United States       Office of         EPA 520/1-87-028
Environmental Protection    Radiation Programs      December 1987
"> i' '•••• \        Washington. D.C. 20460
Low-Level and NARM
Radioactive Wastes

Model Documentation

PATHRAE-EPA

Methodology and Users Manual

-------
40 CFR Part 193                                  EPA 520/1-87-028
Environmental Radiation Standards                (RAE 8706/1-6)
for Management and Land Disposal
of Low-Level Radioactive Wastes
      PATHRAE-EPA:   A  Low-Level  Radioactive Waste Environmental
                      Transport and Risk Assessment Code


                    METHODOLOGY AND USERS MANUAL
                            Developed by

                            Vern Rogers
                             Cheng Hung
                            December  1987
                            Prepared for

                U.S. Environmental Protection Agency
                    Office of Radiation Programs
                        Washington, DC 20460
                     Cheng  Hung,  Project Officer

-------
                                DISCLAIMER
     This report was prepared as an account of work sponsored  by  an  agency
of the  United  States  Government.    Neither  the United  States Government
nor  any  agency  thereof,  nor  any  of  their  employees,  contractors,  sub-
contractors,  or  their  employees, makes any warranty,  express  or  implied,
nor assumes  any legal  liability or  responsibility for any third party's  use
or the results  of such  use of any information,  apparatus,  product or process
disclosed in this report, nor  represents  that  its  use by such third  party
would not infringe  upon privately owned  rights.

-------
                             PREFACE








     This PATHRAE-EPA model documentation provides background



information on the mathematical modeling used to generate the



basic data for the Environmental Impact Statement (EIS) which is



used to support EPA's rulemaking for generally applicable



environmental standards for the management and disposal of



low-level radioactive wastes.  The model is used to assess the



maximum annual dose to a critical population group (maximum CPG



dose) resulting from the disposal of below regulatory concern



(BRC) wastes.  This model  is considered a member of the



PRESTO-EPA family of models.  The model is expanded from the



PRESTO-EPA-CPG and PRESTO-EPA-BRC models emphasizing two areas:



(1) the addition of specific radionuclide exposure pathways



pertaining to onsite workers during disposal operation, to



offsite personnel after site closure,  and to reclaimers and



inadvertent intruders after site closure; and (2) the



simplification of the sophisticated dynamic submodels to a



quasi-steady state submodels so that the computation time can be



greatly reduced and enable the model to be excuted on a personal



computer.







     Interested persons may apply this  model, using appropriate



and applicable input data, for assessing the maximum CPG dose



from an unregulated sanitary landfill  site.

-------
                          TABLE OF CONTENTS
LIST OF FIGURES ........................    iv


LIST OF TABLES  ........................    v


EXECUTIVE SUMMARY .......................    vi


1     INTRODUCTION  ......................    1-1

      1.1  Basis for PATHRAE-EPA  ...............    1-3
      1.3  Outline of Documentation and Users Manual  .....    1-5


2     PROBLEM DEFINITION  ...................    2-1

      2.1  Program Description  ................    2-1

           2.1.1  Pathways  ..................    2-1
           2.1.2  Dose Rate Calculations and Environmental
                  Foodchain Analysis  .............    2-4
           2.1.3  Nuclide Inventory ..............    2-6
           2.1.4  Groundwater Pathways  ............    2-6

      2.2  Pathway Equations  .................    2-7
      2.3  Summary of Equations ................    2-25
      2.4  Food Chain Calculations   ..............    2-26


3     APPLICATION INFORMATION .................    3-1

      3.1  Input Data and Program Organization  ........    3-1
      3.2  Program Options  ..................    3-3
      3.3  Input Data .....................    3-10

           3.3.1  Data File One - BRCDCF.DAT  .........    3-12
           3.3.2  Data File Two - ABCDEF.DAT  .........    3-14
           3.3.3  Data File Three - RQSITE.DAT  ........    3-20
           3.3.4  Data File Four -  INVNTRY.DAT  ........    3-22
           3.3.5  Data File Five -  UPTAKE.DAT .........    3-23

      3.4  Output  Data  ....................    3-26


4     SAMPLE  PROBLEM  .....................    4-1

      4.1   Problem Definition  .................    4-1
      4.2   Results   ......................    4-1
      4.3   PATHRAE-EPA Computer Compatibility .........    4-6
                                   IV

-------
                          TABLE OF CONTENTS
                             (Continued)
                                                                   Page

REFERENCES	     R-l


APPENDIX A — SOURCE LISTING FOR PATHRAE-EPA CODE  	     A-l
APPENDIX B — DATA FILES AND OUTPUT FROM PATHRAE-EPA  FOR  SAMPLE
              PROBLEM	    B-l
                                    v

-------
                              LIST OF FIGURES


Figure No.                                                            Pajje.


   2-1        Major Pathways for PATHRAE-EPA 	     2-2

   2-2        Representation of Area Source  Term for Groundwater
              Flow	     2-12


   3-1        Input and  Output  Data  Flow  for PATHRAE-EPA	     3-2

   3-2        PATHRAE-EPA  Subroutine Hierarchy  	     3-4

   3-3        Logic Flow of  PATHRAE-EPA	     3-6


   4-1        Representation  of  Sample Problem  	     4-2
                                     VI

-------
                              LIST OF TABLES





Table No.                                                             Page
1-1
2-1
3-1
3-2
4-1
4-2
4-3
PRESTO-EPA Code Family 	

Descriptions of PATHRAE-EPA Subroutines 	
Summary of PATHRAE Program Options 	
Site Parameters Used in Sample Problem 	
Nuclide Inventory 	
Facility Dose Rates for Various Times for Sample
Problem 	
1-2
2-8
3-5
3-11
4-3
4-4
4-5
                                   Vll

-------
                              EXECUTIVE SUMMARY


      The U.S.  Environmental  Protection  Agency  (EPA)  is  responsible  for
 developing   a  generally  applicable   standard  for  the  land  disposal  of
 low-level  radioactive  waste (LLW).   The  standard  will  support  the  U.S.
 Nuclear  Regulatory   Commission   and   the   U.S.   Department   of Energy  in
 developing   a  national  radioactive  waste  management  system.    Technical
 support  for  the  standard  includes   an  estimation  of  the  environmental
 impacts from the disposal  of LLW  in  a wide  variety of facilities  ranging
 from a  standard  sanitary  landfill  to  a deep geologic  repository.

      As an  aid  in  developing  the standard,  a  family  of computer  codes,
 entitled PRESTO-EPA-POP,  PRESTO-EPA-DEEP,   PRESTO-EPA-CPG,   PRESTO-EPA-BRC
 and  PATHRAE-EPA  has  been developed under EPA  direction.  The  EPA uses  the
 PRESTO-EPA code  family to compare  the potential  health impacts of  a  broad
 number  of  LLW  disposal alternatives  to evaluate  and support  its  decisions
 for  the LLW  standard.

      This report documents  the PATHRAE-EPA computer  code  used to  calculate
 maximum annual  doses  to a critical population  group  (CPG).  These  doses may
 result   from  the disposal  of  candidate  "below  regulatory  concern"  (BRC)
 radioactive  wastes  at municipal   dumps  and  sanitary  landfills located  in
 three  representative   and  diverse  hydrological,  climatic,  and demographic
 settings.

     The  PATHRAE-EPA   code  was   developed   by  Rogers   and  Associates
Engineering Corporation  under EPA  direction.    The  model  for  the  code is
based  upon   analytical  solutions  of  the  transport  equation  and  both
                                    Vlll

-------
radiation  doses  and health  effects  can  be  projected for  any  time period



during or following the end" of BRC waste disposal operations.





      PATHRAE-EPA  is a  multiple  transport  pathway,  annual  dose  assessment



computer   code.   The  code  may  be   executed  on  a   variety  of  computers



including   advanced  personal  computers  (e.g.,  IBM-AT  or  IBM-XT).   The



multiple   pathways   modeled  for  radioactive   nuclide   transport  include



contaminated  groundwater   transport  to  rivers  or  wells,  surface  water



contamination  by erosion  of contaminated  soil,  contamination  of  soil  and



water  due  to disposal facility  overflow, atmospheric  transport  of airborne



nuclides  and  inhalation by  humans.   Inhalation doses may  be  calculated to



workers engaged  in  disposal  operations  and  to an off-site population during



operation  and  after  site  closure.   Maximum  annual  doses to  inadvertent



intruders   and   residents   at   the   site  following   site  closure  may  be



calculated.   Annual  doses  may  result  from  internal   exposures  due  to



inhalation  or   ingestion   of   contaminated  materials   or  from  external



exposures  arising from nuclides on or below the ground surface.





     The  Environmental  Protection Agency wishes to  warn  potential  users



that,  like  any complex  computer  code, the PATHRAE-EPA code can be misused.



Misuse could consist of using the code  to examine a site where one or more



critical  modeling assumptions are invalid,  or where  values for significant



input  parameters are  chosen that do not  accurately  reflect variables such



as   radionuclide  inventory,  site   meteorology,   surface  and  subsurface



hydrology and geology, and future population demographics.  Certain release



and  transport  scenarios,  such as major changes in meteorology  or mining,



are  not  considered  in  the  PATHRAE-EPA  model   and  code  and  significant



changes to the existing code and the input data  may be required to consider
                                     IX

-------
such scenarios.   The PATHRAE-EPA  and  PRESTO-EPA codes  were developed  to



assess  and compare alternative  methods  for managing  and disposing  of  LLW  at



generic sites  for  general  scenarios.

-------
                              1.   INTRODUCTION
     The  U.S.  Environmental   Protection  Agency  (EPA)   is  responsible  for



developing  a  generally  applicable standard  for  the  disposal of  low-level



radioactive waste  (LLW) to support  the U.S. Nuclear Regulatory  Commission



and  the U.S.  Department of  Energy  in developing a  national  radioactive



waste  management  system.   Technical  support for  the  standard includes  an



estimation  of  the  environmental  impacts from the disposal of  LLW  in  a wide



variety of  facilities,  ranging from a  standard sanitary  landfill  to  a deep



geologic repository.





     As  an aid  in  developing the  standard,  a  family  of computer  codes,



entitled  PRESTO-EPA-POP,   PRESTO-EPA-DEEP,  PRESTO-EPA-CPG,   PRESTO-EPA-BRC



and  PATHRAE-EPA has  been developed under  EPA direction.   The  PRESTO-EPA-POP



code  was  the  first  code developed  and served  as  the  basis   for  the other



PRESTO-EPA   codes.   The   model    is   expanded   and   modified   from   the



PRESTO-EPA-CPG  and  PRESTO-EPA-BRC models  emphasizing  two  areas:  (1)  the



addition   of   exposure   pathways   pertaining  to   onsite  workers  and   to



inadvertent  intruders;   and  (2)   the   simplification   of  the  sophisticated



dynamic submodels  to  a  quasi-steady  state  submodels which enables the model



to  be  excuted  on  a  personal  computer.  The EPA uses  the  PRESTO-EPA  code



family  to   compare  the  potential   health  impacts  of a  broad   number  of  LLW



disposal  alternatives to  evaluate and  support   its decisions for  the  LLW



standard.  Table  1-1  provides  a brief description  of  each of  the  EPA codes.



These  codes,   and  how  the  EPA  uses them,  have  been  described  in detail



(Hu83,  Ga84,  Ro84a).   Information  on  obtaining  complete documentation   and



user's  manuals  for the  PRESTO-EPA family  of codes  (EPA85a  through  EPA85g,



MeySl, Mey84)  is available  from the EPA.





                                     1-1

-------
                                 TABLE 1-1

                          PRESTO-EPA CODE FAMILY
PRESTO-EPA Code
                        Purpose
PRESTO-EPA-POP
PRESTO-EPA-DEEP
PRESTO-EPA-CPG
PRESTO-EPA-BRC
PATHRAE-EPA
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by shallow methods; long-term analyses are modeled
(generally 10,000 years).

Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by deep methods.

Estimates maximum annual whole-body dose to a critical
population group from land disposal of LLW by shallow or
deep methods; dose in maximum year is determined.

Estimates cumulative population health effects to local
and regional basin populations from less restrictive
disposal of BRC wastes by sanitary landfill and
incineration methods.

Estimates annual whole-body doses  to a critical
population group from less restrictive disposal of BRC
wastes by sanitary landfill  and incineration methods.
                                   1-2

-------
1.1  BASIS FOR PATHRAE-EPA


     The development of  the standard for  low-level  waste (LLW) and  below

regulatory concern  (BRC)  waste  disposal  by EPA has  led  to the  development

of the  performance  assessment  code PATHRAE-EPA.   The PATHRAE-EPA  code  was

developed  by  Rogers   and  Associates  Engineering  Corporation  under  EPA

direction.   The  model  for  PATHRAE-EPA  is  based  upon analytical solutions

(Bu80) of the transport equation and both annual  radiation doses and  health

effects can be projected for any time period during or following the  end of

BRC disposal  operations.


     The PATHRAE-EPA code may be used to provide  estimates of the magnitude

of  health  effects  which could  potentially occur  if certain  radioactive

wastes  were  classified as  BRC  and disposed of  in  a sanitary  landfill  or

municipal  dump.   PATHRAE-EPA  has  been  used to  calculate maximum  annual

effective  whole  body  dose  equivalents   (doses)*  to  a critical  population

group  (CPG) due to the disposal  of candidate BRC  wastes  at municipal  dumps

and  sanitary  landfills  located   in  three   representative  and  diverse

hydrogeologic, climatic,  and demographic settings  (EPA84).   Maximum  annual

doses  are  calculated  to  workers  during disposal  operations,  to  off-site

personnel  after  site closure,  and to reclaimers and  inadvertent intruders

after  site closure.   A  detailed  description  of  the candidate BRC  waste

streams, the  disposal  facility  characterizations  and the resulting  doses

calculated by PATHRAE-EPA is given in the references  (Ga84, EPA84).


     The principal advantage of  PATHRAE-EPA  is its simplicity of operation

and presentation while still allowing  a  comprehensive set of nuclides  and
     Throughout this  report  the term  "dose"  refers to the  effective
     whole body dose equivalent.
                                    1-3

-------
 pathways  to  be analyzed.   PATHRAE-EPA can be installed  and  operated on  a



 variety  of  computer systems including advanced  personal  computers such as



 the  IBM-AT or  IBM-XT.   Site performance  for radioactive waste disposal can



 be readily investigated with relatively few parameters needed to define the



 problem.  Important parameters that limit site performance are also readily



 identified.    For  example,  key  site  parameters  are  found  generally  to



 include:





     0    Depth to the aquifer



     •    Aquifer distance to accessible location



     •    Aquifer velocity



     •    Facility size



     0    Facility operating time



     0    Precipitation



     0    Soil retardation characteristics



     0    Depth of emplacement of waste



     0    Cover thickness and permeability





     Of  the  many ways  in  which  exposures to  radiation from  radioactive



 waste may  occur,  some have  not  been  included in  PATHRAE-EPA  because they



 are either not restricting or are highly  improbable.   Only those reasonably



 probable  pathways which  are most  significant and potentially  restricting



 have been treated in  the PATHRAE-EPA  code.  This  does  not  mean  that  these



 exposure events will  occur.  Rather,  it  is the intent  of  the  PATHRAE-EPA



 code to model a consistent  set of events  in such a manner as  to estimate a



 range of probable impacts.  The resulting  range  can  be  used as  a basis for



decision making among  a  variety  of diverse alternatives.
                                    1-4

-------
     The  PATHRAE-EPA  methodology  models  both  off site and on site pathways
through which humans  may come in  contact with radioactivity from the waste.
The  off site pathways  include groundwater transport  to  a river and  to  a
well,  surface  (wind  or water)   erosion,  disposal  facility  overflow,  and
atmospheric  transport.   The on site pathways of concern  arise principally
from worker  doses  during operations  and  from  post closure site reclamation
or intruder  activities such as living and growing edible vegetation  on  site
and drilling wells for irrigation or drinking water.

     For  each of the  pathways  which  have been included in PATHRAE-EPA, the
dose from  each  nuclide  is  calculated as  a function of time.  Each of these
doses  is  then  summed to give the total  effective dose  for  that  pathway.
The dose  to  the critical population group  (CPG)  from all  pathways  is  then
computed,  assuming the  entire  nuclide  inventory  is accessible through  each
pathway.   In addition to dose  information,  nuclide concentrations  in river
water  are  calculated  for the  river, erosion, and  bathtub  pathways, while
well water concentrations are given for the well  pathway.


1.3  OUTLINE OF DOCUMENTATION AND USERS MANUAL

     This report contains the documentation necessary to understand  and use
the PATHRAE-EPA code.   It is intended for those  familiar with the operation
of computer  systems and  who will  be conducting  PATHRAE-EPA type analyses.
A basic familiarity with the pathway  approach  used in the PRESTO-EPA family
of codes is also presumed (EPA87a-EPA87f).

     In this  chapter  the background and use of the  PATHRAE-EPA code are
briefly described.   A summary of  the equations,  calculational  methods, and
                                    1-5

-------
general  methodology used in  PATHRAE-EPA  is  presented  in Chapter 2 as  well



as  a  description of the  program options that  are available.   Chapter  3



contains detailed card image  input  instructions  which  will  allow the  used



to understand and construct  the  necessary data  files  to execute and fully



utilize  the capabilities of  PATHRAE-EPA.  Also  a brief description of the



code output is given.   Finally, in Chapter 4 a sample problem is discussed



and input data sets  for  running the problem are given.  A source listing of



PATHRAE-EPA given in Appendix A and a listing of the output for the sample



problem  is given  in  Appendix  B.
                                   1-6

-------
                          2.   PROBLEM DEFINITION
2.1  PROGRAM DESCRIPTION


     The PATHRAE-EPA code  has  features  which  make it applicable to a wide

range  of  nuclear  waste disposal  analyses.    These features  are briefly

identified below.


2.1.1  Pathways


     Up to  ten  pathways  by which  radioactivity  may reach  humans  can  be

considered.   As shown in Figure 2-1,  the pathways  are:


     1.   Groundwater migration with  discharge  to  a  river.
               This pathway  consists of downward  migration  of waste
          components  by  advection or as  a result  of  dissolution in
          percolating  precipitation.    The   waste  components  move
          downward through the unsaturated zone to an aquifer  beneath
          the disposal  site.   In the aquifer the waste components are
          transported  by  advection  and   dispersion  to  an   outcrop
          location where the aquifer  discharges to a surface  stream.

     2.   Groundwater migration with  discharge  to  a well.
               Groundwater  transport  to  a well  is  similar  to  the
          pathway described above except that the  contaminated  aquifer
          water is withdrawn from a well.

     3.   Surface  erosion  of  the  cover  material  and  waste  and
          subsequent  contamination of surface water.
               Erosion  and movement  to  a  surface  stream involves the
          gradual  removal  of  the  cover over  the disposed  waste by
          erosion and,  eventually,  the slow  removal  of the waste
          itself.   The  time  required for erosion of  the  total cover
          depth  is calculated.   Then erosion  operates on  the waste
          materials  by removing  a  given amount (specific  depth) from
          the  top of the waste each  year.   A  conservative assumption
          is  made that the  eroded waste components  enter  the  surface
          stream  in the  same year they erode from the waste site.

     4.    Saturation of  waste and facility  overflow  (bathtub  effect).
              This  pathway  calculates  the  doses  generated  when  a
          waste site becomes saturated with water and the contaminated
          water  subsequently overflows  the waste  trench  and  enters a
          stream.
                                   2-1

-------
EXPOSURE
  EVENTS
                     OFFSITE
                     ONSITE
GROUNDWATER TO A RIVER
GROUNDWATER TO A WELL
SURFACE EROSION
FACILITY OVERFLOW
ATMOSPHERIC TRANSPORT


DUST INHALATION
FOOD CONSUMPTION
EXTERNAL GAMMA
BIOINTRUSION
RADIOACTIVE GAS
INHALATION
             RAE-102227
              FIGURE 2-1.  MAJOR PATHWAYS  FOR PATHRAE-EPA.
                                2-2

-------
  5.    Food grown on the waste  site.
           This pathway describes the consumption of food grown on
       reclaimed  farm  land and  accounts  for potential  exposure of
       individuals to waste materials through the human food chain.
       A  basic  assumption  in   this  pathway  is that  reclamation
       activities   are   required   to  cause   exposure   to   waste
       materials.   The  means  for  disturbing  the  waste  materials
       include  drilling  wells  through  the  waste and  excavating a
       basement  for  a  house.    The  waste   excavated  by  these
       activities  is  uniformly  mixed with  uncontaminated  surface
       soil down  to a specified depth.    The  soil  mixture  is  then
       used  to grow  edible  crops  and  forage  for  milk  and  meat
       producing  animals.     Individuals  are assumed  to  get  some
       fraction of  their food needs  from contaminated  crops, meat,
       and milk.   The  total  waste inventory at the site  decreases
       with time to account for  loss of contaminants by leaching to
       the groundwater pathways.

  6.    Biointrusion into the  waste.
           This pathway  is  similar to the  food pathway  described
       above,  but  involves  the consumption  of crops  whose  roots
       have penetrated into previously undisturbed subsurface waste
       materials.    The  crops  are  presumed  to absorb   waste
       constituents through  root uptake after  which the  crops  are
       directly consumed  by  humans.   The difference  between  this
       pathway and the reclaimer farm pathway is that no excavation
       of waste material  occurs.

  7.    Direct gamma exposure.
           This exposure pathway calculates the external  radiation
       dose to  an  individual  standing directly  over a  waste site.
       The cover material  over  the waste  is  allowed to erode  at a
       specified rate  so the degree  of  shielding  provided  by  the
       cover  may   decrease  in  time.    For   this   pathway   the
       conservative assumption is made that no loss  of  contaminants
       occurs  by  leaching  to the  groundwater pathways.  The  time
       dependence  of  the   source  term  is  described  solely  by
       radioactive decay.

 8.    Inhalation  of radioactive dust on-site.
           This   pathway    traces   the   effects   of   inhaling
      contaminated dust  that is suspended during the excavation of
      a basement or well by a reclaimer  and/or during  the disposal
      operation by a operator.

 9    Inhalation  of radon  gas and radon  daughters on-site.
           This pathway calculates  the  effects on  a  reclaimer of
      inhaling  radon and radon  daughters  while inside  a  structure
      built over  the waste.

10.   Inhalation  of  radioactive  particulates  off-site  (from  an
      on-site  incinerator,  trench fire,  or dust resuspension).
          This  pathway  usesa Gaussian  plume  technique to  trace
      the  effects  of  site  derived  airborne   contaminants  on  a
      representative off-site population.
                                2-3

-------
 2.1.2   Dose Rate Calculations and Environmental Foodchain Analysis





     The  annual  doses  are  calculated at  up  to ten  different  times after



 site  closure  using  factors  contained in  the  input  data.   The equivalent



 whole   body  dose  conversion  factors  for the  sample  problem  given  in



 Appendix B were  obtained  from PRESTO-EPA-CPG  calculations  using the DARTAB



 subroutines and  RADRISK data file  (Du80).   The user may  input other dose



 conversion factors if desired.





     Complete  environmental  foodchain analysis is  performed  using  the EPA



 methodology  contained  in  the  PRESTO-EPA  codes  (EPA87a-EPA87e).    The



 foodchain  calculations  consider direct consumption of contaminated water,



 use  of the  water  for  animal  consumption and  irrigation of  vegetation,



 consumption of the  vegetation by  humans  and animals,  and human  consumption



 of contaminated milk and meat from the animals.  The foodchain calculations



 also   consider   vegetation   grown   directly   in   contaminated  soil,  with



 consumption  of  the  vegetation  by  humans and  animals.    The  foodchain



 calculations include transfer factors to vegetation and  animals as  well  as



 consumption rates for water,  vegetation, meat, and  milk.   For convenience,



 the  routines  performing  the foodchain  calculations   calculate  equivalent



 uptake  factors  for  use  in  similar  model  runs,  such that  the  foodchain



 analysis need not be repeated each time.





     The equivalent  total  uptake factors  quantify,  on a  nuclide  specific



 basis,  the annual  nuclide  uptake  by  an  individual from  all  potential



 sources.  For  inhalation,  it is  just the  breathing  rate.   For ingestion,  it



 is the  total  equivalent annual  drinking water consumption in  liters  that



would  give the  same   annual  nuclide  uptake  as  would  occur  from  the



consumption of contaminated  vegetation,  meat, milk,  seafood, and drinking
                                    2-4

-------
water.  Since soil-to-plant transfer factors, and other related factors may
be  nuclide-dependent,  the equivalent  total  uptake  factors  are  nuclide-
dependent.

     As an  example,  suppose  an  individual  uses  contaminated well  water for
drinking,  irrigating a  vegetable garden, and watering a  milk  cow.   If the
individual  consumes  some of the vegetables and milk on a regular basis then
the routes  by which  nuclides are ingested by humans are:

     •    water - human
     •    water - vegetables - human
     •    water - cow - milk - human

The uptake  factor  for each nuclide would then  be  the equivalent  amount of
water  the  individual  would have  to  drink  in  order to  ingest  the  same
quantity of the nuclide as is ingested via the three pathways listed  above.
In this example  the uptake factor depends on the  amount  of drinking  water
consumed by the individual and by the cow, and on the amounts of vegetables
and milk  consumed.   Thus, the specific  pathways by  which contaminants  are
ingested and the quantities  of  contaminated foods ingested  are built  into
the uptake factors.

     For the pathways involving  food grown over the  waste  site the  uptake
factors have  a  similar meaning.   In  this  case, the uptake factor  for  a
particular  nuclide  is the equivalent  amount  of waste material (kg/yr)  an
individual   would  have  to directly  consume in  order to  ingest  the  same
amount of  that  nuclide as  he ingests  by eating contaminated foods.
                                    2-5

-------
 2.1.3   Nuclide Inventory





     The  nuclide  inventory  for PATHRAE-EPA can contain  up  to  75 nuclides.



 This  can  be  expanded  easily  by  increasing  the  limits  of  appropriate



 parameters  in the  DIMENSION  and  COMMON  statements.    The inventory  can



 either  be specified at all  of the designated times or  calculated  from an



 initial inventory.  In addition, the decay of the nuclide inventory and the



 ingrowth   of  daughters  can   be   calculated  for  the   operational   and



 post operational periods.





 2.1.4   Groundwater  Pathways






     The  transport  of nuclides  in  the  groundwater system can  be calculated



 with or without longitudinal and transverse dispersion terms.   The ingrowth



 of  daughter nuclides during transport  in  the groundwater  system can  be



 included  using any  of seven  three- or  four-member decay  chains.  The decay



 chains  are:






     1.   Cm-244 — Pu-240 — U-236



     2.   Pu-240 — U-236  — Th-232



     3.   Am-243 — Pu-239 — U-235



     4.   Pu-241 — Am-241 — Np-237



     5.   Pu-238— U-234  — Th-230—  Ra-226



     6.   Pu-242 — U-238 — U-234



     7.   U-238  -*  Th-230 — Ra-226






     Some of these chains  are approximate representations of longer chains.




For example,  decay chain  five is  calculated assuming  all  of the  Pu-238



decays   to  U-234  in a time  period  that  is short  compared  to  the  nuclide



transit  time in the aquifer.
                                    2-6

-------
      In  most  circumstances  decay  chain  seven  has the  most  significant



 impact on  human nuclide  doses  and the  other  six  chains  can be  ignored.



 However,  the  user  should bear in  mind  that  this is  not  always the  case.



 The initial nuclide  inventory should  be carefully  examined  to assess the



 importance of  the other chains.






      When any  of the decay chains are activated, PATHRAE-EPA  requires that



 each nuclide  in  the  chain be listed  in  the  initial inventory.   If it is



 desired to model a situation where a particular member of a decay chain is



 not present initially,  the inventory for that nuclide should be input as a



 very small  number,  but  not zero.










 2.2  PATHWAY EQUATIONS






      The  equations  used to calculate the doses for each of the ten pathways



 are presented   in this  section.   References  are given to aid the reader in



 understanding  the assumptions on  which the equations are  based and, where



 appropriate,  some  discussion  is  given  of  the  important  features  of  the



 equations.   In general, the equations  can be  grouped into three components



 representing  the waste  form or  release  rate,  the  transport  pathway  and



 environmental  uptake.   For simplicity,  the  results of  the  environmental



 foodchain  analysis  are represented in  the  equations  by  the  symbol,  U,



 called  the  equivalent  uptake factor.    Table  2-1  expresses  the  dose



 equations in terms of these three  components.





 Pathway One - Groundwater To A River





     The  annual  whole  body equivalent dose  due to  groundwater migration



with discharge to a river is calculated from the following equation.
                                    2-7

-------
                                                                            TABLE  2-1
                                                                    DOSES AND  THEIR  COMPONENTS
ro
00
PATHWAY
1. Groundwater
2. Well Water
3. Sheet Erosion
4. Overflow
5. Food Grown By
Reclaimer
6. Biointrusion
7. Direct Ganma
8. Dust Inhalation
9. Radon
Inhalation
10. Atmospheric
Transport
DOSE
Q\L f0 U!(DF)
q*
Q\L f0 U2(DF)
qw
Q fe fdii UI(DF)
qw
Q. fe fdii ui(°F)
qw
Q fd fg U3(DF)
V3S
Q fdb fg U3(°F)
Vds
Q Rc Rw fexp(Q760HDFGw
A '"wTw
Q fd dd W ui(DH
Vdw
Q E V^ tanh(bwTw)(e-bcTc) U^DF)
H\rV F
^r ff fv (£-) Ui(DF)
WASTE FORM
COMPONENT
q\L
QXL
Qfe
Qfe
a
V
3.
V
a
A
a
V
3E
V
Qfv
T~
PATHWAY COMPONENT
'o

-------
                              p =  X|.l                            (2-1)
where

     D  =  annual whole body equivalent dose (mrem/yr)

     Q  =  inventory of  the radioactive nuclide available in  a  given
           year (pCi)

    %  =  flow rate of the river

    ^o  =  fraction of inventory arriving at the river at time t  from
           transport through the aquifer

    *•!_  =  fraction  of  each nuclide  leached  from  the  inventory  in  a
           year
    Ul  =  annual equivalent uptake by an individual

    OF  =  dose conversion factor (mrem/pCi )


The components of the equation are:


                       Release Rate = QXL

                       Transport Pathway = f0

                       Environmental  Uptake  = _1(DF)
     The  term  f0  can  be calculated  for  dispersive groundwater  transport

using two methods.   For the first case a constant  fraction  leach  model  is

used to  obtain a  non-dispersive  solution,  which  is  modified by  the  Hung

Correction Factor  (Hu86) to obtain a  dispersive  solution  form for  fQ given

by:
             /•

              0    for t <_ ti  - tg


                                                    - t0 < t  < tx
             VLR\L
                    |l-exP["-XL(t-(t1-to))]>  for
                    (      L             J)

                     xp  -\L(t-tl)   l-exp(-XUo)  for tl £ t           (2-2)
                       L        -I L            -I
                                   2-9

-------
where

     t  =  calendar time (yr)

    t0  =  RL/va

    t!  =  R(L+xr)/va (yr)

    xr  =  distance  of  groundwater flow  from  nearest edge  of  burial
           pits to the river (m)

    va  =  interstitial  horizontal aquifer velocity (m/yr)

    Fn  =  Hung's correction factor for dispersion

     L  =  length of waste  site  in  direction parallel  to  aquifer flow
           (m)

     R  =  retardation factor = 1 + - Kd,
                                    P
    Kd  =  sorption coefficient in the aquifer  (m^/kg)

     d  =  aquifer density (kg/m^)

     p  =  aquifer porosity


     The term Ff, is  applicable to  a  time  integration  of the  release and is

given by (Hu86):
                  Fn = exp
V4vdva+va2)
(2-3)
where

    Da  =  longitudinal  dispersivity  (m)

    vd  =  RXDa (m/yr)

      x  =  radioactive  decay  constant  for  given  nuclide  (yr"-'-)


     For dispersive groundwater transport  a band release leaching model  is

used and f0 is  given  by  (Ro82):



                              N  r                  i
                                                                      (2-4)
                                   2-10

-------
 where

   Fj(t)  =   0.5 U(t) [erfc  (z-) + exp(dj) erfc  (z+)]

  erf(z)  =   error function  of z

 erfc(z)  =   complementary error function of z

    U(t)  =   unit step function

     z±  =  V5j"[l±t/(RtWj)]
             2Vt/(Rtwj)

     dj   =   distance from  sector  center to  access location, divided by
            the dispersivity

    twj   =   water travel time from sector center to access location (yr)

      N   =   number of spatial integration mesh points over waste source


      The numerical  integration referred to  above  is a means  by  which  the

 point source  analytical solution for  dispersive transport can be extended

 to approximate an  area  source.    As shown  in Figure  2-2,  the  disposal

 facility of length  L is divided  into N sectors of equal  length.   A  point

 source of  the appropriate magnitude is placed at the center of each sector.

 The distance, dj,  is  proportional  to  the  distance  from  the  center  of

 sector j to the access location.  The point source analytical solutions  are

 then summed over all sectors to approximate an area source.


     When  any of  the decay  chains  are  calculated in  PATHRAE-EPA  it  is

 possible to get negative  arguments  for the square  root  function.   This  is

 due to the boundary  conditions  imposed on the solution.   The problem arises

 only when the dispersivity is  large and  it  affects  only  the calculation  of

 concentrations for  daughter  nuclides  in  the  decay  chains.    Like most

dispersive  transport  solutions,  the   equations  used  in  PATHRAE-EPA are,

strictly  speaking,  only  valid  for  low  dispersivities.    So,  when the

argument  of  a square  root is  less than  zero,  PATHRAE-EPA decreases the
                                    2-11

-------


— —^••M

r
i
•^

4


N-
i

-1

	 : 	 U 	
• • -WASTE NODES* • •
I

I


>
i

2
i




1
\



                 CONTAMINATED ZONE
RAE- 1 00983A
                     AQUIFER FLOW
FIGURE 2-2.   REPRESENTATION OF AREA SOURCE TERM FOR GROUNDWATER FLOW.
                                2-12

-------
 dispersi vity  by  a  factor  of  ten  for  the  remainder  of that  decay chain
 calculation.   After each chain calculation the dispersivity is  restored to
 its  original  value.   This  procedure  does  not  significantly  alter  the
 nuclide  concentrations because the  parent  nuclides in  the  chains  are not
 affected.

