U.S.  ENVIRONMENTAL PROTECTION AGENCY
                             WASHINGTON, D.C.
                 TECHNOLOGIES AND COSTS FOR THE REMOVAL OF
                        SYNTHETIC ORGANIC CHEMICALS
                        FROM POTABLE WATER SUPPLIES
                                 NOTICE

     This doci'ment  is  a preliminary  draft.    It  has not  been formally
released by the United States  Environmental  Protection  Agency (EPA) and
should not at this stage be construed  to  represent Agency policy. It is
being  circulated  for  comment  on  its  technical   accuracy   and  policy
implications.

-------
                     U.S. ENVIRONMENTAL PROTECTION AGENCY
                               WASHINGTON, D.C.
                   TECHNOLOGIES AND COSTS FOR THE REMOVAL OF
                          SYNTHETIC ORGANIC CHEMICALS
                          FROM POTABLE WATER SUPPLIES
                               TABLE OF CONTENTS
1.   INTRODUCTION                                                      1-1
          Purpose and Scope                                            1-1
          Definition of Technology Categories                          1-2
          Organization of Document                                     1-3

2.   DESCRIPTION OF SOCs                                               2-1
          Each Chemical                                                2-1
               Chemical/Physical Properties
               Uses
          Potential Source of Entry                                    2-15

3.   AVAILABLE TECHNOLOGIES                                            3-1
          Activated Carbon                                             3-1
          Aeration                                                     3-1
          Reverse Osmosis                                              3-2
          Oxidation                                                    3-2
          Conventional Treatment                                       3-3
          Summary of Available Technologies                            3-3

4.   MOST APPLICABLE TECHNOLOGY --  GRANULAR ACTIVATED CARBON          4-1
          Process Description                                          4-1
          Treatability Studies                                         4-6
          Estimation of Carbon Usage Rates                             4-21
          Summary                                                      4-23

5.   OTHER APPLICABLE TECHNOLOGY - PACKED COLUMN AERATION             5-1
          Process Description                                          5-1
          Treatability Studies                                         5-5
          Off-Gas Treatment                                            5-16
          Secondary Effects of Aeration                                5-18

6.   ADDITIONAL TECHNOLOGIES                                           6-1
          Powdered Activated Carbon                                    6-1
               Process Description                                     6-1
               Treatability Studies                                    6-2

-------
                         TABLE OF CONTENTS (continued)
          Diffused Aeration
               Process Description
               Treatability Studies
          Boiling
          Oxidation
               Ozone Process Description
               Treatability Studies
               Additional Oxidation Techniques
          Reverse Osmosis
               Process Description
               Treatability Studies
          Conventional Treatment
               Process Decription
               Treatability Studies
7.   COSTS
          Basis for Costs
          Granular Activated Carbon
          Packed Column Aeration
          Summary
8.   REFERENCES
Appendix  Description
                              LIST OF APPENDICES
   A      Estimation of Carbon Usage Rates
   B      Summary of GAC  Isotherm Studies
   C      Summary of Pilot and Full-scale GAC Studies
   D      Carbon Usage Rate Comparison
   E      Flow-Chart for  Developing GAC Facility Costs
   F      GAC Costs for Individual Phase II SOCs
   G      Packed Column Facility Design Backup

                                LIST OF TABLES

Table
 No.      Description

1-1       SOCs for which  MCLS Are Being Considered

3-1       Summary of Treatment Data For the 28 SOCs

4-1       GAC Isotherm Constants for SOCs

4-2       Carbon Usage Rates, Model Predictions
   Page

   6-7
   6-8
   6-9
   6-10
   6-11
   6-11
   6-13
   6-16
   6-20
   6-20
   6-22
   6-26
   6-26
   6-26

   7-1
   7-1
   7-2
   7-5
   7-7

   8-1
Following
   Page

   1-2

   3-2

   4-8

   4-8

-------
TABLE OF CONTENTS (continued)

Table
No.
7-8
7-9
to 7-24

Figure
No.
2-1
2-2
2-3
2-4
I*
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
4-1
A-2
LIST OF TABLES (continued)
Description
Henry's Coefficients Used to Estimate Equipment
Size and Cost for Packed Column Aeration
Estimated Cost for Removing SOCs by
Packed Column Aeration
LIST OF FIGURES
Description
Acryl amide, Alachlor
Aldicarb
Atrazine
Carbofuran, Chlordane
Dibromochloropropane, o-Dichlorobenzene,
Cis-l,2-DCE, Trans-l,2-DCE
1,2 Dichloropropane, 2,4-D
Epichlorohydrin, Ethyl benzene
EDB
Heptachlor, Heptachlor Epoxide
Lindane, Methoxychlor
Monochlorobenzene, PCBs
Pentachlorophenol , Styrene
Toluene, Toxaphene
2,4,5,TP, Xylenes
Schematics of Carbon Contactors
Carbon Mini -Column System

Following
Paae
7-6
7-6

Following
Paae
2-2
2-2
2-2
2-4
2-4
2-6
2-6
2-8
2-8
2-10
2-10
2-12
2-12
2-14
2-14
4-4
4-10

-------
                         TABLE OF CONTENTS (continued)
                                LIST OF FIGURES
Figure                                                             Following
  No.     Description                                                 Page
4-3       Ratio of Field:Distilled vs. Distilled Water Usage Rates    4-22
5-1       Schematic of Packed Column Aeration                         5-4
5-2       Schematic of Vapor-phase GAC System                         5-18
6-1       Diffused Air Basin                                          6-8
6-2       Ozone Oxidation Process Schematic                           6-14
6-3       Reverse Osmosis Treatment Plant                             6-22
6-4       Conventional Treatment Schematic                            6-26
7-1       Total Costs Versus Usage Rate, Flow Category Nos. 1-4       7-4
7-2       Total Costs Versus Usage Rate, Flow Category Nos. 5-8       7-4
7-3       Total Costs Versus Usage Rate, Flow Category Nos. 9-12      7-4
7-4       Comparison of Costs—Packed Column Aeration versus          7-8
          GAC Adsorption

-------
TABLE OF CONTENTS (continued)

Table
No.
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
LIST OF TABLES (continued)
Fol
Description
Removal by GAC at the Water Factory 21
Treatment of SOCs by Granular Carbon/Filtration
Carbon Usage Rates with Background TOC
Henry's Law Coefficients for SOCs
Packed-Column Pilot Study Results-Glen Cove, New York
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Berkeley
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Gainesville
Packed Column Pilot Results - Iowa City
Full Scale Packed Column Aeration Data
Control of SOCs Using Powdered Activated Carbon
2,4-D Solid Phase Loading
Treatment of SOCs by Powdered Activated Carbon - Bowling
Green, Ohio
Treatment of SOCs by Powdered Activated Carbon - Tiffin,
Ohio
PAC Performance
Control of SOCs in Distilled Water Using Diffused Aeration
Treatment of SOCs in Spiked Ground Water Using Diffused
Aeration
Treatment of SOCs in Distilled Water Using Ozonation
Control of SOCs in Spiked Ground Water Using Ozonation
Ozone Reaction Rate Constants

lowing
Paae
4-20
4-20
4-23
5-2
5-8
5-10
5-12
5-12
5-12
5-14
5-16
6-2
6-4
6-6
6-6
6-8
6-10
6-10
6-14
6-14
6-14

-------
TABLE OF CONTENTS (continued)

Table
No.
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
7-1
7-2
7-3
7-4
7-5
7-6
7-7
LIST OF TABLES (continued)
Fol
Description
Soc Reactivity
Treatment of SOCs in Distilled Water with Permanganate
Treatment of Trans and Cis 1,2-Dichloroethylene with
Permanganate
Treatment of SOCs in Distilled Water with Hydrogen Peroxide
Treatment of SOCs by Ultraviolet Irradiation
Treatment of SOCs by Ultraviolet Irradiation and Hydrogen
Peroxide
Results of Ozone and Hydrogen Peroxide Pilot Study
Removal of SOCs by Various Reverse Osmosis Membranes
Reverse Osmosis Mean Operational Conditions
Treatment of SOCs in Ground Water Using Reverse Osmosis
Jar Testing of Spiked Ohio River Water
Methoxychlor Removal
Methoxychlor Removal Via Lime Softening
Plant Design Capacities and Average Flows
Cost Indices for Late 1987
General Assumptions Used in Developing
Treatment Costs
GAC System Design Parameters
Base Costs for GAC Contactors, Carbon Charge
and Backwash Pump
Estimated Cost for Removing SOCs by GAC
Packed Column Design Parameters

lowing
Paqe
6-16
6-18
6-18
6-18
6-18
6-18
6-20
6-22
6-22
6-22
6-28
6-28
6-28
7-2
7-2
7-2
7-4
7-4
7-4
7-6

-------
          TABLE 1-1

PHASE II SOCs TO BE REGULATED
Acrylamide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
Dibromochloropropane  (DBCP)
o-Dichlorobenzene
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
1,2-Dichloropropane
2,4-D
Epichlorohydrin
Ethylbenzene
Ethylene dibromide (EDB)
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
Polychlorinated biphenyls  (PCBs)
Pentachlorophenol
Styrene
Tetrachloroethylene
Toluene
Toxaphene
2,4,5-TP (Silvex)
Xylenes (Total)
  -  0-xylene
  -  m-xylene
  -  p-xylene

-------
                               1.  INTRODUCTION

Purpose and Scope
     The  1986  Amendments to  the Safe Drinking  Water Act  (SDWA)  require the
United States Environmental Protection Agency (EPA) to set maximum contaminant
levels  (MCLs) for several contaminants found  in  drinking water.  The MCLs are
to be established based upon:
     1.   Health goals
     2.   Effectiveness of treatment technologies in removing the contaminants
     3.   Level of treatment that is affordable for the water supply systems
     In order  to establish  the  MCLs, the SDWA  Amendments emphasize  a shift
from   "generally  available"  treatment   technologies  to   "best  available
treatment"  (BAT) technologies.   All  public water systems  will  be  required to
come as  close  as possible  to meeting the MCLs  by using  the  BAT  technology.
EPA is currently establishing MCLs for a number of synthetic organic chemicals
(SOCs)  which might occur in contaminated water supplies.  A list of SOCs to be
regulated is shown in Table 1-1.
     The purpose of this document is  to  assist  EPA in defining BAT technology
for removing SOCs  from water  supplies.   Additionally, the document  can also
assist water utilities in selecting appropriate  treatment  methods  to meet the
regulations.  The treatment and  compliance methods  available  to  a  community
searching  for  the most  economical  and  effective  means  to  comply with the
proposed SOC MCLs include modification of  existing  treatment  systems,  instal-
lation  of new  systems,  and  the use  of  nontreatment  alternatives,  such  as
regionalization or alternate  raw water sources.   The major factors  that must
be considered in selecting a compliance method include:
     1.   Quality and type of water source
     2.   Degree of SOC contamination
     3.   Specific compound(s) present in water source
     4.   Economies of scale and  the economic stability of the community being
          served
     5.   Treatment and waste disposal requirements
                                      1-1

-------
The information  in  this document provides an evaluation of the various treat-
ment methods in use today for the removal of different concentrations of SOCs,
as well  as relative costs.   Some  methods are more  complex  or more expensive
than others.  Selection of a technology by a community may require engineering
studies  and/or pilot-plant  operations to  determine the  level of  removal  a
method will provide for that system.

Definition of Technology Categories
     The methods  that  can be applied  for SOC removal  are  divided into three
categories:
     Most Applicable Technologies
     Technologies  that are  generally  available,  have  a  demonstrated highly
effective capacity to remove SOCs, and for which reasonable cost estimates can
be developed for a wide range of influent/effluent conditions.
     Other Applicable Technologies
     Those  additional  methods  not  identified as  generally  used  for  SOC re-
moval, but  which may  have  applicability for  some water supply  systems when
considering site-specific conditions, such as the type of SOC.
     Additional Technologies
     Technologies which experimentally have been  shown  to  have potential for
removing  SOCs  but  for which insufficient  data exist  to fully  evaluate the
tech  -ogy.
      rior to  implementing  a technology,  site-specific  engineering studies of
the : :;thods  identified to remove SOCs should  be  made.   The engineering study
shou-;:  select  a  technically  feasible   and  cost-effective  method  for  the
specific  location where  SOC'removal  is  required.   In  some cases,  a simple
survpy may suffice, whereas in  others, extensive chemical analysis, design and
performance  data will  be  required.   The  study  may  include  laboratory tests
and/or  pilot-plant  operations to  cover  seasonal  variations,  preliminary
desirtns ar;.-; estimated capital and operating costs for full-scale treatment.
                                       1-2

-------
Organization of Document

     This document has  been  organized  into seven sections which  are  outlined

below:
     1.   Introduction;   Discusses  purpose and  scope  of the document,  lists
          the SOCS under  consideration and presents  the organization of  the
          document.

     2.   Description of SOCs;  Presents the chemical  structures,  names,  uses
          and chemical/physical properties for each SOC.

     3.   Description of  Available  Technologies;   Summarizes  the  available
          technologies for SOC removal, provides process descriptions of each
          available technology and  ranks  the  technologies according  to  their
          applicability  for SOC treatment  (most  applicable,  other applicable,
          and additional technologies).

     4.   Most Applicable Technologies;  Summarizes the available treatability
          information to  date  for  the  most  applicable  technologies  and
          develops design criteria  for each  SOC that can be  removed  by  these
          technologies.

     5.   Other Applicable  Technologies;   Summarizes the  available  treata-
          bility information  to date for the  other  applicable technologies and
          develops design criteria  for each  SOC that can be  removed  by  these
          technologies.

     6.   Additional   Technologies;    Summarizes the   available  treatability
          information to date  for any  additional technologies that show  some
          potential for  removing SOCs.

     7.   Costs;  Develops cost  information  for the applicable  technologies.
          Also presents  cost  for the removal  of Tetrachloroethylene by GAC and
          PTA.

     8.   References
                                      1-3

-------
                                                 FIGURE 2-1
 ACRYLAMIDE
         STRUCTURAL FORMULA

                          0
        	    H          ^
                             	N



                         X      \
                H          H
_ Chemica.l Nqmej  2. - Propenamide


 Common/Trade Names:  Propenamide, Acrylic amide, Propenoic

                     acid amide, Ethylenecarboxamide, Akrylamid
ALACHLOR
       STRUCTURAL  FORMULA


                  ,C2H5
                  C9H
2n5
Chemical Name:   2 - Chloro-2'6'- diethyl-N-

               methoxymethylacetanilide


Common/Trade Names: Metachlor; CP50I44, Lasso, Lazo,

                    Alanex

-------
                            2.  DESCRIPTION OF SOCs

     This section provides  the  names, uses,  chemical/physical  properties and
chemical structures of each of the  29 SOCs.   The potential routes of entry of
these SOCs into the environment are also presented at the end of this section.

ACRYLAMIDE
     Chemical/Physical Properties
          Molecular Weight:              71.08
          Melting Point:                 84-5 C
          Vapor Pressure:               2 mm Hg at 87 C
                                        10 mm Hg at 117 C
          Solubility in Water:          2.15 x 10  mg/L (30 C)
     Uses
     Acrylamide is principally used in the synthesis of water-soluble polymers
which are used as flocculants in potable water treatment and wastewater treat-
ment plants,  paper-making aids,  thickeners,  and additives  for  enhanced oil
recovery.  It  is also used frequently as  a component of photopolymerizable
systems.  Acrylamide monomer is marketed as a chemical grouping agent and soil
stabilizer utilized in dams, foundations,  and tunnels.  The structural formula
of acrylamide is shown on Figure 2-1.

ALACHLOR
     Chemical/Physical Properties
          Molecular Weight:              269.77
          Melting Point:                 40-41 C
          Vapor Pressure:               2.2 x 10   mm Hg at 25 C
          Solubility in Water:          140 mg/L (23 C)
                                        242 mg/L (25 C)
     Uses
     Alachlor is  a preemergence  selective herbicide  used in  several  crops,
including soybeans, corn and  peanuts.   It is resistant to photodecomposition,
with no ultraviolet  absorption  above 280  nm.   The  structural formula  of
alachlor is shown on Figure  2-1 .
                                      2-1

-------
ALDICARB
     Chemical/Physical Properties
          Molecular Weight:             190.25
          Melting Point:                99-100 C
          Vapor Pressure:               1 x 10   mm (25 C)
          Solubility in Water:          6,000 mg/L (25 C)
     Uses
     Aldicarb  is  a systemic  insecticide  used mostly  on cotton.   It  is  also
used as an insecticide on potatoes, peanuts, and sugar beets, and as a nemato-
cide in  soils.  The  structural  formula of  aldicarb  is shown on  Figure 2-2,
along with two of its breakdown products - sulfoxide and sulfone.

ATRAZINE
     Chemical/Physical Properties
          Molecular Weight:      '       215.68
          Melting Point:                171-174 C
          Vapor Pressure:               3 x 10~"  mm Hg at 20 C
          Solubility in Water           70 mg/L at 25 C
     Uses
     Atrazine is a preemergence herbicide used for season-long weed control in
corn, sorghum, and other crops.  In noncropped areas, it is applied at highest
rates for  nonselective weed  control.   The  structural formula of  atrazine  is
shown on Figure 2-3.

-------
                                             FIGURE 2-2
ALDICARB
      STRUCTURAL FORMULA

               CH3
                     0
                     II
        CH3-S —C —CH = N-0-C-NH-CH3



        	  CH,
Chemical Name: 2 methyl  -2 (methylthio) propionaldehyde -

             0- (methylcorbamoyl)- examine


Common/Trade Names:  UC 21149, Temik, Ambush
ALDICARB BREAKDOWN PRODUCTS


      ALDICARB SULFOXIDE
            0 CH3
                   0
                    II
        CH3-S — C— CH — N —0—C —NH—CH5

              CH,
      ALDICARB SULFONE
                           0
                           i
    0  CH3
     n   I 3
CH--S — C — CH = N — 0—C—NH—CH3
        I

    0  CH3

-------
                                                    FIGURE 2-3
ATRAZINE
        STRUCTURAL FORMULA
                          Cl
                          I
                                   H

                HN	C^s ^C	N	CH2	CH3
                          N
            H3C—CH
                 CH
Chemical Name:  2 - Chloro - 4 - ethylamino -6-isopropylamino
               S - triazine

Common / Trade Names :  G - 30027 ®, Gesaprim ®, AAtrex © ,
                      Atranex®, Crisazine®, Vectal® SC, •
                      Atratol®A, Candex®, Fenamine®,
                      Fenatrol®, Geigy 30, 027f Gesoprim,
                      Hugazin®, Inakor® f Primatol, Primatol A,
                      Primaze®,Radazin®, Strazine, Weedex® A,
                      Zeazin®, Cekuzina®-T

-------
CARBOFURAN
     Chemical/Physical Properties
          Molecular Weight:             221.3
          Melting Point:          -      150-1525C
          Vapor Pressure:               2 x 10~  mm  (33 C)
          Solubility in Water:          700 mg/L (25 C)
     Uses
     Carbofuran is  a systemic insecticide  widely  used to  control corn root-
worms.   It  is  also used  as an  ascaricide  and  nematocide.   The structural
formula of carbofuran is shown on Figure 2-4.
CHLORDANE
     Chemical/Physical Properties
          Molecular Weight:             409.8
          Melting Point:                106 C
          Vapor Pressure:               1 x 10~  mm Hg  (20 C)
          Solubility in Water:          75 cis:25 trans mixture - 0.056 mg/L
     Uses
     Technical chlordane consists of 60  to  75% isomers of chlordane and 25 to
40% of related compounds including  two isomers of heptachlor  and  one each of
enneachloro  and   decachlorodicyclopentadiene.    The  solubility  of  technical
grade chlordane has been reported  as 9 ug/L.  This pesticide  is  used against
coleopterous  pests,  termites,  wood-boring  beetles,  and in  ant baits.   The
structural formula of chlordane is shown on Figure 2-4.
                                      2-3

-------
DIBROMOCHLOROPROPANE
     Chemical/Physical Properties
          Molecular Weight:             236.36
          Boiling Point:           -     196 C
          Vapor Pressure:               0.8 mm Hg  (21 C)
          Solubility in Water:          1,000 mg/L  (25 C)
     Uses
     Dibromochloropropane  (DBCP) is  primarily used as  a soil fumigant against
nematodes,  and is  used  on  a variety of  crops,  including  cotton,  soybeans,
fruits, nuts,  okra, and  snap beans.   The  structural formula of dibromochloro-
propane is shown on Figure 2-5.

O-DICHLOROBENZENE.
     Chemical/Physical Properties
          Molecular Weight:             147.01
          Melting Point:                -17 C
          Boiling Point:                179 C
          Vapor Pressure:               1 mm Hg  (20 C)
                                        1.5 mm Hg  (25 C)
                                        1.9 mm Hg  (30 C)
          Solubility in Water:          100 mg/L  (20 C)
                                        145 mg/L  (25 C)
     Uses
     o-Dichlorobenzene is  used  as  a solvent for waxes, gums,  resins,  tars,
rubbers oils,  and asphalts.   It  is also an insecticide for termites and locust
borers and  is  a fumigant.   It is also used  as  a degreasing agent for metals,
leather,  wool,  and is  an  ingredient  of  metal  polishes.   Technical  grade
 ontains p-dichlorobenzene (17%) and m-dichlorobenzene ' (2%).   The structural
formula for o-dichlorobenzene is shown on Figure 2-5.
                                       2-4

-------
                                                    FIGURE 2-4
CARBOFURAN
         STRUCTURAL FORMULA
    H3C—NH—
Chemical Names:  2, 3- Dihydro - 2,2-dimethyl-7- benzo-furanol
                methylcarbamate;  2, 3- Dihydro -2,2 -dimethyl-
                7- benzo - furany Imethylcarbamate

Common/Trade Names:  furadan; NIA  10,242; ENT 27,164
CHLORDANE
        STRUCTURAL FORMULA
                 Cl
Chemical Name:  1, 2, 4, 5, 6,7, 8, 8 - octachlor - 2, 3, 3a,4,7,7a -
               hexahydro - 4, 7- methano- I  H - indene
Common/Trade Names:  Chlordan®, Belt®,Chlor Kil®,Corodane®,
                     Kypchlor®, Niran®, Octochlor®,0rthoklor®,
                     Synklor®, Topiclor 20®,Velsicol  1068®,
                     Chlorogran®, Prentox®, Penticklor®

-------
                                             FIGURE 2-6
DIBROMOCHLOROPROPANE
       STRUCTURAL FORMULA

              Br  Br Cl

              I   I   I
          H —C—C —C—H

              I   I   I
              H   H   H
-Chemical Name: 1, 2 - dibromo- 3- chloropropane


Common/Trade Names : DBCP, Nemafume®, Nemanax ©,

                  Nemaset®, OS 1897, Fumazone, Nemagone

o-DICHLOROBENZENE
            STRUCTURAL FORMULA
                   Cl
Chemical Name :  1,2- dichlorobenzene

Common/ Trade Names '  None

-------
CIS - 1,2-DICHLOROETHYLENE  .
     Chemical/Physical Properties
          Molecular Weight:             96.95
          Melting Point:                -80.5 C
          Boiling Point:                60 C
          Vapor Pressure:               210 mm Hg  (25 C)
          Solubility in Water:          800 mg/L  (20 C)
     Uses
     Cis-l,2-Dichloroethylene  is used  as  a  solvent  for  fats,  phenol,  and
camphor; it  is  also  used to retard fermentation.  Other  uses are for refrig-
eration  and  as  an additive  to dye  and  lacquer solutions.   The structural
formula of cis-l,2-dichloroethylene is shown on Figure 2-6.

TRANS-1,2-DICHLOROETHYLENE
     Chemical/Physical Properties
          Molecular Weight:             96.95
          Melting Point:                -50 C
          Boiling Point:                48 C
          Vapor Pressure:               200 mm Hg  (20 C)
          Solubility in Water:          600 mg/L  (20 C)
     Uses
     Trans-l,2-dichloroethylene  is  used as  a solvent  for fats,  phenol,  and
camphor;  it is also used to retard fermentation.  Other uses are for refriger-
ation and as  an additive to dye and lacquer solutions.   The structural formula
for trans-l,2-dichloroethylene is shown on Figure 2-6.

-------
 1,2-DICHLOROPROPANE

      Chemical/Physical  Properties
          Molecular Weight:             112.99
          Melting Point:           .     -100 C
          Boiling Point:                96.8 C
          Vapor Pressure:               42 mm Hg  (20 C)
                                        50 mm Hg  (25 C)
                                        66 mm Hg  (30 C)
          Solubility in Water:          2,700 mg/L  (20 C)

      Uses

      1i2-Dichloropropane is  used as  an oil and fat solvent, a degreaser and a

 component in  dry  cleaning  fluids.   It is also  a  lead  scavenger for antiknock

 fluids  and  is  a  soil  fumigant  for  nematodes.    The  structural  formula  of
 1,2-dichloropropane  is  shown on Figure 2-7.


 2,4-D

     Chemical/Physical  Properties

          Molecular Weight:             221.04
          Melting Point:                136-140 C
          Solubility  in Water:          540 mg/L  (20 C)

     Uses

     2,4-D is used  as  an herbicide  for control of broadleaf plants  and  as a
plant growth-regulator.  It  is  also  used  for  forest brush control.   Technical
2,4-D  has  been reported to contain hexachlorodioxins,  at less than  10  ppm.
The structural formula  for 2,4-D is shown on Figure 2-7.
                                      2-6

-------
                                                   FIGURE 2-6
 cis-1,2- DICHLOROETHYLENE
         STRUCTURAL FORMULA
                    Cl       Cl

                     xc=cx
                     /   c\
                    H       H
 Chemical Names:  cis- 1, 2- dichloroethylene ;  cis-1, 2-dichloroethene



 Common/Trade Names:  cis-acetylenedichloride,  NCI-C5I58I
trans -1,2- DICHLOROETHYLENE
              STRUCTURAL FORMULA




                  Cl        H
                  H        Cl





 Chemical Names : trans - 1, 2 - dichloroethylene ; trans - 1, 2-dichloroethene



 Common/Trade Name :  trans-acetylenedichloride

-------
                                                  FIGURE 2-7
1,2- DICHLOROPROPANE
            STRUCTURAL  FORMULA

                    Cl  Cl

                     I   I
               CH, —C —C—H

                     I   I
                     H   H
Chemical Name '•   1,2- dichloropropane

Cowman/Trade Names :  propylenechloride, propylenedichloride
2,4-D
       STRUCTURAL FORMULA
Chemical Name :  ( 2, 4 - Dichlorophenoxy ) acetic acid

Common/Trade Names :  Hedonal, Innoxol

-------
                                                 FIGURE 2-B
EPICHLOROHYDRIN
            STRUCTURAL  FORMULA
             x°\
            CH2 —CH —CH2—Cl
Chemical Names:  3 -Chloropropene - 1,2-oxide; (Chloromethyl)
                oxirane ; 3 - Chloro -1,2- epoxypropane ;
                (Chloromethyl) ethylene oxide ; oC- Epichlorohydrin;
                I,- 2 - Epoxy - 3 - chloro propane ;
                2, 3 - Epoxypropylchloride

Common/Trade Names :  Glycerol epichlorohydrin ; NCI-C0700I;
                    SKEKLG;  ECH
ETHYLBENZENE
             STRUCTURAL  FORMULA
                            CH2CH3
Chemical Name :  ethylbenzene

-------
 EPICHLOROHYDRIN

      Chemical/Physical Properties
          Molecular Weight:             92.53
          Melting Point:                -26 C
          Boiling Point:                116/117 C
          Vapor Pressure:               12 mm Hg  (20 C)
                                        22 mm Hg  (30 C)
          Solubility in Water:          60,000 mg/L  (20 C)

      Uses

      Epichlorohydrin is  used as a  solvent for natural  and synthetic resins,

 gums,  cellulose,  esters  and ethers,  paints,  varnishes,  nail  enamels  and

 lacquers, and as a cement  for celluloid.   Epichlorohydrin is also used in the

 manufacture  of  epoxy  resins formed  by the  reaction  of  epichlorohydrin  and

 bisphenol  A to  produce diglycidyl  esters  of bisphenol  A.   The structural

 formula for epichlorohydrin is presented on Figure 2-8.
ETHYLBENZENE

     Chemical/Physical Properties

          Molecular Weight:             106.16
          Melting Point:                -95 C
       •--Boiling-Point r.—	136.25 C
          Vapor Pressure:               7 mm Hg (20 C)
                                        12 mm Hg (30 C)
          Solubility in Water:          140 mg/L (15 C)
                                        152 mg/L (20 C)

     Uses

     Ethylbenzene is used in the manufacture  of styrene and acetophenone.  It

is  also  a  constituent  of  asphalt  and  naptha.   The  structural  formula  of
ethylbenzene is shown on Figure 2-8.
                                      2-7

-------
ETHYLENE DIBROMIDE
     Chemical/Physical Properties
          Molacular Weight:             187.88
          Melting Point:                10 C
          Boiling Point:                131-132 C
          Vapor Pressure:               11 mm Hg (25 C)
          Solubility in Water:          4,310 mg/L  (30 C)
     Uses
     Ethylene dibromide  (EDB)  is a widely used fumigant  and  highly  effective
against a variety of insects and nematodes.  It is often used in the  treatment
of  fruits  and vegetables.   The structural  formula of EDB  is  shown on  Fig-
ure 2-9.
                                      2-8

-------
                                                       FIGURE 2-9
   EDB
          STRUCTURAL FORMULA

                Br  Br
                 I   I
            H — C—C — H

                 II
                H   H
Chemical Name-  1, 2 - Dibromoethane

Common/Trade Names :  EDB, ethylene dibromide, ethylene bromide,

                     Dowfume  W 85

-------
                                                  FIGURE 2-10
 HEPTACHLOR
        STRUCTURAL  FORMULA
                 Cl
           C!
Cl
Chemical Name :  1, 4, 5, 6, 7, 8, 8 - Heptachlor - 3a, 4, 7, 7a •
               tetrahydro -4, 7-methanoindene

Common/Trade Names : E 3314, Velsicol 104, Drinox, Heptamul
HEPTACHLOR  EPOXIDE
        STRUCTURAL FORMULA
Chemical Name :   1, 4, 5, 6, 7, 8, 8 - heptachloro - 2,3-epoxy -
               3a, 4, 7t 7a - tetrahydro - 4, 7 - methanoindene

Common/Trade Names:  Velsicol  53-CS-I7; ENT  25,584

-------
HEPTACHLOR
     Chemical/Physical Properties
          Molecular Weight:             373.53
          Melting Point:           -     95-96 C
          Vapor Pressure:               3 x 10~  mm Hg (21
          "Solubility in Water:          0.056 mg/L (25 C)
     Uses

     Heptachlor is  an  insecticide used on  cotton  for control of  boll weevil

and  bollworms.   Technical  product contains  72% heptachlor  and  28%  related

compounds.  The structural formula of heptachlor is shown on Figure 2-10.


HEPTACHLOR EPOXIDE

     Chemical/Physical Properties
          Molecular Weight:             389.83
          Melting Point:                157-16C
          Vapor Pressure:                3 x 10*
          Solubility in Water:          0.350 mg/L
Melting Point:                157-160 C
Vapor Pressure:               3 x 10~  mm Hg at 25 C
     Uses

     Heptachlor epoxide is  a degradation product  of heptachlor.   The  struc-
tural formula of heptachlor epoxide is shown on Figure 2-10.
                                      2-9

-------
LINDANE
     Chemical/Physical Properties
          Molecular Weight:             290.85
          Melting Point:                112.5 C
          Boiling Point:                323 C
          Vapor Pressure:             '  9.4 x 10   mm Hg (20 C)
          Solubility in Water:          17 mg/L (24 C) (99% purity)
     Uses
     Lindane is a commercial  insecticide  containing  at  least 99% of the gamma
isomer of 1,2,3,4,5,6-hexachlorocyclohexane.  It has  been  used  in both domes-
tic  and commercial  settings  for  numerous agricultural  applications  and  in
sprays and dusts for livestock and pets.  The structural formula of  lindane is
shown on Figure 2-11.

METHOXYCHLOR
     Chemical/Physical Properties
          Molecular Weight:             345.65
          Melting Point:                98 C
          Solubility in Water:          0.04 mg/L (24 C)  (99% purity)
                                        0.26 mg/L (25 C)
     Uses
     Methoxyclor is  an  insecticide used  in  the home and  garden, on  domestic
animals for fly control, for  elm bark-beetle  vector  of Dutch elm disease,  and
for blackfly larvae  in  streams.  The  technical  product  contains 88% of the p,
p'-isomer, the  bulk of  the remainder being  the o, p-isomer.   The  structural
formula of methoxyIchor is shown on Figure 2-11.
                                     2-10

-------
                                                     FIGURE 2-11

LINDANE


              STRUCTURAL FORMULA
                   Cl      Cl
                     \	/
                  -1
                   Cl      Cl

Chemical Name:  gamma (3) isomer of 1,2,3,4,5,6-
               Hexachlorocyclohexane
Common/Trade Names:   5-HCH, 5 benzene hexachloride, gamma
                      benzene hexachloride, gamma hexachlor,
                      ENT 7796, Aparsin, Aphtiria, ff BHC,
                      Gammalin, Gamene, Gamiso,  Gammaexane,
                      Gexane, Jacutin, Kwell, Lindafor, Lindatox,
                      Lorexane, Ouelada, Streunex, Tri-6, Viton

METHOXYCHLOR
         STRUCTURAL  FORMULA
                                      OCH-
                           \^/
                       CCI
Chemical  Names:  1, I1 ( Z,2,2 - Trichloroethylidene ) - bis
                 £4-methoxy benzene]] ;  J, 1,1 - trichloro- 2,2- bis
                 ( p- methoxy-phenyl) ethane;  2, 2-di-p-anisyl -
                 1,1,1 - trichloroethane

Common/Trade Names:  DMDT, methoxy-DDT, Marlate

-------
                                                  FIGURE 2-12
 MONOCHLOROBENZENE
             STRUCTURAL  FORMULA
                      Cl
 Chemical Nome :  chlorobenzene
 Common/Trade Names:  phenylchloride, benzene chloride
POLYCHLORINATED  BIPHENYLS

             STRUCTURAL FORMULA
             XXX     X
             X      XX      X
              X represents H or Cl

Common/Trade Names:  PCBs, chlorinated biphenyls, chlorobiphenyls,
                    Aroclor, Clophen, Fenclor, Kanechlor,
                    Phenochlor, Pyralene, Santotherm

-------
MONOCHLOROBENZENE
     Chemical/Physical Properties
          Molecular Weight:             112.56
          Melting Point:                -46 C
          Boiling Point:                132 C
          Vapor Pressure:               8.8 mm Hg  (20 C)
                                        11.8 mm Hg (25 C)
                                        15 mm Hg (30 C)
          Solubility in Water:          500 mg/L (20 C)
     Uses
     Monochlorobenzene  is  used in  the manufacture of  aniline,  insecticides,
phenol, and chloronitrobenzene.  It has also been used as a solvent for paints
and as a heat transfer medium.  The structural formula of monochlorobenzene is
shown on Figure 2-12.

POLYCHLORINATED BIPHENYLS
     Chemical/Physical Properties
                                        Aroclor 1242             Aroclor 1254
          Molecular Weight:                  258                      326
          Boiling Point (C):               325-366                  365-390
          Vapor Pressure (mm Hg @ 20 C):   0.001                   0.00006
          Solubility in Water (mg/L):      0.24                    0.056
     Uses
     PCBs are mixtures  of  chlorinated biphenyls.  The  degree of chlorination
is usually indicated by the commercial name.  The Aroclor name includes.-a four
digit  number.   The first  two digits  indicate  that  the mixture  contains  bi-
phenyls  (12), triphenyls (54),  or  both (25,44); the last two digits  give  the
weight percent  of chlorine  in the  mixture (e.g. Aroclor  1242  contains  bi-
phenyls with approximately 42 chlorine by weight).  It has  been  reported that
PCBs  are soluble  in water  at  0.04-0.2  ppm.   PCBs   are  used  in  electrical
capacitors,  electrical  transformers,  vacuum   pumps,   and  gas-transmission
turbines.  PCBs were  formerly used in the  United  States as hydraulic fluids,
plasticizers, adhesives,  fire  retardants,  wax  extenders,  dedusting  agents,
pesticide extenders,  inks, lubricants, cutting oils,  heat  transfer  systems,
and  in carbon-less reproducing  paper.  The  structural  formula  of  PCBs  are
shown on Figure 2-12.
                                     2-11

-------
PENTACHLOROPHENOL

     Chemical/Physical Properties

          Molecular Weight:             266.35
          Melting Point:                188-191 C^
          Vapor Pressure:               1.1 x 10~  mm Hg (20 C)
          Boiling Point:                Decomposes at 309-310 C
          Solubility in Water:          5 mg/L (0 C)
                                        14 mg/L (20 C)
                                        35 mg/L (50 C)

     Uses

     Pentachlorophenol is  a fungicide and bactericide used  in the processing

of  cellulosic  products,   starches,  adhesives,  leathers,  oils,  paints,  and

rubbers.  It  is incorporated  into  rug shampoos and textiles  to control mildew

and used in food processing plants to control mold and slime.  It is also used

in  the preservation of  wood  and  wood products.   The  structural  formula  of

pentachlorophenol is shown on Figure 2-13.


STYRENE

     Chemical/Physical Properties

          Molecular Weight:             104.14
          Melting Point:                -31 C
          Boiling Point:                145.2 C
          Vapor Pressure:               5 mm Hg (20 C)
                                        9.5 mm Hg  (30 C)
          Solubility in Water:          280 mg/L (15 C)
                                        300 mg/L (20 C)
                                        400 mg/L (40 C)

     Uses

     Styrene  is used  in  the manufacture  of polystyrene  plastics,  synthetic

rubber,  ABS  plastics,  resins,  insulators, and protective coatings (styrene-

butadiene,  latex,  alkyds).   The structural  formula  of styrene  is shown  on

Figure 2-13.
                                     2-12

-------
PENTACHLOROPHENOL

        STRUCTURAL  FORMULA
                OH
          Cl .    J^    .Cl
                                                  FIGURE 2-13
Chemical Name :  Pentachlorophenol
Common/Trade Names: Dowicide  7^, DP-2 Centimicrobial, EC-7,
                    EP 30,  Fungiben, Grundier, Arbezol, Lauxtol,
                    Lipoprem, PCP, Pehchlorol, Penta, Pentacon®
                    Penwar®, Permasan, Preventol  P, Priltox,
                    Santaphen 20®
STYRENE
        STRUCTURAL  FORMULA
                CH = CH2
Chemical Name :  Ethenylbenzene
Common/Trade Names:  Styrol, styrolene, cinnamene, cinnamol,
                     phenylethylene, vinyl benzene

-------
TOLUENE
     Chemical/Physical Properties
          Molecular Weight:             92.13
          Melting Point:                -95 C
          Boiling Point:                110.6 C
          Vapor Pressure:               10 mm Hg  (6.4 C)
                                        22 mm Hg  (20 C)
                                        40 mm Hg  (31.8 C)
          Solubility in Water:          470 mg/L  (16 C)
                                        515 mg/L  (20 C)
     Uses
     Toluene is used  in the manufacture of benzoic  acid,  benzaldehyde, medi-
cines, dyes, perfumes,  and  explosives  such  as  trinitrotoluene (TNT).  It also
serves as a solvent for paints, resins, gums, and PVC joints, and as a diluent
and thinner in nitrocellulose  lacquers.  The structural formula of toluene is
shown on Figure 2-14.

TOXAPHENE
     Chemical/Physical Properties
          Molecular Weight:             412
          Melting Point:                65-90 C
          Boiling Point:                Decomposes above 120 C
          Vapor Pressure:               0.2-0.4 mm Hg (20 C)
          Solubility:                    3 mg/L (25 C)
     Uses
     Toxaphene is  a complex mixture of at least 175 compounds of  which the
structure of fewer than 10 are known.  An approximate overall empirical formula
is  C   H   Cl  .   Toxaphene  is  a  chlorinated camphene that  is  67-69  percent
     _LU XU o
chlorine.  It is widely used as a foliage  insecticide  on a variety  of food,
feed, and fiber crops.  The  largest use is  on  cotton crops.   Other major uses
are for cattle and swine and on soy beans,  corn,  wheat,  peanuts,  lettuce, and
tomatoes.  The structural formula of  toxaphene  is shown on Figure 2-14.
                                     2-13

-------
2,4,5-TP
     Chemical/Physical Properties
          Molecular Weight:             269.53
          Melting Point:                179-181 C
          Solubility in Water:          140 mg/L (25 C)
     Uses
     2,4,5-TP  (Silvex)  has been used for woody  plants on crop areas  such as
pastures and  rangelands.   It is also used for weed control on rice  and sugar
cane.  The structural formula of 2,4,5-TP is shown on Figure 2-15.

XYLENES
     Chemical/Physical Properties
                             o-xylene         m-xylene         p-xylene
     Molecular Weight:     106.16           106.16           106.16
     Melting Point:        -25 C            -48 C            13 C
     Boiling Point:        144 C            139 C            138.4 C
     Vapor Pressure:       5 mm Hg (20 C)   6 mm Hg (20 C)   6.5 mm Hg (20 C)
                           9 mm Hg (30 C)   11 mm Hg (20 C)  12 mm Hg (30 C)
     Solubility in Water:  175 mg/L  (20 C)      	          198 mg/L (25 C)
     Uses
     O-Xylene is used in  manufacture of  phthalic anhydride,  and insecticides.
O-Xylene also serves as  a solvent for resins,  lacquers,  enamels,  and rubber
cements.  M-Xylene  and  p-xylene are found in  high  octane gasoline.   P-Xylene
is used  in  the manufacture of  terephthalic acid.   The structural formulas of
the xylenes are shown on  Figure 2-15.
                                     2-14

-------
                                                    FIGURE 2-14
TOLUENE
             STRUCTURAL  FORMULA
                      CH3
Chemical Name: Methylbenzene
Common/Trade Names :  Phenylmethane ,  Tolnol
                     Metacide
TOXAPHENE
        STRUCTURAL FORMULA
        This chlorinated camphene is 67-69 per cent
        chlorine, where n is usually equal to 8 .
Common/Trade Names:
Chlorinated camphene, camphechlor,
polychlorocamphene, synthetic 3956,
Alltox, Geniphene, Motox, Penphene,
Phenacide, Phenatox, Stroban -T,
Toxakil

-------
                                                    FIGURE 2-15
2,4,5-TP
             STRUCTURAL FORMULA
                          Cl
                                  CH3
                                  CH
                                  COOH
Chemical Name :  2-12,4,5- trichlorophenoxy ) propionic acid
Common /Trade Names:  Fenoprop, Garlon, Kuron, Silvex
   XYLENES
     CH-
              STRUCTURAL  FORMULA
 CH
CH
    ortho
meta
para
Chemical Names:  o-1, 2-dimethylbenzene ; m- 1, 3 - dimethylbenzene ;
                p-1, 4-dimethylbenzene
Common/Trade Name :  xylol

-------
Potential Sources of Entry


     Many of the SOCs have agricultural  applications and are transported into
drinking water supplies by runoff and by percolation.  The following SOCs have

agricultural applications:

       -  alachlor              -     -  EDB
       -  aldicarb                   -  heptachlor
       -  atrazine                   -  heptachlor epoxide
          carbofuran                 -  lindane
       -  chlordane                  -  methoxychlor
       -  DBCP                       -  monochlorobenzene
       -  1,2-dichloropropane        -  2,4,5-TP
          o-dichlorobenzene          -  toxaphene
       -  2,4-D

     Another source of contamination is industrial point discharge in the form

of waste effluent,  spills or leaks, or  runoff  from maintenance applications.

The following SOCs are used as industrial, organic solvents:

          1,2-dichloropropane        -  epichlorohydrin
          cis-l,2-dichloroethylene   -  monochlorobenzene
          trans-l,2-dichloroethylene -  toluene
          o-dichlorobenzene          -  o-xylene

     The  following  SOCs   are used in   industrial  manufacturing   (with  the

specific industries in parenthesis):

          acrylamide (polymers)
          cis-l,2-dichloroethylene  (refridgerant, dye, and lacquer)
          trans-l,2-dichloroethylene (refridgerant, dye, and lacquer)
       -  epichlorohydrin (epoxy resins)
       -  ethylbenzene (styrene and acetophenone)
       -  monochlorobenzene  (aromatics)
       -  PCBs (electrical)
       -  styrene  (polymer)
          toluene  (medicine,  dye,  and perfume)
          o-xylene  (phthalic  anhydride and insecticides)

     M-xylene  and  p-xylene  are  components  of  high  octane  gasoline  and  can
enter drinking water supplies as a result of  gasoline  spills.  Pentachloro-

phenol  is  an  industrial  fungicide  and   can  enter  the  drinking water  after

maintenance applications.
                                     2-15

-------
                                       TABLE 3-1

                       SUMMARY OF TREATMENT DATA FOR THE 29  SOCs
Activated
Carbon
B
B,F
P,F
P,F
P,F
B,F
•" B,P
B,P,F
B,P,F
- B',P
e B,P,F
ene B,P
B,F
B,P
B,P,F
B
B,F
B
B,P,F
B,F
, B,P
B,P,F
B,P,F
B
v B,P
^ B
B,F.
< B
// r B : •
B,F
Reverse
Conventional
Aeration Osmosis Oxidation

B



B
B

P
B,P
B,P
B,P,F
B,P

B,P
B,P,F




B
F

F
B,P


B,P,F
B,P,F
B,P,F
B




B
B


B
B
B
B
B
B
B


B,P
P
B



B


B
B
B

B



B
B


B
B
B
B
B
B
B
B
B
B
B
B
P

B
B
B

B
B
B
Treatment
B
B, F



B, F
B, F






B



B
B, P





F

B,F
F
F
F
Acrylamide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
DBCP
1,2-Dichloropropane
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
o-Dichlorobenzene
2,4-D
EDB
Epichlorohydrin
Ethylbenzene
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
PCBs
Pentachlorophenol
Styrene
Toluene
2,4,5-TP
Toxaphene
o-Xylene
m-Xylene
p-Xylene
                                sy

Note:

     "B" denotes treatment data available from bench-scale testing.
     "P" denotes treatment data available from pilot-scale testing.
     "F" denotes treatment data available from full-scale testing.
     o-xylene, m-xylene and p-xylene are counted as one compound  (total xylenes)

-------
                          3.  AVAILABLE TECHNOLOGIES

     This section provides  an overview  of  the various technologies which have
been considered for removing the  29  SOCs  from drinking water.  The results of
a literature review of  the  treatment technologies used to  remove  each of the
29 SOCs from drinking water are presented in Table 3-1.  The level of develop-
ment of each technology is indicated by the type of evaluations that have been
performed:  bench  (B) ,  pilot  (P) ,  and  full-scale  (F)  testing.   Bench-scale
testing will generally indicate whether or not a technology is feasible; pilot
testing is  used in establishing  feasibility and  design  criteria; full-scale
testing provides  an  evaluation of  the process  under typical  operating con-
ditions.

Activated Carbon
     Activated carbon has been  used to treat all  29  SOCs,  with the exception
of  epichlorohydrin,  for which  no  treatability information  has  been  found.
Extensive  bench-scale  testing  either  in  the  form  of  isotherm  or  dynamic
minicolumn  testing  has  been performed,  along with some  pilot  and  several
full-scale  evaluations.  Several of  the  full-scale installations  involved
either partial replacement of media  filters with  carbon  or powdered activated
carbon (PAC) addition in conjunction with coagulation/sedimentation.
     Extensive testing  of carbon  absorption has proven it  to be  effective in
the removal of  most of the SOCs.   Therefore,  it can be  regarded  as  the most
applicable technology in removing SOCs from drinking water.

Aeration
     Aeration has been used to treat 15 of  the  29  SOCs,  mostly  in  pilot-scale
testing  of air stripping  equipment.   These  compounds  represent  the  more
volatile SOCs, many of which are chlorinated solvents.
     In  several of  the  full-scale evaluations,  the  SOC removal  has  been
incidental  as  these  units  were  not  specifically designed for SOC  removal.
Aeration has been shown to  be effective in  removing  volatile SOCs and should
thus be  considered  as  an  applicable technology.   However, transfer of SOCs
                                      3-1

-------
from water  to  air might be a concern depending  on  proximity to human habita-
tion, treatment plant worker exposure, local air quality, local meteorological
conditions, daily quantity of processed water and contamination level.

Reverse Osmosis
     Reverse  osmosis  (RO)  along  with other  membrane  technologies such  as
ultrafiltration  (UF) have been  tested  for removing  15 SOCs from water.   Test-
ings have  been primarily bench scale,  although some  pilot-scale evaluations
have been recently conducted.
     While  some removals have been reported,  especially for pesticides,  it is
not always  clear  whether the  removal  is  a result of rejection by the membrane
or  adsorption  onto  the membrane.   Some  bench-scale  testing  indicates  that
adsorption  of  particular SOCs  may occur,  and  that  once adsorption has  oc-
curred, desorption may be difficult.
     Because there is limited treatability information on RO, much of which is
bench scale, and  because  there  is some question as to the  mechanism by  which
SOC removal occurs, RO should be considered an additional technology which re-
quires further development.

Oxidation
     Oxidation has  been used to  treat 20 of  the  29  SOCs,  primarily through
bench-scale evaluations.  The oxidation  techniques  which have  been  evaluated
include  ozone,  chlorine,  chlorine  dioxide,  hydrogen  peroxide,  potassium
permanganate, and ultraviolet light, either  alone or  in combination  with some
of the other oxidants.
     While  oxidation may be  effective  in degrading certain  SOCs,  especially
those with unsaturated bonds, there is considerable concern about the degrada-
tion products  formed by the  oxidation of each  of  the  SOCs.   These reaction
products  may  be  toxic  in  themselves  and  may resist  further  degradation,
requiring excessive oxidant dosages for further destruction.  Because there is
limited treatability  information  on oxidation, much of  which  is  bench  scale,
oxidation  should be considered  as an  additional  technology that  requires
further development.
                                      3-2

-------
Conventional Treatment
     Conventional  treatment  (coagulation/sedimentation/filtration)  has  been
used  to  treat  10 SOCs,  six  of  which  have been  evaluated  in  full-scale
installations.   The  removals for most  of the SOCs have  been poor,  typically
less than 10  percent removal.   It should also be  noted  that influent concen-
trations  in  much of this  testing  have  been very  low,  typically  less  than
5 ug/L.
     Since  conventional  treatment  is  of limited  effectiveness in  removing
SOCs, it  should  be  considered as an  additional technology  of  limited appli-
cability.

Summary of Available Technologies
     Based on the review  of treatment  data for  the  29 SOCs,  the  available
technologies have been divided into the three general categories as follows:
     Most Applicable Technologies
          Granular Activated Carbon
     Other Applicable Technologies
          Packed Column Aeration
     Additional Technologies
          Powdered Activated Carbon (PAC)
          Diffused Aeration
          Oxidation
          Reverse Osmosis
          Conventional Treatment
More detailed descriptions of e.ach of  these  technologies  and  their  removal
jfficiencies for the 29 SOCs are presented in the following sections.
                                      3-3

-------
                                                         FIGURE 4-1
              RAW WATER  INLET
                          TOP  BAFFLE
        APPROX. 505
        FREEBOARD
                              SURFACE WASHER
FILTERED
WATER
OUTLET 	5^2

 LATERALS  -

SUPPORTS  __
                                           SUPPORT LAYERS
                                       CONCRETE
                                       SUB-FILL
                   PRESSURE CONTACTOR
SURFACE WASHERS
SUPPORT LAYERS
            HORMAL WORKING LEVEL
                            WASH
                            Tpnnr.H /
                         GAC BED
                                               OPERATING  FLOOR
                                 INLET

                            V BACKWASH OUTLET
                                BOTTOM CONNECTION
                    GRAVITY CONTACTOR
         SCHEMATICS OF CARBON CONTACTORS

-------
                                                  TABLE  4-1
                                     GAC  ISOTHERM CONSTANTS  FOR  SOCs
                                                                    1,2,3
 SOC                  Mol.  Wt.

 Alachlor              269.8
 Aldicarb              190.3
 Atrazine              215.7
 Carbofuran            221.3
 Chlordane             409.8
 cis-1,2-
   Dichloroethylene      97.0
 DBCP                   236. 4
 o-Dichlorobenzene      147.0
 1,2-Dichloropropane     113.0
 2,4-D                  221.0
 Ethyl benzene           106.2
 EDB                    187.9
 Heptachlor             373.5
 Heptachlor Epoxide     389.8
 Lindane                290.9
 Methoxychlor            345.7
^lonochlorobenzene      112.6
JPCB (Aroclor 1254)      326.0
 Pentachlorophenol       266.4
 Si 1 vex                 255.5
 Styrene                104.0
 Tetrachloroethylene     165.8
 Toluene                 92.1
 Toxaphene              412.0
 trans-1,2-
    Dichloroethylene      97.0
 o-Xylene               106.2
 m-Xylene               106.2
 p-Xylene               106.2


(4)
Carbon Type pH
F4
F4
F4
F4
F3/F4
F4
F4
F4
F4
ANA/F4
F4
F4
F3/F4
F3/F4
F4
NS/F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
6.20
6.3-6.6
7.60
4.30
5.30
6.6-8.0
6.2-6.6
5.6-5.8
6.1-7.3
-
5.6-6.9
6.2-7.1
-
-
4.2-6.9
-
6.50
7.00
4.6-6.8
7.00
9.40
5.1-7.6
4.6-6.7
7.00
6.3-6.7
6.3-6.45
6.70
6.90

K
1/n (umo1e/g)(L/un
0.26
0.40
0.36
0.41
0.33
0.59
0.51
0.38
0.59
0.27
0.53
0.46
0.92
0.75
0.43
0.36
0.35
1.03
0.34
0.38
0.48
0.52
0.45
0.74 .
0.45
0.47
0.75
0.42
1275.0
360.0
787.0
673.0
346.0
30.5
465.0
865.0
46.6
194.0
507.0
53.9
1110.0
2020.0
606.0
223.0
418.0
13270.0
1062.0
479.0
1083.0
341.2
356.0
1182.0
50.5
603.0
410.0
740.0
                                                                                 ,1/n
 Notes:
             "-" = Not Reported
         1.   Source: Miltner  (1987a),  (1987b)
         2.   Data not available for acrylamide, aldicarb sulfone,
             or aldicarb sulfoxide
         3.   For distilled water at room temperature
         4.   Carbon type legend:
                      F4 = Filtrasorb 400
                      F3 = Filtrasorb 300
                      ANA = Aqua Nuchar A
                      NS = Nuchar Special
   K
(mg/g)(L/mg)

   483.55
   133.01
   294.88
   276.41
   190.33
    11.72
   229.35
   263.49
    19.06
    64.46
   176.69
    21.85
  1025.91
  1596.14
   299.75
   112.99
   101.06
 13723.80
   443.53
   205.55
   333.80
   142.98
    95.91
   938.62

   .13.99
   183.69
   234.03
   201.51
1/n

-------
                                                        TABLE 4-2 (Continued)
Name
Styrene
Tet rach I oroethy I ene
Toluene
Toxaphene
trans- 1 , 2-0 i ch loroethy lene
m-Xylene
o-Xylene
p-Xylene
Notes:
                                                                       Carbon Usage (Ibs/KGal)
Inf (ug/L) 10.00
Eff (ug/L) 2.00 5.00 20.00
Usage Rate 0.00238 0.00231
Inf (ug/L) 50.00
Eff (ug/L) 1.00 5.00 50.00
Usage Rate 0.0151 0.0147
Inf (ug/L) 500.00
Eff (ug/L) 100.00 2000.00 3000.00
Usage Rate 0.0617
Inf (ug/L) 5.00
Eff (ug/L) 1.00 5.00 10.00
Usage Rate 0.00280
Inf (ug/L) 50.00
Eff (ug/L) 5.00 100.00 200.00
Usage Rate 0.120
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.0742
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.163
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.169
50.00
2.00 5.00 20.00
0.00566 0.00557 0.00539
100.00
1.00 5.00 50.00
0.0214 0.0208 0.0195
3000.00
100.00 2000.00 3000.00
0.170 0.158
10.00
1.00 5.00 10.00
0.00365 0.00278
200.00
5.00 100.00 200.00
0.261 0.248
20000.00
1000.00 10000.00 15000.00
0.0913 0.0765 0.0705
20000.00
1000.00 10000.00 15000.00
0.238 0.225 0.217
20000.00
1000.00 10000.00 15000.00
0.252 0.238 0.230
200.00
2.00 5.00 20.00
0.0119 0.0117 0.0115
500.00
1.00 5.00 50.00
0.0471 0.0469 0.0447
5000.00
100.00 2000.00 3000.00
0.226 0.215 0.211
50.00
1.00 5.00 10.00
0.00614 0.00554 0.00509
500.00
5.00 100.00 200.00
0.435 0.420 0.414
50000.00
1000.00 10000.00 15000.00
0.118 0.106 0.102
50000.00
1000.00 10000.00 15000.00
0.392 0.377 0.373
50000.00
1000.00 10000.00 15000.00
0.433 0.418 0.413
       1.  Model-predicted carbon usage rates developed through  application of
           CPHSDM to distilled-water isotherm study results  and  were adopted from:
           (a)  Hiltner,  R.J.  et al.  Final  Internal  Report  On Carbon Use Rate  Data.
                    OOW - U.S.  EPA,  Cincinnati,  OH,  June 30,  1987.
           (b)  Hiltner,  R.J.  et al.  Interim Internal  Report On Carbon Use Rate Data.
                    OOW - U.S.  EPA,  Cincinnati,  OH,  June 30,  1987.

       2.  Distilled-water isotherm  constants not  available  for  Acrylamide,
           Aldicarb sulfone, Aldicarb sulfoxide, and  Epichlorohydrin

       3.  Isotherm-predicted  carbon usage rates developed through
           application of Freundlich's equation, as shown in Appendix A.

-------
                                                         TABLE  4-2
                                                                      1.2
                                                   CARBON USAGE  RATES
Compound Name





Alachlor










Aldicarb










Atrazine










Carbofuran










Chlordane










    1,2-Dichloroethylene










DBCP










o-Dichlorobenzene










1,2-Dichloropropane










2,4-D
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate

0.60
0.000611

1.30
0.0113

1.00
0.000996

5.00
0.00315

0.50
0.00136

5.00
0.223

0.10
0.00188

50.00
0.00766

2.00
0.0702

5.00
0.0152
10.00
2.00 6.00
0.000597 0.000573
50.00
10.00 20.00
0.0109 0.0106
5.00
3.00 5.00
0.000950
20.00
40.00 50.00

5.00
2.00 5.00
0.00130
50.00
70.00 100.00
— —
2.00
0.20 1.00
0.00186 0.00176
100.00
600.00 800.00
— —
10.00
5.00 10.00
0.0669
50.00
70.00 100.00
...

0.60
0.00206

1.30
0.0172

1.00
0.00451

5.00
0.00555

0.50
0.00220

5.00
0.300

0.10
0.00300

50.00
0.0268

2.00
0.142

5.00
0.0255
50.00
2.00
0.00202
100.00
10.00
0.0168
50.00
3.00
0.00445
50.00
40.00
0.00493
10.00
2.00
0.00212
100.00
70.00
0.272
5.00
0.20
0.00299
700.00
600.00
0.0243
50.00
5.00
0.139
100.00
70.00
0.0239
I
6.00 0.60
0.00199

20.00
0.0165

5.00
0.00442

50.00
—

5.00
0.00204

100.00
—

1.00
0.00296

800.00
—

10.00
0.136

100.00
...
0.00346

1.30
0.0458

1.00
0.00706

5.00
0.00847

0.50
0.00667

5.00
0.402

0.10
0.00600

50.00
0.0336

2.00
0.190

5.00
0.0843
100.00
2.00
0.00341
500.00
10.00
0.0453
100.00
3.00
0.00700
100.00
40.00
0.00796
50.00
2.00
0.00650
200.00
70.00
0.379
20.00
0.20
0.00598
1000.00
600.00
0.0316
100.00
5.00
0.187
500.00
70.00
0.0813

6.00
0.00336

20.00
0.0447

5.00
0.00696

50.00
0.00786

5.00
0.00636

100.00
0.371

1.00
0.00582

800.00
0.0307

10.00
0.184

100.00
0.0807

-------
TABLE 4-2 (Continued)
       d Name

Ethyl benzene



EDB


          3
Heptachlor



Heptachlor epoxide



Lindane



Methoxychlor



MonochIorobenzene


                  3
PCS (Aroclor 1254)



Pentachlorophenol



2,4.5-TP (Silvex)
               Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate

50.00
0.0163

0.01
0.00672

0.03
0.00389

0.03
0.000572

0.02
0.000408

100.00
0.0321

60.00
0.0185

0.05
0.000710

20.00
0.00266

5.00
0.00704
.100.00.- 	
700.00 800.00
— —
0.50
0.05 1.00
0.00659
0.10
0.40 1.00
— —
0.10
0.20 1.00
— —
0.50
0.20 1.00
0.000380
260.00
400.00 500.00

100.00
100.00 400.00

5.00
0.50. 5.00
0.000710
50.00
200.00 400.00
— —
50.00
50.00 100.00
...
h
50.00
0.0436

0.01
0.0342

0.03
0.00468

0.03
0.00116

0.02
0.000612

100.00
0.0430

60.00
0.0618

0.05
0.000698

20.00
0.0128

5.00
0.0110
700.00
700.00
—
10.00
0.05
0.0341
1.00
0.40
0.00468
1.00
0.20
0.00106
1.00
0.20
0.000583
400.00
400.00
—
600.00
100.00
0.0613
10.00
0.50
0.000698
500.00
200.00
0.0122
100.00
50.00
0.0103

800.00
...

1.00
0.0332

1.00
—

1.00
—

1.00
	

500.00


400.00
0.0588

5.00
0.000698

400.00
0.0115 j
I
100.00 |
... I

50.00
0.0520

0.01
0.0821

0.03
0.00562

0.03
0.00212

0.02
0.00228

100.00
0.0793

60.00
0.0866

0.05
0.000665

20.00
0.0205

5.00
0.0303
1000.00
700.00
0.0464
50.00
0.05
0.0820
10.00
0.40
0.00562
10.00
0.20
0.00209
10.00
0.20
0.00227
1000.00
400.00
0.0757
1000.00
100.00
0.0861
50.00
0.50
0.000665
1000.00
200.00
0.0196
500.00
50.00
0.0294

800.00
0.0449

1.00
0.0809

1.00
0.00562

1.00
0.00197

1.00
0.00221

500.00
0.0747

400.00
0.0838

5.00
0.000665

400.00
0.0192

100.00
0.0289

-------
          4.  MOST APPLICABLE TECHNOLOGY - GRANULAR ACTIVATED CARBON

     Most applicable  technologies are  those  technologies which  have  demon-
 strated  highly effective  capacities  to  remove  the  29  SOCs,  and  for which
 reasonable  cost estimates  can be  developed  for  a  wide range  of  influent/
 effluent conditions.  As indicated  in  Section 3,  the only technology which is
 considered to be most applicable  for all  of  the 29 SOCs is granular  activated
 carbon  (GAC) adsorption.  According to the  1986 amendments to the Safe Drink-
 ing Water Act, Congress specified in Section 1412(b)(5) of the Act that:
     Granular activated carbon is feasible for the control of synthet-
     ic organic chemicals,  and any technology, treatment technique, or
     other means  found to  be  the best available  for  the  control of
     synthetic  organic  chemicals must be  at  least as  effective in
     controlling  synthetic  organic  chemicals  as   granular  activated
     carbon.

     The use of GAC for drinking water treatment in the United States has been
 limited to primarily taste  and odor control  applications.  However, since the
widespread detection of organics in drinking water supplies, much research and
many pilot-scale studies have been undertaken to evaluate the effectiveness of
GAC for controlling organic  compounds.   Based on past research and pilot-scale
work, GAC  represents one  unit process  with  the  ability  to  remove  a broad
spectrum of  organic  chemicals  from water.   Although GAC is considered to be
the best available broad spectrum removal  process,  it exhibits a wide range of
effectiveness in adsorbing  organic compounds.

Process Description
     The application  of granular activated  carbon  adsorption  for  removing
organic compounds  from  drinking  water  supplies  involves the  following major
process design considerations:
       -  Carbon Usage Rate  - pounds of carbon per volume of water treated
       -  Empty Bed Contact  Time
       -  Pretreatment
       -  Contactor Configuration -  downflow  versus upflow, pressure  versus
          gravity,  single-stage versus  multi-stage  or parallel  versus series
                                      4-1

-------
       -  Method of GAC Regeneration - on-site versus off-site

     Carbon Usage Rate
     This basic  design parameter, indicates  the  rate at which  carbon  will be
exhausted or  replaced,  thus affecting  the operating  cost of  the  treatment
system.  For a full-scale  GAC installation  the  carbon usage rate is often the
decisive factor in the selection of on-site  carbon regeneration or replacement
of spent carbon with virgin  carbon.  It also impacts any costs associated with
carbon   handling,   such   as  storage,   dewatering,  attrition   losses   and
transportation.   The  carbon  usage  rate  for   a  given  type  of  water  and
contaminant(s) can be estimated by different methods.  These methods include:
          Isotherm test
       -  Model .predictions
       -  Minicolumn Test
       -  Pilot-scale test
       -  Operating full-scale installation
A detailed discussion of each method is provided later in this section.
     Empty Bed Contact Time
     The empty bed contact time  (EBCT)  provides an indication of the quantity
of carbon which will be on-line at any one time, and thus reflects the capital
cost for the system.  The EBCT is also an important design parameter as it has
a significant impact on the  carbon usage  rate for  each SOC.  The carbon usage
rate  will  reflect  the   equilibrium  capacity  of  the  GAC under  raw  water
conditions  for  a particular  SOC,  and  a  given  influent concentration  if
sufficient EBCT  is provided, organic  preloading will impact the prediciton of
the  actual  carbon  usage  rate  (Summer  1988,  and  Crittendtn,  1988).   Thus
organic  preloading impacts the  actual amount of carbon which is on  line  at a
given time,  and the overall  empty bed contact time.
     Pretreatment
     GAC systems may require some kind  of pretreatment to prevent  clogging of
the carbon bed and to minimize the organic loading on the carbon.  Cloqoing of
the bed  could be caused by suspended  solids  in  the raw water or by precipita-
tion of  iron  and manganese  on  the  carbon.   The former  is  typical  of  surface
water systems while iron and manganese  in the soluble form may  be  encountered
in ground water  nystems.  Clogging may also be caused  by  biological  growths
                                      4-2

-------
when  the  carbon bed  life  is long.  Disinfection  with chlorine prior  to GAG
adsorption should  be avoided because  chlorine by-products formed  during the
reduction of  chlorine on GAC are  adsorbed by carbon,  and therefore, compete
with  the  organics  for adsorption sites.  In  addition,  if carbon regeneration
is anticipated,  adsorption  of these byproducts  could possibly  result  in the
formation of  hazardous  substances  during regeneration  processes.   Filtration
ahead of  the  GAC system is  a common solution  to prevent  clogging  of the bed.
GAC  systems   are sometimes ,added  to  the  end  of  a conventional  treatment
process.
     When the background organic levels in  the raw water  are  high,  the carbon
is used  at  a  faster rate,  necessitating  more  frequent  replacement.   This
increases the operating  cost of  the  system.   Pretreatment  can  be  provided to
reduce the organic loading  on the  carbon,  thereby  decreasing  the carbon usage
rate.  The need for pretreatment should, however, be justified on the basis of
costs.  Examples of  processes  which  may  be used  for  pretreatment include
conventional treatment, ozonation,  and packed column aeration.
     Contactor Configuration
     Based on the  estimates of  carbon  usage rate and contact time,  a concep-
tual process  design  can be  developed by evaluating  various contactor config-
urations.   The two basic modes of contactor operation are upflow and downflow.
Upflow expanded bed contactors allow suspended solids to  pass through the bed
without producing  a  high pressure  drop.  This configuration  is not generally
considered for  use in water treatment where the level  of suspended solids is
relatively low.   Downflow  fixed bed  contactors offer  the simplest  and  most
common  contactor configuration  for  SOC removal from drinking  water.   These
contactors can be operated either under pressure or by gravity.
     The choice of pressure or gravity is generally dependent upon the hydrau-
lic constraints of a given system.   Pressure contactors may be more applicable
to ground water  systems because  pumping   of  the  ground water is  required.
Gravity contactors are  generally more  suitable  for surface  water  systems if
sufficient head  is available.   Gravity contactors, when  used,  will typically
be placed downstream  of surface  water filtration  systems.  Diagrams  of pres-
sure and gravity systems are presented on Figure 4-1.
                                      4-3

-------
     GAC  contactors  may  be configured  to  operate  in  series  or  parallel.
Parallel  flow necessitates  complete  carbon replacement  at  SOC breakthrough;
whereas,  operation  in  series allows  for utilization  of the  carbon  in each
contactor  almost  until  exhaustion  because only  the  carbon  in  the  first
contactor is  replaced when SOC breakthrough  occurs.  Although GAC  is used more
effectively  in series  operation,  more contactors  are  required  to  treat the
same quantity of  water  for a similar EBCT.  Therefore, a cost  analysis  should
be  performed  to  determine  whether  the  higher  capital  costs  involved with
series  operation  are offset by  the  lower carbon replacement or  regeneration
cost.   The decision  between a series  or parallel mode may hinge on the  design
criteria characteristics  of the  SOC to  be  treated,  i.e.,  carbon usage rate and
-EBCT.
     Method of GAC Regeneration
     Another  basic consideration in  evaluating  the design of a GAC system for
SOC removal is the method of carbon regeneration.   The  two basic approaches to
regenerating  the carbon are:
     1.   Off-site-disposal or regeneration
     2.   On-site-regeneration
     Based  on information  from  GAC  manufacturers, on-site  regeneration gen-
erally  does  not appear to be economical  for systems where  the  carbon usage
rate is less  than 1,000 to 2,000 pounds per  day.
     Adams et al.  (1986)   demonstrated  that  a regeneration  facility  having an
operating reactivation  capacity  of 12,000 pounds of GAC per day could provide
a cost-effective  alternative to  carbon replacement.  Moreover,  utilization of
the facility's  excess capacity for a regional reactivation system showed that
off-site reactivation would be more economical for  the participating utilities
than either carbon replacement or  on-site  reactivation.
     Under  the  throwaway  concept of  off-site  disposal,   virgin  carbon  is
generally purchased  in  bags, drums,  or bulk truckloads.   Large surface water
treatment plants  employing  GAC  for taste and  odor control  often employ  the
throwaway  approach  and  purchase  carbon  in bulk  quantities.    Ground  water
systems  and  smaller  surface water systems  generally do  not have the   carbon
requirements  necessary  to  make bulk  shipment   practical.   Once the   carbon
becomes exhausted, it is  generally slurried  by gravity  to a draining bin where

-------
the free water  is  removed and returned for treatment.   The  drained carbon is
then manually drummed and shipped for landfill or incineration.
     The  advantages  to  off-site  disposal   lie   mainly  in  its  technical
simplicity;  and,   as  such,  it  is a  sound  approach  for  applications  with
relatively small carbon usage rates  (generally less than 500 pounds per day).
The need  to dispose  of the  spent carbon, however,  is  a  concern especially
since  toxic  or  hazardous  materials  are  adsorbed  on  the  spent  carbon.
Incineration of the spent carbon to ensure proper ultimate disposal may become
necessary.
     The off-site  regeneration approach is somewhat similar  to the throwaway
concept  from a  carbon  handling  standpoint;  however,   off-site  regeneration
begins to assume some of the economies associated  with on-site regeneration.
However, the number of handling steps and  resulting carbon attrition and loss
are a  major  disadvantage when compared  to other alternatives.   The off-site
reactivation approach has generally proven most cost effective in applications
where  the  carbon  usage  rate  falls in  the 500  to  2,000-pound per  day range
(Kornegay, 1979) .
     GAC Equipment
     The major equipment typically found in a GAC installation includes:
       -  Carbon Contactors  -  either  common wall concrete  or   lined  steel
          vessels.   In either case, provisions for underdrainage,  backwashing,
          and removing the spent carbon must be made.
          Carbon Storage - additional  storage facilities may  be  required for
          handling  of virgin,  regenerated and spent carbon, depending upon the
          size and  type  of facility.
       -  Carbon Transport Facilities - includes piping, valves, and pumps.
       -  Carbon Fill - the actual initial carbon  charge depends  on the type
          and volume of  carbon required for treatment.
     Having outlined the GAC process and the  pertinent  design criteria,  brief
descriptions of the testing methods and SOC removal case studies are presented
below.
                                      4-5

-------
Treatability Studies
     Treatability  studies  ran be grouped into four classifications:  isotherm
evaluations, mini  column  tests,  pilot-scale tests and  full-scale tests.  In
addition, computer models  can be  used to predict breakthrough profiles, carbon
usage  rates,   and  bed  lives  using  the  results  of  these studies.   For the
purpose  of  this document  the Constant Pattern Homogeneous  Surface Diffusion
Model  (CPHSDM)  (Hand et.  al.,  1984)  was  utilized  to predict  usage  rates
(Miltner et. al.  1987).   The model predictions were  based on distilled water
isotherm data,  and the following  assumptions:
       -  Plug  flow exists  in the bed
       -  Constant hydraulic  loading
       -  Surface  diffusion is  the limiting  intraparticle mass transfer phase
       -  Local liquid-phase  mass  transfer rate  is described  by a  linear
          driving  force approximation
       -  The  adsorbent  is in a fixed position in the adsorber and is assumed
          to be spherical
       -  The   adsorption   equilibria  can   be  described  by  the  Freundlich
          isotherm equation
       -  Background matrix has no effect on adsorption  equilibra and kinetics
     Isotherm  evaluations  are batch  tests which  yield  the equilibrium  or
maximum  SOC  loading  on  a  particular  carbon  at  a given  SOC  equilibrium
concentration.  Model predictions use isotherm data  to  estimate  carbon  usage
rates  and  bench-scale test design  parameters.   Bench scale tests  use a  mini
column to  estimate carbon  usage  rates  under  flow-through  conditions.   Pilot
tests are conducted with larger columns than those used  in minicolumn testing,
thus requiring  significantly  greater quantities of water and longer run times.
Full-scale   tests   evaluate   the  performance   of   GAC   in  actual   field
installations.  Further discussion of each method is provided below.
     Isotherm Evaluations
     Adsorption isotherms  are useful  screening tools  for determining prelimi-
nary  carbon requirements,   and  evaluating  the  relative  adsorbability  of  a
particular compound in comparison with other compounds.  The analytical proce-
dure that  is  generally  followed  for  isotherm testing is  outlined by  Pandtke
and  Snoeyink   (1983).   The procedure  involves placing  a  measured weight  of

                                      4-6

-------
pulverized  carbon  in  a  fixed  volume  of  aqueous   solution  of   known  SOC
concentration and agitating over  a  sufficient time to reach equilibrium.  The
resultant liquid-phase SOC concentration  is then measured and the equilibrium
capacity  (or  loading)  is calculated from the amount  of  SOC  adsorbed and the
known weight of carbon in solution.  These  steps are  repeated for a series of
known  weights  of  carbon  for  a   given  initial  SOC  concentration.   The
relationship  between   equilibrium   capacity   and  equilibrium  liquid-phase
concentration  has  been  found  to  generally follow  the  Freundlich  isotherm
relationship:
               X/M = KC 1/n
where:
          X/M = equilibrium capacity (mg  SOC/g carbon)
          X   = amount of SOC adsorbed from solution  (mg/L)
          M   = weight of carbon  (g/L)
          K   = capacity at 1 mg/L SOC concentration
          C   = SOC equilibrium concentration (mg/L)
          1/n = exponent
     K  and  1/n  are  typically referred  to  as  Freundlich  constants.   K is
related to the adsorption capacity of GAC for an  SOC,  and 1/n is one indicator
of  the  adsorption   intensity.   The  following  equation,  derived  from  the
Freundlich equation and  a  mass balance  for column operation, can be  used to
estimate carbon usage rates in pounds  of carbon per thousand gallons of water
treated:
          Carbon usage (lbs/1,000 gal)  =    C     x 8.34
                                         K(C)1/n
where:
          C      = SOC influent concentration to  column (mg/L)
          K, 1/n = Freundlich isotherm parameters
          8.34   = conversion factor from g/liter to lbs./l,000 gal
     A  sample  calculation using  this  method is  shown  in Appendix A.   This
method assumes that a GAC system is operated until the  SOC  concentration in
the effluent equals  that of the influent, i.e.,  the GAC is in equilibrium with
the  untreated  contaminant  concentration.   Thus,   the   carbon   usage  rate
calculated in this  manner  represents  the maximum amount of  SOC  adsorbed per
unit weight of carbon for the  existing water quality conditions.
                                      4-7

-------
     The  United  States  Environmental  Protection  Agency's  Drinking  Water
Research  Division (USEPA-DWRD)  is  currently performing  isotherm tests  on a
wide range  of SOCs  (Miltner, 1987).  The  test results  indicate  that carbon
performance  is  a function  of the - types of  water and carbon  used.   Isotherm
testing for  SOCs  is  also being conducted by Malcolm  Pirnie,  Inc.  in conjunc-
tion with the USEPA-DWRD.
     Additional  isotherm evaluation  have  been reported  in  the  literature.
Dobbs  and  Cohen  (1980)   have  performed  extensive  isotherm  testing  with
Filtrasorb 300  (F-300),  a  granular activated  carbon manufactured  by Calgon
Corporation.   The granular activated carbon was pulverized and  screened for
classification such that  only the portion  which passed a 200 mesh (0.0736 mm)
but  was  retained  by  a  400  mesh  (0.0381  mm)  screen was  used  for isotherm
testing.    isotherm constants  for  PCBs  have  been  evaluated by   Weber  and
Pirbazari (1982) .  Canonie  Environmental Services Corporation  (1981)  conducted
isotherm  tests  on DBCP  and  EDB  to  evaluate  the  feasibility  of treating
contaminated ground water by  carbon adsorption.
     Isotherm test results  from various studies  are  presented in Appendix B.
The isotherm constants, K and 1/n,  are  functions of several factors  including
contaminant  and  water  types  and  the  background  organic matrix.   Isotherm
constants for the 28 SOCs determined from tests conducted with distilled water
are summarized in Table 4-1.  Based on these constants, carbon usage  rates for
each SOC  were  developed  using  the CPHSDM  model.   The  CPHSDM could  not  be
utilized.  If  the Freundlich 1/n isotherm  valve was greater  than  0.9.   The
carbon usage rates for these  compounds  were  estimated  using the  procedure
described in Appendix A.    The carbon usage  rates for different  influent and
effluent SOC concentrations are presented in Table 4-2.
     The carbon usage rates presented in Table 4-2  can be used to compare the
relative adsorbability of the SOCs.  Although all of  the  contaminants in the
table  are  adsorbable,  the  SOCs  exhibit  different degrees  of  adsorption
capacity such that they may be further classified as either strongly  adsorbed,
moderately adsorbed or weakly adsorbed.
     In general,  compounds  can be classified as strongly, moderately  or weakly
adsorbable.   These  regions  can be approximated  by using   the  compound's
Freunlich K value as shown  below:
                                      4-8

-------
          Region              K  (mg/g)  [(L/mg)   ]
          Strong                   > 500
          Moderate                 100-500
          Weak                     < 100

     While  adsorption isotherms  are  useful for  obtaining  preliminary data
concerning adsorbability of SOCs, they have  certain drawbacks that limit their
applicability:
          Isotherm  tests  cannot be  reliably used  for GAG  facility scale-up
          since the test does  not  provide any  information  on the dynamics of
          column operation.
     Multicomponent isotherms  can be  conducted  to describe  the competitive
interactions in a mixture.   Since the mass transfer zones of various compounds
seperate  with  respect  to  their  adsorbability  (chromatographic  effect),
multicomponent isotherme cannot  predict the  capacities  observed in fixed-bed
operation.
     As  a result,  bench-scale or  pilot-scale  tests  are usually required to
develop the necessary design criteria.
     Mini Column Tests
     Minicolumn tests are conducted in an attempt to simulate the operation of
a  full-scale  GAC   adsorption  system.   Minicolumn  tests  are  used for  the
following:
       -  Determine•the feasibility of carbon treatment for a given water
          Estimate carbon usage rates
          Develop preliminary process design criteria
       -  Provide preliminary estimate of system economics
     A limited number of column studies have been conducted  to evaluate the
removal  of  SOCs  from  drinking  water.   A  typical minicolumn  apparatus  is
illustrated on Figure 4-2.   Water spiked with the specific compounds is passed
through  the  column and  the  effluent  is monitored  to obtain  a breakthrough
curve.
     Environmental  Science  and  Engineering,  Inc.   (ESE,    1981)  used  a
microcolumn measuring 2.25 mm in diameter  and 70 mm long to study the removal
of  several  synthetic  organic  chemicals  by  granular  activated  carbon.   The
carbon was sieved  to  a particle  size of 200  x  325-mesh.   Three separate sets
of  tests  were performed to  determine  carbon usage rates  for dibromochloro-
propane  (DBCP),  ethylene  dibromide  (EDB)  (ESE, 1983) ,  and monochlorobenzene
(ESE, 1981).

