United States Office of EPA 520/1-87-026
Environmental Protection Radiation Programs December 1987
Agency Washington. D.C. 20460
Radiation
v>EPA Low-Level and NARM
Radioactive Wastes
Model Documentation
PRESTO-EPA-CPG
Methodology and Users Manual
-------
40 CFR Part 193 EPA 520/1-87-026
Environmental Radiation Standards (RAE 8706/1-4)
for Management and Land Disposal
of Low-Level Radioactive V/astes
PRESTO-EPA-CPG: A Low-Level Radioactive Waste Environmental
Transport and Risk Assessment Code
METHODOLOGY AND USERS MANUAL
Developed by
Vern Rogers
Cheng Hung
December 1987
Prepared for
U.S. Environmental Protection Agency
Office of Radiation Programs
Washington, DC 20460
Cheng Hung, Project Officer
-------
DISCLAIMER
This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, contractors, sub-
contractors, or their employees, makes any warranty, express or implied,
nor assumes any legal liability or responsibility for any third party's use
or the results of such use of any information, apparatus, product or process
disclosed in this report, nor represents that its use by such third party
would not infringe upon privately owned rights.
-------
PREFACE
This PRESTU-EPA-CPG model documentation provides background
information on the mathematical modeling used to generate the
basic data for the Environmental Impact Statement (EIS) which is
used to support EPA's rulemaking for generally applicable
environmental standards for the management and disposal of
low-level radioactive wastes (LLW). The model was used to assess
the maximum annual dose to a critical population group (maximum
CPG dose) resulting from the disposal of LLW. This model is
considered a member of the PRESTO-EPA family of models. The
model is primarily modified from the PRESTO-EPA-POP model
emphasizing the calculation of the CPG dose. Since the
mathematical formulations of the raaionuclide transport pathways
in the geosphere and biosphere are basically identical to that
used in the PRESTO-EPA-POP model and the mathematical formulation
of organ dosimetries are also covered in the PRESTO-EPA-POP model
documentation, detailed mathematical formulation of the model is
not repeated. Interested readers should refer to the
PRESTO-EPA-POP model documentation reports for further details.
Interested persons may apply this model, using appropriate
and applicable input data, for assessing the maximum CPG dose
from a LLW disposal site.
-------
TABLE OF CONTENTS
Chapter Page
LIST OF FIGURES iv
LIST OF TABLES v
EXECUTIVE SUMMARY vi
1 INTRODUCTION 1-1
1.1 PRESTO-EPA-POP 1-3
1.2 PRESTO-EPA-DEEP 1-6
1.3 Outline of Documentation and Users Manual 1-7
2 DOSE METHODOLOGY UTILIZED IN PRESTO-EPA-CPG 2-1
2.1 DARTAB Calculations 2-1
2.2 Dose Factors 2-5
2.3 Determination of the Maximum Annual Dose 2-6
3 MODIFICATIONS FOR PRESTO-EPA-CPG 3-1
3.1 Leaching Modifications 3-3
3.2 Dose Calculation Modifications 3-4
4 INPUT TO PRESTO-EPA-CPG 4-1
4.1 Site Specific and Radionuclide Data 4-1
4.2 DARTAB Data 4-16
4.3 Data for the Infiltration Submodel (INFIL) 4-23
4.4 Dosimetric and Health Effects Data 4-23
5 OUTPUT OF PRESTO-EPA-CPG 5-1
5.1 Replication of Input Data 5-1
5.2 Radionuclide Summary Tables 5-1
5.3 INFIL Input/Output 5-2
5.4 Nuclide Dose Conversion Factors 5-2
5.5 Annual Summaries 5-2
5.6 Annual Radionuclide Uptake and Concentrations in
Soil and Air 5-3
5.7 Maximum Individual Dose Summary 5-3
5.8 DARTAB Result Tables 5-3
5.9 Annual Whole Body Dose to the Critical Population
Group 5_4
iv
-------
TABLE OF CONTENTS
(Continued)
Chapter Page
6 SAMPLE PROBLEMS 6-1
6.1 Problem Definition 6-1
6.2 Problem Results 6-9
6.3 Job Control Language 6-18
REFERENCES R-l
APPENDIX A - PRESTO-EPA-CPG LISTING A-l
APPENDIX B - SAMPLE PROBLEM OUTPUT B-l
v
-------
LIST OF FIGURES
Figure No. Page
1-1 PRESTO-EPA Hierarchal Structure 1-5
3-1 Logic Flow in the PRESTO-EPA-CPG Main Program 3-2
3-2 Use of IFLAG in DARTAB and Associated Subroutines . . . . 3-5
6-1 PRESTO-EPA-CPG JCL 6-22
VI
-------
LIST OF TABLES
Table No. Page
1-1 PRESTO-EPA Code Family 1-2
2-1 Units of Exposure Factor E-JJ and Dose Rate Factor DFjji
for Selected Individual Dose Rate Calculations by DARTAB 2-3
4-1 Description of PRESTO-EPA-CPG Environmental and Nuclide
Input 4-3
4-2 Description of Namelist Input for Subroutine DARTAB . . . 4-17
4-3 Input Data for Subroutine INFIL 4-24
6-1 Surface Soil Data 6-3
6-2 Atmospheric Data 6-4
6-3 Foodchain Parameters 6-5
6-4 Radionuclide Specific Foodchain Data 6-6
6-5 Waste Form Inventories 6-7
6-6 Radionuclide Specific Data 6-8
6-7 Radionuclide Specific Dose Parameters 6-10
6-8 Organ Weighting Factors 6-11
6-9 INFIL Input Data for the Sample Problem 6-12
6-10 Maximum Day Lengths for Sample Problem 6-13
6-11 Daily Temperatures in Degrees Celsius 6-14
6-12 Hourly Rainfall Read in as Month, Day, Rainfall Per Hour
and Hour and Given in 0.1 mm/hr 6-15
6-13 Organ Dose/Exposure Summary 6-19
6-14 Pathway Dose/Exposure Summary 6-20
6-15 Nuclide Dose/Exposure Summary 6-21
Vll
-------
EXECUTIVE SUMMARY
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the land disposal of
low-level radioactive waste (LLW). The standard will support the U.S.
Nuclear Regulatory Commission and the U.S. Department of Energy in
developing a national radioactive waste management system. Technical
support for the standard includes an estimation of the environmental
impacts from the disposal of LLW in a wide variety of facilities ranging
from a standard sanitary landfill to a deep geologic repository.
As an aid in developing the standard, a family of computer codes,
entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC
and PATHRAE-EPA has been developed under EPA direction. The PRESTO-EPA-POP
code was the first code developed and served as the basis for the other
codes in the family. The EPA uses the PRESTO-EPA code family to compare
the potential health impacts of a broad number of LLW disposal alternatives
to evaluate and support its decisions for the LLW standard.
This report documents the PRESTO-EPA-CPG computer code for evaluating
maximum annual doses to members of the critical population group (CPG).
The CPG impacted by LLW disposal is located close to the disposal site.
The PRESTO-EPA-CPG code was developed by Rogers and Associates Engineering
Corporation from the earlier PRESTO-EPA-POP and PRESTO-EPA-DEEP codes. The
PRESTO-EPA-DEEP computer code was developed under EPA direction to estimate
cumulative population health effects from low-level radioactive waste
buried in shallow trenches, deep well injection, hydrofracture, and deep
geologic disposal. The PRESTO-EPA-CPG code can be used to make maximum
viii
-------
annual dose estimates for time periods up to 10,000 years following the end
of LLW disposal operations.
The conceptual logic and control modifications made in developing the
PRESTO-EPA-CP6 code include the simultaneous modeling of leaching from
multiple waste forms, the output of organ dose summaries for specified
intervals of time, the calculation of nuclide-specific dose conversion
factors used in determining the total dose for each year, the determination
of the maximum annual dose and the year in which it occurs, and the output
of the corresponding dose summaries and detailed DARTAB tables. The code
user inputs the five waste form inventories and the corresponding waste
form release modes. The total inventory is calculated as the sum of these
inventories.
The changes in DARTAB facilitate processing of the various calculations
required by the MAIN program. The changes to those subroutines required by
DARTAB are similar in nature.
Early experience with other PRESTO-EPA codes and the DARTAB code
suggested that while it was possible to utilize the DARTAB sequence every
year to generate a dose for that year, the commitment in computer time
would be large. Thus, a dose factor approach was formulated in which
nuclide-specific dose factors are generated by a single DARTAB call.
The determination of the maximum annual dose is easily accomplished
once the nuclide dose factors are known. PRESTO-EPA-CPG determines the
nuclide-pathway exposure for each year. These exposures are multiplied by
the appropriate dose factors and summed over all nuclides and pathways.
The resulting dose is compared with the current maximum. If the dose for
IX
-------
the year under consideration is greater than the current maximum it becomes
the new maximum value. In this case the year of occurrence and the
nuclide-pathway exposure are also stored replacing the old values. At the
end of the modeling period, the information is processed by DARTAB,
generating detailed health impact data for the year of maximum annual dose.
The Environmental Protection Agency wishes to warn potential users
that, like any complex computer code, the PRESTO-EPA codes can be misused.
Misuse could consist of using the code to examine a site where one or more
critical modeling assumptions are invalid, or where values for significant
input parameters are chosen that do not accurately reflect variables such
as radionuclide inventory, site meteorology, surface and subsurface
hydrology and geology, and future population demographics. Certain release
and transport scenarios, such as major changes in meteorology or mining of
the trench contents, are not considered in the PRESTO-EPA-CPG model and
code. Significant changes to the existing code and the input data would be
required to consider such scenarios. The PRESTO-EPA codes were developed
to assess and compare alternative methods for managing and disposing of
LLW at generic sites for general scenarios. The codes were not developed
to analyze specific sites.
X
-------
1. INTRODUCTION
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the disposal of low-level
radioactive waste (LLW) to support the U.S. Nuclear Regulatory, Commission
and the U.S. Department of Energy in developing a national radioactive
waste management system. Technical support for the standard includes an
estimation of the health impacts from the disposal of LLW in a wide variety
of facilities, ranging from a standard sanitary landfill to a deep geologic
repository.
As an aid in developing the standard, a family of computer codes,
entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC
and PATHRAE-EPA has been developed under EPA direction. The PRESTO-EPA-POP
code was the first code developed and served as the basis for the other
codes in the family. The EPA uses the PRESTO-EPA code family to compare
the potential health impacts (cumulative population health effects and
maximum annual dose to a critical population group) of a broad number of
LLW disposal alternatives to evaluate and support its decisions for the LLW
standard. Table 1-1 provides a brief description of each of the EPA codes.
These codes, and how the EPA uses them, have been described in detail
(Hu83, Ga84, Ro84). Information on obtaining complete documentation and
user's manuals for the PRESTO-EPA family of codes (EPA87a through EPA87g,
Me81, Me84) is available from the EPA.
The PRESTO-EPA-CPG (Critical Population Group) code is a computer code
prepared under the direction of the EPA for analyzing the maximum annual
doses to a critical population group, associated with the post-operational
1-1
-------
TABLE 1-1
PRESTO-EPA CODE FAMILY
PRESTO-EPA Code
PRESTO-EPA-POP
PRESTO-EPA-DEEP
PRESTO-EPA-CPG
PRESTO-EPA-BRC
Purpose
PATHRAE-EPA
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by shallow methods; long-term analyses are modeled
(generally 10,000 years).
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by deep methods.
Estimates maximum annual whole-body dose to a critical
population group from land disposal of LLW by shallow or
deep methods; dose in maximum year is determined.
Estimates cumulative population health effects to local
and regional basin populations from less restrictive
disposal of BRC wastes by sanitary landfill and
incineration methods.
Estimates annual whole-body doses to a critical
population group from less restrictive disposal of BRC
wastes by sanitary landfill and incineration methods.
1-2
-------
phase of low-level waste disposal facilities (Ga84). All major
non-intrusive human exposure pathways are considered. This report
documents modifications to the PRESTO-EPA-POP and PRESTO-EPA-DEEP codes to
form the PRESTO-EPA-CPG code as implemented by Rogers and Associates
Engineering Corporation. These modifications extend the methodology to
composite inventories and leach mechanisms as well as a streamlined routine
for obtaining the maximum equivalent whole body dose to an individual over
all pathways.
Because of the modular nature of the earlier PRESTO-EPA codes these
modifications did not entail any major changes in the program structure.
Existing PRESTO-EPA-POP and PRESTO-EPA-DEEP data sets can easily be
modified for use with PRESTO-EPA-CPG.
1.1 PRESTO-EPA-POP
The full development, structure and usage of the PRESTO-EPA-POP code
have been previously documented (EPA87a, EPA87b). A review of the
methodology is useful as a basis for discussing the PRESTO-EPA-CPG
modifications.
The PRESTO-EPA-POP code construction is modular and allows submodels
or subroutines to be replaced as necessary. Many of the submodels included
in PRESTO-EPA-POP were developed for other types of assessments and have
been adapted for use in estimating health effects from the land disposal of
LLW.
Three types of submodels are used in the code: unit response,
bookkeeping, and scheduled event. The unit response submodels calculate
1-3
-------
the annual response for a process. For example, unit response models
calculate the annual infiltration through an intact trench cap, the annual
average atmospheric dispersion coefficient and annual average erosion of
the trench cap.
The bookkeeping submodels keep track of the results of unit response
submodels and user-supplied control options. The TRENCH submodel, for
example, maintains a water balance in the trench and calculates the maximum
level of standing water in the trench and the volumes of water leaving
annually either through the trench bottom or by overflow from the top of
the trench. Other bookkeeping activities such as material balances and the
calculation of post-simulation residual activities are accomplished in the
MAIN program.
Scheduled event submodels consider events such as cap failure, basement
construction, and initiation of scheduled mechanical suspension of dust,
the timing of which is governed by user-specified control parameters.
Submodel interactions and information flow between various submodels
of the PRESTO-EPA-POP code are illustrated in Figure 1-1. More detail
about methods employed by the various submodels is given in the EPA
references (EPA83, EPA87a).
Average concentrations of each radionuclide in environmental media
(such as well water or the atmosphere) over the assessment period are used
to calculate radionuclide concentrations in foodstuffs. Foodstuff
information, human ingestion rates, and breathing rates are utilized to
calculate the annual average radionuclide intake per individual in a local
population by ingestion and inhalation. These intake data are used by the
1-4
-------
m ai
H^^VI
MFL
,.
ROOT
sot.
INUCUOE
LOOP
- 1
1
l_
EreAfcL?1
iflOP
IYEARI
| (.00
1
t
1
t
1
1
t
L,
LOOP
: INUCUOE
LOOP
TNUCUDE
LOOP
INUCUOE
LOOP
1
1
L
1.7""" rfiUCLIDE
p i LOOP
1_
'NUCUDE
| LOOP
1
i
•ounce
AIDTDU
QUANC 8
Lc
"
LEACH
VERHOR
SURSOL
SUSPND
| » 9UMA t.
\ 1 » YLAQ
1 1 > DPLT
1 1 » 9IUMA t.
_
tnurtr
1
1
1
t
1
i
-•••-• |
FOODA
IRRK3A
HUMEXA
*
«•] CVA :
*\ COVA ;
[
J
. . .-'•"". " 1
r
FOOD
>\ cv
_|
IRRK3 | ». COV
HUMEX
DARTAB
TRENCH
LEACH
SURSOL
SUSPND
1
J
1
1
t
1
_ __ -4. _* _ , 1
YLAQ
NAE-102122
FIGURE 1-1. PRESTO-EPA HIERARCHAL STRUCTURE.
1-5
-------
exposure and risk submodels in the DARTAB code to estimate dose rate and
health effects.
The health effects estimation methodology assumes that each member of
the local population is a member of a cohort that is exposed to constant,
averaged radionuclide concentration levels. For atmospherid transport
calculations, the entire population is assumed to reside within the same
22.5-degree sector. User-specified parameters give the fraction of the
year that the wind blows into that sector. A user option allows the
results of the atmospheric dispersion calculation in the code to be
replaced by an externally calculated concentration which considers several
population centers. Each member of the population is assumed to eat the
same quantities of food (vegetables, beef, and milk). These foods are
assumed to be produced on the same fields and spray irrigated with
contaminated water. Contaminated water is assumed to be drunk by beef and
milk cattle.
PRESTO-EPA-POP also includes the capability of assessing the
cumulative health effects to a regional basin population group beyond the
local population. These regional basin health effects are estimated for
the first 10,000 years after closure. The health effects to the local
population are generally determined only for the first 1000 years after
closure in PRESTO-EPA-POP.
1.2 PRESTO-EPA-DEEP
PRESTO-EPA-DEEP considers LLW disposal by deep well injection,
hydrofracture, and deep geologic disposal, in addition to the shallow
1-6
-------
disposal alternative. The code can be used to make maximum annual dose and
health effects estimates for up to 10,000 years following the end of LLW
disposal operations for both the local population and the regional basin
population.
In the deep disposal scenarios, water is the primary transport medium
for radioactivity. This water moves upward through the waste and enters an
aquifer near the surface. The radionuclides which enter this aquifer
eventually reach irrigation or drinking wells or surface streams and are
consumed.
The major modifications found in PRESTO-EPA-DEEP include modification
of the groundwater transport submodel, and the bypassing of some submodels
which are not applicable. These bypasses include the infiltration model in
the case of all the deep disposal alternatives and the air transport
submodels in the case of deep disposal in a mined cavity.
Only the naturally-occurring pathways such as natural groundwater and
surface water flows and atmospheric air transport have been considered.
Intrusion scenarios such as accidental drilling, geological faulting, and
the failure of the access shaft sealing, etc., are probabilistic in nature
and are incompatible with the PRESTO-EPA models. However, a reinterpreta-
tion of certain PRESTO-EPA-DEEP variables will allow a consideration of
such events.
1.3 OUTLINE OF DOCUMENTATION AND USERS MANUAL
In this chapter PRESTO-EPA-POP and PRESTO-EPA-DEEP are briefly
described. Chapter 2 summarizes the development of the algorithms unique
1-7
-------
to PRESTO-EPA-CPG. Chapter 3 is a summary of the modifications to and
changes in the code as a result of the CPG modifications. A description of
the input requirements of PRESTO-EPA-CPG is given in Chapter 4. In Chapter 5
a detailed description of the code output is given. Finally, in Chapter 6
a sample problem is discussed, input data sets are described and the JCL
statements for running the problems are given. The appendices include a
source listing of PRESTO-EPA-CPG in Appendix A and a listing of the output
from the sample problem in Appendix B.
1-8
-------
2. DOSE METHODOLOGY UTILIZED IN PRESTO-EPA-CPG
This chapter contains the calculational procedure for obtaining the
maximum annual dose to a member of the CPG. In the following section the
DARTAB dose and risk methodologies used in PRESTO-EPA-CPG and earlier
versions of PRESTO-EPA-POP are described. The dose formulation given in
Section 2.1 is then used in Section 2.2 to develop the concept of whole
body dose equivalent factors or dose factors as utilized in PRESTO-EPA-CPG.
Finally the procedure for determining the maximum annual dose and the year
in which it occurs is given in Section 2.3.
2.1 DARTAB CALCULATIONS
In the MAIN program of PRESTO-EPA-CPG radionuclide concentrations in
air, surface water, groundwater and on the ground surface, and annual
ingestion and inhalation rates are calculated. These concentrations and
rates are utilized by the DARTAB subroutine of PRESTO-EPA-CPG to generate
tables of radiological dose commitment and resulting health risk. This
section describes the mathematical calculations made within DARTAB by
PRESTO-EPA-CPG. For the most part, the equations and text have been taken
from the DARTAB documentation report (Be81) Section 2.3 entitled, "General
Equations", and the PRESTO-EPA-POP documentation (EPA83, EPA87a). As a
maximum annual dose to a member of the CPG is being sought, only the
selected individual calculations described in those documents are
considered.
The annual committed dose to an individual at location k for the 1th
organ, ith nuclide, and jth exposure pathway is given by
2-1
-------
0,,, (10 •£!!!$£!£ (2-1,
where Kj contains any numerical factors introduced by the units of E-jj(k),
the exposure to the ith radionuclide in the jth pathway. DF-jji is the dose
conversion factor of the ith radionuclide, the jth pathway and the 1th
organ; and P(k) is the exposed population at location k. For PRESTO-EPA-CPG,
P(k) = 1. All E.JJ and DF-jj] for various nuclides and organs have
consistent units. Table 2-1 lists units of DF- and EJJ for each of the
four exposure pathways for selected individual dose calculations. Dose
rates, D^-] , are given in mrad/y.
The dose rates may be expressed in a number of different combinations.
The doses can be summed directly over pathways:
= E 0^(10 (2-2)
j
or nuclides:
(2-3)
The total dose to the 1th organ at location k, D-j(k), is then
=EEDij1(k) (2-4)
j i
The dose equivalent H (mrem) for the 1th organ is given as
H^k) = RBEdow-LETJDjCfc.low-LET) - REB(high-LET)D] (k,high-LET) (2-5)
where RBE denotes the relative biological effect factor. A value for this
factor is defined for each organ.
2-2
-------
TABLE 2-1
UNITS OF EXPOSURE FACTOR E.J ,- AND DOSE RATE FACTOR
FOR SELECTED INDIVIDUAL DOSE RATE CALCULATIONS BY DARTAB
Pathway Eij PFij1
Ingestion (person-pCi)/yr (mrad/yr)/(pCi/yr)
t
Inhalation (person-pCi)/yr (mrad/yr)/(pCi/yr)
Air Immersion (person-pCi)/m3 (mrad/yr)/(pCi/m3)
Ground Surface Exposure (person-pCi)/m2 (mrad/yr)/(pCi/m2)
2-3
-------
To combine dose rates to different organs a weighted sum is used
(2-6)
1
where W1 are weighting factors for the various organ doses supplied by the
user and where
Elrf! = 1 (2-7)
1
Weighting factors for the various organs were supplied by EPA for input
into DARTAB. The International Commission on Radiological Protection
(ICRP79) has proposed a similar approach to adding organ doses.
The health risk and risk equialent can be computed for the year of the
maximum individual dose and any other selected year in a manner similar to
the dose calculations. The health risk or individual risk of premature
death to an individual at location k for the 1th cancer site, ith
radionuclide, and jth exposure pathway is given by:
R^dO = KjEij(k)RFijl/P(k) (2-8)
where K^ again serves to reconcile the units of E,-,-(k) and RF,-.--). The
J ' J *
total individual risk represented by the exposure and intakes from all
radionuclides through all pathways is given as:
R(k) = EKi LE-^k) ERFiil/P(k) (2-9)
j i J 1 J
and the health risk can be summed over pathways, radionuclides, or cancers.
2-4
-------
2.2 DOSE FACTORS
Early experience with PRESTO-EPA and DARTAB codes suggested that while
it was possible to utilize DARTAB every year to generate a yearly dose for
that year the commitment in computer time would be prohibitive. Thus, a
dose factor approach was formulated in which nuclide-specific dose
conversion factors are generated by a single DARTAB call early in program
execution.
The starting point is the organ weighted dose rate given by
Equation 2-6. Substitution of Equation 2-1 yields
E^Kj Eij DF^ (2.io)
1
if a population of one is assumed. Grouping the various terms in this
expression and carrying the exposure outside the summation gives
Di:j -Eu-EH^jDFu! (2-11)
It is apparent that the dose commitment due to nuclide i via pathway j is
simply proportional to the exposure from that nuclide resulting from its
intake via the pathway. The summation, Wi^-DF.,-^ , is composed of constants
W-) , K- and DF.,-,-] and hence it is also a constant, hereafter referred to as
the nuclide dose conversion factor. It can be seen from Equation 2-11 that
the dose factor W-jK-DF^j-i is also the dose resulting from a unit exposure
(or intake) of nuclide i by pathway j. This suggests the simple
calculation of the dose factors using DARTAB set up to evaluate selected
individual and unit nuclide-pathway exposures in which the arrays PCONl(I),
PCON2(I), PCON3(I) and PCON4(I) are set equal to 1.0 and DARTAB is called
2-5
-------
only once. These factors can then be saved and used along with the
PRESTO-EPA-CPG determined exposures for a rapid calculation of the total
dose as summed over all nuclides, pathways and organs:
Dose £-EElj Ew^jDFiji (2-12)
i J 1
2.3 DETERMINATION OF THE MAXIMUM ANNUAL DOSE
The determination of the maximum annual dose commitment to a member of
the CPG is simple once the nuclide dose conversion factors are known. The
PRESTO-EPA-CPG methodology determines the nuclide-pathway exposure for each
year. These exposures are multiplied by the appropriate dose factors and
summed over all nuclides and pathways per Equation 2-12. The resulting
value is compared with the current maximum. If the dose for the year under
consideration is greater than the current maximum it becomes the new
maximum. In this case the year of occurrence and the nucli de-pathway
exposure data are also saved, replacing the old values. The nuclide-
pathway exposure data are used by DARTAB to generate detailed health
impact data for the year of maximum annual dose.
2-6
-------
3. MODIFICATIONS FOR PRESTO-EPA-CPG
In this chapter modifications of the PRESTO-EPA-POP methodology
incorporated into the PRESTO-EPA-CPG code are summarized. The MAIN program
controls the overall flow of processing in the PRESTO-EPA programs and most
of the PRESTO-EPA-CPG changes are confined to that section of the code.
Major changes incorporated for the PRESTO-EPA-CPG version of PRESTO-EPA
include the determination of nuclide dose conversion factors via a call to
a truncated DARTAB sequence, a multi-wasteform leaching model handled by
the MAIN program and the LEACH subroutine in tandem, the determination of
yearly and maximum annual dose commitments, the output of interim organ
dose summary tables and extended options on DARTAB usage. The logic flow
of the MAIN program of PRESTO-EPA-CPG with an emphasis on the
PRESTO-EPA-CPG modifications is shown in Figure 3-1.
In addition to modifications in the MAIN program several of the
PRESTO-EPA-CPG extensions and modifications noted above required the
imposition of additional controls on the DARTAB sequence. This was
implemented via the introduction of an internally specified control
parameter, IFLAG.
The following section briefly describes the manner in which concurrent
multiple waste form leaching is modeled in PRESTO-EPA-CPG. The last
section describes both the various dose options incorporated into
PRESTO-EPA-CPG and those changes in the code which affect the options.
Finally, it should be noted that, like PRESTO-EPA-DEEP, PRESTO-EPA-CPG has
the capability to run simulations for periods of time up to 10,000 years.
3-1
-------
i
ro
MITIAUZATION
INPUT SITE DATA
INPUT DARTAB
DATA VIA DARTAB
NORMALIZED
ATMOSPHERIC
TRANSPORT
COVER INFILTRATION
GROUNDWATER
TRANSPORT
PARAMETERS
CALCULATE
DOSE FACTORS
VIA DARTAB
DECREMENT COVER
ROOT MFM.TRATION
TRENCH WATER
, BALANCE
.FAILURE
I
DECAY INVENTORY
SOIL CONCENTRATIONS'
'SoS
LOSSES DUE
TO EROSION
LEACH NON-ABSORBING:-.
WASTES I
ADJUST ABSORBING
WASTE INVENTORY
LEACH ABSORBING
WASTE VIA LEACH
ADJUST 'INVENTORIES
COMPUTE SOIL
CONCENTRATIONS
mmmmttot&m
rfm'-m&x&ww.'---:
E
4
31:$?;
£*::-: :•.-•-: ''
•1
LEACH VIA
CALL TO
LEACH
ENVIRONMENTAL
CONCENTRATIONS
ARRAYS. PCQN1, ~
ANNUAL DOSE
VIA DOSE FACTORS
•AVi DOK.
YEAR. ENVIRONMENTAL
CONCENTRATION
ARRAYS
OUTPUT DOSE SUM-
MARY FOR SECONDARY
TIME VIA DARTAB
OUTPUT TRANSPORT
RESULTS AND NUCLIDE
DOSE SUMMARY
OUTPUT MAXIMUM
DOSE. YEAR
OUTPUT UPTAKE/
CONCENTRATION*
PASSED TO DARTAB
OUTPUT NUCLDE DOSE
SUMMARY TABLE
SETUP AVERAGE
CONCENTRATIONS
EXECUTIVE DARTAB
FULL DARTAB
OUTPUT FOR
MAXIMUM YEAR
FIGURE 3-1. tOGJC FLOW IN THE PRESTO-EPA-CPG MAIN PROGRAM.
-------
3.1 LEACHING MODIFICATIONS
Shallow land disposal facilities receiving wastes from numerous
sources contain different wasteforms exhibiting varying leach behavior.
Since the PRESTO-EPA code methodology steps through the simulation in
yearly increments and since the dispersion correction is a separate
component of the groundwater transport, the implementation of multiple
wasteform leaching is straightforward.
PRESTO-EPA-CPG accommodates five classes of wasteforms: absorbing
materials, activated metals, trash, solidified wastes, and incinerated-
solidified wastes. The leaching of radionuclides from absorbing materials
is modeled as a sorption equilibrium process characterized by nuclide
specific sorption coefficients or K^'s. These coefficients also depend on
the sorbing phase, i.e., waste, and when more than one such material is
present a single effective Kd based on simple multiphase equilibrium
considerations is used for each nuclide. Leaching from activated metals,
solidified wastes, and incinerated-solidified wastes is modeled using leach
fractions with each of the three wasteforms having its own characteristic,
nuclide independent leach fraction. In PRESTO-EPA-CPG the trash wastes are
classified as absorbing materials and/or materials whose leach behavior is
best described by a leach fraction. The fractional split between these two
forms is described by an input parameter, FTRAB.
In PRESTO-EPA-CPG an inventory is input for each of the five waste
classes. In any given year the leaching of each nuclide is assumed to
occur in two stages. First the activated metals, the solidified wastes,
the incinerated-solidified wastes, and that fraction of trash which is not
absorbing material are assumed to leach in accordance with their respective
3-3
-------
leach fractions. The total amount (curies) of the nuclide leached from
these wastes is added to the absorbing material inventory present at the
beginning of that year and this new absorbing material inventory is parti-
tioned between the liquid phase and the adsorbing phase per the Kd
relationship. As in other PRESTO-EPA codes, a solubility check is applied
so that leaching never results in concentrations exceeding input
solubilities.
The concurrent leaching of several waste form is applicable only to
shallow disposal facilities. The deep disposal scenarios exclusively use
either a Kd formulation (deep well injection) or a leach fraction
formulation (hydrofracture and mined deep geologic disposal).
3.2 DOSE CALCULATION MODIFICATIONS
Options for dose calculations and output that have been implemented in
PRESTO-EPA-CPG include the determination of nuclide dose conversion factors
and the subsequent determination of a yearly dose commitment using these
factors, the output of interim organ dose summaries, the determination of
the maximum annual individual dose and the year of its occurrence, a full
DARTAB output for the year of maximum dose, the output of a nuclide dose
summary for a user-specified year, and full DARTAB calculations based on
averaged uptakes and concentrations. Three options required both
modifications to the MAIN program and finer control of program flow within
DARTAB and its subroutines. The central role of the new IFLAG parameter is
evident in Figure 3-2 where the control modifications in PRESTO-EPA-CPG are
shown. The value of IFLAG upon entry into DARTAB dictates which
calculations are to be done. The value of IFLAG is determined by the MAIN
3-4
-------
I ENTRY FROM MAM
|DARTAB|
(io»ooni>
•"^V™ »- <^IrC^X Y" ^
^ ^y
h r
CALCULATE
AND OUTPUT
DOSE RATE
BY ORGAN
|SUMMRY|
^^^ CONTWUE .**>. CALCULATE ^^^ COH'
>^ ."SuTv -W^'o«V^r.ETA7E;->-!£^ •-
^^X^ SEQUENCE X / BY NUCLIDE ^^-^ 9Eal
Its ICO
\ \ \
| - _
P
uj^s^
w-iS *" ^^
NO
f
»OM^>
NO
'
TE AND
RISK AND
WALENT
nA
AND
O MAIN )
MTALJZE PREPARE
^ AND SET UP ^ "LET AND
~" CONTROL "-LET DOSE
VAfttABLES FACTORS
y^ «A«. IL»T COMBINE HL6
*^V!S' 1 o°»e FACTORS ^ ,.° „"
^"^ M FACTORS
1
PATHWAY, j NUCLIDE 1 ORGAN LOOP . ,
SETUP CONTROL
IPREPDR r^A
DOSEAND 1
GENETIC DOS£
FACTORS
A
|— *<«0 CADOCSUELSTB
^Y
NORMAL
PREPOR
SEQUENCE 1
TNO
| COMBINE HLET
-*/«0^ 1 n?ui^fToo» -* OINETIC DOI
^ rAc'TOR. '»««"•
|MULT|
a-^N> t^ITLflOr'lN "° > ^1°) 1 DRTAB 1
YES "X^ \/^ ^"^>x. j/'' ^I*' 1 • ' • • [
[YES 1
NORMAL
OUTPUT
OF TABLES
SAVE DOSE
FACTORS IN
OCFCTR ARRAY
* i
FIGURE 3-2. USE OF IFLAG IN DARTAB AND ASSOCIATED SUBROUTINES.
3-5
-------
program and user input is not required. The determination of nuclide dose
conversion factors is accomplished in PRESTO-EPA-CPG by calculating the
nuclide dose commitments arising from unit uptake (ingestion and
inhalation) and unit area and volume concentration (surface gamma and
immersion gamma) arrays. Early in the MAIN program these arrays, PCONl(I),
PCON2(I), PCON3(I), and PCON4(I), where I is the index denoting nuclide,
are set to unity and a truncated DARTAB sequence is executed (IFLAG = 1)
with the resulting nuclide dose conversion factors being stored in the
DCFCTR array.
The nuclide dose conversion factors are used in MAIN to determine the
dose commitment each year (see Figure 3-1 and Chapter 2). As indicated
earlier the dose commitment attributed to a given nuclide and pathway is
the product of the exposure and the nuclide dose conversion factor. The
exposure is the product of the exposed population and the appropriate
uptake/concentration array (PCON1, etc.). For the maximum annual
individual dose the population is one. Thus, the dose commitment is the
product of the uptake/concentration and the dose factor with the implicit
multiplication by that population. Summation over all nuclides and
pathways gives the total dose commitment for that year. As PRESTO-EPA-CPG
steps through the simulation year by year the determination of the maximum
annual dose commitment and the year in which it occurs is accomplished by
comparing the dose commitment for the current year with the current maximum
annual dose commitment. When the former equals or exceeds the latter it
becomes the new maximum, the current year is the new maximum year and the
current uptake/concentration arrays are saved for later use in the
program.
3-6
-------
In PRESTO-EPA-CPG organ dose summary tables are output along with
the annual transport summaries for the interim times as specified by the
user input time interval IDELT. This occurs near the end of the time loop
via a CALL to DARTAB, and ultimately the subroutine SUMMRY with IFLAG set
equal to 2. This action is independent of any user input.
After the main time loop PRESTO-EPA-CPG permits either a shortened
output or full DARTAB output of the individual dose commitment calculations
based on exposures occurring in the year of the maximum annual dose
commitment. The shortened output (IFLAG = 3) is the nuclide dose summary
table calculated and output by the SUMMRY subroutine. A complete set of
DARTAB calculations based on exposures in the maximum year and the
resulting output are executed when IFLAG is set equal to 4. The user input
population, POP, is used as a flag for setting IFLAG. When POP is 0 the
abbreviated output occurs, i.e., IFLAG equals 3. When POP is equal to or
greater than 1 the full DARTAB sequence is used, i.e., IFLAG equals 4.
When POP equals 1 the program execution stops after the output for the
maximum year. For a value of POP greater than 1, execution continues with
average uptake concentrations being determined and a full set of DARTAB
calculations are subsequently executed.
3-7
-------
4. INPUT TO PRESTO-EPA-CPG
There are four sets of input data for PRESTO-EPA-CPG analysis. They
are: 1) site specific and radionuclide data used to calculate radionuclide
concentrations by the environmental transport section of the code; 2) name-
list format of data for DARTAB calculations of tabular output; 3) hydrogeo-
logic and meteorologic data for subroutine INFIL; and 4) dosimetric and
health effects data used by the DARTAB submodel. Preparation of the first
three data sets will be explained in the following sections. The fourth
data set was created by the program RADRISK (Du80). This data file
contains reference dosimetric information and is not usually modified for a
specific run. The RADRISK reference (Du80) should be consulted for
information on changing the data in this file.
These four input data sets are grouped into three separate disk files,
each assigned a unique FORTRAN input unit number. The data sets are
organized as follows:
• Data sets (1) and (2) form one file with input unit 5
t Data set (3) is assigned input unit 4
• Data set (4) is assigned to unit 25.
4.1 SITE SPECIFIC AND RADIONUCLIDE DATA
These data are used in the transport section of PRESTO-EPA-CPG. The
data describe physical and hydrogeological characteristics of the facility
and site, meteorological data for atmospheric dispersion and deposition,
data for the biological pathways and the radionuclide characteristics and
4-1
-------
inventories. This data set also contains disposal technology and exposure
scenario specific data allowing for detailed site and exposure scenario
descriptions.
The site specific data set consists of alphanumeric data. It is read
in standard FORTRAN formatted style by subroutine SOURCE. Table 4-1
presents a description of the input variables, format, and card sequence
for this data set.
4-2
-------
TABLE 4-1
DESCRIPTION OF PRESTO-EPA-CPG ENVIRONMENTAL AND NUCLIDE INPUT
Card Variable (Input Format)
Description
CARD 1 Run Identification (20A4)
TITLE
- Identifies the run. Up to 80 characters
are allowed.
CARD 2 Location and Site Description (20A4)
LOCATE
- Location of the disposal site.
characters are allowed.
Up to 80
CARD 3 Time, Nuclides, and Farming Control Parameters (1615)
MAXYR
NONCLD
LEAOPT
NYR1, NYR2
IOPVWV
- The number of years for which the simula-
tion will run.
- The number of radionuclides which are used
in the simulation. Must be 40 or less.
- The leaching option. Radionuclides will be
removed from trench in different manners
depending on the value of LEAOPT. Must be
one of the following calculation methods.
(Option 1 through 5.)
Option Leach Calculation Method
1 Total contact, distribution coeffi-
cient
2 Immersed fracton, distribution co-
efficient
3 Total contact, solubility
4 Immersed fraction, solubility
5 Release fraction
- Beginning and ending years of trench cap
failure. Both values must be less than or
equal to MAXYR. NYR2 must be greater than
or equal to NYR1.
- Option for direct farming in the waste.
< 0 no on-site farming
= 0 on-site farming
= 1 on-site farming with vegetation decay
4-3
-------
TABLE 4-1
(Continued)
Card Variable (Input Format)
Description
IOPSAT
IPRT1, IPRT2,
IDELT
IRRES1, IRRES2
LIND
- Flag for area source calculation. If
IOPSAT=0 a point source is assumed for the
groundwater calculations. If IOPSAT>0, the
area source is approximated by a series of
nine point sources.
- Control parameters. An annual summary
table will be produced for each year that
is a multiple of IDELT and falls between
the range of IPRT1 and IPRT2.
- Beginning and ending year for the mechani-
cal suspension of contaminated soil into
atmosphere. Used in the farming scenario.
- Option parameter passed to DARTAB to cal-
culate health effects. If LIND = 0 then
DARTAB computes concentrations and rates
for maximally -exposed individuals. If
LIND = 1 then general population concen-
trations are computed.
IAVG1, IAVG2
IDISP
Beginning and ending years for
nuclide concentration values.
averaging
- Mode of disposal. IDISP - 1,2,3, or 4 for
shallow land burial, deep well injection,
hydrofracture, and deep geologic disposal,
respectively.