 Pathway  Two  -  Groundwater  To A Well

      Groundwater  migration with discharge to a well is calculated from
                                D = QVLfou2(P':)                         (2_5)
 where
      1)2   =   annual   equivalent   total   uptake  of  well  water  by  an
             individual  (^
 The  aquifer dilution water  flow  rate qw is given, in this case, by:

                                 qw = W  L vaP                          (2-6)

 where
      W  =  width of waste pit perpendicular to aquifer flow (m)
      L  =  Thickness of aquifer  (m)
      P  =  Porosity of the  aquifer
     Theoretically a stratified flow, having the leachate on top of the
oncoming groundwater, will develop at the downstream end of a disposal site,
Figure 2-2.  However, in the case of a  low yield aquifer normally occurring
at a disposal site, a significant draw-down of the groundwater table will
develop in the vicinity of the well.  Therefore, the streamlines of the flow
will be compressed and result in  near-complete mixing at the well.
                                     2-13

-------
      In  addition  to  modeling the effects of longitudinal dispersion in the

 aquifer,  the well pathway  can  account for  any  transverse  dispersion that

 may  occur.   This  reduces  the conservatism  when  calculating  nuclide doses

 for  the  well pathway.  When  modeling  transverse dispersion the term fQ  in

 Equation  2-5 is  modified  by an additional  multiplicative  term,  f ^, given

 by:
               ft = i erf
(yw
I erf
(yw -
                                            (2-7)
 where

     yw   =  distance to well from center of waste area in the direction
           perpendicular to the aquifer flow (m)

     Dy   =  transverse dispersion coefficient (m^/yr)


 For  the limiting case in  which  Dy goes to  zero ft becomes  equal  to one.

 Therefore, the effects of  transverse  dispersion  can be  ignored by choosing

 Dy equal to zero.


      The  groundwater  pathways  to   the   river   and  the   well   can  also

 accommodate transport  in the  vertical  unsaturated  zone between  the waste

 and  the  aquifer.    This  is  accomplished  in  the  same  manner  as   in  the

 PRESTO-EPA-POP code  (EPA87a).  The  vertical  water velocity and retardation

 are  given by:
                               Vv = P/(p,S)
                                                                      (2-8)
                              R = 1 +
                                      PS
where
                                    2-14

-------
    Ps  =  effective soil porosity

     S  =  fraction of saturation

    ds  =  bulk density of soil (g/cm^)


The term S can either be input or calculated from the expression:
                       S = Sr + (1 - Sr)
P  |SNO                    (2-9)
where

    Sr  =  residual saturation fraction

   SNO  =  soil index

    Kh  =  vertical zone saturated hydraulic conductivity (m/yr)

     P  =  annual percolation (m/yr)


Pathway Three - Sheet Erosion and Transport To A River


     In  this  pathway,  the  model  calculates  the  doses  due  to  surface

transport of  radionuclides  and deposition  in  a river.  The  radionuclides

originate either  from operational  spillage or from  sheet  erosion of  the

trench cover  and  waste.   The dose  for sheet  erosion  of  cover  material  and

waste and its subsequent deposition in a  nearby river  is  given  by:
                            p a     dil                               (2-10)
where

    fe  =  fraction of waste eroded each year

        =  fraction of solids entering  river that  originated  in  waste
           trenches (calculated  by the code)
                                    2-15

-------
 The  parameter  fe  is  calculated from the surface erosion rate, Er, which is
 an  input variable, according  to  the relation fe = Er/Tw, where  Tw is the
 waste thickness (m) and Er is  expressed in m/yr.

     In  the initial  year of  the  simulation it  is  assumed  that  surface
 runoff  mobilizes  radionuclides spilled during  facility  operations.   These
 contaminants are  subsequently  deposited in  a nearby  river.   The dose for
 this  initial   year  of  the  erosion  pathway  is  calculated  usirvg the  same
 approach as that in the PRESTO-EPA codes (EPA85a-EPA85$) and is given by:

                        n =     Q fspl "1 (PF)                       (2-11)
                                         Kd ds + P)
where
  ^spl  =  surface spillage fraction
  dact  =  active depth of soil in the surface-contaminated region (m)
     Tp  =  annual runoff of precipitation (m)

Pathway Four - Disposal Facility Overflow

     When precipitation  and  geologic conditions allow, the  waste disposal
facility  may  become  filled  with water  and  overflow across  the  ground
surface.   This  "bathtub  effect"  is  calculated as  a  modification to  the
erosion  pathway.   PATHRAE-EPA  calculates  the  dose   resulting  from  the
bathtub effect by replacing the erosion rate Er with the expression:
-P(t - tf )
                                     L(Kddw + p)tw

where

    dw  =  waste density (gm/cm3)
    tf  =  time at which trench overflow begins (yr)
                                    2-16
                                                                     (2-12)

-------
Pathway Five - Food Grown On Site



     The  equation  for  the  dose  from  ingestion  of  food  grown  over  the

disposal site is:
where


    fd  =  dilution factor  representing  the dilution of waste  in  the
           soil

    fg  =  fraction of individual's diet consisting of food grown over
           the disposal  site

    U3  =  total equivalent uptake factor for food (kg/yr)

     V  =  volume of waste (m^)


     Equation 2-13 assumes that at some  future time  a reclaimer moves onto

the waste disposal  site  and  builds a house.  By  excavating  a  basement  for

the  house  and  by  drilling  a  well  on  the property,  some of the  waste

material  is  brought  to  the surface and  is uniformly  mixed  with  the surface

soil to  some depth  (Tg).   A  representation  of the   parameters  used  to

calculate f^  is shown in Figure  2-4.   Using these assumptions, the  factor '"'

f
-------
    Tg  =  depth  to which  contaminants  are  mixed with  surface  soil  (m)


    Tw  =  thickness of the waste  (m)


    AI  =  lot  area (m2)


    An  =  house  area (m^)


    Aw  =  cross  sectional area  of wells drilled  (nv?)



     The first term  in  the brackets  of Equation 2-14 is the  component  due


to the  excavation  of  a  basement.   The second  term  is  the well  drilling


component.    A complete  derivation   of Equation 2-14  is  given  by  Rogers


(Ro82).



Pathway  Six - Biointrusion



     Biointrusion into  the  undisturbed waste  is  calculated in the  program


with  Equation  2-13.   It  is assumed that  plant roots  penetrate into  the


waste and  the  plants  are later  consumed  by humans.   The  main  difference


between  this pathway and  Pathway Five  is  that f^ is replaced by f^ which


is computed differently.  For this pathway:
                    fHh  =<
                            fm  w         for Tr 1 T
                    rdb ^  fm I1  - y^)    for  Tc  <  Tr  <  Tc  +  Tw
                                    1 r


                            3             for  Tr  1 Tc
                          \


where


    Tr  =  plant root  depth  (m)



Pathway Seven - Direct Gamma



     The dose from direct  gamma  exposure to  an intruder  is  calculated  from:
                                   2-18

-------
D =
Anv,tw
B(mcTc) exp(-mcTc)
                                                        )
                                                         J
                                         )  exp(-mwTw)   fexp (8760)(DFG)
where

 B(mT)  =  1 + (mT)1.5/Eg = buildup factor

    r\,  =  gamma attenuation constant of the waste (1/m)

    mc  =  gamma attenuation constant of the cover (1/m)

  ^exp  =  fraction  of the year  the  individual  is  exposed  to  given
           pathway

     A  =  plane  area of  the  waste,  the  waste  is  assumed  to be  a
           circular  horizontal  plane  with  the  exposed  individual
           standing at the center (m^)

    Eg  =  weighted average gamma energy emitted by nuclide (MeV)

   DF6  =  infinite  ground  plane  dose conversion  factor  (mrem/hr  per
           pCi/m2)


     The  function  B(mT)  in Equation  2-15  is  the gamma  radiation  buildup

factor which is used  to  account for the  effects of gamma ray scattering in

the waste  and  in the  cover.    It is  an  empirical relation  based  on  gamma

scattering data at  energies  from 0.25 MeV  to  1.0  MeV  (Mo67).   The term in

brackets  in  Equation 2-15 accounts for  self-shielding and buildup in  the

waste of gamma rays.


     The weighted average gamma energy is computed by taking the average of

all  gamma  energies  emitted  by  a  particular nuclide,  each  energy  weighted

by its  probability  of  occurrence.    For example,  if  decay  of a  nuclide

produces a 1  MeV  gamma ray 20  percent of the time, a  2 MeV gamma 80 percent

of the time and a 2.1  MeV gamma 100 percent of the time, then the  weighted

average gamma energy would be:
                                    2-19

-------
        E  = (0.2 x 1 MeV + 0.8 x 2 MeV + 1.0 x 2.1 MeV) = 1>95 MeV
         9               (0.2 + 0.8 + 1.0)

For  the sample  problem in  Chapter  4,  the  gamma energy  for Cs-137  was

calculated from the Ba-137m gamma rays.

     The infinite  ground plane  dose conversion factor  is discussed  in  the

references  (NRC77).    For  the   sample  problem,  DFG  was  obtained  from

PRESTO-EPA runs.

     There are  three alternatives available when  calculating  direct  gamma

doses using PATHRAE-EPA.   The first alternative allows the  calculation  of

the  gamma  dose  from the undisturbed buried waste.  The second alternative

assumes that plant roots penetrate the waste and transport some nuclides  to

the  surface.  Each year the  plants  die and  deposit their absorbed nuclides

on  the  ground  surface so  there is  continual  transport  of  nuclides  and

deposition on the  ground  surface.   The  gamma dose is  calculated  from  the

nuclides deposited on the surface as well as  the  nuclides remaining  in  the

original  burial trenches.   The third  alternative assumes that a  reclaimer

builds  a house  and digs a  well on the site as  described  for Pathway  Five.

This brings some of the waste  material  to the surface where  it  is  mixed

with the existing soil.  The gamma dose is  calculated  from the  waste  on  the

surface and from the waste that  remains underground.   The three options  in

Pathway Seven  are selected  by the value of  the  PATHRAE-EPA  variable  IGAMMA

which can have the value 0,  1, or 2.

Pathway Eight  -  On-Site Dust  Inhalation

     In  this  pathway,  doses  are  calculated for  a reclaimer  excavating  a

disposal trench  some time after  site closure.   Alternatively, doses to site
                                    2-20

-------
workers  can be calculated  for  inhalation  of  suspended particulates during


disposal   operations.     The  dose  for  the   inhalation  of  resuspended,


contaminated dust by an inadvertent intruder is given by:



                            D =  Qfddd Ujfexp(DF)                      (2-16)
                                    Vcfw
where


     fd  =  dilution  factor representing the dilution  of  waste  in the
           soil


     d
-------
     Q  =  inventory of Ra226 (pCi )

     E  =  fraction of radon which  can emanate upward from the waste

     H  =  height of rooms in structure built over the waste (cm)

    Xr  =  air ventilation rate of  the structure (air changes/sec)

     X  =  decay constant of radon  (I/sec)

    TI  =  thickness of earthen cover (m)

    T2  =  thickness of concrete floor in reclaimer house (cm)

    Dw  =  radon diffusion coefficient of the waste (cm^/sec)

    DI  =  radon diffusion coefficient of the cover (cm2/sec)

    D2  =  radon diffusion coefficient of concrete floor (cm^/sec)

     F  =  - [1 +Vaw/ac tanh(100bwTw)] +
           2

           - [1 -VVa^" tanh(100bwTw)] exp(-2(100 bj Tx + b2 T2))
           2


    ai   =   P2i  Di  [1 - (l-k)m]2 (i  = w, l, 2)

    bn-  = VVD7  (i = w, 1, 2)

    p-j  =  porosity (i = w, 1, 2)


    n\i  =  0.01 Mdi/pi (i = w, 1, 2)

     M  =  moisture content (dry weight percent)

     k  =  0.26 pCi/nr of radon in water per  pCi/m^ in air


A description  of  the theoretical basis of Equation  2-17 is given in  the

references  (Ro82,  Ro84b).  For most problems, a^  can  be set equal to  unity

with little loss of accuracy.


Pathway Ten -  Atmospheric Transport  of Contaminants


     The dose   from  the  inhalation  of  airborne  contaminants  from  dust

resuspension,  incineration,  or a  trench fire  is  given by:
                                    2-22

-------
                         D  = 3. r fffy  (*_) Ui  (DF)                   (2-18;
                             V         Q1
where
      r  =  dust  resuspension  rate  or  burn  rate  of  incinerator  or
           trench fire  (m3/sec)

     ff  =  deposition   velocity   for   resuspended  dust   (m/sec)   or
           fraction of  the year the burning occurs for incinerator and
           trench fire

     fv  =  nuclide  specific  volatility  factor  for  incineration  or
           trench fire  (fraction of nuclide released to atmosphere)

      X  =  downwind atmospheric concentration (pCi/m3)

     Q'  =  atmospheric  source release  rate (pCi/sec)


      PATHRAE-EPA uses Gaussian plume (S168, EPA85a) expressions for X/Q1:
                      Q1
                                                                     (2-19)
where
    fw  =  fraction of time wind blows in direction of interest

    sz  =  standard  deviation  of  plume  concentration  in  vertical
           direction (m)

     u  =  average wind speed (m/sec)

     n  =  number of sectors or wind directions (usually 16 sectors)

     x  =  distance from source to receptor (m)

     h  =  effective  release  height  including  momentum  and thermal
           plume rise effects  (m)


Plume depletion effects from deposition are represented  by a reduced  source

release  rate  calculated  within  the  code  (EPA87a).    The  actual  release

height is modified to  account  for momentum and thermal plume rise  effects

by the following equation  (S168):
                                    2-23

-------
               h . h  * U5 "*  "s  * 1.6Q.7E-5
where



    hs  =  actual release height  (m)



    vs  =  stack gas velocity (m/sec)



    Ds  =  stack inside diameter  (m)



    QH  =  heat emission rate from stack  (cal/sec)





Equation 2-20  is valid as long as  the distance  to  the  receptor  location  is



less than  ten  times  the  stack height.   For greater distances the  receptor



distance, x, is replaced with 10  hs.





     If  some  parameters  are unknown or  poorly characterized,  a  default



option, based  on the  location of the maximum plume concentration,  is  used.



In this case:





                               — =   2                              (2-21)








where



     e  =  base of the natural  logarithm  (2.71828)





     Equations 2-19 and 2-21 (S168) are expressions for  point  sources.  For



the trench fire scenario it  is assumed that the fire involves a  relatively



small amount of waste (for example, the amount  received  by   the  facility  in



one day).   For  an    incinerator  the  only  source  is  a single  incinerator



stack.  Since the extent of  the source is small in these cases,  the use  of



the point source expression  is justified.





     If an  area source  is  desired it can  be  represented  by the  virtual



point source approximation,  where  x is replaced  by  x1,  given by  (EPA84)
                                    2-24

-------
                             x1 = x + 2.5137 y





where



     y  =  width of the facility (m)






     The  sz  in Equation  2-19  is calculated  in  PATHRAE-EPA using  Briggs1



approximations  (SI 68).    This  necessitates  specifying  one  of  the  six



Pasquill atmospheric stability classes.  If no stability  class  is  specified



in  the input  data  set,   the  moderately  stable Class  D  is  used.    The



stability class  should be chosen to represent an annual  average  stability.



The wind  speed, u,  is  the  annual  average wind speed  from the source to  the



receptor.










2.3  SUMMARY OF EQUATIONS





     Table 2-1 summarizes  the  dose equations  for each of  the ten  pathways.



The  table also shows how  the equations can be  broken into  groups  of  terms



representing the waste form, the transport pathway,  and  nuclide uptake  by



humans.  An examination of the  components of the  dose equations reveals  the



similarities  among  the  various  pathways.   In  addition to  providing a



comparison of  all   the pathways,  the table  gives   insight  regarding  the



relative  importance of certain environmental  and facility   parameters.   By



studying the  relationships  among key  parameters the most  effective  means  of



limiting the  doses  can  be  more  easily identified.
                                   2-25

-------
2.4  FOOD CHAIN CALCULATIONS





     Mean  concentrations  of  radionuclides  in air,  river water,  and  well



water  are calculated by the equations listed in  Table 2-1.  This section



describes how radionuclides in those and other environmental  media are used



to  calculate  human  intake/exposure  of  radionuclides  using  PRESTO-EPA



foodchain analysis (EPA87a).





     Radionuclides  in  water  may  impact  humans  by  internal   exposure,



directly from use of drinking water  or indirectly from  use  of  irrigation



water for crops.   External  doses may result  from  exposure to contaminated



soil surfaces.   Internal  doses  may result from inhalation of contaminated



air  or  ingestion  of  contaminated  water  and  food  products,   including



drinking water,  beef, milk, fish, and produce.





     The  deposition  rate   onto  food surfaces  or  soil  that is  used  in



subsequent calculation  of  radionuclide  content  in the food  chain,  comes



from spray irrigation and is:





                                  Ir = Cw WT                          (2-22)





where



    Ir  =  radionuclide application rate (pCi/m^  - hr)



    Cw  =  radionuclide concentration in irrigation water  (pCi/1)



    Wj   =  irrigation rate (l/m2-hr)





The  concentration  in water,  Cw,  is  either the well  or  river  water,



dependent upon the pathway under  consideration.
                                    2-26

-------
     The  following  equation  estimates  the  concentration  Cv  of  a  given

nuclide  in and  on  vegetation  at the  location  of deposition  (except  for

tritium and carbon-14):
IrfR[l-exp(-\etw)]
+ Bc • CSP fj
Yv\e dss
                                       exp(-\th)
                                                                     (2-23)
where
    Cv   =   radionuclide concentration in vegetation (pCi/kg)

    fR   =   fraction of deposited activity retained on crops (unitless)

    Xe   =   removal rate constant for physical loss by weathering

    tw   =   time period for  irrigation (hr)

    Yv   =   agricultural productivity yield (kg(wet weight)/m2)

    Bc   =   radionuclide concentration  factor for uptake  from soil  by
            edible  parts  of  crops  (pCi/kg  (wet weight)/pCi/kg  (dry
            soil))

   CSP   =   time  average  value  of  soil  radionuclide  concentration
            assuming a steady  rate of deposition
   dss  =  effective "surface density" for soil (kg of dry soil)/m2)

    fj  =  fraction of the year that irrigation occurs

    tn  =  time  interval  between  harvest and  consumption  of  the food
           (hr)
The term CSP is given by:
CSP
=  8760 Irfil_

    t'(\s-\) Us
                                               -1 n-expf-xf 11     (2-24)
where

    t1  =  min [1/\L, (tmax - t0)]

  tmax  =  maximum input time for calculation


The rate constant  for  contaminant removal from the  soil,  \S)  is estimated
using:
                                    2-27

-------
                          X,   =  	§	                       (2-25)
                           5      (0.15)(8760)R
where


    \s  =  soil  nuclide removal  rate coefficient


    rs  =  watershed infiltration (m/yr)

  0.15  =  depth of contaminated soil  layer(m)


  8760  =  h/yr



If farming is performed on  the trench  site,  then  CSP  is  set equal  to dss in


Equation 2-23, giving a soil  concentration of  1 pCi/kg.



     Equation 2-23  is  used  to  estimate  radionuclide  concentrations  in


produce  and  leafy  vegetables  consumed  by  humans  and  in  forage  (pasture

grass or stored  feed) consumed by dairy cows, beef  cattle,  or  goats.



     The concentration of each radionuclide  in animal forage  is calculated

by use of the equation:



                        cf  =  fpfscp  +  (1  - Vs>Cs                    <2-26)


where


    Cf  =  radionuclide  concentration  in  animal feed  (pCi/kg)

    Cp  =  radionuclide  concentration  on  pasture  grass (pCi/kg)


    Cs  =  radionuclide  concentration  in  stored feeds in  (pCi/kg)


    fp  =  fraction of the year that animals graze  on pasture


    fs  =  fraction  of  daily  feed  that  is pasture  grass  when  the
           animals  graze on pasture



     The  concentration of each radionuclide in milk is estimated as:



                     cm  =  (FmCfQf +  CWQW) exp(-\tf)                 (2-27)
                                   2-28

-------
where

     Cm   =   radionuclide concentration in milk (pCi/1)

     Fm   =   average  fraction of  the  animal's  daily intake  of  a given
            radionuclide which appears in each liter of milk (d/1)

     Qf   =   amount of feed consumed by the animal per day (wet kg/d)

     tf   =   average  transport time of the activity  from  the feed into
            the milk and to  the  receptor (hr)

     Qw   =   amount of water  consumed by the animal (1/d)


     The radionuclide  concentration  in  meat depends, as with  milk,  on the

amount  of  feed consumed and its  level  of  contamination.   The radionuclide

concentration  in meat  is estimated using:


                     CF  =   Ff(CfQf + CWQW) exp(-\ts)                (2-28)


where

     Cp   =   nuclide concentration  in animal  flesh (pCi/kg)

     ff   =   fraction  of the  animal's  daily intake  of a given  radio-
            nuclide which appears  in each kilogram of flesh  (d/kg)

     ts   =   average time from slaughter to consumption (hr)


     Once  radionuclide concentrations  in  all  the  various foodstuffs  are

calculated,  the  annual  human   ingestion  rate  for  each   radionuclide  is

estimated by:


                      Qing  = QV +Qmilk + Qmeat + QW                 (2-29)


where  the  variables  represent  individual  annual  intakes   of  a  given

radionuclide via total ingestion  (Q-jng), and  ingestion  of  vegetation (Qy),

milk  (Qmilk),  meat  (Qmeat),  and drinking  water  (Qw),   respectively,  in

pCi/yr.   The annual  intakes via each type of  food,  Qv for  instance,  are

calculated as:
                                    2-29

-------
                               Qv   =  Cv Uv                           (2-30)


where

    Qv  =  annual  radionuclide  intake from vegetation  (pCi/yr)

    Cv  =  radionculide  concentration in vegetation  (pCi/kg)

    Uv  =  individual  annual  intake of vegetation  (kg/yr)


     As  mentioned  earlier,  Equations  2-22  through  2-29  do   not  apply

directly to calculations of  concentrations  of H-3  or  C-14 in foodstuffs.

For the application of tritium in irrigation water, it is  assumed that the

concentration   in   all  vegetation,  Cv,  is  the   same   as   the  tritium

concentration  in drinking water; therefore:


                                 Cv = Cw                             (2-31)


where Cv and Cw are in  pCi/kg  and  pCi/1,  respectively.  The concentration

of H-3  in  animal's feed, Cf,  is  therefore also  equal  to Cw.   Then,  the

concentration  of tritium in animal's milk and flesh  can be written as:


                           Cm= FmCw(Qf +QW)                        (2-32)

                           Cf  = FfCw(Qf + Qw)                        (2-33)


where

    Cm  =  concentration of tritium in milk  (pCi/1)

    Fm  =  fraction  of the animal's daily intake  of H-3  that appears
           in  each  liter of milk (d/1)

    Cw  =  H-3 concentration  in animal's drinking water (pCi/1)

    Cp  =  concentration of tritium in animal's flesh (pCi/kg)

    Ff  =  fraction  of the animal's daily intake  of H-3  that appears
           in  each  kg  of flesh  (d/kg)
                                   2-30

-------
The exponential  term is neglected due  to  the relatively long  radioactive
half life of tritium compared to transit times through the food  chain.  The
root uptake of C-14  from irrigation water  is  considered  negligible  and has
been set equal to zero.
                                    2-31

-------
                       3.   APPLICATION INFORMATION


     This  chapter  contains the detailed information necessary to construct
data sets  and perform PATHRAE-EPA analyses.  Section 3.1 describes the data
files and  the organization of the PATHRAE-EPA main program and subroutines.
The  program  options  are  described  in  Section  3.2.    Detailed  input
instructions  are  given   in  Section  3.3  and  the output  is  discussed  in
Section 3.4.
3.1   INPUT DATA AND PROGRAM ORGANIZATION

     The  input data  for  PATHRAE-EPA  are  read  from  four  (five,  if  food
pathway option is  used)  data  files.   Figure 3-1  shows the general  types of
information  read  from  these files.    The  dose  conversion  factors  and
equivalent uptake factors, if appropriate, are read from the first  file and
are  usually  the  same for  all  PATHRAE-EPA runs.   The  second  file  contains
site parameters such as dimensions of the facility, cover thickness,  volume
of waste, etc.  This file also contains pathway parameters such as  distance
to the river  and well,  aquifer  dispersivity,  radon diffusion  coefficients,
and  meteorological  data.    The  third  data  set,  labeled  "variable  site
parameters",  contains  parameters which   are likely  to  be  varied  when
conducting  sensitivity   analyses.    For  example,  this  data  set  includes
nuclide leach rates, groundwater velocities, and  trench infiltration  rates.
These parameters have  been placed in  a separate data set  to  minimize the
unnecessary duplication  of data when  performing  multiple PATHRAE-EPA runs.
The  fourth  data  set  contains  nuclide  specific  data such  as  inventories,
                                    3-1

-------
     INPUT
CALCULATIONS
OUTPUT
DOSE CONVERSION
    FACTORS
   BASIC SITE
   PARAMETERS
  VARIABLE SITE
  PARAMETERS
   INVENTORY,
 NUCLIDE SPECIFIC
  PARAMETERS
 FOOD CHAIN DATA
                         MAIN PROGRAM
                                               INPUT SUMMARY
                                                NUCLIDE DOSE
                          SUBROUTINES
                         AND FUNCTIONS
         RAE-102231
      FIGURE 3-1.  INPUT AND OUTPUT DATA FLOW FOR PATHRAE-EPA.
                            3-2

-------
half-lives, gamma energies,  and  volatility  factors.   The fifth  data set is



read only if the equivalent  uptake factors in the first file are entered as



zero.   File five  contains  the  element  and  nuclide specific data  such as



bioconcentration  factors,  irrigation rate,  food  consumption  rates,  and



animal retention factors.





     PATHRAE-EPA  and its  subroutines use  double precision arithmetic  to



accommodate the  requirements of  the  groundwater calculations.   The minimum



memory requirement to run  PATHRAE-EPA is approximately 72K. bytes.





     In addition  to  the MAIN program, PATHRAE-EPA uses  15  subroutines  and



6 functions.  Figure 3-2 shows the subroutine hierarchy and Table  3-1 gives



a brief description  of  the function  performed  by each program  module.   The



logic flow of PATHRAE-EPA  and its subroutines is illustrated in  Figure  3-3.









3.2  PROGRAM OPTIONS





     The  PATHRAE-EPA   code  has  several   options  which  increase   its



flexibility and allow it to  perform  a variety  of functions.  The  available



options and the input required to activate the options are discussed here.





     During the operational  period of a  waste  facility,  waste  arrives  at a



relatively uniform  rate and is  emplaced    in  the burial  trenches.   For



short-lived nuclides the  loss  due to decay  during  facility operations  can



be  significant.    PATHRAE-EPA  has   the  option  of adjusting  the  nuclide



inventory  for  decay  during operations  through  the  use  of the  variable



TIMOP.     To  ignore  decay  during  operations   set TIMOP   equal  to  zero.



Otherwise, TIMOP should  equal the number of years of facility operation.
                                    3-3

-------
OJ
-p.
                                                                                    RAE-102232
                                          FIGURE  3-2.   PATHRAE-EPA SUBROUTINE HIERARCHY.

-------
               TABLE 3-1
DESCRIPTIONS OF PATHRAE-EPA SUBROUTINES
                       Purpose
 Sub-
routine       	
PTHRAE        Main program.  Coordinates subroutine calls and prints  summary dose
              information.
UPTAKE        Computes total equivalent uptake factors for food and water ingestion.
IRRIG         Calculates nuclide concentrations in vegetation, milk,  meat, and fish.
COV           Aids in the calculations performed by subroutine IRRIG.
HUMEX         Calculates amount of each nuclide ingested by humans.
READ          Reads the four input data files and performs preliminary calculations.
PRINT         Prints summary of input data.
BATMAN        Performs Bateman calculations for nuclide ingrowth and  decay as a
              function of time.
RIVER         Calculates doses for groundwater to river pathway.
WELL          Calculates doses for groundwater to well pathway.
PATH38        Calculates doses for all non-groundwater pathways.
PEAK          Calculates maximum dose and time of maximum dose for groundwater
              pathways with dispersion.
RELEAS        Calculates total curies released in a given time period for groundwater
              pathways.
HEPCI         Converts total curies released to health effects.
DSPERS        Coordinates groundwater transport subroutines GW1 and GW3.
GUI           Calculates nuclide concentrations for groundwater pathways  with
              dispersion.
GW3           Calculates nuclide concentrations for daughter nuclides in  decay
              chains.
ERROR         Adjusts dispersivity to avoid negative square root arguments in GW3
              (see Section 2.2).
FTRMS         Evaluates dispersive groundwater transport expressions  in GUI and GW3.
ERFCPA        Evaluates the natural logarithm of the complementary Gaussian error
              function.
OERF          Evaluates the Gaussian error function.
DERFC         Evaluates the complementary Gaussian error function.
HUNG          Calculates dispersion correction factor for non-dispersive  groundwater
              pathways.
                  3-5

-------
CALC. TOTAL
EQUIVALENT
UPTAKE FACTORS


  CALCULATE
INVENTORY FOR
 LATER TIMES
  CALCULATE
FACILITY DOSE
                                         GW1
                                      CALCULATE
                                    CONCENTRATION
                                                              GW3
                                                         CALCULATE NEW
                                                           CHAIN CONC.
                                      RIVER, WELL
                                      CALCULATE
                                    CONCENTRATION
CALCULATE
  DOSE
      NAE-102234
           FIGURE  3-3.   LOGIC  FLOW OF  PATHRAE-EPA.
                                 3-6

-------
      One  factor  that can affect the  dose  through  the groundwater pathways



 is  the  method  by which  waste is placed in the trench.  A value of zero for



 the variable  IFILL  refers  to placement of waste in the trench beginning at



 the upstream end of the site,  relative  to the aquifer.   A value  of one



 pertains  to placement  of waste  beginning at  the downstream side  of the



 site.






      PATHRAE-EPA allows  two methods  of obtaining  the  nuclide inventory at



 times  beyond  the time of  facility  closure.   The  most direct method  is to



 input the  nuclide inventory  at  each of the future  times  at which doses are



 to  be  calculated.   A much simpler method  is  to input the initial inventory



 and let PATHRAE-EPA  compute the inventory at all future times.  This  option



 is  controlled  by  the   input  variable IFLAG.    To  calculate  the  future



 inventories  from the initial inventory set  IFLAG  to zero.   If  the  future



 inventories are  to be read from the input  data, set IFLAG equal  to one.





     When  calculating  the  groundwater  pathways,  PATHRAE-EPA   can  use  a



 dispersive  solution  or  a non-dispersive  solution with  application  of  a



 dispersion  correction  factor.    The  variable  ALOIS,   the   longitudinal



 dispersivity in  the  aquifer,  controls this option.   For  no dispersion use



 ALOIS  equal  to zero.    Otherwise,  enter   a positive   value  for  the



 dispersivity.





     PATHRAE-EPA can also model  transverse dispersion in  the aquifer.   This



 is  only important  for the well  pathway.   To  ignore  transverse  dispersion



set the transverse dispersion coefficient, DY,  equal  to zero.





     During dispersive transport  in  the aquifer the decay and  ingrowth  of



nuclides  can  often  have  significant  impact  on   the   doses   from  the
                                     3-7

-------
 groundwater pathways.   This  can  be modeled by using any of the seven decay



 chains discussed in Section 2.1.4.  To implement any of the decay chains it



 is  important  to set  the transverse  dispersion  coefficient, DY,  equal  to



 zero,  since  the decay  chain expressions  are  valid only when  this  is  the



 case.  The longitudinal dispersivity, ALOIS, however, must not be zero.  To



 activate  decay  chain  J, set IFL(J) equal  to  one.   To  ignore the chain set



 IFL(J) equal to  zero.   When  considering  any of the chains the user must be



 sure  that all  of the  chain  members are present in  the initial inventory.



 The  amounts of  each nuclide can  be arbitrarily  small  but  they  must  all  be



 greater than  zero.   Also, the equations for the  decay chain calculations



 require  that  the  sorption  coefficients  (XKD(I))  for  all   members  of  a



 particular chain be different.   However, the sorption  coefficients  can  be



 almost identical if desired.





     PATHRAE-EPA will  also locate the position of the maximum dose for each



 individual nuclide  as  well  as the  time  at which the  maximum dose  occurs.



 To select  this  option  set the variable  IOPT  equal  to  one.   By  using this



 peak finding option the user can  get  a  general  idea  of what nuclides  are



 most important  and  at  what times  they contribute  most to the  total  dose.



 Subsequent runs  without the peak  finding  option can then be made to  further



 explore the time dependence of the dose near critical  times.





     Sometimes  it is important to know the  total  release of each nuclide  to



the environment  during  a  given time interval.   PATHRAE-EPA  will  calculate



the releases  if the variable  IOPT is equal to two.  Like  the peak  finding



option, this only applies to  the  groundwater pathways with  dispersion.  The



time  period for the release  is defined by  variables T(l)  and T(2).   Also,
                                     3-8

-------
 for  this  option only, the  variable  NTIME  must  be greater than or equal to



 two.   Both  the peak  finding  option and  the  total  release  option  can be



 turned off by setting  IOPT  equal to  zero.






     The  atmospheric transport pathway  has the  option  of calculating doses



 at off-site  locations  due to dust  resuspension, incineration of the waste,



 or  a trench  fire.   This  is  controlled by  the variable IVFAC.   For  dust



 resuspension  use  IVFAC equal to zero.   For incineratioa use IVFAC equal to



 one  and for a trench fire enter a value of two.  When calculating the doses



 due  to  dust  resuspension,  the  variable  BURN  is  the   resuspension  rate



 (m3/s) and FFIRE  is  the deposition  velocity  (m/s).  The volatility factors



 are  not  used when doing  dust resuspension.   For  an incinerator  or  trench



 fire, BURN is the rate at which the waste is burned (m3/s) and FFIRE  is  the



 fraction of the year the burning occurs.