                                      4-9

-------
Concentration
Influent
ug/L
93
51
96
45
90
Effluent
ug/L
7.6
0.33
6.3
5.5
8.9
Volume
Treated
ml
2,360
15,015
3,000
3,930
3,280
Bed
Volumes
Treated
24,503
165,465
31,805
41,325
35,831
Carbon
Usage Rate
(lb/1,000
0.18
0.03
0.14
0.11
0.13
gal)





     In testing  DBCP and EDB, deionized water  spiked  with either DBCP or EDB
was used as the  influent.   In the monochlorobenzene testing, the influent was
well  water spiked  with monochlorobenzene  (203  mg/L),  benzene  (53.1 mg/L),
p-dichlorobenzene  (24.5  mg/L)  and-o-dichlorobenzene (23.1 mg/L)  to simulate a
wastewater  stream.   The results  of the three  sets of  mini-column, tests are
summarized below.
     Contaminant
     DBCP
     EDB
     Monochlorobenzene   203,000    10          NR        MR         10.4
     NR = Not Reported

     In a mini column study by DeFilippi et al,  (1980) a waste stream contain-
ing 118 mg/L  alachlor was passed through  a  column with a diameter  of  3/8 in
and a  length of  11  in.  The column  contained 7 grams  of  granular activated
                                                             2
carbon  and was  operated at  a  loading rate  of 1.1  gpm/ft .    The  effluent
concentration was 0.22  mg/L after 2.6  liters had passed through the  column.
The usage  rate  at this  effluent  concentration was then estimated  to  be 21.7
lb/1,000 gal.
     Steiner  and Singley  (1979)  conducted  a mini-column study to test  the
removal  of   methoxychlor   by  GAC.    Water   containing  1,5,   and  10  mg/L
methoxychlor was  passed  through columns with  a diameter  of 19 mm and a length
of 265  mm  at a loading  rate  of  0.5  gpm/cu ft.  No methoxychlor was  found in
the column effluent after a 250 ml sample  was passed  through the column.  The
column  size  and  other  related  details  of  the testing  procedure were  not
discussed.
     Even though  minicolumn tests provide  a  quick method of  predicting carbon
usage rates,  there are  several  uncertainties in the  scale-up  procedure that
restrict the widespread  use of this technique.  For example,  it is likely that
mass transfer  coefficients  could vary  with  particle  radius  and SOC influent
                                     4-10

-------
GAS
BAG
                 PRESSURE GAGE
 PULSE
DAMPERS  r&i
                                '9
STOCK
                                      ADSORPTION
                                      MICROOOUJMN
                         INFLUENT
                GU\SSWOOL
                  PREF1LTERS
                        EFFLUENT
           TYPICAL MINI-COLUMN SETUP
                                                      o
                                                      c
                                                      30
                                                      m
                                                      4k
                                                      I
                                                      IV)

-------
concentration.  Therefore, results from minicolumn studies in which pulverized
carbon is  used  may not be  suitable  for scale-up to  a full-scale GAG system.
Also, since  the  length of the test  is  very short,  generally on  the order of
several days, minicolumn  tests do not  account for possible biological effects
and  preadsorption of  background  TOC.   For  these  reasons,  it  is  generally
recommended  that  mini-column scale-up  be  verified  with pilot  or  full-scale
studies until more research is available in these areas.
     Pilot-Scale Tests
     Before a full-scale GAG system is installed, preliminary on-site analysis
should be  performed  on the water  of concern.  Pilot-scale tests  may be used
for this purpose.  The  empty  bed contact time and the carbon usage  rates are
the important design  criteria obtained from  a field  pilot study.  Additional
design criteria that can be developed from a pilot-study include:
          Bed depth
          Effect of hydraulic loading
          Number of contactors required
          Contactor configuration
       -  Carbon type
       -  Carbon life/replacement frequency
          System economics
     Case-studies of pilot-scale  testing for SOC removal  from  drinking water
are listed below.
     USEPA-DWRD -  The U.S. Environmental  Protection  Agency's  Drinking Water
Research  Division  (USEPA-DWRD)   conducted  several  pilot-scale  studies  to
determine  the  effectiveness  of   carbon  adsorption  for the  removal of  cis-
1,2-dichloroethylene and  other industrial  solvents  (such as trichloroethylene
and 1,1,1-trichloroethane).   Love and  Eilers  (1982)  summarized  these studies
and results  of  other  work dealing with the removal of solvents  from drinking
water.
     Contaminated wells in  New Hampshire and Connecticut  contained  a mixture
of solvents with total organic chemical  (TOC)  concentrations  ranging from 0.3
to 0.7 mg/L.  The USEPA-DWRD installed pilot-scale carbon  adsorption columns
1.5 inches  in  diameter containing 30  inches  of GAC.   In  the New  Hampshire
study, cis-l,2-dichloroethylene was  also present at  an average  concentration
of 6 ug/L.  Trichloroethylene was  also present at concentrations  ranging from
120 to 276 ug/L.   The effluent concentrations of all contaminants were below
                                     4-11

-------
detectable limits  (0.1  ug/L)  until the column  was shut down  after 18 weeks
operation due to clogging caused  by precipitated iron.
     In     the    Connecticut     study,     the    ground    water    contained
cis-l,2-dichloroethylene   (2   ug/L)   1,1,1-trichloroethane   (38   ug/1),   and
trichloroethylene  (4  ug/1). The  GAC was  exhausted during  the second  year of
service.   Cis-1,2-dichloroethylene  and 1,1,1-trichloroethane  levels exceeded a
concentration of 0.1 ug/L in the  effluent after 25 and 11 weeks,  respectively.
The  results  of  these  studies  with  respect  to  cis-1,2-dichloroethylene  are
summarized below:
                                         Average
                                         Influent                              Carbon
                                       Concentration   EBCT    Bed Volumes      Usage Pate
Site            Cotpound                    (ug/L)       (Min)     Treated     (lb/1,000 gal.)
                                   <2)
New Hampshire    cis-1,2-dichloroethylene! '        6        9      14,200         .254
Connecticut     cis-1,2-dichloroethylene          2       8.5     29,600         .122
    1.   Bed Volumes treated to 0.1 ug/L cis-1,2-dichloroethylene
    2.   Influent contained  an average of 177 ug/L of trichloroethylene.
    3.   Influent also contained an average of 38  ug/L 1,1,1-trichloroethane and 4 ug/L
        trichloroethylene.
     Suffolk County, New York -   Moran (1983)  reported that in  Suffolk County,
over 1,000 private wells  were  contaminated with aldicarb levels  above the New
York State Health  Department  guideline of  7 ug/L.  The  Suffolk  County Health
Department monitored  the performance of 19 commercially available home  GAC
units  installed  in residences  as part of  a study program  from  October  1980
through  December  1983.   Each  system  consisted of a filter tank  10 in.  in
diameter  and 40 in. in  height  containing approximately 29 pounds  of a Type GW
12 x  40  mesh carbon.   The  ground water  concentrations of  aldicarb  and  other
pesticides,  such as carbofuran, oxamyl and dacthal, varied between wells.   The
average influent aldicarb concentration ranged from 21 to 262 ug/L for all the
wells.  The  water  also contained high levels  of  iron and manganese but  was
free of  microbial  contamination.  As  of December  1983,  eight  locations  had
breakthrough at the 7 ug/L level.    A summary of the performance of the  eiqht
systems is presented below.
                                       4-12

-------
         Average  Influent Concentration (ug/L)
Location  Aldicarb  Carbofuran
Oxamyl
Dacthal
Volume
Treated
 (gal)
                                                               (1)
   Carbon(1)
  Usage  Rate
(lb/l,000gal)
1
2
3
4
5
6
7
8
21
105
53
262
105
151
64
36
3
25
42
9
24
57
25
_
                                    15
                                    26
                                              445
28,000
53,500
112,500
26,000
82,700
21,000
74,000
51,500
1.04
0.54
0.26
1.12
0.35
1.38
0.39
0.56
    Note:
        1.  Based on effluent concentration of 7 ug/1 aldicarb.
     Gulf South Research  Institute - Commercially available  home water treat-
ment systems  were  tested under a  USEPA contract to compare  the efficiency of
more than 30  units   in  removing  synthetic organic  chemicals.   Bell et  al.
(1984)  described results  for ten units that were tested  with a spiked surface
water containing chlordane (50 ug/1),  p-dichlorobenzene  (10  ug/L),  and  hexa-
chlorobenzene  (10  ug/L).   The home units were tested at  the  rated capacity as
specified by  the manufacturer and the  average percent reduction was reported
for the  beginning  and  end of the test.   Results from the seven  units  which
provided  an  initial   99 percent  reduction of  hexachlorobenzene  are  presented
below.   The other  four units achieved  less than 85 percent  hexachlorobenzene
removal at the beginning of the test.
                                     4-13

-------



££(
1
1



££
1
1
1
2
3

Weight of
Activated
1 )
' Carbon, Pounds
2.5
3.7

Weight of
Activated
1 )
' Carbon, Pounds
1.7
0.7
0.9
2.0
0.2

Rated
Capacity
(gal)
2,000
4,000

Rated
Capacity
(gal)
1,000
1,000
2,000
4,000
300
Average Percent
Reduction Range
(Beqin-End)



Hexachlorobenzene Chlordane
99-54
99-45
Average Percent
Reduction Range
(Begin-End)
99-89
95-83



Hexachlorobenzene Chlordane
99-99
99-99
99-80
99-50
99-40
99-99
99-98
99-89
99-79
99-45

Carbon
Usage Rate
(lb/1,000 gal)
1.25
0.925

Carbon
Usage Rate
(lb/1,000 gal)
1.7
0.7
0.45
0.5
0.7
Unit
Aqualux CB-2
Culligan, Model  SG-2
Unit
Everpure QC4-THM
Seagull IV
Aquacell
Hurley Town and Country
Filbrook
    Notes:
             Mention of trade names or commercial products does not constitute endorsement or
             recommendation for use.
         1.   Type:
             1  = Line bypass units:  cold water bypass through the filter unit
                to a separate tap
             2 = Faucet-mounted:  attached to faucet with a bypass valve for
                drinking water
             3 = Pourthrough:  water is poured through unit into a container below
     New York State -   O'Brien and  Gere  Engineers (1982)  reported the. results
of  a pilot plant removing  polychlorinated biphenyls (PCBs)  from  the  Hudson
River  which  supplies  water  to  a population of  approximately  100,000  in the
area  of Waterford  and  Poughkeepsie.   The system  consisted  of  with   four
columns, each with a diameter of  four inches and  a  height of 6  ft  containing
8.6 pounds of GAC.  This  configuration  allowed  sampling  at empty bed contact
times  (EBCT)  of  7.5,  15, 22, and 30  minutes.   The  influent to  the  GAC system
was  a  sand  filter effluent spiked  to  a  PCB  concentration  of 1  ug/L.   The
columns were operated  at a  loading rate of  3.7  gpm/ft  .  The PCB concentration
in  the  column effluent was  consistently  below  0.1  ug/L  for  an EBCT  of 7.5
minutes during  25 weeks of  operation.   The influent  dosage  of  PCBs  was  then
increased  to  10  ug/L  for  a one  week period.    The PCB  concentration  in the
column effluent  was  still  below 0.1  ug/L  for  an EBCT of  7.5 minutes.    Exact
                                       4-14

-------
usage rates could not be calculated because PCB breakthrough had not occurred,
however, the actual usage was less than 0.1 lb/1,000 gal.
     Lake Constance, Switzerland  -  A  pilot-scale column filled with  GAG to a
depth of  75  cm was tested to  treat Lake Constance water  spiked  with 50 ug/L
lindane.  Morgeli  (1972)  reported that  three  different carbons  were  used in
the column for  16-hour  tests at a flow  through  velocity of 15 m/hr (49.2 ft/
hr) .  The  effluent lindane concentrations  for  the three  carbons were 0.023,
2.6, and 0.08 ug/L.
     ThunderBay,  Ontario -  Jank  (1980)  reported on  the  performance of  a
pilot-scale  carbon column used to  remove pentachlorophenol  (PCP)  from  the
effluent  of  the  Abitibi-Northern Wood  Preservers  Limited activated sludge
wastewater treatment plant  in Thunder Bay,  Ontario.  The  carbon system con-
sisted  of  three  columns  measuring 100  mm  in  diameter  and three meters  in
length.  The  columns  each contained  6.8 kg  (15.0 Ib)  of  Filtrasorb  400  and
were preceded  by a sand  filter containing  an  11 kg  (24.2 Ib)   top  layer  of
anthracite filtering media.  The carbon column reduced PCP concentrations from
3.6 to 0.03 mg/L, as shown Helow.   Ho additional PCP breakthrough had occurred
after 42 days of operation.
                                   PCP Concentration        TOC
     	Stream	        	mg/L	        mg/L
     Biological System Influent           8.4                768
     Activated Sludge Effluent            3.6                 52
     Carbon System Influent               3.4                 54
     Carbon System Effluent              0.03                 13
     Lathrop, California - The Occidental  Chemical Company (Canonie Services,
1981)  conducted pilot-scale studies to determine the effectiveness of granular
activated carbon in treating  ground water contaminated with organics.   The two
columns each had a diameter of  14  inches and a  height of 96 inches containing
four cubic feet of 12 x 40 mesh carbon.   The  influent contained a combination
of EDB, DBCP and sulfolane.   The results  of this study are presented below.
                                  .                             Carbon
                     Concentration (ug/L)      Volume         Usage Rate
Contaminant
EDB
DBCP
Sulfolane*
Influent
9.1-10.8
1,400-1,500
2,000-3,000
Effluent
<1
10
1,800
Treated (L)
>654,900
302,800
151,400
(lb/1,000 gal)
<0.69
1.5
3
     * Date presented for ^auilibrium condition
                                     4-15

-------
     Ohio -  Pirbazari et al  (1983)  reported the results  of  activated carbon
column  pilot testing  conducted  on settled  Ohio River Water  containing 1-2-
dichloroethane and  dibromochloropropane.   The glass column had  a diameter of
4 cm  and contained 400  grams  of 12 x 14 mesh  carbon.   Water  with  a DBCP
influent concentraiton of 18 ug/L  was passed through the column at 100 ml/min,
which provided an EBCT of  10 minutes.   The DBCP was not detected «1 ug/L) in
the  effluent for 166  days,  resulting  in a  carbon usage  rate  of  less than
0.01 lb/1,000  gal.   Water  with  a dichloroethane  influent  concentration of
21 ug/L was  fed to  the column at a rate of 200 ml/min., which provided an EBCT
of 5 minutes.  Dichloroethane was not detected  (<1 ug/L)  in  the effluent for
12 days and  the bed was  exhausted  after  35 days  - resulting in a carbon usage
rate between 1.93 lb/1,000  gallons at breakthrough  and 0.66 lb/1,000 gallons
at exhaustion.
     A summary of the GAC pilot-scale studies is presented in Appendix C.
     Full-Scale:
     Full-scale operations  utilizing GAC to remove  SOCs  have included mobile
units for the treatment of  hazardous waste  spills and  facilities  for waste-
water  and  surface  water   treatment.   In  addition,  the U.S.  Environmental
Protection Agency's Drinking Water Research Division (USEPA-DWRD) is currently
conducting full-scale  studies on  surface  water  at Jefferson  Parish,  La.  and
ground  waters at Wausau,  Wi. and the  Great  Miami Aquifer  (Miltner,  1987).
These full-scale studies are ongoing and complete data has yet to be published
in the  literature.  Results currently available  have been included with other
case studies presented in Appendix C.
     Hazardous Material  Spills Treatment Trailer
     The Oil and Hazardous  Materials Spills  Branch of the USEPA constructed a
mobile  treatment unit  to respond  to spills of hazardous  materials  to control
and  remove   the  toxic chemicals.   The   Hazardous  Materials  Spills  Treatment
trailer  was  developed  and  housed at the  Industrial  Environmental  Research
Laboratory in Edison, New Jersey.
                                          •
     The main features of  the  trailer  include  three  mixed-media  filters  for
the removal  of suspended materials and  three activated carbon columns for the
removal of soluble  organic  chemicals.   Each of  the mixed-media  filters has a
                                     4-16

-------
diameter of 3.5 feet and a height of 6.7 feet and contains 2 ft. of anthracite
on top  of  a  1.5 ft. thick layer of red  flint  sand.   Each carbon column has a
diameter of 7 feet and a height of 8.7 feet  and  contains 1,230 pounds of 18 x
40 mesh GAC.  The treatment capacity of the system is 300,000 gpd.
     Over  a  two year period, the trailer  system responded  to six incidents,
four of which were  spills  of one  or  more synthetic organic chemicals.  Lafor-
nara  (1978) reported the  details  of  each incident and  the cleanup operations
which utilized the Hazardous Materials Spills Treatment trailer.
     Polychlorinated biphenyls (PCS)  Spill - Seattle, Washington - A spill of
265 gallons of  PCB into  the Duwamish Waterway  occurred when  an  electrical
transformer was dropped while being loaded onto  a commercial barge.  The PCBs
formed  pools  at  the  bottom  of  the  waterway.   The  PCB material  was  pumped
through presettling tanks  and the  supernatant  water  was  treated  with  the
trailer's mixed media filters in series with the carbon adsorption columns. An
EBCT of 30 to  40  minutes  was provided.  A total  of  600,000  gallons of water,
containing approximately  PCB concentrations of  400 ug/L, were  treated.   The
mixed-media  filters  reduced  the  PCB  concentration  to  3 ug/L while  the  PCB
concentration in  the activated  carbon effluent  was below  detectable  limits
(0.075 ug/L).
     Toxaphene Incident -  The Plains,  Virginia - Toxaphene  was  dumped into a
privately-owned pond in The Plains, Virginia.  The spring-fed pond was located
at the  head waters  of Broad  Run,  a  tributary  to the  Manassasus Reservoir,
which serves as the  source of water supply  for  40,000 people.   The  pond  was
approximately 100 feet  by 100 feet  with a  maximum  depth  of 7.5 feet.   The
toxaphene  concentration was  36 ug/L in  the water phase with pure toxaphene
remaining as a  separate phase on the pond bottom.  Water was  pumped directly
from  the  pond to the  mixed-media filters  and  through  the activated  carbon
columns at a rate of  70,000  gallons  per day, which resulted in  an EBCT of 26
minutes.  A total of 251,000 gallons  were  treated and  the  toxaphene concen-
tration was reduced from 36 to 1  ug/L.
     Mixed Pesticide Incident - Strongstown, Pennsylvania -  A  pesticide blend
of "Termide" and  water (2.5 gallons  of  "Termide,"  240 gallons  of water)  was
applied to  a local  home   and  contaminated a  nearby trout  stream causing  a
significant  fish   kill.    The  water   had  a  combined  chlordane,  heptachlor,
                                     4-17

-------
aldrin,    and    dieldrin    concentration    of    38.6 ug/L.     Approximately
104,000  gallons were treated at 100 gpm through one mixed-media filter and one
carbon  column  at  an  EBCT  of 17 minutes.   The  chlordane  concentration  was
reduced  from 13  to 0.35 ug/L.   The heptachlor  concentration was  reduced from
6.1  to  0.06 ug/L.   After treatment,  the trailer  effluent contained  less than
1 ug/L of total pesticides.
     Pentachlorophenol  Incident -  Haverford, Pennsylvania  - A waste  fuel oil
containing pentachlorophenol (PCP) had  been injected  into  a 20 ft.  deep well
for  disposal.  In  1976, it was discovered  that this PCP/oil waste was migrat-
ing  into the ground water  and discharging into  a  small tributary  of  the Dela-
ware River.
     In  order  to  contain  this  spill,   trenches  were dug  to  intercept  the
PCP/oil  before it  reached the stream.  A  total of  220,000  gallons  were col-
lected and treated.  After reducing the  oil concentration to less  than 50 mg/L
by  settling  and  diatomaceous  earth filtration,  the water  was passed through
the  three  carbon  columns  providing   an  EBCT   of   26 minutes.    The  PCP
concentrations  were  consistently  reduced  from approximately  10  mg/L  in  the
influent  to  the carbon  columns  to  less than 1 ug/L in  the effluent.
     The  carbon adsorption  columns of the  Hazardous Material Spills  Treatment
trailer  performed  effectively  in  removing the  various   synthetic  organic
chemicals.   The results of these cleanup operations are presented  below:
Compound
PCB
Toxaphene
Chlordane
Heptachlor
Pentachlorophenol
         Location
         Seattle, WA
         The Plains,
         Strongstowi, PA
         Strongstown, PA
         Haverford,  PA
(2)
(2)

Quantity
Treated
(gal)
600,000
251,000
104,000
104,000
220,000

Contact
Time
(min)
30-40
26
17
17
26

Influent
Cone.
(ug/1)
3,,.
36(1)
13
6.1
10,000 ( '

Effluent
Cone.
(ug/L)
<0.075
1
0.35
0.06
<1
Carbon
Usage
'Rate
(lb/1,000
<9.9
72
59.2
59.2
<82.3



gal)





Notes:
    1.
    2.
    3.
Influent to mixed media filter.
Treatment of water containing a mixture of chlordane (13 ug/L), heptachlor (6.1 ug/L),
dieldrin (11 ug/L), and aldrin (8.5 ug/L).
Influent to treatment process included settling, 2 diataraceous earth filters and
      columns.
                                       4-18

-------
     Orange County Water District
     Water Factory 21  is an advanced  wastewater treatment plant  operated by
the Orange_County jfater  District  (OCWD)  in California.  The plant effluent is
injected into the OCWD aquifer  to.prevent saltwater intrusion.  The treatment
processes include lime treatment,  air stripping, recarbonation, decarbonation,
chlorination, filtration, granular  activated  carbon adsorption (GAC), reverse
osmosis, and final chlorination.  Lime treatment and recarbonation are located
prior to the carbon  adsorption columns  in the process  train.  The  17 carbon
adsorption columns in service at Water Factory 21 are each have a diameter of
12 ft and a height of 24 ft and contain  45 tons of 300-mesh carbon.   The EBCT
of each column  is  34  minutes.   The columns are operated in parallel and were
operated in  an  upflow  mode  until  late  1977.  They were  switched to  the
downflow mode in  late 1977 to  decrease  the carryover of  carbon  fines.   This
was done to protect the reverse osmosis membranes from fouling.
     McCarty and Reinhard  (1980)  discussed the effectiveness of  the  GAC for
organic  removal during  a  two-year  testing  period.    The trickling  filter
effluent from  the regional  wastewater  treatment plant  was  the  influent to
Water Factory 21 from October 1976 to February  1978.  The wastewater treatment
plant  switched  processes  from  trickling  filtration  to  activated  sludge
treatment in March  1978 and  its  effluent became  the  feedwater  for  Water
Factory 21.   This  change resulted  in  significant differences  in  the organic
characteristics of the influent waters to Water  Factory 21.   GAC performance
for each  period is  presented   in  Table 4-3.    A  significant  decrease.-in  the
carbon  usage  rate was  observed in the  second period  due to lower  organic
loading on the carbon.

     Mount  Clemens, Michigan
     The water  treatment plant in  Mount  Clemens  has  utilized GAC  to remove
synthetic organic chemicals from their raw water source  at Lake St.  Clair for
10 years.   Hansen (1977)  reported that  the  eight  filters had  been  changed
three times  (in 1968, 1970, and 1974).  Each filter  contains  18 inches of GAC
on top  of  12 inches  of  sand.   The GAC  originally was  installed  to minimize
taste and odor problems.   Analysis has shown that pesticides were also removed
by the GAC.   The pesticides enter  the lake during periods of runoff throughout
the growing  season.   During April  1976,  water samples  contained heptachlor
                                     4-19

-------
epoxide,  lindane,  and other  pesticides.   At  that time,  the carbon  in the
filters was  14 months  old but  effectively reduced  the  levels as shown below:
                          Influent Concentration        Effluent Concentration
     Contaminant          	(ng/L)	        	(ng/L)	
     Heptachlor epoxide           220                           ND
     Lindane                        5                           ND
     Fremont, Ohio
     In  the agricultural region of  northwestern  Ohio,   the  concentration of
pesticides  was  monitored in the river waters  and in the  finished drinking
water produced by three  water treatment plants.  During this EPA study, Baker
(1983) reported that GAC  reduced the levels of pesticides at the Fremont, Ohio
treatment plant located on the Sandusky River.  A  16.5 in. deep GAC  filter cap
using  Filtrasorb 300  was placed upon  the rapid  sand  filters  at  the water
treatment plants.   The filter  loading rate of 1.2  gpm/ft  (Hade 1984) provided
an  EBCT  of  9 minutes.   The  results from  the  GAC  filter  cap  are  presented
be low:
                          Influent Concentration        Effluent Concentration
     Pesticide            	(ug/L)	        	(ug/L)	
     Alachlor                   0.7-5.0                       0.1-0.7
     Atrazine                   0.5-8.0                       0.5-1.5
     Additional  monitoring  of  the  plant  at   Fremont   indicated  continuing
removal of SOCs after  the filter cap had been in service for approximately 30
months.  The performance  of the  18  inch filter  cap during May-October -1984 is
summarized  in Table 4-4  (Miltner and Fronk,  1989).  Removal  of  alachlor and
atrazine was still  being  achieved after 30 months of operation.
     Lathrop, California
     In 1977, the ground  water in the San Joaquin Valley, California was found
to  be  contaminated with pesticides from  the  Occidential Chemical  Company
(Dahl,  1985) .   The  water  contained  many  contaminants,  with DBCP  and  EDB
present  in   the  highest   concentrations.   GAC was  found to  be effective  in
removing  the contaminants  during   previous  pilot testing.   In  1982,  the
chemical  company  installed a treatment  system  for the  ground water.   The
ground water was  withdrawn  at  a  rate  of  500  gpm  and  passed  through  an
activated carbon  system   after which  it was injected  into  the  lower aquifer.
                                     4-20

-------
                                                                       TABLE 4-3

                                                        REMOVAL BY CAC AT THE WATER FACTORY 21



Contain) nant
COD
IOC
o-dichlorobenzene
chlorobenzene-o-xylene
m-xyl ene
ethylbenzene
styrene

October 19
Influent
Concentration
42
14
0.01
0.09
ND
0.06
ND

76 - February 1
Effluent
Concentration
16.8
6.9
0.002
0.049
ND
0.033
ND

978
Percentage
Removal
66
51
82
46
-
45
.
Carbon
Usage
Rate
(lb/1,000 gal.
2.4
2.4
2.4
2.4
2.4
2.4
.

March 1978 -
Influent
Concentration
24
NR
0.02
0.11
0.05
0.02
0.03

January 1
Effluent
Cone.
12.24
NR
0.002
0.041
0.025
0.017
0.018

979
Percentage
Removal
49
-
91
63
50
17
40
Carbon
Usage
Rate
(lb/1,000 gal)
1.2
-
1.2
1.2
1.2
1.2
1.2
Note:
     1.   Geometric mean concentration in ug/L, except  COD and TOC which are in mg/L.
     2.   MR  - not reported.
     3.   ND  - not detected.

-------
                                   TABLE 4-4

           TREATMENT OF SOCS BY GRANULAR ACTIVATED CARBON/FILTRATION

                        FREMONT, OHIO MAY-OCTOBER, 1984
    SOC
Concentration
   (ug/L)
Percent
Removal
                                                      Confidence
                                                         Level
              Occurence
                 Days
alachlor
atrazine
DEA
DIA
simazine
     3.70
     4.83
     0.43
     0.27
     0.39
72 ± 15
47 ± 17
69 ± 31
82 ± 15
62 ± 27
99
99.9
99
93
99
13
17
 9
 4
11
DEA  = diethyl atrazine (metabolite)
DIA  = diisopropyl atrazine (metabolite)

-------
The  GAG column  size and  carbon  content  and  operating conditions  were not
reported.  The influent DBCP and EDB concentrations ranged from  77 to  184 ug/L
and 8 to 19 ug/L, respectively.  The chemical concentrations  in  the water were
reduced below  1  ug/L for EDB  and :below detectable limits  (0.1  ug/L)  for the
17 other contaminants.   The usage  rate during this period  averaged 0.31  Ib
carbon/1,000 gal.

     Greenport, New York
     Available  performance  data  of  existing   GAC   contactor   from   start-up
(August 1980) through November 1986  was evaluated (Divarka and  Bartilucci and
Malcolm  Pirnie,   Inc.,  July  1987).    The  GAC  contactor  operated under the
following conditions:
       Flow (gpm) 450
       Carbon charge (Ibs)  20,000
       EBCT (minutes)  12

     Based on an aldicarb breakthrough criteria of 6 ug/L, carbon usage ranged
from 0.15 to 0.17 lbs/1,000 gallons through three carbon changes in the period
from August 1980  through  July 1984.   Since  aldicarb levels  in  the  well were
decreasing over  time,  the  GAC was  changed  only once  (October 1985)  in the
period between July 1984 and November 1986.

Estimation of Carbon Usage Rates
     The presence of other  adsorbable organic  compounds and  natural and/or
anthropogenic organic  matter  in  the water matrix  impacts the  adsorption of
specific organic compound  of interest.   In a given  water matrix,  organic
compounds compete for the available  active sites on  the carbon.   This results
in  reduced  capacities for  all the  compounds when  compared to their single
solute capacities.  Competitive interactions  impact  weakly adsorbing  compound
more than the strongly adsorbing  compound.  Further,  competitive interactions
among organic compounds in  a water matrix depends on number  of  compounds and
their concentrations.
                                     4-21

-------
     Natural or anthropogenic organic matter is more weakly adsorbing than the
specific  organic  compounds, and therefore, moves  faster  through the bed, and
preloads  the  carbon.   This  preloading of  carbon  impacts  the  capacity and
kinetics  of the specific organic compounds  (Zimmer  (1987), Crittenden (1988)).
Strongly  adsorbing compounds, which  move  slowly  through the  bed, experience
greater reduction  in capacity and kinetics when compared  with weakly adsorbing
compounds.  The  impact of  background  organic  matter depends  directly  on the
number of compounds, their  concentrations  and  the concentration of background
organic matter in  a water matrix.
     As  the  equilibrium and kinetics  of  a  specific  organic  compound   is
directly  related  to its GAC  usage  rate, competitive  interactions with other
organic compounds  and background organic matter are important factors.
     A comparison  of usage  rates predicted using distilled water isotherm data
and actual field data was performed in order to determine the magnitude of the
impact the  background  matrix may have  on  the  estimation of  the carbon usage
rates.  In order  to  develop this  comparison,  CPHSDM  usage  rate predictions
using distilled  water  isotherm data  were  made for those /ield studies where
                                                          I   _ r)
the following information was available:                   Xrt"
       -  EBCT
          Influent/Effluent concentration
       -  Superficial velocity
       -  Temperature
The ratio of field to distilled water isotherm usage rates was then calculated
for  each  available  influent/effluent combination.   The data  used for  this
comparison  along  with  the ratio of  field  to distilled water  usage  rates are
presented in Appendix D.  These ratios  were then  plotted versus the distilled
water isotherm usage rates  as  shown in Figure  4-3.  A regression analysis was
performed on the data, and yielded the following multiplier function:
                    v   n -7>i>n   -0.5165
                    Y = 0.7443 x
          where:    Y = multiplier
                    X = distilled carbon usage rate (lbs/1000 gal)
The  multiplier function  was used  to  adjust  the  estimated distilled  water
isotherm  usage  rates  previously  presented  in  Table 4-2.   The  multiplier
function  was used  in  a manner such  that the adjusted  carbon  usage  rates was
                                     4-22

-------
IUU
50
20

10
0 5
h-
DC 2
1
0.5
0.2
n 1
^^












^











-











*-^











^*











*x.


























~








^

~








^-.











^^












"""^











^.












^**««











t***


-






*v










v,









^










^^^
^











^










^











^

—




















































i
i

i
i
\,


;





















"~^-











•^.
























•^.











•>











-,


        0.0001   0.0003
0.001    0.003     0.01     0.03      0.1:
    DISTILLED WATER USAGE RATES
0.3
NOTE: RATIO » RATIO OF FIELD TO
   DISTILLED WATER USAGE RATES
                          RATIO OF FIELD:DISTILLED
                                  VERSUS
                       DISTILLED WATER USAGE RATES
                                                           T«
                                                           o

                                                           m

-------
equal to  the  multiplier times the distilled  water carbon usage  rate.   These
adjusted  carbon  usage rates  are  presented in Table  4-5  and will be  used to
develop GAC costs in Section 7.

Summary
     The  various  studies  reviewed in this  section indicate that  all 29 SOCs
(with the exception of epichlorohydrin) to  be regulated under  Phase II can be
removed by GAC.   The  economy  of  the  process  is dependent on the  carbon usage
rate.   Certain  volatile organics  and chlorinated aromatics have  relatively
poor adsorbabilities, which result in higher carbon  usage rates.   Because of
their volatile nature,  these  SOCs may be removed  more  economically by packed
column aeration,  as discussed in Sections 5 and 7.
     Adsorption isotherm tests aid  in defining the relative adsorbability of
each SOC  present  in the water.   These  data  should be  used along  with model
predictions  to  predict minicolumn   sizing.   Since  minicolumn  scale-up  is
currently  uncertain,  pilot or  full  scale data   should  be  obtained.   Since
carbon usage rates are dependent on the organic matrix, natural waters rather
than distilled water should be used whenever possible.  Carbon  usage rates are
also dependent upon the following parameters:
          hydraulic conditions
          biological action
          contactor configuration
          operating conditions
       -  level of pretreatment
     Since carbon usage rates  are dependent on  several variables,  further
research should be conducted to better define the  usefulness of data obtained
from all phases of treatability  studies.
                                     4-23

-------
                                                         TABLE  4-5
                                                                               1.2,3
                                         CARBON USAGE  RATES  WITH  BACKROUNO TOC
Compound Name





Alachlor










Aldicarb










Atrazine










Carbofuran










Chlordane
    !,2-Dichloroethylene
OBCP
o-Dichlorobenzene
1,2-D ichloropropane
2,4-D
	 Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
0.60
0.0208
1.30
0.0852
1.00
0.0263
5.00
0.0459
0.50
0.0306
5.00
0.3603
0.10
0.0358
50.00
0.0706
2.00
0.2060
5.00
0.0983
10.00
2.00 6.00
0.0206 0.0202
50.00
10.00 20.00
0.0837 0.0826
5.00
3.00 5.00
0.0257
20.00
40.00 50.00
5.00
2.00 5.00
0.0299
50.00
70.00 100.00
2.00
0.20 1.00
0.0356 0.0347
100.00
600.00 800.00
10.00
5.00 10.00
0.2013
50.00
70.00 100.00
0.60
0.0374
1.30
0.1044
1.00
0.0546
5.00
0.0604
0.50
0.0386
5.00
0.4159
0.10
0.0449
.*
50.00
0.1293
2.00
0.2897
5.00
0.1263
50.00
2.00
0.0371
100.00
10.00
0.1032
50.00
3.00
0.0543
50.00
40.00
0.0570
10.00
2.00
0.0379
100.00
70.00
0.3966
5.00
0.20 '
0.0448
700.00
600.00
0.1234
50.00
5.00 V
0.2867
100.00
70.00
0.1224
6.00
0.0368
20.00
0.1023
5.00
0.0541
50.00
5.00
0.0372
100.00
' 1.00
0.0446
800.00
10.00
0.2837
100.00
0.60
0.0481
1.30
0.1676
1.00
0.0679
5.00
0.0741
0.50
0.0660
5.00
0.4791
0.10
0.0627
50.00
0.1443
2.00
0.3335
5.00
0.2251
100.00
2.00
0.0477
500.00
10.00
0.1667
100.00
3.00
0.0676
100.00
40.00
0.0719
50.00
2.00
0.0652
200.00
70.00
0.4656
20.00
0.20
0.0626
1000.00
600.00
0.1401
100.00
5.00
0.3312
500.00
70.00
0.2212
6.00
0.0474
20.00
0.1656
5.00
0.0674
50.00
0.0715
5.00
0.0645
100.00
0.4608
1.00
0.0618
800.00
0.1381
10.00
0.3283
100.00
0.2204

-------
                                                        TABLE 4-5 (Continued)
      and Name

 Ethyl benzene



 EDB


          4
 Heptachlor



 Heptachlor epoxide



 Li ndane



 Methoxychlor



QpBch I orobenzene


                  4
 PCB (Aroclor 1254)



 PentachIorophenol



 2,4.5-TP (Silvex)
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate

50.00
0.1017

0.01
0.0663

0.03
0.0509

0.03
0.0201

0.02..
1 	 1_. - — ''

100.00
0.1411

60.00
0.1081

0.05
0.0224

20.00
0.0423

5.00
0.0678
100.00
700.00 800.00
— —
0.50
0.05 1.00
0.0656
0.10
0.40 1.00
— ...
0.10
0.20 1.00
— —
0.50
0.20 1.00
) 0.0165
260.00
400.00 500.00

100.00
100.00 400.00
— —
5.00
0.50 5.00
0.0224
50.00
200.00 400.00
— —
50.00
50.00 100.00
...

50.00
0.1637

0.01
0.1455

0.03
0.0556

0.03
0.0283

0.02
0.0208

100.00
0.1626

60.00
0.1937

0.05
0.0222

20.00
0.0905

5.00
0.0841
700.00
700.00
—
10.00 -
0.05
0.1453
1.00
0.40
0.0556
1.00 _,
0.20
0.0271
1.00
0.20
0.0203
400.00
400.00
—
600.00
100.00
0.1930
10.00
0.50^
0.0222
500.00
200.00
0.0883
100.00
50.00
0.0813

800.00


1.00
0.1435

1.00

.
1.00


1.00


500.00
—

400.00
0.1891

5.00
0.0222

400.00
0.0860

100.00
0.0000

50.00
0.1782

0.01
0.2222

0.03
0.0608

0.03
0.0379

0.02
0.0393

100.00
0.2185

60.00
0.2281

0.05
0.0217
'
20.00
0.1136

5.00
0.1373
1000.00
700.00
0.1687
50.00
0.05
0.2221
10.00
0.40
0.0608
10.00
0.20
0.0377
10.00
0.20
0.0392
1000.00
400.00
0.2137
1000.00
100.00
0.2274
50.00
0.50
0.0217
1000.00
200.00
0.1112
500.00
50.00
0.1353
I
800.00
0.1660

1.00
0.2206

1.00
0.0608

1.00
0.0366

1.00
0.0387

500.00
0.2123

400.00
0.2245

5.00
0.0217

400.00
0.1101

100.00
0.1341

-------
                                                        TABLE 4-5 (Continued)
Name
                                                                       Carbon Usage (Ibs/KGal)
Styrene
TetrachloroethyIene
Toluene
Toxaphene
trans-1,2-Oichloroethylene
m-Xylene
    I ene
p-Xylene
                      Inf (ug/L)
                      Eff (ug/L)
                      Usage Rate

                      Inf (ug/L)
                      Eff (ug/L)
                      Usage Rate

                      Inf (ug/L)
                      Eff (ug/L)
                      Usage Rate

                      Inf (ug/L)
                      Eff (ug/L)
                      Usage Rate

                      Inf (ug/L)
                      Eff (ug/L)
                      Usage Rate
                                              2.00
                                            0.0401
                                              1.00
                                            0.0980
                                            100.00
                                            0.1936
                                              1.00
                                            0.0434
                                              5,00
                                           CCL26ZO'
  10.00
   5.00
 0.0395

  50.00
   5.00
 0.0967

 500.00
2000.00
   5.00
   5.00
  50.00
 100.00
                                                               20.00
                                                               50.00
                                                             3000.00
                                                               10.00
200.00
                      Inf  (ug/L)          10000.00
                      Eff  (ug/L)  1000.00 10000.00 15000.00
                      Usage Rate   0.2116

                      Inf  (ug/L)          10000.00
                      Eff  (ug/L)  1000.00 10000.00 15000.00
                      Usage Rate  '6^3096  ;  ---

                      Inf  (ug/L)          10000.00
                      Eff  (ug/L)  1000.00 10000.00 15000.00
                      Usage Rate  /0.3151
                    50.00
            2.00     5.00    20.00
          0.0610   0.0605   0.0596

                   100.00
            1.00     5.00    50.00
          0.1160   0.1144   0.1108
                  3000.00
          100.00  2000.00
          0.3160   0.3050
            1.00
          0.0493
          10.00
           5.00
         0.0432
         200.00
  5.00   100.00
0.3888   0.3793
                 3000.00
 10.00
200.00
                           20000.00
                   1000.00 10000.00 15000.00
                    0.2340   0.2148   0.2065

                           20000.00
                   1000.00 10000.00 15000.00
                    0.3718   0.3619   0.3556

                           20000.00
                   1000.00 10000.00 15000.00
                    0.3822   0.3718   0.3657
          200.00
   2.00     5.00    20.00
 0.0872   0.0866   0.0858

          500.00
   1.00     5.00    50.00
 0.1699   0.1694   0.1657

         5000.00
 100.00  2000.00  3000.00
 0.3626   0.3540   0.3508

           50.00
   1.00     5.00    10.00
 0.0634   0.0604   0.0579

          500.00
   5.00   100.00   200.00
 0.4977   0.4893   0.4859

        50000.00
1000.00 10000.00 15000.00
 0.2649   0.2515   0.2468

        50000.00
1000.00 10000.00 15000.00
 0.4733   0.4644   0.4620

        50000.00
1000.00 10000.00 15000.00
 0.4966   0.4882   0.4854
Notes:
       1.   Carbon usage rates developed  from  predictions presented  in Table 4-2 and application of safety factors
           to account  for background TOC and  possible competition from other SOCs

       2.   Model-predicted carbon usage  rates developed through application of
           CPHSDM to distiIled-water isotherm study results and were adopted from:
           (a) Miltner,  R.J.  et  al.   Final Internal Report On Carbon Use Rate Data.
                    COW - U.S.  EPA,  Cincinnati, OH, June 30, 1987.
           (b) Miltner,  R.J.  et  al.   Interim Internal Report On Carbon Use Rate Data.
                    COW - U.S.  EPA,  Cincinnati, OH, June 30, 1987.

       3.   DistiIled-water isotherm  constants not available for Acrylamide,
           Aldicarb sulfone,  Aldicarb sulfoxide, and Epichlorohydrin

       '..   Isotherm-predicted carbon  usage rates developed through
           application of Freundlich's equation, as shown in Appendix A.

-------
           5.  OTHER APPLICABLE TECHNOLOGY - PACKED COLUMN AERATION

     As indicated in Section 3, packed  column  aeration has been identified as
another  applicable  technology.   Other  applicable  technologies  are  those
technologies which  are not  identified  as generally  utilized  for  removal of
SOCs,  but  which may  have applicability  for some  water supply  systems when
considering site-specific conditions, such as type of SOC.

Process Description
     Air stripping has been used effectively in water treatment to reduce the
concentration  of  taste   and  odor  producing  compounds  and certain  organic
compounds.   Aeration, or air stripping, may  be  described as the transfer of a
substance from solution  in  a liquid to solution in a gas.   The driving force
for mass transfer is a concentration gradient.   A concentration gradient tends
to move the  substance  in such a direction as  to equalize concentrations and,
thereby, eliminate the gradient.
     The driving force  for  mass  transfer  is  the  difference  between actual
conditions in  the  air stripping unit  and conditions  associated  with equili-
brium  between  the  gas  and  liquid phases.   According  to  Henry's  Law  the
equilibrium concentration of a  solute  in air is directly proportional to the
concentration  of the  solute  in water  at a given  temperature.   Henry's  Law
states that the amount of gas that dissolves in a given quantity of liquid, at
constant temperature  and total pressure,,  is  directly  proportional to  the
partial pressure of  the  gas  above the  solution.   Thus,  the  Henry's  Law
Coefficients describe the relative tendency for a compound to separate between
gas and liquid.   Henry's Law Coefficients can  be used to  give a preliminary
indication of the effectiveness for removing a specific SOC.
     Henry's Law Coefficients,  are  presented  for  several  of  the  SOCs  in
Table 5-1 based  on  both  theoretical calculations and  field data.   The magni-
tudes  of the coefficients for  the various  compounds are  functions  of  their
solubility  in  the  liquid phase and their  volatility.  A high  Henry's  Law
Coefficient  indicates equilibrium  favoring the  gaseous  phase;  i.e.,  the
compound generally  is  more  easily stripped  from water than one with  a  lower
                                      5-1

-------
Henry's  Law  Coefficient.   The  theoretical  Henry's  Law Coefficients  were"
estimated from vapor pressure, solubility and molecular weight as follows:
              V  x MW   _, ,
          H =  p      x 73.1
                sol
          where:  H   = Henry's coefficient  (atm)
                  V   = vapor pressure  (mm Hg)
                   P
                  MW  = Molecular Weight  (g mole  )
                  sol = solubility  (mg L  )
      Field  data  were available  for ten  SOCs  (Cummins and  Westrick,  1987) .
The Henry's  Law Coefficients at ambient temperature were generally 50 percent
of  the  value  'estimated  from  vapor  pressure  and  solubility  data  at  a
temperature  of  20 C.   The  50 percent  reduction  may be   due  in  part  to
temperature  and matrix effects.
     As  a first  approximation, SOCs  having Henry's  Law Coefficients  below
1 atm, at room temperature or above, probably would not be effectively removed
by  packed column  aeration.   Based on  the  above criterion,  seven SOCs  in
Table 5-1  would  not  be  amenable  to  packed  column  aeration.   Two  other
compounds, chlordane  and epichlorohydrin, may be  amenable  to aeration,  while
sufficient information is  not available for  2,4-D,  methoxychlor  and- 2,4,5-TP
to evaluate  their potential  removals by aeration.  Treatability studies,  which
incorporate  mass   transfer  characteristics  through  model  prediction  or
pilot-scale  tests, are utilized for determining the feasibility of SOC removal
via packed column aeration.
     The  mass  transfer coefficient  relates  the driving  force (concentration
gradient) to the  actual  quantity of material transferred from liquid  to air.
The mass  transfer  coefficient is a function  of  the physical/chemical  proper-
ties of an individual SOC, the  type of  packing material used, and the  gas and
liquid loading rates.  In packed columns,  packing materials provide large void
volumes and  high  surface  areas.  The water flows downward by gravity  and air
is  forced upward.   The untreated water is  usually distributed on  the top  of
the packing  with distribution trays and the  air  is  moved  through  the tower  by
forced  or induced  draft.    This  design  results  in  continuous  and  thorough
                                      5-2

-------
                                                    TABLE 5-1
                                       HENRY'S LAW COEFFICIENTS FOR SOCs
  Compound

  Toxaphene
 /Trans-1,2-Dichloroethylene
 / Ci s-1,2-Dichloroethylene
 \ Tetrachloroethylene
 v' Ethyl Benzene
 J Toluene
 j p-Xylene
 -. m-Xylene
 > o-Xylene
  Heptachlor
  Monochlorobenzene
J 1,2-Dichloropropane
  Styrene
J o-Dichlorobenzene
  PCB (Arochlor 1242)
J Ethylene dibromide (EDB)
  PCB Aroclor 125*
  Heptachlor Epoxide
  Oibromochloropropane
  Chlordane
  Epichlorohydrin
  Pentachl orophenol
  Lindane
  Acrylamide
  Alachlor
  Carbofuran
  Aldicarb
  Atrazine
  2,4-D
  2,4,5-TP
  Methoxychlor
MW
(g/mole)
412
96.95
96.95
165.83
106.16
92.13
106.16
106.16
106.16

373.53
112.56
112.99
104.14
147.01
258
187.88
326
389.83
236.36
409.8
92.53
266.35
290.85
71.08
269.77
221.3
190.25
215.68
221.04
269.53
365.65
Vapor
(nrnHg)
0.2-0.4
200
200
14
7
22
6.5
6
5

0.0003
8.8
42
5
1-
0.001
11
0.00006
0.003
0.8
0.00001
12
0.00011
9.40E-06
2
2.20E-05
0.00002
1 .OOE-04
3.00E-07
NA
NA
NA
Pressure
(Tref)
20C
14C
25C
20C
20C
20C
20C
20C
20C

25C
25 C
20C
20C
20C
20C
20C
20C
25C
21C
20C
20C
20C
20C
87C
25C
23C
25 C
20C



Solubil
(mg/L)
3
600
800
150
152
515
198
NA
175

0.056
500
2700
300
100
0.24
4310
0.056
0.35
1000
0.056
60000
14
17
2.15E-06
140
700
6000
70
540
140
0.04
ity
(Tref)
25C
20C
20C
25C
25C
20C
25C

20C

25C
20C
20C
20C
20C
NA
30C
NA
25C
25C
NA
20C
20C
24C
30C
23C
25C
25C
25C
20C
25C
24C
Henry's Coefficient (atm).
(Vp/Sol)1
1004-2008 -/
1180
886
seey
179V"
144
127
NA
111 \^
-V- —
73 - '
72
64
63
54
39 /
18
13
12
7
3
1
7.65E-02
5.88E-03
2.42E-03
1 .55E-03
2.31E-04
1.16E-04
3.38E-05
NA
NA
NA
Field Data1'
136(3)
150(3)
83
274
174 -'
162
150
137
125

42l '
75
50
-
39 /
-
17
-
1 .8
_
2.7(3)
-
-
-
-
-
-
-
-
-
-
.
  Notes:
       1.
       2.


       3.

       4.
Henry's Law coefficient estimated from vapor pressure and solubility data.  A 50 percent
factor of safety was applied to all  estimates.

Henry's coefficient based on field evaluation.  The indicated value gave the best fit
between predicted and observed performances (Cummins and Westrick, 1987).

Henry's coefficient based on experimental data (Warner, Cohen and Ireland, 1980).

"	" Information not available.

-------
contact  of the liquid with the  gas  and minimizes the  thickness  of the water
layer on the packing, thus promoting efficient mass transfer.
     The design  of  air stripping equipment has been  developed extensively in
the chemical engineering industry for handling concentrated organic solutions.
The procedures used in the chemical engineering  literature  can be applied to
water  treatment  for  trace  organics  removal.   The rate  at  which  a volatile
compound is removed from water by aeration depends on the following factors:
       - Air:water ratio
          Packing height
          Available area for mass transfer
       - Temperature of the water and the air
       - Physical chemistry of the contaminant
The first  three  factors may be  controlled  in the design of an air stripping
unit, while the other two factors are set for a specific water supply.
     The air  flow requirements  for a packed column depend on the Henry' s Law
Coefficient for the particular  compound(s)  to be removed from the water.  In
an  ideal aeration  system,  the  minimum  air:water ratio  which  will  achieve
complete  removal of  a  contaminant  proportional to  the reciprocal  of  the
Henry's  Law Coefficient.   The greater  the  Henry's Law Coefficient,  the  less
air is required  to  remove  the compound from water.   Because aeration systems
are not  ideal, the actual air:water ratios required to achieve a given removal
efficiency are greater than the theoretical minimum air:water ratios.
     The packing height is  a function  of the depth of the  packing material.
An increase in the depth of packing material results in a greater contact time
between  the air and the water, and consequently, will result in higher SOC re-
movals.
     The available  area for mass transfer  is  a function of  the  packing  mat-
erial.   Various  sizes and types  of  packing material are  available including
1/4 to  3-inch sizes  of  metal,  ceramic  or  plastic material.    In  general,
smaller  packing material provides a  greater available  area  for mass transfer
per volume of material,  thus  increasing  the  mass  of contaminant  removed.
However, smaller packing  increases the air  pressure  drop through the packed
column.
     The fundamental  concept  of  mass  transfer  states  that  the rate  of  mass
transfer per  unit  of reactor volume is  first  order  and proportional  to the
                                      5-3

-------
difference   between   the   operating   concentration   and   the   equilibrium
concentration as follows  (Treybal, 1980):
     J = KLa *  (X - X*) *  (1000 L m~3)	 Eq 1

     Where:

          J = Mass transfer  rate per unit reactor volume
               (ug VOC m   reactor volume sec  )

          X = Concentration  of VOC in  liquid phase  (ug L   )

         X* = Equilibrium concentration of VOC in liquid phase  (ug L  )

        KLa = Mass transfer  coefficient  (sec  )

     A general  equation relating packing height to mass transfer coefficient,

removal efficiency,  Henry's coefficient, air loading,  and liquid loading can

be obtained by  applying conservation of  mass  to a differential reactor volume

element and  integrating.   The resulting equation for  packing height is shown

as Eq 2.
     Packing Height:

                L      R        (  (Xt/Xb)*(R-l) + 1 )
          Zt =	*	*  In		 Eq 2
                KLa   (R-l)               R

          Where:

                Zt = Packing  height (ml
                L = Liquid loading (m  m   sec  )  -
              KLa = Mass transfer coefficient (sec  )
                Xt = Top of packing contaminant concentration  (ug L  )
                Xb = Bottom of packing  contaminant concentration (ug L  )
                R = Stripping factor (dimensionless)

                              G     H
                         R =	*	
                              L     Pt

                G = Air loading (m  m   sec  )    ,         _
                H = Henry's  Law Coefficient (atm m  water m   air)
                Pt = Atmospheric pressure  (1 atm)

     Equipment  Required

     A  diagram  of  a  typical  packed  tower  installation  is  illustrated  on

Figure 5-1 and  consists of the following:
                                       5-4

-------
                                                               FIGURE 5-1

       DEMISTER MAT
       CONTAMINATED
       INFLUENT
PACKING MATERIAL
                           EXIT AIR
                           AND SOC
n n r~i

                          EFFLUENT
                                         ORIFICE PLATE DISTRIBUTOR
                                        PACKING MATERIAL
                                         SUPPORT PLATE
                                     INCOMING AIR
                                              BLOWER
                    PACKED  COLUMN
    SCHEMATIC OF PACKED  COLUMN  AERATION

-------
       -  Packed  Tower:   Metal  (steel  or  aluminum),  plastic,  fiberglass  or
          concrete is used for the outer shell.  Internals (packing, supports,
          distributors,  mist  eliminators)  are  generally made  of metal  or
          plastic.
       -  Blower:  Typically  centrifugal type, either  metal or  plastic con-
          struction.  Noise control may  be  required  depending on the size and
          system locationi
       -  Effluent Storage:  Generally provided as a concrete clearwell below
          the packed tower.
       -  Effluent Pumping:  Generally required because effluent is usually at
          atmospheric pressure.  Vertical  turbine pumps mounted  on clearwell
          are typical.
     In ground  water applications,  water  is  generally pumped  directly from
wells to the  top  of  the packed tower.  The effluent  flows from the bottom of
the  tower  into a  clearwell from  where  it is usually pumped  into the dis-
tribution system.  Depending  upon  the hydraulic  constraints  of an individual
location,  this effluent  repumping  may or may  not  be  required.   Similarly,  in
surface water  applications,   the  system  hydraulics  dictate  the amount  of
pumping that is required.

Treatability Studies;  Pilot Scale Tests
     The feasibility of  removing SOCs  from  drinking  water  using packed column
aeration has  been  studied in several pilot-scale  tests.   Seven of the twelve
studies reported in this section were conducted by the United States Environ-
mental Protection  Agency (USEPA)  through its  Office of Drinking  Water  (ODW).
The remaining five studies were conducted by other consulting firms or indivi-
duals.
     Packed-Column Aeration Studies-USEPA
     Numerous  packed-column aeration  pilot  studies  have been performed  by
Cummins of USEPA.  Seven of the available  studies contain  removal information
on   at   least   one   of   the    29  SOCs.    Data   on   the   removal   of
cis-l,2-dichloroethylene are presented  in  each of these  studies.  The  study
locations, testing dates and compounds removed (on the list of 29 SOCs) are  as
follows:
                                      5-5

-------
     Dedham, MA          August 24, 1982          cis-l,2-dichloroethylene
                                                  1,2-dichloropropane
                                                  o-dichlorobenzene
     Lansdale, PA        August 10, 1982          cis-l,2-dichloroethylene
     Glen Cove, NY       August 20, 1982          cis-1,2-dichloroethylene
                         December 14 S 16, 1982
     Hartland, WI        September 23, 1982       cis-1,2-dichloroethylene
     Wausau, WI          September 28, 1982       cis-1,2-dichloroethylene
     Lakes Wales, FL     April, 1984              EDB
     Bastrop, LA         February 1984            Toluene
                                                  Ethylbenzene
                                                  o,m,p-xylenes
     The pilot column used by Cummins in each of the above studies was 24 feet
in height  and 2  feet in  diameter.   It contained  18  feet of  plastic saddle
packing which was  1 inch in  size  for  all pilot runs, except for  six runs in
Glen Cove,  New  York where 2  inch plastic  saddles  were used.   Eighteen sample
taps were installed at 1-foot intervals  along  the  column  to permit the devel-
opment of concentration  profiles for contaminants along  the  entire height of
the column.   Operational information and results are presented for each site.
     Dedham, Massachusetts  - The ground  water from Well No. 3  on University
Avenue in Dedham,  Massachusetts was found  to  be contaminated by  a number of
organic   chemicals   including    low    levels   (less   than   15 ug/L)    of
cis-1,2-dichloroethylene,  1,2-dichloropropane   and   o-dichlorobenzene.    The
well,  which had  supplied 700  gpm to  the  Dedham system, was  taken out  of
service in  1982.   Water from the  University Avenue well was pumped  by  fire
hose  to  the  pilot column  during the  study  conducted  by Cummins (Cummins,
Dedham, 1982).  The raw water flow was controlled  by  a gate valve.  The  water
was piped to the top of  the  column,  distributed over the  top  of  the packing
through an  orifice plate and allowed  to cascade down through  the column.   A
low pressure blower was  used to  draw air  up  through the column.   Both the
water  and air  flow rates were adjusted  to  obtain  certain specified air:water
ratios.  Test  conditions  (liquid  loading  rate, airrwater  ratio)  and percent
removals for each of  the three SOCs  of interest  are presented  below.   The
water  temperature was approximately 53 F.
                                      5-6

-------
Liquid Loading
     Rate
    (gpm/ft )

     12
Air:
Water
Ratio
80
~~^P
27
16
8
5

cis-1, 2-dich
ethylene
99.7*
98.7*
91.8
75
53
32
Percent Removals
loro- 1,2-dichloro-
propane
98.8*
97.7*
75*
54
34
20

o-dichloror-
benzene
97.5*
• ' 91. O*-/
^"57
31
6.7
-
     25
     35
     51
     56

Notes:

     1.   Average influent concentration:  11 ug/L
     2.   Average influent concentration:  2.0 ug/L
     3.   Average influent concentration:  3.0 ug/L

    *Compound stripped below detectable limit - removal efficiency based on
     regression analysis.

     The results  indicate that packed column aeration  is effective  for  the
removal of each of the three  SOCs.   Removals decreased as the air:water ratio

was lowered, as predicted by the empirical development.
     Lansdale, Pennsylvania  -  The  ground  water from  Well No.  8 on  Third

Street in Lansdale, Pennsylvania was found to be contaminated by  a number of
organic chemicals,  including cis-1,2-dichloroethylene  at a  concentration of
approximately 160 ug/L.  The 100 gpm well was taken out of service in 1979.  A
total of  six runs were  conducted  by  Cummins  at the Lansdale site (Cummins,
Lansdale,   1982).   The  water  temperature  was   approximately   58 F.   Test
conditions  and performance  data are  presented  below  for  cis-1,2-dichloro-
ethylene :
     Liquid Loading           Air:
         Rate                 Water              Percent Removal
       (gpm/ft )               Ratio          cis-1,2-dichloroethylene

          11                  83                       99.6
          16                  44                       98.2
          24                  28                       91.8
          33                  17                       82
          47                   9                       50
          65                   5                       30
     As in the study at  Dedham, the  above  results indicate that  packed-column

aeration is effective for the removal of cis-1,2-dichloroethylene.
                                      5-7

-------
      Glen  Cove,  New York - The ground water from Well No. 22 on Carney Street
 in  Glen  Cove,  New York was found to be contaminated by several organic chemi-
 cals,  including   cis-1,2-dichloroethylene  at  a  concentration of  130  ug/L
 (Ruggiero  and  Ferge,  1983).   The 2 mgd well was taken out of service in 1977.
 A total  of 16 runs were  conducted by  Cummins  at the Glen Cove well  (Cummins,
 Glen  Cove, 1982), over  a three day period.   Test  conditions and performance
 data  are  presented in  Table 5-2.  The  results again  indicate  that  packed
 column aeration  is effective for the removal of cis-1,2-dichloroethylene.  At
 similar  test conditions,  the 1-inch plastic  saddles  achieved  better results
 than did 2-inch plastic  saddles.
     Hartland, Wisconsin - The ground  water from Well No. 3 on Progress Drive
 in  Hartland,  Wisconsin was  found  to be contaminated by  three  organic  chemi-
 cals,  including  cis-1,2-dichloroethylene at a concentration of 6 ug/L.   The
 1,000 gpm  well was taken out of  service in 1982.   A total of  six runs  were
 conducted  by Cummins  at  the Hartland well  (Cummins,  Hartland,  1982).   The
water  temperature  was   51  F.   Test  conditions  and  performance  data  are
presented below:
     Liquid Loading            Air:
         Rate                  Water              Percent Removal
       (gpm/ft )               Ratio          cis-1,2-dichloroethylene
           11                   84                       99.8*
           17                   43                       98.0*
           24                   25                       92.9
           35                   16                       82
           49                    8                       50
           65                    5                       42
    *Compound stripped below detectable limit - removal efficiency based on
     regression analysis
     The results again indicate that of packed column aeration is effective in
 removing cis-1,2-dichloroethylene  from drinking water.
     Wausau, Wisconsin -  The  ground water from Well No. 3 on East Union  Street
 in Wausau, Wisconsin was found to  be contaminated by three organic chemicals,
 including  cis-1,2-dichloroethylene at  a concentratic/n of  27  ug/L.   The  2,000
gpm well was taken out of service  in 1982.  A total of six runs were conducted
by Cummins at  the  Wausau well (Cummins,  Wausau, 1982).   The water  temperature
was approximately  51  F.   Test  conditions  and  performance data  are presented
below:
                                      5-8

-------
TABLE 5-2




Day






Day




Day






PACKED-COLUMN
Liquid Loading
Rate
(gpm/ft2)
PILOT STUDY RESULTS - GLEN COVE, NEW YORK
-Air:
Water
Ratio
1: August 20, 1982; 1-inch Plastic Saddles;
10.3
16.2
25.0
33.9
51.5
66.3
2: December 14, 1982;
16.2
25.0
35.3
50.1
3: December 16, 1982;
11.8
19.1
26.5
39.8
57.4
76.6
86
46
27
17
9
6
1-inch Plastic Saddles
47
26
15
8
2-inch Plastic Saddles
84
48
28
16
9
5

Percent Removal
cis-1 , 2-dichloroethylene
Water Temperature = 61 F
99.9
99.3
94.2
85
58
40
; Water Temperature = 58 F
98.8
94.3
70
46
; Water Temperature = 59 F
98.8
95.8
90
76
54
39

-------
     Liquid  Loading            Air: .    ,
         Rate                  Water               Percent Removal
.....    (gpm/ft  )     .          Ratio  .       . cis-1,2-dichloroethylene

          10                  85                        99.5
          17                  45                        97.4
          25                  25                        86
          35                  15                        74
          50                   9                        35
          52                   5                        24

     Once again,  the results strongly  indicate that packed-column aeration is

an effective means for the removal of cis-1,2-dichloroethylene.

     Bastrop, Louisiana -  The  City of  Bastrop,  LA  was  selected  for field

evaluation  due to  a  gasoline  spill which occurred  a  short distance  from a

municipal well field.   As  a result  of the contamination, the  Liberty Street

well  #2 was  taken  out of  service.   The  principal contaminants in  the well

water were:

                SOC                       Average Concentration (ug/L)

                Benzene                                  190
      .        .  Toluene                                   62
                Ethylbenzene                               9
                o-Xylene                                  10
                m-Xylene                                   2.9
                p-Xylene                                   6.9

The well  had  a pumping  capacity of  1050 gallons per minute  (gpm)  at  the
distribution system  pressure and  1500  gpm at atmospheric  pressure.   The water

temperature  was 20°C.   The  results  of the pilot  testing  are  summarized below
(Cummins, 1984):

Liquid
Loading       Air      	Percent Removal	
Rate          Water                     Ethyl-  ^  -----
(gpm/Ft )      Ratio     Benzene   Toluene/  benzene ;: o-xylene m-Xylene p-Xylene
                                   ^__ ''      —-—
  9.1         87      >99.6     >98.B     >92      >95       >83      >90

  30.9        25      98.2      98.3     >92      >95       >83      >90

  66.3        8.5      85.4      81.5     85.8     74.3       77.5     83

     These results indicate that of packed column aeration effectively removes

these SOCs from drinking water.
                                       5-9

-------
     Lake Wales, Florida  -  Pilot  testing was  conducted  at Lake Wales,  Florida
on  ground  water with  an  EDB  concentration of  1.7  ug/L  EDB.   The  water
temperature was  25  C.   The  results of the pilot testing  are summarized below
(Cummins, Lake Wales, 1984):
          Liquid              Air:
          Loading             Water          Percent Removal
          (gpm/Ft )           Ratio          	EDB	
             14.7              53                 90
             14.9              90                95.7
              7.4             182                98.6
     These  results  indicate  that  of packed  column  aeration  is  effective  in
removing EDB  from  drinking  water.  However, Cummins did  note the presence  of
an  unstrippable  portion  of EDB,  representing a  base  concentration of 0.017
ug/L.  The presence of this unstrippable fraction could not be explained.

