U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C.
TECHNOLOGIES AND COSTS FOR THE REMOVAL OF
SYNTHETIC ORGANIC CHEMICALS
FROM POTABLE WATER SUPPLIES
NOTICE
This doci'ment is a preliminary draft. It has not been formally
released by the United States Environmental Protection Agency (EPA) and
should not at this stage be construed to represent Agency policy. It is
being circulated for comment on its technical accuracy and policy
implications.
-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C.
TECHNOLOGIES AND COSTS FOR THE REMOVAL OF
SYNTHETIC ORGANIC CHEMICALS
FROM POTABLE WATER SUPPLIES
TABLE OF CONTENTS
1. INTRODUCTION 1-1
Purpose and Scope 1-1
Definition of Technology Categories 1-2
Organization of Document 1-3
2. DESCRIPTION OF SOCs 2-1
Each Chemical 2-1
Chemical/Physical Properties
Uses
Potential Source of Entry 2-15
3. AVAILABLE TECHNOLOGIES 3-1
Activated Carbon 3-1
Aeration 3-1
Reverse Osmosis 3-2
Oxidation 3-2
Conventional Treatment 3-3
Summary of Available Technologies 3-3
4. MOST APPLICABLE TECHNOLOGY -- GRANULAR ACTIVATED CARBON 4-1
Process Description 4-1
Treatability Studies 4-6
Estimation of Carbon Usage Rates 4-21
Summary 4-23
5. OTHER APPLICABLE TECHNOLOGY - PACKED COLUMN AERATION 5-1
Process Description 5-1
Treatability Studies 5-5
Off-Gas Treatment 5-16
Secondary Effects of Aeration 5-18
6. ADDITIONAL TECHNOLOGIES 6-1
Powdered Activated Carbon 6-1
Process Description 6-1
Treatability Studies 6-2
-------
TABLE OF CONTENTS (continued)
Diffused Aeration
Process Description
Treatability Studies
Boiling
Oxidation
Ozone Process Description
Treatability Studies
Additional Oxidation Techniques
Reverse Osmosis
Process Description
Treatability Studies
Conventional Treatment
Process Decription
Treatability Studies
7. COSTS
Basis for Costs
Granular Activated Carbon
Packed Column Aeration
Summary
8. REFERENCES
Appendix Description
LIST OF APPENDICES
A Estimation of Carbon Usage Rates
B Summary of GAC Isotherm Studies
C Summary of Pilot and Full-scale GAC Studies
D Carbon Usage Rate Comparison
E Flow-Chart for Developing GAC Facility Costs
F GAC Costs for Individual Phase II SOCs
G Packed Column Facility Design Backup
LIST OF TABLES
Table
No. Description
1-1 SOCs for which MCLS Are Being Considered
3-1 Summary of Treatment Data For the 28 SOCs
4-1 GAC Isotherm Constants for SOCs
4-2 Carbon Usage Rates, Model Predictions
Page
6-7
6-8
6-9
6-10
6-11
6-11
6-13
6-16
6-20
6-20
6-22
6-26
6-26
6-26
7-1
7-1
7-2
7-5
7-7
8-1
Following
Page
1-2
3-2
4-8
4-8
-------
TABLE OF CONTENTS (continued)
Table
No.
7-8
7-9
to 7-24
Figure
No.
2-1
2-2
2-3
2-4
I*
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
4-1
A-2
LIST OF TABLES (continued)
Description
Henry's Coefficients Used to Estimate Equipment
Size and Cost for Packed Column Aeration
Estimated Cost for Removing SOCs by
Packed Column Aeration
LIST OF FIGURES
Description
Acryl amide, Alachlor
Aldicarb
Atrazine
Carbofuran, Chlordane
Dibromochloropropane, o-Dichlorobenzene,
Cis-l,2-DCE, Trans-l,2-DCE
1,2 Dichloropropane, 2,4-D
Epichlorohydrin, Ethyl benzene
EDB
Heptachlor, Heptachlor Epoxide
Lindane, Methoxychlor
Monochlorobenzene, PCBs
Pentachlorophenol , Styrene
Toluene, Toxaphene
2,4,5,TP, Xylenes
Schematics of Carbon Contactors
Carbon Mini -Column System
Following
Paae
7-6
7-6
Following
Paae
2-2
2-2
2-2
2-4
2-4
2-6
2-6
2-8
2-8
2-10
2-10
2-12
2-12
2-14
2-14
4-4
4-10
-------
TABLE OF CONTENTS (continued)
LIST OF FIGURES
Figure Following
No. Description Page
4-3 Ratio of Field:Distilled vs. Distilled Water Usage Rates 4-22
5-1 Schematic of Packed Column Aeration 5-4
5-2 Schematic of Vapor-phase GAC System 5-18
6-1 Diffused Air Basin 6-8
6-2 Ozone Oxidation Process Schematic 6-14
6-3 Reverse Osmosis Treatment Plant 6-22
6-4 Conventional Treatment Schematic 6-26
7-1 Total Costs Versus Usage Rate, Flow Category Nos. 1-4 7-4
7-2 Total Costs Versus Usage Rate, Flow Category Nos. 5-8 7-4
7-3 Total Costs Versus Usage Rate, Flow Category Nos. 9-12 7-4
7-4 Comparison of Costs—Packed Column Aeration versus 7-8
GAC Adsorption
-------
TABLE OF CONTENTS (continued)
Table
No.
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
LIST OF TABLES (continued)
Fol
Description
Removal by GAC at the Water Factory 21
Treatment of SOCs by Granular Carbon/Filtration
Carbon Usage Rates with Background TOC
Henry's Law Coefficients for SOCs
Packed-Column Pilot Study Results-Glen Cove, New York
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Berkeley
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Gainesville
Packed Column Pilot Results - Iowa City
Full Scale Packed Column Aeration Data
Control of SOCs Using Powdered Activated Carbon
2,4-D Solid Phase Loading
Treatment of SOCs by Powdered Activated Carbon - Bowling
Green, Ohio
Treatment of SOCs by Powdered Activated Carbon - Tiffin,
Ohio
PAC Performance
Control of SOCs in Distilled Water Using Diffused Aeration
Treatment of SOCs in Spiked Ground Water Using Diffused
Aeration
Treatment of SOCs in Distilled Water Using Ozonation
Control of SOCs in Spiked Ground Water Using Ozonation
Ozone Reaction Rate Constants
lowing
Paae
4-20
4-20
4-23
5-2
5-8
5-10
5-12
5-12
5-12
5-14
5-16
6-2
6-4
6-6
6-6
6-8
6-10
6-10
6-14
6-14
6-14
-------
TABLE OF CONTENTS (continued)
Table
No.
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
7-1
7-2
7-3
7-4
7-5
7-6
7-7
LIST OF TABLES (continued)
Fol
Description
Soc Reactivity
Treatment of SOCs in Distilled Water with Permanganate
Treatment of Trans and Cis 1,2-Dichloroethylene with
Permanganate
Treatment of SOCs in Distilled Water with Hydrogen Peroxide
Treatment of SOCs by Ultraviolet Irradiation
Treatment of SOCs by Ultraviolet Irradiation and Hydrogen
Peroxide
Results of Ozone and Hydrogen Peroxide Pilot Study
Removal of SOCs by Various Reverse Osmosis Membranes
Reverse Osmosis Mean Operational Conditions
Treatment of SOCs in Ground Water Using Reverse Osmosis
Jar Testing of Spiked Ohio River Water
Methoxychlor Removal
Methoxychlor Removal Via Lime Softening
Plant Design Capacities and Average Flows
Cost Indices for Late 1987
General Assumptions Used in Developing
Treatment Costs
GAC System Design Parameters
Base Costs for GAC Contactors, Carbon Charge
and Backwash Pump
Estimated Cost for Removing SOCs by GAC
Packed Column Design Parameters
lowing
Paqe
6-16
6-18
6-18
6-18
6-18
6-18
6-20
6-22
6-22
6-22
6-28
6-28
6-28
7-2
7-2
7-2
7-4
7-4
7-4
7-6
-------
TABLE 1-1
PHASE II SOCs TO BE REGULATED
Acrylamide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
Dibromochloropropane (DBCP)
o-Dichlorobenzene
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
1,2-Dichloropropane
2,4-D
Epichlorohydrin
Ethylbenzene
Ethylene dibromide (EDB)
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
Polychlorinated biphenyls (PCBs)
Pentachlorophenol
Styrene
Tetrachloroethylene
Toluene
Toxaphene
2,4,5-TP (Silvex)
Xylenes (Total)
- 0-xylene
- m-xylene
- p-xylene
-------
1. INTRODUCTION
Purpose and Scope
The 1986 Amendments to the Safe Drinking Water Act (SDWA) require the
United States Environmental Protection Agency (EPA) to set maximum contaminant
levels (MCLs) for several contaminants found in drinking water. The MCLs are
to be established based upon:
1. Health goals
2. Effectiveness of treatment technologies in removing the contaminants
3. Level of treatment that is affordable for the water supply systems
In order to establish the MCLs, the SDWA Amendments emphasize a shift
from "generally available" treatment technologies to "best available
treatment" (BAT) technologies. All public water systems will be required to
come as close as possible to meeting the MCLs by using the BAT technology.
EPA is currently establishing MCLs for a number of synthetic organic chemicals
(SOCs) which might occur in contaminated water supplies. A list of SOCs to be
regulated is shown in Table 1-1.
The purpose of this document is to assist EPA in defining BAT technology
for removing SOCs from water supplies. Additionally, the document can also
assist water utilities in selecting appropriate treatment methods to meet the
regulations. The treatment and compliance methods available to a community
searching for the most economical and effective means to comply with the
proposed SOC MCLs include modification of existing treatment systems, instal-
lation of new systems, and the use of nontreatment alternatives, such as
regionalization or alternate raw water sources. The major factors that must
be considered in selecting a compliance method include:
1. Quality and type of water source
2. Degree of SOC contamination
3. Specific compound(s) present in water source
4. Economies of scale and the economic stability of the community being
served
5. Treatment and waste disposal requirements
1-1
-------
The information in this document provides an evaluation of the various treat-
ment methods in use today for the removal of different concentrations of SOCs,
as well as relative costs. Some methods are more complex or more expensive
than others. Selection of a technology by a community may require engineering
studies and/or pilot-plant operations to determine the level of removal a
method will provide for that system.
Definition of Technology Categories
The methods that can be applied for SOC removal are divided into three
categories:
Most Applicable Technologies
Technologies that are generally available, have a demonstrated highly
effective capacity to remove SOCs, and for which reasonable cost estimates can
be developed for a wide range of influent/effluent conditions.
Other Applicable Technologies
Those additional methods not identified as generally used for SOC re-
moval, but which may have applicability for some water supply systems when
considering site-specific conditions, such as the type of SOC.
Additional Technologies
Technologies which experimentally have been shown to have potential for
removing SOCs but for which insufficient data exist to fully evaluate the
tech -ogy.
rior to implementing a technology, site-specific engineering studies of
the : :;thods identified to remove SOCs should be made. The engineering study
shou-;: select a technically feasible and cost-effective method for the
specific location where SOC'removal is required. In some cases, a simple
survpy may suffice, whereas in others, extensive chemical analysis, design and
performance data will be required. The study may include laboratory tests
and/or pilot-plant operations to cover seasonal variations, preliminary
desirtns ar;.-; estimated capital and operating costs for full-scale treatment.
1-2
-------
Organization of Document
This document has been organized into seven sections which are outlined
below:
1. Introduction; Discusses purpose and scope of the document, lists
the SOCS under consideration and presents the organization of the
document.
2. Description of SOCs; Presents the chemical structures, names, uses
and chemical/physical properties for each SOC.
3. Description of Available Technologies; Summarizes the available
technologies for SOC removal, provides process descriptions of each
available technology and ranks the technologies according to their
applicability for SOC treatment (most applicable, other applicable,
and additional technologies).
4. Most Applicable Technologies; Summarizes the available treatability
information to date for the most applicable technologies and
develops design criteria for each SOC that can be removed by these
technologies.
5. Other Applicable Technologies; Summarizes the available treata-
bility information to date for the other applicable technologies and
develops design criteria for each SOC that can be removed by these
technologies.
6. Additional Technologies; Summarizes the available treatability
information to date for any additional technologies that show some
potential for removing SOCs.
7. Costs; Develops cost information for the applicable technologies.
Also presents cost for the removal of Tetrachloroethylene by GAC and
PTA.
8. References
1-3
-------
FIGURE 2-1
ACRYLAMIDE
STRUCTURAL FORMULA
0
H ^
N
X \
H H
_ Chemica.l Nqmej 2. - Propenamide
Common/Trade Names: Propenamide, Acrylic amide, Propenoic
acid amide, Ethylenecarboxamide, Akrylamid
ALACHLOR
STRUCTURAL FORMULA
,C2H5
C9H
2n5
Chemical Name: 2 - Chloro-2'6'- diethyl-N-
methoxymethylacetanilide
Common/Trade Names: Metachlor; CP50I44, Lasso, Lazo,
Alanex
-------
2. DESCRIPTION OF SOCs
This section provides the names, uses, chemical/physical properties and
chemical structures of each of the 29 SOCs. The potential routes of entry of
these SOCs into the environment are also presented at the end of this section.
ACRYLAMIDE
Chemical/Physical Properties
Molecular Weight: 71.08
Melting Point: 84-5 C
Vapor Pressure: 2 mm Hg at 87 C
10 mm Hg at 117 C
Solubility in Water: 2.15 x 10 mg/L (30 C)
Uses
Acrylamide is principally used in the synthesis of water-soluble polymers
which are used as flocculants in potable water treatment and wastewater treat-
ment plants, paper-making aids, thickeners, and additives for enhanced oil
recovery. It is also used frequently as a component of photopolymerizable
systems. Acrylamide monomer is marketed as a chemical grouping agent and soil
stabilizer utilized in dams, foundations, and tunnels. The structural formula
of acrylamide is shown on Figure 2-1.
ALACHLOR
Chemical/Physical Properties
Molecular Weight: 269.77
Melting Point: 40-41 C
Vapor Pressure: 2.2 x 10 mm Hg at 25 C
Solubility in Water: 140 mg/L (23 C)
242 mg/L (25 C)
Uses
Alachlor is a preemergence selective herbicide used in several crops,
including soybeans, corn and peanuts. It is resistant to photodecomposition,
with no ultraviolet absorption above 280 nm. The structural formula of
alachlor is shown on Figure 2-1 .
2-1
-------
ALDICARB
Chemical/Physical Properties
Molecular Weight: 190.25
Melting Point: 99-100 C
Vapor Pressure: 1 x 10 mm (25 C)
Solubility in Water: 6,000 mg/L (25 C)
Uses
Aldicarb is a systemic insecticide used mostly on cotton. It is also
used as an insecticide on potatoes, peanuts, and sugar beets, and as a nemato-
cide in soils. The structural formula of aldicarb is shown on Figure 2-2,
along with two of its breakdown products - sulfoxide and sulfone.
ATRAZINE
Chemical/Physical Properties
Molecular Weight: ' 215.68
Melting Point: 171-174 C
Vapor Pressure: 3 x 10~" mm Hg at 20 C
Solubility in Water 70 mg/L at 25 C
Uses
Atrazine is a preemergence herbicide used for season-long weed control in
corn, sorghum, and other crops. In noncropped areas, it is applied at highest
rates for nonselective weed control. The structural formula of atrazine is
shown on Figure 2-3.
-------
FIGURE 2-2
ALDICARB
STRUCTURAL FORMULA
CH3
0
II
CH3-S —C —CH = N-0-C-NH-CH3
CH,
Chemical Name: 2 methyl -2 (methylthio) propionaldehyde -
0- (methylcorbamoyl)- examine
Common/Trade Names: UC 21149, Temik, Ambush
ALDICARB BREAKDOWN PRODUCTS
ALDICARB SULFOXIDE
0 CH3
0
II
CH3-S — C— CH — N —0—C —NH—CH5
CH,
ALDICARB SULFONE
0
i
0 CH3
n I 3
CH--S — C — CH = N — 0—C—NH—CH3
I
0 CH3
-------
FIGURE 2-3
ATRAZINE
STRUCTURAL FORMULA
Cl
I
H
HN C^s ^C N CH2 CH3
N
H3C—CH
CH
Chemical Name: 2 - Chloro - 4 - ethylamino -6-isopropylamino
S - triazine
Common / Trade Names : G - 30027 ®, Gesaprim ®, AAtrex © ,
Atranex®, Crisazine®, Vectal® SC, •
Atratol®A, Candex®, Fenamine®,
Fenatrol®, Geigy 30, 027f Gesoprim,
Hugazin®, Inakor® f Primatol, Primatol A,
Primaze®,Radazin®, Strazine, Weedex® A,
Zeazin®, Cekuzina®-T
-------
CARBOFURAN
Chemical/Physical Properties
Molecular Weight: 221.3
Melting Point: - 150-1525C
Vapor Pressure: 2 x 10~ mm (33 C)
Solubility in Water: 700 mg/L (25 C)
Uses
Carbofuran is a systemic insecticide widely used to control corn root-
worms. It is also used as an ascaricide and nematocide. The structural
formula of carbofuran is shown on Figure 2-4.
CHLORDANE
Chemical/Physical Properties
Molecular Weight: 409.8
Melting Point: 106 C
Vapor Pressure: 1 x 10~ mm Hg (20 C)
Solubility in Water: 75 cis:25 trans mixture - 0.056 mg/L
Uses
Technical chlordane consists of 60 to 75% isomers of chlordane and 25 to
40% of related compounds including two isomers of heptachlor and one each of
enneachloro and decachlorodicyclopentadiene. The solubility of technical
grade chlordane has been reported as 9 ug/L. This pesticide is used against
coleopterous pests, termites, wood-boring beetles, and in ant baits. The
structural formula of chlordane is shown on Figure 2-4.
2-3
-------
DIBROMOCHLOROPROPANE
Chemical/Physical Properties
Molecular Weight: 236.36
Boiling Point: - 196 C
Vapor Pressure: 0.8 mm Hg (21 C)
Solubility in Water: 1,000 mg/L (25 C)
Uses
Dibromochloropropane (DBCP) is primarily used as a soil fumigant against
nematodes, and is used on a variety of crops, including cotton, soybeans,
fruits, nuts, okra, and snap beans. The structural formula of dibromochloro-
propane is shown on Figure 2-5.
O-DICHLOROBENZENE.
Chemical/Physical Properties
Molecular Weight: 147.01
Melting Point: -17 C
Boiling Point: 179 C
Vapor Pressure: 1 mm Hg (20 C)
1.5 mm Hg (25 C)
1.9 mm Hg (30 C)
Solubility in Water: 100 mg/L (20 C)
145 mg/L (25 C)
Uses
o-Dichlorobenzene is used as a solvent for waxes, gums, resins, tars,
rubbers oils, and asphalts. It is also an insecticide for termites and locust
borers and is a fumigant. It is also used as a degreasing agent for metals,
leather, wool, and is an ingredient of metal polishes. Technical grade
ontains p-dichlorobenzene (17%) and m-dichlorobenzene ' (2%). The structural
formula for o-dichlorobenzene is shown on Figure 2-5.
2-4
-------
FIGURE 2-4
CARBOFURAN
STRUCTURAL FORMULA
H3C—NH—
Chemical Names: 2, 3- Dihydro - 2,2-dimethyl-7- benzo-furanol
methylcarbamate; 2, 3- Dihydro -2,2 -dimethyl-
7- benzo - furany Imethylcarbamate
Common/Trade Names: furadan; NIA 10,242; ENT 27,164
CHLORDANE
STRUCTURAL FORMULA
Cl
Chemical Name: 1, 2, 4, 5, 6,7, 8, 8 - octachlor - 2, 3, 3a,4,7,7a -
hexahydro - 4, 7- methano- I H - indene
Common/Trade Names: Chlordan®, Belt®,Chlor Kil®,Corodane®,
Kypchlor®, Niran®, Octochlor®,0rthoklor®,
Synklor®, Topiclor 20®,Velsicol 1068®,
Chlorogran®, Prentox®, Penticklor®
-------
FIGURE 2-6
DIBROMOCHLOROPROPANE
STRUCTURAL FORMULA
Br Br Cl
I I I
H —C—C —C—H
I I I
H H H
-Chemical Name: 1, 2 - dibromo- 3- chloropropane
Common/Trade Names : DBCP, Nemafume®, Nemanax ©,
Nemaset®, OS 1897, Fumazone, Nemagone
o-DICHLOROBENZENE
STRUCTURAL FORMULA
Cl
Chemical Name : 1,2- dichlorobenzene
Common/ Trade Names ' None
-------
CIS - 1,2-DICHLOROETHYLENE .
Chemical/Physical Properties
Molecular Weight: 96.95
Melting Point: -80.5 C
Boiling Point: 60 C
Vapor Pressure: 210 mm Hg (25 C)
Solubility in Water: 800 mg/L (20 C)
Uses
Cis-l,2-Dichloroethylene is used as a solvent for fats, phenol, and
camphor; it is also used to retard fermentation. Other uses are for refrig-
eration and as an additive to dye and lacquer solutions. The structural
formula of cis-l,2-dichloroethylene is shown on Figure 2-6.
TRANS-1,2-DICHLOROETHYLENE
Chemical/Physical Properties
Molecular Weight: 96.95
Melting Point: -50 C
Boiling Point: 48 C
Vapor Pressure: 200 mm Hg (20 C)
Solubility in Water: 600 mg/L (20 C)
Uses
Trans-l,2-dichloroethylene is used as a solvent for fats, phenol, and
camphor; it is also used to retard fermentation. Other uses are for refriger-
ation and as an additive to dye and lacquer solutions. The structural formula
for trans-l,2-dichloroethylene is shown on Figure 2-6.
-------
1,2-DICHLOROPROPANE
Chemical/Physical Properties
Molecular Weight: 112.99
Melting Point: . -100 C
Boiling Point: 96.8 C
Vapor Pressure: 42 mm Hg (20 C)
50 mm Hg (25 C)
66 mm Hg (30 C)
Solubility in Water: 2,700 mg/L (20 C)
Uses
1i2-Dichloropropane is used as an oil and fat solvent, a degreaser and a
component in dry cleaning fluids. It is also a lead scavenger for antiknock
fluids and is a soil fumigant for nematodes. The structural formula of
1,2-dichloropropane is shown on Figure 2-7.
2,4-D
Chemical/Physical Properties
Molecular Weight: 221.04
Melting Point: 136-140 C
Solubility in Water: 540 mg/L (20 C)
Uses
2,4-D is used as an herbicide for control of broadleaf plants and as a
plant growth-regulator. It is also used for forest brush control. Technical
2,4-D has been reported to contain hexachlorodioxins, at less than 10 ppm.
The structural formula for 2,4-D is shown on Figure 2-7.
2-6
-------
FIGURE 2-6
cis-1,2- DICHLOROETHYLENE
STRUCTURAL FORMULA
Cl Cl
xc=cx
/ c\
H H
Chemical Names: cis- 1, 2- dichloroethylene ; cis-1, 2-dichloroethene
Common/Trade Names: cis-acetylenedichloride, NCI-C5I58I
trans -1,2- DICHLOROETHYLENE
STRUCTURAL FORMULA
Cl H
H Cl
Chemical Names : trans - 1, 2 - dichloroethylene ; trans - 1, 2-dichloroethene
Common/Trade Name : trans-acetylenedichloride
-------
FIGURE 2-7
1,2- DICHLOROPROPANE
STRUCTURAL FORMULA
Cl Cl
I I
CH, —C —C—H
I I
H H
Chemical Name '• 1,2- dichloropropane
Cowman/Trade Names : propylenechloride, propylenedichloride
2,4-D
STRUCTURAL FORMULA
Chemical Name : ( 2, 4 - Dichlorophenoxy ) acetic acid
Common/Trade Names : Hedonal, Innoxol
-------
FIGURE 2-B
EPICHLOROHYDRIN
STRUCTURAL FORMULA
x°\
CH2 —CH —CH2—Cl
Chemical Names: 3 -Chloropropene - 1,2-oxide; (Chloromethyl)
oxirane ; 3 - Chloro -1,2- epoxypropane ;
(Chloromethyl) ethylene oxide ; oC- Epichlorohydrin;
I,- 2 - Epoxy - 3 - chloro propane ;
2, 3 - Epoxypropylchloride
Common/Trade Names : Glycerol epichlorohydrin ; NCI-C0700I;
SKEKLG; ECH
ETHYLBENZENE
STRUCTURAL FORMULA
CH2CH3
Chemical Name : ethylbenzene
-------
EPICHLOROHYDRIN
Chemical/Physical Properties
Molecular Weight: 92.53
Melting Point: -26 C
Boiling Point: 116/117 C
Vapor Pressure: 12 mm Hg (20 C)
22 mm Hg (30 C)
Solubility in Water: 60,000 mg/L (20 C)
Uses
Epichlorohydrin is used as a solvent for natural and synthetic resins,
gums, cellulose, esters and ethers, paints, varnishes, nail enamels and
lacquers, and as a cement for celluloid. Epichlorohydrin is also used in the
manufacture of epoxy resins formed by the reaction of epichlorohydrin and
bisphenol A to produce diglycidyl esters of bisphenol A. The structural
formula for epichlorohydrin is presented on Figure 2-8.
ETHYLBENZENE
Chemical/Physical Properties
Molecular Weight: 106.16
Melting Point: -95 C
•--Boiling-Point r.— 136.25 C
Vapor Pressure: 7 mm Hg (20 C)
12 mm Hg (30 C)
Solubility in Water: 140 mg/L (15 C)
152 mg/L (20 C)
Uses
Ethylbenzene is used in the manufacture of styrene and acetophenone. It
is also a constituent of asphalt and naptha. The structural formula of
ethylbenzene is shown on Figure 2-8.
2-7
-------
ETHYLENE DIBROMIDE
Chemical/Physical Properties
Molacular Weight: 187.88
Melting Point: 10 C
Boiling Point: 131-132 C
Vapor Pressure: 11 mm Hg (25 C)
Solubility in Water: 4,310 mg/L (30 C)
Uses
Ethylene dibromide (EDB) is a widely used fumigant and highly effective
against a variety of insects and nematodes. It is often used in the treatment
of fruits and vegetables. The structural formula of EDB is shown on Fig-
ure 2-9.
2-8
-------
FIGURE 2-9
EDB
STRUCTURAL FORMULA
Br Br
I I
H — C—C — H
II
H H
Chemical Name- 1, 2 - Dibromoethane
Common/Trade Names : EDB, ethylene dibromide, ethylene bromide,
Dowfume W 85
-------
FIGURE 2-10
HEPTACHLOR
STRUCTURAL FORMULA
Cl
C!
Cl
Chemical Name : 1, 4, 5, 6, 7, 8, 8 - Heptachlor - 3a, 4, 7, 7a •
tetrahydro -4, 7-methanoindene
Common/Trade Names : E 3314, Velsicol 104, Drinox, Heptamul
HEPTACHLOR EPOXIDE
STRUCTURAL FORMULA
Chemical Name : 1, 4, 5, 6, 7, 8, 8 - heptachloro - 2,3-epoxy -
3a, 4, 7t 7a - tetrahydro - 4, 7 - methanoindene
Common/Trade Names: Velsicol 53-CS-I7; ENT 25,584
-------
HEPTACHLOR
Chemical/Physical Properties
Molecular Weight: 373.53
Melting Point: - 95-96 C
Vapor Pressure: 3 x 10~ mm Hg (21
"Solubility in Water: 0.056 mg/L (25 C)
Uses
Heptachlor is an insecticide used on cotton for control of boll weevil
and bollworms. Technical product contains 72% heptachlor and 28% related
compounds. The structural formula of heptachlor is shown on Figure 2-10.
HEPTACHLOR EPOXIDE
Chemical/Physical Properties
Molecular Weight: 389.83
Melting Point: 157-16C
Vapor Pressure: 3 x 10*
Solubility in Water: 0.350 mg/L
Melting Point: 157-160 C
Vapor Pressure: 3 x 10~ mm Hg at 25 C
Uses
Heptachlor epoxide is a degradation product of heptachlor. The struc-
tural formula of heptachlor epoxide is shown on Figure 2-10.
2-9
-------
LINDANE
Chemical/Physical Properties
Molecular Weight: 290.85
Melting Point: 112.5 C
Boiling Point: 323 C
Vapor Pressure: ' 9.4 x 10 mm Hg (20 C)
Solubility in Water: 17 mg/L (24 C) (99% purity)
Uses
Lindane is a commercial insecticide containing at least 99% of the gamma
isomer of 1,2,3,4,5,6-hexachlorocyclohexane. It has been used in both domes-
tic and commercial settings for numerous agricultural applications and in
sprays and dusts for livestock and pets. The structural formula of lindane is
shown on Figure 2-11.
METHOXYCHLOR
Chemical/Physical Properties
Molecular Weight: 345.65
Melting Point: 98 C
Solubility in Water: 0.04 mg/L (24 C) (99% purity)
0.26 mg/L (25 C)
Uses
Methoxyclor is an insecticide used in the home and garden, on domestic
animals for fly control, for elm bark-beetle vector of Dutch elm disease, and
for blackfly larvae in streams. The technical product contains 88% of the p,
p'-isomer, the bulk of the remainder being the o, p-isomer. The structural
formula of methoxyIchor is shown on Figure 2-11.
2-10
-------
FIGURE 2-11
LINDANE
STRUCTURAL FORMULA
Cl Cl
\ /
-1
Cl Cl
Chemical Name: gamma (3) isomer of 1,2,3,4,5,6-
Hexachlorocyclohexane
Common/Trade Names: 5-HCH, 5 benzene hexachloride, gamma
benzene hexachloride, gamma hexachlor,
ENT 7796, Aparsin, Aphtiria, ff BHC,
Gammalin, Gamene, Gamiso, Gammaexane,
Gexane, Jacutin, Kwell, Lindafor, Lindatox,
Lorexane, Ouelada, Streunex, Tri-6, Viton
METHOXYCHLOR
STRUCTURAL FORMULA
OCH-
\^/
CCI
Chemical Names: 1, I1 ( Z,2,2 - Trichloroethylidene ) - bis
£4-methoxy benzene]] ; J, 1,1 - trichloro- 2,2- bis
( p- methoxy-phenyl) ethane; 2, 2-di-p-anisyl -
1,1,1 - trichloroethane
Common/Trade Names: DMDT, methoxy-DDT, Marlate
-------
FIGURE 2-12
MONOCHLOROBENZENE
STRUCTURAL FORMULA
Cl
Chemical Nome : chlorobenzene
Common/Trade Names: phenylchloride, benzene chloride
POLYCHLORINATED BIPHENYLS
STRUCTURAL FORMULA
XXX X
X XX X
X represents H or Cl
Common/Trade Names: PCBs, chlorinated biphenyls, chlorobiphenyls,
Aroclor, Clophen, Fenclor, Kanechlor,
Phenochlor, Pyralene, Santotherm
-------
MONOCHLOROBENZENE
Chemical/Physical Properties
Molecular Weight: 112.56
Melting Point: -46 C
Boiling Point: 132 C
Vapor Pressure: 8.8 mm Hg (20 C)
11.8 mm Hg (25 C)
15 mm Hg (30 C)
Solubility in Water: 500 mg/L (20 C)
Uses
Monochlorobenzene is used in the manufacture of aniline, insecticides,
phenol, and chloronitrobenzene. It has also been used as a solvent for paints
and as a heat transfer medium. The structural formula of monochlorobenzene is
shown on Figure 2-12.
POLYCHLORINATED BIPHENYLS
Chemical/Physical Properties
Aroclor 1242 Aroclor 1254
Molecular Weight: 258 326
Boiling Point (C): 325-366 365-390
Vapor Pressure (mm Hg @ 20 C): 0.001 0.00006
Solubility in Water (mg/L): 0.24 0.056
Uses
PCBs are mixtures of chlorinated biphenyls. The degree of chlorination
is usually indicated by the commercial name. The Aroclor name includes.-a four
digit number. The first two digits indicate that the mixture contains bi-
phenyls (12), triphenyls (54), or both (25,44); the last two digits give the
weight percent of chlorine in the mixture (e.g. Aroclor 1242 contains bi-
phenyls with approximately 42 chlorine by weight). It has been reported that
PCBs are soluble in water at 0.04-0.2 ppm. PCBs are used in electrical
capacitors, electrical transformers, vacuum pumps, and gas-transmission
turbines. PCBs were formerly used in the United States as hydraulic fluids,
plasticizers, adhesives, fire retardants, wax extenders, dedusting agents,
pesticide extenders, inks, lubricants, cutting oils, heat transfer systems,
and in carbon-less reproducing paper. The structural formula of PCBs are
shown on Figure 2-12.
2-11
-------
PENTACHLOROPHENOL
Chemical/Physical Properties
Molecular Weight: 266.35
Melting Point: 188-191 C^
Vapor Pressure: 1.1 x 10~ mm Hg (20 C)
Boiling Point: Decomposes at 309-310 C
Solubility in Water: 5 mg/L (0 C)
14 mg/L (20 C)
35 mg/L (50 C)
Uses
Pentachlorophenol is a fungicide and bactericide used in the processing
of cellulosic products, starches, adhesives, leathers, oils, paints, and
rubbers. It is incorporated into rug shampoos and textiles to control mildew
and used in food processing plants to control mold and slime. It is also used
in the preservation of wood and wood products. The structural formula of
pentachlorophenol is shown on Figure 2-13.
STYRENE
Chemical/Physical Properties
Molecular Weight: 104.14
Melting Point: -31 C
Boiling Point: 145.2 C
Vapor Pressure: 5 mm Hg (20 C)
9.5 mm Hg (30 C)
Solubility in Water: 280 mg/L (15 C)
300 mg/L (20 C)
400 mg/L (40 C)
Uses
Styrene is used in the manufacture of polystyrene plastics, synthetic
rubber, ABS plastics, resins, insulators, and protective coatings (styrene-
butadiene, latex, alkyds). The structural formula of styrene is shown on
Figure 2-13.
2-12
-------
PENTACHLOROPHENOL
STRUCTURAL FORMULA
OH
Cl . J^ .Cl
FIGURE 2-13
Chemical Name : Pentachlorophenol
Common/Trade Names: Dowicide 7^, DP-2 Centimicrobial, EC-7,
EP 30, Fungiben, Grundier, Arbezol, Lauxtol,
Lipoprem, PCP, Pehchlorol, Penta, Pentacon®
Penwar®, Permasan, Preventol P, Priltox,
Santaphen 20®
STYRENE
STRUCTURAL FORMULA
CH = CH2
Chemical Name : Ethenylbenzene
Common/Trade Names: Styrol, styrolene, cinnamene, cinnamol,
phenylethylene, vinyl benzene
-------
TOLUENE
Chemical/Physical Properties
Molecular Weight: 92.13
Melting Point: -95 C
Boiling Point: 110.6 C
Vapor Pressure: 10 mm Hg (6.4 C)
22 mm Hg (20 C)
40 mm Hg (31.8 C)
Solubility in Water: 470 mg/L (16 C)
515 mg/L (20 C)
Uses
Toluene is used in the manufacture of benzoic acid, benzaldehyde, medi-
cines, dyes, perfumes, and explosives such as trinitrotoluene (TNT). It also
serves as a solvent for paints, resins, gums, and PVC joints, and as a diluent
and thinner in nitrocellulose lacquers. The structural formula of toluene is
shown on Figure 2-14.
TOXAPHENE
Chemical/Physical Properties
Molecular Weight: 412
Melting Point: 65-90 C
Boiling Point: Decomposes above 120 C
Vapor Pressure: 0.2-0.4 mm Hg (20 C)
Solubility: 3 mg/L (25 C)
Uses
Toxaphene is a complex mixture of at least 175 compounds of which the
structure of fewer than 10 are known. An approximate overall empirical formula
is C H Cl . Toxaphene is a chlorinated camphene that is 67-69 percent
_LU XU o
chlorine. It is widely used as a foliage insecticide on a variety of food,
feed, and fiber crops. The largest use is on cotton crops. Other major uses
are for cattle and swine and on soy beans, corn, wheat, peanuts, lettuce, and
tomatoes. The structural formula of toxaphene is shown on Figure 2-14.
2-13
-------
2,4,5-TP
Chemical/Physical Properties
Molecular Weight: 269.53
Melting Point: 179-181 C
Solubility in Water: 140 mg/L (25 C)
Uses
2,4,5-TP (Silvex) has been used for woody plants on crop areas such as
pastures and rangelands. It is also used for weed control on rice and sugar
cane. The structural formula of 2,4,5-TP is shown on Figure 2-15.
XYLENES
Chemical/Physical Properties
o-xylene m-xylene p-xylene
Molecular Weight: 106.16 106.16 106.16
Melting Point: -25 C -48 C 13 C
Boiling Point: 144 C 139 C 138.4 C
Vapor Pressure: 5 mm Hg (20 C) 6 mm Hg (20 C) 6.5 mm Hg (20 C)
9 mm Hg (30 C) 11 mm Hg (20 C) 12 mm Hg (30 C)
Solubility in Water: 175 mg/L (20 C) 198 mg/L (25 C)
Uses
O-Xylene is used in manufacture of phthalic anhydride, and insecticides.
O-Xylene also serves as a solvent for resins, lacquers, enamels, and rubber
cements. M-Xylene and p-xylene are found in high octane gasoline. P-Xylene
is used in the manufacture of terephthalic acid. The structural formulas of
the xylenes are shown on Figure 2-15.
2-14
-------
FIGURE 2-14
TOLUENE
STRUCTURAL FORMULA
CH3
Chemical Name: Methylbenzene
Common/Trade Names : Phenylmethane , Tolnol
Metacide
TOXAPHENE
STRUCTURAL FORMULA
This chlorinated camphene is 67-69 per cent
chlorine, where n is usually equal to 8 .
Common/Trade Names:
Chlorinated camphene, camphechlor,
polychlorocamphene, synthetic 3956,
Alltox, Geniphene, Motox, Penphene,
Phenacide, Phenatox, Stroban -T,
Toxakil
-------
FIGURE 2-15
2,4,5-TP
STRUCTURAL FORMULA
Cl
CH3
CH
COOH
Chemical Name : 2-12,4,5- trichlorophenoxy ) propionic acid
Common /Trade Names: Fenoprop, Garlon, Kuron, Silvex
XYLENES
CH-
STRUCTURAL FORMULA
CH
CH
ortho
meta
para
Chemical Names: o-1, 2-dimethylbenzene ; m- 1, 3 - dimethylbenzene ;
p-1, 4-dimethylbenzene
Common/Trade Name : xylol
-------
Potential Sources of Entry
Many of the SOCs have agricultural applications and are transported into
drinking water supplies by runoff and by percolation. The following SOCs have
agricultural applications:
- alachlor - - EDB
- aldicarb - heptachlor
- atrazine - heptachlor epoxide
carbofuran - lindane
- chlordane - methoxychlor
- DBCP - monochlorobenzene
- 1,2-dichloropropane - 2,4,5-TP
o-dichlorobenzene - toxaphene
- 2,4-D
Another source of contamination is industrial point discharge in the form
of waste effluent, spills or leaks, or runoff from maintenance applications.
The following SOCs are used as industrial, organic solvents:
1,2-dichloropropane - epichlorohydrin
cis-l,2-dichloroethylene - monochlorobenzene
trans-l,2-dichloroethylene - toluene
o-dichlorobenzene - o-xylene
The following SOCs are used in industrial manufacturing (with the
specific industries in parenthesis):
acrylamide (polymers)
cis-l,2-dichloroethylene (refridgerant, dye, and lacquer)
trans-l,2-dichloroethylene (refridgerant, dye, and lacquer)
- epichlorohydrin (epoxy resins)
- ethylbenzene (styrene and acetophenone)
- monochlorobenzene (aromatics)
- PCBs (electrical)
- styrene (polymer)
toluene (medicine, dye, and perfume)
o-xylene (phthalic anhydride and insecticides)
M-xylene and p-xylene are components of high octane gasoline and can
enter drinking water supplies as a result of gasoline spills. Pentachloro-
phenol is an industrial fungicide and can enter the drinking water after
maintenance applications.
2-15
-------
TABLE 3-1
SUMMARY OF TREATMENT DATA FOR THE 29 SOCs
Activated
Carbon
B
B,F
P,F
P,F
P,F
B,F
•" B,P
B,P,F
B,P,F
- B',P
e B,P,F
ene B,P
B,F
B,P
B,P,F
B
B,F
B
B,P,F
B,F
, B,P
B,P,F
B,P,F
B
v B,P
^ B
B,F.
< B
// r B : •
B,F
Reverse
Conventional
Aeration Osmosis Oxidation
B
B
B
P
B,P
B,P
B,P,F
B,P
B,P
B,P,F
B
F
F
B,P
B,P,F
B,P,F
B,P,F
B
B
B
B
B
B
B
B
B
B
B,P
P
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
P
B
B
B
B
B
B
Treatment
B
B, F
B, F
B, F
B
B
B, P
F
B,F
F
F
F
Acrylamide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
DBCP
1,2-Dichloropropane
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
o-Dichlorobenzene
2,4-D
EDB
Epichlorohydrin
Ethylbenzene
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
PCBs
Pentachlorophenol
Styrene
Toluene
2,4,5-TP
Toxaphene
o-Xylene
m-Xylene
p-Xylene
sy
Note:
"B" denotes treatment data available from bench-scale testing.
"P" denotes treatment data available from pilot-scale testing.
"F" denotes treatment data available from full-scale testing.
o-xylene, m-xylene and p-xylene are counted as one compound (total xylenes)
-------
3. AVAILABLE TECHNOLOGIES
This section provides an overview of the various technologies which have
been considered for removing the 29 SOCs from drinking water. The results of
a literature review of the treatment technologies used to remove each of the
29 SOCs from drinking water are presented in Table 3-1. The level of develop-
ment of each technology is indicated by the type of evaluations that have been
performed: bench (B) , pilot (P) , and full-scale (F) testing. Bench-scale
testing will generally indicate whether or not a technology is feasible; pilot
testing is used in establishing feasibility and design criteria; full-scale
testing provides an evaluation of the process under typical operating con-
ditions.
Activated Carbon
Activated carbon has been used to treat all 29 SOCs, with the exception
of epichlorohydrin, for which no treatability information has been found.
Extensive bench-scale testing either in the form of isotherm or dynamic
minicolumn testing has been performed, along with some pilot and several
full-scale evaluations. Several of the full-scale installations involved
either partial replacement of media filters with carbon or powdered activated
carbon (PAC) addition in conjunction with coagulation/sedimentation.
Extensive testing of carbon absorption has proven it to be effective in
the removal of most of the SOCs. Therefore, it can be regarded as the most
applicable technology in removing SOCs from drinking water.
Aeration
Aeration has been used to treat 15 of the 29 SOCs, mostly in pilot-scale
testing of air stripping equipment. These compounds represent the more
volatile SOCs, many of which are chlorinated solvents.
In several of the full-scale evaluations, the SOC removal has been
incidental as these units were not specifically designed for SOC removal.
Aeration has been shown to be effective in removing volatile SOCs and should
thus be considered as an applicable technology. However, transfer of SOCs
3-1
-------
from water to air might be a concern depending on proximity to human habita-
tion, treatment plant worker exposure, local air quality, local meteorological
conditions, daily quantity of processed water and contamination level.
Reverse Osmosis
Reverse osmosis (RO) along with other membrane technologies such as
ultrafiltration (UF) have been tested for removing 15 SOCs from water. Test-
ings have been primarily bench scale, although some pilot-scale evaluations
have been recently conducted.
While some removals have been reported, especially for pesticides, it is
not always clear whether the removal is a result of rejection by the membrane
or adsorption onto the membrane. Some bench-scale testing indicates that
adsorption of particular SOCs may occur, and that once adsorption has oc-
curred, desorption may be difficult.
Because there is limited treatability information on RO, much of which is
bench scale, and because there is some question as to the mechanism by which
SOC removal occurs, RO should be considered an additional technology which re-
quires further development.
Oxidation
Oxidation has been used to treat 20 of the 29 SOCs, primarily through
bench-scale evaluations. The oxidation techniques which have been evaluated
include ozone, chlorine, chlorine dioxide, hydrogen peroxide, potassium
permanganate, and ultraviolet light, either alone or in combination with some
of the other oxidants.
While oxidation may be effective in degrading certain SOCs, especially
those with unsaturated bonds, there is considerable concern about the degrada-
tion products formed by the oxidation of each of the SOCs. These reaction
products may be toxic in themselves and may resist further degradation,
requiring excessive oxidant dosages for further destruction. Because there is
limited treatability information on oxidation, much of which is bench scale,
oxidation should be considered as an additional technology that requires
further development.
3-2
-------
Conventional Treatment
Conventional treatment (coagulation/sedimentation/filtration) has been
used to treat 10 SOCs, six of which have been evaluated in full-scale
installations. The removals for most of the SOCs have been poor, typically
less than 10 percent removal. It should also be noted that influent concen-
trations in much of this testing have been very low, typically less than
5 ug/L.
Since conventional treatment is of limited effectiveness in removing
SOCs, it should be considered as an additional technology of limited appli-
cability.
Summary of Available Technologies
Based on the review of treatment data for the 29 SOCs, the available
technologies have been divided into the three general categories as follows:
Most Applicable Technologies
Granular Activated Carbon
Other Applicable Technologies
Packed Column Aeration
Additional Technologies
Powdered Activated Carbon (PAC)
Diffused Aeration
Oxidation
Reverse Osmosis
Conventional Treatment
More detailed descriptions of e.ach of these technologies and their removal
jfficiencies for the 29 SOCs are presented in the following sections.
3-3
-------
FIGURE 4-1
RAW WATER INLET
TOP BAFFLE
APPROX. 505
FREEBOARD
SURFACE WASHER
FILTERED
WATER
OUTLET 5^2
LATERALS -
SUPPORTS __
SUPPORT LAYERS
CONCRETE
SUB-FILL
PRESSURE CONTACTOR
SURFACE WASHERS
SUPPORT LAYERS
HORMAL WORKING LEVEL
WASH
Tpnnr.H /
GAC BED
OPERATING FLOOR
INLET
V BACKWASH OUTLET
BOTTOM CONNECTION
GRAVITY CONTACTOR
SCHEMATICS OF CARBON CONTACTORS
-------
TABLE 4-1
GAC ISOTHERM CONSTANTS FOR SOCs
1,2,3
SOC Mol. Wt.
Alachlor 269.8
Aldicarb 190.3
Atrazine 215.7
Carbofuran 221.3
Chlordane 409.8
cis-1,2-
Dichloroethylene 97.0
DBCP 236. 4
o-Dichlorobenzene 147.0
1,2-Dichloropropane 113.0
2,4-D 221.0
Ethyl benzene 106.2
EDB 187.9
Heptachlor 373.5
Heptachlor Epoxide 389.8
Lindane 290.9
Methoxychlor 345.7
^lonochlorobenzene 112.6
JPCB (Aroclor 1254) 326.0
Pentachlorophenol 266.4
Si 1 vex 255.5
Styrene 104.0
Tetrachloroethylene 165.8
Toluene 92.1
Toxaphene 412.0
trans-1,2-
Dichloroethylene 97.0
o-Xylene 106.2
m-Xylene 106.2
p-Xylene 106.2
(4)
Carbon Type pH
F4
F4
F4
F4
F3/F4
F4
F4
F4
F4
ANA/F4
F4
F4
F3/F4
F3/F4
F4
NS/F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
6.20
6.3-6.6
7.60
4.30
5.30
6.6-8.0
6.2-6.6
5.6-5.8
6.1-7.3
-
5.6-6.9
6.2-7.1
-
-
4.2-6.9
-
6.50
7.00
4.6-6.8
7.00
9.40
5.1-7.6
4.6-6.7
7.00
6.3-6.7
6.3-6.45
6.70
6.90
K
1/n (umo1e/g)(L/un
0.26
0.40
0.36
0.41
0.33
0.59
0.51
0.38
0.59
0.27
0.53
0.46
0.92
0.75
0.43
0.36
0.35
1.03
0.34
0.38
0.48
0.52
0.45
0.74 .
0.45
0.47
0.75
0.42
1275.0
360.0
787.0
673.0
346.0
30.5
465.0
865.0
46.6
194.0
507.0
53.9
1110.0
2020.0
606.0
223.0
418.0
13270.0
1062.0
479.0
1083.0
341.2
356.0
1182.0
50.5
603.0
410.0
740.0
,1/n
Notes:
"-" = Not Reported
1. Source: Miltner (1987a), (1987b)
2. Data not available for acrylamide, aldicarb sulfone,
or aldicarb sulfoxide
3. For distilled water at room temperature
4. Carbon type legend:
F4 = Filtrasorb 400
F3 = Filtrasorb 300
ANA = Aqua Nuchar A
NS = Nuchar Special
K
(mg/g)(L/mg)
483.55
133.01
294.88
276.41
190.33
11.72
229.35
263.49
19.06
64.46
176.69
21.85
1025.91
1596.14
299.75
112.99
101.06
13723.80
443.53
205.55
333.80
142.98
95.91
938.62
.13.99
183.69
234.03
201.51
1/n
-------
TABLE 4-2 (Continued)
Name
Styrene
Tet rach I oroethy I ene
Toluene
Toxaphene
trans- 1 , 2-0 i ch loroethy lene
m-Xylene
o-Xylene
p-Xylene
Notes:
Carbon Usage (Ibs/KGal)
Inf (ug/L) 10.00
Eff (ug/L) 2.00 5.00 20.00
Usage Rate 0.00238 0.00231
Inf (ug/L) 50.00
Eff (ug/L) 1.00 5.00 50.00
Usage Rate 0.0151 0.0147
Inf (ug/L) 500.00
Eff (ug/L) 100.00 2000.00 3000.00
Usage Rate 0.0617
Inf (ug/L) 5.00
Eff (ug/L) 1.00 5.00 10.00
Usage Rate 0.00280
Inf (ug/L) 50.00
Eff (ug/L) 5.00 100.00 200.00
Usage Rate 0.120
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.0742
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.163
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.169
50.00
2.00 5.00 20.00
0.00566 0.00557 0.00539
100.00
1.00 5.00 50.00
0.0214 0.0208 0.0195
3000.00
100.00 2000.00 3000.00
0.170 0.158
10.00
1.00 5.00 10.00
0.00365 0.00278
200.00
5.00 100.00 200.00
0.261 0.248
20000.00
1000.00 10000.00 15000.00
0.0913 0.0765 0.0705
20000.00
1000.00 10000.00 15000.00
0.238 0.225 0.217
20000.00
1000.00 10000.00 15000.00
0.252 0.238 0.230
200.00
2.00 5.00 20.00
0.0119 0.0117 0.0115
500.00
1.00 5.00 50.00
0.0471 0.0469 0.0447
5000.00
100.00 2000.00 3000.00
0.226 0.215 0.211
50.00
1.00 5.00 10.00
0.00614 0.00554 0.00509
500.00
5.00 100.00 200.00
0.435 0.420 0.414
50000.00
1000.00 10000.00 15000.00
0.118 0.106 0.102
50000.00
1000.00 10000.00 15000.00
0.392 0.377 0.373
50000.00
1000.00 10000.00 15000.00
0.433 0.418 0.413
1. Model-predicted carbon usage rates developed through application of
CPHSDM to distilled-water isotherm study results and were adopted from:
(a) Hiltner, R.J. et al. Final Internal Report On Carbon Use Rate Data.
OOW - U.S. EPA, Cincinnati, OH, June 30, 1987.
(b) Hiltner, R.J. et al. Interim Internal Report On Carbon Use Rate Data.
OOW - U.S. EPA, Cincinnati, OH, June 30, 1987.
2. Distilled-water isotherm constants not available for Acrylamide,
Aldicarb sulfone, Aldicarb sulfoxide, and Epichlorohydrin
3. Isotherm-predicted carbon usage rates developed through
application of Freundlich's equation, as shown in Appendix A.
-------
TABLE 4-2
1.2
CARBON USAGE RATES
Compound Name
Alachlor
Aldicarb
Atrazine
Carbofuran
Chlordane
1,2-Dichloroethylene
DBCP
o-Dichlorobenzene
1,2-Dichloropropane
2,4-D
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
0.60
0.000611
1.30
0.0113
1.00
0.000996
5.00
0.00315
0.50
0.00136
5.00
0.223
0.10
0.00188
50.00
0.00766
2.00
0.0702
5.00
0.0152
10.00
2.00 6.00
0.000597 0.000573
50.00
10.00 20.00
0.0109 0.0106
5.00
3.00 5.00
0.000950
20.00
40.00 50.00
5.00
2.00 5.00
0.00130
50.00
70.00 100.00
— —
2.00
0.20 1.00
0.00186 0.00176
100.00
600.00 800.00
— —
10.00
5.00 10.00
0.0669
50.00
70.00 100.00
...
0.60
0.00206
1.30
0.0172
1.00
0.00451
5.00
0.00555
0.50
0.00220
5.00
0.300
0.10
0.00300
50.00
0.0268
2.00
0.142
5.00
0.0255
50.00
2.00
0.00202
100.00
10.00
0.0168
50.00
3.00
0.00445
50.00
40.00
0.00493
10.00
2.00
0.00212
100.00
70.00
0.272
5.00
0.20
0.00299
700.00
600.00
0.0243
50.00
5.00
0.139
100.00
70.00
0.0239
I
6.00 0.60
0.00199
20.00
0.0165
5.00
0.00442
50.00
—
5.00
0.00204
100.00
—
1.00
0.00296
800.00
—
10.00
0.136
100.00
...
0.00346
1.30
0.0458
1.00
0.00706
5.00
0.00847
0.50
0.00667
5.00
0.402
0.10
0.00600
50.00
0.0336
2.00
0.190
5.00
0.0843
100.00
2.00
0.00341
500.00
10.00
0.0453
100.00
3.00
0.00700
100.00
40.00
0.00796
50.00
2.00
0.00650
200.00
70.00
0.379
20.00
0.20
0.00598
1000.00
600.00
0.0316
100.00
5.00
0.187
500.00
70.00
0.0813
6.00
0.00336
20.00
0.0447
5.00
0.00696
50.00
0.00786
5.00
0.00636
100.00
0.371
1.00
0.00582
800.00
0.0307
10.00
0.184
100.00
0.0807
-------
TABLE 4-2 (Continued)
d Name
Ethyl benzene
EDB
3
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
MonochIorobenzene
3
PCS (Aroclor 1254)
Pentachlorophenol
2,4.5-TP (Silvex)
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
50.00
0.0163
0.01
0.00672
0.03
0.00389
0.03
0.000572
0.02
0.000408
100.00
0.0321
60.00
0.0185
0.05
0.000710
20.00
0.00266
5.00
0.00704
.100.00.-
700.00 800.00
— —
0.50
0.05 1.00
0.00659
0.10
0.40 1.00
— —
0.10
0.20 1.00
— —
0.50
0.20 1.00
0.000380
260.00
400.00 500.00
100.00
100.00 400.00
5.00
0.50. 5.00
0.000710
50.00
200.00 400.00
— —
50.00
50.00 100.00
...
h
50.00
0.0436
0.01
0.0342
0.03
0.00468
0.03
0.00116
0.02
0.000612
100.00
0.0430
60.00
0.0618
0.05
0.000698
20.00
0.0128
5.00
0.0110
700.00
700.00
—
10.00
0.05
0.0341
1.00
0.40
0.00468
1.00
0.20
0.00106
1.00
0.20
0.000583
400.00
400.00
—
600.00
100.00
0.0613
10.00
0.50
0.000698
500.00
200.00
0.0122
100.00
50.00
0.0103
800.00
...
1.00
0.0332
1.00
—
1.00
—
1.00
500.00
400.00
0.0588
5.00
0.000698
400.00
0.0115 j
I
100.00 |
... I
50.00
0.0520
0.01
0.0821
0.03
0.00562
0.03
0.00212
0.02
0.00228
100.00
0.0793
60.00
0.0866
0.05
0.000665
20.00
0.0205
5.00
0.0303
1000.00
700.00
0.0464
50.00
0.05
0.0820
10.00
0.40
0.00562
10.00
0.20
0.00209
10.00
0.20
0.00227
1000.00
400.00
0.0757
1000.00
100.00
0.0861
50.00
0.50
0.000665
1000.00
200.00
0.0196
500.00
50.00
0.0294
800.00
0.0449
1.00
0.0809
1.00
0.00562
1.00
0.00197
1.00
0.00221
500.00
0.0747
400.00
0.0838
5.00
0.000665
400.00
0.0192
100.00
0.0289
-------
4. MOST APPLICABLE TECHNOLOGY - GRANULAR ACTIVATED CARBON
Most applicable technologies are those technologies which have demon-
strated highly effective capacities to remove the 29 SOCs, and for which
reasonable cost estimates can be developed for a wide range of influent/
effluent conditions. As indicated in Section 3, the only technology which is
considered to be most applicable for all of the 29 SOCs is granular activated
carbon (GAC) adsorption. According to the 1986 amendments to the Safe Drink-
ing Water Act, Congress specified in Section 1412(b)(5) of the Act that:
Granular activated carbon is feasible for the control of synthet-
ic organic chemicals, and any technology, treatment technique, or
other means found to be the best available for the control of
synthetic organic chemicals must be at least as effective in
controlling synthetic organic chemicals as granular activated
carbon.
The use of GAC for drinking water treatment in the United States has been
limited to primarily taste and odor control applications. However, since the
widespread detection of organics in drinking water supplies, much research and
many pilot-scale studies have been undertaken to evaluate the effectiveness of
GAC for controlling organic compounds. Based on past research and pilot-scale
work, GAC represents one unit process with the ability to remove a broad
spectrum of organic chemicals from water. Although GAC is considered to be
the best available broad spectrum removal process, it exhibits a wide range of
effectiveness in adsorbing organic compounds.
Process Description
The application of granular activated carbon adsorption for removing
organic compounds from drinking water supplies involves the following major
process design considerations:
- Carbon Usage Rate - pounds of carbon per volume of water treated
- Empty Bed Contact Time
- Pretreatment
- Contactor Configuration - downflow versus upflow, pressure versus
gravity, single-stage versus multi-stage or parallel versus series
4-1
-------
- Method of GAC Regeneration - on-site versus off-site
Carbon Usage Rate
This basic design parameter, indicates the rate at which carbon will be
exhausted or replaced, thus affecting the operating cost of the treatment
system. For a full-scale GAC installation the carbon usage rate is often the
decisive factor in the selection of on-site carbon regeneration or replacement
of spent carbon with virgin carbon. It also impacts any costs associated with
carbon handling, such as storage, dewatering, attrition losses and
transportation. The carbon usage rate for a given type of water and
contaminant(s) can be estimated by different methods. These methods include:
Isotherm test
- Model .predictions
- Minicolumn Test
- Pilot-scale test
- Operating full-scale installation
A detailed discussion of each method is provided later in this section.
Empty Bed Contact Time
The empty bed contact time (EBCT) provides an indication of the quantity
of carbon which will be on-line at any one time, and thus reflects the capital
cost for the system. The EBCT is also an important design parameter as it has
a significant impact on the carbon usage rate for each SOC. The carbon usage
rate will reflect the equilibrium capacity of the GAC under raw water
conditions for a particular SOC, and a given influent concentration if
sufficient EBCT is provided, organic preloading will impact the prediciton of
the actual carbon usage rate (Summer 1988, and Crittendtn, 1988). Thus
organic preloading impacts the actual amount of carbon which is on line at a
given time, and the overall empty bed contact time.
Pretreatment
GAC systems may require some kind of pretreatment to prevent clogging of
the carbon bed and to minimize the organic loading on the carbon. Cloqoing of
the bed could be caused by suspended solids in the raw water or by precipita-
tion of iron and manganese on the carbon. The former is typical of surface
water systems while iron and manganese in the soluble form may be encountered
in ground water nystems. Clogging may also be caused by biological growths
4-2
-------
when the carbon bed life is long. Disinfection with chlorine prior to GAG
adsorption should be avoided because chlorine by-products formed during the
reduction of chlorine on GAC are adsorbed by carbon, and therefore, compete
with the organics for adsorption sites. In addition, if carbon regeneration
is anticipated, adsorption of these byproducts could possibly result in the
formation of hazardous substances during regeneration processes. Filtration
ahead of the GAC system is a common solution to prevent clogging of the bed.
GAC systems are sometimes ,added to the end of a conventional treatment
process.
When the background organic levels in the raw water are high, the carbon
is used at a faster rate, necessitating more frequent replacement. This
increases the operating cost of the system. Pretreatment can be provided to
reduce the organic loading on the carbon, thereby decreasing the carbon usage
rate. The need for pretreatment should, however, be justified on the basis of
costs. Examples of processes which may be used for pretreatment include
conventional treatment, ozonation, and packed column aeration.
Contactor Configuration
Based on the estimates of carbon usage rate and contact time, a concep-
tual process design can be developed by evaluating various contactor config-
urations. The two basic modes of contactor operation are upflow and downflow.
Upflow expanded bed contactors allow suspended solids to pass through the bed
without producing a high pressure drop. This configuration is not generally
considered for use in water treatment where the level of suspended solids is
relatively low. Downflow fixed bed contactors offer the simplest and most
common contactor configuration for SOC removal from drinking water. These
contactors can be operated either under pressure or by gravity.
The choice of pressure or gravity is generally dependent upon the hydrau-
lic constraints of a given system. Pressure contactors may be more applicable
to ground water systems because pumping of the ground water is required.
Gravity contactors are generally more suitable for surface water systems if
sufficient head is available. Gravity contactors, when used, will typically
be placed downstream of surface water filtration systems. Diagrams of pres-
sure and gravity systems are presented on Figure 4-1.
4-3
-------
GAC contactors may be configured to operate in series or parallel.
Parallel flow necessitates complete carbon replacement at SOC breakthrough;
whereas, operation in series allows for utilization of the carbon in each
contactor almost until exhaustion because only the carbon in the first
contactor is replaced when SOC breakthrough occurs. Although GAC is used more
effectively in series operation, more contactors are required to treat the
same quantity of water for a similar EBCT. Therefore, a cost analysis should
be performed to determine whether the higher capital costs involved with
series operation are offset by the lower carbon replacement or regeneration
cost. The decision between a series or parallel mode may hinge on the design
criteria characteristics of the SOC to be treated, i.e., carbon usage rate and
-EBCT.
Method of GAC Regeneration
Another basic consideration in evaluating the design of a GAC system for
SOC removal is the method of carbon regeneration. The two basic approaches to
regenerating the carbon are:
1. Off-site-disposal or regeneration
2. On-site-regeneration
Based on information from GAC manufacturers, on-site regeneration gen-
erally does not appear to be economical for systems where the carbon usage
rate is less than 1,000 to 2,000 pounds per day.
Adams et al. (1986) demonstrated that a regeneration facility having an
operating reactivation capacity of 12,000 pounds of GAC per day could provide
a cost-effective alternative to carbon replacement. Moreover, utilization of
the facility's excess capacity for a regional reactivation system showed that
off-site reactivation would be more economical for the participating utilities
than either carbon replacement or on-site reactivation.
Under the throwaway concept of off-site disposal, virgin carbon is
generally purchased in bags, drums, or bulk truckloads. Large surface water
treatment plants employing GAC for taste and odor control often employ the
throwaway approach and purchase carbon in bulk quantities. Ground water
systems and smaller surface water systems generally do not have the carbon
requirements necessary to make bulk shipment practical. Once the carbon
becomes exhausted, it is generally slurried by gravity to a draining bin where
-------
the free water is removed and returned for treatment. The drained carbon is
then manually drummed and shipped for landfill or incineration.
The advantages to off-site disposal lie mainly in its technical
simplicity; and, as such, it is a sound approach for applications with
relatively small carbon usage rates (generally less than 500 pounds per day).
The need to dispose of the spent carbon, however, is a concern especially
since toxic or hazardous materials are adsorbed on the spent carbon.
Incineration of the spent carbon to ensure proper ultimate disposal may become
necessary.
The off-site regeneration approach is somewhat similar to the throwaway
concept from a carbon handling standpoint; however, off-site regeneration
begins to assume some of the economies associated with on-site regeneration.
However, the number of handling steps and resulting carbon attrition and loss
are a major disadvantage when compared to other alternatives. The off-site
reactivation approach has generally proven most cost effective in applications
where the carbon usage rate falls in the 500 to 2,000-pound per day range
(Kornegay, 1979) .
GAC Equipment
The major equipment typically found in a GAC installation includes:
- Carbon Contactors - either common wall concrete or lined steel
vessels. In either case, provisions for underdrainage, backwashing,
and removing the spent carbon must be made.
Carbon Storage - additional storage facilities may be required for
handling of virgin, regenerated and spent carbon, depending upon the
size and type of facility.
- Carbon Transport Facilities - includes piping, valves, and pumps.
- Carbon Fill - the actual initial carbon charge depends on the type
and volume of carbon required for treatment.
Having outlined the GAC process and the pertinent design criteria, brief
descriptions of the testing methods and SOC removal case studies are presented
below.
4-5
-------
Treatability Studies
Treatability studies ran be grouped into four classifications: isotherm
evaluations, mini column tests, pilot-scale tests and full-scale tests. In
addition, computer models can be used to predict breakthrough profiles, carbon
usage rates, and bed lives using the results of these studies. For the
purpose of this document the Constant Pattern Homogeneous Surface Diffusion
Model (CPHSDM) (Hand et. al., 1984) was utilized to predict usage rates
(Miltner et. al. 1987). The model predictions were based on distilled water
isotherm data, and the following assumptions:
- Plug flow exists in the bed
- Constant hydraulic loading
- Surface diffusion is the limiting intraparticle mass transfer phase
- Local liquid-phase mass transfer rate is described by a linear
driving force approximation
- The adsorbent is in a fixed position in the adsorber and is assumed
to be spherical
- The adsorption equilibria can be described by the Freundlich
isotherm equation
- Background matrix has no effect on adsorption equilibra and kinetics
Isotherm evaluations are batch tests which yield the equilibrium or
maximum SOC loading on a particular carbon at a given SOC equilibrium
concentration. Model predictions use isotherm data to estimate carbon usage
rates and bench-scale test design parameters. Bench scale tests use a mini
column to estimate carbon usage rates under flow-through conditions. Pilot
tests are conducted with larger columns than those used in minicolumn testing,
thus requiring significantly greater quantities of water and longer run times.
Full-scale tests evaluate the performance of GAC in actual field
installations. Further discussion of each method is provided below.
