
o
Ho
H
0
H
0
H
0
H
0
H
o
H
0
H
0
H
o
H
o
H
0
H
o
H
0
H
o
H
0
H
o
H
o
H
o
= 80
= 79
= 78
= 77
= 76
= 76
= 75
= 74
= 73
= 72
= 71
= 70
= 69
= 68
= 67
= 66
= 65
= 64
= 63
= 61
= 60
.155
.371
.566
.604
.655
.041
.060
.046
.161
.248
.390
.394
.350
.362
.281
.240
.197
.113
.010
.911
.782
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 35
- 36
- 37
- 38
- 39
- 40
- 40
- 41
- 42
- 43
- 43
- 44
- 45
- 45
.207 x
.236 x
.219 x
.145 x
.156 x
.133 x
.194 x
.938 x
.834 x
.699 x
.598 x
.413 x
.188 x
.982 x
.706 x
.442 x
.128 x
.788 .x
.471 x
.020 x
.639 x
sin[2x3.
sin[2x3.
sin [2x3 .
sin[2x3.
sin[2x3.
sin[2x3 .
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3 .
sin[2x3 .
sin[2x3.
sin [2x3.
sin[2x3.
sin [2x3.
sin[2x3.
sin[2x3.
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
day/ 366
day/ 366
day/366
day/366
day/366
day/366
day/366
day/ 366
day/366
day/ 366
day/ 366
day/ 366
day/366
day/366
day/366
day/ 366
day/366
day/366
day/366
day/ 366
day/366
. + 1
. + 1
.+1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
.679]
.713]
.710]
.740]
.728]
.694]
.737]
.734]
.727]
.738]
.721]
.730]
.741]
.739]
.742]
.736]
.740]
.739]
.739]
.740]
.735]
Standard
Error
2.76
2.40
2.33
2.10
2.02
2.21
1.85
1.61
1.52
1.32
1.32
1.07
0.86
0.73
0.61
0.58
0.54
0.63
0.76
0.93
1.16
course, less than the values of incident radiation given by references 8,
9, and 10. If an approximate reflectivity coefficient (between 5 and 10
percent) is applied to the other data, however, approximate comparisons
can be-made. Following this procedure, it is found that Koberg's (8)
curves produce values about 5 BTU/sq ft-hour greater than these data
throughout the year. Langhaar's (10) data substantially agrees with or
is very slightly greater than Koberg's. The curves of Harmon, Weiss, and
Wilson (9) produce values that are 5 to 8 BTU/sq ft-hour greater than this
data during the winter, but up to 3 BTU/sq ft-hour lower during the summer.
There is substantial agreement during the spring and fall. These differ-
ences are within the range of accuracy of the measurement devices used to
record solar radiation and probably reflect the different measurement
10
-------
JAN FEB MAPI APR I MAY IJUNEIJULY IAUG ISEPTI OCT I NOV I DEC
en
60
120 180 240
TIME ( DAY OF THE YEAR )
300
360
FIGURE 2 - AVERAGE DAILY ABSORBED RADIATION
FOR CLEAR SKY CONDITIONS AS A FUNCTION OF DAY OF YEAR
approaches and instrumentation used by different workers.
Atmospheric Radiation - Longwave atmospheric radiation is a function of
many variables, including the distribution of temperature, moisture, car-
bon dioxide, ozone and other constituents throughout the entire air col-
umn over a site. However, since not all these data are normally available,
Anderson (1954) proposed the following empirical relationship:
H = a3(T + 460)
3. cL
(1 - 01)
(7)
in which Ha is the longwave atmospheric radiation in BTU/square foot per
hour; a is the Stephan-Boltzmann constant = 1.714 x 10~9 BTU/hr-sq ft-
deg4; 6 is a constant which is a function of the height and type of cloud
cover and the atmospheric vapor pressure, ea, in inches of Hg; Ta is the
air temperature, in degrees Rankine; and to is the reflectivity of the
water surface, usually taken as 0.03. Raphael converted Anderson's fig-
ures and data to a single graph of g vs . ea, with straight lines repre-
senting various values of, cloud cover.
This graph was adapted for machine computation by writing an equation of
the form
= a + b e
(8)
11
-------
where a and b are constants, for each value of cloud cover, and instructing
the computer to pick the correct equation, based on the value of cloud cover
read as data. The eleven equations used are tabulated in Table 2.
TABLE 2 - EQUATIONS USED FOR CALCULATION OF CONSTANT 3
IN EQUATION FOR ATMOSPHERIC RADIATION
Cloud Cover
(tenths)
0
1
2
3
4
5
6
7
8
9
10
Equation
3 = 0.74 -
3 = 0.75 H
3 = 0.76 H
3 = 0.77 H
3 = 0.783 H
3 = 0.793 H
3 = 0.80 H
3 = 0.81 H
3 = 0.825 H
3 = 0.845 H
3 = 0.866 H
H 0.15 ea
1-0.15 ea
h 0.15 ea
H 0.143 ea
H 0.138 ea
h 0.137 ea
h 0.135 ea
H 0.13 ea
1-0.12 ea
•• 0.105 ea
- 0.09 ea
The vapor pressure of the air is calculated from the relative humidity, R,
and the saturated vapor pressure. The vapor pressure of ambient air is
equal to the saturated vapor pressure at the wet bulb temperature. The wet
bulb temperature, Tw^, in °F, may be calculated from the relative humidity
and air temperature by the equation
= (0.655 + 0.36 R)
(9)
Equation 9 is accurate up to a relative humidity of approximately 95 per-
cent .
An equation for the saturated vapor pressure, es, was obtained by fitting
an exponential equation to values of es and temperature by the non-linear
least squares procedure. The resulting equation, for es in inches of mer
cury ^ is
= exp[17.62 - 9501/(Twb + 460)]
(10)
The standard error of prediction of Equation 10 is 0.00335. The fit of the
equation to the data is shown in Figure 3.
Since the reflectivity of the water surface to longwave radiation is 0.03,
the absorbed longwave radiation can then be calculated as
H = 1.66 x 10-93(T + 460)4
cL £L
Back Radiation Back radiation from the body of water to space is calcu-
lated as
12
-------
e>
IE
LU
c/)
en
LU
cr.
CL
01
o
Q_
(T
3.0
25
2.0
1.5
1.0
E =exp
30 50
70
90
110
TEMPERATURE -°F
FIGURE 3 - EFFECT OF TEMPERATURE ON VAPOR PRESSURE
13
-------
= -0.97 a(T + 460)4 (12)
where Hb is in BTU per square foot per hour, 0.97 is the emissivity of the
water surface, and Tw is the temperature of the water surface in °F.
Evaporation Evaporation is calculated from the formula
H = -C U(e e ) (13)
e ^ w aj
where C is an empirical constant which depends on the size, shape, and
exposure of the water body, and on the location of the wind speed measure-
ment, and varies from stream to reservoir conditions. U is the wind speed
in miles per hour, ew, is the saturated vapor pressure of the air at the
temperature of the water surface, in inches of Hg, and ea is the vapor
pressure in the air in inches of Hg.
Equation 10 was used to calculate ew by substituting Tw for Twfo. C was
set equal to 13.9 for this study. This is approximately equal to the co-
efficient determined from the Lake Hefner studies, adjusted for the units
used. However, it should be realized that C will vary somewhat from sit-
uation to situation, depending on local conditions.
Conduction Heat conducted through the water surface was calculated as
H = 0.00543 U P(T - T ) (14)
c ^ a vi
where P is the atmospheric pressure in inches of mercury, which is calcu-
lated as
9Q 09
P = ^ '^
r
r 32.15 E
exp 1545 (T + 460)
L a
in which E is the elevation of the site in feet.
Equilibrium Temperature
The equilibrium temperature was determined by calculating Ht for an assumed
equilibrium temperature and then correcting it until Equation 1 is satis-
fied. In this case, Tw - Te becomes the correction to the assumed temper-
ature. The heat exchange coefficient is calculated for each iteration as
described below. The calculation procedure converges rapidly, and when
the correction became less than 0.1°F, the calculation was terminated.
When this occurred, Ht was generally less than ±3.0 BTU per square foot
per day.
This method of calculation, while indirect and slower than the direct cal-
culation proposed by Edinger and Geyer (3), is more accurate because it
avoids the approximations necessary in their procedure. They were forced
to approximate the expressions for heat loss due to back radiation and
for vapor pressure by linear equations in order to solve the total heat
budget equation for Te.
14
-------
Heat Exchange Coefficient
The expression given by Edinger and Geyer for the heat exchange coefficient
is
K = 15.7 + (0.01025 + n) (333 U) (16)
when converted to the units used in this paper, where n is the slope of
the vapor pressure vs. temperature curve, and U is the wind velocity in
miles per hour. Certain approximations had to be made in order to define
a linear heat exchange coefficient. However, Edinger and Geyer made a
further linearization of the vapor pressure curve into segments of straight
lines which introduces further inaccuracies and computational difficulty.
This was found to be unnecessary in this study.
The slope of the vapor pressure curve can be found exactly at any tempera-
ture by differentiating the equation for saturated vapor pressure as a
function of temperature. This gives
9501 fiv ,„ 9501 1 ,,v,
n = exp 17.62 - j-— , . (17)
(Tw H- 460)2 L (Tw + 460)J
In this study, Te and K were computed at the same time. A new K was com-
puted for each iteration by Equation 16, using the previously determined
temperature. The final K was computed after Te had been determined with-
in 0.1°F.
Amount of Cooling in Ponds
The amount of cooling in ponds of various sizes receiving discharges from
the standard plant was computed for each month of the year at each site.
The values of meteorological data used were monthly averages. Solar radi-
ation was computed based on the middle day of each month.
In the calculation procedure, the pond was assigned the final temperature
of the previous month as a starting point and was then subjected to con-
stant meteorological conditions representative of that month until the
effluent temperature stabilized. This was taken as the average effluent
temperature for that month, and the program proceeded to the next month.
The calculation procedure closely followed that of Raphael. During any
calculation period, the water temperature was assumed to be constant at
the value calculated for the end of the previous period for the purposes
of calculating surface heat transfer.
15
-------
SOURCE OF METEOROLOGICAL INFORMATION
Meteorological information used in calculating the terms in the heat bud-
get was taken from the U. S. Weather Bureau's publication, "Local Clima-
tological Data, Annual Summary with Comparative Data," for the various
stations.
This publication presents the monthly averages and extremes of temperature,
degree days, relative humidity, wind speed, cloud cover, and totals for
precipitation data for the current year, and compares them with means and
extremes.
The extreme conditions for monthly averages were derived from statistical
analysis of the data over approximately the same period of record by the
U. S. Weather Bureau's National Weather Records Center under contract with
Vanderbilt University. The value used was the 10-percent value of the
weather variable (the monthly average exceeded, on the average, once in
10 years). The 10-percent high values of temperature and relative humidity
and the 10-percent low values of wind speed and cloud cover were used in
order to obtain conditions conducive to maximum heating.
This study assumed that all four extreme conditions occurred simultaneously
(in the same month) to produce the extreme heating conditions. Another
Weather Bureau publication, "Statistical Summary of Hourly Observations,"
shows that maxima in these conditions tend to occur together at many sta-
tions and are usually associated with a stagnant high pressure system in
summer. However, it is unlikely that all four 10-year extremes would
occur in the same month. Therefore, the assumption of simultaneity prob-
ably represents a safety factor. The value of heating potential calculated
from these 10-year extremes would thus probably have a return period
somewhat greater than 10 years.
17
-------
SENSITIVITY ANALYSIS
Effect of Time Averaging
In order to see if data averaged over periods of hours or days would pro-
duce pond effluent temperatures which matched average pond effluent temper-
atures calculated from hourly meteorological information, a test case was
run. The data used was that for July, 1963, at Nashville, Tennessee. The
pond effluent was assumed to 100°F, and, in order to insure considerable
fluctuation in mixed water temperatures for comparison, a relatively small,
shallow pond was assumed. It had a detention time of one day and a depth
of 9 feet.
The results of the study are shown in Figure 4. The solid line is the
result of using hourly observations and calculation periods. The circles
are the result of using a calculation period and data averaged over 4 hours.
The point is plotted at the end of the 4-hour averaging period. The crosses
are the result of using a calculation period and data averaged over a 24-
hour period.
The 4-hour average points follow the "true" (one-hour) line almost perfectly
The 24-hour average points show more deviation, but no consistent trend of
deviation. The chief effect seems to be the apparent tendency of the 24-
hour average to overcorrect to a too high value following a too low value,
or vice-versa, during periods when warming trends are followed by cooling
trends, or vice-versa. This is partly due to the fact that the 24-hour
point is plotted at midnight (the end of the averaging period) and changes
in the trend of the line generally follow the normal diurnal pattern of
highs during early afternoon and lows during early morning.
The figure shows, however; that there is no consistent over or under-esti-
mation of average temperatures for Nashville by using averaging periods
which ignore the diurnal cycle. This is important because the 24-hour
diurnal cycle is by far the most influential meteorological characteristic
of the factors affecting surface heat exchange. Once it has been determined
that neglecting the diurnal cycle will cause little or no consistant error
in computing average effluent temperature from large ponds of several days
detention time, it is relatively easy to justify the use of monthly aver-
age values of meteorological data. This is so because the next shortest
cycle is the yearly cycle, whose influence is preserved by using monthly
averaging periods. There is much more similarity between daily averages
and monthly averages than between hourly averages and daily averages be-
cause there is no regular cycle with a length between 1 day and 1 month
to correspond to the diurnal cycle.
Because of the absence of a regular cycle between the daily cycle and the
yearly cycle, the average weather data for the middle day in a month is
approximately the same as the monthly average data. Thus, a curve con-
necting the monthly average data will also represent daily averages.
Monthly average data was used in this study because it is more readily
available, but the curves for monthly average results can also be used to
find the daily average result to be expected (on the average).
19
-------
\
0 6 12 18 24 6 12 18 24 6 12 18 24 6 12 N8 24 6 12 18 24 6 12 18 24 6 12 18 24
i i 1—i—~T—i—r—i—T 1—T—i 1—i 1 1 1 1 i I
95 -
90 -
189
190
191
192
193
194
195
LLlOO
£95
85
196
197
198
199
200
201
202
95
90
85
203 | 204 | 205 | 206 | 207 I 208 I 209 J
100
95
90
85
210
211
212
213
214
215
216
0 6 12 18 24 6 12
24 6 12 18 24 6 12 18 24 6 12
DAY OF YEAR_
HOUR OF DAY
24 6 12 18 24 6 12 18 24
WEATHER INFORMATION FOR JULY, 1963
EQUILIBRIUM TEMPERATURE 85°
STREAM TEMPERATURE 85°
CONDENSER RISE 15°
POND INFLUENT 100°
POND DETENTION TIME I DAY
POND DEPTH = 9 FEET
NASHVILLE, TENNESSEE
1-HR AVERAGE DATA
u-oooooo 4-HR AVERAGE DATA
X x 24-HR AVERAGE DATA
FIGURE 4 - EFFECT OF TIME AVERAGING ON POND TEMPERATURE
20
-------
This is not true of the results for extreme heating conditions, however.
Daily extremes will be higher than monthly extremes.
Effect of Pond Depth
Pond effluent temperatures were calculated for various pond surface areas
and various meteorological conditions. The only pond characteristic (other
than hydraulic behavior, which is theoretically comparable) which was not
varied was the depth. In order to determine if the depth of the pond had
a significant effect on the outlet temperature, the effluent temperature
for Nashville, Tennessee, was calculated for pond depths of both 15 and
25 feet. The results are plotted in Figure 5. Based on this data, the
depth is not a critical variable, as the greatest difference in the pond
effluent temperature caused by a 67 percent increase in depth was approxi-
mately 0.1°F, a negligible difference probably caused by rounding errors
in the computer program. Depth theoretically should have no effect because,
as the depth of a completely mixed pond is increased, so is the flow-through
time. All depths are sufficiently deep that all energy is absorbed in the
water column and does not reach the bottom sediments.
Effect of Season
Figure 5 also shows a decided effect of season on the amount of cooling
taking place in the pond. There is a 2-degree difference in the pond
cooling effect between summer and winter. Although, in this example, all
sizes of ponds tested produced 2 degrees more cooling during the summer,
the actual pond effluent temperature would, of course, be higher in the
summer than in the winter, because the plant intake temperature would be
higher. As mentioned earlier, the pond effluent temperature in this study
can be determined by adding the plant temperature rise to the equilibrium
temperature.
The extra cooling which occurs during the summer is caused by (or described
by) the increase in the heat exchange coefficient during the summer. As
shown by Equation 16, K is a direct function of n, and Equation 10 and
Figure 3 show that n rises with increasing water temperature. This more
than offsets the slight decrease in wind speed during the summer noted at
most stations and results in a net increase in K.
Effect of Pond Size
Also illustrated in Figure 5 is the decided effect of pond surface area on
cooling. For instance, an 800-acre pond will effect 6.5°F of cooling
during June, and a 1500-acre pond will effect 8.5°F of cooling. However,
it can be easily seen that successive size increases will have less and
less effect as the net plant effluent temperature rise approaches zero.
This is expected, since, theoretically-, it would take a pond of infinite
size to cool the heated water to the equilibrium temperature. By plotting
the net plant effluent temperature rise vs. surface area for various
seasons or critical times, the planner can easily get a quick idea of what
size pond would be necessary to meet given objectives in a given situation.
This type plot is illustrated in Figure 6.
21
-------
II
10 -
LL.
o
1 9
UJ
CO
ir
LJ 8
a:
IT
LJ
a.
UJ
H 6
H
< R
_l 5
0_
' 'DEPTH =15 Ft.
DEPTH =25 FI-x—x—-x-
AREA= 800 ACRES
K
JFMAMJJASOND
TIME- MONTHS
FIGURE 5 - EFFECT OF DEPTH OF COMPLETELY MIXED POND
ON AMOUNT OF COOLING, NASHVILLE, TENNESSEE
22
-------
12
II
10
UJ
cn
o:
UJ
cr
o:
UJ
o_
8
£ 7
< 6
Q_
UJ
JANUARY
0 500 1000 1500 2000 2500
POND SURFACE AREA - ACRES
FIGURE 6 - EFFECT OF POND SURFACE AREA ON AMOUNT OF COOLING
FOR VARIOUS SEASONS, NASHVILLE, TENNESSEE
23
-------
RELATION OF COMPLETELY MIXED POND TO PLUG FLOW POND
All calculations for this project have been performed assuming completely
mixed ponds. The basic assumption of completely mixed flow is that the
pond temperature is uniform throughout, and that anything (such as heat,
or a pollutant, or a tracer) added to the pond is "instantaneously" dis-
persed uniformly throughout the pond. It would be impossible for a real
pond of significant size to behave exactly in this manner. However, it
is possible for ponds to approach this condition so that the theoretical
and actual dynamic behavior- measured at the outlet, differs by a negligi-
ble amount. In such a pond, the condenser water temperature would drop
to the uniform pond temperature in a relatively short time, and only a
small fraction of the pond volume around the plant outfall would have a
temperature higher than the mixed temperature. Conditions conducive to
such behavior would include sufficient depth to allow flow to circulate
easily in the pond due to the influence of plant discharge and wind, but
not so deep as to allow stratification; a surface shape approaching the
circular, so the influent can mix easily into all parts of the pond; a
discharge located away from the pond shore; and a long detention time.
The other extreme hydraulic condition, exactly opposite to complete mixing,
is plug flow. Plug flow implies no mixing at all. Each parcel of influ-
ent follows the same path through the pond, utilizes the entire cross-
sectional flow area, does not mix with the parcels ahead or behind, and
arrives at the outlet in sequence at the exact volumetric detention time.
This type of flow is much more difficult to approach in the field than is
completely mixed flow, but reasonable approximations can be realized.
Conditions which encourage plug flow are long slender channel-like ponds,
with the outlet at the opposite end from the inlet, narrow width to de-
crease wind mixing, high width-to-depth ratios to reduce lateral velocity
gradients, and shallow depth and low velocity to reduce vertical velocity
gradients. (These conditions are not always mutually consistent, which
is part of the problem.)
The plug-flow pond is more expensive to build but provides quicker cooling.
This is because the hot water is not initially mixed or diluted with any
cooler water, and the driving force for cooling, Tw Te, is maintained at
the highest possible value.
Edinger and Geyer (3) show how the area required by each type of pond for
a given amount of cooling can be calculated, based on the two solutions
for the linear approximation to the heat transfer process (Equation 1) .
The solution of Equation 1 for a completely mixed pond is
,1R.,
UBJ
where Tm = the mixed pond temperature (effluent temperature) ; T0 = the pond
influent temperature (condenser discharge); Te = the equilibrium tempera-
ture; and in which
25
-------
r =
KA
pcpQ
(19)
where A = the pond surface area; p = the water density; cp = the specific
heat of water; and Q = the flowrate through the pond (plant pumpage).
The solution of Equation 1 for a plug-flow pond is
T - T
T - T
o e
= e
(20)
in which Tp is the pond effluent temperature at the end of a plug-flow pond
of surface area A.
The ratio of the net plant temperature rise at the end of a completely
mixed pond to that at the end of a plug-flow pond is calculated by dividing
Equation 18 by Equation 20. The result is
(21)
The area of a plug-flow pond necessary to produce the same cooling as a
completely mixed pond (Tm Te = Tp - Te) is given by the relation
r = e
m
- 1
(22)
where the only difference between rm and rp is the surface area A. Table 3,
TABLE 3 - RATIO OF AREA REQUIRED BY PLUG-FLOW POND
TO THAT REQUIRED BY COMPLETELY MIXED POND TO PRODUCE
EQUIVALENT COOLING UNDER SAME CONDITIONS
Temperature
Excess Ratio
/T -Te\
IT 11
\ o e /
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
T - T
e
/For T - T \
( ° e)
\ of 15° /
12.0°
10.5°
9.0°
7.5°
6.0°
4.5°
3.0°
1.5°
Area
Ratio
/A \
(v
0.89
0.83
0.77
0.69
0.61
0.51
0.40
0.26
26
-------
adapted from Edinger and Geyer, shows the area ratio required for various
values of the excess of pond effluent temperature over equilibrium temper-
ature .
Using Table 3, any of the areas determined for a completely mixed pond can
be converted to the area of an equivalent plug-flow pond. It should be
noted, however, that true plug-flow is impossible to attain on such a
large scale, due to the inability to eliminate longitudinal mixing in large
bodies of water. If a plug-flow type pond is desired, the area required
will be somewhat more than that for a perfect plug-flow pond, but less
than that required for a completely mixed pond. The behavior of almost
all real ponds lies somewhere between the two extremes, depending on pond
characteristics. However, the results presented in this report will allow
rapid determination of the upper and lower limits of required area. Fur-
ther study would then be required to complete design of an appropriate
pond for a given situation.
27
-------
RESULTS FOR EACH STATION
The meteorological information used for each station was tabulated on a
standard form, an example of which is shown as Figure 7. The standard form
was used for several projects and included a column for precipitation, which
was not used in this study. The data for all stations analyzed, alphabet-
ized by states, is presented in Appendix A. All the input necessary for
the computer program is contained on each data sheet.
The results from each station were plotted on a standard graph, an example
of which is shown as Figure 8. The solid curves are for average conditions,
and the dashed curves are for the extreme conditions. The results from all
the stations analyzed are collected in Appendix B, alphabetized by states.
Data from a total of 88 stations were analyzed. Extreme values of monthly
averages for 7 stations could not be calculated with accuracy, because of
the length of record involved. Thus, trends of extreme monthly values are
based on the analysis of data from 81 stations.
At least one station from each state was analyzed, and, for large states
or states with a great variation in climate or topography from one part of
the state to another, as many as 3 stations were used. A finer subdivision
would have produced more accurate representation on the maps used to dis-
play trends in the results.
An examination of the results from each station will show that they are
remarkably similar in pattern, but different in magnitude. Only a few
general comments will be presented here, as the results of each station
are generally self-explanatory.
The equilibrium temperature graph for almost all stations shows a low about
December 31 and a high in mid or late July. The pattern of variation
throughout the year is quite smooth and regular. The difference between
high and low for the year and the sharpness of the summer peak and winter
valley increase with latitude.
The heat exchange coefficient shows a pattern of variation almost exactly
opposite that of equilibrium temperature, which is extremely helpful from
the point of view of thermal pollution control by cooling ponds. The
highest heat exchange coefficients occur in mid or early July and the
lowest about December 31. Thus, heat exchange is greatest when temperatures
are highest and the potential for damage to the aquatic ecosystem from
excessive water temperatures is at or near its peak.
Deviations from the smooth pattern of annual variation are more common for
the heat exchange coefficient than for the equilibrium temperature. The
primary cause for the increase in the heat exchange coefficient during the
summer is the increase in evaporation and back radiation due to the higher
water temperature. This is slightly offset for most stations by lower
average wind speeds during the summer. Higher wind speeds during certain
parts of the year at individual stations cause significant deviations from
the trend (particularly coastal stations). For instance, the Florida sta-
tions show an increase in the heat exchange coefficient in September and
October- which is the hurricane season.
29
-------
WEATHER INFORMATION FOR Nashville. Tennessee (13897)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
6.7
6.5
6.2
5.9
5.5
5.7
5.3
5.0
4.6
5.9
6.7
TAIR
39.0
41.0
49.5
59.5
68.3
76.3
79.4
78.3
72.2
61.0
48.9
41.0
HUM
.71
.63
.60
.64
.68
.69
.75
.76
.76
.66
.68
.69
PPT
WIND
9.0
9.2
9.9
9.4
7.5
6.7
6.2
5.9
6.2
6.3
8.2
8.6
EXTREME CONDITIONS
CC
5.3
4.7
5.0
5.0
4.0
4.0
4.0
3.0
2.7
1.5
3.7
4.7
TAIR
45.0
46.3
53.0
63.5
70.8
78.0
81.0
79.5
74.0
63.0
51.0
44.5
HUM
.815
.77
.735
.70
.73
.76
.773
.78
.78
.78
.738
.77
PPT
WIND*
6.35
6.4
7.2
7.0
4.9
4.4
3.7
3.9
4.0
4.35
5.4
6.2
LATITUDE = 36
LONGITUDE = 86° 41' W
ELEVATION = 59° ft.
^Extreme conditions given in knots
FIGURE 7 - SAMPLE DATA SHEET FOR METEOROLOGICAL INFORMATION
30
-------
IBRIUM TEMPERATURE - F°
» 01 <" "J oo
y
/
PRE
i
/ i
/
ME
\
1
/
°(
'/
f
^
//
/
r
' i
J F M A M
TIME -
f—
••>
•«,
X
\
s^
^
NV
\
V
•^
A
V
^
A-
i.
X
s5
•*"
= 8
<
1 15
= 2:
X
*
J
t
VFI
-0.
^f
?Afi
s
s
p
v
V
%
\\
V-
V
i
A
v\
\
J JASON
MONTHS
00
**.
uu
^•^
!00
"*.
AC
Jl-
AL
*•
A(
^«
RE
^
X
Nb
^
L,RE
^
5
/
/
y
7
y
&
/
/
r
s
*
b.
\
D
,*-
sr-
••
o
U.
1
>. I8(
4
o
J "6(
u.
^ I4C
m
I
H I2C
UJ
C '°«
u.
Ul
O
o 8C
Ul
e>
< 6C
X
o
X
u. 4C
°U. 12
1
(O
1 "
K
Q
z 1 0
o
o
Ul
S 9
UJ
o:
h-
X ft
Ul
ui
V) j
cc
Ul
Q:
3 6
<
a:
Ul -.
a. 5
2
Ul
H 4
z
<
^1
a. -^
JFMAMJ JASON D
TIME - MONTHS
o
U.
1
>- 180
4
1 lfin
N '60
1-
u.
X
^ 140
CD
1
t- 120
UJ
o
u. I0°
u.
Ul
o
w BO
Ul
e>
6O
1.
X.
ui An
£f
/
/o'
/
j
/o-
f
^
V
-*\
S-
\
\
0»
\
\
t\
k
N»
X
*o-
J FMAM JJASOND
TIME - MONTHS
•0,
t)s
-0
"^
\
\
X
lx
N
^
Vo
o '
to-
80
*?
ISC
-D-
??<
*>.
0 A
-O
)0 /
"O*
io ^
*v
CRI
>°'
CR
***
,CR
rw
S
-»'
ES
-S
J>'
/*'
jf
f
tf
'
P
?
ff
-0,
-0,
-o.
JFMAMJ JASOND
TIME - MONTHS
FIGURE 8 - SAMPLE GRAPH OF RESULTS FOR A SINGLE STATION
31
-------
The heat exchange coefficient under extreme heating conditions is generally
lower than for normal conditions. This is because the increase due to
higher water temperatures (see the graph of equilibrium temperature under
extreme heating conditions) is not enough to offset the decrease due to
lower wind velocities.
The curves for net plant effluent temperature rise are essentially the in-
verse of the curves for the heat exchange coefficient, with the most effi-
cient cooling and lowest net temperature rise occurring in July. The net
plant temperature rise under extreme conditions is usually less than 0.5 F
greater than the net rise under normal conditions, because of the small
change in the heat exchange coefficient. In most cases, the high in
December and the low in July change very little, but a noticeable difference
is apparent in the fall.
Effect of Geographical Location on Pond Performance
The effect of geographical location on equilibrium temperatures, heat ex-
change coefficients, and cooling pond performance are shown by a series
of maps of the United States, Figures 9-36. Each map shows the variation
of a particular variable at a particular time of year, with lines connecting
points of equal value, similar to contour lines. The points on the maps
show the location of the weather stations used to plot the contours.
Four general categories of maps are presented. These are maps depicting:
(1) the variation of equilibrium temperature at various times of the year,
both for average and extreme heating conditions; (2) the variation of the
heat exchange coefficient at various times of the year, both for average
and extreme heating conditions; (3) the net plant effluent temperature
rise for the standard plant and a particular size cooling pond at various
times of the year, both for average and extreme heating conditions; and
(4) the size of cooling pond necessary to produce a certain percent of
cooling at various times of the year- both for average and extreme heating
conditions.
Examination of the maps shows that latitude, which controls solar radiation,
is the main influence on the equilibrium temperature. The variation of
other parameters is masked by the heavy influence of solar radiation.
Topographic conditions, which strongly influence wind speed and the wet
bulb temperature (the variables which determine K), however, have a strong
influence on the heat exchange coefficient. Since variables 3 and 4 in the
list above are dependent primarily on the heat exchange coefficient, they
show a similar variation. These maps show that the best cooling conditions
exist on the southern great plains between the Rocky Mountains and the
Mississippi River, and, secondarily, along the Gulf and Atlantic Coasts,
all the way to Cape Cod. Poor cooling conditions for ponds exist across
the northern part of the country and in the vicinity of the Appalachian
and Rocky Mountains. The area most conducive to the use of cooling ponds
seems to be Texas, while the area least suitable seems to be the area
between the Sierra Nevada and Rocky Mountains.
It should be emphasized, however, that the contours in the vicinity of
mountainous areas refer to conditions at the weather stations, which are
usually at airports. For the purpose of this study, this is much more
appropriate than a station in the actual mountainous area, since cooling
32
-------
FIGURE 9 - EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE
FOR AVERAGE WEATHER CONDITIONS
FIGURE 10 - EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS
33
-------
50°
70'
45° 40
70
70
75°
FIGURE 11 - EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE
FOR AVERAGE WEATHER CONDITIONS
60°.
80
FIGURE 12 - EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS
34
-------
FIGURE 13 - EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE
FOR AVERAGE WEATHER CONDITIONS
FIGURE 14 - EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS
35
-------
80
80°
80
FIGURE 15 - EQUILIBRIUM TEMPERATURE ON OCTOBER 1
FOR AVERAGE WEATHER CONDITIONS
- MONTHLY AVERAGE
FIGURE 16 - EQUILIBRIUM TEMPERATURE ON OCTOBER 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS
36
-------
150
175
200
FIGURE 17 - TIME (IN DAYS) THAT MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE
FOR AVERAGE WEATHER CONDITIONS IS ABOVE 75°F
FIGURE 18 - DATE ON WHICH MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE FOR
AVERAGE WEATHER CONDITIONS RISES THROUGH 60°F IN THE SPRING
37
-------
60
70
90
100
7O
E INDIVIDUAL
STATIONS/!
no
FIGURE 19 - HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE
FOR AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
NO RATTER
SEE IND1V40UA1L STATIONS
80
90
100
110
120'
no
FIGURE 20 - HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
38
-------
150
125
150
200
225
225
FIGURE 21 - HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE
FOR AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
100
100
125
175 200
200
125
FIGURE 22 - HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE
FOR EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
39
-------
The net temperature rises depicted on the following 8 maps
refer specifically to the excess, above equilibrium tempera-
ture, of the effluent from a completely mixed pond receiving
1350 cfs of condenser cooling water at 15°F above equilibrium
temperature (the "standard 1000-megawatt plant") .
The net temperature rise for other condenser temperature
rises may be estimated by assuming that the same fraction of
the condenser rise will be dissipated, all other conditions
being the same. This then would imply a less efficient plant
or more probably a larger plant at the same efficiency. The
plant pumping rate, size of pond, and meteorological condi-
tions would remain the same. This method assumes that the
change in water surface temperature of a completely mixed
pond will not change enough to significantly change the heat
exchange coefficient.
For a plant of the same size but with a smaller pumping rate
and larger condenser rise, one cannot proceed directly from
a 15° temperature rise across the condenser to a 25° rise,
or any other rise, as there are too many interrelated fac-
tors. One can get approximate solutions for mixed tempera-
ture for other temperature rises, however, by noting that
the equilibrium temperature and heat transfer coefficient
will change proportionally far less than the difference be-
tween the condenser effluent temperature and the equilibrium
temperature. Therefore, for a first approximation, one can
treat both the equilibrium temperature and the heat transfer
coefficient as constants and vary the plant effluent temper-
ature and plant pumping rate to arrive at an approximate
answer using Equations 18 and 19,
T - T
me 1
T - T
o e
40
-------
FIGURE 23 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1
MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
FIGURE 24 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1
MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)
41
-------
6.5
6.5
6.5'
5.5'
4.5'
.4.5°
FIGURE 25 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1
MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
6.5°
6.5°
6.0'
5.0°
FIGURE 26 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1
MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)
42
-------
7.5
6.0
FIGURE 27 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1
MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
,7.5° 8.0°
8.0°
8.0°
FIGURE 28 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1
MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)
43
-------
3.5
3.5°
FIGURE 29 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1
MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
5.0°
FIGURE 30 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1
MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)
44
-------
The pond sizes depicted on the following 6 maps refer spe-
cifically to the size of completely mixed ponds necessary to
dissipate the stated fraction of the condenser temperature
rise (above equilibrium temperature) in a flow of 1350 cfs
at 15°F above equilibrium temperature (the "standard 1000-
megawatt plant").
The same fraction cooling would also apply approximately to
other condenser temperature rises, assuming that the surface
water temperature of a completely mixed pond will not change
enough to significantly change the heat exchange coefficient
and that all other conditions remain the same.
45
-------
20OO
2250
1500
I25O
1250
FIGURE 31 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER CONDITIONS
20'
2500
2250
I25O
1250
FIGURE 32 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1 - EXTREME WEATHER CONDITIONS
46
-------
MOO
1000
9OO
7OO
900
1000
900
600' ^"600
FIGURE 33 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER CONDITIONS
1300,
1200
raoo
1200
700
700
FIGURE 34 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JULY 1 - EXTREME WEATHER CONDITIONS
47
-------
FIGURE 35 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
(5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER CONDITIONS
2250
2000
1750
1500
1750
FIGURE 36 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
(5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER CONDITIONS
48
-------
ponds are much more likely to be built in the lower level areas in the
valleys than in the rough country on the side of a mountain.
Accuracy of Contour Lines
The contour lines were drawn by hand with due regard to both the numerical
values of the plotted points at the various weather stations and the nature
of the topography and climate in the area. Awareness of the topography
was especially valuable in determining plausible patterns for the lines in
areas where the pattern of numerical values seemed confusing.
In most cases, logical patterns could be constructed in which a particular
line actually divides the values correctly, with all values above that of
the contour on one side and all values below it on the other side. In a
few cases, particularly the midwest and upper great plains, this was not
feasible. Usually it was because the variation was slight over a large
area and the individual values seemed to vary almost randomly in the area.