     The  atmospheric transport pathway  also has an  option  for calculating



 X/Q  when  specific atmospheric  and meteorological  data are unavailable.   To



 activate  this  option,  which  is  based  on  the  position  of maximum plume



 concentration,  enter  the  source to  receptor  distance,  XRECEP,  equal   to



 zero.   When using this  default option  it  is unnecessary to enter data  for



 the  atmospheric  stability class or  fraction of time the wind blows.    To



 bypass this option enter a positive value for XRECEP.





     The  final  option  to  be described  here is a  solubility limit on  the



 leach  fraction.   If the  solubility  of a  nuclide is   low  enough that  it



 becomes the limiting  factor in the  release  process, PATHRAE-EPA will  adjust



the  leach  fraction  so that  the amount  of nuclide leached  is  the maximum



amount  that  is  soluble  in  the  available  leachant.   To use this  option
                                     3-9

-------
enter the nuclide solubility (Ci/m^) as variable SOL.  To ignore solubility



effects, enter zero.





     If  the  complete  foodchain  analysis  is  required  for  the  annual



ingestion of contaminant,  then  set  the equivalent uptake  factors  equal  to



zero in  data file  one and enter the data as file  5.   Table  3-2 contains a



summary of the options and the input data required to control each of them.










3.3  INPUT DATA





     All  of  the input  data for  PATHRAE-EPA  are  read  from files on  the



computer.  Normally there are four input files  required for each run unless



a complete foodchain  analysis  is performed, which requires  a  fifth  input



file.    The  four  data  files  have  the  specific file  names  BRCDCF.DAT,



ABCDEF.DAT,  RQSITE.DAT,  and INVNTRY.DAT.   The  fifth data  file  is  named



UPTAKE.DAT.   The data in all files may  be  entered in free  format separated



by  commas  or  entered with the  format  specified.    The following  is  a



detailed  description   of   the  input  data  for  each  of  the  five  files.



Included are  the units of  the variable, the  applicable  pathway  number  (one



through  ten)  to which the variable  is  relevant,   and  the name of the



variable as it  is referred  to in  Chapter 2.
                                    3-10

-------
                                   TABLE 3-2

                       SUMMARY OF PATHRAE PROGRAM OPTIONS
          Option
Nuclide decay during
operations

Direction in which
trenches are filled
Bateman calculations
for nuclide decay and
ingrowth

Longitudinal dispersion
for groundwater pathways

Transverse dispersion
for well pathway*
Decay chains for aquifer
transport
Peak finder for groundwater
pathways

Calculate total curies
released for groundwater
pathways
               Instructions For Use
on:  TIMOP > 0


To start at end of trench
farthest upstream on the
aquifer, IFILL = 0

on:  IFLAG = 0
on:  ALOIS > 0
on:  DY > 0
     ALOIS > 0
     IFL(J) all  zero

to activate Jth  chain:

     IFL(J) = 1
     ALOIS > 0
     DY = 0
on:
on:
IOPT - 1
ALOIS > 0
Gamma pathway options
Atmospheric pathway
calculation
Atmospheric pathway
X/Q default calculation

Solubility limit on
leaching

Perform complete foodchain
analysis
IOPT = 2
NTIME >. 2
T(l) = beginning of relese
       period
T(2) = end of release
       period
ALOIS > 0
Gamma dose from undisturbed
  waste:  IGAMMA = 0
Gamma dose for biointrusion
  scenario:  IGAMMA = 1
Gamma dose for reclaimer farm
  scenario:  IGAMMA = 2

Dust resuspension:  IVFAC = 0
Incineration:       IVFAC = 1
Trench fire:        IVFAC = 2
off:  TIMOP = 0


To start at downstream
end, IFILL =• 1


off:  IFLAG = 1



off:  ALOIS = 0


off: DY = 0



to ignore Jth chain:

     IFL(J) = 0



off:  IOPT = 0


off:  IOPT = 0
on:  XRECEP = 0
on:  SOL > 0
on:  Ul = 0
                        off:   XRECEP > 0
                        off:   SOL = 0
                        off:   Ul > 0
*  Where multiple conditions are given to activate an option, all conditions
   must be met simultaneously.
                                      3-11

-------
3.3.1  Data File One - BRCDCF.DAT
Card  Variable
      NOOSE
      TCUT
      SINV
      NTIME
     T(M)
         Description

 Radionuclide  Data  (I6.2F12.6)

 Number  of  isotopes in dose
 factor  library.  This is the
 number  of  nuclides for which
 dose conversion factors are
 provided in the file BRCDCF.DAT.

 Maximum nuclide half-life (yr)
 considered for analysis.  The
 inventory  of  any nuclide with
 a  half-life greater than TCUT
 is set  equal  to SINV (usually
 zero).   In this way the doses
 due to  short-lived nuclides
 can be  evaluated independently
 of the  long-lived nuclides.
 To consider all nuclides set
 TCUT equal to zero and no
 adjustments will be made.
                                 Text
                     Pathway     Name
                       All
Nuclide inventory
TCUT above.
(Ci).   See
     KK
Dose Calculations (I6,10F12.6)

Number of times for which dose
calculations will be made (up
to 10).

Times (yr) at which the doses are
to be calculated.
M = 1, 2,..., NTIME.  Time T(l)
corresponds to the end of
facility operations and must
be entered as 1.  If the food
pathway is being run, the time
T(4) must correspond to the
time at which institutional
control  of the site ceases.

Dose Factors (I4,A8.9E12.4)

Nuclide library number.
                                                            All
                       All
                       All
                                   3-12

-------
Card  Variable

      XNAME2(KK)
      DOSE(l.KK)


      DOSE(2,KK)

      DOSE(3,KK)


      UT(KK,1)



      UT(KK,2)



      UT(KK,3)



      UT(KK,4)



      UT(KK,5)




      UT(KK,6)
        Description

Nuclide name (e.g., Pu-239).
The name is read as an eight
character alphanumeric variable.
For example, Pu-239 would be
input as 'Pu-239---1.

Dose factor (mrem/pCi) for
ingestion.

Dose factor (mrem/pCi) for

Dose factor (mrem-m^/pCi-hr) for
direct gamma exposure.

Total equivalent uptake
factor (1/yr) for river water
usage.

Total equivalent uptake
factor (1/yr) for well water
usage.

Total equivalent uptake
factor (1/yr) for erosion pathway
water usage.

Total equivalent uptake
factor (1/yr) for bathtub pathway
water usage.

Total equivalent uptake
factor (1/yr) for erosion or
bathtub pathways with surface
spillage.

Total equivalent uptake
factor (kg/yr)  for food pathway.
            Text
Pathway     Name
  1-6


  8,10

  7


  1
  3,4
DF


DF

DFG
U
             1
  5,6
      Note:   Card  3  is repeated for each nuclide in the dose library.
             If the  uptake factors are entered as zeros, they are
             calculated internally using input data in data file five.
                                   3-13

-------
3.3.2  Data File Two - ABCDEF.DAT
Card  Variable
      NISO

      I FLAG
     NNP
     NPN(J)
         Description

 Run Identification (10A8)

 Title of run.   Up to 80
 characters allowed.

 Nuclide Inventory (316)

 Number of isotopes in  inventory.

 Flag indicating whether or  not
 to calculate the inventory  for
 the designated  times.   If
 IFLAG = 0 the inventory for all
 designated future times is
 calculated from the initial
 inventory, taking into  account
 the ingrowth of daughter products
 where appropriate.   If  IFLAG = 1
 the calculation is  skipped  and the
 inventory is read  from  the  input
 data  for  all future times.
 If IFLAG  = 2 the  inventory  for all
 designated future times is
 calculated from the initial
 inventory.  No  account  is made for
 the  ingrowth of daughter products.

 Number  of  pathways to be
 considered.

 Pathway Data (2016)

 Index indicating a particular
 pathway.

 NPN = 1  groundwater to river
 NPN = 2  groundwater to. well
 NPN = 3  surface erosion and
         deposition in  river
 NPN = 4  bathtub effect and
         runoff  of water to
         river
NPN = 5  food  grown on  waste
         site
NPN = 6  biointrusion into
         waste and consumption
         of plants by humans
Pathway
Text
Name
  All

  All
                                   3-14

-------
                                                                       Text
Cjird  Variable              Description                    Pathway     Name

                    NPN = 7  direct  gamma exposure
                    NPN = 8  dust  inhalation on site
                    NPN = 9  radon inhalation
                    NPN = 10 offsite atmospheric
                             transport  (incinerator,
                             trench  fire, dust
                             resuspensi on)

      JUF(J)        Index indicating type of use
                    for ingestion  uptake factors.

                    JUF = 0  no water use
                    JUF =1  all types  of water use
                    JUF = 2  all types  of water use
                             except  fish
                    JUF = 3  drinking water only

                    For the water  pathways JUF
                    should be equal  to  1, 2, or 3.
                    For the food pathways and
                    pathways not involving ingestion
                    of water use JUF =  0.

      Note:   NPN(J) and JUF(J)  are repeated on Card 3  for  each  of  the  NNP
             pathways considered.

 4                  Site Description (6F12.6)

      TIMOP          Time (yr) of active operation
                    of facility.   If TIMOP is
                    different than zero, the
                    nuclide inventory is adjusted
                    to account  for decay during
                    site operation.   If TIMOP
                    is set equal to  zero, this
                    correction  is  omitted.

    ,X"XLP :          Length (m)  of  trench in direction                   L
    ^-~—'           of aquifer  flow.

    (^WIDTH          Width  (m) of trench.                               W

      RFR           River  flow  rate  (m3/yr)                 1,3,4       qw

      XR             Distance (m) from nearest edge of        1,3,4       xr
                    waste  trench to  river.

      SPILL          Surface spillage  fraction.               3       fsp-|
                                    3-15

-------
Card  Variable

 5

      ARHO

      ALOIS


      DY


      DZ

      SS



      SR

      PV



      SNO

 6

      NM


      IGAMMA
IVFAC
         Description

 Transport Data (8F12.6)

 Density (kg/m3) Of aquifer-

 Longitudinal  dispersivity (m)
 of the aquifer.

 Transverse dispersion
 coefficient (m^/yr) in aquifer.

 Not used.

 Fraction of saturation, if
 zero,  it is calculated
 internally.

 Residual  saturation fraction.

 Saturated  hydraulic
 conductivity  (m/yr) of vertical
 zone.

 Soil index.

 Gamma  Radiation Data  (516)

 Number of  mesh points  for
 area source integration.

 Flag for gamma pathway
 options.

 IGAMMA  = 0  Calculate  gamma
            dose from
            undisturbed
            buried waste.
 IGAMMA  = 1  Calculate gamma
            dose for natural
            biointrusion
            scenario.
 IGAMMA  = 2  Calculate gamma
            dose for farming
            scenario.

Flag indicating off-site
atmospheric pathway.  For dust
resuspension enter zero, for
incineration enter one, for
trench  fire enter  two.  For
incineration the dose for all
other pathways is  adjusted to
                                                      Pathway



                                                        1,2

                                                        1,2
           Text
           Name
           d

           D
                                                       1,2
1,2



1,2



1,2


 7
                                                                SNO
                             3-16

-------
Card  Variable
      YW
        Description

account for the loss of
nuclides by incineration
before being placed in the
trench.
edge of waste along direction
of aquifer flow.

Distance (m) to well  from center
line of disposal facility in
direction perpendicular to
aquifer flow.
                    (The inventory on  file is
                    multiplied by FIXINV before
                    calculations begin.)
            Text
Pathway     Name

XCT
XWT
TWV
XW
Waste Properties (10F12.6)
Thickness (m) of cover over waste.
Thickness (m) of waste.
Volume (m3) of waste disposed.
Distance (m) to well from nearest

3-9
3-9
All
2

Tc
Tw
V
xw
RHO
FG
FEXT
XROOT
PLANT
ADL
UBR
FTX
CANLIF
FIXINV
Density (kg/m-3) of waste.
Fraction of food eaten which
is grown over waste site.
Fraction of year spent in
direct radiation field.
Depth (m) of plant root zone.
Surface density (kg/m2) of living
plants.
Exposure Data (3F12.6)
Average dust loading (kg/m3) in
air.
Adult breathing rate (m3/yr).
Fraction of year exposed to
dust.
Waste container lifetime (yr)
Inventory scaling factor.
4,8,9
5,6
7
6,7
7
8
8-10
8
1,2
All
dw
fg
^exp
^exp
                                    3-17

-------
Card  Variable

 9

      XH


      ACR


      EPW
      DIFW


      DIFCON


      ICON

      DIFCOV
 10
      I STAB
      VWIND



      FWIND


      XRECEP
        Description

 Residency Data  (7F12.6)

 Height of room  (cm) in dwellings
 built over the  site.

 Air change rate  (changes/s) in
 dwelling.

 Radon emanating  power of the
 waste.  (Fraction of radon
 produced which  enters pore
 spaces.)
Diffusion coefficient
for radon in waste.

Diffusion coefficient
for radon in concrete.
Thickness (cm) of concrete floor.

Diffusion coefficient (cm^/s) for
radon in the cover material.

Atmosphere Data (10F12.6)

Pasquill atmospheric stability
class.  Enter an integer 0
through 6.  A value of 1
signifies stability class A,
a value of 6 signifies
stability class F.  If zero
is entered,  a default value
of 4 is used.

Average annual  wind speed (m/s)
in direction from source to
receptor.

Fraction of  time wind blows
toward receptor location.

Distance (m) from atmospheric
release source  to receptor
location. To exercise default
option on X/Q calculation,
enter zero and  set
HSTACK = unity.
            Text
Pathway     Name
   9


   9
   9


   9


   9

   9
  10
  10



  10


  10
D2
 'w
                                   3-18

-------
Card  Variable
      BURN
      FFIRE
 11
HSTACK



DSTACK

VSTACK

QH




IFL(I)
                      Description

              Dust resuspension rate (m^/s)  or
              burn rate (m3/s) of incinerator
              trench fire.

              Fraction of year incinerator
              or trench fire burns,
              or
              Deposition velocity (m/s)  for
              dust resuspension.
                                       Pathway

                                         10
Text
Name
                                                    or
                    Height (m)
                    For trench
                    zero.
           of incinerator stack,
           fire scenario enter
10
10
10
ff
ff
hc
Stack inside diameter (m).

Stack gas velocity (m/s).

Heat emission rate (cal/s)  of
incinerator stack.

Flag Options (2016)

Flags indicating which decay
chains will be considered for
the dispersion calculations.
                                                             10

                                                             10

                                                             10
                                                            1,2
                    If IFL(I)


                    If IFL(I)
                          1,  then  decay
                          chain  I  is
                          computed.
                          0,  it  is skipped.
                          The values  o'f  I
                          refer  to the
                          following chains:
I
I
I
I
I
I
I
=
=
=
=
=
=
1
2
3
4
5
6
7
Cm-244
Pu-240
Am-243
Pu-241
Pu-238
Pu-242
U-238
— -
-*
— >
	 ^
-*
— »
Pu-240
U-236
Pu-239
Am-241
U-234
U-238
Th-230
— *
—
-*
— *
-*
—
U-236
Th-232
U-235
Np-237
Th-230
U-234
Ra-226
                                                         Ra-226
                    If  a  particular decay chain is
                    used, all of the nuclides in the
                    chain should be present in the
                    initial  inventory.  The
                    equations used for calculating
                    decay chains are not valid
                    unless all members of the
                    chain have different sorption
                    coefficients.
                                   3-19

-------
Card  Variable
  12
       INPRNT
      IDSRPT

      IFILL
      IOPT
        Descri ptlon

 Printout Control  (416)

 Flag for printout of input
 summary.

 If  INPRNT = 0, no input
            summary is printed,
 If  INPRNT = 1, the summary
            is printed.

 Not used.

 Flag indicating how the waste
 trenches are filled.  If
 IFILL = 0, the trench is
 filled beginning at the side
 farthest upstream of the
 aquifer.  If IFILL = 1, the
 trench is filled beginning at
 the downstream side.

 Flag for selecting groundwater
 pathway options.  To use the
 peak finding option set
 IOPT = 1.  To calculate the
 total curies released during a
 given time period set
 IOPT = 2.  If neither of these
 two options are required use
 IOPT = 0.  See Table 3-2 for
 more information on the use of
 these options.
            Text
Pathway     Name
  1,2
  1,2
3.3.3  Data File Three - RQSITE.DAT
Card  Variable
      XPERC
      VA
      XPOR
        Description

Site Water Data (9F12.6)

Amount of water (m3/m2-yr) which
percolates through the waste
annually per unit area.

Horizontal velocity (m/yr) of
aquifer.

Porosity of aquifer.
Pathway
Text
Name
  1,2


  1,2
                                    3-20

-------
Card  Variable

      XAQD
      XVV
      XLC


      XALE

      FLCH


      RUNF



      KK


      XLL(KK)
      XKD(KK)
     RVERTI(KK)
        Descrlpti on

 Distance  (m) from trench bottom
 to aquifer.

 Vertical  velocity (m/yr) of the
 water in  the soil between
 the waste and the aquifer.
 Calculated internally if
 entered as zero.

 Length  (m) of perforated well
 casing  set equal to aqufer thickness.

 Surface erosion rate (m/yr)

 Scaling factor for leach
 constant.

 Annual  runoff of precipitation (m).

 Transport Characteristics (I4.3E12.4)

 An integer library index
 specifying the nuclide.

 The leach constant (1/yr).  In the
 band release model  used in the
 dispersive calculation, it is
 the fraction of the initial
 inventory which is leached
 from the waste each year.
 For the exponential  release
 model  used in the nondispersive
 calculations, this constant is
 the fraction of current
 inventory leached each year.

 The sorption coefficient (cm3/g).
 This is used to obtain the
 retardation coefficient
 the aquifer.
                                           i n
Sorption coefficient (crrr/g) for
vertical transport of the
nuclide from the trench to
the aquifer.
Pathway

  1,2


  1,2
Text
Name
  3,4

  1,2
  1,2
 1,2,4
  1,2
                                                                      vd
L


E,
     Note:  Card 2 is repeated for each nuclide in the inventory.
                                   3-21

-------
3.3.4  Data File Four - INVNTRY.DAT
Card  Variable

 1

      KK


      HLIFE(KK)

      Q(KK,M)
      XXMU(KK)
     EGAMMA(KK)
     BIV(KK)
         Description

 Nuclide Data  (I4,7E12.4)

 An integer library  index
 specifying the nuclide.

 Nuclide halflife  (yr).

 The amount of  nuclide present  (Ci)
 at each of the times T(M)  for
 M = 1,2,...,NTIME.   If  IFLAG
 is entered as  zero, then only
 the inventory  at  time T(l)
 needs  to be entered and the
 inventory at all  subsequent
 times  will  be  calculated.
 See Section 3.2 for a
 description of the  use of
 IFLAG.

 Gamma  attenuation coefficient
 (1/m).   These  are derived from
 empirical  data on gamma
 attenuation by soil for
 various  gamma  energies.  For
 nuclides  which  are not gamma
 emitters,  enter zero.*  Must
 be  nonzero  if  EGAMMA and Q
 are  nonzero.

 Weighted  average gamma ray
 energy  (MeV) emitted by nuclide.
 The  averaging  method is
 described  in Section 2.2.
 For  nuclides which are not
 gamma emitters, enter zero.*

 The  nuclide specific soil  to
 plant transfer factor.   It is
 the  ratio of the nuclide
 concentration  (Ci/kg) in
 plants to the nuclide
 concentration  (Ci/kg) in
the soil.
Pathway
Text
Name
                                                                        m
     Cs-137 is considered as if it is a gamma emitter, even though
     the gamma rays are emitted by its decay product,  Ba-137m.
                                   3-22

-------
Card  Variable

      SOL(KK)
      VOLATL(KK)
                                       Pathway

                                         1,2




                                         10
                      Descrlptlon

              Solubility (Ci/m3) of the
              nuclide in the  aquifer.   To
              omit the effects of solubility
              limitations, enter zero.

              Volatility factor for
              incineration.  It is the
              fraction of the inventory
              of a nuclide which is lost
              to the atmosphere as a result
              of incineration.  This
              variable is not used when
              pathway 10 calculates dust
              resuspension.

Note:  Card 1 is repeated for each nuclide in  the inventory.
Text
Name
3.3.5  Data File Five - UPTAKE.DAT (All  data for food chain  calculations)
Card  Variable

 1

      SINFL

      PORS

      BDENS

 2

      Yl


      Y2


      XAMBWE


      TE1


      TE2
        Description

Site Soil Data (3F12.6)

Infiltration rate (m/yr)

Porosity of surface soil.

Bulk density (g/crrr) of soil.

Vegetation Data (5F12.6)

Agriculture productivity (kg/m2)
for pasture grass.

Agriculture productivity (kg/m2)
for other vegetation.

Weathering removal constant (hv"1)
from vegetation.

Hours for irrigation of pasture
grass.

Hours for irrigation of other
vegetation.
                                                                Text
                                                                Name
                                                                Ps
                                                                Xe
                                    3-23

-------
Card  Variable

 3

      TH1 -  TH4
      FP


      FS
      QFC


      QFG


      TF1


      TS


      TFIS
      FI


      WIRATE

      QCW


      QGW


      QBW




      ULEAFY
        Description

 Pasture Data  (6F12.6)

 Delay time  (hr) between harvest and
 consumption of pasture grass,
 stored feed,  leavy vegetables,
 and produce.

 Fraction of the year animals graze
 on pasture grass.

 Fraction of animal feed that is
 pasture grass.

 Animal Uptake (5F12.6)

 Amount of feed consumed daily (kg/d)
 by cattle.

 Amount of feed consumed daily (kg/d)
 by goats.

 Transport time (hr) for annual
 feed into milk.

 Delay time (hr) between animal
 slaughter and meat consumption.

 Delay time (hr) between catching
 and consumption of fish.

 Mater Consumption (5F12.6)

 Fraction of the year the crops  are
 irrigated.

 Irrigation rate (l/m2-hr).

Amount of water consumed (1/d)
 by milk cows.

Amount of water consumed (1/d)
by goats.

Amount of water consumed (1/d)
by beef cattle.

Human Uptake (7F12.6)

Human uptake (kg/yr)  of leafy
vegetation.
Text
Name
                                   3-24

-------
Card  Variable

      UPROD

      UCMILK

      UGMILK


      UMEAT

      UWAT
 7+
UFISH



NUCLID(KK)

RW(KK)

BR(KK)


FMC(KK)


FMG(KK)


FF(KK)

FIS(KK)
        Description

Human uptake (kg/yr) of produce.

Human uptake (1/yr) of cow milk.

Human uptake (1/yr) of goats
milk.

Human uptake (kg/yr) of meat.

Human uptake (1/yr) of contaminated
drinking water.

Human uptake (kg/yr) of fish.

Transfer and Retention Data (A8,6F12.6)

Nuclide identification no.

Radionuclide retention factor.

Soil-to-plant uptake factor for
grain.

Forage to milk transfer factor  for
cows.

Forage to milk transfer for
goats.

Forage^to beef transfer factor.

Radionuclide water-to-fish transfer
factor.
                                                                Text
                                                                Name

                                                                Un
                                                                Un

                                                                U,
                                                                      R

                                                                      B
                                                                       m
                                                                       m
                                    3-25

-------
3.4  OUTPUT DATA





     A typical  output  for the  PATHRAE  code for  a  LLW inventory of  about



25  nuclides,  is approximately  12  pages  in length.   The  output begins  by



listing a  complete  summary  of the  input  data.   The site parameters,  dose



conversion factors, and  equivalent  uptake factors  are  included.   This  is



followed  by  tables  of  nuclide  doses  for  each  nuclide   and  pathway



considered.  For the two groundwater pathways, the erosion pathway, and  the



facility overflow pathway, tables  giving  nuclide  concentrations  in water at



various times are generated.





     Following  the  outputs  for  the  individual  pathways,  values  for  the



cumulative risks and doses are  given  for the entire facility.  The output



also  contains  a  table   of  the  nuclide   inventory  at  each of  the   times



considered.  A final summary of the maximum annual  dose, health risk, year



of  the maximum  health   impact  and dominant  nuclide  are   given  for  each



pathway.
                                   3-26

-------
                             4.    SAMPLE  PROBLEM
 4.1   PROBLEM DEFINITION






      A  PATHRAE-EPA  sample  problem  is considered  in this  chapter.   The



 facility  evaluated  in  this   sample   problem  is  a  350,000  square  meter



 municipal dump  with  a  capacity of one million cubic meters of BRC waste as



 illustrated in  Figure  4-1.   The  facility  has  a 20 year operating lifetime



 during  which the radioactive wastes are received  at  a constant  rate.  The



 waste is placed  in disposal pits  to a  depth of six meters and is covered by



 a  0.6 meter thick cover.  An aquifer with a water velocity of 28 meters per



 year  is located 7.7 meters below the  waste.   The annual infiltration into



 the waste is 0.45 cubic meters of water per square meter of trench area.  A



 well  is located 50  meters  from  the edge  of  the waste  trenches.   For the



 groundwater calculations  the  waste area is represented  by  a  20-point mesh



 spacing grid.   Values  of pertinent site parameters  and  radiation exposure



 data  required  by  PATHRAE-EPA  are  listed  in  Table  4-1.    The  initial



 inventory of 29 nuclides is given in Table 4-2.










 4.2   RESULTS





      A  summary  of  the  doses as  functions  of time  and the  pathway summary



 are contained in Table 4-3.  The total dose falls  from  a  maximum value of



 95 mrem/yr in year  zero  to  about  1.8  mrem/yr  at  15 years  and 0.18 mrem/yr



 in  100  years.    The  external  exposure   pathway,  primarily  from  Co-60,



dominates  the  early doses with  the well pathway becoming dominant after 100



years   primarily  from  C-14.     Cobalt-60,   cesium-137,   carbon-14,  and




americium-241 are the dominant  nuclides.




                                    4-1

-------
                                                                            RIVER
ro
                        590 m
            O
            &
            in
                iD[$PQSAt
              DEPTH TO AQUIFER  7.7 m
                                                         1000 m
                             AQUIFER  VELOCITY   28 m/yr
                                                                           RAE-102236
                               FIGURE 4-1.  REPRESENTATION OF SAMPLE PROBLEM.

-------
                            TABLE  4-1

             SITE PARAMETERS  USED  IN SAMPLE  PROBLEM




Total area of Disposal Trenches                       3.48E+5 in2

Length of Trenches Parallel to Aquifer Flow         ( 590 m

Velocity of Aquifer                                   27.8 m/yr

Porosity of Aquifer                                   0.39

Trench Infiltration                                   0.45 m3/m2

Total Surface Erosion Rate                            1.96E-4 m/yr

Cover Thickness Over Waste                            0.6 m

Waste Thickness in Pits                             (^6.0 m

Total Waste Volume                                  C JL.-OE^S' m3  >   2.1

Distance From Waste Pits to Well                      50 m

Length of Perforated Casing in Well
(aquifer thickness)                                   10 m

Average Dust Loading During Excavation                5.0E-7 kg/m3

Annual Adult Breathing Rate                           8E+3 m3/yr

Fraction of Time Spent in Excavation                  0.228

Average Wind Speed                                    2.01 m/s

Downwind distance to receptor location                345 m
                               4-3

-------
    Nuclide
    TABLE 4-2

NUCLIDE INVENTORY



Halflife (yr)
   Initial
Inventory (Ci)
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137m
Eu-154
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am- 241
Am-243
Cm-243
Cm-244
1.23E+1
5.73E+3
2.70E+0
5.25E+0
8.00E+4
1.10E+2
2.86E+1
2.00E+4
2.13E+5
1.01E+0
2.77E+0
1.70E+7
2.06E+0
2.30E+6
3.01E+1
3.01E+1*
8.50E+0
2.45E+5
7.04E+8
4.47E+9
2.10E+6
8.77E+1
2.42E+4
1.32E+1
3.79E+5
4.59E+2
7.37E+3
3.19E+1
1.76E+1
1.31E+02
7.43E+00
1.20E+02
2.46E+02
1.43E-01
4.41E+01
3.40E+00
4.54E-03
1.90E-03
5.04E-02
1.85E+00
5.26E-3
5.04E+01
1.80E-3
5.70E+01
5.70E+01
1.86E-01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
1.20E-01
1.12E-01
4.85E+00
2.43E-04
2.31E-01
5.41E-05
5.52E-05
5.26E-02
*  Assumed  to be in equilibrium with Cs-137,
                                    4-4

-------
                                                          TABLE 4-3

                                   FACILITY  DOSE  RATES  FOR VARIOUS TIMES FOR  SAMPLE  PROBLEM
           Parameter
0
         Dose  (mrem/yr)     9.46
                                                                 Time  (yr)
15
50
100
200
350
500
750
1000
       8.33E+0  1.78E+0  3.83E-1  1.84E-1  8.63E-2  5.51E-2  4.03E-2  2.56E-2  1.88E-2
en
         Maximum Annual  Dose
             (mrem/yr)

         Year of Maximum Dose

         Dominant Nuclide
                                                       PATHWAY SUMMARY
                                                           Pathway
Dust
2.2E-2
0
Am-241
Atmospheric
2.6E-6
0
Am-241
Gamma
8.8E+0
0
Co-60
Well
1.1E-1
50
C-14
                                                                                  Food

                                                                                 4.8E-1
                                                                                 Cs-137

-------
     A complete  listing  of  the  five data  sets  required  to execute  the



sample  problem  and  the  output  for  the  sample  problem  are  given  in



Appendix B.    A complete  source listing  of PATHRAE-EPA  code is  given  in



Appendix A.





     Finally,   it  should  be  noted  that  the  sample  problem described  in



Section 4.1 merely illustrates  the application  of PATHRAE-EPA and  is  not



intended  as  a basis  for  arriving  at  any general  conclusions  regarding



specific disposal  alternatives.









4.3  PATHRAE-EPA  COMPUTER  COMPATIBILITY





     The  PATHRAE-EPA  code   is  sufficiently  compact  and  calculationally



efficient  that  it  can  be  executed   on  a  variety  of  computer  systems



including  advanced personal  computers.   For example, the PATHRAE-EPA  code



has been implemented  and  operated within  reasonable execution times on  an



IBM-AT Personal Computer.
                                   4-6

-------
                                 REFERENCES
Bu80      Burkholder,  H.C.,  and  E.L.J. Rosinger,  "A Model  for  the  Transport
          of  Radionuclides   and Their  Decay  Products   Through   Geologic
          Media,"  Nuclear Technology, Vol. 49, pg. 150, 1980.

Du80      Dunning,  D.  E.,   Jr., R.  W.  Leggett,  and  M.  G.  Yalcintas, A
          Combined Methodology for  Estimating Dose Rates and Health Effects
          from Exposures to  Radioactive Pollutants, ORNL/TM-7105 (Oak Ridge
          National Laboratory, Oak  Ridge, Tennessee),  1980.

EPA84     "Radiation  Exposures  and  Health Risks Resulting from Deregulated
          Disposal    of   Radioactive   Wastes,"    Envirodyne    Engineers
          Incorporated  and  Rogers  and  Associates  Engineering Corporation
          for  U.S.   Environmental  Protection Agency,  Office  of  Radiation
          Programs, October  1984.

EPA87a    U.S. Environmental  Protection Agency, PRESTO-EPA-POP: A Low-Level
          Radioactive Waste  Environmental Transport and Risk Assessment Code
          - Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington,
          DC, December  1987.

EPA87b    U.S. Environmental  Protection Agency, PRESTO-EPA-POP: A Low-Level
          Radioactive Waste  Environmental Transport and Risk Assessment Code
          - Volume 2, User's  Manual, EPA 520/1-87-024-2, Washington, DC,
          December 1987.

EPA87c    U.S. Environmental  Protection Agency, PRESTO-EPA-DEEP:  A  Low-Level
          Radioactive Waste  Environmental Transport and Risk Assessment
          Code, Documentation and User's Manual, EPA 520/1-87-025,
          Washington, DC, December  1987.

EPA87d    U.S. Environmental  Protection Agency, PRESTO-EPA-CPG: A Low-Level
          Radioactive Waste  Environmental Transport and Risk Assessment
          Code, Documentation and User's Manual, EPA 520/1-87-026,
          Washington, DC, December  1987-

EPA87e    U.S. Environmental  Protection Agency, PRESTO-EPA-BRC: A Low-Level
          Radioactive Waste  Environmental Transport and Risk Assessment
          Code, Documentation and User's Manual, EPA 520/1-87-027,
          Washington, DC, December  1987.

EPA87f    U.S. Environmental  Protection Agency, Accounting Model  for
          PRESTO-EPA-POP, PRESTO-EPA-DEEP,  and PRESTO-EPA-BRC Codes,
          Documentation and User's Manual,  EPA 520/1-87-029, Washington, DC,
          December 1987.
                                    R-l

-------
EPA859    U.S. Environmental Protection Agency,  High-level  and  Transuranic
          Radioactive Wastes  - Background  Information  Document for  Final
          Rule, EPA 520/1-85-023,  Washington, D.C.,  1985.

Ga84      Galpin,  F.  L.,  and  G.  L.  Meyer,  Overview  of  EPA's  Low-Level
          Radioactive   Waste   Standards    Development    Program,    1984:
          Proceedings of  6th Annual  Participants'  Information  Meeting  on
          DOE  Low-Level   Waste   Management  Program,  Denver,   Colorado,
          September 11-13, 1984,  CONF-8409115,  Idaho Falls,  Idaho.

Hu83      Hung, C.  Y.,  G.  L.  Meyer,  and V. C.  Rogers, Use of  PRESTO-EPA
          Model in  Assessing Health Effects from Land  Disposal  of LLW  to
          Support  EPA's  Environmental   Standards:    U.S.   Department   of
          Energy,  Proceed-ings  of  5th  Annual  Participants'   Information
          Meeting  on DOE  Low-Level   Waste Management  Program,   Denver,
          Colorado, August 30,  1983, CONF-8308106, Idaho Falls,  Idaho.