CARD 4 External Exposures and Time Duration Parameters (615)
IVAP - Not used.
IBSMT
IAQSTF
The beginning year for the basement correc-
tion factor for surface gamma exposure
calculations made by DARTAB. If IBSMT > 0
correction factor is calculated beginning
in that year. If IBSMT = -1 then no
correction is calculated.
Control parameter for aquifer to stream
flow. A blank field defaults to calcula-
tions under the assumption that the flow
takes place, otherwise the field should
contain a nonzero integer.
4-4
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
IRST - Number of years of restricted site use
after site closure.
ITWO - Secondary year for which an organ dose
summary table will be output.
INSITE - Flag for farming on the was*te site.
CARD 5 Water Infiltration and Use (8F10.0)
PCT1, PCT2 - The fraction of the trench cap that is
assumed to fail between the years NYR1 and
NYR2.
WWATL - Fraction of irrigation water supplied by
contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
WWATA - Fraction of animal drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
WWATH - Fraction of human drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
SWATL - Fraction of irrigation water supplied by
contaminated water from stream (1.0 if all
water comes from stream, 0.0 if none).
SWATA - Fraction of animal drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
SWATH - Fraction of human drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
CARDS Comments and References (20A4)
6-12
- These cards are available for comments and
references pertaining to data set. Up to
80 characters allowed in each of six cards.
4-5
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
CARD 13 LLW Site Characteristics (8F10.0)
TAREA - The total combined radioactive waste
surface area for the facility being
simulated (m2). Must be nonzero.
TDEPTH - Nominal depth (m) of operating trench in
the shallow disposal scenario. Includes
cover thickness.
OVER - Thickness of trench overburden (m). This
must be equal to YGMAX of INFIL.
PORT - Porosity of material within trench. Must
be nonzero.
DENCON - Mean density of the waste materials in the
trench (g/cm^).
RELFAC - Not used. Set equal to 1.0.
CPRJ - Complement to one for the fraction of
underground water flowing to the stream
(0.0 means 100 percent to the regional
basin river).
SINFL - Annual infiltration rate for the noncap
portions of the site and for local farm-
land (m/yr).
CARD 14 Groundwater Saturation (2F10.0)
SSAT - Fraction of water saturation in the ground
formation beneath the buried waste. If
SSAT = 0 or if left blank, the fraction of
saturation is calculated internally by the
code.
RESAT - Fraction of residual saturation.
CARD 15 Site Operations and Waste Containers (6F10.0)
PERMT - Trench permeability (m/yr).
FACTIM - Number of years of active operation of the
waste site.
4-6
-------
TABLE 4-1
(Continued)
Card Variable (Input Format)
Description
TMN
- Number of years of active maintenance after
site closure. No nuclide migration is
initiated during the maintenance period,
although radioactive decay takes place.
CFT1
DCFT
FGAM
- Number of years
begin failing.
before waste containers
- Number of years after CFT1 that containers
fail completely. At time CFT1+DCFT all
containers have failed.
- Dimensionless factor characterizing the
intensity and duration of gamma exposure
from the basement scenario.
CARD 16 Transport Parameters (8F10.0)
DTRAQ
DWELL
GWV
AQTHK
AQDISP
PORA
PORV
PERMV
- The distance from the bottom of the trench
to the nominal depth of the aquifer (m).
DTRAQ + TDEPTH should equal the aquifer
depth below the surface.
- Distance from the center of the trench to
the well used for irrigation and drinking.
Must be nonzero (m).
- Velocity of the groundwater in the aquifer.
Must be nonzero (m/yr).
- Thickness of the aquifer at the location of
the well (m). This is used to calculate
the volume of water in which the available
radionuclides are diluted. Must be nonzero.
- Dispersion angle of the pollutant plume in
the aquifer (radians). Used with AQTHK to
calculate dilution volume. Must be in
radians.
- Aquifer porosity.
- Sub-trench porosity.
- Sub-trench permeability (m/yr).
4-7
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
CARD 17 Groundwater Parameters (6F10.0)
VWV - Vertical water velocity (m/yr). If a value
of 0.0 is input, VWV is calculated internally.
HGRAD - Hydraulic gradient (dimensionless). If a
value of 0.0 is input, HGRAD is assigned
the default value 1.0.
FRACB - Fraction of waste impacted by chemical
exchange leaching (0. <_ FRACB j^ 1.0). The
default value is 1.0.
ALV - Dispersivity in the confining stratum (m),
i.e., the region beneath the trench (IDISP
= 1) or the aquiclude (IDISP = 2,3, or 4).
The default value is 0.3 m.
ALH - Dispersivity in the aquifer (m). The
default value is 0.3 m.
BDENV - Density of the confining stratum (g/cm3).
CARD 18 Atmospheric Parameters (7F10.0)
H - Atmospheric source height of radionuclides
(m). One meter is chosen because most re-
suspension rate measurements are expressed
for that height.
VG - Settling velocity of contaminated soil
particles due to gravity (m/s).
U - Annual average wind speed (m/s) in the di-
rection of interest. For population calcul-
ations this is the wind speed toward the
population centroid. Must be nonzero.
VD - Deposition velocity (m/s). Nominal generic
value is 0.01 m/s.
XG - Distance (m) from source (trench) to
population or individual of interest. If
XG is less than PD, the adjacent farming
option will be triggered.
HLID - Height of the inversion layer or lid (m).
ROUGH - Hosker's roughness parameter (m).
4-8
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
CARD 19 Atmospheric Parameters (7F10.0)
FTWIND - Fraction of the time the wind blows toward
the population or individual of interest.
CHIQ - User specified atmospheric transport para-
meter which may be calculated by an external
atmospheric dispersion code (s/m3). A non-
zero value will override any calculation of
atmospheric dispersion performed within code.
RE1, RE2, RES - Factors (including algebraic signs) used in
the resuspension rate equation.
RR - During the period between years IRRES1 and
IRRES2, the resuspension rate RR (sec-1)
will be included as a source term in sub-
routine AIRTRM. For on-site reclaimer, RR
is the dust loading of the inhaled air
(gm/m3).
FTMECH - The rate of resuspension, RR, is modified
by this fraction, which has a value between
zero and unity.
CARD 20 Atmospheric Stability (215)
IT - Indicator variable for the type of atmos-
pheric stability class formation. Suggested
formation is Pasquill-Gifford, IT = 1.
IS - Stability category indicator. Values of
1 to 6 correspond to stability categories
of A-F. A single value represents the most
common stability category from nearest
meteorology station to site of interest.
CARD 21 Precipitation Parameters (6F10.0)
RAINF - The rainfall factor (R/yr).
ERODF - The soil-credibility factor has units of
tons/acre-R, where R = RAINF given above.
STPLNG - The slope steepness-length factor.
COVER - The crop management factor.
CONTRL - The erosion control practices factor.
4-9
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
SEDELR - The sediment delivery ratio. This ratio is
intended to apply to fouling of waterways
from construction activity.
CARD 22 Soil and Surface Water (5F10.0)
PORS - Porosity of the surface soil. Must be
nonzero.
BDENS - Bulk density of the soil (g/cm3). Must be
nonzero.
STFLOW - Annual flow rate of the nearest stream
(m3/yr). Must be nonzero.
EXTENT - The cross slope extent of the surface region
contaminated by operational spillage (m).
Must be nonzero.
ADEPTH - The active depth of soil in the surface-
contaminated region. Used for the calcula-
tion of radionuclide concentration in both
surface soil and surface water. Must be
nonzero.
CARD 23 Surface Water Runoff (4F10.0)
PD - Distance from the trench to nearest stream
(m). Must be nonzero. If PD is greater
than XG, the adjacent farming option will
be triggered.
PPN - Total annual precipitation (m). Calculated
internally if SEEP = 0 and IDISP = 1.
RUNOFF - Fraction of the annual precipitation that
runs off.
SEEP - Fraction of the total annual precipitation
(PPN) that ultimately becomes deep infiltra-
tion. This variable is zero unless one is
conducting parametric studies for the
shallow land burial option.
CARD 24 Agricultural Data (7F10.0)
Yl, Y2 - Agricultural productivity for pasture grass
and other consumed vegetation respectively
(kg/m2).
4-10
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
PP - Surface density of soil (kg/m2). Assumes a
15 cm plow depth. For farming scenario,
this value should be in agreement with the
value of BDENS, CARD 20. Must be nonzero.
XAMBWE - The weathering removal decay constant for
atmospheric deposition onto foodcrops
(hr-1).
TA - Not used.
TE1, TE2 - Period of time that pasture grass or crops
and leafy vegetables, respectively, are
exposed to contaminated air during each
growing season (hr).
CARD 25 Agricultural Delay Times and Fractions (8F10.0)
TH1 - TH6 - These six variables represent the delay
time between harvest and consumption by
animal or man of pasture grass, stored
feed, leafy vegetables for maximum
individual doses, produce for maximum
individual doses; and leafy vegetables and
produce for general population exposures,
respectively (hr).
FP - Fraction of each year that animals graze on
pasture grass.
FS - Fraction of an animal's daily feed that is
fresh grass for the period of time animals
are in pasture.
CARD 26 Animal Feed Data (7F10.0)
QFC - The amount of feed consumed daily by cattle
(kg).
QFG - The amount of feed consumed daily by dairy
goats (kg).
TF1, TF2 - The transport time (hr) from animal feed
into milk and into the receptor human for
the maximum individual and the general
population exposures, respectively.
4-11
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
TS - Length of time between slaughter of animals
and human consumption of the resultant meat
(hr).
ABSH - The absolute humidity of the atmosphere
(g/m^). Used for specific activity food-
chain calculations for tritium concentra-
tions in foodstuffs. Must be nonzero.
P14 - The fractional equilibrium ratio for C-14.
CARD 27 Plant Root Parameters (2F10.0)
XRTM - Maximum root depth for on-site farming
scenario (m).
RTGR - Root growth rate constant (yr~l).
CARD 28 Irrigation Water Data (6F10.0)
TW - Not used.
FI - Fraction of the year that crops are
irrigated.
WIRATE - Irrigation rate (L/m2-hr). Application time
is set equivalent to the number of frost-
free days for the area.
QCW, QGW, QBW - Values for the amount of water (L/d) con-
sumed by milk cows, milk goats, and beef
cattle, respectively.
CARD 29 Human Food Uptake (8F10.0)
ULEAFY - The human uptake of leafy vegetables (kg/yr).
UPROD - The human uptake of produce (kg/yr).
UCMILK - The human uptake of cow milk (L/yr).
UGMILK - The human uptake of goat milk (L/yr).
UMEAT - The human uptake of meat (kg/yr).
UWAT - The human uptake of drinking water (L/yr).
4-12
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
UAIR - The inhalation rate (m3/yr).
POP - Local population.
CARD 30 Release Fractions (7F10.0)
RELFRC(l) - The release fraction for the absorbing
waste. This array elements is currently
not used and is set equal to 0.0.
RELFRC(2) - The release fraction for the activated
metals.
RELFRC(3) - The release fraction for the trash.
RELFRC(4) - The release fraction for the solidified
waste.
RELFRC(5) - The release fraction for the incinerated/
solidified waste.
FTRAB - The fraction of trash waste that will be
leached as absorbing material. The
complement of trash waste will be subject
to leaching by a user specified leaching
rate.
FRTRSH - The fraction of waste that is not in water-
tight containers.
CARD 31 Spillage Fractions (5F10.0)
SPLAW - Spillage fraction for absorbing waste
(fraction of CIAW(I)).
SPLAM - Spillage fraction for activated metals
(fraction of CIAM(I)).
SPLTR - Spillage fraction for trash (fraction of
CITR(I)).
SPLSW - Spillage fraction for solidified waste
(fraction of CISW(I)).
SPLIS - Spillage fraction for incinerated solidified
waste (fraction of CIIS(I)).
CARD 32 Repeat this card for each nuclide.
4-13
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
CARD 32 Nuclide Specific Data (A8, Tl, 8A1, 2X, 5F10.0)
NUCLID(I) -The name of the radionuclide used in the
code. Must be left justified and with no
embedded blanks and with a hyphen separat-
ing the alphameric for the element and the
numeric for the isotope. The names used
must agree with the conventions used in
RADRISK and DARTAB.
NUCL(I.K), K=l,8 - Not used.
CIAW(I) - Amount of the radionuclide in the absorbing
waste (Ci).
CIAM(I) - Amount of the radionuclide in the activated
metals (Ci).
CITR(I) - Amount of the radionuclide in the trash
(Ci).
CISW(I) - Amount of the radionuclide in the solidified
waste (Ci).
CIIS(I) - Amount of the radionuclide in the incin-
erated/solidified waste (Ci).
CARD 33 Repeat this card for each nuclide.
CARD 33 Nuclide Specific Data (A8, Tl, 8A1, 2X, 7F10.0)
NUCLID(I) - Radionuclide name.
NUCL(I.K), K=l,8 - Not used.
DUMMY1 - Not used.
DUMMY2 - Not used.
STAM(I) -The amount of radioactivity in the stream
nearest the site at the beginning of the
simulation (Ci).
ATAM(I) - The amount of radioactivity of each radio-
nuclide suspended in the air directly above
the trench at the beginning of the simula-
tion (Ci).
4-14
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
DECAY(I) - The radiological decay constant (yr-1). The
constant is equal to 0.6931 divided by the
radiological half-life in years.
SOL(I) - The solubility of the radionuclide stored
in the trench (mg/1). Used with leaching
options 3 and 4.
CON(I) - Conversion factor for health effects for
regional population (health effects/Ci
released).
CARD 34 Nuclide Transport Parameters (A8, 2X, 4F10.0)
NU - Radionuclide name (same as on Card 32).
XKD(l.I) - Surface Kd of radionuclide I (ml/g).
XKD(2,I) - Waste Kd of radionuclide I (ml/g).
XKD(3,I) - Vertical zone Kd of radionuclide I (ml/g).
XKD(4,I) - Aquifer Kd of radionuclide I (ml/g).
CARD 35 Agricultural Data for Mud ides (A8, 2X, 7F10.0)
NC - Radionuclide name (same as Card 32).
RA(I) - Radionuclide retention fraction for air.
RW(I) - Radionuclide retention fraction for
irrigation.
BV(I) -Radionuclide soil-to-plant uptake factor
for vegetative parts.
BR(I) - Radionuclide soil-to-plant uptake factor
for grain.
FMC(I) - Radionuclide forage-to-milk transfer factor
for cows (d/1).
FMG(I) - Radionuclide forage-to-milk transfer factor
for goats (d/1).
FF(I) - Radionuclide forage-to-beef transfer factor
(d/kg).
4-15
-------
4.2 DARTAB DATA
This data set provides the user options for processing the exposure
data, dosimetric data, and tabulations of output. This data set is read
from input unit 5 and must follow directly after the data set described in
Table 4-1.
The first card of the DARTAB data set is a title card, read in
standard formatted FORTRAN input syntax. The remaining data are read using
the FORTRAN namelist format. The end of a namelist group is designated by
&END. An example of this input is given in the sample problem data set
listed in Appendix B. Table 4-2 describes the variables used in the DARTAB
data set.
4-16
-------
TABLE 4-2
DESCRIPTION OF NAMELIST INPUT FOR SUBROUTINE DARTAB
Namelist
Group
INPUT
Variable
ILOC
JLOC
PLOC
A6EX
ILET
Description
Direction index of the exposure array to
use for individual tables.
Distance index
for individual
of the exposure
tables.
array to use
ILOC, JLOC. These are the directions of
the exposure array that is used to locate
an individual for which a dose or risk table
is printed. AIRDOS-EPA, the code for which
DARTAB was originally written, supplied a
two-dimensional exposure array to DARTAB.
PRESTO-EPA-CPG, however, supplies only a
mean exposure value for each of air con-
centration, ground surface concentration,
collective inhalation rate and collective
ingestion rate, for only one location.
These values are the first entry of the
array; hence, both indices should be
specified as 1.
Percent of
location
individual
total risks to use
for the exposure
tables.
in choosing
array for
This variable is an indirect indicator of
the location. Because PRESTO-EPA-CPG does
not provide a two-dimensional exposure
array to DARTAB, PLOC should be set to 100
or omitted.
Average human life expectancy
(Default value = 70.7565 years).
in years
Array dimensioned to 2. ILET = 1 indicates
combined high and low LET tables. ILET = 2
indicates separate tables. ILET(l) refers
to dose rate tables. ILET(2) refers to
health risk tables.
4-17
-------
TABLE 4-2
(Continued)
Namel1st
Group
Variable
DTABLE
RTABLE
FTABLE
Description
For LLW disposal site simulations with a
mixture of nuclides set ILET=1,1 for a com-
bined LET table for both dose and risk
tables. For the intrusion scenario, where
external exposures are of greater impor-
tance the user may wish to set ILET=2,2.
These parameters indicate which tables are
to be output for dose rates, health risks,
and risk equivalents. Each is dimensioned
by 7 corresponding to table type shown
bel ow.
Type
1-a
2-b
3-c
Column
Row
Label
Organs or
Cancers
Organs or
Cancers
Organs or
Cancers
Nuclides
Nuclides
Individual
Pathways
External &
Internal
Nuclides All Pathways
4-d Nuclides
5-e
Organs or
Cancers
6-f Nuclides
7-g
Organs or
Cancers
Pathways
Pathways
Pathways
Pathways
Organs or
Cancers
Nuclides
Summed over
Organs or
Cancers
Summed over
Nuclides
Table output control parameters
0 = no tables of this type
1 = table for selected individual
2 = table for mean individual
3 = table for collective group
4 = all three of the above
4-18
-------
TABLE 4-2
(Continued)
Name!i st
_ Group
Variable
OUTPUT
ORGAN
GSCFAC
NORGN
ORGN
TIME
QFACTOR HLET
LLET
CANCER
GENETIC
NCANC
CANC
RELABS
GENEFF
GEN
NGEN
GRFAC
REPPER
Description
Logical variable which indicates whether
dose factors are output. If .TRUE, then
one page output of dose factors for each
nuclide.
Ground surface correction factor. Accounts
for roughness.
Number of human organs exposed.
Alphanumeric double precision names of
organs. There are NORGN entries.
Time associated with dose commitment (yr).
There are NORGN entries.
Relative biological effectiveness factor
to use for high-LET dose rates to convert
absorbed dose to dose equivalent (rem).
There are NORGN entries.
Same as HLET but for low-LET dose rates.
There are NORGN entries.
Number of cancers to be considered.
Alphanumeric double precision cancer names.
Flag denoting absolute (=1) or relative (=2)
risk model used for each cancer.
Logical variable indicates output of
genetic effects. If GENEFF = .TRUE, then
genetic effects are output. If GENEFF =
.FALSE, then genetic effects are not output.
Alphanumeric double precision names of the
organs to be considered for genetic effects.
Number of human organs exposed.
Risk conversion factors (genetic effects
per rad per million births). GRFAC(l) cor-
responds to low-LET doses. GRFAC(2) corre-
sponds to high-LET doses. There are NGEN
entries.
Replacement rate for the population.
4-19
-------
TABLE 4-2
(Continued)
Namelist
Group
Variable
RNUCLD
GLLET
GHLET
NONCLD
NUCLID
PSIZE
RESP
GIABS
Description
Relative biological effectiveness factor
used for low-LET genetic doses to convert
absorbed dose to dose equivalent (rem).
There are NGEN entries.
Same as GLLET but for high-LET. There are
NGEN entries.
Number of radionuclides.
This number must be equivalent to the same
variable used in transport portion of code,
Card 3, but always less than or equal to 40.
Alphanumeric double precision radionuclide
names.
Must be written without embedded blanks.
Must be listed here in same order as in
transport section of input, cards 32+.
Each name must be set within apostrophes.
Activity median aerodynamic diameter asso-
ciated with each radionuclide (10~6
There are NONCLD entries.
m).
Respiratory clearance class associated with
each radionuclide. A respiratory clearance
class of either day ('D'), week ('W'), year
('Y'), gas ('*'), or not use.d (' ') must be
entered for each nuclide 'in the trench.
There are NONCLD entries. More extensive
lists are given in Sullivan, et al. (Su81),
and Eckerman, Ford, and Watson (Ec81).
GI absorption factors.
The absorption factor for each of the four
segments of the GI tract for each nuclide
must be entered. The DARTAB code expects
a value for each segment (stomach, small
intestine, upper large intestine and lower
large intestine). However, most metabolic
models assume that materials are absorbed
only in the small intestine (Su81, Ec81).
Therefore, input zero values for all GI
4-20
-------
TABLE 4-2
(Continued)
Namel i st
Group
LOCTAB
Variable
NTLOC
RNLOC
OGLOC
PTLOC
FALOC
HLLOC
ORGANF
LIABLE
NORGB
ORGB
Description
segments
are four
except the small
entries for each
intestine.
nuclide.
There
Number of location tables to be output.
Since PRESTO-EPA-POP does not provide a
location array of environmental concentra-
tions to DARTAB, NTLOC must be set to zero.
Radionuclide used for table. SUM results
in the sum of all nuclides, WORKLEVL results
in working level calculations, WLSUM results
in total risk for all nuclides.
Organ or cancer to use for table.
results in sum of all cancers.
SUM
Pathway used. This variable specifies the
pathway to use in printing the location
table. Values of 1 to 7 will result in
ingestion, inhalation, air immersion,
ground surface exposures, internal expo-
sures (sum of ingestion and inhalation),
external exposures (sum of air immersion
and ground surface exposures), and total,
respectively.
Factor to be printed
0 = both high- and low-LET
1 = only combined LET table
2 = all three tables.
Factor to be printed
= 0 both high- and low-LET
= 1 only combined LET table
= 2 all three tables.
Indicates selected individual (LTABLE=1),
mean individual (LTABLE=2), or collective
group (LTABLE=3).
Number of organ dose weights to use to
combine dose rates.
The organs to be used.
4-21
-------
TABLE 4-2
(Continued)
Name!1st
Group Variable Description
ORGDAT Organ dose weighting factors.
IPATH Exposure pathway affected (1 = ingestion;
2 = inhalation; 3 = air immersion;
4 = ground surface; 5 = all pathways).
The Internation Commission on Radiological
Protection (ICRP) has recently suggested
the use of a risk equivalent which provides
a stochastic weighting of radiosensitivity
of various organs in the body for exposure
to whole body radiation.
4-22
-------
4.3 DATA FOR THE INFILTRATION SUBMODEL (INFIL)
The input data to the infiltration subroutine (INFIL) are read from
input unit 4. The infiltration data are of four types: hydrologic and
trench description characteristics; maximum day length in hours by month;
daily mean temperatures by month; and hourly precipitation for nonzero
precipitation events. The last card in the data set must have "99" in the
first two columns. These data are only required when the shallow burial
disposal option is used (IDISP = 1). Table 4-3 gives a complete
description of the data and card locations for this data file.
4.4 DOSIMETRIC AND HEALTH EFFECTS DATA
This data set is read in an unformatted form from input unit 25. This
data file is on a magnetic tape which contains reference dosimetric informa-
tion about many radionuclides and was created by the program RADRISK. This
data set is complete and is usually not modified for a specific run. For a
more detailed description see the RADRISK manual (Du80).
4-23
-------
TABLE 4-3
INPUT DATA FOR SUBROUTINE INFIL
Card Variable (Input Format) Description
CARD 1 Trench Cap Characteristics (10F7.3)
TWT - The width of the trench cap (m).
SLOP - The average slope of trench cover (m/m).
EPSG - The component of porosity for gravity water
of trench cap (unitless).
EPSP - The component of porosity for pellicular
water of trench cap (unitless).
XKI - The permeability of trench cover (m/hr).
YGMAX - The thickness of the trench cap (m). This
must be equal to OVER.
XDE - The equivalent upward diffusivity (m2/hr).
XKE - The equivalent upward hydraulic conduc-
tivity (m/hr).
YPI - The initial pellicular water deficit of the
trench cap (m).
YGI - The initial gravity water deficit of the
trench cap (m).
CARD 2 Day Length Data (12F5.1)
DTH(IM) - The maximum day length for month IM (hr).
There are 12 values; one for each month
from January to December.
CARDS Temperature Data (2X, 12F6.2)
3-33
TMP(IM) - The mean daily temperatures (°C). Each
card has 12 values, one for each month.
There are 31 cards of this type, one for
each day of the month.
CARD Precipitation Data (12, IX, 12, IX, 24F3.0)
34+
MO - Month number.
IDA - Day number of month MO.
4-24
-------
TABLE 4-3
(Continued)
Card Variable (Input Format)
Description
P(MO,IDA)
LAST CARD End of File (12)
IAMP
- Amount of precipitation that tell in this
hour (0.1 mm/hr). There are 24 values on
each card, one for each hour of the day.
Include only days with a nonzero amount of
precipitation, and the first day of each
month.
Must equal 99, which designates the end of
the data set.
4-25
-------
5. OUTPUT OF PRESTO-EPA-CPG
The output of PRESTO-EPA-CPG is designed to be self-explanatory and
contains descriptive comments, definitions, and intermediate and final
tabulations. It is assumed that the output may be analyzed by users
unfamiliar with PRESTO-EPA-CPG structure. The PRESTO-EPA-CPG output is
organized into nine sections, each described below.
5.1 REPLICATION OF INPUT DATA
The first section of the PRESTO-EPA-CPG output is replication of the
user supplied input data files (1) and (2) as read in. This provides the
user with a record of the input data set used for later result identifica-
tion and analysis. PRESTO-EPA-CPG also organizes this input data to allow
for easy interpretation. A summary of the input data files (1) and (2) is
printed according to data type and transport sub-system. These descriptive
summaries are output in sentence format to improve ease of review.
5.2 RADIONUCLIDE SUMMARY TABLES
A set of tables under the heading "Nuclide Information" next summarizes
the radionuclide data used for the transport calculations. These tables
include radionuclide distribution coefficients, nuclide inventories, and
waste stream inventories.
5-1
-------
5.3 INFIL INPUT/OUTPUT
The third output section of PRESTO-EPA-CPG consists of the input data
and results for the subroutine INFIL. The input to subroutine INFIL is
presented first and consists of infiltration control, monthly averages for
hours of sunshine, daily average temperatures, hourly rainfall amounts, and
specific trench characteristics (snowmelt coefficients, trench cover
thickness, width, cover slope, porosity, and permeability).
With these input data, subroutine INFIL calculates and outputs several
data items. The most important of these are the annual infiltration and
annual precipitation. Annual evaporation, runoff and cap infiltration are
also calculated and output.
5.4 NUCLIDE DOSE CONVERSION FACTORS
This section of the PRESTO-EPA-CPG output presents the nuclide
dependent dose conversion factors used by DARTAB and RADRISK to convert
organ doses and radionuclide uptake to effective annual whole body dose
equivalents.
5.5 ANNUAL SUMMARIES
Input control parameters determine the years for which intermediate
results are printed. For these years, a number of hydrological and trans-
port variables are output. Included are trench cap status, water depth in
trench, water loss by overflow and drainage from the trench, and trench
radionuclide inventories. Radionuclide concentrations and flux values are
5-2
-------
also given for key pathways and regions of interest. Intermediate whole
body doses to the critical population group are another important result
given in this section of the PRESTO-EPA-CPG output.
5.6 ANNUAL RADIONUCLIDE UPTAKE AND CONCENTRATIONS IN SOIL AND AIR
The radionuclide concentration tables present, by radionuclide, the
average concentration over the entire assessment period, and the maximum
concentration for the atmosphere, the ground surface, and for the well and
stream water.
The total uptake factors quantify, on a radionuclide specific basis,
the annual amount of nuclide uptake by the critical population group from
all potential sources. For inhalation, it is just the quantity of nuclides
inhaled. For ingestion, it is the total consumption of nuclides (pCi/year)
from contaminated vegetation, meat, milk, and drinking water.
5.7 MAXIMUM INDIVIDUAL DOSE SUMMARY
PRESTO-EPA-CPG next outputs the data and results described in
Sections 5.5 and 5.6 for the year in which the maximum critical population
dose occurs. This allows for specific identification of contributing
pathways and radionuclides.
5.8 DARTAB RESULT TABLES
DARTAB result tables are next output. These present individual and
collective dose summary rates by low and high LET radiation and organ, by
5-3
-------
low and high LET radiation and exposure pathways, and by low and high LET
radiation and radionuclide. DARTAB fatal cancer risk tables are also
printed.
5.9 ANNUAL WHOLE BODY DOSE TO THE CRITICAL POPULATION GROUP
The final output from PRESTO-EPA-CPG is a summary of the whole body
dose received by the critical population group (CPG). This summary is
produced for each year during the user specified scenario run time. These
data are particularly useful when the run scenario includes analysis of
collocated facilities.
5-4
-------
6. SAMPLE PROBLEMS
6.1 PROBLEM DEFINITION
For the sample problem a shallow land burial of 250,000 m3 Of
generated waste is considered. The inclusion of both volume reductions and
increases associated with current.disposal practices reduces this figure to
244,500 m3. A trench utilization efficiency of 0.50 is assumed and the
waste thickness is 5 meters. Therefore the trench area is 100,000 m2. A
two meter cover is used and the distance from the bottom of the trench to
the aquifer is 14.6 meters. Cover failure begins in year 100 after
disposal and increases linearly up to a maximum and final value of 20
percent at year 300. A 1000 year simulation is performed and annual
summaries are output every 100 years.
The physical properties of the waste, the subtrench material, and the
aquifer are as follows: The porosity and density of the waste are 0.463
and 1.240 g/cc and for the subtrench material these values are 0.35 and
1.6 g/cc. The porosity and density of the aquifer formation are 0.39 and
1.6 g/cc. The subtrench permeability is 2.2 m/yr. The dispersivity in
both the subtrench soil and in the aquifer is 0.3 meters (the default
value). The aquifer velocity is 27.8 meters per year and its thickness is
30.5 meters. An aquifer dispersion angle of 0.3 radian has been assumed.
All trash is assumed to be absorbing material and 55.5 percent of the waste
is not in containers.
The fractions of land irrigation, livestock water, and human drinking
water coming from well water are 0.0, 0.5, and 1.0, respectively. The
6-1
-------
percentage of aquifer discharge to the surface water is 100 percent. The
well is 259 meters downflow from the facility. The stream has an annual
flow of 3.57xl05 m3 and is 619 meters downslope from the facility. The
runoff is 29 percent of the annual precipitation. The watershed
infiltration rate is 0.43 mm/yr. The surface soil data are summarized in
Table 6-1. The atmospheric data used in the sample problem are given in
Table 6-2.
Foodchain parameters have been summarized in Table 6-3. The human
consumption of leafy vegetation is 14 kg/yr; produce is 88.5 kg/yr; cow milk
is 89.4 L/yr; goat milk is 0 L/yr; and meat is 63 kg/yr. Each person
consumes 482 liters of water per year. The inhalation rate is 8035 m^/yr.
The exposed population is one. Radionuclide specific foodchain data are
given in Table 6-4.
The radionuclide inventories for the waste streams are given in
Table 6-5. In addition, surface spillage fractions of l.OxlO"? are assumed
for absorbing materials and trash. Decay constants and values of K,j's for
each radionuclide are given in Table 6-6. The waste stream release
fraction is 4.0E-4 for the activated metal.
In this run the dose data tables, in additional to the summary tables
are printed. Combined low and high LET tables are output. Dose factors
are output. A ground surface correction factor of 0.5 is used. Organs/
tissues exposed include the red marrow, endosteum, thyroid, breast,
pulmonary, stomach wall, intestinal wall, liver, pancreas, kidneys, and
others. The high LET and low LET RBE factors are 20 and 1, respectively.
6-2
-------
TABLE 6-1
SURFACE SOIL DATA
Rainfall Factor 250
Erodability Factor 0.23
Slope Factor 0.27
Cover Factor 0.30
Erosion Control Factor 0.30
Sediment Delivery Factor 1
Cross Slope Extent of Spillage 318 m
Active Depth For Contamination 0.1 m
6-3
-------
TABLE 6-2
ATMOSPHERIC DATA
Source Height
Gravitational Fall Velocity
Mean Wind Speed
Deposition Velocity
Source to Receptor Distance
Atmospheric Lid Height
Hosker Roughness Factor
Fraction of Time Wind Blows Toward Population
User Specified X/Q
First Coefficient in Resuspension Equation
Decay Factor in Resuspension Equation
Final Coefficient in Resuspension Equation
Resuspension Rate
Fraction of Year Mechanical Disturbance Occurs
Stability Class Formulation
Stability Class
1 m
0.01 m/sec
2.01 m/sec
0.01 m/sec
1058 m
300 m
0.01 m
0.09
0
1x10-6
-0.15
1x10-11
0.0 sec'l
0
1 (Pasquill-Gifford)
4 (neutral)
6-4
-------
TABLE 6-3
FOODCHAIN PARAMETERS
Grass Production 0.67 kg/m2yr
Vegetation Production 0.65 kg/m2yr
Surface Density for Soil 240 kg/m2
Weathering Decay Constant 0.0021 hr'1
Period Pasture Exposed During Growing Season 720 hr
Period Crops Exposed During Growing Season 1440 hr
Period Between Harvest Pasture and Ingestion by Animal 0.0 hr
Period Between Stored Feed and Ingestion by Animal 2160 hr
Period Between Harvest Leafy Vegetation and Ingestion 24 hr
by Man
Period Between Harvest Produce and Ingestion by Man 1440 hr
Period Between Harvest Leafy Vegetables and Ingestion 336 hr
by Man for General Population Exposure
Period Between Harvest of Produce and Ingestion by Man 336 hr
for General Population Exposure
Fraction of Year Animal Graze on Pasture 1.0
Fraction of Daily Feed that is Fresh Grass While 0.83
Animals are on Pasture
Amount of Feed Consumed Daily by Cattle 50 kg
Amount of Feed Consumed Daily by Goats 6 kg
Transport Time Feed-Mi 11-Receptor for Maximum Individual 48 hr
Exposure
Transport Time Feed-Mill-Receptor For General Population 96 hr
Exposure
Time From Slaughter of Meat to Consumption 480 hr
Absolute Humidity of the Atmosphere 9.9 g/m3
Fractional Equilibrium Ratio for Carbon-14 1.0
Fraction of Year Crops are Irrigated 0.40
Irrigation Rate 0.015 L/mzhr
Amount of Water Consumed by Cows 60 L/d
Amount of Water Consumed by Goats 8 L/d
Amount of Water Consumed by Beef Cattle 50 L/d
6-5
-------
TABLE 6-4
RADIONUCLIDE SPECIFIC FOODCHAIN DATA
Nuclide
H-3
C-14
Fe-55
Hi -59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137
Eu-154
Tl-208
Pb-210
Po-210
Pb-212
Bi-214
Pb-214
Ra-226
Ac-228
Ra-228
Th-228
Th-232
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm- 244
Retention
Fraction
For Air
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
Retention
Fraction For
Irrigation
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Soil-to-Plant
Uptake Factor
(vegetables)
0.0
0.0
4.0E-3
6.0E-2
2.0E-2
6.0E-2
2.5E+0
2.0E-2
9.5E+0
7.5E-2
2.0E-1
1.5E-1
8.0E-2
8.0E-2
8.0E-2
8.0E-2
l.OE-2
4.5E-2
4.5E-2
4.5E-2
4.5E-2
4.5E-2
4.5E-2
1.5E-2
8.5E-4
3.5E-3
1.5E-2
8.5E-4
8.5E-3
8.5E-3
l.OE-1
8.5E-3
4.5E-4
4.5E-4
4.5E-4
5.5E-3
4.5E-4
5.5E-3
8.5E-4
8.5E-4
Soil -to-Pi ant
Uptake Factor
(grain)
0.0
0.0
l.OE-3
6.0E-2
7.0E-3
6.0E-2
2.5E-1
5.0E-3
1.5E+0
2.0E-2
3.0E-2
5.0E-2
3.0E-2
3.0E-2
3.0E-2
3.0E-2
4.0E-3
9.0E-3
9.0E-3
9.0E-3
9.0E-3
9.0E-3
9.0E-3
1.5E-3
8.5E-5
3.5E-4
1.5E-3
8.5E-5
4.0E-3
4.0E-3
l.OE-2
4.0E-3
4.5E-5
4.5E-5
4.5E-5
2.5E-4
4.5E-5
2.5E-4
1.5E-5
1.5E-5
Forage-to-Milk
Transfer Factor
(cows)
0.0
0.0
2.5E-4
l.OE-3
2.0E-3
l.OE-3
1.5E-3
2.0E-2
l.OE-2
6.0E-7
l.OE-4
l.OE-2
7.0E-3
7.0E-3
7.0E-3
7.0E-3
2.0E-5
2.0E-3
5.0E-4
5.0E-4
2.0E-3
5.0E-4
5.0E-4
4.5E-4
5.0E-6
2.0E-5
4.5E-4
5.0E-6
6.0E-4
6.0E-4
5.0E-6
6.0E-4
l.OE-7
l.OE-7
l.OE-7
4.0E-7
l.OE-7
4.0E-7
2.0E-5
2.0E-5
Forage-to-Milk
Transfer Factor
(goats)
0.0
0.0
1.3E-4
6.7E-3
l.OE-3
6.7E-3
1.4E-2
2.5E-3
2.5E-2
1.3E-4
1.5E-3
3.0E-1
3.0E-1
3.0E-1
3.0E-1
3.0E-1
2.0E-5
0.0
0.0
0.0
0.0
0.0
0.0
5.0E-6
0.0
0.0
0.0
0.0
5.0E-4
5.0E-4
5.0E-6
5.0E-4
1.5E-6
1.5E-6
1.5E-6
0.0
1.5E-6
0.0
0.0
0.0
Forage-to-Beef
Transfer Factor
0.0
0.0
2.0E-2
6.0E-3
2.0E-2
6.0E-3
3.0E-4
2.5E-1
8.5E-3
2.0E-3
l.OE-3
7.0E-3
2.0E-2
2.0E-2
2.0E-2
2.0E-2
5.0E-3
4.0E-2
4.0E-4
4.0E-4
4.0E-2
4.0E-4
4.0E-4
2.5E-4
6.0E-6
2.5E-5
2.5E-4
6.0E-6
2.0E-4
2.0E-4
5.5E-5
2.0E-4
5.0E-7
5.0E-7
5.0E-7
3.5E-6
5.0E-7
8.5E-6
3.5E-6
8.5E-6
6-6
-------
TABLE 6-5
WASTE FORM INVENTORIES
(CD
Absorbed Activated
Nuclide Material Metals
Trash Solidified
Incinerated/
Solidified.