Isotherm Evaluations
Adsorption isotherms are useful screening tools for determining prelimi-
nary carbon requirements, and evaluating the relative adsorbability of a
particular compound in comparison with other compounds. The analytical proce-
dure that is generally followed for isotherm testing is outlined by Pandtke
and Snoeyink (1983). The procedure involves placing a measured weight of
4-6
-------
pulverized carbon in a fixed volume of aqueous solution of known SOC
concentration and agitating over a sufficient time to reach equilibrium. The
resultant liquid-phase SOC concentration is then measured and the equilibrium
capacity (or loading) is calculated from the amount of SOC adsorbed and the
known weight of carbon in solution. These steps are repeated for a series of
known weights of carbon for a given initial SOC concentration. The
relationship between equilibrium capacity and equilibrium liquid-phase
concentration has been found to generally follow the Freundlich isotherm
relationship:
X/M = KC 1/n
where:
X/M = equilibrium capacity (mg SOC/g carbon)
X = amount of SOC adsorbed from solution (mg/L)
M = weight of carbon (g/L)
K = capacity at 1 mg/L SOC concentration
C = SOC equilibrium concentration (mg/L)
1/n = exponent
K and 1/n are typically referred to as Freundlich constants. K is
related to the adsorption capacity of GAC for an SOC, and 1/n is one indicator
of the adsorption intensity. The following equation, derived from the
Freundlich equation and a mass balance for column operation, can be used to
estimate carbon usage rates in pounds of carbon per thousand gallons of water
treated:
Carbon usage (lbs/1,000 gal) = C x 8.34
K(C)1/n
where:
C = SOC influent concentration to column (mg/L)
K, 1/n = Freundlich isotherm parameters
8.34 = conversion factor from g/liter to lbs./l,000 gal
A sample calculation using this method is shown in Appendix A. This
method assumes that a GAC system is operated until the SOC concentration in
the effluent equals that of the influent, i.e., the GAC is in equilibrium with
the untreated contaminant concentration. Thus, the carbon usage rate
calculated in this manner represents the maximum amount of SOC adsorbed per
unit weight of carbon for the existing water quality conditions.
4-7
-------
The United States Environmental Protection Agency's Drinking Water
Research Division (USEPA-DWRD) is currently performing isotherm tests on a
wide range of SOCs (Miltner, 1987). The test results indicate that carbon
performance is a function of the - types of water and carbon used. Isotherm
testing for SOCs is also being conducted by Malcolm Pirnie, Inc. in conjunc-
tion with the USEPA-DWRD.
Additional isotherm evaluation have been reported in the literature.
Dobbs and Cohen (1980) have performed extensive isotherm testing with
Filtrasorb 300 (F-300), a granular activated carbon manufactured by Calgon
Corporation. The granular activated carbon was pulverized and screened for
classification such that only the portion which passed a 200 mesh (0.0736 mm)
but was retained by a 400 mesh (0.0381 mm) screen was used for isotherm
testing. isotherm constants for PCBs have been evaluated by Weber and
Pirbazari (1982) . Canonie Environmental Services Corporation (1981) conducted
isotherm tests on DBCP and EDB to evaluate the feasibility of treating
contaminated ground water by carbon adsorption.
Isotherm test results from various studies are presented in Appendix B.
The isotherm constants, K and 1/n, are functions of several factors including
contaminant and water types and the background organic matrix. Isotherm
constants for the 28 SOCs determined from tests conducted with distilled water
are summarized in Table 4-1. Based on these constants, carbon usage rates for
each SOC were developed using the CPHSDM model. The CPHSDM could not be
utilized. If the Freundlich 1/n isotherm valve was greater than 0.9. The
carbon usage rates for these compounds were estimated using the procedure
described in Appendix A. The carbon usage rates for different influent and
effluent SOC concentrations are presented in Table 4-2.
The carbon usage rates presented in Table 4-2 can be used to compare the
relative adsorbability of the SOCs. Although all of the contaminants in the
table are adsorbable, the SOCs exhibit different degrees of adsorption
capacity such that they may be further classified as either strongly adsorbed,
moderately adsorbed or weakly adsorbed.
In general, compounds can be classified as strongly, moderately or weakly
adsorbable. These regions can be approximated by using the compound's
Freunlich K value as shown below:
4-8
-------
Region K (mg/g) [(L/mg) ]
Strong > 500
Moderate 100-500
Weak < 100
While adsorption isotherms are useful for obtaining preliminary data
concerning adsorbability of SOCs, they have certain drawbacks that limit their
applicability:
Isotherm tests cannot be reliably used for GAG facility scale-up
since the test does not provide any information on the dynamics of
column operation.
Multicomponent isotherms can be conducted to describe the competitive
interactions in a mixture. Since the mass transfer zones of various compounds
seperate with respect to their adsorbability (chromatographic effect),
multicomponent isotherme cannot predict the capacities observed in fixed-bed
operation.
As a result, bench-scale or pilot-scale tests are usually required to
develop the necessary design criteria.
Mini Column Tests
Minicolumn tests are conducted in an attempt to simulate the operation of
a full-scale GAC adsorption system. Minicolumn tests are used for the
following:
- Determine•the feasibility of carbon treatment for a given water
Estimate carbon usage rates
Develop preliminary process design criteria
- Provide preliminary estimate of system economics
A limited number of column studies have been conducted to evaluate the
removal of SOCs from drinking water. A typical minicolumn apparatus is
illustrated on Figure 4-2. Water spiked with the specific compounds is passed
through the column and the effluent is monitored to obtain a breakthrough
curve.
Environmental Science and Engineering, Inc. (ESE, 1981) used a
microcolumn measuring 2.25 mm in diameter and 70 mm long to study the removal
of several synthetic organic chemicals by granular activated carbon. The
carbon was sieved to a particle size of 200 x 325-mesh. Three separate sets
of tests were performed to determine carbon usage rates for dibromochloro-
propane (DBCP), ethylene dibromide (EDB) (ESE, 1983) , and monochlorobenzene
(ESE, 1981).
4-9
-------
Concentration
Influent
ug/L
93
51
96
45
90
Effluent
ug/L
7.6
0.33
6.3
5.5
8.9
Volume
Treated
ml
2,360
15,015
3,000
3,930
3,280
Bed
Volumes
Treated
24,503
165,465
31,805
41,325
35,831
Carbon
Usage Rate
(lb/1,000
0.18
0.03
0.14
0.11
0.13
gal)
In testing DBCP and EDB, deionized water spiked with either DBCP or EDB
was used as the influent. In the monochlorobenzene testing, the influent was
well water spiked with monochlorobenzene (203 mg/L), benzene (53.1 mg/L),
p-dichlorobenzene (24.5 mg/L) and-o-dichlorobenzene (23.1 mg/L) to simulate a
wastewater stream. The results of the three sets of mini-column, tests are
summarized below.
Contaminant
DBCP
EDB
Monochlorobenzene 203,000 10 NR MR 10.4
NR = Not Reported
In a mini column study by DeFilippi et al, (1980) a waste stream contain-
ing 118 mg/L alachlor was passed through a column with a diameter of 3/8 in
and a length of 11 in. The column contained 7 grams of granular activated
2
carbon and was operated at a loading rate of 1.1 gpm/ft . The effluent
concentration was 0.22 mg/L after 2.6 liters had passed through the column.
The usage rate at this effluent concentration was then estimated to be 21.7
lb/1,000 gal.
Steiner and Singley (1979) conducted a mini-column study to test the
removal of methoxychlor by GAC. Water containing 1,5, and 10 mg/L
methoxychlor was passed through columns with a diameter of 19 mm and a length
of 265 mm at a loading rate of 0.5 gpm/cu ft. No methoxychlor was found in
the column effluent after a 250 ml sample was passed through the column. The
column size and other related details of the testing procedure were not
discussed.
Even though minicolumn tests provide a quick method of predicting carbon
usage rates, there are several uncertainties in the scale-up procedure that
restrict the widespread use of this technique. For example, it is likely that
mass transfer coefficients could vary with particle radius and SOC influent
4-10
-------
GAS
BAG
PRESSURE GAGE
PULSE
DAMPERS r&i
'9
STOCK
ADSORPTION
MICROOOUJMN
INFLUENT
GU\SSWOOL
PREF1LTERS
EFFLUENT
TYPICAL MINI-COLUMN SETUP
o
c
30
m
4k
I
IV)
-------
concentration. Therefore, results from minicolumn studies in which pulverized
carbon is used may not be suitable for scale-up to a full-scale GAG system.
Also, since the length of the test is very short, generally on the order of
several days, minicolumn tests do not account for possible biological effects
and preadsorption of background TOC. For these reasons, it is generally
recommended that mini-column scale-up be verified with pilot or full-scale
studies until more research is available in these areas.
Pilot-Scale Tests
Before a full-scale GAG system is installed, preliminary on-site analysis
should be performed on the water of concern. Pilot-scale tests may be used
for this purpose. The empty bed contact time and the carbon usage rates are
the important design criteria obtained from a field pilot study. Additional
design criteria that can be developed from a pilot-study include:
Bed depth
Effect of hydraulic loading
Number of contactors required
Contactor configuration
- Carbon type
- Carbon life/replacement frequency
System economics
Case-studies of pilot-scale testing for SOC removal from drinking water
are listed below.
USEPA-DWRD - The U.S. Environmental Protection Agency's Drinking Water
Research Division (USEPA-DWRD) conducted several pilot-scale studies to
determine the effectiveness of carbon adsorption for the removal of cis-
1,2-dichloroethylene and other industrial solvents (such as trichloroethylene
and 1,1,1-trichloroethane). Love and Eilers (1982) summarized these studies
and results of other work dealing with the removal of solvents from drinking
water.
Contaminated wells in New Hampshire and Connecticut contained a mixture
of solvents with total organic chemical (TOC) concentrations ranging from 0.3
to 0.7 mg/L. The USEPA-DWRD installed pilot-scale carbon adsorption columns
1.5 inches in diameter containing 30 inches of GAC. In the New Hampshire
study, cis-l,2-dichloroethylene was also present at an average concentration
of 6 ug/L. Trichloroethylene was also present at concentrations ranging from
120 to 276 ug/L. The effluent concentrations of all contaminants were below
4-11
-------
detectable limits (0.1 ug/L) until the column was shut down after 18 weeks
operation due to clogging caused by precipitated iron.
In the Connecticut study, the ground water contained
cis-l,2-dichloroethylene (2 ug/L) 1,1,1-trichloroethane (38 ug/1), and
trichloroethylene (4 ug/1). The GAC was exhausted during the second year of
service. Cis-1,2-dichloroethylene and 1,1,1-trichloroethane levels exceeded a
concentration of 0.1 ug/L in the effluent after 25 and 11 weeks, respectively.
The results of these studies with respect to cis-1,2-dichloroethylene are
summarized below:
Average
Influent Carbon
Concentration EBCT Bed Volumes Usage Pate
Site Cotpound (ug/L) (Min) Treated (lb/1,000 gal.)
<2)
New Hampshire cis-1,2-dichloroethylene! ' 6 9 14,200 .254
Connecticut cis-1,2-dichloroethylene 2 8.5 29,600 .122
1. Bed Volumes treated to 0.1 ug/L cis-1,2-dichloroethylene
2. Influent contained an average of 177 ug/L of trichloroethylene.
3. Influent also contained an average of 38 ug/L 1,1,1-trichloroethane and 4 ug/L
trichloroethylene.
Suffolk County, New York - Moran (1983) reported that in Suffolk County,
over 1,000 private wells were contaminated with aldicarb levels above the New
York State Health Department guideline of 7 ug/L. The Suffolk County Health
Department monitored the performance of 19 commercially available home GAC
units installed in residences as part of a study program from October 1980
through December 1983. Each system consisted of a filter tank 10 in. in
diameter and 40 in. in height containing approximately 29 pounds of a Type GW
12 x 40 mesh carbon. The ground water concentrations of aldicarb and other
pesticides, such as carbofuran, oxamyl and dacthal, varied between wells. The
average influent aldicarb concentration ranged from 21 to 262 ug/L for all the
wells. The water also contained high levels of iron and manganese but was
free of microbial contamination. As of December 1983, eight locations had
breakthrough at the 7 ug/L level. A summary of the performance of the eiqht
systems is presented below.
4-12
-------
Average Influent Concentration (ug/L)
Location Aldicarb Carbofuran
Oxamyl
Dacthal
Volume
Treated
(gal)
(1)
Carbon(1)
Usage Rate
(lb/l,000gal)
1
2
3
4
5
6
7
8
21
105
53
262
105
151
64
36
3
25
42
9
24
57
25
_
15
26
445
28,000
53,500
112,500
26,000
82,700
21,000
74,000
51,500
1.04
0.54
0.26
1.12
0.35
1.38
0.39
0.56
Note:
1. Based on effluent concentration of 7 ug/1 aldicarb.
Gulf South Research Institute - Commercially available home water treat-
ment systems were tested under a USEPA contract to compare the efficiency of
more than 30 units in removing synthetic organic chemicals. Bell et al.
(1984) described results for ten units that were tested with a spiked surface
water containing chlordane (50 ug/1), p-dichlorobenzene (10 ug/L), and hexa-
chlorobenzene (10 ug/L). The home units were tested at the rated capacity as
specified by the manufacturer and the average percent reduction was reported
for the beginning and end of the test. Results from the seven units which
provided an initial 99 percent reduction of hexachlorobenzene are presented
below. The other four units achieved less than 85 percent hexachlorobenzene
removal at the beginning of the test.
4-13
-------
££(
1
1
££
1
1
1
2
3
Weight of
Activated
1 )
' Carbon, Pounds
2.5
3.7
Weight of
Activated
1 )
' Carbon, Pounds
1.7
0.7
0.9
2.0
0.2
Rated
Capacity
(gal)
2,000
4,000
Rated
Capacity
(gal)
1,000
1,000
2,000
4,000
300
Average Percent
Reduction Range
(Beqin-End)
Hexachlorobenzene Chlordane
99-54
99-45
Average Percent
Reduction Range
(Begin-End)
99-89
95-83
Hexachlorobenzene Chlordane
99-99
99-99
99-80
99-50
99-40
99-99
99-98
99-89
99-79
99-45
Carbon
Usage Rate
(lb/1,000 gal)
1.25
0.925
Carbon
Usage Rate
(lb/1,000 gal)
1.7
0.7
0.45
0.5
0.7
Unit
Aqualux CB-2
Culligan, Model SG-2
Unit
Everpure QC4-THM
Seagull IV
Aquacell
Hurley Town and Country
Filbrook
Notes:
Mention of trade names or commercial products does not constitute endorsement or
recommendation for use.
1. Type:
1 = Line bypass units: cold water bypass through the filter unit
to a separate tap
2 = Faucet-mounted: attached to faucet with a bypass valve for
drinking water
3 = Pourthrough: water is poured through unit into a container below
New York State - O'Brien and Gere Engineers (1982) reported the. results
of a pilot plant removing polychlorinated biphenyls (PCBs) from the Hudson
River which supplies water to a population of approximately 100,000 in the
area of Waterford and Poughkeepsie. The system consisted of with four
columns, each with a diameter of four inches and a height of 6 ft containing
8.6 pounds of GAC. This configuration allowed sampling at empty bed contact
times (EBCT) of 7.5, 15, 22, and 30 minutes. The influent to the GAC system
was a sand filter effluent spiked to a PCB concentration of 1 ug/L. The
columns were operated at a loading rate of 3.7 gpm/ft . The PCB concentration
in the column effluent was consistently below 0.1 ug/L for an EBCT of 7.5
minutes during 25 weeks of operation. The influent dosage of PCBs was then
increased to 10 ug/L for a one week period. The PCB concentration in the
column effluent was still below 0.1 ug/L for an EBCT of 7.5 minutes. Exact
4-14
-------
usage rates could not be calculated because PCB breakthrough had not occurred,
however, the actual usage was less than 0.1 lb/1,000 gal.
Lake Constance, Switzerland - A pilot-scale column filled with GAG to a
depth of 75 cm was tested to treat Lake Constance water spiked with 50 ug/L
lindane. Morgeli (1972) reported that three different carbons were used in
the column for 16-hour tests at a flow through velocity of 15 m/hr (49.2 ft/
hr) . The effluent lindane concentrations for the three carbons were 0.023,
2.6, and 0.08 ug/L.
ThunderBay, Ontario - Jank (1980) reported on the performance of a
pilot-scale carbon column used to remove pentachlorophenol (PCP) from the
effluent of the Abitibi-Northern Wood Preservers Limited activated sludge
wastewater treatment plant in Thunder Bay, Ontario. The carbon system con-
sisted of three columns measuring 100 mm in diameter and three meters in
length. The columns each contained 6.8 kg (15.0 Ib) of Filtrasorb 400 and
were preceded by a sand filter containing an 11 kg (24.2 Ib) top layer of
anthracite filtering media. The carbon column reduced PCP concentrations from
3.6 to 0.03 mg/L, as shown Helow. Ho additional PCP breakthrough had occurred
after 42 days of operation.
PCP Concentration TOC
Stream mg/L mg/L
Biological System Influent 8.4 768
Activated Sludge Effluent 3.6 52
Carbon System Influent 3.4 54
Carbon System Effluent 0.03 13
Lathrop, California - The Occidental Chemical Company (Canonie Services,
1981) conducted pilot-scale studies to determine the effectiveness of granular
activated carbon in treating ground water contaminated with organics. The two
columns each had a diameter of 14 inches and a height of 96 inches containing
four cubic feet of 12 x 40 mesh carbon. The influent contained a combination
of EDB, DBCP and sulfolane. The results of this study are presented below.
. Carbon
Concentration (ug/L) Volume Usage Rate
Contaminant
EDB
DBCP
Sulfolane*
Influent
9.1-10.8
1,400-1,500
2,000-3,000
Effluent
<1
10
1,800
Treated (L)
>654,900
302,800
151,400
(lb/1,000 gal)
<0.69
1.5
3
* Date presented for ^auilibrium condition
4-15
-------
Ohio - Pirbazari et al (1983) reported the results of activated carbon
column pilot testing conducted on settled Ohio River Water containing 1-2-
dichloroethane and dibromochloropropane. The glass column had a diameter of
4 cm and contained 400 grams of 12 x 14 mesh carbon. Water with a DBCP
influent concentraiton of 18 ug/L was passed through the column at 100 ml/min,
which provided an EBCT of 10 minutes. The DBCP was not detected «1 ug/L) in
the effluent for 166 days, resulting in a carbon usage rate of less than
0.01 lb/1,000 gal. Water with a dichloroethane influent concentration of
21 ug/L was fed to the column at a rate of 200 ml/min., which provided an EBCT
of 5 minutes. Dichloroethane was not detected (<1 ug/L) in the effluent for
12 days and the bed was exhausted after 35 days - resulting in a carbon usage
rate between 1.93 lb/1,000 gallons at breakthrough and 0.66 lb/1,000 gallons
at exhaustion.
A summary of the GAC pilot-scale studies is presented in Appendix C.
Full-Scale:
Full-scale operations utilizing GAC to remove SOCs have included mobile
units for the treatment of hazardous waste spills and facilities for waste-
water and surface water treatment. In addition, the U.S. Environmental
Protection Agency's Drinking Water Research Division (USEPA-DWRD) is currently
conducting full-scale studies on surface water at Jefferson Parish, La. and
ground waters at Wausau, Wi. and the Great Miami Aquifer (Miltner, 1987).
These full-scale studies are ongoing and complete data has yet to be published
in the literature. Results currently available have been included with other
case studies presented in Appendix C.
Hazardous Material Spills Treatment Trailer
The Oil and Hazardous Materials Spills Branch of the USEPA constructed a
mobile treatment unit to respond to spills of hazardous materials to control
and remove the toxic chemicals. The Hazardous Materials Spills Treatment
trailer was developed and housed at the Industrial Environmental Research
Laboratory in Edison, New Jersey.
•
The main features of the trailer include three mixed-media filters for
the removal of suspended materials and three activated carbon columns for the
removal of soluble organic chemicals. Each of the mixed-media filters has a
4-16
-------
diameter of 3.5 feet and a height of 6.7 feet and contains 2 ft. of anthracite
on top of a 1.5 ft. thick layer of red flint sand. Each carbon column has a
diameter of 7 feet and a height of 8.7 feet and contains 1,230 pounds of 18 x
40 mesh GAC. The treatment capacity of the system is 300,000 gpd.
Over a two year period, the trailer system responded to six incidents,
four of which were spills of one or more synthetic organic chemicals. Lafor-
nara (1978) reported the details of each incident and the cleanup operations
which utilized the Hazardous Materials Spills Treatment trailer.
Polychlorinated biphenyls (PCS) Spill - Seattle, Washington - A spill of
265 gallons of PCB into the Duwamish Waterway occurred when an electrical
transformer was dropped while being loaded onto a commercial barge. The PCBs
formed pools at the bottom of the waterway. The PCB material was pumped
through presettling tanks and the supernatant water was treated with the
trailer's mixed media filters in series with the carbon adsorption columns. An
EBCT of 30 to 40 minutes was provided. A total of 600,000 gallons of water,
containing approximately PCB concentrations of 400 ug/L, were treated. The
mixed-media filters reduced the PCB concentration to 3 ug/L while the PCB
concentration in the activated carbon effluent was below detectable limits
(0.075 ug/L).
Toxaphene Incident - The Plains, Virginia - Toxaphene was dumped into a
privately-owned pond in The Plains, Virginia. The spring-fed pond was located
at the head waters of Broad Run, a tributary to the Manassasus Reservoir,
which serves as the source of water supply for 40,000 people. The pond was
approximately 100 feet by 100 feet with a maximum depth of 7.5 feet. The
toxaphene concentration was 36 ug/L in the water phase with pure toxaphene
remaining as a separate phase on the pond bottom. Water was pumped directly
from the pond to the mixed-media filters and through the activated carbon
columns at a rate of 70,000 gallons per day, which resulted in an EBCT of 26
minutes. A total of 251,000 gallons were treated and the toxaphene concen-
tration was reduced from 36 to 1 ug/L.
Mixed Pesticide Incident - Strongstown, Pennsylvania - A pesticide blend
of "Termide" and water (2.5 gallons of "Termide," 240 gallons of water) was
applied to a local home and contaminated a nearby trout stream causing a
significant fish kill. The water had a combined chlordane, heptachlor,
4-17
-------
aldrin, and dieldrin concentration of 38.6 ug/L. Approximately
104,000 gallons were treated at 100 gpm through one mixed-media filter and one
carbon column at an EBCT of 17 minutes. The chlordane concentration was
reduced from 13 to 0.35 ug/L. The heptachlor concentration was reduced from
6.1 to 0.06 ug/L. After treatment, the trailer effluent contained less than
1 ug/L of total pesticides.
Pentachlorophenol Incident - Haverford, Pennsylvania - A waste fuel oil
containing pentachlorophenol (PCP) had been injected into a 20 ft. deep well
for disposal. In 1976, it was discovered that this PCP/oil waste was migrat-
ing into the ground water and discharging into a small tributary of the Dela-
ware River.
In order to contain this spill, trenches were dug to intercept the
PCP/oil before it reached the stream. A total of 220,000 gallons were col-
lected and treated. After reducing the oil concentration to less than 50 mg/L
by settling and diatomaceous earth filtration, the water was passed through
the three carbon columns providing an EBCT of 26 minutes. The PCP
concentrations were consistently reduced from approximately 10 mg/L in the
influent to the carbon columns to less than 1 ug/L in the effluent.
The carbon adsorption columns of the Hazardous Material Spills Treatment
trailer performed effectively in removing the various synthetic organic
chemicals. The results of these cleanup operations are presented below:
Compound
PCB
Toxaphene
Chlordane
Heptachlor
Pentachlorophenol
Location
Seattle, WA
The Plains,
Strongstowi, PA
Strongstown, PA
Haverford, PA
(2)
(2)
Quantity
Treated
(gal)
600,000
251,000
104,000
104,000
220,000
Contact
Time
(min)
30-40
26
17
17
26
Influent
Cone.
(ug/1)
3,,.
36(1)
13
6.1
10,000 ( '
Effluent
Cone.
(ug/L)
<0.075
1
0.35
0.06
<1
Carbon
Usage
'Rate
(lb/1,000
<9.9
72
59.2
59.2
<82.3
gal)
Notes:
1.
2.
3.
Influent to mixed media filter.
Treatment of water containing a mixture of chlordane (13 ug/L), heptachlor (6.1 ug/L),
dieldrin (11 ug/L), and aldrin (8.5 ug/L).
Influent to treatment process included settling, 2 diataraceous earth filters and
columns.
4-18
-------
Orange County Water District
Water Factory 21 is an advanced wastewater treatment plant operated by
the Orange_County jfater District (OCWD) in California. The plant effluent is
injected into the OCWD aquifer to.prevent saltwater intrusion. The treatment
processes include lime treatment, air stripping, recarbonation, decarbonation,
chlorination, filtration, granular activated carbon adsorption (GAC), reverse
osmosis, and final chlorination. Lime treatment and recarbonation are located
prior to the carbon adsorption columns in the process train. The 17 carbon
adsorption columns in service at Water Factory 21 are each have a diameter of
12 ft and a height of 24 ft and contain 45 tons of 300-mesh carbon. The EBCT
of each column is 34 minutes. The columns are operated in parallel and were
operated in an upflow mode until late 1977. They were switched to the
downflow mode in late 1977 to decrease the carryover of carbon fines. This
was done to protect the reverse osmosis membranes from fouling.
McCarty and Reinhard (1980) discussed the effectiveness of the GAC for
organic removal during a two-year testing period. The trickling filter
effluent from the regional wastewater treatment plant was the influent to
Water Factory 21 from October 1976 to February 1978. The wastewater treatment
plant switched processes from trickling filtration to activated sludge
treatment in March 1978 and its effluent became the feedwater for Water
Factory 21. This change resulted in significant differences in the organic
characteristics of the influent waters to Water Factory 21. GAC performance
for each period is presented in Table 4-3. A significant decrease.-in the
carbon usage rate was observed in the second period due to lower organic
loading on the carbon.
Mount Clemens, Michigan
The water treatment plant in Mount Clemens has utilized GAC to remove
synthetic organic chemicals from their raw water source at Lake St. Clair for
10 years. Hansen (1977) reported that the eight filters had been changed
three times (in 1968, 1970, and 1974). Each filter contains 18 inches of GAC
on top of 12 inches of sand. The GAC originally was installed to minimize
taste and odor problems. Analysis has shown that pesticides were also removed
by the GAC. The pesticides enter the lake during periods of runoff throughout
the growing season. During April 1976, water samples contained heptachlor
4-19
-------
epoxide, lindane, and other pesticides. At that time, the carbon in the
filters was 14 months old but effectively reduced the levels as shown below:
Influent Concentration Effluent Concentration
Contaminant (ng/L) (ng/L)
Heptachlor epoxide 220 ND
Lindane 5 ND
Fremont, Ohio
In the agricultural region of northwestern Ohio, the concentration of
pesticides was monitored in the river waters and in the finished drinking
water produced by three water treatment plants. During this EPA study, Baker
(1983) reported that GAC reduced the levels of pesticides at the Fremont, Ohio
treatment plant located on the Sandusky River. A 16.5 in. deep GAC filter cap
using Filtrasorb 300 was placed upon the rapid sand filters at the water
treatment plants. The filter loading rate of 1.2 gpm/ft (Hade 1984) provided
an EBCT of 9 minutes. The results from the GAC filter cap are presented
be low:
Influent Concentration Effluent Concentration
Pesticide (ug/L) (ug/L)
Alachlor 0.7-5.0 0.1-0.7
Atrazine 0.5-8.0 0.5-1.5
Additional monitoring of the plant at Fremont indicated continuing
removal of SOCs after the filter cap had been in service for approximately 30
months. The performance of the 18 inch filter cap during May-October -1984 is
summarized in Table 4-4 (Miltner and Fronk, 1989). Removal of alachlor and
atrazine was still being achieved after 30 months of operation.
Lathrop, California
In 1977, the ground water in the San Joaquin Valley, California was found
to be contaminated with pesticides from the Occidential Chemical Company
(Dahl, 1985) . The water contained many contaminants, with DBCP and EDB
present in the highest concentrations. GAC was found to be effective in
removing the contaminants during previous pilot testing. In 1982, the
chemical company installed a treatment system for the ground water. The
ground water was withdrawn at a rate of 500 gpm and passed through an
activated carbon system after which it was injected into the lower aquifer.
4-20
-------
TABLE 4-3
REMOVAL BY CAC AT THE WATER FACTORY 21
Contain) nant
COD
IOC
o-dichlorobenzene
chlorobenzene-o-xylene
m-xyl ene
ethylbenzene
styrene
October 19
Influent
Concentration
42
14
0.01
0.09
ND
0.06
ND
76 - February 1
Effluent
Concentration
16.8
6.9
0.002
0.049
ND
0.033
ND
978
Percentage
Removal
66
51
82
46
-
45
.
Carbon
Usage
Rate
(lb/1,000 gal.
2.4
2.4
2.4
2.4
2.4
2.4
.
March 1978 -
Influent
Concentration
24
NR
0.02
0.11
0.05
0.02
0.03
January 1
Effluent
Cone.
12.24
NR
0.002
0.041
0.025
0.017
0.018
979
Percentage
Removal
49
-
91
63
50
17
40
Carbon
Usage
Rate
(lb/1,000 gal)
1.2
-
1.2
1.2
1.2
1.2
1.2
Note:
1. Geometric mean concentration in ug/L, except COD and TOC which are in mg/L.
2. MR - not reported.
3. ND - not detected.
-------
TABLE 4-4
TREATMENT OF SOCS BY GRANULAR ACTIVATED CARBON/FILTRATION
FREMONT, OHIO MAY-OCTOBER, 1984
SOC
Concentration
(ug/L)
Percent
Removal
Confidence
Level
Occurence
Days
alachlor
atrazine
DEA
DIA
simazine
3.70
4.83
0.43
0.27
0.39
72 ± 15
47 ± 17
69 ± 31
82 ± 15
62 ± 27
99
99.9
99
93
99
13
17
9
4
11
DEA = diethyl atrazine (metabolite)
DIA = diisopropyl atrazine (metabolite)
-------
The GAG column size and carbon content and operating conditions were not
reported. The influent DBCP and EDB concentrations ranged from 77 to 184 ug/L
and 8 to 19 ug/L, respectively. The chemical concentrations in the water were
reduced below 1 ug/L for EDB and :below detectable limits (0.1 ug/L) for the
17 other contaminants. The usage rate during this period averaged 0.31 Ib
carbon/1,000 gal.
Greenport, New York
Available performance data of existing GAC contactor from start-up
(August 1980) through November 1986 was evaluated (Divarka and Bartilucci and
Malcolm Pirnie, Inc., July 1987). The GAC contactor operated under the
following conditions:
Flow (gpm) 450
Carbon charge (Ibs) 20,000
EBCT (minutes) 12
Based on an aldicarb breakthrough criteria of 6 ug/L, carbon usage ranged
from 0.15 to 0.17 lbs/1,000 gallons through three carbon changes in the period
from August 1980 through July 1984. Since aldicarb levels in the well were
decreasing over time, the GAC was changed only once (October 1985) in the
period between July 1984 and November 1986.
Estimation of Carbon Usage Rates
The presence of other adsorbable organic compounds and natural and/or
anthropogenic organic matter in the water matrix impacts the adsorption of
specific organic compound of interest. In a given water matrix, organic
compounds compete for the available active sites on the carbon. This results
in reduced capacities for all the compounds when compared to their single
solute capacities. Competitive interactions impact weakly adsorbing compound
more than the strongly adsorbing compound. Further, competitive interactions
among organic compounds in a water matrix depends on number of compounds and
their concentrations.
4-21
-------
Natural or anthropogenic organic matter is more weakly adsorbing than the
specific organic compounds, and therefore, moves faster through the bed, and
preloads the carbon. This preloading of carbon impacts the capacity and
kinetics of the specific organic compounds (Zimmer (1987), Crittenden (1988)).
Strongly adsorbing compounds, which move slowly through the bed, experience
greater reduction in capacity and kinetics when compared with weakly adsorbing
compounds. The impact of background organic matter depends directly on the
number of compounds, their concentrations and the concentration of background
organic matter in a water matrix.
As the equilibrium and kinetics of a specific organic compound is
directly related to its GAC usage rate, competitive interactions with other
organic compounds and background organic matter are important factors.
A comparison of usage rates predicted using distilled water isotherm data
and actual field data was performed in order to determine the magnitude of the
impact the background matrix may have on the estimation of the carbon usage
rates. In order to develop this comparison, CPHSDM usage rate predictions
using distilled water isotherm data were made for those /ield studies where
I _ r)
the following information was available: Xrt"
- EBCT
Influent/Effluent concentration
- Superficial velocity
- Temperature
The ratio of field to distilled water isotherm usage rates was then calculated
for each available influent/effluent combination. The data used for this
comparison along with the ratio of field to distilled water usage rates are
presented in Appendix D. These ratios were then plotted versus the distilled
water isotherm usage rates as shown in Figure 4-3. A regression analysis was
performed on the data, and yielded the following multiplier function:
v n -7>i>n -0.5165
Y = 0.7443 x
where: Y = multiplier
X = distilled carbon usage rate (lbs/1000 gal)
The multiplier function was used to adjust the estimated distilled water
isotherm usage rates previously presented in Table 4-2. The multiplier
function was used in a manner such that the adjusted carbon usage rates was
4-22
-------
IUU
50
20
10
0 5
h-
DC 2
1
0.5
0.2
n 1
^^
^
-
*-^
^*
*x.
~
^
~
^-.
^^
"""^
^.
^**««
t***
-
*v
v,
^
^^^
^
^
^
^
—
i
i
i
i
\,
;
"~^-
•^.
•^.
•>
-,
0.0001 0.0003
0.001 0.003 0.01 0.03 0.1:
DISTILLED WATER USAGE RATES
0.3
NOTE: RATIO » RATIO OF FIELD TO
DISTILLED WATER USAGE RATES
RATIO OF FIELD:DISTILLED
VERSUS
DISTILLED WATER USAGE RATES
T«
o
m
-------
equal to the multiplier times the distilled water carbon usage rate. These
adjusted carbon usage rates are presented in Table 4-5 and will be used to
develop GAC costs in Section 7.
Summary
The various studies reviewed in this section indicate that all 29 SOCs
(with the exception of epichlorohydrin) to be regulated under Phase II can be
removed by GAC. The economy of the process is dependent on the carbon usage
rate. Certain volatile organics and chlorinated aromatics have relatively
poor adsorbabilities, which result in higher carbon usage rates. Because of
their volatile nature, these SOCs may be removed more economically by packed
column aeration, as discussed in Sections 5 and 7.
Adsorption isotherm tests aid in defining the relative adsorbability of
each SOC present in the water. These data should be used along with model
predictions to predict minicolumn sizing. Since minicolumn scale-up is
currently uncertain, pilot or full scale data should be obtained. Since
carbon usage rates are dependent on the organic matrix, natural waters rather
than distilled water should be used whenever possible. Carbon usage rates are
also dependent upon the following parameters:
hydraulic conditions
biological action
contactor configuration
operating conditions
- level of pretreatment
Since carbon usage rates are dependent on several variables, further
research should be conducted to better define the usefulness of data obtained
from all phases of treatability studies.
4-23
-------
TABLE 4-5
1.2,3
CARBON USAGE RATES WITH BACKROUNO TOC
Compound Name
Alachlor
Aldicarb
Atrazine
Carbofuran
Chlordane
!,2-Dichloroethylene
OBCP
o-Dichlorobenzene
1,2-D ichloropropane
2,4-D
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
0.60
0.0208
1.30
0.0852
1.00
0.0263
5.00
0.0459
0.50
0.0306
5.00
0.3603
0.10
0.0358
50.00
0.0706
2.00
0.2060
5.00
0.0983
10.00
2.00 6.00
0.0206 0.0202
50.00
10.00 20.00
0.0837 0.0826
5.00
3.00 5.00
0.0257
20.00
40.00 50.00
5.00
2.00 5.00
0.0299
50.00
70.00 100.00
2.00
0.20 1.00
0.0356 0.0347
100.00
600.00 800.00
10.00
5.00 10.00
0.2013
50.00
70.00 100.00
0.60
0.0374
1.30
0.1044
1.00
0.0546
5.00
0.0604
0.50
0.0386
5.00
0.4159
0.10
0.0449
.*
50.00
0.1293
2.00
0.2897
5.00
0.1263
50.00
2.00
0.0371
100.00
10.00
0.1032
50.00
3.00
0.0543
50.00
40.00
0.0570
10.00
2.00
0.0379
100.00
70.00
0.3966
5.00
0.20 '
0.0448
700.00
600.00
0.1234
50.00
5.00 V
0.2867
100.00
70.00
0.1224
6.00
0.0368
20.00
0.1023
5.00
0.0541
50.00
5.00
0.0372
100.00
' 1.00
0.0446
800.00
10.00
0.2837
100.00
0.60
0.0481
1.30
0.1676
1.00
0.0679
5.00
0.0741
0.50
0.0660
5.00
0.4791
0.10
0.0627
50.00
0.1443
2.00
0.3335
5.00
0.2251
100.00
2.00
0.0477
500.00
10.00
0.1667
100.00
3.00
0.0676
100.00
40.00
0.0719
50.00
2.00
0.0652
200.00
70.00
0.4656
20.00
0.20
0.0626
1000.00
600.00
0.1401
100.00
5.00
0.3312
500.00
70.00
0.2212
6.00
0.0474
20.00
0.1656
5.00
0.0674
50.00
0.0715
5.00
0.0645
100.00
0.4608
1.00
0.0618
800.00
0.1381
10.00
0.3283
100.00
0.2204
-------
TABLE 4-5 (Continued)
and Name
Ethyl benzene
EDB
4
Heptachlor
Heptachlor epoxide
Li ndane
Methoxychlor
QpBch I orobenzene
4
PCB (Aroclor 1254)
PentachIorophenol
2,4.5-TP (Silvex)
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
50.00
0.1017
0.01
0.0663
0.03
0.0509
0.03
0.0201
0.02..
1 1_. - — ''
100.00
0.1411
60.00
0.1081
0.05
0.0224
20.00
0.0423
5.00
0.0678
100.00
700.00 800.00
— —
0.50
0.05 1.00
0.0656
0.10
0.40 1.00
— ...
0.10
0.20 1.00
— —
0.50
0.20 1.00
) 0.0165
260.00
400.00 500.00
100.00
100.00 400.00
— —
5.00
0.50 5.00
0.0224
50.00
200.00 400.00
— —
50.00
50.00 100.00
...
50.00
0.1637
0.01
0.1455
0.03
0.0556
0.03
0.0283
0.02
0.0208
100.00
0.1626
60.00
0.1937
0.05
0.0222
20.00
0.0905
5.00
0.0841
700.00
700.00
—
10.00 -
0.05
0.1453
1.00
0.40
0.0556
1.00 _,
0.20
0.0271
1.00
0.20
0.0203
400.00
400.00
—
600.00
100.00
0.1930
10.00
0.50^
0.0222
500.00
200.00
0.0883
100.00
50.00
0.0813
800.00
1.00
0.1435
1.00
.
1.00
1.00
500.00
—
400.00
0.1891
5.00
0.0222
400.00
0.0860
100.00
0.0000
50.00
0.1782
0.01
0.2222
0.03
0.0608
0.03
0.0379
0.02
0.0393
100.00
0.2185
60.00
0.2281
0.05
0.0217
'
20.00
0.1136
5.00
0.1373
1000.00
700.00
0.1687
50.00
0.05
0.2221
10.00
0.40
0.0608
10.00
0.20
0.0377
10.00
0.20
0.0392
1000.00
400.00
0.2137
1000.00
100.00
0.2274
50.00
0.50
0.0217
1000.00
200.00
0.1112
500.00
50.00
0.1353
I
800.00
0.1660
1.00
0.2206
1.00
0.0608
1.00
0.0366
1.00
0.0387
500.00
0.2123
400.00
0.2245
5.00
0.0217
400.00
0.1101
100.00
0.1341
-------
TABLE 4-5 (Continued)
Name
Carbon Usage (Ibs/KGal)
Styrene
TetrachloroethyIene
Toluene
Toxaphene
trans-1,2-Oichloroethylene
m-Xylene
I ene
p-Xylene
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
2.00
0.0401
1.00
0.0980
100.00
0.1936
1.00
0.0434
5,00
CCL26ZO'
10.00
5.00
0.0395
50.00
5.00
0.0967
500.00
2000.00
5.00
5.00
50.00
100.00
20.00
50.00
3000.00
10.00
200.00
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.2116
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate '6^3096 ; ---
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate /0.3151
50.00
2.00 5.00 20.00
0.0610 0.0605 0.0596
100.00
1.00 5.00 50.00
0.1160 0.1144 0.1108
3000.00
100.00 2000.00
0.3160 0.3050
1.00
0.0493
10.00
5.00
0.0432
200.00
5.00 100.00
0.3888 0.3793
3000.00
10.00
200.00
20000.00
1000.00 10000.00 15000.00
0.2340 0.2148 0.2065
20000.00
1000.00 10000.00 15000.00
0.3718 0.3619 0.3556
20000.00
1000.00 10000.00 15000.00
0.3822 0.3718 0.3657
200.00
2.00 5.00 20.00
0.0872 0.0866 0.0858
500.00
1.00 5.00 50.00
0.1699 0.1694 0.1657
5000.00
100.00 2000.00 3000.00
0.3626 0.3540 0.3508
50.00
1.00 5.00 10.00
0.0634 0.0604 0.0579
500.00
5.00 100.00 200.00
0.4977 0.4893 0.4859
50000.00
1000.00 10000.00 15000.00
0.2649 0.2515 0.2468
50000.00
1000.00 10000.00 15000.00
0.4733 0.4644 0.4620
50000.00
1000.00 10000.00 15000.00
0.4966 0.4882 0.4854
Notes:
1. Carbon usage rates developed from predictions presented in Table 4-2 and application of safety factors
to account for background TOC and possible competition from other SOCs
2. Model-predicted carbon usage rates developed through application of
CPHSDM to distiIled-water isotherm study results and were adopted from:
(a) Miltner, R.J. et al. Final Internal Report On Carbon Use Rate Data.
COW - U.S. EPA, Cincinnati, OH, June 30, 1987.
(b) Miltner, R.J. et al. Interim Internal Report On Carbon Use Rate Data.
COW - U.S. EPA, Cincinnati, OH, June 30, 1987.
3. DistiIled-water isotherm constants not available for Acrylamide,
Aldicarb sulfone, Aldicarb sulfoxide, and Epichlorohydrin
'.. Isotherm-predicted carbon usage rates developed through
application of Freundlich's equation, as shown in Appendix A.
-------
5. OTHER APPLICABLE TECHNOLOGY - PACKED COLUMN AERATION
As indicated in Section 3, packed column aeration has been identified as
another applicable technology. Other applicable technologies are those
technologies which are not identified as generally utilized for removal of
SOCs, but which may have applicability for some water supply systems when
considering site-specific conditions, such as type of SOC.
Process Description
Air stripping has been used effectively in water treatment to reduce the
concentration of taste and odor producing compounds and certain organic
compounds. Aeration, or air stripping, may be described as the transfer of a
substance from solution in a liquid to solution in a gas. The driving force
for mass transfer is a concentration gradient. A concentration gradient tends
to move the substance in such a direction as to equalize concentrations and,
thereby, eliminate the gradient.
The driving force for mass transfer is the difference between actual
conditions in the air stripping unit and conditions associated with equili-
brium between the gas and liquid phases. According to Henry's Law the
equilibrium concentration of a solute in air is directly proportional to the
concentration of the solute in water at a given temperature. Henry's Law
states that the amount of gas that dissolves in a given quantity of liquid, at
constant temperature and total pressure,, is directly proportional to the
partial pressure of the gas above the solution. Thus, the Henry's Law
Coefficients describe the relative tendency for a compound to separate between
gas and liquid. Henry's Law Coefficients can be used to give a preliminary
indication of the effectiveness for removing a specific SOC.
Henry's Law Coefficients, are presented for several of the SOCs in
Table 5-1 based on both theoretical calculations and field data. The magni-
tudes of the coefficients for the various compounds are functions of their
solubility in the liquid phase and their volatility. A high Henry's Law
Coefficient indicates equilibrium favoring the gaseous phase; i.e., the
compound generally is more easily stripped from water than one with a lower
5-1
-------
Henry's Law Coefficient. The theoretical Henry's Law Coefficients were"
estimated from vapor pressure, solubility and molecular weight as follows:
V x MW _, ,
H = p x 73.1
sol
where: H = Henry's coefficient (atm)
V = vapor pressure (mm Hg)
P
MW = Molecular Weight (g mole )
sol = solubility (mg L )
Field data were available for ten SOCs (Cummins and Westrick, 1987) .
The Henry's Law Coefficients at ambient temperature were generally 50 percent
of the value 'estimated from vapor pressure and solubility data at a
temperature of 20 C. The 50 percent reduction may be due in part to
temperature and matrix effects.
As a first approximation, SOCs having Henry's Law Coefficients below
1 atm, at room temperature or above, probably would not be effectively removed
by packed column aeration. Based on the above criterion, seven SOCs in
Table 5-1 would not be amenable to packed column aeration. Two other
compounds, chlordane and epichlorohydrin, may be amenable to aeration, while
sufficient information is not available for 2,4-D, methoxychlor and- 2,4,5-TP
to evaluate their potential removals by aeration. Treatability studies, which
incorporate mass transfer characteristics through model prediction or
pilot-scale tests, are utilized for determining the feasibility of SOC removal
via packed column aeration.
The mass transfer coefficient relates the driving force (concentration
gradient) to the actual quantity of material transferred from liquid to air.
The mass transfer coefficient is a function of the physical/chemical proper-
ties of an individual SOC, the type of packing material used, and the gas and
liquid loading rates. In packed columns, packing materials provide large void
volumes and high surface areas. The water flows downward by gravity and air
is forced upward. The untreated water is usually distributed on the top of
the packing with distribution trays and the air is moved through the tower by
forced or induced draft. This design results in continuous and thorough
5-2
-------
TABLE 5-1
HENRY'S LAW COEFFICIENTS FOR SOCs
Compound
Toxaphene
/Trans-1,2-Dichloroethylene
/ Ci s-1,2-Dichloroethylene
\ Tetrachloroethylene
v' Ethyl Benzene
J Toluene
j p-Xylene
-. m-Xylene
> o-Xylene
Heptachlor
Monochlorobenzene
J 1,2-Dichloropropane
Styrene
J o-Dichlorobenzene
PCB (Arochlor 1242)
J Ethylene dibromide (EDB)
PCB Aroclor 125*
Heptachlor Epoxide
Oibromochloropropane
Chlordane
Epichlorohydrin
Pentachl orophenol
Lindane
Acrylamide
Alachlor
Carbofuran
Aldicarb
Atrazine
2,4-D
2,4,5-TP
Methoxychlor
MW
(g/mole)
412
96.95
96.95
165.83
106.16
92.13
106.16
106.16
106.16
373.53
112.56
112.99
104.14
147.01
258
187.88
326
389.83
236.36
409.8
92.53
266.35
290.85
71.08
269.77
221.3
190.25
215.68
221.04
269.53
365.65
Vapor
(nrnHg)
0.2-0.4
200
200
14
7
22
6.5
6
5
0.0003
8.8
42
5
1-
0.001
11
0.00006
0.003
0.8
0.00001
12
0.00011
9.40E-06
2
2.20E-05
0.00002
1 .OOE-04
3.00E-07
NA
NA
NA
Pressure
(Tref)
20C
14C
25C
20C
20C
20C
20C
20C
20C
25C
25 C
20C
20C
20C
20C
20C
20C
25C
21C
20C
20C
20C
20C
87C
25C
23C
25 C
20C
Solubil
(mg/L)
3
600
800
150
152
515
198
NA
175
0.056
500
2700
300
100
0.24
4310
0.056
0.35
1000
0.056
60000
14
17
2.15E-06
140
700
6000
70
540
140
0.04
ity
(Tref)
25C
20C
20C
25C
25C
20C
25C
20C
25C
20C
20C
20C
20C
NA
30C
NA
25C
25C
NA
20C
20C
24C
30C
23C
25C
25C
25C
20C
25C
24C
Henry's Coefficient (atm).
(Vp/Sol)1
1004-2008 -/
1180
886
seey
179V"
144
127
NA
111 \^
-V- —
73 - '
72
64
63
54
39 /
18
13
12
7
3
1
7.65E-02
5.88E-03
2.42E-03
1 .55E-03
2.31E-04
1.16E-04
3.38E-05
NA
NA
NA
Field Data1'
136(3)
150(3)
83
274
174 -'
162
150
137
125
42l '
75
50
-
39 /
-
17
-
1 .8
_
2.7(3)
-
-
-
-
-
-
-
-
-
-
.
Notes:
1.
2.
3.
4.
Henry's Law coefficient estimated from vapor pressure and solubility data. A 50 percent
factor of safety was applied to all estimates.
Henry's coefficient based on field evaluation. The indicated value gave the best fit
between predicted and observed performances (Cummins and Westrick, 1987).
Henry's coefficient based on experimental data (Warner, Cohen and Ireland, 1980).
" " Information not available.
-------
contact of the liquid with the gas and minimizes the thickness of the water
layer on the packing, thus promoting efficient mass transfer.
The design of air stripping equipment has been developed extensively in
the chemical engineering industry for handling concentrated organic solutions.
The procedures used in the chemical engineering literature can be applied to
water treatment for trace organics removal. The rate at which a volatile
compound is removed from water by aeration depends on the following factors:
- Air:water ratio
Packing height
Available area for mass transfer
- Temperature of the water and the air
- Physical chemistry of the contaminant
The first three factors may be controlled in the design of an air stripping
unit, while the other two factors are set for a specific water supply.
The air flow requirements for a packed column depend on the Henry' s Law
Coefficient for the particular compound(s) to be removed from the water. In
an ideal aeration system, the minimum air:water ratio which will achieve
complete removal of a contaminant proportional to the reciprocal of the
Henry's Law Coefficient. The greater the Henry's Law Coefficient, the less
air is required to remove the compound from water. Because aeration systems
are not ideal, the actual air:water ratios required to achieve a given removal
efficiency are greater than the theoretical minimum air:water ratios.
The packing height is a function of the depth of the packing material.
An increase in the depth of packing material results in a greater contact time
between the air and the water, and consequently, will result in higher SOC re-
movals.
The available area for mass transfer is a function of the packing mat-
erial. Various sizes and types of packing material are available including
1/4 to 3-inch sizes of metal, ceramic or plastic material. In general,
smaller packing material provides a greater available area for mass transfer
per volume of material, thus increasing the mass of contaminant removed.
However, smaller packing increases the air pressure drop through the packed
column.
The fundamental concept of mass transfer states that the rate of mass
transfer per unit of reactor volume is first order and proportional to the
5-3
-------
difference between the operating concentration and the equilibrium
concentration as follows (Treybal, 1980):
J = KLa * (X - X*) * (1000 L m~3) Eq 1
Where:
J = Mass transfer rate per unit reactor volume
(ug VOC m reactor volume sec )
X = Concentration of VOC in liquid phase (ug L )
X* = Equilibrium concentration of VOC in liquid phase (ug L )
KLa = Mass transfer coefficient (sec )
A general equation relating packing height to mass transfer coefficient,
removal efficiency, Henry's coefficient, air loading, and liquid loading can
be obtained by applying conservation of mass to a differential reactor volume
element and integrating. The resulting equation for packing height is shown
as Eq 2.
Packing Height:
L R ( (Xt/Xb)*(R-l) + 1 )
Zt = * * In Eq 2
KLa (R-l) R
Where:
Zt = Packing height (ml
L = Liquid loading (m m sec ) -
KLa = Mass transfer coefficient (sec )
Xt = Top of packing contaminant concentration (ug L )
Xb = Bottom of packing contaminant concentration (ug L )
R = Stripping factor (dimensionless)
G H
R = *
L Pt
G = Air loading (m m sec ) , _
H = Henry's Law Coefficient (atm m water m air)
Pt = Atmospheric pressure (1 atm)
Equipment Required
A diagram of a typical packed tower installation is illustrated on
Figure 5-1 and consists of the following:
5-4
-------
FIGURE 5-1
DEMISTER MAT
CONTAMINATED
INFLUENT
PACKING MATERIAL
EXIT AIR
AND SOC
n n r~i
EFFLUENT
ORIFICE PLATE DISTRIBUTOR
PACKING MATERIAL
SUPPORT PLATE
INCOMING AIR
BLOWER
PACKED COLUMN
SCHEMATIC OF PACKED COLUMN AERATION
-------
- Packed Tower: Metal (steel or aluminum), plastic, fiberglass or
concrete is used for the outer shell. Internals (packing, supports,
distributors, mist eliminators) are generally made of metal or
plastic.
- Blower: Typically centrifugal type, either metal or plastic con-
struction. Noise control may be required depending on the size and
system locationi
- Effluent Storage: Generally provided as a concrete clearwell below
the packed tower.
- Effluent Pumping: Generally required because effluent is usually at
atmospheric pressure. Vertical turbine pumps mounted on clearwell
are typical.
In ground water applications, water is generally pumped directly from
wells to the top of the packed tower. The effluent flows from the bottom of
the tower into a clearwell from where it is usually pumped into the dis-
tribution system. Depending upon the hydraulic constraints of an individual
location, this effluent repumping may or may not be required. Similarly, in
surface water applications, the system hydraulics dictate the amount of
pumping that is required.
Treatability Studies; Pilot Scale Tests
The feasibility of removing SOCs from drinking water using packed column
aeration has been studied in several pilot-scale tests. Seven of the twelve
studies reported in this section were conducted by the United States Environ-
mental Protection Agency (USEPA) through its Office of Drinking Water (ODW).
The remaining five studies were conducted by other consulting firms or indivi-
duals.
Packed-Column Aeration Studies-USEPA
Numerous packed-column aeration pilot studies have been performed by
Cummins of USEPA. Seven of the available studies contain removal information
on at least one of the 29 SOCs. Data on the removal of
cis-l,2-dichloroethylene are presented in each of these studies. The study
locations, testing dates and compounds removed (on the list of 29 SOCs) are as
follows:
5-5
-------
Dedham, MA August 24, 1982 cis-l,2-dichloroethylene
1,2-dichloropropane
o-dichlorobenzene
Lansdale, PA August 10, 1982 cis-l,2-dichloroethylene
Glen Cove, NY August 20, 1982 cis-1,2-dichloroethylene
December 14 S 16, 1982
Hartland, WI September 23, 1982 cis-1,2-dichloroethylene
Wausau, WI September 28, 1982 cis-1,2-dichloroethylene
Lakes Wales, FL April, 1984 EDB
Bastrop, LA February 1984 Toluene
Ethylbenzene
o,m,p-xylenes
The pilot column used by Cummins in each of the above studies was 24 feet
in height and 2 feet in diameter. It contained 18 feet of plastic saddle
packing which was 1 inch in size for all pilot runs, except for six runs in
Glen Cove, New York where 2 inch plastic saddles were used. Eighteen sample
taps were installed at 1-foot intervals along the column to permit the devel-
opment of concentration profiles for contaminants along the entire height of
the column. Operational information and results are presented for each site.
Dedham, Massachusetts - The ground water from Well No. 3 on University
Avenue in Dedham, Massachusetts was found to be contaminated by a number of
organic chemicals including low levels (less than 15 ug/L) of
cis-1,2-dichloroethylene, 1,2-dichloropropane and o-dichlorobenzene. The
well, which had supplied 700 gpm to the Dedham system, was taken out of
service in 1982. Water from the University Avenue well was pumped by fire
hose to the pilot column during the study conducted by Cummins (Cummins,
Dedham, 1982). The raw water flow was controlled by a gate valve. The water
was piped to the top of the column, distributed over the top of the packing
through an orifice plate and allowed to cascade down through the column. A
low pressure blower was used to draw air up through the column. Both the
water and air flow rates were adjusted to obtain certain specified air:water
ratios. Test conditions (liquid loading rate, airrwater ratio) and percent
removals for each of the three SOCs of interest are presented below. The
water temperature was approximately 53 F.
5-6
-------
Liquid Loading
Rate
(gpm/ft )
12
Air:
Water
Ratio
80
~~^P
27
16
8
5
cis-1, 2-dich
ethylene
99.7*
98.7*
91.8
75
53
32
Percent Removals
loro- 1,2-dichloro-
propane
98.8*
97.7*
75*
54
34
20
o-dichloror-
benzene
97.5*
• ' 91. O*-/
^"57
31
6.7
-
25
35
51
56
Notes:
1. Average influent concentration: 11 ug/L
2. Average influent concentration: 2.0 ug/L
3. Average influent concentration: 3.0 ug/L
*Compound stripped below detectable limit - removal efficiency based on
regression analysis.
The results indicate that packed column aeration is effective for the
removal of each of the three SOCs. Removals decreased as the air:water ratio
was lowered, as predicted by the empirical development.
Lansdale, Pennsylvania - The ground water from Well No. 8 on Third
Street in Lansdale, Pennsylvania was found to be contaminated by a number of
organic chemicals, including cis-1,2-dichloroethylene at a concentration of
approximately 160 ug/L. The 100 gpm well was taken out of service in 1979. A
total of six runs were conducted by Cummins at the Lansdale site (Cummins,
Lansdale, 1982). The water temperature was approximately 58 F. Test
conditions and performance data are presented below for cis-1,2-dichloro-
ethylene :
Liquid Loading Air:
Rate Water Percent Removal
(gpm/ft ) Ratio cis-1,2-dichloroethylene
11 83 99.6
16 44 98.2
24 28 91.8
33 17 82
47 9 50
65 5 30
As in the study at Dedham, the above results indicate that packed-column
aeration is effective for the removal of cis-1,2-dichloroethylene.
5-7
-------
Glen Cove, New York - The ground water from Well No. 22 on Carney Street
in Glen Cove, New York was found to be contaminated by several organic chemi-
cals, including cis-1,2-dichloroethylene at a concentration of 130 ug/L
(Ruggiero and Ferge, 1983). The 2 mgd well was taken out of service in 1977.
A total of 16 runs were conducted by Cummins at the Glen Cove well (Cummins,
Glen Cove, 1982), over a three day period. Test conditions and performance
data are presented in Table 5-2. The results again indicate that packed
column aeration is effective for the removal of cis-1,2-dichloroethylene. At
similar test conditions, the 1-inch plastic saddles achieved better results
than did 2-inch plastic saddles.
Hartland, Wisconsin - The ground water from Well No. 3 on Progress Drive
in Hartland, Wisconsin was found to be contaminated by three organic chemi-
cals, including cis-1,2-dichloroethylene at a concentration of 6 ug/L. The
1,000 gpm well was taken out of service in 1982. A total of six runs were
conducted by Cummins at the Hartland well (Cummins, Hartland, 1982). The
water temperature was 51 F. Test conditions and performance data are
presented below:
Liquid Loading Air:
Rate Water Percent Removal
(gpm/ft ) Ratio cis-1,2-dichloroethylene
11 84 99.8*
17 43 98.0*
24 25 92.9
35 16 82
49 8 50
65 5 42
*Compound stripped below detectable limit - removal efficiency based on
regression analysis
The results again indicate that of packed column aeration is effective in
removing cis-1,2-dichloroethylene from drinking water.
Wausau, Wisconsin - The ground water from Well No. 3 on East Union Street
in Wausau, Wisconsin was found to be contaminated by three organic chemicals,
including cis-1,2-dichloroethylene at a concentratic/n of 27 ug/L. The 2,000
gpm well was taken out of service in 1982. A total of six runs were conducted
by Cummins at the Wausau well (Cummins, Wausau, 1982). The water temperature
was approximately 51 F. Test conditions and performance data are presented
below:
5-8
-------
TABLE 5-2
Day
Day
Day
PACKED-COLUMN
Liquid Loading
Rate
(gpm/ft2)
PILOT STUDY RESULTS - GLEN COVE, NEW YORK
-Air:
Water
Ratio
1: August 20, 1982; 1-inch Plastic Saddles;
10.3
16.2
25.0
33.9
51.5
66.3
2: December 14, 1982;
16.2
25.0
35.3
50.1
3: December 16, 1982;
11.8
19.1
26.5
39.8
57.4
76.6
86
46
27
17
9
6
1-inch Plastic Saddles
47
26
15
8
2-inch Plastic Saddles
84
48
28
16
9
5
Percent Removal
cis-1 , 2-dichloroethylene
Water Temperature = 61 F
99.9
99.3
94.2
85
58
40
; Water Temperature = 58 F
98.8
94.3
70
46
; Water Temperature = 59 F
98.8
95.8
90
76
54
39
-------
Liquid Loading Air: . ,
Rate Water Percent Removal
..... (gpm/ft ) . Ratio . . cis-1,2-dichloroethylene
10 85 99.5
17 45 97.4
25 25 86
35 15 74
50 9 35
52 5 24
Once again, the results strongly indicate that packed-column aeration is
an effective means for the removal of cis-1,2-dichloroethylene.
Bastrop, Louisiana - The City of Bastrop, LA was selected for field
evaluation due to a gasoline spill which occurred a short distance from a
municipal well field. As a result of the contamination, the Liberty Street
well #2 was taken out of service. The principal contaminants in the well
water were:
SOC Average Concentration (ug/L)
Benzene 190
. . Toluene 62
Ethylbenzene 9
o-Xylene 10
m-Xylene 2.9
p-Xylene 6.9
The well had a pumping capacity of 1050 gallons per minute (gpm) at the
distribution system pressure and 1500 gpm at atmospheric pressure. The water
temperature was 20°C. The results of the pilot testing are summarized below
(Cummins, 1984):
Liquid
Loading Air Percent Removal
Rate Water Ethyl- ^ -----
(gpm/Ft ) Ratio Benzene Toluene/ benzene ;: o-xylene m-Xylene p-Xylene
^__ '' —-—
9.1 87 >99.6 >98.B >92 >95 >83 >90
30.9 25 98.2 98.3 >92 >95 >83 >90
66.3 8.5 85.4 81.5 85.8 74.3 77.5 83
These results indicate that of packed column aeration effectively removes
these SOCs from drinking water.
5-9
-------
Lake Wales, Florida - Pilot testing was conducted at Lake Wales, Florida
on ground water with an EDB concentration of 1.7 ug/L EDB. The water
temperature was 25 C. The results of the pilot testing are summarized below
(Cummins, Lake Wales, 1984):
Liquid Air:
Loading Water Percent Removal
(gpm/Ft ) Ratio EDB
14.7 53 90
14.9 90 95.7
7.4 182 98.6
These results indicate that of packed column aeration is effective in
removing EDB from drinking water. However, Cummins did note the presence of
an unstrippable portion of EDB, representing a base concentration of 0.017
ug/L. The presence of this unstrippable fraction could not be explained.
Packed Column Aeration Studies - Others
Arizona - Malcolm Pirnie, Inc. (MPI), (1985) conducted packed-column
pilot testing at an Arizona location. The pilot column was 1 foot in diameter
and contained 9.5 feet of No. 1 Tri-Packs packing material. Sample ports were
available at the raw water inlet and finished water outlet for taking influent
and effluent samples.
A total of nine runs were conducted. The ground water temperature was
approximately 70°F. Test conditions and performance data are presented in
Table 5-3 for ethylbenzene, toluene, m-xylene, and o-, p-xylenes. The results
indicate that packed column aeration is an effective means of reducing the
concentrations of ethylbenzene, toluene, and xylenes. High removals were
attained at reasonably low air:water ratios (30-80).
Berkeley, California - A pilot evaluation was conducted by Selleck et al.
(1983) to remove DBCP and EDB from drinking water. The rectangular pilot
2
column had a cross-sectional area of 3.32 ft and contained 13 feet of 2-inch
polypropylene intalox saddles. Liquid loading rates, air:water ratios, and
influent concentrations for DBCP were varied throughout the test. These
5-10
-------
TABLE 5-3
Liquid
Loading
Run Rate .
15.3
44.6
20.4
25.5
35.7
17.8
50.9
12.7
25.5
Air:
Water
No. (gpm/ft ) Ratio
80:
10:
59:
46:
25:
71:
30:
126:
63:
j
PACKED-COLUMN AERATION PILOT STUDY RESULTS - ARIZONA i
Ethyl benzene
Concentration (ug/L)
Influent
73.9
200
202
^ 91
<0.1
<0» 1
<0 . 1
44.8
59.7
Effluent
5.2
56.5
3.9
6.2
<0.1
<0.1
<0.1
<0. 1
<0. 1
Percent
Removal
93. 0^
71.8
98.1
93. 2/
--
--
--
>99.8
>99.8
Toluene
Concentration (ug/L)
Influent
13400
4270
4520
4350
2880
3050
3190
3420
3720
Effluent
111
1130
114
168
488
20.9
142
11.6
88.4
Percent
Removal
99.2
73.5
97.5
96.1
83.1
99.3
95.5
99.7
97.6
m-Xylene
Concentration (ug/L)
Influent
1040
1900
1900
1750
945
1020
1050
1090
1160
Effluent
70.9
486
79.4
121
182
18.2
65.5
7.3
50.9
Percent
Removal
93.2
74.4
95.8
93.1
80.7
98.2
93.8
99.3
95.6
i
o-; p-Xylene
Concentration (ug/L)Percent
Influent
1450
1980
1980
1980 i
1170
1210
1260
1300
1350
Effluent
93.3
633
116
179
270
62.9
162
18.0
89.9
Removal
93.6
68.0
94.1
91.0
76.9
. 94.8
87.1
98.6
93.3
-------
results are presented in Table 5-4. Higher removals of DBCP were achieved at
higher air to water ratios and higher temperatures. At low temperatures
higher air to water ratios were required to achieve removals similar to those
obtained at higher temperatures. This illustrates the effect of temperature
on air stripping as predicted by the empirical development earlier in this
section.
Selleck also reported the results for EDB removal. The water temperature
was approximately 64°F during the two runs that were performed.
Liquid Loading Air: EDB Concentration
Rate Water Influent Percent
(gpm/ft ) Ratio ug/L Removal
2.4 200 16.0 >94*
9.7 210 9.1 >90*
*Effluent EDB Concentration below estimated detention limit of
approximately 0.9 ug/L.
The results indicate that packed-column aeration effectively removes EDB
from drinking water.
Arizona - A pilot-study was conducted by Malcolm Pirnie, Inc. (1987) to
evaluate the feasibility of removing DBCP from well water at a site in
Arizona. The PVC column was 24 inches in diameter with a maximum packing
height of 10 feet. Results of the test are summarized in Table 5-5. In
general, the test results indicated that high air:water ratios (200:1 or
higher) were required for effective DBCP removal. The performance .of two
types of packing materials were also compared, leading to an optimized design
of the full-scale facility.
Gainsville, Florida - ESE (1983) conducted pilot air stripping tests for
EDB removal. Feed water spiked with various concentrations of EDB was used in
the study. The pilot system consisted of four, 1.5-foot diameter columns
operated in series, which allowed for up to 50 feet of total packed column
height. The cumulative height breakdown was as follows:
Column 1 = 15 feet
Column 2 = 30 feet
Column 3 = 40 feet
Column 4 = 50 feet
5-11
-------
The columns were packed with 1-inch polypropylene Intalox saddles.
Effluent sample taps were present at the outlet of each individual column.
A total of eight runs were conducted. Test conditions and performance
data are presented in Table 5-6. Higher air:water ratios yielded better EDB
removals as did additional packing height. The data indicate that packed
column air stripping is an effective means of reducing the EDB concentration
in water.
Windsor Locks, Connecticut - A pilot evaluation was conducted by the
Connecticut Water Company (CWC, 1984) to remove EDB from well water at the
Windsor Locks, Connecticut wellfield. The pilot column was 1.2 feet in
diameter and contained 15 feet of No. 2 Tripacks packing material. A total of
eight runs were conducted by CWC. Test conditions and performance data are
presented below:
Liquid Loading
Rate
(gpm/ft )
15
15
15
15
25
25
25
25
The data indicate that air stripping is effective at low EDB concentra-
tions (less than 1 ug/L). Greater removals are achieved at higher air to
water ratios.