Packed Column Aeration Studies - Others
     Arizona  -  Malcolm Pirnie,  Inc.   (MPI),  (1985)  conducted  packed-column
pilot testing at an Arizona location.  The pilot column was 1 foot in diameter
and contained 9.5 feet of No. 1 Tri-Packs packing material.  Sample ports were
available at the raw water  inlet and finished water outlet for taking influent
and effluent samples.
     A total  of  nine runs  were  conducted.   The  ground water temperature was
approximately 70°F.   Test  conditions  and performance  data are  presented  in
Table 5-3 for ethylbenzene, toluene, m-xylene, and o-, p-xylenes.  The  results
indicate that packed column  aeration  is an  effective  means  of  reducing the
concentrations  of  ethylbenzene,  toluene,  and  xylenes.   High removals  were
attained at reasonably low air:water ratios (30-80).
     Berkeley, California - A pilot evaluation was conducted by Selleck et al.
(1983)  to  remove  DBCP  and EDB  from drinking water.   The  rectangular pilot
                                            2
column had a  cross-sectional  area of 3.32 ft  and  contained 13 feet of 2-inch
polypropylene intalox  saddles.   Liquid  loading  rates,  air:water  ratios, and
influent  concentrations  for  DBCP  were varied  throughout  the  test.   These
                                     5-10

-------
                                                                    TABLE 5-3
      Liquid
      Loading
Run     Rate .
         15.3
         44.6
         20.4
         25.5
         35.7
         17.8
         50.9
         12.7
         25.5
Air:
Water
No.   (gpm/ft )    Ratio
  80:
  10:
  59:
  46:
  25:
  71:
  30:
 126:
  63:
j
PACKED-COLUMN AERATION PILOT STUDY RESULTS - ARIZONA i
Ethyl benzene
Concentration (ug/L)
Influent
73.9
200
202
^ 91
<0.1
<0» 1
<0 . 1
44.8
59.7
Effluent
5.2
56.5
3.9
6.2
<0.1
<0.1
<0.1
<0. 1
<0. 1
Percent
Removal
93. 0^
71.8
98.1
93. 2/
--
--
--
>99.8
>99.8
Toluene
Concentration (ug/L)
Influent
13400
4270
4520
4350
2880
3050
3190
3420
3720
Effluent
111
1130
114
168
488
20.9
142
11.6
88.4
Percent
Removal
99.2
73.5
97.5
96.1
83.1
99.3
95.5
99.7
97.6
m-Xylene
Concentration (ug/L)
Influent
1040
1900
1900
1750
945
1020
1050
1090
1160
Effluent
70.9
486
79.4
121
182
18.2
65.5
7.3
50.9
Percent
Removal
93.2
74.4
95.8
93.1
80.7
98.2
93.8
99.3
95.6
i
o-; p-Xylene
Concentration (ug/L)Percent
Influent
1450
1980
1980
1980 i
1170
1210
1260
1300
1350
Effluent
93.3
633
116
179
270
62.9
162
18.0
89.9
Removal
93.6
68.0
94.1
91.0
76.9
. 94.8
87.1
98.6
93.3

-------
results are presented in Table 5-4.  Higher  removals  of DBCP were achieved at
higher  air to  water ratios  and  higher temperatures.   At  low  temperatures
higher air to water ratios were required to  achieve removals similar to those
obtained  at higher temperatures.   This  illustrates the effect of temperature
on  air  stripping as predicted by the empirical  development earlier  in this
section.
     Selleck also reported the results for EDB removal.  The water temperature
was approximately 64°F during the two runs that were performed.
     Liquid Loading      Air:           EDB Concentration
         Rate            Water               Influent            Percent
       (gpm/ft )         Ratio          	ug/L	        Removal
          2.4            200                 16.0                >94*
          9.7            210                  9.1                >90*
    *Effluent EDB Concentration below estimated detention limit of
     approximately 0.9 ug/L.
     The results indicate that packed-column aeration effectively removes EDB
from drinking water.
     Arizona - A pilot-study  was  conducted by Malcolm Pirnie,  Inc.  (1987)  to
evaluate  the  feasibility  of removing  DBCP  from  well water  at  a  site  in
Arizona.   The  PVC column was 24  inches  in  diameter  with a  maximum  packing
height of 10 feet.  Results  of  the test are summarized  in  Table 5-5.   In
general,   the  test  results  indicated  that  high  air:water  ratios  (200:1  or
higher)  were  required  for  effective  DBCP  removal.   The  performance .of  two
types of packing materials were also compared,  leading to an optimized design
of the full-scale facility.
     Gainsville, Florida - ESE (1983)  conducted pilot air stripping tests for
EDB removal.  Feed water spiked with various  concentrations of EDB was used in
the  study.   The pilot  system consisted of   four,  1.5-foot  diameter  columns
operated  in series,  which allowed for up to 50  feet of total packed column
height.   The cumulative height breakdown was  as follows:
                    Column 1 = 15 feet
                    Column 2 = 30 feet
                    Column 3 = 40 feet
                    Column 4 = 50 feet
                                     5-11

-------
     The  columns  were  packed  with  1-inch polypropylene  Intalox  saddles.
Effluent sample taps were present at the outlet of each individual column.
     A  total  of eight runs  were conducted.  Test conditions  and performance
data are presented  in Table 5-6.  Higher air:water  ratios  yielded better EDB
removals as did  additional packing  height.  The data indicate  that  packed
column  air  stripping  is  an effective means  of reducing the EDB concentration
in water.
     Windsor  Locks,  Connecticut  -  A  pilot evaluation  was conducted by the
Connecticut Water  Company  (CWC,  1984)  to remove  EDB  from well water  at the
Windsor  Locks, Connecticut wellfield.   The pilot  column  was  1.2  feet  in
diameter and contained 15 feet of No. 2 Tripacks packing material.  A total of
eight runs  were conducted by CWC.   Test conditions  and performance  data are
presented below:
Liquid Loading
   Rate
  (gpm/ft )
     15
     15
     15
     15
     25
     25
     25
     25
     The data  indicate  that air stripping  is effective at  low EDB concentra-
tions  (less than 1  ug/L).   Greater  removals  are achieved  at higher air  to
water ratios.
     Iowa  City, Iowa  -  The University  of  Iowa (Mumford  &   Schnoor,  1982)
conducted  research  on   air  stripping  of volatile  organics  from water.   A
countercurrent  flow  packed bed  stripper  was utilized  for  the  research.   The
column  was  4  ft high and 3.75 inches in diameter.  The studies were conducted
with 1.5 ft of 1/4  inch ceramic berl saddles which  provided a void volume  of
64 percent.  The feed water,  tap water that had been aerated for a minimum of
16 hours and  injected with  a 5-25 ml methanol spike containing the SOCs,.was
prepared  in  50 liter batches.   During  the 30 minute  treatment  runs,  five
Air:
Water
Ratio
30
60
100
150
30
60
100
150
EDB Concentration (ug/L)
Influent
0.21
0.74
0.92
0.75
0.65
0.70
0.84
0.82
Effluent
0.16
0.40
0.25
0.14
0.38
0.39
0.30
0.20
Percent
Removal
23.8
45.9
72.8
81.3
41.5
44.3
64.2
75.6
                                     5-12

-------
                 TABLE 5-4

PACKED COLUMN PILOT STUDY RESULTS -BERKELEY
Liouid



















Liquid









Liquid




Liquid



Loading : 2 . 4 gpm/Ft
TEMP(°F)
69.3
69.3
68.4
67.8
67.3
67.3
66.1
57.0
56.5
55.9
55.9
55.8
51.6
51.4
51.3
50.4
50.2
50.2
Loading: 4.8 gpm/Ft
68.2
67.8
67.3
67.1
66.7
66.6
66.2
65.7
64.9
2
Loading: 7.25 gpm/Ft
TEMP(°F)
58.1
57.2
55.0
Loading: 9.7 gpm/Ft
64.4
63.9
63.1
Air: Water
Ratio
180
200
180
590
210
200
550
680
670
480
450
560
490
650
590
650
560
490

250
570
580
410
490
570
270
270
510
Air: Water
Ratio
320
340
330

220
220
220
DBCP Influent
Concentration (ug/L)
52.5
6.8
18.8
414
544
131
54.0
665
29.6
673
28.3
34.4
329
320
327
15.9
15.2
15.9

76.1
14.5
369
534
50.5
25.0
13.8
494
11.5
DBCP Influent
Concentration (ug/L)
101
771
9.84

772
85.3
12.2
                                                    Percent
                                                    Removal

                                                     75.5
                                                     88.6
                                                     74.2
                                                     94.0
                                                     71.3
                                                     76.2
                                                     92.4
                                                     88.7
                                                     89.6
                                                     86.6
                                                     79.8
                                                        .1
                                                        .5
86.
83.
86.9
86.6
87.6
83.2
73.5
                                                     79.8
                                                     97.5
                                                     97.1
                                                     88.8
                                                     94.3
                                                     98.0
                                                     83.4
                                                     79.6
                                                     96.8
                                                    Percent
                                                    Removal

                                                      91.6
                                                      81.3
                                                      91.1
                                                      77.4
                                                      79.7
                                                      87.6

-------
                                   TABLE 5-5
                PACKED COLUMN PILOT STUDY RESULTS  - .ARIZONA
                                                            (1)
Liquid
Loading
Rate
(gpm/sf )
No. 1 Jaeger
6.2
6.2
9.4
9.1
10.5
8.9
12.9
12.5
16.1
15.8
22.7
No. 2 Glitsch
22.6
16.1
13.5
9.8
6.4
6.1
16.4
13.2
10.0
10.0
11.1
Air
Water
Ratio
(cfrcf)
Tri -Packs:
199
377
107
215
173
284
76
186
75
132
80
Mini-Rings:
83
129
154
239
428
276
89
74
81
165
149
                                          DBCP Concentration
                                                 (ug/L)
Influent
0.20
0.25
0.25
0-26
0.07
0.23
0.24
0.25
0.24
0.26
0.31
0.25
0.25
0.31
0.26
0.30
0.26
0.26
0.26
0.25
0.25
0.15
Effluent
0.10
0.09
0.16
0.13
0.05
0.11
0.18
0.14
0.17
0.18
0.19
0.20
0.14
0.11
0.13
0.04
0.05
0.17
0.17
0.17
0.09
0.04
Percent
Removal
                                                                         50.0
                                                                         64.0
                                                                         36.0
                                                                         50.0
                                                                         28.6
                                                                         52.2
                                                                         25.0
                                                                         44.0
                                                                         29.2
                                                                         30.8
                                                                         38.7
                                                                         20.0
                                                                         44.0
                                                                         64.5
                                                                         50.0
                                                                         86.7
                                                                         80.8
                                                                         34.6
                                                                         34.6
                                                                         32.0
                                                                         64.0
                                                                         73.3
Note:
     1.   All results are from the use of 9.5  feet  of packing  and  a water
          temperature of 75 degrees F.

-------
                                 .TABLE 5-6

              Packed Column Pilot Study Results -Gainesville
Liquid . ._.
Run Loading Air: Water
Number (gpm/Ft ) Ratio
1 11.3 7.9
2 11.3 15.0
3 11.3 22.5
4 11.2 33.8
5 22.6 15
6 22.6 22.5
7 22.4 35
8(1) 11.2 88.3
66.5
64.5
65.3
EDB. Concentration (ug/L)
Effluent
Influent 15 Ft 30 Ft 40 Ft 50 Ft
195.5 162.5 127.5 103.5 79
102 61.4 32.0 19.9 12
107.5 47.7 18.9 9.08 4.6
88.6 . 27.7 8.4 3.05 1.2
91.3 54.5 34.4 22.8 15.3
90.7 40.6 19.2 9.52 5.06
92.6 24.7 8.6 3.15 1.19
88.7 4.54 0.53 0.095 0.02



Note:
      1.   Run 8 conducted at four different air: water ratios to determine
           the highest removal efficiency obtainable with the system.

-------
samples  were taken  and pressure  drop was  measured  until  steady  state was
attained.  Test results are presented in Table 5-7.  The test results indicate
that  air  stripping  effectively  removes  these  SOCs  from  water.   Removals
generally increased with increasing air to water ratio.
     Oklahoma State  University, Oklahoma  - Stover  (1982)  reported  on pilot
studies  for  the  treatment of contaminated  well  water by air  stripping.  The
wells were  adjacent to an  industrial park  and  contained trans-1,2-dichloro-
ethylene and several other volatile  organic contaminants.   The  column was a
4-inch diameter glass column packed with 25 inches of 6mm glass raschig rings.
The study  was conducted at various  air to  water  ratios and the results for
trans 1,2-dichloroethylene in Well No. 2 are as presented below:
Liquid
Loading Rate
gpm/ft
8.6
0.68
10.1
Air:
Water
Ratio
9.3
114.0
10.7
    Concentration (ug/L)
Influent
     40
     40
     16
Effluent
   11
    1
    3
Percent
Removal
  72.5
  97.5
  81.3
     The  results  indicate  that  air  stripping  is  effective  in  removing
trans-1,2-dichloroethylene from water.
     Full-Scale;
     Full-scale  data   are  available  from   several   installations.   These
facilities and  the  associated  performance data for  SOC  removal are described
below:
     Tacoma, Washington -  Nadeau et al.  (1983) describe  a large packed-tower
aeration system in Tacoma, Washington designed to treat the water from one of
the city's largest production wells.   The well was  shut  down in 1981 after it
was found  to be contaminated  with trans-1,2-dichloroethylene  (30-100  ug/L),
trichloroethylene (54-130 ug/L),  tetrachloroethylene (2-5 ug/L), and 1,1,2,2-
tetrachloroethane (17-300  ug/L).  The  full-scale  system was designed  on the
basis of  pilot-scale testing.    It  consists of five packed columns, each 12
feet in diameter and containing 21 feet of 1-inch plastic saddle packing.  The
overall height  of each  column  is 50 feet, including the  discharge  stack.   In
addition, each  tower is equipped with a  60-hp  blower capable  of  delivering
29,000 cfm through each column.
                                     5-13

-------
     The system is designed to treat a maximum flow of 3,500 gpm at an approx-
imate  air:water  ratio of  300:1.   This relatively  high  value ensures  the
removal of  1,1,2,2-tetrachloroethane,  the  least  strippable of  the  four com-
pounds.  In  addition,  virtually all trans-l,2-dichloroethylene  is  removed by
the   system.   This   indicates   that   air  stripping   effectively   removes
trans-l,2-dichloroethylene from drinking water.
     Orange  County,  California - McCarty et al.   (1977)  describe  the perfor-
mance  of  full-scale packed-column  strippers  and decarbonators for  volatile
organics removal  at Water Factory 21.   This installation is a 15 mgd advanced
treatment plant operated by  the  Orange  County Water District (OCWD)  in Orange
County, California.  It refines  the quality of biologically treated municipal
wastewater  so that  it  can  be  injected to act  as  a  barrier to  saltwater
intrusion into OCWD aquifers.  The  process  train  at Water Factory 21 includes
lime  treatment,   air  stripping,  decarbonation,  filtration,  activated  carbon
adsorption,  disinfection, and reverse osmosis for one-third of the flow.
     The initial  purposes of the  air  stripping  and  decarbonation  equipment
were the removal  of  ammonia and carbon  dioxide,  respectively.   However, both
units  were   found  to  be effective  for  trace organics  removal  as well.   An
evaluation  of their  effectiveness  on  trace organics  removal  was  conducted
during two of the three periods  of  operation of the plant.  These operational
periods can  be summarized as follows:
          Periods of Operation          Operations at Water Factory 21
               Jan. 1976 to             Trickling-filter influent,  no free
               Oct. 1976                residual chlorination, no reverse
                                        osmosis, no injection.
          Periods of Operation          Operations at Water Factory 21
               Oct. 1976 to             Trickling-filter influent,  forced
               Mar. 1978                air circulation in stripping towers,
                                        free residual chlorination, no re-
                                        verse osmosis, injection.
               Mar. 1978 to             Activated-sludge influent,  no forced
               May 1979                 air circulation in stripping towers,
                                        free residual chlorination, reverse
                                        osmosis, injection.
                                     5-14

-------
                  TABLE 5-7

PACKED COLUMN PILOT STUDY RESULTS - IOWA CITY

Liquid
Loading
(gpm/ft )
Air:
Water
Ratio.,
(ftVff*)

Concentration
Influent

(mg/L)
Effluent
Trans-1 , 2-dichloroethylene
4.21
4.62
4.62
2.79
2.79
Toluene
4.21
4.62
4.62
2.79
1.63
Benzene
4.21
4.62
4.62
2.79
2.79
Chlorobenzene
4.21
4.62
4.62
2.79
2.79
1.63
o-Dichlorobenzene
4.21
4.62
4.62
2.79
1.63
25
50
50
100
100
25
50
50
100
200
25
50
50
100
100
25
50
50
100
100
200
25
50
50
100
200
5.4
114
3.2
105
7.3
3.4
39.7
5.3
37.1
2.7
8.4
105
10.5
92.5
11.8
13.3
22.8
9.2
29.6
7.8
3.6
14.2
5.3
27.8
24.0
11.0
1.7
27.9
0.9
16.6
1.5
0.9
9.1
1.2
2.8
0.1
2.8
24.2
2.9
9.3
2.9
4.6
6.4
2.6
3.3
1.8
0.1
5.7
2.9
8.3
6.2
0.7
                                                     Percent
                                                     Removal
                                                       69
                                                       76
                                                       72
                                                       84
                                                       80
                                                       74
                                                       77
                                                       77
                                                       93
                                                       96
                                                       67
                                                       77
                                                       72
                                                       90
                                                       75
                                                       65
                                                       72
                                                       72
                                                       89
                                                       77
                                                       97
                                                       60
                                                       45
                                                       70
                                                       74
                                                       94

-------
     The two packed column air  strippers  at Water Factory 21 are both rectan-
gular.  Each is  63  m long and  19 m wide and contains  7.6  m of polypropylene
splash-bar  packing.   The  total   packing   volume  per  tower  is  therefore
approximately  9,000  m .  The  flow  treated by  each tower  is 7.5 mgd  at an
air:water ratio of 3000:1.
     The decarbonators present  at Water  Factory 21  are  much smaller than the
stripping  towers and were  not  specifically  designed  to  remove  synthetic
organic chemicals.   Each is 2  m square  and contains  2.4  m of polyethylene
packing.  The total packing volume per decarbonator  is therefore approximately
19 m .  The flow treated by each decarbonator is 2.5 mgd at an air:water ratio
of 22:1.
     Available removal performance  results  of the  air strippers for five SOCs
are presented below:
                         Air Stripper Concentrations  (ug/L)  Percent
Compound
Ethylbenzene

m-Xylene
Styrene
PCB (Aroclor 1242)
1,2-dichlorobenzene

     The  air  stripper  results  indicate  that  packed  column  aeration  is
moderately effective for removal of ethylbenzene and styrene.  The removals of
m-xylene and PCB (Aroclor 1242)  are fairly low.   However, the low influent and
effluent concentrations must be taken  into  account when judging the removals.
Actual performance data were not available for the decarbonator.
     Slat-Tray Aeration  Facility  - Hess  et al.  (1981)  described  a slat-tray
aeration unit  installed  in  Norwalk, Connecticut designed to treat the ground
water  from a  wellfield  along  the Silvermine  River.   An  industrial  spill
occurred  in  this   river and   such organic  compounds  as   trichloroethylene
(predominately), tetrachloroethylene, cis-1,2-dichloroethylene,
trans-l,2-dichloroethylene,   1,1-dichloroethylene,  and  1,1,1-trichloroethane
                                     5-15
Influent
0.23
0.067
0.086
0.076
0.37
1.2
0.56
Effluent'
0.10
0.041
0.070
0.037
0.36
0.18
0.066
Removal
56.5
38.8
18.6
51.3
2.7
85.0
88.2

-------
and  infiltrated  the wellfield. All the compounds except for trichloroethylene
were present  at  concentrations less than 5 ug/L.  .The  full  scale  system is a
16-foot  high redwood  slat-tray aerator  with a  cross-sectional area  of 100
square  feet.   Two  3850-cfm  blowers  provide  air  to  the  units.   Specific
numerical  removal  results were not available for trans-l,2-dichloroethylene,
except that the effluent levels were below detectable limits.
     An  overview of packed  column aeration  facilities  in use  in  the United
States was presented in a report entitled "Volatile Organic Chemical Treatment
Facilities" by the AWWA Organic Contaminant Committee, draft Nov. 1986.  These
facilities  treated  flows ranging from  .05  to  15 mgd,  with  the  majority
treating up to 2.0 mgd.  These facilities were primarily single-tower designs.
As shown on Table 5-8,  removal  cis-l,2-dichloroethylene ranged from greater
than  96  to greater  than 99 percent,  while  removal  of  tetrachloroethylene
ranged from 90 to greater than 99 percent.

Off-Gas Treatment
     Potential air  quality problems related  to  the  emission  of contaminated
exhaust  air from  packed  column  aeration  systems exist.   This transfer  of
volatile  synthetic  organic  chemicals  from water  to air  might  be a concern
depending  on  the  proximity to human habitation,  treatment plant worker expo-
sure,  local air quality,  local meterological conditions,  daily quantity  of
processed water, and contamination  level.  Treatment options that are current-
ly available to remove organics from off-gas include:
       -  Thermal incineration
       -  Catalytic incineration
       -  Ozone destruction
       -  Vapor phase carbon  adsorption
     Thermal incineration  for packed column off-gas  control  has  the disadvan-
tage   of  high  energy   requirements.    Catalytic   incineration   has  lower
temperature  requirements  than  thermal  incineration  but  is  currently  not
effective  for  removing  chlorinated organics at  low  levels.   Similarly, ozone
destruction  also has  limited application  for  vapor-phase  treatment  at the
present time.
                                     5-16

-------
                                                              TABLE 5-8





                                                FULL SCALE PACKED COLUMN AERATION DATA


/ 1 \
Flow No. of
Location
Hatboro, PA
Hatboro, PA
Urewster, NY

Mountainside, NJ
Baldwin Park, CA
Garden City Park,
Northport, NY
Hicksville, NY
Waussau, Wl

Great Neck, NY
New Hyde Park, NY
Queens, NY
Notes:
1. Parallel
(mgd)
0.31
0.4
0.5

0.9
1.4
NY 1.7
1.9
2.0
2.9

3.0
3.5
4.3
operation
Columns
1
1
1

1
1
1
1
2
2

1
1
1
for sites
(2)
Liquid Column Column Packing
Loading Diameter Height Height
(gpm/sq ft)
9.0
17.3
19.5

31.3
20.0
27.2
46.0
17.8
28.2

26.5
28.6
35.7
with more than
(ft)
5.5
4.5
4.75

5x4
8.0
7.5
6.0
10.0
9.5

10.0
12 x 7
12 x 7
one column
(ft)
34
29
NA

34
33
24
25.5
28
29

33
25
19
, unless
(ft)
25
24
18

26
18
16
16
20
24.5

24
21
15
Packing
Influent
Size Air:Water 0,
(in) Type
4 Tripacks
2 Tripacks
1 Saddles

2 Tripacks
1 Saddles
NA Tripacks
1,2 Saddles
NA Tripacks
3 Saddles

1 Tripacks
2 Tripacks
2 Tripacks
Ratio
220:1
120:1
33:1

40:1
30:1
35:1
30:1
30:1
30:1

100:1
40:1
40:1
Contaminant
PCE
PCE
PCE
C-1.2-DCE
PCE
PCE
PCE
PCE
C-1.2-DCE
c-1,2-DCE
PCE
PCE
PCE
PCE
Cone.
' (ug/L)
10
10
110
49
100
330
90
450
NA
82
60
55
100
300
Percent
Removal
)98
>95
)99
)99
90
>99
)94
99
98
)96
98
>99
90
97
Clearwell
Capacity
(gal)
7,500
7,500
20,000

23,000
None
11,200
13,000
33,600
None

33,000
24,300
24,300
otherwise noted.
2. Or rectangular dimensions.
3. PCE indicates Tetrachloroeth;
^lene.









     C-1.2-DCE indicates CIS-1,2-Dichloroethylene.
4.   NA - Data Not Available.

-------
     Pilot-study  with vapor-phase  GAG  adsorption  (Crittenden  et  al,  1987)
indicates that  carbon adsorption is  currently the most  effective  method for
removing  low-level organics  from the  packed  column  exit  air.   Vapor-phase
adsorption is attractive for  two  reasons:   the vapor-phase mass transfer zone
(MTZ) is  much  shorter than the liquid-phase  MTZ  and the cross-sectional area
requirement of  the fixed  bed is much  smaller.   The  carbon usage  rates for
vapor-phase adsorption are also less than those for liquid-phase.  A schematic
of the vapor-phase GAC system is illustrated on Figure 5-2.
     In  operating a  vapor-phase GAC  system,  the relative  humidity of the
off-gas must be  reduced  to prevent condensation of water  vapor  in the carbon
pores.  This can  be accomplished  by  heating the air prior to entering the GAC
contactor.   The  competition  of  water-vapor  adsorption  and  gas-phase  SOC
adsorption onto  GAC  is also minimized  at  off-gas relative humidity of  40 to
50 percent (Crittenden, 1987).  A major  concern pertaining to vapor-phase GAC
systems  is  predicting  the  contaminant breakthrough.   At  present, reliable
methods to estimate the vapor-phase  GAC  bed life  are not available.  Possible
approaches including  monitoring  the GAC  effluent air  quality   (either  on  a
continuous basis or a batch mode), using a mass balance around the  contactor,
or a combination of the two approaches.
     A bed from  the  pilot plant in  Wausau containing  trichloroethylene  (TCE)
and tetrachloroethlene  (PCE)  was  regnerated three times  and  the TCE capacity
decreased from 80 to 60 percent of the  virgin capacity over the three cycles.
The reduction  in TCE capacity with  successive adsorption/regeneration cycles
was due  to  the buildup of  a PCE heel on  the GAC, since  PCE was not removed
well under the  conditions  used (100 C,   1  atm) .   The equilibrium model showed
that  this could be  solved by using saturated steam  50 C above  the boiling
point of PCE (121 C).
                                     5-17

-------
Secondary Effects of Aeration
     In  addition  to the removal  of volatile synthetic organic  chemicals  and
potential requirement  for  off-gas treatment,  the  use of aeration technologies
may also result in additional secondary effects, some of which may be undesir-
able.  These  effects may  include introduction of bacteria  and  particulates,
increased corrosivity, cold weather problems, oxidation of iron,  and bacterial
growth on the  packing materials.   The  preliminary  findings  of USEPA  field
studies  (Love,  1984)  indicate  no detrimental effects on water quality due to
increased particulates, turbidity, or bacteria following aeration.
     When water contains carbon  dioxide,  aeration  tends to increase pH,  which
can be a beneficial  effect for  soft waters.   The  addition of excess dissolved
oxygen, which can  increase corrosivity of iron pipe  material, usually can be
controlled  by  allowing  degasification.   Corrosion  control  and  carbonate
stability should be  a  design  consideration in all aeration processes.  Proper
design can also lessen cold weather problems  (Love, 1984).  Excessive iron and
manganese can cause clogging, so  it may be advisable to remove these compounds
prior to aeration processes for volatile synthetic organic chemicals.
                                     5-18

-------
             CONTAMINATED
                 AIR
 RAW WATER
CLEAN
              PACKED
              COLUMN
                                                       FIGURE 5-2
                                            TREATED AIR
                           HEATING    BLOWER
                           ELEMENT
 BLOWER
         TREATED
         WATER
                SCHEMATIC OF VAPOR-PHASE
                     GAC SYSTEM

-------
                         6. ADDITIONAL TECHNOLOGIES

     As  indicated  in  Section 3,  there are  several additional treatment tech-
nologies   capable   of   removing -• SOCs   from  drinking   water.   Additional
technologies are those which have been shown to have potential for SOC removal
but  for  which either the potential  is limited or insufficient data prevents
full evaluation of the technology.  The following  additional technologies have
been identified:
          Powdered Activated Carbon (PAC)
          Diffused Aeration
          Oxidation
          Reverse Osmosis
          Conventional Treatment
Powdered Activated Carbon (PAC)
     PAC represents  another  way of applying adsorption  technology,  which has
been  found to  be  applicable  for  SOC  removal.   PAC  may achieve  removal of
certain SOCs  and may have  limited applicability in  locations having certain
constraints (e.g. hydraulic, space) or  where  SOCs enter a surface water on an
intermittent  (e.g.,  seasonal)  basis.   Generally, PAC  addition is found to be
less efficient than GAG adsorption for SOC removal, as PAC operates at a lower
equilibrium capacity than GAG.
     Process Description
     PAC traditionally  has  been used  in water treatment plants for removing
trace  organic  compounds  associated  with  taste  and  odor  problems.-   Fewer
studies have been conducted on the use of PAC for removing organics frequently
found  in  ground water  supplies primarily because  preliminary  data  have  in-
dicated that very large dosages of PAC would be necessary to achieve satisfac-
tory  removals.   Pilot and  full-scale  studies indicate  mixed  results  on  the
effectiveness of PAC, although most studies to date agree that PAC has limited
applicability.
     PAC requires  as coagulation/sedimentation  facilities:    feed equipment,
mixing  chambers,   clarifiers,   and  filtration.   Therefore,  unless   these
facilities  are  already  in  place, PAC is  not  economically  suited^ to  the
j^eatment of ground water.  GAC  is the  preferred activated carbon process for
ground water systems.   In addition,  the use of PAC entails  additional  sludge
                                      6-1

-------
handling.  More  stringent sludge disposal requirements may apply depending on
the type and level of SOC being  removed.
     The application of PAC  for  the removal of organic compounds from drinking
water supplies involves the  following major process design considerations:
       -  Carbon Usage Rate
       -  Contact Time
       -  Contactor Configuration - single or multi-stage
       -  PAC disposal
     These design  considerations are similar  to those outlined  in Section 4
under GAG treatment with  the exception of contactor configuration.  Unlike GAC
adsorption, in which  the carbon approaches equilibrium with  the influent SOC
concentration, the  PAC approaches  equilibrium with the  effluent  SOC concen-
tration,  as  it  is removed  from the  effluent  by a  settling  or  filtration
process.  For the  same  influent  SOC concentration,  therefore, PAC will have a
lower adsorptive capacity than GAC.  However, if an SOC enters a surface water
source periodically,  PAC can be brought  on-line on an as needed  basis while
GAC systems generally remain on-line.
     Treatability Studies
     The treatability  testing  of PAC for SOC  removal  has consisted primarily
of bench  scale  studies,  although some  pilot and full  scale  evaluations have
also been performed.  The details of these evaluations are presented below.
     Bench Scale;
     The EPA DWRD  investigated the  use  of PAC in water treatment  for several
SOCs  using spiked  Ohio  River water  (Miltner,  1989).   Jar  tests  simulated
coagulation, flocculation and sedimentation.  PAC  addition  was  simulated by
the application  of PAC  stock slurries  after the  addition  of  the  coagulant
during  rapid  mix.   Stock slurries  of  PAC  were prepared  by adding  weighed
amounts  of commercially  available  carbon.   The  results of  this study  are
presented  in Table 6-1.   The  results indicate  that these pesticides  are  not
strongly sorbed  to  particulates, or do not complex with  humic materials that
are in  turn sorbed to  particulates.   PAC applied  at dosages  used  for  the
control of tastes  and odors can be effective if moderate percent  removal is
required.
     Lettinga,  et al.  (1978) investigated  the  use  of  flocculated PAC in water
treatment for several solutes, including 2,4-D, at the Agricultural University
                                      6-2

-------
                                                  TABLE 6-1
                                                                             1
                              CONTROL OF SOCS USING POWDERED ACTIVATED CARBON
    SOC
atrazine
atrazine
carbofuran
carbofuran
alachlor
alachlor
lindane
1indane
heptaghlor
2,4-D
si 1 vex
     SOC
Concentration
    ug/L

   125
    85.4
    61.5
    53.9
    43.6
    88.8
    73.5
    31.8
     7.0
    61.3
    53.9
                                                                    Percent Removal
 PAC
Type

F4003
F40Q
WPH
WPH
F400
F400
WPH
WPH
WPH
WPH
WPH
PAC Dose, mg/L
5.7 8.6 11.4


45
70
.5 73

84
i9 79
53
69
50
16.7 17.1 22.8 25.7 28.5
64
64
75

80 86
59
95
88 95
86
69
81
33.3 34.2
82
84

90

74
97

97
83
77
Notes:
     In jar test of spiked Ohio River water  with 15-20 mg/L alum;  2
     30 min flocculation;  60 min sedimentation,  pH range = 7.5-8.3
2.   Calgon WPH
3.   Calgon Filtrasorb 400, 200 x 400 mesh
4.   Single solute unless  noted
5.   With 98.4 ug/L linuron
6.   With 69.1 ug/L linuron, 62.2 ug/L dinoseb,  77.6 ug/L benomyl
7.   With 61.5 ug/L simazine
8.   With 87.4 ug/L metolachlor
9.   Acid form

-------
of  Wazeningen,  the  Netherlands.   Rate  and  equilibrium  experiments  were
performed   to  compare   the  rates   of   adsorption  for   flocculated  and
non-flocculated carborK—N&ri-t—FND-A— 722- and Norit W-100 were the two types of
PAC which  were utilized.  The coagulants  included  anionic (Superfloc A-150),
nonionic (Superfloc N-100 and-Magnofloc  R-351)  and cationic (Superfloc C-100)
pqlyelectrqlytes.   The  flocculation  procedure  involved  the  addition  of  "a
freshly prepared  500 mg/L polyelectrolyte  solution  to a  well-stirred 10,000
mg/L  carbon  slurry.   The rate experiments were performed  in  2-liter baffled
vessels.   The adsorption  equilibrium experiments  were  performed  in  batch,
closed  250-mL vessels.  Accurately weighed  amounts  of  carbon with  a  fixed
volume  of  adsorbate  solution of  known  concentrations were  subjected  to  a
contact time  of  24 hours or longer.  The  results  of  the experiments revealed
that  the  2,4-D  loading on  the   flocculated  carbon  was  higher  than for
nonflocculated carbon.
     Tests were also performed using  a continuously  or intermittently stirred
Upflow Flocculated Powered Carbon (UFPC)  absorber.
     The UFPC  adsorber consisted of a vertical cylinder with a diameter of 7
cm and  a  height of  60 cm  and filled with flocculated PAC.  The  solid  phase
loadings for  both the  adsorption  isotherm  (QI)  and  UFPC adsorber  (Qu) are
presented in Table 6-2.  This  data  confirms that  activated carbon effectively
absorbs 2,4-D.
     Croll  (1974)  evaluated several  treatment options  for  the removal  of
acrylamide from water,  including conventional treatment,  oxidation  with four
different  oxidants,  and  PAC.  In  the PAC  experiments, a Thames  River  water
sample was spiked with 6 ug/L of acrylamide and mixed with 8 mg/L of PAC.  The
solution,  which had a pH of  5.0, was  mixed for  30 minutes but only achieved a
13 percent removal.
     Baker  (1983)  evaluated the  performance  of conventional treatment  in
combination with  PAC  at a  water  treatment plant  in  Bowling Green,  Ohio.
Alachlor and atrazine were two of the contaminants  which were monitored.  The
conventional treatment involved alum coagulation,  lime/caustic soda softening,
recarbonation and filtration.  Chemical dosages were not reported.
The following  results  were  obtained for the  raw  water from the  Maumee River
and the plant finished water:
                                      6-3

-------
                   Maumee River            Finished Water        Percent
Compound       Concentration  (ug/L)     Concentration (ug/L)     Removal
Alachlor            0.87                     0.49                43
Atrazine            1.26                     0.74                41
Notes:
     1.   Based on 5 sample analyses
     2.   Based on 6 sample analyses
The  findings  indicate  that  PAC  was  moderately effective  for alachlor  and
atrazine removal.
     Aly and Faust  (1965) evaluated  several  water treatment processes for the
removal of  four 2,4-D  derivatives and their  parent compound,  2,4-DCP.   The
four derivatives included the sodium salt of 2,4-D and the butyl, isoctyl, and
isopropyl esters of 2,4-D.  Various amounts of AquaNuchar A, PAC were added to
1-liter solutions containing  the  five  compounds  at  fixed concentrations.   The
slurries were stirred rapidly at  25  C  for 30 minutes.  The adsorbent was then
removed by vacuum filtration.  A  summary  of  carbon  dosage required to achieve
an effluent concentration of  0.1 mg/L is presented below.
       Initial                     	Carbon Dosage  (mg/L)
     Concentration
        (mg/L)
          10
           5
           3
           1
The  results  indicate that  the  sodium salt  of  2,4-D is  less  easily absorbed
than  the  2,4-D   esters.    Overall,  PAC  was   effective   in  reducing   the
concentrations of all four 2,4-D derivatives.
     Cohen, et al. (1960) examined the effectiveness of PAC for the removal of
several fish poisons, including toxaphene.  The Aqua Nuchar A PAC was added in
varying amounts to fixed concentrations of toxaphene present in a nix of hard,
highly mineralized spring water and  distilled  water (in a 1 to 4 ratio).   The
initial toxaphene  concentration  was 0.30  mg/L.   The results  of  the isotherm
test are presented below:
Sodium
Salt
306
153
92
31
Butyl
Ester
165
82
49
15
Isoctyl
Ester
179
89
53
16
Isopropyl
Ester
150
74
44
14
                                      6-4

-------
Notes:
                                   TABLE 6-2

                           2,4-D SOLID PHASE LOADING


Experiment
Number
1
2
3
4
5

Initial
Concentration
(mg/L)
24
19
24
11.2
16.2

Flow
Rate
m/hr
2.6
2.4
2.4
4.8
4.8
Amount
of
PAC
(grams)
50
50
150
150
150
Solid Phase Load (mg/g)
C/C
1

79
74
106
98
105
=0.25
o
2
, 211
88
86
88
77
84
C/C

Qu
92
85
118
108
127
=0.5
o
21
97
95
97
88
92
C/C

Qu
121
93
128
126
139
=0.75
o
21
103
100
103
92
97
     1.   From upflow flocculated powdered carbon adsorber testing
     2.   Isotherm Testing

-------
        Carbon                Effluent Toxaphene
     Concentration              Concentration          Percent
        (mg/L)                	(mg/L)	      Removal
          0                        0.30                 0
          1.0                      0.18                40
          2.0                      0.16                47
          3.0                      0.085               72
          6.0                      0.058               81
-	    9.0-                     0.014               95
Freundlich  parameters of K  = 160  mg/g and  1/n =  0.42  were  obtained.  The
results indicate that PAC is effective for toxaphene removal.
     Pilot-Scale;
     Robeck, et al.  (1965) evaluated a number of water treatment processes for
pesticide removal.  The pesticides that were studied included endrin,  lindane,
and  the butoxy  ethanol ester of 2,4,5-T.  PAC  was  tested for various initial
concentrations  (1 to 10 ug/L) of pesticide in distilled water and Little Miami
 (Southwestern Ohio)  River water.   The  distilled water  was spiked  with the
proper  concentration of  pesticide, then  PAC  was  added  and mixed  with the
water.   The  river   water   was  used   in  a  pilot  plant  consisting  of  a
constant-head tank, a 600-gallon pesticide mixing tank and two separate  20 gpm
process  trains.  Each  process consisted  of a rapid-mix  tank,  flocculator,
sedimentation tank,  sand filter,  coal filter,  and  two GAC  beds  (per train) .
PAC was added to the rapid-mix tank.  The Little Miami River had the following
water quality:
     Parameter                          Range
     Turbidity  (units)                  5-250
     Temperature (C)                    2-27
     pH (units)                          7.3-8.5
     Alkalinity (ppm as CaCO )          85-310
     Hardness (ppm as CaCO )             130-330
     COD (ppm)                          5-35
     Based on carbon adsorption  isotherm data  developed  for the  three pesti-
cides, the results of the pilot study are presented below:
                                      6-5

-------
     Compound
     Endrin
     Lindane
     2,4,5-T ester
Water Type
Distilled
River
Distilled
River
Distilled
River

PAC Dosage
(mg/L)

Influent Concentrations (ug/L)
10
1
Effluent Concentrations (ug/L)
1.0
1.8
11.0
2.0
29.0
2.5
14.0
0.1
14
126
12
70
17
44
0.1
1.3
11.0
1.1
6.0
1.5
3.0
0.05
2.5
23.0
2.0
9.0
3.0
5.0
The   river  water   required  larger   PAC  dosages   for   similar   influent
concentrations than did  the  distilled  water due to the extra organic material
present in the water.  This  organic  material competes with the pesticides for
adsorption sites- on the  PAC.   Based on these  results,  PAC appears  to  be an
effective process for endrin, lindane, and 2,4,5-T ester removal.
     Full Scale;
     The EPA DWRD has reported on the treatment of SOCs by PAC at water treat-
ment  plants  in  Bowling  Green  and  Tiffin,  Ohio  (Miltner,  July  1985).   The
results for  the  Bowling  Green plant are  presented in Table  6-3;  the results'
for the Tiffin  plant are presented  in Table 6-4.  The  results  indicate that
alachlor,  atrazine  and  carbofuran were  removed  by  PAC and  percent removal
increased with increasing PAC dose.
     Singley, et al.   (1979)  reported  on the  use of  PAC  at  the  Sunny  Isles
Water  Treatment  Plant as a short-term solution  for  organics  removal.   This
treatment plant,  one  of  three providing  finished water to the  City  of  North
Miami  Beach, has a  design capacity of 12.8 mgd but  treats  an average flow of
10 mgd.  The plant  is a  conventional lime  softening  plant  using three upflow
clarifiers.   The East Drive  Well  Field  is  the source  of  raw water.   In
September  1977,  several  complaints  of pesticide-like taste  and odor in the
finished water  led to  an extensive sampling  program.  The raw and  finished
water  contained  at least 42 SOCs ranging  in concentration  from 0.01  to 73
ug/L,  including the following compounds (with average concentrations in paren-
theses) .
       -  dichlorobenzene (0.2 ug/L)
       -  ethylbenzene (0.5 ug/L)
          monochlorobenzene  (0.8 ug/L)
          toluene (0.3 ug/L)
       -  xylenes (0.2 ug/L)
                                      6-6

-------
                                   TABLE 6-3

                TREATMENT OF SOCS BY POWDERED ACTIVATED CARBON




soc
Carbon dose =
alachlor
atrazine
DIA
simazine
Carbon dose =
alachlor
carbofuran
atrazine
DEA
simazine
BOWLING
1
Influent
Concentration
ug/L
33 mg/L Hydrodarco B
0.97
2.39
0.10
0.24
18 mg/L Hydrodarco B
8.21
1.26
8.11
0.24
0.37
GREEN, OHIO


Percent
Removal

94 ± 14
87 ± 4
100
100

62 ± 11
64 ± 16
67 ± 11
100
92 ± 13



Confidence
Level

99.9
99.9
99
99.8

99.9
99
99.9
99.9
99.9
Notes:
     1.   Influent to clarification process; carbon applied
     2.   DIA = deisopropyl atrazine (metabolite)
     3.   Removal also possibly affected by hyrolysis
     4.   DEA = deethyl atrazine (metabolite)
                                                                        Sample
                                                                         Days
                                                                           6
                                                                           6
                                                                           5
                                                                           6
                                                                           6
                                                                           6
                                                                           6
                                                                           6
                                                                           6

-------
                                   TABLE 6-4

                TREATMENT OF SOCS BY POWDERED ACTIVATED CARBON
TIFFIN, OHIO
SOC
Carbon dose =
alachlor
carbofuran
atrazine
DEA^'
simazine
Carbon dose =
alachlor
atrazine
simazine
Concentration
(ug/L)
Percent
Removal
Confidence
Level
11 mg/L Calgon WPH
2
0
4
0
0
3.6 mq/L
1
2
0
.53
.39
.43
.08
.26
4
Calgon WPH
.49
.61
.10
41
59
41
76
63
36
38
63
± 6
± 29
± 8
± 25
± 20
± 6
± 1
± 7
99.9
98
99
98
99
99.9
99
99
Notes:
     1.   Applied to clarification process
     2.   Removal also possibly affected by hydrolysis
     3.   DEA = deethyl atrazine (metabolite)
     4.   Applied to filtration process
                                                                        Sample
                                                                         Davs
                                                                           6
                                                                           6
                                                                           6
                                                                           4
                                                                           6
                                                                           6
                                                                           6
                                                                           6

-------
     Activated carbon was chosen as the most feasible solution to the organics
problem. Specifically, GAC  treatment  was  recommended as a long term solution,
however,  PAC was  chosen as  a  short-term solution.   Preliminary laboratory
isotherm  studies  indicated that PAC would  be effective  in  attaining  some
reduction  in  contaminant concentration.   A full-scale study was authorized to
evaluate PAC  while allowina the treatment plant to  operate at full capacity.
PAC  was added  at  the  wellfield to  maximize  contact  time  and  improve the
possibility of  successful treatment.   The pipeline  from the  wellfield to the
treatment  plant  is 24" inches  in diameter and  16,500 feet long.   It  was de-
termined that a  pipe  velocity of 5 ft/sec would be required  to  keep  the ICI
Hydrodarco-B  PAC in suspension.  Since  this  corresponded to a total wellfield
flow of 9 mgd, the average  flow conditions of 10 mgd would be suitable.
     The  study   evaluated  the  effectiveness of organic  removal  versus PAC
dosage.  The  three PAC dosages that  were evaluated included  30,  15,  and 7.5
mg/L.   The PAC  contact   time  was  estimated  to be  approximately  two hours,
including the time the water spent in the transmission  line and in the upflow
clarifiers.  The actual PAC concentrations varied from those that were
planned because  of variations  in plant flow and the  difficulty  of pacing the
PAC feed with the  actual flow.  The  PAC  feed  dosages  for  successive  two-day
periods  were 7.9, 14.3,   26.6  and  7.1   mg/L.   Increasing   the   PAC  dosage
increased the removal of  the SOCs.  However,  since the  PAC dosage had less of
an impact on  THM precursor  removal, the low  dosage of 7.1 mg/L was chosen for
the plant.   The results  gathered over a  14-month period  (March  1978  to May
1979)  are  presented in  Table  6-5.   The  results indicate that  PAC treatment
ranged  from being  very effective to  ineffective.   Consistently  good removals
were   obtained   for  dichlorobenzene   and  xylene.   Percent	removals  were
inconsistent  for ethyIbenzene.  moQcghlorobenzeng,. and toluene,  possibly due to
short circuiting in _the_

Diffused Aeration
     Diffused  aeration   represents   another  method  of   applying  aeration
technology, which  was found to  be applicable  for SOC removal.   Diffused aera-
tion implements  the principles of aeration less efficiently than packed column
aeration, however, diffused aeration  may  achieve removal of certain SOCs and
may have  limited  applicability  in  locations which have certain  constraints
(e.g. hydraulic,_ space) .   In addition  to the information presented on diffused
                                      6-7

-------
aeration,  a  brief  discussion  of  bench  scale  evaluations  of  boiling  is'
presented at the end of this section.
     Process Description
     Diffused aeration is often used to provide dissolved oxygen, particularly
in wastewater treatment.  A typical diffused aeration system is illustrated on
Figure 6-1.  Air stripping is accomplished with diffused-air type equipment by
injecting bubbles  of  air (usually compressed air) into  the  water  by means of
submerged diffusers or porous plates.  Ideally, diffused aeration is conducted
counterflow with  untreated water  entering  the  top of the  contactor,  treated
water  exiting  the bottom,  fresh  air entering  the  bottom,  and  exhausted air
exiting  the  top.   Gas  transfer may  be  improved  by increasing basin depth,
producing  smaller  bubbles, improving  contact basin  geometry,  or  by  using a
turbine to reduce bubble size and  increase bubble holdup.
     This  type  of aeration technique  is  adaptable to existing  storage tanks
and basins.  The air  diffusers  may be placed on the  side of a tank to further
induce  turbulence  and  to  assist  in gas  transfer.   If  porous  tubes  or
perforated pipes  are used,  they  may  be  suspended at about one" half of the
depth of the tank to reduce compression heads. When porous diffusers are used,
incoming air should be  filtered carefully through an electrostatic  unit or a
filter so as to minimize clogging.  Porous plates are located at the bottom of
the  tank.   Static  tube  aerators  have   also  been  used  in  a  variety  of
applications and have provided adequate aeration when properly designed.
     The design of air  stripping equipment has been  developed  extensively in
the chemical processing  industry  for  handling  concentrated  organic solutions.
The procedures found  in  the  chemical  engineering  literature  can be applied to
water  treatment  for SOC  removals.  The rate at which an SOC is removed from
water by diffused aeration depends upon the following factors:
          Temperature of the water and the air
       -  Physical and chemical characteristics of contaminant
       -  Air-to-water ratio
       -  Contact time
       -  Available area for mass transfer
The first two factors are  fixed by the liquid stream and the contaminant; the
last three are  dependent upon  the equipment and operating conditions  and can
be  evaluated  in  a pilot  testing  program.  These  design considerations  are
                                      6-8

-------
                                   TABLE 6-5

                                PAC PERFORMANCE

                                                       Percent
Compound                 Influent       Effluent       Removal

Dichlorobenzene          0.08           0.05            38
                                                        93
                                                        88
                                                        98
                                                        95

Ethylbenzene             0.6            0.4             33
                                                        33
Concentrations
Influent
0.08
0.15
0.14
0.3
0.4
0.6
0.3
1.1
0.35
1.0
0.7
0.5
0.25
0.2
0.3
0.4
0.11
0.03
0.5
(ug/L)
Effluent
0.05
0.01
0.017
0.007
0.02
0.4
0.2
0.8
0.3
0.1
1.0
0.5
0.15
0.1
0.1
0.1
0.01
0.003
0.2
Monochlorobenzene        1.1            0.8             27
                                                        14
                                                        90
Toluene                  0.5            0.5              0
                                                        40
                                                        50
                                                        67

Xylenes                  0.4            0.1             75
                                                        91
                                                        90
                                                        60

-------
                                                   FIGURE 6-1
             AIR SUPPLY
 INFLUENT
DIFFUSER GRID
                                          EFFLUENT
               DIFFUSED AIR BASIN

-------
similar  to those  outlined in  Section 5,  Other  Applicable  Technologies,  in
which  packed  column  aeration was  discussed.  The  major  difference  is  the
substitution of contact time for the packing height parameter.
     Treatability studies
     Diffused aeration was evaluated  in  several bench scale studies involving
many of the more volatile SOCs as well as two of the non-volatile SOCs.
     Bench-Scale;
     The EPA DWRD  has reported on  the  treatment  of several  SOCs by diffused
aeration  (Miltner,  December  1985b).   Both distilled  water  and  ground water
were  spiked  with  SOCs  and  used  in  the  bench  scale  evaluations.   The
experimental apparatus  was a countercurrent  contactor with  a stone sparger.
The water  flowrate  through the  system was 0.76 L/min, which  resulted in a 13
minute contact time.  The  results for the test runs  with distilled water are
presented in Table 6-6; ground water  results  are  presented in Table 6-7.  The
results indicate that the more volatile SOCs can be removed by aeration, while
the  less  volatile  compounds  such as  carbofuran  and  atrazine  can  not  be
removed.   In addition,  the percent removal  increased with increasing  air to
water ratio.
     Love  and  Eilers (1982)  performed several bench-scale  diffused aeration
tests to evaluate  the removal of cis-l,2-dichloroethylene was from a contam-
inated ground water source in New Jersey.   The glass column had a diameter of
4 cm  (1.5  in)  and  a length of 1.2 m  (4  ft)  and equipped  with a fitted glass
diffuser  at  the  bottom.   The  countercurrent  air  and  water  flows  were
controlled by  rotameters.   The  column was operated  at an air:water ratio of
4:1,  a  ten-minute  contact time,  and a  water depth of  0.8  m  (2.6  ft).  The
average influent concentration of 0.5 ug/L was  reduced to less than 0.1 ug/L,
a removal  of  greater than 80 percent.  These results indicate that diffused
aeration can remove cis-l,2-dichloroethylene from drinking water.
     Ruggiero  Engineers  (1984)  conducted  counter-currentT~ diffused aeration
testing on several organic compounds at Glen Cove, New York.   Initial runs at
an air:water ratio  as high as 30:1 yielded effective cis-1,2-dichloroethylene
removals.  Greater than 50 percent removal was obtained for this compound even
at an air:water  ratio as  low as 5:1.  In general, the best  removals occurred
during the  summer  months  when the water temperature  was highest.  Additional
                                      6-9

-------
diffused  aeration  studies were  conducted  during a  separate  phase of  the
project.   The following  results  were obtained during  the runs at  a contact
time of 10 minutes.
                          cis-l,2-Dichloroethylene      Percent
                          Concentrations  (ug/L)        Removal
                          Influent       Effluent          (%)
           5:1             62             28             55
          10:1             43             14             67
          15:1             37              8.6           77
The  results  indicate  that  diffused  aeration  is  effective  for  cis-1,2-
dichloroethylene removal, especially at higher air:water ratios.
     Based  upon the  packed  column  results  presented in  Chapter 5  and  the
diffused aeration results presented in this section, packed column aeration is
a  more  effective   than   is  diffused  aeration for  the  removal  of  volatile
synthetic organic chemicals from water.   This could be attributed to the fact
that diffused aeration involves two transfer steps - air  or  oxygen  is first
dissolved  in  water, then dissolved gases  are transferred to  the  gas phase -
while packed  column aeration only incorporates the second mechanism.  A packed
column  can also provide  greater  contact  between  uncontaminated  air and  the
contaminated  water, allowing  greater  contaminant  removals.  Diffused aeration
can provide sufficient removals in some  situations  but is not as efficient as
packed column aeration.

Boiling
     The EPA  DWRD  has reported on the  treatment  of several  SOCs by boiling
(Miltner, July  1985).  As the water  temperature  increases,  the vapor pressure
of  SOCs   present   in  the  water  will   also increase,   thereby  promoting
volatilization.  The  bench scale testing  reported  by the  DWRD  confirms that
the  removal   of  volatile SOCs  increases  with increasing temperature.  At  a
temperature of 95~C,  removals  ranged  from  25  to  57 percent  for  the  more
volatile SOCs.  Boiling for a period of ten minutes was required to achieve 99
percent removal or  greater for  the majority of the SOCs  tested.  Boiling  was
not effective for the non-volatile SOCs which were tested due to the excessive
amount of energy that  is  required to heat water.   Boiling may be an effective
                                     6-10

-------
                                              TRHLE 6-6





                     GCNTRCL OF 90Cs IN DISTILLED WAIER USING DIFFUSED AERKTICN
SOC




cis-1,2-dichlorDethylene









trans-1,2-dichlorcethylene







toluene
ethyl benzene
chlorobenzene






p-xylene




m-xylene
o-xylene
Henry's
Coefficient
(atm)
.ene 415


lylene 361

361




.361.



254

254

241




227




Influent
SOC
Concentration
(ug/L)
263
196
201
217
220
47
130
51
51
221
38
135
135
199
97
209
199

46
117
138
138
233
54
121
131
131
191
Percent Removal
Mr-to-Water Ratio
5:1
59
57
63
85
85
742
59
70
70
72
682
73
74
75
67
57
74
2
74
58
72
73
73
672
48
62
65
66
10:1
82
69
76
96
93

74
84
86
82

84
85
84
85
71
83


75
83
86
85

67
76
79
77
15:1
88
73
82
97
95

79
90
90
87

90
89
88
90
80
87


79
90
89
88

73
85
84
83

-------
                                              TABIE 6-6

               GCNIKCL OF SOCs IN D7SttU£T> WATER USING DIFFUSED AERATION   (CONTINUED)



soc
1 , 2-^aichloropropane
o-dichlorobenzene

alachlor
carbofuran
atrazine



Henry's
Coefficient
(atm)
134
107

11
0.0005
0.0002


Influent
sec
Concentration
(ug/L)
233
125
260
139
79
34

55

Percent Removal
Air-to-Water Ratio
5:1 10:1
55 69
46 63
45 61



2
11



15:1
79
77
70
122
202
182

5
Notes:
     1.   Gountercurrent flow, stainless steel sparger, water flow rate = .076 L/min., 13 min
          retention time
     2.   Denotes tests conducted using stone sparger

-------
                                     TABLE  6-7

                     TREATMENT OF SOCS  IN SPIKED  GROUND  WATER3
                             USING DIFFUSED AERATION
soc
1 , 2-dichloropropane
cis-1 , 2-dichloroethylene
trans-1 , 2-dichloroethylene
toluene
ethyl benzene
chlorobenzene
p-xylene
m-xylene
o-xylene
o-dichlorobenzene
ethylene dibromide
lindane
carbofuran
pentachlorophenol
atrazine
2,4-D3
silvex
Henry ' s Law
Coefficient
(atm)
134
415
361
361
361
254
254
241
227
107
54
0.021
0.0005
0.0003
0.0002


Influent
SOC Percent Removals
Concentration Air-to-Water Ratio
(ug/L)
122
189
124
108
113
119
103
107
120
132
125
107
127
92
120
132
77
15:1
77
84
92
87
88
85
88
84
82
52
50
2
0
0
0
0
0
Notes:
     1.
     2.

     3.
Great Miami Aquifer, Ohio
Countercurrent flow, water flow rate
retention time
Acid form
= 0.76 L/min, 13 min.

-------
emergency  treatment  for volatile SOCs  in a point  of use  application  if the
system were properly vented to remove off gases.

Oxidation
     Several  oxidants  are available  for removing  SOCs from  drinking water,
including  ozone, chlorine, chlorine  dioxide,  permanganate, hydrogen peroxide,
and ultraviolet  (UV) light, either by itself or in combination with any of the
other oxidants.  The mechanism for SOC  removal by oxidation is the conversion
of  an  SOC into  either intermediate reaction  products or  carbon  dioxide and
water, which  are the complete destruction products.   Complete destruction is
not  always possible because  the intermediates which are   formed  may  be more
resistant  to  further  oxidation  than the original  SOC.    In  addition,  these
intermediates may in some cases,  be more toxic than the original SOC.
     Ozonation has been the most widely tested oxidant for  the removal of SOCs
from drinking water  and,  as  such,  will  be discussed  first.  Additional oxida-
tion technologies which have been evaluated  for SOC removal will be presented
after this subsection on oxidation.  Since only limited data are available for
SOC removal via  oxidation,  further evaluations are  required before oxidation
can be considered as an applicable technology.
     Ozone-Process Description
     Ozone was   originally  installed  for disinfection  purposes  at a  water
treatment  plant  in France at the beginning of the  20th  century.   Since then,
the number of ozone  facilities for drinking water  treatment has increased to
about 3,000  worldwide  in 1987.   Although  ozone has been employed for many
years in  Europe to  improve  drinking water  quality,  ozone  technology  in the
U.S. is just beginning to gain acceptance as  a viable water treatment option.
Approximately 40 U.S. water treatment plants currently use ozone processes for
disinfection, color  destruction,  taste and  odor control,  or THM  precursor
removal.
     Recently, ozone has received more attention as a means  of  controlling
SOCs  in drinking  water.  The  use  of  ozone  in  the U.S.  for this  purpose
expected to  increase in the future, spurred  in part by  changing  regulations
and  also  by  technological  advances which  have  increased the  knowledge  and
understanding of ozone's capacity to remove organics  from drinking water.
                                     6-11

-------
      'zone  is the  most powerful  oxidant available  for water  treatment and
th*  fore has  a  greater capacity to remove  SOCs  than do other oxidants.  The
reaction  mechanism  of  ozone with  the  organics  in  water  is  still  under
investigation.   Hoigne  and  Bader  (1979)  proposed  an  explanation  for  the
behavior of ozone in aqueous  solutions.   They suggested that at low pH, ozone
remains in  solution directly and  selectively oxidizes pollutant species.  At
high pH,  ozone  decomposes  at a  fast  rate  (initiated by hydroxide  ions)  to
produce a variety of highly reactive intermediate species.  These intermediate
radicals, although  short lived and unselective,  are even more potent oxidants
for  some  organics  than molecular ozone.  Two primary routes  by  which ozone
reacts with organic compounds in water are:
       -  Direct  oxidation,   involving  selective attack  of  molecules  by the
          ozone .molecule
          Indirect  oxidation, or  non-selective attack of organic molecules by
          various free  radicals.

The  degree  and  rate  of  oxidation  depend on several  factors,  including the
organic compounds  to be  oxidized,  nature of  competing substances  present in
the water, ozone dosage, pH,  alkalinity and contact time.
     Fronk  (1987a)   investigated   the  effect of  these  factors  on  reaction
pathways  and  ozone's  oxidation  capacity.   Several conclusions were derived
with respect  to  the results  for  three classifications of  organic compounds:
alkanes,  alkenes,  and  aromatics.  Alkanes  are  aliphatic   (straight-chain)
organics  which are saturated, i.e.  they contain  no  double bonds.   DBCP and
1,2-dichloropropane  are  examples  of  SOCs   in  this  category.  Alkenes  are
aliphatic  organics  which  contain  double   bonds.   Cis-  and  trans-l,2-di-
chloroethylene  fall  into this  classification.   Aromatics  are  benzene-like
compounds having unsaturation within a  closed ring of carbon atoms.  Benzene,
toluene and xylenes are  examples of SOCs in this category.
     Ozone  is  known to react at centers  of unsaturation within  a molecule;
therefore,  alkanes  would be  expected to  react with ozone to  a lesser degree
the   alkenes  or  aromatics.   However,  at  pH  values  above  9.0, free radical
rou. ..3  dominate  and the oxidation reaction  is nonselective.   The following
additional observations  were made:
                                     6-12

-------
       -  Alkenes and aromatics react readily over a wide pH range — implying
          removals occur by both oxidation mechanisms.
       -  Alkanes are oxidized at high pH only — indicating oxidation by free
          radical mechanisms only.
       -  Ozonation  in  distilled  and ground  waters are  similar,  except  at
          higher  pHs,  where radical  scavengers such  as bicarbonate  ion may
          limit the removal of alkanes in natural waters.
       -  Increased ozone  dosages  improve reactions for  all compounds except
          alkanes at low and neutral pH.
          Increasing  contact   time   does  not  appreciably  enhance  alkane
          reactivity, whereas alkenes and aromatics are removed rapidly.

     Ozone may also effect  the  removal  of certain  SOCs by oxidizing them into
smaller  molecules which  are  amenable  to  aeration or  bioactivated  carbon
adsorption.  The  exact nature of ozone  oxidation by-products are not known at
the present time and present some concerns regarding their potential toxicity.
     Equipment
     A diagram of the ozone treatment  process is  illustrated  on Figure 6-2.
The major components of the system include an ozone production unit, a contact
basin, an ozone destruction unit and  associated  valves  and piping.  The ozone
production unit consists of gas handling, ozone generation, and cooling system
components.  The contact basin is design  is based upon  the  raw water flow and
required detention  time.    The  ozone destruction unit eliminates  any excess
ozone before discharging to the atmosphere.
     Treatability Studies
     The majority of  ozone  treatability  studies  for  SOC  removal to  date
consist of  bench scale evaluations.   Ozone is  typically applied  to aqueous
solutions of  individual  SOCs as  either a  gas  or  as a  solution of  ozone  in
water.  The degree of SOC removal depends upon the  type of SOC, the amounts of
ozone applied and reacted, the ozone demand, pH, degree of mixing, and contact
time.
     Bench Scale;
     The EPA  DWRD has  reported on  the  treatment  of several  SOCs  by  ozone
oxidation  (Miltner and  Fronk 1985b;  Fronk  1987a).   Both distilled  water and
ground water were spiked  with SOCs and  used in the bench  scale evaluations.
                                     6-13

-------
The  experimental  apparatus  was  a  countercurrent  contactor  with a  stone'
sparger.  The water  flowrate through the system was 0.76 L/min, which resulted
in a 13 minute contact  time.  The results for distilled water  are presented in
Table  6-8;  ground  water  results  are presented  in  Table  6-9.   The  results
indicate  that  ozone  was effective in  removing  all  the compounds tested, with
the   exception   of   1,2-dichloropropane,    and    ethylene    dibromide   (1,2
dibromoethane)  which   are  saturated  aliphatic   compounds.   Only  moderate
removals  of these  compounds were achieved by high  ozone dosages at pH valves
above 9.0  As discussed earlier  in this section, saturated aliphatic compounds
generally are not oxidized by ozone.   In the testing with spiked ground water,
the dichlorobenzenes (ortho and  meta)  were  more resistant to  ozone oxidation.
The percent removal  of ortho dichlorobenzene was 64  percent  at an ozone dose
of 10.1 mg/L.   Removals of other  SOCs generally exceeded 84  percent  at this
ozone  dose.   For  most of the  SOCs  tested, percent removal  increased with
increasing ozone dosage.
     Hoigne and Bader  (1983) have  performed extensive bench scale evaluations
of ozone on a variety of SOCs.   In these studies, ozone solutions were appliedt
to aqueous solutions of individual  SOCs.  Decomposition  of  ozone in water was
inhibited by maintaining a  low pH (generally at pH = 2) and by the addition of
buffering agents.   At  this low  pH, the principal  oxidation  mechanism  was  a
direct reaction rather  than the  free  radical reaction which occurs at neutral
or alkaline pH.
     Hoigne has developed  reaction rate constants  for the  rate of disappear-
ance of ozone in aqueous  SOC  solutions by  using  high SOC  concentrations  to
ensure  that  the  reactions were   not  limited  by  SOC  concentration.   SOC
concentrations used  in this study were  generally  on the order  of  0.2  milli-
moles/L (10    moles/L) .  This corresponds  to  a concentration of  21 mg/L for
m-xylene.   Ozone disappearance followed first order kinetics,  that is the rate
of ozone  disappearance was proportional to  the existing  ozone concentration.
These reaction rate  constants indicate the speed at which ozone reacts with an
excess  concentration   cf   the   individual   SOCs.    Reaction  rate  constants
developed in this manner are summarized in Table 6-10.
     Hoigne has  estimated  that  the reaction  rate  constants  presented  above
should be greater than  100 L/moles-sec to  achieve  approximately 25-50  percent
                                     6-14

-------
                                          FIGURE 6-2
           RAW
          WATER
         CONTACT

           BASIN
OZONE
         PRODUCT

          WATER
  OZONE OXIDATION
PROCESS SCHEMATIC

-------
                      TABLE 6-8
TREATMENT OF SOCS IN DISTILLED WATER USING DONATION

SOC
j , t , j . j
Ozone Ozone
Concentration Dose Percent. Dose Percent.
SOC pH
jl kones
1 , 2-dichloropropane 3.95



9.85
10.10
aklenes
cis-1, 2-dichloroethylene 3.95



9.85
Lrans-1 , 2-dichloroethylene 4.30



9.10
aromatics
toluene 4.20
4.60


9.15
9.20
(ug/L)

314
237
267
272
257 .
89

267
234
234
236
217
238
164
201
167
158

159
190
173
258
190
149
e, c.
(mg/L) Removal (mg/L) Removal

3.7 0
6.0 6
0.5 0
0.4 0

1.6 54

3.7 90
6.0 89
0.5 99
0.4 82


0.4 100
6.4 100
1.4 100
•

1.7 70

1.5 49
5.7 81
1.7 72

« J . 0
Ozone
Dose Percent,,
2
(mg/L) Removal





11.4 87
19.1 95





11.4 94
8.4 95



8.4 98


12.0 98

11.7 98

11.5 98

-------
                                                    TABLE 6-8
r;oc




  ethylbenzene
 chlorobenzene
 p-xylene
 in-xy lene
                        TREATMENT OF SOCS IN DISTILLED  WATER USING OZONATIQN.1 (Continued)
                                                          3,4
SOC Ozone"'' OzoneJ'J Ozone"*'6
Concentration Dose Percent Dose Percent Dose
pH (ug/L) (mg/L) Removal (mg/L) Removal (mq/L)
4.20
4.50
4.60




9.15
9.20
9.20

4.30



9.10
10.10
4.50


9.20

4.20
4.50
4.60





9.15
9.20
9.20
164
64
195
132
208
105 .
126
196
73
107

226
179
240
204
170
75
59
100
120
68

175
76
208

169
243
109
132
209
77
145
1.7 69

-| «-\ n
12.0
12.0
1.5 47
5.7 79 11.7
2.5 93

91
. 1
1.7 70

13.5 •'•
11.5

8*
.4
0.4 86
6.4 98
1.4 97

8*
.4
1.6 90 19.1
2.0 98
2.5 95

9.1
13.5
1.7 70

12.0
12 .0
1.5 55
5.7 84 11.7
2.5 y5

9. 1
0.7 72

13.5
11.5
Percent
Removal


94
95

96


95

91
93

99



99
100



97
98


99
97

97


97

98
97

-------
                                                   TABLE 6-8

                       TREATMENT OF SOCS IN DISTILLED WATER USING OZONATION1 (Continued)
SOC

  o-xylene
  o-dichlorobenzene
others
  carbofuran
  atrazine


PH7
4.20
4.60


9.15
9.20
4.50


9.20



3 4
SOC Ozone '
Concentration Dose
(ug/L) (mg/L)
166 1.7
194
190 1.5
265
197 1.7
164
95
132 2.5
148
97
74
27
55
3,5 n 3,6
Ozone Ozone
Percent,, Dose Percent,. Dose
2 2
Removal (mg/L) Removal (mg/L)
71
12.0
54
5.7 84 11.7
73
11.5
12.0
80
9.1
13.5
8.6
4.6 99
7.1 70

Percent
Removal

91

98

97
91

89
90
100


  alachlor
139
6.9
95
Notes:
      1.  Countercurrent flow, stone sparger, water flow rate = 0.76 L/min, 13 min contact time
      2.  Percent removal corrected for gas stripping
      3.  Ozone dose  (mg O /L water) = applied ozone (mg O /L water) - off gas (my O /L water)
      4.  Applied ozone = 0.5 to 2.5 mg 0 /L water
      5.  Applied ozone = 5 to 8 mg O /L water
      6.  Applied ozone = 18 to 24 mgo /L water
      7.  pll range = 5.8 to 7.4, unless adjusted to listed value

-------
                                                  TABL
                              CONTROL OF SOCS IN SPIKED WATER USING OZONATION
                                                                            1,2
soc
alkanes
  ethylene dibromide
  1,2-dichloropropane
  lindane

alkenes
  cis-1,2-dichloroethylene
  trans-1,2-dichloroethylene
aromatics
  toluene
  ethyl benzene
  chlorobenzene
  p-xylene
Concentration
pH (ug/L)






9.95


9.75









9.95
10.10


125
111
105
122
112
98
79
107
189
165
124
103
98
108
7
113
42
119
113
76
86
103
44
Ozone '
Dose

0.9
1.6

0.9
1.6

1.7
2.1


0.9
1.0
2.1
1.6
2.1
1.6



1.6
2.1
1.6
Percent- Ozone '
Removal Dose
6.0
8
11
6.0
8
7
3.0
7 6.8
93
3.5
6.0
100
100
74
80
73
81
6.0
2.7
3.0
96
84
87
3.6
Percent- Ozone
Removal Dose
9

8.6
18

8.6
14 17.0
19
10.1
78 19.0
100

8.6
10.1
9.4
10.1
9.4
84
47
62 17.0
19.1
10.1
9.4
Percent-
Removal


16


24
42

87
98


100
91
100
90
100


91
100
93
100

-------
                                            TABLED

                  CONTROL OF SOCS IN SPIKED WATER USING OZONATION  (Continued)1'2
soc
m-xylene
o-xylene
o-dichlorobenzene
others
carbofuran
atrazine
alachlor
silvex
2,4-D9
pentachlorophenol
Notes:
Concentration
pH (ug/L)
107
46
120
60
9.75 73
132
96
9.75 108
127
117
145
77
132
42

Ozone '
Dose
2.1
1.6
2.1
1.6
2.1
1.6
1.6


2.4
1.5


Percent-
Removal
83
93
82
89
57
77
100


30
58


3,5 _ n 3,6
Ozone Percent- Ozone
Dose Removal Dose
10.1
9.4
10.1
9.4
3.5 71 19.0
10.1
9.4
3.5 36 19.0
7.5 96
2.8 49 8.6
2.6 79 9.3
8.5
8.1
2.8 99 8.6

Percent-
Removal
93
100
93
100
89
64
98
74

76
96
85
79
99

1.  Great Miami Aquifer, Ohio
2.  Countercurrent flow, stone sparger,  water flow rate  = 0.76 L/min,  13  min contact time
3.  Ozone dose (mg 0 /L water) = applied ozone (mg O /L  water)  - off gas  (mg 0 /L water)
4.  Ozone dose < 2.4 mg 0 /L water
5.  Ozone dose = 3.0-7.5 mg 0 /L water
6.  Ozone dose > 8.1 mg 0 /L water
7.  Percent removal corrected for gas stripping
8.  pH range = 7.6 to 8.2, unless adjusted to listed value
9.  Acid form

-------
                                  TABLE 6-10

                         OZONE REACTION RATE CONSTANTS
     SOC

     Styrene
     trans-1,2-Dichloroethylene
     cis-1,2-Dichloroethylene
     p-Xylene
     m-Xylene
     o-Xylene
     Ethylbenzene
     Toluene
     Chlorobenzene
     Tetrachloroethylene
SOC
Cone,
1
(mM)
0.007
hylene 0.03-0.1
lene 0.06-0.2
0.2-0.5
0.2-0.5
0.03-0.8
0.25-1
0.4-4
0.8-3
0.7



£H
2
2
2
2
2
1.
2
1.
2
2









7-5

7


Reaction Rate
   Constant
 (L/Mole-sec)

     300,000
       5,700
         800
         140
          94
          90
          14
          14
           0.75
           0.1
Note:
     1.   millimoles/L (10   moles/L)

-------
breakdown  in a  ten minute  contact  time at  an  ozone  dosage  of  0.5  mg/L.
However, free  radical  reactions that may  occur at higher pH  values have not
been considered.
     Legube  (1983)  has investigated  the mechanism  of the  reaction of ozone
with  soluble aromatic  pollutants,  including  ethylbenzene,  monochlorobenzene
and  styrene.   The formation  of breakdown products  was also  measured during
these  studies.   Ozone  gas was  introduced into  a  3  liter bubble  column with
solution   recirculation.   Analysis   of  ozone  in  the   off  gas  permitted
calculation of the ozone  demand (ozone consumed/SOC removed)  for  each of the
compounds.    The   removal  attributable to  air  stripping was  also  assessed in
separate experiments by bubbling  air  through the  column at  the same flowrate
as  ozone.    Ethylbenzene  and  monochlorobenzene  and  consequently  the  ozone
demand were both significantly removed by air stripping could not be estimated
for  these  two  SOCs.   The results for the oxidation of  styrene are presented
below:
                                                -4
     Initial Styrene Concentration      1.1 x 10   moles/L (11 mg/L)
     pH                                 5.0
     Ozone Application Rate             197 mg/hr at 12.8 L/hr
     Ozone Demand                       0.9 moles ozone/mole styrene
     (at zero percent
      styrene remaining)
Styrene oxidized  to  benzaldehyde and hydrogen peroxide,  which might further
react to form benzoic acid.
     Gilbert (1979a) summarized the  results from  a number  of researchers on
the ability of ozone to remove  several  SOCs  from drinking  water.  The results
of  this  summary for the  SOCs  of  concern are  presented  in Table  6-11.   The
results indicate  that  dichlorobenzene and heptachlor  were completely removed
by oxidation while heptachlor epoxide was only partially removed at an applied
ozone dose  of  17 ppm.  Lindane was  not  appreciably removed  until  very high
levels of  ozone  were  applied.   Neither heptachlor epoxide nor lindane appear
amenable to ozonation.   No  assessment  of the  impact of air  stripping  was
provided.
     Buescher  (1964)   evaluated the  effect of several   oxidants,  including
ozone, on  the  removal  of  lindane from drinking  water.  Ozone  gas  was bubbled
into aqueous solutions of lindane in  a pyrex pipe  with a diameter  of 3 in and
                                     6-15

