United States Office of EPA 520/1-87-024-2
Environmental Protection Radiation Programs December 1987
Agency Washington, D.C. 20460
Radiation
&EPA Low-Level and NARM
Radioactive Wastes
Model Documentation
PRESTO-EPA-POP
Volume 2
Users Manual
-------
40 CFR Part 193 EPA 520/1-87-024-2
Environmental Radiation Standards (RAE 8706/1-2)
for Management and Land Disposal
of Low-Level Radioactive Wastes
PRESTO-EPA-POP: A Low-Level Radioactive Waste Environmental
Transport and Risk Assessment Code
Volume 2
USERS MANUAL
Developed by
D. E. Fields
C.A. Little
Fidel Parraga
Vern Rogers
Cheng Hung
December 1987
Prepared for
U.S. Environmental Protection Agency
Office of Radiation Programs
Washington, DC 20460
Cheng Hung, Project Officer
-------
DISCLAIMER
The report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, contractors, subcontractors,
or their employees, makes any warranty, express or implied, nor assumes any
legal liability or responsibility for any third party's use of the results
of such use of any information, apparatus, product or process disclosed in
this report, nor represents that its use by such third party would not
infringe privately owned rights.
-------
PREFACE
Tnis two-volume PRESTO-EPA-POP model documentation provides
the background information on the mathematical modeling used to
generate the basic data for the Environmental Impact Statement
(EIS) which is used to support EPA's rulemaking for generally
applicable environmental standards for the management and
disposal of low-level radioactive wastes (LLw). Volume 1 of the
PRESTO-EPA-POP documentation presents the theoretical bases of
the mathematical model and their implemented computer code for
the assessment of the cumulative population health effects
(including fatal cancer deaths and serious genetic effects) to
the general population residing in th.e downstream regional basin
of a LLW disposal site. The model simulates the leaching of
radionuc 1 ides from the waste matrix, the hydro 1ogica 1 ,
hydrogeological, and biological transports, the resultant human
exposures, and finally the assessment of the probable health
effects for the entire regional water basin population. Volume
2 of the PRESTO-EPA-POP documentation provides the information
on the structure of the computer code and how it is used in the
health effects assessments.
The two volumes present enough model detail so that
interested persons may apply the model, using appropriate and
applicable input data, for assessing the cumulative population
health effects from a LLW disposal site.
-------
TABLE OF CONTENTS
Page
LIST OF FIGURES vi
LIST OF TABLES vii
EXECUTIVE SUMMARY viii
1 INTRODUCTION
1-1
1.1 Purpose of the Users Manual 1-1
1.2 Description of the Model 1~3
1.3 Overview of the PRESTO-EPA-POP Code 1-8
1.4 Outline of User's Manual 1-9
2 INPUT DATA FOR PRESTO-EPA-POP 2-1
2.1 Site Specific and Radionuclide Data 2-1
2.2 Namelist Data 2-13
2.3 Data for the Infiltration Subroutine (INFIL) .... 2-20
2.4 Dosimetric and Health Effects Data 2-23
3 OUTPUT FROM PRESTO-EPA-POP 3-1
3.1 Replication of the Input Data 3-1
3.2 Definition, Organization, and Preliminary Analysis
of Input Data 3-1
3.3 Radionuclide Summary Tables 3-3
3.4 INFIL Input/Output 3-4
3.5 Unit Response Calculations 3-4
3.6 Annual Summary Tables for Specified Years 3-5
3.7 Radionuclide Concentration Tables 3-5
3.8 Radionuclide Exposure Tables 3-6
3.9 DARTAB Control Information 3-6
3.10 DARTAB Dose Tables 3-7
3.11 DARTAB Fatal Cancer Risk Tables 3-7
3.12 Residual Radioactivity Released to the Basin and
Health Effects 3-7
4 SAMPLE PROBLEM 4-1
4.1 Problem Definition 4-1
4.2 Results 4-9
4.3 Job Control Language 4-19
IV
-------
TABLE OF CONTENTS
(Continued)
Page
REFERENCES R-l
APPENDIX A - PRESTO-EPA-POP LISTING A-l
APPENDIX B - SAMPLE PROBLEM OUTPUT B-l
-------
LIST OF FIGURES
Figure No.
Page.
1-1 Hydrologic Environmental Transport Pathways 1-10
1-2 Atmospheric Environmental Transport Pathways 1-11
4-1 PRESTO-EPA-POP JCL 4_20
VI
-------
LIST OF TABLES
Table No. Page
1-1 PRESTO-EPA Code Family 1-2
1-2 Radiological Exposure Pathways for Selected Scenarios . . 1-7
1-3 PRESTO-EPA-POP Code Summary of Main Steps 1-13
2-1 Description of PRESTO-EPA-POP Environmental and Nuclides
Input 2-2
2-2 Description of Namelist Input for Subroutine DARTAB . . . 2-14
2-3 Input Data for Subroutine INFIL 2-21
4-1 Surface Soil Data 4-2
4-2 Atmospheric Data 4-3
4-3 Foodchain Parameters 4-5
4-4 Radionuclide Specific Foodchain Data 4-6
4-5 Inventory 4-7
4-6 Radionuclide Specific Data 4-8
4-7 Radionuclide Specific Dose Parameters 4-10
4-8 Organ Weighting Factors 4-11
4-9 INFIL Input Data for the Sample Problem 4-12
4-10 Maximum Day Lengths for Sample Problem 4-13
4-11 Daily Temperatures in Degrees Celsius 4-14
4-12 Hourly Rainfall Read in as Month, Day, Rainfall Per Hour
and Hour and Given in 0.1 mm/hr 4-15
4-13 Summary of Results for Sample Case 4-18
Vll
-------
EXECUTIVE SUMMARY
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the land disposal of
low-level radioactive waste (LLW). As an aid in developing the standard, a
family of computer codes, entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP,
PRESTO-EPA-CPG, PRESTO-EPA-BRC and PATHRAE-EPA, has been developed under EPA
direction. The PRESTO-EPA-POP code was the first code developed and served
as the basis for the other PRESTO-EPA codes in the family. PRESTO-EPA-POP
estimates potential health effects to local and regional populations from
the shallow land disposal of low-level radioactive waste under a wide
variety of hydrologic, geologic, climatic, site engineering, and waste form
conditions. The EPA uses the PRESTO-EPA code family to compare the
potential health impacts of a broad number of LLW disposal alternatives to
evaluate and support its decisions for the LLW standard.
This report documents the PRESTO-EPA-POP computer code and provides
information and guidance in the use of the code. The PRESTO-EPA-POP code
was implemented by Rogers and Associates Engineering Corporation under EPA
direction to estimate cumulative population health effects from low-level
radioactive waste buried in shallow trenches. The code can be used for
both local health effect assessments and for regional basin health effect
assessments for up to 10,000 years following the end of LLW disposal
operations at a site.
The user of the PRESTO-EPA-POP code, may simulate a specific waste
type, a specific form for the waste and special containers. The user may
also simulate particular site engineering and waste emplacement configura-
VXXl
-------
tions such as sanitary landfill, use of deeper trenches, or installation of
trench caps with either natural or special low permeability obtained from
use of clays and compaction. The PRESTO-EPA-POP code treats all LLW
trenches and their wastes as a single, representative, combined trench and
volume of wastes.
Water, principally from precipitation, is the primary agent of release
and transport of radioactivity from LLW disposed in shallow trenches.
Geology, hydrology, and climate affect the mode and rate of release, the
dominant transport pathways, and the rate of transport. The input data base
to the PRESTO-EPA-POP code is designed with flexibility to accommodate
varying hydrologic and climatic conditions.
The PRESTO-EPA-POP code can simulate typical water-related release and
transport phenomena. Precipitation falling on the ground surface above the
trench is apportioned between infiltration into the trench through the
trench cap, drainage away from the site by surface runoff, and evaporation
into the atmosphere. The user can specify the time and percent of trench
cap failure, when the trench contents are exposed directly to surface
erosion, and the time duration of container integrity. Radionuclides
released from the waste by infiltrated water are transported away from a
LLW disposal trench primarily by groundwater or surface runoff. The amount
of groundcover, length and steepness of the slope, and runoff percent can
be specified to simulate erosion of the surface soil and the trench cap.
Radioactively contaminated water exfiltrating into the subtrench soil zone
may ultimately enter an aquifer. Radionuclides that reach the aquifer will
be transported horizontally within the aquifer. These radionuclides are
generally transported at a slower rate than the ground water velocity in
IX
-------
the aquifer due to hydrological and geochemical interaction with the solid
materials in the aquifer which retards nuclide migration. Some of the
radionuclides which enter the aquifer may reach irrigation or water supply
wells or surface streams and become available for human uptake. Those not
taken up by the local population travel to a regional basin stream as
residual radionuclides.
The overflow of contaminated water from the trench onto the surface
soil is simulated when conditions are suitable for overflow. With
overflow, radionuclides are transported by surface runoff into nearby
streams and may become available for human consumption via irrigation or
drinking water. Residual radionuclides in the streams which are not
consumed during the 1,000 year assessment period are assumed to be released
to the regional basin within one year.
The exposure of the local population to radionuclides transported from
LLW sites by the atmospheric pathway is also simulated. The atmospheric
transport calculations nominally assume that the local population resides
within a single 22.5-degree sector. User specified parameters give the
fraction of the year that the wind blows in that sector. A simple external
model not contained in the PRESTO-EPA codes enables the user to make
downwind atmospheric concentration calculations which properly distributes
atmospheric contamination to population centers throughout a 360 degree
circle around the site, to model more complicated population
distributions.
Radionuclides remaining on the soil surface by trench overflow from
spillage during disposal operations or erosion of the trench cap may become
suspended in the atmosphere and transported downwind. These nuclides may
-------
be inhaled or deposited on vegetation and soil resulting in external
exposure to humans and internal exposure from the ingestion of contaminated
crops, meat, and milk.
The PRESTO-EPA-POP code considers the routine migration of radionuclides
from the trench through the hydrologic and atmospheric environmental
pathways to crops and drinking water. Normal scenarios assume that the
population resides downstream of the plume of contamination and ingests
radionuclides from various hydrologic, atmospheric, and food chain
pathways. Processes considered in calculating individual or population
exposure include groundwater transport under saturated or partially
saturated flow conditions, surface runoff, trench water overflow and
seepage, geochemical exchange, trench cap erosion, stream dilution, and
resuspension and atmospheric dispersion of contaminated soil.
Average annual concentrations of each radionuclide in water, soil, or
the atmosphere are used to calculate radionuclide concentrations in
foodstuffs. Information from foodstuffs and human ingestion and breathing
rates are utilized to calculate the annual average intake of radionuclides
per individual in the population by ingestion and inhalation. These intake
data are used by the DARTAB subroutine to estimate dose rates, health
effects, and genetic effects.
The PRESTO-EPA-POP code calculates doses, health effects, and genetic
effects for individuals and local populations. Each person in the
population is assumed to be a member of a large population cohort that is
exposed to constant, averaged radionuclide concentration levels. Each
member of the population is assumed to ingest similar but appropriate
quantities of contaminated food and water.
XI
-------
The PRESTO-EPA-POP code considers special exposure and pathway
scenarios for inadvertent intruders residing on or farming the site. The
inadvertent resident intruder scenario assumes that an intruder unknowingly
excavates a basement in the disposal trench while building a residence.
The individual is externally exposed to the buried radionuclides from the
walls of the basement of the residence which are assumed to be surrounded
by trench material. The time of residency during the assessment period
when the residence is first occupied and the composition of the initial
trench inventory which contributes to exposure are specified by the user.
Farming on the site after loss of institutional control is also
treated as a separate intrusion scenario. The farmer is affected by the
transport processes previously described and may also ingest crops whose
roots have penetrated into the radioactive waste in the trench. The water
used by the farmer for irrigation and drinking normally would contain a
much higher concentration of radioactivity than water used by the off-site
population because the water is taken from a well, stream, or pond
immediately adjacent to the disposal trench. Farming activities may
mechanically suspend contaminated soil into the atmosphere. The time when
mechanical suspension of the surface soil is initiated by farming is.
specified by the user. The impact of such mechanical suspension is
calculated for both the farmer and the downwind population.
The PRESTO-EPA-POP code can be used to make health effect assessments
for up to 10,000 years following the end of the disposal operations for the
local population and that of a regional basin. These assessments are made
in two stages. The first stage calculates the health effects to the local
population for up to 1000 years and the second stage calculates the health
Xll
-------
effects to the larger regional basin population (incorporating the local
population after 1000 years) over 10,000 years. The local assessment
period may be extended for several thousand years or more, but with a
significant increase in computer time and costs.
The health effects to the regional basin population are based on the
cumulative residual radionuclides leaving the disposal area with the
surface water or groundwater. Residual radioactivity is calculated by
taking into account the time required for the radionuclides to flow through
the aquifer from the local use point to the basin stream. All
radionuclides not consumed by the local population are allowed to migrate
to the regional basin population. Additional dilution in the regional
basin stream occurs by contributions from surface runoff and stream flow.
The end of LLW disposal operations at a site is the starting time for
the health effects assessments made by the code. The user specifies the
length of time for the local assessment period, usually 1,000 years. The
regional basin assessment period is optionally set equal to the local
assessment period or the local assessment period plus 9,000 years. For the
local assessment, subtotals for the releases to surface water, well, and
atmosphere may be calculated and printed at a number of user-specified time
intervals within the assessment period. EPA normally reports releases
every 100 years for a standard 1,000 year run. Health effects for the
local population are averaged over the length of the local assessment
period.
The time step for the PRESTO-EPA-POP code is fixed at one year and
default parameters in the model give annual averages. The maximum
concentration of each radionuclide and the year of the maximum for each
xiii
-------
nuclide is printed out for the concentrations in the atmosphere, well, and
stream.
The PRESTO-EPA-POP code uses unit response, bookkeeping, and scheduled
event types of subroutines. The unit response subroutines calculate the
annual response for a process. The INFIL unit response -subroutine
calculates the annual infiltration through an intact trench cap which is
apportioned within each year by the bookkeeping subroutines. Other unit
response models calculate the atmospheric radionuclide concentration
transported downwind per unit source strength and the annual average
erosion of the trench cap.
Bookkeeping subroutines follow the results of unit response subroutines
and user-supplied control options. For example, the TRENCH subroutine,
which maintains a water balance in the trench, calculates the maximum level
of standing water in the trench and the water volume annually leaving via
the trench bottom or overflow. Scheduled event subroutines consider the
events such as cap failure, basement construction, the failure of container
integrity, and initiation of scheduled mechanical suspension of dust. The
timing for these events is specified by the user.
The PRESTO-EPA-POP code is written in the FORTRAN IV language to run
on an IBM 3081 or comparable digital computer system and requires about
850K bytes of memory. The code is designed to model up to 40 distinct
radionuclides for a maximum of 10,000 years. Evaluation of local and
regional basin health effects from 31 radionuclides over 10,000 years takes
approximately 7 minutes to execute on the IBM 3081. An assessment with ten
nuclides takes less than two minutes to execute. The program should be
easily transferable to other IBM installations. The program has run
XIV
-------
satisfactorily on another non-EPA IBM computer system after installation
directly from magnetic tape. Non-IBM users may have to modify the NAMELIST
inputs and perhaps some other program segments where character
manipulations are used.
The Environmental Protection Agency wishes to warn potential users
that, like any complex computer code, the PRESTO-EPA codes can be misused.
Misuse could consist of using the code to examine a site where one or more
critical modeling assumptions are invalid, or where values for significant
input parameters are chosen that do not accurately reflect variables such
as radionuclide inventory, site meteorology, surface and subsurface
hydrology and geology, and future population demographics. Certain release
and transport scenarios, such as major changes in meteorology or mining of
the trench contents, are not considered in the PRESTO-EPA-POP model and
code. Significant changes to the existing code and the input data would be
required to consider such scenarios. The PRESTO-EPA codes were developed
to assess and compare alternative methods for managing and disposing of
LLW at generic sites for general scenarios. The codes were not developed
to analyze specific sites.
XV
-------
1. INTRODUCTION
1.1 PURPOSE OF THE USERS MANUAL
The U.S. Environmental Protection Agency (EPA) is developing a
generally applicable standard for the land disposal of low-level
radioactive waste (LLW) to support the U.S. Nuclear Regulatory Commission
(NRC), the U.S. Department of Energy (DOE) and others in developing a
national radioactive waste management system. As an aid in developing the
standard, a family of computer codes, entitled PRESTO-EPA-POP,
PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC and PATHRAE-EPA, was
developed under EPA direction. The EPA uses the PRESTO-EPA code family to
estimate and compare the potential health impacts of a broad number of LLW
disposal alternatives for evaluation and support of the LLW standard.
Table 1-1 provides a brief description of each of the PRESTO-EPA codes.
These codes, and how the EPA uses them, have been described in detail
(Ga84). Information on obtaining complete documentation and users' manuals
for the PRESTO-EPA family of codes (EPA87a through EPA87g, Me81, Me84) is
available from the EPA.
The primary purpose of this User's Manual for the PRESTO-EPA-POP
computer code is to provide the necessary information for the preparation
of the input data and executing this code. A detailed discussion of the
assumptions, models, and methodology can be found in the document,
PRESTO-EPA-POP: A Low Level Radioactive Waste Environment Transport and Risk
Assessment Code, Methodology Manual (EPA87a).
The Environmental Protection Agency wishes to warn potential users
that, like any complex computer code, the PRESTO-EPA codes can be misused.
1-1
-------
TABLE 1-1
PRESTO-EPA CODE FAMILY
PRESTO-EPA CODE
Purpose
PRESTO-EPA-POP
PRESTO-EPA-DEEP
PRESTO-EPA-CPG
PRESTO-EPA-BRC
PATHRAE-EPA
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by shallow methods; long-term analyses are modeled
(generally 10,000 years).
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by deep methods.
Estimates maximum annual whole-body dose to a critical
population group from land disposal of LLW by shallow or
deep methods; dose in maximum year is determined.
Estimates cumulative population health effects to local
and regional basin populations from less restrictive
disposal of BRC wastes by sanitary landfill and
incineration methods.
Estimates annual whole-body doses to a critical
population group from less restrictive disposal of BRC
wastes by sanitary landfill and incineration methods.
1-2
-------
Misuse could consist of using the code to examine a site where one or more
critical modeling assumptions are invalid, or where values for significant
input parameters are chosen that do not accurately reflect variables such
as radionuclide inventory, site meteorology, surface and subsurface
hydrology and geology, and future population demographics. Certain release
and transport scenarios, such as major changes in meteorology or mining of
the trench contents, are not considered in the PRESTO-EPA-POP model and
code. Significant changes to the existing code and the input data would be
required to consider such scenarios. The PRESTO-EPA codes were developed
to assess and compare alternative methods for managing and disposing of
LLW at generic sites for general scenarios. The codes were not developed
to analyze specific sites.
1.2 DESCRIPTION OF THE MODEL
The PRESTO-EPA-POP model has been designed to calculate cumulative
health effects to the local population resulting from the disposal of low
level radioactive wastes in trenches. The model also calculates the health
effects to the population of a regional basin. The local population is
analyzed for a time period of up to 1000 years and the regional basin
population for the same period of time. The regional basin analysis can be
optionally extended for an additional 9000 years.
PRESTO-EPA-POP is a modular computer code and readily permits
modification and allows different versions of the submodels and subroutines
to be substituted, if desired. PRESTO-EPA-POP first simulates the
environmental transport of radionuclides from the low level waste trench to
the environment of the local and regional basin population. Then
1-3
-------
PRESTO-EPA-POP calculates doses and health effects using the DARTAB model
for the local population and a separate health effects accounting model for
the regional basin population. Calculations in DARTAB are based on average
internal intakes of radioactive materials and average external radiation
exposures. Internal intakes arise from ingestion of contaminated foods and
water and inhalation of contaminated air. Direct external exposures arise
from air and soil contaminated with radioactive material. For a detailed
account of the DARTAB methodology see Section 2.3 in the DARTAB
documentation report (Be81). The health effects calculations for the
regional basin population are based on the total amount of radionuclides
released to the regional basin through a basin stream during the assessment
period, usually taken to be 10,000 years.
Many of the submodels included in PRESTO-EPA-POP were initially
developed for other types of assessments and have been adapted to estimate
the environmental transport of radioactive waste and ensuing health effects
resulting from LLW disposal.
The code has been developed to handle different hydrogeologic and
climatic situations and has been subjected to extensive expert review (EPA87h).
PRESTO-EPA-POP can also treat waste leaching and the underground water
pathway transport of nuclides under partially saturated as well as
saturated hydrogeologic conditions. Other improvements of the code which
resulted from expert review include: 1) a feature to account for the delay
and reduction of the leaching process resulting from the use of waste
containers; 2) a farming scenario to simulate farming of the trench with
plant root uptake of radionucl ides from the waste; 3) the calculation of
radionuclide transit times in the aquifer from the well to the point of
1-4
-------
release to the regional basin stream; 4) revised formulas for the
radionuclide concentrations in vegetation; 5) an area source term as
opposed to a point source term for the air pathway; 6) calculations which
reduce the trench radionuclide inventory at the start of simulation due to
radioactive decay during the operational period.
Three types of subroutines are used in the code: 1) unit response
subroutines, 2) bookkeeping subroutines, and 3) scheduled event subroutines.
The unit response subroutines calculate the annual response associated with
a given process. For example, INFIL calculates the annual infiltration
through an intact trench cap. This annual infiltration is then apportioned
among the transport processes by the bookkeeping subroutines. Other unit
response subroutines calculate the annual average atmospheric dispersion
coefficient and erosion rate from the trench cap.
Bookkeeping subroutines account for the results of unit response
subroutines and user supplied control options. For example, one subroutine
maintains the water balance in the trench, calculates the level of standing
water in the trench and accounts for the volume of water leaving the trench.
Average concentrations of each radionuclide in the environmental media
such as well water or the atmosphere over the local assessment period are
used to calculate radionuclide concentrations in foodstuffs. Foodstuff
information and average human ingestion and breathing rates are utilized to
calculate the annual average radionuclide intake per individual in the
local population by ingestion and inhalation. These intake data are then
used to estimate dose rates and health effects for the local population.
The atmospheric transport calculations performed by the code assume
that the total population resides within the same 22.5-degree areal land
1-5
-------
sector. User specified parameters give the fraction of the year that the
plume blows in that sector. Therefore, each member of the population,
breathing at the same rate, will inhale the same quantity of each radio-
nuclide. A user option allows the standard atmospheric dispersion calcula-
tion in the code to be replaced by an externally calculated value for X/Q
for several population centers. For example the RADE3 code (EPA87h) can
perform this external calculation.
Each member of the local population is assumed to eat the same quanti-
ties and varieties of food, all grown on the same fields. This assumption
simplifies the calculations and is appropriate because of the large
uncertainties in predicting individual mobility, population demography,
agricultural and dietary practices, and geologic and hydrologic changes
that may occur during the local analysis period.
Different scenarios of human exposure to radiation from the buried
waste may be considered by changing appropriate input parameters. These
include normal disposal site operations, spillage of waste during disposal
operations, a resident intruder on the site, farming of the site, and an
eroded trench cap with subsequent atmospheric contamination via suspension
of mixed waste material and soil. By changing other site description para-
meters, the user may design other scenarios of interest. To satisfy the
potential assessment needs of EPA, it was determined that the code would be
able to perform certain calculations for various combinations of exposure
pathways. The exposure pathways for each of the scenarios are listed in
Table 1-2. Other combinations of pathways may be evaluated by modifying
the input parameters.
1-6
-------
TABLE 1-2
RADIOLOGICAL EXPOSURE PATHWAYS FOR SELECTED SCENARIOS
Scenario
Normal
Local Population
Ingests off-site water
Ingests off-site foods
Inhales downwind air
Farming
Ingests on-site foods
Ingests off-site water
Eroded Trench
Inhales suspended material
at population centroid
Direct exposure from plume
1-7
-------
Operational spillage is defined as residual radioactivity remaining on
the soil surface at the close of burial operations arising from leakage or
spillage. Annual average meteorology for the site is part of the required
input data. All members of the local population are assumed to use the
same sources of drinking and irrigation water contaminated from trench
seepage or overflow. The population age distribution and size are held
constant over the assessment period. The user can specify the fraction of
drinking and irrigation water that is supplied from the contaminated well
or stream. Doses and health effects to populations are calculated by
characterizing the population centers for each site with a single,
effective geographic centroid location and a total population. Individual
dose calculations from atmospheric releases under the normal scenario are
for a person at the site boundary in the prevailing downwind direction.
Individual doses due to waterborne effluents may also be calculated at the
site boundary.
For the intrusion scenario, individual calculations assume that the
intruder receives an external dose from excavating a basement and residing
in the basement on the trench location in addition to the dose from the
surrounding contaminated ground. The time of onset and duration of the
basement exposure scenario are user specified.
For the farming or reclamation scenario, the on-site farmers grow and
eat vegetables, beef, and milk produced on land irrigated by contaminated
trench water, but drink off-site water equal in concentration to the normal
scenario population intake. The farmer also may inhale suspended,
contaminated soil from the residual operational spillage or trench
overflow. Population dose and health effects calculations for the farming
1-8
-------
scenario may assume that the food products grown on-site are ingested by
the general population rather than only the farming population. The eroded
trench scenario comes into play when the trench cap has become completely
removed or breached by either erosion or mechanical means. Thereafter, the
eroded trench scenario may result in the suspension and atmospheric
transport of trench contents and inhalation of radioactive materials by an
individual or the specified population. An individual may also be directly
exposed to trench contents and, thus, receive an external dose.
Populations may also receive an external dose from immersion in the
suspended plume.
The code is structured to consider only one scenario per computer run.
The particular scenario to be simulated may be determined by the user by
changing appropriate input values of such parameters as the population size
and location, the distance to the well, the cap failure fraction, the
resuspension rate, etc.
1.3 OVERVIEW OF THE PRESTO-EPA-POP CODE
Pathways of environmental transport of radionuclides considered by the
PRESTO-EPA-POP model are shown in Figures 1-1 and 1-2. Pathways for
environmental transport of radionuclides that involve water (Figure 1-1)
include both surface water and groundwater. Water may leave the trench
through the bottom or by overflow. The user may choose to allow the soil
surface to be contaminated initially by operational spillage. Radionuclides
in water near the soil surface may be transported to a surface water body
or may enter the aquifer by deep seepage. Contaminated water may ultimately
reach human receptors by the use of water from either a well or a surface
1-9
-------
SPILLAGE
1
s
OVERFLOW
f
f
SOIL
URFACE
LEAC
HINQ
TRENCH
LEAC
i
HINQ
\
VERTICAL
SOIL
COLUMN
BASIN
POPULATION
OCEAN
SINK
SEEPAGE
QROUNDWATER TRANSPORT
DRINKING INGESTION DRINKING
I
HUMANS
RAE-102205
FIGURE 1-1. HYDROLOGIC ENVIRONMENTAL TRANSPORT PATHWAYS
1-10
-------
SURFACE
CONTAMINATION
ERODED
TRENCH
SUSPENSION
AIR
INHALATION
IMMERSION
HUMANS
(Local Population)
DEPOSITION
IRRADIATION FROM GROUND
INGESTION
CROPS
AND
GROUND
RAE-102094
FIGURE 1-2. ATMOSPHERIC ENVIRONMENTAL TRANSPORT PATHWAYS.
1-11
-------
water body. Radionuclides not withdrawn with water for the local
population consumption will flow to the regional basin. Radionuclides not
withdrawn by the regional basin population will flow to the ocean, which
acts as a radionuclide sink.
Atmospheric pathways of radionuclide transport are illustrated in
Figure 1-2. Radioactive material may reach the atmosphere from the contami-
nated soil surface via overflow or operational spillage or the denuded
trench following an eventual total erosion of the cap after closure of the
trench. Humans may ultimately be impacted by inhalation of or immersion in
suspended materials downwind, by ingestion of crops contaminated following
deposition on soil or crops, or by direct irradiation following deposition
on ground surfaces.
Table 1-3 provides a summary of the main steps of the PRESTO-EPA-POP
code in the order of execution. Various indentation symbols are used to
help explain the structure of the program. A "*" symbol indicates a
significant section of the main program; a "-" symbol a significant section
of a yearly loop; and a "o" symbol a significant section of a nuclide loop.
1.4 OUTLINE OF USER'S MANUAL
A general description of PRESTO-EPA-POP is given in this Chapter for
the user interested in brief development of the model. An overview of the
code is also provided for the user interested in the code's algorithms and
the implementation of the methodology. Appendix A provides the source
listing of the PRESTO-EPA-POP code. In Chapter 2 the input data is
described in detail and a sample input data file is presented in Appendix B.
1-12
-------
TABLE 1-3
PRESTO-EPA-POP CODE SUMMARY OF MAIN STEPS
Code Summary Statement Steps
* Initialize variables and call subroutine SOURCE for input data.
* Obtain atomic mass data from nuclide names.
* Determine if farming occurs on site.
* If CHIQ is zero then subroutine AIRTRM is called to calculate the
normalized atmospheric concentration within the risk area. Otherwise
variable EXPOS is set equal to CHIQ (the externally provided
atmospheric concentration).
* Subroutine INFIL is called to determine the annual infiltration through
the trench cap.
* For each nuclide, the DO loop "1000" calculates:
• The vertical transit time from the trench to the aquifer.
• The horizontal transit time in the aquifer from the trench
point to the well.
t The transit time in the aquifer from the well to the basin
stream.
• Hung's correction factor which accounts for combined effects
of dispersion and decay.
* Subroutine ERORF is called to determine the annual soil loss due to
the erosion of insoluble materials.
* Calculate the available well water volume and the hypothetical amounts
of water withdrawn from well and stream.
* For each year of the simulation period, the following operations are
performed by the DO loop 1000.
Determine if a trench loss occurs and update for the current
trench cap thickness.
Calculate the fraction of vegetation roots growing into the
waste (for on-site farming scenario option).
* Section of Main Program.
• Section of Yearly Loop.
- Section of Nuclide Loop.
1-13
-------
TABLE 1-3
(Continued)
Code Summary Statement Steps
Subroutine TRENCH is called to calculate the water bal-ance
in the trench.
The container failure fraction, CFF, is calculated to
estimate the delay and containment efficiency of waste
contai ner.
For each nuclide, DO loop "500" performs the following opera
tions to simulate the radionuclide transport from the
trench to the well; to the stream waters; and the atmos-
pheric transportation.
Subroutine LEACH is called to calculate the amount of
radionuclide that leaves from bottom of trench to the
aquifer and the amount that reaches the surface as a
result of water overflowing the trench.
Subroutine VERHOR is called to determine the arrival at the
well of radionuclides leaving the bottom of trench, the
current year of simulation and the radionuclides that left
the contamintated surface the preceding year. Releases to
the basin downstream are recorded for each one of the ten
millenia of the simulation period. This recording is
governed by the trench-to-well and well-to-basin stream
transit times. QDWSB(N) will contain the releases to the
basin the first millenium QLB(N,M) contains the releases in
the M+lst millenium for M = 1,2,...9. QLB(N,10) considers
the radioactivity in transit to the well at year 10,000.
Calculate the radionuclide concentration at the well site
for the current year. Radionuclides arriving at the well
before the year 1000 are partially removed from the well
with the well water used by the local population. A
percentage, PRJ, of the remaining water is transferred to
the downstream basin the same year, and the remaining water
is assumed to bypass the regional basin stream.
Update AQAVG to compute the average nuclide concentration of
well water.
* Section of Main Program.
• Section of Yearly Loop.
- Section of Nuclide Loop.
1-14
-------
TABLE 1-3
(Continued)
Code Summary Statement Steps
• Check for the year of the maximum nuclide concentration at
the well site.
• Subroutine SURSOL is called to calculate the amount of
surface contaminant that enters the stream and the aquifer.
• Subroutine SUSPND is called to calculate the atmospheric
source strength at the spillage area and the average nuclide
concentration at the downwind risk area.
t Determine the radioactive material balance.
For each nuclide, DO loop "900" performs the following
operations to simulate the radionuclide transport from the
well, stream and air to food, water, and air consumed by
humans.
• Subroutine FOODA is called to calculate the radionuclide
concentration in vegetables, milk, and meat consumed by man
resulting from atmospheric deposition.
• Subroutine IRRIGA is called to calculate the radionuclide
concentration in vegetables, milk, and meat resulting from
irrigation water.
• Subroutine HUMEXA is called to calculate the radionuclide
intake by man.
• Calculate the basement exposure.
• Determine if the current year has the highest air
concentration, surface concentration, ingestion rate per
person, or inhalation rate per person.
Subroutine OUT is called to output the annual dose summary.
Subroutine FOOD is called to calculate the average radionuclide
concentrations in food due to atmospheric deposition.
Subroutine IRRIG is called to compute the average radionuclide
concentrations in food due to water irrigation.
* Section of Main Program.
• Section of Yearly Loop.
- Section of Nuclide Loop.
1-15
-------
TABLE 1-3
(Continued)
Code Summary Statement Steps
* Subroutine HUMEX is called to compute the annual average radionuclide
intake by man.
* Calculate variables necessary to pass to DARTAB.
* Subroutine DARTAB is called to create tables of predicted health
impacts of radioactive effluents on the local population.
* Yearly loop "1001" will simulate the environmental transport of
radionuclides from the trench to the downstream basin, and the
releases to the atmosphere, for an additional 9000 years if user
options IXTS is left blank in the input data.
Subroutine trench calculates the trench water balance.
Subroutine LEACH calculates the amounts of radioactivity
leaving the trench by overflow or percolation through the
bottom of the trench.
Additions to the aquifer well and stream are calculated
using the results from LEACH and the transit times.
Additions to the aquifer and to the stream from the
subsurface disposal site are calculated using the subroutine
SURSOL.
Releases to the atmosphere by wind and mechanical resuspen-
sion are calculated using the subroutine SUSPND.
* Health effects on the basin population are calculated.
* Table for the Accounting Model is produced.
* Section of Main Program.
• Section of Yearly Loop.
- Section of Nuclide Loop.
1-16
-------
In Chapter 3 the output of the model is described. Chapter 4 presents a
sample problem and the typical IBM job control language required to execute
the code. A sample output is presented in Appendix B. After implementation
of the code the user can test the code with the sample input data and
compare the results to the sample output.
1-17
-------
2. INPUT DATA FOR PRESTO-EPA-POP
There are four sets of input data required by PRESTO-EPA-POP. They are:
1) site specific and radionuclide data used to calculate nuclide concentra-
tions by the environmental transport section of the code, 2) namelist
format data used for DARTAB calculations of tabular output, 3) hydrogeologic
and meteorologic data for subroutine INFIL, and 4) dosimetric and health
effects data used by the DARTAB submodel. Preparation of the first three
data sets will be explained in the following sections. The fourth data set
is created by executing the RADRISK program (Du80). This reference should
be consulted for information concerning the data in this input file.
These four sets of data are organized in three disk files and assigned
to different FORTRAN input units as follows:
Data sets 1 and 2 form one file which is assigned to input
unit 5.
Data set 3 is assigned to unit 4.
Data set 4 is assigned to unit 25.
Sample input data for 1, 2, and 3 are given in Appendix B.
2.1 SITE SPECIFIC AND RADIONUCLIDE DATA
These data are used in the transport section of the code, they include
the physical and hydrogeologic characteristics of the disposal site, data
for the biological pathways, and the radionuclide inventory. These data
also include control and option parameters to configure different exposure
scenarios. Table 2-1 presents a description of the input data variables
along with the required input format.
2-1
-------
TABLE 2-1
DESCRIPTION OF PRESTO-EPA-POP ENVIRONMENTAL AND NUCLIDES INPUT
Card Variable (Input Format^
Description
CARD 1 Run Identification (20A4)
TITLE
- Identifies the run. Up to 80 characters
are allowed.
CARD 2 Location and Site Description (20A4)
LOCATE - Lists the location of the disposal site.
Up to 80 characters are allowed.
CARD 3 Time, Nuclides, and Farming Control Parameters (1615)
MAXYR
NONCLD
LEAOPT
NYR1, NYR2
IOPVWV
- The number of years for which the simula-
tion will run.
- The number of radionuclides which are used
in the simulation. Must be 40 or less.
- The leaching option. Radionuclides will be
removed from trench in different manners
depending on the value of LEAOPT. Must be
one of the following calculation methods.
(Option 1 through 5.)
Option
1
2
Leach Calculation Method
IOPSAT
Total contact, distribution coeffi-
cient
Immersed fracton, distribution co-
efficient
3 Total contact, solubility
4 Immersed fraction, solubility
5 Release fraction
- Beginning and ending years of trench cap
failure. Both values must be less than or
equal to MAXYR. NYR2 must be greater than
or equal to NYR1.
- Option for direct farming in the waste.
< 0 no on-site farming
= 0 on-site farming
= 1 on-site farming with vegetation decay
- Not used.
2-2
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
IPRT1, IPRT2, - Control parameters. An annual summary
IDELT table will be produced for each year that
is a multiple of IDELT and falls between
the range of IPRT1 and IPRT2.
IRRES1, IRRES2 - Beginning and ending year for the mechani-
cal suspension of contaminated soil into
atmosphere. Used in the farming scenario.
LIND - Option parameter passed to DARTAB to cal-
culate health effects. If LIND = 0 then
DARTAB computes concentrations and rates
for maximally exposed individuals. If
LIND = 1 then general population concen-
trations are computed.
IAVG1, IAVG2 - Beginning and ending years for averaging
nuclide concentration values.
CARD 4 External Exposures and Time Duration Parameters (1615)
IVAP - Not used.
IBSMT - The beginning year for the basement correc-
tion factor for surface gamma exposure
calculations made by DARTAB. If IBSMT > 0
correction factor is calculated beginning
in that year. If IBSMT = -1 then no
correction is calculated.
IAQSTF - Not used.
IXTS - Control parameter to extend global assess-
ment for an additional 9000 years beyond
the local impact analysis period (MAXYR).
A blank field defaults to the extended
analysis. A nonzero integer stops the
global impact simulation at the end of the
local assessment period.
IRST - Number of years of restricted site use
after site closure.
INTYR(I), - Intermediate years in the local assessment
1=1,3 period for which dose and risk output is
desired. Up to three times allowed.
2-3
-------
TABLE 2-1
(Continued)
Card Variable (Input Format)
Description
CARD 5 Water Infiltration and Use (8F10.0)
PCT1, PCT2
- The fraction of the waste cap that is
assumed to fail between the years NYR1 and
NYR2.
WWATL
WWATA
WWATH
SWATL
SWATA
SWATH
- Fraction of irrigation water supplied by
contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
- Fraction of animal drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
- Fraction of human drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
- Fraction of irrigation water supplied by
contaminated water from stream (1.0 if all
water comes from stream, 0.0 if none).
- Fraction of animal drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
- Fraction of human drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
CARDS
6-12
Comments and References (20A4)
- These cards are available for comments and
references pertaining to data set. Up to
80 characters allowed in each of six cards.
CARD 13 LLW Site Characteristics (8F10.1)
TAREA
TDEPTH
OVER
The total combined radioactive waste
surface area for the facility being
simulated (m^). Must be nonzero.
Nominal depth (m) of operating trench in
the shallow disposal scenario. Includes
cover thickness.
- Thickness of trench overburden (m).
must be equal to YGMAX of INFIL.
This
2-4
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
PORT - Porosity of material within trench. Must
be nonzero.
DENCON - Mean density of the waste materials in the
trench (g/cm^).
RELFAC - The annual release fraction of the total
trench inventory of each radionuclide if
LEAOPT = 5 (see Card 3).
CPRJ - Complement to one for the fraction of
underground water flowing to the stream
(0.0 means 100 percent to the regional
basin river).
SINFL - Annual infiltration rate for the noncap
portions of the site and for local farm-
land (m/yr).
CARD 14 Groundwater Saturation (2F10.0)
SSAT - Fraction of water saturation in the ground
formation beneath the buried waste. If
SSAT = 0 or if left blank, the fraction of
saturation is calculated internally by the
code.
RESAT - Fraction of residual saturation.
CARD 15 Site Operations and Waste Containers (6F10.0)
PERMT - Trench permeability (m/yr).
FACTIM - Number of years of active operation of the
waste site.
TMN - Number of years of active maintenance after
site closure. No nuclide migration is
initiated during the maintenance period,
although radioactive decay takes place.
CFT1 - Number of years before waste containers
begin failing.
DCFT - Number of years after CFT1 that containers
fail completely. At time CFT1+DCFT all
containers have failed.
2-5
-------
TABLE 2-1
(Continued)
Card Variable (Input Format)
Description
FGAM
- Dimension!ess factor characterizing the
intensity and duration of gamma exposure
from the basement scenario.
CARD 16 Transport Parameters (2F5.0, 7F10.0)
DTRAQ
DWS
DWELL
GWV
AQTHK
AQDISP
PORA
PORV
PERMV
- The distance from the bottom of the trench
to the nominal depth of the aquifer. DTRAQ
+ TDEPTH should equal the aquifer depth
below the surface (m).
- Distance between the well and
basin effects calculations (m).
stream for
- Distance from the trench to the well used
for irrigation and drinking. Must be
nonzero (m).
- Velocity of the groundwater in the aquifer.
Must be nonzero (m/yr).
- Thickness of the aquifer at the location of
the well (m). This is used to calculate
the volume of water in which the available
radionuclides are diluted. Must be nonzero.
- Dispersion angle of the pollutant plume in
the aquifer (radians). Used with AQTHK to
calculate dilution volume. Must be in
radians.
- Aquifer porosity.
- Sub-trench porosity.
- Sub-trench permeability (m/yr).
CARD 17 Atmospheric Parameters (7F10.0)
H
VG
- Atmospheric source height of radionuclides
(m). One meter is chosen because most re-
suspension rate measurements are expressed
for that height.
- Settling velocity of contaminated soil
particles due to gravity (m/s).
2-6
-------
TABLE 2-1
(Continued)
Card Variable (Input Format)
Description
U
Annual average wind speed (m/s) in the di-
rection of interest. For population calcul
ations this is the wind speed toward the
population centroid. Must be nonzero.
VD
XG
Deposition velocity
value is 0.01 m/s.
(m/s). Nominal generic
HLID
ROUGH
- Distance (m) from source (trench) to
population or individual of interest. If XG
is less than PD, the adjacent farming
option will be triggered.
- Height of the inversion layer or lid (m).
- Hosker's roughness parameter (m).
CARD 18 Atmospheric Parameters (7F10.0)
FTWIND
CHIQ
RE1, RE2, RES
RR
- Fraction of the time the wind blows toward
the population or individual of interest.
- User specified atmospheric transport para-
meter which may be calculated by an external
atmospheric dispersion code (s/m3). A
nonzero value will override any calculation
of atmospheric dispersion performed within
code.
- Factors (including algebraic signs) used in
the resuspension rate equation.
- During the period between years IRRES1 and
IRRES2, the resuspension rate RR (sec"1)
will be included as a source term in sub-
routine AIRTRM. For on-site reclaimer, RR
is the dust loading of the inhaled air
(gm/m3).
FTMECH
The rate of resuspension, RR,
by this fraction, which has a
zero and unity.
is modified
value between
CARD 19 Atmospheric Stability (215)
IT
- Indicator variable for the type of atmos-
pheric stability class formation. Suggested
formation is Pasquill-Gifford, IT = 1.
2-7
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
IS - Stability category indicator. Values of
1 to 6 correspond to stability categories
of A-F. A single value represents the most
common stability category from nearest
meteorology station to site of interest.
CARD 20 Precipitation Parameters (6F10.0)
RAINF - The rainfall factor (R/yr).
ERODF - The soil-credibility factor has units of
tons/acre-R, where R = RAINF given above.
STPLNG - The slope steepness-length factor.
COVER - The crop management factor.
CONTRL - The erosion control practices factor.
SEDELR - The sediment delivery ratio. This ratio is
intended to apply to fouling of waterways
from construction activity.
CARD 21 Soil and Surface Water (5F10.0)
PORS - Porosity of the surface soil. Must be
nonzero.
BDENS - Bulk density of the soil (g/cm3). Must be
nonzero.
STFLOW - Annual flow rate of the nearest stream
(m3/yr). Must be nonzero.
EXTENT - The cross slope extent of the surface
region contaminated by operational spillage
(m). Must be nonzero.
ADEPTH - The active depth of soil in the surface-
contaminated region. Used for the calcula-
tion of radionuclide concentration in both
surface soil and surface water. Must be
nonzero.
CARD 22 Surface Water Runoff (2F10.0)
PD - Distance from the trench to nearest stream
i (m). Must be nonzero. If PD is greater
than XG, the ad/jacent farming option will
be triggered; the farm is then assumed to
receive additional radionuclides from
initial spillage and trench overflow.
2-8
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
RUNOFF - Fraction of the annual precipitation that
runs off.
CARD 23 Agricultural Data (7F10.0)
Yl, Y2 - Agricultural productivity for pasture grass
and other consumed vegetation respectively
(kg/m2).
PP - Surface density of soil (kg/m2). Assumes a
15 cm plow depth. For farming scenario,
this value should be in agreement with the
value of BDENS, CARD 20. Must be nonzero.
XAMBWE - The weathering removal decay constant for
atmospheric deposition onto foodcrops
(hr-1).
TA - Not used.
TE1, TE2 - Period of time that pasture grass or crops
and leafy vegetables, respectively, are
exposed to contaminated air during each
growing season (hr).
CARD 24 Agricultural Delay Times and Fractions (8F10.0)
TH1 - TH6 - These six variables represent the delay
time between harvest and consumption by
animal or man of pasture grass, stored
feed, leafy vegetables for maximum
individual doses, produce for maximum
individual doses; and leafy vegetables and
produce for general population exposures,
respectively (hr).
FP - Fraction of each year that animals graze on
pasture grass.
FS - Fraction of an animal 's daily feed that is
fresh grass for the period of time animals
are in pasture.
CARD 25 Animal Feed Data (7F10.0)
QFC - The amount of feed consumed daily by cattle
(kg).
2-9
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
QFG - The amount of feed consumed daily by dairy
goats (kg).
TF1, TF2 - The transport time (hr) from animal feed
into milk and into the receptor human for
the maximum individual and the general
population exposures, respectively.
TS - Length of time between slaughter of animals
and human consumption of the resultant meat
(hr).
ABSH - The absolute humidity of the atmosphere
(g/m^). Used for specific activity food-
chain calculations for tritium concentra-
tions in foodstuffs. Must be nonzero.
P14 - The fractional equilibrium ratio for C-14.
CARD 26 Plant Root Parameters (2F10.0)
XRTM - Maximum root depth for on-site farming
scenario (m).
RTGR - Root growth rate constant (yr-1).
CARD 27 Irrigation Water Data (6F10.0)
TW - Not used.
FI - Fraction of the year that crops are
irrigated.
WIRATE - Irrigation rate (L/m2-hr). Application time
is set equivalent to the number of frost-
free days for the area.
QCW, QGW, QBW - Values for the amount of water (L/d) con-
sumed by milk cows, milk goats, and beef
cattle, respectively.
CARD 28 Human Food Uptake (8F10.0)
ULEAFY - The human uptake of leafy vegetables (kg/yr).
UPROD - The human uptake of produce (kg/yr).
UCMILK - The human uptake of cow milk (L/yr).
2-10
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
UGMILK - The human uptake of goat milk (L/yr).
UMEAT - The human uptake of meat (kg/yr).
UWAT - The human uptake of drinking water (L/yr).
UAIR - The inhalation rate (m3/yr).
POP - Local Population.
CARD SET Repeat this set of three cards for each nuclide.
29, 30, 31+
CARD 29 Nuclide Specific Data (A8, Tl, 8A1, 2X, 7F10.0)
NUCLID(I) - The name of the radionuclide used in the
code. Must be left justified and with no
embedded blanks and with a hyphen separat-
ing the alphameric for the element and the
numeric for the isotope. The names used
must agree with the conventions used in
RADRISK and DARTAB.
NUCL(I,K), K=l,8 - Do not enter data for these variables as
the data are read from NUCLID(I) - (see
format statement).
TRAM(I) - The amount of each radionuclide found in the
trench at the beginning of the simulation
(C1).
SOAM(I) - The amount of spillage onto the surface
that exists at the beginning of the
simulation (fraction of initial
inventory.)
STAM(I) - The amount of radioactivity placed into the
stream nearest the site at the beginning of
the simulation (Ci).
ATAM(I) - The amount of radioactivity of each radio-
nuclide placed into the air directly above
the trench at the beginning of the simula-
tion (Ci).
DECAY(I) - The radiological decay constant (yr"1). The
constant is equal to 0.6931 divided by the
radiological half-life in years.
2-11
-------
TABLE 2-1
(Continued)
Card Variable (Input Format) Description
SOL(I) - The solubility of the radionuclide stored
in the trench (mg/1). SOL is used only if
LEAOPT = 3 or 4.
CON(I) - Conversion factor for global health effects
(health effects/Ci released).
CARD 30 Nuclide Transport Parameters (A8, 2X, 4F10.0)
NU - Radionuclide name (same as on Card 29).
XKD(l.I) - Surface Kd of radionuclide I (ml/g).
XKD(2,I) - Waste Kd of radionuclide I (ml/g), used
when LEAOPT = 1, 2, 3, or 4.
XKD(3,I) - Vertical zone Kj of radionuclide I (ml/g).
XKD(4,I) - Aquifer Kd of radionuclide I (ml/g).
CARD 31 Agricultural Data for Nuclides (A8, 2X, 7F10.0)
NC - Radionuclide name (same as Card 29).
RA(I) - Radionuclide retention fraction for air.
RW(I) - Radionuclide retention fraction for
irrigation.
BV(U - Radionuclide soil-to-plant uptake factor
for vegetative parts.
BR(H - Radionuclide soil-to-plant uptake factor
for grain.
FMC(I) - Radionuclide forage-to-milk transfer factor
for cows.
FMG(I) - Radionuclide forage-to-milk transfer factor
for goats.
FFU) - Radionuclide forage-to-beef transfer factor.
2-12
-------
2.2 NAMELIST DATA
This DARTAB input provides the user options for processing the
exposure data, dosimetric data, and tabulations of output. The first data
card is a title card. The remaining data are read using the FORTRAN
NAMELIST format. The data must be in special format in order to be read
with NAMELIST. The data are grouped in NAMELIST groups. The first
character in each data record to be read must be a blank and the first
record of each group must have an "&" symbol as its second character
followed by the NAMELIST group name. The name cannot contain embedded
blanks and must be followed by a comma. The data items then follow,
separated by commas.
The order of data items in a NAMELIST group is not important, but
arrays that refer to nuclides should have the constants in the same order
as the data in Table 2-2. The end of a NAMELIST group is designated by &END.
An example of this type of input can be seen in Appendix B. Table 2-2
lists the NAMELIST group names and the variables in each group.
The data described in this section are read from logical unit number 5
and must follow directly after the data described in Table 2-1. Table 2-2
describes the Namelist variables utilized by the subroutine DARTAB.
2-13
-------
TABLE 2-2
DESCRIPTION OF NAMELIST INPUT FOR SUBROUTINE DARTAB
Name!1st
Group
INPUT
Variable
ILOC
JLOC
PLOC
AGEX
ILET
Description
Direction index of the exposure array to
use for individual tables.
Distance index of the exposure array to use
for individual tables.
ILOC, JLOC. These are the directions of
the exposure array that is used to locate
an individual for which a dose or risk table
is printed. AIRDOS-EPA, the code for which
DARTAB was originally written, supplied a
two-dimensional exposure array to DARTAB.
PRESTO-EPA-POP, however, supplies only a
mean exposure value for each of air con-
centration, ground surface concentration,
collective inhalation rate and collective
ingestion rate, for only one location.
These values are the first entry of the
array; hence, both indices should be
specified as 1.
Percent of total risks to use in choosing
location for the exposure array for
individual tables.
This variable is an indirect indicator of
the location. Because PRESTO-EPA-POP does
not provide a two-dimensional exposure
array to DARTAB, PLOC should be set to 100
or omitted.
Average human life expectancy
(Default value = 70.7565 years).
in years
Array dimensioned to 2. ILET = 1 indicates
combined high and low LET tables. ILET = 2
indicates separate tables. ILET(l) refers
to dose rate tables. ILET(2) refers to
health risk tables.
2-14
-------
TABLE 2-2
(Continued)
Name!i st
Group
Variable
DTABLE
RTABLE
FTABLE
Description
For LLW disposal site simulations with a
mixture of nuclides set ILET=1,1 for a com-
bined LET table for both dose and risk
tables. For the intrusion scenario, where
external exposures are of greater impor-
tance the user may wish to set ILET=2,2.
These parameters indicate which tables are
to be output for dose rates, health risks,
and risk equivalents. Each is dimensioned
by 7 corresponding to table type shown
below.
Type Column
1-a
Row
Label
2-b
Organs or
Cancers
Organs or
Cancers
Nuclides
Nuclides
Individual
Pathways
External &
Internal
3-c Organs or Nuclides All Pathways
Cancers
4-d Nuclides Pathways Organs or
Cancers
5-e
Organs or
Cancers
Pathways Nuclides
6-f Nuclides Pathways
7-g
Organs or
Cancers
Pathways
Summed over
Organs or
Cancers
Summed over
Nuclides
Table output control parameters
0 = no tables of this type
1 = table for selected individual
2 = table for mean individual
3 = table for collective group
4 = all three of the above
2-15
-------
TABLE 2-2
(Continued)
Namelist
Group
Variable
Description^
OUTPUT
ORGAN
GSCFAC
NORGN
ORGN
TIME
QFACTOR HLET
LLET
CANCER
GENETIC
NCANC
CANC
RELABS
GENEFF
GEN
NGEN
GRFAC
REPPER
Logical variable which indicates whether
dose factors are output. If .TRUE, then
one page output of dose factors for each
nuclide.
Ground surface correction factor. Accounts
for roughness.
Number of human organs exposed.
Alphanumeric double precision names of
organs. There are NORGN entries.
Time associated with dose commitment (yr).
There are NORGN entries.
Relative biological effectiveness factor
to use for high-LET dose rates to convert
absorbed dose to dose equivalent (rem).
There are NORGN entries.
Same as HLET but for low-LET dose rates.
There are NORGN entries.
Number of cancers to be considered.
Alphanumeric double precision cancer names.
Flag denoting absolute (=1) or relative (=2)
risk model used for each cancer.
Logical variable indicates output of
genetic effects. If GENEFF = .TRUE, then
genetic effects are output. If GENEFF =
.FALSE, then genetic effects are not output.
Alphanumeric double precision names of the
organs to be considered for genetic effects.
Number of human organs exposed.
Risk conversion factors (genetic effects
per rad per million births). GRFAC(l) cor-
responds to low-LET doses. GRFAC(2) corre-
sponds to high-LET doses. There are NGEN
entries.
Replacement rate for the population.
2-16
-------
TABLE 2-2
(Continued)
Namelist
Group
Variable
GLLET
RNUCLD
GHLET
NONCLD
NUCLID
PSIZE
RESP
GIABS
Description
Relative biological effectiveness factor
used for low-LET genetic doses to convert
absorbed dose to dose equivalent (rem).
There are NGEN entries.
Same as GLLET but for high-LET.
NGEN entries.
Number of radionuclides.
There are
This number must be equivalent to the same
variable used in transport portion of code,
Card 3, but always less than or equal to 40.
Alphanumeric
names.
double precision radionuclide
Must be written without embedded blanks.
Must be listed here in same order as in
transport section of input, cards 26+.
Each name must be set within apostrophes.
Activity median aerodynamic
ciated with each
There are NONCLD entries.
diameter asso-
radionuclide (10~6 m).
Respiratory clearance class associated with
each radionuclide. A respiratory clearance
class of either day ('D'), week ('W'), year
('Y'), gas ('*'), or not used (' ') must be
entered for each nuclide in the trench.
There are NONCLD entries. More extensive
lists are given in Sullivan, et al. (Su81),
and Eckerman, Ford, and Watson (Ec81).
GI absorption factors.
The absorption factor for each of the four
segments of the GI tract for each nuclide
must be entered. The DARTAB code expects
a value for each segment (stomach, small
intestine, upper large intestine and lower
large intestine). However, most metabolic
models assume that materials are absorbed
only in the small intestine (Su81, Ec81).
Therefore, input zero values for all GI
2-17
-------
TABLE 2-2
(Continued)
Namelist
Group
LOCTAB
Variable
NTLOC
RNLOC
OGLOC
PTLOC
FALOC
HLLOC
ORGANF
LIABLE
NORGB
ORGB
Description
segments except the small intestine.
are four entries for each nuclide.
There
Number of location tables to be output.
Since PRESTO-EPA-POP does not provide a
location array of environmental concentra-
tions to DARTAB, NTLOC must be set to zero.
Radionuclide used for table. SUM results
in the sum of all nuclides, WORKLEVL results
in working level calculations, WLSUM results
in total risk for all nuclides.
Organ or cancer to use for table. SUM
results in sum of all cancers.
Pathway used. This variable specifies the
pathway to use in printing the location
table. Values of 1 to 7 will result in
ingestion, inhalation, air immersion,
ground surface exposures, internal expo-
sures (sum of ingestion and inhalation),
external exposures (sum of air immersion
and ground surface exposures), and total,
respectively.
Factor to be printed
0 = both high- and low-LET
1 = only combined LET table
2 = all three tables.
Factor to be printed
= 0 both high- and low-LET
= 1 only combined LET table
= 2 all three tables.
Indicates selected individual (LTABLE=1),
mean individual (LTABLE=2). or collective
group (LTABLE=3).
Number of organ dose weights to use to
combine dose rates.
The organs to be used.
2-18
-------
TABLE 2-2
(Continued)
Namelist
Group Variable Description
ORGDAT Organ dose weighting factors.
IPATH Exposure pathway affected (1 = ingestion;
2 = inhalation; 3 = air immersion;
4 = ground surface; 5 = all pathways).
The Internation Commission on Radiological
Protection has recently suggested the use
of a risk equivalent which provides a
stochastic weighting of radiosensitivity of
various organs in the body for exposure to
whole body radiation.
2-19
-------
2.3 DATA FOR THE INFILTRATION SUBROUTINE (INFIL)
As indicated by the job control language file shown in Section 4, the
input to subroutine INFIL (Hu81) is read from input unit 4. Data for INFIL
given in Table 2-3 are of four types: hydro!ogic and trench cap description
characteristics (card 1); maximum day length in hours by month (card 2);
daily mean temperatures by month (cards 3-33); and hourly precipitation for
nonzero precipitation days (card 34 and subsequent). The last card in the
data set must have "99" in the first two columns.
Descriptive parameters include trench cap width (m), and slope (m/m),
permeability of the trench cap (m/hr), component of porosities for gravity
water and pellicular water (unitless), equivalent upward diffusivity
f\
(rrr/hr), hydraulic conductivity (m/hr), and infiltration capacities for the
pellicular and gravity water zones (m/hr). Card 2 contains the monthly
mean maximum length of day (hr) for the site's latitude. Cards 3 through 33
provide daily mean temperatures (°C) by month on each card. For instance,
card 3 consists of daily temperatures for the first day of each month; card
4 has data for January 2, February 2, etc. Cards 34 and subsequent consist
of hourly precipitation data for days when precipitation occurs. Data are
listed in units of 0.1 mm/hr, one day per card. If no measurable
precipitation fell on a given date, it is not included in the data list.
The first day of each month is listed whether or not it rained then.
2-20
-------
TABLE 2-3
INPUT DATA FOR SUBROUTINE INFIL
Card Variable (Input Format) Description
CARD 1 Trench Cap Characteristics (10F7.3)
TWT - The width of the trench cap (m).
SLOP - The average slope of trench cover (m/m).
EPSG - The component of porosity for gravity water
of trench cap (unit!ess).
EPSP - The component of porosity for pellicular
water of trench cap (unitless).
XKI - The permeability of trench cover (m/hr).
YGMAX - The thickness of the trench cap (m). This
must be equal to OVER.
o
XDE - The equivalent upward diffusivity (nr/hr).
XKE - The equivalent upward hydraulic conduc-
tivity (m/hr).
YPI - The initial pellicular water deficit of the
trench cap (m).
YGI - The initial gravity water deficit of the
trench cap (m).
CARD 2 Day Length Data (12F5.1)
DTH(IM) - The maximum day length for month IM (hr).
There are 12 values; one for each month
from January to December.
CARDS Temperature Data (2X, 12F6.2)
3-33
TMP(IM) - The mean daily temperatures (°C). Each
card has 12 values, one for each month.
There are 31 cards of this type, one for
each day of the month.
CARD Precipitation Data (12, IX, 12, IX, 24F3.0)
34+
MO - Month number.
IDA - Day number of month MO.
2-21
-------
TABLE 2-3
(Continued)
Card Variable (Input Format)
Description
P(MO,IDA)
LAST CARD End of File (12)
IAMP
Amount of precipitation that fell in this
hour (0.1 mm/hr). There are 24 values on
each card, one for each hour of the day.
Include only days with a nonzero amount of
precipitation, and the first day of each
month.
Must equal 99, which designates the end of
the data set.
2-22
-------
2.4 DOSIMETRIC AND HEALTH EFFECTS DATA
This data set is read in an unformatted form from input unit 25 (see
job control language, Section 4.3). This data file is on a magnetic tape
which contains information for many radionuclides and was created by the
program RADRISK (Du80). This data file should be sufficient for most
users' needs. For a further description see the DARTAB users' guide (Be81)
and other RADRISK documentation.
2-23
-------
3. OUTPUT FROM PRESTO-EPA-POP
The output of the PRESTO-EPA-POP code is designed to be self-explanatory,
and provide descriptive comments, definitions, and intermediate tabulations.
It is assumed that users of the code are unfamiliar with the code structure
and that the code may be implemented on a computer other than the IBM 3033
for which it was originally written. For these users the tables and
comments will be valuable.
The output will be described in eleven sections, corresponding to the
eleven sections in the printout for each run. A source listing for the
PRESTO-EPA-POP code can be found in Appendix A.
3.1 REPLICATION OF THE INPUT DATA
The first section of the output of the PRESTO-EPA-POP code prints the
input data, with the exception of the input data for the subroutine, INFIL,
as it is read in. PRESTO-EPA-POP input data are read in and then written
on a temporary storage device and on the output device. Thus, a record of
the input data set is printed for a reference identification of the run.
Input data are subsequently read from the temporary storage device for use
by the code. INFIL input data are treated separately (see Section 3.4).
This approach preserves the modularity of the INFIL subroutine.
3.2 DEFINITION, ORGANIZATION, AND PRELIMINARY ANALYSIS OF INPUT DATA
In the second section of the output of the PRESTO-EPA-POP code, the
input data are organized and summarized according to data type, transport
3-1
-------
sub-system or pathway, and printed out. As a result, the code user should
be able to easily review the input data for each run. A detailed descrip-
tion of the input data can be found in Chapter 2.
The first part of this output section consists of the computer run
identification and the user-supplied identification from input card 1.
The output labeled "Control Information" identifies the site and
interprets the run control data entered by the user. These control data
include radionuclide leaching options, trench cap failure data, and water
use parameters.
The output labeled "Trench Information" describes the trench area and
depth, the porosity of the trench contents and the annual infiltration for
the watershed.
The output labeled "Aquifer Information" describes the groundwater
velocity, the trench to aquifer distance, the trench to well distance, the
aquifer thickness and contamination plume dispersion angle, the porosities
of the sub-trench area and the aquifer, and the sub-trench permeability.
The output labeled "Atmospheric Information" describes the effective
source height for the wind-blown or mechanically mobilized contamination
plume from the site, the gravitational fall velocity of suspended soil
particles, the site-to-population distance, the lid height, the Hosker
surface roughness factor, the atmospheric stability class and dispersion
formulation, the fraction of the time the wind blows toward the population,
and the parameters specifying the resuspension factor and resuspension rate.
The output labeled "Surface Information" consists of the universal
soil loss equation parameters, the surface soil porosity and bulk density,
3-2
-------
the runoff fraction for rainfall, the stream or river flow rate, the
cross-slope extent of spillage, the active soil depth, and the average
distance from the trench to the stream.
The output labeled "Air-Food-Chain Information" describes productivity
data for grass and vegetation, timing data for computation of radioactive
decay for the ingestion exposure pathway, and nuclide weathering (from the
surface soil) and C-14 equilibrium data.
The output labeled "Water-Food-Chain Information" describes data which
characterize water use by milk cattle, goats, and beef cattle and water use
for crop irrigation.
The output labeled "Human Ingestion and Inhalation Rate Information"
describes the annual ingestion and inhalation parameters and the number of
persons at risk.
3.3 RADIONUCLIDE SUMMARY TABLES
A set of three tables under the heading "Nuclide Information"
summarize radionuclide data used for the transport calculations. First, an
inventory table labeled "Information on Individual Nuclides" specifies the
initial inventory in the trench, on the soil surface, in the stream, and in
the atmosphere. Also included in this table are the decay constants and
the user-supplied solubility constant.
The second radionuclide table labeled "Distribution Coefficients ml/g"
summarizes the chemical distribution coefficients for the surface soil, the
trench contents, the vertical soil column, and the aquifer.
3-3
-------
The third radionuclide table summarizes the seven radionucl ide-specific
food chain parameters used by the FOOD, IRRIG, HUMEX, CV, and COV
subroutines. These parameters are also used by the FOODA, IRRIGA, HUMEXA,
CVA, and COVA subroutines.
Also radionuclide atomic mass numbers are extracted from the
radionuclide names and used in the calculations. Results from the mass
extraction algorithm are printed in a table labeled "Initial Calculations"
as a convenience for the user who may be using other alphanumeric string
manipulation functions.
3.4 INFIL INPUT/OUTPUT
The fourth section of output of the PRESTO-EPA-POP code consists of
the input data and results for the subroutine INFIL. INFIL control is
presented first, followed by monthly average values for hours of sunshine,
daily average temperature levels, and hourly rainfall amounts.
The trench characteristics printed are the snowmelt coefficient,
trench cover thickness, width, slope, permeability, porosity for gravity
and pellicular water, equivalent upward diffusivity, and equivalent upward
hydraulic conductivity. The INFIL time step (nominally set at 1 hr) is also
printed. Results printed are annual precipitation, evaporation (transpira-
tion is not considered), runoff, and cap infiltration.
3.5 UNIT RESPONSE CALCULATIONS
This output section includes results of nuclide-specific annual
transport calculations which will be used by the bookkeeping submodels for
3-4
-------
each simulation year. Outputs also include soil loss calculation results
and the calculated (or input) value for the ratio of atmospheric radionuclide
concentration per unit release rate at the radionuclide disposal site.
3.6 ANNUAL SUMMARY TABLES FOR SPECIFIED YEARS
Control variables determine the years for which results will be
printed. For these years, a number of hydrologic and transport variables
are output. Included are trench cap status, maximum possible water depth
in the trench, water loss by overflow and drainage from the trench, the
trench inventory. Radionuclide concentration values and flux values are
presented for key pathways and regions of interest.
3.7 RADIONUCLIDE CONCENTRATION TABLES
The radionuclide concentration tables present, by nuclide, the average
concentration over the entire assessment period, the year of maximum
concentration, and the level of the maximum (population mean) concentration
for the atmosphere, for the well water, and for the stream water. The
level of maximum concentration and the year of occurrence is of interest
since it is related to the year at which population exposures are most
significant. Human exposures may peak, or even commence, many years after
closure of a disposal site.
