United States Office of EPA 520/4-79-007A
Environmental Protection Radiation Programs
Agency Washington DC 20460
Radiation
&EPA Technical Support of
Standards for High-level
Radioactive Waste
Management
Volume A
Source Term
Characterization
-------
TECHNICAL SUPPORT OF STANDARDS FOR
HIGH-LEVEL RADIOACTIVE WASTE MANAGEMENT
TASK A REPORT
SOURCE TERM CHARACTERIZATION/DEFINITION
EPA Contract No. 68-01-4470
Prepared by
Arthur D. Little, Inc.
Cambridge, Massachusetts 02140
March-July 1977
-------
DISCLAIMER
This report was prepared as an account of work sponsored by the
Environmental Protection Agency of the United States Government under
Contract No. 68-01-4470. Neither the United States nor the United
States Environmental Protection Agency makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accu-
racy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
privately owned rights.
ii
-------
ACKNOWLEDGMENTS
Many individuals contributed to the work done u'nder the direction
of Arthur D. Little, Inc., for the U.S. Environmental Protection Agency
under Contract No. 68-01-4470. John L. Russell and Daniel Egan of the
Office of Radiation Programs at EPA served as constant guides in the
process of our work. Dr. Bruce. S. Old, James I. Stevens, and David I.
Hellstrom of Arthur D. Little, Inc., were Program Director, Program
Manager, and Assistant Program Manager, respectively, of the overall
project. Key individuals involved in each of the reports prepared
under the four tasks were:
TASK A
TASK C
TASK D
Donald Korn
~Arthur D. Little,
Task Director
Inc.
Robert McWhorter,
Michael Raudenbush,
and Lester Goldstein
S.M. Stoller Corp.
_Edwin L. Field
Arthur D. Little, Inc.
Task Director
Robert McWhorter and
Michael Raudenbush
S.M. Stoller Corp.
P.J. O'Brien
Arthur D. Little, Inc.
Task Director
Dr. Ronald B. Lantz
Intera Environmental
Consultants, Inc.
Dr. John Gormley
D'Appolonia Consulting
Engineers, Inc.
JDonald S. Allan
Arthur D. Little.
Task Director
Inc.
Ajit Bhattacharyya and
Charles R. Hadlock
Arthur D. Little, Inc.
iii
-------
FOREWORD
A major Federal effort is undervay to develop methods for disposal
of high-level radioactive waste in deep geologic repositories. An impor-
tant element of this program is the development and promulgation by the
U.S. Environmental Protection Agency (EPA) of environmental standards
for the management of these wastes.
In anticipation of its efforts to develop these standards, EPA
recognized that it would be necessary to estimate the expected and
potential environmental impacts from potential geologic repositories
using modeling techniques based upon as thorough an understanding as
possible of the uncertainties involved in the quantities and charac-
teristics of the wastes to be managed, the effectiveness of engineering
controls, and the potential migration and accidental pathways that might
result in radioactive materials entering the biosphere. Consequently,
in March 1977, the EPA contracted with Arthur D. Little, Inc.,for a study
to provide technical support for its development of environmental regula-
tions for high-level radioactive wastes. This study was divided into
the following four tasks:
Task A - Source Term Characterization/Definition
Task B - Effectiveness of Engineering Controls
Task C - Assessment of Migration Pathways
Task D - Assessment of Accidental Pathways
The information presented in the reports on these tasks was developed
principally during the period March 1977 to February 1978. In the case of
this report, Task A, the information contained in it was prepared during
the period March-July 1977. There are many national and international
programs underway to develop additional data, especially in the fields
of waste forms, knowledge of geology and geohydrology, and risk assess-
ment. The information presented in these reports has been developed
on conceptual bases and is not intended to be specific to particular
conditions at geologic repositories.
iv
-------
TABLE OF CONTENTS
Page
Acknowledgments
Foreword iv
List of Tables vii
List of Figures ix
A-1.0 INTRODUCTION 1
1.1 BACKGROUND AND PURPOSE 1
1.2 SCOPE OF TASK A EFFORT 2
1.3 GUIDE TO SUBJECT MATTER AND TECHNOLOGY 3
A-2.0 SUMMARY AND CONCLUSIONS 5
A-3.0 CHARACTERIZATION OF COMMERCIAL HIGH-LEVEL WASTE 17
3.1 FUEL CYCLES ANALYZED 17
3.2 REFERENCE CASES — LWR 25
3.2.1 Throwaway Cycle 30
3.2.2 Fuel Recycle 30
3.2.3 Comments on Source Terms from the Three LWR
Reference Cases 38
3.2.4 Special Reprocessing Options 53
3.3 OTHER FUEL CYCLES 54
3.3.1 Tandem Cycle 54
3.3.2 Thorium Cycle 60
3.3.3 Comments on Alternative LWR Fuel Cycles and Other
Reactor Concepts 6,3
3.4 CHEMICAL CHARACTERISTICS OF COMMERCIAL HIGH-LEVEL WASTE 65
A-4.0 CHARACTERISTICS OF GOVERNMENT HIGH-LEVEL WASTE 67
4.1 GENERAL 67
4.2 HANFORD WASTE 68
4.3 SAVANNAH RIVER WASTE 68
4.4 IDAHO WASTE 71
4.5 SUMMARY OF GOVERNMENT WASTE QUANTITIES 71
A-5.0 TOTAL QUANTITIES OF HIGH-LEVEL WASTE 79
5.1 ESTIMATED RANGE OF U. S. INSTALLED NUCLEAR CAPACITY 79
5.2 HIGH-LEVEL WASTE FROM U. S. COMMERCIAL NUCLEAR POWER
PLANTS 82
-------
Page
A-5.3 POTENTIAL TRANSFER OF FOREIGN HIGH-LEVEL WASTE TO
U. S.
5.4 ADDITIONAL WASTE FROM U. S. GOVERNMENT PROGRAMS
5.5 GENERAL PROCESS TRASH-TRU CONTAMINATED WASTE
5.6 SUMMARY QUANTITIES AND SOURCE TERMSq
A-6.0 LIMITS TO THE ANALYSIS (ACCURACY OF CALCULATIONS)
6.1 REFERENCE CASES (LWR)
6.2 OTHER FUEL CYCLES
6.2.1 Tandem Cycle
6.2.2 Thorium Cycle
References
APPENDICES
Appendix A-I Glossary and List of Abbreviations
Appendix A-II Pertinent Nuclear Technology and
Sources of Radioactivity
Appendix A-III Maximum Permissible Concentrations
of Radioactive Isotopes
Appendix A-IV ORIGEN Data
Appendix A-V
Transuranlc-Contaminated Waste
of Low Specific Activity
83
84
84
86
91
91
91
92
92
93
A-I-1
A-II-1
A-III-1
A-IV-i
A-V-1
vi
-------
LIST OF TABLES
Table No. Page
A-l Estimated Range of Annual Disposal Requirements for
Commercial Waste (Circa 2000) 8
A-2 Estimated Annual Disposal Requirements for
Commercial Waste (Circa 2010) 9
A-3 Estimated Total Domestic High-Level Waste Burden 10
A-4 High-Level Waste Characterization 19
A-5 Summary of ORIGEN Analyses 21
A-6 Characteristics of PWR Fuel Assembly 26
A-7 Isotopic Content of Plutonium in Equilibrium
Recycle Assembly 27
A-8 Removal Assumptions for Reference Reprocessed
Waste Cases 28
A-9 Hull Characteristics 29
A-10 Composition of HLLW 66
A-ll Average Chemical Composition of Hanford High-Level
Waste 69
A-12 Inventory of Major Fission Products and Actinides
in Hanford High-Level Waste Decayed to 1990 70
A-13 Average Chemical Composition - Savannah River
High-Level Waste 72
A-14 Radionuclide Content - Savannah River High-Level
Waste (1985) 73
A-15 Typical Composition of Calcined Solids - Idaho
Chemical Processing Plant 74
A-16 Average Composition of High-Level Liquid Waste -
Idaho Chemical Processing Plant 75
A-17 Summary of Reference Government Waste Quantities 77
A-18 Low/Intermediate Level TRU Waste Curie and Heat
Content 85
vii
-------
LIST OF FIGURES.
Figure No. Page
A-l Perspective on Buildup of Spent Vuel
and Associated High-Level Waste vs.
Time (Nominal Growth Case - Throwaway
Cycle - 450 GW by 2000) 6
A-2 Total Radioactivity for Three Reference
Cases 13
A-3 Untreated Dilution Indices for C-14
Releases During Reprocessing of PWR
Fuel (Case 1) 24
A-4 PWR Throwaway Cycle - Radioactivity
(Case 1) 32
A-5 PWR Throwaway Cycle - Decay Heat
Generation (Case 1) 33
A-6 PWR Throwaway Cycle - Untreated Dilution
Index (Case 1) - All Sources 34
A-7 PWR Throwaway Cycle - Untreated Dilution
Index - Fission Products (Case 1) 35
A-8 PWR Throwaway Cycle - Untreated Dilution
Index - Actinides and Daughters (Case 1) 36
A-9 PWR Throwaway Cycle - Hull Decay Heat
Generation - Fission Products and
Actinides (Case 1) 37
A-10 PWR UO Cycle - Reprocessed Waste -
Radioactivity (Case 2) 39
A-ll PWR UO Cycle - Reprocessed Waste -
Decay Heat Generation (Case 2) 40
A-12 PWR UO Cycle - Reprocessed Waste -
Untreated Dilution Index - All
Sources (Case 2) 41
A-13 PWR UO- Cycle - Reprocessed Waste -
Untreated Dilution Index - Fission
Products (Case 2) 42
ix
-------
LIST OF FIGURES
(Continued)
Figure No.
A-14 PWR U02 Cycle - Reprocessed Waste -
Untreated Dilution Index - Actinides
and Daughters (Case 2) 43
A-15 PWR UO- Cycle - Reprocessed Waste -
Decay Heat Generation - Fission
Products and Actinides (Case 2) 44
A-16 PWR UO Cycle - Hull Radioactivity
and Decay Heat Generation (Case 2) 45
A-17 Mixed-Oxide Cycle - Reprocessed Waste -
Radioactivity (Case 3) 46
A-18 Mixed-Oxide Cycle - Reprocessed Waste -
Decay Heat Generation (Case 3) 47
A-19 Mixed-Oxide Cycle - Reprocessed Waste -
Untreated Dilution Index - All Sources
(Case 3) 48
A-20 Mixed-Oxide Cycle - Reprocessed Waste -
Untreated Dilution Index - Fission
Products (Case 3) 49
A-21 Mixed-Oxide Cycle - Reprocessed Waste -
Untreated Dilution Index - Actinides
and Daughters (Case 3) 50
A-22 Mixed-Oxide Cycle - Reprocessed Waste -
Decay Heat Generation - Fission Products
and Actinides (Case 3) 51
A-23 Mixed-Oxide Cycle - Reprocessed Waste -
Hull Radioactivity and Decay Heat
Generation (Case 3) 52
A-24 PWR U02 Cycle - Reprocessed Waste - Impact
of Augmented U, Pu Removal During
Reprocessing (99.9%) on Decay Heat Gener-
ation (Case 2) 55
-------
LIST OF FIGURES
(Continued)
Figure No. Page
A-25 PWR UO Cycle - Reprocessed Waste -
Impact of Augmented U, Pu Removal
During Reprocessing (99.9%) on Un-
treated Dilution Index (Case 2) 56
A-26 Tandem Cycle (Case 4)/Throwaway
Cycle (Case 1) - Relative Decay Heat
Generation 58
A-27 Tandem Cycle (Case 4)/Throwaway
Cycle (Case 1) - Relative Untreated
Dilution Index 59
A-28 LWR Thorium Cycle (Case 5)/Mixed-Oxide
Cycle (Case 3) - Relative Decay Heat
Generation 61
A-29 LWR Thorium Cycle (Case 5)/Mixed-Oxide
Cycle (Case 3) - Relative Untreated
Dilution Index 62
A-30 1977 U.S. Nuclear Power Growth Projec-
tions for Waste Management Analysis 80
APPENDIX
A-II-1 Fission Yields for Slow Neutron Fission
of U-233, U-235, and Pu-239; and Fast
Fission of Th-232 and U-238 A-II-10
xi
-------
A-1.0 INTRODUCTION
A-l.i BACKGROUND AND PURPOSE OF STUDY
In March 1977, the Environmental Protection Agency (EPA) issued a
contract to Arthur D. Little, Inc., covering technical support for
development of generally applicable environmental standards for the
management of high-level radioactive waste (HLW). For the purposes of
this study, HLW sources include (1) throwaway wastes: irradiated or
"spent" nuclear fuel elements discharged from a nuclear reactor for
disposal as a waste form; (2) reprocessed wastes: aqueous wastes
resulting from solvent extraction, or the equivalent, in a facility where
spent fuel is chemically reprocessed for recovery and recycle of uranium
and plutonium; (3) non-aqueous wastes: fuel cladding and structural
materials associated with the fuel elements and separated from them
during reprocessing. In addition, specific isotopes produced as a result
of nuclear reactions associated with irradiated fuel may constitute source
terms of special interest from the viewpoint of environmental protection
because of a combination of the quantity produced, half life, specific
radiotoxicity, and ease of entering the biosphere. Highly radioactive
waste must be isolated from the biosphere and managed in a fashion that
ensures that any detrimental environmental effects will be acceptably
small.
Existing HLW, from both government programs and from commercial
nuclear power generation, has already caused concern because of the
relatively large volumes of waste that are currently stored (mainly
as liquids in tanks, but also as calcine granules in bins and as spent
fuel in pools). The lack of fully demonstrated processes and
technologies for long-term disposal of these wastes is a primary
concern.
As part of the newly expanded Federal radioactive wa(ste management
program, several potential alternative approaches are being developed
for the long-term management of HLW. The top priority of the Federal
program is permanent disposal and there is only one generic method con-
sidered capable of being reduced to practice in a time frame of a decade
or so. This is the emplacement of the waste in deep, stable geologic
formations that can be reached by conventional mining methods. In con-
junction with this generic method, a number of studies are in progress.
These include a variety of engineering controls, such as the development
of matrices (e.g., glass), hydrogeological and geochemical investigations
to gain better understanding of potential pathways to the environment,
and a detailed terminal storage design program leading to construction
and operation of a disposal facility in at least two deep geologic forma-
tions.
EPA has already agreed to publish proposed generally applicable environ-
mental standards for the storage and ultimate disposal of radioactive waste.
EPA has embarked on this technical support project to help quantify potential
-------
long-term environmental impacts and to help establish the technical bases
for HLW standards. This technical information will be used by EPA in
evaluating the environmental acceptability of various HLW disposal op-
tions. The technical support effort under this contract is divided into
four tasks:
Task A - Source Term Characterization/Definition
Task B - Effectiveness of Engineering Controls
Task C - Assessment of Migration Pathways
Task D - Assessment of Accidental Pathways
This report represents the results of the work done under Task A
above.
A-1.2 SCOPE OF TASK A EFFORT
The scope of work for Task A involves three major steps:
• Characterization of commercial high-level waste,
including comparisons of source terms from various
fuel cycles and fuel mixes.
• Characterization of government high-level waste,
and comparison with commercial-waste.
• Estimation of existing and projected quantities of
high-level waste.
For commercial high-level waste, emphasis has been placed on the
light-water reactor (LWR) nuclear fuel cycle, which is expected to be
the major source of commercial radioactive waste for at least the next
few decades. Reprocessing and non-reprocessing (throwaway) options are
considered in detail. In addition, there is some discussion of the
alternative fuel cycles that are currently being considered, in order
to provide perspective as to how waste characteristics might change in
the event of changes in the current LWR fuel cycle. Lower-level, trans-
uranic (TRU)-contaminated waste from reprocessing plant trash has been
considered, although in a much less quantitative fashion. The purpose
of this brief review of TRU waste is to relate the characteristics and
quantities of such waste to those for higher-level waste, and thereby
provide some insight into the problems that might arise if all TRU-
containing waste were placed in deep geologic disposal facilities along
with high-level waste.
For estimates of the total quantities of commercial HLW, a
number of alternative projections for domestic nuclear power growth
have been considered. For purposes of this study, a range of
-------
nuclear generating capacity was investigated. For the year 2000 this
range was assumed to be 380 GW to 480 GW, with 450 GW selected as a
reference case. For the year 2010, a value of 700 GW was assumed. A
precise value for the total waste burden is not critical to this assess-
ment, and the waste quantities may be scaled up or down to accommodate
^differing projections of nuclear power growth. The question of foreign
waste that might conceivably be shipped to the United States for ultimate
disposal is discussed briefly in the body of the report.
For government waste, a single static reference case has been as-
sumed. This reference case assumes quantities in the late 1980*s to
1990's based on present government plant operating plans. Whether or
to what extent government requirements will add waste beyond 1990 is
speculative and has not been addressed because the indications are
that commercial waste may represent a much larger source term than
government waste.
Data on waste characteristics are presented in several formats and
on a specific basis (per unit of fuel used or energy generated), as well
as on a total basis for a given number of nuclear power plants.
A-1.3 GUIDE TO SUBJECT MATTER AND TECHNOLOGY
For those readers who are not familiar with the terminology of the
subject, a Glossary and List of Abbreviations are given in Appendix A-l.
Other Appendices give more detailed information concerning sources of
radioactivity and nuclear power, as well as the calculated source term
data for the fuel cycle cases referred to throughout this report.
-------
A-2.0 SUMMARY AND CONCLUSIONS
The purpose of Task A is quantification and characterization of
existing and potential high-level radioactive waste. These data are
the starting point for assessing the environmental impact of radioactive
waste disposal.
A significant inventory of high-level radioactive waste has resulted
from utilization of nuclear energy in U. S. government programs, ^is
waste has been generated principally as a result of the chemical proces-
sing of material from plutonium production reactors and naval submarine
propulsion reactors. The waste is stored at three Isolated sites—the
Hanford, Savannah River, and Idaho government reservations. (A small
volume of such waste is stored at the West Valley, New York site of the
now shut-down Nuclear Fuel Services [NFS] commercial reprocessing plant.
Most of the West Valley waste came from the government and R&D programs,
and the rest from limited reprocessing of electric utilities' power
reactor fuel prior to shutdown of the NFS plant.)
The reference case for high-level government waste comprises about
130 metric tons (MT) of fission products contained in a volume of ap-
proximately 300,000 cubic meters (m^) (78 million gallons) of solids,
sludges, salts, and liquids.
The existing volume of HLW from commercial nuclear power is modest
compared with that of government waste, but thfe radioactivity content of
commercial spent fuel already exceeds that of government waste, and this
difference will increase substantially over the next 10-15 years as
presently-committed nuclear -power plants come on line. In light of the
Administration's current policy deferring reprocessing, the waste form
of commercial HLW over the next 10-15 years may be throwaway waste as
opposed to reprocessed waste.
If nuclear power growth occurs at assumed reference rates, by the
turn of the century some 12,000 MT of spent fuel will be discharged an-
nually, containing about 500 MT of HLW nuclides excluding uranium isotopes.
The cumulative burden (all waste associated with 30-year operating life
of each reactor) may reach 34,000 MT of fission products and other as-
sociated waste.
A perspective on the build-up of spent fuel and associated waste
from commercial nuclear power, through the year 2010, is presented in
Figure A-l. Also shown is the reference government waste case, for com-
parison. Most high-level radioactive waste in the United States is and
will be from commercial nuclear power reactors, fueled with uranium
enriched to about 3% in the fissionable isotope U-235, and moderated and
cooled with ordinary (light) water.
In light-water reactors, approximately 240 million kilowatt hours
-------
IS
§
^
b
10*1
1
3
1
>
i
5 104
>
I
i
i
3
3
3
3
1
.
1
•
1
i 103
J
1
in1
/
/
/
/
/
/
^x
/
7
s
,x
^X"s^
\s
/^
'
*
^
^
Dent Fuel Discharged
^
^
^^^
^^^"
'''^
^
^-^ —
\,Fission Product Content °f^^"^
Spent Fuel _k^^*"^^
/
^
^
x^
A
/ /
/ \TI
_,
/ \ Referenc
^U Content of 5
e Case, Governr
V ~i -- T
^
Reference Case,
Government Programs.
TRU (1.0 MT)
>pent Fuel
nent Programs,
~1
^^
Fission Product
s(130MT)
1980 1985 1990
Note: Waste Content Based on Ten Year Decay Time.
.395
2000
2005
2010
FIGURE A-1 PERSPECTIVE ON THE BUILDUP OF SPENT FUEL AND ASSOCIATED
HIGH LEVEL WASTE VS. TIME
(NOMINAL GROWTH CASE. THROWAWAY CYCLE - 460 GW BY THE YEAR 2000)
-------
(kWh) of electric energy are generated per MT of fuel, i.e., per metric
ton of heavy metal (MTHM) charged. (In nuclear industry parlance, such
fuel has a "burnup" of approximately 30,000 megawatt (MW)-days thermal
energy release per ton.) Under steady-state operations, about 26 MT of
fuel will be removed from a typical 1000 MW reactor and replaced with
fresh fuel each year.
After ten years of cooling, assuming this fue^ was chemically pro-
cessed for recycling by separating the uranium and plutonium from the
fission products and the transplutonic actinides and actinide daughters,
there would be about 36 kilograms (kg) (79 pounds) of total high-level
waste per MT of fuel discharged and 3 x 10^ curies of associated radio-
activity. If the fuel were not reprocessed, but disposed of as spent
fuel, there would be in addition nearly all of the U-238 originally in
the fresh fuel, constituting most of its mass. Thus, total waste gener-
ated in this latter, or "throwaway" case, would simply be one MT per MT
charged.
The estimated range of annual commercial waste disposal requirements
in the years 2000 and 2010 are presented in Tables A-l and A-2, respec-
tively. The estimated combined cumulative commercial and government
waste burden circa 2010 is indicated in Table A-3.
The U. S. government chose to store most of its waste in alka-
line form, which resulted in its being associated with a relatively
high quantity of sodium nitrate. Further processing of this waste for
permanent disposal will probably be much more complex and expensive than
the treatment envisioned for commercial waste.
The physical and chemical characteristics of commercial high-level
waste are still not fully specified, primarily because of uncertainties
as to whether fuel reprocessing will be permitted. With reprocessing,
waste would be in soluble form (acid solution) for concentration and
solidification prior to final disposal. In addition, the fuel hulls
(structure and cladding ) would require disposal. Alternatively, if a
decision is made to forego reprocessing, the high-level waste would
remain in the spent fuel assemblies, which would presumably be the ulti-
mate form of disposal.
In determining the quantities and characteristics of high-level
radioactive wastes, detailed nuclide buildup and decay calculations have
been carried out for several alternative nuclear power fuel cycles:
1. No reprocessing or "throwaway" cycle. Low-enriched
uranium as U0» in a light water reactor (LWR), with
direct disposal of the spent fuel as waste;
2. Uranium only recycle. Low-enriched uranium in an LWR
with reprocessing of irradiated fuel and recycle of
recovered uranium as UO.;
-------
TABLE A-l
CO
ESTIMATED RANGE OF
ANNUAL DISPOSAL
REQUIREMENTS FOR COMMERCIAL WASTE*
(CIRCA 2000)
High-Level Waste
Spent Fuel
1.
2.
Category of Waste
Commercial Waste
(throwaway fuel cycle)
Range
Reference
Commercial Waste
(from reprocessing of
mixed -oxide recycle
fuel cycle assemblies)
Range
Reference
(MTHM)
9.7-12.2 x
11.5 x
9.7-12.2 x
11.5 x
10J
103
10-'
103
Total
Radioactivity
(Ci)
4-5 x 109
5 x 109
3.1-3.9 x 109
3.6 x 109
Fission
Products
(MT)
340-430
400
280-350
330
TRU
(MT)
97-122
115
21-26
25
Other Associated Waste
Iodine- +
129 Carbon-14 Miscellaneous"
(Ci) (Ci) (Ci)
(Contained, in Spent Fuel)
400-500 4.4-5.6 x 103 2.9-3.7 x 107
500 5.2 x 103 3.5 x in7
Note: Assumes 26 MTHM/GW-yr.
*Commercial quantities based on range of installed nuclear capacity of 380 GW - 480 GW in 2000,
(450 GW reference) for ten-year-old waste.
Based on 10-20 ppm N-14 initially in fuel.
•{-"Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus
entrapped fission products and actinides in the cladding.
-------
TABLE A-2
ESTIMATED ANNUAL DISPOSAL REQUIREMENTS FOR COMMERCIAL WASTE, YEAR 2010*
1.
2.
High-Level Waste
Total Fission
Spent Fuel Radioactivity Products TRU
Category of Waste (MTHM) (Ci) (MT) (MT)
Commercial Waste
(throwaway fuel cycle) 17.8 x 103 7 x 109 625 180
Commercial Waste
(from reprocessing of
mixed-oxide recycle
fuel cycle assemblies) 17.8 x 103 5.6 x 109 515 38
Other Associated Waste
lodine-
129 Carbon-14+ Miscellaneous'
(Ci) (Ci) (Ci)
(Contained in Spent Fuel)
700 8.1 x 103 5.4 x 107
Note: Assumes 26 MTHM/GW-yr.
*
Commercial quantities based on reference case installed nuclear capacity of 700 GW
with 10-year aging period assumed prior to reprocessing and/or disposal.
Based on 10-20 ppm N-14 initially in fuel.
^"Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus
entrapped fission products and actinides in the cladding.
-------
TABLE A-3
ESTIMATED TOTAL DOMESTIC HIGH-LEVEL WASTE BURDEN
Category of Waste
Spent Fuel
(MTHM)
la. Commercial Waste 5.5 x
(throwaway fuel cycle)
Ib. Commercial Waste
(from reprocessing of
mixed oxide recycle
fuel cycle assemblies) 5.4 x 10->
High-Level Waste
Total Fission
Radioactivity Products TRU
(Ci) (MT) (MT)
2.3 x 1011
19,000
5,400
Other Associated Waste
lodine-
129 Carbon-14+ Miscellaneous^
(Ci) (Ci) (Ci)
(Contained in Spent Fuel)
1.8 x 1011 16,000 1,200 2.3 x 104 2.5 x 105 1.6 x 109
2. Waste from Government*
Programs
6.7 x 108
130 1.0
Quantities of commercial waste based on lifetime production for reference nuclear capacity
in the year 2010 (700 GW) keyed to LWR generation. Data are for 10-year-old waste . Quantities
and characteristics of government waste keyed to existing inventory in the late 1980's - early 1990's.
Based on 10-20 ppm N-14 initially in fuel.
^"Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus entrapped
fission products and actinides in the cladding.
Note: For projections (p) of total LWR capacity other than 700 GW in the year 2010, approximate
values may be obtained from the ratio p times the values on the table.
:. 700
-------
3. Uranium and plutonium ("mixed oxide") recycle. Mixed low
enriched uranium and plutonium oxide in an LWR with
reprocessing of irradiated fuel and recycle of recovered
uranium and plutonium as U0_ and PuO^J
4. Low-enriched uranium used first in an LWR, further burned
in a heavy water reactor (HWR), then thrown away (tandem
cycle); and
5. Uraniums-233 and -235 as the fissile material, with thorium
as fertile fuel in a representative LWR, with reprocessing
of irradiated fuel and recycle of recovered uranium isotopes
(and possibly thorium).
Although for this study detailed calculations have not been per-
formed for any of the other fuel cycles that could prove commercially
feasible, these other cycles can be considered to produce essentially
the same results as one of the five cases, or some combination of two
cases. The more important nuclides sent to waste result either from
fission or from neutron capture in actinide isotopes. Those nuclides
generated in the fission process are fixed in their number and type
primarily by the particular fissile nuclides burned and their degree of
burnup, with only modest influence of specifically nuclear considera-
tions, such as neutron spectrum and degrees of self-shielding. Therefore,
any fission-product waste resulting from equal fissions in U-235 and
fissile plutonium will have the same nuclide composition, within perhaps
10-15%, regardless of which reactor produced it. Since the fissile mix-
tures covered by the five cases above are representative of all those
considered, the results obtained using their fission product spectra
should be reasonably comprehensive. Previous studies of other fuel
cycles, e.g., representative liquid metal fast breeder reactor (LMFBR)
and high-temperature gas-cooled reactor (HTGR) design, bear out these
observations. However, the quantities of uranium and transuranic
isotopes in waste may vary widely according to the fuel cycle selected.
There are also significant quantities of transuranic isotopes (TRU)
in the relatively large volume of low-specific-activity general process
trash generated from materials handling during reprocessing and mixed-
oxide fuel fabrication operations. An estimate of the Pu content of
waste with such low specific activity has been made for the purpose of
this study. The resulting source term depends upon the fuel mix being
reprocessed (with subsequent fabrication into mixed-oxide assemblies).
For a mix consisting solely of U0? assemblies, the source term is ap-
proximately 2-3 kg Pu/GW-yr of energy production. For a mix consisting
of the discharge of an equilibrium fuel cycle employing uranium plus
plutonium assemblies ("mixed oxide" recycle), the source term is about
7 kg Pu/GW-yr of energy production. These values are based upon an as-
sumed loss of plutonium during reprocessing and fabrication of approxi-
mately 1%. These source term numbers may be characterized as being ap-
proximately one-tenth the value of the TRU content of high-level waste,
11
-------
which is approximately 20 kg TRU/GW-yr from processed UO assemblies and
65 kg TRU/GW-yr from processing of assemblies from mixed oxide fuel opera-
tions. Hence, in terms of TRU content and based on current estimates of
process losses, low-specific-activity TRU waste represents a potential
source about one-tenth that from the high-level TRU waste. In addition,
the low-specific-activity TRU waste is in much less concentrated form
than the TRU content of high-level waste. Furthermore, the potential
radiotoxicity from these low-specific-activity TRU wastes is significantly
less than 10% of that for high-level TRU wastes because, per unit weight,
the latter have a much higher content of transplutonium elements. About
94% of the high-level waste TRU component is transplutonium waste.
In this report, the source terms displayed in all figures are
normalized to a unit of fuel charged to the reactor; to convert to
units of electricity produced, e.g., per GW-yr, the source terms should
be multiplied by 26 MTHM per GW-yr.*
Some source terra data are presented as untreated dilution index.
The untreated dilution index (UDI) is defined in this study as the
volumetric quantity of water, or air, required to dilute a quantity of
radionuclides to the concentration specified under the Standards for
Protection Against Radiation in non-occupational exposure, published in
the Code of Federal Regulations (10 CFR 20, Appendix B) and given in
Table 2 of Appendix A-III of this report. The untreated dilution index
gives a gross indication of the comparative risks of radionuclides,
were these nuclides actually released to the environment. UDI does not
consider waste disposal methods (packaging or geologic isolation), or
their resultant environmental pathways to man. The term "radiotoxicity"
is defined as the base-10 lagarithm of the untreated dilution index.
The total associated radioactivity per metric ton of commercial
fuel as a function of time is shown in Figure A-2 for reference Cases 1
2, and 3. Figure A-2 shows the total high-level waste radioactivity from
the actinides and daughters, fission products, and structural materials.
Detailed data on quantities and characteristics of the high-level radio-
active waste source terms are tabulated in the Appendices to this report.
A number of important observations can be made by comparing the
source term data (isotopic sources responsible for radioactivity, decay
*The value of 26 MTHM/GW-yr was developed on the following bases:
(a) Net electrical conversion efficienty (EF) = 33%
(b) Reactor core specific power (SP) = 38.4 MWt/MTHM
(c) Average number of cycles resident (in-core) per
reload batch (ACR) = 3
(d) Fuel cycle length, Y = 1
For other bases, the following conversion factor should be employed;
Source Term = Source Term 3 1 1 1 1
GW-yr MTHM UU HEF} (SP} (ACR) (Y}
12
-------
109
108
10'
106
o
105
o
«= 104
103
102
10'
10°
^
^
^
\
\
', ^
Xs
s
^
*
>
s
C
A
^
_ . . j
ase 2 (U
IkA
\
^
02
w
V.
>
^
Cy
ast
s.
s
s
\ ~ ~ h
~t"
1
- \-\
cleF
e)
. . ^Case
N
-• ^v^_
>
eproce
1
;ase
—f
***
>sin
T
3
r^
'
y
/
irow
('Mi
'»!
*N
^ fc
4
away DC
x.ed Oxi
V
\
x
•' —
^(
de'
\
\
•«-«
:ycleV
1
Cycle
\
S
\r — ^
s; .
V
>s
tfaste)
Reproces
\
>s.
s
sin
V,
^
gW
^»
^«
_:+...
aste)
•>..,.
10°
101
102 103 104
Decay Time From Discharge (Yrs)
10s
106
FIGURE A-2 TOTAL COMMERCIAL SPENT FUEL RADIOACTIVITY, FOR THE
THREE REFERENCE CASES
13
-------
heat generation, etc., as a function of time) shown for Cases 1, 2, and
3, the three reference nuclear fuel cycle cases for this study:
• In all cycles, for the first few hundred years of decay, the
fission product activity is the primary contributor to the
total radioactivity. The fission product activity is primarily
that associated with Sr-90 and Cs-137. After a few hundred
years, the long-lived heavy radioisotopes known as the trans-
uranic actinides (especially americium, plutonium, and curium)
are the major contributors to the radioactivity level.
• Because fission product activity per unit energy produced
(or per MT of fuel charged at the same discharge exposure)
is largely independent of fuel mix, the radioactivity
levels, decay heat generation, and untreated dilution
indices are similar for all three cases (1, 2, 3) for
the first few hundred years.*
• After the first few hundred years, actinides become the
dominant isotopes controlling source terms. Differences
in actinide content among the three fuel cycles (Case 1,
2, 3) then create significant differences in radioactivity,
decay heat generation, and untreated dilution index. The
throwaway case has the highest value, followed by the mixed-
oxide cycle, then UCL recycle.
• The source terms for the hulls are comparable for the
waste from reprocessed mixed-oxide fuel and for the waste
from reprocessed U0» fuel. For these non-throwaway cases,
the amount of actinides associated with residue in hulls
is sensitive to the effectiveness of the leaching/dissolving
operation during reprocessing. The U, Pu content of hulls
(0.1% of fuel) is comparable to the U, Pu content of the
HLW (at 99.9% efficient reprocessing) for the recycle cases,
but the HLW has substantially more transplutonium elements.
• The low-specific-activity TRU waste, which includes general
process trash generated from materials handling during re-
processing and mixed-oxide fuel fabrication, results in
*Throwaway cycle activity is shown in Figure A-2 as higher than in the
other two cases, based on the assumption for Cases 2 and 3 that some
volatiles escape from HLW at the reprocessing step (see Table A-8).
Hulls are defined in this report as fuel assembly structure and cladding,
plus 0.2% of fuel fission products and 0.1% of fuel actinides and
daughters entrapped in the cladding. The hull source term includes
activation products plus the sources from the entrapped fission products,
actinides, and their daughters.
14
-------
source terms significantly lower (by an order of magnitude)
than the TRU content of HLW.
• There is a greater volume of government high-level radioactive
waste at present than commercial nuclear power waste, although
total weight of fission products and actinides atid total
radioactivity is less than for commercial waste. As time goes
on, commercial waste quantities will probably grow much faster
than government waste and will dominate the HLW disposal question.
15
-------
A-3.0 CHARACTERIZATION OF COMMERCIAL HIGH-LEVEL WASTE
A-3.1 FUEL CYCLES ANALYZED
For light water reactors (LWRs), there are three reference cases
for handling irradiated fuel removed from the reactor:
Case 1 No reprocessing, or "throwaway," cycle (applicable
solely to uranium (U0_) fuel assemblies).
Case 2 Uranium-only recycle (applicable solely to U0~
fuel assemblies). During reprocessing, the bulk
of the uranium is separated from the high-level
waste and is eventually returned to a reactor. In
this study it was assumed that the extracted plutonium
was not a waste source term. Subsequent disposal
of the plutonium would increase the Case 2 source
terms somewhat, especially at longer decay times,
when actinides dominate the source term.*
Case 3 Uranium and plutonium recycle (applicable to UO.
fuel assemblies in early fuel cycles, and to U0»
plus PuO fuel assemblies in later cycles). During
reprocessing, the bulk of the uranium and plutonium
are separated from the high-level waste and are
eventually returned to a reactor. In this report,
this will be termed "mixed-oxide" recycle."*"
In the United States, a number of possible alternatives to the above
are under investigation. A goal of many of these studies is to develop
fuel cycles that preclude reprocessing while maintaining reasonable fuel
cycle costs. An important factor in considering these alternatives is
their impact on waste disposal. For this study, several cycles were
investigated, particularly with regard to the amount of their high-level
*The assumption that the extracted plutonium is not part of the waste
stream is made in order to provide perspective and differentiate it
from the mixed-oxide case. If the plutonium is recycled in a LWR, the
source term is equivalent to a first-generation mixed-oxide recycle case
which is not as great as that for the equilibrium mixed-oxide recycle.
+In the conventional flowsheet of reprocessing, uranium and plutonium
are extracted separately from each other. However, in view of the
current anti-proliferation concern, research and development is
directed to modifying the flowsheet so that uranium and plutonium will
be extracted together.
17
-------
waste relative to the major cases. These alternative fuel cycles are:
Case 4 Tandem cycle. Irradiated UC>2 fuel discharged from
an LWR is further "burned" in a heavy-water reactor
after reconfiguration and reassembly.
Case 5 LWR thorium (ThCL) cycle. Fully enriched uranium (93%
U-235) is used as initial fissile charge and makeup fuel,
with reprocessing and recycle of uranium isotopes (U-
233, U-235, and various minor isotopes). The irradiated
thorium separated during reprocessing can be either
disposed of or stored for about 15 years by which time
sufficient radioactive decay of the primary heat-
producing and radiologically hazardous component,
Th-228, will have occurred to allow re-use.
Each of the Cases, 1-5, is characterized by different high-level
wastes as shown in Table A-4. Reprocessing for the recycle cases removes
a small amount of fission products (some percentage of gases, volatiles,
and tritium) from KLW. More importantly, in the uranium or mixed-oxide
cases, reprocessing removes high percentages of plutonium and uranium
from the main waste stream. In particular, removal of plutonium lowers
significantly the decay heat rate and the potential radiotxaxicity for
times beyond several hundred years.
In the analysis performed to obtain the source term data for this
report, Cases 1, 2, and 3 with equilibrium cycle fuel are considered the
reference cases. For an equilibrium mixed-oxide cycle in a pressurized
water reactor (PWR), the core is composed of about two-thirds uranium
assemblies and one-third mixed-oxide assemblies (MC« is defined as PuO«
and natural UO-). Thus, each discharge batch has a U02:MO_ assembly
ratio of 2:1. The source terms for the high-level waste from discharged
fuel from an equilibrium mixed-oxide cycle, as developed herein, are
weighted by the 2:1 UO-iMC^ assembly ratio.
There are numerically significant differences among the cases,
particularly in discharged concentrations of transuranic actinides,
depending on how many generations the M02 plutonium has been in the
core. Use of equilibrium-cycle plutonium (the assumption made in this
study) is conservative in that it produces higher decay heat rates and
potential radiotoxicity than any earlier-generation plutonium.
For Cases 2 and 3, involving reprocessing, nominal and augmented
uranium and plutonium removal were considered. Nominal reprocessing
18
-------
TABLE A-A
HIGH-LEVEL WASTE CHARACTERIZATION
c*se
(1) Throvavay Cycl«
Flaelon Product
Characterlxatlon
All fission product* and daughter*
Actlnlda
Ch»r«ct«rii«tion
All sctinldee and daughters
(2)
(3)
Uranlua Only
Recycle
Mixed-Oxide
Recycle
All flsalon producta and daughters
Leu
Some percentage of
1. Gaaeous Elements (Xe, Kr)
2. Volatile Element. (I, Br)
3. Tritium
(2)
(4) Tandem Cycle
All flaslon producta and daughtera
dlacharged after the heavy water
reactor Irradiation portion of the
total burnup.
(5) LWR Thorium -
Uranium Recycle
Cycle
Sane aa (2)
All actlnldea and daughtera
Less bulk of U and Pu. D
recycled. Pu aeparated and
stored for future use (may
be stored contaminated with
fission products), or may be
made part of high-level vaates.
Same aa (2), except bulk of 1
Pu aa well aa U Is recycled.
All actlnldea and daughtera
dlacharged after the heavy
water reactor radiation
portion of the total burnup.
All actlnldea and daughters
less bulk of Th and U. U
recycled. Th separated and
stored for approximately 15
years prior to recycle.
2.
Potentially most radio-
toxic* high-level vasts;
per unit fuel weight of
any LUK DO. or mixed
oxide easel (1-3). '
Decay heat rate per unit
fuel weight hlgheat of
any of the LWI UO, or
mixed oxide cases (1-3).
Leaat radlotoxlc* and
least heat-producing
waate of caaea (1-3).
Waate produced from re-
proceaeed UO. aaaemblies
different (afld leae radio-
toxic* at longer cooling
times) than that produced
from reproceaaed mixed-
oxide assemblies.*
Potential radlotoxiclty*
et longer cooling tlmea
from equilibrium mixed-
oxide cycle waate per
unit fuel weight* ap-
proaches that of case 1.
Tandem Cycle is e
throwaway cycle.
Produces more fission
products and trans-
plutonlc actlnidest
than throwaway cycle
(caae 1).
Decay heat rate and
Untreated Dilution
Indax¥ higher than
throwaway cycle (caae 1).
Thorium cycle is * re-
cycle fuel cycle where
in the equilibrium core
about 651 of the ae-
•ambllea are recycle
assemblies and 351 makeup
assemblies.
Except for the decay time
period between about 500
and 10,000 years, the
thorium cycle decay heat
rate and Untreated
Dilution Index are higher
than for the mixed-oxide
recycle caae (case 3).
•Radlotoxlclty aa measured by the Untreated Dilution Index. (Toxlclty Is the baea 10 logarithm of the Index.)
For an equilibrium mixed-oxide cycle In a PVR, the core is composed of ebout two-thirds U0} assemblies and
one-third MOj eaaemblles (MO, is defined aa PuO. + UO.). Thus, each dlacharge batch has aTJO,iHO aaaembly
ratio of 2:1. The source tefva for HLU from discharge fuel from equilibrium mixed-oxide cycles, Is developed
herein, ere weighted by the 2:1, UO :HO assembly ratio.
T-The production of more fission products, tranaplutonic actlnldss, decsy heat and a higher Untreated Dilution
Index in the tandem cycle are sccompsnlsd by more energy produced per unit of fuel.
19
-------
includes removal of 99.5% of uranium and plutonium isotopes. Augmented
removal is considered to be 99.9% removal of uranium and plutonium iso-
topes.
Burnup perturbation runs were made based on these reference cases,
primarily to examine the impact on decay heat range of average fuel
burnups in the range of 25,000-40,000 MWd/MTHM.
The source term characterizations for the three reference cases and
their variants, and for the alternative fuel cycle cases have been made
using the S. M. Stoller Corporation version of the ORIGEN computer pro-
gram for isotope generation and depletion calculations.(1) Table A-5
gives a summary of all the ORIGEN analyses performed to develop the
source term data displayed herein. This chart also cross references
those runs used for the specific cases described in this section. Detailed
results of base-case ORIGEN runs are given in Appendix A-IV.
The Oak Ridge National Laboratory is comparing ORIGEN results with
measurements made on irradiated PWR fuel. Early in this study it was
learned that ORNL personnel had made important modifications to the
actinide cross sections supplied with the publicly-available version of
ORIGEN prior to making their comparisons. These modifications were
based upon extensive depletion analysis of both U0_ and MO^ LWR fuels.
This "best set" of actinide cross sections has been incorporated into
this version of ORIGEN. Thus, any comments and conclusions about
ORIGEN predictive capability drawn from examination of ORNL comparisons
of their ORIGEN work and measurements would be applicable to the ORIGEN
work performed for this study. In order t® accomplish this task, the
revised actinide cross section libraries were obtained from ORNL and
made part of the S. M. Stoller Corporation version of ORIGEN. Even
with the revised actinide cross sections, significant differences were
found at ORNL between ORIGEN predictions and actual measurements. A
discussion of the potential impact of these differences on the source
terms reported herein is given in Section A-6.1.
To determine most accurately long decay time actinide source terms
from ORIGEN, the naturally-occurring uranium isotope U-234 was incorporated
in the fresh fuel. The U-234 concentrations used were based upon the
known value of 0.0055 atom percent U-234 in natural uranium. During the
enriching process U-234 atoms, being lighter than U-235 atoms, enrich at
a higher rate than U-235. An enriching ratio, U-234 relative to U-235,
20
-------
TABLE A-5
SUMMARY OF ORIGEN ANALYSES
Specific
Power
Reprocessing During Discharge Tine To
Run Reactor Fuel And Other X Fissile Operation Burnup Reprocess-
No. Tj£e Type Conaents Initially kW/kgHM HWd/MTHM ing (Days)
A. RONS FOR
1 PUR
2 PVR
3 PUR
B. RUNS FOR
BASE CASES:
U02 Throvaway 3.2 38.4 33,000
UO. Reprocessed 3.2 38.4 33,000 183
M>2 Reprocessed 5.09 38.4 33,000 183
ALTERNATIVE FUEL CYCLE CASES:
4 j » PWR 00, •. 3.07 37.0 30.363
( Portion 1 Tandem Cycle
5 ' HHR (JO. ' 1.55 46,363
Portion
6+ PUR
C. RUNS FOR
ThOj-UOj 3.7/4.0$ 38.4 33,400 183
PERTURBATION OFF BASE CASES
Cross-
Re ference
To Computer
Used For Output Tables
Case No. Supplied
1 Table A-IV-1
2,3 Table A-IV-2
2 Table A-IV-3
4
4
5
(1) AUGMENTED ACTINIDE REMOVAL DURING REPROCESSING:
PUR
U0_ Reprocessed
99.9% Re-
3.2
38.4
33,000 183 2 augmented
8
PUR MO
moval of
U and Pu
Reprocessed 5.09
99.9% Re-
moval of
U and Pu
38.4
33,000
183 3 augmented
(2) CHANCES IN DISCHARGE BURNUPS:
9
10
11
12
13
14
15
It.
PUR UO
PUR U02
PUR M02
PUR U02
PUR U02
PUR M02
(3) TO DETERMINE C-14
PWR U02
PWR U02
Throwaway 2 . 56
Reprocessed 2.56
Reprocessed 3.96
Throwaway 3.76
Reprocessed 3.76
Reprocessed 6.07
SOURCE TERMS:
10 ppm N-14 3.2
20 ppm N-14 3.'
38.4
38.4
38.4
38.4
38.4
38.4
38.4
38.4
25,000
25,000
25,000
40,000
40,000
40,000
33,000
33,000
1 Low BU
183 2 Low BU
183 3 Low BU
1 High BU
183 2 High BU
183 3 High BU
-
•For the Tandem cycle, the estimates are based on actlnide and daughter concentrations for a typical
PUR discharged fuel (approximately 30,000 MUd/MTHH burnup) and at the end of a continued burnup of
this fuel In a HUR (16,000 MUd/MTHM additional burnup). (N.L. Shapiro, Combustion Engineering Power
Systems, personal communication to obtain CE actinide data associated with their study given in
Reference 14.)
For the Thorium cycle analysis, the Th-232 and U-235 resonance cross sections were modified In ORIGEN in order
to account for self-shielding and isotope resonance interference effects. Minor adjustments to the ORIGEN
spectral indices were made in order to achieve the best match with the major discharge Thorium and Uranium
isotopes reported in Reference 15.
$3.7Z Is the fissile enrichment of ThO. (Recycle U) assemblies and 4.OX is the fissile enrichment of
Th02 (U 235; makeup assemblies.
21
-------
of 1.336 was evaluated by using the cascade equationsv '.* U-234 was_
included to permit more accurate evaluation of the actinide and daughter
activity at long decay times (more than 10,000 years). At these times
Ra-226 is a key isotope controlling the total radiotoxicity. Ra-226 is
produced via two alpha decays from U-234 (as well as from four alpha
decays from Cm-242). Omission of U-234 would have led to underprediction
of the potential radiotoxicity at decay times beyond 10,000 years,
particularly in the throwaway-cycle case.
Source term characterization is given for the three reference
cases. All data are on the basis of metric tons of heavy metal charged
to the reactor and can be readily converted to an electrical energy out-
put on a GW-yr basis, by multiplying by 26. For each case the data are
plotted as follows:
(a) Curies vs. Decay Time
(b) Heat Rate (Watts) vs. Decay Time
(c) Untreated Dilution Index (UDI) vs. Decay Time
(d) Fission Product UDI by Isotope vs. Decay Time
(e) Actinides and Daughters UDI by Element vs.
Decay Time
(f) Hull Curies and Heat Rate (Watts) vs. Decay Time
*The cascade equations allow determination of the number of separation
stages and the interstage flowrate for a desired fuel enrichment for
the gaseous diffusion separation process. An important quantity in
these equations is the enrichment factor, a-1, where a is the separation
factor between two UF, gases, e.g., U-OCF, and U_00F, or U00.F, and
TT r1 o ZJj o
U238F6'
For separation of U0~c from U0_0
Zjo
.. /
*u238F6
For separation of U from U
«~- /
uU238F6
where u = velocity of gas molecules
M = molecular weight
Thus: au2 = 1.004289
= 1.005731
and the enriching ratio V to U is: (a-l)TT
, ..,U234 - 1.336
(a-l)T7
U235
22
-------
In addition, for each of the reference cases a supplementary plot
is included showing the impact of burnup perturbations to the reference
case on heat rate (watts) vs. decay time.
A supplementary plot of carbon^-lA (C-14) untreated dilution indices
as determined by ORIGEN is presented as Figure A-3. C-14 is released
from the fuel during reprocessing and is of interest because of its
potential radiotoxicity, being a beta emitter with a relatively long
half-life. Because C-14 would be completely off-gased during reproces-
sing, it will not be part of the high-level waste. Therefore, C-14
does not appear on subsequent source term characterization plots.
C-14 is formed during irradiation primarily f ron/N-14 initially pres-
ent in the fuel and from 0-17 which is 0.039 atom percent of the oxygen
present. For the determination of the C-14 untreated dilution indices,
two values of N-14 initially present were assumed: 10 and 20 ppm.*+ It
was also conservatively assumed that the C-14 produced from 0-17 initially
present in both the fuel and water was available for release during re-
processing.
Figure A-3 shows the C-14 ingestion and inhalation untreated dilution
indices vs. decay time for conditions with 10 and 20 ppm N-14 initially
present. The C-14 activity persists for about 10,000 years. In this
range, doubling the initial N-14 concentration increases the C-14 activity
by a factor of approximately 1.6. Similarly, for the suggested value of
25 ppm as initial N-14 concentration, the C-14 activity would increase by
a factor of approximately 2.4 times the activity for 10 ppm N-14 concentra-
tion.
Comparison of Figure A-3 with Figures A-6, -12, and -19 shows that
*The average value found by ORNL in measurements on Robinson fuel was
6.9 ppm<37.
+Davis, in his paper, "Carbon 14 Production in Nuclear Reactors," presents
a survev of the nitrogen content of fuels made at five fuel fabrication
plants (^). The average nitrogen content in LWR fuels varies from 3 to
50 ppm by weight, depending on the plant, and the standard duration of
each plant's average is in the range of 40 to 70%. Davis suggests a
value for LWR fuel from all plants of 25 ppm nitrogen.
23
-------
Untreated Dilution Index
(Inhalation)
- (G = 20 ppm)
I
Untreated Dilution Index
(Inhalation)
(G = 10 ppm)
Untreated Dilution Index
G = ppm N In Fuel Initially
10' 50 102 103 ,04
Decay Time From Discharge (Yrs)
FIGURE A-3 UNTREATED D.LUTION INDICES FOR C-14 RELEASES DURING REPROCESSING
OF PWR FUEL BASIS: MTHM CHARGED (CASE 1)
-------
the C-14 source term is small compared with totals in the HLW. However,
the relative availability of C-14 in the environment will, of course, be
higher in the recycle cases than for those waste components retained as
liquids or solids.
The analysis for Cases 4 and 5 was not as definitive as that for
Cases 1, 2, and 3. The main objective was to develop sufficient informa-
tion to make a reasonable assessment of the impact of these cycles on
high-level waste compared with those from the major cases.
The waste characteristics of these five cases span a broad enough
rang'e that they can be used to infer the waste characteristics for other
fuel cycles that may be developed commercially, e.g., breeder reactor
fuel cycles.
Fission product partitioning was not considered in the current
study, although it is being performed on some government high-level
waste. Partitioning during reprocessing removes from the main waste
stream slated for disposal selected fission products that generate high
heat or are radiotoxic, e.g., Sr-90, Cs-137- These isotopes have much
shorter half lives than the actinides and would be substantially reduced
after containment for several hundred years.
A-3.2 REFERENCE CASES - LWR
For the development of the source terms, the ORIGEN computer program
was used to perform calculations on a typical pressurized water reactor
(PWR) fuel assembly.^ The characteristics of the PWR assembly are pre-
sented in Table A-6. This table gives the assembly dimensions and the
weights of fuel and structural components. The latter were required as
one input in developing source terms for the hulls. In addition to the
PWR assembly characteristics given in Table A-6, data for this assembly
are presented in Tables A-7, A-8, and A-9. Table A-7 presents the as-
sumptions made as to the isotopic content of the plutonium in an equi-
librium recycle assembly. Table A-8 presents the removal assumptions
used for the reprocessed waste Cases 2 and 3. Table A-9 presents the as-
sumptions and compositions of structural components used for developing
the hull source terms.
The primary reasons for selecting the PWR fuel assembly design
rather than a boiling water reactor (BWR) design are twofold: (1) to be
more consistent with the ORIGEN analyses performed at Oak Ridge National
Laboratory (ORNL) in relation to hot cell examination of PWR high-burnup
fuel O>5-7). an
-------
TABLE A-6
CHARACTERISTICS OF PWR FUEL ASSEMBLY
Fuel Assembly Parameters
Total assembly weight
Zr-4 fuel cladding/assembly
Zr-4 end plugs/assembly
Zr-4 in control rod and instrument
tubes/assembly
Total Zr-4/assembly
Total effective Zr-4/assembly
Total inconel 718/assembly
Total 304SS/assembly
(*)
Total effective 304SS/assembly
(*)
Fuel weight/assembly, heavy metal
oxide
Fuel weight/assembly, heavy metal
Weight of total assembly structure /
weight of fuel, MT structure/MT
heavy metal
Overall assembly length
Overall assembly length with rod cluster
control assembly in plare
Fuel rod length
Active fuel length
Assembly cross section
Specific power
666.8 kg
110.5 kg
3.4 kg
17.9 kg
131.8 kg
122.8 kg
6.2 kg
5.3 kg
2.0kg
523.5 kg
0.4614 MT
0.3107
4.1 m
4.2 m
3.9 m
3.7 m
0.21 x 0.21 m
38.4 kW/kgMM
*Weights corrected so that effective weight is consistent with the average
axial flux. This is the value used in the ORIGEN analysis for
structure activation. Correction based upon Westinghouse data
for the axial flux profile for a 3.66 m active core.
All non-fuel assembly components.
26
-------
TABLE A-7
ISOTOPIC CONTENT OF PLUTONIUM IN EQUILIBRIUM RECYCLE ASSEMBLY*
Isotope Wt. %
Pu 238 2.49
Pu 239 41.8
Pu 240 26.9
Pu 241 15.9
Pu 242 12.9
Total Fissile 57.7
*A11 analyses for mixed oxide assembly source terms assumed equilibrium
cycle plutonium makeup. This yields the highest decay heat rates and
hazards due to the largest amount of transplutonic actinides produced
during irradiation.
27
-------
TABLE A-8
REMOVAL ASSUMPTIONS* FOR REFERENCE REPROCESSED WASTE CASES
Fraction
Element Removed
Xenon, Krypton"*" 1-0
Iodine4", Bromine 0.999
Tritium 0.92
Uranium, Plutonium 0.995
Neptunium, Americium, Curium 0
*Time from reactor shutdown to reprocessing, 0.5 yr. This is consistent
with the assumption in EPA-520/3-75-006.<8'
The analysis for the reprocessed waste cases used the indicated removal
fractions for gaseous Kr-85 and volatile 1-129, both of which will be
off-gased during reprocessing and captured from the stack gas. Since
it has not yet been determined how these two fission products will be
treated subsequently, i.e., whether they will be returned to the high-
level waste or treated separately, they have been shown in Figure Nos.
A-13, A-20 as part of the HLW. This is approximately correct for 1-129,
since its removal efficiency from stack gas is quite high, and is
conservative for Kr-85. Present regulations (40 CFR 190) allow
release of about 20" of the Kr-35.
28
-------
TABLE A-9
HULL CHARACTERISTICS
Hull Assumptions
1. Composition
(a) All non-fuel components of assembly (fuel assembly structure
plus cladding)
(b) 0.2% fission products associated with fuel cladding*
(c) 0.10% actinides and daughters associated with fuel cladding
2. Elemental Composition of Hull Structural Components
Component Weight
Component Element Wt. % (Effective), kg*-^
Zr-4 Zr 98.5 122.8
Sn 1.5
304SS C 0.08 2.0
Mn 2.00
P 0.045
Si 1.00
S 0.03
Cr 19.00
Ni 10.00
Fe 67.845
Co 0.2
Inconel 718 Ni 52.5 6.2
Cr 19.0
Fe 16.7
Nb 5.2
Mo 3.2
Al 0.5
Ti 0.9
Co 1.0
Mn 0.35
Si 0.35
Cu 0.30
*Assumptions based on measured data described in ORNL/TM-5760, LWR Fuel
Reprocessing and Recycle Program Quarterly Report Period October 1 -
December 31, 1976, p. 23
+ (9)
Based on NFS experience times a factor of 2 conservatism.
0.1% corresponds to the value used in the AGNS FSAR^ ' and
ORNL studies, t11)
Isotopic composition of elements for ORIGEN input developed after Chart
of Nuclides, Knolls Atomic Power Laboratory, Eleventh Edition - Revised
to April 1972.(12)
it
Weights corrected so that effective weight is consistent with the average
axial flux. This is the value used in the ORIGEN analysis for structure
activation. Correction based upon data for the axial flux profile for
a 3.7m active core.
29
-------
For the purpose of this report, the untreated dilution index has
been derived by a method generally used to compare the biological potency
of different mixtures of radionuclides. Some source term data are pre-
sented in terms of the untreated dilution.index.. The untreated dilution
index (UDI) is defined in this study as the volumetric quantity of water,
or air, .required to dilute a quantity of radionuclides to the concentration
specified under the Standards for Protection Against Radiation in non-
occupational exposure, published in the Code of Federal Regulations
(10 CFR 20, Appendix B) and given in Table 2 of Appendix A-III of this
report. The untreated dilution index gives a gross indication of the
comparative risks of radionuclides, were these nuclides actually released
to the environment. UDI does not consider waste disposal methods (pack-
aging or geologic isolation), or their resultant environmental pathways
to man. The term "radiotoxicity" is defined as the base-10 logarithm
of the untreated dilution index.
Untreated dilution indices are presented in order to gain an under-
standing of the relative radiotoxicity of waste isotopes (normalized to
a metric ton of fuel). This is a useful perspective from which to examine
various fuel cycle options from the standpoint of waste management.
On all of the UDI plots, a dashed line has been drawn at the level
of 10^ m3 water/MTHM, which is representative of the UDI of the uranium
ore used to make the fuel (or to make the fuel for an equivalent U0«
cycle in the equilibrium mixed-oxide cycle case). This line is included
because it seems reasonable to compare the activity resulting from re-
processing or burial of a given amount of fuel with the activity
originally present in the ore used to manufacture that amount of fuel
in the first place. For 1 MT of enriched uranium, at the typical
ore grade of 1.8 kg U30g per MT of ore, about 1920 m3 of ore would
have to be mined. This amount of ore contains about 2 curies (Ci)
of U-238. Since the U-238 chain contains 14 radioactive decay steps
(see Appendix A-II), total activity will be about 28 Ci, including all
daughter products. Two of these daughter products, Ra-226 and Pb-210,
are extremely potent biologically. In fact, the former, if ingested in
water, is orders of magnitude more radiotoxic than plutonium.
This discussion assumes equilibrium between U-238 and all its daughter
products. In the strictest sense, since U-238 decays without being re-
placed in nature, a true equilibrium situation cannot exist. However,
since the half-life of U-238 is 4.5 billion years and the longest half-
life of any of its daughters (U-234) is 0.24 million years, less time than
has elapsed since formation of most uranium ore bodies, it is appropriate
to assume that the U-238 concentration is constant over the period con-
sidered by this study and all daughters are in equilibrium with it/13)
Q O
About 10 m of water would be required to dilute the 28 Ci in the
ore mined to produce 1 MT of fuel to permissible levels of concentration,
i.e., the untreated dilution index would equal 10**. (Nearly three-fourths
of this volume of water is needed just to dilute the Ra-226 and most of
the rest is for the Pb-210.)
It should be noted that in the decay time frame of the data presented
in this report (to a million years), decay of U-238 in the fuel assembly
is insignificant, because the half-life of this isotope is 4.5 billion
years. Thus, essentially no Ra-226 or Pb-210 is produced through decay
of U-238 from the fuel assembly over a million years.
30
-------
This reference UDI so developed is thus implicitly a function of
both the uranium ore grade and the required fuel enrichment, both of
which determine the quantity of natural uranium ore mined per metric
ton of reactor fuel, or per unit of energy generation associated
with nuclear fuel. Different reactor concepts would produce differing
ore references; reference to the plotted figures indicates that a
difference by a factor of two or three in the UDI for ore does not
significantly alter any conclusions drawn from the comparison with the
source terms and the natural uranium ore reference. If the ore reference
is shifted up or down on the plots, one can readily determine the
sensitivity of, say, the actinide decay crossover point to such a change
in the value of the ore reference.
For the hull source term data (presented as curies and heat rate
in watts), the hull composition and other assumptions used to develop
the source terms are shown in Table A-9.
All source term data were generated to a maximum decay time from
discharge of one million (106) years. On the figures representing
the actinide and daughters untreated dilution indices (Figures A-8,
A-14, and A-21), the activity of several of the actinides (Th, U, Ra,
Ac, Pa) is shown to be monotonically increasing to 10^ years. In order
to ascertain that the actinides in question do not continue to increase
in activity beyond 106 years of decay, information from EPA-520/3-75-006
was examined.(8) Activity data were developed in 10^ years of decay
for cases similar to the cases investigated in this study.* Figures 5
and 35 of EPA-520/3-75-006 (LWR equilibrium uranium cycle: LWR second
plutonium cycle) display a decrease in activity beyond 10" years decay
of all actinides in question.^)
A-3.2.1 Throwaway Cycle (Case 1)
Source term data for the reference throwaway cycle (Case 1) are
plotted in Figures A-4 to A-9. Figure A-9 gives the decay heat rate
(watts) for the burnup perturbations for this case. The ordering of the
data presentation is as indicated previously. All source term data are
presented per unit MTHM charged to the reactor. To convert these data
to a per unit electric energy generated (e.g., GW-yr), the plotted
data should be multiplied by 26.
A-3.2.2 Fuel Recycle (Cases 2 and 3)
As noted previously, two recycle cases were considered (Cases 2
and 3): reprocessed waste from equilibrium cycle UO- assemblies, and
*A 60%-40% PWR to BWR fuel mix was used to develop the activity data.
The current work considers only PWR fuel.
31
-------
10
iPitftfl&rpti
-I :'*- i Htti 1- -' -'-i-t
Fission Products _..VSJ-
I I .M' X >.
10
Opcdy 7 iinc From Disch.irge (Yis)
FIGURE A-4 PWR THROWAWAY CYCLE (CASE 1) RADIOACTIVITY
-------
106
105
104
10
o
I
s
s
I
102
10°
10^
10
'3
10°
102 103 104
Decay Time From Discharge (Yrs)
10
N-
VL
1
L
V
^
^
^
"••N,
^s
N
— b, _
^
T
t-
)tal
^
V
\ Actinides
J£ and 1
'
\
\
— — A
=
::_^_
?
\\
\
!
I 1
~\
~T
[_
\
\
^.A
I
s
V
, \
\
\
\
\
\
\
h
1*1
Structured
(Note) \—
\
\
^
\
-\
*
__LL
4
No
m it"
i
\
\
S
RFfr
i"
-H--
4
Ifi —
1-
--H —
:^=
in ii
te: The structure represents the decay of activatic
products of all non-fuel components of the fue
assembly.
"S.
1
j
N,
S,
|| Fission Products
•X:
~tT"
v
, i
-J
V
— -V
4i —
s
^
v
•^
s
S
s
"4-
— ^
• . <
,__
X
•*•
\
>n i|
1 "
• m
T
\
j
10°
FIGURE A-5 PWR THROWAWAY CYCLE (CASE 1) - DECAY HEAT GENERATION
33
-------
10
12
10
Decay Time From Discharge (Yrs)
FIGURE A-6 PWR THROWAWAY CYCLE (CASE 1) - UNTREATED DILUTION INDEX
(ALL SOURCES)
34
-------
Untreated Dilution Index of
Natural Uranium Ore Used
103 104
Decay Time From Discharge (Yrs)
FIGURE A-7 PWR THROWAWAY CYCLE (CASE 1) - UNTREATED DILUTION INDEX
FISSION PRODUCTS
35
-------
Untreated Dilution Index
of Natural Uranium Ore
Used to Make Fuel
10
Decav Time From Discharge (Yrs)
FIGURE A-8 PWR THROWAWAY CYCLE (CASE 1) - UNTREATED DILUTION INDEX -
ACTINIDES AND DAUGHTERS
36
-------
105
10'
10
Decay Time From Discharge (Yrs)
FIGURE A-9 PWR THROWAWAY CYCLE (CASE 1) - DECAY HEAT
GENERATION - FISSION PRODUCTS AND ACTINIDES
37
-------
from equilibrium mixed-oxide cycle assemblies. The latter source tei
are a weighted average, taking into account the 2:1 discharge ratio of
uranium:mixed-oxide assemblies in the PWR equilibrium mixed-oxide cycle.
Different wastes are derived from these two cases, primarily because the
amount of transplutonic isotopes produced in DC- differ from those pro-
duced in mixed-oxide fuel assemblies.
Information on the high-level waste from reprocessed equilibrium
cycle discharged U0_ assemblies (Case 2) is given in Figures A-10 to
A-16. Figure A-15 gives the decay heat rate (watts) for the burnup
perturbations for Case 2. Figure A-16 gives the hull source term
data for this case.
Information on the HLW from reprocessed equilibrium mixed-oxide
cycle discharge assemblies (Case 3) is given in Figures A-17 to A-23.
Figure A-22 gives the decay heat rate (watts) for the burnup perturba-
tions for Case 3. The hull source term data for reference Case 3 is
given in Figure A-23.
A-3.2.3 Comments on Source Terms from the Three Reference LWR Cases
Some important conclusions can be drawn from a comparison of the
source term data for the three reference cases.
1. Radioactivity (curies) —
In all three cases, fission products (mainly Sr-90 and Cs-137)
dominate the total radioactivity for the first few hundred years; the
source terms are about equal for the three cases for this decay period,
indicating that there is no large difference between fission products
from U-235 fission (UCL fuel) and Pu-239, -241 fission (mixed-oxide).*
Later in decay time, actinides dominate and throwaway waste has higher
radioactivity than M02 recycle, which in turn has higher radioactivity
than UO recycle.
2. Decay Heat Generation (watts) —
The wastes from throwaway-cycle assemblies have the highest decay
heat rate of all three reference cases for a million years. The re-
processed waste from equilibrium mixed-oxide cycle has a decay heat
rate about 20-30% of that from the throwaway-cycle waste at decay times
when actinides control the decay heat level. Except for the first
several hundred years, when fission products are the determining factor,
the reprocessed equilibrium-cycle UO. assembly waste has a significantly
lower rate of decay heat generation than either of the other two cases.
The contribution of fission products to the decay heat rate is
about the same in all three cases.*
The figures as presented show throwaway fission product source terms
somewhat higher than for the other two cases, reflecting the assumption
that certain volatile species escape from the HLW at the reprocessing
plant (Table A-8).
-------
10
Structure
(Note)
Fission Products
Actinides
and
Daughters
Note: The structure represents the decay of activation
products of all non-fuel components of the fuel
assembly.
10
102 103 104
Decay Time From Discharge (Yrs)
FIGURE A-10 PWR UO2 CYCLE (CASE 2) - REPROCESSED WASTE -
RADIOACTIVITY
39
-------
Decay Time From Discharge (Yrs)
FIGURE A-11 PWR UO2 CYCLE (CASE 2) - REPROCESSED WASTE -
DECAY HEAT GENERATION
40
-------
ct in ides
and
Daughters
^Untreated Dilution Index of
Natural Uranium Ore Used
Fission Products
Structure
E (Note)
Note: The structure represents the decay of activation
products of all non-fuel components of the fuel
assembly
10
Decay Time From Discharge (Yrs)
FIGURE A-12 PWR UO2 CYCLE (CASE 2) - REPROCESSED WASTE -
UNTREATED DILUTION INDEX - (ALL SOURCES)
41
-------
\ I I I ' '"" ' • • ' '
\\ Total (I129, Kr85 Recombined with HLW)
LA-_
-------
Total
10U
10
102 103 104
Decay Time From Discharge (Yrs)
FIGURE A-14 PWR UO2 CYCLE (CASE 2) - REPROCESSED WASTE -
UNTREATED DILUTION INDEX-ACTINIDES AND DAUGHTERS
43
-------
Burnup, MWd/MTHM
40,000
33,000
25,000
10'
Decay Time From Discharge (Yrs)
FIGURE A-15 WRU02 CYCLE (CASE 2) - REPROCESSED WASTE - DECAY HEAT
GENERATION-FISSION PRODUCTS AND ACTINIDES
44
-------
m5
104
103
Hull Radioactivity or Decay Heat Ci/MTHM or W/MTHM Charged
3 P sL ° sL
10 — o -• M
10'3
10'4
\
^
N
— S -
S~-
10°
l
\
\
1 %
\
\
\
--
\
S-
tt
— \
5--
s
\
\
\
— 5
101
\
\
_. — JL_
\
^
y
\
— v
\
\
y
\
\
i
\
\
Je
--S-
t
1
^
f
^a*-' Radioactivity (Curies)
cay Heat
' (Watts)
^L-
^
^
102
s
\
s
X
s.
103
^^
— .
~x
X
^
S
« - •
-••^v
•\
t>^*-.
104 105
s
"^
ss
<
:=
s
s
— ta
•••
10
Decay Time From Discharge (Yrs)
FIGURE A-16 PWR UO2 CYCLE (CASE 2) - HULL RADIOACTIVITY AND DECAY
HEAT GENERATION
45
-------
10'
10s
10"
6
| 103
10'
10°
10"
10
,-2
s
\
— ^-
r
—
V
k(
Pv
Jot
^ ^
-s
e: Th
pr
ass
''&~~
*N
*
X
s
V
\
e structi
xlucts o
*mbly.
^
-
V
\
V
jre
f al
5s
^
x: —
1 K| 1
s
r
-..
repres
non-
>!.
iL
pv
\
^
T s
\
^
— -v-
\
'.-.'.^=1
HH — 1
ents the
uel com
\
\
\
}
\
\
de<
por
^ S
i
\
-3::
*
\
~~ V
,ay of
lents c
"'*^~l
"I
^_
— :
y.
^g
Actmirles
Da
\
s^
JCtivati
)f the fu(
an
ugr
d
ters
r
1 ^
Fission Products
sn
:l
X,
t^^:
S ^
~< >
Structure
(Note)
T::
°° 1°T 50 102 500 103 5000 104
Decay Time From Discharge (Yrs)
[
'j
f
' [
^X;
105
»— .
s
— N
-, - -
~!T
V4
*
^
i i
10
FIGURE A-17 MIXED OXIDE CYCLE (CASE 3) - REPROCESSED WASTE
RADIOACTIVITY
-------
106
106
105
104
103
o
I
I-
5
5
I
^v
i
*N k
^
i X
k '
X
5^
s
O
> *
v »
^~
x^ »
''•'X:
"'Sr"
v^
V
Act in ides
and
Dauc
— -^ —
»
\
\
\
•Tc
.y
s
»
\
\
\
Structu
(Note)
ta
X,
s
.
\
I
s--
~V
^ N
^
. v
\
\
i— V- -
yp
Ju
I
_._[.
\
;f
"' ; [ — x
W^
\
\
\
\
L
\
— \ — '
\
V
v
^,"
v-
\
\
\
\
y
\
<
I
Hh
w
^s
_!___
\
I
h*-
\
^
i
-\-
\
Not
~\~
d.
1
1
L
_s
H --
~r~i~\
» ^
x
\
•
--H- Fission Products
y
>
I"
!
I
.. _).
•)••— — .
V
s
^^
-^
.
^
\
\
i *
4-.
,
y
\
y^
• .
K
**-*-
~N
--
"**
l
e: The structure represents the decay of activation
-Ui products of all non-fuel components of the fuel -
... assembly. _,
\
f
-•4-
s
<
^
J. 102
10'
10°
10'
10
-2
10°
10'
102 103 104
Decay Time From Discharge (Yrs)
103
FIGURE A-18 MIXED OXIDE CYCLE (CASE 3) - REPROCESSED
WASTE - DECAY HEAT GENERATION
47
-------
=
6
5
I
X
0>
?
Actinides
and
Daughters
Fission Products
Untreated Dilution Index
of Natural Uranium Ore
Used to Make Fuel
Mct»: The structure represents the decay of activation
products of all non fuel components of the fuel
assembly.
103
FIGURE A-19
Decay Time From Discharge (Yrs)
MIXED OXIDE CYCLE (CASE 3) - REPROCESSED WASTE
UNTREATED DILUTION INDEX - (ALL SOURCES)
48
-------
Untreated Dilution Index of
Natural Uranium Ore U«ed T
to Make Fuel
0 Recombined with HLW)
Total* (with Removal Assumption
for Referenced Reprocetnd
Waste
103
102 103 104
Decay Time From Discharge (Yr»)
Not*: 'Although in the calculations 99.9% of the 1-129 and 100% of the Kr-85 were assumed to be
removed from the main high-level waste stream during reprocessing, these isotopes could be
subsequently recombined into the main waste stream. 100% of these sources are
displayed on this plot. Two total curves are shown. The lower one considers the removal
assumptions shown in Table A-8, the higher one assumes recombination of the I—129 and Kr—86
with the main waste stream after reprocessing. Refer to Table A—8 for further details.
FIGURE A-20 MIXED OXIDE CYCLE (CASE 3) - REPROCESSED WASTE -
UNTREATED DILUTION INDEX - FISSION PRODUCTS
49
-------
10
10
Untreated Dilution Index of
Natural Uranium Ore Used
to Make Fuel
FIGURE A-21
102 irj3
Decay Time From Discharge (Yrs)
MIXED OXIDE CYCLE (CASE 3) - REPROCESSED WASTE -
UNTREATED DILUTION INDEX - ACTINIDES AND DAUGHTERS
50
-------
10a
104
KSt
103
102
Burnup, MWd/MTHM
40,000
33,000
\ 25,000
o
5
S^S
ttif~mi
ff
tf
ss
10-
10
2
10
3
10°
10'
102 103 104
Decay Time From Discharge (Yrs)
10°
FIGURE A-22 MIXED OXIDE CYCLE (CASE 3) - REPROCESSED WASTE
DECAY HEAT GENERATION - FISSION PRODUCTS AND
ACTINIDES
51
-------
10*
10*
103
o
5
I
1-
o
8
8
0
o 100
o
"8
QC
3
10-2
TO'3
10-4
X
-^.
>
s; —
\
- \
K
\
\
\
\
\
v —
— V"
V
\
"\ —
\
— V-
"V,
\
\u
V
\-
5;
ecay Hea
(Watts)
S
dioactivit^
' V
t
...\
<((.
:)
'
— ~~
- ^—
-,
~~»
\
\
.
! ^— —
X
s---,
- j
-
s
10°
10
10"
Decay Time From Discharge (Yrs)
10
106
FIGURE A-23 MIXED OXIDE CYCLE (CASE 3) - REPROCESSED
WASTE - HULL RADIOACTIVITY AND DECAY HEAT
GENERATION
52
-------
3. Untreated Dilution Index —
The contribution of fission products is about the same for all
reference cases for those decay times when fission products control the
total untreated dilution1 index (to several hundred years' decay time).*
In this range, essentially all of the activity associated with the waste
is from Sr-90 and (to a lesser extent) Cs-137. Sr-90 and perhaps Cs-137
separation and interim storage (for several hundred years) should be
evaluated in connection with the overall disposal problem for the re-
processing Cases 2 and 3.
After the first few hundred years, when actinides become the
dominant source terms, the total UDI of the throwaway case is the highest
of the three reference cases. The UDI for the reprocessed waste from
equilibrium mixed-oxide cycles increases from 30% of that for the throw-
away case at 1000 years to 90% at a million years. Although the total
UDI is controlled by different actinides in the two cases, the impact
on the total UDI at long decay times is almost the same from the stand-
point of radioactivity alone. The U0_ recycle case has the lowest UDI
at longer decay times, but this is at least partly because of the assump-
tion that recovered plutonium is storeJ for this case (i.e., is not part
of the waste stream).
For the reprocessed equilibrium cycle U0~, the actinide and daughter
UDI is below that of the natural activity of the original uranium ore
(10^ m^ water) starting at about fifty years. It is questionable,
therefore, whether removal of any of the actinides or their destruction
by transmutation may be warranted for this case.
4. Hulls
The source terms for the hulls are comparable for Cases 2 and 3.
Waste characterization of the hulls is dependent upon assumptions made
concerning actinide residue in the cladding. An actinide level of 0.1%
of the actinides in the fuel is typically assumed. With 99.9% reproces-
sing efficiency for U and Pu, this would result in approximately equi-
valent U, Pu levels in the hulls as in the HLW for Cases 2 and 3 (though
transplutonium levels would be much higher in HLW than in hulls). With
highly effective removal of hull residues, or with lower reprocessing
efficiencies, the uranium and plutonium in clad hulls could be as much
as a factor of 100 lower than in HLW (99% reprocessing efficiency, 0.01%
U, Pu in hulls).
A-3.2.4 Special Reprocessing Options
Removal of 99.9% of the uranium and plutonium isotopes during repro-
cessing is feasible with current technology. The reference cases in-
volving reprocessing were run with the assumption that 99.5% of the
*The figures as presented show throwaway fission product source terms
somewhat higher than for the other two cases, reflecting the assumption
that certain volatile species escape from the HLW at the reprocessing
plant (Table A-8).
53
-------
uranium and plutonium isotopes would be removed. In order to investigate
the effect of augmenting the removal to 99.9% (a five-fold reduction in
the uranium and plutonium in the high-level waste), two additional ORIGEN
runs were made (see Appendix A-IV). Figure A-24 shows the impact of
augmented U, Pu removal on decay heat generation rate, and Figure A-25
displays the impact on UDI, for Case 2. The data in these figures are
presented as percentage changes from the reference case. Similar figures
for Case 3 with augmented removal are not shown, but the important re-
sults of the Case 3 augmented removal study are discussed.
These figures show a maximum percentage decrease for the UCK cycle
of approximately 10-11% in both the heat generation rate and UDI. This
maximum occurs at about 10,000 years; beyond this time the difference
decreases to 1-2% at a million years.
For the equilibrium mixed-oxide cycle waste, there is a maximum
percentage decrease of about 7% in both heat generation rate and UDI.
The maximum occurs at about 1000 years. This maximum value is lower than
in the U09 cycle waste case since the importance of Pu isotopes on waste
sources, relative to the transplutonlc actinides, is less for mixed
oxide than for U0« fuel assemblies.
These data suggest that the increased costs of reprocessing asso-
ciated with a fivefold reduction in the U and Pu are probably not war-
ranted, considering the rather minimal gains achieved from the viewpoint
of radioactivity alone.
It should be noted that significant reductions in waste source terms
can be achieved if americium (an actinide) is extracted from the waste
stream. Americium extraction, however, leads to the problem of what to
do with a relatively long-lived, radioactive substance that generates
large amounts of heat. Indeed, this is a common problem with all pro-
posed schemes for enhanced actinide removal. The only answer seems to
be destruction of these materials through irradiation in nuclear reactors
or accelerators. While this route is theoretically possible, there are
many practical problems that would have to be thoroughly probed in an
extensive R&D program before the economic feasibility of such an ap-
proach could be determined.
A-3.3 OTHER FUEL CYCLES
A-3.3.1 Tandem Cycle
The tandem cycle is one in which discharged LWR UO fuel is recon-
figured and/or refabricated for further depletion in a heavy water re-
actor (HWR) (e.g., CANDU type). After depletion in the HWR, the fuel
is not used again. Estimates were made of the impact of the tandem
cycle on waste compared with that from throwaway-cycle fuel. These
54
-------
Ln
11
10
c
o
I
o
O)
a
a?
10°
7
Total-
\
\
Actinides
\
101
102
FIGURE A-24
103 104
Decay Time From Discharge (Yrs)
10=
106
PWR - UO2 CYCLE (CASE 2) - REPROCESSED WASTE - IMPACT OF
AUGMENTED U, Pu REMOVAL DURING REPROCESSING (99.9%)
ON DECAY HEAT GENERATION
-------
11
10
7
I
*«
^3
5
* 6
ID''
101
102
103 104
Decay Time From Discharge. (Yrs)
105
FIGURE A-2S PWR-UOj CYCLE (CASE 2) - REPROCESSED WASTE - IMPACT OF AUGMENTED U.
Pu REMOVAL DURING REPROCESSING (995%) ON UNTREATED,DILUTION INDEX
-------
estimates are based on actinide and daughter concentrations for a typical
PWR discharged fuel (approximately 30,000 MWd/MTHM burnup), and at the
end of a continued burnup of this fuel in an HWR (16,000 MWd/MTHM additional
burnup)« (N. L. Shapiro, Combustion Engineering Power Systems, (CE)
personal communication to obtain CE actinide data associated with their
study.)(14) xhe data developed during this study for the throwaway cycle
at various burnup levels were used to evaluate the impact af. the higher
tandem cycle fuel burnup on fission product wastes.
Figures A-26 and A-27 show the estimated relative decay heat genera-
tion and relative UDI, tandem cycle to throwaway cycle, for the actinides
and daughters and fission products. These figures were developed from
ORIGEN runs utilizing the input data base described above, i.e., ORIGEN
decay of CE data on actinide and daughter concentration after both the PWR
and HWR depletions, as well as ORIGEN-developed fission product decay data.
In interpreting Figures A-26 and A-27, it is important to note that
the tandem cycle yields approximately 50% more burnup per metric ton of
fuel than the throwaway (46,000/30,000 MWd/MTHM). Thus, the almost
constant fission product ratio of 1:5 is simply reflecting the increased
number of fissions, and the net fission product source term per unit of
produced energy is almost identical for the tandem and the throwaway
cycles.
In the first 40-60 years the actinide source term for the tandem
cycle is considerably higher than that for the throwaway cycle. However,
fission products dominate the throwaway cycle source terms out to several
hundred years; at 50 years the fission product UDI term is about 60 times
greater than the actinide UDI term for the throwaway case (Figure A-6).
Thus, this higher actinide 'source term at short decay times is of only
minor significance. At longer decay times when actinides dominate, the
tandem cycle actinide terms are less (per energy produced) than for the
throwaway cycle.
Keeping in mind that the results are per metric ton of fuel, it is
clear that for the higher burnup fuel, the source activity per unit of
energy delivered is actually lower than the reference case.
The actinide behavior, like fission product behavior, is primarily
a function of burnup as opposed to neutron spectrum. It is more com-
plicated than the fission product behavior because different actinide
components control the source terms during different decay time inter-
vals. Up to approximately 500 years, the controlling actinides are those
not at equilibrium concentrations at typical LWR discharge burnups.
These isotopes reach higher concentrations with the additional burnup in
the HWR portion of the tandem cycle. The two most important actinide
isotopes up to approximately 500 years are Cm-244 and Pu-238.
57
-------
4.0
o
o
3.0
CD
C
0>
O
X
>
2.0
1.0
- -»
y^
""*•.,
^. - - •
\
\
Act
/
\
V
mic
\
\
Je:
\
and
>
Daughter
Fissio
"A
x^
s
1 Pn
~»«
•^.
>di
-
**,
ct
=
s
•M
-
~
-r
? •
Tandem Cycle Discharge Exposure * 46,000 MWD/MTHM
Throwaway Cycle Discharge Exposure «• 30,000 MWD/MTHM
• ^M
• —
^ - •
10
100
1.000 10.000
Dec«y Time From Discharge (Yrs)
105
106
FIGURE A-26 TANDEM CYCLE (CASE 4)/THROWAWAY CYCLE (PWR) (CASE 1)
RELATIVE DECAY HEAT GENERATION
-------
o
01
1
c
o
'
_>
M
CC
— _
__«?^
• ,,
.1 '
••»,
— ^
^
-
K •
1
s
s,
X
X
. . —
X
li
"•>
10 50
Fission
• • —^•*««
'roc
i^B^B.
uc
ts
• •
!->.
A
Tandem Cycle Discharge Exposure = 46,000 MWD/MTHM
Throwaway Cycle Discharge Exposure * 30,000 MWD/MTHM
ctinides
ind
D«
jgi
it
ers
102 500 103 5,000 104 105' 10*
Decay Time From Discharge (Yrt)
FIGURE A-27 TANDEM CYCLE (CASE 4)/THROWAWAY CYCLE (PWR) (CASE 1)
RELATIVE UNTREATED DILUTION INDEX
-------
For example, after ten years, the decay heat rate from Cm-244 after
the tandem burn is approximately eight times that after LWR burn. After
the HWR burn, the Cm-244 contributes approximately 57% of the total
actinide decay heat. The other major actinide contributor, up to approxi-
mately 500 years, is Pu-238. At the 10-year decay time after the tandem
burn, the Pu-238 decay heat is 2.5 times that after the LWR burn, and
contributes approximately 28% of the total actinide decay heat.
Beyond approximately 500 years, the Cm-244 and Pu-238 contributions
to the actinide source terms are unimportant, since these isotopes have
decayed away. Up to approximately 10,000 years, three actinide isotopes
control the source terms. In descending order of importance these are
Am-241, Pu-240, and Pu-239. Of these, Am-241 and Pu-239 change only
slightly in concentration during the HWR burn. The third actinide
isotope, Pu-240, slowly increases in concentration during the HWR burn
and is primarily responsible for the approximate 10% increase in source
terms relative to throwaway up to approximately 10,000 years. Beyond
this, the actinide daughter products, particularly Ra-226, control the
source terms.
A-3.3.2 Thorium Cycle
A prior study included average initial and discharge inventories
for thorium/recycle uranium assemblies through five generations, as
well as equivalent data for makeup assemblies composed of ThO,, and fully
enriched U0_.( ^) For equilibrium cycles, there is a mix of approximately
65% ThO^ /recycle U assemblies and approximately 35% makeup assemblies.
The data are based on an analysis of the thorium cycle in a current
Combustion Engineering System 80 PWR design,* with no modifications other
than the fuel. These data are representative of a thorium cycle in an
LWR.
For the current analysis of the impact of the thorium cycle on
waste, fifth generation recycle assemblies mixed with makeup-assemblies
in the 65% to 35% ratio were selected as representative of an equilibrium
thorium cycle. The Th-232 and U-235 resonance cross sections were modi-
fied in ORIGEN in order to account for self-shielding and isotope
resonance interference effects, and minor adjustments to the ORIGEN
spectral indices were made in order to achieve the best match with the
major discharge thorium and uranium isotopes reported by Combustion
Engineering. V--''
The results of the equilibrium thorium cycle analysis compared with
the equilibrium mixed-oxide cycle data ^presented previously for decay
heat rate and total UDI are given in Figures A-28 and A-29 respectively.
*Combustion Engineering Company's standardized PWR design.
60
-------
Burnup = 33,000 MWD/MTHM
2
u
O
4>
5
O
I
IE
i
>-
>
s
u
\
\
10'
102
i^ 10*
Decay Time From Discharge (Yrs)
106
10'
FIGURE A-28 LWR THORIUM CYCLE (CASE 6)/MIXED OXIDE CYCLE (CASE 3)
RELATIVE DECAY HEAT GENERATION
-------
12
TT
\
Burnup = 33,000 MWD/MTHM
10
\
u
O
To 28.1
\
5. 8
\
\J
10°
101
102
103 104
Decay Time From Discharge (Yrs)
105
10b
FIGURE A-29 LWR THORIUM CYCLE (CASE 5J/MIXED OXIDE CYCLE
CASE (3) - RELATIVE UNTREATED DILUTION INDEX
-------
For the thorium cycle reprocessing, 99.5% of the thorium and 0% of the
plutonium was assumed to be removed from the main high-level waste stream.
The other reprocessing removal assumptions were equivalent to the standard
set previously used (see Table A-8). The thorium removed during reproces-
sing can be stored for approximately 15 years to allow sufficient decay
of Th-228, after which time it can be recycled.
Figures A-28 and A-29 show that for most of the decay time
up to a million years both the decay heat rate and UDI are higher from
thorium, cycle waste than from the mixed-oxide cycle waste. Over the
first several hundred years, when fission products are the controlling
factor, the thorium cycle yields generally higher source terms because
of the large amount of U-233 fissions, which produce larger quantities
of the controlling isotope, Sr-90, relative to U-235 fissions. When
the transuranic actinides start controlling (from several hundred up to
approximately 20,000 years) the source terms for the thorium cycle are
lower. This is because relatively small quantities of americium are
produced in the thorium cycle. Americium controls the actinide source
terms in the equilibrium mixed-oxide cycle in this range. Beyond ap-
proximately 20,000 years, the source terms are considerably higher for
the thorium cycle and are controlled primarily by Ra-226, produced by
alpha decay from U-234 .(and Cm-242 in the mixed-oxide cycle). The
thorium cycle feed fuel has substantially higher U-234 concentrations,
than the equilibrium mixed-oxide cycle (and the LWR UO^ cycles), and
hence the larger Ra-226 impact at long decay times.
A-3.3.3 Comments on Alternative LWR Fuel Cycles and Other Reactor Concepts
Although detailed calculations have not been performed for fuel
cycles other ithan in Cases 1-5, other cycles could prove to be commer-
cially feasible and for the purpose of this study may be sufficiently
well bounded by one of the five cases given above, or by a suitable
combination of two cases. This premise is based upon the mode of forma-
tion of the more important nuclides sent to waste — which result either
from fission or from higher-order neutron capture.*
Those products generated in the fission process are primarily fixed
in their number and type by the particular fissile nuclides burned and
their degree of burnup, with only modest influence of specifically
nuclear considerations, such as neutron spectrum and degrees of self-
shielding. Any fission product waste resulting from equal fissions in
U-235 and fissile plutonium will therefore have nearly the same nuclide
composition, within perhaps 10 or 15%, regardless of which reactor pro-
duced it. Since the fissile mixtures covered by the five cases above
*Nuclides such as Sr-90 and Cm-244. Clearly there will be a significant
dependence upon the specifics of the fuel cycle for such nuclides as
Fe-55 (much higher for steel-clad fuel than Zircaloy-clad fuel) or
C-14, which would depend to a great extent on the fuel design and
fabrication procedure.
63
-------
are representative of all those considered, the results obtained with
use of their fission product spectra should be reasonably comprehensive.
The trans-fertile nuclides (e.g., Pu-239, Cm-242, U-233) are some-
what more dependent upon the nuclear specifics, but even in their case
the primary considerations are starting fissile composition and burnup,
particularly the latter, since a number of the most important nuclides
are produced by fifth- or sixth-order neutron capture and are still far
from equilibrium at the burnups considered realistically achievable.
Previous studies of the other fuel cycles confirm these observa-
tions X16,17) For example, representative LMFBR and HTGR designs show
fuel waste characteristics comparable to, but smaller than, those ob-
tained in Cases 3 and 5, respectively. Similarly, the Light Water
Breeder is comparable to Case 5.
*The HTGR (High Temperature Gas Cooled Reactor) fuel cycle has
a potential for producing more C-14 than in LWR fuel cycles. With
HTGR fuel, as distincc from the graphite blocks, C-14 will be produced
via the N-14 and 0-17 reactions as in LWR fuel from nitrogen
and oxygen contained in UC? and ThO?, with the N-14 contribu-
tion the most important. C-14 can also be made via two (n ,Y ) re-
actions starting with C—12 which is 98.98 atom percent of carbon
12C(n,Y)13C(n,Y)lltC or by 13C(n,Y)11+C with the naturally occurring
C-13 (1.11 atom percent of carbon). Since the 13C(n,Y) C cross
section is extremely low, about 1 millibarn, and the amount of carbon/
MTHM is relatively small compared with that in the graphite blocks,
these (n,Y) reactions with carbon in the fuel (both carbon in UC? and
pyrolitic coatings) are unimportant in the production of C-14. Davis
does not even address the production of C-14 from (n,Y) reactions in
the fuel, but does make the following statement:
"There are limited data concerning the quantities of nitrogen
in potential HTGR fuel since this fuel is not made on a
routine basis. It is therefore assumed that all forms of
UC2 and Th02 contain the same quantity of nitrogen (i.e.,
25 ppm) used in this report as an industry consensus for
LWR fuels. On this basis about 0.96 Ci of C-14/MTHM or
about 9.7 Ci/GW-yr will be formed from the l ^(n.p)1 "+C
reaction."(4)
This compares with about 0.9 Ci of C-14/MTHM or about 24 Ci/GW-yr for
the LWR.
Davis also estimates the C-14 produced in the graphite blocks, which
ultimately will require disposal, as follows:^)
Curies/MTHM Curies/GW-yr
From Carbon (TI,Y) reactions <4.3 <43
From 30 ppm N-14 graphite blocks
(upper bound estimate based on 12.6 127
several measurements)
Total <16.9 <170
64
-------
One class of reactors for which the use of Cases 1-5 may be overly
conservative would be the homogeneous reactors. Here, some of the pre-
cursors leading to higher-order nuclides can be removed continuously.
In this event, the precursor concentration would be somewhat higher,
but the higher-order nuclides would be substantially reduced. For ex-
ample, if the americiums were removed continuously, the curium levels
might become almost insignificant.
A-3.4 CHEMICAL CHARACTERISTICS OF COMMERCIAL HIGH-LEVEL WASTE
The assumed high-level waste solution expected to be the result of
the reprocessing of commercial irradiated reactor fuels is shown in
Table A-10.(18) it is a nitric acid solution containing almost all of
the non-volatile fission products (and their decay products), as well
as essentially all of the transplutonium elements and other activation
products formed during irradiation. The amount of uranium and plutonium
present is dictated by the separation efficiency of the reprocessing
plant. The "inerts" result from the dissolution of non-radioactive
structural materials and the processing chemicals, such as salting agents
(e.g., aluminum nitrate), or valence adjustment chemicals (e.g., sodium
nitrite). In addition, the presence of a gadolinium salt as an inert
results from its addition to the dissolver solution to act as a "neutron
poison" in preventing an accidental nuclear incident through maloperation
of the dissolver.
The solution is primarily a collection of the nitrates of all of
the above materials in a nitric acid solution. It would, therefore,
have to be stored in stainless steel tanks unless neutralized. Calciners
are typically designed to accept nitric acid feed,( ) though this re-
sults in NO in the offgas.
65
-------
TABLE A-10
COMPOSITION OF HLLW
Kilograms Nonvolatile
Concentration, moles/I @ 378c/MTU
Inerts
(Reprocessing
Chemicals)
Fission
Products
Actlnldes
Constituent
H+
Na
Fe
Cr
Ni
POUE
4
SO,,'
NO,-
J
F"
Cd(b>
B(l>)
Cd(b>
Rb
Sr
Y
Zr
Mo
Tc
Ru
Rh
Pd
Ag
Cd
Sn
Sb
Te
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Cd
U
Np
Pu
Am
Cm
Possible
Range
1-7
0-3.0
0.05-1.4
0.01-0.04
0.005-0.02
0.025-0.30
0-0.90
2.7-20
0-0.25
0-0.2
0-5.0
0-1.5
(0
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
0.011-0.22
(c)
Reference for
this Document (a)
2.0
0.01
0.054
0.0096
0.0034
0.042
0
3.6
0
0.150
0
0
0 . 00 95
0.017
0.0095
0.074
0.071
0.017
0.044
0.011
0.030
0.0015
0.0016
0.0009
0.0002
0.0078
0.039
0.023
0.018
0.034
0.016
0.055
0.0005
0.012
0.002
0.001
0.053
0.003
0.0001-0.006 0.002
(c)
(c)
a. The reference HLLW is representative
plant such as BNFP.
b. Potential
soluble poisons
0.009
0.003
of a large state-of-the
Oxide/MTU
Constituent
Na20
Fe203
Cr203
N10
P205
soC
r
Cd203
B203
CdO
Subtotal
Rb20
SrO
Y203
Zr02
Mo03
Tc:07
Ru02
Rh203
PdO
Ag20
CdO
Sn02
Sb203
Te02
Cs20
BaO
La203
Ce02
Pr6°ll
Nd203
Po203
Sm203
Eu203
Cd203
Subtotal
U308
Np02
Pu02
Am203
Ca203
Subtotal
Total
Reference for
this Document
01 i
. 12
1.6
0.28
0.19
1.1
0
— ~ —
0
10.0
0
0
13.0
0.34
0.68
0.4]
3.5
3.9
1.0
2.2
0.53
1.4
0.067
0.078
0.052
0.013
0.47
2.2
1.3
1.1
2.2
1.1
3.5
0.035
0.80
0.13
0.076
27.0
5.7
0.31
0.17
0.96
0.26
7.4
47.0
art commercial reprocessing
which may be used during fuel dissolution.
c. Depends upon burnup of the fuel being
from the
reference waste
composition
reprocessed, should not
(burnup-25,000 MWd/MTU).
vary over a
factor of two
Source: ERDA-76-43, UC-70, "Alternatives for Managing Wastes from Reactors and Post-Fission
Operations In the LWR Fuel Cycle," U.S. Energy Research and Development Administration,
May 1976.
