* WATER POLLUTION CONTROL RESEARCH SERIES •16130 FDQ 03/71^
   Effect of Geographical  Location
    on Cooling Pond Requirements
          and Performance
ENVIRONMENTAL PROTECTION AGENCY • WATER QUALITY OFFICE

-------
     WATER POLLUTION CONTROL RESEARCH SERIES
The Water Pollution Control Research Series describes
the results and progress in the control and abatement
of pollution in our Nation's waters.  They provide a
central source of information on the research ,  develop-
ment, and demonstration activities in the Water  Quality
Office, Environmental Protection Agency, through inhouse
research and grants and contracts with Federal,  State,
and local agencies, research institutions, and industrial
organizations.

Inquiries pertaining to Water Pollution Control  Research
Reports should be directed to the Head, Project  Reports
System, Office of Research and Development, Water Quality
Office, Environmental Protection Agency, Room 1108,
Washington, D. C.  20242.

-------
             EFFECT OF GEOGRAPHICAL  LOCATION ON

          COOLING  POND REQUIREMENTS  AND  PERFORMANCE
                     Vanderbilt University
Department of Environmental  and Water  Resources  Engineering
                  Nashville, Tennessee   37203
                             for the

                     WATER  QUALITY OFFICE

                ENVIRONMENTAL PROTECTION AGENCY
                     Project  No. 16130  FDQ
                          March 1971
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.O. 20402 - Price $2.00
                          Stock Number 5501-0138

-------
                 EPA Review Notice
This report has been reviewed by the Water Quality
Office, EPA, and approved for publication. Approval
does not signify that the contents necessarily
reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or
recommendation for use.
                           11

-------
                                ABSTRACT
The energy budget approach to cooling ponds has been outlined and applied
to cooling ponds.  Monthly average weather data from 88 stations through-
out the U. S. were used to calculate equilibrium temperatures, heat ex-
change coefficients, and amount of cooling in various sized ponds receiving
the effluent from a standard power plant of 1000-mw capacity, both for
average and extreme weather conditions.  The data for each station is
shown on a chart, and the variation of these results across the U. S. is
depicted by a series of 28 maps of the U. S. with contours connecting
equal values of the parameters.  The results may also be used to estimate
cooling pond performance for other sized power plants.

The maps disclose variations across the U. S., on a given date, of up to
55°F in equilibrium temperature, up to 100% difference in heat exchange
coefficients, up to 50% difference in heat lost from a given sized pond,
and up to 200% difference in the size of a pond necessary to produce an
equal cooling effect.
This report was a production of the National Center for Research and
Training in the Hydraulic and Hydrologic Aspects of Pollution Control at
Vanderbilt University, sponsored under contract number 16130 FDQ by the
Federal Water Quality Administration of the Environmental Protection
Agency.


Key Words:  Ponds*, Cooling*, Heat transfer*, Thermal pollution*, Water
            temperature, Temperature, Thermal powerplants, Mathematical
            models, United States, Geographic regions, Meteorology,
            Cooling ponds, Heat transfer coefficient, Equilibrium tempera-
            ture, Geographic variation.
                                   111

-------
                              ACKNOWLEDGMENTS
This report is issued under the aegis of the National Center for Research
and Training in the Hydraulic and Hydrologic Aspects of Water Pollution
Control at Vanderbilt University, sponsored under contract number 16130
FDQ by the Water Quality Office of the Environmental Protection Agency.
The support of the Water Quality Office and the help and encouragement
of Frank Rainwater, Director of the National Thermal Pollution Research
Program, the Project Officer, and Arnold Joseph, Assistant Director of
Engineering, Division of Water Quality Research, EPA.

Edward L. Thackston was principal investigator for the research project
and principal author of this report.  Frank L. Parker is director of
the Research Center and was a contributor and co-author of this report.

The authors wish to acknowledge the contributions of several research
assistants who were of great value in the execution of this project.
Larry Elliot was responsible for most of the data processing. Martha
Cogbill helped with the programming and the production of methods to
calculate solar radiation and longwave radiation.  Data plotting was
performed by Larry Elliot and Miss Julie Hsieh, and Mmes.  Vita Rietveld
and Ann Rees did the drafting.  Mrs. Peggie Bush typed the final manu-
script.
                                 v

-------
                            TABLE OF CONTENTS


                                                                      Page

ABSTRACT	   iii

ACKNOWLEDGMENTS  	    v

LIST OF FIGURES	    ix

LIST OF TABLES	    xv

INTRODUCTION  	    1

DATA TO BE PRESENTED	    3

     Equilibrium Temperature                                            3
     Surface Heat Exchange Coefficient                                  3
     Pond Effluent Temperature at Standard Plant                        4

METHODS OF CALCULATION  	    7

     Heat Budget                                                        7
     Equilibrium Temperature                                           14
     Heat Exchange Coefficient                                         15
     Amount of Cooling  in Ponds                                        15

SOURCE OF METEOROLOGICAL INFORMATION 	   17

SENSITIVITY ANALYSIS  	   19

     Effect of Time Averaging                                          19
     Effect of Pond Depth                                              21
     Effect of Season                                                  21
     Effect of Pond Size                                               21

RELATION OF COMPLETELY MIXED POND TO PLUG FLOW POND	   25

RESULTS FOR EACH STATION	   29

     Effect of Geographical Location on Pond Performance               32
     Accuracy of Contour Lines                                         49

EXAMPLE CALCULATIONS  	   51

REFERENCES	   53

APPENDIX I - WEATHER INFORMATION FOR INDIVIDUAL STATIONS 	   55

APPENDIX II - RESULTS OF COMPUTATIONS FOR INDIVIDUAL STATIONS  ...  145
                                   vn

-------
                              LIST OF FIGURES
No.                                                                    Page
  1   ABSORBED SOLAR RADIATION AS A FUNCTION OF SOLAR ALTITUDE FOR
      CLEAR SKY CONDITIONS                                               9

  2   AVERAGE DAILY ABSORBED RADIATION FOR CLEAR SKY CONDITIONS AS A
      FUNCTION OF DAY OF YEAR                                           11

  3   EFFECT OF TEMPERATURE ON VAPOR PRESSURE                           13

  4   EFFECT OF TIME AVERAGING ON POND TEMPERATURE                      20

  5   EFFECT OF DEPTH OF COMPLETELY MIXED POND ON AMOUNT OF COOLING,
      NASHVILLE, TENNESSEE                                              22

  6   EFFECT OF POND SURFACE AREA ON AMOUNT OF COOLING FOR VARIOUS
      SEASONS, NASHVILLE, TENNESSEE                                     23

  7   SAMPLE DATA SHEET FOR METEOROLOGICAL INFORMATION                  30

  8   SAMPLE GRAPH OF RESULTS FOR A SINGLE STATION                      31

  9   EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE FOR
      AVERAGE WEATHER CONDITIONS                                        33

 10   EQUILIBRIUM TEMPERATURE ON JANUARY 1 - MONTHLY AVERAGE FOR
      EXTREME WEATHER CONDITIONS                                        33

 11   EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE FOR
      AVERAGE WEATHER CONDITIONS                                        34

 12   EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE FOR
      EXTREME WEATHER CONDITIONS                                        34

 13   EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE FOR AVERAGE
      WEATHER CONDITIONS                                                35

 14   EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE FOR EXTREME
      WEATHER CONDITIONS                                                35

 15   EQUILIBRIUM TEMPERATURE ON OCTOBER 1 - MONTHLY AVERAGE FOR
      AVERAGE WEATHER CONDITIONS                                        36

 16   EQUILIBRIUM TEMPERATURE ON OCTOBER 1 - MONTHLY AVERAGE FOR
      EXTREME WEATHER CONDITIONS                                        36

 17   TIME (IN DAYS) THAT MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE FOR
      AVERAGE WEATHER CONDITIONS IS ABOVE 75°F                          37
                                    IX

-------
                        LIST OF FIGURES (Continued)
No.
 18   DATE ON WHICH MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE FOR
      AVERAGE WEATHER CONDITIONS RISES THROUGH 60°F IN THE SPRING       37

 19   HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE FOR
      AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)                     38

 20   HEAT EXCHANGE COEFFICIENT ON JANUARY 1 - MONTHLY AVERAGE FOR
      EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)                     38

 21   HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE FOR
      AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)                     39

 22   HEAT EXCHANGE COEFFICIENT ON JULY 1 - MONTHLY AVERAGE FOR
      EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)                     39

 23   NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1 - MONTHLY
      AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)                       41

 24   NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1 - MONTHLY
      AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)                       41

 25   NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1 - MONTHLY
      AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)                       42

 26   NET TEMPERATURE RISE FOR 1500-ACRE POND ON JULY 1 - MONTHLY
      AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)                       42

 27   NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1 - MONTHLY
      AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)                       43

 28   NET TEMPERATURE RISE FOR 2200-ACRE POND ON JANUARY 1 - MONTHLY
      AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)                       43

 29   NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1 - MONTHLY
      AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)                       44

 30   NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1 - MONTHLY
      AVERAGE FOR EXTREME WEATHER CONDITIONS (°F)                       44

 31   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
      (7.5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER
      CONDITIONS                                                        46

 32   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
      (7.5° NET TEMPERATURE RISE) ON JANUARY 1 - EXTREME WEATHER
      CONDITIONS                                                        46

-------
                        LIST OF FIGURES (Continued)


No.                                                                     Page

 33   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
      (7.5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER
      CONDITIONS                                                        47

 34   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
      (7.5° NET TEMPERATURE RISE) ON JULY 1 - EXTREME WEATHER
      CONDITIONS                                                        47

 35   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
      (5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER
      CONDITIONS                                                        48

 36   SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
      (5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER
      CONDITIONS                                                        48

 37   RESULTS FOR HUNTSVILLE, ALABAMA                                  146

 38   RESULTS FOR MOBILE, ALABAMA                                      147

 39   RESULTS FOR PHOENIX, ARIZONA                                     148

 40   RESULTS FOR FORT SMITH, ARKANSAS                                 149

 41   RESULTS FOR LITTLE ROCK, ARKANSAS                                150

 42   RESULTS FOR BURBANK, CALIFORNIA                                  151

 43   RESULTS FOR FRESNO, CALIFORNIA                                   152

 44   RESULTS FOR OAKLAND, CALIFORNIA                                  153

 45   RESULTS FOR DENVER, COLORADO                                     154

 46   RESULTS FOR GRAND JUNCTION, COLORADO                             155

 47   RESULTS FOR HARTFORD, CONNECTICUT                                156

 48   RESULTS FOR WILMINGTON, DELAWARE                                 157

 49   RESULTS FOR WASHINGTON, D. C.                                    158

 50   RESULTS FOR JACKSONVILLE, FLORIDA                                159

 51   RESULTS FOR MIAMI, FLORIDA                                       160

 52   RESULTS FOR TAMPA, FLORIDA                                       161
                                    XI

-------
                        LIST OF FIGURES (Continued)






No.                                                                    Page





 53   RESULTS FOR ATLANTA, GEORGIA                                     162




 54   RESULTS FOR BOISE, IDAHO                                         163




 55   RESULTS FOR CHICAGO, ILLINOIS                                    164




 56   RESULTS FOR SPRINGFIELD, ILLINOIS                                165




 57   RESULTS FOR EVANSVILLE, INDIANA                                  166




 58   RESULTS FOR INDIANAPOLIS, INDIANA                                167




 59   RESULTS FOR SOUTH BEND, INDIANA                                  168




 60   RESULTS FOR DBS MOINES, IOWA                                     169




 61   RESULTS FOR SIOUX CITY, IOWA                                     170




 62   RESULTS FOR DODGE CITY, KANSAS                                   171




 63   RESULTS FOR TOPEKA, KANSAS                                       172




 64   RESULTS FOR LEXINGTON, KENTUCKY                                  173




 65   RESULTS FOR LOUISVILLE, KENTUCKY                                 174




 66   RESULTS FOR NEW ORLEANS, LOUISIANA                               175




 67   RESULTS FOR SHREVEPORT, LOUISIANA                                176




 68   RESULTS FOR CARIBOU, MAINE                                       177




 69   RESULTS FOR PORTLAND, MAINE                                      178




 70   RESULTS FOR BALTIMORE, MARYLAND                                  179




 71   RESULTS FOR BOSTON, MASSACHUSETTS                                180




 72   RESULTS FOR DETROIT, MICHIGAN                                    181




 73   RESULTS FOR MUSKEGON, MICHIGAN                                   182




 74   RESULTS FOR SAULT STE. MARIE, MICHIGAN                           183




 75   RESULTS FOR DULUTH, MINNESOTA                                    184




 76   RESULTS FOR MINNEAPOLIS-ST. PAUL, MINNESOTA                      185
                                     XII

-------
                        LIST OF FIGURES (Continued)






Np^.                                                                    Page




 77   RESULTS FOR JACKSON, MISSISSIPPI                                 186




 78   RESULTS FOR ST. LOUIS, MISSOURI                                  187




 79   RESULTS FOR SPRINGFIELD, MISSOURI                                188




 80   RESULTS FOR BILLINGS, MONTANA                                    189




 81   RESULTS FOR HELENA, MONTANA                                      190




 82   RESULTS FOR NORTH PLATTE, NEBRASKA                               191




 83   RESULTS FOR OMAHA, NEBRASKA                                      192




 84   RESULTS FOR ELKO, NEVADA                                         193




 85   RESULTS FOR LAS VEGAS, NEVADA                                    194




 86   RESULTS FOR RENO, NEVADA                                         195




 87   RESULTS FOR CONCORD, NEW HAMPSHIRE                               196




 88   RESULTS FOR NEWARK, NEW JERSEY                                   197




 89   RESULTS FOR ALBUQUERQUE, NEW MEXICO                              198




 90   RESULTS FOR ALBANY, NEW YORK                                     199




 91   RESULTS FOR BUFFALO, NEW YORK                                    200




 92   RESULTS FOR NEW YORK, NEW YORK                                   201




 93   RESULTS FOR CHARLOTTE, NORTH CAROLINA                            202




 94   RESULTS FOR WILMINGTON, NORTH CAROLINA                           203




 95   RESULTS FOR BISMARCK, NORTH DAKOTA                               204




 96   RESULTS FOR CLEVELAND, OHIO                                      205




 97   RESULTS FOR COLUMBUS, OHIO                                       206




 98   RESULTS FOR OKLAHOMA CITY, OKLAHOMA                              207




 99   RESULTS FOR ASTORIA, OREGON                                      208




100   RESULTS FOR PENDLETON, OREGON                                    209
                                   Xlll

-------
                        LIST OF FIGURES (Continued)






N(p.




101   RESULTS FOR PORTLAND, OREGON                                     21°




102   RESULTS FOR AVOCA, PENNSYLVANIA                                  211




103   RESULTS FOR PHILADELPHIA, PENNSYLVANIA                           212




104   RESULTS FOR SCRANTON, PENNSYLVANIA                               213




105   RESULTS FOR CHARLESTON, SOUTH CAROLINA                           214




106   RESULTS FOR COLUMBIA, SOUTH CAROLINA                             215




107   RESULTS FOR GREER, SOUTH CAROLINA, AVERAGE CONDITION             216




108   RESULTS FOR HURON, SOUTH DAKOTA                                  217




109   RESULTS FOR RAPID CITY, SOUTH DAKOTA                             218




110   RESULTS FOR KNOXVILLE, TENNESSEE                                 219




111   RESULTS FOR MEMPHIS, TENNESSEE                                   220




112   RESULTS FOR NASHVILLE, TENNESSEE                                 221




113   RESULTS FOR BROWNSVILLE, TEXAS                                   222




114   RESULTS FOR DALLAS, TEXAS                                        223




115   RESULTS FOR EL PASO, TEXAS                                       224




116   RESULTS FOR HOUSTON, TEXAS                                       225




117   RESULTS FOR SALT LAKE CITY, UTAH                                 226




118   RESULTS FOR BURLINGTON, VERMONT                                  227




119   RESULTS FOR NORFOLK, VIRGINIA                                    228




120   RESULTS FOR ROANOKE, VIRGINIA                                    229




121   RESULTS FOR SEATTLE, WASHINGTON                                  230




122   RESULTS FOR SPOKANE, WASHINGTON                                  231




123   RESULTS FOR HUNTINGTON, WEST VIRGINIA                            232




124   RESULTS FOR GREEN BAY, WISCONSIN                                 233




125   RESULTS FOR CASPER, WYOMING                                      234




                                    xiv

-------
                             LIST OF TABLES


No.                                                                   Page

  1  EQUATIONS FOR AVERAGE DAILY ABSORBED SOLAR RADIATION
     (BTU/SQ FT-HR) FOR CLEAR SKY CONDITIONS                           10

  2  EQUATIONS USED FOR CALCULATION OF CONSTANT 3 IN EQUATION FOR
     ATMOSPHERIC RADIATION                                             12

  3  RATIO OF AREA REQUIRED BY PLUG-FLOW POND TO THAT REQUIRED BY
     COMPLETELY MIXED POND TO PRODUCE EQUIVALENT COOLING UNDER
     SAME CONDITIONS                                                   26

  4  WEATHER INFORMATION FOR HUNTSVILLE, ALABAMA                       56

  5  WEATHER INFORMATION FOR MOBILE, ALABAMA                           57

  6  WEATHER INFORMATION FOR PHOENIX, ARIZONA                          58

  7  WEATHER INFORMATION FOR FORT SMITH, ARKANSAS                      59

  8  WEATHER INFORMATION FOR LITTLE ROCK, ARKANSAS                     60

  9  WEATHER INFORMATION FOR BURBANK, CALIFORNIA                       61

 10  WEATHER INFORMATION FOR FRESNO, CALIFORNIA                        62

 11  WEATHER INFORMATION FOR OAKLAND, CALIFORNIA                       63

 12  WEATHER INFORMATION FOR DENVER, COLORADO                          64

 13  WEATHER INFORMATION FOR GRAND JUNCTION, COLORADO                  65

 14  WEATHER INFORMATION FOR HARTFORD, CONNECTICUT                     66

 15  WEATHER INFORMATION FOR WILMINGTON, DELAWARE                      67

 16  WEATHER INFORMATION FOR WASHINGTON, D. C.                         68

 17  WEATHER INFORMATION FOR JACKSONVILLE, FLORIDA                     69

 18  WEATHER INFORMATION FOR MIAMI, FLORIDA                            70

 19  WEATHER INFORMATION FOR TAMPA, FLORIDA                            71

 20  WEATHER INFORMATION FOR ATLANTA, GEORGIA                          72

 21  WEATHER INFORMATION FOR BOISE, IDAHO                              73

 22  WEATHER INFORMATION FOR CHICAGO, ILLINOIS                         74
                                  xv

-------
                       LIST OF TABLES  (Continued)







No.                                                                   Page




 23  WEATHER INFORMATION FOR SPRINGFIELD, ILLINOIS                      75




 24  WEATHER INFORMATION FOR EVANSVILLE, INDIANA                        76




 25  WEATHER INFORMATION FOR INDIANAPOLIS, INDIANA                      77




 26  WEATHER INFORMATION FOR SOUTH BEND, INDIANA                        78




 27  WEATHER INFORMATION FOR DES MOINES, IOWA                           79




 28  WEATHER INFORMATION FOR SIOUX CITY, IOWA                           80




 29  WEATHER INFORMATION FOR DODGE CITY, KANSAS                         81




 30  WEATHER INFORMATION FOR TOPEKA, KANSAS                             82




 31  WEATHER INFORMATION FOR LEXINGTON, KENTUCKY                        83




 32  WEATHER INFORMATION FOR LOUISVILLE, KENTUCKY                       84




 33  WEATHER INFORMATION FOR NEW ORLEANS, LOUISIANA                     85




 34  WEATHER INFORMATION FOR SHREVEPORT, LOUISIANA                      86




 35  WEATHER INFORMATION FOR CARIBOU, MAINE                             87




 36  WEATHER INFORMATION FOR PORTLAND, MAINE                            88




 37  WEATHER INFORMATION FOR BALTIMORE, MARYLAND                        89




 38  WEATHER INFORMATION FOR BOSTON, MASSACHUSETTS                      90




 39  WEATHER INFORMATION FOR DETROIT, MICHIGAN                          91




 40  WEATHER INFORMATION FOR MUSKEGON, MICHIGAN                         92




 41  WEATHER INFORMATION FOR SAULT STE. MARIE, MICHIGAN                 93




 42  WEATHER INFORMATION FOR DULUTH, MINNESOTA                          94




 43  WEATHER INFORMATION FOR MINNEAPOLIS-ST. PAUL, MINNESOTA            95




 44  WEATHER INFORMATION FOR JACKSON, MISSISSIPPI                       96




 45  WEATHER INFORMATION FOR ST. LOUIS, MISSOURI                        97




 46  WEATHER INFORMATION FOR SPRINGFIELD, MISSOURI                      98
                                  xvi

-------
                      LIST OF TABLES (Continued)






q^                                                                   Page




47  WEATHER INFORMATION FOR BILLINGS,  MONTANA                         99




48  WEATHER INFORMATION FOR HELENA, MONTANA                          100




49  WEATHER INFORMATION FOR NORTH PLATTE, NEBRASKA                   101




50  WEATHER INFORMATION FOR OMAHA, NEBRASKA                          102




51  WEATHER INFORMATION FOR ELKO, NEVADA                             103




52  WEATHER INFORMATION FOR LAS VEGAS, NEVADA                        104




53  WEATHER INFORMATION FOR RENO, NEVADA                             105




54  WEATHER INFORMATION FOR CONCORD, NEW HAMPSHIRE                   106




55  WEATHER INFORMATION FOR NEWARK, NEW JERSEY                       107




56  WEATHER INFORMATION FOR ALBUQUERQUE, NEW MEXICO                  108




57  WEATHER INFORMATION FOR ALBANY, NEW YORK                         109




58  WEATHER INFORMATION FOR BUFFALO, NEW YORK                        110




59  WEATHER INFORMATION FOR NEW YORK,  NEW YORK                       111




60  WEATHER INFORMATION FOR CHARLOTTE, NORTH CAROLINA                112




61  WEATHER INFORMATION FOR WILMINGTON, NORTH CAROLINA               113




62  WEATHER INFORMATION FOR BISMARCK,  NORTH DAKOTA                   114




63  WEATHER INFORMATION FOR CLEVELAND, OHIO                          115




64  WEATHER INFORMATION FOR COLUMBUS,  OHIO                           116




65  WEATHER INFORMATION FOR OKLAHOMA CITY, OKLAHOMA                  117




66  WEATHER INFORMATION FOR ASTORIA, OREGON                          118




67  WEATHER INFORMATION FOR PENDLETON, OREGON                        119




68  WEATHER INFORMATION FOR PORTLAND,  OREGON                         120




69  WEATHER INFORMATION FOR AVOCA, PENNSYLVANIA                      121




70  WEATHER INFORMATION FOR PHILADELPHIA, PENNSYLVANIA               122
                                 xvi i

-------
                       LIST OF TABLES (Continued)






No.                                                                   Page




 71  WEATHER INFORMATION FOR SCRANTON, PENNSYLVANIA                   123




 72  WEATHER INFORMATION FOR CHARLESTON, SOUTH CAROLINA               124




 73  WEATHER INFORMATION FOR COLUMBIA, SOUTH CAROLINA                 125




 74  WEATHER INFORMATION FOR GREER, SOUTH CAROLINA                    126




 75  WEATHER INFORMATION FOR HURON, SOUTH DAKOTA                      127




 76  WEATHER INFORMATION FOR RAPID CITY, SOUTH DAKOTA




 77  WEATHER INFORMATION FOR KNOXVILLE,  TENNESSEE




 78  WEATHER INFORMATION FOR MEMPHIS, TENNESSEE                       130




 79  WEATHER INFORMATION FOR NASHVILLE,  TENNESSEE                     131




 80  WEATHER INFORMATION FOR BROWNSVILLE, TEXAS                       132




 81  WEATHER INFORMATION FOR DALLAS, TEXAS                            133




 82  WEATHER INFORMATION FOR EL PASO, TEXAS                           134




 83  WEATHER INFORMATION FOR HOUSTON, TEXAS                           135




 84  WEATHER INFORMATION FOR SALT LAKE CITY, UTAH                     136




 85  WEATHER INFORMATION FOR BURLINGTON, VERMONT                      137




 86  WEATHER INFORMATION FOR NORFOLK, VIRGINIA                        138




 87  WEATHER INFORMATION FOR ROANOKE, VIRGINIA                        139




 88  WEATHER INFORMATION FOR SEATTLE, WASHINGTON                      140




 89  WEATHER INFORMATION FOR SPOKANE, WASHINGTON                      141




 90  WEATHER INFORMATION FOR HUNTINGTON, WEST VIRGINIA                142




 91  WEATHER INFORMATION FOR GREEN BAY,  WISCONSIN                     143




 92  WEATHER INFORMATION FOR CASPER, WYOMING                          144
                                  XV 111

-------
                              INTRODUCTION
Cooling of heated condenser water from power stations before discharge to
the environment will probably be much more common in the future than it is
now.  Stricter water quality standards, increased pressure from state and
federal regulatory agencies, and greater amounts of heat brought about by
larger generating stations are all combining to make this trend inevitable.

Water may be cooled by dry cooling towers, wet cooling towers, or cooling
ponds.  The dry cooling tower depends almost solely on conduction for heat
dissipation, and the wet cooling tower depends almost solely on evapora-
tion.  Both involve high capital costs, although wet cooling towers are
considerably cheaper than dry towers.
Cooling ponds dissipate heat by radiation, evaporation, and conduction.
By relying less heavily on evaporation, they do not consume as much water
as towers for the dissipation of the excess heat.  However, by not having
a forced draft, either structurally or mechanically induced, they require
much greater areas.  In localities where sufficient area is available,
cooling ponds frequently are the cheapest and simplest method for cooling
water before discharge or reuse.

The design of cooling ponds is sometimes based on rules of thumb, such as
1 to 2 acres per megawatt of installed capacity, according to Berman (1),
or 75 to 150 BTU of heat loss per hour per square foot coupled with engi-
neering judgment and experience.  However, rational design should be
based on the total energy budget, since regional or local meteorological
conditions can greatly influence the rate of heat transfer, and, thus,
the size of ponds necessary to produce a given cooling effect.

Many references are available in the literature on the energy budget ap-
proach to heat transfer calculations, and some give illustrative examples.
However, none provide the engineer with a quick estimate at a specific
locality of pond size and performance necessary to make preliminary fea-
sibility determinations, or to check the reasonableness of calculations.
This is the purpose of the present investigation.  Calculated energy bud-
get data will be presented for sites representing the contiguous United
States.

A consultant or a power company may use this data to determine approximate
pond sizes necessary to produce a specified cooling effect at a given
site; to investigate the effect on pond size of different cooling require-
ments; to determine the influence of season on pond performance; to esti-
mate the effect of different geometrical configurations; and to estimate
the effect of possible alternate sites.

The engineer for a regulatory agency can use this data as an independent
check on the reasonableness and/or adequacy of proposed designs which he
is charged with reviewing, by determining or estimating the same param-
eters of performance.

-------
                          DATA TO BE PRESENTED
In investigating the feasibility of a cooling pond, or in evaluating the
design of a proposed pond, certain questions always need to be considered.
Among these are:
     (1)  What will be the temperature of the power plant intake?
     (2)  What will be the temperature of the cooling pond inlet?
     (3)  What will be the temperature of the cooling pond outlet, for a
          given pond size?
     (4)  What is the limit to which the heated water can be cooled?
     (5)  What size pond will be necessary to achieve a certain degree of
          cooling?
     (6)  What effect will the variability of weather conditions at a site
          have on the pond performance?  How much will abnormal heating
          conditions raise the pond effluent temperature?

Most of these questions can be answered by calculating three parameters -
the equilibrium temperature, the heat exchange coefficient,  and the pond
effluent temperature.  All three should be calculated for different times
during the year; all three should be calculated for both "normal" (aver-
age) meteorological conditions and "critical" heating conditions (those
expected to occur with some predetermined critical frequency);  and the
pond effluent temperature should be claculated for various pond sizes.

Equilibrium Temperature

The equilibrium temperature is the temperature to which a body of water
would eventually come if exposed to constant meteorological conditions.
It is, therefore, a function of the particular conditions at a given lo-
cation.  A body of water not at the equilibrium temperature will tend to
approach equilibrium asymptotically.  The equilibrium temperature will
vary throughout the day and throughout the year as the solar radiation,
air temperature, wind speed, and other meteorological variables vary.
A very shallow body of water will vary widely in temperature during the
day as it follows the changing equilibrium temperature.  However, the
heat content of water is so great that the temperature of large, deep
bodies of water does not fluctuate greatly during the day.  Thus, average
daily conditions are reasonably descriptive for large bodies of water,
and the equilibrium temperature may be calculated on an average daily
basis.

The temperature of natural water bodies continually approaches  the equi-
librium temperature but lags behind any changes.  It is usually very close
to equilibrium during the summer and winter, but is lower during the
spring as the equilibrium temperature rises rapidly, and higher during
the fall as the equilibrium temperature falls rapidly.
Surface Heat Exchange Coefficient

An isolated body of water not at equilibrium will approach equilibrium at
a rate approximately proportional to the difference between actual surface
temperature and equilibrium temperature (the forcing function), and to a
rate constant which is a function of meteorological conditions  (the heat
exchange coefficient).  This can be expressed as

-------
                               = -K dw - Te)                         (1)

where  H = enthalpy, BTU's,
       t = time, days,
       K = surface heat exchange coefficient BTU/ft2-day-°F
      Tw = water surface temperature, °F,
      Te = equilibrium temperature, °F-

Equation 1 is not an exact description of the process (if K is a constant),
because all of the heat exchange processes are not truly linear functions
of temperature, but it is close enough to be descriptive of relative mag-
nitudes and trends.  Comparison of the heat exchange coefficient calculated
for various seasons, locations, and frequencies of occurrence will provide
insight into the relative efficiency of cooling ponds under different con-
ditions .
Pond Effluent Temperature at Standard Plant

Equation 1 may be used to calculate rates of surface heat exchange for
given time increments (after calculating K and Te from average meteorolog-
ical conditions for that time increment) and applied to the water volume
to compute the temperature change.  This approach to computing water tem-
peratures has been used extensively by Duttweiler (2) and Edinger, et al.
(3,4,5).  Because of its mathematical simplicity; it is the preferred ap-
proach to be used in many situations of complex geometry and hydraulics.

Another approach is to compute the heat transfer during a given time in-
crement due to each mechanism of heat exchange and sum them to obtain the
total heat gain or loss.  An example of this approach is given by Raphael
(6) .  This calculation approach is more accurate, because the individual
expressions for heat transfer do not need to be linearized, but its math-
ematical complexity limits its application to simple hydraulic configura-
tions, such as plug flow or backmix flow in ponds or reservoirs, or one-
dimensional flow in streams.

Since the object of this work is to compare the influence of location on
cooling pond performance, a standard pond configuration will be assumed.
This standard configuration should be as simple as possible, in order to
facilitate comparison of conditions.  Therefore, a completely mixed pond
was assumed.  Most one-cell ponds approach this condition in practice.
For this simple configuration, Raphael's approach (6), calculating each
individual energy transfer component, can be easily used.  In addition,
this approach allows one to tabulate the heat transfer due to different
mechanisms under different conditions, and thereby to determine the effect
of meteorological conditions on the individual mechanisms.

The "standard plant" assumed for all cases was of 1,000-megawatt capacity.
The flow of cooling water was 1350 cfs, and the temperature rise across
the condensers was 15°F.  This is equivalent to a plant efficiency of 37
to 38 percent, and is a function of the thermodynamic efficiency and the
amount of heat lost from the boilers, through the stack, etc.

The pond effluent temperature was calculated for 15-foot deep completely
mixed ponds of various surface areas for each month at each site, under
both "normal" and "critical" meteorological conditions.  The data will be

-------
presented as "net plant temperature rise," that is,  15°F minus the cooling
effect of the pond.  For simplicity, the intake temperature is assumed to
be the equilibrium temperature;  therefore, the pond  effluent temperature
will be equilibrium plus the net plant rise.

-------
                         METHODS OF CALCULATION
Heat Budget

The net, or total surface heat exchange, H^, of a body of water is

                       H=H+H+H,+H+H                     (2)
                        tsaoec
where Hs is the absorbed solar radiation, Ha is the absorbed longwave
atmospheric radiation, H^ is the longwave back radiation of the water body
to space, He is the heat lost by evaporation, and Hc is the heat gained or
lost by conduction.  The individual terms will be defined so that they are
positive when heat is being gained by the water body and negative when
heat is being lost by the water body.  Since all the signs in Equation 2
are positive, the same convention will hold for the net surface heat ex-
change, Ht.

Calculation of individual components of the heat budget generally followed
the procedures outlined by Raphael (6).   Much of his methodology was, in
turn, derived from the Lake Hefner Studies of the U. S. Geological Survey
reported by Anderson  (7).  Certain modifications to Raphael's procedure
had to be made, however, to adapt it to machine computation.  The calcu-
lation procedure was designed to require only the standard information
tabulated by the weather bureau - temperature, relative humidity, wind
speed, and cloud cover, plus the location of the site and the time of year.

Solar Radiation - Several tabulations or graphs of average daily solar
radiation as a function of latitude and time of year are available (8,9,
10).  Differences among them are generally in the order of 5 percent, but
may be as much as 20 percent of the low values experienced in December
and January.  All three of these references give only average daily
incident radiation.  Absorbed radiation, however, is incident radiation
minus reflected radiation.  There is no simple way to calculate the re-
flected radiation from these data, because the fraction reflected is a
function of solar altitude, which varies throughout the day.  The average
solar altitude varies throughout the year- and the reflectivity is not a
linear function of solar altitude.

The use of Raphael's calculation procedure allows reflected radiation to
be calculated easily, and a set of tables or curves similar to those in
the references above can be constructed, but for actual absorbed radiation,
not just incident radiation.  It also will allow separation of direct and
diffuse solar radiation for those situations where shading of part of the
water surface is significant.  Furthermore, the use of Raphael's procedure
will allow calculation of radiation variation during the day.

The altitude of the sun above the horizon was calculated from the equation

                  sin a = sin $ sin & + cos ()> cos 6 cos h            (3)
where a is the solar altitude,  is the latitude of the site, 6 is the
declination of the sun, and h is the hour angle of the sun, which is
positive before noon and negative after noon.

An equation for 6 was fitted to data from a current solar ephemeris by a
non-linear least squares method derived by Marquardt (11) .  Thackston,

-------
et al. (12), outlined its use in hydraulic and environmental engineering
problems.  The equation is
                   6 = -23.28 cos[(2Trday/365)  + 0.164]

where day is the day of the year.
Raphael tabulated the total radiation (direct  solar radiation plus diffuse,
or sky, radiation) on a horizontal surface as  a function of solar altitude,
taken from the tables prepared by Moon (13)  from U. S.  Weather Bureau data.

Reflected solar radiation is a function of solar altitude,  being greatest
at the low altitudes.  It is also a function of sky condition, being greater
for clear skies than for overcast skies at low solar altitudes, and the
reverse at high solar altitudes.  However, the differences  are negligible
except at low solar altitudes, where the total radiation is very small
anyway, and at high solar altitudes, which are rarely reached in the U.S.
Therefore, the curve of average reflectivity as a function  of solar alti-
tude was applied to the total radiation tabulated by Raphael to obtain the
net absorbed radiation as a function of solar  altitude.  A  simple poly-
nomial was fit to the data by nonlinear least  squares methods to produce
the equation
             H  = 2.044ot + 0.1296a2   0.0019a3 + 0.0000076^          (5)
              o
where H0 is the absorbed solar radiation for clear sky in BTU per square
foot per hour.  The standard error of this equation was 2.01.  The fit of
the equation to the data is shown in Figure 1.  The absorbed solar radia-
tion for other sky conditions was calculated from the equation

                          H  =  (1 - 0.0071 C2)H0                      (6)
where Hs is the actual absorbed solar radiation, and C is the cloud cover,
in tenths of sky.
The procedure described above will calculate only the instantaneous radia-
tion at a particular time.  The instantaneous  radiation may be assumed to
represent the average radiation over a given time increment, but above an
increment of three or four hours, the accuracy is unacceptable, due to the
cyclic variation of radiation throughout the day.  For longer averaging
periods, a different procedure is required.   Since this project used the
day as the working time period, values of total daily radiation were com-
puted for every tenth day of the year for every degree of latitude from
25° to 46°.  The radiation intensity was computed by the procedure outlined
above for every six minutes throughout the day and the total daily radia-
tion was obtained by numerical integration.   The total was  divided by 24
to obtain average daily radiation values in BTU per square foot per hour.
For each latitude, an equation was fitted to the calculated values by
non-linear least squares procedures.  The resulting equations are tabu-
lated in Table 1.  An example of the fit of three of the equations to the
calculated data is shown in Figure 2.  The equations were all inserted
into the computer program for the heat budget, along with a procedure to
select the equation for the latitude closest to the latitude of the site.
The program also included provisions for calculating the instantaneous
solar radiation, if conditions at a particular hour are desired.

The values of absorbed solar radiation calculated by this method are, of

-------
    350
cc
X
 I
.8
ID
h-
00
 I
Q

CC


CC
 O
 CO

 Q
 LU
 00
 £T
 O
 CO
 00
    300  •
    250  -
 Q  200  -
    150   -
    100  -
    50  •
      0
•H = 2.044of- 0.1296a2

    -0.001941 a3-0.000007591 a4
                 20      40      60       80

              SOLAR ALTITUDE - DEGREES
         FIGURE 1 - ABSORBED SOLAR RADIATION AS A FUNCTION
           OF SOLAR ALTITUDE FOR CLEAR SKY CONDITIONS

-------
     TABLE 1 - EQUATIONS FOR AVERAGE DAILY ABSORBED SOLAR RADIATION
                 (BTU/sq ft-hr)  FOR CLEAR SKY CONDITIONS
Lati-
tude
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Equation
H
o
H
0
H
o
Ho
H
0
H
0
H
0
H
0
H
o
H
0
H
0
H
o
H
o
H
0
H
o
H
0
H
o
H
0
H
o
H
o
H
o
= 80
= 79
= 78
= 77
= 76
= 76
= 75
= 74
= 73
= 72
= 71
= 70
= 69
= 68
= 67
= 66
= 65
= 64
= 63
= 61
= 60
.155
.371
.566
.604
.655
.041
.060
.046
.161
.248
.390
.394
.350
.362
.281
.240
.197
.113
.010
.911
.782
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 35
- 36
- 37
- 38
- 39
- 40
- 40
- 41
- 42
- 43
- 43
- 44
- 45
- 45
.207 x
.236 x
.219 x
.145 x
.156 x
.133 x
.194 x
.938 x
.834 x
.699 x
.598 x
.413 x
.188 x
.982 x
.706 x
.442 x
.128 x
.788 .x
.471 x
.020 x
.639 x
sin[2x3.
sin[2x3.
sin [2x3 .
sin[2x3.
sin[2x3.
sin[2x3 .
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3.
sin[2x3 .
sin[2x3 .
sin[2x3.
sin [2x3.
sin[2x3.
sin [2x3.
sin[2x3.
sin[2x3.
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
14159 x
day/ 366
day/ 366
day/366
day/366
day/366
day/366
day/366
day/ 366
day/366
day/ 366
day/ 366
day/ 366
day/366
day/366
day/366
day/ 366
day/366
day/366
day/366
day/ 366
day/366
. + 1
. + 1
.+1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
. + 1
.679]
.713]
.710]
.740]
.728]
.694]
.737]
.734]
.727]
.738]
.721]
.730]
.741]
.739]
.742]
.736]
.740]
.739]
.739]
.740]
.735]
Standard
Error
2.76
2.40
2.33
2.10
2.02
2.21
1.85
1.61
1.52
1.32
1.32
1.07
0.86
0.73
0.61
0.58
0.54
0.63
0.76
0.93
1.16
course, less than the values of incident radiation given by references 8,
9, and 10.  If an approximate reflectivity coefficient (between 5 and 10
percent)  is applied to the other data,  however,  approximate comparisons
can be-made.  Following this procedure, it is found that Koberg's (8)
curves produce values about 5 BTU/sq ft-hour greater than these data
throughout the year.  Langhaar's (10)  data substantially agrees with or
is very slightly greater than Koberg's.  The curves of Harmon, Weiss, and
Wilson (9) produce values that are 5 to 8 BTU/sq ft-hour greater than this
data during the winter, but up to 3 BTU/sq ft-hour lower during the summer.
There is  substantial agreement during the spring and fall.  These differ-
ences are within the range of accuracy of the measurement devices used to
record solar radiation and probably reflect the different measurement
                                   10

-------
            JAN  FEB MAPI APR I MAY IJUNEIJULY IAUG ISEPTI OCT I NOV I DEC
  en
60
                           120       180       240
                        TIME  ( DAY  OF  THE  YEAR )
                                300
360
                FIGURE  2  - AVERAGE  DAILY ABSORBED  RADIATION
           FOR  CLEAR  SKY  CONDITIONS AS  A FUNCTION  OF  DAY OF  YEAR

approaches and instrumentation used by different workers.

Atmospheric Radiation - Longwave atmospheric radiation is  a function of
many variables, including the distribution of temperature, moisture, car-
bon dioxide, ozone and other constituents throughout the entire air col-
umn over a site.  However, since not all these data are normally available,
Anderson (1954) proposed the following empirical relationship:
H  = a3(T  + 460)
 3.       cL
                        (1 -  01)
                                                                      (7)
in which Ha is the longwave atmospheric radiation in BTU/square foot per
hour; a is the Stephan-Boltzmann constant = 1.714 x 10~9 BTU/hr-sq ft-
deg4; 6 is a constant which is a function of the height and type of cloud
cover and the atmospheric vapor pressure, ea, in inches of Hg; Ta is the
air temperature, in degrees Rankine; and to is the reflectivity of the
water surface, usually taken as 0.03.  Raphael converted Anderson's fig-
ures and data to a single graph of g vs . ea, with straight lines repre-
senting various values of, cloud cover.

This graph was adapted for machine computation by writing an equation of
the form
                                = a + b e
                                                    (8)
                                    11

-------
where a and b are constants, for each value of cloud cover, and instructing
the computer to pick the correct equation, based on the value of cloud cover
read as data.  The eleven equations used are tabulated in Table 2.