-------
a length of 4 ft.  The solutions were prepared by spiking distilled, deionized
carbon filtered water and two river water samples with lindane.  Air stripping
had  no effect  on  lindane  removal.   The  ozone absorbed  into  solution  was
approximately ten  percent of the.ozone  applied.  The results  of the testing
are summarized below:
                                        Distilled River Sample 1 River Sample 2
Initial Lindane Concentration (mg/L)        8            2.2              0.55
Ozone Application Rate (mg/hr)            840          840              840
Total Ozone Applied  (mg)                1,900          950            1,200
Lindane Removal (percent)                  75           90               95
These  results  agree with the previous  work reported  by Gilbert,  i.e.  high
doses of ozone are required to remove lindane.  Since lindane is a substituted
cyclohexane with.no sites of unsaturation, only slight reactivity toward ozone
is expected  for the direct oxidation mechanism.   The effect  of pH was  not
investigated.
     Yocum (1978)  evaluated  the  oxidation of styrene by  ozonation  using  a 20
liter stirred tank reactor with  ozone fed as a  gas.   The test conditions and
results are summarized below:
          Initial Styrene Concentration      130 mg/L
          pH                                 5
          Ozone Application Rate             150 mg/min at 11.5 L/min
          Ozone Demand                       1.9 mole ozone/mole styrene
          (at zero percent
           styrene remaining
Styrene  was  rapidly oxidized  to  benzaldehyde  while  further breakdown  was
slower  and  dependent  upon  pH  and temperature.   This  was  consistent  with
Legube's results.   However,  the estimated  ozone demand was about  twice  that
found by Legube.
     Additional Oxidation Techniques
     In addition to  ozone,  additional oxidants have been  evaluated for remov-
ing SOCs from drinking water,  these include potassium permanganate, chlorine,
chlorine dioxide,  hydrogen peroxide and  ultraviolet  (UV)  light.     Advanced
oxidation processes  (AOPs) involving UV  light  and hydrogen peroxide, UV light
and ozone, and  ozone and hydrogen  peroxide have also been tested.   AOPS are
defined as those oxidation techniques which involve the generation of hydroxyl
radicals in sufficient quantity to affect water purification.   Based upon
                                     6-15

-------
                                  TABLE 6-11




                                SOC REACTIVITY
SOC




Dichlorobenzene




•leptachlor




ieptachlor epoxide




Lindane




Lindane




Lindane




Lindane
Initial Ozone Ozone
Concentration Dose Consumption
(mg/L) (mg/L) (mg/L)
30
2
2
2
0.04-0.1
0.01
0.05
NR
17
17
17
0.4-3
11
149
60
NR
NR
NR
NR
NR
97
Percent
Degredation
100
100
26
0
0
10
100
source:  Gilbert 1979




flR - Not Recorded

-------
bench  scale  results  these  additional  oxidation techniques have been evaluated
for  removing only  a  few of the SOCs  from  drinking  water.  Again,  it is noted
that an  evaluation of breakdown- products  of any oxidation  process  should be
made before  considering oxidation for SOC removal.
     Potassium Permanganate
     The EPA DWRD  has reported on the treatment  of several SOCs by potassium
permanganate  oxidation  (Miltner, December  1985).  The results  of  bench scale
testing  using  spiked  distilled   water   are   presented  in  Table  6-12.
Permanganate  dosages  ranged  from 8.7 to 11.4  mg/L and  reaction times ranged
from  22 to  29  hours.   Trans-  and cis-l,2-dichloroethylene,  styrene,  and
heptachlor  appear to be  amenable  to  permanganate  oxidation.    Removals  in
excess of 84 percent were achieved for these four SOCs.
     Potassium  permanganate  was  used  to  oxidize  trans  and  cis  1,2 di-
chloroethylene in  bench scale  testing using  filtered  Ohio River  water  and
ground water from Landsdale,  Pennsylvania.   The results  of  this  study  are
summarized in Table  6-13.   These results  indicate  that the trans  isomer is
oxidized more  rapidly than the cis  isomer  for  similar  permanganate dosages.
The  degree  of  removal  for  the  cis  isomer  is  also   highly  dependent  on
permanganate  dose.   Permanganate  dosages  of 0.5 and  2  mg/L achieved  10  and
80 percent   removals,   respectively,   at   the   cis  isomer  at  an  initial
concentration of 388  ug/L after 24 hours.
     Chlorine
     In bench  scale  testing  using spiked  Ohio  River water, chlorine  did  not
effectively oxidize alachlor, atrazine or  carbofuran (Miltner,  January 1989).
Chlorine dosages ranged from 3 mg/L and 6 mg/L, and reaction times  ranged from
two to six hours.  These results are presented below:
Concentration Free Chlorine (mg/L)
Pesticide
Alachlor
Atrazine
Carbofuran
(ug/L)
31
65.8
50.0
Dose
6
6
3
Residual
4.9
1.3
1.2
Time
(hr)
5.83
5.33
6
Percent
Removal
- 5
2
-11
     Chlorine Dioxide
     In bench scale  testing  using spiked Ohio River water,  (Miltner,  January
 L989)  alachlor,   atrazine,   and  carbofuran  were  not  oxidized  by   chlorine
                                     6-17

-------
dioxide at dosages  of 1.5 mg/L to 6.0 mg/L and at reaction times ranging from
two to six hours.  A  summary of the results are presented below:
Concentration Free Chlorine (mg/L)
Pesticide (ug/L)
Alachlor
Atrazine
Carbofuran
Hydrogen
61
65.8
50
Peroxide
Dose
3
6
1.5

Residual
1.9
3.6
1

Time
(hr)
2.5
6.25
6

Percent
Removal
9
10
- 3

     The  EPA ODW has  reported on the  treatment of several  SOCs  by hydrogen
peroxide  oxidation  (Miltner,  December 1985b).   The results  of  bench  scale
testing using spiked distilled water  are presented in  Table 6-14.   Hydrogen
peroxide  dosages  ranged  from 7.9  to 12.4 mg/L and  reaction  times  ranged from
21 to 26.5 hours.  None  of the SOCs which were tested appeared to be amenable
to hydrogen peroxide oxidation.
     UV Light
     The  EPA  DWRD has reported on the  treatment of several SOCs  by UV light
oxidation  (Miltner,  December 1985).  The  results of bench  scale  testing are
presented in  Table 6-15.   UV light effectively removed all  of  the SOCs which
were evaluated and removals increased  with increasing  contact time.   Removals
in excess of 95 percent were achieved for all the SOCs which were evaluated at
a contact time of five minutes.
     UV/Hydrogen Peroxide
     The EPA DWRD has reported on the oxidation of several SOCs by UV light in
combination with hydrogen peroxide (Miltner, July 1985).   The results of bench
scale testing  are presented in Table 6-16.  The  results of  UV  light alone as
well as  with hydrogen peroxide provided  a  basis for the  comparison of  the
effectiveness of  UV  light  and  hydrogen  peroxide.   The  removal of toluene from
spiked distilled water and cis-l,2-dichloroethylene from ground water improved
with  the  addition   of  hydrogen  peroxide.    No  noticeable  difference  in
performance was observed for the other SOCs which were evaluated.
     UV/Ozone
     UV  catalyzed  ozonation  has  been  found  to  oxidize  certain  organic
compounds  more rapidly  than  ozonation  alone.   However,  this  technology  is
still in the developmental stage.
                                     6-18

-------
                                  TABLE 6-12

            TREATMENT OF SOCS IN DISTILLED WATER WITH PERMANGANATE


SOC
trans-1 , 2-dichloroethylene
cis-1 , 2-dichloroethylene
chlorobenzene
o-dichlorobenzene
1 , 2-dichloropropane
ethylene dibromide
toluene
styrene
ethyl benzene
o-xylene
m-xylene
p-xylene
alachlor
carbofuran
carbofuran
lindane
silvex
methoxychlor
2,4-D
heptachlor

Concentration
(ug/L)
140
241
107
139
154
248
171
140
197
139
134
156
58
109
37
100
10
24
102
24

Mn04~
(mg/L)
10
10
11.4
11.4
10
10
10
10
10
10
10
10
10
10
10
10
8.7
10
8.7
10
1
Time
(Hours)
22.75
22.75
28.75
28.75
22.5
24
22.75
24
22.75
22.75
22.75
22.75
22.33
(2)
(2)
22.5
24
22.5
24
22.5

Percent
Removal
100
98
3
4
0
7
11
93
10
12
13
5
-22
32
13
-22
9
-13
6
84
Notes:
     1.  Reaction stopped with thiosulfate or sulfite
     2.  Reaction stopped by SOC extraction at approximately 24 hours

-------
                                  TABLE 6-13

                TREATMENT OF TRANS AND CIS 1,2-DICHLOROETHYLENE
                               WITH PERMANGANATE
                                                                      Percent
      SOC                 (ug/L)           (mg7L)         (hrs)        Removal

Ohio River

  trans                     109              2             1            95
                                                                       100

  cis                       163              218
                                                                        25
                                                                        65

Landsdale, PA

  cis                 .388              2             1            15
                                                                        30
                                                                        80
  cis                       388              0.5           1             5
                                                                         6
                                                                        10
Concentration
(ug/L)
109

163


388


388


MnO -
(mg/L)
2
2
2
2
2
2
2
2
0.5
0.5
0.5
Time
(hrs)
1
4
1
4
24
1
6
24
1
6
24

-------
                         TABLE 6-14
TREATMENT OF SOCS IN DISTILLED WATER WITH HYDROGEN PEROXIDE

soc
cis-1 , 2-dichlorethylene

trans-1 , 2-dichloroethylene

1 , 2-dichloropropane
ethyl benzene

carbofuran

toluene
o-xylene

m-xylene


p-xylene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
methoxychlor
alachlor
2,4-D
silvex
Notes ;
1. Reaction in dark
2 . Reaction stopped
3 . Reaction stopped
4 . Acid form
Concentration
ug/L
213
107
201
161
126
' 80
73
109
37
79
93
47
141
129
49
98
231
124
206
24
58
85
7.9

at 20 C
with thiosulfate or
by SOC extraction at

H2°2
mg/L
8.5
8.5
8.5
7.9
7.9
8.1
8.0
10.0
10.0
11.0
12.4
11.0
8.1
8.0
11.0
12.4
8.5
8.5
10.0
10.0
10.0
9.1
9.1


sulfite
approximately

Time
Hours
25
23.5
25
21
21
24
24
(3)
(3)
26
26.5
26
24
24
26
26.5
25
23.5
24
22.5
22.33
24
24



24 hours

Percent
Removal
-9
-2
-2
-11
-2
11
-6
3
2
20
-24
14
11
-5
19
-2
-6
2
-13
-16
-6
10
7






-------
                                  TABLE  6-15
                TREATMENT OF SOCS BY ULTRAVIOLET  IRRADIATION


soc
cis-1 , 2-dichloroethylene
cis-1 , 2-dichloroethylene


toluene
chlorobenzene


o-dichlorobenzene


ethylene dibromide


SOC
Concentration
(ug/L)
47. 53
53.0


51.7
10.2


4.0


13.2


Contact
Time
(min)
2.25
1.5
2.25
5.0
2.25
1.5
2.25
5.0
1.5
2.25
5.0
1.5
2.25
5.0
                                                                       Percent
                                                                       Removal

                                                                            73
                                                                            87
                                                                            94
                                                                            95
                                                                            69
                                                                            93
                                                                           100
                                                                           100
                                                                           100
                                                                           100
                                                                           100
                                                                            61
                                                                            80
                                                                           100
Notes:
     1.
     2.
     3.
flow-through cell; 28°C; UV intensity J85 uwatt/cm  at cell wall
Testing performed in distilled water unless otherwise noted.
Elkhart, Indiana ground water.

-------
                                  TABLE 6-16
                 TREATMENT OF SOCS BY ULTRAVIOLET IRRADIATION
                            AND HYDROGEN PEROXIDE
         SOC
cis-1,2-dichloroethylene
cis-1,2-dichloroethylene
toluene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
      SOC
Concentration
   (ug/L)

     53.0
     47.5 J
     51.7
     10.2
      4.0
     13.2
                                  Percent
                                  Removal
                                   by UV

                                       94
                                       73
                                       69
                                      100
                                      100
                                       80
     H2°2
Concentration
   (mg/L)

      10
      8.8
      10
      10
      10
      10
                                                                      Percent
                                                                      Removal
                                                                         by
 94
 92
100
 99
100
 78
     2.
     3.
flow-through cell; 2.25 min contact time; 28°C; UV intensity 85
uwatt/cm  at cell wall.
Testing performed in distilled water unless otherwise noted.
Elkhart, Indiana ground water.

-------
     Arisman  (1980)  evaluated the use of  UV/ozone for the  removal  of PCB at
the General Electric Capacitor  Products  Department in Hudson Falls, New York.
A 75 gallon pilot plant with thirty 40 watt lamps was used to treat  industrial
effluent  containing PCBs.  Ozone- gas was  diffused  through the  unit by gas
spargers.  A summary of the results of this study are presented below:
          Flowrate                           0.8-3.5 L/min
          Influent Concentration             7-42 ug/L
          Effluent Concentration             0-4.2 ug/L
No  other  effluent  characteristics  were  given,  nor  was  the effectiveness of
UV/ozone compared to the effectiveness of ozone or UV alone.

     Ozone/Hydrogen Peroxide
     Bench  scale  tests   for  the  removal  of  tetrachloroethylene  (PCE)  and
trichloroethylene  (TCE) were  conducted by Glaze and  Kang,  1988.   Batch tests
were run  in  a 70 liter reacter spiked with approximately  50  ar.d 500 ug/L of
PCE and  TCE,  respectively.  The  initial alkalinity  of  the source  water was
200 mg/L as CaCO   and  the TOC was 1.1 mg/L.  The  results of the ozone versus
ozone/hydrogen peroxide system are shown below:
                        Dosage Required for 95 Percent
                        	Removal of TCE and PCE
                Ozone (mg/L)       Hydrogen Peroxide  (mg/L)
Process        TCE       PCE            TCE       PCE
Ozone          9         33             00
Ozone/Hydro-   4         12             28
 gen Peroxide
Notes:
     I.   Ozone dosage 15  mg/min,  pH -8.0
     2.   Ozone dosage 15  mg/min,  Hydrogen Peroxide dosage - 10 mg/min.
Ozone and hydrogen  peroxide accelerates  the oxidation  of TCE by  a  factor of
two to three and the oxidation  of PCE by a factor of two to six  depending on
the ozone  dosage.   Due to  an apparent  mass  transfer effect,  increasing  the
hydrogen peroxide  dosage  rate beyond  a  certain level  does not  increase  the
oxidation rate of TCE and  PCE.
                                     6-19

-------
     Pilot scale studies were conducted by Aieta, et. al., 1988 to demonstrate
the removal of PCE and TCE on a continuous basis.  A clear acrylic pilot ozone
contactor column with an ID of 7.5 inches and height of 75 inches was used.  A
four stage  turbine  mixer was used- in  the column, and each  turbine  stage was
baffled by  stators  attached to the  column.   The gas turbine  was  driven by a
variable speed  drive mixer with  a G value  of  165 sec  .   Ozone  entered the
reacter through  a  4.5 inch diameter fine bubble  air stone,  .   The results of
the studies are  presented  in Table 6-17.  This pilot study  indicated that an
optimum hydrogen peroxide to ozone dosage ratio is approximately 0.4 to 0.5 by
weight.  PCE and TCE were reduced by 40 to 90 percent throughout the study.
     The studies presented  above suggest  that oxidation could  be  a  useful
technology for  the  removal of SOCs  from  drinking water.   Current information
on  the  necessary   reaction  conditions  and  kinetics   as well  as  potential
breakdown  products   is   inadequate.   The   applicability,   reliability  and
cost-effectiveness of oxidation are unknown until more detailed information is
available.   Further research  is  needed  in  this area  before oxidation  can
become an applicable method for removing SOCs from drinking water.

Reverse Osmosis
     Reverse osmosis  (RO)  is a  technology for which limited  experimental data
is  available  for  the  removal  of  SOCs from drinking  water.   Additional
evaluations of this  technology  for SOC removal  will be  required to assess the
suitability of RO for water treatment applications.
     Process Description
     Reverse  osmosis has  been used primarily  for  removing  total  dissolved
solids  from water  and for  desalination  of  seawaters.   The  reverse  osmosis
process uses  a specially  prepared membrane which permits the flow  of  water
through  the  membrane  while  selectively  rejecting  the  passage  of  salts
dissolved in the feed water.  This semipermeable membrane acts as a barrier to
the salt but  not to water.  A high hydraulic pressure on  the  feed water side
produces a pressure gradient  which  enchances the water  flow  through  the
membrane.  This pressure gradient must be greater than the osmotic pressure of
the feed water.  Only a portion of the  feed  water passes  through  the membrane
                                     6-20

-------
                    TABLE 6-17
RESULTS OF OZONE AND HYDROGEN PEROXIDE PILOT STUDY

Alkal inity
mg as CaCO,/L
	 3 —
268
270
270
NA
268
271
273
NA
NA
NA
275
275
275
270
NA
270
272
266
270
268
Notes:
1 . Contact
2. NA means
Influent
TOC
mg/L
(0.1
<0.1
<0.1
NA
(0.1
(0.1
(0.1
NA
NA
NA
(0.1
(0.1
(0.1
(0.1
NA
(0.1
(0.1
(0.1
(0.1
(0.1
Time was
data was
TCE (ug/L)

pH
7.25
7.55
7.30
7.25
7.50
7.55
7.55
7.35
7.30
7.35
7.50
7.45
7.30
NA
7.50
7.50
7.45
7.30
7.45
7.30
15 minutes.
not analyzed.

Influent

142
132
117
122
123
140
143
106
133
136
107
128
130
136
133
125
136
123
114
130


Effluent

40
39
18
17
34
20
12
8.5
6.3
5.6
7.4
9
24
11
24
31
27
20
57
42

Percent
Removal

72
90
85
86
72
86
92
92
95
96
93
93
82
92
82
75
80
84
50
68

PCE (ug/L)

Influent

15
'. 14
12
13
14
14
16
10
14
14
12
15
13
15
14
14
15
12
11
14


Effluent

6.3
5.5
3.1
3.1
4.9
3.8
3.0
2.0
1.7
1.7
2.3
2.5
3.9
2.8
5.0
5.1
4.7
3.4
6.5
5.9

                                                                                  Percent
                                                                                  Removal

                                                                                    58
                                                                                    61
                                                                                    74
                                                                                    76
                                                                                    65
                                                                                    73
                                                                                    81
                                                                                    80
                                                                                    88
                                                                                    88
                                                                                   ' 81
                                                                                    83
                                                                                    70
                                                                                    81
                                                                                    64
                                                                                    64
                                                                                    69
                                                                                    72
                                                                                    41
                                                                                    58

-------
as recovered product water.  The remainder  washes  the rejected salts from the
membrane surfaces and is discharged as a concentrated stream.
     While RO  primarily has been  used in  desalination,  it has been  used to
remove certain  SOCs  generally  those whose  molecular  weights  are greater than
120,  from drinking  water.   This  removal  may  not be  due  to  rejection,  but
possibly to SOC adsorption  onto the membrane.  Continued adsorption may lead
to  membrane  .poisoning,  and consequently  membrane  replacement, because  SOC
desorption  is   generally  difficult  and usually  entails destruction of  the
membrane.  In  addition, membrane  leakage   due  to  sporadic  desorption and/or
permeation has been shown to occur.
     The performance of an RO system for SOC  removal  depends upon a number of
factors including pH, turbidity, iron/manganese content of  the raw water, and
membrane type.   Pretreatment is sometimes  required to  prevent fouling of the
membrane  system.  Design  of  a pretreatment  system  is dependent upon  the
quality  and  quantity  of the  feed  water   source.   Pretreatment for  reverse
osmosis may include  one or  more of  the  following:   pH adjustment,  filtration
and  addition  scale  prevention chemicals.   Existing   treatment  plants  may
already   provide  much  of    the  pretreatment   required,    for   example,
coagulation/filtration  for  highly  turbid surface  waters or  iron  removal for
well  waters.    Reverse  osmosis  may  be particularly  appropriate   for  small
systems where the total volume  of waste concentrate is low.
     Blending of treated water  and raw water to produce a mixed finished water
of acceptable  quality  may be a  factor in  selecting a  reverse osmosis system
because  reverse  osmosis   systems  generally  produce  high  quality  water.
Blending, while site specific,  is more economical than treating all of the raw
water.  The fraction of the raw water to be  treated will depend upon the SOC
removal  efficiency   of  the  selected  reverse osmosis  membrane  and the  SOC
concentration in the  raw water.
     Equipment
     A typical  process  schematic  for a  reverse  osmosis treatment plant  is
illustrated on Figure 6-3.  The major components of this system include:
     1.   Provision  for prefiltration including polymer feed  system,  provi-
          sions for backwashing and backwash water  storage
     2.   Storage and feed facilities for pH and scale control
                                     6-21

-------
     3.   Reverse osmosis unit
     4.   Provisions for brine or wastewater storage and disposal or treatment
     5i   Disinfection
     6.   Finished water storage
     Treatability Studies
     Most  of  the  available  treatability  information  on  reverse  osmosis
pertains to bench-scale  applications.   However,  one full-scale application is
also discussed.   Various operating  conditions  and reverse  osmosis  membranes
have been  employed  in  the different  studies  which  are briefly  summarized
below.
     Bench Scale;
     The EPA DWRD has reported the performance of cellulose acetate, polyamide
and  thin-film-composite  membranes for  removing  certain low  molecular weight
SOCs (Fronk,  1987b).  The  results  of  bench scale  testing  are presented  in
Table 6-18; the operational conditions are summarized in Table 6-19.  One thin
film composite  membrane type  appeared to  be more  effective than  the  other
two membrane types,  achieving removals  in excess  of  84 percent for  EDB  and
chlorobenzene.  Thin-film-composite  membranes removed volatile  organics  more
effectively than traditional cellulose acetate or polyamide membranes.  It has
been noted, however, that the recovery  of  product  water  for  all the membranes
which were evaluated was low, ranging from 5 to 18 percent.
     The EPA  DWRD also  reported on bench scale  reverse  osmosis testing  in
Suffolk  County,  New York  (EPA-2).    The  results  of these  evaluations  are
presented  in  Table 6-20.   Removals  exceeding  94 percent were achieved  for
aldicarb   sulfoxide,   aldicarb   sulfone   (metabolites   of   aldicarb),   and
carbofuran.  Recovery of product water again was poor; the 50 percent recovery
achieved by the  nylon amide membrane,  was the  highest of all  the  which  were
membranes evaluated.
     Chian  et al.   (1975)  evaluated  a  cellulose  acetate   membrane  and  a
cross-linked  polyethylenimine  (NS-100)  membrane  for organics  removal.   In
addition to the membranes,  the  system consisted  of a test cell with 150  mL of
water with an  atrazine  concentration  of  1.102 mg/L  and a  pump capable  of
providing 600 psi for the process.  During test runs, the cell was pressurized
                                     6-22

-------
                               pH AND SCALE CONTROL
RAW WATER PUMPNG
HIGH PRESSURE

       PUMP
          n
          IDGE  Lc
                  I
CARTRIDGE

FILTRATION    REVERSE
            OSMOSIS
                                      FILTER BACKWASH PUMP
                       WASHWATER

                      SURGE BASIN
                         REVERSE OSMOSIS TREATMENT PLANT
                                                                          WASTE DISPOSAL
                                                                             CLEARWELL

                                                                           WATER STORAGE
                                                                                         O
                                                                                         c
                                                                                         00
                                                                                         m
                                                                                         o>
                                                                                         •
                                                                                         w

-------
                                                  TABL
                             REMOVAL OF SOCs BY VARIOUS  REVERSE OSMOSIS MEMBRANES
SOCs

1,2-Dichloropropane

Cis-1,2-dichloroethylene

Trans 1,2-dichloroethlene

Toluene

Ethylbenzene

O-xylene

P-xylene

Chlorobenzene

O-dichlorobenzene

Ethylene dibromide

Alachlor
Molecular
Weight
113
97
97
92
106
106
106
112
147
188
270

Cellulose
Acetate
10
0
20
10
34
9
22
-
-
'
M
Percent Removal
Thin
Polyamide A
61 90
19 '14
0 30
-
-
-
-
50
65
35
100

Film Composites
B C
-
12 32
-
-
-
-
-
54 87
-
-
_ _
Notes:
      1.
      2.
      3.
      4.
Influent concentration range 6-153  ug/L.
Average of distilled and ground water  tests,
- denotes that tests were not conducted.
See Table 6-20 for operational conditions.

-------
                                  TABLE 6-19

                 REVERSE OSMOSIS MEAN OPERATIONAL CONDITIONS
Membrane

Type

Surface Area, m
Reject, L/min

Permeate, L/min

Feed, L/min

Percent Recovery

Time to Steady S1

Time of Operation, hrs

TDS Percent Rejection
Cellulose
Acetate
sw2
1.8
re, psi 235
4.7
0.4
5.1
8
:ate , hrs 1
i, hrs 13
rtion 95
Nylon
Amide
HF3
276
150
4.9
1.1
6.0
18
1
13
92
Thin Film Composite
A B
SW SW
1.9 1.9
200 200
9.5 9.4
1.5 0.6
11.0 10.0
14 6
3-14 13 5-46
16 284 257
99 99 94
C
SW
1.6
200
9.5
0.5
10.0
5
21
182
98
Notes:
    1.  for data presented in Table 6-19
    2.  SW - spiral wound
    3.  HF - hollow fiber

-------
                                        TABL
                TREATMENT OF SOCS IN GROUND WATER 1 USING REVERSE OSMOSIS 2
Mean Percent Removal
Concentration Cellulose
SOC
1 , 2-dichloropropane
aldicarb sulfoxide
aldicarb sulfone
carbofuran
feed, (L/min)
percent recovery
pH of water
specific conductance
(ug/L)
24
39
47
14



(umhos/cm)
Acetate
4
99
94
86
2.2
6
5.2
43
Nylon
Amide
75
99
96
99
2.6
50
5.5
38
->
Thin Film Composite""
A
• 50
99
98
99
1.0
10
5.6
36
B
38
97
96
99
1.3
13
4.6
23
C
88
99
99
99
1.35
10
4.9
15
D
79
99
99
99
2.2
5
4.8
19
E
38
95
94
99
1.2
16
4.9
30
Notes:
       1.  Suffolk County, New York
       2.  membrane diameter 2 to 4 inches
       3.  spiral wound membrane
       4.  hollow fiber membrane
       5.  pH of feed water = 5.6
       6.  specific conductance of feed water = 551 umhos/cm

-------
until  40 percent  of the test  solution  had passed through  the membrane.  The
following results were obtained for atrazine:
          Membrane Type                 Percent Removal of Atrazine
          Cellulose Acetate                       84.0
          NS-100                                  97.9
The results  indicate that reverse osmosis is effective  for  atrazine removal
from water.  Proper membrane selection can ensure maximum removal.  The degree
to which atrazine is adsorbed into the membrane should be evaluated.
     Malaiyandi, et al. (1980)  evaluated a reverse osmosis system for removing
lindane  from aqueous  solution  at the  Environmental  Health  Directorate  in
Ottawa, Canada.   Raw water with an initial lindane concnetration of 6.8 to 8.0
mg/L  was  fed  into  radial  flow,  all-stainless  steel  RO  cells with  CA-316
cellulose acetate membranes.  The flow rate into the RO system was 1.5 mL/min,
which corresponded to a system pressure  of 6,200  to  6,900 K Pa(900-l,000psi).
A  recovery  of  20 percent  was  obtained.   225 mL  of  feed solution   was sent
through the  RO  system and  25-mL aliquots  of both feed  and  permeate were
sampled for analysis at the end of each run.  Procedures were also carried out
to strip lindane from the cellulose acetate membrane to quantify the amount of
lindane which was retained by the membrane.  The distribution  (percent)  of the
lindane was:

               Recycled Feed            36
               Product Water            24
               Membrane                 40
               TOTAL                   100
Lindane removal by in-situ stripping proved to be very difficult.  Destructive
analysis of the RO membrane provided the most reliable  estimate of  the  amount
of lindane absorbed onto the membrane.
     Edwards  and  Schubert  (1974)  evaluated  the  selectivity  of  four  RO
membranes for several derivatives  of 2,4-D in aqueous  solution.  The membrane
tests were performed in batches  in a commercial ultra  filtration cell  with  a
                                                            2
capacity of  150 mL, an effective  membrane area  of  27.5 cm ,  and  a magnetic
stirring bar mounted near the membrane  surface.   The ultrafiltration cell was
filled with 70  mL of 50  ug/L solution of  the  sodium salt of  2,4-D  and  closed
                                     6-23

-------
after air  purging.   A 50 psig driving  force  for  reverse osmosis was supplied
wit  a  cylinder  of  dry nitrogen.  Six ten-mL samples  were  passed through the
memcrane and collected for  analysis.   The four  membranes achieved removals of
1  to  65 percent.   Equilibrium  adsorption of the 2,4-D derivatives  onto the
membranes was believed to contribute to the overall performance.
     Cabasso,  et al.  (1974)  evaluated  the  rejection  of  several  classes of
organic  compounds  by  three reverse osmosis  (RO) membranes.   Acrylamide and
o-xylene were two of the specific compounds.  The three polymeric RO'membranes
that were  tested included  two  asymmetric membranes of  cellulose acetate and
ethyl  cellulose  and  a  thin barrier  polyurea  membrane.   Measurements  of
permeabilities  for  acrylamide,  o-xylene, and  hydraulic permeabilities  were
measured.  The results of this bench scale study are presented below:
                    	Percent Removal	
     Compound       Cellulose Acetate   Ethyl Cellulose     Polyurea
     Acrylamide          79                  0              97
     o-Xylene            86                  -              -
The results indicate that a higher  acrylamide removal is attained through the
use of  the polyurea membrane.  In addition, the  removal of  o-xylene  with the
eel ...ilose  acetate membrane  is slightly  better  than that of  acrylamide.   The
eth*. 1 cellulose membrane was  ineffective for acrylamide removal.
     Berkau  et  al.  (1980)  reviewed  the treatability  of  the  129  priority
pollutants.  Based on  this  review,  it was reported  that Korneva et al. (1976)
obtctined removals  of  97  to  100 percent  for  monochlorobenzene.  It  was  also
reported   that   Hinden  et   al.   (1968)  obtained   52  percent  removal  for
hey..-., jhlorobenzene.
     Hindin et al.  (1969) studied the performance of reverse osmosis cellulose
acetate membranes for the removal of several insecticides, including lindane.
     Run  No.  2 was  conducted  at  a membrane  loading  of  0.073  L/cm^  day
     >5 gal./in
water samples:
              2
(0.125  gal./in  day).  The  following results were  obtained using spiked  raw
Run
No.
I
T
3
Lindane Concentrations (mg/L)
Influent Effluent
0.683 0.306
50 8
500 133
Percent
Removal
52
84
73
                                     6-24

-------
The  results indicate  fairly  good  removals  for  lindane at  the  two higher
concentrations.
     Pilot Scale;
     Regunathan, et al.  (1983)  evaluated the performance  of two point-of-use
treatment devices in removing various organic, inorganic, microbiological, and
particulate  contaminants  from potable  water.   One  device  consisted of  a
reverse  osmosis unit,  prefilter,  and  two GAC  beds.   The  device  was field
tested in Miami, Florida for the removal of THMs and other organics, including
endrin, methoxychlor, and  lindane.   The ground water  had the following water
quality:
          pH                         7.4
          TDS (mg/L)                625
          Alkalinity (HCO~ )        160
          Sodium (mg/L)             120
          Sulfate (mg/L)           230
          Chloride (mg/L)           12
          Silicate (mg/L SiO )        5
The results of this pilot study are summarized below:
                                             	 Percent Removal
                         Influent            RO
     Compound
     Endrin
     Methoxychlor
     Lindane
The RO device effectively  removed endrin  and  methoxychlor.  However, the role
of the GAC filters was extremely important in the overall effectiveness of the
device.
     A modified RO-carbon device was also tested for its ability to remove PCB
(Aroclor  1242).   The small  carbon  adsorber  was  used  with the RO membrane
because PCB  is  strongly adsorbed.  An  average influent  PCB concentration of
105 ug/L was reduced by more than 95 percent by  the  RO membrane alone and at
least 99.7  percent  by  the entire device.   The results  indicate  that reverse
osmosis may be an effective treatment method for PCB removal.
     The studies which have  been presented  here  indicate that reverse osmosis
has potential as  a  removal method for SOCs.  However,  these studies are very
limited  in  both  the  level of which  testing  has  been performed  and  the
contaminants used for testing.  In addition, there  are several disadvantages
                                     6-25
Influent
Concentration (ug/L)
2
1,000
40
RO Unit
Membrane
J90
J90
40

Overall
99-100
99-100
99-100

-------
with the use  of  RO for SOC removal including membrane fouling and low product
water  yield.   Reverse Osmosis  is an  additional  technology which  requires
further investigation  due to the limited availability of  data and the stated
disadvantages of this process.

Conventional Treatment
     Conventional treatment, which consists of coagulation, sedimentation, and
filtration, is generally used to remove turbidity and color from surface water
supplies.   It can  also  be used  for  removal of  taste  and odor  producing
compounds depending upon  the nature of the  compounds.   Turbid water contains
suspended matter,  both set+:1eable  solids which are particles large  enough to
settle  quiescently,  and  dispersed solids  which  are particles  that do  not
readily settle.
     Process Description
     Coagulation  involves  two mechanisms:   the destabilization  of  dispersed
solids  (coagulation)   and  the  agglomeration  of  destabilized dispersed  and
suspended material  (flocculation).   Sedimentation, or settling,  follows  this
process  of   agglomeration.   Filtration   provides  additional   removal   of
agglomerated    solids     and    protection     against     upsets     in    the
coagulation/sedimentation process.
     The effectiveness of  conventional treatment  in removing specific  SOCs
from drinking water depends upon the  attraction of the  individual  SOCs  to
particulate matter  that is  either  naturally present in the water  or formed
during the coagulation process.   The  SOCs will be  removed  to the extent  that
they are attracted to  the particulate material which is removed.  SOCs  which
are  hydrophobic,  i.e.  having  low  solubilities,  generally would  be  more
amenable to  removal by conventional treatment than would  SOCs  with  higher
solubilities.  A flow  schematic  of  a  typical conventional  treatment  system is
illustrated on Figure 6-4, Highlighting the major processes required.
     Treatability Studies
     Conventional  treatment processes have  been  evaluated  for 10  of the  29
SOCs.   Bench  and  pilot   scale  studies  have  been conducted   by  various
researchers to  evaluate removal  efficiencies for  several  SOCs.   Full  scale
conventional  treatment  plants  have been studied  for  the removal of  specific
                                     6-26

-------
   COAGULANT
      AND

     POLYMER

     FEEDERS
ALKALINITY

 FEEDER
       1—1     D      r-1
                                                 FILTRATION
                                              CLEARWELL

                                                STORAGE
RAW WATER

 PUMPING
                                               FILTER

                                             BACKWASH
                                               PUMP
                                                            WASTEWATER

                                                            SURGE BASIN
                                                                          WASTE

                                                                         DISPOSAL
                      CONVENTIONAL TREATMENT PLANT
                                                                                    o
                                                                                    c
                                                                                    3
                                                                                    m

                                                                                    o>

-------
SOCs which  are  actually present in the raw water.   In  addition,  the American
Water  Works  Association  Research Committee  on  coagulation  has  published
recommendations and comments on the conventional treatment process.
     Bench Scale;
     The  EPA DWRD has  reported  the  results  of  bench  scale  conventional
treatment of  several  SOCs  (Miltner,  January 1989).  Jar  tests  were performed
with  alum,  on  spiked  Ohio River water.   The  results  of  these  tests  are
presented in  Table 6-21.  The  data  indicates that  these pesticides  are  not
strongly sorbed onto particles  or  complexed with humic  substances that are in
turn sorbed to  particulates, because  particulate control processes provided
minimal or no control.
     Croll,   et   al.   (1974)  evaluated  conventional  treatment  processes  for
acrylamide  removal.   The  process   train  consisted   of  alum  coagulation,
sedimentation and  rapid  sand  gravity filtration, all of  which  were simulated
in bench-scale tests.   Several 400-ml samples of Thames River water, which had
a pH of  7.5 and contained  25 mg/L kaolin  suspension, were coagulated with an
alum dosage of  32 mg/L.   A polymer containing  0.19  percent  acrylamide  by
weight was  also added at  a  dosage of 2 mg/L.   The  samples  were  rapid mixed
and  allowed to  settle  for  15  minutes.    The  supernatant was  filtered at  a
liquid loading rate of 2 gpm/sf through a sand bed which had  a 2.5 cm diameter
of and  a deoth of 30 cm.   A  removal of  only  seven percent of  the original
acrylamide was  obtained.   This  removal indicates  that  conventional treatment
is ineffective for acrylamide removal.
     Steiner  and  Singley   (1979)  evaluated  the  coagulation/filtration  and
softening processes for removal of methoxychlor.   Jar testing was performed on
Gainesville, Florida tap water  which had  the  following  modified water quality
parameters:
               pH  (units)                           8.00
               Total hardness as CaCO             100 mg/L
               Calcium hardness as CaCO            52 mg/L
               Magnesium hardness as  CaCO          48 mg/L
               Alkalinity as CaCO                  42 mg/L
               Total dissolved solids             190 mg/L
The  initial methoxychlor  concentrations  were  1, 5,   and  10  mg/L.   In  the
coagulation/filtration phase  of the  study,  the  turbidity of  the  raw water
                                     6-27

-------
samples  was increased with  a stock  solution of kaolinite.   Coagulation  was
performed with 30 mg/L of  either  alum or ferric sulfate at various pH values.
Jar tests were  conducted with each of the  two  coagulants  after an optimum pH
was established.  The following jar test conditions were used:
     -2 min rapid mix at 100 rpm, with 20 min settling time
     -30 min slow mix at 40 rpm, with 20 min settling time
     After  settling, the  samples were  filtered through  filter  paper.   The
results of  the coagulation/filtration study are presented  in Table 6-22.   The
most effective pH values for methoxychlor removal were at a  pH of 6 for alum
and a pH of 4.5  for  ferric sulfate.   Additional testing was  performed at a pH
of 6.   Removals  were obtained at all initial methoxychlor concentrations  but
the lowest  methoxychlor  concentration that was  achieved was  0.173 mg/L.   The
settled  water  turbidity was  less than 10  NTU  when ferric  sulfate  was used;
settled water turbidity was not reported for alum.
     Raw water  samples with  initial  methoxychlor concentrations of  5  and 10
mg/L  were  cloudy,   indicating  that  the solubility  of  the compound  had  been
exceeded.   A methoxychlor  solubility  of  0.62 mg/L has been reported by Hapoor
et al.  (1970).   This may have affected the  reported removals by coagulation/
filtration  since some removal could have been due to phase separation.
     In the softening phase of the study, the raw water hardness was increased
to 188 mg/L as  CaCO   by  the addition of calcium chloride.   The water was then
treated  by  a  cold lime-soda ash process at pH  values of 9.5  and  10.5.  Lime
and sodium  carbonate were added  at  dosages of   35 and  75  mg/L, respectively.
Other raw water  samples  were adjusted to a raw  water hardness of  192 mg/L by
the addition of magnesium  and calcium in equal parts.  This water was softened
by a  lime  soda process  at a pH values of  11.0 and 11.3 at  the same initial
methoxychlor concentrations.  Lime and sodium carbonate were added at dosages
of 100 mg/L and  78 mg/L respectively.  The initial methoxychlor concentrations
were 1,  5 and  10 mg/L.   The results  of this testing program are summarized in
Table 6-23.
     The results indicate  that softening achieved varying degrees of removal
that generally  increased with increasing  initial methoxychlor concentration.
The results also indicate  that softening achieved higher methoxychlor removals
at  higher  pH  values.   Adsorption   of  the  methoxychlor  onto  precipitated
                                     6-28

-------
                               TABLE  6-21
                                                     (1 2)
               JAR TESTING OF  SPIKED  OHIO RIVER WATER  '

                   Influent

Pesticide
Alachlor
Atrazine
Carbofuran
Concentration
(uq/L)
43.6
65.7
93.2
Dose
(mg/L)
15
20
30
Turbidity
(NTU)
42
7
18
Percent
Removed
4
0
-8
Note;

1.  Raw water pH ranged from 7.5 - 8.3
2.  Settled water turbidities below 1 NTU
3.  Technical grade Al (SO )   "  14H O

-------
                                  TABLE 6-22
                             METHOXYCHLOR REMOVAL
               pH

               8.5
               8.0
               7.5
               7.0
               6.5
               6.0
               5.5
               5.0
               4.5
                                 Effect of pH

                                Methoxychlor Residual"1" (mg/L)
Alum
0.730
0.671
0.421
0.366
0.320
0.303
0.593
0.595
0.535
Ferric Sulfate
0.722
0.698
0.383
0.417
0.403
0.342
0.290
0.319
0.286
                          Effect of Initial Turbidity
     Coagulant
     Alum
     Ferric sulfate
           Intitial
          Methoxychlor
          Concentration
             (mg/L)

                1
                5
               10
                1
                5
               10
                                               Methoxychlor
                                              Residual (mg/L)
Initial
Turbidity
23 NTU
0.265
0.668
0.702
0.258
0.342
0.381
Intitial
Turbidity
58 NTU
0.201
0.320
0.539
0.173
0.220
0.279
Notes:
     1.
     2.
Initial concentration of methoxychlor was 5 mg/L
Tests were performed at pH = 6

-------
                                  TABLE 6-23
                    METHOXYCHLOR REMOVAL VIA LIME SOFTENING
 Initial
Methoxychlor
Concentration
   (mg/L)

     1
     5
    10
     1
     5
    10
     1
     5
    10
     1
     5
    10

Softening
PH
9.5
9.5
9.5
10.5
10.5
10.5
11.0
11.0
11.0
11.3
11.3
11.3
Me thoxy ch lor
Residual
(mg/L)
0.400
2.622
3.260
0.379
1.303
1.342
0.217
0.257
0.297
0.160
0.205
0.297

Percent
Removal
60
48
67
62
74
87
78
95
97
84
96
97

Hardness
Initial
1882
188
188
188
188
188
192
192
192
192
192
192


Final
144
144
144
100
100
100
70
70
70
64
64
64
Notes:
     1.
     2.

     3.
Hardness expressed as mg/L CaCO
Initial hardness increased from 100 to 188 mg/L via calcium chloride
addition
Initial hardness increased from 100 to 192 mg/L by the addition of
magnesium and calcium

-------
magnesium hydroxide (MgOH ), a gelatinous compound, is one possibility for the
improved performance at higher pH values.
     Aly  and Faust  (1965)  examined  the  effect of . several  water  treatment
processes, including coagulation/sedimentation,  on the  removal  of four 2,4-D
derivatives and their parent compound  2,4-dichlorophenol (2,4-DCP).   The four
derivatives  included  the sodium  salt  of 2,4-D  and the  isopropyl,  butyl and
isoctylesters of 2,4-D.  Each compound had an initial concentration of 1 mg/L.
Alum or  ferric  sulfate were added  at  dosages at 100 mg/L.   The samples were
rapidly mixed at a pH of 7.4 and were allowed to settle  for 30 minutes.
     The following results were obtained:
               Compound                      Percent Removal
               2,4-DCP                            0
               Sodium salt of 2,4-D               0
               2,4-D butylester                   2.0
               2,4-D isoctylester                 2.9
               2,4-D ispropylester                3.0
The results indicate that conventional treatment consisting of coagulation and
sedimentation is  not  effective  for the removal  of 2,4-D  from  water without
suspended material.
     Cohen et al. (1960, 1961)  published a three part report on the effects of
fish poisons in water  supplies.   Toxaphene was one of  the  compounds that was
studied.   Cohen  et  al.  (1960)  examined  toxaphene  removal  by  a  number  of
processes,  including   alum  coagulation.   Treatment  of unspecified  initial
concentrations of  toxaphene with  alum dosages  as  high  as  100 mg/L  did not
reduce the concentration  significantly.   No data were  provided  on the actual
testing.  Alum coagulation was not  effective  in  removing toxaphene,  or any of
the other fish poisons, from water.
     Cohen et al.  (1961)  examined  the  impact of a number  of water  treatment
processes on toxaphene odor removal.  Once again, alum coagulation was tested.
No significant impact on odor was observed at an alum dosage of 90 mg/L.
     Huang (1972) evaluated the  effect  of lime coagulation on  the removal  of
several  pesticides,  including endrin  and  lindane.  At an  unspecified  lime
dosage, solutions containing initial  endrin  and lindane  concentrations  of  10
mg/L  were reduced by  35  and  less  than 10  percent,  respectively.   This
                                     6-29

-------
indicates that  lime  coagulation  is  not effective for either endrin or lindane
removal.
     Edwards  (1970)  looked at the  impact of alum  coagulation,  settling,  and
sand  filtration on  the pesticide-  DDT and  lindane.   At an  unspecified alum
dosage, an initial lindance  concentration of 10 mg/L was reduced by less than
20  percent.   This result  indicates that  alum coagulation/sedimentation/sand
filtration is not effective for lindane removal.
     Pilot-Scale;
     Robeck,  et al.   (1965)  examined  a  number of  treatment options  for  the
removal of six pesticides, including lindane, in dilute aqueous solution.  The
treatment  processes  included  coagulation  and  filtration,  oxidation  (with
chlorine, potassium  permanganate, or  ozone),  PAC,  and GAG.   The pilot-plant
consisted of a constant head tank, a 600-gallon pesticide-mixing tank, and two
separate process trains, each with a 20 gpm  line, rapid-mix tank, flocculator,
sedimentation tank,  sand  filter,  coal  filter,  and two GAC beds.  Conventional
treatment consisted of alum coagulation, flocculation, sedimentation, and sand
filtration.   Some  runs were  conducted with softening chemicals  (lime, soda
ash, and  an  iron salt  coagulant)  in place  of  the  alum.   The  results  of  the
pilot study are presented below:
                              	Percent Removal	
     Pesticide                  Alum Coagulation            Softening
                                  Influent  (ug/L)         Influent (ug/L)
                               i          5_     10           10
Endrin                         35        ND     35           ND
Lindane                       <10       <10    <10          <10
2,4,5-T ester                  ND        ND     63           ND
     ND - No Data
The  results  indicate that  alum  coagulation  is  not  effective  in  removing
lindane.  The influent concentrations  of endrin and lindane did  not  affect
performance.  In addition, softening did not improve lindane removal.
     Full-Scale;
     Baker (1983) evaluated the effect of conventional water treatment on the
removal of  several  pesticides,  including alachlor  and  atrazine,  in the  raw
water  of  northwestern  Ohio rivers.   The  contaminant  concentrations  were
monitored in  the  raw water from the rivers  and  the finished water  from three
                                     6-30

-------
water  treatment plants  on  these  rivers.   The  Tiffin,  Ohio  water treatment
plant uses alum coagulation-flocculation, sedimentation, and filtration in its
conventional treatment system.  A  summary of  the results for an entire series
of summer sampling dates is shown below:
                                Concentration Ranges (ug/L)	
          Compound            Influent                 Effluent
          Alachlor             0.5-5.0                 0.2-2.0
          Atrazine             1.0-8.0                 1.0-8.0
The  data  indicated that  as  the  raw  water concentrations  increased,  the
corresponding  finished  water  concentrations  increased  as well.   On  several
occasions, the  influent  levels were actually less  than  effluent levels.   The
removals obtained  for  alachlor and atrazine  were generally less  than  50 and
10 percent, respectively.  These  results suggest that  the conventional water
treatment processes of coagulation-flocculation,  sedimentation and filtration
are not effective for removing alachlor and atrazine from drinking water.
     Additional information from three water  treatment  plants in northwestern
Ohio  (Fremont,  Bowling  Green,  and Tiffin)  supports the  previous conclusion
that alachlor and atrazine are  not effectively  removed  by conventional treat-
ment (Miltner, January 1989).   Percent removals of 24 and 14 were achieved for
alachlor and atrazine, respectively.  Full  scale data indicate little  removal
of these two compounds across  a conventional treatment  plant.   Data  from the
Fremont and Bowling Green plants  indicate  the  effectiveness  of  softening in
removing carbofuran.  At influent  carbofuran  concentrations ranging from 0.49
to 1.62 ug/L,  100 percent  removal  was achieved  at  a pH of  10.9.   The  Tiffin
plant,  which  utilizes  chlorination  but not  softening,  obtained  54  percent
removal at a pH of 7.9.
     Singley et al.  (1979) evaluated  the use  of  PAC, as well as complementary
process such  as aeration and  improved  coagulation, for removal  of synthetic
organic chemicals in two studies at Florida water treatment plants.  One study
was performed at the Sunny Isles Water Treatment  Plant,  which  is one  of three
facilities serving  the city of North Miami Beach,  Florida.  This  plant has a
design capacity of 12.8 mgd,  but usually treats an average flow of 10 mgd.  It
is a  conventional  lime  softening  plant utilizing  three  upflow  clarifiers.
Nalco 8173, an anionic  polymer,  is the coagulant  which is utilized.   After
                                     6-31

-------
clarification,  the settled water  is  recarbonated prior  to  filtration by six
gravity sand  filters and  three dual media  filters.  Prechlorination before the
upflow  clarifiers  insures  that a  chlorine residual  is carried  through the
filter gallery.
     In  September  1977,  people  began  to  complain about organic  (pesticide)
tastes  and odors  in  tap water  produced by  the Sunny  Isles  Plant.   Various
regulatory  agencies,  including USEPA,  were  called upon  to  help identify and
solve  the  problem.   The  raw  and  finished  water   contained  at  least  42
individual  SOCs  ranging in  concentration from  0.01 to 73 ug/L, including the
following compounds (with average influent concentrations in parentheses).
       -  dichlorobenzene (0.2 ug/L)
       -  ethylbenzene  (0.5 ug/L)
          monochlorobenzene (0.8 ug/L)
       -  toluene  (0.3 ug/L)
       -  xylene  (0.2 ug/L)
GAC was  chosen as  the  long-term solution to the  organics  problem.  However,
PAC was  chosen  as a  short term  solution because  of  the  time  required  to
properly design  and install a  GAC system.  Limited data were also developed
for SOC  removal  via  the conventional softening  treatment  processes  at the
plant.  These results are presented below:
                       Concentrations  (ug/L)
                                        Percent
     Compound          Influent         Removal
     dichlorobenzene     0.16              37
     ethylbenzene        0.7               43
     monochlorobenzene   1.1               18
     toluene             0.5                8
     xylene              0.4               70
The results indicate  that  conventional treatment processes  exhibit  varying
degrees  of effectiveness  for SOC  removal.   Some  of  this  removal could  be
attributed  to aeration  rather  than   conventional  treatment.   On an  overall
basis, conventional treatment is  not as  effective for  the removal of these
five SOCs.
     Richard  et al.  (1975)  looked  at pesticide  concentrations  in  raw  and
finished water  supplies in  the  state of Iowa.  Atrazine concentrations were
monitored  before  and  after  the  conventional  treatment  process  used  at
                                     6-32

-------
Des Moines, Iowa.  The water  for  this  plant is obtained from the Racoon River
(40 percent)  and  an infiltration  gallery  (60 percent).    Data on  atrazine
concentrations at various locations are presented below:
          Location                -                Atrazine (mg/L)

          Racoon River                                   25
          Infiltration Gallery                           82
          Blended Influent                               59
          Prefilter                                      47
          Finished Water                                 29
          Finished Water (60-L composite sample)         60
          Finished Water (16-L grab sample)              71

These results indicate that conventional treatment processes are not effective

for the removal of atrazine from water.
     Nicholson,  et  al.   (1966)  reported that  a conventional  water treatment

process  consisting  of coagulation,  sedimentation  and  filtration  had  little

effect  on  reducing  toxaphene  concentrations  at  the  plant.   The  influent
toxaphene concentrations at the plant did not exceed 0.41 ug/L.

     AWWA Research Committee on Coagulation (1979)
     Following a  recap  of  several  coagulation/sedimentation/filtration (i.e.

conventional treatment)  studies  on bench,  pilot,  and full  scale  levels,  the
AWWA Research  Committee  on  Coagulation included  the following  general  com-

ments/conclusions :
       -  The removal of pesticides  (including lindane,  toxaphene,  2,4-D,  and
          others)  will  depend  upon the  degree  of  association between  the
          pesticides and the natural organic content of the water.

       -  If a strong association exists,  the best removals of pesticides will
          occur at pH values between 5  and 6  for alum and  pH values between 4
          and 5 for iron coagulants.

          The pH is an important variable  during the coagulation process.

          To date,  studies  on  the  removal of  pesticides  have  inadequately
          described the influence of coagulation pH on process performance.
                                     6-33

-------
     Coagulation  is an  effective  means of  removing some  SOCs  from drinking
water.  Only  limited data quantifying the effectiveness  of this technique is
available.   Some high  molecular weight, hydrophobia  SOC  molecules  could be
removed using  coagulation or  coagulation  in conjunction  with  PAC.  However,
more research  is  needed to determine the applicability and cost-effectiveness
of this approach.
                                     f>-34

-------
                                   7.  COSTS

     The purpose of  this  section of the document is  to  develop costs for GAG
and packed column aeration treatment  facilities  for removing SOCs from drink-
ing water.   As described in  Section 3, these are  the  two  technologies that
have been  identified as being  applicable  treatment methods  for SOC removal.
The basis for costs and design assumptions are explained below.

Basis for Costs
     Capital, operation and maintenance (O&M), and total  costs (in cents per
1,000 gallons) were  developed for GAC and packed  column facilities for water
supply  systems  of several  sizes.   The  design  and production  capacities  of
these systems  which  serve  different  ranges of population  are  presented  in
Table 7-1.   Costs  for  GAC  facilities  were  developed  using  the  following
sources:
       -  WATER COST:  A computer program  for  Estimating Water and Wastewater
          Treatment Costs.  Gulp. Wesner.Culp., Santa Ana, California.
       -  "Estimation of Small System  Water  Treatment Costs," Gumerman, R.C.,
          Burris, B.E., and Hansen S.P. USEPA Contract No. 68-03-3093, 1984.
          "Estimating  Water  Treatment Costs  -  Volume  2,"   Gumerman,  R.C.,
          Gulp, R.L.,   and   Hansen, S.P.  USEPA  Contract   No.  68-03-2516,
          EPA-600/2-79-162b, 1979.

Packed column aeration costs  were developed  by  the Technical Support Division
of  the  Office of  Drinking Water,  USEPA,  using an  in-house  computer  model
(Cummins, 1988).  The basis of this model has been presented by Cummins and
Westrick (1986).
     All costs  presented  in  this  document are  in  late  1987  dollars.   The
capital costs were updated using indices specific to the major cost components
of the construction cost.  The  Bureau  of Labor Statistics (BLS) and Engineer-
ing News Record  (ENR) indices which were used  to update  the  capital costs are
presented in Table 7-2.  The Producers Price Index for Finished Goods was used
to  update  the cost  of maintenance materials,  which are  a  component  in the
operation and  maintenance  cost.  This  index is  also presented  in Table 7-2.
Other unit cost and general cost  considerations  are listed in Table 7-3.  For
the purpose  of estimating  costs per  1,000 gallons,  the capital  costs were

-------
amortized over a  20  year period at an interest rate of 10 percent.   Costs for
acquiring new land for construction sites  or  easements  for a raw water trans-

mission line are  not included  since  these  costs  are site specific.   However,
these costs, when included, could be significant.

     The design assumptions which were used for the purpose of cost estimation

and  the  resulting  treatment  costs  for  GAC  adsorption  and  packed  column

aeration are presented below.  For both technologies, designs and system costs
should be viewed as  preliminary and should be used only for planning purposes

by  a community  with  an  SOC removal problem.   More  complete and  detailed

designs and cost estimates should  be  developed based upon pilot-plant testing

and site-specific considerations.


Granular Activated Carbon

     Although variations in  the design  of GAC  systems  result in a  range  of

cost estimates, the major  components of any GAC treatment system are:

a.   Capital Costst

       -  Carbon Contactors
       -  Carbon Charge
       -  Backwash pump
       -  Regeneration Facility
       -  Carbon Storage
       -  Carbon Transport Facilities

     In addition,  there  may be other site-specific  capital costs  components,
such as:

       -  Special site work
       -  Raw water holding tank (for ground water systems)
       -  New/restaged well pump (for ground water systems)
       -  GAC contactor building
       -  Chemical facility
       -  Clearwell
       -  Finished water pump(s)
       -  Backwash storage

b.   Operating Costs and Maintenance  (O&M) costs;

       -  Carbon Make-up
       -  Labor
       -  Fuel
       -  Steam
       -  Powe r
       -  Maintenance

-------
        TABLE 7-1
PLANT DESIGN CAPACITIES
    AND AVERAGE FLOWS
Population
Category
25 - 100
101
501
1,001
3,301
10,001
25,001
50,001
75,001
100,001
500,001
Greater
- 500
- 1,000
- 3,300
- 10,000
- 25,000
- 50,000
- 75,000
- 100,000
- 500,000
- 1,000,000
than 1,000,000
Population
57
225
750
1,910
5,500
15,500
35,000
60,000
88,100
175,000
730,000
1,550,000
Average Flow
(MGD)
0.0056
0.024
0.086
0.23
0.70
2.1
5.0
8.8
13.0
27.0
120.0
270.0
Design
Capacity
(MGD)
0.024
0.087
0.27
0.65
1.8
4.8
11.0
18.0
26.0
51.0
210.0
430.0

-------
                                   TABLE 7-2

                                 COST INDICES
                                 FOR LATE 1987
                                        Index                  Numerical
     Description                      Reference                  Value

General Purpose                    BLS 114                       330.2
  Machinery

Concrete                           BLS 132                       343.3

Steel                              BLS 1017                      357.4

Skilled Labor                      ENR U.S. Average              401.8

Pipe & Valves                      BLS 1149                      354.2

Electrical                         BLS 117                       261.2

Housing                            ENR Building Cost             378.2

Housing                            $/Sq Ft                       150.0

Producer Price Index                                             296.7

Construction Cost Index                                          412.4

-------
                                   TABLE 7-3

            GENERAL ASSUMPTIONS USED IN DEVELOPING TREATMENT COSTS
Electric Power

Labor - Small System Sizes (<100,000 gpd)
        Large System Sizes (>100,000 gpd)

Diesel Fuel

Natural Gas

Sitework

Contractor's Overhead & Profit


Contingencies

Engineering & Technical Fee



Interest Rate

Number of Years
$  0.086/Kwh

$  5.90/hr
$ 14.30/hr

$  0.80/gal

$  0.0027/scf

15% of construction costs

12% of construction costs
     (including sitework)

15% of construction costs

15% of construction costs
     (including sitework &
      contractor's O&P)

10%

20

-------
     Capital and operating  costs  for  the contactor, initial carbon charge and
backwash  pumps  were estimated using  the cost model and  manuals cited above.
These costs . were ..based .on.^facility., size .and. were independent of the SOC being
considered.  A  spreadsheet  was used to develop the carbon replacement/regene-
ration costs for each SOC based  on its usage rates.  Costs from the model and
spreadsheet were then added to  obtain the  final  facility costs.  The overall
approach  to developing  GAC  facility costs  is  explained  in  the flow-chart
illustrated in Appendix E.
     The  design parameters  used  to estimate the costs  for  contactor, carbon
charge and backwash pumps are shown in  Table  7-4.   The following assumptions
were used for design purposes:                                               ^
       -  The  contactors were  sized   to provide  an empty  bed  contact  time
          (EBCT) .-• of  7.5 minutes  at the  design  flow,  but  would   have  an
          operating EBCT of greater than 15 minutes based on the average flow,
          except for the last three flow categories.                          ~~
          Systems with a design flow  of  less than 1 MGD used package pressure
          contactors.
          Systems  with  a   design  flow  of  1  MGD  -  11 MGD   used  pressure
          contactor.
          Systems with a design flow  larger than 11 MGD used concrete gravity
          contactors.
          Housing requirements assumed contactors were  totally enclosed,  with
          additional area  for pipe galleries  and operating  and maintenance
          service area.
       -  Electrical energy for  building  heating,  cooling, ventilation  and
          lighting was 25 Kwh/sq ft of building area per year.
          Maintenance material  costs were  estimated  for  general  supplies,
          pumps,  instrumentation   repair,  valve  replacement or  repair,  and
          other miscellaneous work items.
          Costs for  land, raw water pumping,  chlorination,  bulk potable water
          storage,  finished water  pumping and waste disposal were not includ-
          ed.
     The  individual  capital  and  O&M costs  for  the  contactors,  initial carbon
charge and backwash pumps are presented in Table 7-5.
     The  following  assumptions  were  used  for estimating the  carbon  replace-
ment/regeneration  costs:

-------
       -  Carbon  usage  rates were  developed  using model predictions  for the
          specific SOC in distilled water.  These carbon usage rates were then
          adjusted by the following multiplier function:

                         Y = 0.7443 X -°-5165

               where:    Y = multiplier
                         X = Distilled carbon usage rate (lbs/1000 gal)

          The multiplier function was used  in such a manner that the adjusted
          carbon  usage  rate was equal  to the multiplier times  the distilled
          water  carbon  usage  rate.   The  adjusted  carbon  usage  rate  were
          presented in Table 4-5.

       -  If  the carbon  demand  (calculated  based on  carbon  use rate  and
          average flow)  was  less  than  1,000 Ibs/day,  the spent  carbon was
          replaced at breakthrough.

          If  the carbon  demand  (calculated  based on  carbon  use rate  and
          average flow) was  greater than 1,000 Ibs/day, the  spent  carbon was
          regenerated on-site.

          On-site  regeneration  utilized  a   multiple-hearth  furnace.   The
          furnace was oversized  by 30 percent to  account for downtime.   The
          maximum  capacity  of   a   single  furnace  was  80,000   Ibs/day.   For
          capacities greater  than  80,000  Ib/day,   two  or  more  furnaces  were
          used.  Carbon handling losses were assumed to be 15 percent.

       -  Cost of GAG was $l/lb.

     As indicated in  Table 7-5,  the base capital  and O &  M  costs  for carbon
contactors are mainly dependent  upon  flow.  However,  the cost of replacing or
regenerating  the carbon must be  evaluated  to  determine  its  impact  on  the
overall cost  of the contactor.   In order to  determine  the impact of carbon
replacement/regeneration  on  the total  cost,  a  relationship  was  developed

between total  production  cost and  carbon usage  rate for each  flow category.
These relationships are presented  in  Figures  7-1,  7-2,  and  7-3.   As indicated

on these figures, there is little variation in the total production costs when
the carbon usage rate is below 0.1 lbs/1,000 gallons.  There are also distinct

ranges above  0.1 Ibs/gallons where the  total production costs  does not  vary
significantly.

     Based on  the cost analysis discussed  above,  it  is possible  to  provide
costs for SOCs grouped according to their usage rates.  GAC facility costs for

usage rates from less than 0.1 lb/1,000 gallons up to 2.0 lb/1,000 gallons are

presented in Table 7-6.  The  cost  for the individual SOCs based on the carbon

usage rates in Table 4-5 are included in Appendix F.
                                     7-4

-------
                                                                      Table 7-4
                                                              GAC System Design  Parameters
   Population Range
   Design Flow (MGD)
   Average Daily Flow
        (MGD)           Contactor Type
                      EBCT (min)      Number  Volume of   Area of       Total      Backwash Pump  Number of
                    —		_.    of    Each Unit  Contactor  Carbon Charge     Size       Backwash
                    Design Operating   Units    (cu.ft)    (sq.ft)       (Ibs)         (gpm)        Pumps
          25-100
           0.024
          0.0056
 Package  Pressure     7.5     32.1       1         17        3.4
                                                     500
  50
         101-500
           0.087
           0.024
Package Pressure     7.5     27.2       1         60         12
                                                    1700
 180
       501-1.000
            0.27
           0.086
Package Pressure     7.5     23.5       1        190         38          5300           570
     1,001-3,000
            0.65
            0.23
Package Pressure     7.5     21.2       1        450         90         12600
                                                                  1350
          10,000
             1.8
             0.7
Pressure
7.5     19.3       4        310         62         35000
1000
   10,001-25,000
             4.8
             2.1
Pressure
7.5     17.1       6        550        110         93300
1670
   25,001-50,000
              11
               5
Pressure
7.5     16.5      14        550        110        214000
1670
   50,001-75,000
              18
             8.8
Concrete Gravity     7.5     15.3       4       3125        625        350000
                                                                  9000
  75,001-100,000
              26
              13
Concrete Gravity     7.5     15.0       6       3000        600        505600
                                                                  9000
 100,001-500,000
              51
              27
Concrete Gravity     7.5     14.2      10       3550        700        991700         10000
500,001-1,000,000
             210
             120
Concrete Gravity     7.5     13.1      30       4860        975       4083300         10000
       1,000,000
            430
            270
Concrete Gravity     7.5     11.9      50       6000       1200       8361000         10000

-------
                                                              Table 7-5
                                         Base Costs for GAC Contactor,  Carbon Charge and Backwash Pump
                                 Construction Cost ($)
Population Range
Design Flow (MGD)
Average Daily Flow    	
     (MGD)            Contactor   Carbon Charge   BW Pump
                       Total               (2)         O&M Cost ($/yr)
                    Construction    Capital     -	-	-	
                      Cost ($)      Cost ($)    Contactor   BW Pump     Total
          25-100
           0.024
          0.0056
                                                               44000         87000
                                                                                                                    1500
         101-500
           0.087
           0.024
                                                               67000        140000
                                                                                                                    1900
       501-1,000
            0.27
           0.086
                                                              110000       220000
                                                                         2700
     1,001-3,000
            0.65
            0.23
                                                              180000       370000
                                                                         4000
    3^001-10,000
             1.8
             0.7
                       310000
38000     59000       410000        670000        36000       700       37000
   10,001-25,000
             4.8
             2.1
                       730000
97000     72000       900000      1500000         47000       1200      48000
   25,001-50,000
              11
               5
                      1600000           200000     72000       1900000      3100000         73000       3000       76000
   50,001-75,000
              18
             8.8
                      1500000          320000     170000      2000000      3300000         52000       3000      55000
  75,001-100,000
              26
              13
                      1900000          460000     160000      2500000      4200000         65000       3500      69000
 100,001-500,000
              51
              27
                     3200000          880000    180000      4300000      7200000        110000       4100     110000
500,001-1,000,000
             210
             120
                     9400000         3300000    410000     13000000     22000000        410000      10000     420000
        ,000,000
             430
             270
                    17000000         6600000    500000     24000000     43000000        820000      19000     840000

-------
f ^ OUU
0 700
	 | /UU
O cnn
OUU
O
O
O 500
\
\
t Ann
J— - *rUU
LU
O 300

\—
(/) onn
O 20°
I 1 nn
— J I UU
I ...
O
v— n
















































































































\
\






\
\
\
\..
\s





s










s




s







«


B












^


"















•..





•>»







*"

...
*••




•^







— .


•MB.




•»• —







— ..


^MM^




~







— — --.















































































•••


•^

































































































































































FLOW 1

FLOW 2

FLOW 3

FLOW 4
1 • •








10
 1            0.1           0.01

USAGE RATE (LBS./1000 GALLONS)
0.001
             TOTAL COSTS vs. USAGE RATE

               FLOW CATEGORY Nos.i-4
                                                          3
                                                          m

-------
(/) ouu
z:
o
OCri
^ 2SO
*•*»
o
o
Oor\r\
zuu
O
\
£ 150
| — 1 OU
z:
1 1 1
o
^""^ mn
1 UU
h-
(/}
O
0 =in
DO
3d
0
k- n






























































































1

\
\
^\
\ \
\
\\
\\
N
^









s

^
^
^










s
'%











s,
^
>•
^










s,


























•»^.
~"""1











•** —












— • 	 .












• •












•I












1^












•t^












^^•B























































































































FLOW 5
FLOW 6


FLOW 7
FLOW 8







10
0.1
0.01
            USAGE RATE (LBS./1000 GALLONS)
             TOTAL COSTS vs. USAGE RATE
               FLOW CATEGORY Nos.5-8
0.001

-------
   80
o
o

o
o
o
t/)
UJ
o
01
o
o
o
60
   40
20
    10
                \
               1            0.1           0.01


              USAGE RATE  (LBS./1000 GALLONS)
                                                          FLOW 9
                                                             ~l
                                                          FLOW 10
                                                       FLOW 11
                                                          FLOW 12
0.001
                 TOTAL COSTS vs. USAGE RATE

                  FLOW CATEGORY Nos.9-12
                                                               Tl

                                                               O
                                                               c


                                                               m

-------
                                         TABLE 7-6
ISE II CARBON USAGE COSTS
w 	
Population Range
Design Flow (MGO)
Average Daily Flow
(HOOK 	 "
Carbon Usage Rate (lbs/1,000 gallons)
25-100 "
0.024
0.0056


101-500;.-
0.087
0.02T~.

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50.000
11.0
5.0

50,001-75.000
18.D -
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000.000
210.0
120.0

>1, 000, 000
430.0
270.0
Total Capital 'Cost (KS)
O&M Cost {KS/year)
Total Production Cost
	 (cents/1,000 gal)
Total Capital Cost (KS)
O&M -Cost- (KS/yeary 	
Total .Production Cost .
(cents/17000 gal) -
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost.(KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost

< 0.1
87"
2
600

140
	 3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

37PQ
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.1-0.3 0.3-0.6
87
2
600

140
	 4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10
87
3
650

140
6
260

"""" 220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

0.6-0.8
87
3
650

140
8
280

220
25
160

370
63
130

1000
120
93

2600
180
63

4600
370
50

4800
560
35

6200
760
31

10000
1400
26

28000
5800
21

50000
13000
19

0.8-1.0
87
4
700

140
10
300

220
31
180

370
80
150

1200
140
110

2900
220
73

5000
450
57

5300
680
41

6700
940
36

11000
1800
31

29000
7400
25

52000
16000
22

1.0-1.3
87
4
700

140
12
320

220
39
210

370
100
170

1500
160
130

3400
260
86

5700
540
66

5900
830
47

7300
1200
43

11000
2300
36

30000
9200
29

54000
20000
27

1.3-1.5
87
5
740

140
14
350

220
46
230

370
120
190

1800
180
150

4000
300
100

6300
630
75

6600
980
55

8000
1400
49

12000
2700
42

32000
11000
34

55000
24000
31

1.5-1.8
87
5
740

140
16
370

220
54
250

370
140
220

2200
200
180

4700
340
120

7100
720
85

7400
1100
61

8800
1600
56

13000
3200
48

33000
13000
39

57000
28000
35

1.8-2.0
87
6
790

140
18
390

220
62
280

370
160
240

2700
210
210

5500
380
130

8000
810
96

8300
1300
71

9700
1800
62

14000
3600
53

35000
15000
44

59000
32000
40

-------
Packed Column Aeration
     The major components of a packed column aeration facility are:

       -  Column structure
          Internals
       -  Packing
       -  Blower(s)
          Clearwell
          Booster pump(s)
          Piping

     In  addition,  there may  be other  site-specific capital  cost components

such as:     .  .
      —  Special sitework    	
       -  Raw water holding tank
       -  New/restaged well pump
       -  Blower building
          Booster pump building
       -  Chemical facility
          Noise control installation
       -  Air emissions control

The  key  design  criteria  used  to  size  the packed   column  facilities  are
presented  in Table 7-7.   The  following  assumptions  were  utilized  for  the

purpose of developing preliminary packed column cost estimates:
       -  Henry's Law  Coefficients for  16 SOCs  are presented  in Table 7-8.
          The henry's coefficients for heptachlor  and  toxaphene  have not been
          proven in pilot  sutdies.   Additional data is required before these

          compounds can be classified as definately strippable.


       -  Tower design was  based on  a  maximum  liquid loading  rate  of  30
                                                                   -2 -1
          gpm/sf,  and a minimum air pressure drop gradient of 50 Nm  m


          The maximum packed tower diameter was  16 feet.  Multiple units were
          used  in  instances  where  a  diameter  greater  than  16 feet  was

          required.


          A dumped packing material was used.


       -  Column shell was  constructed of  1/4 inch  304 stainless  steel walls

          with 1/2 inch thick by 3-inch wide flanges.
                                     7-5

-------
       -  Column  internals  included  one  support plate,  one liquid distributor
          and redistribution rings and were placed.every two meters of packing
          height, all of which were constructed of 304 stainless steel.

       -  Also  included were the  blower,  a  concrete  clearwell on  which the
          column  was mounted,  pumping  (200  feet TDK)  to the  distribution
          system, piping and valves, instrumentation and electrical work.

       -  Operating  costs  for pumping  is only  for the  headloss  due  to the
          packed tower.  Power usage was adjusted by a motor size-up factor of
          25 percent, motor efficiency of  80 percent  and a pump efficiency of
          80 percent.

       -  Operating  costs  included for  the  blower were  based on  70  percent
          motor  efficiency,  50 percent  fan  efficiency  and 25 percent motor
          size-up.