When areal variation is so slight, individual conditions at the site have
a relatively greater influence, and the regular variation of the pattern
is destroyed.
There were, however, 4 stations which consistently produced values which
did not fit the pattern established by the remainder of the stations. Las
Vegas, Nevada, consistently produced results which showed considerably
more effective cooling than the other stations in the vicinity; while
Jackson, Mississippi, Des Moines, Iowa, and Concord, New Hampshire, pro-
duced cooling which was not as effective. In addition, Fort Smith and
Little Rock, Arkansas, sometimes produced results which were not as good
as other stations in the vicinity.
Subject to the aforementioned limitations, it is believed that the results
presented are reasonably accurate, based on the data from the stations
used, and will be of value in preliminary analyses of cooling pond feasi-
bility. It should always be recognized, however, that local topographic
and meteorological conditions can exert a great influence on pond require-
ments and performance. Thus, before any pond is actually sized or built,
a more thorough study, using meteorological data from the actual site or
from close by, should be conducted.
49
-------
EXAMPLE CALCULATIONS
To use the information contained in these charts and tables, one can look
at a typical problem. Suppose that a lOOO^MWe power plant with an effi-
ciency of 38% will be built at Nashville, Tennessee. What size pond is
required so that the maximum temperature at the outlet of the pond will
not exceed 7°F under normal meteorological conditions or under extreme
meteorological conditions?
From Figure 112, the net plant temperature rise for cooling ponds of 800,
1500, and 2200 acres is abstracted and plotted as on Figure 6. Lines can
be drawn for each month and for both average and extreme meteorological
conditions.
One then enters the plot, Figure 6, at the 7° temperature rise and reads
for January, 2250 acres, April, 1450 acres, and June, 1350 acres. One can
also enter the same plot, Figure 6, at the 2200 acre line and read the
temperature rise per month - January, 7.1°F, April, 5.5°F, and June, 5.1°F.
The results for all the months are tabulated below:
SIZE OF POND SO AS NOT TO EXCEED 7°F RISE
AT EXIT OF POND (IN ACRES)
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average Meteorological
Conditions
2250
2000
1700
1450
1400
1350
1350
1400
1550
2000
2100
2200
Extreme Meteorological
Conditions
2300
2200
1800
1450
1500
1400
1500
1500
1650
400
2300
2300
TEMPERATURE RISE FOR 2200 ACRE POND
Month
January
February
March
April
May
June
Average Meteorological
Conditions
7.1
6.7
6.1
5.5
5.4
5.1
Extreme Meteorological
Conditions
7.2
7.0
6.2
5.5
5.6
5.4
51
-------
TEMPERATURE RISE FOR 2200 ACRE POND
(Continued)
Average Meteorological Extreme Meteorological
Month Conditions Conditions
July
August
September
October
November
December
5.1
5.3
5.7
6.8
6.8
7.1
5.6
5.7
6.1
6.8
7.3
7.4
The temperature rise for any specified size pond and the pond size for
any specified temperature rise can be obtained directly from Figure 6.
52
-------
REFERENCES
1. Herman, Leo D., Evaporative Cooling of Circulating Water, Pergamon
Press, New York, New York, 1961.
2. Duttweiler, D. W., "A Mathematical Model of Stream Temperature," Ph.D.
Dissertation, The Johns Hopkins University, Baltimore, Maryland, 1963.
3. Edinger, John E., and John C. Geyer, "Heat Exchange in the Environment,"
Publication No. 65-902, Edison Electric Institute, New York, New York,
1965.
4. Edinger, John E., and John C. Geyer; "Analyzing Steam Electric Power
Plant Discharges," Journal of the Sanitary Engineering Division,
American Society of Civil Engineers, 94, SA4, August, 1968.
5. Edinger, John E., David W. Duttweiler, and John C. Geyer, "The Response
of Water Temperatures to Meteorological Conditions," Water Resources
Research, 4, 5, October; 1968.
6. Raphael, Jerome M., "Prediction of Temperature in Rivers and Reservoirs,"
Journal of the Power Division, American Society of Civil Engineers, 88,
P02, July, 1962.
7. Anderson, E. R., "Energy-Budget Studies, Water Loss Investigations:
Lake Hefner Studies," Professional Paper 2,69, U. S. Geological Survey,
Washington, D. C., 1954.
8. Koberg, Gordon E., "Methods to Compute Long-Wave Radiation from the
Atmosphere and Reflected Solar Radiation from a Water Surface," U. S.
Geological Survey Professional Paper 272-F, Washington, D. C., 1964.
9. Harmon, Russell W., Leonard L. Weiss, and Walter T. Wilson, "Insola-
tion as an Empirical Function of Daily Sunshine Duration," Monthly
Weather Review, 82, 6, June, 1954.
10. Langhaar, J. W., "Cooling Pond May Answer Your Water Cooling Problem,"
Chemical Engineering, 60, 8, August, 1953.
11. Marquart, D. W., "An Algorithm for Least-Squares Estimation of Nonlinear
Parameters," Journal of the Society for Industrial and Applied Mathe-
matics, June, 1963.
12. Thackston, Edward L., J. R. Hayes, and P. A. Krenkel, "Least Squares
Estimation of Mixing Coefficients," Journal of the Sanitary Engineering
Division, American Society of Civil Engineers, 93, SA3, June, 1967.
13. Moon, Parry, "Proposed Standard Radiation Curves for Engineering Use,"
Journal of the Franklin Institute, 230, 5, November, 1940.
53
-------
APPENDIX I
WEATHER INFORMATION FOR INDIVIDUAL STATIONS
-------
TABLE 4
WEATHER INFORMATION FOR Huntsville, Alabama
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
6.2
5.9
5.7
5.9
6.0
5.7
5.3
4.3
6.1
_6.7
TAIR
42.9
45.1
51.8
61.6
70.4
78.6
81.1
80.2
74.5
63.2
50.8
43.6
HUM
.72
.69
.64
.62
.66
.69
.71
.73
.71
.68
.70
.72
PPT
WIND
8.4
9.4
9.5
8.8
6.6
6.1
5.5
5.5
6.7
6.5
7.6
8.4
EXTREME CONDITIONS
CC
>
TAIR
HUM
PPT
WIND
LATITUDE = 34° 39' N
LONGITUDE = 86° 46' W
ELEVATION = 624 ft.
56
-------
TABLE 5
WEATHER INFORMATION FOR Mobile. Alabama (13894)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6.4
6.0
5.8
5.6
5.8
6.7
5.9
5.8
4.2
5.2
6.2
TAIR
53.0
55.2
60.3
67.6
75.6
81.5
82.6
82.1
77.9
69.9
58.9
54.1
HUM
.74
.66
.70
.74
.72
.74
.74
.78
.74
.70
.73
.74
PPT
WIND
11.1
11.6
11.5
10.9
9.3
8.0
7.2
7.1
8.5
8.7
10.0
10.6
EXTREME CONDITIONS
CC
4.2
4.0
4.4
3.7
3.0
3.5
5.0
4.0
4.0
1.5
3.0
4.2
TAIR
58.0
60.0
63.0
69.8
76.0
81.0
81.2
81.5
77.5
69.8
60.0
56.0
HUH
.80
.79
.745
.748
.76
.78
.83
.805
.80
.78
.76
.785
PPT
WIND*
7.6
8.2
7.8
7.9
6.9
5.2
5.1
4.5
5.0
5.9
6.8
7.8
LATITUDE = 30° 41.0' N
LONGITUDE = 88° 14-5' w
ELEVATION = 211 ft'
*Extreme conditions given in knots
57
-------
TABLE 6
WEATHER INFORMATION FOR Phoenix, Arizona
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.8
4.4
4.4
3.6
2.8
1.9
3.8
3.4
2.1
2.6
3.5
3.8
TAIR
49.7
53.5
59.0
67.2
75.0
83.6
89.8
87.5
82.8
70.7
58.1
51.6
HUM
.50
.45
.41
.30
.23
.23
.34
.41
.40
.36
.47
- .54
PPT
WIND
4.8
5.3
6.0
6.3
6.4
6.4
6.6
6.1
5.8
5.2
4.8
4.7
EXTREME CONDITIONS
CC
1.5
2.0
2.2
1.0
1.2
0.0
1.7
1.3
0.3
1.0
1.3
1.3
TAIR
53.5
60.0
63.0
72.7
81.5
90.0
93.3
91.0
85.6
75.8
62.5
54.3
HUM
.66
.60
.545
.44
.29
.28
.43
.485
.46
.49
.58
.64
PPT
WIND*
2.7
3.2
4.45
4.2
4.6
4.6
4.7
4.07
3.9
3.3
3.2
2.8
LATITUDE = 33° 26' N
LONGITUDE = H2° OT W
ELEVATION = 1117 ft.
*Extreme conditions given in knots
58
-------
TABLE 7
WEATHER INFORMATION FOR Fort Smith. Arkansas (13964)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
'DEC
NORMAL CONDITIONS
CC
6.5
6.1
6.1
6.0
6.0
5.4
5.4
4.8
4.6
4.4
5.2
6.0
TAIR
39.8
43.7
51.1
61.7
69.9
78.6
83.0
82.3
74.9
63.8
50.0
42.3
HUM
.69
.63
.62
.65
.70
.70
.70
.70
.68
.64
.68
.70
PPT
WIND
8.2
8.4
9.5
8.9
8.0
6.8
6.5
6.6
6.8
6.8
7.7
8.1
EXTREME CONDITIONS
CC
4.0
4.2
4.0
4.2
4.0
3.0
3.0
2.5
2.0
2.0
3.0
4.0
TAIR
43.0
48.0
55.0
65.5
73.0
80.0
83.7
82.0
75.5
66.5
53.0
44.5
HUM
.76
.74
.68
.66
.73
.75
.75
.755
.78
.77
.74
.74
PPT
WIND*
6.0
6.7
7.35
6.8
5.9
5.0
5.0
4.8
4.8
5.2
5.4
5.93
LATITUDE = 35° 20' N
LONGITUDE = 94° 22" W
ELEVATION = 447 ft-
*Extreme conditions given in knots
59
-------
TABLE 8
WEATHER INFORMATION FOR Little Rock, Arkansas (13963)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.3
6.3
6.0
6.1
5.3
5.5
4.9
4.6
4.4
5.2
^6.3
TAIR
41.8
45.6
52.8
62.5
69.8
78.5
81.9
81.3
74.8
64.1
51.5
43.9
HUM
.72
.69
.66
.66
.70
.71
.71
.70
.70
.70
.68
.72
PPT
WIND
9.1
9.4
10.2
9.8
8.4
7.9
7.3
6.9
7.2
7.0
8.4
8.5
EXTREME CONDITIONS
CC
4
4.2
4
4.2
3.5
3
3.7
3
2
2
3.2
4.2
TAIR
47
49
57
66.5
73.5
82
83
82
76
65.5
54
48
HUM
.78
.745
.69
.675
.74
.76
.775
.747
.77
.75
.723
.74
PPT
WIND*
6.83
6.75
7.8
7.3
5.7
5.2
5.0
4.5
5.1
4.95
6.2
6.2
DAY
15
45
74
105
135
166
196
227
258
288
319
349
LATITUDE - 34° 44'
LONGITUDE = 92° 14'
ELEVATION - 257 ft.
*Extreme conditions given in knots
60
-------
TABLE 9
WEATHER INFORMATION FOR Burbank. California (23152)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
5.0
5.0
5.1
4.7
3.7
2.5
2.4
2.5
3.8
4.0
4.2
TAIR
53.6
55.2
57.9
61.2
64.4
68.0
73.8
74.1
72.6
66.3
60.4
55.6
HUM
.59
.60
.60
.63
.64
.66
.62
.62
.60
.62
.54
.54
PPT
WIND
4.3
4.9
5.4
5.7
5.6
5.6
5.7
5.3
4.6
4.3
4.1
4.1
EXTREME CONDITIONS
CC
2.2
2.3
2.5
2.8
2.4
1.9
0.8
1.1
0.8
1.6
1.8
1.6
TAIR
56.2
59.2
59.2
63.4
65.1
69.2
74.8
74.3
74.4
69.3
61.8
57.2
HUM
.666
.697
.662
.702
.692
.696
.663
.672
.666
.682
.608
.653
PPT
WIND*
2.68
2.78
3.58
3.68
3.28
3.29
3.47
3.16
2.64
2.74
2.17
2.27
LATITUDE =
LONGITUDE =
ELEVATION =
34° 12'
118° 22' W
724 ft.
*Extreme conditions given in knots
61
-------
TABLE 10
WEATHER INFORMATION FOR Fresno. California (93193)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
5.9
5.1
4.3
3.5
1.5
1.0
1.1
1.5
2.7
4.7
6.9
TAIR
45.5
49.8
54.4
60.8
67.5
73.9
80.6
78.4
73.9
64.3
53.2
46.4
HUM
.84
.77
.67
.58
.51
.44
.40
.44
.50
.55
.69
.82
PPT
WIND
5.4
5.8
6.7
6.9
7.9
8.0
7.0
6.4
5.8
5.3
4.7
4.8
EXTREME CONDITIONS
CC
4.0
2.5
2.7
1.5
1.5
0.3
0.0
0.1
0.0
0.4
1.4
4.0
TAIR
47.5
54.0
55.5
64.5
69.7
78.0
82.8
82.0
75.0
67.0
55.7
49.0
HUM.
.88
.828
.733
.66
.56
.49
.44
.48
.54
.65
.831
^89
PPT
WIND*
3.7
3.82
4.9
5.4
5.7
6.53
5.4
4.6
4.3
3.95
2.99
3.2
LATITUDE =
36° 46'
LONGITUDE = "9° 43' W
ELEVATION - 328 ft-
*Extreme conditions given in knots
62
-------
TABLE 11
WEATHER INFORMATION FOR Oakland. California (23230)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.0
5.7
5.2
5.0
3.8
3.6
4.0
3.4
4.4
5.7
6.1
TAIR
48.0
50.7
53.6
56.6
59.7
62.8
64.3
64.2
65.1
61.1
54.7
49.5
HUM
.77
.75
.72
.72
.72
.72
.75
.76
.73
.73
.73
.78
PPT
WIND
6.2
7.0
8.7
9.2
9.8
9.8
9.0
8.9
7.5
6.6
5.7
5.6
EXTREME CONDITIONS
CC
2.5
3.0
3.2
3.0
3.0
2.2
1.5
2.2
2.0
2.3
2.7
4.0
TAIR
50.0
54.5
54.5
57.7
59.0
63.5
63.3
64.0
64.8
62.5
57.0
52.3
HUM
.82
.81
.735
.735
.725
.75
.768
.78
.76
.76
.795
.815
PPT
WIND*
4.4
4.2
6.1
6.15
6.7
7.4
6.4
6.1
5.0
4.3
3.8
3.5
LATITUDE = 37° 44' N
LONGITUDE = 122° 12' W
ELEVATION = 10 ft-
*Extreme conditions given in knots
63
-------
TABLE 12
WEATHER INFORMATION FOR Denver. Colorado (23062)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.3
5.8
5.9
6.4
6.3
4.8
4.9
4.8
4.0
4.4
5.1
5.0
TAIR
28.7
32.0
37.8
47.5
56.3
66.4
72.8
71.3
62.7
51.5
39.3
31.7
HUM
.54
.55
.52
.51
.54
.48
.47
.47
.45
.47
.50
.51
PPT
WIND
9.9
10.2
10.8
11 .0
10.1
10.0
9.1
8.7
8.7
8.6
9.7
9.9
EXTREME CONDITIONS
CC
3.5
4.1
4.0
4.3
4.2
3.2
3.7
3.2
2.4
2.3
3.3
3.2
TAIR
34.5
38.0
42.0
50.7
60.5
71.0
75.3
72.5
65.0
56.0
43.0
35.0
HUN
.58
.62
.64
.56
.59
.59
.54
.53
.58
.53
.61
.59
PPT
WIND*
6.5
6.6
7.5
7.85
7.4
6.7
6.6
6.43
6.5
6.4
6.05
6.6
LATITUDE =
LONGITUDE =
39° 46' N
104° 53'
ELEVATION = 5292 ft"
*Extreme conditions given in knots
64
-------
TABLE 13
WEATHER INFORMATION FOR Grand Junction. Colorado (23066)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
6.4
6.1
5.9
5.5
3.7
4.0
4.4
3.4
3.9
5.0
5.6
TAIR
26.0
32.6
41.5
52.3
62.2
71.3
78.2
75.5
67.8
55.0
38.8
29.1
HUM
.68
.62
.50
.38
.33
.26
.31
.37
.36
.42
.57
.66
PPT
WIND
5.6
6.7
8.4
9.7
10.0
10.2
9.5
9.0
9.1
8.2
6.7
5.8
EXTREME CONDITIONS
CC
4.2
3.7
4.0
4.2
3.5
1.7
3.1
2.5
1.4
2.0
2.7
3.3
TAIR
32.0
38.0
43.0
55.0
65.5
75.7
80.0
76.5
69.0
58.0
42.8
34.3
HUM
.76
.71
.61
.46
.42
.38
.39
.47
.46
.52
.63
.75
PPT
WIND*
3.5
3.85
5.37
5.8
6.6
7.1
6.2
6.2
6.3
5.0
4.6
3.4
LATITUDE =
LONGITUDE =
ELEVATION =
39° 07'
108° 32' W
4825 ft.
*Extreme conditions given in knots
65
-------
TABLE 14
WEATHER INFORMATION FOR Hartford. Connecticut
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.6
6.6
6.8
6.6
6.6
6.5
6.4
5.9
5.9
6.9
6.6
TAIR
26.0
27.1
36.0
48.5
59.9
68.7
73.4
71.2
63.3
53.0
41.3
28.9
HUM
.66
.66
.66
.59
.62
.68
.68
.72
.75
.70
.70
.72
PPT
WIND
9.9
10.0
10.4
10.7
9.7
8.5
7.8
7.8
8.0
8.5
9.1
9.1
EXTREME CONDITIONS
CC
TAIR
HUM
PPT
WIND
LATITUDE - 41° 56' N
LONGITUDE = 72° 4T W
ELEVATION - 169 ft.
66
-------
TABLE 15
WEATHER INFORMATION FOR Wilmington. Delaware (13781)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.4
6.3
6.6
6.6
5.8
6.0
5.8
5.5
5.2
6.2
6.3
TAIR
33.4
33.8
41.3
52.1
62.7
71.4
76.0
74.3
67.6
56.6
45.4
35.1
HUM
.70
.69
.67
.66
.68
.70
.71
.74
.74
.73
.72
.71
PPT
WIND
9.7
10.3
11.1
10.4
8.9
8.3
7.6
7.4
8.0
8.1
9.0
9.1
EXTREME CONDITIONS
CC
4.0
4.7
4.4
5.1
5.2
4.3
4.2
4.0
3.3
3.0
4.0
4.4
TAIR
38.0
38.0
43.5
54.7
64.5
72.5
77.5
76.0
69.0
58.8
47.0
38.0
HUH
.73
.755
.70
.68
.74
.725
.77
.777
.78
.75
.733
.755
PPT
WIND*
7.0
7.6
8.5
8.0
6.4
6.2
5.5
5.1
5.5
5.8
6.4
6.65
LATITUDE =
LONGITUDE =
39° 40'N
75° 36'W
ELEVATION = 78 ft>
*Extreme conditions given in knots
67
-------
TABLE 16
WEATHER INFORMATION FOR Washington, D. C. (13743)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.1
6.5
6.4
5.6
5.9
5.6
5.4
5.3
5.9
6.2
TAIR
36.2
37.1
45.3
54.4
64.7
73.4
77.3
75.4
69.6
58.2
47.7
38.0
HUM
.66
.62
.60
.60
.66
.67
.68
.71
.72
.71
.66
.64
PPT
WIND
10.8
11.1
12.0
11.3
9.8
9.4
8.6
8.4
8.7
9.2
9.6
9.7
EXTREME CONDITIONS
CC
4.2
4.3
4.3
5.1
4.3
4.1
4.0
4.0
3.2
2.0
4.0
4.4
TAIR
41.0
42.0
47.0
58.0
68.0
75.6
80.0
78.0
72.5
61.7
49.5
41.7
HUM
.68
.70
.625
.635
.68
.70
.717
.74
.745
.72
.68
.69
PPT
WIND*
7.35
7.4
7.9
7.8
7.0
6.4
6.4
6.2
6.03
6.4
6.8
7.0
LATITUDE =
LONGITUDE =
ELEVATION =
38° 51'
77° 02' W
14 ft.
*Extreme conditions given in knots
68
-------
TABLE 17
WEATHER INFORMATION FOR Jacksonville, Florida (93837)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.8
5.8
5.3
5.3
6.2
6.4
6.1
6.7
5.4
5.1
5.9
TAIR
55.9
57.5
62.2
68.7
75.8
80.8
82.6
82.3
79.4
71.0
61.7
56.1
HUM
.75
.72
.70
.69
.70
.74
.77
.79
.80
.78
.76
.76
PPT
WIND
8.6
9.9
9.8
9.5
9.0
8.8
8.0
7.7
9.0
9.0
8.6
8.3
EXTREME CONDITIONS
CC
4.2
4.0
4.3
4.0
4.1
5.1
5.3
4.7
5.4
3.5
3.0
4.2
TAIR
60.0
63.5
65.0
70.7
77.5
81.5
82.7
83.0
79.8
74.0
65.5
60.3
HUM
.775
.76
.70
.74
.75
.78
.795
.82
.825
.815
.785
.80
PPT
WIND*
5.6
6.2
6.1
6.45
6.1
5.8
5.4
5.1
5.2
6.0
5.6
5.3
LATITUDE =
LONGITUDE =
ELEVATION =
30° 25' N
81° 39' W
20 ft.
*Extreme conditions given in knots
69
-------
TABLE 18
WEATHER INFORMATION FOR M1am1' F1°Hda (12839)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.9
5.0
5.1
5.5
5.5
6.6
6.4
6.4
6.6
6.0
5.2
^J.3
TAIR
66.9
67.9
70.5
74.2
77.6
80.8
81.8
82.3
81.3
77.8
72.4
68.1
HUM
.75
.74
.72
.71
.74
.77
.77
.78
.80
.78
.76
.76
PPT
WIND
9.2
9.8
10.1
10.5
9.1
8.0
7.9
7.3
8.1
9.0
9.0
•8.4
EXTREME CONDITIONS
CC
3.0
3.2
3.2
4.0
3.2
4.7
5.0
5.0
5.1
4.2
3.3
2.5
TAIR
70.0
72.0
73.3
75.8
78.7
80.8
82.5
82.8
81.8
78.0
74.0
71.0
HUM-
.75
.745
.737
.73
.79
.80
.785
.79
.82
.805
.77
.77
PPT
WIND*
6.6
7.0
7.7
7.6
6.75
5.6
5.5
5.1
5.0
5.9
6.6
6.2
LATITUDE =
LONGITUDE -
ELEVATION -
25° 48'
80° 16' W
7 ft.
*Extreme conditions given in knots
70
-------
TABLE 19
WEATHER INFORMATION FOR Tampa. Florida (12842)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
5.2
5.4
5.2
4.9
6.0
6.7
6.7
6.5
5.1
4.9
5.5
TAIR
61.2
62.7
66.0
71.4
76.8
80.6
81.6
82.0
80.5
74.7
66.8
62.3
HUM
.76
.75
.74
.71
.72
.75
.78
.80
.80
.77
.76
.76
PPT
WIND
9.0
9.6
10,1
9.9
9.1
8.4
7.7
7.4
8.6
9.0
9.1
9.2
EXTREME CONDITIONS
CC
3.0
3.5
3.5
3.0
3.0
4.5
5.1
5.1
4.7
25.0
2.3
3.5
TAIR
64.0
66.0
68.0
72.7
77.7
81.3
81.5
81.5
80.0
75.7
69.0
64.3
HUM.
.76
.765
.745
.73
.74
.78
.79
.803
.808
.78
.763
.775
PPT
WIND*
5.8
6.5
7.4
7.1
6.4
6.1
5.4
5.63
5.3
6.0
6.2
6.65
LATITUDE =
LONGITUDE =
ELEVATION =
27° 58'
82° 32' W
19 ft.
*Extreme conditions given in knots
71
-------
TABLE 20
WEATHER INFORMATION FOR Atlanta. Georgia (13874)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.2
6.1
5.5
5.4
5.8
6.3
5.7
5.3
4.5
5.1
6.2
TAIR
44.6
46.7
52.7
61.7
70.0
77.7
79.5
78.6
74.4
63.4
51.9
45.2
HUM
.73
.68
.66
.63
.66
.70
.76
.72
.73
.72
.67
.70
PPT
WIND
11.3
11.7
11.8
10.8
9.0
8.3
7.7
7.4
8.4
8.7
9.6
10.3
EXTREME CONDITIONS
CC
5.0
4.0
4.7
4.0
3.0
4.0
4.5
3.5
3.6
0.9
3.0
4.3
TAIR
50.0
51.5
55.0
64.0
72.0
77.6
80.0
79.1
74.1
64.7
53.1
46.6
HUM
.76
.70
.69
.687
.72
.771
.791
.781
.77
.761
.721
.751
PPT
WIND*
7.0
7.85
7.3
7.0
5.8
5.46
5.03
5.03
5.49
5.59
6.1
6.79
LATITUDE =
LONGITUDE =
ELEVATION =
33° 39' N
84° 25' W
975 ft.
*Extreme conditions given in knots
72
-------
TABLE 21
WEATHER INFORMATION FOR Boise, Idaho (24131)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.6
7.1
6.7
6.3
5.8
4.8
2.5
3.2
3.5
5.0
6.8
7.6
TAIR
29.1
34.5
41.7
50.4
58.2
65.8
75.2
72.1
62.7
51.6
38.6
32.2
HUM
.80
.74
.61
.54
.54
.50
.37
.38
.45
.55
.72
.79
PPT
WIND
8.6
9.4
10.5
10.2
9.5
9.1
8.5
8.3
8.3
8.7
8.6
8.4
EXTREME CONDITIONS
CC
6.2
5.2
4.0
4.0
4.0
2.3
1.0
1.3
1.2
2.3
4.0
5.5
TAIR
36.0
40.5
43.5
52.0
61.5
68.5
78.0
76.0
67.0
56.0
43.5
35.0
HUH
.81
.78
.68
.63
.62
.59
.41
.43
.49
.66
.76
.83
PPT
WIND*
5.5
6.6
7.5
7.4
6.8
6.4
5.9
5.8
6.0
5.9
6.2
4.0
LATITUDE = 43° 34' N
LONGITUDE = 116° 13' W
ELEVATION = 2838 ft.
*Extreme conditions given in knots
73
-------
TABLE 22
WEATHER INFORMATION FOR Chicago. Illinois (14819)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.7
7.0
6.8
6.3
6.0
5.3
5.3
5.3
5.2
7.0
7.0
TAIR
26.0
27.7
36.3
49.0
60.0
70.5
75.6
74.2
66.1
55.1
39.9
29.1
HUM
.68
.64
.64
.64
.60
.62
.65
.67
.66
.62
.69
.75
PPT
WIND
11.4
11.6
11.8
11.7
10.4
9.2
8.2
8.0
8.9
9.8
11.4
11.2
EXTREME CONDITIONS
CC
5.3
5.0
5.5
4.7
4.3
4.3
4.0
3.5
3.2
3.0
5.1
5.0
TAIR
29.0
33.0
40.0
52.5
65.5
73.7
77.5
76.0
68.7
59.0
43.5
35.0
HUM
.773
.758
.70
.685
.655
.663
.68
.705
.70
.70
.707
.78
PPT
WIND*
8.9
8.2
9.1
8.6
8.0
6.7
6.1
5.6
6.7
7.2
8.8
8.45
LATITUDE =
LONGITUDE -
ELEVATION =
41° 47' N
87° 45' W
607 ft.
*Extreme conditions given in knots
74
-------
TABLE 23
WEATHER INFORMATION FOR Springfield, Illinois (93822)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.2
6.5
6.7
6.6
6.3
6.0
5.6
5.1
.4.5
4.7
6.1
6.9
TAIR
27.4
30.8
40.2
51.7
62.0
71.9
76.3
74.0
66.9
55.9
40.9
30.6
HUM
.76
.75
.71
.66
.66
.68
.71
.72
.67
.67
.70
.76
PPT
WIND
13.4
13.6
14.8
14.1
12.0
10.2
8.8
8.1
9.8
10.8
14.2
13.4
EXTREME CONDITIONS
CC
5.1
4.5
5.1
4.5
4.5
4.0
4.1
3.2
2.4
2.0
4.2
4.3
TAIR
31.0
35.5
43.0
57.0
70.0
77.0
79.3
76.0
70.0
61.0
45.0
36.5
HUM
.795
.78
.76
.71
.70
.72
.75
.765
.74
.74
.74
.815
PPT
WIND*
10.05
9.7
10.8
10.5
9.5
7.8
6.35
5.65
6.9
8.2
9.2
9.7
LATITUDE =
LONGITUDE =
ELEVATION =
39° 50' N
89° 40' W
589 ft.
*Extreme conditions given in knots
75
-------
TABLE 24
WEATHER INFORMATION
Evansville, Indiana (93817)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.3
6.8
6.6
6.5
6.4
5.9
5.6
5.1
4.7
4.8
6.1
6.9
TAIR
34.7
37.5
46.6
57.1
65.5
74.6
78.2
76.3
70.5
59.3
46.0
36.9
HUM
.77
.72
.69
.67
.70
.70
.71
.73
.72
.72
.72
.76
PPT
WIND
10.0
10.3
10.9
10.5
8.5
7.7
6.7
6.1
7.1
7.3
9.3
9.3
EXTREME CONDITIONS
CC
4.7
4.7
5.1
5.1
4.3
4.1
4.0
2.7
2.3
1.5
4.0
4.5
TAIR
38.5
40.0
48.5
59.7
69.0
79.0
80.0
77.3
71.3
61.0
47.0
41.0
HUM
.80
.77
.72
.695
.71
.745
.755
.775
.79
.747
.76
.78
PPT •
WIND*
6.2
6.6
7.65
7.2
6.0
5.0
4.8
4.6
5.23
5.5
5.6
6.6
38° 03' N
LATITUDE = _
LONGITUDE -
ELEVATION - 381 ft.
87° 32' W
*Extreme conditions given in knots
76
-------
TABLE 25
WEATHER INFORMATION FOR Indianapolis, Indiana (93819)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.5
6.8
6.9
7.0
6.7
6.2
5.7
5.3
5.0
4.9
6.6
7.1
TAIR
28.8
31.5
40.1
50.8
61.4
71.4
76.0
74.0
67.2
55.9
41.5
31.1
HUM
.78
.76
.72
.69
.70
.72
.71
.72
.71
.71
.75
.78
PPT
WIND
12.5
12.5
13.5
13.0
11.2
9.4
8.3
7.9
9.1
10.1
12.4
11.8
EXTREME CONDITIONS
CC
5.4
5.2
5.7
5.2
5.0
4.5
4.7
3.5
2.5
2.3
4.0
5.1
TAIR
33.5
35.0
42.7
56.0
66.0
75.5
78.0
74.0
69.0
59.0
43.5
36.0
HUM
.81
.775
.74
.72
.72
.738
.765
.775
.77
.745
.78
.81
PPT
WIND*
7.4
7.6
8.1
7.8
6.5
5.4
5.25
4.8
5.8
6.3
7.3
7.1
LATITUDE
LONGITUDE
ELEVATION
39° 44' N
86° 16' W
793 ft.
*Extreme conditions given in knots
77
-------
TABLE 26
WEATHER INFORMATION FOR South Bend. Indiana (14848)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.9
7.5
6.9
6.4
6.1
5.5
5.4
5.3
5.5
7.6
7.8
TAIR
25.6
26.8
34.8
47.5
58.7
69.0
73.6
72.0
63.8
53.4
39.1
28.7
HUM
.80
.78
.74
.72
.68
.70
.71
.73
.72
.74
.76
.80
PPT
WIND
11.8
12.0
12.8
12.3
11.2
9.4
8.4
8.2
9.3
9.9
11.9
11.8
EXTREME CONDITIONS
CC
6.3
6.1
6.1
4.5
5.0
4.3
4.0
4.0
3.4
3.0
6.0
6.5
TAIR
29.6
31.0
38.5
51.0
63.7
71.8
75.0
73.0
66.5
57.0
42.7
33.7
HUM
.82
.805
.78
.76
.71
.72
.735
.77
.757
.78
.78
.833
PPT
WIND*
8.79
8.8
9.6
9.7
8.7
7.1
6.4
6.4
6.65
7.0
8.2
8.4
LATITUDE =
LONGITUDE -
ELEVATION =
41° 42'
86° 19' W
773 ft.
*Extreme conditions given in knots
78
-------
TABLE 27
WEATHER INFORMATION FOR Des Moines, Iowa (14933)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
7.1
6.8
6.6
6.0
5.5
5.3
4.8
4.9
6.2
6.9
TAIR
22.1
26.0
37.0
50.4
61.2
70.6
76.2
73.8
65.8
54.5
38.4
26.2
HUM
.76
.76
.72
.64
.67
.71
.68
.72
.68
.65
.72
.76
PPT
WIND
12.3
12.5
14.2
14.5
12.4
11.3
9.5
9.2
10.4
11.3
13.4
12.6
EXTREME CONDITIONS
CC
5.1
4.4
5.0
4.5
5.0
4.3
3.7
3.3
3.0
2.7
4.2
4.3
TAIR
24.0
31.0
39.7
52.0
65.0
74.0
78.5
76.0
66.0
59.0
41.8
32.0
HUM
.82
.80
.79
.73
.71
.74
.74
.78
.80
.725
.76
.81
PPT
WIND*
8.8
8.2
9.4
9.0
8.83
7.2
5.8
5.8
6.3
7.9
8.3
8.7
LATITUDE = 41° 32'
LONGITUDE =
93° 39' W
ELEVATION = 948 ft«
*Extreme conditions given in knots
79
-------
TABLE 28
WEATHER INFORMATION FOR Sioux City. Iowa (14943)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.4
6.9
6.5
6.5
5.7
4.8
4.8
4.8
4.8
6.4
6.6
TAIR
19.1
23.2
35.0
49.2
60.4
70.3
76.3
73.6
64.4
52.6
35.5
23.4
HUM
.73
.74
.73
.63
.65
.68
.68
.71
.68
.66
.71
.74
PPT
WIND
11.1
11.3
12.6
12.9
11.7
10.8
9.0
8.9
9.9
10.4
11.6
10.7
EXTREME CONDITIONS
CC
4.7
4.5
5.2
4.2
4.7
3.5
3.2
3.0
3.1
2.5
4.0
4.3
TAIR
22.0
29.0
39.5
51.7
65.5
75.0
79.0
76.0
65.7
58.0
40.0
31.0
HUM
.80
.805
.82
.69
.69
.745
.74
.77
.77
.735
.735
.80
PPT
WIND*
8.1
8.5
9.4
9.7
8.9
7.6
6.4
6.1
6.7
6.9
8.0
8.2
42° 24'N
LATITUDE = _
LONGITUDE -
ELEVATION = 1084 ft.
96° 23' W
*Extreme conditions given in knots
80
-------
TABLE 29
WEATHER INFORMATION FOR Dodge City, Kansas (13985)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.3
5.8
5.7
5.8
5.8
4.8
4.6
4.3
4.0
4.0
4.7
5.2
TAIR
31.1
35.0
41.8
53.6
63.7
74.4
80.2
79.2
70.3
58.3
42.8
34.7
HUM
.68
.67
.64
.60
.66
.62
.60
.58
.58
.60
.63
.67
PPT
WIND
14.3
14.9
16.7
16.3
15.4
15.2
13.4
13.3
14.7
14.1
14.5
14.0
EXTREME CONDITIONS
CC
3.0
3.7
3.5
3.7
4.0
3.0
3.2
3.0
1.7
1.4
2.3
3.2
TAIR
34.0
38.5
46.7
57.5
67.5
80.0
82.5
80.0
72.0
61.5
47.0
36.0
HUM
.76
.78
.76
.685
.70
.71
.69
.66
.71
.66
.737
.72
PPT
WIND*
10.0
10.1
11.6
11.2
11.3
9.9
9.15
9.15
10.03
9.8
9.6
9.5
LATITUDE = 37° 46" N
LONGITUDE = 99° 58' W
ELEVATION =
2582 ft.