Hu86      Hung.  C.  Y.,   An  Optimum  Groundwater   Transport  Model   for
          Application to  the  Assessment  of Health  Effects Due  to Land
          Disposal   of   Radioactive  Wastes,  Nuclear  and   Chemical  Waste
          Management, Vol. 6, pp.  41-50,  1986.

Mer85     Merrell,  G. B.,  et al., "The PATHRAE-EPA Performance Assessment
          Code for  the  Land Disposal  of Radioactive Wastes,"  Rogers  and
          Associates Engineering Corporation, RAE-8469/3-3,  November  1985.

MeySl     Meyer,  G.  L.,  and C.  Y.  Hung,  An  Overview of EPA's Health Risk
          Assessment  Model  for   the  Shallow  Land   Disposal   of  LLW,
          Proceedings of an  Interagency Workshop on Modeling and Low-Level
          Waste Management, Denver, Colorado, December  1-4,  1980, ORD-821,
          Oak Ridge National  Laboratories, Oak  Ridge, Tennessee, 1981.

Mey84     Meyer,  G.  L.,  Modifications  and Improvements  Made to PRESTO-EPA
          Family  of  LLW  Risk Assessment  Codes  Based on  Recommendations  of
          Peer Review, February 1984,  U.S. Environmental Protection Agency,
          Letter  dated July 13, 1984,  to Members  of  PRESTO-EPA Peer Review,
          February  7-8,  Airlie, Virginia:  Washington, D.C.,  1984.

Mo67      Morgan, K.Z.,  and J.E. Turner, Principles  of Radiation Protection,
          J.  Wiley,  New  York, 1967.

NRC77     U.S. Nuclear  Regulatory Commission,  "Calculation of Annual Doses
          to  Man  from Routine Releases of  Reactor Effluents  for the Purpose
          of   Evaluating  Compliance  with   10CFR Part  50,"  Appendix   I,
          Regulatory Guide 1.109,  March 1976  and  October 1977.
                                    R-2

-------
Ro79      Rogers, V.C.,  et  al.,  "A Radioactive Waste Disposal  Classification
          System - The Computer Program  and Groundwater Migration  Models,"
          U.S.   Nuclear  Regulatory  Commission  report  NUREG/CR-1005,  V-2,
          September 1979.

Ro82      Rogers, V.C.,  et al., "Low-Level Waste Disposal Site  Performance
          Assessment with  the RQ/PQ Methodology,"  Electric  Power  Research
          Institute report, NP-2665, December  1982.

Ro84a     Rogers, V. C., "An  Update on Status of EPA's PRESTO  Methodology
          for Estimating Risks  from Disposal  of LLW  and  BRC Wastes,  U.S.
          Department of  Energy, Proceedings  of  6th Annual  Participants',
          Information Meeting on  DOE  Low-Level  Waste Management  Program,
          Denver,  Colorado,   September  11-13,  1984,   CONF-8409115,   Idaho
          Falls, Idaho.

Ro84b     Rogers, V.C.,  and  K.K.  Nielson, "Radon Attenuation Handbook  for
          Uranium  Mill  Tailings  Cover  Design,"  U.S.  Nuclear   Regulatory
          Commission report NUREG/CR-3533, February  1984.

S168      Slade, D.H.  ed.,  Meteorology  and  Atomic  Energy  (1968).    U.S.
          Atomic Energy  Commission  Report TID-24190, 1968.
                                   R-3

-------
            APPENDIX A






SOURCE LISTING FOR PATHRAE-EPA CODE

-------
C     PET hODIFIEO »E89^{jNMOfIt'MfiRAC ON TIIC  ICM-Hl
      IMPLICIT F:EALA3  (A-H.O-Z)
      REALA1 C.Q.UT
      CHARACTERA8 VNUCL.XNAME2
      COHMON/XfCR/NKLC
      COMMON/BLK1/ALDIS,C<100,10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM,NMY.
     I       NHZ,NTIhE.6<100,io>.RVERT(l60).m6).TIIHEJ5>!vA!VNUCL<§>.
             WIDTH.WGLABLaO),XAQD,XL,XLD< 100),XLL< 100),XLP,XKCaOO).
     S       XW.YU.ZB
      COMrtOfl/BLK.VACR,ADL,AMIN,ARHOrBlV<100) JBURN,CUMDOS(10).DIFCON.
     £       DIFCOy.DIFW.fiOSE<3.100),DSTACK.EGAMMAaOO>,EPUtFEXT,FEIRE,
     J       rG.FIXINV.riX,FWIND,HLIFE(100).HSIACK,IDSRPI,IFL<7),IFLAG,
     I       IGAMMA,INPRNI.IOPI.ISTAE,IUP.IVFAC,JUF(10).NDOSE.NISO,NNP,
     1       NP.NPN<10).PLANr.PO,QH.RFR,RHO,RUNF.SINVfSNOfSPILL,SR,SS,
     J       TBEG,TCON,TCUT,IEND,TIHOP.IIMOPl,TwOrUBR,UI(100.b),
             VOLAIL(100),VSlACK,VUIND.XALE,XCTfXH,XKD(100),XLC.
     °,       XNAME2(100),XPERC,XPORlXR,XRECEP,XROOI,XUfXMT,XXHO<100)
      COMMON/BLK3/IFILL
      DIMENSION XLLI(IOO).RVERTKIOO)
C     COMPUTER SPECIFIC TO EAECO SYSTEM TO CATCH 'ZERO' ERRORS
C      CALL ERRSET(63,.TRUE.,.FALSE.,.FALSE.,.FALSE.,50)
C      CALL ERRSEK73,. TRUE... FALSE. ..FALSE... TRUE., 50)
      OPEN(UNIT=b.FILE='OUTPUT.FIL',§TATUS='NEW)
      CALL ZERO
C
C     CALL SUBROUTINE WHICH READS INPUT

      CALL kf:AD(XLLIvRVEkTI)

C     CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS
c
      IF(IUP .NE. 0) CALL UPTAKE
C
C     CALL SUBROUTINE WHICH PRINTS INPUT SUMMARY
C
      CALL FKINKXLLl.RVtkll)
      IF([FLAG.EG,1) GO 10 200
      DO 100 K=l.NDOSE
      IF(Q(K.1).£Q.O.) 00 "10 100
      DO 50 M=2.NTIME
      ARG=XLD(K)AI(M)
      Q(K,M)=0.
      IF(ARG.LE.85.) Q(K,M)=Q(K.1)ADEXP(-ARG)
   50 CONTINUE
  100 CONTINUE

C     CALL SUBROUTINE TO DO BAIEMAN CALCULATIONS
C
      IF(Il'LAG.EQ.O) CALL BATMAN
  200 DISY=DY
      DO 300 K=1.NNP
      KK=K
      DY=DISY
      IF(NPN(K).EQ.l) CALL RIVER
      IF(NPN(K).EQ.2> CALL UELL
      IF(NPN(K).EG.3) CALL PATH38O)
      IF(NPN(K).EQ.4) CALL PATH38(4)
      IF(NPN(K).EQ.5) CALL PATH38(5)
      IF(NPN(K).EQ.6) CALL PATH38(6)

-------
      IF(NPN CALL PATH36<8>
      IF  CALL PAIH38(10)
  300 CONTINUE
      IE<10PT.NE.O)  GO TO 1000
      WRITE(6.10)  'DOSES'
   10 I'ORMAKlHi,'  AAAAAAAAAA CUMULATIVE TOTAL ',A5,' PER YEAR FOR ',
     I 'GIVEN TIMES  AAAAAAAAAA',//)
      WRI1E<6.20)  NP.(CUMDOS(M),M=1,NTIME)
      WRItE(6,ll)  'RISKS'
      WRITE(6,20)  NP,
   20 FORMAT(4X.I3,9X,1P10E10.2)

C     PRINT INVENTORY

   30 1VR=0
      WRIIL(6.31)  
-------
C     HRrrE(4,1987,ReC=l> NREC
 1987 FORMAT (It.)
C     CLOSE(4)
      END
      SUBROUTINE BA'J'MAN
C     THIS SUBROUTING PERFORMS Tilt BATEMAN
C      CALCULATIONS FOR NUCLIDE INGROWTH.
      IMPLICIT RGALA8 (A-H.O-Z)
      CHARACTERA8 VNUCL
      REALA4 C,Q
      CQHHON/BLKl/ALDlS.C(100.10).CANLIE,DILFAC.DOSV(5).DY,DZrNM.NMY.
     I       NMZ,NTIHE.Q(100.io> JVERTa6o> ja6>.TTIME(5)!VA!VNUCL<5>
     &       WIDTH, WSLABL-
     JXLD(32))/«XLD(27)-XLD(38))A(XLD(32)-XLD<38)))+Q(38.1)A<(XLD<38)-
     JXLD(24))ADEXP(-XLIK32)AT(M))/((XLD(24)-XLD(32))A(XLD(32)-XLD(38)))
     S+(XLD(24)-XLD(38))ABEXP(-XLD(27)AT(M))/«XLD<27)-XLD(38))A(XLD<24)
     S-XLB(27)))+(XLD(32)-XLD(27))ADEXP(-XLD(24)AT(M))/((XLD(24)-XLD(27)
     J)A(XLD(24)-XLD(32)))))+(XLD(24)-XLD<27))AQ(32.M)/
-------
1060 IF((XLD(28)-XLD(34».eQ.O.) GO TO 1070
     E13=(MXP(--XLD(34)A1(M))-DEXP(-XLD(28)AT(M)>>/(XLD(28)-XLD(34))
1070 IF((XID<25>-XLD(30)>.EQ,0.> UiJ 10 1080
     E24=(DEXli(-XI.D(30)AI(H))-DEXP(-XLD(25)AT(M)))/(XLD(25)-XLD<30))
1080 IF((XLD(^5)-XLD(28)).EQ.O.) GO 10 1090
     E34=(DEXP<-XLB<20)A1-AT-XLD<28»
10% Ilf((XLD(23)-XLD(;:5)).EQ.O.) GO CO 1100
     E4b=AT(M))-DEXP<-XLIl<23)AT HO 'CO 1120
     E134=(E13-E34)/(XLD<25)-XLII(34))
1120 IF((XLD(23)-XLD(30)).£Q.O.) GO 10 1130
     E245=(E24-E45)/
-------
      DATA VhXDOS /I0*0.DO/
      DATA BLAN/'        V
C
C     CALCULATIONS tOR GROUNDWAIER DISCHARGE  TO A WELL
C
 3000 DO 3088 K=1.NIIME
 3088 SUHD05(K)=0.
 3005 IO=XLP/VA
      TU=XWA'A+XAQD/XW
      TT=TO+TW
      XLSAV=XLP
      TIHOP1=IIHOP
      HW=XPERCAXLP/(XPORAVA)
      CORFAC=1.
      ED=XPERCAXLPAUIDIH
      IF (Xl'ERC. LE. 0.)  ED=W 1DIHAXLCAVAAXPOR
      IF(HU.61.0.) CORFAC=XLC/HW
      IE(HH.GI.O..AND.HW.LT.XLC)  ED=EDACORFAC
      IF(HW.GT.XLC) XLP=XLPACORFAC
        IF (HW.GT.XLC) IIHOP1  = IIMOPACORFAC
 3008 DILFAC=ED
      ED=EUAXLSAV/VA
      ZB=XW
      XL=ZB-i-0.5AXLP
      IF(IUPT.EQ.O) 60 10 3010
      IF(lDPT.NE.l) GO TO 2011
      IF(ALDIS.GT.O.)  CALL PEAK(2)
      IE(ALD1S.GT.O.)  GO TO 3500
      NTIhE=l
      GO TO 3010
 2011 CONTINUE
      IFdDPI.EGi.]) CALL PEAK(2)
      IF(IOPT.EQ.2) CALL RELEAS(2)
      GO TO 3500
 3010 1F(ALD1S.GT.O.)  CALL DSPERS
      URITE(G.3D
   31 FORMAK1H1.56X,'PATHWAY   2',/,52X,'GROUNDWATER TO  WELL',//,
     S 'AAAAAAAAA NUCLIDE DOSES FOR GIVEN  'IIMES AAAAAAAA',/)
 1031 FORMAT(56X,'PATHWAY  2    GROUNDWATER TO WELL')
      IF(IOPI.EQ.l) WRITE(6T12)
      IF(IOPT.NE.l) WRITE(6,11) (I(H),H=1.NTIHE)
   11 FORMAT(/,'   NUCLIDE/XIME  '.10F10.0)
   12 FORMAK/,'    NUCLIUESllX/DOSE',/)
      DO 301^ K=1.NDOSE
      IF(Q(K,l).ECl.O.) GO 10 3015
      TW=XW/VA+XAQDA(RU£RT(K)/XRC(K))/XVV
      TI=TO+TU
      IF(IOPI.tQ.l) K1)=XRC(K)AIW+DLOG(XLL(K)/XLD(K)+1.)/XLL(K)
      IF(IOPT.EQ.l.AND.T(l).GE.XRC(K)An)  I(1)=TIAXRC(K)
      IF(IOPT.EQ.l) NDPKW(K)=T(1)
      QSAVE=G(K,1)
      IFdOPI.Efi.l) Q(K,l)=Q(K,])ADEXP(-XLD(K)At(D)
      CONSfl=l.£9ADOSE(l,K)AUT(K,2)
      IF(ALDIS.GI.O.)  GOTO 13
      UUV=XLD(K)ARV£RT(K)
      UUH=XLD(K)AXRC(K)
      HVT(K)=HUNG(UUV,XAQD.XVV)
      HHT(K)=HUNG(UUH.XL,VA)
      HUNF=HVT(K)AHHT(K)
   13 CONTINUE

-------
     XZ=-XI.L(K)AXKC
     IF(T(h).Ll-.XRC(K)AIU) C(K.M)=0.
     IF(T(H).GE.XfiC(K)AIW) C(K,M)=XXAQAT.1.D-35.AND.C3(M)>EDOSE(M)
     IF
     D03M(4)=0.
     DO 3020 K=l,10
     IF(SUMDOS(K).GI.DOSV(4)) H=K
     IF(SUMDOS
  32 IORMAT(///.'AAAAAAA  SUM OF NUCLIDE ',A5,' FOR GIVEN TIHES AAAAAA')
     WRITE(6,35)
  35 tORMAKlHl.'AAAAAAA  DISPERSION CORRECTION FACTOR AAAAAA',//,5Xr
    X  'NUCLIDE',8X,'VERTICAL FACTOR',8X,'HORIZONTAL FACTOR',8X,
    &  'TOTAL  FACTOR',//)
     DO 36  K=1,NDOSE
     IF(0(K.1).EQ.O.) GOTO  36
     URIlt<6\37)  K,XNAME2
-------
       3500 XLP=XLSAV
            REIUkN
            END
            SUBROUTINE PAIH38
            IMPLICIT REALA8 (A-H.O-Z)
            CHARACIERA8 WUCL.XNAHE2.XN1
            REALM C.Q.UI
            COHMON/XFER/NREC
            COhMON/BI.Kl/ALDIS.C(100,10>.CANLIE.DlLFAC.DOSV<5>,DYTDZ.NM.NMY,
           &       NMZ.NTIHE,Q<100.10).RVERT<100>J(10),TTIHE<5).VA,VNUCL<5),
           4       UIDTH.WSLABL(10),XAQD,XLrXLD(100),XLL(100),XLP,XRCUOO)r
           &       XW.YU.ZB
            COHHON/BLK2/ACR,ADLfAHIN.ARHO.BIV(100),BURN.CUMDOS(10),DIFCON.
           I       DIECOU,BIFU,DOSE(3,100),DSTACK,EGAHMA(100),EPW,FEXT.EFIRE.
           i       FG.FIXINy,FTX,FUIND,HLlFE(100).HSTACK,IDSRPr,IFL(7)!lFLAGf
           &       IGAhMA.INPRNT.IOPT.ISTAB,IUP.lOFAC.JUF(10)rNDOSE.NISO,NNP,
           &       NP.NPN(10),PLANT.PO,QH.RFR.RHO,RUNF.SINV,SNO.SPILL.SR,SS.
           S       TBEG,TCON,TCUT,TEND.TIHOP.TIMOP1,TUO.UBR,UT(100,6).
           &       WLATL(100),VSTACK,OwiND,XALE,XCT,XH,XKD(100)fXLC.
           &       XNAME2(100),XPERC1XPOR.XR,XRECEP.XROOT.XW.XWl!xXMU(100)
            DIHENSION BRIGGS(6.3),EDOSE(10),IVHD(10).SUHDOS(10).VMXDOS(10)
            CHARACTERS BLAN
            DATA  AHOUSE.ALOT,TG/1.D2,2.3D3,0.91DO/
            DATA  BLAN/'        '/
            DATA  BRIGGS/0.200DO.  0.120DO.  0.080DO,  0.060DO,  0.030DO, 0.016DO,
           I            O.OOODO,  O.OOODO,  2.00D-4,  1.30D-3,  3.00D-4, 3.00D-4,
           i            0.0001)0,  O.OOODO,  -0.50DO,  -0.50DO,  -l.OODO. -l.OODO/
            DATA  VHXOOS /10AO.DO/
            IF(lOPl.NE.O)  GO TO 9000
>          If(NPATH.£Q.3)  GO TO  3000
 '           IF(NPAl'H.tQ.4)  GO 10  3000
00          IF(NPATH.EQ.5>  GO TO  4000
            IF(NPATH.EQ.G)  GO TO  4000
            IF(NPATH.EQ.7)  GO TO  5000
            IF(NPAIH.EQ.8)  GO TO  6000
            IF(NPATH.EQ.9>  GO TO  7000
            IF(NPAIH.tQ.lO)  GO 10 8000
      C
      C     CALCULATIONS tOR EROSION S  BATHTUB  PATHWAYS
      C
       3000  FB=IHV/
            DO  3008  K=1,NIIHE
       3088  SUMHOS(K)=0.
            FQ=I.
            TZ1=XCT/XALE
            TZ2=TZ1+XWT/XALE
            TZ3=(XWH-XCI)/(XPERC/XPORH XALE)
            FE=XALE/XWT
            IE(NPATH  .EQ. 3)  WRITE(6.3005)
            IF(NPATH  .EQ. 4)  WRIIE(6T3006)
       3005  FORHAT(lH1.56X.'PATHyAY  3'./,57X.'EROSION'l//.
          t 'AAAAAAAAi NUCLIDE DOSES F&R GIVEN TIMES *£******',/>
      13005  FORhAT(56X.'PATHWAY   3   EROSION')
       3006  FORhAT(lH1.56X,'PATHWAY  4'./,54X,'BATHTUB EFFECT'.//.
          S  'AAAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAAV)
      13006  FORMAT(56X.'PATHWAY   4   BATHTUB EFFECT')
            IF(SPILL  .GT. O..AND.NPATH.EQ.3) WRITE(6,3008) SPILL
       3008  FORMATC  DOSE AT YEAR 1 IS  DUE TO SPILLAGE FRACTION OF  ',1PE9.2)
            WRIIE<6.11)  (T(M),M=1,NTIME)
        11  FORMAK//,'   NUCLIDE/TIME   ',10F10.0>

-------
     CONC11=.001AEB/KFR
     DO 3015  K=1,NDOSE
     IF(Q(K,1KEQ.O.)  60 10 3015
     UPTK=UI(K,3>
     IF(N?AIH .EQ.  4)  UPTK=UI(Kf4>
     IE(SPILL .GT.  0.) UPTK=UT(K.5)
     CONS12=UPIKADOSE'.1.K)ACONSI1
     IF(NPATH.E0.3>  GO TO 3010
     XALE1=XPERC/(XKD(K)A.001ARHO+XPOR)
     FE=XALE1/XWT
 3010 DO 3016  M=1.NTIME
     IE(NPATH.EQ.4)  fcQ=DEXP(-XALElA(T(H)-TZ3)/XWT)
     IF=XCT-XALEAT(M)
     EDOC;E(M)=].E12AQ(K,M)AFEACONST2AFQ
     C(K.M)=Q(K,M)A(-eAl;D/SFRAFQ
       IF(lVEAC.EG.l)  EDOSEA(1.-VOLAIL(K)>
     IF(NPATH.EQ.3  .AND. IE.GE.O.)  EDOSE(M)=0.
     IF(NPATH.EQ.3  .AND. IF.GE.O.)  C(K,H)=0.
     IF(NPATH.EQ.4  .AND. T(M).LE.TZ3)  EDOSE(M)=0.
     IE(NPATH.EQ.4  .AND. I(M).LE.TZ3)  C(K,M)=0.
     IF(TF.LT.-XUT)  EDOSE(M)=0.
     IF(TF.LT.-XWI)  C(K,M)=0.
     IF(M.GT.l .OR.  SPliL.LE.O.) GO TO 3014
     IF(NPAIH.ei3.4)  HO TO 3014
       EHOSE(1)=1.E12AQ(K.1)ACONST2ASPILL/
     &   (FDA(10.ARUNF+XKD(K)A.001ARHO+XPOR))
     C(K.1)=Q
   20 FORMAI(4X,I3,9X;il(lPh0.2))
     NP=NP+1
     DO 3100  M=1,NTIME
 3100 CUMDOS(M)=CUMDOS(M)+SUMDOS(h)
     WRITE(6.32) 'DOSES'
     WRIIL<6,20> NISO,(SUMDOS(M),M=lFNtlhE)
     WRITE(G,3'2) 'RISKS'
     WRITt:(6,20) NISO.(SUMDOS(M)A2.8E-7,M=1,NTIME)
   32 FORMAT(^//.'AAAAAAA SUM OF NUCLIDE ',A5,'  FOR  GIVEN  TIMES AAAAAA')
     URITE(6  28) TZ1 TZ2
   28 FORMAT(///.' AAAAAAA EROSION OF HASTE STARTS AFTER '.E10.1,'  YEARS
     &   AND ENDS AFTER WASTE IS ALL  ERODED IN  ',F10.1,'  YEARS.')
      IF(NPAIH.EQ.4) WR1IE(6,3110) TZ3
 3110 FORMAT(9X  'FACILITY OVERFLOW BEGINS AT YEAR ',F10.D

 3401 tORMAnlHl.'CONCENTRATION ARRAY',8X,'CONCENTRATIONS IN CI/MAA3')
     WRITE(6,llJ (T(M),M=1,NIIME)
      DO  3400  K=1.NDOSE
      IF(a(l(fl).GT.O.) HRITE(6,19) K,XNAME2(K),(C(K,M),M=lfNIIME)
 3400 CONTINUE
     GO  TO 9000
C
C     CALCULATIONS FOR tOOD S BIOINTRUSION PATHWAYS
C
 4000 EH=TWV/(XLPAU1DIHAXWI)

-------
      DOSV<5>=0.
      DO 4088 K=KNIIME
 408(3 SIJMOOS KKN=K
      IE(EDOSE(2).GT.DOSV(5)) DOSV(5)=EDOSE(2)
 4015 CONTINUE
      niME(5)=I<2)
      NP=NP+1
      DO 4100 M=l,NIIhE
 4100 CUHDOS(h)=CUMDOS(h)+SUMDOS(M)
      WRI1E<6,32) 'DOSES'
      WRIIE(6»20) NISO>
      IF(NPATH .EQ. b) HR1TE(6,4303) FM
 4303 FORMAT(' FRACTIONAL MIXING OF TRENCH MATERIAL IN SURFACE SOIL IS
     S ,F5.3)
      GO TO 9000
C
C     CALCULATIONS FOR DIRECT GAMMA EXPOSURE
C
 5000 DO 5088 K=1.NTIME
 5088 SUMDOS(K)=0.

-------
      ;ORMATOHI.56X,'PATHWAY  7' /,5bX.'DIRECT GAMMA' //,
       'AAAAAAAAA  NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAV./)
      :ORMAT<5GX.'PATHWAY  7   DIRECT GAMHA')
      UR1TE<6.50CJO)
 5090 FORMAT (] HI. 56X,' PATHWAY
     I 'AAAAAAAA:!
15090 FORMAH5GX.
      URIIE(G.ll) (I(H),M=lrNTIME)
      T21=XCT/XALE
      CONST1=8.7GE15/AMIN
      CONST2=2.AXLPAWIDTH/(FEXTAAMIN)
      IF(IGAMMA.NE.l) GO TO 5100
      T 1 = ( XROOT-XCT-XUT ) / ( PLANI/RHO-XALE )
      12= ( XROOT-XCT )/ ( PLANT/RHO-XALE)
      IF
-------
       PQ=1.
       RQ=Q£,UktAFGAMMAAFEXT/
     IE(TMU.GT.35.) EXPO=0.
     PQSURF=1.D35
     IF < IMU . GI . 0 . > PQSURF=CONST2AThU/ < 1 . +1 . 32934/EGAhM A < K ) - ( 1 . -HMD AA
    81.5/£GAMMA(K»AEXPO)
     TMU=THU+XXMU(K)AXCT
     IFCfMU.LT.O.) TMU=0.
     IF(ThU.GT.85.) THU=85.
     BU=l.+ThUAA1.5/EGAMMA(K)
     IF(EGAMMA(K) .LI. 0.25) BU=1.+2.AIMU
     BU=BUADEXP(-IHU>
     IF(BU .GT. 1.) BU=1.
     PQUNDR=CONST2ACGNSI3/BU
     RQ=RQUNDR+RQSURF
     PQ=KQ/ ( RQUNDR/PQUNDR+RQSURF/PQSURF )
     GO TO 5014
5012 IKXXMU(K) .GT. 0.) GO TO 5013
       PQ=1.
       RQ=Q(K.M)AtGAHMA(K)ADOSt(3,K)AFEXTAF«/(XLPAWIDTHAXUT)
       GO TO 5014
5013 GSURF=G(K.M)ACONST4
     QUNDR=Q(K.M)-QSURE
     QSURt =QSURFA ( 1 . -XALtAl ( M ) /IG )
     IF(GSURF.LI.O.) QSURF=0.
     RQSURF=CONS11AQSURFADOSE(3.K)
     RQUNDR=CONST1AQUNDRADOSE(3,K)
     TMU=XXMU < K ) A ( IG-XALEAT ( M ) )
     EXPO=0.
     IF ( DABS ( TMU ) . LE . 35 . ) EXPO=DEXP ( -THU )
     PQSURt'=l.D35
     IF ( IMU . Gl . 0 . ) PQSURE=2 . ATHUA ( ALOT-AHOUSE ) / ( FEXTAAM INA ( 1 . + 1 . 32934X
    JEGAMMA(K)-(1.+TMUAA1.5/EGAHMA(K))AEXPO))
     THU=XXMU(K)A(XCI-XALEAI(M»
     IFdMU.LT.O.) TMU=0.
     IE(TMU.GI.85.) TMU=85.
     BU=1 . +ThUAAl .5/EGAMHA(K )
     IE(EGAhhA(K) .LI. 0.25) BU=1.+2.AIMU
     BU=8UADKXP(-ThU)
     IE(BU .GI. 1.) BU=1.
     PQUNDR=CONST2ACONST3/BU
     RQ=RQUNBR+RQSURE
     PQ=R(J/ ( RQUNDR/PQUNDR+RQSURF/PQSURF )
5014 EOOGE(M)=RQ/PQ
       IF(IVtAC.EQ.l) EDOSE(H)=EDOSt(M)A(l.-VOLAIL(K))
     SUhDOS(M)=SUHDOS(M) ^EDOSE(H)
     IF
-------
      DO 5210 K=1.10
      IE =SUMDOS(K>
      IT1MEO) =  KM)
      VNUCL(3)=XNAhE2([VMD(M))
      IE(DOSM<3).EQ.O.) VNUCL(3)=BLAN
      WRITE<6,32> 'DOSES'
      URITE(6,20> NISO. CI(M).M=1,NTIME)
      CONST1=1.E12AEMAADLAUBRAETX/(XLPAWIDTHAXWTARHO)
      DO 6015 K=1,NDOSE
      IE(Q(K,1).EQ.O.) GO TO 6015
      DO G016 M=1,NTIME
      EDOSE(M)=Q(K,M)ADOSE(2.K)ACONST1
         IF(IVFAC.EQ.l) EDOSE(M)=EDOSE(M)A(1.-VOLATL(K))
      SUMDOS(M)=SUMDOS(M)+EDOSE(M)
 6016 CONTINUE
      WR1TE(6,19) K,XNAME2(K),(EDOSE=CUMDOS(MHSUMDOS(M)
      WR1TE(6.32) 'DOSES'
      WR1TE(6>20) NISO>(SUMDOS(M),M=1,NTIME)
      WRITE(6,32)  'RISKS'
      WRITLCe^O) NISO.(SUMDOS(M)A2.8E-7FM=lfNIIME)
      DOSV(1)=SUMDOS(1)
      VNUCL(1)=XNAME2(KKN)
      IF(DOSV(1).EQ.O.)VNUCL(1)=BLAN
      GO TO 9000
C
C     CALCULATIONS FOR RADON INHALATION PATHWAY
C
 7000 DO 7088 K=1.NIIME
 7088 SUMDOS(K)=0.
      WR11-L<6,7010)

-------
 7010 FOkMAIUHl.bGX,'PATHWAY  9',/,53X,'RADON INHALATION',//.
     I 'AAAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA',/)
17010 FORMAK5GX, 'PATHWAY  9   RADON INHALATION')
      WRITE(6,11> (I(M),M=1PNTIME)
      K=21
      XN1='RN222
      XLKN=2.1D-6
      BI=ri5QRI(XLkN/DIFW)AXHTA100.
      EPLUS=OEXP(BT>
      EM1NUS=1./EPLUS
      IANH=
      SUMDOS (M) =SUMDOS (M) HiDOSE (M)
 7016 CONTINUE
      URITt(6.19) K,XNlf(EDOSt
 8010 FORMAK/,' ANNUAL DOSE TO AN INDIVIDUAL DUE TO OFF-SITE ',
     i 'ATMOSPHERIC TRANSPORT')
      CONST1=10.AHSTACK
      IE(XRtCEP .LI. CONS11) CONST1=XRECEP
      H£Ff=HSIACK + (1.5AVSTACKADSTACK +
     I  ] .6A(3.r/E-5ACONSTlACONSTlAQH)AA0.3333)/VUIND
      IfdSTABAG.O) ISTAB=4
      SIGMA2=BRIGGS(ISTABV1)AXRECEPA(1.4BR1GGS(1STAB,2)AXRECEP)AA
     J  BRIGGS(iSTAB,3)
      IKXRECEP.Lt.O.)  CHlQ=2./(3.141b9AHEEFAHEFFAVWINDA2.71828)
      IF(XRECEP.GT.O.)  CHIQ=2.032AFyiNDADEXP(-0.5A(HEFE/SIGHAZ)AA2.)/
     I  (SIGMAZAVWINDAXRECEP)
      ARG=-0.79788AFFIRE/(VWINDABRIGGS(ISTAB.l))
      IFdVFAC.EQ.O .AND. XRECEP.GT.O.) EEIRE=XRECEPAAARG
      DENOM=TUV
      IFdVFAC .EQ. 0)  DENOM=XLPAUIDTHA(XWT+XCT)
      CONST1=1.E12ABURNAFEIREACHIQAUBR/DENOH
      DO 8015 K=1.NDOSE
      IF(Q(K,1).EQ.O.)  GO TO 8015

-------
           ARG=] .
           IF (MAC: .GT. 0) ARG=VOI.A1L(K>
           EDOSE(1>=Q(K,1)ACONST1AARGADOSE(2,K)
           GUMBOS U)=SUHDOS(1H-EDOSE<1)
           WRITE(6,19> K,XNAME2(K).EDOSE(1)
           IF(EDOSE(1).LE.DOSV<2)> GO TO 8015
           KKN=K
           DOSV(2)=EDOSEU)
      3015 CONTINUE
           NP=NP+1
           DO 0100 M=1.NTIHE
      8100 CUMDOS(M)=CUMDOS(M> i-SUMDOS(M)
           WRIlt(6>32) 'DOSES'
           WRITE (6, 20) NISO,SUMDOSU)
           WRITE(6 32) 'RISKS'
           URITE<6,20) NISO,SUMDOS(l)A2.8E-7
           IF(XRECEP .GT. 0.) URITE(6,8110) XRECEP.CHIQ
      8110 EORHAT(//,' DISTANCE TO RECEPTOR IS  '.F7.1.' MEIERS',/.
          &  ' CHI/Q  IS ',1PE9.2,' CI/HAA3 PER Cl/£iEC',//)
           IF(XR£CEP .LE. 0.) HRITE(6,3120) CHIQ
      8120 FORMAT (//.' CHI/Q  IS 'JPE9.2/ CJ/MAA3 PtR CI/SEC',//)
           VNUCL(2)=XNAMt2(KKN)
           IF(DOSV(2).EQ.O.> VNUCL(2)=BLAN
      9000 RETURN
           END
     C     PE1 ZERO SUBROUTINE;:  INITIALIZES ALL COMMON BLOCK VARIABLES
           SUBROUTINE ZERO
-..,         IMPLICIT REALA8  (A-K,0-Z)
 i          CHARACTERA8 NUCLID,VNUCL.XNAME2
J--         REALA4 C,Q,UT
"-"         COMMON/BLK1/ALDIS.C(100.10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM.NMY,
          &       NMZ,NTIME.Q(100.IO),RVERT(l60).T(10),TTIME(5),VA,VNUCL(5),
          X       WIDTH. USLABL<10),XAQD, XL, XLD(lOO)rXLL(100),XLPrXRC(100)t
          &       XW.Y&.ZB
           COMMON/BLK2/ACR.ADL.AMIN.ARHO.BIV(100).BURN.CUMDOS(10),DIFCON,
          i       D IFCOV , D IFW , DOSE (3,100) , DSTACK , EGAMMA ( 1 00 ) , EPW, FEXT , FF IRE ,
          &       FG.FIXINV,FTX,FWIND.HLIFE<100).HSTACK.IDSRPT.IFL(7).IFLAG,
          i       IGAMMA . INf RNI  IOPT . ISTAB , IUP . IWFAC , JUF ( 1 0 ) . NDOSE . N ISO , NNP ,
          S       NP,NPN( 10), PLANT,PV,QH,RFR,RHO,RUNF.SINV,SNO. SPILL, SR,SS,
          S       TBEG,TCON.TCUT,TEND,TIHOP.TIMOP1,IUO,UBR.UT( 100,6),
          X       VOLATL ( 100 ) , USTACK . Ou IND , XALE , XCT . XH , XKD ( 100 ) , XLC .
          &       XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOI,XW,XUT XXhU(lOO)
           COMMON/BLK3/IFILL
           COMMON/UPTAK/BDENS , BR , COL1 , COP1 , COCM II , COF ISH , COGM II . COMEAT .CHAT ,
          i       DECA.FFfFI.FIs!FMC.FMG,FP.FS,INTAKE(5),KK,NUCLID.PORS,PP,
          S       QBU,6CW!QFC,QFG,QGH,RM!SINFL,TE1,TE2.TFIS,TF1,TH1,TH2.TH3,
          I       IH4 . T IMAV . TS , UCM ILK , UF ISH , UGM ILK , ULEAFY , UMEAI , UPROD , UWAT ,
          S       U IRATE, XAABWE,Y1,Y2