Iowa City, Iowa - The University of Iowa (Mumford & Schnoor, 1982)
conducted research on air stripping of volatile organics from water. A
countercurrent flow packed bed stripper was utilized for the research. The
column was 4 ft high and 3.75 inches in diameter. The studies were conducted
with 1.5 ft of 1/4 inch ceramic berl saddles which provided a void volume of
64 percent. The feed water, tap water that had been aerated for a minimum of
16 hours and injected with a 5-25 ml methanol spike containing the SOCs,.was
prepared in 50 liter batches. During the 30 minute treatment runs, five
Air:
Water
Ratio
30
60
100
150
30
60
100
150
EDB Concentration (ug/L)
Influent
0.21
0.74
0.92
0.75
0.65
0.70
0.84
0.82
Effluent
0.16
0.40
0.25
0.14
0.38
0.39
0.30
0.20
Percent
Removal
23.8
45.9
72.8
81.3
41.5
44.3
64.2
75.6
5-12
-------
TABLE 5-4
PACKED COLUMN PILOT STUDY RESULTS -BERKELEY
Liouid
Liquid
Liquid
Liquid
Loading : 2 . 4 gpm/Ft
TEMP(°F)
69.3
69.3
68.4
67.8
67.3
67.3
66.1
57.0
56.5
55.9
55.9
55.8
51.6
51.4
51.3
50.4
50.2
50.2
Loading: 4.8 gpm/Ft
68.2
67.8
67.3
67.1
66.7
66.6
66.2
65.7
64.9
2
Loading: 7.25 gpm/Ft
TEMP(°F)
58.1
57.2
55.0
Loading: 9.7 gpm/Ft
64.4
63.9
63.1
Air: Water
Ratio
180
200
180
590
210
200
550
680
670
480
450
560
490
650
590
650
560
490
250
570
580
410
490
570
270
270
510
Air: Water
Ratio
320
340
330
220
220
220
DBCP Influent
Concentration (ug/L)
52.5
6.8
18.8
414
544
131
54.0
665
29.6
673
28.3
34.4
329
320
327
15.9
15.2
15.9
76.1
14.5
369
534
50.5
25.0
13.8
494
11.5
DBCP Influent
Concentration (ug/L)
101
771
9.84
772
85.3
12.2
Percent
Removal
75.5
88.6
74.2
94.0
71.3
76.2
92.4
88.7
89.6
86.6
79.8
.1
.5
86.
83.
86.9
86.6
87.6
83.2
73.5
79.8
97.5
97.1
88.8
94.3
98.0
83.4
79.6
96.8
Percent
Removal
91.6
81.3
91.1
77.4
79.7
87.6
-------
TABLE 5-5
PACKED COLUMN PILOT STUDY RESULTS - .ARIZONA
(1)
Liquid
Loading
Rate
(gpm/sf )
No. 1 Jaeger
6.2
6.2
9.4
9.1
10.5
8.9
12.9
12.5
16.1
15.8
22.7
No. 2 Glitsch
22.6
16.1
13.5
9.8
6.4
6.1
16.4
13.2
10.0
10.0
11.1
Air
Water
Ratio
(cfrcf)
Tri -Packs:
199
377
107
215
173
284
76
186
75
132
80
Mini-Rings:
83
129
154
239
428
276
89
74
81
165
149
DBCP Concentration
(ug/L)
Influent
0.20
0.25
0.25
0-26
0.07
0.23
0.24
0.25
0.24
0.26
0.31
0.25
0.25
0.31
0.26
0.30
0.26
0.26
0.26
0.25
0.25
0.15
Effluent
0.10
0.09
0.16
0.13
0.05
0.11
0.18
0.14
0.17
0.18
0.19
0.20
0.14
0.11
0.13
0.04
0.05
0.17
0.17
0.17
0.09
0.04
Percent
Removal
50.0
64.0
36.0
50.0
28.6
52.2
25.0
44.0
29.2
30.8
38.7
20.0
44.0
64.5
50.0
86.7
80.8
34.6
34.6
32.0
64.0
73.3
Note:
1. All results are from the use of 9.5 feet of packing and a water
temperature of 75 degrees F.
-------
.TABLE 5-6
Packed Column Pilot Study Results -Gainesville
Liquid . ._.
Run Loading Air: Water
Number (gpm/Ft ) Ratio
1 11.3 7.9
2 11.3 15.0
3 11.3 22.5
4 11.2 33.8
5 22.6 15
6 22.6 22.5
7 22.4 35
8(1) 11.2 88.3
66.5
64.5
65.3
EDB. Concentration (ug/L)
Effluent
Influent 15 Ft 30 Ft 40 Ft 50 Ft
195.5 162.5 127.5 103.5 79
102 61.4 32.0 19.9 12
107.5 47.7 18.9 9.08 4.6
88.6 . 27.7 8.4 3.05 1.2
91.3 54.5 34.4 22.8 15.3
90.7 40.6 19.2 9.52 5.06
92.6 24.7 8.6 3.15 1.19
88.7 4.54 0.53 0.095 0.02
Note:
1. Run 8 conducted at four different air: water ratios to determine
the highest removal efficiency obtainable with the system.
-------
samples were taken and pressure drop was measured until steady state was
attained. Test results are presented in Table 5-7. The test results indicate
that air stripping effectively removes these SOCs from water. Removals
generally increased with increasing air to water ratio.
Oklahoma State University, Oklahoma - Stover (1982) reported on pilot
studies for the treatment of contaminated well water by air stripping. The
wells were adjacent to an industrial park and contained trans-1,2-dichloro-
ethylene and several other volatile organic contaminants. The column was a
4-inch diameter glass column packed with 25 inches of 6mm glass raschig rings.
The study was conducted at various air to water ratios and the results for
trans 1,2-dichloroethylene in Well No. 2 are as presented below:
Liquid
Loading Rate
gpm/ft
8.6
0.68
10.1
Air:
Water
Ratio
9.3
114.0
10.7
Concentration (ug/L)
Influent
40
40
16
Effluent
11
1
3
Percent
Removal
72.5
97.5
81.3
The results indicate that air stripping is effective in removing
trans-1,2-dichloroethylene from water.
Full-Scale;
Full-scale data are available from several installations. These
facilities and the associated performance data for SOC removal are described
below:
Tacoma, Washington - Nadeau et al. (1983) describe a large packed-tower
aeration system in Tacoma, Washington designed to treat the water from one of
the city's largest production wells. The well was shut down in 1981 after it
was found to be contaminated with trans-1,2-dichloroethylene (30-100 ug/L),
trichloroethylene (54-130 ug/L), tetrachloroethylene (2-5 ug/L), and 1,1,2,2-
tetrachloroethane (17-300 ug/L). The full-scale system was designed on the
basis of pilot-scale testing. It consists of five packed columns, each 12
feet in diameter and containing 21 feet of 1-inch plastic saddle packing. The
overall height of each column is 50 feet, including the discharge stack. In
addition, each tower is equipped with a 60-hp blower capable of delivering
29,000 cfm through each column.
5-13
-------
The system is designed to treat a maximum flow of 3,500 gpm at an approx-
imate air:water ratio of 300:1. This relatively high value ensures the
removal of 1,1,2,2-tetrachloroethane, the least strippable of the four com-
pounds. In addition, virtually all trans-l,2-dichloroethylene is removed by
the system. This indicates that air stripping effectively removes
trans-l,2-dichloroethylene from drinking water.
Orange County, California - McCarty et al. (1977) describe the perfor-
mance of full-scale packed-column strippers and decarbonators for volatile
organics removal at Water Factory 21. This installation is a 15 mgd advanced
treatment plant operated by the Orange County Water District (OCWD) in Orange
County, California. It refines the quality of biologically treated municipal
wastewater so that it can be injected to act as a barrier to saltwater
intrusion into OCWD aquifers. The process train at Water Factory 21 includes
lime treatment, air stripping, decarbonation, filtration, activated carbon
adsorption, disinfection, and reverse osmosis for one-third of the flow.
The initial purposes of the air stripping and decarbonation equipment
were the removal of ammonia and carbon dioxide, respectively. However, both
units were found to be effective for trace organics removal as well. An
evaluation of their effectiveness on trace organics removal was conducted
during two of the three periods of operation of the plant. These operational
periods can be summarized as follows:
Periods of Operation Operations at Water Factory 21
Jan. 1976 to Trickling-filter influent, no free
Oct. 1976 residual chlorination, no reverse
osmosis, no injection.
Periods of Operation Operations at Water Factory 21
Oct. 1976 to Trickling-filter influent, forced
Mar. 1978 air circulation in stripping towers,
free residual chlorination, no re-
verse osmosis, injection.
Mar. 1978 to Activated-sludge influent, no forced
May 1979 air circulation in stripping towers,
free residual chlorination, reverse
osmosis, injection.
5-14
-------
TABLE 5-7
PACKED COLUMN PILOT STUDY RESULTS - IOWA CITY
Liquid
Loading
(gpm/ft )
Air:
Water
Ratio.,
(ftVff*)
Concentration
Influent
(mg/L)
Effluent
Trans-1 , 2-dichloroethylene
4.21
4.62
4.62
2.79
2.79
Toluene
4.21
4.62
4.62
2.79
1.63
Benzene
4.21
4.62
4.62
2.79
2.79
Chlorobenzene
4.21
4.62
4.62
2.79
2.79
1.63
o-Dichlorobenzene
4.21
4.62
4.62
2.79
1.63
25
50
50
100
100
25
50
50
100
200
25
50
50
100
100
25
50
50
100
100
200
25
50
50
100
200
5.4
114
3.2
105
7.3
3.4
39.7
5.3
37.1
2.7
8.4
105
10.5
92.5
11.8
13.3
22.8
9.2
29.6
7.8
3.6
14.2
5.3
27.8
24.0
11.0
1.7
27.9
0.9
16.6
1.5
0.9
9.1
1.2
2.8
0.1
2.8
24.2
2.9
9.3
2.9
4.6
6.4
2.6
3.3
1.8
0.1
5.7
2.9
8.3
6.2
0.7
Percent
Removal
69
76
72
84
80
74
77
77
93
96
67
77
72
90
75
65
72
72
89
77
97
60
45
70
74
94
-------
The two packed column air strippers at Water Factory 21 are both rectan-
gular. Each is 63 m long and 19 m wide and contains 7.6 m of polypropylene
splash-bar packing. The total packing volume per tower is therefore
approximately 9,000 m . The flow treated by each tower is 7.5 mgd at an
air:water ratio of 3000:1.
The decarbonators present at Water Factory 21 are much smaller than the
stripping towers and were not specifically designed to remove synthetic
organic chemicals. Each is 2 m square and contains 2.4 m of polyethylene
packing. The total packing volume per decarbonator is therefore approximately
19 m . The flow treated by each decarbonator is 2.5 mgd at an air:water ratio
of 22:1.
Available removal performance results of the air strippers for five SOCs
are presented below:
Air Stripper Concentrations (ug/L) Percent
Compound
Ethylbenzene
m-Xylene
Styrene
PCB (Aroclor 1242)
1,2-dichlorobenzene
The air stripper results indicate that packed column aeration is
moderately effective for removal of ethylbenzene and styrene. The removals of
m-xylene and PCB (Aroclor 1242) are fairly low. However, the low influent and
effluent concentrations must be taken into account when judging the removals.
Actual performance data were not available for the decarbonator.
Slat-Tray Aeration Facility - Hess et al. (1981) described a slat-tray
aeration unit installed in Norwalk, Connecticut designed to treat the ground
water from a wellfield along the Silvermine River. An industrial spill
occurred in this river and such organic compounds as trichloroethylene
(predominately), tetrachloroethylene, cis-1,2-dichloroethylene,
trans-l,2-dichloroethylene, 1,1-dichloroethylene, and 1,1,1-trichloroethane
5-15
Influent
0.23
0.067
0.086
0.076
0.37
1.2
0.56
Effluent'
0.10
0.041
0.070
0.037
0.36
0.18
0.066
Removal
56.5
38.8
18.6
51.3
2.7
85.0
88.2
-------
and infiltrated the wellfield. All the compounds except for trichloroethylene
were present at concentrations less than 5 ug/L. .The full scale system is a
16-foot high redwood slat-tray aerator with a cross-sectional area of 100
square feet. Two 3850-cfm blowers provide air to the units. Specific
numerical removal results were not available for trans-l,2-dichloroethylene,
except that the effluent levels were below detectable limits.
An overview of packed column aeration facilities in use in the United
States was presented in a report entitled "Volatile Organic Chemical Treatment
Facilities" by the AWWA Organic Contaminant Committee, draft Nov. 1986. These
facilities treated flows ranging from .05 to 15 mgd, with the majority
treating up to 2.0 mgd. These facilities were primarily single-tower designs.
As shown on Table 5-8, removal cis-l,2-dichloroethylene ranged from greater
than 96 to greater than 99 percent, while removal of tetrachloroethylene
ranged from 90 to greater than 99 percent.
Off-Gas Treatment
Potential air quality problems related to the emission of contaminated
exhaust air from packed column aeration systems exist. This transfer of
volatile synthetic organic chemicals from water to air might be a concern
depending on the proximity to human habitation, treatment plant worker expo-
sure, local air quality, local meterological conditions, daily quantity of
processed water, and contamination level. Treatment options that are current-
ly available to remove organics from off-gas include:
- Thermal incineration
- Catalytic incineration
- Ozone destruction
- Vapor phase carbon adsorption
Thermal incineration for packed column off-gas control has the disadvan-
tage of high energy requirements. Catalytic incineration has lower
temperature requirements than thermal incineration but is currently not
effective for removing chlorinated organics at low levels. Similarly, ozone
destruction also has limited application for vapor-phase treatment at the
present time.
5-16
-------
TABLE 5-8
FULL SCALE PACKED COLUMN AERATION DATA
/ 1 \
Flow No. of
Location
Hatboro, PA
Hatboro, PA
Urewster, NY
Mountainside, NJ
Baldwin Park, CA
Garden City Park,
Northport, NY
Hicksville, NY
Waussau, Wl
Great Neck, NY
New Hyde Park, NY
Queens, NY
Notes:
1. Parallel
(mgd)
0.31
0.4
0.5
0.9
1.4
NY 1.7
1.9
2.0
2.9
3.0
3.5
4.3
operation
Columns
1
1
1
1
1
1
1
2
2
1
1
1
for sites
(2)
Liquid Column Column Packing
Loading Diameter Height Height
(gpm/sq ft)
9.0
17.3
19.5
31.3
20.0
27.2
46.0
17.8
28.2
26.5
28.6
35.7
with more than
(ft)
5.5
4.5
4.75
5x4
8.0
7.5
6.0
10.0
9.5
10.0
12 x 7
12 x 7
one column
(ft)
34
29
NA
34
33
24
25.5
28
29
33
25
19
, unless
(ft)
25
24
18
26
18
16
16
20
24.5
24
21
15
Packing
Influent
Size Air:Water 0,
(in) Type
4 Tripacks
2 Tripacks
1 Saddles
2 Tripacks
1 Saddles
NA Tripacks
1,2 Saddles
NA Tripacks
3 Saddles
1 Tripacks
2 Tripacks
2 Tripacks
Ratio
220:1
120:1
33:1
40:1
30:1
35:1
30:1
30:1
30:1
100:1
40:1
40:1
Contaminant
PCE
PCE
PCE
C-1.2-DCE
PCE
PCE
PCE
PCE
C-1.2-DCE
c-1,2-DCE
PCE
PCE
PCE
PCE
Cone.
' (ug/L)
10
10
110
49
100
330
90
450
NA
82
60
55
100
300
Percent
Removal
)98
>95
)99
)99
90
>99
)94
99
98
)96
98
>99
90
97
Clearwell
Capacity
(gal)
7,500
7,500
20,000
23,000
None
11,200
13,000
33,600
None
33,000
24,300
24,300
otherwise noted.
2. Or rectangular dimensions.
3. PCE indicates Tetrachloroeth;
^lene.
C-1.2-DCE indicates CIS-1,2-Dichloroethylene.
4. NA - Data Not Available.
-------
Pilot-study with vapor-phase GAG adsorption (Crittenden et al, 1987)
indicates that carbon adsorption is currently the most effective method for
removing low-level organics from the packed column exit air. Vapor-phase
adsorption is attractive for two reasons: the vapor-phase mass transfer zone
(MTZ) is much shorter than the liquid-phase MTZ and the cross-sectional area
requirement of the fixed bed is much smaller. The carbon usage rates for
vapor-phase adsorption are also less than those for liquid-phase. A schematic
of the vapor-phase GAC system is illustrated on Figure 5-2.
In operating a vapor-phase GAC system, the relative humidity of the
off-gas must be reduced to prevent condensation of water vapor in the carbon
pores. This can be accomplished by heating the air prior to entering the GAC
contactor. The competition of water-vapor adsorption and gas-phase SOC
adsorption onto GAC is also minimized at off-gas relative humidity of 40 to
50 percent (Crittenden, 1987). A major concern pertaining to vapor-phase GAC
systems is predicting the contaminant breakthrough. At present, reliable
methods to estimate the vapor-phase GAC bed life are not available. Possible
approaches including monitoring the GAC effluent air quality (either on a
continuous basis or a batch mode), using a mass balance around the contactor,
or a combination of the two approaches.
A bed from the pilot plant in Wausau containing trichloroethylene (TCE)
and tetrachloroethlene (PCE) was regnerated three times and the TCE capacity
decreased from 80 to 60 percent of the virgin capacity over the three cycles.
The reduction in TCE capacity with successive adsorption/regeneration cycles
was due to the buildup of a PCE heel on the GAC, since PCE was not removed
well under the conditions used (100 C, 1 atm) . The equilibrium model showed
that this could be solved by using saturated steam 50 C above the boiling
point of PCE (121 C).
5-17
-------
Secondary Effects of Aeration
In addition to the removal of volatile synthetic organic chemicals and
potential requirement for off-gas treatment, the use of aeration technologies
may also result in additional secondary effects, some of which may be undesir-
able. These effects may include introduction of bacteria and particulates,
increased corrosivity, cold weather problems, oxidation of iron, and bacterial
growth on the packing materials. The preliminary findings of USEPA field
studies (Love, 1984) indicate no detrimental effects on water quality due to
increased particulates, turbidity, or bacteria following aeration.
When water contains carbon dioxide, aeration tends to increase pH, which
can be a beneficial effect for soft waters. The addition of excess dissolved
oxygen, which can increase corrosivity of iron pipe material, usually can be
controlled by allowing degasification. Corrosion control and carbonate
stability should be a design consideration in all aeration processes. Proper
design can also lessen cold weather problems (Love, 1984). Excessive iron and
manganese can cause clogging, so it may be advisable to remove these compounds
prior to aeration processes for volatile synthetic organic chemicals.
5-18
-------
CONTAMINATED
AIR
RAW WATER
CLEAN
PACKED
COLUMN
FIGURE 5-2
TREATED AIR
HEATING BLOWER
ELEMENT
BLOWER
TREATED
WATER
SCHEMATIC OF VAPOR-PHASE
GAC SYSTEM
-------
6. ADDITIONAL TECHNOLOGIES
As indicated in Section 3, there are several additional treatment tech-
nologies capable of removing -• SOCs from drinking water. Additional
technologies are those which have been shown to have potential for SOC removal
but for which either the potential is limited or insufficient data prevents
full evaluation of the technology. The following additional technologies have
been identified:
Powdered Activated Carbon (PAC)
Diffused Aeration
Oxidation
Reverse Osmosis
Conventional Treatment
Powdered Activated Carbon (PAC)
PAC represents another way of applying adsorption technology, which has
been found to be applicable for SOC removal. PAC may achieve removal of
certain SOCs and may have limited applicability in locations having certain
constraints (e.g. hydraulic, space) or where SOCs enter a surface water on an
intermittent (e.g., seasonal) basis. Generally, PAC addition is found to be
less efficient than GAG adsorption for SOC removal, as PAC operates at a lower
equilibrium capacity than GAG.
Process Description
PAC traditionally has been used in water treatment plants for removing
trace organic compounds associated with taste and odor problems.- Fewer
studies have been conducted on the use of PAC for removing organics frequently
found in ground water supplies primarily because preliminary data have in-
dicated that very large dosages of PAC would be necessary to achieve satisfac-
tory removals. Pilot and full-scale studies indicate mixed results on the
effectiveness of PAC, although most studies to date agree that PAC has limited
applicability.
PAC requires as coagulation/sedimentation facilities: feed equipment,
mixing chambers, clarifiers, and filtration. Therefore, unless these
facilities are already in place, PAC is not economically suited^ to the
j^eatment of ground water. GAC is the preferred activated carbon process for
ground water systems. In addition, the use of PAC entails additional sludge
6-1
-------
handling. More stringent sludge disposal requirements may apply depending on
the type and level of SOC being removed.
The application of PAC for the removal of organic compounds from drinking
water supplies involves the following major process design considerations:
- Carbon Usage Rate
- Contact Time
- Contactor Configuration - single or multi-stage
- PAC disposal
These design considerations are similar to those outlined in Section 4
under GAG treatment with the exception of contactor configuration. Unlike GAC
adsorption, in which the carbon approaches equilibrium with the influent SOC
concentration, the PAC approaches equilibrium with the effluent SOC concen-
tration, as it is removed from the effluent by a settling or filtration
process. For the same influent SOC concentration, therefore, PAC will have a
lower adsorptive capacity than GAC. However, if an SOC enters a surface water
source periodically, PAC can be brought on-line on an as needed basis while
GAC systems generally remain on-line.
Treatability Studies
The treatability testing of PAC for SOC removal has consisted primarily
of bench scale studies, although some pilot and full scale evaluations have
also been performed. The details of these evaluations are presented below.
Bench Scale;
The EPA DWRD investigated the use of PAC in water treatment for several
SOCs using spiked Ohio River water (Miltner, 1989). Jar tests simulated
coagulation, flocculation and sedimentation. PAC addition was simulated by
the application of PAC stock slurries after the addition of the coagulant
during rapid mix. Stock slurries of PAC were prepared by adding weighed
amounts of commercially available carbon. The results of this study are
presented in Table 6-1. The results indicate that these pesticides are not
strongly sorbed to particulates, or do not complex with humic materials that
are in turn sorbed to particulates. PAC applied at dosages used for the
control of tastes and odors can be effective if moderate percent removal is
required.
Lettinga, et al. (1978) investigated the use of flocculated PAC in water
treatment for several solutes, including 2,4-D, at the Agricultural University
6-2
-------
TABLE 6-1
1
CONTROL OF SOCS USING POWDERED ACTIVATED CARBON
SOC
atrazine
atrazine
carbofuran
carbofuran
alachlor
alachlor
lindane
1indane
heptaghlor
2,4-D
si 1 vex
SOC
Concentration
ug/L
125
85.4
61.5
53.9
43.6
88.8
73.5
31.8
7.0
61.3
53.9
Percent Removal
PAC
Type
F4003
F40Q
WPH
WPH
F400
F400
WPH
WPH
WPH
WPH
WPH
PAC Dose, mg/L
5.7 8.6 11.4
45
70
.5 73
84
i9 79
53
69
50
16.7 17.1 22.8 25.7 28.5
64
64
75
80 86
59
95
88 95
86
69
81
33.3 34.2
82
84
90
74
97
97
83
77
Notes:
In jar test of spiked Ohio River water with 15-20 mg/L alum; 2
30 min flocculation; 60 min sedimentation, pH range = 7.5-8.3
2. Calgon WPH
3. Calgon Filtrasorb 400, 200 x 400 mesh
4. Single solute unless noted
5. With 98.4 ug/L linuron
6. With 69.1 ug/L linuron, 62.2 ug/L dinoseb, 77.6 ug/L benomyl
7. With 61.5 ug/L simazine
8. With 87.4 ug/L metolachlor
9. Acid form
-------
of Wazeningen, the Netherlands. Rate and equilibrium experiments were
performed to compare the rates of adsorption for flocculated and
non-flocculated carborK—N&ri-t—FND-A— 722- and Norit W-100 were the two types of
PAC which were utilized. The coagulants included anionic (Superfloc A-150),
nonionic (Superfloc N-100 and-Magnofloc R-351) and cationic (Superfloc C-100)
pqlyelectrqlytes. The flocculation procedure involved the addition of "a
freshly prepared 500 mg/L polyelectrolyte solution to a well-stirred 10,000
mg/L carbon slurry. The rate experiments were performed in 2-liter baffled
vessels. The adsorption equilibrium experiments were performed in batch,
closed 250-mL vessels. Accurately weighed amounts of carbon with a fixed
volume of adsorbate solution of known concentrations were subjected to a
contact time of 24 hours or longer. The results of the experiments revealed
that the 2,4-D loading on the flocculated carbon was higher than for
nonflocculated carbon.
Tests were also performed using a continuously or intermittently stirred
Upflow Flocculated Powered Carbon (UFPC) absorber.
The UFPC adsorber consisted of a vertical cylinder with a diameter of 7
cm and a height of 60 cm and filled with flocculated PAC. The solid phase
loadings for both the adsorption isotherm (QI) and UFPC adsorber (Qu) are
presented in Table 6-2. This data confirms that activated carbon effectively
absorbs 2,4-D.
Croll (1974) evaluated several treatment options for the removal of
acrylamide from water, including conventional treatment, oxidation with four
different oxidants, and PAC. In the PAC experiments, a Thames River water
sample was spiked with 6 ug/L of acrylamide and mixed with 8 mg/L of PAC. The
solution, which had a pH of 5.0, was mixed for 30 minutes but only achieved a
13 percent removal.
Baker (1983) evaluated the performance of conventional treatment in
combination with PAC at a water treatment plant in Bowling Green, Ohio.
Alachlor and atrazine were two of the contaminants which were monitored. The
conventional treatment involved alum coagulation, lime/caustic soda softening,
recarbonation and filtration. Chemical dosages were not reported.
The following results were obtained for the raw water from the Maumee River
and the plant finished water:
6-3
-------
Maumee River Finished Water Percent
Compound Concentration (ug/L) Concentration (ug/L) Removal
Alachlor 0.87 0.49 43
Atrazine 1.26 0.74 41
Notes:
1. Based on 5 sample analyses
2. Based on 6 sample analyses
The findings indicate that PAC was moderately effective for alachlor and
atrazine removal.
Aly and Faust (1965) evaluated several water treatment processes for the
removal of four 2,4-D derivatives and their parent compound, 2,4-DCP. The
four derivatives included the sodium salt of 2,4-D and the butyl, isoctyl, and
isopropyl esters of 2,4-D. Various amounts of AquaNuchar A, PAC were added to
1-liter solutions containing the five compounds at fixed concentrations. The
slurries were stirred rapidly at 25 C for 30 minutes. The adsorbent was then
removed by vacuum filtration. A summary of carbon dosage required to achieve
an effluent concentration of 0.1 mg/L is presented below.
Initial Carbon Dosage (mg/L)
Concentration
(mg/L)
10
5
3
1
The results indicate that the sodium salt of 2,4-D is less easily absorbed
than the 2,4-D esters. Overall, PAC was effective in reducing the
concentrations of all four 2,4-D derivatives.
Cohen, et al. (1960) examined the effectiveness of PAC for the removal of
several fish poisons, including toxaphene. The Aqua Nuchar A PAC was added in
varying amounts to fixed concentrations of toxaphene present in a nix of hard,
highly mineralized spring water and distilled water (in a 1 to 4 ratio). The
initial toxaphene concentration was 0.30 mg/L. The results of the isotherm
test are presented below:
Sodium
Salt
306
153
92
31
Butyl
Ester
165
82
49
15
Isoctyl
Ester
179
89
53
16
Isopropyl
Ester
150
74
44
14
6-4
-------
Notes:
TABLE 6-2
2,4-D SOLID PHASE LOADING
Experiment
Number
1
2
3
4
5
Initial
Concentration
(mg/L)
24
19
24
11.2
16.2
Flow
Rate
m/hr
2.6
2.4
2.4
4.8
4.8
Amount
of
PAC
(grams)
50
50
150
150
150
Solid Phase Load (mg/g)
C/C
1
79
74
106
98
105
=0.25
o
2
, 211
88
86
88
77
84
C/C
Qu
92
85
118
108
127
=0.5
o
21
97
95
97
88
92
C/C
Qu
121
93
128
126
139
=0.75
o
21
103
100
103
92
97
1. From upflow flocculated powdered carbon adsorber testing
2. Isotherm Testing
-------
Carbon Effluent Toxaphene
Concentration Concentration Percent
(mg/L) (mg/L) Removal
0 0.30 0
1.0 0.18 40
2.0 0.16 47
3.0 0.085 72
6.0 0.058 81
- 9.0- 0.014 95
Freundlich parameters of K = 160 mg/g and 1/n = 0.42 were obtained. The
results indicate that PAC is effective for toxaphene removal.
Pilot-Scale;
Robeck, et al. (1965) evaluated a number of water treatment processes for
pesticide removal. The pesticides that were studied included endrin, lindane,
and the butoxy ethanol ester of 2,4,5-T. PAC was tested for various initial
concentrations (1 to 10 ug/L) of pesticide in distilled water and Little Miami
(Southwestern Ohio) River water. The distilled water was spiked with the
proper concentration of pesticide, then PAC was added and mixed with the
water. The river water was used in a pilot plant consisting of a
constant-head tank, a 600-gallon pesticide mixing tank and two separate 20 gpm
process trains. Each process consisted of a rapid-mix tank, flocculator,
sedimentation tank, sand filter, coal filter, and two GAC beds (per train) .
PAC was added to the rapid-mix tank. The Little Miami River had the following
water quality:
Parameter Range
Turbidity (units) 5-250
Temperature (C) 2-27
pH (units) 7.3-8.5
Alkalinity (ppm as CaCO ) 85-310
Hardness (ppm as CaCO ) 130-330
COD (ppm) 5-35
Based on carbon adsorption isotherm data developed for the three pesti-
cides, the results of the pilot study are presented below:
6-5
-------
Compound
Endrin
Lindane
2,4,5-T ester
Water Type
Distilled
River
Distilled
River
Distilled
River
PAC Dosage
(mg/L)
Influent Concentrations (ug/L)
10
1
Effluent Concentrations (ug/L)
1.0
1.8
11.0
2.0
29.0
2.5
14.0
0.1
14
126
12
70
17
44
0.1
1.3
11.0
1.1
6.0
1.5
3.0
0.05
2.5
23.0
2.0
9.0
3.0
5.0
The river water required larger PAC dosages for similar influent
concentrations than did the distilled water due to the extra organic material
present in the water. This organic material competes with the pesticides for
adsorption sites- on the PAC. Based on these results, PAC appears to be an
effective process for endrin, lindane, and 2,4,5-T ester removal.
Full Scale;
The EPA DWRD has reported on the treatment of SOCs by PAC at water treat-
ment plants in Bowling Green and Tiffin, Ohio (Miltner, July 1985). The
results for the Bowling Green plant are presented in Table 6-3; the results'
for the Tiffin plant are presented in Table 6-4. The results indicate that
alachlor, atrazine and carbofuran were removed by PAC and percent removal
increased with increasing PAC dose.
Singley, et al. (1979) reported on the use of PAC at the Sunny Isles
Water Treatment Plant as a short-term solution for organics removal. This
treatment plant, one of three providing finished water to the City of North
Miami Beach, has a design capacity of 12.8 mgd but treats an average flow of
10 mgd. The plant is a conventional lime softening plant using three upflow
clarifiers. The East Drive Well Field is the source of raw water. In
September 1977, several complaints of pesticide-like taste and odor in the
finished water led to an extensive sampling program. The raw and finished
water contained at least 42 SOCs ranging in concentration from 0.01 to 73
ug/L, including the following compounds (with average concentrations in paren-
theses) .
- dichlorobenzene (0.2 ug/L)
- ethylbenzene (0.5 ug/L)
monochlorobenzene (0.8 ug/L)
toluene (0.3 ug/L)
- xylenes (0.2 ug/L)
6-6
-------
TABLE 6-3
TREATMENT OF SOCS BY POWDERED ACTIVATED CARBON
soc
Carbon dose =
alachlor
atrazine
DIA
simazine
Carbon dose =
alachlor
carbofuran
atrazine
DEA
simazine
BOWLING
1
Influent
Concentration
ug/L
33 mg/L Hydrodarco B
0.97
2.39
0.10
0.24
18 mg/L Hydrodarco B
8.21
1.26
8.11
0.24
0.37
GREEN, OHIO
Percent
Removal
94 ± 14
87 ± 4
100
100
62 ± 11
64 ± 16
67 ± 11
100
92 ± 13
Confidence
Level
99.9
99.9
99
99.8
99.9
99
99.9
99.9
99.9
Notes:
1. Influent to clarification process; carbon applied
2. DIA = deisopropyl atrazine (metabolite)
3. Removal also possibly affected by hyrolysis
4. DEA = deethyl atrazine (metabolite)
Sample
Days
6
6
5
6
6
6
6
6
6
-------
TABLE 6-4
TREATMENT OF SOCS BY POWDERED ACTIVATED CARBON
TIFFIN, OHIO
SOC
Carbon dose =
alachlor
carbofuran
atrazine
DEA^'
simazine
Carbon dose =
alachlor
atrazine
simazine
Concentration
(ug/L)
Percent
Removal
Confidence
Level
11 mg/L Calgon WPH
2
0
4
0
0
3.6 mq/L
1
2
0
.53
.39
.43
.08
.26
4
Calgon WPH
.49
.61
.10
41
59
41
76
63
36
38
63
± 6
± 29
± 8
± 25
± 20
± 6
± 1
± 7
99.9
98
99
98
99
99.9
99
99
Notes:
1. Applied to clarification process
2. Removal also possibly affected by hydrolysis
3. DEA = deethyl atrazine (metabolite)
4. Applied to filtration process
Sample
Davs
6
6
6
4
6
6
6
6
-------
Activated carbon was chosen as the most feasible solution to the organics
problem. Specifically, GAC treatment was recommended as a long term solution,
however, PAC was chosen as a short-term solution. Preliminary laboratory
isotherm studies indicated that PAC would be effective in attaining some
reduction in contaminant concentration. A full-scale study was authorized to
evaluate PAC while allowina the treatment plant to operate at full capacity.
PAC was added at the wellfield to maximize contact time and improve the
possibility of successful treatment. The pipeline from the wellfield to the
treatment plant is 24" inches in diameter and 16,500 feet long. It was de-
termined that a pipe velocity of 5 ft/sec would be required to keep the ICI
Hydrodarco-B PAC in suspension. Since this corresponded to a total wellfield
flow of 9 mgd, the average flow conditions of 10 mgd would be suitable.
The study evaluated the effectiveness of organic removal versus PAC
dosage. The three PAC dosages that were evaluated included 30, 15, and 7.5
mg/L. The PAC contact time was estimated to be approximately two hours,
including the time the water spent in the transmission line and in the upflow
clarifiers. The actual PAC concentrations varied from those that were
planned because of variations in plant flow and the difficulty of pacing the
PAC feed with the actual flow. The PAC feed dosages for successive two-day
periods were 7.9, 14.3, 26.6 and 7.1 mg/L. Increasing the PAC dosage
increased the removal of the SOCs. However, since the PAC dosage had less of
an impact on THM precursor removal, the low dosage of 7.1 mg/L was chosen for
the plant. The results gathered over a 14-month period (March 1978 to May
1979) are presented in Table 6-5. The results indicate that PAC treatment
ranged from being very effective to ineffective. Consistently good removals
were obtained for dichlorobenzene and xylene. Percent removals were
inconsistent for ethyIbenzene. moQcghlorobenzeng,. and toluene, possibly due to
short circuiting in _the_
Diffused Aeration
Diffused aeration represents another method of applying aeration
technology, which was found to be applicable for SOC removal. Diffused aera-
tion implements the principles of aeration less efficiently than packed column
aeration, however, diffused aeration may achieve removal of certain SOCs and
may have limited applicability in locations which have certain constraints
(e.g. hydraulic,_ space) . In addition to the information presented on diffused
6-7
-------
aeration, a brief discussion of bench scale evaluations of boiling is'
presented at the end of this section.
Process Description
Diffused aeration is often used to provide dissolved oxygen, particularly
in wastewater treatment. A typical diffused aeration system is illustrated on
Figure 6-1. Air stripping is accomplished with diffused-air type equipment by
injecting bubbles of air (usually compressed air) into the water by means of
submerged diffusers or porous plates. Ideally, diffused aeration is conducted
counterflow with untreated water entering the top of the contactor, treated
water exiting the bottom, fresh air entering the bottom, and exhausted air
exiting the top. Gas transfer may be improved by increasing basin depth,
producing smaller bubbles, improving contact basin geometry, or by using a
turbine to reduce bubble size and increase bubble holdup.
This type of aeration technique is adaptable to existing storage tanks
and basins. The air diffusers may be placed on the side of a tank to further
induce turbulence and to assist in gas transfer. If porous tubes or
perforated pipes are used, they may be suspended at about one" half of the
depth of the tank to reduce compression heads. When porous diffusers are used,
incoming air should be filtered carefully through an electrostatic unit or a
filter so as to minimize clogging. Porous plates are located at the bottom of
the tank. Static tube aerators have also been used in a variety of
applications and have provided adequate aeration when properly designed.
The design of air stripping equipment has been developed extensively in
the chemical processing industry for handling concentrated organic solutions.
The procedures found in the chemical engineering literature can be applied to
water treatment for SOC removals. The rate at which an SOC is removed from
water by diffused aeration depends upon the following factors:
Temperature of the water and the air
- Physical and chemical characteristics of contaminant
- Air-to-water ratio
- Contact time
- Available area for mass transfer
The first two factors are fixed by the liquid stream and the contaminant; the
last three are dependent upon the equipment and operating conditions and can
be evaluated in a pilot testing program. These design considerations are
6-8
-------
TABLE 6-5
PAC PERFORMANCE
Percent
Compound Influent Effluent Removal
Dichlorobenzene 0.08 0.05 38
93
88
98
95
Ethylbenzene 0.6 0.4 33
33
Concentrations
Influent
0.08
0.15
0.14
0.3
0.4
0.6
0.3
1.1
0.35
1.0
0.7
0.5
0.25
0.2
0.3
0.4
0.11
0.03
0.5
(ug/L)
Effluent
0.05
0.01
0.017
0.007
0.02
0.4
0.2
0.8
0.3
0.1
1.0
0.5
0.15
0.1
0.1
0.1
0.01
0.003
0.2
Monochlorobenzene 1.1 0.8 27
14
90
Toluene 0.5 0.5 0
40
50
67
Xylenes 0.4 0.1 75
91
90
60
-------
FIGURE 6-1
AIR SUPPLY
INFLUENT
DIFFUSER GRID
EFFLUENT
DIFFUSED AIR BASIN
-------
similar to those outlined in Section 5, Other Applicable Technologies, in
which packed column aeration was discussed. The major difference is the
substitution of contact time for the packing height parameter.
Treatability studies
Diffused aeration was evaluated in several bench scale studies involving
many of the more volatile SOCs as well as two of the non-volatile SOCs.
Bench-Scale;
The EPA DWRD has reported on the treatment of several SOCs by diffused
aeration (Miltner, December 1985b). Both distilled water and ground water
were spiked with SOCs and used in the bench scale evaluations. The
experimental apparatus was a countercurrent contactor with a stone sparger.
The water flowrate through the system was 0.76 L/min, which resulted in a 13
minute contact time. The results for the test runs with distilled water are
presented in Table 6-6; ground water results are presented in Table 6-7. The
results indicate that the more volatile SOCs can be removed by aeration, while
the less volatile compounds such as carbofuran and atrazine can not be
removed. In addition, the percent removal increased with increasing air to
water ratio.
Love and Eilers (1982) performed several bench-scale diffused aeration
tests to evaluate the removal of cis-l,2-dichloroethylene was from a contam-
inated ground water source in New Jersey. The glass column had a diameter of
4 cm (1.5 in) and a length of 1.2 m (4 ft) and equipped with a fitted glass
diffuser at the bottom. The countercurrent air and water flows were
controlled by rotameters. The column was operated at an air:water ratio of
4:1, a ten-minute contact time, and a water depth of 0.8 m (2.6 ft). The
average influent concentration of 0.5 ug/L was reduced to less than 0.1 ug/L,
a removal of greater than 80 percent. These results indicate that diffused
aeration can remove cis-l,2-dichloroethylene from drinking water.
Ruggiero Engineers (1984) conducted counter-currentT~ diffused aeration
testing on several organic compounds at Glen Cove, New York. Initial runs at
an air:water ratio as high as 30:1 yielded effective cis-1,2-dichloroethylene
removals. Greater than 50 percent removal was obtained for this compound even
at an air:water ratio as low as 5:1. In general, the best removals occurred
during the summer months when the water temperature was highest. Additional
6-9
-------
diffused aeration studies were conducted during a separate phase of the
project. The following results were obtained during the runs at a contact
time of 10 minutes.
cis-l,2-Dichloroethylene Percent
Concentrations (ug/L) Removal
Influent Effluent (%)
5:1 62 28 55
10:1 43 14 67
15:1 37 8.6 77
The results indicate that diffused aeration is effective for cis-1,2-
dichloroethylene removal, especially at higher air:water ratios.
Based upon the packed column results presented in Chapter 5 and the
diffused aeration results presented in this section, packed column aeration is
a more effective than is diffused aeration for the removal of volatile
synthetic organic chemicals from water. This could be attributed to the fact
that diffused aeration involves two transfer steps - air or oxygen is first
dissolved in water, then dissolved gases are transferred to the gas phase -
while packed column aeration only incorporates the second mechanism. A packed
column can also provide greater contact between uncontaminated air and the
contaminated water, allowing greater contaminant removals. Diffused aeration
can provide sufficient removals in some situations but is not as efficient as
packed column aeration.
Boiling
The EPA DWRD has reported on the treatment of several SOCs by boiling
(Miltner, July 1985). As the water temperature increases, the vapor pressure
of SOCs present in the water will also increase, thereby promoting
volatilization. The bench scale testing reported by the DWRD confirms that
the removal of volatile SOCs increases with increasing temperature. At a
temperature of 95~C, removals ranged from 25 to 57 percent for the more
volatile SOCs. Boiling for a period of ten minutes was required to achieve 99
percent removal or greater for the majority of the SOCs tested. Boiling was
not effective for the non-volatile SOCs which were tested due to the excessive
amount of energy that is required to heat water. Boiling may be an effective
6-10
-------
TRHLE 6-6
GCNTRCL OF 90Cs IN DISTILLED WAIER USING DIFFUSED AERKTICN
SOC
cis-1,2-dichlorDethylene
trans-1,2-dichlorcethylene
toluene
ethyl benzene
chlorobenzene
p-xylene
m-xylene
o-xylene
Henry's
Coefficient
(atm)
.ene 415
lylene 361
361
.361.
254
254
241
227
Influent
SOC
Concentration
(ug/L)
263
196
201
217
220
47
130
51
51
221
38
135
135
199
97
209
199
46
117
138
138
233
54
121
131
131
191
Percent Removal
Mr-to-Water Ratio
5:1
59
57
63
85
85
742
59
70
70
72
682
73
74
75
67
57
74
2
74
58
72
73
73
672
48
62
65
66
10:1
82
69
76
96
93
74
84
86
82
84
85
84
85
71
83
75
83
86
85
67
76
79
77
15:1
88
73
82
97
95
79
90
90
87
90
89
88
90
80
87
79
90
89
88
73
85
84
83
-------
TABIE 6-6
GCNIKCL OF SOCs IN D7SttU£T> WATER USING DIFFUSED AERATION (CONTINUED)
soc
1 , 2-^aichloropropane
o-dichlorobenzene
alachlor
carbofuran
atrazine
Henry's
Coefficient
(atm)
134
107
11
0.0005
0.0002
Influent
sec
Concentration
(ug/L)
233
125
260
139
79
34
55
Percent Removal
Air-to-Water Ratio
5:1 10:1
55 69
46 63
45 61
2
11
15:1
79
77
70
122
202
182
5
Notes:
1. Gountercurrent flow, stainless steel sparger, water flow rate = .076 L/min., 13 min
retention time
2. Denotes tests conducted using stone sparger
-------
TABLE 6-7
TREATMENT OF SOCS IN SPIKED GROUND WATER3
USING DIFFUSED AERATION
soc
1 , 2-dichloropropane
cis-1 , 2-dichloroethylene
trans-1 , 2-dichloroethylene
toluene
ethyl benzene
chlorobenzene
p-xylene
m-xylene
o-xylene
o-dichlorobenzene
ethylene dibromide
lindane
carbofuran
pentachlorophenol
atrazine
2,4-D3
silvex
Henry ' s Law
Coefficient
(atm)
134
415
361
361
361
254
254
241
227
107
54
0.021
0.0005
0.0003
0.0002
Influent
SOC Percent Removals
Concentration Air-to-Water Ratio
(ug/L)
122
189
124
108
113
119
103
107
120
132
125
107
127
92
120
132
77
15:1
77
84
92
87
88
85
88
84
82
52
50
2
0
0
0
0
0
Notes:
1.
2.
3.
Great Miami Aquifer, Ohio
Countercurrent flow, water flow rate
retention time
Acid form
= 0.76 L/min, 13 min.
-------
emergency treatment for volatile SOCs in a point of use application if the
system were properly vented to remove off gases.
Oxidation
Several oxidants are available for removing SOCs from drinking water,
including ozone, chlorine, chlorine dioxide, permanganate, hydrogen peroxide,
and ultraviolet (UV) light, either by itself or in combination with any of the
other oxidants. The mechanism for SOC removal by oxidation is the conversion
of an SOC into either intermediate reaction products or carbon dioxide and
water, which are the complete destruction products. Complete destruction is
not always possible because the intermediates which are formed may be more
resistant to further oxidation than the original SOC. In addition, these
intermediates may in some cases, be more toxic than the original SOC.
Ozonation has been the most widely tested oxidant for the removal of SOCs
from drinking water and, as such, will be discussed first. Additional oxida-
tion technologies which have been evaluated for SOC removal will be presented
after this subsection on oxidation. Since only limited data are available for
SOC removal via oxidation, further evaluations are required before oxidation
can be considered as an applicable technology.
Ozone-Process Description
Ozone was originally installed for disinfection purposes at a water
treatment plant in France at the beginning of the 20th century. Since then,
the number of ozone facilities for drinking water treatment has increased to
about 3,000 worldwide in 1987. Although ozone has been employed for many
years in Europe to improve drinking water quality, ozone technology in the
U.S. is just beginning to gain acceptance as a viable water treatment option.
Approximately 40 U.S. water treatment plants currently use ozone processes for
disinfection, color destruction, taste and odor control, or THM precursor
removal.
Recently, ozone has received more attention as a means of controlling
SOCs in drinking water. The use of ozone in the U.S. for this purpose
expected to increase in the future, spurred in part by changing regulations
and also by technological advances which have increased the knowledge and
understanding of ozone's capacity to remove organics from drinking water.
6-11
-------
'zone is the most powerful oxidant available for water treatment and
th* fore has a greater capacity to remove SOCs than do other oxidants. The
reaction mechanism of ozone with the organics in water is still under
investigation. Hoigne and Bader (1979) proposed an explanation for the
behavior of ozone in aqueous solutions. They suggested that at low pH, ozone
remains in solution directly and selectively oxidizes pollutant species. At
high pH, ozone decomposes at a fast rate (initiated by hydroxide ions) to
produce a variety of highly reactive intermediate species. These intermediate
radicals, although short lived and unselective, are even more potent oxidants
for some organics than molecular ozone. Two primary routes by which ozone
reacts with organic compounds in water are:
- Direct oxidation, involving selective attack of molecules by the
ozone .molecule
Indirect oxidation, or non-selective attack of organic molecules by
various free radicals.
The degree and rate of oxidation depend on several factors, including the
organic compounds to be oxidized, nature of competing substances present in
the water, ozone dosage, pH, alkalinity and contact time.
Fronk (1987a) investigated the effect of these factors on reaction
pathways and ozone's oxidation capacity. Several conclusions were derived
with respect to the results for three classifications of organic compounds:
alkanes, alkenes, and aromatics. Alkanes are aliphatic (straight-chain)
organics which are saturated, i.e. they contain no double bonds. DBCP and
1,2-dichloropropane are examples of SOCs in this category. Alkenes are
aliphatic organics which contain double bonds. Cis- and trans-l,2-di-
chloroethylene fall into this classification. Aromatics are benzene-like
compounds having unsaturation within a closed ring of carbon atoms. Benzene,
toluene and xylenes are examples of SOCs in this category.
Ozone is known to react at centers of unsaturation within a molecule;
therefore, alkanes would be expected to react with ozone to a lesser degree
the alkenes or aromatics. However, at pH values above 9.0, free radical
rou. ..3 dominate and the oxidation reaction is nonselective. The following
additional observations were made:
6-12
-------
- Alkenes and aromatics react readily over a wide pH range — implying
removals occur by both oxidation mechanisms.
- Alkanes are oxidized at high pH only — indicating oxidation by free
radical mechanisms only.
- Ozonation in distilled and ground waters are similar, except at
higher pHs, where radical scavengers such as bicarbonate ion may
limit the removal of alkanes in natural waters.
- Increased ozone dosages improve reactions for all compounds except
alkanes at low and neutral pH.
Increasing contact time does not appreciably enhance alkane
reactivity, whereas alkenes and aromatics are removed rapidly.
Ozone may also effect the removal of certain SOCs by oxidizing them into
smaller molecules which are amenable to aeration or bioactivated carbon
adsorption. The exact nature of ozone oxidation by-products are not known at
the present time and present some concerns regarding their potential toxicity.
Equipment
A diagram of the ozone treatment process is illustrated on Figure 6-2.
The major components of the system include an ozone production unit, a contact
basin, an ozone destruction unit and associated valves and piping. The ozone
production unit consists of gas handling, ozone generation, and cooling system
components. The contact basin is design is based upon the raw water flow and
required detention time. The ozone destruction unit eliminates any excess
ozone before discharging to the atmosphere.
Treatability Studies
The majority of ozone treatability studies for SOC removal to date
consist of bench scale evaluations. Ozone is typically applied to aqueous
solutions of individual SOCs as either a gas or as a solution of ozone in
water. The degree of SOC removal depends upon the type of SOC, the amounts of
ozone applied and reacted, the ozone demand, pH, degree of mixing, and contact
time.
Bench Scale;
The EPA DWRD has reported on the treatment of several SOCs by ozone
oxidation (Miltner and Fronk 1985b; Fronk 1987a). Both distilled water and
ground water were spiked with SOCs and used in the bench scale evaluations.
6-13
-------
The experimental apparatus was a countercurrent contactor with a stone'
sparger. The water flowrate through the system was 0.76 L/min, which resulted
in a 13 minute contact time. The results for distilled water are presented in
Table 6-8; ground water results are presented in Table 6-9. The results
indicate that ozone was effective in removing all the compounds tested, with
the exception of 1,2-dichloropropane, and ethylene dibromide (1,2
dibromoethane) which are saturated aliphatic compounds. Only moderate
removals of these compounds were achieved by high ozone dosages at pH valves
above 9.0 As discussed earlier in this section, saturated aliphatic compounds
generally are not oxidized by ozone. In the testing with spiked ground water,
the dichlorobenzenes (ortho and meta) were more resistant to ozone oxidation.
The percent removal of ortho dichlorobenzene was 64 percent at an ozone dose
of 10.1 mg/L. Removals of other SOCs generally exceeded 84 percent at this
ozone dose. For most of the SOCs tested, percent removal increased with
increasing ozone dosage.
Hoigne and Bader (1983) have performed extensive bench scale evaluations
of ozone on a variety of SOCs. In these studies, ozone solutions were appliedt
to aqueous solutions of individual SOCs. Decomposition of ozone in water was
inhibited by maintaining a low pH (generally at pH = 2) and by the addition of
buffering agents. At this low pH, the principal oxidation mechanism was a
direct reaction rather than the free radical reaction which occurs at neutral
or alkaline pH.
Hoigne has developed reaction rate constants for the rate of disappear-
ance of ozone in aqueous SOC solutions by using high SOC concentrations to
ensure that the reactions were not limited by SOC concentration. SOC
concentrations used in this study were generally on the order of 0.2 milli-
moles/L (10 moles/L) . This corresponds to a concentration of 21 mg/L for
m-xylene. Ozone disappearance followed first order kinetics, that is the rate
of ozone disappearance was proportional to the existing ozone concentration.
These reaction rate constants indicate the speed at which ozone reacts with an
excess concentration cf the individual SOCs. Reaction rate constants
developed in this manner are summarized in Table 6-10.
Hoigne has estimated that the reaction rate constants presented above
should be greater than 100 L/moles-sec to achieve approximately 25-50 percent
6-14
-------
FIGURE 6-2
RAW
WATER
CONTACT
BASIN
OZONE
PRODUCT
WATER
OZONE OXIDATION
PROCESS SCHEMATIC
-------
TABLE 6-8
TREATMENT OF SOCS IN DISTILLED WATER USING DONATION
SOC
j , t , j . j
Ozone Ozone
Concentration Dose Percent. Dose Percent.
SOC pH
jl kones
1 , 2-dichloropropane 3.95
9.85
10.10
aklenes
cis-1, 2-dichloroethylene 3.95
9.85
Lrans-1 , 2-dichloroethylene 4.30
9.10
aromatics
toluene 4.20
4.60
9.15
9.20
(ug/L)
314
237
267
272
257 .
89
267
234
234
236
217
238
164
201
167
158
159
190
173
258
190
149
e, c.
(mg/L) Removal (mg/L) Removal
3.7 0
6.0 6
0.5 0
0.4 0
1.6 54
3.7 90
6.0 89
0.5 99
0.4 82
0.4 100
6.4 100
1.4 100
•
1.7 70
1.5 49
5.7 81
1.7 72
« J . 0
Ozone
Dose Percent,,
2
(mg/L) Removal
11.4 87
19.1 95
11.4 94
8.4 95
8.4 98
12.0 98
11.7 98
11.5 98
-------
TABLE 6-8
r;oc
ethylbenzene
chlorobenzene
p-xylene
in-xy lene
TREATMENT OF SOCS IN DISTILLED WATER USING OZONATIQN.1 (Continued)
3,4
SOC Ozone"'' OzoneJ'J Ozone"*'6
Concentration Dose Percent Dose Percent Dose
pH (ug/L) (mg/L) Removal (mg/L) Removal (mq/L)
4.20
4.50
4.60
9.15
9.20
9.20
4.30
9.10
10.10
4.50
9.20
4.20
4.50
4.60
9.15
9.20
9.20
164
64
195
132
208
105 .
126
196
73
107
226
179
240
204
170
75
59
100
120
68
175
76
208
169
243
109
132
209
77
145
1.7 69
-| «-\ n
12.0
12.0
1.5 47
5.7 79 11.7
2.5 93
91
. 1
1.7 70
13.5 •'•
11.5
8*
.4
0.4 86
6.4 98
1.4 97
8*
.4
1.6 90 19.1
2.0 98
2.5 95
9.1
13.5
1.7 70
12.0
12 .0
1.5 55
5.7 84 11.7
2.5 y5
9. 1
0.7 72
13.5
11.5
Percent
Removal
94
95
96
95
91
93
99
99
100
97
98
99
97
97
97
98
97
-------
TABLE 6-8
TREATMENT OF SOCS IN DISTILLED WATER USING OZONATION1 (Continued)
SOC
o-xylene
o-dichlorobenzene
others
carbofuran
atrazine
PH7
4.20
4.60
9.15
9.20
4.50
9.20
3 4
SOC Ozone '
Concentration Dose
(ug/L) (mg/L)
166 1.7
194
190 1.5
265
197 1.7
164
95
132 2.5
148
97
74
27
55
3,5 n 3,6
Ozone Ozone
Percent,, Dose Percent,. Dose
2 2
Removal (mg/L) Removal (mg/L)
71
12.0
54
5.7 84 11.7
73
11.5
12.0
80
9.1
13.5
8.6
4.6 99
7.1 70
Percent
Removal
91
98
97
91
89
90
100
alachlor
139
6.9
95
Notes:
1. Countercurrent flow, stone sparger, water flow rate = 0.76 L/min, 13 min contact time
2. Percent removal corrected for gas stripping
3. Ozone dose (mg O /L water) = applied ozone (mg O /L water) - off gas (my O /L water)
4. Applied ozone = 0.5 to 2.5 mg 0 /L water
5. Applied ozone = 5 to 8 mg O /L water
6. Applied ozone = 18 to 24 mgo /L water
7. pll range = 5.8 to 7.4, unless adjusted to listed value
-------
TABL
CONTROL OF SOCS IN SPIKED WATER USING OZONATION
1,2
soc
alkanes
ethylene dibromide
1,2-dichloropropane
lindane
alkenes
cis-1,2-dichloroethylene
trans-1,2-dichloroethylene
aromatics
toluene
ethyl benzene
chlorobenzene
p-xylene
Concentration
pH (ug/L)
9.95
9.75
9.95
10.10
125
111
105
122
112
98
79
107
189
165
124
103
98
108
7
113
42
119
113
76
86
103
44
Ozone '
Dose
0.9
1.6
0.9
1.6
1.7
2.1
0.9
1.0
2.1
1.6
2.1
1.6
1.6
2.1
1.6
Percent- Ozone '
Removal Dose
6.0
8
11
6.0
8
7
3.0
7 6.8
93
3.5
6.0
100
100
74
80
73
81
6.0
2.7
3.0
96
84
87
3.6
Percent- Ozone
Removal Dose
9
8.6
18
8.6
14 17.0
19
10.1
78 19.0
100
8.6
10.1
9.4
10.1
9.4
84
47
62 17.0
19.1
10.1
9.4
Percent-
Removal
16
24
42
87
98
100
91
100
90
100
91
100
93
100
-------
TABLED
CONTROL OF SOCS IN SPIKED WATER USING OZONATION (Continued)1'2
soc
m-xylene
o-xylene
o-dichlorobenzene
others
carbofuran
atrazine
alachlor
silvex
2,4-D9
pentachlorophenol
Notes:
Concentration
pH (ug/L)
107
46
120
60
9.75 73
132
96
9.75 108
127
117
145
77
132
42
Ozone '
Dose
2.1
1.6
2.1
1.6
2.1
1.6
1.6
2.4
1.5
Percent-
Removal
83
93
82
89
57
77
100
30
58
3,5 _ n 3,6
Ozone Percent- Ozone
Dose Removal Dose
10.1
9.4
10.1
9.4
3.5 71 19.0
10.1
9.4
3.5 36 19.0
7.5 96
2.8 49 8.6
2.6 79 9.3
8.5
8.1
2.8 99 8.6
Percent-
Removal
93
100
93
100
89
64
98
74
76
96
85
79
99
1. Great Miami Aquifer, Ohio
2. Countercurrent flow, stone sparger, water flow rate = 0.76 L/min, 13 min contact time
3. Ozone dose (mg 0 /L water) = applied ozone (mg O /L water) - off gas (mg 0 /L water)
4. Ozone dose < 2.4 mg 0 /L water
5. Ozone dose = 3.0-7.5 mg 0 /L water
6. Ozone dose > 8.1 mg 0 /L water
7. Percent removal corrected for gas stripping
8. pH range = 7.6 to 8.2, unless adjusted to listed value
9. Acid form
-------
TABLE 6-10
OZONE REACTION RATE CONSTANTS
SOC
Styrene
trans-1,2-Dichloroethylene
cis-1,2-Dichloroethylene
p-Xylene
m-Xylene
o-Xylene
Ethylbenzene
Toluene
Chlorobenzene
Tetrachloroethylene
SOC
Cone,
1
(mM)
0.007
hylene 0.03-0.1
lene 0.06-0.2
0.2-0.5
0.2-0.5
0.03-0.8
0.25-1
0.4-4
0.8-3
0.7
£H
2
2
2
2
2
1.
2
1.
2
2
7-5
7
Reaction Rate
Constant
(L/Mole-sec)
300,000
5,700
800
140
94
90
14
14
0.75
0.1
Note:
1. millimoles/L (10 moles/L)
-------
breakdown in a ten minute contact time at an ozone dosage of 0.5 mg/L.
However, free radical reactions that may occur at higher pH values have not
been considered.
Legube (1983) has investigated the mechanism of the reaction of ozone
with soluble aromatic pollutants, including ethylbenzene, monochlorobenzene
and styrene. The formation of breakdown products was also measured during
these studies. Ozone gas was introduced into a 3 liter bubble column with
solution recirculation. Analysis of ozone in the off gas permitted
calculation of the ozone demand (ozone consumed/SOC removed) for each of the
compounds. The removal attributable to air stripping was also assessed in
separate experiments by bubbling air through the column at the same flowrate
as ozone. Ethylbenzene and monochlorobenzene and consequently the ozone
demand were both significantly removed by air stripping could not be estimated
for these two SOCs. The results for the oxidation of styrene are presented
below:
-4
Initial Styrene Concentration 1.1 x 10 moles/L (11 mg/L)
pH 5.0
Ozone Application Rate 197 mg/hr at 12.8 L/hr
Ozone Demand 0.9 moles ozone/mole styrene
(at zero percent
styrene remaining)
Styrene oxidized to benzaldehyde and hydrogen peroxide, which might further
react to form benzoic acid.
Gilbert (1979a) summarized the results from a number of researchers on
the ability of ozone to remove several SOCs from drinking water. The results
of this summary for the SOCs of concern are presented in Table 6-11. The
results indicate that dichlorobenzene and heptachlor were completely removed
by oxidation while heptachlor epoxide was only partially removed at an applied
ozone dose of 17 ppm. Lindane was not appreciably removed until very high
levels of ozone were applied. Neither heptachlor epoxide nor lindane appear
amenable to ozonation. No assessment of the impact of air stripping was
provided.
Buescher (1964) evaluated the effect of several oxidants, including
ozone, on the removal of lindane from drinking water. Ozone gas was bubbled
into aqueous solutions of lindane in a pyrex pipe with a diameter of 3 in and
6-15
-------
a length of 4 ft. The solutions were prepared by spiking distilled, deionized
carbon filtered water and two river water samples with lindane. Air stripping
had no effect on lindane removal. The ozone absorbed into solution was
approximately ten percent of the.ozone applied. The results of the testing
are summarized below:
Distilled River Sample 1 River Sample 2
Initial Lindane Concentration (mg/L) 8 2.2 0.55
Ozone Application Rate (mg/hr) 840 840 840
Total Ozone Applied (mg) 1,900 950 1,200
Lindane Removal (percent) 75 90 95
These results agree with the previous work reported by Gilbert, i.e. high
doses of ozone are required to remove lindane. Since lindane is a substituted
cyclohexane with.no sites of unsaturation, only slight reactivity toward ozone
is expected for the direct oxidation mechanism. The effect of pH was not
investigated.
Yocum (1978) evaluated the oxidation of styrene by ozonation using a 20
liter stirred tank reactor with ozone fed as a gas. The test conditions and
results are summarized below:
Initial Styrene Concentration 130 mg/L
pH 5
Ozone Application Rate 150 mg/min at 11.5 L/min
Ozone Demand 1.9 mole ozone/mole styrene
(at zero percent
styrene remaining
Styrene was rapidly oxidized to benzaldehyde while further breakdown was
slower and dependent upon pH and temperature. This was consistent with
Legube's results. However, the estimated ozone demand was about twice that
found by Legube.
Additional Oxidation Techniques
In addition to ozone, additional oxidants have been evaluated for remov-
ing SOCs from drinking water, these include potassium permanganate, chlorine,
chlorine dioxide, hydrogen peroxide and ultraviolet (UV) light. Advanced
oxidation processes (AOPs) involving UV light and hydrogen peroxide, UV light
and ozone, and ozone and hydrogen peroxide have also been tested. AOPS are
defined as those oxidation techniques which involve the generation of hydroxyl
radicals in sufficient quantity to affect water purification. Based upon
6-15
-------
TABLE 6-11
SOC REACTIVITY
SOC
Dichlorobenzene
•leptachlor
ieptachlor epoxide
Lindane
Lindane
Lindane
Lindane
Initial Ozone Ozone
Concentration Dose Consumption
(mg/L) (mg/L) (mg/L)
30
2
2
2
0.04-0.1
0.01
0.05
NR
17
17
17
0.4-3
11
149
60
NR
NR
NR
NR
NR
97
Percent
Degredation
100
100
26
0
0
10
100
source: Gilbert 1979
flR - Not Recorded
-------
bench scale results these additional oxidation techniques have been evaluated
for removing only a few of the SOCs from drinking water. Again, it is noted
that an evaluation of breakdown- products of any oxidation process should be
made before considering oxidation for SOC removal.
Potassium Permanganate
The EPA DWRD has reported on the treatment of several SOCs by potassium
permanganate oxidation (Miltner, December 1985). The results of bench scale
testing using spiked distilled water are presented in Table 6-12.
Permanganate dosages ranged from 8.7 to 11.4 mg/L and reaction times ranged
from 22 to 29 hours. Trans- and cis-l,2-dichloroethylene, styrene, and
heptachlor appear to be amenable to permanganate oxidation. Removals in
excess of 84 percent were achieved for these four SOCs.
Potassium permanganate was used to oxidize trans and cis 1,2 di-
chloroethylene in bench scale testing using filtered Ohio River water and
ground water from Landsdale, Pennsylvania. The results of this study are
summarized in Table 6-13. These results indicate that the trans isomer is
oxidized more rapidly than the cis isomer for similar permanganate dosages.
The degree of removal for the cis isomer is also highly dependent on
permanganate dose. Permanganate dosages of 0.5 and 2 mg/L achieved 10 and
80 percent removals, respectively, at the cis isomer at an initial
concentration of 388 ug/L after 24 hours.
Chlorine
In bench scale testing using spiked Ohio River water, chlorine did not
effectively oxidize alachlor, atrazine or carbofuran (Miltner, January 1989).
Chlorine dosages ranged from 3 mg/L and 6 mg/L, and reaction times ranged from
two to six hours. These results are presented below:
Concentration Free Chlorine (mg/L)
Pesticide
Alachlor
Atrazine
Carbofuran
(ug/L)
31
65.8
50.0
Dose
6
6
3
Residual
4.9
1.3
1.2
Time
(hr)
5.83
5.33
6
Percent
Removal
- 5
2
-11
Chlorine Dioxide
In bench scale testing using spiked Ohio River water, (Miltner, January
L989) alachlor, atrazine, and carbofuran were not oxidized by chlorine
6-17
-------
dioxide at dosages of 1.5 mg/L to 6.0 mg/L and at reaction times ranging from
two to six hours. A summary of the results are presented below:
Concentration Free Chlorine (mg/L)
Pesticide (ug/L)
Alachlor
Atrazine
Carbofuran
Hydrogen
61
65.8
50
Peroxide
Dose
3
6
1.5
Residual
1.9
3.6
1
Time
(hr)
2.5
6.25
6
Percent
Removal
9
10
- 3
The EPA ODW has reported on the treatment of several SOCs by hydrogen
peroxide oxidation (Miltner, December 1985b). The results of bench scale
testing using spiked distilled water are presented in Table 6-14. Hydrogen
peroxide dosages ranged from 7.9 to 12.4 mg/L and reaction times ranged from
21 to 26.5 hours. None of the SOCs which were tested appeared to be amenable
to hydrogen peroxide oxidation.