*Extreme conditions given in knots
81
-------
TABLE 30
WEATHER INFORMATION FOR Topeka. Kansas (13996)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.6
6.6
6.4
6.4
6.0
5.4
4.8
4.5
4.6
5.4
6.0
TAIR
28.8
33.1
41.7
54.4
64.4
74.7
79.9
78.4
69.4
58.2
42.6
33.4
HUM
.71
.71
.68
.63
.69
.71
.70
.68
.66
.67
.67
.72
PPT
WIND
11.0
11.4
13.5
13.5
12.3
11.4
9.7
10.0
10.3
10.3
11.3
11.0
EXTREME CONDITIONS
CC
4.3
5.0
4.7
5.0
4.7
4.0
4.0
3.3
2.0
2.0
3.3
4.3
TAIR
31.7
38.1
46.5
60.1
68.7
81.0
83.1
79.4
71.7
62.1
46.4
37.6
HUM
.748
.741
.731
.681
.707
.767
.781
.751
.786
.740
.741
.761
PPT
WIND*
8.09
8.09
9.99
9.64
8.29
7.49
5.69
5.79
5.59
7.09
6.59
7.69
LATITUDE =
LONGITUDE =
ELEVATION =
39° 04'
95° 38' W
876 ft.
*Extreme conditions given in knots
82
-------
TABLE 31
WEATHER INFORMATION FOR Lexington. Kentucky (93820)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.4
7.0
7.0
6.6
6.2
5.7
5.6
5.0
4.7
4.7
6.2
6.8
TAIR
34.5
35.8
43.2
54.4
64.5
73.6
77.4
76.0
69.3
58.1
44.7
35.9
HUM
.78
.74
.71
.68
.70
.72
.73
.73
.70
.70
.72
.76
PPT
WIND
12.5
12.5
12.6
12.1
9.7
8.5
7.8
7.0
8.5
9.0
11.4
11.8
EXTREME CONDITIONS
CC
4.7
5.2
5.2
5.2
4.3
4.2
3.5
3.2
2.3
2.0
4.2
5.2
TAIR
40.0
40.0
48.0
58.5
67.7
76.0
78.0
76.0
71.0
60.7
45.8
39.5
HUM
.81
.78
.75
.70
.72
.735
.77
.765
.75
.73
.753
.805
PPT
WIND*
7.55
8.4
9.1
8.6
6.9
5.9
5.4
4.9
5.4
6.15
7.5
8.2
LATITUDE =
LONGITUDE =
ELEVATION =
38° 02' N
84° 36' W
966 ft.
*Extreme conditions given in knots
83
-------
TABLE 32
WEATHER INFORMATION FOR Louisville, Kentucky (93821)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.7
7.0
6.8
6.6
6.2
5.7
5.6
5.0
4.8
5.0
6.0
6.8
TAIR
34.9
37.2
45.6
56.0
65.3
74.2
77.9
76.1
70.2
58.6
45.7
36.9
HUM
.75
.71
.66
.64
.67
.69
.70
.71
.68
.70
.68
.73
PPT
WIND
10.2
10.0
10.7
10.4
8.1
7.4
6.7
6.0
7.0
7.1
9.5
9.3
EXTREME CONDITIONS
CC
5.0
5.2
5.2
5.1
4.7
3.7
3.7
3.0
2.7
2.0
4.2
5.0
TAIR
40.0
41.0
48.0
61.0
69.5
78.0
80.5
78.0
72.5
61.5
47.6
41.7
HUH
.767
.76
.72
.685
.715
.76
.747
.745
.755
.737
.735
.76
PPT
WIND*
6.6
7.3
8.0
7.6
6.0
5.0
4.6
4.0
4.6
4.5
6.4
7.05
38° 11
LATITUDE - _
LONGITUDE -
ELEVATION - 474 ft-
85° 44' W
*Extreme conditions given in knots
84
-------
TABLE 33
WEATHER INFORMATION FOR New Orleans. Louisiana (12916)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.3
6.1
5.7
5.1
5.0
6.1
5.4
5.2
4.0
5.0
6.1
TAIR
54.6
57.1
61.4
67.9
74.4
80.1
81.6
81.9
78.3
70.4
60.0
55.4
HUM
.78
.76
.73
.75
.75
.77
.79
.80
.79
.75
.75
.78
PPT
WIND
9.6
10.3
10.2
9.7
8.4
7.0
6.4
6.2
7.6
7.7
9.0
9.3
EXTREME CONDITIONS
CC
4.4
4.0
4.4
3.7
3.2
3.0
4.2
3.2
3.2
1.3
3.0
4.0
TAIR
60.0
62.0
65.0
72.0
77.0
81.0
82.3
81.5
79.0
72.0
62.0
58.5
HUM
.80
.80
.76
.78
.77
.805
.82
.83
.798
.80
.79
.80
PPT
WIND*
7.0
8.05
7.8
7.2
5.9
5.0
4.8
4.6
4.9
5.3
6.0
6.8
LATITUDE =
LONGITUDE =
ELEVATION =
29° 59.2'
90° 15.3' W
3 ft.
*Extreme conditions given in knots
85
-------
TABLE 34
WEATHER INFORMATION FOR Shreveport. Louisiana (13957)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.1
6.2
6.5
6.1
5.1
5.2
4.9
4.6
4.2
5.3
6.1
TAIR
47.5
50.3
56.6
65.3
73.1
80.6
83.7
83.8
78.8
68.3
55.7
49.6
HUM
.72
.68
.66
.70
.72
.72
.71
.70
.71
.68
.70
.72
PPT
WIND
10.6
10.9
11.3
11.1
9.5
8.3
8.1
7.9
8.0
8.4
9.6
10.1
EXTREME CONDITIONS
CC
4.2
4.0
4.2
4.1
3.3
3.0
2.0
2.0
2.2
1.3
3.0
4.2
TAIR
52.0
55.5
62.0
69.3
75.0
82.0
84.0
84.0
78.0
69.0
58.5
51.7
HUM
.80
.76
.72
.75
.745
.75
.775
.75
.77
.765
.75
.78
PPT
WIND*
8.1
7.4
8.4
7.8
7.2
6.2
5.8
5.95
5.8
5.9
7.2
7.82
LATITUDE =
LONGITUDE =
ELEVATION =
32° 28'
93° 49' W
254 ft.
*Extreme conditions given in knots
86
-------
TABLE 35
WEATHER INFORMATION FOR Caribou. Maine (14607)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.8
6.8
7.2
7.3
7.4
7.1
6.9
6.6
7.1
8.1
7.5
TAIR
10.5
12.5
22.8
36.4
49.9
59.0
64.5
62.6
53.8
43.0
30.2
15.5
HUM
.72
.71
.71
.70
.66
.71
.74
.77
.78
.78
.81
.78
PPT
WIND
12.4
12.0
12.9
11.7
11.4
10.4
9.8
9.3
10.4
10.9
11.1
11.5
EXTREME CONDITIONS
CC
5.2
4.5
4.6
5.6
5.5
5.0
5.6
4.9
5.2
5.2
6.4
5.4
TAIR
17.0
19.0
30.1
40.4
53.1
61.6
68.1
63.8
58.1
46.6
35.1
21.8
HUM.
.78
.76
.760
.756
.711
.756
.800
.796
.806
.811
.846
.802
PPT
WIND*
7.8
7.8
7.24
7.74
7.64
7.09
6.79
6.48
6.38
7.08
6.58
7.38
LATITUDE =
LONGITUDE =
ELEVATION =
46° 52' N
68° 01' W
624 ft.
*Extreme conditions given in knots
87
-------
TABLE 36
WEATHER INFORMATION FOR Portland. Maine (14764)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
5.9
6.1
6.4
6.5
6.3
6.1
5.8
5.5
5.5
6.6
6.0
TAIR
21.8
22.8
31.4
42.5
53.0
62.1
68.1
66.8
58.7
48.6
38.1
25.8
HUM
.72
.71
.71
.70
.72
.75
.76
.78
.79
.77
.78
.74
PPT
WIND
9.3
9.5
10.0
10.0
9.2
8.1
7.6
7.5
7.8
8.6
8.8
8.9
EXTREME CONDITIONS
CC
4.2
4.2
4.7
5.0
5.2
4.4
4.4
4.2
4.0
4.0
5.1
4.2
TAIR
27.0
28.0
34.0
45.0
55.5
64.3
70.5
68.0
60.7
51.5
41.0
32.0
HUH
.78
.77
.76
.745
.78
.81
.80
.815
.81
.80
.81
.79
PPT
WIND*
6.4
6.7
6.9
7.0
6.6
5.4
4.8
5.4
5.4
5.6
5.8
6.0
LATITUDE =
LONGITUDE =
ELEVATION =
43° 39'
70° 19' W
47 ft.
*Extreme conditions given in knots
88
-------
TABLE 37
WEATHER INFORMATION FOR Baltimore. Maryland (93721)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.1
6.1
6.1
6.3
6.2
5.5
5.5
5.6
5.1
4.8
5.9
6.2
TAIR
34.8
35.7
43.1
54.2
64.4
72.5
76.8
75.0
68.1
57.0
45.5
35.8
HUM
.66
.66
.62
.62
.66
.69
.70
.72
.73
.70
.67
.68
PPT
WIND
10.3
11.0
11.6
11.4
10.0
9.1
8.6
8.7
8.9
9.5
9.8
9.6
EXTREME CONDITIONS
CC
3.7
4.5
4.3
5.0
5.0
4.1
3.7
3.7
3.2
1.7
3.6
4.2
TAIR
40.0
40.0
44.8
56.5
66.0
74.3
79.0
76.5
69.8
59.5
47.9
39.0
HUM.
.72
.725
.66
.67
.717
.73
.745
.78
.77
.75
.706
.72
PPT
WIND*
7.4
7.6
8.4
8.0
7.4
6.75
6.5
6.4
6.6
6.6
7.49
6.65
LATITUDE =
LONGITUDE =
ELEVATION =
39° IT N
76° 40' W
148 ft.
*Extreme conditions given in knots
89
-------
TABLE 38
WEATHER INFORMATION FOR Boston, Massachusetts (14739)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.1
6.2
6.5
6.5
6.2
6.1
5.7
5.4
5.5
6.4
6.1
TAIR
29.9
30.3
37.7
47.9
58.8
67.8
73.7
71.7
65.3
55.0
44.9
33.3
HUM
. 4
.62
.64
.63
.64
.70
.66
.70
.67
.67
.69
.65
PPT
WIND
14.8
14.7
14.5
13.8
12.9
12.0
11.3
11.2
11.5
12.5
13.4
14.2
EXTREME CONDITIONS
CC
4.4
4.3
5.0
5.0
5.0
4.5
4.3
4.1
2.4
2.2
5.0
4.2
TAIR
34.7
34.7
38.7
49.3
60.0
70.0
75.5
73.3
67.0
57.5
47.0
38.0
HUK
.68
.668
.67
.68
.71
.73
.725
.733
.74
.725
.71
.72
PPT
WIND*
10.8
10.6
11.73
10.4
10.0
9.4
8.5
8.7
8.9
9.43
10.2
10.8
42° 22' N
LATITUDE -
LONGITUDE -
ELEVATION - 15 ft.
71° 02' W
*Extreme conditions given in knots
90
-------
TABLE 39
WEATHER INFORMATION FOR Detroit, Michigan (14822)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.8
7.3
7.0
6.8
6.4
6.0
5.3
5.4
5.4
5.6
7.5
7.7
TAIR
26.9
27.2
34.8
47.6
59.0
69.7
74.4
72.8
65.1
53.8
40.4
29.9
HUM
.75
.74
.70
.64
.62
.65
.64
.68
.70
.70
.72
.76
PPT
WIND
11.5
11.5
11.5
11.1
9.9
9.0
8.2
8.0
8.9
9.5
11.4
11.3
EXTREME CONDITIONS
CC
6.1
6.0
5.7
4.7
4.5
4.2
3.7
3.4
3.0
3.0
6.0
6.0
TAIR
30.1
31.0
37.5
51.0
63.0
72.3
75.7
75.5
67.0
56.5
44.0
34.0
HUM
.786
.76
.725
.677
.67
.67
.67
.71
.733
.733
.747
.78
PPT
WIND*
8.79
8.4
9.0
8.9
7.5
6.6
6.2
6.23
6.6
6.9
8.4
8.9
LATITUDE = 42° 25"
LONGITUDE = 83° 01' W
ELEVATION = 619 ft.
*Extreme conditions given in knots
91
-------
TABLE 40
WEATHER INFORMATION FOR Muskegon. Michigan (14840)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.7
8.1
7.3
6.6
6.1
5.7
4.8
5.1
5.5
5.9
8.4
8.8
TAIR
76.0
25.7
32.9
45.2
55.8
66.7
71.3
70.3
63.0
52.5
39.6
29.9
HUM
.79
.76
.74
.68
.62
.66
.69
.73
.74
.73
.76
.80
PPT
WIND
12.3
11.9
12.3
12.4
10.7
9.0
8.3
8.4
8.8
11.1
11.8
12.1
EXTREME CONDITIONS
CC
7.2
6.5
6.1
4.0
4.2
4.1
3.2
3.5
3.5
3.3
6.7
7.3
TAIR
28.0
28.7
36.0
48.7
60.8
70.3
73.8
74.0
64.0
56.0
43.0
33.0
HUM.
.816
.80
.76
.725
.70
.715
.73
.76
.76
.77
.77
.82
PPT
WIND*
7.99
8.2
8.6
8.4
7.6
7.1
6.4
5.9
6.3
7.0
9.0
8.25
LATITUDE =
LONGITUDE =
ELEVATION =
43° 10'
86° 14' W
625 ft.
*Extreme conditions given in knots
92
-------
TABLE 41
WEATHER INFORMATION FOR Sault Ste. Marie. Michigan (14847)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.9
7.3
7.0
6.7
6.6
6.3
5.8
6.0
6.9
7.1
8.6
8.2
TAIR
15.8
15.7
23.8
38.0
49.6
59.0
64.6
64.0
55.8
46.3
33.3
20.9
HUM
.81
.80
.77
.72
.69
.75
.76
.79
.82
.80
.83
.82
PPT
WIND
10.3
10.3
10.7
11.1
10.6
9.1
8.5
8.4
9.2
9.7
10.5
10.3
EXTREME CONDITIONS
CC
6.1
5.4
5.1
5.0
5.1
4.7
4.2
4.3
5.7
4.7
7.2
7.1
TAIR
18.6
19.0
27.5
41.0
52.7
60.8
66.0
66.0
58.0
48.0
36.0
26.0
HUM.
.847
.83
.79
.78
.725
.805
.80
.82
.84
.823
.845
.86
PPT
WIND*
6.89
7.3
7.2
8.4
7.8
6.8
6.1
5.9
6.55
7.0
7.6
8.0
LATITUDE =
LONGITUDE =
ELEVATION =
46° 28' N
84° 22' W
721 ft.
*Extreme conditions given in knots
93
-------
TABLE 42
WEATHER INFORMATION FOR Du1uth» Minnesota (14913)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.5
6.8
6.6
6.6
5.9
6.0
6.7
6.4
7.5
7.3
TAIR
8.3
11.0
22.2
36.8
49.7
59.7
66.4
64.8
55.4
44.0
27.0
13.2
HUM
.75
.74
.74
.68
.66
.73
.75
.78
.80
.76
.80
.77
PPT
WIND
12.6
13.0
13.3
14.9
13.6
11.6
10.6
10.4
11.9
12.4
13.6
12.3
EXTREME CONDITIONS
CC
5.1
4.3
5.0
5.0
5.3
5.2
4.4
4.2
5.1
4.0
6.1
5.5
TAIR
14.0
19.5
28.0
43.0
52.5
61.8
68.0
66.5
55.7
49.0
32.5
21.5
HUM
.77
.765
.76
.71
.71
.75
.758
.80
.81
.80
.80
.807
PPT
WIND*
9.0
9.0
8.6
10.0
9.2
8.2
7.45
6.7
7.9
8.5
8.6
8.4
LATITUDE -
LONGITUDE -
ELEVATION -
46° 50' N
92° 11' W
1426 Ft.
*Extreme conditions given in knots
94
-------
TABLE 43
WEATHER INFORMATION FOR MinneapolJs-St. Paul. Minnesota (14922)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.0
6.6
6.4
6.3
6.0
5.1
5.1
5.2
5.2
7.0
6.9
TAIR
14.6
_ 18.2
30.9
46.0
58.5
68.2
74.1
71.5
62.2
50.4
33.0
19.4
HUM
.76
.74
.72
.62
.62
.67
.67
.69
.69
.67
.75
.78
PPT
WIND
10.6
10.9
11.6
12.7
11.7
11.1
9.5
9.4
10.5
10.9
11.6
10.7
EXTREME CONDITIONS
CC
4.5
4.0
5.2
4.3
4.0
4.5
3.2
3.2
3.5
3.2
4.5
5.3
TAIR
18.0
23.5
34.5
49.0
61.7
71.0
76.0
74.0
62.5
56.0
37.3
26.0
HUM
.78
.77
.75
.68
.68
.685
.71
.733
.77
.743
.775
.82
PPT
WIND*
8.03
8.0
8.7
9.3
8.87
8.1
6.8
6.8
7.0
8.0
8.0
7.4
LATITUDE =
LONGITUDE =
ELEVATION =
44° 53'
93° 13' W
830 ft.
*Extreme conditions given in knots
95
-------
TABLE 44
WEATHER INFORMATION FOR Jackson. Mississippi (13956)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.7
6.9
6.1
5.8
5.3
5.9
5.6
5.1
5.3
5.2
5.7
6.1
TAIR
48.0
50.7
56.4
64.4
72.5
79.4
81.6
81.3
76.2
66.5
54.9
49.0
HUM
.73
.72
.68
.69
.71
.69
.74
.75
.75
.74
.72
.74
PPT
WIND
7.7
8.0
8.2
7.7
6.2
5.4
4.9
4.6
5.6
5.3
6.8
7.1
EXTREME CONDITIONS
CC
4.8
4.2
4.2
4.2
2.5
3.1
3.7
2.2
2.2
1.7
3.1
4.4
TAIR
54.5
56.2
61.2
68.5
74.7
83.2
82.9
84.3
77.6
67.9
55.3
54.6
HUM
.775
.765
.702
.699
.735
.758
.788
.758
.776
.786
.726
.746
PPT
WIND*
6.25
6.55
6.55
6.22
4.85
4.24
3.17
3.24
3.88
4.04
5.34
5.74
LATITUDE = 32° 19' N
LONGITUDE = 90° 05' W
ELEVATION = 33° ft.
*Extreme conditions given in knots
96
-------
TABLE 45
WEATHER INFORMATION FOR St. Louis. Missouri (13994)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.7
6.6
6.2
5.9
5.7
5.3
4.8
4.7
5.9
6.8
TAIR
31.9
34.7
42.6
54.9
64.2
74.1
78.1
76.8
69.5
58.4
44.1
34.8
HUM
.69
.65
.64
.61
.64
.67
.68
.68
.70
.64
.70
.73
PPT
WIND
10.1
10.6
11.8
11.4
9.6
8.4
7.6
7.4
7.9
8.5
9.9
10.3
EXTREME CONDITIONS
CC
4.3
5.0
4.7
5.0
4.7
4.0
4.0
3.3
2.0
2.0
3.3
4.3
TAIR
35.0
39.5
47.0
60.0
70.0
80.0
82.0
79.0
73.0
63.5
47.7
40.0
HUM.
.78
.755
.72
.66
.68
.72
.74
.70
.75
.713
.705
.775
PPT
WIND*
8.0
8.2
8.9
8.55
7.4
5.8
5.3
4.6
5.4
5.7
7.6
7.2
LATITUDE =
LONGITUDE =
ELEVATION =
38° 45'
90° 23' W
560 ft.
*Extreme conditions given in knots
97
-------
TABLE 46
WEATHER INFORMATION FOR Springfield, Missouri (13995)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.3
6.6
6.3
6.3
5.8
5.6
5.0
4.2
4.7
5.2
6.2
TAIR
32.7
36.8
44.9
55.5
63.6
72.9
77.5
76.5
69.1
58.4
44.5
35.7
HUM
.76
.72
.70
.66
.72
.73
.73
.71
.68
.69
.70
.73
PPT
WIND
13.3
13.7
14.7
14.1
12.2
11.7
10.1
9.9
10.9
11.6
13.2
13.3
EXTREME CONDITIONS
CC
3.7
4.2
4.2
4.3
4.2
4.0
3.5
3.2
1.7
1.7
3.0
4.0
TAIR
36.3
40.0
48.5
61.0
67.8
79.0
79.0
78.0
72.0
62.5
48.0
40.0
HUM.
.79
.757
.725
.70
.75
.80
.80
.76
.805
.76
.745
.77
PPT
WIND*
9.0
9.0
10.2
9.1
8.0
7.0
6.3
5.7
6.6
7.4
7.5
8.6
37° 14' N
LATITUDE = _
LONGITUDE =
ELEVATION = 1265 ft-
93° 23' W
*Extreme conditions given in knots
98
-------
TABLE 47
WEATHER INFORMATION FOR Billings. Montana (24033)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.9
7.2
7.0
6.4
6.0
4.0
4.1
5.2
5.5
6.7
6.7
TAIR
22.9
26.1
34.1
46.2
56.0
64.0
73.3
71.0
60.0
49.2
35.8
27.2
HUM
.63
.66
.65
.57
.56
.60
.47
.46
.52
.56
.62
.62
PPT
WIND
12.6
12.1
11.8
11.8
11.1
10.6
9.9
9.6
10.4
10.9
12.3
12.9
EXTREME CONDITIONS
CC
5.2
5.5
5.3
5.0
4.7
3.7
2.2
2.5
3.5
3.2
4.3
5.0
TAIR
33.0
36.0
39.7
51.0
58.0
68.0
75.5
73.5
63.5
53.5
43.0
33.0
HUM
.697
.69
.697
.65
.645
.655
.54
.535
.59
.645
.663
.685
PPT
WIND*
9.5
9.4
8.4
9.0
8.8
7.9
7.85
7.4
8.2
8.0
9.2
9.3
LATITUDE =
LONGITUDE =
ELEVATION =
45° 48' N
108° 32' W
3567 ft.
*Extreme conditions given in knots
99
-------
TABLE 48
WEATHER INFORMATION FOR Helena. Montana (24144)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.3
7.3
7.2
7.2
6.9
6.4
4.0
4.4
5.4
5.9
7.2
7.3
TAIR
18.6
23.2
31.4
43.3
52.9
59.5
68.4
66.2
56.0
45.6
31.6
24.2
HUM
.69
.68
.64
.57
.58
.58
.50
.48
.55
.60
.68
.70
PPT
WIND
6.7
7.7
8.5
9.4
9.0
8.8
8.0
7.7
7.6
7.3
7.3
7.0
EXTREME CONDITIONS
CC
6.0
6.0
5.4
5.2
5.3
4.2
2.1
2.0
3.5
3.2
5.0
6.0
TAIR
29.0
33.5
37.0
46.5
56.0
61.7
71.0
70.0
60.0
48.0
37.5
30.0
HUM
.72
.715
.70
.61
.60
.62
.56
.54
.64
.68
.70
.745
PPT
WIND*
4.5
5.4
5.75
6.8
7.0
6.4
5.75
5.2
5.05
5.2
4.9
4.8
46° 36' N
LATITUDE =
LONGITUDE = 112° °°'
ELEVATION = 3828 ft»
*Extreme conditions given in knots
100
-------
TABLE 49
WEATHER INFORMATION FOR North Platte. Nebraska (24023)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
6.6
6.5
6.4
6.5
4.9
4.4
4.6
4.4
4.2
5.5
5.7
TAIR
24.0
27.9
35.0
47.7
58.5
69.1
76.1
74.5
63.7
51.0
35.5
27.4
HUM
.72
.70
.68
.61
.66
.65
.63
.64
.61
.62
.67
.70
PPT
WIND
9.7
10.6
12.3
13.3
12.5
11.4
10.2
10.1
10.3
10.1
10.6
9.9
EXTREME CONDITIONS
CC
4.3
4.7
4.0
4.2
5.0
3.0
3.2
3.0
2.7
2.2
4.0
4.0
TAIR
26.5
31.0
39.3
50.7
61.5
73.0
78.0
74.5
64.8
55.0
39.0
30.0
HUM
.76
.78
.745
.68
.70
.74
.725
.733
.74
.71
.72
.755
PPT
WIND*
6.7
7.4
9.0
9.8
9.2
8.3
7.3
6.7
7.8
7.2
6.6
6.9
LATITUDE = 41° °8'
LONGITUDE =
100
ELEVATION = 2775 ft'
*Extreme conditions given in knots
101
-------
TABLE 50
WEATHER INFORMATION FOR Omaha. Nebraska (14942)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.1
6.4
6.7
6.3
6.3
5.6
4.7
4.6
4.6
4.5
5.7
6.2
TAIR
22.3
26.5
36.9
51.7
63.0
73.1
78.5
76.2
66.9
55.7
38.9
28.2
HUM
.72
.74
.68
.58
.62
.65
.66
.68
.68
.63
.68
.70
PPT
WIND
11.4
11.8
13.1
13.7
11.8
11.0
9.4
9.6
10.2
10.4
11.7
11.2
EXTREME CONDITIONS
CC
4.7
4.3
5.0
4.0
4.7
3.7
3.2
3.0
3.0
2.1
3.5
3.7
TAIR
25.5
32.0
43.5
55.0
67.5
77.0
81.0
77.0
68.0
60.0
44.0
34.0
HUM
.78
.765
.773
.68
.685
.73
.725
.74
.75
.72
.76
.78
PPT
WIND*
8.3
8.8
10.3
9.65
9.15
7.5
6.8
6.5
6.75
7.4
7.8
8.0
LATITUDE =
LONGITUDE =
ELEVATION -
41° 18'
95° 54' W
978 ft.
*Extreme conditions given in knots
102
-------
TABLE 51
WEATHER INFORMATION FOR Elko. Nevada (24121)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.5
6.8
6.4
6.2
4.2
3.0
2.9
3.0
4.2
5.6
6.5
TAIR
22.6
28.0
35.6
44.3
52.0
60.0
69.6
66.9
57.9
46.9
34.2
26.4
HUM
.72
.70
.62
.51
.51
.42
.33
.32
.37
.48
.63
.73
PPT
WIND
5.4
5.9
6.9
7.2
7.0
6.8
6.3
6.1
5.5
5.3
4.9
4.9
EXTREME CONDITIONS
CC
4.3
4.5
4.4
4.5
4.4
2.4
1.3
1.4
1.0
2.1
2.4
3.4
TAIR
31.0
38.0
38.0
48.0
58.0
68.0
74.8
72.0
62.0
49.7
38.6
31.1
HUH
.79
.76
.71
.62
.615
.55
.40
.46
.44
.60
.711
.814
PPT
WIND*
3.0
3.6
4.6
5.53
4.8
4.7
4.55
4.35
4.0
3.6
2.59
2.49
LATITUDE =
LONGITUDE =
ELEVATION =
40° 50' N
115° 47' W
5050 ft.
*Extreme conditions given in knots
103
-------
TABLE 52
WEATHER INFORMATION FOR Las Vegas. Nevada (23169)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
4.3
4.2
3.8
3.3
1.6
2.8
2.3
1.6
2.4
3.2
4.4
TAIR
44.2
50.4
56.5
65.6
74.1
83.6
90.5
88.4
80.7
67.4
53.9
46.8
HUM
.47
.37
.28
.23
.19
.15
.22
.22
.20
.26
.35
.40
PPT
WIND
6.5
7.9
9.7
10.3
11.0
11.1
9.9
9.6
8.6
7.6
6.3
6.3
EXTREME CONDITIONS
CC
2.0
2.0
2.0
2.0
2.0
0.4
1.0
1.0
0.1
1.0
2.0
2.0
TAIR
47.0
54.5
58.0
69.5
78.0
87.5
91.8
90.3
81.8
70.5
56.0
47.5
HUM
.555
.48
.395
.33
.26
.19
.26
.30
.30
.36
.473
.555
PPT
WIND*
4.45
5.0
7.0
6.15
7.3
7.6
6.5
6.3
5.1
5.35
4.4
3.7
LATITUDE =
LONGITUDE =
ELEVATION =
36° 05' N
115° 10' W
2162 ft.
*Extreme conditions given in knots
104
-------
TABLE 53
WEATHER INFORMATION FOR Ren0' Nevada (23185)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
6.1
5.8
5.4
5.0
3.3
2.1
1.9
2.4
4.1
5.3
6.2
TAIR
31.9
36.1
41.0
47.5
53.4
60.1
68.2
66.5
60.3
50.2
39.3
33.4
HUM
.69
.66
.55
.49
.48
.45
.40
.40
.46
.53
.62
.71
PPT
WIND
6.0
6.3
7.7
7.9
7.7
7.2
6.5
6.2
5.5
5.5
5.1
4.8
EXTREME CONDITIONS
CC
3.5
3.2
3.3
3.2
3.0
1.5
0.3
0.5
0.3
2.0
1.7
3.5
TAIR
35.5
41.0
43.0
51.3
59.5
67.0
73.0
71.0
62.7
52.0
41.5
35.5
HUM
.66
.60
.545
.44
.29
.28
.43
.485
.46
.49
.58
.64
PPT
WIND*
3.3
3.7
5.5
5.2
5.2
4.7
4.53
4.4
3.7
3.4
2.4
2.9
LATITUDE =
LONGITUDE =
ELEVATION =
39° 30' N
119° 47' W
4404 ft.
*Extreme conditions given in knots
105
-------
TABLE 54
WEATHER INFORMATION FOR Concord. New Hampshire (14745)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.0
6.1
6.5
6.5
6.1
6.0
5.8
5.7
5.6
6.7
6.1
TAIR
21.2
22.7
31.7
43.8
55.5
64.5
69.6
67.4
59.3
48.7
37.6
25.0
HUM
.71
.69
,67
.65
.66
.69
.71
.75
.76
.74
.74
.72
PPT
WIND
7.3
7.9
8.2
7.8
7.0
6.4
5.5
5.2
5.4
5.9
6.6
6.9
EXTREME CONDITIONS
CC
4.2
4.0
5.0
5.0
5.2
4.3
4.5
4.1
3.7
4.0
5.0
4.3
TAIR
27.0
28.0
35.0
46.5
59.3
67.5
73.0
69.7
61.0
52.0
41.0
30.0
HUM
.743
.72
.705
.69
.70
.75
.76
.76
.785
.763
.765
.77
PPT
WIND*
5.05
4.8
5.85
5.45
5.05
4.2
3.6
3.4
3.7
4.0
4.4
4.7
LATITUDE - 43° 12' N
LONGITUDE - 71° 3T W
ELEVATION - 342 ft.
*Extreme conditions given in knots
106
-------
TABLE 55
WEATHER INFORMATION FOR Newark. New Jersey (14734)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6.4
6.1
6.5
6.4
6.0
6.1
6.0
5.5
5.2
6.0
6.2
TAIR
33.3
33.7
41.5
52.3
62.5
72.3
77.3
75.4
68.3
57.6
45.9
35.3
HUM
.66
.64
.62
.62
.64
.66
.66
.69
.70
.69
.67
.67
PPT
WIND
11.2
11.5
12.1
11.2
10.0
9.3
8.8
8.5
8.8
9.3
10.1
10.6
EXTREME CONDITIONS
CC
4.2
4.5
5.1
4.5
4.5
4.5
4.2
4.0
3.4
3.2
4.2
4.3
TAIR
37.0
37.5
41.8
53.0
65.0
73.0
78.7
76.5
70.0
59.8
48.5
38.7
HUM
.69
.68
.66
.65
.68
.68
.70
.72
.72
.72
.69
.72
PPT
WIND*
8.4
8.2
9.1
8.9
7.7
7.2
6.7
6.4
7.05
7.2
7.0
7.8
LATITUDE =
LONGITUDE =
ELEVATION =
40° 42' N
74° 10' W
11 ft.
*Extreme conditions given in knots
107
-------
TABLE 56
WEATHER INFORMATION FOR Albuquerque. New Mexico (23050)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.0
4.9
4.9
4.8
4.3
3.3
4.4
4.3
3.1
3.5
3.6
4.5
TAIR
33.7
39.5
46.0
55.5
65.3
74.9
79.0
76.9
69.9
58.2
44.0
36.0
HUM
.56
.49
.40
.35
.32
.30
.42
.47
.40
.44
.46
.55
PPT
WIND
8.1
8.9
10.1
11.0
10.4
9.8
9.1
8.0
8.5
8.2
7.8
7.4
EXTREME CONDITIONS
CC
1.5
3.0
3.0
3.1
2.0
1.0
3.2
2.2
0.7
1.1
1.7
2.0
TAIR
40.0
44.0
49.0
58.0
68.0
77.5
79.5
77.3
72.0
60.8
47.7
40.0
HUM.
.585
.54
.43
.40
.355
.36
.46
.52
.53
.52
.56
.61
PPT
WIND*
5.4
6.0
7.33
7.6
7.35
6.93
6.3
5.6
6.0
5.5
4.7
5.0
LATITUDE = 35° 03' N
LONGITUDE = 106° 37' W
ELEVATION = 5310 ft.
*Extreme conditions given in knots
108
-------
TABLE 57
WEATHER INFORMATION FOR Albany, New York (14735)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.8
6.8
7.0
6.8
6.4
6.2
6.0
5.8
5.9
7.3
7.1
TAIR
22.7
23.7
33.0
46.2
57.9
67.3
72.1
70.0
61.6
50.8
39.1
26.5
HUM
.73
.71
.69
.64
.65
.67
.68
.73
.76
.74
.74
.75
PPT
WIND
9.7
10.4
10.5
10.5
9.0
8.1
7.3
6.9
7.3
7.9
8.8
8.9
EXTREME CONDITIONS
CC
4.7
5.4
5.5
5.0
5.4
4.5
4.5
4.5
3.3
4.0
5.7
5.5
TAIR
29.0
29.0
36.0
49.5
61.0
70.0
74.5
72.0
63.0
54.3
42.0
32.0
HUM-
.755
.74
.71
.67
.67
.70
.73
.75
.77
.76
.74
.78
PPT
WIND*
7.4
7.35
7.5
8.15
6.6
5.8
5.6
5.3
5.6
5.9
6.1
6.3
LATITUDE =
LONGITUDE =
ELEVATION =
42° 45' N
73° 48' W
275 ft.
*Extreme conditions given in knots
109
-------
TABLE 58
WEATHER INFORMATION FOR Buffalo. New York (14733)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.3
8.1
7.4
7.1
6.7
6.0
5.6
5.6
5.9
6.0
8.1
8.2
TAIR
25.5
24.7
33.0
43.8
55.4
65.5
70.6
68.9
62.4
51.2
39.9
29.0
HUM
.77
.76
.74
.70
.70
.70
.69
.71
.73
.73
.74
.76
PPT
WIND
15.1
15.0
14.9
13.8
12.5
12.0
11.2
10.7
11.5
12.2
14.1
14.6
EXTREME CONDITIONS
CC
7.0
6.5
6.1
5.2
5.0
4.5
4.1
4.2
3.9
3.3
6.3
7.0
TAIR
30.5
31.0
35.0
48.0
59.3
70.0
73.5
72.0
65.1
56.0
43.0
33.7
HUM
.80
.79
.77
.74
.735
.72
.71
.747
.76
.756
.781
.80
PPT
WIND*
9.8
9.9
9.2
8.8
8.85
8.2
7.4
7.0
7.1
8.09
8.19
9.09
LATITUDE =
LONGITUDE =
ELEVATION =
42° 56'
75° 44' W
693 ft.
*Extreme conditions given in knots
110
-------
TABLE 59
WEATHER INFORMATION FOR New York. New York (14732)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6,3
6.3
6.4
6.4
5.9
6.0
6.0
5.9
5.2
6.3
6.3
TAIR
33.6
33.6
40.8
51.2
62.1
71.5
76.8
75.4
68.8
58.6
47.4
36.4
HUM
.61
.58
.63
.59
.60
.62
.62
.64
.64
.61
.62
.64
PPT
WIND
14.3
14.4
14.6
13.1
11.8
10.9
10.4
10.3
11.1
11.9
12.9
13.7
EXTREME CONDITIONS
CC
4.5
4.5
5.1
4.5
4.7
4.2
4.2
3.9
3.4
3.2
4.3
4.5
TAIR
38.0
38.5
41.9
52.8
64.5
73.0
79.0
77.0
71.1
61.0
49.7
41.0
HUM
.68
.667
.657
.645
.68
.68
.70
.701
.701
.681
.661
.701
PPT
WIND*
10.4
10.6
10.35
9.4
9.0
8.7
7.99
7.69
8.09
8.6
8.99
9.89
LATITUDE =
LONGITUDE =
ELEVATION =
40° 46' N
73° 54' W
11 ft.