H-3
C-14
Fe-55
Ni-59
Co-60
Ni -63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137m
Eu-154
Tl -208
Pb-210
Po-210
Pb-212
Bi-214
Pb-214
Ra-226
Ac-228
Ra-228
Th-228
Th-232
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
5.20E+03
2.08E+02
4.04E+04
4.23E+01
7.34E+04
4.10E+03
4.08E+02
1.34E+00
2.73E+00
2.88E+02
5.49E+02
7.64E+00
7.23E+04
2.71E+00
7.23E+04
7.23E+04
5.50E+01
O.OOE+00
6.74E+00
6.74E+00
O.OOE+00
6.74E+00
6.74E+00
1.35E+01
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
2.30E+00
3.68E-02
4.23E-03
6.72E-01
6.47E+01
4.19E+01
1.79E+03
9.35E+01
8.64E-02
2.68E+00
2.91E+00
3.57E+01
2.17E+04
4.74E+01
4.06E+05
2.53E+02
2.93E+02
3.49E+04
2.49E+03
1.49E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
2.94E+04
2.94E+04
O.OOE+00
O.OOE+00
7.07E+01
7.07E+01
O.OOE+00
7.07E+01
7.07E+01
7.07E+01
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
5.88E+01
O.OOE+00
O.OOE+00
9.72E+01
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.78E+05
4.1-2E+02
7.40E+03
7.42E+00
1.41E+04
2.11E+03
8.03E+04
2.35E-01
9.41E-02
1.68E+02
9.62E+01
2.54E-01
2.89E+03
9.46E-02
7.93E+03
7.93E+03
9.64E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.53E+00
3.84E-02
5.73E-03
5.02E-02
4.86E+00
4.90E+00
2.14E+02
6.07E+01
1.07E-02
1.93E-01
2.59E-03
2.17E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
6-7
-------
TABLE 6-6
RADIONUCLIDE SPECIFIC DATA
Nuclide
H-3
C-14
Fe-55
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137m
Eu-154
Tl-208
Pb-210
Po-210
Pb-212
Bi-214
Pb-214
Ra-226
Ac-228
Ra-228
Th-228
Th-232
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Decay
Constant
(yr-1)
5.64E-02
1.21E-04
2.57E-01
8.66E-06
1.32E-01
7.53E-03
2.42E-02
3.47E-05
3.25E-06
6.89E-01
2.50E-01
4.08E-08
3.36E-01
2.30E-07
2.31E-01
2.31E-02
8.15E-02
4.92E-11
4.33E-04
4.33E-04
4.92E-11
4.33E-04
4.33E-04
4.33E-04
4.92E-11
4.92E-11
4.92E-11
4.92E-11
1.55E-10
9.85E-10
3.30E-07
1.55E-10
7.90E-03
2.87E-05
5.25E-02
1.51E-03
1.83E-06
9.40E-05
2.17E-02
3.94E-02
Surface
Kd
0.01
0.01
6000
150
55
150
150
350
0.5
220
45
3
100
100
100
100
4000
60000
220
220
60000
220
220
220
60000
220
220
60000
750
750
5
750
3500
3500
3500
80000
3500
80000
3300
3300
Waste
«d
0.01
0.01
50
50
50
50
30
70
0.5
70
45
3
100
100
100
100
2000
60000
220
220
60000
220
220
220
60000
220
220
60000
750
750
5
750
700
700
700
80
700
80
700
700
Confining
Kd
0.01
0.01
6000
150
55
150
150
350
0.5
220
45
3
1000
1000
1000
1000
4000
60000
220
220
60000
220
220
220
60000
220
220
60000
750
750
5
750
3500
3500
3500
80000
3500
80000
3300
3300
Aquifer
Kd
0.01
0.01
6000
150
55
150
20
350
0.5
220
45
3
500
500
500
500
4000
60000
220
220
60000
220
220
220
60000
220
220
60000
750
750
5
750
3500
3500
3500
80000
3500
80000
3300
3300
6-8
-------
The cancers considered include leukemia, bone, thyroid, breast, lung,
stomach, bowel, liver, pancreas, urinary, and other. Absolute risk models
are used in each case.
The organs considered for genetic effects are the testes, ovaries, and
their weighted average. The high-LET and low-LET genetic risk conversion
factors are 5200 and 260 genetic effects per rad per million births,
respectively. The default population replacement rate of 0.014133 yr-1 is
used. The low-LET genetic relative biological effectiveness (RBE) factors
are 1 and the high-LET genetic RBE factors are 20.
The activity median aerodynamic diameter, respiratory clearance class
and gastrointestinal absorption factors for each radionuclide are given in
Table 6-7. For the latter parameter only the small intestine values are
shown. The values for the other three factors are zero.
The output location table includes the following pathways: ingestion,
inhalation, air immersion, ground surface exposures, internal exposures,
external exposures and total. Only combined high-LET and low-LET tables
are output. The organ weighting factors for combined dose rates are given
in Table 6-8. The exposures are summed over all pathways. The input data
for the INFIL subroutine is listed in Tables 6-9 through 6-12.
6.2 PROBLEM RESULTS
The complete output for this problem is given in Appendix B. The
output includes an exact replica of the site input data set, and thus the
input data set is not reproduced in this section.
6-9
-------
TABLE 6-7
RADIONUCLIDE SPECIFIC DOSE PARAMETERS
Activity Respiratory Gastrointestinal
Median Aerodynamic Clearance Absorption Factor
Nuelide Diameter (10"6 m) Class (small intestine)
H-3 0.0 * (gas) 0.95
C-14 0.0 * (gas) 0.95
Fe-55 1.0 Week 0.10
Ni-59 1.0 Week 0.05
Co-60 1.0 Year 0.05
Ni-63 1.0 Week 0.05
Sr-90 1.0 Day 0.01
Nb-94 1.0 Year 0.01
Tc-99 1.0 Week 0.80
Ru-106 1.0 Year 0.50
Sb-125 1.0 Week 0.20
1-129 1.0 Day 0.95
Cs-134 1.0 Day 0.95
Cs-135 1.0 Day 0.95
Cs-137 1.0 Day 0.95
Ba-137m 1.0 Day 0.95
Eu-154 1.0 Week 0.0001
Tl-208 1.0 Week 0.05
Po-210 1.0 Week 0.10
Pb-210 1.0 Day 0.20
Pb-212 1.0 Day 0.20
Bi-214 1.0 Week 0.05
Pb-214 1.0 Day 0.20
Ra-226 1.0 Week 0.20
Th-228 1.0 Year 0.0002
Ac-228 1.0 Week 0.10
Ra-228 1.0 Week 0.20
Th-232 1.0 Year 0.0002
U-234 1.0 Year 0.002
U-235 1.0 Year 0.002
Np-237 1.0 Week 0.001
U-238 1.0 Year 0.002
Pu-238 1.0 Year 0.001
Pu-239 1.0 Year 0.0001
Pu-241 1.0 Year 0.001
Am-241 1.0 Week 0.001
Pu-242 1.0 Year 0.0001
Am-243 1.0 Week 0.001
Cm-243 1.0 Week 0.001
Cm-244 1.0 Week 0.001
6-10
-------
TABLE 6-8
ORGAN WEIGHTING FACTORS
Organ Factor
Red Marrow 0.1552
Endosteum 0.0035
Thyroid 0.0987
Breast 0.1299
Pulmonary 0.2075
Stomach Wall 0.0840
Intestinal Wall 0.0390
Liver 0.0853
Pancreas 0.0585
Kidneys 0.0248
Other 0.1136
6-11
-------
TABLE 6-9
INFIL INPUT DATA FOR THE SAMPLE PROBLEM
Trench cap width
Average slope of trench cover ,
Component of porosity for gravity water
of trench cap
Component of porosity for pellicular water
of trench cap
Permeability of trench cover
Trench cap thickness
Equivalent upward diffusivity
Equivalent upward hydraulic conductivity
Initial pellicular water deficit
Initial gravity water deficient
Maximum day lengths
Daily mean temperatures
Hourly precipitation
30.5 m
0.01 m/m
0.25
0.24
0.02 m/hr
1.2 m
3.5E-4 m2/hr
1.4E-6 m/hr
0.10 m
1.2 m
Table 6-10
Table 6-11
Table 6-12
6-12
-------
TABLE 6-10
MAXIMUM DAY LENGTHS FOR SAMPLE PROBLEM
Month
January
February
March
April
May
June
July
August
September
October
November
December
Hours
10.8
11.2
12.0
12.8
13.4
13.7
13.6
13.0
12.3
11.6
10.9
10.6
6-13
-------
TABLE 6-11
DAILY TEMPERATURES IN DEGREES CELSIUS
Jan Feb
Mar
Jun
Jul
Oct
Nov
Dec
"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
8.88
8.48
7.05
15.27
6.13
8.84
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
15.54
8.78
12.54
16.73
15.27
6.46
8.41
5.96
7.04
2.14
-1.54
5.18
7.55
11.00
16.16
10.16
6.81
7.79
13.93
12.14
13.12
6.94
9.23
13.06
8.44
8.13
4.59
7.46
8.97
14.71
19.33
16.27
8.03
10.02
11.90
14.61
8.04
10.49
16.75
12.71
1.94
2.03
3.65
0.00
0.00
0.00
6.00
8.76
12.65
14.35
17.74
16.25
10.90
4.41
7.93
13.33
17.32
18.87
21.13
19.19
19.25
12.33
17.60
17.04
20.02
23.06
23.56
17.91
15.05
13.29
16.55
13.24
6.57
6.58
11.19
16.00
16.25
_ . -* -
20.92
19.34
20.61
16.68
11.78
12.02
8.20
8.60
12.57
11.21
12.79
15.35
17.93
20.56
20.36
20.93
21.36
16.86
14.26
19.05
20.29
16.27
11.65
13.41
16.35
20.59
18.13
17.02
15.51
15.75
0.00
~
17.80
19.45
20.04
20.37
11.90
20.78
20.90
21.38
20.27
20.66
21.81
22.07
15.08
25.52
25.06
24.61
23.36
22.95
21.02
22.92
23.55
24.74
23.82
23.58
24.17
24.16
23.39
25.76
27.44
23.84
24.13
25.34
26.79
25.34
23.45
25.40
24.17
23.86
26.07
27.60
25.60
24.10
23.99
23.10
23.70
26.20
26.46
21.95
22.49
25.70
26.07
26.62
24.69
24.83
23.50
24.63
24.98
24.05
25.13
25.97
27.27
0.00
26.30
25.79
27.73
28.48
25.39
22.78
18.01
12.58
21.33
24.66
25.09
25.93
23.91
24.89
24.26
24.17
24.74
25.83
25.59
26.55
27.56
27.67
24.88
25.21
26.21
28.02
29.36
27.35
24.49
25.53
24.50
• ii •• ••• •
24.99
25.92
25.28
26.23
23.77
23.78
25.78
25.85
25.12
25.61
24.93
24.71
24.22
25.27
24.69
25.35
24.29
22.87
24.17
25.24
26.62
25.99
27.02
27.62
25.31
18.80
20.31
25.31
20.37
20.49
20.24
21.89
22.43
22.71
18.00
16.67
15.04
15.87
16.54
18.09
19.68
21.19
21.44
24.27
24.12
25.82
25.74
25.48
24.45
23.35
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
21.76
20.81
0.00
13.96
19.38
20.17
18.79
20.95
22.37
22.63
21.47
22.77
21.45
17.03
19.06
19.10
15.71
12.18
12.97
10.93
12.78
17.31
18.55
18.82
13.71
10.64
8.38
9.97
13.11
11.43
12.19
12.27
14.62
17.46
19.89
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
19.56
15.42
17.86
16.34
16.61
16.83
9.64
12.35
15.29
13.85
19.11
15.48
0.00
19.77
19.15
19.73
19.23
20.96
13.86
11.56
11.70
13.60
8.13
9.71
7.16
0.08
4.30
13.68
13.17
4.78
1.99
2.85
6.18
5.16
4.64
8.33
14.85
17.31
15.14
16.79
18.56
13.72
7.34
5.07
6-14
-------
TABLE 6-12
HOURLY RAINFALL READ IN AS MONTH, DAY, RAINFALL PER HOUR
AND HOUR AND GIVEN IN 0.1 mm/hr
Month
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
cr>
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Mar
Mar
Mar
Mar
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
May
May
May
May
May
May
• ii •
1
3
4
13
14
19
20
23
31
1
2
3
9
12
16
17
26
27
1
7
17
24
1
3
5
8
12
17
20
25
26
27
1
17
19
24
27
30
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
o
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. 0.
0. 0.
0. 0.
0. 0.
23. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
23. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 23.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0. 0. 0. 0.
0. 23. 23. 70.
47. 23. 23. 47.
0. 0. 0. 0.
0. 23. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 47. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 23. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
23. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 47.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 23.
0. 0. 0. 0.
0. 23. 93. 23.
0. 0. 0. 0.
23. 47. 23. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
23.
23.
0.
23.
0.
23.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
70.
0.
0.
47.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
23.
23.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
47.
0.
0.
0.
93.
0.
0.
0.
70.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
23.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
140.
0.
93.
0.
0.
0.
23.
0.
117.
326.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
350.
0.
0.
0.
0.
23.
186.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Month
Jun 1
Jun 3
Jun 12
Jun 13
Jun 16
Jun 17
Jun 22
Jun 26
Jun 27
Jun 28
Jul 1
Jul 4
Jul 5
Jul 7
Jul 9
Jul 13
Jul 14
Jul 15
Jul 16
Jul 19
Jul 20
Jul 23
Jul 24
Jul 27
Jul 29
Aug 1
Aug 5
Aug 6
Aug 7
Aug 8
Aug 9
Aug 12
Aug 18
Sep 1
Sep 10
Sep 18
Sep 19
Sep 21
Sep 26
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
23.
0.
0.
0.
0.
o
0.
2
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
4
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
n
0.
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
6
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
7
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
n
0.
8
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
23.
9
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
n
0.
10
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
47.
0.
TABLE 6-12
(Continued)
11 12 13
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
n
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
117.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
14
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
70.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
15
0.
0.
0.
0.
0.
47.
0.
0.
0.
70.
0.
0.
0.
0.
23.
210.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
16
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
17
0.
0.
0.
0.
0.
0.
0.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
280.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
47.
0.
0.
18
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
163.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
19
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
20
0.
0.
163.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
210.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
140.
0.
0
\f a
0.
21
0.
0.
0.
0.
93.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
117.
23.
00
0.
0.
0.
419.
0.
0.
0.
0.
0.
0.
0.
23.
233.
0.
o
*•* •
0.
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
o
** •
0.
23
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0
** •
0.
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o
V •
0.
-------
Month
Oct 1
Oct 9
Oct 10
Oct 24
Oct 25
Oct 26
Oct 27
Nov 1
Nov 16
Nov 20
Nov 24
Nov 30
Dec 1
Dec 2
Dec 6
Dec 14
Dec 15
Dec 18
Dec 24
Dec 25
Dec 27
Dec 28
Dec 29
Dec 31
TABLE 6-12
(Continued)
1
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
a.
0.
0.
0.
0.
0.
0.
0
0.
0.
0.
2
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
n
0.
23.
0.
3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
23.
0.
n
0.
47.
0.
4
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
47.
0.
23.
n
0.
0.
47.
5
0.
0.
23.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Oc
0.
47.
n
o.
0,
23.
6
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
23.
0.
23.
n
0.
0.
23.
7
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
n
0.
0.
47.
8
0.
0.
0.
0.
0.
0.
47.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
23.
0.
23.
n
0.
0.
70.
9
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
0.
0.
23.
93.
0.
0.
0.
n
0.
0.
47.
10
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
117.
0.
0.
23.
0.
0.
0.
70.
11
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
23.
47.
23.
0.
0.
23.
23.
0.
0.
47.
12
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
47.
0.
0.
0.
0.
0.
0.
0.
47.
13
0.
0.
23.
0.
70.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
70.
14
0.
0.
23.
0.
47.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
15
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
47.
16
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
23.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
17
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
18
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
19
0.
0.
0.
23.
0.
0.
0.
0.
23.
0.
0.
23.
70.
0.
0.
0.
0.
0.
23.
0.
0.
0.
0.
0.
20
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
93.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
21
0.
0.
0.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
47.
0.
0.
23
0.
23.
0.
0.
0.
0.
0.
0.
47.
0.
0.
0.
23.
0.
0.
0.
0.
0.
23.
0.
0.
163.
0.
0.
24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NOTE: Unlisted days had zero rainfall.
-------
The maximum annual dose commitment is found to be 35 mrem/yr in the
720th year after closure. Summaries of the organ doses, pathway doses and
nuclide doses for the maximum year are given in Tables 6-13 through 6-15.
The PRESTO-EPA-CPG annual doses occur from contaminated groundwater and
well water use via the ingestion pathway. The relatively permeable soils
and associated aquifer velocity allow for relatively rapid ra'dionuclide
transportation to the well.
Only iodine-129 contributes significantly to the dose commitment. The
break-through time, calculated from the center of the facility to the well,
for iodine-129 is 403 years. The infiltration rate is highest at the time
of maximum cap failure. This occurs in year 300. Allowing several years
for cap failure and then transportation of peak concentrations of the
radionuclides, the maximum occurrence in the 720th year is reasonable and
consistent with the mobility of iodine-129.
Finally, it should be noted that the sample problem described above
illustrates the application of PRESTO-EPA-CPG and is not intended as a
basis for arriving at any general conclusions regarding shallow land
burial.
6.3 JOB CONTROL LANGUAGE
The IBM Job Control Language (JCL) used to execute PRESTO-EPA-CPG for
the sample problem given in Chapter 6 is shown in Figure 6-1. The file
CBNRACS.RADRISK.V4BD is the RADRISK dosimetry data file. GMWLLWM.CPG is
the PRESTO-EPA-CPG source code. GWMLLWM.BRIT is the INFIL data file and
GMWLLWM.SAMPLE is the site/environmental file.
6-18
-------
TABLE 6-13
MAXIMUM ORGAN DOSE/EXPOSURE SUMMARY
Maximum
Organs
Red Marrow
Endosteum
Thyroid
Breast
Pulmonary
Stomach Wall
Intestinal Wall
Li ver
Pancreas
Kidneys
Other
Weighted Sum
Low LET
(mrad/yr)
0.211
0.400
351.0
0.150
7.13E-2
0.115
9.650E-2
8.541E-2
7.829E-2
7.675E-2
7.829E-2
34.8
High LET
(mrad/yr)
3.413E-3
4.219E-2
5.242E-5
5.242E-5
5.242E-5
5.401E-5
9.671E-5
8.356E-3
5.242E-5
5.242E-5
5.242E-5
1.432E-3
Dose Equivalent
(mrem/yr)
0.279
1.24
351.0
0.151
7.235E-2
0.116 ,
9.843E-2
0.253
7.934E-2
7.780E-2
7.934E-2
34.8
6-19
-------
TABLE 6-14
PATHWAY DOSE/EXPOSURE SUMMARY
Pathway
Ingestion
Inhalation
Air Inversion
Ground Surface
Internal
External
Low LET
(mrad/yr)
34.8
2.67E-13
9.72E-18
7.384E-09
34.8
7.384E-09
High LET
(mrad/yr)
1.43E-3
2.849E-11
0.0
0.0
1.432E-03
0.0
Maximum
Dose Equivalent
(mrem/yr)
34.8
5.701E-10
9.72E-18
7.384E-09
34.8
7.384E-09
TOTAL
34.8
1.432E-03
34.8
6-20
-------
TABLE 6-15
NUCLIDE DOSE/EXPOSURE SUMMARY
Nuclide
H-3
C-14
Fe-55
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137m
Eu-154
Tl-208
Po-210
Pb-210
Pb-212
Bi-214
Pb-214
Ra-226
Th-228
Ac-228
Ra-228
Th-232
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Low LET
(mrad/yr)
3.222E-18
8.131E-02
0
3.373E-15
3.548E-52
2.458E-16
1.925E-18
4.210E-12
4.195E-03
0
0
34.7
0
1.347E-16
1.533E-18
8.353E-17
4.534E-35
0
2.578E-17
1.274E-14
0
4.239E-12
7.859E-13
4.392E-14
0
0
0
0
1.373E-14
6.710E-14
7.759E-05
2.240E-15
2.954E-15
2.657E-13
8.850E-30
3.684E-11
9.760E-16
4.441E-12
1.150E-18
2.017E-25
High LET
(mrad/yr)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.740E-15
1.017E-14
0
5.327E-19
6.101E-19
7.489E-16
0
0
0
0
8.121E-15
1.473E-16
1.432E-03
1.351E-15
3.445E-14
6.349E-12
1.532E-28
2.333E-11
1.275E-14
1.220E-12
4.958E-20
1.467E-24
Maximum
Dose Equivalent
(mrem/yr)
3.222E-18
8.131E-02
0
3.373E-15
3.548E-52
2.458E-16
1.925E-18
4.210E-12
4.195E-03
0
0
34.7
0
1.347E-16
1.533E-18
8.353E-17
4.534E-35
0
3.483E-14
2.161E-13
0
4.239E-12
7.859E-13
5.890E-14
0
0
0
0
1.761E-13
7.005E-14
2.871E-02
2.926E-14
6.919E-13
1.272E-10
3.073E-27
5.075E-10
2.559E-13
2.885E-11
2.142E-18
2.954E-23
TOTAL
34.8
1.432E-03
34.8
6-21
-------
1. //GMW JOB (,),ROGERS,TIME=(7,0)
2. // EXEC FORTXCLG,GREGION=8000K
3. //FORT.SYSIN DD DSN=GMWLLWM.CPG,DISP=SHB
4. //GO.FT25F001 DD DSN=CBNRACS.RADRISK.V4BD,DISP=SHR
5. //GO.FT04F001 DD DSN=GMWLLWM.BRIT,DISP-SHR
6. //GO.FT26F001 DD UNIT=SYSDA,DSN=&&DATA,DISP=(NEW,DELETE),
7. // SPACE=(TRK,(30,10),RLSE),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
8. //GO/SYSIN DD DSN=GMWLLWM.SAMPLE,DISP=SHR
FIGURE 6-1. PRESTO-EPA-CPG JCL.
6-22
-------
REFERENCES
Be81 Begovich, C. L., K. F. Eckerman, E. C. Schlatter, and S. Y. Ohr,
DARTAB: A Program to Combine Airborne Radionuclide Environmental
Exposure Data with Dosimetric and Health Effects Data to Generate
Tabulations of Predicted Impacts, ORNL-5692 (Oak Ridge National
Laboratory, Oak Ridge, Tennessee), 1981.
Du80 Dunning, D. E., Jr., R. W. Leggett, and M. G. Yalcintas, A
Combined Methodology for Estimating Dose Rates and Health Effects
from Exposures to Radioactive Pollutants, ORNL/TM-7105 (Oak Ridge
National Laboratory, Oak Ridge, Tennessee), 19801
Ec81 Eckerman, K. F., M. R. Ford, and S. B. Watson, Internal Dosimetry
Data and Methods of ICRP - Part 2, Vol. 1: Committed Dose
Equivalent and Secondary Limits, NUREG/CR-1962 Vol. 1,
ORNL/NUREG/ TM-433/VI (Oak Ridge National Laboratory, Oak Ridge,
Tennessee), 1981.
EPA83 U.S. Environmental Protection Agency. PRESTO-EPA: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment
Code - Methodology and User's Manual, Prepared under Contract No.
W-7405-eng-26, Interagency Agreement No. EPA-D—89-F-000-60, U.S.
Environmental Protection Agency, Washington, D.C., April 1983.
EPA87a U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington, DC,
December 1987.
EPA87b U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 2, User's Manual, EPA 520/1-87-024-2, Washington, DC, December
1987.
EPA87c U.S. Environmental Protection Agency, PRESTO-EPA-DEEP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-025, Washington, DC,
December 1987.
EPA87d U.S. Environmental Protection Agency, PRESTO-EPA-CPG: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-026, Washington, DC,
December 1987.
EPA87e U.S. Environmental Protection Agency, PRESTO-EPA-BRC: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-027, Washington, DC,
December 1987.
R-l
-------
EPA87f U.S. Environmental Protection Agency, PATHRAE-EPA: A Performance
Assessment Code for the Land Disposal of Radioactive Wastes,
Documentation and User's Manual, EPA 520/1-87-028, Washington, DC,
December 1987.
EPA87g U.S. Environmental Protection Agency, Accounting Model for
PRESTO-EPA-POP, PRESTO-EPA-DEEP, and PRESTO-EPA-8RC Codes,
Documentation and User's Manual, EPA 520/1-87-029, Washington, DC,
December 1987.
Ga84 Galpin, F. I., and G. L. Meyer, Overview of EPA's Low-Level
Radioactive Waste Standards Development Program, 1984:
Proceedings of 6th Annual Participants' Information Meeting on
DOE Low-Level Waste Management Program, Denver, Colorado,
September 11-13, 1984, CONF-8409115, Idaho Falls, Idaho.
Hu83 Hung, C. Y., G. L. Meyer, and V. C. Rogers, Use of PRESTO-EPA
Model in Assessing Health Effects from Land Disposal of LLW to
Support EPA's Environmental Standards: U.S. Department of
Energy. Proceed-ings of 5th Annual Participants' Information
Meeting on DOE Low-Level Waste Management Program, Denver,
Colorado, August 30, 1983, CONF-8308106, Idaho Falls, Idaho.
ICRP79 International Commission on Radiological Protection, "Limits for
Intakes of Radionuclides by Workers," ICRP Publication 30, Part
1. Annals of the ICRP 3(4) (Pergamon Press, New York), 1979.
Me81 Meyer, G. L., and C. Y. Hung, An Overview of EPA's Health Risk
Assessment Model for the Shallow Land Disposal of LLW,
Proceedings of an Interagency Workshop on Modeling and Low-Level
Waste Management, Denver, Colorado, December 1-4, 1980, ORD-821,
Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1981.
Me84 Meyer G. L., Modifications and Improvements Made to PRESTO-EPA
Family of LLW Risk Assessment Codes Based on Recommendations of
Peer Review, February 1984, U.S. Environmental Protection Agency,
Letter dated July 13, 1984, to Members of the PRESTO-EPA Peer
Review, February 7-8, Airlie, Virginia: Washington, D.C., 1984.
Ro84 Rogers, V. C., An Update on Status of EPA's PRESTO Methodology
for Estimating Risks from Disposal of LLW and BRC Wastes, U.S.
Department of Energy, Proceedings of 6th Annual Participants',
Information Meeting on DOE Low-Level Waste Management Program,
Denver, Colorado, September 11-13, 1984, CONF-8409115, Idaho
Falls, Idaho.
Su81 Sullivan, R. E., N. S. Nelson, W. H. Ellet, D. E. Dunning, Jr.,
R. W. Leggett, M. G. Yalcintas, and K. F. Eckerman, Estimates of
Health Risk from Exposure to Radioactive Pollutants.
ORNL/TM-7745. (Oak
Tennessee), 1981.
Ridge National Laboratory, Oak Ridge,
R-2
-------
APPENDIX A
PRESTO-EPA-CPG LISTING
-------
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAA PRESTO C P G AAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAA
PRESIO-CPG IS A COMPUTER CODE FOR PREDICTING THE MAXIMUM
INDIVIDUAL DOSE RESULTING FROM THE MULTIPLE PATHWAY MIGRATION
OF RADIONUCLIDES FROM LOU-LEVEL DISPOSAL FACILITIES. THIS
MODEL IS DERIVED FROM AND EXTENDS THE CAPABILITIES OF THE
PRESTO-DEEP MODEL. A NUMBER OF DISPOSAL OPTIONS CAN BE USED:
1) SHALLOW LAND BURIAL, 2) DEEP WELL INJECTION, 3) HYDROFRACTURE,
AND 4) DEEP GEOLOGICAL DISPOSAL IN A MINED CAVITY.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C
C
C
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
UP 10 FIVE WASTE FORMS WITH DIFFERENT INVENTORIES AND
LEACH BEHAVIORS CAN USED. THIS ALLOWS CONSIDERABLE
FLEXIBILITY IN MODELLING LLW DISPOSAL FACILITIES.
PRESTO-MID DETERMINES THE MAXIMUM INDIVIDUAL DOSE,
THE YEAR OF ITS OCCURENCE. AND PROVIDES A NUCLIDE DOSE/EXPOSURE
SUMMARY TABLE FOR THAT YEAR. OTHER OUTPUT OPTIONS INCLUDE
AN EXTENDED DOSE/RISK ANALSIS FOR THE MAXIMUM YEAR AND A SIMILAR
ANALYSIS FOR A POPULATION UTILIZING CONCENTRATIONS AVERAGED OVER
THE SIMULATION PERIOD.
THE MAIN PROGRAM ACTS AS A SUPERVISOR FOR THE REST OF THE
CODE. MOST OF THE BOOKEEPING. INCLUDING MATERIAL BALANCE,
IS DONE HERE. THE FOLLOWING SUBROUTINES ARE CALLED:
SOURCE, AIRTRM. ERORF, TRENCH, LEACH, VERHOR, SURSOL,
SUSPND, OUT, FOOD, IRRIG, HUMEX, DARTAB, AND QUANC8.
PRINCIPAL VARIABLES
ADEPIH = AQUlfER DEPTH M
ALH = DISPERSIVIIY IN AQUIFER M
ALV = DISPKKSIVITY IN CONFINING STRATUM M
AQDISP = AQUIFER DISPERSION ANGLE RADIANS
AQTHK = AQUlfER THICKNESS M
AQVOL = AQUIFER DILUTION FACTOR HAAS
AQAM = AMOUNT OF NUCLIDE Al WELL SITE CI/MAA3
AQAVG = AVERAGE NUCLIDE CONCENTRATION AX WELL SITE CI/MAA3
AQCON = NUCLIUE CONCENTRATION AT WELL SITE CI/MAA3
AIAVG = AVERAGE NUCLIDE CONCENTRATION IN ATMOSPHERE CI/MAA3
ATCON = NUCLIDE CONCENTRATION IN ATMOSPHERE DOWNWIND CI/MAA3
ATMASS = NUCLIDE MASS NUMBER
ABSERk = ABSOLUTE ERROR IN DDETA CALCULATION
BDENS = BULK DENSITY OF SOIL G/CC
CPL1 = NUCL1DE CONCENTRATION IN LEAFY VEGETABLES FOR
A-2
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
M.I.E. BY ATMOSPHERIC DEPOSITION PCI/KG
CPL2 = NUCLILE CONCENTRATION IN PRODUCE FOR M.I.E.
BY ATMOSPHERIC DEPOSITION PCI/KG
CPL3 = NUCLIDE CONCENTRATION IN LEAFY VEGETABLES AND
PRODUCE FOR G.P.E. BY ATMOSPHERIC DEPOSITION PCI/KG
CS = CONCENTRATION IN SURFACE SOIL CI/KG
CU = CONCENIRATION IN SURFACE WATER CI/MAA3
CWAT = NUCLIDE CONCENTRATION IN WATER
CCMI1 = NUCLIDE CONCENTRATION IN COW'S MILK FOR M.I.E.
BY ATMOSPHERIC DEPOSITION PCI/L
CCMI2 = NUCLIDE CONCENTRATION IN COW'S MILK FOR G.P.E.
BY ATMOSPHERIC DEPOSITION PCI/L
CGMI1 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.I.E. BY ATMOSPHERIC DEPOSITION PCI/L
CGMI2 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
G.P.E.HY ATMOSPHERIC DEPOSITION PCI/L
COPL1 = NUCLIDE CONCENTRATION IN LEAFY VEGETABLES FOR
M.I.E. BY IRRIGATION PCI/KG
COPL2 = NUCLIDE CONCENTRATION IN PRODUCE FOR M.I.E. BY
IRRIGATION PCI/KG
COPL3 = NUCLIDE CONCENTRATION IN LEAFY VEGETABLES AND
PRODUCE FOR G.P.E. BY IRRIGATION PCI/KG
CGHEAT = NUCLIDE CONCENTRATION IN BEEF MEAT BY
ATMOSPHERIC DEPOSITION PCI/KG
COCHI1 = NUCLIDE CONCENTRATION IN COW'S MILK FOR M.I.E.
BY IRRIGATION PCI/L
COCMI2 = NUCLIDE CONCENTRATION IN COW' MILK FOR G.P.E.
BY IRRIGATION PCI/L
COGMI1 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.I.E. BY IRRIGATION PCI/L
COGMI2 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.I.E. BY IRRIGATION PCI/L
COMEAT = NUCLIDE CONC IN BEEF MEAT BY IRRIGATION PCI/KG
DBA = INTERMEDIATE VARIABLE IN DDETA CALC.
DBB = INTERMEDIATE VARIABLE IN DDETA CALC.
DBD = DISPERSION COEFF. IN DDETA CALC.
DBR = RETARDATION FACTOR IN DDETA CALC.
DBAL = LENGTH OF FLOW IN DDEIA CALC.
DBAV = GROUNDWATER VELOCITY IN DDETA CALC. M
DBLA = RAD10L. DECAY COEFF. IN DDEIA CALC.
DECN(I) = NUCLIDE DECAY CORRECTION FACTOR
DDEIA = DECAY-DISPERSION CORRECTION FACTOR
DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
DOVER = ANNUAL THICKNESS OF TRENCH OVER BURDEN ERODED M
DTRAQ = DISTANCE FROM TRENCH TO AQUIFER M
DWELL = DISTANCE FROM TRENCH TO WELL M
DDETA1 = DDEIA FOR VERTICAL TRANSPORT
DDETA2 = DDEIA FOR HORIZONTAL TRANSPORT
DERATE = ATMOSPHERIC DEPOSITION RATE
EXPOS = NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
UNIT SOURCE RELEASE
EXTENT = CROSS SLOPE EXTENT OF SPILLAGE M
ERREST =
FIWIND = FRACTION Of TIME WIND BLOWS TOWARD POPULATION
FI = FRACTION OF YEAR CROPS ARE IRRIGATED
ERACB = FRACTION OF ABSORBING MATERIAL IN FACILITY
GWV = GROUND WATER VELOCITY M/Y
GNDCON = INSOLUBLE SURFACE SPILLAGE GROUND CONCENTRATION
HGRAD = HYDRAULIC GRADIENT THROUGH CONFINING STRATUM
HUME = HORIZONTAL OR AQUIFER TRANSPORT TIME Y
A-3
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IDISP = OPTION INDICATOR FOR DISPOSAL MODE
IDELI = INCREMENTAL YKAR FOR PRINTING ANNUAL SUMMARIES
IPRT1 = INITIAL YEAR FOR PRINTING ANNUAL SUMMARIES
IPRT2 = FINAL YEAR FOR PRINTING ANNUAL SUMMARIES
ITIME = TOTAL TRANSPORT TIME FROM TRENCH TO WELL Y
IOPSAT = OPTION INDICATOR FOR CALCULATING AREA SOURCE
CORRECTION
IOPVWV = OPTION INDICATOR FOR CALCULATING VERTICAL WATER
VELOCITY
LU2 = LOGICAL UNIT FOR OUTPUT
MAXYR = NUMBER OF YEARS IN SIMULATION
NOFUN = MAXIMUM NUMBER OF FUNCTION EVALUATIONS TO
BE USED BY QUANGO
NYEAR = CURRENT YEAR OF SIMULATION
NONCLD = NUMBER OF NUCLIDES IN SIMULATION
NUCLID = NUCLIDE NAMES
OVER = TRENCH OVER BURDEN THICKNESS M
PC = FRACTION OF TRENCH CAP THAI HAS FAILED
PCON1 = AIR CONCENTRATION CI/MAA3
PCON2 = GROUND SURFACE CONCENTRATION CI/MAA2
PCON3 = COLLECTIVE INGESTION RATE PCI.PER
PCON4 = COLLECTIVE INHALATION PCI.PER
PD = DOWNSLOPE DISTANCE TO STREAM M
PERMS = PERMEABILITY OF SOIL M/Y
POLB = AMOUNT Of NUCLIDE LEAVING BOTTOM OF TRENCH CI
POLO = AMOUNT OF NUCLIDE OVERFLOWING TRENCH CI
POP = POPULATION
PORS = POSOSITY OF SOIL
PORT = POROSITY OF TRENCH CONTENTS
PPN = TOTAL ANNUAL PRECIPITATION M
QING = ANNUAL INTAKE OF RADIONUCLIDE BY INGESTION
OF CONTAMINATED FOOD CONSIDERING ATMOSPHERIC
AND AQUATIC PATHWAYS PCI/Y
QINH = ANNUAL INTAKE OF NUCLIDE BY INHALATION PCI/Y
QFRAC = FRACTION OF INGESTION DUE TO WATER
RELERR = RELATIVE ERROR FOR DDETA INTEGRATION
RESULT = FINAL FORM OF DDETA CORRECTION FACTOR
RESUL1 = FINAL FORM OF VERTICAL DDETA
RESUL2 = FINAL FORM OF HORIZONTAL DDETA
RETARH = HORIZONTAL RETARDATION FACTOR
RETARV = VERTICAL RETARDATION FACTOR
SOAM = AMOUNT OF SURFACE SPILLAGE CI
SAREA - AREA OF SPILLAGE MAA2
SDEEP = AMOUNT OF SOLUBLE SURFACE COMPONENT GOING TO
TRENCH CI
SEEP = FRACTION OF TOTAL ANNUAL PRECIPITATION WHICH
BECOMES DEEP INFILTRATION THROUGH THE TRENCH'
STAVG = AVERAGE NUCLIDE CONCENTRATION IN STREAM CI/MAA3
STCON = NUCL1DE CONCENTRATION IN STREAM CI/MAA3
SOILOS = ANNUAL SOIL LOSS DUE TO EROSION
SSTREM = AMOUNT SURFACE COMPONENT GOING TO STREAM CI
STELOW = STREAM FLOW RATE MAA3/Y
TRAM = AMOUNT OF NUCLIDE IN TRENCH CI
VD = ATMOSPHERIC DEPOSITION VELOCITY M/S
VOLB = VOLUMf OF WATER LEAVING TRENCH BOTTOM MAA3
VOLO = VOLUME OF WATER OVERFLOWING TRENCH MAA3
VOLUSD = HYPOTHETICAL VOLUME OF WATER USED FROM WELL MAA3
VTIME = VERTICAL TRANSPORT TIME Y
VWV = VERTICAL WATER VELOCITY (TRENCH TO AQUIFER) M/Y
WIRATE = IRRIGATION RATE L/MAA2-
A-4
-------
C XINFL = ANNUAL INFILTRATION RATE H
C XKD = CHEMICAL EXCHANGE COEFFICIENT ML/G
C XLSAT = LENGTH (JF SATURATED ZONE M
C YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE CI
C
C
C OTHER VARIABLES ARE DEFINED IN SUBROUTINES WHERE THEY
C ARE USED MOST FREQUENTLY.
C
DOUBLE PRECISION NUCLID.DBAV.DBAL.DBR.DBA,DBB.DBD.DBLA,
i FCN,RESULT.ABSERR.RELERR,ERREST,FLAG
DOUBLE PRECISION RESlhl.RESUL2.PNUC
COMMON/CNTRL/NONCLD.MAXYR.TITLE(20).LOCATE(12).NYRl,NYR2f
i PCT1.PCT2.LEAOPT.ifiPVUV.lOPSAl,IPRT1.IPRT2,IDELT,
& IRRES1.IRRES2.LIND.IAVG1,IAVG2.RR.FTMECH,
i MUATL,yWATA.UHATH.SWAIL.SUATA.SWATH,IVAP.IBSMT,IDISP
COMMON/EVAP/PPN.PHID,P,XIRRfS(12),T(12)rTD(12),XINFL,SINFL,
* SMASS.UMASS.UDEEP
COMMON/TRCH/TAREA.TDEPTH,OVER,PORT,RELFAC,DENCON,OLDUAT,SEEP
COMMON/RLERC/RELFRC(5),FRTRSH.ITUO
COMMON/STREAM/CIAU(40).CIAM(40),CITR(40).CISU(40).CIIS(40)
COMMON/UATER/DIRAQ.DUEtL,GUV,XLSAT,STELOU.AQTHK,AQDISP.
I PORA.PORV.PERMU,IAQSTF.CPRJ.OWU.HGRAD,FRACB,ALU,ALH
COMMON/NUC/NUCLID!40)fATMASS(40).TRAM(40),SOAM(40)1ATAM(40).
& AQAM(40.10000),STAM(40),POLO(40).POLB(40).CS(40).CW<40),
& SSTREM(40),SDEEP(40).AIRCON(40),YSO(40)>SOAVG(40),CON(40)F
& AQCON(40)rSTCON(40).ATCON(40).AQAVG<40),STAVG(40).
I ATAVG(40).FMC(40).FMG(40).DECAY(40),XKD(4.40),SOL(40).
