United States Office of EPA 520/1-87-028
Environmental Protection Radiation Programs December 1987
"> i' '•••• \ Washington. D.C. 20460
Low-Level and NARM
Radioactive Wastes
Model Documentation
PATHRAE-EPA
Methodology and Users Manual
-------
40 CFR Part 193 EPA 520/1-87-028
Environmental Radiation Standards (RAE 8706/1-6)
for Management and Land Disposal
of Low-Level Radioactive Wastes
PATHRAE-EPA: A Low-Level Radioactive Waste Environmental
Transport and Risk Assessment Code
METHODOLOGY AND USERS MANUAL
Developed by
Vern Rogers
Cheng Hung
December 1987
Prepared for
U.S. Environmental Protection Agency
Office of Radiation Programs
Washington, DC 20460
Cheng Hung, Project Officer
-------
DISCLAIMER
This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, contractors, sub-
contractors, or their employees, makes any warranty, express or implied,
nor assumes any legal liability or responsibility for any third party's use
or the results of such use of any information, apparatus, product or process
disclosed in this report, nor represents that its use by such third party
would not infringe upon privately owned rights.
-------
PREFACE
This PATHRAE-EPA model documentation provides background
information on the mathematical modeling used to generate the
basic data for the Environmental Impact Statement (EIS) which is
used to support EPA's rulemaking for generally applicable
environmental standards for the management and disposal of
low-level radioactive wastes. The model is used to assess the
maximum annual dose to a critical population group (maximum CPG
dose) resulting from the disposal of below regulatory concern
(BRC) wastes. This model is considered a member of the
PRESTO-EPA family of models. The model is expanded from the
PRESTO-EPA-CPG and PRESTO-EPA-BRC models emphasizing two areas:
(1) the addition of specific radionuclide exposure pathways
pertaining to onsite workers during disposal operation, to
offsite personnel after site closure, and to reclaimers and
inadvertent intruders after site closure; and (2) the
simplification of the sophisticated dynamic submodels to a
quasi-steady state submodels so that the computation time can be
greatly reduced and enable the model to be excuted on a personal
computer.
Interested persons may apply this model, using appropriate
and applicable input data, for assessing the maximum CPG dose
from an unregulated sanitary landfill site.
-------
TABLE OF CONTENTS
LIST OF FIGURES ........................ iv
LIST OF TABLES ........................ v
EXECUTIVE SUMMARY ....................... vi
1 INTRODUCTION ...................... 1-1
1.1 Basis for PATHRAE-EPA ............... 1-3
1.3 Outline of Documentation and Users Manual ..... 1-5
2 PROBLEM DEFINITION ................... 2-1
2.1 Program Description ................ 2-1
2.1.1 Pathways .................. 2-1
2.1.2 Dose Rate Calculations and Environmental
Foodchain Analysis ............. 2-4
2.1.3 Nuclide Inventory .............. 2-6
2.1.4 Groundwater Pathways ............ 2-6
2.2 Pathway Equations ................. 2-7
2.3 Summary of Equations ................ 2-25
2.4 Food Chain Calculations .............. 2-26
3 APPLICATION INFORMATION ................. 3-1
3.1 Input Data and Program Organization ........ 3-1
3.2 Program Options .................. 3-3
3.3 Input Data ..................... 3-10
3.3.1 Data File One - BRCDCF.DAT ......... 3-12
3.3.2 Data File Two - ABCDEF.DAT ......... 3-14
3.3.3 Data File Three - RQSITE.DAT ........ 3-20
3.3.4 Data File Four - INVNTRY.DAT ........ 3-22
3.3.5 Data File Five - UPTAKE.DAT ......... 3-23
3.4 Output Data .................... 3-26
4 SAMPLE PROBLEM ..................... 4-1
4.1 Problem Definition ................. 4-1
4.2 Results ...................... 4-1
4.3 PATHRAE-EPA Computer Compatibility ......... 4-6
IV
-------
TABLE OF CONTENTS
(Continued)
Page
REFERENCES R-l
APPENDIX A — SOURCE LISTING FOR PATHRAE-EPA CODE A-l
APPENDIX B — DATA FILES AND OUTPUT FROM PATHRAE-EPA FOR SAMPLE
PROBLEM B-l
v
-------
LIST OF FIGURES
Figure No. Pajje.
2-1 Major Pathways for PATHRAE-EPA 2-2
2-2 Representation of Area Source Term for Groundwater
Flow 2-12
3-1 Input and Output Data Flow for PATHRAE-EPA 3-2
3-2 PATHRAE-EPA Subroutine Hierarchy 3-4
3-3 Logic Flow of PATHRAE-EPA 3-6
4-1 Representation of Sample Problem 4-2
VI
-------
LIST OF TABLES
Table No. Page
1-1
2-1
3-1
3-2
4-1
4-2
4-3
PRESTO-EPA Code Family
Descriptions of PATHRAE-EPA Subroutines
Summary of PATHRAE Program Options
Site Parameters Used in Sample Problem
Nuclide Inventory
Facility Dose Rates for Various Times for Sample
Problem
1-2
2-8
3-5
3-11
4-3
4-4
4-5
Vll
-------
EXECUTIVE SUMMARY
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the land disposal of
low-level radioactive waste (LLW). The standard will support the U.S.
Nuclear Regulatory Commission and the U.S. Department of Energy in
developing a national radioactive waste management system. Technical
support for the standard includes an estimation of the environmental
impacts from the disposal of LLW in a wide variety of facilities ranging
from a standard sanitary landfill to a deep geologic repository.
As an aid in developing the standard, a family of computer codes,
entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC
and PATHRAE-EPA has been developed under EPA direction. The EPA uses the
PRESTO-EPA code family to compare the potential health impacts of a broad
number of LLW disposal alternatives to evaluate and support its decisions
for the LLW standard.
This report documents the PATHRAE-EPA computer code used to calculate
maximum annual doses to a critical population group (CPG). These doses may
result from the disposal of candidate "below regulatory concern" (BRC)
radioactive wastes at municipal dumps and sanitary landfills located in
three representative and diverse hydrological, climatic, and demographic
settings.
The PATHRAE-EPA code was developed by Rogers and Associates
Engineering Corporation under EPA direction. The model for the code is
based upon analytical solutions of the transport equation and both
Vlll
-------
radiation doses and health effects can be projected for any time period
during or following the end" of BRC waste disposal operations.
PATHRAE-EPA is a multiple transport pathway, annual dose assessment
computer code. The code may be executed on a variety of computers
including advanced personal computers (e.g., IBM-AT or IBM-XT). The
multiple pathways modeled for radioactive nuclide transport include
contaminated groundwater transport to rivers or wells, surface water
contamination by erosion of contaminated soil, contamination of soil and
water due to disposal facility overflow, atmospheric transport of airborne
nuclides and inhalation by humans. Inhalation doses may be calculated to
workers engaged in disposal operations and to an off-site population during
operation and after site closure. Maximum annual doses to inadvertent
intruders and residents at the site following site closure may be
calculated. Annual doses may result from internal exposures due to
inhalation or ingestion of contaminated materials or from external
exposures arising from nuclides on or below the ground surface.
The Environmental Protection Agency wishes to warn potential users
that, like any complex computer code, the PATHRAE-EPA code can be misused.
Misuse could consist of using the code to examine a site where one or more
critical modeling assumptions are invalid, or where values for significant
input parameters are chosen that do not accurately reflect variables such
as radionuclide inventory, site meteorology, surface and subsurface
hydrology and geology, and future population demographics. Certain release
and transport scenarios, such as major changes in meteorology or mining,
are not considered in the PATHRAE-EPA model and code and significant
changes to the existing code and the input data may be required to consider
IX
-------
such scenarios. The PATHRAE-EPA and PRESTO-EPA codes were developed to
assess and compare alternative methods for managing and disposing of LLW at
generic sites for general scenarios.
-------
1. INTRODUCTION
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the disposal of low-level
radioactive waste (LLW) to support the U.S. Nuclear Regulatory Commission
and the U.S. Department of Energy in developing a national radioactive
waste management system. Technical support for the standard includes an
estimation of the environmental impacts from the disposal of LLW in a wide
variety of facilities, ranging from a standard sanitary landfill to a deep
geologic repository.
As an aid in developing the standard, a family of computer codes,
entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC
and PATHRAE-EPA has been developed under EPA direction. The PRESTO-EPA-POP
code was the first code developed and served as the basis for the other
PRESTO-EPA codes. The model is expanded and modified from the
PRESTO-EPA-CPG and PRESTO-EPA-BRC models emphasizing two areas: (1) the
addition of exposure pathways pertaining to onsite workers and to
inadvertent intruders; and (2) the simplification of the sophisticated
dynamic submodels to a quasi-steady state submodels which enables the model
to be excuted on a personal computer. The EPA uses the PRESTO-EPA code
family to compare the potential health impacts of a broad number of LLW
disposal alternatives to evaluate and support its decisions for the LLW
standard. Table 1-1 provides a brief description of each of the EPA codes.
These codes, and how the EPA uses them, have been described in detail
(Hu83, Ga84, Ro84a). Information on obtaining complete documentation and
user's manuals for the PRESTO-EPA family of codes (EPA85a through EPA85g,
MeySl, Mey84) is available from the EPA.
1-1
-------
TABLE 1-1
PRESTO-EPA CODE FAMILY
PRESTO-EPA Code
Purpose
PRESTO-EPA-POP
PRESTO-EPA-DEEP
PRESTO-EPA-CPG
PRESTO-EPA-BRC
PATHRAE-EPA
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by shallow methods; long-term analyses are modeled
(generally 10,000 years).
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by deep methods.
Estimates maximum annual whole-body dose to a critical
population group from land disposal of LLW by shallow or
deep methods; dose in maximum year is determined.
Estimates cumulative population health effects to local
and regional basin populations from less restrictive
disposal of BRC wastes by sanitary landfill and
incineration methods.
Estimates annual whole-body doses to a critical
population group from less restrictive disposal of BRC
wastes by sanitary landfill and incineration methods.
1-2
-------
1.1 BASIS FOR PATHRAE-EPA
The development of the standard for low-level waste (LLW) and below
regulatory concern (BRC) waste disposal by EPA has led to the development
of the performance assessment code PATHRAE-EPA. The PATHRAE-EPA code was
developed by Rogers and Associates Engineering Corporation under EPA
direction. The model for PATHRAE-EPA is based upon analytical solutions
(Bu80) of the transport equation and both annual radiation doses and health
effects can be projected for any time period during or following the end of
BRC disposal operations.
The PATHRAE-EPA code may be used to provide estimates of the magnitude
of health effects which could potentially occur if certain radioactive
wastes were classified as BRC and disposed of in a sanitary landfill or
municipal dump. PATHRAE-EPA has been used to calculate maximum annual
effective whole body dose equivalents (doses)* to a critical population
group (CPG) due to the disposal of candidate BRC wastes at municipal dumps
and sanitary landfills located in three representative and diverse
hydrogeologic, climatic, and demographic settings (EPA84). Maximum annual
doses are calculated to workers during disposal operations, to off-site
personnel after site closure, and to reclaimers and inadvertent intruders
after site closure. A detailed description of the candidate BRC waste
streams, the disposal facility characterizations and the resulting doses
calculated by PATHRAE-EPA is given in the references (Ga84, EPA84).
The principal advantage of PATHRAE-EPA is its simplicity of operation
and presentation while still allowing a comprehensive set of nuclides and
Throughout this report the term "dose" refers to the effective
whole body dose equivalent.
1-3
-------
pathways to be analyzed. PATHRAE-EPA can be installed and operated on a
variety of computer systems including advanced personal computers such as
the IBM-AT or IBM-XT. Site performance for radioactive waste disposal can
be readily investigated with relatively few parameters needed to define the
problem. Important parameters that limit site performance are also readily
identified. For example, key site parameters are found generally to
include:
0 Depth to the aquifer
• Aquifer distance to accessible location
• Aquifer velocity
• Facility size
0 Facility operating time
0 Precipitation
0 Soil retardation characteristics
0 Depth of emplacement of waste
0 Cover thickness and permeability
Of the many ways in which exposures to radiation from radioactive
waste may occur, some have not been included in PATHRAE-EPA because they
are either not restricting or are highly improbable. Only those reasonably
probable pathways which are most significant and potentially restricting
have been treated in the PATHRAE-EPA code. This does not mean that these
exposure events will occur. Rather, it is the intent of the PATHRAE-EPA
code to model a consistent set of events in such a manner as to estimate a
range of probable impacts. The resulting range can be used as a basis for
decision making among a variety of diverse alternatives.
1-4
-------
The PATHRAE-EPA methodology models both off site and on site pathways
through which humans may come in contact with radioactivity from the waste.
The off site pathways include groundwater transport to a river and to a
well, surface (wind or water) erosion, disposal facility overflow, and
atmospheric transport. The on site pathways of concern arise principally
from worker doses during operations and from post closure site reclamation
or intruder activities such as living and growing edible vegetation on site
and drilling wells for irrigation or drinking water.
For each of the pathways which have been included in PATHRAE-EPA, the
dose from each nuclide is calculated as a function of time. Each of these
doses is then summed to give the total effective dose for that pathway.
The dose to the critical population group (CPG) from all pathways is then
computed, assuming the entire nuclide inventory is accessible through each
pathway. In addition to dose information, nuclide concentrations in river
water are calculated for the river, erosion, and bathtub pathways, while
well water concentrations are given for the well pathway.
1.3 OUTLINE OF DOCUMENTATION AND USERS MANUAL
This report contains the documentation necessary to understand and use
the PATHRAE-EPA code. It is intended for those familiar with the operation
of computer systems and who will be conducting PATHRAE-EPA type analyses.
A basic familiarity with the pathway approach used in the PRESTO-EPA family
of codes is also presumed (EPA87a-EPA87f).
In this chapter the background and use of the PATHRAE-EPA code are
briefly described. A summary of the equations, calculational methods, and
1-5
-------
general methodology used in PATHRAE-EPA is presented in Chapter 2 as well
as a description of the program options that are available. Chapter 3
contains detailed card image input instructions which will allow the used
to understand and construct the necessary data files to execute and fully
utilize the capabilities of PATHRAE-EPA. Also a brief description of the
code output is given. Finally, in Chapter 4 a sample problem is discussed
and input data sets for running the problem are given. A source listing of
PATHRAE-EPA given in Appendix A and a listing of the output for the sample
problem is given in Appendix B.
1-6
-------
2. PROBLEM DEFINITION
2.1 PROGRAM DESCRIPTION
The PATHRAE-EPA code has features which make it applicable to a wide
range of nuclear waste disposal analyses. These features are briefly
identified below.
2.1.1 Pathways
Up to ten pathways by which radioactivity may reach humans can be
considered. As shown in Figure 2-1, the pathways are:
1. Groundwater migration with discharge to a river.
This pathway consists of downward migration of waste
components by advection or as a result of dissolution in
percolating precipitation. The waste components move
downward through the unsaturated zone to an aquifer beneath
the disposal site. In the aquifer the waste components are
transported by advection and dispersion to an outcrop
location where the aquifer discharges to a surface stream.
2. Groundwater migration with discharge to a well.
Groundwater transport to a well is similar to the
pathway described above except that the contaminated aquifer
water is withdrawn from a well.
3. Surface erosion of the cover material and waste and
subsequent contamination of surface water.
Erosion and movement to a surface stream involves the
gradual removal of the cover over the disposed waste by
erosion and, eventually, the slow removal of the waste
itself. The time required for erosion of the total cover
depth is calculated. Then erosion operates on the waste
materials by removing a given amount (specific depth) from
the top of the waste each year. A conservative assumption
is made that the eroded waste components enter the surface
stream in the same year they erode from the waste site.
4. Saturation of waste and facility overflow (bathtub effect).
This pathway calculates the doses generated when a
waste site becomes saturated with water and the contaminated
water subsequently overflows the waste trench and enters a
stream.
2-1
-------
EXPOSURE
EVENTS
OFFSITE
ONSITE
GROUNDWATER TO A RIVER
GROUNDWATER TO A WELL
SURFACE EROSION
FACILITY OVERFLOW
ATMOSPHERIC TRANSPORT
DUST INHALATION
FOOD CONSUMPTION
EXTERNAL GAMMA
BIOINTRUSION
RADIOACTIVE GAS
INHALATION
RAE-102227
FIGURE 2-1. MAJOR PATHWAYS FOR PATHRAE-EPA.
2-2
-------
5. Food grown on the waste site.
This pathway describes the consumption of food grown on
reclaimed farm land and accounts for potential exposure of
individuals to waste materials through the human food chain.
A basic assumption in this pathway is that reclamation
activities are required to cause exposure to waste
materials. The means for disturbing the waste materials
include drilling wells through the waste and excavating a
basement for a house. The waste excavated by these
activities is uniformly mixed with uncontaminated surface
soil down to a specified depth. The soil mixture is then
used to grow edible crops and forage for milk and meat
producing animals. Individuals are assumed to get some
fraction of their food needs from contaminated crops, meat,
and milk. The total waste inventory at the site decreases
with time to account for loss of contaminants by leaching to
the groundwater pathways.
6. Biointrusion into the waste.
This pathway is similar to the food pathway described
above, but involves the consumption of crops whose roots
have penetrated into previously undisturbed subsurface waste
materials. The crops are presumed to absorb waste
constituents through root uptake after which the crops are
directly consumed by humans. The difference between this
pathway and the reclaimer farm pathway is that no excavation
of waste material occurs.
7. Direct gamma exposure.
This exposure pathway calculates the external radiation
dose to an individual standing directly over a waste site.
The cover material over the waste is allowed to erode at a
specified rate so the degree of shielding provided by the
cover may decrease in time. For this pathway the
conservative assumption is made that no loss of contaminants
occurs by leaching to the groundwater pathways. The time
dependence of the source term is described solely by
radioactive decay.
8. Inhalation of radioactive dust on-site.
This pathway traces the effects of inhaling
contaminated dust that is suspended during the excavation of
a basement or well by a reclaimer and/or during the disposal
operation by a operator.
9 Inhalation of radon gas and radon daughters on-site.
This pathway calculates the effects on a reclaimer of
inhaling radon and radon daughters while inside a structure
built over the waste.
10. Inhalation of radioactive particulates off-site (from an
on-site incinerator, trench fire, or dust resuspension).
This pathway usesa Gaussian plume technique to trace
the effects of site derived airborne contaminants on a
representative off-site population.
2-3
-------
2.1.2 Dose Rate Calculations and Environmental Foodchain Analysis
The annual doses are calculated at up to ten different times after
site closure using factors contained in the input data. The equivalent
whole body dose conversion factors for the sample problem given in
Appendix B were obtained from PRESTO-EPA-CPG calculations using the DARTAB
subroutines and RADRISK data file (Du80). The user may input other dose
conversion factors if desired.
Complete environmental foodchain analysis is performed using the EPA
methodology contained in the PRESTO-EPA codes (EPA87a-EPA87e). The
foodchain calculations consider direct consumption of contaminated water,
use of the water for animal consumption and irrigation of vegetation,
consumption of the vegetation by humans and animals, and human consumption
of contaminated milk and meat from the animals. The foodchain calculations
also consider vegetation grown directly in contaminated soil, with
consumption of the vegetation by humans and animals. The foodchain
calculations include transfer factors to vegetation and animals as well as
consumption rates for water, vegetation, meat, and milk. For convenience,
the routines performing the foodchain calculations calculate equivalent
uptake factors for use in similar model runs, such that the foodchain
analysis need not be repeated each time.
The equivalent total uptake factors quantify, on a nuclide specific
basis, the annual nuclide uptake by an individual from all potential
sources. For inhalation, it is just the breathing rate. For ingestion, it
is the total equivalent annual drinking water consumption in liters that
would give the same annual nuclide uptake as would occur from the
consumption of contaminated vegetation, meat, milk, seafood, and drinking
2-4
-------
water. Since soil-to-plant transfer factors, and other related factors may
be nuclide-dependent, the equivalent total uptake factors are nuclide-
dependent.
As an example, suppose an individual uses contaminated well water for
drinking, irrigating a vegetable garden, and watering a milk cow. If the
individual consumes some of the vegetables and milk on a regular basis then
the routes by which nuclides are ingested by humans are:
• water - human
• water - vegetables - human
• water - cow - milk - human
The uptake factor for each nuclide would then be the equivalent amount of
water the individual would have to drink in order to ingest the same
quantity of the nuclide as is ingested via the three pathways listed above.
In this example the uptake factor depends on the amount of drinking water
consumed by the individual and by the cow, and on the amounts of vegetables
and milk consumed. Thus, the specific pathways by which contaminants are
ingested and the quantities of contaminated foods ingested are built into
the uptake factors.
For the pathways involving food grown over the waste site the uptake
factors have a similar meaning. In this case, the uptake factor for a
particular nuclide is the equivalent amount of waste material (kg/yr) an
individual would have to directly consume in order to ingest the same
amount of that nuclide as he ingests by eating contaminated foods.
2-5
-------
2.1.3 Nuclide Inventory
The nuclide inventory for PATHRAE-EPA can contain up to 75 nuclides.
This can be expanded easily by increasing the limits of appropriate
parameters in the DIMENSION and COMMON statements. The inventory can
either be specified at all of the designated times or calculated from an
initial inventory. In addition, the decay of the nuclide inventory and the
ingrowth of daughters can be calculated for the operational and
post operational periods.
2.1.4 Groundwater Pathways
The transport of nuclides in the groundwater system can be calculated
with or without longitudinal and transverse dispersion terms. The ingrowth
of daughter nuclides during transport in the groundwater system can be
included using any of seven three- or four-member decay chains. The decay
chains are:
1. Cm-244 — Pu-240 — U-236
2. Pu-240 — U-236 — Th-232
3. Am-243 — Pu-239 — U-235
4. Pu-241 — Am-241 — Np-237
5. Pu-238— U-234 — Th-230— Ra-226
6. Pu-242 — U-238 — U-234
7. U-238 -* Th-230 — Ra-226
Some of these chains are approximate representations of longer chains.
For example, decay chain five is calculated assuming all of the Pu-238
decays to U-234 in a time period that is short compared to the nuclide
transit time in the aquifer.
2-6
-------
In most circumstances decay chain seven has the most significant
impact on human nuclide doses and the other six chains can be ignored.
However, the user should bear in mind that this is not always the case.
The initial nuclide inventory should be carefully examined to assess the
importance of the other chains.
When any of the decay chains are activated, PATHRAE-EPA requires that
each nuclide in the chain be listed in the initial inventory. If it is
desired to model a situation where a particular member of a decay chain is
not present initially, the inventory for that nuclide should be input as a
very small number, but not zero.
2.2 PATHWAY EQUATIONS
The equations used to calculate the doses for each of the ten pathways
are presented in this section. References are given to aid the reader in
understanding the assumptions on which the equations are based and, where
appropriate, some discussion is given of the important features of the
equations. In general, the equations can be grouped into three components
representing the waste form or release rate, the transport pathway and
environmental uptake. For simplicity, the results of the environmental
foodchain analysis are represented in the equations by the symbol, U,
called the equivalent uptake factor. Table 2-1 expresses the dose
equations in terms of these three components.
Pathway One - Groundwater To A River
The annual whole body equivalent dose due to groundwater migration
with discharge to a river is calculated from the following equation.
2-7
-------
TABLE 2-1
DOSES AND THEIR COMPONENTS
ro
00
PATHWAY
1. Groundwater
2. Well Water
3. Sheet Erosion
4. Overflow
5. Food Grown By
Reclaimer
6. Biointrusion
7. Direct Ganma
8. Dust Inhalation
9. Radon
Inhalation
10. Atmospheric
Transport
DOSE
Q\L f0 U!(DF)
q*
Q\L f0 U2(DF)
qw
Q fe fdii UI(DF)
qw
Q. fe fdii ui(°F)
qw
Q fd fg U3(DF)
V3S
Q fdb fg U3(°F)
Vds
Q Rc Rw fexp(Q760HDFGw
A '"wTw
Q fd dd W ui(DH
Vdw
Q E V^ tanh(bwTw)(e-bcTc) U^DF)
H\rV F
^r ff fv (£-) Ui(DF)
WASTE FORM
COMPONENT
q\L
QXL
Qfe
Qfe
a
V
3.
V
a
A
a
V
3E
V
Qfv
T~
PATHWAY COMPONENT
'o
-------
p = X|.l (2-1)
where
D = annual whole body equivalent dose (mrem/yr)
Q = inventory of the radioactive nuclide available in a given
year (pCi)
% = flow rate of the river
^o = fraction of inventory arriving at the river at time t from
transport through the aquifer
*•!_ = fraction of each nuclide leached from the inventory in a
year
Ul = annual equivalent uptake by an individual
OF = dose conversion factor (mrem/pCi )
The components of the equation are:
Release Rate = QXL
Transport Pathway = f0
Environmental Uptake = _1(DF)
The term f0 can be calculated for dispersive groundwater transport
using two methods. For the first case a constant fraction leach model is
used to obtain a non-dispersive solution, which is modified by the Hung
Correction Factor (Hu86) to obtain a dispersive solution form for fQ given
by:
/•
0 for t <_ ti - tg
- t0 < t < tx
VLR\L
|l-exP["-XL(t-(t1-to))]> for
( L J)
xp -\L(t-tl) l-exp(-XUo) for tl £ t (2-2)
L -I L -I
2-9
-------
where
t = calendar time (yr)
t0 = RL/va
t! = R(L+xr)/va (yr)
xr = distance of groundwater flow from nearest edge of burial
pits to the river (m)
va = interstitial horizontal aquifer velocity (m/yr)
Fn = Hung's correction factor for dispersion
L = length of waste site in direction parallel to aquifer flow
(m)
R = retardation factor = 1 + - Kd,
P
Kd = sorption coefficient in the aquifer (m^/kg)
d = aquifer density (kg/m^)
p = aquifer porosity
The term Ff, is applicable to a time integration of the release and is
given by (Hu86):
Fn = exp
V4vdva+va2)
(2-3)
where
Da = longitudinal dispersivity (m)
vd = RXDa (m/yr)
x = radioactive decay constant for given nuclide (yr"-'-)
For dispersive groundwater transport a band release leaching model is
used and f0 is given by (Ro82):
N r i
(2-4)
2-10
-------
where
Fj(t) = 0.5 U(t) [erfc (z-) + exp(dj) erfc (z+)]
erf(z) = error function of z
erfc(z) = complementary error function of z
U(t) = unit step function
z± = V5j"[l±t/(RtWj)]
2Vt/(Rtwj)
dj = distance from sector center to access location, divided by
the dispersivity
twj = water travel time from sector center to access location (yr)
N = number of spatial integration mesh points over waste source
The numerical integration referred to above is a means by which the
point source analytical solution for dispersive transport can be extended
to approximate an area source. As shown in Figure 2-2, the disposal
facility of length L is divided into N sectors of equal length. A point
source of the appropriate magnitude is placed at the center of each sector.
The distance, dj, is proportional to the distance from the center of
sector j to the access location. The point source analytical solutions are
then summed over all sectors to approximate an area source.
When any of the decay chains are calculated in PATHRAE-EPA it is
possible to get negative arguments for the square root function. This is
due to the boundary conditions imposed on the solution. The problem arises
only when the dispersivity is large and it affects only the calculation of
concentrations for daughter nuclides in the decay chains. Like most
dispersive transport solutions, the equations used in PATHRAE-EPA are,
strictly speaking, only valid for low dispersivities. So, when the
argument of a square root is less than zero, PATHRAE-EPA decreases the
2-11
-------
— —^••M
r
i
•^
4
N-
i
-1
: U
• • -WASTE NODES* • •
I
I
>
i
2
i
1
\
CONTAMINATED ZONE
RAE- 1 00983A
AQUIFER FLOW
FIGURE 2-2. REPRESENTATION OF AREA SOURCE TERM FOR GROUNDWATER FLOW.
2-12
-------
dispersi vity by a factor of ten for the remainder of that decay chain
calculation. After each chain calculation the dispersivity is restored to
its original value. This procedure does not significantly alter the
nuclide concentrations because the parent nuclides in the chains are not
affected.
Pathway Two - Groundwater To A Well
Groundwater migration with discharge to a well is calculated from
D = QVLfou2(P':) (2_5)
where
1)2 = annual equivalent total uptake of well water by an
individual (^
The aquifer dilution water flow rate qw is given, in this case, by:
qw = W L vaP (2-6)
where
W = width of waste pit perpendicular to aquifer flow (m)
L = Thickness of aquifer (m)
P = Porosity of the aquifer
Theoretically a stratified flow, having the leachate on top of the
oncoming groundwater, will develop at the downstream end of a disposal site,
Figure 2-2. However, in the case of a low yield aquifer normally occurring
at a disposal site, a significant draw-down of the groundwater table will
develop in the vicinity of the well. Therefore, the streamlines of the flow
will be compressed and result in near-complete mixing at the well.
2-13
-------
In addition to modeling the effects of longitudinal dispersion in the
aquifer, the well pathway can account for any transverse dispersion that
may occur. This reduces the conservatism when calculating nuclide doses
for the well pathway. When modeling transverse dispersion the term fQ in
Equation 2-5 is modified by an additional multiplicative term, f ^, given
by:
ft = i erf
(yw
I erf
(yw -
(2-7)
where
yw = distance to well from center of waste area in the direction
perpendicular to the aquifer flow (m)
Dy = transverse dispersion coefficient (m^/yr)
For the limiting case in which Dy goes to zero ft becomes equal to one.
Therefore, the effects of transverse dispersion can be ignored by choosing
Dy equal to zero.
The groundwater pathways to the river and the well can also
accommodate transport in the vertical unsaturated zone between the waste
and the aquifer. This is accomplished in the same manner as in the
PRESTO-EPA-POP code (EPA87a). The vertical water velocity and retardation
are given by:
Vv = P/(p,S)
(2-8)
R = 1 +
PS
where
2-14
-------
Ps = effective soil porosity
S = fraction of saturation
ds = bulk density of soil (g/cm^)
The term S can either be input or calculated from the expression:
S = Sr + (1 - Sr)
P |SNO (2-9)
where
Sr = residual saturation fraction
SNO = soil index
Kh = vertical zone saturated hydraulic conductivity (m/yr)
P = annual percolation (m/yr)
Pathway Three - Sheet Erosion and Transport To A River
In this pathway, the model calculates the doses due to surface
transport of radionuclides and deposition in a river. The radionuclides
originate either from operational spillage or from sheet erosion of the
trench cover and waste. The dose for sheet erosion of cover material and
waste and its subsequent deposition in a nearby river is given by:
p a dil (2-10)
where
fe = fraction of waste eroded each year
= fraction of solids entering river that originated in waste
trenches (calculated by the code)
2-15
-------
The parameter fe is calculated from the surface erosion rate, Er, which is
an input variable, according to the relation fe = Er/Tw, where Tw is the
waste thickness (m) and Er is expressed in m/yr.
In the initial year of the simulation it is assumed that surface
runoff mobilizes radionuclides spilled during facility operations. These
contaminants are subsequently deposited in a nearby river. The dose for
this initial year of the erosion pathway is calculated usirvg the same
approach as that in the PRESTO-EPA codes (EPA85a-EPA85$) and is given by:
n = Q fspl "1 (PF) (2-11)
Kd ds + P)
where
^spl = surface spillage fraction
dact = active depth of soil in the surface-contaminated region (m)
Tp = annual runoff of precipitation (m)
Pathway Four - Disposal Facility Overflow
When precipitation and geologic conditions allow, the waste disposal
facility may become filled with water and overflow across the ground
surface. This "bathtub effect" is calculated as a modification to the
erosion pathway. PATHRAE-EPA calculates the dose resulting from the
bathtub effect by replacing the erosion rate Er with the expression:
-P(t - tf )
L(Kddw + p)tw
where
dw = waste density (gm/cm3)
tf = time at which trench overflow begins (yr)
2-16
(2-12)
-------
Pathway Five - Food Grown On Site
The equation for the dose from ingestion of food grown over the
disposal site is:
where
fd = dilution factor representing the dilution of waste in the
soil
fg = fraction of individual's diet consisting of food grown over
the disposal site
U3 = total equivalent uptake factor for food (kg/yr)
V = volume of waste (m^)
Equation 2-13 assumes that at some future time a reclaimer moves onto
the waste disposal site and builds a house. By excavating a basement for
the house and by drilling a well on the property, some of the waste
material is brought to the surface and is uniformly mixed with the surface
soil to some depth (Tg). A representation of the parameters used to
calculate f^ is shown in Figure 2-4. Using these assumptions, the factor '"'
f
-------
Tg = depth to which contaminants are mixed with surface soil (m)
Tw = thickness of the waste (m)
AI = lot area (m2)
An = house area (m^)
Aw = cross sectional area of wells drilled (nv?)