*Extreme conditions given in knots
111
-------
TABLE 60
WEATHER INFORMATION FOR Charlotte. North Carolina (13881)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.1
6.2
5.5
6.0
5.9
6.2
5.7
5.8
4.8
5.1
5.8
TAIR
42.3
44.4
51.0
59.7
68.3
76.6
78.6
77.3
72.6
61.5
50.4
43.0
HUM
.70
.66
.65
.63
.66
.68
.74
.74
.74
.72
.70
.70
PPT
WIND
8.6
8.8
9.4
9.4
7.7
7.0
6.8
6.9
7.5
7.7
7.6
7.6
EXTREME CONDITIONS
CC
4.2
4.2
4.0
4.1
4.2
4.3
4.3
3.5
3.7
1.0
3.0
4.0
TAIR
48.0
48.0
53.5
63.0
73.3
76.8
78.9
78.6
74.0
63.5
54.0
45.0
HUM
.717
.70
.67
.66
.70
.75
.787
.78
.75
.76
.71
.73
PPT
WIND*
5.5
5.8
6.3
6.2
5.4
5.0
4.75
4.6
4.8
4.6
4.8
4.7
35° 13'
LATITUDE = _
LONGITUDE -
ELEVATION = 725 ft.
80° 56' W
*Extreme conditions given in knots
112
-------
TABLE 61
WEATHER INFORMATION FOR Wilmington. North Carolina (13748)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.9
5.7
5.0
5.5
5.8
5.9
5.8
5.8
4.6
4.9
5.3
TAIR
47.9
48.7
54.2
62.5
70.5
77.7
80.0
79.4
75.2
65.4
55.4
48.2
HUM
.75
.74
.71
.71
.75
.78
.80
.82
.82
.79
.78
.73
PPT
WIND
10.4
11.5
11.7
12.2
10.5
9.7
9.3
9.1
9.6
9.4
9.5
9.5
EXTREME CONDITIONS
CC
4.1
4.0
4.1
3.4
3.5
4.0
4.4
4.0
4.0
2.0
2.3
3.7
TAIR
53.0
54.0
57.5
67.0
74.0
80.0
82.0
80.5
76.0
67.3
58.0
51.7
HUM
.79
.76
.718
.707
.76
.80
.82
.833
.82
.83
.77
.773
PPT
WIND*
6.0
6.7
6.8
6.8
6.2
5.8
5.2
4.4
5.5
5.7
5.8
5.7
LATITUDE =
LONGITUDE =
ELEVATION =
34° 16' N
77° 55' W
28 ft.
*Extreme conditions given in knots
113
-------
TABLE 62
WEATHER INFORMATION FOR Bismarck, North Dakota (24011)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
7.0
6.6
6.4
6.1
4.7
4.8
5.4
5.6
6.9
6.8
TAIR
9.2
12.7
26.7
43.1
54.8
64.3
72.1
69.3
58.5
45.7
28.4
15.5
HUM
.75
.76
.76
.65
.61
.67
.65
.63
.64
.66
.76
.76
PPT
WIND
10.1
10.3
11.6
12.9
12.7
11.9
10.0
10.2
10.9
10.5
11.2
9.8
EXTREME CONDITIONS
CC
5.0
5.2
5.2
4.5
5.1
4.7
3.2
3.0
3.5
3.2
4.3
5.1
TAIR
17.5
21.5
34.0
47.6
58.0
69.0
74.0
71.8
60.0
50.0
35.0
24.0
HUM
.78
.80
.80
.70
.68
.75
.69
.68
.71
.72
.755
.80
PPT
WIND*
7.2
7.4
7.8
9.55
9.5
8.2
7.8
7.1
7.6
7.7
7.1
6.5
LATITUDE =
LONGITUDE =
ELEVATION =
46° 46' N
100° 45' W
1650 ft.
*Extreme conditions given in knots
114
-------
TABLE 63
WEATHER INFORMATION FOR Cleveland. Ohio (14820)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.9
7.4
7.0
6.6
5.8
5.5
5.5
5.5
5.7
7.8
8.1
TAIR
28.4
28.5
35.1
47.0
58.0
67.8
71.9
70.4
64.2
53.4
41.3
30.5
HUM
.74
.74
.80
.68
.64
.69
.70
.74
.72
.69
.71
.74
PPT
WIND
12.4
12.5
12.7
12.1
10.6
9.5
8.8
8.5
9.2
10.2
12.4
12.5
EXTREME CONDITIONS
CC
6.5
6.4
6.1
5.3
4.7
4.5
4.1
3.7
3.0
3.0
6.2
7.0
TAIR
33.1
33.0
38.5
52.0
63.5
72.0
76.0
74.0
67.0
58.0
43.8
36.0
HUM
.81
.80
.76
.72
.70
.71
.72
.76
.76
.745
.77
.81
PPT
WIND*
9.09
8.1
9.2
9.0
7.8
6.8
6.93
6.4
6.9
7.5
9.0
8.9
LATITUDE =
LONGITUDE =
ELEVATION =
41° 24' N
81° 51' W
777 ft.
*Extreme conditions given in knots
115
-------
TABLE 64
WEATHER INFORMATION FOR Columbus. Ohio (14821)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.5
7.3
7.1
6.5
6.1
5.8
5.4
5.2
5.2
7.0
7.6
TAIR
29.7
31.2
39.8
50.2
60.8
70.7
74.4
72.4
66.5
54.5
41.9
31.7
HUM
.78
.74
.70
.68
.69
.70
.70
.72
.71
.72
.73
.77
PPT
WIND
10.0
10.1
10.7
10.0
8.1
6.8
6.1
5.7
6.5
7.2
9.6
9.2
EXTREME CONDITIONS
CC
5.6
6.1
5.7
5.5
5.1
4.7
4.1
3.7
2.5
2.0
5.3
6.1
TAIR
35.1
36.0
43.0
56.0
66.5
73.5
76.0
75.0
68.5
58.3
44.0
36.5
HUH
.781
.767
.72
.696
.72
.72
.74
.755
.755
.76
.76
.78
PPT
WIND*
7.59
7.6
8.4
8.0
6.45
5.2
4.5
4.2
4.6
5.07
7.0
6.8
LATITUDE =
LONGITUDE =
ELEVATION =
40° 00' N
82° 53' W
815 ft.
*Extreme conditions given in knots
116
-------
TABLE 65
WEATHER INFORMATION FOR Oklahoma City. Oklahoma (13967)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.7
5.7
5.9
5.8
4.9
4.8
4.2
4.3
4.1
5.4
5.1
TAIR
37.0
41.3
48.5
59.9
68.4
78.0
82.5
82.8
73.8
62.9
48.4
40.3
HUM
.76
.65
.59
.63
.65
.68
.64
.62
.70
.60
.66
.55
PPT
WIND
14.0
14.1
15.7
15.5
13.8
13.2
11.6
11.3
11.8
12.6
12.8
13.2
EXTREME CONDITIONS
CC
2.0
3.3
3.4
4.1
4.1
2.7
2.7
2.3
1.0
1.3
2.3
3.3
TAIR
41.0
44.7
53.5
64.7
71.0
80.0
84.5
83.7
76.0
66.0
53.5
43.0
HUM
.80
.78
.74
.68
.76
.755
.76
.72
.76
.73
.74
.725
PPT
WIND*
9.6
10.0
11.55
11.4
9.6
8.0
8.0
7.8
7.9
9.4
8.9
9.8
LATITUDE =
LONGITUDE =
ELEVATION =
35° 24' N
97° 36' W
1285 ft.
*Extreme conditions given in knots
117
-------
TABLE 66
WEATHER INFORMATION FOR Astoria. Oregon
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.5
8.2
8.1
8.0
7.7
7.7
6.6
6.6
6.3
7.5
8.1
8.7
TAIR
40.7
42.8
44.5
49.0
53.3
57.3
60.6
61.0
58.0
52.9
46.3
43.1
HUM
.82
.82
.80
.79
.79
.81
.80
.82
.82
.84
.85
.86
PPT
WIND
9.0
8.8
8.7
8.4
8.3
8.2
8.4
7.7
7.1
7.5
8.4
8.9
EXTREME CONDITIONS
CC
TAIR
HUM
PPT
WIND
LATITUDE = 47° 09"
LONGITUDE = 123° 53'
ELEVATION -
8 ft-
118
-------
TABLE 67
WEATHER INFORMATION FOR Pendleton. Oregon (24155)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.2
7.9
7.2
6.6
6.0
5.2
2.6
3.4
4.0
5.8
7.7
8.4
TAIR
32.2
37.4
45.1
52.0
59.6
65.8
73.6
71.9
64.2
53.7
41.3
36.5
HUM
.79
.74
.62
.56
.53
.48
.37
.40
.47
.62
.76
.80
PPT
WIND
8.3
9.0
10.1
10.5
10.3
10.5
9.7
9.2
9.0
8.2
8.0
8.4
EXTREME CONDITIONS
CC
6.5
6.4
5.0
4.5
4.5
3.0
0.4
1.5
2.2
3.5
5.0
7.0
TAIR
40.0
44.0
45.0
53.5
61.0
69.5
77.5
76.5
66.0
56.0
45.0
40.0
HUM
.82
.777
.70
.66
.59
.54
.40
.45
.50
.72
.80
.86
PPT
WIND*
5.1
6.2
6.8
8.0
7.6
7.6
7.3
6.8
6.4
5.6
5.4
5.6
LATITUDE =
LONGITUDE =
ELEVATION =
45° 41' N
118° 51' W
1482 ft.
*Extreme conditions given in knots
119
-------
TABLE 68
WEATHER INFORMATION FOR Portland. Oregon (24229)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.6
8.3
8.3
7.6
7.3
6.8
4.5
5.3
5.6
7.4
8.2
9.0
TAIR
38.4
42.0
46.1
51.8
57.4
62.0
67.2
66.6
62.2
54.2
45.1
41.3
HUM
.82
.79
.74
.72
.70
.68
.66
.68
.71
.81
.83
.84
PPT
WIND
10.0
8.8
8.5
7.2
6.8
6.8
7.5
7.0
6.2
6.5
8.3
9.6
EXTREME CONDITIONS
CC
6.5
6.3
5.7
5.5
6.1
3.7
2.5
2.7
3.5
5.4
6.0
7.0
TAIR
43.7
48.0
46.8
52.5
58.7
64.3
68.5
69.5
64.0
56.0
49.3
43.7
HUM
.86
.82
.80
.74
.727
.74
.70
.74
.78
.835
.85
.868
PPT
WIND*
6.6
5.6
5.8
4.3
4.6
4.7
5.6
4.8
4.1
4.0
5.6
6.6
45° 36'
LATITUDE =
LONGITUDE = 122° 36' W
ELEVATION =
21 ft.
*Extreme conditions given in knots
120
-------
TABLE 69
WEATHER INFORMATION FOR Avoca, Pennsylvania
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.2
7.2
7.1
6.9
6.7
6.0
6.1
6.2
5.9
5.8
7.4
7.5
TAIR
27.7
28.3
36.2
48.4
59.6
68.2
72.4
70.0
. 62.5
51.0
39.6
29.4
HUM
.70
.69
.67
.62
.63
.68
.69
.73
.75
.71
.70
.72
PPT
WIND
8.8
9.3
9.1
9.5
8.9
7.8
7.4
7.2
7.5
7.9
8.7
8.8
EXTREME CONDITIONS
CC
TAIR
HUM.
PPT
WIND
LATITUDE =
LONGITUDE =
ELEVATION =
41° 20' N
75° 44' W
930 ft.
121
-------
TABLE 70
WEATHER INFORMATION FOR Philadelphia. Pennsylvania (13739)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.3
6.2
6.5
6.6
6.2
6.1
5.9
5.6
5.6
6.2
6.4
TAIR
33.2
33.6
42.3
51.6
63.1
72.1
76.3
74.0
67.7
56.6
45.9
35.9
HUM
.70
.67
.65
.66
.66
.68
.70
.72
.72
.72
.70
.69
PPT
WIND
10.4
11.1
11.7
11.2
9.8
9.0
8.2
7.8
8.1
9.0
9.7
10.1
EXTREME CONDITIONS
CC
4.5
4.7
5.1
5.1
5.2
4.5
4.3
3.7
3.7
3.0
4.3
4.7
TAIR
38.0
39.0
43.7
55.3
65.3
73.3
79.0
76.0
69.0
59.6
47.3
39.5
HUK
.72
.70
.665
.65
.72
.69
.727
.743
75.7
.73
.71
.716
PPT
WIND*
7.6
8.0
8.6
8.5
7.2
6.7
6.37
5.71
6.1
6.9
6.54
7.7
LATITUDE =
LONGITUDE =
ELEVATION =
69° 53'
75° 15' W
7 ft.
*Extreme conditions given in knots
122
-------
TABLE 71
WEATHER INFORMATION FOR Scranton. Pennsylvania (14777)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.7
7.4
7.1
6.9
6.7
6.1
6.5
6.1
6.2
5.9
7.1
7.2
TAIR
26.9
27.1
36.3
47.0
58.9
67.8
72.2
70.0
63.2
52.2
40.7
29.6
HUM
.72
.72
.69
.64
.64
.68
.71
.73
.75
.72
.69
.71
PPT
WIND
9.2
10.2
9.5
9.9
9.3
8.4
7.6
7.1
7.7
8.5
9.3
9.2
EXTREME CONDITIONS
CC
5.3
6.0
5.7
5.3
5.1
4.2
4.2
4.5
3.3
3.0
5.7
6.0
TAIR
32.7
32.5
38.5
51.5
62.5
70.0
74.7
72.0
64.0
55.0
43.0
34.3
HUM
.746
.723
.706
.655
.696
.695
.735
.755
.785
.742
.745
.784
PPT
WIND*
6.35
6.5
7.0
6.8
6.0
6.0
5.4
4.7
5.2
5.55
5.9
5.6
LATITUDE =
LONGITUDE =
ELEVATION =
41° 20' N
75° 44' W
940 ft.
*Extreme conditions given in knots
123
-------
TABLE 72
WEATHER INFORMATION FOR Charleston. South Carolina (13880)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.1
6.0
5.4
5.9
6.3
6.6
6.1
6.3
5.0
5.1
5.9
TAIR
49.8
51.5
56.7
64.8
72.9
79.2
80.6
79.7
75.6
66.2
55.9
50.0
HUM
.74
.71
.71
.72
.75
.78
.81
.82
.82
.77
.76
.74
PPT
WIND
9.3
10.4
10.4
10.2
8.9
8.6
8.1
7.5
8.2
8.1
8.3
8.7
EXTREME CONDITIONS
CC
4.4
4.2
4.0
3.5
3.7
4.5
5.2
4.1
4.4
2.0
2.7
4.2
TAIR
56.0
56.0
59.7
65.7
74.0
78.7
79.7
79.0
74.9
67.5
58.5
53.0
HUM
.76
.765
.73
.75
.80
.81
.84
.838
.86
.83
.78
.767
PPT
WIND*
6.6
7.5
7.8
7.63
5.6
6.0
5.5
5.0
5.6
5.65
6.05
6.1
LATITUDE = 32° 54' N
LONGITUDE -
ELEVATION =
80° 02' W
40 ft.
*Extreme conditions given in knots
124
-------
TABLE 73
WEATHER INFORMATION FOR Columbia, South Carolina (13883)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
5,9
5,8
5.2
5.4
5.7
6.0
5.4
5.5
4.4
4.8
5.7
TAIR
46.9
48.4
54.4
63.6
72.2
79.7
81.6
80.5
75.3
64.7
53.7
46.4
HUM
.72
,70
.66
.64
.66
.69
.72
.74
.76
.74
.72
.72
PPT
WIND
7.1
7.7
8.4
8.7
7.0
6.9
6.8
6.1
6.4
6.1
6.4
6.5
EXTREME CONDITIONS
CC
4.2
4.0
4.0
3.7
3.2
3.5
4.4
3.5
3.7
2.0
2.3
4.0
TAIR
52.0
52.0
57.5
65.5
75.5
79.5
81.5
81.0
74.8
66.0
56.5
49.0
HUM
.718
.70
.67
.66
.70
.75
.787
.78
.75
.76
.71
.73
PPT
WIND*
5.2
5.65
6.4
6.0
4.9
4.9
4.9
4.3
4.35
4.0
4.2
4.6
LATITUDE =
LONGITUDE =
ELEVATION =
33° 57'
81° 07' W
217 ft.
*Extreme conditions given in knots
125
-------
TABLE 74
WEATHER INFORMATION FOR Greer. South Carolina
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.7
5.6
5.1
6.0
6.0
5.9
6.7
5.8
5.3
4.1
5.2
5.8
TAIR
43.7
45.1
51.4
60.9
69.4
77.0
79.0
78.2
72.7
62.4
51.3
43.6
HUM
.66
.60
.59
.63
.68
.72
.76
.73
.73
.69
.65
.68
PPT
WIND
7.6
8.5
8.4
8.3
7.5
6.6
6.3
6.0
6.3
7.0
7.2
7.3
EXTREME CONDITIONS
CC
TAIR
HUM
PPT
WIND
LATITUDE =
LONGITUDE =
ELEVATION =
34° 54'
82° 13' W
957 ft.
126
-------
TABLE 75
WEATHER INFORMATION FOR
Huron, South Dakota (14936)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.4
7.2
6.6
6.2
5.7
4.6
4.9
5.0
5.1
6.6
6.7
TAIR
13.5
17.6
31.7
46.4
58.0
68.2
75.4
72.9
62.8
50.0
32.5
19.6
HUM
.76
.78
.77
.66
.65
.70
.66
.66
.65
.66
.75
.78
PPT
WIND
11.6
11.9
13.0
14.3
13.1
11.9
11.1
11.0
12.0
11.7
12.7
11.4
EXTREME CONDITIONS
CC
5.1
5.0
5.5
4.3
4.3
4.0
2.7
3.0
3.3
3.0
3.5
5.0
TAIR
20.0
24.0
36.0
48.7
61.0
72.0
77.3
75.0
63.0
54.0
36.0
27.5
HUM
.82
.835
.84
.71
.72
.765
.72
.74
.75
.737
.775
.84
PPT
WIND*
8.8
8.6
10.03
10.8
10.0
8.93
8.0
8.2
8.6
9.0
9.7
8.5
LATITUDE =
LONGITUDE =
ELEVATION =
44° 23' N
98° 13' W
1282 ft.
*Extreme conditions given in knots
127
-------
TABLE 76
WEATHER INFORMATION FOR Rapid City. South Dakota (24090)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.5
6.7
6.7
6.5
5.7
4.3
4.3
4.6
4.7
6.1
6.3
TAIR
22.0
24.1
31.1
44.5
55.7
64.9
73.8
72.0
61.6
50.0
35.1
27.2
HUM
.66
.68
.64
.57
.59
.62
.55
.51
.51
.50
.60
.65
PPT
WIND
10.4
10.8
12.6
13.1
12.4
10.8
9.9
10.3
11.0
10.9
11.0
10.4
EXTREME CONDITIONS
CC
4.6
5.1
5.2
4.4
4.6
3.6
2.6
2.0
3.0
2.9
4.2
4.7
TAIR
30.0
31.1
38.6
48.6
58.1
71.1
76.1
74.7
65.1
55.1
41.0
32.0
HUM
.731
.74
.746
.657
.651
.691
.621
.60
.624
.651
.66
.72
PPT
WIND*
7.49
7.38
9.49
9.99
9.49
8.09
7.89
7.89
8.49
8.53
8.35
7.6
LATITUDE =
LONGITUDE =
ELEVATION =
44° 03' N
103° 04' W
3162 ft.
*Extreme conditions given in knots
128
-------
TABLE 77
WEATHER INFORMATION FOR Knoxville, Tennessee (13891)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
2.4
6.7
6.5
6.0
6.0
5.5
5.7
5.5
5.2
4.9
5.8
6.7
TAIR
40.5
42.5
49.4
59.0
67.4
75.8
78.4
77.0
72.1
60.3
48.4
41.0
HUM
.74
.69
.66
.63
.67
.69
.71
.72
,71
.72
.70
.71
PPT
WIND
8.6
9.0
9.6
9.7
7.7
7.0
6.5
5.7
6.1
6.0
7.4
7.7
EXTREME CONDITIONS
CC
5.5
5.0
4.3
4.4
4.0
4.2
4.2
3.4
3.2
2.0
3.7
5.1
TAIR
46.0
47.0
52.0
62.7
71.5
76.0
79.0
78.0
74.0
62.7
50.7
43.5
HUM
.775
.725
.70
.68
.72
.77
.77
.795
.77
.773
.73
.76
PPT
WIND*
6.05
6.4
7.2
6.6
5.3
4.6
4.65
4.2
4.2
4.25
5.2
5.45
LATITUDE =
LONGITUDE =
ELEVATION =
35° 49' N
83° 59' W
950 ft.
*Extreme conditions given in knots
129
-------
TABLE 78
WEATHER INFORMATION FOR
Memphis, Tennessee (13893)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.4
6.3
6.1
5.9
5.4
5.7
5.0
4.8
4.3
5.5
6.3
TAIR
41.5
44.1
51.1
61.4
70.3
78.5
81.3
80.5
73.9
63.1
50.1
42.5
HUM
.73
.70
.66
.65
.68
.69
.70
.70
.71
.68
.69
.72
PPT
WIND
10.7
10.6
11.4
11.0
9.1
8.1
7.7
7.1
7.7
7.8
9.4
10.0
EXTREME CONDITIONS
CC
5.0
4.3
4.0
4.2
3.5
3.3
3.7
3.0
2.2
1.5
3.0
4.2
TAIR
46.0
49.5
56.3
66.0
74.0
82.0
83.0
81.5
75.5
65.5
53.5
46.0
HUM
.77
.74
.687
.665
.72
.76
.76
.75
.76
.73
.72
.72
PPT
WIND*
7.5
7.35
8.8
8.2
6.8
6.4
5.3
4.7
5.4
5.2
6.5
7.4
LATITUDE =
LONGITUDE =
ELEVATION =
35° 03'I
89° 59'W
258 ft.
*Extreme conditions given in knots
130
-------
TABLE 79
WEATHER INFORMATION FOR Nashville. Tennessee (13897)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
6.7
6.5
6.2
5.9
5.5
5.7
5.3
5.0
4.6
5.9
6.7
TAIR
39.0
41.0
49.5
59.5
68.3
76.3
79.4
78.3
72.2
61.0
48.9
41.0
HUM
.71
.63
.60
.64
.68
.69
.75
.76
.76
.66
.68
.69
PPT
WIND
9.0
9.2
9.9
9.4
7.5
6.7
6.2
5.9
6.2
6.3
8.2
8.6
EXTREME CONDITIONS
CC
5.3
4.7
5.0
5.0
4.0
4.0
4.0
3.0
2.7
1.5
3.7
4.7
TAIR
45.0
46.3
53.0
63.5
70.8
78.0
81.0
79.5
74.0
63.0
51.0
44.5
HUM
.815
.77
.735
.70
.73
.76
.773
.78
.78
.78
.738
.77
PPT
WIND*
6.35
6.4
7.2
7.0
4.9
4.4
3.7
3.9
4.0
4.35
5.4
6.2
LATITUDE = 36° 07' N
LONGITUDE = 86° 41' W
ELEVATION =
590 ft.
*Extreme conditions given in knots
131
-------
TABLE 80
WEATHER INFORMATION FOR Brownsville. Texas (12919)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.5
6.7
6.6
5.9
5.2
4.7
4.8
5.2
4.7
5.8
6.6
TAIR
61.4
64.0
67.9
73.9
79.0
82.7
84.0
84.1
81.2
75.9
67.6
62.9
HUM
.79
.78
.76
.72
.78
.77
.75
.75
.77
.77
.77
.79
PPT
WIND
11.9
12.6
13.7
14.5
13.9
12.8
11.8
11.0
9.8
9.9
11.0
11.1
EXTREME CONDITIONS
CC
4.2
4.0
5.0
5.0
3.7
3.5
2.3
2.0
3.1
1.3
1.7
4.2
TAIR
66.0
67.5
70.0
76.0
79.8
82.8
83.9
84.0
82.3
76.7
69.5
64.7
HUM
.833
.84
.81
.80
.80
.79
.77
.767
.82
.775
.82
.83
PPT
WIND*
9.0
9.8
10.4
11.6
10.6
9.2
8.85
7.85
7.6
7.6
7.8
8.8
LATITUDE =
LONGITUDE -
ELEVATION =
25° 54'
97° 26' W
16 ft.
*Extreme conditions given in knots
132
-------
TABLE 81
WEATHER INFORMATION FOR Dallas, Texas (13960)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.1
5.8
6.0
5.8
4.6
4.3
4.0
4.0
4.4
4.6
5.6
TAIR
45.7
49.8
57.4
66.3
73.7
81.9
85.5
85.8
78.9
68.8
55.8
48.3
HUM
.70
.68
.62
.66
.68
.65
.61
.58
.62
.64
.64
.67
PPT
WIND
10.2
10.9
12.7
13.1
11.9
12.3
9.9
9.6
9.1
9.1
10.1
10.1
EXTREME CONDITIONS
CC
3.0
3.0
4.0
3.5
4.1
2.5
2.3
2.0
1.7
1.5
2.5
4.0
TAIR
50.0
53.7
61.0
70.5
76.5
83.5
88.5
88.0
80.0
71.0
59.0
51.0
HUH
.76
.74
.68
.68
.72
.69
.67
.66
.73
.70
.72
.707
PPT
WIND*
7.6
8.0
10.0
9.8
8.6
9.2
7.2
6.8
6.5
6.7
6.5
7.6
LATITUDE =
LONGITUDE =
ELEVATION =
32° 51' N
96° 51' W
476 ft.
*Extreme conditions given in knots
133
-------
TABLE 82
WEATHER INFORMATION FOR
El Paso, Texas (23044)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.7
4.2
4.5
3.8
3.3
3.0
4.7
4.1
3.0
3.3
3.2
4.1
TAIR
43.4
49.1
54.5
63.1
71.6
80.2
81.3
79.8
74.9
65.2
52.0
44.8
HUM
.50
.40
.32
.29
.27
.30
.43
.46
.42
.44
.43
.47
PPT
WIND
10.4
11.3
13.2
13.0
12.4
11.4
10.1
9.6
9.4
9.4
10.0
9.9
EXTREME CONDITIONS
CC
1.7
2.4
2.3
2.0
1.3
1.0
3.0
2.0
1.0
1.1
1.2
2.3
TAIR
49.5
53.0
59.0
67.7
75.7
84.5
84.5
83.0
78.3
68.0
55.0
48.0
HUM
.60
.45
.43
.32
.30
.355
.505
.50
.555
.52
.52
.60
PPT
WIND*
6.1
7.3
8.1
8.4
8.0
6.6
5.55
5.6
5.2
4.6
5.45
5.25
LATITUDE =
31° 48'
LONGITUDE = 106° 24' W
ELEVATION = 392° ft-
*Extreme conditions given in knots
134
-------
TABLE 83
WEATHER INFORMATION FOR Houston. Texas (12918)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
6.4
6.4
6.2
5.5
5.9
5.7
5.4
4.7
5.6
6.2
TAIR
53.8
57.7
62.6
69.5
75.9
81.8
83.8
84.2
80.0
72.6
61.9
55.8
HUM
.77
.77
.72
.76
.77
.76
.76
.77
.76
.75
.74
.77
PPT
WIND
10.8
11.2
11.6
12.0
10.7
9.7
8.3
8.3
8.8
9.3
10.3
10.2
EXTREME CONDITIONS
CC
5.0
4.3
5.3
4.5
4.2
3.7
4.0
3.5
3.2
2.0
4.0
5.0
TAIR
59.0
61.0
65.5
72.0
76.7
82.0
83.5
83.0
79.3
72.0
63.8
57.7
HUH
.80
.82
.755
.78
.78
.795
.785
.78
.80
.82
.795
.80
PPT
WIND*
8.8
8.6
9.6
9.65
8.3
7.1
6.55
5.8
6.3
6.8
7.4
8.15
LATITUDE =
LONGITUDE =
ELEVATION =
29° 46' N
95° 22' W
41 ft.
*Extreme conditions given in knots
135
-------
TABLE 84
WEATHER INFORMATION FOR Salt Lake City. Utah (24127)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
7.0
6.5
6.1
5.4
4.2
3.5
3.4
3.4
4.3
5.6
6.9
TAIR
26.5
33.4
41.1
50.1
58.9
67.1
76.6
74.4
64.2
52.9
39.3
31.5
HUM
.76
.71
.61
.53
.48
.44
.38
.38
.42
.54
.68
.76
PPT
WIND
7.5
8.2
9.2
9.4
9.5
9.4
9.5
9.6
9.0
8.5
7.6
7.4
EXTREME CONDITIONS
CC
5.2
5.2
5.0
4.7
4.0
2.2
2.0
2.1
1.3
2.2
3.4
5.0
TAIR
34.0
38.0
43.0
53.0
62.0
71.7
80.0
77.3
67.0
56.0
44.0
35.5
HUM
.79
.76
.695
.58
.543
.52
.42
.47
.52
.58
.71
.797
PPT
WIND*
5.15
5.2
6.3
7.2
6.2
6.0
6.0
6.2
5.9
5.5
5.3
4.5
LATITUDE =
LONGITUDE =
ELEVATION =
40° 46'
111° 58' W
4220 ft.
*Extreme conditions given in knots
136
-------
TABLE 85
WEATHER INFORMATION FOR Burlington. Vermont
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.5
7.2
7.0
7.2
6.9
6.6
6.3
6.1
6.2
6.5
8.1
7.9
TAIR
16.2
17.4
26.7
41.2
53.8
64.2
69.0
66.7
58.4
47.6
35.3
21.5
HUM
.74
.73
.70
.67
.67
.70
.70
.73
.76
.74
.76
.76
PPT
WIND
9.9
9.6
9.4
9.6
9.1
8.4
7.8
7.5
8.3
8.6
9.7
10.0
EXTREME CONDITIONS
CC
TAIR
HUM.
PPT
WIND
LATITUDE = 44° 28" N
LONGITUDE = 73° 12' W
ELEVATION = 331 ft'
137
-------
TABLE 86
WEATHER INFORMATION FOR Norfolk, Virginia (13737)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.2
6.0
6.0
6.1
5.6
6.0
5.9
5.7
5.1
5.3
6.0
TAIR
41.2
41.6
48.0
58.0
67.5
75.6
78.8
77.5
72.6
62.0
51.4
42.5
HUM
.70
.68
.66
.66
.71
.72
.75
.78
.76
.76
.71
.69
PPT
WIND
11.7
12.0
12.5
11.9
10.2
9.4
8.7
8.8
9.7
10.4
10.8
10.9
EXTREME CONDITIONS
CC
5.0
4.5
4.3
4.3
4.4
3.3
4.3
4.1
3.0
2.0
3.0
4.0
TAIR
46.0
46.0
52.0
61.0
69.0
76.0
79.7
78.7
73.0
64.0
54.0
46.0
HUM
.735
.76
.68
.71
.74
.75
.785
.80
.785
.80
.74
.72
PPT
WIND*
8.6
9.15
9.8
8.8
7.8
6.93
6.7
6.5
6.8
7.4
7.95
8.4
LATITUDE =
LONGITUDE =
ELEVATION -
36° 54' N
76° 12' W
22 ft.
*Extreme conditions given in knots
138
-------
TABLE 87
WEATHER INFORMATION FOR Roanoke» V1rginia (13741)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.4
6.3
6.2
6.1
5.9
6.0
6.0
5.5
4.8
5.7
6.0
TAIR
38.1
39.2
45.5
56.4
65.7
73.4
76.6
75.4
69.1
58.2
46.7
38.4
HUM
.64
.62
.59
.57
.64
.68
.70
.72
.73
.68
.63
.62
PPT
WIND
10.0
10.4
10.8
10.4
8.0
6.8
6.6
6.2
5.9
6.7
8.6
9.2
EXTREME CONDITIONS
CC
4.2
4.3
4.2
4.3
5.0
4.3
4.4
4.1
3.4
1.0
3.3
4.0
TAIR
42.0
43.0
49.0
59.5
68.0
73.5
77.3
75.7
70.0
59.8
49.0
41.0
HUM.
.68
.66
.61
.605
.685
.715
.75
.76
.76
.74
.648
.655
PPT
WIND*
7.5
7.2
8.2
7.6
6.0
4.85
4.4
4.6
3.5
4.9
6.2
6.35
LATITUDE =
LONGITUDE =
ELEVATION =
37° 19'
79° 58' W
1149 ft.
*Extreme conditions given in knots
139
-------
TABLE 88
WEATHER INFORMATION FOR Seattle, Washington (24233)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.5
8.2
8.0
7.7
7.2
7.0
5.3
5.8
6.2
7.7
8.4
8.8
TAIR
38.3
40.8
43.8
49.2
55.5
59.8
64.9
64.1
59.9
52.4
43.9
40.8
HUM
.80
.75
.74
.74
.70
.68
.67
.70
.76
.81
.81
.82
PPT
WIND
10.4
10.4
10.6
10.2
9.5
9.2
8.7
8.3
8.5
9.3
9.6
10.4
EXTREME CONDITIONS
CC
6.7
6.0
5.5
6.1
5.3
4.5
3.7
3.5
4.1
5.7
6.3
7.3
TAIR
42.5
47.0
45.0
49.5
56.8
62.0
66.5
66.0
61.5
53.7
48.3
44.0
HUM.
.88
.828
.808
.77
.76
.75
.73
.76
.797
.86
.873
.885
PPT
WIND*
6.4
7.0
7.0
5.7
5.8
5.4
4.85
4.9
4.8
5.9
5.6
6.45
LATITUDE =
LONGITUDE =
47° 27' N
122° 18' W
ELEVATION = 40° ft>
*Extreme conditions given in knots
140
-------
TABLE 89
WEATHER INFORMATION FOR Spokane, Washington (24157)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
8.0
7.4
6.9
6.5
6.3
3.3
4.0
4.9
6.6
7.7
8.6
TAIR
24.9
29.7
38.1
46.3
54.7
61.4
69.6
67.9
59.2
48.6
35.7
29.1
HUM
.82
.79
.69
.58
.58
.56
.44
.44
.51
.70
.80
.87
PPT
WIND
8.0
8.7
9.2
9.1
8.1
8.4
7.8
7.6
7.6
7.4
7.6
8.6
EXTREME CONDITIONS
CC
6.3
6.0
5.3
5.1
5.0
4.1
1.3
2.0
2.5
4.2
6.0
7.0
TAIR
32.0
36.5
39.0
49.5
59.0
64.0
72.7
73.5
64.0
50.5
40.0
33.5
HUM
.86
.825
.745
.66
.68
.585
.44
.517
.60
.80
.84
.88
PPT
WIND*
5.0
6.2
6.0
6.5
6.1
6.1
5.5
5.5
5.3
5.6
5.0
5.16
LATITUDE =
LONGITUDE =
ELEVATION =
47° 37' N
117° 31' W
2357 ft.
*Extreme conditions given in knots
141
-------
TABLE 90
WEATHER INFORMATION FOR Huntington.West Virginia
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.9
7.2
7.1
6.6
6.1
6.4
6.3
5.9
5.1
7.0
7.5
TAIR
36.6
37.7
44.8
55.7
64.6
72.0
75.2
74.0
68.2
57.3
45.5
37.4
HUM
.70
.68
.64
.62
.70
.73
.76
.78
.78
.70
.73
.75
PPT
WIND
7.3
7.4
8.0
7.5
6.2
5.1
4.9
4.9
4.8
5.5
6.7
7.2
EXTREME CONDITIONS
CC
TAIR
HUM
PPT
WIND
LATITUDE =
LONGITUDE =
ELEVATION =
38° 22' N
82° 33' W
827 ft.