Separate average radionuclide concentration tables for the user-
specified averaging time window which may be a fraction of the total
assessment period are included. These tables present the radionuclide
concentration in five types of foods due to atmospheric deposition and
irrigation.
3-5
-------
3.8 RADIONUCLIDE EXPOSURE TABLES
Annual population intakes of radionuclides by ingestion and by
inhalation are next printed. The fraction of ingestion dose due to
drinking water is given.
Next, the radionuclide exposure tables list, by nuclide, the year of
maximum exposure and the corresponding level of the maximum (population
mean) exposure for the atmosphere, for the ground surface (including the
resident intruder exposure term which also leads to external exposure) for
ingestion, and for inhalation. The maximum exposures for the atmosphere
and the ground surface are listed in units of Ci/m3 and Ci/m2, respectively.
The exposures for ingestion and inhalation are presented in units of pCi/yr.
Although the exposure terms are dependent on the concentrations summarized
in the concentration tables, the times of maximum exposures will in general
differ from the times of maximum concentrations. This difference occurs
for several reasons^ including the dependence of exposure on soil
concentration (a function of the values printed in the concentration
tables) and the nuclide-specific uptake and concentration mechanism of the
food chain which are considered in computing exposures from ingestion.
3.9 DARTAB CONTROL INFORMATION
DARTAB control information includes run identification data, summaries
of output table control information, lists of critical organs and cancers
to be considered in the run, dose equivalent factors for low and high LET
radiation, radionuclide uptake and clearance data, and, if such exist,
lists of nuclides and organ dose or cancer risk factors not found in the
3-6
-------
RADRISK data sets which were accessed by DARTAB. The location of the
population at risk, the lifetime fatal cancer risk at the location, and the
organ dose weighting factors are also printed.
3.10 DARTAB DOSE TABLES
DARTAB dose tables produced in the output (see Appendix B) present
individual and collective dose summary rates by low and high LET radiation
and organ (including weighted sums of organs), by low and high LET
radiation and exposure pathway, and by low and high LET radiation and
radionuclide. The tables printed depend on the DARTAB control data used.
3.11 DARTAB FATAL CANCER RISK TABLES
DARTAB fatal cancer risk tables produced in the output (see Appendix B)
present individual and collective fatal cancer risk, loss of life by
premature death, and lifetime fatal cancer risk exposure equivalent.
Genetic risks are also summarized. Values presented are summarized by low
and high LET radiation and by organ and also by low and high LET radiation
and pathway. The tables printed depend on the DARTAB control data used.
3.12 RESIDUAL RADIOACTIVITY RELEASED TO THE BASIN AND HEALTH EFFECTS
This output section shows the amount of radionuclides released to the
basin, each millenium, during the 10,000 year simulation. It also shows the
aggregated total release of each radionuclide, the health conversion factor
and the basin population health effects by radionuclide.
3-7
-------
4. SAMPLE PROBLEM
4.1 PROBLEM DEFINITION
For the sample problem the burial of a unit volume (1 m^) of generated
waste is considered. The waste thickness is two meters. A 0.6 meter cover
is used and the distance from the bottom of the trench to the aquifer below
is 7.3 meters. Trench cover failure begins in year 1 at 20 percent and in-
creases linearly up to a 30 percent maximum and final value at year 200. A
1000 year simulation is performed and annual summaries output every 100 years.
The physical properties of the waste, the subtrench material, and the
aquifer are as follows. The porosity and density of the waste are 0.25 and
0.89 g/cc. For the subtrench material these values are 0.35 and 1.6 g/cc.
The porosity and density of the aquifer formation are 0.39 and 1.6 g/cc.
The subtrench permeability is 2.2 m/yr. The dispersivity in the subtrench
soil and in the aquifer is 0.3 meters (the default value). The aquifer
velocity is 27.8 meters per year and its thickness is 30.5 meters. An
aquifer dispersion angle of 0.3 radian has been assumed.
Half of the livestock water, and all human drinking water are assumed
to come entirely from well water. The percentage of aquifer discharge to
the surface water is 100 percent. The well is 1610 meters downflow from
the facility. The stream has an annual flow of 3.57x10^ nr and is 100 meters
downslope from the facility. A cross slope spillage of 1003 meters is
assumed. The runoff is 29 percent of the annual precipitation. The water-
shed infiltration rate is 0.43 m/yr. The surface soil data are summarized
in Table 4-1. The atmospheric data used in the sample problem are given in
Table 4-2.
4-1
-------
TABLE 4-1
SURFACE SOIL DATA
Rainfall Factor 250
Erodability Factor 0.23
Slope Factor 0.27
Cover Factor 0.30
Erosion Control Factor 0.30
Sediment Delivery Factor 1
Cross Slope Extent of Spillage 1003 m
Active Depth For Contamination 0.1 m
4-2
-------
TABLE 4-2
ATMOSPHERIC DATA
Source Height
Gravitational Fall Velocity
Mean Wind Speed
Deposition Velocity
Source to Receptor Distance
Atmospheric Lid Height
Hosker Roughness Factor
Fraction of Time Wind Blows Toward Population
User Specific X/Q
First Coefficient in Resuspension Equation
Decay Factor in Resuspension Equation
Final Coefficient in Resuspension Equation
Fraction of Year Mechanical Disturbance Occurs
Stability Class Formulation
Stability Class
1 m
0.01 m/sec
2.01 m/sec
0.10 m/sec
1.77xl04 m
300 m
0.01 m
0.484
l.OSxlO-11 s/m3
IxlO'6
-0.15
IxlO'11
0
1 (Pasquill-Gifford)
4 (neutral)
4-3
-------
Foodchain parameters have been summarized in Table 4-3. The human
consumption of leafy vegetation is 2 kg/yr; produce is 18 kg/yr; cow milk
is 11 L/yr; goat milk is 0 L/yr; and meat is 9 kg/yr. Each person consumes
370 liters of water per year. The inhalation rate is 8000 m3/yr. The
exposed population is 25. Radionuclide specific foodchain data is given in
Table 4-4.
The radionuclide inventory for the waste is given in Table 4-5. In
addition, a surface spillage fraction of 0.01 is assumed for each radio-
nuclide. Decay constants and sets of Kd's for each radionuclide are given
in Table 4-6.
In this sample run the dose data tables in addition to the summary
tables are output. Combined low and high LET tables are output. A ground
surface correction factor of 0.5 is used. Organs/tissues exposed include
the red marrow, endosteum, thyroid, breast, pulmonary, stomach wall,
intestinal wall, liver, pancreas, kidneys, and others. Seventy year dose
commitments are calculated. The high LET and low LET RBE factors are 20
and 1, respectively. The cancers considered include leukemia, bone,
thyroid, breast, lung, stomach, bowel, liver, pancreas, urinary, and other.
Absolute risk models are used in each case.
The organs considered for genetic effects are the testes, ovaries, and
their average. The high LET and low LET genetic risk conversion factors
are 5200 and 260 genetic effects per rad per million births, respectively.
The default population replacement rate of 0.014133 yr'1 is used. The 1
LET genetic RBE factors are one and the high genetic RBE factors are 20.
ow
4-4
-------
TABLE 4-3
FOOOCHAIN PARAMETERS
Grass Production 0.67 kg/m^yr
Vegetation Production 0.65 kg/m2yr
Surface Density for Soil 240 kg/m2
Weathering Decay Constant 0.0021 hr'1
Period Pasture Exposed During Growing Season 720 hr
Period Crops Exposed During Growing Season 1440 hr
Period Between Harvest Pasture and Ingestion by Animal 0.0 hr
Period Between Stored Feed and Ingestion by Animal 2160 hr
Period Between Harvest Leafy Vegetation and Ingestion 24 hr
by Man
Period Between Harvest Produce and Ingestion by Man 1440 hr
Period Between Harvest Leafy Vegetables and Ingestion 336 hr
by Man for General Population Exposure
Period Between Harvest of Produce and Ingestion by Man 336 hr
for General Population Exposure
Fraction of Year Animal Graze on Pasture 1.0
Fraction of Daily Feed that is Fresh Grass While 0.83
Animals are on Pasture
Amount of Feed Consumed Daily by Cattle 50 kg
Amount of Feed Consumed Daily by Goats 6 kg
Transport Time Feed-Mi 11-Receptor for Maximum Individual 48 hr
Exposure
Transport Time Feed-Mill-Receptor For General Population 96 hr
Exposure
Time From Slaughter of Meat to Consumption 480 hr
Absolute Humidity of the Atmosphere 9.9 g/m^
Fractional Equilibrium Ratio for Carbon-14 1.0
Fraction of Year Crops are Irrigated 0.40
Irrigation Rate 0.015 L/m2hr
Amount of Water Consumed by Cows 60 L/d
Amount of Water Consumed by Goats 8 L/d
Amount of Water Consumed by Beef Cattle 50 L/d
4-5
-------
TABLE 4-4
RADIONUCLIDE SPECIFIC FOODCHAIN DATA
Nuclide
H-3
C-14
Cr-51
Mn-54
Fe-55
Co-58
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
Ra-226
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Retention
Fraction
For Ai r
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
Retention
Fraction For
Irrigation
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Soil-To-Pi ant
Uptake Factor
(Vegetables)
4.8
5.5
2.5E-4
2.5E-1
4.0E-3
2.0E-2
6.0E-2
2.0E-2
6.0E-2
2.5
2.0E-2
9.5
7.5E-2
2.0E-1
1.0
8.0E-2
8.0E-2
8.0E-2
l.OE-2
2.5E-3
1.5E-4
8.5E-3
8.5E-3
4.3E-3
8.5E-3
4.5E-4
4.5E-4
4.5E-4
5.5E-3
4.5E-4
5.5E-3
8.5E-4
8.5E-4
Soil-To-Pi ant
Uptake Factor
(Grain)
4.8
5.5
5.0E-2
5.0E-2
l.OE-3
7.0E-3
6.0E-2
7.0E-3
6.0E-2
2.5E-1
5.0E-3
1.5
2.0E-2
3.0E-2
1.0
3.0E-2
3.0E-2
3.0E-2
4.0E-3
2.5E-3
1.5E-3
4.0E-3
4.0E-3
4.3E-3
4.0E-3
4.5E-5
4.5E-5
4.5E-5
2.5E-4
4.5E-5
2.5E-4
1.5E-5
1.5E-5
Forage-To-MHk
Transfer Factor
(Cows)
l.OE-2
1.2E-2
2.2E-3
3.5E-4
2.5E-4
2.0E-3
l.OE-3
2.0E-3
l.OE-3
2.5E-3
2.0E-2
l.OE-2
6.0E-7
l.OE-4
l.OE-2
7.0E-3
7.0E-3
7.0E-3
2.0E-5
2.0E-5
4.5E-4
6.0E-4
6.0E-4
5.0E-6
6.0E-4
l.OE-7
l.OE-7
l.OE-7
4.0E-7
l.OE-7
4.0E-7
2.0E-5
2.0E-5
Forage-To-Milk
Transfer Factor
(Goats)
1.7E-1
l.OE-1
l.OE-3
2.5E-4
1.3E-4
l.OE-3
6.7E-3
l.OE-3
6.7E-3
1.4E-2
2.5E-3
2.5E-2
1.3E-4
1.5E-3
3.0E-1
3.0E-1
3.0E-1
3.0E-1
l.OE-4
2.0E-5
5.0E-6
5.0E-4
5.0E-4
5.0E-6
5.0E-4
1.5E-6
1.5E-6
1.5E-6
0
1.5E-6
0
0
0
Forage-To-Beef
Transfer Factor
1.2E-2
3.1E-2
2.4E-3
4.0E-4
2.0E-2
3.0E-2
6.0E-3
2.0E-2
6.0E-3
3.0E-4
2.5E-1
2.5E-3
2.0E-3
l.OE-3
7.0E-3
2.0E-2
2.0E-2
2.0E-2
7.5E-4
4.8E-3
2.5E-4
2.0E-4
2.0E-4
5.5E-5
2.0E-4
5.0E-7
5.0E-7
5.0E-7
3.5E-6
5.0E-7
3.5E-6
3.5E-6
3.5E-6
-------
TABLE 4-5
INVENTORY
Nuclide
H-3
C-14
Cr-51
Mn-54
Fe-55
Co-58
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-240
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Inventory
(Ci)
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
4-7
-------
TABLE 4-6
RADIONUCLIDE SPECIFIC DATA
Nucl ide
H-3
C-14
Cr-51
Mn-54
Fe-55
Co-58
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-240
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Decay
Constant
(yr-1)
5.65E-02
1.21E-04
9.14E+00
8.09E-01
2.57E-01
3.55E+00
8.66E-06
1.32E-01
7.53E-03
2.42E-02
3.47E-05
3.25E-06
6.89E-01
2.50E-01
4.08E-08
3.36E-01
2.30E-07
2.31E-02
8.90E-01
4.33E-02
2.83E-06
9.85E-10
3.30E-07
1.55E-10
7.90E-03
2.87E-05
1.06E-04
5.25E-02
1.51E-03
1.83E-06
9.40E-05
2.17E-02
3.94E-02
Surface
Kd
l.OOE-02
l.OOE-02
2.00E+02
1.50E+02
6.00E+03
5.50E+01
1.50E+02
5.50E+01
1.50E+02
1.50E+02
3.50E+02
5.00E-01
2.20E+02
4.50E+01
3.00E+00
l.OOE+03
l.OOE+03
l.OOE+03
1.10E+03
4.00E+03
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
Trench
Kd
9.60E-02
9.60E-02
8.90E-04
8.86E-04
8.86E-04
8.86E-04
8.86E-04
8.86E-04
8.86E-04
1.47E-03
6.34E-04
4.86E-02
6.34E-04
8.86E-04
1.29E-02
2.23E-05
2.23E-05
2.23E-05
2.23E-05
2.23E-05
1.49E-05
1.49E-05
8.19E-03
1.49E-05
6.38E-05
6.38E-05
6.38E-05
5.55E-04
5.55E-04
6.38E-05
5.55E-04
6.38E-05
6.38E-05
Vertical
Kd
l.OOE-02
l.OOE-02
2.00E+02
1.50E+02
6.00E+03
5.50E+01
1.50E+02
5.50E+01
1.50E+02
1.50E+02
3.50E+02
5.00E-01
2.20E+02
4.50E+01
3.00E+00
l.OOE+03
l.OOE+03
l.OOE+03
1.10E+03
4.00E+03
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
Aquifer
Kd
l.OOE-02
l.OOE-02
2.00E+02
1.50E+02
6.00E+03
5.50E+01
1.50E+02
5.50E+01
1.50E+02
2.00E+01
3.50E+02
5.00E-01
2.20E+02
4.50E+01
5.00E-01
5.00E+02
5.00E+02
5.00E+02
1.10E+03
4.00E+03
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
4-8
-------
The activity median aerodynamic diameter, respiratory clearance class
and gastrointestinal absorption factors for each radionuclide are given in
Table 4-7. For the latter parameter only the small intestine values are
shown. The factors for the other three segments are zero.
The output location table includes the following pathways: ingestion,
inhalation, air immersion, ground surface exposures, internal exposures,
external exposures and total. Only combined high and low LET tables are
output. The organ weighting factors for combined dose rates are given in
Table 4-8. The exposures are summed over all pathways. The input data for
the INFIL subroutine is listed in Tables 4-9 through 4-12.
The complete output for this problem is given in Appendix B. Each
printout includes an exact replica of the corresponding site input data
set, and thus the input data set is not reproduced in this section.
4.2 RESULTS
The output for the sample problem described in Section 4.1 is given in
Appendix B. Chapter 3 of this Users Manual discusses each section of the
PRESTO-EPA-POP output in detail.
A summary of the significant results is given in Table 4-13. From
this summary table, the maximum population whole body doses occur mainly
from contaminated groundwater and well water via the ingestion pathway.
The relatively permeable soils and associated aquifer velocities allow for
relatively rapid transport of the more mobile radionuclides to the well.
Iodine-129, carbon-14, and technicium-99 dominate the contributions to the
total dose commitment.
4-9
-------
TABLE 4-7
RADIONUCLIDE SPECIFIC DOSE PARAMETERS
Activity Respiratory Gastrointestinal
Median Aerodynamic Clearance Absorption Factor
Nuclide Diameter (10"6 m) Class (small intestine)
H-3 0.0 * (gas) 0.95
C-14 0.0 * (gas) 0.95
Cr-51 1.0 Week 0.10
Mn-54 1.0 Week 0.10
Fe-55 1.0 Week 0.10
Co-58 1.0 Year 0.05
Ni-59 1.0 Week 0.05
Co-60 1.0 Year 0.05
Ni-63 1.0 Week 0.05
Sr-90 1.0 Day 0.01
Nb-94 1.0 Year 0.01
Tc-99 1.0 Week 0.80
Ru-106 1.0 Year 0.05
Sb-125 1.0 Week 0.20
1-129 1.0 Day 0.95
Cs-134 1.0 Day 0.95
Cs-135 1.0 Day 0.95
Cs-137 1.0 Day 0.0003
Ce-144 1.0 Year 0.0001
Eu-154 1.0 Week 0.20
U-234 1.0 Week 0.002
U-235 1.0 Year 0.002
Np-237 1.0 Year 0.001
U-238 1.0 Week 0.002
Pu-238 1.0 Year 0.001
Pu-239 1.0 Year 0.0001
Pu-240 1.0 Year 0.0001
Pu-241 1.0 Year 0.001
Am-241 1.0 Week 0.001
Pu-242 1.0 Year 0.0001
Am-243 1.0 Week 0.001
Cm-243 1.0 Week 0.001
Cm-244 1.0 Week 0.001
4-10
-------
TABLE 4-8
ORGAN WEIGHTING FACTORS
Organ Factor
Red Marrow 0.1552
Endosteum 0.0035
Thyroid 0.0987
Breast 0.1299
Pulmonary 0.2075
Stomach Wall 0.0840
Intestinal Wall 0.0390
Liver 0.0853
Pancreas 0.0585
Kidneys 0.0248
Other 0.1136
4-11
-------
TABLE 4-9
INFIL INPUT DATA FOR THE SAMPLE PROBLEM
Trench cap width 30.5 m
Average slope of trench cover 0.01 m/m
Component of porosity for gravity water 0.25
of trench cap
Component of porosity for pellicular water 0.24
of trench cap
Permeability of trench cover 0.02 m/hr
Trench cap thickness 1.2 m
Equivalent upward diffusivity 3.5E-4 m^/hr
Equivalent upward hydraulic conductivity 1.4E-6 m/hr
Initial pellicular water deficit 0.10 m
Initial gravity water deficient 1.2 m
Maximum day lengths Table 4-10
Daily mean temperatures Table 4-11
Hourly precipitation Table 4-12
4-12
-------
TABLE 4-10
MAXIMUM DAY LENGTHS FOR SAMPLE PROBLEM
Month
January
February
March
April
May
June
July
August
September
October
November
December
Hours
10.8
11.2
12.0
12.8
13.4
13.7
13.6
13.0
12.3
11.6
10.9
10.6
4-13
-------
TABLE 4-11
DAILY TEMPERATURES IN DEGREES CELSIUS
Month
Da
Jan
Feb
Mar
Apr
Ma\
Jun
Jul
Oct
Nov
Dec
If —
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
8.88
8.48
7.05
15.27
6.13
8.84
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
8.78
12.54
16.73
15.27
6.46
8.41
5.96
7.04
2.14
-1.54
5.18
7.55
11.00
16.16
10.16
6.81
7.79
13.93
12.14
13.12
6.94
9.23
13.06
8.44
8.13
4.59
7.46
8.97
14.71
19.33
16.27
8.03
10.02
11.90
14.61
8.04
10.49
16.75
12.71
1.94
2.03
3.65
0.00
0.00
0.00
6.00
8.76
12.65
14.35
17.74
16.25
10.90
4.41
7.93
13.33
17.32
18.87
21.13
19.19
19.25
12.33
17.60
17.04
20.02
23.06
23.56
17.91
15.05
13.29
16.55
13.24
6.57
6.58
11.19
16.00
16.25
•
20.92
19.34
20.61
16.68
11.78
12.02
8.20
8.60
12.57
11.21
12.79
15.35
17.93
20.56
20.36
20.93
21.36
16.86
14.26
19.05
20.29
16.27
11.65
13.41
16.35
20.59
18.13
17.02
15.51
15.75
0.00
~
17.80
19.45
20.04
20.37
11.90
20.78
20.90
21.38
20.27
20.66
21.81
22.07
15.08
25.52
25.06
24.61
23.36
22.95
21.02
22.92
23.55
24.74
23.82
23.58
24.17
24.16
23.39
25.76
27.44
23.84
24.13
25.34
26.79
25.34
23.45
25.40
24.17
23.86
26.07
27.60
25.60
24.10
23.99
23.10
23.70
26.20
26.46
21.95
22.49
25.70
26.07
26.62
24.69
24.83
23.50
24.63
24.98
24.05
25.13
25.97
27.27
0.00
26.30
25.79
27.73
28.48
25.39
22.78
18.01
12.58
21.33
24.66
25.09
25.93
23.91
24.89
24.26
24.17
24.74
25.83
25.59
26.55
27.56
27.67
24.88
25.21
26.21
28.02
29.36
27.35
24.49
25.53
24.50
24.99
25.92
25.28
26.23
23.77
23.78
25.78
25.85
25.12
25.61
24.93
24.71
24.22
25.27
24.69
25.35
24.29
22.87
24.17
25.24
26.62
25.99
27.02
27.62
25.31
18.80
20.31
25.31
20.37
20.49
20.24
21.89
22.43
22.71
18.00
16.67
15.04
15.87
16.54
18.09
19.68
21.19
21.44
24.27
24.12
25.82
25.74
25.48
24.45
23.35
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
20.81
0.00
13.96
19.38
20.17
18.79
20.95
22.37
22.63
21.47
22.77
21.45
17.03
19.06
19.10
15.71
12.18
12.97
10.93
12.78
17.31
18.55
18.82
13.71
10.64
8.38
9.97
13.11
11.43
12.19
12.27
14.62
17.46
19.89
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
15.42
17.86
16.34
16.61
16.83
9.64
12.35
15.29
13.85
19.11
15.48
0.00
19.77
19.15
19.73
19.23
20.96
13.86
11.56
11.70
13.60
8.13
9.71
7.16
0.08
4.30
13.68
13.17
4.78
1.99
2.85
6.18
5.16
4.64
8.33
14.85
17.31
15.14
16.79
18.56
13.72
7.34
5.07
4-14
-------
TABLE 4-1Z
HOURLY RAINFALL READ IN AS MONTH, DAY, RAINFALL PER HOUR
AND HOUR AND GIVEN IN 0.1 mm/hr
Month
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Mar
Mar
Mar
Mar
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
May
May
May
May
May
May
1
3
4
13
14
19
20
23
31
1
2
3
9
12
16
17
26
27
1
7
17
24
1
3
5
8
12
17
20
25
26
27
1
17
19
24
27
30
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
s 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0. 0. 0.
0. 23. 23.
47. 23. 23.
0. 0. 0.
0. 23. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 47.
0. 0. 0.
0. 0. 0.
0. 23. 0.
0. 0. 0.
0. 0. 0.
23. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 23. 93.
0. 0. 0.
23. 47. 23.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0.
70.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
23.
23.
0.
23.
0.
23.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
70.
0.
0.
47.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
23.
23.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
47.
0.
0.
0.
93.
0.
0.
0.
70.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
140.
0.
93.
0.
0.
0.
23.
0.
117.
326.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
350.
0.
0.
0.
0.
23.
186.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Month
Jun 1
Jun 3
Jun 12
Jun 13
Jun 16
Jun 17
Jun 22
Jun 26
Jun 27
Jun 28
Jul 1
Jul 4
Jul 5
Jul 7
Jul 9
Jul 13
Jul 14
Jul 15
Jul 16
Jul- 19
Jul 20
Jul 23
Jul 24
Jul 27
Jul 29
Aug 1
Aug 5
Aug 6
Aug 7
Aug 8
Aug 9
Aug 12
Aug 18
Sep 1
Sep 10
Sep 18
Sep 19
Sep 21
Sep 26
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
4
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
8
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
9
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
10
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
47.
0.
TABLE 4-12
(Continued)
11 12 13
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
117.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
14
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
70.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
15
0.
0.
0.
0.
0.
47.
0.
0.
0.
70.
0.
0.
0.
0.
23.
210.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
16
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
17
0.
0.
0.
0.
0.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
280.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
47.
0.
0.
18
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
163.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
19
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
20
0.
0.
163.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
210.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
140.
0.
0.
0.
21
0.
0.
0.
0.
93.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
117.
23.
0.
0.
0.
0.
419.
0.
0.
0.
0.
0.
0.
0.
23.
233.
0.
0.
0.
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Month
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Nov
Nov
Nov
Nov
Nov
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Day
1
9
10
24
25
26
27
1
16
20
24
30
1
2
6
14
15
18
24
25
27
28
29
31
1
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
47.
0.
4
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
47.
0.
23.
0.
0.
0.
47.
5
0.
0.
23.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
23.
6
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
23.
0.
23.
0.
0.
0.
23.
7
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
47.
8
0.
0.
0.
0.
0.
0.
47.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
23.
0.
23.
0.
0.
0.
70.
9
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
93.
0.
0.
0.
0.
0.
0.
47.
10
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
117.
0.
0.
23.
0.
0.
0.
70.
TABLE 4-12
(Continued)
11 12 13
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
47.
23.
0.
0.
23.
23.
0.
0.
47.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
23.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
70.
14
0.
0.
23.
0.
47,
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
15
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
47.
16
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
17
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
18
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
19
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
23.
70.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
20
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
21
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
23
0.
23.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
163.
0.
0.
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NOTE: Unlisted days had zero rainfall.
-------
CO
TABLE 4-13
SUMMARY OF RESULTS FOR SAMPLE CASE
By Pathway By Nuclide
Results Total Ingestion Inhalation Surface C-14 Tc-99 1-129
Whole Body Equivalent 2.16E-02 2.16E-02 1.84E-11 8.86E-11 8.59E-05 1.02E-04 2.14E-02
Dose Rate
(person rem/yr)
Collective Fatal 6.55E-07 6.55E-07 1.45E-15 2.49E-14 2.41E-08 2.87E-08 6.02E-07
Cancer Risk
(deaths/yr)
Whole Body Equivalent 2.34E-03 2.34E-03 5.26E-12 8.86E-11 8.59E-05 1.02E-04 2.15E-03
Risk From All
Exposures
(deaths/yr)
-------
Finally, it should be noted that the sample problem described in
Section 4.1 merely illustrates the application of PRESTO-EPA-POP and is not
intended as a basis for arriving at any general conclusions regarding
specific disposal alternatives.
4.3 JOB CONTROL LANGUAGE
The IBM job control language (JCL) used to execute the run is shown in
Figure 4-1. GMWLLWM.POP is the PRESTO-EPA-POP source code. GMWLLWM.SAMPLE
is the site/environmental data file. The infiltration data file is
GMWLLWM.BRIT. The file, CBNRACS.RADRISK.V4BD, is the RADRISK data file.
4-19
-------
1. //GMW JOB (,),ROGERS,TIME=(7,0)
2. // EXEC FORTXCLG,GREGION=8000K
3. //FORT.SYSIN DD DSN=GMWLLWM.POP,DISP=SHB
4. //GO.FT25F001 DD DSN=CBNRACS.RADRISK.V4BD,DISP=SHR
5. //GO.FT04F001 DD DSN=GMWLLWM.BRIT,DISP=SHR
6. //GO.FT26F001 DD UNIT=SYSDA,DSN=&&DATA,DISP=(NEW,DELETE),
7. // SPACE=(TRK,(30,10),RLSE),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
8. //GO/SYSIN DD DSN=GMWLLWM.SAMPLE,DISP=SHR
FIGURE 4-1. PRESTO-EPA-POP JCL.
4-20
-------
REFERENCES
Be81 Begovich, C. L., K. F. Eckerman, E. C. Schlatter, and S. Y. Ohr,
DARTAB: A Program to Combine Airborne Radionuclide Environmental
Exposure Data with Dosimetric and Health Effects Data to Generate
Tabulations of Predicted Impacts, ORNL-5692 (Oak Ridge National
Laboratory, Oak Ridge, Tennessee), 1981.
Du80 Dunning, D. E., Jr=, R. W. Leggett, and M. G. Yalcintas, A Combined
Methodology for Estimating Dose Rates and Health Effects from
Exposures to Radioactive Pollutants, ORNL/TM-7105 (Oak Ridge
National Laboratory, Oak Ridge, Tennessee). 1980.
Ec81 Eckerman, K. F., M. R. Ford, and S. B. Watson, Internal Dosimetry
Data and Methods of ICRP - Part 2, Vol. 1: Committed Dose
Equivalent and Secondary Limits, NUREG/CR-1962 Vol. 1, ORNL/NUREG/
TM-433/VI (Oak Ridge National Laboratory. Oak Ridge, Tennessee),
1981.
EPA83 U.S. Environmental Protection Agency, PRESTO-EPA: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Methodology and User's Manual, Prepared under Contract No.
W-7405-eng-26, Interagency Agreement No. EPA-D--89-F-000-60, U.S.
Environmental Protection Agency, Washington, D.C., April 1983.
EPA87a U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington, DC,
December 1987.
EPA87b U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 2, User's Manual, EPA 520/1-87-024-2, Washington, DC, December
1987.
EPA87c U.S. Environmental Protection Agency, PRESTO-EPA-DEEP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-025, Washington, DC,
December 1987.
EPA87d U.S. Environmental Protection Agency, PRESTO-EPA-CPG: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-026, Washington, DC,
December 1987.
EPA87e U.S. Environmental Protection Agency, PRESTO-EPA-BRC: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-027, Washington, DC,
December 1987.
R-l
-------
EPA87f U.S. Environmental Protection Agency, PATHRAE-EPA: A Performance
Assessment Code for the Land Disposal of Radioactive Wastes,
Documentation and User's Manual, EPA 520/1-87-028, Washington, DC,
December 1987.
EPA87g U.S. Environmental Protection Agency, Accounting Model for
PRESTO-EPA-POP, PRESTO-EPA-DEEP, and PRESTO-EPA-BRC Codes,
Documentation and User's Manual, EPA 520/1-87-029, Washington, DC,
December 1987.
Ga84
Hu81
Hu83
Me81
Me84
Ro84
Galpin, F. L., and G. L. Meyer, Overview of EPA's Low-Level Radio-
active Waste Standards Development Program, 1984: Proceedings of
"" Annual Participants' Information Meeting on DOE Low-Level Waste
6th
Management Program
CONF-8409115, Idaho
Denver, Colorado,
Falls, Idaho.
September 11-13, 1984,
Hung, C. Y., "An Optimum Model to Predict Radionucl ide Transport in
an Aquifer for the Application to Health Effects Evaluation," in
Proceedings, Modeling and Low-Level Waste Management: An Interagency
Workshop held December 1-4, 1980, Denver, Colorado, (C. A. Little
and L. E. Stratton, Compilers), pp. 65-80. ORO-821 (Department of
Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee), 1981.
Hung, C. Y., G. L. Meyer, and V. C. Rogers, Use of PRESTO-EPA Model
in Assessing Health Effects from Land Disposal of LLW to Support
EPA's Environmental Standards: U.S. Department of Energy, Proceed-
ings of 5th Annual Participants' Information Meeting on DOE Low-Level
Waste Management Program, Denver, Colorado, August 30, 1983,
CONF-8308106, Idaho Falls, Idaho.
Meyer, G. L., and C. Y. Hung, An Overview of EPA's Health Risk
Assessment Model for the Shallow Land Disposal of LLW, Proceedings
of an Interagency Workshop on Modeling and Low-Level Waste Management,
Denver, Colorado, December 1-4, 1980, ORD-821, Oak Ridge National
Laboratories, Oak Ridge, Tennessee, 1981.
Meyer, G. L., Modifications and Improvements Made to PRESTO-EPA
Family of LLW Risk Assessment Codes Based on Recommendations of Peer
Review, February 1984, U.S. Environmental Protection Agency, Letter
dated July 13, 1984, to Members of PRESTO-EPA Peer Review,
February 7-8, Airlie, Virginia: Washington, D.C., 1984.
Rogers, V. C., An Update on Status of EPA's PRESTO Methodology for
Estimating Risks from Disposal of LLW and BRC Wastes, U.S. Department
of Energy, Proceedings of 6th Annual Participants', Information
Meeting on DOE Low-Level Waste Management Program, Denver, Colorado,
September 11-13, 1984, CONF-8409115, Idaho Falls, Idaho.
R-2
-------
Su81 Sullivan, R. E., N. S. Nelson, W. H. Ellet, D. E. Dunning, Jr.,
R. W. Leggett, M. 6. Yalcintas, and K. F. Eckerman, Estimates of
Health Risk from Exposure to Radioactive Pollutants. ORNL/TM-7745.
(Oak Ridge National Laboratory, Oak Ridge, Tennessee), 1981.
R-3
-------
APPENDIX A
PRESTO-EPA-POP LISTING
-------
AAA
7571.
? AAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAA PRESTO POP AAAAAAAAAAAAAAAAAAAAAAAxA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAA
A CODE FOR PREDICTING THE MIGRATION OF RADIOACTIVE WASTE FROM
SHALLOU LAND BURIAL SITES AND THE HEALTH EFFECTS THAT RESULT
FROM THESE LOU LEVEL RADIOACTIVE WASTES.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C
C
C
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
MODIFIED OCTOBER 1985 BY ROGERS X ASSOC. ENGR. TO ALLOW DOSE
AND HEALTH EFFECT OUTPUT TO BE PRINTED FOR INTERMEDIATE YEARS
DURING THE SIMULATION PERIOD.
THE MAIN PROGRAM ACTS AS A SUPERVISOR FOR THE REST OF THE
CODE. MOST OF THE BOOKEEPING, INCLUDING MATERIAL BALANCE,
IS DONE HERE. THE FOLLOWING SUBROUTINES ARE CALLED:
SOURCE,
SUSPND,
1C n c ft c « inc CULL.UWIIIU OULUMJUIIIILIJ rim* u n L. L> b u .
;. AIRTRM, ERORF. TRENCH, LEACH, VERHOR, SURSOL,
i, OUT, FOOD, IRRIG, HUMEX, DARIAB, AND QUANC8.
GLOBAL VARIABLES
AIlEPIH
AQDISP
AQTHK
AQVOL
AQAM
AQAVG =
AQCON =
ATAVG =
ATCON =
ATMASS =
ABSERR =
BDENS =
CPL1
CPL2
CPL3
CS
CW
CWAT
CCMI1 =
CCMI2 =
= AQUIFER
= AQUIFER
= AQUIFER
= AQUIFER
= AMOUNT OF
DEPTH
DISPERSION ANGLE
THICKNESS
DILUTION FACTOR
NUCLIDE AT WELL
SITE
AVERAGE NUCLIDE CONCENTRATION AT WELL SITE
NUCL1HE CONCENTRATION AT WELL SITE
AVERAGE NUCLIDE CONCENTRATION IN ATMOSPHERE
NUCLIDE CONCENTRATION IN ATMOSPHERE DOWNWIND
NUCLIDE MASS NUMBER
ABSOLUTE ERROR IN DDETA CALCULATION
BULK DENSITY OF SOIL
NUCLIDE CONCENTRATION IN LEAFY VEGETABLES 'FOR
M.I.E. BY ATMOSPHERIC DEPOSITION
NUCLIDE CONCENTRATION IN PRODUCE FOR M.I.E.
BY ATMOSPHERIC DEPOSITION
NUCLIDE CONCENTRATION IN LEAFY VEGETABLES AND
PRODUCE FOR G.P.E. BY ATMOSPHERIC DEPOSITION
CONCENTRATION IN SURFACE SOIL
CONCENTRATION IN SURFACE WATER
NUCLIDE CONCENTRATION IN WATER
NUCLIDE CONCENTRATION IN COW'S MILK UOR M.I.E.
BY ATMOSPHERIC DEPOSITION
NUCLIDE CONCENTRATION IN COW'S MILK FUR G.P.E.
BY ATMOSPHERIC DEPOSITION
M
RADIANS
M
MAA3
C1/MAA3
CI/MAA3
CI/MAA3
CI/MAA3
CI/MAA3
G/CC
PCI/KG
PCI/KG
PCI/KG
Cl/KG
CI/MAA3
PCI/L
PCI/L
A-2
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CGMI1 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.l.E. BY ATMOSPHERIC DEPOSITION PCI/L
CGMI2 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
G.P.E.BY ATMOSPHERIC DEPOSITION PCI/L
COPL1 = NUCLIDE CONCENTRATION IN LEAFY VEGETABLES FOR
M.l.E. BY IRRIGATION PCI/KG
COPL2 = NUCLIDE CONCENTRATION IN PRODUCE £Q& M.l.E. BY
IRRIGATION PCI/KG
COPL3 = NUCLIDE CONCENTRATION IN LEAFY VEGETABLES AND
PRODUCE FOR G.P.E. BY IRRIGATION PCI/KG
CGMEAT = NUCLIDE CONCENTRATION IN BEEF MEAT BY
ATMOSPHERIC DEPOSITION PCI/KG
COCMI1 = NUCLIDE CONCENTRATION IN COW'S MILK FUR M.l.E.
BY IRRIGATION PCI/L
COCMI2 = NUCLIDE CONCENTRATION IN COW MILK FOfi G.P.E.
BY IRRIGATION PCI/L
COGMI1 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.l.E. BY IRRIGATION PCI/L
COGMI2 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.l.E. BY IRRIGATION PCI/L
COMEAT = NUCLIDE CONC IN BEEF MEAT BY IRRIGATION PCI/KG
DBA = INTERMEDIATE VARIABLE IN DDETA CALC.
DBB = INTERMEDIATE VARIABLE IN DDEIA CALC.
DBD = DISPERSION COEFF. IN DDETA CALC.
DBR = RETARDATION FACTOR IN DDETA CALC.
DBAL = LENGTH OF ELOU IN DDETA CALC.
DBAV = GROUNDUATER VELOCITY IN DDETA CALC. M
DBLA = RADIOL. DECAY COEFF. IN DDETA CALC.
DECN = DECAY CORRECTION FACTOR
DDETA = DECAY-DISPERSION CORRECTION FACTOR
DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
DOVER = ANNUAL THICKNESS OF TRENCH OVER BURDEN ERODED M
DTRAQ = DISTANCE FROM TRENCH TO AQUIFER M
DWELL = DISTANCE FROM TRENCH TO WELL M
DDETA1 = DDETA FOR VERTICAL TRANSPORT
DDETA2 = DDETA FOR HORIZONTAL TRANSPORT
DERATE = ATMOSPHERIC DEPOSITION RATE
EXPOS = NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
UNIT SOURCE RELEASE
EXTENT = CROSS SLOPE EXTENT OF SPILLAGE M
ERREST =
ETWIND = FRACTION OF TIME WIND BLOWS TOWARD POPULATION
FI = FRACTION OF YEAR CROPS ARE IRRIGATED
GWV = GROUND WATER VELOCITY M/Y
GNDCON = INSOLUBLE SURFACE SPILLAGE GROUND CONCENTRATION
HUME = HORIZONTAL OR AQUIFER TRANSPORT TIME Y
IDELT = INCREMENTAL YEAR FOR PRINTING ANNUAL SUMMARIES
INTYR = INTERMEDIATE YEARS DURING THE SIMULATION FOR Y
UHICH DOSE S HEALTH EFFECT OUTPUT IS DESIRED
IPRI1 = INITIAL YEAR FOR PRINTING ANNUAL SUMMARIES
IPRT2 = FINAL YEAR FOR PRINTING ANNUAL SUMMARIES
ITIME = TOTAL TRANSPORT TIME FROM TRENCH TO WELL Y
IOPSAT = OPTION INDICATOR FOR CALCULATING LENGTH OF
SATURATED ZONE
IOPVUV = OPTION ID1CATOR FOR CALCULATING VERTICAL WATER
VELOCITY
LU2 = LOGICAL UNIT FOR OUTPUT
MAXYR = NUMBER OF YEARS IN SIMULATION
NOFUN = MAXIMUM NUMBER OF FUNCTION EVALUATIONS TO
BE USED BY QUANC8
A-3
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c—
c—
c—-
NYEAR = CURRENT YEAR OF SIMULATION
NONCLD = NUhBER OF NUCLIDES IN SIMULATION
NUCLID = NUCLIDE NAMES
OVER = TRENCH OVER BURDEN THICKNESS M
PC = FRACTION OF TRENCH CAP THAI HAS FAILED
PCON1 = AIR CONCENTRATION CI/MAA3
PCON2 = GROUND SURFACE CONCENTRATION CI/MAA2
PCON3 = COLLECTIVE INGESTION RATE PCI.PER
PCON4 = COLLECTIVE INHALATION PCI.PER
PD = BOWNSLOPE DISTANCE TO STREAM M
POLE = AMOUNT OF NUCLIDE LEAVING BOTTOM OF TRENCH CI
POLO = AMOUNT Of NUCLIDE OVERFLOWING TRENCH CI
POP = POPULATION
PORS = POSOS1TY OF SOIL
PORT = POROSITY OF TRENCH CONTENTS
PERMS = PERMEABILITY OF SOIL M/Y
QING = ANNUAL INTAKE OF RADIONUCLIDE BY INGESTION
Of CONTAMINATED FOOD CONSIDERING ATMOSPHERIC
AND AQUATIC PATHWAYS PCI/Y
QINH = ANNUAL INTAKE OF NUCLIDE BY INHALATION PCI/Y
QFRAC = FRACTION OF INGESTION DUE TO UATER
RELERR = RELATIVE ERROR FOR DDETA INTEGRATION
RESULT = FINAL FORM OF DDETA CORRECTION FACTOR
RESUL1 = FINAL FORM OF VERTICAL DDETA
RESUL2 = FINAL FORM OF HORIZONTAL DDETA
RETARH = HORIZONTAL RETARDATION FACTOR
RETARV = VERTICAL RETARDATION FACTOR
SOAM = AMOUNT OF SURFACE SPILLAGE CI
SAREA = AREA OF SPILLAGE MAA2
SDEEP = AMOUNT OF SOLUBLE SURFACE COMPONENT GOING TO
TRENCH CI
STAVG = AVERAGE NUCLIDE CONCENTRATION IN STREAM CI/MAA3
STCON = NUCLIDE CONCENTRATION IN STREAM CI/MAA3
SOILOS = ANNUAL SOIL LOSS DUE TO EROSION
SSTREM = AMOUNT SURFACE COMPONENT GOING TO STREAM CI
STFLOU = STREAM FLOW RATE MAA3/Y
TRAM = AMOUNT OF NUCLIDE IN TRENCH CI
VD = ATMOSPHERIC DEPOSITION VELOCITY ri/S
VOLB = VOLUME OF WATER LEAVING TRENCH BOTTOM MAA3
VOLO = VOLUME OF WATER OVERFLOWING TRENCH MAA3
VOLUSD = HYPOTHETICAL VOLUME OF WATER USED FROM WELL MAA3
VTIME = VERTICAL TRANSPORT TIME Y
VWV = VERTICAL WATER VELOCITY (TRENCH TO AQUIFER) M/Y
WIRATE = IRRIGATION RATE L/MAA2-
XINFL = ANNUAL INFILTRATION RATE M
XKD = CHEMICAL EXCHANGE COEFFICIENT ML/G
XLSAT = LENGTH OF SATURATED ZONE M
YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE CI
--OTHER VARIABLES ARE DEFINED IN SUBROUTINES WHERE THEY
--ARE USED MOST FREQUENTLY.
DOUBLE PRECISION NUCLID,DBAV.DBAL.DBR.DBA,DBB.DBD.BBLA.
* llpt FCN.RESULT,ABSERR.REf.ERR,ERRESI,hAG
DOUBLE PRECISION RESUL1,RESUL2,PNUC
COMMON/STREAM/DWS ISINLU
COMMON/CNTRL/NONCLB.MAXYR.TITLE(20).LOCAT£(12>,NYR1,NYR2,
X PCT1.PCT2.LEAOPT.IflPVWV.IDPSAl, IPRT1.IPRT2.IDELI.IXTS,
S IRRESl,IRRES2fLIND,IAVGi,IAVG2 RR,FTMECH, INTYRM5, RAE10B5
A-4
-------
& UUAIL.UUAIA.UUAIH.SUAIL.SUATA.SWATH,IVAP.IBSMT
COMMON/EVAP/PPN.PHID.P,XIRR,S,T<12>,TIi<12>,XINFL,SINFL,
£ SMASS.UMASS.UDEEP
COMMUN/IRCH/IAREA.TDEPIH,OVER.PORT,RELFACfDENCON.OLDUAI,FN
COMMON/WATER/BIRAQ.DWELL,GUV,XLSAT,STFLOW.AQTHK.AQDISP.
* PORA.PORV,PERMV,IAQSIF.CPR,J
COMMON/NUC/NUCLni<40).ATMASS<40).TRAM(40>.SOAM<40),ATAM<40),
& AGAM(40.1000),STAIi(40>,POLO(40),POLB(40>.CS(40).CU(40>.
X SSIREM(40).SDEEP(40)lAIRCON(40).YSO(40)fSOAVG(40),CON(40),
& AQCON(40>,SICON(40),AICON(40).AQAVG<40).STAVG<40).BETU(40), ISINEWL
I AIAVG(40).FMC(40),FMG(40).DECAY(40),XKD(4f40)fSOL(40).
X FE(40).RA(40),RU(40).BV(40),BR(40).DERATE(40).CUAT(40)
COMMON/LANB/RAINF,ERODE,STPLNG.COVER,CONIRL.SEDELR.SOILOS,
& PORS,BDENS,BWET,EXTENT,ADEPTH,PD,RUNOFF,RESAT,
COMMON/AIR/H.VG.U,IT,IS,VD.XG.HLID.ROUGH,ETUINB,CHIQ,RE1,RE2,RE3
COMhON/BOUBLE/BBAy.DBAL,DBD,DBR,[iBLA
COMMON/IRRFOO/Y1.Y2,IE1,TE2.TH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
I ULEAFY,UPROD,UCMILK.UGMILK,UMEAI.UUAT.UAIR,
S QFC,QFG.TFl,IF2.TS.CLK40)fCL2(40),CPl(40),CP2(40),
J CCMIl(40),CCHI2UO).CGMIK40),i:GMI2(40),
J CHEAK40)rCOLl(40).COL2(40).COPl(40).COP2(40),
I COCMI1(40),COCMI2(40),COGMI1(40),COGHI2(40),
S COMEAT(40).QING(40),QINH(40),POP,
X CSP(40).CSPT(40),CSPO(40).CSPOT(40)
COMHON/EUNC/XAitBUE.TA.TB.FI.PP.wlRATE,
& QCU,QGW.QBU,ABSH.P14
COMMON/PASS/PNUC(40),PCON1(40),PCON2(40),PCON3(40),
& PCON4(40).PPl3PfLLIND,LIiIST
COMMON/PCV/SOCON(40)
COMMON/ACCMOD/FICAN(40),CCNR(40),POPD(40),GNR(40),
* TEIC,TCCNR,TPOPB,TGNR
« — — —
EXTERNAL FCN
DIMENSION ITIME(40).BBETA(40).DECN(40) ISIMOD
DIMENSION DBETA3(40),JTIME(40).DEXUS(40),DEWS(40) ISINEWL
DIMENSION QLB<40.10),IRAP(40).QLBPTH(40).HE(40).QLBTTH(40)
DIMENSION NUCL(46.8)'NUMBER(lI),IHIG(3),BSMT(405,SAyE(40.21) RAE1085
DIMENSION AGMAX<40),STMAX(40),ATMAX(40).MXAG(40).MXST(40).MXAT(40)
DIMENSION PC1(40).PC2(40).PC3(40).PC4(40).NPC1(40),NPC2(40),
& NPC3(40}.NPC4(40),BSMTA(40).CCNRS(40,4).FICANS<40.4). RAE1085
& GNRS(40.4).HEE(40 4),POPDS(40,4).POSS(46.4).POWS(40,4)F RAE1085
8 QBASIN<40,4),RIASf40,4),TCCNRS(4),TFICS<4),TGNRS<4), RAE1085
& TPOPDS(4) RAE1085
DIMENSION GHWSB(40).POW(40).POS(40),PLBT(40),OFT(40),RTA(40)
DIMENSION CIOT(40),£lNEUT(46)
DATA LU2/6/
DATA ISU/0/
DATA MINUS/'-'/
DATA NUHBER/'1V2V3V4V5V6V7V8V9VOV '/
CALL ERRSEI (208,256,-!,1)
IBK=0
RESAT=0.
DO 11 K=l,10
DO 11 1=1,40
11 QLB(I,K)=0.0
DO 10 1=1.40
QDUSB(I)=0.
QLBPTH(I)=0.0
QLBIIH(I)=0.0
A-5
-------
POU(I)=0.
POS(I)=0.
PLBI(I)=0.
OEKI)=0.
R1A(I)=0.
AQAVG=0.
BSMKI)=0.0
AQHAX(I)=0.0
SThAX(I)=0.0
ATMAX(I)=0.0
hXAQ(I)=0
MXST(I)=0
MXAKI)=0
PC1(I)=0.
PC2(1)=0.
PC3(I)=0.
PC4(1)=0.
NPC1(I)=0
NPC2<1)=0
NPC3(I)=0
NPC4(I)=0
CSP(I)=0.
CSPI<1)=0.
CSPO(I)=0.
CSP01(1)=0.
SDEEP(I)=0.
DO 10 NN=1,1000
AQAM(I,NN)=0.
10 CONTINUE
DO 770 1=1,40
770 C101(I>=0.0
OLDWAT=0.
ABSERR=1.0D-5
C CI01 IS A VARIABLE 10 BE USED IN SUB. LEACH
C INTRODUCED FOR OCT11 VERSION (HUNG)
RELLRR=1.0D-5
C INITIALIZE VARIABLES AND INPUT CONTROL PARAMETER.
C PRINT OUT INITIAL CONDITIONS.
C
CALL SOURCE
C PRJ=PERCENTAGE OF AQUIFER WATER FLOWING 10 STREAM
PRJ=1.-CPRJ
C 1HE FOLLOWING EXTRACTS THE ATOMIC MASS FROM THE NUCLIDE
C NAME. THE NUCLIDE NAME MUST CONSIST OF ONE OR TWO LETTERS.
C A MINUS SIGN. AND ONE TO THREE DIGITS. NO IMBEDDED
C BLANKS ARE ALLOWED. THE NAME MUST BE LEFT JUSTIFIED.
C
C
URIIE(LU2,5000)
DO 50 I=1,NONCLD
NDASH=2
IF(NUCL(I,NDASH) .EQ. MINUS) GO TO 20
NDASH=3
20 NNUM=NDASH+1
DO 30 K=l,3
ICHAR=NUCL(1,NNUM+K-1)
DO 25 L=l,ll
A-6
-------
IFdCHAR .EQ. NUMBER(D) GO TO 27
25 CONTINUE
27 1D1G(K)=L
IFdDlG(K) .EQ. 10) ID1G(K)=0
30 CONTINUE
NDIG=3
IFdDIGO) .EQ. 11) NDIG=2
IE(IOI6(2) .EQ. 11) NDIG=1
INUCN=0
DO 40 L=1,NDIG
INUCN=INUCN+IDIG(L)A10AA(NDIG-L)
40 CONTINUE
ATHASS(I)=FLOAT(INUCN)
URITE(6,5005)NUCLIDd),ATMASSd)
50 CONTINUE
C
C DETERMINE IF FARMING IS ONSITE
C
INSIIE=0
XIRR=0.0
IE(X(i .61. PEOGO TO 60
URIT£(LU2,5006)
INSITE=1
XIRR=WIRATEAFIA8760./1.0E3
FARHGD=EXTENTAPD
PEOPLE=FARMGD/4492.
IF(PEOPLE .LT. POP) GO TO 60
POP=PEOPLE
URITE(LU2,5007)POP
60 CONTINUE
P— __.._
C DETERMINE NORMALIZED ATMOSPHERIC EXPOSURE AND
C DEPOSITION.
P —————
EXPOS=CHIQ
IE(CH1Q .LE. 0.0)CALL AIRTRM(EXPOS,DEPO)
PPOP=POP RAE1085
LLIND=LIND RAE1085
LDIST=XG RAE1085
DO 62 I=1.NONCLD RAE1085
62 PNUC(I)=NUCLID(I) RAE1085
C DETERMINE ANNUAL INFILTRATION RATE THROUGH TRENCH CAP
C—————
CALL 1NEIL
-------
1005 EORhATC DEGREE Of SATURATION = ',F6.3./,
S ' RESIDUAL SA1URAIION = '.F6.3J
IFtSSAT .GT. 0.0 .AND. SSAT .LT.
XLSAl=lJlRAG
URITE(LU2.6200)
DO 100 I=1,NONCLD
RETARV=l.+(8BENSAXKO(3fI))/PORV
IF(SSA1 .GT. 0.0 .AND. SSA1 .LT.
VIIHE=DIRAQAREIARV/VWV
DDEIA1=1.0
IF (V1IHE .61. 1000. .OR. VIIME
DBAL=DTRAQ
DBD=.3DOAVWV
DBLA=D£CAY(I)
I.) 'VUV=IINFL/(PORVASSAT)
1.) RETARV=1.-KREIARV-1.)/SSAI
.(il. bO.A.6cJ3/LiECAY(D) GO TO 70
DBR=RETARV
DBA=VTIME/10.0DO
DBB=VTIME
CALL QUANC8(FCN, DBA, DBB, ABSERR ,RELERR, RESUL1 , ERREST, NOFUN, FLAG)
BBA=VTIME
DBB=VIIhEA10.0DO
CALL QUANC8(FCN. DBA, DBB, ABSERR, RELERR,RESUL2, ERREST, NOFUN, FLAG)
RESULT=RESUL1+RESUL2
DDETA1=RESULIADEXP(DBALADBRADBLA/DBAV)
IF(DDETA1 .LT. 1.0) DDETA1=1.0
70 RETARH=1.+(BDENSAXKD(4,I))/PORA
HTIHE=DUELLARETARH/GUV
DDEIA2=1.0
IF(HIIhE .GI. 1000. .OR. HTIHE .61. 50. A.6CJ3/DECAY( I) ) GO TO 80
DBAL-DUELL
DBD=.3DOAGUV
DBR=RE1'ARH
DBA=HIIM£/10.0DO
DBB=H1IME
CALL QUANCE!(FCN, DBA, DBB, ABSERR, RELERR,RESUL1,ERRESI, NOFUN, FLAG)
DBA=HTIME
DBB=HTIHEA10.0DO
CALL QUANC8(FCN, DBA, DBB, ABSERE, RELERR,RESUL2,ERRESI, NOFUN, FLAG)
RESULT=RESUL1+RESUL2
DDEIA2=RESULIADEXP(DBALADBRADBLA/DBAV)
IF(BDETA2 .LT. 1.0) DDETA2=1.0
80 DDEIA(I)=DDEIA1ADDEIA2
TEMP=VTIHE+HTIME
IFdEMP .GT. FLOAT(MAXYR) .AND. TEMP .LT. 1.1AFLQAKMAXYR) ) IBK=1
IFdEMP .GT. 10000.) TEMP=10001.
IIIME(I)=INI(IEMP)
URIlE(LU2f6210)NUCLID
-------
DBB=WSIIM£A10.0DO
CALL GUANC8CFCN.DBA.DBS,ABSERR ,RELERR,RESUL2.ERRESI.NOFUN,FLAG) ISINEWL
RESULT=RESUL1+RESUL2 ISINEWL
DDETA3( I)=RESULTADEXP(DBALADBRADBLA/DBAV) ISINEWL
IE(DD£1A3(I).LT.1.0)DD£1A3(I)=1.0 ISINEWL
90 IF(WSTIME.GI.10000) WSTIME=10000 ISINEWL
JTIM£(I)=INI(WS1IME) ISINEWL
100 CONTINUE
IFC1BK .EQ. 1)WRIIE(LU2,6220)
C DETERMINE ANNUAL SOIL LOSS DUE TO EROSION OF INSOLUBLE
C MATERIALS (UNIVERSAL SOIL LOSS EQUATION).
C
CALL ERORF
SOILOS=S01LOSA.22412
DOVER=SOILOS/(1000.ABDENS)
WRITE(LU2,602)SOILOS,DOVER
WRITE(LU2,603)XINFL
WRIIE(LU2,604)VWV
WRITE(LU2,605>EXPOS
300 CONTINUE
C
C CALCULATE AQUIFER VOLUME
AQVOL=GWVAPORAAAQTHKA(SORT(TAREA)+2.ATAN(AQDISP/2.)ADWELL)
C
C COMPUTE HYPOTHETICAL RADIONUCLIDE WITHDRAWL FROM WELL PER YEAR.
C
VOLUSW=(WIRA1EA4492.AFIA8760.AWUATL +
& UUATAWWATH + 15000.AWWATA)APOPA1.OE-3
VOLUSS=(WIRATEA4492.AFIA8760.ASUATL +
& UWATASUATH + 15000.ASWATA)APOPA1.OE-3
C
C
C
C THE FOLLOWING LOOP WILL BE PROCESSED FOR EACH YEAR IN
C THE SIMULATION.
C
C DO LOOP 260 CALCULATES REMAINING RADIOACTIVITY
C IN TRENCH AFTER 10000 YEARS ASSUMING PERFECT
C TRENCH ISOLATION
DO 260 I=1.NONCLD
260 TRAP(I)=IRAM(I)AEXP(-DECAY(I)A10000.)
DO 999 I=1,NONCLD
DECN(I)=EXP(-DECAY(D)
DETW(I)=EXP(-DECAY(I)AITIME(D) ISICH
DETUS(I)=EXP(-D£CAY(I)A(IIIM£(I)>J-nME(I))) ISINEWL
999 DEWS(I)=EXP(-DECAY(I)AJIIME(D) ISINEWL
C AAAA SUBROUTINE XPRESS IS CALLED TO CALCULATE A REioUSPENS-ION
CAAAA RATE NEEDED EVERY YEAR FOR EVERY NUCLIDE BUT THAT ONLY
C AAAA DEPENDS ON THE CURRENT YEAR. THIS SHOULD CUT COMPUTATION
C AAA COST BY A FACTOR EQUAL THE NUMBER OF NUCLIDES
C AAA
CALL XPRESS
-------
TDEPIH=TD£PTH-TRLS
OVER=OVER-DOVER
IF(OVER .LT. 0.)OVE-R = 0.
FONSIT=0.
IF(NYEAR .LT. IRST .OR. INSITE .EQ. 0) GO TO 1068
RSTR=FLOAI(NYEAR-IRST)
XRI~XRTM
IF
1069 IHXR1 .LE. OVER) GO TO 1068
D1R=TDEPTH
IF(XR1 .LE. D1R) t'ONSIl=l.-QVER/XRT
IF(XRT .GI. D1R) EONSIT=(IDEPTH-OVER)/XRI
1068 IF(FONSIT .LE. 0.) FONS1T=0.
C
C CALCULATE TRENCH WATER BALANCE.
CALL TRENCH=PLBl!lI)+P&LB(li)
OFiai)=OFT(II)+POLO(II)
C
C CALCULATE ADDITIONS TO AQUIFER.
C
CALL VERHOR(Il.NYEAR.IIIHE.BDEIA)
C I1MP IS THE YEAR OF ARRIVAL OF POLB AND SHEEP TO A POINT IN ISINEUL
C THE AQUIFER EXACTLY BELOW THE WELL ISINEUL
IIMP=]IIHE(11)+NYEAR
IF(ITHP.LE.IOOO) GO TO 241
C IF R-ACTIVITY POLB AND SDEEP GET TO THE WELL POINT AFTER YEAR ISINEWL
C 1000 NO DECREASE BY WATER COMMUNITY USE IS CONSIDERED IN THE ISINEWL
C CALCULATION OF R-ACTIVIIY FLOW FROM THE WELL POINT TO THE STREAM ISINEUL
JTMP=NYEAR+ITIME(imjTIME(II) ISINEUL
KIN=INT(FLOAT(JTMP-1)/1000.) ISINEWL
IF(KIN.GX.IO) KIN=10 ISINEUL
IF (KIN.EQ.10) GO TO 231 ISINEWL
QLB(II,KIN)=QLB(II,KINHDEXWS(II)APRJA(FOL6
-------
0.) GO TO 350
IAVG2)A(JAVG(ll)=AQAVG(imAGCON(II)
GO TO 360
X SDEEPdI))ADDETAdI)ADDETA3dI) 1S1CH
GO TO 241
231 AUX=FLOAT(NYEAR)
QLB(IIf10)=QLB(Il,10)+EXP(-DECAY(II)A(10000.-AUX))A(POLB(II)+
X SDEEP(II))ADDE1A(II)ADDETA3(II) ISICH
241 CONTINUE
AQCONdI)=AGAMdl,NYEAR)/AGVOL
AMT1=VOLUSWAAQCON(II)
IF(AMT1 .LE. AGAM(II.NYEAR) .OR. AMT1 .EG
AQCONdI)=Al3AMdI.NYEAfi)/JTIM£(II) ISINEW
KIND=INT(FLOAT(JTMP-1)/1000.) ISINEW
IF(KIND.EQ.O)QDWSBdI)=QDWSBdI>+DEWSdI>APaJA IS IN
X (AQAM(II,NYEAR)-AMT1)ADDETA3(II) ISINEW
IF(KIND.EQ.O) GO TO 351 ISINEW
IF(KIND.GT.IO) KIND=10 ISINtW
IF(KIND.LT.IO) GO TO 352 ISINEW
GLB(I1,10)=QLB(II,10)+EXP(-DECAY(II)A(10000-FLOAT(NYEAR)))A ISINEWL
X (AQAM(II.NYEAR)-AMT1)ADDETA3(II) ISINEW
GO TO 351 ISINEWL
352 QLB(II,KIND)=QLB(II.KIND)+DEWS(II)APRJA(AQAM(II,NYEAR)-AMT1)A ISIN
X DDETA3(II)
351 CONTINUE ISINEWL
C CALCULATE TRANSPORT Of SOLUBLE SURFACE COMPONENT
C
CALL SURSOLdl.NYEAR.VOLO)
IF(NYEAR .EQ. 1)SSTREM(H)=STAM(II)+SSXREM(II)
STCON(II)=SSTREM(II)/STFLOW ISIMOD
AMT=VOLUSSASICON(II)
IF(AMT .LE. SSIREM(II) .OR. AMT .EQ. 0.)GQ TO 365
STCON(II)=SSXREM(II)/(VOLUSS)
365 IE(N .GE. IAVG1 .AND. N .LE. IAVG2)STAVG(II)=STAVG(II)+STCON(II)
IF(STCONdl) .LE. STMAX(II))GO TO 370
STMAX(II)=STCON(II)
MXST(II)=N
370 CONTINUE
POS(lI) = POSdI)+VOLUSSASTCON(II)
RESIDUAL R-ACTIVltY FROM STREAM 'DITCH1 AFTER COMMUNITY USE ISINEWL
IS PASSED TO XHE BASIN IN THE SAME YEAR. ISINEWL
IF(VULUSS.LE.STFLOW)GDWSBdI) = (STFLOW-VOLUSS)ASTCON(II)+GDWSBdI)
• CALCULATE ATMOSPHERIC CONCENTRATION AND AMOUNT
• ABOVE SPILLAGE AREA
GNDCON=CS(II)ABDENSAADEPTHA1.OE3
IFdNSIXE .EQ. 0 .OR. IRfiESl .GE. NYEAR) GO TO 381
C
C
C
C
C
C
C
C
A-ll
-------
DlR=lRA«dl)/(l'AREAAIDEPTHADENCONA1000.)