UV Light
The EPA DWRD has reported on the treatment of several SOCs by UV light
oxidation (Miltner, December 1985). The results of bench scale testing are
presented in Table 6-15. UV light effectively removed all of the SOCs which
were evaluated and removals increased with increasing contact time. Removals
in excess of 95 percent were achieved for all the SOCs which were evaluated at
a contact time of five minutes.
UV/Hydrogen Peroxide
The EPA DWRD has reported on the oxidation of several SOCs by UV light in
combination with hydrogen peroxide (Miltner, July 1985). The results of bench
scale testing are presented in Table 6-16. The results of UV light alone as
well as with hydrogen peroxide provided a basis for the comparison of the
effectiveness of UV light and hydrogen peroxide. The removal of toluene from
spiked distilled water and cis-l,2-dichloroethylene from ground water improved
with the addition of hydrogen peroxide. No noticeable difference in
performance was observed for the other SOCs which were evaluated.
UV/Ozone
UV catalyzed ozonation has been found to oxidize certain organic
compounds more rapidly than ozonation alone. However, this technology is
still in the developmental stage.
6-18
-------
TABLE 6-12
TREATMENT OF SOCS IN DISTILLED WATER WITH PERMANGANATE
SOC
trans-1 , 2-dichloroethylene
cis-1 , 2-dichloroethylene
chlorobenzene
o-dichlorobenzene
1 , 2-dichloropropane
ethylene dibromide
toluene
styrene
ethyl benzene
o-xylene
m-xylene
p-xylene
alachlor
carbofuran
carbofuran
lindane
silvex
methoxychlor
2,4-D
heptachlor
Concentration
(ug/L)
140
241
107
139
154
248
171
140
197
139
134
156
58
109
37
100
10
24
102
24
Mn04~
(mg/L)
10
10
11.4
11.4
10
10
10
10
10
10
10
10
10
10
10
10
8.7
10
8.7
10
1
Time
(Hours)
22.75
22.75
28.75
28.75
22.5
24
22.75
24
22.75
22.75
22.75
22.75
22.33
(2)
(2)
22.5
24
22.5
24
22.5
Percent
Removal
100
98
3
4
0
7
11
93
10
12
13
5
-22
32
13
-22
9
-13
6
84
Notes:
1. Reaction stopped with thiosulfate or sulfite
2. Reaction stopped by SOC extraction at approximately 24 hours
-------
TABLE 6-13
TREATMENT OF TRANS AND CIS 1,2-DICHLOROETHYLENE
WITH PERMANGANATE
Percent
SOC (ug/L) (mg7L) (hrs) Removal
Ohio River
trans 109 2 1 95
100
cis 163 218
25
65
Landsdale, PA
cis .388 2 1 15
30
80
cis 388 0.5 1 5
6
10
Concentration
(ug/L)
109
163
388
388
MnO -
(mg/L)
2
2
2
2
2
2
2
2
0.5
0.5
0.5
Time
(hrs)
1
4
1
4
24
1
6
24
1
6
24
-------
TABLE 6-14
TREATMENT OF SOCS IN DISTILLED WATER WITH HYDROGEN PEROXIDE
soc
cis-1 , 2-dichlorethylene
trans-1 , 2-dichloroethylene
1 , 2-dichloropropane
ethyl benzene
carbofuran
toluene
o-xylene
m-xylene
p-xylene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
methoxychlor
alachlor
2,4-D
silvex
Notes ;
1. Reaction in dark
2 . Reaction stopped
3 . Reaction stopped
4 . Acid form
Concentration
ug/L
213
107
201
161
126
' 80
73
109
37
79
93
47
141
129
49
98
231
124
206
24
58
85
7.9
at 20 C
with thiosulfate or
by SOC extraction at
H2°2
mg/L
8.5
8.5
8.5
7.9
7.9
8.1
8.0
10.0
10.0
11.0
12.4
11.0
8.1
8.0
11.0
12.4
8.5
8.5
10.0
10.0
10.0
9.1
9.1
sulfite
approximately
Time
Hours
25
23.5
25
21
21
24
24
(3)
(3)
26
26.5
26
24
24
26
26.5
25
23.5
24
22.5
22.33
24
24
24 hours
Percent
Removal
-9
-2
-2
-11
-2
11
-6
3
2
20
-24
14
11
-5
19
-2
-6
2
-13
-16
-6
10
7
-------
TABLE 6-15
TREATMENT OF SOCS BY ULTRAVIOLET IRRADIATION
soc
cis-1 , 2-dichloroethylene
cis-1 , 2-dichloroethylene
toluene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
SOC
Concentration
(ug/L)
47. 53
53.0
51.7
10.2
4.0
13.2
Contact
Time
(min)
2.25
1.5
2.25
5.0
2.25
1.5
2.25
5.0
1.5
2.25
5.0
1.5
2.25
5.0
Percent
Removal
73
87
94
95
69
93
100
100
100
100
100
61
80
100
Notes:
1.
2.
3.
flow-through cell; 28°C; UV intensity J85 uwatt/cm at cell wall
Testing performed in distilled water unless otherwise noted.
Elkhart, Indiana ground water.
-------
TABLE 6-16
TREATMENT OF SOCS BY ULTRAVIOLET IRRADIATION
AND HYDROGEN PEROXIDE
SOC
cis-1,2-dichloroethylene
cis-1,2-dichloroethylene
toluene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
SOC
Concentration
(ug/L)
53.0
47.5 J
51.7
10.2
4.0
13.2
Percent
Removal
by UV
94
73
69
100
100
80
H2°2
Concentration
(mg/L)
10
8.8
10
10
10
10
Percent
Removal
by
94
92
100
99
100
78
2.
3.
flow-through cell; 2.25 min contact time; 28°C; UV intensity 85
uwatt/cm at cell wall.
Testing performed in distilled water unless otherwise noted.
Elkhart, Indiana ground water.
-------
Arisman (1980) evaluated the use of UV/ozone for the removal of PCB at
the General Electric Capacitor Products Department in Hudson Falls, New York.
A 75 gallon pilot plant with thirty 40 watt lamps was used to treat industrial
effluent containing PCBs. Ozone- gas was diffused through the unit by gas
spargers. A summary of the results of this study are presented below:
Flowrate 0.8-3.5 L/min
Influent Concentration 7-42 ug/L
Effluent Concentration 0-4.2 ug/L
No other effluent characteristics were given, nor was the effectiveness of
UV/ozone compared to the effectiveness of ozone or UV alone.
Ozone/Hydrogen Peroxide
Bench scale tests for the removal of tetrachloroethylene (PCE) and
trichloroethylene (TCE) were conducted by Glaze and Kang, 1988. Batch tests
were run in a 70 liter reacter spiked with approximately 50 ar.d 500 ug/L of
PCE and TCE, respectively. The initial alkalinity of the source water was
200 mg/L as CaCO and the TOC was 1.1 mg/L. The results of the ozone versus
ozone/hydrogen peroxide system are shown below:
Dosage Required for 95 Percent
Removal of TCE and PCE
Ozone (mg/L) Hydrogen Peroxide (mg/L)
Process TCE PCE TCE PCE
Ozone 9 33 00
Ozone/Hydro- 4 12 28
gen Peroxide
Notes:
I. Ozone dosage 15 mg/min, pH -8.0
2. Ozone dosage 15 mg/min, Hydrogen Peroxide dosage - 10 mg/min.
Ozone and hydrogen peroxide accelerates the oxidation of TCE by a factor of
two to three and the oxidation of PCE by a factor of two to six depending on
the ozone dosage. Due to an apparent mass transfer effect, increasing the
hydrogen peroxide dosage rate beyond a certain level does not increase the
oxidation rate of TCE and PCE.
6-19
-------
Pilot scale studies were conducted by Aieta, et. al., 1988 to demonstrate
the removal of PCE and TCE on a continuous basis. A clear acrylic pilot ozone
contactor column with an ID of 7.5 inches and height of 75 inches was used. A
four stage turbine mixer was used- in the column, and each turbine stage was
baffled by stators attached to the column. The gas turbine was driven by a
variable speed drive mixer with a G value of 165 sec . Ozone entered the
reacter through a 4.5 inch diameter fine bubble air stone, . The results of
the studies are presented in Table 6-17. This pilot study indicated that an
optimum hydrogen peroxide to ozone dosage ratio is approximately 0.4 to 0.5 by
weight. PCE and TCE were reduced by 40 to 90 percent throughout the study.
The studies presented above suggest that oxidation could be a useful
technology for the removal of SOCs from drinking water. Current information
on the necessary reaction conditions and kinetics as well as potential
breakdown products is inadequate. The applicability, reliability and
cost-effectiveness of oxidation are unknown until more detailed information is
available. Further research is needed in this area before oxidation can
become an applicable method for removing SOCs from drinking water.
Reverse Osmosis
Reverse osmosis (RO) is a technology for which limited experimental data
is available for the removal of SOCs from drinking water. Additional
evaluations of this technology for SOC removal will be required to assess the
suitability of RO for water treatment applications.
Process Description
Reverse osmosis has been used primarily for removing total dissolved
solids from water and for desalination of seawaters. The reverse osmosis
process uses a specially prepared membrane which permits the flow of water
through the membrane while selectively rejecting the passage of salts
dissolved in the feed water. This semipermeable membrane acts as a barrier to
the salt but not to water. A high hydraulic pressure on the feed water side
produces a pressure gradient which enchances the water flow through the
membrane. This pressure gradient must be greater than the osmotic pressure of
the feed water. Only a portion of the feed water passes through the membrane
6-20
-------
TABLE 6-17
RESULTS OF OZONE AND HYDROGEN PEROXIDE PILOT STUDY
Alkal inity
mg as CaCO,/L
3 —
268
270
270
NA
268
271
273
NA
NA
NA
275
275
275
270
NA
270
272
266
270
268
Notes:
1 . Contact
2. NA means
Influent
TOC
mg/L
(0.1
<0.1
<0.1
NA
(0.1
(0.1
(0.1
NA
NA
NA
(0.1
(0.1
(0.1
(0.1
NA
(0.1
(0.1
(0.1
(0.1
(0.1
Time was
data was
TCE (ug/L)
pH
7.25
7.55
7.30
7.25
7.50
7.55
7.55
7.35
7.30
7.35
7.50
7.45
7.30
NA
7.50
7.50
7.45
7.30
7.45
7.30
15 minutes.
not analyzed.
Influent
142
132
117
122
123
140
143
106
133
136
107
128
130
136
133
125
136
123
114
130
Effluent
40
39
18
17
34
20
12
8.5
6.3
5.6
7.4
9
24
11
24
31
27
20
57
42
Percent
Removal
72
90
85
86
72
86
92
92
95
96
93
93
82
92
82
75
80
84
50
68
PCE (ug/L)
Influent
15
'. 14
12
13
14
14
16
10
14
14
12
15
13
15
14
14
15
12
11
14
Effluent
6.3
5.5
3.1
3.1
4.9
3.8
3.0
2.0
1.7
1.7
2.3
2.5
3.9
2.8
5.0
5.1
4.7
3.4
6.5
5.9
Percent
Removal
58
61
74
76
65
73
81
80
88
88
' 81
83
70
81
64
64
69
72
41
58
-------
as recovered product water. The remainder washes the rejected salts from the
membrane surfaces and is discharged as a concentrated stream.
While RO primarily has been used in desalination, it has been used to
remove certain SOCs generally those whose molecular weights are greater than
120, from drinking water. This removal may not be due to rejection, but
possibly to SOC adsorption onto the membrane. Continued adsorption may lead
to membrane .poisoning, and consequently membrane replacement, because SOC
desorption is generally difficult and usually entails destruction of the
membrane. In addition, membrane leakage due to sporadic desorption and/or
permeation has been shown to occur.
The performance of an RO system for SOC removal depends upon a number of
factors including pH, turbidity, iron/manganese content of the raw water, and
membrane type. Pretreatment is sometimes required to prevent fouling of the
membrane system. Design of a pretreatment system is dependent upon the
quality and quantity of the feed water source. Pretreatment for reverse
osmosis may include one or more of the following: pH adjustment, filtration
and addition scale prevention chemicals. Existing treatment plants may
already provide much of the pretreatment required, for example,
coagulation/filtration for highly turbid surface waters or iron removal for
well waters. Reverse osmosis may be particularly appropriate for small
systems where the total volume of waste concentrate is low.
Blending of treated water and raw water to produce a mixed finished water
of acceptable quality may be a factor in selecting a reverse osmosis system
because reverse osmosis systems generally produce high quality water.
Blending, while site specific, is more economical than treating all of the raw
water. The fraction of the raw water to be treated will depend upon the SOC
removal efficiency of the selected reverse osmosis membrane and the SOC
concentration in the raw water.
Equipment
A typical process schematic for a reverse osmosis treatment plant is
illustrated on Figure 6-3. The major components of this system include:
1. Provision for prefiltration including polymer feed system, provi-
sions for backwashing and backwash water storage
2. Storage and feed facilities for pH and scale control
6-21
-------
3. Reverse osmosis unit
4. Provisions for brine or wastewater storage and disposal or treatment
5i Disinfection
6. Finished water storage
Treatability Studies
Most of the available treatability information on reverse osmosis
pertains to bench-scale applications. However, one full-scale application is
also discussed. Various operating conditions and reverse osmosis membranes
have been employed in the different studies which are briefly summarized
below.
Bench Scale;
The EPA DWRD has reported the performance of cellulose acetate, polyamide
and thin-film-composite membranes for removing certain low molecular weight
SOCs (Fronk, 1987b). The results of bench scale testing are presented in
Table 6-18; the operational conditions are summarized in Table 6-19. One thin
film composite membrane type appeared to be more effective than the other
two membrane types, achieving removals in excess of 84 percent for EDB and
chlorobenzene. Thin-film-composite membranes removed volatile organics more
effectively than traditional cellulose acetate or polyamide membranes. It has
been noted, however, that the recovery of product water for all the membranes
which were evaluated was low, ranging from 5 to 18 percent.
The EPA DWRD also reported on bench scale reverse osmosis testing in
Suffolk County, New York (EPA-2). The results of these evaluations are
presented in Table 6-20. Removals exceeding 94 percent were achieved for
aldicarb sulfoxide, aldicarb sulfone (metabolites of aldicarb), and
carbofuran. Recovery of product water again was poor; the 50 percent recovery
achieved by the nylon amide membrane, was the highest of all the which were
membranes evaluated.
Chian et al. (1975) evaluated a cellulose acetate membrane and a
cross-linked polyethylenimine (NS-100) membrane for organics removal. In
addition to the membranes, the system consisted of a test cell with 150 mL of
water with an atrazine concentration of 1.102 mg/L and a pump capable of
providing 600 psi for the process. During test runs, the cell was pressurized
6-22
-------
pH AND SCALE CONTROL
RAW WATER PUMPNG
HIGH PRESSURE
PUMP
n
IDGE Lc
I
CARTRIDGE
FILTRATION REVERSE
OSMOSIS
FILTER BACKWASH PUMP
WASHWATER
SURGE BASIN
REVERSE OSMOSIS TREATMENT PLANT
WASTE DISPOSAL
CLEARWELL
WATER STORAGE
O
c
00
m
o>
•
w
-------
TABL
REMOVAL OF SOCs BY VARIOUS REVERSE OSMOSIS MEMBRANES
SOCs
1,2-Dichloropropane
Cis-1,2-dichloroethylene
Trans 1,2-dichloroethlene
Toluene
Ethylbenzene
O-xylene
P-xylene
Chlorobenzene
O-dichlorobenzene
Ethylene dibromide
Alachlor
Molecular
Weight
113
97
97
92
106
106
106
112
147
188
270
Cellulose
Acetate
10
0
20
10
34
9
22
-
-
'
M
Percent Removal
Thin
Polyamide A
61 90
19 '14
0 30
-
-
-
-
50
65
35
100
Film Composites
B C
-
12 32
-
-
-
-
-
54 87
-
-
_ _
Notes:
1.
2.
3.
4.
Influent concentration range 6-153 ug/L.
Average of distilled and ground water tests,
- denotes that tests were not conducted.
See Table 6-20 for operational conditions.
-------
TABLE 6-19
REVERSE OSMOSIS MEAN OPERATIONAL CONDITIONS
Membrane
Type
Surface Area, m
Reject, L/min
Permeate, L/min
Feed, L/min
Percent Recovery
Time to Steady S1
Time of Operation, hrs
TDS Percent Rejection
Cellulose
Acetate
sw2
1.8
re, psi 235
4.7
0.4
5.1
8
:ate , hrs 1
i, hrs 13
rtion 95
Nylon
Amide
HF3
276
150
4.9
1.1
6.0
18
1
13
92
Thin Film Composite
A B
SW SW
1.9 1.9
200 200
9.5 9.4
1.5 0.6
11.0 10.0
14 6
3-14 13 5-46
16 284 257
99 99 94
C
SW
1.6
200
9.5
0.5
10.0
5
21
182
98
Notes:
1. for data presented in Table 6-19
2. SW - spiral wound
3. HF - hollow fiber
-------
TABL
TREATMENT OF SOCS IN GROUND WATER 1 USING REVERSE OSMOSIS 2
Mean Percent Removal
Concentration Cellulose
SOC
1 , 2-dichloropropane
aldicarb sulfoxide
aldicarb sulfone
carbofuran
feed, (L/min)
percent recovery
pH of water
specific conductance
(ug/L)
24
39
47
14
(umhos/cm)
Acetate
4
99
94
86
2.2
6
5.2
43
Nylon
Amide
75
99
96
99
2.6
50
5.5
38
->
Thin Film Composite""
A
• 50
99
98
99
1.0
10
5.6
36
B
38
97
96
99
1.3
13
4.6
23
C
88
99
99
99
1.35
10
4.9
15
D
79
99
99
99
2.2
5
4.8
19
E
38
95
94
99
1.2
16
4.9
30
Notes:
1. Suffolk County, New York
2. membrane diameter 2 to 4 inches
3. spiral wound membrane
4. hollow fiber membrane
5. pH of feed water = 5.6
6. specific conductance of feed water = 551 umhos/cm
-------
until 40 percent of the test solution had passed through the membrane. The
following results were obtained for atrazine:
Membrane Type Percent Removal of Atrazine
Cellulose Acetate 84.0
NS-100 97.9
The results indicate that reverse osmosis is effective for atrazine removal
from water. Proper membrane selection can ensure maximum removal. The degree
to which atrazine is adsorbed into the membrane should be evaluated.
Malaiyandi, et al. (1980) evaluated a reverse osmosis system for removing
lindane from aqueous solution at the Environmental Health Directorate in
Ottawa, Canada. Raw water with an initial lindane concnetration of 6.8 to 8.0
mg/L was fed into radial flow, all-stainless steel RO cells with CA-316
cellulose acetate membranes. The flow rate into the RO system was 1.5 mL/min,
which corresponded to a system pressure of 6,200 to 6,900 K Pa(900-l,000psi).
A recovery of 20 percent was obtained. 225 mL of feed solution was sent
through the RO system and 25-mL aliquots of both feed and permeate were
sampled for analysis at the end of each run. Procedures were also carried out
to strip lindane from the cellulose acetate membrane to quantify the amount of
lindane which was retained by the membrane. The distribution (percent) of the
lindane was:
Recycled Feed 36
Product Water 24
Membrane 40
TOTAL 100
Lindane removal by in-situ stripping proved to be very difficult. Destructive
analysis of the RO membrane provided the most reliable estimate of the amount
of lindane absorbed onto the membrane.
Edwards and Schubert (1974) evaluated the selectivity of four RO
membranes for several derivatives of 2,4-D in aqueous solution. The membrane
tests were performed in batches in a commercial ultra filtration cell with a
2
capacity of 150 mL, an effective membrane area of 27.5 cm , and a magnetic
stirring bar mounted near the membrane surface. The ultrafiltration cell was
filled with 70 mL of 50 ug/L solution of the sodium salt of 2,4-D and closed
6-23
-------
after air purging. A 50 psig driving force for reverse osmosis was supplied
wit a cylinder of dry nitrogen. Six ten-mL samples were passed through the
memcrane and collected for analysis. The four membranes achieved removals of
1 to 65 percent. Equilibrium adsorption of the 2,4-D derivatives onto the
membranes was believed to contribute to the overall performance.
Cabasso, et al. (1974) evaluated the rejection of several classes of
organic compounds by three reverse osmosis (RO) membranes. Acrylamide and
o-xylene were two of the specific compounds. The three polymeric RO'membranes
that were tested included two asymmetric membranes of cellulose acetate and
ethyl cellulose and a thin barrier polyurea membrane. Measurements of
permeabilities for acrylamide, o-xylene, and hydraulic permeabilities were
measured. The results of this bench scale study are presented below:
Percent Removal
Compound Cellulose Acetate Ethyl Cellulose Polyurea
Acrylamide 79 0 97
o-Xylene 86 - -
The results indicate that a higher acrylamide removal is attained through the
use of the polyurea membrane. In addition, the removal of o-xylene with the
eel ...ilose acetate membrane is slightly better than that of acrylamide. The
eth*. 1 cellulose membrane was ineffective for acrylamide removal.
Berkau et al. (1980) reviewed the treatability of the 129 priority
pollutants. Based on this review, it was reported that Korneva et al. (1976)
obtctined removals of 97 to 100 percent for monochlorobenzene. It was also
reported that Hinden et al. (1968) obtained 52 percent removal for
hey..-., jhlorobenzene.
Hindin et al. (1969) studied the performance of reverse osmosis cellulose
acetate membranes for the removal of several insecticides, including lindane.
Run No. 2 was conducted at a membrane loading of 0.073 L/cm^ day
>5 gal./in
water samples:
2
(0.125 gal./in day). The following results were obtained using spiked raw
Run
No.
I
T
3
Lindane Concentrations (mg/L)
Influent Effluent
0.683 0.306
50 8
500 133
Percent
Removal
52
84
73
6-24
-------
The results indicate fairly good removals for lindane at the two higher
concentrations.
Pilot Scale;
Regunathan, et al. (1983) evaluated the performance of two point-of-use
treatment devices in removing various organic, inorganic, microbiological, and
particulate contaminants from potable water. One device consisted of a
reverse osmosis unit, prefilter, and two GAC beds. The device was field
tested in Miami, Florida for the removal of THMs and other organics, including
endrin, methoxychlor, and lindane. The ground water had the following water
quality:
pH 7.4
TDS (mg/L) 625
Alkalinity (HCO~ ) 160
Sodium (mg/L) 120
Sulfate (mg/L) 230
Chloride (mg/L) 12
Silicate (mg/L SiO ) 5
The results of this pilot study are summarized below:
Percent Removal
Influent RO
Compound
Endrin
Methoxychlor
Lindane
The RO device effectively removed endrin and methoxychlor. However, the role
of the GAC filters was extremely important in the overall effectiveness of the
device.
A modified RO-carbon device was also tested for its ability to remove PCB
(Aroclor 1242). The small carbon adsorber was used with the RO membrane
because PCB is strongly adsorbed. An average influent PCB concentration of
105 ug/L was reduced by more than 95 percent by the RO membrane alone and at
least 99.7 percent by the entire device. The results indicate that reverse
osmosis may be an effective treatment method for PCB removal.
The studies which have been presented here indicate that reverse osmosis
has potential as a removal method for SOCs. However, these studies are very
limited in both the level of which testing has been performed and the
contaminants used for testing. In addition, there are several disadvantages
6-25
Influent
Concentration (ug/L)
2
1,000
40
RO Unit
Membrane
J90
J90
40
Overall
99-100
99-100
99-100
-------
with the use of RO for SOC removal including membrane fouling and low product
water yield. Reverse Osmosis is an additional technology which requires
further investigation due to the limited availability of data and the stated
disadvantages of this process.
Conventional Treatment
Conventional treatment, which consists of coagulation, sedimentation, and
filtration, is generally used to remove turbidity and color from surface water
supplies. It can also be used for removal of taste and odor producing
compounds depending upon the nature of the compounds. Turbid water contains
suspended matter, both set+:1eable solids which are particles large enough to
settle quiescently, and dispersed solids which are particles that do not
readily settle.
Process Description
Coagulation involves two mechanisms: the destabilization of dispersed
solids (coagulation) and the agglomeration of destabilized dispersed and
suspended material (flocculation). Sedimentation, or settling, follows this
process of agglomeration. Filtration provides additional removal of
agglomerated solids and protection against upsets in the
coagulation/sedimentation process.
The effectiveness of conventional treatment in removing specific SOCs
from drinking water depends upon the attraction of the individual SOCs to
particulate matter that is either naturally present in the water or formed
during the coagulation process. The SOCs will be removed to the extent that
they are attracted to the particulate material which is removed. SOCs which
are hydrophobic, i.e. having low solubilities, generally would be more
amenable to removal by conventional treatment than would SOCs with higher
solubilities. A flow schematic of a typical conventional treatment system is
illustrated on Figure 6-4, Highlighting the major processes required.
Treatability Studies
Conventional treatment processes have been evaluated for 10 of the 29
SOCs. Bench and pilot scale studies have been conducted by various
researchers to evaluate removal efficiencies for several SOCs. Full scale
conventional treatment plants have been studied for the removal of specific
6-26
-------
COAGULANT
AND
POLYMER
FEEDERS
ALKALINITY
FEEDER
1—1 D r-1
FILTRATION
CLEARWELL
STORAGE
RAW WATER
PUMPING
FILTER
BACKWASH
PUMP
WASTEWATER
SURGE BASIN
WASTE
DISPOSAL
CONVENTIONAL TREATMENT PLANT
o
c
3
m
o>
-------
SOCs which are actually present in the raw water. In addition, the American
Water Works Association Research Committee on coagulation has published
recommendations and comments on the conventional treatment process.
Bench Scale;
The EPA DWRD has reported the results of bench scale conventional
treatment of several SOCs (Miltner, January 1989). Jar tests were performed
with alum, on spiked Ohio River water. The results of these tests are
presented in Table 6-21. The data indicates that these pesticides are not
strongly sorbed onto particles or complexed with humic substances that are in
turn sorbed to particulates, because particulate control processes provided
minimal or no control.
Croll, et al. (1974) evaluated conventional treatment processes for
acrylamide removal. The process train consisted of alum coagulation,
sedimentation and rapid sand gravity filtration, all of which were simulated
in bench-scale tests. Several 400-ml samples of Thames River water, which had
a pH of 7.5 and contained 25 mg/L kaolin suspension, were coagulated with an
alum dosage of 32 mg/L. A polymer containing 0.19 percent acrylamide by
weight was also added at a dosage of 2 mg/L. The samples were rapid mixed
and allowed to settle for 15 minutes. The supernatant was filtered at a
liquid loading rate of 2 gpm/sf through a sand bed which had a 2.5 cm diameter
of and a deoth of 30 cm. A removal of only seven percent of the original
acrylamide was obtained. This removal indicates that conventional treatment
is ineffective for acrylamide removal.
Steiner and Singley (1979) evaluated the coagulation/filtration and
softening processes for removal of methoxychlor. Jar testing was performed on
Gainesville, Florida tap water which had the following modified water quality
parameters:
pH (units) 8.00
Total hardness as CaCO 100 mg/L
Calcium hardness as CaCO 52 mg/L
Magnesium hardness as CaCO 48 mg/L
Alkalinity as CaCO 42 mg/L
Total dissolved solids 190 mg/L
The initial methoxychlor concentrations were 1, 5, and 10 mg/L. In the
coagulation/filtration phase of the study, the turbidity of the raw water
6-27
-------
samples was increased with a stock solution of kaolinite. Coagulation was
performed with 30 mg/L of either alum or ferric sulfate at various pH values.
Jar tests were conducted with each of the two coagulants after an optimum pH
was established. The following jar test conditions were used:
-2 min rapid mix at 100 rpm, with 20 min settling time
-30 min slow mix at 40 rpm, with 20 min settling time
After settling, the samples were filtered through filter paper. The
results of the coagulation/filtration study are presented in Table 6-22. The
most effective pH values for methoxychlor removal were at a pH of 6 for alum
and a pH of 4.5 for ferric sulfate. Additional testing was performed at a pH
of 6. Removals were obtained at all initial methoxychlor concentrations but
the lowest methoxychlor concentration that was achieved was 0.173 mg/L. The
settled water turbidity was less than 10 NTU when ferric sulfate was used;
settled water turbidity was not reported for alum.
Raw water samples with initial methoxychlor concentrations of 5 and 10
mg/L were cloudy, indicating that the solubility of the compound had been
exceeded. A methoxychlor solubility of 0.62 mg/L has been reported by Hapoor
et al. (1970). This may have affected the reported removals by coagulation/
filtration since some removal could have been due to phase separation.
In the softening phase of the study, the raw water hardness was increased
to 188 mg/L as CaCO by the addition of calcium chloride. The water was then
treated by a cold lime-soda ash process at pH values of 9.5 and 10.5. Lime
and sodium carbonate were added at dosages of 35 and 75 mg/L, respectively.
Other raw water samples were adjusted to a raw water hardness of 192 mg/L by
the addition of magnesium and calcium in equal parts. This water was softened
by a lime soda process at a pH values of 11.0 and 11.3 at the same initial
methoxychlor concentrations. Lime and sodium carbonate were added at dosages
of 100 mg/L and 78 mg/L respectively. The initial methoxychlor concentrations
were 1, 5 and 10 mg/L. The results of this testing program are summarized in
Table 6-23.
The results indicate that softening achieved varying degrees of removal
that generally increased with increasing initial methoxychlor concentration.
The results also indicate that softening achieved higher methoxychlor removals
at higher pH values. Adsorption of the methoxychlor onto precipitated
6-28
-------
TABLE 6-21
(1 2)
JAR TESTING OF SPIKED OHIO RIVER WATER '
Influent
Pesticide
Alachlor
Atrazine
Carbofuran
Concentration
(uq/L)
43.6
65.7
93.2
Dose
(mg/L)
15
20
30
Turbidity
(NTU)
42
7
18
Percent
Removed
4
0
-8
Note;
1. Raw water pH ranged from 7.5 - 8.3
2. Settled water turbidities below 1 NTU
3. Technical grade Al (SO ) " 14H O
-------
TABLE 6-22
METHOXYCHLOR REMOVAL
pH
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
Effect of pH
Methoxychlor Residual"1" (mg/L)
Alum
0.730
0.671
0.421
0.366
0.320
0.303
0.593
0.595
0.535
Ferric Sulfate
0.722
0.698
0.383
0.417
0.403
0.342
0.290
0.319
0.286
Effect of Initial Turbidity
Coagulant
Alum
Ferric sulfate
Intitial
Methoxychlor
Concentration
(mg/L)
1
5
10
1
5
10
Methoxychlor
Residual (mg/L)
Initial
Turbidity
23 NTU
0.265
0.668
0.702
0.258
0.342
0.381
Intitial
Turbidity
58 NTU
0.201
0.320
0.539
0.173
0.220
0.279
Notes:
1.
2.
Initial concentration of methoxychlor was 5 mg/L
Tests were performed at pH = 6
-------
TABLE 6-23
METHOXYCHLOR REMOVAL VIA LIME SOFTENING
Initial
Methoxychlor
Concentration
(mg/L)
1
5
10
1
5
10
1
5
10
1
5
10
Softening
PH
9.5
9.5
9.5
10.5
10.5
10.5
11.0
11.0
11.0
11.3
11.3
11.3
Me thoxy ch lor
Residual
(mg/L)
0.400
2.622
3.260
0.379
1.303
1.342
0.217
0.257
0.297
0.160
0.205
0.297
Percent
Removal
60
48
67
62
74
87
78
95
97
84
96
97
Hardness
Initial
1882
188
188
188
188
188
192
192
192
192
192
192
Final
144
144
144
100
100
100
70
70
70
64
64
64
Notes:
1.
2.
3.
Hardness expressed as mg/L CaCO
Initial hardness increased from 100 to 188 mg/L via calcium chloride
addition
Initial hardness increased from 100 to 192 mg/L by the addition of
magnesium and calcium
-------
magnesium hydroxide (MgOH ), a gelatinous compound, is one possibility for the
improved performance at higher pH values.
Aly and Faust (1965) examined the effect of . several water treatment
processes, including coagulation/sedimentation, on the removal of four 2,4-D
derivatives and their parent compound 2,4-dichlorophenol (2,4-DCP). The four
derivatives included the sodium salt of 2,4-D and the isopropyl, butyl and
isoctylesters of 2,4-D. Each compound had an initial concentration of 1 mg/L.
Alum or ferric sulfate were added at dosages at 100 mg/L. The samples were
rapidly mixed at a pH of 7.4 and were allowed to settle for 30 minutes.
The following results were obtained:
Compound Percent Removal
2,4-DCP 0
Sodium salt of 2,4-D 0
2,4-D butylester 2.0
2,4-D isoctylester 2.9
2,4-D ispropylester 3.0
The results indicate that conventional treatment consisting of coagulation and
sedimentation is not effective for the removal of 2,4-D from water without
suspended material.
Cohen et al. (1960, 1961) published a three part report on the effects of
fish poisons in water supplies. Toxaphene was one of the compounds that was
studied. Cohen et al. (1960) examined toxaphene removal by a number of
processes, including alum coagulation. Treatment of unspecified initial
concentrations of toxaphene with alum dosages as high as 100 mg/L did not
reduce the concentration significantly. No data were provided on the actual
testing. Alum coagulation was not effective in removing toxaphene, or any of
the other fish poisons, from water.
Cohen et al. (1961) examined the impact of a number of water treatment
processes on toxaphene odor removal. Once again, alum coagulation was tested.
No significant impact on odor was observed at an alum dosage of 90 mg/L.
Huang (1972) evaluated the effect of lime coagulation on the removal of
several pesticides, including endrin and lindane. At an unspecified lime
dosage, solutions containing initial endrin and lindane concentrations of 10
mg/L were reduced by 35 and less than 10 percent, respectively. This
6-29
-------
indicates that lime coagulation is not effective for either endrin or lindane
removal.
Edwards (1970) looked at the impact of alum coagulation, settling, and
sand filtration on the pesticide- DDT and lindane. At an unspecified alum
dosage, an initial lindance concentration of 10 mg/L was reduced by less than
20 percent. This result indicates that alum coagulation/sedimentation/sand
filtration is not effective for lindane removal.
Pilot-Scale;
Robeck, et al. (1965) examined a number of treatment options for the
removal of six pesticides, including lindane, in dilute aqueous solution. The
treatment processes included coagulation and filtration, oxidation (with
chlorine, potassium permanganate, or ozone), PAC, and GAG. The pilot-plant
consisted of a constant head tank, a 600-gallon pesticide-mixing tank, and two
separate process trains, each with a 20 gpm line, rapid-mix tank, flocculator,
sedimentation tank, sand filter, coal filter, and two GAC beds. Conventional
treatment consisted of alum coagulation, flocculation, sedimentation, and sand
filtration. Some runs were conducted with softening chemicals (lime, soda
ash, and an iron salt coagulant) in place of the alum. The results of the
pilot study are presented below:
Percent Removal
Pesticide Alum Coagulation Softening
Influent (ug/L) Influent (ug/L)
i 5_ 10 10
Endrin 35 ND 35 ND
Lindane <10 <10 <10 <10
2,4,5-T ester ND ND 63 ND
ND - No Data
The results indicate that alum coagulation is not effective in removing
lindane. The influent concentrations of endrin and lindane did not affect
performance. In addition, softening did not improve lindane removal.
Full-Scale;
Baker (1983) evaluated the effect of conventional water treatment on the
removal of several pesticides, including alachlor and atrazine, in the raw
water of northwestern Ohio rivers. The contaminant concentrations were
monitored in the raw water from the rivers and the finished water from three
6-30
-------
water treatment plants on these rivers. The Tiffin, Ohio water treatment
plant uses alum coagulation-flocculation, sedimentation, and filtration in its
conventional treatment system. A summary of the results for an entire series
of summer sampling dates is shown below:
Concentration Ranges (ug/L)
Compound Influent Effluent
Alachlor 0.5-5.0 0.2-2.0
Atrazine 1.0-8.0 1.0-8.0
The data indicated that as the raw water concentrations increased, the
corresponding finished water concentrations increased as well. On several
occasions, the influent levels were actually less than effluent levels. The
removals obtained for alachlor and atrazine were generally less than 50 and
10 percent, respectively. These results suggest that the conventional water
treatment processes of coagulation-flocculation, sedimentation and filtration
are not effective for removing alachlor and atrazine from drinking water.
Additional information from three water treatment plants in northwestern
Ohio (Fremont, Bowling Green, and Tiffin) supports the previous conclusion
that alachlor and atrazine are not effectively removed by conventional treat-
ment (Miltner, January 1989). Percent removals of 24 and 14 were achieved for
alachlor and atrazine, respectively. Full scale data indicate little removal
of these two compounds across a conventional treatment plant. Data from the
Fremont and Bowling Green plants indicate the effectiveness of softening in
removing carbofuran. At influent carbofuran concentrations ranging from 0.49
to 1.62 ug/L, 100 percent removal was achieved at a pH of 10.9. The Tiffin
plant, which utilizes chlorination but not softening, obtained 54 percent
removal at a pH of 7.9.
Singley et al. (1979) evaluated the use of PAC, as well as complementary
process such as aeration and improved coagulation, for removal of synthetic
organic chemicals in two studies at Florida water treatment plants. One study
was performed at the Sunny Isles Water Treatment Plant, which is one of three
facilities serving the city of North Miami Beach, Florida. This plant has a
design capacity of 12.8 mgd, but usually treats an average flow of 10 mgd. It
is a conventional lime softening plant utilizing three upflow clarifiers.
Nalco 8173, an anionic polymer, is the coagulant which is utilized. After
6-31
-------
clarification, the settled water is recarbonated prior to filtration by six
gravity sand filters and three dual media filters. Prechlorination before the
upflow clarifiers insures that a chlorine residual is carried through the
filter gallery.
In September 1977, people began to complain about organic (pesticide)
tastes and odors in tap water produced by the Sunny Isles Plant. Various
regulatory agencies, including USEPA, were called upon to help identify and
solve the problem. The raw and finished water contained at least 42
individual SOCs ranging in concentration from 0.01 to 73 ug/L, including the
following compounds (with average influent concentrations in parentheses).
- dichlorobenzene (0.2 ug/L)
- ethylbenzene (0.5 ug/L)
monochlorobenzene (0.8 ug/L)
- toluene (0.3 ug/L)
- xylene (0.2 ug/L)
GAC was chosen as the long-term solution to the organics problem. However,
PAC was chosen as a short term solution because of the time required to
properly design and install a GAC system. Limited data were also developed
for SOC removal via the conventional softening treatment processes at the
plant. These results are presented below:
Concentrations (ug/L)
Percent
Compound Influent Removal
dichlorobenzene 0.16 37
ethylbenzene 0.7 43
monochlorobenzene 1.1 18
toluene 0.5 8
xylene 0.4 70
The results indicate that conventional treatment processes exhibit varying
degrees of effectiveness for SOC removal. Some of this removal could be
attributed to aeration rather than conventional treatment. On an overall
basis, conventional treatment is not as effective for the removal of these
five SOCs.
Richard et al. (1975) looked at pesticide concentrations in raw and
finished water supplies in the state of Iowa. Atrazine concentrations were
monitored before and after the conventional treatment process used at
6-32
-------
Des Moines, Iowa. The water for this plant is obtained from the Racoon River
(40 percent) and an infiltration gallery (60 percent). Data on atrazine
concentrations at various locations are presented below:
Location - Atrazine (mg/L)
Racoon River 25
Infiltration Gallery 82
Blended Influent 59
Prefilter 47
Finished Water 29
Finished Water (60-L composite sample) 60
Finished Water (16-L grab sample) 71
These results indicate that conventional treatment processes are not effective
for the removal of atrazine from water.
Nicholson, et al. (1966) reported that a conventional water treatment
process consisting of coagulation, sedimentation and filtration had little
effect on reducing toxaphene concentrations at the plant. The influent
toxaphene concentrations at the plant did not exceed 0.41 ug/L.
AWWA Research Committee on Coagulation (1979)
Following a recap of several coagulation/sedimentation/filtration (i.e.
conventional treatment) studies on bench, pilot, and full scale levels, the
AWWA Research Committee on Coagulation included the following general com-
ments/conclusions :
- The removal of pesticides (including lindane, toxaphene, 2,4-D, and
others) will depend upon the degree of association between the
pesticides and the natural organic content of the water.
- If a strong association exists, the best removals of pesticides will
occur at pH values between 5 and 6 for alum and pH values between 4
and 5 for iron coagulants.
The pH is an important variable during the coagulation process.
To date, studies on the removal of pesticides have inadequately
described the influence of coagulation pH on process performance.
6-33
-------
Coagulation is an effective means of removing some SOCs from drinking
water. Only limited data quantifying the effectiveness of this technique is
available. Some high molecular weight, hydrophobia SOC molecules could be
removed using coagulation or coagulation in conjunction with PAC. However,
more research is needed to determine the applicability and cost-effectiveness
of this approach.
f>-34
-------
7. COSTS
The purpose of this section of the document is to develop costs for GAG
and packed column aeration treatment facilities for removing SOCs from drink-
ing water. As described in Section 3, these are the two technologies that
have been identified as being applicable treatment methods for SOC removal.
The basis for costs and design assumptions are explained below.
Basis for Costs
Capital, operation and maintenance (O&M), and total costs (in cents per
1,000 gallons) were developed for GAC and packed column facilities for water
supply systems of several sizes. The design and production capacities of
these systems which serve different ranges of population are presented in
Table 7-1. Costs for GAC facilities were developed using the following
sources:
- WATER COST: A computer program for Estimating Water and Wastewater
Treatment Costs. Gulp. Wesner.Culp., Santa Ana, California.
- "Estimation of Small System Water Treatment Costs," Gumerman, R.C.,
Burris, B.E., and Hansen S.P. USEPA Contract No. 68-03-3093, 1984.
"Estimating Water Treatment Costs - Volume 2," Gumerman, R.C.,
Gulp, R.L., and Hansen, S.P. USEPA Contract No. 68-03-2516,
EPA-600/2-79-162b, 1979.
Packed column aeration costs were developed by the Technical Support Division
of the Office of Drinking Water, USEPA, using an in-house computer model
(Cummins, 1988). The basis of this model has been presented by Cummins and
Westrick (1986).
All costs presented in this document are in late 1987 dollars. The
capital costs were updated using indices specific to the major cost components
of the construction cost. The Bureau of Labor Statistics (BLS) and Engineer-
ing News Record (ENR) indices which were used to update the capital costs are
presented in Table 7-2. The Producers Price Index for Finished Goods was used
to update the cost of maintenance materials, which are a component in the
operation and maintenance cost. This index is also presented in Table 7-2.
Other unit cost and general cost considerations are listed in Table 7-3. For
the purpose of estimating costs per 1,000 gallons, the capital costs were
-------
amortized over a 20 year period at an interest rate of 10 percent. Costs for
acquiring new land for construction sites or easements for a raw water trans-
mission line are not included since these costs are site specific. However,
these costs, when included, could be significant.
The design assumptions which were used for the purpose of cost estimation
and the resulting treatment costs for GAC adsorption and packed column
aeration are presented below. For both technologies, designs and system costs
should be viewed as preliminary and should be used only for planning purposes
by a community with an SOC removal problem. More complete and detailed
designs and cost estimates should be developed based upon pilot-plant testing
and site-specific considerations.
Granular Activated Carbon
Although variations in the design of GAC systems result in a range of
cost estimates, the major components of any GAC treatment system are:
a. Capital Costst
- Carbon Contactors
- Carbon Charge
- Backwash pump
- Regeneration Facility
- Carbon Storage
- Carbon Transport Facilities
In addition, there may be other site-specific capital costs components,
such as:
- Special site work
- Raw water holding tank (for ground water systems)
- New/restaged well pump (for ground water systems)
- GAC contactor building
- Chemical facility
- Clearwell
- Finished water pump(s)
- Backwash storage
b. Operating Costs and Maintenance (O&M) costs;
- Carbon Make-up
- Labor
- Fuel
- Steam
- Powe r
- Maintenance
-------
TABLE 7-1
PLANT DESIGN CAPACITIES
AND AVERAGE FLOWS
Population
Category
25 - 100
101
501
1,001
3,301
10,001
25,001
50,001
75,001
100,001
500,001
Greater
- 500
- 1,000
- 3,300
- 10,000
- 25,000
- 50,000
- 75,000
- 100,000
- 500,000
- 1,000,000
than 1,000,000
Population
57
225
750
1,910
5,500
15,500
35,000
60,000
88,100
175,000
730,000
1,550,000
Average Flow
(MGD)
0.0056
0.024
0.086
0.23
0.70
2.1
5.0
8.8
13.0
27.0
120.0
270.0
Design
Capacity
(MGD)
0.024
0.087
0.27
0.65
1.8
4.8
11.0
18.0
26.0
51.0
210.0
430.0
-------
TABLE 7-2
COST INDICES
FOR LATE 1987
Index Numerical
Description Reference Value
General Purpose BLS 114 330.2
Machinery
Concrete BLS 132 343.3
Steel BLS 1017 357.4
Skilled Labor ENR U.S. Average 401.8
Pipe & Valves BLS 1149 354.2
Electrical BLS 117 261.2
Housing ENR Building Cost 378.2
Housing $/Sq Ft 150.0
Producer Price Index 296.7
Construction Cost Index 412.4
-------
TABLE 7-3
GENERAL ASSUMPTIONS USED IN DEVELOPING TREATMENT COSTS
Electric Power
Labor - Small System Sizes (<100,000 gpd)
Large System Sizes (>100,000 gpd)
Diesel Fuel
Natural Gas
Sitework
Contractor's Overhead & Profit
Contingencies
Engineering & Technical Fee
Interest Rate
Number of Years
$ 0.086/Kwh
$ 5.90/hr
$ 14.30/hr
$ 0.80/gal
$ 0.0027/scf
15% of construction costs
12% of construction costs
(including sitework)
15% of construction costs
15% of construction costs
(including sitework &
contractor's O&P)
10%
20
-------
Capital and operating costs for the contactor, initial carbon charge and
backwash pumps were estimated using the cost model and manuals cited above.
These costs . were ..based .on.^facility., size .and. were independent of the SOC being
considered. A spreadsheet was used to develop the carbon replacement/regene-
ration costs for each SOC based on its usage rates. Costs from the model and
spreadsheet were then added to obtain the final facility costs. The overall
approach to developing GAC facility costs is explained in the flow-chart
illustrated in Appendix E.
The design parameters used to estimate the costs for contactor, carbon
charge and backwash pumps are shown in Table 7-4. The following assumptions
were used for design purposes: ^
- The contactors were sized to provide an empty bed contact time
(EBCT) .-• of 7.5 minutes at the design flow, but would have an
operating EBCT of greater than 15 minutes based on the average flow,
except for the last three flow categories. ~~
Systems with a design flow of less than 1 MGD used package pressure
contactors.
Systems with a design flow of 1 MGD - 11 MGD used pressure
contactor.
Systems with a design flow larger than 11 MGD used concrete gravity
contactors.
Housing requirements assumed contactors were totally enclosed, with
additional area for pipe galleries and operating and maintenance
service area.
- Electrical energy for building heating, cooling, ventilation and
lighting was 25 Kwh/sq ft of building area per year.
Maintenance material costs were estimated for general supplies,
pumps, instrumentation repair, valve replacement or repair, and
other miscellaneous work items.
Costs for land, raw water pumping, chlorination, bulk potable water
storage, finished water pumping and waste disposal were not includ-
ed.
The individual capital and O&M costs for the contactors, initial carbon
charge and backwash pumps are presented in Table 7-5.
The following assumptions were used for estimating the carbon replace-
ment/regeneration costs:
-------
- Carbon usage rates were developed using model predictions for the
specific SOC in distilled water. These carbon usage rates were then
adjusted by the following multiplier function:
Y = 0.7443 X -°-5165
where: Y = multiplier
X = Distilled carbon usage rate (lbs/1000 gal)
The multiplier function was used in such a manner that the adjusted
carbon usage rate was equal to the multiplier times the distilled
water carbon usage rate. The adjusted carbon usage rate were
presented in Table 4-5.
- If the carbon demand (calculated based on carbon use rate and
average flow) was less than 1,000 Ibs/day, the spent carbon was
replaced at breakthrough.
If the carbon demand (calculated based on carbon use rate and
average flow) was greater than 1,000 Ibs/day, the spent carbon was
regenerated on-site.
On-site regeneration utilized a multiple-hearth furnace. The
furnace was oversized by 30 percent to account for downtime. The
maximum capacity of a single furnace was 80,000 Ibs/day. For
capacities greater than 80,000 Ib/day, two or more furnaces were
used. Carbon handling losses were assumed to be 15 percent.
- Cost of GAG was $l/lb.
As indicated in Table 7-5, the base capital and O & M costs for carbon
contactors are mainly dependent upon flow. However, the cost of replacing or
regenerating the carbon must be evaluated to determine its impact on the
overall cost of the contactor. In order to determine the impact of carbon
replacement/regeneration on the total cost, a relationship was developed
between total production cost and carbon usage rate for each flow category.
These relationships are presented in Figures 7-1, 7-2, and 7-3. As indicated
on these figures, there is little variation in the total production costs when
the carbon usage rate is below 0.1 lbs/1,000 gallons. There are also distinct
ranges above 0.1 Ibs/gallons where the total production costs does not vary
significantly.
Based on the cost analysis discussed above, it is possible to provide
costs for SOCs grouped according to their usage rates. GAC facility costs for
usage rates from less than 0.1 lb/1,000 gallons up to 2.0 lb/1,000 gallons are
presented in Table 7-6. The cost for the individual SOCs based on the carbon
usage rates in Table 4-5 are included in Appendix F.
7-4
-------
Table 7-4
GAC System Design Parameters
Population Range
Design Flow (MGD)
Average Daily Flow
(MGD) Contactor Type
EBCT (min) Number Volume of Area of Total Backwash Pump Number of
— _. of Each Unit Contactor Carbon Charge Size Backwash
Design Operating Units (cu.ft) (sq.ft) (Ibs) (gpm) Pumps
25-100
0.024
0.0056
Package Pressure 7.5 32.1 1 17 3.4
500
50
101-500
0.087
0.024
Package Pressure 7.5 27.2 1 60 12
1700
180
501-1.000
0.27
0.086
Package Pressure 7.5 23.5 1 190 38 5300 570
1,001-3,000
0.65
0.23
Package Pressure 7.5 21.2 1 450 90 12600
1350
10,000
1.8
0.7
Pressure
7.5 19.3 4 310 62 35000
1000
10,001-25,000
4.8
2.1
Pressure
7.5 17.1 6 550 110 93300
1670
25,001-50,000
11
5
Pressure
7.5 16.5 14 550 110 214000
1670
50,001-75,000
18
8.8
Concrete Gravity 7.5 15.3 4 3125 625 350000
9000
75,001-100,000
26
13
Concrete Gravity 7.5 15.0 6 3000 600 505600
9000
100,001-500,000
51
27
Concrete Gravity 7.5 14.2 10 3550 700 991700 10000
500,001-1,000,000
210
120
Concrete Gravity 7.5 13.1 30 4860 975 4083300 10000
1,000,000
430
270
Concrete Gravity 7.5 11.9 50 6000 1200 8361000 10000
-------
Table 7-5
Base Costs for GAC Contactor, Carbon Charge and Backwash Pump
Construction Cost ($)
Population Range
Design Flow (MGD)
Average Daily Flow
(MGD) Contactor Carbon Charge BW Pump
Total (2) O&M Cost ($/yr)
Construction Capital - - -
Cost ($) Cost ($) Contactor BW Pump Total
25-100
0.024
0.0056
44000 87000
1500
101-500
0.087
0.024
67000 140000
1900
501-1,000
0.27
0.086
110000 220000
2700
1,001-3,000
0.65
0.23
180000 370000
4000
3^001-10,000
1.8
0.7
310000
38000 59000 410000 670000 36000 700 37000
10,001-25,000
4.8
2.1
730000
97000 72000 900000 1500000 47000 1200 48000
25,001-50,000
11
5
1600000 200000 72000 1900000 3100000 73000 3000 76000
50,001-75,000
18
8.8
1500000 320000 170000 2000000 3300000 52000 3000 55000
75,001-100,000
26
13
1900000 460000 160000 2500000 4200000 65000 3500 69000
100,001-500,000
51
27
3200000 880000 180000 4300000 7200000 110000 4100 110000
500,001-1,000,000
210
120
9400000 3300000 410000 13000000 22000000 410000 10000 420000
,000,000
430
270
17000000 6600000 500000 24000000 43000000 820000 19000 840000
-------
f ^ OUU
0 700
| /UU
O cnn
OUU
O
O
O 500
\
\
t Ann
J— - *rUU
LU
O 300
\—
(/) onn
O 20°
I 1 nn
— J I UU
I ...
O
v— n
\
\
\
\
\
\..
\s
s
s
s
«
B
^
"
•..
•>»
*"
...
*••
•^
— .
•MB.
•»• —
— ..
^MM^
~
— — --.
•••
•^
FLOW 1
FLOW 2
FLOW 3
FLOW 4
1 • •
10
1 0.1 0.01
USAGE RATE (LBS./1000 GALLONS)
0.001
TOTAL COSTS vs. USAGE RATE
FLOW CATEGORY Nos.i-4
3
m
-------
(/) ouu
z:
o
OCri
^ 2SO
*•*»
o
o
Oor\r\
zuu
O
\
£ 150
| — 1 OU
z:
1 1 1
o
^""^ mn
1 UU
h-
(/}
O
0 =in
DO
3d
0
k- n
1
\
\
^\
\ \
\
\\
\\
N
^
s
^
^
^
s
'%
s,
^
>•
^
s,
•»^.
~"""1
•** —
— • .
• •
•I
1^
•t^
^^•B
FLOW 5
FLOW 6
FLOW 7
FLOW 8
10
0.1
0.01
USAGE RATE (LBS./1000 GALLONS)
TOTAL COSTS vs. USAGE RATE
FLOW CATEGORY Nos.5-8
0.001
-------
80
o
o
o
o
o
t/)
UJ
o
01
o
o
o
60
40
20
10
\
1 0.1 0.01
USAGE RATE (LBS./1000 GALLONS)
FLOW 9
~l
FLOW 10
FLOW 11
FLOW 12
0.001
TOTAL COSTS vs. USAGE RATE
FLOW CATEGORY Nos.9-12
Tl
O
c
m
-------
TABLE 7-6
ISE II CARBON USAGE COSTS
w
Population Range
Design Flow (MGO)
Average Daily Flow
(HOOK "
Carbon Usage Rate (lbs/1,000 gallons)
25-100 "
0.024
0.0056
101-500;.-
0.087
0.02T~.
501-1,000
0.27
0.086
1,001-3.300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50.000
11.0
5.0
50,001-75.000
18.D -
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000.000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital 'Cost (KS)
O&M Cost {KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M -Cost- (KS/yeary
Total .Production Cost .
(cents/17000 gal) -
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost.(KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
< 0.1
87"
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
37PQ
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.1-0.3 0.3-0.6
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
3
650
140
6
260
"""" 220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
0.6-0.8
87
3
650
140
8
280
220
25
160
370
63
130
1000
120
93
2600
180
63
4600
370
50
4800
560
35
6200
760
31
10000
1400
26
28000
5800
21
50000
13000
19
0.8-1.0
87
4
700
140
10
300
220
31
180
370
80
150
1200
140
110
2900
220
73
5000
450
57
5300
680
41
6700
940
36
11000
1800
31
29000
7400
25
52000
16000
22
1.0-1.3
87
4
700
140
12
320
220
39
210
370
100
170
1500
160
130
3400
260
86
5700
540
66
5900
830
47
7300
1200
43
11000
2300
36
30000
9200
29
54000
20000
27
1.3-1.5
87
5
740
140
14
350
220
46
230
370
120
190
1800
180
150
4000
300
100
6300
630
75
6600
980
55
8000
1400
49
12000
2700
42
32000
11000
34
55000
24000
31
1.5-1.8
87
5
740
140
16
370
220
54
250
370
140
220
2200
200
180
4700
340
120
7100
720
85
7400
1100
61
8800
1600
56
13000
3200
48
33000
13000
39
57000
28000
35
1.8-2.0
87
6
790
140
18
390
220
62
280
370
160
240
2700
210
210
5500
380
130
8000
810
96
8300
1300
71
9700
1800
62
14000
3600
53
35000
15000
44
59000
32000
40
-------
Packed Column Aeration
The major components of a packed column aeration facility are:
- Column structure
Internals
- Packing
- Blower(s)
Clearwell
Booster pump(s)
Piping
In addition, there may be other site-specific capital cost components
such as: . .
— Special sitework
- Raw water holding tank
- New/restaged well pump
- Blower building
Booster pump building
- Chemical facility
Noise control installation
- Air emissions control
The key design criteria used to size the packed column facilities are
presented in Table 7-7. The following assumptions were utilized for the
purpose of developing preliminary packed column cost estimates:
- Henry's Law Coefficients for 16 SOCs are presented in Table 7-8.
The henry's coefficients for heptachlor and toxaphene have not been
proven in pilot sutdies. Additional data is required before these
compounds can be classified as definately strippable.
- Tower design was based on a maximum liquid loading rate of 30
-2 -1
gpm/sf, and a minimum air pressure drop gradient of 50 Nm m
The maximum packed tower diameter was 16 feet. Multiple units were
used in instances where a diameter greater than 16 feet was
required.
A dumped packing material was used.
- Column shell was constructed of 1/4 inch 304 stainless steel walls
with 1/2 inch thick by 3-inch wide flanges.
7-5
-------
- Column internals included one support plate, one liquid distributor
and redistribution rings and were placed.every two meters of packing
height, all of which were constructed of 304 stainless steel.
- Also included were the blower, a concrete clearwell on which the
column was mounted, pumping (200 feet TDK) to the distribution
system, piping and valves, instrumentation and electrical work.
- Operating costs for pumping is only for the headloss due to the
packed tower. Power usage was adjusted by a motor size-up factor of
25 percent, motor efficiency of 80 percent and a pump efficiency of
80 percent.
- Operating costs included for the blower were based on 70 percent
motor efficiency, 50 percent fan efficiency and 25 percent motor
size-up.
- Labor operating costs were estimated on a fixed $0.003 per 1,000
gallons. Annual maintenance labor and material costs were estimated
to be 10 percent of the pump and blower capital costs and 4 percent
of the nonmechanical equipment. Administrative costs were estimated
to be 20 percent of the operating labor plus 25 percent of the
maintenance cost.
- No costs were included for housing or treated water storage, other
than the clearwell under the packed column.
The capital, operation and maintenance, and total cost for each
influent/effluent combination for each volatile SOC are presented in
Tables 7-9 to 7-24. The costs for heptachlor and toxaphene should be used as
an estimate, as the compounds have not been determined to be definately
amenable to packed column aeration. Also included are the costs for stripping
tetrachloroethylene from water supplies.
The parameters used in developing Tables 7-9 to 7-24 are presented in
Appendix G. The costs in Appendix G were broken down as follows:
-------
TABLE 7-7
PACKED COLUMN DESIGN PARAMETERS
Ground water temperature 12 Degrees C
Column shell construction 304 stainless steel
Packing Material 1 inch plastic saddles
Air Well Concrete
Maximum column diameter 16 ft
Maximum liquid loading 30 gpm ft
-2 -1
Minimum Air Gradient SON m m
Safety factor for Henry's coefficient 1.1
Safety factor for K a 1.1
Note:
1. Safety factor is applied to henry's coefficient estimated using
pilot data.
-------
TABLE 7-8
HENRY'S LAW COEFFICIENTS USED TO
ESTIMATE EQUIPMENT SIZE AND COSTS FOR
PACKED COLUMN AERATION
Compound
(y monochlorobenzene .-7
G cis-l,2-dichloroethylene
£ dibromochloropropane ^
J> ethylene dibromide 3'
g ethyl benzene 4^.
<5 m-xylene
A- o-dichlorobenzene "?)
o-xylene
p-xylene
(\ sytrene-
trans-1,2-dichloroeth~ylene,3o
tetrachloroethylene ^o
toluene ?(,."7/2, ,$v
f\ 1,2-dichloropropane & /6 j.
oxaphono-. ^ , -r-y
Henry's Coefficient
(atm)
HA«
"§"'''''
-------
TABLE 7-9
Estisated Cost for Reaoving Mcnochlorobenzene Using Packed Coluan Aeration - March 1989
•/ste§ Size Category
ilation Range
tgn PUSHED )
(«6D)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
^0.70
10,001-25,000
4.3
1 '•*
'
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
''5,001-100,000
26.
13.
10,001-500,000
51.
27.
•y]ooi-i,ooo,ooo
210.
120.
P,000
430.
270.
Percent Reaoved
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal) -
Total Capital Cost (K»)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 cal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost {K$)
QIH Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K«)
C4« Ccst (ft/Year)
Total rro2uc:ion Ccst
icents, '1,000 sail
100. ug/L
Influent
600. ug/L
Effluent (ug/L) Effluent (ug/L)
60. 100.
40.
15.
0.2
98.
27.
0.7
44.
42.
1.4
20.
65.
3.0
13.
120.
7.3
3.4
230.
21.
6.4
460.
50.
5.7
710.
86.
5.3
990.
130.
5.!
ISO
260 ,
4.3
6500.
1200.
4.5
13000.
2900.
1.4
400. 60.
90.
22.
0.4
150.
41.
1.2
69.
69.
2.6
34.
110.
5.5
22.
210.
14.
-— . 15.
440.
38.
12.
880.
89.
11.
1400.
150.
9.9
2000.
220.
9.6
3800.
460.
9.1
- — 14000.
— - 2000.
8.5
— - 23000.
4600.
3.1
100.
83.
20.
0.4
130.
38.
1.1
62.
60.
2.3
30.
96.
4.E
19.
180.
13.
13.
380.
34.
10.
750.
79.
9.1
1200.
130.
8.5
1700.
200.
8.3
3100.
400.
7.8
12000.
1800.
7.3
23000.
4100.
7.0
400.
33.
15.
0.2
96.
27.
0.6
43.
41.
1.4
20.
62.
2.9
12.
110.
7.5
3.0
220.
21.
6.1
430.
49.
5.4
670.
84.
5.1
940.
120.
4.9
1700.
250.
4.6
6100.
1200.
4.4
12000.
2000.
4.2
1000. ug/L
Effluent (ug/L)
60.
94.
24.
0.5
160.
45.
1.3
75.
76.
2.9
33.
120.
6.1
25.
240.
16.
17.
500.
42.
13.
1000.
99.
12.
1600.
170.
11.
2300.
250.
11.
4400.
510.
10.
17000.
2300.
9.6
33000.
5100.
P.I
100.
90.
22.
0.4
150.
41.
1.2
69.
63.
2.6
34.
110.
5.5
22.
210.
14.
15.
440.
38.
S^lT,
• — '
380.
89.
11.
1400.
150.
9.9
2000.
220.
9.6
3300.
460.
7.1
14000.
2000.
3.5
23000.
460jL_
,-'3.7
400.
60.
17.
0.3
110.
31.
0.8
51.
48.
1.7
23.
74.
3.5
15.
140.
9.2
9.9
2SO.
25.
7.5
550.
58.
6.7
860.
99.
6.2
1200.
150.
6.1
2200.
300.
5.7
3100.
1400.
5.4
16000.
3200.
5.2
-------
IABLE / - 10
Estimated Cost for Removing cis-i,2-Dichloroethylene Using Packed Coliisn Aeration - Harch 1939
Systei Size Category
'opulation Range
)esignJ^ (USD)
H)
25-100
0.024
0.0056
101-500
; 0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
3.3
: 75,001-100,000
26.
13.
100,001-500,000
51.
27.
JlQ, 001-1, 000, 000
210.
120.
jbo.ooo
430.
270.
Percent Reaoved
Total Capital Cost (»)
04H Cost (.K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kf)
04H Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
DM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04« Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (KWYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!($)
04H Cost (K$/Year)
Total Production Cost
(cents/1, COO gal)
Total Capital Cost (K$)
Q4M Cost (WYearj
Total Production Cost
(•:=n ts/1, 000 cal)
50. ug/L
Effluent (ug/L)
5.0 70. 100.
90.
21.
0.4
A 40.
39. -
1.1
66.
64. —
2.4 —
32.
100.
5.1
20.
200.
13.
14. —
400.
35.
f 11. ,
800.
83.
9.7
1300.
140.
9.1
1800.
210.
8.8
3400.
430.
3.4
13000. -
1900.
7.8 —
2iOOO.
4300._
7,4)
~
5.
95.
24.
0.
160.
44.
1.
73.
73.
2.
36.
120.
5.
24.
230.
15.
17.
430.
41.
13.
960.
95.
11.
1500.
160.
11.
2200.
240.
10.
4100.
490.
9.
16000.
2200.
9.
31000.
4900.
3.
Influent
100. ug/L
Effluent (ug/L)
0 70.
30.
15.
5 0.2
94.
26.
3 0.6
42.
40.
8 1.3
19.
60.
9 2.8
12.
110.
7.3
7.3
210.
20.
5.9
420.
48.
5.3
650.
82.
4.9
910.
120.
4.8
1700.
250.
8 4.5
5800.
1200.
1 4.2
11000.
2700.
7 4.1
100. 5.
97.
- — . 26.
0.
170.
48.
i.
81.
82.
3.
41.
130.
6.
27.
260.
17.
19.
550.
45.
14.
1100.
110.
13.
1800.
180.
12.
2500.
270.
12.
4800.
540.
11.
— - 13000.
2400.
10.
- — 37000.
5400.
?.
200.
Effluent
0 70.
5 65.
17.
5 0.
110.
31.
4 0.
51.
48.
1 1.
23.
75.
6 3.
15.
140.
9.
9.
230.
25.
7.
550.
58.
6.
860.
100.
6.
1200.
150.
6.
2200.
300.
5.
8200.
1400.
5.
16000.
3200.
9 5.
ug/L
(ug/L)
100.
50.
16.
3 0.2
100.
23.
3 0.7
46.
44.
7 1.5
21.
67.
5 3.1
13.
120.
2 8.1
9 8.7
240.
22.
5 6.6
480.
52.
7 5.9
750.
89.
2 5.5
1000.
130.
1 5.3
1900.
270.
7 5.0
.6900.
1300.
4 4.7
13000.
2900.
2 4.6
-------
TABLE 7-11
• '/ /
Estimated Cost for Reaioving Dibromochloropropane Using Packed Column Aeration - March 1939
• • i \ ' ..;'.•• Influent ''
ize Category
Kd^Hion Kange
Design Flow (HBD)
Average Daily Flow
(USD)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.036
1,001-3,000
0.65
0.23
k
1001-10,000
r 1.3
0.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
9.8
75,001-100,000
26.
13.
100,001-500,000
51.
27.
500,001-1,000,000
210.
120.
M, 000, 000
I T i\
Percent Reaoved
Total Capital Cost (Kt)
04K Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (KWYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!0«)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Mai Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost -
3800.
320.
42.
6100.
540.
39.
8800.
790.
38.
17000.
1600.
36.
67000.
6800.
34.
40000.
15000.
1.0
50.
24.
0.6
^ 160.
r sa°
42.
1.5
73.
73.
3.6
39.
130.
3.3
23.
260.
23.
21.