142
-------
TABLE 91
WEATHER INFORMATION FOR Green Bay, Wisconsin (14898)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.7
6.3
6.3
6.7
6.2
5.9
5.4
5.5
5.6
6.0
7.1
7.0
TAIR
16.1
17.3
28.5
41.8
54.4
64.7
69.9
67.8
60.2
48.4
33.5
20.1
HUM
.75
.76
.74
.69
.68
.72
.74
.76
.77
.76
.75
.78
PPT
WIND
11.1
11.0
11.7
12.2
11.3
9.9
8.5
8.2
10.0
10.4
12.4
11.3
EXTREME CONDITIONS
CC
5.0
4.3
5.2
4.3
4.6
4.3
4.1
4.0
4.0
3.5
5.4
5.3
TAIR
21.0
25.1
33.1
46.6
59.8
67.0
70.7
70.1
60.8
52.5
38.0
27.0
HUM
.801
.811
.791
.77
.721
.74
.748
.801
.81
.80
.79
.82
PPT
WIND*
7.69
7.39
7.29
8.79
7.99
6.29
5.29
5.49
6.2
7.0
8.3
7.9
LATITUDE =
LONGITUDE =
ELEVATION =
44° 29'
88° 08' W
682 ft.
*Extreme conditions given in knots
143
-------
TABLE 92
WEATHER INFORMATION FOR Casper, Wyoming (24089)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.6
6.6
6.7
6.7
5.1
3.8
4.4
4.2
4.9
6.2
6.1
TAIR
23.4
26.3
32.1
43.1
53.1
63.1
71.7
70.1
59.7
48.3
33.6
27.3
HUM
.60
.62
.62
.56
.56
.48
.41
.40
.44
.49
.60
.62
PPT
WIND
16.9
15.4
14.4
12.9
12.1
11.5
10.3
10.9
11.3
12.4
15.2
16.6
EXTREME CONDITIONS
CC
4.6
4.9
4.5
5.2
5.2
3.2
2.2
2.3
2.5
3.0
4.3
4.0
TAIR
29.2
31.6
36.4
46.0
55.1
66.7
74.6
71.6
62.1
51.1
39.0
31.1
HUM
.642
.702
.711
.631
.606
.591
.491
.451
.571
.601
.681
.671
PPT
WIND*
12.98
10.98
8.19
8.4
8.49
7.78
6,69
7.96
7.88
8.8
10.99
11.9
LATITUDE =
LONGITUDE -
ELEVATION =
42° 55'
106° 28' W
5338 ft.
*Extreme conditions given in knots
144
-------
APPENDIX II
RESULTS OF COMPUTATIONS FOR INDIVIDUAL STATIONS
-------
100
. 90
u.
uj 80
f£
$ 70
tc
Ul
a.
2 60
Ul
I-
1 5°
tC.
ffi
g 40
o
111 30
yn
JV
f\
f
i
1
/
J
/
/
*fr
^B^
%
\
>
V
\
\
\
\
\
V
fts
JFMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^CDO
3OOOOOOOO
J*
/
J
r
f-
^V
A
jjr
»*•
•^
\
\
\
\
»«
*••
JFMAMJJASOND
TIME - MONTHS
u. \2
ONS
CO
RE
EX
SE
MPERATURE
M A M J J A S
TIME - MONTHS
0 N D
J F
MAMJ JASON
TIME - MONTHS
FIGURE 37 - RESULTS FOR HUNTSVILLE, ALABAMA
146
-------
BRIUM TEMPERATURE
EQU
IUV
90
80
50
40
30
20
E
JST
J^
XT
./
ff
y
REf
.
r
i
f
HE-
i
Q 1
I
O A
/
X
AVI
P
/f
RA
"<•)•
*
GE
S
*S
^h 1
^
\
\
^
V
k
sgf
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — I\J
iO)O>OlN>.l>0>ODG
3OOOOOOOO
,
./
rff"
J
r
?
t
y
t
i
,o
/
(
J
I
**r
i*\
^
\
b>
V
-»<
\0
-%
*o.
V
\
\
s^
t>-
"^
J FMAM JJAS
TIME - MONTHS
OND
12
11
10
9
ui
<
a.
V)
z
o
a
z
O
oc
o
Ul
g7
ui
a:
a:
ui
a.
=830
00
ACRE
M RE S
L. 12
U)
§ '
H
i l<
O
o
Ul
X
Ul
Ul
V)
UJ
£C
3
<
a:
UJ
a.
5
Ul
I-
z
<
_l
a.
•O
>
•Q>,
•UH
>1
b.
V>
"^
"^
A
80
\
ISC
*0
221
0 /
(Y
0 /
•O'
)0
T)1*
CR
iCR
ff
At
ES
ry
ES
^
0*
/'
JO'
•u
*(f
«u
,e^
-o-
-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F* EQUILIBR
w^0)ff)^o>
N
\
\
\
k
^
X
V
s
V
\
V
^
A =
V
>
A =
v
^r
"'ii
80(
150
^
22(
S
) A
**•
0 A
SfeMhtf
w
)0/
**•
CRI
y
«^
y
VCR
*
IS
f
"sy
r
ES>
X
/
r
>
/
1
f
,^
f
f
J
f
f
jr
ji
MPERATURE RISE (EXTREME CONDITIONS) - F° EXCHANGE COE
0.0>SO>
\
8
•^
15
X
22
*V
00
DO
^U
DO
**0
"*»
ACF
~u*
ACF
-0"
ACf
•O
ES
/
ES
o'
S
tES
^
J
P
F
1
P
f
C/
/
/
7°
/
f
j*
f°~
p
ff
f
JFMAMJ JASON D
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 39 - RESULTS FOR PHOENIX, ARIZONA
148
-------
100
MAMJ JASO
TIME - MONTHS
ND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — N
i(j>ODoro-^a>
v
^
^».
>0k
JFMAMJJASOND
TIME - MONTHS
e
UL
12
<
2
oc
UJ
7
ui
ac
a:
uj
a.
-*>
^1
•*>
\
\
\
\
\
v
\
A
\,
"V
A
X
o
•s
X
= l£
^^
*»J
= 22
X
r\n
-,*
00
*<.
!OC
^^^
-*•
A
•*-
A
_«-
ior
.>
:RE
V
:RE
jj
^f
Q
y
/
3 >
/
V
/
y
/
/
^
/
/
^
/
x<
<•
x*
JFMAMJ JASON D
TIME - MONTHS
u. 12
(f>
o
o
UJ
•s.
Ul
(E
h-
X.
UJ
UJ
U)
cr
UJ
cc
s
£E
UJ
Q.
5
UJ
I-
<
_i
a.
^
•ox
"**>
H
4
N
b
*
v^
^J
v
UN
8
V
^\
1
^N
2
00
"0.
50 C
T5x
20
NX
AC
•ft.
) A
•oj
) A
.O
RE
J>
CR
-O
CR
3
X<
:s
^
•^
:s
x>'
jj
P
rf
i
6
1
p
/
/
ff
>
/r
/
o*
f
43*
.V
•o-
JFMAMJ JASOND
TIME - MONTHS
FIGURE 40 - RESULTS FOR FORT SMITH, ARKANSAS
149
-------
EQUILIBRIUM TEMPERATURE - Fe
Mw-s*o!->ic!>
,g
GE
H
N
\
\\
\
\
fe
V
)
\
V
\
b
V)
V
s
o
I
I-
m
I
H
Z
Ul
O
O
ai
X
o
X
UJ
J FMAMJ JASOND
TIME - MONTHS
iiOO
180
160
140
120
100
80
60
,<«
X1
.?
9
i
i
£
f
J
.0'
f
P"
*s
^
\
X
V
Q\
\
^
V
k
\x
<\
^
xjj
*&
JFMAMJJASOND
TIME - MONTHS
M A M J J A S
TIME - MONTHS
0 N D
ONS
E COND
RE
EX
SE
PLANT TEMPERATURE
:*
600
"Ot-X,
I 50O A
^O,
ACRE:
£R1S
;R::S
^
f
JFMAMJ JASOND
TIME - MONTHS
FIGURE 41 - RESULTS FOR LITTLE ROCK, ARKANSAS
150
-------
EQUILIBRIUM TEMPERATURE - F8
POW-OOlf^OBtOC
OOOOOOOOC
jy\
.V
EX"
o^
•RE
/
ME
o
r
pi
^.
VE
P'
t
RAG
J>
/•-
E
t>.
v>
N
\
>
o
. \
\ ^
\
\
\
A
\
\
X
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fc
_ _ — — _ i\j
^(DQBOrO-^CDCDC
3OOOOOOOO
/
jy
/
/
/
/
f
/
jrf
/
y
*>
s-
£*.
\
\
\
s
V
N
V
s
^
i
k^
u
•*».
•o-
JFMAMJJASOND
TIME - MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>j.i>oi->lQ)
<
K
Ul
O.
2
Ul
I-
H
Z
<
_l
a.
X
300 ACRi:S
I5CO ACR£S
v_ ZZlKT \CTE5
J^i.
T
X
/
JFMAMJ JAS
TIME - MONTHS
0 N D
FIGURE 42 - RESULTS FOR BURBANK, CALIFORNIA
151
-------
UJ
K
t-
sr
a.
l-
S
o
m
o
in
too
90
30
70
60
50
40
30
yn
&
y
EX
°J
//
/
TRI
j
Of
y
:ME
v°
V
^
\H
\N
\
>
V 1
V.
;HANGE COEFFICIENT- BTu/FT2- DAY - F"
CBOPO.I>COC
OOOOOOOO
X
lil An
•6
tf
x"
y
^
^
y
r
/
if
1
.p-
K
1
lx
\\
\
0\
\
^
\
V
A
v
^
*:
^»
-w-
"0-
J FMAMJ JASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
o:
o
UJ
I
UJ
ct
K.
a.
2
UJ
<
£L
12
I I
10
9
8
\
\
s
\
\
\
">
V
\
\
\
V
\
V
*\
S'
\
V
s,
\
\ -
\
= 1!
\
\
\=2
V
30C
»-
3UL
S-
du(.
•-
A(
•^f
A(
^
A(
H^^
,f?E
S
:Kb
/
/
JKb
/
f
1
i
i
t
/
/
i
i
/
/
/
/
/
/
/
/
^_
12
I I
10
9
x 8
UJ
UJ
52 7
SE
Ul
o 6
tc
LJ _
o. 5
1-
I- *
o
H
O
Z
O
o
UJ
•s.
Ul
JFMAMJ JASON D
TIME - MONTHS
>»
^
X
t
^
>5
\
\
V
^
\
A
»
\
\
i
k
\
V
°%
\
i
\
X
80(
K)
S
150
X
22<
'\
A(
V»-
0 A
V
pO/
'
y
/
/
/
f
p
r
^o*1
fV
JFMAMJ JASOND
TIME - MONTHS
FIGURE 43 - RESULTS FOR FRESNO, CALIFORNIA
152
-------
111
a
D
<
a:
UJ
a.
2
UJ
l-
2
3
E
CD
EQU
I \J\J
90
80
70
60
50
40
30
?n
-f>'
EX
°>
'/\
FRE
'V
ME
/
^
l/^
AVt
-^t^
I*
\
,KA
.P"
^
3E
.Ou
jt-
•0.
• •
X
yv
\^
v
SK
N
v
\
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F"
— — — — — IN]
^o>oooi\}^o
3OOOOOOOO
S,
/
//
J*
J
/
»
/
/
/
' /
j.
P
/
7
!>
•
/>>
V
\
\
A
\
\
\
\
X
\
\
\
\
>
V
X
X
9
^o*
JFMAMJ JASOND
TIME - MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>!^>OI•>
)0
-•_
AC
p-*^1
ACI
^
ftCI
jr
RFf
S
IC*<
^
?E9
y
/
/
/
/
^
/
/
J
/
1
/
/
/
/
^
^
*,
L*-
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
O14^OIO)^IOB(DO — ^
1
0
9
8
7
6
5
4
•^
iQL
^^L
"^
X
\
\
k
°N
»
V
s
X
\
^
Vl
\
X
,
^
80(
\i
\
5C
X
£2
>
A(
s>
0 A
^..^^
po
V)..
RE
jr
CRE
P"
kCR
.$>'
3
>
S
,6
'o'
'
.4
^
/
r
/
P
/'
0
^
/P
ox
/
/
'
f
r
/N
,
f*
*<*
TIME - MONTHS
JFMAMJJASO'ND
TIME - MONTHS
FIGURE 44 - RESULTS FOR OAKLAND, CALIFORNIA
153
-------
100
J F M A M J JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- 1TU/FTE - DAY - Fe
*o>fflow^0>ato
3OOOOOOOO
•-r'
£f
fi
yj
V
/
A
/
7
1
r
t^\
/o-
/
-%
G,
\
^
k
I
i
^
V
\
1
SJBI
V
^
u
^
X).
FMAMJJAS
TIME - MONTHS
OND
K
O
UJ
£
Ul
DC
g
K
UJ
Q.
UJ
z
<
12
11
10
9
8
7
6
5
4
3
-««,
-*s
-«K
N
\
\
\
^
\
A
V
\
V
\
\
\
\
\
*s
A-
V
\
A=l
\
k-i
\»
\
80
S
•*•
50
V
120
S
*-J
OA
— jr""
DA
-^
L)A
j**
Jh(t
/
:RE
}
/
UKt
/
/
?
f/
4
1>
/
/
«L>
^
X
/
^
ff
I/
,<
/*
**"
,-*"
JFMAMJ JASON D
TIME - MONTHS
S. 12
v>
i '
o
o
UJ
•s.
UJ
tr
I-
x
UJ
UJ
CO
EC
UJ
£C
Z)
<
oc
UJ
Q.
2
UJ
1-
H
•z.
<
_l
o.
-0,
"Os
V
v»
A
1
\
V
s
»
o
X
V
X
X
>
^
^
Vi
V
80
X
50
\
iiZ
V
A
3 A
V)%
0 P
o.
JO ,
\x.
CRl
-o
CRI
Lo'
VCH
"-O"
S
:s
P0''
bS
S*
P
p'
.'
r/
/
'
'
&
r
tf
/
<*
f
*<>•
J*
'*
JFMAMJ JASOND
TIME - MONTHS
FIGURE 45 - RESULTS FOR DENVER, COLORADO
154
-------
1 \>\J
. 90
u.
i
uj 80
DC.
3
< 70
(E
UI
D.
2 60
i-
1 50
K
m
g 40
3
o
w 30
20
12
O
U-
« "
o
g -o
z
o
o
_i 9
(E
i 8
UJ
i T
LU
CC
H 6
o:
UJ
0. 5
UJ
I-
H- 4
n •*
K/
j^
EX
i t
i
f
"RE
/
' /
/
ME-
0
//
v
V
i
/>
AVI
/
/
I
\
.KA
*
_Jf*>
GE
°x
\
Y
\
\x
\
Q
t \
\
),
t
\
V
J FMAMJ JASOND
TIME - MONTHS
~*^
">\
"N
\
\
\
\
\
\
N
\
\
i
V
\
\
\
s.
\
V
\
\
A=l
N^
^
A=2
\
bO(
V
50(
.
2O
V
) Al
•^
) A
5^
-*•
JKt
^'
CRI
S*
;RE
^
s .
/
i
jl
SS
/
y
/
/
/
/
f
1
/
t
f
f
1
f
I
/
/
"
/{
f
o 200
U.
>. 180
Q
J 160
H
U.
= 140
0)
1
h- 120
LI I0°
u.
o
o 80
UJ
C9
< 60
X
o
X
uj 40
U. 12
w
§ "
H
Q
z 1 0
0
o
UJ
UJ
o:
K
x 8
UJ
^^
UJ
tf) -7
(T
UI
o:
3 6
S
£E
UJ c
0. 5
Z
UJ
1-
z
<
_l
o- 3
if
/
*
J F
'
t\
\
1
\
\
1
\
V
/
//
'6
/
1
f
ft
f
L
//
(
/
-\
b^
\
\
\
V
\\
\
\
\
Y\
V
'
\
V
v
1
y
>^
MAMJJASOND
TIME - MONTHS
\
^
\
bv
1
V
\
V
\
>
^
v
^
V
\
. IE
\
'\f
v
00
^0*
00
*0-
JOO
k.
o-
ACF
o*
ACI
^
AC
.O*
ES
ft
ES
,c/
?ES
'*"
t
s>
p
s
S
j
i
i
i
i
i
j>
oX
/"
^
O
f'
4
^
/
1
(y
7
/*"
J
TIME - MONTHS
TIME - MONTHS
FIGURE 46 - RESULTS FOR GRAND JUNCTION, COLORADO
155
-------
100
. 90
b.
ui 80
K
S 70
U
Q.
UJ 6°
fr-
i so
m
j 40
©
u 3Q
12
o
UL
i
w 1 1
z
o
g '0
z
o
0
_i 9
1 8
Ul
£ 7
Ul
H 6
K
Ul
Q- 5
Ul
H
H 4
Z
<
B1 1
-af*
J
=e«,
-*,
y
/
F
^
S
N,
i
I
f
i
/
/
MAM
TIME •
s
V
\
\
A
\ f
\
^— A
y
- !
V
\
"^
-lit.
V
/
\
\
^
>
J J A S
MONTHS
00
•-*.
vAO
•*^.
uu
•a»=
A
_ffl-
i — A
-*•
A
->»
:RE
X
^RF
.
^^
Mt
^
S
X
c
/
/
X
\
\
\
0
>
/
J
/
\
\
\
1
H
/
/
/
/
/
r
\
\
D
/***
^
*
0 EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
3 -i>o>aBOr\s.i>0>®c
ooooooooo
UL \c-
"v>
i "
I 10
o
S Q
2 9
Ul
Q:
h-
x 8
Ul
tf> 7
— f
K.
a
o 6
(£
Ul R
Q. 5
UJ
.
z
_l
^
X
J F
/
/
f
7
?— •
•««,
V
\
\
\
\
s-
MAMJJASOND
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 47 - RESULTS FOR HARTFORD, CONNECTICUT
TIME - MONTHS
156
-------
e
U.
UJ
£C
z>
^
EC
UJ
Q.
Z
UJ
H
2
Z)
E
m
EQU
1 WW
QO
80
70
60
50
40
30
20
•*'
EX
^t
y
TRI
t
ny
*
ME
,#
7
/
y
A
AC"
f
A
x
UA
r°*
x*«
-
o
\
A
V
*
\
V
\
A
t
^
^
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
_ _ _ — _ re
^o>o>oi\>AO>a>o
3OOOOOOOO
**
jt
A
#
y
/
'i
t
A
r
/•/
^
H5-
^
^7s
\
X
\
\
V
\
X
V
X,
V
X
V
V
JFMAMJJASOND
TIME - MONTHS
u_
i
•z.
o
o
o
tr
o
UJ
V)
LU
oc
K.
LU
Q.
Z
UJ
= 600
^A=I500A
AC RES
!2CO^CR
CRf^.
Z
X
JFMAMJ JAS
TIME - MONTHS
OND
u. 12
o
t
o
z.
o
u
LU
z
LU
tr
i-
x
UJ
UJ
(O
CC
UJ
CC
S
CC
UJ
0.
S
UJ
i-
i-
<
_j
o.
^b
8CX
v
VO..Q'
I5O
ACRES
X
) / CR :s
SCFES
^
JFMAMJ JASOND
TIME - MONTHS
FIGURE 48 - RESULTS FOR WILMINGTON, DELAWARE
157
-------
(NORMAL CONDITIONS) - Fe EQUILIBRIUM TEMPERATURE - F°
ffl «> 5 = K; SSSgSSggl
til
oe
or
^ c
cE
UJ
Q_ *S
i-
^
i- ^
z
<
n' ,
•^Be»
J
*X
X
X
E
4
/
/
F
\t
A
\
\
^
N»
\
\
J J A S
MONTHS
no
"Tir
00
•T-
-OC
~^-
-»-
A(
_*-
A
_•-
V
-RE
^
•'Kl
-^
y
s
S
'y
\
\0
V\
\i
0
/
y
/
/
\
\v»
\
*
N
/
/
^
/
/
/
i0-
V
D
^»-
s*~
s+~
o
u.
1
< I8°
0 EXCHANGE COEFFICIENT- BTU/FT2- C
% -^ 0> GO O f\> .£> >
ooooooo
i
t/j
1
Q 10
z 10
o
Ui 9
EC
t-
UJ
V) 7
— 7
CC
UJ
CC
3 6
1-
cc
111 R
Q. 5
UJ
1- 4
°- 3
V
-0»
J
~o>
y
•^
F
X
,
/
/
/
V
f
/
/•
f
yO
r~
/
r
•-«
>
^X
\
\
s^
V
^
^
MAMJJASOND
TIME - MONTHS
\
\
\
vo
v
\
8(
^
I5(
^
0
^^i
0 /
X)
ACI
•o-
kCR
°
tES
"°
ES
y
t
/
— /
j
'
^
^
/'
0/
'
>>.
JFMAMJJASOND
TIME - MONTHS TIME - MONTHS
FIGURE 49 - RESULTS FOR WASHINGTON, D. C.
158
-------
BRIUM TEMPERATURE
EQU
1 >
v°>
x
A
o
X 1
^
V
\
x
tv
V
J FMAMJ JASOND
TIME - MONTHS
Q
I
"x
3
I-
m
I
i-
z
—
o
Ul
o
u
UJ
X
o
X
UJ
200
ISO
I60
140
120
100
80
60
/
y
b,
_L
JFMAMJJASOND
TIME - MONTHS
1 ">
0
U_
I
w ' '
z
0
•~ in
5 I0
z
8
_l 9
<
2
cc
O Q
I 8
Ul
o: 7
UJ
a:
P 6
a:
UJ
a. 5
h-
r-
z
<
fL ^
^
S-
X
x
A
y
y
X
^
^
X
V
v
V
A =
•«
^
\ =
v
\ - I
S|
%l
80
**•
50
-^-
! 20
-+•
0 /:
<»
D ,
J*
0 /
•*'
CR
r+>
\Cl
•+*
LK
*++
iS
ES
-^
•^^
^
f
f
J
/
/
J
f
f
V
f
p
jr
e
U.
V)
O
H
a
0
ui
S
ui
DC
1-
UJ
UJ
(/)
(T
111
CC
3
15
£E
UJ
a.
5
UJ
t-
1-
z
<
_J
a.
12
JFMAMJ JA
TIME - MONTHS
VL
'°>
^
>),
\
T>,
x
X
^
N
\
b>
v
*s
QH
8CX
Os
ISC
M.
120
*o-
) A
•O'
0/5
,f).
) A
0-
:RE
»o-
CRE
^>-
:RE
o-
s
.
s
-cr'
s
jj
P'
rf
J
'
i
JO
/
^0
/
x
/
J/
^0.
^
^j.
JFMAMJ JASON
TIME - MONTHS
FIGURE 50 - RESULTS FOR JACKSONVILLE, FLORIDA
159
-------
100
. 90
j
uj 80
IE
< 70
IE
111
o,
S 60
ui
H
Z 50
£C
™ 40
5
0
w 30
12
*
ll_
SJ "
z
o
g 'o
•z.
O
o
_j 9
<
2
cc
1 8
UJ
E ^
UJ
tt
= 6
IT
0. 5
UJ
H
H 4
<
o! 3
E
H^«
"
J
"•>
"S
~*N
XTF
^
,/
F
V
X
\
:EM
7?
i>
U*
E
r
/
ACl
/
s
\
"UA
MAM
TIME -
V
s*-
v
Sj
V-
S^,
A=
-w'
A- 1
u-
A-2
^*
^y
s*
L
•o-
-«~
•©^
•*»
>1
V
J J A S
MONTHS
80(
20C1
) A
1 fl
) A
CRI
rpi
ORE
:s
s
%
N"
0
-*
fd
X
N
/
A
/
/
>
X
D
/•
/^»-
/*•"
0 200
u.
I
<
0 EXCHANGE COEFFICIENT- BTU/FT2- I
j •t'OiCBOMAO
OOOOOOO
u. \c-
i
W
1
1—
5 10
Z IO
o
Ul
2 9
a:
I-
x 8
iii
In 1
— 7
OC
UJ
a:
z> 6
t-
UJ -
a. 5
S
UJ
t-
,-
z
^
J
"X
b>
-n
*^
/
y
F
X
.
"\
X
I
4'
7
/*•
~©^
MAM
TIME -
k<\
S
8C
ISC
•o
22(
*H>.
0 /
0
*y
)0
.©.
\
^
\
NT
\
J J A S 0 N D
MONTHS
CR
^v
!CR
-O-
<\CF
-0-
IS
-cT
ES
ES
^
jQT
t^r
^
^>
^j— 1 i
-o
.a'
i»O'
#
^
rf
•^-
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 51 - RESULTS FOR MIAMI, FLORIDA
160
-------
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT - BTU/FT2- DAY- F8
— — — — — t\3
ia>ODOWA0>ODC
DOOOOOOOO
-/
sr
J
ft
f
/
p
/
/
f*
— -
/*
/y
P**-L
-<\
V,
l
*s
^s
""•m*
A- 1
•>«.
\ ~ e.
ROC
— «r"
c.r\f
<^\j\
-+•
£_Q
-••'
A
X
\ A
X
) A
^
- 1
"S
CRE
*^
-\
3
^^.
"^ .-
'V
s
•»•
,/
^
'
V
/"
^«
'
^
s*
{*
^
JFMAM
TIME - MONTHS
u. 12
1
to
I"
o
o
UJ
s
Ul
tr.
H
X
Ul
UJ
\
V
">
X
X
V
"S
\
6
NX
1!
'"h
2
X
00
o.
oc
•^
20C
AC
•-
S
-o'
3
-(^
5
«*/"
^p.
_ft'
*o-
-e'
x>'
^
y
s*
f
***"
K
&
JFMAMJ JAS
TIME - MONTHS
OND
FIGURE 52 - RESULTS FOR TAMPA, FLORIDA
161
-------
100
. 90
In.
UJ 80
1 7°
o.
S 60
h-
1 50
CE
m
g 40
0
u 30
12
O
y_
5? "
z
o
£ '0
•z
o
o
_i 9
cc
1 8
UJ
E 7
Ul
tE
H 6
CE
UJ
2 5
H
£ 4
<
oi 3
.0"
•
J
X
x
N^
EX"
/
" (
/
FRE
— ^
/
ME
t
h
7
/
\
-3-
» t
f
'AC
F M A M
TIME -
'v
X
\
*Sn.
"\
X
v
A
S,
A
X
f\
\.
-
•**>
= it
!!*».
r *?'
«*.
rf
*
/
\
TU^
*o-.
**-
^L
V
^S
^
S^
\
J J A S
MONTHS
ior
-»-
uu
-w
nr
«^-
A
_a-
A
_•><
A
^«-
"IRf
^<
JK!
-»-
CR!
-»•
s
S
S9
S
V
5
,S
\
\
\
0
/
/
t
y
/
\
^
\
N
/
•
/^
./
p
^
0
•*s
«4h,
„ 200
u.
I
>. 180
o
J "60
l-
u.
3 140
m
I
I- 120
UJ
E "00
u.
UJ
0
o 80
UJ
13
< 60
X.
ui 40
f i?
u. \<-
i
w
o
1 10
o
UJ
5 9
UJ
OL
\-
\f Q
S
UJ
(/) T
— 7
(C
Ul
r> 6
cc
a. 5
Ul
I-
_
z
Q- ^
^
/
J
X
Nj
X
i
r
F
V
\
ffl
•^
r
&
/
•*
^d
x>
s
6-
V
"^
^s
X
\
I
k \
\
\
MAMJJASO
TIME - MONTHS
'
s
o
X
X
1
X
\ 2
80
^Q
50(
V>
?0(
^o*
) A
"O-
) A<
M>-
) A(
:RE
j&
4>*
RE
O-
S
J?
s
rC
S
.cy
/>'
^
t
jy
y
/
\
\
Xk.
V
.0*
N D
^
P"
^
"^*"
-0-
•o>
JFMAMJ JASON D
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 53 - RESULTS FOR ATLANTA, GEORGIA
162
-------
IUU
. 90
u.
ui 80
IE
S 70
or
m
Q.
S 60
UJ
1-
i 50
m
g 40
o
u 30
12
O
U.
« "
0
5 I0
z
o
" 9
<
S
/
/AC
c/
/
/
K;
TU
&*
AL
\ >
V
\
\ )
V 1
\
\
^
\
\
^
J FMAMJ JASOND
TIME - MONTHS
X
-^
X
\
\
^
\
\
s
V
*s
\
\
s
*v
N*
\
\
rtr2
S,
\
30C
s^
;nn
"V
^00
v.
A(
•n^
fli
w
A(
•
/
NRP
/
X
X
s
/
y
^
/
y
/
'
j
r
y
r
f
t
/
/*-
^*-
/*"
o
u.
1
5
Q
1
eg
U.
V.
3
1-
m
I
1-
z
UJ
o
u.
u.
UJ
o
u
UJ
u
z
<
I
\
%
V
V
Hs
\
V
^
o.
J FMAM JJASOND
TIME - MONTHS
12
I I
10
9
8
— 7
\
X)
A
\
^
\
I
\
\
\
\
\
\,
U
X
V
y
s>
\
V
\
\
v
^
80
"ei
50
'°v
22(
V)'
0 ft
*<*+
o ft
x>.
>o ,
•-
CR
•QJ-
^CR
•o-
ES
J
^
ES
?
ES
^
-------
100
90
in 80
K.
tE
li.
CL
70
60
50
«£
m
j 40
30
EXTREME:
ACTUAL
^
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
*>0>C9ON-*bO»09C
DOOOOOOOO
i
•fir
/
fir
,
/
y
.
y
7
f
^
/"
^r
A
^
\
X
V
^
1
^
in
^
JFMAMJJAS
TIME - MONTHS
OND
w
2
O
O
o
cc
o
o:
UJ
ec.
a:
ui
Q.
S
UI
z
<
ii
1
0
9
8
7
6
5
4
*A
"•>
-fc
X
sf
X
X
\
\
\
\
/
\
\"
\
N /
1= (
N,
\
= i
\~2
V
soc
50(
^t
?0
^.
A(
-W'
) A
•*?
n A
^^
RE
X
x^
CR
^
CRf
S
>
X
:s
/
:.=i ,
X
/
r
J
/
S
/*
/
J
/
/f
S
\f
JFMAMJ JASON D
TIME - MONTHS
°u. 12
tf)
z
o
o
o
111
111
tr.
H
X
UJ
u
CO
K.
Ill
OL
3
S
a:
ui
a.
2
UJ
I-
H
<
_l
o.
-o-
-o-
-o-
-ft
*">.
*<
-<\
^
1
*
\
\
t
(
\
\n
•
V
X)
y
80C
^
50
^
220
Ov
A
-o-
) /i
-o-
0 /
-0-
CRE
-O
CR
J^
CR
-*/'
S
/>*
ES
XT'
=:s
0"
6
JS
**
a
.
P
ft'
P
if
j
,*
,•
P
)*
x
'
JFMAMJ JASOND
TIME - MONTHS
FIGURE 55 - RESULTS FOR CHICAGO, ILLINOIS
164
-------
EQUILIBRIUM TEMPERATURE - Fe
MO4^Oi--JOB(X)C
OOOOOOOOC
s/
-^
E)
/
f 1
f
:TR
/
?l
f
f
EM
\
/
0
'/
I
o'
1 /
'r
AC
cf
/
>
\
\
TU.
rv
^«-
:VL
t>
\
>
V
\b
Vv
\
^.
V
y\
\
l\
\^
V
\
^
v
\
JFMAMJJASOND
TIME MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ — — _ N
^! o
^
-*>
\
V
X
>
V
\
y
\
A
"v
A
s^
A-
V
Oj
^
:|5
•*«»
22
-\r\
po
-•-
00
J?
AC
^
AC
^*
RE:
r
=?E!
S
J
^
f
f
f
'
^
J
-J
f
f
f
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
12
J F M A M
TIME - MONTHS
-0>
-o>
-o>
•n
\
X
^
v
ft
i
kv
\
\
O
\
e
\
u\
IE
\j
22
^
00
NX
00
NX
00,
IX.
AC
JO*
AC
-O'
VCF
o-^
RE
P
RE;
,
**
ES
/
s
o*
>
?
f
ff
^
-o'
1
^
/
ft
O*
/
p'
,6'
**
^
JFMAMJJAS
TIME - MONTHS
OND
FIGURE 56 - RESULTS FOR SPRINGFIELD, ILLINOIS
165
-------
100
U_
i
IX
H
OC
UJ
BO
80
70
£L
2 60
UJ
H
g 50
K
EJ
-• 40
30
n"
EXPREME
L/
ACTl
AL
A^
Xx
AMJ JASOND
TIME • MONTHS
;HANGE COEFFICIENT- BTU/FT£- DAY - F"
WOJOt\J.&k0>a»c
OOOOOOOO
X
UJ An
^
-©"
Q
0
>
/
#
/
,r°
f
/*
h^
^
^3^
>
•^
FL
Vj
^
\
V
\
X
\3.
V
.0-
FMAMJJASON
TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F9
jjjs,oiO)^CD(0o — i\
•**
BffiL,
\
V
\
X
*
V
A
V
X
V
\
A=
S,
X
A -
vJ
IA-'
80
<.
^
^
0 A
^K5
O i
«gj
U A
V
CRE
^
JT*
S
L^
X
,
>
^
X
v
^/
X
/
/
X
|lv>"
/^
Bit?
-J0i=
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
FMAMJ JASON
TIME - MONTHS
E>A
aA=-
^
S
^p
Py
y
o
/>'
o'
>
/'
?'
oy
^
o-
/^
r
-o-
-tr
'(!•
J F
MAMJ JASOND
TIME - MONTHS
FIGURE 57 - RESULTS FOR EVANSVILLE, INDIANA
166
-------
100
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — M
^ocDOro^moBc
3OOOOOOOO
-**
-o'
J
s
y
/
f
/
/
y
J
^
ff
r
j
f
,u
sr-
*a-
X
-ex
\
s
"N
O
\
\
^
\
^
\
\
V
^
V
b.
JFMAMJJASOND
TIME - MONTHS
12
CO
z
o
o
o
ec
o
tn
a:
Ul
OL
a:
UJ
a.
7
6
5
4
3
-•-
-*N
^
'S
\
X
V
V
X
A=
X
A-
V
X
A=
R
X.
10
^
??
V.
")0
•^-
oo
")0
~«-
ACI
-r-
ACI
1*
AfrF
-•••
?FF
^'
*•
JFMAMJ JASON
TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>i-i>oi(j>^Ja>u>o — i\
'0
tx
"0s
xa
>>
^v
\>
\
Vi
\
>
*
\
\
^
V
X
•qj
80
**s
50
"0>
>20
'^
0 A
"O-
0 A
0 t
xs-
CRI
-CT
CRE
r/
ck
J>'
s
p-
s
J*
:S
jOr
^*
jf
ff
J
/
P
/
/
^
X
U
f
/
P
&*
-------
ML CONDITIONS) - F9 EQUILIBRIUM TEMPERATURE - F9
» 5 = ~ SSo-SSSggg
§ 8
£ 7
3 C
u
OL S
Ul
[-
i- 4
z
a. 3
r-/
J
"
1
EX
^/
X
F
X
X
X
> - •
PRE
,
/
n
7
ME-
,
/
/7
7
/
V
7,
,y
A
AV
MAM
TIME -
i
X
\
S
\
y
v
\
X
V
A =
"SB
V
A= 1
V
s
*k
/
t
ER^
XH
y»-
,GE
X
"
\S
A
J J A S
MONTHS
80<
•-»-
•ifX
•>*_
20(
«^_
) A
~*-
) A
.=*=
) A
-«-
:RE
•^
"RF
:RE
^
S
X
s
y
S
X
^ll
\\
V
\
0
_/
/
/
/
1
t
1
V
>
N
/
/
/
/
^s
V
D
/*"
X
S
" EXCHANGE COEFFICIENT - BTU/FT2 - DAY - F8
— — • — — — is;
3 *0>03O(\}^0>OBO
ooooooooo
UL !£-
D
^
&
r
^
1
<4
MAM
TIME -
>
\
*
O
\
o
V
. f
\
\ '
^
\!
soc
0,
50C
O*
20
\3*
rffC
V
o
\
N
\
\
\
\
J J A S 0
MONTHS
AC
A
-a.
OA
REJ
.U**
;RE
-£>'
CKI
X
S
f/
X
/
r/
/^
o'
r
o/
/
V
^
N
/
r
/
•s.
>>
D
^
jy.