     C     COMMON BLK1
     C
           DO 10  1=1.100
             RVERt(I)=0.
             XLD(1)=0.
             XRC(1)=0.
        10 CONTINUE
           DO 20  1=1,10

-------
        00 30 J=1.100
          C(JVI)=0.
          Q1).EQ.O.) GO TO 2015
      TR=XR/VA+XAQDA(RVERT(K)/XRC(K))/XVV
      IT=IO+TR
      CONST1=1.E9ADOSE<1,K)AUT(K,1)
      IF(IOPT.EQ.l) T(1)=XRC(K)ATR+DLOG(XLL(K)/XLD(K)+1.)/XLL(K)
      IF(IOPT.EQ.1.AND.I(1).GE.TIAXRC(K)> I(l)=riAXRC(K)
      IF(IOPT.EQ.l) NDPKR(K)=T(1)
      OSAVE=Q(K,1)
      IF (lOPlJQ.l) Q(K,l)=Q(Krl)ADEXP(-XLD(K)AT(D)
      IF
-------
            IE(XX.Gl.Cb.) XX=£)b.
            iJ-UY.GT.Sb.) XY=85.
            XY=LitXmYH C(K,M)=XXAQ(K,M>AHUNF/ED
            IF(T(M).GE.XRC C(K.M)=XYAQ(K,M>AHUNF/ED
       2222 IF(C
            SUMDOS(M)=SUM005
      C     IF .LT. 0.) ADI(K,M>=ADHK,M)-EDOSE,M=1,NT1ME>
            Q(K,l)=QSAVE
       2015 CONTINUE
         19 FOKMAKlXjia^XjAa^XjlldPtlO^))
            NP=NP+1
            DO 2]00 M=KNI1ME
       2100 CUMOOS(M)=COhDOS(M)vSUMDOS(M)
            URHE(6,32) 'DOSES'
            WRIIt(6t20) NISO.2) 'RISKS'
            URI1E(6,20) N1SO.(SUHDOS(M)A2.8E-7fH=l,NTIME)
         20 FORMAT(4X,I3.'3X(Il(lP£10.2))
         32 FORMAT(/// 'AAAAAAA SUM OF NUCLIDE ',A5,' FOR GIVEN TIMES AAAAAA')
            WRITE(6,35)
         35 FORMAT
         36 CONTINUE
            MRITE(6,2401)
            IF(IOPT.EQ.l) WRITE (6.21)
            IF(IOPT.NE.l) WRIIE(6,Il) (KM) ,M=1,NIIME)
         21 FORMAT*/,'   NUCLIDE' 11X.'CONC'.4X.'PEAK TIME' /)
       2401 FORMAK///.'  CONCENTRATION ARRAY1,8X,'CONCENTRATIONS IN CI/MAA3')
            DO 2400 K=1.NDOSE
            IF(Q(K,1).EQ.O.) GO TO 2400
            IEUOPT.EQ.1)  WRITE(6,19) K,XNAME2(K),C(K.l).NDPKR(K)
            IF(IOPT.NE.l)  WRIIE(6jl9) K,XNAME2(K)J(C(K,M5,M=1,NIIME>
       2400 CONTINUE
       2500 RETURN
            END
            SUBROUTINE PRINT(XLLI.RVERTl)
            IMPLICIT REALA8 (A-H,6-Z)
            CHARACTERA8 VNUCL,XNAME2
            REALA4 C.Q.UT
            COMMON/B£Kl/ALDIS,CU00.10),CANLIF.DILFAC.DOSV<5).DY,DZ,NM,NMY,
                   NMZ,NTIME.Q(100.IO),RVERT(l60)1T(l6).ITIME(5).VA,VNUCL(5)f
                   UIDTH.ySLABL(10),XAQD,XL,XLD(100),XLL<100),XLf,XRC<100),
                   yyii y(i 711                                     '        '
            COMMON/BLK5/ACK,ADL,AMIN,AKHO.B1V(100),BURN.CUMDOS(10),DIFCON,
                   DIFCOV,DIFW,DOSE(3.100),DSTACK,EGAMMA(100).EPW,EEXT,FFIRE,
                   FG.FIXiNV,FIX,FUINfi,HLIFE(100).HSTACK,IDSRfT,IFL(7)!IFLAG,
                   IGAMMA. IN?RNT IOPT. 1STAB. IUP. IVFAC. JUF (10). NNJSE. N ISO, NNP,
                   NP,NPNhO),PLANT,PV,QH,RER,RHO,RUNF,SINVrSNOfSPILL,SR,SS,

-------
|ELL
^SION
'LiPORT
/EROSION '
,'EOOD GRO'
/DIREC'l' ij'
'RADON IN'
i
','WN ON SI
/AMMA
/ HALATION
   8       TBEG,TCON,TCUT,TEND,TIMOP,TIMOP1,TWV,UBR,UK100.G),
   8       yOLATL(100>,VSTACK.vWIND,XALE.XCT.XH,XKBUOO),XLC.
   *„„„„„ XNAME2(100),XPERC,XPOR,XR,XRECEP,XRGOT,XW,XWT,XXMU(100)
    COMMON/BLK3/IF ILL
    DIMENSION PTHNAM(3,10),XLLI(100),RVERTI(100)
    CHARACTJ-RA8 PTHNAM
    DATA PIHNAM/'GROUNDWA'/TER TO R'/IVER
   8'GftOUNDUA'/TER TO W
   8' BATHTUB ','EFFECT  ' '         /FOOD GRO'','WN ON SI''.'TE
   S'NATURAL '/BIO £NTfilj
   S'DIIST INH'/ALATION
   8'AIMOSPHE' 'RIC IRAN   oru
    IF(INPRNI.EQ.O) GO TO 1000
100 FORMAK]HI ' AAAAAAAAAA  PAIHRAE INPUT SUMMARY  AAAAAAAAAA')
107 FORMAK' LENGTH OF REPOSITORY (METERS)' 31X.F8.0)
108 FORMAK' WIDTH  OF REPOSITORY (METERS)',§2X.F8.0)
109 FORMAK' HORIZONTAL VELOCITY OF AQUIFER (MEIERS/YR)',21X,F8.3)
HA pncMATf ' / /  POROSITY OF AQUIFER',45X,F6.2)
             DISTANCE TO RIVER (METERS)J,34X,F8.0>
             FLOW RATE OF RIVER (CUBIC MEIERS/YEAR)' 25X.1PE11.2)
             DISTANCE TO WELL — X COORDINATE (METERS)',19X,F8.0)
             MIXING THICKNESS OF AQUIFER (METERS)' 28X.F7.3)
             DISTANCE TO WELL — Y COORDINATE (METERS)J,19X,F8.0)
             CANISTER LIFETIME (YEARS)' 37X,F6.0)
121 FORMAK' DISTANCE FROM AQUIFER TO WASTE (METERS)',23X.F7.1)
122 FORMAK' AUCBARC UCSTTPAI n&nnunuATrD urinrTTv /M>VD\' IVY
110 FORMAK
111 FORMAT(
112 FORMAK
113 FORhAK
114 FORMAK
115 FORMAK
116 FORMAK
             AVERAGE VERTICAL GROUNDUATER VELOCITY (M/YR)>.17X,F10.3)
             ',/,' DENSITY OF AQUIFER (KG/CUBIC METER)'.25X,F8.0)
             LONGITUDINAL DISPERSIVITY (M)'.34X.1PE11.25
             NUMBER OF MESH POINTS FOR DISPERSION CALCULATION',15X,
             ',/,' TIME OF OPERATION OF WASTE FACILITY IN YEARS'
123 FORMAK
124 FORMAK
125 FORMAK
   814)
127 FORMAK
   816X,F8.0)
128 FORMAK' './,
   8' AMOUNT Ot WATER PERCOLATING THROUGH WASTE ANNUALLY (M)',
   8 10X.F7.3./.' DEGREE OF SOIL SAIURATION',40X,F6.3,/,
   8 ' RESIDUAL SOIL SATURATION',41X,F6.3./,
   8 ' PERMEABILITY OF VERTICAL ZONE (M/YR)J,27X,£7.2,/,
   8 ' SOIL NUMBER'.54X.F6.3)
129 EOkMAIC LATERAL DISPERSION COEFFICIENT -- Y AXIS (MAA2/YR)',13X,
   8 1PE11.2)
131 fOKMATC COVER THICKNESS OVER WASTE (METERS)',25X,F10.2)
132 FORMAK' THICKNESS OF WASTE IN PITS (METERS)',25X,F10.2)
202 FORMAK' ' /,
   8' THERE ARE',13,' ISOTOPES IN THE DOSE FACTOR LIBRARY'./.
   I ' THE CUTOFF VALUE FOR NUCLIDE HALF LIVES IS',f7.1.' YEARS'./.
   8 ' DEFAULT INVENTORY VALUE FOR CUTOFF NUCLIDES IS'.1PE9.2,' Cl7)
204 FORMAK' NUMBER OF TIMES FOR CALCULATION IS',I3,/,J VCAPC rn RP/
   8 ' CALCULATED ARE ...'//,(IX,5F9.2))
                          EiU' J4 ' TCnTflDI
                                                        YEARS TO BE',
   fe   unijLrUi^riiCiU nnb • • • .//. tJLAf Dt^ *£) )
206 FORMAK' './,' THERE ARE'.14 ' ISOTOPES IN THE INVENTORY FILE',/,
   8 ' THE VALUE OF IFLAG IS 7,I3,/,' NUMBER Of PATHWAYS IS '.13)
208 FORMAK/,12X,'PATHWAY',11X 'TYPE OF USAGE',/,28X,'FOR UPTAKE ',
   8 'FACTORS',/,(3X.12,2X'3A8,4X,12))
212 FORMAK' '!/,' FLAG FOR GAMMA PATHWAY OPTIONS',34X, 13,/,
   8 ' FLAG FO$ ATMOSPHERIC PATHWAY',36x.i3)
216 FORMAK' INVENTORY SCALING FACIOR'.4lX,lPE9.2)
218 FORMAK' RADON EMANATING POWER OF THE WASTE',31X.1PE9.2,/,
   8 ' DIFFUSION COEFF. OF RADON IN WASTE (CMAA2/SEC>',19X,E9.2./r
   8 ' DIFFUSION COEFF. OF RN IN CONCRETE (CMAA2/SEC)'.19X.E9.2)
220 FORMAK' './,' DIFFUSION COEFF. OF RADON IN COVER (CHAA2/SEC)',
   8 19X,1PE9.2)

-------
222 FORMATC  ' /  ' DECAY CHAIN FLAGS'  TJX,714)
224 FORMAT('  FLAG FOR  INPUT SUMMARY PRINTOUT' 33X.13,/.
   I  ' FLAG FOR DIRECTION OF TRENCH FILLING',28X,13./,
   &  ' FLAG FOR GROUNDWATER PATHWAY OPTIONS''28X.13)
510 FORMATC  RECEPTOR  DISTANCE FOR ATMOSPHERIC PATHWAY (M)'.17X.F7.1)
511 FORMATC  STACK HEIGHT (M)'.48X.F5.1./' STACK INSIDE DIAMETER (M)'.
   &  40X.F5.2./ ' STACK GAS VELOCITY (M/S)'  40X.F5.1)
512 FORMATC  HEAT EMISSION RATE FROM BURNING (CAL/S)',26X,1PE9.2)
513 FORMATC  './.
   t' DUST RESUSPENSION RATE FOR OFFSITE TRANSPORT (MAA3/S)'.
   S  12X.1PE9.2./' DEPOSITION VELOCITY (M/S)'.41X.OPF6.4)
514 FORMAIC  ',/* INCINERATOR OR TRENCH FIRE BURN RATE (MAA3/S)'.20X.
   &  1PE9.2,/,' FRACTION OF YEAR FIRE  BURNS',39X,OPF6.4)
515 FORMATC  ATMOSPHERIC STABILITY CLASS',38X,12./.
   S  ' AVERAGE WIND SPEED (M/S)' 41X.F5.2,/.
   I  ' FRACTION OF TIME WIND BLOWS TOWARD RECEPTOR',23X,F6.4)
516 FORMATC  SURFACE EROSION RATE (M/YR)'.36X.1PE12.3,/.
   S  ' ANNUAL RUNOFF OF PRECIPITATION  (M)J.31X.E9.2)
517 FORMAIC  ' /.' TOTAL   WASTE VOLUME (MAA3)5,38X.1PE12.3)
519 FORMATC  DENSITY OF WASTE   (KG/MAA3)',34X,F8.0)
520 FORMATC  FRACTION OF FOOD CONSUMED THAT  IS GROWN ON SITE',17X.
   &F7.3)
521 FORMATC  DEPTH OF PLANT ROOT ZONE  (METERS)'.32X,F6.3)
522 FORMATC  ',/,
   &' FRACTION OF YEAR SPENT IN DIRECT RADIATION FIELD',15X.F8.3)
524 FORMATC AVERAGE DUST LOADING IN AIR (KG/MAA3)',26X 1PE11.2)
525 FORMATC  './.' ANNUAL ADULT BREATHING RATE 
-------
    WRITE (6,526)  FIX
    WR in (6, 116)  CANLIF
    WRITE<6,216>  FIXINV
    WR11L(6(529)  XH
    WRITE (6, 530)  ACR
    WRIIE(6,218)  EPW.DIFW,DIFCON
    WRITE (6, 531)  ICON
    WRITE (6, 220)  DIFCOV
    URITE(6,515)  ISTAB,VWIND,FUIND
    URITE(6 510)  XRECEP
    It < IMF AC. EG. 0) WRITE<6,513)  BURN,FFIRE
    IF(IVFAC.GT.O) WRITE<6,514>  BURN'FFIRE
    WR ITE ( 6 , 51 1 )  HSTACK , DSTACK . VSTACK
    URKE(6 512)  QH
    IF(ALDIS.NE.O.)  WRIIE(6.222) -(I
    URII£(G,224)  INPRNI.tFlLL.IOPT
    WRIlt(6,128)  XPERCfSS,SR,PV,SNO
    URIt£(6,110)  XPOR
    WR] If (6, 121)  XAQO
    WRITE(6 122)  XVV
225 HK lit (6, 109)  VAQ
    WRlCe(6,114)  XLC
    UR ITE (6, 516)  XALt,KUNF
    WRITE (6. 300)
   >  £A •  k i lAtn nnni/
    DO 310 K=1.NDOSE
    IF(Q(K,1).EQ.O.) GO TO 310
    URITE(S,360) K.XNAhE2(K),DOSE(l,K),DOSE(2,K),
   I  DOSEC3,K),VOLATL'f/)
    DO 350 K=l NDOSE
          ,   .>  .         t
   S  UT(K.2),UT(K,G),EGAHMA(K)
350 CONTINUE
    WRITE(6.320)
320 EOKMAIUHl.SX.'NUCLlDE'.llX, 'INPUT LEACH'. 5X,
   I 'FINAL LEACH f,8X,'GAMHAV NUMBER'. 3X. 'NAME', 5X,
   S 'CONSTANT<1/YR)',2X,'CONSTANT(1/YR)  ATTENUATIONd/M)'/)
    DO 330 K=l, NDOSE
    IFRVERT(K)
354 CONTINUE
    WRITE (6, 228)
228 FORMATdHl^X/NUCLlDESlOX/SOIL TO PLANT', 7X, 'HALE', 11X,

-------
     X  'INITIAL' /,' NUMBER   NAME' 7X, 'CONVERSION ',6X,
     I  'LIfF  (YR)' '/X.'INVFNTOKY  :(K),Q(K,l)
  355 CONTINUE
  360 tGK'MAT
      CHARACTERS VNUCL.XNAME2
      CHARACTERS NUCLID
      REALA4  C.Q.UT
      COMMON/KLK1/ALD1S,C(100.10),CANLIF.DILFAC.DOSV<5).DY.DZ,NM.NMY.
     8        NMZ,NTIME.Q(100.10),RVERT(100).T(16).TTIME(5)!VA!VNUCL(5),
     i        UIDTH.HSLABL(10),XAQD,XL,XLD<100),XLL(100),XLP,XRC(100),
     I        XW.Y&.ZB
      COMMON/BLK2/ACR , ADL , AM IN . ARHO . B I V ( 1 00 ) .BURN . CUMDOS ( 10 ) . D IFCON .
     S        DIFCOV.DIFU,DOSE(3.100).DSTACK.EGAMMA(100),EPW,FEXT.FFIRE,
     &        FG.FIXINV.FTX.FUIND.HLIEE<100).HSTACK,IDSRPT.IFL(7).IFLAG,
     S        IGAMMA, INPRNT. IOPT. ISTAB, IUP. IVFAC,JUF( 10) .NDOSE.NISO.NNP.
     i        NP.NPN(10),PLANr,PO.QH,RFR,RHO,RUNF.SINV,SNO.SPlLL,SRrSS,
     S        TBEG,ICON.TCUT,TEND'lIHOP.TIMOPl,TWO,UBR UK 100.6),
     J        VOLATL(100),VSIACK.OWIND,XALE,XCT.XH,XKD(100),XLC.
     X        XNAME2(100),XPERC.XPOR,XR,XRECEP.XROOTrXU,XUTFXXMU(100)
      COMMON/UPTAK/BDENS!BR.COLI,COPI.COCMII.COFISH,COGMII.COMEAT.CUAT,
     8        DECA,FF.FI,FIS'FMC.FMGFFP,FS,INTAKE(5)'KK,NUCLID.PORS.PP,
     I        QBWlQCW.QFC.QFG.QGWrRU,SINFL.TEl,TE2.IFIS.TFl.IHl,TH2,TH3,
     I        IH4.TIMAV.TS,UCMILK.UFISH,UGMILK,ULEAFY,UMEAT,UPROD,UUAT.
     8        WIRATEfXAMBWE,Yl,Y2

C     READ INPUT DATA
C
C
      OPEN
-------
            GO 10 120
      C
      C     CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS FOR WATER USAGE

        200 IKQ(J.l) .LE. 0.) GO TO 120
            DECA=XLO(.D/8760.
            CWAT=1.
            DO 280 KK=1,5
              DIST=XR
              GO TCI  (220.?.] 0,230,240,2^0) KK
      C       CALCULATE HUE OVER WHICH SOIL CONCENTRATION WILL 3E AVERAGED
        210   DISI=XU
        220   TIMAV=1./XLL(J)
              REI=1.+ARHOAXKD/VA
              IFdlhAV .GT. ARG) IIMAV=ARG
              GO TO  260
        230   TJMAV=XHT/XALE
              ARG=I(NIIM£)-XCT/XALE
              IFdIMAV .GT. ARG) IIHAV=ARG
              GO TO  260
        240   nrtAV=    c
i     C     CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS FOR FOOD
PO    c
00          CUAT=0.
            KK=6
            CALL IkklG(J)
            CALL HUMEX(J)
            GO TO 120

      C     PRINT UPTAKE FACTORS
      C
        300 CLOSE(UNII=3)
            WRIT£<6,310) (1.1=1.6)
        310 tORHAI(/'/,23X,'fOTAt EQUIVALENT UPTAKE FACTORS FOR PATHRAE' //,
           I  13X,6(3X,'UI(J.'.n,')'),/.17X,'RIVER'.5X.'WELL',5X,'EROSION',
           s  ax,'BATHTUB  SPILLAGE    FOOD',/,' NUCLiDt',3x,
           S  5(6X/L/YR'),6X,'KG/YR',/)
            DO 320  1=1,NUOSE
            IF<0<1,1) .GT. 0.) WRITE(6,330) XNAME2(I),(UT(I,J),J=1,6)
        320 CONTINUE
        330 FORMAI(3X,A8,3X,1P6E10.3)
            RETURN
            END
            SUBROUTINE DSPERS
            IHPLICIT REALA8 (A-H.O-Z)
            CHARACTERA8 VNUCL,XNAME2
            REALA4 C.Q.UT
            COhMON/BLKl/ALDIS.C(100.10).CANLIF.DILFAC.DOSV(5).DY,DZ,NH.NMY,
           S       NMZ,NTIME.Q(100.10).ftVERT(lOO).I(l6).TTIME(5).VA.VNOCL(5),
           t       WIDTH,WSLABL(10),XAQD,XL,XLD(lOO),XLL(100),XLf,XKC(100)r

-------
c
c
   I       XW.YW.ZB
    COMMCIN/hLK2/A(:K,Aril.,AHlNiARHOfblV(100),BURN.CUhDOS<10),DIFCON.
   S       DIFCOV,DIFU,DOSE(3.100),DSIACKlEGAMMA(100),EPW,EEXT,FEhEf
   g       EG,FIXINV.FTX,FUIND\HLIFE(100>,HSTACK,IDSRPT.IFL<7)'lFLAG
   i       IGAMMAJNPRNT.IOPT.ISTAB,IUP,IVFAC,JUF(10).NDOSE.NISO,NNP,
   g       NP,NPNflO),PLANT,PV,QH.RFR,RHO,RUNF.SINV,SNO.SPILL,SR SS,
   I       IBEG,TCON.TCUTJEND!IIHOP.TIMOPI,TWV,UBR UK 100.6),
   S       VOLATL(lo6\VSIACK.VWIND,XALE,XCf,XH'XKD(lOO),x£c.
   J       XNAME2aOO>,XPERC,XPOR,XR,XRECEP,XROOT,XW,XWT,XXMU<100>
    COMMON/BLK3/IFILL
    DO 100 K=1,NDOSE
    KK=K
    IF
                    CALL GW3<38,32,27)
                    CALL GU3<32,27,24)
                    CALL GW3(36,31,2G)
                    CALL GU3(33.35.29)
                    CALL GW3<30,23,22)
              EQ.l)  CALL GU3(34,28,25)
             .EQ.l)  CALL GW3(28,23,22)
         .EQ.l)
         .EQ.l)
         .EQ.l)
         .EQ.l)
         .EQ.l)
    CALCULATION OF RADIONUCLIHE CONCENTRATION IN  VEGETABLES.  MILK,
    AND MEAT  CONSUMED  BY  MAN  RESULTING FROM  WATER IRRIGATION.
    CONCENTRATION IN  FISH  ALSO CALCULATED.
    COFISH = NUCLIDE  CONC  IN FISH
             NUCLIDE  CONC  IN
             NUCLIDE  CONC
             NUCLIDE  CONC
             NUCLIDE  CONC
COPAST
COSTO
COFEED
COL1
COP1
COCMI1
COGMI1
COMEAT
                          PASTURE GRASS CONSUMED BY ANIMALS
                       IN STORED FEED CONSUMED BY ANIMALS
                       IN ANIMAL FEED
                       IN LEAFY VEGETABLES CONSUMED BY MAN
          NUCLIDE CONC IN PRODUCE CONSUMED BY MAN
          NUCLIDE CONC IN COW'S MILK
          NUCLIDE CONC IN GOAT'S MILK
          NUCLIDE CONC IN BEEF CATTLE
 IMPLICIT REALA8 (A-H.O-Z)
 CHARACTERA8 NUCLID,VNUCL,XNAME2
 REALA4 C.Q.UT
 COMMON/BLKl/ALDIS.CUOO.lOJ.CANLIF.DILFAC.DOSWSJ.DYjDZjNM.NMY.
I       NMZ,NTIME.6(100.iO),RVERT(l60).T(l6).ITIME(5)!VAjVNOCL(5)
I       WIDTH.WSLABL<10).XAQD,XL,XLD(100).XLL(100)fXLP,XRC<100),
S       XW.YW.ZB
 COMMON/BLK2/ACR,ADL,AMIN.ARHO.BIV(100),BURN.CUMDOS(10),DIFCON,
I       DIFCOV,DIFW,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXT,FFIRE
X       EG,FIXINV,FTX,FUIND,HLIFE(100).HSTACK,IDSRPT,IFL(7),IFLAG
i       IGAMMA.INPRNT.IOPT.ISTAB,IUP.IVFAC,JUF(IO).NDOSE.NISO,NNP
i       NP.NPNl10),PLANT,PV,QH.RFR,RHO.RUNF.SINV,SNO.SPILL,SR,SS,
*       TBEG,TCON.icUT,TEND!TIMOP.TIMOPl,TuCi,UBRUT(100,6),
        VOLATL(100),VSTACK.VWIND,XALE,XCT.XH,XKD(100),XLC.
        XNAME2(100),XPERC.XPOR.XR.XRECEP,XROOT,XU,XUT,XXMU(100)
 COMMON/UPTAK/BDENS'BR,COL1,COP1.COCMII,COFISH COGMI1'COMEAT,CWAI
        DECA,FF,FI,FIS,FMC.FMG,FP.FS,INTAKE(5)!KK,NUCLID.PORSfPP.
        QBW.QCU  QFC,QFG,QGU,RU,SINFL.TE1,TE2.TFIS,TF1,TH1,TH2.TH3
        IH4.TIMAV.IS,UCMILK,UFISH,UGHILK,ULEAFY,UMEAT,UPROD,UHAI,
        WIRATE,XAHBUE,Y1,Y2

-------
          COHSH = PIS A CWAJ A DEXP<-DECAATEIS>
          If(MUCLID .£Q. 'H-3     ') GO 10 200
          FiTis*ftWij'>c-14    '> 60 I0
          TV=1.
                      .t..
          B = 0.68 A (0.378AB* > 0.622ABIV
          !».'=. 1
          COSTO*COV
          COFE£D=EPAFSACOPAST + (l.-FPAfS)ACOSlO
          B = O.OGGABIV(J)
          TV=1.
          CQLl=COU(J,Y2,Tt2rIH3rB,IV)
          B = 0.187ABR
          TV=.l
          COPl=f;OV(J,Y2tTE2>TH4.B,l-V)
          COCM11 = tMC A (COti:KIiAQl'C-»CUAtAQCH)
    C
    C
          COGMI1 =
          COMEAT =
          RETURN
FMG
FF
(COFEEDAQFQ+CUA1AQGW)
(COFEEDAQFC-t-CUATAQBU)
A DEXP(-DtCAAIEl)
A DEXP(-DECAATFl)
A DEXP(-DECAATS)
          CALCULATION FOR TRI1IUM
ro
en





C
C

C
C
C






C
C
200 COM=CWAT
COP1=CUAI
COCM11 = FMC
COGMI1 = FMG
COMEAT = FF


RETURN

CALCULATION

300 CO 14=0.
COL1=C014
COP3=C014
COCM11 = FMC
COGMI1 = EMG
COMEAT = FF




A
A
A






CHAT A (QEC+QCW) A DEXP(-DECAATEl)
CUAT A (QFG+QQU) A DEXP(-DECAATFl)
CUAI A (QFC+QCU) A DEXP(-DECAATS)




FOR c-14




A
A
A







-------
     &       QbW,QCW,Qit1C>QFG>QGWrKW,SINFLfrElJE2.TFIS,tFl,THl,TH2,TH3,
     I       TH4.TIMAV.TS,UCMILK,UFISH,UGMILK,ULEAFY,UMEAT,UPROD,UUAT,
     »       UIRATE.XAMBWE,Y1,Y2

C     CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION
C     OF VEGETATION, MILK, MEAT, FISH, AND DRINKING WATER

      QVEG = COL1AULEAFY + COP1AUPROD
      QMILK = COCMI1MJCHILK + COGMI1AUGMILK
      QMEAT = COMEATAUMEAT
      QFISH = COEISHAUEISH
      QUA! = CWATAUWAT
C
C
      IF .EQ. 1) QING=QING+QFISH
      UT(J.KK) = QING/CWAT
  200 RETURN
     ,END ..
 '   'SUBROUTINE RfAD(XLLI.RVERTI)
      IMPLICIT REALA8 (A-H.O-Z)
      CHAKACTEPA8 yNUCL,XNAME2,XN
      REALA4 C.Q.UT
      COMMON/XFEiS/NREC
      COMMON/BLK1/ALD1S,C(100.10),CANLIE,DILFAC.DOSV(5).DY,DZ,NM.NMY,
     S       NMZ,NTIME.Q(100.IO),RVERT(100).T(10).TTIME(5).VA,yN(JCL(5),
     2       WIDTH.USLABL(10),XAQD,XL,XLD(lOO),XLL(100),XLP,XRC(100),
     i       XW.YU.ZB
      COhMON/BLK2/ACR,ADL,AMIN,ARHO.BIV(100),BURN.CUMDOS(10),DIFCON,
     S       DIFCOV,DIFU,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXT,EFIRE,
     J       FG.FIXINV,FTX,FUIND,HLIFE(100).HSTACK,IDSRPT.IFL(7),IFLAG,
     &       IGAMMA.INPRNT IOPT.ISTAB,IUP,IUFAC,JUF(10),NDOSE.NISO,NNP,
     2       NP,NPN(10),PLANT,pO,QH.RFR,8HO,RUNF.SINVrSNO.SPILL,SR,SS,
     i       TBEG,TCON.ICUT,TEND!TIMOP.TIMOP1,TUO,UBR.UT(100.6),
     2       VOLAh(100),ySTACK,yyiND.XALE.XCT.XH'XKD(100),XLC.
     2       XNAME2(100) XPERC,XPORfx6,XRE£EP,XR06TfXU,XUT,XXMO(100)
      COMMON/BLK3/IFILL
      DIMENSION  A(10),DUM(9),XLLI(100),RyERTI(100)

      OPtN(UN11=3,FILE='BRCDCF.DAT',STATUS='OLD')
      READ(3,108) NDOSE,ICUT.SINV
      READ<3,108) NTIME,(T(M),M=1,NTIME)
      IUP=1
      DO 1000 a=l,NDOSE
      READ(3.114,END=1001)  KK.XN,(DUM(I),I=lr9)
      IE(KK.LE.O .OR.  KK.GT.100) GO TO 1000
      XNAHE2(KK)=XN
      DOSE(1,KK)=DUM(1>
      DOSE(2,KK)=DUM(2)
      DOSE(3.KK)=DUM<3)
      DO 101  1=1.6
  101 UI(KK.I)=DUM(H-3)
      IE(UI(KK,1) .NE. 0)  1UP=0
 1000 CONTINUE
  114 FOKMAKI4.A8.SE12.4)
 1001 CLOSE(UN1T=3)

-------
      OPEN(UN]T=3,HLE='ABCDEt.DAI'.STATUS*'OLD')
      R£AOn,L02> (A( £>,.[=!,10)

C     Wkilk-<4,102,Rl::C=NRFt) (A( I) ,1=1.10)
  102 FORMAT(10A8)
      READ(3V103) N1SO.IFLAG.NNP
      READ<3.103> (NPNfj)FJUFSR4(1.-SR)A
-------
Ill FORMAl(14,r/E12.4)
    IE(SOL.EQ.O.) GO TO  125
    SOL=SOLAVOL/G(KK.l)
    IE(XLL(KK).GI.SOL) XLL(KK)=SOL
125 XLD

    IF(Q(26.1).LE.O. .OR. Q(31ylKLE.O. .OR. GK36, 1) .I.E.O. ) IFL(3)=0
    IF(Q(29,1).LE.O. .OR. Q(33rl) .LE.O. .OR. Q(3b,l) .L£.0,> TFL(4)=0
    URITE(6,3)  (A(l),l=lr10)
  3 t'OSMAK'l', 10A8.///)
    DO 100 1W1NG=1,10
       USLABL(IUING)=A(IUING)
100 CONTINUE
    RETURN
    END
    SUBROUTINE  RELEAS
-------
ro
    T(1)=TEND
    DELlJI=Ti'NU-T<]0)
    NTIME=1
    1=1
    GO tQ 130
110 ttXT(l).I.T.IBEG) m)=lBE6
    DO 120 1=2.10
    T(l)=T(l-l)+DtLT
    IF(T(I)Af.T£ND) GO TO 120
    T(1)=TEND
    DEL11=TEND-1<1-1)
    NTIHE=I
    GO 10 130
120 CONTINUE
130 CALL GUKKK)
    IF(lH(l).FQ.l.AND.(KK.fcQ.32.0h.KK.EQ.27)) CALL GW3<38,32,
    IF(IFL(2).EQ.1.AND.(KK.EQ.27.0R.KK.EQ.24)> CALL GW3<32,27,
    IF CALL GW3(30,23»
    IF(IFL(6).EQ.1.AND.(KK.EQ.28.0R.KK.EQ.25» CALL GW3(34,2s
    IF(IFL(7).EQ.1.AND.(KK.EQ.23.0R.KK.E0.22)) CALL GW3(28, 23,
    IF(T(1).EQ.TAU.OR.I(1).EQ.TBEG) C(K,1)=0.8AC((<,1)
    IF(I.EQ.ll) GO  TO  140
    C(K,D=0.5AC CALL GW3(36,31,26)
           IF(IFL(4).EQ.1.AND.(KK.EQ.35.0R.KK.EQ.29» CALL GW3(33, 35,29)
           IF(IFL(5).EQ.1.AND.(KK.EQ.23.0R.KK.EQ.22» CALL GH3(30f23,22)