610.
65.
, 18.
1300.
150.
17.
2100.
260.
16.
3000.
380.
15.
5700.
790.
15.
22000.
-^pfl
14.
i*000.
"CO.
5.0 ug/L
Effluent
0.10
98.
55.
1.7
400.
110.
4.7
210.
240.
12.
130.
460.
27.
97.
1100.
76.
30.
2300.
210.
70.
6200.
480.
67.
10000.
820.
62.
15000.
1200.
61.
28000.
2400.
59.
110000.
10000.
""'Wl').
Z2COO.
0.
96.
49.
1.
350.
99.
4.
ISO.
210.
10.
110.
390.
23.
S3.
910.
65.
67.
2300.
ISO.
59.
5200.
420.
56.
8400.
700.
53.
12000.
1000.
51.
23000.
2000.
43.
93000.
S700.
45.
•90000.
1=000.
(ug/L)
20 1.0
80.
33.
5 0.9
230.
63.
1 2.5
110.
120.
6.2
65.
220.
14.
43.
490.
37.
37.
1200.
110.
32.
2700.
240.
31.
4400.
410.
29.
6200.
600.
28.
12000.
1200.
27.
47000.
5300.
25.
95000.
12000.
20. ug/L
Effluent (ug/L)
0.10
99.5
67.
2.2
490.
140.
5.9
260.
310.
15.
160.
600.
35.
130.
1400.
97.
100.
3700.
270.
92.
8300.
620.
87.
14000.
1000.
82.
19000.
1500.
80.
38000.
3000.
75.
150000.
13000.
59.
310000.
"COO.
0.20
99.
61.
2.0
450.
130.
5.3
230.
270.
14.
150.
530.
31.
110.
1300.
87.
92.
3300.
240.
31.
7300.
550.
77.
12000.
930.
72.
17000.
1300.
70.
33000.
2700.
66. .
130000.
11 000.
61.
270000.
24000.
1.0
95.
46.
1.4
330.
94.
3.9
170.
190.
9.9
100.
370.
22.
78.
S50.
62.
63.
2200.
170.
56.
4800.
390.
53.
7900.
660.
49.
11000.
960.
48.
22000.
1900.
-6.
S7000.
3200.
42.
1BOOOO.
1SOOO.
-------
TABLE 7-12
Estiaated Cost for Removing Ethylene Dibroside (EDB) Using Packed Coluom Aeration - March 1989
^ysteffl Size Category
: ulation Range
: ign F^feUIGD)
Average ^Jf Flow
(H60)
25-100
0.024
0.0056
101-500
0.037
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
. 1.8
B.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
j
75,001-100,000
26.
13.
00,001-500,000
51.
27.
<"J, 001-1, 000, 000
210.
120.
F.ooo
430.
270.
Percent Reooved
Total Capital Cost (K$)
Q4N Cost (B/Year)
Total Production Cost
(cents/1, 000 ga!)
Total Capital Cost («)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
04« Cost (K*/Year)
Total Production Cost
(cents/1,000 gair
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (M)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Did Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (Kf/Year)
Total Production Cost
(csnts/1,000 53!)
Total Capital Cost (•:$)
GiH Cost [''i/Yearj
Tot2! P-5:ij:ti:r Cos:
Influent
0
98
39
1
280
75
2
130
140
6
75
260
14
53
570
37
40
1300
100
34
3000
240
32
4800
410
30
6900
590
29
13000
1200
23
52000
5100
26
110000
liOOO
;4
0.50 ug/L
Effluent (ug/L)
.010 0.050 1.0
90. -
30.
.1. 0.8
(^210.
55.
.7 1.9
96.
100.
.5 4.5
52.
180.
9.3
36.
370.
26.
27.
350.
72.
(23.
^'
1900.
170.
21.
3000.
280.
20.
4300.
410.
19.
B200.
840.
IB.
32000.
3600.
17.
65030.
?,V,£t
•''ib.
0.
99.
56.
j_
400.
110.
3.
190.
220.
Q_
110.
410.
22.
33.
920.
56.
64.
2200.
160.
55.
5000.
370.
52.
8000.
620.
48.
12000.
890.
47.
22000.
1800.
45.
88000.
7600.
41.
1EOOOO.
14000.
:3.
10.
Effluent
010 0
9 99
47
6 1
330
92
9 3
160
180
9 8
93
330
18
67
730
46
51
1SOO
130
44
. 3900
300
42
6300
510
39
9000
730
39
17000
1500
36
69000
6300
33
140000
14000
" -*(
ug/L
(ug/L)
.050 1.0
.5 90.
30.
.3 0.8
210.
55.
.3 1.9
96.
100.
.1 4.5
52.
180.
• 9.8
36.
370.
26.
27.
350.
72.
23.
1900.
170.
21.
3000.
280.
20.
4300.
410.
19.
3200.
840.
IB.
32000.
3600.
17.
65000.
5000.
is.
0.
99.
64.
1.
460.
130.
4.
230.
260.
12.
140.
490.
25.
99.
1100.
66.
76.
2700.
190.
66.
6000.
430.
62.
7700.
720.
53.
14000.
1000.
57.
27000.
2100.
53.
110000.
£900.
49.
220000.
IrOOO.
15.
50.
Effluent
010 0
93 99
56
8 1
400
110
7 3
190
220
9
110
410
22
83
920
56
64
2200
160
55
5000
370
. 52
8000
620
48
12000
890
47
22000
1300
45
esooo
7600
41
120000
liOOO
33
ug/L
(ug/L)
.050 1.0
.9 98.
39.
.6 1.1
280.
75.
.9 2.7
130.
140.
.9 6.5
75.
260.
14.
53.
570.
37.
40.
1300,
100.
34.
3000.
240.
32.
4800.
410.
30.
6900.
590.
29.
13000.
1200.
23.
52000.
5100.
26.
. 110000.
11000.
:4.
-------
TABLE 7-13
Estiaated Cost for Removing Ethyl benzene Using Packed Coluan Aeration - March 1989
:;ystea Size Category Influent
: ulation Range =====r=r================================================
: ign U^HGD) 100. ug/L 700. ug/L 1000. ug/L
Jf Flow .
(N6D) Effluent (ug/L) Effluent (ug/L) Effluent (ug/L)
50. 700. BOO. 50. 700. BOO. 50. 700. BOO.
Percent Reaoved 50. - 92.9 95. 30. 20.
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
- 1.8
0.70
10,001-25,000
4.8
| 2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
75,001-100,000
26.
13.
50,001-500,000
51.
27.
.^,001-1,000,000
210.
120.
R,000
4 30.
270.
Total Capital Cost (K$J
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Did Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)-
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OJ« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost
-------
TABLE 7-14
Estimated Cost for Reaoving is-Xylens Using Packed Colusm Aeration - March 19B9
Systea Size Category
;pulation Range
Average^0!y Flow
(HGD)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0,086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
: 75,001-100,000
26.
13.
100,001-500,000
51.
27.
oCO, 001-1, 000, 000
210.
120.
POO, coo
^'0.
•-in
Percent Reaoved
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
QJH Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
T2tai Coital Cost (•:*)
QW Cost !K$/Yeir)
Total .;rc;u:i::n I:st
10000. ug/L
Effluent (ug/L!
1000.
90.
21.
0.4
,-HO.
"""
39.
1.1
64.
63.
2.2
31.
100.
4.7
20.
190.
12.
13.
390.
33.
/i'(T..i
' ^"^
770.
75.
9.1
1200.
130.
8.5
1700.
190.
8.2
3200.
390.
7.8
12000.
1300.
7.2
24000.
4100.
'{^.
12000. 15000. 1000
95
— 23
o
150
— 43
i
-- 72
71
____ ____ "
35
120
5
23
220
14
15
450
38
12
- 900
87
10
1400
150
9
— 2000
220
9
3300
450
9
- - 14000
2000
g
23'ViO
4r:0
3
Influent
20000. ug/L
Effluent (ug/L)
12000.
40.
15.
.4 0.2
97.
27.
.2 0.6
43.
42.
.6 1.4
20.
63.
.5 2.9
12.
110.
7.6
3.2
22G.
21.
6.2
440.
49.
5.5
690.
84.
.8 5.1
960.
120.
.6 5.0
1900.
260.
.0 4.7
6300.
1200.
.4 4.4
12000.
2=00.
.0 i.3
15000.
25.
14.
0.2
92.
26.
0.6
41.
39.
1.3
19.
58.
2.7
11.
100.
7.2
7.6
210.
20.
5.B
410.
47.
5.2
630.
81.
4.8
380.
120.
4.7
1600.
250.
4.4
5700.
1200.
4.2
11000.
1700.
4.0
1000.
98.
26.
0.
170.
49.
1.
32.
33.
3.
41.
130.
6.
27.
260.
17.
13.
530.
44.
14.
1100.
100.
12.
1700.
170.
12.
2400.
260.
11.
4500.
520.
11.
17000.
2400.
10.
34000.
:300.
9.
50000. ug/L
Effluent (ug/L)
12000.
76.
18.
5 0.3
120.
33.
4 0.8
54.
53.
1 1.3
25.
32.
5 3.8
16.
150.
9.7
11.
310.
27.
8.2
610.
61.
7.2
960.
100.
6.8
1300.
150.
6.6
2500.
320.
6.2
7100.
1500.
5.3
12000.
T * -\^t
4 5.6
15000.
70.
17.
f"-. T
V . %J
110.
32.
o.e
51.
50.
1.7
24.
77.
3.5
15.
140.
9.1
10.
290.
25.
7.7
570.
58.
6.8
890.
99.
6.3
1200.
140.
6.1
2300.
300.
5.3
5400.
140C.
5.4
16000.
3200.
5.2
-------
TABLE 7-15
Estimated Cost for Removing o-Dichlorobenzene Using Packed Column Aeration - March 1989
Systea Size Category
pulaticn Rantje
signJ^(MGD)
Averag^^By Flow
diroy
"1
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
l.B
0.70
10,001-25,000
4.9
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
:75, 001-100, 000
26.
13.
00,001-500,000
51.
27.
^,001-1,000,000
210.
120.
Jo, 000
430.
270.
Percent Removed
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
Q&M Cost (KVYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiN Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
0411 Cost (Kf/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
Did Cost !K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Cauital Cost (K$)
O&H Cost (K»/Year)
Total Production Cost
(cents/1,000 gal)
Total-Capital Cost (!($)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (r$)
Q£(1 Cost fS'J/Ysar)
Tits'. ?.rc;uction Co;t
:CrTtE/:.0:/0 cai)
100. ug/L
Effluent (ug/L)
50. 600. 800.
50.
17.
0.3
110. --
31.
0.9
52.
48.
l.B
24.
75.
3.8
15.
140.
10.
10.
280.
28. —
8.0
560.
65.
7.2
880.
no.
6.7
1200.
160.
6.5
2300.
340.
6.2
3500.
1600.
5.8
17000.
3600.
.;.£
50.
92.9
28.
0.6
, 190.
~~ — ~~ '- --
51.
1.6
86.
88.
3.6
45.
150.
7.7
30.
300.
20.
22.
650.
54.
,17.
^^'
1400.
130.
16.
2200.
210.
15.
3200.
310.
14.
6000.
640.
14.
23000.
2300.
f 7
* -* •
47000.
£200.
(•"'
Influent
700. ug/L
Effluent (ug/L)
600. 800.
14.
15.
0.2
95.
27.
0.7
43.
39.
1.4
19.
59.
3.0
12.
110.
8.2
8.1
220.
23.
6.3
430.
53.
5.7
670.
92.
5.3
940.
140.
5.2
1700.
280.
4.9
6200.
13CO.
4.6
12000.
3000.
i.5
50.
95.
30.
0.
210.
54.
1.
92.
96.
T
•J.
49.
160.
8.
33.
330.
21.
24.
710.
59.
13.
1500.
140.
17.
2500.
230.
16.
3500.
340.
16.
6700.
690.
15.
26000.
3000.
14.
f2000.
£700.
13.
1000.
Effluent
600.
40.
16.
7 0.
100.
29.
7 0.
48.
45.
9 1.
22.
69.
i 3.
14.
130.
g.
9.
240.
26.
7.
510.
61.
6.
800.
100.
6.
1100.
150.
6.
2100.
320.
5.
7500.
1500.
5.
15000.
3400.
?,
ug/L
(ug/L)
90C.
20.
15.
3 0.2
97.
27.
8 0.7
44.
40.
6 1.4
20.
50.
5 3.1
12.
110.
4 8.4
4 3.3
220.
23.
3 6.5
440.
55.
6 5.9
690.
94.
2 5.5
970.
140.
0 5.3
1800.
290.
7 5.0
6400.
1300.
4 4.9
12000.
3100.
2 4.6
-------
lABLh / - J.b
Estimated Cost for Rsaoving o-Xylene Using Packed Coluisn Aeration - March 1989
Systea Size Category
pulation Range
sign J|^k(HGD)
Averags^^By Flow
(USD)
10000. ug/L
Influent
20000. ug/L
50000. ug/L
.Effluent (ug/L) Effluent (ug/L) Effluent (ug/L)
1000. 12000. 15000. 1000. 12000. 15000. 1000. 12000. 15000.
Percent Reaoved
90.
25-100 Total Capital Cost (K$) 21.
0.024 Q4« Cost (K$/Year) 0.4
0.0056 Total Production Cost . 140.
(cents/1,000 gal)
101-500 Total Capital Cost (K$) 40.
0.087 Q&H Cost (K$/Year) 1.1
0.024 Total Production Cost 65.
(cents/1,000 gal)
501-1,000 Total Capital Cost (K$) 64.
0.27 0&« Cost (K$/Year) 2.3
0.086 Total Production Cost 31.
(cents/1,000 gat)
1,001-3,000 Total Capital Cost (K*) 100.
0.65 04H Cost (K$/Year) 4.8
0.23 Total Production Cost 20.
(cents/1,000 gal)
3,001-10,000 Total Capita! Cost (K*) 190.
i.S 04« Cost (KS/Year) 13.
0.70 Total Production Cost 14.
(cents/1,000 gal)
10,001-25,000 Total Capital Cost (K$) 390.
4.8 0&« Cost (K$/Ysar) >4.
2.1 Total Production Cost ( 10.
(cents/1,000 gal)
25,001-50,000 Total Capital Cost (K$) 780.
11. 04M Cost (M/Year) 77.
5.0 Total Production Cost 9.3
(cents/1,000 gal)
50,001-75,000 Total Capital Cost («) 1200.
18. O&H Cost (KI/Year) 130.
B.B Total Production Cost 8.7
(cents/1,000 gal)
75,001-100,000 Total Capital Cost (K$) 1300.
26. 04H Cost (K$/Year) 190.
13. Total Production Cost 8.4
(cents/1,000 gal)
100,001-500,000 Total Capital Cost (K$) 3300.
51. 0411 Cost (Kt/Yearj 400.
27. Total Production Cost 7.?
(cents/1,000 gal)
.'0,001-1,000,000 Total Capital Cost ;K$) 12000.
210. 04« Cost (KI/Yearj 1200.
120. Total Production Cost 7.4
(cents/1, 000
!00,OQQ Total Capital Cost
430. 0^ '''t/Y
95. 40. 25. 98. 76. 70.
23. 15. 14. 26. 18. 17.
0.4 0.2 0.2 0.5 0.3 0.3
150. 97. 93. 180. 120. 110.
44. 27. 26. 50. 34. 32.
1.2 0.7 0.6 1.4 0.8 0.8
73. 43. 41. 33. 55. 52.
72. 42. 39. 34. 53. 50.
2.7 1.4 1.3 3.1 1.8 1.7
36. 20. 19. 42. 26. 24.
120. 63. 58. 140. S3. 7B.
5.6 2.9 2.7 5.6 3.8 3.6
23. 12. 11. 27. - 16. 15.
14.
16.
460.
39.
12.
3.2
230.
21.
6.2
7.6
210.
19.
9.9 9.3
11. 10.
350. 310.
20. 45.
5.8 14.
290.
27. 25.
3.3 7.3
Total
J
920. 440. 410. 1100. 620. 570.
89. 49. 47. 110. 62. 58.
11. 5.5 5.2 13. 7.4 6.9
1500. 690. 630. 1700. 970. 900.
150. 85. 81. 180. 110. 100.
10. 5.2 4.3 12. 6.9 6.4
2100. 970. 890. 2500. 1400. 1300.
220. 120. 120. 270. 160. 150.
9.8 5.0 4.7 12. 6.7 6.2
3900. 1800. 1600. 4700. 2500. 2400.
460. 260. 250. 540. 320. 300.
9.3 -,.7 4.4 11. 6.3 5.9
15000. 6300. 5700. 13000. 9303. 3600.
2100. 1200. 1200. 2400. 1500. 1400.
2.f» 4.4 4.2 10. 5.9 5.5
:?900. 1:000. iiooo. 35000. 15000. 1/000.
4700. .500. 2700. 5400. 3400. 3300.
:.: J.1 4.1 ?.7 5.o 5.3
-------
TABLE 7-17
Estiaated Cost for Reaoving p-Xylene Using Packed Coluan Aeration - March 19B9
rystea Size Category
: :ulation Range
;ign U^.IBD)
Average ^Hf Flow
(HBD)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4.6
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
3.B
-75,001-100,000
26.
13.
100,001-500,000
51.
27.
:0!), 001-1, 000, 000
210.
120,
PO,OOO
430.
270.
Percent Reaoved
Total Capita! Cost (K$)
Q&M Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
Q4M Cost (KS/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
Q&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!($)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
OiH Cost (KJ/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost «$)
QiM Cost (r.$/Yearj
Total /reduction Cost
(cents. 1,000 cal)
10000. ug/L
Influent
20000. ug/L
Effluent (ug/L) Effluent (ug/L)
1000. 12000.
90.
21.
0.4
140.
39.
1.0
64.
62.
2.2
30.
99.
4.6
19.
190.
12.
13.
380.
32.
10.
760.
73.
8.9
1200.
130.
8.3
1700.
180.
8.1
3200.
380.
7.6
12000.
1700.
7.1
23000.
4000.
i.3
15000. 1000.
95.
23.
0.4
150.
43.
1.2
71.
71.
2.5
35.
110.
5.3
22.
220.
14.
15.
440.
37.
12.
830.
84.
10.
1400.
140.
9.6
— - 2000.
210.
9.3
3700.
440.
B.8
- — 14000.
2000.
S.2
— - 2700C.
4500.
7.3
12000.
40.
15.
0,2
96.
27.
0.6
43,
42.
1.4
20.
63.
2.9
12.
110.
7.6
B.I
220,
21.
6.2
440.
49.
5.5
6BO.
84.
5.1
960.
120.
5.0
1BOO.
260.
4.7
6200.
1200.
4.4
12000.
2800.
1.3
15000.
25.
14.
0.2
92.
26.
0.6
41.
39.
1.3
19.
53.
2.7
11.
100.
7.2
7.6
210.
20.
5.8
410.
47.
5.2
630.
BJ.
4.8
880.
120.
4.7
1600.
240.
4.4
5700.
1200.
4.2
11000.
:?oo.
4.0
50000. ug/L
Effluent (ug/L)
1000.
98.
25.
0.5
170.
49.
1.4
81.
32.
3.0
40.
130.
6.3
26,
250.
16.
18.
520.
43.
14.
1000.
98.
12.
1700.
170.
11.
2400.
250.
11.
4400.
510.
10.
17000.
2300.
9.7
;3000.
<:oo.
3 .2
12000.
76.
18.
0.3
120.
33.
0.8
53.
52.
1.8
25.
81.
3.7
16.
150.
9.6
\ \
300.
26.
3.1
600.
60.
7.2
950.
100.
6.7
1300.
150.
6.5
2500.
310.
6.1
9000.
1400.
5.7
13000.
7300.
5.5
15000.
70,
17.
0.3
110.
31.
o.a
51.
50.
1.7
24.
77.
3.5
15.
140.
9.0
10.
280.
25.
7.6
560.
57.
6.7
SBO.
98.
6.3
1200.
140.
5.1
2300.
300.
5.7
3300.
1400.
5.4
16000.
3200.
c t
-------
TABLE 7-18
Estiiated Cost for Renoving Styrene Using Packed Colusn Aeration - March 1989
iysteu Size Category
. ilation Range
- .gn py^UIBD)
verage D^^^FloM
(H6D)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
|.70
10,001-25,000
4.3
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
75,001-100,000
26.
13.
00,001-500,000
51.
27.
i
,•0,001-1,000,000
210.
120.
POOO
i'v.
~-t
10. ug/L
Influent
50. ug/L
Effluent (ug/L) Effluent (ug/L)
Percent Removed
Total Capital Cost (K$J
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal!
Total Capital Cost (K$)
OSM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
G&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSW Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (Ks)
J1H Cost (K$/Yejr:
T.fjl trn^i,rti^n .--ct
2.0
80.
20.
0.4
130.
38.
1.1
62.
60.
2.3
30.
96.
4.9
19.
130.
13.
13.
330.
34.
10.
760.
80.
9.2
1200.
140.
8.6
1700.
200.
8.4
3200.
410.
3.0
12000.
1900.
7.4
14000.
-200.
7 ;
5.0
50.
16.
0.3
110.
30.
0.7
48.
46.
1.6
22.
71.
3.3
14.
130.
8.7
9.3
260.
24.
7.1
520.
55.
6.3
310.
95.
5.9
1100.
140.
5.7
2100.
290.
5.4
7600.
1300.
5.1
15000.
3100.
i 0
20. 2.0
96.
27.
0.6
190.
51.
1.5
85.
67.
3.4
43.
140.
7.2
29.
290.
18.
20.
610.
49.
16.
1300.
120.
14.
2000.
200.
14.
— - 2900.
290.
13.
5400.
590. '
13.
- — 21000.
2600.
12.
42000.
5SOO.
j. i
5.0
90.
23.
JL5
/160.
43.
1.3
72.
72.
2.8
36.
120.
5.9
24.
230.
15.
17.
480.
* I-
.43.
' ex
970.
96.
12.
1600.
160.
11.
2200.
240.
10.
4200.
490.
9.9
16000.
2200.
9.2
32000.
-900.-
^.3
20.
60.
17.
0.3
110.
32.
0.9
52.
49.
1.8
24.
77.
3.7
15.
140.
9.7
10.
290.
26.
7.3
570.
61.
7.0
900.
100.
6.5
1300.
150.
6.4
2300.
320.
6.0
3500.
1500.
5.6
1700'-"'.
3*00.
:.4
200. ug/L
Effluent (ug/L)
2.0
99.
33.
0.7
230.
62.
1.9
100.
110.
4.2
54.
190.
9.1
37.
370.
23.
26.
300.
61.
20.
1700.
150.
19.
2700.
250.
13.
3800.
360.
17.
7300.
730.
16.
29000.
320C.
15.
::000.
7100.
14.
5.0
97.5
29.
0.6
200.
54.
1.6
91.
95.
3.7
47.
160.
7.9
32.
320.
20.
22.
430.
54.
17.
1400.
130.
16.
2200.
220.
15.
3200.
320.
14.
6100.
640.
14.
24000.
2BOO.
13.
+7000.
:300.
12.
20.
90.
23.
0.5
160.
43.
1.3
I L,
72.
2.8
36.
120.
5.9
24.
230.
15.
I7.
480.
41.
( T
970.
96.
12.
1600.
160.
11.
2200.
240.
10.
4200.
490.
9.9
16000.
2200.
9.2
32000.
4900.
3.3
-------
Estimated Cost for Removing trans-l,2-Dich!oroethylene Using Packed Column Aeration - March 1939
Systea Size Category
Ppadation Range
WH$s Daily Flow
(IED)
25-100
0.024
0.0056
101-500
0.037
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
i.e
0.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
13.
3.8
75,001-100,000
26.
13.
100,001-500,000
51.
27.
500,001-1,000,000
210.
120.
; 1,000,000
Percent Rsasved
Total Capital Cost (K$)
M Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K*)
OH1 Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kf!
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
m Ccst (K$/Year)
"Total Production Cost
(cents/1,001) gal)
Total Capital Cost (K$)
m Dost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiM Cost (ft/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OKI Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
m Cost (Kt/Yearj
Total Production Cost
(cents/1,000 gai)
Total Capital Ccst (K$!
am Cost (Kt/Year)
Total Production Ccst
(cEr.ts/l.C<30?aij
*:'U1 :.c::t3l C:s: (•.$)
50. ug/L
.
Effluent (ug/L)
5.0 70. 100.
90.
nn ._
iU. " —
0.3
130.
37. — —
0.9 — —
60.
CQ
37 •
fj 4
29.
93.
4.3
13.
ISO.
11.
' " -__
360.
30.
,•9.4
710.
70.
0 A
a • H -
1100. — —
120. — —
7 a --_..,_
/ •O
1600. — —
170.
7.o
2900.
3-60. — —
7.1
110CO.
1700.
6.7
J1'!X'. — —
Influent
100. ug/L
Effluent (ug/L)
5.0
95.
21.
0.4
140.
41.
1.1
67.
46.
2.4
32.
110.
5.0
21.
200.
13.
14.
410.
34.
11.
320.
79.
9.6
1300.
140.
3.9
1800.
200.
3.7
3400.
410.
3.2
13000.
1900.
7.6
:5':?0.
70. 100.
30.
14.
0.2 —
07
70.
?A _—
0.6
42.
39.
1.3
? q
c.a
2.7
12.
100.
7 7 __„_
7.7 —
210.
20.
5.3
410.
47.
5.2 — -
640.
81.
4.3
S90.
120.
4.7
1600.
250. —
4.4
5700.
1200. —
i.2 —
11CCO.
Ef
5.0
99.
26.
0.5
170.
s?.
1.4
32.
83.
3.0
41.
130.
6.4
26.
260.
16.
13.
530.
44.
14.
1100.
100.
12.
1700.
170.
12.
2400.
250.
11.
4500.
v*.y t
11.
17000.
23 M).
9.9
34%0.
500.
fluent
70.
86.
19.
C.
120.
T— ,
0.
57.
56.
I.
27,
37.
4.
17.
160.
10.
12.
330.
"?•"
3,
650.
65.
7.
1000.
110.
f
1500.
160.
7
2700.
340.
^.
10000.
1600.
6.
IVJOO.
ug/L
(ug/L)
100.
80.
IS.
• j V* i v
*• ''Q
33.
9 0.8
D-J»
52.
9 '.2
25.
51.
0 3.7
16.
150.
Q.i
i^ .
300.
26.
7 2.0
600.
60.
8 7.1
°40.
100.
2 6.7
1300.
150.
0 6.5
2500.
Vi'.' t
6 6.1
9000.
1*00.
"1 £ T
,:OvO.
-------
TABLE 7-20
Estiaated Cost for Removing Tetrachloroethylene Using Packed Column ftsration - ^arch 1989
Systes Size Category
Population Range
Avel^^plaily F!OH
(K6D)
25-100
0.024
0.0056
101-500
0.097
0.024
501-1,000
0.27
0.096
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4.S
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.8
75,001-100,000
26.
13.
100,001-500,000
51.
27.
500,001-1,000,000
210.
'20.
f- 1,000, 000
130.
---.
Percent Resoved
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
O&N Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
DM Cost (K$/Year)
Total Production Cost
(cents/1, 000 -gai)
Total Capital Cost (K$)
G&H Cost (K$/Year)
Total Production Cost
(cents/1.000 gal)
Total Capita! Cost (K$)
GiM Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
Q4M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost |K$)
O&M Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Old Cost (K$/Year)
Tota! Production Cost
(cents/1,000 gal)
Total Capital Cost !KJ)
04H Cost (Kt/Year)
Total Production Cost
icents/1,000 ;alj
Tc-ti! Zijitj! CD=T '''*)
liH .'151 f-'t/Yti-i
--. - ! -, ,,.,,,, '-ft
-.-.-.-.-.-.
50. ug/L
Influent
100. ug/L
Effluent (ug/L) Effluent (
i ,
98.
24.
0.
160.
45.
1.
73.
74.
2.
36.
120.
5.
23.
230.
14.
16.
460.
36.
12.
930.
83.
10.
1500.
140.
9.
2100.
210.
9.
3900.
430.
9.
15000.
1900.
o.
I:000.
•U.;-r.
-
0 5.0
90-.
19.
4 0.3
/ 130.
36.
1 0.9
58.
59.
5 2.0
28.
92.
3 4.1
13.
170.
10.
-i«
350.
29.
(^.0
690.
66.
8.0
1100.
110.
B 7.5
1500.
170.
5 7.2
2800.
340.
0 6.B
10000.
1600.
3 £.4
20000.
TcCli/r-
t '• - <
50. 1.0
99.
25.
0.5
170.
49.
1.2
79.
31.
2.9
'9.
130.
5.S
25.
250.
15.
17.
510.
40.
13.
1000.
91.
12.
1600.
160.
11.
2300.
230.
10.
4300.
470.
9.9
— - 16000.
2100.
9.2
""O^O.
iCljt).
: 7
5.0
95.
21.
0.4
140.
40.
1.0
65.
66.
2.2
32.
100.
4,£
L '•„• i
200.
' 7
14.
400.
32.
10.
790.
73.
9.1
1300.
120.
8.5
1800.
190.
8.2
3300.
390.
7.7
12000.
1700.
7.2
24000.
3?00,
• t ;•
ug/L)
50.
50.
15.
0.2
98.
27.
0.7
44.
43.
1.4
20.
64.
3.0
13.
120.
7.S
3.4
230.
21.
^- \
450.
50.
5.7
710.
86.
5.3
990.
130.
5.1
1800.
260.
4.8
6500.
1200.
4.5
13CO .
2C0 .
.i
500. ug/L
Effluent (ug/L)
1.0
99.8
29.
0.6
200.
57.
1.5
94.
?7.
3.4
"7
160.
7.0
31.
310.
IS.
21,
530.
43.
16.
1300.
110.
14.
2000.
190.
13.
2800.
270.
13.
5400.
560.
12.
20000.
2500.
1! .
4'XCO.
!i')0.
15.
5.0
99.
25.
0.5
170.
49.
1.2
79.
91.
2.9
39.
130.
5.8
25.
250.
15.
4 7
310.
40.
13.
1000.
91.
12.
1600.
160.
11.
2300.
230.
10.
4300.
470.
9.9
16000.
2100.
9.2
3::>oo.
-:00.
3.7
50.
90.
19.
0.3
130.
36.
0.9
58.
59.
2.0
28.
92.
4.1
19.
170.
10.
12.
350.
HQ
-U t
9.0
690.
66.
8.0
1100.
110.
7.5
1500.
170.
7.2
2900.
340.
6.8
10000.
1600.
i
20COO.
3£00,
£..1
-------
TABLE 7 - 21
• Estiaated Cost for Reaoving Toluene Using Packed Column Aeration - Harch 1939
ystea Size Category
Jlation Range
ign F^^HSD)
verage ^^B Flow
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
kO.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.B
75,001-100,000
26.
13.
00,001-500,000
51.
27.
,J, 00 1-1, 000, 000
210.
120.
p.ooo
130.
Percent Reaoved
Total Capital Cost (K$)
G&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Did Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Q&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gall-
Iota! Capita! Cost (KJ)
QiH Cost (KI/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (X*)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gaij
Total Capital Cost (K$)
GW Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
06M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X*)
G4N Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
0&« Cost (B/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Qift Cost (K$/Year)
Total Production Cost
(csnts/l.OOO gai)
Total Cap -tai Cost "(*}
Ci* Cest p'$/Y£ir;
Tcti! 5r:d'j:t::n C-t
=============================
500. ug/L
Effluent (ug/L)
100. 2000. 3000.
30.
18.
0.3 .
120.
33.
0.8
54. —
53.
l.fi
26.
83.
3.8
16.
150.
9,7
11.
310.
27,
8.2
610.
61.
7.3
970.
100.
6.8
1400.
150.
6.6
2500.
320.
6.2
9200.
1500.
5.3
12000.
7400.
:=======
100.
96.
23.
0.
.'"1 50.
44.
1.
73.
73.
2.
35.
120.
5.
23.
220.
14.
16.
460.
38.
(\1.
V
910.
86.
11.
1400.
150.
9.
2000.
220.
9.
3800.
440.
9.
14000.
2000.
8.
29000.
Influent
:======================:
3000. ug/L
Effluent (ug/L)
2000. 3000.
7 33.
15.
4 rt_2
94.
26.
2 0.6
42.
40.
6 1.3
19.
60.
5 2.3
12.
110.
7.4
7.8
210.
21.
5.9
420.
48.
5.3
650.
82.
9 4.9
910.
120.
6 4.8
1700.
250.
1 4.5
5900.
1200.
4 4.3
11000.
2700.
:=======
100.
99.
25.
0.
160.
47.
1.
78.
78.
2,
39.
130.
K
25.
240.
15.
17.
500.
41.
13.
1000.
93.
12.
1600.
160.
11.
2200.
230.
10.
4200.
480.
9.
16000.
2200.
?.
31000.
:900.
g-
==========
5000.
Effluent
2000.
60.
16.
5 0.
100.
29.
3 0.
47.
46.
9 1.
29.
70.
9 3.
14.
130.
R.
0,
250.
07
6.
500.
53.
6.
770.
91.
5.
1100.
130.
5.
2000.
280.
9 5.
7200.
1300.
1 l
i. *l .
14000.
3000.
7 4.
===========
ug/L
(ug/L)
3000.
40.
15.
2 0.2
96.
27.
7 0.6
43.
41.
5 1.4
20.
62.
1 2.9
12.
110.
2 7.5
0 8.1
220.
T 1
3 6.1
430.
49.
1 5.5
630.
84.
7 5.1
950.
120.
5 4.9
1700.
250.
2 4.6
6100.
1200.
9 4.4
12000.
2300.
7 -.2
-------
IMDLC. / - '£'£
Estimated Cost for Removing 1,2-Dichloroprapane Using Packed Coluan Aeration - March 198?
Systes Size Category
Ave^^^Bdily Flow
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4.3
2.1
25,001-50,000
11.
5.0
50,001-75,000
IS.
3.8
- 75,001-100,000
26.
13.
100,001-500,000
51.
27,
'500,001-1,000,000
210.
120.
•000,000
-30.
Percent Reaoved
Total Capital Cost (K$)
GiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&« Cost (K$/Yearj
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiR Cost (K$/Year)
Total Production Cost
(cents/1,000 ga!)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Ysar)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
D4H Cost (K$/Year)
Total Production Cost
'cents/1 r'00 gaii
Total Cisit'l rr-=;t -.ti
PL* r:-., (i-$/Va = r-
10. ug/L
Influent
50. ug/L
Effluent (ug/L) Effluent (ug/L)
2.0
90.
21.
0.4
140.
38.
1.1
63.
61.
2.4
30.
98.
5.0
20.
190.
13.
14.
390.
35.
11.
790.
82.
9.6
1300.
140.
9.0
1800.
210.
8.7
3300.
420.
3.3
13000.
1900.
7.7
"•'.<:(><)
£ "* ' i't
5.0
50.
16.
0.3
110.
30.
0.8
49.
46.
1.6
22.
71.
3.4
14.
130.
8.9
9.5
260.
24.
7.2
520.
57.
6.4
920.
97.
6.0
1100.
140.
5.8
2100.
300.
5.5
7600.
1400.
5.2
, .fiM
"'
-------
Estiaated Cost for Reaoving Toxaphene Using Packed Column fieration - March 1989
Systei Size Category
opulation Range
esig^Aw (MBD)
Averaj^^Hly Flow
j^ffl)
Percent Reaoved
25-100 Total Capital Cost (K$)
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.8
0.70
10,001-25,000
4,3
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
8.3
75,001-100,000
26.
13.
100,001-500,000
51.
27.
s: .00, 001 -1,000, 000
210.
120.
0000,000
i 70 .
-•"-'•
QiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
QiH Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
QiH Cost (Kt/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K»)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
OiH Cost (Kt/Year)
Total Production Cast
(csnts/1,000 gal)
Total CiDita! Cost [•%}
CW :•:=* ('J/V'sir;
Tstal^'ocucticr •::•=».
5.0 ug/L
Effluent (ug/L)
1.0 5.0
80.
20.
0.3
130.
"
33.
0.9
61.
60.
2.1
29.
95.
. 4.4
19.
130.
11.
13.
3sO.
30.
9.5
720.
70.
8.5
1100.
120.
7.9
1600.
180.
7.7
3000.
360.
7.2
11000.
1700.
i.B
12000.
.7.200.
. c __._
10. 1.
90.
23.
0.
(150.
"'""
43.
1.
71.
71.
2.
35.
110.
5.
22.
220.
14.
15.
440.
37.
12.
380.
84.
10.
1400.
150.
9.
2000.
210.
9.
3700.
440.
3.
— - 14000.
2000.
3.
— - :;ooo.
-500.
:
Influent
10. ug/L
Effluent (ug/L)
0 5.0
50.
16.
4 0.2
100.
29.
2 0.7
47.
46.
6 1.5
22.
70.
3 3.2
14.
130.
3.3
9.1
2iO.
"
5.9
500.
53.
6.1
790.
92.
6 5.7
1100.
130.
4 5.6
2000.
280.
B 5.2
7300.
1300.
2 4.9
14000.
3000.
i J. .'
10. 1.
98.
29.
0.
200.
57.
1.
94.
. ?6.
3.
47.
•— - 160.
7.
31.
310.
19.
~> ^
540.
51.
16.
1300.
120.
15.
2000.
200.
14.
2900.
300.
13.
5400.
610.
"3.
— - 21000.
2700.
12.
12000.
iOOO.
- — * - 1 • t
50.
Effluent
0 5
90
23
6 0
150
43
6 1
71
71
5 2
ug/L
(ug/L)
.0 10.
30.
20.
.4 0.3
130.
33.
.2 0.9
61.
50.
.6 2.1
35. 29.
110
5 5
22
220
14
15
440
37
12
330
34
10
1400
150
9
2000
210
9
3700
440
8
14000
2000
3
23000
4500
95.
.3 4.4
13.
ISO.
11.
13.
7:0.
33.
7.5
720.
70.
3.5
1100.
120.
.6 7.9
1600.
ISO.
.4 7.7
7000.
'An
.8 7.2
11COO.
1700.
.2 s.e
22c:o.
7::0.
.3 :.:
-------
IMbLC / - £4
Estimated Cost for Reaoving Heptachlor Using Packed Coluan Aeration - March 19B9
Systea Size Catego
'opulation Range
Jesiggfe* (H6D)
(M6D)
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3,001-10,000
1.9
0.70
10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0
50,001-75,000
18.
B.8
75,001-100,000
26.
13.
100,001-500,000
51.
27.
500,001-1,000,000
210.
120.
^^^f f •„' v v j v :• J
"* ' ' i
"~"i
ry
Percent Resoved
Total Capital Cost (Kt)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&H Cost {Kt/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
Q&R Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
QiM Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (Kt)
04M Cost (Kt/Year)
Total Production Cost
(certs/1, 000 gal)
Total Capital Cost (Kt)
DM Cost (K$/Year)
Total 5roduction Cost
(cents/ 1,000 gal)
Total Capital Cost (Kt)
OiM Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&H Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
0&« Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&M Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Gi« Cost (Kt/Year)
Total Production Cost
(csnts/1,000 cal)
Total Capital Cost (KS)
Qi.1 Cc=t iiCt/Ysar)
* r. * 3 1 -rnl'irfirn •".-,- f
. - - -
0.10 ug/L
Effluent (ug/L)
0.030 0.40 1.0
70.
21.
0.4
140.
39.
1.1 -
65.
64. —
2.5
32.
100. -
5.3
21.
200.
14.
14.
420. —
37.
11.
850.
87.
10.
1300.
150.
9.5
1900.
220.
9.3
3600.
440.
3.8
14000.
2000.
8.2
27000.
i'-flij,
7 -a
0
97
37
0
250
63
L
110
120
5
61
210
10
42
430
27
30
940
74
24
2000
170
23
3300
290
21
4700
420
21
9000
850
1?
35000
3700
18
71000
3200
•7
Influent
1.0 ug/L
Effluent (ug/L)
.030 0.40 1.0
60.
19.
.9 0.4
130.
35.
.1 1.0
59.
57.
.0 2.2
29.
90.
4.6
18.
170.
12.
13.
350.
32.
9.6
700.
76.
8.6
1100.
130.
8.1
1600.
190.
7.9
2900.
390.
7.5
11000.
1800.
7.0
22000.
4100.
i.7
0.
99.
50.
1.
350.
95.
3.
160.
130.
7.
90.
320.
15.
63.
660.
39.
46.
1500.
110.
37.
3200.
250.
34.
5200.
420.
32.
7500.
610.
31.
14000.
1200.
29.
56000.
5300.
27.
110000.
11000.
- c
10.
Effluent
030 0
7 96
35
3 0
240
64
0 2
110
120
2 4
58
200
9
40
410
25
29
370
69
22
1900
160
21
3100
270
20
4300
400
19
3300
810
IS
32000
3500
17
:-6000
7700
i j
ug/L
(ug/L)
.40 i.O
90.
29.
.8 0.6
200."
53.
.0 1.6
39.
92.
.7 3.7
46.
160.
.9 7.9
31.
310.
20 .
22.
570.
54.
•'17.
1400.
130.
16.
2300.
220.
15.
3200.
320.
15.
£200.
i50.
14.
24000.
2:00.
13.
48000.
-3JUU.
•' •, i
-------
Capital costs were divided into process equipment cost, support
equipment cost, direct cost, and indirect cost. The operating costs
are divided into power, maintenance, labor, and administrative.
- The process equipment included the column shell, column internals
(i.e. liquid distributor, liquid redistributor, and packing material
support plate), packing material, one blower, and one pump.
- The support equipment included assembly and installation of the
above process equipment, a concrete air well which is a foundation
for the packed column and a liquid reservoir, 200 feet of piping,
instrumentation, air duct, and electrical connections.
- The total direct cost included all equipment installed at the site
and is the sum of the process and support equipment.
The indirect cost included all non-physical items required for the
air stripping system. This includes sitework, design engineering,
contractor overhead and profit, legal and financial, interest during
construction, and contingencies.
- The total capital cost is the sum of the direct and indirect costs.
The operating cost is the sum of power, maintenance, labor, and
administrative costs. The costs associated with each of these components were
estimated and described as follows:
The total production cost is the total annual cost divided by the
volume of water treated per year.
- The blower costs were based on the projected volume of water treated
per year.
- The maintenance costs were based on 10 percent and 4 percent of the
mechanical and non-mechanical process equipment capital cost,
respectively.
- The labor cost is based on a flat rate of 0.3 cents per 1,000
gallons of treated water and the volume of liquid treated per year.
The administrative cost is based on 20 percent and 25 percent of the
labor and maintenance cost respectively.
Summary
The choice between GAC adsorption and packed column aeration for removing
SOCs from drinking water depends, to a large extent, on the economics of the
two processes. All SOCs considered in this document were identified to be
-------
adsorbable with the exception of epichlorohydrin, for which treatability
information was not available. Treatment costs for GAC adsorption show
relatively little variation between contaminants. As indicated in Section 5,
only 14 of the 29 SOCs were identified to be amenable for treatment by packed
column aeration. Heptachlor and toxaphene may be amenable, but further data
is needed. Packed column facility costs for these 16 SOCs show a wider range
than GAC adsorption costs for the same compounds.
A comparison of GAC and packed column aeration facility costs is shown on
Figure 7-4 for DBCP and o-xylene. For DBCP, which is a well adsorbed and
relatively low volatile pesticide, GAC adsorption is more economical than
packed column aeration. For o-xylene, which is moderately volatile and
relatively poorly adsorbed, packed column aeration is more economical.
Therefore, for the 16 SOCs that are suitable for both GAC adsorption and
packed column aeration, a detailed site-specific evaluation will be required
to identify the most economical option.
-------
700
600
LD
g 500
o
•^-H
7> 400
300
o
LJ
200
100
0
0.001
\
DBCP
0.01
0.1 ' 1 10
AVERAGE PLANT FLOW (MGD)
100
i. ooo
NOTE:
95% 0-XYLENE Ci = 20,000 ug/L
99.5% DBCP REMOVAL CI = 20 ug/L
GAG
PACKED COLUMN
COMPARISON OF COSTS
PACKED COLUMN VERSUS GAC ADSORPTION
o
a
m
-------
8.0 REFERENCES
Adams, J. Q.; R. M. Clark; B. W. Lykins; and P. Kittredge; Regional
Reactivation of Granular Activated Carbon J.AWWA, 5:38-41, 1986.
Aieta, E. M.; Reagan, K. M.; Lang, J. S. ; McReynolds, L.; Rang, J.; and
Glaze, W. H.; "Advanced Oxidation Processes for Treating Groundwater
Contaminated with TCE and PCE: Pilot-Scale Evaluations." J. AWWA, May
1988.
Aly, O. M. and S. D. Faust; "Removal of 2,4 Dichlorophenoxyacetic Acid
Derivatives from Natural Waters." J.AWWA, 57:221-230, 1965.
Arisman, R. K.; R. C. Musick; J. D. Zeff; T. C. Crase; "Experience in
Operation of a Ultraviolet-Ozone (ULTROX) Pilot Plant for Destroying
Polychorinated Biphenyls" In: Industrial Waste Influent, 35th Industrial
Waste Conference Proceedings, Purdue, May, 1980.
AWWA Organic Contaminant Committee, "Volatile Organic Chemical Treatment
Facilities" draft Nov. 1986.
Baker, D.; "Herbicide Contamination in Municipal Water Supplies in
Northwestern Ohio." Final Draft Report 1983. Prepared for Great Lakes
National Program Office, U.S. Environmental Protection Agency, 1983.
Bell, Jr., F. A.; D. L. Perry; J. K. Smith, and S. C. Lynch; "Studies on
Home Water Treatment Systems." J.AWWA, pp. 126-130, April, 1984.
Becker, D. L. and S. C. Wilson; "The Use of Activated Carbon for the
Treatment of Pesticides and Pesticidal Wastes." In: Carbon Adsorption
Handbook (Chemisinoff, D. H. and F. Ellerbusch, Eds.), Ann Arbor Science
Publishers, Ann Arbor, Michigan, 1978.
Bennett, P. J. et al; "Removal of Organic Refractories by Reverse
Osmosis" Proceedings of the 23rd Purdue Industrial Waste Conference,
Part 2, pp. 1000-1017, May, 1968.
Berkau, E. E.; C. E. Frank, and I A. Jefcoat; "A Scientific Approach to
the Identification and Control of Toxic Chemicals in Industrial Waste-
waters", AlChe Symposium Series No. 197, Volume 76, 1980.
Bernardin, F. E. and E. M. Froelich; "Practical Removal of Toxicity by
Adsorption". Proceedings of the 30th Annual Purdue Industrial Wastes
Conference, pp. 548-560, Purdue University, Lafayette, Indiana, 1975.
Bilello, L. J. and B. A. Beaudet; "Evaluation of Activated Carbon by the
Dynamic Minicolumn Adsorption Technique" In: Treatment of Water by
Granular Activated Carbon (M. J. McGuire and I. H. Suffet, Eds), American
Chemical Society, Washintgon, D.C., pp. 213-246, 1983.
Brown, L.; K. C. C. Bancroft, and M. M. Rhead; "Laboratory Studies on the
Adsorption of Acrylamide Monomer by Sludge, Sediments, Clays, Peat, and
Synthetic Resins", Water Research 14:799-781, 1980.
8-1
-------
Buescher, C. A.; J. H. Dougherty, and R. T. Skrinde; "Chemical Oxidation
of Selected Organic Pesticides". J.WPCF, Vol. 36, No. 8, 1964.
Cabasso, I.; E. Klein; C. Eyer, and J. Smith; "Trace Organic Contaminants
in Drinking Water; Evaluation of Semi-permeable Membranes and Osmotic
Pumping to Achieve Concentration", Presentation before the Division of
Environmental Chemistry (American Chemical Society) , pp. 204-210, 1974.
Canonie Environmental Services Corp., "Development of Treatment Measures
for Ground Water Restoration", Report for Occidental Chemical Company,
July, 1981.
Chemical Engineering and News. Method Rids Agent Orange of TCDD Contami-
nation. 55(11) :25, 1977.
Chian, E. S. K.; W. N. Bruce, and H. H. P. Fang; "Removal of Pesticides
by Reverse Osmosis". Environmental Science and Technology, 9(l):52-59,
1975.
Connecticut Water Company — Field Data from Pilot Aeration Study for EDB
Removal — Windsor Locks, Connecticut, 1984.
Cohen, J. M.; L. J. Kamphake; A. E. Lemke; C. Henderson, and R. L. Wood-
ward; "Effects of Fish Poisons on Water Supplies", Part 1, Removal of
Toxic Materials J.AWWA, 55(12):1551-1566, 1960.
Cohen, J. M., G. A. Rourke, and R. L. Woodward; "Effect of Fish Poisons
on Water Supplies", Part 2, Odor Problems, J.AWWA, 55(l):49-62, 1961.
Committee Report; "Organics Removal by Coagulation: A Review of Research
Needs", J.AWWA 71(10):588-603, 1979.
Crittenden, J. C.; P. Luft; D. W. Hand; G. Friedman; Predicting the
Removal of Known Organic Compounds in Unknown Mixtures and Total.-Organic
Halogen in Fixed-Bed Adsorbers. Proceedings of the 1984 Environmental
Engineering Specialty Conference.
Crittenden, J. C.; D. W. Hand; H. Arora; B.W. Lykins; Design Consid-
erations for GAC Treatment of Organic Chemicals, J. AWWA, 79(l):74-82,
1987(a).
Crittenden, J. C. ; R. D. Cortright; B. D. Rick, S. Tang, D. L. Perram,
and T. J. Rigg; Removal of Volatile Organic Chemicals from Air Stripping
Tower Off-gas Using Granular Activated Carbon; Final Report to AWWARF,
February, 1987(b).
Croll, B. T.; G. M. Arkell, and R. P. J. Hodge; "Residues of Acrylamide
in Water", Water Research 8:989-993, 1974.
8-2
-------
Cummins, M. D.; "Field Evaluation of Trichloroethylene Removal by Packed
Column Air Stripping", (Landsdale, Pennsylvania, August 10, 1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.
Cummins, M. D.; "Field Evaluation of Packed Column Air Stripping" (Glen
Cove, New York, August 20, 1982, and December 14-16, 1982), USEPA, Office
of Drinking Water, Technical Support Division, 1982.
Cummins, M. D.; "Field Evaluation of 1,1,1-Trichloroethane Removal by
Packed Column Air Stripping" (Dedham, Massachusetts, August 24, 1982),
USEPA, Office of Drinking Water, Technical Support Division, 1982.
Cummins, M. D.; "Field Evaluation of Trichloroethylene Removal by Packed
Column Air Stripping" (Hartland, Wisconsin, September 23, 1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.
Cummins, M. D.; "Field Evaluation of Trichloroethylene Removal by Packed
Column Air Stripping" (Wausau, Wisconsin, September 28, 1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.
Cummins, M. D.; "Removal of Ethylene Dibromide from Contaminated Ground
Water by Packed Column Air Stripping," Lake Wales, FL, April 1984, USEPA
Office of Drinking Water, Technical Support Division, August, 1984.
Cummins, M. D. , "Field Evaluation of Packed Column Air Stripping,"
Bastrop, LA, February 1984, USEPA Office of Drinking Water, Technical
Support Division, May, 1985.
Cummins, M. D. and J. J. Westrick, "Packed Column Air Stripping Prelimi-
nary Design Procedure", presented at Water Pollution Control Federation
Conference, Los Angeles, CA, October, 1986.
Cummins, M. D. and J. J. Westrick, "Feasibility of Air Stripping for
Controlling Moderately Volatile Synthetic Organic Chemicals", presented
at American Water Works Association "Annual Conference, Kansas City,
Missouri, 1987.
Cummins, M. D., Office of Drinking Water, TSD, USEPA. Personal
communication with Russell Ford, Malcolm Pirnie, Inc., 1988.
Dahl, O. T.; "Occidental Chemical Company at Lathrop, California, A
Ground Water/Soil Contamination Problem and a Solution", USEPA, National
Enforcement Investigations Center, Denver, Colorado, USA, 1985.
DeFilippi, R. P.; V. J. Kyukonis; R. J. Robey, and M Modell; "Supercri-
tical Fluid Regeneration of Activated Carbon for Adsorption of Pesti-
cides", Research Triangle Park, USEPA Document EPA-600/2-80-054, 1980.
8-3
-------
Div.rrka and Bartilucci and Malcolm Pirnie, Inc., "Demonstration Treatment
Facility at Greenport, New York, Phase II Design Report" for Suffolk
County Department of Health Services, July 1987.
Dobbs, R. A. and J. M. Cohen; "Carbon Adsorption Isotherms for Toxic
Organics", Municipal Environmental Research Laboratory, Cincinnati, Ohio,
Report No. EPA-600/8-80-023, 1980.
Edwards, C. A.; "Persistent Pesticides in the Environment", CRC Critical
Reviews in Environmental Control 1(2):7-68, 1970.
Edwards, V. and P. F. Schubert; "Removal of 2,4-D and Other Persistent
Organic Molecules from Water Supplies by Reverse Osmosis", J.AWWA,
October, 1974.
El-Dib, M. A. and M. I. Badawy; "Adsorption of Soluble Aromatic Hydro-
carbons on Granular Activated Carbon", Water Research, 13: 225-258, 1979.
Environmental Science and Engineering, "Study of Effectiveness of Acti-
vated Carbon Technology for Removal of Specific Materials from Organic
Chemical Processes", EPA No. 68032610, 1981.
Environmental Science and Engineering, Inc. (ESE) , "Evaluation of the
Treatability of Ethylene Dibromide and Dibromochloropropane by Activated
Carbon and Packed Column Air Stripping" Prepared for the Florida Depart-
ment of Environmental Regulation, 1983.
Fiessinger, R., J. Mallevialle, and A. Bruchet; "Fate of Polymers in the
Treatment Process". AWWA Seminar Proceedings, Use of Organic Polyelectro-
lytes in Water Treatment, pp. 37-49, June, 1983.
Frissel, M. J.; "The Adsorption of Some Organic Compounds, Especially
Herbicides, on Clay Materials". PUDOC, Centrum Voor Landbouwpublikaties
en Lanbouw Documentatic, Wageningen, Netherlands, 1961.
Fronk, C. A.; "Destruction of Volatile Organic Contaminants in Drinking
Water by Ozone Treatment", Ozone Science and Engineering, 9(3):265-288,
1987(a).
Fronk, C. A.; "Removal of Low Molecular Weight Organic Contaminants from
Drinking Water Using Reverse Osmosis Membranes" presented in AWWA Annual
Conference, Kansas City, June, 1987(b).
Gilbert, E.; "Chemical Changes and Reaction Products in the Ozonization
of Organic Water Constituents" In; Oxidation Techniques in Drinking
Water Treatment, Office of Drinking Water, Washington, D.C., Report No.
EPA-570/9-79-020, 1979.
Glaze, W. H. and Kang, J.; "Advanced Oxidation Processes For Treating
Groundwater Contaminated with TCE and PCE: Laboratory Studies.", J. AWWA,
May 1988.
8-4
-------
Griffin, R. A. and E. S. Chian; "Attenuation of Water-Soluble Polychlori-
nated Biphenyls by Earth Materials". Illinois State Geological Survey
Division> 1979.
Hade, J.; Personal Communication. Fremont, Ohio Water Treatment Plant to
ESE, Gainesville, Florida, 1984.
Hager, D. G. and J. L. Rizzo; "Removal of Toxic Organic From Wastewater
by Adsorption with Granular Activated Carbon". Presented at U.S. Environ-
mental Protection Agency Technology Transfer Session on Treatment of
Toxic Chemicals, Atlanta, Georgia, 1974, In; Drinking Water and Health,
Vol. 2, Safe Drinking Water Committee, National Academy Press, Washing-
ton, D.C. , pp. 266, 1980.
Hand, D. W., Crittenden, J.C., and Thacker, W.E., "Simplified Models for
Design of Fixed-Bed Adsorption Systems", Jour. Env. Engr., ASCE, Vol.
110, No. 2, 1984.
Hansen, Robert E; "Experiences With Removing Organics from Water". Public
Works, October, 1977.
Harris, C. I. and G. F. Warren; "Adsorption and Desorption of Herbicides
by Soil". Weeds, 12:120-126, 1964.
Hess, A., J. Dyksen, and H. J. Dunn; "Occurrence and Removal of Volatile
Organic Chemicals From Drinking Water", Cooperative Research Report, AWWA
Research Foundation, 1981.
Hinden, E. et al.; "Organic Compounds Removed by Reverse Osmosis" Water
and Sewage Works, 1968.
Hoigne, J., and Bader, H. "Ozonation of Water: Selectivity and Rate of
Oxidation of Soluble", Ozone: Source and Engineering, 1:73-85, 1979.
Hoigne, J. and H. Bader; "Rate Constants of Reactions of Ozone with
Organic and Inorganic Compounds in Water - I". Water Research, 17:
173-183, 1983.
Huang, J. C.; "Pesticides in Water: Effect on Human Health". Journal of
Environmental Health, 34:(3/4):501-510, 1972.
Jank, B. E. and P. J. A. Fowlie; "Treatment of a Wood Preserving Effluent
Containing Pentachlorophenol by Activated Sludge and Carbon Adsorption".
Proceedings of the 35th Industrial Waste Conference, Purdue University,
Lafayette, Indiana, 1980.
Kornegay, B. H.; "Control of Synthetic Organic Chemicals by Activated
Carbon-Theory, Application, and Regeneration Alternatives," Westvaco
Corp., Covington, Virginia, Presented at the Seminar on Control of
Organic Chemicals in Drinking Water, sponsored by the USEPA, February 13
and 14, 1979.
8-5
-------
Korneva, L. V.; Y. U. Avondonin, and V. M. Olevskii; "Removal of
Chlorobenzene from Wastewaters by the Reverse Osmosis Method", Khim,
Prom-St. Moscow, 1976.
Lafornara, J. P.; "Cleanup After Spills of Toxic Substances". J.WPCF, pp.
617-627, April, 1978.
Lawrence, J. and H. M. Tosine; "Adsorption of Polychlorinated Biphenyls
from Aqueous Solutions and Sewage". Environmental Science and Tech.,
Vol. 10, No. 4, 1976.
Legube, B.; S. Guyon; H. Sugimitsu, and M. Dore; "Ozonation of Some
Aromatic Compounds in Aqueous Solution: Styrene, Bezaldehyde, Naphtha-
lene, Diethylphthalate, Ethyl and Chloro Benzenes", Ozone: Science and
Engineering, 5:151-170, 1983.
Lettinga, G.; W. A. Beverloo, and W. C. van Lief; "The Use of Flocculated
Powdered Activated Carbon in Water Treatment". Prog. Wat. Tech.,
10(1-1/2):537-554, 1978.
Love, Jr., O. T.; "Treatment Techniques for the Removal of Organic
Contaminants from Drinking Water" In; Manual of Treatment Techniques for
Meeting the Interim Primary Drinking Water Regulations, Water Supply
Research Division, Cincinnati, Ohio, USEPA Document EPA-600/8-77-005,
1977.
Love, O. T. and R. G. Eilers; "Treatment of Drinking Water Containing
Trichloroethylene and Related Industrial Solvents". J.AWWA, 74:413-425,
August, 1982.
Love, O. T.; B. W. Lykins; R. M. Clark and R. J. Miltner; Research for
the Treatment of Organics in Drinking Water. Proceedings Environmental
Engineering Specialty Conference, 1984.
Malaiyandi, M. , P. Blais, V. S. Sastri; "Note: Separation of Lindane
from Its Aqueous Solutions by Reverse Osmosis System", Separation Science
and Technology 15(7);1483-1488, 1980.
Malcolm Pirnie, Inc. Letter Report on Long-Term Packed Column Aeration
Testing, Pheonix, Arizona, April 22, 1985.
McCarty, P. L., and M. Reinhard; "Trace Organics Removal by Advanced
Wastewater Treatment". J.WPCF, 52(7):1907-1921, 1980.
McCarty, P. L.; K. Sutherland; J. Graydon, and M. Reinhard; "Volatile
Organic Contaminants Removal by Air Stripping", Civil Engineering Depart-
ment, Stanford University, California, 1977.
Miltner, Richard J. , Personal communication, Organic Control Branch, EPA
Drinking Water Division, Cincinnati, Ohio, 1986.
Miltner, R. J. and C. A. Fronk; "Removal of Synthetic Organic Contami-
nants from Drinking Water", Progress Report DWRD, EPA, July 1985(a).
8-6
-------
Miltner, R. J. and C. A. Fronk; "Treatment of Synthetic Organic Contami-
nants for Phase II Regulations", Internal Report DWRD, EPA, December
1985(b).
Miltner, R. J.; T. F. Speth; J. M. Reinhold; "Interim Internal Report on
Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987(a).
Miltner, R. J.; T. F. Speth; D. D. Endicott; J. M. Reinhold; "Final In-
ternal Report on Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987 (b).
Miltner, R. J.; Baker, D. B.; Speth, T. F.; Fronk, C. A.; "Treatment of
Seasonal Pesticides in Surface Waters", J. AWWA, January 1989.
Morgeli, B.; "The Removal of Pesticides from Drinking Water". Sulzer
Tech. Review, Vol. 54, No. 2, 1972.
Moran, D.; "Report on Granular Activated Carbon Treatment Units for
Removal of Aldicarb Residues in Private Wells of Suffolk County", Suffolk
County Health Services, Suffolk County, New York, 1983.
Mumford, R. L. and J. L. Schnoor; "Air Stripping of Volatile Organics in
Water", AWWA Annual Conference pp. 601-617, 1982.
O'Brien and Gere, Engineers, Inc.; "Hudson River Water PCB Treatability
Study". Syracuse, New York, 1982.
Ottinger, R. S. et al.j "Recommended Methods of Reduction, Neutraliza-
tion, Recovery or Disposal of Hazardous Wastes", Volume 5, USEPA
670/2-73-053-3, 1973.
Pirbazari, Massoud, et al.; "Pilot-Plant Investigations of the Adsorption
of 1,2-Dichloroethane and l,2-Dibromo-3-Chloropropane From Water Sup-
plies", Fundamentals of Adsorption, Proceedings of Engineering Foundation
Conference, pp. 441-449, May, 1983.
Regunathan, P., W. H. Beauman, and E. G. Kreusch; "Efficiency of Point of
Use Treatment". J.AWWA, January, 1983.
Robeck, G. G.; K. A. Dostal; J. M. Cohen, and J. F. Kreissl; "Effective-
ness of Water Treatment Processes in Pesticide Removal". JAWWA 57(2):
181-199, 1965.
Rosen, A. A. and F. M. Middleton; "Chlorinated Insecticides in Surface
Waters". Anal. Chem., 31:1729-1732, 1959.
Roth, J. A. , and D. E. Sullivan; "Kinetics of Ozone Decomposition in
Water", Ozone: Science and Engineering, 5:37-49, 1983.
Ruggiero, D. D., "Removal of Organic Contaminants from the Drinking Water
Supply at Glen Cove, New York", USEPA Document, EPA-600/2-84-029,
January, 1984.
8-7
-------
Ruggiero, D. D. and W. A. Ferge; "Field Evaluation of Aeration Processes
for Organic Contaminant Removed from Groundwater", Proceedings AWWA
Annual Conference, Las Vegas, Nevada, June 5-9, 1983, pp 801-822.
Selleck, R. E.; f. H. Pearson; V. Diyamandoglu; Z. G. Ungun; "Application
of Air Stripping Technology for the Removal of DBCP Residues in Community
and Industrial Water Supplies", Report to Occidental Chemical Company,
Lathrop, California, 1983.
Singley, J. E.; B. A. Beaudet, and A. L. Ervin; "Use of Powdered Activat-
ed Carbon for Removal of Specific Organic Compounds", Proceedings of
Seminar, Controlling Organics in Drinking Water, AWWA Annual Conference,
San Francisco, California, 1979.
Singley, E. and R. Moser; "Evaluation of Alternatives", In; Occurrence
and Removal of Volatile Organic Chemicals from Drinking Water, AWWA
Research Foundation, Denver, Colorado, 1983.
Snoeyink, V.; "Control Strategy — Adsorption Techniques", In: Occur-
rence and Removal of Volatile Organic Chemicals from Drinking Water, AWWA
Research Foundation, Denver, Colorado, 1983.
Sontheimer, H.; "Considerations on the Optimization of Activated Carbon
Use in Waterworks". USEPA Document, EPA-600/9-76-030.
Steiner, John IV and J. E. Singley; "Methoxychlor Removal from Potable
Water". J.AWWA, 71:284-286, May 1979.
Stover, E.; "Removal of Volatile Organics from Contaminated Ground
Water", GWMR, pp. 57-62, 1982.
Suffet, I. H.; A. Wickland; P. R. Cairo; "The Effect of a Pollution Event
on the Ability of Granular Activated Carbons and Resins to Remove Chlori-
nated Organics from Treated Drinking Water", In; Water Chlorination
Environmental Impact and Health Effects, Vol. 3, Ann Arbor Science, Ann
Arbor, Michigan, 1980.
Tanada, S. and K. Boki; "Adsorption of Various Kinds of Offensive Odor
Substances on Activated Carbon and Zeolite". Bull. Environ. Contarn.
Toxicol. 23:524-530, 1979.
TerKonda, P. and D. W. Thompson; "Treatment of Groundwater Contaminants
Resulting from the Impoundment of Hazardous Wastes". Presented at ASCE
Division of Environmental Engineering National Conference, July, 1981.
Treybal, R. E.; Mass Transfer Operations, McGraw Hill Book Co., New York,
New York, 1980.
Troxler, W. L.; C. S. Parmele, and D. A. Barton; "Survey of Industrial
Applications of Aqueous Phase Activated Carbon Adsorption from Manufac-
ture of Organic Compounds". Draft EPA Contract No. 68-03-2568,
8-8
-------
USEPA Office of Drinking Water, "Review of Treatability Data for Removal
of Twenty-five Synthetic Organic Chemicals from Drinking Water", ESE,
1984.
USEPA National Primary Drinking Water Regulations, Synthetic Organic
Chemicals, Inorganic Chemicals, and Microorganisms, Proposed Rule,
Federal Register, November 13, 1985.
Versar, Inc.; "PCBs in the United States Industrial Use and Environmental
Distribution". EPA 560/6-76-005, Office of Toxic Substances, United
States Environmental Protection Agency, Washington, D.C., 1976.
Warner, H. P.; Cohen, J. M.; Ireland, J. C.; "Determination of Henry's
Law Constants of Selected Priority Pollutants", Municipal Environmental
Research Laboratory, Office of Research and Development USEPA,
Cincinnati, Ohio, April 1980.
Weber, W. J.; "Pretreatment of Industrial Wastes with Activated Carbon
for Removal of Priority Pollutants". Applications of Adsorption to
Wastewater Treatment Vanderbilt University, Nashville, Tennessee, 1981.
Weber, W. J. ; M. Pirbazari and M. D. Herbert; "Removal of Halogenated
Organic and THM Precursor Compounds from Water by Activated Carbon", AWWA
Annual Conference Proceedings Part I, pp 15-1, 1-31, 1978.
Weber, W. J.; M. Pirbazari; "Adsorption of Toxic and Carcinogenic
Compounds from Water", AWWA Journal of Research and Technology, April,
1982.