JFMAMJJASOND "JFMAMJJASOND
TIME - MONTHS TIME - MONTHS
FIGURE 59 - RESULTS FOR SOUTH BEND, INDIANA
168
-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
^^ucn-^CBuS::* SSSSSogg^
J
V
E>
t
!J
/
TR
&
n
f
tM
\(
.
f,
J
f
V /
r
1 J
A
AV
/
f
y
/^
EH/
.w-
/*•
GE
X
\
\
\ "
\
1
\
\
V
\
\
u
V*
\
\
1
A
V
>
J FMAMJ JASOND
TIME - MONTHS
*s
-^
S
\
X
>
\
\
\
^
X
~\
\ 7
X
8C
^^
S
150
?0
0/s
V
OA
*«.
•w
CRi
>
:RE
.JV
>•
:s
X
s
?
^
S
y
^
/
/
/
V
^
x
^
/
w
J
r
>
y
^
f
J
o 2O°
U.
1
>. 180
Q
J 160
t-
u.
^ 140
m
H 120
UJ
L: 100
u.
UJ
o
o 80
UJ
< 60
I
o
X
uj 4Q
A
Jo
RISE (EXTREME CONDITIOt
^J 00 10 O -
TEMPERATURE
» en o>
1- H
z
<.
_i
O. 3
1
**
Jr
J
/
J F
\
x
/
/I
I
//
f.
/
\J
1
f'
.Q.
•v
^
.
<\
,
*^
\
\
\
\
\
Ufc
^
V.
ut^
^1
»y
\
i
V
MAM JJASOND
TIME - MONTHS
\
i
ft
\
\
i
Vi
S
^
\
\
80<
V
150
V
!20
V
) A(
•O-
O A
"Sf"
OA
-O-
RE
**
CRE
jr
CRE
^
>
4
:s
*
M
$.
f
^
.
/
X^
^
>*
f>'
y
1
f
^0"
P"
tr
JFMAMJ JAS
TIME - MONTHS
0 N D
JFMAMJ JASO
TIME - MONTHS
N D
FIGURE 60 - RESULTS FOR DES MOINES, IOWA
169
-------
IOU
„ 90
u.
uj 80
tC.
S 70
IE
UJ
0.
£ 60
i-
§ 50
ce
| 40
o
w 30
12
o
1
> ' '
Z
O
g '°
z
o
o
_i 9
a:
1 8
UJ
£ 7
Ul
o:
H 6
cc
Ui
o. 5
ijj
l-
H 4
Z
<
r^ ^
4
^
E)
i
ft
7
'
:TR
/
'V
F
/
EM
r/
II
I
1
EX
/
o
1
ty
/
I A
/
f
£
\
'ER
^~
AGf
"b
\1
A
\
\s
V
'
1l
b
v\
\
)
^
\
I-*—
V
A
Q
V
V
J FMAMJ JASOND
TIME - MONTHS
--»*
-»,
— «.
\
s
s
^
X
s
\
\
\
v
N
V
\
\
y /
\
\,7
\
V'
\
= 1!
y.
X
30C
*•»-
3UU
-•-
.00
™*-J
AC
A(
L^*
AC
4,
RE
^
REi
X
"/
S y
/
V
>
/
f
*
:
/
/
r
/
/
y
/
X
r
r
o Z*-'1
U.
> ISC
4
o
J I6C
H
U.
^ I4C
O)
1
1- I2C
UI
giOC
u.
LJ
o
o 8C
UJ
o
< 60
i
o
X
u 40
SL 12
w
1 "
1 10
O
o
SI 9
UI
o:
x 8
UJ
UJ
«n 7
cc
UJ
l-
£C
UJ c
Q. 5
UJ
1-
I- 4
z
<
_l
n_ i
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F"
^o>oaorojiO>QBo
DOOOOOOOO
•o"
/
ft
y
i
u
I
L
i
r
,•*"
*o^
>
°X
\
V
V
\
\
V
k
A
X
1
\
Y\
^
Slu
JFMAMJJASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
\t
~\
X
>
X
\
>
V
\
A
\
*\
\
\
t
X
\
\
\
\
\
\
\
80
\
150
S
22(
\aj
0 A
O /S
>D-
)0/
v>-
CRI
X
CRI
r°'
CRI
*&
S
X
f
IS
/
:5/
/*
a
4
/°
J
/
j
f
j
A
/
f
/
/
/
/
r
X
X
x
JFMAMJ JASOND
TIME - MONTHS
FIGURE 61 - RESULTS FOR SIOUX CITY, IOWA
170
-------
EQUILIBRIUM TEMPERATURE - Fe
VOIAOlO-^ODUJC
ooooooooc
X
s
EX
f
P
'/
TR
,
y
f
EMI
J
*
/,
/ /
/
X
1
4i
r\
AV
0'
/
>
j<
/
ER/
a*
__
GE
\
^
N
^
\\
N
\
^
\
i
^
V
^
y
&
\
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — _ M
f>O>CDON>-p.
a:
a:
UJ
a.
s
UJ
<
a.
"V
^
-s
\
X
X
X
\
\
x
y
N
^^ i
\
\
\=
\
i-ii
X
i-1"1
y
X
BOC
V-
OC
"*nT
V
A
-*-
_*-
At
_«••
:RE
^^
..Re
>
%F?F
.>
s
J
/
/^
y
/
^
^
y
/
/
f
J
/
/
*
s
f
/f
JFMAMJ JASON D
TIME - MONTHS
u. 12
-
H
Z
<
_1
o.
•Os
"^
•o
X
\>
^
\
\
\
^>
^
\
\
\
\
\
80
\D
ISC
s
^
0 (
V
)0 ,
v>~
:uu
'•0.
CR
1.0-
VCR
HM
AL
,J>
ES
J*
ES
*
•
p/
/*
O
r
>
/
A
/
f
/
j
f
/*"
f
f***
JFMAMJ JASOND
TIME - MONTHS
FIGURE 62 - RESULTS FOR DODGE CITY, KANSAS
171
-------
IOO
. 90
!
HI 30
ac
< 70
K.
CL
jjj 60
I-
| 50
n:
m
g 40
o
u 30
0
1
z
O
| 10
8
_i 9
1 8
HI
o: 7
ui
(E
H 6
a:
HI
a 5
HI
1-
1- 4
Z
Q. 3
**
EX
h
f
TR
t
ft
f
:ME
o
j
1
p.
'/
A
y
f
/
f
y/Ef
<*\
r
!AG
.
\
\
>
E
\
Vx
\
\
1%
b
\!
\
i
1
^
y\
\
J FMAMJ JASOND
TIME MONTHS
•v,
"*"
""*•
\
Sm,
N
>w
s
\
\
V
\
y
\
A
v
\
X
N
V/
K
= £
V
X
-n,
v~
00
S
uu
•>•
nn
-v-
A
V
«»-
A(
_j-
y
^nt
^r?r
4
s/
/
y
A
Sj
/
r
y
/
^
f
*
/
j
f
/
s
^
/
. ^w<
u.
. IQ(
r^
PLANT TEMPERATURE RISE (EXTREME CONDITIONS)- F" EXCHANGE COEFFICIENT- BTU/FT2 -[
J^ua^avO-v S 2 2 g K £ £
iiUO
180
160
140
120
100
80
60
»Q'
y
7
/
1
1
ji
9
i
/
jy
t
~>
I n.
A i
//[
/
V
i
b
i
i
\
\
\
\
\
\
\
V
\
LN
\
\
V.
\
»o>
JFMAMJJASOND
TIME - MONTHS
I
0
9
8
7
6
5
4
3
^
-•o>
X
\
\
\
V.
\
\
\
°s
V
v>
\
V
\
\
V
"%
15
X
^<
00
'«
00
V
TW
0
vv
AC
*o*
AC
*o-
TT
RE
oy
S
t*E£
/
^
O
'
Sfi'
/
^
/
* r*
/
(/
/
t
^
Qf
/
j
/
/O
/
-fe
/
/O
(V
r
^
o
/
-o-
^o
^•GT
JFMAMJJASOND "JFMAMJJASOND
TIME - MONTHS TIME -MONTHS
FIGURE 63 - RESULTS FOR TOPEKA, KANSAS
172
-------
J FMAMJ J A S 0 N D
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
— — — — — i\]
iOODOWAOOOC
3OOOOOOOO
jr
r
•o'
^
/
/j
ff
^
V
f
*"V
?6
f
.•o-
>v
"O
V
kv
0^
>
s
V
V
x
X
k
^
V
'•O*
JFMAMJJASOND
TIME - MONTHS
l£
e
U.
w "
0
1- • „
°LANT TEMPERATURE RISE (NORMAL CONDI
» Ji 01 O -^ CD / CO C
•*-
••_
•**.
"N
"V
X
^
S
X
/
V
H
\
**
n
^
= £
-•»
'
~«s.
•^
oo
V
oo
"S.
nrs
N^
AC
^y
M\.
j
&r
y
RE!
r
Kt*
<*
&&
<*~
-S
+
f
f
/
S
^S
^
^r
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
JFMAMJ JAS
TIME - MONTHS
OND
<*\
X
^
\
\0
^
V
\
X
\
\
8(
'"b*
15
>><
22
io.
0 /
••o
DO,
00
-o.
CRI
KR
-o.
AC
•O-
S
o*
ES
-.0'
=?E!
rf
?'
ff
s>'
//
o'
/
/
O
'
>"
9'
/P-
«^M
»o*
~t»
JFMAMJJAS
TIME - MONTHS
0 N D
FIGURE 64 - RESULTS FOR LEXINGTON, KENTUCKY
173
-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - F°
w*u,a>-lcDcD5 = w ooSSSoggl
•O"1
f-
J
•*•
T^
EX
/
7
/
F
\
\
TRE
fj
I
ME
i
/
U
J
""* <
n
'/
A
\
M
^
>
V
y \
V
\
\
Vi
\1
V
>
^v
V.
MAMJ JASOND
TIME - MONTHS
X
\
*S
V
"S
t,
\
/
V
V
p
9><
= 1
^s
= l{
>?„
-2.t
/
y
/
/
x
./
/•
/^
^>
^-
e EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
j *0>5c
ooooooooo
MPERATURE RISE (EXTREME CONDITIONS) - F
OICT)-^OBUjO — h
Ul
1-
1- 4
Z
<
_l
a. 3
-*""
V
^
/°
J F
/^
<**
A.
°>
o
1
ff
f
f
/
/"
»k
^
^s
\°
\
V
>
0'
"S
-A,
•?p
MAM JJASOND
TIME - MONTHS
\
A
i
^
8(
I5(
X
k 2^
u>
)0
»o.
)0
Q
00
^
ACI
~o-
ACF
-U-
ACF
*o-
ES
,o'
ES
^
ES
jy
Q
<>
9-'
^ —
^'
i
/o
/
*
91"
p-
<>•
r
-------
EQUILIBRIUM TEMPERATURE - Fe
•o w A 01 <*> -~t co (O c
OOOOOOOOC
EX
&
4
TRE
J
v
r
ME
f>
y
^
>
/
/ ,
/
tw
t
4
/
>
\
ER,
ft-
/•
*•
^
VGE
•o«
•^
•n
(Dori>Ac
3OOOOOOOC
^
^
^
jfl
jl
^
f>-
+r
-o-
^s
•o>
^
*
*\
^
\
X
V
V
»-A
-o'
FMAMJJAS
TIME - MONTHS
OND
o
u
UJ
v>
a:
D
cc
Ul
a.
Z
•z.
Q.
J F
M A M J J A S
TIME - MONTHS
N D
o
U.
CONDITIONS
XTR
SE
PLANT TEMPERATURE
-0
1
X
X
NJ
\
X
s_
°>
V
n
V
'*.
80
O-
I5C
^
22C
'o-
D A
o-
O/
iO
-o-
CRI
mO*
CR
-O-
\CR
•0"
S
^Qd
ES
.0-
£S
>'
^*
,o-
,4
}>
ff
»°1
>
X
/
X
/p*
-P"
y»-
"°>
•Ov
NJS
JFMAMJJASO
TIME - MONTHS
ND
FIGURE 66 - RESULTS FOR NEW ORLEANS, LOUISIANA
175
-------
EQUILIBRIUM TEMPERATURE - F°
JW-l^oiO>-J(X)<0o
JOOOOOOOO
/
^
EX
/
•RE
f
J
/
ME
X
1
f A
7
/
f*)
A
AVt
/
f
:'RA
((>
^
GE
'°>
\
V
^o.
V
A
^
\
\
K
"JFMAMJ JASON
TIME - MONTHS
RISE (NORMAL CONDITIONS) - Fe
-*i CD (O O — *
/1PERATURE
en 0)
^
"**
.^
X
•^
x
^
\
\
y
A
V
A
S^
A '
= £
^
U
X
r> f.
00
*••
00
5*.
oo
v
AC
'-••
AC
UK
A<
RE
•<•
RE
V
"F?F
s
j
S
s
^
c
y
/
/
/
^f
s
f
^
D
>•
<^
^
„ iiUt
U.
>. ISC
0
J I6C
I-
u.
^ I4C
m
I
H I2C
UJ
E-oc
u.
UJ
o
o 8C
UJ
< 60
x
o
X
ui 4Q
u. 12
I
to
i "
1 10
o
o
2E 9
Ul
o:
H
x 8
UJ
UJ
£ 7
at
UJ
1 6
a:
111 K
a. 5
z
a.
JFMAMJ JASON D
TIME - MONTHS
200
180
160
140
120
100
80
60
a.n
<6
/
X!
,9
/
/
fl
$
>
X
"0
^r
.P-
•«S
.0.
^
\
\
v^
\
1
V
K
'
St
v>;
**
JFMAMJJASOND
TIME - MONTHS
UJ
I-
H
-0.
\/^
«?•
•
\
b\
\
k
X
X
1!
X
2
X
80(
*O
50C
ko.
2O(
•O.
) A(
-»5
AC
.O.
P A
RE
J^
RE
.0-
CRI
O'
S
>
1
.o'
:s
.c^
x
/
J
ff
.
'
&
f
/?
ef
S
j^^
-O>
X>,
JFMAMJ JASOND
TIME - MONTHS
FIGURE 67 - RESULTS FOR SHREVEPQRT, LOUISIANA
176
-------
100
FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — M
^0>a>G
3000000OO
0
•0-
4
.0'
/.
jt
i
$
f
A
f{
7
&
f
M
Q*
\ 1
s
s
V
N
\
T
^
s,
>>
U
s
•k
•a
JFMAMJJASOND
TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
)lj±Oiff>-JQ>WO — IV
••.
«•.
•*«
•^
•^
*\
X
SL
\
x
s
^
V.
\
= 6
v
^
X
\=z
y
00
V
50
'**•
20 <
•*.
AC
—f
? A
-^
) A
-•*
RE
S
CR
^
^
:K(
S
^
ES
.
/
r
j
/
L/
/
/
it
j
r
S
S
f
JFMAMJ JASOND
TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
J^OI(J)^JCDOjO — l\
lf\*
*>»
•0»
T>,
X
*n
<\
f\
\
\
s
\
\
^
4
\
80
X
ISC
Si
A
??
X
0 fi
v>^
0 ,
>>l
in
*o»
CRI
•0"
\CF
n-
rtn
-0*
S
y
ES
X
fFS
//
X'
y
/
X
/
f°
/
/
f
/>
/
A1
/
/
f
^0-
^cea
S*
JFMAMJ JASOND
TIME - MONTHS
FIGURE 68 - RESULTS FOR CARIBOU, MAINE
177
-------
100
FMAMJ JASO
TIME - MONTHS
ND
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
— _ — — _ i\3
^o>a>oi\>.i>0>a>o
3OOOOOOOO
jft.
-0"
4
J
%
r
d
V
*
If
'
S\
,0-
A.
•0.
\
k
^
^
\
X
X
x
X
y
>x
JFMAMJJASOND
TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
Wj.OI(J>->IOD
\
I
x
V
N
V
>
^ = i
V
= 1
V
»«
^ = 2
X
30C
"*i
50(
Nk
20(
^*.
A(
=*•
) A
•^r
) A
-+r
:RE
S
CR
J
:RE
+4
S
•/
S
ES
/
Sj
f
y
*
/
X
J
*
J
f
J
J
'
-.
tf
f
y
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
JFMAMJ JASON D
TIME - MONTHS
•QS
•O-,
Nj
^
X
A
X
v
•
Q
A
\
s
\
Q
80i
^*»
150
1
220
o>
3 A
•0.
0 A
»4£W
0 /
XV
CRI
-0-
CRf
n
Chi
9.
s
-d"
:s
n>
ES
,c/
t
?
&
[/
i
/
t
O
/
^
ft'
X
/
y
X
"e"
**"
«p-
JFMAMJJASOND
TIME - MONTHS
FIGURE 69 - RESULTS FOR PORTLAND, MAINE
178
-------
UJ
£C
O
<
D:
UJ
a.
•s.
UJ
I-
2
3
K
m
EQU
1 VW
90
80
70
60
50
40
30
20
.0"
^
EX
' /
TRI
i
f
f
:ME
L/
V
/rf
'
•%(
4
//
^
AV
Y
'>
*
-.Rfi
*B*
*+•
GE
*0
O,
^
^i
i
k
V
\
\
Vy
^
^v
\
••>
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^a>OBora^c
DOOOOOOOC
^
•Q*
/
rj
V
J
fy
t
Jt
ff
f
/
#
f
~#
^
v\
\
V
'5s
\
'
V
\
^
y
^
V
^
^
V
JFMAMJJASOND
TIME - MONTHS
8
£C
O
ui
E
ui
o:
a:
ui
a.
Z
UJ
<
a.
1
0
9
8
7
6
5
4
^K
^
^
y
A
\
V
i
\
X
A
X
V
>
X
= 8
V
= 1
\ — e.
*•*
oo
V
50(
"
i
/
J
f
?
j
/
/
J
/
pr*
f
^
/
*
f
u. 12
I I
o
o
10
UJ
a:
i-
x 8
UJ
« 7
or
ui
6
a:
^ K
Q. 5
2
UJ
i-
1- 4
z
"O.
•*•.
O'
T>*
\
^
"^,
\
\
o
>
>>
^
Vo.
>
\
\
V
X
80
v>
ISC
\
^
0 /
^a.
0 /
^3-
JO
•ex.
CR
-o-
,CR
•U'
\Ch
•O*
ES
^°'
ES
or
tb
S>*
i
f
f
*
/
o'
/
9
/
^
A
o
r
j
/
A
/**
/•*»
JFMAMJ JASOND
TIME - MONTHS
FIGURE 70 - RESULTS FOR BALTIMORE, MARYLAND
TIME - MONTHS
179
-------
IOO
. 90
u.
ui 80
cc
$ 70
cc
111
a.
^ 60
UI
I-
2 50
cc
m
3 40
0
w 30
9n
•
p
^
V
^
^
>
kx
^
V
^
v^
V
J FMAMJ JASOND
TIME - MONTHS
„ 200
u.
>. 180
<
o
J "SO
1-
u.
^ 140
CD
1
H 120
UI
i Art
u_ IOU
u.
UI
o
o 80
UI
1 60
< ou
X
X
UJ AA
«*•
^^
y
*
^
t
/
$
J
9
f>
V
1
*•+
0
k ^
\\
r
v
x
>
SB
k
k<^
JFMAMJJASOND
TIME - MONTHS
1£
o
u.
5J "
0
5 lo
z
o
j 9
1 8
UJ
£ 7
UI
cc
? 6
cc
ui
a- 5
UJ
i-
K 4
Z
DL 3
»»•
=».
-«L>
•^
>
X
x
*\
X'
>
ll/
x
^
\=£
X
\ =
^.
X
00
v
•k.
bO
^
f?n
^
AC
J
J*
J A
«^^
0 fl
-o-
RE
J
/
CK!
y
TRl
LV
s
/
/
.b.
-,,
x
^
y
^
y
x
**
X
r
^
X
X
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
AJ^OIO-JOBCDO — ^
TIME - MONTHS
"w"
-O
^>
*o>
sn
•0.,
k
\
\
>>>
•^
^
V
>
\
8
\
IO
V
\
22
\
oo
''o
JU
Sv
00
V
ACI
-0
^Lq
^O"
AC
•o-
?ES
jy
to
^
RES
rr^
*u
^
/>
>*
/
/°
/
/
y
>*1
,/
,*
cf
/.o'
^*-
0-
.•O"
JFMAMJ JASOND
TIME - MONTHS
FIGURE 71 - RESULTS FOR BOSTON, MASSACHUSETTS
ISO
-------
1 VJU
. 90
L.
1
ui 80
DC
< 70
(T
LJ
0.
ul 60
1-
2 50
DC
00
g 40
0
w 30
20
12
e
U_
S, "
z
o
0 I0
Z
o
u
_i 9
o:
LJ
to
OC
Ul
OC
g 6
OC
LJ
LJ
1-
Z
<
n^ •*
^
^
bX
1
\J
V
f
Kt
ME
t
J ,
/ /
'7
V
7
\
A
A
AV
X
y
'
ER,
iDii
^
V3E
"^
*\
\
^
*tl
J FMAMJ JAS
TIME - MONTHS
«•
••-.
«•
^
*\
^
X
x
V
>
X
A =
A =
^
^
^
80
••
I5(
"*.
22(
V.
0 /
^-
)0
.+•
)0/
^"
CR
^
acf
VCR
• «
>'
ES
s
ES
^
^
ES
jf
\
\
\
V
0
?
f
y
^
7
\\
N
>
^
t
_y
X
t
\
D
^«
x
^
e EXCHANGE COEFFICIENT- BTU/FT2- DAY - F"
— — — — — N
; *.o>a)oro^cna)o
ooooooooo
U. 1^.
0 "
1-
i .0
o
UJ
o:
1-
o
LJ
LJ
S2 7
OC
LJ
^ 6
£
1 5
LJ
y-
.
3C
j
•0-
-
V2
00
X
300
»0
>
aoc
^
?
-O
-
\
V^s
•
J J A S
MONTHS
AC
•O
AC
•o.
A(
RE!
RE
,0
IRE
^
S
J&
S
-------
UJ
£C
3
<
K
UJ
O.
Z
UJ
I-
z
o
oc
m
EQU
IUU
90
80
70
60
50
40
j>n
0 ^
EX
1
'*
TR
/
9
f i
7
/
EMI
/
/°,
iJ
I
'
s
•H
I
d
' i
f*
'A\
\
Vi
V
)
\
V
\\
^
\
JFMAMJJASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
^ o N .j> 0) o> c
3OOOOOOOO
-^
•o-
s
„'
fv
/
y
/
/
?
/
r
J
>
At
^N
\
\
\
vV
\
^-
X
X
\
NO*
N
X
\>
JFMAMJJASOND
TIME - MONTHS
12
O
U.
Z "
z
o
Q I0
•z.
o
o
_j 9
<
S
o:
| 8
UJ
S 7
UI
DC.
K 6
o:
UI
o. 5
UJ
h-
H. 4
0. 3
*
••»-
-•-
"V
X
pv
V
\
^
\
V
y
*s
V
A-
X
A=l
^
^
<\=2
X
HU(
^
501
**.
20(
>^i
J /
*
) /!
-*-
) A
=*"
UK
-^
CRi
V
CRE
^
-\,
'
:s
^X
s
^
^
J
/
j
S
/
^
s*
/*•
/r
L 12
to
Z "
K
Q
z 1 0
o
o
UJ
5 9
UJ
£E
1-
x a
UJ
UJ
*
V
H
X
i
\
°x
^
K
80(
X
150
\
220
X
AC
O"
OA
ND.
0 A
'U.
RE
CRI
JO'
CR
^O'
S
s0'
S
J
:s
-?'
/^
^
x
/^
(T
CT
y
^
^
p'
X
d
t
,<*
JFMAMJ JASOND
TIME - MONTHS
FIGURE 73 - RESULTS FOR MUSKEGON, MICHIGAN
182
-------
100
FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
_ _ _ — _ N
^0>a>or\)-^c
DOOOOOOOO
i
p«-
£r
**
.-^
•»
.
y
/
/
V
/S
r
fl*
£-
«•,
•a,
fc.
"£
^
k
X
\.
*
\
^
«>
V
FMAMJJAS
TIME - MONTHS
OND
e
U.
I
OT
Z
O
a:
o
ui
».
50
^
2C
•>».
A(
•••
0 A
•••
0 t
•V
RE
J*
CR
>
\CR
X
S
f
ES
/
f
ES
/
./
/
X
A
/
y
^
A
f
/
/
_^
/^
^
/
tf
r
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>j*oia>->iOD(oO — *
1,/v
IP*
x»
\
\
V
*\
\>
\
\
\
\
\)
v
\
^
\
Xoy
80
V
ISC
v
22C
\
0 A
l>
0 /
N>J
OP
\>
CRI
CR
JO-
CK
mf\-
S
f
IS
X
r
XT
K
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
FIGURE 74 - RESULTS FOR SAULT STE. MARIE, MICHIGAN
183
-------
100
. 90
u.
uj 80
o:
£ 70
IT
HI
O.
5 60
tu
H
1 5°
CC
OD
g 40
O
w 30
12
0
U.
£ "
o
1 '°
o
" 9
<
S
^
-••s
s.
*v
\
S
TR
[
rl
y
/
-Ml
,
d
/
^
r
y
6
t i
' L
/A
MAM
TIME -
V
\
^
1^
\
v
^s
\
X
v
»s
ft=
v
- 1
V
A-'
f6f
/
\
/EF
/>•
,*-
iAG
^
\
^
-
\
\
V
V
v\
V
\
i
V
t\
A
\
\
\'
J J A S 0 N D
MONTHS
B0(
*<.
juu
.
onr
*«*,
i A
•*-
A
=*•
1 A
-*•
:RE
-*-
wRE
*"
~PF
-*-
s
^/
s
^
q
j
/*
y
/
^
X
/
/
y
/
>
/
p-
r
r
f
° EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
j £o>o>oro.i>o>a>c
ooooooooo
U. 1C.
i
0 "
1-
Q m
z 10
o
III
S 9
(E
1-
a
ui
— 7
OC
UJ
3 6
a:
^ e
a. 5
UJ
1-
.
z
o- 3
tif
J
Uk.
•^
/
£
F
>\
s
X°«,
/
H
/
./
^
f
/
'/
/£
<*>'
A.
.0
\
"°\
\
kx\
0\
V
^
>
\
V
S(
MAMJJASOND
TIME - MONTHS
\
\
\
\
V3
i
X
\
^
\
\
8CX
"^
ISC
sq
iiiC
^
} A
^.
0 /
-ex
0 A
0,
CR
-w
CR
jy
CRI
.
iS
^
ES
,y
.b
f
^y
^
O»
1
/
'u
/
,o'
/
*
7°
A
?
i
/
,.cr
,°"
^
JFMAMJJASOND
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 75 - RESULTS FOR DULUTH, MINNESOTA
184
-------
IUU
. 90
u.
i
ui 80
cc
* 70
cc
Ul
Q.
I 6°
1-
1 5°
DC
m
3 40
O
u 30
20
12
e
ll_
£ "
o
£ 10
8
_i 9
<
2
oc
1 8
Ul
£ 7
Ul
cc
H 6
cc
Ul
o- 5
Ul
1-
h- 4
<
n1 ^
^^J
E>
/
/ /
TR
1
cjfy
i /
f
tM
J
*
(J
I ^
/^
ENS
J>
o'
A
AN
/
o
f
'ER
,0,
AGE
\^
\1
V
^
\
\\
v\
1 \
\\
J FMAMJ JASO
TIME - MONTHS
^
^
-v
\
\
\
\
\
\
\
\
\
V
X
V
\
ft=
A=l
X
X
80(
S_
sor
s^
C\}\
) A
f
} A
^
\ A
_^»
CRE
X
~!Rf
V
s
X
s
/
/*
s
y
/
f
/
* "l
\\
^
N D
,/
J
^
J
f
A
X
^
/
0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fc
_ _ — — _ ro
; -t»O)O)OK)Ji(J>CDO
OOOOOOOOO
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
^i-P>oia)->'
/
ft
r
MAM
TIME -
*
<
V
1
\
\
1
\
y
0
V
1
80
X
50
\
\
^>,
^
'
\
\
\ >
K
J J A S
MONTHS
D A
•o-
0 A
0-
;0
X)«
RE
J>-
CRE
"^
kCR
.0
S
,
S
,o'
-S
*°
Q-
/
7
v
/
i
w%
i
0
'"
,<
*
i
KU
\
\
^
N
J
f
t
tj
1
s
^
D
ff
f>'
P
JFMAMJ JASON D
TIME - MONTHS
TIME - MONTHS
FIGURE 76 - RESULTS FOR MINNEAPOLIS-ST. PAUL, MINNESOTA
185
-------
EQUILIBRIUM TEMPERATURE - F"
O W -t» 01 --J CD <0 O
DOOOOOQOO
^O-«0
JCf
EX
ff
f
/
TR!
1
6
y
*
'ME
/
^
7
f
^
V
o
^
s
AV
X
x*
/r
ER,
**f
\GE
'
A
i
^
V
\
)
V
i
Q
V
^
\
^5
\
*«•
^v,
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
iQ>oro.j>a>c
3OOOOOOOO
r/
h^
rf
^
c/;
^
£
/r
<•
t£
'ON
•*-
^
\
6-
^
^
^
^
^S
V
^
*»•
J FMAMJ JASOND
TIME - MONTHS
FMAM J JAS
TIME - MONTHS
OND
o
o
o
UJ
K
UJ
£C
or
UJ
QL
2
UJ
I^
1
0
9
8
7
6
5
4
•«>
V
K
X,
s.
V
s
X
\
K
V
^
A
V
f\
v
A
V
-- ti
*•«.
• l^
-«.
b22
'••Vi
uu
nn
— •-
00
-»~
ACI
jf
i\n
*>
ACI
^
Jr
•(Lt
^
?FS
-•—
^Fsc
^
t
-S
J
J
/
f
f
«/
f
If
s
^
-*-
^•^
JFMAMJ JASOND
TIME - MONTHS
U. 12
I
0>
1"
H
Q
z 10
O
o
UJ
X
UJ
UJ
V)
UJ
OL
\
at
UJ
a.
5
UJ
I-
I-
z
<
_l
o.
X
X
X
^
X
X
X
X
(
v»
IE
>0.
22
U*1
00
•o«
00
•o.,
00
pa.
A(
•a*
ACI
ACf
4
RE
**'
?ES
P.
'
tES
o-
S
• O'
-o-
•cr
j
,0
/
?
rf
f
^
+>•
J*-
f^f
"O
-0
-
-------
EQUILIBRIUM TEMPERATURE - F°
rowAoi0>^j(D
V
/°>
'/
/
AV
ff
f
f
J
fe
\
ER/
•o
fc
,GE
*0
X
V^
\
V
\
\
\
^
\\
v»
\&
\\
^
V
v
\
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — K
iO>CDOw-p>a>c
3OOOOOOOC
35^
y
y
y
f
/
f
$
4r
•"fc.
^
\
\ ^
\
o
v
Vv
\
\
\
SS
A
^
>
^
JFMAMJJASOND
TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
jj-ooicn^ootoo — i\
_^
\
\
>
\
V
N
y
\
A
V
^
A
V
A
V
- k
NT
= 1?
V
F22
SV
UU
"••
no
00
Al
A
A
_-•
Mk
•
"RF
S
}RE
.
^
b/
f
S
^
S
/
S
/
/
/
^
'
/^
X
**
u. 1^
co
1
Q
z 10
0
UJ
2 9
UJ
1-
Ul
UJ
CO 7
221
X
)0
^.
DO
)0
•Ow
ACR
ACI
-O
ACF
-O-
ES
RES
J\
tES
'
jA
y
jt
/
»o
X/
/
o/
'
-------
EQUILIBRIUM TEMPERATURE - F°
OW*OIO
3OOQOOOOO
«.
V
EX
u
f
TRI
'°
'
.ME
o
u
/
X
f
f 1
/
AV
/°
\
ER,
*o*
^*-
M3E
°>
X
V
v\
\
\ \
v\
V
V
»
^
V
\
b.
^
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^cnoaorojxcncDG
3OOOOOOOO
-S
J*
/
/
/
**
1
>
o
t
f
S
f
*
1
j
J
i
fo
^
f '
'
^
\
u
bv
\
\
X
V
\
V
\
%
*y
\
t
V
^
K
•o-
J FMAMJ JASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
IZ
0
u.
» "
O
1 '°
O
o
_i 9
<
•s.
K.
1 8
UJ
1 1
UJ
cc
H 6
ac.
UJ
Q- 5
UJ
H
H ^
z
a 3
•^«,
•*s
•**.
.
A
X
V
^
\
C
K
/
X
v'
^
x
— <
X
(=IJ
\*- tL
^
30C
•>-
lUC
^r-
-Ul.
•»^.
A(
^—
Ac
j^
AL
>v
RE
X
:KL
.t^
Kh
^
S
y
b
X
i/
X
,
/
y
^
^
^
x
^
(X-
U. l£
g
3)
1
O
o
UJ
Z 9
UJ
GC.
\-
UJ
UJ
V) -f
-
A<
S>-|
?Fc
0/
:RC
^
:RE
o'
O '
S
/>'
S
.0'
,
'
£/
i
Q
4
o
/
p
cc
A
'
0*
TT-
-o-
.0-
*o-
JFMAMJJASOND
TIME - MONTHS
JF
MAMJ JASO
TIME - MONTHS
FIGURE 79 - RESULTS FOR SPRINGFIELD, MISSOURI
ND
188
-------
BRIUM TEMPERATURE
EQU
IUV
90
80
50
40
30
Pft
JO
•+S
EX
f
/
"
TR
O
/ J
f y
'
:ME
/(
?,
U
I
-v
\
&
'/
/y
AVI
f
/
f
~.Rt
/£>»
f*
GE
>^\
\
I
V
XI
\
>
v
V
\
1
V
\
V
x
^v
\
J FMAMJ JASON
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ — — — ri
^o>o>oro-i>0>a>c
3OOOOOOOC
-ST-
X
/
&
J
/
fr
/
1
1
/
/
K^
k
^
\
^
\s
\
\,
^
s_
3
t
FMAMJJASON
TIME - MONTHS
o
u
a:
o
Ul
£
ui
ir
a:
UJ
a.
s
ui
i-
z
1
0
9
8
7
6
5
4
3
-*•
.
"y
V
\
y
\
\
X
s,
*s
\-
X
^ = 1
X
X
HOC
\
=>0f
X
^
ft
•^
CN1
J
*
1RF
/
'Of
/
/*
S
/
f
s
jt
S
r
^
/
/
f
IfiR
f>
.
'
f
-Q
.S
^4
,
7^
JFMAMJ JASON D
TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
ji.i>oi
-------
100
„ 90
u.
HI 80
DC.
$ 70
IT
HI
Q.
2 60
Ul
1-
1 50
K.
m
_i 40
o
w 30
•>r\
•o
-*"
EX
j
/°
/
'
TRI
C/
/
/
.ME
4
/
-O"
f J
1
\
\
i
^
' /
A
o
v
/
\
VEI
f0'
r
?AG
ON
\
N
\
>
o
V ^
\
\
\>
v\
\
>
V
\
v^
\
\
O*i
v
\
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F8
— — — — — ro
^o>a>oroA(na>o
3OOOOOOOO
^
/
y
/i
V*
•f
f
j
f
f
4
A
-°N
\
^
V
v«V
\
i
V
^s
'
V
Hi
Si.
>Oa
J FMAMJ JASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
\
^
X
V
\
s.
\
X
x
\
X
s.
^
\
V
K,
A-
V
^
A=l
X
vv
ROT
s^
>
bUC
\
A
Sa
X
Ai
^^ .
^
A
**•'
-?
",RF
y
s
^Kt
/
'Of
J
s
S j
f
*/
f
)rP
f
/
/
y
/
/
/
r,RF
jf
'
*
f
s
^.
/<
^
/•
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
12
JFMAMJ JASON D
TIME - MONTHS
X
Vi
\
>0
'X
X
\
\
15
X
*0
^
^
O
\
\
\
\
\
\
\.
u
80(
V
ISC
X
220
'<\
) A
"o.
0 /
0 /
•0
CRf
•u*
CR
^j«
,CR
*O^
s
»
/
ES
f/
/
:s
0^
/
,u
/
r
/
/
o
/
A
r
H
1
/
j
?