The first term in the brackets of Equation 2-14 is the component due
to the excavation of a basement. The second term is the well drilling
component. A complete derivation of Equation 2-14 is given by Rogers
(Ro82).
Pathway Six - Biointrusion
Biointrusion into the undisturbed waste is calculated in the program
with Equation 2-13. It is assumed that plant roots penetrate into the
waste and the plants are later consumed by humans. The main difference
between this pathway and Pathway Five is that f^ is replaced by f^ which
is computed differently. For this pathway:
fHh =<
fm w for Tr 1 T
rdb ^ fm I1 - y^) for Tc < Tr < Tc + Tw
1 r
3 for Tr 1 Tc
\
where
Tr = plant root depth (m)
Pathway Seven - Direct Gamma
The dose from direct gamma exposure to an intruder is calculated from:
2-18
-------
D =
Anv,tw
B(mcTc) exp(-mcTc)
)
J
) exp(-mwTw) fexp (8760)(DFG)
where
B(mT) = 1 + (mT)1.5/Eg = buildup factor
r\, = gamma attenuation constant of the waste (1/m)
mc = gamma attenuation constant of the cover (1/m)
^exp = fraction of the year the individual is exposed to given
pathway
A = plane area of the waste, the waste is assumed to be a
circular horizontal plane with the exposed individual
standing at the center (m^)
Eg = weighted average gamma energy emitted by nuclide (MeV)
DF6 = infinite ground plane dose conversion factor (mrem/hr per
pCi/m2)
The function B(mT) in Equation 2-15 is the gamma radiation buildup
factor which is used to account for the effects of gamma ray scattering in
the waste and in the cover. It is an empirical relation based on gamma
scattering data at energies from 0.25 MeV to 1.0 MeV (Mo67). The term in
brackets in Equation 2-15 accounts for self-shielding and buildup in the
waste of gamma rays.
The weighted average gamma energy is computed by taking the average of
all gamma energies emitted by a particular nuclide, each energy weighted
by its probability of occurrence. For example, if decay of a nuclide
produces a 1 MeV gamma ray 20 percent of the time, a 2 MeV gamma 80 percent
of the time and a 2.1 MeV gamma 100 percent of the time, then the weighted
average gamma energy would be:
2-19
-------
E = (0.2 x 1 MeV + 0.8 x 2 MeV + 1.0 x 2.1 MeV) = 1>95 MeV
9 (0.2 + 0.8 + 1.0)
For the sample problem in Chapter 4, the gamma energy for Cs-137 was
calculated from the Ba-137m gamma rays.
The infinite ground plane dose conversion factor is discussed in the
references (NRC77). For the sample problem, DFG was obtained from
PRESTO-EPA runs.
There are three alternatives available when calculating direct gamma
doses using PATHRAE-EPA. The first alternative allows the calculation of
the gamma dose from the undisturbed buried waste. The second alternative
assumes that plant roots penetrate the waste and transport some nuclides to
the surface. Each year the plants die and deposit their absorbed nuclides
on the ground surface so there is continual transport of nuclides and
deposition on the ground surface. The gamma dose is calculated from the
nuclides deposited on the surface as well as the nuclides remaining in the
original burial trenches. The third alternative assumes that a reclaimer
builds a house and digs a well on the site as described for Pathway Five.
This brings some of the waste material to the surface where it is mixed
with the existing soil. The gamma dose is calculated from the waste on the
surface and from the waste that remains underground. The three options in
Pathway Seven are selected by the value of the PATHRAE-EPA variable IGAMMA
which can have the value 0, 1, or 2.
Pathway Eight - On-Site Dust Inhalation
In this pathway, doses are calculated for a reclaimer excavating a
disposal trench some time after site closure. Alternatively, doses to site
2-20
-------
workers can be calculated for inhalation of suspended particulates during
disposal operations. The dose for the inhalation of resuspended,
contaminated dust by an inadvertent intruder is given by:
D = Qfddd Ujfexp(DF) (2-16)
Vcfw
where
fd = dilution factor representing the dilution of waste in the
soil
d
-------
Q = inventory of Ra226 (pCi )
E = fraction of radon which can emanate upward from the waste
H = height of rooms in structure built over the waste (cm)
Xr = air ventilation rate of the structure (air changes/sec)
X = decay constant of radon (I/sec)
TI = thickness of earthen cover (m)
T2 = thickness of concrete floor in reclaimer house (cm)
Dw = radon diffusion coefficient of the waste (cm^/sec)
DI = radon diffusion coefficient of the cover (cm2/sec)
D2 = radon diffusion coefficient of concrete floor (cm^/sec)
F = - [1 +Vaw/ac tanh(100bwTw)] +
2
- [1 -VVa^" tanh(100bwTw)] exp(-2(100 bj Tx + b2 T2))
2
ai = P2i Di [1 - (l-k)m]2 (i = w, l, 2)
bn- = VVD7 (i = w, 1, 2)
p-j = porosity (i = w, 1, 2)
n\i = 0.01 Mdi/pi (i = w, 1, 2)
M = moisture content (dry weight percent)
k = 0.26 pCi/nr of radon in water per pCi/m^ in air
A description of the theoretical basis of Equation 2-17 is given in the
references (Ro82, Ro84b). For most problems, a^ can be set equal to unity
with little loss of accuracy.
Pathway Ten - Atmospheric Transport of Contaminants
The dose from the inhalation of airborne contaminants from dust
resuspension, incineration, or a trench fire is given by:
2-22
-------
D = 3. r fffy (*_) Ui (DF) (2-18;
V Q1
where
r = dust resuspension rate or burn rate of incinerator or
trench fire (m3/sec)
ff = deposition velocity for resuspended dust (m/sec) or
fraction of the year the burning occurs for incinerator and
trench fire
fv = nuclide specific volatility factor for incineration or
trench fire (fraction of nuclide released to atmosphere)
X = downwind atmospheric concentration (pCi/m3)
Q' = atmospheric source release rate (pCi/sec)
PATHRAE-EPA uses Gaussian plume (S168, EPA85a) expressions for X/Q1:
Q1
(2-19)
where
fw = fraction of time wind blows in direction of interest
sz = standard deviation of plume concentration in vertical
direction (m)
u = average wind speed (m/sec)
n = number of sectors or wind directions (usually 16 sectors)
x = distance from source to receptor (m)
h = effective release height including momentum and thermal
plume rise effects (m)
Plume depletion effects from deposition are represented by a reduced source
release rate calculated within the code (EPA87a). The actual release
height is modified to account for momentum and thermal plume rise effects
by the following equation (S168):
2-23
-------
h . h * U5 "* "s * 1.6Q.7E-5
where
hs = actual release height (m)
vs = stack gas velocity (m/sec)
Ds = stack inside diameter (m)
QH = heat emission rate from stack (cal/sec)
Equation 2-20 is valid as long as the distance to the receptor location is
less than ten times the stack height. For greater distances the receptor
distance, x, is replaced with 10 hs.
If some parameters are unknown or poorly characterized, a default
option, based on the location of the maximum plume concentration, is used.
In this case:
— = 2 (2-21)
where
e = base of the natural logarithm (2.71828)
Equations 2-19 and 2-21 (S168) are expressions for point sources. For
the trench fire scenario it is assumed that the fire involves a relatively
small amount of waste (for example, the amount received by the facility in
one day). For an incinerator the only source is a single incinerator
stack. Since the extent of the source is small in these cases, the use of
the point source expression is justified.
If an area source is desired it can be represented by the virtual
point source approximation, where x is replaced by x1, given by (EPA84)
2-24
-------
x1 = x + 2.5137 y
where
y = width of the facility (m)
The sz in Equation 2-19 is calculated in PATHRAE-EPA using Briggs1
approximations (SI 68). This necessitates specifying one of the six
Pasquill atmospheric stability classes. If no stability class is specified
in the input data set, the moderately stable Class D is used. The
stability class should be chosen to represent an annual average stability.
The wind speed, u, is the annual average wind speed from the source to the
receptor.
2.3 SUMMARY OF EQUATIONS
Table 2-1 summarizes the dose equations for each of the ten pathways.
The table also shows how the equations can be broken into groups of terms
representing the waste form, the transport pathway, and nuclide uptake by
humans. An examination of the components of the dose equations reveals the
similarities among the various pathways. In addition to providing a
comparison of all the pathways, the table gives insight regarding the
relative importance of certain environmental and facility parameters. By
studying the relationships among key parameters the most effective means of
limiting the doses can be more easily identified.
2-25
-------
2.4 FOOD CHAIN CALCULATIONS
Mean concentrations of radionuclides in air, river water, and well
water are calculated by the equations listed in Table 2-1. This section
describes how radionuclides in those and other environmental media are used
to calculate human intake/exposure of radionuclides using PRESTO-EPA
foodchain analysis (EPA87a).
Radionuclides in water may impact humans by internal exposure,
directly from use of drinking water or indirectly from use of irrigation
water for crops. External doses may result from exposure to contaminated
soil surfaces. Internal doses may result from inhalation of contaminated
air or ingestion of contaminated water and food products, including
drinking water, beef, milk, fish, and produce.
The deposition rate onto food surfaces or soil that is used in
subsequent calculation of radionuclide content in the food chain, comes
from spray irrigation and is:
Ir = Cw WT (2-22)
where
Ir = radionuclide application rate (pCi/m^ - hr)
Cw = radionuclide concentration in irrigation water (pCi/1)
Wj = irrigation rate (l/m2-hr)
The concentration in water, Cw, is either the well or river water,
dependent upon the pathway under consideration.
2-26
-------
The following equation estimates the concentration Cv of a given
nuclide in and on vegetation at the location of deposition (except for
tritium and carbon-14):
IrfR[l-exp(-\etw)]
+ Bc • CSP fj
Yv\e dss
exp(-\th)
(2-23)
where
Cv = radionuclide concentration in vegetation (pCi/kg)
fR = fraction of deposited activity retained on crops (unitless)
Xe = removal rate constant for physical loss by weathering
tw = time period for irrigation (hr)
Yv = agricultural productivity yield (kg(wet weight)/m2)
Bc = radionuclide concentration factor for uptake from soil by
edible parts of crops (pCi/kg (wet weight)/pCi/kg (dry
soil))
CSP = time average value of soil radionuclide concentration
assuming a steady rate of deposition
dss = effective "surface density" for soil (kg of dry soil)/m2)
fj = fraction of the year that irrigation occurs
tn = time interval between harvest and consumption of the food
(hr)
The term CSP is given by:
CSP
= 8760 Irfil_
t'(\s-\) Us
-1 n-expf-xf 11 (2-24)
where
t1 = min [1/\L, (tmax - t0)]
tmax = maximum input time for calculation
The rate constant for contaminant removal from the soil, \S) is estimated
using:
2-27
-------
X, = § (2-25)
5 (0.15)(8760)R
where
\s = soil nuclide removal rate coefficient
rs = watershed infiltration (m/yr)
0.15 = depth of contaminated soil layer(m)
8760 = h/yr
If farming is performed on the trench site, then CSP is set equal to dss in
Equation 2-23, giving a soil concentration of 1 pCi/kg.
Equation 2-23 is used to estimate radionuclide concentrations in
produce and leafy vegetables consumed by humans and in forage (pasture
grass or stored feed) consumed by dairy cows, beef cattle, or goats.
The concentration of each radionuclide in animal forage is calculated
by use of the equation:
cf = fpfscp + (1 - Vs>Cs <2-26)
where
Cf = radionuclide concentration in animal feed (pCi/kg)
Cp = radionuclide concentration on pasture grass (pCi/kg)
Cs = radionuclide concentration in stored feeds in (pCi/kg)
fp = fraction of the year that animals graze on pasture
fs = fraction of daily feed that is pasture grass when the
animals graze on pasture
The concentration of each radionuclide in milk is estimated as:
cm = (FmCfQf + CWQW) exp(-\tf) (2-27)
2-28
-------
where
Cm = radionuclide concentration in milk (pCi/1)
Fm = average fraction of the animal's daily intake of a given
radionuclide which appears in each liter of milk (d/1)
Qf = amount of feed consumed by the animal per day (wet kg/d)
tf = average transport time of the activity from the feed into
the milk and to the receptor (hr)
Qw = amount of water consumed by the animal (1/d)
The radionuclide concentration in meat depends, as with milk, on the
amount of feed consumed and its level of contamination. The radionuclide
concentration in meat is estimated using:
CF = Ff(CfQf + CWQW) exp(-\ts) (2-28)
where
Cp = nuclide concentration in animal flesh (pCi/kg)
ff = fraction of the animal's daily intake of a given radio-
nuclide which appears in each kilogram of flesh (d/kg)
ts = average time from slaughter to consumption (hr)
Once radionuclide concentrations in all the various foodstuffs are
calculated, the annual human ingestion rate for each radionuclide is
estimated by:
Qing = QV +Qmilk + Qmeat + QW (2-29)
where the variables represent individual annual intakes of a given
radionuclide via total ingestion (Q-jng), and ingestion of vegetation (Qy),
milk (Qmilk), meat (Qmeat), and drinking water (Qw), respectively, in
pCi/yr. The annual intakes via each type of food, Qv for instance, are
calculated as:
2-29
-------
Qv = Cv Uv (2-30)
where
Qv = annual radionuclide intake from vegetation (pCi/yr)
Cv = radionculide concentration in vegetation (pCi/kg)
Uv = individual annual intake of vegetation (kg/yr)
As mentioned earlier, Equations 2-22 through 2-29 do not apply
directly to calculations of concentrations of H-3 or C-14 in foodstuffs.
For the application of tritium in irrigation water, it is assumed that the
concentration in all vegetation, Cv, is the same as the tritium
concentration in drinking water; therefore:
Cv = Cw (2-31)
where Cv and Cw are in pCi/kg and pCi/1, respectively. The concentration
of H-3 in animal's feed, Cf, is therefore also equal to Cw. Then, the
concentration of tritium in animal's milk and flesh can be written as:
Cm= FmCw(Qf +QW) (2-32)
Cf = FfCw(Qf + Qw) (2-33)
where
Cm = concentration of tritium in milk (pCi/1)
Fm = fraction of the animal's daily intake of H-3 that appears
in each liter of milk (d/1)
Cw = H-3 concentration in animal's drinking water (pCi/1)
Cp = concentration of tritium in animal's flesh (pCi/kg)
Ff = fraction of the animal's daily intake of H-3 that appears
in each kg of flesh (d/kg)
2-30
-------
The exponential term is neglected due to the relatively long radioactive
half life of tritium compared to transit times through the food chain. The
root uptake of C-14 from irrigation water is considered negligible and has
been set equal to zero.
2-31
-------
3. APPLICATION INFORMATION
This chapter contains the detailed information necessary to construct
data sets and perform PATHRAE-EPA analyses. Section 3.1 describes the data
files and the organization of the PATHRAE-EPA main program and subroutines.
The program options are described in Section 3.2. Detailed input
instructions are given in Section 3.3 and the output is discussed in
Section 3.4.
3.1 INPUT DATA AND PROGRAM ORGANIZATION
The input data for PATHRAE-EPA are read from four (five, if food
pathway option is used) data files. Figure 3-1 shows the general types of
information read from these files. The dose conversion factors and
equivalent uptake factors, if appropriate, are read from the first file and
are usually the same for all PATHRAE-EPA runs. The second file contains
site parameters such as dimensions of the facility, cover thickness, volume
of waste, etc. This file also contains pathway parameters such as distance
to the river and well, aquifer dispersivity, radon diffusion coefficients,
and meteorological data. The third data set, labeled "variable site
parameters", contains parameters which are likely to be varied when
conducting sensitivity analyses. For example, this data set includes
nuclide leach rates, groundwater velocities, and trench infiltration rates.
These parameters have been placed in a separate data set to minimize the
unnecessary duplication of data when performing multiple PATHRAE-EPA runs.
The fourth data set contains nuclide specific data such as inventories,
3-1
-------
INPUT
CALCULATIONS
OUTPUT
DOSE CONVERSION
FACTORS
BASIC SITE
PARAMETERS
VARIABLE SITE
PARAMETERS
INVENTORY,
NUCLIDE SPECIFIC
PARAMETERS
FOOD CHAIN DATA
MAIN PROGRAM
INPUT SUMMARY
NUCLIDE DOSE
SUBROUTINES
AND FUNCTIONS
RAE-102231
FIGURE 3-1. INPUT AND OUTPUT DATA FLOW FOR PATHRAE-EPA.
3-2
-------
half-lives, gamma energies, and volatility factors. The fifth data set is
read only if the equivalent uptake factors in the first file are entered as
zero. File five contains the element and nuclide specific data such as
bioconcentration factors, irrigation rate, food consumption rates, and
animal retention factors.
PATHRAE-EPA and its subroutines use double precision arithmetic to
accommodate the requirements of the groundwater calculations. The minimum
memory requirement to run PATHRAE-EPA is approximately 72K. bytes.
In addition to the MAIN program, PATHRAE-EPA uses 15 subroutines and
6 functions. Figure 3-2 shows the subroutine hierarchy and Table 3-1 gives
a brief description of the function performed by each program module. The
logic flow of PATHRAE-EPA and its subroutines is illustrated in Figure 3-3.
3.2 PROGRAM OPTIONS
The PATHRAE-EPA code has several options which increase its
flexibility and allow it to perform a variety of functions. The available
options and the input required to activate the options are discussed here.
During the operational period of a waste facility, waste arrives at a
relatively uniform rate and is emplaced in the burial trenches. For
short-lived nuclides the loss due to decay during facility operations can
be significant. PATHRAE-EPA has the option of adjusting the nuclide
inventory for decay during operations through the use of the variable
TIMOP. To ignore decay during operations set TIMOP equal to zero.
Otherwise, TIMOP should equal the number of years of facility operation.
3-3
-------
OJ
-p.
RAE-102232
FIGURE 3-2. PATHRAE-EPA SUBROUTINE HIERARCHY.
-------
TABLE 3-1
DESCRIPTIONS OF PATHRAE-EPA SUBROUTINES
Purpose
Sub-
routine
PTHRAE Main program. Coordinates subroutine calls and prints summary dose
information.
UPTAKE Computes total equivalent uptake factors for food and water ingestion.
IRRIG Calculates nuclide concentrations in vegetation, milk, meat, and fish.
COV Aids in the calculations performed by subroutine IRRIG.
HUMEX Calculates amount of each nuclide ingested by humans.
READ Reads the four input data files and performs preliminary calculations.
PRINT Prints summary of input data.
BATMAN Performs Bateman calculations for nuclide ingrowth and decay as a
function of time.
RIVER Calculates doses for groundwater to river pathway.
WELL Calculates doses for groundwater to well pathway.
PATH38 Calculates doses for all non-groundwater pathways.
PEAK Calculates maximum dose and time of maximum dose for groundwater
pathways with dispersion.
RELEAS Calculates total curies released in a given time period for groundwater
pathways.
HEPCI Converts total curies released to health effects.
DSPERS Coordinates groundwater transport subroutines GW1 and GW3.
GUI Calculates nuclide concentrations for groundwater pathways with
dispersion.
GW3 Calculates nuclide concentrations for daughter nuclides in decay
chains.
ERROR Adjusts dispersivity to avoid negative square root arguments in GW3
(see Section 2.2).
FTRMS Evaluates dispersive groundwater transport expressions in GUI and GW3.
ERFCPA Evaluates the natural logarithm of the complementary Gaussian error
function.
OERF Evaluates the Gaussian error function.
DERFC Evaluates the complementary Gaussian error function.
HUNG Calculates dispersion correction factor for non-dispersive groundwater
pathways.
3-5
-------
CALC. TOTAL
EQUIVALENT
UPTAKE FACTORS
CALCULATE
INVENTORY FOR
LATER TIMES
CALCULATE
FACILITY DOSE
GW1
CALCULATE
CONCENTRATION
GW3
CALCULATE NEW
CHAIN CONC.
RIVER, WELL
CALCULATE
CONCENTRATION
CALCULATE
DOSE
NAE-102234
FIGURE 3-3. LOGIC FLOW OF PATHRAE-EPA.
3-6
-------
One factor that can affect the dose through the groundwater pathways
is the method by which waste is placed in the trench. A value of zero for
the variable IFILL refers to placement of waste in the trench beginning at
the upstream end of the site, relative to the aquifer. A value of one
pertains to placement of waste beginning at the downstream side of the
site.
PATHRAE-EPA allows two methods of obtaining the nuclide inventory at
times beyond the time of facility closure. The most direct method is to
input the nuclide inventory at each of the future times at which doses are
to be calculated. A much simpler method is to input the initial inventory
and let PATHRAE-EPA compute the inventory at all future times. This option
is controlled by the input variable IFLAG. To calculate the future
inventories from the initial inventory set IFLAG to zero. If the future
inventories are to be read from the input data, set IFLAG equal to one.
When calculating the groundwater pathways, PATHRAE-EPA can use a
dispersive solution or a non-dispersive solution with application of a
dispersion correction factor. The variable ALOIS, the longitudinal
dispersivity in the aquifer, controls this option. For no dispersion use
ALOIS equal to zero. Otherwise, enter a positive value for the
dispersivity.
PATHRAE-EPA can also model transverse dispersion in the aquifer. This
is only important for the well pathway. To ignore transverse dispersion
set the transverse dispersion coefficient, DY, equal to zero.
During dispersive transport in the aquifer the decay and ingrowth of
nuclides can often have significant impact on the doses from the
3-7
-------
groundwater pathways. This can be modeled by using any of the seven decay
chains discussed in Section 2.1.4. To implement any of the decay chains it
is important to set the transverse dispersion coefficient, DY, equal to
zero, since the decay chain expressions are valid only when this is the
case. The longitudinal dispersivity, ALOIS, however, must not be zero. To
activate decay chain J, set IFL(J) equal to one. To ignore the chain set
IFL(J) equal to zero. When considering any of the chains the user must be
sure that all of the chain members are present in the initial inventory.
The amounts of each nuclide can be arbitrarily small but they must all be
greater than zero. Also, the equations for the decay chain calculations
require that the sorption coefficients (XKD(I)) for all members of a
particular chain be different. However, the sorption coefficients can be
almost identical if desired.
PATHRAE-EPA will also locate the position of the maximum dose for each
individual nuclide as well as the time at which the maximum dose occurs.
To select this option set the variable IOPT equal to one. By using this
peak finding option the user can get a general idea of what nuclides are
most important and at what times they contribute most to the total dose.
Subsequent runs without the peak finding option can then be made to further
explore the time dependence of the dose near critical times.
Sometimes it is important to know the total release of each nuclide to
the environment during a given time interval. PATHRAE-EPA will calculate
the releases if the variable IOPT is equal to two. Like the peak finding
option, this only applies to the groundwater pathways with dispersion. The
time period for the release is defined by variables T(l) and T(2). Also,
3-8
-------
for this option only, the variable NTIME must be greater than or equal to
two. Both the peak finding option and the total release option can be
turned off by setting IOPT equal to zero.
The atmospheric transport pathway has the option of calculating doses
at off-site locations due to dust resuspension, incineration of the waste,
or a trench fire. This is controlled by the variable IVFAC. For dust
resuspension use IVFAC equal to zero. For incineratioa use IVFAC equal to
one and for a trench fire enter a value of two. When calculating the doses
due to dust resuspension, the variable BURN is the resuspension rate
(m3/s) and FFIRE is the deposition velocity (m/s). The volatility factors
are not used when doing dust resuspension. For an incinerator or trench
fire, BURN is the rate at which the waste is burned (m3/s) and FFIRE is the
fraction of the year the burning occurs.
The atmospheric transport pathway also has an option for calculating
X/Q when specific atmospheric and meteorological data are unavailable. To
activate this option, which is based on the position of maximum plume
concentration, enter the source to receptor distance, XRECEP, equal to
zero. When using this default option it is unnecessary to enter data for
the atmospheric stability class or fraction of time the wind blows. To
bypass this option enter a positive value for XRECEP.
The final option to be described here is a solubility limit on the
leach fraction. If the solubility of a nuclide is low enough that it
becomes the limiting factor in the release process, PATHRAE-EPA will adjust
the leach fraction so that the amount of nuclide leached is the maximum
amount that is soluble in the available leachant. To use this option
3-9
-------
enter the nuclide solubility (Ci/m^) as variable SOL. To ignore solubility
effects, enter zero.
If the complete foodchain analysis is required for the annual
ingestion of contaminant, then set the equivalent uptake factors equal to
zero in data file one and enter the data as file 5. Table 3-2 contains a
summary of the options and the input data required to control each of them.
3.3 INPUT DATA
All of the input data for PATHRAE-EPA are read from files on the
computer. Normally there are four input files required for each run unless
a complete foodchain analysis is performed, which requires a fifth input
file. The four data files have the specific file names BRCDCF.DAT,
ABCDEF.DAT, RQSITE.DAT, and INVNTRY.DAT. The fifth data file is named
UPTAKE.DAT. The data in all files may be entered in free format separated
by commas or entered with the format specified. The following is a
detailed description of the input data for each of the five files.
Included are the units of the variable, the applicable pathway number (one
through ten) to which the variable is relevant, and the name of the
variable as it is referred to in Chapter 2.
3-10
-------
TABLE 3-2
SUMMARY OF PATHRAE PROGRAM OPTIONS
Option
Nuclide decay during
operations
Direction in which
trenches are filled
Bateman calculations
for nuclide decay and
ingrowth
Longitudinal dispersion
for groundwater pathways
Transverse dispersion
for well pathway*
Decay chains for aquifer
transport
Peak finder for groundwater
pathways
Calculate total curies
released for groundwater
pathways
Instructions For Use
on: TIMOP > 0
To start at end of trench
farthest upstream on the
aquifer, IFILL = 0
on: IFLAG = 0
on: ALOIS > 0
on: DY > 0
ALOIS > 0
IFL(J) all zero
to activate Jth chain:
IFL(J) = 1
ALOIS > 0
DY = 0
on:
on:
IOPT - 1
ALOIS > 0
Gamma pathway options
Atmospheric pathway
calculation
Atmospheric pathway
X/Q default calculation
Solubility limit on
leaching
Perform complete foodchain
analysis
IOPT = 2
NTIME >. 2
T(l) = beginning of relese
period
T(2) = end of release
period
ALOIS > 0
Gamma dose from undisturbed
waste: IGAMMA = 0
Gamma dose for biointrusion
scenario: IGAMMA = 1
Gamma dose for reclaimer farm
scenario: IGAMMA = 2
Dust resuspension: IVFAC = 0
Incineration: IVFAC = 1
Trench fire: IVFAC = 2
off: TIMOP = 0
To start at downstream
end, IFILL =• 1
off: IFLAG = 1
off: ALOIS = 0
off: DY = 0
to ignore Jth chain:
IFL(J) = 0
off: IOPT = 0
off: IOPT = 0
on: XRECEP = 0
on: SOL > 0
on: Ul = 0
off: XRECEP > 0
off: SOL = 0
off: Ul > 0
* Where multiple conditions are given to activate an option, all conditions
must be met simultaneously.
3-11
-------
3.3.1 Data File One - BRCDCF.DAT
Card Variable
NOOSE
TCUT
SINV
NTIME
T(M)
Description
Radionuclide Data (I6.2F12.6)
Number of isotopes in dose
factor library. This is the
number of nuclides for which
dose conversion factors are
provided in the file BRCDCF.DAT.
Maximum nuclide half-life (yr)
considered for analysis. The
inventory of any nuclide with
a half-life greater than TCUT
is set equal to SINV (usually
zero). In this way the doses
due to short-lived nuclides
can be evaluated independently
of the long-lived nuclides.
To consider all nuclides set
TCUT equal to zero and no
adjustments will be made.
Text
Pathway Name
All
Nuclide inventory
TCUT above.
(Ci). See
KK
Dose Calculations (I6,10F12.6)
Number of times for which dose
calculations will be made (up
to 10).
Times (yr) at which the doses are
to be calculated.
M = 1, 2,..., NTIME. Time T(l)
corresponds to the end of
facility operations and must
be entered as 1. If the food
pathway is being run, the time
T(4) must correspond to the
time at which institutional
control of the site ceases.
Dose Factors (I4,A8.9E12.4)
Nuclide library number.
All
All
All
3-12
-------
Card Variable
XNAME2(KK)
DOSE(l.KK)
DOSE(2,KK)
DOSE(3,KK)
UT(KK,1)
UT(KK,2)
UT(KK,3)
UT(KK,4)
UT(KK,5)
UT(KK,6)
Description
Nuclide name (e.g., Pu-239).
The name is read as an eight
character alphanumeric variable.
For example, Pu-239 would be
input as 'Pu-239---1.
Dose factor (mrem/pCi) for
ingestion.
Dose factor (mrem/pCi) for
Dose factor (mrem-m^/pCi-hr) for
direct gamma exposure.
Total equivalent uptake
factor (1/yr) for river water
usage.
Total equivalent uptake
factor (1/yr) for well water
usage.
Total equivalent uptake
factor (1/yr) for erosion pathway
water usage.
Total equivalent uptake
factor (1/yr) for bathtub pathway
water usage.
Total equivalent uptake
factor (1/yr) for erosion or
bathtub pathways with surface
spillage.
Total equivalent uptake
factor (kg/yr) for food pathway.
Text
Pathway Name
1-6
8,10
7
1
3,4
DF
DF
DFG
U
1
5,6
Note: Card 3 is repeated for each nuclide in the dose library.
If the uptake factors are entered as zeros, they are
calculated internally using input data in data file five.
3-13
-------
3.3.2 Data File Two - ABCDEF.DAT
Card Variable
NISO
I FLAG
NNP
NPN(J)
Description
Run Identification (10A8)
Title of run. Up to 80
characters allowed.
Nuclide Inventory (316)
Number of isotopes in inventory.
Flag indicating whether or not
to calculate the inventory for
the designated times. If
IFLAG = 0 the inventory for all
designated future times is
calculated from the initial
inventory, taking into account
the ingrowth of daughter products
where appropriate. If IFLAG = 1
the calculation is skipped and the
inventory is read from the input
data for all future times.
If IFLAG = 2 the inventory for all
designated future times is
calculated from the initial
inventory. No account is made for
the ingrowth of daughter products.
Number of pathways to be
considered.
Pathway Data (2016)
Index indicating a particular
pathway.
NPN = 1 groundwater to river
NPN = 2 groundwater to. well
NPN = 3 surface erosion and
deposition in river
NPN = 4 bathtub effect and
runoff of water to
river
NPN = 5 food grown on waste
site
NPN = 6 biointrusion into
waste and consumption
of plants by humans
Pathway
Text
Name
All
All
3-14
-------
Text
Cjird Variable Description Pathway Name
NPN = 7 direct gamma exposure
NPN = 8 dust inhalation on site
NPN = 9 radon inhalation
NPN = 10 offsite atmospheric
transport (incinerator,
trench fire, dust
resuspensi on)
JUF(J) Index indicating type of use
for ingestion uptake factors.
JUF = 0 no water use
JUF =1 all types of water use
JUF = 2 all types of water use
except fish
JUF = 3 drinking water only
For the water pathways JUF
should be equal to 1, 2, or 3.
For the food pathways and
pathways not involving ingestion
of water use JUF = 0.
Note: NPN(J) and JUF(J) are repeated on Card 3 for each of the NNP
pathways considered.