Windholz, M. , The Merck Index, An Encyclopedia of Chemicals and Drugs,
10th Edition, Merck & Company, Inc., Rahway, New Jersey, 1983.
Yocum, Floyd H.; "Oxidation of Styrene with Ozone in Aqueous Solution",
111: Ozone/Chlorine Dioxide Products of Organic Material, International
Ozone Institute, Cleveland, Ohio, 1978.
Zimmer, G.; Haist, B.; and H. Sontheimer; "The Influence of Preadsorption
of Organic Matter on the Adsorption Behavior of Cholorinated
Hydrocarbons" Proceedings of the Annual AWWA Conf. on June 14-18, 1987,
in Kansas City, Missouri. (1987b).
Zimmer, G.; Crittenden, J. C.; and H. Sontheimer; "Design Consideration
for Fixed-Bed Adsorbers that Remove Synthetic Organic Chemicals in the
Presence of Natural Organic Matter," Proceedings of the Annual AWWA Conf.
on June 19-23, 1988, in Orlando, Florida. (1988).
8-9
-------
APPENDIX A
ESTIMATION OF CARBON USAGE RATES
-------
APPENDIX A
ESTIMATION OF CARBON USAGE RATE
From Chapter 4 (isotherm evaluations)
C.U. Rate = C
Where: C = SOC equilibrium concentration (mg/L)
K, 1/n = isotherm constants
Or:
Carbon usage (Ibs/thousand gallons) = C (g/L) x 8.34 (Ibs/KG)
K(ci)l/n (g/D
For example:
SOC = PCB (Arochlor 1254)
K = 13,724 (mg/g) (L/mg) 1/n (From Table 4-1)
1/n =1.03 (From Table 4-1)
Influent concentration = 5 ug/L = 0.005 mg/L
Carbon Usage = (0.005)(mg/L) x 8.34 (Ibs/KG)/(g/L)
13,724 (mg/g) (L/i
= 0.00071 Ibs/KGAL
13,724 (mg/g)(L/mg)1/n x (0.005(mg/L))1*°3
-1-
-------
APPENDIX B -
SUMMARY OF GAC ISOTHERM STUDIES
-------
APPENDIX B
SUMMARY OF GAC ISOTHERM STUDIES (1)
SOC
Alachlor
Aldicarb
Atrazine
Carbofuran
Chlordane
DBCP
Mol. Wt.
269.8
190.3
215.7
221.3
409.8
Cis-1,2- 97.0
dichloroethylene
236.4
o-dichlorobenzene 147.0
Water Type (2) Temperature
PH
1/n
1/n 1/n
(un»le/g)[(L/umole)] (mg/g)[(L/mg)]
Distilled
River Water
Ground Water
Distilled
River Water
Ground Water
Distilled
River Water (filtered)
Distilled
Distilled
Distilled
Distilled
Ground Water
Ground Water
River Water
Distilled
River Water
Ground Water
Distilled
Distilled
River Water
Room
Room
Room
Room
Room
Room
Room
Room
Room
-
Room
14 C
Room
14 C
Room
Room
Room
•
Room
-
Room
6.2
8.0
7.7
6.3-6.6
8.2
7.6
4.3
7.9-8.2
-
5.3
6.6-8.0
7.5-8.0
8.0
6.3-6.4
8.0
6.2-6.6
8.1-8.5
6.5
5.6-5.8
5.5
8.1
0.26
0.38
0.33
0.40
0.41
0.36
0.41
0.36
0.33
0.38
0.59
0.56
0.63
0.36
0.64
0.51
0.46
0.60
0.38
0.43
0.58
1275.0
328.0
1457.0
360.0
194.0
787.0
673.0
376.0
346.0
-
30.5
47.0
23.0
16.7
29.4
465.0
206.0
•
865.0
-
1039.0
483.55
145.58
605.65
133.01
72.88
294.86
276.41
143.21
190.33
245.00
11.72
16.83
9.70
3.75
12.69
229.35
94.54
1260.00
263.49
129.00
464.41
Reference
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Canonie Environmental
Services (1981)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
-------
SOC Hoi. Ut.
1,2-dichloropropane 113.0
2.4-0
Ethyl benzene
EOB
Heptachlor
L i ndane
Methoxychlor
221.0
106.2
187.9
373.5
Heptachlor Epoxide 389.8
290.9
345.7
Water Type (2) Temperature
PH
1/n
1/n 1/n
(umole/g)[(L/umole)) (mg/g)[(L/mg)]
Reference
Distilled Room
River Water Room
Distilled
Distilled (3) Room
Distilled
Distilled Room
Distilled 13.8 C
Distilled
Distilled Room
River Water Room
Distilled 10 C
Distilled
Ground Water
Distilled
Distilled
Distilled (4)
Distilled (4) Room
Distilled
Distilled
Distilled Room
River Water (filtered) Room
Distilled (5) Room
Tap Water
6.1-7.3
8.1
5.3
.
7.0
5.6-6.9
7.5-8.0
-
6.2-7.1
8.0
6.0
7.0
5.9
7.0
5.3
-
7.0
5.3
4.2-6.9
7.8-8.1
-
-
0.59
0.48
0.60
0.27
0.56
0.53
0.29
0.40
0.46
0.54
0.46
0.97
0.35
0.97
0.39
0.92
0.75
0.55
0.70
0.43
0.39
0.36
0.46
46.6
35.8
-
194.0
-
507.0
694.0
-
53.9
69.3
118.0
-
-
.
-
1110.0
2020.0
-
-
606.0
455.0
223.0
-
19.06
11.52
5.86
64.46
118.00
176.69
141.19
100.00
21.85
32.12
47.84
85.70
9.00
1158.00
114.00
1025.91
1596.14
1660.00
1038.00
299.75
214.21
112.99
136.00
Miltner (1987)
Hiltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Aly and Faust (1965)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Miltner (1987)
Miltner (1987)
Miltner (1987)
MPI (1986)
Canonie Environmental
Services (1981)
MPI (1986)
Dobbs and Cohen (1980)
Dobbs and Cohen (1980)
Miltner (1987)
MPI (1986)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Steiner and Singley (1979)
-------
soc
Hoi. Ut.
Water Type (2) Temperature
pH
1/n
1/n 1/n
(umole/g)[(L/umole)] (mg/g)[(L/mg)l
Reference
Monochlorobenzene 112.6
PCBs
- Aroclor 1016 188.0
- Aroclor 1254 326.0
Pentachlorophenol 266.4
Silvex 255.5
Styrene 104.0
Tetrachloroethylene 165.8
Toluene 92.1
Toxaphene 412.0
Distilled
River Water (filtered)
Distilled
Organic Free Water
Organic Free Water
Distilled
Distilled
River Water
Distilled
Distilled
Distilled
Distilled
Distilled
Ground Water
Distilled
Distilled
Distilled
Distilled
Distilled
Distilled
Room
Room
-
-
-
Room
Room
Room
-
Room
Room
Room
Room
Room
13.8 C
-
-
Room
Room
-
6.5
8.0
7.4
-
-
7.0
4.6-6.8
8.1
7.0
7.0
9.4
5.1-7.6
5.3
4.6-6.7
7.5
7.7
-
5.6
7.0
-
-
0.35
0.31
0.99
0.66
1.14
1.03
0.34
0.37
0.42
0.38
0.48
0.52
0.56
0.45
0.37
0.33
0.30
0.44
0.74
0.26
0.25
418.0
381.0
-
-
-
13270.0
1062.0
403.0
-
479.0
1083.0
341.20
-
356.0
348.0
476.0
1182.0
128.0
101.06
84.41
91.00
328.50
1920.00
13723.80
443.53
173.97
150.00
205.55
333.80
143.00
50.80
95.91
76.56
96.33
96.00
26.10
938.62
66.41
364.40
Miltner (1987)
Hiltner (1987)
Dobbs and Cohen (1980)
Weber and Pirbazari (1982)
Weber and Pirbazari (1982)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Bernadin et al (1975)
-------
soc
Trans-1,2-
dichloroethylene
Xylenes
o-
P-
Notes:
Hoi. Ut.
97.0
106.2
Water Type (2) Temperature
pH
1/n
1/n 1/n
(umole/g)[(L/umole)] (mg/g)[(L/mg)J
Reference
Distilled
River Water
Distilled
Distilled
Ground Water
Distilled
Distilled
Distilled
Distilled
Distilled
Ground Water
Distilled
Room
Room
•
Room
Room
13.8 C
-
Room
13.8 C
Room
Room
-
6.3-6.7
7.6
6.7
6.3-6.45
7.6
7.6
-
6.7
7.5-8.0
6.9
6.4
7.3
0.45
0.39
0.51
0.47
0.47
0.26
0.22
0.75
0.25
0.42
0.46
0.19
50.5
38.5
•
603.0
838.0
897.0
-
410.0
1043.0
740.0
611.0
13.99
9.27
3.05
183.69
255.27
170.61
120.00
234.03
193.98
201.51
182.00
85.00
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
"-" = Not Reported
Carbon type = Filtrasorb 400 unless otherwise noted.
Carbon type = Aqua Nuchara
Carbon type = Filtrasorb 300
5. Carbon type = Nuchar special
-------
APPENDIX C
SUMMARY OF PILOT AND FULL-SCALE GAG STUDIES
-------
APPENDIX C
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
//\ Crtlnti/in nnrl
l**j solution anu
SOC/Type Source of Data Reference Organic Matrix
Alachlor
F EPA Study Baker (1983) alachlor
Fremont, OH atrazine
Aldicarb
P Suffolk County, Moran (1983) aldicarb
NY carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
Concentration (ug/L)
(min) Influent Effluent
9 0.7-5 0.1-0.7
9 0.5-8 0.5-1.5
21 7
3
105 7
25
53 7
42
262 7
9
105 7
24
151 7
57
64 7
25
36 7
NO
GAC
USSQG Rfltc
(lb/1,000 gal)
-
1.04
.1 .04
0.54
0.54
0.26
0.26
1.12
1.12
0.35
0.35
1.38
1.38
0.39
0.39
0.56
0.56
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and EBCT
SOC/Type Source of Data Reference Organic Matrix (min)
Aldicarb Sulfone
P Suffolk County, Miltner (1987) aldicarb sulfone 15
NY
aldicarb sulfone 10
aldicarb sulfone 5
5
aldicarb sulf oxide 5
5
carbofuran 5
1,2-dichloropropane 5
5
Aldicarb Sulfoxide
P Suffolk County, Miltner (1987) aldicarb sulfoxide 15
NY
aldicarb sulfoxide 10
aldicarb sulfoxide 5
5
Concentration (ug/L)
Influent
17.5
17.5
19.5
19.5
29.5
29.5
20.5
20.5
8.5
34.1
34. 1
16
16
16.5
16.5
20.5
20.5
Effluent
4.4
13.1
4.9
14.6
7.4
22.2
5.1
15.4
2.1
8.5
25.6
4.0
12.0
4.1
12.1
5.1
15.4
GAC
Usage Rate
(lb/1,000 gal)
.195
.147
.200
.131
.268
.142
.292
.129
.089
.316
.133
.196
.138
.196
.128
.292
.129
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
Concentration (ug/L)
(4)
SOC/Type
Chlordane
F
(5)
P
DBCP
P
P
F
Solution and
Source of Data Reference Organic Matrix
aldicarb sulfone
carbofuran
1,2-dichloropropane
Hazardous Material LaFornara (1978) chlordane
Spills Treatment heptachlor
Strongstown, PA dieldrin and aldrin
Gulf South Research, Bell et al (1984) chlordane
Inc. p-dichlorobenzene
hexach I orobenzene
Lathrop, CA Canonic Environ- EDB
mental Services sulfolane
Corp. (1981) DBCP
University Research Pirabarzari, DBCP
Ueber, et al DCE
(1983)
San Joaquin Valley, O'Dahl, Thomas DBCP
CA (1985) EDB
EBCT
(min)
5
5
5
5
5
17
17
17
-
-
-
30
30
30
10
5
-
-
Influent
29.5
29.5
8.5
34.1
34.1
13
6.1
19.5
50
10
10
7.1-10.8
1,340-2,800
531-1.566
18
21
71-184
8-19
Effluent
7.4
22.2
2.1
8.5
25.6
.35
.06
<.59
2.5-8
0.1-5.5
ND
ND
2,000
25
ND
ND
<.1
ND
GAC
Usage Rate
(lb/1,000 gal)
.268
.142
.089
.316
.133
59.2
59.2
59.2
.925
.925
.925
<.69
3-3.7
1.5
<.01
<1.93
but >.66
.31
.31
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
Concentration (ug/L)
(4) Solution and EBCT
SOC/Type Source of Data Reference Organic Matrix (min)
0-dichlorobenzene
F Orange County McCarty & Reinhard o-dichlorobenzene
Water District (1980) chlorobenrene-o-xylene
ethylbenzene
o-dichlorobenzene
chlorobenzene-o-xylene
m-xylene
ethylbenzene
styrene
1,2-dichloropropane
P Suffolk County, Miltner (1987) 1,2-dichloropropane 15
NY
1,2-dichloropropane 10
1,2-dichloropropane 5
5
aldicarb sulfoxide 5
5
aldicarb sulfone 5
5
Influent
.01
.09
.06
.02
.11
.05
.02
.03
20
20
22
22
34.1
34.1
20.5
20.5
29.5
29.5
Effluent
.002
.049
.033
.002
.041
.025
.017
5
15
5.5
16.5
8.5
25.6
5.1
15.4
7.4
22.2
GAC
Usage Rate
(lb/1,000 gal)
2.4
2.4
2.4
1.2
1.2
1.2
1.2
.225
.165
.249
.152
.316
.133
.292
.129
.268
.142
carbofuran
8.5
2.1
.089
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
Concentration (ug/L)
GAC
(<») solution ana
SOC/Type Source of Data Reference Organic Matrix
Dichloroethylene
P University Research Pirabarzari, DBCP
Weber, et a I DCE
(1983)
P USEPA - DWRD Love & Eilers cis-1,2-DCE
New Hampshire (1982) TCE
Connecticut Love & Eilers cis-1,2-DCE
(1982) TCE
1.1,1-TCA
P Wausau, Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1.2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1.2-DCE
ttll.1
(min)
10
5
9
9
-
-
-
32
32
21
21
10
10
5
5
3
3
1
1
Influent
18
21
6
120-276
2
1-10
38
55
55
75
75
88.1
88.1
61
61
72.8
72.8
79.8
79.8
Effluent
ND
ND
.1
ND
.1
.1
.1
14
42
19
56
22
66
15
46
18
55
20
60
usage KBIB
(lb/1,000 gal)
<.01
<1.93
but >.66
.254
NC
.122
NC
NC
.262
.194
.252
.220
.294
.176
.35
.174
.476
.187
.49
.125
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and
SOC/Type Source of Data Reference Organic Matrix
ethyl benzene
ethyl benzene
toluene
toluene
m-xylene
m-xylene
o/p-xylene
o/p-xylene
P Great Miami Aquifer, Miltner (1987) cis-1,2-DCE
Ohio cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
F Wausau. Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
EBCT
(min)
1
1
1
1
1
1
1
1
6.2
6.2
6.2
6.2
12. 4
12.4
7.4
7.4
12.7
12.7
Concentration (ug/L)
Influent
4.5
4.5
24.55
24.55
5.45
5.45
9.0
9.0
25.72
25.72
19.35
19.35 ,
20.84
20.84
95.4
95.4
77.4
77.4
Effluent
1.13
3.34
6.1
18.4
1.36
4.09
2.25
6.75
6.4
19.3
4.8
14.5
5.2
15.6
23.9
71.6
19.4
58.1
GAC
Usage Rate
(lb/1,000 gal)
.071
.010
.066
.027
.069
.012
.172
.013
.463
.206
.464
.257
.421
.266
.434
.247
.299
.199
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and
SOC/Type Source of Data Reference Organic Matrix
EDB
P Lathrop, CA Canonic Env. EDB
Services, Inc. Sulfolane
July, 1983 DBCP
ESSE, Inc., 1981 EDB
F San Joaquin Valley, Thomas 0. Dahl DBCP (ground water)
CA (1985) EDB (ground water)
Ethyl benzene
P Uausau, Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
ethyl benzene
ethyl benzene
toluene
toluene
m-xylene
m-xylene
o/p-xylene
o/p-xylene
EBCT
(min)
30
30
30
•
-
1
1
1
1
1
1
1
1
1
1
Concentration (ug/L)
Influent
7.1-10.8
1,340-2,800
531-1,566
96
45
90
71-184
8-19
79.8
79.8
4.5
4.5
24.55
24.55
5.45
5.45
9.0
9.0
Effluent
ND
2,000
25
6.3
5.5
8.9
<.1
ND
20
60
1.13
3.34
6.1
18.4
1.36
4.09
2.25
6.75
GAC
Usage Rate
(lb/1,000 gal)
<.69
3-3.7
1.5
.27
.11
.13
.31
.49
.125
.071
.010
.066
.027
.069
.012
.172
.013
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
1 1 \ Cnliiti r\n nnrl CDPT
{H J duiui ion ana CDL> 1
SOC/Type Source of Data Reference Organic Matrix (min)
F Orange County McCarty & Reinhard o-dichlorobenzene
Water District (1980) chlorobenzene-o-xylene
ethylbenzene
o-di ch I orobenzene
chlorobenzene-o-xylene
m-xylene
ethytbenzene
styrene
Concentration (ug/L)
Influent
.01
.09
.06
.02
.11
.05
.02
.03
Effluent
.002
.049
.033
.002
.041
.025
.017
.018
GAC
US396 RdtG
(lb/1,000 gal)
2.4
2.4
2.4
1.2
1.2
1.2
1.2
1.2
Lake Constance,
Switzerland
Lindane
P
Methoxychlor
P
PCBs - polychlorinated biphenyls
F
Morgeli (1972)
lindane
Steiner & Singley methoxychlor
(1979)
Hazardous Material Lafornara (1978) PCB-aroclor 1242
Spills Treatment
Trailer Seattle. WA
New York State O'Brien & Gere PCS
(1982)
30-40
7.5
(6)
50
50
50
1
5
10
.014
2.6
.08
ND
ND
ND
<.075
<9.92
-------
APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
// \
I*)
SOC/Type Source of Data Reference
Concentration (ug/L) GAC
Organic Matrix (min) Influent Effluent (lb/1,000 gal)
Pentachlorophenol
P
P
Styrene
F
Toxaphene
F
M-xylene
F
Hazardous Material
Spills Treatment
Trailer Seattle, WA
Thunderbay, Ontario Jank (1980)
pentachlorophenol
pentachlorophenol
Orange County
Water District
Hazardous Material
Spills Treatment
Trailer Seattle, WA
Orange County
Water District
McCarty & Reinhard o-dichlorobenzene
(1980) chlorobenzene-o-xylene
m-xylene
ethylbenzene
styrene
Lafornara (1978) toxaphene
McCarty & Reinhard o-dichlorobenzene
(1980)
chlorobenzene-o-xylene
m-xylene
ethylbenzene
styrene
(7)
10,000
3.4
.03
<82.3
2.24
.02
.11
.05
.02
.03
(8)
36
.02
.11
.05
.02
.03
.002
.041
.025
.017
.018
<1
.002
.041
.025
.017
.018
.2
.2
.2
.2
.2
<72
1.2
1.2
1.2
1.2
1.2
-------
Notes:
1. "-" = Not Available
2. "NC" = Not Calculated
3. "NO" = Not Detectable
4. Legend: F = full scale; P = pilot scale
5. Culligan filters
6. Different carbon types used.
7. Influent to diatomaceous earth.
8. Influent to mixed media filter.
-------
APPENDIX D
CARBON USAGE RATE COMPARISON
-------
APPENDIX D
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
T r*f 1 1 lAn* C f f 1 1 lap**
inriueni cTTiuent
Compound (ug/L) (ug/L)
Aldicarb 19.9 0.5
2.5
7.5
12.5
17.5
19.9
cis-1,2-Dichloroethylene 79.8 0.798
20
60
79.8
72, R 0.7?8
18
55
72.8
61.0 0.61
15
46
61
88.1 0.881
22
66
88.1
75.0 0.75
19
56
75
55.0 0.55
14
42
55
25.72 0.2572
6.4
19.3
25.72
Carbon
Type I (1)
0.00677
0.00653
0.0062
0.00593
0.00544
0.00452
infinite
0.49
0.114
0.038
0.442
0.205
0.139
0.076
0.241
0.17
0.134
0.089
0.217
0.188
0.168
0.133
0.18
0.168
0.16
0.141
0.149
0.144
0.139
0.127
0.2
0.174
0.148
0.108
Usage Rate (Ibs/Kgal)
Type I MX (2) Type IVx (3)
0.301
0.193
0.142
0.124
0.113
0.109
infinite
0.49
0.125
0.092
2.27
0.476
0.187
0.145
0.708
0.35
0.174
0.139
0.433
0.294
0.176
0.149
0.296
0.252
0.22
0.175
0.318
0.262
0.194
0.172
1.23
0.463
0.206
0.161
Paf in I f f v
KSl IO IMA
or IVx :I
44.46
29.56
22.90
20.91
20.77
24.12
0.00
1.00
1.10
2.42
5.14
2.32
1.35
1.91
2.94
2.06
. 1.30
1.56
2.00
1.56
1.05
1.12
1.64
1.50
1.38
1.24
2.13
1.82
1.40
1.35
6.15
2.66
1.39
1.49
PRTT
COU 1
(min)
12.0
12.0
12.0
12.0
12.0
12.0
1.01
1.01
1.01
1.01
3.09
3.09
3.09
• 3.09
5.08
5.08
5.08
5.08
10.35
10.35
10.35
10.35
21.18
21.18
21.18
21.18
32.25
32.25
32.25
32.25
6.20
6.20
6.20
6.20
TfiP
1 UL
(mg/L)
—
...
...
...
...
—
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
6.00
6.00
6.00
6.00
Water
Source
Suffolk CU
Suffolk CU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Great Miami ,
Great Miami ,
Great Miami ,
Great Miami ,
-------
APPENDIX D (continued)
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
Influent Effluent
Compound (ug/L) (ug/L)
cis-1,2-Dichloroethylene 19.35 0.1935
4.8
14.5
19.35
20.84 0.2084
5.2
15.6
20.84
95.4 0.954
7V9
71.6
95.4
77.4 0.774
19.4
58.1
77.4
Carbofuran 8.5 0.085
2.1
1,2-Dichloropropane ' 34.06 0.3406
5
8.5
10
15
20
25.6
30
34.06
22.0 0.22
2.5
5.5
7.5
12.5
16.5
20
22
Carbon I
Type I (1) TI
0.178
0.155
0.132
0.092
0.162
0.152
0.14
0.118
0.248
0.201
0.172
0.126
0.196
0.175
0.159
0.131
0.003
0.002
0.187
0.147
0.135
0.13
0.119
0.109
0.098
0.0847
0.058
0.117
0.107
0.102
0.0989
0.0926
0.086
0.078
0.064
Jsage Rate (Ibs/Kgal)
rpe II Ix (2) Type IVx (3) <
0.753
0.464
0.257
0.21
0.596
0.421
0.266
0.225
0.686
--- 0.434
0.247
0.187
0.373
0.299
0.199
0.166
0.097
0.089
0.998
0.45
0.316
0.268
0.201
0.157
0.133
0.109
0.103
0.366
0.302
0.249
0.219
0.179
0.152
0.132
0.128
?at in lily
\al i O 1 i I A
Dr IVx :I
4.23
2.99
1.95
2.28
3.68
2.77
1.90
1.91
2.77
2.16
1.44
1.48
1.90
1.71
1.25
1.27
32.33
44.50
5.34
3.06
2.34
2.06
1.69
1.44
1.36
1.29
1.78
3.13
2.82
2.44
2.21
1.93
1.77
1.69
2.00
copy
CDl« 1
(min)
6.20
6.20
6.20
6.20
12.40
12.40
12.40
12.40
7.40
7.40
7.40
7.40
12.70
12.70
12.70
12.70
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
Tnf*
I UL.
(mg/L)
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
Uotor*
Maker
Source
Great Miami Aquifc'
Great Miami Aquifer
Great Miami Aquife-
Great Miami Aquifc
Great Miami Aquifer
Great Miami Aquife
Great Miami Aquife
Great Miami Aquifer
Uausau GU
Uausau GU
Uausau GUjj
Uausau cH
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU_
Suffolk vV
-------
APPENDIX 0 (continued)
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
Influent Effluent
Compound (ug/L) (ug/L)
1,2-Dichloropropane 20.0
0.2
1
2.5
5
7.5
12.5
15
17.5
20
Ethyl Benzene 4.5 0.045
1
3
|
.13
.34
4.5
Toluene 24.55 0.02455
6.1
18.4
24
.55
m-Xylene 5.45 0.0545
1
4
5
o/p-Xylene 9.0 0
2
6
.36
.09
.45
.09
.25
.75
9
Carbon Usage Rate (Ibs/Kgal)
Type I (1)
0.103
0.101
0.0978
0.0948
0.0924
0.0881
0.085
0.0812
0.069
infinite
0.002
0.001
0.0004
infinite
0.013
0.006
0.002
infinite
0.001
0.0007
0.0002
infinite
0.002
0.0011
0.0004
Type IIIx (2) Type IVx (3)
0
0
0
0
0
0
0
0
infinite
0
.281
.267
.248
.225
.202
.174
.165
0.15
.146
...
.071
Ratio
or IVx
IIIx
2.73
2
2
2
2
1
1
1
2
0
35
.64
.54
.37
.19
.98
.94
.85
.12
.00
.50
n..m --- .10.00
0.0064
0
0
0
0
infinite
0
0
.215
.066
.027
.021
...
.069
.013
0.0073
infinite
0
0
...
.172
.013
0.0088
16
0
5
4
10
0
69
18
36
0
86
11
22
.00
.00 •
.08
.50
.50
.00
.00
.57
.50
.00
.00
.82
.00
EBCT
(min)
15
15
.00
.00
TOC
(mg/L)
15.00
15.00
15.00
15
15
15
15
1
1
1
1
1
1
1
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.01
1.01
1
1
1
1
1
1
1
1
.01
.01
.01
.01
.01
.01
.01
.01
8
8
8
8
8
8
8
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
.35
.35
.35
.35
.35
.35
.35
8.35
8
8
8
8
.35
.35
.35
.35
8.35
8.35
8.35
8.35
Uater
Source
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Note:
(1) Type I carbon usage rates are HSDM model predictions using distilled water isotherm values.
(2) Type IIIx data are actual carbon usage rates determined at the indicated concentrations
and design criteria through pilot-scale testing.
(3) Type IVx data are actual carbon usage rates determined at the indicated concentrations
and design criteria through full-scale testing.
-------
APPENDIX E
FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS
-------
k VENDOR
' REPLACEMEN1
_L
0 * M
COST
(I) CARBON DEMAND1
CARBON USE RATE
x FLOW
FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS
-------
APPENDIX F
GAC COSTS FOR INDIVIDUAL PHASE II SOC'S
-------
GAGjAdsorpt i on -- Costs for Removing===> Alachlor
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
==================:
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
^> 1,000, 000
430.0
270.0
0.60
94.00
======================================
Total Capital Cost
-------
GAC Adsorption -- Costs for Renwving===> Aldicarb
Population Range
Design Flow (H<3))
Average Daily Floi
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3.300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
=========== ============-=-:
Influent (ug/L)
Effluent (ug/L)
4 (MGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
1.30
97.40
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
10.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.30
98.70
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
100.00
10.00
90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
— — — — . — — __ ________.-__..^^^^^^.___
500.00
20.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1.30
99.74
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
10.00
98.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
20.00
96.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
k 63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
POO
4300
10
-------
orption -- Costs for Removing===> Atrazine
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent 1 ,000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
1.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
3.00 5.00
40.00 0.00
87
2
600
140
3
220
220 .---
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
3.00
94.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
100.00
3.00
97.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
SSSSSSSS
5.00
95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
-------
GAC'Adsorption -- Costs for Removing===> Carbofuran
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1.000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
20.00
5.00 40.00
75.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00 5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
40.00
20.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00 5.00
0.00 95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
100.00
40.00
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
•^^^
50.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
I |58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
p,o
2700
8
-------
GAG
dsorption -- Costs for Removing===> Chlordane
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1.000
0.27
0.086
1,001-3,300
0.65
0.23
3.301-10,000
1.8
0.7
10,001-25.000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production^ Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.50
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
2.00 5.00
60.00 0.00
87
2
600
140
3
220
220 .---
6
100
370
12
66
650
72
58 ---
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.50
95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
2.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.50
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
2.00
96.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
-------
GAC'Adsorption -- Costs for Ren»ving===> cis-1,2-Dichloroethylene
Population Range
Design Flow (MGO)
Average Daily Floi
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75.001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1.000,000
210.0
120.0
>1, 000,000
430.0
270.0
r===3S====s=s=============
Influent (ug/L)
Effluent (ug/L)
< (NGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (IC$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (IB/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 70.00
90.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
100.00
100.00 5.00
95.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
70.00
30.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
100.00 5.00
0.00 97.50
87
3
650
. 140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
200.00
70.00
65.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000 ^
8500
14
^^KSSS
100.00
50.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
r
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
^BO
8500
14
-------
GA^Adsorption -- Costs for Removing===> DBCP
Population Range
Design Flow (MGD)
============================
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25.001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500.001-1.000,000
210.0
120.0
>1, 000,000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.10
95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
2.00
0.20
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
^
0.10
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
0.20
96.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
= ======—:
1.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.10
99.50
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00
0.20
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
=======
1.00
95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
-------
GAC*Adsorption -- Costs for Removing===> o-Dichlorobenzene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
100.00
50.00 600.00 800.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
92.86
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
700.00
600.00 800.00
14.29
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
50.00
95.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1000.00
600.00
40.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
800.00
20.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
k63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
•bo
4300
10
-------
rlsorption -- Costs for Removing===> 1,2-Dichloropropane
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (W/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
2.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
10.00
5.00
50.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
10.00 2.00
0.00 96.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
50.00
5.00
90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
10.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
2.00
98.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
100.00
5.00
95.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
10.00
90.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
-------
GAC Adsorption -- Costs for Removing===> 2,4-D
Population Range
Design Flow (HGO)
Average Daily Floi
Influent (ug/L)
Effluent (ug/L)
* (MO) Percent Removed
25-100 Total Capital Cost (KS)
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000,000
430.0
270.0
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
==========================:;—
50.00
70.00 100.00 5.00
100.00
70.00 100.00
95.00 30.00 0.00
87 87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
5.00
99.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
500.00
70.00
86.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63 ,
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
100.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
1,63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
pbo
4300
10
-------
sorption -- Costs for Removing===> Ethyl benzene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500.001-1,000,000
210.0
120.0
>1, 000,000
430.0
270.0
i=S.S5>SSSSi=SSS=S«— «•————**————•>•
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
100.00
50.00 700.00
50.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
700.00
800.00 50.00 700.00
92.86 0.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
800.00 50.00
95.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1000.00
700.00
30.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
800.00
20.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
-------
Population R; ,a
Design Flow (H.J3)
Averac' Daily Flow
25 -'00
0.^4
0.0u56
101-500
0.087
0. "?4
501-1^00
0.27
0.086
1,001-3 ::
I :5
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75.000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500.000
51.0
27.0
500, OC .000 1
2
120.0
^1,000,000
430.0
270.0
Influent (ug/L)
Effluent (ug/L)
(MO)) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
======
0.01
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.50
0.05
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
===================
1.00 0.01
99.90
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
========
10.00
0.05
99.50
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1.00
90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
0.01
99.98
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
50.00
0.05
99.90
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1.00
98.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
i «
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
ptoo
4300
10
-------
GAC'Adsorption -- Costs for Removing===> Heptachlor epoxide
Population Range
Design Flow (MGD)
======s==™ =================
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
======S=SZS=====2=
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1 ,000,000
430.0
270.0
Total Capital Cost (K$)
O&M Cost (K$/yeac)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.10
0.03 0.20
70.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00 10.00
1.00 0.03
97.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.20
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00 0.03
0.00 99.70
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.20
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
|58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
pibo
2700
8
-------
iorption -- Costs for Removing===> Lindane
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000,000
430.0
270.0
Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (W/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost («/year)
Total Production Cost
(cents/1,000 gal)
0.02
96.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.50
0.20 1
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
==============
.00 0.02
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
1.00
0.20 1.00
80.00 0.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31 , —
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.02
99.80
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
0.20
98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
========
1.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
-------
GAC'Adsorption -- Costs for Removing===> Methoxychlor
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (HGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1.000
0.27
0.086
1,001-3.300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1. 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
260.00
100.00 400.00
61.54 ---
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
'
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
500.00 100.00
75.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
400.00
400.00 500.00 100.00
0.00 --- 90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1000.00
400.00
60.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000 1
4300
10
^^^^H^=S
500.00
50.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
•ooo
4300
10
-------
GAC Adsorption -- Costs for Removing===> PCB (Aroclor 1254)
Influent (ug/L)
Population Range
Design Flow (MGD)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8 a
0.7 °
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500.001-1,000.000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
0.05
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
0.50 5.00
90.00 0.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
0.05
0.50
99.50 95.00
87 87
2
600
140
' 3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
0.05
99.90
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
=SS==S==^
50.00
0.50
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
000
2700
8
-------
orption -- Costs for Removing===> Pentachlorophenol
Population Range
Design Flow (MGD)
Average Daily Flot
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Influent (ug/L)
Effluent (ug/L)
* (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
20.00
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
200.00 400.00 20.00
96.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
— — 10
46000
2700
8
500.00
200.00
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
400.00
20.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00
98.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1000.00
200.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
:========
400.00
60.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
-------
GAC'Adsorption -- Costs for Removing===> 2,4,5-TP (Silvex)
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGO) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10.001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500.001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS>
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 50.00 100.00
90.00 0.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
95.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
100.00
50.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
100.00
0.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
5.00
99.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
500.00
50.00
90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
100.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
fc
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
^_>
4300
10
-------
GAMUsi
orption -- Costs for Retnoving===> Styrene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75.001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
2.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
5.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00 2.00
96.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50.00
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00
60.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
2.00
99.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
-
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
200.00
5.00
97.50
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
20.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
-------
GAC'Adsorption -- Costs for Removing===> Tetrachloroethylene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
50.00
1.00
98.00
5.00
90.00
50.00 1.00
0.00 99.00
100.00
5.00
95.00
50.00
50.00
1.00
99.80
5UO.OO
5.00
99.00
50.00
90.00
==================s=========================================================================s==================================
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
87
2
600
140
4
230
220
9
110
370
21
77
700
80
to
*
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
po
4300
10
-------
eorption -- Costs for Removing===> Toluene
" Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3.300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
500.00
100.00 2000.00
80.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
3000.00 100.00
96.67
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
3000.00
2000.00 3000.00
33.33 0.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
5000.00
100.00 2000.00 3000.00
98.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
60.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
40.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
-------
GAC*Adsorption Costs for Removing===> Toxaphene
=s=s==r . 'Tssr:- -s
Population Range
Design Flow (MOD)
Average Daily flo
25-: 30
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3-10
C.i5
0.23
3,301-10,000
3
7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Influent (ug/L)
Effluent (ug/L)
w (MOD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
====================
5.00
1.00 5.00
80.00 0.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00 1.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
5.00
50.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00 1.00
0.00 98.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
50. OC
5.00
90.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
58
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
46000
2700
8
10.00
80.00
87
2
600
140
3
220
220
6
100
370
12
66
650
72
P8
1800
85
39
3500
160
31
3700
200
20
4900
220
17
8500
350
14
25000
1300
10
to
2700
8
-------
sorption -- Costs for Removing===> o-Xylene
Population Range
Design Flow (MGD)
Average Daily Flo
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3.300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Influent (ug/L)
Effluent (ug/L)
10000.00
1000.00 10000.00
w (MGD) Percent Removed 90.00 0.00
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87
3
650
*
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
15000.00 1000.00
95.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
20000.00
10000.00 15000.00
50.00 25.00
87 87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
50000.00
1000.00 10000.00 15000.00
98.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
80.00 70.00
87 87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
-------
GAC'Adsorption -- Costs for Removing===> p-Xylene
Population Range
Design Flow (MGD)
Average Daily Flo
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25.000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
=============================
Influent (ug/L)
=====================================================
10000.00 20000.00
Effluent (ug/L) 1000.00 10000.00 15000.00 1000.00 10000.00
w (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
90.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
0.00 --- 95.00
87
3
650
*
HO
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
50.00
========
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
15000.00
25.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
50000.00
1000.00 10000.00
98.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
80.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
15000.00
70.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
I Ire
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
W°
8500
14
-------
Borption -- Costs for Removing===> trans-1,2-Dichloroethylene
=11^^^^F===========:
Population Range
Design Flow (HGO)
Average Daily Floi
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Influent (ug/L)
Effluent (ug/L)
^ (HGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Coat (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 100.00
90.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
200.00 5.00
97.50
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
200.00
100.00
50.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
200.00 5.00
0.00 99.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
500.00
100.00
80.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
=«.======
200.00
60.00
87
3
650
140
6
260
220
17
140
370
42
100
860
100
79
2200
140
52
4100
300
43
4300
410
28
5600
530
25
9400
990
21
27000
4000
16
49000
8500
14
-------
GAC'Adsorption -- Costs for Ren»ving===> m-Xylene
Influent (ug/L) 10000.00
Population Range
Design Flow (MGO)
Effluent (ug/L)
1000.00 10000.00 15000.00
1000.00
Average Daily Flow (MGD) Percent Removed 90.00 0.00 --- 95.00
25-100
0.024
0.0056
101-500
0.087
0.024
501-1,000
0.27
0.086
1,001-3,300
0.65
0.23
3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1
25,001-50,000
11.0
5.0
50,001-75,000
18.0
8.8
75,001-100,000
26.0
13.0
100,001-500,000
51.0
27.0
500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87 87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
20000.00
50000.00
10000.00 15000.00
50.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
25.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
1000.00 10000.00 15000.00
98.00
87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
80.00 70.00
87 87
2
600
140
4
230
220
9
110
370
21
77
700
80
63
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
47000
4300
10
2
600
140
4
230
220
9
110
370
21
77
700
80
P3
1900
100
42
3600
190
34
3900
260
22
5100
310
19
8700
530
16
25000
2100
11
1 HiO
,300
10
-------
APPENDIX G
PACKED COLUMN FACILITY DESIGN BACKUP
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Monochlorobenzene
Henry's Coefficient = 0.06 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Monochlorobenzene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optimized Parameters
Stripping
Fractor
1.0*
1.0*
1.4*
1.9*
2.2
2.4
1.0*
1.0*
1.1*
2.3
2.7
3.0
1.0*
1.1*
1.5*
2.1
2.4
2.6
1.0*
1.0*
1.4*
1.9
2.2
2.4
1.0*
1.0*
1.3*
1.8
2.1
2.3
1.0*
1.0*
1.2*
1.7
2.0
2.2
Air Gradient
(N m-2 m-1)
50.*
50.*
88.
160.
170.
160.
50.*
50.*
61.
150.
140.
140.
50.*
57.
100.
150.
140.
140.
50.*
50.*
91.
140.
130.
130.
50.*
50.*
80.
120.
120.
110.
50.*
50.*
71.
100.
99.
97.
Design parameter held to limiting value.
-------
Mdnochlorobenzene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optim
Stripping
Fractor
1.0*
1.0*
1.2*
1.6*
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.1*
1.6
1.9
2.0
50."
50.
67.
110.
110.
110.
50.'
50.'
67.
110.
100.
100.
50.'
50.'
66.
110.
100.
100.
50.'
50.'
65.
100.
97.
95.
50.'
50.'
63.
93.
89.
87.
50. ••
50. ••
62.
86.
82.
80.
Design parameter held to limiting value.
-------
Monochlorobenzene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
28.
26.
30.
30.
30.
26.
24.
22.
30.
30.
30.
28.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
30.
28.
25.
24.
Air
(SCFM
ft-2)
73.
73.
100.
140.
150.
150.
73.
73.
84.
150.
150.
160.
73.
80.
110.
150.
150.
150.
73.
73.
110.
140.
140.
140.
73.
73.
98.
130.
130.
130.
73.
73.
92.
120.
120.
130.
Air:
Water
Ratio
18.
18.
26.
35.
40.
44.
18.
18.
21.
43.
49.
54.
18.
20.
28.
38.
44.
48.
18.
18.
26.
35.
41.
45.
18.
18.
24.
33.
38.
42.
18.
18.
23.
32.
36.
40.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.013
0.012
0.011
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.9
0.9
1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
7.3
7.3
7.5
7.8
8.1
11.9
11.9
11.9
12.3
13.0
13.4
Packing
Height
(ft)
2.8
3.8
6.7
13.
17.
20.
2.8
3.8
7.7
12.
15.
17.
2.8
3.6
6.5
13.
16.
19.
2.8
3.8
6.7
13.
16.
19.
2.8
3.8
7.0
14.
17.
20.
2.8
3.8
7.2
14.
17.
21.
Air
Flow
(SCFM)
41
41
58
79
88
98
150
150
170
350
400
440
460
500.
710.
960.
1100.
1200.
1100.
1100.
1600.
2100.
2500.
2700.
3100.
3100.
4100.
5600.
6400.
7000.
8200.
8200.
10000.
14000.
16000.
18000.
Air
Pressure
(inch
H20)
2.2
2.2
2.7
4.6
5.4
5.8
2.2
2.2
2.6
4.1
4.6
5.0
2.2
2.3
2.8
4.4
4.8
5.2
2.2
2.2
2.8
4.3
4.7
5.0
2.2
2.2
2.7
4.0
4.4
4.7
2.2
2.2
2.6
3.8
4.1
4.4
-------
Monochlorobenzene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30.
30.
27.
25.
30.
30.
30.
29.
27.
25.
30.
30.
30.
29.
26.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
73.
89.
120.
130.
130.
73.
73.
88.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
87.
120.
120.
120.
73.
73.
85.
110.
120.
120.
73.
73.
84.
110.
110.
120.
Air:
Water
Ratio
18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.013
0.013
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
0.013
0.013
0.013
0.013
0.012
0.011
Number
of
Columns
1.3
1.3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.1
6.7
7.2
24.2
24.2
24.2
25.9
28.6
30.6
49.5
49.5
49.5
54.6
60.3
64.5
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.5
15.
18.
22.
2.8
3.8
7.6
15.
18.
21.
2.8
3.8
7.7
Air
Flow
(SCFM)
19000
19000.
23000.
31000.
35000.
38000.
31000.
31000.
37000.
50000.
57000.
62000.
44000.
44000.
53000.
72000.
82000.
90000.
87000.
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
580000.
660000.
730000.
730000.
730000.
840000.
14. 1200000.
18. 1400000.
21. 1500000.
Air
Pressure
(inch
H20)
2.2
2.2
2.6
4.1
4.5
4.9
2.2
2.2
2.6
4.0
4.4
4.7
2.2
2.2
2.6
4.0
4.3
4.7
2.2
2.2
2.6
3.8
4.2
4.5
2.2
2.2
2.6
3.7
4.0
4.3
2.2
2.2
2.6
3.5
3.8
4.1
-------
Monochlorobenzene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.2
2.3
2.9
4.2
5.0
5.7
5.1
5.4
6.8
9.2
11.
12.
8.1
8.6
11.
15.
18.
21.
13.
14.
17.
25.
30.
35.
24.
26.
33.
50.
60.
70.
50."
54.
70.
100.
' 130.
150.
Support
($K)
6.8
6.9
7.2
8.0
8.4
8.9
11.
11.
12.
14.
14.
15.
17.
17.
18.
21.
23.
25.
25.
25.
28.
33.
36.
40.
43.
45.
50.
61.
68.
75.
84.
86.
98.
120.
140.
150.
Indirect
($K)
5.9
6.0
6.6
8.0
8.8
9.6
10.
11.
12.
15.
16.
18.
16.
17.
19.
24.
27.
30.
24.
26.
29.
38.
44.
49.
44.
46.
54.
72.
84.
95.
87.
92.
110.
150.
170.
200.
Total
($K)
15.
15.
17.
20.
22.
24.
27.
27.
31.
38.
41.
45.
41.
42.
48.
60.
68.
76.
62.
65.
74.
96.
110.
120.
110.
120.
140.
180.
210.
240.
220.
230.
280.
380.
440.
500.
Operating
Cost
($K Year-1)
0.21
0.22
0.27
0.37
0.43
0.49
0.64
0.66
0.77
1.1
1.2
1.3
1.4
1.4
1.7
2.3
2.6
2.9
2.9
3.0
3.5
4.8
5.5
6.1
7.5
7.8
9.2
12.
14.
16.
21.
22.
25.
34.
38.
42.
Yearly
Cost
($K Year-1)
2.0
2.0
2.2
2.7
3.0
3.3
3.8
3.9
4.4
5.5
6.0
6.6
6.2
6.4
7.3
9.4
11.
12.
10.
11.
12.
16.
18.
21.
21.
21.
25.
34.
39.
44.
47.
49.
58.
78.
90.
100.
Production
Cost
($ Kgal-1)
0.96
0.98
1.10
1.34
1.48
1.63
0.43
0.44
0.50
0.62
0.69
0.75
0.20
0.20
'0.23
0.30
0.34
0.37
0.12
0.13
0.15
0.19
0.22
0.25
0.08
0.08
0.10
0.13
0.15
0.17
0.06
0.06
0.08
0.10
0.12
0.13
-------
Mbnochlorobenzene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
140.
210.
260.
310.
160.
180.
230.
340.
420.
490.
230.
250.
320.
480.
590.
700.
450.
480.
620.
930.
1100.
1400.
1800.
1900.
2400.
3700.
4500.
5400.
3600.
3800.
4900.
7500.
9200.
11000.
Support
($K)
160.
160.
190.
240.
270.
310.
240.
250.
290.
370.
430.
490.
340.
350.
400.
530.
610.
690.
600.
620.
730.
970.
1100.
1300.
1900.
2000.
2500.
3400.
4100.
4700.
3600.
3800.
4700.
6700.
8000.
9400.
Indirect
($K)
170.
180.
220.
290.
350.
400.
270.
280.
340.
470.
560.
640.
370.
390.
480.
660.
790.
910.
680.
720.
880.
1200.
1500.
1700.
2400.
2600.
3200.
4700.
5600.
6600.
4700.
5000.
6300.
9300.
11000.
13000.
Total
($K)
430.
460.
550.
750.
880.
1000.
670.
710.
860.
1200.
1400.
1600.
940.
990.
1200.
1700.
2000.
2300.
1700.
1800.
2200.
3100.
3800.
4400.
6100.
6500.
8100.
12000.
14000.
17000.
12000.
13000.
16000.
23000.
28000.
33000.
Operating
Cost
($K Year-1)
49.
50.
58.
79.
89.
100.
84.
86.
99.
130.
150.
170.
120.
130.
150.
200.
220.
250.
250.
260.
300.
400.
460.
510.
1200.
1200.
1400.
1800.
2000.
2300.
2800.
2900.
3200.
4100.
4600.
5100.
Yearly
Cost
($K Year-1)
99.
100.
120.
170.
190.
220.
160.
170.
200.
270.
320.
360.
230.
240.
290.
390.
460.
520.
460.
480.
560.
770.
900.
1000.
1900.
2000.
2300.
3200.
3700.
4200.
4200.
4300.
5100.
6900.
8000.
9000.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.09
0.11
0.12
0.05
0.05
0.06
0.09
0.10
0.11
0.05
0.05
0.06
0.08
0.10
0.11
0.05
0.05
0.06
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.08
0.10
0.04
0.04
0.05
0.07
0.08
0.09
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
cis-l,2-Dichloroethylene
Henry's Coefficient = 0.067 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
ci s-1,2-Dichloroethylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optimized Parameters
Stripping
Fractor
1.1*
1.2*
1.6*
2.2*
2.5
2.7
1.1*
1.1*
1.3*
2.7
3.0
3.3
1.1*
1.3*
1.7*
2.4
2.7
3.0
1.1*
1.2*
1.6*
2.2
2.5
2.7
1.1*
1.1*
1.5*
2.1
2.4
2.6
1.1*
1.1*
1.4*
2.0
2.2
2.4
Air Gradient
(N m-2 m-
50.*
56.
87.
160.
160.
150.
50.*
50.*
60.
140.
140.
140.
50.*
67.
100.
150.
140.
140.
50.*
59.
89.
140.
130.
120.
50.*
52.
78.
120.
110.
110.
50.*
50.*
70.
100.
98.
96.
1)
* Design parameter held to limiting value.
-------
cis-l,2-Dichloroethylene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(*)
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optinv
Stripping
Fractor
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
50.
50.
66.
110.
110.
110.
50.
50.
65.
110.
100.
100.
50.
50.
65.
100.
100.
99.
50.
50.
63.
99.
96.
93.
50.
50.
62.
91.
88.
86.
50.
50.
61.
84.
81.
79.
Design parameter held to limiting value,
-------
cis-l,2-Dichloroethylene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
28.
26.
30.
30.
30.
25.
23.
22.
30.
30.
30.
28.
25.
23.
30.
30.
30.
28.
25.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
79.
100.
150.
150.
150.
73.
73.
83.
150.
150.
160.
73.
88.
110.
150.
150.
150.
73.
82.
100.
140.
140.
140.
73.
75.
97.
130.
130.
130.
73.
73.
91.
120.
120.
130.
Air:
Water
Ratio
18.
20.
26.
36.
40.
44.
18.
18.
21.
44.
50.
55.
18.
22.
28.
39.
45.
48.
18.
20.
26.
36.
41.
45.
18.
19.
24.
34.
39.
42.
18.
18.
23.
33.
37.
40.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.016
0.015
0.014
0.015
0.015
0.015
0.014
0.013
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.9
0.9
1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
7.3
7.3
7.5
7.9
8.2
11.9
11.9
11.9
12.5
13.0
13.5
Packing
Height
(ft)
2.1
4.6
6.9
15.
19.
23.
2.1
4.8
7.8
14.
17.
20.
2.1
4.4
6.6
14.
18.
22.
2.1
4.5
6.8
15.
19.
23.
2.1
4.7
7.1
15.
19.
23.
2.1
4.8
7.4
16.
20.
24.
Air
Flow
(SCFM)
41
44
57
81
90
99
150
150
170
360
400
440.
460
550
700
980
1100
1200.
1100.
1200.
1600.
2200.
2500.
2700.
3100.
3100.
4000.
5700.
6500.
7000.
8200.
8200.
10000.
15000.
16000.
18000.
Air
Pressure
(inch
H20)
2.1
2.3
2.7
5.1
5.8
6.2
2.1
2.3
2.6
4.4
4.9
5.4
2.1
2.4
2.8
4.7
5.1
5.6
2.1
2.3
2.8
4.5
5.0
5.4
2.1
2.3
2.7
4.3
4.7
5.1
2.1
2.3
2.6
4.0
4.4
4.8
-------
cis-l,2-Dichloroethylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30..
29.
27.
25.
30.
30.
30.
29.
26.
25.
30.
30.
30.
28.
26.
24.
30.
30.
30.
27.
25.
24.
30.
30.
30.
27.
24.
23.
Air
(SCFM
ft-2)
73.
73.
87.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
86.
120.
120.
120.
73.
73.
85.
120.
120.
120.
73.
73.
84.
110.
120.
120.
73.
73.
83.
110.
110.
110.
Air:
Water
Ratio
18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
31.
35.
37.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
0.015
0.015
0.015
0.014
0.013
0.013
Number
of
Columns
1.3
1.3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.2
6.8
7.2
24.2
24.2
24.2
26.5
28.9
30.7
49.5
49.5
49.5
55.8
61.0
64.8
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
2.1
4.8
7.5
17.
21.
25.
2.1
4.8
7.6
17.
21.
25.
2.1
4.8
7.6
17.
21.
25.
2.1
4.8
7.7
17.
21.
25.
2.1
4.8
7.7
17.
21.
25.
2.1
4.8
7.8
Air
Flow
(SCFM)
19000.
19000.
22000.
31000.
35000.
38000.
31000.
31000.
36000.
51000.
58000.
62000.
44000.
44000.
52000.
74000.
83000.
90000.
87000.
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
600000.
670000.
730000.
730000.
730000.
830000.
17. 1200000.
21. 1400000.
25. 1500000.
Air
Pressure
(inch
H20)
2.1
2.3
2.6
4.4
4.8
5.3
2.1
2.3
2.6
4.2
4.7
5.1
2.1
2.3
2.6
4.2
4.6
5.1
2.1
2.3
2.6
4.0
4.5
4.9
2.1
2.3
2.6
3.9
4.2
4.6
2.1
2.3
2.6
3.7
4.1
4.4
-------
cis-l,2-Dichloroethylene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.5
2.9
4.5
5.5
6.4
4.9
5.7
6.8
9.9
12.
13.
7.6
9.2
11.
17.
20.
23.
12.
14.
17.
28.
34.
39.
22.
28.
33.
54.
67.
79.
47.
58.
70.
110.
140.
170.
Support
($K)
6.7
7.0
7.3
8.2
8.7
9.2
11.
11.
12.
14.
15.
16.
17.
17.
18.
22.
24.
26.
24.
26.
28.
35.
38.
42.
42.
46.
50.
64.
72.
81.
81.
89.
98.
130.
150.
170.
Indirect
($K)
5.8
6.2
6.7
8.3
9.3
10.
10.
11.
12.
16.
17.
19.
16.
17.
19.
25.
29.
32.
24.
27.
30.
41.
47.
53.
42.
48.
55.
78.
91.
100.
84.
96.
110.
160.
190.
220.
Total
($K)
15.
16.
17.
21.
24.
26.
26.
28.
31.
39.
44.
48.
40.
44.
48.
64.
73.
82.
60.
67.
75.
100.
120.
130.
110.
120.
140.
200.
230.
260.
210.
240.
280.
400.
480.
550.
Operating
Cost
($K Year-1)
0.21
0.23
0.27
0.40
0.46
0.53
0.63
0.69
0.78
1.1
1.3
1.4
1.3
1.5
1.7
2.4
2.8
3.1
2.8
3.1
3.5
5.1
5.9
6.6
7.3
8.1
9.2
13.
15.
17.
20.
22.
25.
35.
41.
45.
Yearly
Cost
($K Year-1)
1.9
2.1
2.2
2.9
* 3.2
3.6
3.7
4.0
4.4
5.7
6.4
7.1
6.0
6.6
7.3
9.9
11.
13.
9.8
11.
12.
17.
20.
22.
20.
22.
25.
36.
42.
48.
45.
51.
58.
83.
97.
110.
Production
Cost
($ Kgal-1)
0.94
1.01
1.10
1.40
1.57
1.74
0.42
0.46
0.51
0.65
0.73
0.81
0.19
0.21
0.23
0.32
0.36
0.41
0.12
0.13
0.15
0.20
0.24
0.27
0.08
0.09
0.10
0.14
0.16
0.19
0.06
0.07
0.08
0.11
0.13
0.14
-------
cis-l,2-Dichloroethylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
(SK)
97.
120.
140.
230.
290.
340.
160.
190.
230.
370.
460.
550.
220.
270.
330.
530.
660.
780.
420.
510.
630.
1000.
1300.
1500.
1700.
2000.
2500.
4000.
5000.
6000.
3400.
4100.
4900.
8200.
10000.
12000.
Support
($K)
150.
170.
190.
250.
290.
330.
240.
260.
290.
400.
460.
530.
330.
360.
410.
560.
650.
750.
580.
650.
730.
1000.
1200.
1400.
1900.
2100.
2500.
3700.
4500.
5200.
3500.
4000.
4700.
7300.
8800.
10000.
Indirect
(SK)
160.
190.
220.
320.
380.
440.
260.
300.
340.
500.
610.
710.
360.
410.
480.
710.
860.
1000.
660.
760.
890.
1300.
1600.
1900.
2300.
2700.
3200.
5100.
6200.
7300.
4500.
5300.
6300.
10000.
12000.
15000.
Total
($K)
420.
480.
550.
800.
960.
1100.
650.
750.
860.
1300.
1500.
1800.
910.
1000.
1200.
1800.
2200.
2500.
1700.
1900.
2200.
3400.
4100.
4800.
5800.
6900.
8200.
13000.
16000.
18000.
11000.
13000.
16000.
26000.
31000.
37000.
Operating
Cost
($K Year-1)
47.
52.
58.
83.
95.
110.
82.
89.
100.
140.
160.
180.
120.
130.
150.
210.
240.
270.
250.
270.
300.
430.
490.
540.
1200.
1300.
1400.
1900.
2200.
2400.
2700.
2900.
3200.
4300.
4900.
5400.
Yearly
Cost
($K Year-1)
96.
110.
120.
180.
210.
240.
160.
180.
200.
290.
340.
390.
230.
250.
290.
420.
490.
560.
440.
500.
570.
820.
970.
1100.
1900.
2100.
2400.
3400.
4000.
4600.
4100.
4500.
5100.
7300.
8600.
9700.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.10
0.11
0.13
0.05
0.05
0.06
0.09
0.11
0.12
0.05
0.05
. 0.06
0.09
0.10
0.12
0.04
0.05
0.06
0.08
0.10
0.11
0.04
0.05
0.05
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.09
0.10
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Di bromochloropropane
Henry's Coefficient = 0.006 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Di bromochloropropane
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
0.006
0.006
.006
.006
0.006
0.006
0.006
0.006
0.
0.
,024
,024
,024
,024
,024
,024
,024
0.024
0.086
0.086
0.086
.086
.086
,086
.086
0.
0.
0.
0.
0.086
0.
0.
0.
0.
0.
0.
0.
230
230
230
230
230
230
230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optinr
Stripping
Fractor
1.0
1.8
2.2
2.5
2.5
2.7
2.9
3.0
1.0
1.6
1.9
2.2
2.2
2.4
2.5
2.6
1.0
1.4
1.8
2.0
2.0
2.2
2.3
2.4
1.0
1.4
1.7
1.9
1.9
2.1
2.2
2.3
1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
180.
180.
170.
170.
170.
160.
160.
160.
170.
160.
150.
150.
140.
140.
140.
140.
150.
130.
120.
120.
120.
120.
120.
120.
140.
110.
110.
100.
110.
100.
100.
100.
140.
100.
110.
110.
110.
110.
110.
110.
-------
Di bromochloropropane
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Plant
Capacity
(MGD)
4.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
2.
2.
2.
2.
2.
2.
2.
10
10
10
10
10
10
10
2.10
00
00
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optiitr
Stripping
Fractor
1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
140.
100.
100.
100.
100.
99.
98.
97.
130.
100.
97.
96.
96.
95.
94.
94.
130.
96.
93.
91.
91.
90.
89.
89.
130.
95.
91.
89.
89.
88.
88.
87.
130.
91.
87.
85.
85.
84.
84.
83.
-------
Di bromochloropropane
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Plant
Capacity
(MGD)
210.
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
430.
120.
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optinr
Stripping
Fractor
1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0
1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0
120.
85.
80.
79.
79.
78.
78.
77.
120.
80.
75.
74.
74.
73.
73.
73.
-------
Di bromochloropropane
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Loadings
Liquid
(GPM
ft-2)
9.7
5.9
4.8
4.3
4.1
3.8
3.6
3.4
9.3
6.3
5.1
4.5
4.4
4.1
3.8
3.7
9.0
6.3
5.1
4.6
4.4
4.1
3.9
3.7
8.8
6.2
5.1
4.5
4.4
4.1
3.9
3.7
8.7
6.2
5.5
4.9
4.8
4.5
4.3
4.1
Air
(SCFM
ft-2)
240.
260.
260.
260.
260.
260.
260.
250.
230.
240.
240.
240.
240.
240.
240.
240.
220.
220.
220.
220.
220.
220.
220.
220.
220.
210.
210.
210.
210.
210.
210.
210.
210.
200.
210.
210.
210.
210.
210.
210.
Air:
Water
Ratio
190.
330.
400.
450.
470.
500.
530.
550.
180.
290.
350.
400.
410.
440.
460.
480.
180.
260.
320.
360.
370.
400.
420.
440.
180.
250.
300.
340.
350.
380.
400.
420.
180.
240.
280.
310.
320.
350.
360.
380.
Mass
Trans.
Coef.
(sec-1)
0.0039
0.0029
0.0026
0.0024
0.0023
0.0022
0.0021
0.0021
0.0038
0.0030
0.0026
0.0024
0.0024
0.0023
0.0022
0.0021
0.0036
0.0029
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
0.0027
0.0025
0.0024
0.0023
0.0023
0.0022
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.3
1.3
1.4
1.4
1.5
Column
Diameter
(ft)
1.5
1.9
2.1
2.2
2.3
2.4
2.4
2.5
2.9
3.5
3.9
4.1
4.2
4.3
4.5
4.6
5.2
6.2
6.9
7.2
7.3
7.6
7.9
8.0
8.1
9.6
10.6
11.3
11.4
11.8
12.2
12.4
13.5
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
6.1
12.
15.
19.
20.
23.
27.
30.
6.1
13.
17.
21.
22.
26.
29.
33.
6.1
14.
18.
22.
23.
27.
31.
35.
6.1
14.
19.
23.
25.
29.
33.
37.
6.1
15.
21.
26.
27.
32.
36.
41.
Air
Flow
(SCFM)
410
730
890
1000.
1000.
1100.
1200.
1200.
1500.
2300.
2800.
3200.
3300.
3600.
3800.
3900.
4600.
6600.
8100.
9100.
9400.
10000.
11000.
11000.
11000.
15000.
18000.
21000.
21000.
23000.
24000.
25000.
31000.
40000.
47000.
53000.
54000.
58000.
61000.
63000.
Air
Pressure
(inch
H20)
3.4
4.5
5.2
5.8
6.0
6.6
7.2
7.8
3.3
4.5
5.1
5.7
5.9
6.4
7.0
7.6
3.1
4.2
4.7
5.3
5.5
6.0
6.5
7.0
3.1
4.0
4.5
5.0
5.2
5.7
6.2
6.7
3.0
4.0
4.8
5.4
5.6
6.2
6.8
7.4
-------
Di bromochloropropane
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Loadings
Liquid
(GPM
ft-2)
8.6
6.4
5.4
4.8
4.7
4.4
4.2
4.0
8.6
6.3
5.3
4.7
4.6
4.3
4.1
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.8
8.4
6.1
5.1
4.5
4.4
4.1
3.9
3.8
Air
(SCFM
ft-2)
210.
200.
200.
200.
200.
200.
200.
200.
210.
190.
200.
200.
200.
200.
200.
200.
210.
190.
190.
190.
190.
190.
190.
190.
210.
190.
190.
190.
190.
190.
190.
190.
210.
190.
190.
190.
190.
190.
190.
190.
Air:
Water
Ratio
180.
230.
280.
310.
320.
340.
360.
380.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
270.
310.
320.
340.
360.
370.
Mass
Trans.
Coef.
(sec-1)
0.0035
0.0029
0.0026
0.0024
0.0024
0.0023
0.0022
0.0022
0.0035
0.0028
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0034
0.0028
0.0025
0.0023
0.0022
0.0022
0.0021
0.0020
Number
of
Columns
1.9
2.6
3.1
3.5
3.5
3.8
4.0
4.1
4.4
6.0
7.2
8.0
8.3
8.8
9.3
9.6
7.3
9.9
12.0
13.4
13.8
14.7
15.5
16.1
10.6
14.4
17.4
19.5
20.0
21.4
22.5
23.4
20.9
28.7
34.8
38.9
40.0
42.8
45.0
46.7
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
6.1
16.
21.
26.
27.
32.
36.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
Air
Flow
(SCFM)
82000
100000.
120000.
140000.
140000.
150000.
160000.
170000
190000.
230000.
280000.
320000.
330000.
350000.
370000.
380000.
310000.
380000.
460000.
520000.
530000.
570000.
600000.
630000.
440000.
550000.
670000.
750000.
770000.
830000.
870000.
900000.
870000.
16. 1100000.
21. 1300000.
26. 1500000.
27. ]
500000.
32. 1600000.
37. 1700000.
41. 1800000.
Air
Pressure
(inch
H20)
3.0
4.1
4.6
5.2
5.3
5.9
6.4
6.9
3.0
4.0
4.5
5.0
5.2
5.7
6.2
6.7
3.0
3.9
4.4
4.9
5.1
5.5
6.0
6.5
3.0
3.9
4.4
4.8
5.0
5.5
5.9
6.4
3.0
3.8
4.3
4.7
4.9
5.3
5.8
6.2
-------
Di bromochloropropane
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Loadings
Liquid
(GPM
ft-2)
8.3
6.0
4.9
4.4
4.3
4.0
3.8
3.7
8.2
5.9
4.8
4.3
4.2
3.9
3.7
3.6
Air
(SCFM
ft-2)
210.
180.
180.
180.
180.
180.
180.
180.
200.
180.
170.
180.
180.
180.
180.
180.
Air:
Water
Ratio
180.
230.
270.
310.
320.
340.
360.
370.
180.
220.
270.
310.
310.
340.
350.
370.
Mass
Trans.
Coef .
(sec-1)
0.0034
0.0027
0.0024
0.0022
0.0022
0.0021
0.0020
0.0020
0.0034
0.0026
0.0023
0.0022
0.0021
0.0021
0.0020
0.0019
Number
of
Columns
87.0
121.0
147.3
164.8
169.4
181.2
190.4
197.8
180.0
253.2
309.6
346.6
354.9
381.0
400.5
416.1
Col umn
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
Air
Flow
(SCFM)
6.0 3600000
16. 4400000.
21. 5300000.
26. 6000000.
28. 6200000.
32. 6600000.
37. 6900000.
41. 720000a.
6.0 7400000.
16. 9000000.
21. 11000000.
26. 12000000.
28. 13000000.
32. 13000000.
37. 14000000.
41. 15000000.
Air
Pressure
(inch
H20)
2.9
3.7
4.1
4.5
4.7
5.1
5.5
5.9
2.9
3.6
4.0
4.4
4.5
4.9
5.3
5.7
-------
Di bromochloropropane
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Estimated Capital Costs
Process
($K)
5.4
8.9
11.
14.
15.
17.
20.
22.
11.
19.
24.
30.
32.
38.
43.
48.
20.
38.
51.
64.
68.
80.
93.
100.
36.
71.
97.
120.
130.
150.
180.
200.
77.
160.
220.
280.
300.
370.
430.
490.
Support
($K)
8.9
11.
13.
14.
14.
16.
17.
19.
15.
.20.
23.
27.
28.
32.
35.
38.
24.
36.
45.
54.
56.
65.
73.
81.
41.
65.
83.
100.
110.
120.
140.
160.
81.
140.
180.
230.
250.
290.
340.
380.
Indirect
($K)
9.4
13.
16.
18.
19.
22.
24.
27.
17.
25.
31.
37.
39.
45.
51.
57.
29.
48.
63.
77.
81.
95.
110.
120.
50.
89.
120.
150.
150.
180.
210.
240.
100.
190.
260.
340.
360.
430.
500.
570.
Total
($K)
24.
33.
40.
46.
48.
55.
61.
67.
42.
63.
79.
94.
99.
110.
130.
140.
73.
120.
160.
190.
210.
240.
270.
310.
130.
220.
300.
370.
390.
460.
530.
600.
260.
490.
670.
850.
910.
1100.
1300.
1400.