         TABLE 2 - EQUATIONS USED FOR CALCULATION OF CONSTANT 3
                  IN EQUATION FOR ATMOSPHERIC RADIATION
Cloud Cover
(tenths)
0
1
2
3
4
5
6
7
8
9
10
Equation
3 = 0.74 -
3 = 0.75 H
3 = 0.76 H
3 = 0.77 H
3 = 0.783 H
3 = 0.793 H
3 = 0.80 H
3 = 0.81 H
3 = 0.825 H
3 = 0.845 H
3 = 0.866 H
H 0.15 ea
1-0.15 ea
h 0.15 ea
H 0.143 ea
H 0.138 ea
h 0.137 ea
h 0.135 ea
H 0.13 ea
1-0.12 ea
•• 0.105 ea
- 0.09 ea
The vapor pressure of the air is calculated from the relative humidity, R,
and the saturated vapor pressure.  The vapor pressure of ambient air is
equal to the saturated vapor pressure at the wet bulb temperature.  The wet
bulb temperature, Tw^, in °F, may be calculated from the relative humidity
and air temperature by the equation
                            = (0.655 + 0.36 R)
                                                (9)
Equation 9 is accurate up to a relative humidity of approximately 95 per-
cent .

An equation for the saturated vapor pressure,  es,  was obtained by fitting
an exponential equation to values of es and temperature by the non-linear
least squares procedure.  The resulting equation,  for es in inches of mer
cury ^ is
= exp[17.62 - 9501/(Twb + 460)]
                                                                     (10)
The standard error of prediction of Equation 10 is 0.00335.   The fit of the
equation to the data is shown in Figure 3.

Since the reflectivity of the water surface to longwave radiation is 0.03,
the absorbed longwave radiation can then be calculated as
                      H  = 1.66 x 10-93(T  + 460)4
                       cL                 £L
Back Radiation   Back radiation from the body of water to space is calcu-
lated as
                                   12

-------
e>
IE
LU
c/)
en
LU
cr.
CL

01
o
Q_
(T
    3.0
     25
     2.0
1.5
1.0
       E =exp
30      50
                         70
                             90
110
                TEMPERATURE -°F
      FIGURE 3 - EFFECT OF TEMPERATURE ON VAPOR PRESSURE
                        13

-------
                            =  -0.97 a(T  + 460)4                      (12)

where Hb  is  in BTU per square foot per hour, 0.97 is the emissivity of the
water surface, and Tw is the temperature of the water surface in °F.

Evaporation   Evaporation is calculated from the formula

                           H  = -C U(e    e )                         (13)
                            e        ^ w    aj

where C is an empirical constant which depends on the size, shape, and
exposure  of  the water body, and on the location of the wind speed measure-
ment, and varies from stream to reservoir conditions.  U is the wind  speed
in miles  per hour, ew, is the saturated vapor pressure of the air at  the
temperature  of the water surface, in inches of Hg, and ea is the vapor
pressure  in  the air in inches of Hg.

Equation  10  was used to calculate ew by substituting Tw for Twfo.  C was
set  equal to 13.9 for this study.  This is approximately equal to the co-
efficient determined from the Lake Hefner studies, adjusted for the units
used.  However, it should be realized that C will vary somewhat from  sit-
uation to situation, depending on local conditions.

Conduction   Heat conducted through the water surface was calculated  as

                        H  = 0.00543 U P(T  - T )                     (14)
                         c              ^ a    vi

where P is the atmospheric pressure in inches of mercury, which is calcu-
lated as
                                    9Q 09
                        P =         ^ '^
                        r
                                 r    32.15 E
                            exp  1545 (T  + 460)
                                 L       a

in which E is the elevation of the site in feet.

Equilibrium Temperature

The equilibrium temperature was determined by calculating Ht for an assumed
equilibrium temperature and then correcting it until Equation 1 is satis-
fied.  In this case, Tw - Te becomes the correction to the assumed temper-
ature.  The heat exchange coefficient is calculated for each iteration as
described below.  The calculation procedure converges rapidly, and when
the correction became less than 0.1°F,  the calculation was terminated.
When this occurred,  Ht was generally less than ±3.0 BTU per square foot
per day.

This method of calculation, while indirect and slower than the direct cal-
culation proposed by Edinger and Geyer (3), is more accurate because it
avoids the approximations necessary in their procedure.  They were forced
to approximate the expressions for heat loss due to back radiation and
for vapor pressure by linear equations in order to solve the total heat
budget equation for Te.
                                   14

-------
Heat Exchange Coefficient
The expression given by Edinger and Geyer for the heat exchange coefficient
is

                    K = 15.7 + (0.01025 + n) (333 U)                  (16)

when converted to the units used in this paper, where n is the slope of
the vapor pressure vs. temperature curve, and U is the wind velocity in
miles per hour.  Certain approximations had to be made in order to define
a linear heat exchange coefficient.  However, Edinger and Geyer made a
further linearization of the vapor pressure curve into segments of straight
lines which introduces further inaccuracies and computational difficulty.
This was found to be unnecessary in this study.
The slope of the vapor pressure curve can be found exactly at any tempera-
ture by differentiating the equation for saturated vapor pressure as a
function of temperature.  This gives
                       9501         fiv ,„      9501   1              ,,v,
                n = 	 exp  17.62 - j-—   , .               (17)
                     (Tw H- 460)2     L        (Tw + 460)J

In this study, Te and K were computed at the same time.  A new K was com-
puted for each iteration by Equation 16, using the previously determined
temperature.  The final K was computed after Te had been determined with-
in 0.1°F.

Amount of Cooling in Ponds
The amount of cooling in ponds of various sizes receiving discharges from
the standard plant was computed for each month of the year at each site.
The values of meteorological data used were monthly averages.  Solar radi-
ation was computed based on the middle day of each month.
In the calculation procedure, the pond was assigned the final temperature
of the previous month as a starting point and was then subjected to con-
stant meteorological conditions representative of that month until the
effluent temperature stabilized.  This was taken as the average effluent
temperature for that month, and the program proceeded to the next month.

The calculation procedure closely followed that of Raphael.  During any
calculation period,  the water temperature was assumed to be constant at
the value calculated for the end of the previous period for the purposes
of calculating surface heat transfer.
                                    15

-------
                  SOURCE OF METEOROLOGICAL INFORMATION
Meteorological information used in calculating the terms in the heat bud-
get was taken from the U. S. Weather Bureau's publication, "Local Clima-
tological Data, Annual Summary with Comparative Data," for the various
stations.

This publication presents the monthly averages and extremes of temperature,
degree days, relative humidity, wind speed, cloud cover, and totals for
precipitation data for the current year, and compares them with means and
extremes.

The extreme conditions for monthly averages were derived from statistical
analysis of the data over approximately the same period of record by the
U. S. Weather Bureau's National Weather Records Center under contract with
Vanderbilt University.  The value used was the 10-percent value of the
weather variable (the monthly average exceeded, on the average, once in
10 years).  The 10-percent high values of temperature and relative humidity
and the 10-percent low values of wind speed and cloud cover were used in
order to obtain conditions conducive to maximum heating.

This study assumed that all four extreme conditions occurred simultaneously
(in the same month) to produce the extreme heating conditions.   Another
Weather Bureau publication, "Statistical Summary of Hourly Observations,"
shows that maxima in these conditions tend to occur together at many sta-
tions and are usually associated with a stagnant high pressure system in
summer.  However, it is unlikely that all four 10-year extremes would
occur in the same month.  Therefore, the assumption of simultaneity prob-
ably represents a safety factor.  The value of heating potential calculated
from these 10-year extremes would thus probably have a return period
somewhat greater than 10 years.
                                   17

-------
                          SENSITIVITY ANALYSIS
Effect of Time Averaging

In order to see if data averaged over periods of hours or days would pro-
duce pond effluent temperatures which matched average pond effluent temper-
atures calculated from hourly meteorological information, a test case was
run.  The data used was that for July, 1963, at Nashville, Tennessee.  The
pond effluent was assumed to 100°F, and, in order to insure considerable
fluctuation in mixed water temperatures for comparison, a relatively small,
shallow pond was assumed.  It had a detention time of one day and a depth
of 9 feet.

The results of the study are shown in Figure 4.  The solid line is the
result of using hourly observations and calculation periods.  The circles
are the result of using a calculation period and data averaged over 4 hours.
The point is plotted at the end of the 4-hour averaging period.  The crosses
are the result of using a calculation period and data averaged over a 24-
hour period.

The 4-hour average points follow the "true" (one-hour) line almost perfectly
The 24-hour average points show more deviation, but no consistent trend of
deviation.  The chief effect seems to be the apparent tendency of the 24-
hour average to overcorrect to a too high value following a too low value,
or vice-versa, during periods when warming trends are followed by cooling
trends, or vice-versa.  This is partly due to the fact that the 24-hour
point is plotted at midnight (the end of the averaging period) and changes
in the trend of the line generally follow the normal diurnal pattern of
highs during early afternoon and lows during early morning.

The figure shows, however; that there is no consistent over or under-esti-
mation of average temperatures for Nashville by using averaging periods
which ignore the diurnal cycle.  This is important because the 24-hour
diurnal cycle is by far the most influential meteorological characteristic
of the factors affecting surface heat exchange.  Once it has been determined
that neglecting the diurnal cycle will cause little or no consistant error
in computing average effluent temperature from large ponds of several days
detention time, it is relatively easy to justify the use of monthly aver-
age values of meteorological data.  This is so because the next shortest
cycle is the yearly cycle, whose influence is preserved by using monthly
averaging periods.  There is much more similarity between daily averages
and monthly averages than between hourly averages and daily averages be-
cause there is no  regular cycle with a length between 1 day and 1 month
to correspond to the diurnal cycle.

Because of the absence of a regular cycle between the daily cycle and the
yearly cycle, the average weather data for the middle day in a month is
approximately the same as the monthly average data.  Thus, a curve con-
necting the monthly average data will also represent daily averages.
Monthly average data was used in this study because it is more readily
available, but the curves for monthly average results can also be used to
find the daily average result to be expected (on the average).
                                   19

-------
                                         \
    0  6  12 18 24 6  12 18  24  6  12  18 24 6  12 N8  24 6  12  18 24  6  12 18 24 6  12  18 24
                            i  i	1—i—~T—i—r—i—T	1—T—i	1—i	1	1	1	1   i  I
  95  -
  90 -
         189
          190
    191
192
          193
                                                            194
                                                                        195
LLlOO
£95
  85
         196
          197
     198
                                        199
          200
                     201
                                                                       202
  95


  90


  85
203   |    204    |   205    |    206    |    207   I    208   I     209   J
100

 95


 90


 85
         210
          211
     212
213
           214
215
216
     0 6  12 18  24  6  12
24 6  12 18  24 6  12 18 24 6 12
            DAY OF YEAR_
                                     HOUR OF DAY
                                                24 6  12 18  24 6  12 18  24
     WEATHER  INFORMATION  FOR  JULY, 1963
     EQUILIBRIUM  TEMPERATURE    85°
     STREAM  TEMPERATURE    85°
     CONDENSER  RISE    15°
     POND  INFLUENT    100°
     POND  DETENTION  TIME    I  DAY
     POND  DEPTH  = 9  FEET
                                  NASHVILLE,  TENNESSEE
                                   	    1-HR AVERAGE  DATA
                                   u-oooooo   4-HR AVERAGE  DATA
                                   X         x  24-HR AVERAGE  DATA
          FIGURE 4 - EFFECT OF TIME AVERAGING ON  POND TEMPERATURE
                                        20

-------
This is not true of the results for extreme heating conditions, however.
Daily extremes will be higher than monthly extremes.

Effect of Pond Depth

Pond effluent temperatures were calculated for various pond surface areas
and various meteorological conditions.  The only pond characteristic (other
than hydraulic behavior, which is theoretically comparable) which was not
varied was the depth.  In order to determine if the depth of the pond had
a significant effect on the outlet temperature, the effluent temperature
for Nashville, Tennessee, was calculated for pond depths of both 15 and
25 feet.  The results are plotted in Figure 5.  Based on this data, the
depth is not a critical variable, as the greatest difference in the pond
effluent temperature caused by a 67 percent increase in depth was approxi-
mately 0.1°F, a negligible difference probably caused by rounding errors
in the computer program.  Depth theoretically should have no effect because,
as the depth of a completely mixed pond is increased, so is the flow-through
time.  All depths are sufficiently deep that all energy is absorbed in the
water column and does not reach the bottom sediments.
Effect of Season
Figure 5 also shows a decided effect of season on the amount of cooling
taking place in the pond.  There is a 2-degree difference in the pond
cooling effect between summer and winter.  Although, in this example, all
sizes of ponds tested produced 2 degrees more cooling during the summer,
the actual pond effluent temperature would, of course, be higher in the
summer than in the winter, because the plant intake temperature would be
higher.  As mentioned earlier, the pond effluent temperature in this study
can be determined by adding the plant temperature rise to the equilibrium
temperature.

The extra cooling which occurs during the summer is caused by  (or described
by) the increase in the heat exchange coefficient during the summer.  As
shown by Equation 16, K is a direct function of n, and Equation 10 and
Figure 3 show that n rises with increasing water temperature.  This more
than offsets the slight decrease in wind speed during the summer noted at
most stations and results in a net increase in K.
Effect of Pond Size

Also illustrated in Figure 5 is the decided effect of pond surface area on
cooling.  For instance, an 800-acre pond will effect 6.5°F of cooling
during June, and a 1500-acre pond will effect 8.5°F of cooling.  However,
it can be easily seen that successive size increases will have less and
less effect as the net plant effluent temperature rise approaches zero.
This is expected, since, theoretically-, it would take a pond of infinite
size to cool the heated water to the equilibrium temperature.  By plotting
the net plant effluent temperature rise vs. surface area for various
seasons or critical times, the planner can easily get a quick  idea of what
size pond would be necessary to meet given objectives in a given situation.
This type plot is illustrated in Figure 6.
                                   21

-------
   II
   10   -
LL.
o



 1  9
UJ
CO

ir


LJ  8
a:




IT
LJ
a.


UJ
H  6


H


<  R
_l  5
0_
'    'DEPTH =15 Ft.
                   DEPTH =25 FI-x—x—-x-
       AREA= 800 ACRES


         K
         JFMAMJJASOND

                  TIME- MONTHS
        FIGURE 5 - EFFECT OF DEPTH OF COMPLETELY MIXED POND

           ON AMOUNT OF COOLING, NASHVILLE, TENNESSEE
                            22

-------
    12
    II
   10
UJ
cn
o:

UJ
cr
o:
UJ
o_
    8
£  7
<  6

Q_


UJ
JANUARY
       0      500    1000    1500    2000    2500


            POND SURFACE AREA -  ACRES
     FIGURE 6 - EFFECT OF POND SURFACE AREA ON AMOUNT OF COOLING

            FOR VARIOUS SEASONS, NASHVILLE, TENNESSEE
                          23

-------
           RELATION OF COMPLETELY MIXED POND TO PLUG FLOW POND
All calculations for this project have been performed assuming completely
mixed ponds.  The basic assumption of completely mixed flow is that the
pond temperature is uniform throughout, and that anything (such as heat,
or a pollutant, or a tracer) added to the pond is "instantaneously" dis-
persed uniformly throughout the pond.  It would be impossible for a real
pond of significant size to behave exactly in this manner.  However, it
is possible for ponds to approach this condition so that the theoretical
and actual dynamic behavior- measured at the outlet, differs by a negligi-
ble amount.  In such a pond, the condenser water temperature would drop
to the uniform pond temperature in a relatively short time,  and only a
small fraction of the pond volume around the plant outfall would have a
temperature higher than the mixed temperature.  Conditions conducive to
such behavior would include sufficient depth to allow flow to circulate
easily in the pond due to the influence of plant discharge and wind, but
not so deep as to allow stratification; a surface shape approaching the
circular, so the influent can mix easily into all parts of the pond; a
discharge located away from the pond shore; and a long detention time.

The other extreme hydraulic condition, exactly opposite to complete mixing,
is plug flow.  Plug flow implies no mixing at all.  Each parcel of influ-
ent follows the same path through the pond, utilizes the entire cross-
sectional flow area, does not mix with the parcels ahead or behind, and
arrives at the outlet in sequence at the exact volumetric detention time.
This type of flow is much more difficult to approach in the field than is
completely mixed flow, but reasonable approximations can be realized.
Conditions which encourage plug flow are long slender channel-like ponds,
with the outlet at the opposite end from the inlet, narrow width to de-
crease wind mixing, high width-to-depth ratios to reduce lateral velocity
gradients, and shallow depth and low velocity to reduce vertical velocity
gradients.  (These conditions are not always mutually consistent, which
is part of the problem.)
The plug-flow pond is more expensive to build but provides quicker cooling.
This is because the hot water is not initially mixed or diluted with any
cooler water, and the driving force for cooling, Tw   Te, is maintained at
the highest possible value.
Edinger and Geyer (3) show how the area required by each type of pond for
a given amount of cooling can be calculated, based on the two solutions
for the linear approximation to the heat transfer process (Equation 1) .
The solution of Equation 1 for a completely mixed pond is
                                                                      ,1R.,
                                                                      UBJ


where Tm = the mixed pond temperature  (effluent temperature) ; T0 = the pond
influent temperature (condenser discharge); Te = the equilibrium tempera-
ture; and in which
                                   25

-------
                                r =
 KA
pcpQ
                                                                      (19)
where A = the pond surface area;  p = the water density;  cp = the specific
heat of water; and Q = the flowrate through the pond (plant pumpage).
The solution of Equation 1 for a plug-flow pond is

                              T  - T
                              T  - T
                               o    e
                                      = e
                                                                      (20)
in which Tp is the pond effluent temperature at the end of a plug-flow pond
of surface area A.
The ratio of the net plant temperature rise at the end of a completely
mixed pond to that at the end of a plug-flow pond  is calculated by dividing
Equation 18 by Equation 20.  The result is
                                                                      (21)
The area of a plug-flow pond necessary to produce the same cooling as a
completely mixed pond (Tm   Te = Tp - Te) is given by the relation
                              r  = e
                               m
                                       - 1
                                   (22)
where the only difference between rm and rp is the surface area A.  Table 3,

           TABLE 3 - RATIO OF AREA REQUIRED BY PLUG-FLOW POND
          TO THAT REQUIRED BY COMPLETELY MIXED POND TO PRODUCE
                EQUIVALENT COOLING UNDER SAME CONDITIONS
Temperature
Excess Ratio
/T -Te\
IT 11
\ o e /
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
T - T
e
/For T - T \
( ° e)
\ of 15° /
12.0°
10.5°
9.0°
7.5°
6.0°
4.5°
3.0°
1.5°
Area
Ratio
/A \
(v
0.89
0.83
0.77
0.69
0.61
0.51
0.40
0.26
                                   26

-------
adapted from Edinger and Geyer, shows the area ratio required for various
values of the excess of pond effluent temperature over equilibrium temper-
ature .

Using Table 3, any of the areas determined for a completely mixed pond can
be converted to the area of an equivalent plug-flow pond.  It should be
noted, however, that true plug-flow is impossible to attain on such a
large scale, due to the inability to eliminate longitudinal mixing in large
bodies of water.  If a plug-flow type pond is desired, the area required
will be somewhat more than that for a perfect plug-flow pond, but less
than that required for a completely mixed pond.  The behavior of almost
all real ponds lies somewhere between the two extremes, depending on pond
characteristics.  However, the results presented in this report will allow
rapid determination of the upper and lower limits of required area.  Fur-
ther study would then be required to complete design of an appropriate
pond for a given situation.
                                   27

-------
                        RESULTS FOR EACH STATION
The meteorological information used for each station was tabulated on a
standard form, an example of which is shown as Figure 7.  The standard form
was used for several projects and included a column for precipitation, which
was not used in this study.  The data for all stations analyzed, alphabet-
ized by states, is presented in Appendix A.  All the input necessary for
the computer program is contained on each data sheet.

The results from each station were plotted on a standard graph, an example
of which is shown as Figure 8.  The solid curves are for average conditions,
and the dashed curves are for the extreme conditions.  The results from all
the stations analyzed are collected in Appendix B, alphabetized by states.
Data from a total of 88 stations were analyzed.  Extreme values of monthly
averages for 7 stations could not be calculated with accuracy, because of
the length of record involved.  Thus, trends of extreme monthly values are
based on the analysis of data from 81 stations.

At least one station from each state was analyzed, and, for large states
or states with a great variation in climate or topography from one part of
the state to another, as many as 3 stations were used.  A finer subdivision
would have produced more accurate representation on the maps used to dis-
play trends in the results.

An examination of the results from each station will show that they are
remarkably similar in pattern, but different in magnitude.  Only a few
general comments will be presented here, as the results of each station
are generally self-explanatory.
The equilibrium temperature graph for almost all stations shows a low about
December 31 and a high in mid or late July.  The pattern of variation
throughout the year is quite smooth and regular.  The difference between
high and low for the year and the sharpness of the summer peak and winter
valley increase with latitude.
The heat exchange coefficient shows a pattern of variation almost exactly
opposite that of equilibrium temperature, which is extremely helpful from
the point of view of thermal pollution control by cooling ponds.  The
highest heat exchange coefficients occur in mid or early July and the
lowest about December 31.  Thus, heat exchange is greatest when temperatures
are highest and the potential for damage to the aquatic ecosystem from
excessive water temperatures is at or near its peak.
Deviations from the smooth pattern of annual variation are more common for
the heat exchange coefficient than for the equilibrium temperature.  The
primary cause for the increase in the heat exchange coefficient during the
summer is the increase in evaporation and back radiation due to the higher
water temperature.  This is slightly offset for most stations by lower
average wind speeds during the summer.  Higher wind speeds during certain
parts of the year at individual stations cause significant deviations from
the trend (particularly coastal stations).  For instance, the Florida sta-
tions show an increase in the heat exchange coefficient in September and
October-  which is the hurricane season.
                                   29

-------
       WEATHER INFORMATION FOR   Nashville. Tennessee (13897)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
6.7
6.5
6.2
5.9
5.5
5.7
5.3
5.0
4.6
5.9
6.7
TAIR
39.0
41.0
49.5
59.5
68.3
76.3
79.4
78.3
72.2
61.0
48.9
41.0
HUM
.71
.63
.60
.64
.68
.69
.75
.76
.76
.66
.68
.69
PPT












WIND
9.0
9.2
9.9
9.4
7.5
6.7
6.2
5.9
6.2
6.3
8.2
8.6
EXTREME CONDITIONS
CC
5.3
4.7
5.0
5.0
4.0
4.0
4.0
3.0
2.7
1.5
3.7
4.7
TAIR
45.0
46.3
53.0
63.5
70.8
78.0
81.0
79.5
74.0
63.0
51.0
44.5
HUM
.815
.77
.735
.70
.73
.76
.773
.78
.78
.78
.738
.77
PPT












WIND*
6.35
6.4
7.2
7.0
4.9
4.4
3.7
3.9
4.0
4.35
5.4
6.2
  LATITUDE  =     36
  LONGITUDE =     86°  41'  W




  ELEVATION =     59°  ft.
^Extreme conditions given in knots
      FIGURE  7  -  SAMPLE DATA SHEET  FOR METEOROLOGICAL  INFORMATION
                                  30

-------
IBRIUM TEMPERATURE - F°
» 01 <" "J oo 
y
/






PRE




i
/ i
/








ME
\
1
/
°(
'/
f










^
//
/
r
' i










J F M A M
TIME -



f—



••>

•«,















X


\











s^
^


NV
\

V
•^









A
V
^


A-
i.
X

s5
•*"








= 8

<

1 15

= 2:
X




*

J

t
VFI










-0.

^f


?Afi










s

s


p












v
V




%
\\
V-









V















i
A
v\
\





J JASON
MONTHS




00

**.

uu
^•^
!00
"*.








AC

Jl-

AL
*•
A(
^«








RE
^
X

Nb
^
L,RE
^








5
/
/


y
7
y








&
/


/

r









s





*
















b.
\




D


,*-



sr-

••







o
U.
1
>. I8(
4
o
J "6(
u.
^ I4C
m
I
H I2C
UJ
C '°«
u.
Ul
O
o 8C
Ul
e>
< 6C
X
o
X
u. 4C
°U. 12
1
(O
1 "
K
Q
z 1 0
o
o
Ul
S 9
UJ
o:
h-
X ft
Ul
ui
V) j
cc
Ul
Q:
3 6
<
a:
Ul -.
a. 5
2
Ul
H 4
z
<
^1
a. -^
JFMAMJ  JASON  D
      TIME - MONTHS
o
U.
1
>- 180
4
1 lfin
N '60
1-
u.
X
^ 140
CD
1
t- 120
UJ
o
u. I0°
u.
Ul
o
w BO
Ul
e>
6O
1.
X.
ui An




























£f












/
/o'
/











j
/o-
f













^

V













-*\
S-














\
\
0»















\
















\
















t\
k














N»
X
















*o-


                                     J  FMAM  JJASOND
                                           TIME -  MONTHS


•0,



t)s


-0











"^



\


\











X



lx
N
^
Vo











o '




to-











80
*?


ISC

-D-
??<
*>.









0 A

-O

)0 /


"O*
io ^

*v








CRI
>°'


CR

***
,CR
rw









S
-»'


ES


-S
J>'









/*'






jf









f



tf
'

P









?






ff










-0,



-0,


-o.








JFMAMJ  JASOND
      TIME - MONTHS
   FIGURE 8 -  SAMPLE GRAPH OF RESULTS FOR A SINGLE STATION
                            31

-------
The heat exchange coefficient under extreme heating conditions is generally
lower than for normal conditions.   This is because the increase due to
higher water temperatures (see the graph of equilibrium temperature under
extreme heating conditions)  is not enough to offset the decrease due to
lower wind velocities.
The curves for net plant effluent  temperature rise are essentially the in-
verse of the curves for the  heat exchange coefficient, with the most effi-
cient cooling and lowest net temperature rise occurring in July.  The net
plant temperature rise under extreme conditions  is usually less than 0.5 F
greater than the net rise under normal conditions, because of the small
change in the heat exchange  coefficient.  In most cases,  the high in
December and the low in July change very little,  but a noticeable difference
is apparent in the fall.
Effect of Geographical Location on Pond Performance

The effect of geographical location on equilibrium temperatures, heat ex-
change coefficients, and cooling pond performance are shown by a series
of maps of the United States, Figures 9-36.  Each map shows the variation
of a particular variable at  a particular time of year, with lines connecting
points of equal value, similar to contour lines.   The points on the maps
show the location of the weather stations used to plot the contours.

Four general categories of maps are presented.  These are maps depicting:
(1) the variation of equilibrium temperature at  various times of the year,
both for average and extreme heating conditions;  (2) the  variation of the
heat exchange coefficient at various times of the year, both for average
and extreme heating conditions; (3) the net plant effluent temperature
rise for the standard plant  and a particular size cooling pond at various
times of the year, both for  average and extreme  heating conditions; and
(4) the size of cooling pond necessary to produce a certain percent of
cooling at various times of  the year- both for average and extreme heating
conditions.

Examination of the maps shows that latitude, which controls solar radiation,
is the main influence on the equilibrium temperature.  The variation of
other parameters is masked by the heavy influence of solar radiation.
Topographic conditions, which strongly influence wind speed and the wet
bulb temperature (the variables which determine  K), however, have a strong
influence on the heat exchange coefficient.  Since variables 3 and 4 in the
list above are dependent primarily on the heat exchange coefficient, they
show a similar variation. These maps show that  the best  cooling conditions
exist on the southern great  plains between the Rocky Mountains and the
Mississippi River, and, secondarily, along the Gulf and Atlantic Coasts,
all the way to Cape Cod.  Poor cooling conditions for ponds exist across
the northern part of the country and in the vicinity of the Appalachian
and Rocky Mountains.  The area most conducive to the use  of cooling ponds
seems to be Texas, while the area least suitable seems to be the area
between the Sierra Nevada and Rocky Mountains.

It should be emphasized, however,  that the contours in the vicinity of
mountainous areas refer to conditions at the weather stations, which are
usually at airports.  For the purpose of this study, this is much more
appropriate than a station in the actual mountainous area, since cooling
                                    32

-------
 FIGURE 9 - EQUILIBRIUM TEMPERATURE ON JANUARY 1  -  MONTHLY  AVERAGE
                  FOR AVERAGE WEATHER CONDITIONS
FIGURE 10 - EQUILIBRIUM TEMPERATURE ON JANUARY 1  - MONTHLY AVERAGE
                  FOR EXTREME WEATHER CONDITIONS
                                 33

-------
   50°
   70'
             45°    40
                70
                         70
                                                         75°
FIGURE 11 - EQUILIBRIUM TEMPERATURE ON APRIL 1  - MONTHLY  AVERAGE
                 FOR AVERAGE WEATHER CONDITIONS
   60°.
                                                         80
FIGURE 12 - EQUILIBRIUM TEMPERATURE ON APRIL 1 - MONTHLY AVERAGE
                 FOR EXTREME WEATHER CONDITIONS
                               34

-------
FIGURE 13 - EQUILIBRIUM TEMPERATURE ON JULY 1 - MONTHLY AVERAGE
                FOR AVERAGE WEATHER CONDITIONS
FIGURE 14 - EQUILIBRIUM TEMPERATURE ON JULY 1  - MONTHLY AVERAGE
                FOR EXTREME WEATHER CONDITIONS
                              35

-------
      80
                  80°
                          80
FIGURE 15 - EQUILIBRIUM TEMPERATURE ON OCTOBER 1
                  FOR AVERAGE WEATHER CONDITIONS
- MONTHLY AVERAGE
FIGURE 16 - EQUILIBRIUM TEMPERATURE  ON OCTOBER 1  - MONTHLY AVERAGE
                  FOR EXTREME  WEATHER CONDITIONS
                                36

-------
     150
         175
                            200
FIGURE 17 - TIME (IN DAYS) THAT MONTHLY AVERAGE EQUILIBRIUM TEMPERATURE
             FOR AVERAGE WEATHER CONDITIONS IS ABOVE 75°F
FIGURE  18  - DATE ON WHICH MONTHLY AVERAGE  EQUILIBRIUM TEMPERATURE  FOR
     AVERAGE WEATHER  CONDITIONS  RISES  THROUGH  60°F  IN THE  SPRING
                                 37

-------
             60
              70
                  90
                     100
                                                             7O
           E INDIVIDUAL

           STATIONS/!
                                                        no
FIGURE 19 - HEAT EXCHANGE COEFFICIENT ON JANUARY 1  -  MONTHLY  AVERAGE
          FOR AVERAGE  WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
              NO  RATTER

         SEE  IND1V40UA1L  STATIONS
                    80
                      90
                       100
                          110
                           120'
                                                        no
FIGURE  20  - HEAT EXCHANGE COEFFICIENT ON  JANUARY  1  - MONTHLY AVERAGE
          FOR EXTREME WEATHER CONDITIONS  (BTU/SQ  FT-DAY-°F)
                               38

-------
                                                              150
     125
            150
                  200
                        225
                                 225
FIGURE  21  -  HEAT EXCHANGE COEFFICIENT ON JULY 1  - MONTHLY  AVERAGE
         FOR  AVERAGE WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
    100
      100
          125
                      175 200
                                 200
                                                          125
FIGURE 22 - HEAT EXCHANGE  COEFFICIENT ON JULY 1 - MONTHLY AVERAGE
        FOR EXTREME WEATHER CONDITIONS (BTU/SQ FT-DAY-°F)
                                39

-------
The net temperature rises depicted on the following 8 maps
refer specifically to the excess,  above equilibrium tempera-
ture, of the effluent from a completely mixed pond receiving
1350 cfs of condenser cooling water at 15°F above equilibrium
temperature (the "standard 1000-megawatt plant") .

The net temperature rise for other condenser temperature
rises may be estimated by assuming that the same fraction of
the condenser rise will be dissipated, all other conditions
being the same.  This then would imply a less efficient plant
or more probably a larger plant at the same efficiency.  The
plant pumping rate, size of pond,  and meteorological condi-
tions would remain the same.  This method assumes that the
change in water surface temperature of a completely mixed
pond will not change enough to significantly change the heat
exchange coefficient.
For a plant of the same size but with a smaller pumping rate
and larger condenser rise, one cannot proceed directly from
a 15° temperature rise across the condenser to a 25° rise,
or any other rise, as there are too many interrelated fac-
tors.  One can get approximate solutions for mixed tempera-
ture for other temperature rises,  however, by noting that
the equilibrium temperature and heat transfer coefficient
will change proportionally far less than the difference be-
tween the condenser effluent temperature and the equilibrium
temperature.  Therefore, for a first approximation, one can
treat both the equilibrium temperature and the heat transfer
coefficient as constants and vary the plant effluent temper-
ature and plant pumping rate to arrive at an approximate
answer using Equations 18 and 19,

                    T  - T
                     me      1
                    T  - T
                     o    e
                           40

-------
 FIGURE 23 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON JANUARY 1
        MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
FIGURE 24 - NET TEMPERATURE RISE FOR 1500-ACRE POND ON  JANUARY  1
        MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS  (°F)
                               41

-------
6.5
         6.5
     6.5'
              5.5'
                      4.5'
                                .4.5°
FIGURE 25  - NET  TEMPERATURE RISE FOR 1500-ACRE  POND ON JULY 1
      MONTHLY AVERAGE  FOR AVERAGE WEATHER CONDITIONS (°F)
                  6.5°
                                                           6.5°
              6.0'
                                5.0°
FIGURE 26 - NET TEMPERATURE RISE FOR 1500-ACRE  POND ON JULY  1
      MONTHLY AVERAGE  FOR EXTREME WEATHER  CONDITIONS (°F)
                              42

-------
          7.5
                      6.0
FIGURE 27 - NET TEMPERATURE  RISE FOR 2200-ACRE POND ON JANUARY 1
        MONTHLY AVERAGE  FOR  AVERAGE WEATHER CONDITIONS (°F)
         ,7.5° 8.0°
   8.0°
                                                         8.0°
FIGURE 28 - NET TEMPERATURE  RISE  FOR 2200-ACRE POND ON JANUARY 1
        MONTHLY AVERAGE  FOR  EXTREME WEATHER CONDITIONS (°F)
                                43

-------
                 3.5
                              3.5°
FIGURE 29 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON JULY 1
      MONTHLY AVERAGE FOR AVERAGE WEATHER CONDITIONS (°F)
5.0°
FIGURE 30 - NET TEMPERATURE RISE FOR 2200-ACRE POND ON  JULY  1
      MONTHLY AVERAGE FOR EXTREME WEATHER CONDITIONS  (°F)
                             44

-------
The pond sizes depicted on the following 6 maps refer spe-
cifically to the size of completely mixed ponds necessary to
dissipate the stated fraction of the condenser temperature
rise (above equilibrium temperature) in a flow of 1350 cfs
at 15°F above equilibrium temperature (the "standard 1000-
megawatt plant").

The same fraction cooling would also apply approximately to
other condenser temperature rises, assuming that the surface
water temperature of a completely mixed pond will not change
enough to significantly change the heat exchange coefficient
and that all other conditions remain the same.
                             45

-------
              20OO
                                                          2250
                     1500
                                                        I25O
                         1250
FIGURE 31 - SURFACE AREA OF POND  (IN ACRES) NECESSARY  FOR  50%  COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1 - AVERAGE WEATHER CONDITIONS
       20'
                                                        2500
                                                             2250
                                                          I25O
                           1250
FIGURE 32 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 50% COOLING
(7.5° NET TEMPERATURE RISE) ON JANUARY 1  - EXTREME WEATHER CONDITIONS
                                46

-------
      MOO
          1000
               9OO
                       7OO
                                                        900
                                                              1000
                                                               900
                           600'  ^"600
FIGURE 33 - SURFACE  AREA  OF POND (IN ACRES) NECESSARY FOR 50% COOLING
 (7.5° NET TEMPERATURE  RISE)  ON JULY 1  - AVERAGE WEATHER CONDITIONS
       1300,
    1200
                  raoo
                      1200
                        700
                                  700
FIGURE 34 - SURFACE AREA OF  POND  (IN  ACRES)  NECESSARY FOR 50% COOLING
 (7.5° NET TEMPERATURE RISE)  ON JULY  1  -  EXTREME WEATHER CONDITIONS
                                 47

-------
FIGURE 35 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
 (5° NET TEMPERATURE RISE)  ON JANUARY 1  - AVERAGE WEATHER CONDITIONS
        2250
               2000
                  1750
                      1500
                                                       1750
FIGURE 36 - SURFACE AREA OF POND (IN ACRES) NECESSARY FOR 67% COOLING
  (5° NET TEMPERATURE RISE) ON JULY 1 - AVERAGE WEATHER CONDITIONS
                                 48

-------
ponds are much more likely to be built in the lower level areas in the
valleys than in the rough country on the side of a mountain.

Accuracy of Contour Lines

The contour lines were drawn by hand with due regard to both the numerical
values of the plotted points at the various weather stations and the nature
of the topography and climate in the area.  Awareness of the topography
was especially valuable in determining plausible patterns for the lines in
areas where the pattern of numerical values seemed confusing.

In most cases, logical patterns could be constructed in which a particular
line actually divides the values correctly, with all values above that of
the contour on one side and all values below it on the other side.  In a
few cases, particularly the midwest and upper great plains, this was not
feasible.  Usually it was because the variation was slight over a large
area and the individual values seemed to vary almost randomly in the area.
When areal variation is so slight, individual conditions at the site have
a relatively greater influence, and the regular variation of the pattern
is destroyed.
There were, however, 4 stations which consistently produced values which
did not fit the pattern established by the remainder of the stations.  Las
Vegas, Nevada, consistently produced results which showed considerably
more effective cooling than the other stations in the vicinity; while
Jackson, Mississippi, Des Moines, Iowa, and Concord, New Hampshire, pro-
duced cooling which was not as effective.  In addition, Fort Smith and
Little Rock, Arkansas, sometimes produced results which were not as good
as other stations in the vicinity.
Subject to the aforementioned limitations, it is believed that the results
presented are reasonably accurate, based on the data from the stations
used, and will be of value in preliminary analyses of cooling pond feasi-
bility.  It should always be recognized, however, that local topographic
and meteorological conditions can exert a great influence on pond require-
ments and performance.  Thus, before any pond is actually sized or built,
a more thorough study, using meteorological data from the actual site or
from close by, should be conducted.
                                     49

-------
                          EXAMPLE CALCULATIONS
To use the information contained in these charts and tables, one can look
at a typical problem.  Suppose that a lOOO^MWe power plant with an effi-
ciency of 38% will be built at Nashville, Tennessee.  What size pond is
required so that the maximum temperature at the outlet of the pond will
not exceed 7°F under normal meteorological conditions or under extreme
meteorological conditions?

From Figure 112, the net plant temperature rise for cooling ponds of 800,
1500, and 2200 acres is abstracted and plotted as on Figure 6.  Lines can
be drawn for each month and for both average and extreme meteorological
conditions.

One then enters the plot, Figure 6, at the 7° temperature rise and reads
for January, 2250 acres, April, 1450 acres, and June, 1350 acres.  One can
also enter the same plot, Figure 6, at the 2200 acre line and read the
temperature rise per month - January, 7.1°F, April, 5.5°F, and June, 5.1°F.
The results for all the months are tabulated below:

                SIZE OF POND SO AS NOT TO EXCEED 7°F RISE
                       AT EXIT OF POND (IN ACRES)
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average Meteorological
Conditions
2250
2000
1700
1450
1400
1350
1350
1400
1550
2000
2100
2200
Extreme Meteorological
Conditions
2300
2200
1800
1450
1500
1400
1500
1500
1650
400
2300
2300
                   TEMPERATURE RISE FOR 2200 ACRE POND
Month
January
February
March
April
May
June
Average Meteorological
Conditions
7.1
6.7
6.1
5.5
5.4
5.1
Extreme Meteorological
Conditions
7.2
7.0
6.2
5.5
5.6
5.4
                                   51

-------
                   TEMPERATURE RISE FOR 2200  ACRE  POND
                               (Continued)
                   Average Meteorological      Extreme  Meteorological
       Month             Conditions                  Conditions
July
August
September
October
November
December
5.1
5.3
5.7
6.8
6.8
7.1
5.6
5.7
6.1
6.8
7.3
7.4
The temperature rise for any  specified  size  pond  and  the pond size for
any specified temperature rise  can be obtained  directly from Figure 6.
                                   52

-------
                             REFERENCES
 1.   Herman,  Leo D.,  Evaporative Cooling of Circulating Water,  Pergamon
     Press,  New York, New York,  1961.

 2.   Duttweiler, D.  W.,  "A Mathematical Model of Stream Temperature," Ph.D.
     Dissertation,  The Johns Hopkins University, Baltimore,  Maryland, 1963.

 3.   Edinger,  John E., and John C.  Geyer, "Heat Exchange in  the Environment,"
     Publication No.  65-902, Edison Electric Institute, New  York,  New York,
     1965.

 4.   Edinger,  John E., and John C.  Geyer; "Analyzing Steam Electric Power
     Plant  Discharges," Journal of the Sanitary Engineering  Division,
     American Society of Civil Engineers, 94, SA4,  August, 1968.

 5.   Edinger,  John E., David W.  Duttweiler, and John C. Geyer,  "The Response
     of Water Temperatures to Meteorological Conditions," Water Resources
     Research, 4, 5,  October; 1968.

 6.   Raphael,  Jerome M., "Prediction of Temperature in Rivers and  Reservoirs,"
     Journal of the Power Division,  American Society of Civil Engineers,  88,
     P02,  July, 1962.

 7.   Anderson, E. R., "Energy-Budget Studies, Water Loss Investigations:
     Lake Hefner Studies," Professional Paper 2,69,  U. S. Geological Survey,
     Washington, D. C., 1954.

 8.   Koberg,  Gordon E., "Methods to Compute Long-Wave Radiation from the
     Atmosphere and Reflected Solar Radiation from a Water Surface," U. S.
     Geological Survey Professional Paper 272-F, Washington, D. C., 1964.

 9.   Harmon,  Russell W., Leonard L.  Weiss, and Walter T. Wilson, "Insola-
     tion as an Empirical Function of Daily Sunshine Duration," Monthly
     Weather Review,  82, 6, June, 1954.

10.   Langhaar, J. W., "Cooling Pond May Answer Your Water Cooling  Problem,"
     Chemical Engineering, 60, 8, August, 1953.


11.   Marquart, D. W., "An Algorithm for Least-Squares Estimation of Nonlinear
     Parameters," Journal of the Society for Industrial and  Applied Mathe-
     matics,  June,  1963.

12.   Thackston, Edward L., J. R. Hayes, and P. A. Krenkel, "Least  Squares
     Estimation of Mixing Coefficients," Journal of the Sanitary Engineering
     Division, American Society of Civil Engineers, 93, SA3, June, 1967.