4 Site Description (6F12.6)
TIMOP Time (yr) of active operation
of facility. If TIMOP is
different than zero, the
nuclide inventory is adjusted
to account for decay during
site operation. If TIMOP
is set equal to zero, this
correction is omitted.
,X"XLP : Length (m) of trench in direction L
^-~—' of aquifer flow.
(^WIDTH Width (m) of trench. W
RFR River flow rate (m3/yr) 1,3,4 qw
XR Distance (m) from nearest edge of 1,3,4 xr
waste trench to river.
SPILL Surface spillage fraction. 3 fsp-|
3-15
-------
Card Variable
5
ARHO
ALOIS
DY
DZ
SS
SR
PV
SNO
6
NM
IGAMMA
IVFAC
Description
Transport Data (8F12.6)
Density (kg/m3) Of aquifer-
Longitudinal dispersivity (m)
of the aquifer.
Transverse dispersion
coefficient (m^/yr) in aquifer.
Not used.
Fraction of saturation, if
zero, it is calculated
internally.
Residual saturation fraction.
Saturated hydraulic
conductivity (m/yr) of vertical
zone.
Soil index.
Gamma Radiation Data (516)
Number of mesh points for
area source integration.
Flag for gamma pathway
options.
IGAMMA = 0 Calculate gamma
dose from
undisturbed
buried waste.
IGAMMA = 1 Calculate gamma
dose for natural
biointrusion
scenario.
IGAMMA = 2 Calculate gamma
dose for farming
scenario.
Flag indicating off-site
atmospheric pathway. For dust
resuspension enter zero, for
incineration enter one, for
trench fire enter two. For
incineration the dose for all
other pathways is adjusted to
Pathway
1,2
1,2
Text
Name
d
D
1,2
1,2
1,2
1,2
7
SNO
3-16
-------
Card Variable
YW
Description
account for the loss of
nuclides by incineration
before being placed in the
trench.
edge of waste along direction
of aquifer flow.
Distance (m) to well from center
line of disposal facility in
direction perpendicular to
aquifer flow.
(The inventory on file is
multiplied by FIXINV before
calculations begin.)
Text
Pathway Name
XCT
XWT
TWV
XW
Waste Properties (10F12.6)
Thickness (m) of cover over waste.
Thickness (m) of waste.
Volume (m3) of waste disposed.
Distance (m) to well from nearest
3-9
3-9
All
2
Tc
Tw
V
xw
RHO
FG
FEXT
XROOT
PLANT
ADL
UBR
FTX
CANLIF
FIXINV
Density (kg/m-3) of waste.
Fraction of food eaten which
is grown over waste site.
Fraction of year spent in
direct radiation field.
Depth (m) of plant root zone.
Surface density (kg/m2) of living
plants.
Exposure Data (3F12.6)
Average dust loading (kg/m3) in
air.
Adult breathing rate (m3/yr).
Fraction of year exposed to
dust.
Waste container lifetime (yr)
Inventory scaling factor.
4,8,9
5,6
7
6,7
7
8
8-10
8
1,2
All
dw
fg
^exp
^exp
3-17
-------
Card Variable
9
XH
ACR
EPW
DIFW
DIFCON
ICON
DIFCOV
10
I STAB
VWIND
FWIND
XRECEP
Description
Residency Data (7F12.6)
Height of room (cm) in dwellings
built over the site.
Air change rate (changes/s) in
dwelling.
Radon emanating power of the
waste. (Fraction of radon
produced which enters pore
spaces.)
Diffusion coefficient
for radon in waste.
Diffusion coefficient
for radon in concrete.
Thickness (cm) of concrete floor.
Diffusion coefficient (cm^/s) for
radon in the cover material.
Atmosphere Data (10F12.6)
Pasquill atmospheric stability
class. Enter an integer 0
through 6. A value of 1
signifies stability class A,
a value of 6 signifies
stability class F. If zero
is entered, a default value
of 4 is used.
Average annual wind speed (m/s)
in direction from source to
receptor.
Fraction of time wind blows
toward receptor location.
Distance (m) from atmospheric
release source to receptor
location. To exercise default
option on X/Q calculation,
enter zero and set
HSTACK = unity.
Text
Pathway Name
9
9
9
9
9
9
10
10
10
10
D2
'w
3-18
-------
Card Variable
BURN
FFIRE
11
HSTACK
DSTACK
VSTACK
QH
IFL(I)
Description
Dust resuspension rate (m^/s) or
burn rate (m3/s) of incinerator
trench fire.
Fraction of year incinerator
or trench fire burns,
or
Deposition velocity (m/s) for
dust resuspension.
Pathway
10
Text
Name
or
Height (m)
For trench
zero.
of incinerator stack,
fire scenario enter
10
10
10
ff
ff
hc
Stack inside diameter (m).
Stack gas velocity (m/s).
Heat emission rate (cal/s) of
incinerator stack.
Flag Options (2016)
Flags indicating which decay
chains will be considered for
the dispersion calculations.
10
10
10
1,2
If IFL(I)
If IFL(I)
1, then decay
chain I is
computed.
0, it is skipped.
The values o'f I
refer to the
following chains:
I
I
I
I
I
I
I
=
=
=
=
=
=
1
2
3
4
5
6
7
Cm-244
Pu-240
Am-243
Pu-241
Pu-238
Pu-242
U-238
— -
-*
— >
^
-*
— »
Pu-240
U-236
Pu-239
Am-241
U-234
U-238
Th-230
— *
—
-*
— *
-*
—
U-236
Th-232
U-235
Np-237
Th-230
U-234
Ra-226
Ra-226
If a particular decay chain is
used, all of the nuclides in the
chain should be present in the
initial inventory. The
equations used for calculating
decay chains are not valid
unless all members of the
chain have different sorption
coefficients.
3-19
-------
Card Variable
12
INPRNT
IDSRPT
IFILL
IOPT
Descri ptlon
Printout Control (416)
Flag for printout of input
summary.
If INPRNT = 0, no input
summary is printed,
If INPRNT = 1, the summary
is printed.
Not used.
Flag indicating how the waste
trenches are filled. If
IFILL = 0, the trench is
filled beginning at the side
farthest upstream of the
aquifer. If IFILL = 1, the
trench is filled beginning at
the downstream side.
Flag for selecting groundwater
pathway options. To use the
peak finding option set
IOPT = 1. To calculate the
total curies released during a
given time period set
IOPT = 2. If neither of these
two options are required use
IOPT = 0. See Table 3-2 for
more information on the use of
these options.
Text
Pathway Name
1,2
1,2
3.3.3 Data File Three - RQSITE.DAT
Card Variable
XPERC
VA
XPOR
Description
Site Water Data (9F12.6)
Amount of water (m3/m2-yr) which
percolates through the waste
annually per unit area.
Horizontal velocity (m/yr) of
aquifer.
Porosity of aquifer.
Pathway
Text
Name
1,2
1,2
3-20
-------
Card Variable
XAQD
XVV
XLC
XALE
FLCH
RUNF
KK
XLL(KK)
XKD(KK)
RVERTI(KK)
Descrlpti on
Distance (m) from trench bottom
to aquifer.
Vertical velocity (m/yr) of the
water in the soil between
the waste and the aquifer.
Calculated internally if
entered as zero.
Length (m) of perforated well
casing set equal to aqufer thickness.
Surface erosion rate (m/yr)
Scaling factor for leach
constant.
Annual runoff of precipitation (m).
Transport Characteristics (I4.3E12.4)
An integer library index
specifying the nuclide.
The leach constant (1/yr). In the
band release model used in the
dispersive calculation, it is
the fraction of the initial
inventory which is leached
from the waste each year.
For the exponential release
model used in the nondispersive
calculations, this constant is
the fraction of current
inventory leached each year.
The sorption coefficient (cm3/g).
This is used to obtain the
retardation coefficient
the aquifer.
i n
Sorption coefficient (crrr/g) for
vertical transport of the
nuclide from the trench to
the aquifer.
Pathway
1,2
1,2
Text
Name
3,4
1,2
1,2
1,2,4
1,2
vd
L
E,
Note: Card 2 is repeated for each nuclide in the inventory.
3-21
-------
3.3.4 Data File Four - INVNTRY.DAT
Card Variable
1
KK
HLIFE(KK)
Q(KK,M)
XXMU(KK)
EGAMMA(KK)
BIV(KK)
Description
Nuclide Data (I4,7E12.4)
An integer library index
specifying the nuclide.
Nuclide halflife (yr).
The amount of nuclide present (Ci)
at each of the times T(M) for
M = 1,2,...,NTIME. If IFLAG
is entered as zero, then only
the inventory at time T(l)
needs to be entered and the
inventory at all subsequent
times will be calculated.
See Section 3.2 for a
description of the use of
IFLAG.
Gamma attenuation coefficient
(1/m). These are derived from
empirical data on gamma
attenuation by soil for
various gamma energies. For
nuclides which are not gamma
emitters, enter zero.* Must
be nonzero if EGAMMA and Q
are nonzero.
Weighted average gamma ray
energy (MeV) emitted by nuclide.
The averaging method is
described in Section 2.2.
For nuclides which are not
gamma emitters, enter zero.*
The nuclide specific soil to
plant transfer factor. It is
the ratio of the nuclide
concentration (Ci/kg) in
plants to the nuclide
concentration (Ci/kg) in
the soil.
Pathway
Text
Name
m
Cs-137 is considered as if it is a gamma emitter, even though
the gamma rays are emitted by its decay product, Ba-137m.
3-22
-------
Card Variable
SOL(KK)
VOLATL(KK)
Pathway
1,2
10
Descrlptlon
Solubility (Ci/m3) of the
nuclide in the aquifer. To
omit the effects of solubility
limitations, enter zero.
Volatility factor for
incineration. It is the
fraction of the inventory
of a nuclide which is lost
to the atmosphere as a result
of incineration. This
variable is not used when
pathway 10 calculates dust
resuspension.
Note: Card 1 is repeated for each nuclide in the inventory.
Text
Name
3.3.5 Data File Five - UPTAKE.DAT (All data for food chain calculations)
Card Variable
1
SINFL
PORS
BDENS
2
Yl
Y2
XAMBWE
TE1
TE2
Description
Site Soil Data (3F12.6)
Infiltration rate (m/yr)
Porosity of surface soil.
Bulk density (g/crrr) of soil.
Vegetation Data (5F12.6)
Agriculture productivity (kg/m2)
for pasture grass.
Agriculture productivity (kg/m2)
for other vegetation.
Weathering removal constant (hv"1)
from vegetation.
Hours for irrigation of pasture
grass.
Hours for irrigation of other
vegetation.
Text
Name
Ps
Xe
3-23
-------
Card Variable
3
TH1 - TH4
FP
FS
QFC
QFG
TF1
TS
TFIS
FI
WIRATE
QCW
QGW
QBW
ULEAFY
Description
Pasture Data (6F12.6)
Delay time (hr) between harvest and
consumption of pasture grass,
stored feed, leavy vegetables,
and produce.
Fraction of the year animals graze
on pasture grass.
Fraction of animal feed that is
pasture grass.
Animal Uptake (5F12.6)
Amount of feed consumed daily (kg/d)
by cattle.
Amount of feed consumed daily (kg/d)
by goats.
Transport time (hr) for annual
feed into milk.
Delay time (hr) between animal
slaughter and meat consumption.
Delay time (hr) between catching
and consumption of fish.
Mater Consumption (5F12.6)
Fraction of the year the crops are
irrigated.
Irrigation rate (l/m2-hr).
Amount of water consumed (1/d)
by milk cows.
Amount of water consumed (1/d)
by goats.
Amount of water consumed (1/d)
by beef cattle.
Human Uptake (7F12.6)
Human uptake (kg/yr) of leafy
vegetation.
Text
Name
3-24
-------
Card Variable
UPROD
UCMILK
UGMILK
UMEAT
UWAT
7+
UFISH
NUCLID(KK)
RW(KK)
BR(KK)
FMC(KK)
FMG(KK)
FF(KK)
FIS(KK)
Description
Human uptake (kg/yr) of produce.
Human uptake (1/yr) of cow milk.
Human uptake (1/yr) of goats
milk.
Human uptake (kg/yr) of meat.
Human uptake (1/yr) of contaminated
drinking water.
Human uptake (kg/yr) of fish.
Transfer and Retention Data (A8,6F12.6)
Nuclide identification no.
Radionuclide retention factor.
Soil-to-plant uptake factor for
grain.
Forage to milk transfer factor for
cows.
Forage to milk transfer for
goats.
Forage^to beef transfer factor.
Radionuclide water-to-fish transfer
factor.
Text
Name
Un
Un
U,
R
B
m
m
3-25
-------
3.4 OUTPUT DATA
A typical output for the PATHRAE code for a LLW inventory of about
25 nuclides, is approximately 12 pages in length. The output begins by
listing a complete summary of the input data. The site parameters, dose
conversion factors, and equivalent uptake factors are included. This is
followed by tables of nuclide doses for each nuclide and pathway
considered. For the two groundwater pathways, the erosion pathway, and the
facility overflow pathway, tables giving nuclide concentrations in water at
various times are generated.
Following the outputs for the individual pathways, values for the
cumulative risks and doses are given for the entire facility. The output
also contains a table of the nuclide inventory at each of the times
considered. A final summary of the maximum annual dose, health risk, year
of the maximum health impact and dominant nuclide are given for each
pathway.
3-26
-------
4. SAMPLE PROBLEM
4.1 PROBLEM DEFINITION
A PATHRAE-EPA sample problem is considered in this chapter. The
facility evaluated in this sample problem is a 350,000 square meter
municipal dump with a capacity of one million cubic meters of BRC waste as
illustrated in Figure 4-1. The facility has a 20 year operating lifetime
during which the radioactive wastes are received at a constant rate. The
waste is placed in disposal pits to a depth of six meters and is covered by
a 0.6 meter thick cover. An aquifer with a water velocity of 28 meters per
year is located 7.7 meters below the waste. The annual infiltration into
the waste is 0.45 cubic meters of water per square meter of trench area. A
well is located 50 meters from the edge of the waste trenches. For the
groundwater calculations the waste area is represented by a 20-point mesh
spacing grid. Values of pertinent site parameters and radiation exposure
data required by PATHRAE-EPA are listed in Table 4-1. The initial
inventory of 29 nuclides is given in Table 4-2.
4.2 RESULTS
A summary of the doses as functions of time and the pathway summary
are contained in Table 4-3. The total dose falls from a maximum value of
95 mrem/yr in year zero to about 1.8 mrem/yr at 15 years and 0.18 mrem/yr
in 100 years. The external exposure pathway, primarily from Co-60,
dominates the early doses with the well pathway becoming dominant after 100
years primarily from C-14. Cobalt-60, cesium-137, carbon-14, and
americium-241 are the dominant nuclides.
4-1
-------
RIVER
ro
590 m
O
&
in
iD[$PQSAt
DEPTH TO AQUIFER 7.7 m
1000 m
AQUIFER VELOCITY 28 m/yr
RAE-102236
FIGURE 4-1. REPRESENTATION OF SAMPLE PROBLEM.
-------
TABLE 4-1
SITE PARAMETERS USED IN SAMPLE PROBLEM
Total area of Disposal Trenches 3.48E+5 in2
Length of Trenches Parallel to Aquifer Flow ( 590 m
Velocity of Aquifer 27.8 m/yr
Porosity of Aquifer 0.39
Trench Infiltration 0.45 m3/m2
Total Surface Erosion Rate 1.96E-4 m/yr
Cover Thickness Over Waste 0.6 m
Waste Thickness in Pits (^6.0 m
Total Waste Volume C JL.-OE^S' m3 > 2.1
Distance From Waste Pits to Well 50 m
Length of Perforated Casing in Well
(aquifer thickness) 10 m
Average Dust Loading During Excavation 5.0E-7 kg/m3
Annual Adult Breathing Rate 8E+3 m3/yr
Fraction of Time Spent in Excavation 0.228
Average Wind Speed 2.01 m/s
Downwind distance to receptor location 345 m
4-3
-------
Nuclide
TABLE 4-2
NUCLIDE INVENTORY
Halflife (yr)
Initial
Inventory (Ci)
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ba-137m
Eu-154
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am- 241
Am-243
Cm-243
Cm-244
1.23E+1
5.73E+3
2.70E+0
5.25E+0
8.00E+4
1.10E+2
2.86E+1
2.00E+4
2.13E+5
1.01E+0
2.77E+0
1.70E+7
2.06E+0
2.30E+6
3.01E+1
3.01E+1*
8.50E+0
2.45E+5
7.04E+8
4.47E+9
2.10E+6
8.77E+1
2.42E+4
1.32E+1
3.79E+5
4.59E+2
7.37E+3
3.19E+1
1.76E+1
1.31E+02
7.43E+00
1.20E+02
2.46E+02
1.43E-01
4.41E+01
3.40E+00
4.54E-03
1.90E-03
5.04E-02
1.85E+00
5.26E-3
5.04E+01
1.80E-3
5.70E+01
5.70E+01
1.86E-01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
1.20E-01
1.12E-01
4.85E+00
2.43E-04
2.31E-01
5.41E-05
5.52E-05
5.26E-02
* Assumed to be in equilibrium with Cs-137,
4-4
-------
TABLE 4-3
FACILITY DOSE RATES FOR VARIOUS TIMES FOR SAMPLE PROBLEM
Parameter
0
Dose (mrem/yr) 9.46
Time (yr)
15
50
100
200
350
500
750
1000
8.33E+0 1.78E+0 3.83E-1 1.84E-1 8.63E-2 5.51E-2 4.03E-2 2.56E-2 1.88E-2
en
Maximum Annual Dose
(mrem/yr)
Year of Maximum Dose
Dominant Nuclide
PATHWAY SUMMARY
Pathway
Dust
2.2E-2
0
Am-241
Atmospheric
2.6E-6
0
Am-241
Gamma
8.8E+0
0
Co-60
Well
1.1E-1
50
C-14
Food
4.8E-1
Cs-137
-------
A complete listing of the five data sets required to execute the
sample problem and the output for the sample problem are given in
Appendix B. A complete source listing of PATHRAE-EPA code is given in
Appendix A.
Finally, it should be noted that the sample problem described in
Section 4.1 merely illustrates the application of PATHRAE-EPA and is not
intended as a basis for arriving at any general conclusions regarding
specific disposal alternatives.
4.3 PATHRAE-EPA COMPUTER COMPATIBILITY
The PATHRAE-EPA code is sufficiently compact and calculationally
efficient that it can be executed on a variety of computer systems
including advanced personal computers. For example, the PATHRAE-EPA code
has been implemented and operated within reasonable execution times on an
IBM-AT Personal Computer.
4-6
-------
REFERENCES
Bu80 Burkholder, H.C., and E.L.J. Rosinger, "A Model for the Transport
of Radionuclides and Their Decay Products Through Geologic
Media," Nuclear Technology, Vol. 49, pg. 150, 1980.
Du80 Dunning, D. E., Jr., R. W. Leggett, and M. G. Yalcintas, A
Combined Methodology for Estimating Dose Rates and Health Effects
from Exposures to Radioactive Pollutants, ORNL/TM-7105 (Oak Ridge
National Laboratory, Oak Ridge, Tennessee), 1980.
EPA84 "Radiation Exposures and Health Risks Resulting from Deregulated
Disposal of Radioactive Wastes," Envirodyne Engineers
Incorporated and Rogers and Associates Engineering Corporation
for U.S. Environmental Protection Agency, Office of Radiation
Programs, October 1984.
EPA87a U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code
- Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington,
DC, December 1987.
EPA87b U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code
- Volume 2, User's Manual, EPA 520/1-87-024-2, Washington, DC,
December 1987.
EPA87c U.S. Environmental Protection Agency, PRESTO-EPA-DEEP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment
Code, Documentation and User's Manual, EPA 520/1-87-025,
Washington, DC, December 1987.
EPA87d U.S. Environmental Protection Agency, PRESTO-EPA-CPG: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment
Code, Documentation and User's Manual, EPA 520/1-87-026,
Washington, DC, December 1987-
EPA87e U.S. Environmental Protection Agency, PRESTO-EPA-BRC: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment
Code, Documentation and User's Manual, EPA 520/1-87-027,
Washington, DC, December 1987.
EPA87f U.S. Environmental Protection Agency, Accounting Model for
PRESTO-EPA-POP, PRESTO-EPA-DEEP, and PRESTO-EPA-BRC Codes,
Documentation and User's Manual, EPA 520/1-87-029, Washington, DC,
December 1987.
R-l
-------
EPA859 U.S. Environmental Protection Agency, High-level and Transuranic
Radioactive Wastes - Background Information Document for Final
Rule, EPA 520/1-85-023, Washington, D.C., 1985.
Ga84 Galpin, F. L., and G. L. Meyer, Overview of EPA's Low-Level
Radioactive Waste Standards Development Program, 1984:
Proceedings of 6th Annual Participants' Information Meeting on
DOE Low-Level Waste Management Program, Denver, Colorado,
September 11-13, 1984, CONF-8409115, Idaho Falls, Idaho.
Hu83 Hung, C. Y., G. L. Meyer, and V. C. Rogers, Use of PRESTO-EPA
Model in Assessing Health Effects from Land Disposal of LLW to
Support EPA's Environmental Standards: U.S. Department of
Energy, Proceed-ings of 5th Annual Participants' Information
Meeting on DOE Low-Level Waste Management Program, Denver,
Colorado, August 30, 1983, CONF-8308106, Idaho Falls, Idaho.
Hu86 Hung. C. Y., An Optimum Groundwater Transport Model for
Application to the Assessment of Health Effects Due to Land
Disposal of Radioactive Wastes, Nuclear and Chemical Waste
Management, Vol. 6, pp. 41-50, 1986.
Mer85 Merrell, G. B., et al., "The PATHRAE-EPA Performance Assessment
Code for the Land Disposal of Radioactive Wastes," Rogers and
Associates Engineering Corporation, RAE-8469/3-3, November 1985.
MeySl Meyer, G. L., and C. Y. Hung, An Overview of EPA's Health Risk
Assessment Model for the Shallow Land Disposal of LLW,
Proceedings of an Interagency Workshop on Modeling and Low-Level
Waste Management, Denver, Colorado, December 1-4, 1980, ORD-821,
Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1981.
Mey84 Meyer, G. L., Modifications and Improvements Made to PRESTO-EPA
Family of LLW Risk Assessment Codes Based on Recommendations of
Peer Review, February 1984, U.S. Environmental Protection Agency,
Letter dated July 13, 1984, to Members of PRESTO-EPA Peer Review,
February 7-8, Airlie, Virginia: Washington, D.C., 1984.
Mo67 Morgan, K.Z., and J.E. Turner, Principles of Radiation Protection,
J. Wiley, New York, 1967.
NRC77 U.S. Nuclear Regulatory Commission, "Calculation of Annual Doses
to Man from Routine Releases of Reactor Effluents for the Purpose
of Evaluating Compliance with 10CFR Part 50," Appendix I,
Regulatory Guide 1.109, March 1976 and October 1977.
R-2
-------
Ro79 Rogers, V.C., et al., "A Radioactive Waste Disposal Classification
System - The Computer Program and Groundwater Migration Models,"
U.S. Nuclear Regulatory Commission report NUREG/CR-1005, V-2,
September 1979.
Ro82 Rogers, V.C., et al., "Low-Level Waste Disposal Site Performance
Assessment with the RQ/PQ Methodology," Electric Power Research
Institute report, NP-2665, December 1982.
Ro84a Rogers, V. C., "An Update on Status of EPA's PRESTO Methodology
for Estimating Risks from Disposal of LLW and BRC Wastes, U.S.
Department of Energy, Proceedings of 6th Annual Participants',
Information Meeting on DOE Low-Level Waste Management Program,
Denver, Colorado, September 11-13, 1984, CONF-8409115, Idaho
Falls, Idaho.
Ro84b Rogers, V.C., and K.K. Nielson, "Radon Attenuation Handbook for
Uranium Mill Tailings Cover Design," U.S. Nuclear Regulatory
Commission report NUREG/CR-3533, February 1984.
S168 Slade, D.H. ed., Meteorology and Atomic Energy (1968). U.S.
Atomic Energy Commission Report TID-24190, 1968.
R-3
-------
APPENDIX A
SOURCE LISTING FOR PATHRAE-EPA CODE
-------
C PET hODIFIEO »E89^{jNMOfIt'MfiRAC ON TIIC ICM-Hl
IMPLICIT F:EALA3 (A-H.O-Z)
REALA1 C.Q.UT
CHARACTERA8 VNUCL.XNAME2
COHMON/XfCR/NKLC
COMMON/BLK1/ALDIS,C<100,10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM,NMY.
I NHZ,NTIhE.6<100,io>.RVERT(l60).m6).TIIHEJ5>!vA!VNUCL<§>.
WIDTH.WGLABLaO),XAQD,XL,XLD< 100),XLL< 100),XLP,XKCaOO).
S XW.YU.ZB
COMrtOfl/BLK.VACR,ADL,AMIN,ARHOrBlV<100) JBURN,CUMDOS(10).DIFCON.
£ DIFCOy.DIFW.fiOSE<3.100),DSTACK.EGAMMAaOO>,EPUtFEXT,FEIRE,
J rG.FIXINV.riX,FWIND,HLIFE(100).HSIACK,IDSRPI,IFL<7),IFLAG,
I IGAMMA,INPRNI.IOPI.ISTAE,IUP.IVFAC,JUF(10).NDOSE.NISO,NNP,
1 NP.NPN<10).PLANr.PO,QH.RFR,RHO,RUNF.SINVfSNOfSPILL,SR,SS,
J TBEG,TCON,TCUT,IEND,TIHOP.IIMOPl,TwOrUBR,UI(100.b),
VOLAIL(100),VSlACK,VUIND.XALE,XCTfXH,XKD(100),XLC.
°, XNAME2(100),XPERC,XPORlXR,XRECEP,XROOI,XUfXMT,XXHO<100)
COMMON/BLK3/IFILL
DIMENSION XLLI(IOO).RVERTKIOO)
C COMPUTER SPECIFIC TO EAECO SYSTEM TO CATCH 'ZERO' ERRORS
C CALL ERRSET(63,.TRUE.,.FALSE.,.FALSE.,.FALSE.,50)
C CALL ERRSEK73,. TRUE... FALSE. ..FALSE... TRUE., 50)
OPEN(UNIT=b.FILE='OUTPUT.FIL',§TATUS='NEW)
CALL ZERO
C
C CALL SUBROUTINE WHICH READS INPUT
CALL kf:AD(XLLIvRVEkTI)
C CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS
c
IF(IUP .NE. 0) CALL UPTAKE
C
C CALL SUBROUTINE WHICH PRINTS INPUT SUMMARY
C
CALL FKINKXLLl.RVtkll)
IF([FLAG.EG,1) GO 10 200
DO 100 K=l.NDOSE
IF(Q(K.1).£Q.O.) 00 "10 100
DO 50 M=2.NTIME
ARG=XLD(K)AI(M)
Q(K,M)=0.
IF(ARG.LE.85.) Q(K,M)=Q(K.1)ADEXP(-ARG)
50 CONTINUE
100 CONTINUE
C CALL SUBROUTINE TO DO BAIEMAN CALCULATIONS
C
IF(Il'LAG.EQ.O) CALL BATMAN
200 DISY=DY
DO 300 K=1.NNP
KK=K
DY=DISY
IF(NPN(K).EQ.l) CALL RIVER
IF(NPN(K).EQ.2> CALL UELL
IF(NPN(K).EG.3) CALL PATH38O)
IF(NPN(K).EQ.4) CALL PATH38(4)
IF(NPN(K).EQ.5) CALL PATH38(5)
IF(NPN(K).EQ.6) CALL PATH38(6)
-------
IF(NPN CALL PATH36<8>
IF CALL PAIH38(10)
300 CONTINUE
IE<10PT.NE.O) GO TO 1000
WRITE(6.10) 'DOSES'
10 I'ORMAKlHi,' AAAAAAAAAA CUMULATIVE TOTAL ',A5,' PER YEAR FOR ',
I 'GIVEN TIMES AAAAAAAAAA',//)
WRI1E<6.20) NP.(CUMDOS(M),M=1,NTIME)
WRItE(6,ll) 'RISKS'
WRITE(6,20) NP,
20 FORMAT(4X.I3,9X,1P10E10.2)
C PRINT INVENTORY
30 1VR=0
WRIIL(6.31)
-------
C HRrrE(4,1987,ReC=l> NREC
1987 FORMAT (It.)
C CLOSE(4)
END
SUBROUTINE BA'J'MAN
C THIS SUBROUTING PERFORMS Tilt BATEMAN
C CALCULATIONS FOR NUCLIDE INGROWTH.
IMPLICIT RGALA8 (A-H.O-Z)
CHARACTERA8 VNUCL
REALA4 C,Q
CQHHON/BLKl/ALDlS.C(100.10).CANLIE,DILFAC.DOSV(5).DY,DZrNM.NMY.
I NMZ,NTIHE.Q(100.io> JVERTa6o> ja6>.TTIME(5)!VA!VNUCL<5>
& WIDTH, WSLABL-
JXLD(32))/«XLD(27)-XLD(38))A(XLD(32)-XLD<38)))+Q(38.1)A<(XLD<38)-
JXLD(24))ADEXP(-XLIK32)AT(M))/((XLD(24)-XLD(32))A(XLD(32)-XLD(38)))
S+(XLD(24)-XLD(38))ABEXP(-XLD(27)AT(M))/«XLD<27)-XLD(38))A(XLD<24)
S-XLB(27)))+(XLD(32)-XLD(27))ADEXP(-XLD(24)AT(M))/((XLD(24)-XLD(27)
J)A(XLD(24)-XLD(32)))))+(XLD(24)-XLD<27))AQ(32.M)/
-------
1060 IF((XLD(28)-XLD(34».eQ.O.) GO TO 1070
E13=(MXP(--XLD(34)A1(M))-DEXP(-XLD(28)AT(M)>>/(XLD(28)-XLD(34))
1070 IF((XID<25>-XLD(30)>.EQ,0.> UiJ 10 1080
E24=(DEXli(-XI.D(30)AI(H))-DEXP(-XLD(25)AT(M)))/(XLD(25)-XLD<30))
1080 IF((XLD(^5)-XLD(28)).EQ.O.) GO 10 1090
E34=(DEXP<-XLB<20)A1-AT-XLD<28»
10% Ilf((XLD(23)-XLD(;:5)).EQ.O.) GO CO 1100
E4b=AT(M))-DEXP<-XLIl<23)AT HO 'CO 1120
E134=(E13-E34)/(XLD<25)-XLII(34))
1120 IF((XLD(23)-XLD(30)).£Q.O.) GO 10 1130
E245=(E24-E45)/
-------
DATA VhXDOS /I0*0.DO/
DATA BLAN/' V
C
C CALCULATIONS tOR GROUNDWAIER DISCHARGE TO A WELL
C
3000 DO 3088 K=1.NIIME
3088 SUHD05(K)=0.
3005 IO=XLP/VA
TU=XWA'A+XAQD/XW
TT=TO+TW
XLSAV=XLP
TIHOP1=IIHOP
HW=XPERCAXLP/(XPORAVA)
CORFAC=1.