66
-------
A-4.0 CHARACTERISTICS OF GOVERNMENT HIGH-LEVEL WASTE
A-4.1 GENERAL
Besides the projected commercial waste discussed in Section A-3.0,
substantial quantities of high-level waste have been generated over the
past 30 years or so at U.S. government-owned sites. This report terms
these "government high-level waste," meaning that they were generated
during the processing of materials discharged from government-owned
nuclear reactors as part of the defense and R&D programs. This waste is
presently stored in near-surface tanks at three sites:
• At Richland, Washington, the waste from the Hanford
Works. The Hanford reprocessing plants, which were
built in the early 1940's to produce plutonium from
reactor-irradiated materials, did not recover
uranium. The uranium was sent to HLW tanks. This
uranium was recovered in the early 1950's. The
Redox plant (operational 1951) and the Purex plant
(operational 1955) recovered both uranium and
plutonium. All Hanford reprocessing plants ar.e
now excess except Purex, which is on standby for
reprocessing of spent fuel from the Hanford "N"
reactor.
• At Aiken, South Carolina, the waste from the Savannah
River Plant, built in the early 1950's to recover
uranium and to produce plutonium and tritium from
reactor-irradiated materials. (Operations at a
reduced level are assumed to continue through 1985.)
• At the Idaho National Engineering Laboratory, near
Idaho Falls, Idaho, the waste from the Idaho Chemical
Processing Plant, built in the early 1950's to recover
uranium from enriched-uranium fuel elements after
their use in naval propulsion reactors and in various
experimental/test reactors. (This operation is assumed
to continue at least to 1990.)
The HLW at Hanford and at Savannah River had their nitric acid
content neutralized with sodium hydroxide (NaOH) prior to storage. This
permitted the use of less expensive carbon steel tanks and resulted in
formation of: (1) an alkaline sludge iayer containing most of the
radionuclides; and (2) a large quantity of dissolved sodium nitrate
(NaNOo) that will complicate any scheme to solidify the waste. The
waste at Idaho, on the other hand, was stored in the acid form in stain-
less steel tanks, and a substantial volume has been converted to granu-
lar solids by calcination, a program which is continuing.
67
-------
Programs are in progress to concentrate further the alkaline waste
at Hanford and Savannah River to the point where large amounts of the
NaNO will crystallize out in the waste tanks. This crystalline mass
is coWmly called "salt cake." In addition, at Hanford a simultaneous
effort is under way to remove much of the Cs-137 and Sr-90 from the
waste and to encapsulate them in double-walled cans as the chloride
and fluoride, respectively. A discussion of the present and projected
inventories of the high-activity wastes at these sites is given' below.
A-4.2 HANFORD WASTE
The Hanford "N" reactor has accumulated a backlog of 1800 MT of
spent fuel, and will be producing additional amounts at the rate of
400-900 MT/yr. ERDA has announced a planned reactivation of
the Purex reprocessing plant at Hanford, which has a capacity of
900 MT/yr, for the latter part of FY 1978. Waste will be stored
temporarily as liquid, with cesium and strontium subsequently removed;
the remaining waste will be neutralized and stored like the other
Hanford waste. (Professor Hanson Benedict, MIT, personal communication
May 20, 1977 with Hanford personnel.)
By the early 1980's when the current f ractionation and concentration
program at Hanford will be complete, the HLW inventory will consist of
approximately :
94,500 m (25 million gallons) of damp salt cake,
41,600 m (11 million gallons) of damp sludge,
52,900 m (14 million gallons) of residual liquor and liquid waste,
2,900 capsules (6.7 cm dia x 53 cm long) containing Cs-137 in
chloride form, and Sr-90 in fluoride
Continued operation of the "N" reactor and subsequent reprocessing will
add by 1990 approximately 4900 m3 (1.3 million gal) of salt cake, 760 m3
(0.2 million gal) of sludge, 3800 m3 (1.0 million gal) of residual
liquor, and 1100 capsules.
The chemical composition of these materials will be approximately
as given in Table A-ll.(2°) Distribution and amounts of the major
fission products and actinides (1990 basis) are given in Table A-12.
N-reactor waste will add approximately 10% to the radioactivity levels
given in Table A-12. Present plutoniura content of Hanford waste is
estimated at 330 kg. (21'
A-4.3 SAVANNAH RIVER PLANT WASTE
The Savannah River program for concentrating the waste to
precipitate a "salt cake" is under way and, as at Hanford, should be
complete by the early 1980' s. Here, however, the Cs-137 and Sr-90
will not be removed for separate encapsulation. By 1985, the waste
68
-------
TABLE A-ll
AVERAGE CHEMICAL COMPOSITION OF HANFORD
Chemical
NaN03
H20
Na3P04
NaOH
NaN02
NaA102
Na2C03
Na2Si03
A1203
Fe(OH)3
Na2S04
Other
Salt
Cake
Wt.%
84.5
10.3
0.1
1.5
1.7
1.4
0.5
—
—
—
—
—
Sludge
Wt.%
17.2
35.8
22.6
3.2
3.7
3.1
2.2
2.9
2.3
1.8
1.1
4.1
HIGH-LEVEL WASTE
Residual
Liquor
Wt.%
12.1
47.1
—
14.3
12.3
11.7
0.8
—
—
—
0.5
1.2
Total
Wt.%
50.9
25.1
5.9
4.8
4.6
4.1
1.0
0.7
0.6
0.5
0.4
1.4
Totals
100.0
100.0
100.0
100.0
Source: Alternatives for Long-Term Management of Defense
High-Level Radioactive Waste—Hanford Reservations.
ERDA 77-44, U.S. Energy Research and Development
Administration, Richland, Washington, September
1977.
69
-------
TABLE A-12
INVENTORY OF MAJOR FISSION PRODUCTS AND ACTINIDES
IN HANFORD
HIGH-LEVEL WASTE DECAYED TO
1990
Radioactivity (Ci)
Radionu elide
Fission Products:
H-3
C-14
Sr-90
Zr-93
Tc-99
Cd-113m
Sb-125
Sb-126
1-129
Cs-137
Ce-144
Pm-147
Sm-151
Eu-152
Eu-154
Eu-155
TOTAL
Actinides :
U-233
U-235
U-238
Np-237
Pu-238
Pu-239
Pu-240
Pu-241
Am-241
TOTAL
*Contains trace
Note: Daughter
Salt
Cake
*
2.0 x 106
*
*
*
*
*
*
6
5.0 x 10
*
*
*
*
*
*
7 x 106
*
*
*
*v
*
*
*
*
*
quantities of
nuclides not
Source: Alternatives fr>r T.rm
Sludge
*
4.5 x 107
6.9 x 103
*
5.0 x 103
2.0 x 104
9.6 x 106
*
6
5.0 x 10
9.9 x 106
1.0 x 106
1.4 x 106
1.5 x 103
7.3 x 104
7.4 x 104
72 x 106
4.0 x 102
1.3 x 101
3.0 x 102
1.0 x 102
4.0 x 102
2.1 x 10 4
5.2 x 103
6.0 x 104
5.0 x 104
0.14 x 106
these isotopes.
Residual
Liquor
L
1.1 x IQ
6.0 x 105
*
3.1 x 104
*
*
*
4.7 x 101
7
1.8 x 10
*
A
*
*
*
*
19 x 106
*
*
A
*
*
*
A
A'
A
listed; curie values are for
2-Term Ma n a oe> mo n
t~ n "F FiaF^Tie/i
Capsules Total
t>
1.1 x 10
<1.6 x 104
5.8 x 107 1.06 x 108
6.9 x 103
3.1 x 104
5.0 x 103
2.0 x 104
9.6 x 10°
4.7 x 101
8 8
1.0 x 10 1.3 x 10
9.9 x,106
1.0 x 106
1.4 x 106
1.5 x 103
7.3 x 104
7.4 x 104
158 x 106 250 x 106
4.0 x 102
1.3 x 101
3.0 x 102
1.0 x 102
4.0 x 102
2.1 x 104
5.2 x 103
6.0 x 104
5.0 x 10
0.14 x 106
parent nuclide only.
U-f />Vi Trttr^l D^^->nAA«.-t.,A
Waste—Hanford Reservations. ERDA 77-44, U.S. Energy Research and
Development Administration, Richland, Washington, September 1977.
70
-------
will consist of:
3
49,100 m., (13 million gallons) of damp salt cake,
11,300 m, (3 million gallons) of damp sludge, and,--.
22,600 m (6 million gallons) of residual liquid.U '
The overall composition is given in Table A-13 (with 25% H-0
assumed as in the Hanford case).^") xhe total radionuclide content
(1985 basis) is given in Table A-14.(22> The split among the three
waste forms ought to be similar to that shown in Table A-12. The
amount of plutonium in the Savannah River waste is estimated at 225 kg.
The presence of higher proportions of Pu-238 and Cm-244 than at
Hanford reflects the results of past programs to make these materials at
Savannah River. A part of this effort involved setting up Np-237 ex-
traction facilities, which accounts for the lack of Np-237 in the actinide
mix in the waste at Savannah River.
A-4.4 IDAHO WASTE
Much of the acid high-level waste at Idaho has«been converted to
solid form in a fluid bed calciner. About 11,700 m (3.1 million
gallons)_of liquid has been converted to granular solids, containing
5.2 x 10 Ci of radioactivity.
The present inventory of high-activity waste includes:
1,500 m_ (about 0.4 million gallons) of calcine, and
8,700 m (about 2.3 million gallons) of liquid/3'
(23)
The calcine is of two types, as given in Table A-15. For the
purposes of this report, about 60% of the calcine is assumed to be
non-fluoride. Plutonium content of Idaho waste is estimated at 20 kg.
The liquid waste is about evenly split between the two types
shown in Table A-15.(23)
Projection for 1990 calls for 6000 m (1.6 million gal) of liquid
and 5400 m3 (1.4 million gal) of calcine. This would result in
a very approximate fission product content of 10^ Ci, and a plutonium
content of 50 kg.
A-4.5 SUMMARY OF GOVERNMENT WASTE QUANTITIES
The preceding section discussed present and projected government
waste. Because the government waste originated from many different
programs and chemical processing methods, and future waste generation
is subject to unpredictable political decisions, a basic reference-
71
-------
TABLE A<-13
AVERAGE CHEMICAL COMPOSITION -
SAVANNAH RIVER HIGH-LEVEL WASTE
Chemical
NaNO.,
H20
NaNO,
Na2C°3
NaOH
Fe(OH)
Hg(OH)
Other
Composition, Wt. (%)
31.6
25.0
12.8
10.0
7.2
5.4
5.1
1.3
0-3
0.08
1.2
100.0
Based on: Alternatives for Long-Term Management of Defense High-Level
Radioactive Waste—Savannah River Plant. ERDA 77-42
U.S. Energy Research and Development Administration,'
September 1977.
72
-------
TABLE. A-14
, SADIQNUCLIDE CONTENT*
SAVANNAH RIVER HIGH-LEVEL WASTE (1985)
Radionuclide* Total Activity (Ci)
Fission Products:
Sr-90 1.3 x 108
Ru-106 1.8 x 106
Cs-137 1.3 x 108
Ce-144 1.1 x 107
Pm-147 4.6 x 107
Sm-151 4.2 x 106
323 x 106
Actinides:
Pu-238 6.0 x 105
Pu-239 2.4 x 104
Am-241 6.0 x 104
Cm-244 6.0 x 104
0.74 x 106
*Daughter nuclides in decay chains are not listed. Curie values are of
important nuclides only.
Source; Alternatives for Long-Term Management of Defense High-Level
Radioactive Waste—Savannah River Plant. ERDA 77-42% U.S.
Energy Research and Development Administration, September 1977.
73
-------
TABLE A-15
TYPICAL COMPOSITION OF CALCINED SOLIDS
IDAHO CHEMICAL PROCESSING PLANT
Composition, Wt. (%)
Zr02
HgO
B2°3
NaOH
Ca as CaF
Fission product and other
oxides, fluorides
Nitrogen as N.O
Bulk Density
Aluminum
(Non- fluoride)
Waste
85
0
1
0.3
2.4
0
4.8
4
<2
Zirconium
(Fluoride)
Waste
8
34
0
0.9
0.1
54
0.5
<1
<1
1,100 kg/m3 1,600 kg/m3
Based on: Alternatives for Long-Term Management of High-Level Defense
Waste—Idaho Chemical Processing Plant. ERDA 77-43,
September 1977.
74
-------
TABLE A-16
AVERAGE COMPOSITION OF HIGH-LEVEL LIQUID WASTE
IDAHO CHEMICAL PROCESSING PLANT
Composition, Wt. (%)
Component
Al
ZrF.
4
NaNO,
HNO.
Aluminum Waste
24.1
0.3
0.3
0.1
Total Activity;
70.7
100.0
24 Ci/gal
Zirconium Waste
4.1
4.4
0.02
13.8
0.9
6.6
70.2
100.0
3 Ci/gal
Based on: Alternatives for Long-Term Management of High-Level Defense
Waste—Idaho Chemical Processing Plant. ERDA 77-43,
September 1977.
75
-------
waste case for each plant has been selected, based where possible on
knowledge of planned future operations, but assuming no major addition
to government waste from new programs. For Hanford, this reference
case assumes the 1990 waste projection, including additions from the
N-reactor reprocessing. For Savannah River, the reference case is the
1985 SRP projection. For Idaho, the reference case is taken to be the
1990 projection of 5400 m3 of calcine and 6000 ra3 (1.6 million gal)
of liquid waste.(19) xable A-17 presents a summary of the reference
government waste quantities.
If it were decided to convert government waste to a glass, the sodium
content of the waste at Hanford and at Savannah River would necessitate
production of about one million MT of glass (in order to keep the sodium
concentration in the glass below 10%); unless the sodium is removed.
After removal of the sodium, other non-fission-product components will
be limiting, e.g., uranium, especially at Hanford, and iron and aluminum.
Therefore, treatment of the waste prior to vitrification in order to
remove sodium and possibly uranium, aluminum, and iron can influence
the quantity of glass. A cost trade-off is involved in the decision
whether to make and dispose of very large quantities of glass or to first
remove the sodium (and possibly other interfering constituents) from
the waste prior to solidification.
76
-------
TABLE A-17
Site
Hanford
Savannah River
Idaho
TOTALS
Thousands
of
Cubic Meters
200
rer 83
11
SUMMARY
Sr-90
Plus
Cs-137
g
2.4 x 10
2.6 x 108
7.0 x 107
OF REFERENCE
Radioactivity
Total
FPs
g
2.5 x 10
3.2 x 108
1.0 x 108
GOVERNMENT
, Ci
Uranium
2
7.1 x 10
'v 48
^ 2
WASTE QUANTITIES
Total
TRU FPs
s
1.4 x 10 60
7.4 x 105 57
1.0 x 103 12
Wt.
Uranium
900
^50
^ 2
(MT)
TRU
.52
.44
.05
Na
Content
66,000
30,000
30
294
5.7 x 10
8
6.7 x 10
8
7.6 x 10'
8.8 x 10'
129
952
1.01
96,000
-------
A-5.0 TOTAL QUANTITIES OF HIGH-LEVEL WASTE
A-5.1 ESTIMATED RANGE OF U.S. INSTALLED NUCLEAR CAPACITY
In order to estimate the total amount of high-level waste that might
be produced over the next several decades, it is necessary to consider
the long-term outlook for nuclear power growth in the United States—a
subject on which there is disagreement. Fortunately, this study need
not be precise in developing such forecasts, since the source terms
(radioactivity, heat generation) associated with any given quantity of
waste can be readily scaled upward or downward to accomodate changes in
future patterns of nuclear energy generation. Therefore, the purpose
of this section is to estimate approximately a range of future possibil-
ities for domestic use of nuclear energy in the production of electricity
and to select a reference case that tends for the sake of conservatism,
toward the high side of reasonable estimates. Before presenting these
estimates, however, it is worthwhile to summarize briefly current nuclear
growth projections.
Recent years have seen a steady reduction in nuclear power growth
projections. The Arab oil embargo substantially increased costs of oil
and substitute fuels such as coal, causing price resistance by energy
consumers, which in turn decreased electric load growth projections.
As recently as 1974, the Atomic Energy Commission (AEC) projected installed
nuclear capacities of 110 GW in 1980, 220-260 GW in 1985, 400-560 GW in
1990, and 830-1370 GW in 2000.( ' In the National Energy Plan of 1976,
nuclear power growth projections estimated 70-76 GW in 1980, 160-185 GW
in 1985, 265-340 GW in 1990, and 450-800 GW in 2000.<25> In testimony
before a committee of the House of Representatives, President Carter's
chief energy advisor, Dr. James Schlesinger, estimated that 380 GW of
nuclear capcity will need to be in service by the year 2000; this figure
was subsequently reported by Bown and Williamson.^ '
The 380 GW estimate for the year 2000 rests on two expectations:
(1) that through conservation, cut-backs, and efficiency gains, the rate
of growth in electric power consumption, which in recent decades has
averaged 7% annually, will be held to 5% over the next decade, and to
3.5% over the balance of the century; and (2) a doubling of the present
level of coal production by 1985.
Several other projections for nuclear power growth provide a frame
of reference for estimating future production of high-level waste through
the year 2000, given in Figure A-30.
79
-------
500
CD
O
CO
3,
O)
T3
i
-o
c
to
0)
400
300
200
S 100
§ 50
c
B. Assessment of the
Economic Potential
of Nuclear Power (early '77)
D. Nominal Projection
A.
Current Utility
Timetable for
Existing Projects
C. ERDA Low-Growth
Scenario (25)
I
L
I
I
I
I
I
1977 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 2000
Year
FIGURE A-30 1977 U.S. NUCLEAR POWER PROJECTIONS FOR WASTE MANAGEMENT ANALYSIS
-------
1. Curve A reflects the current utility timetable for
bringing into operation all presently-committed
nuclear power capacity, except for those projects now
earmarked for cancellation. The data plotted here
were taken principally from a survey conducted by
the staff of the American Nuclear Society.^7) jn
cases where scheduled changes have been announced
since the survey was made, the new dates were used.
2. Curve B reflects an S. M. Stoller Corporation projection
(early 1977) of U.S. nuclear power growth if (a) U.S.
electrical consumption increases at an average rate of
about 4.5% per year over the next several decades and
(b) utility decisions in regard to additions to base
load generating capacity are made on straight economic
grounds. In developing this projection, a region-by-
region analysis of utility needs for new base-load
additions and of the competitive economics of nuclear
power vs. coal was made. This analysis has led to
the conclusion that if economics were governing,
nuclear power would account for approximately half
of estimated base-load additions.
3. Curve C is ERDA's most recent low-growth scenario for
nuclear power. As previously noted, Dr. Schlesinger's
estimate of 180 GW for the year 2000 lies on this curve.
4. Curve D is the nominal projection for this study, based
on three assumptions:
(a) The actual rate of installation of committed
capacity will lag behind the present utility
timetable. The observed difference between
Curves D and A in the period 1977 through 1986
represents an allowance for further slippage in
construction schedules and also for some further
project cancellations.
(b) Over the next several years, little net increase
will occur in U.S. utilities' commitments to
nuclear power, in part because of current un-
certainties concerning nuclear power and in part
because of present constraints on utility financing
of new capital commitments, whether for nuclear or
fossil-fuel plants.
(c) The rate of new nuclear commitments will eventually
rise and follow approximately the same slope as Curve B.
81
-------
In short, installed nuclear capacity may be in the neighborhood
of 450 GW by the end of this century, approximately 20% higher than
in the lowest ERDA scenario (Curve C). This would appear to meet
the criterion of an estimate which is reasonable but tending toward
the high (conservative) side for purposes of waste projections.
Growth beyond the year 2000 will be at a rate that depends upon the
overall growth in consumption of electric energy, as well as upon the
availability of suitable alternative forms of energy. Projection of
these parameters becomes ever more speculative as one looks beyond
the turn of the century.
Recognizing the uncertainties associated with all long-term projec-
tions of nuclear energy generation, it seems reasonable to use a figure
of 700 GW of LWR plant capacity for the time period through
approximately the year 2010 as a basis for assessing LWR high-level
waste generation.
A population of 700 GW of LWRs represents a reasonable benchmark
for the purpose of carrying out risk studies on radioactive waste
disposal. If the breeder reactor is developed and exploited in the
United States over a period of at least several decades, projected
quantities of radioactive waste would be changed. The nature of
the change would depend on whether breeders were built in addition to
the assumed LWR population or as a substitute for later LWRs. In any
event, given today's (1977) climate on the use of plutonium in the
nuclear fuel cycle, it is pointless to speculate on the future prospects
and timing for breeder reactors. As pointed out in other sections of
this report, the HLW source term characterization is, qualitatively,
primarily a function of the intensity of nuclear energy generation,
i.e., the amount of uranium and.plutonium actually fissioned per ton
of fuel charged, rather than of the reactor type or fuel cycle employed.
Hence, an LWR economy has been used as the framework for developing
estimates of potential radioactive waste production.
A-5.2 HIGH-LEVEL WASTE FROM U.S. COMMERCIAL NUCLEAR POWER PLANTS
Section A-3.0 discusses the characteristics of high-level waste
(either from a reprocessing plant or contained in spent fuel) on a
specific basis for the LWR fuel cycle — i.e., per unit of energy
generated or per unit-mass of charged fuel. In order to obtain the
total quantity of waste associated with any given level of LWR nuclear
capacity, the following eauation may be used:
(Total quantity of waste) = ^capacity in GW) x (lifetime
production of waste per GW)
Quantities of waste can be specified in arbitrary units; fhis
report uses metric tons of heavy metal (MTHM) charged to the reactor,
a unit that is nearly equal to an MTHM discharged from the reactor.
82
-------
Based on 26 MT/GW-yr, the total quantity of spent fuel produced by
700 GW of nuclear capacity over 30 years would be 5.5 x 105 MTHM. The
corresponding waste quantities (throwaway cycle) are 1.87 x 1010g fission
products (FP) and 5.36 x 109g TRU. The specific quantities per unit of
energy generation are 8.9 x 105g FP/GW-yr, and 2.55 x lO^g TRU/GW-yr.
Figure A-l shows the cumulative buildup of spent fuel, fission
products, and TRU content of spent fuel for the nominal growth projec-
tion. It is generally believed that waste from spent fuel will be at
least ten years old before disposal. The waste quantities are keyed
to this ten-year-old fuel with the assumption that it would be disposed
of as spent fuel, the worst case from the standpoint of TRU content.
A-5.3 POTENTIAL TRANSFER OF FOREIGN HIGH-LEVEL WASTE TO THE UNITED STATES
One of the cornerstones of current U.S. non-proliferation nuclear
fuel strategy is that nations having access to recycle technology
("have" countries) would guarantee adequate supplies of enriched
uranium to countries without recycle capacity ("have-not" countries),
provided that such "have-not" countries agree to forego reprocessing
and to return spent fuel to some form of national or international
control. This approach raises questions about the ultimate fate of
radioactive waste from spent fuel returned to a supplier country —
e.g., the United States — or to some repository or reprocessing center
under international control, but located in one of the "have" countries.
Indeed, it has been suggested that countries like the United States,
with substantial uranium resources, enrichment capability, and recycle
capability, might serve as repositories for collection, storage, and
ultimately, perhaps, reprocessing of spent fuel from other nations.
Under those conditions, would the United States also end up as the
repository for the radioactive waste from these foreign fuels? The
answer to this question depends to a great extent on the quantity of
foreign waste materials. Review of projected nuclear power growth in
the non-communist world over the next 25 years performed by the Organiz-
ation for Economic Cooperation and Development (OECD), ERDA, and other
agencies indicates that most of this growth is concentrated in the devel-
oped countries — primarily the United States, Canada, Japan and the
countries of Western Europe.(28) Most of these countries either now have or
ultimately plan to have fuel storage and/or reprocessing facilities.
The projected amount of growth through the year 2000 in "have-not" coun-
tries is less than 20% of the total and would represent well under 20%
of the total installed nuclear capacity. (Even this fraction may be an
overstatement in the context of the current thrust of U.S. non-prolifer-
ation policies, as well as the financing difficulties associated with
nuclear projects.) If spent fuel and/or radioactive waste from "have-
not" countries is shared in some reasonable way among the various "have"
countries, the burden could be considered relatively modest compared with
83
-------
the projected radioactive waste burden from domestic nuclear plants.
Whether it would be so viewed is not clear at this time. Substantial
importation of foreign waste could encounter serious political opposition
in the United States and probably in other countries as well.
In any case, the quantities are not likely to be more than a modest
fraction of existing and projected government and commercial U.S. waste.
Disposal strategies and technologies for this foreign waste would certainly
be similar or identical to those for domestic waste.
A-5.4 ADDITIONAL WASTE FROM U.S. GOVERNMENT PROGRAMS
The characteristics of waste from government sources in the United
States have been described in Section A-4.0. Som£ of the important
properties of government waste were summarized in Table A-17. The
summary presented in Section A-2 shows that the fission product activity
of government waste is modest compared with that projected for commercial
waste through the year 2000. Transuranic content of government waste is
inherently low, for a number of reasons. The form of government waste
will greatly complicate conversion to vitrified form in reasonable volumes*
(See Section A-4.)
A-5.5 GENERAL PROCESS TRASH TRU-CONTAMINATED WASTE
3
There are currently an estimated 33,000 m of low-specific activity
TRU-contaminated waste at ERDA sites, with a total plutonium content
in excess of 200 kg.(29) This waste is subject to an existing requirement
(ERDA Manual Chapter 0511) for special handling.
For commercial wastes, proposed regulations (39 FR 32921, published
9/12/74) would require that non-high-level waste contaminated to greater
than 10 nCi/g in transuranics be treated at the point of origin in a
manner substantially identical to HLW (solidify, package, and transfer
to a Federal repository). The regulations are not clear whether geologic
disposal would be required, but that appears to be the intent of current
disposal programs.
The commercial power reactor throwaway fuel cycle would generate
little low-specific-activity TRU-contaminated waste, because spent
fuel would not be reprocessed and plutonium would not be recycled.
For the recycle options, as indicated previously, the Pu content of
this TRU waste may amount to 2-7 kg/GW-yr, depending upon the mix
of U0~ and mixed-oxide assemblies being reprocessed. Volumes, curies,
and heat content per unit of energy production are shown in Table A-18.
Low-specific-activity general process trash waste represents a
potential TRU source less than a tenth of the TRU source in high-level
waste. Furthermore, the TRU waste is in much less concentrated form.
It should also be pointed out that, per unit weight, the radiotoxicity
84
-------
TABLE A-18
LOW/INTERMEDIATE LEVEL TRU WASTE CURIE AND'HEAT CONTENT
(per GW-yr)
Full Recycle
(Uranium and Plutonium)*
Uncompacted
Minimum compaction
Maximum compaction
Uranium recycle only
Uncompacted
Minimum compaction
Maximum compaction
Range of _
Volume (m )
Pu
S/m"
Ci/m"
W/mJ
37-384
163
48
73-,7
17
56
730-70
170
560
22-2
5
17
29-108
74
21
93-26
36
129
930-260 28-8
360 11
1290 39
*Data assume processing of early generation Pu recycle assemblies. This
results, in the full recycle case, in somewhat lower values than used
for reference in the discussion in Section A-2.
85
-------
for TRU waste is significantly lower than for HLW because the latter has
a much higher content of transplutonium elements. Indded, the UDI for
total trash TRU waste per metric ton of spent fuel never exceeds the
UDI for the natural uranium ore used to make the fuel.
A more extensive discussion is presented in Appendix V.
A-5.6 SUMMARY QUANTITIES AND SOURCE TERMS
The estimated range of annual commercial waste disposal requirements
in the years 2000 and 2010 are presented in Tables A-l and A-2, respec-
tively. The estimated combined cumulative commercial and government
waste burden circa 2010 is indicated in Table A-3.
86
-------
TABLE A-l
ESTIMATED RANGE OF
ANNUAL DISPOSAL
REQUIREMENTS FOR COMMERCIAL WASTE*
(CIRCA 2000)
High-Level Waste
Total
1.
2.
Category of Waste
Commercial Waste
(throwaway fuel cycle)
Range
Reference
Commercial Waste
(from reprocessing of
mixed -oxide recycle
fuel cycle assemblies)
Range
Reference
Spent Fuel
(MTHM)
9.7-12.2 x 103
11.5 x 103
9.7-12.2 x 103
11.5 x 103
Radioactivity
(Ci)
4-5 x
5 x
3.1-3.9
3.6
109
109
x ID9
x 109
Fission
Products
(MT)
340-430
400
280-350
330
TRU
(MT)
97-122
115
21-26
25
Other Associated Waste
Iodine-
129 Carbon-14 Miscellaneous
(Ci) (Ci) (Ci)
(Contained in Spent Fuel)
400-500 4.4-5.6 x 103 2.9-3.7 x 107
500 5.2 x 103 XS x in7
Note: Assumes 26 MTHM/GW-yr.
*Commercial quantities based on range of installed nuclear capacity of 380 GW - 480 GW in 2000,
(450 GW reference) for ten-year-old waste.
+Based on 10-20 ppm N-14 initially in fuel.
^''Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus
entrapped fission products and actinides in the cladding.
-------
TABLE A-2
ESTIMATED ANNUAL DISPOSAL REQUIREMENTS FOR COMMERCIAL WASTE. YEAR 2010*
Category of Waste
1. Commercial Waste
(throwaway fuel cycle)
Spent Fuel
(MTHM)
17.8 x 103
High-level Waste
Other Associated Waste
Total
Radioactivity
(Ci)
7 x 109
Fission
Products
(MT)
625
TRU
(MT)
180
lodine-
129
(Ci)
Carbon-14+
(Ci)
Miscellaneous
(Ci)
(Contained in Spent Fuel)
00
oo
2. Commercial Waste
(from reprocessing of
mixed-oxide recycle
fuel cycle assemblies)
17.8 x 103 5.6 x 109
515
38
700
8.1 x 103
5.4 x 107
Note: Assumes 26 MTHM/GW-yr.
*
Commercial quantities based on reference case installed nuclear capacity of 700 GW
with 10-year aging period assumed prior to reprocessing and/or disposal.
Based on 10-20 ppm N-14 initially in fuel.
^"Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus
entrapped fission products and actinides in the cladding.
-------
TABLE A-3
ESTIMATED TOTAL DOMESTIC HIGH-LEVEL WASTE BURDEN
High-Level Waste
oo
vo
Other Associated Waste
Category of Waste
Spent Fuel
(MTHM)
la. Commercial Waste 5.5 x 105
.Xthrowaway fuel cycle)
Ib. Commercial Waste
(from reprocessing of
mixed oxide recycle
fuel cycle assemblies) 5.4 x 1(P
2. Waste from Government*
Programs
Total Fission
Radioactivity Products TRU
(Ci) (MT) (MT)
2.3 x 1011 19,000 5,400
lodine-
129 Carbon-14+ Miscellaneous^
(Ci) (Cl) (Ci)
(Contained in Spent Fuel)
1.8 x 1011 16,000 1,200 2.3 x 104 2.5 x 105 1.6 x 109
6.7 x 108 130 1.0 - -
Quantities of commercial waste based on lifetime production for reference nuclear capacity
in the year 2010 (700 GW) keyed to LWR generation. Data are for 10-year-old waste . Quantities
and characteristics of government waste keyed to existing inventory in the late 1980's - early 1990's.
Based on 10-20 ppm N-14 initially in fuel.
^"Miscellaneous" consists of: Fuel assembly structure and cladding activation products, plus entrapped
fission products and actinides in the cladding.
Note: For projections (p) of total LWR capacity other than 700 GW in the year 2010, approximate
values may be obtained from the ratio p times the values on the table.
700
-------
A-6.0 LIMITS TO THE ANALYSIS (ACCURACY OF CALCULATIONS)
A-6.1 REFERENCE CASES - LWR
As noted in Section A-3.2, ORNL has compared ORIGEN results with
measurements on PWR fuel.(3,5,6,7) It appears that ORIGEN overpredicts
radioactivity of those fission products measured. The overpredictions
range from several percent to about one hundred percent (i.e., a factor
of 2 high). For the actinides, ORIGEN underpredicts Pu-238 by approxi-
mately 20%, predicts Pu-239 and -240 approximately correctly, overpre-
dicts Am-241 by approximately 150-350%, and underpredicts Cm-242 by
approximately 35%. ORNL Chemical Technology Division indicates that
an error was uncovered in the reduction of experimental data, which,
when corrected, will improve the agreement of measured data with ORIGEN,
particularly for the fission products. ORNL believes that even with the
correction, not too much weight should be placed on the magnitude of the
difference because the multichannel analyses used to obtain the measured
data (Ci/MTU) are not very accurate. There are some deficiencies in the
ORIGEN treatment of the higher actinides (Am and Cm), even with the re-
vised cross sections, since accurate mass analysis yields'a significantly
different isotopic makeup of these two elements than that calculated by
ORIGEN.
Under the assumption that the differences found by ORNL between
ORIGEN predictions of actinide concentrations and actual measurements are
real and about the right order of magnitude, an evaluation was made in
order to determine the impact of the inadequacies of the calculations
with respect to heat rate, and UDI. (The impact of actinide misprediction
on gamma dose rate would be"insignificant, because actinides are primarily
alpha emitters; the gamma dose is determined by the fission products
for several hundred years.)
The ORIGEN "mispredictions" concerning the Am isotopes lead
to conservative values of the heat generation rate and UDI up to the
decay time when they become unimportant. The underprediction of Pu-238
and Cm-242, however, will have an adverse effect on some of the source
terms. Underprediction of Pu-238 will have a somewhat adverse effect on
prediction of actinide thermal power for several hundred years; e.g., at
100-year decay time there would be an underprediction of actinide thermal
power of approximately 4%. Pu-238 is a major contributor to the Pu UDI
(approximately 40-50%) for several hundred years. Therefore, a 20%
underprediction in Pu-238 could lead to an underestimate of the Pu UDI
by approximately 10%. This underprediction is relatively unimportant,
except in the unlikely event that Pu leaches at a very much higher rate
than other waste elements. Except for the throwaway cycle, Pu is not :
the controlling actinide element from the viewpoint of radiotoxicity for
the first several hundred years; within this time range, the total
actinide radiotoxicity is at least an order of magnitude lower than the
total radiotoxicity from fission products.
91
-------
In the case of the underprediction of Cm-242, the major impact is
in relation to ingestion radiotoxocity at decay times longer than 10,000
years. The key contributor to the ingestion radiotoxicity at these long
decay times is Ra-226, which is produced via several alpha decays of U-
234 and Cm-242: Cm-242 via two alpha decays produces U-234, which via
two additional alpha decays, produces Ra-226. In reprocessed waste with
a low uranium content (high degree of uranium removal) Cm-242 is the
primary source of Ra-226. Therefore, for reprocessed waste, a 35Z under-
prediction of Cm-242 would produce nearly a 35% underprediction of the
Ra-226 radiotoxicity. In the throwaway cycle case, the impact of the
Cm-242 underprediction is small with the Ra-226 concentration controlled
primarily by decay of U-234. Nevertheless, in the reprocessed-waste
case, even when the Ra-226 UDI is increased by more than 35%, the total
ingestion radiotoxicity is still substantially below that of the natural
uranium are used to make the equivalent U02 fuel. Although it is true
that Cm controls the total actinide ingestion radiotoxicity for the first
several hundred years in the reprocessed-waste cases, again the actinide
radiotoxicity in this decay time range is at least an order of magnitude
lower than the fission product radiotoxicity.
In summary, it appears that ORIGEN calculations produce conservative
(higher) values than actual measurements for fission product sources.
In the case of actinides, ORIGEN may underpredict Pu-238 and Cm-242.
Nevertheless, the impact of these underpredictions appears relatively
unimportant.
A-6.2 OTHER FUEL CYCLES
A-6.2.1 Tandem Cycle
The actinide source terms from the tandem cycle analysis are subject
to more uncertainty than those from the reference cases. The method of
treating the fission product contributions, as described previously, is
reasonably accurate (primarily burnup-dependent and spectrum-independent).
A-6.2.2 Thorium Cycle
The ORIGEN thorium cycle fission product contributions are probably
somewhat less accurate than the reference cases, primarily because the
fissile mix as evaluated by ORIGEN with depletion is somewhat different
than if computed by more exact methods. In addition, although ORIGEN
does treat U-233 fission yields, there might be more uncertainty in this
yield data than equivalent data for U-235 fissions.
The actinide treatment is reasonable; what helps the situation in
the thorium cycle is that the TRU actinide concentrations are low com-
pared with U02/M02 cycles, so errors in the cross sections associated
with these isotopes are relatively unimportant.
92
-------
REFERENCES
1. Bell, M.J. ORIGEN, the ORNL Isotope Generation and Depletion Code.
ORNL - 4628, Oak Ridge National Laboratory, May 1973. Revised by
S. M. Stoller Corporation, June 1977. The revision consists of the
updated actinide cross-sections for UO- and MO- fuels as developed
by ORNL and obtained at ORNL, A. Crofff May 1977.
2. Benedict, M. and T. Pigford, Nuclear Chemical Engineering.
McGraw-Hill Book Co., N.Y., 1957.
3. LWR Fuel Reprocessing and Recycle Program Quarterly Report for
Period October 1 to December 31, 1976. ORNL/TM - 5^60, Oak Ridge
National Laboratory, 1976.
4. Davis, W., Jr., Carbon-14 Production In Nuclear Reactors. ORNL
NUREG/TM-12, 1977.
5. LWR Fuel Reprocessing and Recycle Program Quarterly Report for
Period January 1 to March 31, 1976. ORNL/TM - 5447. Oak Ridge
National Laboratory, 1976.
6. LWR Fuel Reprocessing and Recycle Program Quarterly Report for
Period April 1 to June 30, 1976. ORNL/TM - 5647, Oak Ridge
National Laboratory, 1976.
7. LWR Fuel Reprocessing and Recycle Program Quarterly Report for
Period July 1 to September 30, 1976. ORNL/TM - 5660, Oak Ridge
National Laboratory, 1976.
8. Significant Actinide Activities in the LWR and LMFBR Nuclear Fuel
Cycles. EPA-520/3-75-006, October 1974.
9. North, E.D., Solid Waste Generation in Reprocessing Nuclear Fuel.
In: Radioactive Wastes from the Nuclear Fuel Cycle, AIChE Symposium
Series 154:72, 1976.
10. Barnwell Nuclear Fuel Plant Separations Facility Final Safety
Analysis Report. Allied General Nuclear Services, 1974.
11. Blomeke, J.O., et al. Projections of Radioactive Wastes to be
Generated by the U. S. Nuclear Power Industry, ORNL/TM - 3965,
Oak Ridge National Laboratory, 1974.
12. Chart of Nuclides, Knolls Atomic Power Laboratory, llth ed,,
Revised to April 1972. Schenectady, N.Y.
13. Rosholt, J.N., B.R. Doe, and M. Tatsumoto. Evaluation of the
Isotopic Composition of Uranium and Thorium in Soil Profiles.
U. S. Geological Survey. Geo. Soc. Amer. Bulletin, 77:987-1004,
September 1966.
93
-------
14. Frankel, A.J. and N.L. Shapiro. Appraisal of PWR-HWR Tandem Fuel
Cycles. NPSD - 45, February 1977.
15. Shapiro, N. L.,J. R. Rec, and R. A. Matzie. Assessment of Thorium
Fuel Cycles in Pressurized Water Reactors. EPRI NP-359,
February 1977.
16. High-Level Radioactive Waste Management Alternatives. Vol. 1
BNWL-1900, Battelle Pacific Northwest Laboratories, Richland,
Washington, May 1974.
17. Environmental Statement, Light Water Breeder Reactor Program. Vol.
IV. ERDA-1541, U. S. Energy Research and Development Administra-
tion, July 1975.
18. Alternatives for Managing Wastes from Reactors and Post-Fission
Operations in the LWR Fuel Cycle. ERDA 76-43, UC-70,
U. S. Energy Research and Development Administration, May 1976.
19. Crandall, J. L. and H. J. Clark, ed. Integrated High-Level Waste
Immobilization Plans (Draft). Coordinated by Savannah River Laboratory.
20. Alternatives for Long-Term Management of Defense High-Level Radio-
active Waste—Hanford Reservations, Richland, Washington. ERDA 77-44,
U. S. Energy Research and Development Administration, September
1977.*
21. Lieberman, J. A. et al. High-Level Waste Management (Testimony
prepared for presentation before the California Energy Commission).
March 1977.
22. Alternatives for Long-Term Management of Defense High-Level Radio-
active Waste—Savannah River Plant. ERDA 77-42, U. S. Energy
Research and Development Administration, September 1977.*
23. Alternatives for Long-Term Management of Defense High-Level Radio-
active Waste—Idaho Chemical Processing Plant, Idaho Falls, Idaho.
ERDA 77-43, U.S. Energy Research and Development Administration,
September 1977.*
24. Nuclear Power Growth 1974-2000. WASH 1139, U. S. Atomic Energy
Commission, February 1974.
25. A National Plan for Energy Research, Development and Demonstration:
Creating Energy Choices for the Future. ERDA 76-1, U. S. Energy
Research and Development Administration, April 15, 1976.
* Inserted subsequent to preparation of the draft report.
94
-------
26. Bown, R. W. and R. H. Williamson. Domestic Uranium Requirements.
Policy and Evaluation Division, U. S. Dept. of Energy. Paper
presented at Uranium Industry Seminar, Grand Junction, Colorado,
October 26, 1977.*
27. Nuclear News Buyers Guide. 20:(3), mid-February 1977.
28. Raudenbush, M., W. Krebs et al. Nuclear Waste Management Options
for Environmentally Sound International Solutions. Prepared by
S. M. Stoller Corp. and Arthur D. Little, Inc., for U.S. Dept. of
State, May 1, 1978.*
29. Daly, G. H. and 0. P. Gormley. Handling, Storage, and Disposition
of Solid Low Level Waste. In: Radioactive Wastes from the Nuclear
Fuel Cycle. AIChE Symposium Series 154:72, 1976.
*Inserted subsequent to preparation of the draft report.
95
-------
APPENDIX A-I
GLOSSARY AND LIST OF ABBREVIATIONS
-------
GLOSSARY*
Actinides; A series of elements in the periodic table, beginning with
actinium (element No. 89) and continuing through lawrencium (element
No. 103). The series includes uranium (element No. 92) and all of
the man-made transuranium elements. All the actinides are radioactive.
Activation product; Radioactive isotope formed by a neutron capture
reaction.
Alpha particle: A positively charged particle emitted My certain radio-
active materials. It is made up of two neutrons and two protons bound
together. It is the least penetrating of the three common types of
radiation (alpha, beta, gamma) emitted by radioactive material, being
stopped by a sheet of paper. It is dangerous to plants, animals, or
man only if the alpha-emitting substance has entered the body.
Background radiation: The radiation in man's natural environment,
including cosmic rays and radiation from the naturally radioactive
elements, both outside and inside the bodies of men and animals.
It is also called natural radiation.
Beta radiation: See Decay, radioactive.
Boiling water reactor (BWR); A type of nuclear power reactor that employs
ordinary water (1^0) as coolant and moderator and allows bulk boiling
in the core so that steam is generated in the primary reactor vessel.
Breeder reactor: A reactor that produces fissionable fuel as well as
consuming it, especially one that creates more than it consumes. The
new fissionable material is created by capture (in "fertile" materials)
of neutrons from fission. The process by which this occurs is known
as breeding.
Burnup: The thermal energy produced per quantity of nuclear fuel, usually
expressed as megawatt-days per metric ton.
Burnup perturbations; Changes in the nuclear fuel as the result of alter-
native burnups.
Calcine; The solid product of a roasting treatment under oxidizing con-
ditions.
Chopper; Device for cutting spent fuel elements into smaller lengths.
Cladding: The outer jacket of nuclear fuel elements. It prevents
corrosion of the fuel and the release of fission products into the
coolant. Stainless steel and zirconium alloys are common cladding
materials. Synonym: hull.
*These definitions are intended to provide guidance for this study and
are not to be construed as having been supplied or adopted by EPA.
A-I-1
-------
GLOSSARY (continued)
Curie: The basic unit to describe the intensity of radioactivity in a
material. The curie is equal to 37 billion disintegrations per second,
which is approximately the rate of decay of 1 gram of radium. A curie
is also a quantity of any nuclide having 1 curie of radioactivity.
Named for Marie and Pierre Curie, who discovered .radium in 1898. The
prefixes milli-, micro- and nano- are frequently used and indicate
quantities of 10~3 curie, 10~6 curie and 10~9 curie, respectively.
•Daughter: The nuclide remaining after the radioactive decay of an atomic
nucleus.
Decay heat: The energy released when radioactive nuclides change to
their daughter nuclides.
Decay, radioactive: The spontaneous transformation of one nuclide into
a different nuclide (or into a different energy state of the same
nuclide). The process results in a decrease, with time, of the number
of the original radioactive atoms in a sample. It involves the emission
from the nucleus of alpha particles, beta particles (electrons) or gamma
rays (electromagnetic radiation); or the nuclear capture or ejection of
orbital electrons. Also called radioactive disintegration.
Decontamination factor: The ratio of the amount of a given type of radio-
active material entering a process (or process step) to that which
leaves the process (or process step).
Disposal: Isolating the radioactive waste permanently in a form and
manner with no intent to retrieve it.
Element: One of the 103 known chemical substances that cannot be divided
into simpler substances by chemical means. A substance whose atoms
all have the same atonic number. Examples: hydrogen, lead, uranium.
(Not to be confused with fuel element.)
Fertile materials Material in which fissile isotopes can be produced
by neutron capture.
Fertile nuclide: A nuclide capable of being transformed, directly or
indirectly, into a fissile nuclide by neutron capture.
Fissile nuclide: A nuclide capable of undergoing fission by interaction
with slow neutrons.
Fission: The splitting of a heavy nucleus into two approximately equal
parts (which are nuclei of lighter elements), accompanied by the
release of a relatively large amount of energy and generally two
or more neutrons. Fission can occur spontaneously, but usually is
caused by nuclear absorption of neutrons.
A-I-2
-------
GLOSSARY (continued)
Fission products; The nuclei (fission fragments) formed by the fission
of heavy elements, plus the nuclides formed by the fission fragments'
radioactive decay.
Fractionization; For the purpose of this document, fractionization refers
/to separation of the cesium and strontium components of the waste for
separate storage.
/
F"el; Fissionable material used or usable to produce energy in a reactor.
Also applied to a mixture, such as natural uranium, in which only part
of the atoms are readily fissionable, if the mixture can be made to
sustain a chain reaction.
Fuel assembly; A unit containing clad pieces of nuclear fuel for insertion
into the core of a nuclear reactor. An integral part of the fuel element
is the cladding provided to protect the fuel from corrosion by the reactor
coolant and to contain the fission products formed during irradiation.
Fuel bundle; Same as Fuel assembly (q.v.).
Fuel cycle; The series of steps involved in supplying fuel for nuclear
power reactors. It includes mining, refining, the original fabrication
of fuel elements, their use in a reactor, chemical processing to recover
the fissionable material remaining in the spent fuel, re-enrichment of
the fuel material, and refabrication into new fuel elements.
Fuel element; Same as Fuel assembly (q.v.).
Fuel reprocessing; The processing of reactor fuel to recover the unused
fertile and fissile material.
Fuel rod; A tube containing U02 or mixed oxide fuel; part of a fuel assembly.
Gamma radiation; See Decay, radioactive.
Classification: Incorporation into glass.
Half-life; The time in which half the atoms of a particular radioactive
substance disintegrate to another nuclear form. Measured half-lives
vary from millionths of a second to billions of years.
Half-life effective; The time required for a radionuclide contained in
a biological system, such as a man or an animal to reduce its activity
by half as a combined result of radioactive decay and biological
elimination.
A-1-3
-------
GLOSSARY (continued)
High-level waste; The highly radioactive waste resulting from the repro-
cessing of spent fuel to separate uranium dnd plutonium from the
fission products. The term includes the high-level liquid wastes
(HLLW) produced directly in reprocessing, and the solid high-level
wastes (HLW) which can be made therefrom.
Hull; Fuel assembly structure (q.v.) and cladding (q.v.).
Ion: An atom or molecule that has lost or gained one or more electrons.
By this ionization it becomes electrically charged. Examples: an
alpha particle, which is a helium atom minus two electrons; a proton,
which is a hydrogen atom minus its electron'
Isotope; One of two or more atoms with the same atomic number (the same
chemical element) but with different atomic weights. Isotopes have
very nearly the same chemical properties, but different nuclear
(radioactive-decay) properties. Thus, for the element carbon, for
example, the isotope of atomic weight 12 (C-12) and the isotope of
atomic weight 14 (C-14) behave identically in chemical reactions;
but whereas C-12 is not radioactive, C-14 is radioactive, decaying
with a 5730-year half-life to stable nitrogen (N-14) with release
of a beta particle.
Leaching; Extracting material from a solid by contacting it with water
or with a solution.
Light water reactor; A reactor in which ordinary water (1^0) is used as
the coolant and moderator. In such reactors the water is either
allowed to boil (boiling water reactor or BWR) or pressurized to
prevent boiling (pressurized water reactor or PWR).
Loading; Amount of waste contained per unit of volume.
Low-level waste: Waste containing types and concentrations of radio-
activity such that shielding to prevent personnel exposure is not
required.
-27
Millibarn; 10 square centimeter.
Mixed-oxide fuel cycle; A fuel cycle (q.v.) in which fuel containing
both uranium oxide and plutonium oxide is fed to the reactor. Such
a cycle requires reprocessing of spent fuel to recover the residual
uranium and the plutonium for fabrication of fuel elements.
Natural uranium; Uranium as found in nature, containing 0.7% of U-235,
99.3% of U-238, and a trace of U-234. It is also called normal
uranium.
Neutron; An uncharged elementary particle that has a mass nearly equal
to that of the proton and is present in all known atomic nuclei except
the hydrogen nucleus.
A-I-4
-------
GLOSSARY (continued)
Nuclide; A general term applicable to all atomic forms of the elements.
The term is often used erroneously as a synonym for "isotope," which
properly has a more limited definition. Whereas isotopes are the
various forms of a single element (hence are a family of nuclides)
and all have the same atomic number and number of protons, nuclides
comprise all the isotopic forms of all the elements.
Off-gas; The gas given off in any process step.
Plutonium; A heavy, radioactive, man-made metallic element with atomic
number 94. Its most important isotope is fissionable plutonium-239,
produced by neutron irradiation of uranium-238. It is used for reactor
fuel and in weapons.
Pressurized water reactor (PWR); A type of power reactor that employs
ordinary water (t^O) as coolant and moderator and is pressurized to
keep the exit coolant stream from boiling.
Rack A measure, applicable to any form of ionizing radiation, of actual
energy absorption, being defined as the amount of energy Imparted to
matter by ionizing radiation per unit mass of irradiated material at
the place of interest. One rad corresponds to the absorption of 100 ergs
of energy per gram (100 ergs = 6.24 x 10? million electron volts, Mev).
In interpreting standards of radiation protection, it is generally
permissible to consider 1-roentgen exposure to gamma or x-rays as
roughly equivalent to a dose of 1 rad in soft tissue.
Radiation; The emission and 'propagation of energy through matter or
space by means of electromagnetic disturbances which display both
wave-like and particle-like behavior; in this context, the "particles"
are known as photons. Also, the energy so propagated. The term has
been extended to include streams of fast-moving particles (alpha and
beta particles, free neutrons, cosmic radiation, etc.). Nuclear
radiation is that emitted from atomic nuclei in various nuclear reactions,
including alpha, beta, and gamma radiation and neutrons.
Radioactivity; The spontaneous decay or disintegration of an unstable
atomic nucleus, usually accompanied by the emission of ionizing
radiation.
Radioisotope; A radioactive isotope. An unstable isotope of an element
that decays or disintegrates spontaneously, emitting radiation. More
than 1300 natural and artificial radioisotopes have been identified.
Radlonuclide; A radioactive nuclide. Thus, carbon-14 (C-14) is a radio-
nuclide because it decays radioactively to nitrogen-14 (N-14).
Radwaste; A contraction of the term "radioactive waste."
Recycle; The returning of uranium and plutonium (recovered in spent fuel
reprocessing) for reuse in new reactor fuel elements.
A-I-5
-------
GLOSSARY (continued)
Rem: A dose unit which takes into account the relative biological
effectiveness (RBE) of the radiation. The rem ("r_oentgen ^quiv-
alent man") is defined as the dose of a particular type of radiation
required to produce the same biological effect as one roentgen of
(0.25 Mev) gamma radiation. A 1-rad dose of alpha particles is
approximately equivalent in its biological effects to 10 rads of
gamma radiation, and hence may be expressed as 10 rems. A milli-
rem (mrem) is one thousandth of a rem.
Roentgen (R) : A measure of the ability of gamma or X rays to produce
ionization in air. One roentgen corresponds to the absorption of
about 86 ergs (100 ergs = 6.24 x 107 million electron volts, Mev)
of energy from X- or gamma radiation, per gram of air. The corre-
sponding absorption of energy in tissue may be from one-half to two
times as great, depending on the energy of the radiation and the
chemical composition of the tissue. The roentgen is thus more useful
as a measure of the amount of gamma or X rays to which one is exposed
than as a measure of the dose of such radiation actually received.
Salt cake: The solid residue resulting from a concentration of high-level
liquid waste in underground waste storage tanks.
Spent fuel: Fuel after its use in a nuclear reactor. It then contains
fission products, activation products and actinides, many of which
are radioactive. Synonym: irradiated fuel.
Structure: All parts of a fuel assembly, except for fuel and cladding.
Thorium: A naturally radioactive element with atomic number 90 and, as
found in nature, an atomic weight of approximately 232. The fertile
thorium 232 isotope is abundant and can be transmuted to fissile
uranium 233 by neutron irradiation.
Throwaway fuel cycle: One in which the spent fuel is disposed of
directly rather than reprocessed.
Transplutonic elements: Elements with mass number greater than 94.
They include americium and curium.
Transuranic elements; Elements with atomic numbers greater than 92.
They include neptunium, plutonium, americium, curium, and others.
Transuranic waste; Any waste material measured or assumed to contain
more than a specified concentration of transuranic elements.
Tritium: A radioactive isotope of hydrogen, of atomic weight 3.
Tritium (H-3) has a half-life of 12.3 years.
A-I-6
-------
GLOSSARY (continued)
Untreated Dilution Index; The volumetric quantity of water, or air,
required to dilute a quantity of radionuclides to the concentration
specified under the Standards for Protection Against Radiation in
non-occupational exposure, published in the Code of Federal Regulations
(10 CFR 20, Appendix B) and given in Table 2 of Appendix A-III of
this report. The untreated dilution index gives a gross indication
of the comparative risks of radionuclides, were these nuclides
actually released to the environment. UDI does not consider waste
disposal methods (packaging or geologic isolation), or their resultant
environmental pathways to man.
Uranium; A radioactive element with the atomic number 92 and, as found
in natural ores, an average atomic weight of approximately 238. The
two principal natural isotopes are uranium-235 (0.7% of natural uranium)
which is fissionable, and uranium-238 (99.3% of natural uranium) which
is fertile. Natural uranium also includes a minute amount of uranium-234,
Uranium is the basic raw material of nuclear energy.
Waste, radioactive; Equipment and materials (from nuclear operations)
that are radioactive and for which there is no further use.
A-1-7
-------
ABBREVIATIONS
AEC Atomic Energy Commission
BNWL Battelle Northwest Laboratories
BWR Boiling Water Reactor
CANDU Canadian Deuterium (Heavy Water) Reactor
ERDA Energy Research and Development Administration
EPA Environmental Protection Agency
FP Fission Product
HLW High-Level Waste (Solid)
HM Heavy Metal (Uranium and Plutonium)
HTGR High Temperature Gas-Cooled Reactor
HWR Heavy Water Reactor
IAEA International Atomic Energy Agency
LMFBR Liquid Metal Fast Breeder Reactor
LWR Light Water Reactor
MTHM Metric Ton of Heavy Metal
MTU Metric Ton of Uranium
NRC Nuclear Regulatory Commission
ORNL Oak Ridge National Laboratory
PWR Pressurized Water Reactor
TRU Transuranic
UDI Untreated Dilution Index
Ci Curie
GW Gigawatts (electrical) (1 GW - 10 kW)
GW-yr Gigawatt-year (electrical)
kg kilogram
kW kilowatt
MW Megawatt (electrical)
MWt Megawatt (thermal)
m Meter
mCi Millicurie
MCi Megacurie
yCi Microcurie
mR . milliRoentgen
mrem millirem
MT Metric ton
nCi Nanocurie
A-I-3
-------
APPENDIX A-II
PERTINENT NUCLEAR TECHNOLOGY
AND SOURCES OF RADIOACTIVITY
-------
APPENDIX A-II
PERTINENT NUCLEAR TECHNOLOGY AND SOURCES OF RADIOACTIVITY
High-level radioactive, waste management is concerned with containing
radioactivity and its effects. This Appendix presents some background
information on pertinent aspects of nuclear technology and radioactivity.
Radioactivity is the process whereby certain species of atoms
(nuclides) undergo spontaneous disintegration and liberate energy,
which generally results in the formation of new nuclides. The process
is accompanied by the emission of one or more types of radiation, such
as alpha particles, beta particles, and gamma photons(1). Such radiation
is capable of producing ions in passing through matter, and is thus
termed ionizing radiation.
There are more than fifty naturally-occurring isotopes, or natural
radionuclides, exhibiting radioactivity. Indeed, natural radioactivity
is "widely recognized as the largest source of human exposure to ionizing
radiation"^ '. Natural radiation is generally considered to contribute
a dose equivalent of 80-200 mrem (millirem) per year, compared with
the genetically-significant dose equivalent average of 55 mrem/year
from medical radiation; and of less than 5 mrem/year from all other man-
made sources(2).
In utilizing nuclear energy through tHe controlled fission (splitting)
of uranium and plutonium nuclei in the fuel elements of power reactors,
new radioactivity is produced in the form of unstable fission products,
plus heavy elements, e.g., transuranic isotopes resulting from nuclear
reactions.
Table A-II»-1 lists the important heavy-element and fission-product
isotopes in irradiated nuclear fuel. Tables A-II-2 and A-II-3 present
important alpha-, beta- and gamma-emitting radioactive nuclides •
Tables A-II-4 through A-IIr7 show the radioactive decay chains, or
sequences, for uranium, plutonium, and thorium, the heavy radioactive
elements that are important in nuclear fuel applications.
Figure A-II-1 indicates the fission yield, or per cent distribution
of the atomic mass numbers of nuclides produced in the slow-neutron
fission of U-235, Pu-239, and U-233, and the fast fission of U-238
and Th-232.
A-II-1
-------
TABLE A-II-1
IMPORTANT ISOTOPES IN IRRADIATED URANIUM
Heavy Elements
Uranium
Plutonium
Americium
Curium
Krypton
Strontium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Tellurium
Iodine
Xenon
Cesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
234, 235, 236, 238
239, 240, 241
241, 243
242, 244
Long-Lived Radioactive
Fission Products
85
89, 90
90, 91
95
95
99
99
103, 106
106
129
129, 131
133
137
140
140
141, 144
143, 144
147
147
Source:
Benedict, M. and T. Pigford, Nuclear Chemical
Engineering, McGraw-Hill Book Co.. N.Y., 1957.
Modified by S. M. Stoller Corp.
A-II-2
-------
Nuclide
Thorium 232
Uranium 238
Uranium 235
Uranium 233
Plutonium 239
TABLE A-II-2
FERTILE OR FISSIONABLE
MATERIALS AS ALPHA EMITTERS
Alpha Energy, Mev
3.98
4.IS
4.20, 4.40, 4.58
4.82
5.15
Half-Life. Years
1.39 x 10
10
4.49 x 10-
8
7.13 x 10
1.62 x 10-
2.436 x 10
Source: Benedict, M. and T. Pigford. Nuclear Chemical Engineering.
McGraw-Hill, N.Y., 1957.(3)
A-II-3
-------
TABLE A-II-3
NUCLIDE RADIOACTIVITY FROM REACTOR OPERATIONS
Beta-Emitting Radioactive
Nuclide
/
6'U
P32
s35
Kr85m
36Kr
„ 85
36 Kr
Sr89
38br
Sr90
38br
131
53
T>,233
90Th
Pa233
237
92U
239
U
92U
No239
93NP
Maximum
Energy, Mev
0.0189
0.155
1.704
0.167
(81% 0.817
16% 0.300
0.72
1.463
0.537
(84% 0.606
<15% 0.255
(l% 0.810
1.23
0.23
0.25
1.12
(0.676
<0.403
(0.288
Half-Life
12.5 years
4
5,370 years
14.59 days
87.1 days
4.36 hr
10 years
54.5 days
19.9 years
8.141 days
23.5 min
27.4 days
6.63 days
23.54 min
2.33 days
Nuclides
Source
Ternary Fission*
\ QU1 + 3Li7 -»• 0n* + 2He* "*" 1
Fission Product
Fission product
Fission Product
Fission Product
Fission Product
233
Decay of Th
II235 + ? n1
92U * 20°
.,238 . 1
92U + 0°
239
Decay of U
*For tritium present in fuel waste.
A-II-4
-------
TABLE A-II-3
(continued)
Long-Lived Gamma-Emitting Radioactive Nuclides
Nuclide Energy, Mev
2yCo 0.059
35Br80m 0.049, 0.037
/39Y91m 0.61
(43Tc99m 0.14
52Te127m 0.088
Fission x 135m Q 5-
Products 54
_,Ba m 0.66
56
52Tel m °'106
52Te131m 0.177
Half-Life
10.7 min
4.4 hr
51 min
5.9 hr
90 days
15.3 min
2.6 min
33.5 days
30 hr
Source of Nuclide
Co59
Br79
Decay
Decay
Decay
Decay
Decay
Decay
Decay
+ onl
V
of A2Mo
Based on: Benedict, M. and T. Pigford. Nuclear Chemical Engineering.
Mc-Graw-Hill, N.Y., 1957- Modified by S. M. Stoller Corp.
A-II-5
-------
TABLE A-II-4
URANIUM, DECAY SERIES
(.adioelement
Jranium
1
'horium
\
3rotactinium
1
Jranium
I
rhorium
I
ladium
I
(4n 4
Historical
Name
Uranium I
Uranium X .
Uranium TC_
Uranium II
Ionium
Radium
ladon Ba Emanation
1
'olonium Radium A
9.97% | 0.03%
^ead
Asta
Radium B
*
ine-218 Astatine
1
ismuth Radium C
9.?6% | 0 04%
'olonium
Radium C1
Thallium Radium C"
1
,ead
1
ismuth
100% 1-10
olonium
Radium D
, Radium E
"5%
Radium F
Thallium-206 Thallium
I
/ead Radium G
(End Product)
2)*
Symbol
92u2382m
22y
S.02d
138.3d
4.19m
Stable 23.6%
abundance
An expression in which "n" is an integer; the expression describes
number of any member within that series. Example:
82Pb206(4n +2) 4(51) + 2
Source; Radiological Health Kanlbook.
Radiation
Emitted
«.Y
P.Y
P .Y
«.Y
« .Y
o.Y
a
a.P
P.Y
a (p 7)
a. P.Y
3 a
P
P.Y
a.P
<*.Y
P
None
the mass
206
and Welfare, PB-121784, rev. 1970.(la)
A-II-6
-------
TABLE A-II-5
ACTINIUM DECAY SERIES
Radioelement
Jranium
1
liorium
\
^1
Actinium
98.8% 1 1 2«
Thorium
(4n
Historical
Name
Actinouranium
Actinium Y
Protoactinium
Actinium
k
Radioactinium
Francium Actinium K
J
Radium
J
Hadon
Polonium
-100% | ^5
Load
Actinium X
Actinon (Em)
. Actinium A
x 1 0 %
Actinium B
Astatine-215 Astatine
Bismuth
Actinium C
99 68% | 0.32%
r
Polonium
Actinium C'
Thallium Actinium C"
1
f
Lead
Actinium D
(End Product)
+ 3)*
Symbo, Half Life J^T
7 •»£ B
92U (AcU) 7.13 x 10 y
9QTh23l(UY) 25.64h
231 4
9,Pa231 3.43x10%
777
MAc 22-°y
777
90T»> (RdAc) 18. 6d
22 T
g.7Fr 21m
77 »
Ra^^^AcX) 11. Zd
86Rn219(An) 3.92s
716 .3
Po^'^AcA) 1 ,"»3 x 10 •
82Pb (AcB\ 36.1m
2 15 -4
85At ^10 '
a-Bi211(AcC) 2.16m
O J
211
84.Po41i(AcC') 0.52s
81Tl207(AcC") 4.79m
Pb207(AcD) Stable (22.6%
abundance)
*An expression in which "n" is an integer; the expression describes the
«.Y
P,V
«or
_
* >P>Y
« .Y
P>Y
a «Y
a.Y
• »P
P.Y
A
a.P.Y
A
P.Y
None
mass
number of any member within that scries. Example:
82Pb2°7 ,4h *
Source : Radiological Health Handbook
3) 4(51) + 3 = 207
, U.S. Dept. of Health, Education
and Welfare, PB-121784, rev. 1970.(la)
A-H-7
-------
TABLE A-II-6
NEPTUNIUM DECAY SERIES
Radioelement Symbol
Plutonium
-100% |
Arnericiun
U
0. 241
MO'3* »^
1 A 241
n 95Am
• ' ri237
ramum n-)*-1
1 237
Neptunium Np
Protactinium Pa
1
TT ' TT233
Uranium 13
1 22Q
Thorium Th y
Radium QQRa225
I bb
* 225
Actinium HqAc
1 22 1
Francium Fr
1
» 717
Astatine 85
Bismuth Bi213
98% j 2% 83
Polonium Po213
I Thallium ,.T1209
I ai
Lead Pb^9
1 «z
Bismuth Bi209
(End Product) 3
(4n + 1)*
Half Life Energy
a
14y 4.91
470y 5.546**
6.75d
2.20 x 106y 4.77
27.4d .......
1 .62 x 105y 4.823
7340y 5.02**
14.8d
10. Od 5.80
4.8m 6.30**
0.018s 7.02
47m 5.86
4.2 x 10~6s 8.336
2 .2m
3.22h ......
Stable (100%
abundance)
of Radiation (Mev)
P Y
0.021 0.145**
0 0597**
0.245 0.207
— :. soft
0.530 0.416**
0 36**
0 31
0 220
1.39** 0.434
1.99 0.12
0 635
*An expression in which "n" is an integer; the expression describes the mass
number of any member within that series. Example:
90
Th
229
<4n + 1) 4(57) + 1 = 229
**Maximum energy given when others are present.
Source: Radiological Health Handbook, U.S. Dept. of Health, Education and
Welfare. PB-1217RA rw
A-II-8
-------
TABLE A-II-7
THORIUM DECAY SERIES
Radioelement Historical
Name
Thorium
1
Radium
1
Actinium
1
Thorium
I
Radium
I
Radon
\
Polonium
"M00% 0
Lead
Ast<
1
Bismuth
66 3% 3
1
Polonium
Tha
Thorium
Mesothorium
Mesothorium
Radiothorium
Thorium X
Thoron (Em)
Thorium A
Thorium B
itine-216 Astatine
Thorium C
3.7%
Thorium C1
Ilium Thorium C"
1
Lead Thorium D
(End Product)
(4n)*
Symbol
Th232
90Th
I 88R.«8,M.Th,,
II 89Ac228,MSTh2)
7 7 R
9QTh"VdTh)
8gRa224(ThX)
84Po2l6(ThA)
82Pb212(ThB)
At216
85At
83Bi212(ThC)
84Po212(ThC')
81Tl208(ThC")
82Pb208(ThD)
Half Life
1.39 x 1010y
6.7y
6.13h
1.90y
3.64d
54.5s
0.158s
10. 6h
"•3 x 10"4s
60.5m
3.04 x 10"7s
3.1m
Stable (52.3%
abundance)
Radiation
Emitted
• *
P »Y
P »Y
Q |V
Q (V
a
P,Y
a
a ,p,Y
a
P »Y
None
* An expression in which "n" is an integer; the expression describes the mass
number of any number within that series. Example:
_Th232 (4n) 4(58) = 232
Source: Radiological Health Handbook, U.S. Dept. of Health, Education and
Welfare, PB-121784, rev. 1970.(la)
A-II-9
-------
10
.$
>
.1
a
10-
10''
120
Mass Number
160
180
FIGURE A-ll-1 FISSION YIELDS FOR SLOW NEUTRON FISSION OF
U-233, U-238. AND PU-239; AND FAST FISSION OF
Th-232 AND U-238
Source: Benedict, M., T. Pigford and H. Lev!, Nuclear Chemical
Engineering, Second Edition (in preparation). McGraw-Hill
Book Co. , N.Y.(:>)
A-II-10
-------
Most contemporary nuclear power reactors utilize uranium fuel
slightly enriched in the fissionable isotope U-235. The fuel is in the
form of ceramic pellets of UC>2 encased in tubes (cladding) of a zir-
conium alloy (Zircaloy), which are placed in the reactor in a config-
uration of tube bundles (assemblies). A portion of the fuel (so-called
spent fuel) must be removed periodically, because of depletion of fissile
material and fissioft product buildup during reactor operation, and must
be replaced with fresh fuel.
The reactor is cooled, and the neutrons emitted in fission (and
necessary for a continuation of fission) are slowed down or moderated
with ordinary (light) water. That is, heat is removed from the reactor
using water as the coolant; and the fission chain reaction is facilitated
by the substantilly enhanced reaction probabilities associated with the
resulting slower or moderated spectrum of neutrons.
Typically, over 50% of the fissions in fuel near the end of its
life in the reactor come from plutonium that has built up in the fuel.
The spent fuel may be chemically reprocessed to recover remaining
"unburned" uranium and plutonium, separating it from the still intensely
radioactive cladding and fission products. The standard process would
involve the spent fuel "cooling down" for about six months, and then
performing solvent extraction operations for recovery. The radioactive
liquid waste from the first cycle of such reprocessing is known as
high-level liquid waste, or HLLW.
To facilitate the characterization of the high-level radioactive
source terms, it is important to note: (1) the basic unit of radioactivity,
which is the curie (3.7 X lO^O nuclear disintegrations per second);
(2) the specific energy of emitted radiation, usually measured in Mev
(4.45 X 10 kWhr); and (3) the decay heat or rate of energy release,
usually measured in watts.
In the context of environmental protection and health effects, dis-
cussed in subsequent Task reports, it becomes necessary to introduce the
concepts and terminology of radiation dose and dosimetry, particularly
the term "rem".
Table A-II-8 indicates the specific activity, in curies per gram,
of important isotopes. The specific activity of high level waste is
typically of the order of 10 curies per gram, which is many orders of
magnitude greater that that for natural uranium ore. The maximum per-
missible concentrations (MFC's) of various radioisotopes in air and
A-II-11
-------
TABLE A-II-8
ACTIVITY
Isotope
Th-232
U-238
U-235
Cl-36
U-233
Ni-59
Pu-239
C-14
Ra-226
C8-137
Sr-90
H-3
Co-60
Tl-204
Fe-55
Pm-147
Cs-134
Ru-106
Ce-144
Zr-65
Ca-45
Po-210
Ta-182
S-35
W-185
Source: Radiological
MASS RELATIONSHIP - SPECIFIC ACTIVITY
Half Life Curies
1.39 x 1010 Years 1.11
4.49 x 109
7.13 x 108
4.4 x 105
1.62 x 105
8 x 104
2.436 x 104
5568
1622
33
19.9
12.46
5.27
3.5
2.94
2.6
2.3
1.0
3.36
2.14
2.27
9.51
7.61
6.17
4.61
0.98
79.4
2.00
9.60
1.14
5.03
2.22
9.39
1.16
3.39
282 Days 3.22
250
152
138.3
111
87.1
73.2
8.05
1.91
4.50
6.47
4.28
9.66
Health Handbook. U.S. Deoartmen
Per Gram
xlO'7
xlO-7
xlO"6
x 10~2
xlO-3
xlO-2
xlO-2
or 1
xlO2
xlO3
x 103
xlO2
xlO3
x 102
x 103
xlO3
xlO3
xlO3
xlO4
xlO3
xlO3
xlO4
x 103
t" nf Heal
Education and Welfare, PB-121784, rev. 1970.
A-II-12
-------
TABLE A-II-9
SUMMARY OF ESTIMATES OF WHOLE-BODY
ENVIRONMENTAL RADIATION DOSES
Annual Man-Rem (millions) for> Years
Source
Natural
Cosmic
Kxternal Gamma
Internal
Subtotal
Kal lout
K.xtevnai Ganuna
Inhalation
Ingest ion
Subtotal
Other
Hi-artors
Worldwide 3H
Worldwide 85Kr
PNE Tests
Nevada T*st Site
Other AEC
Installations
Subtotal
TOTAL
1960
8.2
11 .0
4.6
23.8
0.27a
i.oa
2.4U
O.OOOOUi
0.0055
0.00002
0.00003
0.0088°
0.0026
0.017
24.8
1970
9.2
lli.3
5.1
26.6
0.18
0.008
0.63
0.82
0.00013
0.00017
0.015
0.00008
0.0025
0.018
27.4
1980
10.7
14.2
5.9
30.8
0.21
0.009
0.83
1.1
O.O061
0.0050
0.013
0.0007
0.0027
0.028
31.9
1990
12.5
16.6
b.a
36.0
0.25
0.11
1.0
1.3
0.023
0.025
0.012
0.004
0.0033
0.067
37.4
2000
14.5
19.3
8.0
41.8
0.29
0.013
1.3
1.6
0.056
0 /065
0.014
0.012
0.0038
0.15
43.6
Populaiion
(millions) 183 205
Man-Jvni/H/' people 136,000 134,000
237 277 321
135,000 135,000 136,000
a. 1963 value. A 1960 total fallout value of 1..0 was used in the
TOTAL of all environmental radiation.
b. 1962 dose; not used in the totals.
c. Sept. 15, 1961 to Sept. 15, 1962 dose. This value was used in the
1960 totals.
Source: Estimates of Ionizing Radiation Doses in the United
States, 1960-2000. Special Studies Group, Division
of Criteria and Standards, Office of Radiation Programs,
Environmental Protection Agency. June 1971.
A-II-13
-------
water, as published in the Code of Federal Regulations, are given in
Appendix III. The MFC values are a function of many variables, including
the specific activity and relative biological effectiveness of the radia-
tion in question.
Tables A-II-9 and A-II-:10 indicate the type of projections that nave
been made of whole-body radiation doses to the year 2000. Table A-II-9
indicates the environmental sources alone, and Table A-II-10 Indicates
the significance of the environmental contribution in the estimated total
from all sources.
A-II-14
-------
TABLE A^II-rlO
SUMMARY OF WHOLE-BODY ANNUAL RADIATION DOSES IN THE UNITED STATES
1960 to 2000
Radiation Source
ENVIRONMENTAL
Natural
Global Fallout
All Other
Sub-total
MEDICAL
Diagnostic
Radiopharmaceuticals
Therapeutic
Sub-total
OCCUPATIONAL
MISCELLANEOUS
TOTAL
Man-Rom (millions) for Years
1960 1970 1980 1990
23.8
1
0.017
26.2
13.6
0.07
0.9
14.6
0.14
0.30
39.9
2G.C
0.82
0.018
27.4
18.7
0.4
1.0
20.1
0.1G
0.44
•1S.1
30.8
1.1
0.028
31.9
25.2
3.3
1.2
29.7
0.19
0.22
62.0
:u?.o
1.3
0.067
37.4
34.5
4
1.4
39.9
0.24
0.05
77.0
2000
1 1 . S
l.Ci
0.15
43.6
44.7
5
1.6
51. J
0 . ?. 8
O.OG
05.2
Source; Estimates of Ionizing Radiation Doses in the United States,
1960-2000. Special Studies Group, Division of Criteria and
Standards, Office of Radiation Programs, Environmental Pro-
tection Agency, June 1971.
A-II-15
-------
REFERENCES - APPENDIX A-II
1. Radiological Health Handbook. U.S. Department of Health,
Education, and Welfare, PB-121784, 1957.
l.a Ibid. Revised January 1970.
2. Yeates, D., A. Goldin and D. Moeller. Natural Radiation
in the Urban Environment. Nuclear Safety, 13:4* July-
August 1972. •
3. Benedict, M. and T. Pigford, Nuclear Chemical Engineering.
McGraw-Hill Book Co., N.Y., 1957.
4. Estimates of Ionizing Radiation Doses in the United States
1960-2000. Special Studies Group, Division of Criteria
and Standards, Office of Radiation Programs, Environmental
Protection Agency, June 1971.
5. Benedict, M., T. Pigford and H. Levi, Nuclear Chemical
Engineering, Second Edition (in preparation). McGraw-Hill
Book Co., N.Y.
A-II-16
-------
APPENDIX A - III
MAXIMUM PERMISSIBLE CONCENTRATIONS
OF RADIOACTIVE ISOTOPES
(FEDERAL REGISTER)
-------
1
i
•j
o
«J
w
Concentrations In Air and Water Above Natural Background
(See footnote! • )
Element (atomic number)
Actinium (89)
Amerlclum (95).. .
rAnHmony (51)
1
a.
•Ct
~Vgon(18)
Arsenic (33)
Astatine (85)
Barium (56)...
Berkellum (97) ...
Beryllium (4)
Bismuth (83)
Isotope '
t
Ac 227 S
Ac 228 S
1
Am 241 S
* 1
Am 242m S
1
Am 242 S
1
Am 243 S
1
Am 244 S
1
Sb 122 S
1
Sb 124 S
1
Sb 125 S
1
A 37 Sub>
A 41 Sub
Ai 73 S
1
As 74 S
1
As 76 S
1 -
As 77 S
1
At 211 S
Ba 131 S
1
Ba 140 S
1
Bk 249 S
Bk250 S
B*7 S
1
Bl 206 S
1
Bl 207 S
1
Bi 210 S
1
Bl 212 S
1
Table 1
Column 1
Air
CyCi/ml)
2 xio-«
3X10-'"
8X10-'
. 2X10-*
6X10-"
i xio-'«
6X10-"
3X10-"
4X10-'
5XIO-*
6X10-"
1 X10-"
4X10-*
2X10-'
2X10-'
1 XIO-'
2X10-'
2X10-'
5 XIO-'
3X10-'
6 XIO-1
2X10-*
2 X10-»
4X10-'
3X10-'
• i xio-'
i xio-'
i xio-'
5X10-'
4X10-'
7X10-»
3X1Q-*
1 X10-"
4X10-'
i xio-'
4X10-'
9X10-'°
i xio-'
i xio-'
i xio-*
6X10-*
i xio-*
2X10-'
i xio-'
2X10-'
i xio-'
exio-*
6X10~»
i xio-'
2X10-'
Column 2
Walef
(pCi/ml)
6X10-'
9X10"1
3X10"1
3 XIO'1
i xio-'
8 XIO-'
1 XIO-'
3X10-1
4 XIO-1
4 XIO-1
i xio-'
8X10-'
i xio-'
i xio-'
8 XIO-'
8 XIO-'
7 XIO-'
7 XIO-'
3 XIO-1
3 XlO"1
i xio-J
1 XIO-'
2X10"1
2X10"1
6X10-'
6X10-'
2 XIO-1
2X10-1
5X10-'
2 XIO-1
5 XIO-'
5 XIO"1
8X10-'
7X10-'
2X10-1
2 XlO"1
6 XIO"1
6 XIO-1
5 XIO-1
5X10-
1 X10-
1 X10-
2X10-
2X10-
1 XlO-
1 XIO-1
1 XlO"1
1 XIO"1
Table II
Column 1
Air
(yd/ml)
8 X10-"
9 XIO-'1
3X10-*
6X10-'°
2 X10-"
4X10-"
2 XIO-'1
9X10-"
ixio-»
2X10^
2 XIO-'1
4X10-"
1 XIO-'
8X10-'
6;:io~»
5X10^
5X10-*
7X10-'°
2X10-'
9Xlo-'°
1 XlO"'
4X10-*
7X10-*
i xio-'
i xio-'
4X10-»
4X'P"r
3X10-*
2X10~*
i xio-«
2X10-"1
i xio-»
4X10-'
i xio-«
4X10-»
i xio-»
3X10-"
4X10-"
5XlO-»
4X1O-*
2X10-'
4X10-*
6X10-*
SxlO-»
6XIO-*
5X10-'°
2 X10-'°
2XjO-io
3X10-*
7xlO-»
Column 2
Water
(uCi/ml
2 X10-*
3 XIO-'
9X10-'
"XlO"1
4 X10-*
3-X10-'
4X10-*
9X10-'
1 XIO-'
i xio-'
4 X10-*
3X10-'
5 XIO"1
5 XIO-1
3X10-'
3X10-'
2 XlO-'
2X10-'
i xio-'
1 XIO-'
5 XlO-'
5 XIO-'
5X10-'
5 XIO-'
2X10-'
2X10-'
8 XIO-'
8X10-'
2X10-*
7 XIO-'
2X10-'
2 XlO-'
3 XlO-'
2 X10~3
6X10-'
6X10-'
2 XIO-'
2X10~'
2 XIO-'
2X10"1
4 XlO-'
4 XlO"'
6X10-'
6X10-'
4 XIO-'
4 XIO-'
4X10-'
4X10~'
Concentrations In Mr and Water Above Natural Background— Continued
(See footnotes )
Element (atomic number]
Bromine (35)
Cadmium (48)
Calcium (20) .. . , -
Californium (98)
•
i
I .
•>
i
Carbon (6)
Cerium (58)
Cesium (55)
Chlorine (17)
Chromium (24)
Isotope '
t
BV82 S
1
Cd 109 S
1
CdllSm S
1
Cd 115 S
1
Co 45 S
1
Co 47 S
1
Cf 249 S
1
Cf 250 S
1
Cf 251 S
/
Cf 252 * S
* 1
Cf 253 S
1
Cf 254 S
C 14 S
(C02) Sub
Ce 141 S
Ce 143 S
1
Ce 144 S
1
Cs 131 S
1
Cs 134m S
1
Cs 134 S
1
Cs 135 S
1
Cs 136 S
1
Cs 137 S
1
036 S
1
Cl 38 S
1
Cr51 S
1
Tablet
Column 1
Air
(pCi/ml)
1 X10~*
2X10-'
5X10-*
7X10-*
4X10-"
4X10-*
2X10-'
2X10-'
3XlO-»
i xio-'
2X10-'
2X10-'
2 X10-"
i xio-'°
5X10-"
1 X10-"
2 X10-"
1..X1P-'0
6X10-"
3X10-"
8 XIO-7
8X10-"
5 XIO- '
5X10-'
4X10-
5X10-
4X10-
2X10-
3X10-'
2 XIO-'
.1 X1Q-*
6X10^
i xio-'
3X10-*
4xlO-J
6xlO~*
4X10"1
1 X10-*
5X10-'
9X10~«
4X10-'
2X10-'
6xlO-«
i xio-«
4X10-'
2X10-*
3X10-*
2X10-*
i xio-'
2X10-*
Column 2
Water
(yd/ml)
8 XlO-1
i xio-'
5 XlO-1
5 XlO"1
7X10-'
7X10-'
i xio-1
1 XlO-'
3 XIO-'
5X10"1
i xio-1
i xio-1
i xio-'
7X10-'
4 XlO-'
7X10-'
i xio-'
8X10-'
*xio-'
2. XIO-'
4 XIO-1
4 XlO-1
4X10-*
4X10-*
2X10"1
3 XIO-1
3 XIO-1
i xio-1
1 X10"1
3X10-'
3X10~'
7 XIO"1
3 XIO-1
2 X10-'
3X10-J
3X10-'
i xio-'
3X10-'
7X10-'
2X10-'
2X10-'
4X10-'
i xio-'
2X10-'
2X10-'
i xio-1
i xio-1
5 XlO-1
5X10-*
Table II
Column 1
Air
(yCi/ml
4X10-*
6X10-»
2xlO-»
3X10-*
1 X10-*
ixio-f
8 XlO-'
6xlO-»
1 X10-*
4X10-*
6xlO-»
6X10-*
5X10-''
3 X10-"
2 X10-''J
3X10-'1
6X10-"
3X10-"
• 2 X10-"
1 X1Q-"
3X10-"
3X10-"
2 XIO-'1
2 XIO-'1
.1 xio-'
2X10-*
5X10-»
9X10-*
7X10~»
3X1O-"
JXJQ-IC
4X10-'
i xio-'
i xio-*
2X10-'
i xio-»
4 X10-"
2X10-'
3X10-»
i xio-*
6X10-*
2X10-*
5X10-"
1 X1Q-'
8X10-'°
9X10-'
7X10-*
4X10-'
8X10-*
Column 2
Water
(yCi/ml)
3X10-'
4X10-'
2 XlO-'
2X10-'
3 XlO-'
3X10-'
3X10-'
4X10-'
9X10-*
2X10-'
5X10-'
3X10-'
4X10"*
2X10-'
1 XIO-'
3xlO-»
,4X10-*
3X10~»
7X10-'
7X10-*
i xio-'
i xio-'
i xio-'
1 XlO-'
9X10"'
9X10-'
4X10-'
4X10-'
i xio-'
i xio-5
2 XlO-1
9X10-'
6X10-'
1 xio-]
9 XlO-'
4X10-'
i xio-'
2X10-'
9X10-'
6X10-'
2X10-'
4X10-'
8X10~»
6x10-'
4X10-'
4X10-'
2X10"1
2x10-*
3
O
H
rn
O
H
(JJ
f*
D
-------
Cencentrafloni In Air and Water Above Natural Background— Continued
(See footnotes )
Element (atomic number)
Cobalt (27)
Copper (29)
Curium (96)
V
1
> S:
CN
>
•3
^
o
.
o
xj
W
Dysprosium (66) . .
Einsteinium (99) . -
Erbium (68)
Europium (63) .
Uotope '
t
Co 57 S
Co 58m S
1
Co 58 S
1
Co 60 5
1
Cu64 S
Cm 242 S
* 1
Cm 243 S
1
Cm 244 S
1
Cm 245 S
1
Cm 246 S
|
Cm 247 S
1
Cm 248 S
1
Cm 249 S
1
Dy 165 S
1
Dy 166 S
1
Et 253 S
1
Es 254m S
1
E> 254 S
1
Ei 255 S
1
Er 169 S
Er 171 S
1
Eu 152 S
(T/2=9.2hr«) 1
Eu 152 S
(T/2=13yrs) 1
Eu 154 S
1
Eu 155 S
1
Table 1
Column 1
Air
(yCi/ml)
3X10-*
2X10-'
2X10-'
9X10-*
8X10-'
5 X10-'
3X10-'
9X10-*
2X10-*
i xio-*
i xio-'°
2X10-'°
6X10-"
i xio-">
9X10-"
i xio-"
5 XlO-"
i xto-"
5X10-"
i xio-'°
5X10-"
i xio-"
6X10-"
i xio-"
i xio-'
i xio-'
3X10-*
2X10-*
2X10-'
2X10-'
8 XlO-"
6 XIO-'8
5X10-*
6X10-*
2X10-"
1 XlO-
sxio-
4X10-
6X10-
4X10-
7X10-
6X10-'
4X10-'
3X10-'
1 XlO"1
2X10-*
4xlO~»
7X1O-*
9X10-*
7 X1O-"
Column 2
Water
(yd/ml)
2X10"1
ixio-*
8X10"1
6X10-'
4X10-'
3X10-'
i xio-»
i xio-3
i xio-1
6 XIO-3
7X10-'
7xlO~'
i xio-'
7x10-'
2X10"'
8X10-'
1 XlO-'
8X10-'
1 XlO-'
8X10-'
1 XlO-'
6 XIO-'
i xio-'
4 XlO-'
6X10-*
6 XIO"1
i xio-»
i xio-1
i xio-3
1 X10"3
7X10-'
7 XlO-'
5X10-'
5X10-
4X10-
4X10-
8X10-
8X10-
3X10-'
3X1Q-3
3 XIO"3
3 XIO-3
2X10-»
2X10"3
2 XIO-3
2X10-3
6X10"'
6 XIO-'
6X1O~3
6xlO->
Table II
Column 1
Air
(pCi/ml)
1 X10~'
6X10~*
6X10-'
3X10-'
3X10-*
2X10-*
i xio-1
3X10-"
7X10-*
4X10-*
4 X10-"
6X10-"
2X10-'3
3X10-"
3 XlO-'3
3 XlO-'1
2 XIO-'3
4X10-"
2X10-'3
4X10-"
2X10-"
4X10~"
2X10-"
4 XlO-'3
4X10-'
4X10-'
9X10-*
7X10-*
8X10-*
7X10-*
3X10-"
2X10-"
2X10-"
2X10-"
6X10-"
4 XlO-"
2 XlO-"
i xio-"
2X10-"
1 X10-*
2X10-*
2X10-*
1 X10-«
i xio-
4X10-"
6X10-"
1 X10-"
2 XIO- '
3XlO-»
3XlO-»
Column 2
Water
(pCi/ml
5X10-'
4X10-'
3 XlO"3
2 XIO"3
i xio-'
9X10-'
s xio-'
3X10'3
3X1t~'
2X10-'
2X10-'
2X10-'
5X10-*
2X10-'
7X10-*
3 XIO-'
4X10-*
3 XIO-'
4X10-*
3 XlO-'
4 X10~*
2X10-'
4X10"'
i xio-'
2X10-
2X10-
4X10-
4X10-
4X10-
4X10-
2X10-
2X10-'
2 XIO-'
2X10-'
i xio-'
i xio-»
3 XIO-'
3X10-
9X10-
9X10-
1 X10-
i xio-
6X1O-
6X10-
8X10-
8X10-
2X10-
2X10-
2 XIO-'
2 XIO-'
Concentration* In Air and Wafer Above Natural Background— Continued
(See footnotes )
Element (atomic number)
Fermlum (100)
Fluorine (9)
Gadolinium (64)
Gallium (31)
' Germanium (32)
' Gold (79)
•>
M
Hafnium (72)
Holmlum (67)
Hydrogen (1)
Indium (49).
Iodine (53)
Isotope '
t
Fm254 S
Fm 255 S
1
Fm256 S
1
F 18 S
Gd 153 S
1
Gd 159 S
1
Go 72 S
1
G. 71 S
Au 196 S
1
Au 198 S
1
Au 199 S
Hf 181 S
1
Ho 166 S
H3 S
1
Sub
In 113m S
1
In ]14m S
1
In Him S
1
In 115 S
1
1 125 S
1 126 S
1
1 129 S
1 131 S
1
1 132 S
1
1 133 S
1 134 s
Table 1
Column 1
Air
(pCi/ml)
6X10-*
7X10-*
2 X10-«
i xio-*
3X10-*
2Xlfl-»
5X10-*
3X10-*
2X10-'
9X10-*
5X10-'
4X10"'
2X10-'
2X10-'
i xio-'
6X10-*
i xio-*
6X10-'
3x10-'
2X10~'
1 X10-*
8X10-'
4X10-*
7X10-*
2X10-'
2X10-'
5X10-*
5xlO~«
2X10"'
8X10-*
7X10-*
1 XIO-'
2X10-'
2X10-*
2X10-*
2X10-'
3X10-'
5X10-*
2X10-'
8X10"*
3X10-'
2X10~*
7X10-*
9X10-*
3X10"'
2X10-'
9 X1O~'
3x10-'
2X10-'
S xio-'
Column 2
Water
(pCi/ml)
4X10"3
4 XIO-3
i xio-3
1 X10"3
3X10-'
3X10-'
2X10"1
i xio-1
6 XlO-3
6 XlO-3
2X10"3
2X10~3
1 XlO"3
i xio-3
5 XIO-1
sxto-1
5XTO-3
4 XlO-3
2 XlO-3
1 XlO"3
5X10-'
4 XIO"3
2 XIO"3
2 XlO-3
9X10-*
9X10-'
i xio-'
i xio-'
4X10-'
4X10-1
5 XIO-'
5X10-'
i xio-1
1 XIO-3
3 XIO-3
3 XlO-3
4X10-'
6 X10-J
5X10-'
3X10~3
i xio-'
6 X10'3
6x10-'
2X10"3
2 XIO-3
5X1O~3
2X10-'
I XIO-3
•4X7O-3
Table D
Column 1
Air
(yCi/ml)
2x10-»
2X10-*
6 XlO-"
4 XlO-"
1 X10-"
6X10-"
2X10-'
9X10-*
8X10-*
sxio-*
2X10-*
i xio-'
8X10~»
6X10~»
4X10-'
2X10-'
4X10-*
2X10-*
1 X10"«
8xlO~»
4X10-*
3 X1Q-*
1 X10-*
3X10-"
7X10-*
6X10~»
2x10-'
2x10-'
4x10-'
3X10-'
2X10-'
4xlO-»
7X10-"
8X10~«
6X10-*
9X10~»
i xio-»
8X10-"
6xlO-»
9X10-"
i xio-«
2X10-"
2X10^
t xio-"
i xio-«
3X10-"
3X1O-"
4X1O-"
7X10~»
«xlO-»
Column 2
Water
(yCi/ml)
tn
H
i xio-' r
i xio-' *L
3X10-' «£
3 X10-« O
9X10-' >
9x10-' yj
8X10-' O
5x10-' (ft
2X10-'
2X10-' 7!
8X10-' U
8xio-' 33
4 XlO-' -TJ
4xic-» 33
2X10-* Q
2xio-» X
2X10-' ^
Vxio-' ft
sxio-» 1J
5x10-' —
2X10-' O
2xio-' 2
7 X10-» ^
7 XIO-' >
3x10~' O
3 XlO-' >
3X10~3 —
3 X10"3 Z
V)
i xio-3 H
i xio-3 3,
2 XIO-' 5
2 xio-' ZL
4X10"' 2
4X10"' ^
9X10-' Ij
9X10-' —
2X10-' O
2 XlO-' 2
3x10"'
9x10-'
6X10-*
2X10-'
3X10-'
6X10-'
• XIO-*
2X10-'
i xio-*
A XIO-*
2 XlO-'
-------
•5
2
u>
_p
CD
vj
tfl
«
I
u
c
Concentration* In Air and Water Abov. Natural Background— Continued
(Sea footnotes )
Element (atomic number)
Iodine (S3)
Iridium (77)
Iron (26)
Krypton (36)
>
LLanthanum (57). ..
n
Uod(t2)
Ivrtttlum (71).. .