8 FF(40),RA(40),RU(40).BV(40),BR(40),DERATE(40),CWAT(40)
COMMON/LAND/RAINF,ERODF,STPLNG.COVER.CONTRL.SEDELR,SOILOS,
S PORS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,BDENVfRESATf
COMMON/AIR/CHIQ,FTWIND,H,HLID,IS,IT,RE(10000),ROUGH,RTPDEX,U,
& VD,VG,XG
COMMON/DOUBLE/DBAV.DBAL,DBD,DBR,DBLA
COMMON/IRRFOO/Y1.Y2,TE1,TE2.IH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
S ULEAFY,UPROD,UCMILK,UGMILK,UMEAT.UUAT.UAIR,
X QFC,QFG.TF1.TF2.TS.CL1(40),CL2(46),CP1(40),CP2(40),
S CCMI1(40),CCMI2(40),CGMI1(40),CGMI2(40).
S CMEAT(40).COL1(40).COL2(40).COP1(40),COP2(40),
S COCMI1(40),COCMI2(40),COGMI1(40),COGMI2(40),
& COMEAT(40KQING<40),QINH(40>,POP,
8 CSP(40).CSPT(40).CSPO(40),CSPOT(40)
COMMON/FUNC/XAMBUE,TA,TW.FI,PP.UIRATE,
S QCU.QGU.QBU.ABSH.Pl4
COMMON/PASS/PNUC(40),PCON1(46).PCON2(40),PCON3<40),
S PCON4(40).PPOP LLIND,LDI§T
COMMON/PCV/S«CON(40)
COMMON/COMOR/ORGN(20),NORGN,TIME(20),DOSE(20,40,4,2), DTABLE(7)
COMMON/PDCF/DCECTR(4.40)
COMMON/ACCMOD/FICAN(40),CCNR(40),POPD(40),GNR<40),
i IFIC,TCCNR,TPOPD,TGNR
EXTERNAL FCN
DIMENSION SAVEDT(7),PMAX1(40),PMAX2(40),PMAX3(40),PMAX4(40),
+ DECN(40)
DIMENSION ITIME(40),DDETA(40),DOSIN(10000)
DIMENSION NUCL(40.8).NUMBER(ll),IDIG(3),BSMT(40)
DIMENSION AQMAX(40),STMAX(40).ATMAX(40) MXAQ(40),MXST(40),MXAT(40)
DIMENSION PC1(40),PC2(40),PC3(40),PC4(46),NPC1(4&),
A-5
-------
& NPC2<40).NPC3(40),NPC4(40),BSMIA<40)
DIMENSION QDWSB<405.POU(40>.POS<40>.PLBT(40),OFI(40),RTA<40)
DIMENSION CIOI(40).CINEUT(46).HETRV(40)
DIMENSION TRAMAX<40>,PLOMAX(4&>.PLBMAX(40).AQAMAX(40),
i CSMAX(40).CWMAX(40).STRHAX(40).SBPMAX(40).
& YSOMAX<40),ATCMAX(4&),AQCMAX(4&),SOCMAX<4&)
DATA LU2/6/
DATA ISW/0/
DATA MINUS/'-'/
DATA NUMBER/'l','2','3V4V5V6V7V8VfJVOV '/
DATA IPARM,IPDCE,IINTD,IMAXB,IAVGD/0,1,2,3,4/
CALL ERRSET (208,256,-!,1)
IBK=0
EPSP=0.
DO 10 1=1.40
QDWSB(I)=0.
POU(I)=0.
POS
-------
ABS£R8=1.0D-5
RELERR=1.0D-5
C INITIALIZE VARIABLES AND INPUT CONTROL PARAMETER.
C PRINT OUT INITIAL CONDITIONS.
C
CALL SUURCE
-------
c
EXPOS=CHIQ
IF(IDISP.EQ.4)EXPOS = 0.0
IE(CHIQ.LE.O.O.AND.IDISP.NE.4)CALL AIRTRM(EXPOS,DEPO,DWELL)
C
C
C DETERMINE ANNUAL INFILTRATION RATE THROUGH TRENCH CAP
£ ,
XINFL = SEEPAPPN
IF (IDISP.EG.LAND.SEEP.EQ.0.0) CALL INFIL(XINFL,PPN)
IF (IOISP.GX.1) XINEL = SINFL
C——
C DETERMINE VERTICAL UATER VELOCITY, RETARDATION FACTOR,
c VERTICAL TRANSIT TIME, HORIZONTAL TRANSIT TIME, AND
TOTAL TRANSIT TIME.
IF (IDISP.LE.l) GO TO 65
VOLO = 0.0
VOL6 = VUVATAREA
GO TO 67
65 VWV=PERMV/PORV
RESAT=RESAT/PORV
TINtL=(PC12A(PPN+XIRR)+(2.-PCT2)AXINFL)A0.5
IF(SSAI .61. 0.) GO TO 72
SSAI=RESAH(1.-RESA1)A(T1NFL/PERHV)AA0.25
WRITE(6.1837)VUV.RESAT.SSAI.TINEL,BDENV
1837 FORMATS ' 5X.5(lPE11.4,3X))
IF(SSAT .GT. I.) SSAT=1.
72 CONTINUE
HRI1E(LU2,1005) SSAT.RESAT
1005 FORMAIC DEGREE OF SATURATION = ',F6.3,/,
i ' RESIDUAL SATURATION = ' F6.3)
IF(SSAT .GT. 0.0 .AND. SSAT .LT. I.) VUV=TINi:L/(POfiVASSAT)
XLSAI=DTRAQ
67 CONTINUE
D3R=1AREA/(9.AEXIEN1AGWV)
URItE(LU2.6200)
DO 100 I=1,NONCLD
RETARV=1.+(BDENVAXKD(3,1))/PORV
IF(SSAT .61. 0.0 .AND. SSAT .LI. 1.) RETARV=l.-i-(RETARV-l. )/SSAT
VTIHE=DTRAQAR£TARV/VUV
DDEIA1=1.0
IF (VTIHE .61. 1000. .OR. VTIME .GT. 50.A.693/DECAY(I)) GO TO 70
DBAL=DTRAQ
DBD=ALVAVUV
DBLA=DECAY(I)
DBAV=VUV
DBR=RETARV i
DBA=VTIME/10.0DO
DBB=VIIME
CALL QUANC8(FCN,DBA,DBB,ABSERR,RELERR,RESUL1,ERREST.NOFUN,FLAG)
DBA=VTIME
DBB=VTIMEA10.0DO
CALL QUANC8(FCN,DBA,DBB,ABSERR,RELERR,RESUL2,ERREST,NOFUN,FLAG)
RESULT=RESUL1+RESUL2
DDETA1=RESULTADEXP(DBALADBRADBLA/DBAV)
IF(DDETA1 .LT. 1.0) DDETA1=1.0
70 REIARH=1.-KBDENSAXKD(4,I))/PORA
HTIME=DUELLAREXARH/GWV
CON(I)=D3RARETARH
A-8
-------
IF
-------
CALL DARIAB(IPARM)
C
C SET UP PDCF CALCULATIONS
C
DO 310 I = 1,NONCLD
PCONHI) = 1.0
PCON2(I) = 1.0
PCON3(I) = 1.0
PCON4(1) = 1.0
310 CONTINUE
DO 320 I = 1,7
SAVEDT(I) = DXABLE(I)
DTABLE(l) = 0.0
320 CONTINUE
DIABLE<6) = 1.0
CALL DARIAB(IPDCF)
C
C RECOVER PARAMETERS
C
DO 330 I = 1,7
DTABLE(I) = SAVEDT(I)
330 CONTINUE
C
C OUTPUT NUCLIDE DOSE CONVERSION FACTORS
C
URITE(LU2,14CJ3)
DO 340 I =1,NONCLD
WRI1E(LU2,6210)NUCLID(I),(DCFCTR(K,I),K=1,4)
340 CONTINUE
C
C END PDCf CALCULATIONS
C
C
C
C
C
C THE FOLLOWING LOOP WILL BE PROCESSED FOR EACH YEAR IN
C THE SIMULATION.
C
DO 1000 N=lrMAXYR
NYEAR=N
AUX=FLOAT
1069 IF(XRT .LE. OVER) GO TO 1068
D1R=TDEPIH
IF(XR1 .LE. D1R) FONSI1=(XRT-OVER)/XRT
IF(XRT .GT. D1R) FONSII=(IDEPTH-OVER)/XRT
1068 IF (FONSI1.LE.O) FONSIT = 0.
IF (IUISP.EQ.2) DMAX = VOLB/(IAREAAPORT) + TDEPTH/PORT
A-10
-------
IE (IDISP.GT.2) DMAX = IDEPIH
IF (ID1SP.G1.1) GO TO 1066
C
C CALCULATE TRENCH WATER BALANCE FOR SHALLOW BURIAL SCENARIO
C
CALL lRENCH(NYEAR,VOLBfVOLO,DMAX,PC,IINFL)
1066 IF(VOLB .LE. .1AAQVOL .OR. ISU .GT. 0)GO TO 450
isy=isw-n
URrtE
-------
460 CONTINUE
PLBTdl) = PLBTdl) + POLB(II)
OEKII) = OFKII) + POLO(II)
C
C
C
C
C CALCULATE ADDITIONS TO AQUIFER.
CALL MERHORdl.NYEAR.ITIME.DDEIA)
AQCONdI)=AQAM(II.NY£AR)/AQVOL
AMTl=VOLUSUAAQCONdI)
IF(AMT1 .LE. AQArtdl.NYKAR) .OR. AHT1 .EQ. 0.) GO TO 3t>0
AQCONdI>=AQAMdI.NYEAR>/(VOLUSU> Tv ini,-11/TT.
350 IF(N .GE. IAVG1 .AND. N .LE. IAVG2)AQAVG - AMT1)
IF(IAQSIF.NE.O) GO TO 354 RAE0185
IF (N.EQ.l.AND.I.EQ.l) STFLOU = STFLOW + PRJA(AQVOL-YGLUSU) RAE0185
354 CONTINUE RAE0185
351 SICON(II) = SSTREMdD/STFLOW
AMT=VOLUSSASTCON(II)
IF(AMI .LE. SSTREMdl) .OR. AMI .EQ. 0.)GO TO 365
STCONdI)=SSXREM(II)/(VOLUSS)
365 IE(N .GE. IAVG1 .AND. N .LE. IAVG2)STAVG(II)=STAVG(II)+STCON(II)
IF(STCONdl) .LE. SIMAX(II))QO TO 370
STMAX(II)=STCON(»II)
«XSTdI)=N
370 CONTINUE
POSdI)=POSdI)+VOLUSSASTCON(II)
C WASTE LEAVING BASIN
IFdAtlSTF.NE.O .AND. AQVOL.GT.VOLUSU)SSTREM( II)=SSTREH(II) +
X PRJA(AQAMdl.NYEAfi)-AMTl)
IFdAQSTF.EQ.O) GO TO 355 RAE0185
IF(AQVOL.LE.VOLUSU) GO XO 355 RAE0185
IF(N.EQ.l.AND.I.EQ.l) STFLOU=STFLOU+PRJA(AQVOL-VOLUSW) RAE0185
355 CONTINUE RAE0185
IFdAQSIF.NE.O .AND. AQVOL.GT.VOLUSU)SICONdI)=SSTREMdI)/STFLOU
IE(VOLUSS.LE.STFLOW)QDWSB(II)=(STFLOU-VOLUSS)ASICON(II)+QDWSB(II)
A-12
-------
SIFLOU=STFLLL
C
r_____
C CALCULATE ATMOSPHERIC CONCENTRATION AND AMOUNT
C ABOVE SPILLAGE AREA
C
C
GNDCON=CS(II)ABDENSAADEPTHA1.OE3
IFdNSITE .EQ. 0 .OR. IRRES1 J3E. NYEAR) GO TO 381
D1R=SSIRAM/
CITRdl) = CllRdDAd.O - MLERCO))
CISWdl) = CISWdDAd.O - RELERCU))
CIISdD = ClISdDAd.O - RtLFRC(5))
A-13
-------
C INVENTORY IN IRENCH AT END OF YEAR
TRAMdl) = ClAWdl) H CIAM(Il) + CIIK(II)
I + CISU(II) i- CHSdl) - EROSI
C
C
C END INVENTORY CALCULATION; SET EQUAL TO ZERO IF NEGATIVE
499 IF ( TRAH(II) .LI. 0. ) TRAM(I1)=0.
C
C
CWdI)=CUdI) + (POLOdI)/
i (EXTENIAPDAADEPIHAPORS))
IF(CUdl) .LI. 0.) CW(11)=0.
IF(CSdl) .LI. 0.)CSdI)=0.
C —
C COMPUTE SOIL CONCENTRATION
C
SOc6Ndl) = 1.0E12AADEPIHA
-------
IF(PC3(II) .GE. XEMP)GO TO 860
PC3(II)=IEMP
NPC3(II)=NYEAR
860 CONTINUE
TEMP=QINH(I1)APOP
IF(PC4(II) .GE. TEMP) GO TO 880
PC4(II)=TEMP
NPC4(II)=NYEAR
880 CONTINUE
PCONKII) = AICON(II)
PCON2UI) = QSUR + BSMTA(II)
PCON3(II) = QING(II)
PCON4(II) = QINH(II)
C
C CALCULATE DOSE VIA PDCF'S
C
DOSDCF = DOSDCF
& + PCQN1U1)ADCFCTR(3,II)
* + PCON2(II)ADCECTR(4,II)
8 + PCON3(lI)ADCECTR(lfII)
* + PCON4(II)ADCECIR(2fII)
C
900 CONTINUE
DOSIN(N)=DOSDCF
C
C IF NEU MAXIMUM DOSE SAVE CONCENTRATION ARRAYS
C
IF ( DOSDCF .LE. DOSMAX ) GO TO 925
C
DOSMAX = DOSDCF
KYEAR = N
PERMAX = PER
UDPMAX = UDEPTH
VLBMAX = VOLB
VLOMAX = VOLO
DO 905 I = 1,NONCLD
PMAXKI) = PCONl(I)
PMAX2(I) = PCON2(I)
PMAX3(I) = PCON3(I)
PMAX4(I) = PCON4(I)
TRAMAX(I) = TRAM(I)
PLOMAX(I) = POLO(I)
PLBMAX(I) = POLB(I)
AQAMAX(I) = AQAM(I,NYL'AR)
CSMAX(I) = CS(I)
CUMAX(I) = CU(I)
STRHAX(I) =f SSTREM(I)
SDPMAX(I) = SDEEP(I)
YSOMAX(I) = YSO
-------
c
c
c
IF(«OD(NYEAR-IPRI1,IDELT)
GO TO 1000
930 CONTINUE
OUTPUT ANNUAL SUMMARY
.EQ. 0 .OR. NYEAR .EQ. 1) GO TO 930
C
C
1
C
C
c
CALL OUT(NYEAR.PC.WD,VOLO,VOLB)
CALL DARXAB(IINTD)
1000 CONTINUE
SET CONCENTRATION ARRAYS AND CALCULATE MAXIMUM DOSE VIA DARTAB
MAXIMUM
')
INDIVIDUAL DOSE COMMITMENT IS
URITE(6.1491) DOSMAX
1491 EORHAlriV,lX,'lHE
& HO.4,' MREM
WRIIE(6,1492) KYEAR
NYEAR = KYEAR
PER = PERMAX
UDEPTH = UDPMAX
VOLB = VLBMAX
VOLO = VLOMAX
DO 1025 I = l.NONCLD
TRAM(I) = TRAMAX(I)
POLO(I) = PLOMAX(I)
POLB(I) = PLBMAX(I)
AQAM(IrNYEAR) = AQAMAX(I)
CS(I) = CSHAX(I)
CW(I) = CUMAX(l)
SSTREM(I) = STRMAX(I)
SDEEP(I) = SDPMAX(I)
YSO(I) = YSOMAX(I)
ATCON(I) = AICMAX(I)
AQCON(I) = AQCMAX(I)
SOCON(I) = SOCMAX(I)
1025 CONTINUE
CALL OUT(NYEAR,PC,WD,VOLO,VOLB)
WRIIE(6,1497)
1497 FORMAK////.20X,' UPTAKE/CONCENTRATIONS PASSED TO DARTAB './/
NUCLIDE r,3X;-
INGEST ION
PCI/YR
INHALATION
PCI/YR
AIR IMMERS.
PC1/MAA3
PCI/H'
DO 1050 I = l.NONCLD
PCONKI) = PMAXKI)
PCON2(1) = PMAX2(I)
PCON3(I) = PMAX3(I)
PCON4(I) = PMAX4(I)
1050
c
c
c
c
c
c
CONTINUE6210 NUCLID(DiPCON3(I),PCON4(I),PCON1(I),PCON2 1.0 CONTINUE WITH AVERAGE CALCULATIONS
A-16
-------
c
c
c
URITE(G,1492) KYEAR
C
NEXY8=IAVG2-IAVG1+1
URITE(LU2,700)IAVG1,IAVG2
DO 1100 II=1.NONCLD
AQAVG( II)=AQAVG( ID/FLOAKNEXYR)
SIAVG(II)=SIAVG(II)/FLOAT(NEXYR)
ATAVG(II)=ATAVG(II)/FLOAT(NEXYR)
SOAVG(II)=SOAVG(II)/ELOAT(NEXYR)
URITE(LU2,G21b)NUCLID(II).ATAVG(II),ATMAX(II),MXAT(II).AQAVG(II)f
* AQHAX(II),fiXAQ(II),STAVG(II)fSTMAX(Ii),HXST(II)
1100 CONTINUE
C
C
C CALCULATE RADIONUCLIDE CONCENTRATIONS IN FOOD DUE TO
C ATMOSPERIC DEPOSITION.
C
C
URITE(LU2,GOOO)
URIXE(LU2,G005)
DO 1200 I=1,NONCLD
11=1
DERA1E( II)=ATAVG( IDAVDA3.GE15
CALL FOOD(II)
WRITE,CGMI2(II>,CMEAT(II)
1200 CONTINUE
C
CALCULATE RADIONUCLIDE CONCENTRATIONS IN FOOD DUE TO
C WATER IRRIGATION. ALSO CALCULATE ANNUAL RADIONUCLIDE
C INTAKE BY MAN.
C
C
URITE(LU2,G010)
URITE(LU2,6005)
DO 1300 I=1,NONCLD
11=1
CUAT<1I)=(UUATLAAQAVG(II)+SUATLASTAVG
-------
JIX.'NUCLIDE'.&X 'PUMPED OUT ',5X 'PUMPED OUT ',5X,'LEFf BOTTOM',
*5X 'OVERFLOWED *,5X,'RELEASED TO;,5X,'RELEASED TO'/' ',13X.
X' THE WELL '.5x]' THE STREAM' 5X ' OF TRENCH ',5X,' TRENCH '
J3X,'IHE ATMOSPHERE',4X,' BASIN')
WRIIE(LU2r6(J42)ICNUCLID(I)FPOU(I)rPOS(I),PLBT(I),OFT(I),RTA(I),
iQDWSB(I)
1313 CONTINUE
6042 FORMATC ' 1X.A8,5Xf6(1PE11.4,5X))
URIIE(LU2,6045)
C
C
C CALCULATE VARIABLES NECESSARY TO PASS TO DARTAB.
C DARTAB COMBINES RADIONUCLIDE ENVIRONMENTAL EXPOSURE
C DATA WITH DOSIMETRIC AND HEALTH EFFECTS DATA TO GENERATE
C TABULATIONS OF PREDICTED IMPACTS.
C
C
PPOP=POP
LDIST=XG
LLIND=LIND
DO 1320 I=1.NONCLD
QSUR=(CSP(I)+CSPO
-------
6215 FORHATC ' A8.3X.3<2(1PE11.4,2X> .OPI4.5X)) „.,*„««,
6220 FORMAK/' ' ,5^,'iADIONUCLIDE BREAKTHROUGH TIME IS ONLY SLIGHTLY',
i ' GREATER THAN SIMULATION TIME AND LEADING EDGE OF PULSE',
8 ' MAY BE MISSED')
602 FGRMAK//' ',10X 'ANNUAL SOIL LOSS IS '.1PE11.4,' KILOGRAMS PER',
g ' SQUARE METER',/' '.20X,'OR ',Ell.4.
8 ' MEIERS IS REMOVED FROM THE SURFACE7)
603 FORMATC ' ,10X,'ANNUAL INFILTRATION INTO TRENCH IS ',
8 F8.4,' METERS')
604 tORMATC '10X.'VERTICAL WATER VELOCITY IS ',F8.4,' METERS',
1 ' PER YEAR') ,
605 FORMATC ',10X 'NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE',
8 ' PER UNIT SOURCE RELEASE IS 'Ell.4 ' CI/MAA3 PER CI/SEC')
615 FORMAK//' ' 5X. 'WATER OUTFLOW FROM THE WASTE IS APPROACHING',
8 ' DILUTION VOLUME IN AQUIFER FOR YEAR ',14)
700 FORMAK'l',35X 'AVERAGE CONCENTRATIONS flOER THE YEARS/,13,
& ' TO ',14,' OF THE SIMULATION'
S /' ',50X!'MAXIMUM ANNUAL CONCENTRATIONS',
8 ///' 'IX.'NUCLIDE'.OX 'ATMOSPHERE DOWNWIND',
8 24X,'1N WELL',26X,'IN STREAM'
8 //' '7X.3(6X1'AVERAGE'.6X,'MAXIMUM',4X,'YEAR',IX),
8 /' ' 7X 3(2(6X 'CI/MAA3 ) 9X))
5000 FORMAT('l'.51x','INIIlk CALCULAlioNS',//' ' ,50X,'NUCLIDE',
8 lOX'MASS'.//)
5005 FORMAIl' ',51X.A8.8X.F5.0)
5006 FORMATC ',5X,JTHE POPULATION RESIDES ONSITE')
5007 FORMATC ',5X,'POPULATION RESET TO '.F10.0,' FOR ONSITE FARM')
6000 FORMATC1' 30X,'RADIONUCLIDE CONCENTRATION IN FOODS DUE TO'
a 't, U . r . I, . ,/A, fl m ImL, • ,/A, U . 1 . Jj . /
6010 FORMAK////' ' 35X. 'RADIONUCLIDE CONCENTRATION IN FOODS DUE TO',
8 ' IRRIGATION*,/' ',55X,'PICU CURIES PER KILOGRAM')
6020 FORMAK///' ',5X.'NOTE: G.P.E. - GENERAL POPULATION',
8 ' EXPOSURE'./' J,11X,'M.I.E. - MAXIMUM INDIVIDUAL',
& ' EXPOSURE')
6024 FORMAK'O' 11X.'M.I.E. WILL BE USED 10 CALCULATE',
X ' HEALTH EFFECTS')
6026 FORMATCO'.llX.'G.P.E. WILL BE USED TO CALCULATE',
& ' HEALTH EFFECTS')
6030 FORMATC1'.IX 'NUCLIDE'.lOX.'ANNUAL INTAKE',10X,
8 'ANNUAL INTAKE'/' ' ISX.'BY INGESTION',11X,'BY INHALATION',
8 /' ' 20X,2CPCI/Y',l8X)I '
6040 FORMATC ' ,1X.A8,9X,1PE11.4,12X,1PE11.4)
6050 FORMATC ' ,50X,A8.8X,F8.4)
6045 FORMATC1' 50X.'IRACTION OF INGESTION DUE 10 WATER',
8 //' ',50i,'NUCLIDE',10X.'FRACTION')
6300 FORMATCl'.SSX,'MAXIMUM ANNUAL EXPOSURE'
8 ///,2X 'NUCLIDE' 12X,'AIR',8X 'YEAR' 8X.
8 'SURFACE' 6X,'YEAR',7X,'INGESTION',5X,'YEAR',6X,
8 'INHALAIl6N'!5X,'YEAR''
8 /' '.15X,2CCONCENTRATION',12X),5X,
8 2CRATE',19X),
8 /' '.18X.'CI/HAA3'.18X.'CI/MAA2',
8 16X.2CPERSON.PCI/Y',12X)/)
6310 FORMATC '.A8.8X,4(1PE11.4,4X,OPI4.6X))
1492 FORMAK//,IX,'THE MAXIMUM INDIVIDUAL DOSE OCCURS IN THE ',
A-19
-------
+ 16,' XH YEAR')
1493 FORMAI('r,///.20X,'NUCLIDE DOSE CONVERSION FACTORS './/,
& ' NUCLIDE '.3X,' INGESTION INHALATION AIR IMMERS. SURFACE'
S .//)
END
C
C
SUBROUTINE AIRTRM(EXPOS,DEPO,DWELL)
C
C
C
C
C
C D.E. FIELDS. 2/81
C CONFUTES ATMOSPHERIC EXPOSURE VALUES AT POINTS DOWNWIND FROM
C RELEASE SITE FOR 22.5 DEG. SECTOR
C RECEPTOR ASSUMED AT GROUND LEVEL
C
C
C
C DEPO =DEPOSintlN RATE PER UNIT SOURCE STRENGTH
C EXPN =NORMALIZED EXPOSURE = EU/Q, S/MAA2,
C EXPOS =EXPOSURE PER SOURCE STRENGTH NORMALIZED TO
C WIND VELOCITY
C H =SOURCE HGI, M
C HLID =LID HEIGHT
C 1PLU =1 IMPLIES TRANSVERSE PLUME CALCULATION REQUIRED
C ISEC =1 IMPLIES SECTOR AVERAGE REQUIRED
C IS ^STABILITY CLASS
C IT =TYPE OF STABILITY FORMULATION,
C =1 FOR PG
C =2 FOR BRIGGS-SMITH
C ROUGH =HOSKER ROUGHNESS PARAMETER, M, ABOUT
C .01APHYSICAL ROUGHNESS
C U =VELOCITY, WIND. M/S
C VD =VELOCITY, DEPOSITION. M/S
C VG =VELOCirY! GRAVITATIONAL FALL. M/S
C XXG =GAUGE DISTANCE FROM SOURCE BASE. M RAE0386
COMHQN/AIR/CHIQ,FTWIND,HfHLID,IS,IT,RE(10000),ROUGH,RTPDEX,U,
8 VD.VG,XG
COMMON/LAND/RA1NF,ERODF,SIPLNG.COVER,CONTRL,SEDELR, SOILOS,
8 PORS,BDENS,DWET,EXTENT,ADEPTH,PD,RUNOFF,BDENV,RESAT,
C
C TEST FOR INVALID COMBINATIONS OF IS AND IT:
36 IF(IS.LI.1.OR.IS.GT.6)WRITE(6,38)IT.IS
IFdT.EQ.S.AND. (IS.EQ.1.0R.IS.EQ.5) )UKIIE<6.38) IT. IS
IF(IT.EQ.6.ANDt(IS.EQ.1.0R.IS.EQ.6))WRITE(6,38)IT,IS
38 FORMAK2X 'INVALID COMBINATION OF 11='f 12.'AND IS=',I2)
C INITIALIZE PARAMETERS
PI=3 141593
IF(HLID.EQ.O.)HLID=12000.
LID=HLID
XG=XG+EXTENT/0.397825
?XSsX5r RAE0386
lXb=XXb
C ACCOUNT FOR PLUME 1ILT
HH=H-VGAXXG/U
IF(HH.LT.O.)HH=0.0
A-20
-------
C COMPUTE PLUHE WIDTH FACTORS AT DISTANCE XXG
CALL SIGMAZ(XXG,H.IS,ROUGH,SIGZ. IKPM.HLID,VG.U,HH> RAE0386
C RESTRICT HLID TO TROFOPAUSE IF INPUT SPEC. =0.6
C COMPUTE CORRECTION FACTOR FOR PLUME DEPLETION
C
COR=1.
IF,ATUO(6),BTUO(6),CONE<6),DONE(6),
XCTUO(6).DTUO(6),RGH(6)
DATA AONE/0.112.0.130,0.112,0.098.0.0609,0.06387
DATA BONE/1.06.0.950.0.920,0.889,6.895.0.783/
DATA ATWO/5.38E-4,6.52E-4.9.05E-4,1.35E-3,1.96E-3,1.36E-3/
DATA BTUO/0.815,0.750,0.718,0.688,0.684,0.672/
A-21
-------
DATA CONE/1.56.2.02.2.72.5.16,7.37,11.7/
DATA DONE/0.0480.0.0269,&..-0.060,-0.0957,-0.128/
DATA CTWO/6.25E-4,7.76E-4,6.,186.,4.29E+3,4.59E+4/
DATA DXUO/0.45.0.37.0..-0.225.-0.60.-0.78/
DATA RGH/0.01,0.04,0.10,0.40,1.0,4.O/
P=0.0
DO 8 1=1,50
IKP=I
IF
-------
DIMENSION XX<2),FX(2),AX<2)
IF (I.LT.O) GO TO 30
AX<1)=0.0
DO 10 IX=2.NX.2
D1=XX(IX)-XX(1X-1)
AX)
IF (NX.EQ.IX) GO TO 20
D2=XX(IX+1)-XX(IX-1)
D3=D2/D1
A2=D3/6.0AD2AA2/
AX(IC)=AX(IC+1)+D1/2.0A(FX
-------
50 INL=IND-
100 D=DA(XD-X(D)
110 S=S+Y(J)/D
YLAG=SAP
120 RETURN
130 YLAG=Y(J)
GO TO 120
END
C
C
BLOCK DATA
C D.E. FIELDS, 2/81
COhHON/C/BY<6),B21<6).BZ2(6),B23<6),Al<6),A2<6),Bl(6),B2(6),
8 B3(6),PY(6,5),PZ(&,5),QY<&,5>,GZ<6,5),XM<50>
C FOR BRIGGS
DATA BY/. 22.. 16.. 11.. 08.. 06,. 04/,
& BZ1/.2, .12,.08..06..03,.016/,
S BZ2/0.f0.v. 0002,. 0015, . 0003,. 0003/,
...,-.,-.r-.,-.
FOR PG
DATA Al/-. 0234,-. 0147, -.0117, -.0059,-. 0059, -.0029/,
S A2/.35, .248, .175. .108. .088, .054/,
g Bl/. 88,-. 985, -1.186, -1.35, -2. 88. -3. 8/,
& B2/-. 152,. 82.. 8S..793, 1.255, 1.419/,
8 B3/.14751. 0168,. 0045. .0022, -.042.-.055/
FOR KLUG, ET. AL. TYPES OF DISPERSION...
DATA PY/. 469,. 306.. 23.. 219,. 237,. 273,0.,. 4,. 36,. 32,. 0,. 31,
| .0.1.7 1.44,. §1,1.62,. 6. 66,. 66,. 63,. 53,. 41, 7. 56,
5 .34. .37, .40. .43. .46, /.56/
DATA QY/. 903,. 885.. 855.. 764,. 691,. 594,0.,. 91,. 86,. 78,. 0,..71,
& 0... 717. .71. .729, .648, .6, .83, .83, .80, .80, .87, .52,
8 1.00. .94, .88, .82' 76. .52/
DATA PZ/. 017,. 072,. 076,. 14,. 217,. 262,. 0.. 411,. 326,. 223,. 0,
& . 062, . 0,. 079. . 131, .91,1. 93, .0,. 14, .14, .21, .26, .13, .56,
8 .O37..076..16,.32..66.1.37/
DATA QZ/1. 38, 1.021,. 879,. 727,. 61.. 5,. 0,. 907,. 859,. 776,. 0,. 709,
8 .0.1.2.1.046,.702,.4&5,.6,1.0§,1.&9,!98 .89, !83, .55,1 .28,
8 1.12..%,.88,.63,.47/ '
DATA XM/
8 1.000E+00,2.000E+00,3.000E+00,4.000E+00,5.000E+00,
8 1.000E+01,1.500E+01,2.000E+01,2.500E+01,3.000E+01,
8 3.500E+01,4.000E+01,4.500E+01,5.000E+01,1.500E+02,
8 2.000E+02,3.000E+02,4.000E+02,5.000E+02,6.000E+02
A-24
-------
c
c
c
& 7.000E+02,8.000E+02,cJ.OOOE+02f1.000E+03,1.100E+03f
i 1.200E+03,1.300E+03 1.400E+03,1.600E+03,1.800E+03,
I 2.000E+03f2.500E+03.3.000E+03,3.500E+03,4.000E+03,
& 4.500E+03,5.000E+03 G.OOOE+03,7.000E+03,8.000E+03,
I 1.000E+04,1.500E+04 2.000E+04,3.000E+04,4.000E+04,
i 5.000E+04.6.000E+04,7.000E+04,8.000E+04,1.000E+05/
END '
FUNCTION CAP(NYEAR)
C
C
CAAA
CAAA
CAAA THIS FUNCTION CALCULATES AND RETURNS THE FRACTION OF THE TRENCH
CAAA CAP THAT HAS FAILED. FAILURE CAN BE CAUSED BY EROSION AS
CAAA DETERMINED FROM THE UNIVERSAL SOIL LOSS EQUATION OR BY USER
CAAA INPUTS. CAP=1 INDICATES TOTAL CAP FAILURE. THIS FUNCTION
CAAA IS CALLED BY TRENCH.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
INPUT VARIABLES
NYEAR = CURRENT YEAR OF SIMULATION
NYR1 = FIRST YEAR OF FAILURE
NYR2 = LAST YEAR OF FAILURE
PCT1 = PER CENT FAILURE IN NYR1
PCI2 = PER CENT FAILURE IN NYR2
OVER = THICKNESS OF TRENCH CAP
OUTPUT VARIABLE
CAP = FRACTION OF CAP THAT HAS FAILED
DOUBLE PRECISION NUCLID
COMMON/CNIRL/NONCLD.MAXYR,TITLE<20).LOCATE(12).NYR1.NYR2.
& PCT1,PCI2.LEAOPI,IOPVUV.IOPSAT,IPRT1,IPRT2.IDELT.
g IRRES1.IRRES2.LIND,IAVG1,IAVG2.RR,FTHECH,
& UUATL,UUATA,UUATH,SUATL,SUATA,SUATH,IVAP,IBSMT.IDISP
COMMON/TRCH/IAREAFTDEPTH,OVER,PORT,RELFAC,DENCONfOLDUAI,SEEP
CAP=0.0
IF(OVER .GT. l.E-3) GO TO 20
CAP=1.0
RETURN
20 IF(NYEAR .LI. NYR1 .OR. NYR1 .GE. NYR2) RETURN
CAP=«PCI2-PCT1)/(NYR2-NYR1»A(NYEAR-NYR1)+PCT1
IF(NYEAR .GT. NYR2) CAP=PCT2
RETURN
END
A-25
-------
SUBROUTINE ERORF
C DETERMINES SEDIMENT LOADING FOR RAIN DRIVEN SURFACE
C EROSION. AVERAGE ANNUAL SOIL LOSS IN TONS PER ACRE
C IS CALCULATED USING THE UNIVERSAL SOIL LOSS EQUATION.
C
C
C
C
C
C
C
C
CAAAAAAAAAAAAAAA VARIABLES FOR UNIVERSAL SOIL LOSS EQUATION AAAAAAAAAAAA
C
C RAINF=RAINFALL FACTOR
C ERODF=ERODIBILITY FACTOR
C STPLNG=SLOPE-STEEPNESS AND SLOPE LENGTH FACTOR
C COVER=COV£R FACTOR
C CONIRL=EROSION CONTROL PRACTICE FACTOR
C SEDELR=SEDIHENT DELIVERY RATIO
C
C
C
C
COMMON/LAND/RAINF,ERODF,STPLNG.COVER,CONIRL.SEDELR.SOILOS,
& PORS.BDENS,DWET,EXTENT,ADEPTH,PD,RUNOFFFBDENV,RESAT,
SOILOS = RAINF A ERODF A STPLNG A COVER A CONTRL A SEDELR
RETURN
END
C
C
C
C
SUBROUTINE FOOD(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLES, MILK AND
C HEAT CONSUMED BY MAN RESULTING FROM ATMOSPHERIC DEPOSITION
C CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C NN NUCLIDE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
C XAMBUE = UEATHER DECAY CONSTANTS 1/H
C AIRBORNE MATERIAL
C TA PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
C CONTAMINATED AIRBORNE MATERIAL H
C PP SURFACE DENSITY FUR SOIL KG/MAA2
C RA RETENTION FRACTION
A-26
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
g
c
c
c
c
c
c
BV = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY VEGETATIVE PARIS OF CROPS
BR = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
DERATE = RADIONUCLIDE DEPOSITION RATE
10PT =
Yl
Y2
TE1
IE2
TH1
TH2
TH3
TH4
TH5
TH6
FP
FS
FMC
FM6
QFC
QFG
m
IF2
FF
IS
ABSH
P14
OPTIONS FOR SPECIALS RADIONUCLIDES H-3 AND C-14
IOPT = 1 IE H-3 AND C-14 IS NOT INCLUDED IN THIS
IUPI = 2 IF ONLY H-3 IS INCLUDED
IOPT = 3 IF ONLY C-14 IS INCLUDED
IUPI = 4 IF BOTH ARE INCLUDED
AG PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS
AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN
TIME PASTURE GRASS EXPOSED DURING GROWING SEASON
TIME CROP/VEG EXPOSED DURING GROWING SEASON
PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGEST ION BY ANIMALS
PERIOD DELAY BETWEEN HARVEST OF STORED FEED AND
ANIMAL
BETWEEN HARVEST
MAN FOR MAXIMUM
BETWEEN HARVEST
MAN FOR MAXIMUM
PCI/MAA
RUN
KG/HAA2
KG/MAA2
H
H
INGEST ION BY
PERIOD DELAY
INGEST ION BY
PERIOD DELAY
INGESTION BY
H
H
H
H
H
H
OF LEAFY VEG AND
INDIVIDUAL EXPOSURE
OF PRODUCE AND
INDIVIDUAL EXPOSURE
TIME DELAY BETWEEN HARVEST LEAFY VEG AND
INGESTION BY MAN FOR GENERAL POPULATION EXPOSURE
TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY HAN FOR GENERAL POPULATION EXPOSURE
FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
FRACTION OB THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
AMOUNT OF FEED CONSUMED BY CATTLE KG/D
AMOUNT OF FEED CONSUMED BY GOATS KG/D
TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPfOR FUR M.I.E. H
TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR 6.P.E. H
FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG Of FLESH D/KG
TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
CPAST = NUCLIDE CONC IN PASTURE GRASS CONSUMED BY ANIMALS
CSTO = NUCLIDB CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR M.I.E. PCI/KG
CL2 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR G.P.E. PCI/KG
CP1 = RADIONUCLIDE CONC IN PRODUCE CONSUMED BY MAN
FOR M.I.E. PCI/KG
CP2 = RADIONUCLIDE CONC IN PRODUCE CONSUMED BY MAN
A-27
-------
C FUR G.P.E. PCI/KG
C CCMI1 = RADIONUCLIDE CONC IN COW'S MILK FOR M.I.E. PCI/L
C CCHI2 = RADIONUCLIDE CONC IN COW'S MILK FOR G.P.E. PCI/L
C CGMI1 = RADIONUCLIDE CONC IN GOAT'S MILK FOR M.I.E. PCI/L
C CGMI2 = RADIONUCLIDE CONC IN GOAT'S MILK FOfi G.P.E. P£I/L
C CHEAT = RADIONUCLIDE CONC IN BEEF CATTLE'S MEAT PCI/KG
C
C
C
DOUBLE PRECISION NUCLID.H3.C14 /jnv
COMMON/NUC/NUCLID(40),ATMASS(40),TRAM(40),SOAM(40),ATAM<40),
I AQAM(40.10000)!STAM(40).POLO(40),POLB(40),CS(40).CW(40).
i SSTREM(40),SDEEP<40).AIRCON<40),YSO<40),SOAV6(40),CON<46),
I AQCON<40).STCON(40).ATCON(40).AQAVG(40>.STAVG(40>.