       -  Labor  operating  costs  were  estimated on a  fixed $0.003  per 1,000
          gallons.  Annual maintenance labor and material costs were estimated
          to be  10 percent of the pump and blower  capital costs and 4 percent
          of the nonmechanical equipment.  Administrative costs were estimated
          to be 20  percent of the  operating  labor  plus  25  percent  of the
          maintenance cost.

       -  No costs were included  for housing or treated  water storage, other
          than the clearwell under the packed column.

     The  capital,   operation  and  maintenance,   and   total   cost   for  each
influent/effluent  combination  for   each  volatile  SOC   are presented  in
Tables 7-9 to 7-24.  The costs for heptachlor  and  toxaphene should  be  used as
an  estimate,  as the  compounds  have  not been determined  to be  definately
amenable to packed column aeration.  Also included are the costs for stripping
tetrachloroethylene  from water supplies.
     The parameters  used in  developing  Tables 7-9 to  7-24 are presented in
Appendix G.  The costs  in Appendix G were broken down as follows:

-------
                                   TABLE 7-7

                        PACKED COLUMN DESIGN PARAMETERS


          Ground water temperature                12 Degrees C

          Column shell construction               304 stainless steel

          Packing Material                        1 inch plastic saddles

          Air Well                                Concrete

          Maximum column diameter                 16 ft

          Maximum liquid loading                  30 gpm ft

                                                       -2 -1
          Minimum Air Gradient                    SON m  m

          Safety factor for Henry's coefficient   1.1

          Safety factor for K a                   1.1
Note:
     1.   Safety factor is applied to henry's coefficient estimated using
          pilot data.

-------
                                   TABLE  7-8

                       HENRY'S LAW COEFFICIENTS  USED TO
                     ESTIMATE EQUIPMENT SIZE AND COSTS FOR
                            PACKED COLUMN AERATION
            Compound

(y monochlorobenzene      .-7
G cis-l,2-dichloroethylene
£ dibromochloropropane  ^
J> ethylene dibromide    3'
g ethyl benzene     4^.
<5 m-xylene
A- o-dichlorobenzene "?)
   o-xylene
   p-xylene
 (\ sytrene-
   trans-1,2-dichloroeth~ylene,3o
   tetrachloroethylene      ^o
   toluene      ?(,."7/2,      ,$v
f\ 1,2-dichloropropane   & /6 j.
    oxaphono-.            ^  , -r-y
                                 Henry's Coefficient
                                         (atm)
                      HA«
                   "§"'''''
                   
-------
                                             TABLE  7-9
Estisated  Cost  for Reaoving Mcnochlorobenzene Using Packed Coluan  Aeration - March 1989
•/ste§ Size Category
ilation Range
tgn PUSHED )
(«6D)
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
^0.70
10,001-25,000
4.3
1 '•*
'
25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

''5,001-100,000
26.
13.

10,001-500,000
51.
27.
•y]ooi-i,ooo,ooo
210.
120.

P,000
430.
270.
Percent Reaoved
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal) -
Total Capital Cost (K»)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 cal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost {K$)
QIH Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K«)
C4« Ccst (ft/Year)
Total rro2uc:ion Ccst
icents, '1,000 sail

100. ug/L

Influent


600. ug/L
Effluent (ug/L) Effluent (ug/L)
60. 100.
40.
15.
0.2
98.

27.
0.7
44.

42.
1.4
20.

65.
3.0
13.

120.
7.3
3.4 	
230.
21.
6.4

460.
50.
5.7

710.
86.
5.3

990.
130.
5.!

ISO
260 ,
4.3
6500.
1200.
4.5

13000.
2900.
1.4
400. 60.
90.
22.
0.4
150.

41.
1.2
69.

69.
2.6
34.

110.
5.5
22.

210.
14.
-— . 15.
440.
38.
12.

880.
89.
11.

1400.
150.
9.9

2000.
220.
9.6

3800.
460.
9.1
- — 14000.
— - 2000.
8.5

— - 23000.
4600.
3.1
100.
83.
20.
0.4
130.

38.
1.1
62.

60.
2.3
30.

96.
4.E
19.

180.
13.
13.
380.
34.
10.

750.
79.
9.1

1200.
130.
8.5

1700.
200.
8.3

3100.
400.
7.8
12000.
1800.
7.3

23000.
4100.
7.0
400.
33.
15.
0.2
96.

27.
0.6
43.

41.
1.4
20.

62.
2.9
12.

110.
7.5
3.0
220.
21.
6.1

430.
49.
5.4

670.
84.
5.1

940.
120.
4.9

1700.
250.
4.6
6100.
1200.
4.4

12000.
2000.
4.2


1000. ug/L
Effluent (ug/L)
60.
94.
24.
0.5
160.

45.
1.3
75.

76.
2.9
33.

120.
6.1
25.

240.
16.
17.
500.
42.
13.

1000.
99.
12.

1600.
170.
11.

2300.
250.
11.

4400.
510.
10.
17000.
2300.
9.6

33000.
5100.
P.I
100.
90.
22.
0.4
150.

41.
1.2
69.

63.
2.6
34.

110.
5.5
22.

210.
14.
15.
440.
38.
S^lT,
• — '
380.
89.
11.

1400.
150.
9.9

2000.
220.
9.6

3300.
460.
7.1
14000.
2000.
3.5

23000.
460jL_
,-'3.7
400.
60.
17.
0.3
110.

31.
0.8
51.

48.
1.7
23.

74.
3.5
15.

140.
9.2
9.9
2SO.
25.
7.5

550.
58.
6.7

860.
99.
6.2

1200.
150.
6.1

2200.
300.
5.7
3100.
1400.
5.4

16000.
3200.
5.2

-------
                                           IABLE /  -  10
Estimated Cost  for Removing cis-i,2-Dichloroethylene Using Packed Coliisn  Aeration - Harch 1939
Systei Size Category
'opulation Range
)esignJ^ (USD)
H)

25-100
0.024
0.0056

101-500
; 0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
3.3

: 75,001-100,000
26.
13.

100,001-500,000
51.
27.

JlQ, 001-1, 000, 000
210.
120.
jbo.ooo
430.
270.

Percent Reaoved
Total Capital Cost (»)
04H Cost (.K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kf)
04H Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
DM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04« Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (KWYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!($)
04H Cost (K$/Year)
Total Production Cost
(cents/1, COO gal)
Total Capital Cost (K$)
Q4M Cost (WYearj
Total Production Cost
(•:=n ts/1, 000 cal)

50. ug/L
Effluent (ug/L)
5.0 70. 100.
90.
21. 	
0.4 	
A 40.

39. 	 -
1.1 	
66.

64. 	 —
2.4 	 —
32.

100.
5.1
20.

200. 	
13.
14. 	 —

400. 	
35. 	
f 11. , 	 	

800.
83.
9.7

1300.
140. 	
9.1 	

1800.
210.
8.8

3400. 	
430. 	
3.4 	

13000. 	 -
1900. 	
7.8 	 —
2iOOO. 	
4300._ 	 	
7,4) 	 	
~



5.
95.
24.
0.
160.

44.
1.
73.

73.
2.
36.

120.
5.
24.

230.
15.
17.

430.
41.
13.

960.
95.
11.

1500.
160.
11.

2200.
240.
10.

4100.
490.
9.

16000.
2200.
9.
31000.
4900.
3.

Influent
100. ug/L
Effluent (ug/L)
0 70.
30.
15.
5 0.2
94.

26.
3 0.6
42.

40.
8 1.3
19.

60.
9 2.8
12.

110.
7.3
7.3

210.
20.
5.9

420.
48.
5.3

650.
82.
4.9

910.
120.
4.8

1700.
250.
8 4.5

5800.
1200.
1 4.2
11000.
2700.
7 4.1




100. 5.
97.
- — . 26.
0.
170.

48.
	 i.
81.

82.
3.
41.

130.
6.
	 27.

260.
17.
19.

550.
45.
14.

1100.
110.
13.

1800.
180.
12.

2500.
270.
12.

4800.
540.
11.

— - 13000.
2400.
10.
- — 37000.
5400.
	 ?.


200.
Effluent
0 70.
5 65.
17.
5 0.
110.

31.
4 0.
51.

48.
1 1.
23.

75.
6 3.
15.

140.
9.
9.

230.
25.
7.

550.
58.
6.

860.
100.
6.

1200.
150.
6.

2200.
300.
5.

8200.
1400.
5.
16000.
3200.
9 5.


ug/L
(ug/L)
100.
50.
16.
3 0.2
100.

23.
3 0.7
46.

44.
7 1.5
21.

67.
5 3.1
13.

120.
2 8.1
9 8.7

240.
22.
5 6.6

480.
52.
7 5.9

750.
89.
2 5.5

1000.
130.
1 5.3

1900.
270.
7 5.0

.6900.
1300.
4 4.7
13000.
2900.
2 4.6


-------
                                      TABLE  7-11
                                                                           •  '/ /


Estimated  Cost  for Reaioving Dibromochloropropane Using Packed  Column  Aeration - March 1939


                                         •  •      i    \   '   ..;'.••    Influent   ''
ize Category
Kd^Hion Kange
Design Flow (HBD)
Average Daily Flow
(USD)

25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.036

1,001-3,000
0.65
0.23
k
1001-10,000
r 1.3
0.70

10,001-25,000
4.8
2.1
25,001-50,000
11.
5.0

50,001-75,000
18.
9.8

75,001-100,000
26.
13.

100,001-500,000
51.
27.

500,001-1,000,000
210.
120.
M, 000, 000
I T i\
Percent Reaoved
Total Capital Cost (Kt)
04K Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (KWYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!0«)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Mai Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost -
3800.
320.
42.

6100.
540.
39.

8800.
790.
38.

17000.
1600.
36.

67000.
6800.
34.
40000.
15000.
1.0
50.
24.
0.6
^ 160.
r sa°
42.
1.5
73.

73.
3.6
39.

130.
3.3
23.

260.
23.
21.

610.
65.
, 18.
1300.
150.
17.

2100.
260.
16.

3000.
380.
15.

5700.
790.
15.

22000.
-^pfl
14.
i*000.
"CO.
5.0 ug/L
Effluent
0.10
98.
55.
1.7
400.

110.
4.7
210.

240.
12.
130.

460.
27.
97.

1100.
76.
30.

2300.
210.
70.
6200.
480.
67.

10000.
820.
62.

15000.
1200.
61.

28000.
2400.
59.

110000.
10000.
""'Wl').
Z2COO.
0.
96.
49.
1.
350.

99.
4.
ISO.

210.
10.
110.

390.
23.
S3.

910.
65.
67.

2300.
ISO.
59.
5200.
420.
56.

8400.
700.
53.

12000.
1000.
51.

23000.
2000.
43.

93000.
S700.
45.
•90000.
1=000.
(ug/L)
20 1.0
80.
33.
5 0.9
230.

63.
1 2.5
110.

120.
6.2
65.

220.
14.
43.

490.
37.
37.

1200.
110.
32.
2700.
240.
31.

4400.
410.
29.

6200.
600.
28.

12000.
1200.
27.

47000.
5300.
25.
95000.
12000.
20. ug/L
Effluent (ug/L)
0.10
99.5
67.
2.2
490.

140.
5.9
260.

310.
15.
160.

600.
35.
130.

1400.
97.
100.

3700.
270.
92.
8300.
620.
87.

14000.
1000.
82.

19000.
1500.
80.

38000.
3000.
75.

150000.
13000.
59.
310000.
"COO.
0.20
99.
61.
2.0
450.

130.
5.3
230.

270.
14.
150.

530.
31.
110.

1300.
87.
92.

3300.
240.
31.
7300.
550.
77.

12000.
930.
72.

17000.
1300.
70.

33000.
2700.
66. .

130000.
11 000.
61.
270000.
24000.
1.0
95.
46.
1.4
330.

94.
3.9
170.

190.
9.9
100.

370.
22.
78.

S50.
62.
63.

2200.
170.
56.
4800.
390.
53.

7900.
660.
49.

11000.
960.
48.

22000.
1900.
-6.

S7000.
3200.
42.
1BOOOO.
1SOOO.

-------
                                             TABLE 7-12
Estiaated  Cost for Removing Ethylene Dibroside (EDB) Using  Packed  Coluom Aeration - March 1989
^ysteffl Size Category
: ulation Range
: ign F^feUIGD)
Average ^Jf Flow
(H60)
25-100
0.024
0.0056
101-500
0.037
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
. 1.8
B.70

10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8
j
75,001-100,000
26.
13.

00,001-500,000
51.
27.

<"J, 001-1, 000, 000
210.
120.
F.ooo
430.
270.
Percent Reooved
Total Capital Cost (K$)
Q4N Cost (B/Year)
Total Production Cost
(cents/1, 000 ga!)
Total Capital Cost («)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
04« Cost (K*/Year)
Total Production Cost
(cents/1,000 gair
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (M)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Did Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (Kf/Year)
Total Production Cost
(csnts/1,000 53!)
Total Capital Cost (•:$)
GiH Cost [''i/Yearj
Tot2! P-5:ij:ti:r Cos:
Influent


0
98
39
1
280
75
2
130

140
6
75

260
14
53

570
37
40

1300
100
34

3000
240
32

4800
410
30

6900
590
29

13000
1200
23

52000
5100
26
110000
liOOO
;4
0.50 ug/L
Effluent (ug/L)
.010 0.050 1.0
90. -
30.
.1. 0.8
(^210.
55.
.7 1.9
96.

100.
.5 4.5
52.

180.
9.3
36.

370.
26.
27.

350.
72.
(23.
^'
1900. 	
170.
21.

3000.
280.
20.

4300.
410.
19.

B200.
840.
IB.

32000.
3600.
17.
65030. 	
?,V,£t 	
•''ib. 	


0.
99.
56.
j_
400.
110.
3.
190.

220.
Q_
110.

410.
22.
33.

920.
56.
64.

2200.
160.
55.

5000.
370.
52.

8000.
620.
48.

12000.
890.
47.

22000.
1800.
45.

88000.
7600.
41.
1EOOOO.
14000.
:3.
10.
Effluent
010 0
9 99
47
6 1
330
92
9 3
160

180
9 8
93

330
18
67

730
46
51

1SOO
130
44

. 3900
300
42

6300
510
39

9000
730
39

17000
1500
36

69000
6300
33
140000
14000
" -*(
ug/L
(ug/L)
.050 1.0
.5 90.
30.
.3 0.8
210.
55.
.3 1.9
96.

100.
.1 4.5
52.

180.
• 9.8
36.

370.
26.
27.

350.
72.
23.

1900.
170.
21.

3000.
280.
20.

4300.
410.
19.

3200.
840.
IB.

32000.
3600.
17.
65000.
5000.
is.


0.
99.
64.
1.
460.
130.
4.
230.

260.
12.
140.

490.
25.
99.

1100.
66.
76.

2700.
190.
66.

6000.
430.
62.

7700.
720.
53.

14000.
1000.
57.

27000.
2100.
53.

110000.
£900.
49.
220000.
IrOOO.
15.
50.
Effluent
010 0
93 99
56
8 1
400
110
7 3
190

220
9
110

410
22
83

920
56
64

2200
160
55

5000
370
. 52

8000
620
48

12000
890
47

22000
1300
45

esooo
7600
41
120000
liOOO
33
ug/L
(ug/L)
.050 1.0
.9 98.
39.
.6 1.1
280.
75.
.9 2.7
130.

140.
.9 6.5
75.

260.
14.
53.

570.
37.
40.

1300,
100.
34.

3000.
240.
32.

4800.
410.
30.

6900.
590.
29.

13000.
1200.
23.

52000.
5100.
26.
. 110000.
11000.
:4.

-------
                                                       TABLE  7-13
          Estiaated Cost for Removing Ethyl benzene Using Packed Coluan Aeration - March 1989
:;ystea  Size Category                                                               Influent
:   ulation Range                             =====r=r================================================
:   ign  U^HGD)                                       100.  ug/L                     700. ug/L                    1000. ug/L
         Jf Flow                           	.		
     (N6D)                                          Effluent  (ug/L)               Effluent (ug/L)               Effluent (ug/L)
                                               50.       700.      BOO.       50.      700.      BOO.       50.      700.      BOO.

                  Percent Reaoved              50.              -             92.9                          95.       30.       20.
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
- 1.8
0.70

10,001-25,000
4.8
| 2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

75,001-100,000
26.
13.

50,001-500,000
51.
27.
.^,001-1,000,000
210.
120.

R,000
4 30.
270.

Total Capital Cost (K$J
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Did Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)-
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OJ« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost 
-------
                                           TABLE  7-14
Estimated Cost for Reaoving is-Xylens Using Packed Colusm Aeration - March 19B9
Systea Size Category
;pulation Range
Average^0!y Flow
(HGD)
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0,086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

: 75,001-100,000
26.
13.

100,001-500,000
51.
27.
oCO, 001-1, 000, 000
210.
120.
POO, coo
^'0.
•-in
Percent Reaoved
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
QJH Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
T2tai Coital Cost (•:*)
QW Cost !K$/Yeir)
Total .;rc;u:i::n I:st



10000. ug/L
Effluent (ug/L!
1000.
90.
21.
0.4
,-HO.
"""
39.
1.1
64.

63.
2.2
31.

100.
4.7
20.

190.
12.
13.

390.
33.
/i'(T..i
' ^"^
770.
75.
9.1

1200.
130.
8.5

1700.
190.
8.2

3200.
390.
7.8
12000.
1300.
7.2
24000.
4100.
'{^.
12000. 15000. 1000
95
— 	 23
	 o
150

— 	 43
	 	 i
-- 	 72

71
____ ____ "
	 35

	 	 120
	 5
	 23

	 220
	 14
	 	 15

	 450
	 38
12

- 	 900
	 87
	 10

	 1400
	 150
	 9

— 	 2000
	 220
	 9

	 3300
	 	 450
	 9
- 	 - 14000
	 2000
	 	 g
	 	 23'ViO
	 	 4r:0
	 	 3
Influent


20000. ug/L
Effluent (ug/L)
12000.
40.
15.
.4 0.2
97.

27.
.2 0.6
43.

42.
.6 1.4
20.

63.
.5 2.9
12.

110.
7.6
3.2

22G.
21.
6.2

440.
49.
5.5

690.
84.
.8 5.1

960.
120.
.6 5.0

1900.
260.
.0 4.7
6300.
1200.
.4 4.4
12000.
2=00.
.0 i.3
15000.
25.
14.
0.2
92.

26.
0.6
41.

39.
1.3
19.

58.
2.7
11.

100.
7.2
7.6

210.
20.
5.B

410.
47.
5.2

630.
81.
4.8

380.
120.
4.7

1600.
250.
4.4
5700.
1200.
4.2
11000.
1700.
4.0
1000.
98.
26.
0.
170.

49.
1.
32.

33.
3.
41.

130.
6.
27.

260.
17.
13.

530.
44.
14.

1100.
100.
12.

1700.
170.
12.

2400.
260.
11.

4500.
520.
11.
17000.
2400.
10.
34000.
:300.
9.


50000. ug/L
Effluent (ug/L)
12000.
76.
18.
5 0.3
120.

33.
4 0.8
54.

53.
1 1.3
25.

32.
5 3.8
16.

150.
9.7
11.

310.
27.
8.2

610.
61.
7.2

960.
100.
6.8

1300.
150.
6.6

2500.
320.
6.2
7100.
1500.
5.3
12000.
T * -\^t
4 5.6
15000.
70.
17.
f"-. T
V . %J
110.

32.
o.e
51.

50.
1.7
24.

77.
3.5
15.

140.
9.1
10.

290.
25.
7.7

570.
58.
6.8

890.
99.
6.3

1200.
140.
6.1

2300.
300.
5.3
5400.
140C.
5.4
16000.
3200.
5.2

-------
                                            TABLE  7-15
Estimated Cost for Removing  o-Dichlorobenzene Using  Packed Column Aeration -  March 1989
Systea Size Category
pulaticn Rantje
signJ^(MGD)
Averag^^By Flow
diroy
"1


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
l.B
0.70

10,001-25,000
4.9
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

:75, 001-100, 000
26.
13.

00,001-500,000
51.
27.

^,001-1,000,000
210.
120.

Jo, 000
430.
270.




Percent Removed
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
Q&M Cost (KVYear)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiN Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
0411 Cost (Kf/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
Did Cost !K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Cauital Cost (K$)
O&H Cost (K»/Year)
Total Production Cost
(cents/1,000 gal)
Total-Capital Cost (!($)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (r$)
Q£(1 Cost fS'J/Ysar)
Tits'. ?.rc;uction Co;t
:CrTtE/:.0:/0 cai)
100. ug/L
Effluent (ug/L)

50. 600. 800.
50.
17. 	
0.3 	
110. 	 --

31.
0.9
52.

48. 	
l.B 	
24.

75.
3.8
15.

140.
10. 	
10.

280. 	 	
28. 	 —
8.0 	

560.
65. 	
7.2 	

880.
no. 	
6.7 	

1200. 	
160. 	
6.5 	

2300. 	
340. 	
6.2 	

3500.
1600.
5.8

17000. 	 	
3600. 	 	
.;.£ 	 	




50.
92.9
28.
0.6
, 190.
~~ — ~~ '- --
51.
1.6
86.

88.
3.6
45.

150.
7.7
30.

300.
20.
22.

650.
54.
,17.
^^'
1400.
130.
16.

2200.
210.
15.

3200.
310.
14.

6000.
640.
14.

23000.
2300.
f 7
* -* •

47000.
£200.
(•"'

Influent
700. ug/L
Effluent (ug/L)

600. 800.
14.
15.
0.2
95.

27.
0.7
43.

39.
1.4
19.

59.
3.0
12.

110.
8.2 	
8.1

220. 	
23.
6.3 	

430.
53.
5.7

670.
92.
5.3

940.
140.
5.2

1700.
280.
4.9

6200.
13CO.
4.6

12000.
3000. 	
i.5





50.
95.
30.
0.
210.

54.
1.
92.

96.
T
•J.
49.

160.
8.
33.

330.
21.
24.

710.
59.
13.

1500.
140.
17.

2500.
230.
16.

3500.
340.
16.

6700.
690.
15.

26000.
3000.
14.

f2000.
£700.
13.


1000.
Effluent

600.
40.
16.
7 0.
100.

29.
7 0.
48.

45.
9 1.
22.

69.
i 3.
14.

130.
g.
9.

240.
26.
7.

510.
61.
6.

800.
100.
6.

1100.
150.
6.

2100.
320.
5.

7500.
1500.
5.

15000.
3400.
?,


ug/L
(ug/L)

90C.
20.
15.
3 0.2
97.

27.
8 0.7
44.

40.
6 1.4
20.

50.
5 3.1
12.

110.
4 8.4
4 3.3

220.
23.
3 6.5

440.
55.
6 5.9

690.
94.
2 5.5

970.
140.
0 5.3

1800.
290.
7 5.0

6400.
1300.
4 4.9

12000.
3100.
2 4.6


-------
                                                        lABLh  /  -  J.b
          Estimated Cost for Rsaoving  o-Xylene Using Packed Coluisn Aeration - March 1989
Systea Size Category
  pulation Range
  sign J|^k(HGD)
Averags^^By Flow
     (USD)
                                                      10000. ug/L
Influent

 20000. ug/L
                                                                   50000.  ug/L
                                                  .Effluent (ug/L)               Effluent (ug/L)               Effluent (ug/L)

                                             1000.    12000.    15000.     1000.    12000.    15000.     1000.    12000.    15000.
                   Percent  Reaoved
90.
           25-100   Total  Capital Cost  (K$)      21.
            0.024     Q4«  Cost  (K$/Year)          0.4
           0.0056   Total  Production Cost     .  140.
                       (cents/1,000 gal)
          101-500   Total  Capital Cost  (K$)      40.
            0.087     Q&H  Cost  (K$/Year)          1.1
            0.024   Total  Production Cost        65.
                       (cents/1,000 gal)
        501-1,000   Total  Capital Cost  (K$)      64.
             0.27     0&«  Cost  (K$/Year)          2.3
            0.086   Total  Production Cost        31.
                       (cents/1,000 gat)
      1,001-3,000   Total  Capital Cost  (K*)     100.
             0.65     04H  Cost  (K$/Year)          4.8
             0.23   Total  Production Cost        20.
                       (cents/1,000 gal)
     3,001-10,000   Total  Capita! Cost  (K*)     190.
              i.S     04«  Cost  (KS/Year)         13.
             0.70   Total  Production Cost        14.
                       (cents/1,000 gal)
    10,001-25,000   Total  Capital Cost  (K$)     390.
              4.8     0&«  Cost  (K$/Ysar)        >4.
              2.1   Total  Production Cost      ( 10.
                       (cents/1,000 gal)
    25,001-50,000   Total  Capital Cost  (K$)     780.
              11.     04M  Cost  (M/Year)         77.
              5.0   Total  Production Cost         9.3
                       (cents/1,000 gal)
    50,001-75,000   Total  Capital Cost  («)    1200.
              18.     O&H  Cost  (KI/Year)        130.
              B.B   Total  Production Cost         8.7
                       (cents/1,000 gal)
   75,001-100,000   Total  Capital Cost  (K$)    1300.
              26.     04H  Cost  (K$/Year)        190.
              13.   Total  Production Cost         8.4
                       (cents/1,000 gal)
  100,001-500,000   Total  Capital Cost  (K$)    3300.
              51.     0411  Cost  (Kt/Yearj        400.
              27.   Total  Production Cost         7.?
                       (cents/1,000 gal)
.'0,001-1,000,000   Total  Capital Cost  ;K$)   12000.
             210.     04«  Cost  (KI/Yearj       1200.
             120.   Total  Production Cost         7.4
                       (cents/1, 000
          !00,OQQ  Total Capital Cost
             430.    0^      '''t/Y
                                                                             95.       40.       25.       98.       76.       70.

                                                                             23.       15.       14.       26.       18.       17.
                                                                              0.4       0.2       0.2       0.5       0.3       0.3
                                                                            150.       97.       93.      180.      120.      110.

                                                                             44.       27.       26.       50.       34.       32.
                                                                              1.2       0.7       0.6       1.4       0.8       0.8
                                                                             73.       43.       41.       33.       55.       52.

                                                                   	      72.       42.       39.       34.       53.       50.
                                                                              2.7       1.4       1.3       3.1       1.8       1.7
                                                                             36.       20.       19.       42.       26.       24.

                                                                   	     120.       63.       58.      140.       S3.       7B.
                                                                              5.6       2.9       2.7       5.6       3.8       3.6
                                                                             23.       12.       11.       27.   -    16.       15.
                              14.
                              16.

                             460.
                              39.
                              12.
3.2
                                                                                      230.
                                                                                       21.
                                                                                        6.2
               7.6
             210.
                                                                                                           19.
 9.9       9.3
11.       10.
                  350.      310.
              20.        45.
               5.8      14.
         290.
                             27.       25.
                              3.3       7.3
                   Total
                                                 J
                             920.       440.       410.      1100.       620.       570.
                              89.        49.        47.       110.        62.        58.
                              11.         5.5       5.2      13.         7.4        6.9

                            1500.       690.       630.      1700.       970.       900.
                             150.        85.        81.       180.       110.       100.
                              10.         5.2       4.3      12.         6.9        6.4

                            2100.       970.       890.      2500.      1400.      1300.
                             220.       120.       120.       270.       160.       150.
                               9.8        5.0       4.7      12.         6.7        6.2

                            3900.      1800.      1600.      4700.      2500.      2400.
                             460.       260.       250.       540.       320.       300.
                               9.3        -,.7       4.4      11.         6.3        5.9

                           15000.      6300.      5700.     13000.      9303.      3600.
                            2100.      1200.      1200.      2400.      1500.      1400.
                               2.f»        4.4       4.2      10.         5.9        5.5

                           :?900.     1:000.     iiooo.     35000.     15000.     1/000.
                            4700.      .500.      2700.      5400.      3400.      3300.
                               :.:        J.1       4.1       ?.7        5.o        5.3

-------
                                             TABLE  7-17
Estiaated Cost for Reaoving  p-Xylene Using Packed  Coluan Aeration - March 19B9
rystea Size Category
: :ulation Range
;ign U^.IBD)
Average ^Hf Flow
(HBD)
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4.6
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
3.B

-75,001-100,000
26.
13.

100,001-500,000
51.
27.
:0!), 001-1, 000, 000
210.
120,
PO,OOO
430.
270.

Percent Reaoved
Total Capita! Cost (K$)
Q&M Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
Q4M Cost (KS/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
Q&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (!($)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
OiH Cost (KJ/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost «$)
QiM Cost (r.$/Yearj
Total /reduction Cost
(cents. 1,000 cal)


10000. ug/L
Influent


20000. ug/L
Effluent (ug/L) Effluent (ug/L)
1000. 12000.
90.
21.
0.4
140.

39.
1.0
64.

62.
2.2
30.

99.
4.6
19.

190.
12.
13.

380. 	
32.
10.

760.
73.
8.9

1200.
130.
8.3

1700.
180.
8.1

3200.
380.
7.6
12000.
1700.
7.1
23000. 	
4000.
i.3 	

15000. 1000.
95.
23.
0.4
150.

43.
1.2
71.

71.
2.5
35.

110.
5.3
22.

220.
	 14.
15.

440.
37.
12.

830.
84.
10.

1400.
140.
9.6

— - 2000.
210.
9.3

3700.
440.
B.8
- — 14000.
2000.
	 S.2
— - 2700C.
	 4500.
	 7.3

12000.
40.
15.
0,2
96.

27.
0.6
43,

42.
1.4
20.

63.
2.9
12.

110.
7.6
B.I

220,
21.
6.2

440.
49.
5.5

6BO.
84.
5.1

960.
120.
5.0

1BOO.
260.
4.7
6200.
1200.
4.4
12000.
2800.
1.3

15000.
25.
14.
0.2
92.

26.
0.6
41.

39.
1.3
19.

53.
2.7
11.

100.
7.2
7.6

210.
20.
5.8

410.
47.
5.2

630.
BJ.
4.8

880.
120.
4.7

1600.
240.
4.4
5700.
1200.
4.2
11000.
:?oo.
4.0



50000. ug/L
Effluent (ug/L)
1000.
98.
25.
0.5
170.

49.
1.4
81.

32.
3.0
40.

130.
6.3
26,

250.
16.
18.

520.
43.
14.

1000.
98.
12.

1700.
170.
11.

2400.
250.
11.

4400.
510.
10.
17000.
2300.
9.7
;3000.
<:oo.
3 .2

12000.
76.
18.
0.3
120.

33.
0.8
53.

52.
1.8
25.

81.
3.7
16.

150.
9.6
\ \

300.
26.
3.1

600.
60.
7.2

950.
100.
6.7

1300.
150.
6.5

2500.
310.
6.1
9000.
1400.
5.7
13000.
7300.
5.5

15000.
70,
17.
0.3
110.

31.
o.a
51.

50.
1.7
24.

77.
3.5
15.

140.
9.0
10.

280.
25.
7.6

560.
57.
6.7

SBO.
98.
6.3

1200.
140.
5.1

2300.
300.
5.7
3300.
1400.
5.4
16000.
3200.
c t


-------
                                             TABLE  7-18
Estiiated Cost for Renoving Styrene Using Packed Colusn Aeration - March  1989
iysteu Size Category
. ilation Range
- .gn py^UIBD)
verage D^^^FloM
(H6D)


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
|.70

10,001-25,000
4.3
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

75,001-100,000
26.
13.

00,001-500,000
51.
27.
i
,•0,001-1,000,000
210.
120.

POOO
i'v.
~-t


10. ug/L
Influent


50. ug/L
Effluent (ug/L) Effluent (ug/L)

Percent Removed
Total Capital Cost (K$J
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
Q4« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal!
Total Capital Cost (K$)
OSM Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
G&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OSW Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (Ks)
J1H Cost (K$/Yejr:
T.fjl trn^i,rti^n .--ct
2.0
80.
20.
0.4
130.

38.
1.1
62.

60.
2.3
30.

96.
4.9
19.

130.
13.
13.

330.
34.
10.

760.
80.
9.2

1200.
140.
8.6

1700.
200.
8.4

3200.
410.
3.0

12000.
1900.
7.4

14000.
-200.
7 ;
5.0
50.
16.
0.3
110.

30.
0.7
48.

46.
1.6
22.

71.
3.3
14.

130.
8.7
9.3

260.
24.
7.1

520.
55.
6.3

310.
95.
5.9

1100.
140.
5.7

2100.
290.
5.4

7600.
1300.
5.1

15000.
3100.
i 0
20. 2.0
96.
27.
0.6
190.

51.
1.5
85.

	 67.
3.4
43.

140.
7.2
	 29.

290.
18.
20.

610.
49.
16.

1300.
120.
14.

2000.
200.
14.

— - 2900.
290.
13.

5400.
590. '
13.

- — 21000.
2600.
12.

	 42000.
	 5SOO.
	 j. i
5.0
90.
23.
JL5
/160.

43.
1.3
72.

72.
2.8
36.

120.
5.9
24.

230.
15.
17.

480.
* I-
.43.
' ex
970.
96.
12.

1600.
160.
11.

2200.
240.
10.

4200.
490.
9.9

16000.
2200.
9.2

32000.
-900.-
^.3
20.
60.
17.
0.3
110.

32.
0.9
52.

49.
1.8
24.

77.
3.7
15.

140.
9.7
10.

290.
26.
7.3

570.
61.
7.0

900.
100.
6.5

1300.
150.
6.4

2300.
320.
6.0

3500.
1500.
5.6

1700'-"'.
3*00.
:.4


200. ug/L
Effluent (ug/L)
2.0
99.
33.
0.7
230.

62.
1.9
100.

110.
4.2
54.

190.
9.1
37.

370.
23.
26.

300.
61.
20.

1700.
150.
19.

2700.
250.
13.

3800.
360.
17.

7300.
730.
16.

29000.
320C.
15.

::000.
7100.
14.
5.0
97.5
29.
0.6
200.

54.
1.6
91.

95.
3.7
47.

160.
7.9
32.

320.
20.
22.

430.
54.
17.

1400.
130.
16.

2200.
220.
15.

3200.
320.
14.

6100.
640.
14.

24000.
2BOO.
13.

+7000.
:300.
12.
20.
90.
23.
0.5
160.

43.
1.3
I L,

72.
2.8
36.

120.
5.9
24.

230.
15.
I7.

480.
41.
( T

970.
96.
12.

1600.
160.
11.

2200.
240.
10.

4200.
490.
9.9

16000.
2200.
9.2

32000.
4900.
3.3

-------
Estimated Cost for Removing trans-l,2-Dich!oroethylene Using Packed Column Aeration - March 1939
Systea Size Category
Ppadation Range
WH$s Daily Flow
(IED)


25-100
0.024
0.0056

101-500
0.037
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
i.e
0.70

10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
13.
3.8

75,001-100,000
26.
13.

100,001-500,000
51.
27.

500,001-1,000,000
210.
120.

; 1,000,000




Percent Rsasved
Total Capital Cost (K$)
M Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K*)
OH1 Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kf!
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
m Ccst (K$/Year)
"Total Production Cost
(cents/1,001) gal)
Total Capital Cost (K$)
m Dost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiM Cost (ft/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OKI Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
m Cost (Kt/Yearj
Total Production Cost
(cents/1,000 gai)
Total Capital Ccst (K$!
am Cost (Kt/Year)
Total Production Ccst
(cEr.ts/l.C<30?aij
*:'U1 :.c::t3l C:s: (•.$)

50. ug/L
.

Effluent (ug/L)
5.0 70. 100.
90.
nn 	 	 ._
iU. " 	 —
0.3
130.

37. — —
0.9 — —
60. 	 	

CQ 	 	
37 •
fj 4 	
29. 	 	

93.
4.3 	 	
13. 	 	

ISO. 	 	
11. 	 	
' " -__

360.
30. 	
,•9.4 	 	

710. 	 	
70. 	 	
0 A 	
a • H -

1100. — —
120. — —
7 a --_..,_ 	
/ •O

1600. — —
170.
7.o

2900.
3-60. — —
7.1

110CO. 	 	
1700.
6.7

J1'!X'. — —




Influent
100. ug/L


Effluent (ug/L)
5.0
95.
21.
0.4
140.

41.
1.1
67.

46.
2.4
32.

110.
5.0
21.

200.
13.
14.

410.
34.
11.

320.
79.
9.6

1300.
140.
3.9

1800.
200.
3.7

3400.
410.
3.2

13000.
1900.
7.6

:5':?0.
70. 100.
30.
14. 	
0.2 —
07
70. 	

?A _—
0.6 	
42. 	

39. 	
1.3
? q 	

c.a 	
2.7 	
12. 	

100.
7 7 __„_
7.7 —

210.
20. 	
5.3 	

410.
47. 	
5.2 — -

640. 	
81. 	
4.3

S90. 	
120.
4.7

1600. 	
250. —
4.4

5700.
1200. —
i.2 —

11CCO. 	




Ef
5.0
99.
26.
0.5
170.

s?.
1.4
32.

83.
3.0
41.

130.
6.4
26.

260.
16.
13.

530.
44.
14.

1100.
100.
12.

1700.
170.
12.

2400.
250.
11.

4500.
v*.y t
11.

17000.
23 M).
9.9

34%0.

500.


fluent
70.
86.
19.
C.
120.

T— ,
0.
57.

56.
I.
27,

37.
4.
17.

160.
10.
12.

330.
"?•"
3,

650.
65.
7.

1000.
110.
f

1500.
160.
7

2700.
340.
^.

10000.
1600.
6.

IVJOO.

ug/L


(ug/L)
100.
80.
IS.
• j V* i v
*• ''Q

33.
9 0.8
D-J»

52.
9 '.2
25.

51.
0 3.7
16.

150.
Q.i
i^ .

300.
26.
7 2.0

600.
60.
8 7.1

°40.
100.
2 6.7

1300.
150.
0 6.5

2500.
Vi'.' t
6 6.1

9000.
1*00.
"1 £ T

,:OvO.

-------
                                         TABLE 7-20
Estiaated  Cost for Removing  Tetrachloroethylene Using  Packed Column ftsration - ^arch 1989
Systes Size Category
Population Range
Avel^^plaily F!OH
(K6D)

25-100
0.024
0.0056

101-500
0.097
0.024

501-1,000
0.27
0.096

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4.S
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

75,001-100,000
26.
13.

100,001-500,000
51.
27.

500,001-1,000,000
210.
'20.

f- 1,000, 000
130.
---.
Percent Resoved
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
O&N Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
DM Cost (K$/Year)
Total Production Cost
(cents/1, 000 -gai)
Total Capital Cost (K$)
G&H Cost (K$/Year)
Total Production Cost
(cents/1.000 gal)
Total Capita! Cost (K$)
GiM Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
Q4M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost |K$)
O&M Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Old Cost (K$/Year)
Tota! Production Cost
(cents/1,000 gal)
Total Capital Cost !KJ)
04H Cost (Kt/Year)
Total Production Cost
icents/1,000 ;alj
Tc-ti! Zijitj! CD=T '''*)
liH .'151 f-'t/Yti-i
--. - ! -, 	 ,,.,,,, '-ft
-.-.-.-.-.-.


50. ug/L
Influent


100. ug/L
Effluent (ug/L) Effluent (
i ,
98.
24.
0.
160.

45.
1.
73.

74.
2.
36.

120.
5.
23.

230.
14.
16.

460.
36.
12.

930.
83.
10.

1500.
140.
9.

2100.
210.
9.

3900.
430.
9.

15000.
1900.
o.

I:000.
•U.;-r.
-
0 5.0
90-.
19.
4 0.3
/ 130.

36.
1 0.9
58.

59.
5 2.0
28.

92.
3 4.1
13.

170.
10.
-i«

350.
29.
(^.0

690.
66.
8.0

1100.
110.
B 7.5

1500.
170.
5 7.2

2800.
340.
0 6.B

10000.
1600.
3 £.4

20000.
TcCli/r-
t '• - <
50. 1.0
99.
25.
0.5
170.

49.
1.2
79.

31.
2.9
	 '9.

130.
	 5.S
	 25.

	 250.
15.
17.

510.
	 40.
13.

1000.
91.
12.

1600.
160.
11.

	 2300.
230.
10.

4300.
	 470.
9.9

— - 16000.
	 2100.
	 9.2

	 ""O^O.
	 iCljt).
	 : 7
5.0
95.
21.
0.4
140.

40.
1.0
65.

66.
2.2
32.

100.
4,£
L '•„• i

200.
' 7
14.

400.
32.
10.

790.
73.
9.1

1300.
120.
8.5

1800.
190.
8.2

3300.
390.
7.7

12000.
1700.
7.2

24000.
3?00,
• t ;•
ug/L)
50.
50.
15.
0.2
98.

27.
0.7
44.

43.
1.4
20.

64.
3.0
13.

120.
7.S
3.4

230.
21.
^- \

450.
50.
5.7

710.
86.
5.3

990.
130.
5.1

1800.
260.
4.8

6500.
1200.
4.5

13CO .
2C0 .
.i


500. ug/L
Effluent (ug/L)
1.0
99.8
29.
0.6
200.

57.
1.5
94.

?7.
3.4
"7

160.
7.0
31.

310.
IS.
21,

530.
43.
16.

1300.
110.
14.

2000.
190.
13.

2800.
270.
13.

5400.
560.
12.

20000.
2500.
1! .

4'XCO.
!i')0.
15.
5.0
99.
25.
0.5
170.

49.
1.2
79.

91.
2.9
39.

130.
5.8
25.

250.
15.
4 7

310.
40.
13.

1000.
91.
12.

1600.
160.
11.

2300.
230.
10.

4300.
470.
9.9

16000.
2100.
9.2

3::>oo.
-:00.
3.7
50.
90.
19.
0.3
130.

36.
0.9
58.

59.
2.0
28.

92.
4.1
19.

170.
10.
12.

350.
HQ
-U t
9.0

690.
66.
8.0

1100.
110.
7.5

1500.
170.
7.2

2900.
340.
6.8

10000.
1600.
i

20COO.
3£00,
£..1

-------
                                              TABLE 7  -  21
•  Estiaated Cost for  Reaoving Toluene Using Packed Column Aeration - Harch 1939
ystea Size Category
Jlation Range
ign F^^HSD)
verage ^^B Flow
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
kO.70
10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.B

75,001-100,000
26.
13.

00,001-500,000
51.
27.
,J, 00 1-1, 000, 000
210.
120.
p.ooo
130.


Percent Reaoved
Total Capital Cost (K$)
G&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Did Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Q&M Cost (K$/Year)
Total Production Cost
(cents/1,000 gall-
Iota! Capita! Cost (KJ)
QiH Cost (KI/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (X*)
04M Cost (K$/Year)
Total Production Cost
(cents/1,000 gaij
Total Capital Cost (K$)
GW Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
06M Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X*)
G4N Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
0&« Cost (B/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
Qift Cost (K$/Year)
Total Production Cost
(csnts/l.OOO gai)
Total Cap -tai Cost "(*}
Ci* Cest p'$/Y£ir;
Tcti! 5r:d'j:t::n C-t
=============================
500. ug/L
Effluent (ug/L)
100. 2000. 3000.
30.
18. 	
0.3 . 	
120.

33. 	 	
0.8
54. 	 —

53. 	
l.fi
26.

83. 	
3.8
16. 	

150. 	
9,7 	 	
11.
310.
27, 	 	
8.2 	 	

610. 	 	
61. 	
7.3

970. 	
100. 	
6.8 	

1400. 	
150. 	
6.6 	

2500. 	
320.
6.2 	
9200.
1500.
5.3
12000. 	 	
7400. 	 	
:=======


100.
96.
23.
0.
.'"1 50.

44.
1.
73.

73.
2.
35.

120.
5.
23.

220.
14.
16.
460.
38.
(\1.
V
910.
86.
11.

1400.
150.
9.

2000.
220.
9.

3800.
440.
9.
14000.
2000.
8.
29000.
Influent
:======================:
3000. ug/L
Effluent (ug/L)
2000. 3000.
7 33.
15.
4 rt_2 	
94.

26.
2 0.6
42.

40.
6 1.3
19.

60.
5 2.3
12.

110.
7.4
7.8
210.
21.
5.9

420.
48.
5.3

650.
82.
9 4.9

910.
120.
6 4.8

1700.
250.
1 4.5
5900. 	
1200.
4 4.3
11000.
2700.

:=======


100.
99.
25.
0.
160.

47.
1.
78.

78.
2,
39.

130.
K
25.

240.
15.
17.
500.
41.
13.

1000.
93.
12.

1600.
160.
11.

2200.
230.
10.

4200.
480.
9.
16000.
2200.
?.
31000.
:900.
g-

==========
5000.
Effluent
2000.
60.
16.
5 0.
100.

29.
3 0.
47.

46.
9 1.
29.

70.
9 3.
14.

130.
R.
0,
250.
07
6.

500.
53.
6.

770.
91.
5.

1100.
130.
5.

2000.
280.
9 5.
7200.
1300.
1 l
i. *l .
14000.
3000.
7 4.

===========
ug/L
(ug/L)
3000.
40.
15.
2 0.2
96.

27.
7 0.6
43.

41.
5 1.4
20.

62.
1 2.9
12.

110.
2 7.5
0 8.1
220.
T 1
3 6.1

430.
49.
1 5.5

630.
84.
7 5.1

950.
120.
5 4.9

1700.
250.
2 4.6
6100.
1200.
9 4.4
12000.
2300.
7 -.2

-------
                                           IMDLC.  /   -  '£'£



Estimated Cost for Removing 1,2-Dichloroprapane Using Packed Coluan Aeration - March  198?
Systes Size Category

Ave^^^Bdily Flow


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4.3
2.1

25,001-50,000
11.
5.0

50,001-75,000
IS.
3.8

- 75,001-100,000
26.
13.

100,001-500,000
51.
27,

'500,001-1,000,000
210.
120.

•000,000
-30.

Percent Reaoved
Total Capital Cost (K$)
GiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&« Cost (K$/Yearj
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiR Cost (K$/Year)
Total Production Cost
(cents/1,000 ga!)
Total Capital Cost (K$)
04« Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04N Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Ysar)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04M Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
D4H Cost (K$/Year)
Total Production Cost
'cents/1 r'00 gaii
Total Cisit'l rr-=;t -.ti
PL* r:-., (i-$/Va = r-
10. ug/L
Influent


50. ug/L
Effluent (ug/L) Effluent (ug/L)
2.0
90.
21.
0.4
140.

38.
1.1
63.

61.
2.4
30.

98.
5.0
20.

190.
13.
14.

390.
35.
11.

790.
82.
9.6

1300.
140.
9.0

1800.
210.
8.7

3300.
420.
3.3

13000.
1900.
7.7

"•'.<:(><)
£ "* ' i't
5.0
50.
16.
0.3
110.

30.
0.8
49.

46.
1.6
22.

71.
3.4
14.

130.
8.9
9.5

260.
24.
7.2

520.
57.
6.4

920.
97.
6.0

1100.
140.
5.8

2100.
300.
5.5

7600.
1400.
5.2

, .fiM
"'
-------
Estiaated Cost for Reaoving Toxaphene Using Packed Column fieration - March 1989
Systei Size Category
opulation Range
esig^Aw (MBD)
Averaj^^Hly Flow
j^ffl)
Percent Reaoved
25-100 Total Capital Cost (K$)
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.8
0.70

10,001-25,000
4,3
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
8.3

75,001-100,000
26.
13.

100,001-500,000
51.
27.
s: .00, 001 -1,000, 000
210.
120.

0000,000
i 70 .
-•"-'•
QiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
QiH Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
QiH Cost (Kt/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K»)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K$/Year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
OiH Cost (Kt/Year)
Total Production Cast
(csnts/1,000 gal)
Total CiDita! Cost [•%}
CW :•:=* ('J/V'sir;
Tstal^'ocucticr •::•=».

5.0 ug/L
Effluent (ug/L)
1.0 5.0
80.
20.
0.3
130.
"
33.
0.9
61.

60.
2.1
29.

95.
. 4.4
19.

130.
11. 	
13.

3sO. 	
30.
9.5

720.
70.
8.5

1100.
120.
7.9

1600.
180.
7.7

3000.
360.
7.2
11000.
1700.
i.B

12000.
.7.200. 	
. c __._



10. 1.
90.
23.
0.
(150.
"'""
43.
1.
71.

71.
2.
35.

110.
5.
	 22.

	 220.
14.
15.

440.
37.
12.

380.
84.
10.

1400.
150.
9.

2000.
210.
	 9.

3700.
440.
3.
— - 14000.
2000.
	 3.

— - :;ooo.
	 -500.
	 :
Influent
10. ug/L
Effluent (ug/L)
0 5.0
50.
16.
4 0.2
100.

29.
2 0.7
47.

46.
6 1.5
22.

70.
3 3.2
14.

130.
3.3
9.1

2iO.
"
5.9

500.
53.
6.1

790.
92.
6 5.7

1100.
130.
4 5.6

2000.
280.
B 5.2
7300.
1300.
2 4.9

14000.
3000.
i J. .'



10. 1.
98.
	 29.
	 0.
200.

57.
	 1.
94.

. 	 ?6.
	 3.
47.

•— - 160.
	 7.
	 31.

	 310.
	 19.
	 ~> ^

	 540.
	 51.
	 16.

1300.
120.
15.

2000.
200.
14.

2900.
300.
13.

	 5400.
610.
	 "3.
— - 21000.
	 2700.
	 12.

	 12000.
	 iOOO.
- — * - 1 • t

50.
Effluent
0 5
90
23
6 0
150

43
6 1
71

71
5 2

ug/L
(ug/L)
.0 10.
30.
20.
.4 0.3
130.

33.
.2 0.9
61.

50.
.6 2.1
35. 29.

110
5 5
22

220
14
15

440
37
12

330
34
10

1400
150
9

2000
210
9

3700
440
8
14000
2000
3

23000
4500


95.
.3 4.4
13.

ISO.
11.
13.

7:0.
33.
7.5

720.
70.
3.5

1100.
120.
.6 7.9

1600.
ISO.
.4 7.7

7000.
'An
.8 7.2
11COO.
1700.
.2 s.e

22c:o.
7::0.
.3 :.:

-------
                                            IMbLC  /  -  £4
Estimated Cost for Reaoving  Heptachlor  Using Packed  Coluan Aeration - March 19B9
Systea Size Catego
'opulation Range
Jesiggfe* (H6D)
(M6D)


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
1.9
0.70

10,001-25,000
4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
B.8

75,001-100,000
26.
13.

100,001-500,000
51.
27.

500,001-1,000,000
210.
120.

^^^f f •„' v v j v :• J
"* ' ' i
"~"i
ry




Percent Resoved
Total Capital Cost (Kt)
OiH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&H Cost {Kt/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
Q&R Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
QiM Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capita! Cost (Kt)
04M Cost (Kt/Year)
Total Production Cost
(certs/1, 000 gal)
Total Capital Cost (Kt)
DM Cost (K$/Year)
Total 5roduction Cost
(cents/ 1,000 gal)
Total Capital Cost (Kt)
OiM Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&H Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
0&« Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
O&M Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Gi« Cost (Kt/Year)
Total Production Cost
(csnts/1,000 cal)
Total Capital Cost (KS)
Qi.1 Cc=t iiCt/Ysar)
* r. * 3 1 -rnl'irfirn •".-,- f

. - - -
0.10 ug/L
Effluent (ug/L)
0.030 0.40 1.0
70.
21. 	
0.4 	
140. 	

39. 	
1.1 	 -
65. 	

64. 	 —
2.5 	
32. 	

100. 	 -
5.3 	
21.

200. 	
14.
14.

420. 	 —
37.
11.

850. 	
87. 	
10. 	

1300. 	
150.
9.5 	

1900. 	
220. 	
9.3 	

3600.
440.
3.8 	

14000. 	
2000.
8.2

27000. 	 	
i'-flij, 	 	
7 -a 	 	




0
97
37
0
250

63
L
110

120
5
61

210
10
42

430
27
30

940
74
24

2000
170
23

3300
290
21

4700
420
21

9000
850
1?

35000
3700
18

71000
3200
•7
Influent

1.0 ug/L
Effluent (ug/L)
.030 0.40 1.0
60.
19.
.9 0.4
130.

35.
.1 1.0
59.

57.
.0 2.2
29.

90.
4.6
18.

170.
12.
13.

350.
32.
9.6

700.
76.
8.6

1100.
130.
8.1

1600.
190.
7.9

2900.
390. 	
7.5

11000.
1800.
7.0

22000. 	
4100.
i.7 	




0.
99.
50.
1.
350.

95.
3.
160.

130.
7.
90.

320.
15.
63.

660.
39.
46.

1500.
110.
37.

3200.
250.
34.

5200.
420.
32.

7500.
610.
31.

14000.
1200.
29.

56000.
5300.
27.

110000.
11000.
- c


10.
Effluent
030 0
7 96
35
3 0
240

64
0 2
110

120
2 4
58

200
9
40

410
25
29

370
69
22

1900
160
21

3100
270
20

4300
400
19

3300
810
IS

32000
3500
17

:-6000
7700
i j


ug/L
(ug/L)
.40 i.O
90.
29.
.8 0.6
200."

53.
.0 1.6
39.

92.
.7 3.7
46.

160.
.9 7.9
31.

310.
20 .
22.

570.
54.
•'17.

1400.
130.
16.

2300.
220.
15.

3200.
320.
15.

£200.
i50.
14.

24000.
2:00.
13.

48000.
-3JUU.
•' •, i

-------
          Capital  costs were  divided  into  process  equipment cost,  support
          equipment cost, direct cost, and indirect cost.  The operating costs
          are divided into power, maintenance, labor, and administrative.

       -  The process  equipment included the  column shell,  column  internals
          (i.e. liquid distributor, liquid redistributor, and packing material
          support plate), packing material,  one blower, and one pump.

       -  The  support   equipment  included assembly and  installation of  the
          above process  equipment,  a  concrete air well which is  a foundation
          for the  packed column and  a  liquid reservoir, 200  feet of piping,
          instrumentation, air duct, and electrical connections.

       -  The total direct  cost included all equipment  installed  at the site
          and is the sum of the process and support equipment.

          The indirect  cost included  all non-physical items  required for the
          air stripping  system.   This includes  sitework,  design  engineering,
          contractor overhead and profit, legal and financial, interest during
          construction, and contingencies.

       -  The total capital cost is the sum of the direct and indirect costs.

     The  operating  cost  is  the  sum  of  power,  maintenance,   labor,  and

administrative costs.   The costs associated with each of these components were

estimated and described as follows:

          The total production  cost is  the  total annual cost  divided  by the
          volume of water treated per  year.

       -  The blower costs were based  on the projected volume of water treated
          per year.

       -  The maintenance costs were based on  10 percent and 4 percent  of the
          mechanical  and  non-mechanical  process   equipment  capital   cost,
          respectively.

       -  The  labor  cost  is based on  a  flat  rate of  0.3 cents per  1,000
          gallons of treated water and the volume of liquid treated per  year.

          The administrative cost is based on 20 percent and 25 percent  of the
          labor and maintenance cost respectively.
Summary

     The choice between GAC adsorption and packed column aeration for removing

SOCs from drinking water depends,  to a large extent, on the  economics  of the

two processes.   All  SOCs  considered in this document  were  identified  to  be

-------
adsorbable  with  the  exception  of  epichlorohydrin,  for  which  treatability
information  was  not  available.   Treatment  costs  for GAC  adsorption  show
relatively little variation between  contaminants.   As indicated in Section 5,
only 14 of the  29 SOCs were identified  to  be amenable for  treatment by packed
column aeration.  Heptachlor and toxaphene may be  amenable,  but  further data
is needed.  Packed column  facility costs for these  16 SOCs show a wider range
than GAC adsorption costs  for the same compounds.
     A comparison of GAC and packed column aeration facility costs is shown on
Figure 7-4  for DBCP  and  o-xylene.  For  DBCP, which is a well  adsorbed and
relatively  low volatile  pesticide,  GAC  adsorption  is  more economical  than
packed  column  aeration.    For  o-xylene,  which  is  moderately volatile  and
relatively  poorly  adsorbed,  packed  column  aeration  is  more  economical.
Therefore,  for the  16 SOCs  that  are  suitable  for  both  GAC  adsorption and
packed column  aeration,  a detailed site-specific evaluation  will  be required
to identify the most economical option.

-------
      700
      600
   LD
   g 500
   o
   •^-H
   7> 400
      300
   o
   LJ
      200
      100
        0
       0.001
                 \
                                DBCP
0.01
  0.1     '    1         10
AVERAGE  PLANT FLOW  (MGD)
100
i. ooo
NOTE:
95% 0-XYLENE Ci = 20,000 ug/L
99.5% DBCP REMOVAL CI = 20 ug/L
                                    GAG
                              	  PACKED COLUMN
                         COMPARISON OF COSTS
                PACKED COLUMN  VERSUS  GAC ADSORPTION
                                                        o
                                                        a
                                                        m

-------
                           8.0  REFERENCES
Adams,  J.  Q.;  R.  M.  Clark;  B.  W.  Lykins;  and P.  Kittredge;  Regional
Reactivation of Granular Activated Carbon J.AWWA, 5:38-41, 1986.

Aieta, E. M.;  Reagan,  K.  M.;  Lang, J. S. ;  McReynolds,  L.;  Rang, J.; and
Glaze,  W.  H.;  "Advanced  Oxidation  Processes  for  Treating Groundwater
Contaminated with  TCE and PCE:  Pilot-Scale  Evaluations."  J.  AWWA, May
1988.

Aly, O.  M.  and S.  D.  Faust;  "Removal of  2,4 Dichlorophenoxyacetic Acid
Derivatives from Natural Waters." J.AWWA, 57:221-230, 1965.

Arisman, R.  K.;  R. C. Musick;  J. D.  Zeff;  T.  C.  Crase;  "Experience in
Operation of  a  Ultraviolet-Ozone  (ULTROX)  Pilot  Plant  for Destroying
Polychorinated Biphenyls"  In: Industrial Waste  Influent, 35th Industrial
Waste Conference Proceedings, Purdue, May,  1980.

AWWA Organic Contaminant  Committee,  "Volatile Organic Chemical Treatment
Facilities" draft Nov. 1986.

Baker,  D.;   "Herbicide Contamination  in  Municipal Water   Supplies  in
Northwestern Ohio."  Final  Draft  Report  1983.  Prepared for Great  Lakes
National Program Office,  U.S. Environmental Protection Agency, 1983.

Bell, Jr., F.  A.;  D.  L. Perry;  J. K.  Smith, and S. C. Lynch; "Studies on
Home Water Treatment Systems." J.AWWA, pp. 126-130, April, 1984.

Becker,  D.  L.  and  S.  C.   Wilson;  "The  Use  of  Activated Carbon  for the
Treatment of  Pesticides  and  Pesticidal  Wastes." In:   Carbon Adsorption
Handbook (Chemisinoff, D.  H.  and  F.  Ellerbusch,  Eds.),  Ann Arbor Science
Publishers,  Ann Arbor, Michigan, 1978.

Bennett,  P.   J.  et  al;  "Removal of  Organic   Refractories by  Reverse
Osmosis" Proceedings  of  the 23rd Purdue  Industrial  Waste Conference,
Part 2, pp.  1000-1017, May, 1968.

Berkau,  E. E.;  C.  E.  Frank, and I A. Jefcoat;  "A Scientific Approach to
the  Identification and Control of Toxic Chemicals  in  Industrial Waste-
waters", AlChe Symposium Series No. 197, Volume 76, 1980.

Bernardin,  F.  E.  and  E.  M. Froelich;  "Practical Removal of Toxicity by
Adsorption".  Proceedings  of  the   30th  Annual  Purdue  Industrial  Wastes
Conference,  pp. 548-560,  Purdue University, Lafayette, Indiana, 1975.

Bilello, L.  J. and B.  A.  Beaudet;  "Evaluation of Activated Carbon by the
Dynamic  Minicolumn Adsorption  Technique"  In:    Treatment  of  Water  by
Granular Activated Carbon  (M. J. McGuire and  I.  H. Suffet, Eds), American
Chemical Society,  Washintgon, D.C., pp. 213-246, 1983.

Brown, L.;  K. C. C. Bancroft, and M.  M. Rhead; "Laboratory Studies on the
Adsorption of  Acrylamide  Monomer  by Sludge,  Sediments,  Clays,  Peat, and
Synthetic Resins",  Water Research 14:799-781, 1980.

                                 8-1

-------
Buescher, C.  A.;  J.  H.  Dougherty,  and R.  T.  Skrinde; "Chemical Oxidation
of Selected Organic  Pesticides". J.WPCF, Vol. 36, No. 8, 1964.

Cabasso, I.;  E. Klein;  C. Eyer, and J. Smith; "Trace Organic Contaminants
in  Drinking  Water;  Evaluation of  Semi-permeable Membranes  and Osmotic
Pumping  to  Achieve  Concentration",  Presentation before the  Division of
Environmental Chemistry (American Chemical Society) , pp. 204-210, 1974.

Canonie  Environmental  Services Corp., "Development of Treatment Measures
for  Ground  Water  Restoration",  Report for  Occidental  Chemical Company,
July, 1981.

Chemical Engineering and News.  Method Rids Agent Orange of TCDD Contami-
nation. 55(11) :25, 1977.

Chian, E.  S.  K.;  W. N.  Bruce,  and  H. H.  P.  Fang;  "Removal of Pesticides
by  Reverse  Osmosis".  Environmental  Science and  Technology,  9(l):52-59,
1975.

Connecticut Water Company — Field Data from Pilot Aeration Study for EDB
Removal — Windsor Locks, Connecticut, 1984.

Cohen, J. M.; L.  J.  Kamphake;  A.  E.  Lemke; C.  Henderson, and R. L. Wood-
ward;  "Effects  of Fish Poisons on Water  Supplies", Part  1,  Removal of
Toxic Materials J.AWWA,  55(12):1551-1566, 1960.

Cohen, J. M., G.  A.  Rourke, and R. L. Woodward;  "Effect of Fish Poisons
on Water Supplies",  Part 2, Odor Problems, J.AWWA, 55(l):49-62, 1961.

Committee Report;  "Organics Removal by Coagulation:  A Review of Research
Needs", J.AWWA 71(10):588-603,  1979.

Crittenden,  J.  C.;  P.  Luft;  D.  W.  Hand;  G.  Friedman;  Predicting the
Removal of Known  Organic Compounds  in Unknown  Mixtures and Total.-Organic
Halogen  in  Fixed-Bed Adsorbers.   Proceedings  of  the  1984 Environmental
Engineering Specialty Conference.

Crittenden,  J.  C.;  D.  W. Hand;  H.   Arora;  B.W. Lykins;  Design Consid-
erations for  GAC  Treatment of Organic Chemicals, J.  AWWA, 79(l):74-82,
1987(a).

Crittenden, J. C. ;  R.  D. Cortright;  B.  D.  Rick, S. Tang,  D.  L. Perram,
and T. J. Rigg; Removal of  Volatile Organic Chemicals from Air Stripping
Tower Off-gas Using Granular  Activated  Carbon;  Final  Report  to AWWARF,
February, 1987(b).

Croll, B. T.; G.  M.  Arkell, and R. P. J.  Hodge;  "Residues of Acrylamide
in Water", Water Research 8:989-993,  1974.
                                 8-2

-------
Cummins, M. D.;  "Field  Evaluation  of Trichloroethylene Removal by Packed
Column Air Stripping",  (Landsdale, Pennsylvania, August 10, 1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.;  "Field  Evaluation of Packed  Column  Air Stripping"  (Glen
Cove, New York, August 20, 1982, and December 14-16, 1982), USEPA, Office
of Drinking Water, Technical Support Division, 1982.

Cummins, M.  D.;  "Field Evaluation  of  1,1,1-Trichloroethane  Removal by
Packed  Column  Air Stripping"  (Dedham,  Massachusetts,  August 24,  1982),
USEPA, Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.;  "Field  Evaluation  of Trichloroethylene Removal by Packed
Column  Air  Stripping"   (Hartland, Wisconsin,  September 23,  1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.;  "Field  Evaluation  of Trichloroethylene Removal by Packed
Column  Air  Stripping"  (Wausau,  Wisconsin,  September 28,  1982),  USEPA,
Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.;  "Removal of Ethylene Dibromide  from Contaminated Ground
Water by Packed  Column  Air  Stripping,"  Lake Wales,  FL, April 1984, USEPA
Office of Drinking Water, Technical Support Division, August, 1984.

Cummins, M.  D. ,  "Field Evaluation  of  Packed  Column  Air  Stripping,"
Bastrop, LA,  February  1984,  USEPA Office  of Drinking  Water,  Technical
Support Division, May, 1985.

Cummins, M. D. and J. J.  Westrick,  "Packed Column Air Stripping Prelimi-
nary Design Procedure",  presented at Water  Pollution  Control Federation
Conference, Los Angeles, CA, October, 1986.

Cummins, M.  D.  and  J.   J.  Westrick,  "Feasibility of  Air  Stripping for
Controlling Moderately  Volatile  Synthetic Organic  Chemicals",  presented
at  American Water Works  Association  "Annual  Conference,  Kansas  City,
Missouri, 1987.

Cummins,  M.   D.,  Office   of   Drinking  Water,  TSD,   USEPA.   Personal
communication with Russell Ford, Malcolm Pirnie, Inc., 1988.

Dahl,  O.  T.;  "Occidental  Chemical  Company  at  Lathrop,  California,  A
Ground Water/Soil Contamination Problem and  a Solution",  USEPA,  National
Enforcement Investigations Center, Denver, Colorado, USA, 1985.

DeFilippi,  R.   P.;  V.  J.  Kyukonis;  R. J. Robey,  and  M Modell; "Supercri-
tical  Fluid  Regeneration of  Activated  Carbon  for  Adsorption of Pesti-
cides", Research Triangle Park, USEPA Document EPA-600/2-80-054,  1980.
                                 8-3

-------
Div.rrka and Bartilucci and Malcolm Pirnie, Inc., "Demonstration Treatment
Facility  at Greenport,  New York,  Phase II  Design Report"  for  Suffolk
County Department of Health Services, July 1987.

Dobbs,  R.  A.  and J. M.  Cohen;  "Carbon Adsorption Isotherms  for Toxic
Organics", Municipal Environmental Research Laboratory, Cincinnati, Ohio,
Report No. EPA-600/8-80-023, 1980.

Edwards, C. A.;  "Persistent  Pesticides  in the Environment", CRC Critical
Reviews in Environmental Control 1(2):7-68, 1970.

Edwards, V.  and P.  F. Schubert;  "Removal of 2,4-D  and  Other Persistent
Organic  Molecules  from  Water  Supplies  by  Reverse  Osmosis",  J.AWWA,
October, 1974.

El-Dib, M.  A.  and M.  I.  Badawy; "Adsorption of  Soluble  Aromatic Hydro-
carbons on Granular Activated Carbon", Water Research, 13:  225-258, 1979.

Environmental  Science  and Engineering,   "Study of  Effectiveness of Acti-
vated Carbon  Technology  for Removal  of Specific  Materials from Organic
Chemical Processes", EPA No. 68032610, 1981.

Environmental  Science  and  Engineering,  Inc.  (ESE) , "Evaluation  of  the
Treatability of  Ethylene  Dibromide  and  Dibromochloropropane by Activated
Carbon and Packed Column  Air Stripping"  Prepared for the Florida Depart-
ment of Environmental Regulation, 1983.

Fiessinger, R.,  J. Mallevialle,  and  A.  Bruchet;  "Fate  of Polymers in the
Treatment Process". AWWA Seminar Proceedings, Use of Organic Polyelectro-
lytes in Water Treatment, pp. 37-49, June, 1983.

Frissel, M.  J.;  "The  Adsorption of  Some Organic  Compounds,  Especially
Herbicides, on Clay  Materials". PUDOC,  Centrum  Voor Landbouwpublikaties
en Lanbouw Documentatic, Wageningen, Netherlands, 1961.

Fronk,  C.  A.;  "Destruction of Volatile  Organic  Contaminants in Drinking
Water by Ozone Treatment", Ozone Science  and Engineering,  9(3):265-288,
1987(a).

Fronk, C.  A.;  "Removal of Low Molecular Weight Organic Contaminants from
Drinking Water Using Reverse Osmosis  Membranes"  presented in AWWA Annual
Conference, Kansas City, June, 1987(b).

Gilbert, E.;  "Chemical  Changes and Reaction  Products  in  the Ozonization
of  Organic Water Constituents"  In;   Oxidation  Techniques in  Drinking
Water Treatment,  Office  of Drinking Water, Washington,  D.C.,  Report  No.
EPA-570/9-79-020, 1979.

Glaze,  W.  H.  and  Kang,  J.;  "Advanced  Oxidation  Processes  For Treating
Groundwater Contaminated with TCE and PCE: Laboratory Studies.", J. AWWA,
May 1988.
                                 8-4

-------
Griffin, R. A. and E. S. Chian; "Attenuation of Water-Soluble Polychlori-
nated  Biphenyls  by  Earth  Materials".  Illinois  State  Geological Survey
Division> 1979.

Hade, J.; Personal Communication.  Fremont,  Ohio  Water Treatment Plant to
ESE, Gainesville, Florida,  1984.

Hager, D. G.  and J.  L. Rizzo;  "Removal of  Toxic Organic From Wastewater
by Adsorption with Granular Activated Carbon". Presented at U.S. Environ-
mental  Protection Agency  Technology  Transfer  Session  on  Treatment  of
Toxic Chemicals, Atlanta, Georgia,  1974,  In;   Drinking Water and Health,
Vol. 2, Safe  Drinking  Water Committee, National Academy Press, Washing-
ton, D.C. , pp. 266, 1980.

Hand, D. W., Crittenden, J.C.,  and Thacker, W.E., "Simplified Models for
Design of  Fixed-Bed  Adsorption  Systems",  Jour.  Env. Engr.,  ASCE,  Vol.
110, No. 2, 1984.

Hansen, Robert E; "Experiences With Removing Organics from Water". Public
Works, October, 1977.

Harris, C. I. and G. F.  Warren;  "Adsorption and  Desorption of Herbicides
by Soil". Weeds, 12:120-126, 1964.

Hess, A., J. Dyksen, and H. J.  Dunn;  "Occurrence and Removal of Volatile
Organic Chemicals From Drinking Water", Cooperative Research Report, AWWA
Research Foundation,  1981.

Hinden, E.  et  al.;  "Organic Compounds Removed by  Reverse  Osmosis" Water
and Sewage Works, 1968.

Hoigne, J., and  Bader,  H.  "Ozonation of  Water:   Selectivity and Rate of
Oxidation of Soluble",  Ozone:   Source and Engineering, 1:73-85, 1979.

Hoigne, J.  and  H.  Bader;   "Rate  Constants of  Reactions  of  Ozone  with
Organic  and  Inorganic  Compounds  in Water -  I".  Water  Research,  17:
173-183, 1983.

Huang, J. C.; "Pesticides in Water:   Effect on Human Health". Journal of
Environmental Health, 34:(3/4):501-510, 1972.

Jank, B. E.  and P. J. A. Fowlie; "Treatment of a Wood Preserving Effluent
Containing Pentachlorophenol by Activated Sludge and Carbon Adsorption".
Proceedings of the  35th Industrial Waste Conference, Purdue University,
Lafayette, Indiana, 1980.

Kornegay, B.  H.; "Control  of  Synthetic  Organic Chemicals  by Activated
Carbon-Theory,  Application,  and  Regeneration  Alternatives,"  Westvaco
Corp.,  Covington,  Virginia,  Presented  at  the   Seminar on  Control  of
Organic Chemicals in Drinking Water,  sponsored by the USEPA, February 13
and 14, 1979.
                                 8-5

-------
Korneva,  L.  V.;  Y.   U.  Avondonin,  and  V.   M.  Olevskii;  "Removal  of
Chlorobenzene  from Wastewaters  by  the Reverse  Osmosis  Method",  Khim,
Prom-St. Moscow, 1976.

Lafornara, J. P.;  "Cleanup After Spills of Toxic Substances". J.WPCF, pp.
617-627, April,  1978.

Lawrence,  J.  and H. M. Tosine; "Adsorption of Polychlorinated Biphenyls
from  Aqueous Solutions  and  Sewage".  Environmental  Science and  Tech.,
Vol. 10, No. 4,  1976.

Legube,  B.;  S.  Guyon; H. Sugimitsu,  and  M. Dore;  "Ozonation of  Some
Aromatic Compounds in Aqueous Solution:   Styrene,  Bezaldehyde, Naphtha-
lene,  Diethylphthalate,  Ethyl and Chloro  Benzenes",  Ozone:   Science and
Engineering, 5:151-170, 1983.

Lettinga, G.; W. A. Beverloo, and W. C. van Lief; "The Use of Flocculated
Powdered  Activated   Carbon   in   Water  Treatment".  Prog.  Wat.  Tech.,
10(1-1/2):537-554, 1978.

Love,  Jr.,  O.   T.;  "Treatment Techniques for  the  Removal of  Organic
Contaminants from Drinking Water" In;  Manual of Treatment Techniques for
Meeting  the  Interim   Primary  Drinking Water  Regulations,  Water  Supply
Research  Division, Cincinnati,  Ohio,  USEPA   Document  EPA-600/8-77-005,
1977.

Love,  O.  T.  and R.  G. Eilers; "Treatment of Drinking  Water  Containing
Trichloroethylene  and Related Industrial  Solvents".  J.AWWA, 74:413-425,
August, 1982.

Love,  O. T.;  B.  W. Lykins;  R.  M.  Clark and  R.  J.  Miltner;  Research for
the Treatment of Organics in Drinking  Water.   Proceedings Environmental
Engineering Specialty  Conference, 1984.

Malaiyandi, M. ,  P. Blais, V. S.  Sastri;  "Note:   Separation of Lindane
from Its Aqueous Solutions by Reverse Osmosis System", Separation Science
and Technology 15(7);1483-1488, 1980.

Malcolm Pirnie,  Inc.   Letter  Report  on Long-Term Packed Column Aeration
Testing, Pheonix, Arizona, April 22, 1985.

McCarty, P.  L.,  and   M.  Reinhard;  "Trace  Organics Removal by Advanced
Wastewater Treatment". J.WPCF, 52(7):1907-1921, 1980.