CALL SUSPND(NYEAR,IIfDlR)
ATCON .LE. ATMAX(ID) GO TO 380 ISISEP1
ATHAX(II)=ATCON(II)
MXATdI)=N
380 CONTINUE
IFdBSMI TGI. 0 .AND. NYEAR .GE. IBShDBSMK II)=BSMI< II)+TRAM< II)
IFdBSMT .61. 0 .AND. NYEAR .GE. IBSMT)BSMIA( II)=+IRAM( II)
IF(NYEAR .EQ. 1 .AND. IVAP .EO. 1) BShTA(II)=TRAM(II)
IF(NY£AR .EQ. 1 .AND. IVAP .EQ. 1) BSMT(II)=BSMTA(II)
C
P_____
C HAIER1AL BALANCE
C
C 3.1536E7 IS THE NUMBER OF SECONDS IN A YEAR
CS(II)=CS(II)+((IRLS/(TDEPIH+TRLS)ATRAh(II)-YSO(II)A3.1536E7)/
1
-------
c
c
c
c
c
c
c
TEMP=AlCONdI>
IF(PCldl) .GE. TEMDGO TO 820
PC1(II)=TEMP
NPCldI)=NYEAR
820 CONTINUE
IEhP=QSUR+RSMIA(II)
IE(PC2dI> .GE. TEMP)GO TO 840
PC2dI)=TEMP
NPC2dI)=NYEAR
840 CONTINUE
TEMP=GINGdI)APOP
IF(PC3(II) .GE. TEhP)GO TO 860
PC3(II)=TEHP
NPC3dI)=NYEAR
860 CONTINUE
IEMP=GINH(II)APOP
IF(PC4(II) .GE. TEMP) GO TO 880
PC4dl)=TEMP
NPC4(II)=NYEAR
880 CONTINUE
900 CONTINUE
UD=UHAX
IF(UD .GT. TDEP1H)UD=TDEPTH
IF .Efl. 0 .OR. NYEAR .EQ. 1)
& CALL OU1(NYEAR,PCFUD,VOLO,VOLB)
CALCULATE AVERAGE NUCLIDE CONCENTRATIONS
AND CALL DARTAB FOR INTERMEDIATE YEARS
IF(NYEAR .NE. INl'YR(JYR)) GO TO 1000
SAVE VALUES OF PERTINENT VARIABLES
ISAV1=IAVG1
ISAV2=IAVG2
DO 5)90 I=1.NONCLD
SAVE(I,1)=CL1(I)
SAVEd 2)=CL2(I)
SAV£(I,3)=CP1(I)
SAVE(1,4)=CP2(I)
SAVEd 5)=CSP(I)
-
SAV£(I
SAVE(1
SAV£(I
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
SAVEd
AQAVG(
ATAVG(
SOAVG
f7)=CM£AT(I)
,S)=CCM11(I)
,9)=CCMI2(I)
10)=CGMI1(I)
, 11)=CGMI2(I)
f12)=COLld)
, 13)=COL2(I)
14)=COP1(1)
, 15)=COP2(I)
flfa)=COCMIld)
f17)=COCMI2d)
18)=COGMIld)
. 19)=COGMI2d)
f20)=COMEAKI)
. 21)=CSPOd)
l)=AQAVGd)/NYEAR
I)=ATAVG( D/NYEAR
)=SOAVG(l)/NYEAR
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE10S5
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE108S
RAE1085
RAEI085
A-13
-------
c
c
c
990 STAVG(I)=SIAVG(I)/NYEAR
PREPARE CONCENTRATION ARRAYS, PCON, FUR 0ARTA6
IAVG1=1
IAVG2=NYEAR
DO 992 I=1,NONCLD
BERATE(II)=ATAVG(II)AVDA3.6E15
CALL FOOD(II)
c
c
c
c
c
c
c
c
c
CALL IRRIG(II)
CUAT (!!) = ( UUA1HAAQAUG (II) +SWAIHASXAVG ( 1 1 ) ) Al
CALL HUMEX(II)
PREPARE ARRAYS 10 PASS TO DARTAB
PCONKI1)=ATAVG+CSPO(II»APGPA1.E-12
PCON3(II)=QING(II)APOP
PCON4(II)=QINH(II)APOP
992 CONTINUE
RESTORE SAVED VALUES
DO 994 I=1.NONCLD
CL1(I>=SAVE(I,1>
CL2=SAV£(I,3>
CP2(I)=SAVE(I,4)
CSP(I)=SAVE(I,5)
CUAT(I)=SAVE(I,6)
CMEAT(I)=SAVE(I,7)
CCMIl(I)=SAVE(i;8)
CCHI2(I)=SAVl-(I,9)
CGMIl(I)=SAVE(i;iO)
CG«I2(I)=SAV£(I.ll)
COLKI)=SAVE(1,12)
COL2(I)=SAVE(I,13)
COP1(1)=SAVE(I,14)
COP2(I)='3AVE(I.15)
COCMI1(I)=SAVE(I,16)
COChI2(I)=SAV£(I,17)
COGMIl(I)=SAVE(i;i8)
COGMI2(I)=SAVH(I,19)
COhEAl(I)=SAVE(I.20)
CSPO(I)=SAVE(If21)
AQAVG(I)=AQAVG(I)ANYEAR
ATAVG(I)=ATAVG(I)ANYEAR
SOAVG(I)=SOAVG(I)ANYEAR
994 STAVG(I)=STAVG(I)ANYEAR
IAVG1=ISAV1
IAVG2=ISAV2
CALL DARTAB FOR INTERMEDIATE YEAR OUTPUT
IFUYR .EQ. 1) CALL DAfrfAB(O)
CALL DARTAB(4)
SAVE DATA FOR ACCOUNTING MODEL TABLE
DO 996 I=1,NONCLD
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAEI085
RAE1085
RAE108S
RAE108S
RAE108S
RAE1-085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE108S
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE10&5
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE10B5
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAEI085
RAE1085
RAE1085
RAE1085
RAE108S
RAE1085
RAE1085
RAE1085
RAE108S
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
A-14
-------
POSS(I,JYR)=POS(I) RAE1085
POUS RAE1085
CCNRSU,JYR)=CCNR(I) RAE1085
GNRS(I.JYR)=GNR(I) RAE1085
IFICS(JYR)=TF1C RAE1085
TPOPDS(JYR)=TPOPD RAE1085
ICCNRS(JYR)=TCCNR RAE1085
996 TGNRS(JY8)=TGNR RAE1085
JYR=JYR+1 RAE1085
1000 CONTINUE
NEXYR=1AVG2-IAVG1+1
URITE(LU2.700)IAVG1,IAVG2
DO 1100 lI=l.NONCLD
AQAVG( II) =AQAyQ( ID/FLOAT(NEXYR)
STAVG(II)=STAVG(II)/FLOAT(NEXYR)
ATAVG(II)=ATAVG(II)/FLOAT(NEXYR)
SOAVG(II)=SOAyG(II)/FLOAT(NEXYR)
URIIE(LU2f6215)NUCLID(II).AIAVG(II),AIhAX(II),MXAT(II).AQAVG(II),
& AQMAX(II)rMXAQ(II),SIAVG(II),STMAX(II),HXST(II)
1100 CONTINUE
C
C
C CALCULATt RADIONUCL1DE CONCENTRATIONS IN FOOD DUE TO
C ATMOSPERIC DEPOSITION.
C
C
Umt(LU2,6000)
URII£(LU2,6005)
DO 1200 I=1,NONCLD
11=1
DERA1E(H)=ATAyQ(II)AyDA3.6E15
CALL FOOD(II)
WRIIE(LU2.6210)NUCLIIi(II),CLl(II).CPl(II),CL2(II).CP2(II),
I CCMI1(II),CCMI2(II),CGMI1(II)FCGMI2(II),CMEAT(II)
1200 CONTINUE
C
C
C CALCULATE RAD10NUCLIDE CONCENTRATIONS IN FOOD DUE TO
C HATER IRRIGATION. ALSO CALCULATE ANNUAL RADIONUCLIDE
C INTAKE BY MAN.
C
C
URIIt(LU2,6010)
URIIE(LU2,6005>
DO 1300 I=1,NONCLD
CWAI(II) =
-------
IF(LIND .NE. 0)WRriE(LU2,6026)
URITE(LU2,G030)
DO 1310 I=1.NONCLD
URITE
-------
IFICS(JYfO=TFIC RAE1085
TPOPBSUYR)=IPOPD RAE1085
TCCNRS(JYR>=TCCNR RAE1085
1350 TGNRS(JYR)=IGNR RAE1085
INTYR(JYfi)=MAXYR RAE1085
C
C NP1H1 IS THE FIRST YEAR AFTER LOCAL SIMULATION PERIOD
C NPTH2 IS THE LAST YEAR OF GLOBAL SIMULATION
NPIH1=MAXYR+1
NPIH2=MAXYR+9000
DO 1001 N=NPTH1,NPTH2
NYEAR=N
TRLS=0
IF
-------
WRITE(6.1009)
-------
5000 EORMATC1' 51X, 'INITIAL CALCULATIONS',//' ' ,50X, 'NUCLIDE' ,
X 10X,'MASS'.//)
5005 FORMATC ' ,51X. A8.8X. F5 .0)
5006 FURMAIC ',5X,JTHE POPULATION RESIDES ONSITE')
5007 FORMATC ' ,5X. 'POPULATION RESET TO ' F10.0,' FOR ONSITE FARM')
6000 FORMAICl'lSOX, 'RADIONUCLIDE CONCENTRATION IN FOODS DUE TO'.
X ' ATMOSPHERIC DEPOSITION'./' ' 55X 'PICO CURIES PER KILOGRAM')
6005 FORMAT '
X
X
»
6010 EORMATt//1//"' \35r.7fiADiONUCLiDE'cONCENTRATION IN FOODS DUE TO'
x ' IRRIGATION', /' '.bsx.'pico CURIES PER KILOGRAM')
6020 EORMA'K///' ',5X.'NOT£: G.P.E. - GENERAL POPULATION',
i ' EXPOSURE' /' JrllX,'M.l.E. - MAXIMUM INDIVIDUAL',
I ' EXPOSURE')
6024 EORMATCO' HX.'M.l.E. WILL BE USED TO CALCULATE',
I ' HEALTH EFFECTS')
6026 FORMATCO'.llX. 'G.P.E. WILL BE USED 10 CALCULATE',
i ' HEALTH EFFECTS')
6030 FORMATC1' IX. 'NUCLIDE', 10X, 'ANNUAL INTAKE', 10X,
X 'ANNUAL INTAKE'/' '
& l&X ,'BY INGESTION',11X,'BY INHALATION'/' ',20X.
X 'PCI/Y',18X,'PCI/Y'>
6040 FORMATC ' , 1X.A8,CJX. 1PE11 .4,12X, 1PE11 .4)
6050 FOfiMAIC ' 50X, Att,SX,F8.4)
6045 FORMAK'I'ISOX. 'FRACTION OF INGESTION DUE TO WATER',
X //' '.50X, 'NUCLIDE'. 10X. 'FRACTION' )
6300 FORMAK'l'.SSX. 'MAXIMUM ANNUAL EXPOSURE'
i /// . 2X , ' NUCL IDE ' 12X , ' A IR ' 8X , ' YEAR ' , 8X ,
X 'SU^FACV ,6X, 'YEAR' ?X, ' INGESTION' ,5X, 'YEAR' ,6X,
X 'INHALATION'. 5X 'YEAR'.
X /' ' 15X.2('LaNCENlRAlION',12X),5X,
X 2('RAT£',19X),
X /' /.10X.'Cl/MAA3/.lbX./Cl/MAA2/,
X 16X.2('PEfiSON.PCI/Y',12X)/)
6310 FORMATC ' ,A8,8X, 4(1PE11 -4,4X,OP14,6X) )
END
SUBROUTINE XPRESS(RE1 ,RE2. RES, PD, EXTENT)
COMMON/FXP/ ARG,RES( 10000)
CAAAAAAA REPLACES REDONDANT AND EXPENSIVE CALCULATION AAAAAAA
CAAAAAAA OF RESUSPENSION PARAMETER RE AAAAAAA
C
DO 200 IYR=1. 10000
TX=FLOAT(IYR5A365.
RES(IYR)=RE1AEXP(RE2ASQRT(TX))+RE3
200 CONTINUE
C
CAAAAAAA ARG IS ALSO CALLED IN SUSPND FOR
CAAAAAAA EVERY NUCLIDE AND EVERY YEAR
C
ARG=SQRT(PDAEXIENT)
RETURN
END
C
C
C
SUBROUTINE A1RTRM(EXPOS,DEPO)
A-21
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
36
38
C
C
C
C
C
C
40
45
C
D.t. FIELDS. 2/81
COMPUTES ATMOSPHERIC EXPOSURE VALUES AT POINTS DOWNWIND FROH
RELEASE SITE FOR 22.5 DEG. SECTOR
RECEPTOR ASSUMED AT GROUND LEVEL
DEPO
EXPN
EXPOS
H
HLID
1PLU
ISEC
IS
IT
ROUGH
U
VD
VG
XG
=liEPOSinON RATE PER UNIT SOURCE STRENGTH
=NORMALIZED EXPOSURE = EU/Q. S/MAA2,
=EXPOSURE PER SOURCE STRENGTH NORMALIZED TO
WIND VELOCITY
=SOURCE HG1, H
=LID HEIGHT
=1 IMPLIES TRANSVERSE PLUME CALCULATION REQUIRED
=1 IMPLIES SECTOR AVERAGE REQUIRED
=S1AB1L1IY CLASS
=TYPE OF STABILITY FORMULATION,
=1 FOR PG
=2 FOR BRIOCS-SMITH
=HOSKER ROUGHNESS PARAMETER, M, ABOUT
.01APHYSICAL ROUGHNESS
=VELGC1TY, WIND, M/S
VELOCITY, DEPOSITION, M/S
=VELOCI1'Y, GRAVITATIONAL FALL. M/S
=GAUGE DISTANCE FROM SOURCE BASE, M
A • j — unuuu wi%jj.nnuij J.AVUII \j\j\ji\^ L* j,1 n J u • M
COMMON/AIR/H,VG,U,IT, IS,VD,XG,HLID,ROUGH,FTWIND,CHIQ,RE1,RE2,RE3
TEST FOR INVALID COMBINATIONS OF IS AND IT:
IE(IS.LT.1.OR.IS.GT.6)WRITE(6,38)IT.IS
IF (II. HQ. 5. AND. < IS. EG. 1. OR. IS. EQ. 5)) WRITE < 6,38) IT, IS
IF(IT.EQ.6.AND.(IS.EQ.1.0R.IS.EQ.6»WRITE(6.38)IT,IS
FORMAK2X,'INVALID COMBINATION OF IT=',I2,'AND IS='I2)
INITIALIZE PARAMETERS
PI=3.141593
IF(HL1D.EQ.O.)HLID=12000.
XG = XG + EXTENT/0.3978247
LID=HLID
IXG=XG
ACCOUN1 t'UR PLUME TILT
HH=H-VGAXG/U
IF(HH.LT.O.)HH=0.0
COMPUTE PLUME WIDTH FACTORS AT DISTANCE XG
CALL S1GMAZ(XG,1T,IS.ROUGH,SIGZ, IKPM.HLID,VG.U,HH)
RESTRICT HLID 10 IROPOPAUSE IF INPUT SPEC. =0.0
COMPUTE CORRECTION FACTOR FOR PLUME DEPLETION
COR=1.
IF(VG.EQ.O..AND.VD.EQ.O.)GOT045
CALL DPLT(PI,HH,VD,U,IT,IS,XG,ROUGH,HLID,COR,VG,H)
IF(COR.LT..999)WKITE(6,40) COR
FORMAK2X,'DEPLETION CORRECTION FACTOR =',F8.4)
EXPO=EXP(-HHAHH/2./SIGZ/SIGZ)
COMPUTE SECTOR AVERAGE VALUES
EXPN=CORA2.032AEXPO/SIGZ/XG
EXPOS=EXPN/U
A-22
-------
DEPO=EXPOSAVD
80 CONTINUE
1000 CONTINUE
RETURN
END
C
C
SUBROUTINE DPLHPI.HH.VD.U. IT, IS.XG, ROUGH, HL ID. COR. VG.H)
COMPUTES PLUHE DEPLETION CORRECTION
DIMENSION XX(50),FX(50),AX<50)
COMMON/C/BY<6),BZ1<&).BZ2(&).BZ3(&),A1(6).A2(&>,B1(6),B2<&).
X B3<6).PY<6.5),PZ(6,5),GY(6,5),ClZ(6,5),Xh(50)
I£(IS.GT.6)IS=6
IKPM=1
IDUM=1
CALL S1GMAZ=EXP(-.5A(HH/SIGZ)AA2)/SIGZ
20 CONTINUE
L=l
CALL SIMPUNCXX.FX,IKP.L,AX>
COR=EXP(-SQRTPIAVfi/UAAX( IKP))
RETURN
END
C
C
C
SUBROUTINE S1GMA2(XGFII,IS.ROUGH,SIGZ,IKPM,HLIDfVGfU,HH)
COMPUTES VERTICAL DISPERSION COEFICIENI
C D.E. FIELDS. 2/81
COMhON/C/BY(6J,BZl<6).BZ2(6),BZ3(6)fAl(6)fA2(6)fBK6)fB2(6),
& B3(6),PY(61S).P-Z<6.5),QY(G,5)laZ(G±5).XH(50)
DIMENSION AONE(6),BONE(6),AIUO(6)fBIUO(6),CONE(6)fDONE(6)f
SCTUO(&).DTUO(6).RGH(6)
DATA AOJ$E/0.112 0.130.0.112.0.098,0.0609,0.06387
DATA BONE/1.06,0.950,0.920,6.889.0.895,0.783/
DATA ATWO/5.38E-4f6.52E-4.9.05E-4,1.35E-3,1.96E-3,1.36E-3/
DATA BTUO/0.815.0.750,0.7IB.0.688,0.684,0.672/
DATA CONE/1.56.2.02.2.72.5.16,7.37,11,77
DATA DONE/0.0480.0.0269,0..-0.060,-0.0957,-0.128/
DATA CTUO/6.25E-4,7.76E-4,0.,186..4.29E+3,4.59E+4/
DATA DTUO/0.45.0.37.0..-0.225.-0.60.-0.78/
DATA RGH/0.01,0.04,0.10,0.40,I.0,4.07
P=0.0
DO 8 1=1,50
IKP=I
IF(XM(I).GE.XG)GOT09
8 CONTINUE
9 lf(IKP.LI.2)IKP=2
IKPM=IKP-1
CHOOSE TYPE OF COMPUTATION
IPOINT=IT
IF(II.G1.3)IPOINT=4
A-23
-------
GOTO(10,20,30.40),IPOINT
C PASGUILL-GIFFORD DISPERSION VALUES, FROM VOGT
10 ALX=ALOG(XG)
SIGZ=
G=AONE
F=C1A(XGAAD1)
F=ALOG(F)
IF(ROUGH.LE.O.IO) GO TO 26
F=F+ALOG(1.+1./
IF (I.LT.O) GO TO 30
AX(1)=0.0
DO 10 IX=2,NX.2
D1=XX(IX)-XX(IX-1)
AX(IX)=AX(IX-1)+D1/2.0A(FX(1X)+FX(1X-1))
IF (NX.EU.IX) GO TO 20
D2=XX(IX+1)-XX(1X-1)
D3=D2/D1
A2=D3/6.0AD2AA2/(XX(IX+1)-XX(IX))
A3=02/2.0-A2/D3
10 AX(IX+1)=AX(1X-1)+(D2-A2-A3)AEX(IX-1)+A2AFX<1X)+A3A FX(1X+1)
uv KbIUKN
30 AX(NX)=0.0
A-24
-------
DO 40 1X=2,NX,2
IC=NX+1-IX
D1=XX< IC+D-XXdC)
AX(IC)=AX(IC+1)+B1/2.0A(FX(IC+1)+FX(IC))
IF (NX.EH.IX) GO TO 20
D2=XX(1C+1)-XX(IC-1)
D3=B2/(XX(1C)-XX(IC-1))
A2=D3/6.0AD2AA2/D1
A3=D2/2.0-A2/D3
40 AX(IC-1)=AX(IC-H)+(D2-A2-A3)AEX(IC-1)+A2AEX(IC)+ A3AEXUC+1)
RETURN
END
C
C
FUNCTION YLAG(XI.X,Y,IND1,N1,IMAX, IEX)
C PROGRAM AUTHORS A. A. BROOKS AND E.G. LONG.
C COMPUTING TECHNOLOGY CENTER, UNION CARBIDE CORP., NUCLEAR DIV.,
C OAK RIDGE, TENN.
C
C LAGRANG1AN INTERPOLATION
C XI IS INTEPOLATED ENTRY INTO X-ARRAY
C N IS THE ORDER OF LAGRANGRAN INTERPOLATION
C Y IS ARRAY FROM UHICH YLAG IS OBTAINED BY INTERPOLATION
C IND IS THE MIN-I FOR X(I).GI.XI
C IF IND=0.X-ARRAY WILL BE SEARCHED
C IMAX IS HAX INDEX Of X-AND Y-ARRAYS
C EXTRAPOLATION CAN OCCUR,IEX=-1 OR +1
C
C
DIMENSION X(1),Y(1)
IND=IND1
N=N1
IEX=0
IF (N.LE.IMAX) GO TO 10
N=IMAX
IEX=N
10 IF (1ND.G1.0) GO TO 40
DO 20 J = l.IMAX
IF (XI-X(J)) 30,130,20
20 CONTINUE
IEX=1
GO TO 70
30 1ND=J
40 IE (IND.G1.1) GO 10 50
IEX=-1
50 INL=IND-(N+l)/2
IF (INL.GT.O) GO TO 60
INL=1
60 INU=INL+N-1
IF (1NU.LE.1MAX) GO TO 80
70 INL=IMAX-N+1
INU=IMAX
80 S=0.
P=l.
DO 110 J=INL,1NU
P=PA(XI-X(J))
D=l.
DO 100 I=INL,INU
IF (I.NE.J) GO TO 90
A-25
-------
c
c
c
c
XD=XI
GO TO 100
90 XD=X
100 D=DA(XD-X(D)
110 S=S+YU)/D
YLAG=SAP
120 RETURN
130 YLAG=Y1BZ3(G),A1(&),A2
Y(&,5),GZ(6,5),XM(50
2(6),B1<6),B2(G),
0>
,,1,
B3(6>,PY(6,5) PZ(6,5>,G!Y(&,5),GZ(6,
FOR BR1GGS
DATA BY/. 22.. 16.. 11.. 08,. 06, .047,
BZl/.2,.i2,.08..0G..03,.0167,
BZ2/0.,0.,. 0002,. 0015,. 0003,. 00037,
Z7.38,1.021,.87cJ..
1.046,.702,.465,.6,
&f.88|.63fl47/
I 2.000E+03,2.500E+03,3.000E+03,3.500E+03
& 4.500E+03,5.000E+03,6.000E+03,7.000E+03
8 l.OOOE+04 1.500E+04 2.000E+04 3.000E+04
& 5.000E+04,6.000E+04,7.000E+04,8.000E+04
END
FUNCTION CAP(NYEAR)
A-26
-------
CAAA THl'o FUNCTION CALCULATES AND RETURNS THE FRACTION OF THE TRENCH
CAAA CAP THAT HAS FAILED. FAILURE CAN BE CAUSED BY EROSION AS
CAAA DETERMINED FROM THE UNIVERSAL SOIL LOSS EQUATION OR BY USER
CAAA INPUTS. CAP=1 INDICATES TOTAL CAP FAILURE. THIS FUNCTION
CAAA IS CALLED BY TRENCH.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C INPUT VARIABLES
C
C NYEAR = CURRENT YEAR OF SIMULATION
C NYR1 = FIRST YEAR OF FAILURE
C NYR2 = LASI YEAR OF FAILURE
C PCT1 = PER CENT FAILURE IN NYR1
C PC12 = PER CENT FAILURE IN NYR2
C OVER = THICKNESS OF TRENCH CAP
C
C OUTPUT VARIABLE
C
C CAP = FRACTION OF CAP THAT HAS FAILED
C
C
DOUBLE PRECISION NUCLID
COMMON/CN1RL/NONCLD.MAXYR,TITLE(20).LOCATE<12>.NYR1,NYR2,
& PCT1.PCT2.LEAOPT,IOPVUV.IOPSAT,IPRT1,IPRT2.IDELT.IXTS,
& IRRESl,IRRES2.LlND,IAVGl.IAVG2;RR,FTflECH,lNTYR(4), RAE1085
& WWATL,UUATA,UUATH,SUATL,SUATA,SUATH.IVAP,IBSMT
COMMON/IRCH/TAREA,TDEPTH,OVER,PORT,RELFAC,DENCON,OLDUAT,FN
CAP=0.0
IF(OVER .GT. l.E-2) GO TO 20
CAP=1.0
RETURN
20 IF(NYEAR .LI. NYR1 .OR. NYR1 .GE. NYR2) RETURN
CAP=((PCT2-PCT1)/(NYR2-NYR1))A(NYEAR-NYR1)+PCT1
IF(NYEAR .GT. NYR2) CAP=PCT2
RETURN
END
C
C
C
C
C
SUBROUTINE ERORF
C
C DETERMINES SEDIMENT LOADING FOR RAIN DRIVEN SURFACE
C EROSION. AVERAGE ANNUAL SOIL LOSS IN TONS PER ACRE
C IS CALCULATED USING THE UNIVERSAL SOIL LOSS EQUATION.
C
C
C
C
C
C
C
C
CAAAAAAAAAAAAAAA VARIABLES FOR UNIVERSAL SOIL LOSS EQUATION AAAAAAAAAAAA
A-27
-------
c
C RAINF=RAINFALL FACTOR
C ERODF=ERODIBILIIY FACTOR
C STPLNG=SLOPE-STEEPNESS AND SLOPE LENGTH FACTOR
C COVER=COVER FACTOR
C CON1RL=EROSION CONTROL PRACTICE FACTOR
C SEDELR=SEDIh£NI DELIVERY RATIO
C
C
C
COMHON/LAND/RAlNt,ERODF,STPLNG.COVER,CONTRL.SEDELR,SOILOS,
I PORS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,RESAT,
& INSITE
SOILOS = RAIN? A ERODF A STPLNG A COVER A CONTRL A SEDELR
RETURN
END
C
C
C
C
SUBROUTINE FOOD(NN)
C
C
C
CAAAAA CALCULATION Of RADIONUCLIDE CONCENTRATION IN VEGETABLES, MILK AND
C MEAT CONSUMED BY MAN RESULTING FROM ATMOSPHERIC DEPOSITION
C CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C NN NUCLIDL NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
C XAMBUE = WEATHER DECAY CONSTANTS 1/H
C AIRBORNE MATERIAL
C TA PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
C CONTAMINATED AIRBORNE MATERIAL H
C PP SURFACE DENSITY FOR SOIL KG/MAA2
C RA RETENTION FRACTION
C BV CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY VEGETATIVE PARTS 0? CROPS
C BR CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
C DERATE= RADIONUCLIDE DEPOSITION RATE PCI/MAA
C 10PI = OPTIONS FOR SPECIALS RADIONUCLIDES H-3 AND C-14
C IOPT = 1 IF H-3 AND C-14 IS NOT INCLUDED IN THIS RUN
C IUPT = 2 If ONLY H-3 IS INCLUDED
C IOPT = 3 IF ONLY C-14 IS INCLUDED
C IOPT = 4 IE BOTH ARE INCLUDED
C Yl = AG PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS KG/MAA2
C Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
C TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
C TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
C TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
A-28
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AND INGEST ION BY
PERIOD DELAY BETWEEN HARVEST
1NGESTION BY ANIMAL
BETWEEN HARVEST
MAN FOR MAXIMUM
OF STORED FEED AND
PERIOD DELAY
INGESIION BY
PERIOD DELAY
INGESTION BY
TIME DELAY BETWEEN HARVEST
OF LEAFY VEG AND
INDIVIDUAL EXPOSURE
BETWEEN HARVEST OF PRODUCE AND
MAN FOR MAXIMUM INDIVIDUAL EXPOSURE
LEAFY VEG AND
H
H
H
H
H
H
TH2
TH3
TH4
TH5
INGESIION BY MAN FOR GENERAL POPULATION EXPOSURE
TH6 = TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGESIION BY MAN FOR GENERAL POPULATION EXPOSURE
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAI IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
EMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED BY CATTLE KG/D
QFG = AMOUNT OF FEED CONSUMED BY GOAI'3 KG/D
IF1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTUJ< EUR H.I.E. H
IF2 = TRANSPORT TIME Ot RADIONUCLIDE FROM
FEEO-MILK-KECEPfUR FOR G.P.E. H
FF = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
IS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
ABSH = ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
P14 = FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAhBEF= EFFECTIVE DECAY CONSTANT
CPASI = NUCLIDE CONC IN PASTURE GRASS CONSUMED BY ANIMALS
CSTO = NUCLIDE CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1 = RADIONUCL1HE
FOR M.I.E.
CL2 = RADIONUCLIDE
FOR G.P.E.
CP1 = RAlUONUCLILiE
FOR M.I.E.
CP2 = RADIONUCLIDE
FUR G P E
CCHI1 = RADIONUCLiDE
CCMI2 = RADIONUCLIDE
CGHI1 = RADIONUCLIDE
CGMI2 = RADIONUCLIDE
CHEAT = RADIONUCLIDE
CONC IN LEAFY VEG CONSUMED BY MAN
CONC IN LEAFY VEG CONSUMED BY MAN
CONC IN PRODUCE CONSUMED BY MAN
CONC IN PRODUCE CONSUMED BY MAN
CONC IN COW'S MILK FOR M.I.E.
CONC IN COW'S MILK FUR G.P.E.
CONC IN GOAT'S MILK FOR M.I.E.
CONC IN GOAT'S MILK FOR G.P.E.
CONC IN BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLID.H3.C14
COMMON/NUC/NUCL1D<40).AIMASS<40).TRAM(40).SOAH<40).ATAM<40).
& AQAM(40.1000),STAM<40),POLO(40),POLB<40),CSUO).CW(40).
* SSTREM<40),SDEEPC40).AIRCON<40).YSO(40),SOAVG(40),CON<40).
& AQCON<40).STCON(40),ATCON(40).AQAVG(40).SIAVG(40).DETW(40),
S AIAVGC40) FMC<40),FMG(40),DECAY(40),XKD(4,40),SOL(40),
ISINEUL
A-29
-------
& EF(40).RA(40>,RU(40),BV(40),BR<40).DERAIE<40),CUAI<40)
COMMON/IRRFOoJYl.Y2,fEl,IE2.TH1 .TH2.TH3,TH4.TH5,TH6,FP,FS ,
& ULEAFY.UPROD.UCMILK.UGMILMMEAT.UUAT.UAIR,
X QFC,QEG\IFl,IF2lTSlCLl(40),CL2<40),CPl<40)fCP2<40>,
4 CCMh(40),CCMI2(40>,CGMIl(4(»,CGMI2(40),
X CMEA1(40).COL1(40),CQL2<40).COP1(40).COP2(40),
& COCMI1(40$.COCMI2<40),COGMI1<40),COGMI2(40),
& COHEAK40) QING(40) ,QINH(40), POP,
& CSP(40).CSPT(40>,CSPO(40),CSPOT<40)
COHHON/FUNC/XAMBUE.TA.lU.FI.PP.yiRAIE,
* QCW,QGWfQBU,ABSH.P14
DATA H3/8HH-3 /,C14/8HC-14 /
BECA=DECAY(NN)/8760.
IF RAE0186
CPAST=CV(NN,Y1,1£1,1H1,B.1.)
C CALCULAIION OF CSTO = 8ADIONUCLIDE CONCENTRATION IN STORED FEED
C CONSUMED BY ANIMALS
B=0.6bOA(0.3?8ABR(NN)+0.622ABV(NN)) RAE0186
CSTO=CV(NN.Y1.IE1.TH2, B.O.I)
C CALCULATION OF CFEED = JSADIONUCLIDE CONCENTRATION IN ANIMAL'S FEED
CEEED=FPAESACPAS1+(1.0-EPAES)ACSTO
C
CAAA CALCULATION OF CLX = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED
C BY MAN
B=0.066ABV(NN) RAE0186
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
CLl
-------
RETURN
C
CAAA CALCULAI10N FOR SPECIAL RAH IONUCLIDE: TRITIUM
C
CAAA CALCULATION OF CV3 = TRITIUM CONCENTRATION IN ALL VEGETATION
200 CV3=3.75E14AAIAVG(NN>/ABSH
CAAA CALCULATION OF CONCENTRATION OF TRITIUM IN VEGETATION, MILK.
CAAA AND MEAT CONSUMED BY MAN
CLKNN)=CV3
CL2(NN)=CV3
CP1(NN)=CV3
CP2(NN)=CV3
CCM11(NN)=FMC,STAM(40>,POLO(40),POLB(40),CSUO).CU(4&).
g SSTREM<40),SDEEP(40).AIRCON(40),YSO(40),SOAVG<40),CON(40).
& AQCON(40),STCON(40).ATCON(40),AQAVG(40).STAVG(40).DEIU(40), ISINEUL
& ATAVG(40) FMC(40).FHG(40).DECAY(40),XKD(4.40),SOL(40).
S FF(40).RA(40),RW(40).BV(46),BR(40),DERATEUO),CUAT(40)
COMMON/LAND/RA INF, ERODF.STPLNG. COVER, CONIRL.SEDELR. SO ILOS,
g PORS,BDENS,DWET, EXTENT, ADEPIH,PD, RUNOFF, RESAI,
COMMON/ IRRFOO/Y1.Y2,TE1,TE2,TH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
g ULEAFY,UPROD,UCMILK,UGMILK,UMEAT.UUAT.UAIR,
g QFC,QFGfTFl,TF2,TS,CLK40),CL2(40),CPl<40),CP2(40),
A-31
-------
& CCMI1C40).CCMI2(40),CGMI1(40).CGMI2<40).
S CMEAT<40).COL1(40).COL2(40).COP1(40).COP2(40),
8 COCMIl(40),COCMI2(40),COGhli(40),COGMI2<40),
g COMEAT(40),QING(40),GINH(40),POP,
J CSP(40),CSPT(40),CSPO(40),CSPOT(40)
COMMON/FUNC/XAMBUE.TA.IU.FI.PP.WIRATE,
S QCW,GGU,QBW,ABSH,P14
COMMON/EVAP/PPN PHIB.P,XIRR,S(12),T<12),TD(12),XINFL,SINFL,
$ SMASS,WMASS,WDEEP
COMMUN/CNTRL/NONCLD.MAXYR.TITLE(20).LOCATE<12),NYR1,NYR2,
& PCT1.PCI2,LEAOPT,IOPVUV.IOPSAT,IPRT1.IPRT2,IDELT.IXTS,
& IRRES1.IRRES2.LINB,IAVG1,IAVG2,RR,FTMECH,INTYR<4), RAE1085
& UWATL,UUATA.UUATH,SWATL,SUAIA,SWATH,IVAP,IBSMT
NEXYR=IAVG2-IAVG1+1
DECA=DECAY(I)/8760.
XAMBEF=DECA+XAMByE
IERMl=DERAIE
IFdNSITE .EQ. DCSP(I)=SOAyG(I)
TERM2=CSP(I)AB/PP
CV=(IERMl+TtRM2)AEXP(-DECAATH)
RETURN
END
C
C
C
SUBROUTINE FOODA(NN)
C
C
C
CAAAAA CALCULATION Of RADIONUCLIDE CONCENTRATION IN VEGETABLES, MILK AND
C MEAT CONSUMED BY MAN RESULTING FROM ATMOSPHERIC DEPOSITION
C CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C NN NUCLIDE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
C XAMBUE = WEATHER DECAY CONSTANTS 1/H
C AIRBORNE MATERIAL
C IA PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
C CONTAMINATED AIRBORNE MATERIAL H
C PP SURFACE DENSITY FOR SOIL KG/MAA2
C RA RETENTION FRACTION
C BV CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY VEGETATIVE PARTS OF CROPS
C BR CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
C DERATE = RADIONUCLIDE DEPOSITION RATE PCI/MAA
C IOPI = OPTIONS EUR SPECIALS RADIONUCLIDES H-3 AND C-14
C IOPT = 1 IF H-3 AND C-14 IS NOT INCLUDED IN THIS RUN
C IOPT = 2 IE ONLY H-3 IS INCLUDED
C IOPT = 3 IF ONLY C-14 IS INCLUDED
C IOPT = 4 IF BOTH ARE INCLUDED
A-32
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
Yl = AG PRODUCTIVITY FOR G8ASS CONSUMED BY ANIMALS KG/MAA2
Y2 = AQ PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGtSIION BY ANIMALS H
TH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED AND
INGESTIUN BY ANIMAL H
TH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG AND
INGEST10N BY MAN tQR MAXIMUM INDIVIDUAL EXPOSURE H
TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
1NGESIION BY MAN FOR MAXIMUM INDIVIDUAL EXPOSURE H
TH5 = TIME DELAY BETWEEN HARVEST LEAFY VEG AND
INGESTION BY MAN FOR GENERAL POPULATION EXPOSURE H
TH6 = TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGESI10N BY MAN FOR GENERAL POPULATION EXPOSURE H
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
EMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED BY CATTLE KG/D
QFG = AMOUNT OF FEED CONSUMED BY GOATS KG/D
TF1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR M.I.E. H
TE2 = TRANSPORT TIME Of RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR G.P.E. H
Ft = FRACTION Of THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
IS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
ABSH = ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
P14 = FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAMBEt= EFFECTIVE DECAY CONSTANT
CPAST = NUCLIDE CONC IN PASTURE GRASS CONSUMED BY ANIMALS
CiiTO = NULLIDE CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1
CL2
CP1
CP2
CCM11
CCMI2
CGMI1
CGMI2
CMEAI
=
=
=
=
=
=
=
=
=
RADIONUCLIDE
FUR M.I.E.
RADIONUCLIDE
Fl)S G.P.E.
RADIONUCLIDE
FOR M.I.E.
RADIONUCLIDE
FOR G.P.E.
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
IN LEAFY VEG CONSUMED BY MAN
IN LEAFY VEG CONSUMED BY MAN
IN PRODUCE CONSUMED BY MAN
IN PRODUCE CONSUMED BY MAN
IN COW'S MILK FOR M.I.E.
IN COW'S MILK FOR G.P.E.
IN GOAT'S MILK FOR M.I.E.
IN GOAT'S MILK FOR G.P.E.
IN BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLID,H3,C14
A-33
-------
COMMON/NUC/NUCLILK40).ATMAS3(40).TRArt(40).SOAM(40),ATAM<40)
.
I AGAM(40.1000).STAM(40)
SSTREM(JO).SDE.EP(40).A
..,,
,POLO(40>,POLB(40).CS(40).CW(40).
IRCON(40).YSO<40),SOAVG<46),CON<40
....,,. TnTimilf
I AGCON(40)fSTCON(40).ATCON(40).AQAVG(40).STAVG(40).DETW<40), ISINEWL
& ATAVG(40).FMC(40),FMG<40).IiECAY(40),XKD(4,40),SOL(40).
i FF(40),RA(40),RU(40),BV(40),BR(40),DERATE(40),CWAT(40)
COMMON/ IRRFOO/Yl.Y2,TEl,TE2.THl.TH2.TH3,IH4,IH5,THGfFPfFS,
& ULEAFYtUPROD,UCMILK,l)GMlLK,UMEAT.UWAT.UAIR,
J QEC,QFG.IFl.IE2.IS.CLl(40)fCL2(46),CPl(40)fCP2(40)f
S CCMI1(46),CCMI2(40>,CGMI1<40>,CGMI2(40).
i CHEAT (40) COL1<40).COL2(40).COP1(40).COP2<40),
i COCMIl(40),COCMI2<40>,COGMIi(40),COGMI2(40>,
I COMEAI(40),QING<40),QINH<40),POP,
& CSP(40),CSPT(40)FCSPO(40),CSPOT(40)
COMMON/LAND/RA INF, ERODE, STPLNG. COVER , CONTRL.SEDELR.SOILOS,
i PORS.BDENS, DUET, EXTENT FADEPTH;PD, RUNOFF, RESAI,
X INSITE
COMMON/EVAP/PPN.PHID,P,XIRR,S(12),T(12)fTD(12),XINFL,SINFL,
i SMASS.WMASS,UDEEP
COMhON/FUNC/XAMBWE,TA,TU.FI.PP.UIRATE,
i QCU.QGU.QBU,ABSH,P14
COMMON/PCV/SOCON(40)
DATA H3.C14/8HH-3 ,8HC-14 /
IF(NUCLIIKNN) .EQ. H3) GO TO 200
IF(NUCLID(NN> .EQ. C14) GO TO 300
DECA=DECAY(NN)/8760.
DECSL=SINFL/(0.15A<1.+BUENS/PORSAXKD(1,NN)))/8760.
CSP(NN)=(CSP(NN)+DERATE(NN)A87bO.)AEXP(-(DECA+DECSL)A8760.)
IFdNSITE .EQ. 1) CSP(NN)=SOCON(NN)
C CALCULATION OF CPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
B=0.243ABV(NN) RAE0186
TERM2=CSP(NN)AB/PP RAE0186
CPAST=CVA
-------
CP2(NN)=CVA(NN,Y2,TE2,TH6,IERM2,0.1)
C
CAAA CALCULATION OF CCMIX-= RADIONUCLIDE CONCENTRATION IN COU'S MILK
CAAA 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CCMIHNN)=tMC(NN)ACFEEDA&FCAEXP<-DECAATFl)
C
CAAA 2 FOR GENERAL POPULATION
CCMI2(NN)=FMC(NN)AC££EDAQ£CAEXP(-DECAATF2)
C
CAAA CALCULATION OF CGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
C 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CGMI1(NN)=FMG(NN)ACFEEDAGFGAEXP<-DECAATF1)
C
CAAA 2 FOR GENERAL POPULATION
CGMI2(NN)=FMG(NN)ACFEEDAQFGAEXP(-£iECAATF2>
C
CAAA CALCULATION OF CMEAT = RADIONUCLIDE CONCENTRATION IN BEEF CATTLE
CHEAT(NN)=EF(NN)ACfE£DAOFCAEXP(-D£CAAIS)
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
C
CAAA CALCULATION OF CV3 = TRITIUM CONCENTRATION IN ALL VEGETATION
200 CV3=3.-;5E14AAi'CUN(NN)/ABSH
CAAA CALCULATION Ot CONCENTRATION OF TRITIUM IN VEGETATION, MILK,
CAAA AND MEAT CONSUMED BY MAN
CLKNN)=CV3
CL2(NN)=CV3
CPHNN)=CV3
CP2(NN)=CV3
CCM11(NN)=FMC(NN)ACV3AQFC
CCMI2(NN)=CCMI1(NN)
CGMIKNN)=FMG=CGMI1(NN>
CMEAT(NN)=FF(NN)ACV3AQFC
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: CARBON-14
C
CAAA CALCULATION OF CVI4 = C-14 CONCENTRATION IN ALL VEGETATION
300 CV14=6.875E14AAXCON(NN)AP14
CAAA CALCULATION OF C-14 CONCENTRATION IN VEGETATION, MILK,
CAAA AND MEAT CONSUMED BY MAN
CL1(NN)=CV14
CL2(NN)=CV14
CP1(NN)=CV14
CP2(NN)=CV14
CCM11(NN)=PMC(NN)ACV14AGFC
CCMI2(NN)=CCMI1(NN)
CGMI1(NN)=FMG(NN)ACV14AQFG
CGMI2(NN)=CGMI1(NN)
CMEAT < NN)=FF(NN)ACV14AQFC
RETURN
END
C
C
FUNCTION CVA(I,Y,IE,TH,TERM2,TV)
Lf
c
CAAA CALCULATION OF RAD10NUCLIDE CONCENTRATION IN FORAGE, PRODUCE AND
A-35
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
VEGETABLES CALLED BY FOODA
DOUBLE PRECISION NUCLID
COMMUN/NUC/NUCLID<40).ATMASS<40).TRAM(40).SOAM(40),ATAM(40>.
8 AQAM(40f1000)JlAH<40>,POLO<40>,POLB<40),CS<40).CU<40).
8 SSTREM(lo).SDEEP<40).AiRCON(40),YSO(40),SOAVG<46),CON<40).
8 AQCON<40>.STCQN(40>,ATCON(40).AGAVG(40).STAVG(40),DETU(40>,
8 ATAVG(40),FMC<40>,FMG<40).DECAY<40>.XKD(4,40),SOL<40).
8 FF(40).RA(40).RU(40)fBV<40).BR<40>,DERATE(40>,CWAT<40>
COMMON/FUNC/XAMBWE.TA.TU.FI.PP.UIRATE,
8 QCM,QGlJfQBU,ABSH,pl4
DECA=DECAY(I)/8760.
Y A u t> p p — n£PA-fYAMFiLJF
TERMl=DERAIESTCON(40),ATCON(40),AQAVG(40),STAVG(40)rDETU(40)f
ISINEUL
A-36
-------
c
CAAAA
C
C
100
200
C
CAAAA
C
C
C
C
C
c
c
c
c
c
c
c
,c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AIAV(i(40),FMC<40>,FMG<40)fDECAY<40).XKD(4,40),SOL<40).
FE<40>fRA(40>fRU<40).BV(40)fBR(40>,DERATE<40>,CUAI<40)
COMMON/PASS/PNUC(40)IPCON1(40),PCON2(40).PCON3(40).
PCON4(40)fPPOPfLLINDpLDISI
CALCULATION OF RAIHONUCL IDE INTAKE BY CONSUMPTION OF VEGETATION,
MILK, MEAT AND DRINKING WATER
IFCLLIND .EG. 0) GO TO 100
GVEG=
-------
& COMEAT(40).Q1NG(40),QINH(40),POP,
& CSP(40),CSPT(40).CSPO(40),CSPOT(40)
COMMON/NUC/NUCLIB(40).ATMASS(40).TRAM<40).SOAM(40),ATAM(40).
& AQAM(40,1000).STAM(40).POLO(40),POLB(40).CS(40>,CW(46),
I SSTREM(40>,SnEEP(40).AIRCON(40),YSO<40),SOAVG<40),CON(40).
a AQCON(40),STCON(40>.ATCON(40).AQAVG(40).STAVG(40>.DETW(40), ISINEWL
4 AIAVGMO) FhC<40).EMQ(40),DECAY(40),XKD{4.40)rSOLUq)
4 Hj.HVIJt'iV > .tnL^IU I , r IILU TV y . i" nun I \iu / , APVIJ \ i f tu / , JUU\TV / .
& EE(40).RA(40)fRW(40)fBV(40)fBR(40).DERATE(40)fCWAI(40)
COHHON/PASS/PNUC(40),PCON1(40).PCON2(40),PCON3(40),
s PCON4(40),PPOPfLLINDfLDISI
CAAAA CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION OF VEGETATION,
C MILK, MEAT AND DRINKING WATER
IF(LL1ND .EG. 0) GO TO 100
QVEG=(CL2(NN)+COL2(NN))AULEAFY+(CP2(NN)+COP2(NN))AUPROD
QMILK=(CCMI2(NN)+COCMI2(NN))*UCMILK+(CGMI2(NN)+COGHI2(NN))AUGHILK
GO TO 200
100 QVEG=(CL1(NN)+COL1(NN))AULEAFY+(CP1(NN)+COP1(NN))AUPROD
QMILK=(CCMIl(NN)+COChIKNN))AUCMILK+(CGMIl(NN)+COGMIl(NN))AUGMILK
200 GMEAT=(CHEAT(NN)+COHEAT(NN))AUMEAT
QUAT=CUAT(NN)AUUA1
QING
-------
NODAY=MODAY(IM)
DO 100 ID=1,NODAY
DO 100 IH=2,25
P(IH.ID,IH)=0.
100 CONTINUE
C READ HON1HLY MAXIMUM DAY LENGTH
READU.1020) (DTH(IM),IM=1,12)
WRITE (6,3020) (DIH(IH),IM=1,12)
C READ DAILY MEAN TEMPERATURES (DEG C)
DO 200 111=1.31
READ<4.1030) (TMPCIM,ID),IM=1,12)
200 CONTINUE
URITE<6,3030)
DO 300 ID=1.31
WRITE(6,3031) ID,(TMP(IM,ID),IM=1,12)
300 CONTINUE
C OVERLAY PERTINENT DATA (0.1MM/HR) ONTO PRECIP ARRAY AS READ IN
URITE<6.3040)
400 READ(4,1040) MO,IDA,(P(HOrIDA,IH),IH=2f25)
IF(IAMP.£I].MU> GO TO 500
URHE(6,3041) MO,IDA,(P(MO,IDA,IH),IH=2,25)
GO TO 400
C CONVERT RAINFALL TO M/HR
500 DO 600 M0=1.12
NODAY=MODAY(MO)
DO 600 IDA=1,NODAY
DO 600 IH=2,25
P(MO,IDA,IH)=P(MO,IDA,IH)AlE-4
600 CONTINUE
C CALCULATE OR DEFINE CONSTANTS
DELT=1.0
TAU=0.66
XKCMMD=120./39.37
CEP=.14/(24. A 1000.)
XL=TU1V2.
XKL=SQRt(SLOP)A3600./0.05
H(l)=0.
XKCM=XKCMMD/(1000.A24)
TEP=0.
TP=0.
1X1=0.
HSNU=0.
TRO=0.
XKI=y(iMAX+VPMAX
URIX£(6,3050)
URITE(6,3051) XKCMMD.YGMAX,TUT,SLOP,XKI
URITE(6,3052)EPSP,EPSG,XDE,XKE,DELT
C
C STEADY STATE INFILTRATION LOOP
C
TXIL=0.0
DO 80 IY=1,10
TP=0.0
TEP=0.0
TRO=0.0
TXI=0.0
C
C MONTHLY LOOPAAAAAAAAAAAAAAAAAAAAAAAA
DO 70 IM=1,12
A-39
-------
NODAY=hODAY(IM)
DT=OTH(IM)/12.
C DAILY LOOPAAAAAAAAAAAAAAAAAAAAAAAAAA
DO 60 ID=1,NOBAY
IC=1MP
-------
XI(I)=XIT
VP(I)=VPI
VG(1)=VGT
RETURN
END
C
C
C
C
SUBROUTINE SOIL
COMMON /BLOCK1/R(25).EP<25),H<25).GL<25),YP(25),YG(25),ETO<25),
1 EIS{25),VP(25),VG<25>,YTP(25),YIG(25)fXI<25)fP(12f31,25>
COMMON /BLOCK2/HI<4),YPT<4).YGT<4)
COMMON /BLOCKS/ RT.EPT,YPIE.XKL,ETOI.QLTF XL. VGT,VPT, DELI, ETSTjEPSP,
IYIGPP.HUPMAX.VPMAX.HUGMAX.OGMAX JPMAXfXNSfUYMAX,XKIpIfXIIf
2EPSGfYIGPG.YGMAX.XDE.XKE
ISUE=
-------
INPUT VARIABLES
NN = NUCL1HE NUMBER
DECAY = RADIOACTIVE DECAY CONSIANTE
XAMBUE = UEA1HER DECAY CONSIANTE
1W = PERIOD Of TIME FOR WHICH SOIL IS EXPOSED TO THE
CONTAMINATED WATER
PP = SURFACE DENSITY FOR SOIL
RU = RETENTION FRACTION
BV = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY VEGETATIVE PARTS OF CROPS
Bk = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
El =FRACTIGN OF THE YEAR CROPS ARE IRRIGATED
1/Y
1/H
H
KG/MAA2
SUBROUTINE IRRIG(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLE, MILK AND
C CONSUMED BY MAN RESULTING FROM WATER IRRIGATION. CALLED BY MAIN.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
UIRATE= IRRIGATION RATE
CUAT = RADIONUCLIDE CONCENTRATION IN WATER
IOPT = OPTIONS FOR SPECIAL RADIONUCLIDE H-3
IOPT = 1 IF H-3 IS NOT INCLUDED IN THIS RUN
IOPT = 2 IF H-3 IS INCLUDED
Yl = A(i PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS
Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN
TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON
TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON
TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGESTION BY ANIMALS
IH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED
AND INGEST ION BY ANIMAL
1K3 = Pt'klOD DELAY BETWEEN HARVEST OF LEAFY VEGETABLE
AND INGESTION BY MAN FOR M.I.E.
TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FUR M.I.E.
1H5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
AND INGESTION BY MAN FOR G.P.E.
THG = PERIOD DHLAY BETWEEN HARVEST OF PRODUCE
TH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK
FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK
QFC = AMOUNT OF FEED CONSUMED BY CATTLE
QFG = AMOUNT OF FEED CONSUMED BY GOATS
TF1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPIOR FOR M.I.E.
TF2 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR G.P.E.
L/MAA2-
PCI/L
KG/MAA2
KG/MAA2
H
H
H
D/L
D/L
KG/D
KG/D
H
A-43
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
OUTPUT VARIABLES
COL1 =
COL2 =
COP1 =
CUP2 =
COCMI1=
COCMI2=
COGMI1=
COGMI2=
COMEAT=
RADIONUCLIDE
FOR M.I.E.
RADIONUCLIDE
FOR G.P.E.
RADIONUCLIDE
FOR M.I.E.
RAU10NUCLIDE
FOR G.P.E.
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
CGNC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
IN
IN
IN
IN
IN
IN
IN
IN
IN
LEAFY VEG CONSUMED
LEAFY VEG CONSUMED
PROCUCE CONSUMED BY
PRODUCE CONSUMED BY
COU'S MILK FOR M.I.
COU'S MILK FOR G.P.
GOAT'S MILK FOR M.I
GOAT'S MILK FOR G.P
BEEF CATTLE'S MEAT
BY MAN
BY MAN
MAN
MAN
E.
£.
.E.
P
. L. .
C
C
FF = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
IS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
GCW = AMOUNT Ot WATER CONSUMED BY COW L/D
QGU = AMOUNT OF WATER CONSUMED BY GOAT L/D
QbU = AMOUNT Of WATER CONSUMED BY BEEi CATTLE L/D
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
COPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS CONSUMED BY A
COPAST= RADIONUCLIDE CONCENTRATION IN STORED FEED CONSUMED BY ANI
COFEED= RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLID,H3.C14
COMMON/CNTRL/NONCLD.MAXYR,TITLE(20).LOCATE(12>,NYR1,NYR2,
8 PCT1,PCT2,LEAOPT,IOPVWV,IOPSAT, IPRT1,IPRT2,IDELT.IXTS,
8 IRRES1.IRRES2.LIND.IAVG1.IAVG2,RR,FTMECH,INTYR(4), RAE1085
8 WUAIL.UUATA.WWATH.SUATL.SUAIA.SWATH,iVAP.IBSMT
COMMON/NUC/N(JCLID<40).ATMASS(40).IRAM(40).SOAM<40).AIAM(40).
8 AGAM(40.1000).STAM(40),POLO(40),POLB(40>,CS(40).CU(40).
8 SSTREM<40),SDEEP<40).AIRCON(40),YSO(40),SOAVG<46),CON(40)f
8 AQCON(40),SICON(40),ATCON(40).AQAVG(40) STAVG(40) DETW(40). ISINEUL
8 ATAVG<40).FMC(40),FMG(40),DECAY(40),XKD(4.40),SOL(40).
8 FF(40),RA(40).RW(40),BV(40).BR(40),DERATEUO),CWAT(40)
COMMON/IRRFOO/Y1,Y2,TE1,TE2.TH1.TH2.TH3,TH4,TH5,TH6.FP,FS.
8 ULEAFY.UPROD.UCMILK,UGMILK,UMEAT.UUAT.UAIR,
8 QFC,QFG.IEl,TF2fIS.CLl(40)fCL2(46),CPl(40),CP2(40)r
8 CCMIK46)fCCMI2(40),CGMIl(40).CGMI2(40),
8 CMEA1(40).COL1(40),COL2(40).COP1(40).COP2(40),
8 COCMIl(40)fCOCMI2(40),COGMIl(40),COGMI2(40).
8 COMEAT(40),QING(40),QINH(40),POP.
8 CSP(40),CSPT(40),CSPO(40),CSPOT(40)
COMMON/FUNC/XAriBUE.TA.TU.FI.PP.UIRATE.
8 QCW,QGU,QBW,ABSH.P14
DATA H3.C14/8HH-3 ,8HC-14 /
DECA=DECAY(NN)/8760.
IF(NUCLID(NN) .EQ. H3)GO TO 200
IF(NUCLKKNN) .EQ. C14) GO TO 300
CALCULATION OF COPAST=RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
CONSUMED BY ANIMALS
B=0.243ABV(NN) RAE0186
COPAST=COV(NN,Y1,TE1,TH1.B,1.)
CALCULATION OF COSIO = RADIONUCLIDE CONCENTRATION IN STORED FEED
A-44
-------
C CONSUMED BY ANIMALS
B=O.GfcOA<0.378ABR
C
CAAA CALCULATION OF COGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COGMI1(NN)=FMG(NN)A(COFEEDAQFG+CWAT(NN)AQGU)AEXP(-DECAATF1)
C
CAAA 2. tOR GENERAL POPULATION
COGM12(NN)=FMG(NN)A(COFEEDAQFG+CWAT(NN)AG1GU)AEXP(-DECAATF2)
C
CAAA CALCULATION OF COMEAT = RADIONUCLIDE CONCENTRATION IN BEEF CATTLE
COMEAT(NN)=EE(NN)A(COFEEDAGFC+CUAT(NN)AQBU)AEXP(-DECAATS)
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
CAAA TRITIUM CONC. IN VEGETATION = TRITIUM CONC. IN ANIMAL FEED =
CAAA TRITIUM CONC. IN UAIER = CWAT(l)
CAAA CALCULATION OF H-3 CONCENTRATION fN VEGETATION, MILK,
CAAA AND MEAT CONSUMED BY MAN
200 COL1(NN)=CUAT(NN)
COL2(NN)=CUAT(NN)
COP1(NN)=CWAT(NN)
COP2(NN)=CUATA(QFCmCU)
COCMI2(NN)=COCMI1(NN)
COGMI1(NN)=FMG(NN)ACUAT(NN)A(QFG+QGU)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FF(NN)ACWAT(NN)A(QFC+QCU)
RETURN
300 C014=0.
A-45
-------
COL1(NN)=C014
COL2(NN)=C014
COP1(NN)=C014
COP2(NN)=C014
CUAT(NN)= UWAIAAAGAVG(NN)+SUATAASTAVG(NN)
COCMI1(NN)=EMCAC014A
-------
RETURN
END
C
C
C
SUBROUTINE IRRIGA(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLE, MILK AND
C CONSUMED BY hAN RESULTING FROM WATER IRRIGATION. CALLED BY MAIN.
C
C
C
C
C
C INPUT VARIABLES
C
C NN NUCLIDE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANTE 1/Y
C XAMBWE = WEATHER DECAY CONSTANTS 1/H
C IW PERIOD OF TIME FOR UHICH SOIL IS EXPOSED TO THE
C CONTAMINATED WATER H
C PP SURFACE DENSITY FOR SOIL KG/MAA2
C RU RETENTION FRACTION
C BV = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY VEGETATIVE PARTS UF CROPS
C BR CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
C El =FRACT10N OF THE YEAR CROPS ARE IRRIGATED
C UIRATE= IRRIGATION RATE L/MAA2-
C CUAT = RADIONUCLIDE CONCENTRATION IN WATER PCI/L
C IOPT = OPTIONS FOR SPECIAL RADIONUCLIDE H-3
C IOPI = I IF H-3 IS NOT INCLUDED IN THIS RUN
C IOPT = 2 IF H-3 IS INCLUDED
C Yl = AG PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS KG/MAA2
C Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
C TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
C TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
C TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
C AND INGESTION BY ANIMALS H
C TH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED
C AND INGESTION BY ANIMAL H
C TH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEGETABLE
C AND INGESTION BY MAN FOR M.I.E. H
C IH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
C INGESTION BY MAN FOR M.I.E. H
C THb = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
C AND INGESTION BY MAN FOR G.P.E. H
C THG = PERIOD DELAY BETWEEN HARVEST OF PRODUCE
C TH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
C FP FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
C FS FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
C ANIMALS GRAZE ON PASTURE
C FMC = FRACTION OF THE COW'S DAILY INTAKE OF
C RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK D/L
C FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
C RAD10NUCLIDE WHICH APPEARS IN EACH L OF MILK D/L
C QFC = AMOUNT OF FEED CONSUMED BY CATTLE KG/D
C QFG = AMOUNT OK' FEED. CONSUMED BY GOATS KG/D
A-47
-------
C
C
C
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
TFl
TF2
FF
IS
QCU
QGU
QBU
=
TRANSPORT
FEED-MILK
TRANSPORT
FEED-MILK
FRACTION
RADIONUCL
TIME FROM
AMOUNT OF
AMOUNT OF
AMOUNl Of
TIME OF RABIONULLIDE FROM
-RECEP10R FOR M.I.E.
TIME OF RADIONUCLIDE FROM
-RECEPTOR FOR G.P.E.
OF THE ANIMAL'S DAILY INTAKE OF
IDE WHICH APPEARS IN EACH KG OF FLESH
SLAUGHTER OF MEAT TO CONSUMPTION
WATER CONSUMED BY COW
WATER CONSUMED BY GOAT
WATER CONSUMED BY BEEF CATTLE
H
D/KG
H
L/D
L/D
L/D
INIEKMEDIAIE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
mm immim mmmm
COFEED= RADIONUCLIDE CONCENTRATION
AS
IN PASTURE Q8A
IN STORED FEED CONSUf
IN ANIMALS'S FEED
OUTPUT VARIABLES
COL1 =
COL2 =
COP1 =
CUP2 =
COCMI1=
COCMI2=
COGMI1=
COGMI2=
COMEAT=
RADIONUCLIDE
FOR M.I.E.
RADIONUCLIDE
FOfl G.P.E.
RAD10NUCLIUE
FOR M.I.E.
RADIONUCLIDE
FUR G.P.E.
RADlONUCLlDfc
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
DOUBLE PRECISION NUCLID,H3,
IN
IN
IN
IN
IN i
IN
IN i
IN
IN :
,C14
LEAFY VEG CONSUMED BY MAN
LEAFY VEG CONSUMED BY MAN
PROCUCE CONSUMED BY MAN
PRODUCE CONSUMED BY MAN
COW'S MILK FOR M.I.E.
COU'S MILK FOR G.P.E.
GOAT'S MILK FOR M.I.E.
GOAT'S MILK FOR G.P.E.
BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
COMMON/CNTRL/NONCLD.MAXYR,TITLE*20).LOCATE(12),NYR1.NYR2.
i PCI1.PCT2.LEAOPT.IOPVWV.IOPSAT,IPRT1.IPRT2,IBELT.IXTS,
5 IRRES1,IRRES2.LIND.IAVG1,IAVG2,RR,FTMECH,INTYR<4),
I WWATL,WWATA.WWATH.SUATL.SUATA,SUATH.IVAP.IBSMT
COMMON/NUC/NUCLID(40),AIMASS(40).TRAM(40).SOAM(40).ATAM(40).
& AQAM(40.1000),STAM(40),POLO(40),POLB(40).CS(40).CW(40).
S SSTREM(40),SDEEP(40).AIRCON(40).YSO(40),SOAVG(40),CON(40)r
J AQCON(40),STCON(40),ATCON(40),AQAVG(40).STAVG(40),DETW(40),
8 ATAVG(40).FMC(40),FMG(40).DECAY(40),XKD(4,40),SOL(40),
& FF(40),RAUO).RW(40),BV(40).BR(40),DERATE(40).CWAT(40)
COMMON/IRRFOO/Yl,Y2,TEl,IE2.THl.TH2.TH3fTH4,TH5,TH6,FP,FS,
& ULEAFY,UPROD,UCMILK,U6MILK,UMEAT'UWAT.UAIR,
S QFC,QFG.TF1,TF2.TS,CL1(40),CL2(46),CP1(40),CP2(40),
* CCMI1(40),CCMI2(40).CGMI1(40).CGMI2(40).
& CMEAT(40).COL1(40),COL2(40).COP1(40).COP2(40),
I COCMI1(40),COCMI2(40),COGMI1(40),COGMI2(40),
8 COMEAT(40)'QING(40).QlNH(40).POP
J CSP(40),CSPT(40),CSPO(40),CSPOT(40)
COMMON/LAND/RAINF,ERODF.STPLNG.COVER,CONTRL.SEDELR. SOILOS,
I PORS,BDENS,DWET,EXTENT,ADEPTH,PD,RUNOFF,RESAI,
COMMON/EVAP/PPN.PHID,P,XIRR,S(12),T(12),TD(12),XINFL,SINFL,
J SMASS.WMASS,WDEEP
COMMON/FUNC/XAMBWE,TA.TW.FI,PP,WIRATE,
i QCW.QGW.llBW,ABSH,Pl4
COMMON/PCV/SOCON(40)
RAE1085
ISINEWL
A-48
-------
DATA H3,C14/8HH-3 ,BHC-14 /
C
IF(NULLID(NN) .EQ. H3)GO TO 200
IF RAE0186
IERM2=CSPO(NN)AB/PP RAE0186
C CALCULATION OF COPAST=RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
COPAS1=COVA(NN,Y1,IE1,TH1,TERM2.1.)
C CALCULATION OF COSTO = RADIONUCLIDE CONCENTRATION IN STORED FEED
C CONSUMED BY ANIMALS
B=0.680A(0.378ABR(NN)+0.622ABV(NN)) RAE0186
TERH2=CSPO(NN)AB/PP RAE0186
COSTO=COVA(NN,Y1,TE1,TH2.TERM2,0.1)
C CALCULATION OF COFEED = RADIONUCLIDE CONCENTRATION IN ANIMAL FEED
COFEED=FPAFSACOPAST-H1.0-FPAFS)ACOSTO
C
CAAA CALCULATION OF COPLX = RADIONUCLIDE CONCENTRATION IN LEAFY
C VEGETABLE CONSUMED BY MAN
B=O.OGGABV(NN) RAE0186
TERM2=CSPO(NN)AB/PP RAE0186
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COL1(NN>=COVA(NN,Y2,TE2,TH3,TERM2,1.)
C
CAAA 2. FOR GENERAL POPULATION EXPOSURE
COL2(NN>=COVA(NN,Y2,TE2,TH5,TERM2,1.)
CAAA CALCULATION OF COPX = RADIONUCLIDE CONG IN PRODUCE CONSUMED
C BY MAN
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
B=0.187ABR(NN) RAE0186
TERM2=CSPO(NN)AB/PP RAE0186
COP1(NN)=COVA
CUAT(NN)= UWATAAAQCON(NN)+SWATAASTCON(NN)
CAAA CALCULATION OF COCMIX = RADIONUCLIDE CONCENTRATION IN COU'S MILK
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COCMI1(NN)=FMC(NN)A(COFEEDAQFC+CWAT(NN)AQCU)AEXP(-DECAATF1)
C
CAAA 2. FOR GENERAL POPULATION
COCMI2
-------
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
CAAA TRITIUH CONC. IN VEGETATION = TRITIUH CONC. IN ANIMAL FEED =
CAAA TRITIUM CONC. IN WATER = CWAI(l)
CAAA CALCULATION OF H-3 CONCENTRATION IN VEGETATION, MILK,
CAAA AND MEAT CONSUMED BY MAN
200 COL1(NN)=CUAT(NN)
COL2
COCMI1(NN)=EMC(NN)ACWAT(NN)A(QFC+QCW)
COCMI2(NN)=COCMI1(NN)
COGMI1(NN)=EMG(NN)ACUAT(NN)A(QFG+GGU)
COGMI2(NN)=COGMI1(NN)
COMEAI(NN)=FF(NN)ACWAT(NN)A(GFC+QCy)
RETURN
300 C014=0.
COLI(NN)=C014
COL2(NN)=C014
COP1(NN)=C014
COP2(NN)=C014
CUAT
COCMI2(NN)=COCMI1(NN)
COGMI1(NN)=FMG(NN)AC014A(QFG+QGU)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FF(NN)AC014A(QFC^QCW)
RETURN
END
C
C
C
FUNCTION COVA(I,YfTE,TH,TERM2,TV)
C
C
CAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN FORAGE, PRODUCE AND
C VEGETABLES. CALLED BY IRRIGA.
C
C
DOUBLE PRECISION NUCLID
COMMON/NUC/NUCLID(40),ATMASS(40).TRAM(40).SOAM(40) .ATAM(40) .
I AQAM(40.1000),STAM(40),POLO(40),POLB(40),CS(40).CU(40).
I SSTREM(40),SDEEP(40).AIRCON(40),YSO(40),SOAVG(46).CON(40).
S AQCON<40),STCON(40),ATCON<40).AQAVG<40).STAVG<40) DETUUO). ISINEUL
j ATAUG(40)rFMC(40),FMG(40).DECAY(40).XKD(4,40),SOLUo).
X FF<40>.RA(40).RU(40)fBV(40).Bft(40).DERATE(40),CUAT(40)
COMMON/FUNC/XAMBUE.TA.TW.FI.PP.WIRATE,
8 QCW,QGW.QBU,ABSH.P14
DECA=DECAY(I)/8760.
XAMB£F=OECA+XAMBUE
TERM1=UIRATEACUAT(I)ATVARU(I)A(1.0-EXP(-XAMBEFATE))/(YAXAMBEF)
COVA=(TERM1+TERM2)AEXP(-D£CAATH)
RETURN
END
C
C
C
SUBROUTINE LEACH(NN,NYEAR,VOLB,VOLO,DMAX,CIOT.CFF.XDECN.
& TINFL,PERMT) '
A-50
-------
c
c
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA THIS SUBROUTINE CALCULATES THE AMOUNT OF EACH RADIONUCLIDE
CAAA THAT LEAVES FROM THE BOTTOM OF THE TRENCH TO THE AQUIFER
CAAA AND THE AMOUNT THAT LEAVES AS A RESULT OF WATER OVERFLOWING THE
CAAA TRENCH. THIS SUBROUTINE IS CALLED BY MAIN.