I ATAV6(40) FMC(40),FHG(40).DECAY(40),XKD(4,40)fSOL(40).
I EF(40>fRAUo>,RW(40>,BV(40>,BR(40),DERATEUo>,CWAT(40>
COMMON/IRRFOO/Yl.Y2,TEl,TE2.THl.TH2.TH3,TH4,TH5,TH6fFP,FS,
& ULEAFY.UPRODluCMILK.UGMILKfUMEAT.UyAT.UAIR,
& QFC,QFG.TF1,TE2,TS.CL1<40).CL2(46),CP1(40),CP2<40),
& CCMI1(40),CCMI2UO).CGMI1(40).CGMI2(40),
& CMEAT(40).COL1(40),COL2(40).COP1(40).COP2(40),
& COCMI1(40),COCMI2(40),COGMI1(40),COGMI2(40),
I COMEAT(40).QING(40),QINH(40),POP,
* CSP(40),CSPT(40)tCSPO(40),CSPOT(40)
COMMON/FUNC/XAMBWE.TA.IU.FI, PP.UIRATE,
4 QCU,QGU,GBU,ABSH.PI4
DATA H3/8HH-3 /,C14/8HC-14 /
DECA=D£CAY(NN)/8760.
IF(NUCL1D(NN) .EG. H3) GO TO 200
IE(NUCLID(NN) .EQ. C14) GO TO 300
C CALCULATION OF CPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
100 B=0.243ABV(NN) RAE1285
CPAST=CV(NN,Y1.XE1,XH1,B.1.)
C CALCULATION OF CS10 = RADIONUCLIDE CONCENTRATION IN STORED FEED C
C BY ANIMALS
B=0.680A(0.378ABR
-------
CAAA 1 FOR HAXIHUH INDIVIDUAL EXPOSURE
CCH1HNN)=FHC(NN)ACFEEDAGFCAEXP(-DECAAIF1)
C
CAAA 2 FOR GENERAL POPULATION
CCHI2(NN)=FHC(NN)ACFEEDAQFCAEXP(-DECAAIF2)
C
CAAA CALCULATION OF CGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
C 1 FOR HAXIHUH INDIVIDUAL EXPOSURE
CGHI1(NN)=FHG(NN)ACFEEDAQFGAEXP(-DECAATF1)
C
CAAA 2 FOR GENERAL POPULATION
CGHI2(NN)=FHG(NN)ACEEEDAQFGAEXP(-DECAATF2)
C .
CAAA CALCULATION OF CHEAT = RADIONUCLIDE CONCENTRATION IN BEEF CATTLE'
CHEAT(NN)=FF(NN)ACFEEDAQFCAEXP(-OECAATS)
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUH
C
CAAA CALCULATION OF CV3 = TRITIUH CONCENTRATION IN ALL VEGETATION
200 CV3=3.75E14AAIAVG(NN)/ABSH
CAAA CALCULATION OF CONCENTRATION OF TRITIUH IN VEGETATION, HILK AND M
C CONSUMED BY HAN
CL1(NN)=CV3
CL2(NN)=CV3
CPKNN)=CV3
CP2(NN)=CV3
CCHIHNN)=FHC(NN)ACV3AQFC
CCHI2(NN)=CCHI1(NN)
CGHI1(NN)=FHG(NN)ACV3AQFG
CGHI2(NN)=CGHI1(NN)
CHEAI(NN)=FF(NN)ACV3AQFC
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: CARBON-14
CAAA CALCULATION OF CV14 = C-14 CONCENTRATION IN ALL VEGETATION
300 CV14=6.875E14AAIAVG(NN)AP14
CAAA CALCULATION OF C-14 CONCENTRATION IN VEGETATION, HILK AND MEAT CO
C BY HAN
CL1(NN)=CV14
CL2(NN)=CV14
CP1(NN)=CV14
CP2(NN)=CV14
CCHIHNN)=FHC
-------
c
c
DOUBLE PRECISION NUCLID
COMMON/NUC/NUCLID<40),AIMASS(40),TRAM<40).SOAM(40),ATAM(40),
X AQA«(40.10000)!STAM(40).POLO(40).POLB(40).CS(40).CU(40).
S SSTREM<40)fSDEE><40).AIRCON(40>,YSO<40),SOAVG<40),CON<40),
& AQCON<40) ,STCON<40) ,ATCON(40> .AQAVG(40) .SIAVGUO).
* AIAVG(40) FMC<40),FMG<40),DECAY(40),XKD(4,40),SOL<40).
& EE(40).RAUO).RW(40),BV(40),BR(40).DERATE(40),CUAT(40)
COMMON/LAND/RAINF,EROBF,STPLNG.COVER,CONTRL.SEDELR.SOILOS,
S PORS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,BDENV,RESAT,
COMMON/IRRFOO/Y1.Y2,TE1,IE2.TH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
& ULEAFY.UPROD!UC«ILK.UGMILK,UHEAT.U!JAT.UAIR,
S QFC,QF6.TFl.lF2.TS.fLl(40):CL2(46),CPl(40),CP2(40),
i CCMI1(40>,CCMI2(40).CGMI1(40).CGHI2<40),
S CMEAK40) COLK40).dOL2<40).COPl(40).COP2<40),
S COC«I1(405,COCMI2(40).COGMI1(40),COGHI2(40),
S COMEAT(40)'QING<40).QiNH(40).POP,
& CSP(40),CSPI(40).CSPO(40),CSPOT(40)
COMMON/FUNC/XAHBWE.TA,TH.FI.PP.UIRATE,
I QCU,QGW,QBU.ABSH.P14
COHMON/EVAP/PPN.PHID.P,XIRR,S(12),T(12),TD(12),XINFL,SINFL,
* SHASS.WMASS.UDEEP
CO«MON/CNTRL/NONCLD.«AXYR,TITLE(20).LOCATE(12).NYR1.NYR2,
& PCT1.PCI2.LEAOPT.IOPVWV.IOPSAT,IPRT1.IPRT2,IDELT,
i IRRES1.IRSES2.LIND.IAVG1,IAVG2.RR.FTHECH,
& WUATL,WUATA.HHATH,SUATL,SWATA,SWATH,IVAP,IBSMT,ID ISP
NEXYR=IAVG2-IAVGH-1
DECA=DECAY(I)/8760.
XAHBEF=DECA+XAHBWE
TERH1=DERATE(I)ARA(I)ATVA(1.0-EXP(-XAMBEFATE))/(YAXAMBEF)
CSP(I)=CSPT(I)/FLOAT(NEXYR)
IFdNSITE .EQ. 1)CSP(I)=SOAVG(I)
TERM2=CSP(I)AB/PP
CV=(1ERM1+IERM2)AEXP(-DECAATH)
RETURN
END
C
C
C
SUBROUTINE FOODA(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLES. MILK AND
C MEAT CONSUMED BY MAN. RESULTING FROM ATMOSPHERIC DEPOSITION
C CALLED BY MAIN. '
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C NN NUCL1DE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANT 1/y
C XAMBHE = WEATHER DECAY CONSTANIE 1/H
A-30
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AIRBORNE MATERIAL
TA = PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
CONTAMINATED AIRBORNE MATERIAL H
PP = SURFACE DENSITY fUfi SOIL KG/MAA2
RA = RETENTION FRACTION
BV = CONCENTRATION FRACTION FOR UPTAKE OF SADIONUCLIDE
FROM SOIL BY VEGETATIVE PARTS OF CROPS
BR = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
DERATE = RADIONUCLIDE DEPOSITION RATE PCI/MAA
IOPI = OPTIONS FOR SPECIALS RADIONUCLIDES H-3 AND C-14
IOPT = 1 IF H-3 AND C-14 IS NOT INCLUDED IN THIS RUN
Ull-l = 2 IF ONLY H-3 IS INCLUDED
IOPT = 3 If ONLY C-14 IS INCLUDED
IOPI = 4 IF BOTH ARE INCLUDED
Yl = AG PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS KG/MAA2
Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
IE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGEST ION BY ANIMALS H
TH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED AND
INGEST ION BY ANIMAL H
TH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG AND
INGESTION BY MAN FOR MAXIMUM INDIVIDUAL EXPOSURE H
TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FOR MAXIMUM INDIVIDUAL EXPOSURE H
TH5 = TIME DELAY BETWEEN HARVEST LEAFY VEG AND
INGESTION BY MAN FOR GENERAL POPULATION EXPOSURE H
TH6 = TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FOR GENERAL POPULATION EXPOSURE H
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED BY CATTLE KG/D
QFG = AMOUNT OF FEED CONSUMED BY GOATS KG/D
1F1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR M.I.E. H
1F2 = TRANSPORT TIME OF RADIONUCLIDE FROM
EEEO-MILK-RECEPTOR FOR G.P.E. H
EF = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
IS = TIME FROM. SLAUGHTER OF MEAT TO CONSUMPTION H
ABSH = ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
P14 = FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
CPAST = NUCLIDE CONC IN PASTURE GRASS CONSUMED 6Y ANIMALS
CSTO = NUCLIDE CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR M.I.E. PCI/KG
A-31
-------
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CL2 = RADIONUCLIDE CONG
FUR G.P.E.
CP1 = RAD10NUCLIDL CONG
FOR H. I.E.
CP2 = RADIONUGL1DE CONG
FUR G.P.E.
CCMI1 = RADIONUCLIDE CONC
CCMI2 = RADIONUCLIOE CONC
CGMI1 = RADIONUCL1DE CONC
CGMI2 = RADIONUCLIDE CONC
CMEAT = RADIONUCLIDE CONC
IN LEAtY VEG CONSUMED BY MAN
IN PRODUCE CONSUMED BY MAN
IN PRODUCE CONSUMED BY MAN
IN COW'S MILK FOR M.I.E.
IN COW'S MILK FOR G.P.E.
IN GOAT'S MILK FOR M.I.E.
IN GOAT'S MILK FOR G.P.E.
IN BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLID.H3.C14
COMMON/NUC/NUCLID(40),ATMASS(40),TRAM(40),SOA«(40),ATAM(40),
8 AQAM(40.10000),STAM(40).POLO(40).POLB(40),CS(40).CW(40).
8 SSTREM(40),SDEEP(40).AIRCON(40),YSO(40),SOAVG(40),CON(40)f
8 AQCON(40),STCON(40),ATCON(40).AQAVG(40).STAVG(40).
8 ATAVG<40) FMC<40).FMG(40).DECAY<40).XKD(4.40),SOL(40).
8 FF(40).RAUO),RW(40),BV(40).BR(40).DERATEUO).CUAT(40)
COMMON/IRRFOO>YliY2,fEl.TE2.THl.TH5.TH3,TH4,TH5,TH6,FP,FS,
8 ULEAFY.UPRODlUCMILK.UGMILK,UHEAI.UWAT.UAIR,
8 QFC,QFG.TF1,TF2.TS.CL1(40),CL2(40),CP1(40),CP2(40),
8 CCMh(4&),CCMI2UO).CGMIl<40>.CGMI2<40>.
8 CMEAI<40);COL1(40),C;OL2(40).COP1(40).COP2(40),
8 COCMI1(40),COCMI2(40),COGMI1(40),CUGMI2(40),
8 COMEAT(40),QING(40).QINH(40),POP,
& CSP(40).CSPT(40),CSPO(40),CSPOT(40)
COMMON/LAND/RAINF,ERODF,STPLNG.COVER,CONTRL.SEDELR.SOILOS,
8 PORS,BDENS,DWET,EXTENT,ADEPTH,PD,RUNOFF,BDENV,RESAT,
COMMON/EVAP/PPN.PHID,P,XIRR,S(12),T(12),TD(12),XINFL,SINFL,
S SMASS.UMASS,UDEEP
COMMON/EUNC/XAMBWE.TA.TW.FI.PP.WIRATE,
8 QCU.QGU.QBU,ABSH,P14
COMMON/PCV/SOCON(40)
DATA H3/8HH-3 /.C14/8HC-14 /
IF(NUCLID(NN) .EQ. H3) GO TO 200
IF(NUCLID(NN) .EQ. C14) GO TO 300
DECA=DECAY(NN)/8760.
DECSL=SINFL/(0.15A(1.+BDENS/PORSAXKD(1,NN)))/8760.
CSP(NN)=(CSP(NN)+DERATE(NN)A8760.)AEXP(-(DECA+DECSL)A8760.)
IFdNSITE .EQ. 1) CSP
-------
TERM2=CSPO(NN)AB/PP RAE1285
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
CL1(NN)=CVA(NN,Y2,TE2,TH3,IERM2,1.)
C
CAAA 2. FOR GENERAL POPULATION
CL2
CMEAI(NN)=FF(NN)ACV3AQFC
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: CARBON-14
C
CAAA CALCULATION OF CV14 = C-14 CONCENTRATION IN ALL VEGETATION
300 CV14=6.875E14AAICUN(NN)AP14
CAAA CALCULATION OF C-14 CONCENTRATION IN VEGETATION. MILK AND MEAT CO
C BY MAN
CL1(NN)=CV14
CL2(NN)=CV14
A-33
-------
c
c
c
c.
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
CPKNN)=CV14
CP2CNN)=CV14
CCM1HNN)=FMC=CCMIHNN)
CGMIKNN)=FMG(NN)ACV14AQFG
CGMI2(NN)=CGMI1(NN)
CMEAKNN)=FF(NN)ACV14AQFC
RETURN
END
FUNCTION CVA,SDEEP<40)fAlkON<40),YSO<40)FSfiAVG<405,CON<4<5>,
& AQCON<40>,STCON(40),ATCON(40).AQAVG<40>.STAVG<40).
& ATAVG<40).FMC<40).FMG<40).DECAY<40).XKB(4,40),SOL(40).
X FF(40>.RAUO>.RW<40),BV(4&).BR(40>,DERATE(40>rCUAI(40)
COMMON/FUNC/XAHBWE.TA.TU.FI.PP.WIRATE,
& OCU.QGW,QBW,ABSHTP14
DECA=DECAY(I)/8760.
XAHBEF=D£CA+XAMBUE
TERM1=DERATE(I)ARA(I)ATVA(1.0-EXP(-XAMBEFATE))/(YAXAMBEF)
CVA=(TERMH-IERH2)A£XP(-DECAATH)
RETURN
END
SUBROUTINE HUHEX(NN)
CALCULATION OF ANNUAL RADIONUCLIDE INTAKE BY MAN. CALLED BY MAIN
INPUT VARIABLES
NN = RADIONUCLIDE NUMBER
ULEAFY = ANNUAL INTAKE OF LEAFY VEGETABLES (KG/Y)
UPROD = ANNUAL INTAKE OF PRODUCE (KG/Y)
UCMILK = ANNUAL INTAKE OF COW'S MILK(L/Y)
UGHILK = ANNUAL INTAKE OF GOAT'S MILK(LXY)
UMEAT = ANNUAL INTAKE OF BEEF CATTLE'S MEAKKG/Y)
UUAT = ANNUAL INTAKE OF DRINKING UATER(L/Y)
UAIR = ANNUAL INHALATION RATE OF AIR(M3/Y)
OUTPUT VARIABLES
Q1NG = fS^W^ Ot' RADIONUCLIDE BY DIGESTION OF CONTAMINED
FOOD CONSIDERING ATMOSPHERIC AND AQUATIC PATHWAYSCPCI/Y)
A-34
-------
c
c
c
CAAAA
C
C
100
200
CAAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Q1NH = ANNUAL INTAKE OF RADIONUCLIDE BY INHALAIION(PCI/Y)
DOUBLE PRECISION NUCLID,PNUC
COMMON/IRRFOO/Yl.Y2,TEl,TE2.THl.TH2.IH3rTH4,TH5,TH6,FP,FSf
8 ULEAFY.UPROD.UCHILK.UGMILK.UHEAT.UWAT.UAIR,
8 QFC,QFG.TF1,IF2,TS.CL1(40).CL2(46),CP1(40),CP2<40>,
8 CC«I1(4&),CCMI2<40).CGMI1(40),CGMI2<40),
8 CHEAH40) COL1 (40) .COL2<40) .COPH40) .COP2<40),
8 COCHI1(40>,COCMI2(40),COGHI1<40),COGMI2<40),
I COMEAT(40).QING<40),QINH(40),POP,
X CSP(40).CSPT(40),CSPO<40),CSPOI<40)
COMHON/NUC/NUCtlD(40).AfMASS<40);TRAM(40),SOAM(40) ,ATA«(40),
8 AQAH(40.10000>lSTAM(40).POLO<40),POLB(40).CS(40).CW(40>.
8 SSTREM<40),SDEEP<40).AIRCON<40),YSO(40),SOAVG<40>,CON(40>,
8 AQCON(40).STCON(40),ATCON(40).AQAVG(40).SIAVG(40).
8 ATAVG(40) FMC(40).FHG(40).DECAY(40),XKD(4,40),SOL(40).
8 FE(40).RA(40).RU(40)1BV(40),BR(40).DERATE(40),CWAT(40)
COMMON/PASS/PNUC(40),PCONK40),PCON2(40),PCON3(40)f
8 PCON4(40),PPOP,LLIND,LDIST
CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION OF VEGETATION,
MILK, HEAT AND DRINKING WATER
IFdLIND .EQ. 0) GO TO 100
QVEG=(CL2(NN)+COL2(NN))AULEAFY+(CP2(NN)+COP2(NN))AUPROD
QHILK=(CCMI2(NN)+COCHI2(NN))AUCMILK-KCGMI2(NN)+COGMI2(NN))AUGMILK
GO TO 200
QVEG=(CL1(NN)+COL1(NN))AULEAFY+(CP1(NN)+COP1(NN))AUPROD
QHILK=(CCMI1(NN)+COCMI1(NN))AUCMILK+(CGMI1(NN)+COGMI1(NN))AUGMILK
QMEAT=(CHEAT(NN)+COMEAT
-------
C UWAT = ANNUAL INTAKE OF DRINKING WATER(L/Y)
C UAIR = ANNUAL INHALATION RA1E OF AIR(M3/Y>
C
C Q1NGU1 =AANNUALSINTAKE Of RADIONUCLIDE BY INGESTION OF CONTAMINED
C FOOD CONSIDERING ATMOSPHERIC AND AQUATIC PATHUAYS(PCI/Y)
C QINH = ANNUAL INTAKE OF RADIONUCLIDE BY INHALATION,CGMIl(40),CGMI2<40>.
8 CMEAK40) COL1(40),COL2(40).COP1(40),COP2<40>,
8 COCMIH405,COCMI2(40>,COGMIi(40),COGMI2<40),
8 COMEAT<40),QING(40),QINH<40),POP,
8 CSP(40>.CSPT(40),CSPO(40),CSPOT(40)
COMMON/NUC/NUCLID<40),AIMASS<40),IRAM<40),SOAM(40),AIAM(40),
8 AQAM(40.10000>,STAM(40),POLO<40),POLB(40).CS<40).CW(40),
8 SSTREM(4Q),SBEEP<40).AIRCON(40),YSO(40),SOAVG<40),CON<46),
8 AQCON(40).STCON(40),ATCON(40).AQAVG(40).SIAVG(40).
8 ATAVG(40),FMC(40).FHG(40),DECAY(40),XKD(4,40),SOL(40).
8 FF(40).RA(40)rRW(40).BV(40).BR(40).DERATE(40),CUAT(40)
COMMON/PASS/PNUC(40) ,PCON1(40),PCON2(40),PCON3<40),
8 PCON4(40),PPOP,LLIND,LDIST
CAAAA CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION OF VEGETATION,
C MILK, HEAT AND DRINKING WATER
IF(LLIND .EQ. 0) GO TO 100
QVEG=+COGMI2
-------
2EPSG.YTGPG.YGMAX.XDE.XKE
DIMENSION MODAY(12),TMP<12,31>.DTH<12)
DATA IAMP/99/,MODAY/31,28,31,36,31,30,31,31,30,31,30,31/
URITE<6.3010)
C READ CONTROL PARAMETERS
READ<4.1010)TWI,SLOP,XKI,EPSG,EPSP,YGMAX.XDE,XKE,YPI,YGI
URITE(6,9010)TUT,SLOPrXKI,EPSG,EPSP,YGMAX.XDE.XKE.YPI,YGI
9010 FORMAH7/,' INPUT DAlA AS READ IN',//,5X,6F7.3,2E10.3,2F7.3)
YP(1)=YPI
YG(1)=YGI
YPMAX=YGHAX
VPMAX=0.0
VGMAX=XKI
C CREATE A 3-DIMENSIONAL ZERO-RATE RAINFALL MATRIX
DO 100 IM=1.12
NODAY=MODAY(lM)
DO 100 ID=1.NODAY
DO 100 IH=2,25
P(IM,ID,IH)=0.
100 CONTINUE
C READ MONTHLY MAXIMUM DAY LENGTH
READ(4.1020) (DIH(IM).IM=1.12)
URITE(6.3020) (DTH(IM),IM=1,12)
C READ DAILY MEAN TEMPERATURES (DEG C)
DO 200 10=1.31
READ(4.10305 (IMP(IM,ID),1M=1,12)
200 CONTINUE
WRITE(6,3030)
DO 300 ID=1.31
WRIIE(6,303l) ID,(TMP(IM,ID),IM=1,12)
300 CONTINUE
C OVERLAY PERTINENT DATA (0.1MM/HR) ONTO PRECIP ARRAY AS READ IN
UfcII£(6.3040)
400 READ(4.1040) MO,IDA,(P(MO,IDA,IH),IH=2,25)
IF(IAMP.EQ.MO) GO TO 500
URI1E(6,3041) MO,IDA,(P(MO,IDA,IH),IH=2,25)
GO TO 4&0
C CONVERT RAINFALL TO M/HR
500 DO 600 H0=1.12
NODAY=MODAY(MO)
DO 600 IDA=1.NODAY
DO 600 IH=2.35
P(MO,IDA,IH)=P(MO,IDA,IH)AlE-4
600 CONTINUE
C CALCULATE OR DEFINE CONSTANTS
DELT=1.0
TAU=0.66
XKCMMD=120./39.37 j
CEP=.147(24. A 1000.)
XL=IWI/2.
XKL=SQRI(SLOP)A3600.70.05
H(l)=0.
XKCM=XKCMMD/(1000.A24)
TEP=0.
TP=0.
TXI=0.
HSNU=0.
IRO=0.
XKI=VGMAX+VPMAX
URITE(6f3050)
A-37
-------
URITE<6,3051) XKCMMD,YGMAX,TUT,SLOP,XKI
WRIIE(6,30S2)EPSP,£PSG,XDE,XKE,DELT
C
C STEADY STATE INFILTRATION LOOP
C
TXIL=0.0
DO 80 IY=1,10
IP=0.0
TEP=0.0
IRO=0.0
1X1=0.0
C
C MONTHLY LOOPAAAAAAAAAAAAAAAAAAAAAAAA
DO 70 IM=1,12
NODAY=MODAY(1M)
DT=OXH(IM>/12.
C DAILY LOOPAAAAAAAAAAAAAAAAAAAAAAAAAA
DO 60 IO=1,NODAY
TC=T«P(IM,ID)
IFd'C .LI. -20.8) XI = 0.
IE(IC .LI. -20.8) GO TO 5
BB==CEPADTADTAPI
HR=1.0
C HOURLY LOOPAAAAAAAAAAAAAAAAAAAAAAAAAA
DO 50 IH=2,25
EP(1)=EP(1)
C CONVERT BACK TO FAHRENHEIT TEMP (TF)
TF=(1.8ATC)+32.
IF(1F.GE.32.) GO TO 10
HSNH = HSNU t P(IM.ID,I)
R(I) = 0.
GO TO 40
10 SM=XKCHA(TF-24.)
IF(SM .LI. HSNW) GO TO 30
SM=HSNU
30 HSNW=HSNU-SM
R(I)=SM+P(IM,ID,I)
40 CONTINUE
CALL ROUT
TEP=TEP+(EIS(I)+ETO(I))ADELT
TP=IP+P(IM.ID.I)ADELT
TXI=IXH-Xia)J(DELT
TRO=TRO+QL(I)ADEL1
ETSO=E1S(I)+ETO(I)
11=1-1
HR=HR+1.
C
50 CONTINUE
H(1)=H(25)
YG(1)=YG(25)
YP(1)=YP(25)
60 CONTINUE
70 CONTINUE
WRIIE(6,81) IY
81 fO«MAI(//,10X,/YEAR=',I2)
A-38
-------
URIIE<6,3060) TP.TEP,TRO,TXI
URIIE<6,3061> YPC25).YG(25>.HSNW
3061 FORMAI<5X,'PELLICULAR'4X 'GRAVITY',5X.'SNOW'/,5X,'DEFICIT',
C 7X,'DEFICir'/,5X,56<'-')/,4X 3(1P£11.2)/)
PERIXI=TXI-TXIL
URITE<6.82) PERTXI
PER=0.02AIXIL
IF(PERIXI.LE.PER.AND.IY.NE.l) RETURN
TXIL=TXI
80 CONTINUE
82 FORMAH//.' CHANGE OF TOTAL ANNUAL INFILTRATION='
C .1PE11.2.////)
C FORMAT STAIEHENISAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1010 FORMAK10F7.3)
1020 FORhAT(12F5.1)
1030 FORMAT(2X,12F6.2)
1040 FORMAHI2,1X.12.1X.24(F3.0).2X)
3010 FORMAHIX,'OUTPUT FROM SUBROUTINE INFIL'/.28<'A'),//)
3020 FORMAH1X, 'DAILY SUNSHINE BY MONTH (HOURS) '/.3X, 12F8.1//)
3030 FORMAH1X,'DAILY TEMPERATURES (DEGREES CELSIUS):'//,
1 2X,'MONIH= JAN FEB MAR APR MAY JUN JUL AUG
2 SEP OCI NOV DEC'/,3X,'DAY'/)
3031 FORMAI(3X,I2,3X,12(F6.2,1X)./)
3040 FORMAT(//,1X 'MONTH,DAY,S RAINFALL AS READ IN (0.1MM/HR):'/)
3041 FORMATdX.2( I2.1X) .24F4.0)
3050 FORMAT(/,1X.'TRENCH CHARACTERISTICS: '/)
3051 FORMAH 15X/SNOWMELI COEFFICIENT =' .F10.2, 'MM/DEG-DAY'/,
115X,'THICKNESS OF TRENCH COVER ='fF10.2,' M'/.
215X,'TOTAL WIDTH OF TRENCH COVER =',F10.2,' M7/,
315X,'AVERAGE SLOPE OF TRENCH COVER =',F10.2,' M/MV,
415X.'PERMEABLITY OF TRENCH CAP ='.E12.3 'M/HR')
3052 FORMATU5X, 'POROSITY FOR PELLIC WATER =*, F10.2.' (UNIILESS)'/,
115X,'POROSITY FOR GRAVITY UATER =',F10.2.'(UNITLESS)'/,
215X,'EQUIVALENT UPWARD DIEFUSIVITY =',E12.2,' MAA2/HR',/,
315X,'EQUIVALENT UPWARD HYDRAULIC CONDUCTIVITY =',E12.2,' M/HR',/
415X.'TIME STEP EOR MODEL ='. F10.2,' HOURS'/)
3060 FORHAT(///,1X.12('A').'CUMULATIVE ANNUAL VALUES (M)'.12('A')//
1 8X,'PR£CIP' 6X.'EVAPl,6X,'RUNOt'f/,6X,'INFIL',/,5X,50('-')/,
2 4Xl4
-------
IE(HI(J> .LI. 0.0) HT(J)=0.
IF(J .GE. 3) GO 10 100
HT(J+1)=(HX(J) + H(I-1»A0.5
GO TO 200
100 IE(J .EQ. 3) HKJ+1) = HKJ)
200 CONTINUE
H + (XIT-VGf)ADELT/EPSG
ETO(I) = E10T
E1S(I)=ETST
XKI)=XIT
VP(I)=VPT
VG(I)=VGT
RETURN
END
SUBROUTINE SOIL
COHMON /BLOCK1/R(25),EP<25),H(25).GL<25),YP<25).YG<25),ETO(25),
1 ETS<25).VP(25).VG<25).YIP(25>,YTG<25),XI(25>,PU2,31,25>
COMMON /BLOCK2/HT(4),YPT<4).YGT(4)
COMMON /BLOCK3/RT.EPT,YPTE,XKL.ETOT.QLT.XL.VGT.VPT,DELT,£TST,EPSP,
lYIGPP.HUPMAX,VPMAX,HUGMAX,gGMAX,YPMAXfXNS,UYMAX,XKIfIfXIT,
2EPSG,YTGPG,YGMAX,XDE.XKE
ISWE=(RT-EPT)ADELH-H(I-1)
IFdSUE .LT. 0.0) GO TO 100
ET01=EPT
ETST=0.0
VPT=VGMAX
AUX=TSUE/DELT
IF(AUX .LT. VGMAX) VPT=TSWE/DELT
50 YPTT=VPTAD£LT/EPSP
IF(YPT1 .61. YP(I-l)) VP1=YP(I-1)AEPSP/DELT
IFtYPIT .GE. YP(I-D) YPTT=VPTADELT/EPSP
TGHW=TSWE-yPXADELI
IFCfGHW .LT. 0.0) TGHU=0.
VGT=VGMAX-VPT
IFdGHU .LT. VGT) VGT=TGHU/DELT
YGTT= VGTADELI/EPSG
IF(YGTT .GI. YGd-D) VG1 = YG( 1-DAEPSG/DELT
IF(YGIT .GI. YG(I-D) YGTT=VGfADELT/EPSG
GO TO 150
100 ETOT=TSWE/£i£LH-EPI
IF(E101 .LT.O.) EI01=0.
EPSPG=EPSP+EPSG
EPIE=EPT-ETOT
IF(YP(I-1).EQ.O.) »GO TO 110
ETSXy=(XDEA£PSP/YP(1-1))-XKE
IF(EISTW.GI.EPTE) ETSTW=EPIE
GO TO 120
110 E1SIU=EPTE
120 ElSIV=EPl-E/(H-(YP(I-l)AO.b/(0.66AEPSPG)))
IF(ETSTV.GE.ETSTU) ETST=ETSIV
IF(ETSTW.GE.EISTV) ETST=ETSTU
VPT=0.
V6T=0.
150 It(YG
-------
XIT=0.
GO TO 250
200 XIT=XKI
YGII=X1TADELT/EPSG
XX=YGMAX-YG(I-1)
IF(YGIT .GT. XX) XIT=XXAEPSG/DELT
250 CONTINUE
RETURN
END
C
C
C
SUBROUTINE IRRIG(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLE, MILK AND
C CONSUMED BY MAN RESULTING FROM UATER IRRIGATION. CALLED BY MAIN.
C
C
C
C
C
C INPUT VARIABLES
C
C NN NULL IDE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANTS 1/Y
C XAMBUE = WEATHER DECAY CONSTANTS 1/H
C TU = PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
C CONTAMINATED WATER H
C PP SURFACE DENSITY FOR SOIL KG/MAA2
C RU = RETENTION FRACTION
C BV CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY VEGETATIVE PARTS OF CROPS
C BR CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
C FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
C FI =FRACTIQN OF THE YEAR CROPS ARE IRRIGATED
C WIRATE= IRRIGATION RATE L/MAA2-
C CWAT = RADIONUCLIDE CONCENTRATION IN UATER PCI/L
C IOPT = OPTIONS FOR SPECIAL RADIONUCLIDE H-3
C 1UPT = 1 IF H-3 IS NOT INCLUDED IN THIS RUN
C IOPT = 2 IF H-3 IS INCLUDED
C Yl ACi PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS KG/MAA2
C Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
C TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
C TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
C IH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
C AND INGESTION BY ANIMALS H
C IH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED
C AND INGESTION BY ANIMAL H
C IH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEGETABLE
C AND INGESTION BY MAN FOR M.I.E. H
C TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
C INGESTION BY MAN FOR M.I.E. H
C IH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
C AND INGESIION BY MAN FOR G.P.E. H
C TH6 = Pt'RIOD DELAY BETWEEN HARVEST OF PRODUCE
C TH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
C FP FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
C FS FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
A-41
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ANIMALS GRAZE ON PASTURE
FMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCL1HE WHICH APPEARS IN EACH L OF MILK D/L
FMG = FRACTION OF XHE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED BY CAXXLE KG/D
QFG = AMOUNT OF FEED CONSUMED BY GOATS KG/D
IF1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR M.I.E. H
TE2 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR G.P.E. H
FF = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
TS = TIME FROM SLAUGHTER OF MEAT XO CONSUPXION H
QCW = AMOUNT OF WATER CONSUMED BY COW L/D
QGU = AMOUNT OF WATER CONSUMED BY GOAX L/D
QBW = AMOUNT OF WATER CONSUMED BY BEEF CATTLE L/D
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
COPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS CONSUMED BY A
COPAST= RADIONUCLIDE CONCENTRATION IN STORED FEED CONSUMED BY ANI
COFEED= RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
COL1 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR M.I.E. PCI/KG
COL2 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR G.P.E. PCI/KG
CUP1 = RADIONUCLIDE CONC IN PROCUCE CONSUMED BY MAN
FOR M.I.E. PCI/KG
COP2 = RAMONUCLIDE CONC IN PRODUCE CONSUMED BY MAN
FOR G.P.E. PCI/KG
COCMI1= RADIONUCLIDE CONC IN COW'S MILK FOR M.I.E. PCI/L
COCHI2= RADIONUCLIDE CONC IN COW'S MILK FOR G.P.E. PCI/L
COGMI1= RADIONUCLIDE CONC IN GOAT'S MILK FOR M.I.E. PCI/L
COGMI2= RADIONUCLIOE CONC IN GOAT'S MILK FOR G.P.E. PCI/L
COMEAT= RADIONUCLIDE CONC IN BEEF CATTLE'S MEAT PCI/KG
DOUBLE PRECISION NUCLID H3 C14
COMMON/CNTRL/NONCLD.MAXfR,flTLE(20).LOCATE(12),NYRl,NYR2.
8 PCT1,PCT2,LEAOPT,IOPVWV.IOPSAT,IPRT1.IPRT2.IDELT.
8 IRRESI.IRRES2fLIND.IAVGl,IAVG2.RR.FTMECH.
8pnuun UWATL.WUATA.WUATH.SUATL.SUATA.SWATH.IVAP.IBSMT.IDISP
COMMON/NUC/NOCLID(4o),ATflASS<4fl).TRAfl(40).§OAM<4o),ATAM<40).
8 AQAM(40.1000).STAM(40),POLO(40>,POLB(40).CS(40).CW(40),
8 SSTREM(40),SDEEP(40).AIRCON(40),YSO(40)rSOAVG(40).CON(40).
8 AQCON(40),STCON(40>.ATCON(40).AQAVG(40).STAVG(40) DETWUO),
8 ATAVG(40> FMC<40),FHG<40).DECAY(40).XKDU.40).SOLUO),
8 FF(40),RA(40),RW(40),BV(40),BR(40),DERATE(40),CUAT(40)
COMMON/IRRFOO/Y1,Y2,TE1,TE2.TH1.TH2.TH3,TH4,TH5.TH6.FP.FS,
8 ULEAFY,UPROD,UCMILK.UGMILK,UMEAT UUAT.UAIR.
8 QFC,QFG.IF1,TF2FTS.CL1(40) CL2(46),CP1(40).CP2(40).
8 CCMh(46),CCMI2(40),CGMIH40),CGM12(40).
8 CMEAT<40).COLl<40),COL2<40>.COPK40).Cofa(40).
8 COCMI1(40),COCMI2(40),COGMI1(40),COGMI2(40).
8 COMEAT(40),QING(40),QINH(40).POP.
8 CSP(40),CSPT(40).CSPO(40).CSPOT<40)
COMMON/FUNC/XAMBWE,TA,TW,FIfPP,UIRATE,
ISINEWL
A-42
-------
& QCW,GGU,QBU.ABSH.P14
DATA H3.C14/8HH-3 .8HC-14
DECA=DECAY(NN>/8760.
C
IF(NUCL1D(NN) .EQ. H3)GO TO 200
IF(NUCLID(NN) .EQ. C14) GO TO 300
C CALCULATION OF COPAST=RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
B=0.243ABVCNN) RAE1285
COPASI=COV(NN,Yl,TEl,im.B,l.)
C CALCULATION OF COSTO = RAOIONUCLIDE CONCENTRATION IN STORED FEED
C BY ANIMALS
B=0.680A(0.378ABR(NN)+0.622ABV(NN)) RAE1285
COSTO=COV(NN,Y1,T£1,TH2,B.O.I)
C CALCULATION OF COFEEF = I^ADIONUCLIDE CONCENTRATION IN ANIMAL'S F
COFEED=FPAFSACOPAST+(1.0-FPAFS)ACOSTO
C
CAAA CALCULATION OF COPLX = RADIONUCLIDE CONCENTRATION IN LEAFY
C VEGETABLE CONSUMED BY MAN
B=0.066ABV(NN) RAE1285
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COLKNN)=COV=COV(NN,Y2,I£2,IH6.B.O.I)
CAAA CALCULATION OF COCMIX = RADIONUCLIDE CONCENTRATION IN COW'S MILK
CUAT(NN)= UUATAAAfrAUG
-------
COL2(NN>=CUAT(NN)
COP1A(QFC+QCW)
COCMI2(NN)=COCMI1(NN)
COGMIl(NN)=FMGACUAT(NN>A
COHEAT(NN)=EF(NN)ACWAT(NN)A=C014
COPHNN)=C014
COP2(NN)=C014
CUAT(NN)= UUATAAAQAVG(NN)+SWATAASTAVG(NN)
COCHI1(NN)=FMC(NN)AC014A(QFC+QCU)
COCHI2(NN)=COCMI1(NN)
COGHI1(NN)=FMG(NN)AC014A(QFG+QGU)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FF(NN)AC014A(QFC+QCU)
RETURN
END
C
C
C
FUNCTION COV(I,YFIE,TH,BFTV)
C
CAAA CALCULATION OF RADIONUCL1DE CONCENTRATION IN FORAGE, PRODUCE AND
C VEGETABLES. CALLED BY IRRIG.
C
C
C
C
C
C
DOUBLE PRECISION NUCLID
COMMON/NUC/NUCLin(40),ATMASS(40).TRAM(40).SOAM(40).ATAH(40).
S AQAM(40.1000),STAM(40),POLO(40),POLB(40),CS(40).CU(40).
I SSTREM(40).SDEEP(40).AIRCON(40)IYSO(40),SOAVG(40)fCON(40).
& AQCON(40>,STCON<40)FATCON(40).AQAVG(40> STAVG(40) DETW(40), ISINEUL
I ATAyG(40).FMC<40).FHG(40).DECAY(40).XKD(4,40).SOL(40).
J FF(40).RA(40).RU(40).BV(46),BR(40),DERATE(40),CUAT(40)
COHHON/LAND/RAINF, ERODE. SIPLN6. COVER,CONTRL.SEDELR.SOILOS.
i PORS,BDENS;DUET,EXTENT,ADEPTH;PD,RUNOFF,RESfti,
COMHON/IRRFOO/Y1,Y2,TE1,TE2,IH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
8 ULEAFY.UPROD.UCMILK.UGMILKjUMEAX.UUAT.UAIR,
S QFC,QEG.IFl,IE2.TS.tLK40)!CL2(4fi).CPf(40)fCP2<40),
S CCHI1(46),CCHI2UO),CGHI1(40),CGMI2(40).
& CMEAI(40).COL1(40),COL2(40).COP1(40),COP2(40),
& COCMIK405,COCMI2(40),COGMIl(40),COGhI2(40).