Operating
Cost
($K Year-1)
0.59
0.94
1.2
1.4
1.5
1.7
2.0
2.2
1.5
2.5
3.2
3.9
4.1
4.7
5.3
5.9
3.6
6.2
8.0
9.9
10.
12.
14.
15.
8.3
14.
18.
22.
23.
27.
31.
34.
23.
37.
50.
62.
65.
76.
87. '
97.
Yearly
Cost
($K Year-1)
3.4
4.8
5.8
6.9
7.2
8.2
9.1
10.
6.4
9.9
12.
15.
16.
18.
20.
23.
12.
21.
27.
33.
35.
40.
46.
52.
23.
40.
53.
65.
69.
81.
93.
110.
54.
95.
130.
160.
170.
200.
240.
270.
Production
Cost
($ Kgal-1)
1.65
2.35
2.85
3.35
3.51
3.99
4.46
4.93
0.73
1.13
1.42
1.70
1.79
2.06
2.33
2.60
0.39
0.65
0.85
1.04
1.10
1.28
1.46
1.64
0.28
0.48
0.63
0.78
0.82
0.97
1.11
1.25
0.21
0.37
0.50
0.63
0.67
0.80
0.92
1.04
-------
Di bromochloropropane
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Estimated Capital Costs
Process
($K)
190.
400.
570.
730.
780.
950.
1100.
1300.
410.
890.
1300.
1600.
1700.
2100.
2500.
2800.
670.
1400.
2000.
2600.
2800.
3400.
4000.
4600.
950.
2100.
2900.
3800.
4100.
4900.
5700.
6500.
1800.
4000.
5700.
7300.
7800.
9500.
11000.
13000.
Support
($K)
180.
340.
460.
580.
620.
740.
860.
980.
380.
740.
1000.
1300.
1400.
1700.
1900.
2200.
610.
1200.
1700.
2100.
2300.
2700.
3200.
3600.
860.
1700.
2400.
3000.
3200.
3900.
4500.
5200.
1600.
3300.
4600.
5900.
6300.
7500.
8800.
10000.
Indirect
($K)
240.
480.
670.
860.
920.
1100.
1300.
1500.
520.
1100.
1500.
1900.
2100.
2500.
2900.
3300.
840.
1700.
2400.
3100.
3300.
4000.
4700.
5400.
1200.
2500.
3500.
4500.
4800.
5800.
6700.
7700.
2300.
4700.
6700.
8600.
9300.
11000.
13000.
15000.
Total
($K)
610.
1200.
1700.
2200.
2300.
2800.
3300.
3700.
1300.
2700.
3800.
4800.
5200.
6200.
7300.
8300.
2100.
4400.
6100.
7900.
8400.
10000.
12000.
14000.
3000.
6200.
8800.
11000.
12000.
15000.
17000.
19000.
5700.
12000.
17000.
22000.
23000.
28000.
33000.
38000.
Operating
Cost
($K Year-1)
65.
110.
140.
170.
180.
210.
240.
270.
150.
240.
320.
390.
420.
480.
550.
620.
260.
410.
540.
660.
700.
820.
930.
1000.
380.
600.
790.
960.
1000.
1200.
1300.
1500.
790.
1200.
1600.
1900.
2000.
2400.
2700.
3000.
Yearly
Cost
($K Year-1)
140.
250.
340.
430.
450.
540.
620.
710.
310.
560.
760.
960.
1000.
1200.
1400.
1600.
510.
920.
1300.
1600.
1700.
2000.
2300.
2600.
740.
1300.
1800.
2300.
2400.
2900.
3300.
3800.
1500.
2600.
3600.
4500.
4800.
5700.
6500.
7400.
Production
Cost
($ Kgal-1)
0.18
0.32
0.44
0.56
0.59
0.70
0.81
0.92
0.17
0.31
0.42
0.53
0.56
0.67
0.77
0.87
0.16
0.29
0.39
0.49
0.53
0.62
0.72
0.82
0.16
0.28
0.38
0.48
0.51
0.61
0.70
0.80
0.15
0.27
0.36
0.46
0.49
0.58
0.66
0.75
-------
Di bromochloropropane
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Estimated Capital Costs
Process
($K)
7200.
16000.
23000.
29000.
31000.
38000.
44000.
50000.
15000.
32000.
46000.
59000.
63000.
76000.
89000.
96 100000.
Support
($K)
6100.
13000.
18000.
23000.
25000.
30000.
35000.
40000.
12000.
26000.
37000.
48000.
51000.
62000.
Indirect
($K)
8700.
19000.
27000.
34000.
37000.
44000.
52000.
59000.
17000.
38000.
54000.
70000.
75000.
91000.
72000. 110000.
83000. 120000.
Total
($K)
22000.
47000.
67000.
87000.
93000.
110000.
130000.
150000.
44000.
95000.
140000.
180000.
190000.
230000.
270000.
310000.
Operating
Cost
($K Year-1)
3500.
5300.
6800.
8200.
8700.
10000.
11000.
13000.
7800.
12000.
15000.
18000.
19000.
22000.
24000.
27000.
Yearly
Cost
($K Year-1)
6100.
11000.
15000.
18000.
20000.
23000.
27000.
30000.
13000.
23000.
31000.
39000.
41000.
49000.
56000.
63000.
Production
Cost
($ Kgal-1)
0.14
0.25
0.33
0.42
0.45
0.53
0.61
0.69
0.13
0.23
0.31
0.39
0.42
0.49
0.57
0.64
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Ethylene Dibromide (EDB)
Henry's Coefficient = 0.014 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
EthyTene Dibromide (EDB)
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(*)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98 -
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optimized Parameters
Stripping
Fractor
2.4
3.0
3.4
3.6
3.8
2.1
2.6
2.9
3.1
3.2
1.9
2.4
2.6
2.8
2.9
1.8
2.2
2.4
2.6
2.7
1.7
2.1
2.3
2.5
2.6
1.6
1.9
2.1
2.3
2.4
Air Gradient
(N m-2 m-
150.
150.
140.
140.
140.
150.
140.
140.
120.
130.
130.
120.
120.
120.
110.
110.
110.
100.
100.
100.
99.
95.
93.
92.
91.
100.
99.
97.
96.
96.
1)
-------
Ethylene Dibromide (EDB)
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
5,
5,
5,
5,
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optim
Stripping
Fractor
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
99.
95.
94.
92.
92.
95.
90.
89.
88.
87.
93.
89.
87.
86.
85.
88.
84.
83.
82.
81.
82.
78.
77.
76.
75.
77.
73.
72.
71.
71.
-------
Ethylene Dibromide (EDB)
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Loadings
Liquid
(GPM
ft-2)
8.9
7.2
6.5
6.1
5.8
10.
8.0
7.3
6.6
6.5
10.
8.2
7.5
7.0
6.7
10.
8.2
7.5
7.1
6.8
10.
8.2
7.5
7.1
6.8
11.
8.9
8.2
7.7
7.4
Air
(SCFM
ft-2)
220.
230.
230.
230.
230.
220.
220.
220.
210.
220.
200.
200.
210.
210.
210.
190.
190.
190.
190.
190.
180.
180.
180.
180.
180.
180.
180.
180.
180.
180.
Air:
Water
Ratio
190.
240.
260.
280.
300.
160.
210.
230.
240.
260.
150.
190.
200.
220.
230.
140.
170.
190.
200.
210.
130.
160.
180.
190.
200.
120.
150.
170.
180.
190.
Mass
Trans.
Coef.
(sec-1)
0.0052
0.0046
0.0043
0.0041
0.0039
0.0057
0.0049
0.0046
0.0042
0.0042
0.0057
0.0049
0.0046
0.0044
0.0043
0.0055
0.0049
0.0046
0.0044
0.0043
0.0055
0.0048
0.0045
0.0044
0.0042
0.0057
0.0051
0.0048
0.0046
0.0045
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.9
2.0
2.1
2.2
Column
Diameter
(ft)
1.5
1.7
1.8
1.9
1.9
2.8
3.1
3.2
3.4
3.4
4.8
5.4
5.6
5.8
6.0
7.5
8.4
8.8
9.0
9.2
12.6
13.9
14.5
15.0
15.3
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
13.
20.
26.
33.
40.
14.
23.
29.
36.
44.
16.
24.
31.
39.
47.
16.
25.
33.
41.
49.
17.
26.
34.
43.
52.
18.
28.
37.
46.
56.
Air
Flow
(SCFM)
420
530
590
630
660
1300
1700.
1800
2000
2100.
3700
4700.
5100
5500
5800.
8400.
11000.
12000.
12000.
13000.
22000.
27000.
30000.
32000.
34000.
55000.
68000.
75000.
79000.
83000.
Air
Pressure
(inch
H20)
4.4
5.7
6.7
7.9
9.0
4.8
5.9
7.0
7.6
9.2
4.6
5.6
6.6
7.6
8.6
4.3
5.3
6.2
7.2
8.2
4.1
5.1
5.9
6.8
7.8
4.4
5.5
6.4
7.5
8.6
-------
Ethylene Dibromide (EDB)
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
5*
5F
5i
57
58
59
60
Loadings
Liquid
(GPM
ft-2)
11.
8.7
8.1
7.6
7.3
10.
8.6
7.9
7.5
7.2
10.
8.5
7.8
7.4
7.1
10.
8.4
7.7
7.3
7.0
9.9
8.1
7.5
7.1
6.8
9.7
7.9
7.3
6.9
6.6
Air
(SCFM
ft-2)
170.
180.
180.
180.
180.
170.
170.
180.
180.
180.
170.
170.
170.
180.
180.
170.
170.
170.
170.
170.
160.
160.
170.
170.
170.
160.
160.
160.
160.
160.
Air:
Water
Ratio
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
160.
180.
180.
120.
150.
160.
180.
180.
Mass
Trans.
Coef.
(sec-1)
0.0056
0.0050
0.0047
0.0046
0.0045
0.0056
0.0049
0.0047
0.0045
0.0044
0.0055
0.0049
0.0046
0.0045
0.0044
0.0054
0.0048
0.0046
0.0044
0.0043
0/0053
0.0047
0.0045
0.0043
0.0042
0.0052
0.0046
0.0043
0.0042
0.0041
Number
of
Columns
3.6
4.3
4.7
5.0
5.2
6.0
7.2
7.9
8.3
8.7
8.7
10.5
11.4
12.1
12.6
17.3
21.0
22.9
24.2
25.2
73.4
89.2
96.9
102.7
106.8
153.8
187.6
203.9
216.3
224.9
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
Air
Flow
(SCFM)
130000
160000
170000
180000
190000
200000
250000
280000
300000
310000
290000
370000
400000
430000
450000
580000
720000
780000
840000
870000
18. 2400000
28. 2900000
37. 3200000
46. 3400000
56. 3600000.
18. 4800000
28. 6000000.
37. 6600000.
46. 7000000
55. 7300000
Air
Pressure
(inch
H20)
4.3
5.3
6.2
7.3
8.3
4.2
5.2
6.0
7.0
8.0
4.1
5.1
5.9
6.9
7.8
4.0
5.0
5.7
6.7
7.6
3.9
4.7
5.5
6.3
7.1
3.8
4.5
5.2
6.0
6.8
-------
Ethylene Dibromide (EDB)
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated Capital Costs
Process
($K)
7.9
11.
14.
18.
21.
16.
23.
29.
37.
44.
30.
46.
59.
74.
90.
54.
84.
110.
140.
170.
120.
180.
240.
310.
370.
270.
440.
590.
750.
910.
Support
($K)
10.
12.
14.
16.
18.
18.
22.
26.
31.
35.
31.
41.
50.
60.
70.
53.
73.
91.
110.
130.
110.
160.
200.
250.
290.
240.
370.
480.
600.
720.
Indirect
($K)
12.
15.
18.
22.
25.
22.
30.
36.
44.
51.
40.
57.
71.
88.
100.
70.
100.
130.
160.
190.
150.
220.
290.
360.
440.
340.
530.
700.
880.
1100.
Total
($K)
30.
39.
47.
56.
64.
55.
75.
92.
110.
130.
100.
140.
180.
220.
260.
180.
260.
330.
410.
490.
370.
570.
730.
920.
1100.
850.
1300.
1800.
2200.
2700.
Operating
Cost
($K Year-1)
0.76
1.1
1.3
1.6
1.8
1.9
2.7
3.3
3.9
4.7
4.5
6.5
8.1
9.9
12.
9.8
14.
18.
22.
25.
26.
37.
46.
56.
66.
72.
100.
130.
160.
190.
Yearly
Cost
($K Year-1)
4.3
5.7
6.8
8.1
9.4
8.4
12.
14.
17.
20.
16.
23.
29.
36.
43.
31.
45.
57.
70.
83.
69.
100.
130.
160.
190.
170.
260.
340.
420.
510.
Production
Cost
($ Kgal-1)
2.10
2.77
3.32
3.96
4.58
0.96
1.31
1.61
1.94
2.27
0.52
0.75
0.93
1.15
1.35
0.36
0.53
0.67
0.83
0.99
0.27
0.40
0.51
0.64
0.76
0.22
0.34
0.44
0.55
0.66
-------
Ethylene Dibromide (EDB)
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
600.
980.
1300.
1700.
2000.
970.
1600.
2100.
2700.
3300.
1400.
2300.
3000.
3900.
4700.
2700.
4400.
5800.
7400.
9100.
11000.
17000.
23000.
29000.
36000.
22000.
35000.
47000.
60000.
73000.
Support
($K)
530.
810.
1100.
1300.
1600.
850.
1300.
1700.
2200.
2600.
1200.
1900.
2400.
3100.
3700.
2300.
3600.
4700.
6000.
7200.
8800.
14000.
19000.
24000.
29000.
18000.
29000.
38000.
48000.
59000.
Indirect
($K)
740.
1200.
1502.
2000.
2400.
1200.
1900.
2500.
3200.
3900.
1700.
2700.
3600.
4600.
5500.
3300.
5200.
6900.
8800.
11000.
13000.
21000.
27000.
35000.
42000.
26000.
42000.
55000.
71000.
86000.
Total
($K)
1900.
3000.
3900.
5000.
6000.
3000.
4800.
6300.
8000.
9700.
4300.
6900.
9000.
12000.
14000.
8200.
13000.
17000.
22000.
27000.
32000.
52000.
69000.
88000.
110000.
65000.
110000.
140000.
180000.
220000.
Operating
Cost
($K Year-1)
170.
240.
300.
370.
430.
280.
410.
510.
620.
720.
410.
590.
730.
890.
1000.
840.
1200.
1500.
1800.
2100.
3600.
5100.
6300.
7600.
8900.
8000.
11000.
14000.
16000.
19000.
Yearly
Cost
($K Year-1)
390.
590.
760.
950.
1100.
640.
970.
1200.
1600.
1900.
920.
1400.
1800.
2200.
2700.
1800.
2700.
3500.
4400.
5300.
7400.
11000.
14000.
18000.
21000.
16000.
24000.
30000.
37000.
45000.
Production
Cost
($ Kgal-1)
0.21
0.32
0.41
0.52
0.62
0.20
0.30
0.39
0.49
0.58
0.19
0.29
0.38
0.47
0.57
0.18
0.28
0.36
0.45
0.53
0.17
0.26
0.33
0.41
0.49
0.16
0.24
0.30
0.38
0.45
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Ethyl benzene
Henry's Coefficient = 0.14 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Ethyl benzene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
Cost Optimized Parameters
Stripping
Fractor
2.3*
2.3*
2.3*
3.5*
3.6*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
3.6*
3.7*
2.3*
2.3*
2.3*
3.4*
3.5*
2.3*
2.3*
2.3*
3.1*
3.2*
2.3*
2.3*
2.3*
2.9*
3.0*
Air Gradient
(N m-2 m-1)
50.*
50.*
50.*
98.
100.
50.*
50.*
50.*
67.
72.
50.*
50.*
50.*
100.
110.
50.*
50.*
50.*
92.
98.
50.*
50.*
50.*
81.
86.
50.*
50.*
50.*
72.
76.
Design parameter held to limiting value.
-------
Ethyl benzene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
5.00
5.00
5.00
5.00
5.00
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
Cost Optinr
Stripping
Fractor
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.8*
2.3*
2.3*
2.3*
2.7*
2.8*
2.3*
2.3*
2.3*
2.7*
95.
2.8*
50.'
50.'
50.'
68.
73.
50.'
50.'
50.'
67.
72.
50.'
50.'
50.'
67.
71.
50.'
50.'
50.'
66.
69.
50.'
50.'
50.'
63.
67.
50.'
50.'
50.'
62.
66.
* Design parameter held to limiting value.
-------
Ethyl benzene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
110.
110.
73.
73.
73.
88.
92.
73.
73.
73.
110.
120.
73.
73.
73.
110.
110.
73.
73.
73.
99.
100.
73.
73.
73.
92.
96.
Air:
Water
Ratio
18.
18.
18.
27.
29.
18.
18.
18.
22.
23.
18.
18.
18.
28.
29.
18.
18.
18.
27.
27.
18.
18.
18.
25.
25.
18.
18.
18.
23.
24.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
Packing
Height
(ft)
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
18.
20.
1.2
2.0
4.2
18.
20.
Air
Flow
(SCFM)
41
41
41
61
64
150
150
150
180
190
460
460
460
710
730
1100
1100
1100
1600.
1700.
3100.
3100.
3100.
4100.
4300.
8200.
8200.
8200.
10000.
11000.
Air
Pressure
(inch
H20)
2.1
2.1
2.3
4.0
4.5
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
4.1
4.5
2.1
2.1
2.3
3.9
4.3
2.1
2.1
2.3
3.7
4.1
2.1
2.1
2.3
3.6
3.9
-------
Ethyl benzene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
89.
93.
73.
73.
73.
89.
92.
73.
73.
73.
88.
91.
73.
73.
73.
87.
90.
73.
73.
73.
85.
88.
73.
73.
73.
84.
87.
Air:
Water
Ratio
18.
18.
18.
22.
23.
18.
18.
18.
22.
23.
18.
18.
18.
22.
23.
18.
18.
18.
22.
22.
18.
18.
18.
21.
22.
18.
18.
18.
21.
22.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
19.
21.
Air
Flow
(SCFM)
19000.
19000.
19000.
23000.
24000.
31000.
31000.
31000.
37000.
38000.
44000.
44000.
44000.
53000.
55000.
87000.
87000.
87000.
100000.
110000.
360000.
360000.
360000.
410000.
430000.
730000.
730000.
730000.
840000.
870000.
Air
Pressure
(inch
H20)
2.1
2.1
2.3
3.5
3.9
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.4
3.7
2.1
2.1
2.3
3.4
3.7
-------
Ethyl benzene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated Capital Costs
Process
($K)
1.9
2.0
2.4
4.6
5.0
4.6
4.8
5.5
10.
11.
7.1
7.6
8.9
17.
19.
11.
12.
14.
28.
31.
20.
22.
27.
55.
60.
43.
46.
55.
110.
120.
Support
($K)
6.7
6.7
6.9
8.2
8.4
11.
11.
11.
14.
15.
16.
16.
17.
22.
23.
24.
24.
26.
35.
36.
41.
42.
45.
64.
68.
79.
81.
88.
130.
140.
Indirect
($K)
5.6
5.8
6.1
8.4
8.8
10.
10.
11.
16.
17.
15.
16.
17.,
26.
27.
23.
24.
26.
41.
44.
40.
42.
47.
78.
83.
80.
84.
94.
160.
170.
Total
($K)
14.
14.
15.
21.
22.
25.
26.
28.
40.
43.
39.
40.
43.
65.
69.
57.
59.
66.
100.
110.
100.
110.
120.
200.
210.
200.
210.
240.
400.
430.
Operating
Cost
($K Year-1)
0.20
0.20
0.23
0.37
0.40
0.61
0.62
0.67
1.0
1.1
1.3
1.3
1.4
2.3
2.4
2.7
2.8
3.0
4.8
5.1
7.1
7.3
7.9
12.
13.
20.
20.
22.
33.
35.
Yearly
Cost
($K Year-1)
1.9
1.9
2.0
2.9
3.0
3.6
3.7
3.9
5.8
6.1
5.8
6.0
6.5
9.9
11.
9.4
9.8
11.
17.
18.
19.
20.
22.
35.
38.
43.
45.
50.
80.
86.
Production
Cost
($ Kgal-1)
0.91
0.93
1.00
1.40
1.47
0.41
0.42
0.45
0.66
0.70
0.18
0.19
0.21
0.32
0.34
0.11
0.12
0.13
0.20
0.22
0.07
0.08
0.09
0.14
0.15
0.06
0.06
0.06
0.10
0.11
-------
Ethyl benzene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
90.
96.
110.
230.
250.
140.
150.
180.
370.
400.
210.
220.
260.
520.
570.
390.
420.
490.
1000.
1100.
1600.
1700.
1900.
3900.
4200.
3100.
3300.
3900.
7800.
8500.
Support
($K)
150.
150.
170.
250.
270.
230.
240.
260.
390.
420.
320.
330.
350.
550.
590.
560.
580.
630.
1000.
1100.
1800.
1800.
2100.
3600.
3900.
3300.
3500.
3900.
7000.
7500.
Indirect
($K)
160.
160.
180.
320.
340.
240.
260.
290.
500.
540.
340.
360.
400.
700.
760.
620.
650.
740.
1300.
1400.
2200.
2300.
2600.
4900.
5300.
4200.
4500.
5100.
9700.
11000.
Total
($K)
400.
410.
460.
800.
860.
620.
650.
720.
1300.
1400.
860.
900.
1000.
1800.
1900.
1600.
1600.
1900.
3300.
3600.
5500.
5800.
6700.
12000.
13000.
11000.
11000.
13000.
24000.
27000.
Operating
Cost
($K Year-1)
46.
47.
51.
76.
81.
79.
82.
87.
130.
140.
120.
120.
130. ,
190.
200.
240.
250.
260.
390.
420.
1100.
1200.
1200.
1800.
1900.
2700.
2700.
2900.
4100.
4300.
Yearly
Cost
($K Year-1)
93.
96.
110.
170.
180.
150.
160.
170.
280.
300.
220.
230.
250.
400.
430.
430.
440.
480.
780.
840.
1800.
1900.
2000.
3200.
3500.
3900.
4100.
4400.
7000.
7400.
Production
Cost
($ Kgal-1)
0.05
0.05
0.06
0.09
0.10
0.05
0.05
0.05
0.09
0.09
0.05
0.05
0.05
0.08
0.09
0.04
0.04
0.05
0.08
0.09
0.04
0.04
0.05
0.07
0.08
0.04
0.04
0.04
0.07
0.08
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
m-Xylene
Henry's Coefficient = 0.11 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
m-Xylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
.006
.006
.006
.006
0.
0.
0.
0.
0.006
024
024
024
0.024
0.024
0.024
0.024
0.
0.
0.
.086
.086
.086
0.086
0.086
0.086
0.086
0,
0,
0.
0,
0,
0.
2.
2.
2.
2.
2.
2.
230
230
230
230
230
230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
10
10
10
10
10
10
2.10
Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
1.8*
1.8*
2.2*
2.4*
2.9*
3.2*
3.4*
1.8*
1.8*
1.8*
1.9*
3.1*
3.5
3.9
1.8*
1.8*
2.4*
2.6*
3.0*
3.2*
3.4
1.8*
1.8*
2.2*
2.4*
2.8*
3.0*
3.2
1.8*
1.8*
2.0*
2.2*
2.6*
2.8*
3.0
1.8*
1.8*
1.9*
2.0*
2.5*
2.6*
2.8
50.'
50.'
66.
77.
110.
130.
140.
50.'
50.'
50.'
52.
130.
130.
130.
50.'
50.'
76.
87.
120.
130.
130.
50.'
50.'
67.
77.
100.
120.
130.
50."
50.<
59.
67.
91.
100.
110.
50."
50."
52.
60.
82.
92.
99.
-------
m-Xylene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
43
44
45
46
47
48
49 .
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* no
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
cinn naram
5.
5.
5.
5.
5.
5.
00
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinv
Stripping
Fractor
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
1.9*
2.4*
2.5*
2.7*
1.8*
1.8*
1.8*
1.9*
2.3*
2.5*
2.7*
1.8*
1.8*
1.8*
1.9*
2.3*
2.5*
2.6
1.8*
1.8*
1.8*
1.9*
2.3*
2.4*
2.6
50.'
50.'
50.'
56.
77.
88.
97.
50.1
50.'
50.'
56.
76.
86.
95.
50.
50.'
50.
55.
75.
85.
94.
50.
50.'
50.'
54.
74.
84.
92.
50.
50.
50.
53.
72.
81.
50.'
50.'
50.'
51.
70.
80.
81.
-------
m-Xylene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
28.
26.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
73.
87.
96.
120.
130.
140.
73.
73.
73.
76.
130.
130.
140.
73.
73.
95.
100.
120.
130.
130.
73.
73.
88.
96.
110.
120.
130.
73.
73.
81.
88.
110.
110.
120.
73.
73.
75.
82.
99.
110.
110.
Air:
Water
Ratio
18.
18.
22.
24.
29.
32.
34.
18.
18.
18.
19.
31.
35.
39.
18.
18.
24.
26.
30.
32.
34.
18.
18.
22.
24.
29.
30.
32.
18.
18.
20.
22.
26.
28.
30.
18.
18.
19.
21.
25.
27.
28.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
12.0
Packing
Height
(ft)
1.7
3.2
8.1
9.6
15.
20.
27.
1.7
3.2
8.7
10.
15.
19.
24.
1.7
3.2
7.9
9.4
15.
20.
26.
1.7
3.2
8.1
9.6
16.
21.
27.
1.7
3.2
8.3
9.9
16.
21.
28.
1.7
3.2
8.6
10.
17.
22.
28.
Air
Flow
(SCFM)
41.
41.
48.
53.
65.
71.
75.
150.
150.
150.
150.
250.
280.
310.
460.
460.
600.
640.
760.
810.
860.
1100.
1100.
1300.
1400.
1700.
1800.
1900.
3100.
3100.
3400.
3700.
4400.
4700.
5000.
8200.
8200.
8400.
9100.
11000.
12000.
13000.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
2.9
4.1
5.2
6.6
2.1
2.2
2.5
2.7
4.3
5.0
5.8
2.1
2.2
2.7
3.0
4.2
5.2
6.3
2.1
2.2
2.7
2.9
4.0
5.0
6.2
2.1
2.2
2.6
2.8
3.8
4.7
5.8
2.1
2.2
2.6
2.8
3.7
4.5
5.4
-------
m-Xylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
73,
73.
79.
96.
100.
110.
73.
73.
73.
79.
95.
100.
110.
73.
73.
73.
78.
95.
100.
110.
73.
73.
73.
77.
94.
100.
110.
73.
73.
73.
76.
92.
99.
100.
73.
73.
73.
75.
91.
98.
100.
Air:
Water
Ratio
18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
19.
24.
25.
27.
18.
18.
18.
19.
23.
25.
27.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.4
49.5
49.5
49.5
49.5
49.5
49.5
51.6
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
23.
29.
1.7
3.2
8.7
11.
17.
23.
29. ]
Air
Flow
(SCFM)
19000
19000
19000
20000
24000
26000.
28000.
31000.
31000.
31000.
33000.
40000.
43000.
45000.
44000
44000
44000.
47000.
57000.
61000.
65000.
87000.
87000.
87000.
91000.
110000.
120000.
130000.
360000.
360000.
360000.
370000.
450000.
480000.
510000.
730000.
730000.
730000.
740000.
900000.
970000.
[100000.
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.6
4.4
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.3
2.1
2.2
2.5
2.7
3.5
4.2
5.2
2.1
2.2
2.5
2.7
3.5
4.2
4.9
-------
m-Xylene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.1
3.3
4.4
5.2
6.4
4.7
5.2
7.0
7.6
9.8
12.
14.
7.4
8.3
11.
12.
16.
20.
24.
11.
13.
18.
20.
27.
32.
39.
21.
24.
35.
39.
52.
63.
77.
45.
51.
73.
81.
110.
130.
160.
Support
($K)
6.7
6.8
7.3
7.5
8.1
8.6
9.2
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.
19.
22.
24.
26.
24.
25.
29.
30.
34.
37.
42.
42.
44.
51.
53.
63.
70.
79.
80.
85.
100.
110.
130.
140.
160.
Indirect
($K)
5.7
5.9
6.8
7.1
8.2
9.1
10.
10.
11.
13.
13.
15.
17.
20.
15.
17.
20.
21.
25.
28.
33.
23.
25.
31.
33.
40.
46.
53.
41.
45.
57.
60.
75.
87.
100.
82.
89.
110.
120.
150.
180.
210.
Total
($K)
14.
15.
17.
18.
21.
23.
26.
26.
27.
32.
33.
39.
43.
49.
39.
42.
50.
53.
63.
71.
83.
58.
63.
77.
82.
100.
120.
130.
100.
110.
140.
150.
190.
220.
260.
210.
220.
290.
310.
390.
450.
530.
Operating
Cost
($K Year-1)
0.20
0.22
0.27
0.29
0.37
0.43
0.51
0.62
0.65
0.77
0.82
1.1
1.2
1.4
1.3
1.4
1.7
1.8
2.2
2.6
3.1
2.7
2.9
3.5
3.8
4.7
5.5
6.5
7.2
7.6
9.1
9.7
12.
14.
17.
20.
21.
25.
26.
33.
38.
44.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8
4.5
4.7
5.6
6.3
7.2
5.9
6.3
7.6
8.0
9.7
11.
13.
9.6
10.
13.
13.
17.
19.
22.
19.
21.
26.
28.
34.
40.
47.
44.
47.
59.
63.
78.
90.
110.
Production
Cost
($ Kgal-1)
0.92
0.97
1.12
1.17
1.37
1.52
1.73
0.41
0.43
0.51
0.54
0.64
0.72
0.82
0.19
0.20
0.24
0.25
0.31
0.35
0.41
0.11
0.12
0.15
0.16
0.20
0.23
0.26
0.08
0.08
0.10
0.11
0.13
0.16
0.18
0.06
0.06
0.08
0.08
0.10
0.12
0.14
-------
m-Xylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
110.
150.
160.
220.
260.
320.
150.
170.
240.
260.
350.
420.
520.
210.
240.
340.
370.
500.
600.
740.
410.
460.
650.
710.
960.
1100.
1400.
1600.
1800.
2500.
2800.
3700.
4500.
5500.
3300.
3600.
5100.
5600.
7500.
9000.
11000.
Support
($K)
150.
160.
190.
200.
250.
280.
320.
230.
250.
300.
320.
380.
440.
510.
320.
340.
420.
440.
540.
610.
710.
570.
610.
750.
800.
990.
1100.
1300.
1800.
2000.
2500.
2700.
3500.
4100.
4900.
3400.
3700.
4800.
5200.
6700.
7900.
9600.
Indirect
($K)
160.
170.
220.
240.
300.
360.
420.
250.
270.
350.
380.
480.
560.
670.
350.
380.
490.
530.
680.
800.
950.
640.
700.
920.
990.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4700.
5600.
6800.
4300.
4800.
6500.
7100.
9300.
11000.
14000.
Total
($K)
410.
440.
570.
610.
770.
900.
1100.
630.
690.
890.
960.
1200.
1400.
1700.
880.
960.
1200.
1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3800.
4500.
5700.
6300.
8400.
9100.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
24000.
28000.
34000.
Operating
Cost
($K Year-1)
47.
49.
57.
61.
75.
87.
100.
81.
85.
99.
100.
130.
150.
170.
120.
120.
150.
150.
190.
220.
260.
250.
260.
300.
320.
390.
450.
520.
1200.
1200.
1400.
1500.
1800.
2000.
2400.
2700.
2800.
3200.
3400.
4100.
4600.
5300.
Yearly
Cost
($K Year-1)
95.
100.
120.
130.
170.
190.
230.
150.
170.
200.
220.
270.
320.
370.
220.
240.
290.
310.
390.
450.
540.
430.
460.
570.
610.
770.
890.
1100.
1800.
1900.
2400.
2500.
3200.
3700.
4400.
4000.
4200.
5100.
5500.
6800.
7900.
9300.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.11
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.11
0.04
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.09
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
o-Dichlorobenzene
Henry's Coefficient = 0.031 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
o-Dichlorobenzene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
Cost Optimized Parameters
Stripping
Fractor
0.9*
0.9*
0.9*
0.9*
2.0
3.2
0.9*
0.9*
0.9*
1.1
2.6
2.7
0.9*
0.9*
0.9*
1.0*
2.3
2.4
0.9*
0.9*
1.0
1.0
2.1
2.3
1.0
1.0
1.0
1.0
2.0
2.1
1.0
1.0
1.0
1.0
1.9
1.9
Air Gradient
(N m-2 m-1)
130.
130.
130.
140.
130.
130.
130.
130.
130.
180.
150.
140.
130.
130.
130.
160.
140.
130.
130.
130.
160.
150.
120.
120.
160.
150.
140.
140.
100.
100.
150.
150.
140.
130.
97.
100.
* Design parameter held to limiting value.
-------
o-Dichlorobenzene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
5,
5,
5.
5.
5.
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
Cost Optinr
Stripping
Fractor
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
150.
150.
140.
140.
100.
100.
150.
150.
140.
130.
96.
96.
150.
150.
140.
130.
95.
94.
150.
150.
140.
130.
90.
89.
150.
140.
130.
130.
83.
82.
140.
140.
130.
120.
77.
76.
-------
o-Dichlorobenzene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
17.
12.
30.
30.
30.
30.
15.
15.
30.
30.
30.
30.
16.
15.
30.
30.
30.
30.
16.
16.
30.
30.
29.
29.
16.
15.
30.
30.
29.
28.
17.
17.
Air
(SCFM
ft-2)
130.
130.
130.
130.
170.
190.
130.
130.
130.
150.
190.
190.
130.
130.
130.
140.
180.
180.
130.
130.
140.
140.
170.
170.
140.
140.
140.
140.
160.
160.
140.
140.
140.
140.
150.
150.
Air:
Water
Ratio
32.
32.
32.
33.
72.
110.
32.
32.
33.
38.
91.
96.
32.
32.
32.
36.
82.
86.
32.
32.
35.
35.
76.
81.
35.
35.
35.
35.
71.
76.
35.
35.
35.
35.
67.
69.
Mass
Trans.
Coef.
(sec-1)
0.012
0.012
0.012
0.012
0.0084
0.0068
0.012
0.012
0.012
0.012
0.0078
0.0076
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.011
0.0079
0.0077
0.012
0.012
0.011
0.011
0.0080
0.0080
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
1.1
1.3
1.6
1.6
1.6
1.6
2.2
2.3
2.8
2.8
2.8
2.8
3.8
3.9
4.4
4.4
4.4
4.4
5.9
6.1
7.3
7.3
7.4
7.4
9.9
10.1
11.9
12.0
12.1
12.2
16.0
16.0
Packing
Height
(ft)
1.1
1.6
4.4
6.5
20.
18.
1.1
1.6
4.3
6.0
17.
19.
1.1
1.6
4.4
6.2
18.
21.
1.1
1.6
4.2
6.2
19.
21.
1.0
1.6
4.1
6.2
20.
22.
1.0
1.6
4.1
6.2
21.
24.
Air
Flow
(SCFM)
72
72.
72
74
160
250.
260
260.
260.
310.
740.
780.
810.
810.
810.
900.
2000.
2200.
2000.
2000.
2100.
2100.
4600.
4900.
5900.
5900.
5900.
5900.
12000.
13000.
16000.
16000.
16000.
16000.
30000.
31000.
Air
Pressure
(inch
H20)
2.2
2.3
2.7
3.1
5.2
4.7
2.2
2.3
2.7
3.3
5.1
5.4
2.2
2.3
2.7
3.2
5.1
5.4
2.2
2.3
2.8
3.2
4.9
5.1
2.2
2.3
2.7
3.1
4.6
4.8
2.2
2.3
2.7
3.0
4.5
5.1
-------
o-Dichlorobenzene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Mum r
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
6F
6
71
7.
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
29.
29.
17.
17.
30.
29.
29.
28.
17.
16.
30.
29.
29.
28.
17.
16.
30.
29.
29.
28.
17.
16.
29.
29.
28.
28.
16.
15.
29.
29.
28.
27.
16.
15.
Air
(SCFM
ft-2)
140.
140.
140.
140.
150.
150.
140.
140.
140.
140.
150.
150.
140.
140.
140.
130.
150.
150.
140.
140.
140.
130.
140.
140.
140.
140.
130.
130.
140.
140.
140.
140.
'10.
50.
i30.
140.
Air:
Water
Ratio
35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
64.
68.
35.
-35.
35.
36.
64.
68.
35.
35.
35.
36.
64.
68.
Mass
Trans.
Coef.
(sec-1)
0.012
0.012
0.012
0.011
0.0083
0.0080
0.012
0.012
0.011
0.011
0.0081
0.0079
0.012
0.012
0.011
0.011
0.0081
0.0079
0.012
0.012
0.011
0.011
0.0080
0.0077
0.012
0.012
0.011
0.011
0.0078
0.0076
0.012
0.012
0.011
0.011
0.0076
0.0074
Number
of
Columns
1.3
1.3
1.3
1.3
2.2
2.3
2.1
2.1
2.2
2.2
3.7
3.8
3.0
3.0
3.1
3.2
5.3
5.6
6.0
6.0
6.2
6.3
10.6
11.1
24.7
24.9
25.6
26.1
45.1
47.2
50.8
51.2
52.9
54.0
95.1
99.3
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.1
Air
Flow
(SCFM)
36000
36000
36000
36000
66000
70000
59000
59000
59000
59000
110000
110000
86000
86000
86000
86000
160000
160000
170000
170000
170000
170000
310000
320000
690000
690000
690000
690000
22. 1300000
24. 1300000
1.0 1400000
1.5 1400000
4.1 1400000
6.1 1400000
22. 2600000
24. 2700000
Air
Pressure
(inch
H20)
2.2
2.3
2.7
3.0
4.8
5.0
2.2
2.3
2.7
3.0
4.6
4.9
2.2
2.3
2.7
3.0
4.6
4.8
2.2
2.3
2.7
3.0
4.4
4.7
2.2
2.3
2.7
2.9
4.2
4.4
2.2
2.3
2.7
2.9
4.1
4.3
-------
o-Dichlorobenzene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.2
2.6
3.0
7.3
8.0
5.0
5.2
6.2
6.8
14.
15.
7.3
7.7
9.5
11.
26.
28.
11.
12.
15.
17.
45.
49.
22.
23.
29.
34.
92.
100.
48.
51.
62.
71.
200.
220.
Support
($K)
6.8
6.8
7.1
7.3
9.8
10.
11.
11.
12.
12.
17.
17.
16.
17.
18.
18.
28.
29.
24.
24.
26.
28.
46.
49.
42.
43.
47.
50.
91.
98.
83.
84.
93.
99.
190.
210.
Indirect
($K)
5.8
5.9
6.4
6.8
11.
12.
10.
11.
12.
12.
20.
21.
15.
16.
18.
19.
35.
38.
23.
24.
27.
30.
59.
65.
42.
44.
50.
55.
120.
130.
86.
88.
100.
110.
260.
280.
Total
($K)
15.
15.
16.
17.
28.
30.
27.
27.
29.
31.
51.
54.
39.
40.
45.
48.
88.
96.
59.
60.
69.
75.
150.
160.
110.
110.
130.
140.
300.
330.
220.
220.
260.
280.
650.
710.
Operating
Cost
($K Year-1)
0.22
0.23
0.26
0.29
0.62
0.71
0.69
0.70
0.78
0.86
1.6
1.7
1.4
1.4
1.6
1.8
3.6
3.9
3.0
3.1
3.5
3.8
7.7
8.4
8.2
8.4
9.4
10.
20.
21.
23.
23.
26.
28.
54.
59.
Yearly
Cost
($K Year-1)
1.9
2.0
2.1
2.3
3.9
4.3
3.8
3.9
4.2
4.5
7.5
8.1
6.0
6.1
6.9
7.5
14.
15.
9.9
10.
12.
13.
25.
28.
21.
21.
24.
26.
55.
60.
48.
50.
56.
61.
130.
140.
Production
Cost
($ Kgal-1)
0.95
0.97
1.05
1.12
1.93
2.09
0.43
0.44
0.48
0.52
0.86
0.92
0.19
0.20
0.22
0.24
0.45
0.48
0.12
0.12
0.14
0.15
0.30
0.33
0.08
0.08
0.09
0.10
0.22
0.24
0.06
0.06
0.07
0.08
0.17
0.19
-------
o-Dichlorobenzene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
130.
150.
430.
490.
160.
170.
210.
240.
700.
790.
230.
240.
300.
340.
1000.
1100.
450.
470.
570.
650.
1900.
2200.
1800.
1900.
2300.
2600.
7600.
8500.
3600.
3800.
4500.
5200.
15000.
17000.
Support
($K)
160.
160.
180.
190.
400.
440.
240.
250.
280.
300.
640.
710.
340.
340.
380.
410.
910.
1000.
600.
610.
690.
750.
1700.
1900.
1900.
2000.
2300.
2500.
6500.
7200.
3600.
3800.
4400.
4900.
13000.
14000.
Indirect
($K)
170.
180.
200.
220.
550.
610.
270.
270.
320.
350.
880.
980.
370.
380.
440.
490.
1300.
1400.
690.
710.
820.
920.
2400.
2700.
2400.
2500.
3000.
3400.
9200.
10000.
4800.
4900.
5800.
6600.
19000.
21000.
Total
($K)
430.
440.
510.
560.
1400.
1500.
670.
690.
800.
880.
2200.
2500.
940.
970.
1100.
1200.
3200.
3500.
1700.
1800.
2100.
2300.
6000.
6700.
6200.
6400.
7500.
8500.
23000.
26000.
12000.
12000.
15000.
17000.
47000.
52000.
Operating
Cost
($K Year-1)
53.
55.
61.
65.
130.
140.
92.
94.
100.
110.
210.
230.
140.
140.
150.
160.
310.
340.
280.
290.
320.
340.
640.
690.
1300.
1300.
1500.
1600.
2800.
3000.
3000.
3100.
3400.
3600.
6200.
6700.
Yearly
Cost
($K Year-1)
100.
110.
120.
130.
290.
320.
170.
180.
200.
220.
480.
520.
250.
250.
280.
310.
680.
750.
480.
500.
560.
610.
1300.
1500.
2000.
2100.
2300.
2600.
5500.
6100.
4400.
4600.
5100.
5500.
12000.
13000.
Production
Cost
($ Kgal-1)
0.06
0.06
0.07
0.07
0.16
0.17
0.05
0.05
0.06
0.07
0.15
0.16
0.05
0.05
0.06
0.07
0.14
0.16
0.05
0.05
0.06
0.06
0.14
0.15
0.05
0.05
0.05
0.06
0.13
0.14
0.05
0.05
0.05
0.06
0.12
0.13
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
o-Xylene
Henry's Coefficient = 0.1 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
o-Xylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
.006
,006
.006
0.
0.
0.
0.006
0.024
0.024
.024
.024
.024
.024
0.
0.
0.
0.
0.024
.086
.086
.086
,086
,086
,086
0.086
0,
0.
0.
0.
0.
0.
2.
2.
2.
2.
2.
230
230
230
230
230
230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.10
10
10
10
10
10
2.10
* Design parameter held to limiting value.
Removal
Efficiency
(X)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optim
Stripping
Fractor
1.7*
1.7*
2.1*
2.3*
2.8*
3.0*
3.2*
1.7*
1.7*
1.7*
1.8*
3.0
3.4
3.8
1.7*
1.7*
2.3*
2.4*
2.8*
3.0
3.4
1.7*
1.7*
2.1*
2.3*
2.7*
2.9*
3.1
1.7*
1.7*
1.9*
2.1*
2.5*
2.7*
2.9
1.7*
1.7*
1.8*
2.0*
2.3*
2.5*
2.8
50. '•
50.'
72.
83.
120.
140.
150.
50.'
50.'
50.'
57.
130.
130.
130.
50.'
50.'
83.
94.
120.
140.
130.
50.'
50.'
73.
83.
110.
130.
120.
50.'
50.<
64.
73.
99.
110.
110.
50. •>
50."
57.
65.
88.
100.
98.
-------
o-Xylene
Table 1 (continued)
DESIGN CRITERIA - March 1989.
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* no
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
cinn nararr
5.
5.
5.
5.
5.
5,
00
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
Design parameter held to limiting value.
Removal
Efficiency
(*)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optimi
Stripping
IFractor
1.7*
1.7*
1.7*
1.9*
2.3*
2.5*
2.6*
1.7*
1.7*
1.7*
1.9*
2.3*
2.4*
2.6*
1.7*
1.7*
1.7*
1.9*
2.2*
2.4*
2.5
1.7*
1.7*
1.7*
1.8*
2.2*
2.4*
2.6
1.7*
1.7*
1.7*
1.8*
2.2*
2.3*
2.6
1.7*
1.7*
1.7*
1.8*
2.2*
2.3
2.6
50.*
50.*
53.
62.
84.
95.
100.
50. *
50.'
53.
61.
83.
93.
100.
50.'
50.'
52.
60.
82.
93.
100.
50.'
50.<
51.
59.
80.
91.
95.
50J
50.'
50.'
57.
78.
88.
87.
50.'
50.'
50.'
56.
76.
83.
81.
-------
o-Xylene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
27.
25.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
73.
92.
100.
120.
130.
140.
73.
73.
73.
80.
130.
140.
140.
73.
73.
100.
110.
130.
130.
140.
73.
73.
93.
100.
120.
130.
130.
73.
73.
85.
93.
110.
120.
120.
73.
73.
80.
87.
100.
110.
110.
Air:
Water
Ratio
18.
18.
23.
25.
30.
33.
35.
18.
18.
18.
20.
33.
38.
42.
18.
18.
25.
27.
31.
33.
37.
18.
18.
23.
25.
29.
32.
34.
18.
18.
21.
23.
28.
29.
32.
18.
18.
20.
22.
26.
28.
31.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.014
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.7
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.4
4.4
4.4
4.5
7.3
7.3
7.3
7.3
7.3
7.3
7.5
11.9
11.9
11.9
11.9
11.9
11.9
12.3
Packing
Height
(ft)
1.7
3.3
8.3
9.8
16.
21.
27.
1.7
3.3
9.1
11.
15.
19.
24.
1.7
3.3
8.0
9.5
16.
21.
26.
1.7
3.3
8.2
9.8
16.
21.
27.
1.7
3.3
8.5
10.
16.
22.
28.
1.7
3.3
8.7
10.
17.
22.
28.
Air
Flow
(SCFM)
41
41
51
56
68
74
78
150
150
150
160
270
300
340
460
460
630
670
790
840
930.
1100.
1100.
1400.
1500.
1800.
1900.
2100.
3100.
3100.
3600.
3900.
4600.
4900.
5400.
8200.
8200.
8800.
9600.
12000.
12000.
14000.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
3.0
4.3
5.5
7.1
2.1
2.2
2.6
2.8
4.5
5.1
5.8
2.1
2.2
2.8
3.1
4.4
5.5
6.3
2.1
2.2
2.7
3.0
4.2
5.2
5.9
2.1
2.2
2.7
2.9
4.0
5.0
5.8
2.1
2.2
2.6
2.8
3.8
4.7
5.4
-------
o-Xylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
29.
27.
Air
(SCFM
ft-2)
73.
73.
77.
84.
100.
110.
110.
73.
73.
76.
83.
100.
110.
110.
73.
73.
76.
83.
99.
110.
110.
73.
73.
75.
81.
98.
110.
110.
73.
73.
73.
80.
97.
100.
110.
73.
73.
73.
79.
95.
100.
100.
Air:
Water
Ratio
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.014
0.014
0.014
0.013
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
6.0
24.2
24.2
24.2
24.2
24.2
24.2
25.6
49.5
49.5
49.5
49.5
49.5
50.4
54.1
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.7
3.3
8.9
10.
17.
23.
30.
1.7
3.3
8.9
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3.3
9.1
11.
18.
23.
29.
1.7
3.3
9.1
11.
18.
Air
Flow
(SCFM)
19000
19000
19000
21000
26000
28000
29000
31000
31000
32000
35000
42000.
45000
47000
44000
44000
45000
50000
60000
64000
68000
87000
87000
88000.
96000.
120000.
120000.
130000.
360000.
360000.
360000.
390000.
470000.
500000
550000.
730000.
730000.
730000.
790000.
950000.
23. 1000000.
29. 1
100000.
Air
Pressure
(inch
H20)
2.1
2.2
2.6
2.8
3.8
4.6
5.8
2.1
2.2
2.6
2.8
3.8
4.6
5.8
2.1
2.2
2.6
2.8
3.7
4.6
5.7
2.1
2.2
2.6
2.8
3.7
4.6
5.5
2.1
2.2
2.6
2.8
3.7
4.5
5.2
2.1
2.2
2.6
2.8
3.7
4.4
4.9
-------
o-Xylene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.1
3.4
4.5
5.4
6.5
4.7
5.2
7.1
7.8
9.9
12.
14.
7.4
8.4
12.
13.
17.
20.
24.
11.
13.
18.
20.
27.
33.
41.
21.
24.
36.
39.
53.
64.
80.
45.
52.
74.
82.
110.
130.
170.
Support
($K)
6.7
6.9
7.3
7.5
8.1
8.6
9.3
11.
11.
12.
13.
14.
15.
16.
16.
17.
19.
20.
22.
24.
27.
24.
25.
29.
30.
34.
38.
43.
42.
44.
51.
54.
63.
71.
81.
80.
85.
100.
110.
130.
140.
170.
Indirect
($K)
5.7
6.0
6.8
7.1
8.3
9.2
10.
10.
11.
13.
13.
16.
17.
20.
15.
17.
20.
21.
25.
29.
33.
23.
25.
31.
33.
40.
46.
55.
41.
45.
57.
61.
76.
88.
110.
82.
89.
120.
120.
160.
180.
220.
Total
($K)
14.
15.
17.
18.
21.
23.
26.
26.
27.
32.
34.
40.
44.
50.
39.
42.
50.
53.
64.
72.
84.
58.
63.
78.
83.
100.
120.
140.
100.
110.
140.
150.
190.
220.
270.
210.
230.
290.
310.
390.
460.
550.
Operating
Cost
($K Year-1)
0.20
0.22
0.27
0.30
0.38
0.44
0.52
0.62
0.65
0.78
0.83
1.1
1.2
1.4
1.3
1.4
1.7
1.8
2.3
2.7
3.1
2.7
2.9
3.6
3.8
4.8
5.6
6.6
7.2
7.6
9.3
9.9
12.
14.
17.
20.
21.
25.
27.
34.
39.
45.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.2
3.6
3.6
3.8
4.5
4.8
5.7
6.4
7.3
5.9
6.3
7.6
8.1
9.8
11.
13.
9.6
10.
13.
14.
17.
19.
23.
20.
21.
26.
28.
35.
41.
48.
45.
48.
60.
64.
80.
93.
110.
Production
Cost
($ Kgal-1)
0.93
0.97
1.13
1.18
1.38
1.55
1.76
0.41
0.44
0.52
0.54
0.65
0.73
0.83
0.19
0.20
0.24
0.26
0.31
0.36
0.42
0.11
0.12
0.15
0.16
0.20
0.23
0.27
0.08
0.08
0.10
0.11
0.14
0.16
0.19
0.06
0.06
0.08
0.08
0.10
0.12
0.14
-------
o-Xylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
110.
150.
170.
220.
270.
330.
150.
170.
240.
270.
360.
430.
530.
210.
240.
350.
380.
510.
620.
760.
410.
460.
660.
730.
980.
1200.
1500.
1600.
1800.
2600.
2800.
3800.
4600.
5700.
3300.
3700.
5200.
5700.
7700.
9300.
12000.
Support
($K)
150.
160.
200.
210.
250.
280.
330.
230.
250.
300.
320.
390.
440.
520.
320.
340.
420.
450.
550.
630.
730.
570.
610.
760.
810.
1000.
1200.
1400.
1800.
2000.
2600.
2800.
3500.
4200.
5000.
3400.
3700.
4900.
5300.
6900.
8200.
10000.
Indirect
($K)
160.
180.
230.
240.
310.
360.
430.
250.
270.
360.
380.
490.
580.
690.
350.
380.
500.
540.
690.
810.
970.
640.
700.
930.
1000.
1300.
1500.
1800.
2300.
2500.
3400.
3700.
4800.
5700.
7100.
4400.
4800.
6600.
7200.
9500.
11000.
14000.
Total
($K)
410.
440.
570.
620.
780.
920.
1100.
630.
690.
900.
970.
1200.
1500.
1700.
890.
970.
1300.
1400.
1800.
2100.
2500.
1600.
1800.
2400.
2500.
3300.
3900.
4700.
5700.
6300.
8600.
9300.
12000.
15000.
18000.
11000.
12000.
17000.
18000.
24000.
29000.
36000.
Operating
Cost
($K Year-1)
47.
49.
58.
62.
77.
89.
110.
81.
85.
100.
110.
130.
150.
180.
120.
120.
150.
160.
190.
220.
270.
250.
260.
300.
320.
400.
460.
540.
1200.
1200.
1400.
1500.
1800.
2100.
2400.
2700.
2800.
3300.
3400.
4200.
4700.
5400.
Yearly
Cost
($K Year-1)
95.
100.
130.
130.
170.
200.
230.
160.
170.
210.
220.
280.
320.
390.
220.
240.
300.
320.
400.
470.
550.
440.
470.
580.
620.
780.
920.
1100.
1800.
1900.
2400.
2600.
3300.
3800.
4500.
4000.
4300.
5200.
5600.
7000.
8100.
9600.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.11
0.13
0.05
0.05
0.06
0.07
0.09
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.12
0.04
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.04
0.06
0.06
0.07
0.09
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.10
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
p-Xylene
Henry's Coefficient = 0.12 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
p-Xylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
006
006
006
006
0.006
0,
0.
0.
0.
0.
0.
024
024
024
024
024
024
0.024
.086
.086
.086
.086
0.086
0.086
0.086
0.
0.
0.
0.
0.
0.
0.
0.
0.
.230
,230
.230
.230
.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.
2.
2.
10
10
10
2.10
2.10
2.10
2.10
* Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
2.0*
2.0*
2.3*
2.5*
3.1*
3.3*
3.5*
2.0*
2.0*
2.0*
2.0*
2.5*
3.6
4.0
2.0*
2.0*
2.5*
2.7*
3.2*
3.4*
3.5*
2.0*
2.0*
2.3*
2.5*
3.0*
3.2*
3.4*
2.0*
2.0*
2.1*
2.3*
2.8*
3.0*
3.1*
2.0*
2.0*
2.0*
2.1*
2.6*
2.8*
3.0*
50.
50.
61.
71.
100.
120.
130.
50.
50.
50.
50.
70.
130.
130.
50.'
50.
71.
81.
110.
120.
130.
50.'
50. ••
62.
71.
97.
110.
120.
50. ••
50.'
54.
62.
85.
97.
110.
50.'
50.'
50.'
55.
76.
86.
96.
-------
p-Xylene
Table 1 (continued)
DESIGN CRITERIA - March
1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430. .
5,
5,
5,
5,
5,
5.
00
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
* Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
2.0*
2.0*
2.0*
2.1*
2.5*
2.7*
2.9*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7*
2.8*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7*
2.8*
2.0*
2.0*
2.0*
2.0*
2.4*
2.6*
2.8*
2.0*
2.0*
2.0*
2.0*
2.4*
2.6*
2.7*
2.0*
2.0*
2.0*
2.0*
2.4*
2.5*
2.7*
50.
50.'
50.
53.
72.
82.
91.
50.'
50.'
50.'
51.
71.
81.
89.
50.'
50.'
50.'
51.
70.
80.
88.
50.'
50.'
50.'
50.
69.
78.
87.
50.<
50.<
50. *
50.'
67.
76.
83.
50.'
50.'
50.'
50.'
65.
74.
82.
-------
p-Xylene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
83.
91.
110.
120.
130.
73.
73.
73.
73.
90.
130.
130.
73.
73.
91.
99.
120.
120.
130.
73.
73.
84.
91.
110.
120.
120.
73.
73.
78.
84.
100.
110.
120.
73.
73.
73.
78.
95.
100.
110.
Air:
Water
Ratio
18.
18.
21.
23.
28.
30.
32.
18.
18.
18.
18.
23.
33.
36.
18.
18.
23.
25.
29.
31.
32.
18.
18.
21.
23.
27.
29.
31.
18.
18.
19.
21.
25.
27.
29.
18.
18.
18.
20.
24.
26.
27.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height
(ft)
1.7
3.1
8.0
9.4
15.
20.
26.
1.7
3.1
8.3
10.
17.
19.
24.
1.7
3.1
7.8
9.2
15.
20.
26.
1.7
3.1
7.9
9.4
15.
20.
26.
1.7
3.1
8.2
9.7
16.
21.
27.
1.7
3.1
8.3
10.
16.
21.
28.
Air
Flow
(SCFM)
41
41
46
51
63
68
72
150
150
150
150
180
260
290
460
460
570
620
730.
770.
810.
1100.
1100.
1300.
1400.
1700.
1800.
1900.
3100.
3100.
3200.
3500.
4200.
4600.
4800.
8200.
8200.
8200.
8700.
11000.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.2
2.6
2.8
3.9
4.9
6.2
2.1
2.2
2.5
2.6
3.4
5.0
5.7
2.1
2.2
2.7
2.9
4.0
4.9
6.2
2.1
2.2
2.6
2.8
3.8
4.7
5.9
2.1
2.2
2.6
2.7
3.7
4.5
5.6
2.1
2.2
2.5
2.7
3.5
4.2
5.3
-------
p-Xylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
92.
100.
110.
73.
73.
73.
75.
91.
99.
100.
73.
73.
73.
75.
91.
98.
100.
73.
73.
73.
74.
90.
97.
100.
73.
73.
73.
73.
88.
95.
100.
73.
73.
73.
73.
87.
94.
99.
Air:
Water
Ratio
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
18.
18.
18.
18.
22.
24.
26.
18.
18.
18.
18.
22.
24.
25.
18.
18.
18.
18.
22.
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
49.5
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.7
3.1
8.3
10.
16.
21.
28.
1.7
3.1
8.3
10.
17.
21.
28.
1.7
3.1
8.3
10.
17.
22.
28.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
8.3
10.
17.
22.
29.
Air
Flow
(SCFM)
19000
19000
19000.
19000.
23000.
25000.
27000
31000.
31000
31000.
31000.
38000.
41000.
43000
44000.
44000
44000
45000.
54000.
59000.
62000.
87000.
87000.
87000.
87000.
110000.
110000.
120000.
360000.
360000.
360000.
360000.
430000.
460000.
490000.
730000.
730000.
730000.
730000.
860000.
930000.
990000.
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.5
4.2
5.1
2.1
2.2
2.5
2.7
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.0
2.1
2.2
2.5
2.6
3.4
4.0
5.0
2.1
2.2
2.5
2.6
3.4
4.0
4.9
-------
p-Xylene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.0
3.3
4.3
5.2
6.2
4.7
5.2
6.9
7.5
9.8
11.
14.
7.4
8.3
11.
12.
16.
19.
23.
11.
13.
18.
20.
26.
32.
39.
21.
24.
35.
38.
51.
62.
75.
45.
51.
72.
79.
110.
130.
160.
Support
($K)
6.7
6.8
7.3
7.5
8.0
8.5
9.1
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.
19.
22.
24.
26.
24.
25.
28.
29.
34.
37.
41.
42.
44.
51.
53.
62.
69.
78.
80.
84.
100.
100.
120.
140.
160.
Indirect
($K)
5.7
5.9
6.8
7.0
8.1
9.0
10.
10.
11.
12.
13.
15.
17.
19.
15.
16.
20.
21.
25.
28.
32.
23.
25.
30.
32.
39.
45.
52.
41.
45.
56.
60.
74.
85.
100.
82.
89.
110.
120.
150.
170.
210.
Total
($K)
14.
15.
17.
18.
21.
23.
25.
26.
27.
31.
33.
39.
43.
49.
39.
42.
50.
52.
62.
71.
82.
58.
63.
77.
81.
99.
110.
130.
100.
110.
140.
150.
190.
220.
250.
210.
220.
280.
300.
380.
440.
520.
Operating
Cost
($K Year-1)
0.20
0.21
0.27
0.29
0.36
0.42
0.49
0.62
0.65
0.76
0.81
1.00
1.2
1.4
1.3
1.4
1.7
1.8
2.2
2.5
3.0
2.7
2.9
3.5
3.7
4.6
5.3
6.3
7.2
7.6
9.0
9.6
12.
14.
16.
20.
21.
25.
26.
32.
37.
43.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8
4.4
4.7
5.6
6.2
7.1
5.9
6.3
7.5
7.9
9.5
11.
13.
9.6
10.
13.
13.
16.
19.
22.
19.
21.
26.
27.
34.
39.
46.
44.
47.
58.
62.
77.
89.
100.
Production
Cost
($ Kgal-1)
0.92
0.96
1.11
1.16
1.35
1.50
1.70
0.41
0.43
0.51
0.53
0.64
0.71
0.81
0.19
0.20
0.24
0.25
0.30
0.34
0.40
0.11
0.12
0.15
0.16
0.19
0.22
0.26
0.08
0.08
0.10
0.11
0.13
0.15
0.18
0.06
0.06
0.08
0.08
0.10
0.12
0.14
-------
p-Xylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
93.
100.
150.
160.
220.
260.
320.
150.
170.
230.
260.
350.
410.
510.
210.
240.
330.
370.
490.
590.
720.
410.
460.
640.
700.
940.
1100.
1400.
1600.
1800.
2500.
2700.
3700.
4400.
5400.
3200.
3600.
5000.
5500.
7400.
8800.
11000.
Support
($K)
150.
160.
190.
200.
240.
270.
320.
230.
250.
300.
310.
380.
430.
500.
320.
340.
410.
440.
530.
600.
700.
570.
600.
740.
790.
970.
1100.
1300.
1800.
2000.
2500.
2700.
3400.
4000.
4700.
3400.
3700.
4800.
5200.
6600.
7800.
9300.
Indirect
($K)
160.
170.
220.
240.
300.
350.
410.
250.
270.
350.
370.
470.
550.
660.
350.
380.
490.
530.
670.
780.
930.
640.
690.
900.
980.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4600.
5500.
6600.
4300.
4800.
6400.
7000.
9200.
11000.
13000.
Total
($K)
410.
440.
560.
600.
760.
880.
1000.
630.
680.
380.
950.
1200.
1400.
1700.
880.
960.
1200.
1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3700.
4400.
5700.
6200.
8300.
9000.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
23000.
27000.
33000.
Operating
Cost
($K Year-1)
47.
49.
57.
60.
73.
84.
98.
81.
84.
98.
100.
130.
140.
170.
120.
120.
140.
150.
180.
210.
250.
240.
260.
300.
310.
380.
440.
510.
1200.
1200.
1400.
1400.
1700.
2000.
2300.
2700.
2800.
3200.
3300.
4000.
4500.
5200.
Yearly
Cost
($K Year-1)
94.
100.
120.
130..
160.
190.
220.
150.
160.
200.
210.
270.
310.
360.
220.
240.
290.
310.
380.
440.
520.
430.
460.
570.
600.
750.
870.
1000.
1800.
1900.
2400.
2500.
3100. .
3600.
4300.
4000.
4200.
5100.
5400.
6700.
7700.
9100.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.11
0.05
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.05
0.06
0.06
0.08
0.09
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.05
0.07
0.08
0.09
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Styrene
Henry's Coefficient = 0.05 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Styrene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.
2.
2.
2.
2.
2.
10
10
10
10
10
10
2.10
* Design parameter held to limiting value.
Removal
Efficiency
(*)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99. "
Cost Optinr
Stripping
Fractor
1.1*
1.3*
1.7*
2.1
2.5
2.6
2.8
0.9*
1.5*
2.1
2.6
3.0
3.2
3.5
1.2*
1.4*
1.9
2.3
2.7
2.9
3.1
1.1*
1.3*
1.8
2.2
2.5
2.7
2.9
1.1*
1.2*
1.7
2.0
2.4
2.5
2.7
1.0*
.1.2*
1.6
1.9
2.3
2.4
2.6
80.
110.
180.
160.
140.
140.
130.
58.
140.
150.
140.
140.
140.
140.
96.
120.
150.
140.
140.
130.
120.
85.
110.
150.
130.
120.
120.
120.
74.
97.
120.
110.
110.
100.
100.
66.
87.
100.
98.
94.
92.
90.
-------
Styrene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
5.00
,00
.00
.00
.00
.00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
Design parameter held to limiting value,
Removal
Efficiency
(X)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
Cost Optinr
Stripping
Fractor
1.0*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
62.
82.
120.
110.
100.
100.
100.
62.
81.
110.
100.
99.
97.
95.
61.
80.
110.
99.
96.
95.
93.
60.
79.
100.
95.
92.
90.
89.
59.
77.
93.
88.
84.
83.
82.
58.
76.
86.
81.
78.
77.
76.
-------
Styrene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
25.
22.
21.
19.
30.
30.
25.
21.
19.
18.
17.
30.
30.
27.
23.
20.
19.
18.
30.
30.
28.
23.
21.
20.
18.
30.
30.
27.
23.
20.
20.
18.
30.
30.
26.
23.
20.
19.
18.
Air
(SCFM
ft-2)
98.
120.
150.
160.
160.
160.
160.
80.
140.
160.
160.
170.
170.
170.
110.
130.
150.
160.
160.
160.
160.
100.
120.
150.
150.
150.
150.
160.
94.
110.
130.
140.
140.
140.
150.
87.
100.
120.
130.
130.
140.
140.
Air:
Water
Ratio
24.
29.
38.
46.
54.
57.
62.
20.
34.
47.
57.
67.
71.
77.
27.
31.
42.
51.
60.
63.
68.
25.
29.
39.
48.
56.
58.
63.
23.
27.
37.
45.
52.
55.
59.
22.
26.
35.
43.
49.
52.
56.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.012
0.011
0.010
0.0098
0.012
0.013
0.012
0.011
0.0097
0.0094
0.0090
0.013
0.013
0.012
0.011
0.010
0.0098
0.0092
0.013
0.013
0.013
0.011
0.010
0.0099
0.0095
0.013
0.013
0.012
0.011
0.010
0.0098
0.0094
0.012
0.013
0.012
0.011
0.0099
0.0097
0.0093
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter
(ft)
0.8
0.8
0.8
0.9
1.0
1.0
1.0
1.6
1.6
1.8
1.9
2.0
2.1
2.1
2.8
2.8
3.0
3.2
3.4
3.5
3.7
4.4
4.4
4.5
5.0
5.3
5.4
5.6
7.3
7.3
7.7
8.3
8.8
9.0
9.3
11.9
11.9
12.7
13.7
14.5
14.8
15.2
Packing
Height
(ft)
5.6
7.3
13.
18.
23.
26.
31.
6.3
6.8
11.
15.
20.
23.
28.
5.3
7.0
12.
16.
22.
24.
29.
5.5
7.3
13.
17.
22.
25.
31.
5.7
7.6
13.
18.
23.
26.
32.
6.0
7.9
13.
18.
24.
27.
33.
Air
Flow
(SCFM)
55.
65.
84.
100.
120.
130.
140.
160.
270.
380.
460.