Manganese (25)
Mercury (10)
Molybdenum (42)
Needymlwm (60)
Isotope '
t
1 134 1
1 135 S
1
Ir 190 S
1
Ir 192 S
1
Ir 194 S
1
Fe55 S
1
Fe59 S
1
Kr 85m Sub
Kr 85 Sub
Kr 87 Sub
Kr 88 Sub
la 140 S
Pb 203 S
1
Pb210 S
1
Pb212 S
1
Lu 177 S
1
Mn 52 5
Mn 54 * S
Mn 56 S
1
Hg 197m S
Kg 197 S
Hg 203 S
1
Mo 99 S
Nd 144 S
Nd 147 S
1
Nd 149 S
1
Table 1
Column 1
Air
(uCi/ml>
3X10~«
i xio~'
4X10-'
1 X10-*
4X10-'
1 XlO-'
3X10-'
2X10-'
2X10-'
9X10-'
1 X1Q-*
1 XIO-'
5X10-'
6X10-*
1 X10~3
i xio-«
i xio-«
2x:o-'
i xio-'
3 XlO-«
2x">-«
i xio-"
2X10-'°
2X10-1
2X10-'
6X10-'
5X10-'
2X10-'
i xio-'
4x10-'
4X10-*
8X10-'
5x10-'
7X10-'
8X10-'
i xio-«
3X10-*
7X10-'
1 XIO-'
7X10-'
2X10-'
8X10-"
3 X10-"
4X10"'
2X10-'
2X10-*
i xio-*
Column 2
Water
(pCi/ml)
2X10-*
7 XIO-'
2 XlO-»
6X10-'
s xio-'
i xio-'
i xio-'
i xio-'
9X10-'
2X10-'
7 xlC-»
2X10-'
2X10-'
7 XIO-4
7 XIO-'
i xio-*
1 XIO-'
4X10~*
s xio-'
6X10-'
5X10-'
3X10-'
3X10~'
1 XIO-'
9 XIO-'
4X10-'
3 XIO-'
4X10-'
3X10-'
6 XIO-'
5X10-'
9X10-'
i xio-'
5 XIO-'
3X10-'
5 XIO-'
i xio-'
2X10''
2 XIO-'
2X10"'
2X10-'
8X10-'
8 XIO-'
Table II
Column 1
Air
(yCi/ml)
i xio-'
i xio-'
i xio-(
4xlO-»
i xio-«
4X10-*
9 X10-"
8X10~»
5X10-*
3 X1O-*
3X1O-*
5X10-*
2 XIO-'
i xio-'
3X10-'
2xlO-«
2X10-'
5X10-'
4X10-*
9X10'1
6X10-'
4 XlO-"
8X10-"
6X10-'°
7X10-"
2X10-'
2X10-'
7X10-*
5X10-'
1 XIO •
i xio-'
3X10-*
2 X10-*
3X10-*
3 X10-*
4X10-*
9X10-»
2X10-*
4X10-,'
3X10-*
7X10-*
3X1Q-"
i xio-"
i xio-»
exio-»
6X10-'
5X10-'
Column 2
Water
(pCi/ml)
6X10-'
4X10-*
7xlO~3
2X10~
2X10-
4X10-
4X10-
3X10-
3X10-
8X10-
2X10-
6X10-
5X10-
T
g
2X10- S
2 XIO- a
4X10- f
4X10-
1 X10-
2X10-
2X10-
2X1O-
xio-
X10~
xio-
3X10-
xio-
xio-
xio-
xio-
2X10-
2X10-
3X10-
sxio-
2X10-
1 X10-
2X10-
4X10-
7X10"
8X1O-
6X10-
6X10-'
3 XIO-'
ixio-4
Concentrations In Air and Water Above Natural Background— Continued
(See footnotes )
Element (atomic number)
Neptunium (93)
Nickel (28)
Niobium
(Columblum) (41).
•
i
• Osmium (76)
1
4
Palladium (46)
Phosphorus (15)
Platinum (78)
*
Plutonium (94)
Isotope'
t
Np 237 S
1
Np 239 S
1
Ni 59 S
1
N! 63 S
1
NI65 S
1
Nb 93m S
Nb95 S
Nb97 S
Os 185 S
Os 191m S
Os 191 S
1
Os 193 S
1
Pd 103 S
Pd 109 S
1
P 32 S
1
Pt 191 S
1
Pt 193m S
PI 193 $
1
P» 197m $
1
P» 197 S
1
Pu 238 S
Pu239 S
Pu240 $
1
P«241 S
Table 1
Column 1
Air
CyCI/ml)
4 X10-"
i xio-'«
8X10-'
7 XIO-'
s xio-'
8 XIO-'
6XIO-*
3X10-'
9X10-'
5X10-'.
i xio-'
2X10~7
5X10-'
i xio-'
6X10-*
5X10-*
5 XIO-'
5X10-*
2X10-'
9X10-*
1 XlO-«
4X10-'
4X10-'
3X10-'
i xio-*
7 XIO-'
6X10-'
4X10-'
7X10-'
8X10-*
8X10-'
6X10-'
7xlO-«
5X10-*
1 X10'«
3x10-'
6X10-*
Sxio-«
8x10-'
6X10-'
2X10-"
3X10-"
2X10-"
4X10-"
2X10-"
4X10-"
9X10-"
4X10-*
Column 2
Water
(pCi/ml)
9X10~J
9X10-'
4X10-'
4X10"3
6 X1Q-'
6X10~J
8X10-'
2X10-'
4X10-*
3X10-'
i xio-'
i xio-'
3X10-'
3X10-'
3X1Q-'
3X10-'
2X1Q-'
2 XIO-'
7 XIO-'
7X10-'
5X10-'
5X10-'
2X10-'
2X10-'
1 X10~'
8X10-'
3 XIO-'
2X10-'
5X10-'
7X10-'
4 XIO-'
3X10-'
3X10-'
3X10-'
3 X»0 '
SxlO '
3X10-'
3xlO~'
4X10-'
3X10-'
1 XIO-'
8x10-'
1 XlQ-'
8X10-'
1 XlO"4
8X10-'
7x'0->
«xio-»
Table II
Column 1
Air
(pCi/ml)
i xio-"
4X1Q-"
3 X1Q-*
2X10-*
2 X10-*
3X10"*
2X10-*
1 XIO"*
3X10-*
2 X10~«
4xlO-»
sxio-»
2X10-*
3xlO~*
2X10-'
2X10-'
2X10-*
2X10~»
6X10-'
3X10"'
4X10"*
1 X10-*
i xio-'
9X10-*
5X10-*
3X10-*
2X10-*
i xio-«
2xlO-»
3X10~*
3xlO-«
2X10-*
2X10-'
2X10-'
4 xlO-l
1 XIO •
2X10-'
2X10-'
3X10-*
2X10-*
7x10-"
i xio-»
6x10""
1 X10-"
6X10-"
1 XIO-"
3X10-"
i xio-»
Column 2
Water
(pCi/ml)
3X10-*
3X10-J
1 XIO"'
i xio-'
2X10-'
2 X10-?
3 xlO-»
7 XIO-'
xio-'
xio-'-
XlO"'
Xlfl-'
XlO-'
XlO-'
9x10-'
9x10-'
7xlO-J
7X10-'
3X10-1
2X10-'
2X10-'
2xiO"'
6X10-'
5X10-'
3x10-'
3x10-'
9x10"'.
7X10"'
2x10"'
2x10-'
1 X10-*
1 X10-«
1 XlO->
1 X10-»
9X10"'
2 xtO''
1 XIO-'
9X10-'
1 xio-'
i xio-'
SxlO-*
3X10-'
5 X10-*
3X10-'
sxio-*
3X10-'
2X10-'
i xio-»
>
Z
O
>
33
O
tfJ
O
33
O
H
m
O
H
O
z
>
Q
v>
H
33
>
z
-------
M >
.0
Concentrations In Air end Water Above Nafurol Background— Continued
(S« footnotes )
Element (atomic number)
Plutonium (94)
Polonium (»4)
P Ot3»*lum (19)
Pretoodymium (59).
Premofhium (61)
a
"NJ
Radium (88)
Radon (86)
Rhonlum (75)
Rhodium (45)
1 Rubidium (37)
ltott.pt '
t
Pu 242 $
1
Pu 243 S
Pu 244 S
Pe210 S
1
\ 42 S
1
Pr 142 S
1
Pr 143 S
1
Pm 147 S
Pm 149 S
1
Pa 230 S
1
Pa 231 S
1
Pa 233 S
1
Ra 223 S
1
Ra 224 S
1
Ra 226 S
1
Ra 22S S
1
Rn 220 S
3 •* *
Rn 222 S
R. 183 S
Ro 1(6 S
Ro 117 S
1
R* lit S
Rh 103m S
1
Rh 105 S
1
Rb 86 S
1
Rb 87 S
1
Tabl. 1
Column 1
Air
(yCi/ml)j
2x10-"
4x10-"
2X10~*
2X1Q-*
2X10-"
3x10""
5x10-'°
2X10-"
2x10-«
i xio-'
2X10-'
2X10-'
3X10"7
2X10-'
6X10-'
i xio~'
3x10-'
2x!0-'
2X10-*
8X10-"
1 X10"'1
1 XlO"10
6X10-'
2X10-'
2X10-*
2X10-"
sxio-*
7X10-"
3X1Q-"
5X10-"
7X10-",
4X10-"
3X10-'
• *« .4
3 X 10
3X10-*
2X10"'
6X10-'
2X10-'
9X10-*
sxio-'
4X10-'
2X10-'
8X10-'
6 XlO-3
8X10-'
5 XlO-'
3 XIO-'
7xlO-'
3 xio-'
7 x!O-«
Column 2
Wotor
(pCi/ml)
i xio-'
9x10"'
i xio-J
1 XlO-»
i xio-'
3X10-'
2xlO-J
8X10-'
9X10-'
6X10-'
9X10"'
9X10-'
i xio-'
i xio-'
6X10-'
6X10-'
1 X10-J
i xio-J
7X10-'
7X10-'
3X10-'
sxia-'
4 XlO-'
3X10-'
2_XlO-'
1 XlO '
7X10-'
2X10-'
4X10-'
9X10-'
8X10-'
7X10-'
2X10-'
8x10-'
3X10"'
i xio-»
7X10-=
4X10-'
2X10-'
9x10-'
4X10-'
3X10-'
4X10-'
3x10-'
zxio-'
7 XlO-'
3X10-'
s xio-'
Tobl.n
Column 1
Air
(pCi/ml)
6X10-"
i xio-"
6X10-*
8 XlQ-
6X10'*
i xio-'
2X10- '
7x10"'
7X10"
4x10-*
7X10"*
5X10-'
i xio-*
6X10~*
2X10-*
3X10-*
i xio-'
8X10-*
6X10-"
3X1O-"
4X10-"
4X10-"
2X10-1'
6X10-'
6X10-"
8 XlO "
2X10-'°
2x10""
3X10""
2X10-"
2X10-"
i xio-"
i xio-«
3X10-*
9X1Q-*
5X10-*
2X10-'
8X10~*
3X10-'
2X10-'
i xio-*
6X10-*
3X10-*
2X10-4
3X10-*
axio"1
1 XlO-'
7X10-'
IX10-"
Z XlO-*
Column 2
Wator
(pCi/ml)
5X10-
3X10-
3X10-
3X10-
4X10"
i xio-
7X10-
3X10-
3X10-
2X10-
3X10-
3X10-
5X10-
5X10-
2X10- ,
2X10- 5
4X10~ S
4X10- 0
2X10- u
2X10- JJ
9X10-
2X10-
ixio-
1 X'10"
7X10-'
4X10-*
2X10-*
5X10-*'
3X10-*
3X10-'
3X10-'
3X10-'
6X10-'
3X10-
9X10-
sxio-
3x10"
2X10-
6X10-
3X10-
i xio-
i xio-
i xio-
i xio-
7X10-
2X10-
i xio-
zxio-
ConcontraHont In Air and Walw Abovt Natural Background— Corrtuiuod
(See )
Elomont (atomic numbor)
Ruthonium (44)
Scandium (21) .. . .
j
i
S«Unlwm (34)
Silicon (14) ...
Sllvtr (47)
Sodium (11)
StronHvm (3f J
SuKwr (16)
Isofop* '
t
Ru97 S
1
Ru 103 5
Ru 105 S
1
Ru 106 S
Sm 147 S
1
Sm 151 S
Sm 153 S
St 46 S
St47 S
S<48 S
1
So 75 S
SI 31 S
Ag 105 5
1
Ag 1 10m S
Ag 111 S
Nan S
No 24 S
Sr 85m S
1
Sr 85 S
Sr89 S
Sr9O S
Sr91 S
1
Sr92 5
1
S 15 S
1
To III I
1
Tablo 1
Column 1
Air
(yCi/ml)
2X10~»
2X10-4
5X10-'
8X10-"
7 XIO-'
5 XIO"'
8X10"*
6X1O"'
7 XIO'"
3 X1Q-"
6X10-'
i xio-'
5X10-'
4X10-'
2X10-'
2X10-'
6X1O"'
Sxio-'
2X10-'
l xio-'
1 X1Q-*
i xio-'
6X10"*
i xio-«
6X10-'
8x10-"
2X10-'
i xio-«
3X10"'
2X10-'
2X10-'
9 XIO"'
\ xio-<
i xio-'
4X10-'
3X10-'
2X10-'
i xio-'
3X10-'
4X10~«
» xio->
5xlO-»
4X10-'
3, XlO-'
4 XIO-'
3 XlO-'
3X10-'
3X10-'
4X10-"
»xio-«
Column 2
Wator •
(yCi/mi;
) xio-
l XIP-
2x10-
2X10-
3X10-
3X10-
4X10"
3 XlO^1
2X10-
i xio-
1 XlQ-
2X1O-
2 X1Q-
1 X10"
i xio-
3X10-
3X10-
8X10-
8X10-
9X10'
8X10-
3X10-
6X10-
3 X1Q-
3X10-
9x10-
9X10"
i xio-
i xio-
i xto-
9X10-
6x10-
8X10-
2X10-
2X10-
3X10-
5X10-
3X10-
8X10-
i xio-
i xio-
2X10-
i xio-
2x10-
2X10-
2X10-
8 X10-
I xlO-
1 X1O-* 1
Tablo H
Column 1
Ak
(uCi/mi:
8x10^
6X10-'
2xlO-«
3 XlO-*-
2x10-'
2X10-*
3x10-*
2xlO-">
Jxio-"
9X10-"
2 XIO"'
5 XlO-*
2X10-'
i xio-«
8x10-"
8X10-"
2x10-*
2X10-*
6xlO-»
5xlO-»
4 XIO"1
4X10-*
2X10-'
3x10-"
2X10-*
3X10-*
7x10-*
3X10-'°
i xio-'
8X10-*
6X10-*
3X10-"
4X10-*
sxio-*
i xio-*
i xio-*
8xlO-»
4X10-"
3X10-"
1 X10-*
3X10-"
2X10-"
2X10-*
9xlO-»
2x10"'
1 XlO-'
9XIO-*
9xlO~«
1 xlO-»
TX1O-"
Column 2
Wator
(yCi/nl)
If*
cxxxxxxxxxxxxxxxxxxxxxx
5OOOOOOOOOOOOOOOOOOOOOO
1 1 1 1 . 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1
NOiioaiOHd uoj sayvaiMvii
2x10-' JP
i xio-' O
1 XlO-' J>
3X10^ ^
3xio-' 2
4xio-' to
4xi«-» H
4XJO-' -TJ
3X10-' g
2 XlO-« *1
3X10"' O
7xlO-> ^
7 xio-> ;*j
ixio-« —
2X10-' O
3X10-* 2
3x10"'
3x10"'
4X10~J
7x10-'
sxio-«
7x10-'
6 XIO-'
6x10-'
3 XlO-'
«x!0-«
«XIO-«
-------
M >
Ul
November 14, 1975
Concentration* In Air and Water Above Narura
(S*» footnotes
Clement (atomic number)
Technellum (43) .. .
Tellurium (52)
t
1
r
x.
N
Terbium (65)
Thallium (81)
Thorium (90) *
Itotopo '
t
Tc 96m S
1
Tc96 S
Tc 97m S
Tc97 S
Tc99m S
1
Tc99 S
To 125m S
1
To 127m S
1
To 127 S
To 129m S
1
To 129 S
To 131m S
To 132 S
1
Tb 160 S
1
Tl 200 S
1
Tl 201 S
1
TI2O2 5
1
Tl 204 S
1
Th 227 S
Th 228 S
Ttl 230 S
Th 231 S
1
Th 232 S
Th natural S
Table 1
Column 1
(yd/ml)
8 XIO-'
3X10-'
6x10-'
2xlO~'
2X10-*
2 X10~'
1 XIO-'
3X10-'
4X10-'
i xio-'
2X10-*
6x10-'
4X10-'
1 xio-'
i xio-'
4X10-'
2X10-*
9X10-'
8X10-'
3X10-'
5X10-'
4X10-*
4X10-'
2X10-'
2X10-'
1 XIO-'
i xio-'
3 XlO"1
3X10-*
2X10-*
9X10-'
8 XlQ-'
2X10-
6x10-
3 XlO-1
3X10" "
2X10- "
9X10" '
6X10" '
2X10" *
1X10" '
1X10"
1X10-
3X10' '
3X10" '
6X10- '
6X10- '
Column 2
Water
(yd/ml)
4 X10-"
3X10-'
3 XIO-'
i xio-'
i xio-'
2X10-'
2X10-'
8X10-'
i xio->
5X10-'
3X10-'
2X10-'
8X10-'
5 X10-»
1 X10-
6X10-
2X10-
2X10-
i xio-
9X10~
6X10-
i xio-
i xio-
1 XIO"
7X10-
9X10-
5-X1Q- .
4X10-
2X10- '
3X10- •
2X10-
5X10"
5X10"
2X10"
4X10"
5X10
9X10
7X10
7X10
5X10
1X10
6X10
6X10-1
Table II
Column 1
Air
(yCi/mi;
3xlO-«
i xio-«
2 XIO-'
8 x!0-»
5XIO-*
4X10-'
1 XIO-'
i xio-«
5 XIO-'
7 XlO-'
2X10-'
1 X10-"
4X10-*
6X10-'
3X10-*
i xio-»
2X10"'
i xio-'
i xio-'
7X10-*
4X10-'
3X10-*
ijxio-'
9X10'1
4X10"'
7X10-'
3 XlO-'
3X10-'
8X10-'
2X10~'
9x10-'°
1X10'1
sxio-'
3X10-'
2X10'1
8X10"'
3X10-'
5X10-'
4X10'*
1X10"'
1x10-'
2X10"'
2X10-'
Column 2
Water
(yCi/inl
i xio-'
i xio->
5X10-
4X10-
2X10-
2X10-
8X10-
6X10-
3X10-
3X10-
2X10-
2X10-
i xio-
6x10- :
5X10- I
3X10- -
2X10- I
3X10- „
2X10-
8X10-
8X10-
6X10-
4X10-
3X10-
2X10-
4X10-
4X10-
4X10-
.X10"
3X10-
2X10-
i xio-
7X10-
i xio-
6x10"
2X10"
2X10-
7X10-
1X10"
2X10"
3X10" '
2X10-
2X10"
2X10"
4X10-
2X10"
2X10"
Conc'entratloni In Air and Water Above Natural Background— Continued
(See footnotes )
Element (atomic number]
Thorium (90)
Thulium (69)
Tin (50) .•
Tunguen (Wolfram) (74)..
r
i
-Uranium (92)
c
\.
a
M
**
»*
Vanadium (23)
Xenon (54)
Ytterbium (70)
Yttrium (39)
Itotope '
t
'Th 234 S
Tm 170 S
1
Tm 171 S
1
Snll3 S
1
Sn 123 S
W 181 S
1
W 185 S
1
W 187 S
1
U 230 S
U 232 S
1
U 233 S
U 234 S*
U 235 S4
1
U 236 S
U 238 S4
1
U 240 S"
1
U-natural s4
1
V 48 S
Xe 131m Sub
Xe 133 Sub
Xe 133m Sub
Xe 135 Sub
Yb 175 S
1
Y 90 S
Y 91m S
Y 91 S
1
Y 92 S
1
Y 93 S
1
Table 1
Column 1
CpCi/ml)
6 X10-"
3X10-'
4X10-'
3X1C*
i xio-'
2X10-'
4X10"7
5X10-'
i xio-'
8X10-'
2X10-*
i xio-'
8X10-'
i xio-'
4X10-'
3X10"'
3X10-'°
1 XI 0-'°
1 XI 0~10
3X10-"
sxio-'«
i xio-'"
6X10-'°
5X10-'°
1 XIO-10
6X10-'°
1 XI 0-'°
7X10-"
2X10-'
2X10-'
1 XIO""1
2X10-'
6X10"'
2X10-'
i xio-'
4X10-*
7xlO~'
6X10-'
i xio-'
1 XIO"'
2X10-'
2X10-'
4X10-'
3X10-'
4X10-'
3X10-'
2X10-'
i xio-'
Column 2
Water
(yCi/ml)
i xio-'
i xio-'.
i xio~J
i xio-»
2xlO->
2X10-'
5X10-'
5X10-'
1 X10-J
1 X1Q-'
4X10-'
3X10-'
2X10-'
i xio-'
1 XlO-'
8X10-'
8X10-'
9X10-'
9X10-'
9X10-'
9X10-'
8X10-'
8X10-'
xio-'
XlO-'
X10~'
XlO-'
xio-'
xio~'
xio-'
xio-'
9X10-'
8X10"'
3X10-
3X10-
6X10"
6X10-
1 XlO-
i xio-
8X10-
8X10-
2X10-
2X10-
8x10-
8X10-
Table II
Column 1
Air
(yCi/mi;
1 X10-*
1 X10~»
4X10-*
8X10-*
i xio-'
2X10-"
sxio-*
8X10-'
4X10-*
3X1Q-'
4X10-*
2X10-*
i xio-'
i xio-"
4X10-"
3X10-"
9X10-"
2X1Q-"
4X10"'7
2X10-"
4X10-"
2X10-"
4X10-"
2X10-"
4X10-"
3XIO-"
5 X10-"
8X10-*
6xlO~*
5X10-"
5X10-"
6X10-*
4X10"'
3X10-'
3x10"'
i xio-'
2X10-'
2X1Q-*
4X10"*
3X10-*
8X10-'
6x10"'
i xio-»
i xio-«
6X10-*
5X10-*
Column 2
Water
(yCi/ml)
2X10-'
2X10-'
5 XIO-'
s xio-'.
5X10-'
9 XlO-'
8X10-'
2 XlQ-'
2X10-'
4X10-'
3X10-'
7X10-'
6X10-'
5X10-*
sxio-*
3X10-'
3X10-'
3X10-'
3X10-'
3X10-'
3X10-'
3X10-'
3x10-'
3X10"'
4X10-'
4X10-'
3X10-'
3X10-'
3 XlO-'
3X10-'
3X10''
3X10-'
i xio-
2X10-
2X10-
3X10- .
3x10-
3X10-
3X10-
6X10-
6X10-
3X10-
3x10-
(0
yj
to
o
>
z
to
o
z
-------
H
M >
Concentrations in Air and Water Above Natural Background— Continued
(See footnotes )
Element (atomic number)
Zinc (30)
Zirconium (40)
1
X
u.
M Any single rodionucUde
not listed above with
decay mode other than
and with radioactive
half-life less than 2
hours.
Any single radionuclide
not listed above with
docay mode other than
alpha emission or
and with radioactive
half-life greater than 2
hours.
Any single radionuclide
not listed above, which
decays by alpha emis-
sion or spontaneous
fission.
Isotope '
In 65 S
1
Zn 69m S
Zn69 5
1
Zr93 5
1
Zr95 S
1
Ir 97 5
1
Sub
Table 1
Column 1
Air
(pCi/ml)
i xio-
6X10-
4X10-
3X10-
7X10-
9X10-
i xio-
3x10-
1 XlO"
i xio-
9X10-
i xio-
3X10~»
6X10-"
Column 2
Water
(yCi/mi;
3X10-
5X10-
2X10-
2X10-
5X10-
5x10-
2X10-
2X10-
2X10"
2X10-
5 X1Q-
5X10-
4X10-'
Table II
Column ^
Air
(yCi/iai;
4X10-*
2XIST1
i xio-'
t xio-*
2X10""
3X10"
4X10-
1 X10~
4X10-
1 X10~
4X10-
3X10-*
3X10-'
2X10-"
Column 2
Water
(yCi/dl
i xio-
2X10-
6X10-
2X10-
2X10- "
8X10-
8X10-
6X10-
6X10-
2X10-
2X10-
3X10-*
3X10-*
1
i Soluble (S): Insoluble (I).
• "Sub" means that vnlnrs jtven «re lor submersion tt
> sembphcrlcol Indnlte cloud of airborne material.
f™ • These radon concentratlQna are approprt-
1 ate for protection from radon-222 combined
I 'with Its short-lived daughters. Alternatively,
| the value In Table I may. be replaced by one-
4 third (%) "working level." (A "working
° level" Is denned as any combination of short-
o lived radon-222 daughters, polonlum-213,
"" lead-214. blsmuth-214 and polonlum-214. In
(^•one liter of air, without regard to the degree
\u" of equilibrium, that will result in the ultl-
•'§ mate emission of 1.3 x 1V> UeV of alpha
particle energy.) The Table n value may be
replaced by one-thirtieth CAt>) of a "working
level." The limit on radon-232 concentration*
In restricted areas may be based on an an-
_nual. average.
£4. For soluble mixtures of TJt-238, TJ-234
and U-23B In air chemical toxlcity may be the
ttralUng factor. If the percent by weight (en-
richment) of TJ-235 is less than 5, the con-
centration value for a 40-hour workweek,
Table I, Is 0.2 milligrams uranium per cublo
meter of air average. For any enrichment,
the product of the average concentration and
o> time of exposure during a 40-hour workweek
gjenall not excosd 8X10-" 8A ,,Cl-hr/ml,, whore
CN BA Is toe specific activity of the uranium in-
rr haled. The concentration value for Table n Is
"- 0.007 milligrams uranium per cubic meter of
£3 air. The specific activity for natural uranium
to 6.77X10-' curies per gram TJ. The speclflo
activity for other mixtures of TJ-238, TJ-23S
and TJ-234, If not known, shall be:
SA=3.6X10-' curies/gram TJ IMeplHed
SA= (0.4+0.38 E+0.0034 E1) 10-« E>0'7J
where E Is the percentage by weight of TJ-235,
expressed as percent.
~ 'Amended 37 FR 23319.
••Amended 39 FR 23990; footnote re-
designated 40 FR 50704.
•••Amended 40 FR 50704.
fAmended 38 FR 29314.
^Amended 39 FR 2S463; redesignated
40 FR 50704
33
D
W
-n
O
33
O
-I
m
O
H
O
O
CO
3}
-------
STANDARDS FOR PROTECTION AGAINST RADIATION
NOTI-:
Nf»t»: In any case where there Li a mixture In air or
water of more than one racllonucllde. Hie llmltlni: vulur*
for purposes of this Ap|xe ilelnrinlneil H.H
follows:
I. If the Identity and concentration of each railionu-
cllde In the Tnlxlure are known, tin' linnUnc vului>s
nhnuld lie derived us follows: IMcriuilif, for iwit>n thcqimnllly to mixture la not known the
preSL-nl In Ihc mixture ami the lirnll olhcrwlsn eslnh- S limit fnr th. mliii,™ i'. »v. u~i» . ..-^
llshe.1 In ApiK-ndlx II for the MKTIIIC ra-lionuclWe »•„,.„ 2 ' in™L. ™' , ?H -1 specified
not In > mixture. Tim Mini of such rntius for all the ~ ln APPendix B for the radlonucllde In the
3. If any of the conditions specified below
nre met. the corresponding values specified.
below may be used In lieu of those specified
In paragraph 3 above.
ft. If the Identity of each radfonucllde In
the mil lure Is known but the concentration
of one or more of the radlonuclld.es In the
wit In the mixture nn.l I hi; limit otherwise, psrnh. g limit for themixtureT I. th«
si In Ap|«n Ra 323i u, fK, Ra 228,
;.' T. . -• . _>48, Cf 254, and Fm 256 are not
r- IlUlstl: i : 90,1129, (1125, 1126, I 131, table II
u:uyj, . u fiu, uo OS, Ra 228, Cm 248, anu Cf 254 ar«
If It Is known that (1 129, table II only), Ra 226, and Ra
If It Is known tbat alpha-emitters and Sr 90, I 129, Pb
210, Ac 227, Ua 228, Pa 230,Pu Ml. »nd Bk 2»
Column 3
Water
O.CI/ml)
exio-»
4. If a mixture of radlonuclldes consists of
uranium and Its daughters In ore dust prior
to chemical separation of the uranium from
the ore, the values specified below may be
used for uranium and Its daughters through
radlum-226, Instead of those from paragraphs
1, 2, or 3 above.
,
Jfi
n
ft. For purposes of Table I, Col. I—1X10-"
ACl/ml gross alpha activity; or 6X10-" nd/
ml natural uranium; or 76 mlcrocrams per
cubic meter of air natural uranium.
tc b. For purposes of Table n, Col. 1—3 x 10-u
"• *Cl/ml gross alpha activity; or 2X10-U>O1/
S ml natural uranium; or 8 mlcrograms per
| cubic meter of air natural uranium.
f~ '6. For purposes of this «bte, a radlo-
I nuclldo may be considered as not present In
I a mixture If (a) the ratio of the conccntra-
[ tloff ol that radlonucllde In the mixture
J> (Ci) .to the concentration limit for that
§ radlonucllde specified In Table H of Ap-
= pondlx B (AfrCi) does not exceed Vio
rr *, «
-) and (b) the sUm of such
M ratios f"r all the radlonuclldo considered M
I not present In the mixture does not exceed
(I.e. -jijpff:
Novombcr 14, 1975
A
III-7
-------
STANDARDS FOR PROTECTION AGAINST RADIATION
j
CM
8
[
Material
Antlmony-122 —
Antlmony-124 ...
Antlmony-125
ArKcnlc-7.1
ArficnIc-74
Arscnlc-70
Arsenlc-77
Barlum-131
Blr.muth-210
Cadmlum-109 -~
Calclum-45
Carbon-14
Ccrtum-141
Cerlum-143
Cerlum-144
Ccslum-131
Cesium-134ui
Ceslurn-134 .
Ceslum-135 — .
,Cesium-136
Ceslum-137
Chlorlnc-36 -- ..
Chlorlne-38
Chromium-51 ...
Coba!t-58m — _
Cobalt-58
Cobalt-GO
Europium-152 9.2 h
Europium-152 13 yr
Europlum-154
Fluorlne-18
Gadollnlum-153 _ _
Gadolinium-159
Galllum-72 . -_
Germanhim-71 ,
Gold- 198
Gold-199
Hafnlum-]81
Holmlxim-lGG ______
Hydrogen-3 *. __
Indlum-1 13m
Indium-lHm
Indlum-115
Iodlne-125
Iodlne-126
Iodlnc-129
Iodinc-131
Iodlnc-132
Iodlne-133 _ _
Iodlne-134
Iodlnc-136 _
Irldlum-192
Irldlum-194
Iron-55
lron-5!) .
Krypton-85
Krypton-87
liAlitrmnuin-140 _
I.utethmi-177
Mancanesc-52 ._
M.-.n '"sc-50
Wi-r.i -197m
Merc\iry-197 _.
Mercury-203
Molyb(lcliun\-99
Ni'odvmlum-147
Neodvnilnm-140
Nlckol-au
NIckrl-M
Nlcki-l-o.'i
Nlohlmii-i)Um
Niobium-OS . __
Nloblum-D7 __
Osmhim-185
Microcuria
.01
100
10
10
100
10
10
__- . 100
10
10
10
1
10
10
10
100-
10
100
100
100
1
... 1.000
100
1
10
10
10
J
1 it'
10
10
1
100
"" ''
v_ ,
-. .
1 *
i 2
10 n
1,000 u
10 u
100 f
10
100
100
100
10
100
1 000
100
1
1
0 1
10 v
10
10
10
100
100
- 10
,- -}
'"-'.'. ' • • -
Material
' y
Radlum-226
Rhcnlum-lB6 --
^am*rl um
Scaiia.um -- -
' ril ' 4fl
f "^^fTK
Sllicon-31
Silver-105
Sllver-HO"!
Sll\'er-lll
^ Strontium-90 ---
^ Technetium-96 .
Tellurlum-127
Tellurium- 129 . .
Thnllium-200
Thalliuni-201
ThRllUini-202
Thftlll\im-°04
Thulium- 170
ThuUum-171
Tln-113
Tln-125 ^
Tungaten-iei -.-
Tungsten- 185
Uronlum-233
Vanucltum-48 .
Xenon- 131m .
Xnnon-133
Ytterbium -175
• ' fttrl\im-00 -.^ -.-.
YHrlum-9l ._ . _ _
Ytlrlum-02
YttiM \itti-93
Zinc-eft
Zlnc-GOm
7.luc-00 _.
/Jrconlutn-93
?ilrconlun>-05 .-__..
7, Irconl \im-97 ..
A
III-8
Microcurics
100
100
100
100
100
100
100 r-
01 n
0 1
10 li
100
100 *
10
10
.01
100
100
10
100
10
10
100
10
1
100
10
10
1
0 1
10
10
100
10
10
100
100
100
10
10
10
100
10
100
10
10
10
100
100
100
10
•w 100
10
10
10
10
10
10
100
100
.01
01
10
1 000
100
100
100
10
10
100
100
10
100
1 . 000
10
10
. 10
Any alpha emitting nullonucllde
not listed above or mixtures of
ulpha emitters of unknown com-
position .01
Any rndlonuclldc other thnn alpha
emitting rndlonucllden. not listed
nbovc or mixtures of beta emit-
ters of unknown composition— .1
NOTE: For purposes of H 20.203 and 20. 304,
where there Is Involved a combination of Iso-
topes In known amounts the limit for tlw
}Q combination should be derived as follows:
Determine, for each Isotope In the combina-
tion, the ratio between the quantity present
In the combination and the limit otherwise
established for the specific Isotope when not
In combination. The sum of such ratios for
all the Isotopes In the combination may not
exceed "1" (I.e.. "unity"). Example: For pur-
poses of ! 20.304, If a particular batch con-
tains 20,000 pCif of Au'9> anJ 50,000 /jCif
of C1^ , it may also include not more than
300 ^Cit of I131. ITiis limit was determined
as follows:
M.OOO
'
••"'
c1*
300_LCI_llJl _
100,000 vCl 100.00O uCl 1,000 nCl
The denominator In each of the. above
ratios was obtained by multiplying the figure
In the table by 1,000 as provided In i 20.304.
1 Based on alpha disintegration r«t« of
Th-23!J, Th-230 and their daunhtor product*.
•Basnd on alpha dlslntcgrftllon rftU of
D-238, U-234, and U-2.15.
• Anu-niluil .Id IK IhS'lK.
•• Amciuloil .19 I'K ?J«>>)0
t Ainriitliid .18 I-K 2<)3I4.'
April 30, 1975
-------
APPENDIX A-IV
ADDITIONAL DATA FROM ORIGEN RUNS
-------
APPENDIX A-IV
ADDITIONAL DATA FROM ORIGEN RUNS
The principal results of our three base case runs (throwaway, 170.
recycle, and mixed-oxide recycle assembly runs) are given In Tables
A-IV-1 through,A-IV-3. In each case, the curies, grams, and watts
(thermal) are shown (all per metric ton of heavy metal charged to the
reactor) In the order: 1) cladding, 2) actlnldes and heavy elements,
and 3) fission products. In the first portion of each table the data
are summarized by element; in the second portion of each table the data
are detailed as to each isotope of each element. (The gamma photon
energy distribution is also shown iri the first portion of the table.)
Note that source term data developed for the mixed-oxide assembly recycle
and mixed-oxide assembly recycle run in the ratio 2:1.
Table A-IV-i summarizes the ORIGEN analyses.
A-IV-i
-------
TABLE A-IV-i
SUMMARY OF ORIGEN ANALYSES
Run
No.
A.
1
2
3
B.
4 i
e /
6+
C.
Reactor
Type
i f
RUNS FOR BASE
PUR
PUR
PUR
Fuel
Type
CASES:
uo2
uo2
M02
Reprocessing
And Other
Comments
Throwaway
Reprocessed
Reprocessed
Z Fissile
Initially
3.2
3.2
5.09
Specific
Power
During
Operation
kU/kgHM
38.4
38.4
38.4
Discharge
Burnup
MUd/MTHM
33,000
33,000
33,000
Time To
Reprocess- Used For
Ing (Days) Case No.
1
183 2,3
183 2
RUNS FOR ALTERNATIVE FUEL CYCLE CASES:
* PWR
Portion
HWR
Portion
PUR
UO-
2 (
\
uo2 '
Th02-U02
Tandem Cycle
3.07
1.55
3.7/4.ot
37.0
38.4
30,363
46,363
33,400
4
4
183 5
RUNS FOR PERTURBATION OFF BASE CASES
(1) AUGMENTED ACTIN1DE
7
8
9
10
11
12
13
14
PWR
PWR
(2) CHANGES
PUR
PUR
PUR
PUR
PUR
PUR
uo2
MO,
~
REMOVAL DURING
Reprocessed .
99. 9Z Re-
moval of
U and Pu
Reprocessed
99. n Re-
moval of
U and I'u
REPROCESSING
3.2
5.09
38.4
38.4
33,0'00
J3.000
183 2 augmented
183 3 augmented
IN DISCHARGE BURNUPS:
uo2
uo2
H02
uo2
uo2
M02
Throwaway
Reprocessed
Reprocessed
Throwaway
Reprocessed
Reprocessed
2.36
2.56
3.96
3.76
3.76
6.07
38.4
38.4
38.4
38.4
38.4
38.4
25.000
25,000
25,000
40,000
40,000
40,000
1 Low BU
183 2 Low BU
183 3 Low BU
1 High BU
183 2 High BU
183 3 High BU
(3) TO DETERMINE C-14 SOURCE TERRS:
15
16
PWR
PUR
uo2
uo2
10 ppm N-14
20 ppni N-14
3.2
3.2
38.4
38.4
33,000
33,000
Cross-
Reference
To Computer
Output Tables
Supplied
Table A-IV-1
Table A-IV-2
Table A-IV-3
*For the Tandem cycle, the estimates are basi-d on actinide and daughter concentrations for a typical
PWR discharged fuel (approximately 30,000 MWd/MTHM burnup) and at the end of a continued burnup of
this fuel in a HWR (16,000 MWd/MTHM additional hurnup). (N.L. Shapiro, Combustion Engineering Power
Systems, personal communication to obtain CF. actinidc data associated with their study given In
Reference 14.)
For the Thorium cycle analysis, the Th-232 and U-235 resonance cross sections were modified in ORIGEN In order
to account for self-shielding and isotope resonance interference effects. Minor adjustments to the ORir.F.N
spectral indicec were made in order to achieve the best match with the major discharge Thorium and Uranium
Isotopes reported in Reference 15.
+3.71 is the fissile enrichment of ThO. (Recycle U) assemblies and 4.01 Is the fissile enrichment of
Th02 (U 235) makeup assemblies.
A-IV-ii
-------
PUR • BU » 33*000 ^4?L_OECAY_TIME«(2) CASE C'l
BURNUP" 33000,HMD* FLUX* 3.'98E»13N/C«*»2»3EC
- Clad
POWER*
TABLE A-IV-1
ORIGEN Data
Throwaway Cycle
ELEMENTAL ACTIVITY, CL'fflSS ~
BASIS • MT OF HEAVY METAL CHARGED TO REACTOR
H
BE
c
NA
p
s
CL
AR
K
CA
SC
CR
MN
cs M n z n
-< TO ZC K O
i
ZR
NB
MO
TC
CD
3N
SB
TE
TOTALS
CHARGE
o,
o.
o.
o.
o, — •
o.
o.
o.
o.
o,
o,
0.
0.
0.
o.
o.
o. - —
o,
0.
o;
o,
o.
o!
o.
o!
0.
DISCHARGE
1.83E-01
6,aOE-07
1.52E-02
6.37E«73
3,!5E»01
7.92E-02
3.65E-08
6^77E-03
a.97E-01
3.2UE+02
2,2aE+02
2,20E+03
9.91E+03
2.55E*02
l,51E-82
1.7fl"E"01
3.35E+00
t'.ltE + Ol
" 3.97E+03
7,27E*03
7,20E»03
5.53E-03
6.39E-2a
1.51E+01
2.aSE»01
2)a2E+oa
6,aOE»07
1.52E-02
1.25E-01
6.12E-02
3.65E-08
3.13E«M2
5.90E»03
3.79E-01
1,«3E+02
2.08E+02
2.14Eto3
9.53E+03
2,55E+fl2
a, 20. lot
1.62E-01
It V
1.7TE-01
6,aOE»07
1.52E-02
0.
7,82E«Oa
l,a5E-02
3.65E-08
1.93E-13
1,21E>26
2.7aE»03
8.38E-02
1.50E+00
1.37E+02
1.87E+03
8.38E+03
^ e n ff * A ^
.,
7.50E+80
2.80E+03
5,'33Eto3
7.20E-03
5.53E»03
2.32E-28
l,05E+Ot
2,38E+ftl
9.53E+00
o,
9,66E»02
1.90E-01
8.72E-01
3.99E+02
8,31Et02
7.20E-03
5.53E-03
0,
5,85F*00
2,07E*01
8.52E+00
l,19E+Oa
10. V
1.07E.01
6,aoE«07
1.52E-02
0,
0,
e.2«E-ia
3.65E-08
1.09E-13
1.21C-26
2.75E.09
1.34E-13
0.
7,a2E-02
1.69E+02
2.52E+03
2.38E+02
0.
8.8aE»06
a,26fr>oa
a.27E-oa
5.53E-02
2.67E.02
7.20E-03
5.53E.03
0.
t.6aE«OI
2.05E+00
8.a7E»Ol
2.93E+03
50. Y
1.12E-02
6.aOE»07
1.5JE-02-
0.
0, /
0.
3.65E-08
9.85E-14
1.21E-26
0.
0.
o,
2,26E>16
3.95E-03
i,3oe+oj--
1.76E+02
0.
9,86E»24
l,59E-Oa
1,59E-0«
3.53E-02 -
5.70E-02
7.18E-03
5.53E-03
0.
1.13E-01
7.09E.05
2.94E.05
1,89E*02
100, V
6,69E-Oa
6,aOE«07
1,50E*02
0.
0,
Oi
3.65E-08
8.66E»la
1.21E-26
0.
0.
o,
l,*2E-3a
6.02E-09
1.78E-02
1.2JE+02
0.
0,
a.63E-05
a,*3E-05
5.53E-02
6.11E-02
7.15E-03
5.53E-03
0.
7.18E-02
1.89E-10-
7.81E-11
1.22E+02
500. Y
1.06E-13
6,aOE.07
1 .a3E»02
o.
o.
o.
3.65E-08
3.09E-14
1.21E-26
0.
0.
0.
0.
0,
o,
7,53EtOO
0.
0,
2.80E-09
2,"OE-09
5.53E-02
6.13E-02
6.93E-03
5.53E-03
0.
1.87E-03
0,
0.
7.67E400
1000, Y 10000, Y100000, Y******* V
6.26E-26
6,aoE»07
1.35E-02
o(
0.
Oi
3,6«E-08
8.51E.15
1.21E-26
0.
0.
o.
o.
o,
o.
1.78E+00
0.
0,
1.05E-18
1.05E-10
5.52E-02
6, HE- 02
6.67E-03
5.52E-03
0,
1.95E.05
0.
o.
1.92E+00
•o.
6.38E.07
a.5aE-03
o.
0.
0.
3.57E-M
7.20E-25
1.21E-26
0.
0,
o.
o.
o.
o.
1.32E+00
o,
0.
0.
o.
5,50E»02
5.80E.02
3.33E-03
5.35E-03
0.
0.
o.
o.
1.65EtOO
o,
6.22E-07
8,48E«08
o,
0.
0.
2.92E-08
0.
1.21E-26
0.
0.
o.
o.
o.
o.
6.97E-01
o,
0,
0,
0.
5.28E-02
5.29E.02
3.25E-06
3.98E-03
0.
0.
o.
o.
8,06E«01
0.
4.85E.07
Of
0.
o,
o.
3.90E-09
0,
1.21E-2*
0,
0.
o,
0.
o,
o.
2.86E-04
O1,
o.
o.
o.
3.48E.02
3,a9E.02
0,
2,oae-o«
o.
o.
o.
o.
7.03E«02
A-IV-1
-------
PWR » &U • 33»000 FUEL DECAY TIHS3C2)
CASE E«l
HE'S
POWER* 3B,80HK, SURNUPs 33000.MHO, FLUX* 3.98E+13N/CM**2»SEC
— '- ELEMENTAL ACTIVITY, CURIES — -
BASIS
|" CHARGE" DISCHARGE
TL
PB
BI
PO
AT
•— RN • — -
FR
RA
• AC
TH
PA
— u
NP
PU
— AM
CM
BK
— CF -
TOTALS
0
0
0
0
0
0
0
0
0
0
r
2
0
0
0
0
0
0
2
7
, Z
,' "" -~2
8 3
J
. 2
. 2
. 1
3
,35EfOO a
1
1 *
2
1
1
1
.35E+00 1
, a2E'Oa
.OfeE-03
0 6 f • 0 3
.38E-03
,82E-08
. 06E»03
,89E»08
,06E»03
- 0 8E ™ 0 6
,38E-01
U2E»0 1
.P7E+00
.7SE+01
,28E»d5
,20E*02
,7lE*oa
.89E-18
,32E»oa
.U6E+05
0, Y
8,09E"08
2,2«E-03
2,2yE*03
3 ,fc8F»03
3.U3E-08
2 ,2aE»03
a 99E*08
2,2«E»03
1,15E"06
3.3UE-01
6 U2E*01
1,75E+01
t .28E+05
2.38E+02
l,5tE+08
1.88E-1*
1 ,29E«n')
J.aSE+oS
1 , Y
1.21E-03
3.36E-03
3,36E»03
5.52E-03
3.73E-08
3.36E-03
5,82E«08
3,36E»03
1.52E-06
j ^3 5 E • 0 1
b U2E-0 1
1 .75E+01
1.25E+05
3.36E+02
7.98E+OS
1.88E-J8
1 .16E-08
ft
1
J
2
8
1
1
1
7
3
t
3
1
8
t
1
I
1
> NT OF
10, Y
,2aE.03
.73E-02
.73E-02
,8aE.02
,9
-------
PMR
PO«E
• BU « 33.000 FUEL DECAY UMESC2)
H, BURNUP
CHARGE DISCHARGE
H
ZN
GA'
RE
AS
SE"-
P.R
KR
RB
SR
Y
ZR
NB
MO
TC •— -
RU
"H
PO
AG
CO
IN —
SN
SB
TE
i
XE
cs
BA
LA
CE
PR
NO
PM
SM
EU
GO
TB
DY
-HO"
TOTALS
o.
o.
0,
o,
o.
0,
e.
o.
o.-
o.
0.
o, -
0.
e.
o, —
o.
o.
0.
o,
0,
o, - - •
o.
o.
0.
0.
o.
o,
o.
8.
o.
o,
o.
o,
0.
0.
0 t
0.
o.
0,
o.
7.15E+02
1.32E-22
1.90E-22
1,OOE»93
3.37E-25
3.95E-01
b,33E-?S
1.1IE+OU
2.5«EtOO
2.00E»05
2.61E+05
3.55E+05
6,'73E*05
1.32E-10
I.U3E+01
5.99E+05
5. 99E*05
1 « 1 6E"0 1
S.39E+03
7.5UE+01
fl,21E"01
a ^9 JP*03
3.7UE+03
2.U9E+OU
2.87E*00
1.?5E+00
S.a3E+05
1.01E»05
6.aOE*P2
1.00E*Ob
9,30E*05
6.52E+01
1,03E*05
1.26Et03
1.56E+Oa
2.?OEt01
«,05E*02
7.-36E-13
8.57E»0«
S.?6Et06
B 33000, MWO, FLUXs
0. Y
T.UE + 02
.03E-27
.08E-27
,30-110
',a6E»31
,95E"01
J 6E»3"
,10E+0«
7.51E-01
1 ,5bE+05
2, 15E+05
2.50E+05
4,93E*n5
3.76EM3
i . ijE+nl
5.20E+05
5.20E+05
1.16E-01
3.10Ef03
4,91E»P 1
2,b7E«01
a.UE + 03
8.52E»03
l,91E»oa
2.05E-01
6.20E-01
3.36E+05
1.01E»n5
1.08E+02
8,93E*05
8.57E+05
8.37E*00
9.93E+Ofl
1.26E+03
l,52E»oa
2,OOE»01
2.95Et02
8.98E«-)6
* ^ 57 1 *0 fl
8.50E*06
CASE
E-t
FP's
T A DT 1? A TTT 1
3,'98E+13N/CM*«2»SEC
ELEMENTAL ACTIVITY, CURIES
BASIS e MT OF HEAVY METAL CHARGED
1. Y 10, Y 50. Y 100. Y
6.91E+02
0.
0.
0.
0,
3,95E»01
0,
1 ,06E+OU
6.81E-OU
8,19E*Oa
9,1 lE+Oa
3.57E+Oa
7,66E»0«
7,59E-3fl
1.U3E+01
3,26E*OS
3,2bE+05
1.16E-01
1.86E+03
1,32E»01
2.12E-02
1.50Et03
7, 05E+03
7.12E+03
3.77E.02
1.36E-05
2.99E+05
9,9flE+Oa
5,a7E-03
5,50Et05
5,«9E»05
9.33E-OS
8,53E*Ofl
1.25E+03
l,37E*Oa
1 i 19E»01
5,10E»Ot
5.79E.32
8,57E»00
2,S6E*06
4 ItEf 02
0.
0.
e.
o.
3,95E«01
0.
5.98E*03
1.93E-05
6,OOE*0«
fc.OOE+Ott
1,87E*00
8.13E«01
0.
l.«3E+01
6.50E+02
6.50ft02
l.ldE'Ol
2,30E»01
7.17E+00
3,a2E-22
5.66E-01
7.80E+02
3.06E+02
3.77E-02
0.
9,55E»00
8,08Et04
9,
t,80Et02
1.80E+02
0.
7.87E»03
t,l6Et03
5.37E*03
9,65E»Ca
9.S9F-13
e,
ft i 53c *0fl
3.20Et05
4.37E+01
0.
0,
0,
0,
3.95E-01
0.
4,59Et02
1.93E-05
2,24Et04
2.2«E*0«
1 .67E + 00
1.7SE+00
0,
1,03E»01
6.73E-10
6.73E-10
1.16E-01
4.31E-18
9.90E-01
0.
5,6«E-01
1.15E+00
l,ObE«02
3.77E-02
0,
3,43E+00
3.20E+08
0,
5.B5E-14
5,85E«14
0.
1,99E»01
8.06E+02
9,15EfOJ
o | fl5E»Hc
o,
o.
S 9 33C*04
1.13E+05
2,61EtOO
0.
o,
0,
0.
3.95E-01
0,
1.85E+01
1.93E-OS
6.S2E+03
6.52E+03
1,67E*00
1,86E*00
0,
l.a3E+01
7,Oi;E-25
7.03E-25
1.16E-01
2.a5E-30
8.33E-02
0,
l|l?E*00
2.82E-08
3.77E-02
Ot
1,08E+04
t.oiEtoa
o,
2.56E-33
2.56E-33
8,
3.58E-07
5.68E+02
1.05E+02
0 f
0,
0.
8,09E»Ofl
3,«6F»0«
TO REACTOR
500, Y 1000, Y
0.23E-10
0.
0, '
o.
0,
3.93E-01
0,
1.31E-10
1.93E-05
3,38E«01
3.38E-01
1.87E+00
1,87E»00
0,
1.43E+01
0,
o.
1.16E-01
0,
2.08E-10
0.
5.62E-01
1,12EtOO
0.
3.77E-02
0.
1.27E+00
9.77E-01
0.
0,
o.
o.
8,
2.35E+01
3,I2E«06
o.
o.
o.
6,42E*0*
8.6fcE»01
2,40E«22
0.
0,
0,
0,
3,91E»01
o, -
1.51E.24
,93E»05
,08E-06
,aeE-06
,86E+00
,86EtOO
0.
1.43E+01
0,
0,
1.16E-01
0,
3.69E-21
0,
5.60E-01
1.11E+00
0,
o!
2.23E-01
9.38E-06
8.
8, .
8,
8.
8,
4.37E-01
1.22E«15
8,
8,
0.
0,81E»0«
2.09E401
L£\*>Mj£i A— iV— X
(continued)
10000, Y100000, Y******* Y
8.
8,
8.
8,
8,
3.55E-01
8,
8.
1,93E«05
8.
8,
l,8fcE»00
1.8bE»00
8,
I.38E+OJ
8.
8,
l.lbE-01
0.
8.
8.
5.26E.OI
1.05E+00
8,
S.77E-02
8.
2.23E»01
8.
8.
8,
8.
0,
8.
8.
8.
8,
8,
8.
2 .v&CvOfc
1 9QC 1 0 1
8,
8,
8,
8,
°»
l,3bE«01
8,
8,
1,93E«05
8,
8,
1.78E+00
1.76E+00
8,
1.03E+01
8.
8,
j.iaE-oi
8.
8,
8.
2.82E-01
5,6JE«01
8.
3.7bE-02
8.
2.18E-01
8.
8.
8,
8,
8.
o*
8.
8.
8.
8.
o.
0.
1.52E+01
8.
8.
8,
8.
8,
9.23C-06
8,
8.
1.93E.05
8.
8,
1.16E+00
1,18E*00
8,
5.44E»Ol
a.
o.
1.05E-01
8,
8.
8.
5.51E.D*
1.10E.03
8.
3.62C.02
8.
1 • T7C*0 1
8.
8.
8.
8,
8.
8.
0.
0.
0 ^
8.
0.
0,
3,2tt»00
A-IV-3
-------
_PWR • BU « 33*000 FUEL DECAY TIMES(2) CASE C»l
POKES* 38,'aoMw, BURNUP* 33000,MUD, FLUX* s.'98E+i3N/CM»*2-8EC
Clad
H
HE
ui-
BE
a
CHARGE
1.62E»Oa
0,
o. -
o.
0.
3,a5E+00
0.
DISCHARGE
f
NE
•J
s
CL
K
CA
3C
TI
V
i — CR
MN
FE
'-co
NI
cu
— ZN
SR
Y
o.
o.
o.
o , -
3.13E+01
6.51E+01
1 .95E+00
1 .29E+00
o.
o.
0,
o.
Ot
5,58Et01
0.
2,OOE*03
1,08E*02
3.97E+03
7,09E*01
3.70E+03
1,86E»01
0,
0,
0.
2.33E+00
9.22E-10
5,15E«OS
2.25E-11
1.09E+01
« 70E-07
2.60E+OS
2.98E-19
1 ,07E-08
8.3«E-tO
fl,U6F"OU
3,liEtOl
6,51EtOJ
1.29E+00
3.5«E«05
3,7fiE«10
1 .POE-11
1.56E'0«
1.68E-05
5.59E+01
2,81E»00
1.05E+02
MO
i—TC--
«u
CO
I—IN —
SN
SB
I—TC-
TOT
TOTALS
3.23C»02
1.99E+02
-o. - --
0.
6.18E-03
6|33E-03
1.83E+03
0,
•o,
0,09Et05
3,70E+03
I .S6E+01
1.10E-OJ
t .15E-01
«,53E-oa
1.?IE»05
3,?3E+02
2.06E+02
3.22E-01
9.75E-02
7,fc7E-08
2,'20E-03
J.83E+03
6.62E-01
1,1!E-02
fl.09E*05
0. Y
1.62E+oa
2.33E+00
9.22E.10
5.15E-05
2.J7E-J1
1.09E+01
5.07E-07
2.98E-19
1.07E-08
8.3aE-10
«.a(>E-0«
3.13E*01
1 .95E+00
1 ,2
1.62EtOa
2.33E+00
9.22E-10
5.15E-05
2.99E-11
1.09E+01
7,iaE-07
2.60E+05
2.98E-19
1.07E-08
1.95E+00
S.29E+00
3.69E-05
3,80E«10
1.20E-1J
5,59EfOt
2.82E+00
2,OOE»03
1.05E+02
3.97E+03
6-.90E + 01
3.70E+03
1,10E-01
1.15E-01
3.S7E-05
1.21E+05
3.23E+02
2.06E+02
3.22E-01
9.75E-02
7.67E-06
2,20E«03
1.81E+03
6.59E«01
1.44E-02
8.09E+05
10, Y
l,62E+Oa
2.33E+00
9.22E-10
S.15E-05
l]o9E+01
2|60E+05
2.98E-19
1.07E-08
8,3aE-10
3|l3E+01
6.51E+OJ
1.9SC»00
1,29E»00
3.72E.05
a,02E«10
1.20E-11
5.59Et01
2.82E+00
2.00E + 03 -
1.0SEf02
3.97E+03
3.70E+03
l,89Et01
1.10E-01
1.15E.01
7.8aE-10
1.21E+05
3.23E+02
2.06E+02
3.22E-01
9.75E-02
7.67E.08
2.20E-03
1.83E+03
6.02E.01
3.19E.02
4.09E+05
50. Y
1.62E+0«
2.33E+00
9.22E-10
5.15E-05
6.38E-10
1.09E+01
2.09E-05
2.60E+05
2.98E-19
1 .07E-08
8.3UE-10
U,U6£-Oa
3.13E+01
6.51E+01
1.95E*00
1.29E+00
3.72E.05
5.02E-10
1.20E-11
1,56E«0«
2,«6E-06
5.59E»01
2.82E+00
2,OOJf03
1.05E+02
3.97E+03
6.18E+01
3.71E+03
1.99E+01
1.10E-01
1.15E-01
2.92E-10
1.21E+05
3.23E*02
S,22E-01
9,75E»02
7.67E-08
2.20E-03
1.83E+03
6,(I1E>01
3.38E-02
4.09E405
100. Y
1.62E+00
2.33E+00
9.22E»10
5.15E-05
1.26E-09
1.09Et01
fl.iaE-05
2.60E+05
2.98E-19
1 .C7E-08
8.3UE-10
500,
A.51E+01
1.95E»00
1.29E+00
3.7c;E-05
6.27E-10
1.20E-1 1
1 ,56E-0«
2,a6E»06
5.59EtOt
2,82E»00
2,OOE*03
1.05E+02
3.97E+03
3.70E+03
2.07E+01
1.10E-01
1.15E-01
8.51E-11
1 ,21E»05
3.23E+02
2.06E+02
3.22E«01
9.75E-02
7,67E>08
2,20E»03
1.8SEt03
6,a?E.01
3.38E-02
«,09Et05
2.33E+00
9.22E-10
5.15E-05
6.22E-09
1.09E+01
2.oiE-oa
2.60E+05
2.96E-19
1.07E-08
8,3aE-10
3ll3Et01
6.51E+0!
1,95EtOO
1.29E+00
3.72E-05
1.63E-09
1.20E-11
2,a6E»06
5.59E+01
2.82E+00
2.00E+03
1.05E+02
3,97E*03
3.70E+03
2.26E+01
1.10E-01
1.I5E-01
«,«1E-15
1.21E+05
3.23E+02
2.06E+02
3.21E-01
9.75E»02
7,67E«08
2.20E-03
l,83Et03
6,uaE«CH
3.38E-02
0.09E+05
1000, Y
1.62E+08
2,33EtOO
9.22E-10
5.15E-05
l,?aE-08
1,09E*01
3.89E-08
2.60E+05
2.98E-19
1.07E-08
e.SttE-10
3',13E + OJ
6.51E+01
1,95E»00
1.29E+00
3.72E-05
2.87E-09
5.59E+01
2.82E+00
2.00E+OS
1.05E+02
3.97E+03
6.19E+01
3.70E+03
2.27E+01
1.10E-01
1.155-01
1.901
3.70E+03
2.27E+01
t.lOE-01
1.15E.01
0.
3.23Ef02
2.06E*02
3.11E-01
9.75E-02
7.67E.08
2,'20E»03
1,83E»03
6,«aE-Ol
3.38E-02
«,09Et05
Y100000. Y******* Y
» 1.62E+04
0 2.33E+00
0 9.22E-10
5 5.03E-05
7 1.22E-06
1 1.09E+01
3 S.aiE.03
5 2,60Ef05
9 2.98E-19
8 1.07E-08
0 8,3«E-10
1 3|l3EtO!
1 4,51E»01
0 1,95E»00
0 1.29E+00
5 3.70E-OS
8 2.2aE-07
1 1.20E-11
4 1 ,S6£»OU
6 2,a6E»06
1 S,S9E*01
0 2 92C+00
3 z|oOE*OS
2 1.05E+02
3 3,97Et03
1 7.88E+01
3 3,69Et03
1 2,27E»01
1 1.10E.OI
1 1,15E«01
0,
5 1.21Et05
2 3,2«Et02
2 2.06E+02
1 2,311-01
>2 9.75E-02
18 7.67E-08
i) 2.20E.OJ
13 I,83E»03
12 s)38E*02
IS 4,09Et05
l,t.2E + 04
2.33E+00
9.22E-10
4.07E-05
1.08E-05
1.09E+OJ
3,aiE-03
2.60E+05
2.98E-19
1 .07E-08
8,3aE-10
3llJE»01
6,51E»«1
1,9?E+06
S.29E+00
3-.62E-OS
9.99E-07
1.20E-11
itS6E»04
2,afeE=Ofe
5,59E*Ol
2.00E+03
1.05E+02
3.97E+03
8,36E*Ol
3.48E+03
2,27E»OJ
1.10E-01
1.15E-01
0,
1.J1E+05
3.31E+02
2.06E+02
1.19E-02
9.75E-02
7.67E.08
2.20E-03
1.83E+03
3^38E-02
4,09E»05
A-IV-4
-------
PWR . BU • 33>000 FUEL DECAY TIHgS(2)
CASE C«l
HE'S
POWER* se.aoMw, BURNUPS 33000,MHO, FLUX« 3.98E+i3N/c***2-sEc
TABLE A-IV-1
(continued)
ELEMENT CONCENTRATIONS, GRAMS
BASIS s MT OF HEAVY METAL CHARGED
HE
TL
-PB
BI
PO
AT ---
RW
FR
RA
AC
TH
p* ~
u
NP
-PU — -
AM
CM
BK
CF
TOTALS
CHARGE DISCHARGE
0, 2.3«E-01
0.
0 ,"
0.
0,
0,
0.
0,
0.
0,
o.
o.
1,OOE*06
0,
o, -- -
o,
o,
0,
o.
i,ooe*06
2.55E-12
'< 08E>07
2*05E«10
7 91E»ia
2.11E-20
2.35EM2
5.7&E-16
2.88E-08
1 .aaE-08
1.3SE»03
5.25E-08
9.55E»05
8.65E+02
9,aaE+03
1,88E+02
2.91E+01
fl,96€»21
3 1 1E-07
9.65E+05
0, Y
2,"88E-01
2.77E.13
6,87E»07
2.19E-10
8.71E-T8
2,1 1F«?0
2.56E-I2
6.01E-16
3.09E-08
1.53E-08
l.39E«03
5.26E-08
9.55E+05
a A5E+02
9,U2E*n3
J,5aE+n2
2.88E*Ol
8 . 8aE *?1
3.05E-07
9.65E*05
1. V
3,OaE>01
a,16E«12
1.25E.06
3.03E-10
l,aOE«13
2.30E-20
3.81E-12
7, SUE. 16
8 i 32E^08
2.08E»08
1.69E-03
5.30E-08
9.55E+05
8.65Et02
9.39E+03
1.82E+02
2,58E*01
8,8aE«21
2.75E-07
9.65E+05
10. Y
7,aoE«oi
2.18E.11
fl.a2E.05
l.aeE.09
7.9BE.12
5.53E.20
2.08E.11
3.32E-15
8.0aE>07
1.05E-07
7.18E.OS
5,99E-Oa
9.55E+05
8 69Et02
8,<»7E + 03
5,«5E+02
1.71E+01
a.82E>2l
5.09E-08
9,65E»05
50. >
2.77E+00
1.77E-11
3.20E-08
5.82E-09
a,99E-10
2.82E.19
5,3aE-ll
1.30E-11
5.99E.06
3.93E-07
3,aoE.02
9,10E«08
9.55E+05
5.27E»02
8.27E+03
1.20E+03
3,92E«00
8.75E.21
6.69E-09
9.65E+05
100. Y
5,18F*00
l.HE-ll
5,fl9E-08
2.18E-08
3.00E-09
7.75E-19
1.65E-10
2,50E'18
2,82E>05
6,70E«07
7,20E»02
1,30E»03
.55E+05
.16E+02
,12E*03
,22E*03
.20E-01
,65E'2l
6,82E»09
9,65E*OS
TO REACTOR
500, Y 1000, V
.77E+01 2,68E*01
.32E-12
9.80E.08
.R3E-06
.56E-07
,71E-17
8.55E-09
2.32E-13
7,09E.Ofl
2.85E-06
a.acE.ot
a.aoE-03
9.55E+05
1.15E+03
7,90E*03
6,85E*02
2.68E-01
3.97E-21
8.72E-09
9.65E+05
2.06E-12
1.39E-03
1.65E-05
6,29E>07
8,13E-17
l,8aE»08
8.88E-13
2,87E«03
5.36E-06
9.25E-01
8.25E-03
9,56E»05
1,87E*03
7,72E*03
3,5lE*02
2.56E-01
3.25E.21
3,21E»09
4,65E*OS
10000. V100000, V******* Y
7,22E*01 1,58E*02 2.60E+02
2.00E.11
2.18E-01
2.ajE-02
2.71E-05
1.05E.18
7,<»2E«07
9.80E-11
1,23E-01
5.00E-05
9,55E*00
7.61E-02
9.58EtOS
1.73E+03
5.35Ef03
3,6]E*01
1.15E-01
9.01E.23
3.13E-12
9,65E*05
l,a5E«10
2.36E+01
8.18E+00
2.17E-08
2.58E-13
6.36E-06
2.37E-09
9.91E-01
3.27E-04
6.98E+01
a,89E-01
9.63E+05
1.68E+03
6,95E*02
1 ,OOE-02
a,76E-oa
2,81E>38
8.60E-35
9.65Et05
2,02E«10
3,aOE+02
3.35E+02
t,08E«04
5.78E-13
3,fl5E«06
5.31E.09
4.76E.01
4.11E-08
2,05E*02
6,OSE»01
9.63E+05
1,26E»03
7,18E»01
1.75E-07
3.85E.08
0,
0,
9.65E+05
.A-IV-5
-------
PHR - BU « 33,000
POWER* 38.00MW, BURNUPs 33000.
FUEL DECAY TIMESC2) CASE C-l _
FLUX« 3,*9BE + 13N/CM**2«SEC
FP's
TABLE A-IV-1
(continued)
ELEMENT CONCENTRATIONS, GRAMS
BASIS • MT OF HEAVY METAL CHARGED TO REACTOR
i - CHARGE DISCHARGE
H
ZN
PA
GE
AS
BR
LKR
•— RB
SR
Y
- ZR
• MB
! MQ
•— TC
RU
RH
r PO
AG
i_CD
— IN - —
3N
S9
-TE- .-
! i
i *-
cs
BA
UA '
1 CE "•" •
j PR
i NO
1 — PM
3M
EU
j— GD"
! Te
j °Y
H(j
ER
TOTALS
0.
0.
0.
0,
o.
o.
o.
o,
o.
o.
o.
o,
o.
o.
o.
o,
o,
o.
o,
o,
o,
o.
o.
o.
o,
o.
o.
o.
o.
o.
o,
o.
o,
o.
o,
o.
o,
o.
o,"
o.
o,
7^38F«02
1.U1E-28
6 15E-29
3.73F-01
8,a«E»02
5,16E+01
1.53E+01
3.69E*02
3,27E»02
8.85E+02
a , 62E+02
3.63E403
!,70E*01
3.a3E*03
8.S9E+02
2.32E+03
3.87E402
1.32E+03
6.22E+01
8.95E+01
1 .22E+00
5.32E401
1.79E+01
" 5,69E+02
2.72E*02
5.52E403
2,*7E+03
1^37E+03
1.27E403
2.77E+03
1.19E403
3.'81E403
""1.07E+02
8,0«E+02
1.79E+02
I , 2^E4 02
1 ,68E400
1.1UE+00
1.17E-01
3.67E-02
3.a9E+0«
0, Y
7.3aE-02
1.10E-33
fl ,80E«?a
3.73E-01
8,fl«E"02
5,16E»fll
l,53E+Ol
3,<>9F + o2
3.27E+02
8.R3E+02
1 , fel E*02
3, 6 JE>03
1 ,2UE + o I
3.(iaE + o3
8.39E+02
2.31E+03
3.88E+02
1.33E+03
6. 21 E+Ol
«,95E+OJ
1.22F+00
5.31E»Ol
1.7BE+01
5.69E+02
?,72E*02
5.52E+03
2,66E'*03
1,38E*03
1.27E+03
2.75E+03
1.19E+03
3.83F+03
1.05E+02
8 061+02
1.78E+02
1 ,21Et-o2
1.87E+00
1 f!5E*00
" 1 , 17E-01
3.67E-02
3.a9£*oa
1. Y
7.13E-02
0.
o.
3.73F-01
8,a«E»02'
5.16E+01
1.53E+01
3.68E+02
3.28E+02
8.73E+02
a,58F+02
3, 63E*03
1 , 93EtOO
3,a6£+03
8.39E402
2.27E+03
3.90E+02
1.37E+03
fc, 19Et01
6.98E+01
1 .22E+00
5.28E+01
1.72E+01
5.70E+02
2, 72E+02
5.52E+03
2,62E*03
1.02E+03
1.27E+03
2,65F+03
1.19E+03
3.93E+03
9.17E+01
8.19E+02
1.76E+02
1 ,26Et02
1 ,R5E>00
1.18E+00
1 , 17E-01
3.67E-02
3,a9E+0«
10, V
a,30E»02
o.
o.
3.73E-01
8,'aaE»02
5, 16C»01
1.53E+01
3.56E+'02
3.10E+02
7.68E+02
l> ,SfiE + 02
3.73E+03
3.78E-03
3,afcE+03
8.39E+02
2.J7E+03
3.90E+02
) ,^7^ + 03
6,t5E*01
9.01E+01
1.2UE+00
5.26E+01
1.10E+01
5.76E*02
2.7?Ef02
5,52e+03
2.25Et03
1.79E+03
1.27E+03
2,asF+03
1.19E+03
a,10E+03
8,a8E+00
8.99E+02
.58E+02
,aeE402
,85E*00
.18E+00
.17E-01
3.67E.02
3,a9E+oa
50, >
4,51E»03
0.
o.
3.73E.01
8 ,aaE»o2
5.16E+01
1,53E*01
?^*(1E + 02
"\ ^ 55E ^02
5.02E+02
a,5PE+02
a, OOF+03
1.72E-02
S,«6E+03
8.39E+02
2.17E+03
3.90E+02
1.U7E+03
6.15E+01
9,OtE+01
1 .27E+00
5, 26E*0 1
1.03E+01
5.77E+02
2.72E+02
5.52E+03
I ,%5E+03
2,aoEto3
1.27E+03
2,OflE+03
1.19E+03
a,10E+03
2,i5E-oa
B.96E+02
l,ao£+02
1 .77E402
1.85E400
1.18E400
1 .17E-01
3.67E.02
3,a9Et04
100. Y
2,69E«0«
o,
o.
3.73E-01
8,aaE"02
5.16E401
1.S3E401
3,«OE+02
3.56E+02
3.89E402
«,58E402
a,llE403
3,<40E»02
3,«6E»03
8.39E402
2.17E+03
3.90E402
l,a7E+03
6.15E401
9.0JE401
1.27E+00
5.26E+01
I,03£t01
5.77E+02
2.72E402
5,52Et03
1.38E+03
2.67E403
1.27E403
2,a8E403
1.19E403
fl,10E403
3,8feE"10
8,86Et02
1.05E+02
l,t3E402
1.85E400
1.18E+00
1.17E-01
3.67E-02
3,a9E»Ofl
500, Y
a,36E.ia
0,
o.
3.73E-01
8,aaE-o2
5.16E401
1,S3E*OJ
3.UOE402
3.56E402
3.43E402
a,58E402
0.16E403
1.69E-01
3,a6E403
8.S8E402
2.18E+03
3.90E+02
1 , a7E+03
6.15E+01
9,niE*01
1.27E+00
5,25Ef01
1.03E401
5.77E402
2.72E+02
5,52E403
I.25E403
2.79E403
1.27E403
2,a8E403
1 .-19E403
a,10E403
0,
8.66E+02
l,6aE+02
1.81E402
J.85E400
I.IBE+OO
1 . 17E»01
3,fc8E-02
J,«9EtOfl
1000, Y
2.S2E-26
0.
0,
3.73E-01
8, U4g»02
5, 15E401
l,S3Et01
S»aoE402
3.56E402
3.a3E402
a ,58E402
a, J6E403
3.37E-01
3,a6E403
8.36E402
2.18E403
3.90E402
1.07E+03
6.15E401
9.01E401
1.27E400
5.2aE+01
1.03E401
5.77E402
2,72E*02
5.52E+03
1.25E403
2,79£403
1.27E403
2,fl8E403
1.19E403
a,10E403
o,
8.65E402
1.65E402
1.8QE402
1.85E400
1.18E400
1.17E-01
3.69E-02
3.09E+00
10000, Y100006, Y******* V
o,
o.
o.
3.73E«01
8,aaE»02
5,10E*01
1.58E401
3,aoE402
3.56E402
3,03E402
8,58E*02
8.16E403
3.36E400
3.U6E+03
8.12E402
2.20E403
3.90E+02
l.a/E+os
6.1BE401
9,OlE40l
1.27E400
5.12E+01
1.03E401
5.78E+02
2.72E402
5.52E403
1.25E403
2.79E+03
1.27E+03
2,aeE*03
1.19E403
a,10E403
0.
8.65E402
.65E+02
,8aE402
.85E+00
.18E400
.UE-01
3.72E»02
3,«9E+Ofl
0.
0.
0.
3.73E-01
8,U4E»02
a,79E+01
1.90E+01
3,aoE402
3.56E+02
S.a3E402
«,58E402
a,13E403
3.29E+01
3,at>E + 03
6.05E402
2.0JE403
3,90E*02
1.87E403
6 , 3VE401
9.01E401
1.27E+00
a,26E*01
1.03E401
5.87E+02
2,72E»02
5,53E403
1.25E403
2.80E403
1,27E»03
2,aeE+o3
1.19E403
a,10E*03
o.
8.65E+02
1.65E+02
1,8«E402
1,85E400
1.18E400
t.lbE-01
3.72E-02
3,fl9£*0«
0,
0.
0.
3.73E-01
.8,aU£.02
a,59E+01
2.09E+01
3,aOE402
3,56E*02
3,ajE+02
0.58E402
3.69E403
2.69E+02
3,fl6E+03
3.19E+01
2.98E+OJ
3.90E+02
1,U5E»03
8,aa£to i
9.01E40J
1.27E+00
3.27E+OJ
' 1.03E*Ot
5.97E+02
2,63E*02
5,53E*03
1.20E403
2.8UE+03
1,27E*03
2,a8E403
1.19E403
8,10E+03
0,
l',65E + 02
l,8flE402
l,85EtOO
1.18E400
1.16E.OJ
3,72E«02
3,a9E40a
A-IV-5
-------
PMR • BU • 33>000 FUEL DECAY TIMESC2)
CASE E-l
Clad
POWER' 38,'aOMH, BURNUP« 33000,HMD, FLUX» 3,'98C+13N/CM**2-3EC
TABLE A-IV-1
-i (continued)
H
NA
p
3
CL
AR
K
1
•
< UK Z UO
u no r b. u
NI
CU
ZN
G"
Y
«
B '
MO
TC
1 CD
3N
1 SB
TE
TOTALS
CHA
0.
o.
o.
o,
0.
0.
o.
0.
o.
o.
0.
0.
8.
o.
'0.
o,
0,
0.
o.
o.
o.
0.
o.
o.
o.
o.
o.
o.
RGE DISCHARGE
6 '52E-06
a.51E-06
1.79E-74
1.70E-04
2.25E-05
6.80E-11
2^81E-ia
1.16E-29
«.iaE-06
6,98E«03
l.USE+00
1.61E+00
3.01E+00
1.53E+02
a.'OfeE«02
9.26E-S5
1.02E-03
l.POE-02
4.21E-02
2.08E+01
3,50E+01
1.79E-05
9.51E-06
2 1UE-26
l.fliE-02
1<0«E-01
8.31E-03
2.15E+02
0. Y
*Jfl8E»06
4.51E-06
2.62E-90
6.20E-05
1.7<1E"05
6.80E-U
t.«7E-t«
1.16E-29
3.60E-06
5.32E-03
6.31E-01
1^68E+00
2,88E+00
l,fl8E+02
4.06E-02 "
2.58-103
1.29E-03
7.77E-03
2.85E«02
l.fl6E+Ot
2.57E+01
1.79E-05
9.51E-Ofc
7,176E-31
7.18E-03
9.96E-02
8.19E-03
1.93E'+02
ELEMENT THERMAL PO«ER» WATTS
BASIS • MT OF HEAVY METAL CHARGED
1, Y 10, Y 50, \ 100. ~T
6.30E-06 3.80E-06 3.98E-07 2.38E-08
a,51E«06 5.51E-06 q,U8E-06 a.06E«06
0.
3.53E-07
«,13E-06
4,80f-ll
5,«6E-lb
1.16E-29
1.67E-06
1.18E.03
6.65E-03
I.HEfOO
2,««E>00
1.31Et02
a.oaE-02
o,
7,69E-0«
6,81E"Oa
3.32E-03
2.09E+00
a.OOE+00
1.79E-05
9.51E»06
0,
3.29E-03
8,41E'Q2
7,32E«03
J.aiE+02
0.
0.
2.3flE-lT
6.80E-U
1.51E-16
1.16E«29
1.68E-12
1.88E.15
0.
6.01E-04 ~
2.21E-01
3.90E+01
3.78E-02 '
0.
7.02E«08
5.59E-07
2.51E-06
6,55E-06
1.08E-05
1.79E-05
9.51E-.06
0.
1.71E«04
8.29E»03
7.28E-00
3.97E+01
o. - -
0,
0.
6.80E-11
1.37E-16
1.16E-29
0,
0.
0.
1.83E-18
S.16E-06
2.02E-01
2.79E-02
0.
7.83E-26
2.08E-07
9.36E-07
6.S5E-06
2.10E.05
1.79E-05
9.51E-06
0.
1.19E-04
2.87E-07
2.52E-08
2.31E-01
0.
0.
o.
6.79E-11
1.20E-16
1.16E-29
~o,
0.
0.
"1.31E-3*
8.37E-12
2.78E-00
1.92E-02 ~
0.
o.
6.07F-08
2.73E-07
6.S5E-06
-"2.29E-03 "
1.78E-05
9.51E-06
0,
7.53E-05
7,«4E»13
6.71C«U"
1.9bE«02
TO REACTOF
500. Y
3.85E-18
4,2SE*06
0.
0.
0.
6.79C-11
1.28E-17
1.16C-29
0.
0.
0.
o.
o.
o,
9.41E-04 '
0.
0.
3.1BE-12
i.oiE-n
6.55E-06
2.29E-05
J.73E-05
9.50E-06
0.
1.96E-06
0.
0.
l.OOE-03
^
1000, Y
2,23E«30
«,OOE-06
0.
0.
0.
6,78E-11
1.18E-17
1.16E-29
0.
0.
0.
0.
0.
0.
2.17E-05
0.
0.
1.38E-17
6.21E-17
6.55E.06
2.29E-05
1.66E-05
9.Q8E-06
o.
2.05E-08
0.
0.
8.13E-05
10000. Y
°.
1.35C«06
0.
0.
0.
6.65C-11
9.98E-28
1.16E-29
0.
0.
0.
0.
0.
o»
o,. ""
Ot
0.
0.
0.
6.52E-06
2.18E-05
8.30E-06
9.20E-06
o.
0.
o.
o.
fl.72E.05
100000, Y******* Y
0. 0.
2.51E-11 0.
0, .0,
o. o.
o. o,
5,a3E«ll 7.26E.12
0. 0,
l.l*E-2^ 1.16E-29
0. 0.
0. 0.
0. 0,
o. o,
o. o.
0. 0.
0. 0,
0. 0,
0. 0,
0, 0.
0. 0.
6.26E-06 4.13C-06
2.00E-03 1.37E-05
8.10E-09 0,
6,8aE-06 3.51E-07
0. 0,
0, 0.
0. 0.
0, 0,
3.31E-OS 1.82E-03
A-IV-7
-------
PHH • BU » 33»QOO FUEL DECAY T:M£S(2) CASE E-l
POWER* 38.40MH, BURNUPa 33000.MHO, FLUXs 3.'<»8E»13N/CM**2-SEC
HE'S
TABLE A-IV-1
(continued)
ELEMENT THERMAL POWER, HATT8
BASIS • MT OF HEAVY METAL CHARGED TO REACTOR
TL
1 p8
BI
PO
AT
i RN
: FR
i "A
AC
TH
PA
i — u
! NP
: PU
AM
CM
BK
r CF
i TOTALS
1
" CHARGE
0.
0.
0,
0.
0,
o,
o.
o.
D,
0.
0.
6,656-02
0.
0,
o*
o,
o,
6.65E-02
DISCHARGE 0, Y 1. Y 10, Y 50, > 100, Y 500, Y 1000, Y 10000, Y'100000, Y****«»* Y
1.73E-05 1,88E-05 2.82E-05 1,«5E.O« lt19E-Oa 7.36E-05 2.20E-06 l,2aE-06 1.7JE-05 2.21E-04 4.25E-04
2,96E-06 3,22E«06 a,83E-06 2.a9E-05 2.05E-05 1.28E-05 2.73E-06 8.49E-06 3,3aE-04 2.99E-03 2.34E-03
3,58E-05 3.90E-05 5,8aE-05 3,01E-04 2,a8E-04 -1.55E-04 2.31E-05 .30E-OS 2.27E-03 l,97E»02 1.47E-02
l,5aE»Oa 1,68E»04 2,52E«Oa 1,30E»03 1,07E«03 6,62E-Oa l.OOE-Oa ,45E>04 1,48E«02 1,32E«01 1.00E.01
l,a3E«09 l,aaE»09 1.56E-09 3.77E-09 1.92E-08 5.28E-08 1.16E-06 ,5aE»06 7.18E-04 1.76E-02 3,94£«02
7. PIE. 05 8.51E-05 1,28E«04 6.57E.04 5.80E-04 3,36E-Oa 3.83E-05 .08E-04 4,12E»03 3.29E-02 1.65E-02
1.31E-09 1,31E-09 l,aa£-09 3.60E.09 l.BOE-08 4.85E-08 1.0aE»06 ,93E«06 6.38E-04 1.56E-02 3.50E-02
7,OSE»05 7,68f-n5 1.1SE-04 5.93E-04 0,87E-0 7.UE-.07 6,4a£-10 3,68E-lo 2.67E-10 1.62E-10 1.78E-13 .S1E-33 0,
7.41E+02 6.69E+02 4.09E+02 2.08E+02 2.17E+02 1.93E+02 9,57E*Ol 5.55E+01 1.38E+01 1.06E+00 3,95E«Oi
L .
A-IV-8
-------
PHR . BU • 33(000 FUEL DECAY TIME8C2)
CASE E»l
FP's
POWER* 38.40MW, BURNUPi 33000.MUD, fLUX» 3.98E+13N/CH**2"SEC
TABLE A-IV-1
(continued)
ELEMENT THERHAL POWER. kATTS
BASIS » MT OF HEAVY METIL CHARGED TO REACTOR
H
ZN
GA -
GE
AS
SE
PR
KR
KB
SR
Y
ZR
MO
tc
RU
RH
PD
AG
CD
IN
SN
SB
T£
I
XE
cs
BA
t.A
It
PR
ND
PM
SH
EU
GD
TB
OY
HO
TOTALS
CHARGE
o,
o.
- o,
o,
o,
- o, - -
o.
o,
0.
o,
o,
o,
o,
o,
o. -
o.
o,
o.
0,
o.
o.
o,
p.
o,
o,
o,
o.
o!"
c,
o.
o.
o.
o.
0 ft
0 _
o.
0.
o.
DISCHARGE
2.5<1E-02
1.77E-25
"~ 4.10E-21
1,436-95
8.79E-28
l!<>4E-29
l.BOE+01
1.206-02
l|23E»03
1.86E+03
3.21E+03
5.36E-13
a*05E+02
5,15E+03
s'jSE+Ol
2.U9E-01
1.21E-03
1.T4E+01
3.fe2E+01
3.60E+01
9,91E-03
8.26E-03
2.67E*03
3,98E»02
1,136+01
' 9.02E+02
7,20E+03
2.12E-01
9 '35E + 01
2,19£+00
T,a.8E+01
3.17E-02
3,aaE+oo
6.Q1E-16
~ 9.22E-06
2,S9E+04
0. Y
2.536-02
1.38E-30
3,20E-?9
1.37-116
3.50E-34
1.50E-00
1.95E-36
1.79E+01
3.55E-03
9*77E+02
1.31E+03
2.35E+03
1.5JE-16
9,fe6E-03
2.39E+02
9*60E«06
lisSE-Ol
l|a5E+01
3.50E+01
2.73E+01
1 J20E-03
~ 2.59E + 03
l)90E*00
7.72E+02
6,«iaEt03
2.72E-02
2jl9E+00
7.12E*01
2*51E+00
7.32E-19
9.22E-06
2,08E+oa
1. Y
2.46E-02
0.
0,
0,
0,
1.50E-04
0.
1.73E+01
a,08E*06
1.-23E + 02
5.03E+02
l,87Et02
3,66E+02
3.09E-36
9.66E-03
2.7BE+01
3,«OE+03
9,60E»06
- 2.97E+01
2.20E-02
6,08E«05
5.28E+00
3.03E+01
9.76E+00
2,a8E*05
2.65E-08
2,21Et03
3.91E+02
9.6UE-05
4,SOE+02
3jo3E"07
a,51E+01
2.16E+00
6,80E»01
1.71E-02
4.33E-01
5.05E-35
9.21E-06
10. i
I.48E-02
0.
0.
o,
0,
1.50E-08
0,
9.71E+00
1.26E-08
7.86E+01
3.53E+02
2.21E.08
1.45E-04
0.
9.66E-03
3.85E-02
6.83E+00
9.60E-06
3,6aE*03
9,aaE-oj
9.79E.25
6,loE-na
3.01E+00
5.26E-01
2.U8E.05
0,
2.38E+02
3,17E»02
0,
1.87E-01
1,39E*00
4*06E*00
2|03E+00
fl.27E»01
1.39E.06
8,14E-15
0,
9.17E-06
1.06Et03
1 50. Y
1.55E-03
/•o,
o, "•• ~
-0,
0, '
1.50E-04-
.0,
7,a5E-01
~ 1.26E-08 '"
2.93E+01
1,32E*02
2,2iE-oa~
3,07E-oa
o,
9.66E-03 "
3,99E-ia
7.07E-12
9.60E-06
1.85E-20
1.31E-03
0,
6,09E-Oa
1.12E-02
1.82E.OS-
2,48E-OS
0,
"5.61E+01
1.26E+02
0,
8.79E-17 "
o!
1.03E-04-
l,fl7E+00
7.52E+00
9.29E-25
0,
0,
0,96E-06
3.53E+02
100, Y
9.28E-05
0.
0,
o,
o.
1.50E-04
0.
S.01E-02
1.26E-08
9.508
't
>,09E*04
1.11E-02
1.85E-11
I.77E+01
;Io9E-36 -
1.98C-33
.Js5E"10 '
I.90E-01
I.61E-01
1,
l|70E-06
.06E+02
500, Y
1.50E-18
o,
o.
o.
0,
1.89E-04
o,
2.13E-13'
1.26E-OB
l]99E-03
2.21E-04
3,32E-Oa
0,
9.65E-03
o,
0,
9,60E>06
0,
2.75E-13
o,
6.07E-04
1.10E-02
0,
2.88E-05
0.
1,82E«03
3.8UE-03
o,
0,
o,
o,
o,
8.09E-02
2.56E-OB
0.
o,
6)916-06
7.106-02
1000, Y
8,696-27
o,
o,
o,
0,
1,486-04
o,
2,056-27
1,266-08
1,946-09
2J21E-04
3,32E-04
o,
9.63E-03
0,
o,
9,606-06
a,87E-24
0,
6,OaE-04
1.10E-02
0,
2,48E-OS
0,
1,09E-04
3,69E-08
o,
o,
0 •
0 A
o, - ;
7,616-04
1,006-17
0.
o!
5,176-06
2.28E-02
10000, Y100000, Y*«*«*«« Y
0, 0. 0,
0, 0. 0,
0, 0. 0,
0, 0. 0,
0, . 0, 0,
1,356-04 5,166-05 3,506-09
0, 0, 0,
o, o, o,
1,266-08 1,266-08 1,266-08
0. 0, 0,
0, 0, 0,
2.206-04 2,116-04 1.39E-04
3,306-04 3,176-04 2,096-04
0, 0, 0,
9.35E-03 6,976-03 3,676-04
0, Q, 0,
0, 0. 0,
9,596-06 9,506-06 8,696-06
0, 0, 0,
0, 0, 0,
0, 0, 0,
5,686-04 3,046-04 5,94£-OT
i, 036-02 5,54E-03 1.08E.05
0, 0, 0.
2.4SE-05 2.47E-05 2,386-05
0. 0. 0,
1,08E-04 1.06E-04 8,616-05
0, 0, 0,
0, 0, 0.
0, 0, 0,
0, 0. 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
o, a, o,
2,866-08 0, 0,
2.116-02 1,356-02 8,866-04
A-IV-9
-------
PHOTON SPECTRUM AS A FUNCTION OF TJME FOR LIGHT ELEMENTS, CLADDING AND STRUCTURAL MATERIALS
PhR . BU « 35,800 FUEL DECAY T1MESC2) CASE E-l Clad
POWERS 36,40 HW, BURNUPc 33000,tWD, FLUX* J.98E+1S N**2*SEC
TABLE A-IV-1
{continued)
TWELVE GROUP PHOTON RELEASE RAT'S, PHOTONS/SEC
BASIS a MT OF HEAVY M£TA_ CHARGED TO REACTOR
EMEAN
(MEV)
3,OOE-0!
6a30E«OI
l^J OE>00
1.55E+00
1»99£+00
2,38E+00
2,75E*00
3.2SE*00
3.70F+00
a .22E+00
«.70E*00
5.25E+00
TOTAL
MEV/SEC
TIME AFTER DISCHARGE
INITIAL
j 22E + 12 5
5.6aE+l a a
7453E + 1 a 7
2.«6E+ll 1
1 . 2UE+0' 8
7.29E+02 6
2,36E"62 3
Q 0
Ok 0
0, 0
0 , 0
0. 0
l.'32E + l5 1
l.'lPEMS 1
0. Y
,62E+11
%1 02* t 8
. aaEt i a
.7SEH1
.U7E+08
,afcE*01
,afeE-78
^
^
9
^
.
,'15E*1S
.08E+15
1. Y
3.7«EMO
6.85E+1S
6.96E+ia
2,99£+ 1 0
1.03E+08
9,1«E-05
0.
0.
0,
0.
0.
0.
'7,6«E+10
e,09E+ia
10. Y
3.20E+09
5.37E+10
2.11E+ia
7.07E+03
2« 15E+02
0.
0.
0.
0.
0.
0,
0.
2.13E+18
2.3«E+1«
50. Y
2.08E+09
l,alE+07
1 809E+12
2.&3E+03
8.00E+01
0,
0.
0,
0 ,
0,
0.
0.
1.09E+12
1.20E»12
100. Y
2.J8E+08
1 .23E+07
1.50E+09
7.67E+02
2.33E*01
0.
°. "
0,
o.
0,
0?
l.'73E + 09
1.72E+09
500, Y
2.19E+08
S.23E+07
2.20E»01
3,9$E«02
S.21E-03
0,
o.
o.
o.
o.
o.
o.
2.31E + 08-
7,3aE+07
1000. Y
2.18E+08
U23E + 07
9.66E.07
1.75E-07
5.31E-09
0.
0.
0.
0.
0,
0.
0.
2.30E+08
7.31E+07
10000. YtOOOOO, Y******* Y
2.07E+08
1.23E+07
0.
a,65E-17
0,
0.
0.
0,
0,
0.
o.
o,
2.1VE+08
6.98E+07
1.89E+08
1.22E+07
0,
8.65E-17
0,
0.
o.
0.
o.
o.
o.
o.
2.01E+08
6,«3Ct07
i.25E*08
1.18E+07
0.
«,65E-17
0, '
o.
o.
0.
0.
0.
0.
o.
• 1.36E+08
«,08E»07
TWELVE GROUP ENERGY RELEASE RATES, MEV/HATT.SEC ,
BASIS a MT OF HEAVY MET«L CHARGED TO REACTOR
EMEAN
3.00E-01
6.30E-01
-1.10E+00
9.5SE+03
1.
TIME AFTER DISCHARGE
-2816E»07
9.90E+03
2.38E+00
2,75E*00
-3,70E*00
fl.22E+00
a,'70E + 00
5.25E+00
TOTAL
GAMMA WATTS
fl,52E-05
o!'
0,
0.
0,
0.
3.08E+07
1.90E+02
a,ooE
2,«8E
°«.
o.
0.
0.
0.
ofc
65
1,.12E*06
l.'99E + 07
1,21E403
5.32E+00
5.67E-12
0.
0,
0.
0.
0.
0.
10. Y
2.50E+0!
8,81E+02
6.09E+06
U11E-05
0.
0.
0.
0,
0.
0.
0 ,
50. -Y-
1,59E+(0
2.31E-C 1
3,13E+(a
l,06E-(«
lOOi
"
0.
o.
o,
o,
o,
0.
o.
2.02E-01
a,30E+01
3,10E"05
1.21E"Ofc
0.
0,
2.01C-01
0.
S. 886-20
0.
— o."
0.
0.
0.
Y 500. Y 1000. Y 10000, Y100000, Y*«*»*»* Y
1.71E+00 1.70E+00 1,62E*00 I,a76+00 9.73E-01
J.01E-01
0«.
1.88E-2S
0,
0,
0.
0.
0,
0.
0,
•0,
2.01E-01
6.31E-09
1.61E-09
<>,2feE»ll
0.
0.
0,
0. -
0.
0.
2.01E-01
2.77E-18
7.06E-15
2.75E-16
0. .
0.
o,
0.
0,
0.
0.
0.
0,
0,
0.
0.
0.
1.94E-01
0.
l,88£-24
0.
0.
0,
0.
0.
0.
o.
0.
2.80E+07 2.11E+07 6.09£*06 3.13E+(« fl.09E»01 1.91E+00 1.90E+00 1.82EtOO 1.68E+00 1.17E+00
1.73E+02 1.30E+02 3.75E+01 1.92E-I1 2.76E-00 1.18E-05 1.17E-05 1.12E-05 1.03E-05 7.J9E-06
A-IV-10
-------
PHOTON SPECTRUM AS A FUNCTION OF TIME FOR HEAVY METALS AND THEIR DAUGHTERS
PMR . BU • 33,000 FUEL DECAY TIMESC2) CASE E-l
POWERS 38,00 MM, 9URNUP» 33000,*#0, FLUX* 3.98Etl3 N**2»SEC
HE'S
TABLE A-IV-1
(continued)
EMEAN
(MEV)
3.00E.01
6,30E-01
1.10E+00
INITIAL
1,83E»12
1.31EM1
1.71E+08
8.99E+07
a.OfeE+07
3.25E+00
3,70E+00
'
1.29E+07
a.70E»00
5.25E+00
TOTAL
- HEV/SEC
1.56E+06
2.58E+12
EMEAN
- (MEV) --
3.00E-01
INITIAL
- 1,10E+00
1.55E*00
1.99EtOO
- 2.38E+00
2.75F»00
3.25E+00
—3,70F+00
4.22E+00
4,70E+00
-5.25E + 00
TOTAL
6.92E+00
U.66E+00
2.77E+00
GAMMA WATTS
1,09E+00
7.98E-01
5.70E-01
3,03E"01
2.13E-01
8.81E+08
1.73C-01
ACTINIDE PHOTON RELEASE RATES, PHOTONS/SEC
BASIS 9 MT OF HEAVY METAL CHARSEO TO REACTOR
o. Y
U87E+12
5,9<>S*11
1.3IE+M
1.6SE+08
8,67E+07
8,306+07
a.85E+07
I,2«£t07
7.98E*06
S.OflE+Ofc
1.50E+06
TIKE
1.' ¥
2.12E+12
5.52E+J1
1.31E+1J
l.«3E+08
7.48E*07
3.69E+07
5.98E+07
1.07E+07
6.86E+06
0.33E+Ofc
2.05E-i-0(.