ED=XPERCAXLPAUIDIH
IF (Xl'ERC. LE. 0.) ED=W 1DIHAXLCAVAAXPOR
IF(HU.61.0.) CORFAC=XLC/HW
IE(HH.GI.O..AND.HW.LT.XLC) ED=EDACORFAC
IF(HW.GT.XLC) XLP=XLPACORFAC
IF (HW.GT.XLC) IIHOP1 = IIMOPACORFAC
3008 DILFAC=ED
ED=EUAXLSAV/VA
ZB=XW
XL=ZB-i-0.5AXLP
IF(IUPT.EQ.O) 60 10 3010
IF(lDPT.NE.l) GO TO 2011
IF(ALDIS.GT.O.) CALL PEAK(2)
IE(ALD1S.GT.O.) GO TO 3500
NTIhE=l
GO TO 3010
2011 CONTINUE
IFdDPI.EGi.]) CALL PEAK(2)
IF(IOPT.EQ.2) CALL RELEAS(2)
GO TO 3500
3010 1F(ALD1S.GT.O.) CALL DSPERS
URITE(G.3D
31 FORMAK1H1.56X,'PATHWAY 2',/,52X,'GROUNDWATER TO WELL',//,
S 'AAAAAAAAA NUCLIDE DOSES FOR GIVEN 'IIMES AAAAAAAA',/)
1031 FORMAT(56X,'PATHWAY 2 GROUNDWATER TO WELL')
IF(IOPI.EQ.l) WRITE(6T12)
IF(IOPT.NE.l) WRITE(6,11) (I(H),H=1.NTIHE)
11 FORMAT(/,' NUCLIDE/XIME '.10F10.0)
12 FORMAK/,' NUCLIUESllX/DOSE',/)
DO 301^ K=1.NDOSE
IF(Q(K,l).ECl.O.) GO 10 3015
TW=XW/VA+XAQDA(RU£RT(K)/XRC(K))/XVV
TI=TO+TU
IF(IOPI.tQ.l) K1)=XRC(K)AIW+DLOG(XLL(K)/XLD(K)+1.)/XLL(K)
IF(IOPT.EQ.l.AND.T(l).GE.XRC(K)An) I(1)=TIAXRC(K)
IF(IOPT.EQ.l) NDPKW(K)=T(1)
QSAVE=G(K,1)
IFdOPI.Efi.l) Q(K,l)=Q(K,])ADEXP(-XLD(K)At(D)
CONSfl=l.£9ADOSE(l,K)AUT(K,2)
IF(ALDIS.GI.O.) GOTO 13
UUV=XLD(K)ARV£RT(K)
UUH=XLD(K)AXRC(K)
HVT(K)=HUNG(UUV,XAQD.XVV)
HHT(K)=HUNG(UUH.XL,VA)
HUNF=HVT(K)AHHT(K)
13 CONTINUE
-------
XZ=-XI.L(K)AXKC
IF(T(h).Ll-.XRC(K)AIU) C(K.M)=0.
IF(T(H).GE.XfiC(K)AIW) C(K,M)=XXAQAT.1.D-35.AND.C3(M)>EDOSE(M)
IF
D03M(4)=0.
DO 3020 K=l,10
IF(SUMDOS(K).GI.DOSV(4)) H=K
IF(SUMDOS
32 IORMAT(///.'AAAAAAA SUM OF NUCLIDE ',A5,' FOR GIVEN TIHES AAAAAA')
WRITE(6,35)
35 tORMAKlHl.'AAAAAAA DISPERSION CORRECTION FACTOR AAAAAA',//,5Xr
X 'NUCLIDE',8X,'VERTICAL FACTOR',8X,'HORIZONTAL FACTOR',8X,
& 'TOTAL FACTOR',//)
DO 36 K=1,NDOSE
IF(0(K.1).EQ.O.) GOTO 36
URIlt<6\37) K,XNAME2
-------
3500 XLP=XLSAV
REIUkN
END
SUBROUTINE PAIH38
IMPLICIT REALA8 (A-H.O-Z)
CHARACIERA8 WUCL.XNAHE2.XN1
REALM C.Q.UI
COHMON/XFER/NREC
COhMON/BI.Kl/ALDIS.C(100,10>.CANLIE.DlLFAC.DOSV<5>,DYTDZ.NM.NMY,
& NMZ.NTIHE,Q<100.10).RVERT<100>J(10),TTIHE<5).VA,VNUCL<5),
4 UIDTH.WSLABL(10),XAQD,XLrXLD(100),XLL(100),XLP,XRCUOO)r
& XW.YU.ZB
COHHON/BLK2/ACR,ADLfAHIN.ARHO.BIV(100),BURN.CUMDOS(10),DIFCON.
I DIECOU,BIFU,DOSE(3,100),DSTACK,EGAHMA(100),EPW,FEXT.EFIRE.
i FG.FIXINy,FTX,FUIND,HLlFE(100).HSTACK,IDSRPr,IFL(7)!lFLAGf
& IGAhMA.INPRNT.IOPT.ISTAB,IUP.lOFAC.JUF(10)rNDOSE.NISO,NNP,
& NP.NPN(10),PLANT.PO,QH.RFR.RHO,RUNF.SINV,SNO.SPILL.SR,SS.
S TBEG,TCON,TCUT,TEND.TIHOP.TIMOP1,TUO.UBR,UT(100,6).
& WLATL(100),VSTACK,OwiND,XALE,XCT,XH,XKD(100)fXLC.
& XNAME2(100),XPERC1XPOR.XR,XRECEP.XROOT.XW.XWl!xXMU(100)
DIHENSION BRIGGS(6.3),EDOSE(10),IVHD(10).SUHDOS(10).VMXDOS(10)
CHARACTERS BLAN
DATA AHOUSE.ALOT,TG/1.D2,2.3D3,0.91DO/
DATA BLAN/' '/
DATA BRIGGS/0.200DO. 0.120DO. 0.080DO, 0.060DO, 0.030DO, 0.016DO,
I O.OOODO, O.OOODO, 2.00D-4, 1.30D-3, 3.00D-4, 3.00D-4,
i 0.0001)0, O.OOODO, -0.50DO, -0.50DO, -l.OODO. -l.OODO/
DATA VHXOOS /10AO.DO/
IF(lOPl.NE.O) GO TO 9000
> If(NPATH.£Q.3) GO TO 3000
' IF(NPAl'H.tQ.4) GO 10 3000
00 IF(NPATH.EQ.5> GO TO 4000
IF(NPATH.EQ.G) GO TO 4000
IF(NPATH.EQ.7) GO TO 5000
IF(NPAIH.EQ.8) GO TO 6000
IF(NPATH.EQ.9> GO TO 7000
IF(NPAIH.tQ.lO) GO 10 8000
C
C CALCULATIONS tOR EROSION S BATHTUB PATHWAYS
C
3000 FB=IHV/
DO 3008 K=1,NIIHE
3088 SUMHOS(K)=0.
FQ=I.
TZ1=XCT/XALE
TZ2=TZ1+XWT/XALE
TZ3=(XWH-XCI)/(XPERC/XPORH XALE)
FE=XALE/XWT
IE(NPATH .EQ. 3) WRITE(6.3005)
IF(NPATH .EQ. 4) WRIIE(6T3006)
3005 FORHAT(lH1.56X.'PATHyAY 3'./,57X.'EROSION'l//.
t 'AAAAAAAAi NUCLIDE DOSES F&R GIVEN TIMES *£******',/>
13005 FORhAT(56X.'PATHWAY 3 EROSION')
3006 FORhAT(lH1.56X,'PATHWAY 4'./,54X,'BATHTUB EFFECT'.//.
S 'AAAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAAV)
13006 FORMAT(56X.'PATHWAY 4 BATHTUB EFFECT')
IF(SPILL .GT. O..AND.NPATH.EQ.3) WRITE(6,3008) SPILL
3008 FORMATC DOSE AT YEAR 1 IS DUE TO SPILLAGE FRACTION OF ',1PE9.2)
WRIIE<6.11) (T(M),M=1,NTIME)
11 FORMAK//,' NUCLIDE/TIME ',10F10.0>
-------
CONC11=.001AEB/KFR
DO 3015 K=1,NDOSE
IF(Q(K,1KEQ.O.) 60 10 3015
UPTK=UI(K,3>
IF(N?AIH .EQ. 4) UPTK=UI(Kf4>
IE(SPILL .GT. 0.) UPTK=UT(K.5)
CONS12=UPIKADOSE'.1.K)ACONSI1
IF(NPATH.E0.3> GO TO 3010
XALE1=XPERC/(XKD(K)A.001ARHO+XPOR)
FE=XALE1/XWT
3010 DO 3016 M=1.NTIME
IE(NPATH.EQ.4) fcQ=DEXP(-XALElA(T(H)-TZ3)/XWT)
IF=XCT-XALEAT(M)
EDOC;E(M)=].E12AQ(K,M)AFEACONST2AFQ
C(K.M)=Q(K,M)A(-eAl;D/SFRAFQ
IF(lVEAC.EG.l) EDOSEA(1.-VOLAIL(K)>
IF(NPATH.EQ.3 .AND. IE.GE.O.) EDOSE(M)=0.
IF(NPATH.EQ.3 .AND. IF.GE.O.) C(K,H)=0.
IF(NPATH.EQ.4 .AND. T(M).LE.TZ3) EDOSE(M)=0.
IE(NPATH.EQ.4 .AND. I(M).LE.TZ3) C(K,M)=0.
IF(TF.LT.-XUT) EDOSE(M)=0.
IF(TF.LT.-XWI) C(K,M)=0.
IF(M.GT.l .OR. SPliL.LE.O.) GO TO 3014
IF(NPAIH.ei3.4) HO TO 3014
EHOSE(1)=1.E12AQ(K.1)ACONST2ASPILL/
& (FDA(10.ARUNF+XKD(K)A.001ARHO+XPOR))
C(K.1)=Q
20 FORMAI(4X,I3,9X;il(lPh0.2))
NP=NP+1
DO 3100 M=1,NTIME
3100 CUMDOS(M)=CUMDOS(M)+SUMDOS(h)
WRITE(6.32) 'DOSES'
WRIIL<6,20> NISO,(SUMDOS(M),M=lFNtlhE)
WRITE(G,3'2) 'RISKS'
WRITt:(6,20) NISO.(SUMDOS(M)A2.8E-7,M=1,NTIME)
32 FORMAT(^//.'AAAAAAA SUM OF NUCLIDE ',A5,' FOR GIVEN TIMES AAAAAA')
URITE(6 28) TZ1 TZ2
28 FORMAT(///.' AAAAAAA EROSION OF HASTE STARTS AFTER '.E10.1,' YEARS
& AND ENDS AFTER WASTE IS ALL ERODED IN ',F10.1,' YEARS.')
IF(NPAIH.EQ.4) WR1IE(6,3110) TZ3
3110 FORMAT(9X 'FACILITY OVERFLOW BEGINS AT YEAR ',F10.D
3401 tORMAnlHl.'CONCENTRATION ARRAY',8X,'CONCENTRATIONS IN CI/MAA3')
WRITE(6,llJ (T(M),M=1,NIIME)
DO 3400 K=1.NDOSE
IF(a(l(fl).GT.O.) HRITE(6,19) K,XNAME2(K),(C(K,M),M=lfNIIME)
3400 CONTINUE
GO TO 9000
C
C CALCULATIONS FOR tOOD S BIOINTRUSION PATHWAYS
C
4000 EH=TWV/(XLPAU1DIHAXWI)
-------
DOSV<5>=0.
DO 4088 K=KNIIME
408(3 SIJMOOS KKN=K
IE(EDOSE(2).GT.DOSV(5)) DOSV(5)=EDOSE(2)
4015 CONTINUE
niME(5)=I<2)
NP=NP+1
DO 4100 M=l,NIIhE
4100 CUHDOS(h)=CUMDOS(h)+SUMDOS(M)
WRI1E<6,32) 'DOSES'
WRIIE(6»20) NISO>
IF(NPATH .EQ. b) HR1TE(6,4303) FM
4303 FORMAT(' FRACTIONAL MIXING OF TRENCH MATERIAL IN SURFACE SOIL IS
S ,F5.3)
GO TO 9000
C
C CALCULATIONS FOR DIRECT GAMMA EXPOSURE
C
5000 DO 5088 K=1.NTIME
5088 SUMDOS(K)=0.
-------
;ORMATOHI.56X,'PATHWAY 7' /,5bX.'DIRECT GAMMA' //,
'AAAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAV./)
:ORMAT<5GX.'PATHWAY 7 DIRECT GAMHA')
UR1TE<6.50CJO)
5090 FORMAT (] HI. 56X,' PATHWAY
I 'AAAAAAAA:!
15090 FORMAH5GX.
URIIE(G.ll) (I(H),M=lrNTIME)
T21=XCT/XALE
CONST1=8.7GE15/AMIN
CONST2=2.AXLPAWIDTH/(FEXTAAMIN)
IF(IGAMMA.NE.l) GO TO 5100
T 1 = ( XROOT-XCT-XUT ) / ( PLANI/RHO-XALE )
12= ( XROOT-XCT )/ ( PLANT/RHO-XALE)
IF
-------
PQ=1.
RQ=Q£,UktAFGAMMAAFEXT/
IE(TMU.GT.35.) EXPO=0.
PQSURF=1.D35
IF < IMU . GI . 0 . > PQSURF=CONST2AThU/ < 1 . +1 . 32934/EGAhM A < K ) - ( 1 . -HMD AA
81.5/£GAMMA(K»AEXPO)
TMU=THU+XXMU(K)AXCT
IFCfMU.LT.O.) TMU=0.
IF(ThU.GT.85.) THU=85.
BU=l.+ThUAA1.5/EGAMMA(K)
IF(EGAMMA(K) .LI. 0.25) BU=1.+2.AIMU
BU=BUADEXP(-IHU>
IF(BU .GT. 1.) BU=1.
PQUNDR=CONST2ACGNSI3/BU
RQ=RQUNDR+RQSURF
PQ=KQ/ ( RQUNDR/PQUNDR+RQSURF/PQSURF )
GO TO 5014
5012 IKXXMU(K) .GT. 0.) GO TO 5013
PQ=1.
RQ=Q(K.M)AtGAHMA(K)ADOSt(3,K)AFEXTAF«/(XLPAWIDTHAXUT)
GO TO 5014
5013 GSURF=G(K.M)ACONST4
QUNDR=Q(K.M)-QSURE
QSURt =QSURFA ( 1 . -XALtAl ( M ) /IG )
IF(GSURF.LI.O.) QSURF=0.
RQSURF=CONS11AQSURFADOSE(3.K)
RQUNDR=CONST1AQUNDRADOSE(3,K)
TMU=XXMU < K ) A ( IG-XALEAT ( M ) )
EXPO=0.
IF ( DABS ( TMU ) . LE . 35 . ) EXPO=DEXP ( -THU )
PQSURt'=l.D35
IF ( IMU . Gl . 0 . ) PQSURE=2 . ATHUA ( ALOT-AHOUSE ) / ( FEXTAAM INA ( 1 . + 1 . 32934X
JEGAMMA(K)-(1.+TMUAA1.5/EGAHMA(K))AEXPO))
THU=XXMU(K)A(XCI-XALEAI(M»
IFdMU.LT.O.) TMU=0.
IE(TMU.GI.85.) TMU=85.
BU=1 . +ThUAAl .5/EGAMHA(K )
IE(EGAhhA(K) .LI. 0.25) BU=1.+2.AIMU
BU=8UADKXP(-ThU)
IE(BU .GI. 1.) BU=1.
PQUNDR=CONST2ACONST3/BU
RQ=RQUNBR+RQSURE
PQ=R(J/ ( RQUNDR/PQUNDR+RQSURF/PQSURF )
5014 EOOGE(M)=RQ/PQ
IF(IVtAC.EQ.l) EDOSE(H)=EDOSt(M)A(l.-VOLAIL(K))
SUhDOS(M)=SUHDOS(M) ^EDOSE(H)
IF
-------
DO 5210 K=1.10
IE =SUMDOS(K>
IT1MEO) = KM)
VNUCL(3)=XNAhE2([VMD(M))
IE(DOSM<3).EQ.O.) VNUCL(3)=BLAN
WRITE<6,32> 'DOSES'
URITE(6,20> NISO. CI(M).M=1,NTIME)
CONST1=1.E12AEMAADLAUBRAETX/(XLPAWIDTHAXWTARHO)
DO 6015 K=1,NDOSE
IE(Q(K,1).EQ.O.) GO TO 6015
DO G016 M=1,NTIME
EDOSE(M)=Q(K,M)ADOSE(2.K)ACONST1
IF(IVFAC.EQ.l) EDOSE(M)=EDOSE(M)A(1.-VOLATL(K))
SUMDOS(M)=SUMDOS(M)+EDOSE(M)
6016 CONTINUE
WR1TE(6,19) K,XNAME2(K),(EDOSE=CUMDOS(MHSUMDOS(M)
WR1TE(6.32) 'DOSES'
WR1TE(6>20) NISO>(SUMDOS(M),M=1,NTIME)
WRITE(6,32) 'RISKS'
WRITLCe^O) NISO.(SUMDOS(M)A2.8E-7FM=lfNIIME)
DOSV(1)=SUMDOS(1)
VNUCL(1)=XNAME2(KKN)
IF(DOSV(1).EQ.O.)VNUCL(1)=BLAN
GO TO 9000
C
C CALCULATIONS FOR RADON INHALATION PATHWAY
C
7000 DO 7088 K=1.NIIME
7088 SUMDOS(K)=0.
WR11-L<6,7010)
-------
7010 FOkMAIUHl.bGX,'PATHWAY 9',/,53X,'RADON INHALATION',//.
I 'AAAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA',/)
17010 FORMAK5GX, 'PATHWAY 9 RADON INHALATION')
WRITE(6,11> (I(M),M=1PNTIME)
K=21
XN1='RN222
XLKN=2.1D-6
BI=ri5QRI(XLkN/DIFW)AXHTA100.
EPLUS=OEXP(BT>
EM1NUS=1./EPLUS
IANH=
SUMDOS (M) =SUMDOS (M) HiDOSE (M)
7016 CONTINUE
URITt(6.19) K,XNlf(EDOSt
8010 FORMAK/,' ANNUAL DOSE TO AN INDIVIDUAL DUE TO OFF-SITE ',
i 'ATMOSPHERIC TRANSPORT')
CONST1=10.AHSTACK
IE(XRtCEP .LI. CONS11) CONST1=XRECEP
H£Ff=HSIACK + (1.5AVSTACKADSTACK +
I ] .6A(3.r/E-5ACONSTlACONSTlAQH)AA0.3333)/VUIND
IfdSTABAG.O) ISTAB=4
SIGMA2=BRIGGS(ISTABV1)AXRECEPA(1.4BR1GGS(1STAB,2)AXRECEP)AA
J BRIGGS(iSTAB,3)
IKXRECEP.Lt.O.) CHlQ=2./(3.141b9AHEEFAHEFFAVWINDA2.71828)
IF(XRECEP.GT.O.) CHIQ=2.032AFyiNDADEXP(-0.5A(HEFE/SIGHAZ)AA2.)/
I (SIGMAZAVWINDAXRECEP)
ARG=-0.79788AFFIRE/(VWINDABRIGGS(ISTAB.l))
IFdVFAC.EQ.O .AND. XRECEP.GT.O.) EEIRE=XRECEPAAARG
DENOM=TUV
IFdVFAC .EQ. 0) DENOM=XLPAUIDTHA(XWT+XCT)
CONST1=1.E12ABURNAFEIREACHIQAUBR/DENOH
DO 8015 K=1.NDOSE
IF(Q(K,1).EQ.O.) GO TO 8015
-------
ARG=] .
IF (MAC: .GT. 0) ARG=VOI.A1L(K>
EDOSE(1>=Q(K,1)ACONST1AARGADOSE(2,K)
GUMBOS U)=SUHDOS(1H-EDOSE<1)
WRITE(6,19> K,XNAME2(K).EDOSE(1)
IF(EDOSE(1).LE.DOSV<2)> GO TO 8015
KKN=K
DOSV(2)=EDOSEU)
3015 CONTINUE
NP=NP+1
DO 0100 M=1.NTIHE
8100 CUMDOS(M)=CUMDOS(M> i-SUMDOS(M)
WRIlt(6>32) 'DOSES'
WRITE (6, 20) NISO,SUMDOSU)
WRITE(6 32) 'RISKS'
URITE<6,20) NISO,SUMDOS(l)A2.8E-7
IF(XRECEP .GT. 0.) URITE(6,8110) XRECEP.CHIQ
8110 EORHAT(//,' DISTANCE TO RECEPTOR IS '.F7.1.' MEIERS',/.
& ' CHI/Q IS ',1PE9.2,' CI/HAA3 PER Cl/£iEC',//)
IF(XR£CEP .LE. 0.) HRITE(6,3120) CHIQ
8120 FORMAT (//.' CHI/Q IS 'JPE9.2/ CJ/MAA3 PtR CI/SEC',//)
VNUCL(2)=XNAMt2(KKN)
IF(DOSV(2).EQ.O.> VNUCL(2)=BLAN
9000 RETURN
END
C PE1 ZERO SUBROUTINE;: INITIALIZES ALL COMMON BLOCK VARIABLES
SUBROUTINE ZERO
-.., IMPLICIT REALA8 (A-K,0-Z)
i CHARACTERA8 NUCLID,VNUCL.XNAME2
J-- REALA4 C,Q,UT
"-" COMMON/BLK1/ALDIS.C(100.10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM.NMY,
& NMZ,NTIME.Q(100.IO),RVERT(l60).T(10),TTIME(5),VA,VNUCL(5),
X WIDTH. USLABL<10),XAQD, XL, XLD(lOO)rXLL(100),XLPrXRC(100)t
& XW.Y&.ZB
COMMON/BLK2/ACR.ADL.AMIN.ARHO.BIV(100).BURN.CUMDOS(10),DIFCON,
i D IFCOV , D IFW , DOSE (3,100) , DSTACK , EGAMMA ( 1 00 ) , EPW, FEXT , FF IRE ,
& FG.FIXINV,FTX,FWIND.HLIFE<100).HSTACK.IDSRPT.IFL(7).IFLAG,
i IGAMMA . INf RNI IOPT . ISTAB , IUP . IWFAC , JUF ( 1 0 ) . NDOSE . N ISO , NNP ,
S NP,NPN( 10), PLANT,PV,QH,RFR,RHO,RUNF.SINV,SNO. SPILL, SR,SS,
S TBEG,TCON.TCUT,TEND,TIHOP.TIMOP1,IUO,UBR.UT( 100,6),
X VOLATL ( 100 ) , USTACK . Ou IND , XALE , XCT . XH , XKD ( 100 ) , XLC .
& XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOI,XW,XUT XXhU(lOO)
COMMON/BLK3/IFILL
COMMON/UPTAK/BDENS , BR , COL1 , COP1 , COCM II , COF ISH , COGM II . COMEAT .CHAT ,
i DECA.FFfFI.FIs!FMC.FMG,FP.FS,INTAKE(5),KK,NUCLID.PORS,PP,
S QBU,6CW!QFC,QFG,QGH,RM!SINFL,TE1,TE2.TFIS,TF1,TH1,TH2.TH3,
I IH4 . T IMAV . TS , UCM ILK , UF ISH , UGM ILK , ULEAFY , UMEAI , UPROD , UWAT ,
S U IRATE, XAABWE,Y1,Y2
C COMMON BLK1
C
DO 10 1=1.100
RVERt(I)=0.
XLD(1)=0.
XRC(1)=0.
10 CONTINUE
DO 20 1=1,10
-------
00 30 J=1.100
C(JVI)=0.
Q=0.
EGAMMAU)=Q.
HLIEE(I)=0.
VOLATL(1)=0.
XKD(I)=0.
XXMU<))=0.
DO 110 J=1.3
DOSE(J,I)=0.
110 CONTINUE
DO 120 J=1.6
UT(I.J)=0.
120 CONTINUE
100 CONTINUE
DO 130 1=1.10
CUMDOS(I)=0.
JUF(I)=0
NPN(1)=0
130 CONTINUE
DO 140 1=1,7
IFL(I)=0
140 CONTINUE
C
C COMMON UP1AK
C
DO 200 1=1.5
INTAKE(I)=0
200 CONTINUE
C
RETURN
END
SUBROUTINE RIVER
IMPLICIT REALA8 (A-H.O-Z)
CHARACTERA8 VNUCL.XNAME2
REALA4 C.Q.UT.NDPKR
COMMON/XFER/NREC
COMMON/BLK1/ALDIS,C(100.10),CANLIF.DILFAC.DOSV < 5).DY,DZ,NH.NMY,
NMZ,NTIME.fi(100.10).RVERT(l60).T(l6).TIIME(5).VA,VNUCL(5),
WIDTH.USLABL(10),XAQD,XL,XLD
-------
X TBEG,TCON.TCUT.IEND.TIMOP,TIMOPl,TWVfUBR.U:rU00.6>.
i VOLATL(106),VSTACK.OWIND,XALE.XCT.XH.XKD(100).XLC,
i XNAME2(100)rXPERC,XP08rXR,XRECEP,XROOlfXUrXUTjXXMO(100)
COHnON/BLKS/IEILL
DIMENSION EDOSF.aO).SUMDOS<10),HHT<100)rHVT<100>.NDPKR<50)
DY=0.
C CALCULATIONS FOR GROUNDHAIER DISCHARGE TO A RIVER
C
2000 DO 2088 K=1,NIIME
2088 SUMDQ3(K)=0.
2005 TCl=XLP/VA
TR=Xk/VA+XAGlD/XVV
TT=TO+TR
ED=X1.PARFR/VA
DILFAC=RFR
ZB=XR
XL=ZlHO.bAXLP
TIMOP1=TIHOP
IF(IOPT.EGl.O) GO TO 2010
IF(IOPt.NE.l) GO TO 2011
IF(ALDIS.GI.O.) CALL PEAK(l)
IF(ALDIS.GT.O.) GO 10 2500
NTIME=1
GO TO 2010
2011 CONTINUE
IF(10PT.EQ.2> CALL RELEAS(l)
GO TO 2500
2010 lt'(Al.DIS.GT.O.) CALL DSPERS
HRITE(6.31)
31 FORMAT(1H1.56X..'PATHWAY 1'./.SlX/GROUNDWAItk TO RIVER',//,
I 'AAAAAAAAA NU^LIDE DOSt'S FOR GIVEN TIMES AAAAAAAA',/)
1031 FORMAK5GX/PATHUAY 1 GROUNDUATER TO RIVER')
IFaOPf.eQ.D WRITE (6.12)
IF(lOPT.NE.l) URITE(6,11) (T(M).M=1.NTIME)
11 FORMAK/,' NUCLIDE/IIME ' IOFIO.0)
12 FORMAK/.' NUCLIDE'.llX.'DOSE',/)
DO '.2015 K=1,NDOSE
IF(Q(K>1).EQ.O.) GO TO 2015
TR=XR/VA+XAQDA(RVERT(K)/XRC(K))/XVV
IT=IO+TR
CONST1=1.E9ADOSE<1,K)AUT(K,1)
IF(IOPT.EQ.l) T(1)=XRC(K)ATR+DLOG(XLL(K)/XLD(K)+1.)/XLL(K)
IF(IOPT.EQ.1.AND.I(1).GE.TIAXRC(K)> I(l)=riAXRC(K)
IF(IOPT.EQ.l) NDPKR(K)=T(1)
OSAVE=Q(K,1)
IF (lOPlJQ.l) Q(K,l)=Q(Krl)ADEXP(-XLD(K)AT(D)
IF
-------
IE(XX.Gl.Cb.) XX=£)b.
iJ-UY.GT.Sb.) XY=85.
XY=LitXmYH C(K,M)=XXAQ(K,M>AHUNF/ED
IF(T(M).GE.XRC C(K.M)=XYAQ(K,M>AHUNF/ED
2222 IF(C
SUMDOS(M)=SUM005
C IF .LT. 0.) ADI(K,M>=ADHK,M)-EDOSE,M=1,NT1ME>
Q(K,l)=QSAVE
2015 CONTINUE
19 FOKMAKlXjia^XjAa^XjlldPtlO^))
NP=NP+1
DO 2]00 M=KNI1ME
2100 CUMOOS(M)=COhDOS(M)vSUMDOS(M)
URHE(6,32) 'DOSES'
WRIIt(6t20) NISO.2) 'RISKS'
URI1E(6,20) N1SO.(SUHDOS(M)A2.8E-7fH=l,NTIME)
20 FORMAT(4X,I3.'3X(Il(lP£10.2))
32 FORMAT(/// 'AAAAAAA SUM OF NUCLIDE ',A5,' FOR GIVEN TIMES AAAAAA')
WRITE(6,35)
35 FORMAT//,'AAAAAAA DISPERSION CORRECTION FACTOR AAAAAA',//.5X.
X 'NUCLIDE'.8X.'VERTICAL FACTOR',8X 'HORIZONTAL FACTOR',8X.
3=, S 'TOTAL FACTOR',//)
i DO 36 K=1,NDOSE
"-• IF(Q(K.1).EQ.O.) GOTO 36
00 UR1IE<6\37) K.XNAME2(K),HVT(K).HHT(K).HVT(K)AHHT(K)
37 FORMAT(1X,I3,2X,A8,9X.1PE10.2.I4X,1PE10.2,12X,1PE10.2>
36 CONTINUE
MRITE(6,2401)
IF(IOPT.EQ.l) WRITE (6.21)
IF(IOPT.NE.l) WRIIE(6,Il) (KM) ,M=1,NIIME)
21 FORMAT*/,' NUCLIDE' 11X.'CONC'.4X.'PEAK TIME' /)
2401 FORMAK///.' CONCENTRATION ARRAY1,8X,'CONCENTRATIONS IN CI/MAA3')
DO 2400 K=1.NDOSE
IF(Q(K,1).EQ.O.) GO TO 2400
IEUOPT.EQ.1) WRITE(6,19) K,XNAME2(K),C(K.l).NDPKR(K)
IF(IOPT.NE.l) WRIIE(6jl9) K,XNAME2(K)J(C(K,M5,M=1,NIIME>
2400 CONTINUE
2500 RETURN
END
SUBROUTINE PRINT(XLLI.RVERTl)
IMPLICIT REALA8 (A-H,6-Z)
CHARACTERA8 VNUCL,XNAME2
REALA4 C.Q.UT
COMMON/B£Kl/ALDIS,CU00.10),CANLIF.DILFAC.DOSV<5).DY,DZ,NM,NMY,
NMZ,NTIME.Q(100.IO),RVERT(l60)1T(l6).ITIME(5).VA,VNUCL(5)f
UIDTH.ySLABL(10),XAQD,XL,XLD(100),XLL<100),XLf,XRC<100),
yyii y(i 711 ' '
COMMON/BLK5/ACK,ADL,AMIN,AKHO.B1V(100),BURN.CUMDOS(10),DIFCON,
DIFCOV,DIFW,DOSE(3.100),DSTACK,EGAMMA(100).EPW,EEXT,FFIRE,
FG.FIXiNV,FIX,FUINfi,HLIFE(100).HSTACK,IDSRfT,IFL(7)!IFLAG,
IGAMMA. IN?RNT IOPT. 1STAB. IUP. IVFAC. JUF (10). NNJSE. N ISO, NNP,
NP,NPNhO),PLANT,PV,QH,RER,RHO,RUNF,SINVrSNOfSPILL,SR,SS,
-------
|ELL
^SION
'LiPORT
/EROSION '
,'EOOD GRO'
/DIREC'l' ij'
'RADON IN'
i
','WN ON SI
/AMMA
/ HALATION
8 TBEG,TCON,TCUT,TEND,TIMOP,TIMOP1,TWV,UBR,UK100.G),
8 yOLATL(100>,VSTACK.vWIND,XALE.XCT.XH,XKBUOO),XLC.