McCarty, P.  L.;  K.  Sutherland;  J.  Graydon,  and M.  Reinhard;  "Volatile
Organic Contaminants Removal by Air Stripping", Civil Engineering Depart-
ment, Stanford University, California, 1977.

Miltner, Richard J. ,  Personal communication,  Organic Control Branch, EPA
Drinking Water Division, Cincinnati, Ohio, 1986.

Miltner, R.  J.  and C. A.  Fronk;  "Removal of  Synthetic  Organic Contami-
nants from Drinking Water", Progress Report DWRD, EPA, July 1985(a).

                                 8-6

-------
Miltner, R. J. and C.  A.  Fronk;  "Treatment of Synthetic Organic Contami-
nants  for  Phase  II  Regulations",  Internal  Report  DWRD,  EPA,  December
1985(b).

Miltner, R. J.; T. F.  Speth; J.  M.  Reinhold;  "Interim Internal Report on
Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987(a).

Miltner, R. J.; T. F.  Speth;  D.  D. Endicott; J.  M.  Reinhold; "Final In-
ternal Report on Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987 (b).

Miltner, R. J.; Baker, D.  B.;  Speth, T. F.;  Fronk,  C.  A.;  "Treatment of
Seasonal Pesticides in Surface Waters", J. AWWA, January 1989.

Morgeli, B.;  "The Removal of  Pesticides  from  Drinking Water".  Sulzer
Tech. Review, Vol. 54, No. 2,  1972.

Moran,  D.;  "Report  on  Granular Activated Carbon  Treatment Units for
Removal of Aldicarb Residues in Private Wells of Suffolk County", Suffolk
County Health Services, Suffolk County, New York, 1983.

Mumford, R. L. and J.  L.  Schnoor;  "Air Stripping of Volatile Organics in
Water", AWWA Annual Conference pp. 601-617, 1982.

O'Brien and Gere,  Engineers,  Inc.; "Hudson River Water PCB Treatability
Study". Syracuse,  New York, 1982.

Ottinger,  R.  S.  et al.j  "Recommended Methods of Reduction, Neutraliza-
tion,  Recovery  or  Disposal  of   Hazardous   Wastes",  Volume 5,   USEPA
670/2-73-053-3, 1973.

Pirbazari,  Massoud, et al.; "Pilot-Plant Investigations of the Adsorption
of  1,2-Dichloroethane and l,2-Dibromo-3-Chloropropane  From Water  Sup-
plies", Fundamentals of Adsorption, Proceedings of Engineering Foundation
Conference, pp. 441-449, May,  1983.

Regunathan, P., W. H. Beauman, and E. G. Kreusch; "Efficiency of Point of
Use Treatment". J.AWWA, January,  1983.

Robeck, G.  G.; K. A. Dostal; J.  M.  Cohen,  and J. F.  Kreissl; "Effective-
ness of  Water Treatment  Processes in  Pesticide Removal".  JAWWA 57(2):
181-199, 1965.

Rosen, A.  A.  and F. M.  Middleton;  "Chlorinated  Insecticides in Surface
Waters". Anal. Chem.,  31:1729-1732, 1959.

Roth,  J.  A. ,  and  D.   E.  Sullivan;  "Kinetics  of Ozone  Decomposition  in
Water", Ozone:  Science and Engineering, 5:37-49, 1983.

Ruggiero, D. D., "Removal of Organic Contaminants from the Drinking Water
Supply  at  Glen  Cove,  New  York",  USEPA  Document,  EPA-600/2-84-029,
January, 1984.
                                 8-7

-------
Ruggiero, D. D.  and  W.  A.  Ferge;  "Field Evaluation of Aeration Processes
for  Organic  Contaminant  Removed  from Groundwater",  Proceedings  AWWA
Annual Conference, Las Vegas, Nevada, June 5-9, 1983, pp 801-822.

Selleck, R. E.; f. H. Pearson; V. Diyamandoglu; Z. G. Ungun; "Application
of Air Stripping Technology for the Removal of DBCP Residues in Community
and  Industrial  Water Supplies",  Report to Occidental  Chemical  Company,
Lathrop, California, 1983.

Singley, J. E.; B. A. Beaudet, and A. L. Ervin; "Use of Powdered Activat-
ed  Carbon for  Removal  of  Specific Organic  Compounds",  Proceedings  of
Seminar, Controlling Organics in  Drinking  Water,  AWWA Annual Conference,
San Francisco, California, 1979.

Singley, E.  and R.  Moser; "Evaluation  of  Alternatives",  In;  Occurrence
and  Removal of Volatile  Organic  Chemicals  from  Drinking Water,  AWWA
Research Foundation, Denver, Colorado, 1983.

Snoeyink, V.;  "Control  Strategy  — Adsorption Techniques",  In:  Occur-
rence and Removal of Volatile Organic Chemicals from Drinking Water, AWWA
Research Foundation, Denver, Colorado, 1983.

Sontheimer,  H.;  "Considerations on the Optimization  of Activated Carbon
Use in Waterworks". USEPA Document, EPA-600/9-76-030.

Steiner, John  IV and J.  E.  Singley; "Methoxychlor  Removal from Potable
Water". J.AWWA, 71:284-286, May 1979.

Stover,  E.;   "Removal  of Volatile Organics  from  Contaminated  Ground
Water", GWMR, pp. 57-62, 1982.

Suffet, I. H.; A. Wickland; P. R. Cairo; "The Effect of a Pollution Event
on the Ability of Granular Activated Carbons and Resins to Remove Chlori-
nated  Organics  from  Treated Drinking  Water",  In;   Water Chlorination
Environmental Impact  and Health Effects, Vol. 3, Ann Arbor Science,  Ann
Arbor, Michigan, 1980.

Tanada, S.  and K. Boki;  "Adsorption of Various Kinds  of  Offensive Odor
Substances  on  Activated Carbon  and  Zeolite".  Bull.  Environ.  Contarn.
Toxicol. 23:524-530, 1979.

TerKonda, P. and D.  W. Thompson;  "Treatment of  Groundwater Contaminants
Resulting from  the Impoundment of Hazardous Wastes".  Presented at ASCE
Division of Environmental Engineering National Conference,  July, 1981.

Treybal, R. E.; Mass Transfer Operations, McGraw Hill Book Co., New York,
New York, 1980.

Troxler, W.  L.; C. S.  Parmele,  and D.  A. Barton;  "Survey of Industrial
Applications of Aqueous Phase Activated Carbon Adsorption from Manufac-
ture   of   Organic  Compounds".   Draft   EPA  Contract   No.  68-03-2568,
                                 8-8

-------
USEPA Office of Drinking Water,  "Review of Treatability Data for Removal
of  Twenty-five  Synthetic  Organic  Chemicals  from Drinking  Water",  ESE,
1984.

USEPA  National  Primary  Drinking  Water  Regulations,   Synthetic  Organic
Chemicals,  Inorganic  Chemicals,   and  Microorganisms,  Proposed  Rule,
Federal Register, November 13, 1985.

Versar, Inc.; "PCBs in the United States Industrial Use and Environmental
Distribution".  EPA  560/6-76-005,   Office  of Toxic  Substances,  United
States Environmental Protection Agency, Washington, D.C., 1976.

Warner, H.  P.;  Cohen,  J. M.;  Ireland, J.  C.; "Determination  of Henry's
Law  Constants of  Selected Priority  Pollutants",  Municipal Environmental
Research   Laboratory,   Office   of  Research  and  Development   USEPA,
Cincinnati, Ohio, April 1980.

Weber, W.  J.;  "Pretreatment of  Industrial Wastes with Activated Carbon
for  Removal  of  Priority   Pollutants".  Applications   of  Adsorption  to
Wastewater Treatment Vanderbilt University, Nashville, Tennessee, 1981.

Weber, W.  J. ;  M.  Pirbazari and M.  D. Herbert;   "Removal  of Halogenated
Organic and THM Precursor Compounds from Water by Activated Carbon", AWWA
Annual Conference Proceedings Part I, pp 15-1, 1-31, 1978.

Weber,  W.  J.;  M.   Pirbazari;   "Adsorption  of   Toxic  and  Carcinogenic
Compounds  from  Water",  AWWA Journal  of Research  and  Technology, April,
1982.

Windholz,  M. , The Merck Index,  An Encyclopedia of Chemicals  and Drugs,
10th Edition, Merck & Company, Inc., Rahway, New Jersey, 1983.

Yocum, Floyd H.;  "Oxidation of Styrene with  Ozone in  Aqueous Solution",
111:  Ozone/Chlorine  Dioxide  Products of  Organic  Material,  International
Ozone Institute, Cleveland, Ohio, 1978.

Zimmer, G.; Haist, B.; and H. Sontheimer; "The Influence of Preadsorption
of   Organic  Matter   on   the  Adsorption  Behavior  of   Cholorinated
Hydrocarbons" Proceedings  of the Annual AWWA Conf. on  June  14-18,  1987,
in Kansas  City, Missouri.  (1987b).

Zimmer, G.; Crittenden,  J.  C.; and H.  Sontheimer;  "Design Consideration
for  Fixed-Bed  Adsorbers  that  Remove  Synthetic Organic Chemicals in the
Presence of Natural Organic Matter," Proceedings of the Annual AWWA Conf.
on June 19-23, 1988, in Orlando, Florida.  (1988).
                                 8-9

-------
           APPENDIX A




ESTIMATION OF CARBON USAGE RATES

-------
                                  APPENDIX A
                        ESTIMATION OF CARBON USAGE RATE
From Chapter 4 (isotherm evaluations)
          C.U. Rate =   C
     Where:    C = SOC equilibrium concentration  (mg/L)
               K, 1/n = isotherm constants
     Or:
     Carbon usage (Ibs/thousand gallons) =    C       (g/L)   x  8.34  (Ibs/KG)
                                           K(ci)l/n                  (g/D
     For example:
     SOC = PCB (Arochlor 1254)
     K = 13,724  (mg/g) (L/mg) 1/n (From Table 4-1)
     1/n =1.03  (From Table 4-1)
     Influent concentration = 5 ug/L = 0.005 mg/L
     Carbon Usage =    (0.005)(mg/L) x 8.34  (Ibs/KG)/(g/L)
                    13,724 (mg/g) (L/i
                  = 0.00071 Ibs/KGAL
13,724 (mg/g)(L/mg)1/n x  (0.005(mg/L))1*°3
                                   -1-

-------
          APPENDIX B -




SUMMARY OF GAC ISOTHERM STUDIES

-------
                                                                        APPENDIX B
                                                             SUMMARY OF GAC ISOTHERM STUDIES (1)
   SOC

Alachlor



Aldicarb


Atrazine

Carbofuran


Chlordane
DBCP
Mol. Wt.

  269.8



  190.3


  215.7

  221.3


  409.8
Cis-1,2-                97.0
dichloroethylene
                        236.4
 o-dichlorobenzene       147.0
Water Type (2)    Temperature
PH
1/n
                    1/n                 1/n
(un»le/g)[(L/umole)]       (mg/g)[(L/mg)]
Distilled
River Water
Ground Water
Distilled
River Water
Ground Water
Distilled
River Water (filtered)
Distilled
Distilled
Distilled
Distilled
Ground Water
Ground Water
River Water
Distilled
River Water
Ground Water
Distilled
Distilled
River Water
Room
Room
Room
Room
Room
Room
Room
Room
Room
-
Room
14 C
Room
14 C
Room
Room
Room
•
Room
-
Room
6.2
8.0
7.7
6.3-6.6
8.2
7.6
4.3
7.9-8.2
-
5.3
6.6-8.0
7.5-8.0
8.0
6.3-6.4
8.0
6.2-6.6
8.1-8.5
6.5
5.6-5.8
5.5
8.1
0.26
0.38
0.33
0.40
0.41
0.36
0.41
0.36
0.33
0.38
0.59
0.56
0.63
0.36
0.64
0.51
0.46
0.60
0.38
0.43
0.58
1275.0
328.0
1457.0
360.0
194.0
787.0
673.0
376.0
346.0
-
30.5
47.0
23.0
16.7
29.4
465.0
206.0
•
865.0
-
1039.0
483.55
145.58
605.65
133.01
72.88
294.86
276.41
143.21
190.33
245.00
11.72
16.83
9.70
3.75
12.69
229.35
94.54
1260.00
263.49
129.00
464.41
      Reference

      Miltner (1987)
      Miltner (1987)
      Miltner (1987)

      Miltner (1987)
      Miltner (1987)

      Miltner (1987)

      Miltner (1987)
      Miltner (1987)

      Miltner (1987)
Dobbs and Cohen (1980)

      Miltner (1987)
      Miltner (1987)
      Miltner (1987)
      Miltner (1987)
      Miltner (1987)

      Miltner (1987)
      Miltner (1987)
  Canonie Environmental
      Services (1981)

      Miltner (1987)
Dobbs and Cohen (1980)
      Miltner (1987)

-------
   SOC               Hoi. Ut.

1,2-dichloropropane    113.0
2.4-0
Ethyl benzene
EOB
Heptachlor
L i ndane
Methoxychlor
221.0
106.2
187.9
373.5
Heptachlor Epoxide     389.8
290.9
345.7
                Water Type (2)     Temperature
PH
1/n
                    1/n                 1/n
(umole/g)[(L/umole))      (mg/g)[(L/mg)]
Reference
Distilled Room
River Water Room
Distilled
Distilled (3) Room
Distilled
Distilled Room
Distilled 13.8 C
Distilled
Distilled Room
River Water Room
Distilled 10 C
Distilled
Ground Water

Distilled
Distilled
Distilled (4)
Distilled (4) Room
Distilled
Distilled
Distilled Room
River Water (filtered) Room
Distilled (5) Room
Tap Water
6.1-7.3
8.1
5.3
.
7.0
5.6-6.9
7.5-8.0
-
6.2-7.1
8.0
6.0
7.0
5.9

7.0
5.3

-
7.0
5.3
4.2-6.9
7.8-8.1
-
-
0.59
0.48
0.60
0.27
0.56
0.53
0.29
0.40
0.46
0.54
0.46
0.97
0.35

0.97
0.39
0.92
0.75
0.55
0.70
0.43
0.39
0.36
0.46
46.6
35.8
-
194.0
-
507.0
694.0
-
53.9
69.3
118.0
-
-

.
-
1110.0
2020.0
-
-
606.0
455.0
223.0
-
19.06
11.52
5.86
64.46
118.00
176.69
141.19
100.00
21.85
32.12
47.84
85.70
9.00

1158.00
114.00
1025.91
1596.14
1660.00
1038.00
299.75
214.21
112.99
136.00
Miltner (1987)
Hiltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Aly and Faust (1965)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Miltner (1987)
Miltner (1987)
Miltner (1987)
MPI (1986)
Canonie Environmental
Services (1981)
MPI (1986)
Dobbs and Cohen (1980)
Dobbs and Cohen (1980)
Miltner (1987)
MPI (1986)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Steiner and Singley (1979)

-------
soc
Hoi. Ut.
Water Type (2)    Temperature
pH
1/n
                    1/n                 1/n
(umole/g)[(L/umole)]       (mg/g)[(L/mg)l
                                                                                                                                              Reference
Monochlorobenzene 112.6


PCBs
- Aroclor 1016 188.0
- Aroclor 1254 326.0

Pentachlorophenol 266.4


Silvex 255.5
Styrene 104.0
Tetrachloroethylene 165.8

Toluene 92.1




Toxaphene 412.0


Distilled
River Water (filtered)
Distilled

Organic Free Water
Organic Free Water
Distilled
Distilled
River Water
Distilled
Distilled
Distilled
Distilled

Distilled
Ground Water
Distilled
Distilled
Distilled
Distilled
Distilled
Distilled
Room
Room
-

-
-
Room
Room
Room
-
Room
Room
Room

Room
Room
13.8 C
-
-
Room
Room
-
6.5
8.0
7.4

-
-
7.0
4.6-6.8
8.1
7.0
7.0
9.4
5.1-7.6
5.3
4.6-6.7
7.5
7.7
-
5.6
7.0
-
-
0.35
0.31
0.99

0.66
1.14
1.03
0.34
0.37
0.42
0.38
0.48
0.52
0.56
0.45
0.37
0.33
0.30
0.44
0.74
0.26
0.25
418.0
381.0
-

-
-
13270.0
1062.0
403.0
-
479.0
1083.0
341.20
-
356.0
348.0
476.0


1182.0
128.0

101.06
84.41
91.00

328.50
1920.00
13723.80
443.53
173.97
150.00
205.55
333.80
143.00
50.80
95.91
76.56
96.33
96.00
26.10
938.62
66.41
364.40
Miltner (1987)
Hiltner (1987)
Dobbs and Cohen (1980)

Weber and Pirbazari (1982)
Weber and Pirbazari (1982)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Bernadin et al (1975)

-------
   soc
Trans-1,2-
dichloroethylene
Xylenes
  o-
  P-
Notes:
Hoi. Ut.

   97.0



  106.2
Water Type (2)    Temperature
                                                                         pH
1/n
                    1/n                 1/n
(umole/g)[(L/umole)]       (mg/g)[(L/mg)J
Reference
Distilled
River Water
Distilled
Distilled
Ground Water
Distilled
Distilled
Distilled
Distilled
Distilled
Ground Water
Distilled
Room
Room
•
Room
Room
13.8 C
-
Room
13.8 C
Room
Room
-
6.3-6.7
7.6
6.7
6.3-6.45
7.6
7.6
-
6.7
7.5-8.0
6.9
6.4
7.3
0.45
0.39
0.51
0.47
0.47
0.26
0.22
0.75
0.25
0.42
0.46
0.19
50.5
38.5
•
603.0
838.0
897.0
-
410.0
1043.0
740.0
611.0

13.99
9.27
3.05
183.69
255.27
170.61
120.00
234.03
193.98
201.51
182.00
85.00
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
Miltner (1987)
Miltner (1987)
Miltner (1987)
EL-Dib and Badaway (1979)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Miltner (1987)
Dobbs and Cohen (1980)
            "-" = Not Reported
            Carbon type = Filtrasorb 400 unless otherwise noted.
            Carbon type = Aqua Nuchara
            Carbon type = Filtrasorb 300
        5.  Carbon type = Nuchar special

-------
                APPENDIX C





SUMMARY OF PILOT AND FULL-SCALE GAG STUDIES

-------
               APPENDIX C
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
//\ Crtlnti/in nnrl
l**j solution anu
SOC/Type Source of Data Reference Organic Matrix
Alachlor
F EPA Study Baker (1983) alachlor
Fremont, OH atrazine
Aldicarb
P Suffolk County, Moran (1983) aldicarb
NY carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
aldicarb
carbofuran
Concentration (ug/L)
(min) Influent Effluent

9 0.7-5 0.1-0.7
9 0.5-8 0.5-1.5

21 7
3
105 7
25
53 7
42
262 7
9
105 7
24
151 7
57
64 7
25
36 7
NO
GAC
USSQG Rfltc
(lb/1,000 gal)

-

1.04
.1 .04
0.54
0.54
0.26
0.26
1.12
1.12
0.35
0.35
1.38
1.38
0.39
0.39
0.56
0.56

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and EBCT
SOC/Type Source of Data Reference Organic Matrix (min)
Aldicarb Sulfone
P Suffolk County, Miltner (1987) aldicarb sulfone 15
NY
aldicarb sulfone 10
aldicarb sulfone 5
5
aldicarb sulf oxide 5
5
carbofuran 5
1,2-dichloropropane 5
5
Aldicarb Sulfoxide
P Suffolk County, Miltner (1987) aldicarb sulfoxide 15
NY
aldicarb sulfoxide 10
aldicarb sulfoxide 5
5
Concentration (ug/L)
Influent
17.5
17.5
19.5
19.5
29.5
29.5
20.5
20.5
8.5
34.1
34. 1
16
16
16.5
16.5
20.5
20.5
Effluent
4.4
13.1
4.9
14.6
7.4
22.2
5.1
15.4
2.1
8.5
25.6
4.0
12.0
4.1
12.1
5.1
15.4
GAC
Usage Rate
(lb/1,000 gal)
.195
.147
.200
.131
.268
.142
.292
.129
.089
.316
.133
.196
.138
.196
.128
.292
.129

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
Concentration (ug/L)
(4)
SOC/Type





Chlordane
F


(5)
P


DBCP
P


P


F

Solution and
Source of Data Reference Organic Matrix
aldicarb sulfone

carbofuran
1,2-dichloropropane


Hazardous Material LaFornara (1978) chlordane
Spills Treatment heptachlor
Strongstown, PA dieldrin and aldrin

Gulf South Research, Bell et al (1984) chlordane
Inc. p-dichlorobenzene
hexach I orobenzene

Lathrop, CA Canonic Environ- EDB
mental Services sulfolane
Corp. (1981) DBCP
University Research Pirabarzari, DBCP
Ueber, et al DCE
(1983)
San Joaquin Valley, O'Dahl, Thomas DBCP
CA (1985) EDB
EBCT
(min)
5
5
5
5
5

17
17
17

-
-
-

30
30
30
10
5

-
-


Influent
29.5
29.5
8.5
34.1
34.1

13
6.1
19.5

50
10
10

7.1-10.8
1,340-2,800
531-1.566
18
21

71-184
8-19


Effluent
7.4
22.2
2.1
8.5
25.6

.35
.06
<.59

2.5-8
0.1-5.5
ND

ND
2,000
25
ND
ND

<.1
ND
GAC
Usage Rate
(lb/1,000 gal)
.268
.142
.089
.316
.133

59.2
59.2
59.2

.925
.925
.925

<.69
3-3.7
1.5
<.01
<1.93
but >.66
.31
.31

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
Concentration (ug/L)
(4) Solution and EBCT
SOC/Type Source of Data Reference Organic Matrix (min)
0-dichlorobenzene
F Orange County McCarty & Reinhard o-dichlorobenzene
Water District (1980) chlorobenrene-o-xylene
ethylbenzene
o-dichlorobenzene
chlorobenzene-o-xylene
m-xylene
ethylbenzene
styrene
1,2-dichloropropane
P Suffolk County, Miltner (1987) 1,2-dichloropropane 15
NY
1,2-dichloropropane 10

1,2-dichloropropane 5
5
aldicarb sulfoxide 5
5
aldicarb sulfone 5
5


Influent

.01
.09
.06
.02
.11
.05
.02
.03

20
20
22
22
34.1
34.1
20.5
20.5
29.5
29.5


Effluent

.002
.049
.033
.002
.041
.025
.017


5
15
5.5
16.5
8.5
25.6
5.1
15.4
7.4
22.2
GAC
Usage Rate
(lb/1,000 gal)

2.4
2.4
2.4
1.2
1.2
1.2
1.2


.225
.165
.249
.152
.316
.133
.292
.129
.268
.142
            carbofuran
8.5
                                                             2.1
.089

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
                                              Concentration (ug/L)
GAC
(<») solution ana
SOC/Type Source of Data Reference Organic Matrix
Dichloroethylene
P University Research Pirabarzari, DBCP
Weber, et a I DCE
(1983)
P USEPA - DWRD Love & Eilers cis-1,2-DCE
New Hampshire (1982) TCE
Connecticut Love & Eilers cis-1,2-DCE
(1982) TCE
1.1,1-TCA
P Wausau, Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1.2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1.2-DCE
ttll.1
(min)

10
5

9
9
-
-
-
32
32
21
21
10
10
5
5
3
3
1
1

Influent

18
21

6
120-276
2
1-10
38
55
55
75
75
88.1
88.1
61
61
72.8
72.8
79.8
79.8

Effluent

ND
ND

.1
ND
.1
.1
.1
14
42
19
56
22
66
15
46
18
55
20
60
usage KBIB
(lb/1,000 gal)

<.01
<1.93
but >.66
.254
NC
.122
NC
NC
.262
.194
.252
.220
.294
.176
.35
.174
.476
.187
.49
.125

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and
SOC/Type Source of Data Reference Organic Matrix
ethyl benzene
ethyl benzene
toluene
toluene
m-xylene
m-xylene
o/p-xylene
o/p-xylene
P Great Miami Aquifer, Miltner (1987) cis-1,2-DCE
Ohio cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
F Wausau. Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
cis-1,2-DCE
EBCT
(min)
1
1
1
1
1
1
1
1
6.2
6.2
6.2
6.2
12. 4
12.4
7.4
7.4
12.7
12.7
Concentration (ug/L)
Influent
4.5
4.5
24.55
24.55
5.45
5.45
9.0
9.0
25.72
25.72
19.35
19.35 ,
20.84
20.84
95.4
95.4
77.4
77.4
Effluent
1.13
3.34
6.1
18.4
1.36
4.09
2.25
6.75
6.4
19.3
4.8
14.5
5.2
15.6
23.9
71.6
19.4
58.1
GAC
Usage Rate
(lb/1,000 gal)
.071
.010
.066
.027
.069
.012
.172
.013
.463
.206
.464
.257
.421
.266
.434
.247
.299
.199

-------
           APPENDIX C (continued)
SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
(4) Solution and
SOC/Type Source of Data Reference Organic Matrix
EDB
P Lathrop, CA Canonic Env. EDB
Services, Inc. Sulfolane
July, 1983 DBCP
ESSE, Inc., 1981 EDB
F San Joaquin Valley, Thomas 0. Dahl DBCP (ground water)
CA (1985) EDB (ground water)
Ethyl benzene
P Uausau, Wisconsin Miltner (1987) cis-1,2-DCE
cis-1,2-DCE
ethyl benzene
ethyl benzene
toluene
toluene
m-xylene
m-xylene
o/p-xylene
o/p-xylene
EBCT
(min)
30
30
30
•
-
1
1
1
1
1
1
1
1
1
1
Concentration (ug/L)
Influent
7.1-10.8
1,340-2,800
531-1,566
96
45
90
71-184
8-19
79.8
79.8
4.5
4.5
24.55
24.55
5.45
5.45
9.0
9.0
Effluent
ND
2,000
25
6.3
5.5
8.9
<.1
ND
20
60
1.13
3.34
6.1
18.4
1.36
4.09
2.25
6.75
GAC
Usage Rate
(lb/1,000 gal)
<.69
3-3.7
1.5
.27
.11
.13
.31
.49
.125
.071
.010
.066
.027
.069
.012
.172
.013

-------
                                         APPENDIX C  (continued)
                               SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES
1 1 \ Cnliiti r\n nnrl CDPT
{H J duiui ion ana CDL> 1
SOC/Type Source of Data Reference Organic Matrix (min)
F Orange County McCarty & Reinhard o-dichlorobenzene
Water District (1980) chlorobenzene-o-xylene
ethylbenzene
o-di ch I orobenzene
chlorobenzene-o-xylene
m-xylene
ethytbenzene
styrene
Concentration (ug/L)
Influent
.01
.09
.06
.02
.11
.05
.02
.03
Effluent
.002
.049
.033
.002
.041
.025
.017
.018
GAC
US396 RdtG
(lb/1,000 gal)
2.4
2.4
2.4
1.2
1.2
1.2
1.2
1.2
Lake Constance,
Switzerland
Lindane

  P


Methoxychlor

  P


PCBs - polychlorinated biphenyls

  F
Morgeli (1972)
lindane
                      Steiner & Singley    methoxychlor
                      (1979)
Hazardous Material    Lafornara (1978)     PCB-aroclor 1242
Spills Treatment
Trailer Seattle. WA

New York State        O'Brien & Gere       PCS
                      (1982)
                                              30-40
                                                                                      7.5
                                                                                              (6)
50
50
50
1
5
10
.014
2.6
.08
ND
ND
ND
                                               <.075
                                                                                                        <9.92

-------
                                                           APPENDIX C (continued)
                                                SUMMARY OF PILOT AND FULL-SCALE  GAC  STUDIES
// \
I*)
SOC/Type Source of Data Reference
Concentration (ug/L) GAC
Organic Matrix (min) Influent Effluent (lb/1,000 gal)
Pentachlorophenol

  P



  P

Styrene

  F
Toxaphene

  F



M-xylene

  F
Hazardous Material
Spills Treatment
Trailer Seattle, WA

Thunderbay, Ontario   Jank (1980)
                     pentachlorophenol
                     pentachlorophenol
Orange County
Water District
Hazardous Material
Spills Treatment
Trailer Seattle, WA
                 Orange County
                 Water District
McCarty & Reinhard   o-dichlorobenzene
(1980)               chlorobenzene-o-xylene
                     m-xylene
                     ethylbenzene
                     styrene
Lafornara (1978)     toxaphene
                      McCarty & Reinhard   o-dichlorobenzene
                      (1980)
                     chlorobenzene-o-xylene
                     m-xylene
                     ethylbenzene
                     styrene
                                                                                    (7)
10,000
                                                         3.4
             .03
<82.3
 2.24
.02
.11
.05
.02
.03
(8)
36
.02
.11
.05
.02
.03
.002
.041
.025
.017
.018

<1
.002
.041
.025
.017
.018
.2
.2
.2
.2
.2

<72
1.2
1.2
1.2
1.2
1.2

-------
Notes:
             1.  "-" = Not Available
             2.  "NC" = Not Calculated
             3.  "NO" = Not Detectable
             4.  Legend:  F = full scale; P = pilot scale
             5.  Culligan filters
             6.  Different carbon types used.
             7.  Influent to diatomaceous earth.
             8.  Influent to mixed media filter.

-------
         APPENDIX D




CARBON USAGE RATE COMPARISON

-------
                       APPENDIX D
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
T r*f 1 1 lAn* C f f 1 1 lap**
inriueni cTTiuent
Compound (ug/L) (ug/L)
Aldicarb 19.9 0.5
2.5
7.5
12.5
17.5
19.9
cis-1,2-Dichloroethylene 79.8 0.798
20
60
79.8
72, R 0.7?8
18
55
72.8
61.0 0.61
15
46
61
88.1 0.881
22
66
88.1
75.0 0.75
19
56
75
55.0 0.55
14
42
55
25.72 0.2572
6.4
19.3
25.72

Carbon
Type I (1)
0.00677
0.00653
0.0062
0.00593
0.00544
0.00452
infinite
0.49
0.114
0.038
0.442
0.205
0.139
0.076
0.241
0.17
0.134
0.089
0.217
0.188
0.168
0.133
0.18
0.168
0.16
0.141
0.149
0.144
0.139
0.127
0.2
0.174
0.148
0.108

Usage Rate (Ibs/Kgal)
Type I MX (2) Type IVx (3)
0.301
0.193
0.142
0.124
0.113
0.109
infinite
0.49
0.125
0.092
2.27
0.476
0.187
0.145
0.708
0.35
0.174
0.139
0.433
0.294
0.176
0.149
0.296
0.252
0.22
0.175
0.318
0.262
0.194
0.172
1.23
0.463
0.206
0.161

Paf in I f f v
KSl IO IMA
or IVx :I
44.46
29.56
22.90
20.91
20.77
24.12
0.00
1.00
1.10
2.42
5.14
2.32
1.35
1.91
2.94
2.06
. 1.30
1.56
2.00
1.56
1.05
1.12
1.64
1.50
1.38
1.24
2.13
1.82
1.40
1.35
6.15
2.66
1.39
1.49

PRTT
COU 1
(min)
12.0
12.0
12.0
12.0
12.0
12.0
1.01
1.01
1.01
1.01
3.09
3.09
3.09
• 3.09
5.08
5.08
5.08
5.08
10.35
10.35
10.35
10.35
21.18
21.18
21.18
21.18
32.25
32.25
32.25
32.25
6.20
6.20
6.20
6.20

TfiP
1 UL
(mg/L)
—
...
...
...
...
—
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
6.00
6.00
6.00
6.00


Water
Source
Suffolk CU
Suffolk CU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Great Miami ,
Great Miami ,
Great Miami ,
Great Miami ,

-------
                    APPENDIX D (continued)
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
Influent Effluent
Compound (ug/L) (ug/L)
cis-1,2-Dichloroethylene 19.35 0.1935
4.8
14.5
19.35
20.84 0.2084
5.2
15.6
20.84
95.4 0.954
7V9
71.6
95.4
77.4 0.774
19.4
58.1
77.4
Carbofuran 8.5 0.085
2.1
1,2-Dichloropropane ' 34.06 0.3406
5
8.5
10
15
20
25.6
30
34.06
22.0 0.22
2.5
5.5
7.5
12.5
16.5
20
22

Carbon I
Type I (1) TI
0.178
0.155
0.132
0.092
0.162
0.152
0.14
0.118
0.248
0.201
0.172
0.126
0.196
0.175
0.159
0.131
0.003
0.002
0.187
0.147
0.135
0.13
0.119
0.109
0.098
0.0847
0.058
0.117
0.107
0.102
0.0989
0.0926
0.086
0.078
0.064

Jsage Rate (Ibs/Kgal)
rpe II Ix (2) Type IVx (3) <
0.753
0.464
0.257
0.21
0.596
0.421
0.266
0.225
0.686
--- 0.434
0.247
0.187
0.373
0.299
0.199
0.166
0.097
0.089
0.998
0.45
0.316
0.268
0.201
0.157
0.133
0.109
0.103
0.366
0.302
0.249
0.219
0.179
0.152
0.132
0.128

?at in lily
\al i O 1 i I A
Dr IVx :I
4.23
2.99
1.95
2.28
3.68
2.77
1.90
1.91
2.77
2.16
1.44
1.48
1.90
1.71
1.25
1.27
32.33
44.50
5.34
3.06
2.34
2.06
1.69
1.44
1.36
1.29
1.78
3.13
2.82
2.44
2.21
1.93
1.77
1.69
2.00

copy
CDl« 1
(min)
6.20
6.20
6.20
6.20
12.40
12.40
12.40
12.40
7.40
7.40
7.40
7.40
12.70
12.70
12.70
12.70
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

Tnf*
I UL.
(mg/L)
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00

Uotor*
Maker
Source
Great Miami Aquifc'
Great Miami Aquifer
Great Miami Aquife-
Great Miami Aquifc
Great Miami Aquifer
Great Miami Aquife
Great Miami Aquife
Great Miami Aquifer
Uausau GU
Uausau GU
Uausau GUjj
Uausau cH
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU_
Suffolk vV

-------
                                               APPENDIX 0  (continued)
                           COMPARISON OF  FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
Influent Effluent
Compound (ug/L) (ug/L)
1,2-Dichloropropane 20.0




0.2
1
2.5
5
7.5
12.5

15
17.5

20
Ethyl Benzene 4.5 0.045
1
3
|
.13
.34
4.5
Toluene 24.55 0.02455

6.1
18.4
24
.55
m-Xylene 5.45 0.0545
1
4
5
o/p-Xylene 9.0 0
2
6

.36
.09
.45
.09
.25
.75
9
Carbon Usage Rate (Ibs/Kgal)
Type I (1)
0.103
0.101
0.0978
0.0948
0.0924
0.0881
0.085
0.0812
0.069
infinite
0.002
0.001
0.0004
infinite
0.013
0.006
0.002
infinite
0.001
0.0007
0.0002
infinite
0.002
0.0011
0.0004
Type IIIx (2) Type IVx (3)
0
0
0
0
0
0
0

0
infinite
0
.281
.267
.248
.225
.202
.174
.165
0.15
.146
...
.071
Ratio
or IVx
IIIx
2.73
2
2
2
2
1
1
1
2
0
35
.64
.54
.37
.19
.98
.94
.85
.12
.00
.50
n..m --- .10.00
0.0064
0
0
0
0
infinite
0
0
.215
.066
.027
.021
...
.069
.013
0.0073
infinite
0
0
...
.172
.013
0.0088
16
0
5
4
10
0
69
18
36
0
86
11
22
.00
.00 •
.08
.50
.50
.00
.00
.57
.50
.00
.00
.82
.00
EBCT
(min)
15
15
.00
.00
TOC
(mg/L)


15.00
15.00
15.00
15
15
15
15
1
1
1
1
1
1
1
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.01
1.01
1
1
1
1
1
1
1
1
.01
.01
.01
.01
.01
.01
.01
.01




8
8
8
8
8
8
8
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
.35
.35
.35
.35
.35
.35
.35
8.35
8
8
8
8
.35
.35
.35
.35
8.35
8.35
8.35
8.35
Uater
Source
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Note:
(1)  Type I  carbon usage  rates are HSDM model predictions using distilled  water  isotherm values.
(2)  Type IIIx data are actual carbon usage  rates determined  at the indicated  concentrations
     and design criteria  through pilot-scale testing.
(3)  Type IVx data are actual carbon usage rates determined at the  indicated concentrations
     and design criteria  through full-scale  testing.

-------
                 APPENDIX E




FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS

-------
k VENDOR
' REPLACEMEN1

_L

0 * M
COST
                             (I) CARBON DEMAND1
CARBON USE RATE
   x FLOW
FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS

-------
              APPENDIX F
GAC COSTS FOR INDIVIDUAL PHASE II SOC'S

-------
GAGjAdsorpt i on --  Costs  for  Removing===>  Alachlor
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
==================:
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

^> 1,000, 000
430.0
270.0


0.60

94.00
======================================
Total Capital Cost 
-------
GAC Adsorption --  Costs for Renwving===>  Aldicarb
Population Range
Design Flow (H<3))
Average Daily Floi
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

=========== 	 ============-=-:
Influent (ug/L)
Effluent (ug/L)
4 (MGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

1.30
97.40
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
10.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


20.00
60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.30
98.70
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

100.00
10.00
90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

— 	 — — — . 	 — — __ 	 ________.-__..^^^^^^.___
500.00
20.00
80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

1.30
99.74
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

10.00
98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

20.00
96.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
k 63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

POO
4300
10


-------
orption --  Costs for Removing===>  Atrazine
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent 1 ,000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

1.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
3.00 5.00

40.00 0.00
87
2
600

140
3
220

220 .---
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
3.00

94.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

100.00
3.00

97.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

SSSSSSSS
5.00

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  Carbofuran
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1.000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
20.00
5.00 40.00

75.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


50.00 5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
40.00

20.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


50.00 5.00

0.00 95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

100.00
40.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

•^^^
50.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
I |58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

p,o
2700
8


-------
GAG
dsorption --  Costs for Removing===>  Chlordane
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1.000
0.27
0.086

1,001-3,300
0.65
0.23

3.301-10,000
1.8
0.7

10,001-25.000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production^ Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

0.50

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
2.00 5.00

60.00 0.00
87
2
600

140
3
220

220 .---
6
100

370
12
66

650
72
58 ---

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.50

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
2.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.50

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
2.00

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Ren»ving===>  cis-1,2-Dichloroethylene
Population Range
Design Flow (MGO)
Average Daily Floi
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75.001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1.000,000
210.0
120.0

>1, 000,000
430.0
270.0

r===3S====s=s=============
Influent (ug/L)
Effluent (ug/L)
< (NGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (IC$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (IB/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 70.00
90.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

100.00
100.00 5.00
95.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

70.00
30.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


100.00 5.00
0.00 97.50
87
3
650

. 140
6
260

220
17
140

370
42
100

860
100
79
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

200.00
70.00
65.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000 ^
8500
14

^^KSSS
100.00
50.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
r
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

^BO
8500
14


-------
GA^Adsorption  -- Costs for Removing===>  DBCP
Population Range
Design Flow (MGD)
============================
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25.001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500.001-1.000,000
210.0
120.0

>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

0.10

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

2.00
0.20

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

^
0.10

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
0.20

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

= 	 ======—:
1.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.10

99.50
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

20.00
0.20

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

=======
1.00

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC*Adsorption -- Costs for Removing===>  o-Dichlorobenzene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
100.00
50.00 600.00 800.00

50.00
87
2 	
600 	

140
3 	
220 	

220
6
100

370 	
12
66

650 	
72 	
58

1800
85 	
39

3500 	
160 	
31 	

3700
200
20 	

4900
220
17

8500
350 	
14

25000 	
1300
10 	

46000
2700 	
8


50.00

92.86
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

700.00
600.00 800.00

14.29
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


50.00

95.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

1000.00
600.00

40.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


800.00

20.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
k63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

•bo
4300
10


-------
rlsorption -- Costs for Removing===>  1,2-Dichloropropane
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (W/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)

2.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

10.00
5.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


10.00 2.00

0.00 96.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

50.00
5.00

90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


10.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


2.00

98.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

100.00
5.00

95.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


10.00

90.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC Adsorption -- Costs for Removing===>  2,4-D
Population Range
Design Flow (HGO)
Average Daily Floi
Influent (ug/L)
Effluent (ug/L)
* (MO) Percent Removed
25-100 Total Capital Cost (KS)
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

5.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

==========================:;—
50.00
70.00 100.00 5.00
100.00
70.00 100.00
95.00 30.00 0.00
87 87
	 2
600

140
4
	 230

220
9
110

	 370
	 21
77

700
80
63

1900
100
42

3600
190
34

	 3900
	 260
22

	 5100
310
19

	 8700
	 530
	 16

25000
2100
11

47000
	 4300
10

2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


5.00
99.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

500.00
70.00
86.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63 ,

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


100.00
80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
1,63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

pbo
4300
10


-------
sorption --  Costs for Removing===>  Ethyl benzene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500.001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

i=S.S5>SSSSi=SSS=S«— «•————**————•>•
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
100.00
50.00 700.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

700.00
800.00 50.00 700.00

92.86 0.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


800.00 50.00

95.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

1000.00
700.00

30.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


800.00

20.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


-------

Population R; ,a
Design Flow (H.J3)
Averac' Daily Flow
25 -'00
0.^4
0.0u56

101-500
0.087
0. "?4

501-1^00
0.27
0.086

1,001-3 ::
I :5
0.23

3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75.000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500.000
51.0
27.0

500, OC .000 1
2
120.0
^1,000,000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
(MO)) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
======
0.01
98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
46000
2700
8

0.50
0.05
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
46000
2700
8

===================
1.00 0.01
99.90
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10

========
10.00
0.05
99.50
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10


1.00
90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10


0.01
99.98
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10

50.00
0.05
99.90
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10


1.00
98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
i «
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
ptoo
4300
10


-------
GAC'Adsorption -- Costs for Removing===>  Heptachlor epoxide
Population Range
Design Flow (MGD)
======s==™ =================
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
======S=SZS=====2=
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1 ,000,000
430.0
270.0

Total Capital Cost (K$)
O&M Cost (K$/yeac)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.10
0.03 0.20

70.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

1.00 10.00
1.00 0.03

97.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

0.20

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

1.00 0.03

0.00 99.70
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

0.20

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

1.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
|58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

pibo
2700
8


-------
iorption -- Costs for Removing===>   Lindane
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (W/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost («/year)
Total Production Cost
(cents/1,000 gal)

0.02

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

0.50
0.20 1

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

==============
.00 0.02

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

1.00
0.20 1.00

80.00 0.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31 , —

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.02

99.80
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
0.20

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

========
1.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  Methoxychlor
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (HGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1.000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1. 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
260.00
100.00 400.00

61.54 ---
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
'
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


500.00 100.00

75.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

400.00
400.00 500.00 100.00

0.00 --- 90.00
87
	 2
600

140
4
	 230

	 220
9
110

	 370
21
77

700
80
63

1900
100
42

3600
190
	 34

3900
260
	 22

5100
	 310
19

8700
530
16

25000
2100
11

47000
4300
10

1000.00
400.00

60.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000 1
4300
10

^^^^H^=S
500.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

•ooo
4300
10


-------
GAC Adsorption -- Costs for Removing===>  PCB (Aroclor 1254)
Influent (ug/L)
Population Range
Design Flow (MGD)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8 a
0.7 °

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500.001-1,000.000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
0.05

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
0.50 5.00

90.00 0.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
0.05

0.50

99.50 95.00
87 87
2
600

140
' 3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

0.05

99.90
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

=SS==S==^
50.00
0.50

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

000
2700
8


-------
orption -- Costs for Removing===>  Pentachlorophenol

Population Range
Design Flow (MGD)
Average Daily Flot
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)

* (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)

20.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
200.00 400.00 20.00

96.00
87
2
600

	 140
	 3
	 220

220
6
100

370
12
66

650
	 72
58

1800
	 85
39

	 3500
160
	 31

3700
200
	 20

4900
220
17

8500
	 350
14

25000
1300
— — 10

46000
2700
8

500.00
200.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


400.00

20.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


20.00

98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

1000.00
200.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

:========
400.00

60.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


-------
GAC'Adsorption -- Costs for Removing===>  2,4,5-TP (Silvex)
Population Range
Design Flow (HGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGO) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10.001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500.001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS>
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 50.00 100.00

90.00 0.00
87
2
600 	

140
3 	
220 	

220
6
100

370
12
66 	

650
72 	
58

1800
85 	
39 	

3500
160 	
31 	

3700 	
200
20 	

4900 	
220
17

8500
350
14

25000
1300 	
10

46000
2700 	
8 	


5.00

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

100.00
50.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


100.00

0.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00

99.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

500.00
50.00

90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


100.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
fc

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

^_>
4300
10


-------
GAMUsi
orption -- Costs for Retnoving===>  Styrene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75.001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

2.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
5.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


20.00 2.00

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


20.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


2.00

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39
-
3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

200.00
5.00

97.50
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


20.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  Tetrachloroethylene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
50.00
1.00

98.00
5.00

90.00
50.00 1.00

0.00 99.00
100.00
5.00

95.00

50.00

50.00

1.00

99.80
5UO.OO
5.00

99.00

50.00

90.00
==================s=========================================================================s==================================
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

87
2
600

140
4
230

220
9
110

370
21
77

700
80
to
*

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

po
4300
10


-------
eorption --  Costs for Removing===>  Toluene
" Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (K$>
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
500.00
100.00 2000.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


3000.00 100.00

96.67
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

3000.00
2000.00 3000.00

33.33 0.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

5000.00

100.00 2000.00 3000.00

98.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


60.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


40.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC*Adsorption     Costs for Removing===>  Toxaphene
=s=s==r . 'Tssr:- -s
Population Range
Design Flow (MOD)
Average Daily flo
25-: 30
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3-10
C.i5
0.23

3,301-10,000
3
7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
w (MOD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
====================
5.00
1.00 5.00
80.00 0.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


10.00 1.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
5.00
50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


10.00 1.00
0.00 98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50. OC
5.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


10.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
P8

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

to
2700
8


-------
sorption -- Costs for Removing===>  o-Xylene
Population Range
Design Flow (MGD)
Average Daily Flo
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
10000.00
1000.00 10000.00
w (MGD) Percent Removed 90.00 0.00
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87
3
650
*
140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


15000.00 1000.00
95.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

20000.00
10000.00 15000.00
50.00 25.00
87 87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

50000.00
1000.00 10000.00 15000.00
98.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

80.00 70.00
87 87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC'Adsorption -- Costs for Removing===>  p-Xylene
Population Range
Design Flow (MGD)
Average Daily Flo
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25.000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

=============================
Influent (ug/L)
=====================================================
10000.00 20000.00
Effluent (ug/L) 1000.00 10000.00 15000.00 1000.00 10000.00
w (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
90.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

0.00 --- 95.00
	 87
	 3
650
*
HO
	 6
	 260

220
	 17
140

	 370
42
100

860
	 100
	 79

2200
140
	 52

4100
300
43

4300
410
	 28

5600
	 530
	 25

9400
	 990
21

27000
4000
16

49000
8500
14

50.00
========
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

15000.00
25.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

50000.00
1000.00 10000.00
98.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

80.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

15000.00
70.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
I Ire

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

W°
8500
14


-------
Borption --  Costs for Removing===>  trans-1,2-Dichloroethylene
=11^^^^F===========:
Population Range
Design Flow (HGO)
Average Daily Floi
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
^ (HGD) Percent Removed
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Coat (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 100.00
90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


200.00 5.00
97.50
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

200.00
100.00
50.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


200.00 5.00
0.00 99.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

500.00
100.00
80.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

=«.======
200.00
60.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC'Adsorption -- Costs for Ren»ving===>  m-Xylene
Influent (ug/L) 10000.00
Population Range
Design Flow (MGO)
Effluent (ug/L)

1000.00 10000.00 15000.00

1000.00

Average Daily Flow (MGD) Percent Removed 90.00 0.00 --- 95.00
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87 	 87
2 	
600

140
4
230

220
9
110

370 	
21
77

700
80
63

1900
100
42 	

3600
190
34 	

3900
260
22

5100 	
310
19

8700 	
530
16 	

25000 	
2100
11 	

47000
4300
10

2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

20000.00
50000.00
10000.00 15000.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


25.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


1000.00 10000.00 15000.00

98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10



80.00 70.00
87 87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

2
600

140
4
230

220
9
110

370
21
77

700
80
P3

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

1 HiO
,300
10


-------
             APPENDIX G




PACKED COLUMN FACILITY DESIGN BACKUP

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
             Monochlorobenzene
  Henry's Coefficient = 0.06 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                        Monochlorobenzene

                             Table 1
                   DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optimized Parameters
Stripping
Fractor
1.0*
1.0*
1.4*
1.9*
2.2
2.4
1.0*
1.0*
1.1*
2.3
2.7
3.0
1.0*
1.1*
1.5*
2.1
2.4
2.6
1.0*
1.0*
1.4*
1.9
2.2
2.4
1.0*
1.0*
1.3*
1.8
2.1
2.3
1.0*
1.0*
1.2*
1.7
2.0
2.2
Air Gradient
(N m-2 m-1)
50.*
50.*
88.
160.
170.
160.
50.*
50.*
61.
150.
140.
140.
50.*
57.
100.
150.
140.
140.
50.*
50.*
91.
140.
130.
130.
50.*
50.*
80.
120.
120.
110.
50.*
50.*
71.
100.
99.
97.
Design parameter held to limiting value.

-------
                        Mdnochlorobenzene

                       Table  1  (continued)
                   DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                     00
                     00
                     00
                     00
                     00
                   5.00

                   8.80
                   8.80
                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
Removal
Efficiency
(%)
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optim
Stripping
Fractor
1.0*
1.0*
1.2*
1.6*
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.1*
1.6
1.9
2.0
 50."
 50.
 67.
110.
110.
110.

 50.'
 50.'
 67.
110.
100.
100.

 50.'
 50.'
 66.
110.
100.
100.

 50.'
 50.'
 65.
100.
 97.
 95.

 50.'
 50.'
 63.
 93.
 89.
 87.

 50. ••
 50. ••
 62.
 86.
 82.
 80.
Design parameter held to limiting value.

-------
   Monochlorobenzene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
28.
26.
30.
30.
30.
26.
24.
22.
30.
30.
30.
28.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
30.
28.
25.
24.
Air
(SCFM
ft-2)
73.
73.
100.
140.
150.
150.
73.
73.
84.
150.
150.
160.
73.
80.
110.
150.
150.
150.
73.
73.
110.
140.
140.
140.
73.
73.
98.
130.
130.
130.
73.
73.
92.
120.
120.
130.
Air:
Water
Ratio

18.
18.
26.
35.
40.
44.
18.
18.
21.
43.
49.
54.
18.
20.
28.
38.
44.
48.
18.
18.
26.
35.
41.
45.
18.
18.
24.
33.
38.
42.
18.
18.
23.
32.
36.
40.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.013
0.012
0.011
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.9
0.9
1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
7.3
7.3
7.5
7.8
8.1
11.9
11.9
11.9
12.3
13.0
13.4
Packing
Height

(ft)
2.8
3.8
6.7
13.
17.
20.
2.8
3.8
7.7
12.
15.
17.
2.8
3.6
6.5
13.
16.
19.
2.8
3.8
6.7
13.
16.
19.
2.8
3.8
7.0
14.
17.
20.
2.8
3.8
7.2
14.
17.
21.
Air
Flow

(SCFM)
41
41
58
79
88
98
150
150
170
350
400
440
460
500.
710.
960.
1100.
1200.
1100.
1100.
1600.
2100.
2500.
2700.
3100.
3100.
4100.
5600.
6400.
7000.
8200.
8200.
10000.
14000.
16000.
18000.
Air
Pressure
(inch
H20)
2.2
2.2
2.7
4.6
5.4
5.8
2.2
2.2
2.6
4.1
4.6
5.0
2.2
2.3
2.8
4.4
4.8
5.2
2.2
2.2
2.8
4.3
4.7
5.0
2.2
2.2
2.7
4.0
4.4
4.7
2.2
2.2
2.6
3.8
4.1
4.4

-------
   Monochlorobenzene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30.
30.
27.
25.
30.
30.
30.
29.
27.
25.
30.
30.
30.
29.
26.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
73.
89.
120.
130.
130.
73.
73.
88.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
87.
120.
120.
120.
73.
73.
85.
110.
120.
120.
73.
73.
84.
110.
110.
120.
Air:
Water
Ratio

18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.013
0.013
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
0.013
0.013
0.013
0.013
0.012
0.011
Number
of
Columns

1.3
1.3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.1
6.7
7.2
24.2
24.2
24.2
25.9
28.6
30.6
49.5
49.5
49.5
54.6
60.3
64.5
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.5
15.
18.
22.
2.8
3.8
7.6
15.
18.
21.
2.8
3.8
7.7
Air
Flow

(SCFM)
19000
19000.
23000.
31000.
35000.
38000.
31000.
31000.
37000.
50000.
57000.
62000.
44000.
44000.
53000.
72000.
82000.
90000.
87000.
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
580000.
660000.
730000.
730000.
730000.
840000.
14. 1200000.
18. 1400000.
21. 1500000.
Air
Pressure
(inch
H20)
2.2
2.2
2.6
4.1
4.5
4.9
2.2
2.2
2.6
4.0
4.4
4.7
2.2
2.2
2.6
4.0
4.3
4.7
2.2
2.2
2.6
3.8
4.2
4.5
2.2
2.2
2.6
3.7
4.0
4.3
2.2
2.2
2.6
3.5
3.8
4.1

-------
     Monochlorobenzene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.2
2.3
2.9
4.2
5.0
5.7
5.1
5.4
6.8
9.2
11.
12.
8.1
8.6
11.
15.
18.
21.
13.
14.
17.
25.
30.
35.
24.
26.
33.
50.
60.
70.
50."
54.
70.
100.
' 130.
150.
Support
($K)
6.8
6.9
7.2
8.0
8.4
8.9
11.
11.
12.
14.
14.
15.
17.
17.
18.
21.
23.
25.
25.
25.
28.
33.
36.
40.
43.
45.
50.
61.
68.
75.
84.
86.
98.
120.
140.
150.
Indirect
($K)
5.9
6.0
6.6
8.0
8.8
9.6
10.
11.
12.
15.
16.
18.
16.
17.
19.
24.
27.
30.
24.
26.
29.
38.
44.
49.
44.
46.
54.
72.
84.
95.
87.
92.
110.
150.
170.
200.
Total
($K)
15.
15.
17.
20.
22.
24.
27.
27.
31.
38.
41.
45.
41.
42.
48.
60.
68.
76.
62.
65.
74.
96.
110.
120.
110.
120.
140.
180.
210.
240.
220.
230.
280.
380.
440.
500.
Operating
Cost
($K Year-1)
0.21
0.22
0.27
0.37
0.43
0.49
0.64
0.66
0.77
1.1
1.2
1.3
1.4
1.4
1.7
2.3
2.6
2.9
2.9
3.0
3.5
4.8
5.5
6.1
7.5
7.8
9.2
12.
14.
16.
21.
22.
25.
34.
38.
42.
Yearly
Cost
($K Year-1)
2.0
2.0
2.2
2.7
3.0
3.3
3.8
3.9
4.4
5.5
6.0
6.6
6.2
6.4
7.3
9.4
11.
12.
10.
11.
12.
16.
18.
21.
21.
21.
25.
34.
39.
44.
47.
49.
58.
78.
90.
100.
Production
Cost
($ Kgal-1)
0.96
0.98
1.10
1.34
1.48
1.63
0.43
0.44
0.50
0.62
0.69
0.75
0.20
0.20
'0.23
0.30
0.34
0.37
0.12
0.13
0.15
0.19
0.22
0.25
0.08
0.08
0.10
0.13
0.15
0.17
0.06
0.06
0.08
0.10
0.12
0.13

-------
     Mbnochlorobenzene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
140.
210.
260.
310.
160.
180.
230.
340.
420.
490.
230.
250.
320.
480.
590.
700.
450.
480.
620.
930.
1100.
1400.
1800.
1900.
2400.
3700.
4500.
5400.
3600.
3800.
4900.
7500.
9200.
11000.
Support
($K)
160.
160.
190.
240.
270.
310.
240.
250.
290.
370.
430.
490.
340.
350.
400.
530.
610.
690.
600.
620.
730.
970.
1100.
1300.
1900.
2000.
2500.
3400.
4100.
4700.
3600.
3800.
4700.
6700.
8000.
9400.
Indirect
($K)
170.
180.
220.
290.
350.
400.
270.
280.
340.
470.
560.
640.
370.
390.
480.
660.
790.
910.
680.
720.
880.
1200.
1500.
1700.
2400.
2600.
3200.
4700.
5600.
6600.
4700.
5000.
6300.
9300.
11000.
13000.
Total
($K)
430.
460.
550.
750.
880.
1000.
670.
710.
860.
1200.
1400.
1600.
940.
990.
1200.
1700.
2000.
2300.
1700.
1800.
2200.
3100.
3800.
4400.
6100.
6500.
8100.
12000.
14000.
17000.
12000.
13000.
16000.
23000.
28000.
33000.
Operating
Cost
($K Year-1)
49.
50.
58.
79.
89.
100.
84.
86.
99.
130.
150.
170.
120.
130.
150.
200.
220.
250.
250.
260.
300.
400.
460.
510.
1200.
1200.
1400.
1800.
2000.
2300.
2800.
2900.
3200.
4100.
4600.
5100.
Yearly
Cost
($K Year-1)
99.
100.
120.
170.
190.
220.
160.
170.
200.
270.
320.
360.
230.
240.
290.
390.
460.
520.
460.
480.
560.
770.
900.
1000.
1900.
2000.
2300.
3200.
3700.
4200.
4200.
4300.
5100.
6900.
8000.
9000.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.09
0.11
0.12
0.05
0.05
0.06
0.09
0.10
0.11
0.05
0.05
0.06
0.08
0.10
0.11
0.05
0.05
0.06
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.08
0.10
0.04
0.04
0.05
0.07
0.08
0.09

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
          cis-l,2-Dichloroethylene
  Henry's Coefficient = 0.067 at 12 Deg.  C
    U.S.  Environmental  Protection  Agency
          Office  of Drinking  Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
                        ci s-1,2-Dichloroethylene

                                Table  1
                      DESIGN  CRITERIA  - March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optimized Parameters
Stripping
Fractor
1.1*
1.2*
1.6*
2.2*
2.5
2.7
1.1*
1.1*
1.3*
2.7
3.0
3.3
1.1*
1.3*
1.7*
2.4
2.7
3.0
1.1*
1.2*
1.6*
2.2
2.5
2.7
1.1*
1.1*
1.5*
2.1
2.4
2.6
1.1*
1.1*
1.4*
2.0
2.2
2.4
Air Gradient
(N m-2 m-
50.*
56.
87.
160.
160.
150.
50.*
50.*
60.
140.
140.
140.
50.*
67.
100.
150.
140.
140.
50.*
59.
89.
140.
130.
120.
50.*
52.
78.
120.
110.
110.
50.*
50.*
70.
100.
98.
96.
1)




































*  Design parameter held to limiting value.

-------
                     cis-l,2-Dichloroethylene
                       Table 1 (continued)
                   DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                     00
                     00
                     00
                     00
                     00
                   5.00

                   8.80
                   8.80
                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
Removal
Efficiency
(*)
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optinv
Stripping
Fractor
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
 50.
 50.
 66.
110.
110.
110.

 50.
 50.
 65.
110.
100.
100.

 50.
 50.
 65.
100.
100.
 99.

 50.
 50.
 63.
 99.
 96.
 93.

 50.
 50.
 62.
 91.
 88.
 86.

 50.
 50.
 61.
 84.
 81.
 79.
Design parameter held to limiting value,

-------
cis-l,2-Dichloroethylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
28.
26.
30.
30.
30.
25.
23.
22.
30.
30.
30.
28.
25.
23.
30.
30.
30.
28.
25.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
79.
100.
150.
150.
150.
73.
73.
83.
150.
150.
160.
73.
88.
110.
150.
150.
150.
73.
82.
100.
140.
140.
140.
73.
75.
97.
130.
130.
130.
73.
73.
91.
120.
120.
130.
Air:
Water
Ratio

18.
20.
26.
36.
40.
44.
18.
18.
21.
44.
50.
55.
18.
22.
28.
39.
45.
48.
18.
20.
26.
36.
41.
45.
18.
19.
24.
34.
39.
42.
18.
18.
23.
33.
37.
40.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.016
0.015
0.014
0.015
0.015
0.015
0.014
0.013
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.9
0.9
1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
7.3
7.3
7.5
7.9
8.2
11.9
11.9
11.9
12.5
13.0
13.5
Packing
Height

(ft)
2.1
4.6
6.9
15.
19.
23.
2.1
4.8
7.8
14.
17.
20.
2.1
4.4
6.6
14.
18.
22.
2.1
4.5
6.8
15.
19.
23.
2.1
4.7
7.1
15.
19.
23.
2.1
4.8
7.4
16.
20.
24.
Air
Flow

(SCFM)
41
44
57
81
90
99
150
150
170
360
400
440.
460
550
700
980
1100
1200.
1100.
1200.
1600.
2200.
2500.
2700.
3100.
3100.
4000.
5700.
6500.
7000.
8200.
8200.
10000.
15000.
16000.
18000.
Air
Pressure
(inch
H20)
2.1
2.3
2.7
5.1
5.8
6.2
2.1
2.3
2.6
4.4
4.9
5.4
2.1
2.4
2.8
4.7
5.1
5.6
2.1
2.3
2.8
4.5
5.0
5.4
2.1
2.3
2.7
4.3
4.7
5.1
2.1
2.3
2.6
4.0
4.4
4.8

-------
cis-l,2-Dichloroethylene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30..
29.
27.
25.
30.
30.
30.
29.
26.
25.
30.
30.
30.
28.
26.
24.
30.
30.
30.
27.
25.
24.
30.
30.
30.
27.
24.
23.
Air
(SCFM
ft-2)
73.
73.
87.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
86.
120.
120.
120.
73.
73.
85.
120.
120.
120.
73.
73.
84.
110.
120.
120.
73.
73.
83.
110.
110.
110.
Air:
Water
Ratio

18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
31.
35.
37.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
0.015
0.015
0.015
0.014
0.013
0.013
Number
of
Columns

1.3
1.3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.2
6.8
7.2
24.2
24.2
24.2
26.5
28.9
30.7
49.5
49.5
49.5
55.8
61.0
64.8
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
2.1
4.8
7.5
17.
21.
25.
2.1
4.8
7.6
17.
21.
25.
2.1
4.8
7.6
17.
21.
25.
2.1
4.8
7.7
17.
21.
25.
2.1
4.8
7.7
17.
21.
25.
2.1
4.8
7.8
Air
Flow

(SCFM)
19000.
19000.
22000.
31000.
35000.
38000.
31000.
31000.
36000.
51000.
58000.
62000.
44000.
44000.
52000.
74000.
83000.
90000.
87000.
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
600000.
670000.
730000.
730000.
730000.
830000.
17. 1200000.
21. 1400000.
25. 1500000.
Air
Pressure
(inch
H20)
2.1
2.3
2.6
4.4
4.8
5.3
2.1
2.3
2.6
4.2
4.7
5.1
2.1
2.3
2.6
4.2
4.6
5.1
2.1
2.3
2.6
4.0
4.5
4.9
2.1
2.3
2.6
3.9
4.2
4.6
2.1
2.3
2.6
3.7
4.1
4.4

-------
  cis-l,2-Dichloroethylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.5
2.9
4.5
5.5
6.4
4.9
5.7
6.8
9.9
12.
13.
7.6
9.2
11.
17.
20.
23.
12.
14.
17.
28.
34.
39.
22.
28.
33.
54.
67.
79.
47.
58.
70.
110.
140.
170.
Support
($K)
6.7
7.0
7.3
8.2
8.7
9.2
11.
11.
12.
14.
15.
16.
17.
17.
18.
22.
24.
26.
24.
26.
28.
35.
38.
42.
42.
46.
50.
64.
72.
81.
81.
89.
98.
130.
150.
170.
Indirect
($K)
5.8
6.2
6.7
8.3
9.3
10.
10.
11.
12.
16.
17.
19.
16.
17.
19.
25.
29.
32.
24.
27.
30.
41.
47.
53.
42.
48.
55.
78.
91.
100.
84.
96.
110.
160.
190.
220.
Total
($K)
15.
16.
17.
21.
24.
26.
26.
28.
31.
39.
44.
48.
40.
44.
48.
64.
73.
82.
60.
67.
75.
100.
120.
130.
110.
120.
140.
200.
230.
260.
210.
240.
280.
400.
480.
550.
Operating
Cost
($K Year-1)
0.21
0.23
0.27
0.40
0.46
0.53
0.63
0.69
0.78
1.1
1.3
1.4
1.3
1.5
1.7
2.4
2.8
3.1
2.8
3.1
3.5
5.1
5.9
6.6
7.3
8.1
9.2
13.
15.
17.
20.
22.
25.
35.
41.
45.
Yearly
Cost
($K Year-1)
1.9
2.1
2.2
2.9
* 3.2
3.6
3.7
4.0
4.4
5.7
6.4
7.1
6.0
6.6
7.3
9.9
11.
13.
9.8
11.
12.
17.
20.
22.
20.
22.
25.
36.
42.
48.
45.
51.
58.
83.
97.
110.
Production
Cost
($ Kgal-1)
0.94
1.01
1.10
1.40
1.57
1.74
0.42
0.46
0.51
0.65
0.73
0.81
0.19
0.21
0.23
0.32
0.36
0.41
0.12
0.13
0.15
0.20
0.24
0.27
0.08
0.09
0.10
0.14
0.16
0.19
0.06
0.07
0.08
0.11
0.13
0.14

-------
  cis-l,2-Dichloroethylene

    Table 3 (continued)
ESTIMATED COST -  March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
(SK)
97.
120.
140.
230.
290.
340.
160.
190.
230.
370.
460.
550.
220.
270.
330.
530.
660.
780.
420.
510.
630.
1000.
1300.
1500.
1700.
2000.
2500.
4000.
5000.
6000.
3400.
4100.
4900.
8200.
10000.
12000.
Support
($K)
150.
170.
190.
250.
290.
330.
240.
260.
290.
400.
460.
530.
330.
360.
410.
560.
650.
750.
580.
650.
730.
1000.
1200.
1400.
1900.
2100.
2500.
3700.
4500.
5200.
3500.
4000.
4700.
7300.
8800.
10000.
Indirect
(SK)
160.
190.
220.
320.
380.
440.
260.
300.
340.
500.
610.
710.
360.
410.
480.
710.
860.
1000.
660.
760.
890.
1300.
1600.
1900.
2300.
2700.
3200.
5100.
6200.
7300.
4500.
5300.
6300.
10000.
12000.
15000.
Total
($K)
420.
480.
550.
800.
960.
1100.
650.
750.
860.
1300.
1500.
1800.
910.
1000.
1200.
1800.
2200.
2500.
1700.
1900.
2200.
3400.
4100.
4800.
5800.
6900.
8200.
13000.
16000.
18000.
11000.
13000.
16000.
26000.
31000.
37000.
Operating
Cost
($K Year-1)
47.
52.
58.
83.
95.
110.
82.
89.
100.
140.
160.
180.
120.
130.
150.
210.
240.
270.
250.
270.
300.
430.
490.
540.
1200.
1300.
1400.
1900.
2200.
2400.
2700.
2900.
3200.
4300.
4900.
5400.
Yearly
Cost
($K Year-1)
96.
110.
120.
180.
210.
240.
160.
180.
200.
290.
340.
390.
230.
250.
290.
420.
490.
560.
440.
500.
570.
820.
970.
1100.
1900.
2100.
2400.
3400.
4000.
4600.
4100.
4500.
5100.
7300.
8600.
9700.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.10
0.11
0.13
0.05
0.05
0.06
0.09
0.11
0.12
0.05
0.05
. 0.06
0.09
0.10
0.12
0.04
0.05
0.06
0.08
0.10
0.11
0.04
0.05
0.05
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.09
0.10

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
            Di bromochloropropane
  Henry's Coefficient = 0.006 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
    Di bromochloropropane
          Table 1
DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
0.006
0.006
  .006
  .006
0.006
0.006
0.006
0.006
0.
0.
  ,024
  ,024
  ,024
  ,024
  ,024
  ,024
  ,024
0.024

0.086
0.086
0.086
 .086
 .086
 ,086
 .086
0.
0.
0.
0.
0.086
0.
0.
0.
0.
0.
0.
0.
  230
  230
  230
  230
  230
  230
  230
0.230

0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optinr
Stripping
Fractor
1.0
1.8
2.2
2.5
2.5
2.7
2.9
3.0
1.0
1.6
1.9
2.2
2.2
2.4
2.5
2.6
1.0
1.4
1.8
2.0
2.0
2.2
2.3
2.4
1.0
1.4
1.7
1.9
1.9
2.1
2.2
2.3
1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
180.
180.
170.
170.
170.
160.
160.
160.

170.
160.
150.
150.
140.
140.
140.
140.

150.
130.
120.
120.
120.
120.
120.
120.

140.
110.
110.
100.
110.
100.
100.
100.

140.
100.
110.
110.
110.
110.
110.
110.

-------
     Di bromochloropropane
     Table 1 (continued)
 DESIGN CRITERIA - March 1989
Design
Number

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Plant
Capacity
(MGD)
4.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
 2.
 2.
 2.
 2.
 2.
 2.
 2.
10
10
10
10
10
10
10
 2.10
   00
   00
   00
   00
   00
   00
   00
 5.00

 8.80
 8.80
 8.80
 8.80
 8.80
 8.80
 8.80
 8.80

13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0

27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optiitr
Stripping
Fractor
1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
140.
100.
100.
100.
100.
 99.
 98.
 97.

130.
100.
 97.
 96.
 96.
 95.
 94.
 94.

130.
 96.
 93.
 91.
 91.
 90.
 89.
 89.

130.
 95.
 91.
 89.
 89.
 88.
 88.
 87.

130.
 91.
 87.
 85.
 85.
 84.
 84.
 83.

-------
      Di bromochloropropane
      Table 1 (continued)
  DESIGN CRITERIA - March 1989
Design
Number

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Plant
Capacity
(MGD)
210.
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
430.
120.
120.
120.
120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optinr
Stripping
Fractor
1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0
1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0
120.
 85.
 80.
 79.
 79.
 78.
 78.
 77.

120.
 80.
 75.
 74.
 74.
 73.
 73.
 73.