X COMEAI(40),QING(40),QiNH(40),POP
i CSP(40).CSPT(40).CSPO(40),CSPOT(40)
COMMON/EUNC/XAHBUE.IA.TW.FI.PP.uiRAIE.
8 QCU,QGU,GBU,ABS&,Pl4
COMHON/EVAP/PPN.PHlfi,P,XIRR,§(12)fT(12),TD(12),XINFL,SINFL.
* SMASS,WhASS,UDEEP '
COHMON/CNTRL/NONCLD,MAXYR,TITLE(20),LOCATE(12),NYR1,NYR2,
A-44
-------
I PCT1.PCT2.LEAOPT,IOPVWV.IOPSAT,IPRX1,IPRT2,IDELT,
S IRRESl.IRKES2.LIND,IAVGl,IAVG2,RR,FIMECH,
& WWATL,UUATA.WWATH,SWATL,SWATA,SWATH,IVAP,IBSMT,IDISP
NEXYR=IAVG2-IAVGH-1
DECA=DECAY(I)/8760.
XAMBEF=DECA+XAMBWE
TERM1=WIRAIEACWAT(I)ATVARWi4Uf 11 ^ i«i\ nil*.'
CONSUMED BY HAN RESULTING FROM WATER IRRIGATION. CALLED BY HAIN.
INPUT VARIABLES
TW
PP
RU
BV
BR
FI
UIRATE=
CUAT
IOPT
Yl
Y2
TE1
TE2
TH1
1H2
1H3
TH4
IH5
IS EXPOSED TO THE
1/Y
1/H
H
KG/MAA2
C
c
C
c
c
c
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLE, MILK AND
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
NN = NUCLIUE NUMBER
DECAY = RADIOACTIVE DECAY CONSTANTS
XAMBUE = UEATHER DECAY CONSXANTE
= PERIOD OF TIME FOR WHICH SOIL
CONTAMINATED WATER
= SURFACE DENSITY FOR SOIL
= RETENTION FRACTION
= CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY VEGETATIVE PAfrXS OF CROPS
= CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
=FRACIION OF THE YEAR CROPS ARE IRRIGATED
IRRIGATION RATE
RADIONUCLIDE CONCENTRATION IN WATER
OPTIONS FOR SPECIAL RADIUNUCLIDE H-3
10PI = 1 IF H-3 IS NOT INCLUDED IN THIS RUN
IOPI = 2 IF H-3 IS INCLUDED
AG PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS
AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN
TIME PASTURE GRASS EXPOSED DURING GROWING SEASON
TIME CROP/VEG EXPOSED DURING GROWING SEASON
PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGESTION BY ANIMALS
PERIOD DELAY BETWEEN HARVEST OF STORED FEED
AND INGESTION BY ANIMAL
PERIOD DELAY BETWEEN HARVEST OF LEAFY VEGETABLE
AND INGESIION BY MAN FOR M.I.E.
PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FOR M.I.E.
PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
AND INGESTION BY MAN £QR G.P.E.
L/MAA2-
PCI/L
KG/MAA2
KG/MAA2
H
H
H
A-45
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1H6 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE
TH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
fP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FMC = FRACTION OF THE COW'S DAILY INTAKE OF
RAIIlONUCLIDE WHICH APPEARS IN EACH L OF MILK D/L
FUG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RALHONUCL1DE WHICH APPEARS IN EACH L OF MILK D/L
QEC = AMOUNT OF FEED CONSUMED SY CATTLE KG/D
QFG = AMOUNT 01' FEED CONSUMED BY GOATS KG/D
TE1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEEB-MILK-RECEPTQR FOR M.I.E. H
TE2 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEP10K FOR G.P.E. H
FF = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
TS = TIME FROM SLAUGHTER Of MEAT TO CONSUPTION H
QCy = AMOUNT OF WATER CONSUMED BY COW L/D
QGH = AMOUNT OF WATER CONSUMED BY GOAT L/D
GlBU = AMOUNT OF WATER CONSUMED BY BEEF CATTLE L/D
INTERMEDIATE VARIABLES
XAMBEE= EFFECTIVE DECAY CONSTANT
COPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS CONSUMED BY A
COFAST= RfcDIONUCLIDE CONCENTRATION IN STORED FEED CONSUMED BY ANI
COFEED= RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
IN LEAFY VEG CONSUMED BY MAN
8
COL1 = RADIONUCLIDE CONC
FOR M.I.E.
COL2 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR G.P.E.
COP1 = RADIONUCLIDE CONC
FOR M.I.E.
COP2 = RADIONUCLIDE CONC IN PRODUCE CONSUMED BY MAN
FOR G P E
COCMI1= RADIONUCLIDE CONC
COCMI2= RADIONUCLIDE CONC
COGMI1= RADIONUCLIDE CONC
COGMI2= RADIONUCLIDE CONC
COHEAT= RADIONUCLIDE CONC
DOUBLE PRECISION NUCLID.H3.wx-,
COMMON/CNTRL/NONCLD,MAXh,flTLE(20),LOCATE(i:
IN PROCUCE CONSUMED BY MAN
IN COW'S MILK FOR M.I.E.
IN COW'S MILK FOR G.P.E.
IN GOAT'S MILK FOR M.I.E.
IN GOAT'S MILK FOR G.P.E.
IN BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
CNTRL/NONCLB.MAXYR,TITLE(20).LOCATEU2).NYR1.NYR2.
PCT1.PCT2.LEAOPT, IOPVUV. IOPSAT, IPRT1, IPRT2, IDELT,
IRRES1.IRRES2.LIND,IAVG1,IAVG2,RR,FTMECH,
8 uu tl UWATL WWftTA.WWATH.SWATL.SUATA, SWATH. IVAP. IBSMT. IDISP
COMMON/NUC/N(JCLID(40),ATHASS(40).TRAM(40).SOAM(40).AT^M(40).
8 AQAM(40.1000),STAM(40),POLO(40),POLB(40),CS(40).CW(40).
8 SSTREM(40),SDEEP(40).AIRCON(40),YSO(40).SOAVG(40).CON(40),
8 AQCON(40),SICON(40),ATCON(40).AQAVG(40) STAVGUO) DETW<4<>5,
S AIAVG<40).FMC<40),FMG(40),DECAY(40).XKD(4,40).SOL(40),
8 FF(40),RA(40),RW(40),BV(40).BR(40)fDERAIE(40),CWAT(40)
COM«ON/IRRFOO/Yl,Y2,TEl,TE2.THl.TH2.TH3FTfl4,TH5,TH6,FP,FS.
8 ULEAFY,UPROD,UCMlLK.UGMlLK,UMEATluWAT.UAiR.
8 GFC,QFG.TF1,TF2,TS.£L1<40) CL2(4^) ,Cpf (40) .CP2(40) ,
8 CCMIl(40)fCCMI2(40),CGMIK40),CGMI2(40).
8 CMEAI(40),COLl(40),COL2(40)fCOPl(40),COP2(40),
ISINEWL
A-46
-------
X COCMI1(40),COCMI2(40).COGMI1<40>,COGMI2(40),
S COMEAI<40)'QING<40).QlNH<40),POp;
S CSP<40>.CSPT(40)FCSPO(40>,CSPOT(40)
COMMON/LAND/RAINF,ERODF.STPLNG.COVER,CONTRL.SEDELR.SOIL03,
& PORS.BDENS,DUET,EXTENT,ADEPIH,PD,RUNOFF,BDENV,RESAT,
COMhON/EVAP/PPN.PHID,P,XIRRfS(12).T(12).TIK12).XINFLfSINFL,
X S«ASS.UMASS,WDEEP
COMMON/FUNC/XAMBUE.TA.IU.FI.PP.UIRAIE,
I GCU.QGW.GBU,ABSH,P14
COMMUN/PCV/SOCON<40)
DATA H3,C14/8HH-3 ,3HC-14 /
IFAUIRATEA876&.AFI>AEXP(-(DECA+DECSL>
S A87GO.)
IF
-------
c
CAAA CALCULATION OF COGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
CAAA 1. FOR MAXIhUh INDIVIDUAL EXPOSURE
COGH1HNN>=FMG
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
C TRITIUM CONCENTRATION IN VEGETATION = TRITIUM CONCENTRATION IN AN
C FEED = TRITIUM CONCENTRATION IN WATER = CUAT(l)
CAAA CALCULATION OF H-3 CONCENTRATION IN VEGETATION, MILK AND MEAT CON
C BY MAN
200 COL1(NN)=CUAT(NN)
COL2(NN)=CWAT(NN)
COP1(NN)=CWAT(NN)
COP2(NN)=CWAT(NN)
CUA1(NN)= WUATAAAOCONA(QFG+QGU)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FE(NN)ACUAT(NN)A(QFC+QCU)
RETURN
300 C014=0.
COL1(NN)=C014
COL2(NN)=C014
COP1(NN)=C014
COP2(NN)=C014
CUAT(NN)= UWATAAAGCON(NN)+SWATAASTCON(NN)
COCMI1(NN)=FMC(NN)AC014A(QFC+QCU)
COCMI2(NN)=COCMIHNN)
COGMI1(NN)=FMG(NN)AC014A(QF6+QGW)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FF(NN)AC014A(QFC+QCW)
RETURN
END
C
C
C
FUNCTION COVA(I,Y,TE,TH,TERM2,TV)
L
c
CAAA CALCULATION Of RADIONUCLIDE CONCENTRATION IN FORAGE. PRODUCE AND
C VEGETABLES. 4CALLED BY IRRIG.
C '
C
DOUBLE PRECISION NUCLID
COMMON/NUC/NUCLID(40),ATHASS(40),TRAM(40).SOAM(40).ATAM(40),
I AQAM(40,10000),STAM(40).POLO(40),POLB(40).CS(40).CW(40),
8 SSTREM(40),SDEEP(40).AIRCON(40),YSO(40).SOAVG(40).CON(46),
& AQCON(40),STCON(40),ATCON(40).AfiAVG(40) STAVG(40),
| ATAVG(40).FMC(40).FMG(40).DECAY(40).XKD(4.40).SOLUO)
8 FF(40).RA(40).RW(40)fBV(40).BR(40),DERATE(40)
COMhON/FUNC/XAMBUE.li.IU.EI.PP.UIRAlE.
a QCUfQGUrQBU,ABSH,pi4
A-48
-------
c
c
c
DECA=DECAY<1)/8760.
XAMBEF=DECA+XAMBWE
TERM1=WIRATEACWAI(I)ATVARW(I)A<1.0-EXP<-XAMBEFATE))/(YAXAMBEF)
COVA=(TERM1+IERM2>AEXP(-OECAAIH>
RETURN
END
SUBROUTINE LEACH(NN,NYEAR,VOLB,VOLO.DMAX.CIOT.FRACB,CFF,XD€CN,
& IINFLfPERMI>
C
C
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA THIS SUBROUTINE CALCULATES THE AMOUNT OF EACH RADIONUCLIDE
CAAA THAT LEAVES FROM THE BOTTOM OF THE TRENCH TO THE AQUIFER
CAAA AND THE AMOUNT THAI LEAVES AS A RESULT OF WATER OVERFLOWING THE
CAAA TRENCH. THIS SUBROUTINE IS CALLED BY MAIN.
CAAA
CAAA THERE ARE FIVE METHODS THAT MAY BE USED TO CALCULATE THESE
CAAA AMOUNTS. THEY ARE GIVEN BY THE FOLLOWING VALUES OF
CAAA LEAOPT:
CAAA 1 TOTAL CONTACT.CHEM1CAL EXCHANGE
CAAA 2 IMMERSED FRACTION, CHEMICAL EXCHANGE
3 TOTAL CONTACT, CHEMICAL SOLUBILITY
4 IMMERSED FRACTION, CHEMICAL SOLUBILITY
5 RELEASE FACTOR
CAAA
CAAA
CAAA
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
INPUT VARIABLES
NN = NUCLIDE NUMBER
NYEAR = CURRENT YEAR OF SIMULATION
1AREA = AREA OF TRENCH
TDEPTH = DEPTH OF TRENCH
PORT = POROSITY OF TRENCH MATERIAL
RELFAC = RELEASE FACTOR
LEAOPT = LEACHING OPTION
SOL = SOLUBILITY OF RAOIONUCLIDE IN TRENCH
DENCON = DENSITY OF WASTE
VOLO = VOLUME OF WATER OVERFLOWING TRENCH
VOLB = VOLUME OF WATER LEAVING BOTTOM OF TRENCH
NONCLD = NUMBER Of NUCLIDES
TRAM = AMOUNT ULr NUCLIDE IN TRENCH
OLDWAT = AMOUNT OF WATER IN TRENCH
D1LFAC = DILUTION FACTOR
DMAX = MAXIMUM WATER DEPTH iN TRENCH
XKD = CHEMICAL EXCHANGE COEFFICIENT
OUTPUT VARIABLES
POLE = AMOUNT Uf EACH NUCLIDE LEAVING BOTTOM OF TRENCH
POLO = AMOUNT OF EACH NUCLIDE OVERFLOWING TRENCH
INTERMEDIATE VARIABLES
A-49
-------
C CLWAT = CONCENTRATION OF NUCLIDE IN WATER
C FUET = UETIED OR IMMERSED FRACTION
C POLOUT = TOTAL AMOUNT OF NUCLIDE LEAVING TRENCH
C
C
DOUBLE PRECISION NUCLID
COMMON/CN1RL/NONCLD.MAXYR,TITLE<20).LOCATE<12),NYR1,NYR2,
J PCI1.PCT2.LE&OPT,IQPVWV.IOPSAT,IPRT1,IPRX2,IDELT,
8 IRRE§1.IRRES2.LIND,IAVG1,IAVG2.RR.FIMECH,
J UWATL.&WATA.WWATH.SWATL.SUATA.SWATH.IVAP,IBSMT,IDISP
COMMON/EVAP/?PN.PHlD,P,XIRRfS.TRAM<40>.SOAM(4&),ATAH(40).
& AQAM(40,10000),STAM(40),POLO(40).POLB(40),CS(40).CU(40).
S SSTREM(40),SDEEP(40).AIRCON(40),YSO(40),SOAVG(40)fCON(40),
i AQCON(40),STCON(40).ATCON(40).AQAVG(40),STAVG(40).
& ATAVG(40),FMC(40).FMG(40).DECAY(40),XKD(4.40),SOL(40).
I FE(40),RA(40),RW(40),BV(40),BR(40),DERATE(40),CUAT(40)
DIMENSION CIOT(40),CINEWT(40)
DATA LU6/6/
C
CCUA1'=0.
IF(DMAX .LE. O.XiO 10 600
C—
C— FOR OPTIONS 1 AND 3 ASSUME WETTED FRACTION
C— TO BE TOTAL CONTACT AREA.
C
50 CVEI=1.
TCON=1.
GO 10 (200,100.400,300,bOO),LEAOPT
URIfE(LU6.6000)
6000 FORMATC ;,'AAA ERROR AAA - INVALID LEACHING PARAMETER')
RETURN
C
C—- FOR OPTION 2 USE IMMERSED FRACTION TO COMPUTE WETTED FRACTION.
100 tWET=DMAX/TDEPTH RAE0586
IF(FU£T.GT.1.)EWET=1.0 RAE0586
ICON=1INFL/PERMT RAE0586
IF(FWET.GE.1.0)ICON=1.0
EUAST=(DMAX-VOLB/(PORTATAREA))/(TDEPTH-OVER) RAE0586
IE(EHAS1.G1.1.0)EUAST=1.0
IF(FWAST.GT.O.)TCON=TCONA(1.-FWAS1)+FWAST RAE0586
IF(ICON.GI.1.0)tCON=1.0 RAE0586
C— FOR OPTIONS 1 AND 2 COMPUTE CONCENTRATIONS USING
C— CHEMICAL EXCHANGE.
200 CCUAT=1RAM(NN)AFWETATCON/(TAREAA(DMAXAPORT+TDEPTHAFWETA
S XKD(2,NN)AD£NCONAFRACB)>
TEMP=5.163L11ASOL(NN)ADECAY(NN)/ATMASS(NN)
CCWAf=CCWAIACFFEMP ) CC"AT=TEMP
GO TO 600
C—
C--- FOR OPTION 4 WET1ED FRACTION IS THE IMMERSED FRACTION.
300 FHEI=DMAX/rDEPTH
IF(FWET .GT. 1.0)EUET=1.0
A-50
-------
c—
C FOR OPTIONS 3 AND 4 USE CHEHICAL SOLUBILITY.
r_-._
400 CCHAI=IRAM(NN)AFUET/(DMAXATAREAAPORT)
IEHP=5.163E11ASOL(NN)ADECAY(NN)/ATMASS(NN)
IF GO TO 515
CINEUI(NN)=CIOT+TRAM(NN)ARELFACACFE
IF(DMAX.GT.TDEPTH)DMAX=TDEPTH
IE(DMAX.GT.TDEPTH)DMAX=TDEPIH
CCUAT=CINEWT(NN)/(DMAXAPORIATAREA+VOLB+VOLO)
60 TO 525
515 C1NEWI(NN)=CIOI(NN)
CCUAT=0.
525 CIOI(NN)=CCUAIA(DMAXAPORTATAREA)AXBECN
600 POLOUI=(VOLB+VOLO>ACCUAT
C
C DISTRIBUTE RABIONUCLIBE OUTPUT BETWEEN OVERFLOW AND SEEPAGE
C
610 VOLS=VOLB+VOLO
IFCJOLS .N£. 0.) GO TO 620
POLB
-------
8 AQCON(40),STCON<40),ATCON(40).AQA\;G<40).SIAVG<40).
I ATAVG<40),FMC(40),FMG<40),DECAY(40),XKDU,40),SOL<40).
I FF(40>.RA(40>,RW(40>,BV<40>,BR<40),BERATE(40),CWAI(40)
COMMON/PCV/SOCON<40)
DATA LU6/6/
URITE(LU6.6000)NYEAR
IF (1D1SP.GT.1) WRIIE(LU6,6016) VOLB
IF (IDISP.GT.l) WRIIE(LU6,6023>
IF (IDISP.GT.l) GO TO 7
PER=100.APC
WRIIE(LU6,6005)PER
WRIIE(LU6,6010)WDEPIH
WRIIE
6025 FORMAK' ' ,A8.3X.9(1PE11.4.2X))
6030 FORMAK////' ' .2X ,'NUCLIDE5.5X. 'SURFACE' .5X. 'SURFACE'.
8 4X,'SOLUBLE 10',3X,'SOLUBLE TO',3X,'ATMOSPHERE1,
8 3X,'ATMOSPHERE' 3X 'WELL WATER',3X 'SOCON'
8 /' ' 13X/SOIL CONC'SX 'WATER CONC',4X 'STREAM' 6X.
8 'FACILITY',3X 'AT SPILLAGE' 3X.'DOWN WIND',6X'C&NC'
I 8X ;^XI^^'/)ci/HAA3')'9X'/ci''IlX''CI/'3X'J(5^/CI/rt^3/)»
END '
C
C
SUBROUTINE SOURCE(NUCL,CFT1,DCFI,FGAM,IRST,PERMT,RTGRfSSAT,XRTM)
A-52
-------
c
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAA
CAAA THIS SUBROUTINE PERFORMS THE NECESSARY INPUTS TO INITIALIZE
CAAA PARAMETERS AND VARIABLES. SOURCE IS CALLED FROM MAIN.
CAAA
CAAA
CAAA
CAAA
DOUBLE PRECISION NUCLID.NU.NC.DAIE.DTIME
COMMON/CNTRL/NONCLD.MAXYR.TITLE(20).LOCATE(12).NYR1,NYR2,
& PCT1.PCI2.LEAOPT.IOPVUV.IOPSAT,IPRT1.IPRI2,IDELT,
& IRRES1.IRRES2,LIND.IAVG1,IAVG2,RR,FTMECH,
g WWATL.WWATA,UWATH,SUATL,SUATA.SWATH.IVAP.IBSMT.IDISP
COMMON/EVAP/PPN.PHID,P,XIRR,S<12),TU2),TD(12),XINFL,SINFL,
* SMASS.UMASS.UDEEP
COMMON/IRCH/TAREA.IDEPTH.OVER,PORT.RELFAC,DENCON,OLBUAT,SEEP
CQMMON/RLFRC/RELERC(5),FRTRSH.ITUO
COMMON/STREAH/CIAU(40).CIAM(40).CIIR(40).CISU(40).CIIS(40)
COMMON/UATER/DTRAQ.DWELL,GUy.XLSAT.STFLOU.AQTHK.AQDISP.
8 PORA.PORVfPERMV,IAQSTF.CPRJ.CiWV.HQRAD,ERACB,ALV,ALH
COMMON/NUC/NUCLID(40),AIMASSUO).TRAM(405.SOAM(40):ATAM(40).
& AQAM(40.10000)ISTAM(40),POLO(40).POLB(40),CS(40).CU(40).
& SSTREM(40),SDEEP(40).AlkON(40),YSO(40)fs6AVG(40),CON(40),
I AQCON(40),STCON(40).ATCON(40).AQAVG(40).STAVG(40).
& ATAVG(40).FMC(40).FMG(40).DECAY(40).XKD(4.40),SOL(40).
i EF(40).RA(40).RW(40).BV(40),BR(40),IiERATE(40),CUAT(40)
COHMON/LAND/RAINF,ERODE,STPLNG.COVER,CONTRL,SEDELR,SOILOS,
& PORS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,BDENV,RESAT,
COHMON/AIR/CHIQ,FTWIND,H,HLID,IS,IT,RE(10000),ROUGH,RTPDEX,U,
& VD.VG.XG
COMMON/IRRt'Oa/Yl.Y2,TEl.TE2.THl.TH2.TH3,TH4.TH5.THb,FP,FS,
X ULEAEY,UPROD;UCMILK.OGMlLK,UREATjUWAt.UAiR,
S QFC,QEG.TF1,TF2.IS.CL1(40),CL2(40),CP1(40),CP2(40),
S CCMI1(40),CCMI2UO),CGMI1(40),CGMI2(40),
t CMEAI(40),COL1(40).COL2(40).COP1(40).COP2(40),
& COCMI1(40),COCMI2(40),COGMI1(40),COGMI2(40),
S COMEAT(40).QING(40),QINH(40),POP,
& CSP(40).CSPT(40).CSPO(40),CSPOT(40)
COMMON/FUNC/XAHBUE.TA.TU.FI.PP.WIRATE,
i QCU,QGU,QBW,ABSH,P14
DIMENSION MONTH(12).DAT(20),NUCL(40,8)
DATA LU5/5/,LU6/G/.LU26/26/
C DATA MONTH/'JANVFEBVMARVAPRVMAY',' JUN',' JUL','AUG',
C & 'SEP' 'OCX' 'NUV,'DEC'/
WRI1E(LU6.2010)
5 READ(LU5,3000.END=7)DAT
WRITE(LU26,30dO)DAT
URITE(LU&,2005)DAT
GO TO 5
7 REWIND LU26
C
C CONTROL INFORMATION.
C
READ(LU26,3000)TITLE
READ(LU26,3000)LOCATE
READ(LU26[3010)MAXYR,NONCLD,LEAOPT,NYR1,NYR2.IOPVWV.IOPSAT.
& IPRT1.IPRT2.IDELT,IRRES1,IRRES2,LIND,IAVG1,IAVG2,IDIS>
READ(LU26,3010)IVAP,IBSMT,IAQSTF.IRST,ITWO,INSITE RAE0386
A-53
-------
IE (IDISP.GT.l) ISSTMT = 0
READTITLE
HRIIE
-------
KEAD(LU26,3005) SSAT,RESAT
URITE(LU6,6200)
URIIETAREA,TDEPTH
yRIIE(LU6,6210)PORT
URITE(LU6,6215)SINFL
READ(LU26,3005) PERHT,FACIIM,TMNfCFT1,DCET,FGAM
AQUIFER INFORMATION
8EAIKLU26,3005) D1RAQ.BUELL. GUV, AQTHK.AQBISP.PORi"
REAIKLU26,3005)D1RAQ.DUELL.GUV,AGTHK.AQDISP.PORA,PORV,PERMV
READUU26.3005) VWV. HGRAD, ERACB. ALV,ALHtBDENV
IF (HGRAD.EQ.0.0) HGRAD =1.5
IF (FRACB.EQ.0.0) FRACB = 1.0
IF (ALV.EQ.0.0) ALV = 0.3
IF (ALH.EQ.0.0) ALH = 0.3
IF (VWV.EQ.0.0) VWV = PERMVAHGRAD/FORV
yRITE(LU6,G300)
WRnE(LUG,G305)GUV
WRITE(LUG G310)DTRAQ
URITE(LUG,G315)DUELL
WRITE(LUG,G320)AQTHK,AQDISP
IE (IDISP1EQ.1) WRITE(LU6,6325) PORA,PORVfPERMV
IE (IDISP.NE.l) URIIE(LU6,6326) PORA,PORV,PERMV
W*ITE(LU6.6330) ALH
IF (IDISP.G1.1) URITE(LUG,G340) VUV,HGRAD,FRACB,ALV
IF (IDISP.EQ.l) URITE(LU6,G342) ALV,FRACB
IF (IDISP.GT.l) URITE(LU6,G343) BDENV
C
C ATMOSPHERIC INFORMATION
C
REAB(LU2G,3005)H,VG,U,VD,XG,HLID,ROUGH
READ(LU26,3005)FTWIND CHIQ,RE1,RE2,RE3,RR,FTHECH
READ(LU26,3010)IT,IS
DUMMY1=0.
DO 20 1=1.10000
DUMMYl=DUHMYH-365.
DUM«Y2=DUMMY1 RAE03S6
IF(DUMMY2 .LT. 3650.)DUMMY2=3650. RAE0386
20 RE(1)=RE1AEXP(RE2ASQRT(DUMMY2))+RE3 RAE036G
C
URITE(LU6,6400)
URITEdUG G405)H
yRITE(LU6,G410)yG
URITE(LUG,G415)U
URITE
-------
RTPDEX=SQ8T XRIM,RTGR
URIIE(LU6,7805)Y1.Y2.PP,XAMBUE,TE1,TE2
URITE< LUG. 7815 )THl,TH2,TH3,TH4.TH5,IH6,EP,FSfQEC
URITE(LU6;7825)QFG,TF1,IF2,TS,ABSH,P14
P «j •. in • .r
C ----- WA1ER-FOODCHAIN INFORMATION
P __««^
URI1E(LU6,7900)
READ(LU26r3005)TUfFI,WIRATE.QCU.QGW.QBW
URITE(LU6;7905)Fl'WIRAIE,QCW,QGW,QBW
f* -n -aw -ITT • —
C ----- HUMAN INGESTION AND INHALATION INFORMATION
READUU26, 3005) ULEAFY,UFROD,UCh ILK, UGM ILK, UMEAT,UUAT, UAIR, POP
URIT£(LU6,6905)
WRITE (LU6, 6910) ULEAFY,UPROD,UCM ILK, UGM ILK, UMEAT.UUAT.UAIR. POP
C -----
C ----- NUCLIDE INFORMATION
C -----
WRITE(LU6.7000)
SMASS=1000.ABDENSAEXTENTAPBAADEPTH
UHASS=1000.*PORSAEXTENTAPDAADEPIH
WDEEP=SINFLAEXTENTAPD
READ(LU26,3005) RELERCd ) ,RELFRC(2) , RELERCO) ,RELFRC(4) ,RELFRC(5) ,
X FXRAB,ERTRSH
READ(LU26,3005) SPLAW, SPLAM, SPLIR,SPLSU, SPLIS
DO 1776 I = l.NONCLD
READ(LU26,3012)NUCLID(I),(NUCL(ILK),K=l,8),CIAU(I),CIAM(I)f
& CITR(I),cisW(I)7chs(I) ' '
SOAM(I) = SPLAWACIAW(I) + SPLA«AC1AM< I) + SPLTRACITR( 1) +
& SPLSWACISU(I) + SPLISACIIS(I)
CIAW(I) = CIAU(I) + FTRABACITR(I)
177S
DO 40 I=1,NONCLD
READ(LU26,3012)NUCLID( I) , (NUCL( I.K) ,K=1 .8) .DUMMY!.
JrpAr/t DU«MY2,STAM(I).ATAM(D,DECAY(I),SOL
READ(LU26,3015)NU,(XKD(K.I),K=1,4)
READ(LU26.3015)NC,RA(I),RU(I),BV(I),BR(I),FMC(I),FMG(D,FF(I)
D1R=DECAY( I)
FNCL=(EXP(D1R)-1.0)/D1R
IF(FAC1IM .GI. 0.) FNCL=FNCLA(1.-EXP(-D1RAFACTIM))/(D1RAFACTIM)
FNCL=FNCLAEXP(-D1RATMN)
IF(D1R.LT. 0.001) INCL = 1.0
A-56
-------
CIAW(I)=CIAW(I)AFNCL
CIAM(I)=CIAM(I)AFNCL
CITR(I)=CITR(I)AFNCL
CISW(1)=CISW(I)AFNCL
CIIS(I)=CIIS(1)AFNCL
TRAM(I)=CIAW(I)+CIAM(I)+CITR(I)+CISW(I)+CIIS(I)
CU(I)=1000.ASOAM(I)/(XKD(1.I)ASMASS+WMASS)
CS(I)=CU(I)AXKD(l,I)A1.0E-3
y»IIE(LU6,7005)NUCLID(I),TRAM(I).SOAM(I),STAM(I),ATAM(I),
& DECAY(I),SOL(I),FNCL
40 CONTINUE
URIIErtUli
WRnE(L06,1066) RELFRCd>.RELFRC<2),RELFRC<3),RELFRC(4),RELFRC<5)
1066 FORMAK///' ,'ABSORBING MATERIAL RELEASE FRACTION : 'J1PE11.2
'','<
'.'.','
'ACTIVATED METAL RELEASE FRACTION
'TRASH RELEASE FRACTION
' 1PE11.2
'ylPE11.2
flPE11.2
F1PE11 "
2)
,'SOLIDIFIED WASTE RELEASE FRACTION :
.,, ,'INCIN./SOLID. WASTE RELEASE FRACTION
URIIE(LU6,1067)
1067 FORMAK///' '30X.'WASTE STREAM INVENTORIES' //,
I' NUCLIDE ABS.MAIL. ACT.METAL TRASH SOLIDIFIED ',
I' INCIN./SOLID './/)
DO 1068 I = l.NONCLD
WRITE(LU6,7807) NUCL1D(I),CIAU(1),CIAM(I),CITR(I),CISW(I),CIIS(I)
1068 CONTINUE
WRI1E(LU6,7806)
DO 70 I=1,NONCLD
WRITE(LU6,7807)NUCLID(I),RA(I),RW(I),BV(I),BR
-------
8 ' UNTIL ',F4.2,' HAS FAILED IN YEAR ',14,
8 /' '.10X,'CAP MAY ALSO FAIL BY SURFACE EROSION')
6040 FORMATC '.loX,'PERMEABILITY WILL BE USED FOR MINIMUM',
8 ' VERTICAL WATER VELOCITY')
6050 FORMATC '.10X,'LENGTH OF VERTICAL SATURATED ZONE WILL BE',
8 ' SEt TO THE TRENCH TO AQUIFER DISTANCE')
6055 FORMAK' ' 10X 'FROM YEAR ' 14 ' TO YEAR '.14.
8 ' THfe RE§USPENSION RATE DUE TO MECHANICAL DISTURBANCES',
8 ' WILL BE ',1PE11.4./' ',15X,'TH1S WILL OCCUR DURING ',
8 OPF6.3,' OF EACH YEAR')
6060 FORMATC ' ,10X, 'POPULATION INDICATOR IS '12)
6064 EORMATC '!l5X''MAXIMUM INDIVIDUAL EXPOSURE WILL BE USED',
8 ' TO CALCULATE HEALTH EFFECTS')
6066 FORMATC '.15X.'GENERAL POPULATION EXPOSURE WILL BE USED',
8 ' 10 CALCULATE HEALTH EFFECTS')
6070 FORMATC '.lOX.'IHE POPULATION WILL BE EXPOSED TO CONTAMINATED ',
8 'MATERIALS FROM YEAR ',13.' TO '14)
6072 EORMATC ',10X,F6.3 ' OF IRRIGATION WATER WILL BE GOTTEN FROM ',
8 'WELL'.
8 /' ',10X,F6.3,' OF DRINKING WATER FOR ANIMALS WILL BE',
8 ' GOTTEN FROM WELL'
8 /' '.10X.F6.3 ' OF DRINKING WATER FOR HUMANS WILL',
8 ' BE GOTTEN FROM WELL')
'.10X,F6.3,' OF IRRIGATION WATER WILL BE GOTTEN FROM ',
'STREAM'
' 10X,F6.3,' OF DRINKING WATER FOR ANIMALS WILL BE ',
GOTTEN FROM STREAM'
' 10X.F6.3 ' OF DRINKING WATER FOR HUMANS WILL',
BE GOTTEN FROM STREAM')
6074 FORMAK
8
/
/
6088 FORMA1C ' ,10X,'BEGINNING IN YEAR ',14,', PEOPLE WILL LIVE
8 'IN THE BASEMENT')
6200 FORMAK'l',5X.'AAA FACILITY INFORMATION AAA')
6205 FORMAK//' ',10X.'THE FACILITY HAS AN AREA OF ',
8 Ell.4,' SQUARE METERS AND A DEPTH OF ',
8 Ell 4 ' METERS')
6210 FORMATC ',"l6x, 'WASTE/BACKFILL POROSITY IS ' F8.2)
6215 FORMATC '10X.'ANNUAL INFILTRATION FOR THE WATERSHED IS',
8 E7.4.' METERS')
6300 FORMAK//' *,5X.'AAA AQUIFER INFORMATION AAA')
6305 FORHAK//' ' ,10X,'GROUNDWATER VELOCITY IS '.F10.3,
8 ' METERS PER YEAR')
6310 FORMAK' ' ,10X,'WASIE-TO-AQUIFER DISTANCE IS ',F6.1,' MEIERS')
vw*w fcWMiinjh\ • A w /\ • K n w A M JkU riuUXApJUA vAwXrllT^JLi .L w • L U • X •
6315 FORMATC ',10X,'DISTANCE TO WELL IS ',F8.2.' METERS')
fiT?rt PflBMAT/' ' 1 rtY 'AmiTCtD TUTTl'lJCCC TC 'CO 1 / UVVCtiC'
6320 FORMAK
8 /'
6325 FORMATC
8 /'
8 /' '
METERS
IANS')
,10X,'AQUIFER THICKNESS IS '1F8.2; ..n*^ .
',10X,'AQUIFER DISPERSION ANGLE IS '.FB.4 ' ftAD]
',10X,'POROSITY OF AQUIFER REGION IS ',F8.5.
',10X,'POROSITY BENEATH TRENCH IS '.F8.5. >
,10X,'PERMEABILITY BENEATH TRENCH IS ' 1PE8.2,
' METERS/YEAR')
6326 FORMATC ' ,10X,'POROSITY OF AQUIFER REGION IS '.F8.5,
',10X,'POROSITY OF CONFINING STRATUM IS '.F&.5,
',10X,'PERMEAB1LI1Y OF CONFINING STRATUM IS ',lPE8.2,
' METERS/YEAR') ' '
/'
/'
6330 FORMAT (
6340 EORHAT
8
8 /
8 /
8 /
8
',10X,'AQUIFER DISPERSIV1TY IS ' F7.3.' MEIERS')
',10X,'WATER VELOCITY IN CONFINING STRATUM IS '
F10.3 ' METERS/YEAR'.
',10X,'HYDRAULIC GRADIENT is ' F6.2,
',10X,'FRACTION OF WASTE IMPACTED I§ '.F6.2,
',10X,'DISPERSIVITY IN CONFINING STRATUM IS '.
F7.3,' MEIERS')
A-58
-------
6342 FORHAIC
t
I /'
6343 FORMAT('
I
6400 FORHAK//
6405 EORMAK//
6410 FORHAT
',10X,'THE DISPERSIVIIY IN THE CONFINING STRATUM IS
E7.3,' METERS'.
',10X,'FRACTION OF ABSORBING MATERIAL IS ',F6.2)
',10X,'THE DENSITY OF THE CONFINING STRATUM IS ',
F7.3.' G/CC')
'l',5X.'AAA ATMOSPHERIC INFORMATION AAA')
' '.10X 'SOURCE HEIGHT IS '.F6.1,' MEIERS')
'.10X.'VELOCITY OF GRAVITATIONAL FALL IS ',
t F6.2.' METERS/SECOND')
6425 FORHATC
6420 FORHAK;
Q41D tURnflT ( • JL V A • W AIT IS Vl«l*lfLrJLAl i J m i. \J m £* m t\Lt ± L
6435 FORHATC ,10X,'LID HEIGHT IS '.F8.2.' METERS')
10X 'HOSKER ROUGHNESS FACTOR IS ' F6.2)
,10X,'IYPE OF STABILITY FORMULATION IS ',12,
,10X,'STABILITY CLASS IS '.12)
--•FRACTION OF TIME WIND BLOWS TOWARD POPULATION IS',
6440 FORHAK
6445 FORHATC
I /'
6450 FORHATC
* F1016)
6460 FORHATC '.10X
NORMALIZED DOWN UIND ATMOSPHERIC EXPOSURE PER
& 'UNIT souftcE AREA is ',iPEii.4,' CI/HAAS PER CI/SEC')
6470 FORMAIC ',10X,'NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
*\l ID A \ • A V A • t\U2\llrlldA*jJ>*LP V U W II VffAIW rlAllUwlllMAVAw
\ 'UNIT SOURCE AREA WILL BE CALCULATED INTERNALLY')
ORMATC ',10X,'RESUSPENSION FACTOR PARAMETERS ',3(5X,E11.4))
ORMAK//' ',5X.'AAA SURFACE INFORMATION AAA')
6
6
6505 FORHAK//
& /'
I /'
I /'
& /'
I /'
I /'
6510 FORMAIC
S /'
6515 FORHATC
6520 EORHAK/
S 10X
,10^.'PARAMETERS FOR UNIVERSAL LOSS EQUATION'
,15X,'RAINFALL ',F8.2,
15X 'ERUDIBILITY ',E8.2,
,15X,'STEEPNESS-SLOPE',F8.2,
15X,'COVER ',F8.2,
,15X,'EROSION CONTROL',F8.2.
,15X,'DELIVERY RATIO ',E8.2)
,10X,'SOIL POROSITY IS '.F8.5.
,10X,'S01L BULK DENSITY IS '.F8.5 ' G/CC
,10X,'RUNOFF FRACTION IS ',F8.5)
')
V A • J
.10X,
UA. STREAM FLOW RATE IS '.1PE11.4,' CUBIC METERS PER YEAR'
' f,10X.'CROSS SLOPE EXTENT OF SPILLAGE IS ' OPF8.2,' METERS'
X /' ' 10X,'ACTIVE SOIL DEPTH IS '.F8.2,' METERS',
& /' ' 10X,'AVERAGE DOWN SLOPE DISTANCE TO STREAM IS ',F8.2,
& ' METERS')
',10X,'THE DEEP INFILTRATION FRACTION IS ',F8.5.
',10X,'THE INPUT ANNUAL PRECIPITATION IS y,F8.5)
'.5X.fAAA AIR-FOODCHAIN INFORMATION AAA')
;,10X, 'AGRICULTURAL PRODUCTIVITY FOR GRASS',F10'.2,
'I10X,'AGRICULTURAL PRODUCTIVITY FOR VEGETATION',
F10.2.' KG/MAA2',
',10X,'SURFACE DENSITY FOR SOIL ' F10.2.' KG/MAA2',
'10X.'WEATHER DECAY CONSTANT'.F10.2,' I/HOURS',
',10X,'PERIOD PASTURE GRASS EXPOSURE GROWING SEASON',
F10.2.' HOURS'.