1.29E+06
AFTER DISCHARGE
10. Y 50.
5.99E+12
5.12E+11
1.30E+11
5.03E+07
2.30E+07
2.30E+08
6.65E+06
0.27E+06
2.69E+06
1.28E»06
8.02E+05
1.17E*13
5.10E+11
1.30E+11
2.85E+07
1.02E+07
5.«OE»06
I.83E+08
1.55E+06
9.92E+05
6.26E+05
2.96E+05
1.8*E»05
100. Y
1.18E»)S
5.08E+11
1.29E+11
1.03E+07
a.61E+06
1.26E»06
1.12E+08
3,«2E*05
2.20E+05
1.39E+05
«.12E+0«
500." Y
6.78E+12
4.69E+11
1.25E+11
1.28E+07
2.iaEE*oa
8.02E+03
3.57E+03
5.01E-01
1.11E-01
1.49C-01
1.87E-01
1.13E-02
7.68E-03
5.53E-03
2.91E»03
2.05E-03
1000. Y
2.81E+04
7.66E»03
3.41E+03
1.69E+00
2.84E-01
5,aOE-01
2.75E-02
1.34E-02
7.37E.03
5.30E.03
2.80E.03
1.96E-03
10000. Y100000.
J,61E»03 5.20E+02
3.4SE+03 5.58E+02
1.55E+03 3.27E*02
6.66E+01 5,60E*02
1.02E+01 8,15E»01
2.13E+01 1.71C+02
5.41E-01 4.29E+00
1.50E-01 1.16E+00
4.08E»03 1.72E-03
2,94£.03 1.24E.QJ
1.55E-03 4.58E-04
1.09E-03 «,59E-04
Y******* Y
4.30E+02
5.84E»02
1.58E»02
2.93E+02
3.91E*01
8.20E+01
2.07E»00
5.57E-01
3.32E-04
2.39E-04
ale6E-05
2.82E+04 2.9aE»04 5.89E»04 1.03E+I5 l.'04Eto5 6.45E+04 3.92E+04 8.71E+03' 2.22E+03 5.59£*03
1.78E-01 1.81E-01 3.63E-01 6.36E-I 1 6.42E-01 3.97E-01 2.41E-01 5.36E-02 1.S7C-02 9.78C-03
NOM IN PHASE OUTPUT
A-IV-11
-------
PHOTON SPECTRUM AS A FUNCTION OF TIME FOR FISSION PR03UCTS *
PHR . BU « 33,000 FUEL DECAY TiMES(2> CASE E-I
POWER* 38,ao MW, BURNUPs 33000."WO, FLUXs 3.98E+13 N**2-SEC
TABLE A-IV-1
(continued)
TWELVE GROUP PHOTON RELEASE RAT-S, PHOTONS/SEC
BASIS s MT OF HEAVY METAL CHARGED TO REACTOR
EMEAN
3tOOE-01
6.30E-01
1<10E»00
1,55£+00
1 ,9E + 07
a.aOE+06
a.61E+05 1.52E*ia
7.29E+03 5.83E+I2
2.55E+03 2.62E«i9
2.31E+02 2.39E- 0
8,6aE+00 8.95E- 2
0. 0.
0. 0.
0. 0,
0. 0.
100. Y
1.35E+05
9,62E+0«
a,4«E»03
1.70E+0?
2.7«E-2«
2,a9E-25
9.35E-27
0.
0,
0.
0.
500. Y
6.78E+01
1.90E+03
9.35E-01
6.92E+01
8.80E-03
0.
0.
0.
0.
0.
0.
0.
1000. Y
5.13E»01
1.27Et03
3.36E-02
6.87E+01
3.87E-08
0.
0.
0.
0.
o.
o.
0.
10000. Y100000, Y******* T
4.80E+01
1,19E+OS
1.85E-00
6.46E+01
0.
0,
o.
0.
o.
0.
0,
o.
2.6aE»01
6,aOE+02
0.
3,afcE»01
0,
0,
0.
0,
<>•
«.
0.
o.
!.38E*00
1,25E*00
0.
6.76E-02
0.
0,
0.
0.
0.
0.
0.
0.
TOTAL
GAMMA WATTS
l.'Z5C+09 6.'25E*08 7.39E + 07 2.22E* >7 6.78E + 06 2.0«E*05 1.J9E+05 l.SIE»03 7,01E«OZ 2,69£*00
9.33E»03 7.70E+03 3.85E+03 a.55E+02 1.37Eti2 a,17E»01 1.26E-02 6.57E-03 8.05E-03 «.32E«03 1.66C*OS
A-IV-12
-------
PUR . BU « 33rOOO FUEL DECAY TIMES(2)
C*3E E-l
Clad
30,'aOHH, BURNUPc 33000.HHO* FLUX* 3.'9«E+l3N/CH**2-3EC
TABLE A-IV-1
(continued)
NUCLIOE RADIOACTIVITY-CURIES—
BASIS • HT OF HEAVY ME1AI CHARGED TO REACTOR
H I
H 2
— H 3
H 4
HE 3
- HE 4
• HE 6
j LI 6
^ LI 7
II 8
RE a
,- BE 9
1 HE 10
BE 11
L B 10
B 11
B 12
p- C 12
C 13
C 14
1 — N 13
N 14
N 15
(— N |6
0 16
0 17
1 0 18
0 19
F 19
F 20
NE 21
i— NE 22
NE 23
NA 22
— NA 23
N* 20
NA 25
'— US 20
HG 25
HG 2*
|— "G 27
AL 27
AL 28
"— AL 29
81 28
SJ 29
r— "I 30
SI 31
P 31
1 P 32
P 33
CH
0,
o.
o.
o.
o,
" 0.
o.
o.
o,
0.
o.
0.
o.
o,
o,
o.
o.
o.
o,
o,
o,
0.
o,
- o.
o.
o.
o,
o.
o.
o.
0.
o,
o,.
0.
0. "
0.
0.
o,
0.
o,
o,
o.
0.
o,
o,
o.
o,
o.
o.
0.
ARGE "DISCHARGE
o',
1,83E-01
5:
0 ,
o.
o,
— o;
6,40E»07
o.
0.
Q
Q
o*
1.52E«02
0;
o.
o.
o.
o.
o.
J:
o.
I:
6.37E-73
o.
o.
o.
o,
0.
o.
!:
o.
7,49E«03
3.08E-01
0, Y
:i
r
i
6*flOE«07
Q
Q
Q
Q
• _52t*02
0
o'
o.
o , - - -
o.
o , - -
o.
o.
Q
Q
Q
j:,
°.
9.34E-89
1
Q
Q
J:""" "
0.
l|20E-Oi
1. V
o,
o,
1.77E-01
0.
0.
0.
o!
0.
o!
6.00E-07
o,
0.
0.
0.
0,
0,
1.52E-02
0.
0,
0,
0,
o,
o,
o,
0.
o.
0,
o.
o,
0,
o,
o,
o,
o'!
0,
o,
o,
o,
o.
o,
1
o.
o,
o.
o.
o.
2.18E-07
7.82E-04
10, Y
0.
0.
1,07E«01
0.
0.
0.
0.
0.
0.
0,
0.
0.
6.40E-07
0.
0.
0.
0.
o,
0.
1.52E-02
0.
0,
o,
o,
o.
o,
0,
o.
o.
o.
o,
o.
o,
o,
o.
o,
o.
o,
o,
o.
o.
o.
o,
o.
o.
o.
o,
0.
o.
o.
0.
50. '
o,
o,
1.12E-02
0.
o,
0,
o.
o,
o. —
o.
0.
o. ~~
6.00E-07
0.
o.
0.
o,
o.
o.
1.51E-02
o,-
0.
0,
o,
o.
o.
0.
o.
o.
o,
o,
o.
o.
o,
o,
o.
o,
o,
o.
o.
o,
o,
0.
o,
o.
o.
t
o,
o.
0,
o,
1 - 100, Y
o.
o,
6.69E-04 ~
0.
0.
o.
0.
o.
-o,
o.
o.
o, —
6.40E-07
o,
o,
o,
o.
o.
o,
l.SOE-02
0.
o,
o,
o,
o,
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
o,
o.
o.
o.
t
o,
o,
o.
o,
t
o.
500, Y
o.
o.
1.08E-13
0.
0.
0.
o.
o,
o,
o,
o.
0.
6.40E-07
0,
0,
0,
o.
0.
o,
1,«3E»02
0,
o.
o,
o.
o,
o.
o.
o.
o. - -
o,
o,
o , -
o,
o.
o,
o.
o,
o, - -—
o,
o,
o,
o,
o,
o, --
o!
o,
o,
o.
o.
1000. Y
o.
o.
6.26E-36
o.
o.
o.
0.
o,
o!
o.
o.
6.40E-07
0.
o, ••-
0,
0.
0,
0,
1.35E-02
0, -•- -
o,
o,
o. • -
o,
o,
o,
o.
o.
o.
o,
o,
0.
o,
o,
0,
o.
o.
o,
o.
o.
o,
o,
o.
o, -•• -
o,
o.
o.
o.
o.
o,
o.
10000. Y
o.
o.
0.
o.
o.
o.
o.
o,
o,
o.
o.
o,
6.38E-07
o.
0.
0.
o.
o.
o.
0.54E«03
0.
0.
o.
o!
o.
o.
o,
o.
o.
o.
o.
o. •-
o.
o,
o,
o.
o.
o.
o.
o.
o.
o,
o.
o.
o,
o.
o.
o.
o.
o.
o,
100000, Y******* V
o. o,
0, 0.
o. o,
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0,
0, 0.
o, o.
6.22E-07 4.85E-07
0, 0,
0. 0.
0. 0,
0. 0.
0. 0.
0. 0,
8,«8E»08 0,
0. 0,
0. 0,
0. 0.
0, 0,
0. 0.
0, 0,
0. 0.
o. o.
0, 0.
0, 0.
o. o.
0, 0.
0. 0,
0, 0,
0. 0.
o, o.
0. 0.
0. 0.
o, o.
0, 0.
0, 0,
0. 0,
o, o,
0. 0,
0, 0.
0, 0,
0, 0,
0. 0,
0. 0,
0. 0.
0, 0,
-------
PNR • BU • 33»000 FUEL DECAY TIMES(2)
CASE E"l
Clad
Se.OOMW. BURNUPa 33000,MWD. FLUXa 3.'98E+13N/CH**2-3EC
TABLE A-IV-1
(continued)
NUCLIOE RADIOACTIVITYCUBIE3"
BASI3 a HT OF HEAVY ME14I CHARGED TO REACTOR
P 30
S 32
S 33
3 30
3 35
1 S 36
3 37
1 CL 35
CL 36
CL 37
CL 38
f—AR 36
AR 37
1 AR 38
AR 39
AR ao
AR 01
a 39
00
01
02
K 03
K 00
1 — CA 00
CA 01
[CA 02
CA 03
CA oa
CA 05
1 — C4" 06
CA o7
|_CA 08
sc as
3C 06
:3C 07
SC 08
SC 09
SC 50
Tl 06
TI 07
1 TI 09
1 TI 50
TI 31
V 09
V 50
[- V 51
1 V 52
V 53
— -y so
CR 50
CHARGE ^DISCHARGE
o. o:
0. 0,
0.
0.
0.
"~ o.
o.
o,
" o,
o.
o.
o.
o.
o.
0.
0.
o,
0.
o,
o.
0,
0,
o.
'0.
o,
o,
0.
, o,
Ot
Ot
o,
0,
0,
o,
o,
' o,
o,
o.-
'0,
0.
o,
0.
o,
o.
0.
0.
0.
o,
o.
0,
o.
0.
7JJ92E-02
-- o. •
0.
o.
3,65E»08
0,
0,
o;
1,12E-13
I:
l'21E»26
9.29E-97
7.71E-55
0,
ii
' i:
9*09E-15
&7E-01
2.35E-13
5,63E-26
0.
:r
o.
ii
ii
ji
I:
0, Y
ij
Si'" "
o,
3.65E-08
Q
0
3«02E*l2
o.
1.12E-13
o.
o,
l*21E-2<>
0,
l|92E«65
5:
o.
o,
Q
Q
5,90E-OJ
6J33E-17
5:
5jo9E-i6
2,20E-31
i:
o.
i!
i;
o.
o,
1. Y
0.
o,
o,
0,
1.05E-02
0,
0.
0,
3.65E-08
0,
0.
0.
8.10E-14
0,
1.12E-13
0.
o,
0,
1.21E-26
0,
o,
o,
o,
o,
o,
o.
0.
o,
2.70E-03
o,
0.62E-29
0,
0,
o,
8.38E-02
1.90E-28
0,
0,
0,
0,
0,
o,
0,
0,
0, ~
0,
0,
0,
o.
o.
o( -
o,
10. Y
0,
o. ,
0.
S^ot-io
o.
o.
o.
3.63E-08
0.
0.
0.
0.
o.
1.09E-13"
0.
0.
0.
1.21E-26
0.
0.
0.
o.
o. -
o.
o.
o.
o,
2.75E-09
0,
o,
o.
o,
o.
1.30E.1J
0.
0.
0.
0,
0.
0.
0.
o.
0,
0,
o.
o,
o.
o.
o.
o,
o.
o.
0.
o.
0.
9.
o.
o.
o,
3,
o.
o,
o,
o,
o.
9,
o.
o,
0.
1,
o,
o.
o.
o,
o.
o,
o.
o,
o.
o,
o,
o.
o,
o,
o,
0.
o.
o,
o.
o.
o.
o,
0.
o,
0.
o.
o.
o.
o,
o.
o,
o.
o,
50, 1 100, Y
o.
o.
• - o,
o.
o,
— o.
o!
65E-08 3.65E-08 ~
0,
0.
o.
o.
o.
85E.rO 8, 661-10
0.
o,
0,
21E-26 1.21E-26
0.
0.
0.
0,
Ot
0.
o,
0,
o.
Ot
o.
o.
o.
o,
o,
o, — --
o,
o,
o(
o.
o.
Ot
o,
o,
Ot
o,
o,
o!
o.
o,
500, Y
o,
o.
o. -
o.
o.
o,
o,
o,
3.65E-08
0.
0,
0.
o,
o.
3.09E.10
0,
0,
U21E-26
0,
o,
.0,
0.
o. - -
o,
o,
o.
o.
o.
Ot
o, '
o.
ot
o.
o.
o,
o,
o.
0, ". -
o,
o,
o, ----- -
o,
o.
o, --
o,
o.
o,
0.
o.
0.
o.
1000. Y
0.
o.
0,
o,
o,
o.
o,
o.
3,60E>08
o.
o,
o,
o.
o,
8.51E.15
o,
o.
o.
1.2JE-2*
0,
0, "~
o,
o,
0,
o.
o.
o, -
o.
o,
o,
o,
o,
o,
o,
Ot
o,
o.
0,
o,
o,
o,
Ot
o.
o, —
o,
o.
o.
o,
o.
o, ----
o.
10000, V
o.
o.
o.
o,
o.
0.
o,
o,
3,57E«08
o.
o.
o.
o,
o,
o|
o.
o.
1.21E-26
o.
o. -
o.
o.
o. --
o.
o.
o, --
o.
o.
0,
o,
o.
o.
o.
o.
o.
o,
o.
0,
o.
o,
o.
o,
o,
o!
o"!
o.
o,
o.
100000, /'Y******* V
0, 0.
0, 0,
0. 0,
0. 0.
0. 0,
0. 0.
o, o.
0. 0,
2,92E«08 3.90E-09
0. 0.
0. 0.
0, 0,
0, 0,
0, 0,
o, o.
o. o,
0. 0,
o. o,
l,21E-?6 1.21E-26
o, - o,
o, o.
0. 0,
o. o,
o. o,
o. o.
0. 0,
Ot 0,
0. 0,
0, 0.
0. 0.
0. 0,
o. o,
o, o.
0. 0,
0. 0,
0. 0,
0, 0.
0. 0,
0, 0,
0. 0.
0, 0,
o, o,
0, 0,
0, 0,
0. 0,
0, 0.
0. 0.
0, 0,
0, 0,
0. 0.
Ot 0.
0. 0,
A-IV-14
-------
_PHR_-_BU • 33.000 FUEL DECAY TIMESC2)
POHER« se.'aoMH. BURNUP» 33000
CASE E«l
Clad
TABLE A-IV-1
(continued)
CR 51
CR 52
CR 5 i
CR 54
CR 55
MN 55
MN 56
HN 57
MN 58
-fE 55 —
FE 56
FE 57
FE 59
CO 58H
CO 59
CO bOM
CO 61
CO 62
NI 59
NI 60
N! 61
NI 62
NI 63
NI 64
NI 65
CU 62
— CU 63
CU 64
CU 65
CU 66
ZN 63
ZN 64
ZN 65
ZN 66
ZN 67
- ZN 68
ZN 69M
ZN 69
ZN 70
ZN 71M
ZN 71
— GA 69
GA 70
GA 71
-OE 70
3R 88
CHA
o.
0.
"•
o,
0.
o.
o.
o,
o,
o,
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o,
o!
o«
o.
o,
o.
o.
i
000000
o.
o.
o,-
0.
o.
0.
o.
ROE"' DISCHARGE
3.24E+02
0.
si.
2.24E+02
S:
|:
o.
2*10E*01
o.
O.J
8.93E+03
o,
o.
o,
l,66E+00
0.
2*54E+02
0.
o.
l'siE-82
0,
0.
o*.
- if"
o.
o,
o.
o.
"~~S:
0.
o,
o.
. 0, Y
0,
o!
oj
o, ••- - -
S:
2,13EtoS
!U,"
oi
7,10E+02
0.
0.
B,82E+03
0%
Q
0 - • -
o*
i: "
c • 53C T Q Z
Q
o!
ajso-ioi
j:
l|'62E-Ol
0
0
o.
1
o.
o.
- — - — 1,
BAS1
•- 1. >
l.SOEtOO
0,
o,
o,
o,
1.37E+02
0,
o!
o,
o,
1,87E*03
0,
0.
0.
7,59E-Ol
0.
1.20E+02
0.
0.
8.26E+03
0.
0.
0.
1.66E+00
0,
0,
0,
2,52E»02
0,
0,
o,
0,
o,
o,
o,
o,
o, ,
9.68E-02
0.
0,
0,
0,
0,
0,
0,
o,
0,
o,
0.
8.
0,
IUCLIDE RADI
13 * M7 OF
10. Y
0.
0.
o. "
0.
.0, ^^^
o!
o.
0.
8.
0.
l,69Et02
0.
0.
Oi
o.
8.
1.39E.12 ~
8,
0.
2.52E+03
0.
8.
0.
1.66E+00
0,
o(
8,
2.36Et02
0.
0,
0.
- o, - -•
8.
8.
Oi
8.
8.
8.84E.06
8.
8.
8,
8.
0.
0,
8.
8.
8.
8.
8.
0.
0,
OACTlVITYjr
HEAVY META
50. — Y
0.
o,
-tURIES
L CHARGED
— loo,— Y-
0.
0.
o, o.
0, 0.
o. o.
2,26E»16
8i
0,
ot
8.
8.
3,9SE*03
8.
8,
8,
8.
Oi
o.
o.
o.
8,
U66E + 00
0,
0.
I,75£t02
0,
o,
o,
o,
o,
o,
o!
0,
9.86E-24
0,
0,
0,
0,
0.
8.
0.
0.
o,
8,
8,
0,
o.
1.6ZE-34
0,
o.
o.
o.
o,
6,42E«'09—
0,
0.
8,
0,
0.
0,
0,
i,Tee«oz—
8.
o.
Oi
o!
o,
1.20E+02
0.
0.
8,
o,
o.
o.
o,
o,
"•
o.
o,
0.
o,
o,
0,
8,
o,
o.
o.
o.
o,
TO REACTOR
— 500, - Y - 1000,- Y
0. 0,
0, 0,
0.
0.
Oi
o.
o,
o,
o,
o.
o.
o.
o.
o.
o.
o.
o,
o,
o.
0.
o.
8.
o.
1.65E+00
0,
o, -
o.
5.88E+00
0.
0.
o,
o,
o.
8,
0.
o. -
o.
o, - - -
0.
o.
8,
o.
0.
8,
0,
0,
0,
0,
o,
o,
o.
o,
o.
o,
o,
8.
0 ,
1.64E+00
0,
0.
0,
1.36E-01
o,
0, •
o,
0,
0,
o,
0,
o,
o,
o, - -
o,
o,
o,
o,
8,
o,
o,
o,
o,
o.
o,
o, -
o.
10000, Y
o.
o.
8,
8.
o,
0,
o.
8.
o, --•• -~
o.
0.
o. -
o.
o.
o. -
o.
o.
o. —
o.
o.
0. •-•• ; -
o.
o.
o.
1.52E+00
o.
0.
o.
8.
0,
Ot.
o,
o,
o.
o,
8.
o,
0,
0.
0.
8,
8.
o,
o.
o.
o.
0,
0.
o,
o,
o.
o.
tOOOOO, Y******* Y
0. ' 0,
0. 0.
0. 0.
0. 0,
0, 0,
0. 0,
0, 0.
o, a,
0, 0,
0, 0,
0, 0,
o, - o.
0. 0.
o. o,
0. 0,
0, 0,
0. ff,
8. 8.
0, 0,
o. o,
0, 0,
0, 0.
0, 0,
0, 0,
6.97E-01 2.86E»Oa
0. 0.
0. 0,
0. 0,
0, 0,
0. 0,
0. 0,
0. 0,
0, 0,
0, 0,
0, 0,
0. 0,
0, 0.
0, 0,
o, o,
0, 0.
0, 0,
0. 0.
0, 0,
0. 0,
0, 0.
0. 0.
0. 0,
o. o,
0. 8,
0. 0,
0. 0.
0, 0,
A-IV-15
-------
PUR
- BU » 33,000 FUEL DECAY TIHE3C2)
1
POWERP 38.aOMK, BURNUPe 33000, MHO, FLUX*
3R 89
SR 90
SR 91
Y 90M
Y 90
Y 91M
Y 91
ZR 90
" ZR 91
ZR 92
ZR 93
ZR 91 •—
ZR 95
ZR 96
N9 92
NB 93M
NB 93
NB 90
*S 99
NB 96
NB 97
MO 92
MO 93
rMQ 93M
MO 9a
MO 95
MQ 96
MQ 97
10 98
1— HO 99 —
MOtOO
MOtOl
^ TC 99M
TC 99
TCtOt
— RUIOI
COU3M
COUS
•— CDU5M -
CDUS
CDtl9M
i— CDU9 -
CD121
INUJ
• INU9M
INU9
IN121M
3NU5
*— 3NU6
8NU7M
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHARGE DISCHARGE "
, 3,35E+00
, S.flOE«Oa
• °.
0.
, 5.fllE»00
. 0.
1.10E+01
o.
o.
o.
, 5,53E-02
. ~ 0.
, 3.97E+03
0.
, ' 1.06E-00
. fl.59E-03
o.
, l,33E«oa
, 7.27E+03
, 9.fiaE-07
• °i
\ TI20E-03
0.
0.
o.
°.
! o*
, 5.86E-14
• °<
! 5*t.OE»ia
,. 5.53E-03
: o;
• o,
. o.
\ 6.*39E-24
o,
, o. --
o.
o.
! o(
• 8,
. - o , --
• °»
• 8«
, o,
, 4.57E+00
-- 0, Y
2.16E+00
5.39E«08
0.
0,
5.39E-04
0,
7,50E+00
o!
5*53E-02
2|80E+03
0.
1.14E-05
«.85E-03
0.
1.33E-04
«*6«£-57
o.
7*20E-03
Q
Q
o|
Q
0
l*67E«i7
5: .
1.60E-17
5,53E-03
o.
0'!
0,
o*
o,
Q
Q
1
8.
8,98E«Ol
N
8ASI
1.89E-01
5,32E-Oa
o,
o,
5,33E-Ofl
0.
8,71E«01
0,
0,
0, /
5.53E-02
o.
3.99E+02
o,
fl,6aE"ll
6.28E-03
0.
1.33E-04
8,31E*02
0,
0,
0.
7.20E-03
0,
0.
0,
0,'
0,
0.
3.38E-37
0,
0,
3.23E-37
5.53E-03
0,
0.
o,
0,
0,
o,
o.
o,
o,
o.
Ot
o,
0,
o,
o.
o.
0,
1,06E«04
CASE
3.'98E*!3N/C
UCLIOE RAO]
SB MT OF
10, Y
1.76E.20
o!
o.
a,27E-oa
0.
1.29E.17
0.
0.
o.
5.53E.02
0.
2.38E-13
0.
9.
2.66E-02
0.
1.33E-08
5,OaE-13
0.
0.
0.
7.20E-03
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
o!
o.
o.
o.
o,
o,
o,
o.
o.
o.
o.
o,
o,
o,
o.
o.
o, - -
o.
E-l
M*«2-SEC
OACTIVITY
HEAVY MET
50. Y
o.
l,59E«Ofl
0,
0.
1.59E.OU
0,
0.
0.
0 ,
0.
5.53E-02
0 ,
0.
0,
0,
5.68E-02
0.
1.33E.04
0.
0.
0,
o,
7,18E«03
o!
0,
0, '
0,
0,
o, --
0,
0,
o.
5.53E-03
0.
0.
0,
0,
o,
0,
8,
o, - •
0.
0,
o. - •• -
0,
0,
o,
o!
o."
o.
, CU'.IES
AL CHARGED
" 100, Y
o,
U,63E>OS
0.
0.
fl,63E-05
0,
0.
0,
5.S3E-02
0,
0.
0.
0.
6.10E-02
0.
1.33E-08
0,
0,
o, - - -
0,
7,15E«03
o, • - — •
0,
o.
"0,
o,
o.
o,
o.
o.
• o,
o!
o,
o,
8.
o,
o,
o,
8,
o,
8,
8.
8,
8,
- o, -
8,
0,
0.
TO REACTOR
~ 500, Y
0.
2.00E-09
o, - -
8,
2,UOE>09
0,
0.
6,
o!
5.53E-02
o,
o,
o.
o.
6.12C-02
o.
l,33E«04
0.
8.
0,
c.
6.93E.03
8.
8,
0.
8,
8.
8,
8,
8.
8,
0,
5.93E-03
8.
8,
8.
8,
8.
8,
8.
8.
e!
8,
8.
8.
e!
8,
0,
8,
Clad
1000. Y
8.
1.8SE-14
8.
8,
l,05E*lfl
8.
8,
8,
8,
0,
5.52E-02
0.
0,
8,
8,
6,09E»02
0,
1,33E>04
8,
8,
8,
0.
6.67E-03
8,
8.
8.
8,
8,
8,
8,
0,
8,
8,
5.52E-OJ
0.
8.
8,
8,
0.
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
o, -
8.
10000. Y
8,
8,
0,
o,
e.
e.
e,
8,
0.
8,
5.50E.02
8.
8,
8.
8,
5.79E-OZ
8,
1.32E'04
6,
8.
8,
8.
3.33E-03
8,
8.
8.
8.
8,
8,
8,
8,
8.
8.
5.35E-03
8.
8,
8.
8.
8.
8.
8,
8.
8,
8,
8,
8.
8,
8.
8,
8,
8.
o,
TABLE A-IV-1
(continued)
100000, Y******* V
0, 0,
8, 8,
9. 8,
0. 8,
0, 0,
8. 8.
0, 0,
0. 0,
0, 0.
8. 8,
e! e!
0, 0.
8. 0.
e, o,
S.28E-02 3.48E-82
0, 0.
1,32E*04 1.28E-00
0, 0,
0. 0,
0. 0,
0, 0,
3.25E-06 0,
0, 0,
0, 0.
0, 0,
8. 0.
0, 0,
0, 0,
8. 0,
8, 8,
8, 8.
8. 8,
3.98E-03 2,04C'.04
8. 8.
8, 8,
8. 8,
8. 0,
8, 8.
8, / 8,
0, 0,
8. 8,
8. 8.
8, 8.
8. 8,
e, o,
8. 8,
8, 0,
8, 8,
8, 8,
8. 0.
8, 0,
-IV-16
-------
PWR • BU • 33.000 FUEL DECAY TIME3(2)
CASE £•!
Clad
POWER" 38(aOMM, BURNUP" 33000,MHO, FLUXp 3.96E+13N/CM**2»3EC
TABLE A-IV-1
(continued)
SNU7
8Ntl8
8NI J9H~
3NU9
SNtZO
3N121H
8N121
3N122
3N123M
8N123
8Nt2«
3N125M
SN125
8B1?1
3BI23
3Bt24M
SB120
88125
8B126M
SB126
- TE124 -
TE125H
TE12S -
TE126
TAteo
TA181
TA182M~~
TAt82 '
HtBO
--PM81
wt82
H(83H
N183
N184
H185M
H1B5
TOTAL-
CHARGE DISCHARGE 0, T
Of 0, O,'
0, 0, 0,
Ot
0.
0.
0,
0,
0,
Ot
o.
o.
o.
0.
o,
i
:
.
O O O O O O 4
o.
o.
o.
o.
0,
o.
o.
0.
o.
0.
0.
o.
0.
o.
o.
Of
!:
1.78E-01
1.01E-37
o'
1?33E»0)
0.
o.
3.94E-05
o.
5:,«~...
2lflOE+01
0,
0*
o!
0.
I
Q
0 •
0*
Q
o.
J:
1,78E-01
1.61E-46
lJllE-01
!:
if"
3*46E«0»
2,34E*01
7*19E>06
9J53E+00
0,
Q
0
Q
Q
Q
o|
Q
Q
I:
2*05E»00
- -N
8*31
If Y
0.
o,
5,63EtOO
0,
o.
1.77E-01
0,
0,
0,
4,04E«02
o.
o,
o!
o,
o,
(I.19E-02
o|
2.87E-10
0.
8.52E»00
0.
0.
0,
0.
0,
0.
0,
o,
o.
Of
o,
o,
0,
o,
Of
1,19E*04
UCLIDE RAO]
3 • MT OF
10. Y
S: -
6.19E.OQ
0. '
0.
1.6SE-01 -
0.
0.
o.
0.89E.10
0.
o.
o.
o.
o,
o.
2|05E*00
0.
0.
e|47E»Ol
o.
o.
o.
0.
o.
o.
o,
o,
o.
o.
- o, • -•
0.
o.
o.
o.
o.
2.93EtOJ
[QA
HE
0.
0.
1.
o.
o,
1.
o.
0.
o.
o.
o.
o,
o.
o!
o,
o.
7.
o.
o.
o.
2,
o.
o.
o.
o,
o.
o,
o,
o.
o.
o.
o.
o.
o.
0.
o,
o.
1.
CTIVIT^VC
AVY ME1AL
SO.--V—
0,
0.
58E.2J- -0.
o.
o.
13E-OT 7,
o,
o.
o,
o,
0*
o,
o.
o,
o,
o.
09B-05 1,
0,
0.
o.
90E-05 7.
0,
--o.
o.
o.
" 0,
o.
o,
o,
o.
o,
Ot
o,
o.
Ot
o.
o.
89Et02 1,
UR IE3
CHARGED TO REACTOf
100, Y" 500, V
0.
o,
o.
o,
18E»02 t,87E»03
0,
0.
0,
0.
0,
0.
o.
o.
o.
89E»10 0,
0.
0.
Of
eiE-u o.
o.
o.
o.
o.
o.
o,
o!
o.
o.
o.
o.
o.
22E+02 7.67E+00
1
1000, Y
0.
0.
0.
o.
o,
1.95E-05
0.
o,
o, -"
o.
o.
o, -—
o,
o.
OO O O O 0
0,
o,
0.
o,
0.
0.
o,
o,
o,
o.
Of
o,- .-•-
o.
o,
0, "~
o.
o,
1.92E+00
10000. Y
0.
0,
o.
0.
0.
0,
0.
o.
o.
o.
o,
o.
o.
o,
o.
o.
o,
o.
o,
o, --
o.
o.
o, — - -
o.
o.
o. -----
o.
o,
o.
o,
o,
o.
o.
o.
o,
o.
o.
1.65E+00
100000, r******* v
0. 0,
0, 0.
0. 0.
0, 0.
o, o.
0. 0,
Of 0,
0, 0,
0. 0.
0. 0,
0. 0,
0, 0.
0. 0,
0, 0.
0, 0.
0, 0,
0, 0,
0, 0.
0. 0,
o. o.
0. 0,
0. 0,
o. o.
0. 0,
0. 0,
Of 0,
0, 0,
0. 0.
0, 0,
o. o,
o. o,
0. 0.
o. o,
0, 0,
0. 0.
0, 0.
0. 0.
0, 0.
8,06Ef>01 7.03E.OJ
A-1V-17
-------
TABLE A-IV-1
eBU 8 33»300
T!M|SC2)
l-»t
HE'S
POWER* se.'aoMw, BURNUP« SSOOO.MW'O* FLUX?
i
HE a
-• TL207
' — Tt.308 —
TU?O
PB?O*
f-PB?07 —
, PH?OS
P8?0?
P8?1Q
PBZII
PB?12
PB •? i y —
BI JD?
i 81210
BI?1 1
8I?12
BI913
i — fll?i a —
I P0?10
1 PC?I:
~~ P0>12 —
PO?13
PO'Ifl
r-P03l5-
PO'J6
POPIB
— A T 2 1 7
RN?19
RN?20
— RN?22 -
FR?21
FR?23
'- RA?23 —
RA?2a
P-A325
<-- Rt?.St>
RA?28
AC225
1 — AC227 —
AC?28
TH?27
— TH?28 -
TH?29
TH?30
TH?JI —
TH?32
TH?33
1 TH?3«
PA331
PA?S2
— PA?33
PA230M
-'CHARGE DISCHARGE
0,
0,
o.
o.
o,
o , -
8,
08
8e
8e
o,
-o,-
o.
0.
o.
0.
0,
0.
0,
o.
o.
o.
o,
o,
o.
o,
Of
o,
o,
o, -- -
Ot
0,
o.
o,
o.
o, •- - -
o,
o,
0 .
o.
o.
o,
o.
o,
o.
o.
o.
0,
o,
8.
0,
o,
o.
9.61E-07
7.01E-00
7.53E-10
0.
o, - -
o.
3,42E»08
5€35E«10
9,eaE-07
2.06E-03
t .S6E-08
8,
5.26E-10
9,feaE-07
2.06E-03
3,a2E«08
1 ,5fcE"08
3.SOE-10
2.89E-09
1 .32E-03
3.35E-08
1.56E-08
9.6UE-07
2.06E-03
1 .56E-08
3.U2E-08
9,feUE"07
2.06E-03
1.56E-08
3,a2E-06
J,fl7E-08
9,«.aE«07
2,06E-03
3,aiE-08
1.S7E-08
2.flOE-I2
3.U2E-08
1.05E-06
2,«OE«12
9.82E»07
2.09E.03
3.a2E-08
2,iaE-05
1 .72E-02
2,37E-U
0,
J,iaE«oi
2,a3E-05
2,97E»35
3.27E-01
S.iaE-01
-' 0, Y
o;
1.03E-06
8,07E»Oa
7,5SE«10
0.
o.
o,
3,a3E»08
5.81E-10
1 ,03E-Q6
2,2af.03^
1 ,6aE"08
0.
5.71E-10
1 ,03E»06
2,2flE-03
3.«3E-08
t,6aF»08
3.63E-10
3.09E-09
1 ,attE»o3
3,36E-08
l,fc«E-08
1.03E-06
2.2UE-03
1.6'«E»fl8
3.a3E»08
1.03E-06
2.2«E-03
1.60E-08
3,a3E"08
1.56E»08
1.03E-06
2.2UE-03
3,a«E-08
1.6&E-08
2.&1E-12
3,a3E-08
1.12E-06
2.61E-12
1.05E-06
2.27E-03
3."a7E»08
2.22E-05
1 ,72E»02
2,«9E-li
0,
3,iaE-01
2,a3E«05
9,a«E"«3
3,27E»01
3.iaE-01
3,98E+13N/CM**2»SEC
NUCLIDE RADIOACTIVITY
BASIS a MT OF HEAVY MET
It Y 10, Y 50, -Y
o.
1.09E-06
1.21E-03
8,21E<10
0,
0,
0,
3,73E»08
8,8aE«ID
S.,a9E-06
3,36E»03
2, J9E»08
0,
8,8UE»t 0
1 ,19E«06
3.36E-03
3.73E-08
2, 19E-08
5.86E-10
«,a6E-09
2,1 5E»03
3.65E-08
2.19E-08
1 ,«9E-06
3.36E-03
2,19E-08
3,73E-08
l,a9E-Ofe
3.36E-03
2.19E-08
3.73E-08
2,08E»08
1,19E-06
3.36E-03
3.73E-08
2,19E»08
3,89E-12
3.73E.08
l,a9E-06
3,89E»12
l,a7E-06
3.35E-03
3.73E-08
2,fe9E-05
1 ,72E»02
3.12E-11
0,
3,iaE-01
2,«5E-05
Ot
3.28E.01
3,10E«01
0.
7.67E-06
b,23E«03
S.98E-09
e,
o,
o.
8.99E.08
3.56E.08
7.69E-06
! ,73E»02
2,92E»07
8.
S.SibE.08
7.69E-0&
1.73E-02
8,99E«08
2,92E»07
3.56E-08
2.31E-08
1 , 1 1E»02
8.80E-08
2.92E-07
7,fc9E-Ofe
1.73E.02
2.92E.07
8,99E»08
7.69E.06
1.73E-02
2.92E.07
fl,99E.08
!,08E"07
7.69E-06 .
1.73E-02
8,99E»08
2.92E.07
fe.OftE-ll
8.99E.08
7.69E.06
6,06E»1 1
7.59E.06
1.73E.02
8.99E-08
l.UE.oa
1 ,72E"02
l.aiE-lo
o,
3,iaE-01
2,78E*05
0,
3.31E.01
3,taE.oi
0.
2.86E.05
S.12E-OS
1 .01E-08
0.
o. -
0,
a,58E-07
2.25E.06 '
2.66E-05
1,«2E-02
S,83E-06 ~
o,
2,?5E»06
2,86E»05
l,a2E-02
a,5BE-07
5,83E«06
2.25E-06
8.59E.08
9, 1 OE»03
«,a8E-07
5.83E-06
2.86E-05
1.U2E.02
5.83E-.06
a ,58E»07
2,86E-05
l,a2E-02
5.83E-06
a,58E»07
a,OtE.07
2.86E.05
1,«2E-02
a,58E-07
5.83E-06
5.35E-10
a,58E-07
2.86E-05
5.35E-10
2,82E»05
1.U2E-02
a,58E-07
5,«3E-oa
1 t 73E-02
6.58E-10
0,
3,iaE.Ol
a,25E-05
0,
3.71E-01
J.1UE.01
"CURIES —
kL CHARGED
100. Y
o,
a,88E-05
S.16E-03 •
8.77E-06
0,
•o,
8,
1926E»06
1,35E»05 -
a,89E»05
8.78E-03
2.39E-05
o,
1.35E-05
a,89E-05 '
6.78F-OS
1 .26E-06
2, J9E-05
1 .3SE-05
l,a7E-07
5,62E»03
1.23E-06
2.39E-05
a,89E«OS
8,78E«03
2.39E-05
1 ,26E"Ofc
a,89E»05
8.78E-03
2.39E-05
1 ,26E»06
6.85E-07
a,89E"05
8.78E-03
1,26E«06
2.39E-05
1.1TE-09
1.26P-06
a,89E-05
1.17E-09
a,62E-OS
8.78F.03
1.26E-06
1.J7E-03
1 ,73E»02
1.30E-09
0.
3,iaE»oi
6.08E-05
0,
a^35E-01
3,iaE-01
TO REACTOR
' 500, Y 1000, Y
o,
2,o7E-oa
6.72E-05
6, HE. 07
«.
0,
Ot
2,78E«05
7,oiE«oa
2,OBE»Oa
1 ,87E"Oa
7,01E«0«
0.
7,01E-0«
2,08E»0«
1 ,87E»Oa
2.76E-05
7,0 lE»Oa
7,01E«oa
6.23E-07
1 , 19E»Oa
2.72E-05
7,oiE-oa
2,08E-Oa
l,87E-oa
7,otE.oa
2,78E»05
2,nBE-oa
1 ,B7E»Oa
7,oiE-oa
2.78E-05
2,^lE-Ofc
2,OBE-Oa
l,87,E-oa
2.78E-05
7,01E-Oa
6,«9E«09
2.78E.05
2,08E.Oa
fe,«9E-09
2.05E-OU
l,87E»oa
2.78E-05
7.39E-03
1 ,7aE-02
6,a9E>09
o,
3,iaE-01
2,06E-Oa
o,
8,08E«01
3,iaE»01
o.
3,90E-OB
5,50E-07
2,91E«06
0,
oe
o,
i,32E-oa
2,8UE»03
3,91E»Oa
1 .53E-06
2,8ttE»OJ
8,
2,8aE-03
3,91E-Oe
1 ,53E-06
S ,32E-0«
2,8aE»OS
2,8aE«03
1, 17E-06
9, 78E»07
1 .29E-OU
2.8UE-03
3,9lE-Oa
1.53E-06
2,8aE>03
1 ,32E«Oa
3,91E-0«
J,53E«Ofe
2.8UE-03
l,32E»Oa
5,a7E«06
3,91E-Oa
1.53E.06
! ,32E-Oa
2,8aE»03
1.31E.08
l,32E-Oa
3,9lE-Oa
1.31E-08
3,B5E-Oa
1.53E-06
l,32E-Oa
1,56E»02
1 ,76E»02
1,3)E-08
Ot
3,laE>01
3,9lE-Oa
o>
l.OaEtOO
3,iaE>01
VCuiiLxiiue
UJ
10000, Y100000, Y******* Y
o.
3.ME.03
S.52E.08
3,77E.Ott
8,
8,
8,
l,7lE.OZ
1.22E.01
3.62E-03
S,53E-07
S.22E.01
8,
1.22E-01
S.62E-03
1.53E-OT
S.71E-02
1 ,22E-Ot
1.22E-OI
1.09E-05
9, BlE-08
1.6BE.02
1.22E-01
3,fe2E-03
.53E.07
.22E.01
,71E»02
.62E-03
.53E-07
.22E-01
t .71E-02
5.J07E-05
3,62E-03
1.53E-07
1.71E.02
1.22E.01
1.53E-07
1.71E-02
3.62E-03
1.53E-07
3.57E-03
1.53E-07
1.71E-02
1.57E-01
2,OlE»02
1.53E-07
8,
3,1UE-01
3.62E-03
8.
1,22E*00
S.laE-Ol
8,
2,32E«03
6e90E»07
9.22E-OS
8,
8,
8,
S19E-01
9,8PE»OS
2.33E-02
1.92E-06
9,80E«01
6.
9.SOE-01
2,33E»02
1,92E»06
«,19E»01
9,80E»01
9,BOE»01
6.99E-05
1 , 23E«06
a.lOE.Ol
9.80E-01
2.33E-02
1.92E-06
9,80E«01
a, 19E»01
2.33E-02
1.92E-06
9,80E»01
a,19E«01
3,26E>OU
2,33E-02
1.92E-06
a,19E-01
9,80E»01
1.92E-06
a,19E«01
2.33E-02
1.92E-06
2,30E«02
1.92E-06
a,19E-01
9.76E-01
2,81E»02
1.92E-06
8,
3,iaE>oi
2.33E-02
8,
1.19C+00
3,ta£«01
8,
2.87CP02
6,9aE«06
2,07E-02
8,
8, '
0,
9,aoE«Oi
a,70E«Oi
2,88E«02
1,93E»05
a,70E«Oi
o,
a,70E.oi
2.88E-02
1.93E-OS
9,qOE»Ol
a,70E«Ol
«,70E-oa
6,fcu£.05
1 ,23E»05
9.20E-OS
a,70E-01
2.88E.02
1.93E-05
a,70E.01
9,aoE»Oi
2.88E.02
1.93E-05
a,70E-Oi
9,flOE.01
a,o3E-oa
2,88E»02
1,93E«05
9,aoE.Oi
«,70E-01
1,«3E.05
9,aoE«01
2.88E-02
1.93E-05
2,8tiE.02
1.93E.05
9,aOE»01
a,70E-01
2.88E-02
t,93E.05
0,
3,lflE-01
2.88E.02
Ot
8.86E.01
J,1«E-01
A-IV-18
-------
PMR - BU • 33fOOO_ FUEL DECAY TIMfS(2) CASE E-l
POWER" Se.flOMK, BURNUP« 33000,MUD, FLUX« 3.'9SE»13N/CM**2-SEC
HE'S
TABLE A-IV-1
(continued)
~U?33
U?S«
"CHARGE"
8.
8.
U=>37
U?39
U?aO
NP3S7
NP?38
"NP280H"
NP?80
PU238
PU?a3
1.96E+00
6.86E-02
•8,
8,
3.22E-OJ
•o.
8,
8,
o. •""
8,
0,
•o,
8,
8.
0,
0.
8,
-o,
8.
8,
0, —
8.
0,
DISCHARGE
3.14E-04
7.67E-03
"5.aaE-05
1,07E+00
1.72E-02
" 2,fcOE-01
3.30E+00
3.18E»01
" 0.
5,56E«15
2.01E-U9
~ 3.28E-01
3,09E«16
1.72E*01
~5,56E-15
8.
3.55E-01
3,3IE+02
B.87E+02
1,25E*05
3.51E-08
5.57E-J5
0.
BK309
HK2SO
CF?«9
CF250
CF'Sl
CF?52
CFJ>53
8,
8,
8,
8,
8,
8,
0,
8,
8,
8,
8,
-0."
8,
0,
-o,
8,
0,
4.59E-03
4.59E-03
1.72Et01
7.2aE-18
3,18E«22
E3?5J
TOTAL
8.
8,
0.
8.
2.J5E+00
4,07E»00
e*a2E»02
3'siE-OS
1.15F-07
«,57E-35
1.2«E-05
- 1,!OE-08
2.00E*06
1.U7E-32
•3,93E-19
•2.78E-27
1.46E+05
NUCLIOE RADIOACTIVITY-,-CUHiES
BASIS « MT OF HEAVY HETJL CHARGED TO REACTOR
- 0 , Y
3,'14E-04
7.97E-03
S.a5E«05
1.07E+00
1.72E-02
2t60E«Ol
3.01EtOO
5.1UE-01
6J36E-15
3.22E-60
3,28E-OJ
5.99E«21
1.72E+01
6.36E-15
sJaTE-Ol
2.30E+03
3.31E+02
a,87E+02
l,25EtoS
1.78E+00
3.51E-9B
6.36E-15
«.59E»03
«.59E«03
l,72E»ol
8.27E-18
2»tlE-25
1.32E+0«
8,06EtOO
1.95E+03
8,a2E-o2
9.16E-03
3,51E-n8
1,JSE-OT
1.27E-80
l,B6E*ta
1,?7F-?0
J.88E-18
t,16E-0«
1%18E«05
SttOE«08
1.95E-06
«,09E»38
-3.93E-19
-«,6aE»32
I.eSEtoS
1, Y
3.14E-04
9.50E-03
5.52E-05
1,OTE+00
1.72E-02
2.60E-01
2,93E»00
3.1UE-01
8,
1,06E'14
0,
3.28E-01
8,
1.72E+01
1.08E-18
8,
3.08E-01
?, J2E+03
3,31E»02
8.87E+02
1.22E+05
1.78E+00
3.51E-08
1 ,08E»14
o,
3,19E»02
a,58E»03
4,58E«03
1,72E»01
1.80E-17
6,52E»a3
6.06E+03
a , OSP+OO
1.91E+03
4 , 42E>02
9, 16F «03
3.51E.06
1.15E-07
8,
1.88E-14
8,23C*38
1 j88E«ia
l,05E-oa
9,08E»06
I.IOE'OB
1.71E-06
8,
•3.21E'2B
8,
l.JJE+05
18. Y
3,iuE-oa
1.69E-02
6.79E.05
1.13E+00
1.72E-02
2.60E.01
1.91E+00
3.14E.01
8,
9.03E-U
9,
3.3JE-01
8,
J.72E+01
9.03E-18
8.
3, USE- 02
2.19E*03
3,J1E*02
8,88E+02
7,95E»08
l,7flE»00
3.51E-08
9,OaE>la
8,
1,73E»03
a,aoE«03
4,4QE>03
1,72E»01
1.18E.16
o.
8.75E.03
3.31E+00
1.35E+03
8,41E*02
9.15E-03
3.51E-OB
1.15C-07
8,
1.88E-14
0.
i.enE.u
1.78E-05
7.67E-08
1.09C.08
1.62E-07
8.
8,
6.
50. Y
3.1UE.08
1.18E.02
l,28E»Oa
l,38EtOO
1.73E-02
2.60E.01
2,86E-01
3.14E-01
0.
a,aaE-i3
8.
3,71E«01
0.
1.71E+01
8,48E«1> ~
0.
2.05E-06
1.61E+03
3.31E+02
4.89E+02
l,19Et08
1 ,78E+00
3.51E-08
4,aflE-13 -
8,
3.81E+03
3.66E-05
3.66E.03
1,71E»01
5.78E-16
8.
3.00E-03
l,39E*00 -
2.93E+02
4,40E*02
9, 10E> 03
3.5IE-08
I.ISE.07
8,
1.85E-J4
8,
1,85E«14
6.76E-09
1.85E-18
1.06E.08
8 ,55E«12
0,
8,
8,
1,65E»08
100. ~ >
3,18E>04
8,55E»03
2,18E*04
l,S3EtOO
1.73E-02
2,61E>01
2.66E-02
3.18E.01
8.
8,86E"tS
0.
8.35E-01
0.
1.70E*01
a!
1.07E-11
1.09E+03
5,30E»02
J.87E*02
I.11E+OJ
l,78E*00
5.51E-08
J.87E-13
j!86E+03
!,92E«03
»,92E-03
l,70E»01
!,15E-15
\39E-03
I,70E«01
•t,31EtOl
•I.38E-02
'f,03E-03
1.51E-08
.15E-07
.JeiE-ia
leie-ia
: ,58E«13
,B1E«18
,02E-08
1.32E-18
- 500, Y
3.18E«04
l,82E*oa
-1.31E-03
1,90E*00
l,7aE-02
2,67E«01
1.02E-06
3.14E-01
8.
4.42E.12
8,
8,08E-01
8,
1.64E+OJ
8,«2E-12
8.
9.
8.83Et01
3.27E+02
a,68E*02
a,20E-02
1.78E+00
3.51E-08
o',
2,06Et03
0,71E-04
a,7iE.oa
1,64E401
5,75E«15
8.
3,86E>08
8.12E-05
9.S8E-06
ajsu-os
3.51E-08
1.15E-07
0,
1.58E-14
8,
1.5UE-U
8,
1.54E-14
7,47E»09
8,
8,
8.
8,
2,98E»03
1000, Y
3,laE«oa
1,47E'06
3,31E«03
1.92E+00
1.76E-02
2,73E»01
9.76E'07
3,lflE-01
0,
6.83E-12
0,
1,04E+00
0,
l,57Et01
8.83E-12
0,
0.
9.83E>01
3.22E+02
8,aaE»02
4,07E>02
l,7aE+00
3.51E.08
e,eaE-i2
0,
9,2uE+02
a,8lE.05
a,aiE.05
1,S7E+01
1,13E«14
0,
3.95E-05
1.60E-09
S.77E-18
4,06E»02
T.91E-03
3,51E>08
1.15E-07
0,
1.27E-14
0,
1,?7E-1«
0,
l,27E«ia
5,08E»09
0,
0,
0,
.0,
1,73E»03
10000, Y100000, Y«****** Y
3.18E-04 3.18E-04 3.14E-04
8, 0,
a,18E»01
1,53E*00
2.81E-02
3.98E-01
2.82E-10
S.14E-01
7J99E-10
0.
4.94E-02
t.88E*00
2.01E-02
3.49E«01
4.59E-07
3.UE.01
0.
8,75E«11
0,
1,22E*00
0,
6.98E+00
8,75E-11
0.
0.
1.82E-22
2.52E+02
1,77E»02
1.91E-02
1.71E+00
3.50E.08
8.76E-11
0.
1.96E-02
7,17E«23
7.17E-23
6,9eE*00
1.18E-I3
0.
5.90E-23
0.
1.UE-S3
1.91E-02
2.10E-03
3.50E.08
1.13E-07
0.
3.51E-16
0,
3.51E.16
0.
3.51E-16
8.96E-12
0.
0,
0.
0,
«.5lE*02
1.19E+00
8.
1.99E-03
7.99E-10
0,
8.
8,
1.98E»01
1,73E«02
1,01E»05
1,85E»00
3.49E-08
8.00E-10
8,
1.06E-05
8,
8,
1.99E-03
1,08E«12
8.
8.
8,
J.04EM2
1.01E-05
3,73E»09
3,89E-08
•9,fl7E-08
8.
9.40E-S2
8,
9.40E-32
8,
9.40E-32
8,
8, .
8.
0.
8.
«,03E»01
9,80E.Ol
a.llE-Oi
2.88E.02
3.88E-01
0.
3,t8E.01
0.
3.66E-09
'0.
8.86E-01
0.
3.36E-08
3.66E-09
0.
8,
0,
3.38E-08
3.66E-09
8,
2.80E-01
3.36E-06
3.66E-09
8.
0.
0,
0.
3.36E-06
S.76E.12
8.
8.
8,
a.76E.ll
8,
8.
3,36E-86
1.61E-06
8,
0,
8.
8,
8.
8.
8.
8,
8,
8.
0,
l,73l»0l
A-IV-19
-------
PWR
_BU_» 55,000 FUEL DECAY TIMESC2) CASE E«l
56.aOMW, BURNUPs 33000,MWD, FLUXs 3."98E*l3N/CM**a.SEC
FP's, TABLE A-IV-1
(continued)
NUCLIDE RAOIOACTIVIT'
BASIS « IT OF HEAVY ME1
i'
l H '
1 ZN 72
GA 72 -"
GE 72
GA 73
f~ GE 73
! SA 7«
! GE 7<1
GA 75 '
GE 75H
GE 75
r*S 75
I GA 76
i GE 7&
^ AS 76
SE 76
GE 77M
~ GE 77
] AS 77
! 3E 77M
I— & .* — _ - -
SE 77
GE 78 .
AS 78M
— AS 78 -•
SE 78
' AS' 79
~~8E 79M"
SE 79
BR 79
'—AS eo —
SE so
69 88M
BR 80
KR 80
AS 81
— SE SIM -
SE si
, BR 81
"KR 81H
KR 81
SE 82
— 8R 82H"
as 82
KR 8?
SE 33H~
SE 83
BR 85
- KR 83M
KR 83
SE 8fl
— BR 8flM
ae * «
CHARGE DISCHARGE
8,
0.
8.
8,
o,
8,
8.
8,
8.
8,
8,
8.
8.
8.
8,
8,
8,
8.
0,
8.
0,"
8.
8.
8.
0.
8.
0.
6.
0.
8,
8,
8.
0,"
8.
0.
8.
»•
0,
8.
8,
8,
0,
8.
8,
0,
8,
0,
0.
0.
8.
°«
A
7.15E+02
1 ,32E»22
1.90E-22
o.
8.
— - o.
8.
8,
o.- -
8<
8^
0.
8,
8.
i,65E«ao
8,
8.
"~ " l.UOE-93
3.37E-25
1.01E-27
0
o'
8.
_ , 0>
o<
. o:
8<
3.95E-01
8.
8.
0.,
8.
" o.
»,
el
.
8.
e.
~8,
o.
e.
0,
6.33E-28
o;
- —
o..
o.
- o, .
e.
e.
0,
A
0, Y
7.11E+02
1.03E-27
l.a8E.27
8,
o;
o.
8.
8,
8
o[
0.
8.
8.
8,
i ,80E-a9
°<
oj
l . 3a.ua
2,a6E.31
7.37E-30
8,
ej
0*
8.
8.
°,
8.
3.95E-01
8,
8,
8,
8.
8.
8,
0,
8.
o.
::
e.
o.
8,
1.18E»3«
o.
°.
°<
8.
8,
8.
n*
8,
n ^
1. Y
6.91E+02
8,
8,
8,
8.
8,
0,
8,
8,
o,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
8,
8.
8,
8,
8,
3.95E-01
8,
0,
8.
8.
8,
8,
8.
8,
0,
8,
8,
0.
8.
0,
8,
8,
8,
8,
8.
8,
8,
8,
8.
ft .
10, Y 50. \
a,16E+02
8.
8.
8,
8.
8,
0.
8,
8,
8,
0.
8.
8.
8.
0.
0.
o.
8.
8,
0.
o.
0.
o.
8.
8.
8.
8,
5.95E-01
8.
0.
8.
8.
8.
8.
8.
8,
8.
8.
8.
8,
8.
8,
8,
«,
0,
6,
8.
0.
8.
8.
8,
«
8.37E+01
8.
0.
o.
8.
8,
0.
o,
8.
0.
8,
8,
8.
8,
8.
8.
8.
o.
8.
0.
8, *
8,
8,
•8,
8,
8.
8.
3,9SE«01
8.
8,
o.
6.
8,
8.
8.
8.
P.
8,
8,
8,
8.
8,
0,
8.
8,
0.
8,
0.
8,
8.
8 ,
n .
, CURIES
AL CHARGED
100. Y
2.61E+00
8.
0.
8,
8.
0.
8,
o.
o.
0,
o,
8,
8.
8.
8. -
0,
0,
8,
8,
8.
8, ' " *
8.
8.
o,
8,
8.
o,
3.95E-81
8.
.8.
8,
8.
0,
8,
8,
8,
8,
8,
8.
8,
8.
8,
8,
8,
8.
8.
8,
8,
8,
8,
0,
0.
TO REACTOR
500, Y
a,23E-10
8.
8,
0,
0.
0.
0,
8,
0,
0,
8,
8,
6,
8,
8.
8,
8.
8.
8.
o.
8.
o.
8,
0.
8.
8.
0,
3.93E-01
6,
8,
8.
8.
o,
8,
8,
8,
8.
0,
8, '
8,
8,
0.
8,
8,
8,
8.
8,
8,
8.
8.
0,
0.
1000, Y
2,a
-------
P"R • BU. • 33.000 FUEL DECAY TIMESC2) CASE E-l
POWER* SB.'OOMM. BURNUPn 33000.HMD, FLUX« 3."»8E*t3N/CH**2-3EC
FP's
TABLE A-IV-1
(continued)
NUCLIDE RADIOACTIVITY, CURIES - --
BASIS * HT OF HEAVY META. CHARGED TO REACTOR
KR 84
SE 65
-BR 85
KR 65H
KR 65
-RB 65
BR 66
KR 86
~RB 86H
RB 66
SR 86
KR 87
RB 87
- SR 87M
SR 87
BR 86
1C O fi A
RB ee
SR 68
KR 89
R8 89
V 89
KR 90
RB 90
SR 90
Y 90M
Y 90 '
ZR 90
KR 91
RB 91
SR 91
Y 91M
Y 91
7.t> 91
KR 92
RB 92
SR 92
Y 92
ZR 92 -
KR 93
R9 93
SR 93 '
Y 93
ZR 93
N3 93M
NB 93
KR 9fl
»8 91
SR 94
CHARGE
c.
o.
o. —
0.
0.
0 ,
0.
Ot
0.
0.
> o o o o o c
1
ut
0.
o.
o.
0.
0.,
Ot
o.
o.
Ot
o.
Ot
o.
o.
o,
o.
o,
o,
o.
o, .
0.
o.
o.
o.
o.
o,
o.
o.
o.
o, ---••
o.
o.
o, —
o,
DISCHARGE
0.
0.
0.
o<.
1.11E+04
I'.
"0,
2,54E*00
0.
J^E.OS
Q« .... _
j:
o.
o.
J.
o;
o.
1 .24E + 05"
0.
0.
0.
7,60Et04
o.
7,61E*04
0.
o. .
o.
0.
o, •
' 2,05E+05"
0.
o,
o.
o,
o,
o.
o,
6.32-101
1.87E+00
1,«9E-01
5:
o.
o.
0 • Y
Q
o!
o.
1.10E+04
o|
0.
7,51E-01
Q
lj93E-05
^ t
o.
Q
5: '
7,97Et04
0,
|N
0.
7,59Et04
0,
o.
o.
o*
1:
o,
o.
1*87E»00
1,57E-01
0^
o.
o,
It V
o.
o,
o.
o.
1,06E»04
0.
0.
o,
o. -
6,62E»04
0.
0.
0.
1.93E-05
0,
0,
0.
0,
0.
o,
o, ••--- -
o,
o,
6,99EtOS
o.
o,
ot
o!
7,49E*04
0.
0.
o, ~
Ot
o,
t tb2Et04
o!
0.
0.
»t
o,
o.
o,
Ot
o,
1,87E»00
2,OOE»01
0,
0.
0,
o,
10. Y
0.
o,
o,
0.
5.96E+03
0.
0,
0.
o.
0.
0.
5 .
0.
1.9SE-05
0.
0.
o.
o.
o.
o.
o. - •--
o.
o.
6,50E»16 '
0.
0.
e .
6.00E+04
o,
6.00E+04
0.
0.
0, • • --
o,
o.
2,39E»13
0.
o.
o.
o,
o.
o.
o,
o,
1.87E+00
8.13E-01
0.
0,
o.
o,
50. Y
0. 3
0. 3
0, - - 3
0. 3
4.S9E+02 1
o, --)
0, 3
0, 3
0. 3
o. )
0, 3
0, )
0. >
1,93E«05 1
0, )
o. )
0. )
0, )
o.
o.
o.
o.
o.
o,
o.
o.
o.
2.24E+04 ,
0.
2,24Et04 i
0.
0,
0, n
0,
o, "
0,
0.
Ot
0. i
0. "
0.
0,
0.
0, r
o.
1.87E+00
1.71E+00
0. '
0. i
o. " -
0. i
100, Y 500. V
0.
0.
J.
Ot
85E+01 1.31E-10
0.
o.
o.
0.
o.
o,
93E-05 1,93E«05
o, • -
o.
o,
o.
o.
o.
o.
0.
o.
o,
o.
o,
52EtOS sJsSE-Ol
52E+03 3.38E-OJ
o,
o,
0,
o,
- - 0 ,
o,
o.
0.
o.
o.
o.
o.
o,
o,
o.
87E+00 1.87E+00
86EtOO l,87EtOO
o,
o,
0,
0,
1000. Y
0.
0.
0.
0,
1.51E-24
0.
0,
o,
o,
o,
o,
o, -
o,
1.93E-05
0.
0,
o,
ot
0.
0,
o,
o,
0.
o.
o,
Ot
1.08E-06
o.
1.46E-06
o,
0,
Ot
0.
0,
o,
o,
o.
o,
o,
o,
o,
o,
c,
o,
1.86E+00
l|86EtOO
0,
o,
o,
o,
10000,
o.
o.
o.
o.
o.
o.
o,
o.
o.
o,
o.
o.
l|93E-05
o.
o.
o.
o.
o.
o.
o,
o.
o. -•- - •-
o.
o.
o,
o,
o,
o.
o|
o,
o.
o,
o.
o.
o.
o.
o,
o.
o.
o,
o.
o,
o.
l,«6EfOO
1.66EtOO
o,
o,
o,
o,
Y100000,
0.
0.
o.
o.
o,
o.
o.
o,
o.
o.
o.
Ot
o,
t,93E«05
o.
o..
o.
Ot
o.
o.
o,
o,
o.
o,
o.
o.
o.
o,
o.
o.
o.
o,
o,
o,
o.
o,
o.
o,
O O O OO 0
o,
0,
1.78E+00
1.78E+00
o,
o,
o.
Of
Y******* Y
0.
0.
0.
0.
0.
o,
o.
o,
Ot
o,
o.
o.
Ot
1.93E.05
0.
o.
0.
Ot
0,
0.
o.
o.
o.
Ot
o.
o.
o.
o.
o.
o,
o,
o,
o.
o,
o,
o.
0.
0.
o.
o,
o,
o,
o,
o.
o.
o.
1,18E«00
1,18E*00
o.
0,
0,
o.
A-IV-21
-------
FP's
POWER» se.aoMW, BURNUP* 33000, H
Y 94
7.R 90
— RB'95--
SR 95
Y 95
nR 95"
B 95M
1 "8 95
no 95
Y 96
7.R 96
i NB 96
HO 96
Y 97
~7R 97
NB 97M
NB 97
i M0 •??
! 7.R 99
j NB 98M
N8 98 "
MO 98
NB 99
CHARSE
8,
8,
o,
0.
0.
0.
0.
0,
0,
8.
8,
0,
8,
8.
o.
0.
0.
8,
8,
8,
0.
8,
0,
r HO 99 o,
i TC 99M ,0,
TC 99 0,
' RU 99
NBtOO
MOIOO
[— TCtOO'— '
! RUIOO
1 NStOl
101 01
TC101
RUtOl
r~ H0102
TC102H
TC102
RU102
M0103
TC103
Rm. 03M
RH103
- M0104
TC\Ofl
Rutoa
' RHtoaw
' "otoa
10105 "
TCtOS
0,
o,
8,
8,
0,
0,
8,
8,
8,
8,
0. •
0.
0,
8.
o,
8.
0.
o o o o o o
o, -
8,
DISCHARGE
e;
~3*55E+05
7.53E+03
6^65E+05
(J)
Q
' l,52E«ao
S:
3 19E-58
3,07E«58
0.
o. •
-o.- " -
8.
8.
1 .32E-10
1.26E-10
l.flSE+Ol
0,
8,
Q
Q " ~ ~
8^
I;.
S: -
o.
S:
e.
1,1«E+05
1.14E+05
8.
0.
8.
e.
o.
8.
- o. -
o.
0. Y
Q
Q
o .
0*
5'31E+03
3,88E+05
8,
I: .
7,18E«5S
3*aiE-72
3,28E-72
3.68E-72
8,
8.
8.
L,
3J59E-14
l,fl3E+Ol
I:'"'
8.
8.
o, - - -
8.
8,
j:-
8*
«i
1
5:
*D, FLUX?
Nt
BA3I.
1. V
o,
8,
o. -
8,
8,
3,57E+Oa
7,57Et02
7.58E+04
e!
o!
o.
8,
8.
8.
8,
o, --
8,
8,
o, '
8,
8,
7.59E-38
7,26E"3«
l,a3E+Pl
0.
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
2,62E+03
2.63E+03
8,
6.
8,
8.
8,
8,
0,
o, -
8.
5.98EM3N/C
JCLIOE RADI
3 a MT OF
10. Y
9,
o,
0.
8. '
8,
2.-12E.11
fl.50E.13
fl.60E.ll
8.
8.
0.
0. "
8.
8,
o. -
0.
8.
8, ""
8,
8.
0,
8.
8.
0,
0.
1.S3E+01
o . • -
8.
0.
8,
8.
8,
o, - -
8.
8.
8,
8,
0.
8.
6,
8.
8,
8.
8,
8.
8.
8,
8,
8.
8,
8,
0.
M*«2-SEC
OACTIVITY
HEAVY MET*
50. Y
8,
0,
0,
8.
8,
o, - — -
8f,
0.
0,
8,
0,
o.
8.
0.
0,
0,
0.
o, --
8,
8,
0,
8,
0.
0.
8,
l,a3E*01
o o o o o o
i
1
i
o.
o,
8,
8.
8,
8,
0,
o,
o,
8,
8,
0,
8,
0.
8,
8.
8,
0.
0.
0.
'CURIES
I CHARGED
100, Y
a.
o,
o . -
o.
o,
o.
8,
0.
8,
8,
8,
0, -
8,
0,
8.
0.
8,
8,
8.
0.
0,
8,
8.
8,
o,
i,a3E»01
8, '
8.
8,
o,
8.
8,
0,
8,
8,
8,
8,
8,
o , -
8,
8,
8,
8.
0,
8.
0.
8,
8,
0.
8.
8,
8.
TO REACTOR
500, Y 1000, Y
0, 0,
0, 0,
0, 0.
8, 0,
8. 0,
o, --
8.
8,
o,
8,
8,
o, -
8.
8.
o,
8.
8.
8,
8,
8,
o , -
8,
8.
o , - -
8,
1.43E+0!
0,
8,
8.
0,
8,
8,
o, -'-- -
o,
o,
0.
8,
0,
8.
8.
8.
8,
8.
o,
8,
8,
8,
o,
0,
0.
0.
o.
o.
o,
8,
8,
8.
0,
8.
8,
8, -
8.
8.
o, --• -
8.
8,
0,
8.
8,
o,
0,
1.13E+01
0,
8,
8,
8.
8,
8,.
0,
8,
V
8,
8,
8,
8.
8,
0.
8,
8,
0.
8,
0,
8,
8,
8.
8.
0, -- ---
0.
10000,
8,
8,
8,
8,
8.
8.
8,
8.
8.
o,
8*.
8,
8.
8.
8,
8,
8.
8.
8.
0.
8,
8,
8,
0,
1.3BE+
8,
8,
8.
8. '
8.
8.
0.
8.
8.
8.
o,
8,
8,
8,
8.
8,
8.
o,
8.
8,
8,
8,
8,
0.
TABLE A-lV-1
(continued)
Y100000, Y******* Y
8,
0,
8,
8,
8.
8,
8,
6.
8.
8.
8,
0.
8.
6,
8.
0,
8,
8,
8,
8,
o,
8.
8.
8.
8,
1,OJE*01
8,
8,
8,
8,
8,
8,
8,
8.
o,
o.
0,
8,
8.
8,
8,
0,
8,
8,
8,
8,
8,
8,
8,
0,
0,
o.
0,
8,
8,
8,
8,
°i
8,
8.
8,
0.
8,
0.
8,
0.
8.
8,
8,
8,
0.
8,
8,
8.
8.
0,
0,
5,a8E-01
8.
«i
8,
8,
8,
0,
8.
8,
0,
o.
0,
o,
8.
8,
8.
8.
8,
o,
8.
8,
8,
8,
8.
8.
8.
0.
A-IV-22
-------
PMR • BU » 33.000 FUEL DECAY TIMES(2)
i, BURNUPa 33000,HMD, FLUXi
CASE E«l
FP's
TABLE A-IV-1
(continued)
NUCLIDE RADIOACTIVITY, CURIES :
BASIS » MT OF HEAVY METAL CHARGED
CHARGE -DISCHARGE
sutos
RH105H
"HIQ5
PD105
TCI. 06
RU106 "
RHI 06*
RHIO*
r 0 t 0 O
BU107
RHi.07
— P0107H
PD107
AG107
— RU103 —
RHIOS
Potoe
- AGtOS --
cotos
RH109
-PD109H —
PD1.09
AGt09M
— A f> t A A
AGt09
CDt09
*HUO
- PDUO -^
AGtlOM
AGUO
- CD118
PDUIM
PDUl
- AGU1N
A;UI
CDU1H
-CDU1
P3U2
ACt 1 2
-CDU2
PDI 1 3
AGI ISM
AGU3 —
CDU3M
CDU3
* N 1 1 3
Poua
AGU4
- coiia -
IN{ JQH
iNUfl
-8N1 ia —
POMS
8,
8.
o.
8,
8,
8.
8.
8,
8.
8.
8.
8.
8.
8.
0, •——.-••
8.
8,
8,
0.
8.
o, ' —
8.
8,
0 g
0.
8.
8.
8,
8,
8.
8,
8.
8,
8,
8,
o.
0.
8.
0, •
8.
8,
0,
8,
8,
81
8,
8,
0,
8,
8.
8,"
0,
8,
8.
6,29E-25
0.
e.
0.65E+05
8.
a,S5E»05
8.
8,
oj
1.16E-01
0.
8.
8.
8,
8, -•
8^
0 -
1.93E»75
3.66E-06
0 .
3.66E-06
8.
8,
3.00E*03
3.90Et02
8.
8,
8.
8,
5.00E-02
0.
8.
6.72E-08
7,93E-«8
0* '
0.
0,
8.
1.15E»01
8.
8.
8,
8.
8,
2,|«E»81
2,07E»01
8.
0.
0, Y
8,
8,5 e_
0
aSfeE+DS
e!
1,56E»05
Q
Q
8|
1*16E«01
Q
Q
oj
0
e.
8,
8.
8,
3ja8E-o6
8,
3.08E-06
0 '
8,
3J57E»02
8.
8,
8,
8.
2.00E-03
8,
3*29E.59
3466E*5^
Q
Q
e.
8,
l,15E»Ol
8.
0 ,
8,
8,
8,
1.36E-01
1.31E-01
8,
o.
1. V
o,
8.
8,
8.
8.
3,23E»05
8,
3,23E*,05
8,
8.
8,
0,
1.16E-01
8,
8,
0,.
8,
8,
8,
8,
8.
8.
2.63E-86
8,
2.63JE-86
8,
8,
1,66E+03
2,16E*02
8,
8,
8,
8.
1.12E-10
8,
8,
8,
8,
'8.
8,
8,
8,
1,12Et01
8,
0 |
8,
8,
8,
1.08E-02
1 ,OUE»02
8,
8.
18. Y
8.
8.
8.
8,
8.
6,50Et02
8.
6.50E+02
8.
0.
0.
0 . ' ' ' -
1.16E-0}
8.
8,
8,
8,
8.
8,
8.
8.
8.
1.72E.08
8,
1.72E-68
8.
8.
2i&5E.02
8,
8.
8.
8.
8,
8.
8.
8.
8.
8.
8,
8,
8.
7.17E+80
8.
8,
8,
8.
8,
1.71E-22
1,«>8E«22
0,
8.
58, Y
8,
8,
0,
8.
8,
6.73E-10
8,
6.73E-18
8,
8.
8.
8,
1.16E-01
8,
0, ' ~
8,
8,
0,
8.
8,
8. -
8.
3,36E»18
o,
S,36E»18
8,
8,
8.00E-19
1.09E.19
o,
o.
8.
8.
8.
8.
8,
8.
8,
8, -
8,
0,
8.
9,906-01
8,
8,
8,
8.
8,
8,
8,
8, — •
8,
100. Y
8,
8,
8, —
8.
8,
7,03E«25
8,
7.03E-23
8,
8.
8.
o, —
1.16E-01
8,
o,
8.
8.
0,
8,
8.
8 ,
8,
2.45E-30
8,
2.85E-30
8,
8.
8,
8.
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.33E-82
8,
8,
8.
8.
8.
8.
0,
0, - •
8,
TO REACTOR
500. Y
o.
8,
0.
8.
8.
8. '
8,
8.
o, -
8.
8.
o,
1.16E-81
8.
0,
8,
8,
o.
8,
8.
o. -
8.
8,
8, - — •'
8,
8,
8,
8,
8,
8,
8.
8.
8.
8,
8.
8.
8*.
8,
8.
8,
8,
2,08E»10
8,
8,
8,
8,
8,
°!
0,
0.
1000, Y
0,
0.
0,
0,
0.
0,
8.
8»
o, -
8,
8,
o, -
1,16E»01
8,
8,
8.
8,
8,
8.
8.
8.
8,
8.
8,
0,
8,
8,
8,
8,
a!
8,
8,
0.
8,
8.
0.
8,
o.
0.
8,
8,
3.69E.21
8,
8,
8,
8,
8,
8,
o.
8,
0.
10008, Y100000. ¥**•«••* Y
0.
0.
o.
0.
0,
o.
8.
8.
0.
0,
oj
1.16E-01
8,
0,
0,
o.
8,
0.
0.
o, -
8,
8,
0, " '
0,
0,
o.
0.
0,
0,
0.
8,
8,
0.
o!
0.
0.
8.
8,
8.
8,
8.
8.
0.
8,
8,
8.
0,
8,
8.
0.
Oi
o.
0.
0.
8.
0,
0,
8.
0.
0.
0.
Ot
1,14E«01
0.
8,
8,
8,
0,
8,
8.
8,
0,
0,
8.
0.
o!
8,
8,
0,
8.
8.
8,
Ot
o|
8, /
0,
0,
0,
8,
0,
0.
8,
0,
8,
0,
8,
8.
T P
0,
0,
0,
o.
0.
8.
8.
0,
0.
0,
0,
0,
o|
1.05E-01
0,
0,
Of
8.
0,
0,
8.
0.
8,
w
8.
0,
0,
Ot
Ot
0,
o,
0,
8,
0,
8,
Ot
Or
8,
Ot
0,
0,
Ot
0,
0,
0,
0,
o«
V
0,
0,
0,
0.
* t
0,
Ot
0,
A-IV-23
-------
PWR
FP's
TABLE A-IV-1
' POWER* 38.UOMW, 8URNUP
! AGtl5*
j_AGtlS
cotis
1 SNU5
1 AG1 16
CD116
iNt 16H
j C0117M
~ COt 17
IN117M
IN117
-- SN1 17H
\ SNtl7
' COt 18
"~ TN118M
i COt 19
' IM119H
SN119M
3NI. 19
| IN120M
'-"SNiio"-
C012I
IN1.21*
SN121M
SN121
3B121
IN1.22
SN122
SB 1.22
TE122
IN123M
IN123
SN123M
— SN123
«8t23
TE123H
"— TEI23
CHARGE (
0,
0.
-o.
0.
0.
0.
o.
o.
0,
o.
o.
o.
o.
o,
o.
e.
o.
0.
8.
o.
0,
o.
o.
o.
o,
o,
o,
8,
8.
0.
8,
8, .
0,
8.
8,
0.
8.
8,
8,
8,
8,
8,
0,
8,
0.
8,
8,
8,
8,
8,
8.
8.
)ISCHARGE
0.
o,
5*65E"!7
6.17E-17
8.
I:
I: '
o.
o. ---
8.
8.
8.
8.
8.
0.93E-02
8.
8.
8. •
8.
Si'-
c.
o. -----
8^
«u
e.
8.
e.
o.
e|l5E-37
e.
e.
o.
8.
1.10E-13
8.
8!
0.92E+03
8,
3,fl9E-01
o. -
8.
5 33000.MWD, FLUXs 3.'98E+l3N/
NIJCLIOE RAO
BASIS * MT OF
0. Y 1, Y 10. Y
0. 0, 0.
0 . 0 . 0 .
3.76E+91 1.98E+00 0.
2,06E»21 0, 0.
2,2«E-21 0, 0.
0, 0. 0.
0. 0, 0,
8. 0, 0.
8. 0. 0.
0, 0, 0.
0. 0, , 0.
0. 0, ' 0.
8, 0. 0,
0. 0, 0.
8. 8, 0.
8 . 0 . 0 .
0< 0. 0.
9.69E-03 1.15E-06 0,
8, 0. 0.
0, 0, 0.
8,, 0, 0,
0. 0, 0.
8. 0. 0.
8, 0, 0.
8. 0. 0.
0. 0, 0,
0. 0, 0.
1.21E+01 7,27E+00 8.00E»Oq
0, 0, 0.
0. 0. 0.
8. 8, 0,
8. 0, ' 0,
0. 0, 0.
0, 0, 9.
0, 0, 0.
0. 0, 0.
6,04E»QO 6,01E"Od 5,50E*04
l,30E-a5 0, 0,
0 0, 0,
e; o, o.
0, 0, 0.
0. / 0. 0.
3.22E-17 7.UUE-37 0.
0. 0, 0,
8. 0, 0.
0. 0, 0,
0, 0. 0.
fl,10C*03 1.09E»OJ 1,80E»05
0»' 0, 8.
2.87E-01 9.72E-02 3,38e»10
0. 0, 0.
0. 0, 0.
CM**2-SEC
IOACTIVITY,
HEAVY MET/
50. Y
0.
o.
0,
o',
o. --
8.
8.
o,
0,
0.
o. - - •
0.
o.
o. "--
e,
0.
o.
o.
o.
o. "-
o.
8,
PI
8.
0.
o,
2,OdE-21
8,
0,
8,
8,
o,
o.
o,
o,
3.84E»00
8,
0,
o,
o.
o.
e,
8,
e.
8,
o.
o, - •• —
8.
8,
8,
0.
"CURIES
I CHARGED
100,. Y
o.
o,
e,
o.
o,
o,
0.
o.
o. - ----
0,
o,
o,
o.
o.
o. -- •— -
o.
8.
e.
e.
e.
o.
8.
8,
e.
8.
o.
o,
8.
8,
o,
9.
8,
3. '"
0.
3.
3.
?,aae*oa
3.
3!
s!
3,
3,
3,
3.
3,
3.
3,
3,
3.
TO REACTOR
500. Y 1000, Y
o, o,
0. 0.
o, - o,
0. 0,
0. 0,
0. 0,
8, 0.
0. 0,
o, o.
0, 0.
0. 0.
o, o, -
0, 0.
0. 0,
0, 0.
0. 0.
o. o,
0. 0.
0, 0.
e. o.
8. 0.
e, e,
8, 8,
8, e,
e, o,
0. 0.
o, o, -•
0. 0,
8, e,
8. 0,
8, 8,
8, e.
8, 0,
8. e.
0. 0.
8. 0,
6.I4C-06 fc,63£-08
8, e,
0, 8,
8. 0,
e. o,
8, 0,
8. 0,
0, 0,
e. o,
8. 0,
8. 0,
8. 0,
e, . e,
8, 8,
e. -
o.
o,
o.
10000.
8,
0 ft
0
e.
e.
o.
e.
6.
8.
8.
e.
e.
8,
8.
8.
8.
8.
8.
8.
8,
8.
8.
8.
8.
8,
8,
8.
8.
8.
8,
8.
8,
8.
8.
8,
8.
8.
8,
8,
8,
8,
8.
8,
8.
8.
8.
8,
8.
8.
8.
8,
8.
(.continue
Y100000,
• 8,
8,
8,
0.
0.
8.
8,
8,
8,
8,
0.
8.
8.
8.
8,
8.
8.
6.
8,
8.
8.
8.
8.
8,
o.
0.
8,
8.
8.
8.
8.
8,
8,
8,
0.
8.
8,
8.
8,
8,
8,
8.
8,
o,
8,
8.
8,
8,
8,
8,
8,
8,
-------
PWR • BU « 33.080 FUEL DECAY TI*E8(2)
C*8E E-l
ppi
POWER* . 36.00HH, BUR*UP« 33000,HMD, FLUX* 3.'?8E+13N/CM**2»8EC
TABLE A-IV-1
(continued)
CHARGE DISCHARGE 0, Y
8N12«
3B1.24M
88128
TE12«
8N125M
- 8N125
88125
TE125M
-TEI.2S -
3N126
8B126M
• 88126
TE126
3N127M
- SN127
88127
TE127M
- TE127
1127
SN1.28
— 8B12BH~
88128
TEL 28
— 1 1 28 - -
XE1.28
SN129M
— 3N129 —
SB129 >
1 TE129M
-TE129- -
1129
XE129M
— XE129 • —
8NISO
3B130M
— 88130 —
TE130
I130M
~~ '1130 —
XE130
SNIJl
— 88131 - ~
TE131M
7E131
— I ! 3 1 " ~
XE131M
XE131
-3M32
38132M
88132'
-TE1S2
ma
8,
8.
8,
8,
8,
0,
8,
8,
8,
8,
0.
8.
8,
8,
0.
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8.
8.
0,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
0,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
0.
0.
7.58E+01
oj
8..
2,7fl£'-8t
8.66E+03
3,a7E+03
o.
S,fcflE-01
5.60E-01
5.79E-01
ej
0
o)
2,17E«07
7.P7E+03
7,78E»03
8,
e;
e.
o?
e.
0,
8.
8.
' °<.
8.
3.50E+03
2.2aE»03
3.77E-02
a,UE-05
0,
8.
^
8.
e.
e.
" 1 ,92E"83
0.
8,
8.
1.28E-31
2.3JE-32
2,83E*00
a.2aE*00
e;
-- e.
0.
e.
1.96E«08
2.02E-06
0,
8,
5.18E+01
0.
8,
2.39E»02
8.a7E*03
3,a3E+03
8,
5.6aE»oi
5.'6flE.01
5.62E-01
0.
8.
8.
6.06E-10
*,39E+03
6,'32E»03
8.' '
8.
8,
8.
8.
. 8.
e<
8."
8,
8,
l,79Et03
1,15E»03
S.77E-02
2.38E-06
8,
8.
o.
°.
8.
8.
1 ,3a»io2
el
8<
e.
l,5aE-39
2,82E-aO
1 ,67E»01
fc.19E.al
8,
8.
8.
l*77£-jl
1.62E-11
NUCLIOE RADIOACTIVITY
BASIS • *T OF HEAVY MET
1, Y 10, Y 50, Y
8,
8,
6.28E+00
8,
8,
3,38E*08
7,a5E+03
3.08E+03
8.,
5,6«E-01
S.fcUE.Ol
5,59E»01
8,
8,
8,
3,93E-2a
2.00E+03
l,96E+b3
8,
8,
8,
8,
0,
8,
8,
8.
8.
8,
1(33E+Oi
2,77E»01
3.77E-02
3.19E.13
8.
8,
8.
8,
0,
8,
8,
8,
0,
o,
o,
o,
2,a7E"08
1,36E«05
8,
8,
0,
8,
2, 1«E*28
2,atE-28
8,
e! v
2.01E-16
8.
8,
8,
7,39E*02
3,06Ef02
8,
5,6aE-01
5,6«E»01
5.59E.01
8,
8,
8.
8.
1.67E.06
1.65E-06
8,
6.
8, - -
8,
8,
8,
8.
8.
8,
8.
8,
8,
3.77E.02
8.
8,
8,
8.
8,
8.
8.
8.
8.
0.
o.
e.
o.
•
o,
8,
8,
8.
8.
8,
0,
0,
0,
8.
0,
8,
8, " "
2.56E.02
1.06E-02
8,
5,6«E»01
S.fcaE.Ol
5.58E.01
8,
8.
8,
8,
8,
0.
8.
8.
0 , ' '
8,
8,
o.
8,
8.
8, -
8,
8,
8.
3.77E-02
8.
8, '
8,
8,
8,
8,
8.
8.
8.
6.
8.
8,
8,
0,
8,
0,
8,
8,
0.
•o,-
8.
CURIES
>L CHARGED
100, Y
8.
8,
8.
8,
8,
8,
6,8|E*06
2.82E-08
8.
5,fcaE-01
5,6flE-01
5.56E-01
8,
8.
8,
8,
8,
8,
8,
8,
o,
8,
8,
8,
8.
0,
8,
8,
8,
8,
3.77E-02
8,
8,
8,
8.
8,
8.
8,
8,
8,
0,
8.
o,
8,
8,
0,
o,
8.
8,
8.
o,--
0,
TO REACTOR
500, Y 1000, Y
0,
8.
8.
8,
8,
8.
8,
8,
8,
5.62E-01
5,62E-Ol
5.57E-81
8,
8,
0.
8,
8,
8.
8.
8,
8,
8,
8,
8,
8,
8,
8,
8.
8.
0, .
3.77E-02
8,
8,
8,
8,
8,
8,
8.
8,
8,
8.
0.
8,
8,
8.
8,
8.
8.
8,
8,
-o.
e.-
8,
8.
0,
8.
8.
8,
8,
8,
8,
5.60E-01
5.60E-01
5.55E-01
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
o, •••-- -
8.
8,
0,
8,
8,
0,
3.77E-02
8.
8, '
8.
8.
8.
8,
0,
8,
8,
8,
8.
8.
8,
8,
8,
8,
8,
0.
9,
8,
0,
10000, Y100000, Y«o***** Y
0,
8.
0.
8.
8.
8,
°.
8,
8,
5.26E-01
5.26C.01
5.21E-01
8.
8»
0,
0.
8.
8.
8.
8.
8.
0,
8.
8,
8,
8.
8.
8,
8,
8.
3.77E-02
0,
8,
8,
8,
8,
8.
8.
8.
8.
8.
8.
8.
8,
8,
8.
8,
a;
8.
8,
0,
o,
8,
o,
0,
8,
8.
8,
o.
8,
0,
2.82E-01
2.82E.01
2.79E-01
8,
8.
8.
8.
'8,
8,
0.
o.
8,
8,
8,
8.
8,
8.
8,
8,
8,
8,
3.76E-02
8,
8,
8,
0,
0,
8,
8,
8,
8,
8,
8,
8.
8,
8.
8,
8,
8,
8,
8,
8,
o,
0,
0,
o,
Oi
o.
o,
Oi
8,
0.
5.51E.OO
5,9!E«0«
5,0?E.Oa
o(
8,
8,
0,
0.
o.
o.
o.
o.
0,
o,
8,
8.
8.
8,
o.
Oi
8,
3.62E-02
8.
8,
8,
8.
0,
0,
8,
8,
8.
8.
0,
0,
8,
8,
8,
8,
8,
8,
0,
0,
o,
A-TV-7S
-------
PWR • BU s 33,000 FUEL DECAY TI.MES(2) CASE E-l
PQHERS 38.00MW, BURNUP* 330.00,MWD, FUUXB 3,'98£+1 3N/CM**2-SEC
FP's
TABLE A-IV-1
(continued)
NUCUDE RADIOACTIVITY, CURIES
BASIS s HT OF
-
! XEt32
! S3133
— TEt33M '
TEt33
H33
— XE135*
' »Et33
i C3133
"33134 "
TE131
H31
— XEijq --
CSt3«M
esvsa
-~8Atja "~
TE135
It35
"XE135M
XE135
CS135M
" CS135 •-
9A135H
BAl.35
11.36 """
XE1.36
CS!3b
~8A136
1 1.37
XEL37
— CS137 --
BA137P
8A137
~~1138
XE138
CS1.38
~ SAI36 -
It39
X£t39
~~CSt39
BA139
UU9
- *£tao • "
CS1.«0
8A14Q
~UAlflO -
CEtaO
XEtfll
estai
fiAiai
LA tai
- cstai -
PS' "«
CHARGE
0,
0.
0,
08
o.
os
6 =
Oa
Oe "
o,
08
e,
o,
o,
0," ' "
o,
0,
o,
o,
0;
o,
o,
0.
o.
o,
o,
o.
o,
o,
0. "
0.
o.
o»
o.
8.
o . - - - -
o.
o,
o,
o,
o,
o,
0.
0,
o,
o.
o,
o»
o.
o,
0,
ft
DISCHARGE
0,
0.
o'
oe
5,35E«a6
8,6<»E-I6
6,77E«03
<>:
o, - "
0*
o,
o. ---
o,
5.35E+OS
0,'
0,
0,
0. ""
0".
o.
2.23E»01
6.15E-37
0.
" 0. " '
0.
2.30E»01
o,
o.
0.
l.OBE+05
1.01E+05
0.
"0.
0.
o.
o." - -
o<
e.-
"0.
o.
o.
0.
o.
5.5feE+02
6,flOE+02
0,
6,
0,
0.
o;
7,23E+Ofl
«*
0, Y
0,
0.
oj
o.
2.62E-S7
3,fc3E.?Q
Sa96E»05
°,
0,
0,
0,
o.
0,
2,28E*OS
0,
o!
o,
o,
o.
o.
2,23E-OI
3,26E»«S
0.
'0..
o.
3.98E+00
o. "
0.
o.
1.08E+05
1.01E+05
9*
o.
o
o!
o,
o,
o.
^
o.
o.
o,
o,
9.38E+01
1.08E+02
0.
0.
0.
0,
«;
3.58E*0*1
«*
1. V
o.
0,
o,
o,
o,
o,
3,31E»15
0,
o.
o,
o,
0,
o,
1, 926+05
o,
o,
o.
o,
6,
o,
2.23E-01
0,
0,
0,
o,
2,3SE»Ofl
Ot
o,
o,
1.06.E + 05
9,9UEtOU
o.
«t
o,
6,
0.
o,
o,
o,
o,
o,
o,
o,
U,75E»03
5.
-------
PHR • BU • 33.000 FUEt DECAY TIME3C2) CASE E«l
POWER. 36.40HH, BURNUPs 33000.MUD, FLUX* 3.'98E+13N/CM**2-3EC
""" NUCLIDE RADIOACTIVITY, CURIES
FP's
TABLE A-IV-1
(continued)
--CHARGE DISCHARGE
XEta2 0. 0,
CS\a2
-BA182 -
LAia2
CEta2
-PRta2 •-
NDta2
XEtaJ
CstaS
B»ta3
U
-------
_PWR_« BU_« 33.000 FUEL DECAY TIMES(2) CASE E-l
38,'aOMW, BURNUPs 33000,MWO» FLUXa 3."98E + 1 3N/CM**2»SEC
FP's
TABLE A-IV-1
(continued)
NUCLIDE RAniOACTIVir
9A3IS r MT OF HEAVY ME'
i ,
1 S)M53
i EU15S
r.DtS3 "
PM15U
9 Hi 5fl
1 Eut5« ~
C01 5«
1 3m55
1 EUt55 ""
60155
8M156
p£lH56 —
1 S0 1.56
1 SM157
EU157
GD157
EU1S8
I 60158 "
EU1.59
60159
fa 159 ~
EUt60
60168
r~T6i6o —
| OvtfcO
{ 60161
~TB161
OY161
60162
! TB162H
i T9U2
DY1.62
~~ TB16JM
T»t*J
OY163
r TBt6«
1 OY16«
1 OY165N
'— DYtbS-
HOI.65
OY166
[— H0166H '
^"0166
R1.66
R1.67~~
THTAL
CHARGE DISCHARGE
8.
8.
8.
8.
8,
o, -- •
8.
8.
0, '
8,
8,
0,
8,
8.
8.
8,
8.
8.
8,
8.
0,
0,
8.
0.
8,
8,
o,
8,
8.
8,
8.
8.
o. - -
8,
8.
8,
8,.
8.
8,
8,
8.
8,
0,
8,
8.
8,
S.77E-18
8.
2.20E+01
P.
6. .
7.8flE+03
0.
9. r
7.55E+03
8..
8.
3.51E+02
8,
0.
9.08E-68
8,
8.
8.
8.
J.01E-57
o, - •-
8.
8,
a.05E*02
8,
8.
z.aiE-oa
8,
8,
o
8..
8,
o*
ft.
8,
a.79C*46
S:
8,
o;
7.36E-13
8.57E-04
1.10E-12
8.
8.
5.26£*06
8, Y J, Y 10. Y
5.10E-23
8.
2,OOE*91
8.
0,
7.81Et03
9,
°..
7.29Ef03
8.
8.
7.75E+OI
8.
8.
2.15E-B3
8.
8.
8,
9,
2.18E-70
6.
8,
8,
2.9S£to2
8.
8,
8.88E-06
8.
6,
°,
8,
0,
9
o.
«»
2,26E-56
8.
8.
8,
«*
8,98E»16
8,57E-Ofl
J,3UE»15
8.
9,
fl.50E»06
8,
8.
l,19EfOJ
8.
8.
7.60E+03
9.
8,
6.02E+03
8.
8.
1.68E-02
8.
8,
8,
8.
8.
8,
8,
8.
8,
8,
8,
5.10E+OJ
8,
8.
9,56E-10
8,
9,
8,
8,
8.
8,
8.
8,
9.
8,
8.
8,
8,
5,79E«32
8,576-00
6.65E-S2
8,
8,
2.56E+06
8,
8.
9,65E-Oa
9.
8.
5,J8E*03
8.
8.
J,92Et02
8,
0.
8.
8,
8.
8.
8.
8,
8.
9,
9.
8.
9,
8.
9.59E.13
9.
8.
8,
o.
8.
8,
8.
8.
9.
0.
8.
8,
8.
8.
8,
8;
9,
8,sic>oa
8.
8,
8,
3.20E+05
50. >
8.
8.
6.85E-22
8,
8,
9,15E*02
8.
0.
0.26E-05
8.
8,
o, -
8.
8,
8,'
8.
8,
8.
8.
8,
8.
8.
8,
8. t
8,
8.
9,
8.
8.
8,
9.
9.
8.
8,
8.
8.
9.
9.
9.
8,
8.
8.33E»0«
8.
8.
8.
>,!SE*OS
, CURIES
At. CHARGED
100, Y
8,
9.
8,
8.
8.
l.OSE+02
8.
8,
2.06E-13
8,
8,
8,
8.
8.
8, '•- -
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
9,
8,
8,
8.
8«
8.
8.
8,
8,
8.
9,
8,
8,
8,
f ,09E.O«
9,
8,
9,
3.46EtOa
TO REACTOR
500, Y
8,
8.
8,
8,
8.
3.12E-06
8,
8.
o,
8,
9,
9.
9,
8,
o. -
8. -
8,
8.
8,
8,
8.
8,
8.
8,
9,
9.
8,
8.
8,
8,
8,
0,
8,
•t
9,
0.
».
8,
8t
9.
8.
».a2f»oa
8,
8.
8.
1.66E+01
tOOO. Y
8,
8,
8,
8,
8,
1.22E-15
8,
9.
8.
9.
9,
8,
8,
8,
o,
8.
8,
9,
9|
9.
8.
8,
8.
8,
8,
0,
8,
9.
8,
8,
81
8,
8,
0.
«,
8,
o.
0.
0,
8,
8.
o.eie.oo
8,
0.
8.
2,09Ef01
10000, Y100000. Y**»***» Y
9.
0,
0,
8.
8.
8,
9,
8.
8,
0,
8,
9.
8.
8.
8,
8,
8.
8.
8,
8,
8.
0,
8.
9.
8,
0,
8.
8.
8.
t
8.
9,
0.
•
9.
0.
«.
0,
o,
0.
0.
T •
0.
•
0. '
2,6*E«0»
8,
0.
0.
1.99C+01
8,
9,
8,
8.
8,
9,
8.
8.
8,
8(
8.
8,
8,
8,
9,
9,
9.
9.
9,
9,
0,
9,
8.
8.
9,
8,
9>
0,
8.
•
0.
0,
8.
9
9.
0,
0,
0,
o.
9.
0.
w •
0.
V
o, •
8,
8.
0.
0,
t.smoi
8,
8.
8.
9.
9.
8.
9,
8.
8,
0,
9,
8,
0,
9,
9,
8,
9.
9,
8§
8,
9,
0,
8,
0.
8,
8,
8,
8,
0.
" •
8,
8,
0.
" •
9,
0,
».
^ •
0,
o.
9.
e.
w •
0.
* •
o.
w •
0,
9,
0.