13.   Moon,  Parry, "Proposed Standard Radiation Curves for Engineering Use,"
     Journal of the Franklin Institute, 230, 5, November, 1940.
                                    53

-------
                APPENDIX I



WEATHER INFORMATION FOR INDIVIDUAL STATIONS

-------
                              TABLE 4
      WEATHER INFORMATION  FOR   Huntsville, Alabama
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
6.2
5.9
5.7
5.9
6.0
5.7
5.3
4.3
6.1
_6.7
TAIR
42.9
45.1
51.8
61.6
70.4
78.6
81.1
80.2
74.5
63.2
50.8
43.6
HUM
.72
.69
.64
.62
.66
.69
.71
.73
.71
.68
.70
.72
PPT












WIND
8.4
9.4
9.5
8.8
6.6
6.1
5.5
5.5
6.7
6.5
7.6
8.4
EXTREME CONDITIONS
CC








>



TAIR












HUM












PPT












WIND












LATITUDE  =   34° 39' N



LONGITUDE =   86° 46' W



ELEVATION =   624 ft.
                                 56

-------
                                 TABLE 5
         WEATHER  INFORMATION FOR    Mobile.  Alabama (13894)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6.4
6.0
5.8
5.6
5.8
6.7
5.9
5.8
4.2
5.2
6.2
TAIR
53.0
55.2
60.3
67.6
75.6
81.5
82.6
82.1
77.9
69.9
58.9
54.1
HUM
.74
.66
.70
.74
.72
.74
.74
.78
.74
.70
.73
.74
PPT












WIND
11.1
11.6
11.5
10.9
9.3
8.0
7.2
7.1
8.5
8.7
10.0
10.6
EXTREME CONDITIONS
CC
4.2
4.0
4.4
3.7
3.0
3.5
5.0
4.0
4.0
1.5
3.0
4.2
TAIR
58.0
60.0
63.0
69.8
76.0
81.0
81.2
81.5
77.5
69.8
60.0
56.0
HUH
.80
.79
.745
.748
.76
.78
.83
.805
.80
.78
.76
.785
PPT












WIND*
7.6
8.2
7.8
7.9
6.9
5.2
5.1
4.5
5.0
5.9
6.8
7.8
   LATITUDE  =  30° 41.0' N




   LONGITUDE =  88° 14-5' w
   ELEVATION =  211 ft'
*Extreme conditions given in knots
                                   57

-------
                                TABLE  6
        WEATHER INFORMATION FOR   Phoenix,  Arizona
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.8
4.4
4.4
3.6
2.8
1.9
3.8
3.4
2.1
2.6
3.5
3.8
TAIR
49.7
53.5
59.0
67.2
75.0
83.6
89.8
87.5
82.8
70.7
58.1
51.6
HUM
.50
.45
.41
.30
.23
.23
.34
.41
.40
.36
.47
- .54
PPT












WIND
4.8
5.3
6.0
6.3
6.4
6.4
6.6
6.1
5.8
5.2
4.8
4.7
EXTREME CONDITIONS
CC
1.5
2.0
2.2
1.0
1.2
0.0
1.7
1.3
0.3
1.0
1.3
1.3
TAIR
53.5
60.0
63.0
72.7
81.5
90.0
93.3
91.0
85.6
75.8
62.5
54.3
HUM
.66
.60
.545
.44
.29
.28
.43
.485
.46
.49
.58
.64
PPT












WIND*
2.7
3.2
4.45
4.2
4.6
4.6
4.7
4.07
3.9
3.3
3.2
2.8
   LATITUDE   =    33° 26'  N



   LONGITUDE  =   H2° OT  W
   ELEVATION =   1117 ft.
*Extreme conditions given in knots
                                   58

-------
                                 TABLE  7
        WEATHER INFORMATION FOR  Fort Smith.  Arkansas  (13964)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
'DEC
NORMAL CONDITIONS
CC
6.5
6.1
6.1
6.0
6.0
5.4
5.4
4.8
4.6
4.4
5.2
6.0
TAIR
39.8
43.7
51.1
61.7
69.9
78.6
83.0
82.3
74.9
63.8
50.0
42.3
HUM
.69
.63
.62
.65
.70
.70
.70
.70
.68
.64
.68
.70
PPT












WIND
8.2
8.4
9.5
8.9
8.0
6.8
6.5
6.6
6.8
6.8
7.7
8.1
EXTREME CONDITIONS
CC
4.0
4.2
4.0
4.2
4.0
3.0
3.0
2.5
2.0
2.0
3.0
4.0
TAIR
43.0
48.0
55.0
65.5
73.0
80.0
83.7
82.0
75.5
66.5
53.0
44.5
HUM
.76
.74
.68
.66
.73
.75
.75
.755
.78
.77
.74
.74
PPT












WIND*
6.0
6.7
7.35
6.8
5.9
5.0
5.0
4.8
4.8
5.2
5.4
5.93
   LATITUDE   =    35° 20'  N
   LONGITUDE  =    94° 22"  W




   ELEVATION  =    447 ft-
*Extreme conditions given in knots
                                   59

-------
                                      TABLE  8
             WEATHER INFORMATION FOR   Little Rock,  Arkansas (13963)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.3
6.3
6.0
6.1
5.3
5.5
4.9
4.6
4.4
5.2
^6.3
TAIR
41.8
45.6
52.8
62.5
69.8
78.5
81.9
81.3
74.8
64.1
51.5
43.9
HUM
.72
.69
.66
.66
.70
.71
.71
.70
.70
.70
.68
.72
PPT












WIND
9.1
9.4
10.2
9.8
8.4
7.9
7.3
6.9
7.2
7.0
8.4
8.5
EXTREME CONDITIONS
CC
4
4.2
4
4.2
3.5
3
3.7
3
2
2
3.2
4.2
TAIR
47
49
57
66.5
73.5
82
83
82
76
65.5
54
48
HUM
.78
.745
.69
.675
.74
.76
.775
.747
.77
.75
.723
.74
PPT












WIND*
6.83
6.75
7.8
7.3
5.7
5.2
5.0
4.5
5.1
4.95
6.2
6.2
 DAY



 15



 45



 74



105



135



166



196



227



258



288



319



349
       LATITUDE  -   34°  44'



       LONGITUDE =   92°  14'
       ELEVATION -   257  ft.
    *Extreme conditions  given  in  knots
                                        60

-------
                                TABLE 9
        WEATHER INFORMATION FOR  Burbank. California (23152)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
5.0
5.0
5.1
4.7
3.7
2.5
2.4
2.5
3.8
4.0
4.2
TAIR
53.6
55.2
57.9
61.2
64.4
68.0
73.8
74.1
72.6
66.3
60.4
55.6
HUM
.59
.60
.60
.63
.64
.66
.62
.62
.60
.62
.54
.54
PPT












WIND
4.3
4.9
5.4
5.7
5.6
5.6
5.7
5.3
4.6
4.3
4.1
4.1
EXTREME CONDITIONS
CC
2.2
2.3
2.5
2.8
2.4
1.9
0.8
1.1
0.8
1.6
1.8
1.6
TAIR
56.2
59.2
59.2
63.4
65.1
69.2
74.8
74.3
74.4
69.3
61.8
57.2
HUM
.666
.697
.662
.702
.692
.696
.663
.672
.666
.682
.608
.653
PPT












WIND*
2.68
2.78
3.58
3.68
3.28
3.29
3.47
3.16
2.64
2.74
2.17
2.27
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                   34°  12'
118° 22'  W
724 ft.
*Extreme conditions given in knots
                                   61

-------
                                TABLE 10
        WEATHER INFORMATION FOR    Fresno.  California (93193)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
5.9
5.1
4.3
3.5
1.5
1.0
1.1
1.5
2.7
4.7
6.9
TAIR
45.5
49.8
54.4
60.8
67.5
73.9
80.6
78.4
73.9
64.3
53.2
46.4
HUM
.84
.77
.67
.58
.51
.44
.40
.44
.50
.55
.69
.82
PPT












WIND
5.4
5.8
6.7
6.9
7.9
8.0
7.0
6.4
5.8
5.3
4.7
4.8
EXTREME CONDITIONS
CC
4.0
2.5
2.7
1.5
1.5
0.3
0.0
0.1
0.0
0.4
1.4
4.0
TAIR
47.5
54.0
55.5
64.5
69.7
78.0
82.8
82.0
75.0
67.0
55.7
49.0
HUM.
.88
.828
.733
.66
.56
.49
.44
.48
.54
.65
.831
^89
PPT













WIND*
3.7
3.82
4.9
5.4
5.7
6.53
5.4
4.6
4.3
3.95
2.99
3.2
   LATITUDE  =
                  36°  46'
   LONGITUDE =    "9°  43'  W




   ELEVATION -    328 ft-
*Extreme conditions  given in knots
                                   62

-------
                               TABLE 11
        WEATHER INFORMATION FOR  Oakland. California  (23230)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.0
5.7
5.2
5.0
3.8
3.6
4.0
3.4
4.4
5.7
6.1
TAIR
48.0
50.7
53.6
56.6
59.7
62.8
64.3
64.2
65.1
61.1
54.7
49.5
HUM
.77
.75
.72
.72
.72
.72
.75
.76
.73
.73
.73
.78
PPT












WIND
6.2
7.0
8.7
9.2
9.8
9.8
9.0
8.9
7.5
6.6
5.7
5.6
EXTREME CONDITIONS
CC
2.5
3.0
3.2
3.0
3.0
2.2
1.5
2.2
2.0
2.3
2.7
4.0
TAIR
50.0
54.5
54.5
57.7
59.0
63.5
63.3
64.0
64.8
62.5
57.0
52.3
HUM
.82
.81
.735
.735
.725
.75
.768
.78
.76
.76
.795
.815
PPT












WIND*
4.4
4.2
6.1
6.15
6.7
7.4
6.4
6.1
5.0
4.3
3.8
3.5
   LATITUDE  =    37°  44'  N



   LONGITUDE =   122°  12'  W




   ELEVATION =    10 ft-
*Extreme conditions given in knots
                                   63

-------
                               TABLE  12
        WEATHER INFORMATION FOR   Denver.  Colorado (23062)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.3
5.8
5.9
6.4
6.3
4.8
4.9
4.8
4.0
4.4
5.1
5.0
TAIR
28.7
32.0
37.8
47.5
56.3
66.4
72.8
71.3
62.7
51.5
39.3
31.7
HUM
.54
.55
.52
.51
.54
.48
.47
.47
.45
.47
.50
.51
PPT












WIND
9.9
10.2
10.8
11 .0
10.1
10.0
9.1
8.7
8.7
8.6
9.7
9.9
EXTREME CONDITIONS
CC
3.5
4.1
4.0
4.3
4.2
3.2
3.7
3.2
2.4
2.3
3.3
3.2
TAIR
34.5
38.0
42.0
50.7
60.5
71.0
75.3
72.5
65.0
56.0
43.0
35.0
HUN
.58
.62
.64
.56
.59
.59
.54
.53
.58
.53
.61
.59
PPT













WIND*
6.5
6.6
7.5
7.85
7.4
6.7
6.6
6.43
6.5
6.4
6.05
6.6
LATITUDE  =



LONGITUDE =
                  39°  46'  N
                 104°  53'
   ELEVATION =    5292  ft"
*Extreme conditions given in knots
                                   64

-------
                               TABLE 13
        WEATHER INFORMATION FOR  Grand Junction. Colorado (23066)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
6.4
6.1
5.9
5.5
3.7
4.0
4.4
3.4
3.9
5.0
5.6
TAIR
26.0
32.6
41.5
52.3
62.2
71.3
78.2
75.5
67.8
55.0
38.8
29.1
HUM
.68
.62
.50
.38
.33
.26
.31
.37
.36
.42
.57
.66
PPT












WIND
5.6
6.7
8.4
9.7
10.0
10.2
9.5
9.0
9.1
8.2
6.7
5.8
EXTREME CONDITIONS
CC
4.2
3.7
4.0
4.2
3.5
1.7
3.1
2.5
1.4
2.0
2.7
3.3
TAIR
32.0
38.0
43.0
55.0
65.5
75.7
80.0
76.5
69.0
58.0
42.8
34.3
HUM
.76
.71
.61
.46
.42
.38
.39
.47
.46
.52
.63
.75
PPT












WIND*
3.5
3.85
5.37
5.8
6.6
7.1
6.2
6.2
6.3
5.0
4.6
3.4
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  39°  07'
108° 32'  W
4825 ft.
*Extreme conditions given in knots
                                   65

-------
                             TABLE 14
      WEATHER  INFORMATION  FOR    Hartford. Connecticut
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.6
6.6
6.8
6.6
6.6
6.5
6.4
5.9
5.9
6.9
6.6
TAIR
26.0
27.1
36.0
48.5
59.9
68.7
73.4
71.2
63.3
53.0
41.3
28.9
HUM
.66
.66
.66
.59
.62
.68
.68
.72
.75
.70
.70
.72
PPT












WIND
9.9
10.0
10.4
10.7
9.7
8.5
7.8
7.8
8.0
8.5
9.1
9.1
EXTREME CONDITIONS
CC












TAIR












HUM












PPT












WIND












LATITUDE  -   41° 56' N



LONGITUDE =   72° 4T W



ELEVATION -   169 ft.
                                 66

-------
                                TABLE 15
        WEATHER INFORMATION FOR   Wilmington.  Delaware  (13781)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.4
6.3
6.6
6.6
5.8
6.0
5.8
5.5
5.2
6.2
6.3
TAIR
33.4
33.8
41.3
52.1
62.7
71.4
76.0
74.3
67.6
56.6
45.4
35.1
HUM
.70
.69
.67
.66
.68
.70
.71
.74
.74
.73
.72
.71
PPT












WIND
9.7
10.3
11.1
10.4
8.9
8.3
7.6
7.4
8.0
8.1
9.0
9.1
EXTREME CONDITIONS
CC
4.0
4.7
4.4
5.1
5.2
4.3
4.2
4.0
3.3
3.0
4.0
4.4
TAIR
38.0
38.0
43.5
54.7
64.5
72.5
77.5
76.0
69.0
58.8
47.0
38.0
HUH
.73
.755
.70
.68
.74
.725
.77
.777
.78
.75
.733
.755
PPT












WIND*
7.0
7.6
8.5
8.0
6.4
6.2
5.5
5.1
5.5
5.8
6.4
6.65
   LATITUDE   =



   LONGITUDE  =
                 39° 40'N
75° 36'W
   ELEVATION  =    78 ft>
*Extreme conditions given in knots
                                   67

-------
                                TABLE  16
         WEATHER INFORMATION FOR   Washington,  D.  C.  (13743)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.1
6.5
6.4
5.6
5.9
5.6
5.4
5.3
5.9
6.2
TAIR
36.2
37.1
45.3
54.4
64.7
73.4
77.3
75.4
69.6
58.2
47.7
38.0
HUM
.66
.62
.60
.60
.66
.67
.68
.71
.72
.71
.66
.64
PPT












WIND
10.8
11.1
12.0
11.3
9.8
9.4
8.6
8.4
8.7
9.2
9.6
9.7
EXTREME CONDITIONS
CC
4.2
4.3
4.3
5.1
4.3
4.1
4.0
4.0
3.2
2.0
4.0
4.4
TAIR
41.0
42.0
47.0
58.0
68.0
75.6
80.0
78.0
72.5
61.7
49.5
41.7
HUM
.68
.70
.625
.635
.68
.70
.717
.74
.745
.72
.68
.69
PPT













WIND*
7.35
7.4
7.9
7.8
7.0
6.4
6.4
6.2
6.03
6.4
6.8
7.0
    LATITUDE  =



    LONGITUDE =



    ELEVATION =
                  38° 51'
77° 02'  W
14 ft.
*Extreme conditions given in knots
                                    68

-------
                               TABLE 17
        WEATHER INFORMATION FOR  Jacksonville, Florida (93837)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.8
5.8
5.3
5.3
6.2
6.4
6.1
6.7
5.4
5.1
5.9
TAIR
55.9
57.5
62.2
68.7
75.8
80.8
82.6
82.3
79.4
71.0
61.7
56.1
HUM
.75
.72
.70
.69
.70
.74
.77
.79
.80
.78
.76
.76
PPT












WIND
8.6
9.9
9.8
9.5
9.0
8.8
8.0
7.7
9.0
9.0
8.6
8.3
EXTREME CONDITIONS
CC
4.2
4.0
4.3
4.0
4.1
5.1
5.3
4.7
5.4
3.5
3.0
4.2
TAIR
60.0
63.5
65.0
70.7
77.5
81.5
82.7
83.0
79.8
74.0
65.5
60.3
HUM
.775
.76
.70
.74
.75
.78
.795
.82
.825
.815
.785
.80
PPT












WIND*
5.6
6.2
6.1
6.45
6.1
5.8
5.4
5.1
5.2
6.0
5.6
5.3
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                   30°  25'  N
81° 39' W
20 ft.
*Extreme conditions given in knots
                                   69

-------
                                TABLE 18
        WEATHER INFORMATION FOR   M1am1'  F1°Hda (12839)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.9
5.0
5.1
5.5
5.5
6.6
6.4
6.4
6.6
6.0
5.2
^J.3
TAIR
66.9
67.9
70.5
74.2
77.6
80.8
81.8
82.3
81.3
77.8
72.4
68.1
HUM
.75
.74
.72
.71
.74
.77
.77
.78
.80
.78
.76
.76
PPT












WIND
9.2
9.8
10.1
10.5
9.1
8.0
7.9
7.3
8.1
9.0
9.0
•8.4
EXTREME CONDITIONS
CC
3.0
3.2
3.2
4.0
3.2
4.7
5.0
5.0
5.1
4.2
3.3
2.5
TAIR
70.0
72.0
73.3
75.8
78.7
80.8
82.5
82.8
81.8
78.0
74.0
71.0
HUM-
.75
.745
.737
.73
.79
.80
.785
.79
.82
.805
.77
.77
PPT












WIND*
6.6
7.0
7.7
7.6
6.75
5.6
5.5
5.1
5.0
5.9
6.6
6.2
  LATITUDE  =



  LONGITUDE -



  ELEVATION -
25° 48'
80° 16' W
7 ft.
*Extreme conditions given in knots
                                   70

-------
                                TABLE 19
        WEATHER INFORMATION FOR   Tampa.  Florida  (12842)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
5.2
5.4
5.2
4.9
6.0
6.7
6.7
6.5
5.1
4.9
5.5
TAIR
61.2
62.7
66.0
71.4
76.8
80.6
81.6
82.0
80.5
74.7
66.8
62.3
HUM
.76
.75
.74
.71
.72
.75
.78
.80
.80
.77
.76
.76
PPT












WIND
9.0
9.6
10,1
9.9
9.1
8.4
7.7
7.4
8.6
9.0
9.1
9.2
EXTREME CONDITIONS
CC
3.0
3.5
3.5
3.0
3.0
4.5
5.1
5.1
4.7
25.0
2.3
3.5
TAIR
64.0
66.0
68.0
72.7
77.7
81.3
81.5
81.5
80.0
75.7
69.0
64.3
HUM.
.76
.765
.745
.73
.74
.78
.79
.803
.808
.78
.763
.775
PPT












WIND*
5.8
6.5
7.4
7.1
6.4
6.1
5.4
5.63
5.3
6.0
6.2
6.65
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  27° 58'
82° 32' W
19 ft.
*Extreme conditions given in knots
                                   71

-------
                                 TABLE 20
         WEATHER INFORMATION FOR  Atlanta.  Georgia  (13874)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.2
6.1
5.5
5.4
5.8
6.3
5.7
5.3
4.5
5.1
6.2
TAIR
44.6
46.7
52.7
61.7
70.0
77.7
79.5
78.6
74.4
63.4
51.9
45.2
HUM
.73
.68
.66
.63
.66
.70
.76
.72
.73
.72
.67
.70
PPT












WIND
11.3
11.7
11.8
10.8
9.0
8.3
7.7
7.4
8.4
8.7
9.6
10.3
EXTREME CONDITIONS
CC
5.0
4.0
4.7
4.0
3.0
4.0
4.5
3.5
3.6
0.9
3.0
4.3
TAIR
50.0
51.5
55.0
64.0
72.0
77.6
80.0
79.1
74.1
64.7
53.1
46.6
HUM
.76
.70
.69
.687
.72
.771
.791
.781
.77
.761
.721
.751
PPT













WIND*
7.0
7.85
7.3
7.0
5.8
5.46
5.03
5.03
5.49
5.59
6.1
6.79
    LATITUDE  =



    LONGITUDE =



    ELEVATION =
                    33° 39' N
84° 25' W
975 ft.
*Extreme conditions given in knots
                                    72

-------
                                TABLE 21
        WEATHER INFORMATION FOR  Boise,  Idaho  (24131)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.6
7.1
6.7
6.3
5.8
4.8
2.5
3.2
3.5
5.0
6.8
7.6
TAIR
29.1
34.5
41.7
50.4
58.2
65.8
75.2
72.1
62.7
51.6
38.6
32.2
HUM
.80
.74
.61
.54
.54
.50
.37
.38
.45
.55
.72
.79
PPT












WIND
8.6
9.4
10.5
10.2
9.5
9.1
8.5
8.3
8.3
8.7
8.6
8.4
EXTREME CONDITIONS
CC
6.2
5.2
4.0
4.0
4.0
2.3
1.0
1.3
1.2
2.3
4.0
5.5
TAIR
36.0
40.5
43.5
52.0
61.5
68.5
78.0
76.0
67.0
56.0
43.5
35.0
HUH
.81
.78
.68
.63
.62
.59
.41
.43
.49
.66
.76
.83
PPT












WIND*
5.5
6.6
7.5
7.4
6.8
6.4
5.9
5.8
6.0
5.9
6.2
4.0
   LATITUDE  =     43°  34'  N
   LONGITUDE =    116°  13'  W



   ELEVATION =    2838  ft.
*Extreme conditions given in knots
                                   73

-------
                                TABLE 22
        WEATHER INFORMATION FOR  Chicago.  Illinois  (14819)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.7
7.0
6.8
6.3
6.0
5.3
5.3
5.3
5.2
7.0
7.0
TAIR
26.0
27.7
36.3
49.0
60.0
70.5
75.6
74.2
66.1
55.1
39.9
29.1
HUM
.68
.64
.64
.64
.60
.62
.65
.67
.66
.62
.69
.75
PPT












WIND
11.4
11.6
11.8
11.7
10.4
9.2
8.2
8.0
8.9
9.8
11.4
11.2
EXTREME CONDITIONS
CC
5.3
5.0
5.5
4.7
4.3
4.3
4.0
3.5
3.2
3.0
5.1
5.0
TAIR
29.0
33.0
40.0
52.5
65.5
73.7
77.5
76.0
68.7
59.0
43.5
35.0
HUM
.773
.758
.70
.685
.655
.663
.68
.705
.70
.70
.707
.78
PPT













WIND*
8.9
8.2
9.1
8.6
8.0
6.7
6.1
5.6
6.7
7.2
8.8
8.45
   LATITUDE  =



   LONGITUDE -



   ELEVATION =
                  41° 47' N
87° 45' W
607 ft.
*Extreme conditions  given in knots
                                   74

-------
                                TABLE 23
        WEATHER INFORMATION FOR   Springfield, Illinois (93822)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.2
6.5
6.7
6.6
6.3
6.0
5.6
5.1
.4.5
4.7
6.1
6.9
TAIR
27.4
30.8
40.2
51.7
62.0
71.9
76.3
74.0
66.9
55.9
40.9
30.6
HUM
.76
.75
.71
.66
.66
.68
.71
.72
.67
.67
.70
.76
PPT












WIND
13.4
13.6
14.8
14.1
12.0
10.2
8.8
8.1
9.8
10.8
14.2
13.4
EXTREME CONDITIONS
CC
5.1
4.5
5.1
4.5
4.5
4.0
4.1
3.2
2.4
2.0
4.2
4.3
TAIR
31.0
35.5
43.0
57.0
70.0
77.0
79.3
76.0
70.0
61.0
45.0
36.5
HUM
.795
.78
.76
.71
.70
.72
.75
.765
.74
.74
.74
.815
PPT












WIND*
10.05
9.7
10.8
10.5
9.5
7.8
6.35
5.65
6.9
8.2
9.2
9.7
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                 39°  50'  N
89° 40' W
589 ft.
*Extreme conditions given in knots
                                   75

-------
                                TABLE 24
        WEATHER INFORMATION
                                  Evansville, Indiana (93817)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.3
6.8
6.6
6.5
6.4
5.9
5.6
5.1
4.7
4.8
6.1
6.9
TAIR
34.7
37.5
46.6
57.1
65.5
74.6
78.2
76.3
70.5
59.3
46.0
36.9
HUM
.77
.72
.69
.67
.70
.70
.71
.73
.72
.72
.72
.76
PPT












WIND
10.0
10.3
10.9
10.5
8.5
7.7
6.7
6.1
7.1
7.3
9.3
9.3
EXTREME CONDITIONS
CC
4.7
4.7
5.1
5.1
4.3
4.1
4.0
2.7
2.3
1.5
4.0
4.5
TAIR
38.5
40.0
48.5
59.7
69.0
79.0
80.0
77.3
71.3
61.0
47.0
41.0
HUM
.80
.77
.72
.695
.71
.745
.755
.775
.79
.747
.76
.78
PPT •













WIND*
6.2
6.6
7.65
7.2
6.0
5.0
4.8
4.6
5.23
5.5
5.6
6.6
                 38° 03'  N
LATITUDE  = _



LONGITUDE -	



ELEVATION -    381  ft.
                 87° 32'  W
*Extreme conditions given in knots
                                   76

-------
                                TABLE 25
        WEATHER INFORMATION FOR  Indianapolis, Indiana (93819)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.5
6.8
6.9
7.0
6.7
6.2
5.7
5.3
5.0
4.9
6.6
7.1
TAIR
28.8
31.5
40.1
50.8
61.4
71.4
76.0
74.0
67.2
55.9
41.5
31.1
HUM
.78
.76
.72
.69
.70
.72
.71
.72
.71
.71
.75
.78
PPT












WIND
12.5
12.5
13.5
13.0
11.2
9.4
8.3
7.9
9.1
10.1
12.4
11.8
EXTREME CONDITIONS
CC
5.4
5.2
5.7
5.2
5.0
4.5
4.7
3.5
2.5
2.3
4.0
5.1
TAIR
33.5
35.0
42.7
56.0
66.0
75.5
78.0
74.0
69.0
59.0
43.5
36.0
HUM
.81
.775
.74
.72
.72
.738
.765
.775
.77
.745
.78
.81
PPT












WIND*
7.4
7.6
8.1
7.8
6.5
5.4
5.25
4.8
5.8
6.3
7.3
7.1
  LATITUDE



  LONGITUDE



  ELEVATION
                  39° 44' N
86° 16' W
793 ft.
*Extreme conditions given in knots
                                   77

-------
                                TABLE 26
        WEATHER INFORMATION FOR    South Bend. Indiana  (14848)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.9
7.5
6.9
6.4
6.1
5.5
5.4
5.3
5.5
7.6
7.8
TAIR
25.6
26.8
34.8
47.5
58.7
69.0
73.6
72.0
63.8
53.4
39.1
28.7
HUM
.80
.78
.74
.72
.68
.70
.71
.73
.72
.74
.76
.80
PPT












WIND
11.8
12.0
12.8
12.3
11.2
9.4
8.4
8.2
9.3
9.9
11.9
11.8
EXTREME CONDITIONS
CC
6.3
6.1
6.1
4.5
5.0
4.3
4.0
4.0
3.4
3.0
6.0
6.5
TAIR
29.6
31.0
38.5
51.0
63.7
71.8
75.0
73.0
66.5
57.0
42.7
33.7
HUM
.82
.805
.78
.76
.71
.72
.735
.77
.757
.78
.78
.833
PPT












WIND*
8.79
8.8
9.6
9.7
8.7
7.1
6.4
6.4
6.65
7.0
8.2
8.4
  LATITUDE  =



  LONGITUDE -



  ELEVATION =
                  41° 42'
86° 19' W
773 ft.
*Extreme conditions  given in knots
                                   78

-------
                                TABLE 27
        WEATHER INFORMATION FOR   Des Moines, Iowa (14933)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
7.1
6.8
6.6
6.0
5.5
5.3
4.8
4.9
6.2
6.9
TAIR
22.1
26.0
37.0
50.4
61.2
70.6
76.2
73.8
65.8
54.5
38.4
26.2
HUM
.76
.76
.72
.64
.67
.71
.68
.72
.68
.65
.72
.76
PPT












WIND
12.3
12.5
14.2
14.5
12.4
11.3
9.5
9.2
10.4
11.3
13.4
12.6
EXTREME CONDITIONS
CC
5.1
4.4
5.0
4.5
5.0
4.3
3.7
3.3
3.0
2.7
4.2
4.3
TAIR
24.0
31.0
39.7
52.0
65.0
74.0
78.5
76.0
66.0
59.0
41.8
32.0
HUM
.82
.80
.79
.73
.71
.74
.74
.78
.80
.725
.76
.81
PPT












WIND*
8.8
8.2
9.4
9.0
8.83
7.2
5.8
5.8
6.3
7.9
8.3
8.7
   LATITUDE   =    41° 32'



   LONGITUDE  =
93° 39'  W
   ELEVATION  =    948 ft«
*Extreme conditions given in knots
                                   79

-------
                                TABLE 28
        WEATHER INFORMATION FOR   Sioux City.  Iowa (14943)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.4
6.9
6.5
6.5
5.7
4.8
4.8
4.8
4.8
6.4
6.6
TAIR
19.1
23.2
35.0
49.2
60.4
70.3
76.3
73.6
64.4
52.6
35.5
23.4
HUM
.73
.74
.73
.63
.65
.68
.68
.71
.68
.66
.71
.74
PPT












WIND
11.1
11.3
12.6
12.9
11.7
10.8
9.0
8.9
9.9
10.4
11.6
10.7
EXTREME CONDITIONS
CC
4.7
4.5
5.2
4.2
4.7
3.5
3.2
3.0
3.1
2.5
4.0
4.3
TAIR
22.0
29.0
39.5
51.7
65.5
75.0
79.0
76.0
65.7
58.0
40.0
31.0
HUM
.80
.805
.82
.69
.69
.745
.74
.77
.77
.735
.735
.80
PPT












WIND*
8.1
8.5
9.4
9.7
8.9
7.6
6.4
6.1
6.7
6.9
8.0
8.2
                  42°  24'N
LATITUDE  = _



LONGITUDE - 	



ELEVATION =    1084 ft.
                  96°  23'  W
*Extreme conditions given in knots
                                   80

-------
                                TABLE 29
        WEATHER INFORMATION FOR   Dodge City, Kansas  (13985)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.3
5.8
5.7
5.8
5.8
4.8
4.6
4.3
4.0
4.0
4.7
5.2
TAIR
31.1
35.0
41.8
53.6
63.7
74.4
80.2
79.2
70.3
58.3
42.8
34.7
HUM
.68
.67
.64
.60
.66
.62
.60
.58
.58
.60
.63
.67
PPT












WIND
14.3
14.9
16.7
16.3
15.4
15.2
13.4
13.3
14.7
14.1
14.5
14.0
EXTREME CONDITIONS
CC
3.0
3.7
3.5
3.7
4.0
3.0
3.2
3.0
1.7
1.4
2.3
3.2
TAIR
34.0
38.5
46.7
57.5
67.5
80.0
82.5
80.0
72.0
61.5
47.0
36.0
HUM
.76
.78
.76
.685
.70
.71
.69
.66
.71
.66
.737
.72
PPT












WIND*
10.0
10.1
11.6
11.2
11.3
9.9
9.15
9.15
10.03
9.8
9.6
9.5
  LATITUDE  =    37°  46"  N



  LONGITUDE =    99°  58'  W




  ELEVATION =
2582 ft.
*Extreme conditions given in knots
                                   81

-------
                                TABLE 30
        WEATHER INFORMATION FOR     Topeka.  Kansas (13996)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.6
6.6
6.4
6.4
6.0
5.4
4.8
4.5
4.6
5.4
6.0
TAIR
28.8
33.1
41.7
54.4
64.4
74.7
79.9
78.4
69.4
58.2
42.6
33.4
HUM
.71
.71
.68
.63
.69
.71
.70
.68
.66
.67
.67
.72
PPT












WIND
11.0
11.4
13.5
13.5
12.3
11.4
9.7
10.0
10.3
10.3
11.3
11.0
EXTREME CONDITIONS
CC
4.3
5.0
4.7
5.0
4.7
4.0
4.0
3.3
2.0
2.0
3.3
4.3
TAIR
31.7
38.1
46.5
60.1
68.7
81.0
83.1
79.4
71.7
62.1
46.4
37.6
HUM
.748
.741
.731
.681
.707
.767
.781
.751
.786
.740
.741
.761
PPT












WIND*
8.09
8.09
9.99
9.64
8.29
7.49
5.69
5.79
5.59
7.09
6.59
7.69
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  39°  04'
95° 38' W
876 ft.
*Extreme conditions given in knots
                                   82

-------
                               TABLE 31
        WEATHER INFORMATION FOR  Lexington. Kentucky (93820)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.4
7.0
7.0
6.6
6.2
5.7
5.6
5.0
4.7
4.7
6.2
6.8
TAIR
34.5
35.8
43.2
54.4
64.5
73.6
77.4
76.0
69.3
58.1
44.7
35.9
HUM
.78
.74
.71
.68
.70
.72
.73
.73
.70
.70
.72
.76
PPT












WIND
12.5
12.5
12.6
12.1
9.7
8.5
7.8
7.0
8.5
9.0
11.4
11.8
EXTREME CONDITIONS
CC
4.7
5.2
5.2
5.2
4.3
4.2
3.5
3.2
2.3
2.0
4.2
5.2
TAIR
40.0
40.0
48.0
58.5
67.7
76.0
78.0
76.0
71.0
60.7
45.8
39.5
HUM
.81
.78
.75
.70
.72
.735
.77
.765
.75
.73
.753
.805
PPT












WIND*
7.55
8.4
9.1
8.6
6.9
5.9
5.4
4.9
5.4
6.15
7.5
8.2
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                 38° 02' N
84° 36' W
966 ft.
*Extreme conditions given in knots
                                   83

-------
                                TABLE 32
        WEATHER  INFORMATION FOR   Louisville, Kentucky (93821)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.7
7.0
6.8
6.6
6.2
5.7
5.6
5.0
4.8
5.0
6.0
6.8
TAIR
34.9
37.2
45.6
56.0
65.3
74.2
77.9
76.1
70.2
58.6
45.7
36.9
HUM
.75
.71
.66
.64
.67
.69
.70
.71
.68
.70
.68
.73
PPT












WIND
10.2
10.0
10.7
10.4
8.1
7.4
6.7
6.0
7.0
7.1
9.5
9.3
EXTREME CONDITIONS
CC
5.0
5.2
5.2
5.1
4.7
3.7
3.7
3.0
2.7
2.0
4.2
5.0
TAIR
40.0
41.0
48.0
61.0
69.5
78.0
80.5
78.0
72.5
61.5
47.6
41.7
HUH
.767
.76
.72
.685
.715
.76
.747
.745
.755
.737
.735
.76
PPT












WIND*
6.6
7.3
8.0
7.6
6.0
5.0
4.6
4.0
4.6
4.5
6.4
7.05
                  38°  11
   LATITUDE   -  _



   LONGITUDE  -  	



   ELEVATION  -     474  ft-
85° 44'  W
*Extreme conditions given in knots
                                   84

-------
                               TABLE  33
        WEATHER INFORMATION FOR     New Orleans.  Louisiana  (12916)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.3
6.1
5.7
5.1
5.0
6.1
5.4
5.2
4.0
5.0
6.1
TAIR
54.6
57.1
61.4
67.9
74.4
80.1
81.6
81.9
78.3
70.4
60.0
55.4
HUM
.78
.76
.73
.75
.75
.77
.79
.80
.79
.75
.75
.78
PPT












WIND
9.6
10.3
10.2
9.7
8.4
7.0
6.4
6.2
7.6
7.7
9.0
9.3
EXTREME CONDITIONS
CC
4.4
4.0
4.4
3.7
3.2
3.0
4.2
3.2
3.2
1.3
3.0
4.0
TAIR
60.0
62.0
65.0
72.0
77.0
81.0
82.3
81.5
79.0
72.0
62.0
58.5
HUM
.80
.80
.76
.78
.77
.805
.82
.83
.798
.80
.79
.80
PPT












WIND*
7.0
8.05
7.8
7.2
5.9
5.0
4.8
4.6
4.9
5.3
6.0
6.8
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                 29° 59.2'
90° 15.3'  W
3 ft.
*Extreme conditions given in knots
                                   85

-------
                                TABLE 34
        WEATHER INFORMATION FOR    Shreveport. Louisiana (13957)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.1
6.2
6.5
6.1
5.1
5.2
4.9
4.6
4.2
5.3
6.1
TAIR
47.5
50.3
56.6
65.3
73.1
80.6
83.7
83.8
78.8
68.3
55.7
49.6
HUM
.72
.68
.66
.70
.72
.72
.71
.70
.71
.68
.70
.72
PPT












WIND
10.6
10.9
11.3
11.1
9.5
8.3
8.1
7.9
8.0
8.4
9.6
10.1
EXTREME CONDITIONS
CC
4.2
4.0
4.2
4.1
3.3
3.0
2.0
2.0
2.2
1.3
3.0
4.2
TAIR
52.0
55.5
62.0
69.3
75.0
82.0
84.0
84.0
78.0
69.0
58.5
51.7
HUM
.80
.76
.72
.75
.745
.75
.775
.75
.77
.765
.75
.78
PPT












WIND*
8.1
7.4
8.4
7.8
7.2
6.2
5.8
5.95
5.8
5.9
7.2
7.82
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  32°  28'
93° 49'  W
254 ft.
*Extreme conditions given in knots
                                  86

-------
                                TABLE 35
        WEATHER INFORMATION FOR   Caribou.  Maine (14607)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.8
6.8
7.2
7.3
7.4
7.1
6.9
6.6
7.1
8.1
7.5
TAIR
10.5
12.5
22.8
36.4
49.9
59.0
64.5
62.6
53.8
43.0
30.2
15.5
HUM
.72
.71
.71
.70
.66
.71
.74
.77
.78
.78
.81
.78
PPT












WIND
12.4
12.0
12.9
11.7
11.4
10.4
9.8
9.3
10.4
10.9
11.1
11.5
EXTREME CONDITIONS
CC
5.2
4.5
4.6
5.6
5.5
5.0
5.6
4.9
5.2
5.2
6.4
5.4
TAIR
17.0
19.0
30.1
40.4
53.1
61.6
68.1
63.8
58.1
46.6
35.1
21.8
HUM.
.78
.76
.760
.756
.711
.756
.800
.796
.806
.811
.846
.802
PPT












WIND*
7.8
7.8
7.24
7.74
7.64
7.09
6.79
6.48
6.38
7.08
6.58
7.38
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                  46° 52' N
68° 01'  W
624 ft.
*Extreme conditions given in knots
                                   87

-------
                                TABLE 36
        WEATHER INFORMATION FOR    Portland. Maine (14764)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
5.9
6.1
6.4
6.5
6.3
6.1
5.8
5.5
5.5
6.6
6.0
TAIR
21.8
22.8
31.4
42.5
53.0
62.1
68.1
66.8
58.7
48.6
38.1
25.8
HUM
.72
.71
.71
.70
.72
.75
.76
.78
.79
.77
.78
.74
PPT












WIND
9.3
9.5
10.0
10.0
9.2
8.1
7.6
7.5
7.8
8.6
8.8
8.9
EXTREME CONDITIONS
CC
4.2
4.2
4.7
5.0
5.2
4.4
4.4
4.2
4.0
4.0
5.1
4.2
TAIR
27.0
28.0
34.0
45.0
55.5
64.3
70.5
68.0
60.7
51.5
41.0
32.0
HUH
.78
.77
.76
.745
.78
.81
.80
.815
.81
.80
.81
.79
PPT












WIND*
6.4
6.7
6.9
7.0
6.6
5.4
4.8
5.4
5.4
5.6
5.8
6.0
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
43° 39'
70° 19' W
47 ft.
*Extreme conditions given in knots
                                   88

-------
                                TABLE 37
        WEATHER INFORMATION FOR  Baltimore. Maryland (93721)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.1
6.1
6.1
6.3
6.2
5.5
5.5
5.6
5.1
4.8
5.9
6.2
TAIR
34.8
35.7
43.1
54.2
64.4
72.5
76.8
75.0
68.1
57.0
45.5
35.8
HUM
.66
.66
.62
.62
.66
.69
.70
.72
.73
.70
.67
.68
PPT












WIND
10.3
11.0
11.6
11.4
10.0
9.1
8.6
8.7
8.9
9.5
9.8
9.6
EXTREME CONDITIONS
CC
3.7
4.5
4.3
5.0
5.0
4.1
3.7
3.7
3.2
1.7
3.6
4.2
TAIR
40.0
40.0
44.8
56.5
66.0
74.3
79.0
76.5
69.8
59.5
47.9
39.0
HUM.
.72
.725
.66
.67
.717
.73
.745
.78
.77
.75
.706
.72
PPT












WIND*
7.4
7.6
8.4
8.0
7.4
6.75
6.5
6.4
6.6
6.6
7.49
6.65
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
39° IT  N
76° 40'  W
148 ft.
*Extreme conditions given in knots
                                   89

-------
                                TABLE 38
        WEATHER INFORMATION FOR    Boston,  Massachusetts (14739)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.1
6.2
6.5
6.5
6.2
6.1
5.7
5.4
5.5
6.4
6.1
TAIR
29.9
30.3
37.7
47.9
58.8
67.8
73.7
71.7
65.3
55.0
44.9
33.3
HUM
. 4
.62
.64
.63
.64
.70
.66
.70
.67
.67
.69
.65
PPT












WIND
14.8
14.7
14.5
13.8
12.9
12.0
11.3
11.2
11.5
12.5
13.4
14.2
EXTREME CONDITIONS
CC
4.4
4.3
5.0
5.0
5.0
4.5
4.3
4.1
2.4
2.2
5.0
4.2
TAIR
34.7
34.7
38.7
49.3
60.0
70.0
75.5
73.3
67.0
57.5
47.0
38.0
HUK
.68
.668
.67
.68
.71
.73
.725
.733
.74
.725
.71
.72
PPT












WIND*
10.8
10.6
11.73
10.4
10.0
9.4
8.5
8.7
8.9
9.43
10.2
10.8
                 42°  22'  N
LATITUDE  -



LONGITUDE - 	



ELEVATION -   15 ft.
                 71°  02'  W
*Extreme conditions  given in knots
                                   90

-------
                                TABLE 39
        WEATHER INFORMATION FOR   Detroit,  Michigan (14822)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.8
7.3
7.0
6.8
6.4
6.0
5.3
5.4
5.4
5.6
7.5
7.7
TAIR
26.9
27.2
34.8
47.6
59.0
69.7
74.4
72.8
65.1
53.8
40.4
29.9
HUM
.75
.74
.70
.64
.62
.65
.64
.68
.70
.70
.72
.76
PPT












WIND
11.5
11.5
11.5
11.1
9.9
9.0
8.2
8.0
8.9
9.5
11.4
11.3
EXTREME CONDITIONS
CC
6.1
6.0
5.7
4.7
4.5
4.2
3.7
3.4
3.0
3.0
6.0
6.0
TAIR
30.1
31.0
37.5
51.0
63.0
72.3
75.7
75.5
67.0
56.5
44.0
34.0
HUM
.786
.76
.725
.677
.67
.67
.67
.71
.733
.733
.747
.78
PPT