P
,
-------
too
20
DAY
EXCHANGE COEFFICIENT- BTU/F
J F
M A M J J A S
TIME - MONTHS
N D
zuu
180
160
140
120
100
80
Art
V
^
i
»1
/
4
/
/
/
*
/
i
£
f
\
\
\
\
\
\
,
\
\^
\
JFMAMJJASOND
TIME - MONTHS
e
U.
z
o
Q
z
o
12
I I
10
_j 9
£E
I 8
UJ
I -
<
a:
a.
s
UJ
z
<
a
-V
\
\
V
\
\
\
\
x
>
x
v
\
\ /
X
y /
\
K
X,
- 1
X
\-iLi
\
30C
s*.
X
iUU
S-
A(
-•^
A
-*"
:RE
y
^RE
s
Mh
J
S y
/
s
J
/
y
y
/
/
/
y
/
/
/
,
y
y
y
/••
/*
^
f'
L 12
JFMAMJ JASON D
TIME - MONTHS
v>
Q
Z.
o
o
UJ
s
UJ
£C
H
X
UJ
UJ
U)
UJ
oc.
3
<
£E
UJ
Q.
Z
UJ
»-
<
_i
o.
X
^'
^3,
\
V
H
\
o
1
'
t
o
Nb
x
\
'\
QN
80
\
50
xq
S22
U«,
D A
*0-
0 /s
V
00,
V,
:RE
.^
• LT
CRI
jaf
\CR
j
S
4
U
:s
:s
P
j
P
Q
Q
/
o
.0
i
>
t
Q
r
tf
f
f
||
^
;'
x°<
'°'
^
JFMAMJ JASOND
TIME - MONTHS
FIGURE 82 - RESULTS FOR NORTH PLATTE, NEBRASKA
191
-------
I
UJ
a:
tu
a.
Z
111
a:
m
100
90
80
70
60
50
40
30
?n
V
-S
EX
0
II
\ I
f
1 M
1
ft
ii
f
Mb
i
j i
f
1
/V
/
'AN
' f
/•
\
\
'ERj
"*U*
!\GE
Nn
V
s
\
\
\~ \
\
\
b
\
\\
\
\
\
L
\
\
\
\ \
V
\
V
^\
Vp
^
J F M A M J JAS
TIME - MONTHS
OND
NGE COEFFICIENT- BTU/FT2- DAY - Fe
>o>OK>AO>a>c
)OOOOOOO
\*
sj^
JFMAMJJASOND
TIME - MONTHS
\£.
o
U.
^ "
0
1 'o
z
O
o
_i 9
<
•s.
a:
1 8
Ul
K 7
Ul
ir
H 6
a:
Ul
o. 5
Ul
I-
h- *
z
<
n' -
^
X
V
\
\
\
\
\
ll
\
^
^
^
^
^s
^
X
<\= 1
\
A=?
S^
DOC
V.
iOf
?or
^^
ft
j*
A
A
OKI
IX
ORF
s
1RF
/^
«J
/
S
y
s /
/
/
f
J
/
y
/
/
/
^/
/
S
f
/
X
f
PLANT TEMPERATURE RISE (EXTREME CONDITIONS)- F
t>-t*o\m-*iQc>o>
UN
-r>
\
\
\
t
X
1
\
\
\
\
V
X
\
X
^>
'v.
\
x
80(
k*o
150
^
22(
%
3 AC
•o«
OA
*o-
iO /
•o-J
RE
.u
:RE
-
,CR
S
/
/>
s
f
:s
X
<
,u
A
y
y
X
X
/
J
sf
,0-
X
JFMAMJJASOND
TIME - MONTHS
FIGURE 83 - RESULTS FOR OMAHA, NEBRASKA
192
-------
IVJV
on
EQUILIBRIUM TEMPERATURE - F"
POW^OlO^JCOt
oooooooc
E
.
f*
/
~
XTF
O '
/
f
/
/
'
EIV
j
'y
/
'
Ex
1
//
/
v
^
' y
A
AV
/
/
f
ERy
*cs
,«»»
\GE
°>
\
N
\
\
>
\
«
\
\»
\\
>
\
V
V
\
\
^
\^
^
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — _ |\]
^O>O>OIV>.l>0>a>C
3OOOOOOOC
_**
/
y
/f
>
,/
/
4
r
/
f
A;
L\
^
t\
\
1
vt
\
k
vVi
-•••
JFMAMJJASOND
TIME - MONTHS
(O
z
o
o
o
or
o
UJ
HI
a:
a:
ui
a.
•s.
ui
z
<
i
0
9
8
7
6
5
4
•*
V
X^
X
s.
\
\
X
\
\
\
N
V
\
V
s
\-
\-\
\
.
\
80(
s»
X,
50C
X
A
^..
V
A(
A
^^
_ p
'RE
/
:RE
y
/
IOC
J
7
S j
/
S J
/
J
A
/
r
y
/
'
/
/
RE:
/
/
J
f
1
^*-
/*-
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
ji.froi(n-j(»«>o — iv
>
X
x>
1
\
\
\
°>
H
^
\
i
\
\
\
\
«\
i
V
^
8
*N
15
X
22
°s
00
"U»
00
\x.
00
AC
0*
ACI
•O'
ACI
^C&
^ES
ES
y
*^
ES
d
f
/°
I
?
1
t
r
f
p
i
/
/
t/
/
P
o'
f
1
*&"
.0
JFMAMJJASOND
TIME - MONTHS
FIGURE 84 - RESULTS FOR ELKO, NEVADA
TIME - MONTHS
193
-------
EQUILIBRIUM TEMPERATURE - F°
'OW-l>Ol
?'
/
TR
/
' /
/
FMI
Q/
V
J
J
S\
AV
£
/
ER/
ff
t^
GE
^
S
V
t
V
i
V
\
V
\v
\
X
EXCHANGE COEFFICIENT - BTU/FT2 - DAY - F"
— — — — — M
^0>or\).i>cna>o
3OOOOOOOO
J
X
/
//
f
i
/
1*
i
\
1
/
A
7
/
,
/
//
/
o
t
1
1
f
r°*
'
^
>
0^
\
\
\
{
\
\\
\\
[\
^
\
V
vS
i
s^
\
J FMAMJ JASO
TIME - MONTHS
N D
J FMAM JJAS
TIME - MONTHS
ON D
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
j4.^oi0>~Jo><0c> — r\
^
\
v
s
\
>
\
>
k
\
v
\
^
\
i
\
\
A
\
\
L A
\
\
\
\
= £
s.
\
= \b
X
k
\
00
^-a,
^»
oo
•v.
A
V
AC
A(
-^
-2.
_^
RE:
/
:Kh
y
^
IOC
y
^
/
/
3
y
/
f
/
fit
i
j
1
/
/
,
RE
/
f
/
/
(•
/
f
5
>^-
^T
K^"
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>|.p>oi(j>^iCD
>n
\
•^
\
80
\
<\
I5(j
>>
,22
Q,
0 A
>.
Or-
0 t
V
00
s.
u^
CR
Jj"
^CR
M'
!\CR
ES
,
ES
,
ES
X
y
/
,
/
t
rf
/
t
/°
1
d
'
/
t
r
/
/
/
/
O
/
(
o
1
P"
/°*
/*•
JFMAMJ JASOND
TIME - MONTHS
FIGURE 85 - RESULTS FOR LAS VEGAS, NEVADA
194
-------
100
. 90
u.
uj 80
£C
a:
UJ
a.
S
UJ
70
60
§ 50
o:
at
-, 40
o
w 30
20
EXTREME
if-
EFAGE
V
ft
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — N
^o)O>oroAG
3OOOOOOOQ
»/
«*^
rfV
y
4
/>
d
rf
/
ti
f
/
&
S*
/•
-X1
^w
-\
-a
\
^
i
V
\
^
\
y
^
X
\
\v
JFMAMJJASOND
TIME - MONTHS
12
I I
10
OL
O
UJ
Ul
a:
(T
UJ
a.
s
UJ
a.
*s
\
*>
V
\,
\
s.
>
\
\
X
\
V
A
v
\
V
\
= t
X,
=it
s.
>
=22
\
uu
*>*.
uu
00
•-^J
AL,
AL
AC
-»-
Hti
j/
S
Kb!
=*E£
J
S
/
y
/
f
/
f
J
/
/
/
I
/
f
S
/
/
/
/
s-
*-
JFMAMJ JASON D
TIME - MONTHS
u. 12
i
w
o
z
o
o
UJ
•s.
UJ
a:
H
X
Ul
Ul
v>
ui
o:
5
a:
ui
a.
Z
ui
i-
l-
z
<
_l
a.
•V
v
\
X
V
\
\
\
k
s
\
°\
X
X
X
80
"^
50
X
22
5 A
*n
0 /
X
30
V,
;RE
•O"
CR
-o-
ACF
S
t
J
:s
>
**
ES
ff
Q'
7
£/'
Y
i
i
i
>
/
i
r
/
o
/
/
/""
fl^
r
—
-o-
JFMAMJ JASOND
TIME - MONTHS
FIGURE 86 - RESULTS FOR RENO, NEVADA
195
-------
EQUILIBRIUM TEMPERATURE - Fc
oc>j^uicn->icDU>o
3OOOOOQOO
«o'
•V
EX
t
f}
t
TRI
1
/
u
f
'
:ME
A
!/
7
/
\j
f
V
r
>
/
f
\
VE.
^
WG
\
\
i
V
\
E
V
V^,
\
>
i
k o
V
\
y^
v
\
\
c
iv
„ 200
u.
>. ISO
Q
J 160
u.
^ 140
CO
I
I- 120
UJ
u
ui
O
o
UI
o
<
X
o
X
80
•O
J FMAMJ JASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
o
o
K.
O
UJ
V)
or
ui
a.
\*.
nn
V
00
•>»-
AC
Ar
s
Aij
^
RE
/
nr
V
HE!
/
y
Y
/
/
/
/
/
/
/
/
/
/«•
/f
S'
JFMAMJ JASON D
TIME - MONTHS
12
v>
? II
z 10
O
o
5 9
ui
or
h-
x 8
-0.
ui
I 6
<
ac
U K
a. 5
Z
ui
\
800 /,CRI:S
isoo /SCR:S
X
2200 ACRES
•n
o'
^
JFMAMJ JASOND
TIME - MONTHS
FIGURE 87 - RESULTS FOR CONCORD, NEW HAMPSHIRE
196
-------
100
120
> ISO
Q
I
:
60
_L
MAMJ JASOND
TIME - MONTHS
FMAM J JAS
TIME - MONTHS
OND
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
jlfkOiO)~^a>
-»,
Si
^
w
N
\
\
\
x^
V
A
x
V
A
X
n
= f
= 15
X
.»
^
00
s«-
00
V*.
inn
•«<.
AC
-*:
AC
-*H
-&
RF
S
RE!
j
'Of
S
5
/
j
*
/
/
y
/
s
/
/
^r
S1
^
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>i.i>(jio>^a>«>o — K
•O-
-a.
"O-
*°>
VI
\
K
\
r
\
\
••>
\
'v
X
80
V
50
X
'£'£.
V
*%
0 /
V
0 ft
"*n
M
NX
CR
-O
CR
•o*
AC
•o*
ES
_j*
^
:s
r
(bb
jj*
y
y
/•*
^
c/
/
>
1
p
'
/
,0/
X
/
«^>
-Tk.
JFMAMJ JASON
TIME - MONTHS
JFMAMJ JASON
TIME - MONTHS
FIGURE 88 - RESULTS FOR NEWARK, NEW JERSEY
197
-------
u.
I
UJ
a:
3
!5
a:
UJ
a.
2
UJ
H
S
3
E
m
3
O
111
IUU
90
80
70
60
50
40
30
?n
4
d
*S
EX
0
/
f
rRf
/
jf
^
:ME
\
\
i
«,
7
f
4*
7
\
AVI
'°,
/
:RA
-0-
*^~
GE
ir>
O
V
\
1
^>
V
^
V
\ 1
\
^>
a
I
o*
^s
\
J FMAMJ JASOND
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
u.
i
•2.
O
O
o
o
111
IT
UJ
a:
a:
UJ
a.
UJ
l£
1
0
9
8
7
6
5
4
\
s
>
\
\
"
\
N
\
\
s
\
\
s
V
\
rt
\
>
V A
s
V
^
V
s
= 15
\
=?"(
v
v
V.
00
v.
'00
•**.
AC
_»^
AC
-»*
TT
*/
L/
RE:
/
RF
»j
S
\l
r
5 /
/
} /
/
y
/
/
/
/
/
/
r
/
f
/
/
/
^
/••"
^*-
^
JFMAMJ JASON D
TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
U-P>W
V
\
\
\
\
k\^
*
<
80(
\
ISO
kv
s
22
) A(
^O*
0 A
)oy
*x>-
RE
r\+
CRE
^
kCR
S
,^
:s
f
:s
S*
'
X
y
X
^
o
/
o
1
1
1
9
?
f
f
T
t*
*o~
jr
sr
JFMAMJJASOND
TIME - MONTHS
FIGURE 89 - RESULTS FOR ALBUQUERQUE, NEW MEXICO
198
-------
IUU
. 90
IL.
i
uj 80
S 70
or
UJ
0.
2 60
^-
2 50
K.
m
g 40
0
* 30
20
12
e
U.
w "
o
g 'o
o
u
_j 9
IT
1 8
UJ
I 7
UJ
rr
? 6
o:
UJ
o. 5
ui
i-
H ^
z
<
n1 -,
•
J FMAMJ JAS
TIME - MONTHS
^
v
X
\
X
X
s^
s
A
\
\
k A
V
N
\
\
• a
^
0
X
22(
V
00
•»».
)0
XD
AC
-**
ACI
^
ACI
-*•"
*F5i
J
tES
^
RES
/
S~
!/
.
,/
>
*
\
\
hi
I
\\
0
X
y
A
^
\^
V
\
N
^
j
*
/
k
Jl
V
N
D
^
S
*•
0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — M
; -i>a>a)oroAO>a>o
ooooooooo
u. ic.
i
tf)
0 "
o
z 10
0
u
2 9
UJ
(E
1-
UI
UI
(/) y
a:
UI
o:
3 6
^
ee.
UJ ,
a. o
^S.
UJ
1- 4
z
•<
_l
0- 3
=<^
J
-ft-
•Oh
-O-
/
F
^
^
^
^1
o
^
r
f.
ff
MAM
TIME -
4
^
^
\
°v
\
0'
'v
o>
80'
v^
50
^
221
i
3V
«!
iv
^
j.
%
^
J J A S
MONTHS
) A
*«0.
0 /
•o.
)0
;RE
•Of
CR
-o-
!\CF
u
5
tff
:s
*
y
ES
^
p-
n/
/*
y
^y
\
0
X
1
(5
/
fw
f
s^
'\>^
N
^
X1
/
'
s^
^0*
D
XK
X
S
J
TIME - MONTHS
TIME - MONTHS
FIGURE 90 - RESULTS FOR ALBANY, NEW YORK
199
-------
e
U.
UJ
cc.
3
<
a:
ui
Q.
s
ui
I-
2
3
o:
m
3
O
UJ
IOO
90
80
50
•>r\
EX
4
P
J
TRI
I
Pi
I
-.ME
\
t
f
h
7
i
i
^
'/
IK
f
y
\
\
/EF
l^>*
k*1*
AG
^
\
-
\
*V\
\
I
\
Vv
V
\
\
\^
V
*
k
Ax
\
u.
I
o
I
m
i
i-
z
UJ
o
o
o
X
o
X
UJ
JFMAMJJASOND
TIME - MONTHS
200
ISO
160
140
120
100
80
60
.«_
•u-
V
,2"
>
/
t
,<*
/
M
i
i
t
/
7
/
?
f
Of
r
~*\
\
\
1
X
1
\
\
\
\
\
\
\
\
\
\
s.
M>
JFMAMJJASOND
TIME - MONTHS
z
o
o
o
a:
o
UJ
v>
tr
a:
a:
ui
a.
Z
ui
<
a.
1
0
9
8
7
6
5
4
T
-+-
*•-
-^s
"S
-»v
V
\
\
V
\
X
X
A-
\
A=l
k
A=
\
pnc
v
50(
X
'.20
\_
Bn
^
) A
, +•
Of\
-*•
rftf
^
f
CRI
S
L»R
s
Q
/
/•
:s
/
:s/
/*
*
/
/
/
s
s
/*
/
/i
S*
f
^-
°u. 12
JFMAMJ JASON
TIME - MONTHS
>
z
o
H
0
z
o
o
UJ
s
UJ
t£
Ul
(/)
Ul
cc
o
<
£E
UJ
O.
5
UJ
I-
I-
z
<
_l
Q.
U*.
•
tx
>>
"b>
v>
s
^
X
\
V
"\
t)
8(
\
*
ISC
V
\
\<>2
V,
o;
vo
0 ;
'°*
00
vo-
CF
_O'
kCR
"
AC
-0"
ES
_f
*
ES
X
p'
^
^
^
y
**
A
*
*
y
a,
t
f
,<*
JFMAMJ JASOND
TIME - MONTHS
FIGURE 91 - RESULTS FOR BUFFALO, NEW YORK
200
-------
EQUILIBRIUM TEMPERATURE - Fe
•0 W * Ol <" •"JOBCOC
ooooooooc
.cr
^*
EX
y
y
^
FR£
/
/y
/
ME
\
f
cf
//
/
i
ft
/
A«
AVI
/
y
f
M
rf)ta
GE
X
X
\
V
\
\
\
^.
^
V
^
I
V.
^
\
o
U.
DAY
EXCHANGE COEFFICIENT- B
FMAMJ JASOND
TIME - MONTHS
zoo
ISO
160
140
120
100
80
60
An
V
/*
f
X
y
fj
t
i
y
/
^
Xs
<
\
*
y.
v\
<\
\
\
^
\
N,
w
JFMAMJJASOND
TIME - MONTHS
u.
i
8
(E
O
LJ
(rt
a:
ui
a.
^
UJ
1
0
9
8
7
6
5
4
•»-
=*;
^^
\
k
v
^,
X
V
\
X
s,
V
ft—
X
l\=l
\
ft=2
H,
SUv.
V
50(
20(
S*
P
•^~
i ^
) /
-*•
L/ni
-V
CR
s
iCR
X
.0
^/
:s
/
/*
:s
/
/
/
/•
X
/
/
^r
y
^-
U. 12
V)
Q
z
o
o
LI
•s.
LI
tr
H
x
LI
LI
S2
IT
LI
CC
S
£C
LI
Q.
2
LI
t-
H
<
_l
o.
•Ok
^5«
•O.
"X
^
H.
X
bN
X
>>
v
X
8C
X
I5(
^
V
22
X
0 i
NX
)0
\K
00
o.
CR
-O-
ACI
A(
•or
ES
^
^
(ES
X
IRE
&*
i
P
s/
\
y
t
y
y
/
p
y
ef
r
J*~
^
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
FIGURE 92 - RESULTS FOR NEW YORK, NEW YORK
201
-------
Ul
oc.
3
<
DC
UJ
O.
Z
UJ
I-
2
O
K
at
o
o
Ul
IUU
90
80
50
5>f)
.O*
jr'
EX
^
/
FRE
/
//
r
ME
V
/
Q
7
/
o/
/ /
/
\
AV
^
/
/
ER/
o-
GE
>9
\
v
%
\
A
\
>
v
V\
V
\
V
\
Vi
V
^
\
^
JFMAMJJASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — to
^0>a>oi\).i>o
DOOOOOOOO
y
^
/
4
//
,'°
/
V
P
^
r
*•
f
fO*
•+*
>GS
V
X
>
\
\
A
i
^v
\
\
Q
>
V
,\
X
^fc-
Sy
JFMAMJJASOND
TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
w.p»oi0>">loDu>o — r\
•^
s
•S
S^
X
\
"^
\
S.
^
f
\
, f
V
S,.'0
*s
X,
= II
NJ
= 2
^V
IOC
•-«.
30C
"•«.
IOC
A(
~-
A
-*-
A
1RF
^
;RE
-•
;RE
^
s
^*
s
^
s
J>
s
A
f
J
f
/
J
'
/
S"
P.
s*
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
JFMAMJ JAS
TIME - MONTHS
0 N D
tx.
^ON
"^
Vi
S
A
^
^
\
\
\
\
{
x
Y»
S
'\^
oo
•o.
50
NX
220
NX
AC
»o«
D A
•ft
0 A
-o.
RE!
J>*
:RE
P-
CRE
*)~
n*
S
,p'
;s
>/
1
^
/
P
IP'
X
o'
/
f
/
X
,
o
-TK
>H
^
-------
EQUILIBRIUM TEMPERATURE - Fe
- rOG4-t.cnCT>-ga)(CC
0 OOOOOOQOC
ATURE RISE (NORMAL CONDITIONS) - F°
0) ->l OB (O O — i>
PLANT TEMPER
>l J> 01
^
J
V
•v
"""*
•^
E)
,
'U
y
F
X
V
v
y
TR
t
' j
f
FM
^
A
4
f *
f
f
ri
/
/
\
M
jf
[R/:
**^
*+•
GE
"^
>
\
s^
N
M A M J J A S
TIME - MONTHS
"\
v
\
X
A
"^
A
S,
*
A
- i
v.
- 1!.
•>^
= ??
V
00
"-a.
uu
•^l.
00
•*.
Ai
— •-
A
^r-
A
_•.
:RE
-^
^Kt
";RF
***
S
/
^^
S
X
8
/
L>
\\
^
0
/
/
/
j/
%
v\
\
N
j
/
ft
/
v
b.
s
D
,^r
^
^>
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — N
'(DOooro^cncDC
)OOOOOOOC
tu
? 19
u. l«-
1
tf)
1
1—
Q
o
UJ
5 9
111
(E
1-
111
UJ
(O j
tr.
UJ
o:
o 6
£
£E
111 c
Q. 5
Z
111
1-
H 4
•<
_l
°- 3
J/
J>*
J
>>*
X
X
,
/
/
F
\
X
X
f
I
/
/
f
t
ft
/
/
J
s
tf
MAM
TIME -
°V
X
X
k
<\
\
V
80
N.
^*\
ISC
V
22(
/•-
r°"
-«s
«v
\
\
o.
\
>
'•t\
J J A S
MONTHS
3 A
»o-
0 /
)0/
-o-
CRE
• u
CRI
.p'
TR
./
JJ
S
J*
IS
f
-^
*o~
*tr
•d*
-o"
y
\
^
V
^
0
,
^
x
x
^
h
V
v
i
V
N
/
'
/
f
/
t
v
•^
D
/•Q^
^^
^Q»
TIME - MONTHS
TIME - MONTHS
FIGURE 94 - RESULTS FOR WILMINGTON, NORTH CAROLINA
203
-------
e
U.
UJ
IT
^>
<
K.
UJ
£L
S
111
I-
2
3
o:
m
3
O
UJ
IUU
90
80
50
9n
•o'
EX
1
,<*
I
I
TRI
0
/
/
/
:ME
\
i
9
'J
1
f
\J
h
'L
j
AV
.
f
I
f
\J
,^m
/*
GE
^0
O
N
\
\
v*\
\
k
v ,
V
\
\
\
\ \
\
\
\
v
\
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
jJ.|>OI(J>^JOOOBOroj>o>o)o
ooooooooo
u. \c.
in
0 "
h;
O
O
UJ
2 9
UJ
H
UJ
111
U) j
tL
UJ
£C
o 6
v
>
/
f
J,
f
/
/
/
ll
MAM
TIME -
V
X
\
\,
V
i
H
\
1
1
\
<\
^
V,
\
I
N
80
V
\
I5C
|L^
\
'<><>
v>
flf
f*
•^i
\
\\
H
^
^V
k \
i \
°x
\
\
\
L
V
^
J J A S 0 N
MONTHS
DA
0 /
Vn.
^J«
JO
"0.
:Rt
ui*
CR
•o-
i\C(
•n^
s
/y
iS
>0'
ts
4
/
f
,
/
d
'
i
r
d
'
J
1
1
/
o'
I
V
V
D
/r
/r
'"
JFMAMJJASOND JFMAMJJASOND
TIME - MONTHS TIME - MONTHS
FIGURE 95 - RESULTS FOR BISMARCK, NORTH DAKOTA
204
-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
,,*0,0>>la>u>5 = i5 S8oSSo§g£
>o-
.•»
EX
p/
J
#
TRI
:ME
v
i
i
1
/y
r/
d/
II
'f
*/
Q
i j
f
A\
ff
j
f
I
\
\
rER
rv
**••
AGE
^
>
V
\^
^<
>
V
V
u
X
\\
\
1
J FMAMJ JASON
TIME - MONTHS
*•
A.
••>
^
-^
••
^>
*v
X,
V!
^^i
s t
K
^w>
*S
v
\
, = l
s-
x
\= 2
V
JUI.
^.
50(
^L
20
>».
A
) A
-*>
D A
•**
LKI
*
S
CRI
^
CR
•^
b
/
s*
;s
/
:s
S
/'
x
r
/
j
**
,
D
f
-r
ff
o 2°*
U.
v I8(
<
o
J "6<
u.
^ I4C
m
I
H I2C
Ul
!•«
u.
UJ
0
o 8C
ui
o
< 6C
X
o
X
111 4C
u. 12
1
Jo
1 "
h;
Q ,_
Z 10
0
U
111
Ul
or
H-
x 8
Ul
Ul
(/) y
CC
Ul
o:
13 6
^
CC.
Ul _
a. 5
•s.
Ul
1- ^
z
<
_j
a. 3
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — IN.
^0>OOOl\>^0)(DC
3OOOOOOOC
*•-
NX
J
•4
1
/
9
J
f
^
*
\
\
*
^
.
\v
•
!^
^
X
^
JFMAMJJASOND
TIME - MONTHS
u
/cT
.«•
*r
-0
LQ
S
•CL
A
N
\
\
\
°\
\
A
\
S
V
°S
80(
^q
50
>0J
22
X31,
) A
4L
0 t
'Qfc
DO
^
CRI
-^
CRI
U
ACf
"O^
s
X
:s
tf
ts
rX
>*^
.
X
/
(/
X
*
(/
x''
v*
^"
,°-
/u<
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
FIGURE 96 - RESULTS FOR CLEVELAND, OHIO
205
-------
NDITIONS) - F° EQUILIBRIUM TEMPERATURE - F"
o ~~ M f\>w-t*oio>->Ja>«>c
0 - N 000000000
8
_i 9
2
tr
1 8
UJ
v>
oc
a:
H 6
PLANT TEMPER
W 4> Oi
jy.
J
-v
ks
V
EX
1
' j
/
F
\
^s
•RE
j
/
u/
/
'
ME
\
i
o ,
f I
1
i
t.
t 1
f
A\
^
f
\
\
'ER
AGE
*s
x
\
\H
v\
^ '
\
\
\
\
\
MAMJ JASO
TIME MONTHS
v
*v
X
\
A
*v
V
A
\
A
X
- t
^
- If
"<.
= 2;
00
*
00
—•-
IOC
-TT-
AC
•^
AC
-a*
AC
-^
-(tt
X
REJ
^
RE!
^
S
/i
> ^
*
y
s
?
f
/
\
\
\
N
/i
S
,
/i
^
V
D
,*•
s-
J-
o 2U
U.
g Q
<
1 ,*
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F° EXCHANGE COEFFICIENT- BTU/FT2
,J*o.a>-^a>(DO|M4>O>CDO
->OOOOOOOO
s»-
A
y
f
sf
s
^o*
^
•&*
\,
A
^N
\
Jv.
V
-V
s*-
v.
JFMAMJJAS
TIME - MONTHS
OND
JFMAMJJASON
TIME - MONTHS
•er
•o*
*o-
>j
>
vi
>
S»
\
\
t
N
^
»
\
80
X
ISO
\
22<
X
0 /
S^«
0 /
N5.
)O
•o-
CRI
CR
ACf
•o-
:s
.0-
ES
S
JES
n-
X
^°'
X
/
0
-------
EQUILIBRIUM TEMPERATURE - Fe
PO W -^ Ol O> "*J CD
/
^
AV
o7
y
^
ER
,0*
^0c
AGE
O
V
>
\
Vi
\
)
1
\
V
\
>
1
o
U.
> 180
a
I
N I 60
x
3
I-
m
I
UJ
E I0°
UI
o
UJ
o
X
J FMAMJ JASOND
TIME - MONTHS
80
60
40
J FMAM J J A S
TIME - MONTHS
0 N D
a
U.
12
^- i i
w ' '
z
o
Ilo
o
u
s
K
I 8
UJ
? 7
OL
UJ
a.
•s.
UJ
z
4
\
8CO
AC^EJ
~^22(K> ACFES
ACRES
t
LL.
(/)
O
O
U
UJ
UJ
(E
I-
X
UJ
UJ
.
|D«
O*-
80
•<*
15
22
•n
OA
\>-
)0,
)0
t
0—
CRt
J3'
VCR
p*
ACF
•o
S
^x
ES
/r
!ES
f*
*
*
o*
rf
/
^
y
<^
t
^
j
P
^
'
/>'
>^
Q,
>J-
JFMAMJ JAS
TIME - MONTHS
0 N D
J F
MAMJ JASON
TIME - MONTHS
FIGURE 98 - RESULTS FOR OKLAHOMA CITY, OKLAHOMA
207
-------
EQUILIBRIUM TEMPERATURE - Fe
NJw*oi0>-go(). 180
0
J 160
u.
^ 140
m
I
1- 120
UJ
o
i nn
u. I0°
u.
UJ
0
o 80
UJ
< 60
i.
u
X.
UJ 4/1
•«-
-»*
«/
*^
[X
X
X
/*-
Xj
V
*
\
-«».
— •-
J FMAMJ JASO
TIME - MONTHS
N D
JFMAMJJAS
TIME - MONTHS
0 N D
l£
0
U.
« "
Z
o
I'O
z
o
o
_j 9
(T
1 8
UJ
I 7
Ul
o:
= 6
OL
UJ
0- 5
UJ
t-
K 4
n' ^
=«,
^•5
=»9
•^s
-•>
•^
V.
X
X
**
A
X
fl
fy
= t
^
=11
^
*»
=?;
^
s
00
X
00
s^
no
X
A
w
M
A(
;RE
;RE
/
~RF
X
S
X
s
y
x
x
r
S
^*
~*r
*•
•*:
=^r
!•=
U. 1^
1
>
0 "
H
Q
o
UJ
Z 9
UJ
IT
1-
UJ
^^
UJ
tf) 7
o:
Ul
cc
3 6
!^
DC
UJ c
a. 5
Z
UJ
\-
\- 4
<
_i
°- 3
JFMAMJ JASON
TIME - MONTHS
FMAMJ JASON
TIME - MONTHS
FIGURE 99 - RESULTS FOR ASTORIA, OREGON
208
-------
. 90
u.
i
ui 80
tc.
< 70
cr
Ul
\ 60
H
^ 50
K
m
j 40
5
o
u 30
20
12
O
U.
£ "
o
g '0
z
o
u
_j 9
1 8
Ul
2 7
ui
tc
= 6
a:
Ul
a. 5
Ul
i-
•- ^
<
n* ^
4
fa
E)
t
A
i
r
TR
A
7
^
EMI
\
6
} J
f
<(
'/
f
AVI
flf
i y
/
\
:R^
^
GE
*o
\
\
V
A
V
V>,
V
^
\
\\
\\
\
X
V
J FMAMJ JASOND
TIME - MONTHS
*»
^
>s
V
>
x
>
X
>
x
— 1
x
I
x
V
\
X
= «
X
^=1
^
>,
fl_
X
00
X
50C
w
V
AC
••r
I A
-••
O &
•*•
^E!
/
J
:RE
A
rffF
/
/
J
f
S A
/
V
/*
/
/
/
/
f
J
f
^
/
7*
-•-
iiV
**•
0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — — r
; .i>0>a>oro-i>0>a>c
J ooooooooc
(EXTREME CONDITIONS) - F
00 (O O — l>
Ul
(0 y
a:
Ul
cc
3 6
5
£C
UJ -
a. 5
Z
Ul
1- 4
z
_l
°- 3
•S
^
/
J
Jl
A>
-/
,f
7
f
A
L
f
J
7
-°>
1J
%
1
y
\
\
\\
\y
V
^
V
JX
^
-«.
TV
JFMAMJJASOND
TIME - MONTHS
"5
\
l^S
"°\
\
°\
V
\
V
o
^p
\
\°
i
V
CL
<\
8(
*<
ISC
S
^2
^,
)0
it.
°*
O A
V
30
Ok
!\CI
-O*
CRI
•n*
ftCF
»o-
ES
o/
'
:s
ES
V
j
9
t
f
7°
x
j>
/
X
'
y
ff
f
^^
,
-------
UJ
£C
O
<
o:
UJ
Q.
S
UJ
I-
2
3
o:
m
3
O
UJ
IUU
90
80
50
•?n
,>.
V,
FMAMJ JASOND
TIME - MONTHS
0 200
u.
>. 180
<
o
J 160
I-
u_
= 140
ffl
1
1- 120
y
C "00
u.
UJ
0
o 80
UJ
e>
z
< 6O
I
X
UJ /in
1
^
*Q.
•r
•o-
s*"
•
^
O
F
.
/
\
^
V
V
vv
V
^
V
N>-
•••
,J>
***
-o
JFMAMJJASOND
TIME - MONTHS
\e.
o
U.
I
•~ 1 1
w
z
o
o
o
_i 9
cc
z 8
UJ
)
o:
UJ
oc
g 6
a:
UJ
a. 5
UJ
z
0- 3
•*"
•«r
^-
"^
•4,
A
N»-
X
V
A
-*»
A =
*>•
s*.
= i
X
1 5'
x
^
•?•?
00
)0
X
in
AC
*"
AC
Sr
/\r
RE
y
RE!
./
s
y
RF'
S
/
/
/
f
/
/
f
^
r
-»,
•*k
-*
"*»
X
X
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
j^oim^JOBtDO — i\
JFMAMJ JASON D
TIME - MONTHS
-o.
O»
-Cf'
•o-
•a.
•o
•&"
">f
VJ~
"O,
«
*o
s
8
\
v[!
c*
^
\
?e
OO
v
\
)00
V
^
\
\
00
ACI
W^
AC
V
xy
A1
ES
i
/
/U
RE!
j
/
0
i
/
;RF
4
f
o7
/
t
o'
^
s
„
/*
P-
u«
*»•
«,
^«
o-
-o-
-o-
JFMAMJJASOND
TIME - MONTHS
FIGURE 101 - RESULTS FOR PORTLAND, OREGON
210
-------
100
90
iu 80
DC.
IE
UJ
Q.
2
HI
70
60
§ 50
cc
m
-: 40
o
w 30
20
FMAMJ JASON
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — ro
^o>o>oro-i>o>(Do
3OOOOOOOC
IP*
p
J
/
J
/
f
/
f
/r
•»,
L
X
v
\
X
V
V
JFMAMJJASOND
TIME - MONTHS
FMAMJ JASON
TIME - MONTHS
u. 12
E CONDITIONS
XTR
PLANT TEMPERATURE RISE
JFMAMJ JASON
TIME - MONTHS
FIGURE 102 - RESULTS FOR AVOCA, PENNSYLVANIA
211
-------
TIONS) - Fe EQUILIBRIUM TEMPERATURE - F
r~— M w * 01 o> ^J OB
' - i» ooooooo
PLANT TEMPERATURE RISE (NORMAL COND
w*oio>-^o>«>c
•••*
J
••>
-*,
-^
EX
X
/
/
TR
f
f
:ME
/
f
fj
i
V
fJt
r
AV
^
^
^
\
FR/
^^"
^#-
^GE
^n
*\
k
V
V
I
^
v\
^'
>
iVi
^>
\
V
\,
\
FMAMJ JASONO
TIME - MONTHS
V
X
x
S,
K
X
X
V
X
\
N
K
ft:
^
A=l
X
n=?
s
B0(
s-
"iOf
••«
?0(
»«*.
1 fi
^
/>
«<<
) A
-**
CRI
X
CRI
X
CRf
s
X
•,s
x
-s
X
//
/
^
/
/
/"
s
/*
^
^^
<
0
J 160
1-
u.
= 140
m
I
I- 120
UJ
E I0°
u.
UJ
o
0 EXCHANGE C
; •» o> a
3 0 0 C
U. \c-
B
CO
0 "
1 10
z 10
0
^ a
2 9
UJ
cc.