8,
3.m«oo
A-IV-28
-------
P.H*_^_BU_» 33.000 FUEL DECAY 7IHCS(2) CASE E«l
POWER" 38.'40MW; BURNUP* 33000.MWD, FLUXa 3,98E+l3N/CM**2«SEC
Clad
TABLE A-IV-1
(continued)
H
M
~~H'
H
ME
'HE
LI 6
LI "7
LI B
BE B
BE 9
RE 10
BE 11
-a 10
B 11
B 12
~C 12
C 13
C ja
N lit
•N 15
~N 16
0 14
0 17
~0 18
0 19
F 19
-p 20
NE 20
NE 21
-NE 22
NE 23
NA 22
N* 23
N* 20
NA 25
"5 28-
MS 25
KG 2*
US S7
AL 27
AL 28
*L 2'
SI 28
CHAR6E
1,62E+08
0.
8.
8.
" 8,
0.
o.
o,
0.
8.
"0.
8,
8,
""8.
8.
0
DISCHARGE
1.62E+04
2.68E+01
~ l.«9E"05
7.17E-25
6,2U"07
2^33E+ffO
9?17E»10
"4,81E-12
°,
0.
3.8IE+00
3.90E-02
8.
"8,
8.
-o',
2.60Et05
8,
"0, =
8.
8,
0.
8.
8.
-fl.
8.
0.
o,
8.
0.
-o,—
o.
8,
o. - -
3,13Et01
0,
8,
7.31E-12
1.52E-11
0.
3,81E»00
7.53E*00
3.81E-03
'8.
8,70E-07
1.25E-11
- 0
2J60E+OS
1.79E+01
-2,67EM2
8,
2.98E-19
a,HE»10
1,03E-08
8,
8,
8,38E»10
7,32E»80
0.
— . ^
2.33E-08
1 .OfeE'OU
8,
3.13E*01
8.
0,
•>i c- S.13E + 00 j,i
Si 30 2,16EtOO 2.1
81 31 C, 0-
P 51 1.S5F+00
P 32 0. 2.63E-OP
P 33 0, /1.98E-06
, 0. »
1.62E+04
2.6flE»Ol
1.88E-05
7.17E-J5
7%16E-07
2,33E*00
0.
9,17E«lO
6,79E«06
a.a7E-flS
o.
8,ajE«l2
1.52E-11
7.53E+00
5,07E-.
1,62E+0«
2.16E+00
0,
1.95E+00
5,33E^09
7.82E-07
1,83E'05
7.17E-25
1.2UE-06
2.33E+00
0,
9.17E-10
1.81E.12
0,
0.
6.79E-06
«,«7E«05
0,
l.«6E-ll
1.52E.11
0.
3,aiE+00
7,53EtOO
3,«1E»03
0,
7,iaE«07
1.25E-11
0.
2,60E+05
1.79E+01
2.87E-12
0,
2.98E-19
0.
7.86E.16
a.HE-10
1,03E>08
0,
o,
a.sas.io
o,
o.
1.07E.08
2.33E.OB
i .o6E-oa
o,
3.13E+01
o,
o,
5.98E+01
3,iaE»00
2.16E+00
0,
1.95E+00
7.62E-13
18, Y
1.62E+08
2.6UE+01
1.10E.OS
7.17E.25
S.51E-06
2.33E+00
8,
9.17E.10
a.eiE-12
8.
8,
6.79E-06
4.87E.05
8.
1.26E.10-
1.52E.11
8,
3.8lE*00
7.53E+00
3.81E.03
8.
l|25E.H
8.
2.60E+05
50. Y
l,62E*Oa
2.68E+01
1.16E.06
7.17E-25
l.eaE.os
2.33E+00
8,
9.17E-10
8.61E.12-
8.
8,
6.79E-06
o|
6.22E-10 "
1.52E-H
8.
100. >
l,62E+Oa
2,6aE*01
6,90E"08
7.17E-25
1.9SE-05
2.33E+00
0,
9.17E-10
a,81E"12
0,
0,
6.79E-06
500. Y
l,62E+Oa
2,87E«12
0,
2.98E-19
0.
7.86E.16
a.HE.10
1.03E.08
8.
8.
8.38E-10
8.
C.
1.07E-08
2.33E-08
1,06E»04
8,
3.13Et01
8'.
5.98E+01
3, 1UE + 00
2.14E+03
8,
1,95E*PO
8.
8.
,
7,53E+00
3.39E.03
0,
2.09E-05
1.25E.11
0.
2,*OE+05
1.79E+01
2.87E-12
0,
2.98E.19
0,
1.03E.08
8.
8,
8,38E<>10
8.
8.
1.07E-08
2.I3E.08
1.06E-08
0,
3.13E+01
8.
8,
5.98E+01
3,taE+00
2.16S+00
8,
1.95E+00
0.
8,
'1 .28E.89
1 ,52E"H
s^aiE+oo
7.53E+00
3.37E-03
0 ,
8.18E.05
1 ,25E»H
2J60E+05
1 .79E + 01
2,67E»12
81
2.98E-19
8, -
7.86E-16
«,HE.10
~1.03E.08
8,
8,
8,3SE"10
8,
8,
1 .07E-OS
2,33E-0«
8J
3.13E+01
81
8,
5.98E+01
3,18E*00
2,16Et80
0,
1.95E+00
8, -
1.12E.17
7.17E-25
1.95E-05
2.33E*00
8.
9.17E.10
a,81E-12
8,
0,
6.79E-06
a,a7E-os
8.
6.20E-09
1.52E.11
8.
3.81E+00
7.53E+00
3.21E-03
0,
2,01E-oa
1.25E-11
8.
2.60E+05
1,79E*01
2.87E.J2
8,
2.98E-19
7J86E-U
a.UE-10
1.03E-08
0.
8.
8.38E-10
8.
0.
1.07E.08 '
2,33E-Oa
1.06E-08
8,
3.13E+01
8.
8.
5,98E»01
3,lflE+00
1.95E+00
0.
8,
1000. Y
l,62Et08
2,68Et01
6.46E.30
7.17E-25
1.95E-05
2.33E+00
.8.
9.17E.10
8,81E-12
8.
e.
6.79E.06
8,fl7E.05
8,
1.2UE.08
1,52E«H
8.
s.aiEtoo
7,53E*00
3.02E-03
0,
3,89E.04
1.25E-11
0.
2,60Et05
1.79E+01
2.87E.12
0,
2.98E.19
8,
7,86E>16
a.HE.10
1.03E-08
8,
8,
8.34E.10
8,
8.
1 .07E-04
2,33E'Ott
e!
3,13E*01
e!
5,98E*01
J,1«E»00
2.16E+00
8,
1.95E+00
8,
0,
10000,
1.62E+08
2.68E+01
7jl7E"25
1.95E-05
2.33E*00
8.
9.17E-10
4.81E-12
8.
8.
fe.79E.06
4,86E>OS
8.
1.28E.07
1.52E-11
0.
3.81E*00
7,53E»00
1.02E-03
8.
2.80E-03
1.25E.11
8.
2.60E+05
1.79E+01
2.87E.12
0,
2.98E-19
0,
7.86E-16
4.HE.10
1.03E-08
8,
8.
8.38E.10
0.
8,
1.07E.04
2.33E.04
l.OfcE-08
8,
3.13E*01
8.
8.
5.98E»OJ
3,18E*00
2.16E+00
8.
1.95E+00
0,
0,
Y100000,
1.62E+04
2,68Et01
0.
7.17E-25
1.95E-05
2.33EtOO
8,
a|eiE-12
0.
8.
6.79E.06
8.35E.05
8,
1.22E-06
1.52E-11
8.
3.41E+00
7.53E+00
1,90E*08
8,
3.11E-03
1.25E-11
0.
2,60E»05
1.79Ef01
2.87E-12
0,
2.98E-19
8,
7.86E-16
8,HE-10
1.03E-08
8,
0,
e.sae.io
8,
o.
1.07E.08
2.33E.08
1.06E-08
8,
3.13Et01
ft
Y******* V
1.62E+00
5,98E»01
3,14EtOO
2,16E»00
0,
1,95E*00
0(
0.
0,
7.17C-25
1.95C-05
2.33E+00
Ot
9.17E-10
«,81E-12
0.
0,
6.79E-06
3.39E«05
0.
1.08E.05
1.52E-11
0.
7.53E+00
0,
°i
3.01E-03
1.25E-11
0.
2,60E*OS
1.79E+01
2.B7E-12
0,
2.98E-19
0,
7,86C*16
fl.llE-10
1.03E.08
0,
0,
s, see. 10
o,
o.
1.07E-00
2.33C-Oa
l,06E>Oa
o.
8.
0.
5.98E+01
3,|aE*00
2,16E»00
8.
1.95E+00
0.
0,
A-IV-29,
-------
PWR . BU • 33.000 FUEL DECAY TIMESC2)
CASE E«l
Clad
POWER* 38,'OOMH, BURNUPs 33000,MHO, FLUX* 3.'98E + 13N/CH**2-3EC
TABLE A-IV-1
(continued)
NUCLIOE CONCENTRATIONS, G03
6.80E-02
3.42E-07
8.09E-14
0,
3.57E-05
1.14E-06
7.11E-08
0,
4.17E-12
8.03E.19
1.44E-11
3.28E-1S
3.61E-10
0,
1 ,13E«!7
1.77E-21
1.20E.11
0 |
o,
Of
0 1
o,
1,606-13
1 ,56E»05
1.24E-04
1.56E-07
1 1 55E *05
7,53E»35
0,
0,
2.31E-06
2,48E-06
2.3SE-34
0,
0,
o,
4.27E+00
4,08E+00
4,06E+01
3.78E+00
3.12E+00
0,
0.
1.14E-02
2.81E+00
0.
0.
0,
8.10E+01
10. Y
o.
1.22E+00
6.70E.03
6,80E«02
1.90E-18
5,i7E«13
0,
3.60E.05
l.laE-06
7, HE- 08
0,
2.67E.11 -
0,
1.44E-11
3.20E-15
3.61E.10
0.
8,65E-17
1.77E-21
1.20E-11
0,
0.
0.
0 ,
o.
.60E-13
,56E«05
.20E.04
.56E-13
fle c AS
,55E«05
0.
0.
0,
2.46E-06
3.97E-18
0.
o,
"«
0.
4.27E+00
4,08E+00
4.06E+01
3.78E+00
3.12E+00
0.
0.
1.1UE-02
2.81E+00
0.
0,
o. —
8.10E+01
HEAVY METAL CHARGED
50. Y
0,
t,22EtOO
6.7aE-03
6,80E*02
0,
o'
3.60E.05
1.10E-06 -
7, HE. 08
0,
1.27E-10
0.
1.44E-H
2.89E.15
3.61E-10
0,
a,onE-16-
1.77E-21
1,20E-11
0,
0.
0.
0 ,
0.
1.60E-13
1,56E-05 '
1.24E-04
0,
1,55E«05
0,
0.
0,
2.46E.06
0,
0.
0.
0,
0,
U.27E+00
4,08E02
0.
4.87E-12
0,
3.60E-OS
l,laE-06
7,11E-08
0.
2.52E-10
0,
1.40E-11
2.50E-15
3.61E-10
0,
7,49E«16
1.77E-21
1 ,20E>11
o, • —
0,
0,
0 |
0,
1.60E-13
1 ,56E-05"
1,24E>00
0,
1 ,55E«05
0 1
0,
0,
2.46E-06
0 •
0 •
o.
o,
o,
4.27E+00
4,08E+00
4.06E+01
3,78E*00
3.12E+00
0,
0.
1.14E-02
2,81EtOO
0.
0,
o,
8.10E+01
TO REACTOR
500, Y
0.
1.22E+00
6,7aE«03
6.80E-02
0.
2.42E.11
o,
3.60E-05
1.14E-06
7,11E-08
0.
1.25E.09
0,
1.44E-11
9.06E-16
3.61E-10
o,
2,38E«15
1.77E-21
1.20E-11
0,
0,
0,
v ^
o,
1.60E-13
1 ,56E*05
1.24E.04
0,
1 ,55E»05
o,
9.
9.
2.46E-06
0.
o,
0.
9,
0.
4.27E+00
4.08E+00
4,06E+01
3.78E+00
3.12E+00
0.
0.
1.14E-02
2.81E+CO
0,
0,
o, —
8.10E+01
1000, Y
0,
1.22E400
6,74E»0»
6.80E-02
0.
a.saE.Ji
0,
3.60E-05
l,taE-06
7,11E*08
0,
2.50E.09
0.
l,aoE-ii
2.50E-16
3,61E>10
0,
S,OOE«15
1.77E-21
1.20E.11
0,
0,
o.
0,
o,
1.60E.13
1 ,56E>05
1,24E-04
0,
1 ,55E-05
0,
0,
o,
2.46E-06
0, '
0,
0,
o,
0.
4.27E+00
a,08E*00
4.06E+01
3.78E+00
3.12E+00
0,
0.
1.10E-02
2,81E*00
0.
0.
0.
8.10E+01
10000, Y100000, Y**«**o* Y
0, 0, /' 0.
1.22E+00
6.70E-03
6.80E-02
0.
4.79E-10
0.
3,60E-05
1.11E-06
7,11E«06
0.
2,47E«08
0.
1.40E.11
2.11E-26
3.61E-10
0.
3.29E-15
1.77E-21
1.20E-11
0 g
o,
0.
o.
o,
S.60E-13
1 .56E-05
1.24E-04
0.
1 .55E-05
0,
o,
0 g
2.46E-06
8.
o,
o,
o.
o,
4.27E+00
4.08E+00
4,fl*E+01
3.78E+00
3.12E+00
0.
0.
1.14E-02
2.81E+00
0.
0.'
0.
8.10E+01
1.22E+00
6.74E-03
6,80E-02
0,
4.34E-09
0.
3.60E.05
9.11E-07
7.11E-08
0.
2.24E-07
o.
1.44E-11
o,
3.61C-10
o,
3.29E-15
1.77E-21
1.20E-U'.
0,
o,
0,
0,
0.
1.60E-13
1,S6E«05
1.24E-04
0,
1 ,55E*05
0,
0,
0,
2.46E-06
0.
0,
0,
0.
o*
4.27E+00
4.08E+00
4.06E+01
3.78E+00
3.12E+00
0,
0.
1.14E-02
2.81E+00
0.
0.
0,
8.10E+01
1.22E+00
6.74E.03
6.80E.02
0,
1.93E-08
0,
3.60E-05
1.22E.07
7.S1E.08
0.
9.98E-07
0,
1, aaE.lt
o.
3.61E.10
0,
3.29E-15
1.77E-21
1.20E.11
0 1
0,
0,
o, -
o,
1.60E-13
1.56E.05
1.24E-04
0.
1855E.O?
0.
0,
0,
2.44E.06
0,
o,
0.
0,
0.
a,27E+00
4.08E+00
4,06E+Ol
3.78E+00
3,12EtOO
0.
0.
1.14E-02
2.81E+00
0,
0.
Ot
8.10E+01
A-IV-30
-------
PHR • BU " 33.000 FUEL DECAY TIMESC2)
CASE f.l
Clad ._
POWER* 38,'oOMK, BURNUP« 33000,
.'98C + 13N/C«**2«3CC
TABLE A-IV-1
(continued)
NUCLIOE CONCENTRATIONS, "CRAHS
BASIS B MT OF HEAVV METAL CHAROED TO REACTOR-
CHARGE - DISCHARGE
CR 51
CR 52
'CR-^3
CR SO
CR 55
~HN 50 ~'
MN 55
MM 56
WN 57
HN 56
FE sa
ft 55 —
FE 56
FE 57
FE 58 —
FE 59
CO 58M
CO 58 -
CO 59
CO 60H
CO 60
CO 61
CO 62
NI 58
NI 59
Nl 60
NI 61 "
NI 62
NI 63
NI 60 -
NI 65
CU 62
CU 63
CU 60
CU 65
CU 66
ZN 63
ZN 61
ZN 65 —
ZN 66
ZN 67
ZN 6«
ZN 6"»*
ZN 69
ZN 70
ZN TIM
ZN 71
CA 69
GA 70
CA 71
6E 70
SR ea
o.
1.66E+03
I.94E + 02~
4,91E*01
0.
o.
1.08E+02
0.
o,
0.
2,22E*02
0,
3.65E+03
8.66E+01
1.28E+01—
0.
0,
o.
7,09Et01
0.
o. -
0.
o.
2,49E*03
0.
9.66F+02
4.22E401 •
1.40E+02
0.
3.62E+01
0.
0.
I.27E+OJ "
0.
S.92E+00
0.
8.
0.
0,
0,
o.
o.
o.
o,
o.
o,
o.
o.
0.
o.
o. "•
0.
3.52E-03
l,68Et03
1.90E*02
S,60E»Ot
o'
2^81E-02
1,05E+02
0,
o;
o.
2,21E+02
8^73E-01
3,63E+03
1,0«E+02
1.43E»01
4.27E.04
0.
3.09E-02
6.J7E+01
0.
7.86E+00
o.
0.
2.47E+03
2.19E+01
9,«2E+02
a 72E+01
1.37£*02
4.11E+00
3.62E+01
0.
0,
1.26E*01
3,95£«89
5.98E»00
o;
0.
6 73E-02
2.17E-05
4.28E-02
0.
0,,
0*
°,
o, •-
0,
o;
*\
o:
«,
0.
i.ise-ot
0, Y
1.55E-03
1,68E+03
~I.90E+02 -
5,60E»01
0.
2.60E-02
1.05E»02
0.
o.
0.
2^2^ + 02
8t52E»01
3.63E+03
1.04E+02
1.43E+01
2.37E.04
o.
2.25E-02
6.17E+OI
o.
7.79E+00
o.
o,
2^«7E»03
2.19E+01
9.82E+02
0.72E+01
1.37E»02
fl.llE+00
3.62E+01
o<
oj
1.26E+01
1,10-107
S/J8E + 00
o.
o,
6.7JE.02
1.98E-05
«.28E-02
o.
o
o'
^ -
o.
o,
o.
o;
o.
s
0.
1.151-01
it r
1.63E-05
1.68E+03
1.90E*02
5,60E»01
0,
1.71E-02
1,051+02
0.
0.
0.
2.21E+02
7,a6E"01
3.63E+03
l.OUE+02
1.43E+01
1,5«E«05
0.
3.81E-03
6.17E+01
0,
7.29E+00
0.
0,,
2,«7E»03
2.19E+01
9.83E+02
a,72€»01
1.37E+02
0.09E+00
3.62E+01
0,
0.
1,26E*01
0.
5.96E+00
0,
0.
6.73E-02
1.18E-05
0.28E-02
0.
0.
0.
0,
0.
0.
0,
o,
Ot
0.
"•
1,19C*01
10. Y
0.
1.68E+03
1.90E+02
5.61E+01
0.
9.29E.06
1.05Et02
0.
0.
0.
2,21E*02
6.77E-02
3.6JE+03
l,oaE»oz
1.03E*01
0.
0.
5.02E-17
6.17E+01
0.
2.23E+00
8.
8.
2.07E+03
2.19E+01
9.88Et02
fl.72E+Ot
1.37E»02
3.82EtOO
3.62E+01
0.
0.
1,29E*OJ
0.
5,98E»00
8.
0.
6.73E.02
1,08E»09
9.28E-OZ
0,
0.
0.
o.
o.
o.
o.
o.
8,
0.
A.
1.151*01
50. Y
0.
1.68E+03
1,90E+02~
5.61E+01
0.
2.83E-20
1.0SE402
0.
0.
0.
2.21E*02
t,58E«06
3.6JE+03
l.OOE+02
1.03E+01
0.
0.
0 ,
6.18E+01
0.
l,lflE«02
0,
0.
2(47Et03
2.19Et01
9,90E*02
4.72E+01
1.37E+02
2.8JE+00
3.62E+01
0.
0.
1.39E+01
0.
5.98E+00
0.
0.
6.73E-02
1.20E.27
4.28E-02
0.
0.
0.
o.
o.
o.
o.
0.
0.
o.
0.
l.HE-01
100. Y
o,
1,68E+03
1.90E+02
5.61E+01
o,
2.03E-38
1.05E»02
0.
0.
0.
2,21E*02
2.57E-12
3.63Ft03
t,04E*02
1.43E401
o.
0,
0.
6.18E+01
0.
1.57E-05
0.
0.
2,«7E*03
Z,19E*01
9,90E»02
4.72E+01
1.37E+02
l,9flf*00
3.62E+01
o.
0.
1.08E+01
0,
5.96E+00
0,
o.
6.73E-02
8,
4.28E-82
0,
8.
0.
8.
81
8,
8,
8.
8,
8.
*i
t.HF-01
500, Y
8.
1.68E+03
1.90E+02
5.61E+01
8.
8.
1.05E+02
8.
8.
8.
2.21E+02
0.
3,63E«03
1.04E+02
1.43E+01
8.
8.
o,
6.18E+01
8,
0.
8,
8.
2.a7E*03
2.18E+01
9.90E+02
4.72E+01
1.37E+02
9.53E.02
3,62Et01
8.
8.
1.66E+01
8.
5,98E»00
8,
8.
6.73E.02
8.
U.28E-02
8.
8.
8,
8.
0,
8.
8.
8.
o,
0,
o«
l.HF-01
looo, y loooo. YIOOOOO, v******* r
8.
1,68E»03
1.90E+02
5.61E+01
0.
8.
. t,05E*02
0.
8,
0.
2.21E+02
8.
3.63E+03
1.04E402
l,a3E»01
8.
8,
8,
6,19Et01
0.
8,
8.
8.
2,478*03
2,17E»01
9.90E+02
4.72E+01
1.57E+02
2.20E-03
3.62C*01
8,
0,
1,67E»01
0.
5,9ee+oo
o,
8.
6.73E-02
8.
4.2BE-02
8,
8.
8,
0.
8,
0.
8.
0.
8.
0,
ot
1.1M.01
o.
1.68E+03
1.90E+02
5.61E+01
8.
8.
1.05E+02
0.
8.
8.
2,2lEt02
8.
3.63E»03
1.0aEt02
1,43E»01
0.
8,
8.
6.36E+01
8.
8.
8.
8,
2.17E+03
2.01E*01
9.90E+02
4.72Et01
1.37E+02
8.
3.62E+01
8.
8.
1.67E+01
8.
5,98E*00
8.
0.
6,73E«02
8.
0.28E-02
8.
8.
8.
0.
o,
o,
o,
o.
o.
o,
o,
i . ur«oi
o.
1.68E+03
1.90E+02
5.61E+01
0.
8.,
l.OSEtOl
8.
8.
8.
2,21E»02
8.
3,63E*03
1.04E+02
l.«3E»Ot
o,
8,
8.
7,44E»81
8,
0.
8.
8.
2,a7E»03
9.19E+00
9.90E+OZ
«.72E»01
1,37E*02
0,
3.62E*01
0.
0.
l,67Ef01
o.
5,98^*00
o,
8.
6.73E-02
0.
4.28E-02
o.
8.
8.
0.
0,
8,
8,
8.
8,
o-,
0,
t.15f«01
0.
1,*8E*83
1.90E+02
5,61E*Ol
8.
0.
1.05E+82
0.
0.
0.
2.21E+02
0.
3.63E+03
l.OOE+02
1,03E*01
8.
8,
8.
8.36E+01
8.
8.
8.
8.
2.47E+83
3,776.83
9.90E+02
4.72C*01
1.37E»01
0, <
3.62E»01
0.
0.
1.67E+01
0.
5,96E*80
8.
o(
6.731-82
0.
fl,28E«02
0,
8«
0.
o,
0,
o.
0,
0,
0.
o.
o«
i.nr.ei
A-IV-31
-------
PHR . BU » S3.000 FUEL DECAY TIMES(2J
CASE E-l
Clad
POWER* 38.40MW, BURNUPB 33000,MHO, FLUX* 3.'98E+13N/CM**2-SEG
TABLE A-IV-1
(continued)
NUCLIOE CONCENTRATIONS
SR 89
8R 90
— SR 91
Y 90M
Y 90
Y 91H
Y 91
ZR 90
~ZR 91
ZR 92
ZR 93
~ ZR 9s
ZR 95
ZS 96
- NB 92
NB 93M
NB 93
- NB 9«
NB 95
NB 96
-NB 97
MO 92
MO 93
- MO 93*
MO 98
MO 95
-MO 96
MO 97
MO 98
-MO 99 —
MOIOO
M01.01
-TC 99M-
TC 99
TCtOl
-RUtOl —
COtiSM
COU3
-COU5H—
COU5
CDtl'M
-CD119 —
CD121
TNiU
~IN1 J9M—
INM9
IN121M
-TN121 --•
SNI 18
SNI 15
-SN116 —
SNllTM
CHARGE DISCHARGE
o, i,i9E«oa
0.
o,.
o.
e.
o,
o.
fe,iaE+Oa
1.35E+OU •-
2.09E+08
0.
2, J8E+08
0,
3.57E+03
0,
0,
3.23E+02
8,
0.
o,
o,
2.82E+Q1
8.
o, ---
1.77E+01
3.13E+01
3.32E+01 "
1.91E+01
a,95E+8l
0,
1.99E+01
8,
8,
8.
8.
o,
8,
6.18E-03
Oi
8.
8,
8,
0,
6.33E-03
8»
8.
8.
0,
1,16E*01
6.21E+00
2.59E*02-
0.
3,82E"06
8,
8,
9.93E-10
0*
a,53E»08
6.13E+OS
1.304
2.16E+01
2,18E*0^
1.89E-02
3.56E+03
3.33E-16
2.22E-05
3.23E+02
6.97E-01
2,11E«02
o,
8,
2,82E*0}
1.69E-02
0,
1.77E+01
3.06E+01
3.73E+01
1.91Ei01
a,92E+Ot
7.15E-45
1.98E+01
0,
6,i2E-aa
3.22E-01
8,
9,75E»02
8,
7.67E-08
8.
8.
8,
8,
8.
2.20E-03
•
8,
8,
8,
1.16E+01
6,21EtOO
2,56E»02
'1.33E-0*
t 10, Y
6.23E-25
3.02E.06
8,
8,
7.88E.10
0.
5.27E-22
6,13E»04
1. JuEiOa
2.10E+08
2.16E+01
2,18E+Oa
1.12E-17
3.56E+03
0.
9,39E«05
3.23E+02
6,97E»01
1.28E-17
8.
8.
2.82E+01
1,6SE«02
8,
1.77E+01
3.46E+01
3.73E+01
1.91E+01
8.92E+01
8.
1.98E+01
8.
-8.
3.22E.01
8.
9.75E«02
8.
7.67E-08
8.
8.
8.
8.
8.
2.20E-03
,
8.
8,
8.
1,16E*01
6.21E+00
2.56E+02
8.
, GUMS
HEAVY METAL CHARGED
so,
o.
1.12E»06
o, - - -
8.
2.92E.10
Ot
o,
6.13E+04
l,3aE+04
2.IOE+04
2,16E+01
2.18E+00
8,
3,56Et03
0.
2,01E>08
3.23E+02
6.97E-01
8,
8.
0.
2,826+01
1.68E.02
8.
1.77E+01
3.46E+01
3.73E+01
1.91E+01
8.92E+01
8,
1,9BE+01
0,
8,
3.22E-01
8,
9,75E«02
8,
7.6TE.08
8,
8.
8.
8,
8.
2.20E-03
0,
8.
8,
8,
1.16E+01
6.2JE+00
2,56Ct02
8.
Y 100, Y
8,
S.27E-07
o,
8,
8.SIE-11
" o,
o,
6 ,13E + 08
- l ,3aE+oa
2 ,10E + 08
2,16E+Ot
2.18E+08
8,
3 ,56E + 03
8,
2,16E»Oa
3.23E+02
6.97E-01
8,
8,
- o ,
2.82E+01
1 .67E-02
8,
1 .77E + 01
3,46E+81
- 3.73E+81
1.91E+01
4.92E+01
8,
1 ,98E + 01
0,
" 8 ,
3.22E-01
8,
9,75E»02
8,
7.67E-08
8,
8,
81
8,
0,
2.20E-03
0_ .
i
8,
8,
8.
1,16E*01
6,2lEtOO
- 2.56E+02
8,
_. .
TO REACTOR
500, Y "
8,
1.70E-11
8.
8.
4,aiE«15
«,
8,
6,13E+08
l,3aE+08
2,10E+08
2,16E+01
2.18E+08
8,
S.56E+OS
8.
2,16E»08
3.23E+02
6.97E-01
8.
8,
8,
2.82E+01
1.62E-02
8,
1.77E+01
3.46E+01
3.73E+01
1.91E+01
4.92E+01
8,
1.98E+01
8,
8,
3.21E-01
8,
9.75E-02
8.
7.67E-08
8,
8,
8,
0.
8.
2.20E-03
<
8,
8.
8.
1.16E+01
6,21E+00
2.56E+02
e.
1000, Y
8,
7,86C-17
e.
8,
1.98E-20
8,
.8,
6,!3E+08
l,38E+Oa
2,10E+08
2,15E+01
2.18E+04
8,
3.5&E+03
8,
S.SSE-08
3.23E+02
6.97E-01
8,
8,
8,
2.82E+01
1.56E-02
8,
1.77E+01
3.46E+01
3.73E+01
1.91E+01
4.92E+01
8,
1.98E+01
8,
8,
3.21E-01
8,
9.75E-02
8,
7.67E-08
8.
8.
8,
8,
9,
2.20E-03
t
8.
8.
8.
1.16E+01
6.J1E+00
2,56E»02
8.
10000, YlOOOOO, T******* T
8. 8. 0,
8.
8,
8.
8,
8.
8,
6.13E+04
1.38E+04
2,10E+04
2.I5E+01
2,18E+08
8,
3.56E+03
8.
2.05E-08
3.23E+02
6,96E.01
8.
8.
8,
2.82E+01
7.8QE-03
8.
1.77E+OJ
3.46E+01
3.73E+01
l,9iE»01
4.92E+01
8.
1.98E+01
8.
8,
3, ME- 01
8.
9.75E-02
8..
7,'67E-08
8,
8.
8.
8,
8.
2.20E-03
•
8.
8,
8,
1.16E+01
6.2JE+00
2.56E+02
0.
8.
8.
8,
8,
8.
8.
6,13Et08
l,3ae+oa
2,10E+08
2,06E+Oi
2,18E+08
81
3,56E+03
0.
U87E-04
3.28E+02
6.90E.01
8.
8,
0,
2.B2E+01
7.62E-06
8,
1.77E+01
3,46E«0(
3.73E+01
1.91E+01
8.92E+01
8,
1.98E+01
8.
8,
2.31E-01
8,
9,75E«02
8,
7.67E.08
8.
8,
8, /
8,
8,
2,20E«03
°«
8.
8.
8.
1.16E+01
6,21E»00
2,56E*02
8.
8,
8,
0,
8,
8,
0.
6913E+04
l,34C+Oa
2,iOE+Oa
1.36E+01
2.16E+04
8,
3,56E+03
8,
1,23E-04
3.31E+02
6,73E»01
8,
8,
8,
2.82E+01
8,
8.
1.77E+01
3,46E+01
3.73E+01
1.91E+01
4,92E+Ot
8,
1.9BE+01
9.
8.
1.19E-02
0, .
9.75E.02
8,
7.67E.08
8.
8,
0.
8.
0,
2.20E.03
8t
8,
8.
8.
1.16E+91
6.21E+00
2.56E+02
0.
A-IV-32
-------
P*R • BU "33,000 FUEL DECAY TIHE8(2)
CASE E«l
Clad
POWER* 38,'flOHW, BURNUPa 33000,MHO, FLUX* 3.'98E*l3N/CH**a-SEC
TABLE A-IV-1
(continued)
NUCLIOE CONCENTRATIONS," CRAMS'
BASIS • NT OF HEAVY METAL CHARGED TO REACTOR
8NU7
8NU8
8NU9H'
8NU9
SNt20
8N121H
8N122
3N123M
3Nt23
3N12S
88121
88123
3B124M
3Bt24
SB 1.25
SB126H
8B126
TE125M
TE125
TE!26 -
TAtBO
TA181
TM82M-
TA182
Mt80 •
Nt82
Nt83H
HtSO
H1.85H
H186
Nt87
CHARGE
1.38E+02
0,41Et02
0.
1.59E+02
6.11E+02
0,
0.
8.91Et01
0.
0.
1.12E+02
0.
0.
0.
o,
0.
0,
0,
0.
o.
o,
o.
o,
IT.
o.
o.
o.
0.
o.
0.
o.
0.
o.
o.
o,
o.
o.
DISCHARGE
1.39E+02
4,04E+02
2.33E-03
1.57E+02
6.12E+02
4,'58E-03
1.05E-43
8.90E+01
0,
1.57E-05
1.J2E+02
0.
3,55E«10
6.10E-01
"2.90E-02
0.
2.88E«05
2^26E-02
0,
5.37E-10
8,87E-04
5,56E»Ofl
9,61E-03
1.17E-04
0,
-2<
0,
o.
o.
_0
oj
ot
o.
0,
o, .
o;
0,*
0*
-a.«9E+05~
0, Y
1 »39E*02
4 44E+02
2.13E-03
1.57E»02
6,12E*02
4.57E-03
1.67E-52
8t90E+01
0 .
1.31E-OS
l,12Et02
0,
3,1UE-11
6, JOE-01
2.90E-02
0,
1.97E-05
2.21E-02
0. .
8.67P-H
8.96E-04
S,29E-0«
l^OlE-02
1.17E-04
o,
0^
0,
0,
' o.
Q
A
-oj
o.
;I
oj
o;
1. Y
1,39E*02
4,40E+02
I.28E-03
1,57E»02
6,12Et02
4.55E-03
0.
8.90E+01
o.
4.-75E-06
1,12E4>02
0.
4.45E-17
6,10E»01
2.90E-02
0.
2,39E»06
1.95E-02
0.
3.46E-15
9.1UE-03
4.73E-04
1.29E-02
1.17E-04
0.
0.
o,
0,
o,
0,
0,
0,
o, ~ -—
0,
Oi
0,
0.
0,
a,09E+05
10. Y
1.39E+02
a.aaE+02
l.aiE-07
1.S7E+02
*,12E*02
4.19E-03
0.
8.90E+01
0.
5.75E.14
1.12E+02
0.
0.
6.11E-01
2.90E-02
0.
7.65E«23
1.93E«03
0.
0.
9.1fcE.Ofl
4.70E-05
3.08E-02
l,17E«Oa
0.
o.
0.
o.
0.
0.
0.
0.
0.
o.
0.
o.
o.
o,
a,09E*05
50. Y
1,39E«02
a,a«E+02
3.59E-2S
1.57E+02
fc, 12E + 02
2.91E-03
0.
8.90E+01
o,
0,
1.12Et02
0.
0.
6.12E-01
2.90E«02~
0.
0.
6.69E«08-
0.
0,
9.16E«04
1.63E-09
3.28E-02
1.17E-04
0.
0,
o, •- — -
0.
0.
o. -
0.
0.
0.
0.
0,
0.
0.
0.
4.09E405"
100, Y
1.39E+02
4,44Et02
9.
1.57E+02
b,!2E,tJE«01
J.90E-02
),
)f
1.78E-13
),
),
».I6E-04 -
I.34E-15
1.28E-02
..17E-04
I,
I,
1,
),
1.
I.
' fl
"t
11 .
"i
"•
"*
",
i't
• .09E+05
500, Y
1.39E+02
a,aaE+02
o.
1.57E+02
6.12E+02
a,80E-05
0.
6.90E+01
0.
0.
1.12E+02
0,
0.
6, HE- 01
2.90E-02
0,
0.
0,
0.
0.
9,16E«04
0.
3.28E«02
1.17E-04
0.
0.
o, -
0,
0,
o,
0, '
o,
o, -
o.
o.
0,
o.
o.
4.09E*OS
1000. Y
1.39E+02
a,aaE+02
o.
1,57E*02
6.12E+02
5.02E-07
0.
8,90E401
0.
0.
1.12E+02
0,
0,
6.15E-01
2.90E-02
0.
0,
0.
0,
o,
o!
3.28E-02
1.17E-04
0.
0,
o. -
o.
0.
o, --
0,
0.
o. --
o,
0.
o.
o.
o.
a,09E+05
toooo. viooooo, ••>•*•**••
J,39E*02
a,aaE*02
o.
».57E»02
6.12E+02
0.
0.
8,90E»01
0.
0.
1.12E+02
0.
0.
6.15E-01
2.90E-02
0,
0.
0.
0.
o.
9,lfcE-04
0.
3,28E«02
1.17E-04
0.
o,
o.
0,
o,
0,
o.
0.
0.
0.
o.
0.
0.
o.
a,09E+05
1.39E+02
a,aa£»02
0,
1,57E*02
6,12E»02
0,
0.
8.90E+01
0,
0.
1.12E+02
0.
0.
6,15E«01
2.90E-02
0,
(X,
o.
o.
o.
9.16E-04
0.
3.28E-02
1.17E-04
0,
0,
0.
o.
0.
o,
0.
o.
o.
o.
o.
o.
o.
o.
4.09E+OS
1.39E+02
4,aaE»02
0.
1,?7E»02
6.12E*02
0,
0.
8,90E»01
o.
o.
1.12E*02
0.
0.
6.15E-01
2.90E.02
0,
0.
0.
0.
0.
9.16E-04
0.
3.28E-02
l,17E«Oa
o,
o.
o,
o.
o.
o.
o,
o.
o.
o,
o.
o,
o.
0.
4.09E+05
A-IV-33
-------
PHS « BU « 33.000 fUEl DECAY TIME8C23
CASE 6-1
HE'S
POWERS 38,'aOMW, SURNUPs 33000,MHO, FlUXs 3.'98E+13N/CM**2"SEC
TABLE A-IV-1
(continued)
NUCLIDE CONCENTRATIONS, GRAMS *
BASIS a MT OF HEAVY HE1AU CHARGED TO REACTOR
j HE a
TL j? o 8
TL?09
PB?06
~"PB'07
Pg?08
PB>09
PB;>IO
PB?I s
PB?12
— PB3J8
8l?09
! BI?10
B 1 2 1 1
Bj? 1 2
Bl ?i3
I BI ?( 8
1 PO? i 0
j_PO?U
P0? 1 2
PO'13
PO'l 8
r~PO?l5
1 PO^l 6
i PO?18
AT?l7
RN?19
RN220
r~ R N ? 2 2
i i FR>21
' FR?23
RA?23
, «A?28
RA*25
: RA?26
1 RA?28
' I AC225
— AC ?27
AC?28
THP27
j ^H2 28
j TH329
TK?30
TH331
TH?32
TH?33
r~ TH?38
1 PA?31
! PA332
P A -?33
CHARGE t
0,
0.
o,
0,
0,
o,
o,
o,
0,
0,
o,
0,
0,
o.
o.
o.
0.
.._ 0>
0,
0,
0,
o,
- o,
o,
_ o .
o!
0.
0.
o,
0,
o, - -
o.
o.
o.
o.
o.
0',
o.
o,
0.
o.
o.
" o,
0.
o.
— o. —
o.
o.
0.
« 0,
JlSCHARGE
5?OfeE-15
2.58E-12
i 8iE«i8
8,ftfeE-18
3.0SE-10
6.06E-07
7.53E-1S
6.60E-12
3.90E-18
1 ,8BE-09
8 8 75F • J 6
6.85E-11
8,23E«15
2.32E-15
1,81E»10
1.82E-15
3^50E»1 6
7.,32E»lfl
2.B1-E-20
7.U3E*21
2.fc5E-2S
5.91E-23
3.30E-20
5,91E-1S
5.51E-I7
2.J1E-20
7 a8E»17
2.25E-12
1.01E-13
1.93E-16
3.B3E-16
1.8BE-11
1.29E-08
8.69E-13
1.59E-08
1.03E-18
5.90E-13
1.88E.09
1.07E-18
3.11E-1J
2 _ S ^ P * 0 6
t .60E-07
1 ,10E»03
3,2SE»08
2,i7E»oa
0,
1,36E-05
5,09E»08
6.96E-U1
1,60E«05
«.57E«10
. °« Y
2j77E»l2
1.88E-18
1.01E-13
3,aiE»i o
6.85E-07
7.55E-1S
7.17E-12
8 , 1 7E» J 8
1.61E-09
5.01E«16
6.58E-11
8.60E-15
2 . fl^E m 1 5
1,S3E-10
1.83E-15
3.68E-16
8 j 06E»1 a
3,01E»20
8,09E»21
2,fc6E«?a
6.23E-J3
3.53E-20
6.8UE-15
5,81E-t7
2.11E-20
8.00E-17
2,a5E«l2
1.07E-13
1.93E-16
8.08E-16
2, OlE^l 1
1.80E»08
8t78E»l 3
1.68E-88
i i iE»i a
5,91E-13
1.53E-08
1.1&E-18
3.32E-11
2,77E"0<>
1 ,fe?E»07
1.18E-03
J ^ 25t *0 8
2.27E-08
0,
1 -36E*05
5t10?*04
2.21E-a8
i ,60E»05
8.57E-JO
!, V
3eoaE«01
7,81EW15
8, 15E«S2
2.01E-18
1.97E-1S
5.91E-10
1.25E-06
8.2IE-15
1 ,09E-1 1
6, 0"E»18
2,81E»09
6,6BE^»16
7.30E-11
7.12E-15
3.60E-15
2-.30E-10
1.99E-15
a , 91 E=16
1,30E-13
a,35E"20
1,21E«20
2,89E»28
8.30E-23
5.12E-20
9.65E-15
7,78E"17
2.30E-20
1.16E-16
3.67E-12
1 ,82E«1 3
2.HE-16
5,83E»lfe
2.90E-H
2,10E'08
9.51E-13
2.21E-08
1.66E-18
6.83E-13
2.08E-08
t,73E-t8
a,65E»i i
^1 ( 06E*06
1.78E-07
1,3«E-03
3,25E»08
2.86E-08
o.
1.36E-05
5.J8E.08
0.
1 ,60E«05
8.57E-10
10. Y
T.SOE.Ol
2,18E«1!
8,8aEi.l8
a,2«E»! 1
1.73E.08
8,a2E»05
!,96E.18
8,38E«10
3.12E.13
J,2aE»08
B.91E-J5
3.0JE.10
2.86E-13
1.86E.18
1.18E.09
a,79E»15
6.55E-J5
7,89E-)2
2.28E-19
6.28E-20
6,97E«24
1.11E.21
2.68E.19
8.97E.18
1.03E-15
5.53E-20
5.97E-16
1.B9E.11
1.90E.12
5.07E-16
2.81E-15
1.SOE.10
1.08E.07
2.29E-12
2.96E-07
2.59E-13
1.55E.12
1.05E.07
2.70E.17
2.80E-10
2, 1 1E-05
a,20E«07
5.81E.03
3,25E«08
1.38E.03
0.
5183E.04
0.
1 ,62E»05
8.57E-10
SO, >
! lsiE-13
5.75E-1 1
2.87E-S7
1 ,23E«08
3, J9E-07
3,20E'08
1 ,01E«13
2.77E-08
l.lbE-12
1,0?E«08
1.78E-13
8,a3E-09
J .81E.11
6,91E»18
9.71E-SO
2,aaE»ia
1.31E.13
8,99E«10
8.35E-19
5t 13E-20
S.5SE-23
2.21E-20
9.82E-19
a,OBE»18
2,06E«18
2.82E-19
2.22E-15
l.SSE-ll
3.79E.11
2.59E-15
1,05E»18
5.57E.10
8.87E-08
1.17E.H
5.90E.06
2.28E-12
7,901-12
3.93E-07
2,38E>16
8.93E-10
1 ,73E-05
2.18E-06
2.80E-02
3,25E»08
6.01E-03
0.
1.36E-05
8,91E«Oa
°«
1 ,82E»05 "
fl,57E-10
100, Y
5.18E+00
2.57E-13
1 ,08E»1 1
6.76E-17
1,5SE«07
1.10E-06
5,87E»Oa
2.77E-13
1.67E-07
1.98E-12
6,30E«09
7.30E-13
2.11E-08
1.09E-10
1.18E-13
6.00E»10
6 , 7-l E • 1 8
5,3feE«13
3.00E-09
1.83E-18
3,17E»20
9.77E-23
9.07E-20
1,68E»18
2.52E-18
8,a6E«18
7.75E-19
3.BOE-15
9.59E-12
1.55E-10
7,11E«15
1.79E-18
9,52E»10
5,U6E-08
3.21E-11
2, 82E«05
5.02E-J2
2.17E-H
6.70E-07
5,2UE«lb
1.53E-09
1 ,07F»05
5.89E-06
6.01E-02
3,26E«08
1.19E.02
0,
1.36E-05
1.28E-03
0.
c f i 2t *05
4.57E-10
500, Y
1.77E+01
l,09E-ia
2,30E«13
1.89E-15
8.21E-05
2e16E-OS '
9.07E-08
6,11E»12
8,65E-Ob
8.81E-12
1,38E-!0
2.18E-11
1.82E-06
5.65E-09
5.01E-13
i, 28E.il
!,88E»12
1.57E-11
1.56E-07
6,05Erl8
6,73E«22
2.15E-21
2.66E-18
7.12E-18
5,36E»16
2.88E.12
1.71E-17
1 ,*!E-ia
2.08E-13
8.55E-09
1.57E.13
7,S8E-18
8,n8E«09
1.17E-09
7.08E-10
7.09E-08
2.77E-11
«,78E«10
2, BSE- 06
2.89E-15
6.87E-09
2,27E«07
l,30E-oa
3.80E.01
3t28E»08
5.93E-02
0.
t,3<>E-05
«,36E«03
0.
3,95E»05
8.57E-10
tOOO, Y
2,68E+6l
2.05E-12
1 ,89E«15
7.11E-15
3,63E-08
8805E»05
9,15E«08
2f91E-l 1
3,50E-05
1,58E»11
J.10E-12
8.65E.11
1.65E-05
2.28E-08
9,83E«13
l.oaE-13
7.03E-12
6,36E-11
6.29E-07
l.iat-17
5,SlE»28
1.02E-20
1.08E.17
1.38E.17
4,39E«1B
1,OOE«11
8.13E-17
3,03E«18
1.67E-15
1,68E>08
7,«5E.1J
1.83E-13
7,61E»09
9.58E-12
3.37E-09
2.87E-03
5.61E-11
2,28E«09
5,3feE-06
5.85E-15
1.22E-06
1 ,86E«09
6,1 BS»08
8,05E«01
3,31E«08
1,20E>01
0.
1.36E-05
8,20E»03
0,
5 ,07E"05
«,57E-10
10000, Y100000, Y******* V
7.22E+01 1.58E+02 2.60E+02
1,90E«11 1.22E-10 1.51E-10
1 ,89E»1&
9,22E»13
2,05E-Oi
7.35E.03
9.15E-08
3.77E.09
1 ,50E-03
1.87E-10
1.10E-13
3.72E-09
2,81E«02
9.83E-07
8,7aE»12
1,05E-1U
9.12E-10
2.7BE-09
2.71E-05
i,06E«16
5.53E-25
1.33E-18
8.63E-16
l,2aE-16
a.aoE-19
a,31E-.10
l,05E-ia
2.B1E.13
1.67E-16
7,<>2E.07
9.67E-11
1.32E-12
7.05E-08
9.57E-13
«,37E-07
.1.23E-01
6.55E-10
2.95E.07
4,97E-OS
6.83E-18
1.13E-07
1,87E«10
8, DIE- 02
8,07EtOO
J,78E»08
1 ,801*00
o,
1.36E-05
7.61E-02
0.
S,9fcE-05
8.57E-10
£,36t»15
2,25E«11
2.30E+01
5,(>aE»01
9,S3E»08
9,22E'08
1 ,21E>02
9,88E«10
1,37E«12
2,99E»08
8,18E400
7.89E-06
5,62E»11
1.31E-13
2.23E-08
2.20E-08
2,i7E«oa
6,80E»16
6,9JE»28
3.25E.J7
3.72E-15
7.99E-16
5.50E.18
3.U6E-09
2,58E«13
1.81E-12
2.09E-13
6.36E.06
2.36E-09
8,51E«12
a,58E«07
1.20EM1
1.07E-OS
9.91E-01
8.18E-09
7.22E-06
3i20E*04
6,58E«13
7,27E«07
2,33E»09
1.96E+00
5,03E»01
S,31E»08
l,75E»Ol
0,
1.36E-05
a,89E»Ot
0.
5,79E«05
8.57E-10
c j 3BE * I •»
S.ObE-tl
3,29E*02
1.09E+01
4,8lEf 03
2.07E.07
5,80E«OS
U17E.09
1,38E«H
1 ,83E»08
3.35E+02
3.79E-06
6,95E»1 &
1.32E-12
3.00E.08
1,05E«08
l,08E«Oa
8,aOE»l6
6,96E«2J
7.29E.17
1.78E-15
9,88E»li
5,5«E»17
1,66E.09
!,78E«13
2.28E.12
2, HE- 18
3.05E-06
5.JOE-09
t.OSE.tt
3.61E-07
I.20E.10
2,80E>OS
8.76E-01
8.24E-08
1.62E.05
3,95E.Oa
8.60E.12
6,98E.Or
2,35.E»08
4,39EiOO
2,82EiOl
5.83E.08
1.76E+02
0,
1.36E.05
6.05E.01
0,
8.33E.OS
8.57E-10
A-IV-34
-------
PMR • BU « 33.000 FUEL DECAY TIMESC2) CASE E«l
BURNUPa 33000.HWD, FtUXo 3,'98E + 13N/CM*»2-SEC
HE'S
TABLE A-IV-1
(continued)
NUCLIOE CONCENTRATIONS! GRAMS ~
BASIS B HT OF HEAVY ME'AL CHARGED TO REACTOR
U332
U?3» — -
U?38
Np?38
NPJJ39
PU23*
; P(J?38
I PU?39
i Pu'.aO
' — Pu?al
Pu?a2
Pipas
AM?.a2M
AM>a2
|— AMP.aa
— CM»aJ —
CMjjaa
Cn;»a5
i — CM?a6 ~
BK?8V
CF?50
CF352
CF?53
Fesass
1 THTAL
CHARGE '
0.
0.
3ll7E+02
5.20E+08
0,
0.
9.6BE+05
0,
0.
0.
0,
0.
0.
o!
o,
o.
o,
o.
0.
0.
o.
o, -
o.
o,
0.
o.
o.
o,
o.
o.
o.
Or
0.
o.
o,
0.
o!
0.
o.
o,
Ot
o,
0,
0.
0.
l.OOE+06
DISCHARGE
1.58E-10
3,58E«oa
lN3E*02
8-.naE*03
a.iOE+03
9*a3E+05
0.
6.-OOE-22
3.33E-55
a,65E+02
7*39E-05
5.18E-23
o.
6 4 fc6E *0 4
1 . 36E * 0 2
2*21E+03
l;23E*03
4,a7E*02
1.35E-18
3.15E-11
0,
5,91E*01
a.72E»08
,5,67E»09
8,93E+01
2.aaE»25
S,'08E«29
a,58E*00
8.65E-02
2.aiE*Ot
2.50E-01
2.97E-02
3.97E-04
2,*1E»05
3.88E-83
2,?9E»18
l.lbE-22
2,89E»07
3.73E-09
5.08E-58
•4.62E-24
•J,10E-32
9.65E+05
0, Y
1,'58E-10
3,72E-08
5.76E-03
1,73E*02
8,08E+03
3|68E»05
«,'
6.B6E-22
5,33E-fc6
8.65E+02
2.29E-26
7^38E•05
5.92E-23
o.
6.53E-04
1.36E+02
5,80E+03
2.21E+03
a'a7E+02
1.35E-14
3.60E-11
6'88E+01
2*79E-?5
3,aiE-32
3.98E+00
8.83E«02
2.41E+01
2,50E-01
3J97E-04
2j29E«18
B,lflE-?6
llo8E-QB
6.93E-09
It ¥
1.56E-.10
s!83E-03
1.78E+02
8,08E*03
4.10E+03
3.59E-05
9,a3E+05
0,
1.16E-21
0,
8,6SEt02
o,
7.38E-05
l.OOE-22
0,
5,78E«Oa
1.38E+02
5.00E+03
2.21E»03
1.20E+03
iJssE.ia
6.10E-11
0,
9.31E+01
8.71E-08
5.66E-09
8,93E»01
8.73E-25
llejE+OO
8.73E-02
2,3bE*01
2.50E-01
2.97E-02
3.97E-04
2.B1E-05
0,
2,29E«18
2.53E.83
a,6aE»21
2.57E-07
8.27E-09
6.93E-09
3.J9E-09
0,
•5.78E.3J
0.
9.65E+05
10. Y
1.58E-10
S.84E-04
7.17E.03
1.83E+02
8.08E403
8,10E*03
2.S8E-05
9.43E»05
0.
9.75E-21
0.
8,69E*02
0.
7.38E-05
8.81E.22
0,
l|30E+02
5.80E+03
2.21E+03
7,82E
l,58f«10
3.99E-Oa
2,26E<02
2,a7c*02
8.05E+03
8,12E»03
3.26E-07
9.4SE+05
0,
9.56E-20
0.
6.16E+02
0.
7.32E-05
8.25E-21
0,
2.02E-18
6,aBEt01
5.38E+03
2.2JE+03
1.09E+01
a,a7E»02
1.35E-1B
5.01E-09
0.
1.13E*03
3,OOE»08
3.60E-09
8.85E+01
3,89E-23
0,
7.22E-07
1.02C-02
S,32E*01
2J93E-02
3,97E-Oa
a,8]E-05
0,
2,20E-ia
0.
8,65E»2l
6.76E.16
1.66F-17
ll74E»20
0.
0.
o,
500. Y
1,58E«10
8.89E>06
1.38E-01
3.07E»02
8.11E+03
8.20E+03
1,25E-11
o!
8.77E-19
0.
l;lSE+03
o.
7.06E-05
B.12E-20
o,
0,
2,86EfOO
5,33E»03
2.12E+03
a,17E-Oa
4(a7Et02
1.35E»18
2.50E.08
0.
6.00E+02
a,B8E>05
5.81E.10
8.53E+01
t. 901-22
o,
1,17E»07
1,76E«06
1.18E-07
2.00E.01
2.76E-02
3.97E-08
2,81E«05
0.
l,88E»la
j!<7E.21
0,
t.au-17
8.72E-09
o!
o.
tOOO. Y
,58S«10
.89E-06
,09E-01
,10Et02
, 19E + 03
,3lE»03
,20E-lt
,83E*05
o,
9.53E-19
0,
t,a7E*03
o.
6.75E-05
8.23E-20
o,
0,
5.82E-02
5.25E+OJ
2,0?E+03
a.OOE-04
4,86Et02
1.3SE-14
5.00E-08
0.
2.70E+02
8.95E-06
5.98E.U
6.15E»01
3.88E-22
o,
1.19E.08
3,89E«U
7.13E-16
2.30E-01
2,56E>02
3.97E-04
2.81E-05
0.
l,5aE-lfi
0,
S.25E-21
0,
I.I6C-17
3,2tC-0«
o.
o,
o,
o.
9,»5t«05
1QOOO. Y100000. Y*«*«*«* r
1.58E-10 1.58E-10 1.58E-10
0, 0. 0,
5.21E+00 a.aiE+01 9.92EtOl
3.03Et02 2.87E*02 6.65E*01
9.36E+03 1.31E+08 1.38E+08
5.50E + 03 6.27E + 03 6.UE + 03
5.62E-1Z 2.96E-15 0,
9.83E+05 9.83E+05 9,83E*0$
0, 0, 0,
9.45E-1B 8.62E-17 3.95E-16
0. 0, 0.
1.73E+03 1.68E+03 1.26E+03
0. 0. 0.
2.98E-05 8.57E-09 1.85E-13
8.1SE.19 7,88E»18 3.81E-17
0. 0, 0,
0. 0, 0.
.43E-24 0, 0.
.ME + 03 3,23E*02 5.51E.07
,OlE»02 7,86E«02 1,66E«08
,88E«oa 9,91E«08 0,
.39E+02 3.7JE+02 7,18E*01
.35E-18 1.35E-18 1.30E.U
.95E-07 8,52E»06 2.07E-05
0. 0, 0.
5.73E-03 3.10E-06 0,
7.37E«24 0, 0,
8.86E-29 0. 0.
3.61E+01 1.04E-02 1.75E-OT
3.88E.21 3,?1E»20 l,6tE-l«
0. 0. 0,
J.76E.26 0, 0.
0. 0, 0,
1.81E.15 1.28E-18 5,88E«U
1.08F-01 5.69E-05 0,
6.82E-03 1.21E-08 0,
3.97E.08 3,9SE>Oa 3,81E-0«
2.76E-05 2.31E-05 S.93E-06
0. 0. 0.
4.27EM6 1.18E-31 0,
0. 0, 0,
9.01E-23 2,aiE-38 0,
0. 0. ,
3.21E-19 8l»OE-33 ,
3.13t»12 6, ,
o. o. ,
o. o, ,
0. 0. .
0, 0, ,
A-IV-35
-------
P*R • BU * 35,000 FUEL DECAY TIME8C2)
POWER* 38,'aOMW, BURNUPs 33000, MHO, FLUXo
CASE E-l
3,"98E*13N/CM**2-3EC
' - NUCLIDE CONCENTRATIONS,
BASIS s MT OF HEAVY MET,
CHARGE DISCHARGE
H 3
ZN 72
~ GA 72
GE 72
GA 73
." G£ 73
GA 7fl
GE ju
— GA 75
GE 75M
GE 75
^AS 75
CA 76
GE 76
*~ AS 76
SE 76
GE 7TM
— C,E 77 -
AS 77
3£ 7T"
SE 77
GE TB
AS 78M
~ — AS 78
SE 78
AS 7«
— SE 79M-
SE 79
BR 79
AS 80
SE eo
PR 60M
— SR eo --
KR 80
AS 81
— SE SIM -
SE 81
BR 81
KB SIM
KR 81
SE- 62
— ?R 82M
BR P2
KR 82
~ 3E 83M -
SE 83
BR 85
- KR «3M
KR S3
SE 84
— BR 68M
BR e«
8.
0.
0.
o.
o.
0.
o.
o.
o. - — -
o.
o.
o.
o,
o.
o*
o.
o.
Of"
o.
o,
o.
o.
0.
o.
0.
o.
o. — -
o,
o.
o.
o.
o.
o.
o,
o.
o.
o.
e, •
Ot
o,
o,
c.
o.
o,
o.
o,
o,
0,
o,
o,
o. —
o.
T.38E-02
1 .aiE-28
6.15E-29
6,09E-03
0,
1.536-02
0.
5,'68E-02
0.
0.
0.
8,aae.o2
0.
2,95E-01
1 .06E-06
1.956-03
o.
3 . 3 9 • 1 0 0
3,20E--51
1.21E.-37
9.a&6"01
0.
o.
0. " "
2.56E+00
0.
0,
5.67E+80
5.59E-Oa
0.
9.S9E+00
0,
0.
2.686-01
8.'
0.
0.
1. 536*01
0.
1.68E-01
3.25E*01
0.
5.P5E-31
5.056-01
0.
0.
0.
0.
3.92E*01
C.
o.
o.
0, Y 1. Y
7,3aE-02
1,106-33
a,floE-^fl
610,09E-flO
5.05E-01
0^
0.
o.
o.
3.92E*01
0,
0.
o.
7, J3E-02
0.
o,
6,09E*03
0.
1.53E-02
0.
5.68E-02
0.
0.
o.
8,aae»02
0.
2.95E-01
0.
1,95E«03
0.
o,
o,
o,
?,a6E-01
o.
o.
o.
2.56E+00
0,
o.
5,67E*00
5,9aE"Ott
0.
9.89E+00
0.
o,
2.88E-01
0,
0.
0,
1.536+01
o>
1 ,68E»01
3.25E+01
0.
"»
S.OSE-OJ
0,
0.
0,
0.
3.92E+01
0.
o,
o.
10, Y
a.30E-02
0.
0.
6.09E«03
0.
1.53E-02
0.
S.fe8E«02
0.
o.
0.
8,aaE*02
o.
2.95E-OJ
0.
1.95E-03
0.
0.
0.
0.
9,a6C»oi
o.
o.
o,
?,56E*00
0.
o.
5.67E»00
1.1«EF03
8,
9.B9E+00
0.
o.
2.88E«01
0.
0.
0,
1,536*01
0.
1.686*0]
3.25E»01
0.
0,
5.05E.01
0.
0.
0.
0.
3,92E*01
0,
0.
0.
SO. Y
a,51E-03
o,
Of
6.09E.03
o.
1.53E-02
0,
5.68E-02
0,
o.
o.
8,aac.o2
o,
2.95E-01
o.
1.95E-03
0.
0.
0.
o.
9,066-01-
o.
o.
0,
2.56E+00
o.
o,
5,67E*00
3. -566-03
o.
9.89E*00
0.
0,
2.66E-01
0.
0.
0.
1.536*01
0.
1,686-01
3.25E+01
0.
0,
5, 056-01
0,
0,
0,
0.
3.92E+01
0.
o.
o.
GRAMS —
I CHARGED
100, Y
2.69E-00
0,
0.
6.09E-03
o,
1.53E-02
0.
5.68E-02
0,
0.
o,
8.0«E-02 ~
8,
2.95E-01
0.
1.956-03
8,
o. -- -
8,
8,
9,a6E-01
o,
8,
o, --•
2,56E*00
0,
0. '
5,67E*00
6, 586-03
Ot
9.89E+00
0.
8,
2.86E-01
0.
0.
0,
1.536*01
8.
1.68E-01
3.25E+01
0.
8,
5.05E-0]
8,
8,
0,
8,
5.92E+01
8,
o.
0.
—
FP's
TABLE A-IV-1
(continued)
TO REACTOR
500, Y
«,36E-14
0.
8.
6.09E-03
8.
1.53E-02
0.
5.68E-02
0.
8.
0.
e.aaE-02
8.
2,956-01
0.
1,956-03
8.
8,
8,
8,
9,866-81
o,
0,
8,
2.56E+00
o.
8,
5,6aE+00
3.07E-02
8.
9.89E+00
8.
0,
2,886-01
8.
0,
8.
1.536*01
8.
1,686-01
3.256+01
0.
0.
5.05E-01
0,
0,
0,
o.
3,926*01
0.
0,
0.
1800. Y
2.52E-26
8.
8,
6.09E-03
8,
1,536-02
0.
5.68E-02
8.
0.
8.
8.aaE-02
8,
2.95E-01
0,
1,956-03
0,
8,
8,
0,
9.Q66-01
8,
0.
0,
2.56E+00
8,
0.
5,616+00
6,076-02
8,
9,896*00
8,
8,
2,886-01
o. •
8,
8.
1.536*01
0,
1.68E-01
3,25E*01
8.
8,
5.056-01
8,
8,
0,
0,
3,92E»01
8,
0.
o.
10008, Y100000, Y«««**«* Y
o.
8.
8.
6.09E-03
8.
1.536-02
0.
5,686-02
8,
8.
8.
8.aaE-02
8.
2.95E-01
0.
1,956-03
8,
0.
0,
o.
9,fl6E-01
8.
o.
o.
2,566+00
8.
8.
5.106+80
5.T56-01
8,
9,896*00
8.
0.
2,886-01
8.
8.
0.
1.536*01
8,
1,686-01
3,256+01
0.
0.
5,056-01
0,
0.
0.
8,
3.926+01
0,
o.
o.
o.
8.
8.
6.09E-83
8,
1,536-02
8.
5.68E-02
8.
8.
8.
s.aaE-02
8,
2.95E-01
8,
.1,956-03
8.
8,
8,
8,
9,866-01
8,
8,
8,
2.566+00
8,
8,
1,956+00
3,726+00
0,
9.89E+00
8.
0.
2,886-01
0.
0.
0,
1,536+01
0,
1,686-01
3,256+01
0.
o,
5,856-01
8,
0,
8,
0.
3,926*01
0.
».
o.
8,
8,
0,
6,096-03
8,
1.536-02
0.
5.686-02
0,
0,
o,
8,a«C-02
8.
2.956-01
0,
1,956-03
0.
8,
0,
8,
9,a6E-Oi
0,
0,
8,
2,566*00
a.
o,
1,336-00
5,686*00
8,
9,896*00
0.
8.
2.886-01
0,
0.
8,
1.536*0]
0.
1.686-0]
3,256*0]
0.
0.
5.056-0]
0,
0.
0.
0.
3.426*0]
o,
o.
o.
A-IV-36
-------
__._!.Bu • .33iOOO FUEL DECAY TIHE3(2) C*SE 6-1
POHERB 38.40MK, BURNUPs 33000,MWD, FLUX« 3.'98E + 13N/CH««2-SEC
FP's
TABLE A-IV-1
(continued)
NUCLIDE CONCENTRATIONS, CRAMS
BASIS « MT OF HEAVY METJL CHARGED TO REACTOR
KR 64
SE 85
BR 85'
KR 65H
KR 85
R9 85
BR 86
KR 86
RB 66H
RB 86
SR 66
BR 87 "
KR 87
RB 87
SR 87M
SR 67
BR 88
KR 88
R3 88
SR 68
BR 89
KR 89
RB 89
SR 89 '
Y 89
KR 90
RB 90
SR 90
Y 90M
-Y ,0 —
ZR 90
KR 9i
RB 91
SR 91
Y 91H
Y 91
ZR 91
KR 92
RB 92 ""
SR 92
Y 92
ZR 92
KR 93
RB 93
SR 93
Y 93
ZR 93
NB 93H
^B 93
KR 94
RB 94
3R 94
"CHARGE'
8.
8.
|
i
i
0 O O 0 0 0
8.
8,
0.
8.
8,
0.
0.
8.
o o o o o o
8.
0.
0.
8.
0,
8,
0.
8,
0.
8.
6.
0.
8,
Ot •
8.
0,
0,
8.
8.
o, ---
8,
8,
8.
0.
8.
0,
C.
DISCHARGE
1.116+02
8.
5:
2.84E+01
9.29E+01
8.
1.89E+02
"0.
3.136-05
l.SOE-01
2*34E+02
6^70E-05
8.
' 0.
0,
~ir*"
4 38E+00
4,53E+02
0.
5J38E+02
8,
" 1.40E-01
o*
8*41E+00
S.93E+02
o.
o. -----
6*556+02
8.
Q
Q
2,52-107
7.28E+02
S.28E»OU
2.63E-05
1:
-; o. Y
1,116+02
0,
2.82E+01
9,316+01
0.
1,896+02
0,
9.24E-06
1.30E-01
0,
0,
2.3UE+02
0,
6,70E-05
8*
0.
3*436+03
2*836+00
4^556+02
5*36E+02
l||39E-Ol
0.
5.716*00
5,96E»02
0.
'
655E+02
7,28E*02
5.55E-oa
2.87E-05
0.
0.
It Y
1,116+82
8.
0.
0.
2.73IT + 01
9.40E+01
0.
1,89E*02
8,
1.06E-06
1.30E-01
8,
0.
2.34E+02
8.
6.70E-05
0.
8,
8.
3.43E+02
8.
8,
8.
2,a6E-01
4.S7E+02
0.
0. .
5.30E+02
8.
1,386-01
3.12E+01
0.
8,
8,
0.
6,636-81
6,016+02
0,
8,
8, '
8,
6.55E+02
0,
8,
8,
8.
7.28E+02
7.08E-04
4.48E-OS
8,
8,
8,
10. Y
1.11E+02
8.
8.
8.
1.53E+01
1.06E+02
8.
1.B9E+02
8.
8.
1.30E.OI
8.
8.
2.346+02
0.
6.70E-05
8.
0.
0.
3.436+02
8.
8,
8.
2.30E-20
4.58E+02
0.
0.
4.24E+02
8.
1 .10E-01
1.37E+02
8,
8,
8.
8.
9.79E-18
6.81E+02
8.
8.
8.
8.
6.55E+02
8.
8.
8.
0.
7.28E+02
2.87E-03
9.04E-04
8.
8.
6.
58. Y
1.11E+02
8.
0,
8,
1,18E+00
1.20E+02
8,
1.89E+02
8,
8,
1.30E-01
0,
8.
2.34E+02
0,
6.72E-05
0.
o,
o.
3.43E+02
o,
o.
8.
8. •"- —
4,58E+02
0.
o.
1,586+02
0.
4,116-02-
fl,03E+02
8.
o, - -•
8.
8,
8.
6.01E+02
8.
0,
8,
8.
6,556+02
8.
8.
8.
8.
7.28E+02
6.11E-03
1.11E-02
8.
o, - ••-
°i
100, Y
1.11E+02
8.
8."
8.
4.75E-02
1.21E+02
8,
1.89E+02
0,
8,
1. 306-01
o, - -
6, '
2.34E+02
0,
6.73E-05
8.
8.
8,
3.43E+02
8.
8,
8,
8,
4,566+02
0.
o.
1,616+81
0.
1,206-02'-
5.15E+02
8|
8.
8.
0,
0,
b, 016+02
8,
0.
3,
0,
!),55E + 02
3,
3.
0.
3.
T.28E+02
!>.56E-03
J.75E-02
3.
3. -
5,
500. Y
1.11E+02
8.
6.
8,
3,36E-13
1,216+02
8,
1.89E+02
8.
8.
1.386*01
0,
8.
2,346+82
8.
6,866-05
8.
8.
8,
3,436+02
0.
8,
8.
8.
4.586+02
8.
8, -
2.396-03
8.
6.20E-07
5.61E+02.
8.
8.
8.
8.
8,
6.01E+02
8,
8,
6.
8,
6.55E+02
8.
8.
8,
8.
7.28E+02
6.60E-03
1.62E-01
8.
8,
8,
1000,, Y
1,116+02
8.
8,
8,
3,886-27
1,216+02
81
1,696+02
0.
8.
1,306-01
0.
o.
2,346+82
8.
7.02E-05
8.
8,
8,
3,436+02
8,
8.
8.
o, -
4,586+02
8,
8,
1.05E-08
8.
2.736-12
5,616+'02
8,
8.
0.
8.
8.
6,816+02
o,
8,
8,
8,
6,556+02
8.
8.
8.
8,
7,276+02
6,606-03
3,306-01
8,
8,
0.
108QO, Y100000, Y******* Y
1,116+02
8.
8.
0.
8.
1,216+02
8.
1.896+02
8.
8.
1.306*01
Q •
0 •
2.346+02
8,'
9.956-05
8.
8.
8.
3.436+02
8.
8.
8.
8.
4,586+02
8.
0,
8.
8.
5.61E+02
Or
o.
8.
8.
8,
6,816+02
8.
8.
8.
8.
6,556+02
8,
8,
8.
8.
7.246+02
6,576-03
3.356+00
8.
8.
8.
1,116+02
^t>.
0.
8.
8.
1.216+02
8, :
1,896+02
8.
0.
1,306*01
o,
8.
2,346+02
8.
3,926*04
8.
0.
8.
3,436+02
8.
8.
Q,
8,
4,586+02
8.
8,
8.
8.
8.
5,616+02
.8,
8.
8.
8.
8.
6,016+02
8.
8.
8,
8,
6,556+02
8.
8.
8.
8,
6.95E+02
6.30E-03
3.296+01
8,
8.
0.
1.116+02
0.
0.
0,
0.
1,216+02
0.
1,896+02
0.
0.
1.306*01
8,
8.
2,346+02
o,
3,326-03
0.
0.
8,
3,436+02
0.
8,
0.
o.
4,586+02
0.
0.
0.
0.
0.
5,616+02
0.
0.
0.
8,
0.
6,016*02
o.
0.
0.
0.
6.556*02
0.
8,
8.
8.
4,586*02
4,166-03
2.696*02
0.
0.
0.
A-IV-37
-------
PWR • BU B 33,000 FUEL DECAY TIHCS(2J
i POWERp 38.UOMW, BURNUPs 33000, MND, FLUXs
i
CASE
3;98E*13N/I
E-l
CM**2«SEC
- - NUCLIDE CONCENTRATIONS, GRAMS
BASIS • MT OF HEAVY MET*L CHARGED
, '-"CHARGE DISCHARGE
i Y 90
I ZR 94
i~~RB 95
SR 95
Y 95
! — ZR 95
1 N8 95M
• NS 95
— MO 95
Y 96
ZR 96
/— Ng 96
I MO 96
! Y 97
'— ZR 97-
NB 97H
NB 97
r~ HO 97
i _
1 ZR 98
; NB 98M
'— NB 98
MO 98
N8 99
-^- MA A O -
i "u 9v
] TC 99M
i TC 99
L- Ru 99 -
NB100
MOtOO
[— TctOO *
• RUtOO
' NBt 01
— MOtOl-
TCIOI
RUtOl
T M0t02
1 Tct02M
' TC102
— Rill 02"
MQ \ Qj
TCt03
•~- eU< 03
: ">H\ c3M
j_ RHt03
*Q 1 0 ft
TctOfl
RutOU
rRKt 04M
- RH1.C4
i POt 01
' — Mot 05~
TC'05
0,
0.
' o,
o.
o.
0 ,
Ot
0.
~ o.
0.
o.
0,
0.
o,
-o.
of
o.
" 0,
o.
o,
-o,
0.
o,
0|
0.
o.
- o,
o,
o.
- o.
0.
o.
0 |
0.
o.
o.
0.
o.
0.
o.
o,
o.
o.
o,
-o,~
o,
0.
- o.
o,
o.
— Oi
e,
0 ,
7.86E*02
0.
o.
'*68E+01
2.05E-02
1 .69E+01
7,35E+02
0,
8.28E*02
1.07E-50
?,91E*01
o.
1.68E-6«
l,58E-67
1.28E-65
8 , 3 1 E * 0 2
o.
o. -
8*50E+02
o;
2. 79E"16
2.36E-17
8.39E+02
fl.39E«03
0
9.75E*02
0 J
5.97E+01
0.
0.
0.
7.78E*02
0.
0.
7^77E*02
0,
3?56E*00
3.57E-03
3.87E+02
,
0,
5,60E*02
0-. _
^
0.
2,52E+02
0.
0.
0, Y
0,
7,86E*02
0 ,
o.
o.
1*U5E-02
1.20E+01
7,a«E+o2
0.
8.28E+02
5,06E-fel
3.9JE+01
0,
1.80E-78
l,69E-fll
t .36E-79
8,3lEt02
o.
0.
0,' i
8.50E+02
0,
7,95E«?0
6.80E-21
8.39E+02
fl,63E"03
o.
9,75E*02
0.
o'
0,
o
7,78Ef02
0.
0.
o.
7.77E*02
0 .
0,
2.00E+00
2,0 1E"03
3.88E+02
0'
§
o,
5,60E*02
0,
0,
2.52E+02
0.
0,
It V
0,
7,86E*02
0,
o!
1 ,69E + 00
2,06E«03
1.93E+00
7.65E+02
0,
8,28E*02
0,
3,91E*01
0 ,
o,
o.
o,
8, J1E+02
0,
«.
0,
8.50E+02
0.
1,61 E«39
1 ,3BE-«0
8.39E+02
6.01E-03
0,
9,75E*02
0,
5,97E*01
0,
0,
0,
7.78E+02
0 ,
o,
o,
7,77E*02
0,
0,
8,20E»02
8,20E«05
3.90E+02
(
0,
5,60E*02
i
0,
2,52E*02
Ot
0.
10, Y
0.
7.86E*02
0,
0.
o,
1,OOE»15
1.23E-I8
1.17E-15
7.68E+02
o,
8.28E+02
0,
3.91E+01
0.
o.
o.
0.
8,3lE*02
0.
0.
o.
8.50E+02
0,
0,
0,
8.39E+02
3.07E«02
0,
9.75E+02
0.
5.97E*01
0.
0.
0.
7.78E+02
0.
0,
0.
7.77E+02
0.
0.
o.
o,
3.90E*02
0 1
0.
5.60E+02
0 |
o.
2,52E*02
0,
0.
50. Y
0.
7,86E*02
0.
0,
0,
0,
o!'
7.68E+02
0.
8,28E*02
0.
3,91E*01
0,
o, • - -
o.
o.
8, J1E + 02
0.
0.
o.
8,50E*02
0.
o, -
o,
8,392*02
1,«OE"01
o,
9,75E*02
0.
5,97E*01
0,
0.
0.
7.78E+02
0.
0.
0,
7.77E+02
0.
0.
0.
ft.
3.90E*02
0 |
0.
5,60E*02
0. .
i
0.
2.52E+02
o, ---
0.
100. Y
0,
7,86E*02
o,
o.
o.
o.
o!
7.68E+02
0.
8.28E+02
o.
3,9jE*01
0.
•o,
0,
o,
8,31C*02
o.
o.
o,
8,50E*02
0.
o,
o,
8,39E*02
2.78E-01
0,
9,75E*02
o.
5.97E+01
0.
0.
0,
7.78E+02
0,
o,
0,
7,77E*02
0,
0,
0,
o.
3.90E+02
i
0,
5,60E*02
0*
t
0.
2.52E+02
o . -
0.
FP'
s
TABJ.E A-IV-1
(continued)
TO REACTOR
500, Y
0.
7,86E*02
0.
0,
0,
0.
0.
0,
7,68E*02
0.
8.28E+02
0.
3,91E+01
0,
0.
o.
o,
B,31E*02
0,
o,
0.
8,50E*02
0,
0 ,
0.
8,38E*02
t,37E*00
0,
9.75E+02
0.
5.97E*01
0,
o! '
7,78E*02
0.
o,
o,
7,77E*02
0.
0.
0.
0.
3,90E*02
0 f
0,
5.60E*02
ot
0.
2.52E*02
0,
0,
1000, Y
0.
7,86E*02
0.
o.
o.
o.
o.
o,
7.6PE*02
0,
8,28E»02
0.
3,91E*OJ
0.
0.
0.
0.
8.31E+02
0,
0,
0.
8,50E*02
0,
0,
o.
8.36E+02
2,7aE+00
0,
9,75E*02
0.
5.97E+01
0,
0,
0.
7,78E*02
0.
0,'
0,
7,77E*02
0.
0.
0,
0,
3,90E*02
0 1
0,
5,60E*02
0.
0.
2,52Et02
0.
0,
10000, Y100000, Y***«'**o Y
0.
7,86E*02
0.
0,
0,
0. "
0,
o.
7,68E*02
0.
8,28E*02
0,
3.91E+01
0,
0,
o.
0,
6,3lE*02
0,
o.
o,
8,50E*02
0.
0 f
o.
8,12E*02
2,70E*Ot
0,
9.75E*02
o
5.97C+01
0,
0,
o.
7,78E*02
0,
0.
o.
7,77E»02
0.
0.
o!
3.9QE*02
0,
0.
5,60E*02
0,
o.
2,52E*02
0.
•o.
o,
7.86E+02
0.
0.
0.
o,
0.
o.
7,68E*02
0.
8,2SE*02
o,
3,91E*01
0,
o|
o,
9 1 3 1 tt02
o,
o,
e)50E*02
o.
o.
o,
6,05E*02
2,3aE*02
Ot
9,75E*02
0
5,97E»01
0.
0.
0.
7,78E*02
0
'" i
'o,
7,77E*02
0 *
o,
o,
o.
3,90E*02
0,
o,
5,60E*02
0.
0,
2,52E*02
0,
o,
o. .
7,86E*02
.0,
0.
0.
o!
o,
7,68E*02
0,
8,28E*02
0.
3,91E*01
o.
o.
o,
0,
8.31E*02
0,
0 .
o,
8.50E+02
0,
0.
o.
3,19E*01
8,Q7E*02
o.
9,75E*02
0,
5,97E*01
0,
o.
o.
7,76E*02
o(
0,
0.
7,776*02
0,
0.
0.
0.
3,90E*02
Q •
o.
5,60E*02
0 f
Oe
2.52E*02
0,
0.
A-IV-38
-------
PMR
• BU " 33>000 FUEL DECAY TIMESC2)
CASE
E-l
POWER* 38,'OOMW, BURNUPs 33000.MWO, FLUXs 3."9SE + 13N/CH«*2«SEC
•
! RU105
RHIOSM
RHI05 "
PDtOS
7C 106
|— RUI06 —
j RHIOfcM
1 "H|06
— PDI06
Dill rt Y
~ U " U '
RHI07
f~FD'07M
j POI07
| AGI07
RUIOB
RHI08
PD»08
AGIOB
C0108
| RHI 09
"~ PD109M
P0109
AGt09H
F AGI09
C0'09
i "HI 10
POLIO -
AGUOM
AGUO
•— couo
POUIM
POUI
"AGU 1M~
A5U1
CDU1M
peoui -
PDU2
AC 112
•—CO 112 —
POU3
AG» 13M
— AGU3 -
CD! 13M
CDU3
' INUJ
POU8
AG118
~ CDtia
!NU«M
iNija
'— SNi.ia
Pr» ««l
-rrn 1
rr s
TABLE A-IV-1
(continued)
NUCLIDE CONCENTRATIONS, GRAMS
BASIS a MT OF HEAVY METAL CHARGED TO REACTOR
CHARGE" DISCHARGE
0, 0.
0. 0.
0,
0.
Ot
o, -
o.
o,
0.
o.
ot
o,
0,
o.
o.
o,
o,
Ot
o,
°t
Ot
o.
o,
o,
o,
0.
o, ' —
Oi
0.
o.
o.
o.
Oi
o.
o,
o,
o. .
o.
o,
Ot
o,
0,
0.
0,
o,
o.
o.
0,
o,
Ot
Ot
A
7.56E-3T
2.78E+02
0.
l.a-5E + 02
0.
1.37E-08
3.53E+02
0.'
0.
0.
2.U2E+02
3.19E-05
0.
0.
1.6a.E + 02
o.
a.61E»07
o.
o.
9.07E-82
J.aiE-15
6.15E+01
1.39E-09
o.
3,52E+01
6.39E«01
9.2BE.08
8,/18E + 01
0,
«:
0.
3..19E-07
0.
1.82E+01
5,oaE-50
9.06E-5S
9,BOE*00
o,
o.
0.
5.10E-02
2.07E-01
2,36E»03
0.
0.
1 ,26E»01
9.35E»06
l.'50E»10
3 ?SE»00
A
0, Y
2:
),83E«37
2.78E+02
0,
1.36E+02
o.
1.28E-08
3^62E+02
°t
0.
0,
2.82Et02
3.aOE-05
o.
o.
1.68E+02
0,
a.6JE*07
o.
0,
2,31E»99
1.30E-J5
6.15E+01
l.'31E-09
0.
3.52E.t01
S,|8iiE"fil
8.a8t«08
6la9E+01
0,
»»
<\
1.53E-08
»,
1.82E+01
2,a7E-<(5
a.a«E«66
9,80EtOO
o,
0.
0,
5.J08E-02
2.07E-01'
2,59E»03
o.
o.
1.26E»01
5.93E-06
9,5«E»|1
3.28E«04
A '
1. Y
0,
o.
o.
2,78E*02
0,
9,62E*01
0. -'
9.10E-05
«,01E+02
0.
0,
0.
2,a2Et02
a.60E»05
0,
0,
1.68E+02
0.
«,61E«07
0.
o,
0,
1.02E-15
6,15E*Ol
9,9«E«10
0,
3.512E + 01
3,5aE»01
5,iaE«08
8.51E+01
0,
0,
0,
7.1JE-16
Ot
l,82Et01
0,
0.
9,80EtOO
o,
o,
0.
8.96E-02
2.07E-01
3.83E-03
0.
0,
l,26E»Ol
8.71E-07
7,58E«t2
3,3aE-oa
n .
10. Y
o,
o.
0.
2.78E+02
0.
1.93E-01
0.
1.83E.07
1.97E+02
0,
0.
0,
2.12E+02
2.62E-Oa
o.
o,
1,60E»02
0.
a.6)E«07
0.
0.
0,
,64lE»18
,15E»01
.50E.12
f
.52E+01
,3aE-05
,30E*12
,5uE+OJ
0.
0.
0.
0.
0.
1.82E+01
0.
0.
9.80E+00
0.
0.
0.
3,17E»02
2.07E-01
2.16E-02
0.
0.
t,2bE*01
7.59E-27
1.22E»31
.3.34E-08
A.
50, >
0.
o.
o.
2.78E»02
0,
2.00E-1J
0.
1.90E-19
8.97E402
0.
0,
0,
2,a2E+02
1.22E-03
0.
0.
l,6aE+02
0.
a.61E»07
0.
0.
0.
l.SOE-27
6.15E+01
1.27E.21
0,
3.52E+01
1.79E-22
2.60E-29
a.5«E+01
0.
0.
0.
0.
ot
1.82E+01
0.
0.
9,80EtOO
o,
0,
ot
a,38E»03
2.07E-01
8,90E«02
0.
0.
1,26E*01
0,
0.
3.3SE.OO -
n.
100, Y 500, Y
o, o.
0. 0.
o ,
2,76E»02
0,
2.09E-2B
0.
1.98E-38
8,97E»02
0,
0.
0,
2.82E+02
2.U2E-03
0.
ot
1.6aEt02
o.
U.fclE-07
o,
o,
0.
9,a6E-80
6.15r»OJ
9,26E-3a
0.
3.52F+01
Oi
o,
a,58E»Ol
0,
o,
o,
o.
o.
l,K2Et01
o,
0.
9.80E+00
0.
0.
0.
3,68E-Oa
2.07E-01
5.30E-02
0.
0.
1,26E»01
0,
0.
3,38E-Oa
0.
o , -
2,78E*02
0.
v t
o.
Oi
o.
0.97E+02
0.
0.
o.
2.82E+02
1.20E-02
0, •:•
0,
1,6UEV02
0,
fl.61E.C7
0.
o,
o,
o.
6,l!E*01
0.
Ot
3.52E+01
Ot
Ot
a,5flE+01
Ot
o,
-o, - -••
Oi
0,
1.82E+01
o.
o,
9.80E+00
0.
0.
0.
9.21E-13
2.07E-01
5.33E.02
0,
0.
1.26E+01
0.
o,
-3,3«E-0«
0.
1000, Y 10000, V100000, Y******* Y
0, 0, 0, 0,
0, 0. 0. -0*
o.
2.78E+02
0.
w t
o.
o.
Oi
a,97E»02
0.
0.
o«
2.82E+02
2,«OE-02
0,
0,
1.6UE+02
0,
0.61E»07
o.
o.
0,
Ot
6,15E*01
o.
0,
3,S2Et01
Ot
Oi
a,3aE+01
Oi
0.
0,
0.
0,
1.B2E+01
Oi
Ot
9.80E+00
0,
0,
Ot
1.6JE-23
2,07E«01
5,33E«02
0,
0,
1,26E»01
0,
o(
3.3SE.08
0.
0,
2.7BE+02
A
v t
o.
0,
0,
«,97E+02
0.
0.
o.
2,"2E*02
2.«OE«01
0.
0,
l,6flE»02
0,
a,«>lE«07
0.
o.
0,
0,
6,15E»01
0,
0,
3.52E+01
0.
* t
0,
fl,!«E+OI
0.
0.
Ot
0,
o.
1.82E+01
0,
•
0,
9,80E*00
Ot
0,
0,
0.
2.07E.01
5.33E.02
0.
Ot
l,26Et01
0.
0.
3,3aE-08
0.
o.
2,76E*02
A
v •
o.
0,
o.
8.97E+02
0,
0.
0 1
2.UOE+02
2,39EtOO
Ot
0,
l,68Et02
0,
U.61E.07
o.
o.
0,
Ot
6.15E+01
0,
0,
3,52E»01
0.
w t
0,
8.58E+01
0.
w 9
Ot
0,
°t
Ot
l.WEtOl
0.
•
0,
9.80E*00
0,
0.
0,
o>
2,07E«01
5.33E.02
Ot
0,
1,26E+01
Oi
0,
'3,3aE-0«
o.
Ot
2,76E»02
t
Ot
0,
0,
«,97E+02
Ot
0,
Ot
2.19E+02
2,20E«01
0.
w 9
0,
1,68E»02
0,
8.6JE.07
0,
0,
0.
w 9
0,
6,15E»01
0,
0,
3.52E+01
0.
w •
o,
8,58EtOl
0.
w t
Ot
0,
w 9
0.
** t
0 1
t,82E+01
0.
* t
o,
9,80E»00
0,
•
0,
0.
v t
0,
2,07E.O,1
5.33E.02
0,
0,
1,26E*01
0,
0,
3,38E.Ofl
o,
A-IV-39
-------
PNR • 8U a 33,000 FUEL DECAY TIMES(2)
i POWERS 38.ao,"
iW, BURNUPs 33000, M
*0, FLUXs
CASE
E-t
3,'98Etl3N/CM*«2»3EC
- " NUCLIDS CONCfc
BASIS r MT OF
CHARGE DISCHARGE
. AG115M
: AG115
1 — COt 15*
CD i.i5
I N 1 1 5 M
•-• TNI 15
S N « ; 5
*G' 16
— CDU4 *
INI IfcM
TN1 16
— 8NU6
: AG117
, CDM7M
— con 7
INI i7n
INM7
— SNt 17M
' SNU7
i COU8
— INU8M
INU8
SN1 18
|— CD119M -
i CPU?
1 INH'M
INt 19
SNt 19M
3NH9
i — Co 120 -—
• IN1.20M
, IN 1.20
— 3N120 — -
CDt2l
IN121M
! 1 N t 2 1
i SN1.21M
| SNt21
— Sat2i —
!Nt22
SN122
— 33T22H
33122
I TE122
— IN123H —
IN1.23
SNT23M
i — SNi.23 "
381.23
I TE123H
•~ TE123 -
T V" - "
o,
o,
o,
0.
0,
o. -"
0,
c.
v 9
0 ,
o.
0,
o. - - •
o.
o.
0,
o.
o.
o.
o,
o.
o, — - —
o.
o.
0,
0,
o,
o.
o.
o.
0 ,
o.
0,
0,
o.
0,
o,
0.
o*
o.
o.
0.
o,
0.
o.
o,
o.
o.
o,
o.
o.
o,
ft
0.
0.
2.82E-OS
1.11E-22
1.02E-2S
1 ,22E+00
2.ftOE»01
0
3.87EtOO
0.
0
2.88E+00
0,
o:
0.
0,
0.
6.18E»07
a-,oi£too
0.
0.
0
8.10E+00
0^
0.
o.
o.
3.01E-03
8.23E»00
0.
o;
oj
a^ajE+00
0.
0.
0. - -
1.55E'05
6.-89E-83
4.60E+00
0.
5.16E»00
0.
2.88E-19
3.33E-01
0,
0.
0,
5.79E-01
5.iae»oO
3.«aE«05
5.09E-04
*
0, Y
0,
0,
l,a?E-03
a.03E-?7
3.70E-28
1.22E+00
2.00E-01
0,
3.87E+00
o;
0.
2.88E+00
0,
0.
0.
0.
0.
1.21E-07
8.01E+00
o.
0,
0
8^10E*00
0,
0,
o;
o.
2.75E-03
a.23E+00
0.
0.
0,
4.41E+00
o^
o..
0*
1,55E«05
1436E-S1
a 60E»00
0.
5.16E+00
o.
8.41E.23
3,33E-01
0.
0,
o;
1.82E-01
5,28E»00
3.16E-05
5,UE»0<»
n
1, Y
o,
o,
7,«9E»05
0,
0,
1 ,22E + 00
2.00E-01
0,
3.87E+00
0.
0,
2.68E+00
0,
0,
0,
0',
0.
l,aaE-ll
U.01E+00
o.
o,
o,
a,10E+00
0,
0,
0.
o.
1.66E-03
a,23E*00
0,
0,
0,
8.41E+00
0,
0.
0,
1.55E-05
o,
a,60EtOO
0.
5,16E»00
0.
1.95E-82
3.33E-01
0.
P.
o.
1,75E»01
5,55E*00
1.07E-05
5,37E-0«
n
10, Y
0.
0.
0.
0,
0.
1.22E+00
2,OOE-01
0,
3,87EtOO
0.
0.
2.88E+00
0,
0,
0,
0.
0,
0.
O.OIE+OO
o.
c.
o.
a,ioE+oo
0,
o.
o.
0.
1.82E-07
a,28E+00
0,
0.
0.
a.aiEtoo
o.
o.
o.
l,a2E»05
o.
8.60E+00
0.
5.16E+00
0.
0.
3.33E-01
0.
0,
o.
2.12E-09
5,72E*00
3.73E-18
5,aaE»oa
ft
NT«ATIU"O| liK»na
HEAVY MEIAL CHARGED
50. >
o.
0.
o. - - -•
o.
o.
1.22E+00
2.00E-01
0.
5.87E+00
0,
0,
2,88E+00
0,
0.
0.
0.
0,
o.
a,01E*00
o.
o. - -----
0.
a,toE*00
0,
o.
o.
o,
a,6aE.25
a,2«E+00
0,
0,
0,
a.aiEtOO
o.
o.
o.
9.89E-06
0.
a,60E+00
o.
5.16E+00
0.
0,
3.33E-01
0.
0.
o,
o.
5.72E+00
0.
5,a8E-Oa
n .
100, Y
o.
o,
o, ••—
o.
o,
1,22E»00
2.00E-01
<>•
J,87E»00
o.
o.
2.88E*00
0,
o.
o,
o,
o,
o.
8,01E»00
o,
o,
o.
8,10E*00
o,
".
o,
o,
o,
a,2aetoo
o,
o,
o,
4,aiE400
o,
o.
o.
6.27E-06
o.
8,60E+00
0,
5.16E+00
0,
0,
3.33E-01
0.
o,
o,
o.
5,72E»00
0.
5,a8C-04
0.
FP's
TABLE A-IV-1
(continued)
TO REACTOR
500, Y
0,
0,
0.
0,
0.
1.22E+00
2.00E-01
0.
3.87E+00
0.
0,
2,88EtOO
0,
0,
0,
0.
0.
o.
U.01E+00
0.
o, -
0.
a.lOE+00
0,
0,
o,
0.
o,
a.2aE»00
o.
o.
o,
a.aiEtoe
.0.
o.
0.
1.63E-07
o.
a,60E+oo
o.
5.16E+00
0.
0.
3.33E-01
0.
0,
o,
o,
5.72E+00
0,
G.aee.oa
n .
1000. Y
o,
0,
o,
o,
o.
1,22E»00
2,OOE>01
0,
3.67E+00
0,
o.
2,88E+00
0.
0,
0,
o,
0,
0,
fl.OlEtOO
0,
0,
o,
a,ioE*oo
o.
o.
o,
o,
o.
a,2aE+oo
o, .
0.
o.
a,4lEt&0
o.
o,
o.
1.71E-09
o.
a,60EtOO
0.
5,l6EtOO
0.
0,
3.33E-01
0,
0,
0,
0,
5.72E*00
0.
5,a8E»04
0.
10000, Yl'OOOOO, Y******* Y
0,
0.
0.
0,
o.
1,22E*00
2.00E-01
"^
3.87E+00
0.
0,
2.88E+00
0.
0,
0,
0,
0.
0.
U.OlE+00
0.
0.
o.
a.ioE+oo
o.
o.
o.
o.
o.
8.2oE*00
o.
o,
o.
a.aiEtoo
o.
o.
o.
o.
o.
a,60E+00
o.
5.16E+00
o.
o,
3.33E-OI
o.
o.
o.
o.
5,72E*00
0.
5,aeE.oa
o.
Of
0,
o.
o.
o.
1,22E*00
2.00E-01
0.
3.87E+00
0,
0,
2,88E»00
0.
o.
0.
0,
0,
0.
a.oiEtoo
o,
o.
o,
a.iOEtOO
o.
o.
o,
o,
o,
882flE»00
o.
o,
o,
a,aiE+00
o.
o.
o.
o,
o.
4,60E*>eO
o,
5,16EfOO
o,
o,
3.33E-01
o.
0,
o,
o.
5.72E+00
0.
?,a8E«oa
0,
Of
0,
o.
o.
o.
1.2ZE+00
i.OOE.Ol
0.
3.87EtOO
0,
0.
2.88E+00
0,
0.
0,
o,
o,
o.
8.01E+00
0,
0.
o,
«,10E+00
Of
0.
o,
o,
o.
4,2CEtOO
0,
0,
0,
a,aie«0b
o,
o,
o,
o,
o,
8.60E+00
o.
5,16E«00
0,
0,
3.33E-01
0,
o,
o.
o.
3,72E»00
0,
s.asE-oa
o<
A-IV-40
-------
PNR
• BU • 33.000 FUEU DECAY TIKESC2)
; POWER" 38,'aOMW, BURNUP» 33000. M
WD» FLUX»
CASE
E-l
3.*98E+13N/CM»*2-SEC
NUCUDE CONCENTRATIONS, GRAMS "
BASIS c HT OF HEAVY METAL CHARGED
i CHARGE DISCHARGE
: SN124
! SBt2«M
SB 128
TE128
SN t 25M
r SN125
] S3 125
TE125M
TE125 '
SMI. 26
SB126M
!~ S31?6
! TEI?&
• SN\27M
L- 3N127---
SBt27
TEV27M
TE 12?
1 11.27
' SN1. 28
— SB128H •"
3B128
T£t28
r" 1128-
I XE\28
! SN129M
' 8N129
set 29
TEt"29M
TE129- -
! I '29
I XE1.29H
XE129
SN130
S8130M
.— 38130 —
TE130
I130M
1130 •— -
XE130
3N131
j — SP \ 31 ~
i TE \ SIM
TE1.31
~" 1 1.31
XE131M
XE131
— 8Nt32 —
1 SB 1.32*
SB 1.32
- T£132
t«t?