WIND*
8.79
8.4
9.0
8.9
7.5
6.6
6.2
6.23
6.6
6.9
8.4
8.9
   LATITUDE   =    42° 25"
   LONGITUDE  =    83° 01'  W



   ELEVATION  =    619 ft.
*Extreme conditions given in knots
                                   91

-------
                                TABLE 40
        WEATHER INFORMATION FOR  Muskegon. Michigan  (14840)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.7
8.1
7.3
6.6
6.1
5.7
4.8
5.1
5.5
5.9
8.4
8.8
TAIR
76.0
25.7
32.9
45.2
55.8
66.7
71.3
70.3
63.0
52.5
39.6
29.9
HUM
.79
.76
.74
.68
.62
.66
.69
.73
.74
.73
.76
.80
PPT












WIND
12.3
11.9
12.3
12.4
10.7
9.0
8.3
8.4
8.8
11.1
11.8
12.1
EXTREME CONDITIONS
CC
7.2
6.5
6.1
4.0
4.2
4.1
3.2
3.5
3.5
3.3
6.7
7.3
TAIR
28.0
28.7
36.0
48.7
60.8
70.3
73.8
74.0
64.0
56.0
43.0
33.0
HUM.
.816
.80
.76
.725
.70
.715
.73
.76
.76
.77
.77
.82
PPT












WIND*
7.99
8.2
8.6
8.4
7.6
7.1
6.4
5.9
6.3
7.0
9.0
8.25
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  43° 10'
86° 14' W
625 ft.
*Extreme conditions  given in knots
                                    92

-------
                                TABLE 41
        WEATHER INFORMATION FOR   Sault Ste.  Marie.  Michigan (14847)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.9
7.3
7.0
6.7
6.6
6.3
5.8
6.0
6.9
7.1
8.6
8.2
TAIR
15.8
15.7
23.8
38.0
49.6
59.0
64.6
64.0
55.8
46.3
33.3
20.9
HUM
.81
.80
.77
.72
.69
.75
.76
.79
.82
.80
.83
.82
PPT












WIND
10.3
10.3
10.7
11.1
10.6
9.1
8.5
8.4
9.2
9.7
10.5
10.3
EXTREME CONDITIONS
CC
6.1
5.4
5.1
5.0
5.1
4.7
4.2
4.3
5.7
4.7
7.2
7.1
TAIR
18.6
19.0
27.5
41.0
52.7
60.8
66.0
66.0
58.0
48.0
36.0
26.0
HUM.
.847
.83
.79
.78
.725
.805
.80
.82
.84
.823
.845
.86
PPT












WIND*
6.89
7.3
7.2
8.4
7.8
6.8
6.1
5.9
6.55
7.0
7.6
8.0
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                 46° 28' N
84° 22' W
721 ft.
*Extreme conditions given in knots
                                    93

-------
                                TABLE 42
        WEATHER INFORMATION FOR   Du1uth»  Minnesota (14913)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.5
6.8
6.6
6.6
5.9
6.0
6.7
6.4
7.5
7.3
TAIR
8.3
11.0
22.2
36.8
49.7
59.7
66.4
64.8
55.4
44.0
27.0
13.2
HUM
.75
.74
.74
.68
.66
.73
.75
.78
.80
.76
.80
.77
PPT












WIND
12.6
13.0
13.3
14.9
13.6
11.6
10.6
10.4
11.9
12.4
13.6
12.3
EXTREME CONDITIONS
CC
5.1
4.3
5.0
5.0
5.3
5.2
4.4
4.2
5.1
4.0
6.1
5.5
TAIR
14.0
19.5
28.0
43.0
52.5
61.8
68.0
66.5
55.7
49.0
32.5
21.5
HUM
.77
.765
.76
.71
.71
.75
.758
.80
.81
.80
.80
.807
PPT













WIND*
9.0
9.0
8.6
10.0
9.2
8.2
7.45
6.7
7.9
8.5
8.6
8.4
  LATITUDE  -



  LONGITUDE -



  ELEVATION -
                  46°  50'  N
92° 11'  W
1426 Ft.
*Extreme conditions  given  in knots
                                   94

-------
                                TABLE  43
        WEATHER INFORMATION FOR  MinneapolJs-St.  Paul. Minnesota (14922)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.0
6.6
6.4
6.3
6.0
5.1
5.1
5.2
5.2
7.0
6.9
TAIR
14.6
_ 18.2
30.9
46.0
58.5
68.2
74.1
71.5
62.2
50.4
33.0
19.4
HUM
.76
.74
.72
.62
.62
.67
.67
.69
.69
.67
.75
.78
PPT












WIND
10.6
10.9
11.6
12.7
11.7
11.1
9.5
9.4
10.5
10.9
11.6
10.7
EXTREME CONDITIONS
CC
4.5
4.0
5.2
4.3
4.0
4.5
3.2
3.2
3.5
3.2
4.5
5.3
TAIR
18.0
23.5
34.5
49.0
61.7
71.0
76.0
74.0
62.5
56.0
37.3
26.0
HUM
.78
.77
.75
.68
.68
.685
.71
.733
.77
.743
.775
.82
PPT












WIND*
8.03
8.0
8.7
9.3
8.87
8.1
6.8
6.8
7.0
8.0
8.0
7.4
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  44° 53'
93° 13'  W
830 ft.
*Extreme conditions given in knots
                                   95

-------
                                TABLE 44
        WEATHER INFORMATION FOR  Jackson.  Mississippi  (13956)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.7
6.9
6.1
5.8
5.3
5.9
5.6
5.1
5.3
5.2
5.7
6.1
TAIR
48.0
50.7
56.4
64.4
72.5
79.4
81.6
81.3
76.2
66.5
54.9
49.0
HUM
.73
.72
.68
.69
.71
.69
.74
.75
.75
.74
.72
.74
PPT












WIND
7.7
8.0
8.2
7.7
6.2
5.4
4.9
4.6
5.6
5.3
6.8
7.1
EXTREME CONDITIONS
CC
4.8
4.2
4.2
4.2
2.5
3.1
3.7
2.2
2.2
1.7
3.1
4.4
TAIR
54.5
56.2
61.2
68.5
74.7
83.2
82.9
84.3
77.6
67.9
55.3
54.6
HUM
.775
.765
.702
.699
.735
.758
.788
.758
.776
.786
.726
.746
PPT













WIND*
6.25
6.55
6.55
6.22
4.85
4.24
3.17
3.24
3.88
4.04
5.34
5.74
  LATITUDE  =   32°  19' N



  LONGITUDE =   90°  05' W
  ELEVATION =    33° ft.
*Extreme conditions  given in knots
                                   96

-------
                                TABLE 45
        WEATHER INFORMATION FOR    St.  Louis. Missouri  (13994)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.4
6.7
6.6
6.2
5.9
5.7
5.3
4.8
4.7
5.9
6.8
TAIR
31.9
34.7
42.6
54.9
64.2
74.1
78.1
76.8
69.5
58.4
44.1
34.8
HUM
.69
.65
.64
.61
.64
.67
.68
.68
.70
.64
.70
.73
PPT












WIND
10.1
10.6
11.8
11.4
9.6
8.4
7.6
7.4
7.9
8.5
9.9
10.3
EXTREME CONDITIONS
CC
4.3
5.0
4.7
5.0
4.7
4.0
4.0
3.3
2.0
2.0
3.3
4.3
TAIR
35.0
39.5
47.0
60.0
70.0
80.0
82.0
79.0
73.0
63.5
47.7
40.0
HUM.
.78
.755
.72
.66
.68
.72
.74
.70
.75
.713
.705
.775
PPT












WIND*
8.0
8.2
8.9
8.55
7.4
5.8
5.3
4.6
5.4
5.7
7.6
7.2
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  38°  45'
90° 23' W
560 ft.
*Extreme conditions given in knots
                                   97

-------
                                TABLE 46
        WEATHER INFORMATION FOR  Springfield, Missouri (13995)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.3
6.6
6.3
6.3
5.8
5.6
5.0
4.2
4.7
5.2
6.2
TAIR
32.7
36.8
44.9
55.5
63.6
72.9
77.5
76.5
69.1
58.4
44.5
35.7
HUM
.76
.72
.70
.66
.72
.73
.73
.71
.68
.69
.70
.73
PPT












WIND
13.3
13.7
14.7
14.1
12.2
11.7
10.1
9.9
10.9
11.6
13.2
13.3
EXTREME CONDITIONS
CC
3.7
4.2
4.2
4.3
4.2
4.0
3.5
3.2
1.7
1.7
3.0
4.0
TAIR
36.3
40.0
48.5
61.0
67.8
79.0
79.0
78.0
72.0
62.5
48.0
40.0
HUM.
.79
.757
.725
.70
.75
.80
.80
.76
.805
.76
.745
.77
PPT












WIND*
9.0
9.0
10.2
9.1
8.0
7.0
6.3
5.7
6.6
7.4
7.5
8.6
                 37° 14'  N
  LATITUDE  =  _



  LONGITUDE =  	



  ELEVATION =    1265 ft-
93° 23'  W
*Extreme conditions given in knots
                                   98

-------
                                TABLE 47
        WEATHER INFORMATION FOR  Billings. Montana (24033)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.9
7.2
7.0
6.4
6.0
4.0
4.1
5.2
5.5
6.7
6.7
TAIR
22.9
26.1
34.1
46.2
56.0
64.0
73.3
71.0
60.0
49.2
35.8
27.2
HUM
.63
.66
.65
.57
.56
.60
.47
.46
.52
.56
.62
.62
PPT












WIND
12.6
12.1
11.8
11.8
11.1
10.6
9.9
9.6
10.4
10.9
12.3
12.9
EXTREME CONDITIONS
CC
5.2
5.5
5.3
5.0
4.7
3.7
2.2
2.5
3.5
3.2
4.3
5.0
TAIR
33.0
36.0
39.7
51.0
58.0
68.0
75.5
73.5
63.5
53.5
43.0
33.0
HUM
.697
.69
.697
.65
.645
.655
.54
.535
.59
.645
.663
.685
PPT












WIND*
9.5
9.4
8.4
9.0
8.8
7.9
7.85
7.4
8.2
8.0
9.2
9.3
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  45° 48' N
108° 32'  W
3567 ft.
*Extreme conditions given in knots
                                   99

-------
                                TABLE 48
        WEATHER INFORMATION FOR  Helena.  Montana  (24144)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.3
7.3
7.2
7.2
6.9
6.4
4.0
4.4
5.4
5.9
7.2
7.3
TAIR
18.6
23.2
31.4
43.3
52.9
59.5
68.4
66.2
56.0
45.6
31.6
24.2
HUM
.69
.68
.64
.57
.58
.58
.50
.48
.55
.60
.68
.70
PPT












WIND
6.7
7.7
8.5
9.4
9.0
8.8
8.0
7.7
7.6
7.3
7.3
7.0
EXTREME CONDITIONS
CC
6.0
6.0
5.4
5.2
5.3
4.2
2.1
2.0
3.5
3.2
5.0
6.0
TAIR
29.0
33.5
37.0
46.5
56.0
61.7
71.0
70.0
60.0
48.0
37.5
30.0
HUM
.72
.715
.70
.61
.60
.62
.56
.54
.64
.68
.70
.745
PPT












WIND*
4.5
5.4
5.75
6.8
7.0
6.4
5.75
5.2
5.05
5.2
4.9
4.8
                 46° 36' N
  LATITUDE  =	



  LONGITUDE =   112° °°'
  ELEVATION =   3828 ft»
*Extreme conditions given in knots
                                  100

-------
                               TABLE 49
        WEATHER INFORMATION FOR   North  Platte.  Nebraska  (24023)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
6.6
6.5
6.4
6.5
4.9
4.4
4.6
4.4
4.2
5.5
5.7
TAIR
24.0
27.9
35.0
47.7
58.5
69.1
76.1
74.5
63.7
51.0
35.5
27.4
HUM
.72
.70
.68
.61
.66
.65
.63
.64
.61
.62
.67
.70
PPT












WIND
9.7
10.6
12.3
13.3
12.5
11.4
10.2
10.1
10.3
10.1
10.6
9.9
EXTREME CONDITIONS
CC
4.3
4.7
4.0
4.2
5.0
3.0
3.2
3.0
2.7
2.2
4.0
4.0
TAIR
26.5
31.0
39.3
50.7
61.5
73.0
78.0
74.5
64.8
55.0
39.0
30.0
HUM
.76
.78
.745
.68
.70
.74
.725
.733
.74
.71
.72
.755
PPT












WIND*
6.7
7.4
9.0
9.8
9.2
8.3
7.3
6.7
7.8
7.2
6.6
6.9
  LATITUDE  =    41° °8'
  LONGITUDE =
                100
  ELEVATION =   2775 ft'
*Extreme conditions given in knots
                                   101

-------
                                TABLE 50
        WEATHER INFORMATION FOR  Omaha. Nebraska  (14942)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.1
6.4
6.7
6.3
6.3
5.6
4.7
4.6
4.6
4.5
5.7
6.2
TAIR
22.3
26.5
36.9
51.7
63.0
73.1
78.5
76.2
66.9
55.7
38.9
28.2
HUM
.72
.74
.68
.58
.62
.65
.66
.68
.68
.63
.68
.70
PPT












WIND
11.4
11.8
13.1
13.7
11.8
11.0
9.4
9.6
10.2
10.4
11.7
11.2
EXTREME CONDITIONS
CC
4.7
4.3
5.0
4.0
4.7
3.7
3.2
3.0
3.0
2.1
3.5
3.7
TAIR
25.5
32.0
43.5
55.0
67.5
77.0
81.0
77.0
68.0
60.0
44.0
34.0
HUM
.78
.765
.773
.68
.685
.73
.725
.74
.75
.72
.76
.78
PPT












WIND*
8.3
8.8
10.3
9.65
9.15
7.5
6.8
6.5
6.75
7.4
7.8
8.0
  LATITUDE  =



  LONGITUDE =



  ELEVATION -
                 41° 18'
95° 54'  W
978 ft.
*Extreme conditions given in knots
                                   102

-------
                                TABLE 51
        WEATHER INFORMATION FOR  Elko. Nevada (24121)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.5
6.8
6.4
6.2
4.2
3.0
2.9
3.0
4.2
5.6
6.5
TAIR
22.6
28.0
35.6
44.3
52.0
60.0
69.6
66.9
57.9
46.9
34.2
26.4
HUM
.72
.70
.62
.51
.51
.42
.33
.32
.37
.48
.63
.73
PPT












WIND
5.4
5.9
6.9
7.2
7.0
6.8
6.3
6.1
5.5
5.3
4.9
4.9
EXTREME CONDITIONS
CC
4.3
4.5
4.4
4.5
4.4
2.4
1.3
1.4
1.0
2.1
2.4
3.4
TAIR
31.0
38.0
38.0
48.0
58.0
68.0
74.8
72.0
62.0
49.7
38.6
31.1
HUH
.79
.76
.71
.62
.615
.55
.40
.46
.44
.60
.711
.814
PPT












WIND*
3.0
3.6
4.6
5.53
4.8
4.7
4.55
4.35
4.0
3.6
2.59
2.49
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  40° 50' N
115° 47' W
5050 ft.
*Extreme conditions given in knots
                                   103

-------
                                TABLE 52
        WEATHER INFORMATION FOR   Las  Vegas.  Nevada  (23169)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.2
4.3
4.2
3.8
3.3
1.6
2.8
2.3
1.6
2.4
3.2
4.4
TAIR
44.2
50.4
56.5
65.6
74.1
83.6
90.5
88.4
80.7
67.4
53.9
46.8
HUM
.47
.37
.28
.23
.19
.15
.22
.22
.20
.26
.35
.40
PPT












WIND
6.5
7.9
9.7
10.3
11.0
11.1
9.9
9.6
8.6
7.6
6.3
6.3
EXTREME CONDITIONS
CC
2.0
2.0
2.0
2.0
2.0
0.4
1.0
1.0
0.1
1.0
2.0
2.0
TAIR
47.0
54.5
58.0
69.5
78.0
87.5
91.8
90.3
81.8
70.5
56.0
47.5
HUM
.555
.48
.395
.33
.26
.19
.26
.30
.30
.36
.473
.555
PPT












WIND*
4.45
5.0
7.0
6.15
7.3
7.6
6.5
6.3
5.1
5.35
4.4
3.7
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  36°  05'  N
115° 10'  W
2162 ft.
*Extreme conditions given in knots
                                   104

-------
                                TABLE  53
        WEATHER INFORMATION FOR  Ren0' Nevada (23185)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
6.1
5.8
5.4
5.0
3.3
2.1
1.9
2.4
4.1
5.3
6.2
TAIR
31.9
36.1
41.0
47.5
53.4
60.1
68.2
66.5
60.3
50.2
39.3
33.4
HUM
.69
.66
.55
.49
.48
.45
.40
.40
.46
.53
.62
.71
PPT












WIND
6.0
6.3
7.7
7.9
7.7
7.2
6.5
6.2
5.5
5.5
5.1
4.8
EXTREME CONDITIONS
CC
3.5
3.2
3.3
3.2
3.0
1.5
0.3
0.5
0.3
2.0
1.7
3.5
TAIR
35.5
41.0
43.0
51.3
59.5
67.0
73.0
71.0
62.7
52.0
41.5
35.5
HUM
.66
.60
.545
.44
.29
.28
.43
.485
.46
.49
.58
.64
PPT












WIND*
3.3
3.7
5.5
5.2
5.2
4.7
4.53
4.4
3.7
3.4
2.4
2.9
  LATITUDE  =



  LONGITUDE =
   ELEVATION =
                  39°  30'  N
119° 47' W
                 4404 ft.
*Extreme conditions given in knots
                                   105

-------
                                TABLE 54
        WEATHER INFORMATION FOR  Concord. New Hampshire (14745)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.0
6.1
6.5
6.5
6.1
6.0
5.8
5.7
5.6
6.7
6.1
TAIR
21.2
22.7
31.7
43.8
55.5
64.5
69.6
67.4
59.3
48.7
37.6
25.0
HUM
.71
.69
,67
.65
.66
.69
.71
.75
.76
.74
.74
.72
PPT












WIND
7.3
7.9
8.2
7.8
7.0
6.4
5.5
5.2
5.4
5.9
6.6
6.9
EXTREME CONDITIONS
CC
4.2
4.0
5.0
5.0
5.2
4.3
4.5
4.1
3.7
4.0
5.0
4.3
TAIR
27.0
28.0
35.0
46.5
59.3
67.5
73.0
69.7
61.0
52.0
41.0
30.0
HUM
.743
.72
.705
.69
.70
.75
.76
.76
.785
.763
.765
.77
PPT












WIND*
5.05
4.8
5.85
5.45
5.05
4.2
3.6
3.4
3.7
4.0
4.4
4.7
  LATITUDE  -    43° 12'  N



  LONGITUDE -    71° 3T  W



  ELEVATION -    342 ft.
*Extreme conditions given in knots
                                  106

-------
                                TABLE 55
        WEATHER INFORMATION FOR   Newark.  New Jersey  (14734)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6.4
6.1
6.5
6.4
6.0
6.1
6.0
5.5
5.2
6.0
6.2
TAIR
33.3
33.7
41.5
52.3
62.5
72.3
77.3
75.4
68.3
57.6
45.9
35.3
HUM
.66
.64
.62
.62
.64
.66
.66
.69
.70
.69
.67
.67
PPT












WIND
11.2
11.5
12.1
11.2
10.0
9.3
8.8
8.5
8.8
9.3
10.1
10.6
EXTREME CONDITIONS
CC
4.2
4.5
5.1
4.5
4.5
4.5
4.2
4.0
3.4
3.2
4.2
4.3
TAIR
37.0
37.5
41.8
53.0
65.0
73.0
78.7
76.5
70.0
59.8
48.5
38.7
HUM
.69
.68
.66
.65
.68
.68
.70
.72
.72
.72
.69
.72
PPT












WIND*
8.4
8.2
9.1
8.9
7.7
7.2
6.7
6.4
7.05
7.2
7.0
7.8
   LATITUDE   =



   LONGITUDE =



   ELEVATION =
                  40° 42'  N
74° 10'  W
11  ft.
*Extreme conditions given in knots
                                   107

-------
                                TABLE 56
        WEATHER INFORMATION FOR   Albuquerque. New Mexico (23050)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.0
4.9
4.9
4.8
4.3
3.3
4.4
4.3
3.1
3.5
3.6
4.5
TAIR
33.7
39.5
46.0
55.5
65.3
74.9
79.0
76.9
69.9
58.2
44.0
36.0
HUM
.56
.49
.40
.35
.32
.30
.42
.47
.40
.44
.46
.55
PPT












WIND
8.1
8.9
10.1
11.0
10.4
9.8
9.1
8.0
8.5
8.2
7.8
7.4
EXTREME CONDITIONS
CC
1.5
3.0
3.0
3.1
2.0
1.0
3.2
2.2
0.7
1.1
1.7
2.0
TAIR
40.0
44.0
49.0
58.0
68.0
77.5
79.5
77.3
72.0
60.8
47.7
40.0
HUM.
.585
.54
.43
.40
.355
.36
.46
.52
.53
.52
.56
.61
PPT













WIND*
5.4
6.0
7.33
7.6
7.35
6.93
6.3
5.6
6.0
5.5
4.7
5.0
   LATITUDE  =    35° 03'  N
   LONGITUDE =   106°  37'  W



   ELEVATION =    5310 ft.
*Extreme conditions given in knots
                                    108

-------
                               TABLE 57
        WEATHER INFORMATION FOR  Albany,  New York  (14735)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.0
6.8
6.8
7.0
6.8
6.4
6.2
6.0
5.8
5.9
7.3
7.1
TAIR
22.7
23.7
33.0
46.2
57.9
67.3
72.1
70.0
61.6
50.8
39.1
26.5
HUM
.73
.71
.69
.64
.65
.67
.68
.73
.76
.74
.74
.75
PPT












WIND
9.7
10.4
10.5
10.5
9.0
8.1
7.3
6.9
7.3
7.9
8.8
8.9
EXTREME CONDITIONS
CC
4.7
5.4
5.5
5.0
5.4
4.5
4.5
4.5
3.3
4.0
5.7
5.5
TAIR
29.0
29.0
36.0
49.5
61.0
70.0
74.5
72.0
63.0
54.3
42.0
32.0
HUM-
.755
.74
.71
.67
.67
.70
.73
.75
.77
.76
.74
.78
PPT












WIND*
7.4
7.35
7.5
8.15
6.6
5.8
5.6
5.3
5.6
5.9
6.1
6.3
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                  42°  45'  N
73° 48'  W
275 ft.
*Extreme conditions given in knots
                                    109

-------
                                TABLE 58
        WEATHER  INFORMATION FOR   Buffalo.  New York (14733)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.3
8.1
7.4
7.1
6.7
6.0
5.6
5.6
5.9
6.0
8.1
8.2
TAIR
25.5
24.7
33.0
43.8
55.4
65.5
70.6
68.9
62.4
51.2
39.9
29.0
HUM
.77
.76
.74
.70
.70
.70
.69
.71
.73
.73
.74
.76
PPT












WIND
15.1
15.0
14.9
13.8
12.5
12.0
11.2
10.7
11.5
12.2
14.1
14.6
EXTREME CONDITIONS
CC
7.0
6.5
6.1
5.2
5.0
4.5
4.1
4.2
3.9
3.3
6.3
7.0
TAIR
30.5
31.0
35.0
48.0
59.3
70.0
73.5
72.0
65.1
56.0
43.0
33.7
HUM
.80
.79
.77
.74
.735
.72
.71
.747
.76
.756
.781
.80
PPT












WIND*
9.8
9.9
9.2
8.8
8.85
8.2
7.4
7.0
7.1
8.09
8.19
9.09
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                   42°  56'
75° 44'  W
693 ft.
*Extreme conditions given in knots
                                    110

-------
                               TABLE 59
        WEATHER INFORMATION FOR  New York. New York (14732)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.5
6,3
6.3
6.4
6.4
5.9
6.0
6.0
5.9
5.2
6.3
6.3
TAIR
33.6
33.6
40.8
51.2
62.1
71.5
76.8
75.4
68.8
58.6
47.4
36.4
HUM
.61
.58
.63
.59
.60
.62
.62
.64
.64
.61
.62
.64
PPT












WIND
14.3
14.4
14.6
13.1
11.8
10.9
10.4
10.3
11.1
11.9
12.9
13.7
EXTREME CONDITIONS
CC
4.5
4.5
5.1
4.5
4.7
4.2
4.2
3.9
3.4
3.2
4.3
4.5
TAIR
38.0
38.5
41.9
52.8
64.5
73.0
79.0
77.0
71.1
61.0
49.7
41.0
HUM
.68
.667
.657
.645
.68
.68
.70
.701
.701
.681
.661
.701
PPT












WIND*
10.4
10.6
10.35
9.4
9.0
8.7
7.99
7.69
8.09
8.6
8.99
9.89
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  40°  46'  N
73° 54'  W
11 ft.
*Extreme conditions given in knots
                                    111

-------
                                TABLE 60
        WEATHER INFORMATION FOR  Charlotte. North Carolina  (13881)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.1
6.2
5.5
6.0
5.9
6.2
5.7
5.8
4.8
5.1
5.8
TAIR
42.3
44.4
51.0
59.7
68.3
76.6
78.6
77.3
72.6
61.5
50.4
43.0
HUM
.70
.66
.65
.63
.66
.68
.74
.74
.74
.72
.70
.70
PPT












WIND
8.6
8.8
9.4
9.4
7.7
7.0
6.8
6.9
7.5
7.7
7.6
7.6
EXTREME CONDITIONS
CC
4.2
4.2
4.0
4.1
4.2
4.3
4.3
3.5
3.7
1.0
3.0
4.0
TAIR
48.0
48.0
53.5
63.0
73.3
76.8
78.9
78.6
74.0
63.5
54.0
45.0
HUM
.717
.70
.67
.66
.70
.75
.787
.78
.75
.76
.71
.73
PPT












WIND*
5.5
5.8
6.3
6.2
5.4
5.0
4.75
4.6
4.8
4.6
4.8
4.7
                 35° 13'
LATITUDE  = _



LONGITUDE - 	



ELEVATION =    725  ft.
                 80° 56' W
*Extreme conditions given in knots
                                    112

-------
                                TABLE  61
        WEATHER INFORMATION FOR   Wilmington.  North  Carolina  (13748)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.9
5.7
5.0
5.5
5.8
5.9
5.8
5.8
4.6
4.9
5.3
TAIR
47.9
48.7
54.2
62.5
70.5
77.7
80.0
79.4
75.2
65.4
55.4
48.2
HUM
.75
.74
.71
.71
.75
.78
.80
.82
.82
.79
.78
.73
PPT












WIND
10.4
11.5
11.7
12.2
10.5
9.7
9.3
9.1
9.6
9.4
9.5
9.5
EXTREME CONDITIONS
CC
4.1
4.0
4.1
3.4
3.5
4.0
4.4
4.0
4.0
2.0
2.3
3.7
TAIR
53.0
54.0
57.5
67.0
74.0
80.0
82.0
80.5
76.0
67.3
58.0
51.7
HUM
.79
.76
.718
.707
.76
.80
.82
.833
.82
.83
.77
.773
PPT












WIND*
6.0
6.7
6.8
6.8
6.2
5.8
5.2
4.4
5.5
5.7
5.8
5.7
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                 34° 16'  N
77° 55'  W
28 ft.
*Extreme conditions given in knots
                                    113

-------
                                TABLE 62
        WEATHER INFORMATION FOR   Bismarck, North Dakota  (24011)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
7.0
6.6
6.4
6.1
4.7
4.8
5.4
5.6
6.9
6.8
TAIR
9.2
12.7
26.7
43.1
54.8
64.3
72.1
69.3
58.5
45.7
28.4
15.5
HUM
.75
.76
.76
.65
.61
.67
.65
.63
.64
.66
.76
.76
PPT












WIND
10.1
10.3
11.6
12.9
12.7
11.9
10.0
10.2
10.9
10.5
11.2
9.8
EXTREME CONDITIONS
CC
5.0
5.2
5.2
4.5
5.1
4.7
3.2
3.0
3.5
3.2
4.3
5.1
TAIR
17.5
21.5
34.0
47.6
58.0
69.0
74.0
71.8
60.0
50.0
35.0
24.0
HUM
.78
.80
.80
.70
.68
.75
.69
.68
.71
.72
.755
.80
PPT













WIND*
7.2
7.4
7.8
9.55
9.5
8.2
7.8
7.1
7.6
7.7
7.1
6.5
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  46° 46' N
100° 45'  W
1650 ft.
*Extreme conditions given in knots
                                   114

-------
                                TABLE 63
        WEATHER INFORMATION FOR  Cleveland. Ohio (14820)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.9
7.4
7.0
6.6
5.8
5.5
5.5
5.5
5.7
7.8
8.1
TAIR
28.4
28.5
35.1
47.0
58.0
67.8
71.9
70.4
64.2
53.4
41.3
30.5
HUM
.74
.74
.80
.68
.64
.69
.70
.74
.72
.69
.71
.74
PPT












WIND
12.4
12.5
12.7
12.1
10.6
9.5
8.8
8.5
9.2
10.2
12.4
12.5
EXTREME CONDITIONS
CC
6.5
6.4
6.1
5.3
4.7
4.5
4.1
3.7
3.0
3.0
6.2
7.0
TAIR
33.1
33.0
38.5
52.0
63.5
72.0
76.0
74.0
67.0
58.0
43.8
36.0
HUM
.81
.80
.76
.72
.70
.71
.72
.76
.76
.745
.77
.81
PPT












WIND*
9.09
8.1
9.2
9.0
7.8
6.8
6.93
6.4
6.9
7.5
9.0
8.9
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                 41° 24' N
81° 51' W
777 ft.
*Extreme conditions given in knots
                                   115

-------
                                TABLE 64
        WEATHER INFORMATION FOR  Columbus. Ohio (14821)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
7.5
7.3
7.1
6.5
6.1
5.8
5.4
5.2
5.2
7.0
7.6
TAIR
29.7
31.2
39.8
50.2
60.8
70.7
74.4
72.4
66.5
54.5
41.9
31.7
HUM
.78
.74
.70
.68
.69
.70
.70
.72
.71
.72
.73
.77
PPT












WIND
10.0
10.1
10.7
10.0
8.1
6.8
6.1
5.7
6.5
7.2
9.6
9.2
EXTREME CONDITIONS
CC
5.6
6.1
5.7
5.5
5.1
4.7
4.1
3.7
2.5
2.0
5.3
6.1
TAIR
35.1
36.0
43.0
56.0
66.5
73.5
76.0
75.0
68.5
58.3
44.0
36.5
HUH
.781
.767
.72
.696
.72
.72
.74
.755
.755
.76
.76
.78
PPT












WIND*
7.59
7.6
8.4
8.0
6.45
5.2
4.5
4.2
4.6
5.07
7.0
6.8
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  40°  00'  N
82° 53'  W
815 ft.
*Extreme conditions given in knots
                                  116

-------
                                TABLE  65
        WEATHER INFORMATION FOR  Oklahoma City. Oklahoma (13967)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.9
5.7
5.7
5.9
5.8
4.9
4.8
4.2
4.3
4.1
5.4
5.1
TAIR
37.0
41.3
48.5
59.9
68.4
78.0
82.5
82.8
73.8
62.9
48.4
40.3
HUM
.76
.65
.59
.63
.65
.68
.64
.62
.70
.60
.66
.55
PPT












WIND
14.0
14.1
15.7
15.5
13.8
13.2
11.6
11.3
11.8
12.6
12.8
13.2
EXTREME CONDITIONS
CC
2.0
3.3
3.4
4.1
4.1
2.7
2.7
2.3
1.0
1.3
2.3
3.3
TAIR
41.0
44.7
53.5
64.7
71.0
80.0
84.5
83.7
76.0
66.0
53.5
43.0
HUM
.80
.78
.74
.68
.76
.755
.76
.72
.76
.73
.74
.725
PPT












WIND*
9.6
10.0
11.55
11.4
9.6
8.0
8.0
7.8
7.9
9.4
8.9
9.8
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  35°  24'  N
97° 36'  W
1285 ft.
*Extreme conditions given in knots
                                   117

-------
                             TABLE  66
      WEATHER  INFORMATION  FOR   Astoria.  Oregon
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.5
8.2
8.1
8.0
7.7
7.7
6.6
6.6
6.3
7.5
8.1
8.7
TAIR
40.7
42.8
44.5
49.0
53.3
57.3
60.6
61.0
58.0
52.9
46.3
43.1
HUM
.82
.82
.80
.79
.79
.81
.80
.82
.82
.84
.85
.86
PPT












WIND
9.0
8.8
8.7
8.4
8.3
8.2
8.4
7.7
7.1
7.5
8.4
8.9
EXTREME CONDITIONS
CC












TAIR












HUM












PPT












WIND












LATITUDE  =   47° 09"
LONGITUDE =   123° 53'



ELEVATION -
               8 ft-
                                 118

-------
                                TABLE 67
        WEATHER INFORMATION FOR   Pendleton.  Oregon  (24155)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.2
7.9
7.2
6.6
6.0
5.2
2.6
3.4
4.0
5.8
7.7
8.4
TAIR
32.2
37.4
45.1
52.0
59.6
65.8
73.6
71.9
64.2
53.7
41.3
36.5
HUM
.79
.74
.62
.56
.53
.48
.37
.40
.47
.62
.76
.80
PPT












WIND
8.3
9.0
10.1
10.5
10.3
10.5
9.7
9.2
9.0
8.2
8.0
8.4
EXTREME CONDITIONS
CC
6.5
6.4
5.0
4.5
4.5
3.0
0.4
1.5
2.2
3.5
5.0
7.0
TAIR
40.0
44.0
45.0
53.5
61.0
69.5
77.5
76.5
66.0
56.0
45.0
40.0
HUM
.82
.777
.70
.66
.59
.54
.40
.45
.50
.72
.80
.86
PPT












WIND*
5.1
6.2
6.8
8.0
7.6
7.6
7.3
6.8
6.4
5.6
5.4
5.6
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                   45° 41' N
118° 51'  W
1482 ft.
*Extreme conditions given in knots
                                   119

-------
                               TABLE  68
        WEATHER INFORMATION FOR   Portland. Oregon (24229)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.6
8.3
8.3
7.6
7.3
6.8
4.5
5.3
5.6
7.4
8.2
9.0
TAIR
38.4
42.0
46.1
51.8
57.4
62.0
67.2
66.6
62.2
54.2
45.1
41.3
HUM
.82
.79
.74
.72
.70
.68
.66
.68
.71
.81
.83
.84
PPT












WIND
10.0
8.8
8.5
7.2
6.8
6.8
7.5
7.0
6.2
6.5
8.3
9.6
EXTREME CONDITIONS
CC
6.5
6.3
5.7
5.5
6.1
3.7
2.5
2.7
3.5
5.4
6.0
7.0
TAIR
43.7
48.0
46.8
52.5
58.7
64.3
68.5
69.5
64.0
56.0
49.3
43.7
HUM
.86
.82
.80
.74
.727
.74
.70
.74
.78
.835
.85
.868
PPT












WIND*
6.6
5.6
5.8
4.3
4.6
4.7
5.6
4.8
4.1
4.0
5.6
6.6
                  45°  36'
   LATITUDE  =  	



   LONGITUDE =    122°  36'  W



   ELEVATION =
21 ft.
*Extreme conditions given in knots
                                   120

-------
                             TABLE 69
      WEATHER  INFORMATION  FOR    Avoca, Pennsylvania
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.2
7.2
7.1
6.9
6.7
6.0
6.1
6.2
5.9
5.8
7.4
7.5
TAIR
27.7
28.3
36.2
48.4
59.6
68.2
72.4
70.0
. 62.5
51.0
39.6
29.4
HUM
.70
.69
.67
.62
.63
.68
.69
.73
.75
.71
.70
.72
PPT












WIND
8.8
9.3
9.1
9.5
8.9
7.8
7.4
7.2
7.5
7.9
8.7
8.8
EXTREME CONDITIONS
CC












TAIR












HUM.












PPT












WIND












LATITUDE  =



LONGITUDE =



ELEVATION =
               41° 20' N
75° 44'  W
930 ft.
                                 121

-------
                                TABLE  70
        WEATHER INFORMATION FOR   Philadelphia. Pennsylvania  (13739)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.8
6.3
6.2
6.5
6.6
6.2
6.1
5.9
5.6
5.6
6.2
6.4
TAIR
33.2
33.6
42.3
51.6
63.1
72.1
76.3
74.0
67.7
56.6
45.9
35.9
HUM
.70
.67
.65
.66
.66
.68
.70
.72
.72
.72
.70
.69
PPT












WIND
10.4
11.1
11.7
11.2
9.8
9.0
8.2
7.8
8.1
9.0
9.7
10.1
EXTREME CONDITIONS
CC
4.5
4.7
5.1
5.1
5.2
4.5
4.3
3.7
3.7
3.0
4.3
4.7
TAIR
38.0
39.0
43.7
55.3
65.3
73.3
79.0
76.0
69.0
59.6
47.3
39.5
HUK
.72
.70
.665
.65
.72
.69
.727
.743
75.7
.73
.71
.716
PPT












WIND*
7.6
8.0
8.6
8.5
7.2
6.7
6.37
5.71
6.1
6.9
6.54
7.7
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  69° 53'
75° 15'  W
7 ft.
*Extreme conditions given in knots
                                    122

-------
                               TABLE  71
        WEATHER INFORMATION FOR  Scranton.  Pennsylvania  (14777)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.7
7.4
7.1
6.9
6.7
6.1
6.5
6.1
6.2
5.9
7.1
7.2
TAIR
26.9
27.1
36.3
47.0
58.9
67.8
72.2
70.0
63.2
52.2
40.7
29.6
HUM
.72
.72
.69
.64
.64
.68
.71
.73
.75
.72
.69
.71
PPT












WIND
9.2
10.2
9.5
9.9
9.3
8.4
7.6
7.1
7.7
8.5
9.3
9.2
EXTREME CONDITIONS
CC
5.3
6.0
5.7
5.3
5.1
4.2
4.2
4.5
3.3
3.0
5.7
6.0
TAIR
32.7
32.5
38.5
51.5
62.5
70.0
74.7
72.0
64.0
55.0
43.0
34.3
HUM
.746
.723
.706
.655
.696
.695
.735
.755
.785
.742
.745
.784
PPT












WIND*
6.35
6.5
7.0
6.8
6.0
6.0
5.4
4.7
5.2
5.55
5.9
5.6
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  41° 20' N
75° 44'  W
940 ft.
*Extreme conditions given in knots
                                    123

-------
                                TABLE  72
        WEATHER INFORMATION FOR   Charleston. South Carolina  (13880)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.1
6.0
5.4
5.9
6.3
6.6
6.1
6.3
5.0
5.1
5.9
TAIR
49.8
51.5
56.7
64.8
72.9
79.2
80.6
79.7
75.6
66.2
55.9
50.0
HUM
.74
.71
.71
.72
.75
.78
.81
.82
.82
.77
.76
.74
PPT












WIND
9.3
10.4
10.4
10.2
8.9
8.6
8.1
7.5
8.2
8.1
8.3
8.7
EXTREME CONDITIONS
CC
4.4
4.2
4.0
3.5
3.7
4.5
5.2
4.1
4.4
2.0
2.7
4.2
TAIR
56.0
56.0
59.7
65.7
74.0
78.7
79.7
79.0
74.9
67.5
58.5
53.0
HUM
.76
.765
.73
.75
.80
.81
.84
.838
.86
.83
.78
.767
PPT












WIND*
6.6
7.5
7.8
7.63
5.6
6.0
5.5
5.0
5.6
5.65
6.05
6.1
   LATITUDE  =    32° 54' N




   LONGITUDE -



   ELEVATION =
80° 02'  W
40 ft.
*Extreme conditions given in knots
                                   124

-------
                                TABLE  73
        WEATHER INFORMATION FOR   Columbia, South Carolina (13883)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.0
5,9
5,8
5.2
5.4
5.7
6.0
5.4
5.5
4.4
4.8
5.7
TAIR
46.9
48.4
54.4
63.6
72.2
79.7
81.6
80.5
75.3
64.7
53.7
46.4
HUM
.72
,70
.66
.64
.66
.69
.72
.74
.76
.74
.72
.72
PPT












WIND
7.1
7.7
8.4
8.7
7.0
6.9
6.8
6.1
6.4
6.1
6.4
6.5
EXTREME CONDITIONS
CC
4.2
4.0
4.0
3.7
3.2
3.5
4.4
3.5
3.7
2.0
2.3
4.0
TAIR
52.0
52.0
57.5
65.5
75.5
79.5
81.5
81.0
74.8
66.0
56.5
49.0
HUM
.718
.70
.67
.66
.70
.75
.787
.78
.75
.76
.71
.73
PPT












WIND*
5.2
5.65
6.4
6.0
4.9
4.9
4.9
4.3
4.35
4.0
4.2
4.6
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                 33° 57'
81° 07'  W
217 ft.
*Extreme conditions given in knots
                                    125

-------
                             TABLE  74
      WEATHER  INFORMATION  FOR    Greer.  South  Carolina
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
5.7
5.6
5.1
6.0
6.0
5.9
6.7
5.8
5.3
4.1
5.2
5.8
TAIR
43.7
45.1
51.4
60.9
69.4
77.0
79.0
78.2
72.7
62.4
51.3
43.6
HUM
.66
.60
.59
.63
.68
.72
.76
.73
.73
.69
.65
.68
PPT












WIND
7.6
8.5
8.4
8.3
7.5
6.6
6.3
6.0
6.3
7.0
7.2
7.3
EXTREME CONDITIONS
CC












TAIR












HUM












PPT












WIND












LATITUDE  =



LONGITUDE =



ELEVATION =
34° 54'
82° 13'  W
957 ft.
                                126

-------
                               TABLE 75
        WEATHER INFORMATION FOR
                                  Huron, South Dakota (14936)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.4
7.2
6.6
6.2
5.7
4.6
4.9
5.0
5.1
6.6
6.7
TAIR
13.5
17.6
31.7
46.4
58.0
68.2
75.4
72.9
62.8
50.0
32.5
19.6
HUM
.76
.78
.77
.66
.65
.70
.66
.66
.65
.66
.75
.78
PPT












WIND
11.6
11.9
13.0
14.3
13.1
11.9
11.1
11.0
12.0
11.7
12.7
11.4
EXTREME CONDITIONS
CC
5.1
5.0
5.5
4.3
4.3
4.0
2.7
3.0
3.3
3.0
3.5
5.0
TAIR
20.0
24.0
36.0
48.7
61.0
72.0
77.3
75.0
63.0
54.0
36.0
27.5
HUM
.82
.835
.84
.71
.72
.765
.72
.74
.75
.737
.775
.84
PPT