',10Xf'PERIOD CROP/VEGETATION EXPOSURE GROWING SEASON',
F10.2.' HOURS')
,10X,'PERIOD BETWEEN HARVEST PASTURE GRASS AND',
' INGESIION BY ANIMAL'.F10.2.' HOURS'
'.10X.'PERIOD BETWEEN STORED FEED AND INGESTION',
' BY ANIMAL'.F10.2.' HOURS',
'.10X,'PERIOD BETWEEN HARVEST LEAFY VEGETABLES AND',
f INGESTION BY MAN(M.I.E.)',E10.2,' HOURS',
',10X,'PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY',
6525 FORMAT(
& /' '
7800 FORMATC1'
7805 EORMAK/'
t ' KG/MAA2
I /'
g /;
i /'
\
\ /'
&
7815 FORHATC '
&
A-59
-------
' MAN(M.I.E.)'.FlO.2,' HOURS'
/' VOX,'PERIOD BETWEEN HARVEST LEAFY VEG '
a / • 4. V A • JT ia A J. U i' f JU A W ij i. II B U n 1\ V JU hJ A 1* It fl L i V £. »J •
8 'AND INGESTION BY MAN ' FlO.2, ' HOURS',
8 /' VOX, 'PERIOD BETWEEN HARVEST PRODUCE'.
8 ' AND INGESTION BY MAN(G.P.E. ) ' FlO.2 ' HOURS'.
I /' VOX, 'FRACTION OF YEAR ANIMALS GRAZE ON PASTURE ^FIO. 2
I
I
7825 FORHAK
& ' EI6.2.' HOURS ,
I /' VOX, 'TRANSPORT TIME FEED-MILL-RECEPIOR FOR G.P.E.',
I FlO.2,' HOURS',
S /' VOX, 'TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION' ,F10. 2,
I ' HOURS',
I /' '.10X, 'ABSOLUTE HUMIDITY OF THE ATMOSPHERE' ,F10. 2,
8 ' G/MAA3'.
S /' VOX. 'FRACTIONAL EQUILIBRIUM RATIO FOR C-14',F10.2)
7900 EORHAKT 5X,*AAA UATER-FOODCHAIN INFOSMAXlON AA*')
7905 FORMAT(///J '. 10X 'FRACTION OF YEAR CROPS ARE IRRIGATED' ,F10. 2,
\ /' ',10X, 'IRRIGATION RATE ' F10.3.' L/(MAA2-H)'
I /' VOX 'AMOUNT OF WATER CONSUMED BY COWS ' FlO.2,' L/D'.
& /' VOX, 'AMOUNT OF WATER CONSUMED BY GOAfS J, FlO.2,' L/D',
S /' J,10Xr 'AMOUNT OF WATER CONSUMED BY BEEF CATTLE ', FlO.2,
I ' L/D')
6905 EORMAH///' ' 5X,'AAA HUMAN INGESTION AND INHALATION RATE',
\ ' INFORMATION AAA')
• 2,
6910 FORMAT*/' '10X. 'ANNUAL INTAKE OF LEAFY VEG ',F8.:
I ' KILOGRAMS PER YEAR',
S /' '.10X. 'ANNUAL INTAKE OF PRODUCE ',F8.2,
& ' KILOGRAMS PER YEAR',
i /' '10X, 'ANNUAL INTAKE OF COW'S MILK ',E8.2,
S ' LITERS PER YEAR'.
S /' VOX, 'ANNUAL INTAKE OF GOAI"S MILK',F8.2,
X ' LITERS PER YEAR'
S /' ',10X, 'ANNUAL INTAKE Of MEAT ' F8.2,' KILOGRAMS PER YEARJ
I /' VOX, 'ANNUAL INTAKE OF DRINKING WATER', F8. 2,
S ' LITERS PER YEAR',
8 /' ',10X, 'ANNUAL INHALATION RATE OF AIR '.F8.2,
S ' CUBIC METERS PER YEAR' /' ',10X,'A POPULATION OF ',
8 F10.0.' WILL BE CONSIDERED')
7005 FORMATC ' ,A8,3X.9(1PE11.4,2X»
7000 FORMAT('1',5X.'AAA NUCLIDE INFORMATION AAA'
8 //' ',50X ' INFORMATION ON INDIVIDUAL NUCLIDES'.
8 //' '. 'NUCLIDE'. SX.'AhT IN WASTE ' 3X. 'SPILLAGE' ,4X,
8 'STREAM AMT ' 2X.'AMT IN AIR' 2X 'DECAY CONST',
8 2X, 'SOLUBILITY CONST' 2X. 'OPERATIONS DECAY FACTOR',
& /' '.3X,4(12X,'CI'),8X.'I/Y'. 11X ,'G/ML')
7010 EORMAI (////' '.25X. 'DISTRIBUTION (COEFFICIENTS ML/G'.
1 //'/, 'NUCLIDE', 6X/SURFACE',6X, 'WASTE ' ,6X, 'VERTICAL' ,
7807 FORMAT (
7806
I
8
8
END
C
C
C
A-60
-------
SUBROUTINE SURSOL
-------
C-"_I COMPUTE NUCLIDE CONCENTRATION PER KG OF SOIL
CS
SDEEP(II)=WDEEPACU
C
CAAA COMPUTES AIR CONCENTRATION AND ATMOSPHERIC SOURCE TERM
CAAA AT SPILLAGE AREA. CALLED ANNUALLY BY MAIN.
CAAA
CAAA
CAAA
C
C
C
C INPUT VARIABLES
C
C IYR = CURRENT YEAR OF SIMULATION
C II CURRENT NUCLIDE
C SAREA = AREA COVERED BY SPILLAGE
C GNDCON= GROUND CONCENTRATION
C IRRES1= FIRST YEAR OF RESUSPENSION RATE
C IRRES2= LAST YEAR OF RESUSPENSION RATE
C RR = RESUSPENSION RATE
C FTMECH=FRACTION OF YEAR FOR MECHANICAL DISTURBANCE
C U WIND VELOCITY
C
C
C
C INTERMEDIATE VARIABLES
C
C RE RESUSPENSION FACTOR
C YS01 = NORMAL CONTRIBUTION TO ATMOSPHERIC SOURCE
C YS02 = CONTRIBUTION TO ATMOSPHERIC SOURCE FROM MECHANICAL
C DISTURBANCE
C
C
C OUTPUT VARIABLES
C
C AIRCON* AIR CONCENTRATION AT SPILLAGE AREA
C YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE AREA
C
C
P-—-——
C ASSUME ALL RADIONUCLIDES DEPOSITED ON SOIL SURFACE AT
C TIME ZERO.
C
C
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR.TITLE<20).LOCATE<12).NYR1.NYR2.
| PCI1,PCT2,LEAOPT.IOPVWV.IOPSAT,IPRT1.IPRT2,IBELI.
S IRRES1.IRRES2.LIND,IAVG1.IAVG2'RR,FTHECH.
i MUATL,HUATA,WUATH,SWATL,SUATA,SWATH,IVAP IBSMT,IDISP
A-62
-------
COMMON/NUC/NUCLIB<40),ATMASS(40),TRAM(40),SOAM(40).ATAM<40),
& AQAM(40.10000),STAM(40).POLO(40),POLB(40>.CS(40).CW(40),
I SSTREM(40),SDE£P(40)lAlfiCON(40).YSO(40),SOAyG(40)fCON(40),
i AQCON(40),SICON<40>,ATCON(4<».AQAVG(4<»,STAVG(40)r
I AIAVG(40) FMC(40),FHG<40).DECAY<40),XKD(4,40),SOL(40).
* FE<40).RAUO).RU(40).BV(40>,BR<40>,DERATE(40>jCWAT(40)
COMMON/LAND/RAINF,ERODE,STPLNG.COVER.CONTRL.SEDELR.SOILOS,
i PORS,BDENS,DUEI,EXTENT,ADEPTH,PD,RUNOFF,BDENV,RESATf
COMMON/AIR/CHIQ,FIUINBFH,HLID.IS.IT.RE(10000).ROUGH.RIPDEX,U,
* VDfVG,XG
IFdNSITE .EQ. 1 .AND. IRRES1 .LI. IYR) GO TO 11
C
C RESUSPENSION FACTOR (RE) BY ANSPAUGH WAS CALCULATED IN SOURCE
C
AIRCON<1I)=RE(1YR)AGNDCON
IE (IYR.EQ.1) AIRCON(II)=AIRCON(II)+ATAH(II)
HD=1.0
F=RTPDEXAVG/(UAHD)
IE(E .GT. 1.) E=1.0
YS01=A1KCON( IDAHDAUARIPDEXAF
C
C THE FOLLOWING IS FOR RESUSPENSION DUE TO MECHANICAL
C DISTURBANCES
C
YS02=0.
IFUIYR .GE. IRRES1) .AND. (IYR .LE. IRRES2))
I YS02=PDAEXTENTAGNDCONAKRAFTMECH
C
YSO(II)=(YS01+YS02)
C IF(YSOdl) .GT. ONAM(II))YSO(II)=ONAM(II)
RETURN
11 YSO(II)=GNDCONARRAFIMECHA.001
RETURN
END
C
C
C
C
SUBROUTINE TRENCH(NYEARfVOLB,VOLOfDMAX,PCfTINFL)
C
C
CAAA
CAAA
CAAA THIS SUBROUTINE MAINTAINS A TRENCH WATER BALANCE. WATER
CAAA ENTERS THE TRENCH IN THE FORM OF PRECIPITATION AND EXITS
CAAA FROM THE BOTTOM IF POSSIBLE. IF MORE WATER ENTERS THE
CAAA TRENCH THAN CAN EXIT FROM THE BOTTOM THE TRENCH MAY
CAAA OVERFLOW.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C INPUT VARIABLES
C TDEPTH = TRENCH DEPTH
C TAREA = TRENCH AREA
C PORT = POROSITY OF TRENCH MATERIAL
A-63
-------
C OLDUAT = VOLUME OF HATER IN TRENCH FROM PREVIOUS YR
C XLSAT = LENGTH OF SATURATED ZONE
C PPN = ANNUAL PRECIPITATION
C XINFL = ANNUAL INFILTRATION
C NYEAR = CURRENT YEAR Ot SIMULATION
C
C OUTPUT VARIABLES
C DHAX = MAXIMUM DEPTH OF WATER IN TRENCH
C OLDWAT = VOLUME OF UATER IN TRENCH AT END OF YEAR
C VOLO = VOLUME OF WATER OVERFLOWING TRENCH
C VOLB = VOLUME OF UATER GOING OUT BOTTOM OF TRENCH
C
C INTERMEDIATE VARIABLES
C
C MDEPTH = DEPTH OF UATER IN -TRENCH
C NEUUAT = VOLUME OF UATER ENTERING TRENCH
C PC FRACTION OF TRENCH CAP THAT HAS FAILED
C
C
C
C
REAL NEUUAT
COMMON/EVAP/PPN.PHID,P,XIRR,S<12),T
-------
c
c
c
SUBROUTINE VERHOR(II,NYEAR,I1IME,DDETA)
C
C
c
CAAA
CAAA THIS ROUTINE CALCULATES AND DECAYS THE AMOUNT OF RADIO
CAAA ACTIVE MATERIAL THAT WILL REACH THE WELL IN A GIVEN YEAR.
CAAA THIS SUBROUTINE IS CALLED FROM MAIN.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C
C INPUT VARIBALES
C
C II NUCLIDE NUMBER
C NYEAR = CURRENT YEAR Of SIMULATION
C 1TIME = TRANSIT TIME FROM TRENCH TO WELL
C VOLB = VOLUME OF WATER LEAVING TRENCH
C PULB = AMOUNT Of NUCLIDE LEAVING BOTTOM OF TRENCH
C DECAY = RADIOACTIVE DECAY CONSTANT
C
C
C
C OUTPUT VARIABLES
C
C AQAM = AMOUNT Of NUCLIDE AT WELL SITE
DOUBLE PRECISION NUCLID
COMMON/CNIRL/NONCLD.MAXYR,TITLE<20).LOCATE(12>,NYR1,NYR2,
& PCT1.PCT2.LEAOPT,IOPVUV. IOPSAT,IPRT1.IPRT2,IDELT,
g IRRESl.IRRES2.LIND,IAVGl,IAVG2,RRnFTMECH,
g UUATL,fiWATA.U&ATH,SWATL.SlJATA,SUATH,IVAP IBSMT.IDISP
COMMON/NUC/NUCLID(40),ATMASS<46),TRAM(40),SOAM(40),ATAM(40),
g AQAM(40.10000),STAM(40),POLO(40)fPOLB(40),CS(40).CW(40).
g SSTREM(40).SDEEP(40).AIRCON(40),YSO(40),SOAVG(40),CON(40).
& AQCON(40)f§TCON(40)fATCON(40).AQAVG(40) STAVGUO).
g ATAVG(40).FMC(40),FMG(40).DECAY(40).XKD(4,40)fSOL<40).
g FF(40).RA(40),RW(40).BV(40),BR(40),DERATE(40),CUAI(40)
DIMENSION ITIME(40),DDETA(40)
p ^a am >J ^mi ^
C CALCULATE CORRECT POSITION IN ARRAY AND DECAY THE MATERIAL
c POR THE PERIOD OF TIME MATERIAL IS IN TRANSIT FROM TRENCH
C TO WELL.
C
IFdUPSAT .GT. 0) GO TO 21
ITMP=ITIME(II)
IF«NYEAR+1IMP) .GT. (MAXYR) .OR. ITMP .LT. 0) GO 10 10
AQAM(IIfNYEAR+ITIM£(II))=EXP(-DECAY(II)AIIIME(II))A(POLB(II)+
g SDEEP(11))ADDETA(II)
10 CONTINUE
RETURN
21 DTIM£=CON(II)
DO 20 N=1.9
FN=FLOAT(N>-5.
A-65
-------
NTIME=NYEAR-HIIME(II)+FNADTIME-i-0.5
IF(NTIM£ .GT. 10000 .Oft. NTIME .LE. 0) GO TO 20
AQAM(II,NIIMt)=A&AM A.FSAVE(fi.30).XSAVE(8.30)
INTEGER LEVMIN,LEVMAXlLEVOUf,NOMAX,NOFIN,LEV,NIM,I,J
C AAA STAGE 1 AAA GENERAL INITIALIZATION
C SET CONSTANTS
C
LEVMIN = 1
LEVMAX = 30
LEVOU1 = 6
NOMAX = 5000
NOFIN = NOMAX - 8A(LEVMAX-LEVOUH-2AA(LEVOUT+1))
C
C TROUBLE WHEN NOFUN EQUALS' NOFIN
C
UO = 3956.0/14175.0
Ul = 23552.0/14175.0
W2 = -3712.0 / 14175.0
U3 = 41984.0/14175.0
W4 = -18160.0 / 14175.0
A-66
-------
c
c
c
c
c
c
c
c
c
c
c
INITIALIZE RUN ING SUMS TO ZERO
FLAG = 0.0
RESULT =0.0
COR11 = 0.0
ERREST = 0.0
AREA = 0.0
NOfUN =0.0
IF(A .EQ. B ) RETURN
AAAAA STAGE 2 AAAA INITIALIZATION FOR FIRST INTERVAL
LEV = 0
NIM = 1
XO = A
XU6) = B
QPREV =0.0
FO = FUN(XO)
STONE = (B-A)/16.0
X(8) = (XO + X(16))/ 2.0
X(4) = = (X(8) + X(16))/ 2.0
X(2) = (XO + X(4)) / 2.0
X(6) = (X(4) + X(8» / 2.0
X(10) = (X(8) + X(12)) / 2.0
X(14) = (X(12) + X(16))/ 2.0
DO 25 J=2.16,2
F(J) = FUN(X(J»
25 CONTINUE
NOFUN = 9
AAAAA STAGE 3 AAA CENTERAL CALCULATION
REQUIRES QPREV,X10.X2,X4. .X1G,FO,F4. F16
CALCULATIES X1.X3,X5...X15, Fl,F3,...,Fl5,QLfcFI,QRIGHT
QNOUfQDIFF,AREA.
W2A(F(2) + F(6))
30 X(l) = (XO < X(2)) / 2.0
Ed) = F,UN(X(1»
DO 35 J = 3, 15, 2
X(J) = (X(J-l) + X(J+D) / 2.0
F(J) = FUN(X(J))
35 CONTINUE
NOFUN = NOFUN + 8
STEP = (X(16) - XO) / 16.0
QLEET = (UOA(FO tF(8)) + U1A(F(1) + F(7))
I + U3A(F(3)+F(5)) + U4Af(4))ASTEP
HOLIM1=ABS(QLEFT)
IF(HOLTH1 .EQ. 0.0) GO TO 183
IF(HOLTM1 .GT. l.OE-65) GO TO 183
QLEFT=0.0
183 QRIGHT(LEV+l) = (WOA(F(8)+F(16))+UlA(F(9)-i-F(15))+W2A(F(10)+F(14))
& + U3A(t'(ll)+F(13)) + W4AF(12))ASTEP
HOLIM2=ABS(QRIGHI(LEV+1 ) )
IF(HOLTH2 .EQ. 0.0) GO TO 184
IF(HOLTM2 .GT. l.OE-65 ) GO TO 184
QRIGH:f(LEV+l>=0.0
184 QNOU = QLEFT + GRIGHT(LEV+1>
QDIFF = QNOU - QPREV
A-67
-------
195 AREA = AREA + QDIEF
C
C AAAA STAGE 4 AAA INTERVAL CONVERGENCE TEST
C
ESTERK = AbS(UDIFF) / 1023.0
IOLER8 = AMAX1(ABSERR,RELERRAABS(AREA» A (STEP/STONE)
IF
-------
72 It (HIM .EQ. 2A = XSAVE(I,LEV)
78 CONTINUE
GO TO 30
C
C AAA STAGE 8 AAA FINALIZE AND RETURN
C
80 RESULT = RESULT + COR11
C
C
C AAA MAKE SURE ERRES1 NOT LESS THEN ROUNDOFF LEVEL
C
IF(ERREST .EQ. 0.0) RETURN
82 TEMP = ABS(RESULT) + ERREST
IFdEMP .NE. ABS(RESULT)) RETURN
ERREST = 2.0AERREST
GO TO 82
END
C
C
C
C
DOUBLE PRECISION FUNCTION FCN(T)
C
C FCN DETERMINES FUNCTIONAL EVALUATIONS OF
C THE INTEGRAND OF THE GROUNDUATER TRANSPORT MODEL.
C FCN IS CALLED BY QUANC8.
C
IMPLICIT REALA8
-------
SUBROUTINE DARlAiXIFLAG)
REALA8 NUCLID,ORGN,CANC,10TBOD,RNLOC,OGLOC,GEN,OREP,CREP,RREP,
A P0218,PB214.BI214.P0214.PULMO.LUNGS.NBP,TDP,PUL,RREPS
DATA P0218/8HPO-218 /.PB214/8HPB-214 /.BI214/8HBI-214 /,
A P0214/8HPO-214 /,PULMO/8HPULMNARY/,LUNGS/8HLUNGS /,
B NBP/8HAN-PA /.TDP/8HAI-BA /,PUL/8HAPULA /
LOGICAL GENEfE,OUTPUT
REAL LLET
INTEGER RTABLE,DTABLE,TABLE(7),FIABLE,PTLOC,HLLOC,FALOC
C
DATA IOTBOD/8HT01 BODY /
DIMENSION TITLE(20),CONC(4).ILET(2),RREPS(4)
NAMELIST /INPUT/ILOC,JLOC,PLOC,AGEX,ILEI,DTABLE,RTABLE,FTABLE,
A OUTPUT,GSCFAC
NAMELIST YORGAN/ORGN.NORGN,TIME
NAMELIST /QEACTR/HLET,LLET
NAMELIST /CANCER/CANC.NCANC.RELABS
NAMELIST /RNUCLD/NUCLID,NONCLD,PSIZE,RESP,GIABS
NAMELIST /LOCTBL/NTLOC,RNLOC,OGLOC,PTLOC,FALOC,HLLOC,LIABLE
NAMELIST /GENTIC/GENEEE.GEN^GEN.GRFACjREPPER^LLET.GHLET
COMMON/COMEX/EXPP(20.20,40.4),POP(20,20),POPEAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDr3I(20),ILOC'jLOC
COMMON/COMOR/ORGN(20).NORGN,TIME(20),DOSE(20,40,4,2), DTABLE(7)
COMMON/LETEAC/HLET(20),LLET(20)
COMMON/COMCA/CANC(20)FNCANC,RELABS(20),RISK(20,40,4,2), RTABLE(7)f
> AGEX.YRLL(20,40.4.2)
COMMON/COMRF/REF(20,40.4),FTABLE(7)
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40).
> INDPOP
COMMON/COHLOC/RNLOC(10).OGLOC(10),PTLOC(10),FALOC(10),
> HLLOC(10).LIA8LE(10),NTLOC
COMMON/COMGEN/GEN(3),NGEN.GDOSE(3.40,4,2).GRISK(3,40,4,2),
> GENEFF,GRFAC(2).REPPER.GLLEI(3).GHL£T(3).GftEF(3,40.4)
COMMON/COMRN/OREP(20).RREP(20),CREP(20),HLRN(20,20),
A RRISK,RREF(2).RYRLL.NOREP,NRR£P,NCREP
COMMON/COMUS/ARRAY(2200)
C
C TRANSFER TO 33 IF DOSE CALCULATION; ELSE CONTINUE WITH INPUT
IF (It'LAG.GT.O) GO TO 33
C
CAAA SET DEFAULT VALUES.
OUXPUI=.TRUE.
ILOC=0
JLOC=0
PLOC=100.
AGEX=70.7565
REPPER=1.41330E-2
GSCFAC=.5
NORGN^O
NCANC=1
CANC(1)=TOTBOD
ILET(1)=0
ILEI(2)=2
DO 10 J=l,7
DTABLE(J)=0
RTABLE(J)=0
FTABLE(J)=0
10 CONTINUE
RTABLE(6)=4
A-70
-------
ILET(1)=1
ILEI<2)=1
DO 20 J=1.20
TIME=1.
20 CONTINUE
NGEN=0
NOREP=4
NCREP=1
NRREP=0
RREPS<1)=P0218
RREPS(2)=PB214
RREPS(3)=BI214
RREPS(4)=P0214
CREP<1)=PULMO
OREP(1)=LUNGS
OREP(2)=NDP
OREP(3)=IDP
OREP(4)=PUL
READ(26f11700) TITLE
URIIE<6 10000) TITLE
READ<26;INPUT)
IF (PLOfi.NE.O) URITE(6,10100)PLOC
IF NORGN)
CAAA READ IN CANCER PARAMETERS
50 READC26,CANCER)
WRIlt(6,11000) NCANC
URITE(6'11100) (CANC(I),RELABS(I),I=1,NCANC)
CAAA READ IN GENETIC PARAMETERS
READ(26.GENIIC)
IF(GENEtF) WRI1E(6,11800)
-------
URIIE<6.11300) NONCLB)
DO 30 1=1,NONCLB
DO 25 K = 1.4
IF GO TO 55
URITE<6,11305) NTLOC
WRITE(6,11310) I=1,NTLOC)
55 CONTINUE
11305 EORMATCO',12.' LOCATION TABLES ARE TO BE OUTPUT FOR:'/
> ' NUCLIDE ORGAN PATHWAY QUANTITY LET'/
> ' OR CANCER'/)
(
CAAA
11310 FORMATUX,A8,lX,A8f4X,I2.7X,I2,7X,12)
READ IN DOSE RATES AND HEALTH RISKS
CALL RDSTOS(OUTPUT)
IF(NORGN.NE.O) CALL RDORGF
C END OF DAR1AB INPUT; RETURN
RETURN
C
C
C BEGIN DOSE CALCULATIONS
C
C
CAAA CHOOSE LOCATION AND FIND EXPOSURES
C
33 CALL CHLOC
-------
c
C RETURN IF PATHWAY DOSE CONVERSION FACTOR CALCULATION
C
IF ( IFLAG .EQ. 1 ) RETURN
C
C
70 IDO=0
DO 80 J=1.7
IF (FTABLE(J).NE.O) IDO=1
80 TABLE(J)=FTABLE(J)
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 87
DO 85 J=1,NTLOC
IF(FALUC(J).EQ.3) 1DO=1
85 CONTINUE
87 CONTINUE
IF (IDO.EQ.l) CALL PREPRFdABLE, TITLE, GSCFAC, IFLAG)
CAAA OUTPUT RISK TABLES
IDO=0
DO 90 J=1.7
IF (RIABLE(J).NE.O) 1DO=1
90 TABLE(J)=RTABLE(J>
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 97
DO 95 J=1,NTLOC
IF(FALOC(J).EQ.2)IDO=1
95 CONTINUE
97 CONTINUE
IF (IDO.EQ.l) CALL PREPHRdABLE, ILEK2), TITLE, GSCFAC, IFLAG)
RETURN
10000 FORMAIC1' 20A4)
10100 FORMATC TABLES FOR THE SELECTED INDIVIDUAL WILL BE DONE FOR'
>' THE LOCATION HAVING' F8.2,' % OF THE HIGHEST TOTAL RISK.'/)
10200 FORMATC DOSE RATE TABLES FOR LOW AND HIGH LEI WILL BE ',
> 'PRINTED SEPARATELY ')
10300 FORMAT*' DOSE RATE TABLES COMBINING LOW AND HIGH LET ',
> 'WILL BE PRINTED.')
10400 FORMAT*' HEALTH RISK TABLES FOR LOW AND HIGH LET WILL BE ',
!> 'PRINTED SEPARATELY ')
10500' FORMATC HEALTH RISK'TABLES COMBINING LOW AND HIGH LET ',
> 'WILL BE PRINTED.')
10600 FORMAT*'00 INDICATES THE TABLE WILL NOT BE PRINTED'/
A' 1 INDICATES INDIVIDUAL VALUES WILL BE PRINTED'/
B' 2 INDICATES MEAN INDIVIDUAL VALUES WILL BE PRINTED'/
C' 3 INDICATES COLLECTIVE VALUES WILL BE PRINTED'/
D' 4 INDICATES ALL OF THE ABOVE WILL BE PRINTED'//
QUANTITY TABLE NO. 1 2 3 4 5 6 7'/
'/
2.HEALTH RISKS ',7*I2,1X)/
3.RISK EQUIVALENT FACTOR ',7(12,IX))
10700 FURMATCOIHERE ARE ',14 ' ORGANS 10 BE OUTPUT. THEY ARE:'/)
10800 FORMAT(IX.'ORGAN',4X,'TIME',4X,'URGAN',4X,'TIME',4X,
l'ORGAN',4X,'TIME'/
> (3(1X. AS 2X,F4.0,2X)))
10900 FORMAT!'o OR^AN DOSE EQUIVALENT FACTORS '/
A ' LOW LET HIGH LET'/
A *2X,A8,F15.b.lX.Flb.4))
11000 FORMAT*'OTHERE ARE '.14,' CANCERS TO BE OUTPUT.'/
> ' A 1 INDICATES ABSOLUTE RISK; A 2 IS RELATIVE RISK.')
11100 FORMAT*' CANCER CANCER CANCER CANCER'/ (1X,4(A8,
> 1X,E2.0,1X)))
A-73
-------
11200 FORMAH'OTHERE ARE '.14' RADIONUCLIDES TO BE OUTPUT.')
11300 FORMAT;' NUCLIDE PARTICLE SIZE CLEARANCE CLASS '
> 20X.'G.I. ABSORPTION FRACTIONV49X,'STOMACH' 8X.'SIJ , 13X,'ULI',
> m.'LLI'/
11700 FORMAT(20A4)
11900 FORMAK'OIHE GROUND SURFACE CORRECTION FACTOR IS ',F5.2/>
END
SUBROUTINE RDSIOR(OUIPUT)
CAAA THIS SUBROUTINE READS AND STORES DOSE RATES
CAAA AND HEALTH RISKS FOR ORGANS AND CANCERS
REALA8 NUC.NUCLID.ORGN,CANC,0,C,OG,GEN,OREP,CREPfRREP
LOGICAL GENEFF.OUTPUT
COMMON/COMOR/ORGN(20).NORGN,TIME(20).DOSE(20,40,4,2). DTABLE(7)
COMMON/COMRN/OREP(20).RREP(20),CREP(20)fHLRN(20F20)f
A RRISK,RREF(2),RYRLL,NOREP,NRREP,NCREP
COMMON/COHCA/CANC(20).NCANC,RELABS(20)fRISK<20,40f4,2)f RTABLE(7),
> AGEXFYRLL(20,40.4,2)
COMMON/COMRF/REF(20f40.4),FTABLE(7)
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40).RESP(40),GIABS (4.40).
> INDPOP '
COMMON/COMUS/C(40).0(40).D(2,40),R<2.40),8F(40),YLL(2,40)f
> G(2,3),OG(3).DCHK(20F40),RCHK(20,40),GCHK(3,40)
COMMON/COMGEN/GEN(3),NGEN.GDOSE(3.40,4,2).GRISK(3.40.4.2).
> GENEFF.GRFAC(2)IREPPER,GLLET(3),GHL£I(3),6REF(3,40,4)
LOGICALA1 FAL.IRU.DCHK.RCHK,GCHK,IM
DATA TRU/.TRUE./.FAL/.FALSE./
CAAA ZERO OUT ALL ARRAYS
NDO=NORGN+1
DO 35 N=l,2
DO 30 J=l,4
DO 30 K=1,NONCLD
DO 10 L=1,NDO
DOSL(L,K,J.N)=0.0
IF(L.GT.NGEN) GO TO 10
GDOSE(L,K,J,N)=0.0
10 CONTINUE
NDO=NCANC+1
DO 20 L=1,NDO
RISK(L.KfJ,N)=0.0
YRLL(L,K;J,N)=O.O
REF(L.K,J)=0.0
IF(L.GT.NGEN) GO TO 20
GRISK(L.K.J,N)=0.0
GREE(L,K,3)=0.0
20 CONTINUE
30 CONTINUE
35 CONTINUE
DO 38 L=l,40
DO 37 K=l,20
DCHK(K,L)=TRU
RCHK(K.L)=1RU
37 CONTINUE
DO 39 K=1.3
GCHK(K,L)=TRU
39 CONTINUE
38 CONTINUE
CAAA READ FIftSX RECORD
41 READ(25,END=180) NUC,SI2EIN,RESPIN,GIINfTIMINfIND
A-74
-------
IFIND=0
CAAA CHECK 10 SEE IF THE RADIONUCLIDE IS IN OUTPUT LIST
DO 50 K=1.NONCLD
IF GO TO 40
70 CONTINUE
75 IF (ICHOS.NH.3) GO TO 80
IF (ABS(SIZEIN-PSIZE(K)).GT.l.£-6) GO TO 40
IF (RESPIN.NE.RESP(K)) GO TO 40
80 IF (IND.LE.S) GO TO 130
CAAA THE NEXT TUO RECORDS CONTAIN CANCERS AND RISKS
IF(IFIND.NE.O) GO TO 81
READ(25) NC,ILET.(C(I),I=1.NC)
READ(25) ((S(L.I).L=l,ILEr).I=l,NC)
READ<25) «YLLfTRF
81 IFIND=1
REF(NCANC+1,K,ICHQS-1)=TRF+REF
-------
,nU^. BUM
IFdND.LE.5 .OR. IND.61.90) GO TO 41
READ(25,£ND=180) DUM
REAB(25,END=180) BUM
GO TO 41
CAAA THE NEXT 1UO RECORDS CONTAIN ORGANS AND BOSE RATES
130 IF(IFIND.NE.O) GO TO 131
REAB(25) N0.1LEI.(0,1=1,NO)
CAAA FOR INTERNAL DOSES, ALSO CHECK OTHER NUCLIBE PARAMETERS
CAAA CHECK TO SEE IF THE ORGANS ARE ON OUTPUT LIST
140 DO 170 1=1,NO
DO 150 J=1.NQRGN
IF <0(I).£B.OKGN(J)) GO TO 160
150 CONTINUE
GO TO 170
CAAA A MATCH SO STORE THE DOSE
160 IF(IND.GT.3) GO TO 159
IF(AbS(TIMIN-TIME(J)).GT.l.E-6) GO 10 40
159 BOSE(J,K,INB-1,1)=D(1,I)
IF dLEI.Gf.l) D(5SE GO 111 200
IF(IU) WRII£(6,900)
WRIIE(6,901) ORGN ' IN THE INPUT DATA SETS:'/
> ' ORGAN NUCLIDE'/)
901 FORMAT(1X,A8,1X.A8)
IU=TRU
A-76
-------
DO 300 K=1,NONCLD
DO 300 J=1,NCANC
IF<.NGT.KCHK(J,K)) GO ICl 300
IF(IU) WRITE(6,902)
IW=FAL
902 FORMATCOTHE FOLLOWING NUCLIDES AND ',
< 'CANCER RISK FACTORS UERE NOT FOUND'.
> ' IN THE INPUT DATA SETS:'/
> ' CANCER NUCLIDE'/)
URI1E(6,901) CANC(J),NUCLID(K)
300 CONTINUE
IF(.NOl.GENEFF) RETURN
IU=TRU
DO 400 K=1,NONCLD
DO 400 J=1,NGEN
IF(.N01.GCHK(J,K)) GO 10 400
IF(IU) URIIE<6,903>
IW=FAL
903 FORMATCOTHE FOLLOWING NUCLIDES AND ',
< 'GENETIC DOSE FACTORS WERE NOT'.
> ' FOUND IN THE INPUT DATA SETS:'/
> ' GEN.DOSE NUCLIDE')
WRIIt<6,901) GEN
-------
520
525
540
530
800
10000
10100
A
A
B
B
DO 530 1=1,NG
DO 525 J=1,NGEN
IF GO TO 540
CONTINUE
GO TO 530
GDOSE(J,K,ICHOS-1.1)=GU,I)
IF(LET.GT.l) GDOSE(J,K,ICHOS-1,2)=G(2,I)
GCHK(J.K)=FAL
CONTINUE
GO TO 40
1E(IND.NE.33) GO TO 125
REAO(25) NC.IL£T.(C(I),I=1.NC)
READ(25) «R
-------
A 9X, 'AIR' , 5X, 'GROUND' ,9X, ' INGESIION' ,10X, ' INHALATION' ,
A 7X.'AIR'5X 'GROUND'/
B 12X ,'LOy LET', 3X, 'HIGH LET'.2X,'LOU LET'.
B 3X.'HIGH LET' 2X ' IMMERSION'. IX, 'SURFACE' ,3X,
'LOU LET'. 3X. 'HIGH LEI'. 2X, 'LOU LET',
SX.'HIGH LEI J.2X ,'IMHtRS ION', IX, 'SURFACE')
URITE<6,10250) .J=3,4>,I=1,NCANC>
10250 EORMAI(UX.A8,1X,12<1PG10.3)))
IF(.NOI.GENEFF) GO TO 200
URI1E<6. 10400)
10400 FORMATS GENETIC EFFECT RISK CONVERSION FACTORS')
WRITE (6. 10200) GEN<3) . < (GRISK( 1,K, J,N) ,N=1,2) , J=l,2) ,
200
URITE(6. 10190)
10190 EORMAT<*ORISK EQUIVALENT CONVERSION FACTORS7/
A IX, 'CANCER' ,3X, ' INGEST ION' IX, ' INHALATION' ,
B 4X. 'AIR' .4X 'G$OUND'/31X, ' IMMERSION' ,2X, 'SURFACE' )
NALL=NCANC+I
CANC(NALL)=UBODY
URITE(6. 10275) (CANC( 1) . (REF( 1,K, J) , J=l,4) , I=1,NALL)
10275 FORMAT((1X.A8,1X,4(1PG10.3)))
IF(.NOl-.GENEFF) GO TO 300
URri£(6. 10600)
10600 FORMATS GENETIC EFFECT RISK EQ. CONVERSION FACTOR7)
URITE(6, 10275) G£N(3) , (GREF( 1,K, I) , 1=1,4)
300 CONTINUE
1000 CONTINUE
DO 400 I=1.NONCLD
IF(NUCLIO(I).EI3.RN222) GO TO 450
400 CONTINUE
RETURN
450 URITE(6. 10700) RR1SK.RYRLL.RREF
10700 FORMAT(*1FOR RN-222 WORKING LEVEL CALCULATIONS:'/
' RISK CONVERSION FACTOR = ',1PG10.3/
' YEARS OF LIFE LOST FACTOR = ',1PG10.3/
' RISK EQ. CONVERSION FACTOR (PULMNARY) = ',1PG10.3/
' RISK EQ. CONVERSION FACTOR (U BODY ) = ',1PG10.3)
RETURN
END
SUBROU1 INE PREPDR ( TABLE , ILET , T ITLE , GSCFAC , IFLAG )
CAAA THIS ROUTINE PREPARES DOSE RATES TO BE OUTPUT.
REALA8 ORGN,NUCLID,RNLOC,OGLOC,ORC,ORG, LAST, GEN, OREP,RREP,CREP,
A GON '
COMMON/HEAD/ORC
COMMON/COMRN/OREP(20),RREP(20),CREP(20),ULRN(20,20),
A RRISK.RREF(2),RYRLL,NOR£P,NM£P,NCREP
COMMON/COMWOR/FACO(20.4)
COMMON/COMGEN/GEN(3),NGEN.GHOSE(3.40.4,2),GRISK(3,40.4,2),
> GENEFF.GRFAC(2).REPPER.GLLET(3),GHLET(3),GREF(3,40,4)
DATA ORG/8H ORGAN /.LAST/SHUT. SUM /.GON/8H GONAD /
COMMON/COMLOC/RNLOC(10).OGLOC(10),PTLOC(10),FALOC(10),
> HLLOC(10),LTABLE(10),NTLOC
REAL LLET
INTEGER TABLE.FALOC.HLLOC.PILOC
DIMENSION TABLE(1),TITLE(1),TITLA(10.3), FACD<4,3) .ILET(2,3) ,
> TITL2(2),ITAB(7),TITLB(10,3),TITLGA(10.3).IHLGB(10,3)f
> FACG(4,3),N01E(20),NOT2(20),OFAC(20,26),NUN(8,3)
A
B
C
D
A-79
-------
DIMENSION SDOSE(20.40,4,2>,SGOS£<3,40,4.2)
DATA NUN/4H(UOR,4HKING.4H LEV,4HEL) ,4A4H .4H(WOR,
> 4HKING.4H LEV,4HEL) ,4A4H ,4H(PEa,4Hlil)N ,4HUORK,
> 4HING .4HLEVE.4HL) ,2A4H /
DATA N6TE/4HRAD0.4HN DA,4HUGHI,4HER £,4HXFuS,4HURE:,
> 14A4H /.NOT2/20A4H /
LOGICAL IBO.GENEFF
DATA IITLA/4HINDI,4HVIDU.4HAL D,4HOSE .4HRATE.4H (MR. 4HAD/Y,
> 4HEAR),4H ,4H ,4HHEAN,4H INB,4HIVID,4HUAL . 4HDOSE,4H RAT,
> 4HE (h 4HRAD/ 4HYEAR 4H) 4HCOLL 4HECTI 4HVE D,4HOSE ,4HRATE,
> 4H (PE!4HRSON.4H RAD.4H /YE.4HAR) /
DATA TITLB/4HINDI,4HVIDU.4HAL D,4HOSE ,4HEQ. ,4HRATE.4H(HRE.