1-
UJ
UJ
ac.
uj
3 6
a:
a. 5
UJ
I-
I- 4
Q- 3
•0
i
/
J F
^
~o»
•0*
Vv
^
*°,
y
^
/
f
/•f
/;
/*
SV
\
\
s.
V
>
^|W
N
X
V
^
MAMJJASOND
TIME - MONTHS
x
V
°\
\t
>
\t
X
^
^
80
X
150
°s
22<
"q
3 />
NX
0 A
X
)0 i
NN.
CR
-o-
CR
^
VCF
-<>•
ES
^
ES
X
ES
^r
A^
s*
?
?
/
s>
J
f
r
>
f
•o-
-o.
,.
JFMAMJ JASON D
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 103 - RESULTS FOR PHILADELPHIA, PENNSYLVANIA
212
-------
IUU
on
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
-*o,a>-Ja>«)5 = i3 S 8 S g o o g J
•0-
***
EX
I
V
/•
TRE
1
/
<5>
7
f
ME
N
i
o
/y
/
^
<
/ 1
f A
/
^
f
VFI
ef^
PAG
>
H
i
V^
•*
\
V
V
*
^
\
\
\
i
Lt
V
\
^
^
IV
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — fv.
kd>ODoroAoooooooc
JFMAMJJASOND
TIME - MONTHS
e , ^
^
N
\
X
X
\
v
X
y
N
\
\
|\=l!
X
!k = 2
\
ROT
••».
30C
2^
>•_
-^
A
) P
J*
PRI
•/
^
CRf
X
CRf
-f
/
/
:s
s ,
A
/
/
/
/
/
y
/
/
/*
/
^
/*
U. 1C.
V)
°
H
Q
O
Ul
S 9
Ul
IX
H
Ul
Ul
> 7
tr.
Ul
ac
u 6
5
oc
Ul R
Q. 5
2
Ul
V-
1- 4
z
<
_l
o- 3
V
•""
/-
y
J F
•o-
*°"
~U*
>i
>
X
A
\
y
7
/
M
t
ft
^
MAM
TIME -
S
^
^b
\
V
>
\
V
\
8O
X
ISC
Si
V
22(
°>
-Si
\
*^
*\
<
\\
\
^
X
"•*.
kt).
J J A S 0 N D
MONTHS
) ft
N>
0 /
^
>o ,
wo.
CRf
-cf
CR
-o"
VCR
X
S
„<
:s
»'
ES
y
j!
/
f
jS
jt
f
,
P
/>
p
0/
/
/
f*>\
*>\
M A
TIME - MONTHS
TIME - MONTHS
FIGURE 104 - RESULTS FOR SCRANTON, PENNSYLVANIA
213
-------
100
. 90
u.
uj 80
OL
< 70
UJ
0.
2 60
K
2 50
m
g 40
O
w 30
20
O
U.
S "
o
| '0
o
o
_i 9
(E
S 8
UJ
£ 7
UJ
tc
K 6
o:
UJ
Q- 5
UJ
h-
H 4
<
_l
Q- 3
E
-0^
•*£
XTI
oy
>
X
JEH
0/
y
/
IE
t
ft
/
f j
<
A\
o
f
ER
•o
•*-
AGE
•0*
V
\
Vi
\
1^
V
\
i
, n
y
^
J FMAMJ JASOND
TIME - MONTHS
X
X
V
V
X
k.
*v
•v
>
X
v
\
A
V
V
A'
*«
= 8
^
I5<
^
*.
22
X
DO
-w
)0
•*».
00
•*-
AC
_••
ftCF
i.*"
AC
.*•
RE
*
ES
RE
>
S
/
A
J
s
J
y
y
/
/
^
/
/r
^
^
^^
^
,»•
9 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— _ — — — f\)
j J>O)OOOM4>(J>a)O
ooooooooo
u. c-
v>
0 "
Q
o
UJ
2 9
UJ
Q:
i-
x 8
ui
>-*
UJ
V) -7
a:
UJ
cc
^ 6
^
DC
U K
Q. 5
s
UJ
H 4
z
<
_l
0- 3
j
jt
Jj
f
>
^
j
i
r^
/
!*
4
>o
^
P>
^
X
X
X
\
*^
*\
^'
Q
\
X
°x
"X
*°*
JFMAMJJASOND
TIME - MONTHS
tos
^
i[\
k
^i
\
^
X
\fc
8(
>3,
15
\>
??
V
)0
•Q
OO
•H*
00
•a
AC
^0-
AC
Xo,
AC
Ho-
RE!
•u<
RE!
^
RF
JO*
ff
**
5
_ _^
jQ^
4
J3
,ff
t
sf
/
?
f*
f
f
p*
£
^v
,0-
x>«.
JFMAMJ JASON
TIME - MONTHS
FMAMJ JASON
TIME - MONTHS
FIGURE 105 - RESULTS FOR CHARLESTON, SOUTH CAROLINA
214
-------
111
K.
3
<
(E
111
0.
Z
UI
H
2
O
(E
m
EQU
IVJU
90
80
50
20
E
rf
\>
XTI
i
4
A
!Eto
t
J
7
/
E
\/
d>
J
J
f
' J
f\
AV
*o-
f
ER/
—•-
GE
^
*<
A
\
\
Ov
V
\
V.
V\
M
\
SK
^
J FMAMJ JASOND
TIME - MONTHS
200
FMAMJJAS
TIME - MONTHS
OND
l£
e
U.
OT ' '
•z.
O
g I0
0
o
_. 9
<
Z
(E
1 8
UJ
g 7
UJ
IE
K 6
(E
111
Q- 5
UI
1-
H ^
n1 ^
V
x
V
X
X,
X
x
\
N
\
\
A
V-
A
V
A
- t
A
HE
•«,
••??
-%
uu
^*«
00
Sta.
00
V.
A
-*^
A
_•-
A
-**
^Hb
^
:RE
"RF
y
,y
s /
/
¥
/*
y
f
f
'
,
/
^
.
,>-
^*-
>•-
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
° 12
FMAMJ J A
TIME - MONTHS
X
V,
X
1
X
tes
X
\^
s^
^
k
^
"o^
80'
"*<.
I5(
X
22C
X
D A
ko.
o;
^eu
10 /
*o.
CRt
rf)'
CR
-o'
,CR
*r>'
S
o'
r
•
:s
/
ES
»
J
r
y
i
/
/
t
pf
s>r
/*
^
p
f-0*
-ex
^«N
JFMAMJ JASON
TIME - MONTHS
FIGURE 106 - RESULTS FOR COLUMBIA, SOUTH CAROLINA
215
-------
EQUILIBRIUM TEMPERATURE - Fe
N)O4AoiO>-«JcB(DC
DOOOOOOOC
tf
J
J*
i
y
r
j
4
f
i
f
f —
/r
f
*+•
-\
\
\
v
\
\
V
\
V
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^0>(X>Or\)J>0>
•^
X
X
>
X
X
x
A
x
X
V
^
V
SO1
fe
150
^
22<
V
) /
^r
0 t
— ^
)0 ,
•••
CR
Jf
^CR
P^*
*CR
jr
ES
#
^
ES
*
ES
*f
J
/
Ly
x
y
^
J
A
7
/
7
^r
^*
^*
U. 1^
1
0 "
1—
Q m
z 10
0
Ul „
s 9
UJ
o:
uj 8
UJ
o:
Ul
o: e
o 6
tc
CL 5
Z
u
1- 4
Z
o- 3
JFMAMJ JASON D
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 107 - RESULTS FOR GREER, SOUTH CAROLINA,
AVERAGE CONDITION
216
-------
100
r>
<
ui
Q.
K.
m
o
U.
o
I
N
m
I
z
UJ
o
u.
u.
UJ
o
u
UJ
J FMAMJ JASOND
TIME - MONTHS
I
u
X
UJ
200
180
160
140
120
100
80
60
_L
\
JFMAMJJASOND
TIME - MONTHS
u.
i
z
o
8
cr
o
ui
UJ
Q:
a:
ui
a.
Z
ui
i-
1
0
8
7
6
5
4
\
v
\
\
\
\
\
\
\
\
\
\
\
X
V
N
X
A=
s^
ft=l
s
^s
\ — c
\
30(
^<
50(
^
20
**».
) A
•*•
) A
) A
-••
CRE
S
CRE
,/
CRI
**
S ,
f
S
J
*
Sy
/
/
J
/
^
*
J
/
J
f
J
f
f
f
f
u. 12
I
i M
§ .o
o
o
2 9
UI
tr.
l-
x 8
UI
Q.
S
UI
5S>%
"O*
X
X
1
H
\
X
\
V
V
^
*\
\
\
\
V
^
%
X
8
\)N
I5(
\
^
?'<
\
OO
Ns.
30 /
VQ
00
''o.
ACI
£>-
^CR
j).
A(
UJ-
ES
i
M
yj
ES
X
RF£
y
Jf
/
/
J
/
/
f
i
J3
/
f
A
,<*
/
/
/
/
/
/
/
/
o'
/
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
FIGURE 108 - RESULTS FOR HURON, SOUTH DAKOTA
217
-------
LIRE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - F°
•> -1 « « ° = ~ oS^sSoggi
PLANT TEMPERAT
w j> 01 e
*
•Or
-^
J
^^
i~*>
EX
y
/
'
F
\
\
x,
TRE
i
Yt
f
ME
\
J
/y
/
^
°s
/
/\
A\
MAM
TIME -
\
>
y
N
\
\
k
\
V
\
\
s
H-
V
A=l
V
^v
\-f
/
1 i
/
'
rER
»o-
^"'
AGE
^
\\
N
\
\
\\
\
^
J J A S
MONTHS
90(
X
iOf
^
?OI
"V,
) A
•*••
A
-»•
[) A
— •-
CR
S
"Rl
nRI
S
iS
y
•,s
J
/
fv
V)
\\
0
J
f
J
f
J
/
,
,L
\\
\
N
j
/
/
j
f
^
D
/*
f
f
„ 200
u.
EXCHANGE COEFFICIENT- BTU/FT2- DAY
>0>CDOi\>J>cnc
> o o o o o o c
~ *tu
? 19
U. \c.
i
1
5 in
z 10
0
UJ
2 *
UJ
(£
1-
UJ
UJ
— 7
«
-a.
t
I/
/
^71
Jo
F
*•**
•
k
V
>>
\
/
/
r
.
/
'
MAM
TIME -
\
^
\
0
%
V
\
°x
N^
*
\
\
s
8C
No
N
I5(
^'
fff
'/
?*
^
\
i
\,
\
\
\
\
V
5
J J A S 0 N
MONTHS
O/
V<^,
0 i
*b+
iOO
^
CR
CR
-O'
AC
*O*
ES
X
FS
,y
**•*
Khi
>o"
(
^o'
n'
/
•^
,/
'
1
1
'
(y
4
f
1
f
^
*
D
en
-------
UJ
a:
u
^
a:
UJ
a.
•s.
UJ
h-
5
r»
a:
m
EQU
1 UU
90
80
50
?O
-o'
EX"
X
y
/^
RE
'
/^
[
ME
\
O
/y
/
t
y
7
A
AV
p'
i
/
\
.0
+^
^(?F
•<\
>
V
\ \
\
i
V\
\\
\
\
A
Vt
U
\
L\,
^
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — N,
^o>o>or\>.f>o>a>c
3OOOOOOOC
io'
_ju
$
1
f
r
'/
f
^r
if
/
-or
^
N
^
V
^
V
X
<\
'0»
**-
"o-
JFMAMJJASOND
TIME - MONTHS
SLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
ti^at(oo — i\
V
*v
-y
X
s
X
X
\
\
\
^1
A
X.
V
A
6
"^
= It
•s
-*s
00
•••«.
uo
***.
oo
>*.
A(
-^
At
-^
AL
=^
,RE
Kb
f
IRE
rf-
/]
S /
>
?x
/
/
/
J
I
f
f
/f
s
/%
S
_
*»-
*+-
u. \t
w
1
1—
Q
o
UI
UI
h-
UJ
UJ
(O Y
tr
UJ
a:
o 6
^
"°>
*«<
\
\
^
X
X
\>
X
\
X
80(
"0
I5C
"0.
??(
IX
) A(
0 /
-0,
)0
«o-
RE
-o
CR
-of
!\CF
0*
5
P*
ES
ES
Jf
J
4
/
y
p'
,°
^
/
X
s?
^
*Q
-Os
JFMAMJ JA
TIME - MONTHS
TIME - MONTHS
FIGURE 110 - RESULTS FOR KNOXVILLE, TENNESSEE
219
-------
IUU
. 90
u.
ui 80
£C
i 7°
UI
Q.
2 60
UI
1-
2 50
£C
CD
g 40
o
w 30
12
e
U.
s "
o
1 '°
8
_i 9
<
S
cc
1 8
Ul
1 7
UJ
cc
H 6
o:
UI
Q. 5
UI
I-
l- 4
z
<
rV i
/*
X
EX
^
y
TR\
p'
v
/
:ME
t
i
U
f
}
f /
/
A
AV
o
jf
"
ER>
>•-
^«-
U3E
*\
•^
\
V
\
1
\
\—
\
\
i
fc
\
l
^3
*^
X
JFMAMJJASOND
TIME - MONTHS
•*.
-«.
X,
•m
^i
X,
v
\
A
V
A
V
is
.A
^
= 8
X
^
= 2:
^
00
-*•
•SF
20C
-•-
AC
•+>
t\
Hf
A(
^f
RE
Jt
RE
X
3
S
/
/•
5/
/
I/
/
f
jV
x
^
>••
A-
»*
0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
3 •fra>a>OW^O)C
ooooooooo
E CONDITIONS) - F
3 O — l>
2 3
UI
£C
1-
x 8
UI
UI
(/> -T
— 7
cr
UI
§ 6
a:
Q. 5
UI
I-
.
o- 3
?£
A
i
H
r
4
3
^
/
.
^
'
0r>
<^
^
\*
k
v
*\
k
\
*^V
\
^_
,^
V
W
V^
>».
JFMAMJJASOND
TIME - MONTHS
-O-
'*Q
^
\
\
\
w<
V
S
\
80
v>
I5C
X
rvf
H,
0 /
•o
0 ;
so
*C
po
•2,
CR
'U"
\CR
"V
ACf
U
ES
y
FS
rv
,Jf
ES
y
y
t
9
y
y
/>
/
^o"
-------
EQUILIBRIUM TEMPERATURE - F°
iNJWAoi0>->Ja>c
OOOOOOQOC
4
EX
f>
J
/
FRE
I
/y
/
:ME
\
t
o
u
F
1
//
/
' t
/
r
\
VFI
-0.
?*•
1AG
\
\
p
V
Si
V
\\
V
t
V
v\
>
b,
V
J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^o>o>oi\).i>0>a>c
3OOOOOOOC
*£
tr
(
ft
&
A
/o1
f
/
f
k-*1
V
,>>.
v
N
CA
X
\
%
N
K
<>•
>,
X
•o-
JFMAMJJASOND
TIME - MONTHS
iz
e
U.
w "
z
o
— 10
o
8
_i 9
<
Z
IE
o a
UJ
V) —
(E
UJ
IE
fe 6
IE
Ul
D. 5
s
UJ
1-
1- 4
z
<
o •*
A:
•**
^
=«S
\
1 >
y
• >
*
s
\
s
-^
A
hv
*s
A^
V
/^
•'
= 8
<
15
^
••'<>'<
^
00
««.
DO
!OU
•«.
AC
^
AC
AC
j»*
RE
/
Kt
^
:RE
*
3
/
by
^
V
•/
/
f
s
^f
<*
<>r
?r
^
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
OJ-&OI0>^O>(DO — IN.
•o»
•Ds
^>.
%
\
%
X
lx
\
i
\
<
O
to*
V
80
^0
ISC
-fl»
??(
^
0 A
MV
10 /
u
10 /
s°-
CRI
•*'
CR
***"
CR
.S
-or^
:s
O'
:«;
f'
;
/'
4
^
/»
/^'
/»•
•°"
-0,
T~CW
J F M A M J J A
TIME - MONTHS
FIGURE 112 - RESULTS FOR NASHVILLE, TENNESSEE
TIME - MONTHS
221
-------
UJ
K.
3
<
DC
UJ
Q.
2
UJ
I-
5
3
o:
m
EQU
IUU
90
80
70
50
yr>
.0*
EX
OF
/
TR
/
^
'
EMI
/
^
;
>
fy
X
AV
^
ER
-0-
»<^"
^GE
•o.
-*.
A
\
\^
k
\S
\
FMAMJJASO
TIME - MONTHS
ND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— _ — — — (\J
^CDOBOrO*•
AC
ES
RE
• o"1
RE
-or
f
>
p
5
X
^
X
?
ff
ff
jr
^
-o.
• 0-
,
JFMAMJ JASO
TIME - MONTHS
ND
FIGURE 113 - RESULTS FOR BROWNSVILLE, TEXAS
222
-------
EQUILIBRIUM TEMPERATURE - F°
f\J W A CTl 0) •>) CO
\
^
>
4
M
A
L
\N
\ <
\
^
X
\
JFMAMJJASOND
TIME - MONTHS
FMAMJJAS
TIME - MONTHS
OND
=LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
AI^OI
k
\
V
iA=
8(
^
\
IKf!
X
>?r
*\
• \
)Q
r\
H
*+*
ACF
s
A^P
9
S
>
ES
^
'C*^
X
-fi
/
^
x
^x
/
/
>
/
^/
,/
^/
V
x
y
/
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
° 12
JFMAMJ JA
TIME - MONTHS
u>
^°>
"O>
>,
\
X
\,
H
\
\
\
K
\
>,
»,
V
V
w
a*
BO
XD
150
\
??(
^N
OA
Vr
0 A
TJ"
)0 i
\5-
:RE
?
CR
,°'
*C;R
P*
s
/
ES
n*
s
rs ,
J
J
/
y
/
yP
y
/
/
y
r
•
t
f
f
*&•
—o
JFMAMJ JAS
TIME - MONTHS
OND
FIGURE 114 - RESULTS FOR DALLAS, TEXAS
223
-------
EQUILIBRIUM TEMPERATURE - F°
vJW-&oi-j£p(0o
DOOOOOQOO
.0^
^
EX
/
TRI
<
;ME
^
/
.0
/
V
^
A
^
/*
f
^EF
xs
r^»-
AG
^
Os
X
:
\
\
\
\
\
\
v
X
I \
\
V
\ 1
^
\
X
F8
DAY
- BTU/
C
EXCHANGE COE
JFMAMJJASOND
TIME - MONTHS
200
ISO
160
140
120
100
y
s
/?
1
/
c/
t
r
^
o'
/
XT
J
f
/
t
/
f
,°'
^
fO
X
\
Os
\
>
X^
L
\
>
\
\>
\
\
\
\
\
V
\
x
s-
X
JFMAMJJASOND
TIME - MONTHS
o
o
K.
O
Ul
(A
a:
cc
o:
UJ
o.
l£
1
0
9
8
7
6
5
4
•^
s
„
\
N
\
V
\
V
X
^
k
X
A
X
\r
\
A
X
- 8
\
- Ib
S»
s
90
"X,
00
^
M
^
f\f
-**
RE:
/
Kt
S
RF
^
3 y
^
y
-»
/
s
*
.
A
*
/
j/
/
/
y
^
/*•
^*
^.
JFMAMJ JASON D
TIME - MONTHS
o
H
o
z
o
o
UJ
UJ
II
10
Ul
\^
\
\
\
\
\
\
\
\
\k
,
\
\
\
X
^
\
V
80(
"o.
50
*«
>2o|
>Q.
) A(
-"
CR
^y
-o'
s
/
/
/
y
s*
^
JFMAMJJASOND
TIME - MONTHS
FIGURE 115 - RESULTS FOR EL PASO, TEXAS
224
-------
EQUILIBRIUM TEMPERATURE - Fe
row.j>oiC>^JoB«jc
OOOOOOQOC
.0"
**-
EX
fif
r
/
/
FRE
/
4
f
ME
4
/
yf
\
V
/p
A,
A\
/*
Jf
EF
-<^
*-•-
A6I
"£
V
^V'
k
\a
V
i
^S
x
^
X
J FMAMJ JASOND
TIME - MONTHS
Q
I
(M
ffl
I
I-
z
UJ
u
u.
u.
UJ
o
u
UJ
z
X
u
X
UI
zvv
180
160
140
120
100
80
60
*s
s
i
y
7
i
9
if
-a*
f
f
t
d
^
*\
V
*
>
">
V
*s
\
>
\
\
s^
\
\
V
\
V
\
JFMAMJJASOND
TIME - MONTHS
e
U.
I
w
z
o
O
u
a:
o
UJ
ui
a:
a:
UJ
a.
z
Ul
I-
<
Q.
1
0
9
8
7
6
5
4
3
-v
-^
X
X
X
>y
"
X
^
v
A
S^
A
- |
«<
= 1!
*•*.
-2i
*<.
30C
C
.00
-w-
00
•»•
A
£~
A
/\
-*-
ORE
**
:RI
^
Mk
+*
S
:s
^\
s
x
^*
^>
/
x
y
^-
T"
^
JFMAMJ JASOND
TIME - MONTHS
°u. 12
I
V)
o
t
o
o
o
UI
oc
I-
X
UI
UI
(0
UJ
a:
I
DC
UJ
a.
S
UJ
I-
H
<
_l
a.
*tK
^L^
^,
rs>
^
^,
\
X
V
\
\
8
V
1!
'*,
T>-
i£(.
s>.
00
.0
>oc
u /
-0-
AC
r°"
A
»o«
iCR
•o-
REJ
-0'
:RE
^>
bS
• 0'
,*•
S
^^
0,
f**
>
x>0'
^
'
X
X
^
x
•A,
-°>
JFMAMJ JASOND
TIME - MONTHS
FIGURE 116 - RESULTS FOR HOUSTON, TEXAS
225
-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
c* *o,o>^a><0o- = » SSSSSoSo'c
,„'
J
E:
/
y
/
(TF
j
/
f
EM
/
0
//
/
-
\
\
1
'/
/
/
»s
tin
p»O>
:RA
°\
x
GE
\
\>
^
X
V
\
^
yv
\\
\
\^
V
\
J FMAMJ JASOND
TIME - MONTHS
^
**
>^
•v
\
\
\
s
\
i
\
y
\
^
\
x
\
\
\
a=6
s,
A=l!
\
S,
00
s
50C
\
A
%
A
s.
A
""*"
-2\
s«_
;RE
^
-RF
/
^OC
^
S
«/
/
s
J
/
J
A
/
/
1
f
/
f
;RE
/
f
/
/
J
1
3
s
S
' EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
I -t»O)OBOro^a>ooc
ooooooooc
ERATURE RISE (EXTREME CONDITIONS) - F
n
Q. 0
Z
UJ
I- 4
z
<
_l
«>- 3
•O^
^
x>
J
—MA
1
J J
/°
/
/
y
s~
/*>
\
\
1
^
\
\\
Vo\
\
V
k T
\
V
v
x
JFMAMJJASOND
TIME - MONTHS
•tv.
-UN
V
1
\
\
X
V
\
(
\>
V
V
\
o
\
\
i,
\
s
V
8
\
15
V>
S
X"
DO
°"
00
vn
AK
V
ACF
-o
AQ
•M>.
A(
*"O"
ES
jf
!ES
v
X
RE:
Sf
J/
/
f1
i
i
n
t
i
/
/
>*
j
I
*
/°
I
^
r —
/°~
o..
A
JFMAMJ JASON D
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 117 - RESULTS FOR SALT LAKE CITY, UTAH
226
-------
EQUILIBRIUM TEMPERATURE - Fe
rowAoiO>^Jo) 180
<
Q
J 160
.I>
O
rO
O
CD
I
h-
Z
UJ
c 100
u.
UJ
o
o 80
UJ
<•>
z
^ 60
i
o
X
w 40
JFMAMJJASOND
TIME - MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>J^,(JII<»(DO — r\
^~
**-
«*•
-^
•^^
•v
x
\
\
\
\,
X
k
x
\
A =
X
/V=l
s^
s
A=i
X
QQi
"*.
50(
V
^
~] ft
_••-
) f
_ •-
) t
-*-
ORI
^
CR1
X
CRE
-s
y
/•
B
/
S
/
^
*
(
/
y
J
s
'
/
B*
^
f.
u. 1^
U)
1 "
1 10
o
o
Ul _
2 9
Ul
o:
x 8
UJ
UJ
52 7
tc
Ul
o 6
oe
UJ c
Q. 5
Ul
H 4
a! 3
TIME - MONTHS TIME - MONTHS
FIGURE 118 - RESULTS FOR BURLINGTON, VERMONT
227
-------
IOO
o 90
u.
uj 80
$ 70
or
Ul
a.
2 60
Ul
h-
| 50
m
g 40
o
w 30
O
U.
« "
0
s I0
o
o
_i 9
(T
I 8
Ul
W 7
a: T
Ul
or
3 c
S °
ct
Ul
0- 5
Ul
H
H 4
<
ttl 3
•0*
&*
J
•»-
_
-•^
E)
y
>
F
X
\
:TF
^
— /•
>j
f
EM
i
?/
y
-f —
\
\
//
0
A
MAM
TIME -
^
\
V
^s
i
\
/
V
L
*s
^=(
5*.
= 1
^
i-'
^.
(J
y
\
/FF
»t^
-^
tAG
-^
\
;
i
ib
^
\
J J A S
MONTHS
JOC
"*=
50(
•^.
"»=
A(
HT
) A
-»•
b A
*•
:RE
+•
CRI
jr
rR
»••
s
S
IS
./
^
re
X
V
V
\
0
X
>
^*
J
\
\\
\
^
N
/
J
f
y
V
o^
\
D
r
*
jr
e 20°
U.
>. 180
i ,-n
M '60
u_
X
e EXCHANGE COEFFICIENT- BTl
j -u a> at o K> j
0 0 0 0 0 C
LL If.
1
V)
I
Q
o
Ul
Z 9
Ul
tc
1-
Ul
UJ
(/) -JT
o:
Ul
tc
3 6
^
EC
Ul R
Q. 5
Ul
H- 4
•z.
<.
_l
O- "^
1
5
fff
/
/
^
J F
"^
-0*
b-
^,,
^
\
L<
'
/
ty
fl"
•"^
°V
V
\
I
\
\
\
L
x
\\
••s
MAMJJASOND
TIME - MONTHS
Q
°N
V
\
N),
X
•
8O
t>H
ISC
"^
22(
KQ.
0 A
0 /
*o.
iO t
CRI
^CR
.0'
VCR
:s
jy>
ES
s°
ES
./>•
n'
^^
J>*
,
F
o
/
/"'
f/
0'
^
/
tf
'
^°-
>^
JFMAMJJASOND
TIME - MONTHS
JFMAMJ JASOND
TIME - MONTHS
FIGURE 119 - RESULTS FOR NORFOLK, VIRGINIA
228
-------
too
FMAMJ JASO
TIME - MONTHS
ND
JF
MAM J J A S
TIME - MONTHS
OND
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
Ai^wo-JflDtDO — N
^
X
X
\
Sf
x
x
\
>
A=
^
A =
V
A=
V
80
c r
-••
>?0
-*.
D ,
X
"^.
0 i
>*.
\CR
-**
_»•
_•-
ES
/
po
X
•S
/
>
y
y
x
y
x
/
v
/
^
s
s
A.
f*^
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F°
(jj»oio>->iCDO — ro
^
•ON
X
A
X
X
\
>
\
^
8
^
Ifi
22
N.n
00
,^^
00
-o«
00
PDT»
ACI
.0
ACI
-o
AC
r«-
*E£
-Q.
?F?
.0-
RE
•o.
^
4
/
X
*P
»
^.
n
i
o*
^
x>-
.cr
-P-
^
,
0/
*°*,
^
^^
J F
J F M A M
TIME - MONTHS
FIGURE 120 - RESULTS FOR ROANOKE, VIRGINIA
MAMJ JASON
TIME - MONTHS
229
-------
EQUILIBRIUM TEMPERATURE - Fe
N)O4-&OIO>--J(D
J
XT
4
jt
REI\
/
i
\f
E
\
' /
/
*\
A
/°
,
/*
/EF
^0-
Ati
"0
X
\
A
s»
\
V
b
V
\
\
v>
\
V
X
X
X
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^cncBOro-ooiooo
3OOOOOOOO
i
*•
^
^
x
•o-
/
V
r
X
,^
*o-
•4,
•o.
V
\
^n
S
X
^
Us
x
*°>
X
J*f.
FMAMJ JASON
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
o
U.
= 10
8
o:
o
ui
w>
cc
Ul
0.
Ul
^^
= HOC
^>6€
ACRES
-Mtt
J FMAMJ JAS
TIME - MONTHS
0 N D
u. 12
(O
z
o
o
o
Ul
s
Ul
o:
i-
X
Ul
Ul
in
ui
£t
?
(E
111
O.
Z
Ul
t-
z
<
_1
o.
^
^
X
^>«
V
o«
X
MO'
• o*1
O"
-0.,
>
0
8(
x
J5
<\
\2;
0
*»•
00
*o-
00
*o.
ACI
-o-
ACI
-O'
AC
-o-
IES
*
.0
?ES
.
ktt
.0
y
y
?
rt
4
jP
o
F
jf>~
/*"
1.
•Os
— o.
J F
M A M J JAS
TIME - MONTHS
FIGURE 121 - RESULTS FOR SEATTLE, WASHINGTON
OND
230
-------
100
FMAMJ JASO N
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^oro^0>a>c
3OOOOOOOC
-**
«t
J
?
/
F
7
#
t
<*+
•O*
v
\
\
K
y
^.
%
^
>^.
^
FMAM JJAS
TIME - MONTHS
OND
U)
z
o
8
<
Z
o
12
I I
10
9
8
a:
ui
a.
- 7
«*N
\
X
\t
\
V
*s
Si
^
X
s
\
v
V
X
w
X
n c
v«
N
A^
X
A=i
s«
X
nr
s,
50
X
120
Sf
n
*•».
)
*^-
0
•»•
/vpr
J
S
!\CR
s
\CR
/
?
s
*/
fi
7
/
/
/
f
/
/
/
^
f
T
<<•
f
JFMAMJ JASON
TIME - MONTHS
>
•z
o
o
<
Sj
^
\
^
\
V
\
8(
^
O«
ISC
X
2
V
)O
XW
0 /
»0
^
^CR
CRI
•Oj
AC
•u.
ES
ns
:s
^
RES
G/
^
7
'
i
»
X
/
(
i
f
ff
0'
1
fS
*&*
sr
S
JFMAMJJASON
TIME - MONTHS
FIGURE 122 - RESULTS FOR SPOKANE, WASHINGTON
231
-------
100
. 90
u.
ui 80
IE
< 70
IE
Ul
0.
ul 60
1-
2 50
:D
IE
ffl
g 40
o
w 30
20
12
o
U.
I
*- 1 1
OT
Z
O
Q 10
O
o
_i 9
IE
0 8
Ul
U)
Ul
o:
H 6
»•
„ 200
u.
v 180
<
o
N' 160
LU
^ 140
m
I
I- 120
Ul
£ 100
u.
Ul
o
o BO
Ul
0
i.
o
•x
UJ 40
(TREME CONDITIONS) - F
j (O O — l>
"• o
Ul
Ul
TEMPERATURE Rl
» Ol O)
I- •*
z
o- 3
+>i
y
J F
y
/
x
,r
?p
MAM
TIME -
•••
••.
\
*y
^
J J A S
MONTHS
^
0
V
!*
N D
JFMAMJ JASON D
TIME - MONTHS
JFMAMJJASOND
TIME - MONTHS
FIGURE 123 - RESULTS FOR HUNTINGTON, WEST VIRGINIA
232
-------
100
90
UJ
a:
IT
UI
£L
UJ
I-
5
3
OL
ffi
o
UJ
MAMJ JAS
TIME - MONTHS
OND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^o>a>oi\).J>c
3OOOOOOOC
'v*.
^.
/
V
/
fl
J>
J
i
i
/
'/
f
*r»,
\
"o.
^
•s
X,
N
\
>
\
N
\
\
V
\
V
>
v
X
ft=
X
A=l
A=i
\
80'
'
50(
^
™
'Ml
s«-
) /
) /
I »-
> f\
^*
^Rl
^
CHI
^
x>
iCH
>-
«5
>
x
.s
X
^y
/
4
y
^
-.u
/
y
/
/
/
/
^
X
y
y
JFMAMJ JASON D
TIME - MONTHS
u. 12
z
o
t
o
o
u
UJ
s
X
UJ
UJ
(/)
UI
cc
§
at
UJ
o.
Z
UJ
I-
•z
<
_l
D.
•o-
Sx.
M
>
"*0
\
v,
\
\
V
o
'
V
\
y
X
\
1
o
80
\>.
ISC
h°-
22
VI.
0 /!
^/
0 /
^>
)U,
J2.
CR
^>«
CR
*
vck
,-?*
iS
-o'
iS
M
J)
tb
n1
ff
^
ct
?
,J
S3
4
&
^»
F
f.
P
rf
J
'
rf
'
6
/
JFMAMJ JASOND
TIME - MONTHS
FIGURE 124 - RESULTS FOR GREEN BAY, WISCONSIN
233
-------
EQUILIBRIUM TEMPERATURE - F8
MOJ^OI^JOB
f
fj
f
TR
<
if A
I
'
FMI
\
i
1 J
'
n'
7A
A
A
O
'/
f
•
\
YEf
f-0"
k
V
>
r
\
Q
V
\
»
fo
\\
\
V
\
v\
V
\
v*
s
o 200
u.
y. ISO
<.
0
J 160
u.
^ 140
m
I
1- 120
UJ
*_>
u_ I0°
u.
UJ
o
° 80
UJ
19
z
^ 60
i
X
UJ 40
..
-
'S
x
^
>
V
t
\
'
1!
\
^l
00
Y>
oo
**o.
20(
ho.
AC
n
AC
-o
) A
REJ
^
REJ
^'
:RE
ny
^
y
'
f'
t
^
9
.TV*
^T
sf
-°>
^^
JF
M A M J J A S
TIME - MONTHS
FIGURE 125 - RESULTS FOR CASPER, WYOMING
0 N D
234
-------
Access/on Number
Subject Field & Group
05G
SELECTED WATER RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
Organization
Vanderbilt University, Department of Environmental § Water Resources Engineering,
Nashville, Tennessee
Title
EFFECT OF GEOGRAPHICAL LOCATION ON COOLING POND REQUIREMENTS AND PERFORMANCE
10
Authors)
Thackston,
E.
L.
16
Project Designation
EPA
#16130FDO
Parker, F. L.
Note
22
Citation
23
Descriptors (Starred First)
*Ponds, *Cooling, *Heat transfer, *Thermal pollution, Water temperature, Temperature,
Thermal powerplants, Mathematical models, United States, Geographical regions,
Meteorology
25
Identifiers (Starred First)
Cooling ponds, Heat transfer coefficient, Equilibrium temperature, Geographic variation
27
Abstract
The energy budget approach to cooling ponds has been outlined and applied to cooling
ponds. Monthly average weather data from 88 stations throughout the U.S. were used to
calculate equilibrium temperatures, heat exchange coefficients, and amount of cooling in
various sized ponds receiving the effluent from a standard power plant of 1000-mw capacity,
both for average and extreme weather conditions. The data for each station is shown on a
chart, and the variation of these results across the U.S. is depicted by a series of 28
maps of the U.S. with contours connecting equal values of the parameters. The results may
also be used to estimate cooling pond performance for other sized power plants.
The maps disclose variations across the U.S., on a given date, of up to 55°F in
equilibrium temperature, up to 100% difference in heat exchange coefficients, up to 50%
difference in heat lost from a given sized pond, and up to 200% difference in the size of
a pond necessary to produce an equal cooling effect.
This report was a production of the National Center for Research and Training in the
Hydraulic and Hydrologic Aspects of Pollution Control at Vanderbilt University, sponsored
under contract number 16130 FDQ by the Federal Water Quality Administration of the
Environmental Protection Agency.
Abstractor
E.L. Thackston
ItiNtitntion
Vanderbilt llni varsity Nashville.Tenn-
WR;1D2 (REV. JULY 1969)
WRSIC
SEND, WITH COPY Of-' DOCUMENT. TO: WATER RESOURCES SCIENT.IFIC INFORMATION CENTER
U.S. DEPARTMENT OF THE INTERIOR
WASHINGTON, D. C. 20240
GPO: 1970 - 407 -891
------- |