*„„„„„ XNAME2(100),XPERC,XPOR,XR,XRECEP,XRGOT,XW,XWT,XXMU(100)
COMMON/BLK3/IF ILL
DIMENSION PTHNAM(3,10),XLLI(100),RVERTI(100)
CHARACTJ-RA8 PTHNAM
DATA PIHNAM/'GROUNDWA'/TER TO R'/IVER
8'GftOUNDUA'/TER TO W
8' BATHTUB ','EFFECT ' ' /FOOD GRO'','WN ON SI''.'TE
S'NATURAL '/BIO £NTfilj
S'DIIST INH'/ALATION
8'AIMOSPHE' 'RIC IRAN oru
IF(INPRNI.EQ.O) GO TO 1000
100 FORMAK]HI ' AAAAAAAAAA PAIHRAE INPUT SUMMARY AAAAAAAAAA')
107 FORMAK' LENGTH OF REPOSITORY (METERS)' 31X.F8.0)
108 FORMAK' WIDTH OF REPOSITORY (METERS)',§2X.F8.0)
109 FORMAK' HORIZONTAL VELOCITY OF AQUIFER (MEIERS/YR)',21X,F8.3)
HA pncMATf ' / / POROSITY OF AQUIFER',45X,F6.2)
DISTANCE TO RIVER (METERS)J,34X,F8.0>
FLOW RATE OF RIVER (CUBIC MEIERS/YEAR)' 25X.1PE11.2)
DISTANCE TO WELL — X COORDINATE (METERS)',19X,F8.0)
MIXING THICKNESS OF AQUIFER (METERS)' 28X.F7.3)
DISTANCE TO WELL — Y COORDINATE (METERS)J,19X,F8.0)
CANISTER LIFETIME (YEARS)' 37X,F6.0)
121 FORMAK' DISTANCE FROM AQUIFER TO WASTE (METERS)',23X.F7.1)
122 FORMAK' AUCBARC UCSTTPAI n&nnunuATrD urinrTTv /M>VD\' IVY
110 FORMAK
111 FORMAT(
112 FORMAK
113 FORhAK
114 FORMAK
115 FORMAK
116 FORMAK
AVERAGE VERTICAL GROUNDUATER VELOCITY (M/YR)>.17X,F10.3)
',/,' DENSITY OF AQUIFER (KG/CUBIC METER)'.25X,F8.0)
LONGITUDINAL DISPERSIVITY (M)'.34X.1PE11.25
NUMBER OF MESH POINTS FOR DISPERSION CALCULATION',15X,
',/,' TIME OF OPERATION OF WASTE FACILITY IN YEARS'
123 FORMAK
124 FORMAK
125 FORMAK
814)
127 FORMAK
816X,F8.0)
128 FORMAK' './,
8' AMOUNT Ot WATER PERCOLATING THROUGH WASTE ANNUALLY (M)',
8 10X.F7.3./.' DEGREE OF SOIL SAIURATION',40X,F6.3,/,
8 ' RESIDUAL SOIL SATURATION',41X,F6.3./,
8 ' PERMEABILITY OF VERTICAL ZONE (M/YR)J,27X,£7.2,/,
8 ' SOIL NUMBER'.54X.F6.3)
129 EOkMAIC LATERAL DISPERSION COEFFICIENT -- Y AXIS (MAA2/YR)',13X,
8 1PE11.2)
131 fOKMATC COVER THICKNESS OVER WASTE (METERS)',25X,F10.2)
132 FORMAK' THICKNESS OF WASTE IN PITS (METERS)',25X,F10.2)
202 FORMAK' ' /,
8' THERE ARE',13,' ISOTOPES IN THE DOSE FACTOR LIBRARY'./.
I ' THE CUTOFF VALUE FOR NUCLIDE HALF LIVES IS',f7.1.' YEARS'./.
8 ' DEFAULT INVENTORY VALUE FOR CUTOFF NUCLIDES IS'.1PE9.2,' Cl7)
204 FORMAK' NUMBER OF TIMES FOR CALCULATION IS',I3,/,J VCAPC rn RP/
8 ' CALCULATED ARE ...'//,(IX,5F9.2))
EiU' J4 ' TCnTflDI
YEARS TO BE',
fe unijLrUi^riiCiU nnb • • • .//. tJLAf Dt^ *£) )
206 FORMAK' './,' THERE ARE'.14 ' ISOTOPES IN THE INVENTORY FILE',/,
8 ' THE VALUE OF IFLAG IS 7,I3,/,' NUMBER Of PATHWAYS IS '.13)
208 FORMAK/,12X,'PATHWAY',11X 'TYPE OF USAGE',/,28X,'FOR UPTAKE ',
8 'FACTORS',/,(3X.12,2X'3A8,4X,12))
212 FORMAK' '!/,' FLAG FOR GAMMA PATHWAY OPTIONS',34X, 13,/,
8 ' FLAG FO$ ATMOSPHERIC PATHWAY',36x.i3)
216 FORMAK' INVENTORY SCALING FACIOR'.4lX,lPE9.2)
218 FORMAK' RADON EMANATING POWER OF THE WASTE',31X.1PE9.2,/,
8 ' DIFFUSION COEFF. OF RADON IN WASTE (CMAA2/SEC>',19X,E9.2./r
8 ' DIFFUSION COEFF. OF RN IN CONCRETE (CMAA2/SEC)'.19X.E9.2)
220 FORMAK' './,' DIFFUSION COEFF. OF RADON IN COVER (CHAA2/SEC)',
8 19X,1PE9.2)
-------
222 FORMATC ' / ' DECAY CHAIN FLAGS' TJX,714)
224 FORMAT(' FLAG FOR INPUT SUMMARY PRINTOUT' 33X.13,/.
I ' FLAG FOR DIRECTION OF TRENCH FILLING',28X,13./,
& ' FLAG FOR GROUNDWATER PATHWAY OPTIONS''28X.13)
510 FORMATC RECEPTOR DISTANCE FOR ATMOSPHERIC PATHWAY (M)'.17X.F7.1)
511 FORMATC STACK HEIGHT (M)'.48X.F5.1./' STACK INSIDE DIAMETER (M)'.
& 40X.F5.2./ ' STACK GAS VELOCITY (M/S)' 40X.F5.1)
512 FORMATC HEAT EMISSION RATE FROM BURNING (CAL/S)',26X,1PE9.2)
513 FORMATC './.
t' DUST RESUSPENSION RATE FOR OFFSITE TRANSPORT (MAA3/S)'.
S 12X.1PE9.2./' DEPOSITION VELOCITY (M/S)'.41X.OPF6.4)
514 FORMAIC ',/* INCINERATOR OR TRENCH FIRE BURN RATE (MAA3/S)'.20X.
& 1PE9.2,/,' FRACTION OF YEAR FIRE BURNS',39X,OPF6.4)
515 FORMATC ATMOSPHERIC STABILITY CLASS',38X,12./.
S ' AVERAGE WIND SPEED (M/S)' 41X.F5.2,/.
I ' FRACTION OF TIME WIND BLOWS TOWARD RECEPTOR',23X,F6.4)
516 FORMATC SURFACE EROSION RATE (M/YR)'.36X.1PE12.3,/.
S ' ANNUAL RUNOFF OF PRECIPITATION (M)J.31X.E9.2)
517 FORMAIC ' /.' TOTAL WASTE VOLUME (MAA3)5,38X.1PE12.3)
519 FORMATC DENSITY OF WASTE (KG/MAA3)',34X,F8.0)
520 FORMATC FRACTION OF FOOD CONSUMED THAT IS GROWN ON SITE',17X.
&F7.3)
521 FORMATC DEPTH OF PLANT ROOT ZONE (METERS)'.32X,F6.3)
522 FORMATC ',/,
&' FRACTION OF YEAR SPENT IN DIRECT RADIATION FIELD',15X.F8.3)
524 FORMATC AVERAGE DUST LOADING IN AIR (KG/MAA3)',26X 1PE11.2)
525 FORMATC './.' ANNUAL ADULT BREATHING RATE
-------
WRITE (6,526) FIX
WR in (6, 116) CANLIF
WRITE<6,216> FIXINV
WR11L(6(529) XH
WRITE (6, 530) ACR
WRIIE(6,218) EPW.DIFW,DIFCON
WRITE (6, 531) ICON
WRITE (6, 220) DIFCOV
URITE(6,515) ISTAB,VWIND,FUIND
URITE(6 510) XRECEP
It < IMF AC. EG. 0) WRITE<6,513) BURN,FFIRE
IF(IVFAC.GT.O) WRITE<6,514> BURN'FFIRE
WR ITE ( 6 , 51 1 ) HSTACK , DSTACK . VSTACK
URKE(6 512) QH
IF(ALDIS.NE.O.) WRIIE(6.222) -(I
URII£(G,224) INPRNI.tFlLL.IOPT
WRIlt(6,128) XPERCfSS,SR,PV,SNO
URIt£(6,110) XPOR
WR] If (6, 121) XAQO
WRITE(6 122) XVV
225 HK lit (6, 109) VAQ
WRlCe(6,114) XLC
UR ITE (6, 516) XALt,KUNF
WRITE (6. 300)
> £A • k i lAtn nnni/
DO 310 K=1.NDOSE
IF(Q(K,1).EQ.O.) GO TO 310
URITE(S,360) K.XNAhE2(K),DOSE(l,K),DOSE(2,K),
I DOSEC3,K),VOLATL'f/)
DO 350 K=l NDOSE
, .> . t
S UT(K.2),UT(K,G),EGAHMA(K)
350 CONTINUE
WRITE(6.320)
320 EOKMAIUHl.SX.'NUCLlDE'.llX, 'INPUT LEACH'. 5X,
I 'FINAL LEACH f,8X,'GAMHAV NUMBER'. 3X. 'NAME', 5X,
S 'CONSTANT<1/YR)',2X,'CONSTANT(1/YR) ATTENUATIONd/M)'/)
DO 330 K=l, NDOSE
IFRVERT(K)
354 CONTINUE
WRITE (6, 228)
228 FORMATdHl^X/NUCLlDESlOX/SOIL TO PLANT', 7X, 'HALE', 11X,
-------
X 'INITIAL' /,' NUMBER NAME' 7X, 'CONVERSION ',6X,
I 'LIfF (YR)' '/X.'INVFNTOKY :(K),Q(K,l)
355 CONTINUE
360 tGK'MAT
CHARACTERS VNUCL.XNAME2
CHARACTERS NUCLID
REALA4 C.Q.UT
COMMON/KLK1/ALD1S,C(100.10),CANLIF.DILFAC.DOSV<5).DY.DZ,NM.NMY.
8 NMZ,NTIME.Q(100.10),RVERT(100).T(16).TTIME(5)!VA!VNUCL(5),
i UIDTH.HSLABL(10),XAQD,XL,XLD<100),XLL(100),XLP,XRC(100),
I XW.Y&.ZB
COMMON/BLK2/ACR , ADL , AM IN . ARHO . B I V ( 1 00 ) .BURN . CUMDOS ( 10 ) . D IFCON .
S DIFCOV.DIFU,DOSE(3.100).DSTACK.EGAMMA(100),EPW,FEXT.FFIRE,
& FG.FIXINV.FTX.FUIND.HLIEE<100).HSTACK,IDSRPT.IFL(7).IFLAG,
S IGAMMA, INPRNT. IOPT. ISTAB, IUP. IVFAC,JUF( 10) .NDOSE.NISO.NNP.
i NP.NPN(10),PLANr,PO.QH,RFR,RHO,RUNF.SINV,SNO.SPlLL,SRrSS,
S TBEG,ICON.TCUT,TEND'lIHOP.TIMOPl,TWO,UBR UK 100.6),
J VOLATL(100),VSIACK.OWIND,XALE,XCT.XH,XKD(100),XLC.
X XNAME2(100),XPERC.XPOR,XR,XRECEP.XROOTrXU,XUTFXXMU(100)
COMMON/UPTAK/BDENS!BR.COLI,COPI.COCMII.COFISH,COGMII.COMEAT.CUAT,
8 DECA,FF.FI,FIS'FMC.FMGFFP,FS,INTAKE(5)'KK,NUCLID.PORS.PP,
I QBWlQCW.QFC.QFG.QGWrRU,SINFL.TEl,TE2.IFIS.TFl.IHl,TH2,TH3,
I IH4.TIMAV.TS,UCMILK.UFISH,UGMILK,ULEAFY,UMEAT,UPROD,UUAT.
8 WIRATEfXAMBWE,Yl,Y2
C READ INPUT DATA
C
C
OPEN
-------
GO 10 120
C
C CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS FOR WATER USAGE
200 IKQ(J.l) .LE. 0.) GO TO 120
DECA=XLO(.D/8760.
CWAT=1.
DO 280 KK=1,5
DIST=XR
GO TCI (220.?.] 0,230,240,2^0) KK
C CALCULATE HUE OVER WHICH SOIL CONCENTRATION WILL 3E AVERAGED
210 DISI=XU
220 TIMAV=1./XLL(J)
REI=1.+ARHOAXKD/VA
IFdlhAV .GT. ARG) IIMAV=ARG
GO TO 260
230 TJMAV=XHT/XALE
ARG=I(NIIM£)-XCT/XALE
IFdIMAV .GT. ARG) IIHAV=ARG
GO TO 260
240 nrtAV= c
i C CALCULATE TOTAL EQUIVALENT UPTAKE FACTORS FOR FOOD
PO c
00 CUAT=0.
KK=6
CALL IkklG(J)
CALL HUMEX(J)
GO TO 120
C PRINT UPTAKE FACTORS
C
300 CLOSE(UNII=3)
WRIT£<6,310) (1.1=1.6)
310 tORHAI(/'/,23X,'fOTAt EQUIVALENT UPTAKE FACTORS FOR PATHRAE' //,
I 13X,6(3X,'UI(J.'.n,')'),/.17X,'RIVER'.5X.'WELL',5X,'EROSION',
s ax,'BATHTUB SPILLAGE FOOD',/,' NUCLiDt',3x,
S 5(6X/L/YR'),6X,'KG/YR',/)
DO 320 1=1,NUOSE
IF<0<1,1) .GT. 0.) WRITE(6,330) XNAME2(I),(UT(I,J),J=1,6)
320 CONTINUE
330 FORMAI(3X,A8,3X,1P6E10.3)
RETURN
END
SUBROUTINE DSPERS
IHPLICIT REALA8 (A-H.O-Z)
CHARACTERA8 VNUCL,XNAME2
REALA4 C.Q.UT
COhMON/BLKl/ALDIS.C(100.10).CANLIF.DILFAC.DOSV(5).DY,DZ,NH.NMY,
S NMZ,NTIME.Q(100.10).ftVERT(lOO).I(l6).TTIME(5).VA.VNOCL(5),
t WIDTH,WSLABL(10),XAQD,XL,XLD(lOO),XLL(100),XLf,XKC(100)r
-------
c
c
I XW.YW.ZB
COMMCIN/hLK2/A(:K,Aril.,AHlNiARHOfblV(100),BURN.CUhDOS<10),DIFCON.
S DIFCOV,DIFU,DOSE(3.100),DSIACKlEGAMMA(100),EPW,EEXT,FEhEf
g EG,FIXINV.FTX,FUIND\HLIFE(100>,HSTACK,IDSRPT.IFL<7)'lFLAG
i IGAMMAJNPRNT.IOPT.ISTAB,IUP,IVFAC,JUF(10).NDOSE.NISO,NNP,
g NP,NPNflO),PLANT,PV,QH.RFR,RHO,RUNF.SINV,SNO.SPILL,SR SS,
I IBEG,TCON.TCUTJEND!IIHOP.TIMOPI,TWV,UBR UK 100.6),
S VOLATL(lo6\VSIACK.VWIND,XALE,XCf,XH'XKD(lOO),x£c.
J XNAME2aOO>,XPERC,XPOR,XR,XRECEP,XROOT,XW,XWT,XXMU<100>
COMMON/BLK3/IFILL
DO 100 K=1,NDOSE
KK=K
IF
CALL GW3<38,32,27)
CALL GU3<32,27,24)
CALL GW3(36,31,2G)
CALL GU3(33.35.29)
CALL GW3<30,23,22)
EQ.l) CALL GU3(34,28,25)
.EQ.l) CALL GW3(28,23,22)
.EQ.l)
.EQ.l)
.EQ.l)
.EQ.l)
.EQ.l)
CALCULATION OF RADIONUCLIHE CONCENTRATION IN VEGETABLES. MILK,
AND MEAT CONSUMED BY MAN RESULTING FROM WATER IRRIGATION.
CONCENTRATION IN FISH ALSO CALCULATED.
COFISH = NUCLIDE CONC IN FISH
NUCLIDE CONC IN
NUCLIDE CONC
NUCLIDE CONC
NUCLIDE CONC
COPAST
COSTO
COFEED
COL1
COP1
COCMI1
COGMI1
COMEAT
PASTURE GRASS CONSUMED BY ANIMALS
IN STORED FEED CONSUMED BY ANIMALS
IN ANIMAL FEED
IN LEAFY VEGETABLES CONSUMED BY MAN
NUCLIDE CONC IN PRODUCE CONSUMED BY MAN
NUCLIDE CONC IN COW'S MILK
NUCLIDE CONC IN GOAT'S MILK
NUCLIDE CONC IN BEEF CATTLE
IMPLICIT REALA8 (A-H.O-Z)
CHARACTERA8 NUCLID,VNUCL,XNAME2
REALA4 C.Q.UT
COMMON/BLKl/ALDIS.CUOO.lOJ.CANLIF.DILFAC.DOSWSJ.DYjDZjNM.NMY.
I NMZ,NTIME.6(100.iO),RVERT(l60).T(l6).ITIME(5)!VAjVNOCL(5)
I WIDTH.WSLABL<10).XAQD,XL,XLD(100).XLL(100)fXLP,XRC<100),
S XW.YW.ZB
COMMON/BLK2/ACR,ADL,AMIN.ARHO.BIV(100),BURN.CUMDOS(10),DIFCON,
I DIFCOV,DIFW,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXT,FFIRE
X EG,FIXINV,FTX,FUIND,HLIFE(100).HSTACK,IDSRPT,IFL(7),IFLAG
i IGAMMA.INPRNT.IOPT.ISTAB,IUP.IVFAC,JUF(IO).NDOSE.NISO,NNP
i NP.NPNl10),PLANT,PV,QH.RFR,RHO.RUNF.SINV,SNO.SPILL,SR,SS,
* TBEG,TCON.icUT,TEND!TIMOP.TIMOPl,TuCi,UBRUT(100,6),
VOLATL(100),VSTACK.VWIND,XALE,XCT.XH,XKD(100),XLC.
XNAME2(100),XPERC.XPOR.XR.XRECEP,XROOT,XU,XUT,XXMU(100)
COMMON/UPTAK/BDENS'BR,COL1,COP1.COCMII,COFISH COGMI1'COMEAT,CWAI
DECA,FF,FI,FIS,FMC.FMG,FP.FS,INTAKE(5)!KK,NUCLID.PORSfPP.
QBW.QCU QFC,QFG,QGU,RU,SINFL.TE1,TE2.TFIS,TF1,TH1,TH2.TH3
IH4.TIMAV.IS,UCMILK,UFISH,UGHILK,ULEAFY,UMEAT,UPROD,UHAI,
WIRATE,XAHBUE,Y1,Y2
-------
COHSH = PIS A CWAJ A DEXP<-DECAATEIS>
If(MUCLID .£Q. 'H-3 ') GO 10 200
FiTis*ftWij'>c-14 '> 60 I0
TV=1.
.t..
B = 0.68 A (0.378AB* > 0.622ABIV
!».'=. 1
COSTO*COV
COFE£D=EPAFSACOPAST + (l.-FPAfS)ACOSlO
B = O.OGGABIV(J)
TV=1.
CQLl=COU(J,Y2,Tt2rIH3rB,IV)
B = 0.187ABR
TV=.l
COPl=f;OV(J,Y2tTE2>TH4.B,l-V)
COCM11 = tMC A (COti:KIiAQl'C-»CUAtAQCH)
C
C
COGMI1 =
COMEAT =
RETURN
FMG
FF
(COFEEDAQFQ+CUA1AQGW)
(COFEEDAQFC-t-CUATAQBU)
A DEXP(-DtCAAIEl)
A DEXP(-DECAATFl)
A DEXP(-DECAATS)
CALCULATION FOR TRI1IUM
ro
en
C
C
C
C
C
C
C
200 COM=CWAT
COP1=CUAI
COCM11 = FMC
COGMI1 = FMG
COMEAT = FF
RETURN
CALCULATION
300 CO 14=0.
COL1=C014
COP3=C014
COCM11 = FMC
COGMI1 = EMG
COMEAT = FF
A
A
A
CHAT A (QEC+QCW) A DEXP(-DECAATEl)
CUAT A (QFG+QQU) A DEXP(-DECAATFl)
CUAI A (QFC+QCU) A DEXP(-DECAATS)
FOR c-14
A
A
A
-------
& QbW,QCW,Qit1C>QFG>QGWrKW,SINFLfrElJE2.TFIS,tFl,THl,TH2,TH3,
I TH4.TIMAV.TS,UCMILK,UFISH,UGMILK,ULEAFY,UMEAT,UPROD,UUAT,
» UIRATE.XAMBWE,Y1,Y2
C CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION
C OF VEGETATION, MILK, MEAT, FISH, AND DRINKING WATER
QVEG = COL1AULEAFY + COP1AUPROD
QMILK = COCMI1MJCHILK + COGMI1AUGMILK
QMEAT = COMEATAUMEAT
QFISH = COEISHAUEISH
QUA! = CWATAUWAT
C
C
IF .EQ. 1) QING=QING+QFISH
UT(J.KK) = QING/CWAT
200 RETURN
,END ..
' 'SUBROUTINE RfAD(XLLI.RVERTI)
IMPLICIT REALA8 (A-H.O-Z)
CHAKACTEPA8 yNUCL,XNAME2,XN
REALA4 C.Q.UT
COMMON/XFEiS/NREC
COMMON/BLK1/ALD1S,C(100.10),CANLIE,DILFAC.DOSV(5).DY,DZ,NM.NMY,
S NMZ,NTIME.Q(100.IO),RVERT(100).T(10).TTIME(5).VA,yN(JCL(5),
2 WIDTH.USLABL(10),XAQD,XL,XLD(lOO),XLL(100),XLP,XRC(100),
i XW.YU.ZB
COhMON/BLK2/ACR,ADL,AMIN,ARHO.BIV(100),BURN.CUMDOS(10),DIFCON,
S DIFCOV,DIFU,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXT,EFIRE,
J FG.FIXINV,FTX,FUIND,HLIFE(100).HSTACK,IDSRPT.IFL(7),IFLAG,
& IGAMMA.INPRNT IOPT.ISTAB,IUP,IUFAC,JUF(10),NDOSE.NISO,NNP,
2 NP,NPN(10),PLANT,pO,QH.RFR,8HO,RUNF.SINVrSNO.SPILL,SR,SS,
i TBEG,TCON.ICUT,TEND!TIMOP.TIMOP1,TUO,UBR.UT(100.6),
2 VOLAh(100),ySTACK,yyiND.XALE.XCT.XH'XKD(100),XLC.
2 XNAME2(100) XPERC,XPORfx6,XRE£EP,XR06TfXU,XUT,XXMO(100)
COMMON/BLK3/IFILL
DIMENSION A(10),DUM(9),XLLI(100),RyERTI(100)
OPtN(UN11=3,FILE='BRCDCF.DAT',STATUS='OLD')
READ(3,108) NDOSE,ICUT.SINV
READ<3,108) NTIME,(T(M),M=1,NTIME)
IUP=1
DO 1000 a=l,NDOSE
READ(3.114,END=1001) KK.XN,(DUM(I),I=lr9)
IE(KK.LE.O .OR. KK.GT.100) GO TO 1000
XNAHE2(KK)=XN
DOSE(1,KK)=DUM(1>
DOSE(2,KK)=DUM(2)
DOSE(3.KK)=DUM<3)
DO 101 1=1.6
101 UI(KK.I)=DUM(H-3)
IE(UI(KK,1) .NE. 0) 1UP=0
1000 CONTINUE
114 FOKMAKI4.A8.SE12.4)
1001 CLOSE(UN1T=3)
-------
OPEN(UN]T=3,HLE='ABCDEt.DAI'.STATUS*'OLD')
R£AOn,L02> (A( £>,.[=!,10)
C Wkilk-<4,102,Rl::C=NRFt) (A( I) ,1=1.10)
102 FORMAT(10A8)
READ(3V103) N1SO.IFLAG.NNP
READ<3.103> (NPNfj)FJUFSR4(1.-SR)A
-------
Ill FORMAl(14,r/E12.4)
IE(SOL.EQ.O.) GO TO 125
SOL=SOLAVOL/G(KK.l)
IE(XLL(KK).GI.SOL) XLL(KK)=SOL
125 XLD
IF(Q(26.1).LE.O. .OR. Q(31ylKLE.O. .OR. GK36, 1) .I.E.O. ) IFL(3)=0
IF(Q(29,1).LE.O. .OR. Q(33rl) .LE.O. .OR. Q(3b,l) .L£.0,> TFL(4)=0
URITE(6,3) (A(l),l=lr10)
3 t'OSMAK'l', 10A8.///)
DO 100 1W1NG=1,10
USLABL(IUING)=A(IUING)
100 CONTINUE
RETURN
END
SUBROUTINE RELEAS
-------
ro
T(1)=TEND
DELlJI=Ti'NU-T<]0)
NTIME=1
1=1
GO tQ 130
110 ttXT(l).I.T.IBEG) m)=lBE6
DO 120 1=2.10
T(l)=T(l-l)+DtLT
IF(T(I)Af.T£ND) GO TO 120
T(1)=TEND
DEL11=TEND-1<1-1)
NTIHE=I
GO 10 130
120 CONTINUE
130 CALL GUKKK)
IF(lH(l).FQ.l.AND.(KK.fcQ.32.0h.KK.EQ.27)) CALL GW3<38,32,
IF(IFL(2).EQ.1.AND.(KK.EQ.27.0R.KK.EQ.24)> CALL GW3<32,27,
IF CALL GW3(30,23»
IF(IFL(6).EQ.1.AND.(KK.EQ.28.0R.KK.EQ.25» CALL GW3(34,2s
IF(IFL(7).EQ.1.AND.(KK.EQ.23.0R.KK.E0.22)) CALL GW3(28, 23,
IF(T(1).EQ.TAU.OR.I(1).EQ.TBEG) C(K,1)=0.8AC((<,1)
IF(I.EQ.ll) GO TO 140
C(K,D=0.5AC CALL GW3(36,31,26)
IF(IFL(4).EQ.1.AND.(KK.EQ.35.0R.KK.EQ.29» CALL GW3(33, 35,29)
IF(IFL(5).EQ.1.AND.(KK.EQ.23.0R.KK.EQ.22» CALL GH3(30f23,22)
-------
IF(IEL<6>.EQ.l.AND.(KK.EQ.2B.OJi.KK.EQ.25» CALL GW3<34,28,25)
IF=0.5AC(K,I)ADELT1/DELI
IF(J.GT.O) C
IF(I.EU.l) CCUM=CSUM-t0.bAC
SUM=SUM+CSUM
IFd.LQ.10.ANH.1(10).GT.1BEG.AND.CSUM.GT.SUMA.0001) GO TO 200
300 3Uh=!3UMADELIADILFAC
URITL KFXNAME2
350 FORMAT(2XF r3,3X,A8,9X,lP£10.2,10X,E8.2)
500 CONTINUE
RETURN
END
SUBROUTINE GHHK)
IMPLICIT REALAB (A-H.O-Z)
CHARACTERA8 MNUCL.XNAME2
REALA4 C.Q.UT
COMMaN/BLKl/ALDIS.C(100.10),CANLIF.DILFAC,DOSV(5).DY,DZ,NM.NMY,
S NMZ.NTIME.Q(100.IO).RVERT(100).T(10).TTIME(5).VA.yN(.ICL(5),
S WIDTH.USLABL(loJ,XAfiD,XL,XLD(l6o)rXL£(100),XLPrXRC(100)f
S XVV.YW.ZB
_ COMMON/BLK2/ACR,ADL,AM IN,ARHO.BIV(100).BURN.CUMDOS(10),DIFCON,
?" & DIFCOy.DIFW.DOSE(3.100),DSTACKfEGAMMA(100),EPU,FEXTrEFIRE,
co S FG.FIXINV.FTXfFUIND.HLIFE(100).HSTACK,IDSRPT,IFL(7),IFLAGf
0 X IGAMMA.INPRNT.IOPT.ISIAB,IUP,lOEAC,3UE(10),NDOSE.NISO,NNP,
S NP,NPN(10),PLANI,PV,QH.RER,RHO,RUNF.SINy,SNO.SPILL,SR,SS,
i IBEG,TCON,TCUT,IEND!TIHOP.TIMOPI,TIJO,UBR,UT( 100,6),
I VOLAh(lo6),VSTACK,OuiND,XALE,XCT.XH!XKDaOO),XLC.
J XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOT,XU,XUT,XXMU(100)
COMMON/BLK3/IFILL
TL=1./XLL(K)
TDELAY=XAODARVERT(K)/XVV+CANLIF
P=XL/ALDIS
QKl=a(K,l)
C REMOVE OPERATIONS DECAY FACTOR AND USE UNDECAYED INITIAL INVENTORY
IFdIMOP .GT. 0.) QK1=QK1AXLD(K)AIIMOP/U.-DEXP(-XLD(K)ATIMOP»
QDECAY=QK1ADEXP(-XLD(K)ATDELAY)
F1=QDECAY/(DILFACATL)
DTOP = TIMOP1AVA/(NMAXL)
IFdFILL .EQ. 0) GO TO 50
LB = 0
IUB = 1-NM
ISTEP = -1
60 TO 70
50 LB = 1
IUB = NM
IS1EP = 1
70 CONTINUE
DO 200 M=i.NtIME
TCORR = DTOP/2.
IIMSAV = T(M)
-------
T(M) = KM) + TIHOP
IHTA=/NM))/XL
A1=-XLD(K)A
A23M=0.bAETAADSQRT(XRC(K)AP/lHEIA)-DSQRKPAIHEIA/(4.AXRC)
198 C(K,M)=0.5AF1ASCAYCONC/NM
200 CONTINUE
RETURN
END
SUBkOUI 1NE GW3(IDC:, JDC,KDC)
IMPLICIT REALA3 (A-H.O-Z)
CHARACTERA8 VNUCL.XNAME2
REALA4 C,Q,UT
C THIS SUBROUTINE EVALUATES BURKHOLDER'S SOLUTION FOR GROUNDWATER
C MIGRATION EQUATIONS. FOUND IN NUC. TECH. VOL. 49, JUNE 1980
C (THREE MEMBER CHAINS WITH DISPERSION)
COMMON/BLK1/ALDIS,C(100.10),CANLIF.DILFAC.DOSV(5).DY,DZ,NM,NMY,
S NMZ.NTIME.Q(100f10)1RVERK100),T(lO).ITIME(5),VA,VNllCL(5),
* WIDTH.USLABL(10),XAQD,XL,XLD(100),XLL(100),XLPfXRC(100),
5 XVV.Yli.ZB
COMMON/BLK2/ACR,ADL.AMIN.ARHO,BIV(100)1BURN.CUMDOS(10),DIFCON,
& DIFCOV,DIEW,DOSE(3,100),DSTACK,EGAMMA(100),EPW,FEXI,FFIRE,
8 FG.FIXINV,FTX,FWIND.HLIFE(100),HSTACK,IDSRPT,IFL(7).IFLAG,
IG^MMA.INfRNT IOPI.iSIAB,IUP,IVFAC,JUE(10>.NDOSE.NISO,NNPr
NP,NPN(10),PLANT,P0,QH,RFR,RHO,RUNE.SINV,SNO.SPILL,SR,SB,
TBEG.ICON.ICUT.TEND'TIMOP,TIMOP1,TWO,UBR.UT(100.6),
VOLATL(100),VSTACK.WIND,XALE,XCI.XH,XKD(100),XLC.
XNAME2QOO) XPERC,XPOR,XRFXRECEPfXROOl,XWfXWT,XXMIJ(100)
COMMON/BLK3/IFILL
DIMENSION F1(3),R(3),XK(3)
IL=1./XLL(IDC)
-------
TDELAY=XAGD*RVERI<1DC)/XW+CANLIF
XKU)=XRC(IDC)
XK(2)=XkC(JDC)
XK(3)=XSC(KDC)
PSAVt=XL/ALLHS
C KKCGVKK UNDECAYED INITIAL INVENTORIES OF EACH CHAIN MEMBER
GI1=QAIIMOP»
QK1=QK1*XLD(KDC)ATIMOP/(1.-DEXP(-XLD
F10=F1(1)AXK(1)AXK(2)AR(1)AR(2)A(XK(2)-XK(3))/((XK(2)A(K(2)-R(D)
t-XK(3)A(R(3)-R(l)))A(XK(l)AXK(3)A(»(l)-R(3))+XK(2)AXK(3)A(R(3)-
tR(2))+XK(l)AXK(2)A(R(2)-R(l)»)
F11=F10A(].-XK(1)/XK(3))A(XK(2)A(R(2)-R(1))-XK(3)A(R(3)-R(1)))/
J((XK(2)-XK(3))A(R(3)-R(1)))
F12=F11A(R(3)-R(1))A(XK(1)-XK(2))/((R(2)-K(1))AXK(2)A(1.-XK(1)/
»XK(3»)
-------
DO 2000 M=KNfIME
TC0S8 = DTOP/2.