> 4HM/YE.4HAR) , 4H ,4HfiEAN,4H IND,4HIUID,4HLIAL , 4HDOSE,4H EQ.f
> 4H RAI.4HE (h 4HREM/ 4HYR) 4HCOLL,4HECII 4HVE D,4HOSE ,4HEQ. ,
> 4H (PEj4HRSON 4H REM.4H /YE.4HAR) /
DATA TIILGA/4HINDIf4HVIDU,4HAL G,4HENET,4HIC D,4HOSE ,
< 4H(HSA,4HD) ,4H ,4H .
> 4HMEAN 4H IND,4H1VID,4HUAL ,4HGENE,4HTIC f4HDOSE,4H (MR,
> 4HAD) 4H ,
> 4HCOLLF4HECTI,4HVE G,4HENET,4HIC D,4HOSE ,4H( PE,4HRSON,
> 4H RAD.4H) /
DATA IIILGB/4HINDI,4HVIDU,4HAL G,4HENET,4HIC D,4HOSE ,
> 4HEQ. ,4H(MRE,4HM) ,4H ,
> 4HMEAN,4H IND,4HIVID,4HUAL ,4HGENE,4HTIC ,4HDOSE,4H EG.,
> 4H (Mfi,4HEM) ,
> 4HCOLL,4HECTI,4HVE G,4HENET,4HIC D,4HOSE ,4HEQ. ,4H(PER,
< 4HSON .4HREH)/
DATA XLE1/4HLOW .4HLET .4HHIGH.4H LET.4H ,4H /
COMMON/COMOR/OR6N(20).NORGNITI«E(20),DOSE(20,40,4,2)
COH«ON/LETFAC/HLEK20).LLET(20)
COMMON/COMNU/NUCLID<40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
DATA EACD/1..1..1..100..1..1..1..100...001..001..001..1/
DATA fACG/1.,1.,1.,106.,I.,1.,I.,100.,.001,.001,.001,.I/
DATA IKP/0/
CAAAAA?????????
CAAA MULTIPLY DOSES BY EXPOSURES
CAAA PREPARE TABLE FOR HIGH AND LOU LEX SEPARATELY
IF (IKP.EQ.l) GO TO 6
IKP = 1
DO 5 J=1.3
FACD(4,0)=FACD(4,J)AGSCFAC
FACG(4.J)=FACG(4,J)AGSCFAC
5 CONTINUE
6 DO 50 L=l,2
10 DO 20 K=1.2
20 T11L2(K)=1LET(K,L)
DO 40 11=1.3
DO 42 J=1,NOREP
DO 42 K=l,l
OFAC(J.K)=1.
42 CONTINUE
IDO=.FALSE.
IF(ILEl.EQ.l) GO TO 35
DO 30 K=l,7
ITAB(K)=0
IF (TABLE(K).NE.1T.AND.TABLE(K).NE.4) GO TO 30
ITAB(K)=1
IDO=.1RUE.
30 CONTINUE
A-80
-------
35 CONTINUE
IF TITLA(1.IT).ITABITITL2,NOTE;NUN(1.IT),OFAC,OREP,NOREP,20,IFLAG)
ORC=GON
IF(lDO.AND.GENEFt) CALL HULK IT.FACGd, IT) ,GDOSE<1.1,1,L) ,NGEN,
> GEN,TITLE.TITLGA(l,IT),ITAB,TITL2lNOT2,NOT2,0.fO.,&,3,IFLAG)
IEUI.EG.2) GO TO §8
IF(NILOC.EQ.O) GO TO 38
DO 45 LL=1.N1LOC
IF(FALOC(LL).NE.1> GO TO 45
IF(HLLGC(LL).EQ.l) GO 10 45
IF,OGLOC(LL).
< FACG,TITL2fGEN,NGEN,
< 3,1)
45 CONTINUE
38 CONTINUE
IF (1NDPOP.NE.1) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA COMBINE HIGH AND LOU LET USING INPUT QUALITY FACTORS
DO 70 K=l,2
TITL2(K)=TLET(K,3)
70 CONTINUE
DO 80 1=1,4
DO 80 J=1JNONCLD
DOSE(NORGN+1.J,1,1) = 0.0
DO 80 K=lrNORGN
SDOSE(K,J.I,1) = DOSE(K.J.I.I)
DOSE(K.J,i,l) = (DOSE(KfJ,I.l)ktET(K)+ DOSE(K, J, I,2)AHLET(K))
DOSE(NORGN+l.J,I,l)=DOSE(NORGN+l,J,Irl)+DOSE(K,JfIfl)AFACO(K,I)
IF (K.GT.NGEN) GO TO 80
SGOSE(KrJvI,l) = GDOSE(K,J,I.l)
GDOSE(KlJ I,l)=(GDOSE(KfJ,Ifl)AGLLET(K)+GDOSE(K,J,Ir2)AGHLET(K))
80 CONTINUl
DO 100 IT=1F3
IDO=.FALSE.
IF(ILEl.EQ.O) GO TO 95
DO 90 K=1,G
ITAB(K)=0
IF (IABLE(K).NE.I1.AND.TABLE(K).NE.4) GO TO 90
ITAB(K)=1
IDO=.1RUE.
90 CONTINUE
95 CONTINUE
ORGN(NORGN+1)=LAST
ORC=ORG
IF (IDO) CALL MULK 11.EACDd, II).DOSE,NORGN+l.ORGN,TITLE,
< TITLB(1,IT),IIAB,TITL2,NOTE,NUN(1,IT),OFAC,OREP,NOREP,20,IFLAG)
C RETURN IF PATHWAY DOSE CONVERSION FACTOR CALCULATION
C
IF ( IFLAG .EQ. 1 ) GO TO 105
C
ORC=GON
IF(IDO.AND.GENEFF) CALL MULK IT,FACG(1,IT),GDOSE,NGEN,GEN,
A-81
-------
< TITLE,TITLGBU,IT).ITAB,TIIL2lNOf2,NOT2,0.,0.,0,;3,IELAG>
IF(IT.EQ.2) GO TO 138
IF(NTLOC.£Q.O> GO TO 138
DO 135 LL=1.NTLOC
IF(EALOC(LL).NE.l) GO TO 135
IF(HLLOC DOSE,TIILE,TITLB<1,IT)ITITL2,ORGN.NORGN.20, 1)
IF(GENEFE) CALL LOCTABUT,RNLOC FACG<1.IT),GDOSE,TITLE,TITLGB<1,IT),TITL2,GEN,NGEN,3,1)
135 CONTINUE
138 CONTINUE
IF (INDPOP.Nt.l) GO TO 105
100 CONTINUE
105 DO 180 I = 1,4
DO 180 J = 1,NONCLD
DO 180 K = 1,NORGN
DOSE(K,J,I,1) = SDOSE(K,J,I,1)
IF ( K .61. NGEN ) GO TO 180
GDOSE HLLOC(10).LTABL£(10)fNTLOC
COMMON/COHGEN/GENOKNGEN.GDOSE (3. 40,4,2 ),GRISK( 3, 40.4,2),
> GENEFF,GRFAC(2),REPPER.GLLEI(3).GHLET(3).GKEF(3.40,4)
DIMENSION TABLE(1),TITLE(1),TITLA(10.3). TLET(2.3) .TITL2(2) ,
> FACD(4,3),ITAB(7),TITLG(10,3).FACG(4.3).NOrE(20),NOT2(20)
> ,NUN(8.3)'DRISK(25,SRISK(25.46,4,2),§GI§K(3,40.4.2)
DATA NOTE/4HRADO,4HN DA.4HUGHT,4HER E,4HXPOS,4HLIRE ,4HRISK,
> 4H: ,12A4H /,NOT2/20A4H /
DATA NUN/16A4H ,4H(DEA,4HTH/Y,4Hfi) ,5A4H /
DATA TIILA/4HINDI,4HVIDU,4HAL L,4HIFET,4HIME ,4HRISK, 4H (DE,
> 4HATHS,4H) ,4H ,4HMEAN,4H IND.4HIVID, 4HUAL , 4HLIFE.4HIIME,
,> 4H RIS,4HK (D,4HEATH,4HS) ,4HFATA,4HL CA,4HNCER,4H RAT,
> 4HE (D.4HEAXH.4H/YR).3A4H /
DATA ilTLG/4HINHIf4l!iVIDU,4HAL G,4HENET,4HIC E,4HFFEC,4HTS P,
< 4HER B,4HIRTH,4H ,
< 4HMEAN,4H IND,4HIVID,4HUAL ,4HGENE,4HTIC ,4HEFFE,4HCTS ,
< 4H/8IR,4HTH '''»'»'
< 4HCOLL,4HECII,4HVE G,4HENET,4HIC E,4HFFEC,4HT(EF,4HFECT,
< 4HS/Yfi'4H) }'»''''
DATA EACD/2A1.E-5,10..1000.F2A1.E-5.10.,1000.,4AO./
-., !.,!., lOO., 1., !.,!., 100.,. 001,. 001,. 001,. I/
DATAKP/0/
DATA 1LE174HLOW ,4HLET ,4HHIGH,4H LET,4HCOMB,4H.LET/
A-82
-------
COHHON/COHCA/CANC<20),NCANC,RELABS(20),RISK<20,40,4,2>,RfA6LE(7),
> AGEX,YRLL(20.40.4.2)
COMHON/COMNU/NUCLIII(40)fNONCLD,PSIZE(40)fRESP<40),GIABS (4,40),
> INDPOP
CAAA HULIIPLY RISKS BY EXPOSURES
CAAA PREPARE HIGH AND LOU LET SEPARATELY
IF (IKP.LQ.l) GO 10 6
IKP = 1
DO 2 3=1.3
FACD(4,J)=GSCEACAEACD(4fJ)
FACG(4,J)=GSCFACAFACG(4,J)
2 CONTINUE
DO 5 J=l,4
EACGU;3)=EACGU.2)AREPPER
5 FACD(J.3)=£ACD(J,2)/AGEX
6 DO 50 L=l,2
10 DO 20 K=1.2
20 T1IL2(K)=1LET(K,L)
DO 25 1=1,4
DO 25 J=1,NONCLD
DO 25 K=1.NCANC
RISK IITLA(l,IT)fITAB,TIIL2,NOTE,NUN(l,IT),DRISK,CREP,NCREP,20>IFLAG)
ORG=GON
IFdDO.AND. GENEFF) CALL HULK IT.EACGd, IT) .GRISKd. 1.1,L),
> 1, GEN(3), TITLE, TITLGd, IT), ITAB,TITL2,NOT2fNOT2,0. ,0. 0,3, IFLAG)
lf(IT.EQ.2) GO TO 38
IF(NTLOC.EQ.O) GO TO 38
DO 45 LL=1.NTLOC
IF(FALOC(LL).N£.2) GO TO 45
IF(HLLOC(LL).EQ.l) GO TO 45
IE(LTABLE(LL).NE.IT .AND. LTABLE(LL).NE.4) GO TO 45
CALL LOCIAB(IT,RNLOC(LL).PTLOC(LL).OGLOC(LL).FACD(1,IT),
> RISK{l.l.l,L).ilTLE,TITLA(l.IT).TITL2,CANC.NCANC,20.3)
IF(GENEFF) CALL LOCTAB(IT,RNLOC(LL).PTLOC(LL).OGLOC(LL),
< FACG(1,IT),GRISKd, 1,1,L),TITLE,TITLGd, II),TITL2,
< GEN(3)!l,3,3)
45 CONTINUE
38 CONTINUE
IF (INDPOP.NE.l) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA CUHBINE HIGH AND LOU LET USING INPUT QUALITY FACTORS
DO 70 1=1,4
A-83
-------
DO 70 J=1,NONCLD
RISK(NCANCH.J,I,1)=0.0
DO 70 K=1,NCANC
SRISK(K,J.I,1) = R1SK(K.J.I.I)
RISK(K,J,I.1)=RISK(K.J.I.I)+RISK(K,J,1,2)
RISKlNdAftC+l,J1IflJ=filSK(NCANC+lf'j;iffl)+8ISK(KfJflfl)
IF(K.Gf.l) 130 TO 70
SGISK(K,J,I,1> = GRISK
GRISK IT>,ITAB,TIIL2,NOTE,NUN(1,IT),BRISK,CREP,NCREP,20,IFLAG)
ORG=GON
IF(IDO.AND.GENEFF) CALL MULT(IT,FACG(1,IT).GRISK,1,GEN(3),
> TITLE,TIILG(1,IT),ITAB,TITL2,NOT2,NOT2F0.,0.,0,3,IFLAG)
IF(IT.EQ.2) Gfl TO 138
IF(NTLOC.EQ.O) GO TO 138
DO 135 LL=1.NTLOC
IF(FALOC(LL).NE.2) GO TO 135
IF(HLLOC(LL).EQ.O) GO TO 135
IF(LTABLE(LL).NE.IT -AND. LTABLE(LL).NE.4) GO TO 135
CALL LOCTAB(IT.RNLOC(LL),PTLOC(LL).OGLOC(LL).FACD(1,IT),
> RISK.TITLE,TITLAd. IT) ,TITL2.CANC,NCANC.20,3)
IF(GENEFF) CALL LOCTABtIT,RNLOC(LL).PTLOC(LL).OGLOC(LL),
> FACG(1.IT),GRISK,TITLE,TITLG(1,IT),II1L2,GEN(3),1,3,3)
135 CONTINUE
138 CONTINUE
IF (1NDPOP.NE.1) GO TO 105
100 CONTINUE
105 DO 170 I = 1,4
DO 170 J = 1,NONCLD
DO 170 K = 1,NCANC
RISK(K,J,1,1) = SRISK(K,J,I,1)
IF ( K .EQ. 1 ) GRISK(K,J,I,1) = SGISK(K,J,1,1)
170 CONTINUE ' '
RETURN
END
SUBROUTINE PREPRF(TABLE.TITLE,GSCFAC,IFLAG)
CAAA PREPARE HEALTH EQUIVALENT FACTORS TO BE OUTPUT.
REALA8 CANC,NUCLID,TOTAL,RNLOC,OGLOC,ORC,CAN,GEN,OREP,RREP,CREP,
> GON
CO«MON/COMRN/OREP(20),RREP(20),CREP(20),WLRN(20,20),
A-84
-------
A RBISK.RREF(2),RYRLL,NOREP,NRREP,NCREP
LOGICAL GENEFF
COMMON/HEAD/ORC
DATA CAN/8H CANCER /,GON/8H GONAD /
DATA TOTAL/8HU. BODY /
INTEGER TABLE,FALOC,HLLOC,PTLOC
LOGICAL IDO
COMMON/COMLOC/RNLOC(10).OGLOCUO),PTLOC(10),FALOC(10),
> HLLOC(10).LTABLE(10),NTLOC
CQHMGN/COMGEN/GEN<3),NGEN.GDOSE<3.40,4,2).GRISK(3,40.4,2),
> GENEFF.GRFAC<2).REPPER.GLLET<3>.GHLET(3>,GREF<3,40.4)
DIMENSION IABLE<1),TITLEU),TITLA(10,3), TITL2<2).FACD<4,3).
> ITAB(7),NOTE(20>.TITLG<10,3>,FACG<4.3),NOTA(20),DREF(2),NUN(8,3)
DATA NUN/4H(MRE.4HM/YR,4H> .5A4H .4H 4HM/YR,4H> ,5A4H ,4H(PER,4HSON ,4HSEM/f4HYR) .
> 4A4H / ' '
DATA NU1E/4HRAD0.4HN DA.4HUGHT.4HER E, 4HXPOS.4HURE ,
> 4HRISK.4H EQU.4HIVAL,4HENT:.10A4H /,NOTA/20A4H /
DATA FACD/1.,1.,1.E6 l.E8,l.,!.,!.EG,l.ES,.001,
A .001,1.£3,1.E5/
DATA t'ACG/1., 1., 1., 100., 1., 1., 1., 100., .001,.001, .001,. I/
DATA IKP/0/
DATA 1ITLA/4HINDI,4HVIDU.4HAL R,4HISK ,4HEQ. .4HRAIE. 4H 4HEH/Y,4HEAR),4H ,4HHEAN,4H IND,4HWID,4HUAL . 4HRISK,4H EQ.,
> 4H RAT,4HE(MR,4HEM/Y,4HEAR),4HCOLL,4HECTI, 4HVE R,4HISK ,4HEQ R,
> 4HATE(!4HPERS'4HON R'4HEh/Y,4HEAR)/
DATA I1TLG/4H1NDI,4HVIDU.4HAL G,4HENET,4HIC R,4HISK ,
A 4HEQ. .4H(MR£.4HM/YE,4HAR) ,
A4HMEAN,4H IND,4HIVID,4HUAL ,4HGENE,4HTIC ,4HRISK,
A4H EQ. 4H(MS£,4HM/Y),
A4HCOLL,4H. GE,4HNETI,4HC RI,4HSK E,4HQ. (,4HPERS,
A4HON R,4H£M/Y,4HEAR)/
DATA IITL2/4H .4H /
COHMON/COHCA/CANC(20).NCANC,RELABS(20),RISK(20,40,4,2)
COMHON/COMRF/REF(20.40.4),fTABLE(7)
COMHON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
NCANR=NCANC+1
CANC(NCANR)=TOTAL
CSEP(NCREP+1)=TOTAL
IF (IKP.EQ.l) GO TO 6
IKP = 1
DO 5 J=1.3
FACD<4,J)=FACD(4,J)AGSCFAC
FACG(4.J)=FACG(4,J)AGSCFAC
CONTINUE
6 DO 20 11=1,3
IDO=.FALSE.
DO 10 K=l,7
ITAB(K)=0
IE
-------
12 DREF(J)=RREF(J)AFAC
IF (IDO) CALL MULKIT.FACD fITAB.TITL2,NOIE,NUN(l,IT),DR£F,CREP,NCKflF20,IELAG)
ORC=GON
IF(IDO.AND.GENEFF) CALL HULK IT.FACGd, IT) .GREF. 1 ,GEN<3),
> IITLE,TITLG,PTLOC(LL).OGLOC(LL),
A FACG<1.IT),GREF,IIILE,IIILG(1,IT),TITL2,GEN<3),1,3,2)
35 CONTINUE
38 CONTINUE
IF (INDPOP.NE.l) RETURN
20 CONTINUE
RETURN
END
SUBROUTINE DRTAB< ARRAY,NQRGN,ORGN, TITLE,TITL1,DTABLE,TULA, NOTE,
A NUN,RFAC.CR£P,NCREP,IFLAG)
CAAA THIS ROUTINE OUTPUT THE APPROPRIATE TABLES.
BEALA8 ORGN.NUCLIDjORC,SUM,CREP,OREP,RREP,CFAK,RADON
COMMON/COMRN/OREPt20).RREP<20),CFAK(20),ULRN<20,20),
A RRISK.RREE<2).fiYRLL,NOREP,Nftfi£P,NFREP
COMMON/HEAD/ok
COMMON/PDCF/DCFCTR(4,40)
INTEGER DTABLE
DIMENSION ARRAY(20.40.4),ORGN(1),TITLE(20).TITLA(2),PATH(4,7).
> DTABLE(1).TITL1(10),NOTE(20),CREP(1),WLSUH(4),RFAC(NCREP)INUN(8)
DATA PATH/4HINGE,4HSTIO,4HN ,4H .4HINHA,4HLATI,4HON ,
> 4H ,4HAIR ,4HIMME,4HRSIOf4HN .4HGROU.4HND S, 4HURFA.4HCE .
> 4HINTE,4HRNAL,4H ,4H , 4HEXTE,4HRNAL,4H ,4H ,
> 4H ,4H ,4H ,4H / ' ' '
DATA SUM/SHIOTAL /
COMHON/COMNU/NUCLID(40),NONCLDfPSIZE(40),RESP(40),GIABS (4.40).
> INDPOP '
COMMON/COMUS/SUr(X(40,7),SUMY(40,3),PERX(40),PERY(40).TVAL(40).
> FACO(20,4) '
CAAA SUM OVER ALL NUCL1DES FOR EACH ORGAN AND PATHWAY
CAAA PATHWAY 5 IS INTERNAL, 6 IS EXTERNAL, AND 7 IS ALL PATHUAYS
DO 10 1=1,7
DO 10 K=1,NORGN
10 SUr1X(K,I)=0.0
DO 30 1=1,4
DO 20 K=1,NORGN
DO 20 J=1,NONCLD
SUMX(K.I)=SUMX(K.1)+ARRAY(K.J,I)
IF (I.LE.2) SUMX(K,5)=SU«X(Kt5)+AafiAY(K,J,I)
IF (1.GE.3) SUHX(K.6)=SUMX(K,6)+ARRAY(K,J,I)
SUHX(K,7)=SU«X(K,-;)+ARRAY(K,5,I)
20 CONTINUE
30 CONTINUE
C
C IF DOSE FACTOR CALCULATION TRANSFER TO STATEMENT 350
C
IF (IfLAG.EGl.l) GO TO 350
A-86
-------
c
CAAA TABLE 1
IF (DTABLE(l).EQ.O) GO TO 80
DO 70 1=1.4
URITE(6,10000) TITLE.TITL1.TULA
URITE(6P10200) (PATH(N.I),N=1,4)
URIIEC6,10300) ORC,(ORGN(K),K=1,NORGN)
URITE(6f10400)
DO 60 J=1,NONCLD
DO 40 K=1,NORGN
PERX(K)=0.0
40 IE (SUMX(K.I).NE.O.O) PERX(K)=ARRAY(K.J.I)/SUMXrN=l,4)f(p£RXfK)fK=l,NORGN)
D0_50 K=l,NORGN
IE (I.GI.2) 11=6
PERX(K)=0.0
IF (SUHX(K.II).NE.O.O) PERX(K)=ARRAY
-------
IF
WRIIE(6.20400)NUN,(RFAC(JJ),JJ=1,NCREP)
115 CONTINUE
110 CONTINUE
CA*A TABLE 3
120 It =0.0
DO 150 K=1,NORGN
DO 140 1=1.4
IVAL SUHX(K.I) '
DO 210 J=1,NONCLD
11=1
IF (I.GT.2) 11=2
A-88
-------
PERX(J>=0.0
IF (SUMY(J.II).NE.O.O) PERX< J)=ARRAY(K, J, I)/SUMY< Jf IDA100.
PERY(J)=0.0
IF ,J=1,NONCLD),UPP
WRITE(6,11600) (PERY
-------
DO 290 K=1.NORGN
PERX(K)=0.6
IF (SUMY(K.Il).NE.O.O) PERX(K)=ARRAY(K,J,I)/SUMY(K,IDA100.
PERY(K)=0 0
IF (SUMY(K,3).NE.O.O) PERY(K)=ARRAY(K,J,I)/SUMY(K,3)A100.
290 CONTINUE
WRI1E(6,11500)
-------
c
DO 405 I = 1,4
DO 405 J = l.NONCLD
DCFC1R(I,J) = SUMX
-------
IF(RFAC(1).£Q.O.O) GO TO 470
WRITE(6,20400)NUN, RFAC
470 CONTINUE
465 CONTINUE
CAAA TABLE 7
500 It(DTABLE(7).EQ.O) RETURN
DO 510 1=1,7
DO 510 a=l,NORGN
SUhX(J.I)=0.0
510 CONTINUE
DO 550 1=1,4
DO 550 J=1,NORGN
DO 550 K=1.NONCLD
SUMX+ARRAY
IFU.GE.3) GO TO 501
SUMX(J,5)=SUMX(J,5)+ARRAY(J,K,I)
GO TO 502
501 SUHX(J,6)=SUMX+ARRAY
-------
600 CONTINUE
RETURN
10000 FORHAT<1H1,20XF20A4/21X,10A4/21XF2A4)
10100 FORMAT(IX)
10200 FORMAK'OAAA FOR PATHWAY:'.4A4//)
10300 EORMAT<1HO,A8.1H:,22XF10(2XFA8>/(33X,10(2XFA8))>
10400 FORMAT(9HONUCLIDES/)
10500 FORMAT(1XFA8F23X,1P10G10.3/(33XF1P10G10.3)>
10600 FORMATU1H X OF TOTAL,1X.4A4.4X. 1P10G10.3/O3X. 1P10G10.3))
10700 FORMAK11H % OF TOTAL,21X.1P10G10.3/ (33X.1P10G10.3))
10800 EORMAK'OIOIAL ',21X. 1P10G10.3/O3X, 1P10G10.3))
10900 EORMAK'OAAA FOR ALL PATHWAYS:'//)
11000 FORMAIC TOTAL'.26XF1P10G10.3/(33X,1P10G10.3))
11100 FORMAI('OAAAFORJ,Ali ':'.A8//)
11200 FORHATC NUCLIDES'F23X,10(2XFA8)/(33X,10(2XFA8)))
11300 FORMATC PATHWAYS'/')
11400 FORMAT(1XF4A4,15X.1P10G10.3/(33X.1P10G10.3))
11500 FORMAK6H Z OF FlX,4A4,9Xf 1P10G10.3/ (33X.1P10G10.3))
11600 FORMAK18H X OF ALL PATHWAYS, 14X.1P10G10.3/ (33X, 1P10G10.3))
11700 EORHAT(24H TOTAL OVER ALL PATHUAYSF8XF1P10G10.3/(33XF1P10G10.3))
11800 FORMATCOFOR NUCLIDE:', A8)
11900 EORMAT(1X.A8F23X,10(2X,A8)/(33X.10(2X,A8)))
12000 FORMATdlH Z OF TOTAL,21X, 1P10G10.3/(33XF1P10G10.3))
12100 FORMAT*'OAAASUHMED OyER ALL',A8)
12200 FORMATCOAAASUMMED OVER ALL NUCLIDES')
20100 EORMAT('0'/////10X.20A4)
20400 tORHAl(lX,3A4fiF10Gl0.3)
END
SUBROUTINE CHLOC(PLOC.CONC,GSCFAC,IFLAG)
REALA8 CANC.NUC.NUCLID,RADON,OREP,CREPfRREP,PNUC
DIMENSION CONC(4),FAC(4).IOR(4)
DATA FAC/2A1.E-5,10.,1000./
DATA IKP/0/
DATA BRTHRI/.83E6/
DATA RADON/8HRN-222 /
DATA IOR/3.4,1,2/
COMMON/COMEX/EXPP(20.20,40,4)FPOP(20F20),POPFAC,TOTFACF NOL,NOU,
> NRL.NRU,IDISI(20).ILOC'JLOC
COMMON/COMCA/CANC(20),NCANC,RELABS(20)fRISK(20,40,4,2), RTABLE(7)f
> AGEX,YRLL(20,40,4.2>
COMMON/COMRE/REF(20.40.4).FTABLE(7)
COMMON/COMNU/NUCLID(46)FNONCLD.PSIZE(40).RESP(40)FGIABS (4,40),IND
COMMON/COMRN/OREP(20).RREP<26).CREP(20),ULRN(20,20)
A ,RRISK.RREE(2),RYRLL,NOREPfNRREPFNCREP
COMMON/COMUS/TRISK(20,20).10(400)
COMMON/PASS/PNUC(40).PCON1(40),PCON2(40)FPCON3(40),
& PCON4(40),PPOf.LLIND.LDIST
DIMENSION SRISK(400).ANGLE(16)
DATA ANGLE/4HN .4HNNE F4HNE .4HENE .4HE ,
A 4HESE ,4HSE ,4HSSE ,4HS ,4HSSW ,4HSU ,4HUSU ,
B 4HU 4HUNU 4HNU 4HNNU /
EQUIVALENCE(TRISK(1.1)FSRISK(1))
IF (IKP.EQ.O) EAC(4)=FAC<4)ACiSCFAC
IKP = 1
NOP=JLOC+(ILOC-1)A20
DO 2 K=l,20
DO 2 L=l,20
POP(L.K)=1.0
ULRN(L.K)=0.0
TRISK(L,K)=0.0
A-93
-------
2 CONTINUE
DO 10 K=l,40
DO 10 J=1.20
DO 5 1=1,4
DO 5 L=l,20
5 EXPP(L.J,K,1)=0.0
10 CONTINUE
NOL=1
NOU=1
NRL=1
NRU=1
DO 90 II=1.NONCLD
IDISm>=LDlSI
IND=LLIND
NUC=PNUC(II)
CONC<1)=PCONK1I)
COHC(2)=PCON2(II)
CONC(3)=PCON3 GO TO 160
DO 70 ILO=NOL,NOU
DO 70 JLO=NRL.NRU
DO 50 NC=1.NCANC
DO 50 L=l,4
DO 50 N=1F2
IRISKA
A CONC(L)AFAC(IOR(D)
50 CONTINUE
DO 60 1=1,4
EXPP(JLO,ILO,J,IOR(I))=CONC(I)
60 CONTINUE
70 CONTINUE
POP(1,1)=PPOP
GO TO 90
160 CONTINUE
CAAA SPECIAL SECTION FOR RADON-222
DO 190 ILO=NOL,NOU
DO 190 JLO=NRL,NRU
C READ(26) UFRAC,ULEVEL
170 EXPP(JLO.ILO.J,3)=ULEVELAl.E-6/(10.AWFRAC)
EXPP(JLOfILO,J,2)=WLEVELABRTHRTA8760./(10.AUFRAC)
EXPP(JLO,ILO,J,1)=0.0
EXPP(JLO,ILO,J,4)=0.0
DO 180 N=l,2
DO 180 K=l,4
DO 180 NC=1.NCANC
IRISK(JLO,ILO)=IRISK(JLO,ILO)+RISK(NC,JfK,N)AEXPP(JLOfILO,J,K)A
A tAC(K)
180 CONTINUE
ULRNUIO,ILO)=UL£VEL
T8ISK(aLO,ILO)=IRlSK(JLO,ILO)+ULEyELARRISK
190 CONTINUE
W8IIE(6.20100)
20100 FORMAT*J THERE ARE NO GROUND SURFACE CONCENTRATION',
> ' OR INGESTION RATE EXPOSURES FUR RN-222.')
A-94
-------
90 CON1INUE
110 IF (1LOC.NH.O. AND. JLOC. NE.O) GO TO 130
LENO=NOU-NOL+1
LENR=NRU-NRL+1
NLOC=LENOALENR
J=0
00 120 ILO=NOL,NOU
DO 120 JLO=NRL,NRU
IFdND.EQ.l .AND. FOP( 1LO. JLO) .NE.0.0) IRISK ( JLO, ILO) =
< TRISK(JLO,ILO)/POP ' EXPOSURE IS '.17 ' HETERS ',A4,'FROH THE SOURCE.'/
> ' THE FATAL CANCER RISK AT THAT LOCATION IS ',G10.3)
END
SUBROUTINE VSORTP (A,LArIR)
DIMENSION A(1),IU(21),IL(21),IR<1)
C
M=l
1=1
J=LA
R= 375
10 1F*(I.EQ.J) GO TO 100
20 IF (R.GI.. 5898437) GO TO 30
R=R+3.90625E-2
GO TO 40
30 R=R-. 21875
C " SELECT A CENTRAL ELEMENT OF THE
C ARRAY AND SAVE IT IN LOCATION T
T=A(IJ)
IT=IR( IJ)
IF FIRST ELEMENT OF ARRAY IS GREATER
A-95
-------
c
c
c
c
c
c
c
c
IF (A(I).LE.I) GtJ 10 50
A(IJ)=A(I)
A(I)=T
T=A(IJ)
THAN I, INTERCHANGE WITH I
IR(I)=IT
50 L=J
IF (A(J).GE.I) GO TO 70
A(IJ)=A(J)
A(J)=T
T=A(IJ)
IR(IJ)=IR(J)
IR(J)=II
IT=IR(1J)
IF (A(I).LE.l) GO TO 70
A(IJ)=A(I)
A(I)=T
T=A(IJ)
60
70
80
IR(I)=IT
IT=1R
-------
IF (M.EQ.O) RETURN
I=IL(M)
J=IU(M)
110 IE (M.GT.21) WR1TE(6,10000)M
IF (J-I.GE.l) GO TO 40
IF (I.EQ.l) GO TO 10
1=1-1
120 1=1+1
IE (l.EQ.J) GO 10 100
T=A(I+1)
IF (A(I).LE.T) GO TO 120
K=I
130 A(K+1)=A(K)
IR(K+1)=IR(K)
K=K-1
IF (I.LT.A(K)) GO 10 130
A(K+1)=T
IR(K+1)=IT
GO TO 120
C
10000 FORHATC IN VSOR1P, M=',I3)
END
SUBROUTINE MULT( 1M.CONFAC.ARRAYI, NOC.NAMNOC. TITLE, TITL1 , TABLE,
> IITL2,NOTE.NUNIRFACI,CREP,NCREP,NDIH,IFLAG)
INTEGER TABLE
REALA8 NUCLID.NAMNOC,CREP,OREP.RREP,FREP.PUL,TBEQ
COMHON/COMRN/OREP(20>,RREP(20).FREP<20),
A ULRN(20.20).RRISK.RREF<2),RYRLL,NOREP.NRREP.NFREP
COHMON/COHNU/NUCLID(40),NONCLD,PSIZE<40),RESPUO),GIABS<4,40),
> INDPOP
COMMON/COMEX/EXPP(20.20,40,4),POP(20,20),POPFAC,IOTFAC, NOLrNOU,
> NRL,NRU.IDIST(20),ILOC.JLOC
DIMENSION ARRAYI(NDIM.40,4).ARRAYO(20,40,4).CONFAC(4).TITLE(1).
> TITL1 (l).TITL2(l)fNAftNOC(l)f TABLE (1),NOTE(1 ) ,CREP(20) ,RFAC 1(20),
> RFACO(20).NUN(1)
GO TO (10, 30,50), IM
10 DO 20 1=1 4
DO 20 J=1,NONCLD
DO 20 K=1,NOC
AR8AYO CONFAC(I)ATOTFAC
40 CONTINUE
RFACO(1)=0.0
RFACO(2)=0.0
IF(NCREP.EQ.O) GO TO 80
DO 45 I=1,NCREP
A-97
-------
DO 45 I1=NOL,NOU
DO 45 JJ=NRL,NRU
RFACO<1)=RFACIDOSE(20,40,4,2)
NAMELIST/ ORGANF/NORGB,ORGS,ORGDAT.IPATH
READ(26,ORGANF)
URITE(G,10000)
DO 10 J=1.NORGB
URIIE(6,10100) ORGB(J),ORGDAT(J)
IF (IPATH(J).NE.5) URITE(6,10200) IPATH(J)
10 IF (IPAIH(J).EQ.5) WRITE(6,10300)
DO 80 K=1,NORGN
DO 30 1=1,4
30 FACO(K.I)=0.0
DO 40 J=1.NORGB
IF (ORGN(K).EQ.ORGB(J)) GO TO 50
40 CONTINUE
GO TO 80
50 IF (IPAtH(J).EQ.S) GO TO 60
FACO(K,IPATH(J))=ORGDAT(J)
GO TO 80
60 DO 70 1=1,4
FACO(KrI)=ORGDAl(J)
A-98
-------
70 CONTINUE
80 CONTINUE
RETURN
10000 FORMATCOORGAN DOSE WEIGHTING FACTORS'//
A ' ORGAN FACTORS PATHWAYS'/)
10100 FORMAT (IX,AS.1X.F8.5)
10200 FORHAI('+',19X,I2)
10300 FORHAI('+',19X,' 1234')
END
SUBROUTINE LOCTAB(IT,RN,PI,OG,FACD,ARRAY,TITLE,TITL1,IIILA,
< ORGN.NORGN.NDIH,NO) »
REALA8 RN,OG,SUM,NUCLIB,ORGN,ULOPT(2),OREP,RREP,CREP,PUL,
A TBEQ
COMMON/COMRN/OkEP(20).RREP(20).CREP(20),ULRN(20,20),RRISK,
A RREF(2).RYRLL.NOREP.NRREP,NCREP
COMMON/COMCA/DU«(6468),AGEX
INTEGER PT
DIMENSION TIILE<20),IITLA(2).TIILK10),ARRAY 4H ,4HAIR ,4HIMME,4HRSIO,4HN .4HGROU.4HND S, 4HURfA,4HCE
> 4HINTE,4HRNAL,4H ,4H 4HEXTE,4HRNAL,4H ,4H ,
> 4HALL .4H ,4H ,4H /
DATA SUH/8HSOH 7,WLOP1/£)HUORKLEVL,8HULSUM /,
A PUL/8HPULHNARY/.TBEQ/8HBODY EQ./
COHHON/COHNU/NUCLID(40),NONCLDrPSIZE(40)rRESP(40),GIABS (4,40),
> INDPOP
COHHON/COMEX/EXPP(20.20,40,4),POP(20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDIS1(20).ILOC.JLOC
COMHON/COMUOR/UT(20,4)
10000 FORHAT(1H1.20X,20A4/21X,10A4/21X,2A4)
DO 10 K=1.40
HOLDR(K)=0.0
HOLDC(K)=0.0
DO 10 L=l,40
10 OUTPUT(L,R)=0.0
TSUh=0.0
DO 12 J=1.2
IF(RN.EQ.ULOPKJ)) GO TO 1000
12 CONTINUE
14 CONTINUE
IF(RN.LQ.SUH) GO TO 75
IF(RN.£Q.ULOPT(2)) GO TO 75
DO 50 J=1.NONCLD
IF(RN.EQ.NUCLID(J)) GO TO 70
50 CONTINUE
URITE(6.10500) RN
10500 FORMAT(? RADIONUCLIDE ',A8.
A ' IS NOT IN LIST. TABLE WILL BE SKIPPED.')
RETURN
70 INE=J
GO TO 80
75 INB=1
INE=NQNCLD
80 CONTINUE
IF(OG.EQ.SUH) GO TO 175
DO 150 J=1,NORGN
IF(OG.EGI.ORGN(J)) GO TO 170
A-99
-------
150 CONTINUE
WRITE<6.10600) OG
10600 FORMATS ORGAN ',A8,' IS NOT IN LIST.',
A ' IABLE WILL BE SKIPPED.')
RETURN
170 IOB=J
IOE=J
GO TO 180
175 IOB=1
IOE=NORGN
IF(11.EQ.3) GO TO 180
IFdI.EQ.l) GO TO 185
IOB=NORGN
IOE=NOR6N
GO TO 180
185 CONTINUE
GO TO 195
180 DO 190 1=1,4
DO 190 K=IOB,10E
UT(K,I)=1.
190 CONTINUE
195 CONTINUE
IPT=PT
IPB=IPT
IPE=IPT
IF(IP1.LE.4) GO TO 184
177 CONTINUE
IPT=IPI-4
GO TO (181,182,183),IPT
181 IPB=1
IPE=2
GO TO 184
182 IPB=3
IPE=4
GO TO 184
183 IPB=1
IPE=4
184 CONTINUE
DO 300 IPT=IPB,1PE
DO 300 IN=INB,INE
DO 300 IO=IOB,IOE
DO 300 II=NOL,NOU
DO 300 JJ=NRL,NRU
OUlPUKJJ,II)=OUTPUT(JJ,II)+ARRAY(IO,IN,IPmFACD £XPP(JJ.II,IN,IPI)
300 CONTINUE
305 If(IT.EQ.3) 60 TO 500
DO 400 II=NOL,NOU
DO 400 JJ=NRL.NRU
IF(POP(lI,JJ).Etl.O.O) GO TO 375
OUIPUT(JJ,II)=OUTPUT(aJ,II)/POP(II,JJ)
GO TO 400
375 OUTPUX(JJ,II)=0.0
400 CONTINUE
WRITE<6,10000) TITLE,TITL1.TITLA
WRITE(6.10100) RN,OGf(TPATH(K,PT),K=l,4)
DO 600 JJ=NRL.NRU
URIIE(6,10200) 1DIST(JJ),(OUTPUT(JJ,IDIR(II)),II=1,8)
600 CONTINUE
WRITE(6,10125)
A-100
-------
DO 605 JJ=NRL.NRU
WRITE<6,10200) IDIST(JJ),
|