CAAA
CAAA THERE ARE FIVE METHODS THAT MAY BE USED TO CALCULATE THESE
' THEY ARE GIVEN BY THE FOLLOWING VALUES OF
CAAA AMOUNTS
CAAA LEAOPT:
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
INPUT VARIABLES
1 TOTAL CONTACT,CHEMICAL EXCHANGE
2 IMMERSED FRACTION, CHEMICAL EXCHANGE
3 TOTAL CONTACT, CHEMICAL SOLUBILITY
4 IMMERSED FRACTION, CHEMICAL SOLUBILITY
5 RELEASE FACTOR
NN = NUCLIDE NUMBER
NYEAR = CURRENT YEAR OF SIMULATION
TAREA = AREA OF TRENCH
TDEPTH = DEPTH OF TRENCH
PORT = POROSITY Of TRENCH MATERIAL
RELEAC = RELEASE FACTOR
LEAOPI = LEACHING OPTION
SOL = SOLUBILITY OF RADIONUCLIDE IN TRENCH
DENCON = DENSITY Of WASTE
VOLO = VOLUME OF WATER OVERFLOWING TRENCH
VOLB = VOLUME Of WATER LEAVING BOTTOM OF TRENCH
NONCLD = NUMBER OF NUCLIDES
TRAM = AMOUNT Of NUCLIDE IN TRENCH
OLDWAT = AMOUNT OF WATER IN TRENCH
DILFAC = DILUTION FACTOR
DMAX = MAXIMUM WATER DEPTH IN TRENCH
XKD = CHEMICAL EXCHANGE COEFFICIENT
OUTPUT VARIABLES
POLB = AMOUNT OF EACH NUCLIDE LEAVING BOTTOM OF TRENCH
POLO = AMOUNT OF EACH NUCLIDE OVERFLOWING TRENCH
INTERMEDIATE VARIABLES
CCUAI = CONCENTRATION Of NUCLIDE IN WATER
FWET = WETTED OR IMMERSED FRACTION
POLOUI = TOTAL AMOUNT OF NUCLIDE LEAVING TRENCH
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR,TITLE(20).LOCATE(12),NYR1,NYR2,
& PCT1,PCT2,LEAOPT,IOPVWV.IOPSAT,IPRT1,IPRT2.IDELT.IXTS,
& IRRES1.IRRES2.LIND,IAVG1,IAVG2,RR,FTMECH,INTYR(4),
8 WWATL.WUATA,WUATH.SWATL.SWATA.SWATH.IVAP,IBSMT
COMMON/EVAP/PPN,PHID,P,XIRR,S<12),T<12),TD(12)fXINFL,SINFL,
A-51
-------
J SMASS.UMASS.WDEEP
COMMQN/1KCH/1AREA.IDEPIH,OVER,PORT, RELFAC,DENCON.OLDUAT,FN
COMMON/NUC/NUCLID<40).ATMASS(40).TRAh<40).SOAM(40),ATAM(40).
& AGAM(40.1000),STAM(40),POLO(40),POLB(40),CS(40).CU(40).
& SSTREH(40>.SDEEP(40).AIRCON(40),YSO(40>,SOAVG(46),CON(40).
I AQCON(40),STCON(40),ATCON<40).AGAVG(40).STAVG(40),DETW<40J,
& ATAVGUO) EMC(40).FMG(40)JDECAY(40),XKD(4.40),SOL(40).
& FF(40),RA(40),RU<40).BV(40)fBR(40)rDERATE(40),CWAT(40)
DIMENSION CIOT(40>,CINEUT(40)
DATA LU6/6/
IF(DMAX.LE.O.)CCWAT=0.
IF(DMAX.LE.O.)GOTO 600
C —
C— FOR OPTIONS 1 AND 3 ASSUME WETTED FRACTION
C— 10 BE TOTAL CONTACT AREA.
C —
FUE1=1.
TCON=1.
GO TO (200,100.400,300,500),LEAOPT
URIIE(LU6.6000)
6000 FORMATC ','AAA ERROR AAA - INVALID LEACHING PARAMETER')
RETURN
C
C FUR OPTION 2 USt IMMERSED FRACTION TO COMPUTE WETTED FRACTION.
C
100 FUEI=DMAX/TDEPTH
IE(EWET.QI.1.0)EUET=1.0
TCON=TINFL/PERMT
IF (ICON.GT.1.0) ICON = 1.0
IF(FWET.GE.1.0)TCON=1.0
EUAST=(DMAX-VOLB/(POmiAREA))/(TDEPIH-OVER)
IF(FUAST.QI.1.0)FUAST=1.0
IF(FUAST.GT.1.0)TCON=TCONA(1.-FWAST)+FUAST
IF(TCON.GT.1.0)TCON=1.0
C
C FOR OPTIONS 1 AND 2 COMPUTE CONCENTRATIONS USING
C CHEMICAL EXCHANGE.
C
200 CCWAl=TRAM)
IEMP=5.163E11ASOL
-------
c—
C 500 PGLOUI=RELEACAIRAM(NN)
C GO TO 610
500 IE(BMAX.EG.O.)GO TO 515
CINEUT(NN)=CIOT(NN)+IRAM(NN)AR£LFACACFF
IE(DHAX.GT.TDEPTH)DHAX=TDEPTH
CCWAT=CINEUT(NN)/
-------
WRITE(LU6,6015)VOLB,VOLO
WR lit (LU6, 6020)
DO 10 I=1,NONCLD
yRIIE(LU6,6025)NUCLIB,Al]CON(I)
20 CONTINUE
RETURN
6000 t-URMAT('l'.20X 'ANNUAL SUMHARY FOR YEAR ',15,' OF THE ',
8 'SIMULATION')
6005 FORMAK///' '.lOX.'THE TRENCH- CAP HAS HAD ',F6.2,
8 ' PER CENT FAILURE')
6010 FURMATC '.lOX.'THE MAXIMUM POSSIBLE UATER DEPTH IN TRENCH ',
8 'DURING THE YEAR IS ' 1PE10.2 ' METERS')
6015 FORMATC ' , 10X, 1PE11 .4, ' CUBIC METERS OF WATER LEFT BOTTOM',
S ' OF TRENCH' /' ' , 10X. 1PE11 .4, ' CUBIC METERS OF WATER',
I ' OVERFLOWED TRENCH')
6020 FORMAK/////' ' .SIX. 'NUCLIDE '.TRANSPORT INFORMATION',
I ///' ' 2X,'N(JCLIDE' 3X, 'AMOUNT IN'. 6X, 'TRENCH'
7X. 'TRENCH'. 5X. 'AMOUNT AT',/' ', 14X. 'TRENCH ' ,6X,
'' J ',5X,'WELLJ,
DRAINAGE
. .
'OOERFLOW'.lx,
8 /' ' 16X,4('CI'.11X))
6025 FURMATC ' , A8.3X.9( 1PE11 .4.2X) )
' F '5 '
6030 FORMAK////' ' ,2X, 'NUCLIDE5,5X. 'SURFACE' f5X. 'SURFACE'
8 4X,'SOLUBLE TO',3X,'SOLUBLE TO',3X,'ATMOSPHERE7,
8 3X,'ATMOSPHERE' 3X 'WELL WATER'
8 /' ' 13X/SOIL CONC', 3X 'WATER CONC' 4X,'STREAM',4X,
'DEEP LAYERS' 2X.'AT SPILLAGE',3X,'DOWN WIND',6X,'CONC'
c
c
END
. ,,
' ',15X 'CI/KGJ,6X.'CI/MJl:)i!3',9X,'CI',llX
'CI' ,3X,3(5X, 'CI/MAA3'))
SUBROUTINE SOURCE(NUCL,CFT1,DCFT,FGAM, IRST,PERMT,RTGR,SSAT,XRTM)
CAAA
CAAA THIS SUBROUTINE PERFORMS THE NECESSARY INPUTS TO INITIALIZE
CAAA PARAMETERS AND VARIABLES. SOURCE IS CALLED FROM MAIN.
CAAA
CAAA
CAAA
CAAA
DOUBLE PRECISION NUCLID, NU, NC.DATE. DTIME
COMMON/STREAM/DWS
COMMON/CNTRL/NONCLD.MAXYR. TITLE (20). LOCATE ( 12 >,NYR1,NYR2,
8 PCT1 .PCT2.LEAOPT, lOPVWy. IOPSAT, IPRT1 . IPRT2. IDELT. IXTS.
S IRRES1.IRRES2.LIND.IAVG1.IAVG2.RR.FTHECH, lNTYR(4)r
& UWATL.WWATA. WWATH.SWATL.SWATA. SWATH. IVAP'lBSMT
COMMON/EVAP/fpN,PHlD.P.XiRR,S(l2),T(l2),TD(l2),hNFL.SINFL,
$ SMASS WMASS WDEEP
COMMON/TRCH/f AREA. f DEPTH, OVER, PORT ,RELFAC ,DENCON,OLDWAT,FN
COMMON/WATER/DTRAQ.DWELL,GWV,XLSAT,STFLOW,AQTHK,AQDISP,
8 PORA,PORV,PERMV.IAQSTF.CPRJ
COMMON/NUC/NUCLID(40).ATMASS(40).TRAM(40).SOAM(40),ATAM(40),
i AQAM(40,1000),STAM(40),POLO(40),POLB(40),CS(40),CW(40),
ISINEW
RAE1085
A-54
-------
C
C
8 SSmM(40),SDEEP(40).AIRCON<40),YSO<40),SOAVG<40),CON<40)f
8 AQCON<40)fSICON<40>fAICON(40>.AQAVG<40),STAVG<40),DETU(40>, ISINEWL
8 ATAVG<40)lEHC<40)fFHG(40).DECAY(40).XKD(4,40),SOL(40)f
8 FF(40>.RA(40).RU(40).BV(4&),BR(40).DERATE<40),CUAT(40>
COMMON/LAND/RAINE,ERODE.STPLNG.COVER,CONIRL.SEDELR.SO ILOS.
& PORS.BDENS,DUET,EXTENT,ADEPIH,PD,RUNOFF,RESAT,
COMMON/AIR/H.VG.U.II,IS,VD.XG.HL ID,ROUGH.FIUIND,CHIQ,RE1,RE2,RE3
COMMON/IRREOO/Y1.Y2,IE1.TE2.TH1.TH2,TH3,IH4.IH5.TH6,FP,FS,
8 ULEAFY,UPROD'uCMiLK,UGMliK,ufiEAT UWAf.UAlR,
i QFC,QFG.TF1,TF2.TS,CL1(40),CL2(40).CP1(40),CP2(40),
8 CCMI1(40),CCHI2(40),CGHII(40).CGMI2(40),
8 CHEAT(40).COL1(40).COL2(40).COP1(40).COP2(40),
8 COCMn<40J,COCMI2(40),COGMII(40),COGHI2(40),
8 COMEAI(40).QING(40),QINH(40),POP.
8 CSP(40),CSP1(40),CSPO(40),CSPOT(40)
COMMON/FUNC/XAMBUE.IA.XU.EI,PP.UIRATEf
8 QCW.GGBfQBW.ABSH.P14
DIMENSION «ONTHtl2).DAT(20),NUCL(40,8)
DATA LU5/5/,LUG/6/.LU26/26/
DATA MONlH/'JAN'/EEB'/rlAR'/APR'.'MAY'.'JUNS'JUL'/AUG',
8 'SEP'.'OCX'.'NOV.'DEC'/
WRI1E(LU6,2010)
5 REAB(LU5,3000.END=7)DAT
URITE(LU26,3000)DAT
URITE(LU6,2005)DAT
GO TO 5
7 REUIND LU26
C
C CONTROL INFORMATION.
P ______
READ(LU26,3000)IIILE
READ(LU2&,3000)LOCATE
READ(LU26 3010)MAXYR.NONCLD.LEAOPT.NYR1.NYR2,IOPVWV,IOPSAI,
i IPRllfIPRT2,IDELT,IRRESl,IRRES2.LIND,IAVGlfIAVG2
READ(LU26,3010) IVAP, IBSHT. IAQSTF. IXIS. IRST, (INTYRU), 1 = 1.3)
READ(LU26 3005)PCT1.PCI2,UWATL,WWATA,WWATH,SUATL,SUAIA,SWATH
IFdAVGl 1LE. 0)IAVG1 = 1
IE(IAVG2 .GT. hAXYR)IAVG2=MAXYR
IFdAVGl .GT. IAVG2)IAVG1 = 1
IFdAVGl .GT. IAVG2)IAyG2=«AXYR
RAE1085
C
C
C
SORT IN1YR ARRAY IN ASCENDING ORDER
DO 20 1=1.3
J=INXYR(I)
IF(J.LE.O .OR. J.EQ.MAXYK) INTYR( I)=MAXYR+1
20 CONTINUE
DO 30 K=l,2
J=K
25
DO 25 I=J1.3
IF(INlYRd) .LI
INIYR(J)) J=l
30
C
CONTINUE
IF(J .EG. K) Gt) 10 30
I=INIYR(K)
INTYR(K)=INTYR(J)
INTYR(J)=I
CONTINUE
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE10B5
RAE1085
A-55
-------
WRITE(LU6,GOOO)
c 111ME IS PART Of THE SYSTEM LIBRARY. IT RETURNS THE CURRENT
C UALL TIME, ELAPSED TIME, AND DATE.
C
C CALL IIlMEdCLOCK.IDIFF.DAIE, IDAI)
C CLOCK=FLOAI(iCLOCK>/3GOOOO.
C UR1TE(LU6.6002)CLOCK.DATE
C CALL CTIHE(DAIE,DTIME>
C WRITE(LUG.G002) D1IME,DAIE
URITE(LU&,6005)TITLE
URITE(LU6,6008)
URITE
-------
UR ITE(LU6,6320 )AQ'fHK.AQD ISP
URIIE 6425)XG
WRITE(LUfa,6435)HLID
URITE
-------
c
URIIE)/(D1RAFACTIM)
IF(DIR.LI.O.OI) FNCL = 1.0
TRAM(1)=TRAM(I)AFNCLAEXP(-D1RATMN)
SOAM(I)=SOAM(I)ATRAM(I)
CW(I)=1000.ASOAM(I)/
-------
I ' CALCULATED USING INFILTRATION AND POROSITY')
6050 FORMAT*' '10X,'LENGTH OF VERTICAL SATURATED ZONE UILL BE".
& ' SET TO THE TRENCH TO AQUIFER DISTANCE')
6055 FORMAT*' ' 10X 'FROM YEAR ',14.' TO YEAR '14.
i ' THE RESUSPENSION RATE DUE TO MECHANICAL DISTURBANCES' ,
I ' UILL BE ' lPEli.4,/' ',15X,'THIS UILL OCCUR DURING '
& £5.2.' OF EACH YEAR')
6060 FORHAIC ' ,10X, 'POPULATION INDICATOR IS '12)
6064 FORHATC ' 15X.'MAXIMUM INDIVIDUAL EXPOSURE WILL S£ USED'.
I ' 10 CALCULATE HEALTH EFFECTS')
6066 FORMAT*' '.15X.'GENERAL POPULATION EXPOSURE UILL 3E USED',
& ' TO CALCULATE HEALTH EFFECTS')
6070 FORMAT* ' 'lOX.'THE POPULATION UILL BE EXPOSED TO CONTAMINATED '.
I 'MATERIALS FROM YEAR ',13.' TO '14)
6072 FORMAT*' ',10X,F6.3,' OF IRRIGATION UATER UILL BE GOTTEN FROM '
S 'WELL',
t /' ',10X,F6.3,' Of DRINKING WATER FOR ANIMALS WILL BE'.
& ' GOTTEN FfiUM WELL',
8 /' ' JOX.F6.3' OF DRINKING UA1ER FOR HUMANS UILL',
J ' BE GOTTEN FROM UELL')
6074 FORMAT*' ',10X,F6.3,' OF IRRIGATION UA1ER WILL BE GOTTEN FROM ',
& 'STREAM'
I /' ' 10X,F6.3,' OF DRINKING WA1ER FOR ANIMALS WILL BE ',
I 'GOTTEN FROM STREAM'
I /' ' 10X.E6.3,' OF DRINKING' UATER FOR HUMANS UILL',
8 ' BE GOTTEN ESUM STREAM')
6088 FORMAT*' ',10X,'BEGINNING IN YEAR ',14,', PEOPLE UILL LIVE ',
X 'IN THE BASEMENT')
6200 FORMAK'l'ibX.'AAA TRENCH INFORMATION AAA')
6205 FORMAT*//' ',lOX.'THE TRENCH HAS AN AREA OF ',
I Ell.4,' SQUARE METERS AND A DEPTH OF ',
& Ell.4.' METERS')
6210 FORMAT*' ', 1*)X, 'TRENCH POROSITY IS ' F8.2)
6215 FORMAT*' ' .10X.'ANNUAL INFILTRATION FOR THE UATOSHED IS'
S F7 4 ' METERS')
6300 FORMAT*//' *,5X.'AAA AQUIFER INFORMATION AAA')
6305 FORMAT*//' 'JlOX.'THE GROUND WATER HAS A VELOCITY OF ',F10.3,
S ' METERS PER YEAR')
6310 FORMAT*' ',10X,'TRENCH TO AQUIFER DISTANCE IS ',F6.1,' METERS')
6315 FORMAT*' ',10X,'TRENCH TO UELL DISTANCE IS ' F8.2.' METERS')
6316 FORMAT*' ',10X,'UELL TO STREAM DISTANCE IS',F8.2,^METERS') ISINEU
6320 FORMAT*' ',10X,'THE AQUIFER THICKNESS IS ' F8.2,! METERS'
8 /' ',10X,'IHE AQUIFER DISPERSION ANGLE IS ',F8.4,' RADIANS')
6325 FORMAT*' ',10X,'POROSITY OF THE AQUIFER REGION IS ',F8.5,
* /' ' lOX.'POROSITY BENEATH THE TRENCH IS '.F8.5.
& /' ' 10X 'PERMEABILITY BENEATH THE TRENCH IS ',F8.3,
& ' METERS/YEAR')
6400 FORMAT(//'1',5X 'AAA ATMOSPHERIC INFORMATION AAA')
6405 FORMAT*//' ' 10X 'SOURCE HEIGHT IS ' F6.1 ' METERS')
6410 FORMAT*' ' 10X 'VELOCITY OF GRAVITATION FALL IS ',
I F6.2.' HETERS/SECOND')
6425 FORMAT*' ',10X,'GAUGE DISTANCE FROM SOURCE IS ',F8.2 ' METERS')
6420 FORMAT*' '.10X.'DEPOSITION VELOCITY IS ' E6.2.' METERS/SECOND')
6415 FORMAT*' ',10X.'UIND VELOCITY IS ',F6.2.J METERS/SECOND')
6435 FORMAT*' ',10X,'LID HEIGHT IS ',F8.2,' METERS')
6440 FORMAT*' 'f10X,'HOSKER ROUGHNESS FACTOR IS ',F6.2>
6445 FORMAT*' ',10X,'TYPE OF STABILITY FORMULATION IS ',12,
2 /' 'JlOXl'SIABILITY CLASS IS ',12)
6450 FORMAT*' ',10X,'FRACTION OF TIME WIND BLOUS TOUARD POPULATION IS',
g F10.6)
A-59
-------
6460 FORMATC ',IOX 'NORMALIZED DOWN UIND ATMOSPHERIC EXPOSURE PER
I 'UNIT SOURCE AREA IS ' 1PEI1.4,' CI/MAA3 PSR CI/SEC')
6470 FORMATC ',IOX.'NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
S 'UNIT SOURCE AREA WILL BE CALCULATED INUIRNALLY')
6480 FORMATC '.IOX,'RESUSPENSION FACTOR PARAMETERS ',3(5X,E11.4 ) )
' ' 5x 'm CIIDPAPP rwpn&MA/rmN A±iM
'lOX,
6500 FORMAT(//
6505 FORMAT(//
& /'
X /'
& /'
g /'
J /'
I /'
6510 FORMAIC
I /'
6515 FORMAIC
6520 FORMAK/'
I 10X,
S /'
,15X,'
,15Xf
SURFACi
PARAMETERS
• i n i\ n 11 !.<
RAINFALL
ERUDIBILIIY
STEEPNESS-SLOPE
LOVER
EROSION CONTROL
DELIVERY RATIO
SOIL POROSITY IS
INFORMATION
FOR UNIVERSAL
LOSS EQUATION'
',F8.2,
•rtC.2p
,F8.2,
,Fb.2,
,F8.~.
,F8.2)
'.FS.5,
SOIL BULK DENSITY IS '.£8.!
RUNOFF FRACTION IS ',F8.5)
,10X,'
,10X,'
IOX.'
5.10X,
STREAM FLOW RATE
G/CC')
IS '.1PE11.4 ' CUBIC METERS PER
UA. w .iii-±j..T. ^ui.>i.u 1 1 ^ j. ^ i\ j i^«
' '. OX 'CROSS SLOPE EXTENT OF SPILLAGE IS '.OPF8.2,
/' .IOX, 'ACTIVE SOIL DEPTH IS ' F8.2,' METERS',
/' , IOX, 'AVERAGE DOWN SLOPE DISTANCE TO STREAM IS
YEAR'
METERS'
AVERAGE DOWN SLOPE DIsfANCE TO STREAM IS ',F8.
MEIERS')
7800 FORMATCl'SX.'AAA AIR-FOODCHAIN INFORMATION AAA')
7805 FORMAK/' ' ,lOX, 'AGRICULTURAL PRODUCTIVITY FOR GRASS',F10.2,
KG/MAA2
/'
FOR VEGETATION'
F10.2 ' KG/MAA2
/'
7815 FORMAK
£
&
I
g
&
g
*
g
X
g
g
g
IOX,'AGR1CULTURAL PRODUCTIVITY
E10.2 ' KG/MAA2'
,IOX,'SURFACE DENSITY FOR SOIL '.nv.*. ,^, ,,nn* ,
,IOX,'WEATHER DECAY CONSTANT'.FlO.2, ' I/HOURS'
IOX 'PERIOD PASTURE GRASS EXPOSURE GROWING SEASON'
FlO.2.' HOURS'
',10X,'PFR10D CROP/VEGETATION EXPOSURE GROWING SEASON',
FlO.2,' HOURS')
',IOX,'PERIOD BETWEEN HARVEST PASTURE GRASS AND',
' INGESIION BY ANIMAL'.FlO.2,' HOURS'
' ',IOX.'PERIOD BETWEEN STORED FEED AND INGESTION',
' BY ANIMAL' FlO.2,' HOURS',
' 'IOX 'PERIOD BETWEEN HARVEST LEAFY VEGETABLES AND',
J INGESTION BY MAN(H.I.E.)',F10.2.' HOURS'
',IOX,'PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY',
' MAN(M.I.E.)' F10.2,' HOURS'
' ' iflY 'Pt'wirm Pi'i-i.ii-'tw UAOutc-i- r CAI-V nc-r: /
/'
/'
7825 FORMATC
g /'
&
T\1I..L.U./ fi.XV.4j. IIUUi\W g
, IOX 'PERIOD BETWEEN HARVEST LEAFY VEG
'AND INGESTION BY MAN(G.P.E.)',F10.2 '
',IOX.'PERIOD BETWEEN HARVEST PRODUCE',
' AND INGESTION BY MANiG.P.E.)',F10.2, '
',IOX,'FRACTION OF YEAK ANIMALS GRAZE ON
HOURS',
HOURS',
PASTURE'
7900
7905
FlO.2,' HOURS'
. ',IOX,'TRANSPORT TIME FEED-MILL-RECEPTOR FOR G.P.E.',
& FlO.2,' HOURS',
g /' 'IOX,'TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION',FlO.2,
g ' HOURS',
g /' '.IOX,'ABSOLUTE HUMIDITY OF THE ATMOSPHERE',FlO.2,
& ' G/MAA3' '
g /' ',IOX.'FRACTIONAL EQUILIBRIUM RATIO FOR C-14',F10.2)
FORMATC1' 5X/AAA UATER-FOODCHAIN INFORMATION AAA')
FORMAT(///J ', IOX,'FRACTION OF YEAR CROPS ARE IRRIGATED',FlO.2,
A-60
-------
X /' ',10X,'IRRIGATION RATC '1-10.3.' L/(MAA2-H)'
X /' ',10X,'AMOUNT OF WATER CuNSUMED BY COWS ',Fl6.2 ' L/D',
X /' ',10X,'AMOUNT OF WATER CONSUMED BY GOATS ' F10.2,' L/D',
X /' '.10X,'AMOUNT OF WATER CONSUMED BY BEEF CATTLE ',F10.2,
X ' L/D')
6905 FORMAT(///' ' 5X,'AAA HUMAN INGESTION AND INHALATION RATE',
X ' INFORMATION AAA')
6910 FORMAT*/' '10X 'ANNUAL INTAKE OF LEAFY VEG ' E8.2,
X ' KILOGRAMS P£R YEAR',
X /' '10X.'ANNUAL INTAKE Of PRODUCE ',F8.2,
X ' KILOGRAMS PER YEAR',
X /' '10X,'ANNUAL INTAKE OF COW'S MILK ',F8.2,
X ' LITERS PER YEAR-',
X /' ',10X,'ANNUAL INTAKE OF GGAT"S MILK',F8.2,
X ' LITERS PER YEAR'
X /' ',10X,'ANNUAL INTAKE OF MEAT ',F8.2.' KILOGRAMS PER YEAR'
X /' '10X,'ANNUAL INTAKE OF DRINKING WATER',F8.2,
X ' LITERS PER YEAR',
X /' ' lOX.'ANNUAL INHALATION RATE OF AIR '.F8.2,
X ' CUBIC METERS PER YEAR' /' ',10X,'A POPULATION OF ',
X F10.0 ' WILL BE CONSIDERED')
7005 fORMAIC ' ,A8,3X,9(1PE11.4,2X))
7000 FORMAI('l',5Xf'AAA NUCL1KE INFORMATION AAA'.
X //' ',SOX 'INFORMATION ON INDIVIDUAL NUCLIDES'
X //' ' 'NUCLIDE'.3X.'AMT IN TRENCH',3X.'SPILLAGE',4X,
X 'STREAM AMI ' 2X,'AIR CONCEN' 2X. 'DECAY CONST'
X 2X,'SOLUBILITY CONST' 2X,/DECAY CORRECTION FACTOR'
X /' ' 3X,3(12X,'CD,8X ' C I/MAA3',7X ' 1/Y ', HX,'G/ML')
7010 FORMAT(////' '25X 'DISTRIBUTION COEFFICIENTS ML/G'
X //' ''NUCLIDE',6X,'SURFACE',6X,'TRENCH',6X,'VERTICAL',
X 5X 'AQUIFER'/)
7807 FORMATC ' A8flX.9(1P211.2,2X))
7806 FORMAT(///J '.'NOCLIDE'4X.'RETENTION',4Xf'RETENTION'f
4X,5('TRANS COEEF* ,2X),/' ',12X,JIN AIR'.fiX,'IN WATER',
5X,'SOIL-V CROP' 2X'SOIL-R CROP',2X,'VEG-COU MILK',
2X.'VEG-GOAI MILK' 2X,'VEG-MEAT ',/ ' ',40X,2( 'D/KG',9X),
2(fD/L ',CJX),'D/KG?)
X
X
X
X
END
C
C
C
SUBROUTINE SURSOL(11,NYEAR,VOLO)
C
C
C CALCULATES THE AMOUNT OF SOLUBLE SURFACE CONTAMINANT THAT
C ENTERS THE STREAM AND TRENCH ANNUALLY.
C SURSOL IS CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C ADEPIH = SOIL DEPTH OF ACTIVE EXCHANGE
C XINFL = AVERAGE ANNUAL INFILTRATION
C RUNOFF = FRACTION OF NET INPUT GOING TO STREAM
C PD DOUNSLOPE DISTANCE TO STREAM
A-61
-------
C BUENS = BULK DENSITY OF SOIL
C EXTENT = CROSS SLOPE EXTENT OF SPILLAGE
C SQAM = AMOUNT Uh SPILLAGE
C XKD = CHEMICAL EXCHANGE COEFFICIENT
C
C
C INTERMEDIATE VARIABLES
C
C SMASS = SOIL MASS
C UMASS = WATER MASS
C
C
C OUTPUT VARIABLES
C
C SSTREM = AMOUNT Of NUCLIDE GOING TO STREAM
C SDEEP = AMOUNT OF NUCLIDE GOING TO TRENCH
C CU NUCLIDE CONCENTRATION IN WATER
C CS NUCLIDE CONCENTRATION IN SURFACE SOIL
C
C
DOUBLE PRECISION NUCLID
COMMON/EVAP/PPN.PHIB,P,XIRR,S(12),T(12>fTDU2)rXINFL,SINFL,
$ SMASS.UMASS.UDEEP
COMMON/NUC/NGCLID<40),ATMASS(40).TRAM(40).SOAM(40).ATAM(40).
X AQAM(40.1000),STAM(40),POLO(40)fPOLB<40),CS(40).CW(40).
g SSIREM<40),SDEEP<40).AIRCON<40),YSO(40),SQAVG(40),CON(40).
& AQCON(40>,STCON(40),ATCON(40>.AQAVG<40>.STAVG(40>,DETW<40), ISINEWL
i AIAVG(40).FMC<40),FMG<40).DECAY(40).XKn(4,40),SOL(40).
I FF(40>,RA(40),RU(40).BV<40),BR<40).DERATE(40>,CWAT<40>
COMMON/LAND/RAINF, ERODE,STPLNG.COVER,CONTRL.SEDELR.SO ILOS,
I PDHS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,RESAT,
X INSITE
C
C
USIREN=RUNOFFA
-------
c
c
c
C INPUT VARIABLE'S
C
C 1YR = CURRENT YEAR OF SIMULATION
C II = CURRENT NUCLIDE
C SAREA = AREA COVERED BY SPILLAGE
C GNDCON= GROUND CONCENTRATION
C 1RRES1= FIRST YEAR OF RESUSPENSION RATE
C IRRES2= LAST YEAR OF RESUSPENSION RATE
C RR RESUSPENSION RATE
C FTMECH=FRACTION OF YEAR FOR HECHANICAL DISTURBANCE
C U WIND VELOCITY
C
C
C
C INTERMEDIATE VARIABLES
C
C RE = RESUSPENSION FACTOR
C YS01 = NORMAL CONTRIBUTION TO ATMOSPHERIC SOURCE
C YS02 = CONTRIBUTION TO ATMOSPHERIC SOURCE FROM MECHANICAL
C DISTURBANCE
C
C
C OUTPUT VARIABLES
C
C AIRCON= AIR CONCENTRATION AT SPILLAGE AREA
C YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE AREA
C
C
P_«_«M
C ASSUME ALL RADIONUCL1DES DEPOSITED ON SOIL SURFACE AT
C TIME ZERO.
C
C
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR,TITLE(20).LOCATE(12),NYR1,NYR2,
& PCI1 .PCT2.LEAOPT,IOPVWV. IOPSAT,IPRT1.IPRT2,IDELT.IXTS,
& IRRES1.IRRES2.LIND,IAVG1,IAVG2,RR,FTMECH,INTYR(4), RAE1085
4 WWATL.WWATA.WWATH.,SWATL,SUATA.SWATH. IVAP.IBSMT
COMMON/NUC/NOCLID(40).ATMASS(46).TRAfi<40).SOAM<40),ATAM<40).
& AQAM(40.1000),STAM(40),POLO(40)FPOLB(40),CS(40).CU(40).
g SSTREM(40),SDEEP(40).AIRCON(40),YSO<40)rSOAVG(40),CON(40).
* AQCON<40).STCON(40>,ATCON(40).AQAVG<40).STAVG(40>.DETU(40), ISINEWL
X ATAVG(40),FMC(40).FriG(40).DECAY(40).XKn(4,40),SOL(40).
& EF(40).RA(40).RW(40).BV(40),BR(40),DERATE(40),CUAT(40)
COHMON/LAND/RAINF,ERODE,STPLNG.COVER,CONTRL.SEDELR.SOILOSr
& PORS.BDENS.DUET,EXTENT,ADEPIHfPD,RUNOFF,RESAI,
8 INSIIE
COMMON/AIR/HfV6,U.IT,IS.VD.XG,HLID, ROUGH,FIMIND,CHIQ,RElrRE2,RE3
COMMON/FXP/ ARG,RES(10000) ISIXPR
C T=FLOAT(IYR)A365. ISIXPR
C
IFCINBITE .EG. 1 .AND. IRRES1 .LT. 1YR) GO TO 11
P
C RESUSPENSION FACTOR BY ANSPAUGH ET AL
C
C RE=RE1AEXP(RE2ASQRI(T))+RE3 ISIXPR
C AIRCON(II)=REAGNDCON ISIXPR
A-63
-------
AIRCON(lI)=kES(IYk)AGNDCON ISIXPR
IFdYR .EQ. 1) AIRCON( II)=AIRCON(II)+ATAM(II)
C F=SGRT(PDAtXTENl)AVG/U/HD ISIXPR
F=ARGAVG/U/HD _ IblXPR
C Y!i01 = AlRL-UN
RETURN
11 YSO(II)=GNDCONARRAtTMECHA.001
RETURN
END
C
C
C
C
SUBROUTINE TRENCH (NYEAR, VOLB, VOLO,DMAX, PC, IINFL)
C
C
CAAA
CAAA
CAAA THIS SUBROUTINE MAINTAINS A TRENCH UATER BALANCE. UATER
CAAA ENTERS THE TRENCH IN THE FORM OF PRECIPITATION AND EXITS
CAAA FROM THE BOTTOM IF POSSIBLE. IF MORE UATER ENTERS THE
CAAA TRENCH THAN CAN EXIT FROM THE BOTTOM THE TRENCH MAY
CAAA OVERFLOW.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C INPUT VARIABLES
C TDEPTH = TRENCH DEPTH
C 1AREA = TRENCH AREA
C PORT = POROSITY OF TRENCH MATERIAL
C OLDUAT = VOLUME Ot WATER IN TRENCH FROM PREVIOUS YR
C XLSAT = LENGTH OF SATURATED ZONE
C PPN = ANNUAL PRECIPITATION
C XINFL = ANNUAL INFILTRATION
C NYEAR = CURRENT YEAR Of SIMULATION
C
C OUTPUT VARIABLES
C
C DMAX = MAXIMUM DEPTH Ot UATER IN TRENCH
C OLDUAT = VOLUME OF UATER IN TRENCH AT END OF YEAR
C VOLO = VOLUME OF WATER OVERFLOWING TRENCH
C VOLB = VOLUME OF UATER GOING OUT BOTTOM OF TRENCH
C
A-64
-------
C
C
C
C
C
C
C
C
C
INTERMEDIATE VARIABLES
WDEPTH = DEPTH Ot WATER IN TRENCH
NEUUAT = VOLUME OF WATER ENTERING TRENCH
PC FRACTION OF TRENCH CAP THAT HAS FAILED
REAL NtUWAT
COrtMON/EVAP/PPN.PHID,P.XIRR,SU2),T(12)FTD(12).XINFL,SINFL,
* SMASS.WMASS.WDEEP
COHMON/IRCH/lAREA, TDEPTH, OVER. PORT, RELFAC,DENCON. OLDUAT,FN
COMMON/UATER/DTRAQ.DUELL,GUV,XLSAI,STFLOW,AQTHK,AQDISPr
J PORA.PORV,PERMV,IAQSTF,CPRJ
COHMON/LAND/RA INF ,ERODF .STPLNG, COVER, CONTRL . SEDELR, SO ILOS,
X PORS.BDENS, DUET, EXTENT ,ADEPTH,PB, RUNOFF. RESAI.
I INSITE
VOLB1'=0.
VOLOT=0.
PC=CAP(NYEAR)
DELT=0.10
DO 30 1=1.10
TINFL=N£WWAI/TAREA
OLDWAT=OLDUAT+NEWWAT
UDEPTH=OLDWAT/(PORTATAREA)
DMAX=UDEPTH
IF (UDEPTH . GT . TDEPTH ) WDEPTH=TDEPXH+ ( UBEPl'H-TDEPTH ) *PORT
VOLO=0.
IF(WDEPTH .GT. TDEPTH) VOLO=(UDEPTH-TDEPTH) ATAREA
VOLB=0.
IFdJUEPTH .LI. l.E-7)GO 10 20
VOLB=
-------
CAAA
CAAA
CAAA
CAAA
C
C
C
C
C
C
C
C
C
C
INPUT VAR1BALES
II = NUCL1DE NUMBER
NYEAR = CURRENT YEAR Of SIMULATION
11IME = TRANSIT TIME FROM TRENCH TO WELL
VOLB = VOLUME OF WATER LEAVING TRENCH
POLE = AMOUNT OF NUCLIDE LEAVING BOTTOM OF TRENCH
DECAY = RADIOACTIVE DECAY CONSTANT
C
C
C
C
OUIPUI VARIABLES
AQAM = AMOUNT Of NUCLIDE AT UELL SITE
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR,TITLE(20). LOCATE(12),NYR1,NYR2.
& PCT1.PCT2,LEAOPT,IOPVUV,IOPSAT,IPRT1,IPRT2.IDELT,IXTS,
rLfi.Laru.i,ufi_iijnui J. • j. u i v w v • A u i u n x • i r i\ j. j. p At i\ ± u • j. i.< u u j. • i, r
IRRESl,IRRES2.LIND,IAVGl,IAVG2,RR,FTMECHfINTYR(4), RAE1085
4 WUATL.UWATA.WUATH.SUATL.SUATA.SWATH,IVAP.IBSMT
COMMON/NUC/N(JCLID(40),ATMASS(40).TRAM(40).SOAM(40),ATAM(40),
J AQAM(40.1000),STAM(40),POLO(40),POLB(40).CS(40).CW(40).
S SSTREM(40),SDEEP(40).AIRCON(40),YSO(40),SOAVG(46),CON(40).
& AQCON(40),STCON(40),ATCON(40).AQAVG(40).SIAVG(40).DETU(40), ISINEUL
£ ATAVG(40) FMC(40),FMG(40).DECAY(40),XKD(4,40),SOL(40).
& FF(40),RA(40),RW(40).BV(40),BR(40),DERATE(40),CWAT(40)
DIMENSION ITIME(40),DDETA(40)
C CALCULATE CORRECT POSITION IN ARRAY AND DECAY
C FOR THE PERIOD OF TIME MATERIAL IS IN TRANSIT
C TO UELL.
C
ITMP=1IIME(II)
IF«NYEAR+1TMP) .61. (MAXYR) .OR. I1MP .LI. 0) GO TO 10
AQAM(II,NYEAR+niM£(II»=DEXU(II)A(POLB(II)+ ISIMOD
8 SDEEP(II))ADDETA(II)
10 CONTINUE
RETURN
END
SUBROUTINE GUANC8(FUN,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)
THE MATERIAL
FROM TRENCH
C
C
C
C
C
C
C
C
C
C
C
C
REAL FUN ,A.B,ABSERR,RELERR,RESULT,ERREST,FLAG
INTEGER NOFUN
ESTIMATE THE INTEGRAL OF FUN(X) FROM A TO B
TO A USER PROVIDED TOLERANCE.
AN AUTOMATIC ADAPTIVE ROUTINE BASED ON
THE 8-PANEL NEWTON-COTES RULE.
INPUT
FUN THE NAME OF THE INTEGRAND FUNCTION SUBPROGRAM FUN(X)
THE LOWER LIMIT OF INTEGRATION
B THE UPPER LIMIT OF INTEGRATIONS MAY BE LESS THAN A)
RELERR A RELATIVE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)
A-66
-------
C ABSERR AN ABSOLUTE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)
C
C OUTPUT
C
C RESULT AN APPROXIMATION TO THE INTEGRAL HOPEFULLY SATISFYING THE
C LEAST STRINGENT OF THE TWO ERROR 1'ULERANCES.
C ERREST AN ESTIMATE OF THE MAGNITUDE OF THE ACTUAL ERROR.
C NOFUN THE NUMBER OF FUNCTION VALUES USED IN CALCULATION OF RESULT.
C FLAG A RELIABILITY INDICATTOR IF FLAG IS ZERO, THEN RESULTPROBABLY
C SATISFIES THE ERROR TOLERANCE. IF FLAG IS
C XXX.YYY, THHEN XXX = THE NUMBER OF INTERVALS WHICH HAVE
C NOT CONVERGED AND O.YYY = THE FRACTION OF THE INTERVAL LEFT
C TO DO UHEN THE LIMIT NOFUN WAS APPROACHED.
C
C
REAL WO.UlyU2.U3.U4.AREA,XO,FO,STONE.STEP,COR11,TEMP
REAL QPREV,GNOUfQDIFFfQLEFT,ESTERR.TOLERR
REAL QRIGHT(31).F(16),X(16),FSAVE(8.30).XSAVE(8.30)
INTEGER LEVMIN,LEVMAX,LEVOUT,NOMAX,NOFIN,LEV,NIM, I,J
C
C AAA STAGE 1 AAA GENERAL INITIALIZATION
C SET CONSTANTS
C
LEVMIN = 1
LEVMAX = 30
LEVOUT = 6
NOMAX = 5000
NOFIN = NOMAX - 8A(LEVMAX-LEVOUT+2AA(LEVOUT+1) )
C
C TROUBLE UHEN NOtUN EQUALS NOFIN
C
UO = 3CJ56.0/14175.0
Wl = 23552.0/14175.0
U2 = -3712.0 / 14175.0
U3 = 41964.0/14175.0
U4 = -18160.0 / 14175.0
C
C INITIALIZE RUNNING SUMS TO ZERO
C
FLAG = 0.0
RESULT = 0.0
COR11 = 0.0
ERRESI = 0.0
AREA = 0.0
NOFUN = 0
IF(A .EG. B ) mUKN
C
C AAAAA STAGE 2 AAAA INITIALIZATION FOR FIRST INTERVAL
C
LEV = 0
NIM = 1
XO = A
X(16) = B
QPREV =0.0
EO = FUN(XO)
STONE =
-------
X(6) = (X(4) + X(B)) / 2.0
X(10) = )
25 CONTINUE
C
NOFUN = 9
C
C AAAAA STAGE 3 AAA CENTERAL CALCULATION
C REQUIRES QPREV,XiO.X2,X4. ---- ,X16,FO,F4. ---- F16
C CALCULAIIES X1.X3, X5. . .X15, Ei ,F3, . . . , El5FQLEEl, QRI6H1
C QNOW,GDIFF,AREA.
30 X(l) = (XO + >;(_;)) / 2.0
F(l) = £UN(X(1;.<
DO 35 J = 3, Irj, 2
X(J) = (X(J-l) *- X(JH)) / 2.0
F(J) = FUN(X(Jn
35 CONTINUE
NOEUN = NOFUN + 8
STEP = (X(16) - XO) / 16. 0
QLEEI = (WOA(FO +E(8)) + U1A(F(1) + F(7)) + H2A(F(2) + F(6))
4 + U3A(F(3)U-(5)) + W4A1? (4) ) ASTEP
HOLlhl=ABS(QLEFT)
IF(HOLXM1 .EG. 0.0) GO TO 183
IFtHGLlMl .GT. l.OE-65) GO TO 183
QLEFI=0.0
183 QRIGHI(LEV+1)=(UOA
-------
52 CONTINUE
C
C ASSEMBLE LEFT HAND ELEHENTS FOR IMMEDIATE USE
C
GPREV = QLEFT
DO 55 I = 1,8
J = -I
F(2AJ+13) = EU + 9)
X(2AJ+18) = X(J+9)
55 CONTINUE
GO TO 30
C
C AAAA S1AGE 6 AAA TROUBLE SECTION
C
C NUMBER OF FUNCTION VALUES IS ABOUT TO EXCEED LIMIT
C
60 NOUN = 2ANOFIN
LEVHAX = LEVOUI
C TEMP1=B-A
FLAG = ELAG-KB-XO)/(B-A)
GO TO 70
C
C CURRENT LEVEL IS LEVMAX.
C
62 FLAG = FLAG +1.0
C
C
C AAAASl'AGE 7 AAA INTERVAL CONVERGED
C ADD CONTRIBUTIONS INTO RUNNING SUMS
C
C
70 RESULT = RESULT + QNOU
ERRE3X = ERREST + ESTERR
COR11 = COR11 + GDIFF / 1023.0
C
C LOCATE NEXT INTERVAL
C
72 IF (NIM .EQ. 2A(NlM/2)) GO TO 75
NIM = NIM/2
LEV = LtV-1
GO TO 72
75 NIM = NIM + 1
IF (LEV .LE. 0 ) GO TO 80
C
C ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL
C
QPREV = QRIGHKLEV)
XO = X(16)
FO = F(16)
DO 78 I = 1.8
F(2AI) = FSAVE(1,LEV)
X(2AI) = XSAVE(I,LEV)
78 CONTINUE
GO TO 30
C
C AAA STAGE 8 AAA FINALIZE AND RETURN
C
80 RESULT = RESULT + COR11
C
C
A-69
-------
C AAA MAKE SURE LRRES1 NOT LESS THEN ROUNDOFF LEVEL
C
IF(ERREST .EQ. 0.0) RETURN
82 TEMP = ABS(RESULI) + ERREST
IFdEMP .NE. ABS(RESULT)) RETURN
ERREST = 2.0AERRESI
GO TO 82
END
C
C
C
C
DOUBLE PRECISION FUNCTION FCN(T)
C
C FCN DETERMINES FUNCTIONAL EVALUATIONS OF
C THE INTEGRAND OF THE GROUNDUATER TRANSPORT MODEL.
C FCN IS CALLED BY QUANC8.
C
IMPLICIT REALA8 (A-H,0-Z)
COMMON/DOUBLE/V,XLjD,R,AL
DATA PI/3.14159265UO/
P=VAXL/D
DN=ALAXL/V
TH=TAV/XL
F1=R/TH-1.DO
E2=0.25DOAPATH/R
F3=DNATH
F4=(RAP/(PIATHAA3.))AA.5
F3=-F3-F2AF1AF1
FCN=O.ODO
IF(E3 .GE. -l.7i.D2) ECN=.5DOAVAE4ADEXF(F3)/XL
RETURN
END
C
C
C
C
SUBROUTINE DARTAB(1FLAG)
REALA8 NUCLlDfORGN.CANC.TOTBOD,RNLOC,OGLOC,GEN,OREP,CREP,RREP.
A P0218,PB214.BI214.P0214,PULMO,LUNGS.NDP,TDP.PUL,RREPS
DATA P0218/8HPO-218 /.PB214/8HPB-214 /.BI214/8HBI-214 /,
A P0214/8HPO-214 /,PULMO/8HPULMNARY/,LUNGS/8HLUNGS /,
B NDP/8HAN-PA /.TDP/8HAT-BA /,PUL/8HAPULA /
LOGICAL QENEFf,OUTPUT
REAL LLET
INTEGER RTABLE,DTABLE,TABLE(7),FTABLEfPTLOC,HLLOC,FALOC
C
DATA T01BOD/8HT01 BODY /
DIMENSION TIlLE(20).CONC(4).IL2X(2)ffiREPS(4)
NAHELIST /INPUT/ILOC,JLOC,PLOC,AGEX,ILET,DTABLE,RIABLE,FIABLE,
A OUTPUT,GSCEAC
NAMELIST /ORGAN/ORGN,NORGN,TIME
NAMELIST /QFACTR/HLET,LLET
NAMELIST /CANCER/CANC.NCANC.RELABS
NAMELIST /RNUCLD/NUCLID,NONCLD,PSIZE,RESPFGIABS
NAMELIST /LOCTBL/NTLOC,RNLOC,OGLOC,PILOC,FALOC.HLLOC.LIABLE
NAMELIST /GENTIC/GENEFF.GEN,NGEN.GREAC,REPPER.QLLEI,GHLET
COMMON/COMEX/EXPP(20.20,46,4),POP(20,20),POPFAC TOTFAC, NOL,NOU.
> NRL.NRU,IDIST(20).ILOC.JLOC
COMMON/COMOR/ORGN(20),NORGN,TIME(20),DOSE(20f40,4,2), DTABLE(7)
A-70
-------
COMHON/LETFAC/HLEK20) ,LLET(20)
COMHON/COMCA/CANC(20),NCANC,RELABS(20),RISK(20,40,4,2), RTABLE(7)
> AGEX.YRLL(20.40.4.2)
COMfiON/COMRF/REF(20,40,4>,FTABLE<7>
COMMON/COhNU/NUCLID(40),NONCL[i,PSIZE(40),RESP(40>,GIAB5 (4,40),
> INDPOP ' '
COMMON/COMLOC/RNLOC(10).OGLOC(10).PTLOC(10),EALOC<10),
> HLLOC(10).LIABLt:(iO),NTLoC
COhMON/COhGEN/GEN(3),NGEN.GDOSE(3.40,4,2),GRISK(3.40.4,2),
> GENEEE,GRFAC(2),REPPER.GLLEI(3).GHLET(3).GREt'(3f40.4)
COMMON/COMRN/OREP(20),j
-------
REAEK26, INPUT)
IF (PLOC.NE.O) URITE(6,10100)PLOC
IF (ILET(1).EQ.0.08.ILET(1).EQ.2) URI'IE ( 6,10200)
IF (ILET(1).EQ.1.0R.ILET(1).EQ.2) URHE(6,10300)
IF URITE<6,10400)
IF (1LET(2).EQ.1.0R.ILET(2).EQ.2) WRITE<6,10500)
URITE( 6,10600) DTABLE.ftfASLE,FTABLE
WRITE(G,11900) GSCFAC
CAAA READ IN ORGAN PARAMETERS
40 READ(26,ORGAN)
URITE(6,10700) NORGN
URITE(6,10800) NORGN)
CAAA READ IN CANCER PARAMETERS
50 R£AD(26,CANCER)
URIIt(6r11000) NCANC
WRITE(6,11100) (CANC(I),RELABS(I),I=1,NCANC)
READ IN GENETIC PARAMETERS
REAB(26,GENTIC)
IF(GENEFF) UR11E(6,11800) (GEN(I),1=1,NGEN)
IF(GENEFF) URITE(6.11850) ijftJrAC.REPPER
11800 FORMATCOGENETIC HOSES ARE PRINTED FOR '
< 3(1X.A8))
11850 FORMA1C 1HL RISK FACTOR (PER RAD/MILLION BIRTHS)',
< ' FOR GENETIC DOSE ARE :'/
< G15.8 ,' FOR LOU LEI, AND'/
< 615.8.' FOR HIGH LET,'/
< ' AND THE REPLACEMENT RATE FOR THE POPULATION IS :'/
< 1X.G10.5 ' YEAR-1')
CAAA CONVER1 1(J /MRAH/BIRTHS
GRFAC(l)=GSFAC(l)Al.E-9
68FAC(2)=GRFAC(2)Al.E-9
CAAA READ IN RADIONUCLIDE PARAMETERS
READ(26,RNUCLD)
WRITE(6,11200) NONCLD
URITE(6.11300)(NUCLID(I),PSIZE(I)fRESP(I), (GIABS(JfI).J=lf4) . 1=1
> NONCLD5
DO 30 1=1,NONCLD
DO 25 K=1.4
IF(NUCLID(1).EG.RREPS(K)) GO TO 27
25 CONTINUE
GO TO 30
27 NRREP=NRREP-H
RREP(NRREP)=RREPS(K)
30 CONTINUE
NILOC=0
READ(2fa,LOCTBL)
IF(NTLOC.EQ.O) GO TO 55
WRITE(6,11305) NTLOC
WRHE(6,11310) (RNLOC(1),OGLOC(I),PTLOC(I),FALOC(I),HLLOC(1),
s ,L~"XfNJlLiULs)
55 CONTINUE
11305 EORHAK'0',12 ' LOCATION TABLES ARE TO BE OUTPUT FOR:'/
> ' NUCLIDE ORGAN PATHWAY QUANTITY LET'/
> ' OR CANCER'/)
11310 FORMAT(1X.A8,1X.AO,4X.I2.7X.I2,7X,I2)
CAAA READ IN HOSE RATES AND HEALTH RISKS
CALL RDSTOR(OUTPUT)
A-72
-------
IF(NUKGN.NE.O) CALL RLORGF
C
C END OF DARTAB INPUT; RETURN
C
RETURN
C
C
C BEGIN DOSE CALCULATIONS
C
C
CAAA CHOOSE LOCATION AND FIND EXPOSURES
C
33 CALL CHLOC(PLOC,CONC.GSCFAC,IFLAG)
IF ( IELAG .NE. 1 ) CALL SUMMRY(TITL£rG3CL-AC. IFLAG)
C
C RETURN IF ANNUAL SUMMARY OR MAXIMUM DOSE CALCULATION
C
IF ( 1FLAG .LQ. 2 ) RETURN
IF ( IFLAG .EU. 3 ) RETURN
C
IF (NUkGN.LE.O) GO TO 70
CAAA DECIDE IF LOU AND HIGH LET ARE TO BE SEPARATE TABLES
CAAA AND THEN OUTPUT TABLES
IDO=0
DO GO J=l,7
IF (DTABLE(J).NE.O) IDO=1
TABLE(J)=DTABLE(J)
60 CONTINUE
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 67
DO 65 J=1.NTLOC
IF(FALOC(J).EQ.1)IDO=1
65 CONTINUE
67 CONTINUE
CAAA ILET = 0 MEANS ONLY TABLES FOR LOU AND HIGH LET SEPARATELY
CAAA ILET = 1 MEANS ONLY A TABLE FOR LOU AND HIGH LET COMBINED
CAAA ILET = 2 MEANS BOTH SETS OF TABLES
IF (IDO.EQ.l) CALL PREPDR(TABLE,ILET(1),TITLE,GSCEAC,IFLAG)
C RETURN IF PATHWAY DOSE CONVERSION FACTOR CALCULATION
C
IF ( IFLAG .EQ. 1 ) RETURN
C
C
70 IDO=0
DO 80 3=1,7
IF (tTAbLE(J).NE.O) IDO=1
80 TABL£(J)=£TABLE(J)
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 87
DO 85 J=1.NTLOC
IF(FALOC(J).EQ.3) IDO=1
85 CONTINUE
87 CONTINUE
IF (IDO.EQ.l) CALL PREPRE(TABLErTlTLE,GSCFAC,IFLAG)
CAAA OUTPUT RISK TABLES
IDO=0
DO 90 J=l,7
IF (RTABLE(J).NE.O) IDO=1
90 TABLE(J)=RIABLEU)
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 97
DO ^5 J=1,NTLOC
A-73
-------
IF(EALGC(J).tGI.2)lDO = l
95 CONTINUE
97 CONTINUE
IF (IDO.EQ.l) CALL PREPHR(TABLE, ILEK2) , TITLE, GSCFAC, IELAG)
RETURN
10000 tURMATCl'.20A4)
10100 FORriATC TABLES FOR THE SELECTED INDIVIDUAL WILL BE DONE FOR'.
>' THE LOCATION HAVING' E8.2 ' % OF THE HIGHEST TOTAL RISK.'/)
10200 FORMATC DOSE RATE TABLES FOR LOW AND HIGH LET WILL BE ',
> 'PRINTED SEPARATELY.')
10300 FORMATC DOSE RATE TABLES COMBINING LOU AND HIGH LET ',
> 'WILL BE PRINTED.')
10400 FORMATC HEALTH RISK TABLES FOR LOU AND HIGH LET UILL BE ',
> 'PRINTED SEPARATELY.')
10500 FORMATC HEALTH RISK TABLES COMBINING LOU AND HIGH LET ',
> 'UILL BE PRINTED.')
10600 FORMATCOO INDICATES THE TABLE UILL NOT BE PRINTED'/
A' 1 INDICATES INDIVIDUAL VALUES WILL BE PRINTED'/
B' 2 INDICATES MEAN INDIVIDUAL VALUES UILL BE PRINTED'/
C' 3 INDICATES COLLECTIVE VALUES UILL BE PRINTED'/
D' 4 INDICATES ALL OF THE ABOVE UILL BE PRINTED'//
>
>
>
>
>
QUANTITY TABLE NO. 1 2 3 4 5 6 I'/
ITDOSE'RRTES
2. HEALTH RISKS
3. RISK EQUIVALENT FACTOR ',7(12, IX))
"77T127T777
',7(12,1X)/
'
10700 FORMATCOIHERE ARE ',14 ' ORGANS TO BE OUTPUT. THEY ARE:'/)
10800 FORMAT (IX 'ORGAN ',4Xf ' TIME', 4X,' ORGAN ',4X,' TIME', 4X,
l'ORGAN',4X,'TIME'/
> (3(1X. A3,2X,E4.0,2X)))
10900 FORMATCO ORGAN DOSE EQUIVALENT FACTORS '/
A ' LOU LET HIGH LET'/
A (2X.A8.tl5. 5. IX. Fib. 4))
11000 FORHATCOTHERE ARE ',14,' CANCERS TO BE OUTPUT.'/
> ' A 1 INDICATES ABSOLUTE RISK; A 2 IS RELATIVE RISK.')
11100 FORMATC CANCER CANCER CANCER CANCER'/ (1X.4CA8.
> 1X.H2.0.1X)))
11200 FORMATCOIHERE ARE '.14.' RADIONUCLIDES TO BE OUTPUT.')
11300 FORMATC NUCLIDE PARTICLE SIZE CLEARANCE CLASS '.
> 20X/6.I. ABSORPTION ERACTIONV49X, 'STOMACH' 8X. 'SI7 , 13X, 'ULI' .
> 12X ,'LLI'/ (1X,A8,1X,F10.5,6X,10X,A1,4X,4F15.5))
11700 FORMAT(20A4)
11900 tORMATCOTHE GROUND SURFACE CORRECTION FACTOR IS ' F5.2/)
END
C
C
C
C
SUBROUTINE RDSTOR(OUTPUT)
CAAA THIS SUBROUTINE READS AND STORES DOSE RATES
CAAA AND HEALTH RISKS FOR ORGANS AND CANCERS
REALA8 NUC,NUCLID,ORGN,CANC,0,C,OG.GEN.OREP.CR£P.RREP
LOGICAL GENEFF.fiUTPUf
COMMON/COMOR/ORGN(20).NORGN.TIME(20),DOSE(20,40,4,2). DTABLEC7)
COMMON/COMRN/OREP(20),RREP(20).CfiEP(20).ULRN(20.20),
A RRISK.RREF(2).RYRLL,NOREP,NRREP\NCREP
. COMMON/COMCA/CANC(20).NCANC,RELABS(20),RISK(20F40,4,2)I RTABLE(7),
s HU&jAylKljLi^fVt^Xvy^B^i}
COMMON/COMRF/REF(20.40,4),FTABLE(7)
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40)FGIABS (4,40),
A-74
-------
> INDPOP
COHMON/COMUS/C(40),0(40>.D<2,40),R(2.40),RF(40),YLL<2,40),
> G(2,3>,OG(3>.DCHK(20,46),RCHK<20,4&),GCHK<3,40)
COhhON/COriGEN/GENC3).NGEN.GDOSE(3.40,4,2).GRlSK<3.40,4,2)
> GENEFF.GRFAC(2),REPPER,GLLET(3),GHLET(3),Gfit;£<3,40,4'
DIMENSION GIIN(4)
LOGICALA1 FAL,IRU,DCHK,RCHK,GCHK,IiJ
DATA IRU/. TRUE. /,FAL/. FALSE./
CAAA ZERO OUT ALL ARRAYS
NDQ=NORGN-H
DO 35 N=l,2
DO 30 J=l,4
DO 30 K=1,NONCLD
DO 10 L=1,NDO
DOSE(L,K,J.N)=0.0
IF(L.GT.NG£N> GO TO 10
GDOSE(L,K,J,N)=0.0
10 CONTINUE
NDO=NCANC+1
DO 20 L=1,NDO
RISK(L.K, J,N)=0.0
YRLL(L,K,J,N)=0.0
REF(L.K,J)=0.0
IF(L.GX.NU£N) GO TO 20
GRISK(L.K,J,N)=0.0
=
20 CONTINUE
30 CONTINUE
35 CONTINUE
DO 38 L=l,40
DO 3? K=l,20
DCHK(K,L)=TRU
RCHK(K.L)=IRU
37 CONTINUE
DO 39 K=l,3
GCHK(K,L)=IRU
39 CONTINUE
38 CONTINUE
CAAA READ FIRST RECORD
41 READ(25,END=180) NUC,SI2E1N,RESPIN,GIIN,TIMIN, IND
IFIND=0
CAAA CHECK TO SEE It THE RADIONUCLIDE IS IN OUTPUT LIST
DO 50 K=1,NONCLD
IF (NUC.EQ.NUCLID(K)) GO TO 60
40 CONTINUE
50 CONTINUE
IF(1F1ND.EQ.O)GO TO 125
GO TO 41
CAAA FIND OUT WHAT TYPE OF RECORD FOLLOWS
60 IRA=IND/10
IF(IRA.GT.2) GO TO 401
ICHOS=IND-IRAA10
IF (ICHOS.NE.2) GO 10 75
DO 70 L=1.4
IF (ABS(GIIN(L)-GIABS(L,K)).GT.l.E-6) GO TO 40
70 CONTINUE
75 IF (ICHOS.NE.3) GO 10 80
IF (ABS(SIZEIN-PSIZ£(K)).GI.l.E-6) GO TO 40
IF (RESPIN.NE.RESP(K)) GO TO 40
80 IF (IND.LE.S) GO TO 130
A-75
-------
CAAA THE NEXT TWO RECORDS CONTAIN CANCERS AND RISKS
IF(IEIND.NE.O) GO TO 81
REALK25) NC. ILE1. (C( I), 1=1 .NO
READ (25) ((ft (L. I). L=l, ILEI >.I=1, NO
READ(25) «YLL(RF,TRF
81 IEIND=1
REF(NCANC+1.K.1CH03-1)=TRF+REF(NCANC+1.K.ICHOS~1)
CAAA CHECK 10 SEE IE THE CANCER IS IN OUTPUT LIST
DO 110 1=1.NC
DO -30 J=1.NCANC
IF (L-(I).EQ.CANC(J)) GO TO 100
90 CONTINUE
GO TO 110
CAAA THE CANCER NAMES MATCH, NOW DO UE HAVE RELATIVE OR ABS RISK
100 IF (RELABS(J).N£.IRA) GO TO 110
CAAA A MATCH. STORE THE RISK
RCHK(J,K)=FAL
RISK=YLL(lFI)
IF (1LEI.LE.1) GO TO 105
RISK(J,K,ICHOS-1,2)=R(2,I)
YRLLUjKICHOS-1.2)=YLL(2,I)
105 REE(J.K,ICHOS-1)=RE(I)
IF(1ND.NE.3)GO TO 110
DO 106 L=1,NRREP
IF(NUCLID(K).EQ.RREP
-------
159 DOSE(J,K,IND-1.i)=D(1,I)
IF (1LET.Q1.1) DOSE ' IN THE INPUT DATA SETS:'/
> ' ORGAN NUCLIDEV)
901 FORMAH1X,A8,1X,A8)
IW=TRU
DO 300 K=1,NONCLD
DO 300 J=1,NCANC
IF(.NOT.RCHK(J,K)) GO TO 300
IF(IU) WSIX£(6,902)
IW=FAL
902 FORMATCOXHE FOLLOWING NUCLIDES AND ',
< 'CANCER RISK FACTORS WERE NOT FOUND',
> ' IN THE INPUT DATA SETS:'/
> ' CANCER NUCLIDEV)
WRITE(6,901) CANC(J),NUCLID(K)
300 CONTINUE
IF(.NOT.GENEFF) RETURN
IW=TRU
DO 400 K=1,NONCLD
DO 400 J=1,NGEN
IF(.N01.GCHK(J,K)) GO 10 400
IF(IW) WRIXE(6,903)
IW=FAL
903 FORMATCOTHE FOLLOWING NUCLIDES AND ',
< 'GENETIC DOSE FACTORS WERE NOT',
A-77
-------
> ' FOUND IN THE INPUT DATA SETS:'/
> ' GEN.DOSC NUCLIDE' )
URITE<6,901) GEN(J),NUCLID(K)
400 CONTINUE
DO 625 J=1,NONCLD
DO 625 K=3,4
NGN=NGEN-1
AVG=0.0
DO 600 1=1,NGN
AVG=AVG+GDOSE(I,J,K,1)
600 CONTINUE
GDOSE
-------
c
c
c
c
10000
10100
RREF(1)=RF<1)
RRE£<2)=TRF
GO TU 40
END
SUBROUTINE FACOUT
REALA8 NUCLILi.ORGN.CANC,OG.GEN,OREP.CREP,RREP,RN222,UBODY
DATA RN222/8HRN-222 /,UBODY/*U BODY '/
LOGICAL GENEFF
COHHON/COMOR/GRGN(20),NORGN,TIME(20),DOSE<20,40,4,2),BIABLE(7)
COHHON/COMRN/OREP(20>.RREP(20).CREP(20),ULRN(20,20),
A RRISK.RREF(2).RYRLL.NOREP.NRREP.NCREP
COHMON/COMCA/CANC(2&).NCANC,RELABS(20>,RISK(20,40,4,2),
A RIABLE(7).AGEX,YRLL(26,40,4,2)
COMMON/COMRF/REF(20.40.4),FTABLE(7)
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS(4,40),
A INDPOP
COMHGN/COMGEN/GtN(3),NGEN.GDOSE(3.40,4.2).GRISK<3.40,4,2),
A GENEFF.GRFAC<2).REPPER,GLLET(3>,GHLET(3),GREf(3,40,4)
DO 1000 K=1.NONCLB
URI1E(6,10000) NUCLID(K)
WRITE(fa.lOlOO)
FORrtATC'lFOR NUCLIDE . ,n0,,,
FORMATC LOSE RATE CONVERSION FACTORS'/
IX,'ORGAN' 1IX,'INGEST ION' ,10X,'INHALATION',
A 9X,'AIR',5X.'GROUND'/
B 12X'LOU LET',3X,'HIGH LET' 2X,'LOW LET'
B 3x 'HIGH LET' 2X,'IMMERSION' ix 'SURFACE')
URIIE(6I10200) (ORGN(I),«DOS£(I,K,J,N),N = 1,2),J = 1,2),
A (DOSE(I,K.J.1).J=3.4),I=1,NORGN)
FORMAT((1X,A8.1X,6(1PG10.3)))
IF(.NUT.GENEFF) GO TO 100
URIIE(6,10300)
WRITE(6,10200) (GEN
-------
10190
10275
10600
300
1000
400
450
10700
A
6
C
D
C
C
C
C
CAAA
WRITECG.10190)
FORMAlrORISK EQUIVALENT CONVERSION FACTORS'/
IX 'CANCER',3X,'INGEST ION' IX,' INHALATION',
4X,'AIR',4X.'GROUND'/31X,'IMMERSION',2X,'SURFACE')
NALL=NCANC+1
CANC(NALL)=UBODY
URIIE(6.1027b) GENEFF,GRFAC(2).REPPER.GLLET(3),GHLET(3).GfiEE(3l40l4)
DATA ORG/8H ORGAN /.LAST/SHUT. SUM /.GON/8H GONAD /
COhMON/COMLOC/RNLOC(10).OGLOC(10),PTLOC(10),FALOC(10).
> HLLOC(10),LTABLE(10),NTLOC
REAL LLET
INTEGER TABLE.FALOC.HLLOC.PTLOC
i. 1 I Li 11 xJ .L U 11 JL'UJljXMV.TV.I.jj/.UUUOIjVJ.IVilfi/
DATA NUN/4H(WORf4HKlNfi.4fl LEVf4Hfil) f4*4H .4H(UOR.
4HKING,4H LEV,4HEL) ,4A4H ,4H(PER,4HSON ,4HUORK,
> 4HING .4HLEVE.4HL) ,2A4H /
DATA NOTE/4HRAD0.4HN DA,4HUGHT.4HER E.4HXPOS.4HURE: .