0.
0.
0.
0,
0.
o,
o,
o.,
o,
o.
o.
o. - •
o.
o.
o, —
8,
o.
8,
0.
0,
0,
0.
0.
8,
8,
0.
o,
8.
8.
8.
0.
8.
0.
8.
8.
0 ,
8.
8.
0,
8.
o,
0 ,
8.
0.
o, •--
0.
0.
o,
o,
o.
o.
0,
7.71E+00
o
4.S2E-03
1.12E-01
o;
2,a3E>06
6.18 f. *00
1.92E-01
3.10E+00
1.99E+01
7.18E-09
6,3F-06
8,37F-02
0,
0.
8.17E-13
8.38.E-01
2.96E-03
8.02E+01
8.
0.
0..
1.37E+02
0,
3.21E+00
0.
0.
0.
1,,18E-P1
1.06E-08
2.31E+02
3.?5E"10
9.20E-02
8.
8.
0,
«,28E»02
0,
9.8SE-90
1 ^22E+01
8.
8.
1,606-37
8. 056-80
2.39E-05
5.02E-05
8.03E+02
0.
0.
0.
t 9*,F-H
8. Y
7.71E*00
0,
2.95E-03
1.13E-01
0.
2.15E-07
7.99E+00
1.90E-01
3.29E+00
1 .99E+0 1
7.18F-09
6.77E-D6
8,38E"02
0.
8.
2.26E-15
6.77E-01
2,aoE»fl3
- a,o«E+oi
0 .
0.
0^
1.37E+02
0.
3,21E+00
0,
" 8.'
o.
6I101E-02
Stfl3E*05
2,31Eto2
l^SPE-ll
9.20E-02
0,
0*
8.28E+02
0 ,
6 90-109
1.22E+01
0.
8.
1.93E-8S
8,91E-a8
1 <35E»06
7.33E-06
4.03E+02
0.
8.
5J81E-17
1 .77F-1*
It V
7.71E+00
Of
3.58E-04
1.16C-01 .
0,
3, 08£»13
7.03E+00
1.71E-01
8.27E+00
1 , 99E*0 1
7,18E>09
6.73E-06
8,38E»02
0.
0,
1.88F-29
2.12E-01
7.53E-08
8,09E*01
8.
8,
0.
1.37E+02
0,
3.21E+00
8.
8,
0,
1.85E-03
1,31E"06
2,31E*02
2.52E-18
9.20E-02
0.
8,
8.
8.28E+02
0,
8,
1.22E+01
8,
0,
8,
0,
1.99E-13
1.61E-IO
8.03E+02
o,
o.
o,
7.08E-38
?.1flF«^S
10. Y
7,7lEtOO
Of
1.15E-20
1.46E.01
0.
o.
6.97E-01
1.70E-02
1.08E+01
1.99E+01
7.1SE-09
6.73E-06
a,51E-02
0.
0.
8.
1.77E-10
6.27E.13
O.llE+Ol
0.
0.
0. ,
1.37E402
0.
3.21E+00
0.
0,
0.
8.
0.
2.31E+02
8,
9.2JE-02
0.
8.
0.
a.28E+02
8.
0.
1.22E»01
0.
o.
o.
o.
o.
8.
8.03Ef02
0.
0.
0.
8.
ft.
50, Y
7.71E+00
0.
0.
1 ,16E-01
0,
8,
5!s<5E-07
1.15E*01
1.99E+01
7.1BE-09
fc,73E-06
5.06E-02
8,
8.
0,
0«
8,11E*01
8,
o,
0.
l,37Et02
0,
3.21E+00
0,
0,
0,
t
0,
2,31E*02
0.
9.25E-02
0,
0,
o.
8.28E+02
0.
0,
1.22E+01
0.
o.
8.
8.
8,
o.
A,03E*02
0.
8.
8.
o,
0.
100. Y
7,71E*00
0.
0,
1.16E-01
0.
o,
U57E-12
M.15E + 01
I.99E+01
7.18F-09
6.73E-06
5.75E-02
8 1
0,
8.
0,
0,
a.HEtOl
0,
o,
o,
1.37E+02
" 0 |
3,21E*00
0,
0 |
0,
o.
o, - • - -
2.31E+02
0.
9,29E«02
0.
0.
0,
a,28Et02
8.
0,
1.22E+01
0,
o,
o,
o.
o.
o.
8.03E+02
0.
0,
0,
0,
0.
FP's
TABLE A-IV-1
(continued)
TO REACTOR
500, Y
7.71E+00
0,
o.
1.16E-01
0.
8,
8.
8.
1.15E+01
1,98E*01
7.16E-09
6.71E-06
1.12E-01
0.
8,
8.
8,
0,
8.11E+01
0.
0.
o,
1.37E*02
0,
3.21EtOO
o,
o.
o,
8,
8,
2.31E+02
0.
9,67E«02
0,
8,
8,
8,28E»02
o,
6,
1 ,22E + 01
0,
o,
8,
0.
o,
o.
a.osE+oa
o.
o.
o,
0,
0.
1000, Y 10000. Y100000, Y«****** Y
7.71E+00
0,
0,
1.16E-01
0,
o,
Ot
0.
1,15E»01
1.97E+01
7.13E-09
6.69E-06
1 .81E-01
0,
0.
o!
0,
8.11E+01
0.
0.
0.
1.37E+02
0.
3,21EtOO
8,
8,
8,
0,
-Q •
2,3lEt02
0.
\ fOlE-01
0,
0.
o,
a,28E+02
0,
o.
1.22E+01
0,
o.
8.
0.
8.
8,
8.03E+02
0,
0.
0,
8,
0.
7.71C+00
0.
0.
1.16E-01
0.
o,
o.
o.
1.15E+01
1.65E+01
6.70E-09
6.28E-06
1.37E+00
0.
8.
o.
0.
0.
o|
o.
o.
1.37E+02
8. •
3.21E+00
8,
0 .
0.
o.
8.
2.31E+02
o.
1.86E-01
8,
8.
0.
8,26E*02
0.
o,
e!
8,
8.
6.
o.
o.
8.03E+OJ
'•0.
o.
0.
o.
0.
7,71E*00
0.
0.
1.16E-01
0,
0,
Of
l!l5E*01
9,98E*00
3.59E-09
3.37E-06
9,98E+00
0.
Of
0.
0.
0, ,
o.iie+oi
o.
o.
0.
1.37E+02
0.
3.21E+00
0,
0,
8,
0.
o .
2,30E*02
6,
1,03E»00
o,
0,
0.
8,28E*02
0.
0,
1,22E»01
0,
o.
o.
o,
o.
o.
8.03E+02
0.
0.
o.
0.
o.
7.71E+00
0.
Of
1.16E-01
Of
Of
Ot
o.
1.15E+01
1.90E.02
7.01E.12
6.57E-09
J,99E»Ol
Of
o.
Ot
0,
0.
a.iiE+Oi
o.
o.
-0.
1.37E*02
0.
5.21E+00
0.
o,
o,
o.
Of
2,22C«02
o,
9.38E+00
o.
0,
Ot
8,28E*02
0.
Of
1.22E+01
0,
o.
o.
8.
o!
a,03E»02
o.
o,
o,
0,-
o,
A-IV-41
-------
FP's
TABLE A-IV-1
j POWERS 38. ao
.—
! xEtsa
i SB133
TEH33H
TEU3
it33
f— XE133H
i XEi.33
|__ CS133
~ 8 3 1 3 a
TEt33
1 131
i — XE134 -
1 CS t 38M
1 estsa
— BAt3«
TEt35
H35
. — XE135M
1 XEI33
i CSISSM
^cstss -
8AtS5M
BA135
1 1136
! XEL36
i CS1.36
"— 8A154 —
1137
XE1.37
j CS\37 ~
' 8AIJ7M
! BA1J7
i H38 •---
*Et38
CS138
— SA138 -
1 1139
i *E139
'— CS139 "
BA139
U139
~ XEIOO
j Cs'.ao
: BAI«O
•• UAtao —
CEtao
XE'«1
r Cstai
i BAtai
j Utfll
—CEtai
PRKII
MM, BURNUPa 33000, MWO, FtUXs 3,"9BE+13N/CM**2»SEC
NUCLIOE CONCENTRATIONS, GRAMS
BASIS a MT OF HEAVY ME1AL CHARGED
CHARGE DISCHARGE
e,.
8,
e»
e.
8,
o,
8.
o«
0 ,
8,
8,
8s
8,
68
o,
0,
8.
8 ,
8,
0,
o,
0.
8,
o>
8,
o,
o, ~ —
o,
8,
61
8.
0,
Oi
8,
6.
0 ,
8.
8. '
o, - -
8,
8,
Oi
0,
8,
8,
0,
8.
8.
0,
81
o,
fl.
i,17E+03
e.
0,
o.
«,77E»52
2,00£»?1
S.63E-08
9e99E+02
8.
0.
o.
1.5aE*03
0.
S,80E+02
8,63E+OS
8.
0.
8,
0,
o.
-2.53E+02
7.60E«a3
3.35E-02
8 .
2.aOE*03
3. iiE»oa
2.25E+01
8.
8.
1 ,2UEt03
l,87E-Oa
tt.SSE+Ol
8.
o..
o.
1.22E+03
0.
0.
0.
0.
1.27E+03
0,
8,
7,.n-S
2.25E.+ OJ
84
o*
1 ,2aE*03
S .87E-oa
a.saE+ol
°,
0.
o,
1<22E+03
°,
«*
8,
oj
1.27E+03
°.
8,
1,29E-03
l ,9af.»oa
1.31E+03
8.
»,
o.
8,
1.25E»00
1 .19F+03
lei?E*03
8.
8,
8,
89
8,
t .78E-20
9,99£+02
8,
88
8.
1,5«E+03
8,
i,«8E*02
1.19E+02
0,
8,
8,
8,
8.
2.53E+02
8,
3,36E-02
8,
2,aOE+03
3, 18E«09
2.25E+01
8,
8,
1 ,22E+03
1 ,85E"Oa
6.26E+01
8,
0.
8,
1.22E+03
0,
8.
8,
8,
t .27E+83
Oi
8, '
6.52E-08
9.81E-09
1.31E+03
o,
0,
8,
8,
2.52E-02
l,19E*nj
l,t7E*05
o.
0.
e.
8,
0,
8.
999E*02
8.
0,
8,
1,5
8,
0,
o,
8,
9.99E+02
8,
8,
8,
t .50E + 03'-
8S
9saiE-06
2.67E+02
8,
8,
8, -
8,
0,
2.53E+02
8,
3,taE-02
o,
2,«OE+03
8,
2.25E+01
0,
8,
3,9a£*02
5.95E.05
8.91E+02
8,
8.
6.
!,22E+03
8,
8,
8.
8.
1.27E+03
8.
o,
8,
0.
1.31E+03
8.
0,
0.
8.
o.
1 ,19C»03
100, Y
l.STE+03
8.
8.
8.
8,
o, - -• • -
o,
9.99E+02
8.
8.
0,
1,5«E+03"
8,
«,27E-t3
2,67F*02
o, •
°,
o, —
8,
8,
2.33E+02
8,
3,9aE«82
o, - —
2,flOE*83
8,
2.25E+OJ
8,
8,
l,2«E+82
1 .87E-05
1 .16E+03
8,
8,
8,
1.22E+OJ
8,
0,
0,
8.
1.27E+03
8,
8.
8,
0,
1.31E»03
0.
o,
0.
0.
o,
I,l9f+03
(.continued;
TO REACTOR
580, Y
1,S7E»03
8,
8.
8,
8,
0,
ee
,99E+0'2
8,
8,
0.
) ,Saet03
0,
8,
2,fc7E+02
o»
8,
8. •-
8,
8.
2.53E+02
0,
4.27E-82
o,
2,aOE+03
8,
2.25E+01
0,
8.
1,28E-02
1.81E-09
1,28E+03
8,
8.
0,
!,22Et03
o,
0.
0.
o,
1.27E+83
o.
0,
0.
o.
1,31E»03
0,
8,
o.
0.
o. -
t.tfC+OJ
S000g Y
1.17E+03
0,
8,
0.
b,
8.
o,
9.99E+02
8,
8,
o.
l,5aE+03
0,
8,
2.67E+02
o»
0,
Oi
8.
6.
2.53E+02
8,
9,19E»02
8,
2.80E+03
8,
2.25E+OJ
8.
0,
1.15E-07
1 ,7aE«ia
1.28E+03
0,
8.
8t
1.22E+03
8,
0.
0,
8f
1,27E*03
0.
0,
o,
8,
li31E+OJ
0,
0,
8,
o(
Oi
1,I9E»OI
JOOOO, Y100000. Y******* Y
1.17E+03
0.
o.
o»
0.
v t
8,
0.
9.99E+02
8,
8,
8,
1.56E+03
0.
t
0,
2.67E+02
0,
0.
•
0,
0.
t
o.
2.52E+02
8,
6,i7E>01
8,
2.10E+03
8,
2,25E*01
8.
I
0.
o.
0,
1.28E+03
0.
0,
0,
1.22E+03
0,
0.
0,
0,
l,a7E+03
o.
Oi
o,
o,
t,3lE+OJ
o.
Oi
o(
0,
0,
1.19E+OJ
1,17E+03
0,
o,
88
0,
0,
o«
9,99E»02
0,
o.
o.
ls5aE»03
8.
w 9
o,
2,67E»02
0,
0.
9
o.
0.
9
81
2.87E+02
8(
5,81E»00
0,
2,aOE+03
e.
2.25E+01
0.
•
o.
o(
o,
1.28E+03
Oi
0,
0,
1.22E+03
0,
8.
0,
0,
1.27E+05
0,
0,
o,
8.
1.31E+03
0.
0,
8,
0,
o(
l,19EtOJ
l,17E+ej
8,
8.
0,
' 0.
w •
Oi
o!
9.99E+92
8,
8,
0,
l,f8E+OS
0.
w •
Oi
2,67EtOg
0,
0.
1
0,
0.
u 8
0.
2.01E+82
8.
5.22E+01
0,
2.40E+03
0,
2,25EfOl
0.
v t
0,
o(
o,
1.2»E»03
Oi
0,
v •
0,
1,22E+03
Ot
Oi
o.
" •
o,
1.27E+83
0,
w 1
o.
F
o.
o,
1.31E+03
o(
0.
1
0,
* •
0.
v 1
Oi
1.19E+OJ
A-IV-42
-------
PWR
• BU • 33
t080 FUEL DECAY TIME3t2)
POWER* 38,'aOMN, BURNUPi
CHARGE DISCHARGE
XEta2 0, 0.
C3ta2
BA142
LA ta2
CEt02
~PR t a2
N0ta2
X£t83
Cs ta3
BAtaS
LAt«3
"CE143
PRta3
*0ta3
LA tfla
CEtea
PRtaa
NO t aa
CE \ is
PRtas
No\a5
CE t "6
PRt lib
*Dia6 -
CEta?
PRta7
ND< a7 "
PM t a7
3nta7
CE t as
PRtae
Notas
PM t fl8M~
PM t a8
3Mta8
" PRI a9
Mot a9
PM t a9
— SH1<|9 —
N01 56
? M 1 5 0
- SMtSO '
i NOtSl
i PMI51
— 3Mt51 "
EIM51
— 3 M 1 5 2 ~
! EU152M
i EUtSZ
~ CD152 "
0.
9,
8.
8.
6, ~
e!
8,
9.
8,
9 1
8|
8,
0.
P.
9.
8.
0.
8k
8.
9.
9,
8.
9.
9,
9.
9,
9,
0.
8,
8.
o. •— •
9.
9.
9,
9.
o«
8. ~
8.
9.
o. - --
9,
9.
8. ""
8.
oj
0 1
0 A
A
0.
0,
0,
I.l7£f83
2,fl2E-58
2.19E+81
0^
6,
o
8,
3.05E-33
1.2"E»82
7.79E+02
e;
2.91E+02
1.23E«02
J.06E+03
0.
6'e7E+02
8,
9.
7.05E+62
8.
8^
8.t5E-oa
1.07E+82
5.13E+01
0,
0,
3.73E+82
1,5oa
1.57E+02
0 '
0,
2«83E"?5
7.73E+09
1.79E»02
9.
a,06E*02
8.
a 6iE*o 1
2%26E-01
o
9,68Et81
o
A^anc>o2
1,S6E-01
"
1, Y
8.
8,
8.
8,
1.17E483
8.
?,19E»8J
9.
8,
o!
8,
2.38E-87
7,79E»02
°.«
7J27E-03
1.18E+03
8.
8.
6,87E»02
8,
8.
7.05E+02
9.
8,
1.V6E-89
9,17E»01
*,t>8E»01
0.
9,
3.73E+02
a,39E-03
8.53E-05
J.S8E+02
9,
8,
9,
7.73E+08
J,79E»02
9.
a.06Et82
9,
8,
8.59E+01
a, 1 OE»01
8.
9.68E+01
0.
a,35E«02
1.I7E-01
n .
8.
8,
8,
8.
1.17E*03
8.
2.19E+81
8.
9.
9.
8.
8.
8,
7.79E+02
0.
5.63E-02
2.38E.06
I.36E+83
8.
9.
6.87E»82
8.
9,
7.85E*02
0.
8.
8.
8,a8E»00
1.50E+02
8.
8,
3.73E+02
8.
8.
!,58E»82
8.
8.
8.
7.73E+80
!.79Et02
8.
Q.06E+02
0,
8.
a.27Et8!
3.59E+00
9.
9.68E+01
8.
J.59E-02
1 ,22E»01
A
58. >
0.
8.
o, —
9.
1.17E+83
8,
2,19Et8t
8.
o.
8.
8.
8 , - - -
8.
7.79E+82
8.
1.83E-17
7.75E-22
1 1 36E>83
8.
8.
6.87E*02
0.
9.
7.85E+02
8.
8,
9, -
2.15E-00
1.59E+02
8,
8,
3,73E*82
9.
9,
1.58E+02
8.
9,
8,
7.73E+80
1 .79E+82
8,
a,06E+82
0.
8,
3,11E*01
1.S3E+81
8.
9.68E+8!
9,
2.57E-03
S 828E<*0 J ""
n .
100. Y
8.
8,
o, -
o.
1,17E*83
0.
2,t9E*81
8.
0 ,
8,
9,
0 9
9,
7,79E*02
o. -
8,C'.E-37
3.39E-ai
1.36E+93
9.
9.
6.87E+92
8,
8.
7,85E*82
9.
9.
9.
3.86E-10
1,59E»82
8,
8,
3.73E+82
0.
9,
5.58E+92
8,
8.
9,
7.73E+80
!,79E*82
8,
a,06Et62
8,
8.
2.89E+01
2.55E+81
8,
9,68E»81
9,
l,a3E-8fl
1 e29E»OS ~
fl.
FP's
TO REACTOR
588. Y
9,
8,
8,
8.
1.17E»03
8,
2.J9E+01
8,
8,
8,
8.
8,
0.
7,79E»82
o. • • --
o.
8.
! .36E + 03
0,
8.
6,87E*02
8,
o,
7,05E*82
8,
8,
8,
0.
1.59E+82
8.
8,
3.73E+82
0,
8,
1.58E+02
8,
9.
8.
7.73E+80
1,79E»82
8.
a,06Et82
9,
9.
3.61E-01
a,55E*81
8,
e!
S,32E-la
S ,2'E«Ot
fi.
1000, Y
0,
0,
8,
0.
1.17C+03
8,
2,19Ef01
9.
9.
9,
8.
6,
o,
7,79E»82
8.
8.
8.
1.36E+03
6.
8.
6.87E+02
8,
8,
7.85E402
0,
0.
9.
0,
1.59E*02
9,
9,
3,73Et02
9.
9,
l,58Et82
9,
9,
6.
7.73E+00
1.79E*02
9,
a,06Et82
0,
8,
1.60E-02
a,63E»8l
8,
9,68C»01
9,
3,76E«27
S «29EaQ}
0.
TABLE A-IV-1
(continued)
10000, Y100000, Y******* T
0, 0, 0,
o.
o.
o.
1.17E*03
o.
2.19E+01
8,
8.
8.
8,
0.
9,
7.79E+02
9.
9,
9.
1.36E+03
0.
9.
6.87C+02
8.
8.
7.05E+02
8,
8.
8.
8.
1,59E»02
9.
9.
3,73Et02
0.
o,
1.58E+02
0.
8,
8.
7.73E+00
1.79E+02
9,
S.06E+02
a.
o.
o.
0.63E+01
8,
9.68E+01
0.
0.
l,29E«Ot
e.
o.
o,
8,
1.17EtOJ
0.
2,1<»E*01
9.
8.
8.
o.
0,
0.
7.79E482
8.
8.
8.
1.36E+03
0.
0.
6,87Et02
0,
8.
7.0SE+02
0,
8,
0,
9.
oj
8,
3,7IEt02
8.
9,
S.56E+02
89
9,
0.
7,73E*00
J,79Et02
9,
39OfeE»OJ
e.
o.
oe
aa63E«01
0,
9,68E»01
0,
0,
0,
o.
o.
0,
1,17E*OS
0,
2,19E*81
0.
o.
8,
8.
8,
0,
7.79E+02
0.
0.
8.
!,36E»83
9.
0.
6.87E+82
0,
0.
7,05E*02
0.
0.
0,
0,
1.S9E+02
0.
o.
3,73E»OZ
0.
o,
o!
o.
o.
7.73E+00
1,79E»02
9.
«,06C*82
9.
0.
0,
a.63E»8l
9,
o!
1 »2*E«9|
®«
A-IV-43
-------
PHR
«_33.000 _ FUEL DECAY TIMESC2) CASE E»l
38.UOHN, BURNUPa 33000, MHO, FLUXs 3.98E+13N/CN**2»SEC
FP's
TABLE A-IV-1
(continued)
• NUCLIDE CONCENTRATIONS
BASIS • MT OF HEAVY ME'
, CHARGE DISCHARGE
SHi 53
j_ EU153
KO 1 5 3
P M 1 S d
8*150
r~ Egt5«
i Gotsa
! SMI 55
EU15S
CD 155
SMt 56
i EU' 5S "
! C0 156
1 S*t57
EU157
GD<57
EU',58
r- Got 58
i EIM59
G0159
— Tgt59
EU160
GD160
- TB160 -
: OY160
' GD161
- 78161
OY161
PDt 62
r- TS162M
! TBt62
' OY162
— TB163M
78163
OYI63
j— TB164 —
I OY165M
— OY165"
H0165
OY166
[-" H0166M
H 0 '. 6 6
FR \66
L- ER167--
TOTAL
0,
o.
0,
o.
o.
c,
o,
o.
o,
o.
o.
o , -
c.
o.
o.
o,
o.
o,
o,
o,
o,
o.
o.
o, — • -
o,
o.
o,
o.
o.
o,
o,
o,
o. -
o,
o.
o,
o.
0.
0 •
o.
o,
o,
o«
o.
0.
1 32E»?3
1.18E+02
6.23E-03
0,
3.flOE+01
S.SOE+OI
2.56£+00
0.
5..92E + 00
1 .07E+00
0,
6.3«E«03
1.05E+02
0.
6 .9 1 E *7 Q
fl 48E*02
o.
1.03E+01
o.
l]85E+00
0,
1 .OOE+00
3.58E-02
a,30E«01
0
2 05E"»09
2.36E.01
0.
0,
0.
1.93E-01
0.
o.
2.17E-01
5.76E-52
6.89E-02
o 4
1.16E-01
3 i 8E"18
a*77F«oa,
1.56E-18
3.12E-02
S 5aE*03
J*a9E+0«
0, Y
0
tt!7E-?8
1.16E+02
5.67E-03
0.
S^SOE+Ol
5.36E+01
2.77E+00
0.
5.72E+00
1,27E+00
0.
1.39E-03
1.05E+02
°,
1 t6^F*fl9
a,a8E-o2
o,
0*
1.99E-76
1.85E+00
0,
J. OOE + 00
2,61F«02
a.aoE-ot
o.
7,55E-11
2,36E-01
o.
o*
1.93E-01
o.
0.
2.17E-01
2 72E-62
6.89E-02
Q
,
1,16E»01
3,87E»?1
a,77E-na
1 ,°1 £•?!
3,12E«02
5,SaE»03
3.a9E+oa
1, Y
o,
1.18E+02
3.36E-03
0,
3.80E+01
5,27E+Ot
3.92E+00
0,
a,73E+00
2.27E+00
0.
3.00E-07
1 ,05E>02
0,
o,
a.a8E-02
o.
o!
o,
1.85E+00
0,
1, OOE+00
ti,50E»03
U,61E«01
0,
8,13E«19
2.36E-01
0,
o,
o,
1.93E-01
o,
0,
2.17E-01
o,
6.89E-02
0.
0 |
1.16E-01
2.50E-37
a,77E-Oa
1.23E-37
3, 12E»02
5,5aE»03
3,U9E+Oa
10, Y
0.
1.18E+02
2,7aE«07
0,
3.80E+01
3.57E+01
2.09E+01
0.
1 .50E.01
6.8AE+00
0.
o.
1.05E+02
0.
o.
o!
l.a3E+Ol
0.
0.
1.85E+00
0,
1. OOE+00
8,a7E«17
a.66E>01
0.
o.
2.36E.01
0,
0.
0.
J.93E-01
0.
o.
2.17E.01
o,
fc.89E.02
0.
8,
1.16E-01
0,
a,75E.oa
o,
3.12E-02
5,5ag-03
3,U9E+Oa
50. '
0.
1.16E+02
1.83E.25
0,
3.80E+01
6.30E+00
5.03E+01
0.
3,3aE.08
6.99E+00
0.
0,
1.05E+02
0.
0,
a.apE.02
0.
1.93E+01
0.
liesE+oo
o.
1. OOE+00
o.
U.66E.01
0,
0,
2.S6E-01
0,
o.
o.
1.93E.01
0.
0.
2.17E.01
0,
6,89E>02
0,
0 1
i,16E>01
0,
«,6aE«oa
0.
3,12E»0?
5,5«E-03
3.49E+04
, GRAMS
AU CHARGED
100. Y
o.
1.J8E+02
0,
0.
3.80E+01
7,22E«OJ
5.59E+01
0.
1.6JE-16
6.99E+00
o.
- o, - •-
1.05E+02
0.
0,
c.aeE-02
o.
l.a3E+oi
o.
o.
1.85E+00
o,
l.OOE+00
0,
a,66E-OJ
0,
/O,
2.36E-01
0.
0,
0.
1,93E«01
0.
0,
2.17E-01
0,
6.89E-02
0,
t
1,16E*01
0,
a,51E.O«
0.
3,12E*02
5,5at»03
3,a9E+08
TO REACTOR
500, Y
0,
1 , 18E+02
0.
0,
3.80E+01
2, 15E«08
5.66E+01
0,
0.
6.99E+00
o,
o.
1.05E+02
0,
0,
U.U8E-02
0,
1.03E+01
0,
0.
1.85E+00
0.
1, OOE+00
0,
o!
0,
2.36E-01
o.
0.
0.
I.93E-01
0,
0.
2.17E-01
0,
6,89E»02
0,
t
1,16E«01
0.
3,58E-Oa
0,
3.13E.02
5.50E-03
3,a9E + 08,
1000, Y
o,
1.18E+02
0,
0,
3.80E+01
8iOOC*tft
5.6feE+01
0,
0.
6,99E+00
0,
0.
1.05E+02
0,
o.
u.aeE-02
o.
l,a3E+01
-o,
0.
1.85E+00
0,
1, OOE+00
0.
a.66E>01
0.
0,
2.36E-01
o,
0.
0.
1.93E.01
0,
0.
2,17E«Ol
0,
6.89E-02
0.
t
1.16E-01
o,
2,68E«Oa
0,
3,laE*02
5,5aE-OJ
3,a9E+0«
10000, Y100000, Y*«****« Y
o.
1.18E+02
o.
o.
3.80E+01
o.
5.66E+01
0.
0.
6.99E+00
o,
0.
l.OSE+02
0.
0 ^
a.asE-02
0.
l.«3E+01
0.
0.
1.85E+00
0.
l.OOE+00
0.
o|
0.
2.36E.01
0.
0.
0.
1.93E-01
0.
o.
2.17E-01
0.
6.89E-02
0,
0,
1.16E-01
0,
1 ,a8E«06
o,
5.17E-02
S.SOE.OJ
3,«9E+04
o.
1.18E+02
0.
0.
3.80E+01
0,
5.66E+01
0,
0.
6.99E400
0,
o,
1.05E+02
0.
0 t
a,48E-02
0.
1.S3E+01
0.
0,
i.esE+oo
o.
l.OOE+00
0,
0.66E-01
0,
o.
2,36E»01
0,
o.
o,
1.93E-01
0,
o.
2.17E-01
0,
6.89E-02
0.
0 Q
1.16E.01
0.
o,
o.
•3,17E«02
5,5«E«OJ
3,a9E+08
o,
1.18E+02
0.
0,
3.80E+8J
0,
S.66E+01
0,
0,
6.99E+00
0.
0.
1.05E+02
0,
0,
a.asE.02
0.
1 .S3E+01
0.
o.
1.85E+00
0.
l.OOE+00
0,
fl,66E.01
0.
0,
2.36E.01
0.
0,
0.
1.93E.01
0.
0.
2.17E.01
0.
6.89E.02
0,
0 1
1.16E.01
0.
o,
o.
3.17E-02
5,5aE«03
3,a9E+0«
A-IV-4A
-------
PUR • BU « 33,000 FUEL DECAY TIMESCZ) CASE E«l p, . TABLE A-IV-1
. ___ . ... — . .„ , _ l^J.3Q -
POWER" 38.'40MH, BURNUPa 33080,MWO, FLUX« 3.*98EM3N/CN**2»SEC (continued)
NUCLlOE THERMAL"
BASIS • MJ OF HEAVY METAL CHARGED TO REACTOR
H i
H 2
H 3
H 4
HE 3
"6 u
HE *
LI 6
7
LI a
BE e
BE T
BE 10
BE 11
6 i 0
B 11
B 12
12
C 13
C 14
13
N 14
N 15
0 16
0 17
IB
0 19
F 19
-- F 20
NE 20
NE 21
NE 22
NE 23
NA 22
NA 23
NA 24
NA 25
Mg 24
MG 25
MG 26
- MG 27 -
AL 27
AL 28
AL 29
31 28
SI 29
SI 30
SI 31
P 31
P 32
P 33
-CHARGE DISCHARGE
0, 0.
0, 8^
0,
0.
o.
o,
8.
8.
8,
8.
8,
8(
8.
0.
8.
8.
8.
8.
8.
8,
0.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
81
8,
8.
8.
8.
8.
e»
0.
8.
o. -••
8.
8.
u,
8,
8,
8.
8.
8.
8,
8.
0^
Q
0
Q
Q
Q
S:
., , .-.
4,51E-06
i;
«i
8.
S:
r
8,
t^79E»74
8.
0,
8*
S;
s
8.
S:
U39E-04
• S i .
• • ;
o u
€0
0
OO-AOOOOOOOO
8*
1
i!"""
ji
1
e!
8,
!
i:
6*27E"06
5.57E-05
f - 1. Y
0,
o.
* 6.30E-06
8.
6,
8.
8,
8,
8.
8,
8.
0,
8,
8,
8.
8.1
8,
8,
0,
4.51E-06
8,
8,
8.
0 ,
8.
8.
0,
8,
8,
8,
8.
8,
81
8,
8,
8,
8.
8,
8.
8,
8,
8,
8,
8,
.e!
8,
o,
e,
e.
8,97E»10
3.52E-07
0.
S:.
8.
8,
8.
8,
8,
0.
8.
8*
8.
"8.
8,
8.
8,
°'«
8*"
8.
8,
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
0.
8.
8.
8.
8.
8.
6,
8.
6.
8.
8.
8^
10, Y - - 58-, V-
8.
8.
IOE-06 3.98E-07 -
0,
0,
8,
8,
8,
0,
0.
8,
8,
0.
8,
8.
8,
8,
8.
8,
HE. 06 4.48E-06
8, -
8.
8,
8,
8,
0,
8,
8.
0, " ~-
8,
8,
8,
8,
8,
0,
8.
8,
0,
8.
8,
0,
o.
8,
8t
8,
8.
8.
8,
0.
8,
100, — Y-
8,
0,
2.38E-08
0.
8.
0,
8.
8.
8,
8,
8,
8..
0.
8,
0,
8,
8,
8.
8,
4.46E-86
8,
8,
8,
8,.
0.
8.
8,
8.
8,
0 ,
8.
8,
8,
8,
8.
8,
8,
8,
8,
8.
8.
8,
8.
8.
8.
8,
8.
8,
8,
8,
300, — V
0,
8.
3.85E-18
0,
8.
8, - -
0,
8.
o, - -
8,
8,
e!
8,
8. '
8.
8. '
8.
4.25E-06
o,
o.
8, -
8,
0.
8.
8,
8.
8,
8,
8.
0.
o, - -
8,
8.
0,
0.
8,
o, -
8.
8.
8.
8,
8,
0,
o.
e.
8.
8.
0,
0,
8.
-1000, Y
0,
0.
2.23E-30
0.
0,
o, - -
0.
0,
8. -
0,
0.
8,
8,
8.
8,
8,
8,
0,
8,
a.OOE-06
8, -
0,
8,
8,
8,
8,
8,
8.
0.
8,
8,
8,
8,
0,
8.
0,
8.
8,
0,
8,
8.
8.
8.
8.
8,
8.
8.
8,
8,
8,
8,
8,
10000, Y
0,
o,
o. • - - -
o,
o.
0,
o.
o.
o.
o,
o,
-o, •- -
o.
o,
o.
8,
o, -
e.
1.35E-66
8,
8.
0.
8,
8,
8.
8.
8.
0.
8,
8.
8,
8.
o.
8.
8.
8.
8,
8,
8.
S:
e,
e.
o, -
8.
8,
8. -
8.
8,
0.
8.
100000, Y
0.
0,
o.
o,
0,
o,
0.
o,
o,
o,
o,
o,
o,
o.
o.
o,
o,
o,
8,
2.51E-11
8.
8,
8.
8, "
8,
8,
8.
8.
8.
8.
8,
8.
8.
o.
0.
0.
o.
8.
8,
8.
8,
8.
8,
8,
8.
8,
8,
8.
8,
8.
8,
8.
*******
0.
0.
o.
o.
0.
o.
o.
o.
o.
o,
e,
o.
o,
o,
o,
o,
o,
o,
o,
o,
o.
o.
o,
o.
8.
e.
8,
o.
0.
o.
o.
o.
o.
o,
o.
8.
o,
o,
o.
o.
o,
o.
o.
e.
8,
o.
o,
o.
8,
0.
8.
8.
A-IV-45
-------
PWR • BU B 33»000 FUEL DECAY TIMES(2)
POWER* 38,'uOMK, BURNUPc 33000, MWO, FLUX»
P 34
S 32
S 33
S 34
S 35
S 56
S 37
CL 35
' CL 36
CL 37
CL 38
"' AR 36
AR 37
AR 38
— AR 39
AR 40
AR 41
— K 39
K 40
K 41
K 42
K 43
K 44
— CA 40
CA 41
CA 42
L-C» 43
CA 44
CA 45
I~CA 46
CA 47
CA 48
CA 49
SC 45
SC 46
— SC 47
SC 48
SC 49
^ SC 50
Tl 46
Tl 47
— TI 48
TI 49
TI 50
— TI 51
V 49
V 50
V 51
V 52
V 53
V54
CR 30
CHARGE" "
8,
0.
8.
0.
8,
0.
Oi
o.
o,
-• o,
0,
8,
0.
8,
0,
8,
8,
0.
0.
o,
8,
0,
0,
o!'
o.
8,
8,
•8,
0.
8..
0,
0,
0.
0,
0.
0.
o.
o.
o,
o.
Ot
8,
8.
8, -
0.
0,
MSCHAR6E ~
0
Q
Q
o.
2,25E»05
0?
8,
6.80E-11
0,
o. - ~
2,'79E«1«
o.
1.55E-16 —
!:
0..
1,16E»29
9i24E-99
5,93E-57
0.
ol
o.
0
Q
4.14E-06
0,
o. --;•-• "
0,
6'83E«16
1.19E-27
0.
I:
8.'
0.
j:
\:
S:
'",' 0, Y
Q
Q
1*74E-05
o"
,„,,,
1.45E-14
1 J55E-16
8,
6|48»ll8
1.48E-67
L
o!
5*32E-03
1.48E»j>
4.66E-33
0, '
j:
S;
0,1
j;
8.
0.
N
BASI
!• Y
8.
8,
8.
8,
4.13E-86
8,
o!
a!
0-,
8,
3.9JE-16
0.
1.55E-16
0,
8,
8,
1.16E-29
8,
0,
8.
8,
8,
8,
8,
8.
8,
l,67E>Ob
8,
3.71E-31
0,
8,
8|
1,186-83
5.54E-31
8,
8,
o, - -- -
8,
8,
8,
8,
8,
8.
8.
8,
o, —
8,
0.
0,
o.
CASE
3,'98E+13N/
UCLIDE THE
S « MT OF
10. Y
0.
8,
8.
8.
2.34E-17
0.
8.
°«
o'.
0.
o. • ••-
0.
0.
1.S1E-16
8,
8,
8.
1.16E.29
8.
8. -
8.
0,
8.
8,
8.
8. -
8.
1.68E-12
8,
o!
o, -• - -
o.
1.88E-15
0,
0.
0,
0,
0.
0.
0,
8,
8.
8,
8,
8.
0*
8.
0.
8.
E-l
:n**2-3EC
Clad
*MAL POWEF r~W*TT8
HEAVY METAL CHARGED
58. 1
8.
8,
-o,-
8.
8,
0.
8.
0,
a!
8,
o . — -
8.
8.
1,37E«16 "
8,
8.
8,
1,16E«29
8,
8, -
8,
8,
8, -"- '
8,
0,
0,
8,
8,
8.
8.
8,
8,
0,
8,
8,
8,
°t
8,
0.
8.
0,
0,
8.
0,
8,
8.
8.
8,
8,
o,
180, y~
8.
8,
o.
o,
o.
o, - -
o,
8.
6.79E-U
0,
8,
o.-
8,
8,
1.20C-16—
8,
8,
8,
1,16E>29
8.
0,
0,
0,
0, "- "
o,
8,
8,
0.
8.
0,
8,
8,
8,
0,
8,
o, — ---
8,
8,
8,
8.
8.
8.
0,
o , —
0,
0.
o.
o.
8.
8,
0.
TO REACTOR
" 580, Y 1000, Y 10000, Y
0, 0, 0.
0. 0, 0,
o,
8.
0, "
8,
8.
6.79E-H
8.
0.
8,
0,
o,
4.28E-17-
8,
8.
8,
1.16E«29
0.
o, -
o,
8,
0,
8.
0,
0, "
8,
o,
0,
o.
o.
o,
o.
o,
of-- --
o,
8.
o,
8.
8.
8, -
8,
8.
0,"
8.
8,
o. - -
o.
0,
o.
o.
Ot
o,
o.
0, "
o.
8,
6.78E-11
0.
0,
0,
0,
0,
1.1BE-17
0,
0,
0,
1.16E-29
0.
8,
8,
0.
o,
0.
o,
0,
8,
0,
8.
0,
o,
o, " —
o,
o,
o,
o.
0, ,
o,
o,
o.
o .
o.
8,
o , -
8,
8.
8.
8.
0,
0,
o.
o!
0,
o!
6.65E-H
0.
0.
0,
0.
8.
9.98E-28
0,
0.
0.
1.16E-29
0.
o,
o.
o.
o,
o,
o.
o,
o.
o.
o.
o.
o,
o,
o.
o.
0,
o.
o,
o, -
o,
o,
8.
8.
8.
8,
8,
0.
o.
0.
8.
- o.
o.
TABLE A-IV-1
(continued)
100000, Y******* V
0. 0.
0. 0,
0. 0,
0, 0,
0, fl,
0. 0,
0. 0,
0. 0.
S.83E-11 7,26E»12
8. 0,
0, 0,
0, 0,
8. 0,
0, 0,
o, o.
0, 8,
0, 0.
8, 0,
1.16E-29 1,16E«29
8. 0.
0. 0,
o, o,
0. 0.
0, '0,
0. 0,
0. 0.
o. o.
0, 0,
0. 0,
0, 0,
0. 0,
0, 0,
0. 0,
o, o.
0, 0,
0, 0,
0. 0,
0, 0.
0, 0,
0, 0,
o, o,
0, 0,
o. o,
0. 0,
0. 0,
0, 0.
0, 0.
0. 0,
0. 0,
8. 0.
0, 0,
0. 0.
k-IV-46
-------
PWR . BU « 33.000 FUEL DECAY TIMES(2)
CASE E-l
Clad ..._
POWER* SS.'OOHW, BURNUPS 33000,MHO, FLUX* s.'98E+i3N/CM**2»SEC
TABLE A-IV-1
(continued)
CR 51
CR 52
CR 53
CR 54
CR 55
[- *N 54
HN 55
HN 56
HN 58
FE 54
•- FE 55 -
FE 56
FE 57
*— FE 58
FE 59
CO 58M
<- CO 58
CO 59
CO 60H
— CO 60 -•
CO 61
CO 62
NI 59
NI 60
™i 61
NI 62
NI 63
| — NI 64 —
NI 65
CU 62
CU 63
CU 64
CU 65
ECU 66 —
ZN 63
ZN 64
ZN 65
ZN 66
ZN 67
ZN 68
ZN 69M
ZN 69
ZN 70
ZN 71M
ZN 71
CO A 69
GA 70
6* 71
GE 70
SR 88
'CHARGE" DISCHARGE
0, 1.43E+00
0, 0^
0.
o.
0.
0.
o.
o,
o.
o.
0,
o.
o.
0.
o,
o,
o,
o,
o.
0.
o.
Ot
o.
o.
0.
0.
o,
o,
o.
o.
o.
o.
04
o.
o,-
o.
o.
o,
0.
o.
o.
o,
o.
o.
o,
o.
0.
0.
o'.
1,81E+00
o.
0^
2*85E+00
0.
o.
1*63E-01
0,
1C!!
o?
0.
I:
4^066-02
0^
ol
;,.«.„
Q
o*
••
o.
o,
o.
0,
. °. *
o'.
i!
1 .68E+00
0,
o.
2*78E*00
0*
id
Q
Q
s<
4?06E«02
ji
2*58-103
0,
1 .29E-03
i;
0%
I:
S;
Q
- ' Nl
BASIS
1. Y
6.65E-03
0.
0,
0.
0.
1,1IE*00
0,
o.
p. - -•
o,
o,
2,43E»00
0,
0,
0.
5.90E-03
0,
1.68E+00
0,
o,
1.29E+01
0,
0.
o,
Of
o,
fl!ooE"02
0,
0.
0.
0.
o.
o,
o.
o,
7.69E-04
0,
0.
0.
0.
0.
o,
o,
o,
o,
o,
o.
o,
ICLIDE THERMAL PQWEf , WATTS
t » HJ OF HEAVY ME'AL CHARGED
10, Y so. -i — 100; — r~
0, 0, 0,
0. 0. 0.
0.
0.
o.
6.01E-04
0.
0,
o!
0.
2.21E-01
0.
o.
o.
0.
o.
2.17E.14
0.
o.
3.9aE»01
o.
o.
o.
o.
o.
0.
o.
3.78E-02
o.
0.
o.
0.
o.
o.
o»
o.
o.
7.02E-08
0.
0.
o.
o.
o.
o<
o.
o.
0.
o.
0.
o.
o.
Q _
0 -
o.
1 .83E-18
0,
0,
0,
0,
0,
S.16E.06 -
0,
o.
o.
o.
o.
o , - - -
0.
o.
2,02E»01
0.
0.
o.
o!
0.
2.79E-02
0, -• - -
0.
0.
o,
o,
o.
o.
0.
7,838-26
0.
0.
o,
o,
o,
o.
o,
o, —
o,
o.
o,
o.
o.
o.
o.
o!
o.
o.
o,
o!
o,
o.
o.
o.
o,
o.
o.
o,
o.
o,
o,
o.
o.
1.9ZE-02
0 .
0.
o.
o.
o.
o.
°t
o,
o.
ot
o,
o.
o.
o.
o,
1
o.
o.
o.
o.
o.
TO REACTOR
"500, V 1000, V
0. 0,
0. 0.
o,
o,
o.
o.
o.
o,
o,
o.
o,
o.
o.
o.
o.
o,
o.
o,
o.
o.
o,
o,
o,
o.
9.41E-04
0,
o.
o,
0,
o.
o,
o,
o,
o.
0,
o.
o,
o,
o.
o,
o,
o.
0,
o.
o,
o, -
0.
o,
0.
o,
o,
o.
o, -
o,
o.
o.
o,
o.
o o o o o o
o.
o.
o.
0,
o,
o.
o,
2.17E-05
o.
o.
o.
o.
o,
0,
o.
o,
o,
o,
o.
o, -
o,
o,
o,
o.
o,
o,
o.
o.
o, -
o.
loooo, r
o.
o.
o.
o.
o.
o.
o,
o.
oooooooooooo
o.
o.
o,
o.
o.
o.
o,
o.
o,
0,
o!
o, - -
o.
o,
o, -
o.
o.
o.
o.
o.
o.
o.
o.
0,
o.
o.
o.
o.
o.
o.
o.
100000,
o,
o.
o.
o!
o.
o.
o,
o,
o.
o.
o.
o.
o.
o.
o.
o,
o,
o,
o,
o.
o.
o.
o,
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
o.
o.
o.
o,
o.
o!
o,
o,
o!
Y******* r
o.
o.
0.
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
o.
o.
Ot
o,
o,
o.
o,
o.
o.
o.
o,
o.
o.
o.
o.
o.
o,
o,
o,
o,
o',
o.
o.
o.
o,
o,
o.
o.
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
A-IV-47
-------
PWR «
POWf
:R»
8U « 33»000 FUEL DECAY TrMESC2>
38,'aOMW, BURNUP
B 33000, MWO, FLUX8
.CASE
E-l
3,'98E*13N/CH**2-SEC
NUCLIDE THERMAL POWEP, "WATTS
BASIS » MT OF HEAVY METAL CHARGED
; SR 89
j SR 90
SR 91 "
Y 90M
Y 90
r~ Y 91M
Y 91
ZR 90
ZR 91
ZR 92
ZR 93
r~ ZR 90
ZR 95
j ZR 96
NB 92
NB 93M
NB 93
NB 90 •
NB 95
NB 96
1 NB 97
MO 92
MO 93
l MO 93M
MO 90
I HO 93
MO 96
MO 97
MO 98
r*0 99
MOtOO
MOIOI
TC 99M
TC 99
TCtOl
"RUtOl '"
CD113M
.COU3
CDU5M
COUS
C0119M
r~ coti9
C0t2l
INU3
— INU9M "
INU9
TM21M
'— IN121 -
LSNUO
SNtlS
SNU6 "
SNllTM
" CHARGE" DISCHARGE
0.
o.
o.-
o.
o.
o.
o.
o.
9.
0.
0,
0.
0,
9.
0.
o.
0.
o.
o.
o.
o,
Of
o.
o.
o.
o.
o.
o.
0.
0.
o.
0.
o.
o.
o.
0.
o.
o.
o;
0.
o.
o.
o.
0,
0."
o,
o,
o,
o.
0.
o.
0.
1.20E-02
7.08E-07
...._ .._. .
0,
3,18E-06
8.21E-02
0.
0,
0.
6.55E-06
0.
2.09E+01
0.
1
1.50E
0.
0.
0,
Of
0.
Ot
0.
0.
o.
0.
o.
Ot
o.
o.
Ot
3,?ie
o.
Of
o.
Ot
Of
o.
o,
o.
o,
Ot
Ot
Ot
Ot
o,
o.
o.
0,
ol
• 06
• OS
• 06
•07
A-IV-48
-------
PWR . BU-« 33.000 rUE
POWER*
38.40MN, BURNUPi
-- - CHARGE DISCHARGE
«NU7 0, OJ
3NU8 0. 0.
3NIJ9H 0,
3NU9 0,
3Nt20 0.
r3Nt21 0*
SN122 0.
3N123M 0,
SN123 0,
3N124 0.
C3N125R 0,"
8N125 0,
38121 0.
88123 0,
SB124M 0.
38124 0,
SB126M 0.
I SBt.26 0,
TE124 0,
TE125M 0.
TE125 0.
rfE 126 0,
TA1.60 0,
TA181 0,
' TAtS2M 0,
TMB2 0,
M>80 0,
rHtSl 0,
N182 0,
MR3M 0,
N183 0,
Wt84 0,.
M185H 0,
rHt 65 0,
MS6 0,
Nt87 0,
TOTAL 0,
S;
6*67E-41
4*55E"04
0.
2.33E-07
t)
Q
6J59E-03
0.
5.79E-07 '
o"
0.
0
p^
Q
* 0
o.
1:
Q
Q
2, 15Et02
•L DECAy Tl
3300tf>.M>
o, y
Q
Q
iCI
oj
2?06E«08
I: .
4.51E-03
9.50E-02
9'*35E.OB
8,19E«03
°»
0
Q
Q
0
0
0,
0
0
L*.
ME3C2)
ID, FLUX« ]
NU
BASIS
if Y
0.
0.
2.97E-03
0.
0,
1.86E-04
0.
0.
0,
1.38E-04
o!
2.92E-14
0.
0.
8I36E-02
0.
3.74E-12
0.
7,32E«03
0.
o •
o.
o.
o, - - •
o,
o,
o, -----
o.
o.
o.
o,
o,
o.
o,
1.41E+02
CASE
>8E*13N/C
CLIOE "THER
« MT OF
. 10. v
0,
0.
0.
0.-
i.7iE«or
0 _
0 •
o,
1.67E-12
0,
0.
o.
o,
0,
o.
1.75E-20
8.29E«03
0.
0.
o. ••-- - -
7.28E-04
0.
0.
0.
0 .
o.
o.
o,
o.
o.
o.
o.
o.
o*
0,
o.
3.97E+01
E-I
M*
MA
HE
0.
0.
8.
0.
0.
1.
o.
0.
o.
o.
o.
o.
0,
o.
o.
o.
o.
2,
o.
o,
o.
2.
o,
o.
o.
o,
o.
o.
0.
o,
0.
o,
o,
o.
0.
o.
0.
o,
2.
*2«3EC
L POWEf >""WAVT3
AW METAL CHARGED
50, v loo, -y-
0.
o,
33E-25 0,
0,
0.
19E-00 7.53E-OS"-
0.
0.
0,
0.
0.
o,
o,
o.
o,
0.
o.
87E»07- 7,64E»13"
Of
0,
52E-08 6.71E-14
0,
0.
o.
o,
o,
o,
o.
o,
o.
o.
o,
o.
o.
o,
o.
31E"01 l,96f«02
Clad
TABLE A-IV-1
(continued)
TO REACTOR
- 500, y 1000, v 10000, v
0, 0, 0.
0. 0, 0,
o,
o.
o.
1.96E-06
0.
0.
o, ~
o,
o.
o.
o.
0.
o, •
o.
o,
o.
o.
o,
Of
o.
o.
o.
o,
o.
o,
o.
o.
o,
0.
o*
°f
0.
o.
o,
o.
o.
l.OOE-03
o, -
o,
o. •
2.05E-08
o.
o.
o,
o.
o.
o, -----
o,
o.
o, - --
o,
o,
o, • •-
o.
o.
o, -- -
o.
o.
o,
o,
o.
o,
o,
o.
o. - -
o.
o.
o,
o.
o.
o , - -
o.
o.
8.13E-05
o. -
0,
0.
0,
0,
0,
o,
o.
o.
o, -
o.
o,
o,
o.
o.
o, --••
o.
o.
o,
o.
o.
Of
o.
o.
o, - - -
o.
o.
" o,
o.
o.
o.
o,
o.
o,
o.
o,
4,72E«05
100000, Y******* Y
0. 0,
0. 0,
0. 0.
0, 0,
0. 0,
0. 0,
o. o.
o. o.
o. o,
0. 0.
o, o,
0. 0.
0, 0.
0. 0.
0. 0.
0. 0,
0. 0,
0. 0.
o. o,
0. 0,
o. - o,
o. o.
0, 0.
0, 0.
0, 0,
0. 0,
0. 0.
0. 0.
o. o.
0. 0,
0. 0,
0. 0,
•o, o.
o. o,
0. 0.
0. 0,
0. 0.
0. 0.
3.31E-05 1.82E-05
A-IV-49
-------
•w BU s 35,600 FUEL 06C4V T|M8S«25
ease
e S8,"si6MWs BURNUPa
FLUXs 3.>8E+l3N/CM*«2«SfC
NUCLXOE THERMAL POWER, W&TTS
BASIS c MT OF HEAVY METAL CHARGED TO REACTOR
TABLE A-IV-1
(continued)
HE «
— 7L?08
TL-?O^
P8?0fe
i PB?OT
P8»08
j P8»09
P03 i 0
PB? 1 1
' PB212
[ PB? i a
Bl'O?
SJ21 0
8 1 2 1 i
BJ312
8 H 1 3
— 8I3J6
PO?I o
POSM
PQ212
PO?13
PO?I«
PO^ 1 5
P0?l 6
PQ?I8
»T?17
RN3J9
RN220
— RN?22
FR?21
FR?23
RA?23
RA?28
RA?25
— R*-?26
RA?28
AC?25
AC-J27
AC228
TH?27
" — TH?28
TH?29
TH>30
' TH?3 J
TH232
TH?33
— TH?38
PAPJI
PA232
"~~PA'33
P»-»i/i>
CHARGE DISCHARGE
0° 2*90E<.09
oj
0.
0.
oe
0,
e,
0,
o.
o«
0,
o,
0.
o.
OB
' o,
o,
o.
o,
' o'
0 c
o,
o,
o.
o,
o.
" o,
o«
0.
0."
o,
o.
0. " -'
o, .
0.
" 0 •
o.
o.
0,
o.
o.
0.
Oi
0,
o,
0.
o.
0,
4 A
1.73E-OS
I.23E-H
o:
o,
0.
3,9aE-H
2 - 22E • 1 S
3.?2E»09
2,08
1 .t,?fmfi\
10e V
2l32E»0@
!,a5E«0«
3.23E.1S
0,
0,
0.
S.03E.J6
S,«8E.12
2.S7E-08
2,ae£*05
7a 12E»10
0.
9,36E-li
3.00E.07
3,0 !E»Oa
S,53E»10
a,07E»09
1.12E-09
J.02E-09
5.87E-Oa
a,37E-09
1.33E-08
3.37E-07
7,08E.Oa
1 .06E.08
3.77EB09
3.J1E.07
6,5fcE«0«
9.53E-09
3.35E.09
2.52E-10
2.67E-07
5.92£..0a
5. 92E-U
8.28E»09
8.67E-15
3.09E-09
3.88E.09
3.22E-13
2,blE«07
5,e>7E.oa
2.72E-09
3,19E*06
1.36E.05
3.53E.12
0.
1.12E»Oa
8,88E«07
0.
fl i fl?E»Ofl
« .APF.n^
50. V 1006 V 500, Y
o, ee e,
6963E"08 l,a7E»07 6.2*E-07
i,19E-oa
l,65E-iO
C.
0.
0.
5.27E.10
9.33E.15
9.57E-08
2,oaE.OS
1 ,a2E«08
o.
5.92E-09
U12E-06
2,a7E-08
2.62E.09
8.12E-08
7,08E-08
S.79E.09
a,82E-oa
2,23E-08
2.66E-07
t .25E-06
5 ,82E"08
2.11E-07
t ,92E»08
!,16E-06
5,39E-08
J.90E-07
1.71E-08
9.39E-10
9.95E.07
8, 66E»Oa
3.02E-10
1.6SE-07
a, i?E»ta
1.S7E-08
1 ,aa£.oe
2,8aE-t2
9.72E-07
a,66E-Oa
1.39E-08
l,5aE«05
1.36E-05
1.S9E-11
o,
1,12E«08
l.JOE-06
0,
5,02E«08
1 .*.?F»Oi
•7.36E-05
t,53E-tO
0,
0.
0,
S,«5E«09
5,61E-tO
J.69E-07
1,26£B05
S,83E«08
o.
3.56E-06
" 1.91E-06
1.53E-Oa
7.75E-09
' 3933F»07
8,2feE-07
6,ae£»09
2,98E-Oa
6, J2E»08
t,09E»Ofe
2.18E-06
3,S9E-Oa
8.67E-07
5.28E-08
1.98E-06
3.33E-08
7.80E-07
a,69E»08
J.60E-09
J.70E-06
3,OOE-Oa
8.29E-10
6,7 ?E»07
9.05E-18
a,33E-08
2,86E»08
6.23E-13
1.66E-06
2.88E-08
3,81E-08
3,30E-05
1.36E-05
3.18E-H
0,
l,t2E-08
1.86E-06
0,
5,87E"08
1.6?F"03
1 «57E«Ofc
9.99E-09
0,
o,
o,
3.19E-08
2,91E»06
6,9aE»OT
2,68E»07
S ,7JE«06
0,
1.85E-06
8,08E«06
3,2«£-06
i,71E«07
9.76E-06
2.21F-05
2.7SE.08
6.33E-06
l,55E»Ofc
3.20E-05
9,09E«06
7,feaE»06
2,58E*05
i , 16E»06
8,aOE«06
7,08E«06
2.28E-OS
1.03E-06
6.80E-09
7,21E>06
6 , 39£-«06
1.83E-08
1.98E.05
5.00E-13
9.53E-07
1 «05E*OT
3 4 ti f w 1 i
7,08E«06
6,11E>06
8.80E-07
2,09E«Oa
1.37E.05
1.57E-10
0.
1.12E-08
fe,3JE-06
0,
1 ,09E»03
J.62F-03
^looO" T
i ,28E<>0@
0.75E-OS
oe
o,
tl52E«OT
J,18E«07
1,31E»06
2.19E.09
fc,9lE»Ofc
0(
7,a7E-0&
S e52E-05
2,fcSE«08
8.J2E-07
3.95E-05
8.9SE.05
5,18E«06
5, S @E»08
6,"2E«Ofe
1,29E-08
187!E-05
6.25E-06
l,03E-Oa
5,5aE«06
1,58E-05
5.79E.08
9,2aE-05
a,92E-06
1,28E-06
1.36E-05
5,23E>08
e,69E«08
8,03E»05
1.01E-12
a,5a£-06
t ,97E»07
6.96E-11
1,33E«05
S,OtE'08
3.99E-06
a,a2E'Oa
1,3BE>05
3.17E-10
0,
l,l2E*oa
1.19E.05
o,
i ,aoE»03
l.fc?E.03
100eOe V109000, Y******« Y
09 6S 6e
l,09E«Oi 7,03E»OS 8,68E»OS
j 29E«0?
6,1 6E»Ofe
o.
0 a
0,
1.97C.OS
5.06E-06
J,21E»OS
2.20E«10
2,97E»oa
c.
1 ,ajE*oa
2.66E-0?
1.05E-0«
1.70E-03
3.8UE-03
8,80E-07
5,20E«09
e,32£-oa
5.5fcE.03
l,59E»oa
6,27t-09
a,a2E-03
7,18£«oa
i,a7E«oa
5,81E»09
3,96E«03
6,38E>Oa
1.19E-07
i I26E*OQ
S,2aE*Q9
1.13E-05
3. USE. 03
1.18E-11
5.88E-08
S.83E-06
8.13E-10
i,23E-oa
5.02E-09
5,ieE>oa
8,a3E-03
1.58E-05
3.71E.09
0.
l,t2E.oa
i,UE*oa
o.
1.65E.03
1.62E-03
l,61E«08
1,51E»0«
0,
6 e
©@
0 aS^&VQfi
4a07E*0?
7,79E®05
2t75E«09
2 1 39E»OS>
o,
2,S8E»03
9,08E»0«
S.33E-06
2.58E-OS
1,36E»02
3,08E-02
3,09E»06
6.50E-08
2,OaE-02
a,86E*02
t ,02E*03
7,8aE»08
3.55E-02
1,76E«02
9.83E-08
7,26E«08
S,J9E«02
1,S6E-02
7.68E-07
8,10E»Oa
6.55E-06
2,7&E«oa
2.77E-02
1,88E«10
l,aaE>02
i , 1 7E»05
1.02E-08
7,91E«oa
6.27E-06
1.27E-02
2.76E.02
2.22E-05
8.63E.08
o,
1 .12E-08
7,iiE-oa
0,
1 ,60E*03
S,62E»03
1.62E-0?
3»38E»Ot
Oe
@ f
® e
1 »08E»OS
1 e 95E»OS
? 063E»CS
2«77E»08
I eiSEvOS
0,
I.28E.OS
1 .12E-OS
3.35E.07
5,78E»03
6.55E-OJ
l,a8E-02
3.82E-06
6,5a£«OT
a,57E-02
2.18E>02
t ,26E«03
7,89E«07
1.70E-02
3,98E*02
1.17E.03
7.31E.07
1,53E.02
3,50E»OJ
9,aaE.07
S.OOE.03
6,60E«07
*,19E-08
1.33E.02
1,«9E.09
3.23E.02
l,a5E.05
1 |02E*07
9,77E»Ofl
6,32E-07
2, SUE. 02
1.33E.02
2.27E-05
4,66E*07
0,
l,12E.oa
8,79E-Oa
Ot
1.30E.03
1.62E-OJ
A-IV-50
-------
_ - BU • 33,000 FUEL DECAY TIMES(2) CASE E-I
POWER* 38,'ooMW, BURNUPU 33000,MWD, FLUX* 3.'9BE+i3N/cn«*2-3EC
HE'S
TABLE A-IV-1
(continued)
"" - • •••" • NUCLIDE THERMAL POKE* , HATT3
BASIS « NT OF HEAVY MEIAt CHARGED
CHARGE DISCHARGE
PA=>38
U232
U233
U»38
U?35
U 2 3 6
U=>37
U?38
U239
U280
NP?36
— NP5I37
NP3-58
NP?39
— NP200M
NPJ.80
PU?36
— PU'38
PU?39
Pu?ao
- Pu^ai
Pu?a2
Pu3a3
r u? a a
PU-?u5
AM?a i
— AM?a2M
AM?82
AM?83
— AM?aa
| A M ? H 5
'• CH?82
'— CMJ83
CM244
CM^BS
i — CMPU6
CM?a7
Cn;»a8
c w^a9
CM250
BK?<|9
1 — fl n? 5 0 '
LCF>a9
CF;>50
CF251
CFJ52
CF?53
i — CF?58
1 ES?53
! TOTAL
0,
o.
— o.
5.65E-02
1.90E-03
0,
o,
8,16E*03
" 0.
o.
o.
- o.— ---
o,
o,
- o. -- -
o.
0.
o,
o.
o.
o, —
o,
o,
0 |
o,
- o! - -----
o.
0.
o. • • •
o,
o,
- o,
0,
o,
" 0,
Ot
o.
o.
o,
o,
— o ,
0.
o.
0,
o,
o.
o«
6.65E-02
2,"8SE-06
2,86E.Oa
1 ,?8E«06
3.06E-02
a,78F.08
7,0 fl E • 0 3
2, t 9£"03
7 95E-03
0,
s|68E-52
9 ,63E»03
1.58E-18
2.32E-02
3.51E-17
0,
1.28E.02
7,5SE+01
1.03E+01
l,52EtOl
- 5,20EtOO
5,15E«02
a,97E«ll
-l,58E«16
0,
fc.76E*00
t.31E»06
6, 1 SE'ifc
6.J7E.01
5.39E-20
5.83E-25
5.59E+02
- 1.50E«01
6.,8aE*01
1,39E-03
" 3, 0 1E"04
1,10E«09
t,46E«0»
8_l3E*38
2, 1 8E«1 8
«.«3E.21
l.feSE-lfe
a,6aE*06
4,61E,»07
-3.93E-10
l,a5E«0?
9,51E-36
•«.53E»19
•l,10E-28
7.81Et02
0. Y
2^85E-06
2,S6E*04
1.59E.06
S.08E«02
a.78E-08
7.0UE.03
2,OOE«03
7,95E«03
0 .
7^95E"18
9,08E-63
9.63E-03
2.98E«?3
2t32E-02
aoiE«i7
0,
1 .2t£"03
7.61E+01
1,03E+01
1.52E+01
5 18E+00
5.15E-02
8.97E-11
I ^/rt*1! O
o,
7,36E»00
1 .31E-06
6.12E-06
6.27F*Ol
6 1 6F *?0
3,91E-?8
a 86E+02
l.a9E«01
6.82E+01
1.39E-03
3,01E»0«
1.10E«09
l,a6E-08
J.26E.83
2,1 8E»1 8
3,aoE«2«
1 ,68E»t 6
«,55E«06
a,«OE-07
5^93E«10
1 ,*2E»07
2 68E*8l
«8,53E«19
.1.66E-33
6,69E*92
It Y
2.85E-06
3.05E.08
1.61E.06
3.09E-02
a,76E-08
7.08E.03
1 ,9aE«03
7.95E.03
0,
1.35E-17
0,
9.63E-03
0.
2.32E-02
6.80E-17
0.
1.07E-02
7.69E+01
1.03E+01
1.52E+01
5, 06E+00
5.15E-02
2O A C • A
,<»9E.16
0.
1 .06E + 01
1.30E.06
6, HE. 06
6.27E-01
l.oaE-19
1.21E-85
2.23E+02
1.88E-01
6 .69E + 0 1
l,39E»03
3.0SE.08
1.10E.09
t
2.18E.18
l,05E«ai
1 .68E.16
8,13E«06
3,37E«07
3.93E.10
1,2*IE-07
0,
-J.70E.2S
0,
8.09E+02
10. Y
2.85E-06
6.07E.08
1.98E.06
3.26E.02
8,78E-Oa
7.0aE.03
1.27E-03
7.95E-03
«.
1.13E.16
0.
9.72E-03
0.
2.32E.02
5.70E.16
0,
1.20E.03
7.27E+01
l.03E*01
1.52E+01
3,30E»00
5.15E-02
8.97E.11
2,5lE«15
o,
5.78E+01
1.25E-06
5.86E.06
6.26E.01
8.75E-19
0,
3.22E.04
1.22E.01
8.78E+01
1.39E-03
3.00E.08
1.10F-09
1.86E.08
0.
2.17E-14
0.
i ,68E'l 6
7.01E-07
2.86E.09
3.90E.10
1,18E.08
o.
o.
0.
2.08E»02
50. '
2.85E.06
a, aaE.oa
3.71E-06
3.87E.02
8.79E-08
7.06E-03
1.90E-08
7.95E-03
0.
5.55E-16
0,
1.09E-02
0.
2.31E-02
2.80E.15
0.
7.13E.06
5.32E*01
1,03E»01
1.52E+01
8,9aE-01
5,15£.02
8.97E.11
1 ,23E»ta
0,
1.27E+02
1.08E-06
a,89E-06
6,2aE-01
8.30E.18
0,
l.HE'04
5,1 tt.02
1.02E+01
1.38E-03
2,98E*08
1.10E-09
t
2.18E.14
0,
1.6SE-16
2.66E.10
6,91E>16
3.78E-10
3.31E-1J
0,
o,
o.
2,17Et02
1 100. Y
2.85E-06
2,78E*04
6.22E.06
4,80E.02
8,79E«08
7.08E-03
1.77E-05
7.95E.03
0,
1.11E-15
0,
1.28E-02
0,
2.30E-02
5.59E-1S
0,
3.73E.13
3,61E»01
1,03E»01
1.52E+01
8.60E-02
5.15E-02
8.97E-11
2 0 Q 6E* 1 4
0,
1 • 29E ^02
8.30E.07
3.89E-06
6.21E-01
fl.58E.18
0,
8,81E«OS
1,73E«02
1,51E»00
1.37E-03
2.V6E.08
1.10E-09
1.46E.08
«
2.09E-18
0.
1.62E.16
l.aiE'la
6,75E-lfe
3,68E»10
6.77E.19
0.
o.
o,
1.93E»02
TO REACTOR
500, Y
2.85E-06
5.43E.06
3.81E.05
5.a8E.02
8,83E«08
7.23E-03
6.76E-10
7.95E-03
0.
5.53E-15
0.
2.37E-02
0.
2,22€-02
2.79E-18
0.
0, .
1.60EtOO
1.02E+01
1.86E+01
1 .76E-06
5,1«E-02
4.97E.11
1 .23E«1 3
0.
6.86E+01
1.38E-07
6.28E.07
5.99E-01
8.28E.17
0.
1.82E-05
2.98E-06
3.35E-07
1.33E-03
2.79E-04
1,106.09
1.46E.08
0-
,
1,78E>14
o,
1,38E«16
0.
5,76E»16
Z,67E«tO
0.
o,
o,
o.
9,57E»Ot
1000, Y
2.65E-06
4.73E.08
9,6aE-05
5.52E-02
4.87E.04
7.81E-03
6.8PE-10
7.95E-03
0.
1.10E-14
0.
3.05E.02
0,
2.12E-02
5.58E.14
0.
0,
3.26E-02
l.OOEtOl
1.38E+01
1 .69E-06
5.UE-02
8.97E-11
2n e c 4V
,a5E«13
0,
3,08E*01
J.37E.08
6.K2E-08
5.73E-01
8,56E-17
0.
1.85E-06
5.90E.11
2.02E.15
1.27E.03
2.60E.04
1.10E.09
1.86E.OS
t
1 «86t.lt
0,
1.13E-16
0,
L82E.10
0,
0,
0,
0,
5,55E*Ol
10000, Y100000, Y*o*«**« Y
2.85E-06
0,
l.aaE-03
5.41E-02
5.57E-08
9 ,a(,E.03
3.05E-10
7.95E-03
0.
1.09E-1J
0,
3.S9E-02
o.
9.3BE-03
5.52E«13
0.
0.
4.71E.28
7.83E*00
S.SOEtOO
7.9aE-07
5.06E-02
a,97E-ll
2,43E«12
0.
*,55E-04
2,OaE.26
9.56E-26
2.53E-.01
8.06E-16
0,
2.17E-24
0.
3.98E.15
5.99E.04
6.90E-05
1.10E-09
l.aae.os
Oe
4.0SE-16
o t
3.13E.18
0,
1.J1E-17
1.78E.iS
0.
0.
0.
0.
1.36E+01
2.85E-06
0,
1.22E-02
a,aoE»02
7.81E-04
1.08E-02
1.61E-13
7.95E-03
0.
9.99E-1J
0.
3.88E-02
0.
2.69E-06
5.00C.12
0.
0.
0.
6.15E-01
5,aOE«08
a,16E-10
fl.J9E.02
8.95E.11
2,22E>1 1
0.
3.55C-07
0.
0,
7,27E«05
7.78E-15
0,
0.
0,
3,64E»14
3.16E.07
1.22E-10
1. lOt- 09
!.20E»08
o»
1.09E-J1
o,
8.39E.34
0.
J.51E.3J
0.
0,
e.
o.
o.
1,08E»08
2.86E-06
0,
2.78E.02
l.tflE.02
7.99E.04
LOSE. 02
o.
7,95E«03
0.
8.57E.12
0,
2.60E-02
0,
4.54E.11
2.31E-11
0.
0,
o.
1.05E.09
1.18E-10
0.
8.27E-OJ
a,76E-H
t ,02E«10
0.
0,
o.
o.
1.23E.O*
3.54E-14
0.
o,
o.
1.67E.13
0,
0,
1.06E.09
2. 08E. 09
Ot
0.
e,
0.
o!
o.
o,
o.
o«
8,
I.99E.01
A-IV-51
-------
PWR •
j POWERS
1
BU « 33,000 FUEL DECAY TIMESC2)
38.00MW, BURNUPm 33000, M
HO, FLUXa
CASE
E-l
3.98E+13N/CH**2»SEC
1 " NUCLIOE THERMAL POWER, NATTS
BASIS « MT OF HEAVY ME1AC CHARGED
! CHARGE DISCHARGE
; H 3
! ZN 72
1 — GA'72
GE 72
GA 75
i GE 75
j GA 7a
j GE 71
GA 75
SE 75H
GE 75
r AS 75
! SA 76
i GE 76
'—AS 76
SE 76
GE 77H
1 — GE 77 -
*S 77
i SE 77M
1 — SE 77
GE 78
A3 78M
i AS 78
SE 78
AS 79
' SE 79M
SE 79
BR T9
— AS 80
SE BO
BR BOM
*— BR 80" -
KR 80
AS 81
i— SE SIM
SE ei
BR 81
• KR 81M
KR 01
SE 82
|— BR 82M
*R 82
KR 82
L SE 83M-
8E 63
BR 83
r-KR 8SM
KR 63
SE 84
1 — BR 61H -
Be •«
8,
8.
0.
0.
0.
0 |
o,
8,
0 i
8,
8,
(J (
8.
8,
0,
8,
8,
0.
0.
8,
0.
8,
8.
u,
8,
8,
u.
8.
8,
8,
8.
8.
0,
8.
8.
8,
8,
8.
o,
8.
0.
8,
8,
8.
0.
8,
0 |
8,
8,
8,
A
2.5SE»02
1.77E-25
a.lOE-2fl
0,
0,
0.
8.
8..
8.
8.
8.
8,
o.
2.28E-a2
0
8.
l.aSE»95
1,7<>E"28
9,65£»31
8,
ft.
8,
8.
8.
8.
8.
1,50E"0«
0,
o.
8.
8.
0.
8.
8.
- "-• 8.
0.
8.
0,
0.
8.
1.0«E-29
8.
— o.
o.
0 •
0.
o.
0 _
n
0, Y
2.53E-02
1.38E.-50
3.20E-29
0.
8.
0,
8,
8.
o.'
0 .
9.
8.
2.89E-51
8,
8.
1, 37-116
3,50E«3«
7,03E«57
0,
8,
8.
8.
0.
8.
8,
1.50E-04
8,
8,
8.
8,
8,
o.
8.
o.
8.
0 .
8,
8,
8,
1.95E-J6
8.
8.
8,
s
8,
8,
o,-
0 .
1. Y
2,«6E"02
0.
0.
0.
8.
0,
8,
0.
o, -
8,
8,
8,
8,
8.
o.
8.
8,
8.
0,
0.
8,
8,
8.
8.
8.
8,
8,
1.50E-00
8,
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
8,
8,
8.
0.
10, Y
i.aeE-02
o!
o.
o.
0 |
8.
0.
o. -• -•
8.
0.
8. -
8,
o.
0.
8,
8.
8.
8.
8.
8.
8.
6.
0.
8.
8,
8,
1,50E«04
8,
8.
8,
8.
8,
8,
8.
0.
8,
8.
8,
6.
8..
8.
8.
8.
8.
8.
8,
0 i
8,
8.
8,
fl.
50. >
1.55E-03
0.
8,
0.
8,
0.
0,
0,
- o , — - -
8.
8,
8,
8,
8,
o.
8,
8.
8.
8,
0.
o, -
0.
0.
o, --—
8,
o, -
1.50E-04
o,
8,
8,
8,
8,
8.
8,
8.
8.
8.
8,
8.
8,
8.
8,
8.
0.
8,
8,
8,
8,
8,
0, '
0.
100, Y
9.28E-05
8.
0.
8.
8.
o, - -
8.
8,
0 , - -
8,
8,
8,
8.
8.
o.
8,
8,
o, -- -
8,
8,
o, -•- •
8.
8,
8,
8,
o.
8, " "
1.50E-04
8,
8,
8,
8,
8,
8.
8,
8.
8,
8.
8,
8.
8,
0.
8,
0.
8,
8,
8,
8.
8,
8,
0,
0.
VP ' o
TABLE A-IV-1
(continued)
TO REACTOR
500. Y
l,SOE-lfl
0.
0.
0.
0,
8,
8.
8,
o, - -
8,
8,
0 1
8.
8,
o.
8,
6.
8.
8.
0.
8,
0.
8.
o, - - -
8,
8,
0,
1 .09E-OQ
8.
8.
8,
8,
8,
8.
8,
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
o, -
0.
1000, Y
8,69E-27
0,
8,
8,
8.
8,
8,
8,
0,
9.
0,
8.
0.
8.
o. ----
8,
8,
8,
8.
8.
8,
8,
8.
8«
8,
8,
8,
l,a»E-Ofl
8,
8,
6,
8.
8,
8,
8,
8,
8,
8,
0.
8.
8,
8,
8,
8.
8,
8,
8,
8.
8,
8,
0,
0.
10000, Y100000, Y***«**» Y
8,
8.
8.
8.
8.
8.
8,
8.
8,
8.
8,
8, -
8.
8.
8,
8,
8.
8.
8,
8.
8,
8.
8.
8.
8.
8,
8,
1 ,356-04
8.
8.
8.
8.
8,
8.
0.
8.
8.
8.
8,
0.
8.
8,
8,
8.
o.
0.
o.
8,
8.
8,
8.
0.
8,
8,
0.
8,
8.
8,
a,
8.
8.
8.
8,
8,
8,
0.
8,
8,
8,
8,
8,
8.
8,
8.
0.
8.
8.
8,
8t
5.16E-05
8.
8,
8,
8,
8,
8,
0,
8,
8.
8.
8,
8.
0.
8,
8,
8.
8,
8,
8,
8,
8,
8.
0 (
0.
8.
8.
0.
8.
8.
8,
8.
8.
8,
8,
0,
0,
8,
8,
0,
8.
8.
8,
8,
0.
0.
8,
8,
0,
0.
8,
0 f
3.50E-09
0.
8,
0,
8.
0,
8.
0.
8.
8.
8.
0,
0,
0.
0,
0,
8.
8.
o.
0.
o*
o,
o.
o.
0.
A-IV-52
-------
PHR . BU » JStOOO _FUEU DECAY TIME3C2) CASE E»l
BURNUPa 33000,HMD, FLUX* 3,'98E»1 3N/CM**2«3EC
FP's
POWER*
TABLE A-IV-1
(continued)
NUCLIDE THERMAL POME? , WATTS
BASIS o MT OF HEAVY ME1 AL CHARGED
CHARGE DISCHARGE
KR ea
SE 85
PR 85 ~
KR PSM
KR 85
|— *3 65
KR 86
KR 66
— RB 86M~"
R9 86
3R 66
—PR 87 •--
KR 67
PB 67
SR B7H
33 87
as se
-- KR 88
RB es
3R 68
— BR 89
KR 89
RB 69
— SR 89 ~
Y 89
KR 90
— RB 90 "~
SR 90
Y 90M
I Y 90
ZR 90
KR 91
'~RB 91
SR 91
Y 91*
r Y 91 '
ZR 91
KR 92
— RB 92 —
SR 92
Y 92
— ZR 92 '
KR 93
RB 93
— SR 95"~
Y 95
ZR 95
r- NB 95M
N8 95
KR 94
'- SB 94 -
«o nn
8.
0.
8.
8,
0.
8.
8,
8,
0,
8,
8.
o , ~
0.
v •
81
o,
8.
8,
o,
8.
8.
0, ' *
8,
8.
o, —
8,
8,
0,
8,
8,
0, "
8,
8,
8, "
0,
8,
o,
8,
8,
0,
0,
o.
0,
0,
8.
8,
0.
v •
0,
8,
0,
8,
o ,
ft
0.
1:
0.
1.80E+01
0^
0.
8,
o, -
1,20E-02
0.
0,
0.
1.26E-08
0,
8,
0.
0<
0.
0.
o?
0.
0
4.a5E+02
0.
0.
0.'
9;96E+01
o:
8,a8E+02
0.
0,
0,
ft'
0.
7.82E+02
0,
0.
0,
0,
0.
0... ...
o;
o.
0.
6.16-103
2.21E-00
3.65E-05
0,
0,
0.
/O
8, Y
0,
S;
o;
1,79E+01
0,
0.
!:
3.55E-03
oj
8,
0,
1.26E-08
0,
0.
o.
ol
0.
0,
o,
0,
o;
2.87E+02
0.'
8.
0.
9,9aE+Ol
ol
a,07E+02
o.
0.
0,
0*t
8<
5.30E+02
e;
0.
0,
o.
0.
o.
o.
o.
8,
0,
2.21E-oa
2.796-05
8.'
°,
o,
-------
PWR • BU « 33.000 FUEL DECAY TJMESC2J CASE E«l
«, BURNUPs 33000.MUD, FLUXs 3.*98E*13N/CM**2»SEC
FP's
POWERS
TABLE A-IV-1
(continued)
"" - NUCLIOE THERMAL POWER, WATTS "
BASIS « MT OF HEAVY METAL CHARGED
CHARGE DISCHARGE
Y 9fl
ZR 94
— RB 95
SR 95
Y 95
-ZR 95
NB 95M
N3 95
-MO 95 -
Y 96
ZR 96
- N3 96
MO 96
Y 97
- ZR 97
NB 97M
NB 97
- MO 97
7R 98
NB PBM
- N8 98
MO 98
NB 99
M n MA
— NO 99 —
TC 99M
TC 99
-RU 99--
N3100
MOtOO
- TCTOO --
RUt 00
N3t01*
-MQtOl —
TC101
Rutoi
—MO 1.0 2 —
TCt02M
TC102
-RtM02~ '
M0t03
TCt03
-sui.03 •—
RH103M
HHT03
-MQtoa —
TCtOfl
fiutoo
- "KtOttM"-
RHI.OI
P01 0»
-MQtOS
TC1«*
9.
9.
9.
9.
9.
9.
0.
9,
0 .
9.
9.
o.
9.
9,
9. ~
9,
9.
9,
9.
9,
9.,
9.
9,
9.
9.
9,
9.
9.
9.
9, ' —
9,
9.
o , - --
9,
9.
9;
9,
9,
9.
9.
9.
9,—
9.
9.
o . -
9,
9,
9,
9.
9,
0,
f>.
9,
9,
0,
9,
9.
1.86E+03
1.05E+01
3.20E+03
9,
9,
9^
2.S2E-06
9.
9,
2.98E-60
1.36E-60
2.36E-60
9.
9'.
°< '
9'
9.
9,
5.36E«13
t.07E-13
9,66E-03
9, -
9
9,
°,
t.
9,
o; .- -
9.
9.
9.-- ~
9:
9..
9.
9.
9,
3.76E*03
5.92E+01
9;
°<
0,
9.
V
9,
9,
0
0.
. °i Y
9,
o;
9^
9.'
9.
I.31E+03
7.39E+00
2.35E+03
9<
9,
0,
t,09E«56
9.
9,
3.19E-74
lta6E-74
2.53E-7fl
9.
9.
9,
9
<»,;
1 t53E-16
3^0flE-t7
9 66E-03
9.
9<
9.
9.
9.
9.
9,
9;
J«
9,
o;
9^
*<
9*
9,
2,12E*P2
3.05E+01
«I
9.
9,
9.
9.
9,
9,
o;
0.
«• v
9.
9.
9,
9.
9.
1,87E+02
1.05E+00
3,65Et02
9.
9.
9,
9,
9,
9.
9.
9'.
9.
9.
9,
9,
9,
9,
9.
3.09E-36
6.15E-37
9.66E-03
9,
9.
9.
9,
9.
9.
9.
9,
9,
9.
9.
9,
9.
9,
9,
8.65E+00
1 ,25E+00
9,
9.
9,
9.
9.
9,
9,
9, . -
0.
10. Y
9,
9.
9.
9.
9.
l.lfE-13
6.27E-J6
2.22E-13
9.
9.
9.
9.
9,
9.
9.
9.
0.
0.
0,
9.
9.
9.
9.
9t
9.
9.66E-03
9.
9,
9.
9.
9.
9.
9.
9.
9.
9,
9,
9.
9,
9.
9.
9«
9.
9,
9.
9.
9.
°.
9,
9.
9,
0.
50. Y
9,
9.
9,
9.
0,
9.
9.
/9.
o,
9.
9.
o.
9,
9.
o. --
9,
0.
9.
9.
9.
9.
9.
9.
0,
9.
9,66E»03
9.
9.
9.
9.
9.
9,
9. ' '
9.
9.
0,
9.
9.
9.
9.
9.
9.
o.
9.
9,
9,
9,
9,
9.
9.
9 .
0.
100, Y
9.
9.
9,
9.
0.
9.
9,
9.
9, ' -
9.
9.
o.
9.
9,
9.
9,
9.
9.
9.
9,
0,
9,
9.
o.
9.
9.66E-03
0.
9,
9,
9.
9.
9,
9. -
9,
9.
9.
9.
9,
9.
9,
9,
9.
9,
9.
9.
9,
9,
9.
9.
9.
o.
0.
TO REACTOR
500, Y
9.
9,
9.
9.
9.
9.
9.
9.
0.
9.
0.
0,
9.
9.
9.
9.
9.
9.
9.
9.
9,
9.
9.
o. --
9,
9.65E-OJ
0.
9.
9.
9.
9,
9,
9.
9.
9,
9,
9.
9,
9.
9,
9.
9,
9.
9.
9,
9,
9,
9.
9,
9,
9,
9.
1000. Y
9.
9,
9,
9.
9.
9.
9.
9.
9,
9,
9,
9.
9.
9.
9,
9.
9.
9,
9,
9.
9,
9.
9.
9,
9,
9.63E-03
9.
9,
9.
9,
9.
9.
9.
9,
9,
9,
9.-
9.
9,
9,
9,
9.
9.
9.
9,
9,
9.
9,
9,
9.
9,
0.
10000, Y100800, Y******« V
9.
9.
9.
9.
9.
0.
9.
9.
9.
9.
9.
9.
9,
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.35E-03
9.
9.
9.
9.
9.
9.
9.
9,
9,
9,
9.
9.
9.
9.
9,
9,
0.
9.
9.
9.
9.
9.
9.
9,
9.
9.
9.
9.
9.
9,
9.
9.
9,
9.
9.
9.
9,
9,
9,
9.
9.
9,
9.
9,
9,
9.
9.
9.
9.
9.
9,
6.97E-03
9.
9,
9.
9.
9,
9.
9.
9,
9,
9,
9.
9,
9,
9,
9,
9,
9.
9.
9,
9,
9,
9,
9.
9,
9.
9.
fri
9.
9.
9,
0.
9.
9.
9.
9.
9.
9,
9.
9.
9.
9.
9-.
9,
9,
9.
9.
9.
9,
9.
9,
9.
3,*>7C-0«
9.
9.
9,
9.
9.
9,
9,
9,
9,
9,
9.
9.
9,
9,
9,
Ot
9,
9,
9,
9,
9,
9,
9,
9,
9.
9.
A.-IV-54
-------
PKR • BU « 33/000 FUEL DECAY TIMESC2)
CASE E-l
TABLE A-IV-1
POWER* 38.00NW, BURNUP
CHARGE DISCHARGE
RutoS
RH105M
~RHtC5
PD105
TCt 06
~ P-UtOfc
RH\061
"»H1.06
"POtOfc
"U'.07
RH1 07
~ PDIOTH
PD107
AC '.07
*Ut08 "•'
RH103
P0t08
A G < 9 8
CDI08
RHt 09
POt09M~-
P0<09
AGl. Q9M
*St09 ~
CDt09
«H1 10
"~PDUO ~"
AGtlON
AGtlO
— couo
POt 1 IN
POtll
' — AGtllM"
AGtll
COU1N
r~CDUl
PCt 12
AGt 12
~~CDtl2
PD113
ACU3N
~AGt 13 ~
CO' 13N
COM3
~~ iNt IS
Pot ia
AGt 18
[— ectia -
iNtlOH
INUU
SNUO ~"
Of> > • r
9.
8,
8. '
0,
9.
8.
8.
8.
0, "
0,
6,
0,
8,
8.
8.
8.
0.
9,
8.
8.
8.
8.
0.
8.
0.
8,
0.
0,
8,
0,
8.
8.
8,
6.
8,
8,
8.
0.
9.
8.
0.
0.
0.
8.
0,"
8.
8.
8,
8,
8.
o,
ft
o.
o,
8.31E-28
o.
9.
2,88E*01
0.
5.10E+03
9.-
9,
9.
9^
9,60E-06
o.
8,
8.
8,
8,
o,
8
o. '
fl,73E»78
3.82E-09
9.
3,«>aE-09
9,
8,
5,07E»01
2.83E+00
8.
8,
0.
8. '
1,27E"8«
8.
6.
1.5UE-51
8.35E-50
0.
8,
8.
0 .
1,52E-02
8.
o.
o.
8.
9,
2.3iE»ea
9.75E"Oa
8.
A
= 33000, HWD, FLUXa
0, Y
8.'
o,
2.01E-SO
o,
o.
2,70E+01
8,
a.79E*03
o.
0.
°..
8.
9.60E-06
8.
8<
o.
8,
8.
8,
el
o.
1.21E-93
3.63E-09
o,
3.83
8.
0,
8.
o.
8.
1,88E>23
7.92E-25
8.
n
8.
8,
0.
8.
8.
3,99E«1«
8.
7,07E«12
8,
8.
8.
8.
9,60E>06
0.
0, ~
o,
8.
8, *
8,
8.
8,
8.
3.50E-21
8,
3.3UE.21
9.
8,
1.82E.28
7.92E-22
0.
0.
8.
0,
8.
8.
8,
8.
8.
8.
8,
8.
8.
1.31E-03
0.
o,
o.
o.
8,
o,
o.
0,
n
8.
8.
0,
0.
8,
«,17E"29
0,
7.39E-27
8.
8,
8.
8,
9,60E«86
8.
"8,
8,
8.
8,
0.
8,
0,
o.
2.55E-33
o,
2.aa£.33
8.
o. - -
8.
8.
8,
0,
9,
8, -
8,
8.
9.
8.
8,
8,
8,
8.
8,
1,10E«08
0.
o,
9.
0,
8,
0,
8,
8^
n.
TO REACTOR
580, Y 1000, Y
0.
0,
0.
o,
0.
0.
8.
8,
8.
0.
8,
8,
9.60E-06
8.
0. '
8,
8,
8.
8.
8,
8,
8,
6,
0,
8.
0.
o. ---
8,
8,
8.
8.
8.
8.
8.
0.
9.
9.
9.
0,
9.
0,
9,
2.75E-13
8.
8,
8,
9,
9,
0,
o,
0,
n.
Ot
o,
Ot
o,
o.
o.
o,
o.
8,
8«
0.
Ot
9.60E-06
0.
0, "
8.
8,
0,
8.
8,
8,
8,
8t
9,
8.
8.
o, —
8t
0.
9,
8.
0.
8.
8t
8.
0.
8.
0,
8f
8,
8,
8t
«,87E.2a
0.
8.
8,
8,
8t
0,
8,
Ot
0.
(continued)
10000, ' Y100000, Y******* V
0,
0,
o.
0,
o,
8.
0.
o.
o.
o.
o.
0,
9.59E-06
o,
o,
0,
o.
9.
0,
0,
0,
0.
0.
8.
8.
0,
Of
8,
8.
0,
8.
8,
0.
0,
0.
°t
9.
0,
8.
o.
0,
0,
0,
o.
0.
o.
o.
0,
o.
8.
Of
o.
Ot
0.
0.
0.
Ot
0.
8,
0.
0.
o.
8.
Of
9.50E»06
Ot
0,
o,
9.
0.
Of
8,
8,
8,
8.
0,
0,
Ot
0,
8.
8,
8,
8,
8.
0.
0,
8.
Of
0,
8.
O/
8.
•
8.
0.
•
o.
o,
Of
o.
Ot
0,
0,
o.
Of
o.
Of
Of
Of
0,
o,
Of
Ot
Of
o,
Of
o.
Of
8,69E«06
Ot
Ot
Ot
o.
0,
0,
Ot
Ot
Of
Of
Of
Of
Ot
Ot
Ot
Ot
Of
Ot
8,
Ot
Ot
o.
0.
•
0.
* 9
o.
0.
w V
0.
w I
Ot
0.
" f
0.
w •
o.
o.
0,
0.
w t
o.
v •
0.
w I
Of
Of
o.
A-IV-55
-------
PWR . BU e 33.000 FUEL DECAY TIHE3(2) CASE E«l
POWERS 38.40MH, BURNUPs 33000,MWO, FLUX? 3,98E»13N/CM**2-SEC
FP'S
TABL? A-IV-1
(continued)
AG115M
ACL is
- COU5H
CDU!
INUSM
-INU5 -
SNU5
AGU6
~ COUft '"•
IN U fed
INU6
— S N U 6 —
AC 117
COU7M
-COU7
INU7M
INU7
- SSU7M
SNU7
CDU*
~ INIJ 8M ••
INUB
SNUB
~ COU 9M-
C5119
iNt !9*
— tNt 19 '-
8M19M
SNU9
- C0120
TN1.20M
IS120
— SN120 —
CDt21
IN121H
~IN121 "
SN1. 21M
SW1J1
~ SB121 —
IN122
SNl.22
- 93122M
S9122
T£t22
- IN123M
IN123
SN123M
3*123
S3 123
TE123M
-TP1.23
IM124
CHARGE
0.
o.
o,
o,
8.
8,
8,
8,
0 ,
8,
8,
8,
8.
c.
8.
8,
8.
0,
8.
8..
0, <
8,
8,
o, -
0,
8,
e(
8,
8,
o.
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
0,
8.
8,
o,
8,
c,
0,
8,
8,
o, --
0,
DISCHARGE
.
8,
8.
N
0,
1.27E-02
Ot
8.
8,
S
°,
8,
0*
8,
7tfc6E-07
8.6flE-a9
8.
8,
8.
8.
1.95E-19
8.
8.
8,
8..
1.U5E+01
8.
6,aaE"oa
o;
o^
8,
NUCLIDE
BASIS 8 MT
1, Y 10.
8.
8, 0.
7,
8,
0,
8.
8,
8.
8,
8,
8.
8,
8,
8.
8,
8,
8,
",
8,
8,
8,
8.
8,
8,
8,
8,
8,
7,
6,
8,
8,
8.
8,
8,
8.
,
7,
8,
8,
8.
8,
8,
(1,
8,
8..
8.
8.
5,
0.
2,
0.
8,
2«E-03 0,
8,
8,
0.
8.
8.
' 8,
8.
8,
o, - -
8«
»«
8.
8.
8.
33E-89 0,
8,
8,
8,
8.
8.
8, "
8.
8,
0,
67E-03 8,u«E«
8.
8,
8.
6.
8»
8.
8,
'«
&3E-07 7.02E«
8.
8,
8.
8.
8,
51E-39 0.
0,
8.
8.
8,
27E+00 6.38E*
8.
86E-00 9.95E-
8.
8.
THERMAL PO«ER» 'HATT3' "
OF HEAVY META. CHARGED TO REACTOR
Y 50, Y 100, Y 580, Y
8, J
8, >
8, )
0, )
0. )
- o. )
8, )
8, '
8, - - " )
8. )
0, )
8,
8,
8,
- o,
8,
8,
o,
8,
8.
0,
8.
8, .
-- 8,
8,
8.
8,
87 2.15E-21
8.
8.
8,
8,
0,
8,
0,
,
07 a,88E-07
8,
8,
8.
8,
8,
8.
8,
0,
8.
8.
08 0.
8,
13 0.
o. — - (
0. (
8.
8,
0,
8.
8,
0, -
8,
8,
6,
8,
8.
8,
8,
8,
"•" 8, -
8,
8,
0.
8,
8,
- - o,
8,
8,
- o, -
8,
8,
• o,
8,
8,
8.
8.
8,
8,
8,
8,
•
09E-07 8.05E-09
0,
8,
8,
8.
8,
8,
8.
8.
8,
8.
8,
8.
8.
o.
8.
JOOO, Y
8,
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8, "
8,
8,
8.
8,
8,
8.
8,
8,
81
8,
8,
8 , ~
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
«
8.01E-11
8,
8,
8,
8,
8,
8.
8,
8.
8.
8,
8.
8,
8,
8.
8.
10000, >
8,
8,
8,
8.
8,
8,
8,
8,
8.
8,
8,
8,
8,
8.
0 ,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
0.
8«
8,
8,
8.
8.
8,
8,
-8.
8.
°«
8.
6.
8.
8.
8,
8,
8.
8,
8,
8.
8.
8.
8.
8.
8,
0.
iooo
8.
8,
8.
8,
8,
8,
8,
8,
8,
8.
8,
8,
6,
8,
8,
8,
8.
8.
0,
8,
81
8.
8.
8,
8,
8.
8.
8.
8,
8,
8.
8,
8,
8.
8.
8«
8,
8.
8,
8.
8,
8.
8,
8,
8,
8,
8.
8.
8.
8.
8.
8.
Y******* Y
8.
8,
8,
8,
8,
8,
0,
e,
o,
t>.
8.
0.
8,
8.
8,
8.
8,
8,
8,
8.
8t
8,
8.
8,
8.
8.
0«
8,
8,
8,
8.
8,
0,
8.
8.
0.
8.
0,
8.
8.
0,
0,
8.
8,
8.
8,
8,
8.
0.
8,
8.