WIND*
8.8
8.6
10.03
10.8
10.0
8.93
8.0
8.2
8.6
9.0
9.7
8.5
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                   44°  23'  N
98° 13'  W
1282 ft.
*Extreme conditions given in knots
                                  127

-------
                                TABLE 76
        WEATHER INFORMATION FOR  Rapid City. South Dakota (24090)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.5
6.7
6.7
6.5
5.7
4.3
4.3
4.6
4.7
6.1
6.3
TAIR
22.0
24.1
31.1
44.5
55.7
64.9
73.8
72.0
61.6
50.0
35.1
27.2
HUM
.66
.68
.64
.57
.59
.62
.55
.51
.51
.50
.60
.65
PPT












WIND
10.4
10.8
12.6
13.1
12.4
10.8
9.9
10.3
11.0
10.9
11.0
10.4
EXTREME CONDITIONS
CC
4.6
5.1
5.2
4.4
4.6
3.6
2.6
2.0
3.0
2.9
4.2
4.7
TAIR
30.0
31.1
38.6
48.6
58.1
71.1
76.1
74.7
65.1
55.1
41.0
32.0
HUM
.731
.74
.746
.657
.651
.691
.621
.60
.624
.651
.66
.72
PPT












WIND*
7.49
7.38
9.49
9.99
9.49
8.09
7.89
7.89
8.49
8.53
8.35
7.6
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  44° 03'  N
103° 04'  W
3162 ft.
*Extreme conditions given in knots
                                   128

-------
                                TABLE 77
        WEATHER INFORMATION FOR   Knoxville, Tennessee  (13891)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
2.4
6.7
6.5
6.0
6.0
5.5
5.7
5.5
5.2
4.9
5.8
6.7
TAIR
40.5
42.5
49.4
59.0
67.4
75.8
78.4
77.0
72.1
60.3
48.4
41.0
HUM
.74
.69
.66
.63
.67
.69
.71
.72
,71
.72
.70
.71
PPT












WIND
8.6
9.0
9.6
9.7
7.7
7.0
6.5
5.7
6.1
6.0
7.4
7.7
EXTREME CONDITIONS
CC
5.5
5.0
4.3
4.4
4.0
4.2
4.2
3.4
3.2
2.0
3.7
5.1
TAIR
46.0
47.0
52.0
62.7
71.5
76.0
79.0
78.0
74.0
62.7
50.7
43.5
HUM
.775
.725
.70
.68
.72
.77
.77
.795
.77
.773
.73
.76
PPT












WIND*
6.05
6.4
7.2
6.6
5.3
4.6
4.65
4.2
4.2
4.25
5.2
5.45
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  35° 49'  N
83° 59' W
950 ft.
*Extreme conditions given in knots
                                   129

-------
                                TABLE 78
        WEATHER INFORMATION FOR
                                   Memphis,  Tennessee (13893)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.4
6.3
6.1
5.9
5.4
5.7
5.0
4.8
4.3
5.5
6.3
TAIR
41.5
44.1
51.1
61.4
70.3
78.5
81.3
80.5
73.9
63.1
50.1
42.5
HUM
.73
.70
.66
.65
.68
.69
.70
.70
.71
.68
.69
.72
PPT












WIND
10.7
10.6
11.4
11.0
9.1
8.1
7.7
7.1
7.7
7.8
9.4
10.0
EXTREME CONDITIONS
CC
5.0
4.3
4.0
4.2
3.5
3.3
3.7
3.0
2.2
1.5
3.0
4.2
TAIR
46.0
49.5
56.3
66.0
74.0
82.0
83.0
81.5
75.5
65.5
53.5
46.0
HUM
.77
.74
.687
.665
.72
.76
.76
.75
.76
.73
.72
.72
PPT












WIND*
7.5
7.35
8.8
8.2
6.8
6.4
5.3
4.7
5.4
5.2
6.5
7.4
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  35°  03'I
89° 59'W
258 ft.
*Extreme conditions given in knots
                                   130

-------
                               TABLE 79
       WEATHER INFORMATION FOR   Nashville. Tennessee (13897)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.1
6.7
6.5
6.2
5.9
5.5
5.7
5.3
5.0
4.6
5.9
6.7
TAIR
39.0
41.0
49.5
59.5
68.3
76.3
79.4
78.3
72.2
61.0
48.9
41.0
HUM
.71
.63
.60
.64
.68
.69
.75
.76
.76
.66
.68
.69
PPT












WIND
9.0
9.2
9.9
9.4
7.5
6.7
6.2
5.9
6.2
6.3
8.2
8.6
EXTREME CONDITIONS
CC
5.3
4.7
5.0
5.0
4.0
4.0
4.0
3.0
2.7
1.5
3.7
4.7
TAIR
45.0
46.3
53.0
63.5
70.8
78.0
81.0
79.5
74.0
63.0
51.0
44.5
HUM
.815
.77
.735
.70
.73
.76
.773
.78
.78
.78
.738
.77
PPT












WIND*
6.35
6.4
7.2
7.0
4.9
4.4
3.7
3.9
4.0
4.35
5.4
6.2
  LATITUDE   =    36° 07' N



  LONGITUDE  =    86° 41' W
  ELEVATION  =
                590 ft.
*Extreme conditions given in knots
                                   131

-------
                                TABLE 80
        WEATHER INFORMATION FOR  Brownsville. Texas  (12919)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.5
6.7
6.6
5.9
5.2
4.7
4.8
5.2
4.7
5.8
6.6
TAIR
61.4
64.0
67.9
73.9
79.0
82.7
84.0
84.1
81.2
75.9
67.6
62.9
HUM
.79
.78
.76
.72
.78
.77
.75
.75
.77
.77
.77
.79
PPT












WIND
11.9
12.6
13.7
14.5
13.9
12.8
11.8
11.0
9.8
9.9
11.0
11.1
EXTREME CONDITIONS
CC
4.2
4.0
5.0
5.0
3.7
3.5
2.3
2.0
3.1
1.3
1.7
4.2
TAIR
66.0
67.5
70.0
76.0
79.8
82.8
83.9
84.0
82.3
76.7
69.5
64.7
HUM
.833
.84
.81
.80
.80
.79
.77
.767
.82
.775
.82
.83
PPT












WIND*
9.0
9.8
10.4
11.6
10.6
9.2
8.85
7.85
7.6
7.6
7.8
8.8
   LATITUDE  =



   LONGITUDE -



   ELEVATION =
                   25°  54'
97° 26'  W
16 ft.
*Extreme conditions given in knots
                                   132

-------
                                TABLE 81
        WEATHER INFORMATION FOR  Dallas,  Texas (13960)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.1
5.8
6.0
5.8
4.6
4.3
4.0
4.0
4.4
4.6
5.6
TAIR
45.7
49.8
57.4
66.3
73.7
81.9
85.5
85.8
78.9
68.8
55.8
48.3
HUM
.70
.68
.62
.66
.68
.65
.61
.58
.62
.64
.64
.67
PPT












WIND
10.2
10.9
12.7
13.1
11.9
12.3
9.9
9.6
9.1
9.1
10.1
10.1
EXTREME CONDITIONS
CC
3.0
3.0
4.0
3.5
4.1
2.5
2.3
2.0
1.7
1.5
2.5
4.0
TAIR
50.0
53.7
61.0
70.5
76.5
83.5
88.5
88.0
80.0
71.0
59.0
51.0
HUH
.76
.74
.68
.68
.72
.69
.67
.66
.73
.70
.72
.707
PPT












WIND*
7.6
8.0
10.0
9.8
8.6
9.2
7.2
6.8
6.5
6.7
6.5
7.6
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  32° 51' N
96° 51' W
476 ft.
*Extreme conditions given in knots
                                    133

-------
                                TABLE 82
        WEATHER INFORMATION FOR
                                  El  Paso,  Texas (23044)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
4.7
4.2
4.5
3.8
3.3
3.0
4.7
4.1
3.0
3.3
3.2
4.1
TAIR
43.4
49.1
54.5
63.1
71.6
80.2
81.3
79.8
74.9
65.2
52.0
44.8
HUM
.50
.40
.32
.29
.27
.30
.43
.46
.42
.44
.43
.47
PPT












WIND
10.4
11.3
13.2
13.0
12.4
11.4
10.1
9.6
9.4
9.4
10.0
9.9
EXTREME CONDITIONS
CC
1.7
2.4
2.3
2.0
1.3
1.0
3.0
2.0
1.0
1.1
1.2
2.3
TAIR
49.5
53.0
59.0
67.7
75.7
84.5
84.5
83.0
78.3
68.0
55.0
48.0
HUM
.60
.45
.43
.32
.30
.355
.505
.50
.555
.52
.52
.60
PPT












WIND*
6.1
7.3
8.1
8.4
8.0
6.6
5.55
5.6
5.2
4.6
5.45
5.25
   LATITUDE  =
                  31°  48'
   LONGITUDE =    106°  24'  W




   ELEVATION =    392°  ft-
*Extreme conditions given in knots
                                    134

-------
                                TABLE 83
        WEATHER INFORMATION FOR  Houston. Texas (12918)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.6
6.7
6.4
6.4
6.2
5.5
5.9
5.7
5.4
4.7
5.6
6.2
TAIR
53.8
57.7
62.6
69.5
75.9
81.8
83.8
84.2
80.0
72.6
61.9
55.8
HUM
.77
.77
.72
.76
.77
.76
.76
.77
.76
.75
.74
.77
PPT












WIND
10.8
11.2
11.6
12.0
10.7
9.7
8.3
8.3
8.8
9.3
10.3
10.2
EXTREME CONDITIONS
CC
5.0
4.3
5.3
4.5
4.2
3.7
4.0
3.5
3.2
2.0
4.0
5.0
TAIR
59.0
61.0
65.5
72.0
76.7
82.0
83.5
83.0
79.3
72.0
63.8
57.7
HUH
.80
.82
.755
.78
.78
.795
.785
.78
.80
.82
.795
.80
PPT












WIND*
8.8
8.6
9.6
9.65
8.3
7.1
6.55
5.8
6.3
6.8
7.4
8.15
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                  29°  46'  N
95° 22' W
41 ft.
*Extreme conditions given in knots
                                    135

-------
                               TABLE 84
        WEATHER INFORMATION FOR  Salt  Lake  City.  Utah  (24127)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
7.0
6.5
6.1
5.4
4.2
3.5
3.4
3.4
4.3
5.6
6.9
TAIR
26.5
33.4
41.1
50.1
58.9
67.1
76.6
74.4
64.2
52.9
39.3
31.5
HUM
.76
.71
.61
.53
.48
.44
.38
.38
.42
.54
.68
.76
PPT












WIND
7.5
8.2
9.2
9.4
9.5
9.4
9.5
9.6
9.0
8.5
7.6
7.4
EXTREME CONDITIONS
CC
5.2
5.2
5.0
4.7
4.0
2.2
2.0
2.1
1.3
2.2
3.4
5.0
TAIR
34.0
38.0
43.0
53.0
62.0
71.7
80.0
77.3
67.0
56.0
44.0
35.5
HUM
.79
.76
.695
.58
.543
.52
.42
.47
.52
.58
.71
.797
PPT












WIND*
5.15
5.2
6.3
7.2
6.2
6.0
6.0
6.2
5.9
5.5
5.3
4.5
   LATITUDE  =



   LONGITUDE =



   ELEVATION =
                   40° 46'
111° 58'  W
4220 ft.
*Extreme conditions given in knots
                                    136

-------
                             TABLE 85
      WEATHER  INFORMATION  FOR   Burlington. Vermont
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
7.5
7.2
7.0
7.2
6.9
6.6
6.3
6.1
6.2
6.5
8.1
7.9
TAIR
16.2
17.4
26.7
41.2
53.8
64.2
69.0
66.7
58.4
47.6
35.3
21.5
HUM
.74
.73
.70
.67
.67
.70
.70
.73
.76
.74
.76
.76
PPT












WIND
9.9
9.6
9.4
9.6
9.1
8.4
7.8
7.5
8.3
8.6
9.7
10.0
EXTREME CONDITIONS
CC












TAIR












HUM.












PPT












WIND












LATITUDE  =   44°  28"  N




LONGITUDE =   73°  12'  W
ELEVATION =   331  ft'
                                 137

-------
                                TABLE 86
        WEATHER INFORMATION FOR   Norfolk,  Virginia  (13737)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.2
6.2
6.0
6.0
6.1
5.6
6.0
5.9
5.7
5.1
5.3
6.0
TAIR
41.2
41.6
48.0
58.0
67.5
75.6
78.8
77.5
72.6
62.0
51.4
42.5
HUM
.70
.68
.66
.66
.71
.72
.75
.78
.76
.76
.71
.69
PPT












WIND
11.7
12.0
12.5
11.9
10.2
9.4
8.7
8.8
9.7
10.4
10.8
10.9
EXTREME CONDITIONS
CC
5.0
4.5
4.3
4.3
4.4
3.3
4.3
4.1
3.0
2.0
3.0
4.0
TAIR
46.0
46.0
52.0
61.0
69.0
76.0
79.7
78.7
73.0
64.0
54.0
46.0
HUM
.735
.76
.68
.71
.74
.75
.785
.80
.785
.80
.74
.72
PPT












WIND*
8.6
9.15
9.8
8.8
7.8
6.93
6.7
6.5
6.8
7.4
7.95
8.4
   LATITUDE  =



   LONGITUDE =



   ELEVATION -
                   36°  54'  N
76° 12'  W
22 ft.
*Extreme conditions given in knots
                                   138

-------
                                TABLE  87
        WEATHER INFORMATION FOR  Roanoke» V1rginia (13741)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.3
6.4
6.3
6.2
6.1
5.9
6.0
6.0
5.5
4.8
5.7
6.0
TAIR
38.1
39.2
45.5
56.4
65.7
73.4
76.6
75.4
69.1
58.2
46.7
38.4
HUM
.64
.62
.59
.57
.64
.68
.70
.72
.73
.68
.63
.62
PPT












WIND
10.0
10.4
10.8
10.4
8.0
6.8
6.6
6.2
5.9
6.7
8.6
9.2
EXTREME CONDITIONS
CC
4.2
4.3
4.2
4.3
5.0
4.3
4.4
4.1
3.4
1.0
3.3
4.0
TAIR
42.0
43.0
49.0
59.5
68.0
73.5
77.3
75.7
70.0
59.8
49.0
41.0
HUM.
.68
.66
.61
.605
.685
.715
.75
.76
.76
.74
.648
.655
PPT












WIND*
7.5
7.2
8.2
7.6
6.0
4.85
4.4
4.6
3.5
4.9
6.2
6.35
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                  37°  19'
79° 58'  W
1149 ft.
*Extreme conditions given in knots
                                   139

-------
                                TABLE 88
        WEATHER INFORMATION FOR  Seattle, Washington  (24233)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.5
8.2
8.0
7.7
7.2
7.0
5.3
5.8
6.2
7.7
8.4
8.8
TAIR
38.3
40.8
43.8
49.2
55.5
59.8
64.9
64.1
59.9
52.4
43.9
40.8
HUM
.80
.75
.74
.74
.70
.68
.67
.70
.76
.81
.81
.82
PPT












WIND
10.4
10.4
10.6
10.2
9.5
9.2
8.7
8.3
8.5
9.3
9.6
10.4
EXTREME CONDITIONS
CC
6.7
6.0
5.5
6.1
5.3
4.5
3.7
3.5
4.1
5.7
6.3
7.3
TAIR
42.5
47.0
45.0
49.5
56.8
62.0
66.5
66.0
61.5
53.7
48.3
44.0
HUM.
.88
.828
.808
.77
.76
.75
.73
.76
.797
.86
.873
.885
PPT












WIND*
6.4
7.0
7.0
5.7
5.8
5.4
4.85
4.9
4.8
5.9
5.6
6.45
  LATITUDE  =



  LONGITUDE =
                 47° 27' N
122° 18'  W
  ELEVATION =   40° ft>
*Extreme conditions given in knots
                                   140

-------
                                TABLE 89
        WEATHER INFORMATION FOR  Spokane, Washington (24157)
MO
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
8.1
8.0
7.4
6.9
6.5
6.3
3.3
4.0
4.9
6.6
7.7
8.6
TAIR
24.9
29.7
38.1
46.3
54.7
61.4
69.6
67.9
59.2
48.6
35.7
29.1
HUM
.82
.79
.69
.58
.58
.56
.44
.44
.51
.70
.80
.87
PPT












WIND
8.0
8.7
9.2
9.1
8.1
8.4
7.8
7.6
7.6
7.4
7.6
8.6
EXTREME CONDITIONS
CC
6.3
6.0
5.3
5.1
5.0
4.1
1.3
2.0
2.5
4.2
6.0
7.0
TAIR
32.0
36.5
39.0
49.5
59.0
64.0
72.7
73.5
64.0
50.5
40.0
33.5
HUM
.86
.825
.745
.66
.68
.585
.44
.517
.60
.80
.84
.88
PPT












WIND*
5.0
6.2
6.0
6.5
6.1
6.1
5.5
5.5
5.3
5.6
5.0
5.16
  LATITUDE  =



  LONGITUDE =



  ELEVATION =
                 47°  37'  N
117° 31'  W
2357 ft.
*Extreme conditions given in knots
                                   141

-------
                             TABLE 90
      WEATHER INFORMATION  FOR     Huntington.West Virginia
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AU6
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.9
6.9
7.2
7.1
6.6
6.1
6.4
6.3
5.9
5.1
7.0
7.5
TAIR
36.6
37.7
44.8
55.7
64.6
72.0
75.2
74.0
68.2
57.3
45.5
37.4
HUM
.70
.68
.64
.62
.70
.73
.76
.78
.78
.70
.73
.75
PPT












WIND
7.3
7.4
8.0
7.5
6.2
5.1
4.9
4.9
4.8
5.5
6.7
7.2
EXTREME CONDITIONS
CC












TAIR












HUM












PPT












WIND












LATITUDE  =



LONGITUDE =



ELEVATION =
               38° 22'  N
82° 33'  W
827 ft.
                                 142

-------
                                TABLE 91
        WEATHER INFORMATION FOR   Green  Bay,  Wisconsin  (14898)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.7
6.3
6.3
6.7
6.2
5.9
5.4
5.5
5.6
6.0
7.1
7.0
TAIR
16.1
17.3
28.5
41.8
54.4
64.7
69.9
67.8
60.2
48.4
33.5
20.1
HUM
.75
.76
.74
.69
.68
.72
.74
.76
.77
.76
.75
.78
PPT












WIND
11.1
11.0
11.7
12.2
11.3
9.9
8.5
8.2
10.0
10.4
12.4
11.3
EXTREME CONDITIONS
CC
5.0
4.3
5.2
4.3
4.6
4.3
4.1
4.0
4.0
3.5
5.4
5.3
TAIR
21.0
25.1
33.1
46.6
59.8
67.0
70.7
70.1
60.8
52.5
38.0
27.0
HUM
.801
.811
.791
.77
.721
.74
.748
.801
.81
.80
.79
.82
PPT












WIND*
7.69
7.39
7.29
8.79
7.99
6.29
5.29
5.49
6.2
7.0
8.3
7.9
   LATITUDE   =



   LONGITUDE  =



   ELEVATION  =
                  44° 29'
88° 08' W
682 ft.
*Extreme conditions given in knots
                                    143

-------
                                TABLE 92
        WEATHER INFORMATION FOR  Casper, Wyoming  (24089)
MO
JAN
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NORMAL CONDITIONS
CC
6.4
6.6
6.6
6.7
6.7
5.1
3.8
4.4
4.2
4.9
6.2
6.1
TAIR
23.4
26.3
32.1
43.1
53.1
63.1
71.7
70.1
59.7
48.3
33.6
27.3
HUM
.60
.62
.62
.56
.56
.48
.41
.40
.44
.49
.60
.62
PPT












WIND
16.9
15.4
14.4
12.9
12.1
11.5
10.3
10.9
11.3
12.4
15.2
16.6
EXTREME CONDITIONS
CC
4.6
4.9
4.5
5.2
5.2
3.2
2.2
2.3
2.5
3.0
4.3
4.0
TAIR
29.2
31.6
36.4
46.0
55.1
66.7
74.6
71.6
62.1
51.1
39.0
31.1
HUM
.642
.702
.711
.631
.606
.591
.491
.451
.571
.601
.681
.671
PPT












WIND*
12.98
10.98
8.19
8.4
8.49
7.78
6,69
7.96
7.88
8.8
10.99
11.9
   LATITUDE  =



   LONGITUDE -
   ELEVATION =
                 42° 55'
106° 28'  W
                 5338  ft.
*Extreme conditions given in knots
                                    144

-------
                  APPENDIX II



RESULTS OF COMPUTATIONS FOR INDIVIDUAL STATIONS

-------
100
. 90
u.
uj 80
f£
$ 70
tc
Ul
a.
2 60
Ul
I-
1 5°
tC.
ffi
g 40
o
111 30
yn











JV




























f\
f











i
1
/











J
/













/














*fr















^B^
%
















\
>
















V






\
\
\







\
\















V
fts




JFMAMJ  JASOND
      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^CDO
3OOOOOOOO












J*














/













J
r













f-















^V














A
















jjr















»*•















•^
















\
\
\















\
»«















*••



                 JFMAMJJASOND
                      TIME - MONTHS
                                u.  \2
ONS
CO
RE
EX
SE
MPERATURE
     M A M  J  J  A  S
      TIME - MONTHS
0 N  D
                 J  F
                                   MAMJ  JASON
                                     TIME - MONTHS
FIGURE 37 - RESULTS FOR HUNTSVILLE,  ALABAMA
                            146

-------
BRIUM TEMPERATURE
EQU
IUV
90
80
50
40
30
20

E





JST

J^







XT




./
ff
y








REf



.
r
i
f









HE-

i
Q 1

I











O A
/
X
AVI











P
/f


RA











"<•)•
*


GE











S
*S
















^h 1
^
















\
\















^
V















k
sgf







J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — I\J
iO)O>OlN>.l>0>ODG
3OOOOOOOO



,


./


rff"











J
r

?
t










y
t

i
,o









/
(

J
I











**r


i*\












^


\
b>












V















-»<



\0











-%




*o.











V
\



\












s^



t>-












"^








                                              J  FMAM  JJAS

                                                    TIME - MONTHS
                                                                        OND
12



11



10



 9
ui
<

a.
V)
z
o
a
z
O
oc
o
Ul

g7
ui
a:
a:
ui
a.
              =830
00
                      ACRE
                    M RE S
                                          L.  12
                       U)

                       §  '

                       H


                       i  l<
                       O
                       o

                       Ul
                                          X
                                          Ul
                                        Ul
                                        V)
UJ
£C
3

<
a:
UJ
a.
5
Ul


I-
z
<
_l
a.




•O
>



•Q>,


•UH










>1




b.

V>











"^



"^


A









80
\


ISC

*0

221









0 /

(Y

0 /


•O'
)0
T)1*








CR



iCR

ff

At









ES
ry


ES

^
















0*


/'














JO'


•u









*(f




«u

,e^









-o-





-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F* EQUILIBR
w^0)ff)^o>
N











\



\


\















k
^

X











V
s


V
\

V
^









A =
V
>


A =
v

^r
"'ii








80(




150

^
22(
S








) A


**•

0 A

SfeMhtf
w
)0/

**•







CRI

y
«^



y
VCR
*








IS
f



"sy
r

ES>
X







/
r


>
/

1
f







,^
f



f

J
f









f



jr


ji









MPERATURE RISE (EXTREME CONDITIONS) - F° EXCHANGE COE
0.0>SO>
\









8
•^



15
X

22
*V








00




DO

^U
DO
**0
"*»







ACF


~u*

ACF

-0"
ACf

•O







ES

/


ES
o'
S
tES
^








J




P
F
1
P









f


C/
/
/
7°








/




-------
  100
MAMJ  JASO

 TIME  -  MONTHS
                                 ND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — N
i(j>ODoro-^a>















v
^















^».
>0k


                                   JFMAMJJASOND

                                         TIME - MONTHS
e
UL
   12

<
2
oc
UJ
   7
ui
ac
a:
uj
a.


-*>



^1


•*>











\



\
\

\











\






v
\









A
\,
"V


A
X

o
•s










X


= l£
^^
*»J
= 22
X








r\n

-,*


00

*<.
!OC

^^^










-*•

A

•*-
A

_«-







ior

.>


:RE

V
:RE
jj
^f







Q
y
/


3 >
/

V
/







y
/



/
^

/









/



^


/









x<



<•


x*








      JFMAMJ  JASON  D

             TIME - MONTHS
                            u. 12
                                          (f>
                            o
                            o

                            UJ
                            •s.
                            Ul
                            (E
                            h-
                            X.
                            UJ

                            UJ
                            U)
                            cr

                            UJ
                            cc


                            s
                            £E
                            UJ
                            Q.
                            5
                            UJ


                            I-

                            <
                            _i
                            a.


^



•ox


"**>











H
4



N

b
*










v^




^J

v
UN









8
V
^\


1
^N

2









00

"0.


50 C

T5x
20
NX








AC

•ft.


) A

•oj
) A
.O








RE

J>


CR

-O
CR









3

X<


:s
^
•^
:s
x>'









jj




P

rf








i
6



1
p
/

/








ff
>


/r
/

o*
f









43*



.V


•o-








                                   JFMAMJ  JASOND

                                          TIME - MONTHS

FIGURE  40 -  RESULTS  FOR FORT  SMITH,  ARKANSAS
                                      149

-------
EQUILIBRIUM TEMPERATURE - Fe
Mw-s*o!->ic!>

,g


GE











H
N















\
\\
\















\
fe
V
)















\
V
\















b
V)
V
s




                             o
                             I
                             I-
                             m
                             I
                             H
                             Z
                             Ul
                             O
                             O
                             ai
                             X
                             o
                             X
                             UJ
J  FMAMJ  JASOND

      TIME -  MONTHS
iiOO
180
160
140
120
100
80
60











,<«
X1













.?
9












i
i













£
f













J
.0'













f
P"














*s
^














\
X
V
Q\














\
^
V















k
\x
<\















^
xjj















*&



                                   JFMAMJJASOND

                                         TIME -  MONTHS
M  A  M  J  J A  S

 TIME - MONTHS
                      0 N  D
ONS
E COND
RE
EX
SE
PLANT TEMPERATURE
                                    :*
                                           600
                                          "Ot-X,
                                           I 50O A
                                          ^O,
                                                    ACRE:
                                                 £R1S
                                                      ;R::S
                                                      ^
                                                         f
                                        JFMAMJ  JASOND

                                              TIME - MONTHS
  FIGURE 41  -  RESULTS FOR LITTLE  ROCK, ARKANSAS
                       150

-------
EQUILIBRIUM TEMPERATURE - F8
POW-OOlf^OBtOC
OOOOOOOOC







jy\
.V








EX"




o^










•RE




/










ME

o
r
pi











^.



VE











P'


t
RAG











J>
/•-


E











t>.















v>
N
\
>














o
. \
\ ^
\
\














\
A
\















\
X







J  FMAMJ  JASOND

      TIME  -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fc
_ _ — — _ i\j
^(DQBOrO-^CDCDC
3OOOOOOOO














/
jy













/
/













/













s-

£*.














\
\
\
s














V
N
V















s
^
i















k^
u














•*».
•o-
                                         JFMAMJJASOND

                                               TIME -  MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>j.i>oi->lQ)

                                   <
                                   K
                                   Ul
                                   O.
                                   2
                                   Ul
                                   I-

                                   H
                                   Z
                                   <
                                   _l
                                   a.
                                           X
                                                   300 ACRi:S
                                                   I5CO ACR£S
                                                 v_ ZZlKT \CTE5
                                                 J^i.
                                                                  T
                                                                   X
                                                                /
                                          JFMAMJ  JAS

                                                TIME - MONTHS
                                                                 0 N  D
        FIGURE 42  -  RESULTS  FOR BURBANK,  CALIFORNIA
                              151

-------
UJ
K

t-

sr

a.



l-

S
o


m
o
in
too
90
30
70
60
50
40
30
yn









&
y







EX




°J
//
/








TRI


j
Of
y










:ME


v°
V
















^
\H
\N
\















>
V 1
V.





;HANGE COEFFICIENT- BTu/FT2- DAY - F"
CBOPO.I>COC
OOOOOOOO
X
lil An














•6














tf
x"












y
^
^











y
r












/
if
1











.p-
















K
1















lx
\\
\
0\















\
^
\















V
A
v















^
*:
^»














-w-
"0-
       J  FMAMJ   JASOND

             TIME - MONTHS
                                              JFMAMJJASOND

                                                    TIME -  MONTHS
o:
o
UJ


I

UJ
ct
K.

a.
2
UJ
<

£L
12




I I




10




 9




 8

\



\

s
\











\



\
">
V
\











\
\


V
\

V
*\










S'
\



V

s,
\









\ -

\


= 1!
\
\
\=2
V








30C


»-

3UL

S-
du(.

•-







A(


•^f

A(

^
A(

H^^







,f?E

S


:Kb
/
/
JKb
/









f


1
i

i








t
/



/
i
i
/
/







/
/


/
/
/
/













^_














   12




   I I




   10




    9




x   8
UJ


UJ

52   7
SE

Ul

o   6


tc
LJ   _
o.   5



1-

I-   *
                                          o

                                          H

                                          O
                                          Z
                                          O
                                          o

                                          UJ
                                          •s.
                                          Ul
       JFMAMJ   JASON   D

             TIME - MONTHS
>»
^


X

t
^











>5
\


\
V
^

\
A










»
\



\
i
k
\











V
°%



\

i
\
X









80(
K)
S


150
X

22<
'\








A(


V»-

0 A

V
pO/

'
y








/
/


-------
111
a
D

<
a:
UJ
a.
2
UJ
l-

2
3

E
CD
EQU
I \J\J
90
80
70
60
50
40
30
?n









-f>'










EX


°>

'/\










FRE


'V












ME
/
^
l/^
AVt











-^t^

I*
\
,KA











.P"
^


3E











.Ou
jt-















•0.
• •















X















yv
\^















v
SK
N















v
\






      J  FMAMJ  JASOND

            TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F"
— — — — — IN]
^o>oooi\}^o
3OOOOOOOO













S,













/
//
J*











J
/
»
/










/
/
' /
j.
P











/
7
!>












•
/>>















V
\














\
A
\
\














\
\
X
\














\
\
\
>














V
X
X















9
^o*

JFMAMJ  JASOND

      TIME - MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>!^>OI•>
)0

-•_







AC


p-*^1

ACI

^
ftCI

jr







RFf

S


IC*<

^
?E9
y









/



/
/

/
^







/
/


J
/

1
/








/



/
/

^









^



*,


L*-









PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
O14^OIO)^IOB(DO — ^
1
0
9
8
7
6
5
4
•^

iQL



^^L


"^











X



\
\
k
°N











»
V
s



X

\
^










Vl
\



X

,
^









80(
\i
\


5C
X

£2
>








A(

s>


0 A

^..^^
po
V)..








RE

jr


CRE
P"

kCR
.$>'








3
>



S
,6

'o'
'








.4



^
/

r








/
P


/'
0

^
/P








ox
/


/
'

f
r








/N


,
f*


*<*










            TIME - MONTHS
JFMAMJJASO'ND

      TIME  - MONTHS
              FIGURE  44  - RESULTS FOR OAKLAND,  CALIFORNIA
                                   153

-------
  100
J  F M  A  M J  JASOND

      TIME - MONTHS
EXCHANGE COEFFICIENT- 1TU/FTE - DAY - Fe
*o>fflow^0>ato
3OOOOOOOO












•-r'
£f














fi
yj












V
/












A
/
7












1
r












t^\
/o-
/













-%
G,















\
^















k
I
i
^















V
\
1














SJBI
V
^
u














^
X).


                                                  FMAMJJAS

                                                     TIME - MONTHS
                                                                           OND
K
O



UJ


£

Ul
DC

g

K
UJ
Q.


UJ
z
<
12



11



10



 9



 8



 7



 6



 5



 4



 3


-««,



-*s


-«K










N
\



\

\
^










\
A


V
\

V
\










\
\



\

\
*s










A-
V
\


A=l
\

k-i
\»
\









80
S
•*•

50

V
120
S
*-J








OA

— jr""

DA

-^
L)A

j**








Jh(t
/


:RE
}
/
UKt
/








/
?



f/

4
1>








/
/


«L>
^

X
/








^



ff
I/

,<
/*









**"



,-*"











       JFMAMJ  JASON  D

             TIME - MONTHS
                                           S.  12
                                           v>
                                           i  '
                                    o
                                    o

                                    UJ
                                    •s.
                                    UJ
                                    tr
                                    I-
                                    x
                                    UJ

                                    UJ
                                    CO
                                    EC

                                    UJ
                                    £C
                                    Z)

                                    <
                                    oc
                                    UJ
                                    Q.
                                    2
                                    UJ
                                    1-

                                    H
                                    •z.
                                    <
                                    _l
                                    o.

-0,



"Os


V










v»
A



1

\
V
s










»
o



X
V

X











X
>


^
^

Vi
V









80
X



50
\

iiZ
V
A








3 A

V)%


0 P

o.
JO ,
\x.








CRl

-o


CRI

Lo'
VCH
"-O"








S




:s
P0''

bS
S*









P



p'

.'









r/



/
'

•



J*


'*









                                               JFMAMJ   JASOND

                                                      TIME  - MONTHS
                 FIGURE  45 - RESULTS  FOR DENVER,  COLORADO
                                      154

-------
1 \>\J
. 90
u.
i
uj 80
DC.
3
< 70
(E
UI
D.
2 60
i-
1 50
K
m
g 40
3
o
w 30
20
12
O
U-
« "
o
g -o
z
o
o
_i 9
(E
i 8
UJ
i T
LU
CC
H 6
o:
UJ
0. 5
UJ
I-
H- 4
n •*












K/
j^





EX







i t
i
f





"RE




/
' /
/








ME-


0
//











v
V
i
/>

AVI










/

/
I
\
.KA









*
_Jf*>




GE










°x
\















Y

















\
\x

\















Q
t \
\
),














t
\

V


J FMAMJ JASOND
TIME - MONTHS
~*^


">\


"N











\
\


\
\


\











\
N


\
\
i
V
\











\
\


s.
\

V
\











\


A=l
N^
^
A=2
\









bO(

V

50(

.
2O

V








) Al

•^

) A


5^

-*•








JKt

^'

CRI

S*
;RE

^








s .
/



i
jl

SS
/






y
/
/


/
/
f
1

/






t
f
f

1
f
I
/
/









"


/{


f











o 200
U.
>. 180
Q
J 160
H
U.
= 140
0)
1
h- 120
LI I0°
u.
o
o 80
UJ
C9
< 60
X
o
X
uj 40
U. 12
w
§ "
H
Q
z 1 0
0
o
UJ
UJ
o:
K
x 8
UJ
^^
UJ
tf) -7
(T
UI
o:
3 6
S
£E
UJ c
0. 5
Z
UJ
1-
z
<
_l
o- 3















if













/

*
J F



'

t\












\
1

\
\
1

\
V





















/
//
'6
/










1
f
ft
f










L
//
(











/















-\

b^














\
\
\















V
\\
\















\
\
Y\
V
'














\
V
v
1














y
>^
MAMJJASOND
TIME - MONTHS

\
^


\
bv
1
V
\











V
\
>




^
v
^











V
\


. IE
\

'\f
v









00

^0*

00

*0-
JOO
k.
o-








ACF
o*


ACI

^
AC
.O*









ES
ft


ES
,c/

?ES
'*"








t
s>



p
s

S







j
i


i
i


i
i
j>






oX
/"

^
O
f'
4
^
/
1











(y
7

/*"












J
      TIME - MONTHS
TIME - MONTHS
     FIGURE  46  -  RESULTS  FOR GRAND  JUNCTION,  COLORADO
                           155

-------
100
. 90
b.
ui 80
K
S 70
U
Q.
UJ 6°
fr-
i so
m
j 40
©
u 3Q
12
o
UL
i
w 1 1
z
o
g '0
z
o
0
_i 9
1 8
Ul
£ 7
Ul
H 6
K
Ul
Q- 5
Ul
H
H 4
Z
<
B1 1














-af*

J


=e«,



-*,
























y
/

F






^
S

N,


















i
I
f
























i
/
/








MAM
TIME •




s


V
\

\
A










\ f
\


^— A



y









- !

V



\
"^
-lit.
V







/































\
















\
^
>








J J A S
MONTHS




00

•-*.

vAO


•*^.
uu
•a»=







A

_ffl-

i — A


-*•
A
->»







:RE

X

^RF

.
^^
Mt
^








S
X


c
/
/

X













\
\
\





0



>




/

J
/
















\
\
\
1


H


/
/


/
/

/
r




















\
\

D


/***



^

*









0 EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
3 -i>o>aBOr\s.i>0>®c
ooooooooo
UL \c-
"v>
i "
I 10
o
S Q
2 9
Ul
Q:
h-
x 8
Ul
tf> 7
— f
K.
a
o 6
(£
Ul R
Q. 5
UJ
.
z
_l













^














X



J F




























































/
/
f











7














?— •














•««,































V
\
















\
\
















\
















s-


MAMJJASOND
TIME - MONTHS




















































































































































































                              JFMAMJ  JASOND
                                     TIME  - MONTHS
FIGURE 47 - RESULTS FOR HARTFORD,  CONNECTICUT
TIME - MONTHS
                    156

-------
e
U.
UJ
£C
z>

^
EC
UJ
Q.
Z
UJ
H

2
Z)

E
m
EQU
1 WW
QO
80
70
60
50
40
30
20













•*'





EX







^t
y






TRI




t
ny

*







ME



,#
7
/











y
A
AC"










f
A
x


UA










r°*
x*«



-










o
















\
A
V
*
















\
V
\
















A

















t
^
^


J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
_ _ _ — _ re
^o>o>oi\>AO>a>o
3OOOOOOOO












**
jt













A
#












y
/
'i
t












A
r













/•/
^













H5-
^














^7s
\















X
\















\
V
\















X
V
X,















V
X















V
V


                                                  JFMAMJJASOND

                                                         TIME - MONTHS
u_
 i
•z.
o
o
o
tr
o
UJ
V)
LU
oc
K.
LU
Q.

Z
UJ
                 = 600
^A=I500A
                       AC RES
                    !2CO^CR
CRf^.
                                 Z
                                  X
       JFMAMJ  JAS

             TIME - MONTHS
                                OND
                                            u.  12
o
t
o
z.
o
u

LU
z
LU
tr
i-
x
UJ

UJ
(O

CC

UJ
CC


S
CC
UJ
0.
S
UJ
i-

i-

<
_j
o.
                                                       ^b
                                                            8CX
                                                          v
                                                               VO..Q'
                                                            I5O
                                                                ACRES
                                                               X
                                                 )  / CR :s
                                                                  SCFES
^
                                    JFMAMJ  JASOND

                                           TIME - MONTHS
               FIGURE 48  -  RESULTS FOR  WILMINGTON,  DELAWARE
                                        157

-------
(NORMAL CONDITIONS) - Fe EQUILIBRIUM TEMPERATURE - F°
ffl «> 5 = K; SSSgSSggl
til
oe
or
^ c

cE
UJ
Q_ *S

i-
^
i- ^
z
<
n' ,












•^Be»



J



*X



X


X









E







4
















^
N»
\
\









J J A S
MONTHS





no

"Tir


00

•T-
-OC
~^-










-»-


A(

_*-
A
_•-










V


-RE
^

•'Kl
-^









y



s
S

'y









\
\0
V\
\i







0





/



y
/

/













\
\v»
\
*





N



/
/


^
/

/
/

















i0-
V



D



^»-



s*~


s+~







o
u.
1
< I8°
0 EXCHANGE COEFFICIENT- BTU/FT2- C
% -^ 0> GO O f\> .£> 
ooooooo
i
t/j
1
Q 10
z 10
o

Ui 9
EC
t-

UJ
V) 7
— 7
CC
UJ
CC
3 6
1-
cc
111 R
Q. 5
UJ
1- 4
°- 3











V
-0»



J







~o>




















y

•^



F



X






















,
/

/











/
V
f











/
/•
f
yO











r~
/
r













•-«
















>
^X
















\

\















s^
V
^















^



MAMJJASOND
TIME - MONTHS




\



\
\













vo
v



\












8(
^



I5(
^











0

^^i


0 /
X)











ACI

•o-


kCR

°










tES

"°


ES
y











t
/



— /











j
'


^
^











/'



0/
'











>>.















                                JFMAMJJASOND
TIME - MONTHS                         TIME - MONTHS
   FIGURE 49 - RESULTS FOR WASHINGTON, D. C.
                      158

-------
BRIUM TEMPERATURE
EQU
1 >















v°>
x















A
o
X 1
^















V
\
x















tv
V







J FMAMJ JASOND
TIME - MONTHS
                                 Q

                                 I
                                 "x
                                 3
                                 I-
                                 m
                                 I
                                 i-
                                 z

                                 —
                                 o
                                 Ul
                                 o
                                 u

                                 UJ
                                 X
                                 o
                                 X
                                 UJ
200




ISO




I60




140




120




100




 80




 60
    /
                                                     y
               b,
                       _L
                                       JFMAMJJASOND

                                            TIME - MONTHS
1 ">
0
U_
I
w ' '
z
0
•~ in
5 I0
z
8
_l 9
<
2
cc
O Q
I 8
Ul
o: 7
UJ
a:
P 6
a:
UJ
a. 5
h-
r-
z
<
fL ^





^



S-
X

x
A











y






y












X



^
^

X












V



v


V










A =
•«
^


\ =
v

\ - I
S|
%l









80

**•


50
-^-

! 20
-+•









0 /:

<»


D ,
J*

0 /
•*'









CR
r+>



\Cl
•+*

LK
*++










iS




ES
-^


•^^









^
f



f

J
/









/



J
f

f
V









f



p


jr






e
U.
V)
O
H
a
0
ui
S
ui
DC
1-
UJ
UJ
(/)
(T
111
CC
3
15
£E
UJ
a.
5
UJ
t-
1-
z
<
_J
a.
                                   12
JFMAMJ  JA

      TIME - MONTHS



VL




'°>


^










>),



\
T>,

x











X



^
N

\











b>



v
*s

QH









8CX

Os


ISC
M.

120
*o-








) A

•O'


0/5
,f).

) A
0-








:RE

»o-


CRE
^>-

:RE
o-








s
.



s
-cr'

s
jj









P'



rf












J
'


i
JO

/
^0








/



x
/

J/









^0.



^


^j.