> 14A4H /.NOT2/20A4H /
LOGICAL IDO.GENEFF
DATA TITLA/4HINDI,4HVIDU.4HAL D,4HOSE .4HRATE.4H (MR, 4HAD/Y.
> 4HEAR),4H ,4H ,4HMEAN,4H IND,4HIVID.4HOAL . 4HDOSE.4H RAT.
> 4HE (M 4HRAD/ 4HYEAR 4H) 4HCOLL 4HECTI 4HVE fi,4HOSE 4HRATE
> 4H (PE.4HRSON.4H RAD.4H /YC 4HAR) /
DATA 1ITLB/4HINDI,4HVIDU,4HAL D,4HOSE ,4HEQ. ,4HRATE,4H(MRE,
A-80
-------
> 4H«/YE,4HAft) ,4H ,4HMEAN,4H IND,4HIVID,4HUAL . 4HLHJSE, 4H EQ.,
> 4H RA1,4HE (M,4HREM/,4HYR) ,4HCOLL,4HECII, 4HVE D,4HOSE ,4HEQ. ,
> 4H (PE,4HRSON,4H REM,4H /YE.4HAR) /
DATA 1ITLGA/4HINDI,4HVIDU,4HAL G,4HENET,4HIC D,4HOSE ,
< 4H(MRA,4HD) ,4H ,4H .
> 4HMEAN,4H 1ND,4HIVID,4HUAL ,4HGENE,4HTIC ,4HDOSE,4H (MR,
> 4HAD) ,4H ,
> 4HCOLL,4HEC1I,4HVE G,4HENET,4HIC D,4HOSE ,4H( PE,4HRSON,
> 4H RAD.4H) /
DATA 111LGB/4HINLH,4HV1DU,4HAL G,4HENET,4HIC D.4HOSE ,
> 4HEQ. ,4H(MRE,4HM> ,4H ,
> 4HMEAN,4H 1ND,4H1VID,4HUAL ,4HGENE,4HIIC ,4HDOSE,4H EQ.,
> 4H (HR,4HEM) ''''»'
> 4HLOLL,4HECTI,4HVE G,4HENET,4HIC D,4HOSE ,4HEQ. ,4H(PER,
< 4HSON .4HREM)>
DATA 1LET/4HLOU .4HLET .4HHIGH.4H LET.4H ,4H /
COMMON/COMOR/ORGN(20).NORGN,TIhE(20),DOS£(20,40,4,2)
COMhON/LETFAC/HLET(20).LLET(20)
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
DATA EACD/1..1..1..100..1..1..1..100...001..001..001..1/
DATA t'ACG/1.,1.,1.,100.,1.,1.,1.,106.,.001,.001,.001,.1/
DATA 1KP/0/
CAAAAA?????????
CAAA MULTIPLY DOSES BY EXPOSURES
CAAA PREPARE TABLE FOR HIGH AND LOW LET SEPARATELY
IF dKP.EQ.l) GO TO 6
IKP = 1
DO 5 3=1.3
FACD(4,J)=FACD(4,J)AGSCFAC
FACG(4.J)=FACG(4,J)AGSCFAC
5 CONTINUE
6 DO 50 L=l,2
10 DO 20 K=l,2
20 T11L2(K)=ILEI(K,L)
DO 40 11=1.3
DO 42 3=1,NOREP
DO 42 K=l,l
OFAC(J.K)=1.
42 CONTINUE
IDO=.FALSE.
IF(ILEt.EQ.l) GO TO 35
DO 30 K=l,7
ITAB(K)=0
IF (IABLE(K).NE.IT.AND.TABLE(K}.NE.4) GO TO 30
ITAB(K)=1
IDO=.IRUE.
30 CONTINUE
35 CONTINUE
IF (IIAB(G).NE.O) 1IAB(6)=0
ORC=ORG
IF (1DO) CALL HULK II. EACH d, ID. DOSEd.l. 1, L) .NORGN.ORGN, TITLE.
> TITLA(l.rT),ITABlTITf.2,NOTE,NuN(l,IT),OEAC,OREP,NOREP,20,IFLAG)
ORC=GON
IFdUO.ANH.GENEt'F) CALL MULTdl.FACGd, II) .GDOSEd.l, 1,L) ,NGEN,
> GEN,IITLE,TITLGA(l,n),ITAB,TITL2,NOT2,NOT2,0.,0.,0,3,IFLAG)
IF(IT.EQ.2) GO TO 38
IF(NTLOC.EQ.O) GO TO 38
DO 45 LL=1.NILOC
IF(FALOC(LL).NE.l) GO TO 45
A-81
-------
IE(HLLOC(LL).EQ.l) GO TO 45
IE ( LIABLE (LD.NE. IT .AND. LT ASLE(LL) .NE.4) GO 10 45
CALL LuClAe ,OGLOCGD
3,1)
A DOSE(l,lil,L),iia.Lc.j.iJ.L.«^j.tJ.i'iiJ.A»"i«u"i-"''»"i-'«iJ"»""iJ-'
IF(GENEFF) CALL LOCTAB(IT,RNLOC(LL).PTLOC(LL),OGLOC(LL).
< FACGd,IT>,GDOSEd,l,l,L),TITLE,TITLGAd,IT),TITL2,GEN,NGEN,
45 C&NTINUE
38 CONTINUE
IF (1NDPOP.NE.1) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA COMBINE HIGH AND LOW LEI USING INPUT QUALITY FACTORS
DO 70 K=l,2
TIIL2(K)=ILil(Kf3)
70 CONTINUE
DO 80 1=1,4
DO 80 J=1,NONCLD
DOSE(NORGN+1.J,I,1) = 0.0
DO 80 K=1,NORGN
SDOSE(KiJ,I,l) = DOSE(K.J.I.I)
DOSE(KlJ,I.i) = (DOSE(K,J.I,l)kL£T(K)+ DOSE(K,J. 1,2)AHLET(K))
DOSE{Nfoto+l.J,I,l)=DOSE(NORGN+l,J,I,l)+DOSE(KfJ,I,1)AFACO(K,I)
IE (K.GT.NGEN) GO TO 80
SGOSE(K,J,I,1) = GDOSL(K,J,I.l)
GDOSE(K[j I 1)=(GDOSE(K,J,I,1)AGLLET(K)+GDOSE(K,J,I,2)AGHLET(K))
80 CONTINUE
DO 100 11=1,3
IDO=.FALSE.
IF(lLEl.EQ.O) GO TO 95
DO 90 K=l,6
ITAB(K)=0
IF (lAbLE(K).NE.Il.AND.TABLE(K).NE.4) GO TO 90
IIAB(K)=1
IDO=.TRUE.
90 CONTINUE
95 CONTINUE
ORGN(NURGN+1)=LASI
ORC=ORG
IF (IDO) CALL HULT(IT,FACD(1,IT).DOSE,NORGN+1,ORGN.TITLE,
< TITLBd, IT),ITAB,TITL2,NOTE,NUN(1,IT),OFAC,OREP,NOREP,20,IFLAG)
C RETURN IF PATHWAY DOSE CONVERSION FACTOR CALCULATION
C
IF ( IELAG .EQ. 1 ) GO TO 105
C
ORC=GON
IFdDO.AND.GENEFF) CALL MULT( IT.FACGd , IT) ,GDOSE,NGEN.GEN,
< TITLE,IITLGBd,IT).ITAB,TITL2,NOr2,NOT2,0.,0.,Ol3,IFLAG)
IF(Ii:EQ.2) GO TO 138
lE(NXLOC.EQ.O) GO TO 138
DO 135 LL=1.N1LOC
IF(FALOC(LL).NE.l) GO TO 135
IF(HLLOC(LL).EQ.O) GO TO 135
IF(LXABL£(LL).NE.IT .AND. LXABLE(LL).NE.4) GO TO 135
CALL LOCTAB(ll.RNLOC(LL),PTLOC(LL),OGLOC(LL).FACDd,IT),
> DOSE,TITLE,IiXLB(l. IT ),TITL2.0RGN. NLI{ FACG(l.IT),GDOSElTITLE,TITLGBd,IT),TnL2,G£N.NGENl3,l)
135 CONTINUE
A-82
-------
138 CONTINUE
IF (INLiPOP.NL.l) GO TO 105
100 CONTINUE
105 DO 180 I = 1,4
DO 180 J = 1,NONCLD
DO ISO K = 1JNUKGN
DOSE.RYRLL,NOREP,NRftEP,NCREP
DATA CAN/8H CANCER /,LAST/8HTOTAL /,
A GON/8H GONAD /
INTEGER TABLE.FALOC,HLLOC,PTLOC
LOGICAL IDO,GENEFF
COhMON/COMLOC/RNLOC(10).OGLOCUO),PTLOC(10),FALOC(10),
> HLLOC(10),LTABLE(10).NTLOC
CONHON/COriGEN/GEN<3KNGEN.GDOSE<3,40,4,2),GRISK<3,40.4,2)f
> GENEEEfGRFAC(2).REPPER.GLLET(3).GHL£T(3).GflEf(3.40,4)
OIHENSION TABLE(l),TITLE(l)rTITLA(10.3). TLET(2,3).TITL2(2),
> FAC[K4,3),ITAEK7).TITLG(10.3).FACG(4.3),NOTE(26),NOT2(20)
> ,NUN(8 3).DRISK(2),SRISK(2d,40.4,2).3GISK(3,40,4;2)
DATA NOTE/4HRADO,4HN DA.4HUGHT,4HER E,4HXPOS,4HURE ,4HRISK,
> 4H: ,12A4H /,NOT2/20A4H /
DATA NUN/16A4H ,4H(DEA,4HTH/Y.4HR) .5A4H /
DATA TITLA/4HINDI,4HVIDU.4HAL L,4HIFET,4HIME .4HRISK. 4H (DE,
> 4HATHS.4H) ,4H .4HHEAN,4H IND,4HIVID,4HUAL , 4HLIFE,4HTIME,
> 4H RIS,4HK (D 4HEATH 4HS) ,4HFATA,4HL CA,4HNCER,4H RAT,
> 4HE (D.4HEATH.4H/YR),3A4H /
DATA TITLG/4HINDI,4HVIDU,4HAL G,4HENET,4HIC E,4HFFEC,4HTS Py
< 4HER B,4HIRIH,4H ,
< 4HMEAN.4H IND,4HIVID,4HUAL ,4HGENE,4HTIC ,4HEEFE,4HCIS ,
C 4H/6IR 4HTH
< 4HLOLL,F4HECTI,'4HVE G,4HENEI,4HIC E,4HFEEC,4HKEF,4HFECT,
< 4HS/YR.4H) /
DATA EACD/2*l.E-5,10..1000.f2Al.E-5l10.f1000.,4AO./
DATA fACG/1.,!.,!.,100.,!.,!.,!.,100.,.001,.001,.001,.I/
CAAAAA???????
DATA IKP/0/
DATA ILEI/4HLOW .4HLET .4HHIGH.4H LEI.4HCOMB.4H.LEI/
COMMON/COMCA/CANC(20)lNCANC,RELABS(20J,RISK(20f40f4,2),RTABLE(7),
> AGEX,YRLL(20.40.4.2)
COMMON/COMNU/NUCLII)<40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
CAAA rtULTlPLY RISKS BY EXPOSURES
CAAA PREPARE HIGH AND LOU LET SEPARATELY
IF (1KP.EQ.1) GO TO 6
IKP = 1
A-83
-------
DO 2 J = 1.3
FACD<4,,]) = GSCtACAtACD<4,J)
FACG(4,J)=GSCFACAFACG(4,J)
2 CONTINUE
DO 5 J = l,4
FACG(J,3)=FACG(J.2)AREPPER
5 FACD(J.3)=FACD(J,2)/AGEX
6 DO bO L = l,2
10 DO 20 K=1.2
20 T11L2(K)=TL£I(K,L)
DO 25 1=1,4
DO 25 J=1,NONCLD
DO 25 K=1.NCANC
RISK(NlANC+l,J,IfL)=RlSK TITLA(1.IT),ITAB,TITL2,NOTE,NUN(1,IT),DRISK,CREP,NCR£F,20,IFLAG)
IFdDO.AND. GENEEF) CALL MULT ( IT,FACG( 1 , IT) ,GRISK( 1 . 1 , 1 ,L) ,
> l,6EN(3)fTITLEpTITL6(lrIT),ITABfTIIL2fNOT2fNOX2fO.F6.fO,3fIELAQ)
IF(1I.EQ.2) GO TO 38
IF(NILOC.EQ.O) GO TO 38
DO 45 LL=1.N1LOC
IF(FALOC(LL).N£.2) GO TO 45
IF(HLLOC(LL).EQ.l) GO TO 45
IF(LTABLE(LL).NE.IT .AND. LTABLE(LL) .NE.4) GO TO 45
CALL LOCTAB(II,8NLOC RISK(l.l,l,L).TITLE,TITLA(lf IT).TITL2,CANC.NCANC,20.3)
IF(GENEFF) CALL LOCTAB( IT,RNLOC(LL) . PTLOC(LL) .OGLOC( LL) .
< FACG(1,IT),GRISK(1,1,1,L),TITLE,TITLG(1,IT),TITL2,
< GEN(3) 1,3 3)
45 CONTINUE
38 CONTINUE
IF (INDPOP.NE.l) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA COMBINE HIGH AND LOU LET USING INPUT QUALITY FACTORS
DO 70 1=1,4
DO 70 J=l NONCLD
RISK(NCANC + 1.J, I,l)=0.0
DO 70 K=1,NCANC
SRISK
-------
GRISK=0
IF IT).ITAB,TITL2,NOIE,NUN(l,IT),DRISK,CREF,NCfiEP,20, lELAGJ
IFUDO.AND.GENEFF) CALL MULT(IT,FACG(1.IT).GRISK,1,GEN(3),
> TITLE,TITLGd, IT)fITAB,TITL2,NOT2,NOI2 0. ,6.,0,3, IFLAG)
IF(IT.EQ.2) Gfi TO 138
IF(NTLOC.ELl.O) GO TO 138
DO 135 LL=1.NTLOC
IF(£ALOC(LL).NE.2) GO TO 135
IE GO TO 135
CALL LOCIAB RISK.IITL£,TULA (1. IT).TIIL2,CANC,NCANC,20.3)
IF(GENEEE) CALL LOCTAB(II.RNLOC(LL).PTLOC(LL),OGLOC(LL),
> FACG(l.IT),GRISK,TITLE,TITLG(l,IT),TnL2,GEN(3),l,3,3)
135 CONTINUE
138 CONTINUE
IF UNDPQP.NE.l) GO TO 105
100 CONTINUE
105 1)0 170 I = 1,4
DO 170 J = 1,NONCLD
DO lr/0 K = 1,NCANC
RISK(KfJ,I,l) = SR1SK(K,J,I,1)
IF < K .EQ. 1 ) GRISK(K,3,1,1) = SG1SK GON
COMMON/COMRN/OREP(20)1RREP(20),CREP(20),ULRN<20,20),
A RRISK.RREF(2),RYRLL,NUREF,NRR£P,NCREP
LOGICAL GENEFf
COMhON/HEAD/ORC
DATA CAN/8H CANCER /,GON/8H GONAD /
A-85
-------
DATA TOTAL/UHW. BODY /
INTEGER TABLE,FALGC,HLLGC,PTLOC
LOGICAL IDO
COMMQN/IQMLOC/RNLOC(10).OGLOC<10),PTLOC<10),FALOC(10),
> HLLOC(10),LTABL£(10),NTLOC
COMrtuN/COHGEN/GLN<3),NGEN.GBOSE(3.40,4,2)lGRISK(3,40.4,2),
> GENEFE.GREAC(2).REPPER.GLLET(3).GHLEI(3),UR£F<3,40,4)
DIMENSION TABLE(1),TITLE(I).TI1LA(10,3), TITL2(2),FACD<4,3) .
> ITAB(7>.NOTE<20).IITLG(10,3>.FACG(4.3),NOTA(20>,liREF(2>,NUN(8,3)
DATA NUN/4H(MRE,4HM/YR,4H) ,5A4H ,4H 4HM/YR,4H) ,5A4H ,4H(PER,4HSON ,4HREH/,4HYR) ,
> 4A4H /
DATA NGTE/4HRAD0.4HN DA.4HUGHT.4HER E, 4HXPOS.4HURE ,
> 4HRISK.4H EQU.4HIVAL,4HENT:,10A4H /,NOTA/20A4H /
DATA FACD/l.,l.,l.E6,l.E8,l.fl.,l.E6fl.E8,.001,
A .001,1.£3,1.E5/
DATA BACG/1.,1.,1.,100.,1.,].,l.,100.,.001,.001,.001,.!/
DATA IKP/0/
DATA TIILA/4HINDIf4HVIDU.4HAL R,4HISK ,4HEQ. .4HRATE. 4H (MR,
> 4HEM/Y,4HEAR),4H ,4HHEAN,4H IND,4HIVID,4HUAL . 4HRISK,4H EQ.F
> 4H RAT,4HE(MR,4HEH/Y,4HEAR),4HCOLL,4HECTI, 4HVE R,4HISK ,4HEQ R,
> 4HATE(.4HPERS.4HON R.4H£M/Y,4HEAR)/
DATA IITLG/4HINDI,4flVIDU,4HAL G,4HENET,4HIC R,4HISK ,
A 4HEQ. .4H(MRE.4HH/YE,4HAR) ,
A4HMEAN,4H IND,4HIVID,4HUAL F4HGENE,4HTIC ,4HRISK,
A4H £Q.,4H(HR£,4HM/Y),
A4HCOLL,4H. GE,4HNETI,4HC RI,4HSK E,4HQ. (,4HPER5,
A4HON R,4HEH/Y,4HEAR)/
DATA TITL2/4H ,4H /
COMHON/COMCA/CANC(20).NCANC,RELABS(20),RISK(20,40,4,2)
COHMON/COMRE/REF(20,40.4),FlABLE(7)
COM«ON/COMNU/NUCLID(40),NONCLD,PSIZE<40),RESP(40),GIABS (4.40),
> INDPOP
NCANR=NCANC+1
CANC(NCANft)=TOTAL
CREP(NCREP-H) = 10TAL
IF (IKP.EQ.l) GO TO 6
IKP = 1
DO 5 J=1.3
FACD(4,J)=FACD(4,J)AGSCFAC
FACG(4.J)=EACG(4,J)AGSCFAC
5 CONTINOE
6 DO 20 11=1,3
IDO=.FALSE.
DO 10 K=l,7
ITAB(K)=0
IF (1ABLE(K).NE.IT.AND.TABLE(K).NE.4) GO TO 10
ITAB(K)=1
IDO=.1RUE.
10 CONTINUE
NCRR=NLREP+1
IF(NCfiEP.EO.O) NCRR=0
ORC=CAN
FAC=1.
IF(lI.EQ.3)tAC=.001
DO 12 J=1,NCRR
12 DREF(J)=kkEF(J)AFAC
IF (IDO) CALL HUL1(I1,EACD(1,IT),REF,NCANR,CANC,TITLE, TIILAd.IT)
> ,ITAB.TIIL2,NOTE,NUNh,IT),fiREF,CREP\NCRR,20,IFLAG)
ORC-GON
A-86
-------
IF(IDO.AND.GENEFE) CALL HULK IT,FACG<1, IT ),GSEF,1.GEN(3 ) ,
> TITLE,TriLG(l.IT),ITAB,mL2.NOIA,NUIA,0..6..0.3. iFLAG)
IF(ll!fc'(J.2) Gfi 10F38
IF(NTLOC.EQ.O) GO TO 38
DO 35 LL=1.N1LOC
IF(£ALOC(LL>.N£.3> GO TO 35
IF(L1ABLE(LL).NE.II .AND. LTABLE(LL).NE.4) GO TO 35
CALL LOCTAB(IT.RNLOC(LL),PILOC(LL).OGLOC(LL),FAC£K1,IT),
A REF,IITLE.TITLA(1.IT),TITL2.LANC.NCANR,20.2)
IF(GENEFF) CALL LOCTAB(IT.6NLOC(LL) ,PTLOC(LL) .OGLQC(LL),
A FACG(l.IT)fGREFlTITLE,TIILG(l,IT),TITL2,GEN(3'.1.3,2)
35 CONTINUE
38 CONTINUE
IF (1NDPOP.NE.1) RETURN
20 CONTINUE
RETURN
END
C
C
C
C
SUBROUTINE URIAH(ARRAY,NORGN,ORGN, TITLE,TITL1 f DTABLE,TULA, NOTE,
A NUN.RFAC,CREP.NCREP,IFLAG)
CAAA THIS ROUTINE OUTPUT THE APPROPRIATE TABLES.
REALA8 ORGN.NUCLID.ORC,SUM,CREP,OREP,RREP,CEAK,RADON
DATA RADON/8HRN-222 '/
COPiMON/COMRN/OREP(20),RREP(20),CFAK(20),ULRN(20,20),
A RRISK.RREF(2).RYRLL,NOREP,NftK£P,NFREP
COMMGN/HEAD/ORC
COMMON/PDCtVDCECIR(4,40)
INTEGER DIABLE
DIMENSION ARRAY(20,40,4).ORGN(1),IITLE(20),TITLA(2).PATH(4,7).
> DTABLE(1),TITL1(10),NOTE(20),CREP(1),ULSUM(4),RFAC(NCREP),NUN(8)
DATA PAIH/4HINGE,4HSIIO,4HN ,4H ,4HINHA,4HLATI,4HON ,
> 4H ,4HAIR ,4HIMME,4HRSIO,4HN ,4HGROU.4HND S, 4HURFA,4HCE ,
> 4HINTE,4HRNAL,4H ,4H , 4HEXTE,4HRNAL,4H ,4H ,
> 4H ,4H ,4H ,4H /
DATA 8UM/8HI01AL /
COMHON/COHNU/NUCL1D(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMUN/CO«US/SUMX(40,7),SUMY(40,3),PERX(40),PERY(40),TVAL(40),
> t'ACO(20,4)
CAAA SUM OVER ALL NUCL1DES FOR EACH ORGAN AND PATHWAY
CAAA PATHWAY 5 IS INTERNAL, 6 IS EXTERNAL, AND 7 IS ALL PATHWAYS
DO 10 1=1,7
DO 10 K=1,NORGN
10 SUMX(K,1)=0.0
DO 30 1=1,4
DO 20 K=1,NORGN
DO 20 J=I;NONCLD
SUMX(K.I)=SUMX(K.l)+ARRAY
-------
c
CAAA TABLE 1
IF (DTABLE(l).EG.O) GO TO 80
DO 70 1=1.4
WRITE(6.10000) TITLE. TITL1.TITLA
WRITE(6.10200) wUII/\\i\|//»lt44*Vav/ 4iii\t\»\f ^ll^l\^l,
WRITE(6,10600) (PAXH(N,II),N=1,4) .
WRITE(6,10700) (PERY(K),K=1,NORGN)
URIIE(b.10100)
60 CONTINUE
WRITE(6.11000) (SUhX(K,D,K=l,NORGN)
IE(I.NE.2) GO TO 70
DO 75 J=1.NONCLD
IF(NUCL1D(J).NE.RADON) GO TO 75
WRITE(6,20100) NOTE
IF(RtACm.EQ.O.O) GO TO 75
WRITE(6,10300)ORC, (CREP(JJ),JJ=1,NCREP)
WRITE(6120400)NUN (RFAC(JJ),JJ=1,NCREP)
75 CONTINUE
70 CONTINUE
CAAA TABLE ?
80 IF (DIABLE(2).EQ.O) GO TO 120
DO 110 1=1.2
WRITE(6,10000) TITLE,1ITL1,TIILA
11=1+4
WRITE(6,10200) (PAIH(N,ID,N=1,4)
WRITE(6,10300) ORC,(ORGN(K),K=I,NORGN)
WRIIE(6,10400)
DO 100 J=1.NONCLD
DO 90 K=l,NORGN
L=l
IF (1.EQ.2) L=3
TVAL(K)=ARRAY(K,J,L)+ARFAY(K,J,L+1)
PERY(K)=0.0
IF (SUHX(K.II).NE.O.O) PERY(K) = TVAL(K)/SUMX(K, II)A100.
PERX(K)=0.0
90 IE (SUMX(K,7).NE.O.O) PERX(K)=TVAL(K)/SUMX(K,7)A100.
WRITE(6,10500) NUCLID(J).(XVAL(K),K=1.NORGN)
WRITE(6,10600) (PATH(N.II),N=1.4) (PERY(K),K=1,NORGN)
WRITE(6,10700) (PfifiX(K),K=I,NORGN)
100 CONTINUE
WRIIE(6,11000) (SUMX(K,II),K=1,NORGN)
WRITE(6 10100)
IF(I.Nfc.l) GO TO 110
DO 115 J=1,NONCLD
A-88
-------
IF(NUCLID(J).NE.RADON)GO TO 115
URITE(6.20100) NOTE
IF(RtAKl).EQ.O.O) GO TO 115
URIIE(6,10300)ORC,(CREP(JJ),JJ=1,NCREP)
WRITE(6.20400)NUN, SUhX(K.I)
DO 210 J=1,NONCLD
11=1
IF (1.GT.2) 11=2
PERX(J)=0.0
IF (SUMY(J,1I).NE.O.O) PERX(J)=ARRAY(K,J,I)/SUMY(J,II)A100.
A-89
-------
PERY(J)=0 0
IF (SUHY(J,3).NE.O.O> PERY,N=1.4),(PERX(J>,J=1,NONCLD),WPP
WRITE(6.11600) 4+1)
DO 230 J = l.NClNCLB
PERX(J>=0.0
230 IE (SUMYU,3).NE.O.O) PERX( J) = SUMY( J, I)/SUMY< J,3) A100.
UP=0.0
IF (SUMX(K.'/).NE.O.O) UP=SUHX
-------
290 CONTINUE
WRITfc<6,11500)
300 CONTINUE
DO 320 1=1.2
WRITE<6.11400)
WRIXE(6'l0100)
320 CONTINUE
WRIIK
-------
c
410 CONTINUE
WRITE(6.10000) TITLE, TITLIJITLA
URITElb.12100) ORC
WRITE(6,11200) =SUHX + AflflAY(J,K,I)
A-92
-------
550 CONTINUE
WRITE(6,10000) TITLE, TITL1, TULA
WRII£(6,12200)
WRITE(6,10300) ClRC,
-------
11700 FORNAT(24H TOTAL OVER ALL PATHWAYS,8X,1P10G10.3/(33X, IC'IOGIC.3))
11800 FORMAH'OFOR NUCLIDE: ', A8)
11900 FORMAT(IX, A3,23X,10(2X,A8)/(33X.10(2X.A8»)
12000 FORMAK11H 7. OF TOTAL,21X, 1P10G10.3/(33X, 1P10G10.3) )
12100 fORHATCOAAASUhMUD UVl-fl ALL',A8)
12200 EURMAK'OAAASUMriED OVER ALL NUCLIDES')
20100 fQSHAI('0'/////10X.20A4)
20400 FOkMAI(lX,8A4,l?10G10.3)
END
C
C
C
C
SUBROUTINE CHLOC
REALA8 CANC.NUC.NUCLID.RADON,OREP,CREP,RREP,PNUC
DIMENSION CONC(4),FAC<4).IOR(4)
DATA FAC/2A1.E-5,10.,1000./
DATA IKP/0/
DATA BRTHRT/.83E6/
DATA RADON/8HRN-222 /
DATA IOR/3,4,1,2/
COMMON/COMEX/EXPP(20.20,40,4),POP(20f20),POPFACfTOTFAC, NOL,NOU,
> NRL,NRU,IDIST(20).ILOC,aLOC
COMMON/COMCA/CANC(20),NCANC,RELABS(20),RISK(20,40,4,2), RTABLE(7),
> AGEX,YRLL(20,40,4.2)
COMHON/COMRF/RtF(20.40.4),FTABLE(7)
COMMON/COMNU/NUCLID(40),NONCLD.PSIZE(40).RESP(40),QIABS (4,40).IND
COMMON/COMRN/OREP(20).RREP(20),CREP(20).WLRN(20,20)
A .RRISK.RREE(2),RYRLL.NOREPfNRREP,NCREP
COHMON/COMUS/TRISK(20,20),10(400)
COMMON/PASS/PNUC(40),PCON1(40),PCON2(40),PCON3(40),
S PCON4(40).PPOP,LLIND,LDIST
DIMENSION SRISK(400).AN6LE(16)
DATA ANGLE/4HN .4HNNE ,4HNE .4HENE ,4HE .
A 4HESE ,4HSE ,4HSSE ,4HS ,4HSSW ,4HSW ,4HUSW ,
B 4HW .4HWNW ,4HNW ,4HNNW /
EQUIVALENCE(IRISK(1,1),SRISK(1))
IF (IKP.EQ.O) FAC(4)=EAC(4)AGSCFAC
IKP = 1
NOP=JLOC+
-------
CONC<1)=PCON1
CONC(3)=PCON3(II)
CONC(4)=PCON4(II)
DO 30 J=1,NONCLB
IE (NUC.EQ.NUCLID(J)) GO TO 40
30 CONTINUE
GO TO 90
40 CONTINUE
IF (NUC.EQ.RADON) GO TO 160
DO 70 ILO=NOL.NOU
DO 70 JLO=NRL.NRU
DO 50 NC=1.NCANC
DO 50 L=l,4
DO 50 N=lf2
IRISK(JLO.ILO)=IR1SK
EXPP(JLO,ILO,J,l)=0.0
EXPP(JLO,ILO.Jf4)=0.0
DO ISO N=l,2
DO 180 K=1.4
DO 180 NC=1.NCANC
TRISK(JLO,ILO)=l-RISK(JLO,ILO)+RISK(NC,JfK,N)AEXPP(JLO,ILOrJ,K)A
A FAC(K)
180 CONTINUE
ULRN(JLO,ILO)=WLEVEL
IRISKtJLO,ILO)=1RISK(JLO,ILO)+ULEVELA88ISK
190 CONTINUE
URIIE(6.20100)
20100 tORMAK* THERE AKE NO GROUND SURFACE CONCENTRATION',
> ' OR INGESTION RATE EXPOSURES FUS RN-222.')
90 CONTINUE
110 It (ILOC.NE.O.AND.JLOC.NE.O) GO TO 130
LENO=NOU-NOL+1
LENR=NRU-NRL-H
NLOC=LENOALENR
J=0
DO 120 ILO=NOL,NOU
DO 120 JLO=NRL,NRU
IFUND.EG.l .AND. POP( ILO.JLO) .NE.O.O)TRISK( JLO, ILO) =
< I8ISK(JLO,ILO)/Pl)f(ILO,JLO)
J=J+1
SRISK(J)=TRISK(JLO,ILO)
IO(J)=J
120 CONTINUE
CALL VSQRIP(SRISKfNLOCfIO)
A-95
-------
NOP=NLOCAPLOCA.OH-.5
IF (NOP.GE.NLQC) NOP=NLOC
IF (NOP.LE.i) NOP = 1
LOC=IO ' EXPOSURE IS '.17.' METERS 'A4,'FROM THE SOURCE.'/
> ' THE FATAL CANCER RISK AT THAT LOCATION IS ',G10.3)
END
C
C
C
C
SUBROUTINE USOR1P (A,LA,IR)
C
DIMENSION A(1),IU(21),IL(21),1R(1)
U
M=l
1=1
J=LA
R= 375
10 IF'(l.EGl.J) GO TO 100
20 IF (8. QT.. 5898437) GO TO 30
R=R+3.Sf0625E-2
GO TO 40
30 R=R-. 21875
40 K=I
C SELECT A CENTRAL ELEMENT OF THE
C _ ARRAY AND SAVE IT IN LOCATION I
T=A(IJ)
C IF FlRtT ELEMENT OF ARRAY IS GREATER
C THAN T, INTERCHANGE UITH T
IF (A(l).LE.l) ij(J TO 50
A(IJ)=A(I)
A(I)=T
T=A(IJ)
IR(I)=IT
IT=1R(1J)
50 L=J
IF LAST ELEMENT Ot ARRAY IS LESS THAN
I, INTERCHANGE WITH T
A-96
-------
NOP=NLOCAPLOCA.01+.5
IF (NOP.GE.NLGC) NOP=NLOC
IE (NUP.LE.i) NOP=1
LOC=IO(NOP)
ILOC=(LOC-i)/LENrm
JLOC=LOC-(ILOC-1)ALENR
IF (JLOC.EQ.O) JLOC^NRU
ILOC=ILOC+NOL-1
JLOC=JLOC+NRL-1
130 POPFAC=1.
TOTFAC=1.
IF (IND.NE.l) GO TO 150
IF ' EXPOSURE IS ' ,17,' METERS ',A4,'FROh THE SOURCE.'/
> ' THE FATAL CANCER RISK AT THAI LOCATION IS ' ,G10.3)
END
C
C
C
C
SUBROUTINE VSOUIP (A,LA,IR)
C
DIMENSION A(1),IU(21), IL(21), 1R(1)
c N.I
1=1
J=LA
R~ 375
10 IF'(l.EQ.J) GO TO 100
20 IF (R.GI.. 5898437) GO TO 30
R=R+3.cJ0625E-2
GO TO 40
30 R=R-. 21875
C %" SELECT A CENTRAL ELEMENT OF THE
C ARRAY AND SAVE IT IN LOCATION I
IJ=1+(J-I)AR
T=A(IJ)
II-IR(IJ) IWWL ELEMENT Of ARRAY IS GREATER
C THAN T, INTERCHANGE UITH I
IF
-------
C
C
C
C
C
C
C
C
C
C
IF (AU).GE.l) GO 10 70
A(IJ)=A(J)
A
-------
IF (A(I).LE.T) GO 10 120
K=I
130 A(K+1)=A INDPOP
COMMON/COMEX/EXPP(20.20,40,4), POP<20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDISK20),ILOC.JLOC
DIMENSION ARRAY I(NDIM.40,4),ARRAYO(20,40,4)ICONFAC(4).TIILE(1).
> TIIL1(1)ITITL2(1),NAHNOC(1),IABLE(1),NOTE<1),CREP(20),REACI(20),
> RFACO(20).NUN(1)
GO TO (10,30,50),IM
10 DO 20 1=1 4
DO 20 J=1,NONCLD
DO 20 K=1.NOC
ARRAYO(K,J,I)=AR»AYI(K,J,DAEXPP(JLOC,ILOC,J,DACONFAC(DAPOPFAC
20 CONTINUE
RFACO(1)=0.0
IF(NCRKP.EQ.O) GO TO 80
DO 25 I=1,NCREP
25 RFACO(I)=KtACKI)AWLRN(JLOC,ILOC)APOPFAC
GO TO 80
30 DO 40 1=1,4
DO 40 J=1,NONCLD
DO 40 K=1,NOC
ARRAYO(K,J,D=O.ODO
DO 40 11=NOL,NOU
DO 40 JJ=NRL.NRU
ARRAYO(K,J.I)=ARRAYO(K,J,I)+ARRAYI(KfJ,I) ^EXPP(JJ,II,J,I)A
> CONEAC(I)AIOTFAC
40 CONTINUE
RFACO(1)=0.0
RFACO(2)=0.0
IF(NLRiiP.EQ.O) GO TO 80
DO 45 I=1.NCREP
DO 45 1I=NOL,NOU
DO 45 JJ=NRL.NRU
REACO(I)=RFACK1)AULRN(JJ,II)AIOIFAC + RFACO(I)
45 CONTINUE
GO TO 80
50 DO 70 1=1,4
DO 70 J=1,NONCLD
A-99
-------
TEXPP=0.0
DO 60 1I=NOL,NOU
DO 60 JJ=NRL,NRU
TEXPP=TEXFP+EXPP(JJ,II,J,I)
60 CONTINUE
DO 70 K=1.NOC
ARRAYO(ft.J, I)=ARRAYHK,J,I)AILXPPACCINFAC
-------
SUBROUTINE LOCIAB(IT.RN,FT ,OG,FACD, ARRAY, TITLE, TIIL1, TULA,
ORGN.NORijN.NDIM,NO)
REALAO RN,OG,SUM,NUCLID,ORGN,ULOPT(2),OREP,RREPfCREP,PUL,
TBEQ
COMMGN/COMRN/OREP(20).RREP(20).CREP(20),ULRN(20,20),RRISK,
A RREE(2),RYRLL,NOR£P.NHfi£P,NCREP
COMMON/COMCA/fiUM(64b8),AGEX
INTEGER PI
DIMENSION TIILE(20).TITLA(2).IITL1(10),ARRAY(NDIM,40,4),
< ORGN(1).FACD(1).TPATH(4.7),IDIR(1G)
COMMON/COrtUS/OUTPUI(40.40),HOL[iC(40),HOLDRC40)
DATA ID IR/1.16,15.14,13.12,11,10,9,8,7,6,5.4.3,27
DATA TPATH/4HINGE,4HSTIO,4HN .4H l4HINHA.4HLATI.4HON .
> 4H ,4HAIR ,4HlMMEf4HRSIO,4HN .4HGROU.4HND S, 4HURFA,4HCE
> 4HINTE,4HRNAL,4H ,4H , 4HEXTE,4HRNAL,4H ,4H ,
''"' 4HALL 4H 4H 4H 7
DATA £uri/8HSUM 7,ULOP1V8HWORKLEVL,8HULSUM 7,
A PUL/8HPULMNARY/.TBE1171JHKODY EQ.7
COMMON7COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMON/COMEX/EXPP(20.20,40,4),POP(20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDIST(20).ILOC.JLOC
COMMON/CaMUOR/UT(20,4)
10000 FORMAT(1H1,20X,20A4/21X,10A4/21X,2A4)
DO 10 K=l,40
HOLDR(K)=0.0
HOLDC(K)=0.0
DO 10 L=l,40
10 UUTPUT(L,K)=0.0
TSUM=0.0
DO 12 J=l,2
IF(RN.EQ.ULOPT(J)) GO TO 1000
12 CONTINUE
14 CONTINUE
IF(RN.EG.SUM) GO TO 75
IF(RN.EQ.ULOPT(2)) GO TO 75
DO 50 J=1.NONCLD
IF(RN.EQ.NUCLID(J)) GO TO 70
50 CONTINUE
WRITE(6.10500) RN
10500 FORMATS RADIONUCLIDE ',A8.
A ' IS NOT IN LIST. TABLE UILL BE SKIPPED.')
RETURN
70 INE=J
GO TO 80
75 INB=1
INE=NONCLD
80 CONTINUE
IF(OG.EG.SUM) GO TO 175
DO 150 J=1,NORGN
IF(OG.EQ.ORGN(J)) GO TO 170
150 CONTINUE
URITE(6.10600) OG
10600 FORMATS ORGAN ',A8,' IS NOX IN LIST.',
A ' TABLE WILL BE SKIPPED.')
RETURN
170 IOB=J
A-101
-------
IOE=J
GO TO 130
175 IOB=1
IOE=NORGN
IFdI.EG.3) GO TO 180
IF(II.EQ.l) GO TO 185
IOB=NORGN
IOE=NORGN
GO TO 180
185 CONTINUE
GO TO 1CJ5
180 DO 190 1=1.4
DO 1CJO K=IGB,10E
UT(K,I)=1.
190 CONTINUE
195 CONTINUE
IPT=PT
IPB=1PT
IPE=IPI
IFdPI.LE.4) GO TO 184
177 CONTINUE
IPI=lPI-4
GO TO (181,182,183),IPT
181 IPB=1
IPE=2
GO TO 184
182 IPB=3
IPE=4
GO TO 184
183 IPB=1
IPE=4
184 CONTINUE
DO 300 1PI=IPB.IPE
DO 300 IN=INB,INE
DO 300 IO=IOB,IOE
DO 300 II=NOL,NOU
DO 300 JJ=NRL,NRU
OUIPUl EXPP(JJ,II,IN,IPT)
300 CONTINUE
305 I£(IT.EQ.3) GO TO 500
DO 400 1I=NOL,NOU
DO 400 JJ=NRL,NRU
IF(POP(1I,JJ).EU.O.O) GO TO 375
OUTPUT(JJ,II)=OUTPUT(JJf ID/POP( II. JJ)
GO TO 400
375 OUTPUI(JJrII)=0.0
400 CONTINUE
WRITE(6,10000) TITLE,TITL1.TITLA
WRITE(6.10100) RN,OG,(TPATH(K,PT).K=1,4)
DO 600 JJ=NRL.NRU
WRITE(6,10200) ID 1ST(JJ),(OUTPUT(JJ,IDIR( II)),11=1,8)
600 CONTINUE
WRITE(6,10125)
DO 605 JJ=NRL.NRU
WRITE(6,10200) ID1SKJJ) f (OUTPUIUJ, IDIR< II)). 11=9,16)
605 CONTINUE
RETURN
500 WR1TE(6,10000) T11LE,TITL1,TITLA
DO 680 11=1,16
A-102
-------
DO 6BO JJ=NRL,NRU
HOLDC<11)=OUIPU1 RETURN
IF(OG.EQ.SUM) GO TO 1001
IF(OG.EQ.PUL) GO TO 1001
IF(OG.EQ.TBEQ) GO TO 1001
IF(J.EQ.l) GO TO 305
GO TO 14
1001 CONTINUE
IF(NO.NE.l) GO TO 1200
1100 DO 1150 II=NOL,NOU
DO 1150 JJ=NRL.NRU
OUTPUTCJJ,II)=BLRN(JJfII)
1150 CONTINUE
OG=SUii
PT=7
GO TO 305
1200 IE(NO.NE.3> GO TO 1300
EAC=1.
IE(IT.EQ.3) EAC=1./AQEX
DO 1250 II=NOL,NOU
DO 1250 JJ=NRL,NRU
OUTPUT(JJ,II)=RR1SKAULRN(JJ,11)AFAC
1250 CONTINUE
IF ' AND ORGAN/CANCl-R :',A8/
> ' AND PATHWAY : ',4A4/
> ' DIRECTIONS:' 3X,'N'12X'NNE'.10Xr'N£',llX,
> 'ENE',10Xr/E/,12X,/ESL/,l6x,/SE5,llX,/SSE'/
A-103
-------
> ' DISTANCE'/'
10125 FORhAI(////15XF'S'. 12X, 'SSW ,10X, 'SU' . 11X 'USW , 10X ' W
> ,12X,'UNU'f10X,'NU VIX'NNU'/' DISTANCE*/' (MEIERS):
10175 EGRMJl//>15Xf 'S'. 12X/SSU' 10X. 'SU',11X, 'WbW . 10X,'U'
, 12X . ' UNU ' , 10X , ' NU f , 1 IX , ' NNW ' , 10X , ' SUri ' / ' D ISTANCE ' /
' (AETERSJ:')
10200 EORMAT(I10,1P8G13.3)
10205 FORMAKI10.1P9G13.3)
10250 EORMAT(/OSUM',GX,1P<3G13.3)
END
C
C
C
C
SUBROUTINE SUMMRY(11TLE,GSCFAC, IFLAG)
REALA8 NUCL ID, ORGN, GANG, TOTBOD, RNLOC, OQLOC, GEN, TOTAL, WT3UM,
A OREP,RREP,CREP,RN222
LOGICAL GENEFF,RNWR
REAL LLET
C
COMriGN/COMEX/EXPP(20.20,40,4),POP<20,20),POPFAC,TOTFACf NOL,NOU,
> NRL.NRU.IDIST(20),ILOC'JLOC
COMMON/COrlOR/ORGN (20). NORGN, TIME (20), DOSE (20.40,4,2). DTABLE(7)
COMMON/COMRN/OREP(20),RREP(20),CREP(20),WLRN(20,20),
A RRISK.RREF(2),RYRLL.NOREP,NRREP,NCREP
COMMON/LE1EAC/HLET(20).LLET(20)
COMHON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMON/COMGLN/GEN(3),NGEN,GDOSE(3,40,4,2),GRISK(3,40.4.2),
> GENEFF,GRFAC(2).REPPERlGLLET(3).GHLET(3).GRliF(3,40.4)
COMMON/COMUS/STLOW(40),STHIG(40),STCOM(40),STGLO(40),
A STGHI(40),STGCO(40)
DIMENSION DOSFAC(4) ,GENEAC(4) ,TI1LE(20)
DATA RN222/8HRN-222 /
DATA IiOSFAC/1. ,!..!., 100. /.
< GtNEAC/1. ,!.,!., 100. /,1U1AL/8HTOTAL /,UTSUM/8HUT.SUh /
DATA IKP/0/
COMMON/COMUOR/DFAC (20,4)
IF (IKP.EQ.O) DOSEAC(4)=GSCfACADOSEAC(4)
IF (IKP.EQ.O) GENFAC(4)=GSCFACAGENFAC(4)
IKP = 1
RNWR-. FALSE.
DO 5 J=1.NONCLD
IF(NUCLID(J).EQ.RN222) RNUR=.TRUE.
5 CONTINUE
WLC=0.0
DO 10 1I=NOL.NOU
DO 10 JJ=NRL,NRU
WLC=WLC+WL8N(JJ,II)
10 CONTINUE
WLE=WLCATOTFAC
CAAAA DOSE RATES BY ORGAN
DO 50 J=l,40
STHIG(J)=6.0
STLOU(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
STGHI(J)=0.0
STGCO(J)=0.0
50 CONTINUE
A-104
-------
SUML=0
SUMH=0
SUHC=0
DO 100
DO 100
L=1,NORGN
j./—1 A
OPF1 ACADOSFAC(K)
EACNE2=POPEACAGENEAC(K)
DO 100 J=1,NONCLD
SIHIGAHLET+DOSE(LfJ,Kf2)AEACNEWAEXPP (SILOW(L),L=1,NOSGN),SUML
WRIIE(6,10210) (SIHIG(L)fL=l,NORGN),SUMH
WRITE(6 10215) (STCOM(L),L=1,NORGN),SUMC
IF(RNUR)URITE(6,20216) ULI
FORMATCORADON DAUGHTER EXPOSURE:'/
I ' (WORKING LEVEL)' 9X.1PG10.3)
URITE(6,10290) (GEN(L).L=l,NGEN)
WRITE(6,10220) (STGLO(L)fL=l,NGEN)
WRITE(6.10225) (STGHI(L)fL=lfNGEN)
WRITE(6,10230) (STGCO(L),L=l,NGEN)
A
B
10205
(
10206
(
10210
t
10211
t
10215
(!
10216
(
10290
\
10220'
• .L V £« 1_r V / \»JA'JOlJ\Lt/ mLl~}.fl\*lLll\}
EQRHAT<'1',20A4/30X.'ORGAN DOSE/EXPOSURE
INDIVIDUAL AAA'/
. u i\ 11 n x \ j. • *_i v n
'OAAA SELECTED
'ODOSE- SATES:'/
17X ' ORGANS:/,10(2X.A8)/(26X,10(2X.AS)))
FORMATC LOW LET (MRAD/Y)',BX,1P10G10.3/
(26X.1P10G10.3))
FORMATC LOW LET (PERSON RAD/Y)',IX,1P10G10.3/
(26X.1P10G10.3))
fORMAIC HIGH LEI (MRAD/Y)',7X,1P10G10.3/
(26X.1P10G10.3))
t'ORMATC HIGH LEI (PERSON RAD/Y)'
(26X.1P10G10.3))
FORMATC DOSE EQUIVALENT (MREM/Y)
(26X.1P10G10.3))
FORMATC DOSE EQ. (PERSON REM/Y)'
(26X.1P10G10.3))
FORMATCOGONADAL DOSES:'/
17X.' GONADS:'.10(2X.A8))
FORMATC LOW LET (MKAD)' , 10X, 1P10G10 - 3/
(26X,1P10G10.3))
SUMMARY'//
.1P10G10.3/
' ,1P10G10.3/
.1P10G10.3/
A-105
-------
10221
t
10225
t
10226
t
10230
I
10231
i
C
C
C
C
C
150
tORMATC LOU LEI (PERSON RAD)',4X,1P10G10.3/
(26X.1P10G10.3))
EURMAT(' HIGH LET (MRALD ' ,CJX, 1P10G10 . 3/
EOKH^i?'°HIGH3LET (PERSON RAD)',3XP1P10G10.3/
(26X.1P10G10.3))
EORMA1C DOSE EQUIVALENT (MREM)',2X,1P10G10.3/
(26X.1P10G10.3))
EURMAiT DOSE EG. (PERSON REM)',3X,1P10G10.3/
(26X,1P10G10.3))
IE ANNUAL SUMMARY DOSE CALCULATION RETURN
IF ( IELAG .EQ. 2 ) RETURN
IF(INDPOP.NE.l) GO TO 1000
DO 150 J=l,40
STHIG(J)=0.0
STLOW(J)=0.0
SICOM(J)=0.0
STGHI(J)=0.0
STGLO(J)=0.0
STGCIDU)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SU«C=0.0
DO 200 L=1,NORGN
DO 200 K=1.4
FACNEU=TOTFACADOSFAC(K)
EACNE2=TOTFACAG£NFAC(K)
DO 200 J=1.NONCLD
DO 200 II=NOL,NOU
DO 200 JJ=NRL.NRU
200
C
10400
C
C
C
C
C
10590
..ii.J,,wAi.-ni.ni.«
PljJf II.JlK)AEACNEUADEAC(LfK)
,1)AEXPP(JJ.II,J,K)AFACNEUI
P(JJ.II,J.K)AEACNEWADEAC(LfK)
SUMH=SUMH+DOSE(L.J.K,2)AEXM!
STLOU(L)=STLOU(L)+DqSE(LiiJ,K,:
SUnL=SUML + DUSE(L.J.K.l)AhXPP(jj.j.i.j.i\//\i.nijni-,i»/M.'i.riw\ij.i
SICOM(L)=STCOM(L)+DOSE(L.J,K,1)AEXPP(JJ,II.J.K)AFACNEU
ALLEI(L)+DOSE(L.J.K.2)AEXPP(JJ.II.J.K)AEACNEUAHLET(L)
SUMC=SUMC+DOSE(L.J,K,1)AEXPP(JJ.II,JPK)AEACNEUA
LLET(L)ADFAC
-------
350
403
400
10700
20416
10790
CAAAA
1000
17X ' GONADS:'.10(2X.A8))
WRITE(6,10220) (STGLO(L),L=1
WRITE(6,10225) (SIGHKL) f L = l',NGEN)
WRITE(6,10230) =0.0
STHIG(K)=0.0
STCOM(K)=0.0
IF(K.Gl.NGEN) GO TO 350
STGLO(K)=0.0
SIGH1(K)=0.0
ST6CO(K)'=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
DO 400 K=l,4
DO 400 J=1,NONCLD
TEXPP=0.0
DO 403 1I=NOL,NOU
DO 403 JJ=NRL,NRU
IEXPP=TEXPP+EXPP(JJ,II,J.K)
CONTINUE
TEXPP=XEXPPA.001
DO 400 L=l,NORGN
SILOW(L)=STLOW(L)+DOSE(L,J.K,1)ATEXPPADOSFAC(K)
SUML=SUML+DOSE(L.a,K,l)ATEXPPADOSFAC(K)ADFAC(L.K)
SIHIG(L)=STHIG(L)+DOSE(L,J.K,2)AIEXPPADOSEAC(K)
SUMH=SUMH+DOSE(L,J,K,2)ATEXPPADOSEAC(K)ADFAC(L.K)
SlCOM(L)=SICOM(LJ+l50sE
-------
STbHI(J)=0.0
SIGLO(J)=0.0
SIGCO(J)=0.0
1050 CONTINUE
DO 11
-------
C H»11E<6,10225) (STGHKL) ,L=1 P7)
C URITE(G.10230) (STiJCuiL) ,L = 1,7)
IF(INDPUP.NE.l) GO TO llOOO
DO 1150 J=1.40
STHIG(J)=0.0
STLOU(J)=0.0
STCOrt(J)=0.0
SIGHI(J)=0.0
SIGLCKJ)=0.0
STGCO(J)=0.0
1150 CONTINUE
DO 1299 K=1.4
FACNE2=TOTEACAGENFAC(K)
DO 1200 L=1,NORGN
DO 1200 II=NOL,NOU
DO 1200 JJ=NRL,NRU
fcJ i tf Ul I \ l\ / W A Uf »_• I I \ l\ / i I_>Ui_?,Li\JLt>iJ a l\ • A / /\ LJ /\ 1 1 \\JU • A J.f hJ • l\ / /\J.nU-IXi.
ALLEI(L)+DOSE(L,J,Kf2)AEXPP(JJ,IIfJfK)AEACNEWAHLET(L)
IF(L.NE.NGEN) GO TO 1200
,2)AEXPP(JJfII,JfK)AFACNE2
,1>AEXPP(JJ,II,J,K)AFACNE2
1 ^-i-PYPD/ 17 TT T^'ilCAPMr^J
wivjwu\i\/— *J.LUWU\I-\/ ''ji.'u»Jij\L,.xj«i\«i^A£iArr\,jj«ii?j.r\^ArHLr
-------
C 1F(RNURH,L=l,7)
C WRIIE(b,10225) (STGHI(L),L=l,7)
C WRITE(6 10230) (STGCO(L),L=1,7)
DO 13bO K=l,40
STLOU(K)=0.0
STHIG(K)=0.0
STCO«(K)=0.0
SIGLO(K)=0.0
STGHI(K)=0.0
STGCO(K)=0.0
1350 CONTINUE
DO 14CJCJ K=l,4
DO 1400 J=1,NONCLD
TEXPP=0.0
DO 1404 II=NOL,NOU
DO 1404 JJ=NRL,NRU
TEXPP=TEXPP+EXPP(JJfII,JfK)
1404 CONTINUE
TEXPP=TEXPPA.001
DO 1400 L=1,NORGN
JJ.LrUII\f\/—U1UUII\I\7 ' L" U Uij \ lj . U • <\ * I -* A J. .U AI 1 AL'UULnU\l\/AijlJlJJ.\l-.//\
> DEAC(L.K)+DOSE(L.J1K.2)ATEXPPADOSFAC(K)AHLEir(L)ADEAC(L,K)
IF(L.NE.NGEN) GO TO 1400
SIGLCl(K)=STGLO(K)+GLiOSE(Lf J,K,1)ATEXPPAGENFAC(K)
STGHI(K)=STGHI(K>+GDOSE(L,J,K,2)ATEXPPAGENFAC(K)
STGCO(K)=STGCO(K)+GDOSE(L,J,K.2)ATEXPPAGENFAC(K)AGHLET(L)+
A GDOSE(L,J,K,1)ATEXPPAGENEAC(K)AGLLET(L)
1400 CONTINUE
1403 IFCK.GT.2) GO TO 1401
STLOU(b')=STLQU(5)+STLOU(K)
STHIG(5)=STHIG(5)+STHIG(K)
STCOM(5)=STCOrl<5)+STCOH(K)
STGLO(5)=STGLO(5)+STGLO(K)
STGHI(5)=SIGHK5)+STGHI(K)
STGCO(5)=SIGCO<5)+SIGCO(K)
GO TO 1402
1401 STLOU(6)=STLOU(6)+STLOU(K)
STHIG(6)=SIHIG(6)+STHIG(K)
STCOM(6)=STCOM(6)+STCOH(K)
STGLO(6)=STGLO(6)+STGLO(K)
SIGHI(6)=STGHI(6)+STGHI(K)
STGCO(6)=SIGCO(6)+SIGCO(K)
1402 STLOU(7)=SILOU(7)+STLOU(K)
STHIG(7)=STHIG(7)+STHIG(K)
STCOH(7)=SICOM(7)+STCOH(K)
SIGLO(7)=STGLO(7)+STGLO(K)
STGHI(7)=STGHI(7)+STGHI(K)
STGCO(7)=STGCO(7)+SIGCO(K)
1499 CONTINUE
11700 EORHATCr./////,20A4./.30X 'PATHWAY DOSE/EXPOSURE SUMMARY'./,
I 'OAAA COLLECTIVE POPULATION AAA',/,'ODOSE RATES:',/,
A-110
-------
11790
CAAAA
11000
2050
2100
2109
C
12100
A
A
' WEIGHTED SUMS OF ORGAN DOSE RATES'/
PATHWAYS: INGESTION
'INHALATION AIR GROUND',
INTERNAL EXTERNAL TOTAL'/
45X,' IMMERSION SURFACE')
URITE<6,11700) TITLE
WRITE(6 10206) (SILOU(L),L=1,7)
WRITE(6,10211) (STHIG(L).L=1.7)
WRIIt<6.10216) (STCOM(L),L=1.7)
IF(RNWR)URITE(6,20416) ULC
WRITE(6.11790)
FORMAirOAVERAGE GONADAL DOSES:'/
PATHWAY!^ INGESTIGN
'INHALATION AIR GROUND',
INTERNAL EXTERNAL TQTAV/
45X.' IMMERSION SURFACE')
L = l 7)
,L=1,7)
T \J /\ * i. I I I IJU i\ iJ .L U
URITE<6,10221) (SIGLO(L),L=1,7)
URIT£(6I10226) (STGHKL)
URITE(6,10231) (STGCO(L)
DOSE RATES SY NUCLIDE
DO 2050 J=l,40
STHIG(J)=0.0
STLOW(J)=0.0
STCO«(J)=0.0
STGLOU)=0.0
STGHI(J)=0.0
STGCO(J)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
SUMGL=0.0
SUMGH=0.0
SUMGC=0.0
DO 2109 J=1,NONCLD
DO 2100 K=1.4
FACNE2=POPFACAGENFAC(K)
DO 2100 L=1.NORGN
FACN£W=POPFACADOSFAC(K)ADFAC(L.K)
STHIG(J)=STHIG(J)+DOSE(L,J,K,2)AEACN£UACXPP(JLOCfILOC,J,K)
SILOU(J)=SILOU(J)+DOSE(L,J,Krl)AEACNEUAEXPP(JLOCfILOC,J,K)
STCOM(J)=STCOM(J)+DOSE(L.J,K.1)AFACNEWAEXPP(JLOC.ILOC.J.K)
ALLET(L)+DOSE(L.J,Kr2)AFALHEWAEXPP(JLOCrILOC,J,K)AHLET(L)
IF(L.NE.NGEN) GO TO 2100
STGHI(J)=STGHI
-------
A ' WEIGHTED LUhS Of ORGAN DOSE RATES'/
A 15X.' NUCLIDES:' 10(2X.A8)/<26X,10(2X.A8»>
C WRIIE(G, 10205) (STLOU ( L) ,L=1 , NONCLD) ,SUML
C WRITE(b, 10210) (STHIG(L),L=1, NONCLD), SUMH
C URITE(6. 10215) (SICOM(L) ,L=1, NONCLD) ,SUMC
C IE(RNWR)URrrE(6, 20216) WLI
C WklIE(G. 12290) (NUCLIDCL),L=1, NONCLD), TOTAL
12290 FORMAirOAVERAGE GONADAL DOSES:'/
A IbX,' NUCL1DES:',10(2X,A8)/(26X.10(2X,A8)))
C URITE(G. 10220) (STGLO(L) .1=1 , NONCLD) .SUMGL
C
C
C
C
C
C
C
WRITE (6, 10 225)
URITE(6, 10230)
IF MAXIMUM DOSE
IF ( It'LAG .EU.
(STGHI(L)rL=l
(STQCO(L)fL=l
ORGAN BY NUCL
3 ) RETURN
,NONCLD)fSUMGH
I NONCLD >,SUMGC
IDE SUMMARY RETURN
IF(INDPOP.NE.l) GO TO 21000
DO 2150 J=1.40
STHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STQLO(J)=0.0
STGH1(J)=0.0
STGCO(J)=0.0
2150 CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
SUMGL=0.0
SUMGH=0.0
SUMGC=0.0
DO 220CJ J=l,NONCLD
DO 2200 K=1.4
FACNE2=TOIFACAGENEAC(K)
DO 2200 L=1.NORGN
EACNEU=TOTFACADOSFAC(K)ADFAC(L,K)
DO 2200 I1=NOL,NOU
DO 2200 JJ=NRL.NRU
STHlG(J)=STHIG(J)+DOSE(L,J,K,2)AEXPP(JJ,IIrJ,K)AEACNEW
STLOW(J)=STLOU(J)+DOSE(L,a,K,l)AEXPP(JJ,II,J,K)AEACNEU
STCOM(J)=STCOM(J)+DOSE(L.J,K.1)AEXPP(JJ.II.J.K)AFACNEU
> ALLET(L)+DOSE(L,J.K,2)AEXPPU'J,II,J,K)AFACNEUAHLET(L)
IF(L.NE.NGEN) GO TO 2200
STGLO(J)=STGLO(J)+GDOSE(L,J,K,1)AEXPP(JJ,II,J,K)AFACNE2
STGHI(J)=STGHI(J)+GDOSE(L,J,K,2)AEXPP(JJ,II,J,K)AFACNE2
STGCO(J)=STGCO(J)+GDOSEa.J,K,l)AEXPP(JJ,II,J,K)AFACNE2A
A GLLET(L)+GDOSE(L,J,K,2)AEXPP(JJ,II,J,K)AEACNE2AGHLET(L)
2200 CONTINUE '
SUML=SUML+STLOW(J)
SUMH=SUMH+STHIG(J)
SUMC=SUMC+SICOM(J)
SUMGL=SUMGL+SIGLO(J)
SUMGH=SUMGH+STGHI(J)
SUMGC=SUhGC+STGCO(J)
2209 CONTINUE
C URITE(G,12400) (NUCLID(L),L=1,NONCLD),TOTAL
12400 FORMAK/'OAAA MEAN INDIVIDUAL AAAV
A 'ODOSE RATES:'/
A-112
-------
c
c
c
c
c
12590
C
C
C
A ' WEIGHTED SUMS Of ORGAN D05L RATES'/
> 15X ' NUCLIDES:' 10 ( 2X , A8)/ ( 26X, 10<2X. A8) ) )
WRITE (6, 10205) (STLOU(L) ,L = 1 ,NONCLD) , SUML
WRITE (6, 10210) (STHIG(L)FL=1, NONCLD) ,SUMH
WRITE (6. 1021 5) (STCOM ( L) . L = l , NONCLD) .SUiiC
IF(RNWR)WRITE(b. 20216) WLE
WR1TE<6.12590) ( NUCL ID (L ) ,L =
FORMATC'OAVERAGE
> 15X.' NUCLIDES:
2350
2403
2400
2409
12700
NONCLD) , TOTAL
GONADAL DOSES:'/
,10<2X,A8)/(26X,10<2X.
AS)))
i u A . nuuiiALitj. .iu \^A.nu//\^QA.iv\^A.MO;;
URIIE<6,10220) (aXGLO(L)rL=l,NONCLD).SUHQL
WRITE(6,10225) .LlrUll\ U / ~U4LrUll\U / ' i-1 U xJ J-i \J->« U • I \ . J. / A J. lj A 1 1 Ai.lUUJ^nU\l\/AljljLiJ. \ L, J A
DEAC(L,K)+DOSE(L,J,K,2)ATEXPPADOSFAC(K)AHLET(L)ADEAC(LfK)
IF(L.NE.NGEN) GO TO 2400
3 I 'J L> U \ J / — 3 1 *J Lr U \ J / T IJ J.i u O Li \ Li • vl j l\ • J. / AAljAi I A ' J Li 11 L nU\l\/AuLLhi (L.) "f"
GDOSE(L,J.K.2)ATEXPPAGENFAC(K)AGHLEI(L)
CONTINUE
SUML=SU«L+SILOU(J)
SUMH=SUMH+STHIG(J)
SUMC=SUMC+STCOM(J)
SUMGL=SUMGL+STGLO(J)
SUHGH=SUMGH+SIGHI(J)
SUMGC=SUMGC+STGCO(J)
CONTINUE
WRITE(fa.12700) TITLE,(NUCLID(L).L = 1,NONCLD),TOTAL
FORMATC11./////,20A4.7.30X,'NUCLIDE fiOSE/EXPflSURE SUMMARY',//,
"OAAA COLLECTIVE POPULATION AAA' /,'ODOSE RATES:',/,
' WEIGHTED SUMS OF ORGAN DOSE RATES'/
15X ' NUCLIDES:'.10(2X.A8)/(26X.10(2X,A3)))
WRITE(6,10206) (SlLOU(L),L=1, NONCLD),SUML
URITE(6,10211)
URITE(6,10216)
(STHIG
-------
IF(RNUR)UkITE<6.20416) ULC
WRITE(fa.12790) (NUCL ID(L),L = 1.NONCLD),TOTAL
12790 FORMATrOAVERAGE GONADAL DOSES:'/
> 15X.' NUCLIDES:' 10(2X . A8)A2faX,10<2X,A8)))
WRITE(6.10221) (STGLO(L)FL=l,NONCLD),SUnGL
WRITE(fa.10226) (STGHKL) ,L = 1fNONCLD),SUMGH
WRITE(6.10231) (STGCO(L),L=i.NONCLD),SUHGC
21000 CALL SUMHR2(TITLE,RNWR,GSCFAC)
RETURN
END
C
C
C
C
SUBROUTINE SUMMR2(TITLEFRNtiR,GSCFAC)
REALA8 NUCL ID, ORGN,CANC,TOT,BOD,RNLOC,OGLOC,G£N, TOTAL,
A OREP,RREP,CREP.PUL
DATA PUL/8HPULMNARY/
LOGICAL GENEFFFRNWR
REAL LLET
C
COMMON/COHEX/EXPP(20.20,40,4),POP(20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDIST(20).ILOC JLOC
COMMON/COHRN/OREP(20),RREP(20),CREP(20),ULRN(20,20) ,
A RRISK,RREF(2),RYRLLFNOREP,N8RliP.NCREF
COHIiON/COHCA/CANC(20),NCANC RELABS(20),RISK(20,40,4,2), RTABLE(7)
> AGEX,YRLL(20.40.4.2)
COMMON/COMRE/REF(20.40.4),FIABLE(7)
COMHON/COMNU/NUCLIDUO),NONCLD,PSIZE(40),RESP(40),i3IABS (4,40),
> INDPOP
COMHUN/COMGEN/GEN(3).NGEN.GDOSE(3,40,4.2).GRISK(3.40.4,2),
> GENEFFfGREAC(2).REPPERfGLLET(3).GHL£T(3).GfiEh'(3.40.4)
COMMON/COMUS/STLOU(40).STHIG(40).STCOM(40),STREQ(40),
A STGLO(40),STGHI(40),STijCO(40),STLLL(40),STHLL(40),STCLL(40)F
B STGRCK40)
COHHON/ACCMOD/EICAN(40),CCNR(40),POPD(40),GNR(40),
& TEIC.TCCNR.TPOPD.TGNR
DIMENSION RISFAC'(4),REQFAC(4),GENFAC(4)FTITLE(20)
DATA RISEAC/2A1.£-5,10..1000./.