8.
k-IV-56
-------
PHR •
POHER»
SNt20
3B124M
~3Bt29
TEt2«
3M125M
SKI 25
SBt25
TEt25M
TEL 25
SN126
SSt 26M
-JSI2& "
TE12&
SNt27M
' SNJ127
88127
TE'27M
-TE127 '
H27
3N128
Sfl 1 28H
831.28
TE1.28
"1128
X£ 1 28
SN12'M
SN \ ?9
SB129
TE139M
-TE129 -
11.29
X£i.29M
X£ 1 29
8Nt30
SB130M
S3130
TEI 39
H30M
— H30
XE130
SNtJl
8f?i. 31
TE131M
TE131
" U31
XE'31M
XE131
SN132 -
S8132M
S3 1.32
-TE132 "-
1132
BU • 33,000 FUEL DECAY TIMES<2)
SB.flOMH, BURNUPs 33000, MWD, FLUXs
CHARGE * DISCHARGE
0. O,
0.
0,
0.
o,
o.
o,
o.
o *
0.
o,
0.
o.
0,
o;
o.
o,
o,
o.
o.
o,
0.
o,
o.
o.
0.
o.
o,
o,
o.
o.
o.
o.
o.
o,
o.
o,
o,
0.
o,
0,
o,
0.
0.
0.
o,
o.
o,
o,
Op
o,
0.
""1.04E+00
0.
l'?2E-!53
3,5!E*Ot
5.96E+00
0,
6.09E»OU
3.81E-03
7.53E-C3
o;
o.
0.
1.37E-09
a.saE+oo
1.26E*01
o.
o.
0 *
Q
«.'
°<
o.
0.
o.
o.
6.95E+00
8,15E+00
2.48E»05
1.15E-07
' o.
0.
o.
0,
o,
" 2.70E-85
0.
0.
l!eiE-33
1.76E-34
9.88E-03
8.25E-03
0.
- o.
0.
fl , 46E* 1 1
3.48E-10
CASE
E-l
3.98E+13N/CM**2.SEC
NUCLIOE THERMAL POWER, HATTS
BASIS s MT OF HEAVY MET.09E»0«
s.siE'OS
7^31E-03
Q
Q
o^
3.82E-12
3,52E+00
1.02E+01
0..,
'0,'
o.
o.
o|
o.
0 .
o.
3 S*E+00
a,17E+00
2.U8E-05
6,66E»09
0.
0 .
0.
o.
o!
1,92-ioa
o,
o.
2, 19E»41
2,13E-«2
5,fl3E«Ofl
lt20E-03
0,
0(
0 ,
0,
fl 1 02E» 1 4
3.10E-13
t, V
0.
0.
8.63E-02
0,
o,
2.15E-10
3.02E+01
5.29E+00
0.
6.09E-OU
3.81E-03
7.27E-03
0,
0.
0,
2,48E*26
1,10E*00
3.19E+00
0,
0,
0,
0,
o.
o,
o.
o.
0.
o,
8.59E-02
1.01E-01
2,«8E-05
8.9UE-16
0,
0,
o,
o,
0,
o,
0,
0 ,
o,
o,
'0,
o,
«,62E-11
2.65E-08
0,
0,
0.
0. .
a,86E»3l
3.80E-30
10. Y
0.
0.
2.T7E-18
0.
•o. '
0.
2.99E+00
5.26E-01
0.
6,09E-0«
3.B1E-03
7.27E-03
0.
0.
0,
0,
9.19E-10
2.66E-09
0.
0.
0,
0,
0,
o,
o.
o.
o.
o.
o.
o.
2.08E-05
0.
0,
0,
0,
o.
o,
o.
o.
o.
o,
o.
o.
o,
0.
°<
o.
o.
o.
o.
0.
o.
50. Y
0,
o,
0,
o.
o.
0,
1,0«E-0«
1.82E-05
o.
6.0BE-OQ
3.81E-03
7.26E-03-
0,
0.
0,
0,
0.
0.
o..
o.
o. -
o.
o.
o. •
o.
o,
o.
o.
0 1
0.
?,flt>£«05
o.
o,
o,
o,
o,
o,
o,
0.
o,
0 ,
o.
o,
o,
0,
o,
o,
o.
o.
°«,
0 .
o.
100, Y
o.
o.
o.
o,
o.
2.76E-10
«,85E-11
0.
6.08E-OS
3.81E-03
7,26E«03
o,
o,
o, -
0.
0,
0,
0.
0.
0,
0,
0.
0.
0.
0,
o.
o.
o.
o, -
2.46E-05
0.
0,
0,
0,
0,
0.
o.
o.
o.
o.
o.
o,
o,
o.
o,
o.
o,
o.
o.
o.
o,
TTP'c
C £ O
TABLE A-IV-1
(continued)
TO REACTOR
500, Y
0.
0.
0.
0,
o.
o.
o.
o,
o.
6.07E-08
3.80E-03
7.24E.03
0.
0.
o.
0,
0,
o.
o.
o.
o.
o,
o.
0,
o.
o,
o,
o.
o.
o,
2.4JBE-05
0,
0,
o.
0.
0.
o.
0,
0,
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
o.
o.
o,
1000. Y
o.
o.
o.
o,
o,
o.
o,
o.
o,
6,oaE»oo
3.79E-03
7.22E-03
0,
0,
0,
0.
0,
o.
o.
o,
o.
o,
o,
o,
o,
o,
o,
o,
o,
0.
2,aeE-05
o,
o,
o!
o.
o,
o.
o,
o.
o,
o,
o,
0.
o.
o,
o,
o,
o,
0.
o.
o,
10000. YlOOOOO-j V******* V
0. 0. 0.
o.
o.
o.
0.
o.
o.
0.
o.
5.68E-00
3.56E-03
6.78E-03
0,
0.
0,
0.
0.
0.
o.
o.
o.
o,
o.
o,
o.
o,
o.
o.
o.
o.
2.«8E«05
0.
0,
0.
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
o,
o.
o,
o.
0.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
3.04E-04
1,91E"05
S.63E-03
0.
0,
0.
0.
0.
0,
0,
0.
o.
o.
o.
o.
o,
o,
o,
o.
o,
o.
2.47E-OS
0.
0.
0.
0,
0,
o.
0,
0,
o.
o,
o.
o!
o,
o!
o.
o.
o.
o,
o,
o.
o.
o,
0.
o.
o.
0.
o.
5.
3.
7.
0,
0.
0.
0,
o.
o,
o.
o,
o.
0.
0,
o,
o,
o,
0,
0.
o.
o,
2.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
o,
o,
o,
o.
o,
o,
o.
o.
o,
0.
94E-07
72E-06
09E-06
38E-OS
A-IV-57
-------
PHR . BU o 35,000 FUFL DECAY TIMESC2) CASE E-l
POWER"! 38.UOMH, BURHUPs 35000, K*D, FLUXs 3.98E+13N/CM**2-SEC
NUCLIDE THERMAL POWER
8*813 a *T of HE*VY MET
CHARGE DISCHARGE
»E132
S3U3
TE133M
TE133
1133
*E! 33M
*E«33
C3133
set 31
TEL 3 a
J13«
XE13Q
C3t3fln
CS1 38
8*130
?E155
1135
X E t T- "i M
XE133
CS135K
CS13S
BAtS5M
RA13S
11 5iS
X-1 3*.
C313&
Bit 36
1137
XE\37
CS137
BA1 37M
BA137
1138
XE138
CS138
B*1 38
1139
XE'39
CS139
flAl.39
UA139
xe«ao
CS1«0
HAiaO
LAiaO
CE1«0
XE1«1
CSt«l
flAiai
L4101
CEiai
PRtat
0.
o.
0.
08
0.
0.
o.
0.
o.
0.
9.
o.
o.
9,
o.
0.
0,
9.
9,
0.
9.
9e
9.
0,
0.
9e
9.
9.
0,
9.
0,
9.
9.
9.
9.
9.
9.
0.
0.
9,
9.
9.
9,
0,
9,
9.
0,
0,
9.
9i
9,
A.
o.
0,
o.
c.
s.73E-ae
2.'aOE-18
S,0«>E-05
0.
9.
".
9,
0,
0.
2,a9E+03
o.
o.
c,
o.
9.
9.
!.09E*Oa
1 ,97E-«0
9.
o.
8.
3.1SE-01
9,
9.
9.
1.76E+02
3,«X>E»02
9.
9,
9.
9.
9,
9.
9,
0.
9,
0
o.
a,
1,»6E*00
1.13E+01
9.
9,
9.
0.
0.
t,Q2E*62
9.
9. Y
9.
o.
0.
9.
1.83E«S9
1.00F.?2
: ,aoE»o7
o.
o.
o.
o.
o.
o.
?,aiE*o3
9,
o.
o.
o.
9.
9,
1 ,09E-oa
1 ,OaE»08
o.
».
9,
S.flfcE-02
o.
9.
9.
1.76E+02
3.95F+02
9.
°,
9.
°,
o;
p.
9.
9,
9.
9.
°,
o.
J.13E-01
l.POEtoO
0.
9.
°,
9.
9,
7,OaE»01
0.
I. ¥
9.
9.
0.
0,
e.
9.
5,18E»18
0,
0.
o.
o,
9,
0,
2,0«E+63
o.
o,
9.
oe
o,
0.
1 ,09E»Oa
9,
9.
n.
9,
i,22E»06
0,
9.
0.-
1,70E»92
3,91E»02
9,
9,
9,
0,
9,
9.
9.
9,
9.
o,
9,
9,
l,59f.05
9.60E-05
9.
9,
0,
9.
0.
l,a2C»00
9,
10, v
o.
88
08
«,
Oo
9.
0,
9.
0.
0.
o.
9.
9.
9.72l»OS
0.
9.
9,
0.
9.
9.
1 ,09E»00
9.
9.
0.
0,
9.
9,
9,
0.
i.aie+02
3.17E+02
9,
9,
9.
9.
9.
9.
«.
0.
9.
9,
9,
9.
0.
9.
9.
9.
0,
9.
0.
0.
0.
59, Y
0.
0.
0.
08
9.
«,
o.
9,
9.
0,
9.
9.
9.
1.30E-00
9.
6,
0,
9,
09
0,
i.OPE>oa
9,
9,
9.
9,
9,
9,
9.
9.
S,61E+01
1.26E+92
9,
0.
9.
9.
9.
9.
9,
9,
9,
9.
0.
9.
9,
9.
9,
9,
9,
9.
9.
9.
0.
, WATTS
kL CHARGED
100, Y
9,
0.
o.
09
9,
o,
9.
9,
9,
0,
9.
9.
9.
5,89g«12
0,
°!
9.
0,
0.
0,
1 ,09E»Oa
9,
9.
9.
0.
9.
9.
9,
9.
1.77E*01
3.97E+91
9,
9.
9.
9.
9.
9.
9.
9,
9.
9.
9,
9,
9,
9.
9.
9,
0,
o,
9,
9t -
9,
FP's
TO REACTOR
500, Y
o,
o,
o,
9,
os
98
9,
9.
».
9,
9,
0,
9,
9,
9,
9.
9,
o.
9,
o.
i,o*e<>oa
9,
9.
9.
9.
9.
9.
9.
0.
1.71E-9S
3.80E-03
9.
0.
9,
9.
9,
9.
9,
9.
9.
o.
9.
9.
9,
0.
9.
9,
o,
9,
«•
0.
C,
S0009 Y
0,
9,
o.
9»
9.
0.
o.
o.
9,
9,
9,
9,
9,
9,
9.
9,
9,
9,
0.
9.
l.OPEeOQ
9.
9,
9,
9,
<>•
9.
9.
9,
t,*oe»oe
3.69E»08
9,
9.
0.
9.
9.
9,
9.
9.
9,
9.
9,
9,
9.
9.
9,
9,
o,
o.
0.
0.
0.
TABLE A-IV-1
(continued)
19900, YJ00009, Y««*»*»* Y
9.
9,
9.
9,
9,
o.
9,
9.
0,
9,
9,
0.
0.
9.
9.
9,
9,
9.
9,
®t
1 .06E-OS
9.
9,
0,
9.
9,
9.
o,
o.
9.
9,
9,
0.
9.
9,
9.
9.
9,
9,
9.
9.
o,
o,
9.
0.
0,
o.
o,
Ot
9.
0,
0.
9,
0,
9,
0,
o.
0.
o.
o.
9.
o.
99
9.
o,
0.
9,
9,
9,
6.
9.
0.
S.06E.OO
9.
9,
9,
9.
9.
o.
9,
0.
0.
9.
o.
o.
0.
9,
9.
9.
O./
9.
9.
0.
9,
9,
o.
o,
9,
o.
o,
o.
0.
0,
0,
o.
9.
9,
9.
9,
0,
9.
9.
9,
0,
o»
9,
9,
0,
9.
9,
9,
9.
0.
9.
3.61E-95
0.
9,
0,
0.
o.
9.
0.
0.
9,
Oi
9,
9,
0.
0.
9.
0,
9.
9.
0.
0.
0.
9,
9.
9,
6,
9|
0.
0,
9,
Ot
o,
V-IV-58
-------
TABLE A-IV-1
PWR
• BU « 33,000 FUEL DECAY 11*63(2)
POWER* 38,'aeM
XE102
CSta2
-BAU2"'
LA102
CE102
-PRIC2
NO '.02
X£\«3
"CSt43
8AU3
1*143
" CET03
P»t8S
ND\03
LAtaa —
CEtoo
PRtaa
• NDI oa
CEI.OS
PRtaS
" *D«85
CE106
PR106
' Not06
CEt«7
PRt07
-N0147 —
PM107
SMla7
"CEtas —
pRias
NOIOB
~PK108M -
PMIOS
SHtOS
~ 'PR 109 "
N0109
PM1U9
~8Mt49 —
NDtSO
PMJ50
~ SMI 50 —
NOtSl
PM\51
~ 8m 51 ~
EU151
PM152
~'8m52 ~"
EU152M
FlJt52
~ G0152
9w « r n
H, BURNUPi
CHARGE DISCHARGE
0. 0,
0. 0,
0, 0.
0,
0,
0 ,
0.
o.
o ,
0.
o,
o,
o.
0.
o.
Oi
o.
0.
* 1
o.
o.
0.
o.
o.
o. •••
t
o,
Ot
0 ,
o.
o,
o.
o.
o,
o ,
o.
o,
0,
o.
0.
" o.
o.
o.
0.
0.
0.
v •
0,
Ot
o,
~0.
t
0.
«.
o,
*
o;
0.
1.511-50
0.
0.
c.
o'
0
1.14E-29
1,«7E*00
o;
0,
7.60E+02
7.20.E + 03
0.
o-:
0.
0.
0
»*
o!
o:
0.
2.12E-01
5.106*01
0,
0.
0.
a)oiE*oi
2.11E+00
0.
0,
0,
6,'38E-18
0.
0.
0,
oj
0*
1,456-36
2,'l96*00
0,
0,
oj
U58E-01
0.
t>
CASE
6-1
FP's
(continued)
i 33000, HMD, FLUX* 3.98E+1 JN/CM**2.$EC
NIIPI T nF" THFPM A i PPIUPK * WATTK
. °t V
!:
0,
o;
oj
%.436-feT
0,
0,
o;
ol
0.
7,206-37
3,55E-01
0.
0.
7,01E*02
6.60E*03
0,
0
0?
0
o:
o.
0.
o!
o,
2,72E«02
S.OlEtOl
0.
0,
0.
2,33E*01
1.22E*00
o:
0.
o.
2,826-22
0,
o.
o,
°!
o.
0.79E-85
2.19E+00
o
o;
0,
1*576-01
o,
«'
NUCLIDt TMEK"*U runt", "«HO
BASIS a MT OF HEAVY METAL CHARGED
1, Y 10. Y 50, t 100, Y
0. 0, 0. 0.
0, 0. 0, 0.
0, 0. 0, 0,
o,
o,
o,
o.
o.
o.
o,
o.
o,
3.08E-05
Ot
o,
«',fl9E*02
«,25Et03
0,
o,
o.
Ot
o.
o.
o,
o,
o,
3.03E-07
«,39E*01
«t
0,
o,
o.
1 ,14E*00
6.01E-02
0.
o,
Ot
0,
Oi
o,
o.
o.
o.
0,
?,18E+00
0,
0,
Ot
o,
1,536-01
o,
0 .
0.
0.
0.
o.
o.
o.
0.
o.
o.
o.
o.
0.
1.07E-01
1,39E*00
0,
0.
0,
0.
0.
0,
0.
o.
o.
o.
0,066*00
0.
o.
o.
o.
o.
o,
o,
o,
o.
o.
o,
0.
0.
o,
o,
o.
2,036*00
0.
0,
°<
p;
9.09E-02
o,
«
0,
o.
0.
o.
o,
o,
o,
o,
o.
o,
o.
o.
0,796-17
0, 536-16
0,
0,
0,
0,
0.
0,
0.
0,
o.
0.
1.03E-00
0.
0,
o.
o,
o.
o,
o.
o.
o,
o.
0,
o.
o,
o,
o.
o.
1,476*00
0,
o,
o,
0.
9,026-03
o,
n .
0,
o.
o.
o.
o.
o,- -
o,
o.
o.
o.
o,
o,
2.09E-36
1.98E-35
0.
0.
0.
0.
o,
o.
o.
o,
o.
o.
1.85E-10
o,
o.
o.
o.
0--
t
o,
o.
o.
o,
o.
t
o.
o,
o.
o.
o,
9,906-01
0.
o,
o,
o.
5,026-04
- o,
n.
TO REACTOR
500, Y 1000, Y
0. 0.
o, o,
0, 0,
o.
o.
o.
o,
o.
o.
o,
o.
o.
Or
o.
0,
o.
o.
o,
o,
o.
o,
o,
o,
o.
o,
o.
o,
o,
0.
0.
o.
o,
t
o,
o,
o,
o.
o.
1
o,
o.
o,
o.
o,
0,096-02
o,
o.
o.
o.
4,636-14
o«
0.
Ot
Ot
Ot
o,
o.
0.
o,
o.
o.
Ot
o.
o,
Ot
o.
o.
o,
o.
o,
o.
o,
o,
o,
o,
Oi
o,
0.
o.
o.
o,
t
o,
o,
o,
o.
o.
t
o,
Ot
o.
Oi
o.
7,616-04
o,
Ot
Ot
o,
1,326-2*
Ot'
0,
10000,
o.
o,
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o,
o.
o,
o,
o,
o.
o,
0,
o.
o.
o.
o.
o,
o,
o.
o.
0.
o.
o.
o,
t
o.
o,
o.
o.,
o,
t
o.
°t
o,
o,
o.
o,
o.
o.
o,
«t
o.
6,
o.
Y100000,
o.
o.
o.
Ot
ot
o.
Ot
o.
Oi
Ot
o.
Ot
Oi
o.
Ot
Ot
o.
Ot
o,
o.
o.
o,
Ot
o.
o.
o,
o.
o.
o.
o.
o.
o,
t
o,
o,
Ot
o,
o.
1
o.
8,
Ot
o.
0.
o,
o.
o.
9t
o,
oe
®t
Oo
Y*******
o.
At
o.
Ot
•
1
0.
o.
o.
Ot
Ot
Ot
Ot
Ot
Ot
&t
Ot
Ot
Oi
Ot
Ot
Ot
o,
Ot
o.
Ot
Ot
Ot
0.
o.
o.
o,
t
o,
o,
Ot
0.
Ot
t
Ot
Ot
Ot
Ot
o.
o,
Oi
Oi
Ot
0,
e.
9t
o«
A-IV-59
-------
PWR
BU
33fOOO FUEL DECAY TIMES(2)
CASE e-i
FP's
TABLE A-IV-1
(continued)
POWER* 38,'flOMW, BURNUPs 33000,
FLUXs 3."9SE+1 3N/CM**2"SEC
NUCLIOE THERMAL PnwE*. WATTS
BASIS a MT OF HEAVY ME1AL CHARGED TO REACTOR
CHARGE DISCHARGE
SM153
EU153
~ SO 153
PMtsa
SM150
r Eui54
! P0!5a
; SMI 55
- EU133
CDtSS
8Mt56
r~ EU156
i Got 56
i 8*157
"- CU157
60157
CU158
i- GD158
I EU1S9
i 601.59
<— TB<59 —
EU160
G0160
| — ; 3 1 6 0 —
! PYt60
| G0161
1 — Tflt&l -—
OY161
GD162
I— T3U2M -
1 TB162
: DY162
1 — T8t63*~-
TBU3
DYt63
! — T8t60 ~~
\ OYt6«
| OY165H
' — OT165 —
H0163
OY166
: — HOt6*M
i H0 1.66
i EBl.66
' — ER167 —
TOTAL
Oi
Oi
0,
0,
0,
Oi
0.
Ot
Oi
Ot
Oi
0,
Ot
Oi
Ot
o.
o.
o,
Oi
o,
0,
Ot
Ot
0 i
Ot
0,
0,
Ot
Ot
o,
o.
Oi
Ot
Ot
Oi
Ot
0,
o,
Oi"
Oi
0,
0 1
Oi
Oi
0 "
I
o.
1.28E-20
0,
3.17E-02
0,
0.
6.aat+01
0.
0.
6.36E+00
0,
0.
3.52E»00
0,
0,
3.49E-70
o;
0.
0,
0.
8.70E-60
0
0
o|
3.44E+00
0.
0.
3,92E«OT
0.
0,
o.
o.
0,
o. •
0,
0,
a,a8E-oe
0,
o.
0,
0.
fc.fllE-16
9.22E-06
4.92E-15
0,
0.
Z.39EtO«
0, Y
1,13E«25
0.
2.88E-02
0,
0,
6.«1E+01
0,
o;
6.14E»00
0*
0.
7,71E"01
0,
0.
8.26E-86
0.
0.
0.
oj
5.55E-TJ
o;
0
o.'
2.51E»00
0.
o.
1.44E-08
0,
o;
o.
o.
o.
o.
ol
o.
2, HE-SB
0,
o.
o.
o.
7.82E-19
9.22E-06
6,OOE»l8
0,
0,
2.08E+04
It Y
Ot
o,
1.71E-02
0.
Ot
6.28E+01
«t
0,
5,07E»00
0,
0.
1.67E-04
Ot
0,
«t
o,
o,
Ot
Ot
Ot
Ot
Oi
o,
0.33E-01
o,
Ot
t,55E«16
o.
o,
0,
o,
0,
o.
o,
o.
Oi
Oi
o,
1
0.
5.05E-35
9.21E-06
3,88E»34
0,
Oi
1,21E*04
10, Y
0,
0,
1,39E«06
0,
0,
4.25E+01
0,
Ot
1.61E-01
0.
0.
0.
0.
o,
0,
o.
o.
o.
o.
o.
o.
o.
o.
8.10E-1S
0.
0,
0.
0.
0.
0.
o.
o.
o.
o,
o.
o.
o.
o,
t
o.
o.
9.1TE-06
o.
o.
0.
1.06E+03
50, >
0,
0.
9.29E.25
0,
0.
7.51E+00
0.
0,
3.59E-08
0,
0,
0.
0,
0.
0.
Ot
o.
o.
o,
o,
o.
o,
o.
o,
o.
Oi
o,
o,
o,
o,
0.
o,
o.
o,
o,
o,
o,
o,
t
0.
o,
6.96E-06
o.
0,
0.
3,53Et02
100, Y
0,
0,
o,
o,
o,
8.61E-01
0,
0.
1.73E-16
0.
0,
0,
0,
0,
0,
o,
0,
o.
0.
0.
0,
Ot
ft
o,
ot
o.
o,
o.
o,
o.
o.
Ot
o.
o.
o.
o,
o.
o,
1
o,
o.
8.70E-06
0,
o,
o,
l,06Et02
500. Y
0,
0.
0.
0,
0.
2.56E-OB
0,
o,
o,
o,
o.
o,
o.
o.
o,
o,
o.
o.
o,
o.
o,
o,
o.
o,
o.
e.
o.
o,
o.
o,
o,
o,
0.
o,
o.
Ot
o.
o,
i
o.
o,
6.91E-06
o.
o.
o,
T.10E-02
1000. Y
o,
0,
0.
Oi
0.
l.OOE-17
0,
0.
0,
o.
o.
o,
o.
Oi
o,
Ot
o.
o,
o.
o,
o,
o,
o.
o,
Oi
o,
o.
o,
Ot
o.
o(
Oi
0.
o,
Ot
Ot
Ot
o,
1
Ot
Oi
5.17E-0*
o,
o.
o,
2.28E-02
10000, Y100000, Y««**«*« V
o. " "
o.
o,
Oi
o.
o.
o.
o,
o.
o.
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
o,
o,
o.
o.
o.
o.
A
u t
o.
o,
2.86E-08
o.
o.
o.
2, HE- 02
»t
Oi
Ot
ot
Ot
0,
ot
Ot
Oi
Ot
Oi
o(
Oi
o.
Ot
o.
Oi
Oi
o(
o.
0.
o.
o.
0.
Ot
o(
o(
Oi
Ot
o.
Ot
o(
Ot
ot
ot
Oi
Oi
o.
t
o(
o,
o,
«•
ot
o.
1.35E.02
«t
Oi
Ot
.Ot
Ot
Oi
o,
Oi
Ot
Oi
Ot
Oi
Oi
ot
Ot
ot
o(
Oi
Oi
Oi
o,
o(
0.
o(
Oi
Ot
Oi
o.
Oi
Oi
o,
Ot
Ot
Ot
Ot
Oi
Oi
o.
0_
t
Oi
ot
o.
o.
Oi
o.
6.46e.0«
A-IV-60
-------
P*R - BU • 33.000 WASTE DECAY .TIMES
CASE e*t
Clad
POWER"
SIGNUPS 33000,MWO» FLUX* 3,'98E*1SN/CM**2»5EC
TABLE A-IV-2
ORIGEN Data
Uranium Recycle
H
BE
c
f
8
CL
AR
K
CA
sc
CR
MM
FE
CO
NI
ZN
3R
Y
ZR
NB
HO
TC
SN
SB
TE
TOTALS
' CHARSr C
o.
o.
•o," • -
o.
o.
0.
o.
o.
ot
o.
o,
o.
o.
0.
o,
o,
o.
o. --
o.
o,
o.
o.
o.
*0
o,
o.
(ISCHARGE
1.06E-02
6.aoE"07
1,'52E»02
1.25E-01
6.12E-02
3.65E-08
3.13E-12
l,2lE-?6
5.90E-03
3,79E-,67E»03
8,38E*o3
2,5flE+o2
<>.b8E»ft2
1.90E-01
8^72E-01
3.99F+02
8,31E+02
T.20E-03
5,53E«03
5.85E+nO
2.07E+01
8,52F+nO
1.19E+oa
" ELI
8ASI
10. Y
8,5aE-03
6.00E-07
1.52E-02
0,
8.2UE-U
I.65E-08
1.09E-13
1.21E-26
2.75E-09
1.J4E-13
0,
7,«2E-02
1,69E*02
2.52E+03
2,36Ei02
8.6UE.06
4,26E-Oa
fl,27E-00
5.S3E-02
2.67E-02
7.20E-03
5.53E-03
1 ,6«E-01
2.05E+00
8,fl7E"01
2,93E+03
EMfNTAL ACTIVITY, ~CURI -3
SB HT OF HEAVY METAL CHARGED
50. Y 100. Y 500, Y
8.96E.04 ?.35E»05 8,67E»tS
fc.UOE-07 6,aOE>07 6,aoE*07
1.51E.02 1.50E-02 1 .03E-02
0. 0, 0,
0. 0. 0,
3,fc5E-08 3.65E-08 3.65E-08
9.85E.1U 8.66E»t4 3,09E-lfl
1.21E-26 1.21E-26 1 ,2IE«26
0.
o,
o.
2,26E>16
3.95E.03
1.30E+01
1.76E+02
9,8bE»2a
1 .SQE-Ofl
l,59E»Oa
5.53E.02
5.70E.02
7.18E-03
5.53E.03
J.J3E-01
7,09E»05
2,9
-------
PHR • 8U » 33.000 WASTE DECAY TIMES
CASE E-l
TABLE A-IV-2
POWER* 38.40MW, BURNUPc 33000, MHO, FLUX»
1
TL
PB
81
PO
AT
1 RN
| ™
" AC
TH
PA
u
NP
PU
AM
CM
tlK
— CF
TOTALS
~ CHARGE DISCHARGE
0, 2^21E-03
0.
o.
o,
0.
0.
o.
ft.
o,
0.
2835E+00
0.
°«.
0,
0,
fl. -- --
2,S5C»00
3^666-03
3,«3E«08
a)'09E-08
3*3«£-01
6.U2E-01
2.31E-02
1,75E*01
6 aOE+02
2.38E+02
I.51E+00
S.fl8£»18
t!60E+oa
EL
BASI
1, Y 10, Y
1.91E-03 ,66E»Oa
1,91E»03 ,66E-Oa
3l«8E«08 «IlOE-08
1.91E-03 ,6bE-Oa
5.56E-n8 ,«2E-07
1.91E-03 ,66E-Oa
s|22E-03 l|85E-ft3
3.31E-01 3.30E-01
2.30E-02 1.99E-02
1.75E+01 1.75E+01
7!98E+03 !^3fcE+OS
J.88E-ia l,88E-ia
l,16E»nu 1,81E«05
S,89Eto3 2.09£t03
5,'98E*!5N
•MENTAL A
SB MT 01
50. i
O.SlE-05
9.1TE.05
9.17E-05
2*OOE-07
9.12E-05
(I.70E-07
9.1«E-05
1.98E-05
1.77E-03
3.33E-01
1.88E-02
1.7«E+01
1.21E+02
2J9SE+02
1.85E«1«
*|72E»02
/CM**2-8EC
:TIVITY, ct
' HEAVY MEI
1 100, \
3.92E.O!
7.00E-05
7.00E-05
^^seoos
7.00E-07
6.85E-05
1.03E-06
6.92E-05
' 2,atE-05
1.76E-03
3,3fcE«01
2.37E-02
l,7aE+Ot
5.87E+OJ
2.23E+02
a,36Et01
l.siE-ia
1.02E-08
J.3&E+02
RIE8 '
AL CHARGED
500. Y
2.S6E-OS
7.13E-05
7,13E»OS -
8.58E-05
1.69E-05
l)73E-05
5.71E-05
llsaE-03
3.56E-Ot
3.&5E-02
1,68E*01
1,08E*01
I,25E»02
5.13E-02
l.SiiE-ia
7.87E-09
1.53E+02
'
l<
.uncj-iiuea
TO REACTOR
JOOO, Y 5000. Y 10000, YlOOOOOi i
2.71E-05 6,«OE»05 J.61E-04 3.51E-OJ
i,98EoO« 3,28E«03 9,83E»03 1.63E-01
l,98E»Oa 3,28E-03 9.83E-03 J.63E-OJ
S.a9E-Oa a,07E-03 1.18E-02 1,77E«01
6.80E-05 1.59E.03 5,5aE«03 1.29E-OJ
7.79E-OS 8,f,OE-Oa 2.UE-03 1,«>*E"02
t,8aE«05 1.59E-03 5.5aE-03 l,29E-Ot
l.a6E-0« 2.flSE-03 7.70E-03 l,a6E-01
9.37E-OS 1.62E-03 5.58E-03 1.30E-01
3.03E-03 «.68E-03 9.99E-03 l.aBE-01
3.68E.01 3.76E-01 3.77E-01 J.67E-01
3.79E-01 a.flfcE-02 5.25E-02 J,*OE-01
1.61E+01 1,13E»01 7.32E+00 3.67E-01
9.07E+00 7.89E+00 6,7feE»00 3.61E-01
a,86E»02 3,3aE>02 s'leE-02 !,02E>05
J.27E.18 2,57E«15 3.51E-16 9,aoE«32
S.08E-09 2.33E*10 a.9fcE»l? 9,flOE»32
9.02E+01 3.07E+01 2,lfeE*01 2.6&E+08
r******* T
6.73E.03
2.99E-01
2,99E«01
2.97E-01
2.89E-01
a.soE.OS
2,89E«Ot
2.94E-01
2.90E-01
2l7aE.Ol
al73E«Ol
l.aaE-03
3,S6E«08
«,97E-08
0.
o,
A-IV-62
-------
PMR . BU • 55,000 MASTt DECAY TIMES
CASE E-l
POHERl 38,'aOHH, BURNUPa 33000,MWD, FLUX« 3.J98Etl3N/CM**2"SEC
FP's
TABLE A-IV-2
(continued)
ELEMENTAL ACTIVITY, CURIES .----.
BASIS • MT OF HEAVY ME 'AL CHARGED TO REACTOR
H
SE
«B
SR
Y
la
NB
MO
TC .
RU
RH
i PD
! AG
L"
IN
SN
SB
TE
• XE
C8
BA
LA
i '"
\ NO
PM
SM
EU
:CD
TB
OY
MO
TOTALS
CHARGE" DISCHARGE
0, 5,69E+01
0, 3.95E-01
0."
o,
0.
0.
Ot
0.
0.
0,
0.
o,
o.
o,
o.
o,
o.
o,
o.
o.
o,
o.
o.
o,
o.
o.
o,
o.
o.
o,.
o.
o.
-o. —
o.
7,51E-01 "
t,5bE+05
2.15E+05
Z.50E+05
8,93E+05
3,76E-18
1.U3E+01
5.20E+05
5,20E+05
l.lfeE-01
3.10E»03
8.91E+01
2,fe7E-01
a,llE+03
8.52E+93
1.91E+08
2.05E-08
o.
S.36E+05
1.01E+OS
1.08E+02
B.93E+05
8.57E+05
8,37E+00
9 93E»Oa
t,26E+03
1.52E»Oa
2.00E+01
2.95E»02
8.98E-16
8,57E»Oa
a,89E*06
,'t V
5.53E+01
5.95E-01
s^aiE-oa
8.19E+08
9.11E*oa
3,57E+oa
7,66E+08
7.59E-38
l.a3E+ol
3.26E+05
3.26E*05
1.I6E-01
l,68Ett)3
t.32Ef01
2,t2E«02
1.50E+03
7.85E»03
7.12E+03
a.73E.05
6,2«E.ll
2.99E+05
9,9ilE + oa
5.a7E-03
5,50E»05
5.U9E+05
9i33E-05
8.53E+00
1,25E»03
1.37E+oa
1.19E+01
S.lOEtOl
5.79E«32
8.57E-08
2.55Eto6
10, Y
3.33E+01
3.95E-01
1.93E-05
6,OOEt04
fe.OOEtOa
1 .87E+00
8.13E-01
"•
U83E + 01
6.50E+02
6,50E*02
1.16E-01
2,30E»01
7,17E*00
3,a2E>22
5,66E>01
7.80E+02
3.06E+02
a,75E-05
0,
9.55E+OU
e,08E+oa
o,
1.80E+02
I,80Et02
.0,
7.87E+03
l.lfcE+03
5,57E»03
9',65E-08
9.59E-13
0,
8.53E-00
3,ia£+05
50, Y
S,50E*00
3.95E-01
1.93E-05
2.24E+08
2.20E408
1.87E+00
J.73E+00
0,
1.83Et01
6.73E-10
6,73E«10
1.16E-01
8.31E.18
9.90E.01
0,
s.fcaE.oj
1.15E+00
1.06E.02
a,75E«05
0,
3.83E+08
3.20Et08
0,
5.85E-la
s.esE-ia
ot
1.99E.01
B.U6E+02
9,15E*02
6.85E-22
0.
0.
8.33E.08
!,13E*05
100, '
2.09E-01
J,95E^Ol
1.93E-05
6.S2E+03
6,S2Et03
1.87E+00
1 ,86EtOO
0,
1.83E+01 "
7.03E-25
7.03E-25
1.16E.01 "'
2.05E-JO
8,33E-02
0,
5.6UE-01
1.12EtOO
2.82E-08 ~
8.75E-05
0.
t.OSE+Ofl
1.01E>04
0,
2.56E.33
2.56E-33
0.
3.58E-07-
5.66E+02
1.05E+02
0,
0,
0.
8,09E«oa-
3,i6E+oa
500,
3.38E-11
3.93E-01
1.93E-05
3.38E-01
3.38E-01
1,87E«00
1,87E»00
0,
l.a3E*01
0.
0,
1.16E-OI
0.
2.08E-10
0,
S,62E*01
1.12EtOO
0,
a,75E«05
0.
1.27E+00
9.77E-01
0,
o. - -
0.
0,
0,
2.35E+01
3.12E-06
0,
0.
0.
6,02E»Oa
8,66EtOJ
f • 1000. \
1.95E-23
3.91E-OJ
1.93E.05
1,88E«06
1.08E-06
1.86EtOO
1,86E+00
o,
l.a3E+01
0,
o.
l,16E«Or
o.
3.69E-21
o.
S.60E.01
1,1JE*00
"0,
«,75E.C5
0,
2.23E-01
9.38E-06
0,
0,
o.
0,
0,
a,37E-01
1.22E-15
" 0,
o,
o.
a.eiE-oa
2,08E»01
9000, V
o,
3.75E-01
1.93E-05
0.
0,
l,86EtOO
1,86E*00
o,
l,aiE*01
o,
o,
' l.tbE-Ol
0,
0,
o,
5.85E-01
1,08E»00
0,
«,75E-05
0,
2.23E-01
o,
0,
• o, -
o,
o.
o,
6.26E-15
o,
0,
0|
«•
«,TTE«05
Z.OlEtOl
10000, YJOOOOO, V******* '
0, 0. 0,
3.55E-01 1.36E-01 9.23E-06
1.93E-05 1.93E-05 1.93E-05
9. 0. 0.
0. 0, 0.
l,8fcE+00 1,78E»00 1,18E»00
1,86E»00 1,78E»00 l,18EtOO
0. 0. 0.
1.38E+01 1,03E*01 S.aaE.Ol
0. 0. 0.
0, 0, 0,
J,16E«01 l,jaE«OJ 1.05E-01
0, 0. 0,
0, 0, 0,
0, 0, 0.
5.26E-01 2.82E-01 5,51E-Oa
1.05E*00 5.61E-01 l.JOE.OJ
0. 0, 0,
8.75E-OS a,7aE«05 8.56E.05
0, 0, 0.
2.23E-OJ 2.18E-01 1.77E-01
0. 0. 0.
0, 0, 0.
0, 0, 0,
0. 0. 0.
0. 0, 0,
0. 0, 0.
3.12E02 0, 0,
0, 0, 0,
0. 0, 0,
o. o, o,,
0, 0, 0,
2.66E-06 0, 0,
1.96E+01 1,9ZC«01 3,18E»00
•A-IV-63
-------
PUR • BU • 33»000 WASTE DECAY TIMES
POHER" 36,'aoMH, 8URNUP« 33000, M
H
HE
RE
B
C
N
0
f
NE
NA
rHg
Si
• P
s
cu
G*
K
A
«c
TI
V
Q*
H
t
0
CU
ZN
8R
Y
ZR
NB
«o
TC
RU
CO
8N
SB
TE
TOTALS
CHARBE t
1.62E+08
<>i
o.
0.
0.
3.85E+00
0.
2.60E+05
0.
0.
0.
0.
3,13E*01
6.51E+01
1.95E + 00"
1.29E+00
0,
- o.
0.
0.
s!s8£+0l
0.
2.00E+03
1,08E+02
3.97E+03
7.09E+01
3.70E+03
1.86E+01
0.
o.
o.
" 1,21E+05 "
3,23E+02
1.99E+02
0.
0.
fc,18E-03
6.3JE-03
1.83Et03
0.
0.
«.09E+05
>ISCHARGE
1.30E+03
2.33E»00
9.22E-10
5,15E-05
2,37E-11
5*07E«07
2.60E*05
2.98E-19
1.07E-08
8,34£-10
a.a6E-oa
3.13E+01
6,51E-+01
1.95E+00
1.29E+00
3.58E-OS
S.78E-10
1<20E-11
1*33E-05
5.59E+01
2.-82E + 00
2,OOE+OS
1.05E+02
3.97E+03
6.96E+01
3,70E»03
1.86Et01
1.10E-01
1.15E-01
S.07E-08
1.21E+05
3.23E+02
2.06E+02
3.22E-01
9 75E-02
7.67E-OB
2.20E-03
1.B3E+03
6.62E-01
1.17E-02
3.98E»05
1. Y
1»30E*03
2.33E+00
9.22E-10
5.15E-05
1*09E+01
2|fcOE+o5
2.98E-19
1,07E-08
8.38E-10
fc^SlE+Ol
1.95E*00
1.29E+00
3.69E-05
S.80E-10
1.20E-11
l,56E»fl4
8,78E»06
5.59E»01
2.82E+00
2,OOE+03
1,05E»02
3.97E»03
6.90E401
3,70E*03
1.88E+01
1.10E»01
1.15E-01
3.57E«pS
1,21E»05
3.23E*02
2,06Et02
3.22E-01
9.75E-02
7.67E,»Ofl
2.20E-03
1.83E+03
Q.59E.01
1.44E-02
3.98E*05
rfD, FLUXe :
ELE»
BASI
10. Y
1,30E*03
2.33E+00
9.22E-10
5,15E«05
1.41E-10
1.09E+01
4.8JE-06
2,60E»05
2.98E.19
1.07E-0.8
8.34E-10
8.46E-04
3.J3E+01
6.51E+01
1.95E+00
1,29E*00
3,72E-05
4.02E-10
1.20E-11
l.SbE-oa
5159E+01
2.82E+00
2.00E+03
1.05E+02
3,97E*03
3I70E+03
l,89Et01
1,10E«0.1
1.15E-01
7.88E-10
3|23Et02
2,0b£*02
3,22E»01
9.75E-02
7.67E-OB
2,20E»03
l,8JE»03
6.42E-01
3.19E-02
3,946+05
CASE
J.*98E+l3N/(
•(ENT CONCE>
3 > MT OF
50. Y
1.30E+03
2.33E+00
9.22E-10
5,15E«05
6.38E-10
1.09E+01
2.09E-05
2,<>OE»05
2.98E«19
1.07E-08
8.34E-10
sIlJEffll
6.51E+01
1.95E+00
1.29E+00
3.72E-OS
5.02E-10
1.20E-11
1.56E-04
2.46E-06
5.59E+01
2.82E+00
2.00E+03
1.05E+02
3.97E+03
6.16E+01
3.71E+03
1.99E+01
l|l5E-01
2.92E-10
1.21E+05
3.23E+02
2.0bE+02
3.22E-01
9.75E-02
7.67E-06
2.20E-03
1.83E+03
b.ajE-Ot
3.38E-02
3.94E+05
E-l
:M**2-SEC
ORATIONS,
HEAVY MET/
100, Y
1.30E+03
2.33E+00
9.22E-10
5.15E-05
1.2fcE-09
1.09E + 81 -
a.lflE-05
2.60E+05
2.98E-19
1.07E-08
8.34E-10
a.afeE-04 -
3,13E+01
6.51E401
1.95E + 00 "
1.29E+00
3.72E-05
6.27E-10
1.20E-11
1.56E-08
2,46E-06~
5.59E+01
2.82E+00
2.00E + 03 '
l.OSE+02
3.97E+03
6.18E + 01 -
3.70E+03
2.07E+01
1.10E-01
1.1SE-01
8,51E-11
1.21E+05
3.23E+02
2.06E+02
3.22E-01
9.75E-02
7.67E-08
2.20E-03
1.63E+03
6.42E-01
3.3BE-02
3.94E+05
BRAMi
L CHARGED
500, Y
1.30E+03
2.33E+00
9,22E«10 -
5.15E-05
b,22E-09
1.09E + 01 -
2.01E-08
2,bOE+05
2,98E«19
1,07E*08
8.38E-10
4.46E-08
3.13E+01
b,5IE+01
.95E+00
,29E+00
.72E-05
,<>3E-09
.20E-11
2jabE-06 -
5.59E+01
2.82E+00
2.00E+03
1.05E+02
3.97E+03
6.18E + 01 -
3.70E+03
2.26E+01
1,10E>01
1.15E.01
l|21E+05
3,23Et02
2.06E+02
3.21E-01
9.75E-02
7.67E-08
2.20E-03
1.B3E+03
6.44E-01
3.38E-02
3.94E+05
LI
TO REACTOR
1000, Y 5000, Y
1,30E+03 1,30E+03
2,33E+00 2-33E+00
9.22E-10 9.22E-13
5.15E-05 5.15E-05
1.24E-08 6.20E-68
1.09E+01 1.09E+01
3.P9E.04 1.S5E-03
2.60E+05 2.60E+05
2,98E»19 2,98E«19
1.07E-08 1.07E-08
6.38E-10 8.38E-10
QtQ6C*OQ A|46E*OQ
3.13E+01 3.13E+01
b,SlE+01 6.51E+01
1.9SE+00 1.9SE+00
1.29E+00 1.29E+00
3.72E-05 3-72E-OS
2.87E-09 1.2RE-08
1.20E-11 1.20E-11
1,56E>04 1.5bE-04
2,86E-Ob 2,46E-Oe
5.59E+01 5.59E+01
2.82E+00 2.82E+00
2,OOE+03 2,OOE+03
1.05E+02 1,05E+02
3.97E+03 3.97E+03
6.19E+01 6.27E+01
3.70E+03 3,70E+03
2.27E+01 2,27E+01
I.JOE.O: i.toE.oi
1.15E-01 1.15E-01
1.98E-20 0,
1.21E+OS 1.21E+05
3.23E+02 3.23E+02
2,06E+02 2,06E+02
3.21E-01 3.16E-01
9.75E-02 9.75E-02
7.67E-08 7.67E-08
2.20E-OS 2.20E-03
1.B3E+03 I.63E+03
6,aaE-01 6,8<(E«01
3.38E-02 3.38E.02
3,9a£ + 05 3.98E+M
J-, i
TABLE
(cont;
10000. Y100000, Y
1.30E+03 1.30E+03
2.33E+00 2.33E+00
9.22E-10 9.22E-10
5.18E-05 5,03E>05
l,2aE-07 1.22E-06
1.09E+01 1.09E+01
2.40E.03 3.41E-OS
2,boE+05 2.60E+05
2.98E-19 2,98E*t9
1,07E-08 1.07E-08
B.34E-10 6.34E-10
8,46E«04 4,4bE>04
3.13E+01 3.13E+01
6.51E+01 6.S1E+01
1.95E+00 1.95E+00
1.29E+00 1.29E+00
3.72E-05 3,70E«05
2.51E-06 2.24E-07
1.20E-11 1.20E-H
1,56E»04 1.56E.04
2.4bE'06 2,46E»Oe
5.59E+01 5.59E+01
2,8?E+00 2.82E+00
2,OOE+03 2,OOE+03
1.05E+02 1.05E+02
3,97E+03 3.97E+03
6.36E+01 7,aaE+01
3.70E+03 3.69E+03
2.27E+01 2.27E+01
l.lOEvOl l.tOE»01
1.15E-01 1.15E-01
0. 0,
1.21E+03 1.21E+05
3.23E+OI 3.24E+02
2.06E+02 2.06E+02
3, HE. 01 2,31E>01
7J67E-OB 7.67E-08
2.20E-03 2.20E«03
1.63E+03 1.83E+03
6,44E«01 6.44E-01
3.38E-02 3.38E-02
3.94E+05 3.94E+05
A-IV-2
Lnued)
»*•**•* T
1.30E+03
2.33E+00
9.22E-10
8,07e«05
1,06E»OS
1.09E+01
3,811-03
i!o?E«oe
8.38E.10
3|l3E+Oi
6.51E+01
1.9il+00
1.29E+00
S.62E-05
9,99E«OT
1.20E-11
5.59E+01
2.82E+00
2,OOE+03
3J97E+03
8,3fcE+Ot
3.6BE+03
1,10E»01
1.15E.01
0.
I,21E+05'
3.31E+OJ
2,ObE»OJ
1»J9E«02
9.75E.02
7,67E-08
2.20E-03
1.83E+03
»,84E«Ol
S^aE + OS
A-IV-64
-------
POWER* 38,'OOMW, BURNUPm 33000, M
HE
L- PB
BI
PO
1 *T
RN
HA
AC
TH
1 PA
U
1 n
Pu
AM
CM
BK
cr
! TOTALS
CHARGE ' 1
0.
o,
o.
o,
o.
0 •
Q -
0.
o.
0,
o,
]|oOE+06
0,
0.
o.
Of
- o, - - -••
o.
l.OOE+06
DISCHARGE
2.U8E-01
2.77E-12
6,87E-07
2,19E-10
8.71E-14
2,11E«20
6|olE-16
3,'oflE-08
1.53E-OB
1.39E-03
5.26E-08
4.78F+03
a)71E+01
1.58E+02
ais^E-ai'
3.0SE-07
5.'87E*03
1. Y
2,92E-Ol
2.37E-12
l,t!E»06
2*18E-20
2,23E»12
7t39E-i6
3,36E"08
2,OaE-08
1.37E-n3
8^78Et03
4,65F+02
8.95EtOl
1.58E+02
2/.58E + 01
a.flttE-21
2.75F-07
5,a7E+03
1 i"C9
WO, FUUXs
ELE
BASI
10, Y
4.57E-01
2.38E.13
3.37E-06'
2.19E-10
3.97E-12
2.52E-20
8.80E-13
2.86E-15
1.11E-07
9.B9E-08
1,80E"03
5.26E-08
8.78E+03
sIsflE+Ol
l)71E+01
a,82E-21
5.09E-08
5,47Et03
v.»oc
C.™ *
KENT CONCENTRATIONS;
SB MT OF HEAVY MET
, 50, Y 100, Y
r,70F«01 9.31E-01
1.91E-13 1.77E-13
5.07E.OA 6,66E»06
1,87E»09 1,08E»08
5.92E-11 1.75E-10
1.23E.19 4.30E-19
3.50E«12 7.58E.12
8.28E-15 1.25E.14
5.33E-07 1.17E-06
2.69E-07 3.21E-07
l,fc2E-03 2,OaE-03
5,2flfi.0a 5.29E-08
fl,78E+03 4.78E+03
4.70E+02 8.75E+02
6,aaE*Ot 6.61E+01
1.5uE*02 1,U9E*02
3,92EfOO 8.20E-01
0.75F-21 8.65E-21
6.69E-09 6.82E-09
5,47E*03 5,a7E+03
GRAMS
AL CHARGED
500, Y
1,53E*00
1.33E-13
1.35E-05
1.18E-06
3,16E-09
1.08E-17
9,2flE-ll
1.05E-13
1,88E-.OS
3.83E-07
7.59E-03
4178E+03
S,03E*02
6,59E*01
1.17E+02
2.6P.E-01
3.97F-21
4.72E-09
5.47E+03
- HE
TO REACTOR
1000, Y 5000, Y
1,92E»00 2,84E*00
1.36E-13 2,49E-13
2.52E-05 7.08E-08
9.17E-06 1.10E-03
1.16E-08 l,8aE«07
4.19E-17 9.7&E-16
3.39E-10 5.38E-09
3.93E-13 8.96E-12
5.28E-05 8.38E-04
3.53E-07 8,5«E-07
1.55E-02 8,35E«02
5.56E-04 6.72E-08
a,78Et03 a,80E+03
5.20E+02 5.33E+02
6,7BE*01 7,62E*01
9.58E+01 5.68E+01
2.56E-01 1.79E-01
3,?5E-21 6.60F-22
3.21E-09 1.87E-10
5,87E»03 5.47E+03
S
TABLE f
(contlr
10000. -YIOOOOO. Y
3.40E+00 *,72E*00
5.02E-1J 8.34E-1Z
3.73E-03 8,01E«01
8.02E-03 2.53E+00
a,7lE-07 3.70E-06
3.81E-15 7.96E-14
1.38E-08 1.08E-07
3.13E-11 7.30E-10
2,15E«03 1.69E-02
6.28E-07 5.88E-06
1.76E-01 l,61EtOO
8,3aE.oa 5,5SE«03
4,82E*03 8.95E+03
5.33E+02 5.17E+02
7.97E+01 1.09E+01
3,61E*01 1,08E»02
9.01E-23
3.13E-12
5,87E*03
2.81E-38
6.60E-35
5.«9E»03
L IV 2 , . ...
tued)
_J
t****** Y
2,13E*01
1,756-11
4,866+00
1.03E+02
9.90E-07
1.78E-13 ' -
2.91E-08
1.63E-09
8.S8E.03
9.98E-06
3,11E»00
7.61E.03
4.97E+03
3,86Et02
3.68E-01
1.75E.07
o, -
0.
5.49E+03/
*
A-IV-6S
-------
TABLE A-IV-2
(continued)
POWER* ss.'aoHW, BURNU
N
OE
se
8R
[ KK
V
IK
ps
RU
RH
PD
AC
Leo
IN
SN
SB
TE
i
CJ
r*
LA
CE
PR
NO
PM
— cu —
CD
TB
OY
MO
ER
CHARGE DISCHARGE
0, S.87E-OS
0. 3.73E-01
oe
0,
o.
o,
o,
o,
e.
o,
o,
0«
o,
o.
o,
o,
o,
o, -
o.
e,
o.
o,
o.
o.
0.
o.
V
" o,
o,
o,
e.
o.
o,
o.
o,
o.
TOTALS 0-,
8,a«E-02
5.56E+0!
1.53E-02
0.
3.J7E+02
ft t fl 3E * 0 E
ft-ftlE^Ofi?
S.63E+03
3.a«E+03
2131E+03
3,886+02
1.33E+03
6.21E+OJ
B.95E+81
1.22E+00
5.31E+01
1,78E+01
5,69E+02
2.72E«01
0,
1 ^38E+03
1,271+03
2.75E+03
1.19E+03
S.83E+03
1,85E»02
8.0iE+02
1,7BE+02
1.28E+02
i.m+oo
1.15E+80
1.17E-01
3.67E-02
2,'flBE+oa
?• 33000, MWO, FLUXa
1, V
5,71E«83
3,73E-81
S*16E+OI
1.53E-02
1.09E»aS
3.27E+02
8.73E+02
3*fc3E+03
1.93E+00
3.U6E+83
8.39E+02
2.27E+03
3.90E+02
1.37E+83
6.J9E+01
B.98E+01
1.22E+88
5.28E+01
1.72E+81
5,.70E + 02
7,97F-81
6,97E-09
2,*2E+03
l,a2E+03
1.27E+03
2,65E+03
1.19E+83
3 93E+03
9.17E+81
B.19E+82
1.76E+02
1.26E+02
1.85E+00
1.18E+00
1.17E-01
3.67E-02
" 2.88E+08 -
- --' ElE
3ASI
10, V
S,aeE«os
3,73E»01
B.aaE'Og
5.16E+OI
1.58E-02
3*27E+02
7.68E+02
8,S8E+82
3.73E+OS
3.78E-03
e|j9E+02
2.17E+03
3.90E+02
1.87E+03
6.15E+01
9.01E+01
1.2UE+00
5,2fcE+01
1.10E+01
5.76E+02
1.01E+00
l,laE-07
2.25E+03
1.79E+83
1.27E+03
2,88E+03
1.19E+03
4, 10E+03
8,8BE+00
8.99E+02
1.98E+02
1.88E+02
I.85E+00
1.18E+00
1.17E-01
3.67E-02
2.88E+04
MfNT CONCENTRATIONS
S c HT OF HEAVY ME
50, ¥ 100,
5,<»1E«08 2.1SE-05
3.73E-OJ 3.73E-01
s[uE + 01 ?Il6E + 01
J.83E-02 2.13E-02
l,09F.a3 l,09E-83
3.27E+02 3.27E+02
5.02E+02 3,89g+02
8.58E+02 8.58E+02
8.00E+63 «,1SE+03
1.72E.02 3,«OE-02
3.86E+03 S,a6E+03
8.39E+02 8.39E+02
2.17E+03 2.17E+03
3,(»OE + 02 3.90E + 02
1.87E+05 1.U7E+03
6.1SE+01 6.15E+01
9.01E+01 9.01E+01
1.27E+00 1.27E+00
S,26E+01 S,26E+Oi
1.03E+01 1.03E+01
5.77E+02 5.77E+02
1.01E+00 1.01E+00
5.90E.07 1.18E-06
1.65E+03 1.38E+03
2.80E+03 2.67E+03
1.27E+03 1.27E+03
2,a8E+03 2.4BE+03
1.I9E+03 l,t9E+83
8.10E+03 0.10E+03
2,1SE-08 3.86E-10
8.96E+02 e,86E+02
1.80E+02 l,a5E+82
1.77E+02 1.83E+02
1.85E+80 1.85E+00
1.18E+00 1.1BE+00
1.17E-01 1.17E-01
3.67E.02 3.67E-OZ
2.BBE+04 2,B8E+0«
6RAHS
'AL CHARGED
500, Y
3.49E-15
3,7SE«01
"8.08E-02 -'
5.J6E+01
llo9E-a3
3.27E+02
3.83E+02
8,58E+02
il69E-OI
3,a6E+03
B.38E+02
2.18E+03
3.90E+02
t,a7E+OS
6.15E+01
9.01E+01
1.27E+00
5.25E+01
1,03E+OJ-
5.77E+02
I.OIE+OO
5.98E-06
1.25E+03
2.79E+63
" 1.27E+03
2.88E+03
1.19E+83
' a,10E+03
0,
6,66E+02
1.68E+02
l.BUE+02
1.85E+00
1.18E+00
1.17E-01
3.68E-02
2.88E+08
TO REACTOR
1800, f 5000, Y
2,02E-27 0«
3.73E-0! 3.73E-01
6,aaE»02 8,e«E>9S
5.15E+OJ 5,13E+Ot
7,58E»02 S,10E"OJ
s!27E+02 s!27E+02
3,a3E+02 3.83E+02
3l37E»8S iUsE + eo
3.86E+.03 3.86E + 03
8.36E+02 8,2frE+02
2,!8E+03 2,19E+03
3.90E+02 3.98E+02
t,«7E+03 1.87E+OS
6.15E+01 6.16E+01
l|27E+00 l!27E+00
5,28E+Oi 5.19E+01
1.03E+01 1.03E+01
5.77E+02 5.77E+02
1,01E+00 1.01E+00
1.19E-05 5,9«E-05
1.25E+03 1.25E+03
2.79E+03 2.79E+03
J.27E+03 1.27E+03
2,88E+03 2,8RE+OS
1.19E+03 1.19E+03
8.10E+03 a,loE+03
Q.^ 0, •
B,fc5E+02 6.65E+02
1.65E+02 .65E+02
1.B8E+02 ,64Et02
1.8SE+00 .85E+00
1.IBE+80 .1BE+00
1.17E-01 .16E.01
3.69E-02 3.72E-02
2.88E+08 2.88E+08
9. «e
3,73E-Oi 3,73E»CS
8,88e»o2 e.aaEoQi
S,iOE + Oi 4,79E4>01
f,89E«01 3,7aE*00
l,09E-83 1.09E-83
S.27E+02 3.27E+02
3.83E+02 3.83E+02
4,58E + 03 a^eE + Oi
ffi,S6E+OS 8,13E+03
3.36E+00 3.29E+01
3.86E+03 3,8fcE+OS
8.12E+02 6.05E+02
2.20E+03 2.81E+83
3.90E+02 3,90E+02
t,87E+03 1.47E+OS
6.18E+01 »,39E*Oi
il27E+00 lj27E*00
5.12F+0! 8,26E*01
1.03E+01 1.03E+01
5.78E+02 5.87E+02
l.OlE+00 1,01E+00
1.19E-04 1.19E-03
1.25E+05 1.25E+OS
2.79E+03 2.80E+03
1.27E+03 1.27E+03
2,«8E+03 2,a8E+05
1.19E+03 1.19E+03
8.10E+03 S.10E+03
0, 0,
6.65E+02 8.6SE+02
1.65E+02 1.65E+02
1.8aE+02 I,8«E+02
l,85EfOO 1.B5E+00
1.18E+00 1.18E+00
1.16E-01 1.16E-01
3.72E-02 3.72E-02
2.88E+04 2.B6E+08
»*•*••« V
e*
S a 73C*$ £
8 c fiflE»OS
4,?9E+0£
5.69E+OC
le09E«8J
3,271+82
3,83E+02
J*39E+9$
2.69E+02
3.86E+OS
3.19E+0!
2,98E+03
1J8SE+03
8t88E+Oi
S.27E+00
3,27E+0|
t,03E+Ot
l,OOE+00
l.lfeE.62
1.20E+OS
2.K8E+OS
1.27E+OS
2.88E+03
1.19E+63
8.18E+05
0,
8.65E+01
1.65E+02
1.85E+80
l!l6E«Ol
3.72E.02
2.B8E+04
A-IV-66
-------
PHR
• BU •
33.000 WASTE DECAY TIMES
POWER* 38,'flOMW, BURNUP« 33000. MHO, FLUX* 3
H
C
S
CL
AR
K
CA
CR
MN
CO
ZN
SR
Y
ZR ~
MO
" TC
SN
SB
Tt
TOTALS
CHARGE
o,
o.
o.
o,
0.
o!
o,
o.
0.
o.
o,
o.
0.
o.
o.
o.
6.
o.
o.
o,
o,
0.
o.
o.
DISCHARGE "
5.19E-07
1.51E-06
6 20E-05
l,7aE-05
4.80E-11
1,'aTE-ia
1.J6E-29
5,32E«03
6.31E-01
1 .68E+00
2,«8E*00
l.«9E+02
U,06E«02
1,29£«03
7.77E-03
2.B5E-02
1,U6E+01
2.57E+01
1.79E-05
9 51E-06
7.18E-03
9..06E-02
8.19E-03
1.93E»02
1, Y
5.00E-07
a.51E-06
"3,53E-07
6.80E-11
5,fl6E«l6
1.16E-29
l,fc7E-06
1.18E.03
lJllE+00
1*31E+02
a,o«E«o2
7.69E-00
3)32E-03
2,09E»00
a OOE+00
1.79E-85
9.51E-06
3,29E*03
8.aiE-02
7.32E-03
ELE'
B*3IJ
10. Y
3,0«E«07
a,51E«06
0,
2.3UE.17
fc.80E.ll
1.51EM6
lJfcSE.12
1.88E-15
0,
fc.OlE-Oa
2.21E-01
3,9«EtOl
3.78E-02
7.02E-08
5.59E-07
2.51E-06
6.55E-06
1.08E-05
1.79E-05
9.51E.06
1,71E»00
8,29E-03
7.28E-00
3,97Et01
CASE
J,'98E*l3N/(
IENT THERMS
) z HT OF
50. Y
3.19E.08
a.aSE.Ofc
0.
0.
6.80E-11
1.37E-16
1.16£«29
o.
0.
0.
1,83E-18
5.16E.06
2.02E-01
2.79E.02
7.83E*26
2.08E-07
9.36E.07
6.55E.06
2.laE.05
1.79E.05
9.51E-06
1.19E.OO
2.87E.07
2.52E.08
2.31E-01
E-l
M**2«SEC
»L POWER,
HEAVY MET
- 100. Y
1.90E-09
a,86E-06
0.
0.
6.79E-11
1.20E-16
1,16E«29
0.
o, — -
o.
1.31E-36
8.37E-12
2.78E-oa
1.92E-02
0.
fc.07E.08
2.73E-07
6.5SE-06
2.29E.05
1,78E-05
9.51E-06
7.53E.05
7,<>aE-13
6.71E-ia
1.96E-02
Clad TABLE A-IV-2
(continued)
kL CHARGED
500. Y-
3.08E-19
fl,25E-C6
0,
0.
6.79E-11
a,28E«17 '
t,l6E«29
0.
0, '
0,
0,
o, -
0.
9.01E-04
-o. •--
3.18E-12
6j55E«06 ~
2.29E-05
1.73E-05
9.50E-06
i.96E*06
0.
0.
1,OOE«03
TO REACTOR
1000, Y 5000, Y
1.78E-31 0,
a,OOE-06 2,44E"06
0, 0,
0, 0.
6.78E-11 6,72E«11
1.J8E.17 3,?aE-22
1.16E-29 l,l«.E-29
o, o,
o, - o,
0, 0,
0, 0.
o,
o.
2.17E.OS
o, •--•• -
1.38E-17
6.21E-17
6,55t«06
2.29E-05
1.66E-05
2lo5E«08
0.
0,
8.13E-05
0.
1.76E-18
o.
0,
o,
6,5aE-06
2.23E-05
1.22E-05
9.36E.06
o!
0.
5.29E-05
10000, YIOOOOO, Y******* Y
0, 0, 0,
1.35E-06 2.51E-11 0,
0, 0, 0,
0, 0, 0,
6.65E-11 5,a3E«ll 7.26E-12
9.96E.28 0, 0,
1.16E-29 l,16E«29 1.16E-29
0, 0, 0,
0. 0. 0,
0, 0, 0,
0, 0, 0.
o. -- o, o,
0, 0, 0,
7.66E-3S 0, 0,
0. 0, 0,
0, 0. 0.
0. 0, 0,
6.52E-06 6,26E«04 <,13C»06
2.18E-05 2.00E-05 1.37E-05
8.SOE-06 8.10E-09 0,
9.20E-06 fc,8«E«04 3.51E-07
4.55E«aa 0, 0,
0. 0, 0,
0, 0. 0,
4.72E-05 3.31E«05 1,82E«05
A-IV-67
-------
PWR • BU *
33.000 WASTE DECAY TIMES
POWERa 38.801W, BURNUP» 33000, Ml
PB
"• BI
PO
AT
FR
" *C
TH
PA
u
NP
PU
CM
BK
' CF '
TOTALS
" CHARSE
0.
o,
- o, - -
o.
o.
-o. -
o,
o.
o.
o.
o,
" 6.65E-02
0,
o.
o.
o,
o.
o.
6.65E-02
DISCHARGE
l.fl8E-05
3.22E-06
' 3.'90E-05
1.68E-08
I ,au£"09
" 8.51E"05
1 ,31E»09
7.'68E-05
' '1,78E»09
2,OOE«OU
2.06E«03
2,«3F"Oa
3.28E-02
5. jyf>01
7.99E+00
l|fe8E-16
5*63E+02
1. V
l."60E-05
2.75E-06
3.33E-05
l.asE-oa
?]26E-05
1 .JUE-09
6.55E-05
fe^a2E-05
1J71E+00
8.00F. + 00
2.90E+02
a.'59E-06
3.00Etfl2
CASE
E»l HE's
^0, FLUXa 3,*98E+13N/CM**2.SEC
CLEMENT THERMAL POWgR,'
BASIS s MT OF HEAVY MET
10, Y 50. Y 100, Y
1.35E-06 6.55E-07 a,39E-07
2.52E-07 1.69E-07 1.85E-07
3,OaE-06 2.01E-06 I.70E-06
1.22E-05 6.2aE«0«i a,«7E-06
1.72E-09 8.37E-09 2.93E-08
6.32F.-Ofe 3.51E-06 2.65E-06
1.76E-09 8.07F«09 2.68E-08
5.69E-06 3.13E-06 2.35E-06
5,OaE«.09 1.67E-C8 3.58E-08
6,7tE-06 8.3BE-0* 3,85E«Ob
8,53E«OB «,57E«oa a,6lE»oe
2.97E-08 0,93E-Oa fc,7(E-0«
3,??E-02 3.2PE-02 3.2PE-02
2.59E+00 2.02E+00 1,U7E*00
B,13E*00 8,03E*00 7.51E+00
«,75E*0] 1,03E*01 1.53E+00
1.68E-16 l.fe5E-16 1.62E-16
7.16E-07 6.aaE-10 3.6aE»10
5.82E+01 2,OaE*01 1.05E+01
02
3,30E*Oa
9.93E-03
3!«7E»0«
e'oiE-o]
i USE. 09
3.10E.09
0-,
0,
7.62S-02
A-IV-68
-------
>>HR • »U •J»»000 WASTE DECAY TIMES CASE C-l
POWER* S6.'40MH, 8URNUP« 33000,MWD, FLUX» 3.'9SE*13N/CM*»2-SEC
FP's
TABLE A-IV-2
(continued)
"CLEMENT THERMAL POWERrWTTS —
BASIS • MT OF HEAVY ME"AL CHARGED TO REACTOR
H
— RB
SR
Y
'-ZR
NB
RU
RH
r PD
CD
1 — IN
SN
SB
?
11
BA
LA
cc
PR
NO
Ou
SM
EU
GO
TB
BY
—HO
TOTALS
CHARGE
o.
o.
o.
o,
o,
o, - -
o.
o.
0.
o,
o.
0,
o.
0.
o ,—--.-
0.
o.
o.
o;
o.
0.
o,
o,
o.
o.
o.
o.
o,
o.
" t
o.
DISCHARGE
ll50E«04
3.55E-03
3.66E402
9.77E+02
" 1.31E+03
2,35E+03
1,53E«16
" 9 66E-03
2,39E+02
4.82E+03
" 9,60E«06
4.89E+01
1.53E-01
" 7,65E«04
1.45E401
3.50E+01
2,73E+Ot
6.0BE«07
0,
3196E+02
1.90E+00
7.72E*02
6.6UE+03
2.72E-02
7.47E+01
2.19E+00
7,12E»01
2.88E-02.
7*82E»19
2*08E»04
1.. Y
1.97E-03
1.50E-04
4,08E-06
1.23E+02
5^03E+02
3*66E*02
9*66E-03
2.78E*01
3.40E+03
9.60E-06
2.97E+01
2.20E-02
6,06E-05
5.28E+00
3,03E+01
9.76E+00
3.11E-08
r,21E-l3
2,21E+03
.4*50E+02
3^03e-07
2*18E+00
6,80E*01
1,71E-02
4.33E-01
5.05E-35
9,21E«06
1.21E4Q4
10, Y
1.18E-03
1.50E-04
1.26E-OB
7.86E+01
3.S3E+02
2,21E»04
i,05E>04
0,
9.66E-03
3.85E-02
6.83E400
9,60E>06
3.6UE-03
9,fl8E-03
9.79E-25
6,10E»04
s!26E-01
3.13E-08
0,
2.38E402
3.17E+02
0,
1.47E-01
1,39E»00
0.
4,06EtOO
2.03E400
4.27E+01
1.39E-06
8,14E«15
0,
9.17E-06
1.05E+03
50. Y
1.2uE.oa
1.50E-08
1.26E-08
2.93E+01
1.32E+02
2.21E-04
3.07E.04
0.
9.fc6E.03
3.99E«14
7.07E-12
9.60E-06
1.85E-20
1.31E-03
0,
6.09E>04
1.12E.02
1.82E-05
3.13E.08
0.
S.61E+01
1.26E+02
0.
fl.79E.17
a.53E«16
0.
1.03E-04
1.47E+00
7.52E+00
9,29E>25
0.
o.
8.96E.06
3.52E+02
100,
7.43E.06
1.50E.04
1.26E«08
8.5aE+00
alsie-oa
3.30E-04
0.
9.66E.03
4.17E-29
7.39E-27
9,60E-06
2.55E.33
1.10E-04
0.
6,09E>04
1.11E.02
1.85E-11
I.13E-08
0.
1.77E+01
3.97E+01
0.
2.09E-36
1.98E-35
0.
1,85E>10
9.90E-01
8.61E-01
o,
o.
o,
8.70E.06
1.06E+02
500, Y
1.20E>15
1.49E-04
1.26E-OB
l!99E-03
2,21E-04
3.32E-04
0,
9.65E-03
0,
0,
9,60E«06-
0.
2.75E-13
-o,
6.07E-04
1.10E-02
o,
3.13E-08
0,
- 1.82E-03 ~
3.B4E-03
0.
o,
o,
o.
o, -- —
4.09E-02
2.56E-08
0.
0.
0.
- 4.91E«06
7,10E«02
1000, Y 5000, V 10000. Y100000, Y******* Y
6.95E.28 0, 0. 0. 0,
1.48E-04 1.42E»04 1.35E«04 5.16E-05 3,50E«0»
1.26E-08 1.26E-08 1.26E-08 t,26E«08 1,26E»06
i,9«E-09 0, 0, 0, 0,
8.74E-09 0, 0. 0. '0,
2.21E-04 2.21E-04 2.20E-04 2.J1E-04 1.39E-04
3.32E.04 3,3lE-Ofl 3.30E-04 3,17E«04 2.09E-04
0, 0, 0, 0, 0,
9.63E-03 9.51E-03 9.35E-OJ 6,97E«03 3.47E-0*
0. 0, 0. 0. 0.
0, 0. 0. 0. 0,
9.60E-06 9.59E-06 9.59C-06 9.50C-06 8.69E.06
0, . 0, 0, 0, 0,
4.67E-24 0. 0, 0, 0,
0, 0, 0, 0. 0.
6.04E-04 5.88E.OO 5.68E-04 3,04E«04 5.94E-07
1.10E-02 1.07E.02 1.03E-02 5.54E-03 1.08E-05
0. 0. 0, 0, 0.
3.13E-08 3.13E-08 3.13E-08 3.12E-OB 3.00E-08
0. 0. 0, 0, 0,
1.09E-04 1.08E-04 1.08E-04 1.06E-04 8.61E.05
3,69E>OB 0, 0, 0, 0,
0, 0, , 0. 0, 0,
0, 0, 0. 0, 0.-
*. 0, 0, 0, 0,
0. 0, 0, 0, 0,
°» o, - o, o, o,
7.61E-04 1.09E-17 5.44E-35 0, 0.
l.OOE-17 0, 0, 0, 0.
0, 0, 0. 0. 0,
°. 0, • 0, 0, 0.
o. o, o, o, o.
£,17E»06 5.13C-OT 2.86E-08 0, 0,
2.28E-02 2,16^*02 2,11E«02 1.35C-02 B.22C-04
A-IV-69
-------
PHOTON SPECTRUM
AS A FUNCTION OF TIME FOR LIGHT ELEMENTS, CLADOIN6 AND STRUCTURAL MATERIALS
PWR . BU • 33,000 WASTE DECAY
POWERS 38, «0 MM, BURNUPs
E«EAN
3,OOE-01
6.30E-01
1,10E+00
U99E + 00
2<3BE*00
S..25E + 00
a, 221*00
«,70E+00
S.25E*00
TOTAL
MEV/SEC
EMEAN •
(M£V)
609
1.20E+12 1.72E>09
ENERGY RELEASE R»TE?
MT OF HEAVY METAL
E AFTER DISCHARGE
50." Y 100. 1
1.59E+00 1,71E*00
2.31E«-01 2.02E-01
3.13E+00 a.JOE+01
1.06E-0* 3.10E-05
a,iaE«06 1.21E-06
0.
0.
o,
0,
o.
0.
o.
3.13E+04
1.92E-01
0,
o.
o,
o,
0.
o.
0.
a.a9ttol
2.76E-04
o»
6 1
"0,
o!
29'SlEt08
7.30E+07
it MEV/WATT
CHARGED TO
f •- 500,- Y
1,71E+00
2.01E-01
U61E-09
6.266-11
0,
0.
0.
o.
0.
0.
- o. - -
i.9ie+o«
1.18E-05
SEC
REACTOR
1000. V
2.18E+08
1.23E*07
9.68E-07
S. 751-07
5.S1E-09
0.
os
0.
0.
0.
0,
0.
2,30Et08
7.31E+07
• SEC
REACTOR
1000,' Y
1.70E+00
2.01E-01
2.77E-10
7.06E-1S
2.75E-16
0,
;Q,
o.
o,
0.
0.
o.
J.90E+00
1.17E-05
-
5000.' Y
S.12E+08
1.23E+0?
0.'
0.65E-17
0.
0,
0.
0.
0.
0.
0.
0.
5000.' Y
1.6&E+00
2,01E»01
0.
!.88E-2«
0.
0,
0.
0.
0.
0.
0.
0.
1.86E+00
1.14E-05
Clad
looeo. Y
?.07E*08
1.23E+OT
0.
A.65E-17
0.
0.
0.
0.
0.
0.
o.
o.
10000. Y
1.62E+00
2.01E-01
0.
l,88E-2«
0.
0.
0.
o.
0.
0?
0.
1.S2E+00
1.12E-OS
TABLE A-IV-2
(continued)
loeooe. Y*«**«*» Y
S,89E*08 1.25E*0«
1.22E+07 1.18E*07
0, 0,
o! o.
0, 0.
0. 0.
0, 8.
0. 0.
o. c,
0. 0.
o. o«
2.01E + 6S US«»S*98
100000. Y******* Y
l.a7C+00 9.73E-01
2,01E»0! 1.94E-0!
0. 0.
l,88E»2« i,®8E-2«
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
1.68E+00 1,17E*00
t,03C-05 7.19E-06
A-IV-70
-------
PHOTON SPECTRUM A3 A FUNCTION OF TIME FOR HEAVY MET ILS AND THEIR DAUGHTERS
HE'S
PNR . 8U P 33,000 WASTE DECAY TIME) C*3E E-l
POWER" 38,UO MM, SURNUPs 3300).MHO, fLUX« 3.96E+13 N««2-3EC
ACTINIOE PHOTON RELEASE RATES, PHOTONS/SEC
BASIS = HT of HE»VY METAL CHARGED TO REACTOR
TABLE A-IV-2
(continued)
INITIAL
EHEAN
(MEV)
3.00E-01
6.'30E-01
1.10E+00 1.S1E+11
.
l.laE+12
5.526+11
1.30E+11
TIME
10. Y
1.15E+12
U30E + 11
1.99E+00
2.58E+00
8.57E+07
8.25E+07
7.3«E+07
3.6aE+07
3,25E+00 1,23E+07 1,05E+07
3,70E+00 7,90E+06 fc,77E+Ofe
a,22E+00 8.98E+06 4,276+06
8.70E+00 2,36E+06 2,0?Et06
5.'25E + 00 1.88E+06 1.27E + 06
TOTAL 1.89E+12 i.e?E+i2
MEV/SEC 8.71E+11 8.'3aE+ll
a.
2.
1.
6.
51E+07
25E+07
25E+07
52E+06
AFTER OISCHARG:
50.' V 100,
1.10E+12
5.08E+11
1.30E+11
1.86E+07
9.B2E+06
5.06EH1
1..296 HI
500. Y
7.58E+11
4.88E+11
1.24E+11
3.80E+05
3.18E+06
T.SSEt'OS
9.07El>05
7.29£+oa
1.
7.
25E+06
86E+0?
9.10E+05 l.uOffOS
5.7«E+05 6.81E*04
2.72E+05 a,17Ef08
1.71E+05 2.62Ef04
9.70E+03
6.10E+03
3.85E+03
1.82E+03
1.15E+03
1000. Y
5.73E+11
a.66E+ll
1.19E+11
6.98E+05
1.06E+05
1.78E+05
1.75E*00
9.59E+03
5.69E+03
3.59E+03
1.70E+03
1.07E+03
5000. Y
3.P7E+1J
3.25E+11
8,'28E + 10
1.28E+07
1.37E+06
2.35E+06
5.89E+04
1.67E+00
3.30E»03
2.08E+03
9.85E+02
6.IOE+02
10000, Y100000, Y******* Y
1.98E+U 1.11E+10 1,236+10
2.066+11 3,906+09 7.646+09
5.276+10 2.096+06 5.2S6+07
3,396+07 3,366+08 3,006+06
3.43E+06 2.66E+07 7.19^+06
5,976+06 4.69E+07 1,266+07
1.38E+05 1.02E+06 2.76E+05
3.23E+04 2.33E+05 6.27E+04
1.71E+03 1.09E+02 2.06E+01
1.08E+03 6.866+01 1.30E+01
5.10E+02 3.25E+01 6.14E+00
3,216+02 2,046+01 3.666+00
1.77E + 12 1,7«E+12 1.68Etl2 1,"37E + 12 1.16E + 12 7.15E + 11 a.576+11 1.576 + 10 2,'036+tO
B.oaE+11 7.93E+H 7.75E+11 6.72E+S1 5.96E+11 3.88E+11 2,186+11 6,726+09 9,076+09
INITIAL
'
6.30E-01
"
1.55E+00
1.99E+00
9.83E+03
3.7aE+03
6,5«E+00
a.aoE+oO
2.'63E + 00
'
2.75E+00
3.25E+00
~~
a,22E+00
fl,70E+00
-5.25E+00
TOTAL
CAMMA WATTS
1.08E+00
"7.61E-01
5.08E-01
2.89E-01
2.03E-01
2.27€+0«
l.ao£-oi
ACT1NIDE ENERGY RELEASE RATES, MEV/WATT-SEC
BASIS a MT OF HEAVY METAL CHARGED TO REACTOR
1.
9.05E+03
3.7UE+03
3.8ft£+00
2.26E+-00
8.9?E-01
6.5?E-01
0.69E-01
2,47E-01
1.74E-01
2.17E+04
1.346-01
TIME
10. Y
8.61E+03
8.38E+03
3.7JEt03
3,a5E+00
2.3UE+00
l.OOE+00
8.95E-01
5.52E-01
a.OJE-01
2.90E-01
1.5JE-01
1.08E-01
8.19E+03
8.30E+03
3.70S+03
AFTER DISCHARGE
50. Y IOC.
8.61E+03
8,jaE+03
3.71E+03
7.51E-01
5.09E-01
3.0aE-01
2.28E-01
1.20E-01
8,77f.02
6.31E-02
3.33E-02
2.3«E-02
7, 87!. 02
a. 681-02
6.50t-02
l,8aj.02
1.356-02
9.68E-03
5.11E-03
3,59!-03
500. Y
5.93E+03
8.00E+03
-3,57E+03
1.37E-02
fl,6JE-03
a.52E-03
2.01E-03
8.21E-0«
5,88E-0«
a,23E-oa
2,23E-oa
1.57E-0«
1000. Y
-------
PHOTON SPECTRUM A3 A FUNCTION OF TIME FOR FISSION P IODUCTS
FP's
TABLE A-IV-2
(continued)
PWR . BU * jj.ooo WASTE DECAY TIMEI
POWER* 38.40 MM, BURNUP* 5JOO l.
CASE E-I
FLUX« J.98EM3 N**2>3CC
TWELVE 6ROUP PHOTON RELEASE R iTE3» PHOTONS/SEC
BASIS » MT OF HEAVY ME f AL CHARGED TO REACTOR
EHEAN
3,00£-01
1 .^bE+00
t,99£+00
2,7SE+00
3.25E+00
3,70E+00
fl,2«!t +00
a.70E+eo
5.25E+00
TOTAL
MEV/SEC
INITIAL
6._66E + 16
3^01E+t3
2.27E+12
7,17E+10
0,
0.
0.
0.
7.61E+16
TIME AFTER 01
1. Y 10. Y 50. Y
5.JOE+15 l.*75E»ia 5.9AE+13
3.1SE+16 8,12E+15 1.28E+15
1,'2SE+15 1,5«E+10 2.62E + 13
U96E + 18 l!aiE+ll l!l3E + 10
2.'liE+13 a.uE + IO U.23E-02
1.61E+12 3.22E+09 3.33E-03
5.08E+TO 1,02E+08 1.06E-08
0. O,/ 0.
0. 0. 0.
0 . 0 . 0 .
0. 0. 0.
3.9tE + U a.'a6E + 15 1.36E + 15
TWELVE GROUP
3CHARG :.
too,' Y
1.73EH3
3.99EM«
3.36EM2
I.10EH1
3.88E»18
o!
0.
0.
0.
fl,19EH«
1
1
0
0
0
0
0
0
0
1
B,5tt»l« £,6UEfl« /
ENERGY RELEASE RATES*
500. Y 1000. Y
,50E+09 6.39E+09
.16E+11 7.76E+10
.26E+07 1.17E+06
.71E+09 1.70E+09
I o!
* - -o.
. 0,
o.
0.
o.
o.
.26E+11 8.57E+10
.88E+10 5.38EtlO
MEV/WATT-SEC
iDrrn rn DrirvnD
5000. V
6.18E+09
7.58E+10
1.66E+09
0,
0.
0.
0.
o.
0.
0.
0,
8.32E+10
5.J9E+10
10000. V160000, Y«*«**«* V
5.97E+09 3.20E+09 6.86E+06
7.28E+10 3.901+10 7,fc2E»Of
6.87E+03 0, 0.
1.60E+09 8.57E+06 1.67E+06
0. 0, 0.
0, 0. 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.
0. 0, 0.
0. 0. 0.
0, 0, 0.
8.08E+10 «. 511*10 «,«5E»8T
5.02E+10 2.69E+SO S,2SE»07
EHEAN
TIME AFTER DISCHARGE
3.'OOE-01
6.30E-01
1,'10E*00
1,55E»00
1,99F*00
2.38E+00
2.'75F + 00
3.25E+00
'3,70E+00
a,22E+00
a.70E»00
5.25E+00
TOTAL
—INTTIAL-
6.97E+07
1.09E+09
GAMMA WATTS
2.2BE+07
1.57E+07
-1.86E+06
1.63E+05
6.07E+03
0.
0*
0.
l.'25E + 09
r,"roE*oJ
--- 1. Y
a.asE+07
5.1feE+08
3.5HE+07
1J6BE*07
1.02E+07
1.31E+06
8.30E+03
10. Y
1.37E+06
6.76E+07
a.aoE+06
W.61E+05
7.29E+03
2.55E+03
2.31E+02
0.
0,
0.
0.
50. Y 100.
8.66E+05 1.35E+05
2.10E+07
7.a9E+05
1.52E+08
5.83E+02
2.62E-09
2.39E-10
8.95E-12
0.
0.
0.
500, Y 1000. Y
'
U.88E+03
1.70E+02
2.78E.28
2.891-25
9.35E-27
0.
0.
0.
1.90E+OS
9.35E-nl
6.92E+01
8.80E-03
«..
0^
o.
O.L
o,
0.
1.27E+03
3.S6E-02
6.67E+01
3.67E-08
0.
0.
0.
0.
0.
0,
0,
5000.' Y tOCOO. Y100000, V******* V
4.83E + 01 a.67E*81 2.50E*Ot 5.05E-02
1.28E+03 1.19E+OJ 6.«OE»02 1.25E»00
3.33E-03 1.85E-00 0. 0.
fc.69E*01 6.fl6Et01 3.«6E»01 4.76E-02
o. 0. 0, 0.
0, 0, 0, 0.
0. 0. 0, 0,
0. Oi 0, 0.
0. 0. 0. 0,
0. 0. 0, 0.
0. 0. 0. 0.
0. 0. 0, 0.
6.'23E+08 7.38E + 07 2.22E+07 6.78(406 2.'0«E+03 1.39r+03 1.J5E+OJ 1.J1E»05 7,OOE»02 |,S7E*00
J.65E + 03 a.50Et02 t.37E*02 fl,17E»01 1.26E>02 6.56E-03 8.32E»03 B.'OflE-OJ «,StE*OS B.«2E>06
A-IV-72
-------
PUR • 8U • 33*000 HASTE DECAY TIMES
CASE E-l
Clad
TABLE A-IV-2
(continued)
BURNUP« SJOOO.HWO, FLUX« 3,'98E+13N/CM**2-8EC
— NUCLIDE RADIOACTIVITY—CJRIES '-~
BASIS * HT OF HEAVY METAL IHARGED TO REACTOR
:•
0*
<>;
J:
0,
S:
0,
0* """.
0*
0, "
S;
,
'0,- •'
0.
0,
0,
0,
0.
0 .
0.
0,
0,
o.
0,
0.
0,
0,
0,
0,
0.
0.
0,
0,
S:
0,
0,
;« _.
V,
0,
^18E"07
10. Y
o,
o,
8,50E»03
o,
o.
o.
o.
o,
o,
o.
0,
6.00E-07
0.
0,
o, '
o,
o.
o.
1.52E-02
0.
o!
Oi
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
»•
o.
Oi
o.
o.
o.
o,
o,
ot
o,
o,
1
o.
o,
Oi
n.
50, Y
o.v
e,9e>E«o«
o.'
o.
o.
0.
o,
o.
o.
o. .
0.
6.00E.07
o.
o.
o.
o,
o.
o.
1.51C.02
o.
o,
o.
o,
o.
o.
ot
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
6.38E.07
o.
o.
o.
o.
o,
o.
fl,5«E-03
0.
o,
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
r* •
o.
o.
o.
0.
'100000,
o.
o.
o.
o.
o»
o.
o.
o.
o.
o.
Oi
6.22E.07
o,
o.
o,
o.
o, - -
o.
8.08E-08
Oi
o(
o.
o.
o,
o,
o.
o.
o,
o.
o,
o.
o,
o,
o,
Oi
o,
o,
o!
o!
o.
o.
Oi
0.
r******* --Y--
o.
0.
o(
o.
o.
o,
o.
Oi
0.
0.
aJssE.OT
o.
o,
0.
o.
0.
o,
-Ot
o,
o.
o.
o.
o.
o,
o,
Oi
o.
o,
o.
o.
o,
o.
o.
o,
o.
o,
o,
o.
o.
o.
o(
'» A TTT T3
-------
PWR . BU « 33,000 WASTE DECAY TIMES
POWER* se.aoMW, euRNUPa 33000,1
P 54
S 32
S 33
S 34
S 35
| S 36
3 37
CU 35
CU 36
CU 37
CL 38
n*R 36
j »R 37
1 AR 38
— AR 39
AR 40
AR at
' K 39
K 00
K 41
' K 42
K 43
K 44
CA 40
CA 01
CA 42
CA 43
CA 44
CA 45
EC* 46
CA 47
CA 46
8C 45
SC 46
SC 47
i SC 48
SC 49
3C 50
TI 46
TI 47
— TI o«
TI 50
*— TI 51
V 49
V 50
— V 51
V 52
V 53
V 54
CR 50
'CHARGE I
8,
8.
8.
8,
8.
e!
e.
o.
8.
e.
o,
0,
o,
8.
o.
8,
8,
8.
8.
8,
8.
0.
0,
0,
o.
8,
8.
«•
0.
8,
8,
o,
8.
0,
8.
6, '
8,
8,
._ 0(
8,
8,
8,
8.
8.
8,
8.
8,
0,
0.
DISCHARGE
8,
8.
I:
6,12E«02
S:
e,
S.65E-06
8,
8.
o. -
3.02E»12
8.
1.12E-13
8.
8.'
0?
6,51-116
6*
8, "
8.
8,
8.
o,
5.90E-03
o.
6.33E-17
8.
8.
SJ9E-01
5.09E-16
2.20E-31
i;
Si
8.
5:
Si
o:
1, Y
e.
e.
NsE-02
8*
0.
0,
3,65E«08
o,
8*10E-i~4
8.
1.12E-13
8.
Q
Q
1
j:
0,
2J74E-03
4^62E-29
8,
B.38E-02
1.90E.J8
8,
8.
0,
I'.
8,
8.
5:
1
»0, FLUX*
Nl
BA3I
10, Y
0.
8,
8,
8,
8,24E»14
8,
8.
0.
3,65E«08
0.
0,
8.
0.
8,
1.09E«iS
0,
0,
8,
l,21E-26
8,
0,
8.
8.
8,
8,
8,
8,
0,
2.75E-09
0,
8,
8,
6,
8,
1.S4E-1S
8,
8,
8,
o, -
8,
8, ,
8,
8.
8,
8,
8.
8,
8,
8,
8,
8,
8.
CASE
E-l C
S,'98E+13N/CM**2-3EC
JCUIDE RADIOACTIVITY? CURIES -
S s HT OF HEAVY METAl CHARGED TO REACTOf
58, Y 100, Y 500, Y 1000, Y
0, 0, ( 0,
0, 0, 1 0,
8,
8.
8.
6,
8.
8.
S.65E-08
8.
0.
0,
o.
o.
9.85E-14"
8.
8.
8,
1,21E»26
8,
8, - -
8.
8,
8.
8.
8,
8,
8,
8,
0,
8,
8,
0.
8.
8,
0,
8.
8,
o.
8,
8.
8.
8.
8.
8,
8.
8.
8.
8.
8.
8.
8.
0, t
0, (
8, <
o, (
0, (
0. <
e! " <
0, (
o, (
0, l
0, (
8,66E«14 !
0, (
o. (
o , - - - <
1,21E«26 1
8. <
8, t
0, (
0, 1
0, l
8, <
8. l
0, i
0, l
8, '
0, i
8, '
0.
0, i
0, I
0, I
o, i<
8, '
8, ..
8, — !•
8, '
0, f
o, - - i
0, i
0. i
o. - ••- i
0. i
e, <
8, -
0. i'
e. '•
0, M
0, <•
o, -
e!
8,
e.
8.
65E«0«— S,6aE»08
8,
8.
0,
8,
8.
09E-14 8.51E-15
8,
8.
-- o,
21E-26 1.21E-26
8,
8,
8,
8,
8,
6,
8,
8,
6,
8,
8,
0,
8,
8,
- 8,
8,
8.
o,-
8,
8,
- 8,
8.
8.
- o,
8.
8,
8.
8.
8.
8,
0.
lad
»
5000, Y
8,
0.
o. -
6,
8.
8,
8.
8.
3.ME.08
8,
8,
8,
8,
8,
2.84E«19
8.
8.
8,
e!
8, '-
8,
8.
o,
8,
8,
8,
8,
8.
8,
8,
o,
8.
8,
8,
0,
8.
8,
8,
8,
8,
8.
8.
0.
8.
8,
8,
8.
8.
o. --- --
8.
10000, Y
8.
8.
8.
8.
8,
8.
8.
0.
3.57E.06
8,
8,
8.
8,
8,
7.19E-25
8,
8*
8.
e',
8.
8,
8,
0, --7-
8,
8,
o, - - -
8,
8,
o, ---
8,
8,
8, •--
o..
8.
8.
8.
o.
8.
8.
8.
8.
8,
8.
0.
8.
8.
8.
8.
8.
o, -
8.
TABLE A-IV-2
(continued)
100000, Y******* Y
8. 0,
8. 0,
0. 0.
8, 8,
8. 8,
8, 8,
8. 0,
8. 0,
2, 92E.06 3.90E.09
8, 8,
8. 8,
8. 0,
8. 8,
0. 0,
0, 0,
8, 8.
0. 0,
8, 8,
1,21E«26 1.21E-26
0, 0,
8. 8.
8. 8,
8. 8,
8, 8,
0, 0,
8. 8,
8. 8,
8, 0,
8, 8,
8, 0,
0, 0,
8. 8,
8, 8,
0, 0,
8. 0,
8, 0.
8, 0.
0, 0,
8. 0,
8. 0,
0, 0,
8. 0,
0. 8.
0. 0,
0. 0.
8. 0.
0. 0.
0. 0.
8, 0.
8. 0.
8. 0.
e. o.
-IV-74
-------
PNR m_ BU _•_ 33.000 WASTE DECAY TIMES
BURNUPa 33000,UNO, FLUXi
CASE t-1
Clad
TABLE A-IV-2
(continued)
CR 51
CR 52
CR S3
CR 54
CR 55
MN 55
UN 56
IN 58
FE 54
"E 55
FE 56
FE 57
rt 58
FE 59
CO 58M
CO 59
CO 60H
CO 60
CO 61
CO 62
N! 58
NI 59
NI 60
NI 62
NI 63
— NI 64 —
NI 65
CU 62
CU 63
CU 64
CU 65
— CU 66
ZN 63
ZN 64
— ZN 65
ZN 66
ZN *7
— ZN 68
ZN 69H
ZN 69
ZN 70
ZN 71M
ZN 71
- QA 69
GA 70
BA 71
OE 70 -
3R 80
CHARGE DISCHARGE
0. 1.0JE+02
0. 0,
Ot
0.
0.
0.
0.
0,
0.
0.
o,
o,
o.
o.
0.
o,
o,
0,
o,
0,
0,
0,
0.
0.
0,
0,
0,
o,
o.
o.
0.
o,
0.
o .
o,
0,
o!
o,
o,
0.
o.
o,
o.
0.
o, —
0,
o.
0.
o.
I:
oj
•i
2*13E»OV
o.
0,
1,?6E*01
0.
7,10E»02
:•"""
o,
1.66E+00
0,
0.
2.53E+02
0,
o. -----
4. 20-101
o,
l.*62E-01
0.
o.
j:
5: -
S:
o.
!;
—; i. Y
1,50E+00
o.-
J;
|««r
-!U»-
7J59E-01
0,
id
Q
Q
~ 0 « - - ...
o;
2.'S2E+02
o.
o.
o.
!:
iu
»!'
i!
0.
o.
S:
o.
NUCLIDE RA01
BASIS • HT OF
10, Y 50. Y
0. 0,
0. 0.
o. o.
0, 0.
0, 0,
7.42E-02 2.26E-16
0. 0,
0, 0.
o, .
0.
0,
1,69E»02 -
0,
o,
0,
o.
o,
1.59E-12
0.
o,
2,52E«03
0,
o.
o. - -
1.66E+00
0.
0.
o.
2.36E+02
0,
o.
o.
o,
o,
o!
o.
o.
8.84E-06
0.
0.
0,
0.
0.
0.
0,
o,
0,
0.
0.
0.
0,
o.
o.
o.
3.95E»03~
o.
o.
o.
o.
o.
o.
o.
1,30E»01 -
0.
0.
o.
1.66E+00
0.
0.
0.
1.75E*02
0,
o.
e.
0.
o.
o.
0.
o,
o,.
9.86E»24
0,
o.
o.
o.
o,
o.
o,
o,
o.
o.
o.
0,
o,
OACTIVITY, :URIES
HEAVY METAL CHARGED TO REACTOR
100. Y
o.
o.
o, -
o.
o.