540.
570.
620.
680.
790.
1000.
1300.
1500.
1600.
1700.
1500.
1800.
2400.
2900.
3400.
3500.
3800.
3900.
4600.
6100.
7500.
8700.
9200.
9900.
9700.
11000.
16000.
19000.
22000.
23000.
25000.
Air
Pressure
(inch
H20)
2.6
3.0
4.9
5.4
6.0
6.3
7.0
2.5
3.2
4.1
4.7
5.4
5.8
6.6
2.6
3.1
4.3
4.8
5.6
5.9
6.3
2.6
3.0
4.3
4.7
5.4
5.7
6.4
2.5
2.9
4.0
4.4
5.0
5.3
5.9
2.5
2.9
3.7
4.2
4.7
5.0
5.6
-------
Styrene
Table 2 (continued)
SYSTEM SIZE - March 1989
'Design
Number
42
44
4E
46
47
48
49
50
51
52
53
5^
55
5f
5:
51-
59
60
6'
6
6
64
65
66
67
63
69
70
71
72
73
7-
71
7(
T
7.
7i
B<
8
81
82
84
Loadings
Liquid
(GPM
ft- 2)
30.
30.
28.
24.
22.
21.
20.
30.
30.
28.
24.
22.
21.
20.
30.
3J!
28.
24.
21.
21.
19.
~o
^ •.* .
30.
27.
23.
21.
20.
19.
30.
30.
26.
23.
20.
20.
18.
30.
30.
26.
22.
20.
19.
18.
Air
(SCFM
ft-2)
84.
100.
130.
130.
140.
140.
140.
84.
99.
120.
130.
130.
130.
140.
84.
98.
120.
130.
130.
130.
140.
83.
98.
120.
130.
130.
130.
130.
81.
96.
120.
120.
130.
130.
130.
81.
95.
110.
120.
120.
120.
130.
Air:
Water
Ratio
21.
25.
33.
40.
46.
49.
52.
21.
25.
33.
40.
46.
49.
52.
21.
24.
33.
40.
46.
49.
52.
21.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
Mass
Trans.
Coef.
(sec-1)
0.012
0.013
0.013
0.011
0.011
0.010
0.0099
0.012
0.013
0.012
0.011
0.010
0.010
0.0098
0.012
0.013
0.012
0.011
0.010
0.010
0.0097
0.012
0.013
0.012
0.011
0.010
0.0099
0.0096
0.012
0.013
0.012
0.011
0.0099
0.0097
0.0093
0.012
0.013
0.012
0.011
0.0097
0.0095
0.0091
Number
of
Columns
1.3
1.3
1.3
1.5
1.7
1.8
1.9
2.1
2.1
2.2
2.6
2.9
3.0
3.2
3.0
3.0
3.3
3.8
4.2
4.4
4.6
5.9
5.9
6.5
7.5
8.4
8.7
9.2
24.2
24.2
27.5
31.9
35.7
37.1
39.2
49.5
49.5
58.0
67.2
75.2
78.2
82.8
Col umn
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
6.1
8.1
14.
19.
25.
29.
35.
6.2
8.1
14.
19.
25.
28.
35.
6.2
8.2
14.
19.
25.
28.
35.
6.2
8.2
14.
19.
25.
28.
34.
6.3
8.3
14.
19.
25.
28.
Air
Flow
(SCFM)
21000
25000
34000
41000
47000.
50000.
53000.
35000
41000.
55000.
67000.
77000.
81000.
87000.
50000
59000.
80000.
97000,
110000.
120000.
130000.
97000.
120000.
160000.
190000.
220000.
230000.
250000.
390000.
470000.
640000.
780000.
900000.
950000.
34. 1000000.
6.3
8.4
800000.
940000.
14. 1300000.
19. 1600000.
25. 1900000.
28. 1900000.
34. 2100000.
Air
Pressure
(inch
H20)
2.5
2.8
4.0
4.5
5.2
5.6
6.3
2.5
2.8
3.9
4.4
5.1
5.4
6.1
2.5
2.8
3.9
4.3
5.0
5.3
6.0
2.5
2.8
3.8
4.2
4.8
5.1
5.7
2.5
2.8
3.6
4.0
4.6
4.9
5.4
2.5
2.8
3.5
3.9
4.4
4.6
5.2
-------
Styrene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.7
3.1
4.2
5.4
6.9
7.7
9.2
6.3
7.0
9.2
11.
14.
16.
18.
9.9
11.
15.
20.
25.
28.
34.
16.
18.
25.
33.
43.
48.
58.
30.
35.
50.
66.
87.
97.
120.
64.
73.
110.
140.
190.
210.
250.
Support
($K)
7.1
7.3
8.0
8.7
9.6
10.
11.
12.
12.
14.
15.
16.
17.
19.
18.
19.
21.
24.
27.
29.
33.
27.
28.
33.
38.
45.
48.
54.
48.
51.
61.
72.
86.
94.
110.
94.
100.
120.
150.
180.
200.
230.
Indirect
($K)
6.4
6.8
8.0
9.2
11.
12.
13.
12.
13.
15.
17.
20.
21.
24.
18.
20.
24.
29.
34.
37.
43.
28.
30.
38.
47.
57.
63.
73.
51.
56.
73.
91.
110.
130.
150.
100.
110.
150.
190.
240.
270.
320.
Total
($K)
16.
17.
20.
23.
27.
29.
33.
30.
32.
38.
43.
51.
54.
62.
46.
49.
60.
72.
87.
95.
110.
71.
77.
96.
120.
140.
160.
190.
130.
140.
180.
230.
290.
320.
370.
260.
290.
380.
480.
610.
680.
800.
Operating
Cost
($K Year-1)
0.25
0.28
0.38
0.47
0.58
0.63
0.74
0.74
0.85
1.1
1.3
1.5
1.6
1.9
1.6
1.8
2.3
2.8
3.4
3.7
4.2
3.3
3.7
4.9
5.9
7.2
7.9
9.1
8.7
9.7
13.
-15.
18.
20.
23.
24.
26.
34.
41.
49.
54.
62.
Yearly
Cost
($K Year-1)
2.2
2.3
2.8
3.2
3.8
4.1
4.6
4.2
4.6
5.5
6.3
7.4
8.0
9.1
7.0
7.5
9.4
11.
14.
15.
17.
12.
13.
16.
20.
24.
26.
31.
24.
26.
34.
42.
52.
57.
67.
55.
60.
79.
97.
120.
130.
160.
Production
Cost
($ Kgal-1)
1.06
1.12
1.35
1.57
1.85
1.99
2.26
0.48
0.52
0.62
0.72
0.85
0.91
1.04
0.22
0.24
0.30
0.36
0.43
0.47
0.54
0.14
0.15
0.19
0.23
0.29
0.32
0.37
0.09
0.10
0.13
0.16
0.20
0.22
0.26
0.07
0.08
0.10
0.13
0.16
0.17
0.20
-------
Styrene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
130.
150.
220.
290.
390.
440.
540.
210.
240.
350.
470.
630.
710.
870.
300.
340.
500.
670.
900.
1000.
1200.
570.
660.
950.
1300.
1700.
1900.
2400.
2300.
2600.
3800.
5100.
6800.
7700.
9400.
4500.
5200.
7600.
10000.
14000.
16000.
19000.
Support
($K)
180.
190.
240.
300.
370.
410.
480.
280.
300.
380.
470.
590.
650.
770.
390.
420.
530.
660.
830.
920.
1100.
690.
760.
980.
1200.
1600.
1700.
2100.
2300.
2600.
3500.
4500.
5900.
6500.
7900.
4400.
4900.
6800.
8900.
12000.
13000.
16000.
Indirect
($K)
200.
230.
300.
390.
500.
550.
670.
320.
350.
480.
620.
800.
890.
1100.
450.
500.
670.
870.
1100.
1300.
1500.
830.
930.
1300.
1700.
2200.
2400.
2900.
3000.
3400.
4800.
6300.
8300.
9300.
11000.
5800.
6600.
9500.
13000.
17000.
19000.
23000.
Total
($K)
520.
570.
760.
970.
1300.
1400.
1700.
810.
900.
1200.
1600.
2000.
2200.
2700.
1100.
1300.
1700.
2200.
2900.
3200.
3800.
2100.
2300.
3200.
4200.
5400.
6100.
7300.
7600.
8500.
12000.
16000.
21000.
24000.
29000.
15000.
17000.
24000.
32000.
42000.
47000.
58000.
Operating
Cost
($K Year-1)
55.
61.
80.
96.
120.
130.
150.
95.
100.
140.
160.
200.
220.
250.
140.
150.
200.
240.
290.
310.
360.
290.
320.
410.
490.
590.
640.
730.
1300.
1500.
1900.
2200.
2600.
2800.
3200.
3100.
3400.
4200.
4900.
5800.
6300.
7100.
Yearly
Cost
($K Year-1)
120.
130.
170.
210.
260.
290.
340.
190.
210.
280.
350.
440.
480.
570.
270.
300.
400.
500.
630.
690.
810.
530.
590.
790.
980.
1200.
1400.
1600.
2200.
2500.
3300.
4100.
5100.
5600.
6600.
4800.
5300.
7000.
8700.
11000.
12000.
14000.
Production
Cost
($ Kgal-1)
0.06
0.07
0.09
0.12
0.14
0.16
0.19
0.06
0.07
0.09
0.11
0.14
0.15
0.18
0.06
0.06
0.08
0.10
0.13
0.15
0.17
0.05
0.06
0.08
0.10
0.12
0.14
0.16
0.05
0.06
0.07
0.09
0.12
0.13
0.15
0.05
0.05
0.07
0.09
0.11
0.12
0.14
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
trans-1,2-Di chloroethylene
Henry's Coefficient = 0.12 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
trans-1,2-Di chloroethylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
,006
.006
.006
.006
0.006
0.006
0.
0.
0.
0.
0.
0.
0.
.024
.024
.024
0.024
0.024
0.024
0.086
0.086
.086
.086
.086
0.
0.
0.
0.086
0.230
0.230
.230
.230
.230
0.
0.
0.
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.
2.
2,
2.
2.
10
10
10
10
10
2.10
Removal
Efficiency
(%)
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optim
Stripping
Fractor
2.0*
2.5*
2.8*
3.0*
3.3*
3.6*
2.0*
2.0*
2.2*
2.4*
3.5*
4.1
2.0*
2.7*
3.0*
3.1*
3.3*
3.6
2.0*
2.5*
2.8*
2.9*
3.1*
3.4*
2.0*
2.3*
2.6*
2.7*
2.9*
3.2*
2.0*
2.2*
2.4*
2.5*
2.7*
3.0*
50.*
73.
87.
97.
110.
140.
50.*
50.
59.
66.
130.
130.
50.*
84.
96.
110.
120.
130.
50.*
74.
85.
94.
110.
120.
50.*
65.
75.
82.
94.
110.
50.*
58.
66.
73.
83.
98.
* Design parameter held to limiting value.
-------
trans-1,2-Dichloroethylene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
5,
5.
5,
5.
5,
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optimi
Stripping
Fractor
2.0*
2.1*
2.3*
2.5*
2.7*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.0*
2.2*
2.4*
2.6*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8
50.*
55.
63.
70.
80.
93.
50.*
53.
62.
68.
78.
91.
50.*
53.
61.
67.
77.
91.
50.*
52.
60.
66.
76.
89.
50.*
50.
58.
64.
73.
86.
50.*
50.*
57.
63.
72.
81.
* Design parameter held to limiting value.
-------
trans-1,2-Di chloroethyl ene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
93.
100.
110.
120.
130.
73.
74.
82.
88.
130.
130.
73.
100.
110.
120.
120.
130.
73.
94.
100.
110.
120.
130.
73.
86.
94.
100.
110.
120.
73.
80.
88.
93.
100.
110.
Air:
Water
Ratio
18.
23.
26.
27.
30.
33.
18.
18.
20.
22.
32.
37.
18.
25.
27.
29.
30.
33.
18.
23.
25.
27.
29.
31.
18.
21.
23.
25.
27.
29.
18.
20.
22.
23.
25.
27.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.017
0.016
0.016
0.016
0.016
0.016
0.015
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height
(ft)
1.8
9.3
11.
13.
17.
27.
1.8
10.
12.
14.
17.
25.
1.8
9.0
11.
13.
17.
26.
1.8
9.3
11.
13.
17.
27.
1.8
9.5
12.
14.
18.
28.
1.8
9.8
12.
14.
18.
29.
Air
Flow
(SCFM)
41
52
57.
61.
67.
74.
150.
150.
160.
180.
260.
300.
460.
630.
680.
720.
760.
830.
1100.
1400.
1500.
1600.
1700.
1900.
3100.
3600.
3900.
4100.
4500.
4900.
,8200.
8900.
9700.
10000.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.8
3.2
3.6
4.4
6.5
2.1
2.6
2.9
3.2
4.6
5.8
2.1
2.9
3.3
3.7
4.5
6.4
2.1
2.8
3.2
3.5
4.3
6.1
2.1
2.8
3.1
3.4
4.1
5.7
2.1
2.7
3.0
3.3
3.9
5.4
-------
trans-l,2-Dichloroethylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
59
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
78.
85.
90.
98.
110.
73.
77.
84.
89.
97.
110.
73.
76.
83.
89.
96.
110.
73.
76.
83.
88.
95.
100.
73.
74.
81.
86.
93.
100.
73.
73.
80.
85.
92.
100.
Air:
Water
Ratio
18.
19.
21.
23.
24.
27.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
18.
20.
21.
23.
26.
18.
18.
20.
21.
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
50.3
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
1.8
9.9
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
15.
19.
29.
1.8
10.
13.
15.
19.
Air
Flow
(SCFM)
19000.
20000.
22000.
23000.
25000.
27000.
31000.
32000.
35000.
37000.
40000.
44000.
44000.
46000.
50000.
53000.
58000.
63000.
87000.
89000.
97000.
100000.
110000.
120000.
360000.
360000.
390000.
420000.
450000.
500000.
730000.
730000.
800000.
840000.
920000.
29. 1000000.
Air
Pressure
(inch
H20)
2.1
2.7
3.0
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.6
2.9
3.2
3.7
5.1
2.1
2.6
2.9
3.1
3.7
5.0
-------
trans-1,2-Dichloroethyl ene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.0
3.3
3.6
4.0
4.7
6.3
4.8
7.5
8.3
9.1
10.
14.
7.5
12.
14.
15.
18.
24.
11.
20.
22.
24.
29.
39.
21.
38.
42.
47.
56.
77.
45.
79.
89.
98.
120.
160.
Support
($K)
6.7
7.4
7.7
7.9
8.3
9.2
11.
12.
13.
13.
14.
16.
16.
19.
20.
21.
23.
26.
24.
29.
31.
32.
35.
42.
42.
53.
56.
59.
65.
79.
81.
100.
110.
120.
130.
160.
Indirect
($K)
5.7
7.0
7.4
7.8
8.5
10.
10.
13.
14.
15.
16.
20.
16.
21.
22.
23.
26.
33.
23.
32.
35.
37.
42.
53.
42.
59.
65.
69.
79.
100.
83.
120.
130.
140.
160.
210.
Total
($K)
14.
18.
19.
20.
21.
26.
26.
33.
35.
37.
41.
49.
39.
52.
56.
59.
66.
83.
59.
81.
87.
93.
110.
130.
100.
150.
160.
180.
200.
260.
210.
300.
330.
360.
410.
530.
Operating
Cost
($K Year-1)
0.20
0.29
0.31
0.34
0.39
0.51
0.62
0.81
0.88
0.94
1.1
1.4
1.3
1.8
1.9
2.1
2.4
3.0
2.7
3.7
4.0
4.3
5.0
6.4
7.3
9.6
10.
11.
13.
16.
20.
26.
.. 28.
30.
34.
44.
Yearly
Cost
($K Year-1)
1.9
2.4
2.5
2.6
2.9
3.5
3.6
4.7
5.0
5.3
5.9
7.2
5.9
7.9
8.5
9.0
10.
13.
9.7
13.
14.
15.
17.
22.
20.
27.
30.
32.
36.
47.
45.
62.
67.
72.
82.
110.
Production
Cost
($ Kgal-1)
0.93
1.16
1.23
1.29
1.42
1.72
0.41
0.53
0.57
0.60
0.67
0.82
0.19
0.25
0.27
0.29
0.32
0.41
0.11
0.16
0.17
0.18
0.21
0.26
0.08
0.11
0.12
0.12
0.14
0.18
0.06
0.08
0.09
0.09
0.11
0.14
-------
trans-1,2-Dichloroethylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
94.
160.
180.
200.
240.
320.
150.
260.
290.
320.
380.
520.
220.
370.
410.
450.
540.
730.
410.
700.
780.
860.
1000.
1400.
1600.
2700.
3100.
3400.
4000.
5500.
3300.
5500.
6100.
6800.
8000.
11000.
Support
($K)
150.
200.
220.
230.
260.
320.
230.
310.
340.
360.
400.
510.
320.
440.
470.
500.
560.
710.
570.
790.
850.
910.
1000.
1300.
1800.
2700.
3000.
3200.
3700.
4800.
3400.
5200.
5700.
6200.
7200.
9500.
Indirect
($K)
160.
240.
260.
280.
320.
420.
250.
370.
410.
440.
510.
670.
350.
520.
580.
620.
720.
950.
640.
970.
1100.
1200.
1400.
1800.
2300.
3600.
3900.
4300.
5000.
6700.
4400.
7000.
7700.
8500.
9900.
13000.
Total
($K)
410.
600.
650.
710.
820.
1100.
640.
940.
1000.
1100.
1300.
1700.
890.
1300.
1500.
1600.
1800.
2400.
1600.
2500.
2700.
2900.
3400.
4500.
5700.
9000.
10000.
11000.
13000.
17000.
11000.
18000.
20000.
21000.
25000.
34000.
Operating
Cost
($K Year-1)
47.
60.
65.
69.
79.
100.
81.
100.
110.
120.
140.
170.
120.
150.
160.
170.
200.
250.
250.
310.
340.
360.
410.
520.
1200.
1400.
1600.
1700.
1900.
2300.
2700.
3300.
3600.
3800.
4200.
5300.
Yearly
Cost
($K Year-1)
95.
130.
140.
150.
170.
230.
160.
210.
230.
250.
290.
370.
220.
310.
330.
360.
410.
530.
440.
600.
650.
710.
810.
1000.
1800.
2500.
2700.
2900.
3400.
4300.
4000.
5400.
5900.
6300.
7200.
9200.
Production
Cost
($ Kgal-1)
0.05
0.07
0.08
0.08
0.10
0.12
0.05
0.07
0.07
0.08
0.09
0.12
0.05
0.06
0.07
0.08
0.09
0.11
0.04
0.06
0.07
0.07
0.08
0.11
0.04
0.06
0.06
0.07
0.08
0.10
0.04
0.05
0.06
0.06
0.07
0.09
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Tetrachloroethylene
Henry's Coefficient = 0.22 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Tetrachloroethylene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
Cost Optimized Parameters
Stripping
Fractor
3.7*
4.2*
4.6*
5.1*
5.3*
5.6*
3.7*
3.7*
3.7*
4.0*
4.2*
4.5*
3.7*
4.4*
4.8*
5.1*
5.3*
5.5*
3.7*
4.1*
4.5*
4.8*
5.0*
5.2*
3.7*
3.8*
4.2*
4.4*
4.6*
4.8*
3.7*
3.7*
3.9*
4.2*
4.3*
4.5*
Air Gradient
(N m-2 m-1)
50.*
62.
73.
85.
91.
100.
50.*
50.*
50.*
58.
63.
70.
50.*
68.
78.
86.
91.
97.
50.*
61.
70.
78.
82.
89.
50.*
53.
61.
69.
72.
78.
50.*
50.*
54.
61.
65.
71.
* Design parameter held to limiting value.
-------
Tetrachloroethyl ene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
Average
Flow
(MGD)
5.00
5.00
5.00
5.00
5.00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal Cos1
Efficiency Str
(%) Fr,
; Optimized Parameters
ipping Air Gradient
actor (N m-2 m-1)
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 51.
98. 4.0* 58.
99. 4.2* 62.
99.8 4.4* 67.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 51.
98. 4.0* 57.
99. 4.1* 61.
99.8 4.3* 66.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.
98. 3.9* 56.
99. 4.1* 60.
99.8 4.3* 65.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.9* 55.
99. 4.1* 59.
99.8 4.3* 64.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.8* 53.
99. 4.0* 57.
99.8 4.2* 62.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.8* 52.
99. 3.9* 55.
99.8 4.1* 60.
* Design parameter held to limiting value.
-------
Tetrachloroethylene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
84.
93.
100.
110.
110.
73.
73.
73.
81.
85.
91.
73.
89.
97.
100.
110.
110.
73.
83.
90.
97.
100.
100.
73.
76.
83.
89.
92.
97.
73.
73.
77.
84.
87.
91.
Air:
Water
Ratio
18.
21.
23.
25.
26.
28.
18.
18.
18.
20.
21.
23.
18.
22.
24.
26.
26.
27.
18.
21.
23.
24.
25.
26.
18.
19.
21.
22.
23.
24.
18.
18.
19.
21.
22.
23.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height
(ft)
3.7
13.
17.
23.
27.
36.
3.7
14.
18.
24.
28.
38.
3.7
13.
17.
23.
27.
36.
3.7
14.
18.
23.
27.
36.
3.7
14.
18.
23.
28.
37.
3.7
14.
18.
24.
28.
38.
Air
Flow
(SCFM)
41
47
52
56
59
62
150
150
150
160.
170
180.
460
560
600
640.
660
690.
1100.
1200.
1400.
1500.
1500.
1600.
3100.
3200.
3500.
3700.
3900.
4000.
8200.
8200.
8600.
9300.
9600.
10000.
Air
Pressure
(inch
H20)
2.2
3.0
3.6
4.4
5.0
6.4
2.2
2.9
3.1
3.7
4.2
5.3
2.2
3.1
3.7
4.4
5.0
6.3
2.2
3.0
3.5
4.2
4.7
6.0
2.2
2.9
3.4
4.0
4.5
5.6
2.2
2.9
3.2
3.8
4.2
5.3
-------
Tetrachloroethylene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
75.
81.
84.
88.
73.
73.
74.
80.
83.
87.
73.
73.
74.
79.
82.
87.
73.
73.
73.
79.
81.
86.
73.
73.
73.
77.
80.
84.
73.
73.
73.
76.
79.
83.
Air:
Water
Ratio
18.
18.
19.
20.
21.
22.
18.
18.
18.
20.
21.
22.
18.
18.
18.
20.
21.
22.
18.
18.
18.
20.
20.
21.
18.
18.
18.
19.
20.
21.
18.
18.
18.
19.
20.
21.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
29.
39.
3.7
14.
18.
24.
29.
39.
3.7
14.
18.
24.
29.
39.
Air
Flow
(SCFM)
19000.
19000.
19000.
21000.
21000.
22000.
31000.
31000.
31000.
33000.
35000.
36000.
44000.
44000.
44000.
48000.
50000.
52000.
87000.
87000.
87000.
93000.
96000.
100000.
360000.
360000.
360000.
370000.
390000.
410000.
730000.
730000.
730000.
750000.
780000.
820000.
Air
Pressure
(inch
H20)
2.2
2.9
3.2
3.7
4.1
5.1
2.2
2.9
3.2
3.7
4.1
5.1
2.2
2.9
3.1
3.7
4.1
5.1
2.2
2.9
3.1
3.7
4.1
5.0
2.2
2.9
3.1
3.6
4.0
4.9
2.2
2.9
3.1
3.6
4.0
4.9
-------
Tetrachloroethylene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.3
3.9
4.6
5.5
6.2
7.8
5.4
8.7
10.
12.
14.
17.
8.7
15.
17.
21.
23.
29.
14.
24.
28.
34.
39.
49.
26.
46.
55.
66.
75.
95.
54.
95.
110.
140.
150.
190.
Support
($K)
6.9
7.8
8.2
8.7
9.1
10.
11.
13.
14.
15.
16.
18.
17.
21.
22.
24.
26.
29.
25.
32.
35.
38.
41.
48.
45.
58.
64.
72.
77.
91.
86.
120.
130.
140.
160.
190.
Indirect
($K)
6.0
7.7
8.4
9.3
10.
12.
11.
14.
16.
18.
19.
23.
17.
23.
26.
29.
32.
39.
26.
37.
41.
48.
52.
63.
46.
68.
78.
90.
100.
120.
92.
140.
160.
180.
200.
250.
Total
($K)
15.
19.
21.
24.
25.
29.
27.
36.
40.
45.
49.
57.
43.
59.
66.
74.
81.
97.
64.
92.
100.
120.
130.
160.
120.
170.
200.
230.
250.
310.
230.
350.
400.
460.
510.
630.
Operating
Cost
($K Year-1)
0.22
0.32
0.36
0.42
0.47
0.57
0.66
0.89
0.99
1.1
1.2
1.5
1.4
2.0
2.2
2.5
2.8
3.4
3.0
4.1
4.6
5.3
5.8
7.0
7.8
10.
12.
14.
15.
18.
22.
28.
32.
36.
40.
48.
Yearly
Cost
($K Year-1)
2.0
2.6
2.8
3.2
3.4
4.0
3.9
5.1
5.7
6.4
7.0
8.2
6.4
8.8
9.9
11.
12.
15.
11.
15.
17.
19.
21.
26.
21.
31.
35.
40.
44.
54.
49.
69.
79.
91.
100.
120.
Production
Cost
($ Kgal-1)
0.98
1.27
1.39
1.56
1.68
1.96
0.44
0.58
0.65
0.73
0.79
0.94
0.20
0.28
0.32
0.36
0.39
0.47
0.13
0.18
0.20
0.23
0.25
0.31
0.08
0.12
0.14
0.16
0.17
0.21
0.06
0.09
0.10
0.12
0.13
0.16
-------
Tetrachloroethylene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
110.
190.
230.
270.
310.
390.
180.
310.
360.
440.
490.
630.
250.
430.
520.
620.
700.
890.
480.
830.
990.
1200.
1300.
1700.
1900.
3200.
3800.
4600.
5200.
6600.
3800.
6400.
7700.
9200.
10000.
13000.
Support
($K)
160.
220.
250.
290.
310.
370.
250.
350.
390.
450.
490.
590.
350.
490.
550.
630.
690.
830.
620.
890.
1C\)0.
1200.
1300.
1500.
2000.
3100.
3600.
4200.
4600.
5700.
3800.
5900.
6900.
8100.
9100.
11000.
Indirect
($K)
180.
270.
310.
370.
410.
500.
280.
430.
500.
580.
650.
790.
390.
600.
700.
820.
910.
1100.
720.
1100.
1300.
1500.
1700.
2100.
2600.
4100.
4800.
5800.
6500.
8000.
5000.
8100.
9500.
11000.
13000.
16000.
Total
($K)
450.
690.
790.
930.
1000.
1300.
710.
1100.
1300.
1500.
1600.
2000.
990.
1500.
1800.
2100.
2300.
2800.
1800.
2800.
3300.
3900.
4300.
5400.
6500.
10000.
12000.
15000.
16000.
20000.
13000.
20000.
24000.
29000.
32000.
40000.
Operating
Cost
($K Year-1)
50.
65.
73.
83.
91.
110.
86.
110.
120.
140.
160.
190.
130.
170.
180.
210.
230.
270.
260.
340.
380.
430.
470.
560.
1200.
1600.
1700.
1900.
2100.
2500.
2900.
3600.
3900.
4400.
4800.
5600.
Yearly
Cost
($K Year-1)
100.
150.
170.
190.
210.
260.
170.
240.
270.
310.
350.
420.
240.
340.
390.
450.
500.
610.
480.
670.
760.
890.
980.
1200.
2000.
2800.
3200.
3700.
4000.
4900.
4300.
6000.
6800.
7800.
8600.
10000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.09
0.10
0.12
0.14
0.05
0.07
0.08
0.10
0.11
0.13
0.05
0.07
0.08
0.10
0.10
0.13
0.05
0.07
0.08
0.09
0.10
0.12
0.05
0.06
0.07
0.08
0.09
0.11
0.04
0.06
0.07
0.08
0.09
0.11
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Toluene
Henry's Coefficient = 0.13 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Toluene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 .
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
.024
.024
.024
0.
0.
0.
0.024
0.086
0.086
0.086
0.086
0.086
0.086
230
230
230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.
2.
2.
2.
2.
10
10
10
10
10
2.10
Removal
Efficiency
(%)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optinr
Stripping
Fractor
2.2*
2.2*
2.2*
2.7*
3.5*
3.7*
2.2*
2.2*
2.2*
2.2*
3.8
4.0
2.2*
2.2*
2.2*
2.9*
3.6*
3.7*
2.2*
2.2*
2.2*
2.7*
3.4*
3.5*
2.2*
2.2*
2.2*
2.5*
3.2*
3.3*
2.2*
2.2*
2.2*
2.3*
3.0*
3.1*
50."
50.'
50/
72.
120.
120.
50. ••
50. •
50. •
50. '•
130.
120.
50.1
50.'
50.
81.
120.
120.
50.'
50.'
50.'
72.
110.
110.
50. <
50.<
50."
62.
94.
99.
50.<
50.<
50.<
56.
84.
89.
* Design parameter held to limiting value.
-------
Toluene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
5.
5.
5.
5.
5.
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
?70.
270.
Removal
Efficiency
(*)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optinr
Stripping
Fractor
2.2*
2.2*
2.2*
2.2*
2.9*
3.0*
2.2*
2.2*
2.2*
2.2*
2.9*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.8*
2.2*
2.2*
2.2*
2.2*
2.7*
2.8*
50.
50.
50.'
53.
80.
85.
50/
SO.1
SO.1
51.
79.
83.
50.1
50.'
50.'
51.
78.
82.
50.'
50.'
50.'
50.
76.
80.
50."
50."
50.'
50."
74.
78.
50."
50."
50."
50."
72.
76.
* Design parameter held to limiting value.
-------
Toluene
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
92.
120.
130.
73.
73.
73.
73.
130.
130.
73.
73.
74.
99.
120.
130.
73.
73.
73.
92.
120.
120.
73.
73.
73.
Air:
Water
Ratio
18.
18.
18.
23.
30.
31.
18.
18.
18.
18.
32.
34.
18.
18.
18.
25.
31.
31.
18.
18.
18.
23.
29.
30.
18.
18.
18.
'84. x 21.
110.
110.
73.
73.
73.
7y.
100.
100.
27.
28.
18.
18.
18.
20.
25.
26.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
, 11.9
11.9
11.9
11.9
Packing
Height
(ft)
2.2
2.9
5.6
10.
21.
24.
2.2
2.9
5.6
11.
21.
23.
2.2
2.9
5.6
9.7
21.
24.
2.2
2.9
5.6
10.
21.
25.
2.2
2.9
5.6
10.
22.
25.
2.2
2.9
5.6
10.
23.
26.
Air
Flow
(SCFM)
41.
41.
41.
51.
67.
70.
150.
150.
150.
150.
260.
270.
460.
460.
460.
620.
770.
790.
1100.
1100.
1100.
1400.
1700.
1800.
3100.
3100.
3100.
3500.
4500.
4600.
8200.
8200.
8200.
8700.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.2
2.4
2.9
5.0
5.7
2.1
2.2
2.4
2.7
5.2
5.6
2.1
2.2
2.4
3.0
5.1
5.7
2.1
2.2
2.4
2.9
4.8
5.4
2.1
2.2
2.4
2.8
4.5
5.1
2.1
2.2
2.4
2.7
4.3
4.8
-------
Toluene
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
98.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
74.
95.
98.
73.
73.
73.
73.
94.
97.
73.
73.
73.
73.
92.
95.
Air:
Water
Ratio
18.
18.
18.
19.
24.
25.
18.
18.
18.
19.
24.
25.
18.
18.
18.
18.
24.
25.
18.
18.
18.
18.
24.
24.
18.
18.
18.
18.
23.
24.
18.
18.
18.
18.
23.
24.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
Col umn
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
Air
Flow
(SCFM)
19000
19000
19000
19000
25000.
26000
31000
31000
31000
31000
41000
42000.
44000
44000.
44000
45000
58000
60000.
87000.
87000.
87000.
87000.
110000.
120000.
360000.
360000.
360000.
360000.
460000.
470000.
730000.
730000.
730000.
730000.
920000.
950000.
Air
Pressure
(inch
H20)
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.6
2.1
2.2
2.4
2.7
4.1
4.6
2.1
2.2
2.4
2.7
4.1
4.5
-------
Toluene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.2
2.6
3.4
5.4
5.9
4.9
5.1
6.0
7.7
12.
13.
7.7
8.1
9.8
13.
20.
22.
12.
13.
15.
20.
33.
36.
22.
24.
29.
39.
64.
71.
47.
50.
61.
82.
130.
150.
Support
($K)
6.8
6.8
7.1
7.5
8.6
8.9
11.
11.
12.
12.
15.
16.
17.
17.
18.
20.
24.
25.
24.
25.
27.
30.
38.
40.
42.
43.
47.
54.
70.
75.
82.
84.
92.
110.
140.
150.
Indirect
($K)
5.8
5.9
6.3
7.1
9.2
9.7
10.
10.
11.
13.
18.
19.
16.
16.
18.
21.
29.
31.
24.
24.
28.
33.
46.
50.
42.
. 44.
50.
61.
88.
96.
85.
88.
100.
120.
180.
200.
Total
($K)
15.
15.
16.
18.
23.
25.
26.
27.
29.
33.
44.
47.
40.
41.
46.
53.
73.
78.
60.
62.
70.
83.
120.
130.
110.
110.
130.
150.
220.
240.
210.
220.
250.
310.
460.
500.
Operating
Cost
($K Year-1)
0.21
0.21
0.24
0.29
0.43
0.47
0.63
0.64
0.70
0.82
1.2
1.3
1.3
1.4
1.5
1.8
2.6
2.8
2.8
2.9
3.1
3.8
5.5
5.9
7.4
7.5 .
8.2
9.7
14.
15.
20.
21.
23.
26.
38.
41.
Yearly
Cost
($K Year-1)
1.9
2.0
2.1
2.4
3.1
3.4
3.7
3.8
4.1
4.7
6.4
6.8
6.0
6.2
6.9
8.0
11.
12.
9.8
10.
11.
14.
19.
21.
20.
21.
23.
28.
40.
44.
46.
47.
52.
63.
91.
99.
Production
Cost
($ Kgal-1)
0.94
0.96
1.03
1.18
1.54
1.64
0.42
0.43
0.47
0.54
0.73
0.78
0.19
0.20
0.22
0.26
0.35
0.38
0.12
0.12
0.13
0.16
0.23
0.25
0.08
0.08
0.09
0.11
0.16
0.17
0.06
0.06
0.07
0.08
0.12
0.13
-------
Toluene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
(SK)
98.
100.
120.
170.
270.
300.
160.
170.
200.
270.
430.
480.
220.
230.
280.
380.
610.
680.
430.
450.
540.
720.
1200.
1300.
1700.
1800.
2100.
2800.
4600.
5100.
3400.
3600.
4300.
5600.
9100.
10000.
Support
($K)
160.
160.
180.
210.
280.
300.
240.
240.
270.
320.
440.
480.
330.
340.
370.
440.
620.
670.
580.
600.
670.
810.
1100.
1200.
1900.
1900.
2200.
2800.
4100.
4500.
3500.
3600.
4200.
5300.
8000.
8800.
Indirect
(SK)
170.
170.
200.
240.
360.
390.
260.
270.
310.
380.
570.
630.
360.
370.
430.
540.
810.
890.
660.
690.
790.
1000.
1500.
1700.
2300.
2400.
2800.
3700.
5700.
6300.
4500.
4700.
5500.
7200.
11000.
12000.
Total
(SK)
420.
430.
500.
610.
910.
1000.
650.
680.
770.
970.
1400.
1600.
910.
950.
1100.
1400.
2000.
2200.
1700.
1700.
2000.
2500.
3800.
4200.
5900.
6100.
7200.
9200.
14000.
16000.
11000.
12000.
14000.
18000.
28000.
31000.
Operating
Cost
($K Year-1)
48.
49.
53.
61.
86.
93.
82.
84.
91.
100.
150.
160.
120.
120.
130.
150.
220.
230.
250.
250.
280.
320.
440.
480.
1200.
1200.
1300.
1500.
2000.
2200.
2700.
2800.
3000.
3400.
4600.
4900.
Yearly
Cost
($K Year-1)
97.
100.
110.
130.
190.
210.
160.
160.
180.
220.
320.
350.
230.
230.
260.
310.
460.
500.
450.
460.
510.
610.
900.
980.
1900.
1900.
2100.
2600.
3700.
4000.
4100.
4200.
4600.
5500.
7900.
8600.
Production
Cost
($ Kgal-1)
0.05
0.05
0.06
0.07
0.11
0.12
0.05
0.05
0.06
0.07
0.10
0.11
0.05
0.05
0.05
0.07
0.10
0.10
0.05
0.05
0.05
0.06
0.09
0.10
0.04
0.04
0.05
0.06
0.08
0.09
0.04
0.04
0.05
0.06
0.08
0.09
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
1,2-Di chloropropane
Henry's Coefficient = 0.043 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
1,2-Di chloropropane
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
130.
230.
310.
380.
410.
490.
210.
370.
490.
620.
660.
790.
300.
520.
710.
890.
940.
1100.
580.
1000.
1400.
1700.
1800.
2200.
2300.
4000.
5400.
6700.
7200.
8500.
4600.
8000.
11000.
14000.
15000.
17000.
Support
($K)
180.
250.
310.
370.
390.
440.
280.
390.
490.
580.
610.
710.
390.
550.
690.
830.
870.
1000.
700.
1000.
1300.
1600.
1600.
1900.
2300.
3600.
4700.
5800.
6100.
7200.
4400.
7200.
9400.
12000.
12000.
14000.
Indirect
($K)
210.
310.
400.
490.
520.
610.
320.
500.
640.
790.
840.
980.
450.
700.
910.
1100.
1200.
1400.
840.
1300.
1700.
2100.
2300.
2700.
3000.
5000.
6600.
8200.
8700.
10000.
5900.
10000.
13000.
17000.
18000.
21000.
Total
($K)
520.
790.
1000.
1200.
1300.
1500.
820.
1300.
1600.
2000.
2100.
2500.
1100.
1800.
2300.
2800.
3000.
3500.
2100.
3300.
4400.
5400.
5700.
6700.
7600.
13000.
17000.
21000.
22000.
26000.
15000.
25000.
33000.
42000.
44000.
53000.
Operating
Cost
($K Year-1)
57.
82.
99.
120.
120.
140.
97.
140.
170.
200.
210.
230.
140.
210.
250.
290.
300.
340.
300.
420.
510.
580.
610.
690.
1400.
1900.
2300.
2600.
2700.
3000.
3200.
4300.
5100.
5800.
6000.
6700.
Yearly
Cost
($K Year-1)
120.
180.
220.
260.
280.
320.
190.
290.
360.
430.
450.
520.
280.
410.
520.
620.
650.
750.
540.
810.
1000.
1200.
1300.
1500.
2300.
3400.
4200.
5000.
5300.
6100.
4900.
7300.
9000.
11000.
11000.
13000.
Production
Cost
($ Kgal-1)
0.06
0.10
0.12
0.14
0.15
0.17
0.06
0.09
0.11
0.13
0.14
0.16
0.06
0.09
0.11
0.13
0.14
0.16
0.06
0.08
0.10
0.12
0.13
0.15
0.05
0.08
0.10
0.11
0.12
0.14
0.05
0.07
0.09
0.11
0.11
0.13
-------
1,2-Dichloropropane
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2,
2.
2.
2.
2.
10
10
10
10
10
2.10
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
Cost Optim
Stripping
Fractor
1.0*
1.6
2.0
2.3
2.4
2.6
1.2*
2.0
2.5
2.8
2.9
3.2
1.1*
1.8
2.2
2.5
2.6
2.8
1.1*
1.7
2.1
2.4
2.4
2.6
1.0*
1.6
2.0
2.2
2.3
2.5
0.9*
1.5
1.9
2.1
2.2
2.3
93.
170.
150.
140.
140.
130.
130.
150.
150.
140.
140.
130.
110.
150.
140.
140.
130.
130.
97.
140.
130.
120.
120.
120.
86.
120.
110.
110.
100.
100.
77.
100.
97.
93.
93.
91.
* Design parameter held to limiting value.
-------
1,2-Dichloropropane
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(*)
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
Cost Optinr
Stripping
Fractor
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
2.0
2.0
2.2
74.
110.
100.
100.
100.
100.
74.
110.
100.
98.
98.
96.
74.
100.
99.
96.
96.
94.
74.
100.
94.
91.
91.
89.
74.
92.
87.
84.
83.
82.
74.
85.
80.
78.
77.
76.
* Design parameter held to limiting value.
-------
1,2-Dichloropropane
Table 2
SYSTEM SIZE - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
28.
23.
21.
20.
19.
30.
23.
20.
18.
18.
16.
30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
24.
21.
19.
19.
17.
Air
(SCFM
ft-2)
110.
160.
160.
160.
160.
170.
130.
160.
170.
180.
180.
170.
120.
160.
160.
170.
170.
170.
110.
150.
150.
160.
160.
160.
100.
140.
140.
150.
150.
150.
96.
130.
130.
140.
140.
140.
Air:
Water
Ratio
27.
42.
51.
58.
60.
65.
32.
52.
64.
73.
75.
81.
29.
47.
57.
65.
67.
72.
27.
44.
54.
60.
62.
67.
25.
41.
50.
57.
58.
63.
24.
39.
48.
54.
56.
60.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.012
0.011
0.010
0.0099
0.013
0.011
0.010
0.0096
0.0094
0.0089
0.013
0.012
0.011
0.010
0.0098
0.0094
0.013
0.012
0.011
0.010
0.0099
0.0094
0.013
0.012
0.011
0.0099
0.0097
0.0094
0.013
0.012
0.010
0.0098
0.0096
0.0092
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter
(ft)
0.8
0.9
1.0
1.0
1.0
1.1
1.6
1.8
2.0
2.1
2.1
2.2
2.8
3.1
3.4
3.5
3.6
3.7
4.4
4.8
5.2
5.4
5.5
5.7
7.3
8.0
8.6
9.1
9.2
9.5
11.9
13.2
14.2
15.0
15.1
15.6
Packing
Height
(ft)
5.6
13.
17.
21.
22.
26.
5.1
11.
15.
18.
20.
23.
5.3
12.
16.
20.
21.
25.
5.5
12.
16.
20.
22.
26.
5.8
13.
17.
21.
23.
27.
6.0
13.
17.
22.
23.
27.
Air
Flow
(SCFM)
59.
94.
110.
130.
130.
150
260
420
520.
590.
610.
650.
730.
1200
1400.
1600
1700.
1800.
1700.
2600.
3200.
3700.
3800.
4100.
4200.
6900.
8400.
9500.
9800.
11000.
11000.
18000.
21000.
24000.
25000
27000
Air
Pressure
(inch
H20)
2.6
4.7
5.2
5.7
5.9
6.3
2.8
4.1
.4.6
5.2
5.4
5.6
2.7
4.2
4.7
5.3
5.4
6.0
2.7
4.1
4.6
5.1
5.2
5.7
2.6
3.9
4.3
4.7
4.9
5.4
2.6
3.6
4.1
4.5
4.6
5.0
-------
1,2-Di chloropropane
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
26.
22.
21.
20.
19.
30.
26.
22.
20.
20.
19.
30.
25.
22.
20.
20.
19.
30.
25.
22.
20.
19.
18.
30.
24.
21.
19.
19.
18.
30.
24.
20.
19.
18.
17.
Air
(SCFM
ft-2)
94.
130.
140.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
120.
130.
130.
130.
140.
94.
120.
130.
130.
130.
130.
94.
120.
120.
130.
130.
130.
Air:
Water
Ratio
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
Mass
Trans.
Coef.
(sec-1)
0.013
0.012
0.011
0.010
0.010
0.0098
0.013
0.012
0.011
0.010
0.010
0.0097
0.013
0.012
0.011
0.010
0.010
0.0096
0.013
0.012
0.011
0.010
0.0098
0.0095
0.013
0.011
0.010
0.0097
0.0096
0.0092
0.013
0.011
0.010
0.0095
0.0094
0.0090
Number
of
Columns
1.3
1.5
1.7
1.8
1.9
2.0
2.1
2.4
2.8
3.1
3.1
3.3
3.0
3.5
4.1
4.5
4.6
4.8
5.9
• 7.0
8.2
8.9
9.1
9.7
24.2
29.9
34.6
38.0
38.9
41.1
49.5
62.9
72.9
80.0
81.9
86.7
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
Air
Flow
(SCFM)
24000.
38000.
46000.
52000.
53000.
57000.
39000.
62000.
76000.
85000.
87000.
94000.
56000.
90000.
110000.
120000.
130000.
140000.
110000.
180000.
210000.
240000.
250000.
270000.
450000.
720000.
880000.
990000.
24. 1000000.
29. 1
6.1
100000.
930000.
14. 1500000.
18. 1800000.
23. 2000000.
24. 2100000.
28. 2200000.
Air
Pressure
(inch
H20)
2.6
3.9
4.4
4.9
5.1
5.6
2.6
3.8
4.3
4.8
4.9
5.4
2.6
3.8
4.2
4.7
4.9
5.3
2.6
3.7
4.1
4.6
4.7
5.2
2.6
3.5
4.0
4.4
4.5
4.9
2.6
3.4
3.8
4.2
4.3
4.7
-------
1,2-Dichloropropane
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
($K) |
2.7
4.3
5.6
6.7
7.1
8.3
6.4
9.3
12.
14.
14.
17.
10.
16.
20.
24.
26.
30.
16.
26.
34.
42.
44.
52.
31.
52.
68.
85.
90.
110.
65.
110.
150.
180.
190.
230.
mated Capital Costs
upport
($K)
7.1
8.1
8.8
9.5
9.7
10.
12.
14.
15.
16.
17.
18.
18.
21.
24.
27.
28.
30.
27.
34.
39.
44.
45.
50.
48.
62.
74.
85.
89.
100.
95.
130.
150.
180.
190.
210.
Indirect
($K)
6.5
8.1
9.4
11.
11.
12.
12.
15.
17.
20.
20.
23.
18.
24.
29.
34.
35.
40.
28.
39.
48.
56.
59.
67.
52.
75.
93.
110.
120.
130.
100.
160.
200.
240.
250.
290.
Total
($K)
16.
21.
24.
27.
28.
31.
30.
38.
44.
49.
> 51.
57.
46.
61.
73.
85.
88.
100.
71.
98.
120.
140.
150.
170.
130.
190.
240.
280.
300.
340.
260.
390.
500.
600.
630.
730.
Operating
Cost
($K Year-1)
0.26
0.39
0.48
0.57
0.60
0.68
0.80
1.1
1.3
1.5
1.5
1.7
1.6
2.4
2.9
3.3
3.5
4.0
3.4
5.0
6.1
7.1
7.4
8.4
8.9
13.
16.
18.
19.
22.
24,
35.
42.
49.
51,
57.
Yearly
Cost
($K Year-1)
2.2
2.8
3.3
3.7
3.9
4.3
4.3
5.5
6.4
7.3
7.5
8.4
7.0
9.6
11.
13.
14.
16.
12.
17.
20.
24.
25.
28.
24.
35.
43.
51.
54.
61.
55.
81.
100.
120.
130.
140.
Production
Cost
($ Kgal-1)
1.06
1.37
1.60
1.82
1.89
2.11
0.49
0.63
0.73
0.83
0.86
0.96
0.22
0.30
0.36
0.42
0.44
0.50
0.14
0.20
0.24
0.28
0.30
0.34
0.09
0.14
0.17
0.20
0.21
0.24
0.07
0.11
0.13
0.16
0.16
0.19
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Toxaphene
Henry's Coefficient = 0.11 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Toxaphene
Table 1
DESIGN CRITERIA - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
Cost Optinr
Stripping
Fractor
1.8*
2.7*
3.1*
3.4*
1.8*
2.1*
3.3
4.1
1.9*
2.8*
3.1*
3.6
1.8*
2.6*
2.9*
3.3
1.8*
2.4*
2.7*
3.1
1.8*
2.3*
2.6*
3.0
50.*
94.
120.
150.
50.*
65.
130.
120.
52.
100.
120.
130.
50.*
91.
110.
120.
50.*
80.
97.
110.
50.*
71.
86.
97.
* Design parameter held to limiting value.
-------
Toxaphene
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
430.
430.
430.
430.
5.00
5.00
5.00
5.00
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
270.
270.
270.
270.
Removal
Efficiency
(%)
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
Cost Optim
Stripping
Fractor
1.8*
2.2*
2.5*
2.8*
1.8*
2.2*
2.5*
2.8*
1.8*
2.2*
2.4*
98. ' 2.7*
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
1.8*
2.1*
2.4*
2.7
1.8*
2.1*
2.4*
2.7
1.8*
2.1*
2.3*
2.8
50.*
67.
83.
100.
50.*
66.
81.
98.
50.*
65.
80.
98.
50.*
64.
79.
95.
50.*
62.
76.
87.
50.*
61.
74.
80.
* Design parameter held to limiting value.
-------
Toxaphene
Table 2
SYSTEM SIZE - March
1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
29.
25.
30.
30.
30.
28.
30.
30.
30.
29.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
110.
120.
140.
73.
86.
130.
140.
76.
110.
130.
140.
73.
110.
120.
130.
73.
98.
110.
120.
73.
91.
100.
110.
Air:
Water
Ratio
18.
27.
31.
35.
18.
21.
33.
41.
19.
28.
31.
36.
18.
26.
29.
33.
18.
24.
27.
31.
18.
23.
26.
30.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.0096
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
Number
. of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter
(ft)
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.5
7.3
7.3
7.3
7.4
11.9
11.9
11.9
12.2
Packing
Height
(ft)
5.9
14.
20.
34.
5.9
15.
19.
31.
5.8
14.
20.
33.
5.9
14.
20.
34.
5.9
14.
21.
35.
5.9
15.
21.
36.
Air
Flow
(SCFM)
41
60
69
77
150
170
270
330
470.
700.
780.
910.
1100.
1600.
1800.
2000.
3100.
4100.
4600.
5200.
8200.
10000.
11000.
13000.
Air
Pressure
(inch
H20)
2.4
3.6
4.9
8.2
2.4
3.2
5.0
6.7
2.4
3.7
5.0
7.3
2.4
3.6
4.7
7.2
2.4
3.4
4.5
6.7
2.4
3.3
4.3
6.3
-------
Toxaphene
Table 2 (continued)
SYSTEM SIZE - March 1989
'Design
dumber
i
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
88.
100.
110.
73.
88.
99.
110.
73.
87.
98.
110.
73.
86.
97.
110.
73.
84.
95.
110.
73.
83.
94.
100.
Air:
Water
Ratio
18.
22.
25.
28.
18.
22.
25.
28.
18.
22.
24.
27.
18.
21.
24.
27.
18.
21.
24.
27.
18.
21.
23.
28.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.010
Number
of
Columns
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
24.2
24.2
24.2
25.2
49.5
49.5
49.5
53.3
Col umn
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
5.9
15.
21.
37.
5.9
15.
22.
38.
5.9
15.
22.
38.
5.9
15.
22.
38.
5.9
15.
22.
37.
5.9
15.
22.
37. 1
Air
Flow
(SCFM)
19000.
23000.
25000.
29000.
31000.
36000.
41000.
46000.
44000.
52000.
59000.
66000.
87000.
100000.
110000.
130000.
360000.
410000.
460000.
530000.
730000.
830000.
930000.
100000.
Air
Pressure
(inch
H20)
2.4
3.2
4.2
6.6
2.4
3.2
4.2
6.5
2.4
3.2
4.1
6.5
2.4
3.2
4.1
6.4
2.4
3.2
4.1
6.0
2.4
3.2
4.0
5.6
-------
Toxaphene
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Estimated Capital Costs
Process
($K)
2.7
4.1
5.2
7.7
6.1
9.3
11.
16.
10.
15.
19.
29.
16.
25.
32.
48.
30.
48.
62.
95.
62.
100.
130.
200.
Support
($K)
7.1
7.9
8.5
10.
12.
13.
15.
18.
18.
21.
24.
29.
27.
33.
37.
47.
48.
60.
69.
91.
93.
120.
140.
190.
Indirect
($K)
6.4
7.8
9.0
12.
12.
15.
17.
22.
18.
24.
28.
38.
28.
38.
45.
63.
51.
71.
86.
120.
100.
140.
180.
250.
Total
($K)
16.
20.
23.
29.
29.
38.
43.
57.
46.
60.
71.
96.
70.
95.
110.
160.
130.
180.
220.
310.
260.
360.
440.
640.
Operating
Cost
($K Year-1)
0.24
0.34
0.42
0.60
0.71
0.95
1.2
1.6
1.5
2.1
2.6
3.6
3.2
4.4
5.3
7.5
8.3
11.
14.
19.
23.
30.
37.
51.
Yearly
Cost
($K Year-1)
2.1
2.7
3.1
4.0
4.1
5.4
6.3
8.2
6.9
9.1
11.
15.
11.
16.
19.
26.
23.
32.
39.
55.
53.
73.
89.
130.
Production
Cost
($ Kgal-1)
1.04
1.30
1.50
1.97
0.47
0.61
0.71
0.94
0.22
0.29
0.35
0.47
0.14
0.18
0.22
0.31
0.09
0.13
0.15
0.22
0.07
0.10
0.12
0.16
-------
Toxaphene
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Estimated Capital Costs
Process
($K)
130.
200.
260.
390.
200.
320.
420.
630.
290.
460.
590.
900.
550.
880.
1100.
1700.
2200.
3400.
4400.
6800.
4300.
6900.
8800.
14000.
Support
($K)
180.
230.
270.
370.
270.
360.
430.
590.
380.
510.
610.
830.
680.
930.
1100.
1600.
2200.
3200.
4000.
5800.
4300.
6300.
7800.
12000.
Indirect
($K)
200.
290.
350.
500.
310.
450.
550.
800.
440.
630.
780.
1100.
800.
1200.
1500.
2100.
2900.
4400.
5500.
8200.
5600.
8600.
11000.
17000.
Total
($K)
500.
720.
880.
1300.
790.
1100.
1400.
2000.
1100.
1600.
2000.
2900.
2000.
3000.
3700.
5400.
7300.
11000.
14000.
21000.
14000.
22000.
28000.
42000.
Operating
Cost
($K Year-1)
53.
70.
84.
120.
92.
120.
150.
200.
130.
180.
210.
300.
280.
360.
440.
610.
1300.
1700.
2000.
2700.
3000.
3800.
4500.
6000.
Yearly
Cost
($K Year-1)
110.
150.
190.
270.
180.
250.
310.
440.
260.
360.
440.
630.
520.
710.
870.
1200.
2200.
3000.
3600.
5100.
4700.
6400.
7700.
11000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.10
a. is
0.06
0.08
0.10
0.14
0.06
0.08
0.09
0.13
0.05
0.07
0.09
0.13
0.05
0.07
0.08
0.12
0.05
0.06
0.08
0.11
-------
Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
Via
Packed Column Air Stripping
March 1989
Compound:
Heptachlor
Henry's Coefficient = 0.034 at 12 Deg. C
U.S. Environmental Protection Agency
Office of Drinking Water
Technical Support Division
Cincinnati, Ohio 45268
-------
Heptachlor
Table 1
DESIGN CRITERIA - March
1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
0.006
0.006
0.006
0.006
0.006
0.006
0.
0.
0.
.024
.024
.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.
2.
2.
2.
2.
10
10
10
10
10
2.10
Removal
Efficiency
(%)
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
Cost Optinr
Stripping
Fractor
1.2*
1.4
2.1
3.5
3.7
4.3
1.5
1.8
2.6
3.0
3.1
3.6
1.3
1.6
2.3
2.7
2.8
3.2
1.2
1.5
2.2
2.5
2.6
3.0
1.2
1.4
2.0
2.3
2.4
2.8
1.1
1.3
1.9
2.1
2.2
2.5
180.
170.
120.
120.
120.
120.
160.
160.
140.
140.
120.
130.
160.
150.
140.
130.
130.
120.
150.
140.
120.
110.
110.
110.
130.
120.
100.
99.
100.
96.
110.
100.
92.
100.
100.
99.
* Design parameter held to limiting value.
-------
Heptachlor
Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
5.
5.
5,
5,
5,
00
00
00
00
00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
Cost Optimi
Stripping
Fractor
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.2
1.8
2.1
2.2
2.5
120.
110.
100.
99.
99.
95.
110.
110.
97.
94.
93.
90.
110.
100.
95.
92.
91.
88.
110.
99.
90.
88.
87.
84.
100.
91.
83.
81.
80.
78.
99.
86.
77.
75.
75.
72.
-------
Heptachlor
Table 3
ESTIMATED COST - March 1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
3.8
4.6
7.6
9.8
10.
16.
8.4
9.8
15.
19.
21.
31.
14.
17.
27.
35.
38.
59.
23.
28.
47.
62.
67.
110.
45.
56.
96.
130.
140.
220.
96.
120.
210.
280.
300.
480.
Support
($K)
7.8
8.3
10.
11.
12.
15.
13.
14.
17.
20.
20.
27.
20.
22.
29.
34.
36.
49.
32.
35.
47.
57.
61.
86.
58.
65.
93.
120.
120.
180.
120.
130.
200.
250.
270.
400.
Indirect
($K)
7.6
8.4
12.
14.
15.
20.
14.
15.
21.
25.
27.
38.
22.
25.
36.
46.
48.
71.
36.
41.
61.
78.
84.
130.
68.
79.
120.
160.
170.
260.
140.
170.
270.
350.
370.
580.
Total
($K)
19.
21.
29.
35.
37.
50.
35.
39.
53.
64.
68.
95.
57.
64.
92.
120.
120.
180.
90.
100.
160.
200.
210.
320.
170.
200.
310.
410.
430.
660.
350.
420.
670.
870.
940.
1500.
Operating
Cost
($K Year-1)
0.35
0.42
0.63
0.84
0.89
1.3
1.0
1.1
1.6
2.0
2.1
3.0
2.2
2.5
3.7
4.7
5.0
7.2
4.6
5.3
7.9
9.9
11.
15.
12.
14.
20.
25.
27.
39.
32.
37.
54.
69.
74.
110.
Yearly
Cost
($K Year-1)
2.6
2.9
4.0
5.0
5.2
7.1
5.2
5.7
7.8
9.5
10.
14.
8.8
10.
14.
18.
19.
28.
15.
17.
26.
33.
35.
53.
32.
37.
57.
73.
78.
120.
74.
86.
130.
170.
180.
280.
Production
Cost
($ Kgal-1)
1.28
1.43
1.98
2.43
2.55
3.49
0.59
0.65
0.89
1.08
1.14
1.62
0.28
0.32
0.46
0.58
0.61
0.90
0.18
0.21
0.31
0.39
0.42
0.62
0.12
0.15
0.22
0.28
0.30
0.46
0.10
0.11
0.17
0.22
0.24
0.37
-------
Heptachlor
Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number
37
38
39
40
41
42
43
44
45 (
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
6;
e:
63
64
65
66
67
66
6S
7C
•?•
£
Estimated Capital Costs
Process
($K)
200.
250.
440.
610.
660.
1100.
320.
400.
720.
990.
1100.
1700.
450.
570.
1000.
1400.
1500.
2500.
860.
1100.
2000.
2700.
2900.
4800.
3400.
4300.
7800.
11000.
12000,
19000.
6900.
8700.
16000.
?2000.
;ooo.
JBOOO.
Support
(SK)
230.
260.
410.
530.
570.
880.
360.
420.
660.
860.
920.
1400.
500.
590.
930.
1200.
1300.
2000.
910.
1100.
1800.
2300.
2500.
3900.
3200.
3900.
6600.
8900.
9600.
15000.
6200.
7700.
13000.
18000.
19000.
31000.
Indirect
($K)
280.
330.
560.
750.
810.
1300.
440.
530.
900.
1200.
1300.
2100.
620.
760.
1300.
1700.
1900.
3000.
1200.
1400.
2400.
3300.
3600.
5700.
4300.
5400.
9500.
13000.
14000.
22000.
8600.
11000.
19000.
26000.
28000.
45000.
Total
($K)
700.
850.
1400.
1900.
2000.
3200.
1100.
1300.
2300.
3100.
3300.
5200.
1600.
1900.
3200.
4300.
4700.
7500.
2900.
3600.
6200.
8300.
9000.
14000.
11000.
14000.
24000.
32000.
35000.
56000.
22000.
27000.
48000.
66000.
71000.
110000.
Operating
Cost
($K Year-1)
76.
87.
130.
160.
170.
250.
130.
150.
220.
270.
290.
420.
190.
220.
320.
400.
420.
610.
390.
440.
650.
810.
850.
1200.
1800.
2000.
2800.
3500.
3700.
5300.
4100.
4500.
6300.
7700.
8200.
11000.
Yearly
Cost
($K Year-1)
160.
190.
290.
380.
410.
630.
260.
310.
490.
630.
680.
1000.
370.
440.
700.
910.
970.
1500.
740.
870.
1400.
1800.
1900.
2900.
3100.
3600.
5600.
7300.
7800.
12000.
6600.
7700.
12000.
15000.
17000.
25000.
Production
Cost
($ Kgal-1)
0.09
0.10
0.16
0.21
0.23
0.34
0.08
0.10
0.15
0.20
0.21
0.32
0.08
0.09
0.15
0.19
0.21
0.31
0.07
0.09
0.14
0.18
0.19
0.30
0.07
0.08
0.13
0.17
0.18
0.27
0.07
0.08
0.12
0.16
0.17
0.25
-------
Heptachlor
Table 2
SYSTEM SIZE - March
1989
Design
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
26.
18.
12.
12.
10.
25.
22.
16.
14.
13.
12.
27.
23.
17.
15.
15.
13.
27.
24.
17.
15.
15.
13.
27.
23.
17.
15.
15.
13.
27.
23.
17.
17.
16.
15.
Air
(SCFM
ft-2)
150.
160.
160.
190.
190.
190.
160.
170.
180.
190.
180.
190.
150.
160.
170.
180.
180.
180.
150.
150.
160.
170.
170.
170.
140.
140.
150.
150.
160.
160.
130.
130.
140.
150.
150.
160.
Air:
Water
Ratio
38.
46.
67.
110.
120.
140.
47.
57.
84.
98.
100.
120.
42.
51.
75.
87.
90.
100.
40.
48.
70.
81.
83.
97.
37.
45.
65.
76.
78.
91.
36.
43.
62.
68.
70.
81.
Mass
Trans.
Coef.
(sec-1)
0.0092
0.0084
0.0065
0.0051
0.0050
0.0046
0.0082
0.0076
0.0062
0.0057
0.0054
0.0051
0.0086
0.0079
0.0064
0.0059
0.0058
0.0053
0.0086
0.0078
0.0064
0.0059
0.0058
0.0053
0.0084
0.0077
0.0063
0.0058
0.0058
0.0053
0.0082
0.0075
0.0062
0.0062
0.0061
0.0057
Number
of
Columns
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
Column
Diameter
(ft)
0.8
0.9
1.1
1.3
1.3
1.4
1.7
1.9
2.2
2.3
2.4
2.5
3.0
3.2
3.7
4.0
4.0
4.3
4.6
4.9
5.7
6.1
6.2
6.6
7.7
8.2
9.6
10.2
10.3
11.0
12.6
13.6
15.8
16.0
16.0
16.0
Packing
Height
(ft)
11.
14.
22.
24.
26.
40.
9.2
12.
20.
26.
28.
44.
10.
12.
21.
28.
30.
47.
10.
13.
22.
29.
31.
49.
11.
13.
23.
30.
33.
51.
11.
14.
23.
33.
36.
56.
Air
Flow
(SCFM)
85
100
150
260
260
310
380
460
680
790
810
950
1100
1300
1900
2200
2300
2600.
2400.
2900
4200.
4900.
5000.
5900.
6200.
7500.
11000.
13000.
13000.
15000.
16000.
19000.
28000.
30000.
31000.
36000.
Air
Pressure
(inch
H20)
4.4
4.8
5.3
5.6
5.9
8.0
3.8
4.2
5.5
6.4
6.3
9.1
4.0
4.3
5.5
6.4
6.7
9.0
3.9
4.2
5.2
6.1
6.3
8.4
3.7
4.0
4.9
5.7
6.0
8.0
3.5
3.7
4.7
6.1
6.5
8.8
-------
Heptachlor
Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
28.
25.
19.
17.
16.
14.
28.
24.
18.
16.
16.
14.
28.
24.
18.
16.
16.
14.
27.
24.
18.
16.
15.
14.
27.
23.
17.
15.
15.
13.
27.
22.
17.
15.
15.
13.
Air
(SCFM
ft-2)
130.
130.
150.
150.
150.
160.
130.
130.
140.
150.
150.
150.
120.
13'0.
140.
150.
150.
150.
120.
130.
140.
140.
140.
150.
120.
120.
130.
140.
140.
140.
120.
120.
130.
130.
140.
140.
Air:
Water
Ratio
34.
41.
59.
68.
70.
80.
34.
41.
59.
68.
70.
81.
34.
41.
59.
68.
70.
80.
34.
41.
59.
68.
70.
80.
34.
40.
58.
68.
70.
81.
34.
40.
58.
68.
70.
81.
Mass
Trans.
Coef.
(sec-1)
0.0086
0.0079
0.0066
0.0061
0.0061
0.0056
0.0084
0.0078
0.0065
0.0061
0.0060
0.0055
0.0084
0.0077
0.0065
0.0060
0.0059
0.0055
0.0083
0.0076
0.0064
0.0059
0.0058
0.0054
0.0082
0.0074
0.0062
0.0058
0.0057
0.0053
0.0081
0.0073
0.0061
0.0056
0.0055
0.0051
Number
of
Columns
1.3
1.5
2.0
2.3
2.3
2.6
2.2
2.6
3.4
3.8
3.9
4.4
3.2
3.7
5.0
5.6
5.7
6.4
6.4
7.5
9.9
11.1
11.4
12.8
26.9
31.6
42.2
47.3
48.4
54.6
55.9
66.4
88.8
99.6
102.1
115.2
Column
Diameter
(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
(ft)
12.
15.
25.
33.
36.
56.
12.
15.
25.
33.
35.
56.
12.
15.
25.
33.
35.
56.
12.
14.
25.
33.
35.
55.
12.
14.
24. 1
Air
Flow
(SCFM)
34000
42000
60000
69000
71000
82000
56000
68000
98000
110000.
120000
130000
81000
98000
140000
160000
170000
190000
160000.
190000.
280000.
320000
330000
380000
650000
790000.
100000.
33. 1300000.
35. 1400000.
55. 1600000.
12. 1300000
14. 1600000
24. 2300000.
32. 2700000.
35. 2800000.
55. 3200000.
Air
Pressure
(inch
H20)
3.7
4.0
5.1
6.0
6.3
8.5
3.7
3.9
5.0
5.8
6.1
8.2
3.6
3.9
4.9
5.7
6.0
8.0
3.6
3.8
4.7
5.5
5.8
7.7
3.5
3.6
4.5
5.2
5.5
7.3
3.4
3.5
4.3
5.0
5.2
6.9
------- |