< REQFAC/1.,1.,1.E6,1.E8/,
< GENEAC/1..!.,!.fl60./plfilAL/OHIOTAL /
DATA 1KP/6/
CAAAA RISK RATES BY CANCER
IF (IKP.EQ.O) R1SFAC(4)=RISFAC(4)AGSCFAC
IF (IKP.EQ.O) REQEAC(4)=REQFAC(4)AGSCFAC
IF (IKP.EQ.O) GENEAC(4)=GENFAC(4)AGSCEAC
IKP = 1
LP=1
DO 25 K=1.NCANC
IF(CANC(K).£U.PUL)LP=K
25 CONTINUE
DO 50 J=1.40
STHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
STGHI(J)=0.0
SIGCO(J)=0.0
STR£i)(J)=0.0
STGRQ(J)=0.0
A-114
-------
STLLL(J)=0.0
STHLL(J)=0.0
STCLL(J)=0.0
50 CONTINUE
SUML=0.0
SUHH=0.0
SUHC=0.0
SUMLLL=0.0
SUMHLL=0.0
SUHCLL=0.0
TBEQ=0.0
RLL=0.0
YRP=RYRLLAULRN(JLOC.ILOC)APGPFAC
RR=RRISKAULRN( JLGC. ILUOAPOPEAC
IF
-------
c
c
10100
A
B
10102
C
C
C
C
20216
f
C
20217
(
10205
10210
10215
C
30100
C
C
C
C
C
20213
f
C
20219
f
C
20220
(=
10250
10255
10260
C
30200
C
C
C
10220
10221
C
C
C
C
20221
(
20321
f
20222
f
20322
WRITE(6,10100) TITLE
WR1TE<6 10102)(CANC(L).L=l.NCANC),TOTAL
FORMAT('1',20A4/30X,'RISK/RISK tuUIVALbNT SUMMARY'//
'OAAA SELECTED INDIVIDUAL AA*'/
'OLIFETIME FATAL CANCER RISK:'/)
FORMAT(16X ' CANCERS:',10 <2X,AS)/<26X,10(2X,A8} ))
WRITE(6,1020<
HRITECG, 10r '
.' CANCERS:'.io<2XFAS)/(26x.io<
205) (3TLOW(L),L=1,NCANC),SUML
210) (S1H1G(L),L=l,NCANC),SUMH
215) (STCOM(L),L=1,NCANC),SUMC
IF(RNWR5WRITE(6,20216; R&
TT=SUMC+RR
FORMATCOLUNG CANCER RISK FROM RADON DAUGHTER EXPOSURE
8X.1PG10.3)
]F(RNWRH.'kITE
-------
A 'DAUGHTER EXPGSuA^ , IA.U
20223 FORMAK' WHOLE BODY RISK EQ (MREM/YR) FROM ALL EXPOSURES'',
A17X.1PG10.3)
20224 FURMATC PULMNARY RISK EQ (MREM/YR) FOR ALL EXPOSURES',
A 20X,1PG10.3)
20323 fORMAK' WHOLE BODY RISK EQ (PERSON REM/YR) FROM ALL EXPOSURES'
A11X,1PG10.3)
20324
RISK EQ (PERSON REM/YR) FOR ALL EXPOSURES'
C
10190
10225.
)
C
10230
>
C
10235
j
C
30300
150
206
.1P10Q10.3/
iPiOGlO.3/
FlJRMATC PULMNARY
14X.1PG10.3)
WRITE(6.10190)
FORMAK'OGENET 1C RISKS:')
WRITE(6.10225) STGLO(l)
FORMAK' LOW LET (EFFECTS/BIRTH)',IX.IPIOGIO.
(26X.1P10G10.3))
URITE(6.10230) STGHI(l)
FORMAK' HIGH LET (EFFECTS/BIRTH)
(26X.1P10G10.3))
WRITE(6,10235) STGCO(l)
FORMATC COMBINED (EFFECTS/BIRTH)'
(26X.1P10G10.3))
WRITE(6.30300) STGRQ(l)
FORMAK'OGENETIC RISK EQUIVALENT:'/
' (MREM/YR)',15X,1P10G10.3/(26X,1 PIOG10.3))
IF(lNUPOP.NE.l) GO TO 1000
DO 150 J=l,40
STHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
STGH1(J)=0.0
STGCO(J)=0.0
STREQ(J)=0.0
STLLL(J)=0.0
STHLL(J)=0.0
STCLL(J)=0.0
SIGRQ
-------
EACNHW=TOTFACARISFAC(K)
EACNE2='IOTEACAi3ENEAC(K)
DO 200 J=1.NONCLD
DO 200 II=NOL,NOU
DO 200 JJ=NRL.NRU
STHlG(L)=3THlfj(L) + RIBK(L,J,K,2)AEXPP(JJ,II,J,K)AFACNEW
STHLL(L)=STHLL(L)+YRLL(L,J,K,2)AEXPP(JJ,II,J,K)AFACNEU
STLOU +RISK +YRLKL.J.K.2)AEXPP(JJ. II,J.K)AFACNEW
STREO(L)=SIREQ AREQFAC(K)
IF(L.NL.l) GO TO 200
TBEQ=TBEQ+REf(NCANC+l,J.K)AEXPP(JJ.II,J.K)ATOrFACAREQFAC(K)
STGRQ(L)=SlGRQ(L)+GREF(L.a,K)AEXPP(JJ.II,J,K)ATOTEACAGENFAC(K)
STGLO(L)=STGLO(L)+GRISK,L=l.NCANC)fTOTAL
10400 fORMAT(Jl%20A4/30X.'RISK/RISK EQUIVALENT SUMMARY'//
A 'OAAA MEAN INDIVIDUAL AAA'/
B 'OLIEtllfiE FATAL CANCER RISK:'/)
10402 EORMAK16X ' CANCERS :' 10(2X,A8)/ ( 2GX. 10(2X,A8)))
C WRITE(6f 10205) (SHOW (L) ,L = 1 ,NCANC) ,SUML
C URITE(6 10210) (SIH IQ(L) L = l NCANC),SUMH
C WRIIE(6.10215) (STCOM
-------
C IE(RNUR)URII£(6,20219) YRP
C lF
-------
K(L,J.K,2)ATEXPPARISFAC(K)/AGEX
+YRLL(L.J,K,2)ATEXPPARISFACCK)/AG
M(L)+RISK(LfJ,K.I)ATEXPPARISEAC(K
i -TI Ti w r, TI i TI r i~ i'1 A. i"1 ." i.' \ / A i~ P V
/AGEX
)/AGEX-t'
400
SUMH=
-------
10720
]
f
10790
10725
"•.
10730
.•
10735
CAAAA
1000
1050
1100
1103
1101
fSX. 1P10G10.3/
,4X, 1P10G10.3/
, 4X, 1P10G10 .37
FORMAT COGENET 1C RISK EUUIVALENT:
' (PERSON KEM/YR)VJX,lPiOG10.3/
(26X.1P10G10.3))
WRIli(fa.10790)
FORiiATCOGENETIC RISKS:' )
URIIE(6,10725) STGLO(l)
FORMATC LOU LE'K Ef FECTS/YK)'
(26X.1P10G10.3))
URITE(fa.10730) STGHK1)
fORMATC HIGH LEI(EFFECIS/YR)
(26X.1P10G10.3))
URIliCb,10735) SIGCO(l)
FORMAT(' COMBINEIKEFFECTS/YR)
(26X.1P10G10.3))
URITE(&,10720) STGRQ(l)
RISK RAILS BY PATHWAY
DO 1050 J=1.40
STHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STREO(J)=0.0
STGRQ(J)=0.0
SIGLO(J)=0.0
STGHI(J)=0.0
ST6CO(J)=0.0
CONTINUE
DO 11CJCJ K=1.4
DO 1100 L=1.NCANC
FACNEU=POPFACARISFAC(K)
EACNE2=POPEACAGENEAC(K)
DO 1100 J=1,NONCLD
STHIG(K)=SIHIG
-------
STGHI(6)=STGHI(6)+STGHI(K)
STGLO(b)=STGLQ(6)+STGLO ' DAUGHTER EXPOSURE' 7X.1PG10.3)
C IF(RNWR)WRITE(6,20223) TTQ
C WRITE(£,10290)
C WRITE(G,11102)
10290 FORMAT*JOGEN£TIC RISKS:')
C HRIIE(6,10225) (STGLO(L),L=l,7)
C WRITE(6,10230) (STGH1(L),L=1,7)
C URITE(6,10235) (STGCO(L),L=1,7)
C WRITE(fa,30300) (STGRU(L),L=1.7)
IF(lNDPOP.NE.l) GO TO 11000
DO 1150 J=1.40
SIHIG
-------
STLOw(K)=STLOW(K)+KlSK(L,J,K,1;AEXPP=SICOMaO+RISK(L,JrK.I)AEXPP(JJ,n,J,K)AFACNEW
+ RISK(L,J.K.2)AEXPP( J J , 11, J , K)AEACNEU
IFd.Gl.lJ ijO 10 120.0
STREG(K)=SIRta(K)+REF(NCANCn,J,K)AEXPP GO TO 1201
SIHIG 2CJX.'PATHWAY RISK/RISK EQUIVALENT SUMMARY'//
A 'OAAAMEAN INDIVIDUAL AAAV
B 'OLIFETIMt FATAL CANCER RISK:'/)
C USII£(6f10205) (STLOW(L)PL=1,7)
C WRITE(fa,10210) (STHIG(L),L=i,7)
C WRITEib.10215) (SlCQrt(L).L=l,7>
C 1F(RNUR)URITE(6,20216) RRH
C IF(RNUR)URITE(6f20217) TTM
C URITE(6,30200)
C WRITE(b,11102)
C URITE(6 10220) (STREQ(L),L=l,7)
C IE(RNUR)URITE(6,20422) RIM
C IF(RNUR)URITE(6,20223) TTQM
C URII£(&,11590)
C WR1IE(6,11102)
11590 EORMATCOGENETIC RISKS:'/)
C MR1TE<6,10225) (SIGLO(L),L=lf7)
A-123
-------
C WRITEtfa,10230) (JTGHi(L) ,L = 1,7)
C UkITE(6,10235) RISK(L.J.Kf2)ATEXPPARISFAC(K)/AGEX
IF(L.GI.I) GO 10 1400
SIREQ(K)=STREQ(K)+REF(NCANC+1.J.K)AIEXPFAREQFAC«K)A.001
STGRQ(K)=STGRQ(K)+GREF(L.a,K)ATEXPPAG£NFAC(K)A.001
STGLO(K)=STGLO(K)+GRISK(L.JfK,l)ATEXPPAGENFAC(K)AREPPER
STGHI(K)=STGHI(K)+GRISK(L,j'K,2)ATEXPPAGENFAC(K)AREPPER
STGCO(K)=STGCO(K)+GRISK(L.J,K.l)ArEXPFAGENFAC(K)AREF'PER+
A GRISK(L,J,K,2)ATEXPPAGENFAC(K.)AREPPER
1400 CONTINUE
1403 Ii-(K.G'f.2) GO TO 1401
STLOU(5)=STLOW(5)+STLOU(K)
STHIG(5)=STHIG(5)+STHIG(K)
STCOrt(5)=STCOM(5)+STCOri(K)
STGLO(5)=STGLO(5)+STGLO(K)
STGHI(5)=STGHI(5)+STGHI(K)
STGCO(5)=STGCO(5)+STGCO(K)
STGRQ(5)=STGRQ(5)+STGRQ(K)
STREQ(5)=STREQ(5)+STREQ(K)
GO TO 1402
1401 STLOU(6)=STLOU(6)+3TLOU(K)
STHIG(6)=STHIG(6)+STHIG(K)
STCOM(6)=STCOH(6)+STCOM(K)
S1GLO(6)=SIGLO(6)+STGLO(K)
STGHI(6)=STGHI(6)+STGHI(K)
STGCO(b)=STGCO(G)+STGCO(K)
STGRQ(6)=STGRQ(b)+STGRQ(K)
STREQ(6)=3TREQ(6)+SIREQ(K)
1402 STLOU(7)=STLOU(7)+STLOW(K)
SIHIij(7) = STHIG<7)+STHIG(K)
STCOM(7)=STCOM(7)+STCOM(K)
STGRQ(7)=STGRQ(7)+STGRQ(K)
STREQ(7)=STREQ(7)+STREQ(K)
SIGLO(7)=STGLO(7)+SIGLO(K)
STGHI(7)=STGHI(7)+STGHI(K)
STGCO(7)=STGCO(7)+STGCO(K)
1499 CONTINUE
A-124
-------
WRITE(6,11700)TITLE
URIXC(6.11102)
11700 FURMAK'1;,/////.20A4,/,3CJX.
& 'PATHWAY RISK/RISK EQUIVALENT
A 'OAAA COLLECTIVE POPULATION
B 'OCOLLECTIVE FATAL CANCER RISK
WRITECb,10705)
,10710)
2052;
11790
CAAAA
11000
2050
(STLOU(L) ,L=1 ,7)
URITE(6, 10710) (STHIG(L)fL=l,7)
WRITE(6. 10715) (STCOM(L) .1=1,7)
3UMMARY
'/)
. .
IF(RNUR)WRITE(6, 20316) RRC
IE(RNWR)iJRITE(6, 20317) TIC
URIT£(6, 30200)
URITE(6, 11102)
URITE<6. 10719) (SIREQ(L) .1=1,7)
IE(RNUR)URITE(6, 20522) RTC
FORMAT COUHOLE BODY RISK EQ( PERSON
'DAUGHTER EXPOSURE' 2X. 1PG1 0.3)
UftITE(G, 20323) TTQC
WRI'IE(6,11790)
WRIIE<6.11102)
REM/YR) FROM RADON
FORMAT
-------
1100
=i>UMGa + GRLF AFACNE2
STGCO(J)=STGCO(J)+GRISK;L=1,
URITE(6, 10235) (STGCO (L ) ,L=1 ,
URITE(6,30300) (STGRQ(L) ,L = 1 ,
IF(INDPUP.NE.I) GO XL) 21000
DO 2150 J=1.40
SIHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
SIRfcQ(J)=0.0
STGRQ(J)=0.0
STGLO(J)=0.0
STI3HI(J)=0.0
STGCO(J)=0.0
CONTINUE
SUHL=0.0
SUHH^O.O
suric-o.o
3UhGL=0.0
SUMGH=0.0
SUMGC=0.0
SUMRQ=0.0
SUHGQ=0.0
DO 2209 J=l, NONCLD
NONCLD ),SUMC
.NONCLD), TOTAL
NONCLD ),SUMRQ
NONCLD), TOTAL
6X.10(2X.A8)»
NONCLD), SUMGL
NONCLD ),3UHGH
NONCLD ),SUi1GC
NONCLD ),SUMGU
7
A-126
-------
2200
2209
C
12400
C
C
C
C
C
C
C
C
C
C
C
12590
f
C
C
C
C
DO 2200 L=1,NUANC
DO 2200 K=1.4
FACNEU=TOTFALAi+RISK(L,J,K,l)AEXPP(JJ,II,a,K)AFACNEU
SICOM 30X/NUCL1DE RISK/RISK EQUIVALENT SUMMARY'//
A 'OAAA MEAN INDIVIDUAL AAAV
B 'OLIFETIME FATAL CANCER RISK:'/
A 15X ' NUCLIDES:'iO(2X.A8)/(26X,10(2X.A8)))
URITE(b.10205) (SILOU(L),L=1,NONCLD),SUML
URHE(6,10210) (STHIG(L),L=1,NONCLD),SUMH
WRITE(6.10215) (STCOM(L),L=1,NONCLD),SUMC
IE(RNUR)URITE(&,20216) RRM
lF(8NUK)WkITE(b,20217) TIM
WRITE(6,30200)
UR 1IE< &,12102)
-------
STGCO(K)=0.0
STREO RISK(L.J.K,2> ATEXPPAR ISt'AC (K)/AGEX
IF(L.GT.l) GO TO 2400
SIRECHJ)=STREG
-------
URITE(6.10725) (STGLO(L),L = l,NONCLO) ,SUHGL
URlit(6.10730) (SIGHI(L),L=lfNONCLD),SUMGH
WRITE(6,10735) (SIGCO(L),L = 1 ,NONCLD) ,SUMGC
UKITE(6f10720) (STGRG
-------
APPENDIX B
SAMPLE PROBLEM OUTPUT
-------
AA INPU1 UATA AS READ IN AA
CO
SITE AREA
1000
C
C
C
C
C
C
C
0
0
p
1
.3
RUN
2
00
20
• r
0
-i
.0
FACILITY
0.
CHARACTER
0
5
1000
100
1.0
0 0
0.0
1 1 1000
0.0 0.0
SHE AREA FACILITY CHARACTER, SUBURBAN SETTING
5/9/87
0.5
0.0
31.45
7.3 3220.
1.0
0.4840
1 4
250.
0.39
100.
O.G7
0.
50.
0.0
9
H-3
H-3
H-3
C-14
C-14
C-14
CR-51
CR-51
CR-51
MN-54
MN-54
HN-54
FE-55
FE-55
FE-S5
CO-SB
CO-58
CO-:. 13
NI-1^
NI-59
NI-59
CO-60
CO-GO
C0-f>0
NI-63
NI-63
NI-63
SR-90
SR-90
SR-90
NB-94
2.6
0.26
20.
1.61E+3
0.01
l.OtfOE-11
0.23
1.6
0.29
0.65
2160.
6.
0.0
0.40
1U.
0.9'J
0.01
0.20
0.99
0.01
0.20
0.99
200.
0.2
0.99
150
0.20
0.99
bOOO
0.20
0.99
55.
0.20
0.99
150
0.20
0.99
55
0.20
0.99
150
0.20
0.99
150
0.20
0.99
0.6
0.0
27. U
2.01
l.OE-6
0.27
3.57E+5
240.
24.
4b.
0.015
11.
l.OL-2
0.01
0.2b
l.OE-2
0.01
0.2b
l.OE-2
200.
0.2b
l.OE-2
IbO.
0.25
l.OE-2
6000.
0.25
l.OE-2
55.
0.25
l.OE-2
150.
0.25
l.OE-2
55.
0.25
l.OE-2
150.
0.25
l.OE-2
IbO.
0.25
l.OE-2
0.25
0.
30.5
0.1
-0.15
0.30
1003.
0.0021
1440.
96.
60.
0.
0
0.01
4.Gt-0
0
0.01
5.bf-0
0.
200.
2.5E-4
0.
150.
2.5E-1
0.
6000.
4.0E-J
0
55.
2.0E-2
0
IbO
6.0E-2
0
55
2.0E-2
0
150.
6.0E-2
0
150
2.5£tO
0
0.0'J
0.
0.3
1.77E+4
l.OE-11
0.30
0.1
336.
480.
8.0
9.
0
0.01
4.8K-0
0
0.01
5.5E-0
0.
200.
5.0^-2
0.
150.
5.0E-2
0.
6000.
l.OE-3
0
55.
7.0E-3
0
150.
6.0E-2
0
55
7.0E-3
0
150.
G.Ot-2
0
20
2.5C-1
0
0.
1.0
0.3'J
300.
4.0E-4
1.0
720.
336.
9.9
50.
370.
5.65E-2
0.90
l.OH-2
1.21E-4
0.75
1.2E-2
9.14
0.005
2.2H-3
U.09E-1
0.005
3.5E-4
2.57L-1
0.005
2.5E-4
3.55
0.005
2.0E-3
0.66E-6
0.005
l.OE-3
1.32L-1
0.005
2.0K-3
7.53E-J
0.005
l.OE-3
2.42L-2
0.005
1.5E-3
3.47E-5
0
0.35
0.01
0.24
1440.
1.0
1.0
8000.
0
1.7E-1
0
l.OK-1
0.
l.OK-3
0
2.5E-4
0.
1.3E-4
100.
l.OE-3
0
6.7E-3
100
l.OK-3
0
6.7E-J
0
1.4E-2
0
0.43
2.2
0.83
25.
0
1.2E-2
0.
3.1E-2
0.
2.4E-3
0.
4.0E-4
0.
2.0E-2
0.
3.0E-2
0
6.0E-3
0
2.0E-2
0
6.0E-3
0
3.0E-4
0
-------
O3
I
00
NB-94
fB-94
TC-99
IC-99
TC-99
RU-106
RU-10G
RU-106
SB-125
SB-125
SB-125
1-129
1-129
1-129
CS-134
CS-134
CS-134
CS-135
CS-135
CS-135
CS-137
CS-137
CS-137
CE-144
CE-144
CE-144
EU-154
EU-154
EU-154
U-234
U-234
U-234
U-235
U-235
U-235
NP-237
NP-237
NP-237
U-238
U-238
U-238
PU-23U
F'U-238
PU-23U
PU-239
PU-239
PU-239
PU-240
PU-240
PU-240
PU-241
PU-241
PU-241
AH-241
AM-241
AM-241
PU-242
PU-242
PU-242
AM-243
AH-243
AM-243
CM-243
CM-243
350
0.20
0.99
0.5
0.20
0.99
220
0.20
0.99
45
0.20
0.99
3
0.20
0.99
1000
0.20
0.99
1000
0.2
0.99
1000
0.20
0.99
1100
0.20
0.99
4000
0.20
0.99
750
0.20
0.99
750
0.20
0.99
5
0.20
0.99
750
0.20
0.99
3500
0.20
0.99
3500
0.20
0.99
3500.
0.20
0.
-------
DO
I
CM-243
CM-244
CM-244
CM-244
DARTAB INFO
0.20
0.99
3300
0.20
0.2b
l.OE-2
3300.
0.2b
8.SE-4
0
3300
0.5E-4
l.bE-5
0
3300
1.5E-5
2.0E-5
3.94E-2
0.005
2.0E-S
HNPU1 ]I,OC=1,JLOC=1.ILET=1.1.DTABLE=0,0,0,0,0,3,3,RTABLE=0,0,0
OUTFUI=.FALSi:..GSCFAt = 0.5.XENf) » f
,'ENUOST '.' THYROID
','PANCREAS' , 'KIDNEYS
'BREAST
,'OTHER
','THYROID ','BREAST
' ' 110 TUAOY ' ' ' ilTUCO
'URINARY
'OVARIES
, UTHER
,'AVERAGE
uuii uj.-«inL.vJL...yoL.cnLf —v«j.a
SORGAN NORGN=]I,ORGN='R MAR
'S UALL ','INT UALL','LIVER
TIML=20A70 SEND
SQFAC1R HLET=20A20,LLEI=20A1 SEND
SCANCfcR NCANC=11.CANC='LEUKEMIA'.'BONE
'STOMACH ' 'BOWEL ','LIVER ' 'PANCREAS
RELABS=20Al SEND
SGEN11C GENEFF=.TRUE.,NGEN=3,GEN='TESTES , uvnni
GRFAC=260,5200,GLLET=l.l,l.ljHLEI=20,20.20,&END
&RNUCLD NONCLU=33.NUCLID='H-3' 'C-14','CR-bl','MN-54' 'Efc-55','
'CO-GO', 'NI-63VSR-90','NB-94'.'IC-99/.'RU-106'.'SB-125'F
' 1-129','CS-l34','CS-135','CS-137' 'CE-\\4' 'EU-154',
'U-2J4' 'U-235' 'NP-237' 'U-238' 'PU-238' 'PU-239' 'PU-240',
'PU-241'.'AM-241','PU-2427.'AM-243','CM-243' 'CM-244',
PS IZE=0,0,1.0,1.0,1.0,1.0,1.0,1.0,1.0.1.0,].0.1.0.1.0.].0,1.0,1
1.0,1.0,1.0,1.0,1.0.1.0,1.0,1.0.1.0,1.0.1.0.].0,1.0,].0.1.0,1.0
ijccp=/jL' 'A 'W' 'W 'U' 'Y 'U 'Y' 'H 'D 'Y' 'U' 'Y 'Uv 'D
/T|/ / v' 'LI' 'u' ^Y' ^Y' ^W' ^Y' ^Y' ^Y' ^Y' ^U' ^Y' ^U' ^W' ^U'
o.o,^.5E-i,6.6,6.6,'
0.0,l.OE-1,0.0,0.0,
0.0 l.OE-1 0.0,0.0
0.0 l.OE-1 0.0 0.0
0.0,5.0E-2,0.0,0.0,
0.0,5.0E-2,0.0,0.0,
0.0 5.0E-2 0.0 0.0
0.0,5.0E-2,0.0,0.0,
0.0,1.OE-2,0.0,0.0,
0.0,1.0E-2,0.0,0.0,
0.0,8.OE-1,0.0,0.0
0.0 5.0E-2 0.0 0.0
0.0,2.OE-1,0.0,0.0,
0.0,9.5E-1,0.0,0.0,
0.0,0.95,0.0,0.0,
0.0,rJ.5E-l,0.0,0.0,
0.0,3.0E-4,0.0,0.0,
0.0,1.0E-4,0.0,0.0,
0.0,2.OE-1,0.0,0.0,
0.0,2.OE-3,0.0,0.0,
0.0.2.OE-3,0.0,0.0,
0.0,1.OE-3,0.0,0.0,
0.0,2.0E-J,0.0,0.0,
0.0,1.OE-3 0.0,0.0,
0.0,1.0E-4,0.0,0.0,
O.O.l.OE-4,0.0,0.0,
0.0,1.OE-3,0.0,0.0,
0.0,1.OE-3,0.0,0.0,
0.0,1.0E-4,0.0,0.0,
0.0,1.OE-3,0.0,0.0.
0.0 1.OE-3 0.0,0.0,
0.0,1.OE-3,O.O.O.O.IEND
XLOCTBL NILOC=0,RNLOC='SUM ',OGLOC='GU«
PTLOC=7,FALOC=1.HLLOC=1.LTABLE=3,&END
&ORGANF NORGB=11.0RGB='R MAR ','ENDOST ','THYROID ','BREAST
•- 'INI HALL','LIVER ' 'PANCREAS','KIDNEYS ','OTHER
,0,0,3,3,
' j'APULA
»
'/F'LUNG
»
0
3.5E-6
.0.
,1.0,
'. 'DVD'
'S WALL
'APUU
T . , ,
. 0035,. 0;j87,. 1299 ,.2075,. 0840,. 0390,. 0853,
-------
01
IPAtH»20A5,UND
1 PRESTO - A MODEL FOR PREDICTING THE MIGRATION OF RADIOACTIVE WASTES
FROM SHALLOW TRENCH BURIAL SITES
0
SITE AREA ..... POP RUN ..., FACILITY CHARACTER
CONTROL INFORMATION AAA
THE BURIAL SITE IS LOCATED AT SITE AREA
THE SIMULATION WILL RUN FOR 1000 YEARS AND WILL INCLUDE 33 NUCLIDES
LEACHING OPTION NUMBER 2 WILL BE USED
IN YKAR 1 .0.20 OF THE CAP WILL BE ASSUMED TO FAIL
THIS WILL CONTINUE UNTIL 0.30 HAS FAILED IN YEAR 200
CAP MAY ALSO FAIL BY SURFACE EROSION
LENGTH OF VERTICAL SATURATED ZONE WILL BE SET TO THE TRENCH TO AQUIFER DISTANCE
POPULATION INDICATOR IS 1
GENfcRAL POPULATION EXPOSURE WILL BE USED TO CALCULATE HEALTH EFFECTS
0.000 OF IRRIGATION WATER WILL BE GOTTEN FROM WELL
0.500 OF DRINKING WATER FOR ANIMALS WILL BE GOTTEN FROM WELL
1.000 OF DRINKING WATER FOR HUMANS WILL BE GOTTEN FROM WELL
0.000 OF IRRIGATION WATER WILL BE GOTTEN FROM STREAM
0.000 OF DRINKING WATER FOR ANIMALS WILL HE GOTTEN FROM STREAM
0.000 OF DRINKING WATER FOR HUMANS WILL BE GOTTEN FROM STREAM
AAA TRENCH INFORMATION
THE TRENCH HAS AN ARFA OF 0.5000E+00 SQUARE METERS AND A DEPTH OF 0.2GOOE+'01 METERS
TRENCH POROSITY IS 0.25
ANNUAL INFILTRATION FOR THE WATERSHED IS 0.4300 MEIERS
AAA AQUIFER INFORMATION AAA
THE GROUND WATER HAS A VELOCITY OF 27.800 MEIERS PER YEAR
TRENCH TO AQUIFER DISTANCE IS 7.3 METERS
TRENCH 10 WELL DISTANCE IS 1610.00 METERS
WELL TO STREAM DISTANCE IS 3220.00METERS
THE AQUIFER THICKNESS IS 30.50 METERS
THE AQUIFER DISPERSION ANGLE IS 0.3000 RADIANS
PORO'JIIY OF IHt AQUIFER REGION IS 0.3CJOOO
POROSITY BENEATH THE TRENCH IS 0.35000
PERMEABILITY BENEATH THE TRENCH IS 2.200 METERS/YEAR
ATMOSPHERIC INFORMATION AAA
SOURCE HEIGHT IS 1.0 METERS
VELOCITY OF GRAVITATION FALL IS 0.01 METERS/SECOND
WIND VELOCITY IS 2.01 METERS/SECOND
DEPOSITION VELOCITY IS 0.10 METERS/SKCGND
GAUGE DISTANCE FROM SOURCE IS 17700.00 METERS
LID HEIGHT IS 300.00 METERS.
HOSKER ROUGHNESS FACTOR IS 0.01
TYPE OF STABILITY FORMULATION IS 1
STABILITY CLASS IS 4
FRACTION OF TIME WIND BLOWS TOWARD POPULATION IS 0.484000
RESUbPENSION FACTOR PARAMETERS O.lOOOE-Ob -0.1500E+00 0.1000E-10
FROM YEAR 0 TO YEAR 0 THE RESUSPENSION RATE DUE TO MECHANICAL DISTURBANCES WILL BE 4.0000E-04
THIS WILL OCCUR DURING 2.40 OF EACH YEAR
-------
AAA SURFACE INFORMATION AAA
PARAMETERS FOR UNIVERSAL LOSS EQUATION
RAINFALL 250.00
ERODIBIL1TY 0.23
STEEPNESS-SLOPE 0.27
COVER 0.30
EROSION CONTROL 0.30
DELIVERY RATIO 1.00
SOIL PUROSI1Y IS 0.39000
SOIL BULK DENSITY IS 1.60000 Q/CC
RUNOFF tRACHON IS 0.29000
STREAM FLOW RATE IS 3.5700E+05 CUBIC MEIERS PER YEAR
CROSS SLOPE EXTENT Of SPILLAGE IS 1003.00 METERS
ACTIVE SOIL DEPTH IS 0.10 METERS
AVERAGE DOWN SLOPE DISTANCE TO STREAM IS 100.00 METERS
1 AAA AIR-E'OODCHAIN INFORMATION AAA
AGRICULTURAL PRODUCTIVITY FOR GRASS 0.67 KG/MAA2
AGRICULTURAL PRODUCTIVITY FOR VEGETATION 0.65 KG/MAA2
SURtACE DENSITY FOR SOIL 240.00 KG/MAA2
ro UEATHER DECAY CONSTANT 0.00 I/HOURS
, PER Hill PASTURE GRASS EXPOSURE GROWING SEASON 720.00 HOURS
c* PERIOD CROP/VEGETATION EXPOSURE GROWING SEASON 1440.00 HOURS
PERIOD BETWEEN HARVEST PASTURE GRASS AND INGESTION BY ANIMAL 0.00 HOURS
PERIOD BETWEEN STORED FEED AND INGESTION BY ANIMAL 2160.00 HOURS
PERIOD BETWEEN HARVEST LEAFY VEGETABLES AND INGESTION BY MAN(M.I.E.) 24.00 HOURS
PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY MAN(M.I.E.) 1440.00 HOURS
PERIOD BETWEEN HARVEST LEAFY VEG AND INGESTION BY MAN(G.P.E.) 336.00 HOURS
PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY MAN(G.P.E.) 330.00 HOURS
FRACTION OF YEAR ANIMALS GRAZE ON PASTURE 1.00
FRACTION OF DAILY FEED THAI 13 FRESH GRASS 0.83
AMOUNT OF PEED CONSUMED BY CATTLE 50.00 KG
AMOUNT OF FEED CONSUMED BY GOATS 6.00 KG
TRANSPORT TIME FEED-MILL-RECEPTOR FOR M.I.E. 48.00 HOURS
TRANSPORT TIME FEED-MILL-RECEPTOR FOR G.P.E. 96.00 HOURS
TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION 480.00 HOURS
ABSOLUTE HUMIDITY OF THE ATMOSPHERE 9.90 G/MAA3
FRACTIONAL EQUILIBRIUM RATIO FOR C-14 1.00
1 AAA WATER-FOOOCHAIN INFORMATION AAA
FRACTION OF YtAR CROPS ARE IRRIGATED 0.40
IRRIGATION RATE 0.015 L/MMAA2-H)
AMOUNT OF WATER CONSUMED BY COWS 60.00 L/D
AMOUNT OF WATER CONSUMED BY GOATS 8.00 L/D
AMOUNT OF WATER CONSUMED BY BEEF CATTLE 50.00 L/D
AAA HUMAN INGESTION AND INHALATION RATE INFORMATION AAA
ANNUAL INTAKE OF LtAFY VEG 2.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF PRODUCE 18.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF COW'S MILK 11.00 LITERS PER YEAR
ANNUAL INTAKE OF GOAT'S MILK 0.00 LITERS PER YEAR
ANNUAL INTAKE OF MEAT 9.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF DRINKING WATER 370.00 LITERS PER YEAR
ANNUAL INHALATION RATE OF AIR 8000.00 CUBIC METERS PER YEAR
A POPULATION OF 25. WILL BE CONSIDERED
-------
NUCLIDE INtORMATION
INFORMATION ON INDIVIDUAL NUCLIDES
NUCLIDE
H-3
C-14
CR-51
HN-54
FE-55
CO-58
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-12b
1-129
CS-1J4
CS- 1 3 !ii
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
AMI IN TRENCH
CI
6.1017E-01
9.9000E-01
5.5223E+00
9.4212E-02
2.1833E-01
1.3281E-OJ
9.9000E-01
3.7227E-01
9.9000E-01
7.9438E-01
9.9000E-01
9.9000E-01
1. 03412-01
2.2343E-01
'J.9000E-01
1.7488E-01
9.9000E-01
8.0204E-01
8.9G84E-02
6.7G88E-01
9.9000E-01
9.9000E-01
9.9000E-01
9.9000E-01
9.9000E-01
9.9000E-0)
9.9000E-01
(..2929E-01
9.9000E-01
9.9000F.-OJ
9.9000E-01
8.1193E-01
G.9870E-01
SPILLAGE
CI
G.1017E-03
9.9000E-03
Ji . b223E~02
9.4212E-04
2.1833E-03
1.3i!iH]E-03
9.9000E-03
3.7227E-03
9.9000E--03
7.943UE-03
9.9000E-03
9.9000E-03
1.0341E-03
2.2343E-03
9.9000K-03
1.7488E-03
9.9000E-03
8.0204E-03
8.9684E-04
6.7G38E-03
9.9000K-03
9.9000E-03
9.9000E-03
9.9000E-03
9.9000E-03
9.9000E-03
9.9000E-03
G.2929E-03
9.9000E-03
9.9000H-03
9.9000E-03
8.1193E-03
6.9870E-03
STREAM AMI
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-tOO
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEvOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
AIR CONCfc'N
CC/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
o.oooot+oo
O.OOOOE+00
O.OOOOKHOO
0.00001^00
O.OOOOE+00
O.OOOOIMOO
O.OOOOEfOO
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOEi-00
O.OOOOEHOO
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
DECAY CONST
1/Y
5.GSOOE-02
1.2100E-04
9.1400EHOO
t).0900E-01
2.5700E-01
3.5500E+00
8.6GOOE-OG
1.3200E-01
7.i)300K-03
2.4200E-02
3.4700E-05
3.2&OOE-OG
6.8900E-01
2.5000E-01
4.0800E-08
3.3600E-01
2.3000E-07
2.3100E-02
8.9000E-01
4.3300t:-02
2.8300E-OG
9.8500E-10
3.3000E--07
1.5500E-10
7.9000E-03
2.8700E-05
1.0600E-04
5.2500E-02
1.5100E-03
1.8300E-06
9 . 4000F~Oii
2.1700E-02
3.9400E-02
SOLUBILITY CONST DECAY (
G/ML
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
l.OOOOE+02
O.OOOOE+00
l.OOOOE+02
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.0000E+02
O.OOOOE+00
3.0000E+02
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.1633E-01
l.OOOOE+00
b.5781E+00
9.D164E-02
2.2054E-01
1.3415E-01
l.OOOOE+00
3.7G03E-01
l.OOOOE+00
8.0241E-01
l.OOOOE+00
l.OOOOE+00
1.0445E-01
2.2569E-01
l.OOOOE+00
1.7665E-01
l.OOOOE+00
8.1014E-01
9.0i>90E-02
6.8372E-01
l.OOOOEHOO
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
G.3565E-01
l.OOOOE+00
l.OOOOE+00
l.OOOOEHOO
D.2014E-01
7.057GE-01
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-63
SR-90
NP-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-13i
SURFACE
DISTRIBUTION COEFFICIENTS HL/G
TRENCH VERTICAL AQUIFER
l.OOE-02
l.OOE-02
2.00E+02
l.bOE+02
6.00E-I03
5.50E+01
1.50E+02
5.50E+OL
l.bOE+02
l.bOE+02
3.bOl:H02
5.00E-01
2.20EH02
4.50E+01
3.00E+00
l.OOE+03
I.OOKH03
l.OOE-02
l.OOE-02
2.00E+02
l.bOE+02
6.00E+03
5.50E+01
1.50EH02
5.50E+01
1.50EH02
1.50E+02
3.bOL'H02
S.OOE-01
2.20EH02
4.50E+OL
3.00E+00
1.00EI03
l.OOE+03
l.OOE-02
l.OOE-02
2.00E+02
1.50EH02
6.00E+03
5.50E+01
1.50E+02
S.50E^1
1.50H-I02
1.50E+02
3.50E+02
5.002-01
2.20E-I02
4.50E+01
3.00EHOO
l.OOE+OJ
l.OOE+03
l.OOE-02
l.OOE-02
2.00E+02
1.50E+02
G.OOE+03
5.50E+01
1.50E+02
5.50E+01
] .50HH02
2.00E+01
3.50E-I02
5.00E-01
2.20EH02
4.50E+01
5.00E-01
5.00E+02
5.00EH02
-------
CO
CO
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-230
PU-23'3
PU-240
PU-241
AM-241
PU-242
AM-243
Ch-243
CM-244
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-1J4
TC-99
RU-10G
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-lb4
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-24]
AM-241
PU-242
AM-24J
CM-24CI
CM-244
1
RETENTION
IN AIR
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00G-01
2.00K-01
2.00E-01
2.00E-01
2.00E-01
2.00E-0)
2.00L-01
2.00L-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00L-01
2.00E-01
2.00E-01
2.00E-01
RETENTION
IN WATER
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-0]
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50K-01
J.50E-01
2.bOE-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.bOt- 01
2.50E-01
l.OOE+03
1.10E-I03
4.00E+03
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
ti.OOE+04
3.301H03
3.30E+03
TRAN9 COEFF
SOIL-V CROP
D/KG
4.80E+00
5.50E+00
2.50E-04
2.50E-Q1
4.00E-03
2.00E-02
6.00E-02
2.00E-02
6.00E-02
2.50E+00
2.00E-02
9.50EHOO
7.50E-02
2.00E-01
l.OOE+00
fe.OOE-02
8.00E-02
8.00E-02
l.OOE-02
2.50E-03
8.50E-03
8.50E-03
4.30E-OH
8.50E-03
4.50E-04
4.50E-04
4.50E-04
4.50E-04
5.bOE-0:j
4.50E-04
5.50E-03
(J.50E-04
8.50E-04
5.00E+02
1.10E+03
4.00E+03
7.50K+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.^0E+03
3.50E+03
8.00E+04
3.50L+03
O.OOE+04
3.30E+03
3.30E+03
TkANS COEFF
SOIL-R CROP
D/KG
4.BOE-IOO
5.50E100
5.00E-02
5.00E-02
i.OOE-03
7.00FI-03
6.00E-02
7.00E-03
G.OOE-02
2.50E-01
5.00E-03
1.50E+00
2.00E-02
3.00E-02
l.OOCi-00
3.00E-02
•J.OOE-02
3.00E-02
4.00E-03
3.50E-03
4.00E-03
4.00E-03
4.30E-03
4.00E-03
4.50E-OS
4.SOE-OS
4.&OE-04
4.50E-05
2.50E-04
4.50E-Oti
2.50E-04
1.50L-Oi)
1.50E-05
INI11AL CAL
NUCLIDE
H-3
C-14
CR-bl
MN-54
TRANS COEFF
VEG-COU MILK
Ii/L
l.OOE-02
] .20E-02
2.20E-03
3.50L-04
2.50G-04
2.00E-03
i.OOG-03
2.00E-03
l.OOE-03
J.50E-03
2.00E-02
l.OOE-02
6.00E-07
l.OOE-04
l.OOE-02
7.00E-OLH
7.00E-03
7.00E-03
t5.00£-06
2.00E-05
6.00E-04
6.00E-04
5.00E-06
6.00E-04
l.OOE-07
.l.OOE-07
l.OOE-07
l.OOE-07
4.00E-07
l.OOE-07
4.00E-07
2.00E-05
2.00E-0!)
CULAIIONS
MASS
3.
14.
51.
54.
TRANS COEFF
TRANS COEFF
VEG-GOAT HILK VEG-MEAT
D/L
1.70E-01
l.OOE-01
l.OOE-03
2.50E-04
1.30E-04
l.OOE-03
6.70E-03
l.OOE-03
6.70E-03
1.40E-02
2.50I--03
2.50E-02
1.30E-04
1.50E-03
3.00E-01
3.00E-01
3.00E-01
3.00E-01
i.OOE-04
2.00E-05
5.00E-04
5.00E-04
5.00E-06
b.OOE-04
1.50E-06
1.50E-OG
1.50E-06
2.50E-OG
O.OOEvOO
1.50E-06
O.OOE+00
O.OOE+00
O.OOE+00
D/KG
1.20E-02
3.10E-02
2.40E-03
4.00E-04
2.00E-02
3.00E-02
6.00E-03
2.00E-02
6.00E-03
3.00E-04
2.50E-01
8.50E-03
2.00E-03
l.OOE-03
7.00E-03
2.00E-02
2.00E-02
2.00E-02
7.50E-04
4.80E-03
2.00E-04
2.00E-04
5.50E-05
2.00E-04
5.00E-07
5.00E-07
'/.OOE-07
i.OOE-07
3.50E-OG
5. OOE-07
3.50E-06
3.50E-06
3.50E-06
-------
DO
FE-55
CO-58
NI-59
CO-GO
NI-63
SR-90
NB-94
ic-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
MP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
55.
58.
59.
60.
63.
90.
94.
99.
106.
125.
129.
134.
135.
137.
144.
154.
234.
235.
237.
238.
238.
239.
240.
241.
241.
242.
243.
243.
244.
OUTPUT FROM SUBROUTINE INEIL
UAAAAAAAAAAAAAAAAAAAAAAAAAA
INPUT DATA AS READ IN
30.500 0.010 0.020 0.250 0.240 1.200 0.350E-03 0.140E-05 0.100 1.200
DAILY SUNSHINE BY MONTH (HOURS)
10.8 11.2 12.0 12.8 13.4 13.7 13.6 13.0 12.3 11.6 10.9 10.6
DAILY TEMPERATURES (DEGREES CELSIUS):
DEC
MONTH= JAN
DAY
1
2
3
4
5
6
7
8
9
8.88
8.48
7. 05
15.27
G.13
0.84
15.54
15.54
15.54
FEB
10.16
6. til
7.7')
13.93
12.14
13.12
6.94
'J.23
13.06
MAR
6.00
8.76
12. 65
14.35
17.74
16.25
10.90
4.41
7.9:3
APK
20.92
1 '} . 34
20.61
16.60
11.78
12.02
fJ.'^O
8.60
12.57
MAY
17.80
19.45
20.04
20.37
11.90
20.78
20.90
21.38
2 0.2 7
JUN
25.34
26.79
25.34
23.45
25.40
24.17
23.86
26.07
J7.60
JUL
26 . 30
25.79
27.73
28.48
25.39
22 . 78
18.01
12.58
21.33
AUG
24.09
25.92
25.28
26.23
23.77
23.78
25.78
25. U5
25.lv!
SEP
21.89
22.43
22.71
18.00
16.67
15.04
15.87
16.54
18.09
OCT NOV
13.96
19.38
20.17
18.79
20.95
22.37
22.63
21.47
22.77
19.89
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.77
19.15
19.73
19.23
20.96
13.86
11.56
11.70
13.60
-------
10
11
12
13
14
15
16
17
18
19
20
21
CO 91
i
o 23
24
25
26
27
28
29
30
31
15.54
15.54
15.54
15. 54
15.54
15.54
15.54
J5.54
8.78
12.54
16.73
15.27
6.46
8.41
5.%
7.04
2.14
-1.54
5.18
7.55
11.00
16.16
8.44
8.13
4.5'J
7.46
8.97
14.71
19.33
16.27
8.03
10.02
11. 90
14.61
8.04
10.49
16.75
12.71
1.94
2.03
3.65
0.00
0.00
0.00
13.33
I'/. 32
18.87
21.13
19.19
19.25
12.33
17.60
17.04
20.02
23.06
23.56
17.91
15.05
13.29
16.55
13.24
6.57
6.58
11.19
16.00
16.25
11.21
12.79
15.35
17.93
20.56
20.36
20.93
21 .36
16.06
14.26
19.05
20.29
16.27
11.65
13.41
16.35
20.59
18.13
17.02
15.51
15.75
0.00
20.66
21.91
22.07
15.08
25.52
25.06
24.61
23.36
22.95
21.02
22.92
23.55
24.74
23.82
23.58
24.17
24.16
23.39
25.76
27.44
:.'3.EI4
24.13
25.60
24.10
23.99
23.10
23.70
26.20
26.46
21.95
22.49
25.70
26.07
26.62
24.69
24.88
23.50
24.63
24.98
24.05
25.13
25.97
27.27
0.00
24.66
25.09
25.93
23.91
24.89
24.26
24.17
24.74
25.83
25.59
26.55
27.56
27.67
24.88
25.21
20.21
28.02
29.36
27.35
24.49
25.53
24.50
25.61
24.93
24. 7 j
24.22
25.27
24.69
25.35
24.29
22.87
24.17
25.24
26.62
25.99
27.02
27.62
25.31
18.80
20.31
25.31
20.37
20.49
20.24
19.68
21.19
21.44
24.27
24.12
25.82
25.74
25.48
24.45
23.35
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
23.76
21.76
20.81
0.00
21.45
17.03
19.06
19.10
15.71
12.18
12.97
10.93
12.78
17.31
18.55
18.82
13.71
10.64
8.38
9.97
13.11
11.43
12.19
12.27
14.62
17.46
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
15.42
17.86
16.34
16.61
16,83
9.64
1 2 . 35
15.29
13.85
19.11
15.48
0.00
8.13
9.71
7.16
0.08
4.30
13.68
13.17
4.78
1.99
2.85
6.18
5.16
4.64
8.33
14.85
17.31
15.14
16.79
18.56
13.72
7.34
5.07
hONTHrUAY,X RAINFALL AS READ IN (0.1MM/HR):
1
1
1
1
1
1
1
1
1
1
£4
2
-\
2
2
n
1
3
4
13
14
19
20
23
31
1
2
3
9
12
i r
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
l\
0.
0.
0.
0.
''1
ft \J .
0.
0.
0.
0.
0.
0.
0.
0.
0.
y\
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
A
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A
0.
23.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
•>•_>
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
A
0.
vo.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
A
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TJ
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
47.
0.
0.
A
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
23.
23.
0.
0.
A
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
A
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
••>-J
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
23.
0.
0.
A
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
A
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
0.
0.
0.
93.
A
0.
0.
0.
0.
0.
0.
0.
0.
23.
-o.
23.
0.
23.
0.
A
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
47.
/\
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
A
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2 16 0. 0. 0. 0. 0. 0. 23. 0. 0. 0. 23. 0. 0. 0. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0.
-------
2 17
2 26
2 27
3 1
3 7
3 17
3 24
4 1
4 3
4 5
4 8
4 12
4 17
4 20
4 25
4 26
4 27
5 1
5 17
5 19
5 24
5 27
5 30
6 1
6 3
oa 6 12
' 6 13
£ 6 16
6 17
6 22
6 26
6 27
6 28
7 1
7 4
7 ii
7 7
7 9
7 13
7 14
7 Ib
7 16
7 19
7 20
7 23
7 24
7 27
7 29
8 1
8 5
8 6
8 7
8 [I
8 9
8 12
8 18
9 1
9 10
9 IB
9 1'J
9 21
9 26
10 1
10 9
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
23. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 47.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 23.
0. 0.
93. 23.
0. 0.
23. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 93.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. ..0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
23. 0.
0. 0.
0. 0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
47.
0.
0.
0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 23. 0. 0. 0. 23. 0. 0. 0. 0. 23.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
23. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 23. 23. 23. 0. 0. 0.
0. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 23. 23. 70. 23. 0. 0. 0. 0. 0.
0. 23. 0. 23. 0. 23. 47. 0. 23. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 47. 0. 0.140. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 23. 70. 93. 93. 23. 23. 0.
0. 0. 0. 0. 0. 0. 0. 0.350. 0. 0.
0. 0. 0. 0. 23. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 70. 23. 0. 0. 23.
23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 47.117. 23. 0. 0.
0. 0. 0. 0. 0. 0. 0. 326.186. 23. 0.
0. 0. 0. 47. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 23. 23. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.163. 0.
0. 0. 23. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 93.
0. 0. 0. 0. 47. 23. 0. 0. 0. 0. 0.
0. 0. 23. 47. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 70. 0. 0. 0. 23.
0. 0. 0. 0. 70. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 23. 0. 0. 0. 0. 0.
0. 0.117. 70. 23. 0. 0. 0. 0. 0. 0.
23. 0. 0. 47.210. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 23. 23. 0. 0.
0. 0. 0. 0. 0. 0. 23. 0. 23. 0. 0.
0. 0. 0. 0. 0. 70. 23. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.200.1 63. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.117.
0. 0. 0. 0. 0. 0. 0. 0. 0.210. 23.
0. 0. 0. 0. 0. 0. 0. 23. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.419.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 23. 0. 0. 0.
0. 0. 0. 0. 0. 93. 47. 23. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 23.
0. 0. 0. 0. 0. 0. 0. 0. 0.140.233.
0. 0. 0. 0. 0. 0. 4V. 0. 0. 0. 0.
0. 23. 0. 23. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
ro
10 10
10 24
10 25
10 26
10 27
11 1
11 16
11 20
11 24
11 30
12 1
12 2
12 6
12 14
12 15
12 18
12 24
12 25
12 27
12 28
12 29
12 31
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
47.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
47.
0.
23.
0.
0.
0.
47.
23.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
23.
0.
23.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
2J.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
47.
0.
0.
0.
0.
47.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
23.
0.
23.
0.
0.
0.
70.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
'33.
0.
0.
0.
0.
0.
0.
47.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
117.
0.
0.
23.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
47.
23.
0.
0.
23.
23.
0.
0.
47.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
41/.
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
70.
23.
0.
47.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
23.
70.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
163.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TRENCH CHARACTERISTICS:
SNOWMELT COEFFICIENT = 3.05MM/DEG-DAY
THICKNESS OF TRENCH COVER = 1.20 M
TOTAL WIDTH OF TRENCH COVER = 30.50 M
AVERAGE SLOPE OF TRENCH COVER = 0.01 M/M
PERMEABLITY OF TRENCH CAP = 0.200E-01M/HR
POROSITY FOR PELLIC HATER = 0.24 (UNIILESS)
POROSITY FOR GRAVITY WATER = 0.25(UNITLESS)
EQUIVALENT UPWARD DIFFUGIVIIY = 0.35E-03 MAA2/HR
EQUIVALENT UPUARH HYDRAULIC CONDUCTIVITY = 0.14E-05 M/HR
TIME STEP FOR MODEL = 1.00 HOURS
YEAR= 1
AAAAAAAAAAAACUMULATIVE ANNUAL VALUES (M)AAAAAAAAAAAA
PktClP EVAP RUNOFF INFIL
1.1 IE 100
PELLICULAR
DEFICIT
&.99E-0]
GRAVITY
DEFICIT
3.40E-02
SNOW
1.4BE-01
1.03E-03 1.20E+00 O.OOE+00
CHANGE OF TOTAL ANNUAL 1NFILTRAIION= 1.48E-01
YEAR= 2
-------
AAAAAAAAAAAACUHULAT1VE ANNUAL VALUES (M>AAAAAAAAAAAA
PRECIP EVAP RUNOFF INFIL
1.11E+00
PELLICULAR
DEFICIT
H.99E-01
GRAVITY
DEFICIT
3.48E-02
SNOU
1.72E-01
1.03E-03 1.20E+00 O.OOE+00
CHANGE OF TOTAL ANNUAL INFILTRATION'
2.38E-02
YEAR= 3
AAAAAAAAAAAACUMULAIIVE ANNUAL VALUES (h)AAAAAAAAAAAA
oo
PREC1P
1.11E+00
PELLICULAR
DEFICIT
EVAP
8.99E-01
GRAVITY
DEFICIT
RUNOFF
3.48E-02
SNOW
INFIL
1.72E-01
1.03E-03 1.20E+00 O.OOE+00
CHANGE OF TOTAL ANNUAL INFILTRATION^ O.OOE+00
H-3
C-14
CR 51
HN-54
rE-^ii
CO-5C
NI-50
CO-60
Nf-63
SR-90
ND-94
TC-9'il
PU-10G
SB-125
;ATUKATION =
iIURATION =
0.901
0.743
INITIAL CALCULATIONS
MKRT1CAL
RETARDATION
1.0tiOtlL+00
1 .O'..0t)fc + 00
1.0161E+03
7.fe233Et02
:t.04t.4E+04
2.0015E«-02
7.t'.O'JE-«02
2.8015t+02
7.d2H3E + Oi!
7.6o133E + 02
1.7774E^J'j
3.5378EI-00
1 . 1176L + 03
2.2940E+02
VERTICAL
TIhE Y
7.V455E+00
7.74SSEH-00
7.490IE^3
5.61'J4K+OU
2.244'JE+Ob
2.0651EV03
b.6]lJ4h^03
2.0G51E+03
b.6194E+03
5.6194E+03
1.3I02H+04
2.G078E+OL
8.2383E+03
l.G910EK)3
VERTICAL
DOETA
] .0077L + 00
l.OOOOL'+OO
i.OOOOG-i-00
l.OOOOE-iOO
l.OOOOE+00
1..0000EfOO
l.OOOOK+OO
l.OOOOEfOO
l.OOOOE+00
l.OOOOE^O
l.OOOOK+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
HORIZONTAL
REl'ARDATION
1.0410E-I-00
1.04 1011+00
O.VU51E+OV!
6.163QEH02
2.4G16E+04
2.2G64E^2
6.16381M02
2.2G64E+02
6.163BE+02
8.305111*01
1.4369E+03
3.0513E+00
9. 035GH+ 02
l,C5G2t "02
HORIZONTAL
T.IHE Y
6.0290E+0]
6.0290E+01
4.7577E+04
3.5697E+04
1.42bGE+06
1.312GGI-04
3.5697E-I-04
1.3L26E+04
3.b697E+04
4.8098E+03
8.321GE^4
1.7G71E+0,i
5.2329E+04
1.0750E+04
HORIZONTAL
DOKTA
l.OOOOE+00
l.OOOOE+00
i.ooooe+oo
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
UlJETA
1.0077E+00
l.OOOOE+00
l.OOOOE+00
l.OOOOL'+OO
l.OOOOE+00
l.OOOOC+00
l.OOOOK+00
l.OOOOE+00
l.OOOOE+00
i.ooooe+oo
l.OOOOfc+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
BREAK THRU
TIME Y
6.0035E+01
6.8035E+01
1.0001E+04
1.0001L+04
1.0001L' + 04
1.0001E+04
1.0001E+04
1.0001E+04
1.00011. + 04
1.0001E+04
1.0001H04
2.0279E+02
1.0001K+04
1.0001E+04
-------
1-120
Cr, -134
CS-135
cs-i.37
CE-144
EU-154
U-234
U-23b
NP-2.37
U-230
PU-230
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CH--243
CM-244
] .6227EI01
b!o76b'E + 03
5.0765E+03
5.MI41E + 03
2.0.J03E + 04
3.1I07GE-I03
3.8076E+03
2.63781^01
3.K076E+03
1.77G5E+04
].77G5t+04
1.77G5E+04
1.7765E+04
4.0604E+05
1.7765E+04
4.0G04E+Ob
1.G7SOE+04
l.G7bOE+04
3.7421E+04
3.74iilE<04
3.7421E+04
4.11G2E-I04
[ 4'jGGE + OS5
2.8067E-I04
2.80G7E+04
1.9444E+02
2.8067E+04
1.3095E+05
1 . 3 0 9 b F -i 0 b
1 .3095E+05
1.3095E+Ob
2.9931E+OG
1 . 309bE+Ob
2.9931L+OG
1.2347E+05
1.2347L+Ob
l.OOOOE+00
l.OOOOE+00
3 .OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
] .OOOOH+00
L.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
2.'o.l-J23E + 03
2!0523E+0:3
4.513tiE + 03
1.6411E+04
3.0779E+03
3.0779E+03
2.1513E+01
3.0779E+03
1.4360E+04
1 .4360E+04
1.43GOG+04
1.43GOE+04
3.2021EI-05
1.43GOK+04
3.2821E+OS
1.3539E+04
1.3539E+04
1.7G71E-I02
].188GE+Ob
1..188GE + 05
2.G1411h:-iOb
9.5044EI-05
l!7CI25E+OS
1.2459E+03
1.7825E+Ob
I3.31G4E+05
G.3164E+OS
i].:UG4E+05
8.31G4EHOS
1.900BE+07
0.31G4E+Ob'
1.9008E+07
7.0412E+05
'/.8412E+Ob
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.(OOOE + 00
l.(.OOOE + 00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOfc+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
1.0000E<00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
2.9G32E+02
1.0001E+04
1.0001E+04
1.0001E+04
1 .0001E^ 04
1.0001E+04
1.0001E+04
1.0001L'+04
1.4403E+03
1 . 0001 E^ 04
1.0001E+04
1.0001E+04
1.0001E+04
1 .0001E+04
1.0001E+04
1.000 IE +04
1.0001E+04
1.0001E+04
1.0001L+04
co
i
ANNUAL SOIL LOSS IS 3.1315E-01 KILOGRAMS PER SQUARE METER
. OR 1.9572E--04 MEIERS IS REMOVED FROM THE SURFACE
ANNUAL INFILTRATION INTO TRENCH IS 0.1722 METERS
VERTICAL WATER VELOCITY IS 0.9903 METERS PER YEAR
NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER UNIT SOURCE RELEASE IS
ANNUAL SUMMARY FOR YEAR 1 OF THE SIMULATION
0.1080E-10 CI/MAA3 PER CI/SEC
THE TRENCH CAP HAS HAD 20.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR IS
1.7943E-01 CUBIC METERS OF HATER LEFT BOTTOM 01: TRENCH
O.OOOOE+00 CUBIC METERS Of WATER OVERFLOWED TRENCH
1.44E-01 METERS
NUCLIDE TRANSPORT INFORMATION
NUCL1DE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS--135
CS-137
CE-144
AMOUNT IN
TRENCH
CI
5.7314E-01
9.838GE-01
5.9;;4GE-04
4.1953E-02
1.GS8SE-01
3.8148E-03
9.8998fe-01
3.2G22E-01
9.0256E-01
7.7b38E-01
9.8996E-01
9.077bE-01
5.1919E-02
1.V400E-01
9.3947E-01
1.2497E-01
9.9000E-01
7.8372E-01
3.6829E-02
TRENCH
OVERFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEhOO
o.oooot:+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TRENCH
DRAINAGE
CI
3.5079E-03
6.021GE-03
5.2348E-09
4.9401E-07
4.CJ798E-00
1.2212E-07
l.l&y/E-Ob
1.0443E-05
1.1570E-05
9.1304E-06
5.0012E-OG
2.2434E-03
4. 17086-07
G.&003E--OG
5.3397E-04
2.2109E-07
1.7514E-OG
1.3BG5E-OG
5.9233E-08
AMOUNT AT
WtLL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-JOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
Ah-241
PU-242
Ah-243
CM-243
CM-244
NUCLJliE
03
1
t' *
tn
H-D
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-hO
NI-G3
SR-90
NB-94
TC-99
RU-106
I-1291"'
CS-134
CS-135
CS-137
CE-144
EU-lb4
U~^4
NP-237
U-238
PU-238
PU-23rJ
PU-240
PU -241
AM-24]
PU-242
AM-243
CM-243
CM-244
6.4820E-0]
9.8999E-01
9.9000E-01
9.89G7E-01
9.9000E-01
9.8221E-01
9.y<^7E-01
9.8989E-01
5.9710E-01
9.8851E-01
9.9000E-01
9.0'J91E-01
7.94blE-01
G.7170E-01
SURFACE
SOIL CONC
CI/KG
7.1832E-13
1.2LI31E-12
3.5G19E-13
2. 502 ]E- 11
1.03'J3F.-10
2.1566E-12
5. .1 02E~ 1 1
3.1282E-11
9.G600t-]l
2.:3057E-10
7.G60'Jh-]l
G.0bi37£-10
4.U042E-10
2.2S86E-11
Li. WB IE- 10
G.0588E-10
G.OttSSt-lO
3.0G92E-10
&.Ob
-------
NUCLIDE TRANSPORT INFORMATION
CO
i
NIJCLJUE
H-3
C-14
CR-51
hN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCLIDE
H-3
C-14
CR-51
hN-54
FE-55
CO-50
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
AMOUNT IN
TRENCH
CI
] .0734E-03
4.ticJ]8E-01
O.OOOOE+00
G.'J038E-37
1.5056K-J2
O.OOOOE+00
9.LI7H2E-01
G.8640E-07
4.G5G2E-01
7.0542E-02
9.BGOOE-01
7.G497E-01
1.2338E-31
3.0892E-12
9.31J9E-01
4.4704E-16
9.8977E-01
7.9593E-02
1.9972E-40
8.9122E-03
9.H945E-01
9.8973E-01
9.b301E-01
9.8973E-01
4.4928E-01
9.8710E-01
9.7rJ50E-01
3.3019E-03
8.5124E-01
9.8976E-01
9.8073E-01
9.261J7E-02
1.3587E-02
SURFACE
SOIL CONC
CI/KG
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
1.9513E-47
IJ.5219E-22
O.OOOOE+00
2.7919E-11
j .210GF.-19
].3)59E-1]
1.9938E-12
1.5947E-10
O.OOOOE+00
9.1729E-42
9.U01GE-2G
7.8970E-49
TRENCH
OVERFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL'+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.0000t;+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SURFACE
HATER CONC
C1/MU3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.300UE-4G
1.4203E-22
O.OOOOE+00
1.0G12E-10
2.2014K-UI
(!.7730E-11
1.3292E-11
4.55G3E-IO
O.OOOOE+00
4.1695E-41
2.1781E-24
2.G324E-4G
TRENCH
DRAINAGE
CI
8.3944E-OG
3.8255E-03
O.OOOOE+00
1.0370E-4J
5.GG41E-19
O.OOOOE+00
1.4837E-OIM
2.80206-11
G.9937E-OG
1.0596E-OG
6.3539E-06
2.217GE-03
1.2643E-3G
1.5400E-IG
G.4109E-04
1.0080E-21
2.2335E-OG
1.79G1E-07
4.0972E-4G
5.0289E-09
2.9768E-06
2.9777E-06
4.07b2E-04
2.9777E-06
2.G973E-07
6.3656E-07
G.31GGE-07
2.1293E-09
2.4018E-08
6.3827t-07
2.7G72E-08
6.3400E-08
9.2931E-09
SOLUBLE 10
STREAM
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.1836E-42
4.5G79E-18
O.OOOOE+00
5.9859E-OG
7.0798E-14
2.£)215L'-OG
4.2748E-07
1.4654E-05
O.OOOOE+00
1.3410E-3G
7.0051E-20
8.4659E-42
AMOUNT AT
WELL
CI
1.1701E-05
S.2918E-03
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOH+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
DEEP LAYERS
CI
O.OOOOL?i-00
O.OOOOE+00
O.OOOOE+00
5.G104K-42
G.1257E-18
O.OOOOE-iOO
3.0273E-OG
9.4943E-14
3.7037F:-OG
5.7326E-07
1.9651E-05
O.OOOOE+00
1.7983E-3G
9.3941E-20
1.1353E-41
ATMOSPHERE
AT SPILLAGE
C1/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.98r/4E-S3
8.G797E-28
O.OOOOEHOO
2.8435G-17
1.2332F-25
J.3403E-17
2.0J07E-18
1.G242E-1G
O.OOOOE+00
9.342BE-48
9.9831L-32
8.0432E-55
ATMOSPHERE
DOUN WIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
J.0388E-64
4.5370E-39
O.OOOOE+00
1.4GG4E-28
G.4460E-37
7.006IE-29
1.0G15E-29
8.4902E-20
O.OOOOE+00
4,883&E-59
5.2184E-43
4.2044E-6G
UELL UATER
CONC
CI/MAA3
7.2601E-11
3.2835E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
NP-237
U-2JL1
PU-23(.(
PU-239
PU-240
PU-241
Ah-241
PU-242
AM-243
CM-243
CM-244
1
1.7133E-25
3.7932E-10
3.0S05E-11
7.98G2E-50
4.8507E-12
3.2460E-10
3.2470K-10
] .Oi'JOE-37
3.2470E-10
2.4046t-]0
i.2(.l34E-10
5.2427E-10
1.7673E-12
5.1792E--10
5.1W6E-10
i..%'/OE-10
4.ObE-ll
7.2602E-50
1.2127E-12
4.3200E-10
4.3293E-10
2.0380K-35
4.3293E-10
G.8702E-11
1.&095E-IO
1.4979E-10
b.049GE-13
G.4741E-12
1.513C.E-30
7.4bbBE-12
1.4913E-11
•J.1860E-12
ANNUAL NUMMARY
5.3102E-21
1.2199E-05
cJ.ai06E-07
2.3350E-45
3.9001E-08
1.3919E-05
] .3924E-Ob
6.554bE-31
1.3924E-05
2.20CJ5E-06
4.8540E-06
4.8175E-06
1.6240E-OU
2.0821G-07
4.0679E--06
2.39ttt)K-07
4.79&3E-07
y.OJ04E-08
FOR YfAR 200
7.3894E-21
1.63GOE-05
1.3156E-06
3.1313E-45
5.2302E-08
1.8666E-05
1.8672E-OS
8.7897E-31
1.0672E-05
2.9631E-06
6.510bE-06
6.4604E-0&
2.1778E-OU
2.7922E-07
6.528'JE-06
3.21G9E-07
6.4320H-07
9.4200E-08
OF 1HE SIMULA!