IIMi,AV = KM)
T(M> = t(H) + TIMOP
THIA=a(M)-lDELAY)AVA/XL
IJ?(THXA.LE.O.) GO 10 1990
THTA2-1HIA-TLAVA/XL
SC2=0.
SC3=0.
DO 1000 JJ=I.IMII&VJSTEP
T(H) = IIMSAV + fiMOP - TCORRAXL/VA
THETA = 1H1A - ICClkR
IF CfHETA .IE. 0.0) DO TO 1990
THE1A2 = 1HTA2 - TCORR
ETA=(ZB+XLPA AP/THETA2 )
A6=DSQRT ( PAIHETA2/ ( 4 . AXK ( 1 ) ) )
A3=A3-A6
A6=A3+2.AA6
100 SC2=SC2+t312AElRMS(Al.A2.A3,A4,A5,A6FTHETA2)
IF(A1.L1.0.) CALL tRROR
-------
AG=QSQRT(A6)
A3=A3-A6
A6=A3+2.AA6
110 SC2=SC2^412AFTkMSAR<2>-XK(1>AR(1>>ATHETA/-XK(2))
Al = l.+4.AXK/
IE(Ai.L1.0.) GO 10 2
A1=DSQRT(A1)
A4=X1M+0 . 5AEIAAPA ( 1 . +A1 )
A1=XTM+0 . 5AEIAAPA < 1 . -Al )
A2=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA )
A5=A-R(l)>/(XKU>-XK(2>»ATHETA
IF(A5.LI.O.) CALL ERROR(5.A5,P)
IF(A^.LT.O-) GO TO 2
A5=DSQRT(Ab)
A2=A2-A5
A5=A2-i2.AA5
A3=0 . bAETA ADSQkl" ( XK ( 1 ) AP/IHETA )
A&=(P/(4.AXK(1))+XK(2)A(R(2)-R(1))/(XK(1)-XK(2)))ATHETA
IF(A6.LT.O.) CALL ERROR(6.A6.P)
If(A6,VI.O.) GO TO 2
A6=DSQR1(A6)
A3=A3-A6
SC2=SC:2-tF312AtTRMS(Al.A2,A3,A4,A5,A6,lDO)
IFCCHETA2.LE.O.) GO TO 120
3 XTH=(XK(2)AR(2)-XK(])AR(1))ATHETA/(XK(1)-XK(2))-(R(1)+(XK(2)AR(2)
XXK(1)AR(1))/
-------
A5=A2+2.AA5
IE(TMKTA2.LE.O.) GO 10 130
A3=0.5AETAAOSQRI(XK(3)AP/THETA2)
AG=DSGRT
IF(A6.LT.O.) GO TO 4
A6=DSQRT(A6>
A3=A3-A6
A6=A3+2.AA6
140 SC:.<=SC3+
-------
A3=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA2 )
AG=DSQRT ( PATHETA2/ ( 4 . AXK ( 2 ) ) )
A3=A3-A6
160 SC3=SC3+
6 XIH=-ft(l)ATHEIA
A1=1.+4.AXK(2)A
IF(A1.LT.O.) GO TO 6
A1=DSQRT(A1)
A4=XTh+0.3AtIAAPA< 1 .+A1 )
A1=XTH+0.5AETAAPA(1.-A1>
A2=0.5AEIAADSQRT(XK<2)AP/THETA)
A5=-R<1»ATHETA
IF(A5.LT.O.) CALL tRROR<17tA5,P>
IFtAS.ll.O,) GO TO 6
A2=A2-A5
A5=A?+2.AA5
IFO-ULIA2.LE.O.) GO TO 170
A3=0 . 5AETAADSQRT ( XK ( 2 ) AP/THETA2 )
A6=(P/(4.AXK(2))+R(2)-R(1))ATHEIA2
IF(A6.LT.O.) CALL £RROfi(18.A6,P)
IIXA6.LT.O.) GO TO 6
A6=DSQRT(A6)
A3=A3-A6
A6=A3+2.AA6
170 SC3=SC3-F9AFTRMS(A1TA2,A3,A4,A5,A6,THETA2>
A1=-R(1)AIHETA
A4=AHt:TAAP
A2=0.bAEl'AADSQRT
IF(A6.Lt.O.) GO TO 7
A6=DSQKT
A3=A3-A6
-------
SC3=bC3+
U-»AILAVA/XL
A1=1.+4.AXK<2)AXK<3)A
A2=0 . b AHT AADSQRT ( XK ( 3 ) AP/THETA2 )
A5=(P/(4.AXK(3))+XK(2)A(R(3)-R(2))/(XK(2)-XK(3)))ATHETA2
IF(Ai.LT.O.) CALL ERROR<23PAb,P)
IF(A5.LT.O.) GO TO 8
A5=D£,Q»T(A5)
A2=A2-A5
A5=A2+2.AA5
A3=0 . b AtTAADSQRl ( XK ( 2 ) AP/IHKIA2 )
A6=(P/(4.AXK(2))+XK(3)A(R(3)-R(2))/(XK(2)-XK(3)))ATHETA2
IF(A6.LT.O.) CALL ERROR(24.A6rP)
IF(A6.L'I.O.) GO TO 8
A3=A3-A6
A6=A3+2.AA6
SC3=SC3-f(F61-F323)AFTRMS(Al.A2,A3,A4.A5.A6.1DO)
9 XTH=(XK(3)AR(3)-XK(2)AR(2))ATHETA/(XK(2)-XK(3))-(R(1)+(XK(3)A
XR(3)-XK(2)AR(2))/(XK(2)-XK(3)))AILAVA/XL
A1=1.+4.AXK(2)AXK(3)A(R(3)-R(2))/(PA(XK(2)-XK(3))>
> IF(A1.LT.O.) CALL ERROR(25.A1,P)
' IF(A1.LT.O.) GO TO 9
H A1=DSQRT(A1)
A4=XlM-i0.5AETAAPA(l.HAl)
Al=XTM«-0.5AeTAAPA(l.-Al)
SC3=SC3+(E8-tlO)AHRMS(Al.A2.A3.A4lA5.A6,lDO)
190 XTM=(XK(3)AR(3)-XK(l)AR(lJ)AiHETA/tXKU)iXK(3))
Al=l.+4.AXK(l)AXK(3)A(R(3)-R(l))/(PA(XK(l)-XK(3)))
IF(A1.L1.0.) CALL ERROR < 26, A1,P>
IF(A1.LI.O.) GO TO 190
A1=DSQRT(A1)
A4=XIM+0 . 5ABTAAPA ( 1 . +A1 )
Al=XIM+0.5AEfAAPA(l.-Al>
A2=0.5AETAADSQRT(XK(3)AP/THETA)
A5=(P/(4.AXK(3))+XK(1)A(R(3)-R(1))/(XK(1)-XK(3»)ATHETA
IF(Ai.LT.O.) CALL ERROR(27.Ab,P)
IF(A5AT.O.) GO TO 190
A5=DSQKT(A5)
A2=A2-A5
.
A3=0 . b AKT A ADSQRI ( XK ( 1 ) AP/tHET A )
A6=(P/(4.AXK(1))+XK(3)A(R(3)-R(1))/(XK(1)-XKC3)))ATHETA
IF(A6.LT.O.) CALL ERROR(28fA6?P)
IF(A6.L1.0.) GO TO 190
AG=DSQRT(A6)
A3=A3-A6
A6=A3+2.AA6
SC3=SC3-FllAHRHS(Al,A2,A3,A4fAirA6,lDO)
IF(THEIA2.L£.0.) GO TO 200
10 XTM=(XK(3)AR<3)-XK(1)AR(1))ATHETA/(XK(1)-XK(3))-(R(1)+(XK(3)A,
iR(3)-XK(l)AR(l))/(XK(l)-XK(3)))ATLAVA/XL
-------
Al=l.-i-4.AXI«i)AXK<3>A
IF(A1.LI.O.) GQ TO 10
A1=DSQRT(A1)
A4=XTMi0.bAETAAPA(l.+Al>
A1=XTH+0 . SAETAAPA ( 1 . -Al )
A2=0 . iAETAABSQRT ( XK ( 3 ) AP/THETA2 )
A5=+XK<1)A(R<3>-R<1»/ GO TO 10
A5=Ii<:.QKI(A5)
A2=A2-A5
A5=A2+2.AA5
A3=0 . tJAKTAADSQRT ( XK < 1 ) AP/l'HtIA2 )
A6=(P/<4.AXK(imXK(3>A-R-XK<3)))AIHEIA2
IE(A6.LI.O.) CALL ERROR(31.A6FP)
IE(A6.LT.O.) GO TO 10
A3=A3-AG
A6=A3^2.AA6
SC3=SC3+E11AFTRHS(A1.A2.A3.A4.A5.A6,1DO)
200 XTM=(XK(2)AR(2)-XK(l)ARa))ATHETA/(XK(l)-XK(2))
A1=1.+4.AXK(1)AXK(2)A(R(2)-R(1))/(PA(XK(1)-XK(2)))
IE(Al.Lt.O.) CALL ERRO«(32.A1,P)
IE IE
-------
00
ID
AG=A(R(2)-R(1))/(XK(1)-XK(2»)ATHETA2
IF
A3=A3-A6
A6=A3+2.AA6
SC3=£C3+F12AtlRHS(Al.A2,A3,A4,A5,A6,lDO)
210 CONTINUE ' '
TCORR=TCORR-»-D10P
1000 CONTINUE
1990 T(M) = HMSAV
IFC3C2.LT.O.) SC2=-SC2
IF(SC3.Lt.O.) SC3*-SC3
C(JDC.M)=0.5ASC2/NM
C(KDC,rt)=0.5ASC3/NM
2000 CONTINUE
RETURN
END
FUNCTION HEPCNK.CUKIES.NPAtH)
IMPLICIT R2ALA8 (A-H,0-Z)
DIMENSION HHCON(IOO)
EPA DATA
DATA HtCON/3.16D-3.4.58D-2,-l.OODO,-l.OODO,6.800-4,1.810-3,
-l.OODO, 1.210-1,6.100-3,6.940-2,-l.OODO,2.860-4,-l.OODO,
1.200-1,1.090-2,3.830-3,1.980-2,-l.OODO,-l.OODO,9.500-1,
3.17000,3.17000,1.06000,1.06000,1.33000,1.06000 1.33DOO,
1.06000,5.98D-1,2.290-2,6.93D-2,6.540-2,1.120-3,6.770-2,
7.31D-1,2.77000,-l.OODOl-l.0000,-l.OODO,-l.OODO,-l.OODO,
-l.OODO,-1.00DO,-1.00DO,-1.0000,-!.0000,-l.OODO,-!.0000,
-l.OODO,-!.0000,50AO.OODO/
C RAK DATA
C DATA HECON/-1.00DO,1.52D-4,-l.OODO,-1.0000,2.080-5,-l.OODO,
C I -1.0000,7.690-3,-l.OODO,-l.OODO,-l.OODO,3.330-6,-l.OODO,
C S 2.040-4,1.330-4,6.670-5,3.450-4,-l.OODO,-l.OODO,-l.OODO,
C & -1.0000,2.630-1,-l.OODO,-1.0000,8.330-3 -l.OODO,-l.OODO,
C £ -1.00DOI&.670-3,1.520-4,2.860-3,8.330-4 -1.0000,7.690-4,
C * 4.35D-3,7.69D-3,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,
C & -1.00DO,-1.00DO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,-l.OODO,
C & -1.0000,-l.OODO/
HEPC]=CUR1ESAHECON(K)
IE(NPATH.N£.l> HCPCI=-1.
RETURN
END
SUBROUTINE PtAK(NPATH)
IMPLICIT REALA8 (A-H.O-Z)
CHARACTERA8 UNUCL.XNAME2
REALA4 C.Q.UT
COMMON/BiKf/ALDIS,C(100,10),CANLIF.DILFAC,DOSV(5).DY,DZ,NM,NMY,
I NMZ.NTIME.0(100.10),RVERI(l6o),T(l6).IIIME(5),VA.VNUCL(5)t
& WIDTH, WSLABL(10),XAQD,XL,XLD(100),XLL(100),XLP,XRC(100),
& XVV.YW.ZB
COMMON/KLK^/ACR,ADL,AMIN,ARHO.BIV(100).BURN.CUMDOS( 10), DIFCON,
DIFCOV,0IFU,DOSE(3,100),DSTACK,EGAMMA(100).EPU,FEXT,FFIRE,
EG.FIXINV,FIX,FWIND,HLIFE(100).HSTACK,IDSRPI,IFL(7),IFLAG,
IGAMMA.INPRNI.IOPT.ISTAB.IUP.IVFAC.JUF(10),NDOSE.NISO,NNP,
NP, NPN JlO),PLANT,PO,QH.RFR,RHO,RUNF.SINV,SNO.SPliL,SR,SS,
TBEG,ICON.TCUT,TEND.IIMOP.IIMOP1,TWO,UBR.UT(100,6),
VOLATL(100),VSTACK.VWIND,XALE.XCT.XH,XKD(100),XLC.
XNAME2(100),XPERC,XPOR,XR,XRECEP,XROOT,XU,XWTrXXHU(100)
COMMON/BLK3/IFILL
-------
WRITE<6,100) NPATH
100 FORMAK/////,' AAAAA PEAK CONCENTRATIONS AND TIMES FOR PATHUAY
I 12,' AAAAA',///.4X 'NUCLIDE'.9X,'PEAK CONCENTRATION',5X,
J 'PEAK TIME' 9X,'AVERAGE DOSE',// NUMBER NAME',10X,'',/>
DO 300 K=1.NDOSE
IF(Q(K.1).EQ.O.) GO TO 300
WR]1F:<&,10) K
10 FORMAK' K = ',12)
KK=K
NTIME=5
IPASS=0
CMAX1=0.
TMAX1=0.
TBkEAK=(ZB+0.5AXLP/NM)AXRC(K)/VA+XAQDARgERI GO 10 HO
CMAX=C(K,I)
IMAX=I
TMAX=1(1)
140 CONTINUE
:?(NMnEQ.].OK.lPASS.fQ.l) GO 10 149
ir(T
-------
GO 10 (IbO. 210, 210,210, 180) 1MAX
« OU 160 1*1.5
SO T CALL GW3O8. 32,27)
IF(IFL<2).EQ.1.AND. CALL GU3<32, 27,24)
IF
-------
T2R=DCCIRT ( 4 . AXUUA W+ WAW )
ARG=XDLA(W>2.AXUU-T2R) -
IF(ARG.Gt.6.93> GOTO 3939
IF(AftG.LT.O.) GOTO 3940
HUNG=l)tXKARG)
RETURN
3939 HUN(i=1000.
RETURN
3940 HUNG=1.
RETURN
END
FUNCTION COy.DYrDZ,NM.NMY.
X NhZ,NTIhE.Q(100,lO),RVERT(100).T(lO).TTIME(5).VA,yNUCL(5),
S WIDTH. USLABL<10),XAQD,XLfXLD
-------
IF
IF(ARG.GT.85.) ARG=85.
IF
30 IFd.LE.O.) GO TO 40
ARG=A4+eSFCPA(A6>
IE
-------
FRAC=-2AB+XNUM/FRAC
20 XNUM=XNUM-0.5
DERFC=0.
IF DEkFC=Hfc'XP(-2AHA2AB)/(FSACAI.772453850905516)
IF(Z.LT.O.) D£RFC=2.-DERFC
30 RETURN
END
FUNCTION ERtCPA(Z)
IMPLICIT REALA8 (A-H.O-Z)
C tRFCPA IS NATURAL LOG OF COMPLEMENTARY ERROR FUNCTION
C BASED ON CONTINUED FRACTION FROM ABRAMOWIIZ I STEGUN *7.1.14
IF(Z.GE.2.) GO TO 10
ERFCPA=DLOG(DERFC(Z))
GO TO 30
10 XNUM=20.
FRAC=Z
DO 20 1=1.40
FRAC=Z+XNUM/FRAC
20 XNUM=XNUM-0.5
ERFCPA=-(2AZ+DLOG(FRACA1.7'/2453850905516))
30 RETURN
END
-------
APPENDIX B
DATA FILES AND OUTPUT FROM PATHRAE-EPA
FOR SAMPLE PROBLEM
-------
APPENDIX B
DATA FILES AND OUTPUT FROM PATHRAE-EPA
FOR SAMPLE PROBLEM
The five data sets used for the sample problem described in Chapter 4
are presented here. Each data set is displayed in two ferns. First, the
Fortran variables are given in the order in which they >re read (load
form). Then the data set is given in the form read by PATHRAE-EPA.
B.I DATA SET ONE - BRCDCF.DAT
NDOSE, TCUT, SINV
NTIME, (T(M), M=l, NTIME)
KK, XNAME2(KK), (DOSE(I.KK), I=1,3),(UT1(I,KK), UT2(I,KK), I = 1,3)
Note: The last line is repeated for each nuclide in the dose library.
80,0.,0.
10,0.,!.,15.,50.,100.,200.,350.,500.,750.,1000.
41,H-3 8.6E-8, 1.2E-7, 0.,0.,0.,0.,0.,0.,0.
42,0-14 1.5E-6, 1.1E-8, 0.,0.,0.,0.,0.,0.,0.
43,Fe-55 4.7E-7, 1.9E-6, 9.6E-13.0.,0.,0.,0.,0.,0.
44,Co-60 5.8E-6, 4.0E-4, 1.2E-08,0.,0.,0.,0.,0.,0.
45,Ni-59 1.5E-7, 1.7E-6, l.SE-12,0.,0.,0.,0.,0.,0.
46,Ni-63 3.7E-7, 4.4E-6, 0.,0.,0.,0.,0.,0.,0.
47,Sr-90 5.6E-6, 2.0E-4, 0.,0.,0.,0.,0.,0.,0.
48,Nb-94 2.7E-6, 5.8E-4, 8.0E-09,0.,0.,0.,0.,0.,0.
49,Tc-99 1.9E-6, 2.2E-5, 2.9E-15.0.,0.,0.,0.,0.,0.
50,1-129 8.6E-4, 5.7E-4, 8.1E-11,0.,0.,0.,0.,0.,0.
51,Cs-135 6.5E-6, 4.5E-6, 0..0.,0.,0.,0.,0.,0.
52,Bal37m O.OE+0, 1.4E-9, 3.1E-09,0.,0.,0.,0.,0.,0.
53,Cs-137 4.4E-5, 3.0E-5, 0.,0.,0.,0.,0.,0.,0.
54,Ra-226 7.4E-4, 2.1E-2, 3.7E-11.0.,0.,0.,0.S0.,0.
55,Th-232 2.2E-4, 2.5E-1, 2.8E-12,0.,0.,0.,0.,0.,0.
56,U-234 8.4E-6, 1.9E-1, 3.3E-12.0.,0.,0.,0. ,0.,0.
57,U-235 8.6E-6, 1.8E-1, 8.3E-10,0.,0.,0.,0,,0.,0.
58.U-238 7.9E-6, 1.7E-1, 2.6E-12,0.,0,,0.,0,,0.,0.
59,Np-237 3.1E-3, 4.0E-1, 1.4E-10.0.,0.,0.,0.,0.,0.
60,Pu-238 2.9E-3, 3.6E-1, 3.4E-12.0.,0.,0.,0.,0.,0.
61,Pu-239 3.4E-4, 3.7E-1, 1.6E-12,0.,0.,0.,0,,0.,0.
62,Pu-241 7.6E-5, 4.4E-3, 0.,0.,0.,0.,0.,0.,0.
B-2
-------
63,Pu-242 3.3E-4, 3.5E-1, 2.7E-12.0. ,0.,0.,0.,0.,0.
64,Am-241 3.4E-3, 4.4E-1, • 1.3E-10.0.,0.,0.,0.,0.,0.
65,Am-243 3.5E-3, 4.4E-1-, 2.9E-10.0. ,0. ,0. ,0. ,0. ,0.
66,Cm-243 2.0E-3, 2.7E-1, 7.0E-10.0.,0.,0.,0.,0.,0.
67,Cm-244 1.6E-3, 2.1E-1, 3.2E-12.0.,0. ,0.,0.,0.,0.
68,Ru-106 1.1E-5, 1.2E-3, 0.,0.,0.,0.,0.,0.,0.
69,Sb-125 O.OE+0, 2.8E-5, 2.2E-09.0.,0. ,0.,0.,0.,0.
70,Cs-134 6.6E-5, 4.5E-5, S.OE-09,0.,0.,0.,0.,0.,0.
71,Eu-154 O.OE+0, 3.4E-4, 6.1E-09.0.,0.,0.,0.,0.,0.
72,Pb-214 3.8E-7, 7.8E-7, 1.3E-09.0.,0.,0.,0.,0.,0.
73,81-214 3.0E-7, 2.4E-7, 7.2E-09.0.,0.,0.,0.,0.,0.
74,Pb-210 3.8E-4, 9.8E-3, 1.2E-11.0.,0.,0.,0.,0.,0.
75,Po-210 6.4E-4, 1.7E-2, 4.4E-14.0.,0.,0.,0.,0.,0.
76,Ra-228 O.OE+0, 4.5E-5, 4.6E-09,0.,0.,0.,0.,0.,0.
77,Ac-228 4.7E-4, 4.0E-3, 2.9E-18.0. ,0.,0.,0.,0.,0.
78,Th-228 7.7E-5, 5.5E-1, l.SE-11,0.,0.,0.,0.,0.,0.
79,Pb-212 2.4E-5, 2.8E-4, S.OE-10,0.,0.,0.,0.,0.,0.
80.T1-208 O.OE+0, O.OE+0, 1.6E-08.0. ,0. ,0.,0.,0.,0.
B.2 DATA SET TWO - ABCDEF.DAT
(A(I), I = 1,10)
NISO, IFLAG, NNP
(NPN(J), JUF(J), J=l, NNP)
TIMOP, XLP, WIDTH, RFR, XR, SPILL
ARHO, ALOIS, DY, DZ, SS, SR, PV, SNO
NM, I GAMMA, IVFAC
XCT, XWT, TWV, XW, YW, RHO, FG, FEXT, XROOT, PLANT
ADL, UBR, FTX, CANLIF, FIXINV
XH, ACR, EPW, DIFW, DIFCON, TCON, DIFCOV
ISTAB, VWIND, FWIND, XRECEP, BURN, FFIRE, HSTACK, DSTACK, VSTACK, QH
(IFL(I), I = 1,7)
INPRNT, IDSRPT, IFILL, IOPT
/ ******** e PWRHU - MD SE 3/86 ********
*- 29,0,7
* 2,2, 1^1, 5,1, 6,1, 7,0, 8,0, 10,0
r i6oo;,6.,crr,o.,.8oi,o.,o.,o.
t> 20,0,2 vv^T
7 0.6(5^r2.10E6, 50., 0., 590., 0.22,0. 228, l.,0.
5.E-7,8035.70.228,0.,1.
240.0,5.56E-04,0.2,2.00E-02,6.00E-05,20.0,1.14E-02
4,2. 01, 0.093, 345., 2. 51E-5.0. 00274, 1.0,0.,0.,0.
0,0,0,0,0,0,0
1,0,0,0
B-3
-------
B.3 DATA SET THREE - RQSITE.DAT
XPERC, VA, XPOR, XAQD, XVV, XLC, XALE, FLCH, RUNF
KK, XLL(KK), XKD(KK), RVERTI(KK)
Note: The last line is repeated for each nuclide in the inventory,
.454,27.8,
41.3.48E-3
42.3.48E-3
43,2.99E-5
44.2.99E-5
45,2.99E-5
46.2.99E-5
47.4.96E-5
48.2.14E-5
49.1.63E-3
50,4.40E-4
51,1.50E-5
52,1.50E-5
53.1.50E-5
54,6.84E-6
55,2.51E-8
56.2.01E-6
57.2.01E-6
58,2.01E-6
59.2.78E-4
60,2.15E-6
61.2.15E-6
62.2.15E-6
63.2.15E-6
64,1.87E-5
65,1.87E-5
66,2.15E-6
67,2.15E-6
68.2.14E-5
69.3.32E-5
70.1.50E-5
71,7.54E-7
72.6.84E-6
73.6.84E-6
74.6.84E-6
75.6.84E-6
76,6.84E-6
77.6.84E-6
78.2.51E-8
79.2.51E-8
80.2.51E-8
39,7.7,1.11,10.,1.96E-4,1.0,.322
.01, .01
.01, .01
6000.,6000.
55., 55.
150.,150.
150.,150.
20.,150.
350.,350.
.5, .5
3., 3.
500.,1000.
500.,1000.
500.,1000.
2.20E+2,2.20E+2
6.00E+4,6.00E+4
7.50E+2,7.50E+2
750.,750.
7.50E+2,7.50E+2
5., 5.
3500.,3500.
3500.,3500.
3500.,3500.
3500.,3500.
80000.,80000.
80000.,80000.
3300.,3300.
3300.,3300.
220.,220.
45.,45.
500.,1000.
4000.,4000.
2.20E+2,2.20E+2
2.20E+2.2.20E+2
2.20E+2.2.20E+2
,2.20E+2,2.20E+2
,2.20E+2,2.20E+2
,2.20E+2,2.20E+2
,6.00E+4,6.00E+4
,6.00E+4,6.00E+4
,6.00E+4,6.00E+4
B-4
-------
B.4 DATA SET FOUR - INVNTRY.DAT
KK, HLIFE(KK), Q(KK,M), XXMU(KK), EGAMMA(KK), BIV(KK), SOL(KK), VOLATL(KK)
Note: This line is repeated for each nuclide in the inventory.
41,1.23E+01,1
42.5.73E+03.7
43.2.70E+00,!
44,5.25E+00,2
45,8.OOE+04,1
46,9.20E+01,4
47,2.86E+01,3
48,2.OOE+04,4
49,2.13E+05,1
50,1.70E+07,5
51,3.01E+06,1
52,3.OOE+01,5
53,3.OOE+01,5
56,4.47E+09,4
57,7.04E+08,6
58,4.47E+09,1
59,2.10E+06,9
60,8.77E+01,1
61,2.42E+04,1
62,1.32E+01,4
63,3.79E+05,2
64,4.59E+02,2
65,7.37E+03,5
66,3.19E+01,5
67,1.76E+01,5
68,1.01E+00,5
69,2.77E+00,1
70,2.06E+00,5
71,8.50E+00,1
.31E+02,0.
.43E+00,0.
.20E+02,0.
.46E+02,8.
.43E-01,0.
.41E+01.0.
,40E+00,2.
.54E-03,!.
.90E-03.0.
.61E-03.9.
.90E-03.0.
.70E+01,!.
.70E+01,!.
.27E-03,5.
.85E-05,2.
.25E-03,6.
.68E-06,5.
.20E-01,5.
.12E-01,5.
.85E+00.5.
.43E-04,5.
.31E-01.5.
.41E-05.5.
.52E-05,!.
.26E-02,5.
.04E-02,!.
.85E+00,!.
.04E+01,!.
.86E-01,!.
OOE-01,0,
OOE-01,0,
OOE+00,0,
30E+00,!,
OOE-01,0,
OOE-01,0,
OOE+01,3,
15E+01,7,
OOE-01,0,
70E+01,3,
OOE-01,0,
30E+01.6,
30E+01,6.
OOE+01,1.
90E+01.1.
SOE+01,4.
OOE+01,6.
OOE+01,5.
OOE+01,1.
OOE+01,1.
OOE+01,0.
OOE+01,5.
OOE+01,7.
80E+01,2.
OOE+01,6.
40E+01,6.
70E+01.4.
20E+01,7.
OOE+01,1.
OOE-01,0
OOE-01,0
OOE+00,4
25E+00,2
OOE-01,6
OOE-01,6
39E-01,2
87E-01.2
OOE-01,9
96E-02,!
OOE-01,8
62E-01,!
62E-01.8
20E-01.8
77E-01,8
SOE-02,8
02E-02,!
62E-02,4
37E-01.4
32E-01.4
OOE-01,4
74E-02.5
29E-02,5
24E-01,8
66E-02.8
OOE-01,7
60E-01,2
OOE-01,8
OOE+00,1
.OOE+00,0.
.OOE+00,0.
.OOE-03,0.
.OOE-02,0.
.OOE-02,0.
.OOE-02,0.
.50E+00.0.
.OOE-02,0.
.50E+00,0.
.50E-01.0.
.OOE-02,0.
.50E-01.0.
.OOE-02,0.
.50E-03.0.
.50E-03.0.
.50E-03,0.
.OOE-01,0.
.50E-04.0.
.50E-04.0.
.50E-04,0.
.50E-04.0.
.50E-03,0.
.50E-03.0.
.50E-04.0.
.50E-04,0.
.50E-02.0.
.OOE-01,0.
.OOE-02,0.
.OOE-02,0.
,0.9
,0.75
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.01
,0.01
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.0025
,0.01
,0.0025
,0.0025
,0.0025
B.5 DATA SET FIVE - UPTAKE.DAT
SINFL, PORS, BDENS
Yl, Y2, XAMBWE, TE1, TE2
TH1, TH2, TH3, TH4, FP, FS
QFC, QFG, TF1, TS, TFIS
FI, WIRATE, QCW, QGW, QBW
ULEAFY, UPROD, UCMILK, UMEAT, UWAT, UFISH
NUCLID(K), RW(K), BR(K), FMC(K), FMG(K), FF(K), FIS(K)
Note: The last line is repeated for each nuclide in the inventory.
B-5
-------
0.43, 0.3
0.67, 0.6
0.0,2160
50., 6
0.40, .01
14., 88.
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Ba-137M
Cs-137
Ra-226
Th-232
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am-241
Am-243
Cm-243
Cm-244
Ru-106
Sb-125
Cs-134
Eu-154
Pb-214
Bi-214
Pb-210
Po-210
Ra-228
Ac-228
Th-228
Pb-212
Tl-208
9, 1.
5, 2.
., 2
., 4
5, 6
5, 89
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
• — j
.25,
.25,
.25,
.25,
.25,
?S
.25,
.25,
.25,
.25,
.25,
.25,
?5
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
.25,
60
IE
4.
8.
0.
.4
1.
1.
8.
4
4.
4.
1.
4.
4.
4.
4
2.
2.
1.
1.
4.
9.
9.
9.
9.
1.
3.
8.
9.
9.
-3, 7;
, 14<
, 4!
j
5
o.,
o.,
.001,
.007,
.06,
.06,
.25,
.005,
1.5,
o ns
.03,
5E-2,
.03,
5E-3,
5E-5,
OE-3,
OE-3,
OE-3,
OE-2,
5E-5,
5E-5,
5E-5,
5E-5,
5E-4,
5E-4,
5E-5,
5E-5,
.02,
.03,
.03,
OE-3,
OE-3,
OE-3,
OE-3,
OE-3,
5E-3,
5E-4,
5E-5,
OE-3,
OE-3,
>0
10
30
8
0
2
2
1
1
1
2
1
1
7
3
7
4
5
fS
6
6
5
1
1
1
1
4
4
2
2
6
1
7
2
5
5
5
5
4
2
5
2
2
., 144
., 1.
., 0.
., 5
., 62.
o.,
o.,
.5E-4,
.OE-3,
.OE-3,
.OE-3,
.5E-3,
.OE-2,
.OE-2,
.OE-2,
.OE-3,
.5E-4,
.OE-3,
.5E-4,
.OE-6,
.OE-4,
.OE-4,
.OE-4,
.OE-6,
.OE-7,
.OE-7,
.OE-7
.OE-7,
.OE-7,
.OE-7,
.OE-5,
.OE-5,
.OE-7,
.OE-4,
.OE-3,
.OE-5,
.OE-4,
.OE-4,
.OE-4,
.OE-4,
.5E-4,
.OE-5,
.OE-6,
.OE-3,
.OE-3,
0.
o,
0.