-------
           IF(IEL<6>.EQ.l.AND.(KK.EQ.2B.OJi.KK.EQ.25» CALL GW3<34,28,25)
           IF=0.5AC(K,I)ADELT1/DELI

           IF(J.GT.O)  C
           IF(I.EU.l)  CCUM=CSUM-t0.bAC
           SUM=SUM+CSUM
           IFd.LQ.10.ANH.1(10).GT.1BEG.AND.CSUM.GT.SUMA.0001) GO TO 200
       300 3Uh=!3UMADELIADILFAC
           URITL KFXNAME2
       350 FORMAT(2XF r3,3X,A8,9X,lP£10.2,10X,E8.2)
       500 CONTINUE
           RETURN
           END
           SUBROUTINE  GHHK)
           IMPLICIT  REALAB  (A-H.O-Z)
           CHARACTERA8  MNUCL.XNAME2
           REALA4 C.Q.UT
           COMMaN/BLKl/ALDIS.C(100.10),CANLIF.DILFAC,DOSV(5).DY,DZ,NM.NMY,
          S       NMZ.NTIME.Q(100.IO).RVERT(100).T(10).TTIME(5).VA.yN(.ICL(5),
          S       WIDTH.USLABL(loJ,XAfiD,XL,XLD(l6o)rXL£(100),XLPrXRC(100)f
          S       XVV.YW.ZB
_          COMMON/BLK2/ACR,ADL,AM IN,ARHO.BIV(100).BURN.CUMDOS(10),DIFCON,
?"         &       DIFCOy.DIFW.DOSE(3.100),DSTACKfEGAMMA(100),EPU,FEXTrEFIRE,
co         S       FG.FIXINV.FTXfFUIND.HLIFE(100).HSTACK,IDSRPT,IFL(7),IFLAGf
0         X       IGAMMA.INPRNT.IOPT.ISIAB,IUP,lOEAC,3UE(10),NDOSE.NISO,NNP,
          S       NP,NPN(10),PLANI,PV,QH.RER,RHO,RUNF.SINy,SNO.SPILL,SR,SS,
          i       IBEG,TCON,TCUT,IEND!TIHOP.TIMOPI,TIJO,UBR,UT( 100,6),
          I       VOLAh(lo6),VSTACK,OuiND,XALE,XCT.XH!XKDaOO),XLC.
          J       XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOT,XU,XUT,XXMU(100)
           COMMON/BLK3/IFILL

           TL=1./XLL(K)
           TDELAY=XAODARVERT(K)/XVV+CANLIF
           P=XL/ALDIS
           QKl=a(K,l)
    C      REMOVE OPERATIONS DECAY FACTOR AND USE UNDECAYED  INITIAL  INVENTORY
           IFdIMOP  .GT.  0.)  QK1=QK1AXLD(K)AIIMOP/U.-DEXP(-XLD(K)ATIMOP»
           QDECAY=QK1ADEXP(-XLD(K)ATDELAY)
           F1=QDECAY/(DILFACATL)
            DTOP =  TIMOP1AVA/(NMAXL)
             IFdFILL  .EQ. 0)  GO TO 50
              LB =  0
               IUB = 1-NM
               ISTEP =  -1
              60 TO 70
      50      LB =  1
               IUB = NM
               IS1EP =  1
      70    CONTINUE
           DO 200 M=i.NtIME
            TCORR = DTOP/2.
            IIMSAV  = T(M)

-------
       T(M) = KM) + TIHOP
       IHTA=/NM))/XL
     A1=-XLD(K)A
     A23M=0.bAETAADSQRT(XRC(K)AP/lHEIA)-DSQRKPAIHEIA/(4.AXRC)
  198 C(K,M)=0.5AF1ASCAYCONC/NM
  200 CONTINUE
      RETURN
      END
      SUBkOUI 1NE GW3(IDC:, JDC,KDC)
      IMPLICIT REALA3 (A-H.O-Z)
      CHARACTERA8 VNUCL.XNAME2
      REALA4 C,Q,UT
C     THIS SUBROUTINE EVALUATES BURKHOLDER'S SOLUTION FOR GROUNDWATER
C       MIGRATION EQUATIONS. FOUND IN NUC. TECH. VOL. 49, JUNE 1980
C                  (THREE MEMBER CHAINS WITH DISPERSION)
      COMMON/BLK1/ALDIS,C(100.10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM,NMY,
     S       NMZ.NTIME.Q(100f10)1RVERK100),T(lO).ITIME(5),VA,VNllCL(5),
     *       WIDTH.USLABL(10),XAQD,XL,XLD(100),XLL(100),XLPfXRC(100),
     5       XVV.Yli.ZB
      COMMON/BLK2/ACR,ADL.AMIN.ARHO,BIV(100)1BURN.CUMDOS(10),DIFCON,
     &       DIFCOV,DIEW,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXI,FFIRE,
     8       FG.FIXINV,FTX,FWIND.HLIFE(100),HSTACK,IDSRPT,IFL(7).IFLAG,
             IG^MMA.INfRNT IOPI.iSIAB,IUP,IVFAC,JUE(10>.NDOSE.NISO,NNPr
             NP,NPN(10),PLANT,P0,QH,RFR,RHO,RUNE.SINV,SNO.SPILL,SR,SB,
             TBEG.ICON.ICUT.TEND'TIMOP,TIMOP1,TWO,UBR.UT(100.6),
             VOLATL(100),VSTACK.WIND,XALE,XCI.XH,XKD(100),XLC.
             XNAME2QOO) XPERC,XPOR,XRFXRECEPfXROOl,XWfXWT,XXMIJ(100)
      COMMON/BLK3/IFILL
      DIMENSION F1(3),R(3),XK(3)

      IL=1./XLL(IDC)

-------
           TDELAY=XAGD*RVERI<1DC)/XW+CANLIF
           XKU)=XRC(IDC)
           XK(2)=XkC(JDC)
           XK(3)=XSC(KDC)
           PSAVt=XL/ALLHS
     C      KKCGVKK  UNDECAYED  INITIAL  INVENTORIES OF EACH CHAIN MEMBER
            GI1=QAIIMOP»
            QK1=QK1*XLD(KDC)ATIMOP/(1.-DEXP(-XLD
          F10=F1(1)AXK(1)AXK(2)AR(1)AR(2)A(XK(2)-XK(3))/((XK(2)A(K(2)-R(D)
         t-XK(3)A(R(3)-R(l)))A(XK(l)AXK(3)A(»(l)-R(3))+XK(2)AXK(3)A(R(3)-
         tR(2))+XK(l)AXK(2)A(R(2)-R(l)»)
          F11=F10A(].-XK(1)/XK(3))A(XK(2)A(R(2)-R(1))-XK(3)A(R(3)-R(1)))/
         J((XK(2)-XK(3))A(R(3)-R(1)))
          F12=F11A(R(3)-R(1))A(XK(1)-XK(2))/((R(2)-K(1))AXK(2)A(1.-XK(1)/
         »XK(3»)

-------
      DO 2000 M=KNfIME
        TC0S8 = DTOP/2.
        IIMi,AV = KM)
        T(M>  = t(H)  +  TIMOP
      THIA=a(M)-lDELAY)AVA/XL
      IJ?(THXA.LE.O.) GO 10 1990
      THTA2-1HIA-TLAVA/XL
      SC2=0.
      SC3=0.
      DO 1000 JJ=I.IMII&VJSTEP
        T(H)  = IIMSAV  + fiMOP - TCORRAXL/VA
        THETA = 1H1A - ICClkR
        IF CfHETA .IE. 0.0) DO TO 1990
        THE1A2 = 1HTA2 - TCORR
      ETA=(ZB+XLPA AP/THETA2 )
      A6=DSQRT ( PAIHETA2/ ( 4 . AXK ( 1 ) ) )
      A3=A3-A6
      A6=A3+2.AA6
  100 SC2=SC2+t312AElRMS(Al.A2.A3,A4,A5,A6FTHETA2)
      IF(A1.L1.0.) CALL tRROR
-------
       AG=QSQRT(A6)
       A3=A3-A6
       A6=A3+2.AA6
   110  SC2=SC2^412AFTkMSAR<2>-XK(1>AR(1>>ATHETA/-XK(2))
       Al = l.+4.AXK/
       IE(Ai.L1.0.)  GO  10 2
       A1=DSQRT(A1)
       A4=X1M+0 . 5AEIAAPA ( 1 . +A1 )
       A1=XTM+0 . 5AEIAAPA < 1 . -Al )
       A2=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA )
       A5=

A-R(l)>/(XKU>-XK(2>»ATHETA IF(A5.LI.O.) CALL ERROR(5.A5,P) IF(A^.LT.O-) GO TO 2 A5=DSQRT(Ab) A2=A2-A5 A5=A2-i2.AA5 A3=0 . bAETA ADSQkl" ( XK ( 1 ) AP/IHETA ) A&=(P/(4.AXK(1))+XK(2)A(R(2)-R(1))/(XK(1)-XK(2)))ATHETA IF(A6.LT.O.) CALL ERROR(6.A6.P) If(A6,VI.O.) GO TO 2 A6=DSQR1(A6) A3=A3-A6 SC2=SC:2-tF312AtTRMS(Al.A2,A3,A4,A5,A6,lDO) IFCCHETA2.LE.O.) GO TO 120 3 XTH=(XK(2)AR(2)-XK(])AR(1))ATHETA/(XK(1)-XK(2))-(R(1)+(XK(2)AR(2) XXK(1)AR(1))/


-------
    A5=A2+2.AA5
    IE(TMKTA2.LE.O.) GO 10 130
    A3=0.5AETAAOSQRI(XK(3)AP/THETA2)
    AG=DSGRT
    IF(A6.LT.O.) GO TO 4
    A6=DSQRT(A6>
    A3=A3-A6
    A6=A3+2.AA6
140 SC:.<=SC3+
-------
    A3=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA2 )
    AG=DSQRT ( PATHETA2/ ( 4 . AXK ( 2 ) ) )
    A3=A3-A6
 160 SC3=SC3+
  6 XIH=-ft(l)ATHEIA
    A1=1.+4.AXK(2)A
    IF(A1.LT.O.) GO TO 6
    A1=DSQRT(A1)
    A4=XTh+0.3AtIAAPA< 1 .+A1 )
    A1=XTH+0.5AETAAPA(1.-A1>
    A2=0.5AEIAADSQRT(XK<2)AP/THETA)
    A5=

-R<1»ATHETA IF(A5.LT.O.) CALL tRROR<17tA5,P> IFtAS.ll.O,) GO TO 6 A2=A2-A5 A5=A?+2.AA5 IFO-ULIA2.LE.O.) GO TO 170 A3=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA2 ) A6=(P/(4.AXK(2))+R(2)-R(1))ATHEIA2 IF(A6.LT.O.) CALL £RROfi(18.A6,P) IIXA6.LT.O.) GO TO 6 A6=DSQRT(A6) A3=A3-A6 A6=A3+2.AA6 170 SC3=SC3-F9AFTRMS(A1TA2,A3,A4,A5,A6,THETA2> A1=-R(1)AIHETA A4=AHt:TAAP A2=0.bAEl'AADSQRT IF(A6.Lt.O.) GO TO 7 A6=DSQKT A3=A3-A6


-------
            SC3=bC3+
            U-»AILAVA/XL
            A1=1.+4.AXK<2)AXK<3)A
            A2=0 . b AHT AADSQRT ( XK ( 3 ) AP/THETA2 )
            A5=(P/(4.AXK(3))+XK(2)A(R(3)-R(2))/(XK(2)-XK(3)))ATHETA2
            IF(Ai.LT.O.)  CALL ERROR<23PAb,P)
            IF(A5.LT.O.)  GO TO 8
            A5=D£,Q»T(A5)
            A2=A2-A5
            A5=A2+2.AA5
            A3=0 . b AtTAADSQRl ( XK ( 2 ) AP/IHKIA2 )
            A6=(P/(4.AXK(2))+XK(3)A(R(3)-R(2))/(XK(2)-XK(3)))ATHETA2
            IF(A6.LT.O.)  CALL ERROR(24.A6rP)
            IF(A6.L'I.O.)  GO  TO 8
            A3=A3-A6
            A6=A3+2.AA6
            SC3=SC3-f(F61-F323)AFTRMS(Al.A2,A3,A4.A5.A6.1DO)
          9 XTH=(XK(3)AR(3)-XK(2)AR(2))ATHETA/(XK(2)-XK(3))-(R(1)+(XK(3)A
           XR(3)-XK(2)AR(2))/(XK(2)-XK(3)))AILAVA/XL
            A1=1.+4.AXK(2)AXK(3)A(R(3)-R(2))/(PA(XK(2)-XK(3))>
>          IF(A1.LT.O.)  CALL ERROR(25.A1,P)
'           IF(A1.LT.O.)  GO TO 9
H          A1=DSQRT(A1)
            A4=XlM-i0.5AETAAPA(l.HAl)
            Al=XTM«-0.5AeTAAPA(l.-Al)
            SC3=SC3+(E8-tlO)AHRMS(Al.A2.A3.A4lA5.A6,lDO)
        190 XTM=(XK(3)AR(3)-XK(l)AR(lJ)AiHETA/tXKU)iXK(3))
            Al=l.+4.AXK(l)AXK(3)A(R(3)-R(l))/(PA(XK(l)-XK(3)))
            IF(A1.L1.0.)  CALL ERROR < 26, A1,P>
            IF(A1.LI.O.)  GO TO 190
            A1=DSQRT(A1)
            A4=XIM+0 . 5ABTAAPA ( 1 . +A1 )
            Al=XIM+0.5AEfAAPA(l.-Al>
            A2=0.5AETAADSQRT(XK(3)AP/THETA)
            A5=(P/(4.AXK(3))+XK(1)A(R(3)-R(1))/(XK(1)-XK(3»)ATHETA
            IF(Ai.LT.O.)  CALL ERROR(27.Ab,P)
            IF(A5AT.O.)  GO TO 190
            A5=DSQKT(A5)
            A2=A2-A5
                   .
            A3=0 . b AKT A ADSQRI ( XK ( 1 ) AP/tHET A )
            A6=(P/(4.AXK(1))+XK(3)A(R(3)-R(1))/(XK(1)-XKC3)))ATHETA
            IF(A6.LT.O.)  CALL  ERROR(28fA6?P)
            IF(A6.L1.0.)  GO TO 190
            AG=DSQRT(A6)
            A3=A3-A6
            A6=A3+2.AA6
            SC3=SC3-FllAHRHS(Al,A2,A3,A4fAirA6,lDO)
            IF(THEIA2.L£.0.) GO TO 200
         10  XTM=(XK(3)AR<3)-XK(1)AR(1))ATHETA/(XK(1)-XK(3))-(R(1)+(XK(3)A,
          iR(3)-XK(l)AR(l))/(XK(l)-XK(3)))ATLAVA/XL

-------
            Al=l.-i-4.AXI«i)AXK<3>A
            IF(A1.LI.O.)  GQ  TO 10
            A1=DSQRT(A1)
            A4=XTMi0.bAETAAPA(l.+Al>
            A1=XTH+0 . SAETAAPA ( 1 . -Al )
            A2=0 . iAETAABSQRT ( XK ( 3 ) AP/THETA2 )
            A5=

+XK<1)A(R<3>-R<1»/ GO TO 10 A5=Ii<:.QKI(A5) A2=A2-A5 A5=A2+2.AA5 A3=0 . tJAKTAADSQRT ( XK < 1 ) AP/l'HtIA2 ) A6=(P/<4.AXK(imXK(3>A-R-XK<3)))AIHEIA2 IE(A6.LI.O.) CALL ERROR(31.A6FP) IE(A6.LT.O.) GO TO 10 A3=A3-AG A6=A3^2.AA6 SC3=SC3+E11AFTRHS(A1.A2.A3.A4.A5.A6,1DO) 200 XTM=(XK(2)AR(2)-XK(l)ARa))ATHETA/(XK(l)-XK(2)) A1=1.+4.AXK(1)AXK(2)A(R(2)-R(1))/(PA(XK(1)-XK(2))) IE(Al.Lt.O.) CALL ERRO«(32.A1,P) IE IE


-------
00
ID
      AG=

A(R(2)-R(1))/(XK(1)-XK(2»)ATHETA2 IF A3=A3-A6 A6=A3+2.AA6 SC3=£C3+F12AtlRHS(Al.A2,A3,A4,A5,A6,lDO) 210 CONTINUE ' ' TCORR=TCORR-»-D10P 1000 CONTINUE 1990 T(M) = HMSAV IFC3C2.LT.O.) SC2=-SC2 IF(SC3.Lt.O.) SC3*-SC3 C(JDC.M)=0.5ASC2/NM C(KDC,rt)=0.5ASC3/NM 2000 CONTINUE RETURN END FUNCTION HEPCNK.CUKIES.NPAtH) IMPLICIT R2ALA8 (A-H,0-Z) DIMENSION HHCON(IOO) EPA DATA DATA HtCON/3.16D-3.4.58D-2,-l.OODO,-l.OODO,6.800-4,1.810-3, -l.OODO, 1.210-1,6.100-3,6.940-2,-l.OODO,2.860-4,-l.OODO, 1.200-1,1.090-2,3.830-3,1.980-2,-l.OODO,-l.OODO,9.500-1, 3.17000,3.17000,1.06000,1.06000,1.33000,1.06000 1.33DOO, 1.06000,5.98D-1,2.290-2,6.93D-2,6.540-2,1.120-3,6.770-2, 7.31D-1,2.77000,-l.OODOl-l.0000,-l.OODO,-l.OODO,-l.OODO, -l.OODO,-1.00DO,-1.00DO,-1.0000,-!.0000,-l.OODO,-!.0000, -l.OODO,-!.0000,50AO.OODO/ C RAK DATA C DATA HECON/-1.00DO,1.52D-4,-l.OODO,-1.0000,2.080-5,-l.OODO, C I -1.0000,7.690-3,-l.OODO,-l.OODO,-l.OODO,3.330-6,-l.OODO, C S 2.040-4,1.330-4,6.670-5,3.450-4,-l.OODO,-l.OODO,-l.OODO, C & -1.0000,2.630-1,-l.OODO,-1.0000,8.330-3 -l.OODO,-l.OODO, C £ -1.00DOI&.670-3,1.520-4,2.860-3,8.330-4 -1.0000,7.690-4, C * 4.35D-3,7.69D-3,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO, C & -1.00DO,-1.00DO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO, C & -1.0000,-l.OODO/ HEPC]=CUR1ESAHECON(K) IE(NPATH.N£.l> HCPCI=-1. RETURN END SUBROUTINE PtAK(NPATH) IMPLICIT REALA8 (A-H.O-Z) CHARACTERA8 UNUCL.XNAME2 REALA4 C.Q.UT COMMON/BiKf/ALDIS,C(100,10),CANLIF.DILFAC,DOSV(5).DY,DZ,NM,NMY, I NMZ.NTIME.0(100.10),RVERI(l6o),T(l6).IIIME(5),VA.VNUCL(5)t & WIDTH, WSLABL(10),XAQD,XL,XLD(100),XLL(100),XLP,XRC(100), & XVV.YW.ZB COMMON/KLK^/ACR,ADL,AMIN,ARHO.BIV(100).BURN.CUMDOS( 10), DIFCON, DIFCOV,0IFU,DOSE(3,100),DSTACK,EGAMMA(100).EPU,FEXT,FFIRE, EG.FIXINV,FIX,FWIND,HLIFE(100).HSTACK,IDSRPI,IFL(7),IFLAG, IGAMMA.INPRNI.IOPT.ISTAB.IUP.IVFAC.JUF(10),NDOSE.NISO,NNP, NP, NPN JlO),PLANT,PO,QH.RFR,RHO,RUNF.SINV,SNO.SPliL,SR,SS, TBEG,ICON.TCUT,TEND.IIMOP.IIMOP1,TWO,UBR.UT(100,6), VOLATL(100),VSTACK.VWIND,XALE.XCT.XH,XKD(100),XLC. XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOT,XU,XWTrXXHU(100) COMMON/BLK3/IFILL


-------
     WRITE<6,100)  NPATH
 100 FORMAK/////,'  AAAAA PEAK CONCENTRATIONS  AND TIMES FOR PATHUAY
    I 12,'  AAAAA',///.4X 'NUCLIDE'.9X,'PEAK  CONCENTRATION',5X,
    J 'PEAK TIME'  9X,'AVERAGE DOSE',//  NUMBER  NAME',10X,'
',/> DO 300 K=1.NDOSE IF(Q(K.1).EQ.O.) GO TO 300 WR]1F:<&,10) K 10 FORMAK' K = ',12) KK=K NTIME=5 IPASS=0 CMAX1=0. TMAX1=0. TBkEAK=(ZB+0.5AXLP/NM)AXRC(K)/VA+XAQDARgERI GO 10 HO CMAX=C(K,I) IMAX=I TMAX=1(1) 140 CONTINUE :?(NMnEQ.].OK.lPASS.fQ.l) GO 10 149 ir(T
-------
      GO 10  (IbO. 210, 210,210, 180)  1MAX
    « OU 160 1*1.5
    SO T CALL GW3O8. 32,27)
      IF(IFL<2).EQ.1.AND. CALL GU3<32, 27,24)
      IF
-------
       T2R=DCCIRT ( 4 . AXUUA W+ WAW )
       ARG=XDLA(W>2.AXUU-T2R)   -
       IF(ARG.Gt.6.93>  GOTO 3939
       IF(AftG.LT.O.)  GOTO 3940
       HUNG=l)tXKARG)
       RETURN
  3939 HUN(i=1000.
       RETURN
  3940 HUNG=1.
       RETURN
       END
       FUNCTION COy.DYrDZ,NM.NMY.
      X      NhZ,NTIhE.Q(100,lO),RVERT(100).T(lO).TTIME(5).VA,yNUCL(5),
      S      WIDTH. USLABL<10),XAQD,XLfXLD

-------
       IF
       IF(ARG.GT.85.) ARG=85.
       IF
   30  IFd.LE.O.) GO TO 40
       ARG=A4+eSFCPA(A6>
       IE
-------
      FRAC=-2AB+XNUM/FRAC
   20 XNUM=XNUM-0.5
      DERFC=0.
      IF DEkFC=Hfc'XP(-2AHA2AB)/(FSACAI.772453850905516)
      IF(Z.LT.O.) D£RFC=2.-DERFC
   30 RETURN
      END
      FUNCTION ERtCPA(Z)
      IMPLICIT REALA8 (A-H.O-Z)
C     tRFCPA IS NATURAL LOG OF COMPLEMENTARY ERROR FUNCTION
C     BASED ON CONTINUED FRACTION FROM ABRAMOWIIZ I STEGUN *7.1.14
      IF(Z.GE.2.) GO TO 10
      ERFCPA=DLOG(DERFC(Z))
      GO TO 30
   10 XNUM=20.
      FRAC=Z
      DO 20 1=1.40
      FRAC=Z+XNUM/FRAC
   20 XNUM=XNUM-0.5
      ERFCPA=-(2AZ+DLOG(FRACA1.7'/2453850905516))
   30 RETURN
      END

-------
              APPENDIX B
DATA FILES AND OUTPUT FROM PATHRAE-EPA
          FOR SAMPLE PROBLEM

-------
                                APPENDIX B

                  DATA FILES AND OUTPUT FROM PATHRAE-EPA
                            FOR SAMPLE PROBLEM
     The five data sets used for  the  sample  problem described in Chapter 4

are presented here.   Each data set is displayed  in  two  ferns.   First, the

Fortran variables  are  given  in  the  order  in  which they  >re  read   (load

form).  Then the data set is given in the form read by PATHRAE-EPA.




B.I  DATA SET ONE - BRCDCF.DAT
     NDOSE, TCUT, SINV
     NTIME, (T(M), M=l, NTIME)
     KK, XNAME2(KK), (DOSE(I.KK), I=1,3),(UT1(I,KK), UT2(I,KK), I = 1,3)

  Note:  The last line is repeated for each nuclide in the dose library.
     80,0.,0.
     10,0.,!.,15.,50.,100.,200.,350.,500.,750.,1000.
     41,H-3      8.6E-8,  1.2E-7,  0.,0.,0.,0.,0.,0.,0.
     42,0-14     1.5E-6,  1.1E-8,  0.,0.,0.,0.,0.,0.,0.
     43,Fe-55    4.7E-7,  1.9E-6,  9.6E-13.0.,0.,0.,0.,0.,0.
     44,Co-60    5.8E-6,  4.0E-4,  1.2E-08,0.,0.,0.,0.,0.,0.
     45,Ni-59    1.5E-7,  1.7E-6,  l.SE-12,0.,0.,0.,0.,0.,0.
     46,Ni-63    3.7E-7,  4.4E-6,  0.,0.,0.,0.,0.,0.,0.
     47,Sr-90    5.6E-6,  2.0E-4,  0.,0.,0.,0.,0.,0.,0.
     48,Nb-94    2.7E-6,  5.8E-4,  8.0E-09,0.,0.,0.,0.,0.,0.
     49,Tc-99    1.9E-6,  2.2E-5,  2.9E-15.0.,0.,0.,0.,0.,0.
     50,1-129    8.6E-4,  5.7E-4,  8.1E-11,0.,0.,0.,0.,0.,0.
     51,Cs-135   6.5E-6,  4.5E-6,  0..0.,0.,0.,0.,0.,0.
     52,Bal37m   O.OE+0,  1.4E-9,  3.1E-09,0.,0.,0.,0.,0.,0.
     53,Cs-137   4.4E-5,  3.0E-5,  0.,0.,0.,0.,0.,0.,0.
     54,Ra-226   7.4E-4,  2.1E-2,  3.7E-11.0.,0.,0.,0.S0.,0.
     55,Th-232   2.2E-4,  2.5E-1,  2.8E-12,0.,0.,0.,0.,0.,0.
     56,U-234    8.4E-6,  1.9E-1,  3.3E-12.0.,0.,0.,0. ,0.,0.
     57,U-235    8.6E-6,  1.8E-1,  8.3E-10,0.,0.,0.,0,,0.,0.
     58.U-238    7.9E-6,  1.7E-1,  2.6E-12,0.,0,,0.,0,,0.,0.
     59,Np-237   3.1E-3,  4.0E-1,  1.4E-10.0.,0.,0.,0.,0.,0.
     60,Pu-238   2.9E-3,  3.6E-1,  3.4E-12.0.,0.,0.,0.,0.,0.
     61,Pu-239   3.4E-4,  3.7E-1,  1.6E-12,0.,0.,0.,0,,0.,0.
     62,Pu-241   7.6E-5,  4.4E-3,  0.,0.,0.,0.,0.,0.,0.
                                    B-2

-------
     63,Pu-242   3.3E-4,  3.5E-1,  2.7E-12.0. ,0.,0.,0.,0.,0.
     64,Am-241   3.4E-3,  4.4E-1, •  1.3E-10.0.,0.,0.,0.,0.,0.
     65,Am-243   3.5E-3,  4.4E-1-,  2.9E-10.0. ,0. ,0. ,0. ,0. ,0.
     66,Cm-243   2.0E-3,  2.7E-1,  7.0E-10.0.,0.,0.,0.,0.,0.
     67,Cm-244   1.6E-3,  2.1E-1,  3.2E-12.0.,0. ,0.,0.,0.,0.
     68,Ru-106   1.1E-5,  1.2E-3,  0.,0.,0.,0.,0.,0.,0.
     69,Sb-125   O.OE+0,  2.8E-5,  2.2E-09.0.,0. ,0.,0.,0.,0.
     70,Cs-134   6.6E-5,  4.5E-5,  S.OE-09,0.,0.,0.,0.,0.,0.
     71,Eu-154   O.OE+0,  3.4E-4,  6.1E-09.0.,0.,0.,0.,0.,0.
     72,Pb-214   3.8E-7,  7.8E-7,  1.3E-09.0.,0.,0.,0.,0.,0.
     73,81-214   3.0E-7,  2.4E-7,  7.2E-09.0.,0.,0.,0.,0.,0.
     74,Pb-210   3.8E-4,  9.8E-3,  1.2E-11.0.,0.,0.,0.,0.,0.
     75,Po-210   6.4E-4,  1.7E-2,  4.4E-14.0.,0.,0.,0.,0.,0.
     76,Ra-228   O.OE+0,  4.5E-5,  4.6E-09,0.,0.,0.,0.,0.,0.
     77,Ac-228   4.7E-4,  4.0E-3,  2.9E-18.0. ,0.,0.,0.,0.,0.
     78,Th-228   7.7E-5,  5.5E-1,  l.SE-11,0.,0.,0.,0.,0.,0.
     79,Pb-212   2.4E-5,  2.8E-4,  S.OE-10,0.,0.,0.,0.,0.,0.
     80.T1-208   O.OE+0,  O.OE+0,  1.6E-08.0. ,0. ,0.,0.,0.,0.
B.2  DATA SET TWO - ABCDEF.DAT
     (A(I), I = 1,10)
     NISO, IFLAG, NNP
     (NPN(J), JUF(J), J=l, NNP)
     TIMOP, XLP, WIDTH, RFR, XR, SPILL
     ARHO, ALOIS, DY, DZ, SS, SR, PV, SNO
     NM, I GAMMA, IVFAC
     XCT, XWT, TWV, XW, YW, RHO, FG, FEXT, XROOT, PLANT
     ADL, UBR, FTX, CANLIF, FIXINV
     XH, ACR, EPW, DIFW, DIFCON, TCON, DIFCOV
     ISTAB, VWIND, FWIND, XRECEP, BURN, FFIRE, HSTACK, DSTACK, VSTACK, QH
     (IFL(I), I = 1,7)
     INPRNT, IDSRPT, IFILL, IOPT
   / ******** e  PWRHU - MD     SE    3/86           ********
   *- 29,0,7
   * 2,2, 1^1, 5,1, 6,1, 7,0, 8,0, 10,0
   r i6oo;,6.,crr,o.,.8oi,o.,o.,o.
   t> 20,0,2 vv^T
   7  0.6(5^r2.10E6, 50., 0., 590., 0.22,0. 228, l.,0.
     5.E-7,8035.70.228,0.,1.
     240.0,5.56E-04,0.2,2.00E-02,6.00E-05,20.0,1.14E-02
     4,2. 01, 0.093, 345., 2. 51E-5.0. 00274, 1.0,0.,0.,0.
     0,0,0,0,0,0,0
     1,0,0,0
                                    B-3

-------
B.3  DATA SET THREE - RQSITE.DAT
     XPERC, VA, XPOR, XAQD, XVV, XLC, XALE, FLCH, RUNF
     KK, XLL(KK), XKD(KK), RVERTI(KK)

    Note:  The last line is repeated for each nuclide in the inventory,
.454,27.8,
41.3.48E-3
42.3.48E-3
43,2.99E-5
44.2.99E-5
45,2.99E-5
46.2.99E-5
47.4.96E-5
48.2.14E-5
49.1.63E-3
50,4.40E-4
51,1.50E-5
52,1.50E-5
53.1.50E-5
54,6.84E-6
55,2.51E-8
56.2.01E-6
57.2.01E-6
58,2.01E-6
59.2.78E-4
60,2.15E-6
61.2.15E-6
62.2.15E-6
63.2.15E-6
64,1.87E-5
65,1.87E-5
66,2.15E-6
67,2.15E-6
68.2.14E-5
69.3.32E-5
70.1.50E-5
71,7.54E-7
72.6.84E-6
73.6.84E-6
74.6.84E-6
75.6.84E-6
76,6.84E-6
77.6.84E-6
78.2.51E-8
79.2.51E-8
80.2.51E-8
                39,7.7,1.11,10.,1.96E-4,1.0,.322
                 .01, .01
                 .01, .01
                6000.,6000.
                55., 55.
                150.,150.
                150.,150.
                20.,150.
                350.,350.
                 .5, .5
                 3., 3.
                500.,1000.
                500.,1000.
                500.,1000.
                2.20E+2,2.20E+2
                6.00E+4,6.00E+4
                7.50E+2,7.50E+2
                750.,750.
                7.50E+2,7.50E+2
                 5., 5.
                3500.,3500.
                3500.,3500.
                3500.,3500.
                3500.,3500.
                80000.,80000.
                80000.,80000.
                3300.,3300.
                3300.,3300.
                220.,220.
                 45.,45.
                500.,1000.
                4000.,4000.
                2.20E+2,2.20E+2
                2.20E+2.2.20E+2
                2.20E+2.2.20E+2
                ,2.20E+2,2.20E+2
                ,2.20E+2,2.20E+2
                ,2.20E+2,2.20E+2
                ,6.00E+4,6.00E+4
                ,6.00E+4,6.00E+4
                ,6.00E+4,6.00E+4
                                    B-4

-------
B.4  DATA SET FOUR - INVNTRY.DAT


 KK, HLIFE(KK), Q(KK,M), XXMU(KK), EGAMMA(KK), BIV(KK), SOL(KK), VOLATL(KK)

      Note:  This line is repeated for each nuclide in the inventory.
41,1.23E+01,1
42.5.73E+03.7
43.2.70E+00,!
44,5.25E+00,2
45,8.OOE+04,1
46,9.20E+01,4
47,2.86E+01,3
48,2.OOE+04,4
49,2.13E+05,1
50,1.70E+07,5
51,3.01E+06,1
52,3.OOE+01,5
53,3.OOE+01,5
56,4.47E+09,4
57,7.04E+08,6
58,4.47E+09,1
59,2.10E+06,9
60,8.77E+01,1
61,2.42E+04,1
62,1.32E+01,4
63,3.79E+05,2
64,4.59E+02,2
65,7.37E+03,5
66,3.19E+01,5
67,1.76E+01,5
68,1.01E+00,5
69,2.77E+00,1
70,2.06E+00,5
71,8.50E+00,1
                      .31E+02,0.
                      .43E+00,0.
                      .20E+02,0.
                      .46E+02,8.
                      .43E-01,0.
                      .41E+01.0.
                      ,40E+00,2.
                      .54E-03,!.
                      .90E-03.0.
                      .61E-03.9.
                      .90E-03.0.
                      .70E+01,!.
                      .70E+01,!.
                      .27E-03,5.
                      .85E-05,2.
                      .25E-03,6.
                      .68E-06,5.
                      .20E-01,5.
                      .12E-01,5.
                      .85E+00.5.
                      .43E-04,5.
                      .31E-01.5.
                      .41E-05.5.
                      .52E-05,!.
                      .26E-02,5.
                      .04E-02,!.
                      .85E+00,!.
                      .04E+01,!.
                      .86E-01,!.
OOE-01,0,
OOE-01,0,
OOE+00,0,
30E+00,!,
OOE-01,0,
OOE-01,0,
OOE+01,3,
15E+01,7,
OOE-01,0,
70E+01,3,
OOE-01,0,
30E+01.6,
30E+01,6.
OOE+01,1.
90E+01.1.
SOE+01,4.
OOE+01,6.
OOE+01,5.
OOE+01,1.
OOE+01,1.
OOE+01,0.
OOE+01,5.
OOE+01,7.
80E+01,2.
OOE+01,6.
40E+01,6.
70E+01.4.
20E+01,7.
OOE+01,1.
OOE-01,0
OOE-01,0
OOE+00,4
25E+00,2
OOE-01,6
OOE-01,6
39E-01,2
87E-01.2
OOE-01,9
96E-02,!
OOE-01,8
62E-01,!
62E-01.8
20E-01.8
77E-01,8
SOE-02,8
02E-02,!
62E-02,4
37E-01.4
32E-01.4
OOE-01,4
74E-02.5
29E-02,5
24E-01,8
66E-02.8
OOE-01,7
60E-01,2
OOE-01,8
OOE+00,1
.OOE+00,0.
.OOE+00,0.
.OOE-03,0.
.OOE-02,0.
.OOE-02,0.
.OOE-02,0.
.50E+00.0.
.OOE-02,0.
.50E+00,0.
.50E-01.0.
.OOE-02,0.
.50E-01.0.
.OOE-02,0.
.50E-03.0.
.50E-03.0.
.50E-03,0.
.OOE-01,0.
.50E-04.0.
.50E-04.0.
.50E-04,0.
.50E-04.0.
.50E-03,0.
.50E-03.0.
.50E-04.0.
.50E-04,0.
.50E-02.0.
.OOE-01,0.
.OOE-02,0.
.OOE-02,0.
,0.9
,0.75
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.01
,0.01
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.01
,0.0025
,0.0025
,0.0025
B.5  DATA SET FIVE - UPTAKE.DAT
         SINFL, PORS,  BDENS
         Yl, Y2, XAMBWE, TE1, TE2
         TH1, TH2,  TH3,  TH4, FP, FS
         QFC, QFG,  TF1,  TS, TFIS
         FI, WIRATE,  QCW, QGW, QBW
         ULEAFY, UPROD,  UCMILK, UMEAT, UWAT, UFISH
         NUCLID(K), RW(K), BR(K), FMC(K), FMG(K), FF(K), FIS(K)

    Note:  The last line is repeated for each nuclide in the inventory.
                                    B-5

-------
0.43, 0.3
0.67, 0.6
0.0,2160
50., 6
0.40, .01
14., 88.
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Ba-137M
Cs-137
Ra-226
Th-232
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am-241
Am-243
Cm-243
Cm-244
Ru-106
Sb-125
Cs-134
Eu-154
Pb-214
Bi-214
Pb-210
Po-210
Ra-228
Ac-228
Th-228
Pb-212
Tl-208
9, 1.
5, 2.
., 2
., 4
5, 6
5, 89
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
• — j
.25,
.25,
.25,
.25,
.25,
?S
.25,
.25,
.25,
.25,
.25,
.25,
?5
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
60
IE
4.
8.
0.
.4











1.