1.7451E-31
3.8GJ4E-1G
H.10G9E-17
8.1341E-56
4.9405E-18
3.30G1E--1G
3.307JE-16
1.0379E-43
3.IJ071E-16
2.44CJ]E-JG
5.3812E-16
5.J398E-1G
] .H001E-18
5.2751E-1G
5.3957E-1G
G.0775E-36
b.OJ2bt-17
7.J473E-18
ION
9.1217E-43
2.0195E-27
1.G241E-28
4.2510E-67
2.5825E-29
1.7202E-27
1.7287E-27
5.4252E-55
1.7287E-27
1.2G02E-27
2.B129E-27
2.7912E-27
9.4093E-30
2.7574E-27
2.8204E-27
3.1768E-27
2.G202E-28
J.U40&E-29
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
DO
I
THE TRENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR (S
2.2G11E-01 CUBIC METERS OF HATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF UATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCLIIJfc I'RAN&PORT INFORMATION
NUCLIHE
H-3
C-14
CR-51
hN-54
FE-55
CO-50
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-lb4
U-234
U-23b
NP-237
U-238
PU-238
PU-239
PU-240
AMOUNT IN
TRENCH
CI
1.5755E-OG
2.01G7K-01
O.OOOOE^O
b.Ob73E-72
1.0303E-23
O.OOOOE+00
9.8530E-01
1.2644E-12
2.1U91E-01
G.2G20E-03
9.0187E-01
S.5270E-01
] .47HIE-&1
4.2G62E-23
8.G201E-01
1.1427E-30
CJ.8950E-01
7.8902L-03
O.OOOOEfOO
1.1734E-04
9^3084E-01
0.8'J40E-01
9.0836E-01
9.8940E-01
2.0388E-01
9.3420E-01
9.G910E-01
TRENCH
OVERFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00001- -100
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1'RLNCH
DRAINAGE
CI
1.5367E-08
1.9G70E-03
O.OOOOE+00
9.45&5E-77
4.0625E-30
O.OOOOE+00
1.8424E-05
G.4275E-17
4.0933E-06
1.1709E-07
7.87G8E-06
1.99GOE-03
1.8775E-GG
2.G476E-27
7.3892E-04
3.210]E-36
2.7797E-06
2.2188E-08
O..OOOOE+00
0.2426E-11
3.7035E-OG
3.70SGE-OG
4.8360E-04
3.70b6E-OG
1.63G8E-07
7.9011E-07
7.77'J9E-07
AMOUNT AT
WELL
CI
2.4712E-08
3.1393E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-<00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
co
i
00
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCLIDE
H-3
C-14
CR-51
HN-54
FE-5b
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-lOf.
SB-125
1-129
CS-134
CS-13b
CS-137
CE-144
U-234
U-23b
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
1.7325E-05
7.31cJ3t-01
<-).89SOE-OL
9.71ME-01
1.0583E-02
2.6422E-04
SURFACE
SOIL UINC
CI/KQ
O.OOOOE-iQO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
5.4339E-33
O.OOOOE-iOO
1.2802E-12
6.4607E-29
2.B621E- 13
8.1874E-15
4.]
-------
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-106
SB- 125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-23E)
CD PU--238
' PU-239
S PU-240
PU-241
AM-241
PU-242
Ah-243
CM-243
Ch-244
CI
2.0'J1J4E--09
7.5475E-02
O.OOOOE+00
O.OOOOEK)0
7.H.01E-3b
O.OOOOE+00
9.82GOE-01
2.3280E-18
1.0290E--01
5.5577E-04
9.:/7G8E-01
3.I3528E-01
O.OOOOE+00
b.:.itit)OE~34
7.9122E-01
2.920BE-45
9.0919E-01
;.8374E-04
O.OOOOE+00
1.5449E-06
9.8U18E-01
9.0902E-01
8.G124E-01
9.8901.!E-01
9.2520E-02
CJ.(U30E-01
9.58130E-01
9.0'J04L-08
6.2934E-01
9.BlJ23t-0]
9.G245E-01
1.20HJE-03
5.1380E-OG
C t
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE-i-00
o.oooom-oo
O.OOOOE+00
O.OOOOEHOO
O.OOOOEtQO
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfc+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOM+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOLHOO
O.OOOOE+00
CI
2.0477E-1)
7.3617E-04
O.OOOOE+00
O.OOOOE+00
3.3532E-41
O.OOOOE+00
1.8373E-Oti
1.1D34E-22
1.9241E-06
1.0:J92E-08
7.0431E--OG
1.3914E-03
O.OOOOE+00
3.G542E-38
G.7823E-04
8.205]E~51
2.778CJK-06
2.2017E-09
O.OOOOE+00
1.0852E-12
3.7010E-06
3.7042E-06
4.5851E-04
3.7042E-OG
7.4274G-08
7.877GE-07
7.6972E-07
7.2977E-14
2.2106E-08
7.941&E-07
3.J806E-00
1.02B7E-09
4.3747E-12
CI
3.992t»f-ll
1.4245E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOHOO
2.21B7E-03
O.OOOOE+00
O.OOOOE+00
1.0899E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
NIJCI.1UE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
IC-99
RU-10G
SB-125
1-120
CS-134
CS-135
cs-n;
CE-144
EU-154
U-234
U-235
NP-237
GURFACL
SOIL CONG
CI/KG
O.OOOOL'HOO
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
IJ.4648E-44
O.OOOOE+00
5.94J8E-14
3.4475E-3H
(,.:•'.'/ A'dE-llj
3.3621E-17
].]Ob7E-ll
O.OOOOE+00
O.OOOOE+00
b.0874E-56
O.OOOOE+00
4.3906E-55
1.48G7E-JIO
1.1781E-13
O.OOOOE+00
G.G485E-1G
9.3HI7E-11
9.3J71E-11
O.OOOOE-iOO
SURFACE
WATER CONC
CI/HAA3
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
5.7747K-45
O.OOOOE+00
3.9G26E-13
6.2682E-37
4.1499E-14
2.2414E-1G
3.1b93E-ll
O.OOOOE+00
O.OOOOE+00
1.1305K-54
O.OOOOE+00
4.390GE-55
] .4867E-10
1.1781E-13
O.OOOOE-iOO
1.GG21E-1G
1.2425E-10
1.243GE-10
O.OOOOE+00
SOLUBLE TO
STREAM
CI
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOK+00
1.8572E-40
O.OOOOE+00
1.2744E-08
2.01bcJE-32
1.3346E-09
7.2007E-12
1.0160E-OG
O.OOOOE+00
O.OOOOE+00
3.G359E-50
O..OOOOE + 00
1.4120E-50
4.7B14E-OG
3.7890E-09
O.OOOOE+00
b.345GE-T2
3.99GOE-OG
3.999GE-OG
O.OOOOE+00
SOLUBLE TO
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
2.490GE-40
O.OOOOE+00
1.7090E-08
:-!.7034E-32
T.709UE-09
9.6671E-12
1.3G26E-06
O.OOOOE+00
O.OOOOE+00
4.87b9E-50
O.OOOOE-iOO
1.8936E-50
6.4J20E-06
5.0812E-09
O.OOOOE+00
7.1Ga6G-12
5.3b88E-OG
5.3G3GE-06
O.OOOOK+00
ATHOSPHERE
AT SPILLAGE
CI/MAA3
O.OOOOE-iOO
O.OOOOL'-iOO
O.OOOOE+00
O.OOOOE+00
3.5290E-50
O.OOOOE+00
6.0539E-20
3. 511311-44
G.3400E-21
3.4244E-23
1..1262E-17
O.OOOOE+00
O.OOOOE+00
5.181GE-G2
O.OOOOE+00
4.4718E-G1
1.5142E-1G
U.1999E-19
O.OOOOE+00
G.7716E-22
9.4912E-17
9.4998E-17
O.OOOOE+00
ATMOSPHERE
DOUN WIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.8447E-G1
O.OOOOE+00
3.1645E-31
1.8354E-55
3.3141K-32
1.7900E-34
5.8B69E-29
O.OOOOE+00
O.OOOOE+00
2.70C5E-73
O.OOOOE+00
2.3375E-72
7.9152E-28
G.2724E-31
O.OOOOE+00
3.5397E-33
4.9613E-28
4.9657E-28
O.OOOOE+00
WELL UATER
CONC
CI/MAA3
2.4773E-1G
8.8390E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.3767E-08
O.OOOOE+00
O.OOOOE+00
6.7626E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
U-238
PU-238
PU-23'3
PU-240
PU-241
AM-241
PU-242
AM-243
Ch-243
CM-244
1
9
3
4
3
3
3
4
b
4
2
.3271E-11 1
.7H65E-11 1
.Olb'JE-10 1
.'JU3HE-10 1
.7205E-17 1
.ytii!6E-10 4
.0484E-10 1
.784GE-10 7
.0259E-13 1
.OlJ23E-]b 6
ANNUAL
.243GE-10
.081'JE-)]
.1474E-10
.121JE-10
.0630E-17
.72U2E-J2
.15G7E-10
.230UK-12
.4G24U-13
.231J2E-16
SUMMARY
3
3
3
:i
3
1
3
i
4
FOR"
.99%E-OG
.4794K-07
.G902E--06
.GObdE-06
.4187E-13
.520GE-07
.7200E-06
.3255E--07
.703211-09
.0001K-11
YEAR 400
5
4
4
4
4
2
4
3
6
2
OF
.3636E-OG 9.4998E-17
.GG60K-07 3.tlbG6E- 17
.948GE-OG 4.0902E-1G
.B3ti2K-06 3.99G5E-16
.58466-13 3.7U94E-23
.0392E-07 3.0b26E-J£>
.9807E-OG 4.1234E-1G
.IIBGE-OV 5.0'Jl7E-]6
.J071E-09 4.9152E-19
.6B23E-1] 2.0003E-21
THE SIMULATION
4.9G57E-28
2.0150E-20
2.13U1E-2V
2.0U90E-27
1.9U08E-34
2.013GE-27
2.1b'b'4E-27
3.0707E-27
2.5G93E-30
I.092GE-32
0
0
0
0
0
0
0
0
0
0
.OOOOE+00
.OOOOK+00
.OOOOE+00
.OOOOKiOO
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
THE TkENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR IS
2.2611E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
0.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCL1DE TRANSPORT INFORMATION
DO
NUCLJUE
H-3
C-14
CR-51
MN-b4
FE-5b
CO-5U
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-12b
1-129
C5-134
CS-135
CG-137
CE-144
EU-154
U-234
U-235
NP-23<'
U-230
PU-2JK
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
AMOUNT IN
TRENCH
CI
2.7974E-12
2.8248E-02
O.OOOOE-iOO
0. OOOOE + 00
4.937GE-46
O.OOOOEi-00
9 7 9 CJ ] F - 0 1
4i28G2E-24
4.fi3C-,8E-02
4.9327E-05
9 73blP'-01
2I6858E-01
O.OOOOE-iOO
ft. 'J ;.'64L 45
7.2G24E-01
9!8889E-01
7.777]E-Ob
0. OOOOE + 00
2.0341E-OB
9.C753E-01
9.0864E-01
U.1656E-01
'j.l>'H64t-01
4 . lb'h'-02
9.7840E-01
9.4862E-01
4.7697E-10
b.4113E-01
9.889GE-01
9.b343F!-01
1.3793E-04
9.9CJ13E-08
TRENCH
OVEkl-'LOH
CI
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOb'+OO
0. OOOOE+00
O.OOOOL+00
0. OOOOE+00
O.OOOOE-iOO
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOE-iOO
0. OOOOE+00
o.oooomoo
0. OOOOE+00
O.OOOOEHOO
0. OOOOE+00
O.OOOOEiOO
0. OOOOE+00
0. OOOOE+00
O.OOOOEvOO
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOEHOO
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
o.oooot+oo
TRENCH
DRAINAGE
CI
2.72U6E-14
2.7552E-04
0. OOOOE+00
0. OOOOE+00
2.3123E-52
0. OOOOE+00
1.8323E-05
2.1788E-28
9.0441E-07
9.2234E-10
7.8097E-OG
9.G995E-04
0. OOOOE+00
5.0433E--49
6.2253E-04
2.0rj73F;-6'J
2.77801^-06
2.1040E-10
0. OOOOE+00
1.4289E-14
3.G98GE-OG
3.7027H-06
4.3473E-04
3.7027K-OG
3.3705K-03
7.0545E-07
7..GJb4K-07
3. 829 IE- 16
1.9007E-OD
7.9393E-07
3.3489E-OU
1.1744E-10
8.5070E-14
AMOUNT AT
WELL
CI
b.3200E-14
5.3313E-04
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOK+00
0. OOOOE+00
0. OOOOE+00
2.0008E-03
0. OOOOE+00
O.OOOOE-iOO
6.452GE-04
O.OOOOE-iOO
0. OOOOE+00
O.OOOOE-iOO
0. OOOOE + 00
0. OOOOE+00
0. OOOOE+00
O.OOOOE-<00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
-------
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
U-234
U-235
NP-237
U-238
PU-2313
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
2 . 2 0 *J 3 E - b b
O.OOOOE+00
2.742GE-15
1.8396E-47
1 . 3 i:i 3 8 E •- 1 6
1.3007E-19
2.9117E-12
O.OOOOE+00
O.OOOOEfOO
3.GG52E-71
O.OOOOE+00
7.0285E-70
9.3084E-11
V.3217E-15
O.OOOOE+00
7.783GE-lb
4.9930E-11
4.9990E-11
O.OOOOE+00
4,'J'J'JOE-l]
1.5025E-H
3 . jQlOE- 10
3.3944E-10
1.7070E-I9
3.2324E-10
3.5388E-10
5.695GE-10
4.7788E-14
3.4617E-17
SURFACE
HATER CONC
C1/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.6822E-bG
O.OOOOE+00
1.8204K-14
3.3448H-46
9.0256K-1G
9.2045E-19
8.3192E-12
O.OOOOE+00
O.OOOOE+00
B.]44'JL--70
O.OOOOE+00
7.02GbE-70
9.3004E-11
7.3217E-15
O.OOOOE+00
1.9459E-1U
G.G574E-11
G.GG54E-1]
O.OOOOE+00
6.GG54E-11
4.2928E-12
1.0003E-10
9.6984E-11
4.8773E-20
4.0405E-12
1.0111E-10
7.]]9bE-12
1.4481E-14
K0490E-17
SOLUBLE TO
STREAM
C.)
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.1G42E-51
O.OOOOE+00
5.8B03E-10
1.0757E-41
2.9027E-]!
2.9G03E-14
2.G755E-07
O.OOOOE+00
O.OOOOE+00
2.&rJbE-65
O.OOOOE+00
2.2G04E-65
2.9937E-OG
2.3547E-10
O.OOOOE+00
C,.2bt);:E-]4
2.1411E-OG
2.1437E-OG
O.OOOOE+00
2.1437E-06
1.380GE-07
3.2171E-OG
3.1191E-OG
l.bG8GE-]b
1.2995E-07
3.2518E-06
2.2G97K-07
4.G573E-10
3.3737E--13
SOLUBLE 10
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOH+00
] .5881E-5]
O.OOOOEHOO
K442GE-41
3.892GE-1]
3.9698E-14
3.5G80E-07
0. 000011 + 00
O.OOOOE+00
3.bl28E-65
O.OOOOE+00
3.0313E-G5
4.0146E-06
3.1570E-10
O.OOOOE+00
8.3925E-14
2.8713E-OG
2.8747E-OG
O.OOOOE+00
2.8747E-OG
1.8515E-07
4.3142E-OG
4.1828E-06
2.103bE-lb
1.742GE-07
4.3608E-OG
3.070GE-07
6.245GE-10
4.5242E-13
ATMOSPHERE
AT SPILLAGE
O.'OOOOE + OO
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
2.2502E-G1
O.OOOOE+00
2.7934E-21
1.8737E-53
1.3789E-22
1.40G2E-25
2.9G5GE-18
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.158GE-76
9.4807E-17
7.4573E-21
O.OOOOE+00
7.927GE-24
5.0855E-17
b.0916E-]7
O.OOOOE+00
5.091GE-17
1.5303E-17
3.5G5CJE-16
3.4573E-16
1.738GE-25
3.2922E-1G
3.G044E-16
b.bOlOE-16
4.8G72E-20
3.5258t--!3
ATMOSPHERE
DOWN WIND
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.17G2E-72
O.OOOOE+00
1.4G01E-3J!
9.7941E-G5
7.2078E-34
7.3507E-37
1.5502E-29
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.9558E-28
3.89G1E-32
O.OOOOE+00
4.1440E-35
2.GSH3E-28
2.G615E-2b
O.OOOOE+00
2.6615E-28
f.8G3cJE-27
1.B072E-27
9.0862E-37
1.7209E-27
1.8841E-27
3.0323E-27
2.S442E-31
1.8430E-34
WELL WATER
CONC
C I/MAA3
3.3010E-19
3.3080E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.2415E-08
O.OOOOE+00
O.OOOOt+00
4.0038E-09
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
ANNUAL SUMMARY FOR YEAR 500 OF THE SIMULATION
THE TRENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR IS
2.2G11E-01 CUBIC METERS OF WATER LEFT BOTTOM 01? TRENCH
O.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCLIDE TRANSPORT INFORMATION
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-50
NI-59
AMOUNT IN
TRENCH
CI
3.727GC-15
) .01J72E-02
O.OOOOE^O
O.OOOOEHOO
3.40bOE-b7
O.OOOOE+00
9.7723E-01
TRENCH
OVERFLOW
C:l
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
TRENCH
DRAINAGE
CI
3.GJ59E-17
1.0312E-04
O.OOOOEHOO
O.OOOOEHOO
1.5946E-G3
O.OOOOE+00
] .Fl 2 ?'•!:••- 05
AMOUNT AT
WELL
CI
7.0B90E-17
1.9953E-04
O.OOOOE+00
O.OOOOK+00
O.OOOOfc+00
O.OOOOE+00
O.OOOOK+00
-------
CO
I
ro
ro
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SD-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-SB
Nl-f/'j
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
5P-12Lj
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-23b
NP-237
U-230
PU-230
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
7.0916E-30
2.273GE-02
4.3779E-OG
9.G935E-01
1.3722E-01
O.OOOOE+00
l.]216E-bb
G.6Gb9E-01
1.9083E-74
9.B859E-01
7.7172E-OG
O.OOOOE+00
2.G7U2E-10
9.8688E-01
9.8827E-01
7.7420E-01
9.8827E-01
1.90b3E-02
9.7551E-01
9.3853E-01
2.502GE-12
4.6b29E-01
9.8I3G9E-01
9.4450E-01
1.5747E-05
1.CJ429E-09
SURFACE
SOIL CONG
CI/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4037E-G6
O.OOOOE+00
1.2Gbbh-)G
9.81G4E-57
2.rJ44bE-](J
5.6G97E-22
7.6670E-13
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE-)00
O.OOOOE+00
O.OOOOE+00
5.(:i;:77E-]i
4.5502E-16
O.OOOOEnOO
9.112GE-20
2.t,7b3E-l]
2.G793E-11
O.OOOOE+00
2.G793E-11
b.9G24E- J2
3.0522E-10
2.93GbE-10
7.8322E-22
2.'/G?.:-'.E-10
3.0935E-10
5.G079K-10
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOEnOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
SURFACE
HATER CONG
CI/HAA3
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.3479E-G7
O.OOOOE+00
S.43G5E- 16
1.784BE-55
1.9G30E-17
3.7798E-21
2.190GE-12
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
5.8277E-]]
4.5502E-1G
O.OOOOE+00
2.2782E-20
3.i671E-l]
3.5724E-11
O.OOOOE+00
3.5724E-11
1.703&E-12
8.7206E-11
8.3899E-1]
2.2378E-22
3.4S20E-12
8.838GE-11
7.0099E--12
4.011GE-34
4.2513E-07
8.1fJGOE-ll
V.77G3E-06
6.7614E-04
O.OOOOE+00
G.9GOGE-GO
&.7141E-04
O.OOOOE+00
2.7772E-OG
2.1679E-11
O.OOOOE+00
1.8B13E-IG
3.6'JG]E-OG
3.7013E-OG
4.1210E-04
3.7013E-OG
1 .529bE-00
7.8314E-07
7.b34bE-07
2.0091E-10
1.G343E-00
7.9371E-07
3.317GE-00
1.3407E-11
1.6b43E-lb
SOLUBLE TO
STKEAM
CI
O.OOOOE+00
O.OOOOE+00
o.oooomoo
O.OOOOE+00
7.5510E-G3
O.OOOOEnOO
2.7132E-1]
5.7401E-51
G.3331E-13
1.21SGE-16
7.0451E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEi-00
O.OOOOE+00
1.8743E-OG
1.4634E-11
O.OOOOE+00
7.32G8E-1G
1 . 1472E--06
1.14K9E-OG
O.OOOOE+00
1.1489E-OG
5.4788E-08
2.I3046E-06
2.G983E-OG
7.19G9E-10
1.1104E-0?
2.8426E-OG
2.2544E-07
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOEHOO
1.400GE-03
O.OOOOE+00
O.OOOOE+00
7.3G40E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL'+OO
SOLUBLE TO
DEEP LAYEKS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
1.012GE-G2
O.OOOOE+00
•I.6386E-1]
7.6977E-51
8.4661E-J3
1.G302E-16
9.4478E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.5134E-06
1.9G24E-11
O.OOOOE+00
9.8255E-1G
1.5304K-OG
1.5400E-OG
O.OOOOE+00
l.b408E-OG
7.3472E-OS
3.7G11E-OG
3.6185E-OG
9.6513E-1I3
1.4B91E-07
3.8120E-06
3.0233E-07
ATMOSPHERE
AT SPILLAGE
CI/HAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4:148E-72
O.OOOOE+00
1.2009E-22
9.9902E-G3
2.9990E-24
5.7747E-28
7.8090E-19
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.'J356E-17
4.6344E-22
O.OOOOE+00
9.2013E-2G
2.7240E-17
2.7?.0
-------
CM-243 4.7322E-15 1.4340E-15 4.6illJE-ll 6.1847E-11 4.8198E--21 2.51-34E-32 O.OOOOE+00
CM-244 b.B'J'dtif.-l<3 1.7G'J3E-]9 5.6cJ04K-lb' 7.fe310E-15 5. 9469E--25 3.1086E-36 O.OOOOE+00
I ANNUAL SUMMARY FOR YEAR 600 OF THE SIMULATION
THE TRENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR IS
2.2G11E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCL1DE TRANSPORT INFORMATION
NUCL1HE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-12b
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
F'U-240
PU-241
AM-241
PU-242
AM-243
Ch-24'J
CM-244
AMOUNT IN
TRENCH
CI
4.9670E-18
3.95G7E-03
O.OOOOE+00
O.OOOOE+00
2.3481E-68
O.OOOOE<00
9.7456E-01
1.4530E-35
1.0687E-02
3.8855E-07
9.6522E-01
1.3051E-01
O.OOOOE+00
l.b479E-G6
6.1185E-01
O.OOOOE+00
9.8828E-01
7.G578E-07
O.OOOOE-iOO
3.52fc2E-12
9.BG23E-01
9.87tl'JE-01
7.3404E-01
9.0789E-01
8.6460E-03
9.72G3E-01
•J.2056E-01
1.3131E-14
4.0007E-01
9.8842E-01
9.35GGE-01
1.7977E-OG
3.7781E-11
TRENCH
OVERFLOW
Ul
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOh' + OO
O.OOOOE+00
O.OOOOE+00
TKENCH
DRAINAGE
11
4.B44BE-20
3.G593E-OS
O.OOOOE+00
O.OOOOE-iOO
1.09%K-74
O.OOOOE+00
1.8223E-05
7.3BGOK-40
1.9984E-07
7.2G53L-12
7.7431E-OG
4.7132E-04
O.OOOOE+00
9.GOG7E-71
5.244BE-04
o.oooot+oo
2.77G3E-OG
2.1512E-12
O.OOOOE+00
2.4769E-18
3.G937E-OG
3.699fjE-OG
3.9080E-04
3.6999E-OG
6.9410E-09
7.8002E-07
7.4544E-07
1.0542E-20
1.4052E-OU
7.9350E--07
3.20G5E-08
1.5307E-12
3.21GCJL'-17
AMOUNT AT
WELL
CI
9.44G2E-20
7.4679E-05
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.7G35E-04
O.OOOOE+00
O.OOOOE+00
G.7592E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
NUCLIDE
H-3
C-14
CR-51
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SURFACE
WATER CONC
C1/MAA3
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEi-00
SOLUBLE TO
STREAM
l:j
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEi-00
SOLUBLE TO
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOEfOO
ATMOSPHERE
AT SPILLAGE
C3/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOC+00
ATMOSPHERE
DOWN WIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
WELL UATER
COM:
CI/M.^AS
5.8G13E-25
4.6338E-10
O.OOOOE+00
-------
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-137
CC-144
EU-154
U -234
U-235
NP-237
U-233
PU-230
PU-239
PU-240
PU-241
AH-241
PU-242
AM-243
CM-243
CM-244
1
O.OOOOE+00
8.9839E-78
O.OOOOE-iOO
b.8391E-10
5.2381E-GG
G.403'JE-20
2.3283E-24
2.0UI9E-13
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.MH7E-11
2.8277E-17
O.OOOOE-iOO
1.0GG9E-21
1.4333E-]]
1.4359E-11
O.OOOOE+00
1.4359E-]]
2.3GGOE-] 2
2.6608E-10
2.5401E-10
3.b93bE-i!4
2.3M3E-10
2.7040E-10
b.52]&E-]0
4.68G1E-1G
9.U4B4E-21
O.OOOOE+00
1.4973E-78
O.OOOOE+00
3.8927K-17
9.5239E-G5
4.2693E-19
1.5522E-23
5.7G84E-]-!
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.641TA-11
2.8278E-17
O.OOOOE+00
2.GG71E-22
1.91UE-1]
1.9145E-11
O.OOOOE+00
1.914bE-]l
G.7GOOE-13
7.G023E-11
7.2576E-11
1.0267E-24
2.9S04E-12
7.725BE-11
G.9022K-12
1.4200E-1G
2.9844E-21
ANNUAL SUMMARY
O.OOOOE+00
4.8155E-74
O.OOOOE+00
1.2519E-12
3.0G30E-60
1.3730E-14
4.9920E-19
1.8bb2fc'-0t(
O.OOOOEi-00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
l.r/3bE~-06
9.0943E-13
O.OOOOK+00
U.S778E-1U
6. 146 IE- 07
6.1S73E-07
O.OOOOE+00
G.lb73E-07
2.374JE-OL'
2.44bOK-OG
2.3341E-OG
3.3021E-20
CJ.4087E-00
2.4847E-06
^.aiOOE-O?
4.5GG9E-12
9.&980E-17
FOR YEAR 700
O.OOOOE+00
6.4578G-74
O.OOOOE+00
1.G7B9E-12
4.1076E-60
1.8413E-14
6.G944E-19
2.4EI79E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE^O
].5737E-06
1.219GE-12
O.OOOOE+00
l.l:-J03E-17
0.2422E-07
8.2572E-07
O.OOOOE-iOO
8.2S72L-07
2.91bbE-OB
3.27BUE-OG
3.1301E-OG
4.4282E-20
1.272bE-07
3.3321E-OG
2.97&9E-07
G.1244E-12
1.2Q71E-16
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
5.9472K-24
5.3351E--72
6.522bE-26
2.3714E-30
2.05G3E--19
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
3.7163E-17
2.8001E-23
O.OOOOE+00
l.OOGGE-27
1.4590K--1V
1.4G25E-17
O.OOOOE+00
1.462bE-]7
2.409CK-1U
2.7101K-16
2.58726-1G
3.GG01E-30
2.4040E--16
2.7541E-1G
5.6240E-16
4.772UE-22
1.0031E-26
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.1087E-35
O.OOOOE+00
3.4094E-37
1.2396E-41
1.0749E-30
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.942GE-28
1.5055E-34
O.OOOOE+00
ii.G799i;-39
7.G308E-29
7.6447E-29
O.OOOOE+00
7.G447E-29
1.2bcJGE-29
1.416GE-27
1.3524E-27
1.9132E-41
1.2566E-27
1.4396E-27
2.9398E-27
2.4949E-33
b.2433E-38
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
G.0582E-09
O.OOOOE+00
O.OOOOE+00
4.1941E-09
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
tit THE SIMULATION
THE TRENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE UATER DEPTH IN TRENCH DURING THE YEAR IS
2.2G11E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCLIDE TRANSPORT INFORMATION
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-lOt,
SB-125
1-129
AMOUNT IN
TRENCH
CI
C.C-.UIGE- 21
1.4809E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.7HJ9E-01
2.G751E-41
b.0236E-03
3.4485E-08
9.6HOE-01
9.0974G-02
O.OOOOE+00
2.1404E-77
5.G1GOE-01
TRENCH
OVERFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOUi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TRENCH
DRAINAGE
CI
6.4558E-23
1.4444E-05
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
l."8173fc-0b
1.3599E-45
9.3934E-08
6.4482E-13
7.7101E-OG
3.2054E-04
O.OOOOE+00
O.OOOOE+00
4.8140E-04
AMOUNT AT
WELL
CI
1.2587E-22
V1.7949E-05
O.OOOOL'-i-OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
G.B060E-04
O.OOOOE+00
O.OOOOE+00
G.2041E-04
-------
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-23ti
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCL1DE
CO
1
ro
en
H-3
C-14
CR-51
MN-54
FE-55
CO-5&
HI -59
CO-GO
NI-G3
SR-90
NB-94
TC-99
PU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
O.OOOOE+00
9.8798C-01
7.j988E-OU
O.OOOOEfOO
4.64i!&E-14
9.8558E-01
9.87u2E-01
G.9596E-01
9.U752E-01
3.tJl-!34E-03
9.G97GE-01
9.18G9E-01
G.B899E-J7
3.4399E-01
9.QB16E-01
9.2G89E-01
2.0524E-07
7.34G9E-13
SURFACE
SOIL CONC
CI/KG
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEvOO
O.OOOOE-iOO
2.G942E-19
2.7
-------
2.2611E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
NUCL1DL TRANSPORT INFORMATION
CO
i
ro
cr>
NUCLIOE
H-3
C-14
CR-51
MN-54
EE-5b
CO-58
NI-59
CO-60
NI-63
SR-'30
NB-94
TC-99
RU-10G
SB-12b
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-23C
PU-23S
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-24.4
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-5S
CO-58
NI-59
CO-60
NI-63
SR-90
MB-94
AMOUNT IN
TRENCH
CI
8.0194E-24
S.5424E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE-lOO
O.OOOOE+00
9.6'J23E-0]
4.9253E-47
2.3bl4E-03
3.0606E-09
9.5699E-01
6.3414K-02
O.OOOOE+00
O.OOOOE-lOO
5.1547E-01
O.OOOOE+00
9.87G7E-01
7.S404E-09
O.OOOOE+00
G.112GE-1G
9.8493E-01
9.8715E-01
G.b98GE-01
9.B715E-01
1.7U05E-03
9.6G91E-01
9.0B93E-01
3.G151E-19
2.9577E-01
•J.U789E-01
9.1B21E-01
2.3431E-08
1.4287E-14
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE-<00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-lOO
1.2431E-20
O.OOOOE-iOO
3.02-J2E-23
3.9263E-29
1.3999E-14
TRENCH
OVERFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
0.0000^00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SURFACE
WATER CONC
CI/MAA3
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-lOO
8.2876E-20
O.OOOOK+00
2.019SE-22
2.617SE-28
3.9997E-14
TRENCH
DRAINAGE
CI
B.&02-JE-2G
i. 406011 --06
O.OOOOE+00
O.OOOOE+00
O.OOOOt-iOO
O.OOOOE+00
1.8123E-05
2.5037E-51
4.4]b4E-00
5.7230E-14
7.6772E-06
2.2901E-04
O.OOOOE+00
O.OOOOE+00
4.4187E-04
O.OOOOE+00
2.7746E-OG
2.1103E-14
O.OOOOE+00
4.293bE-22
3.6888E-06
3.6972K-06
3.5I30E-04
3.G972E-OG
] .4293K-09
7.7623E-07
7.2968E-07
2.9021E-25
1.038'JE-OH
7.9307E-07
3.2252K-00
1.9950E-14
1.2164E-20
SOLUBLE TO
STREAM
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
2.6654E-15
O.OOOOE+00
6.4948E-18
8.4182E-24
1 .2064E-09
AMOUNT AT
WELL
CI
1.6772E-25
3.04GOE-05
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
4.7444E-04
O.OOOOE+00
O.OOOOE+00
5.G946E-04
O.OOOOE+00
O.OOOOE+00
0.0000^00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOh'HOO
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
SOLUBLE 10
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOK+00
O.OOOOEi-00
O.OOOOE+00
3.5744E-15
O.OOOOK+00
8.7098E-18
1.1289E-23
1.73SOB-09
ATMOSPHERE
AT SPILLAGE
CI/MAA3
O.OOOOE+00
O.OOOOK+00
O.OOOOE^O
O.OOOOE-fOO
O.OOOOE+00
O.OOOOK-iOO
1.2G62E-26
O.OOOOK-iOO
3.0853E-29
3.9990E-3b
i,42saB-ae
ATMOSPHERE
DOWN WIND
CI/MAA-3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.G184E-38
O.OOOOE+00
1.6127E-40
2.0903E-46
7.4S31B-33
WELL WATER
CONC
CI/MAA3
1.0407E-30
6.4907E-11
O.OOOOE+00
O.OOOOE+00
O.OOOOE+C""!
O.OOOOK+0 •
O.OOOOE+C
O.OOOOK+0 i
O.OOOOE+Ou
O.OOOOE+00
o»oeooF40
-------
TC-99
RU-106
SB-12b
1-129
CS-134
CS-135
CS-137
CE-144
EU-1M
U-234
U-23b
NP-237
U-23CI
PU-238
PU-239
PU-240
PU-241
Ah-241
PU-242
AM-243
Ch-243
CM-244
1
O.OOOOE+00
O.OOOOK-lOO
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
1.4299E-11
1.0021E-19
O.OOOOE+00
1.4G23E-25
4.1150E-12
4.1249K-12
O.OOOOE+00
4.KM9E-12
3.7256E-13
2.0224E-10
1.9012E-10
7.5G49E-29
1.7241E-10
2.0GG2E-10
5.3535E-10
4 b9IJlE- ] b
2.8019K-24
O.OOOOK+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
1.4299E-11
1.0921E-19
O.OOOOE+00
3.6bbGK~-2G
5.48G7E-12
b. 4999K- 12
O.OOOOE+00
b.4999E-12
1.0645E-13
5.7784E-13
5.4321E-11
2.1G14E-29
2.1551E-12
5.9035K-11
6.G918E-12
1.392LiE-]ti
8.490bE-25
ANNUAL SUMMARY
O.OOOOE+00
O.OOOOt'+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.5988G-07
3.5124E-15
O.OOOOE+00
1.1757E-21
1.7G4GE-07
1.7G80E-07
O.OOOOE+00
1.7G88E-07
3.4234E-09
1.8ti84E-OG
1.7470E-OG
6.9513E-25
6.9309E-08
1.898GE-OG
2.1522E-07
4.47B3E-14
2.7306E-20
FOR YEAR 900
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
6.1672E-07
4.7102E-]b
O.OOOOE+00
3.5766L-21
2.JGG4E-07
2.3720K-07
O.OOOOE+00
2.3720E-07
4.5909E-09
2.4922H-06
2.34286-06
9.3219E-25
9.2946E-08
2.54G1E-06
2.88G1E-07
G.0055E-34
3.GG19E-20
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE-IOO
1.4564E-17
1.1123H-25
O.OOOOE+00
1.4893K-31
4.1912E-10
4.2013E-18
O.OOOOE+00
4.20I3E-30
3 . 7946E-19
2.0b99H-16
1.93G4E-1G
7.7050E-35
l.VbGOE-16
2.1045E-1G
5.452GE-1G
4.G802K-24
2.8537E-30
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.G129E-29
5.8144E-37
O.OOOOE+00
7.7850E-43
2.1908E-29
2.1961K-29
O.OOOOE+00
2.1961E-29
1.9835E-30
1.0767E-27
1.0122E-27
4.027bE-46
9.1788E-28
].1000E-27
2.8502E-27
2.44G4E-35
1.4917E-41
2.9439E-09
O.OOOOE+00
o.oooot+oo
3.5335E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
OF THE SIMULATION
CO
I
ro
THE VK'ENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH DURING THE YEAR IS
2.2611E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF WATER OVERFLOWED TRENCH
1.01E-01 METERS
NUCIJDE TRANSPORT INFORMATION
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-5&
CO-5C
NI-59
CO-60
NI-63
SP-90
NB-94
TC-99
RU-10G
SB-12b
1-129
C3-134
CS-135
CS-137
CE-144
EU-1^.4
U-234
U-2-35
NP-237
AMOUNT IN
TRENCH
CI
1.1752E-2G
2.0743E-04
0. 00001+00
O.OOOOE+00
O.OOOOE+00
0.00001- iOO
9.66bUE-01
9.06B3E-53
1.1100E-03
2.7JG4E-10
9.5291E-01
4.420GF-02
O.OOOOE+00
O.OOOOE-iOO
4.7314E-01
O.OOOOE+00
9.8737E-01
7.4823E-10
O.OOOOE+00
?. 04801-:- lb
9.842UK-01
•J.8G78E-01
6.2^-G3E-01
TRENCH
OVtRt'LOW
CI
O.OOOOE+00
O.OOOOEt-00
O.OOOOK+00
O.OOOOE^OO
O.OOOOKHOO
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOKiOO
O.OOOOEfOO
O.OOOOK+00
O.OOOOE+00
O.OOOOK+00
O.OOOOK+00
O.OOOOEi-00
O.OOOOK+00
TRENCH
DRAINAGE
CI
1.14G3E-28
2.0232E-OG
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
1.8074K-Ob
4.G098E-57
2.075bE-08
5.0793E-15
7.G444E-OG
l.bcJG5E-04
O.OOOOE+00
O.OOOOKHOO
4.-0557E-04
O.OOOOK+00
2.7737E-OG
2.1020E-llj
O.OOOOEfOO
5.G533E-24
3.MG4K-06
:3.G95«E-OG
3.3308E-04
AMOUNT AT
WELL
CI
2.2349E-28
3.9150E-06
O.OOOOK+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
3.3071K-04
O.OOOOE+00
O.OOOOK+00
5.22G9E-04
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOK+00
-------
CXI
I
ro
U-238
PU-238
F'U-239
PU-240
PU-241
Ah-241
PU-242
AM-243
Ch-243
CM-244
NULL IDE
H-3
C-14
CR-51
HN-54
FE-55
CO-50
NI-59
CO-GO
NI-G3
SR-90
NB-94
IC-99
RU-10G
SB-125
1-129
CS-134
CS-13^
CS-137
CE-144
EU-154
U-234
NP-237
U-23Q
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CH-243
CM-244
1
rJ.8G78K~01
8.0797E-04
9.b40Gt-01
0.CJ926E-01
1.8968E-21
2.5431E-01
9.8/G2E-01
9.0%1E-OI
2.6749E-09
2.'/782E-16
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
5.73GOE-22
O.OOOOEHOO
G.5882E-25
1.6123E--31
3.68G2E-15
O.OOOOEHOO
O.OOOOEtOO
O.OOOOEHOO
O.OOOOE+00
o.oooot+oo
8.95J1E-12
b.7fH/lE-21
O.OOOOt+00
1.7119C-27
2.2049E--12
2.2108E-12
O.OOOOE+00
2.2108E-12
1.4784E-13
1.7G34E-10
1.G449E-10
3.4709E-31
1.4735E-10
1.UOG4E-10
5.2711E-10
4.5b03E-19
4.72S9E-2G
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOQEHOO
O.OOOOEt-00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
SURFACE
HATER CONC
C1/MU3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
3.8240E-21
O.OOOOtHOO
4.3921J--24
1.0749E-30
1.0532E-14
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
8.9532E-12
G.7871E-21
O.OOOOE+00
4.2798E-2C
2.93cJ9E-]2
2.9478E-12
O.OOOOE+00
2.9478E-]2
4.2240E-14
b.0382F,-ll
4.G997E-11
9.9169E-32
1.841QE-12
5.1611E-11
6.5888E-12
1.37tt9E-rJ
1.4321E-26
3.69bfiE-06
G.48G3E-10
7.7394E-07
7.2192L-07
1.5227E-27
8.932f,E-0'J
7.9285E-07
3.19bOK-0!.(
2.277GE--15
2.3G5&E-22
SOLUBLE 10
STREAM
CI
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE400
1.2298E-16
O.OOOOE+00
1.4125E-19
3.4570E-26
3.3072E-10
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
2.8794E-07
2.1820E-16
O.OOOOL+00
1.37G4E-23
9.4549E-0(J
CJ.4804E-OG
O.OOOOE+00
9.4804E-08
1.3505E-09
1.G203E-OG
1.5115E-OG
3.1894E-27
b.9235E-00
1.6599E-OG
2.1190E-07
4.4346E-lb
4.G058E-22
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
DEEP LAYERS
Cl
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.G493E-1G
O.OOOOE+00
1.8943E-19
4.G359E-2G
4.S424E-10
O.OOOOEHOO
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
3.8G14E-07
2.9272E-1G
O.OOOOE+00
1.8458E-23
1.2G79L'-07
1.2714E-07
O.OOOOE+00
1.2714E-07
1.8210E-09
i!.]729E-OG
2.02G9E-06
4.2770E-27
7.943GE-08
2.2259E-06
2.8417E-07
b.9469E-lb
G.17G5E-22
ATMOSPHERE
AT SPILLAGE
C1/MAA3
O.OOOOEvOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
5.8422E-213
O.OOOOEHOO
6.7102E-31
1.G422E-37
3.7545E-21
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.1189E-18
G.9127E-27
O.OOOOE+00
1.743GE-33
2.2457f-J8
2.2518E-18
O.OOOOEHOO
2.2518E-18
1.5058E-19
1.7960E-16
1.6754E-16
3.5352E-37
1.&007E-16
1.03cJ[iE-16
5.3G86E-1G
4.G345E-?.b
4.8134E-32
ATHOSPHERE
DOWN HIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
3.0538E-39
O.OOOOE+00
3.5075E-42
8.b840E-49
1.9625E-32
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.7666E-29
3.G134E-38
O.OOOOE+00
9.1142E-45
1.1739E-29
1.1770E-29
O.OOOOK+00
1.1770E-29
7.8709E-31
9.3881E-28
0.7574E-28
1.8479E-48
7.8447E-28
9.G171E-28
2.00G3E-27
2.422GE-3G
2.51G1E-43
WELL UATER
CONC
CI/MAA3
1.3868E-33
2.4292E-11
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.0521E-09
O.OOOOE+00
O.OOOOE+00
•J.2433E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
ANNUAL SUMMARY FOR YEAR 1000 OF THE SIMULATION
THE TRENCH CAP HAS HAD 30.00 PER CENT FAILURE
THE MAXIMUM POSSIBLE UATER DEPTH IN TRENCH DURING THE YEAR IS
2.2G11E-01 CUBIC METERS OF WATER LEFT BOTTOM OF TRENCH
O.OOOOE+00 CUBIC METERS OF UATER OVERFLOWED TRENCH
1.81E-01 METERS
NUCLIDE TRANSPORT INFORMATION
-------
CO
I
ro
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-5i
CO-SB
NI-5CJ
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-l^j
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-23IJ
PU-2JC
PU-239
PU-240
MJ-241
AM-241
PU-242
AH-243
CM-243
CM-244
NIJCLIUE
H-3
C-14
CK-51
MN-54
FE-55
CO-58
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-12b
1-129
CS-134
CS-135
CS-137
CE-144
AMOUNT IN
TRENCH
CI
1.5659E-29
7.7633K-05
O.OOOOEfOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.f.394E-01
1.6G9GE-58
5.217GE-04
2.4109E-11
9.4U84E-01
3.081GE-02
O.OOOOE+00
O.OOOOE+00
4.3428E-01
O.OOOOE+00
9.K707E-01
7.4247E-11
O.OOOOE-iOO
1.0596E-19
9.83G3E-01
9.8G41E-01
5.9318E-01
9.8641K-0]
J.G6G5E-04
9.G122H-01
8.3971E-01
9.
-------
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
2.0042E-29
1.1SU3E-12
1.1849E-12
O.OOOOE+00
1.1849E-12
i>.BG63E-14
1.5375E-10
1.4231E-10
1.5925E-33
1.2593E-10
1.5792E-10
b.lb98E-10
4.5058E-20
7.9712E-28
5.0105E-30
1.5751E-12
1.5799E-12
O.OOOOE+00
1.5799E-12
1.G7G1E-14
4.3928E-11
4.0661E-]]
4.5500E-34
l.b?41E-12
4.5120E-11
6.4873E-12
1.3654E-20
2.4155E-28
1.6114E-25
1J.OG5UK-00
5.0810E-08
O.OOOOE+QO
5.0810E-08
5.3904E-]0
1.4128E-OG
1.3077E-06
1.4633E-29
b.O&;!4E-08
1.4511E-06
2.0864E-07
4.3913E-1G
7.7686E-24
2.1G10E-25
G.7934E-08
G.tfi38E-08
0. OOOOE+00
6.8138E-08
7.22B8K-10
1.8946E-OG
1.7537E-OG
1.9G24E-29
6.7889E-08
1.9460E-06
2.7979E-07
5.88B9E-1G
1.0418E-23
AVERAGE CONCENTRATIONS OVER
2.0413E-35
1.2032E-18
L.20G8E-18
O.OOOOE+00
1.20G8E-1I3
b.9749E-20
1.5659E-1G
1.4495E-16
1.6220E-39
1.282GE-16
1.6084E-16
5.2859E-16
4.S892E-26
8.1180E-34
THE YEARS
1.0G70E-46
G.2894E-30
G.30U4E-30
O.OOOOE+00
6.3084E-30
3.1232E-31
8.1854E-28
7.5767E-28
I3.4784E-51
G.7043E-28
8.4077E-28
2.7631E-27
2.3989E-37
4.2439E-4S
1 TO 1000 OF
MAXIMUM ANNUAL CONCENTRATIONS
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
THE SIMULATION
CO
i
CO
o
NUCLIDE
H-3
C-14
CR-51
MN-54
FE-55
CO-5C!
NI-59
CO-60
NI-G3
SR-90
NB-94
IC-99
RU-10C
SB-125
1-129
C5-134
CS-135
C5-137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-24J
CM-24H
Ch-244
ATMOSPHERE DOWNWIND
IN WELL
IN STkEAM
1
NUCL1HE
H-3
C-14
CR-51
AVERAGE
CI/MAA3
2.2363E-29
3.(i423t-29
1.0925E-29
0.091SE-28
4.3020E-27
6.6677E-29
2.7512E-2G
7.7770E-27
2.715GE-26
2.1190E-J.G
2.8478E-26
1.7'JG2E-27
1.1384E-27
3.86b6E-27
8.1221E-27
3.0741E-27
2.9344E-2G
2.2437E-2G
7.OE-15
LEAEY
G.P.I-
8.4710E
VHG
„
-16
2.6416E-14
2.G819E-13
PICO
MAXIMUM
CI/MAA3
8.G338E-10
7.0032E-OU
O.OOOOEhOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.4271E-08
O.OOOOE+00
O.OOOOE+00
2.4125E-08
O.OOOOE+00
O.OOOOE+00
o.oooomoo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOI- + 00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0. OOOOE-iOO
O.OOOOEi-00
O.OOOOE+00
0.00001MOO
O.OOOOK-iOO
O.OOOOCvOO
FOODS DUE
CURIES PER
PRODUCE COU'S
G.P.E.
M. [.
YEAR
70
70
0
0
0
0
0
0
0
0
0
204
0
0
298
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AVERAGE
CI/MAA3
6.8702E-12
1.1844E-11
1.6231E-1G
2.G600E-14
6.8G38E-15
3.6692E-15
1.1642E-11
] .5&93E-12
9.321GE-12
5.1G'J4E-]2
1.1G07E-11
1.1833E-11
2.5317E-14
G.b758E-13
1.1787E-11
2.3923E-14
1.1520E-11
1.5701-IE-12
3.14UGK-15
2.0544G-13
1.1603E-11
1.1609E-U
1.1764E-1]
1. IG09E-11
1.G799E-12
8.4801E-12
8.2303E-12
1.7950E-13
3.437GE-13
ti.S6'J4t-:-]2
G.3303E-13
5.8030E-13
2.0049E-13
MAXIMUM
CI/MAA3
6.5457E-09
1.123GE-08
1.G229E-13
l.b200E-l]
1.5785E-12
3. 5731 E- 12
3.58G9E-10
3.0555E-10
3.5GOOE-10
2.8094E-10
1.5G57E-10
1.0225E-08
1.2957E-11
1.9bG2E-10
7.0034E--09
6.9811E-12
5.5301E-11
4.3779E-11
1.B71IE-12
9.0855E-12
7.3G14E-J1
7.3G15E-11
5.b93GE-09
7.3615E-11
1.5731K-11
l.SObGE- ]1
1.5854E-11
9.5633E-12
G.9359E -13
J.5CI56E-11
G.9457E -13
1.3495L-11
1.H09E-11
TO ATMOSPHERIC DEPOSITION
KILOGRAM
MILK I:
E.
8.47IOE-1G 4.235SE-1G 4.
2.G41GE-14 1.5B49E-14 1.
S.G(J20E-14 2.9122E-14 2.
YEAR
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ClU'S MILK GUAT'S MILK GOAT'S MILK
G.P.E.
2355E-16 8.
5849E-14 1.
7699E-14 ].
h.I.E.
6404E-16 8.
5849E-14 1.
58U5E-15 1.
G.P.E.
6404E-1G
5849E-14
&109E-lb
BEEF MEAT
J.082GE- 16
4.0944E-14
2.0242E-14
-------
CO
oo
MN-54
FE-5b
co-be
NI-59
CO-GO
NI-G'J
S*-'DO
NB-94
TC-TJ
RU-10G
SB-125
1-129
CS-134
CS-1JS
CS-137
CE-144
EU-lb4
U-2:,'4
U-235
NP--23;
U-238
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
Ch-244
4.3072E-11
2.1H26K-10
2.8404E-12
l.(.b42E~09
3.88G5E-10
1.4'/y5E-09
2.631G6-09
1.6402L-09
9.9&.MC-U
b.5338E-ll
1.93866-10
4.3G90E-10
1.523 IE- 10
2.9309E-09
1.KJ94E-09
3.82606-11
9.2239E-10
1. 59946-09
l.b99bE-09
5.69296-10
3.yj(J5E-09
1.4460E-09
1.54526-09
l.b421t-OlJ
8.4319E-10
l.(.014E-09
1.5464E-09
1.7378E-09
1.1494E-09
9.57GOE-10
3.8420E-12
2.0488E-11
1.60046-1:3
9.9822K-30
3.80016-11
4.6226E-30
5.4874E-10
2.9242F--10
.L.32G1E-11
4.9940E-12
1.9306E-11
1.2379E-10
1.4911K-1]
1.&9&7E-09
1.C047E-10
3.31766-12
9.b043E-ll
3.3139E-10
3.3362E-10
5.77406-11
3.33G2K-10
1.446&K-10
1.56446-10
3.016UE-10
8. 36286-- 11
1.G222E-10
1.5G586--10
1.7775E-10
1.1430E-10
9.5134t-l]
4.1849E-11
2.1132E-10
2.S031E-L2
1.6042E-09
3.QG03E--LO
1.477JE-09
2.629JE-09
l.f.40?L-09
9.9G31E-U
b.3rJOGL'-ll
1.9214E-10
4.3690E-10
1.5050E-10
2.9309E-09
l.]0(J4E-0'J
3.7066E-H
9.2097E-10
1.5994E-09
].S9lJSK-Oy
5.G929E-10
1.599&E-00
•j.44b6E--000
o.oooot-»oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt-iOO
O.OOOOE+00
O.OOOOKHOO
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEt-00
O.OOOOE+00
PRODUCE
M . 1 . E .
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
o.oooomoo
O.OOOOE+00
O.OOOOJf-HOO
0.00006^00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEiOO
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEHOO
O.OOOObHOO
0.00006+00
O.OOOOE-iOO
LEAFY VEG
G . P . E .
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEKJO
O.OOOOKiO'O
O.OOOOE+00
O.OOOOE+00
0.00006^0
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE^O
O.OOOOE^O
O.OOOOE+00
0.00006^0
O.OOOOK+00
O.OOOOE+00
0.00006+00
O.OOOOK+00
0.00006+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOk'-fOO
PRODUCE
G.P.E.
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOK+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE-iOO
COW'S HILK
M.l.t.
4.6644E-12
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7315t-09
O.OOOOEHOO
O.OOOOE+00
8.1138E-10
O.OOOOE+00
O.OOOOE^O
O.OOOOE-iOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOK^O
O.OOOOE+00
O.OOOOE+00
COW'S MILK
G.P.E.
4.6644E-12
O.OOOOE+00
0.00006+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfiOO
0.00006+00
O.OOOOE+00
0.00006+00
1.731bE-09
O.OOOOEiOO
0.00006+00
8.313UE-10
0.00006+00
O.OOOOE+00
O.OOOOEHOO
0. 000061-00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOSi-00
O.OOOOE+00
GOAT'G hlLK
M.l.E.
1.00926-11
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
0.00006+00
O.OOOOE+00
0.00006+00
5.7716E-30
O.OOOOE^O
O.OOOOE+00
3.24bbE-09
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
0.00006+00
O.OOOOE+00
GOAT'S MILK
G.P.t.
1.00926-11
O.OOOOL+00
0.00006+00
O.OOOOE+00
0.00006+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
0-OOOOE+OO
O.OOOOE+00
0.0000^00
5.771GL- 10
O.OO'.iOE+OO
O.OOOOE+00
3.245bE-09
0.00006^0
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOEHOO
0.00006+00
o.oooonoo
0.00006+00
O.OOOOE+00
BEEF MLAT
5.5973E-12
O.OOOOE+00
0,OOOOE+00
O.OOOOtHOO
O.OOOOE+00
O.OOOOt+00
0. )OOOE + 00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
1.2265L-09
O.OOOOE<00
O.OOOOE+00
4.733)K-10
O.OOOOE+00
O.OOOOf+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOHOO
O.OOOOE+00
O.OOOOhnOO
-------
PU-23C
r'U-23(J
PU-240
PU-241
Ah-241
PU-242
AM-24J
CH-243
CM-244
O.OOOOE+00
O.OOOOH+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOEiOO
0.0000^00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
0.0000PM 00
O.OOOOt^OO
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE^O
O.OOOOEiOO
O.OOOOE+00
O.OOOOP+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOK+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOH+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOEi-00
o.oooot+oo
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOL'+OO
O.OOOOE+00
o.ooooe+oo
O.OOOOE-iOO
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOEiOO
U3
CO
ro
NOTE:
0
1 NUCL1UE
H-3
C-14
CR-51
MN-S4
FE-bi
CO-58
NI-b9
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
5B-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-1S4
U-234
U-235
NP-237
U-230
PU-2J8
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
L
NUCLIDE
H-3
C-14
CR-51
MN-54
EE-55
CO-58
NI-59
CO-GO
NI-G3
G.F.E. - GENERAL POPULATION EXPOSURE
fl.l.E. - MAXIMUM INDIVIDUAL EXPOSURE
G.P.E. WILL HE USED TO CALCULATE HEALTH EFFECTS
ANNUAL INTAKE
BY INGESIION
PCI/Y
3.1379FMOO
2.2320E+03
1.&060E-12
1.7110E-10
2.1033E-09
2.9I01E-00
4.14&5E-09
1.6062E-OU
2.2185F.-08
2.3975E-0-/
2.3885E--10
8.1205E-10
1.0007E+03
1.9104E-09
1.3147E-07
1.899BE-08
1.4939E-10
4.9164E-09
9.8369E-09
9.8417E-09
9.B417E-09
5.4979E-09
5.9066E-09
6.3548E-09
3.1987E-09
6.125GE-09
5.9114E-09
6.6780E-09
4.3733E-09
3.G41GE-09
ANNUAL INTAKE
BY INHALATION
PCI/Y
1.789JE-13
3.0738E-13
B.7397E-14
7.1135E-12
3.441GE-11
5.3341E-13
2.2010E-10
6.2216E-11
2.1724E-10
AGGREGATED VALUES UE RADIOACTIVITY:
PUMPED OUT PUMPED OUT
THE WELL THE STREAM
1.G68GE-OG O.OOOOL'+OO
1.18G8E-03 O.OOOOE+00
O.OOOOE^O O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOEhOO
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOH+00
O.OOOOE+00 O.OOOOE+00
0,OOOOE+00 O.OOOOH+00
2.27B3E-10
1.43G9E-11
9.1073E-12
G'.4977E-11
2.4593E-11
2.3475E-10
1.79tiOE-10
G.3G4BE-12
1.4721E-10
2.3280E-10
2.3280E-10
'J.070GE-11
2.3280E-10
2.3038E-10
2.44G7E-10
2.4423E-10
1.3474E-10
2.4350E-10
2.4483E-10
2.5504E-10
1.8330E-10
1.5289E-10
tfc'T BOTTOM
OF TRENCH
5.9941E-02
9.74G3E-01
5.2354E-09
8.924bE~07
2.2170E-07
1.2574E-07
1.75GOE-02
8.G009E-05
1.9914E-03
4.2409E-04
OVERFLOWED
TRENCH
O.OOOOEiOO
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOH+00
O.OOOOE+00
O.OOOOEiOO
RELEASED TO
THE ATMOSPHERE
1.3492E- 07
2.3381E-07
2.:
4.0227E-07
4.6919E-Ob
1.638412-04
1.2784E-04
RELEASED TO
BASIN
2.4601E-03
9.6049E-01
3.7943E-08
9.49G3E-OG
2.4504E-OG
.3099E-OG
4.1560E-03
5.6022E-04
3.32BOE-03
1.845GE-03
-------
NB-94
TC-99
RU-10G
CS-134
CS-135
CS-137
CE-144
EU-lt.4
U-234
U-235
NP-2:J7
U-238
PU-238
PU-239
PU-240
PU-24]
AM-241
PU-24?.
AM-243
CM-243
CM-244
CO
to
CO
O.OOOOE+00
1.13b5b'-03
O.OOOOE+00
O.OOOOE+00
5.3212E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
OOOOEi-00
OOOOE+00
oooot:+oo
OOOOE+00
OOOOE+00
OOOOE-iOO
OOOOE+00
OOOOK+00
OOOOE^O
oooot+oo
OOOOE+00
OOOOL+00
OOOOE^O
OOOOE^O
OOOOE+00
OOOOE-iOO
OOOOEi-00
.OOOOK-lOO
.OOOOEvOO
.OOOOE+00
.OOOOE^O
OOOOE-iOO
O.OOOOE+00
7. 471 2 E -03
9.5813E-01
8.39t)bE~07
3.1023E-05
5.55G1E-01
7.7982E-07
2.G701E-03
G.7792E--05
1.00G9E-07
7.1781E-OG
3.5535E-03
3.&587E-03
3.9646E-01
3.5btr/E-03
8.1138E-05
7.5258E-04
7.2335E-04
6.1W3E-0&
1.G717E-05
7.6309E-04
3.1854E-05
2.2307E-05
9.94H4E-OG
FRACTION OF
NUCLIDE
H-3
C-14
CR-5]
HN-54
FE-515
CO-58
NI-5'J
CO-60
NI-G3
SR-'JO
NB-94
TC-99
RU-]06
SB-125
1-129
CS-134
CS-135
CS--137
CE-144
EU-154
U-234
U-235
NP-237
U-238
PU-2ilb
PU-239
PU-240
PU-241
AM-241
PIJ-242
Ah-24J
Ch-243
Crt-244
MAXIMUM
O.OOOOEi-00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEHOO
O.OOOOE>00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE-i-00
O.OOOOE^OO
o.oooot^o
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOh^OO
O.OOOOE+00
INGESIION DUE TO
FRACTION
1.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
3.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
ANNUAL EXPOSURE
1.7183E-04
1.0836E-05
G.868ie-06
2.3321E-05
4.9001E-05
1.8546E-Ob
1.7707E-04
1.3537E-04
4.71J'J1JE-06
1.1102E-04
1.7559E-04
1.7559E-04
6.U40SE-05
1.7559E-04
1.73761- -04
1.8455E-04
1.8421E-04
1.01G2E-04
1.8372E-04
1.8466E-04
1.9236E-04
1.3824E-04
1.1531E-04
MATER
4.1431E-03
5.244GE-01
9.0382E-OG
2.3476E-04
4.0010E-02
3.5406E-OG
4.1125E-03
5.6075E-04
1.1240E-OG
7.3340E-05
4.1419E-03
4.1439E-03
4.1996E-03
4.3439E-03
5.9967E-04
3.0277E-03
•.i.9386E-03
6.4080L-05
1.2274E-04
3.0b%E-03
2.25GGE-04
2.0718E-04
1.0014E-04
-------
co
i
CO
H-.3
C-14
CR-51
MN-r54
FE-5b
CO-50
NI-59
CO-GO
NI-&3
SR-'JO
NB-94
TC-99
RU-lOb
5D-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-237
U-230
PU-238
PU-239
PU-240
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1DARTAP.
TABLES
CI/MAA3
2.2031E-26
I'HRSON.PCI/Y
1.0924E-
7.G739E-
3.18761:-
G.614JE-
1.8109E-
5.6562E-
].797Ht-
1.4183E-
3 .8444K-
1.7207E-
9.5941E-
2.9G27E-
7.0714E-
2.3496E-
1.8613E-
1.4734E-
6.9273E-
1.2232E-
1.8582E-
9.4132E-
1.8582E-
1.8531E-
1.8678E-
1.8676E-
1.1266E-
1.8675E-
1.867bL-
1.B702E-
J.4989E-
1.2G72E-
INFO
IUR THE SELECTED
•26
-25
•24
-26
-23
•24
•23
•23
-23
•24
25
-24
-24
-24
-23
-23
-25
23
-23
-23
-24
-23
-23
-23
-23
-23
-23
-23
-23
-23
-23
O.OOOOKf-00
O.OOOOE+00
3.6U33E-24
1.072GE-U-)
7.8236E-18
5.91G3E-21
8.33b4fc'-r/
I.711vje-l7
7.9283t-17
5.8219E-17
8.7-lb7E-17
2.1207E-18
1.5143E-18
7. 1 650 E- IH
) .7979K--17
5.2CJ15E-]S
8.9723E-17
G.2364E-17
8.9G54E-19
4.Glb4E-17
8.9268b'--17
LI.9271E-17
2.6B81E-17
B.9i!71K-]7
8.4738E-17
9.0754H-17
9.0645E-17
4.3137E-17
8.9517E-17
9.0705E-17
9.1336E--17
G.4005E-17
5.04G5E-17
0
0
1
1
2
1
7
•t
tt
5
4
!J
1
1
1
1
1
11
4
1
3
10
10
2
10
G
J5
14
3
9
16
500
4
:j
7.lJ8G3G-!-03
f..4774Jli + Ob
3.7649E-OB
3.6G85E--OG
3.t!(J23E-05
1J.39G1E-07
1 .3761E-04
7.4S07E-05
1.3G40K-04
8.5705E-05
2.0163E-03
4.0950E>05
5.0360t-06
1.51G3E-05
2.2316E+05
3.5fJ51E-05
2.9320E-04
2.3164E-04
3.2507E-OG
8.04(Jtii:-Ob
9.5270E-05
'J.5270E-05
4.5L35E-OS
'J.5270E-OS
U.8293G-05
ti.fJ04'jE-05
8.9052E-05
5.3473L-Ob
t).9055E-05
0.9052E-05
8.9191E-05
7.14t)5E-05
6.034GE-05
70
70
1
1
1
1
1
1
1
1
1
204
1
1
298
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
I
1
1
PERSON.PtI/Y
4.4062G-09 1
7.5G37E-09 1
2.1U4UE-09 1
1.5348E-07 1
6.3752E-07 1
1.3229E-00 1
3.6217E-06 1
1.1312E-OG 1
3.5946E-06 1
2.0366E-06 1
3.6680E-06 1
3.4413E-07 1
1.9188K-07 1
S.9254E-07 1
1.4143E-06 1
4.6992E-07 1
3.7225E-06 1
2.9469E-06 1
1.3855E-07 1
2.4463E-06 1
3.7164E-06 1
3.7165E-06 1
1.8826E-OG 1
3.736SE-06 1
3.70G2E-OG 1
3.7355E-0& 1
3.7352E-OG 1
2.2531E-06 1
3.7350E-06 1
3.7'JtiGE-Ofa 1
3.7403E-06 1
2.9977E-06 1
2.5344E-OG 1
INDIVIDUAL WILL BE DONE FOR THE LOCATION HAVING 100.00 % Of 1HE HIGHEST TOTAL RISK.
DOSE RATE TABLES COhBINING LOU AND HIGH LET WILL BE PRINTED.
HEALTH RISK TABLES COMBINING LOW AND HIGH LET UILL BE PRINTED.
00 INDICATES THE TABLE UILL NOT BE PRINTED
1 INDICATES INDIVIDUAL VALUES WILL BE PRINTED
2 INDICATES MEAN INDIVIDUAL VALUES WILL BE PRINTED
3 INDICATES COLLECTIVE VALUES WILL BE PRINTED
4 INDICATES ALL OF THE ABOVE WILL BE PRINTED
QUANTITY
TABLE NO. 1 2 3 4 5 6 7
2. HEALTH RISKS 0000033
3. RISK EQUIVALENT FACTOR 0000000
OTHE GROUND SURFACE CORRECTION FACTOR IS 0.50
OIHERE ARE 11 ORGANS TO BE OUTPUT. THEY ARE:
ORGAN
R MAR
BREAST
INI WALL
KIDNEYS
0 ORGAN
R MAR
XIME
ORGAN
TIME
ORGAN
70. L'NDOSI 70. THYROID
70. APULA 70.
-------
THYROID 1.00000 JO.0000
BREASI 1.00000 20.0000
APULA 1.00000 iiO.OOOO
5 WALL 1.00000 20.0000
INT WALL 1.00000 20.0000
LIVER 1.00000 20.0000
PANCREAS 1.00000 20.0000
KIDNEYS 1.00000 20.0000
OTHER 1.00000 20.0000
OTHERE ARE 11 CANCERS '10 BE OUTPUT.
A 1 INDICATES ABSOLUTE RISK; A 2 IS RELATIVE RISK.
CANCER CANCER CANCER CANCER
LEUKEMIA 1. BONE 1. THYROID 1. BkEASl
LUNG 1. STOMACH 1. BOWEL 1. LIVEft
PANCREAS 1. URINARY 1. OTHER 1.
OGENET1C HOSES ARE PRINTED FOR TESTES OVAR
THE RISK FACTOR (PER RAD/MILLION BIRTHS) FOR
260.00000 FOR LOU LET. AND
5200.0000 FOR HIGH LET.
AND THH REPLACEMENT RATE FOR THE POPULATION IS :
.141336-01 YEAR-1
OTHERE ARE 33 RADIONUCLIDtS TO BE OUTPUT.
NUCLIDL' PARTICLE SIZE CLEARANCE CLASS
1.
1.
IES AVERAGE
GENETIC DOSE ARE :
H-3
o° C-14
-------
+
+
•t-
•f
+
•f
+
+
+
+
THYPOIO
BREAST
APULA
S WALL
INI HALL
LIVER
PANCREAS
KIDNEYS
OTHER
0.
0.
0.
0.
0.
0.
0.
0.
0.