8,
1
1
6
6
1
2
2
^
3
3
3
5
5
5
5
5
1
1
1
1
1
1
3
2
5
0.83
481.6
o.,
o.,
.3E-4,
.OE-3,
.7E-3,
.7E-3,
.4E-2,
.5E-3,
.5E-2,
OE-1,
.OE-1,
.OE-1,
.OE-1,
.OE-6,
o.,
.OE-4,
.OE-4,
.OE-4,
.OE-6,
.5E-6,
.5E-6,
.5E-6,
5E-6,
o.,
o.,
o.,
o.,
.3E-4,
.5E-3,
.OE-1,
.OE-5,
o.,
o.,
o.,
o.,
.OE-6,
o.,
o.,
o.,
o.,
, o
2.
2.
6.
6.
3.
2.
8.
7.
2.
1.
2.
2.
6.
?
2.
2.
5.
5.
5.
5
5.
3.
3.
3.
3.
2.
1.
2.
5.
4.
4.
4.
4.
2.
2.
6.
4.
4.
•
o.,
o.,
OE-2,
OE-2,
OE-3,
OE-3,
OE-4,
5E-1,
5E-3,
OE-3,
OE-2,
5E-4,
OE-2,
5E-4,
OE-6,
OE-4,
OE-4,
OE-4,
5E-5,
OE-7,
OE-7,
OE-7,
OE-7,
9
5E-6,
5E-6,
5E-6,
5E-6,
OE-3,
OE-3,
OE-2,
OE-3,
OE-4,
OE-4,
OE-4,
OE-4,
5E-4,
5E-5,
OE-6,
OE-2,
OE-2,
9
4
1
5
1
1
3
3
1
1
2
2
5
3
2
2
2
1
3
3
?
3
2
2
2
2
1
1
2
2
1
5
5
3
.OE-1
.6E3
.OE2
.OE1
.OE2
.OE2
.OE1
.OE4
.5E1
.5E1
.OE3
0.
.OE3
.OE1
.OE1
.OEO
.OEO
.OEO
.OE1
.5EO
.5EO
5EO
.5EO
.5E1
.5E1
.5E1
.5E1
.OE1
.OEO
.OE3
.5E1
0.
0.
.OE2
.OE2
.OE1
0.
.OE1
0.
0.
B-6
-------
B.6 OUTPUT FROM PATHRAE-EPA
The following is the output from the PATHRAE-EPA computer code for the
sample problem generated by the five data sets defined in Sections B.I
through B.5, and described in detail in Chapter 4.
B-7
-------
6 PVIRHU - MD
3/36
TOTAL EQUIVALENT UPTAKE FACTORS FOR PATHRAE
CD
I
00
UCL'ISE
h-?
C-14
Fe-55
* c - & 0
Ni~5~
M--63
Sr-90
ic-99
1-129
Cs-135
3al37«
Cs-137
:>234
U-235
'.-233
No-237
?u-233
Pu-239
Pu-241
Pu-242
Arc-243
C.n-243
Cra-244
Ru-106
CI.,-1 OC;
^ J i M J
Ci-134
Eu-154
5.
4.
*"•
7 .
6.
6 .
5.
7."
^
8."
C .
e.
5.
5.
5.
5.
5.
5.
5.
5.
3 •
5.
5.
5.
5.
3.
5.
RIVER
L/YR
841E+C2
3:.oE+C2
128E+02
384E+02
0&7E+C2
066E+02
&49E+02
973E+03
704E+02
347E+02
075E+02
OOOE-01
070E+02
51CE+02
510E+02
419E+02
4135+02
413E+02
410E+02
413E+02
414E+02
414E+02
415E+02
414E+02
535E+02
496E+02
OOOE+02
841E+02
WELL""
L/YR
5.e41E+02
4.816E+02
7.128E+C2
7.334S»-02
G.067E+02
6.066E+02
5.S49E+02
2.973Et-03
7.704E+02
7.347E+02
8.075E-t-02
0. OOOE-OI
8.070E+02
5.510E+02
5.510E+02
5.510E+02
5.419E+02
5.413E*-02
5.413E+02
5.410E+02
5.413E+02
5.414E+02
5.414E+05
5.415E+02
5.414E+02
5.535E+02
5.49GE+02
3. OOOE+02
5.841E+02
5
4
7
7
&
6
5
7
7
8
0
s
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8
5
UKJ.3;
ESOSION
L/YR
.341E+02
.31&E+02
.128E+02
.3845+02
.067E+02
.0&5E+02
.649E+02
.973E+03
.704E+02
.347E+02
.075E+02
.OOOE-01
.070E+02
.510E+02
.510E+02
.510E+02
.419E+02
.413S+02
.413E+02
.410E+02
.413E+02
.414E+02
.414E+02
.415E+02
.414E+02
.535E+02
.496E+02
.OOOE+02
.84.E+02
BATHTUB
5.
4.
7.
r*
&!
5.
3.
n
V
i •
1.
0.
8.
5.
5.
5.
e
w •
5.
5.
5.
5.
J •
5.
5.
5.
5.
7.
5.
L/YR
B41E+02
8:.£E+02
12BE+02
384E+02
287E+02
1I6E+02
678E+02
449E+03
012E+03
538E+02
094S+03
OOOE-01
079E+02
594E+02
594E+02
534E+02
440E+02
J13E+02
415E+02
410E+02
415E+02
417E+02
423E+02
415E+02
414E+02
525E+02
495E+02
998E+02
B41E+02
UT(J,5)
SPILLAGE
5
4
^
7
*?
6
5
3
1
7
0
8
5
5
5
c;
5
5
5
5
I
5
5
5
IT
J
7
5
L/YR
.841E+02
.SloE+02
.128E+02
.384E+02
.066E+02
.131E+02
.691E+02
.352S+03
.012E+03
.537E+02
.030E+03
.OOOE-01
.082E+02
.57GE+02
.57GE+02
.57GE+02
.440E+02
.413E+02
.414E+02
.410E+02
.414E+02
.417E+02
.421E+02
.415E1-02
.414E+02
.535E+02
.495E+02
.998E+02
.841E+02
UT
-------
3 ESOSZOM l
5 FOOD GROw* ON SITE
o NATURAL BTOINTSUSION 1
Z DIRECT GAMMA 0
§ DUST INHALATION 0
10 ATMOSPHERIC TRANSPORT 0
TT'S OF OPERATION OF WASTE FACILITY IN YEARS
LENGTH OF REPOSITORY (METERS)
WIDT:- OF REPOSITORY (DETERS)
FLOW RATE 0? RIVER (CUBIC METERS/YEAR)
DISTANCE "1 RIVER (METERS)
DENSITY OF AQUIFER (KG/CUBIC METER)
LONGITUDINAL DISPE8SIVITY (M)
LATERAL DISPERSION COEFFICIENT — Y AXIS (MAA2/YR)
NUI EMANATING PCWER OF THE WASTE
JIFfOSIO/v Cb£l:r. u'2 2ADDN IN WASTE (CMAA2/SEC)
DIFFUSION COEEF. OF SN IN CONCRETE (CKAA2/SEC)
THICKNESS OF CONCRETE SLAB FLOOR (CM)
DIFFUSION COEFF. OF RADON IN COVER (CMAA2/SEC)
ATMOSPHERIC STABILITY CLASS
AVERAGE WIND SPEED (VS>
FRACTION OF TIME WIND BLOWS TOWARD RECEPTOR
RECEPTOR DISTANCE FOR ATMOSPHERIC PATHWAY (M)
INCINERATOR OR TRENCH FIRE BURN RATE (MAA3/S)
FRACTION CF YEAR FIRE BURNS
STACK HEIGHT (M)
STACK INSIDE DIAMETER (M)
STACK GAS VELOCITY (H/S)
HEAT EMISSION RATE FROM BURNING (CAL/S)
FLAG FOR INPUT SUMMARY PRINTOUT
FLAG FOR DIRECTION OF TRENCH FILLING
20.
590.
590.
3.57E+05
50.
1600.
C.OOE-01
O.OOE-01
O.SC
G.OO
50.
2.IOOE+06
.
0.223
1.000
0.000
S.OOE-07
3035.
0.228
0.
l.OOE+00
240.
5.5&E-04
2.00E-01
2.00E-02
G.OOE-05
20.0
1.14E-02
4
2.01
0.0930
345.0
1
2.51E-05
0.0027
0
0.00
0.0
O.OOE-01
0
-------
FLAG FOR GROUND*ATER PATHWAY OPTIONS
CD
I
A.10UNT 0? WATER PERCOLATING THROUGH WASTE ANNUALLY
AVERAGE VERTICAL GROUNBWATER VELOCITY (M/YR)
"CRIZONTAL VELOCITY OF AQUI?"R (METERS/YR)
HIXIN3 THICKNESS OF AQUIFER (METERS)
C'JRFACE EROSION RATE IM/YR)
ANNUAL RUNOFF OF PRECIPITATION -243 3.500E-03 4.400E-01
Ge Ci-243 2.000E-03 2.700E-01
67 C«-244 I.600E-03 2.100E-01
S3 Ru-106 1.100E-05 1.200E-03
69 Sb-125 O.OOOE-01 2.800E-05
70 Cs-134 6.6COE-05 4.500E-05
71 Eu-154 O.OOOE-01 3.400E-04
NUCLIDE EQUIVALENT UPTAKE
NUMBER NAME RIVER USEAGE WELL UATER USE
(L/YR) (L/YR)
41 H-3 5.841E+02 5.841E+02
42 C-I4 4.816E+02 4.816E+02
43 Fe-55 7.128E+02 7.128E+02
44 Co-60 7.384E+02 7.384E+02
45 Ni-59 6.067E+02 6.067E+02
46 Ni-63 6.066E+02 6.066E+02
47 Sr-90 5.649E+02 5.649E+02
48 Nb-94 2.973E+03 2.973E+03
0
0
0
0
0
/
1
27
10
~
3
DIRECT GAMA
DOSE FACTORS
(M8EM-MAA2/PCI-HR)
O.OOOE-01
O.OOOE-01
9.600E-13
1.2COE-08
1.800E-12
O.OOOE-01
O.OOOE-01
3.000E-09
2.900E-15
3.100E-11
O.OOOE-01
3.100E-09
O.OOOE-01
3.300E-12
8.300E-10
2.600E-12
1.400E-10
3.400E-I2
1.600E-12
O.OOOE-01
2.700E-12
1.300E-10
2.900E-10
7.000E-10
3.200E-12
O.OOOE-01
2.200E-09
S.OOOE-09
6.100E-09
FACTORS
FOOD CONSUMPTION
; (KG/YR)
O.OOOE-01
O.OOOE-01
9.002E-02
5.397E-01
1.492E+00
1.490E+00
1.173E+01
5.077E+00
.454
.801
.000
.00
.000
.30
n
!§5o
.000
.960E-04
.22E-01
VOLATILITY
FACTOR
(FRACTION)
9.000E-01
7.500E-01
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
l.OOOE-02
l.OOOE-02
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
2.500E-03
l.OOOE-02
2.500E-03
2.500E-03
2.500E-03
GAMMA
ENERGY
(MEV)
O.OOOE-01
O.OOOE-01
O.OOOE-01
1.250E+00
O.OOOE-01
O.OOOE-01
3.390E-01
7.870E-01
-------
§1
49 Tc-99
50 1-129
51 Cb-135
32 B^137n
53 Cs-137
56 U-:34
57 'J-235
52 'J-238
59 No-237
Pu-238
Pu-239
P'j-241
t3 Pu-242
64 Aa-241
65 An-243
66 C«-243
67 C»-244
63 Ru-106
69 Sb-125
70 Cs-134
71 Eu-154
NUCLIDE
NUMBER NAME
41
42
43
44
45
46
47
48
49
50
51
52
53
56
57
58
59
60
61
62
63
64
6 S
66
67
68
69
70
71
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
N'o-94
Tc-99
1-129
Cs-135
Bal37»
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
An-241
A«-243
Cn-243
C»-244
Ru-106
Sb-125
Cs-134
Eu-154
NUCLIDE
NUMBER NAME
41 H-3
42 C-14
43 Fe-55
44 Co-60
7.704E+02
7.347E+02
8.075E+02
O.OOOE-01
8.070E+02
5.510E+02
5.51CE+02
5.51.OE*02
5.419E+02
5.4".3E+02
5.413E+C2
5.-UOE+02
5.413E+02
5.4HE+02
5.414E+02
5.415E-02
5.414E+02
3.535E+02
5.496S+02
8.000E+02
5.841E+02
INPUT LEACH
CONSTANTd/YR)
3.480E-03
3.480E-03
2.990E-05
2.990E-05
2.990E-05
2.990E-05
4.960E-05
2.140E-05
1.630E-03
4.400E-04
1.500E-05
1.500E-05
1.500E-05
2.010E-06
2.010E-06
2.010E-06
2.780E-04
2.150E-06
2.150E-OS
2.150E-06
2.150E-06
1.870E-05
1.370E-05
2.150E-06
2.150E-06
2.140E-05
3.320E-05
1.500E-05
7.540E-07
AQUIFER
SORPIION
l.OOOE-02
l.OOOE-02
6.000E+03
5.500E+01
7.704E+02
7.347E+02
8.075E+02
O.OOOE-01
8.070E*02
5.510E+02
5.510E+02
5.51.OE + 02
5.419E+02
5.413S+02
5.413E+02
5.410E+02
5.413E+02
5.414E+02
5.414E+02
5.415E+02
5.414E+02
5.53EE+02
5.496E+02
3.000E+02
5.841E+02
FINAL LEACH
CONSTANTd/YR)
3.430E-03
3.480E-03
2.990E-05
2.990E-05
2.990E-05
2.990E-05
4.960E-05
2.140E-05
1.630E-03
4.400E-04
1.500E-05
1.500E-05
1.500E-05
2.010E-06
2.010E-06
2.010E-06
2.730E-04
2.150E-06
2.150E-06
2.150E-06
2.150E-06
1.870E-05
1.870E-05
2.150E-06
2.150E-06
2.140E-05
3.320E-05
1.500E-05
7.540E-07
AQUIFER
RETARDATION
1.041E+00
1.041E+00
2.462E+04
2.266E+02
2.238E+02
3.849E+00
2.753E+00
O.OOOE-01
2.746E+00
8.233E-02
8.233E-02
3.233E-02
2.633E-01
1.160E-03
1.161E-03
1.154E-03
1.161E-03
9.238E-03
9.239E-03
1.G56E-03
1.055E-03
4.384E-01
8.564E-01
2.646E+00
1.200E-01
GAMMA
ATTENUATIONC1/M)
O.OOOE-01
O.OOOE-01
O.OOOE-01
8.300E+00
O.OOOE-01
O.OOOE-01
2.000E+01
1.150E+01
O.OOOE-01
9.700E+0:
O.OOOE-01
1.300E+01
1.300E+01
5.000E+01
2.900E+01
6.300E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
5.000E+01
1.800E+G1
5.000E+01
1.400E+01
1.700E+01
1.200E+01
l.OOOE+01
VERTICAL
SORPTION
l.OOOE-02
l.OOOE-02
6.000E+03
5.500E+01
O.OOOE-0;
3.960E-02
O.OOOE-01
S.620E-01
6.620E-01
1.200E-01
1.770E-01
4.300E-02
6.020E-02
5.620E-02
1.370E-01
1.320E-01
O.OOOE-01
5.740E-02
7.290E-02
2.240E-01
6.660E-02
G.OOOE-01
4.600E-01
7.000E-01
l.OOOE+00
VERTICAL
RETARDATION
1.051E+00
1.051E+00
3.073E+04
2.827E+02
-------
45
46
47
•*§
49
50
51
32
53
56
57
53
59
oo
i
IN3
63
64
65
66
67
63
69
70
71
N'JC
NUMBER
41
42
43
44
45
46
47
48
49
50
Sr-9C
Nb-94
Tc-99
1-129
Cs-135
B.3I37M
Cs-137
'J-234
U-235
U-233
Np-237
Pu-233
Pu-239
Pu-241
?u-242
A«-241
Ara-243
Ca-243
Cffl-244
Ru-106
Sb-125
Cs-134
Eu-154
LIDE
NAME
H-3
C-14
Ee-55
Co-60
52
53
56
57
58
59
60
61
62
63
64
65
68
69
70
71
Nb-94
Tc-99
1-129
C5-135
Bal37ni
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
A n-241
A«-243
i-244
Ru-106
Sb-125
Cs-134
Eu-154
1.500E+02
l.'iOOE+O:
2.000E+01
3.500E+02
5.000E-01
3.000E+00
5.COOE+02
5.000E+02
5.000E+02
7.500E+02
7.500E+02
7.500E+02
5.000E+00
3.500E+03
3.500E+03
3.500E+03
3.500E+03
3.000E+04
8.000E+04
3.300E+03
3.300E+03
2.200E+02
4.500E+01
5.000E+02
4. OOOE+03
SOIL TO PLANT
CONVERSION
O.OOOE-01
O.OOOE-01
4.000E-03
2.000E-02
6.000E-02
6.000E-02
2.500E+00
2.000E-02
9.500E+00
1.500E-01
8.000E-02
1.500E-01
3.000E-02
8.500E-03
8.500E-03
8.500E-03
l.OOOE-01
4.500E-04
4.500E-04
4.500E-04
4.500E-04
5.500E-03
5.500E-03
8.500E-04
8 500E-04
7.500E-02
2.000E-01
8.000E-02
l.OOOE-02
6.164E+02
6.I64S+02
S.305E+01
mm
1.331E-OI
2.052E+03
2.052E+03
2.052E+03
3.073E+03
3.078E+03
3.C73E+03
2.151E+01
1.436E+04
1.436E+04
1.436E+04
1.436E+04
3.282E+05
3.282E+05
1.354E+04
1.354E+04
9.036E+02
1.856E+02
2.052E+03
1.641E+04
HALF
LIFE (YR)
1.230E+01
5.730E+03
2.700E+00
5.250E+00
3.00CE+04
mm
2.000E+04
2.130E+05
1.700E+07
3.010E+06
3.000E+01
3.000E+01
4.470E+09
7.040E+03
4.470E+09
2.100E+06
8.770E+01
2.420E+04
1.320E+01
3.790E+05
4.590E+02
7.370E+03
3.190E+01
1 ./oOt+Ol
1.010E+00
2.770E+00
2.060E+00
8.500E+00
1.50GE+02
L.500E+02
1.500E+02
i.mm
3.000E+00
1. OOOE+03
:. .OOOE+03
l.OOOE+03
7.500E+02
7.500E+02
7.500E+02
5.000E+GC
3.-500E+03
3.500E+03
3.5GOE+03
3.500S+03
8.0COE+04
8.000E+04
3.300E+03
3.300E+03
2.200E+02
4.500E+01
I. OOOE+03
4. OOOE+03
INITIAL
INVENTORY (CD
7.857E+0:
7.421E+00
2.323E+OI
8.652E+01
1.430E-01
4.094E+01
2.694E+00
4.538E-03
•..900E-03
5.610E-03
1.900E-03
4.564E+01
4.564E+01
4.270E-03
6.350E-05
1.250E-03
9.680E-06
1.110E-01
1.120E-01
3.002E+00
2.430E-04
2.275E-01
5.405E-05
4.477E-05
3.640E-02
3.672E-03
3.672E-01
7.480E+00
9.172E-02
PATHWAY 2
GROUNDUATER TO
7.693E+02
7.693E+02
7.693E+C2
1 ?q4F + m
t'kt* eIX«
3.5&J.E+00
1.637E+01
5.123E+03
5.123E+03
5.123E+03
3.842E+03
3.842E+03
3.842E+03
2.66-.E + 01
1.793E+04
1.793E+04
1.793E+04
1.793E+04
4.097E+05
4.097E+05
:.690E+04
1.690E+04
1.129E+03
2.3:.5E+02
5.I23E+03
2.049E+04
WELL
-------
******** NUCLirE DOSES FOR GIVEN TIMES ********
CO
1
H^
CO
MUCL
4:
42
43
44
45
46
47
43
49
50
c-1:
w —
•32
53
56
57
58
59
so
61
o2
63
64
65
66
67
68
69
70
71
IIS/TIME
H-3
C-14
Fe-55
Co-60
N--59
N;-&3
Br-90
Nb-94
Tc-99
>129
Cs-135
Bal37a
Cs-137
U-234
U-235
U-238
Np-237
Pu-238
Pu-239
?u-241
?u-242
Am-241
Aas-243
C«-243
Cn-244
Ru-106
Sb-125
Cs-134
Eu-154
0.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOH-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
0,OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
1
* •
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
O.OOE-01
O.OOE-01
15.
9.81E-03
2.08E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
50.
4.7:.E-03
1.06E-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
8.63E-0&
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
o.oos-o:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
:oo.
2.36E-04
8.34E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
2.70E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
200.
5.96E-07
S.17E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
2.29E-05
2.16E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
350.
7.54E-11
3.59E-02
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1.79E-05
7.09E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O),
O.OOE-O:
7.80E-06
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
9.54E-15
2.09E-02
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
1.4CE-05
8.96E-03
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
1.67E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
"50.
3.04E-21
8.5:E-C3
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-O:
O.OOE-O:
O.OOE-O:
9.34E-06
3.03E-03
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
2.63E-05
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
:ooo.
9.7CE-28
3.46E-03
O.OOE-O:
O.OOE-C:
O.OOE-01
O.OOE-01
O.OOE-O:
c .OOE-O:
6.2:E-06
7.:9E-03
O.OOE-GI
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
2.46E-05
O.OOE-01
O.OOE-01
O.OOE-01
0. OOE-O 1
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C:.
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-O:
****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES ******
29 Q.OOE-01 O.OOE-01 4.06E-02 1.11E-01
3.86E-02 6.38E-02 4.30E-02 2.99E-02 1.66E-02 1.07E-02
****&* SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
2v O.dGE-C: O-OOE-01 1.14E-05 3.09E-05
USPE23ICN COKSECIIGfJ FACTOR
2.43E-05 1.79E-05 1.21E-05 8.38E-06 4.64E-06 2.99E-06
X >'- X 'f. K A K L< 1 0 i
41
42
43
44
45
46
47
48
49
50
51
52
WUCLIDE
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37.
VERTICAL FACTOR
1.01E+00
l.OOE+00
l.OOE+03
l.OOE+03
l.OOE+00
l.OOE+03
l.OOE+03
1.01E+00
l.OOE+00
l.OOE+00
l.OOE+00
l.OOE+03
l.OOE+00
l.OOE+00
l.OOE+03
7.93E+00
l.OOE+00
1.05E+00
1.01E+00
l.OOE+00
l.OOE+00
l.OOE+00
l.OOE+00
1.69E+02
"OTAL F
1.01E+00
l.OOE+00
l.OOE+06
7.93E+03
l.OOE+00
1.05E+03
1.01E+03
l.OOE+00
l.OOE+00
1.69E+05
-------
00
53 Ci-:.37 1.
5a 'J-234
57 U-235 1.
53 U-239 :.
59 Np-237 1.
60 Pu-238 1.
61 Pu-239 1.
62 Pu-241 I.
63 ?u-242 1.
64 A»-241
65 A»-243 1.
66 Cn-243 :.
67 Cn-244
63 Su-106 1.
69 Sb-125 1.
70 Cs-134
71 Eu-154 1.
CONCENTRATION ASSAY
^UCL IDE/TIME
41
42
43
44
45
46
47
48
49
50
51
52
53
56
57
53
59
61
o2
63
65
66
67
63
69
70
71
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc:99
Cs:135
Sal37n
Cs-137
U-234
U-235
'J-238
Np-237
Pu-538
Pu-239
Pu-241
fy:^?
flu'-243
Cn-243
Cn-244
Ru-106
Sb-125
Cs-134
Eu-154
******** NUCLIDE
NUB
41
42
43
H-3
C-14
Fe-55
0.
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
Q."OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-Oi
DOSES FOR
0.
O.OOE-01
O.OOE-01
O.OOE-01
OOE+03 1.69E+02
OOE+OO :.:OE+OO
OOE+00 l.OOE+00
OOE+00 I. OOE+00
OOE+00 l.OOE+00
OOE+03 1. OOE+03
43E+00 l.OOE+00
OOE+03 1. OOE+03
OOE+00 .OOE+00
OOE+03 .OOE+03
OOE+03 .04E+00
OOE+03 .OOE+03
OOE+03 .OOE+03
OOE+03 .OOE+03
OOE+03 1.38E+02
OOE+03 1. OOE+03
OOE + 03 :.. OOE+03
CONCENTRATIONS IN CI/**A3
1.
O.OOE-Oi
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
15.
1.95E-07
4.26E-08
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
50.
9.38E-08
1.46E-07
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
5.90E-I2
O.OOS-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
100.
4.71E-09
1.22E-07
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
1.84E-11
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
PATHWAY 3
EROSION
.69E+05
.OCE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+06
.43E+00
.OOE+06
.OOE+00
1. OOE+06
9.04E+03
I. OOE + 06
1. OOE+06
1. OOE + 06
1.38E+05
1. OOE+06
1. OOE+06
200.
1.19E-11
8.53E-08
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
1.57E-11
3.41E-I2
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
350.
1.50E-15
4.97E-08
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.23E-11
6."60E-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
4.64E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
1.90E-19
2.90E-08
O.OOE-Oi
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-Oi
O.OOE-01
9.59E-12
1.42E-11
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
9.93E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
6.06E-26
l.i3E-08
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-O:
O.OOE-O:
O.OOE-O:
6.38E-12
1.27E-::
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.57E-14
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
1.93E-32
4.79E-09
O.OOE-O:
O.OOE-O:
O.OOE-O:.
O.OOE-O:
O.OOE-OI
O.OOE-01
4.24E-12
" ' 4E * n
O.OOE-OI
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
1.46E-14
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-C1
O.OOE-01
O.OOE-01
O.OOE-OI
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
GIVEN TIMES ********
1.
O.OOE-01
O.OOE-01
O.OOE-01
15.
O.OOE-01
O.OOE-01
O.OOE-01
50.
O.OOE-01
O.OOE-01
O.OOE-01
100.
O.OOE-01
O.OOE-01
O.OOE-01
200.
O.OOE-01
O.OOE-01
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-Ol"
O.OOE-01
O.OOE-01
i ftflrt
L \I\J\I •
O.OOE-01
O.OOE-01
O.OOE-01
-------
44
45
46
47
48
49
50
51
52
53
56
57
53
59
GO
61
62
63
64
65
66
fi
69
70
71
Co-6C
N:.-59
Ni-63
Sr-9G
Nb-94
Tc-99
I-129c
Lt S ~ * w> U
Bal37a
Cs-137
U-234
U-235
U-238
Np-237
Pu-233
Pu-239
Pu-341
Pu-242
Ai-241
Ai-243
Ca-243
Sltftt
Sb-125
Cs-134
Eu-154
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-Ol
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-0-
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O1.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Qi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
Q.QOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Ol
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
C.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O*
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
C.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
8:881:81
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O.
O.OOE-O:
O.OOE-01
O.OOE-::
O.OOE-Oi
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-O:
O.OOE-O:
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
Holiol
O.OOE-01
O.OOE-01
O.OOE-01
****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES ******
29
O.OCE-Ci O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-Oi O.OOE-01 O.OOE-01 O.OOE-01
****** SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
29 O.OOB-01 O.OOE-01 O.OOE-01 O.OOE-01
O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01
******* EROSION OF UASIE STARTS AFTER 3061.2 YEARS AND ENDS AFTER UASTE IS ALL ERODED
CONCENTRATION ARRAY CONCENTRATIONS IN CI/M**3
IN
33673.5 YEARS.
NUCLTDE/TIMS
41
42
43
44
43
46
47
~ /
48
49
50
51
52
53
56
57
53
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
w 4 J V
Nb-94
Tc-99
1-129
Bal37i
Cs-137
U-234
U-235
U-238
0.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
0 . OOE— 01
0 .001—01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
15.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
50.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
100.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
200.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-Oi
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
-------
CO
59
60
61
62
62
64
65
66
67
63
69
70
71
No-237
Pu-233
?'j-239
?u-241
Fu-242
Am-241
Aa-243
Cm-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154
AAAA*AAA NUCLIDE
NUCLIDE/TIME
41
42
43
44
1s
47
43
49
50
5-.
52
53
56
57
53
59
60
61
62
63
64
65
66
67
68
69
70
71
H-3
C-14
Fe-55
Co-60
fljiglj
Sr-90
Nb-94
Tc-99
1-129
Cs-135
B3l37m
Cs-137
U-234
U-235
U-233
Np-237
Pu-238
Pu-239
Pu-241
Pu-242
Am-241
AB-243
Ca-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
DOSES FOR
0.
O.OOE-01
O.OOE-01
2.10E-05
5.30E-03
6.S5E-Q7
4.33E-04
3.79E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.18E-01
6.32E-03
1.04E-09
1.74E-08
1.69E-07
7.99E-06
9.46E-07
5.64E-06
1.99E-09
1.53E-04
3.74E-08
2.02E-09
1.32E-06
4.22E-07
O.OOE-01
2.80E-02
O.OOE-01
O.OOE-01
O.CCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
GIVEN TI
1.
O.OOE-01
O.OOE-01
1.63E-05
5.0SE-03
\\imi
3.70E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.15E-01
6.32E-08
1.04E-09
1.74E-08
1.69E-07
7.93E-06
9.46E-07
5.35E-06
1.99E-09
1.53E-04
3.74E-08
1.98E-09
1.26E-06
2.13E-07
O.OOE-01
2.00E-02
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
C.OOE-01
C.OOE-01
O.OOE-01
Q.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O:.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
FOOD
O.OOE-Oi
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
PATHWAY
GROWN ON
O.OOE-C1
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-C1
O.OOE-C1
5
SITE
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OCE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.CCE-01
C.OOE-01
O.COE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-O"
O.OOE-01
O.OOE-C1
MES AAAAAAAA
15.
O.OOE-01
O.OOE-01
4.47E-07
8.00E-04
l'.§P-?4
2.'64E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
8.35E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
7.10E-06
9.46E-07
2.57E-06
1.99E-09
1.50E-04
3.74E-08
1.46E-09
7.29E-07
1.43E-11
O.OOE-01
1.30E-04
O.OOE-01
50.
O.OOE-01
O.OOE-01
5.60E-11
7.38E-06
§-p§:^
l.'l3E-03
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.72E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
5.38E-06
9.45E-07
4.08E-07
1.99E-09
1.42E-04
3.72E-08
6.83E-10
1.84E-07
5.29E-22
O.OOE-01
1.38E-09
O.OOE-01
100.
O.OOE-01
O.OOE-01
1.49E-16
1.07E-08
I".SII:8?
3."36E-04
1.33E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.17E-02
6.32E-08
1.04E-09
1.74E-08
1.69E-07
3.63E-06
9.43E-07
2.96E-08
1.99E-09
1.32E-04
3.71E-08
2.30E-10
2.56E-08
6.62E-37
O.OOE-01
6.82E-17
O.OOE-01
200.
O.OOE-01
O.OOE-01
1.06E-27
1.97E-14
!"8fi-8?