1.
8.
4
4.
4.
1.
4.
4.
4.
4
2.
2.
1.
1.



4.
9.
9.
9.
9.
1.
3.
8.
9.
9.
-3, 7;
, 14<
, 4!
j
5
o.,
o.,
.001,
.007,
.06,
.06,
.25,
.005,
1.5,
o ns
.03,
5E-2,
.03,
5E-3,
5E-5,
OE-3,
OE-3,
OE-3,
OE-2,
5E-5,
5E-5,
5E-5,
5E-5,
5E-4,
5E-4,
5E-5,
5E-5,
.02,
.03,
.03,
OE-3,
OE-3,
OE-3,
OE-3,
OE-3,
5E-3,
5E-4,
5E-5,
OE-3,
OE-3,
>0
10
30
8
0


2
2
1
1
1
2
1
1
7
3
7
4
5
fS
6
6
5
1
1
1
1
4
4
2
2
6
1
7
2
5
5
5
5
4
2
5
2
2
., 144
., 1.
., 0.
., 5
., 62.
o.,
o.,
.5E-4,
.OE-3,
.OE-3,
.OE-3,
.5E-3,
.OE-2,
.OE-2,
.OE-2,
.OE-3,
.5E-4,
.OE-3,
.5E-4,
.OE-6,
.OE-4,
.OE-4,
.OE-4,
.OE-6,
.OE-7,
.OE-7,
.OE-7
.OE-7,
.OE-7,
.OE-7,
.OE-5,
.OE-5,
.OE-7,
.OE-4,
.OE-3,
.OE-5,
.OE-4,
.OE-4,
.OE-4,
.OE-4,
.5E-4,
.OE-5,
.OE-6,
.OE-3,
.OE-3,
0.
o,
0.
8,


1
1
6
6
1
2
2
^
3
3
3
5

5
5
5
5
1
1
1
1




1
1
3
2




5




0.83

481.6
o.,
o.,
.3E-4,
.OE-3,
.7E-3,
.7E-3,
.4E-2,
.5E-3,
.5E-2,
OE-1,
.OE-1,
.OE-1,
.OE-1,
.OE-6,
o.,
.OE-4,
.OE-4,
.OE-4,
.OE-6,
.5E-6,
.5E-6,
.5E-6,
5E-6,
o.,
o.,
o.,
o.,
.3E-4,
.5E-3,
.OE-1,
.OE-5,
o.,
o.,
o.,
o.,
.OE-6,
o.,
o.,
o.,
o.,


, o


2.
2.
6.
6.
3.
2.
8.
7.
2.
1.
2.
2.
6.
?
2.
2.
5.
5.
5.
5
5.
3.
3.
3.
3.
2.
1.
2.
5.
4.
4.
4.
4.
2.
2.
6.
4.
4.


•
o.,
o.,
OE-2,
OE-2,
OE-3,
OE-3,
OE-4,
5E-1,
5E-3,
OE-3,
OE-2,
5E-4,
OE-2,
5E-4,
OE-6,
OE-4,
OE-4,
OE-4,
5E-5,
OE-7,
OE-7,
OE-7,
OE-7,
9
5E-6,
5E-6,
5E-6,
5E-6,
OE-3,
OE-3,
OE-2,
OE-3,
OE-4,
OE-4,
OE-4,
OE-4,
5E-4,
5E-5,
OE-6,
OE-2,
OE-2,



9
4
1
5
1
1
3
3
1
1
2

2
5
3
2
2
2
1
3
3
?
3
2
2
2
2
1
1
2
2


1
5
5

3





.OE-1
.6E3
.OE2
.OE1
.OE2
.OE2
.OE1
.OE4
.5E1
.5E1
.OE3
0.
.OE3
.OE1
.OE1
.OEO
.OEO
.OEO
.OE1
.5EO
.5EO
5EO
.5EO
.5E1
.5E1
.5E1
.5E1
.OE1
.OEO
.OE3
.5E1
0.
0.
.OE2
.OE2
.OE1
0.
.OE1
0.
0.
B-6

-------
B.6  OUTPUT FROM PATHRAE-EPA





     The following is the output from the PATHRAE-EPA computer code for the



sample  problem  generated  by  the five  data sets defined  in  Sections B.I



through B.5, and described in detail  in Chapter 4.
                                    B-7

-------
                      6  PVIRHU - MD
       3/36
                                   TOTAL EQUIVALENT UPTAKE FACTORS FOR PATHRAE
CD
 I
00

UCL'ISE
h-?
C-14
Fe-55
* c - & 0
Ni~5~
M--63
Sr-90

ic-99
1-129
Cs-135
3al37«
Cs-137
:>234
U-235
'.-233
No-237
?u-233
Pu-239
Pu-241
Pu-242
Arc-243
C.n-243
Cra-244
Ru-106
CI.,-1 OC;
^ J i M J
Ci-134
Eu-154


5.
4.
*"•
7 .
6.
6 .
5.

7."
^
8."
C .
e.
5.
5.
5.
5.
5.
5.
5.
5.
3 •
5.
5.
5.
5.
3.
5.
RIVER
L/YR
841E+C2
3:.oE+C2
128E+02
384E+02
0&7E+C2
066E+02
&49E+02
973E+03
704E+02
347E+02
075E+02
OOOE-01
070E+02
51CE+02
510E+02

419E+02
4135+02
413E+02
410E+02
413E+02
414E+02
414E+02
415E+02
414E+02
535E+02
496E+02
OOOE+02
841E+02
WELL""
L/YR
5.e41E+02
4.816E+02
7.128E+C2
7.334S»-02
G.067E+02
6.066E+02
5.S49E+02
2.973Et-03
7.704E+02
7.347E+02
8.075E-t-02
0. OOOE-OI
8.070E+02
5.510E+02
5.510E+02
5.510E+02
5.419E+02
5.413E*-02
5.413E+02
5.410E+02
5.413E+02
5.414E+02
5.414E+05
5.415E+02
5.414E+02
5.535E+02
5.49GE+02
3. OOOE+02
5.841E+02


5
4
7
7
&
6
5

7
7
8
0
s
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8
5
UKJ.3;
ESOSION
L/YR
.341E+02
.31&E+02
.128E+02
.3845+02
.067E+02
.0&5E+02
.649E+02
.973E+03
.704E+02
.347E+02
.075E+02
.OOOE-01
.070E+02
.510E+02
.510E+02
.510E+02
.419E+02
.413S+02
.413E+02
.410E+02
.413E+02
.414E+02
.414E+02
.415E+02
.414E+02
.535E+02
.496E+02
.OOOE+02
.84.E+02
BATHTUB

5.
4.
7.

r*
&!
5.
3.
n
V
i •
1.
0.
8.
5.
5.
5.
e
w •
5.
5.
5.
5.
J •
5.
5.
5.
5.
7.
5.
L/YR
B41E+02
8:.£E+02
12BE+02
384E+02
287E+02
1I6E+02
678E+02
449E+03
012E+03
538E+02
094S+03
OOOE-01
079E+02
594E+02
594E+02
534E+02
440E+02
J13E+02
415E+02
410E+02
415E+02
417E+02
423E+02
415E+02
414E+02
525E+02
495E+02
998E+02
B41E+02
UT(J,5)
SPILLAGE

5
4
^
7
*?
6
5
3
1
7

0
8
5
5
5
c;
5
5
5
5
I
5
5
5
IT
J
7
5
L/YR
.841E+02
.SloE+02
.128E+02
.384E+02
.066E+02
.131E+02
.691E+02
.352S+03
.012E+03
.537E+02
.030E+03
.OOOE-01
.082E+02
.57GE+02
.57GE+02
.57GE+02
.440E+02
.413E+02
.414E+02
.410E+02
.414E+02
.417E+02
.421E+02
.415E1-02
.414E+02
.535E+02
.495E+02
.998E+02
.841E+02
UT
-------
       3   ESOSZOM                       l
       5   FOOD  GROw*  ON  SITE
       o   NATURAL  BTOINTSUSION          1
       Z   DIRECT GAMMA                  0
       §   DUST  INHALATION               0
      10   ATMOSPHERIC TRANSPORT         0

    TT'S  OF  OPERATION OF WASTE FACILITY IN  YEARS
    LENGTH OF REPOSITORY (METERS)
    WIDT:- OF REPOSITORY  (DETERS)
    FLOW  RATE 0? RIVER  (CUBIC METERS/YEAR)
    DISTANCE "1 RIVER (METERS)

    DENSITY  OF  AQUIFER  (KG/CUBIC METER)
    LONGITUDINAL DISPE8SIVITY  (M)
    LATERAL  DISPERSION COEFFICIENT  —  Y AXIS  (MAA2/YR)
    NUI  EMANATING PCWER  OF THE WASTE
    JIFfOSIO/v Cb£l:r.  u'2 2ADDN  IN WASTE (CMAA2/SEC)
    DIFFUSION COEEF.  OF SN IN CONCRETE (CKAA2/SEC)
    THICKNESS OF CONCRETE  SLAB FLOOR  (CM)

    DIFFUSION COEFF.  OF RADON  IN COVER (CMAA2/SEC)
    ATMOSPHERIC STABILITY  CLASS
    AVERAGE  WIND SPEED (VS>
    FRACTION OF TIME  WIND  BLOWS TOWARD RECEPTOR
    RECEPTOR DISTANCE FOR  ATMOSPHERIC  PATHWAY (M)

    INCINERATOR OR TRENCH  FIRE BURN RATE  (MAA3/S)
    FRACTION CF YEAR  FIRE  BURNS
    STACK HEIGHT (M)
    STACK  INSIDE DIAMETER  (M)
    STACK GAS VELOCITY (H/S)
    HEAT  EMISSION  RATE FROM BURNING (CAL/S)
    FLAG  FOR INPUT SUMMARY PRINTOUT
    FLAG  FOR DIRECTION OF  TRENCH FILLING
  20.
 590.
 590.
   3.57E+05
  50.

1600.
   C.OOE-01
   O.OOE-01
   O.SC
   G.OO
  50.
     2.IOOE+06
    .

   0.223
   1.000
   0.000
   S.OOE-07

3035.
   0.228
   0.
   l.OOE+00
 240.

   5.5&E-04
   2.00E-01
   2.00E-02
   G.OOE-05
  20.0

   1.14E-02
   4
   2.01
   0.0930
 345.0
   1
2.51E-05
0.0027
  0
0.00
0.0
O.OOE-01

0

-------
    FLAG FOR GROUND*ATER PATHWAY OPTIONS
CD
 I
A.10UNT 0? WATER PERCOLATING THROUGH WASTE ANNUALLY 
AVERAGE VERTICAL GROUNBWATER VELOCITY (M/YR)
"CRIZONTAL VELOCITY OF AQUI?"R (METERS/YR)
HIXIN3 THICKNESS OF AQUIFER (METERS)
C'JRFACE EROSION RATE IM/YR)
ANNUAL RUNOFF OF PRECIPITATION -243 3.500E-03 4.400E-01
Ge Ci-243 2.000E-03 2.700E-01
67 C«-244 I.600E-03 2.100E-01
S3 Ru-106 1.100E-05 1.200E-03
69 Sb-125 O.OOOE-01 2.800E-05
70 Cs-134 6.6COE-05 4.500E-05
71 Eu-154 O.OOOE-01 3.400E-04
NUCLIDE EQUIVALENT UPTAKE
NUMBER NAME RIVER USEAGE WELL UATER USE
(L/YR) (L/YR)
41 H-3 5.841E+02 5.841E+02
42 C-I4 4.816E+02 4.816E+02
43 Fe-55 7.128E+02 7.128E+02
44 Co-60 7.384E+02 7.384E+02
45 Ni-59 6.067E+02 6.067E+02
46 Ni-63 6.066E+02 6.066E+02
47 Sr-90 5.649E+02 5.649E+02
48 Nb-94 2.973E+03 2.973E+03
0
0
0
0
0
/
1
27
10
~
3
DIRECT GAMA
DOSE FACTORS
(M8EM-MAA2/PCI-HR)
O.OOOE-01
O.OOOE-01
9.600E-13
1.2COE-08
1.800E-12
O.OOOE-01
O.OOOE-01
3.000E-09
2.900E-15
3.100E-11
O.OOOE-01
3.100E-09
O.OOOE-01
3.300E-12
8.300E-10
2.600E-12
1.400E-10
3.400E-I2
1.600E-12
O.OOOE-01
2.700E-12
1.300E-10
2.900E-10
7.000E-10
3.200E-12
O.OOOE-01
2.200E-09
S.OOOE-09
6.100E-09
FACTORS
FOOD CONSUMPTION
; (KG/YR)
O.OOOE-01
O.OOOE-01
9.002E-02
5.397E-01
1.492E+00
1.490E+00
1.173E+01
5.077E+00
.454
.801
.000
.00
.000
.30
n
!§5o
.000
.960E-04
.22E-01
VOLATILITY
FACTOR
(FRACTION)
9.000E-01
7.500E-01
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
l.OOOE-02
l.OOOE-02
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
l.OOOE-02
2.500E-03
2.500E-03
2.500E-03
GAMMA
ENERGY
(MEV)
O.OOOE-01
O.OOOE-01
O.OOOE-01
1.250E+00
O.OOOE-01
O.OOOE-01
3.390E-01
7.870E-01

-------
§1
  49  Tc-99
  50  1-129
  51  Cb-135
  32  B^137n
  53  Cs-137
  56  U-:34
  57  'J-235
  52  'J-238
  59  No-237
      Pu-238
      Pu-239
      P'j-241
  t3  Pu-242
  64  Aa-241
  65  An-243
  66  C«-243
  67  C»-244
  63  Ru-106
  69  Sb-125
  70  Cs-134
  71  Eu-154
    NUCLIDE
 NUMBER    NAME
41
42
43
44
45
46
47
48
49
50
51
52
53
56
57
58
59
60
61
62
63
64
6 S
66
67
68
69
70
71
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
N'o-94
Tc-99
1-129
Cs-135
Bal37»
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
An-241
A«-243
Cn-243
C»-244
Ru-106
Sb-125
Cs-134
Eu-154
   NUCLIDE
NUMBER   NAME

  41  H-3
  42  C-14
  43  Fe-55
  44  Co-60
7.704E+02
7.347E+02
8.075E+02
O.OOOE-01
8.070E+02
5.510E+02
5.51CE+02
5.51.OE*02
5.419E+02
5.4".3E+02
5.413E+C2
5.-UOE+02
5.413E+02
5.4HE+02
5.414E+02
5.415E-02
5.414E+02
3.535E+02
5.496S+02
8.000E+02
5.841E+02
INPUT LEACH
CONSTANTd/YR)
3.480E-03
3.480E-03
2.990E-05
2.990E-05
2.990E-05
2.990E-05
4.960E-05
2.140E-05
1.630E-03
4.400E-04
1.500E-05
1.500E-05
1.500E-05
2.010E-06
2.010E-06
2.010E-06
2.780E-04
2.150E-06
2.150E-OS
2.150E-06
2.150E-06
1.870E-05
1.370E-05
2.150E-06
2.150E-06
2.140E-05
3.320E-05
1.500E-05
7.540E-07
AQUIFER
SORPIION
l.OOOE-02
l.OOOE-02
6.000E+03
5.500E+01
7.704E+02
7.347E+02
8.075E+02
O.OOOE-01
8.070E*02
5.510E+02
5.510E+02
5.51.OE + 02
5.419E+02
5.413S+02
5.413E+02
5.410E+02
5.413E+02
5.414E+02
5.414E+02
5.415E+02
5.414E+02
5.53EE+02
5.496E+02
3.000E+02
5.841E+02
FINAL LEACH
CONSTANTd/YR)
3.430E-03
3.480E-03
2.990E-05
2.990E-05
2.990E-05
2.990E-05
4.960E-05
2.140E-05
1.630E-03
4.400E-04
1.500E-05
1.500E-05
1.500E-05
2.010E-06
2.010E-06
2.010E-06
2.730E-04
2.150E-06
2.150E-06
2.150E-06
2.150E-06
1.870E-05
1.870E-05
2.150E-06
2.150E-06
2.140E-05
3.320E-05
1.500E-05
7.540E-07
AQUIFER
RETARDATION
1.041E+00
1.041E+00
2.462E+04
2.266E+02
2.238E+02
3.849E+00
2.753E+00
O.OOOE-01
2.746E+00
8.233E-02
8.233E-02
3.233E-02
2.633E-01
1.160E-03
1.161E-03
1.154E-03
1.161E-03
9.238E-03
9.239E-03
1.G56E-03
1.055E-03
4.384E-01
8.564E-01
2.646E+00
1.200E-01
GAMMA
ATTENUATIONC1/M)
O.OOOE-01
O.OOOE-01
O.OOOE-01
8.300E+00
O.OOOE-01
O.OOOE-01
2.000E+01
1.150E+01
O.OOOE-01
9.700E+0:
O.OOOE-01
1.300E+01
1.300E+01
5.000E+01
2.900E+01
6.300E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
1.800E+G1
5.000E+01
1.400E+01
1.700E+01
1.200E+01
l.OOOE+01
VERTICAL
SORPTION
l.OOOE-02
l.OOOE-02
6.000E+03
5.500E+01
O.OOOE-0;
3.960E-02
O.OOOE-01
S.620E-01
6.620E-01
1.200E-01
1.770E-01
4.300E-02
6.020E-02
5.620E-02
1.370E-01
1.320E-01
O.OOOE-01
5.740E-02
7.290E-02
2.240E-01
6.660E-02
G.OOOE-01
4.600E-01
7.000E-01
l.OOOE+00































VERTICAL
RETARDATION
1.051E+00
1.051E+00
3.073E+04
2.827E+02

-------
     45
     46
     47
     •*§
     49
     50
     51
     32
     53
     56
     57
     53
     59
oo
i
IN3
  63
  64
  65
  66
  67
  63
  69
  70
  71
   N'JC
NUMBER

  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
 Sr-9C
 Nb-94
 Tc-99
 1-129
 Cs-135
 B.3I37M
 Cs-137
 'J-234
 U-235
 U-233
 Np-237
 Pu-233
 Pu-239
 Pu-241
 ?u-242
 A«-241
 Ara-243
 Ca-243
 Cffl-244
 Ru-106
 Sb-125
 Cs-134
 Eu-154
 LIDE
   NAME

 H-3
 C-14
 Ee-55
 Co-60
     52
     53
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     68
     69
     70
     71
Nb-94
Tc-99
1-129
C5-135
Bal37ni
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
A n-241
A«-243
 i-244
Ru-106
Sb-125
Cs-134
Eu-154
1.500E+02
l.'iOOE+O:
2.000E+01
3.500E+02
5.000E-01
3.000E+00
5.COOE+02
5.000E+02
5.000E+02
7.500E+02
7.500E+02
7.500E+02
5.000E+00
3.500E+03
3.500E+03
3.500E+03
3.500E+03
3.000E+04
8.000E+04
3.300E+03
3.300E+03
2.200E+02
4.500E+01
5.000E+02
4. OOOE+03
SOIL TO PLANT
CONVERSION
O.OOOE-01
O.OOOE-01
4.000E-03
2.000E-02
6.000E-02
6.000E-02
2.500E+00
2.000E-02
9.500E+00
1.500E-01
8.000E-02
1.500E-01
3.000E-02
8.500E-03
8.500E-03
8.500E-03
l.OOOE-01
4.500E-04
4.500E-04
4.500E-04
4.500E-04
5.500E-03
5.500E-03
8.500E-04
8 500E-04
7.500E-02
2.000E-01
8.000E-02
l.OOOE-02
6.164E+02
6.I64S+02
S.305E+01
mm
1.331E-OI
2.052E+03
2.052E+03
2.052E+03
3.073E+03
3.078E+03
3.C73E+03
2.151E+01
1.436E+04
1.436E+04
1.436E+04
1.436E+04
3.282E+05
3.282E+05
1.354E+04
1.354E+04
9.036E+02
1.856E+02
2.052E+03
1.641E+04
HALF
LIFE (YR)
1.230E+01
5.730E+03
2.700E+00
5.250E+00
3.00CE+04
mm
2.000E+04
2.130E+05
1.700E+07
3.010E+06
3.000E+01
3.000E+01
4.470E+09
7.040E+03
4.470E+09
2.100E+06
8.770E+01
2.420E+04
1.320E+01
3.790E+05
4.590E+02
7.370E+03
3.190E+01
1 ./oOt+Ol
1.010E+00
2.770E+00
2.060E+00
8.500E+00
1.50GE+02
L.500E+02
1.500E+02
i.mm
3.000E+00
1. OOOE+03
:. .OOOE+03
l.OOOE+03
7.500E+02
7.500E+02
7.500E+02
5.000E+GC
3.-500E+03
3.500E+03
3.5GOE+03
3.500S+03
8.0COE+04
8.000E+04
3.300E+03
3.300E+03
2.200E+02
4.500E+01
I. OOOE+03
4. OOOE+03
INITIAL
INVENTORY (CD
7.857E+0:
7.421E+00
2.323E+OI
8.652E+01
1.430E-01
4.094E+01
2.694E+00
4.538E-03
•..900E-03
5.610E-03
1.900E-03
4.564E+01
4.564E+01
4.270E-03
6.350E-05
1.250E-03
9.680E-06
1.110E-01
1.120E-01
3.002E+00
2.430E-04
2.275E-01
5.405E-05
4.477E-05
3.640E-02
3.672E-03
3.672E-01
7.480E+00
9.172E-02
PATHWAY 2
GROUNDUATER TO
7.693E+02
7.693E+02
7.693E+C2
1 ?q4F + m
t'kt* eIX«
3.5&J.E+00
1.637E+01
5.123E+03
5.123E+03
5.123E+03
3.842E+03
3.842E+03
3.842E+03
2.66-.E + 01
1.793E+04
1.793E+04
1.793E+04
1.793E+04
4.097E+05
4.097E+05
:.690E+04
1.690E+04
1.129E+03
2.3:.5E+02
5.I23E+03
2.049E+04































WELL

-------
******** NUCLirE DOSES FOR GIVEN TIMES ********


























CO
1
H^
CO

MUCL
4:
42
43
44
45
46
47
43
49
50
c-1:
w —
•32
53
56
57
58
59
so
61
o2
63
64
65
66
67
68
69
70
71
IIS/TIME
H-3
C-14
Fe-55
Co-60
N--59
N;-&3
Br-90
Nb-94
Tc-99
>129
Cs-135
Bal37a
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
?u-241
?u-242
Am-241
Aas-243
C«-243
Cn-244
Ru-106
Sb-125
Cs-134
Eu-154
0.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOH-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
0,OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
1
* •
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
O.OOE-01
O.OOE-01
15.
9.81E-03
2.08E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
50.
4.7:.E-03
1.06E-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
8.63E-0&
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
o.oos-o:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
:oo.
2.36E-04
8.34E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
2.70E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
200.
5.96E-07
S.17E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
2.29E-05
2.16E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
350.
7.54E-11
3.59E-02
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1.79E-05
7.09E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O),
O.OOE-O:
7.80E-06
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
9.54E-15
2.09E-02
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
1.4CE-05
8.96E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
1.67E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
"50.
3.04E-21
8.5:E-C3
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-O:
O.OOE-O:
O.OOE-O:
9.34E-06
3.03E-03
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
2.63E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
:ooo.
9.7CE-28
3.46E-03
O.OOE-O:
O.OOE-C:
O.OOE-01
O.OOE-01
O.OOE-O:
c .OOE-O:
6.2:E-06
7.:9E-03
O.OOE-GI
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
2.46E-05
O.OOE-01
O.OOE-01
O.OOE-01
0. OOE-O 1
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C:.
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-O:
****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES ******
    29           Q.OOE-01  O.OOE-01  4.06E-02  1.11E-01
         3.86E-02  6.38E-02   4.30E-02   2.99E-02   1.66E-02   1.07E-02
****&* SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
    2v           O.dGE-C:  O-OOE-01  1.14E-05  3.09E-05
        USPE23ICN COKSECIIGfJ FACTOR
         2.43E-05  1.79E-05  1.21E-05   8.38E-06   4.64E-06  2.99E-06
X >'- X 'f. K A K L< 1 0 i

41
42
43
44
45
46
47
48
49
50
51
52
WUCLIDE
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37.
                   VERTICAL FACTOR


                        1.01E+00
                        l.OOE+00
                        l.OOE+03
                        l.OOE+03
                        l.OOE+00
                        l.OOE+03
                        l.OOE+03
                        1.01E+00
                        l.OOE+00
                        l.OOE+00
                        l.OOE+00
                        l.OOE+03
l.OOE+00
l.OOE+00
l.OOE+03
7.93E+00
l.OOE+00
1.05E+00
1.01E+00
l.OOE+00
l.OOE+00
l.OOE+00
l.OOE+00
1.69E+02
                                                                    "OTAL F
1.01E+00
l.OOE+00
l.OOE+06
7.93E+03
l.OOE+00
1.05E+03
1.01E+03
l.OOE+00
l.OOE+00
1.69E+05

-------
00
53 Ci-:.37 1.
5a 'J-234
57 U-235 1.
53 U-239 :.
59 Np-237 1.
60 Pu-238 1.
61 Pu-239 1.
62 Pu-241 I.
63 ?u-242 1.
64 A»-241
65 A»-243 1.
66 Cn-243 :.
67 Cn-244
63 Su-106 1.
69 Sb-125 1.
70 Cs-134
71 Eu-154 1.
CONCENTRATION ASSAY
^UCL IDE/TIME
41
42
43
44
45
46
47
48
49
50
51
52
53
56
57
53
59
61
o2
63
65
66
67
63
69
70
71


H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc:99

Cs:135
Sal37n
Cs-137
U-234
U-235
'J-238
Np-237
Pu-538
Pu-239
Pu-241
fy:^?
flu'-243
Cn-243
Cn-244
Ru-106
Sb-125
Cs-134
Eu-154


******** NUCLIDE
NUB
41
42
43

H-3
C-14
Fe-55
0.
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01

Q."OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-Oi


DOSES FOR
0.
O.OOE-01
O.OOE-01
O.OOE-01
OOE+03 1.69E+02
OOE+OO :.:OE+OO
OOE+00 l.OOE+00
OOE+00 I. OOE+00
OOE+00 l.OOE+00
OOE+03 1. OOE+03
43E+00 l.OOE+00
OOE+03 1. OOE+03
OOE+00 .OOE+00
OOE+03 .OOE+03
OOE+03 .04E+00
OOE+03 .OOE+03
OOE+03 .OOE+03
OOE+03 .OOE+03
OOE+03 1.38E+02
OOE+03 1. OOE+03
OOE + 03 :.. OOE+03
CONCENTRATIONS IN CI/**A3
1.
O.OOE-Oi
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


15.
1.95E-07
4.26E-08
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


50.
9.38E-08
1.46E-07
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
5.90E-I2
O.OOS-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


100.
4.71E-09
1.22E-07
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
1.84E-11
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
PATHWAY 3
EROSION
.69E+05
.OCE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+06
.43E+00
.OOE+06
.OOE+00
1. OOE+06
9.04E+03
I. OOE + 06
1. OOE+06
1. OOE + 06
1.38E+05
1. OOE+06
1. OOE+06
200.
1.19E-11
8.53E-08
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
1.57E-11
3.41E-I2
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


350.
1.50E-15
4.97E-08
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.23E-11

6."60E-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
4.64E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


500.
1.90E-19
2.90E-08
O.OOE-Oi
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-Oi
O.OOE-01
9.59E-12
1.42E-11
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
9.93E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


750.
6.06E-26
l.i3E-08
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-O:
O.OOE-O:
O.OOE-O:
6.38E-12
1.27E-::
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.57E-14
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


1000.
1.93E-32
4.79E-09
O.OOE-O:
O.OOE-O:
O.OOE-O:.
O.OOE-O:
O.OOE-OI
O.OOE-01
4.24E-12
" ' 4E * n
O.OOE-OI
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.46E-14
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-C1
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01


GIVEN TIMES ********
1.
O.OOE-01
O.OOE-01
O.OOE-01
15.
O.OOE-01
O.OOE-01
O.OOE-01
50.
O.OOE-01
O.OOE-01
O.OOE-01
100.
O.OOE-01
O.OOE-01
O.OOE-01
200.
O.OOE-01
O.OOE-01
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-Ol"
O.OOE-01
O.OOE-01
i ftflrt
L \I\J\I •
O.OOE-01
O.OOE-01
O.OOE-01

-------
44
45
46
47
48
49
50
51
52
53
56
57
53
59
GO
61
62
63
64
65
66
fi
69
70
71
Co-6C
N:.-59
Ni-63
Sr-9G
Nb-94
Tc-99
I-129c
Lt S ~ * w> U
Bal37a
Cs-137
U-234
U-235
U-238
Np-237
Pu-233
Pu-239
Pu-341
Pu-242
Ai-241
Ai-243
Ca-243
Sltftt
Sb-125
Cs-134
Eu-154
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-Ol
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-0-
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O1.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Qi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
Q.QOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Ol
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O*
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
C.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O.
O.OOE-O:
O.OOE-01
O.OOE-::
O.OOE-Oi
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
Holiol
O.OOE-01
O.OOE-01
O.OOE-01
****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES ******
    29
O.OCE-Ci  O.OOE-01  O.OOE-01  O.OOE-01  O.OOE-01  O.OOE-01   O.OOE-Oi   O.OOE-01   O.OOE-01   O.OOE-01
****** SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
    29           O.OOB-01  O.OOE-01  O.OOE-01  O.OOE-01
                                        O.OOE-01  O.OOE-01   O.OOE-01   O.OOE-01   O.OOE-01   O.OOE-01
******* EROSION OF UASIE STARTS AFTER     3061.2 YEARS AND ENDS AFTER UASTE IS ALL ERODED
 CONCENTRATION ARRAY        CONCENTRATIONS IN CI/M**3
                                                                         IN
33673.5 YEARS.
NUCLTDE/TIMS
41
42
43
44
43
46
47
~ /
48
49
50
51
52
53
56
57
53
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
w 4 J V
Nb-94
Tc-99
1-129

Bal37i
Cs-137
U-234
U-235
U-238
0.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
0 . OOE— 01
0 .001—01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
15.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
50.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
100.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
200.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01

-------
CO
59
60
61
62
62
64
65
66
67
63
69
70
71


No-237
Pu-233
?'j-239
?u-241
Fu-242
Am-241
Aa-243
Cm-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154


AAAA*AAA NUCLIDE
NUCLIDE/TIME
41
42
43
44
1s
47
43
49
50
5-.
52
53
56
57
53
59
60
61
62
63
64
65
66
67
68
69
70
71
H-3
C-14
Fe-55
Co-60
fljiglj
Sr-90
Nb-94
Tc-99
1-129
Cs-135
B3l37m
Cs-137
U-234
U-235
U-233
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am-241
AB-243
Ca-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


DOSES FOR
0.
O.OOE-01
O.OOE-01
2.10E-05
5.30E-03
6.S5E-Q7
4.33E-04
3.79E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.18E-01
6.32E-03
1.04E-09
1.74E-08
1.69E-07
7.99E-06
9.46E-07
5.64E-06
1.99E-09
1.53E-04
3.74E-08
2.02E-09
1.32E-06
4.22E-07
O.OOE-01
2.80E-02
O.OOE-01
O.OOE-01
O.CCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