-------
  Di bromochloropropane

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Loadings
Liquid
(GPM
ft-2)
9.7
5.9
4.8
4.3
4.1
3.8
3.6
3.4
9.3
6.3
5.1
4.5
4.4
4.1
3.8
3.7
9.0
6.3
5.1
4.6
4.4
4.1
3.9
3.7
8.8
6.2
5.1
4.5
4.4
4.1
3.9
3.7
8.7
6.2
5.5
4.9
4.8
4.5
4.3
4.1
Air
(SCFM
ft-2)
240.
260.
260.
260.
260.
260.
260.
250.
230.
240.
240.
240.
240.
240.
240.
240.
220.
220.
220.
220.
220.
220.
220.
220.
220.
210.
210.
210.
210.
210.
210.
210.
210.
200.
210.
210.
210.
210.
210.
210.
Air:
Water
Ratio

190.
330.
400.
450.
470.
500.
530.
550.
180.
290.
350.
400.
410.
440.
460.
480.
180.
260.
320.
360.
370.
400.
420.
440.
180.
250.
300.
340.
350.
380.
400.
420.
180.
240.
280.
310.
320.
350.
360.
380.
Mass
Trans.
Coef.
(sec-1)
0.0039
0.0029
0.0026
0.0024
0.0023
0.0022
0.0021
0.0021
0.0038
0.0030
0.0026
0.0024
0.0024
0.0023
0.0022
0.0021
0.0036
0.0029
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
0.0027
0.0025
0.0024
0.0023
0.0023
0.0022
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.3
1.3
1.4
1.4
1.5
Column
Diameter

(ft)
1.5
1.9
2.1
2.2
2.3
2.4
2.4
2.5
2.9
3.5
3.9
4.1
4.2
4.3
4.5
4.6
5.2
6.2
6.9
7.2
7.3
7.6
7.9
8.0
8.1
9.6
10.6
11.3
11.4
11.8
12.2
12.4
13.5
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
12.
15.
19.
20.
23.
27.
30.
6.1
13.
17.
21.
22.
26.
29.
33.
6.1
14.
18.
22.
23.
27.
31.
35.
6.1
14.
19.
23.
25.
29.
33.
37.
6.1
15.
21.
26.
27.
32.
36.
41.
Air
Flow

(SCFM)
410
730
890
1000.
1000.
1100.
1200.
1200.
1500.
2300.
2800.
3200.
3300.
3600.
3800.
3900.
4600.
6600.
8100.
9100.
9400.
10000.
11000.
11000.
11000.
15000.
18000.
21000.
21000.
23000.
24000.
25000.
31000.
40000.
47000.
53000.
54000.
58000.
61000.
63000.
Air
Pressure
(inch
H20)
3.4
4.5
5.2
5.8
6.0
6.6
7.2
7.8
3.3
4.5
5.1
5.7
5.9
6.4
7.0
7.6
3.1
4.2
4.7
5.3
5.5
6.0
6.5
7.0
3.1
4.0
4.5
5.0
5.2
5.7
6.2
6.7
3.0
4.0
4.8
5.4
5.6
6.2
6.8
7.4

-------
  Di bromochloropropane

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Loadings
Liquid
(GPM
ft-2)
8.6
6.4
5.4
4.8
4.7
4.4
4.2
4.0
8.6
6.3
5.3
4.7
4.6
4.3
4.1
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.8
8.4
6.1
5.1
4.5
4.4
4.1
3.9
3.8
Air
(SCFM
ft-2)
210.
200.
200.
200.
200.
200.
200.
200.
210.
190.
200.
200.
200.
200.
200.
200.
210.
190.
190.
190.
190.
190.
190.
190.
210.
190.
190.
190.
190.
190.
190.
190.
210.
190.
190.
190.
190.
190.
190.
190.
Air:
Water
Ratio

180.
230.
280.
310.
320.
340.
360.
380.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
270.
310.
320.
340.
360.
370.
Mass
Trans.
Coef.
(sec-1)
0.0035
0.0029
0.0026
0.0024
0.0024
0.0023
0.0022
0.0022
0.0035
0.0028
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0034
0.0028
0.0025
0.0023
0.0022
0.0022
0.0021
0.0020
Number
of
Columns

1.9
2.6
3.1
3.5
3.5
3.8
4.0
4.1
4.4
6.0
7.2
8.0
8.3
8.8
9.3
9.6
7.3
9.9
12.0
13.4
13.8
14.7
15.5
16.1
10.6
14.4
17.4
19.5
20.0
21.4
22.5
23.4
20.9
28.7
34.8
38.9
40.0
42.8
45.0
46.7
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
16.
21.
26.
27.
32.
36.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
Air
Flow

(SCFM)
82000
100000.
120000.
140000.
140000.
150000.
160000.
170000
190000.
230000.
280000.
320000.
330000.
350000.
370000.
380000.
310000.
380000.
460000.
520000.
530000.
570000.
600000.
630000.
440000.
550000.
670000.
750000.
770000.
830000.
870000.
900000.
870000.
16. 1100000.
21. 1300000.
26. 1500000.
27. ]
500000.
32. 1600000.
37. 1700000.
41. 1800000.
Air
Pressure
(inch
H20)
3.0
4.1
4.6
5.2
5.3
5.9
6.4
6.9
3.0
4.0
4.5
5.0
5.2
5.7
6.2
6.7
3.0
3.9
4.4
4.9
5.1
5.5
6.0
6.5
3.0
3.9
4.4
4.8
5.0
5.5
5.9
6.4
3.0
3.8
4.3
4.7
4.9
5.3
5.8
6.2

-------
  Di bromochloropropane

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Loadings
Liquid
(GPM
ft-2)
8.3
6.0
4.9
4.4
4.3
4.0
3.8
3.7
8.2
5.9
4.8
4.3
4.2
3.9
3.7
3.6
Air
(SCFM
ft-2)
210.
180.
180.
180.
180.
180.
180.
180.
200.
180.
170.
180.
180.
180.
180.
180.
Air:
Water
Ratio

180.
230.
270.
310.
320.
340.
360.
370.
180.
220.
270.
310.
310.
340.
350.
370.
Mass
Trans.
Coef .
(sec-1)
0.0034
0.0027
0.0024
0.0022
0.0022
0.0021
0.0020
0.0020
0.0034
0.0026
0.0023
0.0022
0.0021
0.0021
0.0020
0.0019
Number
of
Columns

87.0
121.0
147.3
164.8
169.4
181.2
190.4
197.8
180.0
253.2
309.6
346.6
354.9
381.0
400.5
416.1
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
Air
Flow

(SCFM)
6.0 3600000
16. 4400000.
21. 5300000.
26. 6000000.
28. 6200000.
32. 6600000.
37. 6900000.
41. 720000a.
6.0 7400000.
16. 9000000.
21. 11000000.
26. 12000000.
28. 13000000.
32. 13000000.
37. 14000000.
41. 15000000.
Air
Pressure
(inch
H20)
2.9
3.7
4.1
4.5
4.7
5.1
5.5
5.9
2.9
3.6
4.0
4.4
4.5
4.9
5.3
5.7

-------
    Di bromochloropropane

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Estimated Capital Costs
Process
($K)
5.4
8.9
11.
14.
15.
17.
20.
22.
11.
19.
24.
30.
32.
38.
43.
48.
20.
38.
51.
64.
68.
80.
93.
100.
36.
71.
97.
120.
130.
150.
180.
200.
77.
160.
220.
280.
300.
370.
430.
490.
Support
($K)
8.9
11.
13.
14.
14.
16.
17.
19.
15.
.20.
23.
27.
28.
32.
35.
38.
24.
36.
45.
54.
56.
65.
73.
81.
41.
65.
83.
100.
110.
120.
140.
160.
81.
140.
180.
230.
250.
290.
340.
380.
Indirect
($K)
9.4
13.
16.
18.
19.
22.
24.
27.
17.
25.
31.
37.
39.
45.
51.
57.
29.
48.
63.
77.
81.
95.
110.
120.
50.
89.
120.
150.
150.
180.
210.
240.
100.
190.
260.
340.
360.
430.
500.
570.
Total
($K)
24.
33.
40.
46.
48.
55.
61.
67.
42.
63.
79.
94.
99.
110.
130.
140.
73.
120.
160.
190.
210.
240.
270.
310.
130.
220.
300.
370.
390.
460.
530.
600.
260.
490.
670.
850.
910.
1100.
1300.
1400.
Operating
Cost
($K Year-1)
0.59
0.94
1.2
1.4
1.5
1.7
2.0
2.2
1.5
2.5
3.2
3.9
4.1
4.7
5.3
5.9
3.6
6.2
8.0
9.9
10.
12.
14.
15.
8.3
14.
18.
22.
23.
27.
31.
34.
23.
37.
50.
62.
65.
76.
87. '
97.
Yearly
Cost
($K Year-1)
3.4
4.8
5.8
6.9
7.2
8.2
9.1
10.
6.4
9.9
12.
15.
16.
18.
20.
23.
12.
21.
27.
33.
35.
40.
46.
52.
23.
40.
53.
65.
69.
81.
93.
110.
54.
95.
130.
160.
170.
200.
240.
270.
Production
Cost
($ Kgal-1)
1.65
2.35
2.85
3.35
3.51
3.99
4.46
4.93
0.73
1.13
1.42
1.70
1.79
2.06
2.33
2.60
0.39
0.65
0.85
1.04
1.10
1.28
1.46
1.64
0.28
0.48
0.63
0.78
0.82
0.97
1.11
1.25
0.21
0.37
0.50
0.63
0.67
0.80
0.92
1.04

-------
    Di bromochloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Estimated Capital Costs
Process
($K)
190.
400.
570.
730.
780.
950.
1100.
1300.
410.
890.
1300.
1600.
1700.
2100.
2500.
2800.
670.
1400.
2000.
2600.
2800.
3400.
4000.
4600.
950.
2100.
2900.
3800.
4100.
4900.
5700.
6500.
1800.
4000.
5700.
7300.
7800.
9500.
11000.
13000.
Support
($K)
180.
340.
460.
580.
620.
740.
860.
980.
380.
740.
1000.
1300.
1400.
1700.
1900.
2200.
610.
1200.
1700.
2100.
2300.
2700.
3200.
3600.
860.
1700.
2400.
3000.
3200.
3900.
4500.
5200.
1600.
3300.
4600.
5900.
6300.
7500.
8800.
10000.
Indirect
($K)
240.
480.
670.
860.
920.
1100.
1300.
1500.
520.
1100.
1500.
1900.
2100.
2500.
2900.
3300.
840.
1700.
2400.
3100.
3300.
4000.
4700.
5400.
1200.
2500.
3500.
4500.
4800.
5800.
6700.
7700.
2300.
4700.
6700.
8600.
9300.
11000.
13000.
15000.
Total
($K)
610.
1200.
1700.
2200.
2300.
2800.
3300.
3700.
1300.
2700.
3800.
4800.
5200.
6200.
7300.
8300.
2100.
4400.
6100.
7900.
8400.
10000.
12000.
14000.
3000.
6200.
8800.
11000.
12000.
15000.
17000.
19000.
5700.
12000.
17000.
22000.
23000.
28000.
33000.
38000.
Operating
Cost
($K Year-1)
65.
110.
140.
170.
180.
210.
240.
270.
150.
240.
320.
390.
420.
480.
550.
620.
260.
410.
540.
660.
700.
820.
930.
1000.
380.
600.
790.
960.
1000.
1200.
1300.
1500.
790.
1200.
1600.
1900.
2000.
2400.
2700.
3000.
Yearly
Cost
($K Year-1)
140.
250.
340.
430.
450.
540.
620.
710.
310.
560.
760.
960.
1000.
1200.
1400.
1600.
510.
920.
1300.
1600.
1700.
2000.
2300.
2600.
740.
1300.
1800.
2300.
2400.
2900.
3300.
3800.
1500.
2600.
3600.
4500.
4800.
5700.
6500.
7400.
Production
Cost
($ Kgal-1)
0.18
0.32
0.44
0.56
0.59
0.70
0.81
0.92
0.17
0.31
0.42
0.53
0.56
0.67
0.77
0.87
0.16
0.29
0.39
0.49
0.53
0.62
0.72
0.82
0.16
0.28
0.38
0.48
0.51
0.61
0.70
0.80
0.15
0.27
0.36
0.46
0.49
0.58
0.66
0.75

-------
    Di bromochloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Estimated Capital Costs
Process
($K)
7200.
16000.
23000.
29000.
31000.
38000.
44000.
50000.
15000.
32000.
46000.
59000.
63000.
76000.
89000.
96 100000.
Support
($K)
6100.
13000.
18000.
23000.
25000.
30000.
35000.
40000.
12000.
26000.
37000.
48000.
51000.
62000.
Indirect
($K)
8700.
19000.
27000.
34000.
37000.
44000.
52000.
59000.
17000.
38000.
54000.
70000.
75000.
91000.
72000. 110000.
83000. 120000.
Total
($K)
22000.
47000.
67000.
87000.
93000.
110000.
130000.
150000.
44000.
95000.
140000.
180000.
190000.
230000.
270000.
310000.
Operating
Cost
($K Year-1)
3500.
5300.
6800.
8200.
8700.
10000.
11000.
13000.
7800.
12000.
15000.
18000.
19000.
22000.
24000.
27000.
Yearly
Cost
($K Year-1)
6100.
11000.
15000.
18000.
20000.
23000.
27000.
30000.
13000.
23000.
31000.
39000.
41000.
49000.
56000.
63000.
Production
Cost
($ Kgal-1)
0.14
0.25
0.33
0.42
0.45
0.53
0.61
0.69
0.13
0.23
0.31
0.39
0.42
0.49
0.57
0.64

-------
   Estimated Equipment Size and Cost for

Removal of Phase II SOCs from Drinking Water

                    Via

        Packed Column Air Stripping

                 March 1989
                 Compound:

          Ethylene Dibromide (EDB)

  Henry's Coefficient  = 0.014 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
  EthyTene Dibromide (EDB)

          Table 1
DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(*)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98 -
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optimized Parameters
Stripping
Fractor
2.4
3.0
3.4
3.6
3.8
2.1
2.6
2.9
3.1
3.2
1.9
2.4
2.6
2.8
2.9
1.8
2.2
2.4
2.6
2.7
1.7
2.1
2.3
2.5
2.6
1.6
1.9
2.1
2.3
2.4
Air Gradient
(N m-2 m-
150.
150.
140.
140.
140.
150.
140.
140.
120.
130.
130.
120.
120.
120.
110.
110.
110.
100.
100.
100.
99.
95.
93.
92.
91.
100.
99.
97.
96.
96.
1)































-------
    Ethylene Dibromide (EDB)
      Table 1 (continued)
  DESIGN CRITERIA - March 1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
  5,
  5,
  5,
  5,
00
00
00
00
  5.00

  8.80
  8.80
  8.80
  8.80
  8.80

 13.0
 13.0
 13.0
 13.0
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
Removal
Efficiency
(%)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optim
Stripping
Fractor
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
99.
95.
94.
92.
92.

95.
90.
89.
88.
87.

93.
89.
87.
86.
85.

88.
84.
83.
82.
81.

82.
78.
77.
76.
75.

77.
73.
72.
71.
71.

-------
Ethylene Dibromide (EDB)

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Loadings
Liquid
(GPM
ft-2)
8.9
7.2
6.5
6.1
5.8
10.
8.0
7.3
6.6
6.5
10.
8.2
7.5
7.0
6.7
10.
8.2
7.5
7.1
6.8
10.
8.2
7.5
7.1
6.8
11.
8.9
8.2
7.7
7.4
Air
(SCFM
ft-2)
220.
230.
230.
230.
230.
220.
220.
220.
210.
220.
200.
200.
210.
210.
210.
190.
190.
190.
190.
190.
180.
180.
180.
180.
180.
180.
180.
180.
180.
180.
Air:
Water
Ratio

190.
240.
260.
280.
300.
160.
210.
230.
240.
260.
150.
190.
200.
220.
230.
140.
170.
190.
200.
210.
130.
160.
180.
190.
200.
120.
150.
170.
180.
190.
Mass
Trans.
Coef.
(sec-1)
0.0052
0.0046
0.0043
0.0041
0.0039
0.0057
0.0049
0.0046
0.0042
0.0042
0.0057
0.0049
0.0046
0.0044
0.0043
0.0055
0.0049
0.0046
0.0044
0.0043
0.0055
0.0048
0.0045
0.0044
0.0042
0.0057
0.0051
0.0048
0.0046
0.0045
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.9
2.0
2.1
2.2
Column
Diameter

(ft)
1.5
1.7
1.8
1.9
1.9
2.8
3.1
3.2
3.4
3.4
4.8
5.4
5.6
5.8
6.0
7.5
8.4
8.8
9.0
9.2
12.6
13.9
14.5
15.0
15.3
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
13.
20.
26.
33.
40.
14.
23.
29.
36.
44.
16.
24.
31.
39.
47.
16.
25.
33.
41.
49.
17.
26.
34.
43.
52.
18.
28.
37.
46.
56.
Air
Flow

(SCFM)
420
530
590
630
660
1300
1700.
1800
2000
2100.
3700
4700.
5100
5500
5800.
8400.
11000.
12000.
12000.
13000.
22000.
27000.
30000.
32000.
34000.
55000.
68000.
75000.
79000.
83000.
Air
Pressure
(inch
H20)
4.4
5.7
6.7
7.9
9.0
4.8
5.9
7.0
7.6
9.2
4.6
5.6
6.6
7.6
8.6
4.3
5.3
6.2
7.2
8.2
4.1
5.1
5.9
6.8
7.8
4.4
5.5
6.4
7.5
8.6

-------
Ethylene Dibromide (EDB)

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
5*
5F
5i
57
58
59
60
Loadings
Liquid
(GPM
ft-2)
11.
8.7
8.1
7.6
7.3
10.
8.6
7.9
7.5
7.2
10.
8.5
7.8
7.4
7.1
10.
8.4
7.7
7.3
7.0
9.9
8.1
7.5
7.1
6.8
9.7
7.9
7.3
6.9
6.6
Air
(SCFM
ft-2)
170.
180.
180.
180.
180.
170.
170.
180.
180.
180.
170.
170.
170.
180.
180.
170.
170.
170.
170.
170.
160.
160.
170.
170.
170.
160.
160.
160.
160.
160.
Air:
Water
Ratio

120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
160.
180.
180.
120.
150.
160.
180.
180.
Mass
Trans.
Coef.
(sec-1)
0.0056
0.0050
0.0047
0.0046
0.0045
0.0056
0.0049
0.0047
0.0045
0.0044
0.0055
0.0049
0.0046
0.0045
0.0044
0.0054
0.0048
0.0046
0.0044
0.0043
0/0053
0.0047
0.0045
0.0043
0.0042
0.0052
0.0046
0.0043
0.0042
0.0041
Number
of
Columns

3.6
4.3
4.7
5.0
5.2
6.0
7.2
7.9
8.3
8.7
8.7
10.5
11.4
12.1
12.6
17.3
21.0
22.9
24.2
25.2
73.4
89.2
96.9
102.7
106.8
153.8
187.6
203.9
216.3
224.9
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
Air
Flow

(SCFM)
130000
160000
170000
180000
190000
200000
250000
280000
300000
310000
290000
370000
400000
430000
450000
580000
720000
780000
840000
870000
18. 2400000
28. 2900000
37. 3200000
46. 3400000
56. 3600000.
18. 4800000
28. 6000000.
37. 6600000.
46. 7000000
55. 7300000
Air
Pressure
(inch
H20)
4.3
5.3
6.2
7.3
8.3
4.2
5.2
6.0
7.0
8.0
4.1
5.1
5.9
6.9
7.8
4.0
5.0
5.7
6.7
7.6
3.9
4.7
5.5
6.3
7.1
3.8
4.5
5.2
6.0
6.8

-------
   Ethylene Dibromide (EDB)

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated Capital Costs
Process
($K)
7.9
11.
14.
18.
21.
16.
23.
29.
37.
44.
30.
46.
59.
74.
90.
54.
84.
110.
140.
170.
120.
180.
240.
310.
370.
270.
440.
590.
750.
910.
Support
($K)
10.
12.
14.
16.
18.
18.
22.
26.
31.
35.
31.
41.
50.
60.
70.
53.
73.
91.
110.
130.
110.
160.
200.
250.
290.
240.
370.
480.
600.
720.
Indirect
($K)
12.
15.
18.
22.
25.
22.
30.
36.
44.
51.
40.
57.
71.
88.
100.
70.
100.
130.
160.
190.
150.
220.
290.
360.
440.
340.
530.
700.
880.
1100.
Total
($K)
30.
39.
47.
56.
64.
55.
75.
92.
110.
130.
100.
140.
180.
220.
260.
180.
260.
330.
410.
490.
370.
570.
730.
920.
1100.
850.
1300.
1800.
2200.
2700.
Operating
Cost
($K Year-1)
0.76
1.1
1.3
1.6
1.8
1.9
2.7
3.3
3.9
4.7
4.5
6.5
8.1
9.9
12.
9.8
14.
18.
22.
25.
26.
37.
46.
56.
66.
72.
100.
130.
160.
190.
Yearly
Cost
($K Year-1)
4.3
5.7
6.8
8.1
9.4
8.4
12.
14.
17.
20.
16.
23.
29.
36.
43.
31.
45.
57.
70.
83.
69.
100.
130.
160.
190.
170.
260.
340.
420.
510.
Production
Cost
($ Kgal-1)
2.10
2.77
3.32
3.96
4.58
0.96
1.31
1.61
1.94
2.27
0.52
0.75
0.93
1.15
1.35
0.36
0.53
0.67
0.83
0.99
0.27
0.40
0.51
0.64
0.76
0.22
0.34
0.44
0.55
0.66

-------
   Ethylene Dibromide (EDB)

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
600.
980.
1300.
1700.
2000.
970.
1600.
2100.
2700.
3300.
1400.
2300.
3000.
3900.
4700.
2700.
4400.
5800.
7400.
9100.
11000.
17000.
23000.
29000.
36000.
22000.
35000.
47000.
60000.
73000.
Support
($K)
530.
810.
1100.
1300.
1600.
850.
1300.
1700.
2200.
2600.
1200.
1900.
2400.
3100.
3700.
2300.
3600.
4700.
6000.
7200.
8800.
14000.
19000.
24000.
29000.
18000.
29000.
38000.
48000.
59000.
Indirect
($K)
740.
1200.
1502.
2000.
2400.
1200.
1900.
2500.
3200.
3900.
1700.
2700.
3600.
4600.
5500.
3300.
5200.
6900.
8800.
11000.
13000.
21000.
27000.
35000.
42000.
26000.
42000.
55000.
71000.
86000.
Total
($K)
1900.
3000.
3900.
5000.
6000.
3000.
4800.
6300.
8000.
9700.
4300.
6900.
9000.
12000.
14000.
8200.
13000.
17000.
22000.
27000.
32000.
52000.
69000.
88000.
110000.
65000.
110000.
140000.
180000.
220000.
Operating
Cost
($K Year-1)
170.
240.
300.
370.
430.
280.
410.
510.
620.
720.
410.
590.
730.
890.
1000.
840.
1200.
1500.
1800.
2100.
3600.
5100.
6300.
7600.
8900.
8000.
11000.
14000.
16000.
19000.
Yearly
Cost
($K Year-1)
390.
590.
760.
950.
1100.
640.
970.
1200.
1600.
1900.
920.
1400.
1800.
2200.
2700.
1800.
2700.
3500.
4400.
5300.
7400.
11000.
14000.
18000.
21000.
16000.
24000.
30000.
37000.
45000.
Production
Cost
($ Kgal-1)
0.21
0.32
0.41
0.52
0.62
0.20
0.30
0.39
0.49
0.58
0.19
0.29
0.38
0.47
0.57
0.18
0.28
0.36
0.45
0.53
0.17
0.26
0.33
0.41
0.49
0.16
0.24
0.30
0.38
0.45

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                Ethyl benzene
  Henry's Coefficient  = 0.14 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office  of Drinking  Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
                           Ethyl benzene

                             Table 1
                   DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
Cost Optimized Parameters
Stripping
Fractor
2.3*
2.3*
2.3*
3.5*
3.6*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
3.6*
3.7*
2.3*
2.3*
2.3*
3.4*
3.5*
2.3*
2.3*
2.3*
3.1*
3.2*
2.3*
2.3*
2.3*
2.9*
3.0*
Air Gradient
(N m-2 m-1)
50.*
50.*
50.*
98.
100.
50.*
50.*
50.*
67.
72.
50.*
50.*
50.*
100.
110.
50.*
50.*
50.*
92.
98.
50.*
50.*
50.*
81.
86.
50.*
50.*
50.*
72.
76.
Design parameter held to limiting value.

-------
                               Ethyl benzene
                           Table  1  (continued)
                       DESIGN  CRITERIA  -  March  1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
                       5.00
                       5.00
                       5.00
                       5.00
                       5.00

                       8.80
                       8.80
                       8.80
                       8.80
                       8.80

                      13.0
                      13.0
                      13.0
                      13.0
                      13.0

                      27.0
                      27.0
                      27.0
                      27.0
                      27.0

                     120.
                     120.
                     120.
                     120.
                     120.

                     270.
                     270.
                     270.
                     270.
                     270.
Removal
Efficiency
(%)
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
Cost Optinr
Stripping
Fractor
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.8*
2.3*
2.3*
2.3*
2.7*
2.8*
2.3*
2.3*
2.3*
2.7*
95.
2.8*
50.'
50.'
50.'
68.
73.

50.'
50.'
50.'
67.
72.

50.'
50.'
50.'
67.
71.

50.'
50.'
50.'
66.
69.

50.'
50.'
50.'
63.
67.

50.'
50.'
50.'
62.
66.
*  Design parameter  held  to  limiting  value.

-------
      Ethyl benzene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
110.
110.
73.
73.
73.
88.
92.
73.
73.
73.
110.
120.
73.
73.
73.
110.
110.
73.
73.
73.
99.
100.
73.
73.
73.
92.
96.
Air:
Water
Ratio

18.
18.
18.
27.
29.
18.
18.
18.
22.
23.
18.
18.
18.
28.
29.
18.
18.
18.
27.
27.
18.
18.
18.
25.
25.
18.
18.
18.
23.
24.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
17.
19.
1.2
2.0
4.2
18.
20.
1.2
2.0
4.2
18.
20.
Air
Flow

(SCFM)
41
41
41
61
64
150
150
150
180
190
460
460
460
710
730
1100
1100
1100
1600.
1700.
3100.
3100.
3100.
4100.
4300.
8200.
8200.
8200.
10000.
11000.
Air
Pressure
(inch
H20)
2.1
2.1
2.3
4.0
4.5
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
4.1
4.5
2.1
2.1
2.3
3.9
4.3
2.1
2.1
2.3
3.7
4.1
2.1
2.1
2.3
3.6
3.9

-------
       Ethyl benzene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
89.
93.
73.
73.
73.
89.
92.
73.
73.
73.
88.
91.
73.
73.
73.
87.
90.
73.
73.
73.
85.
88.
73.
73.
73.
84.
87.
Air:
Water
Ratio

18.
18.
18.
22.
23.
18.
18.
18.
22.
23.
18.
18.
18.
22.
23.
18.
18.
18.
22.
22.
18.
18.
18.
21.
22.
18.
18.
18.
21.
22.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
18.
21.
1.2
2.0
4.2
19.
21.
Air
Flow

(SCFM)
19000.
19000.
19000.
23000.
24000.
31000.
31000.
31000.
37000.
38000.
44000.
44000.
44000.
53000.
55000.
87000.
87000.
87000.
100000.
110000.
360000.
360000.
360000.
410000.
430000.
730000.
730000.
730000.
840000.
870000.
Air
Pressure
(inch
H20)
2.1
2.1
2.3
3.5
3.9
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.5
3.8
2.1
2.1
2.3
3.4
3.7
2.1
2.1
2.3
3.4
3.7

-------
         Ethyl benzene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated Capital Costs
Process
($K)
1.9
2.0
2.4
4.6
5.0
4.6
4.8
5.5
10.
11.
7.1
7.6
8.9
17.
19.
11.
12.
14.
28.
31.
20.
22.
27.
55.
60.
43.
46.
55.
110.
120.
Support
($K)
6.7
6.7
6.9
8.2
8.4
11.
11.
11.
14.
15.
16.
16.
17.
22.
23.
24.
24.
26.
35.
36.
41.
42.
45.
64.
68.
79.
81.
88.
130.
140.
Indirect
($K)
5.6
5.8
6.1
8.4
8.8
10.
10.
11.
16.
17.
15.
16.
17.,
26.
27.
23.
24.
26.
41.
44.
40.
42.
47.
78.
83.
80.
84.
94.
160.
170.
Total
($K)
14.
14.
15.
21.
22.
25.
26.
28.
40.
43.
39.
40.
43.
65.
69.
57.
59.
66.
100.
110.
100.
110.
120.
200.
210.
200.
210.
240.
400.
430.
Operating
Cost
($K Year-1)
0.20
0.20
0.23
0.37
0.40
0.61
0.62
0.67
1.0
1.1
1.3
1.3
1.4
2.3
2.4
2.7
2.8
3.0
4.8
5.1
7.1
7.3
7.9
12.
13.
20.
20.
22.
33.
35.
Yearly
Cost
($K Year-1)
1.9
1.9
2.0
2.9
3.0
3.6
3.7
3.9
5.8
6.1
5.8
6.0
6.5
9.9
11.
9.4
9.8
11.
17.
18.
19.
20.
22.
35.
38.
43.
45.
50.
80.
86.
Production
Cost
($ Kgal-1)
0.91
0.93
1.00
1.40
1.47
0.41
0.42
0.45
0.66
0.70
0.18
0.19
0.21
0.32
0.34
0.11
0.12
0.13
0.20
0.22
0.07
0.08
0.09
0.14
0.15
0.06
0.06
0.06
0.10
0.11

-------
         Ethyl benzene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
90.
96.
110.
230.
250.
140.
150.
180.
370.
400.
210.
220.
260.
520.
570.
390.
420.
490.
1000.
1100.
1600.
1700.
1900.
3900.
4200.
3100.
3300.
3900.
7800.
8500.
Support
($K)
150.
150.
170.
250.
270.
230.
240.
260.
390.
420.
320.
330.
350.
550.
590.
560.
580.
630.
1000.
1100.
1800.
1800.
2100.
3600.
3900.
3300.
3500.
3900.
7000.
7500.
Indirect
($K)
160.
160.
180.
320.
340.
240.
260.
290.
500.
540.
340.
360.
400.
700.
760.
620.
650.
740.
1300.
1400.
2200.
2300.
2600.
4900.
5300.
4200.
4500.
5100.
9700.
11000.
Total
($K)
400.
410.
460.
800.
860.
620.
650.
720.
1300.
1400.
860.
900.
1000.
1800.
1900.
1600.
1600.
1900.
3300.
3600.
5500.
5800.
6700.
12000.
13000.
11000.
11000.
13000.
24000.
27000.
Operating
Cost
($K Year-1)
46.
47.
51.
76.
81.
79.
82.
87.
130.
140.
120.
120.
130. ,
190.
200.
240.
250.
260.
390.
420.
1100.
1200.
1200.
1800.
1900.
2700.
2700.
2900.
4100.
4300.
Yearly
Cost
($K Year-1)
93.
96.
110.
170.
180.
150.
160.
170.
280.
300.
220.
230.
250.
400.
430.
430.
440.
480.
780.
840.
1800.
1900.
2000.
3200.
3500.
3900.
4100.
4400.
7000.
7400.
Production
Cost
($ Kgal-1)
0.05
0.05
0.06
0.09
0.10
0.05
0.05
0.05
0.09
0.09
0.05
0.05
0.05
0.08
0.09
0.04
0.04
0.05
0.08
0.09
0.04
0.04
0.05
0.07
0.08
0.04
0.04
0.04
0.07
0.08

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  m-Xylene
  Henry's Coefficient = 0.11  at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                              m-Xylene
                              Table  1
                    DESIGN  CRITERIA  -  March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
                    0.006
                    0.006
                     .006
                     .006
                     .006
                     .006
0.
0.
0.
0.
                   0.006
                     024
                     024
                     024
                   0.024
                   0.024
                   0.024
                   0.024
                   0.
                   0.
                   0.
 .086
 .086
 .086
0.086
0.086
0.086
0.086
                   0,
                   0,
                   0.
                   0,
                   0,
                   0.
                   2.
                   2.
                   2.
                   2.
                   2.
                   2.
  230
  230
  230
  230
  230
  230
                   0.230

                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
  10
  10
  10
  10
  10
  10
                   2.10
Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
1.8*
1.8*
2.2*
2.4*
2.9*
3.2*
3.4*
1.8*
1.8*
1.8*
1.9*
3.1*
3.5
3.9
1.8*
1.8*
2.4*
2.6*
3.0*
3.2*
3.4
1.8*
1.8*
2.2*
2.4*
2.8*
3.0*
3.2
1.8*
1.8*
2.0*
2.2*
2.6*
2.8*
3.0
1.8*
1.8*
1.9*
2.0*
2.5*
2.6*
2.8
 50.'
 50.'
 66.
 77.
110.
130.
140.

 50.'
 50.'
 50.'
 52.
130.
130.
130.

 50.'
 50.'
 76.
 87.
120.
130.
130.

 50.'
 50.'
 67.
 77.
100.
120.
130.

 50."
 50.<
 59.
 67.
 91.
100.
110.

 50."
 50."
 52.
 60.
 82.
 92.
 99.

-------
                            m-Xylene

                      Table 1 (continued)
                  DESIGN CRITERIA - March 1989
Design
Number

43
44
45
46
47
48
49 .
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* no
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
cinn naram
                  5.
                  5.
                  5.
                  5.
                  5.
                  5.
00
00
00
00
00
00
                  5.00

                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80

                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0

                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0

                120.
                120.
                120.
                120.
                120.
                120.
                120.

                270.
                270.
                270.
                270.
                270.
                270.
                270.
Design parameter held to limiting value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinv
Stripping
Fractor
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
1.9*
2.4*
2.5*
2.7*
1.8*
1.8*
1.8*
1.9*
2.3*
2.5*
2.7*
1.8*
1.8*
1.8*
1.9*
2.3*
2.5*
2.6
1.8*
1.8*
1.8*
1.9*
2.3*
2.4*
2.6
50.'
50.'
50.'
56.
77.
88.
97.

50.1
50.'
50.'
56.
76.
86.
95.

50.
50.'
50.
55.
75.
85.
94.

50.
50.'
50.'
54.
74.
84.
92.

50.
50.
50.
53.
72.
81.
                                     50.'
                                     50.'
                                     50.'
                                     51.
                                     70.
                                     80.
                                     81.

-------
         m-Xylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
28.
26.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
73.
87.
96.
120.
130.
140.
73.
73.
73.
76.
130.
130.
140.
73.
73.
95.
100.
120.
130.
130.
73.
73.
88.
96.
110.
120.
130.
73.
73.
81.
88.
110.
110.
120.
73.
73.
75.
82.
99.
110.
110.
Air:
Water
Ratio

18.
18.
22.
24.
29.
32.
34.
18.
18.
18.
19.
31.
35.
39.
18.
18.
24.
26.
30.
32.
34.
18.
18.
22.
24.
29.
30.
32.
18.
18.
20.
22.
26.
28.
30.
18.
18.
19.
21.
25.
27.
28.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
12.0
Packing
Height

(ft)
1.7
3.2
8.1
9.6
15.
20.
27.
1.7
3.2
8.7
10.
15.
19.
24.
1.7
3.2
7.9
9.4
15.
20.
26.
1.7
3.2
8.1
9.6
16.
21.
27.
1.7
3.2
8.3
9.9
16.
21.
28.
1.7
3.2
8.6
10.
17.
22.
28.
Air
Flow

(SCFM)
41.
41.
48.
53.
65.
71.
75.
150.
150.
150.
150.
250.
280.
310.
460.
460.
600.
640.
760.
810.
860.
1100.
1100.
1300.
1400.
1700.
1800.
1900.
3100.
3100.
3400.
3700.
4400.
4700.
5000.
8200.
8200.
8400.
9100.
11000.
12000.
13000.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
2.9
4.1
5.2
6.6
2.1
2.2
2.5
2.7
4.3
5.0
5.8
2.1
2.2
2.7
3.0
4.2
5.2
6.3
2.1
2.2
2.7
2.9
4.0
5.0
6.2
2.1
2.2
2.6
2.8
3.8
4.7
5.8
2.1
2.2
2.6
2.8
3.7
4.5
5.4

-------
        m-Xylene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
73,
73.
79.
96.
100.
110.
73.
73.
73.
79.
95.
100.
110.
73.
73.
73.
78.
95.
100.
110.
73.
73.
73.
77.
94.
100.
110.
73.
73.
73.
76.
92.
99.
100.
73.
73.
73.
75.
91.
98.
100.
Air:
Water
Ratio

18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
19.
24.
25.
27.
18.
18.
18.
19.
23.
25.
27.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.4
49.5
49.5
49.5
49.5
49.5
49.5
51.6
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
23.
29.
1.7
3.2
8.7
11.
17.
23.
29. ]
Air
Flow

(SCFM)
19000
19000
19000
20000
24000
26000.
28000.
31000.
31000.
31000.
33000.
40000.
43000.
45000.
44000
44000
44000.
47000.
57000.
61000.
65000.
87000.
87000.
87000.
91000.
110000.
120000.
130000.
360000.
360000.
360000.
370000.
450000.
480000.
510000.
730000.
730000.
730000.
740000.
900000.
970000.
[100000.
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.6
4.4
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.3
2.1
2.2
2.5
2.7
3.5
4.2
5.2
2.1
2.2
2.5
2.7
3.5
4.2
4.9

-------
          m-Xylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.1
3.3
4.4
5.2
6.4
4.7
5.2
7.0
7.6
9.8
12.
14.
7.4
8.3
11.
12.
16.
20.
24.
11.
13.
18.
20.
27.
32.
39.
21.
24.
35.
39.
52.
63.
77.
45.
51.
73.
81.
110.
130.
160.
Support
($K)
6.7
6.8
7.3
7.5
8.1
8.6
9.2
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.
19.
22.
24.
26.
24.
25.
29.
30.
34.
37.
42.
42.
44.
51.
53.
63.
70.
79.
80.
85.
100.
110.
130.
140.
160.
Indirect
($K)
5.7
5.9
6.8
7.1
8.2
9.1
10.
10.
11.
13.
13.
15.
17.
20.
15.
17.
20.
21.
25.
28.
33.
23.
25.
31.
33.
40.
46.
53.
41.
45.
57.
60.
75.
87.
100.
82.
89.
110.
120.
150.
180.
210.
Total
($K)
14.
15.
17.
18.
21.
23.
26.
26.
27.
32.
33.
39.
43.
49.
39.
42.
50.
53.
63.
71.
83.
58.
63.
77.
82.
100.
120.
130.
100.
110.
140.
150.
190.
220.
260.
210.
220.
290.
310.
390.
450.
530.
Operating
Cost
($K Year-1)
0.20
0.22
0.27
0.29
0.37
0.43
0.51
0.62
0.65
0.77
0.82
1.1
1.2
1.4
1.3
1.4
1.7
1.8
2.2
2.6
3.1
2.7
2.9
3.5
3.8
4.7
5.5
6.5
7.2
7.6
9.1
9.7
12.
14.
17.
20.
21.
25.
26.
33.
38.
44.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8
4.5
4.7
5.6
6.3
7.2
5.9
6.3
7.6
8.0
9.7
11.
13.
9.6
10.
13.
13.
17.
19.
22.
19.
21.
26.
28.
34.
40.
47.
44.
47.
59.
63.
78.
90.
110.
Production
Cost
($ Kgal-1)
0.92
0.97
1.12
1.17
1.37
1.52
1.73
0.41
0.43
0.51
0.54
0.64
0.72
0.82
0.19
0.20
0.24
0.25
0.31
0.35
0.41
0.11
0.12
0.15
0.16
0.20
0.23
0.26
0.08
0.08
0.10
0.11
0.13
0.16
0.18
0.06
0.06
0.08
0.08
0.10
0.12
0.14

-------
          m-Xylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
110.
150.
160.
220.
260.
320.
150.
170.
240.
260.
350.
420.
520.
210.
240.
340.
370.
500.
600.
740.
410.
460.
650.
710.
960.
1100.
1400.
1600.
1800.
2500.
2800.
3700.
4500.
5500.
3300.
3600.
5100.
5600.
7500.
9000.
11000.
Support
($K)
150.
160.
190.
200.
250.
280.
320.
230.
250.
300.
320.
380.
440.
510.
320.
340.
420.
440.
540.
610.
710.
570.
610.
750.
800.
990.
1100.
1300.
1800.
2000.
2500.
2700.
3500.
4100.
4900.
3400.
3700.
4800.
5200.
6700.
7900.
9600.
Indirect
($K)
160.
170.
220.
240.
300.
360.
420.
250.
270.
350.
380.
480.
560.
670.
350.
380.
490.
530.
680.
800.
950.
640.
700.
920.
990.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4700.
5600.
6800.
4300.
4800.
6500.
7100.
9300.
11000.
14000.
Total
($K)
410.
440.
570.
610.
770.
900.
1100.
630.
690.
890.
960.
1200.
1400.
1700.
880.
960.
1200.
1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3800.
4500.
5700.
6300.
8400.
9100.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
24000.
28000.
34000.
Operating
Cost
($K Year-1)
47.
49.
57.
61.
75.
87.
100.
81.
85.
99.
100.
130.
150.
170.
120.
120.
150.
150.
190.
220.
260.
250.
260.
300.
320.
390.
450.
520.
1200.
1200.
1400.
1500.
1800.
2000.
2400.
2700.
2800.
3200.
3400.
4100.
4600.
5300.
Yearly
Cost
($K Year-1)
95.
100.
120.
130.
170.
190.
230.
150.
170.
200.
220.
270.
320.
370.
220.
240.
290.
310.
390.
450.
540.
430.
460.
570.
610.
770.
890.
1100.
1800.
1900.
2400.
2500.
3200.
3700.
4400.
4000.
4200.
5100.
5500.
6800.
7900.
9300.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.11
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.11
0.04
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.09

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II  SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
             o-Dichlorobenzene
  Henry's  Coefficient = 0.031  at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office  of Drinking Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
                           o-Dichlorobenzene

                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
Cost Optimized Parameters
Stripping
Fractor
0.9*
0.9*
0.9*
0.9*
2.0
3.2
0.9*
0.9*
0.9*
1.1
2.6
2.7
0.9*
0.9*
0.9*
1.0*
2.3
2.4
0.9*
0.9*
1.0
1.0
2.1
2.3
1.0
1.0
1.0
1.0
2.0
2.1
1.0
1.0
1.0
1.0
1.9
1.9
Air Gradient
(N m-2 m-1)
130.
130.
130.
140.
130.
130.
130.
130.
130.
180.
150.
140.
130.
130.
130.
160.
140.
130.
130.
130.
160.
150.
120.
120.
160.
150.
140.
140.
100.
100.
150.
150.
140.
130.
97.
100.
*  Design parameter held to limiting value.

-------
       o-Dichlorobenzene

      Table 1 (continued)
  DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
  5,
  5,
  5.
  5.
  5.
00
00
00
00
00
  5.00

  8.80
  8.80
  8.80
  8.80
  8.80
  8.80

 13.0
 13.0
 13.0
 13.0
 13.0
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
Cost Optinr
Stripping
Fractor
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
150.
150.
140.
140.
100.
100.

150.
150.
140.
130.
 96.
 96.

150.
150.
140.
130.
 95.
 94.

150.
150.
140.
130.
 90.
 89.

150.
140.
130.
130.
 83.
 82.

140.
140.
130.
120.
 77.
 76.

-------
   o-Dichlorobenzene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
17.
12.
30.
30.
30.
30.
15.
15.
30.
30.
30.
30.
16.
15.
30.
30.
30.
30.
16.
16.
30.
30.
29.
29.
16.
15.
30.
30.
29.
28.
17.
17.
Air
(SCFM
ft-2)
130.
130.
130.
130.
170.
190.
130.
130.
130.
150.
190.
190.
130.
130.
130.
140.
180.
180.
130.
130.
140.
140.
170.
170.
140.
140.
140.
140.
160.
160.
140.
140.
140.
140.
150.
150.
Air:
Water
Ratio

32.
32.
32.
33.
72.
110.
32.
32.
33.
38.
91.
96.
32.
32.
32.
36.
82.
86.
32.
32.
35.
35.
76.
81.
35.
35.
35.
35.
71.
76.
35.
35.
35.
35.
67.
69.
Mass
Trans.
Coef.
(sec-1)
0.012
0.012
0.012
0.012
0.0084
0.0068
0.012
0.012
0.012
0.012
0.0078
0.0076
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.011
0.0079
0.0077
0.012
0.012
0.011
0.011
0.0080
0.0080
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
1.1
1.3
1.6
1.6
1.6
1.6
2.2
2.3
2.8
2.8
2.8
2.8
3.8
3.9
4.4
4.4
4.4
4.4
5.9
6.1
7.3
7.3
7.4
7.4
9.9
10.1
11.9
12.0
12.1
12.2
16.0
16.0
Packing
Height

(ft)
1.1
1.6
4.4
6.5
20.
18.
1.1
1.6
4.3
6.0
17.
19.
1.1
1.6
4.4
6.2
18.
21.
1.1
1.6
4.2
6.2
19.
21.
1.0
1.6
4.1
6.2
20.
22.
1.0
1.6
4.1
6.2
21.
24.
Air
Flow

(SCFM)
72
72.
72
74
160
250.
260
260.
260.
310.
740.
780.
810.
810.
810.
900.
2000.
2200.
2000.
2000.
2100.
2100.
4600.
4900.
5900.
5900.
5900.
5900.
12000.
13000.
16000.
16000.
16000.
16000.
30000.
31000.
Air
Pressure
(inch
H20)
2.2
2.3
2.7
3.1
5.2
4.7
2.2
2.3
2.7
3.3
5.1
5.4
2.2
2.3
2.7
3.2
5.1
5.4
2.2
2.3
2.8
3.2
4.9
5.1
2.2
2.3
2.7
3.1
4.6
4.8
2.2
2.3
2.7
3.0
4.5
5.1

-------
   o-Dichlorobenzene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Mum r


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
6F
6
71
7.
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
29.
29.
17.
17.
30.
29.
29.
28.
17.
16.
30.
29.
29.
28.
17.
16.
30.
29.
29.
28.
17.
16.
29.
29.
28.
28.
16.
15.
29.
29.
28.
27.
16.
15.
Air
(SCFM
ft-2)
140.
140.
140.
140.
150.
150.
140.
140.
140.
140.
150.
150.
140.
140.
140.
130.
150.
150.
140.
140.
140.
130.
140.
140.
140.
140.
130.
130.
140.
140.
140.
140.
'10.
50.
i30.
140.
Air:
Water
Ratio

35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
65.
68.
35.
35.
35.
35.
64.
68.
35.
-35.
35.
36.
64.
68.
35.
35.
35.
36.
64.
68.
Mass
Trans.
Coef.
(sec-1)
0.012
0.012
0.012
0.011
0.0083
0.0080
0.012
0.012
0.011
0.011
0.0081
0.0079
0.012
0.012
0.011
0.011
0.0081
0.0079
0.012
0.012
0.011
0.011
0.0080
0.0077
0.012
0.012
0.011
0.011
0.0078
0.0076
0.012
0.012
0.011
0.011
0.0076
0.0074
Number
of
Columns

1.3
1.3
1.3
1.3
2.2
2.3
2.1
2.1
2.2
2.2
3.7
3.8
3.0
3.0
3.1
3.2
5.3
5.6
6.0
6.0
6.2
6.3
10.6
11.1
24.7
24.9
25.6
26.1
45.1
47.2
50.8
51.2
52.9
54.0
95.1
99.3
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.2
22.
24.
1.0
1.6
4.1
6.1
Air
Flow

(SCFM)
36000
36000
36000
36000
66000
70000
59000
59000
59000
59000
110000
110000
86000
86000
86000
86000
160000
160000
170000
170000
170000
170000
310000
320000
690000
690000
690000
690000
22. 1300000
24. 1300000
1.0 1400000
1.5 1400000
4.1 1400000
6.1 1400000
22. 2600000
24. 2700000
Air
Pressure
(inch
H20)
2.2
2.3
2.7
3.0
4.8
5.0
2.2
2.3
2.7
3.0
4.6
4.9
2.2
2.3
2.7
3.0
4.6
4.8
2.2
2.3
2.7
3.0
4.4
4.7
2.2
2.3
2.7
2.9
4.2
4.4
2.2
2.3
2.7
2.9
4.1
4.3

-------
     o-Dichlorobenzene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.2
2.6
3.0
7.3
8.0
5.0
5.2
6.2
6.8
14.
15.
7.3
7.7
9.5
11.
26.
28.
11.
12.
15.
17.
45.
49.
22.
23.
29.
34.
92.
100.
48.
51.
62.
71.
200.
220.
Support
($K)
6.8
6.8
7.1
7.3
9.8
10.
11.
11.
12.
12.
17.
17.
16.
17.
18.
18.
28.
29.
24.
24.
26.
28.
46.
49.
42.
43.
47.
50.
91.
98.
83.
84.
93.
99.
190.
210.
Indirect
($K)
5.8
5.9
6.4
6.8
11.
12.
10.
11.
12.
12.
20.
21.
15.
16.
18.
19.
35.
38.
23.
24.
27.
30.
59.
65.
42.
44.
50.
55.
120.
130.
86.
88.
100.
110.
260.
280.
Total
($K)
15.
15.
16.
17.
28.
30.
27.
27.
29.
31.
51.
54.
39.
40.
45.
48.
88.
96.
59.
60.
69.
75.
150.
160.
110.
110.
130.
140.
300.
330.
220.
220.
260.
280.
650.
710.
Operating
Cost
($K Year-1)
0.22
0.23
0.26
0.29
0.62
0.71
0.69
0.70
0.78
0.86
1.6
1.7
1.4
1.4
1.6
1.8
3.6
3.9
3.0
3.1
3.5
3.8
7.7
8.4
8.2
8.4
9.4
10.
20.
21.
23.
23.
26.
28.
54.
59.
Yearly
Cost
($K Year-1)
1.9
2.0
2.1
2.3
3.9
4.3
3.8
3.9
4.2
4.5
7.5
8.1
6.0
6.1
6.9
7.5
14.
15.
9.9
10.
12.
13.
25.
28.
21.
21.
24.
26.
55.
60.
48.
50.
56.
61.
130.
140.
Production
Cost
($ Kgal-1)
0.95
0.97
1.05
1.12
1.93
2.09
0.43
0.44
0.48
0.52
0.86
0.92
0.19
0.20
0.22
0.24
0.45
0.48
0.12
0.12
0.14
0.15
0.30
0.33
0.08
0.08
0.09
0.10
0.22
0.24
0.06
0.06
0.07
0.08
0.17
0.19

-------
     o-Dichlorobenzene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
130.
150.
430.
490.
160.
170.
210.
240.
700.
790.
230.
240.
300.
340.
1000.
1100.
450.
470.
570.
650.
1900.
2200.
1800.
1900.
2300.
2600.
7600.
8500.
3600.
3800.
4500.
5200.
15000.
17000.
Support
($K)
160.
160.
180.
190.
400.
440.
240.
250.
280.
300.
640.
710.
340.
340.
380.
410.
910.
1000.
600.
610.
690.
750.
1700.
1900.
1900.
2000.
2300.
2500.
6500.
7200.
3600.
3800.
4400.
4900.
13000.
14000.
Indirect
($K)
170.
180.
200.
220.
550.
610.
270.
270.
320.
350.
880.
980.
370.
380.
440.
490.
1300.
1400.
690.
710.
820.
920.
2400.
2700.
2400.
2500.
3000.
3400.
9200.
10000.
4800.
4900.
5800.
6600.
19000.
21000.
Total
($K)
430.
440.
510.
560.
1400.
1500.
670.
690.
800.
880.
2200.
2500.
940.
970.
1100.
1200.
3200.
3500.
1700.
1800.
2100.
2300.
6000.
6700.
6200.
6400.
7500.
8500.
23000.
26000.
12000.
12000.
15000.
17000.
47000.
52000.
Operating
Cost
($K Year-1)
53.
55.
61.
65.
130.
140.
92.
94.
100.
110.
210.
230.
140.
140.
150.
160.
310.
340.
280.
290.
320.
340.
640.
690.
1300.
1300.
1500.
1600.
2800.
3000.
3000.
3100.
3400.
3600.
6200.
6700.
Yearly
Cost
($K Year-1)
100.
110.
120.
130.
290.
320.
170.
180.
200.
220.
480.
520.
250.
250.
280.
310.
680.
750.
480.
500.
560.
610.
1300.
1500.
2000.
2100.
2300.
2600.
5500.
6100.
4400.
4600.
5100.
5500.
12000.
13000.
Production
Cost
($ Kgal-1)
0.06
0.06
0.07
0.07
0.16
0.17
0.05
0.05
0.06
0.07
0.15
0.16
0.05
0.05
0.06
0.07
0.14
0.16
0.05
0.05
0.06
0.06
0.14
0.15
0.05
0.05
0.05
0.06
0.13
0.14
0.05
0.05
0.05
0.06
0.12
0.13

-------
   Estimated Equipment Size and Cost for

Removal  of Phase II SOCs from Drinking Water

                    Via

        Packed Column Air Stripping

                 March 1989
                 Compound:

                  o-Xylene

   Henry's Coefficient = 0.1 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                                 o-Xylene
                                 Table 1
                       DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
                       0.006
                       0.006
                       0.006
                        .006
                        ,006
                        .006
0.
0.
0.
                       0.006
                       0.024
                       0.024
                        .024
                        .024
                        .024
                        .024
0.
0.
0.
0.
                       0.024
                        .086
                        .086
                        .086
                        ,086
                        ,086
                        ,086
                      0.086
                       0,
                       0.
                       0.
                       0.
                       0.
                       0.
                      2.
                      2.
                      2.
                      2.
                      2.
  230
  230
  230
  230
  230
  230
                       0.230

                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                       0.700

                       2.10
  10
  10
  10
  10
  10
                      2.10
*  Design parameter held to  limiting  value.
Removal
Efficiency
(X)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optim
Stripping
Fractor
1.7*
1.7*
2.1*
2.3*
2.8*
3.0*
3.2*
1.7*
1.7*
1.7*
1.8*
3.0
3.4
3.8
1.7*
1.7*
2.3*
2.4*
2.8*
3.0
3.4
1.7*
1.7*
2.1*
2.3*
2.7*
2.9*
3.1
1.7*
1.7*
1.9*
2.1*
2.5*
2.7*
2.9
1.7*
1.7*
1.8*
2.0*
2.3*
2.5*
2.8
 50. '•
 50.'
 72.
 83.
120.
140.
150.

 50.'
 50.'
 50.'
 57.
130.
130.
130.

 50.'
 50.'
 83.
 94.
120.
140.
130.

 50.'
 50.'
 73.
 83.
110.
130.
120.

 50.'
 50.<
 64.
 73.
 99.
110.
110.

 50. •>
 50."
 57.
 65.
 88.
100.
 98.

-------
                            o-Xylene
                      Table 1  (continued)
                  DESIGN CRITERIA -  March  1989.
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* no
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
cinn nararr
                  5.
                  5.
                  5.
                  5.
                  5.
                  5,
00
00
00
00
00
00
                  5.00

                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80

                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0

                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0

                120.
                120.
                120.
                120.
                120.
                120.
                120.

                270.
                270.
                270.
                270.
                270.
                270.
                270.
Design parameter held to limiting value.
Removal
Efficiency
(*)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optimi
Stripping
IFractor
1.7*
1.7*
1.7*
1.9*
2.3*
2.5*
2.6*
1.7*
1.7*
1.7*
1.9*
2.3*
2.4*
2.6*
1.7*
1.7*
1.7*
1.9*
2.2*
2.4*
2.5
1.7*
1.7*
1.7*
1.8*
2.2*
2.4*
2.6
1.7*
1.7*
1.7*
1.8*
2.2*
2.3*
2.6
1.7*
1.7*
1.7*
1.8*
2.2*
2.3
2.6
 50.*
 50.*
 53.
 62.
 84.
 95.
100.
                                     50. *
                                     50.'
                                     53.
                                     61.
                                     83.
                                     93.
                                    100.

                                     50.'
                                     50.'
                                     52.
                                     60.
                                     82.
                                     93.
                                    100.

                                     50.'
                                     50.<
                                     51.
                                     59.
                                     80.
                                     91.
                                     95.

                                     50J
                                     50.'
                                     50.'
                                     57.
                                     78.
                                     88.
                                     87.

                                     50.'
                                     50.'
                                     50.'
                                     56.
                                     76.
                                     83.
                                     81.

-------
        o-Xylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
27.
25.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
73.
92.
100.
120.
130.
140.
73.
73.
73.
80.
130.
140.
140.
73.
73.
100.
110.
130.
130.
140.
73.
73.
93.
100.
120.
130.
130.
73.
73.
85.
93.
110.
120.
120.
73.
73.
80.
87.
100.
110.
110.
Air:
Water
Ratio

18.
18.
23.
25.
30.
33.
35.
18.
18.
18.
20.
33.
38.
42.
18.
18.
25.
27.
31.
33.
37.
18.
18.
23.
25.
29.
32.
34.
18.
18.
21.
23.
28.
29.
32.
18.
18.
20.
22.
26.
28.
31.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.014
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.7
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.4
4.4
4.4
4.5
7.3
7.3
7.3
7.3
7.3
7.3
7.5
11.9
11.9
11.9
11.9
11.9
11.9
12.3
Packing
Height

(ft)
1.7
3.3
8.3
9.8
16.
21.
27.
1.7
3.3
9.1
11.
15.
19.
24.
1.7
3.3
8.0
9.5
16.
21.
26.
1.7
3.3
8.2
9.8
16.
21.
27.
1.7
3.3
8.5
10.
16.
22.
28.
1.7
3.3
8.7
10.
17.
22.
28.
Air
Flow

(SCFM)
41
41
51
56
68
74
78
150
150
150
160
270
300
340
460
460
630
670
790
840
930.
1100.
1100.
1400.
1500.
1800.
1900.
2100.
3100.
3100.
3600.
3900.
4600.
4900.
5400.
8200.
8200.
8800.
9600.
12000.
12000.
14000.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
3.0
4.3
5.5
7.1
2.1
2.2
2.6
2.8
4.5
5.1
5.8
2.1
2.2
2.8
3.1
4.4
5.5
6.3
2.1
2.2
2.7
3.0
4.2
5.2
5.9
2.1
2.2
2.7
2.9
4.0
5.0
5.8
2.1
2.2
2.6
2.8
3.8
4.7
5.4

-------
        o-Xylene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
29.
27.
Air
(SCFM
ft-2)
73.
73.
77.
84.
100.
110.
110.
73.
73.
76.
83.
100.
110.
110.
73.
73.
76.
83.
99.
110.
110.
73.
73.
75.
81.
98.
110.
110.
73.
73.
73.
80.
97.
100.
110.
73.
73.
73.
79.
95.
100.
100.
Air:
Water
Ratio

18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.014
0.014
0.014
0.013
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
6.0
24.2
24.2
24.2
24.2
24.2
24.2
25.6
49.5
49.5
49.5
49.5
49.5
50.4
54.1
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.7
3.3
8.9
10.
17.
23.
30.
1.7
3.3
8.9
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3.3
9.1
11.
18.
23.
29.
1.7
3.3
9.1
11.
18.
Air
Flow

(SCFM)
19000
19000
19000
21000
26000
28000
29000
31000
31000
32000
35000
42000.
45000
47000
44000
44000
45000
50000
60000
64000
68000
87000
87000
88000.
96000.
120000.
120000.
130000.
360000.
360000.
360000.
390000.
470000.
500000
550000.
730000.
730000.
730000.
790000.
950000.
23. 1000000.
29. 1
100000.
Air
Pressure
(inch
H20)
2.1
2.2
2.6
2.8
3.8
4.6
5.8
2.1
2.2
2.6
2.8
3.8
4.6
5.8
2.1
2.2
2.6
2.8
3.7
4.6
5.7
2.1
2.2
2.6
2.8
3.7
4.6
5.5
2.1
2.2
2.6
2.8
3.7
4.5
5.2
2.1
2.2
2.6
2.8
3.7
4.4
4.9

-------
          o-Xylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.1
3.4
4.5
5.4
6.5
4.7
5.2
7.1
7.8
9.9
12.
14.
7.4
8.4
12.
13.
17.
20.
24.
11.
13.
18.
20.
27.
33.
41.
21.
24.
36.
39.
53.
64.
80.
45.
52.
74.
82.
110.
130.
170.
Support
($K)
6.7
6.9
7.3
7.5
8.1
8.6
9.3
11.
11.
12.
13.
14.
15.
16.
16.
17.
19.
20.
22.
24.
27.
24.
25.
29.
30.
34.
38.
43.
42.
44.
51.
54.
63.
71.
81.
80.
85.
100.
110.
130.
140.
170.
Indirect
($K)
5.7
6.0
6.8
7.1
8.3
9.2
10.
10.
11.
13.
13.
16.
17.
20.
15.
17.
20.
21.
25.
29.
33.
23.
25.
31.
33.
40.
46.
55.
41.
45.
57.
61.
76.
88.
110.
82.
89.
120.
120.
160.
180.
220.
Total
($K)
14.
15.
17.
18.
21.
23.
26.
26.
27.
32.
34.
40.
44.
50.
39.
42.
50.
53.
64.
72.
84.
58.
63.
78.
83.
100.
120.
140.
100.
110.
140.
150.
190.
220.
270.
210.
230.
290.
310.
390.
460.
550.
Operating
Cost
($K Year-1)
0.20
0.22
0.27
0.30
0.38
0.44
0.52
0.62
0.65
0.78
0.83
1.1
1.2
1.4
1.3
1.4
1.7
1.8
2.3
2.7
3.1
2.7
2.9
3.6
3.8
4.8
5.6
6.6
7.2
7.6
9.3
9.9
12.
14.
17.
20.
21.
25.
27.
34.
39.
45.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.2
3.6
3.6
3.8
4.5
4.8
5.7
6.4
7.3
5.9
6.3
7.6
8.1
9.8
11.
13.
9.6
10.
13.
14.
17.
19.
23.
20.
21.
26.
28.
35.
41.
48.
45.
48.
60.
64.
80.
93.
110.
Production
Cost
($ Kgal-1)
0.93
0.97
1.13
1.18
1.38
1.55
1.76
0.41
0.44
0.52
0.54
0.65
0.73
0.83
0.19
0.20
0.24
0.26
0.31
0.36
0.42
0.11
0.12
0.15
0.16
0.20
0.23
0.27
0.08
0.08
0.10
0.11
0.14
0.16
0.19
0.06
0.06
0.08
0.08
0.10
0.12
0.14

-------
         o-Xylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
110.
150.
170.
220.
270.
330.
150.
170.
240.
270.
360.
430.
530.
210.
240.
350.
380.
510.
620.
760.
410.
460.
660.
730.
980.
1200.
1500.
1600.
1800.
2600.
2800.
3800.
4600.
5700.
3300.
3700.
5200.
5700.
7700.
9300.
12000.
Support
($K)
150.
160.
200.
210.
250.
280.
330.
230.
250.
300.
320.
390.
440.
520.
320.
340.
420.
450.
550.
630.
730.
570.
610.
760.
810.
1000.
1200.
1400.
1800.
2000.
2600.
2800.
3500.
4200.
5000.
3400.
3700.
4900.
5300.
6900.
8200.
10000.
Indirect
($K)
160.
180.
230.
240.
310.
360.
430.
250.
270.
360.
380.
490.
580.
690.
350.
380.
500.
540.
690.
810.
970.
640.
700.
930.
1000.
1300.
1500.
1800.
2300.
2500.
3400.
3700.
4800.
5700.
7100.
4400.
4800.
6600.
7200.
9500.
11000.
14000.
Total
($K)
410.
440.
570.
620.
780.
920.
1100.
630.
690.
900.
970.
1200.
1500.
1700.
890.
970.
1300.
1400.
1800.
2100.
2500.
1600.
1800.
2400.
2500.
3300.
3900.
4700.
5700.
6300.
8600.
9300.
12000.
15000.
18000.
11000.
12000.
17000.
18000.
24000.
29000.
36000.
Operating
Cost
($K Year-1)
47.
49.
58.
62.
77.
89.
110.
81.
85.
100.
110.
130.
150.
180.
120.
120.
150.
160.
190.
220.
270.
250.
260.
300.
320.
400.
460.
540.
1200.
1200.
1400.
1500.
1800.
2100.
2400.
2700.
2800.
3300.
3400.
4200.
4700.
5400.
Yearly
Cost
($K Year-1)
95.
100.
130.
130.
170.
200.
230.
160.
170.
210.
220.
280.
320.
390.
220.
240.
300.
320.
400.
470.
550.
440.
470.
580.
620.
780.
920.
1100.
1800.
1900.
2400.
2600.
3300.
3800.
4500.
4000.
4300.
5200.
5600.
7000.
8100.
9600.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.11
0.13
0.05
0.05
0.06
0.07
0.09
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.12
0.04
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.04
0.06
0.06
0.07
0.09
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.10

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  p-Xylene
  Henry's Coefficient = 0.12 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                                 p-Xylene

                                 Table  1
                       DESIGN  CRITERIA  -  March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
                       0.006
                       0.006
                         006
                         006
                         006
                         006
                       0.006
                      0,
                      0.
                      0.
                      0.
                      0.
                      0.
  024
  024
  024
  024
  024
  024
                      0.024
                        .086
                        .086
                        .086
                        .086
                      0.086
                      0.086
                      0.086
0.
0.
0.
0.
                      0.
                      0.
                      0.
                      0.
                      0.
 .230
 ,230
 .230
 .230
 .230
0.230
0.230
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      2.
                      2.
                      2.
  10
  10
  10
                      2.10
                      2.10
                      2.10
                      2.10
*  Design parameter held to limiting  value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
2.0*
2.0*
2.3*
2.5*
3.1*
3.3*
3.5*
2.0*
2.0*
2.0*
2.0*
2.5*
3.6
4.0
2.0*
2.0*
2.5*
2.7*
3.2*
3.4*
3.5*
2.0*
2.0*
2.3*
2.5*
3.0*
3.2*
3.4*
2.0*
2.0*
2.1*
2.3*
2.8*
3.0*
3.1*
2.0*
2.0*
2.0*
2.1*
2.6*
2.8*
3.0*
 50.
 50.
 61.
 71.
100.
120.
130.

 50.
 50.
 50.
 50.
 70.
130.
130.

 50.'
 50.
 71.
 81.
110.
120.
130.

 50.'
 50. ••
 62.
 71.
 97.
110.
120.

 50. ••
 50.'
 54.
 62.
 85.
 97.
110.

 50.'
 50.'
 50.'
 55.
 76.
 86.
 96.

-------
                                 p-Xylene
                           Table 1 (continued)
                       DESIGN CRITERIA - March
                      1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430. .
                       5,
                       5,
                       5,
                       5,
                       5,
                       5.
00
00
00
00
00
00
                       5.00

                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80

                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0

                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0

                     120.
                     120.
                     120.
                     120.
                     120.
                     120.
                     120.

                     270.
                     270.
                     270.
                     270.
                     270.
                     270.
                     270.
*  Design parameter  held  to  limiting  value.
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
2.0*
2.0*
2.0*
2.1*
2.5*
2.7*
2.9*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7*
2.8*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7*
2.8*
2.0*
2.0*
2.0*
2.0*
2.4*
2.6*
2.8*
2.0*
2.0*
2.0*
2.0*
2.4*
2.6*
2.7*
2.0*
2.0*
2.0*
2.0*
2.4*
2.5*
2.7*
50.
50.'
50.
53.
72.
82.
91.

50.'
50.'
50.'
51.
71.
81.
89.

50.'
50.'
50.'
51.
70.
80.
88.

50.'
50.'
50.'
50.
69.
78.
87.

50.<
50.<
50. *
50.'
67.
76.
83.

50.'
50.'
50.'
50.'
65.
74.
82.

-------
       p-Xylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
83.
91.
110.
120.
130.
73.
73.
73.
73.
90.
130.
130.
73.
73.
91.
99.
120.
120.
130.
73.
73.
84.
91.
110.
120.
120.
73.
73.
78.
84.
100.
110.
120.
73.
73.
73.
78.
95.
100.
110.
Air:
Water
Ratio

18.
18.
21.
23.
28.
30.
32.
18.
18.
18.
18.
23.
33.
36.
18.
18.
23.
25.
29.
31.
32.
18.
18.
21.
23.
27.
29.
31.
18.
18.
19.
21.
25.
27.
29.
18.
18.
18.
20.
24.
26.
27.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
1.7
3.1
8.0
9.4
15.
20.
26.
1.7
3.1
8.3
10.
17.
19.
24.
1.7
3.1
7.8
9.2
15.
20.
26.
1.7
3.1
7.9
9.4
15.
20.
26.
1.7
3.1
8.2
9.7
16.
21.
27.
1.7
3.1
8.3
10.
16.
21.
28.
Air
Flow

(SCFM)
41
41
46
51
63
68
72
150
150
150
150
180
260
290
460
460
570
620
730.
770.
810.
1100.
1100.
1300.
1400.
1700.
1800.
1900.
3100.
3100.
3200.
3500.
4200.
4600.
4800.
8200.
8200.
8200.
8700.
11000.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.2
2.6
2.8
3.9
4.9
6.2
2.1
2.2
2.5
2.6
3.4
5.0
5.7
2.1
2.2
2.7
2.9
4.0
4.9
6.2
2.1
2.2
2.6
2.8
3.8
4.7
5.9
2.1
2.2
2.6
2.7
3.7
4.5
5.6
2.1
2.2
2.5
2.7
3.5
4.2
5.3

-------
         p-Xylene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
92.
100.
110.
73.
73.
73.
75.
91.
99.
100.
73.
73.
73.
75.
91.
98.
100.
73.
73.
73.
74.
90.
97.
100.
73.
73.
73.
73.
88.
95.
100.
73.
73.
73.
73.
87.
94.
99.
Air:
Water
Ratio

18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
18.
18.
18.
18.
22.
24.
26.
18.
18.
18.
18.
22.
24.
25.
18.
18.
18.
18.
22.
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
49.5
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.7
3.1
8.3
10.
16.
21.
28.
1.7
3.1
8.3
10.
17.
21.
28.
1.7
3.1
8.3
10.
17.
22.
28.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
8.3
10.
17.
22.
29.
Air
Flow

(SCFM)
19000
19000
19000.
19000.
23000.
25000.
27000
31000.
31000
31000.
31000.
38000.
41000.
43000
44000.
44000
44000
45000.
54000.
59000.
62000.
87000.
87000.
87000.
87000.
110000.
110000.
120000.
360000.
360000.
360000.
360000.
430000.
460000.
490000.
730000.
730000.
730000.
730000.
860000.
930000.
990000.
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.5
4.2
5.1
2.1
2.2
2.5
2.7
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.0
2.1
2.2
2.5
2.6
3.4
4.0
5.0
2.1
2.2
2.5
2.6
3.4
4.0
4.9

-------
           p-Xylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
2.2
3.0
3.3
4.3
5.2
6.2
4.7
5.2
6.9
7.5
9.8
11.
14.
7.4
8.3
11.
12.
16.
19.
23.
11.
13.
18.
20.
26.
32.
39.
21.
24.
35.
38.
51.
62.
75.
45.
51.
72.
79.
110.
130.
160.
Support
($K)
6.7
6.8
7.3
7.5
8.0
8.5
9.1
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.
19.
22.
24.
26.
24.
25.
28.
29.
34.
37.
41.
42.
44.
51.
53.
62.
69.
78.
80.
84.
100.
100.
120.
140.
160.
Indirect
($K)
5.7
5.9
6.8
7.0
8.1
9.0
10.
10.
11.
12.
13.
15.
17.
19.
15.
16.
20.
21.
25.
28.
32.
23.
25.
30.
32.
39.
45.
52.
41.
45.
56.
60.
74.
85.
100.
82.
89.
110.
120.
150.
170.
210.
Total
($K)
14.
15.
17.
18.
21.
23.
25.
26.
27.
31.
33.
39.
43.
49.
39.
42.
50.
52.
62.
71.
82.
58.
63.
77.
81.
99.
110.
130.
100.
110.
140.
150.
190.
220.
250.
210.
220.
280.
300.
380.
440.
520.
Operating
Cost
($K Year-1)
0.20
0.21
0.27
0.29
0.36
0.42
0.49
0.62
0.65
0.76
0.81
1.00
1.2
1.4
1.3
1.4
1.7
1.8
2.2
2.5
3.0
2.7
2.9
3.5
3.7
4.6
5.3
6.3
7.2
7.6
9.0
9.6
12.
14.
16.
20.
21.
25.
26.
32.
37.
43.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8
4.4
4.7
5.6
6.2
7.1
5.9
6.3
7.5
7.9
9.5
11.
13.
9.6
10.
13.
13.
16.
19.
22.
19.
21.
26.
27.
34.
39.
46.
44.
47.
58.
62.
77.
89.
100.
Production
Cost
($ Kgal-1)
0.92
0.96
1.11
1.16
1.35
1.50
1.70
0.41
0.43
0.51
0.53
0.64
0.71
0.81
0.19
0.20
0.24
0.25
0.30
0.34
0.40
0.11
0.12
0.15
0.16
0.19
0.22
0.26
0.08
0.08
0.10
0.11
0.13
0.15
0.18
0.06
0.06
0.08
0.08
0.10
0.12
0.14

-------
          p-Xylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
93.
100.
150.
160.
220.
260.
320.
150.
170.
230.
260.
350.
410.
510.
210.
240.
330.
370.
490.
590.
720.
410.
460.
640.
700.
940.
1100.
1400.
1600.
1800.
2500.
2700.
3700.
4400.
5400.
3200.
3600.
5000.
5500.
7400.
8800.
11000.
Support
($K)
150.
160.
190.
200.
240.
270.
320.
230.
250.
300.
310.
380.
430.
500.
320.
340.
410.
440.
530.
600.
700.
570.
600.
740.
790.
970.
1100.
1300.
1800.
2000.
2500.
2700.
3400.
4000.
4700.
3400.
3700.
4800.
5200.
6600.
7800.
9300.
Indirect
($K)
160.
170.
220.
240.
300.
350.
410.
250.
270.
350.
370.
470.
550.
660.
350.
380.
490.
530.
670.
780.
930.
640.
690.
900.
980.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4600.
5500.
6600.
4300.
4800.
6400.
7000.
9200.
11000.
13000.
Total
($K)
410.
440.
560.
600.
760.
880.
1000.
630.
680.
380.
950.
1200.
1400.
1700.
880.
960.
1200.
1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3700.
4400.
5700.
6200.
8300.
9000.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
23000.
27000.
33000.
Operating
Cost
($K Year-1)
47.
49.
57.
60.
73.
84.
98.
81.
84.
98.
100.
130.
140.
170.
120.
120.
140.
150.
180.
210.
250.
240.
260.
300.
310.
380.
440.
510.
1200.
1200.
1400.
1400.
1700.
2000.
2300.
2700.
2800.
3200.
3300.
4000.
4500.
5200.
Yearly
Cost
($K Year-1)
94.
100.
120.
130..
160.
190.
220.
150.
160.
200.
210.
270.
310.
360.
220.
240.
290.
310.
380.
440.
520.
430.
460.
570.
600.
750.
870.
1000.
1800.
1900.
2400.
2500.
3100. .
3600.
4300.
4000.
4200.
5100.
5400.
6700.
7700.
9100.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.11
0.05
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.05
0.06
0.06
0.08
0.09
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.05
0.07
0.08
0.09

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  Styrene
  Henry's  Coefficient  = 0.05 at 12 Deg.  C
    U.S.  Environmental  Protection  Agency
          Office  of Drinking  Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
                                 Styrene
                                 Table  1
                       DESIGN  CRITERIA  -  March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
                       0.006
                       0.006
                       0.006
                       0.006
                       0.006
                       0.006
                       0.006

                       0.024
                       0.024
                       0.024
                       0.024
                       0.024
                       0.024
                       0.024

                       0.086
                       0.086
                       0.086
                       0.086
                       0.086
                       0.086
                       0.086

                       0.230
                       0.230
                       0.230
                       0.230
                       0.230
                       0.230
                       0.230

                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                      2.
                      2.
                      2.
                      2.
                      2.
                      2.
10
10
10
10
10
10
                      2.10
*  Design parameter held to limiting value.
Removal
Efficiency
(*)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99. "
Cost Optinr
Stripping
Fractor
1.1*
1.3*
1.7*
2.1
2.5
2.6
2.8
0.9*
1.5*
2.1
2.6
3.0
3.2
3.5
1.2*
1.4*
1.9
2.3
2.7
2.9
3.1
1.1*
1.3*
1.8
2.2
2.5
2.7
2.9
1.1*
1.2*
1.7
2.0
2.4
2.5
2.7
1.0*
.1.2*
1.6
1.9
2.3
2.4
2.6
 80.
110.
180.
160.
140.
140.
130.

 58.
140.
150.
140.
140.
140.
140.

 96.
120.
150.
140.
140.
130.
120.

 85.
110.
150.
130.
120.
120.
120.