JFMAMJ  JASON

      TIME - MONTHS
       FIGURE 50  -  RESULTS FOR JACKSONVILLE, FLORIDA
                             159

-------
100
. 90
j
uj 80
IE
< 70
IE
111
o,
S 60
ui
H
Z 50
£C
™ 40
5
0
w 30
12
*
ll_
SJ "
z
o
g 'o
•z.
O
o
_j 9
<
2
cc
1 8
UJ
E ^
UJ
tt
= 6
IT
0. 5
UJ
H
H 4
<
o! 3

E



H^«
"









J






"•>



"S


~*N





XTF


^
,/










F






V




X

\





:EM


7?
i>
U*











E

r
/
ACl












/
s
\
"UA










MAM
TIME -







V



s*-
v

Sj











V-



S^,











A=

-w'

A- 1

u-
A-2

^*



^y
s*


L











•o-
-«~














•©^
•*»














>1
V













J J A S
MONTHS






80(






20C1










) A



1 fl


) A










CRI



rpi


ORE










:s






s






%
N"












0







-*






fd








X










N






/
A



/

/
>








X










D






/•



/^»-


/*•"




0 200
u.
I
<
0 EXCHANGE COEFFICIENT- BTU/FT2- I
j •t'OiCBOMAO
OOOOOOO
u. \c-
i
W
1
1—
5 10
Z IO
o
Ul
2 9
a:
I-
x 8
iii
In 1
— 7
OC
UJ
a:
z> 6
t-
UJ -
a. 5
S
UJ
t-
,-
z
^
















J





"X




b>

-n
*^










/
y








F






X



.
"\

X








I
4'
7












/*•
















~©^











MAM
TIME -







k<\



S












8C



ISC

•o
22(
*H>.









0 /



0

*y
)0


.©.














\
^















\
NT
\






J J A S 0 N D
MONTHS






CR
^v


!CR
-O-

<\CF
-0-









IS
-cT


ES


ES










^




jQT


t^r













^


^>














^j— 1 i


-o










.a'



i»O'












#




^

rf
•^-




TIME - MONTHS
JFMAMJ  JASOND
      TIME - MONTHS
    FIGURE 51 - RESULTS FOR MIAMI,  FLORIDA
                      160

-------
J  FMAMJ   JASOND

      TIME  - MONTHS
EXCHANGE COEFFICIENT - BTU/FT2- DAY- F8
— — — — — t\3
ia>ODOWA0>ODC
DOOOOOOOO









-/
sr












J
ft
f












/
p












/
/
f*












— -
/*
/y













P**-L

-<\














V,

l
*s

^s











""•m*

A- 1

•>«.
\ ~ e.










ROC

— «r"

c.r\f
<^\j\
-+•
£_Q

-••'








A
X


\ A

X
) A
^















- 1
"S
CRE

*^









-\
3
^^.




"^ .-
'V
s
•»•










,/



^
'

V









/"



^«
'

^









s*




{*

^





JFMAM

      TIME - MONTHS
                                   u.  12
                                   1

                                   to
                                   I"
                                   o
                                   o

                                   UJ
                                   s
                                   Ul
                                   tr.
                                   H
                                   X
                                   Ul

                                   UJ
                                   











\



V
">

X











X



V
"S

\










6
NX


1!
'"h

2
X









00
o.


oc

•^
20C










AC
•-









S
-o'


3
-(^

5
«*/"









^p.



_ft'


*o-










-e'



x>'


^









y




s*

f










***"



K


&





JFMAMJ  JAS

       TIME - MONTHS
                       OND
           FIGURE  52  - RESULTS  FOR TAMPA,  FLORIDA
                              161

-------
100
. 90
In.
UJ 80
1 7°
o.
S 60
h-
1 50
CE
m
g 40
0
u 30
12
O
y_
5? "
z
o
£ '0
•z
o
o
_i 9
cc
1 8
UJ
E 7
Ul
tE
H 6
CE
UJ
2 5
H
£ 4
<
oi 3









.0"
•





J




X



x


N^







EX"






/
" (
/






FRE





— ^

/







ME


t
h
7
/










\
-3-
» t
f
'AC










F M A M
TIME -





'v



X


\










*Sn.
"\



X


v









A
S,



A
X
f\
\.









-

•**>


= it
!!*».
r *?'

«*.




rf
*
/
\
TU^











*o-.
**-


^L












V
^S














^
S^
\











J J A S
MONTHS





ior

-»-


uu
-w
nr

«^-








A

_a-


A
_•><
A

^«-








"IRf

^<


JK!
-»-
CR!

-»•








s
S
S9


S
V
5
,S








\

\
\








0





/
/


t


y
/











\
^
\






N




/



•
/^

./
p















^





0




•*s



«4h,










„ 200
u.
I
>. 180
o
J "60
l-
u.
3 140
m
I
I- 120
UJ
E "00
u.
UJ
0
o 80
UJ
13
< 60
X.
ui 40
f i?
u. \<-
i
w
o
1 10
o
UJ
5 9
UJ
OL
\-
\f Q
S
UJ
(/) T
— 7
(C
Ul
r> 6
cc
a. 5
Ul
I-
_
z
Q- ^










^
/




J



X



Nj


X















i

r





F




V



\
ffl



•^











r

&












/
•*
^d














x>














s

6-














V
"^














^s

X














\
I
k \
\
\




MAMJJASO
TIME - MONTHS





'



s

o
X










X



1
X

\ 2










80
^Q


50(
V>

?0(
^o*









) A
"O-


) A<

M>-
) A(










:RE
j&




4>*
RE
O-









S
J?


s
rC

S
.cy









/>'




^

t
jy








y



/



















\
\
Xk.













V

.0*



N D



^



P"


^










"^*"



-0-


•o>







JFMAMJ  JASON  D
     TIME - MONTHS
                             JFMAMJ  JASOND
                                   TIME - MONTHS
FIGURE 53 - RESULTS FOR ATLANTA,  GEORGIA
                           162

-------
IUU
. 90
u.
ui 80
IE
S 70
or
m
Q.
S 60
UJ
1-
i 50
m
g 40
o
u 30
12
O
U.
« "
0
5 I0
z
o
" 9
<
S

/
/AC











c/
/
/
K;
TU










&*




AL












\ >

















V
\
















\ )
V 1
\















\
^
\















\

^

J FMAMJ JASOND
TIME - MONTHS

X



-^


X











\



\
^

\











\



s


V
*s










\
\





s
*v










N*
\



\

rtr2
S,
\








30C

s^

;nn


"V
^00
v.








A(


•n^
fli



w
A(

•









/

NRP

/
X

X








s
/



y
^
/
y








/
'


j
r

y
r












f

t
/









/*-



^*-


/*"









o
u.
1
5
Q
1
eg
U.
V.
3
1-
m
I
1-
z
UJ
o
u.
u.
UJ
o
u
UJ
u
z
<
I
















\
%
V















V
Hs
\














V
^
o.
                                J  FMAM JJASOND
                                      TIME - MONTHS
                             12


                             I I


                             10


                              9


                              8


                          —  7
\
X)
A
\

^
\

I
\
\
\











\



\

\,
U











X



V
y

s>
\










V
\



\

v
^









80
"ei


50

'°v

22(
V)'









0 ft

*<*+

o ft

x>.

>o ,
•-

CR


•QJ-
^CR
•o-








ES
J
^

ES

?

ES
^









-------
  100
   90
in  80
K.
tE
li.
CL
   70
   60
   50
«£
m
j  40
   30
        EXTREME:
  ACTUAL
     ^
J  FMAMJ  JASOND

      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
*>0>C9ON-*bO»09C
DOOOOOOOO



i








•fir















/
fir












,
/
y











.
y
7
f











^
/"













^r















A
^















\
X















V
^
1















^
















in

















^



                                JFMAMJJAS

                                      TIME -  MONTHS
                                                                         OND
w
2
O
O
o
cc
o
o:
UJ
ec.
a:
ui
Q.
S
UI
z
<
ii
1
0
9
8
7
6
5
4


*A




"•>

-fc










X



sf


X











X



\
\

\
\









/
\



\"
\

N /









1= (

N,
\

= i

\~2
V








soc




50(

^t
?0

^.







A(


-W'

) A

•*?
n A

^^







RE

X
x^

CR

^
CRf









S
>
X


:s
/

:.=i ,
X








/
r



J


/








S
/*



/

J
/









/f



S


\f







      JFMAMJ  JASON  D

             TIME -  MONTHS
                                          °u.  12
                                          tf)
                                          z
                                          o
                          o
                          o
                          111
                          111
                          tr.
                          H
                          X
                          UJ

                          u
                          CO
                          K.

                          Ill
                          OL
                          3

                          S
                          a:
                          ui
                          a.
                          2
                          UJ
                          I-

                          H

                          <
                          _l
                          o.


-o-



-o-


-o-










-ft
*">.



*<

-<\
^










1
*
\



\
t
(
\











\n
•


V


X)
y








80C

^


50

^
220

Ov







A


-o-

) /i

-o-
0 /

-0-







CRE


-O

CR

J^
CR

-*/'







S

/>*


ES
XT'

=:s
0"









6




JS


**








a



.
P

ft'
P








if



j
,*

,•
P













)*

x
'







                                JFMAMJ  JASOND

                                       TIME  - MONTHS

FIGURE  55 - RESULTS FOR CHICAGO, ILLINOIS
                                      164

-------
EQUILIBRIUM TEMPERATURE - Fe
MO4^Oi--JOB(X)C
OOOOOOOOC













s/
-^




E)







/
f 1
f





:TR





/
?l
f
f






EM
\

/
0
'/
I










o'
1 /
'r
AC










cf
/


>
\
\
TU.










rv

^«-



:VL










t>
\
>















V
\b
Vv
\















^.
V
y\
\















l\
\^
V
\















^
v
\

JFMAMJJASOND
      TIME   MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ — — _ N
^! o



^




-*>













\



V


X
>










V
\





y
\









A

"v


A
s^

A-
V








Oj

^


:|5

•*«»
22









-\r\




po

-•-
00











J?


AC

^
AC
^*













RE:
r

=?E!
S









J




^











f




f

f
'









^



J


-J









f



f


f






PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
                            12
J  F  M A M
      TIME - MONTHS



-0>



-o>


-o>










•n
\



X


^










v
ft
i


kv
\

\
O
\









e
\
u\


IE
\j

22
^








00


NX

00

NX
00,

IX.







AC


JO*

AC

-O'
VCF

o-^







RE

P


RE;
,
**
ES
/








s
o*



>
?

f










ff



^


-o'









1




^

/









ft



O*
/

p'









,6'




**

^







JFMAMJJAS
      TIME - MONTHS
                                                    OND
FIGURE 56 - RESULTS FOR SPRINGFIELD, ILLINOIS
                     165

-------
  100
U_
i

IX
H
OC
UJ
   BO
   80
   70
£L
2  60
UJ
H

g  50
K
EJ
-•  40
  30
      n"
        EXPREME
               L/
  ACTl
                    AL
                          A^
                                 Xx
             AMJ  JASOND
            TIME  •  MONTHS
;HANGE COEFFICIENT- BTU/FT£- DAY - F"
WOJOt\J.&k0>a»c
OOOOOOOO
X
UJ An












^
-©"














/
#
/











,r°
f
/*













h^














^
^3^














>
•^















FL
Vj
















^
















\
V
\














X

\3.














V
.0-


                                                FMAMJJASON
                                                   TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F9
jjjs,oiO)^CD(0o — i\







•**

BffiL,











\



V
\

X
*










V
A


V
X

V
\









A=
S,
X

A -

vJ
IA-'










80

<.




^

^








0 A

^K5

O i


«gj
U A

V







CRE






^

JT*








S





L^


X









,


^









X



v
^/

X









/



/
X











|lv>"




/^

Bit?
-J0i=







PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
        FMAMJ  JASON
            TIME - MONTHS

E>A



aA=-


^

S
^p









Py



y
o


/>'








o'
>


/'
?'

oy
^








o-



/^


r










-o-



-tr


'(!•








                                             J  F
                                    MAMJ  JASOND
                                      TIME - MONTHS
FIGURE 57 -  RESULTS FOR EVANSVILLE,  INDIANA
                                  166

-------
  100
   J  FMAMJ  JASOND

         TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — M
^ocDOro^moBc
3OOOOOOOO











-**

-o'












J
s
y











/
f
/
/
y











J
^
ff
r











j
f

,u












sr-

*a-













X

-ex














\
s
"N
O













\
\
^














\
^
\
\















V
^














V

b.


                                             JFMAMJJASOND

                                                   TIME -  MONTHS
   12
CO
z
o
o
o
ec
o
tn
a:
Ul

OL
a:
UJ
a.
7




6



5




4



3



-•-






-*N















^


'S










\
X



V
V

X










A=
X



A-
V
X
A=










R

X.


10
^
??

V.








")0

•^-


oo

")0

~«-








ACI

-r-


ACI
1*
AfrF

-•••








?FF

^'


*•







      JFMAMJ  JASON

            TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>i-i>oi(j>^Ja>u>o — i\


'0



tx


"0s










xa



>>
^v

\>
\










Vi
\
>


*
\


\











^



V
X

•qj









80

**s


50
"0>

>20
'^








0 A

"O-


0 A


0 t
xs-








CRI

-CT


CRE
r/

ck
J>'








s
p-



s
J*

:S
jOr
^*









jf



ff


J








/
P



/
/

^








X
U



f

/
P









&*




-------
ML CONDITIONS) - F9 EQUILIBRIUM TEMPERATURE - F9
» 5 = ~ SSo-SSSggg
§ 8
£ 7
3 C

u
OL S
Ul
[-
i- 4
z
a. 3













r-/


J







"












	 1

EX








^/
X

F



X



X


X









> - •

PRE




,
/
n
7







ME-

,
/
/7
7
/









V
7,
,y
A
AV







MAM
TIME -



i
X



\
S

\
y










v
\



X

V










A =
"SB
V

A= 1

V
s 	
*k






/

t


ER^









XH
y»-




,GE










X
















"
\S

A








J J A S
MONTHS





80<

•-»-

•ifX

•>*_
20(

«^_








) A

~*-

) A

.=*=
) A

-«-








:RE
•^


"RF


:RE
^









S
X


s
y

S
X











^ll
\\
V
\





0




_/
/



/


/














1
t
1

V
>


N



/
/



/


/



















^s
V

D



/*"



X


S







" EXCHANGE COEFFICIENT - BTU/FT2 - DAY - F8
— — • — — — is;
3 *0>03O(\}^0>OBO
ooooooooo
UL !£-
D






















^
&
r
^






1











<4










MAM
TIME -



>
\
*


O
\

o
V










. f
\


\ '
^

\!










soc

0,

50C

O*

20
\3*








rffC















V
o















\
N















\
\















\
\






J J A S 0
MONTHS





AC



A

-a.

OA









REJ

.U**

;RE

-£>'

CKI










X


S



f/









X




/

r/
/^








o'




r

o/
/















V
^




N



/



>



D


^






jy.








JFMAMJJASOND         "JFMAMJJASOND
     TIME - MONTHS                         TIME - MONTHS
        FIGURE 59  - RESULTS  FOR SOUTH BEND, INDIANA
                           168

-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
^^ucn-^CBuS::* SSSSSogg^














J
V



E>








t
!J
/




TR






&
n
f






tM
\(


.
f,

J
f









V /
r
1 J
A
AV









/
f
y
/^


EH/









.w-
/*•




GE









X
















\
\
\ "
\
1














\
\
V
\









\
u





V*
\
\














1
A
V
>
J FMAMJ JASOND
TIME - MONTHS







*s

-^











S
\





X
>










\
\






\











^
X




~\
\ 7
X








8C

^^
S

150

?0









0/s


V

OA

*«.

•w







CRi


>

:RE

.JV

>•







:s

X


s

?
^
S









y
^



/
/
/








V
^



x

^








/
w


J
r

>








y



^
f

J






o 2O°
U.
1
>. 180
Q
J 160
t-
u.
^ 140
m
H 120
UJ
L: 100
u.
UJ
o
o 80
UJ
< 60
I
o
X
uj 4Q
A
Jo
RISE (EXTREME CONDITIOt
^J 00 10 O -
TEMPERATURE
» en o>
1- H
z
<.
_i
O. 3



1








**
Jr












J
/




J F



\

x



















/
/I
I
//
f.






/










\J

1












f'

.Q.













•v
^
.
<\













,
*^

\













\
\
\
\
Ufc













^
V.
ut^
^1














»y

\














i
V




MAM JJASOND
TIME - MONTHS




\
i


ft
\

\
i










Vi
S



^

\
\









80<

V


150
V

!20
V








) A(

•O-


O A

"Sf"
OA
-O-








RE

**


CRE
jr

CRE
^








>
4



:s
*
M

$.









f




^

.









/
X^



^


>*








f>'



y
1

f









^0"



P"


tr








JFMAMJ  JAS
      TIME - MONTHS
0 N  D
JFMAMJ  JASO
      TIME - MONTHS
N D
         FIGURE  60 -  RESULTS FOR DES MOINES,  IOWA
                           169

-------
IOU
„ 90
u.
uj 80
tC.
S 70
IE
UJ
0.
£ 60
i-
§ 50
ce
| 40
o
w 30
12
o
1
 ' '
Z
O
g '°
z
o
o
_i 9
a:
1 8
UJ
£ 7
Ul
o:
H 6
cc
Ui
o. 5
ijj
l-
H 4
Z
<
r^ ^














4
^



E)








i
ft
7
'



:TR





/

'V
F
/





EM



r/
II
I
1








EX
/
o
1
ty
/
I A










/
f
£


\
'ER











^~



AGf










"b
\1
A















\
\s
V
'














1l
b
v\
\
)














^
\
I-*—

V
A















Q
V
V
J FMAMJ JASOND
TIME - MONTHS


--»*



-»,


— «.










\
s


s
^

X
s










\
\
\


v
N
V
\
\










y /
\



\,7
\
V'












\


= 1!
y.


X








30C


*•»-

3UU

-•-
.00

™*-J







AC




A(

L^*
AC
4,








RE

^





REi
X









"/



S y
/

V








>
/



f
*
:
/








/
r


/
/

y
/








X



r


r








o Z*-'1
U.
> ISC
4
o
J I6C
H
U.
^ I4C
O)
1
1- I2C
UI
giOC
u.
LJ
o
o 8C
UJ
o
< 60
i
o
X
u 40
SL 12
w
1 "
1 10
O
o
SI 9
UI
o:
x 8
UJ
UJ
«n 7
cc
UJ
l-
£C
UJ c
Q. 5
UJ
1-
I- 4
z
<
_l
n_ i
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F"
^o>oaorojiO>QBo
DOOOOOOOO













•o"



























/
ft
y











i
u
I










L
i
r












,•*"
*o^















>
°X















\
V
V














\
\
V















k
A
X
1














\
Y\
^















Slu



                                      JFMAMJJASOND
                                           TIME - MONTHS
JFMAMJJASOND
      TIME - MONTHS

\t
~\


X
>

X











\
>


V


\
A










\
*\



\
\
t
X











\
\


\
\
\
\
\









80

\


150
S

22(
\aj








0 A




O /S

>D-
)0/
v>-








CRI

X


CRI

r°'
CRI
*&








S
X
f


IS
/

:5/
/*








a



4
/°

J
/







j
f



j
A
/


-------
EQUILIBRIUM TEMPERATURE - Fe
VOIAOlO-^ODUJC
ooooooooc












X
s





EX






f
P
'/






TR




,

j<
/



ER/









a*
__





GE









\
^
N















^
\\
N















\
^

\















i
^
V
^














y
&
\


      J  FMAMJ   JASOND

             TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — _ M
f>O>CDON>-p.
a:
a:
UJ
a.
s
UJ
<

a.




"V



^


-s











\



X


X











X



\
\

x











y
N



^^ i

\
\









\=

\


i-ii
X
i-1"1
y
X








BOC


V-

OC

"*nT

V








A


-*-



_*-
At

_«••








:RE


^^

..Re

>
%F?F

.>








s
J
/



/^










y
/



^
^
y
/








/
f


J
/

/
*








s



f


/f






       JFMAMJ  JASON  D

             TIME - MONTHS
                                          u.  12
                                          -

                                        H
                                        Z
                                        <
                                        _1
                                        o.



•Os




"^

•o











X



\>
^


\










\



\
^>

^
\











\



\
\

\










80
\D


ISC

s

^









0 (

V

)0 ,


v>~
:uu
'•0.








CR

1.0-

VCR

HM

AL
,J>








ES

J*

ES

*

•



p/


/*








O
r


>
/

A
/







f



/
j


-------
IOO
. 90
!
HI 30
ac
< 70
K.
CL
jjj 60
I-
| 50
n:
m
g 40
o
u 30
0
1
z
O
| 10
8
_i 9
1 8
HI
o: 7
ui
(E
H 6
a:
HI
a 5
HI
1-
1- 4
Z
Q. 3













**



EX









h
f




TR





t
ft

f






:ME



o
j

1










p.
'/
A










y
f
/
f

y/Ef










<*\

r


!AG










.
\
\
>

E












\
Vx
\
\














1%
b
\!








\
i
1
^




















y\
\


J FMAMJ JASOND
TIME MONTHS



•v,



"*"


""*•










\



Sm,
N

>w
s










\
\



V
\
y
\
A










v
\



X
N
V/
K









= £

V



X
-n,
v~









00

S


uu

•>•
nn

-v-








A

V




«»-
A(

_j-










y


^nt

^r?r

4








s/
/



y
A
Sj









/
r


y
/

^
f







*
/



j
f

/









s



^


/







. ^w<
u.
. IQ(
r^
PLANT TEMPERATURE RISE (EXTREME CONDITIONS)- F" EXCHANGE COEFFICIENT- BTU/FT2 -[
J^ua^avO-v S 2 2 g K £ £
iiUO
180
160
140
120
100
80
60












»Q'













y
7
/










1
1
ji
9
i










/
jy
t











~>
I n.
A i
//[
/























V

i
b
i















i
\
\












\
\
\

\
\













V
\
LN
\
\
















V.














\
»o>



                                     JFMAMJJASOND
                                           TIME - MONTHS
I
0
9
8
7
6
5
4
3


^



-•o>


X











\



\
\

V.
\










\
\
°s



V
v>
\

V
\
\










V
"%


15
X


^<









00
'«


00

V
TW
0
vv








AC

*o*

AC


*o-

TT








RE
oy
S

t*E£

/
^
O
'








Sfi'
/



^
/
* r*
/








(/
/


t
^

Qf
/







j
/
/O


/
-fe

/
/O







(V
r



^

o
/









-o-



^o


^•GT








JFMAMJJASOND         "JFMAMJJASOND
     TIME - MONTHS                          TIME -MONTHS
         FIGURE 63  -  RESULTS  FOR TOPEKA,  KANSAS
                           172

-------
J  FMAMJ  J  A S 0  N D
      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
— — — — — i\]
iOODOWAOOOC
3OOOOOOOO










jr
r
•o'













^
/












/j
ff












^
V
f













*"V
?6













f
.•o-














>v
"O















V
kv
0^














>

s














V
V
x















X
k














^
V
'•O*



                                      JFMAMJJASOND
                                           TIME - MONTHS
l£
e
U.
w "
0
1- • „
°LANT TEMPERATURE RISE (NORMAL CONDI
» Ji 01 O -^ CD / CO C




•*-



••_


•**.










"N



"V


X















^
S

X










/
V



H
\
**
n
^









= £
-•»


'

~«s.

•^









oo

V


oo
"S.
nrs

N^








AC

^y


M\.
j
&r

y








RE!
r



Kt*
<*
&&
<*~










-S















+




f
f

/









S



^S


^














^r









PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
JFMAMJ  JAS
      TIME - MONTHS
                     OND







<*\













X



^
\

\0
^










V
\



X

\
\










8(
'"b*


15
>><

22
io.









0 /
••o


DO,


00
-o.









CRI



KR

-o.
AC

•O-








S
o*


ES

-.0'
=?E!
rf










?'



ff


s>'









//



o'


/









/



O
'











>"



9'


/P-










«^M




»o*


~t»







JFMAMJJAS
      TIME - MONTHS
0 N  D
        FIGURE 64 - RESULTS FOR LEXINGTON, KENTUCKY
                            173

-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - F°
w*u,a>-lcDcD5 = w ooSSSoggl











•O"1

f-


J


•*•


T^












EX







/
7
/



F






\


\









TRE






fj
I







ME


i
/

U
J









""* <
n
'/
A
\
M










^
>














V
y \
V
\















\
Vi
\1
















V
>















^v
V.



MAMJ JASOND
TIME - MONTHS




X


\
*S

V
"S









t,
\


/
V
V

p
9><








= 1

^s

= l{
>?„

-2.t


















/


y
/

/








x


./
/•

/^









^>


^-










e EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
j *0>5c
ooooooooo
MPERATURE RISE (EXTREME CONDITIONS) - F
OICT)-^OBUjO — h
Ul
1-
1- 4
Z
<
_l
a. 3












-*""
V













^
/°



J F


/^



<**


A.











°>






o
















1
ff
f












f














/















/"














»k
^
















^s

















\°
\














V
>
0'














"S
-A,















•?p



MAM JJASOND
TIME - MONTHS








\
A

i
^









8(



I5(

X

k 2^
u>








)0

»o.

)0

Q

00
^








ACI

~o-

ACF


-U-
ACF
*o-








ES

,o'

ES

^

ES
jy









Q



<>


9-'
^ —








^'



i
/o

/
*








91"



p-


<>•














r
-------
EQUILIBRIUM TEMPERATURE - Fe
•o w A 01 <*> -~t co (O c
OOOOOOOOC


EX




&
4









TRE



J
v
r









ME


f>
y
^










>
/
/ ,
/
tw










t
4
/

>
\
ER,









ft-
/•
*•
^



VGE









•o«
•^














•n
(Dori>Ac
3OOOOOOOC









^
^













^













jfl
jl













^
f>-














+r
-o-














^s
•o>















^















*
*\














^

\
















X















V
V














»-A
-o'





  FMAMJJAS

      TIME - MONTHS
                                                        OND
o
u
UJ
v>
a:
D


cc
Ul
a.
Z
•z.


Q.
      J  F
M  A  M  J  J A  S

 TIME - MONTHS
                        N  D
                                       o
                                       U.
CONDITIONS
XTR
SE
PLANT TEMPERATURE




-0
1



X


X










NJ
\



X

s_
°>











V


n
V

'*.









80

O-


I5C
^

22C
'o-








D A

o-


O/


iO
-o-








CRI

mO*


CR
-O-

\CR
•0"








S
^Qd



ES
.0-

£S










>'




^*

,o-









,4
}>



ff


»°1








>
X



/


X









/p*



-P"


y»-










"°>



•Ov


NJS






JFMAMJJASO

      TIME - MONTHS
                                                                      ND
            FIGURE 66 -  RESULTS FOR NEW ORLEANS,  LOUISIANA
                                   175

-------
EQUILIBRIUM TEMPERATURE - F°
JW-l^oiO>-J(X)<0o
JOOOOOOOO








/

^







EX






/








•RE



f
J
/









ME
X

1
f A
7











/
f*)
A
AVt











/
f


:'RA










((>
^



GE











'°>
\















V
^o.
V
A
















^






\
\








K







"JFMAMJ JASON
TIME - MONTHS
RISE (NORMAL CONDITIONS) - Fe
-*i CD (O O — *
/1PERATURE
en 0)




^




"**

.^








X



•^


x







^
\



\


y







A
V


A
S^

A '







= £
^


U

X
r> f.







00

*••

00

5*.
oo
v






AC

'-••

AC

UK
A<







RE

•<•

RE

V
"F?F







s
j
S


s
^

c
y





/
/



/









^f



s


f











^






D




>•




<^

^



„ iiUt
U.
>. ISC
0
J I6C
I-
u.
^ I4C
m
I
H I2C
UJ
E-oc
u.
UJ
o
o 8C
UJ
< 60
x
o
X
ui 4Q
u. 12
I
to
i "
1 10
o
o
2E 9
Ul
o:
H
x 8
UJ
UJ
£ 7
at
UJ
1 6
a:
111 K
a. 5
z
a.
JFMAMJ   JASON  D
      TIME - MONTHS
200
180
160
140
120
100
80
60
a.n










<6













/
X!
,9











/
/
fl












$
>













X
"0













^r
.P-














•«S
.0.















^
\















\
v^
\
1














V
K
'















St
v>;















**





                                            JFMAMJJASOND
                                                 TIME - MONTHS
                                      UJ
                                      I-
                                      H




-0.




\/^

«?•










•










\
b\



\

k
X











X


1!
X

2
X









80(
*O


50C

ko.
2O(
•O.









) A(
-»5

AC

.O.
P A










RE
J^

RE

.0-
CRI
O'









S
>

1

.o'
:s
.c^









x




/

J









ff



.
'

&









f




/?

ef
S









j^^




-O>


X>,






                                            JFMAMJ  JASOND
                                                  TIME - MONTHS
             FIGURE  67 -  RESULTS FOR SHREVEPQRT, LOUISIANA
                                  176

-------
100
FMAMJ  JASOND
   TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — M
^0>a>G
3000000OO












0
•0-














4
.0'













/.
jt












i
$
f











A
f{
7













&
f













M
Q*
















\ 1
s















s
V
N















\
T
^














s,
>>
U














s
•k
•a


                                         JFMAMJJASOND
                                               TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
)lj±Oiff>-JQ>WO — IV


••.



«•.


•*«










•^



•^


*\











X



SL
\

x











s
^





V.
\








= 6

v
^



X

\=z
y






00


V

50


'**•
20 <
•*.






AC


—f

? A


-^
) A
-•*






RE


S

CR

^
^
:K(








S

^


ES
.
/


r












j
/

L/








/
/



it

j
r









S



S


f








    JFMAMJ  JASOND
          TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
J^OI(J)^JCDOjO — l\

lf\*



*>»


•0»











T>,



X

*n
<\










f\
\



\

s
\











\



^
4

\









80

X


ISC
Si
A
??
X








0 fi


v>^

0 ,

>>l
in

*o»







CRI


•0"

\CF

n-
rtn

-0*







S

y


ES

X
fFS
//
X'








y
/



X

/
f°








/
/


f
/>

/
A1








/



/


f









^0-



^cea


S*









                                   JFMAMJ  JASOND
                                         TIME - MONTHS
              FIGURE  68  -  RESULTS  FOR  CARIBOU,  MAINE
                                177

-------
100
FMAMJ  JASO
   TIME -  MONTHS
                           ND
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F°
— _ — — _ i\3
^o>a>oi\>.i>0>a>o
3OOOOOOOO













jft.
-0"














4













J
%
r












d
V












*
If
'













S\
,0-













A.

•0.














\
k















^
^
\















X
X















x
X















y
>x

JFMAMJJASOND
      TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
Wj.OI(J>->IOD

\










I
x


V
N

V
>








^ = i

V

= 1
V
»«
^ = 2
X








30C

"*i

50(

Nk
20(

^*.







A(

=*•

) A

•^r
) A

-+r







:RE

S


CR

J
:RE

+4







S
•/
S


ES
/

Sj
f








y
*



/
X

J
*









J
f


J


J
'








-.



tf
f

y









PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
    JFMAMJ  JASON  D
         TIME - MONTHS

•QS





•O-,











Nj
^


X
A

X











v
•


Q
A

\
s

















\
Q









80i

^*»


150
1

220
o>








3 A

•0.


0 A
»4£W

0 /
XV








CRI

-0-


CRf
n

Chi
9.








s

-d"


:s
n>

ES
,c/








t
?



&


[/








i
/


t
O

/
^








ft'
X


/
y

X










"e"



**"

«p-










JFMAMJJASOND
      TIME - MONTHS
             FIGURE 69 - RESULTS FOR PORTLAND, MAINE
                               178

-------
UJ
£C
O

<
D:
UJ
a.
•s.
UJ
I-

2
3

K
m
EQU
1 VW
90
80
70
60
50
40
30
20











.0"
^






EX







' /







TRI




i

f
f







:ME


L/
V
/rf
'










•%(
4
//
^
AV










Y
'>
*



-.Rfi










*B*
*+•



GE










*0
O,
















^
^i
i















k
V
\
















\
Vy
^















^v
\
••>


J FMAMJ JASOND
TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^a>OBora^c
DOOOOOOOC











^
•Q*













/
rj
V












J
fy
t











Jt
ff
f










/
#
f












~#














^














v\
\















V
'5s
\
'














V
\
^















y
^
V
^















^
V


                                                 JFMAMJJASOND

                                                       TIME -  MONTHS
8
£C
O
ui

E
ui
o:
a:
ui
a.
Z
UJ
<
a.
1
0
9
8
7
6
5
4



^K



^


^










y
A



\


















V
i
\
X










A
X



V
>

X









= 8

V


= 1


\ — e.
*•*








oo


V

50(


"








i
/



J
f

?








j
/



/

J
/








pr*
f


^
/

*
f







                                           u.  12
                                             I I
                                           o
                                           o
                                             10
                                           UJ
                                           a:
                                           i-
                                           x  8
                                           UJ
                                           «  7
                                           or

                                           ui


                                              6
                                           a:
                                           ^  K
                                           Q.  5
                                           2
                                           UJ
                                           i-
                                           1-  4
                                           z


"O.



•*•.
O'

T>*











\



^


"^,











\



\
o
>

>>
^










Vo.
>


\
\

V
X









80
v>



ISC
\

^









0 /

^a.


0 /
^3-

JO
•ex.








CR

-o-


,CR

•U'
\Ch
•O*








ES

^°'


ES
or

tb
S>*








i
f




-------
IOO
. 90
u.
ui 80
cc
$ 70
cc
111
a.
^ 60
UI
I-
2 50
cc
m
3 40
0
w 30
9n













•


p












^
V
^
















^
>















kx
^
V
^















v^
V


J FMAMJ  JASOND
     TIME - MONTHS
„ 200
u.
>. 180
<
o
J "SO
1-
u.
^ 140
CD
1
H 120
UI
i Art
u_ IOU
u.
UI
o
o 80
UI
1 60
< ou
X
X
UJ AA










«*•
^^














y
*
V
1













*•+
0















k ^




\\

r









v
















x
>















SB
















k
k<^





JFMAMJJASOND
      TIME - MONTHS
1£
o
u.
5J "
0
5 lo
z
o
j 9
1 8
UJ
£ 7
UI
cc
? 6
cc
ui
a- 5
UJ
i-
K 4
Z
DL 3




»»•



=».

-«L>









•^




>

X










x




*\












X'
>



ll/

x
^









\=£

X


\ =

^.
X









00


v
•k.
bO
^
f?n

^








AC


J
J*
J A

«^^
0 fl

-o-








RE
J
/


CK!
y
TRl

LV








s
/
/



.b.
-,,
x









^



y
^
y









x



**
X
r








^



X

X





PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
AJ^OIO-JOBCDO — ^
     TIME - MONTHS




"w"



-O


^>










*o>



sn


•0.,










k
\



\


>>>










•^
^



V
>

\










8
\



IO
V
\
22
\









oo

''o


JU
Sv
00

V








ACI

-0


^Lq
^O"
AC

•o-








?ES

jy


to
^
RES
rr^
*u









^



/>


>*








/
/°



/
/
y
>*1








,/
,*



cf


/.o'









^*-



0-


.•O"






JFMAMJ  JASOND
      TIME - MONTHS
      FIGURE 71 - RESULTS FOR BOSTON, MASSACHUSETTS
                           ISO

-------
1 VJU
. 90
L.
1
ui 80
DC
< 70
(T
LJ
0.
ul 60
1-
2 50
DC
00
g 40
0
w 30
20
12
e
U_
S, "
z
o
0 I0
Z
o
u
_i 9
o:
LJ
to
OC
Ul
OC
g 6
OC
LJ
LJ
1-
Z
<
n^ •*













^
^



bX








1
\J
V
f




Kt







ME


t
J ,
/ /

'7
V
7











\

A

A
AV










X
y
'


ER,









iDii
^




V3E










"^
*\















\
^
*tl









J FMAMJ JAS
TIME - MONTHS


«•



••-.

«•









^



*\

^














X












x




V
>

X









A =




A =
^
^

^








80


••

I5(

"*.
22(

V.







0 /


^-

)0

.+•
)0/

^"







CR


^

acf


VCR
• «
>'







ES

s


ES
^
^
ES
jf











\
\










\
V





0




?
f



y

^
7





\\




N


>
^



t

_y
X


















t

\

D


^«



x


^







e EXCHANGE COEFFICIENT- BTU/FT2- DAY - F"
— — — — — N
; *.o>a)oro^cna)o
ooooooooo
U. 1^.

0 "
1-
i .0
o

UJ
o:
1-
o
LJ
LJ
S2 7
OC
LJ
^ 6
£
1 5
LJ
y-
.












3C



j


•0-






-

V2









00

X


300
»0
>
aoc
^









?














-O














-
\
















V^s
•






J J A S
MONTHS




AC

•O


AC

•o.
A(









RE!




RE

,0
IRE











^


S

J&
S

-------
UJ
£C
3

<
K
UJ
O.
Z
UJ
I-

z
o

oc
m
EQU
IUU
90
80
70
60
50
40
j>n














0 ^




EX









1
'*




TR






/
9
f i
7
/





EMI



/
/°,
iJ
I
'







s
•H
I
d
' i
f*
'A\


























\
Vi
V
)















\
V
\\
^
















\

JFMAMJJASOND
      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
^  o N .j> 0) o> c
3OOOOOOOO











-^

•o-













s
„'
fv












/
y
/











/
?
/
r











J

>













At















^N
















\
\














\
vV
\














^-
X
X















\
NO*
N















X
\>



                                            JFMAMJJASOND

                                                  TIME - MONTHS
12
O
U.
Z "
z
o
Q I0
•z.
o
o
_j 9
<
S
o:
| 8
UJ
S 7
UI
DC.
K 6
o:
UI
o. 5
UJ
h-
H. 4
0. 3




*



••»-


-•-










"V



X


pv










V




\
^

\











V



y
*s

V










A-
X


A=l
^
^
<\=2
X








HU(
^


501

**.
20(
>^i








J /

*

) /!

-*-
) A
=*"








UK
-^


CRi

V
CRE
^









-\,
'


:s
^X

s
^









^



J


/








j
S



/


^









s*



/*•


/r







L 12
to
Z "
K
Q
z 1 0
o
o
UJ
5 9
UJ
£E
1-
x a
UJ
UJ

*


V
H

X
i










\
°x



^


K










80(
X


150
\

220
X









AC

O"

OA

ND.
0 A

'U.








RE



CRI

JO'
CR

^O'








S
s0'


S
J

:s
-?'









/^



^


x









/^



(T


CT









y



^
^

p'









X



d

t
,<*








                                       JFMAMJ  JASOND

                                             TIME - MONTHS
             FIGURE 73  -  RESULTS  FOR MUSKEGON, MICHIGAN
                                  182

-------
  100
         FMAMJ  JASOND

            TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2 - DAY - Fe
_ _ _ — _ N
^0>a>or\)-^c
DOOOOOOOO



i









p«-
£r














**
.-^
•»












.









y
/
/

V













/S
r













fl*
£-














«•,
•a,














fc.
"£
^















k
X















\.
*
\















^
«>















V


FMAMJJAS

   TIME - MONTHS
                      OND
e
U.

 I


OT
Z
O
a:
o
ui
».

50

^
2C

•>».







A(


•••

0 A

•••
0 t

•V







RE


J*

CR

>
\CR

X







S

f


ES
/
f
ES
/








./
/



X

A
/








y
^


A
f

/
/








_^
/^


^
/

tf
r








PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>j*oia>->iOD(oO — *
1,/v



IP*


x»











\



\

V
*\











\>
\
\


\
\

\)












v



\
^
\
Xoy









80

V


ISC
v

22C
\








0 A


l>

0 /

N>J
OP

\>







CRI




CR

JO-
CK

mf\-








S

f


IS
X
r



XT


K









            TIME - MONTHS
JFMAMJJASOND

      TIME - MONTHS
          FIGURE 74 - RESULTS  FOR SAULT STE. MARIE, MICHIGAN
                                   183

-------
100
. 90
u.
uj 80
o:
£ 70
IT
HI
O.
5 60
tu
H
1 5°
CC
OD
g 40
O
w 30
12
0
U.
£ "
o
1 '°
o
" 9
<
S












^


-••s










s.
*v



\


S












TR




[
rl

y
/






-Ml


,
d
/
^
r









y
6
t i
' L
/A






MAM
TIME -



V
\



^
1^

\











v
^s


\
X

v
»s









ft=
v



- 1
V
A-'










f6f
/


\
/EF










/>•
,*-



iAG










^
\
^


-











\
\
V
















V
v\
V
\














i
V
t\


A














\
\
\'
J J A S 0 N D
MONTHS





B0(

*<.


juu
.
onr

*«*,








i A

•*-


A
=*•
1 A

-*•








:RE

-*-


wRE
*"
~PF

-*-








s
^/



s
^
q
j









/*



y
/

^
X







/
/


y
/

>
/








p-



r


r
f







° EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
j £o>o>oro.i>o>a>c
ooooooooo
U. 1C.
i

0 "
1-
Q m
z 10
o
III
S 9
(E
1-
a
ui
— 7
OC
UJ
3 6
a:
^ e
a. 5
UJ
1-
.
z
o- 3













tif


J


Uk.



•^






















/
£



F


>\



s


X°«,

















/
H
/











./
^
f












/
'/













/£
<*>'













A.

.0














\
"°\















\
kx\
0\















V
^
>















\
V
















S(



MAMJJASOND
TIME - MONTHS



\
\


\
\

V3
i











X



\
^

\
\









8CX
"^


ISC
sq

iiiC
^









} A
^.


0 /

-ex
0 A

0,








CR

-w

CR

jy
CRI

.
-------
IUU
. 90
u.
i
ui 80
cc
* 70
cc
Ul
Q.
I 6°
1-
1 5°
DC
m
3 40
O
u 30
20
12
e
ll_
£ "
o
£ 10
8
_i 9
<
2
oc
1 8
Ul
£ 7
Ul
cc
H 6
cc
Ul
o- 5
Ul
1-
h- 4
<
n1 ^















^^J



E>









/
/ /




TR






1
cjfy
i /
f





tM



J
*
(J
I ^
/^








ENS
J>
o'

A
AN










/
o
f


'ER









,0,





AGE










\^
\1

















V
^















\
\\
v\










1 \
\\
















J FMAMJ JASO
TIME - MONTHS

^



^


-v











\



\


\











\
\


\
\


\











\



V
X

V
\









ft=



A=l

X


X








80(

S_

sor


s^
C\}\









) A

f

} A


^
\ A

_^»








CRE

X

~!Rf




V








s
X


s
/
/*
s









y
/



f


/





* "l
\\
^
N D



,/



J
^

J
f








A



X

^
/








0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fc
_ _ — — _ ro
; -t»O)O)OK)Ji(J>CDO
OOOOOOOOO
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
^i-P>oia)->'
/
ft
r















MAM
TIME -



*
<


V
1
\
\
1












\


y
0

V
1









80

X

50

\

\

^>,















^

'














\
\
\ >
K






J J A S
MONTHS





D A

•o-


0 A


0-
;0
X)«








RE

J>-

CRE


"^
kCR
.0








S
,


S

,o'

-S
*°








Q-
/



7

v
/












i
w%
i





0





'"


,<
*

i
KU















\
\
^



N


J
f


t
tj


1



















s
^


D

ff



f>'


P









JFMAMJ  JASON  D
      TIME - MONTHS
                                          TIME - MONTHS
FIGURE 76 - RESULTS FOR MINNEAPOLIS-ST. PAUL, MINNESOTA
                          185

-------
EQUILIBRIUM TEMPERATURE - F"
O W -t» 01  --J CD <0 O
DOOOOOQOO
^O-«0








JCf







EX






ff
f
/






TR!