GIVEN TI
1.
O.OOE-01
O.OOE-01
1.63E-05
5.0SE-03
\\imi
3.70E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.15E-01
6.32E-08
1.04E-09
1.74E-08
1.69E-07
7.93E-06
9.46E-07
5.35E-06
1.99E-09
1.53E-04
3.74E-08
1.98E-09
1.26E-06
2.13E-07
O.OOE-01
2.00E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
C.OOE-01
C.OOE-01
O.OOE-01
Q.OOE-01


O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01

FOOD
O.OOE-Oi
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
PATHWAY
GROWN ON
O.OOE-C1
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
O.OOE-C1
5
SITE
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01


O.CCE-01
C.OOE-01
O.COE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O"
O.OOE-01
O.OOE-C1


MES AAAAAAAA
15.
O.OOE-01
O.OOE-01
4.47E-07
8.00E-04
l'.§P-?4
2.'64E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
8.35E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
7.10E-06
9.46E-07
2.57E-06
1.99E-09
1.50E-04
3.74E-08
1.46E-09
7.29E-07
1.43E-11
O.OOE-01
1.30E-04
O.OOE-01
50.
O.OOE-01
O.OOE-01
5.60E-11
7.38E-06
§-p§:^
l.'l3E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.72E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
5.38E-06
9.45E-07
4.08E-07
1.99E-09
1.42E-04
3.72E-08
6.83E-10
1.84E-07
5.29E-22
O.OOE-01
1.38E-09
O.OOE-01
100.
O.OOE-01
O.OOE-01
1.49E-16
1.07E-08
I".SII:8?
3."36E-04
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.17E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
3.63E-06
9.43E-07
2.96E-08
1.99E-09
1.32E-04
3.71E-08
2.30E-10
2.56E-08
6.62E-37
O.OOE-01
6.82E-17
O.OOE-01
200.
O.OOE-01
O.OOE-01
1.06E-27
1.97E-14
!"8fi-8?
2."98E-05
1.32E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.16E-03
6.32E-03
1.04E-09
1.74E-08
1.69E-07
1.64E-06
9.41E-07
1.55E-10
1.99E-09
1.13E-04
3.67E-08
2.62E-11
4.99E-10
O.OOE-01
O.OOE-01
1.66E-31
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
4.95E-23
I'.^li^s
7.'85E-07
1.32E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.63E-05
6.32E-08
1.04E-09
1.74E-08
1.69E-07
5.03E-07
9.37E-07
5.88E-14
1.99E-09
9.02E-05
3.62E-08
1.01E-12
1.36E-12
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
1.24E-31

2.'07E-08
1.31E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.13E-06
6.32E-03
1.04E-09
1.74E-08
1.69E-07
1.54E-07
9.33E-07
2.23E-17
1.99E-09
7.19E-05
3.57E-08
3.87E-14
3.69E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01

4.'84E-11
1.30E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.52E-09
6.32E-08
1.04E-09
1.74E-08
1.69E-07
2.13E-08
9.26E-07
4.44E-23
1.99E-09
4.93E-05
3.49E-08
1.69E-16
1.96E-19
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
6.79E-Q7
2.53E-07
1.13E-13
1.29E-06
1.72E-05
3.97E-04
7.28E-07
O.OOE-01
1.09E-11
6.32E-03
1.04E-09
1.74E-08
1.69E-07
2.95E-09
9.19E-07
3.83E-29
1.99E-09
3.38E-05
3.41E-08
7.41E-19
1.04E-23
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
  AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN TIMES AAAAAA
      29           1.57E-01  1.45E-01  8.81E-02  3.92E-02
1.28E-02  1.83E-03   5.81E-04   5.03E-04   4.70E-04  4.53E-04
  AAAAAA SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
      29           4.39E-08  4.07E-08  2.47E-08   1.10E-08  3.59E-09  5.13E-10
                    1.63E-10  1.41E-10   1.31E-10  1.27E-10

-------
FRACTIONAL MIXING OF HASTE IN SOIL IN TRENCH IS 1.005
tRnCTION OF FOOD CONSUMED UHICH IS GROWN AT THE WASTE SITE  (FG)  IS  0.220
FRACTIONAL MIXING OF TRENCH MATERIAL IN SURFACE SOIL IS 0.120
                                                        PATHWAY  6
                                                  NATURAL BIOINTRUSION

         NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA
Nt'CLIBE/TIME
41
42
43
44
45
46
ii
1!
51
52
53
56
57
53
59
60
61
62
u3
65
66
67
68
69
70
/ 1
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37»
Cs-137
U-234
'J-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Aa-54f
An-243
C.u-243
Ca-244
Ru-106
S'o-125
C5-134
Eu-I54
0.
O.OOE-01
O.OOE-01
7.02E-05
1.93E-02
2.29E-06
1.6IE-03
1.26E-02
4.44E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.94E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.67E-05
3.16E-06
1.38E-05

l.'25E-07
6.75E-09
4.39E-06
1.41E-06
O.OOE-01
9.33E-02
O.OOE-01
1 •
O.OOE-01
O.OOE-01
5.43E-05
1.69E-02
2.29E-06
1.60E-03
1.23E-02
4.44E-OG
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.85E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.65E-C5
3.16E-06
1.73E-Q5

l.'25E-07
6.61E-09
4.22E-06
7.09E-07
O.OOE-01
6.66E-02
O.OOE-01
15.
O.OOE-01
O.OOE-01
1.49E-06
2.67E-03
2.29E-06
1.44E-03
8.79E-03
4.44E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
2.78E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.37E-05
3.15E-06
3.56E-06

l.'25E-07
4.87E-09
2.43E-06
4.77E-11
O.OOE-01
6.00E-04
O.OOE-01
50.
O.OOE-01
O.OOE-01
1.87E-10
2.63E-05
2.28E-06
1 . ' ' E-03
3.76E-03
4.43E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
1.24E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
1.30E-05
3.15E-06
1.36E-06
W31--8J
1.24E-07
2.23E-09
6.13E-07
1.76E-21
O.OOE-01
4.61E-09
O.OOE-01
100.
O.OOE-01
O.OOE-01
4.98E-16
3.57E-08
2.28E-06
7.59E-04
1.12E-03
4.43E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.91E-02
2.11E-07
3.46E-09
5.31E-08
5.64E-07
1.21E-05
3.15E-06
9.86E-08
6.65E-09
4.39E-04
1.24E-07
7.S9E-10
8.55E-08
2.21E-36
O.OOE-01
2.27E-16
O.OOE-01
200.
O.OOE-01
O.OOE-01
3.53E-27
6.59E-14
2.28E-06
3.57E-04
9.93E-05
4.41E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.88E-03
2.11E-07
3.46E-09
5.81E-08
5.64E-07
5.49E-06
3.14E-06
5.17E-10

l."22E-07
3.75E-11
1.67E-09
O.OOE-01
O.OOE-01
5.54E-31
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01

r> *28E"06
l'.15E-04
2.62E-06
4.39E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
1.21E-04
2.11E-07
3.46E-09
5.81E-08
5.64E-07
1.68E-06
3.12E-06
1.96E-13

K21E-07
3.36E-12
4.53E-12
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
4.14E-31
2.28E-06
3.73E-05
6.90E-08
4.37E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
3.79E-06
2.11E-07
3.46E-09
5.31E-08
5.64E-07
5.12E-07
3.11E-06
7.44E-17

K19E-07
1.29E-13
1.23E-14
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
2.27E-06
5.67E-06
1.61E-10
4.33E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
1.17E-08
2.11E-07
3.46E-09
5.81E-08
5.64E-07
7.10E-08
3.09E-06
1.48E-22

l.*16E-07
5.65E-16
6.52E-19
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OGE-0"..
O.OOE-01
O.OOE-OI
O.OOE-01
2.27E-06
8.62E-07
3.77E-13
4.29E-06
5.75E-05
1.33E-03
2.43E-06
O.OOE-01
3.64E-11
2.11E-07
3.46E-09
5.81E-08
5.64E-07
9.35E-09
3.07E-06
2.94E-23

l.'l4E-07
2.47E-18
3.45E-23
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN TIMES AAAAAA
    29           5.23E-01  4.34E-01  2.94E-01  1.31E-01
4.28E-02  6.11E-03   1.94E-03   1.68E-03   1.57E-03  1.51E-03
AAAAAA SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
    29           1.46E-07  1.36E-07  8.23E-08  3.66E-08  1.20E-08  1.71E-09
                    5.43E-10   4.70E-10   4.39E-10  4.23E-10
FRACTIONAL MIXING OF UASTE IN SOIL IN TRENCH IS 1.005
FRACTION OF FOOD CONSUMED UHICH IS GROWN AT THE WASTE SITE (FG) IS  0.220
                                                        PATHWAY  7
                                                      DIRECT GAMMA

AAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA

-------
    HJCL:::
    44  Co-60
    47  Sr-90
    48  Nb-94
    50  1-129
    ""  Bal37a
        Cs-137
        U-234
    57  U-235
    jg  :i_"!og
    5?  Nj-237
    60  Pu-238
    61  Pu-239
    62  Pu-241
    64  Aa-241
    65  Aa-243
    56  C»-243
    67  Ca-244
    68  Ru-106
    69  Sb-125
    70  Cs-134
    71  Eu-154



   ****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES
       29           3.76E+00  7.68E+00  ?..34E+00  8.82E-02  2.67E-02  3.37E-03  3.16E-04  2.37E-04  3.48E-04  5.17E-04
CO
 i

oo ****** SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
       29           2.45E-06  2.15E-06  3.75E-07  2.47E-08  7.47E-09  9.43E-10  8.86E-J.1  6.63E-1I  9.75E-U  1.45E-10



   *******  EROSION  STOPS AFTER COVER  IS  ALL  ERODED IN     3061.2 YEARS *******
                                                           PATHWAY  8
                                                        DUST INHALATION

   ******** NUCLIDE DOSES FOR  GIVEN TIMES ********
0.
S.39E+00
O.OOE-Oi
9.83E-05
4.S2E-28
2.17E-01
v.OOE-01
9.29E-18
7.93E-12
2.C8E-21
1.71E-13
5.08E-16
1.05E-16
O.OOE-01
3.90E-14
1.65E-17
2.66E-09
1.33E-16
O.OOE-01
2.36E-04
1.43E-01
2.42E-03
1.
7.36E+00
O.COE-01
9.85E-05
4.91E-28
2.13E-01
O.OOE-01
9.38E-18
7.97E-12
2.10E-21
:..72E-18
5.09E-16
1.06E-:6
O.OOE-01
3.93E-14
1.66E-17
2.61E-09
1.29E-16
O.OOE-01
1.84E-04
1.06E-01
2.24E-03
15.
1.18E+00
O.OOE-01
1.01E-04
6.37E-23
1.59E-01
9-8&S-91
l.O/e-j.7
3.59E-12
2.49E-21
1.97E-13
5.20E-16
1.21E-16
O.OOE-01
4.40E-14
1.89E-17
2.02E-09
8.51E-17
O.OOE-01
5.77E-06
9.76E-04
7.30E-04
50.
1.21E-02
O.OOE-Oi
1.07E-04
1.23E-27
7.60E-02
O.OOE-01
1.49E-17
1.04E-11
3.79E-21
2.74E-18
5.49E-16
1.63E-16
O.OOE-01
5.81E-14
2.63E-17
1.05E-09
2.99E-17
O.OOE-01
l.OOE-09
8.00E-09
4.43E-05
100.
1.74E-05
O.OOE-01
1.17E-04
3.12E-27
2.65E-02
O.OOE-01
2.40E-17
1.35E-n.l
6.92E-21
4.40E-13
5.94E-16
2.69E-16
O.OOE-01
8.65E-14
4.20E-17
4.13E-10
6.70E-18
O.OOE-01
4.25E-15
4.34E-16
8.09E-07
200.
3.61E-11
O.OOE-01
1.39E-04
2.02E-26
3.23E-03
O.OOE-01
6.17E-17
2.31E-11
2.30E-20
1.13E-17
6.94E-16
6.91E-15
O.OOE-01
1.92E-13
1.07E-16
6.55E-11
3.36E-19
O.OOE-01
7.65E-26
1.27E-30
2.70E-10
350.
1.08E-19
O.OOE-01
1.80E-04
3.31E-25
1.37E-04
O.OOE-01
2.55E-16
5.15E-11
1.39E-19
4.63E-17
8.75E-16
2.34E-15
O.OOE-01
6.30E-13
4.36E-16
4.06E-12
3.77E-21
O.OOE-01
O.OOE-01
O.OOE-01
1.64E-15
500.
3.20E-28
O.OOE-01
2.31E-04
5.42E-24
5.77E-06
O.OOE-01
1.05E-15
1.14E-10
8.37E-19
1.92E-16
1.10E-15
1.16E-14
O.OOE-01
2.07E-12
1.77E-15
2.51E-13
4.21E-23
O.OOE-01
O.OOE-01
O.OOE-01
9.B8E-21
750.
O.OOE-01
O.OOE-Oi
3.48E-04
5.68E-22
2.92E-08
O.OOE-01
1.10E-14
4.29E-10
1.66E-17
2.02E-15
1.60E-15
1.21E-13
O.OOE-01
1.48E-11
1.81E-14
2.40E-15
2.34E-26
O.OOE-01
O.OOE-01
O.OOE-OI
1.96E-29
1000.
O.OOE-O:
O.OOE-01
5.17E-04
5.33E-20
1.45E-1G
O.OOE-01
1.14E-13
'. .59E-09
•3 i r c _ ' '
\J • u ij Li 1 Q
2.09E-14
2.30E-15
1.24E-12
O.OOE-OI
i 05E-'0
1.83E-13
2.23E-17
1.28E-29
O.OOE-01
O.OOE-01
O.OOE-01
3.84E-36
rtUCLIDE/TIHE
41
42
43
44
45
46
47
48
49
50
51
52
53
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37«
Cs-137
0.
8.40E-07
7.23E-09
3.93E-06
3.08E-03
2.17E-08
1.61E-05
4.80E-05
2.35E-07
3.73E-09
2.85E-07
7.62E-10
5.70E-09
1.22E-04
1.
7.94E-07
7.28E-09
3.04E-06
2.70E-03
2.17E-08
1.59E-05
4.69E-05
2.35E-07
3.73E-09
2.35E-07
7.62E-10
5.57E-09
1.19E-04
15.
3.61E-07
7.26E-09
8.37E-08
4.26E-04
2.17E-08
1.43E-05
3.34E-05
2.34E-07
3.73E-09
2.85E-07
7.62E-10
4.03E-09
8.63E-05
50.
5.02E-08
7.23E-09
1.05E-11
4.19E-06
2.17E-08
1.10E-05
1.43E-05
2.34E-07
3.72E-09
2.85E-07
7.62E-10
1.79E-09
3.84E-05
100.
3.00E-09
7.19E-09
2.79E-17
5.69E-09
2.16E-08
7.56E-06
4.26E-06
2.34E-07
3.72E-09
2.85E-07
7.62E-10
5.65E-10
1.21E-05
200.
1.07E-11
7.10E-09
1.98E-28
1.05E-14
2.16E-08
3.56E-06
3.77E-07
2.33E-07
3.72E-09
2.85E-07
7.62E-10
5.61E-11
1.20E-06
350.
2.28E-15
6.97E-09
O.OOE-01
2.63E-23
2.16E-08
1.15E-06
9.94E-09
2.32E-07
3.72E-09
2.85E-07
7.62E-10
1.75E-12
3.75E-08
500.
4.87E-19
6.85E-09
O.OOE-01
6.60E-32
2.16E-08
3.71E-07
2.62E-10
2.31E-07
3.72E-09
2.85E-07
7.62E-10
5.47E-14
1.17E-09
750.
3.71E-25
6.64E-09
O.OOE-01
O.OOE-01
2.15E-08
5.64E-08
6.13E-13
2.29E-07
3.72E-09
2.85E-07
7.62E-10
1.70E-16
3.64E-12
1000.
2.82E-31
6.45E-09
O.OOE-01
O.OOE-01
2.15E-08
8.58E-09
1.43E-15
2.27E-07
3.71E-09
2.85E-07
7.62E-10
5.26E-19
1.13E-14

-------
   56  'J-234
   57  U-235
   53  U-238
   59  Np-237
   GO  ?u-238
   61  Pu-239
   52  Pu-241
   63  Pu-242
   64  AM-241.
   G5  Au-243
   &6  Ca-243
   67  Cm-244
    68  Su-106
   69  Sb-125
    70   Cs-134
   71   Eu-154
7.23E-05
1.10E-06
1.39E-05
3.45E-07
3.56E-03
3.69E-03
1.13E-03
7.5GE-06
3.92E-03
2.12E-06
1.08E-06
6.E1E-04
3.93E-C7
9.16E-07
3.00E-05
2.78E-06
7.22E-05
1.10E-06
1.39E-05
3.45E-07
3.53E-03
3.69E-03
1.12E-03
7.5EE-06
3.91E-03
2.12E-06
1.05E-06
6.55E-04
1.98E-07
7.13E-07
2.I4E-05
2.56E-06
7.23E-05
1.101-06
1.39E-05
3.45E-07
3.15E-03
3.69E-03
5.36E-04
7.58E-06
8.72E-03
2.12E-06
7.78E-07
3.77E-04
1.33E-11
2.15E-08
1.93E-07
8.18E-07
7.23E-05
1.10E-06
1.39E-05
3.45E-07
2.40E-03
3.69E-03
3.52E-05
7.58E-06
8.27E-03
2.11E-06
3.64E-07

4 § ?''£'"''*
3.38E-12
1.48E-12
4.71E-08
7.23E-05
1.10E-06
1.39E-05
3.45E-07
1.62E-03
3.68E-03
5.17E-06
7.58E-06
7.67E-03
2.1CE-06
1.331-07
:..33E-05
o.:.5E-37
1.24E-17
7.31E-20
7.99E-10
7.23E-05
1.10E-06
1.39E-05
3.45E-07
7.33E-04
3.67E-03
3.24E-08
7.58E-Q6
6.60E-03
2i08E*-Oo
1.40E-08
2.59E-07
O.OOE-01
1.69E-28
1.73E-34
2.30E-13
7.23E-05
1.10E-06
1.39E-05
3.45E-07
2.24E-04
3.66E-03
1.23E-11
5.58E-06
.261-03
2.05E-06
5.36E-10
7.03E-10
O.OOE-01
O.OOE-01
O.OOE-01
1.12B-18
7.23E-05
1.10E-06
1.39E-05
3.45E-07
6.3SE-05
3.64E-03
4.S&E-15
7.57E-06
4.19E-03
2.02E-06
2.06E--.1
1.91E-12
O.OOE-01
O.OOE-01
O.OOE-01
5.45E-24
7.23E-05
1.10E-06
1.89E-05
3.45E-07
9.49E-06
3.51E-03
9.27E-21
7.57E-06
2.33E-03
1.98E-06
9.01E-14
1.01E-16
O.OOE-01
O.OOE-01
O.OOE-C1
7.63E-33
7.23E-05
1.1"E-06
1.39E-05
3.45E-07
1.32E-06
3.59E-03
1.34E-26
7.57E-Oi
1.97E-03
1.93E-06
2.94E-16
5.36E-21
O.OOE-01
O.OOE-01
O.OOE-01
1.07E-41
       .... SUM OF NUCLIDE DOSES FOR GIVEN TIMES 	
       29           2.15E-02  2.09E-02  1.72E-02  1.47E-02  1.31E-02  1.11E-02  9.24E-03  8.01E-03  6.60E-03  5.66E-03



       .... SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
       29           S.01E-09  5.86E-09  4.80E-09  4.12E-09  3.&7E-09  3.11E-09  2.59E-09  2.24E-09  1.85E-09  1.59E-09
                                                           PATHWAY 10
                                                     ATMOSPHERIC TRANSPORT

ro AAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA


10 ANN'JAL DOSE TO AN  INDIVIDUAL DUE TO OFF-SITE ATMOSPHERIC TRANSPORT
    41  H-3         3.62E-08
    42  C-14        2.61E-10
    43  Fe-55       4.70E-10
    44  Co-60       3.69E-07
    45  Mi-59       2.59E-12
    46  Ni-63       T.92E-09
    47  Sr-90       5.74E-09
    48  Nb-94       2.30E-11
    ^-  " — 99       1.78E-12

    51  Cs-135      9'."llE-i4
    52  Bal37i      6.31E-13
    53  Cs-137      1.46E-08
    56  U-234       8.64E-09
    57  U-235       1.31E-10
    53  U-238       2.26E-09
    59  Np-237      4.12E-11
    60  Pu-238      4.26E-07
    61  Pu-239      4.41E-07
    62  Pu-241      1.41E-07
    63  Pu-242      9.06E-10
    64  Ai-241      1.07E-06
    65  An-243      2.53E-10
    66  Ca-243      1.29E-10
    67  Ci-244      8.14E-08
    68  Ru-106      1.88E-10
    69  Sb-125      1.09E-10

-------
     70  C-i-134
     71  Eu-154
                 2.53E-09
                 3.32E-IO
    AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN  TIMES  AAAAAA
        29           2.60E-06



    AAAAAA SUM OF MUCLIDE RISKS FOR GIVEN  TIMES  AAAAAA
        29           7.28E-13


    DISTANCE TO RECEPTOR IS   345.0 METERS
    CKI/Q IS  1.62E-05 CI/MAA3 PER  CI/SEC


     AAAAAAAAAA CUMULATIVE TOTAL DOSES  PER YEAR  FOR  GIVEN TIMES AAAAAAAAAA


         7           9.46E+00  8.33E+00  1.78E+00  3.83E-01  1.84E-01  8.63E-02  5.51E-02  4.03E-02  2.56E-02  1.88E-02



    AAAAAAAAAA CUMULATIVE TOTAL RISKS PER  YEAR FOR GIVEN TIMES AAAAAAAAAA
                     2.&5E-03   2.33E-03   4.98E-04   1.07E-04  5.15E-05  2.42E-05  3..54E-05
                    HALFL:FE AND  INVENTORY  (CD  ASSUMING NO TRANSPORT FROM THE FACILITY
                                                                                       1.13E-05  7.16E-06
ro
o
(TIME IN YR)
41. 1J-3
42 C-14
43 Ee-55
44 Co-60
45 Ni-59
46 Ni-63
47 Sr-90
50 1-129
51 Cs-135
52 Bal37n
53 Ci-137
56 U-234
57 U-235
58 U-238
59 No-237
   Pii-
   ru-
   >y.
   PW
   65
   66
   67
   68
   Ai-243
   Ci-243
   Ci-244
   Ru-106
             HALFLIFE
             I.23E+0:
             5.73E+03
             2.70E+00
             5.25E+00
             8.00E+04
             9.20E+01
             2.86E+01
             2.00E+04
                           7.
                           7.
                 1.70E*07
                 3.01E+06
                 3.00E+01
                 3.00E+01
                 4.47E+09
                 7.04E+08
                  47E+09
                2.10E+06
      0.
  .36E+01
  .42E+00
2.32E+01
8.65E+01
1.43E-01
4.09E+01
2.69E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
4.56E+01
4.56E+01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
      1.
  .43E+01
  .42E+00
  .3QE+01
                                      5BE+01   1
1.43E-01
4.06E+01
2.S3E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
4.46E+01
4.46E+01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
1.10E-01
1.12E-01
     15.
3.37E+01
7.41E+00
4.94E-01
'  19E+01
1.43E-01
3.66E+01
I.87E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
3.23E+01
3.23E+01
4.27E-03
6.35E-05
1.25E-03
9.68E-06
9.86E-02
1.12E-01
     50.
4.69E+00
7.38E+00
6.19E-05
1.18E-01
1.43E-01
2.81E+01
  02E-01
4.53E-03
1.90E-03
5.61E-03
1.90E-03
1.44E+01
1.44E+01
4.27E-03
6.35E-05
1.25E-03
                                                        8
                                                       68E-06
                                                       48E-02
                                                       12E-01
    100.
2.80E-01
7.33E+00
1.65E-10
1.60E-04
1.43E-01
1.93E+01
2.39E-01
4.52E-03
1.90E-03
5.61E-03
1.90E-03
4.53E+00
4.53E+00
4.27E-03
6.85E-05
1.25E-03
9.68E-0&

l'.12E-01
   69 Sb-125
                 'E+03
               19E+01
               ,76E+01
               01E+00
             2.77E+00   3.67E
4.48E-05
3.64E-02
3.67E-03
	-01
 I.40E-05
4.38E-05
3.50E-02
1.85E-03
2.86E-01
5.40E-05
3.23E-05
2.02E-02
1.24E-07
8.60E-03
5.38E-05
1.51E-05
5.08E-03
4.60E-18
1.35E-06
5.35E-05
5.10E-06
7.09E-04
5.75E-33
4.98E-12
    200.
l.OOE-03
7.24E+00
1.43E-01
9.07E+00
2.12E-02
4.51E-03
1.90E-03
5.61E-03
1.90E-03
4.49E-01
4.49E-01

i-.imi
1.25E-03
9.68E-06
2.28E-02
1.11E-01
^^lE-OS
!.431-04
..68E-01
5.30E-05
5.80E-07
1.38E-05
O.OOE-01
6.76E-23
    350.
2.13E-07
7.11E+00
1.43E-01
2.93E+00
5.58E-04
4.48E-03
1.90E-03
5.61E-03
1.90E-03
1.40E-02
1.40E-02
4.27E-03
6.85E-05
1.25E-03
1.11E-01

a'ial-o8

5".23E-05
2.23E-08
3.76E-08
O.OOE-01
O.OOE-01
    500.
4.55E-11
6.99E+00
1.42E-01
9.46E-01
1.47E-05
4.46E-03
1.90E-03
5.61E-03
1.90E-03
4.39E-04
4.39E-04
4.27E-03
6.35E-05
1.25E-03
9.68E-06
2.13E-03
1.10E-01
1.19E-11
2.43E-04
1.07E-01
5.16E-05
8.56E-10
1.02E-10
O.OOE-01
O.OOE-01
    750.
3.47E-17
6.78E+00
                    H§i:$J  §-§§f:§
                    laOJCw/  U • WU t W
     -01
1.42E-01
1.44E-01
3.44E-08
4.42E-03
1.90E-03
5.61E-03
1.90E-03
1.36E-06
1.36E-06
4.27E-03
6.85E-05
1.25E-03
9.68E-06
2.96E-04
1.10E-01
2.36E-17
2.43E-04
7.33E-02
5.04E-05
3.75E-12
5.41E-15
O.OOE-01
O.OOE-01
   1000.
2.64E-23
6.58E+00

O.OOE-01
1.42E-01
2.19E-02
8.03E-11
4.38E-03
1.39E-03
5.&1E-03
1.90E-03
4.22E-09
4.22E-09
4.27E-03
6.85E-05
1.25E-C3
9.68E-6&
4.10E-05
1.09E-01
4.70E-23
2.43E-04
5.03E-02
4.92E-05
1.64E-14
2.87E-19
O.OOE-01
O.OOE-01

-------
en
70
71
Cs-134
Eu-154
2.06E+00
8.50E+00
7
9
NUCLIDE HALFLIFE
(T
41
42
43
44
45
46
47
43
49
30
51
52
53
56
57
5S
60
61
52
63
64
65
66
67
S8
69
71
**j


T.HE IN YR) HALFLIFE
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
i'Jb-94
Tc-99
1-129
Cs-135
Ba" 37a
Cs-137
U-234
U-235
U-238
Np-237
?ij-238
Pu-239
Pu-241
Pu-242
Aa-241
Aiu-243
Cm-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154

NAME

1.23E+01
5.73E+-03
2.70E+00
5.25E+00
8.00E+04
9.20E+01
2.86E+01
2.00E+04
2.13E+05
1.70E+07
3.01E+06
3.00E+01
3.00E+01
4.47E-t-C9
7.04E+08
2.'lol+8b
3'.77E*01.
2.42E+04
1.32E+01
3.79E+05
4.59E+02
7.37E+03
3.19E+01
i .76E+01
1.01E+00
2.77E+00
7
1
<"\
8
i
4
2
4
1
5
i
4
4
4
6
g
1
1
1.
3
2
o
5
4
3
3
3
.4BE+00
.17E-02
5.34E+00 4.81E-02
3.45E-02 2.70E-02
AND INVENTORY (CD REMAINING
0.
.86E+01
.42E+00
.32E+01
.65E+01
.43E-01
.09E+01
.69E+00
.54E-03
.90E-03
.61E-03
.90E-03
.56E+01
.56E+01
.27E-03
.85E-05
•g§^:^
".11E-01
.12E-01
.OOE-i-00
.43E-04
.23E-01
.40E-05
.43E-05
.64E-02
.&7E-03
.67E-01
1. 15.
7.40E+01 3.20E+01
7.39E+00 7.03E+00
1.80E+01 4.94E-01
7.53E+01 1.19E+01
1.43E-01 1.43E-01
4.0&E+01 3.65E+01
2.&3E+00 1.87E+00
4.54E-03 4.53E-03
1.90E-03 1.85E-03
5.6:.E-03 5.57E-03
1.90E-03 1.90E-03
4.46E+01 3.23E+01
4.46E+01 3.23E+01
4.27E-03 4.27E-03
6.85E-05 6.85E-05
§;g§|:§g ^:g^ii8s
l'.10E-01 9i36E-02
1.12E-01 1.12E-01
2.35E+00 1.37E+00
2.43E-04 2.43E-04
2.27E-01 2.22E-01
5.40E-05 5.40E-05
4.38E-05 3.23E-05
3.50E-02 2.02E-02
1.35E-03 1.24E-07
2.86E-01 8.60E-03
3.69E-07 1.82E-14
1.55E-03 2.64E-05
IN THE FACILITY
50. 100.
3.94E+00 1.98E-01
6.20E+00 5.13E*00
6.18E-05 1.64E-10
1.17E-01 1.59E-04
1.43E-01 1.42E-01
2.30E+01 1.92E+01
8. OOE-01 2.38E-01
4.53E-03 4.51E-03
1.75E-03 1.61E-03
5.49E-03 5.37E-03
1.90E-03 1.90E-03
1.44E+01 4.52E-I-00
1.44E+01 4.52E+00
4.27E-03 4.27E-03
6.85E-05 6.85E-05
J"§5!-88 4'i^:8^
7'.48E-02 5'.03E-02
1.12E-01 1.12E-01
2.17E-01 1.57E-02
2.43E-04 2.43E-04
2.11E-01 1.95E-01
5.37E-05 5.34E-05
1.51E-05 5.10E-06
5.08E-03 7.09E-04
4.59E-18 5.74E-33
1.35E-06 4.97E-12
4.44E-29
7.53E-09

200.
4.99E-04
3.61E-*-00
1.16E-21
2.93E-10
1.42E-01
9.02E+00
2.09E-02
4.49E-03
1.37E-03
5.14E-03
1.89E-03
4.48E-01
4.48E-01
4.27E-03
6.85E-05
1.25E-03
9.16E-06
2.28E-02
1.11E-01
3.25E-05
2.43E-04
1.68E-01
5.28E-05
5.30E-07
1.38E-05
O.OOE-01
6.71E-23
2.06E+00 7.48E+00 5.34E+00 4.81E-02 3.S9E-07 1.82E-14 4.43E-29
8.50E+00 9.17E-02 8.45E-02 2.70E-02 1.55E-03 2.64E-05 7.57E-09
O.OOE-01
3.69E-14

350.
6.32E-08
2.10E+00
O.OOE-01
7.31E-19
1.41E-01
2.90E+00
5.48E-04
4.45E-03
1.07E-03
4.81E-03
1.89E-03
1.40E-02
1.40E-02
4.27E-03
6.85E-05
j;^if:J|
6'.98E-03
1.11E-01
3.13E-03
2.43E-04
1.33E-01
5.20E-05
2.23E-08
3.75E-08
O.OOE-01
O.OOE-01
6. OOE-01
3.69E-14
O.OOE-01
1.80E-19

500.
7.99E-12
1.23E+00
O.OOE-01
1.92E-27
1.40E-01
9.32E-01
1.44E-05
4.41E-03
8.40E-04
4.50E-03
1.89E-03
4.35E-04
4.35E-04
4.27E-03
6.84E-05
S '2H-82
2'.13E-03
1.10E-01
1.19E-11
2.43E-04
1.06E-01
5.11E-05
8.55E-10
1.02E-10
O.OOE-01
O.OOE-01
i:8o!:ii
O.OOE-01
2.52E-23

750.
2.55E-18
4.93E-0'.
O.OOE-01
O.OOE-01
1.39E-01
1.41E-01
3.31E-08
4.35E-03
5.58E-04
4.03E-03
1.88E-03
1.35E-0&
1.35E-06
4.26E-03
6.84E-05
)"S?I-82
2!95E-04
1.09E-01
2.36E-17
2.42E-04
7.23E-02
4.97E-05
3.74E-12'
5.40E-15
O.OOE-01
O.OOE-01
mm
O.OOE-O:
3.53E-27

1000.
8.13E-25
2.03E-01
O.OOE-01
O.OOE-01
1.38E-01
2.12E-02
7.65E-11
4.2SE-03
3.71E-04
3.61E-03
1.87E-03
4.15E-09
4.15E-09
4.26E-03
6.84E-05
7^33t-oo
4.09E-05
1.09E-01
4.&9E-23
2.42E-0-}
4.93E-02
4.83E-05
1.63E-14
2.86E-19
O.OOE-01
O.OOE-01
$:§2JI:Pj7
MAXIMUM DOSES S DOMINANT NUCLIDES BY PATHWAY **********
OF RUN
PATHWAY
ANNUAL'DOSE


DOMINANT
YEAR
NUCLIDE
******** 6

2


DUST
.15E-02
0
An-241
PURHU - MD SE
ATMOSPHERIC
2.60E-06
0
An-241
3/86 ********
GAMMA
B.7&E+00
0
Co-60
WELL
1.11E-01
50
C-14

4


FOOD
.84E-01
1
Cs-137









-------