 74.
 97.
120.
110.
110.
100.
100.

 66.
 87.
100.
 98.
 94.
 92.
 90.

-------
                              Styrene

                        Table  1  (continued)
                    DESIGN CRITERIA  - March  1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
                    5.00
                     ,00
                     .00
                     .00
                     .00
                     .00
                    5.00

                    8.80
                    8.80
                    8.80
                    8.80
                    8.80
                    8.80
                    8.80

                   13.0
                   13.0
                   13.0
                   13.0
                   13.0
                   13.0
                   13.0

                   27.0
                   27.0
                   27.0
                   27.0
                   27.0
                   27.0
                   27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
Design parameter held to  limiting value,
Removal
Efficiency
(X)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
Cost Optinr
Stripping
Fractor
1.0*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
 62.
 82.
120.
110.
100.
100.
100.

 62.
 81.
110.
100.
 99.
 97.
 95.

 61.
 80.
110.
 99.
 96.
 95.
 93.

 60.
 79.
100.
 95.
 92.
 90.
 89.

 59.
 77.
 93.
 88.
 84.
 83.
 82.

 58.
 76.
 86.
 81.
 78.
 77.
 76.

-------
        Styrene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
25.
22.
21.
19.
30.
30.
25.
21.
19.
18.
17.
30.
30.
27.
23.
20.
19.
18.
30.
30.
28.
23.
21.
20.
18.
30.
30.
27.
23.
20.
20.
18.
30.
30.
26.
23.
20.
19.
18.
Air
(SCFM
ft-2)
98.
120.
150.
160.
160.
160.
160.
80.
140.
160.
160.
170.
170.
170.
110.
130.
150.
160.
160.
160.
160.
100.
120.
150.
150.
150.
150.
160.
94.
110.
130.
140.
140.
140.
150.
87.
100.
120.
130.
130.
140.
140.
Air:
Water
Ratio

24.
29.
38.
46.
54.
57.
62.
20.
34.
47.
57.
67.
71.
77.
27.
31.
42.
51.
60.
63.
68.
25.
29.
39.
48.
56.
58.
63.
23.
27.
37.
45.
52.
55.
59.
22.
26.
35.
43.
49.
52.
56.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.012
0.011
0.010
0.0098
0.012
0.013
0.012
0.011
0.0097
0.0094
0.0090
0.013
0.013
0.012
0.011
0.010
0.0098
0.0092
0.013
0.013
0.013
0.011
0.010
0.0099
0.0095
0.013
0.013
0.012
0.011
0.010
0.0098
0.0094
0.012
0.013
0.012
0.011
0.0099
0.0097
0.0093
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.9
1.0
1.0
1.0
1.6
1.6
1.8
1.9
2.0
2.1
2.1
2.8
2.8
3.0
3.2
3.4
3.5
3.7
4.4
4.4
4.5
5.0
5.3
5.4
5.6
7.3
7.3
7.7
8.3
8.8
9.0
9.3
11.9
11.9
12.7
13.7
14.5
14.8
15.2
Packing
Height

(ft)
5.6
7.3
13.
18.
23.
26.
31.
6.3
6.8
11.
15.
20.
23.
28.
5.3
7.0
12.
16.
22.
24.
29.
5.5
7.3
13.
17.
22.
25.
31.
5.7
7.6
13.
18.
23.
26.
32.
6.0
7.9
13.
18.
24.
27.
33.
Air
Flow

(SCFM)
55.
65.
84.
100.
120.
130.
140.
160.
270.
380.
460.
540.
570.
620.
680.
790.
1000.
1300.
1500.
1600.
1700.
1500.
1800.
2400.
2900.
3400.
3500.
3800.
3900.
4600.
6100.
7500.
8700.
9200.
9900.
9700.
11000.
16000.
19000.
22000.
23000.
25000.
Air
Pressure
(inch
H20)
2.6
3.0
4.9
5.4
6.0
6.3
7.0
2.5
3.2
4.1
4.7
5.4
5.8
6.6
2.6
3.1
4.3
4.8
5.6
5.9
6.3
2.6
3.0
4.3
4.7
5.4
5.7
6.4
2.5
2.9
4.0
4.4
5.0
5.3
5.9
2.5
2.9
3.7
4.2
4.7
5.0
5.6

-------
        Styrene

  Table 2 (continued)
SYSTEM SIZE - March 1989
'Design
Number


42
44
4E
46
47
48
49
50
51
52
53
5^
55
5f
5:
51-
59
60
6'
6
6
64
65
66
67
63
69
70
71
72
73
7-
71
7(
T
7.
7i
B<
8
81
82
84
Loadings
Liquid
(GPM
ft- 2)
30.
30.
28.
24.
22.
21.
20.
30.
30.
28.
24.
22.
21.
20.
30.
3J!
28.
24.
21.
21.
19.
~o
^ •.* .
30.
27.
23.
21.
20.
19.
30.
30.
26.
23.
20.
20.
18.
30.
30.
26.
22.
20.
19.
18.
Air
(SCFM
ft-2)
84.
100.
130.
130.
140.
140.
140.
84.
99.
120.
130.
130.
130.
140.
84.
98.
120.
130.
130.
130.
140.
83.
98.
120.
130.
130.
130.
130.
81.
96.
120.
120.
130.
130.
130.
81.
95.
110.
120.
120.
120.
130.
Air:
Water
Ratio

21.
25.
33.
40.
46.
49.
52.
21.
25.
33.
40.
46.
49.
52.
21.
24.
33.
40.
46.
49.
52.
21.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
Mass
Trans.
Coef.
(sec-1)
0.012
0.013
0.013
0.011
0.011
0.010
0.0099
0.012
0.013
0.012
0.011
0.010
0.010
0.0098
0.012
0.013
0.012
0.011
0.010
0.010
0.0097
0.012
0.013
0.012
0.011
0.010
0.0099
0.0096
0.012
0.013
0.012
0.011
0.0099
0.0097
0.0093
0.012
0.013
0.012
0.011
0.0097
0.0095
0.0091
Number
of
Columns

1.3
1.3
1.3
1.5
1.7
1.8
1.9
2.1
2.1
2.2
2.6
2.9
3.0
3.2
3.0
3.0
3.3
3.8
4.2
4.4
4.6
5.9
5.9
6.5
7.5
8.4
8.7
9.2
24.2
24.2
27.5
31.9
35.7
37.1
39.2
49.5
49.5
58.0
67.2
75.2
78.2
82.8
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
8.1
14.
19.
25.
29.
35.
6.2
8.1
14.
19.
25.
28.
35.
6.2
8.2
14.
19.
25.
28.
35.
6.2
8.2
14.
19.
25.
28.
34.
6.3
8.3
14.
19.
25.
28.
Air
Flow

(SCFM)
21000
25000
34000
41000
47000.
50000.
53000.
35000
41000.
55000.
67000.
77000.
81000.
87000.
50000
59000.
80000.
97000,
110000.
120000.
130000.
97000.
120000.
160000.
190000.
220000.
230000.
250000.
390000.
470000.
640000.
780000.
900000.
950000.
34. 1000000.
6.3
8.4
800000.
940000.
14. 1300000.
19. 1600000.
25. 1900000.
28. 1900000.
34. 2100000.
Air
Pressure
(inch
H20)
2.5
2.8
4.0
4.5
5.2
5.6
6.3
2.5
2.8
3.9
4.4
5.1
5.4
6.1
2.5
2.8
3.9
4.3
5.0
5.3
6.0
2.5
2.8
3.8
4.2
4.8
5.1
5.7
2.5
2.8
3.6
4.0
4.6
4.9
5.4
2.5
2.8
3.5
3.9
4.4
4.6
5.2

-------
          Styrene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.7
3.1
4.2
5.4
6.9
7.7
9.2
6.3
7.0
9.2
11.
14.
16.
18.
9.9
11.
15.
20.
25.
28.
34.
16.
18.
25.
33.
43.
48.
58.
30.
35.
50.
66.
87.
97.
120.
64.
73.
110.
140.
190.
210.
250.
Support
($K)
7.1
7.3
8.0
8.7
9.6
10.
11.
12.
12.
14.
15.
16.
17.
19.
18.
19.
21.
24.
27.
29.
33.
27.
28.
33.
38.
45.
48.
54.
48.
51.
61.
72.
86.
94.
110.
94.
100.
120.
150.
180.
200.
230.
Indirect
($K)
6.4
6.8
8.0
9.2
11.
12.
13.
12.
13.
15.
17.
20.
21.
24.
18.
20.
24.
29.
34.
37.
43.
28.
30.
38.
47.
57.
63.
73.
51.
56.
73.
91.
110.
130.
150.
100.
110.
150.
190.
240.
270.
320.
Total
($K)
16.
17.
20.
23.
27.
29.
33.
30.
32.
38.
43.
51.
54.
62.
46.
49.
60.
72.
87.
95.
110.
71.
77.
96.
120.
140.
160.
190.
130.
140.
180.
230.
290.
320.
370.
260.
290.
380.
480.
610.
680.
800.
Operating
Cost
($K Year-1)
0.25
0.28
0.38
0.47
0.58
0.63
0.74
0.74
0.85
1.1
1.3
1.5
1.6
1.9
1.6
1.8
2.3
2.8
3.4
3.7
4.2
3.3
3.7
4.9
5.9
7.2
7.9
9.1
8.7
9.7
13.
-15.
18.
20.
23.
24.
26.
34.
41.
49.
54.
62.
Yearly
Cost
($K Year-1)
2.2
2.3
2.8
3.2
3.8
4.1
4.6
4.2
4.6
5.5
6.3
7.4
8.0
9.1
7.0
7.5
9.4
11.
14.
15.
17.
12.
13.
16.
20.
24.
26.
31.
24.
26.
34.
42.
52.
57.
67.
55.
60.
79.
97.
120.
130.
160.
Production
Cost
($ Kgal-1)
1.06
1.12
1.35
1.57
1.85
1.99
2.26
0.48
0.52
0.62
0.72
0.85
0.91
1.04
0.22
0.24
0.30
0.36
0.43
0.47
0.54
0.14
0.15
0.19
0.23
0.29
0.32
0.37
0.09
0.10
0.13
0.16
0.20
0.22
0.26
0.07
0.08
0.10
0.13
0.16
0.17
0.20

-------
          Styrene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
130.
150.
220.
290.
390.
440.
540.
210.
240.
350.
470.
630.
710.
870.
300.
340.
500.
670.
900.
1000.
1200.
570.
660.
950.
1300.
1700.
1900.
2400.
2300.
2600.
3800.
5100.
6800.
7700.
9400.
4500.
5200.
7600.
10000.
14000.
16000.
19000.
Support
($K)
180.
190.
240.
300.
370.
410.
480.
280.
300.
380.
470.
590.
650.
770.
390.
420.
530.
660.
830.
920.
1100.
690.
760.
980.
1200.
1600.
1700.
2100.
2300.
2600.
3500.
4500.
5900.
6500.
7900.
4400.
4900.
6800.
8900.
12000.
13000.
16000.
Indirect
($K)
200.
230.
300.
390.
500.
550.
670.
320.
350.
480.
620.
800.
890.
1100.
450.
500.
670.
870.
1100.
1300.
1500.
830.
930.
1300.
1700.
2200.
2400.
2900.
3000.
3400.
4800.
6300.
8300.
9300.
11000.
5800.
6600.
9500.
13000.
17000.
19000.
23000.
Total
($K)
520.
570.
760.
970.
1300.
1400.
1700.
810.
900.
1200.
1600.
2000.
2200.
2700.
1100.
1300.
1700.
2200.
2900.
3200.
3800.
2100.
2300.
3200.
4200.
5400.
6100.
7300.
7600.
8500.
12000.
16000.
21000.
24000.
29000.
15000.
17000.
24000.
32000.
42000.
47000.
58000.
Operating
Cost
($K Year-1)
55.
61.
80.
96.
120.
130.
150.
95.
100.
140.
160.
200.
220.
250.
140.
150.
200.
240.
290.
310.
360.
290.
320.
410.
490.
590.
640.
730.
1300.
1500.
1900.
2200.
2600.
2800.
3200.
3100.
3400.
4200.
4900.
5800.
6300.
7100.
Yearly
Cost
($K Year-1)
120.
130.
170.
210.
260.
290.
340.
190.
210.
280.
350.
440.
480.
570.
270.
300.
400.
500.
630.
690.
810.
530.
590.
790.
980.
1200.
1400.
1600.
2200.
2500.
3300.
4100.
5100.
5600.
6600.
4800.
5300.
7000.
8700.
11000.
12000.
14000.
Production
Cost
($ Kgal-1)
0.06
0.07
0.09
0.12
0.14
0.16
0.19
0.06
0.07
0.09
0.11
0.14
0.15
0.18
0.06
0.06
0.08
0.10
0.13
0.15
0.17
0.05
0.06
0.08
0.10
0.12
0.14
0.16
0.05
0.06
0.07
0.09
0.12
0.13
0.15
0.05
0.05
0.07
0.09
0.11
0.12
0.14

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
         trans-1,2-Di chloroethylene
  Henry's Coefficient  = 0.12 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                       trans-1,2-Di chloroethylene
                                Table  1
                      DESIGN CRITERIA  - March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
  ,006
  .006
  .006
  .006
0.006
0.006
                      0.
                      0.
                      0.
                      0.
                      0.
                      0.
                      0.
 .024
 .024
 .024
0.024
0.024
0.024
                      0.086
                      0.086
                        .086
                        .086
                        .086
0.
0.
0.
                      0.086
                      0.230
                      0.230
                        .230
                        .230
                        .230
0.
0.
0.
                      0.230

                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      2.
                      2.
                      2,
                      2.
                      2.
  10
  10
  10
  10
  10
                      2.10
Removal
Efficiency
(%)
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optim
Stripping
Fractor
2.0*
2.5*
2.8*
3.0*
3.3*
3.6*
2.0*
2.0*
2.2*
2.4*
3.5*
4.1
2.0*
2.7*
3.0*
3.1*
3.3*
3.6
2.0*
2.5*
2.8*
2.9*
3.1*
3.4*
2.0*
2.3*
2.6*
2.7*
2.9*
3.2*
2.0*
2.2*
2.4*
2.5*
2.7*
3.0*
 50.*
 73.
 87.
 97.
110.
140.

 50.*
 50.
 59.
 66.
130.
130.

 50.*
 84.
 96.
110.
120.
130.

 50.*
 74.
 85.
 94.
110.
120.

 50.*
 65.
 75.
 82.
 94.
110.

 50.*
 58.
 66.
 73.
 83.
 98.
*  Design parameter held to limiting value.

-------
                       trans-1,2-Dichloroethylene
                          Table 1  (continued)
                      DESIGN CRITERIA -  March  1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                      5,
                      5.
                      5,
                      5.
                      5,
00
00
00
00
00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
Removal
Efficiency
(%)
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optimi
Stripping
Fractor
2.0*
2.1*
2.3*
2.5*
2.7*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.0*
2.2*
2.4*
2.6*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8
50.*
55.
63.
70.
80.
93.

50.*
53.
62.
68.
78.
91.

50.*
53.
61.
67.
77.
91.

50.*
52.
60.
66.
76.
89.

50.*
50.
58.
64.
73.
86.

50.*
50.*
57.
63.
72.
81.
*  Design parameter held to limiting value.

-------
trans-1,2-Di chloroethyl ene

         Table 2
 SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
93.
100.
110.
120.
130.
73.
74.
82.
88.
130.
130.
73.
100.
110.
120.
120.
130.
73.
94.
100.
110.
120.
130.
73.
86.
94.
100.
110.
120.
73.
80.
88.
93.
100.
110.
Air:
Water
Ratio

18.
23.
26.
27.
30.
33.
18.
18.
20.
22.
32.
37.
18.
25.
27.
29.
30.
33.
18.
23.
25.
27.
29.
31.
18.
21.
23.
25.
27.
29.
18.
20.
22.
23.
25.
27.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.017
0.016
0.016
0.016
0.016
0.016
0.015
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
1.8
9.3
11.
13.
17.
27.
1.8
10.
12.
14.
17.
25.
1.8
9.0
11.
13.
17.
26.
1.8
9.3
11.
13.
17.
27.
1.8
9.5
12.
14.
18.
28.
1.8
9.8
12.
14.
18.
29.
Air
Flow

(SCFM)
41
52
57.
61.
67.
74.
150.
150.
160.
180.
260.
300.
460.
630.
680.
720.
760.
830.
1100.
1400.
1500.
1600.
1700.
1900.
3100.
3600.
3900.
4100.
4500.
4900.
,8200.
8900.
9700.
10000.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.8
3.2
3.6
4.4
6.5
2.1
2.6
2.9
3.2
4.6
5.8
2.1
2.9
3.3
3.7
4.5
6.4
2.1
2.8
3.2
3.5
4.3
6.1
2.1
2.8
3.1
3.4
4.1
5.7
2.1
2.7
3.0
3.3
3.9
5.4

-------
trans-l,2-Dichloroethylene

   Table 2 (continued)
 SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
59
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
78.
85.
90.
98.
110.
73.
77.
84.
89.
97.
110.
73.
76.
83.
89.
96.
110.
73.
76.
83.
88.
95.
100.
73.
74.
81.
86.
93.
100.
73.
73.
80.
85.
92.
100.
Air:
Water
Ratio

18.
19.
21.
23.
24.
27.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
18.
20.
21.
23.
26.
18.
18.
20.
21.
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
50.3
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.8
9.9
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
15.
19.
29.
1.8
10.
13.
15.
19.
Air
Flow

(SCFM)
19000.
20000.
22000.
23000.
25000.
27000.
31000.
32000.
35000.
37000.
40000.
44000.
44000.
46000.
50000.
53000.
58000.
63000.
87000.
89000.
97000.
100000.
110000.
120000.
360000.
360000.
390000.
420000.
450000.
500000.
730000.
730000.
800000.
840000.
920000.
29. 1000000.
Air
Pressure
(inch
H20)
2.1
2.7
3.0
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.6
2.9
3.2
3.7
5.1
2.1
2.6
2.9
3.1
3.7
5.0

-------
 trans-1,2-Dichloroethyl ene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.0
3.3
3.6
4.0
4.7
6.3
4.8
7.5
8.3
9.1
10.
14.
7.5
12.
14.
15.
18.
24.
11.
20.
22.
24.
29.
39.
21.
38.
42.
47.
56.
77.
45.
79.
89.
98.
120.
160.
Support
($K)
6.7
7.4
7.7
7.9
8.3
9.2
11.
12.
13.
13.
14.
16.
16.
19.
20.
21.
23.
26.
24.
29.
31.
32.
35.
42.
42.
53.
56.
59.
65.
79.
81.
100.
110.
120.
130.
160.
Indirect
($K)
5.7
7.0
7.4
7.8
8.5
10.
10.
13.
14.
15.
16.
20.
16.
21.
22.
23.
26.
33.
23.
32.
35.
37.
42.
53.
42.
59.
65.
69.
79.
100.
83.
120.
130.
140.
160.
210.
Total
($K)
14.
18.
19.
20.
21.
26.
26.
33.
35.
37.
41.
49.
39.
52.
56.
59.
66.
83.
59.
81.
87.
93.
110.
130.
100.
150.
160.
180.
200.
260.
210.
300.
330.
360.
410.
530.
Operating
Cost
($K Year-1)
0.20
0.29
0.31
0.34
0.39
0.51
0.62
0.81
0.88
0.94
1.1
1.4
1.3
1.8
1.9
2.1
2.4
3.0
2.7
3.7
4.0
4.3
5.0
6.4
7.3
9.6
10.
11.
13.
16.
20.
26.
.. 28.
30.
34.
44.
Yearly
Cost
($K Year-1)
1.9
2.4
2.5
2.6
2.9
3.5
3.6
4.7
5.0
5.3
5.9
7.2
5.9
7.9
8.5
9.0
10.
13.
9.7
13.
14.
15.
17.
22.
20.
27.
30.
32.
36.
47.
45.
62.
67.
72.
82.
110.
Production
Cost
($ Kgal-1)
0.93
1.16
1.23
1.29
1.42
1.72
0.41
0.53
0.57
0.60
0.67
0.82
0.19
0.25
0.27
0.29
0.32
0.41
0.11
0.16
0.17
0.18
0.21
0.26
0.08
0.11
0.12
0.12
0.14
0.18
0.06
0.08
0.09
0.09
0.11
0.14

-------
 trans-1,2-Dichloroethylene

    Table  3 (continued)
ESTIMATED  COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
94.
160.
180.
200.
240.
320.
150.
260.
290.
320.
380.
520.
220.
370.
410.
450.
540.
730.
410.
700.
780.
860.
1000.
1400.
1600.
2700.
3100.
3400.
4000.
5500.
3300.
5500.
6100.
6800.
8000.
11000.
Support
($K)
150.
200.
220.
230.
260.
320.
230.
310.
340.
360.
400.
510.
320.
440.
470.
500.
560.
710.
570.
790.
850.
910.
1000.
1300.
1800.
2700.
3000.
3200.
3700.
4800.
3400.
5200.
5700.
6200.
7200.
9500.
Indirect
($K)
160.
240.
260.
280.
320.
420.
250.
370.
410.
440.
510.
670.
350.
520.
580.
620.
720.
950.
640.
970.
1100.
1200.
1400.
1800.
2300.
3600.
3900.
4300.
5000.
6700.
4400.
7000.
7700.
8500.
9900.
13000.
Total
($K)
410.
600.
650.
710.
820.
1100.
640.
940.
1000.
1100.
1300.
1700.
890.
1300.
1500.
1600.
1800.
2400.
1600.
2500.
2700.
2900.
3400.
4500.
5700.
9000.
10000.
11000.
13000.
17000.
11000.
18000.
20000.
21000.
25000.
34000.
Operating
Cost
($K Year-1)
47.
60.
65.
69.
79.
100.
81.
100.
110.
120.
140.
170.
120.
150.
160.
170.
200.
250.
250.
310.
340.
360.
410.
520.
1200.
1400.
1600.
1700.
1900.
2300.
2700.
3300.
3600.
3800.
4200.
5300.
Yearly
Cost
($K Year-1)
95.
130.
140.
150.
170.
230.
160.
210.
230.
250.
290.
370.
220.
310.
330.
360.
410.
530.
440.
600.
650.
710.
810.
1000.
1800.
2500.
2700.
2900.
3400.
4300.
4000.
5400.
5900.
6300.
7200.
9200.
Production
Cost
($ Kgal-1)
0.05
0.07
0.08
0.08
0.10
0.12
0.05
0.07
0.07
0.08
0.09
0.12
0.05
0.06
0.07
0.08
0.09
0.11
0.04
0.06
0.07
0.07
0.08
0.11
0.04
0.06
0.06
0.07
0.08
0.10
0.04
0.05
0.06
0.06
0.07
0.09

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
            Tetrachloroethylene
  Henry's Coefficient = 0.22 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                          Tetrachloroethylene

                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
Cost Optimized Parameters
Stripping
Fractor
3.7*
4.2*
4.6*
5.1*
5.3*
5.6*
3.7*
3.7*
3.7*
4.0*
4.2*
4.5*
3.7*
4.4*
4.8*
5.1*
5.3*
5.5*
3.7*
4.1*
4.5*
4.8*
5.0*
5.2*
3.7*
3.8*
4.2*
4.4*
4.6*
4.8*
3.7*
3.7*
3.9*
4.2*
4.3*
4.5*
Air Gradient
(N m-2 m-1)
50.*
62.
73.
85.
91.
100.
50.*
50.*
50.*
58.
63.
70.
50.*
68.
78.
86.
91.
97.
50.*
61.
70.
78.
82.
89.
50.*
53.
61.
69.
72.
78.
50.*
50.*
54.
61.
65.
71.
*  Design parameter held to limiting value.

-------
                          Tetrachloroethyl ene

                          Table 1 (continued)
                      DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
Average
Flow
(MGD)
5.00
5.00
5.00
5.00
5.00
5.00
8.80
8.80
8.80
8.80
8.80
8.80
13.0
13.0
13.0
13.0
13.0
13.0
27.0
27.0
27.0
27.0
27.0
27.0
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
Removal Cos1
Efficiency Str
(%) Fr,
; Optimized Parameters
ipping Air Gradient
actor (N m-2 m-1)
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 51.
98. 4.0* 58.
99. 4.2* 62.
99.8 4.4* 67.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 51.
98. 4.0* 57.
99. 4.1* 61.
99.8 4.3* 66.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.
98. 3.9* 56.
99. 4.1* 60.
99.8 4.3* 65.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.9* 55.
99. 4.1* 59.
99.8 4.3* 64.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.8* 53.
99. 4.0* 57.
99.8 4.2* 62.
50. 3.7* 50.*
90. 3.7* 50.*
95. 3.7* 50.*
98. 3.8* 52.
99. 3.9* 55.
99.8 4.1* 60.
*  Design parameter  held  to  limiting  value.

-------
  Tetrachloroethylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
84.
93.
100.
110.
110.
73.
73.
73.
81.
85.
91.
73.
89.
97.
100.
110.
110.
73.
83.
90.
97.
100.
100.
73.
76.
83.
89.
92.
97.
73.
73.
77.
84.
87.
91.
Air:
Water
Ratio

18.
21.
23.
25.
26.
28.
18.
18.
18.
20.
21.
23.
18.
22.
24.
26.
26.
27.
18.
21.
23.
24.
25.
26.
18.
19.
21.
22.
23.
24.
18.
18.
19.
21.
22.
23.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
3.7
13.
17.
23.
27.
36.
3.7
14.
18.
24.
28.
38.
3.7
13.
17.
23.
27.
36.
3.7
14.
18.
23.
27.
36.
3.7
14.
18.
23.
28.
37.
3.7
14.
18.
24.
28.
38.
Air
Flow

(SCFM)
41
47
52
56
59
62
150
150
150
160.
170
180.
460
560
600
640.
660
690.
1100.
1200.
1400.
1500.
1500.
1600.
3100.
3200.
3500.
3700.
3900.
4000.
8200.
8200.
8600.
9300.
9600.
10000.
Air
Pressure
(inch
H20)
2.2
3.0
3.6
4.4
5.0
6.4
2.2
2.9
3.1
3.7
4.2
5.3
2.2
3.1
3.7
4.4
5.0
6.3
2.2
3.0
3.5
4.2
4.7
6.0
2.2
2.9
3.4
4.0
4.5
5.6
2.2
2.9
3.2
3.8
4.2
5.3

-------
   Tetrachloroethylene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
75.
81.
84.
88.
73.
73.
74.
80.
83.
87.
73.
73.
74.
79.
82.
87.
73.
73.
73.
79.
81.
86.
73.
73.
73.
77.
80.
84.
73.
73.
73.
76.
79.
83.
Air:
Water
Ratio

18.
18.
19.
20.
21.
22.
18.
18.
18.
20.
21.
22.
18.
18.
18.
20.
21.
22.
18.
18.
18.
20.
20.
21.
18.
18.
18.
19.
20.
21.
18.
18.
18.
19.
20.
21.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
28.
38.
3.7
14.
18.
24.
29.
39.
3.7
14.
18.
24.
29.
39.
3.7
14.
18.
24.
29.
39.
Air
Flow

(SCFM)
19000.
19000.
19000.
21000.
21000.
22000.
31000.
31000.
31000.
33000.
35000.
36000.
44000.
44000.
44000.
48000.
50000.
52000.
87000.
87000.
87000.
93000.
96000.
100000.
360000.
360000.
360000.
370000.
390000.
410000.
730000.
730000.
730000.
750000.
780000.
820000.
Air
Pressure
(inch
H20)
2.2
2.9
3.2
3.7
4.1
5.1
2.2
2.9
3.2
3.7
4.1
5.1
2.2
2.9
3.1
3.7
4.1
5.1
2.2
2.9
3.1
3.7
4.1
5.0
2.2
2.9
3.1
3.6
4.0
4.9
2.2
2.9
3.1
3.6
4.0
4.9

-------
     Tetrachloroethylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.3
3.9
4.6
5.5
6.2
7.8
5.4
8.7
10.
12.
14.
17.
8.7
15.
17.
21.
23.
29.
14.
24.
28.
34.
39.
49.
26.
46.
55.
66.
75.
95.
54.
95.
110.
140.
150.
190.
Support
($K)
6.9
7.8
8.2
8.7
9.1
10.
11.
13.
14.
15.
16.
18.
17.
21.
22.
24.
26.
29.
25.
32.
35.
38.
41.
48.
45.
58.
64.
72.
77.
91.
86.
120.
130.
140.
160.
190.
Indirect
($K)
6.0
7.7
8.4
9.3
10.
12.
11.
14.
16.
18.
19.
23.
17.
23.
26.
29.
32.
39.
26.
37.
41.
48.
52.
63.
46.
68.
78.
90.
100.
120.
92.
140.
160.
180.
200.
250.
Total
($K)
15.
19.
21.
24.
25.
29.
27.
36.
40.
45.
49.
57.
43.
59.
66.
74.
81.
97.
64.
92.
100.
120.
130.
160.
120.
170.
200.
230.
250.
310.
230.
350.
400.
460.
510.
630.
Operating
Cost
($K Year-1)
0.22
0.32
0.36
0.42
0.47
0.57
0.66
0.89
0.99
1.1
1.2
1.5
1.4
2.0
2.2
2.5
2.8
3.4
3.0
4.1
4.6
5.3
5.8
7.0
7.8
10.
12.
14.
15.
18.
22.
28.
32.
36.
40.
48.
Yearly
Cost
($K Year-1)
2.0
2.6
2.8
3.2
3.4
4.0
3.9
5.1
5.7
6.4
7.0
8.2
6.4
8.8
9.9
11.
12.
15.
11.
15.
17.
19.
21.
26.
21.
31.
35.
40.
44.
54.
49.
69.
79.
91.
100.
120.
Production
Cost
($ Kgal-1)
0.98
1.27
1.39
1.56
1.68
1.96
0.44
0.58
0.65
0.73
0.79
0.94
0.20
0.28
0.32
0.36
0.39
0.47
0.13
0.18
0.20
0.23
0.25
0.31
0.08
0.12
0.14
0.16
0.17
0.21
0.06
0.09
0.10
0.12
0.13
0.16

-------
     Tetrachloroethylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
110.
190.
230.
270.
310.
390.
180.
310.
360.
440.
490.
630.
250.
430.
520.
620.
700.
890.
480.
830.
990.
1200.
1300.
1700.
1900.
3200.
3800.
4600.
5200.
6600.
3800.
6400.
7700.
9200.
10000.
13000.
Support
($K)
160.
220.
250.
290.
310.
370.
250.
350.
390.
450.
490.
590.
350.
490.
550.
630.
690.
830.
620.
890.
1C\)0.
1200.
1300.
1500.
2000.
3100.
3600.
4200.
4600.
5700.
3800.
5900.
6900.
8100.
9100.
11000.
Indirect
($K)
180.
270.
310.
370.
410.
500.
280.
430.
500.
580.
650.
790.
390.
600.
700.
820.
910.
1100.
720.
1100.
1300.
1500.
1700.
2100.
2600.
4100.
4800.
5800.
6500.
8000.
5000.
8100.
9500.
11000.
13000.
16000.
Total
($K)
450.
690.
790.
930.
1000.
1300.
710.
1100.
1300.
1500.
1600.
2000.
990.
1500.
1800.
2100.
2300.
2800.
1800.
2800.
3300.
3900.
4300.
5400.
6500.
10000.
12000.
15000.
16000.
20000.
13000.
20000.
24000.
29000.
32000.
40000.
Operating
Cost
($K Year-1)
50.
65.
73.
83.
91.
110.
86.
110.
120.
140.
160.
190.
130.
170.
180.
210.
230.
270.
260.
340.
380.
430.
470.
560.
1200.
1600.
1700.
1900.
2100.
2500.
2900.
3600.
3900.
4400.
4800.
5600.
Yearly
Cost
($K Year-1)
100.
150.
170.
190.
210.
260.
170.
240.
270.
310.
350.
420.
240.
340.
390.
450.
500.
610.
480.
670.
760.
890.
980.
1200.
2000.
2800.
3200.
3700.
4000.
4900.
4300.
6000.
6800.
7800.
8600.
10000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.09
0.10
0.12
0.14
0.05
0.07
0.08
0.10
0.11
0.13
0.05
0.07
0.08
0.10
0.10
0.13
0.05
0.07
0.08
0.09
0.10
0.12
0.05
0.06
0.07
0.08
0.09
0.11
0.04
0.06
0.07
0.08
0.09
0.11

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  Toluene
  Henry's Coefficient = 0.13 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                                Toluene
                                Table  1
                      DESIGN CRITERIA  -  March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 .
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.024
                      0.024
                        .024
                        .024
                        .024
0.
0.
0.
                      0.024

                      0.086
                      0.086
                      0.086
                      0.086
                      0.086
                      0.086
                        230
                        230
                        230
                      0.230
                      0.230
                      0.230
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      2.
                      2.
                      2.
                      2.
                      2.
  10
  10
  10
  10
  10
                      2.10
Removal
Efficiency
(%)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optinr
Stripping
Fractor
2.2*
2.2*
2.2*
2.7*
3.5*
3.7*
2.2*
2.2*
2.2*
2.2*
3.8
4.0
2.2*
2.2*
2.2*
2.9*
3.6*
3.7*
2.2*
2.2*
2.2*
2.7*
3.4*
3.5*
2.2*
2.2*
2.2*
2.5*
3.2*
3.3*
2.2*
2.2*
2.2*
2.3*
3.0*
3.1*
 50."
 50.'
 50/
 72.
120.
120.

 50. ••
 50. •
 50. •
 50. '•
130.
120.

 50.1
 50.'
 50.
 81.
120.
120.

 50.'
 50.'
 50.'
 72.
110.
110.

 50. <
 50.<
 50."
 62.
 94.
 99.

 50.<
 50.<
 50.<
 56.
 84.
 89.
*  Design parameter held to limiting value.

-------
                                 Toluene
                           Table 1 (continued)
                       DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                       5.
                       5.
                       5.
                       5.
                       5.
00
00
00
00
00
                       5.00

                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80

                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0

                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0

                     120.
                     120.
                     120.
                     120.
                     120.
                     120.

                     270.
                     270.
                     ?70.
                     270.
Removal
Efficiency
(*)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optinr
Stripping
Fractor
2.2*
2.2*
2.2*
2.2*
2.9*
3.0*
2.2*
2.2*
2.2*
2.2*
2.9*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.8*
2.2*
2.2*
2.2*
2.2*
2.7*
2.8*
50.
50.
50.'
53.
80.
85.

50/
SO.1
SO.1
51.
79.
83.

50.1
50.'
50.'
51.
78.
82.

50.'
50.'
50.'
50.
76.
80.

50."
50."
50.'
50."
74.
78.

50."
50."
50."
50."
72.
76.
*  Design parameter held to limiting value.

-------
        Toluene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
92.
120.
130.
73.
73.
73.
73.
130.
130.
73.
73.
74.
99.
120.
130.
73.
73.
73.
92.
120.
120.
73.
73.
73.
Air:
Water
Ratio

18.
18.
18.
23.
30.
31.
18.
18.
18.
18.
32.
34.
18.
18.
18.
25.
31.
31.
18.
18.
18.
23.
29.
30.
18.
18.
18.
'84. x 21.
110.
110.
73.
73.
73.
7y.
100.
100.
27.
28.
18.
18.
18.
20.
25.
26.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
, 11.9
11.9
11.9
11.9
Packing
Height

(ft)
2.2
2.9
5.6
10.
21.
24.
2.2
2.9
5.6
11.
21.
23.
2.2
2.9
5.6
9.7
21.
24.
2.2
2.9
5.6
10.
21.
25.
2.2
2.9
5.6
10.
22.
25.
2.2
2.9
5.6
10.
23.
26.
Air
Flow

(SCFM)
41.
41.
41.
51.
67.
70.
150.
150.
150.
150.
260.
270.
460.
460.
460.
620.
770.
790.
1100.
1100.
1100.
1400.
1700.
1800.
3100.
3100.
3100.
3500.
4500.
4600.
8200.
8200.
8200.
8700.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.2
2.4
2.9
5.0
5.7
2.1
2.2
2.4
2.7
5.2
5.6
2.1
2.2
2.4
3.0
5.1
5.7
2.1
2.2
2.4
2.9
4.8
5.4
2.1
2.2
2.4
2.8
4.5
5.1
2.1
2.2
2.4
2.7
4.3
4.8

-------
       Toluene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
98.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
74.
95.
98.
73.
73.
73.
73.
94.
97.
73.
73.
73.
73.
92.
95.
Air:
Water
Ratio

18.
18.
18.
19.
24.
25.
18.
18.
18.
19.
24.
25.
18.
18.
18.
18.
24.
25.
18.
18.
18.
18.
24.
24.
18.
18.
18.
18.
23.
24.
18.
18.
18.
18.
23.
24.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
Air
Flow

(SCFM)
19000
19000
19000
19000
25000.
26000
31000
31000
31000
31000
41000
42000.
44000
44000.
44000
45000
58000
60000.
87000.
87000.
87000.
87000.
110000.
120000.
360000.
360000.
360000.
360000.
460000.
470000.
730000.
730000.
730000.
730000.
920000.
950000.
Air
Pressure
(inch
H20)
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.6
2.1
2.2
2.4
2.7
4.1
4.6
2.1
2.2
2.4
2.7
4.1
4.5

-------
         Toluene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.2
2.6
3.4
5.4
5.9
4.9
5.1
6.0
7.7
12.
13.
7.7
8.1
9.8
13.
20.
22.
12.
13.
15.
20.
33.
36.
22.
24.
29.
39.
64.
71.
47.
50.
61.
82.
130.
150.
Support
($K)
6.8
6.8
7.1
7.5
8.6
8.9
11.
11.
12.
12.
15.
16.
17.
17.
18.
20.
24.
25.
24.
25.
27.
30.
38.
40.
42.
43.
47.
54.
70.
75.
82.
84.
92.
110.
140.
150.
Indirect
($K)
5.8
5.9
6.3
7.1
9.2
9.7
10.
10.
11.
13.
18.
19.
16.
16.
18.
21.
29.
31.
24.
24.
28.
33.
46.
50.
42.
. 44.
50.
61.
88.
96.
85.
88.
100.
120.
180.
200.
Total
($K)
15.
15.
16.
18.
23.
25.
26.
27.
29.
33.
44.
47.
40.
41.
46.
53.
73.
78.
60.
62.
70.
83.
120.
130.
110.
110.
130.
150.
220.
240.
210.
220.
250.
310.
460.
500.
Operating
Cost
($K Year-1)
0.21
0.21
0.24
0.29
0.43
0.47
0.63
0.64
0.70
0.82
1.2
1.3
1.3
1.4
1.5
1.8
2.6
2.8
2.8
2.9
3.1
3.8
5.5
5.9
7.4
7.5 .
8.2
9.7
14.
15.
20.
21.
23.
26.
38.
41.
Yearly
Cost
($K Year-1)
1.9
2.0
2.1
2.4
3.1
3.4
3.7
3.8
4.1
4.7
6.4
6.8
6.0
6.2
6.9
8.0
11.
12.
9.8
10.
11.
14.
19.
21.
20.
21.
23.
28.
40.
44.
46.
47.
52.
63.
91.
99.
Production
Cost
($ Kgal-1)
0.94
0.96
1.03
1.18
1.54
1.64
0.42
0.43
0.47
0.54
0.73
0.78
0.19
0.20
0.22
0.26
0.35
0.38
0.12
0.12
0.13
0.16
0.23
0.25
0.08
0.08
0.09
0.11
0.16
0.17
0.06
0.06
0.07
0.08
0.12
0.13

-------
           Toluene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
(SK)
98.
100.
120.
170.
270.
300.
160.
170.
200.
270.
430.
480.
220.
230.
280.
380.
610.
680.
430.
450.
540.
720.
1200.
1300.
1700.
1800.
2100.
2800.
4600.
5100.
3400.
3600.
4300.
5600.
9100.
10000.
Support
($K)
160.
160.
180.
210.
280.
300.
240.
240.
270.
320.
440.
480.
330.
340.
370.
440.
620.
670.
580.
600.
670.
810.
1100.
1200.
1900.
1900.
2200.
2800.
4100.
4500.
3500.
3600.
4200.
5300.
8000.
8800.
Indirect
(SK)
170.
170.
200.
240.
360.
390.
260.
270.
310.
380.
570.
630.
360.
370.
430.
540.
810.
890.
660.
690.
790.
1000.
1500.
1700.
2300.
2400.
2800.
3700.
5700.
6300.
4500.
4700.
5500.
7200.
11000.
12000.
Total
(SK)
420.
430.
500.
610.
910.
1000.
650.
680.
770.
970.
1400.
1600.
910.
950.
1100.
1400.
2000.
2200.
1700.
1700.
2000.
2500.
3800.
4200.
5900.
6100.
7200.
9200.
14000.
16000.
11000.
12000.
14000.
18000.
28000.
31000.
Operating
Cost
($K Year-1)
48.
49.
53.
61.
86.
93.
82.
84.
91.
100.
150.
160.
120.
120.
130.
150.
220.
230.
250.
250.
280.
320.
440.
480.
1200.
1200.
1300.
1500.
2000.
2200.
2700.
2800.
3000.
3400.
4600.
4900.
Yearly
Cost
($K Year-1)
97.
100.
110.
130.
190.
210.
160.
160.
180.
220.
320.
350.
230.
230.
260.
310.
460.
500.
450.
460.
510.
610.
900.
980.
1900.
1900.
2100.
2600.
3700.
4000.
4100.
4200.
4600.
5500.
7900.
8600.
Production
Cost
($ Kgal-1)
0.05
0.05
0.06
0.07
0.11
0.12
0.05
0.05
0.06
0.07
0.10
0.11
0.05
0.05
0.05
0.07
0.10
0.10
0.05
0.05
0.05
0.06
0.09
0.10
0.04
0.04
0.05
0.06
0.08
0.09
0.04
0.04
0.05
0.06
0.08
0.09

-------
   Estimated Equipment Size and Cost for

Removal  of Phase II SOCs from Drinking Water

                    Via

        Packed Column Air Stripping

                 March 1989
                 Compound:

            1,2-Di chloropropane

  Henry's Coefficient = 0.043 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
    1,2-Di chloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
130.
230.
310.
380.
410.
490.
210.
370.
490.
620.
660.
790.
300.
520.
710.
890.
940.
1100.
580.
1000.
1400.
1700.
1800.
2200.
2300.
4000.
5400.
6700.
7200.
8500.
4600.
8000.
11000.
14000.
15000.
17000.
Support
($K)
180.
250.
310.
370.
390.
440.
280.
390.
490.
580.
610.
710.
390.
550.
690.
830.
870.
1000.
700.
1000.
1300.
1600.
1600.
1900.
2300.
3600.
4700.
5800.
6100.
7200.
4400.
7200.
9400.
12000.
12000.
14000.
Indirect
($K)
210.
310.
400.
490.
520.
610.
320.
500.
640.
790.
840.
980.
450.
700.
910.
1100.
1200.
1400.
840.
1300.
1700.
2100.
2300.
2700.
3000.
5000.
6600.
8200.
8700.
10000.
5900.
10000.
13000.
17000.
18000.
21000.
Total
($K)
520.
790.
1000.
1200.
1300.
1500.
820.
1300.
1600.
2000.
2100.
2500.
1100.
1800.
2300.
2800.
3000.
3500.
2100.
3300.
4400.
5400.
5700.
6700.
7600.
13000.
17000.
21000.
22000.
26000.
15000.
25000.
33000.
42000.
44000.
53000.
Operating
Cost
($K Year-1)
57.
82.
99.
120.
120.
140.
97.
140.
170.
200.
210.
230.
140.
210.
250.
290.
300.
340.
300.
420.
510.
580.
610.
690.
1400.
1900.
2300.
2600.
2700.
3000.
3200.
4300.
5100.
5800.
6000.
6700.
Yearly
Cost
($K Year-1)
120.
180.
220.
260.
280.
320.
190.
290.
360.
430.
450.
520.
280.
410.
520.
620.
650.
750.
540.
810.
1000.
1200.
1300.
1500.
2300.
3400.
4200.
5000.
5300.
6100.
4900.
7300.
9000.
11000.
11000.
13000.
Production
Cost
($ Kgal-1)
0.06
0.10
0.12
0.14
0.15
0.17
0.06
0.09
0.11
0.13
0.14
0.16
0.06
0.09
0.11
0.13
0.14
0.16
0.06
0.08
0.10
0.12
0.13
0.15
0.05
0.08
0.10
0.11
0.12
0.14
0.05
0.07
0.09
0.11
0.11
0.13

-------
                           1,2-Dichloropropane
                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006

                      0.024
                      0.024
                      0.024
                      0.024
                      0.024
                      0.024

                      0.086
                      0.086
                      0.086
                      0.086
                      0.086
                      0.086

                      0.230
                      0.230
                      0.230
                      0.230
                      0.230
                      0.230

                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      2,
                      2.
                      2.
                      2.
                      2.
10
10
10
10
10
                      2.10
Removal
Efficiency
(%)
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
Cost Optim
Stripping
Fractor
1.0*
1.6
2.0
2.3
2.4
2.6
1.2*
2.0
2.5
2.8
2.9
3.2
1.1*
1.8
2.2
2.5
2.6
2.8
1.1*
1.7
2.1
2.4
2.4
2.6
1.0*
1.6
2.0
2.2
2.3
2.5
0.9*
1.5
1.9
2.1
2.2
2.3
 93.
170.
150.
140.
140.
130.

130.
150.
150.
140.
140.
130.

110.
150.
140.
140.
130.
130.

 97.
140.
130.
120.
120.
120.

 86.
120.
110.
110.
100.
100.

 77.
100.
 97.
 93.
 93.
 91.
*  Design parameter held to limiting value.

-------
                          1,2-Dichloropropane
                          Table 1 (continued)
                      DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                        00
                        00
                        00
                        00
                        00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
Removal
Efficiency
(*)
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
Cost Optinr
Stripping
Fractor
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
2.0
2.0
2.2
 74.
110.
100.
100.
100.
100.

 74.
110.
100.
 98.
 98.
 96.

 74.
100.
 99.
 96.
 96.
 94.

 74.
100.
 94.
 91.
 91.
 89.

 74.
 92.
 87.
 84.
 83.
 82.

 74.
 85.
 80.
 78.
 77.
 76.
*  Design parameter held to limiting value.

-------
  1,2-Dichloropropane

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
28.
23.
21.
20.
19.
30.
23.
20.
18.
18.
16.
30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
24.
21.
19.
19.
17.
Air
(SCFM
ft-2)
110.
160.
160.
160.
160.
170.
130.
160.
170.
180.
180.
170.
120.
160.
160.
170.
170.
170.
110.
150.
150.
160.
160.
160.
100.
140.
140.
150.
150.
150.
96.
130.
130.
140.
140.
140.
Air:
Water
Ratio

27.
42.
51.
58.
60.
65.
32.
52.
64.
73.
75.
81.
29.
47.
57.
65.
67.
72.
27.
44.
54.
60.
62.
67.
25.
41.
50.
57.
58.
63.
24.
39.
48.
54.
56.
60.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.012
0.011
0.010
0.0099
0.013
0.011
0.010
0.0096
0.0094
0.0089
0.013
0.012
0.011
0.010
0.0098
0.0094
0.013
0.012
0.011
0.010
0.0099
0.0094
0.013
0.012
0.011
0.0099
0.0097
0.0094
0.013
0.012
0.010
0.0098
0.0096
0.0092
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.9
1.0
1.0
1.0
1.1
1.6
1.8
2.0
2.1
2.1
2.2
2.8
3.1
3.4
3.5
3.6
3.7
4.4
4.8
5.2
5.4
5.5
5.7
7.3
8.0
8.6
9.1
9.2
9.5
11.9
13.2
14.2
15.0
15.1
15.6
Packing
Height

(ft)
5.6
13.
17.
21.
22.
26.
5.1
11.
15.
18.
20.
23.
5.3
12.
16.
20.
21.
25.
5.5
12.
16.
20.
22.
26.
5.8
13.
17.
21.
23.
27.
6.0
13.
17.
22.
23.
27.
Air
Flow

(SCFM)
59.
94.
110.
130.
130.
150
260
420
520.
590.
610.
650.
730.
1200
1400.
1600
1700.
1800.
1700.
2600.
3200.
3700.
3800.
4100.
4200.
6900.
8400.
9500.
9800.
11000.
11000.
18000.
21000.
24000.
25000
27000
Air
Pressure
(inch
H20)
2.6
4.7
5.2
5.7
5.9
6.3
2.8
4.1
.4.6
5.2
5.4
5.6
2.7
4.2
4.7
5.3
5.4
6.0
2.7
4.1
4.6
5.1
5.2
5.7
2.6
3.9
4.3
4.7
4.9
5.4
2.6
3.6
4.1
4.5
4.6
5.0

-------
  1,2-Di chloropropane

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
26.
22.
21.
20.
19.
30.
26.
22.
20.
20.
19.
30.
25.
22.
20.
20.
19.
30.
25.
22.
20.
19.
18.
30.
24.
21.
19.
19.
18.
30.
24.
20.
19.
18.
17.
Air
(SCFM
ft-2)
94.
130.
140.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
120.
130.
130.
130.
140.
94.
120.
130.
130.
130.
130.
94.
120.
120.
130.
130.
130.
Air:
Water
Ratio

23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
Mass
Trans.
Coef.
(sec-1)
0.013
0.012
0.011
0.010
0.010
0.0098
0.013
0.012
0.011
0.010
0.010
0.0097
0.013
0.012
0.011
0.010
0.010
0.0096
0.013
0.012
0.011
0.010
0.0098
0.0095
0.013
0.011
0.010
0.0097
0.0096
0.0092
0.013
0.011
0.010
0.0095
0.0094
0.0090
Number
of
Columns

1.3
1.5
1.7
1.8
1.9
2.0
2.1
2.4
2.8
3.1
3.1
3.3
3.0
3.5
4.1
4.5
4.6
4.8
5.9
• 7.0
8.2
8.9
9.1
9.7
24.2
29.9
34.6
38.0
38.9
41.1
49.5
62.9
72.9
80.0
81.9
86.7
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
Air
Flow

(SCFM)
24000.
38000.
46000.
52000.
53000.
57000.
39000.
62000.
76000.
85000.
87000.
94000.
56000.
90000.
110000.
120000.
130000.
140000.
110000.
180000.
210000.
240000.
250000.
270000.
450000.
720000.
880000.
990000.
24. 1000000.
29. 1
6.1
100000.
930000.
14. 1500000.
18. 1800000.
23. 2000000.
24. 2100000.
28. 2200000.
Air
Pressure
(inch
H20)
2.6
3.9
4.4
4.9
5.1
5.6
2.6
3.8
4.3
4.8
4.9
5.4
2.6
3.8
4.2
4.7
4.9
5.3
2.6
3.7
4.1
4.6
4.7
5.2
2.6
3.5
4.0
4.4
4.5
4.9
2.6
3.4
3.8
4.2
4.3
4.7

-------
                           1,2-Dichloropropane
                                 Table 3
                       ESTIMATED COST - March  1989
Design
Number
   1
   2
   3
   4
   5
   6

   7
   8
   9
  10
  11
  12

  13
  14
  15
  16
  17
  18

  19
  20
  21
  22
  23
  24

  25
  26
  27
  28
  29
  30

  31
  32
  33
  34
  35
  36
($K)   |

   2.7
   4.3
   5.6
   6.7
   7.1
   8.3

   6.4
   9.3
  12.
  14.
  14.
  17.

  10.
  16.
  20.
  24.
  26.
  30.

  16.
  26.
  34.
  42.
  44.
  52.

  31.
  52.
  68.
  85.
  90.
 110.

  65.
 110.
 150.
 180.
 190.
 230.
mated Capital Costs
upport
($K)
7.1
8.1
8.8
9.5
9.7
10.
12.
14.
15.
16.
17.
18.
18.
21.
24.
27.
28.
30.
27.
34.
39.
44.
45.
50.
48.
62.
74.
85.
89.
100.
95.
130.
150.
180.
190.
210.
Indirect
($K)
6.5
8.1
9.4
11.
11.
12.
12.
15.
17.
20.
20.
23.
18.
24.
29.
34.
35.
40.
28.
39.
48.
56.
59.
67.
52.
75.
93.
110.
120.
130.
100.
160.
200.
240.
250.
290.
Total
($K)
16.
21.
24.
27.
28.
31.
30.
38.
44.
49.
> 51.
57.
46.
61.
73.
85.
88.
100.
71.
98.
120.
140.
150.
170.
130.
190.
240.
280.
300.
340.
260.
390.
500.
600.
630.
730.
Operating
Cost
($K Year-1)
0.26
0.39
0.48
0.57
0.60
0.68
0.80
1.1
1.3
1.5
1.5
1.7
1.6
2.4
2.9
3.3
3.5
4.0
3.4
5.0
6.1
7.1
7.4
8.4
8.9
13.
16.
18.
19.
22.
24,
35.
42.
49.
51,
57.
Yearly
Cost
($K Year-1)
2.2
2.8
3.3
3.7
3.9
4.3
4.3
5.5
6.4
7.3
7.5
8.4
7.0
9.6
11.
13.
14.
16.
12.
17.
20.
24.
25.
28.
24.
35.
43.
51.
54.
61.
55.
81.
100.
120.
130.
140.
Production
Cost
($ Kgal-1)
1.06
1.37
1.60
1.82
1.89
2.11
0.49
0.63
0.73
0.83
0.86
0.96
0.22
0.30
0.36
0.42
0.44
0.50
0.14
0.20
0.24
0.28
0.30
0.34
0.09
0.14
0.17
0.20
0.21
0.24
0.07
0.11
0.13
0.16
0.16
0.19

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                 Toxaphene
  Henry's Coefficient = 0.11 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                               Toxaphene
                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
                      0.006
                      0.006
                      0.006
                      0.006

                      0.024
                      0.024
                      0.024
                      0.024

                      0.086
                      0.086
                      0.086
                      0.086
                      0.230
                      0.230
                      0.230
                      0.230
                      0.700
                      0.700
                      0.700
                      0.700

                      2.10
                      2.10
                      2.10
                      2.10
Removal
Efficiency
(%)
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
Cost Optinr
Stripping
Fractor
1.8*
2.7*
3.1*
3.4*
1.8*
2.1*
3.3
4.1
1.9*
2.8*
3.1*
3.6
1.8*
2.6*
2.9*
3.3
1.8*
2.4*
2.7*
3.1
1.8*
2.3*
2.6*
3.0
 50.*
 94.
120.
150.

 50.*
 65.
130.
120.

 52.
100.
120.
130.

 50.*
 91.
110.
120.

 50.*
 80.
 97.
110.

 50.*
 71.
 86.
 97.
*  Design parameter held to limiting value.

-------
                               Toxaphene
                          Table 1  (continued)
                      DESIGN  CRITERIA - March 1989
Design
Number

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
430.
430.
430.
430.
                      5.00
                      5.00
                      5.00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
Removal
Efficiency
(%)
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
Cost Optim
Stripping
Fractor
1.8*
2.2*
2.5*
2.8*
1.8*
2.2*
2.5*
2.8*
1.8*
2.2*
2.4*
98. ' 2.7*
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
1.8*
2.1*
2.4*
2.7
1.8*
2.1*
2.4*
2.7
1.8*
2.1*
2.3*
2.8
 50.*
 67.
 83.
100.

 50.*
 66.
 81.
 98.

 50.*
 65.
 80.
 98.

 50.*
 64.
 79.
 95.

 50.*
 62.
 76.
 87.

 50.*
 61.
 74.
 80.
*  Design parameter held to limiting value.

-------
       Toxaphene

        Table 2
SYSTEM SIZE - March
1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
29.
25.
30.
30.
30.
28.
30.
30.
30.
29.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
110.
120.
140.
73.
86.
130.
140.
76.
110.
130.
140.
73.
110.
120.
130.
73.
98.
110.
120.
73.
91.
100.
110.
Air:
Water
Ratio

18.
27.
31.
35.
18.
21.
33.
41.
19.
28.
31.
36.
18.
26.
29.
33.
18.
24.
27.
31.
18.
23.
26.
30.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.0096
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
Number
. of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.5
7.3
7.3
7.3
7.4
11.9
11.9
11.9
12.2
Packing
Height

(ft)
5.9
14.
20.
34.
5.9
15.
19.
31.
5.8
14.
20.
33.
5.9
14.
20.
34.
5.9
14.
21.
35.
5.9
15.
21.
36.
Air
Flow

(SCFM)
41
60
69
77
150
170
270
330
470.
700.
780.
910.
1100.
1600.
1800.
2000.
3100.
4100.
4600.
5200.
8200.
10000.
11000.
13000.
Air
Pressure
(inch
H20)
2.4
3.6
4.9
8.2
2.4
3.2
5.0
6.7
2.4
3.7
5.0
7.3
2.4
3.6
4.7
7.2
2.4
3.4
4.5
6.7
2.4
3.3
4.3
6.3

-------
     Toxaphene

  Table 2 (continued)
SYSTEM SIZE - March 1989
'Design
dumber

i
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
88.
100.
110.
73.
88.
99.
110.
73.
87.
98.
110.
73.
86.
97.
110.
73.
84.
95.
110.
73.
83.
94.
100.
Air:
Water
Ratio

18.
22.
25.
28.
18.
22.
25.
28.
18.
22.
24.
27.
18.
21.
24.
27.
18.
21.
24.
27.
18.
21.
23.
28.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.010
Number
of
Columns

1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
24.2
24.2
24.2
25.2
49.5
49.5
49.5
53.3
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
5.9
15.
21.
37.
5.9
15.
22.
38.
5.9
15.
22.
38.
5.9
15.
22.
38.
5.9
15.
22.
37.
5.9
15.
22.
37. 1
Air
Flow

(SCFM)
19000.
23000.
25000.
29000.
31000.
36000.
41000.
46000.
44000.
52000.
59000.
66000.
87000.
100000.
110000.
130000.
360000.
410000.
460000.
530000.
730000.
830000.
930000.
100000.
Air
Pressure
(inch
H20)
2.4
3.2
4.2
6.6
2.4
3.2
4.2
6.5
2.4
3.2
4.1
6.5
2.4
3.2
4.1
6.4
2.4
3.2
4.1
6.0
2.4
3.2
4.0
5.6

-------
         Toxaphene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Estimated Capital Costs
Process
($K)
2.7
4.1
5.2
7.7
6.1
9.3
11.
16.
10.
15.
19.
29.
16.
25.
32.
48.
30.
48.
62.
95.
62.
100.
130.
200.
Support
($K)
7.1
7.9
8.5
10.
12.
13.
15.
18.
18.
21.
24.
29.
27.
33.
37.
47.
48.
60.
69.
91.
93.
120.
140.
190.
Indirect
($K)
6.4
7.8
9.0
12.
12.
15.
17.
22.
18.
24.
28.
38.
28.
38.
45.
63.
51.
71.
86.
120.
100.
140.
180.
250.
Total
($K)
16.
20.
23.
29.
29.
38.
43.
57.
46.
60.
71.
96.
70.
95.
110.
160.
130.
180.
220.
310.
260.
360.
440.
640.
Operating
Cost
($K Year-1)
0.24
0.34
0.42
0.60
0.71
0.95
1.2
1.6
1.5
2.1
2.6
3.6
3.2
4.4
5.3
7.5
8.3
11.
14.
19.
23.
30.
37.
51.
Yearly
Cost
($K Year-1)
2.1
2.7
3.1
4.0
4.1
5.4
6.3
8.2
6.9
9.1
11.
15.
11.
16.
19.
26.
23.
32.
39.
55.
53.
73.
89.
130.
Production
Cost
($ Kgal-1)
1.04
1.30
1.50
1.97
0.47
0.61
0.71
0.94
0.22
0.29
0.35
0.47
0.14
0.18
0.22
0.31
0.09
0.13
0.15
0.22
0.07
0.10
0.12
0.16

-------
         Toxaphene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Estimated Capital Costs
Process
($K)
130.
200.
260.
390.
200.
320.
420.
630.
290.
460.
590.
900.
550.
880.
1100.
1700.
2200.
3400.
4400.
6800.
4300.
6900.
8800.
14000.
Support
($K)
180.
230.
270.
370.
270.
360.
430.
590.
380.
510.
610.
830.
680.
930.
1100.
1600.
2200.
3200.
4000.
5800.
4300.
6300.
7800.
12000.
Indirect
($K)
200.
290.
350.
500.
310.
450.
550.
800.
440.
630.
780.
1100.
800.
1200.
1500.
2100.
2900.
4400.
5500.
8200.
5600.
8600.
11000.
17000.
Total
($K)
500.
720.
880.
1300.
790.
1100.
1400.
2000.
1100.
1600.
2000.
2900.
2000.
3000.
3700.
5400.
7300.
11000.
14000.
21000.
14000.
22000.
28000.
42000.
Operating
Cost
($K Year-1)
53.
70.
84.
120.
92.
120.
150.
200.
130.
180.
210.
300.
280.
360.
440.
610.
1300.
1700.
2000.
2700.
3000.
3800.
4500.
6000.
Yearly
Cost
($K Year-1)
110.
150.
190.
270.
180.
250.
310.
440.
260.
360.
440.
630.
520.
710.
870.
1200.
2200.
3000.
3600.
5100.
4700.
6400.
7700.
11000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.10
a. is
0.06
0.08
0.10
0.14
0.06
0.08
0.09
0.13
0.05
0.07
0.09
0.13
0.05
0.07
0.08
0.12
0.05
0.06
0.08
0.11

-------
   Estimated Equipment Size and Cost for
Removal  of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                 Heptachlor
  Henry's Coefficient = 0.034 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
                               Heptachlor
                                Table 1
                      DESIGN CRITERIA - March
                        1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.
                      0.
                      0.
  .024
  .024
  .024
0.024
0.024
0.024

0.086
0.086
0.086
0.086
0.086
0.086

0.230
0.230
0.230
0.230
0.230
0.230

0.700
0.700
0.700
0.700
0.700
0.700
                      2.
                      2.
                      2.
                      2.
                      2.
  10
  10
  10
  10
  10
                      2.10
Removal
Efficiency
(%)
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
Cost Optinr
Stripping
Fractor
1.2*
1.4
2.1
3.5
3.7
4.3
1.5
1.8
2.6
3.0
3.1
3.6
1.3
1.6
2.3
2.7
2.8
3.2
1.2
1.5
2.2
2.5
2.6
3.0
1.2
1.4
2.0
2.3
2.4
2.8
1.1
1.3
1.9
2.1
2.2
2.5
180.
170.
120.
120.
120.
120.

160.
160.
140.
140.
120.
130.

160.
150.
140.
130.
130.
120.

150.
140.
120.
110.
110.
110.

130.
120.
100.
 99.
100.
 96.

110.
100.
 92.
100.
100.
 99.
*  Design parameter held to limiting value.

-------
           Heptachlor
      Table 1 (continued)
  DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
  5.
  5.
  5,
  5,
  5,
00
00
00
00
00
  5.00

  8.80
  8.80
  8.80
  8.80
  8.80
  8.80

 13.0
 13.0
 13.0
 13.0
 13.0
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
270.
Removal
Efficiency
(%)
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
Cost Optimi
Stripping
Fractor
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.3
1.8
2.1
2.2
2.5
1.0
1.2
1.8
2.1
2.2
2.5
120.
110.
100.
 99.
 99.
 95.

110.
110.
 97.
 94.
 93.
 90.

110.
100.
 95.
 92.
 91.
 88.

110.
 99.
 90.
 88.
 87.
 84.

100.
 91.
 83.
 81.
 80.
 78.

 99.
 86.
 77.
 75.
 75.
 72.

-------
         Heptachlor

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
3.8
4.6
7.6
9.8
10.
16.
8.4
9.8
15.
19.
21.
31.
14.
17.
27.
35.
38.
59.
23.
28.
47.
62.
67.
110.
45.
56.
96.
130.
140.
220.
96.
120.
210.
280.
300.
480.
Support
($K)
7.8
8.3
10.
11.
12.
15.
13.
14.
17.
20.
20.
27.
20.
22.
29.
34.
36.
49.
32.
35.
47.
57.
61.
86.
58.
65.
93.
120.
120.
180.
120.
130.
200.
250.
270.
400.
Indirect
($K)
7.6
8.4
12.
14.
15.
20.
14.
15.
21.
25.
27.
38.
22.
25.
36.
46.
48.
71.
36.
41.
61.
78.
84.
130.
68.
79.
120.
160.
170.
260.
140.
170.
270.
350.
370.
580.
Total
($K)
19.
21.
29.
35.
37.
50.
35.
39.
53.
64.
68.
95.
57.
64.
92.
120.
120.
180.
90.
100.
160.
200.
210.
320.
170.
200.
310.
410.
430.
660.
350.
420.
670.
870.
940.
1500.
Operating
Cost
($K Year-1)
0.35
0.42
0.63
0.84
0.89
1.3
1.0
1.1
1.6
2.0
2.1
3.0
2.2
2.5
3.7
4.7
5.0
7.2
4.6
5.3
7.9
9.9
11.
15.
12.
14.
20.
25.
27.
39.
32.
37.
54.
69.
74.
110.
Yearly
Cost
($K Year-1)
2.6
2.9
4.0
5.0
5.2
7.1
5.2
5.7
7.8
9.5
10.
14.
8.8
10.
14.
18.
19.
28.
15.
17.
26.
33.
35.
53.
32.
37.
57.
73.
78.
120.
74.
86.
130.
170.
180.
280.
Production
Cost
($ Kgal-1)
1.28
1.43
1.98
2.43
2.55
3.49
0.59
0.65
0.89
1.08
1.14
1.62
0.28
0.32
0.46
0.58
0.61
0.90
0.18
0.21
0.31
0.39
0.42
0.62
0.12
0.15
0.22
0.28
0.30
0.46
0.10
0.11
0.17
0.22
0.24
0.37

-------
         Heptachlor

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45 (
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
6;
e:
63
64
65
66
67
66
6S
7C
•?•
£
Estimated Capital Costs
Process
($K)
200.
250.
440.
610.
660.
1100.
320.
400.
720.
990.
1100.
1700.
450.
570.
1000.
1400.
1500.
2500.
860.
1100.
2000.
2700.
2900.
4800.
3400.
4300.
7800.
11000.
12000,
19000.
6900.
8700.
16000.
?2000.
;ooo.
JBOOO.
Support
(SK)
230.
260.
410.
530.
570.
880.
360.
420.
660.
860.
920.
1400.
500.
590.
930.
1200.
1300.
2000.
910.
1100.
1800.
2300.
2500.
3900.
3200.
3900.
6600.
8900.
9600.
15000.
6200.
7700.
13000.
18000.
19000.
31000.
Indirect
($K)
280.
330.
560.
750.
810.
1300.
440.
530.
900.
1200.
1300.
2100.
620.
760.
1300.
1700.
1900.
3000.
1200.
1400.
2400.
3300.
3600.
5700.
4300.
5400.
9500.
13000.
14000.
22000.
8600.
11000.
19000.
26000.
28000.
45000.
Total
($K)
700.
850.
1400.
1900.
2000.
3200.
1100.
1300.
2300.
3100.
3300.
5200.
1600.
1900.
3200.
4300.
4700.
7500.
2900.
3600.
6200.
8300.
9000.
14000.
11000.
14000.
24000.
32000.
35000.
56000.
22000.
27000.
48000.
66000.
71000.
110000.
Operating
Cost
($K Year-1)
76.
87.
130.
160.
170.
250.
130.
150.
220.
270.
290.
420.
190.
220.
320.
400.
420.
610.
390.
440.
650.
810.
850.
1200.
1800.
2000.
2800.
3500.
3700.
5300.
4100.
4500.
6300.
7700.
8200.
11000.
Yearly
Cost
($K Year-1)
160.
190.
290.
380.
410.
630.
260.
310.
490.
630.
680.
1000.
370.
440.
700.
910.
970.
1500.
740.
870.
1400.
1800.
1900.
2900.
3100.
3600.
5600.
7300.
7800.
12000.
6600.
7700.
12000.
15000.
17000.
25000.
Production
Cost
($ Kgal-1)
0.09
0.10
0.16
0.21
0.23
0.34
0.08
0.10
0.15
0.20
0.21
0.32
0.08
0.09
0.15
0.19
0.21
0.31
0.07
0.09
0.14
0.18
0.19
0.30
0.07
0.08
0.13
0.17
0.18
0.27
0.07
0.08
0.12
0.16
0.17
0.25

-------
       Heptachlor

        Table 2
SYSTEM SIZE - March
1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
26.
18.
12.
12.
10.
25.
22.
16.
14.
13.
12.
27.
23.
17.
15.
15.
13.
27.
24.
17.
15.
15.
13.
27.
23.
17.
15.
15.
13.
27.
23.
17.
17.
16.
15.
Air
(SCFM
ft-2)
150.
160.
160.
190.
190.
190.
160.
170.
180.
190.
180.
190.
150.
160.
170.
180.
180.
180.
150.
150.
160.
170.
170.
170.
140.
140.
150.
150.
160.
160.
130.
130.
140.
150.
150.
160.
Air:
Water
Ratio

38.
46.
67.
110.
120.
140.
47.
57.
84.
98.
100.
120.
42.
51.
75.
87.
90.
100.
40.
48.
70.
81.
83.
97.
37.
45.
65.
76.
78.
91.
36.
43.
62.
68.
70.
81.
Mass
Trans.
Coef.
(sec-1)
0.0092
0.0084
0.0065
0.0051
0.0050
0.0046
0.0082
0.0076
0.0062
0.0057
0.0054
0.0051
0.0086
0.0079
0.0064
0.0059
0.0058
0.0053
0.0086
0.0078
0.0064
0.0059
0.0058
0.0053
0.0084
0.0077
0.0063
0.0058
0.0058
0.0053
0.0082
0.0075
0.0062
0.0062
0.0061
0.0057
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
Column
Diameter

(ft)
0.8
0.9
1.1
1.3
1.3
1.4
1.7
1.9
2.2
2.3
2.4
2.5
3.0
3.2
3.7
4.0
4.0
4.3
4.6
4.9
5.7
6.1
6.2
6.6
7.7
8.2
9.6
10.2
10.3
11.0
12.6
13.6
15.8
16.0
16.0
16.0
Packing
Height

(ft)
11.
14.
22.
24.
26.
40.
9.2
12.
20.
26.
28.
44.
10.
12.
21.
28.
30.
47.
10.
13.
22.
29.
31.
49.
11.
13.
23.
30.
33.
51.
11.
14.
23.
33.
36.
56.
Air
Flow

(SCFM)
85
100
150
260
260
310
380
460
680
790
810
950
1100
1300
1900
2200
2300
2600.
2400.
2900
4200.
4900.
5000.
5900.
6200.
7500.
11000.
13000.
13000.
15000.
16000.
19000.
28000.
30000.
31000.
36000.
Air
Pressure
(inch
H20)
4.4
4.8
5.3
5.6
5.9
8.0
3.8
4.2
5.5
6.4
6.3
9.1
4.0
4.3
5.5
6.4
6.7
9.0
3.9
4.2
5.2
6.1
6.3
8.4
3.7
4.0
4.9
5.7
6.0
8.0
3.5
3.7
4.7
6.1
6.5
8.8

-------
       Heptachlor

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
28.
25.
19.
17.
16.
14.
28.
24.
18.
16.
16.
14.
28.
24.
18.
16.
16.
14.
27.
24.
18.
16.
15.
14.
27.
23.
17.
15.
15.
13.
27.
22.
17.
15.
15.
13.
Air
(SCFM
ft-2)
130.
130.
150.
150.
150.
160.
130.
130.
140.
150.
150.
150.
120.
13'0.
140.
150.
150.
150.
120.
130.
140.
140.
140.
150.
120.
120.
130.
140.
140.
140.
120.
120.
130.
130.
140.
140.
Air:
Water
Ratio

34.
41.
59.
68.
70.
80.
34.
41.
59.
68.
70.
81.
34.
41.
59.
68.
70.
80.
34.
41.
59.
68.
70.
80.
34.
40.
58.
68.
70.
81.
34.
40.
58.
68.
70.
81.
Mass
Trans.
Coef.
(sec-1)
0.0086
0.0079
0.0066
0.0061
0.0061
0.0056
0.0084
0.0078
0.0065
0.0061
0.0060
0.0055
0.0084
0.0077
0.0065
0.0060
0.0059
0.0055
0.0083
0.0076
0.0064
0.0059
0.0058
0.0054
0.0082
0.0074
0.0062
0.0058
0.0057
0.0053
0.0081
0.0073
0.0061
0.0056
0.0055
0.0051
Number
of
Columns

1.3
1.5
2.0
2.3
2.3
2.6
2.2
2.6
3.4
3.8
3.9
4.4
3.2
3.7
5.0
5.6
5.7
6.4
6.4
7.5
9.9
11.1
11.4
12.8
26.9
31.6
42.2
47.3
48.4
54.6
55.9
66.4
88.8
99.6
102.1
115.2
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
12.
15.
25.
33.
36.
56.
12.
15.
25.
33.
35.
56.
12.
15.
25.
33.
35.
56.
12.
14.
25.
33.
35.
55.
12.
14.
24. 1
Air
Flow

(SCFM)
34000
42000
60000
69000
71000
82000
56000
68000
98000
110000.
120000
130000
81000
98000
140000
160000
170000
190000
160000.
190000.
280000.
320000
330000
380000
650000
790000.
100000.
33. 1300000.
35. 1400000.
55. 1600000.
12. 1300000
14. 1600000
24. 2300000.
32. 2700000.
35. 2800000.
55. 3200000.
Air
Pressure
(inch
H20)
3.7
4.0
5.1
6.0
6.3
8.5
3.7
3.9
5.0
5.8
6.1
8.2
3.6
3.9
4.9
5.7
6.0
8.0
3.6
3.8
4.7
5.5
5.8
7.7
3.5
3.6
4.5
5.2
5.5
7.3
3.4
3.5
4.3
5.0
5.2
6.9

-------