1
6
y
*








'ME


/
^
7
f









^
V
o
^
s
AV










X
x*
/r


ER,











**f



\GE










'
A














i
^
V
\
)














V
i
Q
V
^















\
^5
\















*«•
^v,






EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
iQ>oro.j>a>c
3OOOOOOOO











r/
h^













rf
^













c/;
^













£
/r













<•
t£














'ON
•*-















^
\
6-















^















^
^















^
^S
V















^















*»•




J  FMAMJ  JASOND

      TIME - MONTHS
FMAM  J  JAS

   TIME -  MONTHS
                                                                       OND
o
o
o



UJ



K

UJ
£C
or
UJ
QL

2
UJ
I^
1
0
9
8
7
6
5
4



•«>



V


K










X,



s.
V


s










X



\
K

V
^









A
V


f\
v

A
V









-- ti
*•«.


• l^

-«.
b22

'••Vi








uu



nn

— •-
00

-»~








ACI
jf


i\n

*>
ACI
^
Jr








•(Lt
^


?FS
-•—

^Fsc
^









t
-S



J


J








/
f



f

«/
f









If



s


^









-*-




^•^










      JFMAMJ  JASOND

            TIME - MONTHS
                                   U. 12
                                   I

                                   0>


                                   1"
                                   H

                                   Q
                                   z 10
                                   O
                                   o

                                   UJ
                                   X

                                   UJ
                                   UJ
                                   V)
                                   UJ
                                   OL


                                   \
                                   at
                                   UJ
                                   a.
                                   5
                                   UJ
                                   I-

                                   I-
                                   z
                                   <
                                   _l
                                   o.



X



X


X











^



X


X















X


X









(
v»


IE

>0.
22

U*1








00

•o«

00

•o.,
00

pa.








A(

•a*

ACI


ACf

4








RE
**'


?ES
P.
'
tES
o-









S
• O'



-o-


•cr









j




,0

/









?



rf
f

^










+>•



J*-


f^f










"O



-0


-
-------
EQUILIBRIUM TEMPERATURE - F°
rowAoi0>^j(D
V
/°>
'/
/
AV









ff
f
f
J
fe
\
ER/









•o
fc




,GE









*0
X
V^















\
V
\















\
\
^







\\
v»
\&
\\





^















V
v
\


J  FMAMJ JASOND
      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — K
iO>CDOw-p>a>c
3OOOOOOOC












35^














y
y












y
f












/
f













$














4r















•"fc.
^















\
\ ^
\
o














v
Vv
\
\















\
SS
A















^
>















^



JFMAMJJASOND
      TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
jj-ooicn^ootoo — i\


_^


















\



\
>

\











V
N





y
\










A
V
^


A
V

A
V









- k
NT


= 1?

V
F22

SV








UU

"••

no


00











Al



A


A

_-•









Mk
•


"RF

S
}RE
.
^








b/
f


S
^

S
/








S






/
/








/






^
'









/^



X


**







u. 1^
co
1
Q
z 10
0
UJ
2 9
UJ
1-
Ul
UJ
CO 7


221
X









)0
^.


DO


)0

•Ow








ACR



ACI

-O
ACF

-O-








ES



RES

J\
tES











'



jA


y









jt



/
»o

X/









/



o/
'


-------
EQUILIBRIUM TEMPERATURE - F°
OW*OIO
3OOQOOOOO












«.
X















V
v\
















\

\ \
v\
V















V
»
^
V
\















b.

^


EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^cnoaorojxcncDG
3OOOOOOOO










-S
J*












/
/
/
**










1
>
o
t
f










S
f
*
1










j
J
i
fo











^
f '

'













^

\
u
















bv













\
\

X














V
\
V
\
%














*y
\
t
V













^
K
•o-




J FMAMJ  JASOND
     TIME - MONTHS
                                     JFMAMJJASOND
                                           TIME - MONTHS
IZ
0
u.
» "
O
1 '°
O
o
_i 9
<
•s.
K.
1 8
UJ
1 1
UJ
cc
H 6
ac.
UJ
Q- 5
UJ
H
H ^
z
a 3




•^«,



•*s


•**.










.
A



X

V
^















\

C 	
K










/
X



v'
^

x









— <

X


(=IJ


\*- tL
^








30C

•>-


lUC

^r-
-Ul.
•»^.








A(

^—


Ac

j^
AL
>v








RE

X


:KL
.t^

Kh
^








S
y



b
X

i/









X



,
/

y









^



^
^

x









^






(X-






U. l£
g
3)
1
O
o
UJ
Z 9
UJ
GC.
\-
UJ
UJ
V) -f
-
A<

S>-|







?Fc

0/


:RC

^
:RE
o'









O '



S
/>'

S










.0'



,
'

£/








i
Q


4
o
/

p








cc
A



'

0*
TT-









-o-



.0-


*o-







JFMAMJJASOND
      TIME - MONTHS
                                      JF
                                   MAMJ  JASO
                                     TIME - MONTHS
FIGURE 79 - RESULTS FOR SPRINGFIELD, MISSOURI
                                                             ND
                          188

-------
BRIUM TEMPERATURE
EQU
IUV
90
80
50
40
30
Pft













JO

•+S




EX







f

/
"




TR





O
/ J
f y

'






:ME


/(
?,
U
I









-v
\
&
'/
/y
AVI










f
/
f


~.Rt









/£>»
f*




GE










>^\
\















I
V
XI
\
>















v
V
\
1
















V
\















V
x
^v
\
      J  FMAMJ  JASON

            TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ — — — ri
^o>o>oro-i>0>a>c
3OOOOOOOC











-ST-














X













/
&


















J
/
fr
/
1
















1
/
/













K^
















k
^
\















^
\s
\















\,
^















s_
3














t



FMAMJJASON

   TIME - MONTHS
o
u
a:
o
Ul


£

ui
ir
a:
UJ
a.
s
ui
i-
z
1
0
9
8
7
6
5
4
3


-*•






.










"y




V













\






y
\










\
X





s,
*s









\-

X

^ = 1

X


X








HOC


\
=>0f


X











^



ft



•^










CN1

J
*

1RF


/
'Of
/
/*







S
/
f

s

jt

S
r








^



/
/

f
IfiR








f>



.
'

f

-Q







.S




^4

,
7^







JFMAMJ JASON D
TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
ji.i>oi
-------
100
„ 90
u.
HI 80
DC.
$ 70
IT
HI
Q.
2 60
Ul
1-
1 50
K.
m
_i 40
o
w 30
•>r\












•o

-*"




EX






j
/°

/
'




TRI





C/

/
/






.ME



4
/
-O"
f J
1








\
\
i
^
' /
A











o
v
/

\
VEI










f0'
r



?AG










ON
\
N














\
>
o
V ^
\














\
\>
v\
\
>














V
\
v^
\














\
O*i
v
\

EXCHANGE COEFFICIENT- BTU/FT2 - DAY - F8
— — — — — ro
^o>a>oroA(na>o
3OOOOOOOO














^














/
y













/i
V*












•f
f












j
f
f












4
A














-°N















\

^















V
v«V
\
i















V
^s
'















V
Hi















Si.
>Oa

J  FMAMJ  JASOND
      TIME  - MONTHS
JFMAMJJASOND
      TIME - MONTHS
\

^












X


V
\

s.
\











X



x
\

X











s.
^



\

V
K,









A-
V
^


A=l
X


vv








ROT

s^
>

bUC

\
A
Sa
X







Ai


^^ .
^

A

**•'
-?










",RF

y
s

^Kt

/
'Of
J
s







S j
f



*/
f

)rP
f







/
/


y
/

/
/
r,RF







jf




'
*
f


s






^.



/<

^
/•










PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
                                   12
JFMAMJ  JASON  D
      TIME - MONTHS
X


Vi
\

>0
'X











X



\

\
15











X



*0
^
^
O
\
\










\
\


\
\

\.
u









80(

V


ISC
X

220
'<\








) A

"o.


0 /


0 /
•0








CRf


•u*

CR

^j«
,CR

*O^







s
»
/


ES
f/
/
:s
0^








/
,u



/
r

/








/
o
/


A
r

H
1








/


j
?


P









,
-------
  too
   20
DAY
EXCHANGE COEFFICIENT- BTU/F
      J  F
M  A M  J  J  A  S

 TIME - MONTHS
                                N  D
zuu
180
160
140
120
100
80
Art













V
^













i
»1
/

















4
/
/
/














*
/
i












£
f
































\
\














\
\
\
\

















,
\















\^

\


















                                                JFMAMJJASOND

                                                      TIME -  MONTHS
e
U.
z
o
Q
z
o
   12



   I I



   10



_j  9


£E

I  8
UJ

I  -
<
a:
a.
s
UJ
z
<

a






-V











\
\


V
\

\
\










\
x
>


x
v

\











\ /
X


y /
\


K











X,

- 1

X

\-iLi
\








30C


s*.



X
iUU

S-







A(


-•^
A





-*"







:RE

y

^RE


s
Mh
J








S y
/


s
J
/

y








y
/


/
/

y
/







/
/


,
y

y
y









/••



/*

^
f'








                                         L  12
      JFMAMJ  JASON  D

             TIME - MONTHS
                                         v>
                              Q
                              Z.
                              o
                              o

                              UJ
                              s
                              UJ
                              £C
                              H
                              X
                              UJ

                              UJ
                              U)
                                         UJ
                                         oc.
                                         3

                                         <
                                         £E
                                         UJ
                                         Q.
                                         Z
                                         UJ


                                         »-

                                         <
                                         _i
                                         o.

X



^'

^3,















\


V
H











\
o


1

'
t
o











Nb
x



\

'\
QN









80

\

50

xq

S22
U«,








D A


*0-
0 /s


V
00,
V,








:RE

.^
• LT
CRI


jaf
\CR
j








S
4
U

:s


t
Q
r






tf
f


f
||

^
;'









x°<



'°'


^









                                                JFMAMJ  JASOND

                                                      TIME - MONTHS
             FIGURE  82 - RESULTS FOR  NORTH PLATTE,  NEBRASKA
                                     191

-------
I


UJ
a:
tu
a.
Z
111
a:
m
100
90
80
70
60
50
40
30
?n














V
-S



EX








0
II
\ I
f




1 M





1
ft
ii
f






Mb


i
j i

f










1
/V
/
'AN











' f
/•

\
\
'ERj










"*U*




!\GE










Nn
V
s














\
\
\~ \
\














\
b
\
\\
\
\
\













L
\
\
\
\ \
V
\














V
^\
Vp
^
      J  F M  A M  J  JAS

           TIME - MONTHS
OND
NGE COEFFICIENT- BTU/FT2- DAY - Fe
>o>OK>AO>a>c
)OOOOOOO
















\*

















sj^



JFMAMJJASOND

      TIME - MONTHS
\£.
o
U.
^ "
0
1 'o
z
O
o
_i 9
<
•s.
a:
1 8
Ul
K 7
Ul
ir
H 6
a:
Ul
o. 5
Ul
I-
h- *
z
<
n' -


^






X











V



\
\

\











\
\


ll
\

^
^











^



^
^s

^











X


<\= 1

\
A=?
S^









DOC

V.

iOf


?or

^^








ft

j*

A


A










OKI

IX

ORF

s
1RF









/^
«J
/


S
y

s /
/








/
f


J
/

y
/







/
/



^/


/








S
f



/

X
f







PLANT TEMPERATURE RISE (EXTREME CONDITIONS)- F
t>-t*o\m-*iQc>o>



UN

-r>
\










\
\


t
X
1
\
\











\
\


V
X

\
X











^>



'v.
\

x










80(
k*o


150

^
22(
%









3 AC

•o«

OA

*o-
iO /

•o-J








RE

.u

:RE

-


s









<
,u


A
y

y
X








X



/


J









sf



,0-


X








                 JFMAMJJASOND

                       TIME - MONTHS
                FIGURE 83  -  RESULTS  FOR OMAHA, NEBRASKA
                                  192

-------
IVJV
on
EQUILIBRIUM TEMPERATURE - F"
POW^OlO^JCOt
oooooooc



E








.
f*
/
~



XTF






O '
/
f
/
/
'





EIV





j
'y
/
'







Ex


1

//
/










v
^
' y
A
AV










/
/
f


ERy









*cs
,«»»




\GE










°>
\















N
\
\
>














\
«
\
\»
\\
>















\
V
V
\














\
^
\^
^
      J  FMAMJ  JASOND

            TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — _ |\]
^O>O>OIV>.l>0>a>C
3OOOOOOOC















_**














/
y













/f
>












,/
/













4
r













/
f














A;















L\
^
















t\
\
1















vt
\















k
vVi















-•••
                            JFMAMJJASOND

                                  TIME - MONTHS
(O
z
o
o
o
or
o
UJ
HI
a:
a:
ui
a.
•s.
ui
z
<
i
0
9
8
7
6
5
4
•*



V

X^












X


s.
\

\












X



\


\











\
N


V
\

V
s









\-



\-\

\

.
\








80(

s»
X,
50C


X
A
^..
V







A(




A


^^
_ p










'RE

/

:RE

y
/
IOC
J
7







S j
/


S J
/

J
A








/
r

y
/
'

/
/

RE:







/


/

J
f



1









^*-


/*-












PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
ji.froi(n-j(»«>o — iv

>
X

x>
1












\


\

\
°>












H


^
\

i
\











\
\


\
«\

i
V
^









8

*N

15

X

22
°s








00


"U»
00


\x.
00









AC


0*
ACI


•O'
ACI

^C&







^ES



ES

y
*^
ES
d








f
/°


I
?

1
t
r







f
p

i

/
/
t/
/











P

o'
f
1













*&"

.0














                            JFMAMJJASOND

                                  TIME - MONTHS


FIGURE 84  -  RESULTS FOR  ELKO,  NEVADA
            TIME - MONTHS
                                    193

-------
EQUILIBRIUM TEMPERATURE - F°
'OW-l>Ol





?'
/








TR



/
' /
/









FMI

Q/

V
J











J

S\
AV











£
/


ER/










ff
t^



GE










^
S
V














t

V















i

V
\















V
\v
\















X






EXCHANGE COEFFICIENT - BTU/FT2 - DAY - F"
— — — — — M
^0>or\).i>cna>o
3OOOOOOOO













J
X












/
//
f










i
/
1*
i
\









1
/
A
7
/








,
/
//
/
o
t
1
1










f
r°*
'












^

>
0^













\
\

\














{
\
\\
\\








[\









^
\
















V
vS
i














s^
\

J FMAMJ  JASO
      TIME - MONTHS
N D
J  FMAM  JJAS
      TIME - MONTHS
ON  D
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
j4.^oi0>~Jo><0c> — r\

^
\


v
s

\
>















\
>
k
\











v
\


^
\
i
\
\










A
\
\


L A
\
\

\
\








= £

s.
\

= \b

X

k
\







00


^-a,
^»
oo


•v.
A
V







AC




A(


-^
-2.
_^







RE:


/

:Kh

y
^
IOC
y







^
/
/


3
y
/
f
/
fit






i

j


1
/
/
,



RE





/
f


/
/
(•
/
f



5




>^-



^T


K^"









PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>|.p>oi(j>^iCD



>n
\

•^
\









80
\
<\


I5(j
>>

,22
Q,








0 A

>.
Or-

0 t

V
00
s.
u^







CR


Jj"

^CR

M'
!\CR









ES

,
-------
   100
.  90
u.
uj  80
£C
a:
UJ
a.
S
UJ
   70
60
§ 50

o:
at
-, 40
o
w 30
   20
     EXTREME
   if-

                 EFAGE
V
                            ft
       J  FMAMJ  JASOND

             TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — N
^o)O>oroAG
3OOOOOOOQ














»/
«*^
rfV













y
4
/>












d
rf












/
ti
f












/
&













S*
/•
-X1
^w













-\
-a















\
^
i














V
\
^
\














y
^
X















\
\v

















                                               JFMAMJJASOND

                                                     TIME -  MONTHS
   12



   I I



   10
OL
O



UJ
Ul
a:
(T
UJ
a.
s
UJ
a.
*s


\
*>

V











\,
\


s.
>

\
\











X



\














V
A


v
\

V
\









= t
X,


=it
s.
>
=22
\









uu

*>*.

uu


00

•-^J








AL,



AL


AC

-»-








Hti
j/
S

Kb!


=*E£
J
S








/



y
/
f
/
f







J
/


/
/
I
/
f








S


/
/

/
/













s-

*-












       JFMAMJ  JASON  D

             TIME - MONTHS
                                        u. 12
                                         i

                                        w
                                        o
                                        z
                                        o
                                        o

                                        UJ
                                        •s.
                                        UJ
                                        a:
                                        H
                                        X
                                        Ul
                                           Ul
                                           v>
                                        ui
                                        o:


                                        5
                                        a:
                                        ui
                                        a.
                                        Z
                                        ui
                                        i-
                                        l-
                                        z
                                        <
                                        _l
                                        a.


•V
v

\












X





V
\











\
\


k
s

\
°\











X



X


X










80
"^


50
X

22










5 A
*n


0 /

X
30
V,









;RE

•O"

CR

-o-
ACF










S
t
J


:s
>
**
ES
ff








Q'
7


£/'
Y

i
i










i
>
/
i
r
/
o
/
/











/""

fl^
r














—

-o-













                                               JFMAMJ   JASOND

                                                      TIME  - MONTHS


                 FIGURE 86  -  RESULTS FOR  RENO, NEVADA
                                      195

-------
EQUILIBRIUM TEMPERATURE - Fc
oc>j^uicn->icDU>o
3OOOOOQOO














«o'
•V



EX








t
f}
t




TRI





1
/
u
f
'





:ME



A
!/
7
/









\j
f
V
r










>
/

f
\
VE.











^



WG










\
\
i
V
\


E












V
V^,
\
>














i

k o
V
\
















y^
v
\













\
c
iv
                                         „  200
                                         u.


                                         >. ISO

                                         Q


                                         J  160

                                         u.

                                         ^ 140

                                         CO
                                         I

                                         I- 120

                                         UJ

                                         u
ui
O
o

UI
o

<
X
o
X
                                            80
                                               •O
      J  FMAMJ  JASOND

            TIME  - MONTHS
      JFMAMJJASOND

             TIME -  MONTHS
o
o
K.
O
UJ
V)
or
ui
a.
\*.
nn


V
00

•>»-







AC



Ar


s
Aij

^







RE

/

nr

V

HE!
/









y



Y


/









/



/

/
/









/



/

/
/









/«•



/f


S'










      JFMAMJ  JASON  D

            TIME - MONTHS
                                            12
                                         v>
                                         ?  II
z  10
O
o


5   9
ui
or
h-
x   8
                                              -0.
ui


I   6
<
ac
U   K
a.   5
Z
ui
           \
                                                         800 /,CRI:S
                                                         isoo /SCR:S
                                                         X
                                                         2200 ACRES
                                                               •n
                                                                  o'
^
       JFMAMJ  JASOND

             TIME - MONTHS
             FIGURE 87  -  RESULTS  FOR CONCORD,  NEW HAMPSHIRE
                                    196

-------
100
                                        120
                                     > ISO

                                     Q

                                      I
                                     :
                               60
                                                 _L
MAMJ  JASOND

 TIME - MONTHS
FMAM  J  JAS

   TIME - MONTHS
                                                                  OND
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
jlfkOiO)~^a>


-»,










Si
^


w
N


\










\
\



x^


V









A
x
V


A
X

n









= f




= 15

X

.»
^







00


s«-

00


V*.
inn

•«<.







AC


-*:
AC


-*H

-&







RF


S

RE!

j
'Of

S







5

/



j
*

/









/



y


/









s



/


/









^r



S1


^







PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
>i.i>(jio>^a>«>o — K



•O-



-a.


"O-










*°>



VI


\











K



\
r

\











\
••>



\

'v
X








80

V


50

X

'£'£.
V
*%







0 /


V

0 ft

"*n

M
NX







CR


-O

CR


•o*
AC
•o*







ES

_j*
^

:s

r

(bb
jj*









y



y
/•*

^








c/
/


>
1
p

'
/








,0/



X


/









«^>






-Tk.








    JFMAMJ  JASON

          TIME - MONTHS
                                   JFMAMJ  JASON

                                         TIME - MONTHS
            FIGURE  88 - RESULTS FOR  NEWARK, NEW JERSEY
                                197

-------
u.

 I

UJ
a:
3

!5
a:
UJ
a.
2
UJ
H

S
3

E
m
3
O
111
IUU
90
80
70
60
50
40
30
?n










4
d
*S






EX





0
/
f







rRf




/
jf
^








:ME
\
\
i
«,
7
f











4*
7
\
AVI











'°,
/


:RA










-0-
*^~



GE










ir>
O















V
\

1















^>

V















^
V
\ 1
















\
^>



                                         a

                                          I
                                         o*














^s
\


      J  FMAMJ  JASOND

            TIME -  MONTHS
                                                JFMAMJJASOND

                                                      TIME - MONTHS
u.
i
•2.
O
O
o
o


111


IT

UJ
a:



a:
UJ
a.

UJ
l£
1
0
9
8
7
6
5
4

\



s
>

\











\
"



\
N

\
\










s
\



\
s
V
\










rt
\
>


V A
s

V
^










V
s

= 15

\
=?"(
v
v










V.

00


v.
'00

•**.












AC


_»^
AC

-»*







TT

*/
L/

RE:

/
RF
»j
S








\l
r


5 /
/

} /
/







y
/


/
/
/
/
/
r







/
f


/
/

/
^








/••"



^*-


^









      JFMAMJ  JASON  D

            TIME - MONTHS
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
U-P>W


V
\

\
\











\



k\^
*

<









80(

\


ISO
kv
s
22









) A(


^O*

0 A


)oy

*x>-







RE

r\+


CRE

^
kCR









S

,^


:s
f

:s
S*








'
X



y


X







^
o
/


o
1
1
1
9








?
f


f
T
t*











*o~


jr


sr










                                                JFMAMJJASOND

                                                      TIME - MONTHS
             FIGURE 89  -  RESULTS  FOR ALBUQUERQUE,  NEW MEXICO
                                     198

-------
IUU
. 90
IL.
i
uj 80
S 70
or
UJ
0.
2 60
^-
2 50
K.
m
g 40
0
* 30
20
12
e
U.
w "
o
g 'o
o
u
_j 9
IT
1 8
UJ
I 7
UJ
rr
? 6
o:
UJ
o. 5
ui
i-
H ^
z
<
n1 -,














•








J FMAMJ JAS
TIME - MONTHS

^






v











X



\


X











X



s^


s










A
\
\


k A
V
N

\
\








• a

^


0

X
22(

V







00


•»».

)0


XD









AC


-**

ACI

^
ACI

-*•"







*F5i

J


tES

^
RES
/
S~








!/



.
,/

>
*












\

\
hi









I
\\





0



X



y
A

^







\^
V
\


N


^



j
*

/




















k
Jl
V
N
D

^




S

*•









0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — M
; -i>a>a)oroAO>a>o
ooooooooo
u. ic.
i
tf)
0 "
o
z 10
0
u
2 9
UJ
(E
1-
UI
UI
(/) y
a:
UI
o:
3 6
^
ee.
UJ ,
a. o
^S.
UJ
1- 4
z
•<
_l
0- 3













=<^


J

-ft-



•Oh


-O-





















/



F


^



^


^



















^1
o












^
r













f.
ff






MAM
TIME -



4


^
^














\
°v


\
0'

'v
o>








80'

v^


50

^
221














i














3V
«!















iv
^















j.
%
^




J J A S
MONTHS



) A


*«0.

0 /

•o.
)0










;RE


•Of

CR

-o-
!\CF


u







5

tff


:s
*
y
ES
^









p-



n/
/*

y

















^y
\



0



X



1
(5
/

fw
f


















s^
'\>^


N

^
X1





/
'





















s^
^0*

D

XK



X


S









J
      TIME - MONTHS
                                   TIME - MONTHS

FIGURE 90 - RESULTS FOR ALBANY, NEW YORK
                  199

-------
e
U.
UJ
cc.
3

<
a:
ui
Q.
s
ui
I-

2
3
o:
m
3
O
UJ
IOO
90
80
50
•>r\




















EX







4
P
J





TRI





I
Pi

I






-.ME
\

t
f
h
7
i









i
^
'/
IK










f

y
\
\
/EF










l^>*
k*1*



AG










^
\



-












\
*V\
\















I
\
Vv
V
\















\
\^
V
*















k
Ax
\

u.
 I


o
 I
m
 i
i-
z
UJ
o
                                            o
                                            o
                                            X
                                            o
                                            X
                                            UJ
       JFMAMJJASOND

             TIME - MONTHS
200
ISO
160
140
120
100
80
60










.«_

•u-













V
,2"












>
/
t
,<*











/
M
i
i









t
/
7
/











?
f
Of
r













~*\

\














\
1
X
1













\
\
\
\














\
\
\
\














\

\














s.

M>



       JFMAMJJASOND

              TIME - MONTHS
z
o
o
o
a:
o
UJ
v>
tr
a:
a:
ui
a.
Z
ui
<

a.
1
0
9
8
7
6
5
4




T



-+-


*•-










-^s



"S


-»v










V
\



\


V











\



X


X









A-

\


A=l
k

A=
\








pnc


v

50(

X
'.20
\_








Bn


^

) A

, +•
Of\

-*•







rftf

^
f

CRI

S
L»R
s








Q
/
/•


:s
/

:s/
/*








*
/



/

/
s








s
/*



/


/i









S*



f


^-






                                            °u.  12
       JFMAMJ   JASON

             TIME - MONTHS

z
o
H
0
z
o
o
UJ
s
UJ
t£
Ul
(/)
Ul
cc
o

<
£E
UJ
O.
5
UJ
I-

I-
z
<
_l
Q.







U*.


•










tx



>>


"b>










v>
s



^


X











\



V
"\

t)










8(
\
*

ISC
V
\

\<>2
V,









o;

vo

0 ;


'°*
00
vo-








CF

_O'

kCR


"
AC
-0"








ES
_f
*

ES

X











p'




^

^
^








y
**



A

*
*








y



a,
t

f














,<*










       JFMAMJ  JASOND

              TIME - MONTHS
                 FIGURE  91 -  RESULTS FOR BUFFALO,  NEW YORK
                                        200

-------
EQUILIBRIUM TEMPERATURE - Fe
•0 W * Ol <" •"JOBCOC
ooooooooc












.cr
^*






EX






y
y
^






FR£




/
/y
/








ME
\
f
cf
//
/










i
ft
/
A«
AVI










/
y
f


M









rf)ta





GE










X
X















\
V
\















\
\
^.
^

















V
^















I
V.
^
\


                                          o
                                          U.
DAY
EXCHANGE COEFFICIENT- B
         FMAMJ   JASOND

             TIME - MONTHS
zoo
ISO
160
140
120
100
80
60
An

























V
/*













f
X












y
fj
t











i
y













/
^































Xs















<
\
*















y.
v\
<\
\














\
^
\














N,
w





      JFMAMJJASOND

             TIME - MONTHS
u.
i
8
(E
O



LJ
(rt
a:
ui
a.
^
UJ
1
0
9
8
7
6
5
4




•»-



=*;












^^
\



k













v
^,



X


V










\




X

s,
V









ft—
X


l\=l

\
ft=2
H,









SUv.

V

50(


20(

S*








P

•^~

i ^


) /

-*•








L/ni

-V

CR

s
iCR

X








.0
^/


:s
/
/*
:s
/









/



/
/•

X









/



/
^r

y









^-













                                          U. 12
                                          V)
Q
z
o
o

LI
•s.
LI
tr
H
x
LI

LI
S2
IT

LI
CC


S
£C
LI
Q.
2
LI
t-

H

<
_l
o.




•Ok



^5«


•O.










"X






^











H.



X


bN











X



>>

v
X










8C
X


I5(
^
V
22
X









0 i

NX

)0

\K
00

o.








CR

-O-

ACI


A(

•or








ES
^
^

(ES

X
IRE
&*









i
P



s/

\
y








t
y



y


/








p




y

ef
r













J*~


^






             TIME - MONTHS
                                                 JFMAMJJASOND

                                                        TIME - MONTHS
               FIGURE 92 -  RESULTS  FOR NEW  YORK, NEW YORK
                                     201

-------
Ul
oc.
3

<
DC
UJ
O.
Z
UJ
I-

2
O

K
at
o
o
Ul
IUU
90
80
50
5>f)









.O*

jr'






EX






^
/







FRE




/
//
r








ME
V
/
Q
7
/










o/
/ /
/
\
AV










^
/
/


ER/










o-





GE










>9
\
v
%














\
A
\
>














v
V\
V
\















V
\
Vi
V
^














\

^




      JFMAMJJASOND
            TIME - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — to
^0>a>oi\).i>o
DOOOOOOOO












y
^













/
4













//
,'°












/
V
P












^
r













*•
f
fO*














•+*
>GS















V
X














>
\
\
A
i














^v
\
\
Q
>














V
,\
X














^fc-

Sy

                 JFMAMJJASOND
                       TIME - MONTHS
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
w.p»oi0>">loDu>o — r\


•^



s
•S

S^











X




\

"^











\






S.
^









f
\



, f
V

S,.'0
*s










X,


= II
NJ

= 2
^V








IOC

•-«.


30C

"•«.
IOC









A(

~-


A

-*-
A









1RF

^


;RE

-•
;RE
^








s

^*


s
^

s
J>








s



A
f

J
f








/



J
'

/









S"



P.


s*








PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
      JFMAMJ  JAS

            TIME - MONTHS
0 N  D


tx.



^ON


"^










Vi
S



A

^











^
\



\

\
\










{
x



Y»
S

'\^









oo

•o.


50
NX

220
NX








AC

»o«


D A
•ft

0 A
-o.








RE!

J>*


:RE
P-

CRE
*)~









n*



S
,p'

;s
>/








1
^



/
P


IP'








X



o'
/

H


^
-------
EQUILIBRIUM TEMPERATURE - Fe
- rOG4-t.cnCT>-ga)(CC
0 OOOOOOQOC
ATURE RISE (NORMAL CONDITIONS) - F°
0) ->l OB (O O — i>
PLANT TEMPER
>l J> 01








^







J




V



•v
"""*

•^







E)





,
'U
y






F





X



V
v

y






TR




t
' j
f








FM
^
A
4
f *
f
f










ri
/
/
\
M










jf




[R/:










**^
*+•



GE










"^
>















\
s^
N











M A M J J A S
TIME - MONTHS






"\



v
\

X










A
"^



A
S,
*
A










- i

v.


- 1!.
•>^
= ??

V








00

"-a.


uu

•^l.
00

•*.








Ai

— •-


A

^r-
A

_•.








:RE

-^


^Kt

";RF

***








S
/
^^


S
X
8
/







L>
\\
^









0






/



/
/

j/










%

v\
\






N




j
/



ft


/













v
b.
s






D




,^r



^


^>






EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — N
'(DOooro^cncDC
)OOOOOOOC
tu
? 19
u. l«-
1
tf)
1
1—
Q
o
UJ
5 9
111
(E
1-
111
UJ
(O j
tr.
UJ
o:
o 6
£
£E
111 c
Q. 5
Z
111
1-
H 4
•<
_l
°- 3










J/

J>*



J



>>*



X


X















,
/

/




F




\



X


X
















f
I
/
/
f
t
ft





/
/










J
s

tf









MAM
TIME -





°V



X


X










k
<\



\


V









80
N.
^*\

ISC

V
22(







/•-


r°"












-«s



«v












\



\
o.











\
>


'•t\







J J A S
MONTHS





3 A

»o-

0 /


)0/

-o-








CRE

• u

CRI

.p'
TR
./
JJ








S
J*


IS
f

-^
*o~










*tr



•d*


-o"










y
\
^
V
^





0




,
^



x
-------
e
U.
UJ
IT
^>

<
K.
UJ
£L
S
111
I-

2
3

o:
m
3
O
UJ
IUU
90
80
50
9n














•o'





EX







1
,<*
I
I




TRI





0
/
/
/






:ME
\


i
9
'J
1
f









\J
h
'L
j
AV









.
f
I
f

\J










,^m

/*




GE









^0
O
N














\
\
v*\
\















k
v ,
V
\














\
\
\ \

\














\
\
v
\
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
jJ.|>OI(J>^JOOOBOroj>o>o)o
ooooooooo
u. \c.
in
0 "
h;
O
O
UJ
2 9
UJ
H
UJ
111
U) j
tL
UJ
£C
o 6


v
>


















/
f















J,
f
/
/
/
ll













MAM
TIME -


V
X
\


\,
V
i
H
\
1










1
\
<\



^
V,
\

I
N









80
V
\

I5C
|L^
\

'<><>
v>







flf
f*













•^i














\
\\
H
^















^V
k \
i \
°x















\
\
\















L

V
^


J J A S 0 N
MONTHS





DA



0 /

Vn.
^J«
JO
"0.








:Rt

ui*

CR


•o-
i\C(
•n^








s

/y

iS

>0'

ts









4
/



f

,
/








d
'


i
r

d
'







J
1


1
/

o'
I



















V
V


D

/r



/r


'"









      JFMAMJJASOND            JFMAMJJASOND

            TIME - MONTHS                           TIME - MONTHS

            FIGURE  95 - RESULTS  FOR BISMARCK,  NORTH DAKOTA
                                   204

-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
,,*0,0>>la>u>5 = i5 S8oSSo§g£













>o-
.•»




EX








p/
J
#




TRI



:ME
v




i

i
1
/y
r/
d/
II
'f












*/
Q
i j
f
A\










ff
j
f
I
\
\
rER









rv
**••



AGE










^
>















V
\^
^<
>















V








V
u
X





\\
\
1


J FMAMJ JASON
TIME - MONTHS



*•



A.

••>









^



-^

••
^>









*v



X,












V!
^^i

s t
K
^w>
*S










v
\
, = l
s-
x
\= 2
V









JUI.

^.
50(

^L
20

>».








A


) A

-*>
D A

•**








LKI
*
S
CRI

^
CR
•^









b
/
s*

;s
/
:s
S









/'


x

r









/


j
**



















,



D



f



-r

ff






o 2°*
U.
v I8(
<
o
J "6<
u.
^ I4C
m
I
H I2C
Ul
!•«
u.
UJ
0
o 8C
ui
o
< 6C
X
o
X
111 4C
u. 12
1
Jo
1 "
h;
Q ,_
Z 10
0
U
111
Ul
or
H-
x 8
Ul
Ul
(/) y
CC
Ul
o:
13 6
^
CC.
Ul _
a. 5
•s.
Ul
1- ^
z
<
_j
a. 3
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— — — — — IN.
^0>OOOl\>^0)(DC
3OOOOOOOC











*•-
NX














J
•4














1












/
9












J
f














^














*















\
\
*
















^















.
\v
•















!^
^















X
^



                                JFMAMJJASOND
                                     TIME - MONTHS



u



/cT

.«•
*r









-0



LQ
S

•CL
A










N
\


\
\


°\











\
A


\
S

V
°S









80(
^q


50

>0J

22
X31,









) A

4L

0 t

'Qfc

DO
^








CRI

-^

CRI


U
ACf

"O^








s
X


:s

tf

ts
rX
>*^








.




X


/








(/




X


*








(/
x''





v*










^"



,°-


/u<







TIME - MONTHS
                                JFMAMJJASOND
                                      TIME - MONTHS
    FIGURE  96  -  RESULTS  FOR CLEVELAND,  OHIO
                      205

-------
NDITIONS) - F° EQUILIBRIUM TEMPERATURE - F"
o ~~ M f\>w-t*oio>->Ja>«>c
0 - N 000000000
8
_i 9
2
tr
1 8
UJ
v>
oc
a:
H 6
PLANT TEMPER
W 4> Oi












jy.



J


-v



ks


V











EX







1
' j
/


F







\


^s










•RE




j
/
u/
/
'







ME
\
i

o ,
f I
1









i
t.
t 1
f
A\










^

f

\
\
'ER















AGE










*s
x















\
\H
v\
^ '
\















\
\
\
\






MAMJ JASO
TIME MONTHS



v
*v



X


\










A
*v
V


A
\

A
X









- t
^


- If

"<.
= 2;










00

*

00

—•-
IOC

-TT-








AC
•^


AC

-a*
AC

-^








-(tt
X


REJ
^

RE!
^









S




/i

> ^
*








y
s



?

f
/
















\
\
\



N



/i



S

,
/i



















^
V


D


,*•



s-


J-








o 2U
U.
g Q
<
1 ,*
PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F° EXCHANGE COEFFICIENT- BTU/FT2
,J*o.a>-^a>(DO|M4>O>CDO
->OOOOOOOO












s»-














A














y
f












sf
s














^o*
^















•&*
































\,
A















^N
\















Jv.
V














-V
















s*-
v.


                            JFMAMJJAS
                                  TIME - MONTHS
                                                           OND
JFMAMJJASON
      TIME - MONTHS


•er



•o*


*o-










>j
>


vi
>

S»











\
\


t
N
^
»
\










80
X


ISO
\

22<
X









0 /

S^«

0 /

N5.
)O

•o-








CRI



CR


ACf

•o-








:s
.0-


ES

S
JES
n-










X



^°'


X









/



0



-------
EQUILIBRIUM TEMPERATURE - Fe
PO W -^ Ol O> "*J CD 
/
^
AV










o7
y
^


ER









,0*
^0c




AGE



























O
V
>















\
Vi
\
)














1
\
V
\
















>
1



                                          o
                                          U.


                                          > 180

                                          a
                                           I
                                          N  I 60
                                          x
                                          3
                                          I-
                                          m
                                           I
                                          UJ


                                          E I0°
                                          UI
                                          o
                                          UJ
                                           o
                                           X
      J  FMAMJ  JASOND

             TIME - MONTHS
                                             80
                                             60
                                             40

                                       J  FMAM  J  J A  S

                                             TIME - MONTHS
                                                            0  N D
a
U.
   12
^-  i i
w  ' '
z
o

Ilo
o
u
s
K

I  8

UJ

?  7
OL
UJ
a.
•s.
UJ
z
4
\
       8CO
         AC^EJ
   ~^22(K> ACFES
                     ACRES

                 t
                                           LL.
                                (/)

                                O
                                O
                                U

                                UJ
UJ
(E
I-
X
UJ

UJ
.



|D«


O*-









80
•<*



15

22
•n









OA

\>-


)0,

)0
t
0—








CRt

J3'


VCR
p*
ACF

•o








S
^x



ES
/r
!ES
f*









*
*



o*

rf









/
^


y
<^

t
^







j
P



^
'

/>'









>^



Q,


>J-






       JFMAMJ  JAS

             TIME - MONTHS
                    0  N  D
                                                 J  F
                                         MAMJ   JASON

                                           TIME - MONTHS


FIGURE 98 -  RESULTS  FOR OKLAHOMA CITY,  OKLAHOMA
                                     207

-------
EQUILIBRIUM TEMPERATURE - Fe
NJw*oi0>-go(). 180
0
J 160
u.
^ 140
m
I
1- 120
UJ
o
i nn
u. I0°
u.
UJ
0
o 80
UJ
< 60
i.
u
X.
UJ 4/1












•«-















-»*














«/
*^














[X














X














X














/*-















Xj

















V
*
















\
















-«».















— •-



J FMAMJ  JASO
     TIME - MONTHS
N D
                                     JFMAMJJAS
                                           TIME -  MONTHS
                                                  0 N  D
l£
0
U.
« "
Z
o
I'O
z
o
o
_j 9
(T
1 8
UJ
I 7
Ul
o:
= 6
OL
UJ
0- 5
UJ
t-
K 4
n' ^


=«,


^•5

=»9









•^s



-•>

•^









V.



X

X










**



A
X

fl
fy









= t
^


=11
^
*»
=?;
^
s








00

X

00

s^
no

X








A


w

M


A(










;RE



;RE

/
~RF

X








S
X


s
y


x









x



r


S









^*


~*r

*•









•*:


=^r

!•=







U. 1^
1

0 "
H
Q
o
UJ
Z 9
UJ
IT
1-
UJ
^^
UJ
tf) 7
o:
Ul
cc
3 6
!^
DC
UJ c
a. 5
Z
UJ
\-
\- 4
<
_i
°- 3
























































































































































































































JFMAMJ  JASON
      TIME - MONTHS
                               FMAMJ  JASON
                                  TIME - MONTHS
FIGURE 99 - RESULTS FOR ASTORIA, OREGON
                           208

-------
. 90
u.
i
ui 80
tc.
< 70
cr
Ul
\ 60
H
^ 50
K
m
j 40
5
o
u 30
20
12
O
U.
£ "
o
g '0
z
o
u
_j 9
1 8
Ul
2 7
ui
tc
= 6
a:
Ul
a. 5
Ul
i-
•- ^
<
n* ^











4
fa







E)





t
A
i
r






TR




A
7
^








EMI
\

6
} J
f











<(
'/
f
AVI











flf
i y
/

\
:R^











^



GE










*o
















\
\
V
A















V
V>,
V
^









\
\\





\\
\















X
V


J FMAMJ JASOND
TIME - MONTHS

*»


^


>s











V
>


x
>

X
>















x
— 1

x










I
x



V
\

X









= «

X


^=1
^
>,
fl_
X








00


X

50C

w


V







AC


••r

I A


-••
O &

•*•







^E!

/
J

:RE

A
rffF
/
/








J
f


S A
/

V
/*







/
/


/
/
f
J
f







^


/


7*









-•-


iiV

**•









0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
_ _ _ — — r
; .i>0>a>oro-i>0>a>c
J ooooooooc
(EXTREME CONDITIONS) - F
00 (O O — l>
Ul
(0 y
a:
Ul
cc
3 6
5
£C
UJ -
a. 5
Z
Ul
1- 4
z
_l
°- 3













•S
^














/












J
Jl
A>











-/
,f
7
f











A
L
f












J
7














-°>
















1J
%
1















y
\
\










\\





\y
V
^














V
JX
^














-«.
TV

JFMAMJJASOND
TIME - MONTHS
"5
\


l^S


"°\











\
°\


V
\

V












o



^p
\

\°
i










V




CL


<\









8(

*<


ISC
S

^2
^,








)0

it.
°*

O A

V
30

Ok







!\CI


-O*

CRI

•n*
ftCF

»o-







ES

o/
'

:s


ES
V








j




9

t
f








7°


x
j>
/

X
'







y



ff


f










^^





,
-------
UJ
£C
O

<
o:
UJ
Q.
S
UJ
I-

2
3

o:
m
3
O
UJ
IUU
90
80
50
•?n











,>.
V,



   FMAMJ  JASOND

      TIME -  MONTHS
0 200
u.
>. 180
<
o
J 160
I-
u_
= 140
ffl
1
1- 120
y
C "00
u.
UJ
0
o 80
UJ
e>
z
< 6O
I
X
UJ /in



1







^
*Q.