1IHE LOCATION
THE FATAL
09870
12990
20750
08400
03900
08530
05850
02480
11360
USED
CANCER
1
]
1
1
]
1
1
]
1
1
FOR
RISK
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
THE S
AT
']
[H;
.UCATION IS 0.463E-04
1
17700 METERS N FROM THE SOURCE.
GO
CT>
DARTAB INFO
ORGAN LOSE/EXPOSURE SUMMARY
BREAST APULA S WALL INT WALL LIVER PANCkEAC KIDNEYS
1.494E-04 7.682E-0^. 7.520E-04 2.028E-04 9.690E-05 8.5G7E-05 8.403E-05
OAAA COLLECTIVE POPULATION AAA
ODOSE RATE:
ORGANS: R MAR ENDOST THYROID
OTHER WT.SUH
LOW LET (PERSON RAD/Y) 2.207E-04 4.215E-04 0.217
8.5G7E-05 2.1G2E-02
HIGH LET (PERSON RAD/Y) 1.570E-12 1.941E-11 2.413E-14 2.413E-14 1.772E-12 2.443E-14 3.392E-14 3.9bOE-12 2.413E-14 3.091E-14
2.413E-14 1.030E-12
DOSE EQ. (PERSON REM/Y) 2.207E-04 4.215E-04 0.217 1.494E-04 7.682E-05 7.520E-04 2.028E-04 9.690E-05 8.567E-05 8.403E-05
8.5G7E-05 2.162E-02
OGONAOAL DOSES:
GONADS: TESIES OVARIES AVERAGE
LOW LET (PERSON RAD) 1.938E-03 1.973E-03 1.955E-03
HIGH LET (PERSON RAD) 1.807E-12 1.809E-12 1.808E-12
DOSE EQ. (PERSON REM) 1.938E-03 1.973E-03 1.955E-03
1
DARTAB INFO
PATHWAY
OAAA COLLECTIVE POPULATION AAA
ODOSE RATES:
WEIGHTED SUMS OF ORGAN DOSE RATES
PATHWAYS: INGEST10N
LOU LET (PERSON RAD/Y) 2.162E-02 2.
HIGH LEI (PERSON RAD/Y) 1.103E-13 9.
DOSE E(K (PERSON REM/Y) 2.162E-02 1.
OAVERAIJE GONADAL DOSES:
PATHWAYS: 1NGESTION
DOSE/EXPOSURE SUMMARY
LOW LET (PERSON RAD)
HIGH LET (PERSON RAO)
INHALATION AIR GROUND INTERNAL EXTERNAL TOTAL
IMMERSION SURFACE
543E-14 1.192K-17 8.861E-11 2.1G2E-02 8.8G1E-11 2.1G2E-02
198E-13 O.OOOE+00 O.OOOE+00 1.030E-12 O.OOOEtOO 1.030E-12
C:42E-11 1.192E-17 8.861E-11 2.162E-02 8.861E-11 2.1G2E-02
INHALATION AIR GROUND INTERNAL EXTERNAL TOTAL
IMMERSION SURFACE
1.955E-03 4.G42E-14 3.954E-1G 2.933E-09 1.955E-03 2.933E-09 1.955E-03
3.220E-13 1.485E-12 O.OOOEfOO O.OOOEcOO 1.800E-12 O.OOOE^OO 1.808E-12
-------
DOSE EU. (PERSON KEM)
1
1.955E-03 2.975E-11 3.954E-1G 2.933E-09 1.9b5fc-03 2.933E-09 1.955E-03
DARTAB INFO
NUCLIHE DOSt/EXPOSURE SUMMARY
OAAA COLLECTIVE POPULATION AAA
ODOSE RATES:
WEIGHTED SUMS OF ORGAN DOSE RATES
NUCLIDES!
LOW LET (PERSON RAD/Y) 6
H-3
HB-94
U-234
AM-243
755E-09
C-14
1C-99
U-235
CM-243
8.595E-05
CR-51
RU-J06
NP-237
CM-244
3.320E-21
MN-54
Sb-125
U-238
TOTAL
2.093E-15
fc'E-55
1-129
PU-239
3.G22E-17
CO-5Q
L'S-134
PU-2J9
7.922E-18
7
Nl-59
US-13&
PU-240
.390E-15
CO-GO
LS-13'/
PU-241
4.007E-13
Nl-63
IL'-144
AM-241
1.720E-16
SR-90
fcU-154
PU-242
3.947E-15
G.7G7E-11 1.023E-04 3.472E-1G 1.944E-14 2.143E-02 4.544E-14
4.334K-14 1.082E-11
3.535E-14 8.G2GE-15 2.888E-14
1.024E-14
5.848E-12 5.023E-13 1.146E-15 2.1G2E-02
HIGH III (PERSON RAD/Y) O.OOOt+00 O.OOOE+00 O.OOOE+00 O.OOOfc+00 O.OOOE+00 O.OOOE+00 0,
O.OOOL+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
.244E-14 4.792E-14 5.2GGE-15 1.227E-13 1.1GGE-13
.330E-14 4.758E-14 1.030E-12
.320E-21 2.093E-15 3.622E-17 7.922E-1& 7,
DOSE hU. (PERSON KEM/Y)
co
OAVERAGE GONADAL DOSES:
NUCL1HKS:
LOU LF.'J (PERSON RAD)
HIGH I.El (PLRSON RAP)
DOSE LU. (PERSON REM)
5.974E-15 D
1.698E-13 7
G.755E-09
G.7G7E-11 1.023E-04
1.620E-13 1.187E-11
9.243E-12 1.9G8E-12 9.528E-13 2.162E-02
3.472E-1G 1.944E-14 2.143E-02 4.544E-14
9.68GK-13 1.407E-13 2.4G3E-12 2.3G1E-12
2.144E-14 1.364E-1G 1.914IMG 1.748E-12
5.853E-14 5.G60E-17 1.353E-12 5.114E-14
OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
1.1G4E-13 l.OSGE-lb 1.G03E-13 1.107E-13
390E-1& 4.007E-13 1.720E-1G 3.947L-15
2.144E--14 1.3G4E-1G 1.914E-1G 1.748E-12
2.387E-12 2.077E-14 4.5GOE-12 2.2G5E-12
H-3 C-14 CK-bl iiN-54 FK-55 C0-5t)
NB-94 TC-99 RU-10G SB--125 [-129 CS-134
U-234 LI-235 NP-237 U- 230 PU-23B PU-239
AM-24:j CH-243 CM-244 TOTAL
1.952E-07 1.221E-03 1.076E-19 G.982E-14 G.849E-1G 2.801E-1G
2.258E-09 3.G99E-04 1.055E-15 G.44GE-13 3.641E-04 1.49GE-12
9.14i^.:-13 3.404E-10 2.bGOfc-13 7.049E-13 1.729L-13 6.426E-13
1.94GE-10 1.5B9E-11 2.402E-14 1.955E-03
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
4.746L-16 1.0G7E-16 5.717E-14 4.329E-1G 1.522E-13 1.0G7E-13
4.199E-13 2.GOOE-13 1.923E-13 1.808E-12
1.952E-07 1.221L-03 1.076E-19 G.982E-14 6.849E-1G 2.801E-16
2.25UK-09 3.G99E-04 1.055E-15 G.44GE-13 3.641E-04 1.49GE-12
9.243E-13 3.404E-10 1.400E-12 7.13GE-13 3.210E-12 2.777E-12
2.030E-10 2.109E-11 3.870E-12 1.955E-03
N]-b9
CS-L35
PU-240
CU-GO
CS-13V
PU-241
Hl-63
CE-144
AM-241
tik-90
EU-154
PU-242
8.154E-14 1.323E-11 3.455E-15 3.930E-15
G.716E-13 3.859E-l:j 1.2b8E-l.'5 5.790E-11
1.209E-12 G.G04E-17 4.563E-11 1.059E-12
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE^O O.OOOE + 00
1.071E-13 1.208E-15 4.087E-13 1.013E-13
8.154E-14 1.323E-11 3.455E-15 3.930E-15
G.716E-13 3.859E-15 1.250E-15 5.790E-11
3.351E-12 2.423E-14 5.380E--11 J.084E-12
DARTAB INFO
RISK/RISK tQUIVALENT SUMMARY
OAAA COLLECTIVE POPULATION AAA
[•COLLECTIVE FATAL CANCER RISK:
CANCERS: LEUKEMIA BONE.
OTHER TOTAL
LOW LLKDEAIHS/YR)
1HYR01D BREAST
LUNG
STOMACH BOUEL
LIVER
PANCREAS URINARY
9.593E-09 4.096E-10 G.082E-07 5.43GE-09 4.4G7E-09 1.771t-08 2.219E-09 2.319E-09 1.410E-09 5.044E-10
2.737E-09 G.551E-07
2.85'/K-16 1.847E-1G 2.532E-18 2.615E-18 7.794E-1G 1.7GOE-18 1.649E-18 3.235E-16 1.135L'-lt) B.411E-19
2.294E~1)3 l.j86E-15
9.^93E-09 4.096E-10 G.082E-07 5.43GE-09 4.4G7E-09 1.771E-08 2.219E-09 2.319E-09 1.410E-09 5.844E-10
2.737E-09 6.551E-07
OFATAL CANCER RISK EQUIVALENT:
HIGH LfcT(DEATHS/YR)
TOTAL (DEATHS/YR)
-------
CANCERS:
S1UHACH HOHEL
LIVER
PANCREAS URINARY
(PERSON REH/YR)
OUHOLE BUDY FATAL CANCER RISK EQ(PERSON REM/YR)
OGENETIC RISKS:
LOU LEKEFFECTS/YR) 7.105E-09
HIGH LEHEFfECTS/YR) 1.328E-1G
COMBINEIKEFFECTS/YR) 7.185E-09
OGENETIC RISK EQUIVALENT:
(PERSON REM/YR) 6.518E-05
1
LEUKEMIA BONE THYROID BREAST LUNG
2.203E-04 4.212E-04 2.196E-02 1.492E-04 7.676E-05 7.515E-04 2.02GE-04 9.690E-05 8.590E-05 8.394E-05
8.590E-05 2.335E-03
2.335E-03
DARTAB INFO
PATHWAY RISK/RISK EQUIVALENT SUMMARY
OAAA COLLECTIVE POPULATION AAA
OCOLLECT1VE FATAL CANCER RISK:
PATHWAYS: INGESTION
CO
i
LOU LEI(DEATHS/YR)
HIGH LET(D£ATHS/YR)
TOTAL (DEATHS/YR)
OFATAL CANCER RISK EQUIVALENT:
PATHWAYS: 1NGES1ION
(PERCON REM/YR) 2.335E-03
WHOLE BUDY RISK EG (PERSON RtM/YR)
OGENETIC f(ISKG(PERSON REM/YR):
GROUND INTERNAL EXTERNAL TOTAL
SURFACE
2.487E-14 G.551E-07 2.487E-14 6.551E-07
O.OOOE+00 1.5B6E-15 O.OOOE+00 1.586E-15
1.451E-15 3.346E-21 2.487E-14 6.551E-07 2.487E-14 6.551E-07
INHALATION AIR
IMMERSION
G.5ME-07 4.729E-18 3.34GE-21
1.399E-16 1.44GE-15 O.OOOE+00
6.551E-07
INHALATION AIR
IMMERSION
5.260E-12 1.193E-17
FROM ALL EXPOSURES
GROUND INTERNAL EXTERNAL TOTAL
SURFACE
8.865E-11 2.335E-03 8.365E-11 2.33bE-03
2.335E-03
PATHWAYS: 1NGES110N INHALATION
AIR
GROUND
INTERNAL EXTERNAL TOTAL
LOU LLKEFFECTS/YR)
HIGH LET(EFFECIS/YR)
COMEHNfcLKEFFECTS/YR)
OGENETIC RISK EQUIVALENT:
(PERSON REM/YR)
1
IMMLRlilON SURFACE
7.185E-09 1.706E-19 1.453E-21 1.078E-14 7.185E-09 1.078E-14 7.185E-09
2.371E-17 1.091E-1G O.OOOE+00 O.OOOE+00 1.328E-1G O.OOOE+00 1.328E-1G
7.185E-09 1.093E-1G 1.453E-21 1.078E-14 7.185E-09 1.078E-14 7.185E-09
G.518E-05 9.91GE-13 1.318E-17 9.775E-11 G.518E-05 9.775E-11 6.518E-05
DARTAB INFO
COLLECTIVE POPULATION
OCOLLECIIVE FATAL CANCER RISK:
NUCL1DES: H-3
NB-94
U-234
AM-243
LOU LET(DEATHS/YR)
NUCL1DE RISK/RISK EQUIVALENT SUMMARY
MN-54
HIGH LLKDfcAlHS/YR)
TOTAL (DEATHS/YR)
C-14 fk-bl
1C-99 RU-10G
U-235 NP-237
CM-24-1 CM- 244
1.09GE-12 2.411E-00 9.318E-25
1.899E-14 2.869E-OB 9.574E-20
1.216E-17 3.037E-15 2.G42L-18
1.G39E-15 1.407E-1G 3.143E-19
O.OOOE+00 O.OOOt+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00
1.339E-17 1.114E-1G 7.b2bE-l7
2.069E-1G 1.137E-16 8.119E-I7
1.896E-12 2.411E-08 9.318E-25
1-129
PU-238
fO-58
CS-134
PU-239
Nl-59
CS-135
I'U-240
CO-GO
CS-]37
PU-241
Nl-63
CE-144
AM-241
Sk-90
PU.-242
IJ-238
TOTAL
5.075E-10
5.455E- i 8
9.889E-18
G.551E-07
O.OOOE+00
O.OOOE+00
1.100E-17
1.58GE-15
5.875E-19 9.692E-21 2.223E-21 2.070E-18 1.124E-16 4.426E-20 1.010E-18
9.692E-21 2.223E-21
6.023E-07 1.275E-17
2.399E-18 8.090E-18
O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00
2.0GOE-1G 1.922E-16
2.070E-18 1.124E-1G 4.42GE-20 1.010E-18
5.985E-18 3.808E-20 5.304E-20 4.906E-16
1.640E-17 1.240E-20 3.794E-1G 1.433E-17
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE + 00 O.OOOE^O O.OOOE + 00 O.OOOE + 00
1.920E-16 9.548E-19 1.989E-16 1.825E-1G
-------
TOTAL FATAL CANCER RISK FROH ALL EXPOSURES
OFATAL CANCER RISK EQUIVALENT:
NUCLIDLS: H-3 C-14
1.899E-14 2.069E-08 9.574E-20 5.455E-18 6.023E-07 1.275E-17 5.98bt-18
2.555E-17 3.149E-15 7.790E-17 2.169E-17 2.084E-1G 2.003E-1G 2.084E-1G
1.046E-15 2.544E-1G 8.150E-17 6.551E-07
3.808E-20 5.304E-20 4.90GE-16
9.G72E-19 5.783E-16 1.9G8E-16
NB-94
TC--99
CK-51
RIJ-lOG
G.551E-07
HN-54
t'L-5b
Nl-59
(PERSON KLh/YK)
Pll-240
OGHNEIIC RISKS:
CO-58
CS--134
I'U-239
AH-243 CH-24J '
6.7b9t-09 8.594F.-Ob 3.321E-21 2.0'J4fc-15 3.455E-17 7.925E-18 7.379E-15
6.770E-11 1.023E-04 3.413E-16 1.945E-14 2.147E-03 4.545E-14 2.133G-14
1.377E-13 l.mK-11 2.777E-13 1.190E-13 7.427E-13 7.140E--13 7.428E-13
6.S81E-12 9.070E-13 2.905E-13 2.335E-03
IJ-230
TOTAL
CO-60
CS-137
PU-241
Nl -63
CE-144
AM-24]
A'-90
EU-154
>'U-242
4.008E-13 1.578E-16 3.600E-15
L.357E-1G 1.891E-1G 1.749E-12
3.448t-15 2.0G1E-12 7.016L-13
NUCLIULS:
LOU LL1(EFFEC1C,/YR)
UGH LEKKtFLCTG/YR)
CO
do COMB1NEIKEFFEC1S/YR)
ID
OGENETIC RISK EQUIVALENT
(PERSON RLM/YR)
H-3 C-14 Ck-51 HN-b4 FE-55 00-58 NI-59
N6-1J4 TC-9'J RIJ-lOG S6-125 1-129 C3-134 CS--l3!i
U-234 U-235 NF'-i'.37 U-238 PU-23ti I'U-239 PU-240
AH-243 Ch-243 CH-244 TOTAL
7.173L-13 4.4C7K-09 3.953E-25 2.5GGE-19 2.517E-21 1.029E-21 2.996E-19
8.299E-15 1.3b9E-09 3.877E-21 2.3G9E-18 1.338E-09 5.495E-18 2.468E-18
3.361E-10 1.251E-15 9.408E-19 2.590E-18 G.353E-19 2.3G1E-18 4.443E-1D
7.Ui2t:-16 b.S40fc-17 8.82GE-20 7.105E-09
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE'+OO O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
3.488fc-20 1.372E-20 4.202E-18 3.182E-20 1.119E-17 7.841E-18 7.871B-10
3.00GE-17 1.91112-17 1.413E-17 1.328E-1G
7.173E-13 4.487E-09 3.953E-25 2.566E-19 2.bl7E-21 1.029E-21 2.996E-19
8.299E-15 1.359E-09 3.877E-21 2.3&9E-18 1.338E-09 5.495E-18 2.468E-18
3.39GE-18 1.2blE-15 5.143E-18 2.G22E-10 1.182E-17 1.020E-17 1.231E-17
7.4G1E-16 7.751E--17 1.422E-17 7.185E-09
Ltl-60
CS-137
PU-241
NJ--G3
CI--144
Ah-241
bk-90
EU-154
PU-242
4.861E-17 1.269E-20 1.444E-20
1.418E-20 4.G22E-21 2.120L-1G
2.427E-22 1.677E-1G 3.B92E-18
O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00
8.878E-20 3.003E-17 7.441E-18
4.861E-17 1.2G9E-20 1.444E-20
1.418E-20 4.622E-21 2.128E-16
8.902E-20 1.977E-16 1.133E-17
6.507E-09 4.071E-Ob 3.b06E-21 2.327E-lb 2.283E-17 9.33GE-18 2.718E-15
7.528E-11 1.233E-05 3.517E-17 2.149E-14 1.214E-05 4.985E-14 2.239E-14
3.0Q1K-14 1.135E-11 4.GG5E-14 2.379E-14 1.073E-13 9.2b5E-14 1.117E-13
G.768E-12 7.031E-13 1.290E-13 6.518E-05
DARTAB INFO
COLLECTIVE DOSE EQ. (PERSON REM /YEAR)
4.410E-13 1.152E-1G 1.310E-16
1.286E-IG 4.193E-17 1.930E-12
8.075E-16 1.793E-12 1.02CE-13
OAAASUMHEO OVER ALL ORGAN
NUCLIDES
INGESTION
•L OF INTERNAL
% OF ALL PATHWAYS
INHALATION
% OF INTERNAL
H-3
NB-94
U-234
AH-243
6.755E-09
1.631L--14
2.074E-15
5.00911-13
-100.
83.1
1.74
17.1
100.
2.411E-02
1.27
6.28
C-14
TC-99
U-235
CH-243
8.595E-05 1
1.023E-04
2.116E-15
2.243E-13
]00.
100.
0.201
]b.3
100.
100.
1.782E-02
11.4
CR-51
RU-106
NP-237
CH-244
.950E-21
6.699E-17
1.723E-13
1.421E-13
62.0
19.3
17.9,
]4.9
50.7
19.3
17.8
14. 9
HN-54
Shi- -125
U-2313
TOTAL
6.850E-18 2
O.OOOE+00
1.945E-15
2.162E-02
76.6
O.OOOE+00
1.83
100.
0.327
O.OOOE+00
1.30
100.
LE-55
1-129
PU-238
.48BE-17
2.143E-02
3.96GE-13
93.9
300.
16.2
68.7
100.
16.1
CO-5B
CS-134
8.835E-19
3.156E-15
5.070E-14
73.1
99.1
2.17
11.2
6.95
2.15
Nl-59
CS-135
PU-240
1.087E-16
2.142E-14
'5.443E-14
91.9
99.9
2.34
1.47
99.9
;\28
CLl-60
CS-137
PU-241
5.906i:-l6
O.OOOE+00
6.043E-15
49.0
o.ooot+oo
29.1
0.149
O.OOOE+00
29.1
Nl-63 (oR-90
CK-144 KU-lb'
AH-241 PU-241
l.482ti--lG 3.117E-1
O.OOOEiOO O.OOOE-i
5.282E-U 4.019E-
06.2 79.0
O.OOOE+00 O.OOOL^
16.5 2.18
86.2 79.0
O.OOOE+00 O.OOOE-
11.6,
5.5G1L-22 8.363K-23 1.195E-21 2.090E-18 1.623E-18 3.24GE-19 9.592E-18 6.218E-16 2.382E-17 8.^98E-J
3.320E-15 7.837E-1B 2.802E-16 2.147E-17 9.251E-16 2.746E-17 2.662E-17 1.3G4E-1G 1.531E-16 1.238E-
1.174K-13 1.049E-12 7.084E-13 1.043E-13 2.058E-12 2.281E-12 2.275E-12 1.473E-14 2.680L-12 2.166L-
2.825E-12 1.244E-12 0.097E-13 1.842E-11
9.730E-17 38.0 23.4 6.13
16.9
98.3
82.9
7.662E-12
99.8
84.7
80.7
82.1
G5.1
100.
9U.2
I3.519E-08
26.9
4.31GE-12 O.UG2
U3.8
97.8
tf.ll
0.124
97.7
50.9
100.
70.9
13.(5
100.
03.'J
21.0
100.
97.0
-------
CO
% OF ALL PATHWAYS
AIR IMMERSION
'/. OF EXTERNAL
:•: OF ALL PATHWAYS
GROUNH SURFACE
% Of EXTERNAL
•/. OF ALL PATHWAYS
INTERNAL
I OF ALL PATHWAYS
EXTERNAL
% OF ALL PATHWAYS
3.232E-12 9.730E-1'/ 36 = 0
4.906K-03 7.G62L-12 80.7
72.1 D.84 81.4
30.6 63.2 05.0
0.100 4.48 4.10 0.130 0.155 13.B 21:?,,,
0.110 4.31GE-12 6.042E--02 0.124 100. BO.O /.081L
74.1 133.G 96.6 95.3 70.'J 58.8 95.6
&.519E-08
O.OOOEHOO
5.171E-18
4.229K-22
1.589E-19
O.OOOLiOO
7.644E-06
9.767E-07
2.722E-06
O.OOOE+00
7.h4:-!H-06
2.597E-07
1.719E-OG
O.OOOEiOO
G.?bl:.h-ll
4.330E-14
5.037);-12
O.OOOE+00
100.
100.
100.
O.OOOL+00
100.
26.6
63.2
O.OOOE+00
9.559E-26
4.758E-19
3.087E-H
O.OOQE-iOO
4.190E-03
4.397E-06
6.173E-05
O.OOOE+00
9.346E-20
4.008E-OG
1.5G8E-05
3.7G6E-23 8
O.OOOE+00
2.60QE-20
1.393E-22
21.6 4
O.OOOE+00
3.285E-04
1.310E-05
13 4
O.OOOE+00 I
2.201E-21
1.082E-11
5.001E-13
O.OOOG+00
100.
100.
100.
O.OOOE+00
2.230E-15
91.1
25.4
O.OOOE+00
2.692E-06
1.462E-08
.360E-22
O.OOOE+00
7.939E-15
1.064E-15
yu.4
O.OOOL'+OO
100.
100.
4.12
O.OOOE+00
0.820
0.11,4
.613E-20 9
1.B10E-19
2.812E-22
1.192E-17
.132L-03
9.320E-04
8.157E-07
1.345E-05
.115E-03 2
9.310E-04
1.999E-07
5.513E-14
.38GE-24 7.454E-21 1.005E-22 2.249E-18 O.OOOE+00 O.OOOE+(
5.480E-21 5.44GE-19 O.OOOE+00 O.OOOE+00 1.484G-21 9
PU-238
CO-SB
C3-134
PU-239
Nl-59
CS-135
PU-240
(JO-GO
CS-137
PU-241
Nl-63
CE-144
AM- 241
SR-90
EU-15'
PU-241
-------
00
I
INGEST ION
I OF INTERNAL
% OF ALL PATHWAYS
INHALATION
% OF INTERNAL
7. OF ALL PATHWAYS
AIR IMMERSION
7. OF EXTERNAL
% OF ALL PATHWAYS
GROUND SURFACE
7. OF EXTERNAL
•L OF ALL PATHWAYS
INTERNAL
'/. Of ALL PATHWAYS
EXTERNAL
AM-243
1.952E-07 1
7.651E-13
2.G37E-15
1.505E-12
100.
99.8
27.7
17.9
100.
3.38I3E-02
0.2Gb
0.741
CM-243
.221E-03 9
3.G99E-04
5.979E-15
8.G28E-13
100.
100.
80.4
1G.G
100.
LOO.
3.75GE-03
4.09
CM-244
.839E-20
1.024E-15
4.472E-13
6.360E-13
9G.5
97.1
39.0
16.5
0] .5
97.1
31.0
16.4
TOTAL
2.694E-16 5.639E-16 5.574E-17 2.517E-15 2.280E-14 3.323U-15 '<1.795E-]
O.OOOE+00 3.641E-04 8.522E-14 G.708E-13 O.OOOE+00 O.OOOE+00 O.OOOE^
2.613E-15 1.191E-12 1.29BE-13 1.39BE-13 8.391E-1S 1.4120-12 1.232E-
1.955E-03
96.6 97.3 99.0 97.9 97.9
O.OOOE+00 100. 99.2 99.9 O.OOOE+00
39.1 6.0G 6.53 35.5
96.2 71.1
O.OOOU+00 O.OOOEi
29.6
100.
0.306
O.OOOB+00
0.366
100.
(32. 3
100.
37.0
19.9
5.70
4.67
3.09
99.9
4.17
0.172
17.:
96.2
6.08
71.1
O.OOOE+00 O.OOOE+00 O.OOOE^
3b.5
2.62
7.903K--05
0.74G
3.41
1.663E
1.455E
4.I346E
1.011E-
4.4961-
19.6
133.4
1.011E-
4.496E
4.274E
20.6
-10 3.080E-17 1.953E-17 1.554E-17 7.272E-16 7.958E-16 3
-15 7.004E-13 G.222E-15 1.854E-12 2.004E-12 2.002E-12 1
1.G71E-20 1.235E-21 3.566E-21 9.414E-18 1.553E-17 5.358E-19 5.478E-17 4.
1.785E-15
6.D93E-15
6.922E-12
8.557L-12
0.233
72.3
82. I
-12 3.210E-12 2.975E-11
16
3.50
:.92
16
-13
-04
8:3.5
3.31
2.92
50.0
83.0
3.38
100.
70.4
1.521E-06
1.348E-02
2.68 0.952
4.2G7E-12 0.1346
GO.9 93.9
2.13
0.118
93.5
9G7E-16 1
.OS9E-15
.563E-14
.13
100.
64.5
2.27 0.191
3.030E-03 4.267E-12 4.862E-02 0.118
0.872 57.6 72.'-J 59.8
1.521K-06
G.717E-02 3.754E-03
100.
64.ti
.314E--16 1
3.744E-18
6.765E-12
3.00
100.
82.7
3.00
0.29ft
3.99
.135E-]
2.860R-
1.902E-
28.9
100.
93.9
28.9
4.'J40H-
61.7
O.OOOKiOO O.OOOE+00 1
1.727E-16 3.138E-24
1.219K-20 1.502K-17
5.332E-18 9.855E-18
O.OOOL-iOO O.OOOEiOO
7.64t.ifc-OG 4.190E-03
1.333E-06 4.413E-OG
2.7^0K-OG 6.204E-05
o.ooot:+oo O.OOOE+OO
7.b4GK-06 0.4G3E-19
1.319E-06 4.412E-OG
2.636E-06 4.672t-05
.216E-21 2
O.OOOE+00
8.558E-19
3.386E-21
21.6 4
O.OOOE+00
3.396E-04
1.430E-05
1.13 4
O.OOOE+00
6.115E-05
8.751E-08
.873E-18
6.007E-18
7.817E-21
3.954E-16
.132E-03
9.320E-04
1.109E-06
1.348E-05
.116E-03
9.319E-04
1.095E-06
2.022E-11
1.019E-22 2.489E-19 1.094E-21 7.435F-17 O.OOOE+00 O.OOOE+<
2.231E-19 1.813E-17 O.OOOE+00 O.OOOE+00 4.I302E-20 0.783E-
5.394E-21 7.070E-21 5.706E-21 O.OOOE+00 1.893E-18 4.934E-
9.655E-05 0.111 1.386E-06 5.630E-04 O.OOOE+00 O.OOOt+(
2.894E-04 1.286E-03 O.OOOE+00 O.OOOE+00 3.B29E-03 1.517L-
3.126E-06 1.100E-06 4.720E-07 O.OOOE+00 4.148E-06 4.660E-
1.468E-05 8.885E-02 1.342E-06 5.620E-04 O.OOOE+00 O.OOOE+(
6.128E--14 1.212E-03 O.OOOE+00 O.OOOE + 00 3.818E-03 1.517E-
1.676E-07 2.546E-07 1.703E-07 O.OOOE+00 3.518l:-06 1.600E-
O.OOOtM
2.2cji.iK
9.147E
1.046K
O.OOOE+
100.
100.
100.
0.000t+
100.
99.0
95.8
00 O.OOOE+00 4.411E-21 6.954E-14 1.055E-16 2.236E-16 7.897E-14 1.321E-11 O.OOOE+00 O.OOOE+(
-09 7.488E-20 O.OOOE+00 6.44GE-13 7.710E-14 1.410E-12 O.OOOE+00 O.OOOE+00 1.254E-15 5.790E-
-13 3.404E-10 2.520E-13 7.047E-13 1.725E-13 G.425E-13 1.209E-12 O.OOOE+00 4.562E-11 1.059E-
-10 1.589E-11 2.369L-14 2.933E-09
00
00
O.OOOEiOO
100.
100.
100.
O.OOOL+00
78 4
O.OOOE+00
100.
100.
4.10
2.024E-I4 O.OOOE+00
100. 18.0
75.3 0.612
100.
100.
100.
100.
99.6
100.
9(3.8
1.500F-04
100.
100.
100.
15.4
2.117E-08
5.3G
99.9
100.
100.
79.8
94.3
23.1
100.
100.
O.OOOE+00 O.OOOE+00
100. O.OOOE-tOO
O.OOOt+00 O.OOOE+(
100. 100.
100. 100.
96.8 99.8 O.OOOL'+OO O.OOOEH<
O.OOOE+00 O.OOOE+00 99.7 100.
36.1 O.OOOE+00 84.U 34.3
1.952E-07 1.221E-03 1.020E-19 2.789E-16 5.794E-16 5.627E-17 2.571E-15 2.330E-14 3.455C 15 3.930E-'
7.i.G91:-13 3.699E-04 1.055E-15 1.953E-17 3.641E-04 8.595E-14 6.716E-13 3.859L-15 3.744^-18 2.8601-
9.L-30E-15 7.433E-15 1.148E-12 8.035E-15 3.045E-12 2.134E-12 2.142E-12 2.423E-14 8.177H-12 2.025E-
8.427E-12 5.209E-I2 3.846E-12 1.955L-03
100. 100. 94.8 0.399 34.6 20.1 3.15 0.17G 100.
3.396E-02 100. 100. 3.030E-03 JOO. 5.75 100. 100. 0.298
•34.6 76.9 6:3.9 100. 15.2
1.03
4.15
2.184E-03
24.7
82.0
99.4
1.24
100.
4.'J40L-
65.7
O.OOOE+00 O.OOOE+00 5.627E-21 6.954E-14 1.055E-16 2.238E-16 7.897E-14 1.321E-11 O.OOQE+00 O.OQOL«(
2.258E-09 7.4(jiJg-26 p.ODogiO'i c ,4
-------
7. OF ALL PATHWAYS
TOTAL OVER ALL PATHWAYS
% OF 1UTAL
9.1471: 13 3.404E-10 2.520E-13 7.047E-13 1.725E-13 6.425E-13 1.209E-12 O.OOOE+00 4.562E-11 1.059E-
1.946E 10 1.589E-11 2.369E-14 2.933E-09
O.OOOE-<')0 O.OOOE-iOO 5.23 99.6 PJ.4 79.9 9''..8 99.0 O.OOOE+00 O.OOOE+<
100. 2.117E-08 94.3
98.8 b.36 23.1
100.
99.0
95.8
2.024E-14 O.OOOIM-OO
100. 16.0
75.3 0.612
9'. .8
O.OOOE+OO O.OOOK+OO
36.1 O.OOOE+00
99.7
04.0
100.
34.3
1.03I3E-05 1.079E-06 1.979E-07
1 GARfAB INFO
FATAL CANCER RATE (DEATH/YR)
COMB.LET
OAAASIJMMEO OVER ALL CANCER
NUCLIHLS
1.952E-07 1.221E-03 1.076E-19 6.982E-14 6.849E-16 2.801E-16 8.154E-14 1.323E-11 3.455E-15 3.930E-J
2.258E-09 3.699E-04 1.055E-15 6.446E-13 3.641E-04 1.49GE-12 G.716E-13 -J.859E-15 1.258E-15 5.790E-
9.243E-13 3.404E-10 1.400E-12 7.136E-13 3.218E-12 2.777E-12 3.351E-12 2.423E-14 5.380E-11 3.084E-
2.030E-10 2.109E-11 3.870E-12 1.955E-03
9.983E-03 62.5 5.502E-15 3.571E--09 3.503E-11 1.432E-11 4.170E-09 6.766E-07 1.767E-10 2.010E-;
1.155E-04 18.9 5.395E-11 3.296E-08 18.6 7.648E-08 3.435E-00 1.974E-10 G.432E-11 2.9G1E-
4.727E-08 1.741E-05 7.157E-08 3.649E-08 1.645E-07 1.420E-07 1.714E-07 1.239E-09 2.751E-06 1.&77E-
INGEST ION
X OF INTERNAL
X OF ALL PATHWAYS
INHALATION
•/. OF INTERNAL
7. OF ALL PATHWAYS
AIR Irtrtfc'RSION
•(, OF EXTERNAL
X OF ALL PATHWAYS
GROUNH SURFACE
H-3
NB-94
AM-24J
I-129
PU-23U
ttl-58
CS-134
PU-239
Nl-59
CS-13S
PU-240
LO-60
CS-137
PU-241
Nl-63
CE-144
AH-241
SR-90
EU-15'
PU-24:
C--]4 CR-51 MN-54
IC-99 RU--106 SB-125
U-2::b NP-237 U-230
CH-24J CM-244 TOTAL
l.brJt.L-]2 2.411E-OK 5.474E-25 1.923E-21 6.i23E-21 2.479E-22 2.736E-20 1.622E-19 3.773E-20 8.052E-)
4.555E-18 2.8G9E-08 1.8G3E-20 O.OOOE+00 G.023E-07 8.824E-19 5.978E-18 O.OOOEnOO O.OOOCi-00 O.OOOE-
2.307E-19 2.658E-19 ].0171-17 2.303E-19 2.5&1E-17 3.017E-18 3.243L-18 2.688E-19 3.168E-17 2.868E-
3.437E-17 1.607E-17 1.176E-17 G.551E-07
100.
84. J
1.72
16.5
100.
2.39B1- 02
0.903
1.86
1.56 IE- 2b
8.4G6H-19
1.317E-17
1.739H-16
8.232E-12
15.7
98.3
83.5
8.232E-12
4.457E-03
51.6
9.42
O.OOOirM-00
1.451E-21
i.ioyt 25
4.457L-23
O.OOOK-iOO
7.644E-06
9.768E-07
2. 721 E -06
O.OOOE+00
7.642E-06
4.644*;- 07
2.414E-OG
100.
100.
0.237
14.8
100.
100.
&.443E-03
6.63
2.346E--26
2.198E-21
1.119E-1G
9.722L-17
9.730E-17
7.663E-12
9(J.t)
85.2
9.730t-17
7.6G3E--12
3.55
38.2
O.OOOE'H-00
2.G83E-29
1.334E-22
O.G55E-23
O.OOOt-iOO
4.190E-03
4.392E-06
6.167E-05
O.OOOEHOO
9.350E-20
4.235E-OG
3.401E-05
62.0 76.6
19.5 O.OOOK-i-00
13.4 ].92
14.5 100.
tj(i.7 0.327
19.5 O.OOOK-i-00
13.1 1.06
14.4 100.
3.355H-25 5.883E-22
7.711E-20 6.024E-21
6.549E--17 1.179E-17
G.945L-17 1.451E-15
38.0 23.4
80.5 100.
86.6 98.]
85.5 2.215E-07
36.0 0.100
130.5 0.110
04.) 54.3
85.2 2.215E-07
1.057E-2G 2.417E-23
O.OOOE+00 5.079E-23
7.317E-24 7.3D1E-26
3.909E--2G J.:346E-21
21.6 4.]32L'-03
O.OOOE+00 9.320E-04
3.284E-04 8.158E-07
1.310E-OS 1.345E-05
1.13 4.115K-03
O.OOOE+00 9.310E-04
9.3CJ3E-06 3.G38E-07
4.79GE-OU 5.107E-13
93.6 73.1 91.3 49.4 Ob. 3 79.7
100. 99.1 99.9 O.OOOEvOO O.OOOC+00 O.OOOE-
12.4 1.57 1.69 27.8 lb.
-------
X OF EXTERNAL
Z OF ALL PATHWAYS
INTERNAL
X Of ALL PATHWAYS
EXTERNAL
1
1
0.
0.
.215E-17
. b 3 tl Fi - 1 5
OOOHOO
100.
100.
100.
oooh+oo
100.
47.5
88.7
3.036E-15
1.403L-16
O.OOOE+00
LOO.
100.
100.
O.OOOE+00
2.231E--1S
96.4
55.2
2.228E-18
2.984E-19
78.4
O.OOOli+00
JOO.
LOO.
4.12
O.OOOE+00
2.D6
0.366
9.673E-18
2.487L-14
100.
LOO.
JOO.
100.
99.6
99.9
44.6
3.7%E-OG
2.345E-18
100.
100.
100.
28.1
8.79SK-1J
1.13
8.056E-1B
99.9
100.
JOO.
84.7
93.0
4.02
1.635E-17
100.
O.OOOE+00
JOO.
9tf.fi
O.OOOE-iOO
7.84
O.OOOE+00
100. 0
O.OOOli + 00
O.OOOE^O
99.7 0
O.OOOE+00
O.OOOli + 00
0.792G
.OOOL+
100.
JOO.
.OOOK -i
20.3
65.6
-16
00 0
00 0
1.428E-
.OOOE+<
100.
JOO.
.OOOL+<
99.9
7.26
1.896E-12 2.411E-08 8.828E-25 2.511E-21 6.965E-21 3.389E-22 2.998E-20 3.206E-19 4.42GG-20 1.010E-!
c- ,; A 'i i'_ i o o neat--An ci c: *-/ >i n _ n A r. A^J ,* p_ TI f. ATI t- A*J o OAIF^TQ c oeierL' i o o Qrtar_lrt A onar _OA o ATOP.
5.401L--1C 2.869fc-08 9.574E-20 6.024E-21 6.023E-07 8.901E-19 5.985E-18 3.808E-20 4.229E-20 3.023E-
1.340E-17 1.121E-16 7.567E-17 1.202E-17 2.060E--16 1.922E-16 1.920E-16 9.G72L-19 1.991G-16 1.825E-
2.00::iE-16 1.141E-16 8.121E-17 6.551E-07
100. 100. 94.7 0.427 71.9 15.2 1.45 0.292 100.
O.]10 100. 6.9B JOO. 100. 79.7
515.4 98.9 96.0 92.2 100. 34.4
2.844L-02
52.5
11.3
100.
J.bG
44.8
100.
97.1
99.6
100.
t>.]6)L-
92.7
CO
i
-P.
CO
'/. Or ALL PATHWAYS
O.OOOIMOO O.OOOE<00 4.895K-26 5.850E-19 2.727L-21 1.884E-21 2.040H-J8 1.1211-16 O.OOOE+00 O.OOOt+<
1.899E-14 6.402E-25 O.OOOE+00 5.449E-18 5.297E-19 1.186E-17 O.OOOE+00 O.OOOl^OO 1.075E-20 4.903E-
1.2)'jL-17 3.036E-15 2.228E-18 9.673E-18 2.345E-18 8.056E-18 1.635E-17 O.OOOE+00 3.792E-16 1.428E-
1.&30E-15 1.403E-16 2.984E-19 2.487E-14
O.OOOEHOO O.OOOE+00 5.25 99.6 2:3.1
100. 2.23JL-15 O.OOOE+00 99.9 8.795E-11
1.1:3
47.5
96.4
55.?
2.8G
0.366
99.9
44.6
134.8
93.0
4.02
90.6
99.7
0.0001+00 O.OOOE^O
7.84 O.OOOE^O
O.OOOE + 00 O.OOOE-K
20.3 99.9
65.6 7.2G
TOTAL OVER ALL PATHWAYS
'/. Of TOTAL
1 DARTAD INFO
COLLECTIVE GENETIC EFFECT(EFFECTS/YR)
COhB.LET
OAAASUHMED OVER ALL GONAD
NUCLllitb
1.CI96E-12 2.411E-OG 9.318E-25 5.875E-19 9.692E-21 2
1.099E-14 2.869L-00 9.574E-20 5.455E-18 6.023E-07
2.555E-17 3.149E-15 7.790E-17 2.169E-17 2.084E-16
.544E-16 8.150E-17 6.551E-07
1.422E-16 8.968E-11 1.480E-12 3
1.46i!E-ll 8.328K-30 91.9
3.900E-09 4.807E-07 1.189E-08 3.312E-09 3.181E-08
2.818E-07 3.884E-08 1.244E-08
1.046E-15
2.894E-04 3.68
2.899E-06 4.3U
.223E-21 K.070L-18
1.275E-17 5.985E-18
2.003E-16 2.084E-16
.394E-13 3.160E-10
1.946E-09 9.137E-10
3.05BE-08 3.181E-08
J.J24E-J6 4.426E-20 l.OlOt-i
3.808E-20 5.304F.-20 4.906b-
9.672E-19 5.7I33E-16 1.968E-
1.716E-OL) 6.756E -12 1.S42E-1
5.813E-12 8.097E-12 7.490L-
1.476E-10 0.02DE-013 3.005E-
IfJGEGTION
7. Of INTERNAL
'/. Or ALL PATHWAYS
INHALATION
'i OF INTERNAL
H-3 C-14 CR-51
NB-94 TC-99 RU-106
U-234 U-235 NP-237
AH-243 Ch-24'3 Ch-244
7.173L-13 4.487E-09 3.615E-25
-2.01JE-18 1.359L-09 3.764E-;
9.6B9E-21 2.197E-20 1.643E-J
5.531K-18 3.171E-18 2.337E-1
100. 100. 96.5
99.8 100. 97.1
27.7 00.4 39.0
17.9 16.6 16.5
100. LOO. 91.5
3.30tlE-02 100. 97.1
0.2Q5 1.75GE--03 31.9
0.741 4.09 16.4
6.139L-26 4.536E-27 1.310E-26 3.459E-23 5.706E-23 1.969E-24 2.013E-22 1.825E-21 4.827E-22 4.170E-I
6.559K-21 6.110E-24 1.132E-22 7.176E-23 5.709E-23 2.672F-21 2.924L-21 1.418E-20 1.376E-23 1.051L-
2.53HH-20 5.346E-21 2.574E-18 2.2fl6E-20 6.813E-18 7.365E-18 7.358E-18 5.745E-20 2.486E-17 6.989E-
2.543E-17 1.597E-17 i.l80U"17 1.093E-16
3.38 2.68 0.952
100. 4.2GVG-12 0.846
HN-54
SC-125
U-23U
TOTAL
9.901E-22
o.ooot+oo
'• 9.601E-21
: 7.185E-09
96.6
O.OOOE+00
29.6
100.
0.3B6
O.OOOt+00
0.366
JOO.
FE-55
1-129
PU-238
2.072E-21
1.338E-09
4.376E-18
97.3
100.
39.1
02.3
100.
37.0
CCI-58
CS-134
I'U-239
2.048E-22
3.132E-19
4.769E-19
99.0
99.2
6.08
19.9
b.70
4.67
NJ-59
CS-135
PIJ-240
9.247E-21
2.465E-18
5.137E-19
97.9
99.9
6.53
: .09
'i'j.9
4. 17
10-60
CS-137
PU-241
8.378E-20 1
O.OOOE+00
3.157E-20
97 . 9
O.OOOE+00
35.5
0.172
O.OOOL+00
35.5
NJ-63
CE-144
M-'SA]
.221E-20
O.OOOE+00
5.18UE-18
96..-i
O.OOOL^O
17.3
96.2 ^
0.000^00
2 . 6 .i
bR-90
EU-15'
PU-24;
1.027E-:
O.OOOL<
4.527E-
71.1
O.OOOL-i
6.08
71.1
O.OOOL<
3.99
i:-12 1.011E-J6 3.50
0.233 4.496E-1;) 2.92
2.13
0. Lll3
2.13
100.
3.UO
100.
28.9
100.
-------
2 OF Hi.I. PA1HMAY'.
AIP IMMERSION
>. OF EXTERNAL
'•. OF ALL PHlHMAYS
GROUND SURFACE
03
i
v Of EXTERNAL
7. OF ALL PATHWAYS
INTERNAL
'/. OF ALL PATHWAYS
EXTERNAL
7. OF ALL PATHWAYS
TOTAL OVER ALL PATHWAYS
•/. OF TOTAL
72.3 19.6
82.1 BJ.4
a.bV/E-12 1.011E-16
7.903E-05 4.4%E-13
0.746 4.274E-04
3.4L -JO.G
O.OOOE+00
6.345E-22
4.481E-26
1.967E-23
O.OOOE+00
7.64t.it::-06
1.333E-06
2.750E-06
O.OOOE+00
7.646E-06
1.319E-06
2.636E-06
O.OOOt+00 4
1.153E-29
5.519E-23
3.621E-23
O.OOOE+00
4.190E-03
4.413E-0&
G.204E-05
O.OOOE+00
8.4G3E-19
4.412E-OG
4.672E-05
61.0
03.5
3.31
2.92
50.0
83.0
.4671-27
O.OOOE+00
3.145E-24
1.244E-26
21.6
O.OOOL+00
3.396E-04
1.430E-05
1.13
O.OOOE+00
&.115E-05
8.751E-08
70.4
1.521E-06
1.348E-02
60.9
93.0
93.5
G4.5
...27 0.191 6.717E-02 3.754E-03
3.0:3012-03 4.2G7E-12 4.862E--02 O.I It) 100.
O.H72 ii7.G 72.2 59.8 G4.5
1.521E-0&
62.7
3.00
0.298
12.G
93.9
28.9
4.940E-
61.7
1.056E-23 3.745L-28 9.
2.207E-23 8.199E-25 6
2.872E-26 1.982E-2& 2
1.453E-21
4.132E-03 9.&55E-05 0.
9.320E-04 2.894E-04 1
1.109E-0& 3.126E-06 1
1.348E-05
4.116E-03 1.488E-05 8.
9.319E-04 6.128E-14 1
1.095E-OG 1.G7GE-07 2
2.022E-11
145E-25 4.022E-27 2.732E-22 O.OOOE+00 O.OOOE+(
.G61E-23 O.OOOE+00 O.OOOE+00 1.7G5E-25 3.227E-
.598E-2G 2.097E-2G O.OOOEK>0 &.955E-24 1.813E-
111 1.38GE-OG 5.630E-04 O.OOOE+00 O.OOOE+(
.2&6E-03 O.OOOE+00 O.OOOE+00 3.829E-03 1.517E-
.100E-06 4.720E-07 O.OOOE+00 4.14I3E-OG 4.GGOE-
885E-02 1.342E-OG 5.620E-04 O.OOOL+00 O.OOOE+'
.212E-03 O.OOOE+00 O.OOOE+00 3.81BE-03 1.517E-
.54GE-07 1.703E-07 O.OOOE+00 3.518E-OG l.GOOE-
O.OOOE+00 0
8.296E-15
3.3G1E-18
7.1&1E-1G
O.OOOE+00 0
100.
100.
100.
O.OOOE+00 0
100.
99.0
95.8
.OOOE+00 1
2.751E-25
1.251E-15
5.837E-17
.oooe+oo
100.
100.
100.
.OOOE+00
2.024E-14
100.
75.3
.621E-2G
O.OOOE+00
9.259E-19
8.704E-20
78.4
O.OOOE+00
100.
]00.
4. 10
O.OOOE+00
lfc.0
O.G12
2.555E-
2.368E
2.590E
1.078E
100.
100.
100.
J00'
100.
9SI.8
1.500E
19 3.87BE-22 8.215E-22 2.902E-19 4.853E-17 O.OOOC'OO O.OOOE+(
-18 2.833E-19 5.180E-18 O.OOOE+00 O.OOOE+00 4.G08E-21 2.127E-
-18 6.340E-19 2.361E-18 4.442E-18 O.OOOE+00 1.G76E-16 3.091E-
-14
-04
100. 99.9 100. 100. O.OOOGVOO O.OOOE+(
100. 100. O.OOOE+00 O.OOOE+00 100. 100.
100. 100. 100. O.OOOli + 00 100. 100.
15.4 79.8 96.8 99.8 O.OOOE+00 O.OOOE+(
2.117E-08 94.3 O.OOOE+00 O.OOOE+00 99.7 100.
5.36 23.1 36.1 O.OOOE+00 U4.8 34.3
'/.173L-13 4.487E-09 3.74&E-25 3.025E-21 2.129E-21 2.068E-22 9.448E-21 8.5G1E-20 1.2G9E-20 1.444E-:
2.818E-18 1.359E-09 3.877E-21 7.176E-23 1.338E-09 3.158E-19 2.468E-18 1.418E-20 1.376E-23 L.051E-
3.i02F:-20 2.731E-20 4.217E-18 3.247E-20 1.119E-17 7.842E-18 7.872E-18 8.902E-20 3.005E-17 7.442E-
3.097E-17 1.914E-17 1.413E-17 7.185E-09
100. 100. 94.0 0.2!(J9 84.6 20.1 3.15 0.176 100. 100.
3.39GE-02 100. 100. J.030G-03 100. 5.75 100. 100. 0.298 4.940E-
1.03 2.1U4E-03 U2.0 3.24 94.6 76.9 63.9 100. lb.2 65.7
4.15 24.7 99.4
O.OOOE+00 Q.OOOE-iOO 2.068E-26 2.555E-19 3.878E-22 8.224E-22 2.902E-19 4.853E-17 O.OOOE+00 O.OOOE+(
8.296E-15 2.752E-25 O.OOOE+00 2.369E-18 2.833E-19 5.180E-18 O.OOOE+00 O.OOOE+00 4.GOGG-21 2.127E-
3.361E-18 1.251E-15 9.259E-19 2.590E-18 6.340E-19 2.361E-18 4.442E-18 O.OOOE+00 1.G76E-16 3.891E-
7.151E-1G 5.837E-17 8.704E-20 1.078E-14
O.OOOE+00 O.OOOE+00 5.23 99.6 15.4
100. 2.024E-14 O.OOOG+00
99.0 100. 18.0
95.3 75.3 0.612
100.
9B.8
79.9 96.8 99.8 O.OOOE-tOO O.OOOL-K
2.117E-OU 94.3 O.OOOE+00 O.OOOE+00 99.7 100.
5.36 23.1 36.1 O.OOOE-iOO 84.8 34.3
7.173E-13 4.487E-09 3.953E-25 2.566E-19 2.517E-21 1.029E-21 2.996E-19 4.861E-17 1.269E-20 1.444E-I
8.299E-15 1.359E-09 3.877E-21 2.369E-18 1.338E-09 5.495E-18 2.468E-1B 1.418E-20 4.G22C-21 '.•'.128E-
3.396E-18 1.251E-15 5.143E-18 2.622E-18 1.182E-17 1.020E-17 1.231E-17 8.902E-20 1.977E-16 1.133E-
7.4G1E-1G 7.751E-17 1.422E-17 7.185E-09 ^
9.9C3E-0:i 62.5 S.&02E-15 3.571E-09 3.503E-11 1.432E-11 4.170E-09 6.7G6E-07 1.767E-10 2.010L-]
1.155E-04 18.9 5.395E-11 3.296E-08 18.6 7.G48E-08 3.435E-OB 1.974E-10 6.432G-11 'J.9G1E-
4.72','Iv-OO 1.741E-05 7.157L-00 3.G49E-08 1.645E-07 1.420E-07 1.714E-07 1.239E-09 2.751E-06 1.577E-
1.030E-05 1.079G-06 1.979E-07
I RESIHUAL RADIOACTIVITY RELEASED OUTSIDE THE BASIN
WITH THE STREAM WATER
NUCLIDH LlkOT SECOND THIRD FOURTH ElfTH SIXTH SEVENTH EIGHTH NINTH TENTH
rllLLFNNIUM MILLENNIUM MILLENNIUM HTLLLNNIUM MILLENNIUM MILLENNIUM MILLENNIUM MILLENNIUM MILLENNIUM MILLENNIUM
-------
CO
1
-fi
en
H-3
C-14
CR-51
HM-54
FE-55
CO-50
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
PU-106
SB- 125
1-129
CS-134
C3-135
CS-137
CE-144
EU-154
U-234
Li-235
NP-237
U-238
PU-230
PU-239
PU-240
PU-241
Ah-241
PU-242
AM-243
CH-243
Ch-244
1
H-3
C 14
CK-51
rlN-54
EE -55
CO-58
NI-59
CO-GO
NI-63
5R-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
U-234
U-235
NP-JJ7
U-238
PU-230
PU-239
PU 240
0.2460t- 02 0.3412E-26 0.6683E-57
0.9G05E+00 0.9266E-03 0.25G4E-07
0.5794E-07 O.OOOOfcHOO O.OOOOE'-iOO
0.94%E-OS O.OOOOHOO O.OOOOfc+00
0.2450E-05 O.OOOOE+00 O.OOOOE+00
0.1310h-0b O.OOOOE+00 O.OOOOE+00
0.4156E-02 0.1B17E-15 0.7946E-29
0.5G02*:~03 O.OOOOE+00 0.000«t+00
0.332UL-02 0.7CI72K- 19 0.18G«K-3b
O.HJ46E-02 0.2bl3E-26 0.342/E-50
0.4143E-02 O.G638E-08 0.1064E-13
0.524bE+OQ 0.46b3h+OQ 0.6000E-02
0.9038E-05 O.OOOOE+00 O.OOOOE+00
0.234UK-Q3 O.OOOOE-iOO O.OOOOE+00
0.4081E-01 O.G369E+00 0.1849E+00
0.0541E-Ob O.OOOOEHOO O.OOOOE+00
0.4112E-02 0.3805E-04 0.3520E-06
O.bfcOVE-OS 0.481bE-lb 0.4137E-27
0.1124E-05 O.OOOOE+00 O.OOOOE+00
0.7334E-04 0.3b43E-23 0.1714E-42
0.4142E-02 0.8077E-05 0.1575E-07
0.4I44E-02 0.8105E-05 0.1585E-07
0.4i;OOE-02 O.OOOOEHOO O.OOOOE + 00
0.4144E-02 0.8105E-05 0.1585E-07
O.S'J'J'/E-OS 0.580bE-07 0.5619E-11
0.302UE-02 0.7G02E-03 0.1949L-03
0.2'i39E-02 O.G901E-03 0.1G21E-03
O.G408E-04 0.2645E-27 0.1094E-50
0.1227E-03 0.2550E-04 0.5300E-05
0.30GOE-02 0.7974E-03 0.20713E-03
0.2257E-03 0.1932E-03 0.1G54E-03
0.2072E-03 0.1877E-13 0.1702E-23
0.1001E-03 0.18G4E-21 0.3475E-39
RESIDUAL RADIOACTIVITY IN
TRANi-ill IN YEAR 10000
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.1413E-32
O.OOOOE+00
0.3739E+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE-iOO
0.2875E-20
o.oooomoo
0.385b'E+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0. 40486+00
0.41G4E-IOO
0.2529E-05
0.4164E+00
0.1472E-34
0.2241E+00
0.1034E+00
O.OOOOIHOO O.OOOOE+00
0.1385E-11 0.1036E-33
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE-iOO O.OOOOE+00
0.2487E-01 0.2441E-01
O.OOOOE+00 O.OOOOE+00
0.2947E-12 0.2909E-lb
0.3279E-35 0.8015E-45
0.2304E-01 0.247GE-01
0.1G71E-03 0.1562E-08
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
0.1232E+00 0.1305E-01
O.OOOOE+00 O.OOOOE+00
0.2263E-01 0.3073E-01
0.3219E-34 0.7921E-43
O.OOOOE+00 O.OOOOE+00
0.1117E-61 O.OOOOE+00
0.2387E-01 0.3011E-01
0.2411E-01 0.3049E-01
0.3190E-01 0.3927E+00
0.2411E-01 0.3049E-01
0.1804E-13 0.5G83E-16
0.1149E-01 0.233GE-01
0.8G61E-02 0.1647E-01
O.OOOOE+00 O.OOOOE+00
0.4333E-Ob 0.3113E-05
0.12G7E-01 0.2G37E-01
0.7067E-03 0.1738E-02
0.1087E-32 0.1783E-40
0.1320E-5G 0.745GE-72
REhAfNING IN
TRENCH
O.OOOOEt-00
0.2395E-76
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.K-ib7E+00
O.OOOOE+00
0.2929E-33
O.OOOOE+00
0.2020E+00
0.4261E-7G
O.OOOOE+00
O.OOOOE+00
0.3297E-23
O.OOOOE+00
0.3957E+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
0.3639E+00
0.3744E-IOO
0.2024E-14
0.3744E+00
0.2197E-34
0.3372E-)00
0.1555E+00
O.OOOOE+00 O.OOOOE+00
0.1975E-62 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
0.2124E-01 0.1825E-01
O.OOOOE+00 O.OOOOE+00
0.1376E-18 0.6431E-22
0.2185E-55 0.5886E-G6
0.22G2E-01 0.205GE-01
0.10GOE-18 0.8888E-30
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
0.5119E-04 0.1234E-OG
O.OOOOE+00 O.OOOOE+00
0.3023E-01 0.2960E-01
0.7296E-53 O.G639E-63
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOE+00
0.2928E-01 0.2838E-01
0.2974E-01 0.2091E-01
0.235GE+00 0.1G50E+00
0.2974E-01 0.2891E-01
0.259GE-19 0.1005E-22
0.2572E-01 0.2565E-01
0.1680E-01 0.1551E-01
O.OOOOE+00 O.OOOOE+00
0.1137E-05 0.344GE-06
0.2981E-01 0.3053E-01
0.2610E-02 0.3217E-02
0.8354E-50 0.3279E-59
O.OOOOE+00 O.OOOOE+00
RELGAGliO 10 THE
ATMOSPHERE
0.1349E-OG
0.231DE-06
0.6591E-07
0.5365^-05-
0.2595E-04
0.4023E--06
O.KJbOE-03
0.4G92E-04
0.1G3HE-03
0.1278E-03
0.2210E-03
0.1084E-04
0.68G8E-05
0.2332E-04
0.4900E-04
0.1055E-04
0.3739E-03
0.1354E-03
0.41300E-05
0.1110E-03
0.3181E-03
0.3207K-03
O.G841E-04
0.3207E-03
0.1738E-03
0.74](
-------
PU-241
Ah-241
PU-242
AM-243
CM-243
CM-244
O.OOOOE+00
0.15G3E-07
0.2931E+00
0.220bK-01
O.OOOOE+00
O.OOOOt-iOO
.OOOOE+OO
,1300E-OG
.44101+00
0.
0.
0.
0.
O.OOOOH+00
O.OOOOE+00
O.lOlGtl-03
0.10G9E-03
O.Gb2'JE-03
0.3B20E-02
0.1382E-03
0. mat-OS
HEALTH EFFECTS RESULTING FROM RESIDUAL
RADIOACTIVITY RELEASED IN 1000 YEARS
en
i
cr>
NUCLIDE
H-3
C-14
CR-il
hN-54
FE-^.b
CO-5S.I
NI-59
CO-60
NI-63
SR-CJO
NB-94
TC-'J9
RU-106
SB- 12t>
1-129
CS-134
CS-13lu
CS-13'/
CE-144
EU-154
U-234
U-235
NP-23r/
U-238
PU-238
PU-239
PU-240
PU-241
AH-241
PU-242
AM-24H
Ch-243
Crl-244
RESIDUAL
ACTIVITY
2.4601E-03
9.6049E-01
i.7(J43E-08
9.4963E-06
2.4504K-OG
1.3000
o.ooootnoo
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOtMOO
O.OOOOE+00
O.OOOOE-*00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOt-iOO
O.OOOOE^O
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
HEALTH
EEEF.CTS
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
HEALTH EFFECTS RESULTING FROM RESIDUAL
RADIOACTIVITY RELEASED IN 10000 YEARS
NUCLim:
H-3
C-14
CR-51
MN-54
FE--5S
RESIDUAL
ACTIVITY
2.4601E-03
9.G141E-01
b.7'J43H-08
2.4S04H-OG
CONVERSION
FACTOR
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
HEALTH
EFFECTS
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
-------
DO
-p.
CO-SB
NI-59
CO- 60
NI-63
SR-90
NB-94
TC-99
RU--10G
SH-m
i-12'j
CS-134
CS-]3tj
C5-137
CE-144
EU 154
U-234
U-235
NP-237
U-230
PU-23U
PU-239
PU-240
PU-241
Ah-241
PU-242
Ah-243
CM-24-1
CM-244
1.3099E-OG
1.3158E-01
5.6022E-04
3.32BOE-03
] .((456E-OH
1.4503E-01
9.9!iOlJK-0:i
9.0382E-OG
2.3476E-04
0.'Jt)9bE-01
8.S406E-OG
2.0178E-01
5.G075E-04
1.1240E-06
7.3340E-05
1.94CJ8E-01
1.9853E-01
9.9768E-01
1.9053E-01
5.9973K-04
1.G2G3E--01
9.H909K-02
6.4080E-05
1.6i!59K-04
1.9440E-01
2.0G11E-02
2.0718E-04
1.0014E-04
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEi-00
O.OOOOE-iOO
0,OOOOE+00
O.OOOOH-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOfc-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-tOO
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooomoo
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot^o
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
TABLE FOR ACCOUNTING MODEL — YEAR 1000
COLUMN J: INDIVIDUAL CANCER RISK (UWiTLESS)
COLUMN 2: POPULATION DOSE (PEKGON-RUn/YEAR)
COLUMN 3: COLLECTIVE CANCER RISK (DEATHS/YEAR)
COLUMN 4: GENETIC RISK < EFFECTS/ YEAR )
COLUMN M R-ACTJVITY PUMPED OUT THE WELL 1ST 1000 YEARS (CD
COLUMN 6: R-ACTIVITY PUMPED OUT THE STREAM 1ST 1000 YEARS (CD
COLUMN 7: R-ACTIVITY RELEASED TO ATMOSPHERE 1ST 1000 YEARS (CD
COLUMN 8: R-ACTIVI1Y RELEASED DOWNSTREAM 1ST 1000 YEARS (CD
COLUMN 9: R-ACTIVITY RELEASED DOWNSTREAM LAST 9000 YEARS (CD
COLUMN 10: R-ACTIVITY IN TRENCH
H-3
C-H
C R -• i
MM -54
FE-55
CO-58
NI-59
CO-GO
NI-G3
SR-90
NP-94
TC-99
RU-106
SB-125
1-129
CS-134
C'S-135
CS-137
CE-144
EU-154
U-234
5.36G3E-12
G.8240E-08
2.G372E-24
1.GG28E-18
2.7432E-20
5I8589E-18
3.182;!E-16
1.2525E-19
2.8587K-18
5.3753E-14
8.1199E-08
2.7097E-19
1.5439E-]'/
1.704GE-OG
3.60tiHE-r/
1.G940E-17
1.077VE-19
1.5012E-19
7'.?.'Ji'^-l7
G.7'ja&E-09
t).b945E-05
3.3214E-21
2.0942E-15
3.4549E-17
7 .92b3E- 18
7.3791E-15
4.0079E-13
1.5775E-1G
3.G004E-15
6.7G99E-11
1.0227E-04
3.4127E-16
1.944SE-14
2.14G8E-03
4.54S1E-14
2.1335E-14
1.3574E-16
1.8907E-1G
1.7409E-12
J.37GGE-13
AFTER 10000 YEARS ASSUMING PERFECT CONTAINMENT (CD
1.89G1E-12
2.4111E-08
9.317GE-2b
5.8749E-19
9.G923E-21
2.2234K-21
2.0701E-18
1.1244E-1G
4.4255E-20
1.0100E-la
1.8992E-14
2.0690E-OS
9.5739E-20
5.4&51E-18
G.022GE-07
1 '-'7^i IE~17
5.9853E-18
3.0079E-20
5.3041E-20
4.90G4E-1G
2.5&50E-17
7.1733E-13
4.4872E-09
3.9532E-25
2.5655E-19
2.51G8E-21
1.0292E-21
2.9964E-19
4.8G14E-17
1.2G94E-20
1.4442E-20
8.2990E-15
1.3592E-09
3.87G7E-21
2.3G8GE-18
1.3381E-09
b . 4954E-18
2.4G79E-18
1.4181E-20
4.G217E-21
2.127GE-16
3.3962E-18
1.6G8GE-OG
1.1868E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.1355E-03
O.OOOOE+00
O.OOOOE+00
5.3212E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
o.oooomoo
O.OOOOE+00
O.OOOOEi-00
O.OOOOE^OO
O.OOOOEVOO
O.OOOOLi-00
O.OOOOLi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
'J.OOOOE+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1
2
G
5
2
4
1
4
1
1
1
1
6
2
4
1
1
1
4
1
1
.3492E-07
.3101E-07
.5909E-08
.3645E-06
.5954E-05
.0227E-07
.G599E-04
.G919E-05
.G384E-04
.2784E-04
.7103E-04
.0836E-05
.8681E-OG
.3321E-05
.9001E-05
.854GE-05
.7707E-04
.3537E-04
.7999E-OG
.1102E-04
.7559E-04
2.4601E-03
9.G049E-01
5.7943E-08
9.49G3E-OG
2.4504E-06
1.3099E-OG
4.1560E-03
5.G022E-04
3.3200E -03
1.8456E-03
4.1431E-03
5.244GE-01
9.0382E-OG
2.3476E-04
4.0810E-02
8.540GE-OG
4.1125E-03
5.G075E-04
1.1240E-06
7.3340E-05
4.1419E-03
3.4116E-27
9.2666E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOO1 E + 00
1.274. e-01
O.OOOOE+00
•) 'jSOJ£-13
2.5130E-27
1.40U9E-01
4.7142E-01
O.OOOOE+00
O.OOOOE+00
9.5014E-01
O.OOOOE+00
1.97G7E-01
4.814GE-1G
O.OOOOE+00
3.5431E-24
1.9083E-01
O.OOOOE+00
2.9522E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
9.0787E-01
O.OOOOE+00
1.9646E-33
O.OOOOE+00
G.9974E-01
9.5834E-of
O.OOOOE+00
O.OOOOE+00
9.89GOE-01
O.OOOOE+00
9.G773E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.6238E-01
-------
U-235
NP-237
U-238
F'U-23B
PU-239
Plt-240
F'U-241
AM-241
PU-242
AM-243
CM-243
CM-244
TOTALS:
0 MESSAGE
0
8.9114E-15
2.2047E-16
6.1397E-17
5.896
------- |