2."98E-05
1.32E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.16E-03
6.32E-03
1.04E-09
1.74E-08
1.69E-07
1.64E-06
9.41E-07
1.55E-10
1.99E-09
1.13E-04
3.67E-08
2.62E-11
4.99E-10
O.OOE-01
O.OOE-01
1.66E-31
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
4.95E-23
I'.^li^s
7.'85E-07
1.32E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.63E-05
6.32E-08
1.04E-09
1.74E-08
1.69E-07
5.03E-07
9.37E-07
5.88E-14
1.99E-09
9.02E-05
3.62E-08
1.01E-12
1.36E-12
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
1.24E-31
2.'07E-08
1.31E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
1.13E-06
6.32E-03
1.04E-09
1.74E-08
1.69E-07
1.54E-07
9.33E-07
2.23E-17
1.99E-09
7.19E-05
3.57E-08
3.87E-14
3.69E-15
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
4.'84E-11
1.30E-06
1.73E-05
3.97E-04
7.28E-07
O.OOE-01
3.52E-09
6.32E-08
1.04E-09
1.74E-08
1.69E-07
2.13E-08
9.26E-07
4.44E-23
1.99E-09
4.93E-05
3.49E-08
1.69E-16
1.96E-19
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
6.79E-Q7
2.53E-07
1.13E-13
1.29E-06
1.72E-05
3.97E-04
7.28E-07
O.OOE-01
1.09E-11
6.32E-03
1.04E-09
1.74E-08
1.69E-07
2.95E-09
9.19E-07
3.83E-29
1.99E-09
3.38E-05
3.41E-08
7.41E-19
1.04E-23
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN TIMES AAAAAA
29 1.57E-01 1.45E-01 8.81E-02 3.92E-02
1.28E-02 1.83E-03 5.81E-04 5.03E-04 4.70E-04 4.53E-04
AAAAAA SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
29 4.39E-08 4.07E-08 2.47E-08 1.10E-08 3.59E-09 5.13E-10
1.63E-10 1.41E-10 1.31E-10 1.27E-10
-------
FRACTIONAL MIXING OF HASTE IN SOIL IN TRENCH IS 1.005
tRnCTION OF FOOD CONSUMED UHICH IS GROWN AT THE WASTE SITE (FG) IS 0.220
FRACTIONAL MIXING OF TRENCH MATERIAL IN SURFACE SOIL IS 0.120
PATHWAY 6
NATURAL BIOINTRUSION
NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA
Nt'CLIBE/TIME
41
42
43
44
45
46
ii
1!
51
52
53
56
57
53
59
60
61
62
u3
65
66
67
68
69
70
/ 1
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37»
Cs-137
U-234
'J-235
U-238
Np-237
Pu-238
Pu-239
Pu-241
Aa-54f
An-243
C.u-243
Ca-244
Ru-106
S'o-125
C5-134
Eu-I54
0.
O.OOE-01
O.OOE-01
7.02E-05
1.93E-02
2.29E-06
1.6IE-03
1.26E-02
4.44E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.94E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.67E-05
3.16E-06
1.38E-05
l.'25E-07
6.75E-09
4.39E-06
1.41E-06
O.OOE-01
9.33E-02
O.OOE-01
1 •
O.OOE-01
O.OOE-01
5.43E-05
1.69E-02
2.29E-06
1.60E-03
1.23E-02
4.44E-OG
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.85E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.65E-C5
3.16E-06
1.73E-Q5
l.'25E-07
6.61E-09
4.22E-06
7.09E-07
O.OOE-01
6.66E-02
O.OOE-01
15.
O.OOE-01
O.OOE-01
1.49E-06
2.67E-03
2.29E-06
1.44E-03
8.79E-03
4.44E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
2.78E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
2.37E-05
3.15E-06
3.56E-06
l.'25E-07
4.87E-09
2.43E-06
4.77E-11
O.OOE-01
6.00E-04
O.OOE-01
50.
O.OOE-01
O.OOE-01
1.87E-10
2.63E-05
2.28E-06
1 . ' ' E-03
3.76E-03
4.43E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
1.24E-01
2.11E-07
3.46E-09
5.31E-08
5.64E-07
1.30E-05
3.15E-06
1.36E-06
W31--8J
1.24E-07
2.23E-09
6.13E-07
1.76E-21
O.OOE-01
4.61E-09
O.OOE-01
100.
O.OOE-01
O.OOE-01
4.98E-16
3.57E-08
2.28E-06
7.59E-04
1.12E-03
4.43E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.91E-02
2.11E-07
3.46E-09
5.31E-08
5.64E-07
1.21E-05
3.15E-06
9.86E-08
6.65E-09
4.39E-04
1.24E-07
7.S9E-10
8.55E-08
2.21E-36
O.OOE-01
2.27E-16
O.OOE-01
200.
O.OOE-01
O.OOE-01
3.53E-27
6.59E-14
2.28E-06
3.57E-04
9.93E-05
4.41E-06
5.77E-05
1.33E-03
2.43E-06
O.OOE-01
3.88E-03
2.11E-07
3.46E-09
5.81E-08
5.64E-07
5.49E-06
3.14E-06
5.17E-10
l."22E-07
3.75E-11
1.67E-09
O.OOE-01
O.OOE-01
5.54E-31
O.OOE-01
350.
O.OOE-01
O.OOE-01
O.OOE-01
r> *28E"06
l'.15E-04
2.62E-06
4.39E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
1.21E-04
2.11E-07
3.46E-09
5.81E-08
5.64E-07
1.68E-06
3.12E-06
1.96E-13
K21E-07
3.36E-12
4.53E-12
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
500.
O.OOE-01
O.OOE-01
O.OOE-01
4.14E-31
2.28E-06
3.73E-05
6.90E-08
4.37E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
3.79E-06
2.11E-07
3.46E-09
5.31E-08
5.64E-07
5.12E-07
3.11E-06
7.44E-17
K19E-07
1.29E-13
1.23E-14
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
750.
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
2.27E-06
5.67E-06
1.61E-10
4.33E-06
5.76E-05
1.33E-03
2.43E-06
O.OOE-01
1.17E-08
2.11E-07
3.46E-09
5.81E-08
5.64E-07
7.10E-08
3.09E-06
1.48E-22
l.*16E-07
5.65E-16
6.52E-19
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
1000.
O.OGE-0"..
O.OOE-01
O.OOE-OI
O.OOE-01
2.27E-06
8.62E-07
3.77E-13
4.29E-06
5.75E-05
1.33E-03
2.43E-06
O.OOE-01
3.64E-11
2.11E-07
3.46E-09
5.81E-08
5.64E-07
9.35E-09
3.07E-06
2.94E-23
l.'l4E-07
2.47E-18
3.45E-23
O.OOE-01
O.OOE-01
O.OOE-01
O.OOE-01
AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN TIMES AAAAAA
29 5.23E-01 4.34E-01 2.94E-01 1.31E-01
4.28E-02 6.11E-03 1.94E-03 1.68E-03 1.57E-03 1.51E-03
AAAAAA SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
29 1.46E-07 1.36E-07 8.23E-08 3.66E-08 1.20E-08 1.71E-09
5.43E-10 4.70E-10 4.39E-10 4.23E-10
FRACTIONAL MIXING OF UASTE IN SOIL IN TRENCH IS 1.005
FRACTION OF FOOD CONSUMED UHICH IS GROWN AT THE WASTE SITE (FG) IS 0.220
PATHWAY 7
DIRECT GAMMA
AAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA
-------
HJCL:::
44 Co-60
47 Sr-90
48 Nb-94
50 1-129
"" Bal37a
Cs-137
U-234
57 U-235
jg :i_"!og
5? Nj-237
60 Pu-238
61 Pu-239
62 Pu-241
64 Aa-241
65 Aa-243
56 C»-243
67 Ca-244
68 Ru-106
69 Sb-125
70 Cs-134
71 Eu-154
****** SUM OF NUCLIDE DOSES FOR GIVEN TIMES
29 3.76E+00 7.68E+00 ?..34E+00 8.82E-02 2.67E-02 3.37E-03 3.16E-04 2.37E-04 3.48E-04 5.17E-04
CO
i
oo ****** SUM OF NUCLIDE RISKS FOR GIVEN TIMES ******
29 2.45E-06 2.15E-06 3.75E-07 2.47E-08 7.47E-09 9.43E-10 8.86E-J.1 6.63E-1I 9.75E-U 1.45E-10
******* EROSION STOPS AFTER COVER IS ALL ERODED IN 3061.2 YEARS *******
PATHWAY 8
DUST INHALATION
******** NUCLIDE DOSES FOR GIVEN TIMES ********
0.
S.39E+00
O.OOE-Oi
9.83E-05
4.S2E-28
2.17E-01
v.OOE-01
9.29E-18
7.93E-12
2.C8E-21
1.71E-13
5.08E-16
1.05E-16
O.OOE-01
3.90E-14
1.65E-17
2.66E-09
1.33E-16
O.OOE-01
2.36E-04
1.43E-01
2.42E-03
1.
7.36E+00
O.COE-01
9.85E-05
4.91E-28
2.13E-01
O.OOE-01
9.38E-18
7.97E-12
2.10E-21
:..72E-18
5.09E-16
1.06E-:6
O.OOE-01
3.93E-14
1.66E-17
2.61E-09
1.29E-16
O.OOE-01
1.84E-04
1.06E-01
2.24E-03
15.
1.18E+00
O.OOE-01
1.01E-04
6.37E-23
1.59E-01
9-8&S-91
l.O/e-j.7
3.59E-12
2.49E-21
1.97E-13
5.20E-16
1.21E-16
O.OOE-01
4.40E-14
1.89E-17
2.02E-09
8.51E-17
O.OOE-01
5.77E-06
9.76E-04
7.30E-04
50.
1.21E-02
O.OOE-Oi
1.07E-04
1.23E-27
7.60E-02
O.OOE-01
1.49E-17
1.04E-11
3.79E-21
2.74E-18
5.49E-16
1.63E-16
O.OOE-01
5.81E-14
2.63E-17
1.05E-09
2.99E-17
O.OOE-01
l.OOE-09
8.00E-09
4.43E-05
100.
1.74E-05
O.OOE-01
1.17E-04
3.12E-27
2.65E-02
O.OOE-01
2.40E-17
1.35E-n.l
6.92E-21
4.40E-13
5.94E-16
2.69E-16
O.OOE-01
8.65E-14
4.20E-17
4.13E-10
6.70E-18
O.OOE-01
4.25E-15
4.34E-16
8.09E-07
200.
3.61E-11
O.OOE-01
1.39E-04
2.02E-26
3.23E-03
O.OOE-01
6.17E-17
2.31E-11
2.30E-20
1.13E-17
6.94E-16
6.91E-15
O.OOE-01
1.92E-13
1.07E-16
6.55E-11
3.36E-19
O.OOE-01
7.65E-26
1.27E-30
2.70E-10
350.
1.08E-19
O.OOE-01
1.80E-04
3.31E-25
1.37E-04
O.OOE-01
2.55E-16
5.15E-11
1.39E-19
4.63E-17
8.75E-16
2.34E-15
O.OOE-01
6.30E-13
4.36E-16
4.06E-12
3.77E-21
O.OOE-01
O.OOE-01
O.OOE-01
1.64E-15
500.
3.20E-28
O.OOE-01
2.31E-04
5.42E-24
5.77E-06
O.OOE-01
1.05E-15
1.14E-10
8.37E-19
1.92E-16
1.10E-15
1.16E-14
O.OOE-01
2.07E-12
1.77E-15
2.51E-13
4.21E-23
O.OOE-01
O.OOE-01
O.OOE-01
9.B8E-21
750.
O.OOE-01
O.OOE-Oi
3.48E-04
5.68E-22
2.92E-08
O.OOE-01
1.10E-14
4.29E-10
1.66E-17
2.02E-15
1.60E-15
1.21E-13
O.OOE-01
1.48E-11
1.81E-14
2.40E-15
2.34E-26
O.OOE-01
O.OOE-01
O.OOE-OI
1.96E-29
1000.
O.OOE-O:
O.OOE-01
5.17E-04
5.33E-20
1.45E-1G
O.OOE-01
1.14E-13
'. .59E-09
•3 i r c _ ' '
\J • u ij Li 1 Q
2.09E-14
2.30E-15
1.24E-12
O.OOE-OI
i 05E-'0
1.83E-13
2.23E-17
1.28E-29
O.OOE-01
O.OOE-01
O.OOE-01
3.84E-36
rtUCLIDE/TIHE
41
42
43
44
45
46
47
48
49
50
51
52
53
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
Nb-94
Tc-99
1-129
Cs-135
Bal37«
Cs-137
0.
8.40E-07
7.23E-09
3.93E-06
3.08E-03
2.17E-08
1.61E-05
4.80E-05
2.35E-07
3.73E-09
2.85E-07
7.62E-10
5.70E-09
1.22E-04
1.
7.94E-07
7.28E-09
3.04E-06
2.70E-03
2.17E-08
1.59E-05
4.69E-05
2.35E-07
3.73E-09
2.35E-07
7.62E-10
5.57E-09
1.19E-04
15.
3.61E-07
7.26E-09
8.37E-08
4.26E-04
2.17E-08
1.43E-05
3.34E-05
2.34E-07
3.73E-09
2.85E-07
7.62E-10
4.03E-09
8.63E-05
50.
5.02E-08
7.23E-09
1.05E-11
4.19E-06
2.17E-08
1.10E-05
1.43E-05
2.34E-07
3.72E-09
2.85E-07
7.62E-10
1.79E-09
3.84E-05
100.
3.00E-09
7.19E-09
2.79E-17
5.69E-09
2.16E-08
7.56E-06
4.26E-06
2.34E-07
3.72E-09
2.85E-07
7.62E-10
5.65E-10
1.21E-05
200.
1.07E-11
7.10E-09
1.98E-28
1.05E-14
2.16E-08
3.56E-06
3.77E-07
2.33E-07
3.72E-09
2.85E-07
7.62E-10
5.61E-11
1.20E-06
350.
2.28E-15
6.97E-09
O.OOE-01
2.63E-23
2.16E-08
1.15E-06
9.94E-09
2.32E-07
3.72E-09
2.85E-07
7.62E-10
1.75E-12
3.75E-08
500.
4.87E-19
6.85E-09
O.OOE-01
6.60E-32
2.16E-08
3.71E-07
2.62E-10
2.31E-07
3.72E-09
2.85E-07
7.62E-10
5.47E-14
1.17E-09
750.
3.71E-25
6.64E-09
O.OOE-01
O.OOE-01
2.15E-08
5.64E-08
6.13E-13
2.29E-07
3.72E-09
2.85E-07
7.62E-10
1.70E-16
3.64E-12
1000.
2.82E-31
6.45E-09
O.OOE-01
O.OOE-01
2.15E-08
8.58E-09
1.43E-15
2.27E-07
3.71E-09
2.85E-07
7.62E-10
5.26E-19
1.13E-14
-------
56 'J-234
57 U-235
53 U-238
59 Np-237
GO ?u-238
61 Pu-239
52 Pu-241
63 Pu-242
64 AM-241.
G5 Au-243
&6 Ca-243
67 Cm-244
68 Su-106
69 Sb-125
70 Cs-134
71 Eu-154
7.23E-05
1.10E-06
1.39E-05
3.45E-07
3.56E-03
3.69E-03
1.13E-03
7.5GE-06
3.92E-03
2.12E-06
1.08E-06
6.E1E-04
3.93E-C7
9.16E-07
3.00E-05
2.78E-06
7.22E-05
1.10E-06
1.39E-05
3.45E-07
3.53E-03
3.69E-03
1.12E-03
7.5EE-06
3.91E-03
2.12E-06
1.05E-06
6.55E-04
1.98E-07
7.13E-07
2.I4E-05
2.56E-06
7.23E-05
1.101-06
1.39E-05
3.45E-07
3.15E-03
3.69E-03
5.36E-04
7.58E-06
8.72E-03
2.12E-06
7.78E-07
3.77E-04
1.33E-11
2.15E-08
1.93E-07
8.18E-07
7.23E-05
1.10E-06
1.39E-05
3.45E-07
2.40E-03
3.69E-03
3.52E-05
7.58E-06
8.27E-03
2.11E-06
3.64E-07
4 § ?''£'"''*
3.38E-12
1.48E-12
4.71E-08
7.23E-05
1.10E-06
1.39E-05
3.45E-07
1.62E-03
3.68E-03
5.17E-06
7.58E-06
7.67E-03
2.1CE-06
1.331-07
:..33E-05
o.:.5E-37
1.24E-17
7.31E-20
7.99E-10
7.23E-05
1.10E-06
1.39E-05
3.45E-07
7.33E-04
3.67E-03
3.24E-08
7.58E-Q6
6.60E-03
2i08E*-Oo
1.40E-08
2.59E-07
O.OOE-01
1.69E-28
1.73E-34
2.30E-13
7.23E-05
1.10E-06
1.39E-05
3.45E-07
2.24E-04
3.66E-03
1.23E-11
5.58E-06
.261-03
2.05E-06
5.36E-10
7.03E-10
O.OOE-01
O.OOE-01
O.OOE-01
1.12B-18
7.23E-05
1.10E-06
1.39E-05
3.45E-07
6.3SE-05
3.64E-03
4.S&E-15
7.57E-06
4.19E-03
2.02E-06
2.06E--.1
1.91E-12
O.OOE-01
O.OOE-01
O.OOE-01
5.45E-24
7.23E-05
1.10E-06
1.89E-05
3.45E-07
9.49E-06
3.51E-03
9.27E-21
7.57E-06
2.33E-03
1.98E-06
9.01E-14
1.01E-16
O.OOE-01
O.OOE-01
O.OOE-C1
7.63E-33
7.23E-05
1.1"E-06
1.39E-05
3.45E-07
1.32E-06
3.59E-03
1.34E-26
7.57E-Oi
1.97E-03
1.93E-06
2.94E-16
5.36E-21
O.OOE-01
O.OOE-01
O.OOE-01
1.07E-41
.... SUM OF NUCLIDE DOSES FOR GIVEN TIMES
29 2.15E-02 2.09E-02 1.72E-02 1.47E-02 1.31E-02 1.11E-02 9.24E-03 8.01E-03 6.60E-03 5.66E-03
.... SUM OF NUCLIDE RISKS FOR GIVEN TIMES AAAAAA
29 S.01E-09 5.86E-09 4.80E-09 4.12E-09 3.&7E-09 3.11E-09 2.59E-09 2.24E-09 1.85E-09 1.59E-09
PATHWAY 10
ATMOSPHERIC TRANSPORT
ro AAAAAAAA NUCLIDE DOSES FOR GIVEN TIMES AAAAAAAA
10 ANN'JAL DOSE TO AN INDIVIDUAL DUE TO OFF-SITE ATMOSPHERIC TRANSPORT
41 H-3 3.62E-08
42 C-14 2.61E-10
43 Fe-55 4.70E-10
44 Co-60 3.69E-07
45 Mi-59 2.59E-12
46 Ni-63 T.92E-09
47 Sr-90 5.74E-09
48 Nb-94 2.30E-11
^- " — 99 1.78E-12
51 Cs-135 9'."llE-i4
52 Bal37i 6.31E-13
53 Cs-137 1.46E-08
56 U-234 8.64E-09
57 U-235 1.31E-10
53 U-238 2.26E-09
59 Np-237 4.12E-11
60 Pu-238 4.26E-07
61 Pu-239 4.41E-07
62 Pu-241 1.41E-07
63 Pu-242 9.06E-10
64 Ai-241 1.07E-06
65 An-243 2.53E-10
66 Ca-243 1.29E-10
67 Ci-244 8.14E-08
68 Ru-106 1.88E-10
69 Sb-125 1.09E-10
-------
70 C-i-134
71 Eu-154
2.53E-09
3.32E-IO
AAAAAA SUM OF NUCLIDE DOSES FOR GIVEN TIMES AAAAAA
29 2.60E-06
AAAAAA SUM OF MUCLIDE RISKS FOR GIVEN TIMES AAAAAA
29 7.28E-13
DISTANCE TO RECEPTOR IS 345.0 METERS
CKI/Q IS 1.62E-05 CI/MAA3 PER CI/SEC
AAAAAAAAAA CUMULATIVE TOTAL DOSES PER YEAR FOR GIVEN TIMES AAAAAAAAAA
7 9.46E+00 8.33E+00 1.78E+00 3.83E-01 1.84E-01 8.63E-02 5.51E-02 4.03E-02 2.56E-02 1.88E-02
AAAAAAAAAA CUMULATIVE TOTAL RISKS PER YEAR FOR GIVEN TIMES AAAAAAAAAA
2.&5E-03 2.33E-03 4.98E-04 1.07E-04 5.15E-05 2.42E-05 3..54E-05
HALFL:FE AND INVENTORY (CD ASSUMING NO TRANSPORT FROM THE FACILITY
1.13E-05 7.16E-06
ro
o
(TIME IN YR)
41. 1J-3
42 C-14
43 Ee-55
44 Co-60
45 Ni-59
46 Ni-63
47 Sr-90
50 1-129
51 Cs-135
52 Bal37n
53 Ci-137
56 U-234
57 U-235
58 U-238
59 No-237
Pii-
ru-
>y.
PW
65
66
67
68
Ai-243
Ci-243
Ci-244
Ru-106
HALFLIFE
I.23E+0:
5.73E+03
2.70E+00
5.25E+00
8.00E+04
9.20E+01
2.86E+01
2.00E+04
7.
7.
1.70E*07
3.01E+06
3.00E+01
3.00E+01
4.47E+09
7.04E+08
47E+09
2.10E+06
0.
.36E+01
.42E+00
2.32E+01
8.65E+01
1.43E-01
4.09E+01
2.69E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
4.56E+01
4.56E+01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
1.
.43E+01
.42E+00
.3QE+01
5BE+01 1
1.43E-01
4.06E+01
2.S3E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
4.46E+01
4.46E+01
4.27E-03
6.85E-05
1.25E-03
9.68E-06
1.10E-01
1.12E-01
15.
3.37E+01
7.41E+00
4.94E-01
' 19E+01
1.43E-01
3.66E+01
I.87E+00
4.54E-03
1.90E-03
5.61E-03
1.90E-03
3.23E+01
3.23E+01
4.27E-03
6.35E-05
1.25E-03
9.68E-06
9.86E-02
1.12E-01
50.
4.69E+00
7.38E+00
6.19E-05
1.18E-01
1.43E-01
2.81E+01
02E-01
4.53E-03
1.90E-03
5.61E-03
1.90E-03
1.44E+01
1.44E+01
4.27E-03
6.35E-05
1.25E-03
8
68E-06
48E-02
12E-01
100.
2.80E-01
7.33E+00
1.65E-10
1.60E-04
1.43E-01
1.93E+01
2.39E-01
4.52E-03
1.90E-03
5.61E-03
1.90E-03
4.53E+00
4.53E+00
4.27E-03
6.85E-05
1.25E-03
9.68E-0&
l'.12E-01
69 Sb-125
'E+03
19E+01
,76E+01
01E+00
2.77E+00 3.67E
4.48E-05
3.64E-02
3.67E-03
-01
I.40E-05
4.38E-05
3.50E-02
1.85E-03
2.86E-01
5.40E-05
3.23E-05
2.02E-02
1.24E-07
8.60E-03
5.38E-05
1.51E-05
5.08E-03
4.60E-18
1.35E-06
5.35E-05
5.10E-06
7.09E-04
5.75E-33
4.98E-12
200.
l.OOE-03
7.24E+00
1.43E-01
9.07E+00
2.12E-02
4.51E-03
1.90E-03
5.61E-03
1.90E-03
4.49E-01
4.49E-01
i-.imi
1.25E-03
9.68E-06
2.28E-02
1.11E-01
^^lE-OS
!.431-04
..68E-01
5.30E-05
5.80E-07
1.38E-05
O.OOE-01
6.76E-23
350.
2.13E-07
7.11E+00
1.43E-01
2.93E+00
5.58E-04
4.48E-03
1.90E-03
5.61E-03
1.90E-03
1.40E-02
1.40E-02
4.27E-03
6.85E-05
1.25E-03
1.11E-01
a'ial-o8
5".23E-05
2.23E-08
3.76E-08
O.OOE-01
O.OOE-01
500.
4.55E-11
6.99E+00
1.42E-01
9.46E-01
1.47E-05
4.46E-03
1.90E-03
5.61E-03
1.90E-03
4.39E-04
4.39E-04
4.27E-03
6.35E-05
1.25E-03
9.68E-06
2.13E-03
1.10E-01
1.19E-11
2.43E-04
1.07E-01
5.16E-05
8.56E-10
1.02E-10
O.OOE-01
O.OOE-01
750.
3.47E-17
6.78E+00
H§i:$J §-§§f:§
laOJCw/ U • WU t W
-01
1.42E-01
1.44E-01
3.44E-08
4.42E-03
1.90E-03
5.61E-03
1.90E-03
1.36E-06
1.36E-06
4.27E-03
6.85E-05
1.25E-03
9.68E-06
2.96E-04
1.10E-01
2.36E-17
2.43E-04
7.33E-02
5.04E-05
3.75E-12
5.41E-15
O.OOE-01
O.OOE-01
1000.
2.64E-23
6.58E+00
O.OOE-01
1.42E-01
2.19E-02
8.03E-11
4.38E-03
1.39E-03
5.&1E-03
1.90E-03
4.22E-09
4.22E-09
4.27E-03
6.85E-05
1.25E-C3
9.68E-6&
4.10E-05
1.09E-01
4.70E-23
2.43E-04
5.03E-02
4.92E-05
1.64E-14
2.87E-19
O.OOE-01
O.OOE-01
-------
en
70
71
Cs-134
Eu-154
2.06E+00
8.50E+00
7
9
NUCLIDE HALFLIFE
(T
41
42
43
44
45
46
47
43
49
30
51
52
53
56
57
5S
60
61
52
63
64
65
66
67
S8
69
71
**j
T.HE IN YR) HALFLIFE
H-3
C-14
Fe-55
Co-60
Ni-59
Ni-63
Sr-90
i'Jb-94
Tc-99
1-129
Cs-135
Ba" 37a
Cs-137
U-234
U-235
U-238
Np-237
?ij-238
Pu-239
Pu-241
Pu-242
Aa-241
Aiu-243
Cm-243
Ca-244
Ru-106
Sb-125
Cs-134
Eu-154
NAME
1.23E+01
5.73E+-03
2.70E+00
5.25E+00
8.00E+04
9.20E+01
2.86E+01
2.00E+04
2.13E+05
1.70E+07
3.01E+06
3.00E+01
3.00E+01
4.47E-t-C9
7.04E+08
2.'lol+8b
3'.77E*01.
2.42E+04
1.32E+01
3.79E+05
4.59E+02
7.37E+03
3.19E+01
i .76E+01
1.01E+00
2.77E+00
7
1
<"\
8
i
4
2
4
1
5
i
4
4
4
6
g
1
1
1.
3
2
o
5
4
3
3
3
.4BE+00
.17E-02
5.34E+00 4.81E-02
3.45E-02 2.70E-02
AND INVENTORY (CD REMAINING
0.
.86E+01
.42E+00
.32E+01
.65E+01
.43E-01
.09E+01
.69E+00
.54E-03
.90E-03
.61E-03
.90E-03
.56E+01
.56E+01
.27E-03
.85E-05
•g§^:^
".11E-01
.12E-01
.OOE-i-00
.43E-04
.23E-01
.40E-05
.43E-05
.64E-02
.&7E-03
.67E-01
1. 15.
7.40E+01 3.20E+01
7.39E+00 7.03E+00
1.80E+01 4.94E-01
7.53E+01 1.19E+01
1.43E-01 1.43E-01
4.0&E+01 3.65E+01
2.&3E+00 1.87E+00
4.54E-03 4.53E-03
1.90E-03 1.85E-03
5.6:.E-03 5.57E-03
1.90E-03 1.90E-03
4.46E+01 3.23E+01
4.46E+01 3.23E+01
4.27E-03 4.27E-03
6.85E-05 6.85E-05
§;g§|:§g ^:g^ii8s
l'.10E-01 9i36E-02
1.12E-01 1.12E-01
2.35E+00 1.37E+00
2.43E-04 2.43E-04
2.27E-01 2.22E-01
5.40E-05 5.40E-05
4.38E-05 3.23E-05
3.50E-02 2.02E-02
1.35E-03 1.24E-07
2.86E-01 8.60E-03
3.69E-07 1.82E-14
1.55E-03 2.64E-05
IN THE FACILITY
50. 100.
3.94E+00 1.98E-01
6.20E+00 5.13E*00
6.18E-05 1.64E-10
1.17E-01 1.59E-04
1.43E-01 1.42E-01
2.30E+01 1.92E+01
8. OOE-01 2.38E-01
4.53E-03 4.51E-03
1.75E-03 1.61E-03
5.49E-03 5.37E-03
1.90E-03 1.90E-03
1.44E+01 4.52E-I-00
1.44E+01 4.52E+00
4.27E-03 4.27E-03
6.85E-05 6.85E-05
J"§5!-88 4'i^:8^
7'.48E-02 5'.03E-02
1.12E-01 1.12E-01
2.17E-01 1.57E-02
2.43E-04 2.43E-04
2.11E-01 1.95E-01
5.37E-05 5.34E-05
1.51E-05 5.10E-06
5.08E-03 7.09E-04
4.59E-18 5.74E-33
1.35E-06 4.97E-12
4.44E-29
7.53E-09
200.
4.99E-04
3.61E-*-00
1.16E-21
2.93E-10
1.42E-01
9.02E+00
2.09E-02
4.49E-03
1.37E-03
5.14E-03
1.89E-03
4.48E-01
4.48E-01
4.27E-03
6.85E-05
1.25E-03
9.16E-06
2.28E-02
1.11E-01
3.25E-05
2.43E-04
1.68E-01
5.28E-05
5.30E-07
1.38E-05
O.OOE-01
6.71E-23
2.06E+00 7.48E+00 5.34E+00 4.81E-02 3.S9E-07 1.82E-14 4.43E-29
8.50E+00 9.17E-02 8.45E-02 2.70E-02 1.55E-03 2.64E-05 7.57E-09
O.OOE-01
3.69E-14
350.
6.32E-08
2.10E+00
O.OOE-01
7.31E-19
1.41E-01
2.90E+00
5.48E-04
4.45E-03
1.07E-03
4.81E-03
1.89E-03
1.40E-02
1.40E-02
4.27E-03
6.85E-05
j;^if:J|
6'.98E-03
1.11E-01
3.13E-03
2.43E-04
1.33E-01
5.20E-05
2.23E-08
3.75E-08
O.OOE-01
O.OOE-01
6. OOE-01
3.69E-14
O.OOE-01
1.80E-19
500.
7.99E-12
1.23E+00
O.OOE-01
1.92E-27
1.40E-01
9.32E-01
1.44E-05
4.41E-03
8.40E-04
4.50E-03
1.89E-03
4.35E-04
4.35E-04
4.27E-03
6.84E-05
S '2H-82
2'.13E-03
1.10E-01
1.19E-11
2.43E-04
1.06E-01
5.11E-05
8.55E-10
1.02E-10
O.OOE-01
O.OOE-01
i:8o!:ii
O.OOE-01
2.52E-23
750.
2.55E-18
4.93E-0'.
O.OOE-01
O.OOE-01
1.39E-01
1.41E-01
3.31E-08
4.35E-03
5.58E-04
4.03E-03
1.88E-03
1.35E-0&
1.35E-06
4.26E-03
6.84E-05
)"S?I-82
2!95E-04
1.09E-01
2.36E-17
2.42E-04
7.23E-02
4.97E-05
3.74E-12'
5.40E-15
O.OOE-01
O.OOE-01
mm
O.OOE-O:
3.53E-27
1000.
8.13E-25
2.03E-01
O.OOE-01
O.OOE-01
1.38E-01
2.12E-02
7.65E-11
4.2SE-03
3.71E-04
3.61E-03
1.87E-03
4.15E-09
4.15E-09
4.26E-03
6.84E-05
7^33t-oo
4.09E-05
1.09E-01
4.&9E-23
2.42E-0-}
4.93E-02
4.83E-05
1.63E-14
2.86E-19
O.OOE-01
O.OOE-01
$:§2JI:Pj7
MAXIMUM DOSES S DOMINANT NUCLIDES BY PATHWAY **********
OF RUN
PATHWAY
ANNUAL'DOSE
DOMINANT
YEAR
NUCLIDE
******** 6
2
DUST
.15E-02
0
An-241
PURHU - MD SE
ATMOSPHERIC
2.60E-06
0
An-241
3/86 ********
GAMMA
B.7&E+00
0
Co-60
WELL
1.11E-01
50
C-14
4
FOOD
.84E-01
1
Cs-137
------- |