•r
•o-













s*"
•













^
O













F



















.


/




















\
^
V















V
vv
V
^














V
N>-














•••
,J>














***
-o


                                             JFMAMJJASOND

                                                   TIME -  MONTHS
\e.
o
U.
I
•~ 1 1
w
z
o
o
o
_i 9
cc
z 8
UJ
•

s*.








= i

X


1 5'
x

^

•?•?






00




)0

X



in






AC



*"
AC


Sr


/\r






RE


y

RE!

./
s

y
RF'






S
/
/



/
f
/
/








f
^



r












-»,




•*k

-*











"*»



X


X







PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
j^oim^JOBtDO — i\
JFMAMJ  JASON  D

      TIME - MONTHS


-o.



O»


-Cf'










•o-



•a.


•o










•&"



">f



VJ~










"O,




«

*o
s









8
\



v[!
c*
^

\


?e






OO

v
\

)00
V
^

\
\
00






ACI


W^

AC


V


xy
A1






ES

i
/
/U

RE!
j
/
0

i
/
;RF






4
f



o7
/
t
o'
^

s






„



/*

P-











u«



*»•

«,
^«










o-



-o-


-o-








                                             JFMAMJJASOND

                                                   TIME - MONTHS
               FIGURE  101  - RESULTS FOR  PORTLAND, OREGON
                                   210

-------
  100
   90
iu  80
DC.
IE
UJ
Q.

2
HI
   70
60
§  50
cc
m
-:  40
o
w  30
   20
         FMAMJ  JASON

            TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
— — — — — ro
^o>o>oro-i>o>(Do
3OOOOOOOC













IP*















p













J
/












J
/
f












/
f













/r















•»,















L
X
















v
\
















X
















V
















V


                                          JFMAMJJASOND

                                                TIME -  MONTHS
        FMAMJ  JASON

            TIME - MONTHS
                                       u.  12
E CONDITIONS
XTR
PLANT TEMPERATURE RISE
                                          JFMAMJ  JASON

                                                 TIME - MONTHS
             FIGURE 102 - RESULTS  FOR  AVOCA,  PENNSYLVANIA
                                   211

-------
TIONS) - Fe EQUILIBRIUM TEMPERATURE - F
r~— M w * 01 o> ^J OB
' - i» ooooooo
PLANT TEMPERATURE RISE (NORMAL COND
w*oio>-^o>«>c










•••*



J



••>



-*,


-^








EX






X
/
/




TR




f

f






:ME


/
f
fj
i









V
fJt
r
AV








^
^
^

\
FR/








^^"
^#-



^GE








^n
*\













k
V
V













I
^
v\
^'
>













iVi
^>
\













V
\,
\



FMAMJ JASONO
TIME - MONTHS




V



X


x










S,
K



X


X










V
X



\

N
K









ft:

^

A=l

X
n=?
s









B0(

s-

"iOf

••«
?0(

»«*.








1 fi

^

/>

«<<
) A

-**








CRI

X

CRI

X
CRf










s
X


•,s
x

-s
X









//



/


^









/






/









/"



s
/*

^
^^






<
0
J 160
1-
u.
= 140
m
I
I- 120
UJ
E I0°
u.
UJ
o
0 EXCHANGE C
; •» o> a
3 0 0 C
U. \c-
B
CO
0 "
1 10
z 10
0
^ a
2 9
UJ
cc.
1-
UJ
UJ
ac.
uj
3 6
a:
a. 5
UJ
I-
I- 4
Q- 3










•0











i
/




J F



^



~o»


•0*










Vv




^

*°,














y
^










/
f












/•f











/;
/*












SV














\
\













s.
V
>













^|W
N













X
V













^




MAMJJASOND
TIME - MONTHS




x



V
°\

\t
>










\t




X

^
^









80
X


150

°s
22<
"q









3 />

NX

0 A

X
)0 i

NN.








CR

-o-

CR

^
VCF

-<>•








ES
^


ES

X
ES
^r









A^
s*



?


?








/
s>



J


f








r




>


f









•o-



-o.


,.








JFMAMJ  JASON  D
     TIME - MONTHS
JFMAMJ  JASOND
      TIME - MONTHS
   FIGURE 103 - RESULTS FOR PHILADELPHIA, PENNSYLVANIA
                           212

-------
IUU
on
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
-*o,a>-Ja>«)5 = i3 S 8 S g o o g J













•0-
***




EX








I
V
/•




TRE





1
/
<5>
7
f






ME
N

i
o
/y
/
^









<
/ 1

f A











/
^
f

VFI










ef^




PAG










>
H
i
V^


•*












\
V
V
*

















^
\
\














\
i
Lt
V
\













^
^
IV

EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — fv.
kd>ODoroAoooooooc
JFMAMJJASOND
TIME - MONTHS
e , ^








^











N



\














X






X












\


v
X

y
N










\
\

|\=l!

X
!k = 2
\








ROT


••».

30C


2^

>•_










-^

A


) P

J*







PRI

•/
^

CRf

X
CRf









-f
/
/


:s


s ,
A








/
/



/


/









/



y

/
/









/*



/

^
/*








U. 1C.
V)
°
H
Q
O
Ul
S 9
Ul
IX
H
Ul
Ul
 7
tr.
Ul
ac
u 6
5
oc
Ul R
Q. 5
2
Ul
V-
1- 4
z
<
_l
o- 3













V
•""













/-
y


J F

•o-



*°"


~U*










>i
>


X
A

\




















y
7












/
M
t











ft
^






MAM
TIME -



S


^
^b

\
V
>











\



V


\









8O

X


ISC
Si
V
22(
°>



























-Si














\
*^















*\
















<
\\
\















^
X















"•*.
kt).

J J A S 0 N D
MONTHS



) ft


N>

0 /

^ 	
>o ,

wo.







CRf


-cf

CR

-o"
VCR

X







S

„<


:s
»'

ES
y









j!



/
f

jS









jt



f

,
P








/>
p


0/


/
/









f*>\





*>\










M A
 TIME - MONTHS
                                      TIME - MONTHS
FIGURE 104 - RESULTS FOR SCRANTON, PENNSYLVANIA
                      213

-------
100
. 90
u.
uj 80
OL
< 70
UJ
0.
2 60
K
2 50
m
g 40
O
w 30
20
O
U.
S "
o
| '0
o
o
_i 9
(E
S 8
UJ
£ 7
UJ
tc
K 6
o:
UJ
Q- 5
UJ
h-
H 4
<
_l
Q- 3


E





-0^
•*£







XTI




oy
>
X








JEH



0/
y
/









IE

t
ft
/












f j
<
A\











o
f


ER











•o
•*-


AGE











•0*
V















\
Vi
\















1^
V

\















i
, n
y















^





J FMAMJ JASOND
TIME - MONTHS




X



X


V











V



X

k.
*v










•v
>



X

v
\









A

V



V

A'
*«








= 8

^

I5<
^
*.
22
X







DO

-w

)0

•*».
00
•*-







AC

_••

ftCF

i.*"
AC
.*•







RE

*


ES


RE
>








S
/
A



J

s
J








y




y

/
/








^



/
/r

^
^









^^



^


,»•






9 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— _ — — — f\)
j J>O)OOOM4>(J>a)O
ooooooooo
u. c-
v>
0 "
Q
o
UJ
2 9
UJ
Q:
i-
x 8
ui
>-*
UJ
V) -7
a:
UJ
cc
^ 6
^
DC
U K
Q. 5
s
UJ
H 4
z
<
_l
0- 3










j
jt













Jj
f












>
^












j
i
r^












/
!*
4
>o












^
P>
^













X

X














X

\














*^

*\















^'
Q
\















X
°x















"X
*°*



JFMAMJJASOND
TIME - MONTHS








tos


^










i[\



k
^i

\
^










X



\fc













8(
>3,



15
\>
??
V









)0
•Q



OO
•H*
00
•a









AC

^0-


AC
Xo,
AC

Ho-








RE!

•u<


RE!
^
RF

JO*









ff




**
5
_ _^
jQ^









4
J3



,ff

t
sf









/



?


f*








f
f



p*


£









^v



,0-


x>«.







JFMAMJ  JASON
     TIME - MONTHS
FMAMJ  JASON
    TIME - MONTHS
    FIGURE 105 - RESULTS FOR CHARLESTON, SOUTH CAROLINA
                            214

-------
111
K.
3

<
(E
111
0.
Z
UI
H

2
O

(E
m
EQU
IVJU
90
80
50
20


E





rf

\>







XTI




i
4
A








!Eto



t
J
7
/









E
\/
d>
J
J











f
' J
f\
AV











*o-
f


ER/











—•-


GE











^
*<















A
\
\















Ov
V
\















V.
V\

M














\
SK
^





J FMAMJ JASOND
TIME - MONTHS
                                         200
  FMAMJJAS
      TIME - MONTHS
                                                                   OND
l£
e
U.
OT ' '
•z.
O
g I0
0
o
_. 9
<
Z
(E
1 8
UJ
g 7
UJ
IE
K 6
(E
111
Q- 5
UI
1-
H ^
n1 ^


V



x


V











X



X,


X











x



\
N

\
\










A
V-


A
V

A










- t
A


HE
•«,

••??
-%









uu

^*«

00

Sta.
00

V.








A

-*^

A

_•-
A

-**








^Hb
^


:RE


"RF
y









,y



s /
/

¥
/*







y
f



f
'










,
/



^

.










,>-



^*-


>•-








PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
                                       °   12
        FMAMJ  J A

            TIME - MONTHS


X



V,


X











1



X


tes











X



\^


s^











^



k
^

"o^









80'

"*<.


I5(
X

22C
X








D A

ko.


o;

^eu
10 /
*o.








CRt

rf)'


CR

-o'
,CR
*r>'








S
o'
r
•


:s
/

ES
»








J
r



y

i
/








/



t


pf









s>r



/*

^
p









f-0*



-ex


^«N









JFMAMJ  JASON

      TIME - MONTHS
           FIGURE 106  -  RESULTS FOR COLUMBIA, SOUTH  CAROLINA
                                  215

-------
EQUILIBRIUM TEMPERATURE - Fe
N)O4AoiO>-«JcB(DC
DOOOOOOOC










tf














J
J*












i
y
r











j
4
f











i
f
f —












/r
f














*+•















-\
















\
\
















v
\
\
















V
\
















V





EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^0>(X>Or\)J>0>


•^











X



X
>

X











X



x
A

x











X



V
^

V









SO1

fe

150

^

22<
V








) /

^r

0 t

— ^

)0 ,
•••








CR

Jf

^CR

P^*

*CR
jr








ES
#
^

ES

*

ES
*f









J



/


Ly









x



y
^

J








A
7



/


7









^r



^*


^*








U. 1^
1

0 "
1—
Q m
z 10
0
Ul „
s 9
UJ
o:
uj 8
UJ
o:
Ul
o: e
o 6
tc
CL 5
Z
u
1- 4
Z
o- 3
























































































































































































































JFMAMJ  JASON  D
     TIME - MONTHS
              JFMAMJ JASOND
                    TIME - MONTHS
      FIGURE  107  -  RESULTS  FOR GREER,  SOUTH  CAROLINA,
                     AVERAGE CONDITION
                           216

-------
  100
r>

<
ui
Q.
K.
m
                                         o
                                         U.
                                         o

                                          I
                                         N
m
I
z
UJ

o

u.
u.
UJ
o
u

UJ
      J  FMAMJ  JASOND

            TIME -  MONTHS
                                         I
                                         u
                                         X
                                         UJ
200




180




160




140




120




100




 80




 60
             _L
                          \
      JFMAMJJASOND

            TIME - MONTHS
u.
i
z
o
8
cr
o


ui
UJ
Q:
a:
ui
a.
Z
ui
i-
1
0
8
7
6
5
4




















\
v


\
\

\
\










\
\



\
\

\
\










\
X



V
N

X










A=
s^


ft=l
s
^s
\ — c
\









30(

^<

50(

^
20

**».








) A

•*•

) A


) A

-••








CRE

S

CRE

,/
CRI

**








S ,
f


S
J
*
Sy
/








/



J
/

^
*







J
/


J
f

J
f








f



f


f








u.  12
I


i  M
§  .o
o
o


2   9
UI
tr.
l-
x   8
UI
Q.

S
UI





5S>%


"O*











X



X
1

H











\
X


\
V
V
^
*\
\










\
\



V
^
%

X










8
\)N


I5(
\
^
?'<
\









OO

Ns.

30 /

VQ
00

''o.








ACI

£>-

^CR

j).
A(

UJ-








ES
i
M
yj

ES

X
RF£
y
Jf








/
/


J
/

/
f







i
J3



/
f
A
,<*








/
/


/
/

/
/








/



/

o'
/








             TIME -  MONTHS
                                                JFMAMJJASOND

                                                       TIME - MONTHS
              FIGURE  108 - RESULTS FOR HURON, SOUTH  DAKOTA
                                     217

-------
LIRE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - F°
•> -1 « « ° = ~ oS^sSoggi
PLANT TEMPERAT
w j> 01 e













*
•Or
-^
J

^^






i~*>













EX







y

/
'
F


\




\

x,












TRE





i
Yt

f






ME
\

J

/y
/










^
°s
/
/\
A\






MAM
TIME -



\
>


y
N

\
\










k
\



V
\

\
s









H-
V


A=l
V
^v
\-f








/
1 i
/
'


rER









»o-
^"'




AGE









^
\\
N















\
\
\\
\
^







J J A S
MONTHS





90(

X

iOf

^
?OI

"V,








) A

•*••

A


-»•
[) A

— •-








CR

S

"Rl


nRI

S








iS
y


•,s
J
/
fv













V)
\\






0




J
f


J
f

J
/















,
,L
\\
\


N


j
/



/

j
f




















^


D


/*



f

f









„ 200
u.

EXCHANGE COEFFICIENT- BTU/FT2- DAY
>0>CDOi\>J>cnc
> o o o o o o c
~ *tu
? 19
U. \c.
i

1
5 in
z 10
0
UJ
2 *
UJ
(£
1-
UJ
UJ
— 7
«


-a.




























t
I/
/
^71
Jo


F

*•**
•


k
V

>>
\


















/
/
r











.
/
'








MAM
TIME -



\
^


\
0
%

V
\
°x











N^



*
\

\
s









8C
No
N

I5(



^'








fff
'/














?*















^
\















i
\,
\








\







\










\





V
5



J J A S 0 N
MONTHS





O/

V<^,

0 i


*b+
iOO
^








CR



CR


-O'
AC
*O*








ES

X

FS

,y
**•*
Khi
>o"








(
^o'



n'
/

•^








,/
'


1
1

'
(y











4
f


1
f



















^
*


D

en




-------
UJ
a:
u

^
a:
UJ
a.
•s.
UJ
h-

5
r»

a:
m
EQU
1 UU
90
80
50
?O










-o'







EX"






X
y
/^






RE




'
/^
[








ME
\

O
/y
/










t
y
7
A
AV










p'
i
/


\










.0
+^



^(?F










•<\
>















V
\ \
\















i
V\
\\
\















\
A
Vt
U
\















L\,
^




      J  FMAMJ  JASOND

            TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F8
— — — — — N,
^o>o>or\>.f>o>a>c
3OOOOOOOC













io'













_ju
$












1
f
r













'/













f
^r













if
/
-or













^
N
















^
















V
^
V















X
<\
















'0»















**-
"o-


                                       JFMAMJJASOND

                                             TIME -  MONTHS
SLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
ti^at(oo — i\


V


*v


-y











X


s


X











X


\
\

\
^1









A
X.



V

A









6
"^


= It
•s


-*s







00

•••«.


uo

***.
oo
>*.







A(

-^


At

-^
AL
=^







,RE




Kb
f

IRE
rf-
/]








S /
>



?x


/








/
/


J
I

f
f









/f



s
/%

S










_




*»-


*+-








u. \t
w
1
1—
Q
o
UI
UI
h-
UJ
UJ
(O Y
tr
UJ
a:
o 6
^




"°>


*«<











\



\


^











X



X


\>











X



\


X









80(
"0



I5C
"0.
??(

IX








) A(




0 /
-0,
)0

«o-








RE

-o


CR
-of
!\CF

0*








5
P*



ES

ES
Jf









J



4
/

y









p'



,°

^
/









X



s?


^









*Q






-Os









JFMAMJ  JA

      TIME - MONTHS
                                                    TIME - MONTHS
             FIGURE  110 - RESULTS FOR  KNOXVILLE, TENNESSEE
                                   219

-------
IUU
. 90
u.
ui 80
£C
i 7°
UI
Q.
2 60
UI
1-
2 50
£C
CD
g 40
o
w 30
12
e
U.
s "
o
1 '°
8
_i 9
<
S
cc
1 8
Ul
1 7
UJ
cc
H 6
o:
UI
Q. 5
UI
I-
l- 4
z
<
rV i










/*
X





EX






^

y






TR\





p'
v
/







:ME


t
i
U
f










}
f /
/
A
AV










o
jf
"



ER>










>•-
^«-



U3E










*\
•^















\
V
\















1
\
\—
\
\







i
fc








\














l
^3
*^
X




JFMAMJJASOND
TIME - MONTHS








•*.


-«.










X,



•m
^i

X,











v




\












A
V


A
V
is

.A
^








= 8

X



^
= 2:
^








00

-*•



•SF
20C
-•-








AC

•+>


t\
Hf
A(
^f








RE

Jt





RE
X








3
S



/
/•

5/









/



I/


/









f



jV


x









^




>••

A-
»*






0 EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
3 •fra>a>OW^O)C
ooooooooo
E CONDITIONS) - F
3 O — l>
2 3
UI
£C
1-
x 8
UI
UI
(/> -T
— 7
cr
UI
§ 6
a:
Q. 5
UI
I-
.
o- 3











?£













A







i
H
r
4
3















^
/












.
^
'













0r>
<^














^
\*
k














v
*\
k















\
*^V
\














^_

,^
V
W















V^















>».




JFMAMJJASOND
TIME - MONTHS



-O-



'*Q


^











\



\














\
w<


V
S

\










80
v>


I5C

X

rvf
H,








0 /

•o

0 ;

so
*C
po
•2,








CR


'U"
\CR


"V
ACf

U







ES

y

FS

rv
,Jf
ES
y









y



t


9









y



y
/>

/









^o"




-------
EQUILIBRIUM TEMPERATURE - F°
iNJWAoi0>->Ja>c
OOOOOOQOC










4







EX






f>
J
/






FRE




I
/y
/








:ME
\
t
o
u
F










1
//
/
' t












/
r
\
VFI










-0.
?*•


1AG











\
\


p












V
Si




V
\\
V

















t
V







v\
>















b,
V




J FMAMJ  JASOND
      TIME  - MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^o>o>oi\).i>0>a>c
3OOOOOOOC












*£
tr













(
ft
&












A
/o1
f











/
f














k-*1

V














,>>.














v
N
CA















X
















\
%















N
K














<>•
>,















X
•o-


                                     JFMAMJJASOND
                                           TIME - MONTHS
iz
e
U.
w "
z
o
— 10
o
8
_i 9
<
Z
IE
o a
UJ
V) —
(E
UJ
IE
fe 6
IE
Ul
D. 5
s
UJ
1-
1- 4
z
<
o •*



A:


•**

^











=«S


\
1 >

y
• >










*


s
\

s
-^









A
hv
*s


A^
V

/^
•'








= 8

<

15
^

••'<>'<
^








00

««.

DO


!OU
•«.








AC

^

AC


AC
j»*







RE

/

Kt
^

:RE
*








3
/


by
^

V








•/
/


f












s


^f


<*









<>r



?r

^








PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
OJ-&OI0>^O>(DO — IN.


•o»



•Ds


^>.











%



\


%











X



lx
\
i
\
<










O




to*

V









80
^0


ISC

-fl»
??(
^









0 A

MV

10 /


u
10 /

s°-








CRI
•*'


CR

***"
CR










.S
-or^


:s
O'

:«;










f'



;


/'









4



^


/»









/^'






/»•










•°"



-0,


T~CW









J F  M A M  J  J A
      TIME - MONTHS
      FIGURE 112 - RESULTS FOR NASHVILLE,  TENNESSEE
                                            TIME - MONTHS
                           221

-------
UJ
K.
3

<
DC
UJ
Q.
2
UJ
I-

5
3

o:
m
EQU
IUU
90
80
70
50
yr>






.0*










EX



OF
/










TR


/
^
'










EMI

/
^












;
>
fy
X
AV












^


ER











-0-
»<^"


^GE











•o.
-*.















A
\
















\^















k
\S
\

























  FMAMJJASO
      TIME - MONTHS
                              ND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
— _ — — — (\J
^CDOBOrO*•
AC










ES



RE

• o"1
RE
-or










f


>
p

5










X




^

X














?

ff









ff




jr


^









-o.




• 0-

,




JFMAMJ  JASO

      TIME - MONTHS
                                                                      ND
             FIGURE  113  -  RESULTS FOR BROWNSVILLE, TEXAS
                                   222

-------
EQUILIBRIUM TEMPERATURE - F°
f\J W A CTl 0) •>) CO 














\

^
>















4
M
A















L
\N
\ <
\














^
X
\





JFMAMJJASOND
TIME - MONTHS
  FMAMJJAS
     TIME - MONTHS
                                                           OND
=LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
AI^OI


k
\














V





iA=










8(
^
\

IKf!

X
>?r
*\
• \








)Q



r\


H

*+*








ACF

s

A^P

9
S

>








ES
^


'C*^

X
-fi










/
^


x
^x

/









/



>
/

^/









,/



^/


V









x



y


/






PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F
                                °  12
JFMAMJ  JA
      TIME - MONTHS




u>



^°>


"O>










>,
\



X

\,
H











\
\


\
K

\
>,
»,











V



V

w
a*









BO
XD


150

\
??(
^N









OA

Vr

0 A


TJ"
)0 i

\5-








:RE

?

CR

,°'
*C;R
P*









s
/


ES
n*
s
rs ,
J








J
/



y
/

yP












y
/

/
y








r




-------
EQUILIBRIUM TEMPERATURE - F°
vJW-&oi-j£p(0o
DOOOOOQOO









.0^
^






EX








/






TRI




<










;ME
^


/
.0

/











V

^
A










^
/*

f

^EF










xs

r^»-


AG










^
Os
X


:











\
\
\
\
\














\
v
X
I \

\















V
\ 1
^















\
X





F8
DAY
- BTU/
C
EXCHANGE COE
      JFMAMJJASOND

            TIME -  MONTHS
200
ISO
160
140
120
100










y
s
/?











1
/
c/
t
r










^

o'
/









XT
J
f
/
t










/
f

,°'











^


fO













X


\
Os












\
>

X^













L
\
>
\
\>
\













\
\

\
\













V
\

x














s-

X


      JFMAMJJASOND

            TIME - MONTHS
o
o
K.
O
Ul
(A

a:
cc
o:
UJ
o.
l£
1
0
9
8
7
6
5
4



•^




s

„











\
N



\

V
\










V
X



^

k
X










A
X



\r
\
A
X









- 8

\

- Ib
S»
s
90

"X,








00

^

M

^
f\f

-**








RE:
/


Kt
S
RF

^








3 y
^



y

-»
/








s
*


.
A

*
/








j/



/
/

y
^








/*•




^*

^.







      JFMAMJ  JASON  D

            TIME - MONTHS
o
H
o
z
o
o

UJ
                                       UJ
                                          II



                                          10
                                       Ul


\^
\


\
\
\

\











\
\



\

\k
,











\



\
\

X











^




\

V










80(
"o.


50
*«

>2o|
>Q.









) A(
-"

CR
^y









-o'



s

/

/
/









y



s*

^









      JFMAMJJASOND

             TIME - MONTHS
               FIGURE  115 - RESULTS FOR  EL PASO, TEXAS
                                   224

-------
EQUILIBRIUM TEMPERATURE - Fe
row.j>oiC>^JoB«jc
OOOOOOQOC







.0"
**-







EX




fif
r
/
/








FRE



/
4
f









ME

4
/
yf











\
V
/p
A,
A\











/*
Jf


EF











-<^
*-•-


A6I











"£
V
















^V'















k
\a
V















i
^S
x















^
X







J FMAMJ JASOND
TIME - MONTHS
                                             Q


                                             I

                                            (M
                                             ffl
                                             I
                                             I-
                                             z
                                             UJ

                                             u

                                             u.
                                             u.
                                             UJ
                                             o
                                             u

                                             UJ

                                             z

                                             X
                                             u
                                             X
                                             UI
zvv
180
160
140
120
100
80
60








*s
s












i
y
7











i
9
if











-a*
f
f












t
d














^

*\














V
*
>














">
V
*s














\
>
\














\
s^
\















\
V
\














V
\






                                                   JFMAMJJASOND

                                                          TIME - MONTHS
e
U.

 I

w
z
o
O
u
a:
o
UJ
ui
a:
a:
UJ
a.
z
Ul
I-
<

Q.
1
0
9
8
7
6
5
4
3





-v






-^











X






X











X



>y
"

X










^
v


A
S^

A










- |
«<


= 1!

*•*.
-2i
*<.









30C

C

.00

-w-
00
•»•









A
£~


A


/\
-*-









ORE
**


:RI
^

Mk
+*









S



:s
^\

s
x
^*









^>



/












x



y












^-



T"


^





JFMAMJ JASOND
TIME - MONTHS
°u.  12

 I

V)
o
t
o

o
o
UI
oc
I-
X
UI


UI
(0
UJ
a:


I
DC
UJ
a.
S
UJ
I-

H

<
_l
a.











*tK


^L^










^,



rs>
^

^,










\
X



V
\

\









8

V


1!
'*,
T>-
i£(.
s>.








00

.0


>oc


u /
-0-








AC

r°"


A
»o«

iCR
•o-








REJ

-0'


:RE
^>

bS
• 0'









,*•



S
^^

0,














f**
>

x>0'









^




'

X









X




^

x










•A,






-°>





                                                   JFMAMJ  JASOND

                                                           TIME - MONTHS
                 FIGURE 116 - RESULTS  FOR  HOUSTON, TEXAS
                                        225

-------
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - F° EQUILIBRIUM TEMPERATURE - Fe
c* *o,o>^a><0o- = » SSSSSoSo'c












,„'

J



E:








/
y
/




(TF





j

/
f






EM



/
0
//
/








-
\
\
1
'/
/













/
»s
tin










p»O>




:RA











°\
x


GE












\

\>
^















X
V
\















^
yv
\\
\















\^
V
\

J FMAMJ JASOND
TIME - MONTHS
^
**


>^


•v











\
\


\
s

\











i
\


y
\

^
\











x



\
\

\










a=6
s,


A=l!

\

S,









00

s

50C


\

A
%







A


s.
A



""*"
-2\
s«_







;RE


^
-RF


/

^OC
^







S
«/
/

s
J
/

J
A







/
/


1
f

/
f

;RE





/
f


/
/

J
1



3








s


S










' EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
I -t»O)OBOro^a>ooc
ooooooooc
ERATURE RISE (EXTREME CONDITIONS) - F
n
Q. 0
Z
UJ
I- 4
z
<
_l
«>- 3














•O^














^
x>













J












—MA













1
J J
/°











/
/
y












s~

/*>













\
\
1
^















\
\\
Vo\
\















V
k T
\















V

v















x

JFMAMJJASOND
TIME - MONTHS
•tv.



-UN

V











1
\


\
X

V
\
(











\>
V


V
\

o
\










\
i,



\
s


V










8
\


15
V>
S

X"









DO

°"

00

vn

AK
V








ACF

-o

AQ


•M>.
A(
*"O"








ES

jf

!ES

v
X
RE:
Sf








J/
/



f1

i








i
n
t


i
/

/
>*







j
I


*
/°

I
^
r —








/°~


o..


A











JFMAMJ  JASON D
     TIME - MONTHS
JFMAMJ  JASOND
      TIME - MONTHS
      FIGURE 117 - RESULTS FOR SALT LAKE  CITY,  UTAH
                           226

-------
EQUILIBRIUM TEMPERATURE - Fe
rowAoiO>^Jo) 180
                           <
                           Q


                           J 160
.I>
O
rO
O
                           CD
                            I
                           h-
                           Z
                           UJ


                           c 100
                           u.
                           UJ
                           o
                           o  80

                           UJ
                           <•>
                           z
                           ^  60
                           i
                           o
                           X

                           w  40

                                 JFMAMJJASOND

                                       TIME - MONTHS
'LANT TEMPERATURE RISE (NORMAL CONDITIONS) - F°
>J^,(JII<»(DO — r\

^~



**-


«*•










-^



•^^


•v











x



\
\

\











\,
X


k
x

	
\









A =

X


/V=l
s^
s
A=i
X








QQi


"*.

50(

V


^







~] ft


_••-

) f

_ •-
) t

-*-







ORI

^


CR1

X
CRE









-s
y
/•


B
/

S
/









^
*


(
/

y









J



s
'

/













B*
^

f.









u. 1^
U)
1 "
1 10
o
o
Ul _
2 9
Ul
o:
x 8
UJ
UJ
52 7
tc
Ul
o 6
oe
UJ c
Q. 5
Ul
H 4
a! 3
























































































































































































































TIME - MONTHS                          TIME - MONTHS

 FIGURE 118 - RESULTS FOR  BURLINGTON,  VERMONT
                      227

-------
IOO
o 90
u.
uj 80
$ 70
or
Ul
a.
2 60
Ul
h-
| 50
m
g 40
o
w 30
O
U.
« "
0
s I0
o
o
_i 9
(T
I 8
Ul
W 7
a: T
Ul
or
3 c
S °
ct
Ul
0- 5
Ul
H
H 4
<
ttl 3










•0*
&*




J




•»-



_


-•^







E)








y
>




F









X


\






:TF





^
— /•
>j
f






EM



i
?/
y
-f —









\
\
//
0
A









MAM
TIME -





^
\



V


^s










i
\


/
V

L
*s









^=(
5*.

= 1

^
i-'
^.




(J
y

\
/FF











»t^
-^



tAG











-^
\


;












i
ib
^
\










J J A S
MONTHS






JOC
"*=

50(

•^.

"»=








A(
HT

) A

-»•
b A
*•








:RE
+•


CRI

jr
rR
»••








s
S


IS
./
^
re
X







V
V
\








0






X



>
^*

J










\
\\
\
^





N





/



J
f

y














V
o^
\




D




r



*


jr





e 20°
U.

>. 180
i ,-n
M '60
u_
X
e EXCHANGE COEFFICIENT- BTl
j -u a> at o K> j
0 0 0 0 0 C
LL If.
1
V)
I
Q
o
Ul
Z 9
Ul
tc
1-
Ul
UJ
(/) -JT
o:
Ul
tc
3 6
^
EC
Ul R
Q. 5
Ul
H- 4
•z.
<.
_l
O- "^



1






5
fff



















/
/
^






J F




"^



-0*


b-










^,,
^



\




















L<
'












/
ty














fl"















•"^
















°V















V
\
I














\
\
\















L
x
\\
















••s




MAMJJASOND
TIME - MONTHS





Q
°N



V

\











N),




X


•









8O
t>H


ISC

"^
22(
KQ.









0 A



0 /

*o.
iO t










CRI



^CR

.0'
VCR










:s
jy>


ES

s°
ES
./>•









n'
^^



J>*

,
F








o
/



/"'

f/









0'



^
/

tf
'













^°-


>^






JFMAMJJASOND
     TIME - MONTHS
                              JFMAMJ  JASOND
                                    TIME - MONTHS
FIGURE 119 - RESULTS FOR NORFOLK,  VIRGINIA
                     228

-------
too
FMAMJ  JASO
   TIME - MONTHS
                           ND
JF
MAM  J  J A S
 TIME -  MONTHS
                                                              OND
PLANT TEMPERATURE RISE (NORMAL CONDITIONS) - Fe
Ai^wo-JflDtDO — N




^



X













X




\

Sf
x










x






\
>









A=
^


A =

V
A=
V









80



c r

-••
>?0

-*.








D ,

X



"^.
0 i

>*.








\CR

-**



_»•


_•-








ES
/


po

X
•S
/
>








y



y
x

y









x




/

v
/









^



s


s









A.




f*^










PLANT TEMPERATURE RISE (EXTREME CONDITIONS) - F°
(jj»oio>->iCDO — ro


^




•ON













X



A


X











X



\
>

\
^









8
^


Ifi


22
N.n









00
,^^


00

-o«
00
PDT»








ACI
.0


ACI

-o
AC
r«-








*E£
-Q.


?F?

.0-
RE
•o.









^


4
/
X
*P
»
^.







n
i


o*



^









x>-



.cr


-P-









^



,


0/










*°*,



^

^^









                                         J  F
    J  F M  A M
         TIME - MONTHS
          FIGURE 120 - RESULTS  FOR ROANOKE, VIRGINIA
     MAMJ JASON
      TIME - MONTHS
                                229

-------
EQUILIBRIUM TEMPERATURE - Fe
N)O4-&OIO>--J(D

J







XT




4

jt








REI\



/
i
\f









E
\

' /
/
*\
A










/°
,
/*


/EF









^0-





Ati









"0

X














\
A
s»
\














V
b
V
\
\













v>
\
V
X














X

X



EXCHANGE COEFFICIENT- BTU/FT2- DAY - F°
^cncBOro-ooiooo
3OOOOOOOO



i







*•
^














^













x
•o-













/

V













r
X












,^

*o-













•4,

•o.













V
\
^n
S














X
^
Us














x
*°>















X














J*f.



         FMAMJ  JASON

            TIME - MONTHS
                                        JFMAMJJASOND

                                              TIME - MONTHS
o
U.
=  10
8
o:
o
ui
w>
cc
Ul
0.


Ul
             ^^
                = HOC
                 ^>6€
               ACRES
               -Mtt
J  FMAMJ  JAS

      TIME - MONTHS
                             0 N  D
                                        u.  12
                                        (O
                                        z
                                        o
                            o
                            o

                            Ul
                            s
                            Ul
                            o:
                            i-
                            X
                            Ul

                            Ul
                            in
                                  ui
                                  £t


                                  ?
                                  (E
                                  111
                                  O.
                                  Z
                                  Ul


                                  t-
                                  z
                                  <
                                  _1
                                  o.


^
^





X











^>«



V
o«

X










MO'




• o*1


O"









-0.,




>

0










8(
x



J5
<\

\2;









0

*»•


00
*o-

00
*o.








ACI

-o-


ACI
-O'

AC
-o-








IES
*
.0


?ES
.~




/*"

1.










•Os






— o.








                                              J  F
                                       M A  M  J  JAS

                                        TIME - MONTHS


FIGURE 121  - RESULTS  FOR  SEATTLE, WASHINGTON
                                                                     OND
                                    230

-------
   100
FMAMJ  JASO  N

   TIME -  MONTHS
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^oro^0>a>c
3OOOOOOOC













-**
«t













J
?













/
F














7













#














t














<*+
•O*














v








\
\
K





y















^.
%
















^















>^.
^

                                                FMAM  JJAS

                                                   TIME - MONTHS
                                                                       OND
U)
z
o
8
<
Z

o
12




I I




10




 9




 8
a:
ui
a.
-  7










«*N










\
X


\t
\

V
*s










Si
^



X

s
\










v
V



X

w
X









n c
v«
N


A^
X

A=i
s«
X








nr

s,


50

X
120
Sf








n


*•».

)

*^-
0

•»•







/vpr

J
S

!\CR

s
\CR
/









?
s


*/
fi

7
/








/



/
f

/









/



/

^
f









T



<<•


f









    JFMAMJ   JASON

          TIME - MONTHS
                                         
                                         •z
                                         o
                                o
                                
<

Sj
^










\
^



\

V
\









8(
^
O«


ISC
X

2
V








)O

XW


0 /


»0
^








^CR




CRI

•Oj
AC

•u.







ES

ns


:s

^
RES










G/



^
7


'







i
»
X



/
(
i
f








ff



0'
1

fS










*&*


sr


S










                                                JFMAMJJASON

                                                      TIME  - MONTHS
             FIGURE 122  - RESULTS  FOR SPOKANE,  WASHINGTON
                                    231

-------
100
. 90
u.
ui 80
IE
< 70
IE
Ul
0.
ul 60
1-
2 50
:D
IE
ffl
g 40
o
w 30
20
12
o
U.
I
*- 1 1
OT
Z
O
Q 10
O
o
_i 9
IE
0 8
Ul
U)
Ul
o:
H 6
»•









„ 200
u.
v 180
<
o
N' 160
LU
^ 140
m
I
I- 120
Ul
£ 100
u.
Ul
o
o BO
Ul
0
i.
o
•x
UJ 40
(TREME CONDITIONS) - F
j (O O — l>
"• o
Ul
Ul
TEMPERATURE Rl
» Ol O)
I- •*
z
o- 3













+>i















y


J F















































y
/













x
,r













?p





MAM
TIME -































































•••














••.














\
















*y
^



J J A S
MONTHS




















































































^



0































V














!*

N D




































JFMAMJ  JASON  D
     TIME - MONTHS
JFMAMJJASOND
      TIME - MONTHS
    FIGURE  123  -  RESULTS  FOR  HUNTINGTON, WEST  VIRGINIA
                            232

-------
   100
   90
UJ
a:
IT
UI

£L



UJ

I-


5
3


OL

ffi
o
UJ
            MAMJ  JAS

             TIME  -  MONTHS
OND
EXCHANGE COEFFICIENT- BTU/FT2- DAY - Fe
^o>a>oi\).J>c
3OOOOOOOC













'v*.
^.














/
V












/
fl
J>

















J
i
i
/
'/


















f
*r»,














\

"o.














^
•s



X,


N











\
>


\
N

\
\










V
\



V
>
v
X









ft=

X


A=l


A=i
\








80'


'

50(

^
™

'Ml

s«-







) /




) /

I »-

> f\

^*







^Rl

^


CHI
^
x>
iCH
>-








«5
>
x


.s
X

^y
/
4








y
^


-.u
/

y
/








/



/
/

^









X



y


y








JFMAMJ JASON D
TIME - MONTHS
                                           u.  12
            
            z
            o

            t
            o

            o
            u

            UJ
            s
                                           X

                                           UJ
                                           UJ
                                           (/)
            UI
            cc


            §
            at
            UJ
            o.
            Z
            UJ


            I-
            •z
            <
            _l
            D.

•o-



Sx.













M
>


"*0
\

v,











\
\


V
o
'
V
\











y
X



\

1
o









80

\>.


ISC
h°-

22
VI.








0 /!

^/


0 /
^>

)U,
J2.








CR
^>«



CR
*

vck
,-?*








iS
-o'



iS
M
J)

tb
n1









ff




^

ct
?








,J
S3


4



&








^»
F


f.
P

rf









J
'


rf
'

6
/








                                                  JFMAMJ  JASOND

                                                         TIME - MONTHS
              FIGURE  124 -  RESULTS  FOR GREEN BAY,  WISCONSIN
                                       233

-------
EQUILIBRIUM TEMPERATURE - F8
MOJ^OI^JOB






f
fj
f






TR




<
if A
I
'







FMI
\

i
1 J
'











n'
7A
A
A










O
'/
f
•
\
YEf









f-0"
















k
V
>


r











\
Q
V
















\
»
fo
\\

\














V
\
v\
V
\















v*
s
o 200
u.
y. ISO
<.
0
J 160
u.
^ 140
m
I
1- 120
UJ
*_>
u_ I0°
u.
UJ
o
° 80
UJ
19
z
^ 60
i
X
UJ 40









..
-



'S














x



^
>

V










t
\
'


1!
\

^l









00

Y>


oo

**o.
20(
ho.








AC

n


AC

-o
) A









REJ

^


REJ

^'
:RE
ny









^




y


'








f'



t
^

9









.TV*
^T



sf












-°>






^^







                                                 JF
                                       M  A M  J  J  A S

                                         TIME - MONTHS

FIGURE  125 -  RESULTS  FOR CASPER, WYOMING
                                                                         0  N  D
                                      234

-------
     Access/on Number
                             Subject Field & Group
                               05G
                                                SELECTED WATER RESOURCES ABSTRACTS
                                                       INPUT TRANSACTION  FORM
     Organization
      Vanderbilt University, Department of Environmental § Water Resources Engineering,
      Nashville, Tennessee
     Title
      EFFECT OF GEOGRAPHICAL LOCATION ON COOLING POND REQUIREMENTS AND PERFORMANCE
10

Authors)
Thackston,
E.
L.
16

Project Designation
EPA
#16130FDO
      Parker, F. L.
                                         Note
 22
     Citation
 23
     Descriptors (Starred First)
     *Ponds,  *Cooling, *Heat transfer, *Thermal pollution, Water temperature, Temperature,
      Thermal powerplants, Mathematical models, United States, Geographical regions,
      Meteorology
 25
     Identifiers (Starred First)
      Cooling ponds,  Heat transfer coefficient, Equilibrium temperature, Geographic variation
 27
     Abstract
        The energy budget approach to cooling ponds has been outlined and applied to cooling
ponds.  Monthly average weather data from 88 stations throughout the U.S. were used to
calculate  equilibrium temperatures, heat exchange coefficients, and amount of cooling in
various sized ponds receiving the effluent from a standard power plant of 1000-mw capacity,
both for average and extreme weather conditions.  The data for each station is shown on a
chart,  and the variation of these results across the U.S. is depicted by a series of 28
maps of the U.S.  with contours connecting equal values of the parameters.  The results may
also be used to estimate cooling pond performance for other sized power plants.

        The maps disclose variations across the U.S., on a given date, of up to 55°F in
equilibrium temperature,  up to 100% difference in heat exchange coefficients, up to 50%
difference in heat lost from a given sized pond, and up to 200% difference in the size of
a pond  necessary to produce an equal cooling effect.

        This  report was  a production of the National Center for Research and Training in the
Hydraulic  and Hydrologic Aspects of Pollution Control at Vanderbilt University, sponsored
under contract  number 16130 FDQ by the Federal Water Quality Administration of the
Environmental  Protection Agency.
Abstractor
         E.L. Thackston
                               ItiNtitntion
                                        Vanderbilt llni varsity  Nashville.Tenn-
 WR;1D2 (REV. JULY  1969)
 WRSIC
                             SEND, WITH COPY Of-' DOCUMENT. TO: WATER RESOURCES SCIENT.IFIC INFORMATION CENTER
                                                       U.S. DEPARTMENT OF THE INTERIOR
                                                       WASHINGTON, D. C. 20240
                                                                               GPO: 1970 - 407 -891

-------