1.62E*34 -
0,
0,
o,
o,
o,
6.42E-09—
0.
0.
0.
0.
0.
0,
o,
1 ,78E«02
0*
o,
1.66E+00
0.
o. - '
o,
1.20E+02
0,
0,
0.
o,
o,
0.
0,
o,
o,
0.
o.
o,
o,
o,
0,
o,
o.
o,
o.
o.
0.
o,
o,
500, Y 1000,- Y
0, 0.
o, o.
0,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
0,
o,
o.
o,
o,
1 |65£+00
o,
o, — -
o,
5,88E*00
o!
0.
o, -
0,
0,
0,
o,
o,
o,
o,
o,
o,
o.
o.
o,
o,
o,
o!
o.
"§
o,
o.
o.
o.
0.
o,
o,
o.
o,
o.
o,
o.
o.
o , - - -
o.
o.
o.
1.64E+00
o,
- o, -
o,
1.36E-01
o.
o,
o.
o.
o,
o.
o!
o,
o,
o.
o.
o,
o,
o.
e.
o.
o.
o,
o,
o.
0,
1000. - Y
o,
o.
0.
o.
o.
o,
o.
o.
o.
0*
o, - - -
o,
o.
o, ---
o.
o. -
o.
o.
0 ,
o.
o, -
1,59E»00
o,
o,
o,
1.10EM4
o,
o,
o,
o.
o,
o,
o.
o,
o,
e,
o,
o,
o,
o,
o.
o,
o.
o,
o,
o,
o,
o,
9.
10000, Y100000, Y*******
0, 0. 0,
0. 0, 0,
o. - o, o.
0. 0, 0.
0. 0. 0.
o. •-
o.
o.
o,
0 .
o.
o.
o.
o.
o.
o,
o.
o.
2:
o.
1.52EtOO
o.
o.
o.
«.79E«31
o.
o.
o.
o.
e.
o,
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o!
o.
5:
e.
0, 0,
0. 0.
0. 0,
0. 0,
o. o.
0, 0,
0, 0
0, 0
0. 0
o, - o
0, 0
0, 0
0, 0
0, 0
0, 0
0, 0
0, 0
0. 0
0, 0
6,97E«01 2
0. 0
0, 0
0, 0
0, 0
0, 0
o.
o.
o,
o.
1
o.
o,
o.
t
t
c
a
1
*
•
t
•
•
•
(
,
A-IV-75
-------
PKR . BU • 33.000 WAsTt DECAY
TIMES
POWER* sa.'aoMw, BURNUP« 33000. MHO, FLUX*
SR 69
SR 90
SR 91
V 90M
Y 90
Y 91K~
Y 91
ZR 90
ZR 91
ZR 92
ZR 93
ZR 90
ZR 95
ZR 96
NB 93M
NB 93
NjJ 90
N9 95
NB 96
— NB 97 -
MO 92
MQ 93
MO 93M"
MO 94
MO 95
- MO 96 -
MO 97
HO 98
-MO 99 -
MD\OO
MOtOl
- TC 99M
TC 99
TCtOl
CDM3M
COM3
COU5M
cons
COU9M
~ cor 19 -
CO-121
INU3
IN1J9M
1N119
7N121M
SNI ]4
-ami*---
CHARGE — I
0.
o.
o,
o,
o,
0,
o.
o.
o,
o,
o.
o.
o,
o.
o.
o,
o,
o,
o.
o.
o,
0,
o.
o!
o,
o.
o.
o.
0.
o.
0|
o,
0.
o,
o,
o!
0?
o,
o,
0.
o.
o.
o.
o.
o.
o,
0.
0.
A.
JISCHARGE
5J39E-04
5*39E«08
o,
7,50E+CO
0^
S:
o.
2,80E+03
0.
1.18E-05
4,85E-03
o.
1.33E»Oa
5.33E+03
fl.M.E-57
Q
Q
r*20t*03
o.
o.
Q
Q - — —
o',
o.
1.67E-17
o,
o,
1,60E»17
5.53E-03
o.
0,
0,
Si
o.
o.
5;
«N*t.o.
---; i. Y
1.89E-01
5,32E-08
Q
Q
5*33E-04
oj
8.71E-01
s*
5*53E-02
0.
3.99E+02
o,
8.60E-H
6,28E»03
0.
1.33E-08
7)20E*03
o.
0.
o.
sUi,"
o»
o,
3,23E-37
Q
Q
0
** •
o.
o.
o. --
o.
L
.... N
BASI
10, Y
1.76E-20
8.26E-08
Ot
0,
o!
1.29E-17
o!
0.
5.53E-02
0,
2.38E-13
0,
0,
2.66E-02
0,
1.33E-08
S.OflE-13
0.
o,
0.
7.20E«03
0,
0.
0.
0.
o,
o,
o,
o,
o.
o,
5.53E-03
0,
0,
0.
0.
0 ,
0.
o.
o, -
o.
o.
0,
o«
o.
o, -
o.
o.
e.
CASE
5."98E*13N/
JCLIDE RAO
3 • MT OF
50. Y
e.
l,59E*Oa
0.
o.
1,59E»04
o.
o!
o,
o.
5.53E-02
0.
o.
o.
0.
5.68E-02
0.
1.33E-04
0.
0.
o.
0.
7.18E»03
0.
0.
0.
0.
0.
o.
o.
e.
o.
o.
5.S3E-03
0.
0.
0.
0.
o, •--
o.
o.
o.
o.
o.
o. --
o.
o,
o.
o,
o.
o!
E»l
CM*
IDA
HE
0.
a.
o.
o.
a.
o,
0.
o.
o.
o.
5.
o,
o.
0.
o,
6.
0,
1.
o.
o.
o.
o.
7,
0.
e.
0.
o,
o.
o.
o,
0.
o,
0.
5.
0.
o.
o,
o,
o,
o.
0.
0.
o,
o.
o.
o.
o.
o,
o.
o.
o.
ft.
*2«SEC
CTIVITY, :URIES
AVY METAL CHARGED
100. Y - 500. "Y
o,
63E-05 2.00E-09
' "0, "
o,
6JE-05 2,OOE*09
' - o,
0,
0,
o.
0.
S3E-02 5.53E-02
0.
o»
10E-02 6,12E*02
0.
33E-04 - 1.33E-04
0.
o.
c!
15E-03 4,93E«03
' e,
c.
c.
C.
c.
c,
e,
e,
c,
c, --•
53E-03 *,53E-03
c,
c.
c.
t.
t.
03
0.
0.
0.
o.
0.
o,
o.
0.
o,
0.
5.52E-03
o.
o,
o.
o.
0.
o.
o.
o,
o,
o,
o.
o,
o,
o.
o,
o.
0.
-Clad —
R
5000. Y
o.
o,
o.
o.
o,
o, •-
o.
o.
o!
5.51E-02
-o.
0.
0,
0,
5.93E-02
0,
1.33E-88
0,
o,
o,
o.
8.90E-03
o.
o.
o,
0.
0.
o.
Of
0.
o.
0.
5.88E-03
o.
o.
o.
o,
o.
0.
o,
o.
0.
0.
o.
o!
o,
.0,
o.
o,
o.
10000. 1
o!
o!
o.
o.
o.
o.
0.
o.
5.50E.02
0.
o,
e.
0,
o!
1.32E.O*
0.
0.
o,
0.
3.33E-03
«.
o.
o.
o.
o.
o.
o.
o.
o.
o.
5.35E-03
o!
o.
o.
o.
o.
o,
o.
o.
t
•
TABLE A-IV-2
(continued)
'100000, Y«****«* T
0. 0.
0. 0.
0, 0.
0, 0,
0. 0.
0, 0,
0, 0.
Of 0.
0. 0.
0. 0.
5.26E»02 3.46E-02
0. 0.
o. o.
0, 0.
o. o.
5.28E-02 S,a8E«02
o, o,
l.SZE.O* 1.28E.O*
0, 0,
0. 0,
0. 0,
0. 0,
3.Z5E-06 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0, 0.
o. o.
o. o.
0. 0,
o. o.
3,981*03 2,0*E»0«
0, 0,
0. 0.
0. 0.
0. 0,
0. 0,
o. o.
' o, o,
o, o,
0. 0.
o, e.
o. o,
o. o,
o. o.
0. 0.
0.. 0.
o! o!
o. e.
A-IV-76'
-------
POWER* ss.'flOH
SN117
SNM9
SN120
— 3N121M-
8N121
8N122
3Ni2 in
SN125
3B12I
SBt2J
8B\2*M
SBX24
- 38125
SB l?6
- TE120 ~
TE125
- TE126
TAtSO
TA181
TA182H
TA182
Nteo
— K181
W182
W183M
W183
W185
H186
Ki.87
TOTAL
CHARGE D
8,
8.
8,
8,
~ o, —
8.
8.
8,
0.
8.
8,
0,
8,
8,
8.
8.
8,
8,
8.
8,
o.
8.
0,
8,
8,
0,
8, - -
8,
8.
8,
8,
0.
0,
8,
8.
..
ifgvv "»;
It*. BURNUPs
HSCHARGE
8.
8.
9.30E+00
8,
8.
1.78E-01
8.
1,11E'-01
8.
8,
8*
8.
8.
3.fl6E»Ot
2.30E+01
8.
7.19E-06
8. '
9.53E+00
8.
Q
Q
e.
Q
Q
0
Q
a!
0
Q
Q
Q
8.
"2.05E»00~
1 1C UEV.«T
I tnea
i 33000, HHD, FLUXp 3
' 1, Y
e;
8,
5.63E+00
8.
°'
8l
oj - -
8?
6.
8^
S:
«.19E«02
2,06E*01
0,
2,87E»18
0,
8l
8.
5:
l: '
0^
Q
Q
8|
0.
Q
Q
o, "•
oj
NL
BASIJ
10, Y
8,
0,
6,19E>Oa
8,
8,
1,63E»OJ
8,
8.
8 ,
«,89E»10
8,
0,
0.
0.
0, '
8.
o!
0,
0.
e,«7E»ei
8,
8.
8,
0.
0.
8.
8,
0,
8.
0.
8, -
0,
8,
8.
o,
8,
2.93E+83
b»9E
i.'98E*l3N/<
ICLIOE RAO]
ic MT OF
58, Y
8,
8,
1.58E-?!
8.
8,
1.13E-01
8,
8.
8, '
8.
8.
o, - •-
8,
8.
o,
8.
8,
7,89E«05
8,
8.
8.
2. 9flE.e5
8,
8.
8.
8.
8,
8,
8,
8.
8,
8.
8,
8.
8,
0.
8,
8.
1.89E+02
e»
:M*
tOA
HE
8,
8.
8.
8,
8,
T,
8,
8.
8.
8,
8.
8.
8.
8.
8.
8.
8.
1.
8.
8,
8.
e!
0.
8.
8.
8,
8.
0.
8.
8.
8,
8.
8.
8,
8.
8,
8.
1,
i
*2-SEC
CTIVITY, CURIES
AVY METAL CHARGED
loo,— -Y- ?8o, -Y
0
0 ,
8 ,
0 ,
e ,
0
o ,
8 i
8 ,
0,
0 ,
• 8,
8,
8 i
8,
8,
89E«18 0,
0,
8 ,
0 ,
81E-11 0,
8,
— 8 ,
8,
8.
0 i
8.
8,
— 8,
0,
8,
8,
81
8,
8,
8,
22E+02 7,67E«80
TO REACTOf
1880, Y
0.
8,
8,
8,
1,05E«05
8,
8,
8,
8.
8.
8,
8,
8.
o.
8,
8.
8.
0,
8,
8.
8,
8,
8.-
8.
8,
0,
8,
8.
8,
8,
e,'
8,
8,
o,
8,
8.
8,
1.92E+00
... Clad
»
5000, "Y
0,
0.
8,
8.
8,
2.78E-21
8.
8,
8,
8.
8.
0.
8.
8,
o, - --- -
8,
8.
8,
8.
8.
8.
8.
8.
8,
8,
8.
0,
8.
8,
8,
8,
8.
8,
8,
8.
8.
8.
8.
1,72E»00
10000, Y
o.
0.
8,
8.
0.
e!
8.
8.
8.
8.
8.
8.
8,
8.
8.
8.
8.
8.
8.
8',
8,
8.
8.
8,
0,
8,
8,
8,
8.
8,
8.
8,
8.
8.
8.
U65E + 00
TABLE
(cont
'100000, V
0.
0.
0,
0.
o,
e,
8,
8.
8.
o.
o.
o.
e.
8.
8.
8.
8.
0.
8,
8.
8.
0.
0.
0.
8.
8.
8,
8,
8.
8.
8.
0,
0.
8,
8,
8.
8,
8,0*E»01
A-IV-2
inued)
*******
e.
0.
5:
o,
8,
0.
8.
P,
0.
8.
8.
8.
8.
0.
0.
8.
8.
8,
8,
8.
0,
8.
8.
8,
8,
8,
8.
8,
8.
8.
8,
o,
0.
0.
8,
8.
8.
7.03E-C
A-IV-77
-------
PWR . B.U » 33,000 WASTE DECAY
TIMES
POWER* 36.40MH, BURNUPs 33000. MWD, FUUXe '
HE a
Tl?07
TU208
TU 209
Pg 306
— PB207
PB.3C6
P82JO
PB21I
— ?B?18
— 81211
SI2S2
P0211
— PO'15"
— AT2S7
RNS19
RN220
- RN222
- RA?23
RA224
RA225
RA228
AC225
AC328
TH?27
— TH?28
TH230
TH?31
TH232
TH333
-TH258
PA?32
— PA233-
CHARGE '
0,
0.
0,
0,
0,
o.
0.
o,
o,
o!
0,
cu
- o,
o.
0,
o,
0,
o.
o,
o.
.0.
0,
0.
o,
0,
e,
o, -
o.
o.
0,
o.
o,
- 0,
o.
0, .
o.
»!
8,
o,
o.
o.
o.
o.
0,
0,
o.
o.
o.
5ISCHAR8E
0.
1.03E-06
e.'o7E-oa
7.55E-10
0.
o.
o.
I.03E-08
5.B1E-10
i,03E«06
!.fc«E-08
0.
5.71E-10
'1,03E-06
U64E-OB
3.63E-JO
3*36E«08
1.64E-08
1.03E-06
l]6UE-08
3.43E-08
1,03E-06
l"ME-08
3.a3E-08
1.56E-08
1.03E-06
2.28E-03
3.aaE-08
1.66E-08
2.61E-12
3.<13E«08
1.12E-06
2*27E«03
3,«7E-08
2.22E-05
1,72E-02
2.49E-H
3*14E-or
2.83E-05
s!'27E-01-
3.14C-01
' i. v
0,
1.89E-06
" *> '89E-04
7.6SE-10
0.
0.
0.
B)BIE»!O
1.49E-06
1.91E-03
0^
1^91E-03
2'liJE-08
5.S7E-10
- l'?2E-03
3,«'OE«-08
l *07
4,10E-08
1.01F-07
7,21E«06
1.59E-04
a,ioE-oe
1.09E.07
l.bTE-H
T.21E-06
1.67E-H
7.HE-06
1.58E-84
a, 105-08
2.27E-05
8.62E-05
2.5SE-H
0,
1.57E-03
2.a3E-05
0,
3.28E-01
1.57E-03
CASE
J.'98E+13N/C
JCLIDE RA01
So MT OF
50. Y
0.
1.95E.05
2.56E-05
«! '
o.
'0. '
2.00E-07
2.67E-07 '
1.96E-05
7. HE-OS
5.27F-07"
0.
2.67E-07
1.96E-05 -
7, HE-OS
2.00E-07
5.27E-07
2.67F-07
S.SBE-Ofi
a,55E-05
1.95E-07
5.27E-07
1,96E-05
7, HE. 05
5.27E=07
2.00E-07
J.96E-05
7, HE-OS
5.27E-07
2.00E-07
2.78E-07
1.96E-05
7.HE-05
2.00E-07
5,?7E-07
2.73E-H
2.00E.07
1.96E-05
2.73E-H
1.93E-05
7. HE-OS
2.00E-07
2.65E-05
8.63E-03
2.80E-H
0.
1.57E-03
2.88E-05
0.
3.31E-01
1.57E-03
E-l
:M**2-3EC
ICACTIVITY
HEAVY MET
100. Y
0.
2.38E-05
'1.58E-05
1 .58E-08
0.
0.
o.
7.00E-07
7.90E-07
2,3aE-OS
S.39E.05
fl!
a[39E-05
7.00E.07
1 .16E-06
7.90E-07
7.03E-08
2.81E-05
6.8aE-07
i ,16E-06
2,3«E-05
a,39E«05
1.16E-06
7.00E-07
a,39E»05
1 , 16E-06
7.00E-07
3.28E-07
2.3UE-05
3.39E.05
7.00E-07
l.lfcE-06
3,OftE-H
7.00E-07
2,3aE-05
3.06E-H
2,316-05
8.39E-05
7.00E-07
3.81E-05
8.63E-05
3.12E-H
0.
1.57E-03
?.aaE-05
0.
3.35E-01
1.57E-03
, CURIES
(L CHARGE
"• 500,- '
o.
3I36E-07
3.72E-07
0.
-o.
o.
J.69E-05
1.42E-05
2.50E-05
9.38E-07
!,a2E"05
0,
1.82E-05
2.50E-05
9.38E-07
UU2E-OS
7|a9E-08
S.97E-07
1.66E-05
i,12E»05
2.50E-05
9,3aE-07
1.42E-05
1.69E-05
2.50E-05
l!a2E-05
1.69E-05
3.50E-07
a,soe-os
9,3aE-07
1.69E-05
1.42E-05
5.BOE-H
1.69E-05
2.SOE-05
5.80E-H
2.86E-05
9.38E-07
1 .69E-05
8I70E-05
S.80E-H
0.
1.57E-03
2.50E-05
0.
3.55E-01
1.57E-03
) TO REACTOf
1 1000. Y
0.
2.S6E-05
-2.76E-09
i.SOE-06
0,
-o.
0,
6.80E-OS
- 5.23E-05
7*I)7E.09
' 5.23E-05
o.
5.23E-05
2.56E-OS
7.67E-09
6.80E-OS
S.23E.05
5.23E-05
7.69E-08
8.91E-09
6.65E-05
5.23E-05
7.67E-09
'5,23E«05
2*5feE-OS
7,67E-09
S.23E-05
6.80E-05
3.59E-07
2.56E-05
7.67E-09
6.80E-OS
5.23E-OS
9.37E-1!
6.80E-05
2.56E-6S
9.37E-H
2,53E-85
7.67E-09
6.80E-05
2.78E-04
8.80E-05
9.37E-H
0,
1.57E-03
2.56E-05
0,
1.57E-03
HE'
»
•5000;- Y
0.
3.HE.05
1.65E-10
3.49E-05
0.
0,
0.
1.59E-03
jJllE-OS
a,S9E-10
8.29E-04
0,
8.29E-08
3, HE-OS
a,S9E-10
1.59E-03
8.29E-00
8.29E-08
9,3aE-08
2.9aE-10
1.55E-03
3|llE-OS
8.59E-10
8.29E-04
1.59E-03
3, HE-OS
a,S9E-10
8.29E-08
1,59E«03
a,36E-07
3, HE-OS
4.59E-10
1,59E-03
8.29E-Oa
4.59E-10
1.59E-03
3.HE-05
4.59E-10
3.07E-05
a.59E-10
1.59E-03
1.80E-03
9.86E-05
4.59E-10
o,
J.57E-03
3.HE-05
0.
3.76E-01
1.57E-03
3
10800.~~~Y
0.
3.88E-05
3.82E-10
l.22E-oa
0.
0.
0.
S.saE.ns
2.12E-03
3.89E-OS
1.06E-09
2.12E.03
0.
2.12E-03
3.89E-OS
1.06E-09
5.54E-03
2ll2E«03
1.17E-07
6.79E-10
5,a2E-03
2.12E*03
3.89E-05
l.OfeE-09
2.12E-03
5,5aE-03
3.89E-OS
l.OfeE-09
2.12E-03
S.SflE-03
5.88E-07
3.896-05
1.06E-09
5.58E-03
2.12E-03
3l89E»OS
1.06E-09
3.B3E-OS
l.OfcE-09
5,58E-fl3
2.72E-03
1.17E-04
1.06E-09
0.
1.57E-03
3.89E-05
P.
3.76E-01
1.57E-03
TABLE A-IV-2
(continued)
100000, Y******* T
0, „ 0,
2.63E-08 3.61E.04
S.89E-09
2.85E-03
0,
0.
o.
1.29E-01
1.67E-02
2.68E.04
o!
1.67E-02
2.64E-04
U29E-01
1.&7E-02
1.67E-02
7.91E-07
1.05E-08
1.26E-01
J,6aE-08
1,67E-02
1.29E-01
1.68E-08
1.67E-02
1.29E-01
3.69E-06
lliUE-OS
1.29E-01
1.67E-02
!*29E-01
S,68E»04
l,6aE»08
2.60E-OA
l.6ar
l,29E-0»
1.67E-02
3.43E-04
1.64E-OB
0.
1.57E-03
o!
3.6SE-01
1.S7E-03
6.0ZE-OB
6.37E.OJ
0.
0.
2.R9E-01
a.asE.os
3.62E-04
1.67E-07
0.
3.62E-04 - "
1.67E-07
2 .S9E-01
U09E-06
1.07E-07
S.83E.01
4,4BC«03
J,62E-03
2.89E-OJ
3.62E-04
1.67E-07
8.88E-03
2.89E-01
S.06E-06
3.62E-04
1.67E-07
2.89E-01
4.48E-03
1.67E-07
2,89E.O|
3(62E-04
1.67E-07
3.57E-04
1.67E-07
2.89E-01
4.4AE-03
3.62E-04
1.67E-07
..57E-03
3.62E-04
Qt
2.73E-01 -— -
1.57E-OJ
A-IV-78
-------
PMR
BU
33.000 HASTE DECAY TIMES
CASE E-l
HE'S
3B.40MN, BURNUP= 33000,MHO, FLUXs 3.'98E + 13N/C«**2-8EC
TABLE A-IV-2
(continued)
TJ333"
i U'38
U?39
U?ao
L
NPJJ8
^CHARGE™
0.
0.
-o,
1.96E+00
6.86E-02
"0.
0.
3.22E-01
0,
0.
0,
' 0.
o,
o.
PU2S3
T Pu?ae
o,
o.
o.
o,
o,
o,
o.
o.
o.
o.
o.
DISCHARGE
3.taE«08
3.99E-05
" 2.73E-07
5.55E.P3
6.62E-05
" 1 .SOE-03
1.50E-02
1.57E-OS
3?taF-17
3.22E.60
3.25E-01
5.P9E-21
1.72EtO!
~ 6.36E-15
0.
1.7aE«03
t,15E+01
8.72E-03
1.75E-10
3.18E-17
0.
2.21E+02
1.72E+OS
8.27E-18
2.nE«?5
1,32E»08
8.P6E+00
TOTAL
9.16E-03
3.51E-08
1.15F-07
1.37E-20
,R8E-18
.16E-08
.18E-05
.10E-08
.95E-06
.09E-38
• .93E-19
- .68E-32
2.356+00 .60E+08
6.09E+02
8 72E-03
3.51E-08
0.5PE-03
a.58E-03
1.72E*OS
5.79E-18
6,52E-a3
6.06E+03
4.02E+00
!.9tE»03
1.12E-02
9.16E-03
1.23E-38
1 ,88E-1«
1^05E-Ofl
9.0aE-06
1.10E-08
t .71E-06
0.
3.21E-26
0,
8,89E*03
NUCLIOE RADIOACTIVITYfCURIES- r
BASIS « MT or HEAVY METAL CHARGED TO REACTOR
1. Y
3.21E-0*
4.75E-05
1,30E-03
1.16E-02
1.57E-03
0,
a.U5E-l5
o.
3.28E-01
0.
1.72E+01
fl.
3.36E+02
a,aiE-12
0.
o,
1.59E+00
1 ,87E*00
7,28E-»'00
a,2af-02
8,72E»03
3.51E-08
a,82E-12
0.
1 .09E+02
a,7ic.oa
a,7iE-oa
~ 1000, Y
1.57E-06
7.37E-09
"1.50E-03
3.33E-02
8.80E-05
I.51E-03
9.76E-07
1.57E-03
0.
8.83E-12
0.
3.67E-01
0,
1,57E»01
8,83E-12~
0,
0.
3.25E-02
2,07EtOO
fe,92E»00
8.07E-02
8.72E-03
3.51E-08
8,8a£.12
0.
8.90E+01
8.81E-OS
a.eiE-os
5.74E-15
o.
3,86E»Oa
8.12E-05
9.58E.06
a.2«E.02
8.51E-03
3.51E-08
1.15E-07
°i
l,5«E«ta
0.
t.SaE-la
o.
l.SaE-14
7,07C«09
o.
0.
o.
o.
5000, ~
1.57E-06
1.38E-25
7,8flE«05
3.29E-02
9.S6E-05
2.I6E-03
6.98E-07
1.57E-03
0.,
a.eoE-11
0.
3.76E-01
0.
1.09E + 01
4.aoE-ll
0,
0,
l,i«E-12
3.26E+00
4.59E+00
2.91E-02
8.70E-03
3,S1E>08
l,17E«Oa ,a3«04 .62-0
2.68E.03 3,a5E-03 3,36E«OJ
4.59E-07 2.82E-10 0,
1.57E-03 1.57E-03 1.57E-OJ
0, 0. 0,
0. 0. 0,
6,90«
1.9JE-02 1.01E-05
8.65E-03 7,366-01
3.95E-05
i,60E-09
5.77E-14
4.06E-02
7.91E-03
3.51E-06
1.15E-07
0.
1.27E-14
0,
1.27E-18
0,
1.276-18
5.08E-09
0.
0.
0,
0.
9,026+01
0.
1.11E-OS
5,7aE-13
5,7aE-13
1.09E+01
5.72E-14
0.
4.72E-15
0,
5.72E-14
2.90E-02
«,39E-03
3.51E-08
1.18E-07
0.
2.57E-15
0,
2.57E-15
0.
2,576-15
2,336-10
0.
0.
o,
o,
3,076+01
.-05
.03 7,366-01
3.50E-06
8.7bE-li
0,
0,
0.,
0,
3.36E.06
3.66E-09
0,
1.01E-05 0,
7,366-OJ 1,426-05
3.49E-OA 3,366-Ofi
8.00E-10 3.666-09
0. 0, 0,
1.92E-02 1,066-05 0,
.- 7.17E-23 0, 0,
8.81E.05 5,7aE-13 7.17E-23 0, 0,
i,57Et01 i,09E+Ol 6.94E+00 1,996*03 3,366-08
1.15E-14 5.72E-14 1.14E-13 I.08E-12 8,766-12
°« °8 . • _ °« _ °« 0, '
i
0, 0, 0, '
5.89E-23 0, 0,
o, o, o,
1,18E-13 1.04E-12 8,76E.1Z
S.9JE.02 i,OSE»05 0,
2.10E-03 3.73E-09 0,
3.50E-06 3.49E-08 3.36E-0*
1.13E-07 9.47E-08 S, 611-06
0. 0, 0.
3.5IE-16 9.80C-32 0,
, ,
03 3.73E-09 0,
06 3.49E-08 3.36E-0*
07 9.47E-08 S, 611-06
. 0, 0.
3.5IE-16 9.80C-32 0,
0. 0. 0.
3.51E-16 9.00E-32 0,
0. 0. 0,
3.5JE-16 9.80E-32 0,
0, - 0
0,
0.
0,
0.
0.
.J-16 9.80E-32
4,966-12 0,
0.
0,
0,
o, -
0, 0, 0,
2,166+01 2,666+00 3,216+00
' A-IV-79
-------
PWR • BU • 33,000 WASTE DECAY TIMES
CASE
TABLE A-IV-2
(continued)
POWER' SS.aOHH, BURNUPi 33000.MHO, CLUX* 3."98E + 13N/CM**2-8EC
NUCLIOE RAOIOACTIVIT T-CURICS^
BASIS • MT OF HEAVY ME 'AL CHARGED TO REACTOR
CHARGE DISCHARGE
H 3 0, 5.6<»F*01
ZN 72 0, 1,03E«27
GA 7£ 0,
GE 72 0,
GA 73 0.
:GE 73 o,
GA 78 0,
GE 7« o.
GA 75 0,
CE 75H 0,
CE 75 0,
rAS 75 0,
GA 76 0,
GE 76 0,
AS 76 0,
SE 76 0,
GE 77M 0,
GE 77 0, '
AS 77 0,
SE 77M 0,
SE 77 0,
GE 78 0.
AS 7SM 0.
AS 78 0.
SE 78 0,
A3 79 0.
" S£ 79M 0,
SE 79 0,
BR .79 0,
:AS 80 0,
SE so o.
BR 80H 0,
BR 80 0.
KR 80 0,
AS 81 0,
SE em o.
SE ei o,
BR 81 0.
- KR ei*~ o.
KR 81 0,
SE 82 0,
BR 82M 0,
BR 82 0,
KR 82 0.
SE 83M 0, '
SE 83 0,
BR 83 0,
KR 83M 0,
KR 83 0,
SE 80 0,
BR 8«* 0,
BR 84 0,
0.
0.
0.
o.
e.
o.
8,
8.
8.
1 ,80E»fl9
0.
8.
2'a*E-31
7.37E-34
1:
8,
Q
Q
8.
3,95E-01
8.
8,
j:
;:
0^
e.
Of
1:
s!
8.
8.
1 , Y
S.53E+01
8.
0^
0,
o.
o,
8.
0,
8<
o.
o.
o.
8.
8.
e<
e.
o.
J,
0 .
0,
e.
o% -
oj
«;
0 1
3.95^*01
8.
Q
0
0,
0.
0,
8^
O;
0.
o, -
8^
8,
0*
?l
8,
a;
8?
o -
oj
8.
°« "t"
0. g'~
10. Y
3.33E+01
0.
0.
0.
8,
0.
0.
0.
0,
0.
8.
0.
8.
0,
8,
0,
o.
o.
o,
o, --
o.
o.
8.
8.
8,
0,
3.95E-01
8.
8,
8,
8.
o,
8.
8.
o, -
8,
8.
o, — - -
8.
8,
•o, ••-
8,
8.
0,
8.
8.
8.
8.
8.
8.
8,
50, Y
3.50E+00
8.
o.
0.
0,
0.
0.
0.
o, -
8.
0.
0.
0.
8.
6. '
0.
8.
8.
0.
8.
o. ~
8.
8.
8.
8.
8.
0,
3.95E«01
8.
o.
8.
8.
8.
8.
8.
0,
0.
8.
o. - --
0.
8.
o . -
0.
8.
8.
8.
8.
8.
8.
8.
8.
8,
toor ~
2.09E.01
8,
0.
0.
0.
o.
0.
0.
8,
0,
o,
o.
o.
o.
0.
8.
8.
o. - -
8.
8.
8,
-8.
8.
8.
8.
8,
*•
3.95E-01
8.
o,
8.
8.
0.
8,
0.
0.
8.
o.
8.
0.
8.
8.
8.
8. "
8.
0.
8.
8,
8.
0,
8.
' — 500, Y-
3.36E-11
8.
-0. -- — -
0.
0.
- o,
0.
8.
*t
o.
e,
0.
e.
e.
8,
8.
8.
' 8,
8,
8.
8.
8,
8.
8.
0.
8,
0 1
3,93E«01
8.
- o,
8.
8.
0,
8,
8,
0 9
8.
8,
8, -
8.
8,
0,
0.
8.
8.
8.
8,
... 0§
8,
8.
0,
8.
1000, Y
1.95E-2S
8.
0,
8.
8.
0,
8.
0,
8,
8.
8.
8.
8,
8.
8.
8,
8.
8.
8.
8.
8.
.8.
8,
8.
8.
8.
8,
3.91E*01
8.
8.
8.
8.
o, •• - •
8.
8,
0,
8,
8.
8, .
8.
8.
o,
8.
8,
o, -—
8.
8,
8, .
8.
8.
8.
8.
5800, Y
0.
8,
8,
0.
0,
8,
8.
8.
8.
0.
0.
8.
8,
8,
0 f
8.
8,
8.
8.
8.
0,
8.
8.
0 1
8.
8.
0,
3,7SE«01
8.
8.
8,
8,
8,
8.
8.
8.
8,
8.
o, — -
8,
8.
0,
8.
8,
o,
8.
8,
8.
8.
8.
8.
8.
10000. ViOOOOO, V******* Y
8.
8.
0,
8.
8.
0.
8.
0.
o.
8.
6.
8.
8.
8,
8,
8,
8.
8,
8.
8.
8, --
8.
8.
8.
8.
8.
o, -
3.55E-01
8,
8.
8.
8.
8.
8.
8.
8.
8.
0.
8.
8.
8.
8,
8.
8.
8.
8.
8.
8.
8.
8.
8.
0.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8,
8.
8.
0,
8.
8.
8.
I,36E«01
8,
8.
8.
8.
8.
8,
8.
8.
8.
8.
8.
8. /
8.
0,
8,
8.
8,
8.
8.
8.
8.
8.
8.
8.
8.
8.
8,
8.
8.
0.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8,
8.
8,
8,
8.
8.
8.
8.
8,
8.
e.
9.23E.O*
8t
8.
8.
8,
8.
8.
8,
8,
8.
8.
8.
8.
8.
8.
8,
8,
8,
0,
0.
8,
e.
o.
8.
8,
V-IV-80
-------
PWR • BU » 33,000 W»STE DECAY TIMES CASE E-l
«, BURNUP* 33000,MHO, FLUX« S.'98E*13N/CM**2>8EC
FP's
TABLE A-IV-2
(continued)
NUCLIOE RADIOACTIVirVTURieS
BASIS • MT OP HEAVY HE"AL CHARGED TO REACTOR
KR 84
BE es
•— 8R 85 —
KR 65M
KR 85
CRB 85 ~
BR 86
KR 86
RB 66H
RB 86 /
SR 86
r BR 87 —
KR 87
RB 87
L- SR 87H
SR 87
BR 68
EKR B8
RB es
SR 88
BR 89
KR 89
RB 89
:SR 89
Y 89
KR 90
RB 90
SR 90
V 90M
'Y 90
ZR 90
KR 91
RB 91
8R 91
Y 91H
Y 91
ZR 91
KR 92
RB 92
8R 92
Y 92
GR 92
R 93
B 93
oR 93
Y 93
ZR 93
1— NB 93M—
NB 93
KR 94
— RB 94 —
SR 94
C
9.
9.
9.
9,
9.
9,
9,
9.
9.
9.
9,
9.
9,
9.
0.
9.
9.
9,
9,
9,
9.
9,
9.
9,
9.
9.
9.
9.
9.
9.
9.
9.
9.
9,
9.
9.
9.
9.
Oi
9,
9,
9.
9,
9.
9.
9.
9,
8,
9.
9,
9,
9,
HAR6E DISCHARGE
9.
J,
~~ii
0,
7,S1E-01
l|93E-05
Q
Q
jj
fc
7.97E*04
5:
0,
9^
8*
8,
9!
1.39E*05
9.
:!
9.
9.
9,
0.
9,
1.87E*00
1 ,57E«01
9.
9,
8.
9.
r
v • Oct**0 ^
Q
Q
Q
lj93E-05
9.
9.
J.
9.
o4
Q
Q
6*99E*03
Q
Q
7^49E*04
0%
7.49E+04
5:
L ,
}.«,«.
9, - —
S:
9,
0^
?'87E*00
3|oOE-Ol
II
10, Y
9,
9,
9,
9.
9.
0,
9.
8,
8,
9,
0,
9,
9,
1.93E-05
0,
0.,
o,
o, ---
o,
o.
9, —
9,
9,
6.50E-16
0,
8,
8, :
6,OOE*04
0,
6.00C+04
8,
8,
9.
9,
9,
2.39E.13
9,
9.
8,
8,
8j
9,
0,
0,
8,
1,87E*00
8.13E-01
0.
0,
8,
8,
50, Y
o!
8,
'0.
8,
«! '
9,
9.
0.
0.
9.
8.
1.93E-05
8.
8,
8,
o. — -
8.
8.
8.
8.
0,
0., '
8.
8.
0,
2.24E*04
0.
2.24E+04 -
0,
9,
9,
9,
9.
9.
9.
9,
9.
0,
8.
8, '
8.
8.
8,
0.
1.87E*00
1.73E+00
9.
9.
0.
8.
100, "
8,
0,
o,
0.
9,
8.
8,
8.
9.
9.
9,
a.
9,
1.93E-OS
o,
0,
9,
9,
9.
0,
8,
8,
8.
8,
8.
9.
9,
6.52E+03
0.
6.52E+03 "
9,
9.
9.
9,
9.
9,
9,
9,
9.
0.
8,
8.
8,
8,
8,
1,87E*00
1,86E»OC
0,
9,
9,
9,
500, Y 1000, Y
0. 0.
0. 0,
o, o,
0, 0,
9, 9,
9. 9,
9. 9,
9. 9,
o, -
9,
9.
9,
9.
1.93E-05
9, '
0.
8,
8,
9.
9,
9,
8,
8.
8,
9.
9.
8.
3.38E-01
8,
3.38C-01
0.
8,
9,
9.
9,
9, -
9,
9,
0 ,
8,
8,
8,
0.
o.
9,
8,
1.87E+00
1.87E+00
0,
9,
8,
8,
8,
9.
9.
o,
8,
1.93E-05
9,
9,
9.
9, - -
9,
9.
o, -
o!
- o ,- - -
8.
0.
8,
1.48E»06
9.
- 1.48E-06
9.
'0,
9,
9,
9,
8,
8,
- o, - -•-
8.
8.
o, -
8,
8.
8,
8,
1.86E+00
1.86E+00
8,
8,
0,
0.
5000, V
9.
9.
o. — -
9.
9,
9.
9.
9.
o, --•
9,
9.
9.
9,
1.93E-05
9,
9,
9,
o,
9,
9,
0,
8.
0.
0, "
8,
8,
0,
0.
9.
0,
0, •
8.
0,
9,
9,
9.
9,
9,
9,
9,
9.
9,
9,
9,
8,
8.
1,86E*00
1,86E*00
8.
• f
0,
0,
10000, Y
9.
9.
9.
9.
9.
9.
9,
9,
9,
9,
9.
9.
9.
1.9JE-05
9,
9.
9.
9.
S:
9,
9.
9.
o. --•
9.
9.
o. ---•
9.
9.
9,
9.
9.
9,
9.
9.
9,
9.
9.
9. —
9.
9.
9.
9.
9,
9,
9,
!,86E*CC
i.8te*oo
9.
9.
9,
9.
looooo, r
o'.'
9^
o,
o,
9.
9,
9.
9.
9.
9.
9,
9,
1.93E-05
o.
9.
9.
9.
9.
9.
9.'
9.
9.
9.
9.
9.
9.
9.
9.
0,
9,
9.
9.
9.
9.
9,
9.
9,
9.
9.
9.
8.
8.
9,
9!
1,78E*00
1,78E*00
9.
9.
9,
9,
••*•*«• V
i
i
9!
9,
9.
9,
9.
9,
1.93E-95
9,
9.
9.
9.
9.
9.
9.
9|
9,
9.
9.
9.
9.
9.
9.
9,
9.
0,
9.
9,
9.
9.
9.
9,
9.
9.
9.
9.
9.
9,
9.
1,18E*00
1.J8E+00
9.
9.
9.
°' A-IV-81
-------
FP's
TABLE A-IV-2
eon
Y 94
ZR 94
"-RB «s -
SR 95
Y 95
:ZR 95
NB 95M
NB 95
NO 95 -
Y 96
ZR 96
NB 96
MO 96
Y 97
ZR 97
NB 97M
NB 97
:MO 97
ZR 98
NB 98M
NB 98
HO 98
NB 99
TC 99M
TC 99
NBIOO
HOIOO
:TCtOO
RUtOO
NBtOt
Moid
TCtOl
RUIOI
:HOt02
TCt02H
TC102
"Ut02
HOtOJ
TCtOS
RHtOSN
RHIOJ
TCtOfl
RU104
~ RHt04H
RH404
HOtOS
TCtOS
ER« 38.40HW, BURNUPs 33000, M
-'CHARGE
0,
0.
-o.
0.
0.
0, '
0.
0.
o,
0.
0,
Ot
o.
o.
o,
o,
0.
o,
o,
o,
o.
o,
o,
o.
o,
o,
o.
o,
0.
o.
o,.
o,
o,
o.
o.
ot
0.
o.
Oi
o.
o.
0.
0,
o,
o.
o,
o,
o. —
o.
DISCHARGE
_. „«
Q
Q
2.50E*OS
5.311*03
4.88E*05
I:
7,18E"55"
o.
3.81E»72-
3.28E-72
J,68E«72
0.
o.
S;
3.76E"14
3.59E-14
0.
0.
0.
0.
0,
0,
o.
0.
I:
6,42E+04
0*
°»
"p- *' V
o*
7|57E*02
7.58E*04
'Si
o.
o.
o:
o.
!:
o.
7J59E-34-
7.26E-34
- o ,
0,
o, - - -
o*
°. • ""
Q
Q
oj •""
Q
Q
2*62E+03
oi
Q
Q
Q
Q
Q
Q
0 •
WO, FtUX«
N
BASI
to, v
o,
o,
o,
o,
o.
2.12E-11
4.SOE-1S
o!
0,
0,
0,
0,
0.
o . - - -
0.
o,
o,
o,
o,
o,- -
o,
o.
o,
o,
1.43E+01
0.
0,
0.
o. -
o,
o,
0,
o,
o. .
o,
o,
o,
o,
o,
Or
0,
0.
0,
o,
0,
0.
0.
o,
o.
o.
o.
5,'98E»i3N/C
JCUOE RADI
3 • HT OF
50. Y
0.
0.
o, -
0.
0.
o. -• -
0.
0.
0,
o,
0.
0,
o.
o.
6.
0.
0.
0.
o.
o.
o.
o.
o.
o.
o.
1.03E+01
0.
0,
0.
0,
o.
o,
o. -•• --
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
0.
o,
o.
o,
o.
0.
o*.
M**2-SEC
OACTIVir i "CU3IES
HEAVY HE At CHARGED
tOO, 500, Y
o. o,
0, 0,
e, - o,
0. 0,
o, o.
o.
o,
o.
o,
o.
o,
o,
0,
o,
o.
o.
o,
0.
o.
0.
o,
o.
1.43E+01
o, -
o.
o.
0 ,
o,
o,
o.
o,
o.
o, -----
o,
o.
o, -
o.
o.
o.
o.
o,
o,
o,
o,
o,
o,
o,
o,
0,
o,
o,
o.
o,
o.
o.
o.
o,
o,
0,
o,
o,
o,
o.
o,
o,
o,
1.43E+01
o,
o,
o, -
o,
o,
0 ,
o.
o,
o, -
o,
Of
o, -
o,
o,
o.
o,
o,
o,
o,
o,
o,
o.
o,
o.
TO REACTl
tooo. \
o,
o.
o,
o,
o,
o,
o,
o.
o,
o,
0.
o.
o,
o.
o •
0 •
o.
e,
o.
o,
o,
o.
1.43E+01
o, -
o.
o,
0,
o,
o.
o, •--
o,
o,
o.
o.
o.
o.
o,
o,
o,
o.
o,
o,
o.
o,
o.
o,
o.
o, - --
o.
•
)R
f SOOO. Y
o,
e,
o,
o,
o, •
o , — - -
o,
o.
o,
o,
o,
o.
o,
o,
- o, - --
o.
o,
0,
o.
o,
o,-
o.
o.
o.
I.41E+01
- o, -
o,
0.
o,
o,
o,
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
o,
0,
o.
o,
o.
o.
o.
-- o,
o,
10000, V
o,
0.
0.
o.
o.
8,
o,
o,
o!
o,
o. ••-•-
o.
o.
o,
o.
o.
o,
o,
o,
o ,
o,
o,
o, •-,--
o.
1.36E+01
o.
o.
o.
o.
o.
o,
o, -•
' o|
0.
o,
o.
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
e.
o.
(continued)
100000, **••*••« T
e. o,
o. o.
0, 0.
e, o.
o, o,
o. o,
0. 0,
o, o,
0, 0.
o, o.
0. 0.
0. 0.
o. o,
0. 0.
0. 0.
0. 0,
0. 0.
o. o.
0, 0,
o, o.
0. 0.
0, 0,
o, o,
0, 0,
0. 0.
S,03E»01 5.44E.01
o, o.
0. 0,
0. 0,
0. 0,
0, 0.
0. 0,
o, o,
0, 0,
o. o,
0. 0,
0. 0,
0. 0.
0. 0,
0. 0,
0, 0,
0. 0,
0. 0,
0, 0,
o, o,
0. 0,
0, 0,
0. 0,
0, 0.
0, 0.
0, 0,
A-IV-82
-------
PMR
• BU •
PONEM 30. a
"utos
RMtoSM
P0105
TCtOfc
r RIM. o&
f)Ht06H
1 RHtOfc
Poto*
«U107
«Ht07
|~pt)t07K—
P0t07
[ AGt07
Rutoe
PDIOB
I Actoa
Coto*
— P0109K—
P0t09
AGI.09H
CD109
I RHttO
"PDtlO
AGUOM
AGUO
POUIM
POUI
— AGtllM—
AGtll
COU1M
'-cot 11
POU2
AGU2
'—CDt 12 "~
POUJ
AGUSM
CAGUS —
COUJ*
COUS
INU3 —
Poua
AGU«
POU*
CHARGE
0.
0.
0.
0.
0.
o.
o.
o.
o.
o,
o,
o,
o.
o,
o,
o,
o.
o,
0.
o,
o.
o.
0.
o.
o.
o.
o.
o,
o.
o.
o.
o,
o.
o.
o,
o,
o.
o.-
1
1
1
O O O O 0 0
0.
o,
o,
o,
o.
0.
o,
33,000 HASTE DECAY
OMH, BURNUP
"DISCHARGE
0?
Js6E»05
*
0*
o.
1.16E-01
'«
i
!••
fl*9SE«93
3.08E-06
0.
3.08E-0*
0.
2.7«E»03
3.57E+02
0
Q
oj - ~ -
l,aoE»03
3jj9E"59
3.B8E-39
-J
0.
iu,
USlEoOl
o.
o.
TIMES
• 33000, MHO, FLUX* 3
}«
0.
S:
o*
3.23E+05
ll
0. "
I:
|:
kit 06
c • o 3 1 *0o
Q
1 • ooc ^ 0 3
F
l|l2E*l*0
o.
!
L
1*0«E*02
I:
' NU
BASIS
10, Y
0,
o.
o, -- -
o,
o,
6,50C*02"
0,
6,50Et02
0.
0,
0.
0,
1.16E-01
0.
o, ---
o.
o,
o, - - -
o,
o.
o,
1,72E»00
o,
t,72E*08
o,
0,
2,oae-oi
2,65Eo02
o,
o,
0.
0,
o,
o,
o,
o,
o,
o,
o.
o.
o.
T.17E+00
o,
o,
o,
o,
o.
1.74E-22
1.68E-22
o,
o,
CASE
E«l
,'98E*1JN/CH**2»SEC
CLIOE BAOIOACTIVir
• MT OF HEAVY HE1
50, Y 100, '
o. o.
0, 0.
0, "
o.
°«
o!
t.73E*10
0,
0.
0.
0.
1.16E*01
0.
0,
0,
0.
o.
o.
o.
0.
o,
5.36E.18
0.
5.36E-18
0.
o, --
8,aoE>19
1,09E»1?
0.
o,
0.
0,
5:
o.
o,
o.
0.
o.
o.
o.
9.90E-01
0.
o.
o,
o.
o.
o,
o,
o,
o.
o.
0.
o,
7.03E-2S
o,
7.03E-2S
o.
0.
0.
0.
1.16E-01
0.
0,
0,
0,
0,
o,
0,
0.
0.
2,«5E«30
0.
2,45E*30
0.
o,
o,
0.
o,
o,
0,
o,
o.
0.
o.
o,
o.
o.
o,
o,
8,33E-02
o.
0,
o,
o,
o,
o,
o.
o«
o.
, CURIES
AL CHARGED
500, — r
o.
o.
o.
o,
0,
0.
0,
0.
o,
0,
0.
o.
1.16E-01
0,
o.
o,
o,
o,
o.
o,
o,
o.
0.
o,
o.
o.
o,
o.
o,
~o. -
o,
o,
-. Ot
o.
o,
o.
o,
o,
o,
o.
o,
o,
2,08E*10
o.
o.
o,
o.
o.
o,
o.
o,
o,
FP's
TO REACTOR
~1000, Y 5000, Y 1
0, 0, <
0. 0, (
0.
0.
o.
o,
o,
o.
o,
o.
o.
o,
t.UE-01
o.
o,
o.
o.
0,
o.
o,
o,
o!
o,
o.
o,
o,
o,
o,
o, - -
o,
o.
O O O O O 0
o, :•
o,
o,
o,
5.69E-81
o.
o.
o,
o,
0.
o.
o.
o,
o,
o. (
0, (
0. (
TABLE
(cont
0000. YIO
1. °
>. o
i. o
>• 0
>, o
o. - -o, o
o, o, o
0, 0, 0
0, (
0, <
o. <
o, — - <
1.16E»01
o. (
1. »
>. «
1. «
>. o
,UE«01 1
>. o
0, 0, 0
0. 0. 0
0, 0, 0
o, - o, - o
0. 0, 0
0, 0, 0
0, 0, 0
0. 0,
0. 0.
&• o,
o, o,
0. 0.
o, - o,
0, 0,
0, 0,
1
OOOOOOOOOOOOOOOOOOOOO
i
§
>,
),
>,
1
*
I
1
1
A-IV-
.inued)
0000,
HE«01
Y******* Y
05E.01
-------
j--n - ou - JJ>0VU "3 It UCI.HT .lin^O t««9C E"l
POWER" 36,'flOHW, BURNUPa 33008, MHO, FLUXB 3
CHAR6E DISCHARGE
*GU3H 8, 8,
*6U5 6, 8,
CoilSn 0,
CDU5 8,
INUSM 8,
iNt 15 8,
SNtU 8,
«GU6 8,
COU* 8,
INU6M 8,
INU6 8,
3wt 16 8,
*6U7 0.
COU7M 0,
COt 17 8,
INU7M 8,
!Ntl7 8,
~ 3NU7M— 8,
3NU7 8.
CDU» 0,
" INI IBM 8,
INU8 0.
3NU8 8,
COU9M 8, "
COU9 0,
INJJ9M 8.
~1NU9 8,
3NIJ9M 8,
8NU9 8,
CD120 '-• 0, '
IN(28M 8,
IN120 0.
-8N120 0, —
CD121 0,
IN121M 8,
'IN121 8,
SN121H 8.
3Nt21 0,
' 38121 0»
!Nt22 8.
SN122 8,
" 38122M 8,
88122 8,
TEt22 8.
IN123M 0,
IM23 0,
3N123M 0,
8N123 0,
8812) 0,
TE183M 0,
TCIZJ "• o,
iNtta o.
J,76E*OI
2.06E-21
2,2«E-21
5:
••
!:
««
o.
j:
j:
9,69E"83
9.
?<
•:<
-- o.
j:
o,.
l<21E+8t
J»
9,
9,
9.
0.
|:
o.
6.80E-84
1.30E-45
0.
5:
0.
3.22E-17
9.
9,
a,10E+03
2le7E«01
"!:""'"
1, Y
J: .
" 1.98E+80
|:
I:
?: '
8.
8, -
0.
J*
OiSE-06
9.
1
8,
|:
7j27E»00
1
!:
s-
6*eiE«oa
8.
"8,
8.
7j4aE»S7
•|:
\ ,49Et03
9|72E*02
~ 8.
8.
Nl
BASI.
10, Y
8,
8,
-o;
8.
0.
o ,
8.
0,
0,
8,
8,
o, - - - -
0.
0,
o. - --
8.
8.
8, - - '
0,
8,
8,
8,
9,
9,
8,
8.
8, .
8,88E»04
8.
8,
8,
9,
8,
8,
8.
8,
S.S4E-04
8,
9,
8,
8,
8,
8,
o,
8,
0,
9,
t.eoE-es
9,
3.38E-18
9,
0,
5.498E+13N/(
JCtlOE RAO
5 * HT OF
30. Y
8,
8,
0.
8.
8.
8,
8.
8.
9,
8,
8,
8, - ' -
9.
9.
0,
8.
8.
o. - -
8.
0,
8, -—
8.
8.
S:
8,
8.
2.84E-21
8,
9,
8.
8,
8.
8.
9.
9.
3.84E-04
9.
8,
9.
8.
8.
8.
8,
0,
8.
8.
8,
9,
9.
8..
9.
;M**2»3£C
rOACTIVIT"
HEAVY ME"
100.- —
o,
o.
o,
o.
8,
8,
8.
9.
*,
8.
8,
8,
8.
0.
8,
9.
8.
0,
9.
o,
9,
9,
9.
9.
9,
9,
9,
9.
9.
9. -
0.
9,
9,
0,
9.
9,
2,44E>0«
0.
o,
o.
0.
o,
9,
0,
0.
9,
9.
o, -
9,
0.
8,
9.
i-CURIES
AL CHARGED
508, ~ V-
0,
o.
o.
8,
9.
8,
8.
8,
8,
9.
9,
9,
9.
8,
9,
9.
8,
0,
8,
8,
9,
9.
0.
8,
9.
8,
8,
8,
9.
9.
9,
9,
8, -
8.
9,
9.
6.34E»06
9.
9.
0.
9,
9,
9,
9.
9,
8,
8.
0.
8,
8.
8.
9.
FP
TO REACTOR
-jeoo, Y
8.
8,
0,
0,
8,
0,
8.
8,
8,
0,
8,
8%
8,
8,
8,
8,
8.
8, -
8.
9,
8.
9,
8.
9.
9.
9.
o,
0.
8,
8.
8,
9,
8,
8,
8.
8.
6.63E-08
8,
8.
8,
8.
8.
8.
8,
8.
8.
8,
0.
9.
8,
ot
0,
SOOOe
o.
9.
9.
9,
9,
0,
0,
9,
8,
8.
8,
8,
9.
9,
0, ~
9,
9.
0,
9.
8.
8.
I:
8,
8.
8.
8,
8.
8.
8.
8, •
8.
8,
8.
9.
9.
9.43E.
9.
9.
9.
9.
9,
0,
9.
9,
0.
8,
8.
8,
8.
8.
0*
s .._.
(
Y JOOOO. Y!
9.
8.
9,
8.
9,
8,
8,
9.
8,
9.
9,
8,
8.
8.
— - e.
8.
8,
8,
8.
9.
8.
9,
9.
9. --
9,
9.
8. — -
8.
8.
8.
8.
9.
9,
9.
9.
9.
»{• t.«7E-O
9.
8.
8.
8,
0.
8.
9,
8.
8.
8.
8.
9.
9.
- o.
o.
continue
00000, '
0.
0.
9,
9.
0.
o, -
9.
0.
9.
«,
8.
9.
9.
9.
9. ~
9.
9.
9.
9.
0.
9,
9,
9.
9.
9,
9.
0.
9,
9.
9.
8.
8.
8,
9,
9.
9.
9.
9.
9.
8.
8.
8.
9.
9.
0.
9.
9.
9.
».
9.
0.
0.
d)
r«««
o.
o,
0
0
0
9
0
o
0
o
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B
**•*
A-IV-84
-------
PK|^« BU • 33*000 WASTE DECAY TIMES
CASE E»t
PONEM
, BURNUP* 33000,MUD, FLUX*
TABLE A-IV-2
(continued)
" NUCLIDE
BASIS • MT OF HEAVY ME"AL CHARGED TO REACTOR
»Nt2«
SB124H
8Bt2«
TE120
3N125M
L8N125
8B12S
TE12SM
TE125
3N126
8B126M
(—'BIZ*
TE126
8N127M
8N127 '
88127
TE127M
[-TE127
I 1127
| SN128
— SB128M
88 128
TE128
P 1128
XE128
8N129M
*— 3N129 "
88129
TE129M
r~T£t29
1129
XE129M
. XE129
3N130
1 3B130H
, (—38130-
1 TE130
I130M
H30
XE130
3N131
SB131
TE131M
TE131
1131
XE131M
XE131
1 — 8NIJ2 —
SB132N
! 38152
•— TE132 —
nsa
"CHARGE" D
0.
0.
0.
Ot
0,
8,
8.
8.
0.
0.
8.
8,
8.
8.
8.
8.
8.
0,
8,
8,
8.
8.
8.
8,
8.
8.
8.
8.
8,
8.
8.
8.
8.
8..
0.
Ot
8,
8.
8.
8,
8.
0.
8.
8.
8.
8.
8.
-o.
0,
8.
0.
8,
I3CHAR6E
8.
0.
5.18E+01
8.
2ls9E«02
.S7E+03
,aSE»03
•
,*«E-01
,6«E-01
.62E-01
!:
8.
6.06E-10
6.39E+03
6.32E+03
8.
8.
8-.
8.
«.
8.
8.
0.
!:
1.79E+03
1.J5E+03
3.77E-05
8,
"8.
j:
•:
lj3«*105
5:
lSeE-39
2.82E-00
l,6TE-oa
8.
8.
8,
0,
8.
1.77E-11
1.82E-H
:•• " '
-&J28E»00
8.
3^38E-08
7.05E+03
5.08E+OJ
8,
5.6UE-01
S,6aE«ol
5,59E-01
8.
8.
sj93E»2«
2.00E+03
>.98E*03
8,
8.
8.
J:
ii
«Ij3E»Ol
" 2.77E+01
at73E-05
8,
ii
::
1
2,«7E«11
6,2«E"tl
8.
S:
" 2,iaE"28
2.21E-28
10, Y
0.
0.
2.01E-16
8,
8,
8,
7,39E*02
3.06E+02
8,
5,6aE-Ol
5,6aE-01
5.59E-01
8,
8,
0.
8,
1.67E-06
1.65E-06
8,
0.
o,
8.
8,
8,
8,
8.
8,
8,
8.
8,
1.75E-05
8,
8,
8,
8, .
8,
8,
8.
8. '
8,
8<
6,
o,
8,
8,
8,
8,
0.
0,
8.
o,— -
8,
58. Y
8.
8,
8, -
8,
0.
8.
2.56E-02
1.06E-02
8.
5.6«E-01
5.60E-01
5.58E.01
8.
8,
8.
8.
8,
0.
8,
0.
8.
8.
8.
8.
8,
8,
0,
8.
8.
0 .
fl,75E«05
0.
o. - -
8.
8.
8.
8,
0.
8.
8.
8.
8.
8,
8.
0.
8.
0.
o.
o,
o.
0.
8.
100, '
8.
8,
8,
8.
8.
0. "~ -
6.81E.08
2.82E-OB
8,
5.6UE-OJ
5.fcaE-01
5.58E-01
8.
8,
8. -
8.
8.
8,
8.
8,
o. -
0.
0.
0,
0.
8.
8,
8.
8.
8,
a,75E-OS
8.
8,
8,
8.
8.
8.
0,
0,
8.
0.
0,
e.
e.
8.
8.
8.
8.
8,
8,
8.
8,
'- 500, " Y
8.
8.
8.
0.
o.
6,
8.
8,
0,
5.4.2E-01
S.62E-01
5.37E-01
0.
8,
0 , -
8.
8.
8.
0.
8.
o.
8,
8.
0.
8.
8.
8,
8,
8.
8,
a,75E»05
8.
8,
8,
8.
8t
8,
8,
8,
8,
0.
8,
8,
8.
8,
8.
8,
8,
8.
8,
8(
8,
1000. Y
0.
0.
o,-~- --
Ot
e.
8,
e.
8,
0,
5,60E«01
5.60E.01
5,55E«01
8.
8,
8.
8t
Ot
0.
".
Ot
Ot
O.
Ot
o.
o.
o.
Ot
o.
o.
0. "
«,75E-05
0.
J:
o.
Ot
Ot
o,
o, -
o.
o,
o,
o.
o.
Ot
8.
8.
8.
8.
e,
o, -
o,
5000, Y
o,
Ot
"0,
o.
o. •
Ot
o.
Ot
o, -
5,05E»01
5,a5E-01
5,flOE«01
o,
0,
0.
Ot
Ot
O.
0.
0.
o.
0.
o.
Ot
Ot
o, •
o,
o.
Ot
o, - -
«,75E«05
81
0,
0| .
o,
o,
o,
0,
o,
0.
0.
Ot
Ot
o.
0.
o,
o.
o,
o,
8.
- o. - ---
o,
10000. Y
0.
o.
o, -
o.
Ot
Ot '
o.
o,
o.
5.26E-01
5.26E.01
5.21E-01
0,
S:
o.
o.
o.
0.
Ot
o,
o.
o.
0,
o,
o.
o,
o.
Ot
o, -
«.7SC»05
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
0..
Ot
o.
o.
o,
o.
o.
o.
o.
0.
o.
100000, V******* V
o. o.
Ot 0.
o. o.
o. o.
0, «t
Ot 6,
0. 0,
0. 0,
0. 0.
2,8>Et>01 5,51E«04
2.82E-01 5,51E-0«
J,79E«01 5,45E»iO*
0, 0,
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
o. o,
0. 0.
0. 0.
0. 0.
0. 0.
o, o,
0. 0,
o. o,
0. 0.
o. o,
0. 0,
0,7«E*05 a.«»E-05
0. 0,
0. 0,
Ot Ot
o. o,
o, o,
0, 0,
0. 0,
0. 0.
o. o.
0. 0.
0. 0.
0, 0.
0. 0,
0. 0.
0, 0,
0, 0.
Ot 0.
0, 0.
0, 0.
0, 0.
0. 0.
•IV-85
-------
PWR • BU • 33*000 HASTE DECAY TIKES
CASE E-l
FP<
POWER" 38,'aOMH, BURNUPa 33000, HMD, FLUX* '.
XE1S2
88133
— TE133H
TE1S3
ns3
— XEt33M
XE133
C3133
~ 3Bt3« •-'
TEtsa
mo
CS134M
CStsa
TE13S
H35
-XEtSSM
X£t35
CS135M
• CS135
BA135M
8M35
1136
XE1S6
CS136
BAIS6
H37
XE137
:CStST — <
HAt37M
BAI37
1138
XE138
CS138
— 8A138
It39
XE139
CS139 '
BA139
LA139
cstao
8A1«0
— LAt«0
CEtao
XElfll
:csiot
BAtai
UAtai
CE101
PRtol
"CHARM
8,
8,
8,
8,
8,
6, -
8,
8,
8,
8.
8,
e!
8.
8.
8,
8,
0.
8,
8.
8,
8,
8.
8.
8,
8,
8,
8,
8.
8,
8,
8,
0,
8.
8,
0,
8.
e.-
8,
8,
8,
8,
8,
8,
8,
6.
8.
8,
0,
8.
8,
DISCHARGE 1, Y
0. °t
!:"" Si
3.62E«60 0.
8, 0.
8. 1.96E-71
°. °<
0
2
0
0
0
0
0
0
i
3
0
J
0
1
i
Q
0
Q
0
0
0
0
9
{
s
3
0
\ °«
.'?8E + 05 t|92E + 05
;~ ?:
. 0.
" 0*
. ' 8.
,23E«Ot — 2,83C»bl
,26E-05 0,
°«
* o"
*98E+80 2*33E«oa
' 0* '
,08E*05 1,06F*OS
.01E+05 9.9QE+00
« °.
•. °«
' n'
. 8.
• t
Q
ft
t •
; 8*
, °t
H38E*01 «|75E-03
,08E»02 5,fl7E"03
0 •
Q
Q
^5BE»08 7^19Eto2
• " i
Nl
BASIi
10, Y
8,
8,
8,
8,
8,
8,
8,
V
o'
8,
8,
8,
9.18E+03
0,
8,
o!
0.
8.
2,2JE«01
0,
8,
8,
0.
8,
8g
8,
8,
8,6«E»Ofl
o!
0,
8.
8,
o,
8,
8,
8.
8,
0,
8.
0,
8,
8,
o, -
8,
8.
8,
S.'98E+l3N/CM**2f>8EC
JCLIDE RAOIOACTIVIT'
J * MT OF HEAVY ME'
58. V 100. '
0. 0.
0, 0.
0, 0,
0. 0,
0. 0,
o, - • ot/
8, 8,
8. 8,
0,
8,
8,
8.
8.
1.23E-02
o.
8,
8.
0,
8.
8.
2.23E*81
8.
8.
0,
8.
8.
8.
8.
8.
3,a3E+oo-
e!
8, *
8,
8.
8 ,
8,
8,
o . - • -
8.
8.
8,
8,
8,
8,
8,
8,
8,
8,
8.
8,
8.
0,
8,
8,
8,
8,
5,S6E«10
8t
8,
8,
0,
8,
0.
2,23e«0t
o.
o.
o,
e.
8.
8.
8,
8.
1.06E+04
1.01E+00
8.
8,
8,
8,
8,
8,
8,
8,
8,
8.
8«
8,
0,
8.
8,
8,
8.
8.
o§
8,
.CURIES
AL CHARGED
500, Y
8.
8,
8,-
8,
8.
8,
8,
8.
8,
8,
8.
8,
8,
8,
8,
8,
8,
8,
8,
8,
' 2,23E«81
0.
8.
8,
8.
8.
8,
8.
8.
1,04E*00~
9.77E-81
8,
8,
8,
0,
8.
8,
8,
8,
°t
8,
8.
8,
8,
8,
«
8,
8.
8,
TO REACTOR
1000, Y
8,
8.
8.
8,
8,
8, --•
0.
8,
8.
8,
8,
81
8.
8.
8,
8,
8,
8.
6.
2.23E-8T-
.8,
8,
8,
8.
8,
8,
8.
8,
1,OOE»OS '
9.S8E-06
8,
8,
8,
8,
8«
8,
8.
o, . -
8,
8,
oj
8, .
8,
t
8,
8,
8,
0.
5800. V
8.
8.
8,
8.
8.
8,
8.
8,
8,
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8.
2,23C*01
8.
8,
8,
8,
8,
8,
8,
8.
8,
8,
8,
8,
8,
8, <
0,
0.
8,
8,
8.
8,
|
8.
8,
8,
8,
8,
8,
8.
8.
(<
10008. Y
o.
o.
8.
e!
e.
e,
8,
8,
8.
8.
8,
8.
8.
8.
8.
8.
8.
8.
8l
8.
8,
8.
8,
8.
5:
0,
8.
8,
8,
8,
8.
8.
8.
8.
8,
8.
8,
8,
8.
8.
0,
8,
8,
8,
8,
8, '
8.
8.
TABLE A-IV-2
(continued)
Y100009. Y******* f
8.
8t
8.
0.
8.
8.
8.
8,
8.
8.
8.
8«
8.
o.
8,
8.
8.
8.
8.
8.
2,18E»8t
8.
8.
8.
8,
8.
o, -•—
8.
8.
o(
8.
8,
0.
8.
8.
0,
8.
8.
o. -
80
8.
8.
8.
8.
8,
8.
8,
8,
8,
8.
8,
8.
0.
8t
0.
8.
8.
8.
8.
8,
8.
8.
0.
8,
8.
0,
8.
8.
8,
8.
8.
- 0,
, l,77E«Ol
8,
8.
8. .
8.
8.
8,
8,
8.
8.
8,
8,
8.
8.
0,
8.
8.
8.
8.
0,
8.
8.
8,
8.
8.
8,
8.
0.
8,
8.
8.
8.
A-IV-86
-------
PMR . BU
• 33,000 HASTE DECAY TIMES
POWER* 38,'aOMW, BURNUPfJ 33000. MM
XEt82
CS142
ftAtez
UA142
CEt82
|~PR142
ND1B2
C9183
BAtaJ
UA183
[~CEta3
PRtaS
Notes
CEiaa
PR188
CEtflS
1 — NMne '
CEt86
PRt86
I H(ji46
CEt«7
PM187
8Mta7
f CEH*
PRtaB
NDt88
— PH148M-
8*tas
: PR 189 —
N0189
PN150
| 8M150
ElMSl
PM152
LECH52M
FUt52
60152
P*tS3
CHAR
0.
0.
0,
0.
0.
0,
0.
0,
0,
0.
0.
0,
o.
0.
0,
o,
o.
o.
o.
o.
o,
o.
Of
o.
o.
Ot
o.
o.
Ot
o,
o.
"0,
o.
o.
o.
o,
o.
o.
o.
o.
0.
o.
Of
o.
o.
o,
o!
GE DISCHARGE 1. Y
o. o.
o, o,
o, oj
°« °l
o. o<
l!64E*02 l|59E*02
°* Of
8.57E*05 5.89E+05
8,57E»05 5,89E*05
o. o.
o.. o
0, 0.'
o. o,
5: J:
o! oj
.0. 0,
8.37E»00 9|33C«o5
9,72E»04 8.52E+04
S< °'
o. o.
l.aAE+o3 9.23Etol
J,S1E*02 7.41E+00
' • ^ %
1*12E.19 0%
o. o,
»: S;
1*5lE-a2 0*
1,26E»03 1,25E+03
o, o.
o, o,
5: !:
8,78E»00 8,53E»00
o* o|
CASE
E-l
D» FLUX" 3,'98E*13N/CM«
NUCUIDE RAOIOA
BASIS • MT OF HE
10. Y 50. Y
0. 0. 0.
0. 0, 0.
0. 0.
0, 0.
0, 0..
0, 0.
0. 0,
0. 0.
o,;- •
o.'
o.
o,
o.
o.
Of
1..80E + 02
l.SOE+02
o,
o.
o.
Of
o,
o,
o, -
o,
Of
Of V
7,87E»OS
0,
0,'
o,
o,
Of
o.
o,
o,
o,
o.
o, -
o.
o,
o.
o,
o.
1.16E+03
0,
0,
0,
o,
5,07E»00
o.
0.
o'
o.
0.
0.
o.
5.85E.18
5.85E.18
0.
0.
0,
o.
o.
o.
o.
o.
o.
o. - -
1,99E»01
0.
0.
o.
0.
o.
o.
o.
o.
o.
o.
o. -
o.
o.
o.
o.
o.
B.86E*02
0.
o.
o.
o.
5.03E.01
0.
o.
0.
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o,
2.
2.
o.
o.
o.
o,
o,
o.
o.
o.
o.
o.
3,
o,
o.
o.
o.
o.
o.
o,
o.
o.
o.
o.
o,
o.
o.
0.
o.
5,
o,
o,
o,
o,
o!
o,
*2«SEC
CTIVIT1', 'CURIC3
AVY HE' AL CHARGED
100. " 500, Y
o.
0.
0,
o.
0.
o,
o.
o.
o!
o,
o,
o.
o.
o.
S6E-33 0.
56E-33 0.
0.
o.
o.
o.
o,
o.
o,
o.
Of
58E-07 0,
0.
Of
0.
0,
o,
o.
o.
o,
o.
o.
o,
o.
o,
- - - - o , ~ -
o.
o.
68E+OJ 2.3SE+01
o!
o.
o.
80E*02 2,50E*12
Of
o,
TO REACTOR
1000, Y
0.
0,
o!
0,
o.
0.
0.
o,
0.
0.
o,--.
0,
0.
o,
0,
o.
o,
o.
0.
o,
o.
Of
o,
o.
o,
o,
o.
o,
o,
o,
Of
o,
o.
0.
o.
e.
o.
o,
o,
o, •-••
o,
o.
8,376.01
o!
o.
o.
7.38E-2S
Of
c.
"8 ^
5000,
0.
0.
0.
0.
o,
o.
o,
o.
Of
o.
o.
Of •
o,
o.
Ot
o.
o,
o, --
o.
o.
Ot
o.
o.
o, -
o,
o.
Of ~
o,
Of
o,
o,
o,
Of
o.
o.
o.
o.
o,
o,
o,
o,
Of
o.
o.
o!
o,
o,
o,
o.
o, -
o.
(
ABLE A-IV-2
continued)
Y 10000, Y100000, V
o. o.
0. 0.
o. o.
o. o,
o, o,
0, 0,
o. o.
Of
o.
o.
- o,
o,
o.
o.
- ~ o,
o.
o.
Of
o.
0.
- o, -
o.
o.
o.
o,
o.
o, -
o.
o,
"0.
t
t
o!
oj
o!
o.
Of
o,
o,
Of
Of
o.
o.
o.
o.
Of
o.
o,
o.
o.
o.
o. -•
o.
o.
o,
o.
o.
-o,
o,
o.
o,
o!
o, --
0|
o,
o,
o.
oT
o,
o,
o.
o.
o.
Of
o,
o!
o. --
o,
•***•**
o.
0.
o,
o.
o.
o,
o.
o.
o.
o!
o.
o.
o.
o.
o,
o.
o.
o,
o.
o,
o.
o.
o.
o.
o.
o,
o,
o.
o.
0, i
Of
o,
o.
o!
o.
o*
o.
o.
o,
Ot
o.
o.
o.
Of
t
I
f
*
A-IV-87
-------
PWR_« BU • 33,000 WASTE DECAY TIMES CASE E-l
33000,MHO, FLUX" 3.'98E + 13N/CM**2-SEC
POWER* JS.'flOHH,
FP's
TABLE A-IV-2
(continued)
-NUCIIDE
BASIS * HT OF HEAVY ME AL CHARGED TO REACTOR
8*153
EU153
PMtSO
SHt;a
— CIH50 —
8M155
EUt 55
GD155
3M156
: 60(56
8*t57
EUIS7
60157
EU158
EIM59
G0 159
'813'
EUUO
60160
T{Jt60
DY160
60161
DYUI
60162
:T8162M—
TB162
DY162
TB163M—
T8163
OY16J
"' TBlfcfl '
DYV64
"' OY165
H0t65
DV166
-H0166M
H0166
ER166
1 CR167
TOTAL
CHARGE
o.
o,
o,
0,
0,
o.
o.
o.
o.
o,
o,
o,
o.
o.
o.
o.
o.
o.
o.
0.
o.
0.
o.
o,
o,
0.
0.
Ot
o.
o,
o,
o,
o,
1
0 O O O 0 0
o,
o.
DISCHARGE
5.10E-23
0.
2^00E»01 "
0,
0.
7.81E*03
0.
0.
7,29E»03
0,
7* SB
if"81
2,15E«83 '
S5
S;
2 _ \ SC *7 0
S:
o?
o.
8.88E»06
j:
o!
o,
!:
o.
o.
8)98E»16
8,S7f."04
1,3«E-15
0.
0. "
1, V
o.
-l*19E+6l
0.
0,
7.60E+03-
o!
6,02E*OS
o.
0,
oj
ii
i
S:
o.
5.10E»01
I"""
•:
S;
0,
!•'
5:79E.32
8|57E-0«
8.65E-32
o,
o.
10, Y
0,
0,
9,65E-0«
0,
0,
5.18E+03
0.
0,
1 ,92^*02"
o, -
0.
0,
0,
0,
o, —
0,
o,
o.
o.
o.
o.
o.
o!
o,
o,
o,
Ot
o.
o, .
o , • - - -
o,
o,
o, -
o.
o,
B.53C-04
o.
o,'
3,10E*05
50. Y
0.
0,
o'.
0.
9.15E+02
0,
0.
«,26E«OS—
0.
0.
o. —
0.
o.
o.
o.
o.
0.
o.
o.
o.
o,
o.
o.
o.
o.
o. •
o,
o.
o,
o.
o,
o,
o,
o.
o,
o,
o,
8.33E.04
o,
o.
o.
1.13E+05
loo; —
o!
o,
0.
o,
1,05E*02
0,
0.
2.06E-13
0.
0.
0.
0,
0.
o,
o.
0,
o.
o.
o,
o,
o.
o,
o,
o,
o.
o,
o.
o,
o,
o,
o.
o.
o.
o, •
o,
o,
o!
o,
o,
1 — 500 i ->
o,
o,
o,
o.
o.
3.12E-06
0,
o,
o,
o,
o,
o,
o,
o.
o,
o.
o,
o,
o.
o.
«•
o,
o.
o,
o.
o.
o,
o,
o.
o,
o.
o.
o,
o.
o,
o,
o.
o,
o,
o,
o,
o!
o,
o,
4,66E*Ot
r- looo, Y
o,
o.
o,
o.
o,
1.22E-15
o,
o,
o*
o,
o.
o,
o.
o.
o,
o,
o.
o«
o.
o.
o,
o.
o.
o,
o,
o.
o,
o,
o,
o,
o,
o.
• o,
o.
o.
o, -
o,
o,
' o,
o,
o,
*,8ie-oa
o,
o,
o.
5000. Y
Ot
o.
o, -
o,
o. •
e,
o.
o,
o,
o,
o,
o.
o,
o.
o.
o, •.---
o.
o.
o,
o.
o,
Ot
o.
o,
o,
Ot
o, •-
o.
o.
o, - -
o.
o.
Ot
o,
0.
o, -
e,
o.
o!
o.
o.
2.01E+01
10000, V100000,
o.
o,
o.
o.
o.
o.
o.
o,
o,
o,
o.
o,
o.
o.
0,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
o.
o.
o,
o.
o.
o.
o,
o,
o.
o.
o.
o.
o.
o.
o.
2.66E.06
o.
o.
o,
l.'BEtOl
Ot
o,
Ot
o.
o.
o.
o.
o.
o.
o.
Ot
0.
o,
o.
o.
o,
o.
o.
o.
o.
0,
o.
o.
o.
o.
o.
o, --
Ot
o.
o,
o»
Ot
0,
o.
o,
o!
o.
o.
o.
o.
Ot
o,
o.
o,
t,»e*o
?•••«*** V
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
1
-
t 3,188*00,
A-IV-
.88
-------
PMR . BU • 33*600 HAsTE DECAY
POWER*, 36,'flOMW, BURNUP*
H I
H 2
H a
HE 3
p HE u
HE 6
LI 7"
LI 8
BE a
GE 9
E 10
E 11
BIO"
B 11
B 12
C 12
C 13
C 18
N 13
N 18
N 15
N 16
0 Jfc
0 17
0 18
0 19
F 19
1 — f so
NE 20
NE 21
L-NE 22
NE 23
NA 22
[""A 23
NA 28
L»t H
"G 25
*G 26
HO 27
i AL 27
AL 28
*L 29
31 28
31 29
r si 30
SI 31
P 31
P 32
P 33
"CHARGE C
1.62E+04
0.
0.
0,
0,
0.
0.
0,
o!
o,
o.
o.
o,
o,
».
_o. ._
3i'90E"02
0,
0,
8,
0.
0.
2,60E»05
0.
0.
0,
0.
0.
8,
8.
0,
8,
8.
0.
8,
8,
0.
8.
t>t
0 , """ '
o'.
5|98E*01
3.13E+00
2.1bE*00
0.
1,9SE»00
' o,
0.
II3CHARGE
1,29E»03
2.11E+00
1.50E-06 -
5.73E-26
7,'16E-07
2,33E*'00
0,
9.17E-10
4,81E»12
6.79E-06'
0?
8.82E»12
1,52E«11
0.
3.U1E+00
7.53E*00
3.81E-03
o;
5,07E»07
1.25E-11
-o.
2.bOE+05
1.79E+01
2.87E-12
0,
-o.
7.86E-16
4.11E-10
1,03E-08
8.
8,
8.38E-10
1.07E-95
0.
1,07E»04
2,33E-08
8!
3.13E+01
8.
0,
s'iaE*oo
2,16E*00
0.
I 95E*PO
5.33E-P9
7.*2E«07
33000, H
1,?9E*03
2.11E+00
s|73E-26
7.58E-07
2.33E»00
8.
9.17E-10
!C«
ll52E-.ll
8,
7*53E*00
0^
l!25E-il
8.
2.60E+05
1.79E+01
2.87E-1-2
8.
204
1,06E>08
0.
J.13E+01
0,
o,
5.98E+01
3,18E*00
2,16E»00
o,
1,95E»00
0,
0.
Clad
;RAHS
. CHARGED
" 500, Y
1.29E+03
>,11E+00
s!73E«26
>,22E-06
>,33E+00
»Il7E-10
>,81E«12
>lfl7E-05
3.
i>,20E»09
I.52E-11
3.
S.aiEtOO "
?,53E+00
5.21E-03
3.
i!25E.ll
5,
?,60E*05
J,79E»01
?,87E»12
3,
?,98E«19
3,
7.66E.16
1,11E>10
1.03E-08 -
3,
3,
),34E>10
3.
3,
l,07E-Ofl
?,33E«00
l,06E-Oq
3,
!,13E*01
3.
3,
5,98E»01
?!l*E+00
9,
1.95E+00
3,
3.
TO REACTOF
-JOOO, Y
1.29E+03
2.11E*00
5.17E-31
5.73E-26
2.22E-06
2.33E+00
0,
9.17E-10
8.81E-12
8,
6,
6.79E-06
8.87E.05
8,
1.28E-08
1,52E«11
0, .
3.81E+00
7,53EtOO
3,02E'03
0,
l|25E-l}
0,
2.60E+05
1.79E+01
2.87E-12
6,
2.98E-19
7)e6E»16
fl.HE-IO
1.03E-08
8,
6,
8,34E«10
8.
8,
1.07E-08
2.33E-04
1.06E-08
0,
3.13E+01
8,
8,
5,98E*01
3,iaE»00
2.16E+00
8,
1.95E+00
o, -
0.
1
SOOO. Y
1.29E+03
2.11EtOO
8,
5.73E-26
2.22E-06
2,33E*00
8.
9.17E-10
a.etE-12
8,
8,
6.79E-06
8,87E«05
8,
b,20E-08 "
1,52E>11
0.
3.81E+00
7.53E+00
1,86E»03
0.
1.55E-03
1,25E«11
0.
2,60Ef05
1,79E»01
2.67E-12
0,
2.98E.J9
0.
7,6*.E-16
U83E-08
8,
8,
8,3flE-10
8,
8,
1,07E>04
2.33E-08
l.ObE'08
0,
3.13E+01
8,
5l9«£»01
2.16E400
1,95E*00
8,
0.
TABLE
(cont
10000. Yl
1.29E+03
2.11E+00
0.
5.73E-26
2.22E-06
2.33E+00
8.
9.17E-10
8.81E-12
8,
8,
6,79E>06
o!
1.2UE-07
1.52E-11
8.
3,8jE*00
7.53E+00
1,02E»03
8.
8,80E«03
1.25E-11
8.
2.60E*05
1 .79E+01
2.87E-12
8.
8 1
7,8bE-lb
a, HE. 10
1.03E.08
8,
8.
8.311E.10
8,
8.
1.07E-04
2,33E-oa
1.06E'08
0,
3.13E+01
8.
8.
5,98E»01
3,laE»00
e!
1,95E*00
8,
8.
A-IV-2
inued)
00000. V
1,29E»03
2,llEtOO
0,
5.73E-26
2,22E>06
2,33E*00
8,
9.17E-10
8.81E-12
8.
8,
6,79E»06
8.35E-05
8,
1.22E-06
1.52E-U
8,
7ls3E*pO
l,90E«Oa
8.
U25E-11
8.
2,bOE+05
1.79E+01
2.87E-12
8,
o!
7,8bE-16
4.11E-10
1,03E«08
8.
8,
8.38E.10
8,
8,
1.07E-04
2.33E-04
1.06E-04
8,
3.13E+01
o!
5,»8E»01
3.18E400
2,lbl»00
8,
t,95E»00
8,
0.
•••**** \
1,29E+0]
2,11C*00
0.
5,73E-26
2.22E.06
2.33E+00
0.
9.17E-10
8.81E.1Z
8.
8.
6.79E-06
3.39E-05
0.
1.08E.05
1.92E-11
0.
3.81E+00
7,?3E»00
0,
0.
3..41E-OS
1.25E-11
0.
2,60Et85
1.79E+81
2.87E.12
8,
2.98E.19
8,
7,8bE«U
8.11E-10
t,03E.06
8.
8,
8.38E.10
8,
1,07E»0«
2.33E.64
1.06E-04
0,
3,13E«Oi
8,
8.
5,98E»01
3,1«E«00
2,lbE*00
8,
1,95E*00
8,
0,
t ' :" ' —]
1
-1
i
i
i
i
A-IV- ~^
89
-------
PWR • BU • 33.000 HASTE DECAY TIMES
POWER* SS.'aOMW," BURNUP« 33000, MWD» PLUX* i
p 34
3 32
1 8-33—
3 34
3 SS
S Sfe "
S 37
CL 35
CL 3*
CL 37
CU 36
1 — AR 36 —
AR 37
AS 38
AR 39
AR SO
AR 01
:K S9 ---
K 00
K 81
K 42
K as
K 40
A 41
A 02
<- A 43
CA 44
CA 05
— CA 06 —
CA 07
CA 48
CA 09 '
3C 05
SC 46
-SC 07 —
SC 08
SC 49
SC 50
TI 46
TI 47
— TI a8
TI 09
TI 50
TI 51
V 49
V 50
V 51 —
V 52
V 53
V 54
8HAR6E' !
o.
S.22E+00
el
0,
o,
0,
o.
8.
8,
0.
o,
o.
o,
o,
o.
0.
0.
o.
o.
0°.
o.
o.
o.
o,
o!
0.
o, .
o,
o.
o,
o,
o.
0.
4.286+00
4,096+00
8.12E+01
3.10E+00
3.10E+00
0,
0.
0,
0,
o,
o.
o.
5ISCHARSE
S*22E+00
6°80E«02
S.04E.06
5.67E-14
o.
I.14E-06
7a!ll»08
0.
l|aoE-n
5.286-15
3,616-10
0.
7,126-16
1*286-11
-1,08-122
5,<51E-72
j: •
i?606-13
1,566-05'
1,246-04
3,35E-07
1.55E-05
i;o3E-22
2*136-06
J.12E-05
6.29E-22
1.466-37
0.
0.
4*08E+00
3l"76E + 00
IIZE400
1*146-02
2.806+00
0.
i , - v
°»
~6J74E-03
3 8 Q
-------
PWR
• BU • 33,000 WAgTE DECAY
POWER* 30.49HM, BURNUP
CR 51
CR 52
L- CR 53
CR 50
CR 55
TMN 55
1 MN 56
UN 57
MN 58
FE 50
pF£ 55
FE 56
FE 57
FE 58 ~
FE 59
CO 58M
r~co 5 &
CO 59
CO 60M
CO 60
CO 61
CO 62
; NI 58 -
| NI 59
! NI 60
NI 61 "
N! 62
NI 63
LNI 60
NI 65
CU 62
CU 63
CU 60
CU 65
LCU 66 -
ZN 63
ZN 60
ZN 65
ZN 66
ZN 67
pZN 68 -
ZN 69M
ZN 69
"— ZN 70-
ZN 71M
7N 71
P 6A 69
CA 70
CA 71
6£ 70
«e ?t*
CHARCr DISCHARGE
0. 1455E-03
1.68E+03 1.68E+03
1.90E+02 1 .'906 + 02"
4.916+01 5.60E+01
0, 0.
0, " 2.60E»02
l.OBE+02 1.05E+02
0, 0.
o, ' ' o. -
0. 0,
2.22E+02 2.21E+02
0, 8.52E-01
3.65E+03 3.63E+03
8,66E+OJ. l.OOE+02
1.28E+01 1 03E+01
0. 2.57E-00
0. 0,.
0, 2.256-02
7.096+01 6.17E+01
0. 0.
0, 7,79E+00
0. 0.
0. 0.
2,096+03 2.076+03
0, 2.19E+01
9.86E+02 9,»2E+02
0.22E+01 0.72E+01
1,406+02 1.37E+02
3)62E+01 3I62E+01
o. o.
0, 0,
1.27E+01 1,26E+01
0. 1,10-107
5.92E+00 5t9SE+00
°. " °»
0. 0..
0, 6.7H-02
0, 1.98E-05
0, 0.28E-02
0, 0.
o, o.
0, 0,
0, 0,
o, 0,
o. o,
o. o,
o. o<
0. 0,
0, 0.
o. o* "
A « ««».M
• 33000, M
1, Y
1.63E-05
1,686+0)
5!>OE+Oi
1?71E-02
1.05E+02
-5:
0.
2.21E+02
7.06E-01
3.63E+03
1.03E+01
1.50E-05
0.
3.81E-03
0*
7.29E+00
5:
2.07E+03
2,'l9E + Ol
9 63E+02
0,72E*fll
1*26E+01
0,
^
6*73E-02
1,186-05
0.286-02
-1:
o.
- o.
'»•
0
i 4 CP • A V
TIHES
WO, FLUXB 3
" ' NUCL
BASIS
10, Y
0.
1,686+03
1,906+02
5.61E+01
0,
9.29E-06
1,05E+02
0,
0.
0,
2.21E+02
6.77E-02
3.63E+03
1.0flE+02
1.03E+01
0.
0.
5.02E-17
6.17E+01
0.
2.23E+00
0,
o,
2.07E+03
2.19E+01
aj72E+01
1.37E+02
3.82E+00
3.62E+01
0,
0,
1.29E+01
0,
5,986+00
0.
0.
6.73E-02
1,086-09
0,286-02
0,
o,
o,
o,
o.
o,
o.
0,
o.
e.
- o, ---.-
CASE
0 ™*E * 1 3N^C
IDE CONCE*
• MT OF
50, Y
0.
1.68E+03
1.90E+02
5.6JE+01
0.
2.83E-20
1.05E+02
0.
0,
0.
2.21E+02
1.58E-06
3.63E+03
l.OUE+02
1.03E+01
0.
0.
0.
6.18E+01
0.
1.1UE-02
0.
0.
2.07E+03
2.19E+01
9.90E+02
0.72E+01
1.37E+02
2.83E+00
3.62E+01
0.
U39E + 01-
5*986+00
0.
0,
6.73E-02
1.20E.27
0.28E-02
0.
0.
0.
0.
0.
0.
0.
o.
6.
?•««-.*<
6-1
H»*2-JEC
TRATIONS,
HEAVY META
100, Y-
0.
1,686+03
1.90E+02
5.61E+01
0.
2.03E-38 ~
1.05E+02
0.
o.
0,
2.21E+02
2.57E-12 —
l.OUE+02
1.03E+01
0.
0.
o!
1.57E-05
0,
o,
2,076+03 -
2.19E+01
9.90E+02
l)37E+02
3I62E+01-
0.
0,
1.48E + 01 -
0.
5.98E+00
0,
o,
6,736-02
0,
0.286-02
0.
,
o.
o.
o.
o,
o.
o.
?'te»
;RAMS
. CHARGED
C7
TO REACTOR
soo; Y— 1000,- Y
>. o.
1,686+03 1,686+03
1, 906 + 02
>,61E+01
;|o5E+02
1J21E+02
$!63E+03
i.03E+01
>!iee+ot
?!fl7E»03-
>!90E+02
J.72E+01
1.37E+02
>,53E-02
S.62E+01
l|666+01
)'.
ij73E-02
(|28E-02
!;
?!
5,
1,906+02 "
5,616+01
0.
0.
1.05E+02
0.
o,
0.
2,216+02
0,
l!o••*•• V
*
,606+9)
,906+02
,616+01
,
t
.056+02
.
,
,
.216+02
?636+03
,046+02
,036+01
,'
,
,
1,366+01
>t
,
*
,076+9)
,776-9)
,996+92
,726+01
,376+02
,626+01
.676+01
1406+09
*
).
k. 736-02
),
I.28E-02
),
).
' Q
),
!
i
— i
0. 0,
o. o.
. ~ «i «•
0. 9.
. 0. 9.
a A,
»« A-1V-
—
-------
PHR
BU
WASTE
TIHES
POWER* 38,80MN, BURNUPi
8R 89
8R 90
— 8R 91
Y 90M
Y 90
Y 91H
Y 91
ZR 90
1 — ZP 91 —
ZR 92
ZR 93
— ZR 90 -
ZR 95
ZR 96
— NB 92 —
NB 93M
NB 93
— NB 90
NB 95
NB 96
- NB 97 —
MO 92
MO 93
— MO 93M-
MQ 90
MQ 95
— MO 96
MO 97
MO 98
— MO 99 —
MOtOO
M0101
— TC 99M—
TC 99
TCtOl
:R(JtOl
CDU3M
CDU3
COUSH—
COU5
CD119M
COtl'
CD121
IN1J3
iNt 19M
IN 1 1 9
IN121M
lNt21 -
SNtl5
-8N1.16 —
SNtlTM
CHARGE
o.
0,
0.
0.
0.
0,
0.
6,18E+Oa
1.35E+00
2.09E+00
0.
2.18E+00
0.
3.57E+03
0.
0,
3.23E+02
0.
0,
0.
0,
2,82E*01
0.,
o.
1.77E+01
3.13E+01
3.32E+01
t,91E*Ol'
a,95E+01
0,
1,99E»01
0.
o,
0.
o.
o,
o.
6.18E-03
o,
0,
0,
o, •
o,
6.33E-OS
0,
Ot
o.
Ot
1.16E+01
6.21E+00
Z.59E»02
0.
DISCHARGE
7.65E-05
3,81E»06
0 ,
o.
9,91E"10
0.
3,07E»00
6.J3E+00
-- t,38E+08
2,10E+08
2.16E+01
~ 2.18E+08
1.32E-01
3.56E+03
8.19E-11
1,72E«05
3.23F+02
6.97E-01
1.36E-01
3,27E-63
— 0,
2,82E+01
1 -69E«02
— 0
1,77E+01
-3i73E+01
1.91E+01
0.92E+01
- 3.58E.2S
1,98E+01
0.
— 3.03E-20
3.22E-01
_0. .
0*
- o|' -- -
8.56E-38
o.
o _
2I20E-03
o - - -
o;
«:
0.
1.16Et01
»,?1E+00
- ?.56E*02
1.13E-05
a 33000, HMD, FLUX» 3.98E+13N
" NUCLIDE CONC
BASIS • MT 0
1, Y
6I170E-06
3.76E-06
0,
0,
9^78E-10
3*57E»05
6,13E+08
1 , JSE + oa
2.10E+08
2.16E+01
2.18E+08
1,89E»02
3.56E+03
3.33E-16
2.22E-05
3.23E+02
6.97E-01
2.11E-02
0
o;
2.82E+01
1.69E-02
o;
1.77E+01
3.86E+01
3.73E+01
1 .91E + 0'1
0.92E+01
7.15E-83
1,98E+01
0^
6,12E-aa -
3,22E«01
0,
9 75E»02
0.
7.67E-08
°» "
o.
o,
0 .
2*20E-03
o, - --
o.
o.
0,
1, 16E+01
6.21E+00
2.56E+02
t,33E>09
10, Y
6.23E-25
3.02E-06
0,
0,
7,80E»10
0,
5.27E-22
6.13E+00
l,3«E+oa
2,10E+Oa
2.16E+01
2,18E+Oa
1.12E-17
3.56E+03
0,
9.39E-05
3.23E+02
6.97E-01
1.28E-17
0,
o,
2.82E+01
1.68E-02
0,
1.77E+01
3.86E+01
3.73E+0!
1.91E+01
«,92E+01
0,
1.96E+0!
0,
o, —
3,22E*Ol
0,
9.75E-02
0,
7.67E-08
o,
0,
0,
0,
o.
2,20E*03
0,
0,
0.
0,
1.16E+01
6.21E+00
2.S6E+02
0,
50.
0,
1.12E-06
0,
o.
2.92E.10
0.
o,
6.13E+OB
1.38E+00
2,SOE+Oa
2.16E+01
2.18E+00
0.
3.5&E»OS
0.
2.01E-08
3.23E+02
6.97E-01
0.
0.
0.
2,82E*01
1,68E*02
0,
1.77E+01
3.86E+01
3.73E+01
1.91E+01
0.92E+01
0.
1.98E+01
0,
0.
3.22E*01
0.
9.75E-02
«.
7.67E-08
0.
0,
0..
0,
o.
J.20E.03
0,
0.
0,
0,
1.16E+01
6.21E+00
2.56E+OZ
0,
Clad
TABLE A-IV-2
(continued)
MT OF HEAVY METAI. CHARGED TO REACTOR
50. V
0.
1.12E-06
0,
o.
2.92E.10
0.
o,
fe,13E»oa
1.38E+00
2,SOE+Oa
2.16E+01
2.18E+00
0.
3.5&E»OS
0.
2.01E-08
3.23E+02
6.97E-01
0.
0.
0.
2,82E*01
1,68E*02
0,
1.77E+01
3.86E+01
3.73E+01
1.91E+01
0.92E+01
0.
1.98E+01
0,
0,
3.22E*01
0.
9.75E-02
«.
7.67E-08
0.
0,
o..
o ,
o.
J.20E.03
0,
0.
1.16E+01
6.21E+00
2.56E+OZ
0,
100, Y-
o.
3.27E-07
o. - - • --
0,
8.S1E.11
0,
0.
6,13E»00
2!l8E + 08 -
0.
J.56E+03
0,
2,16E»08
3.23E+02
6.97E-01
0,
0,
0.
2.82E+01
1.67E-02
0. . , ' -
1.77E+01
3|73E+01 ~
1.9JE+01
0.92E+01
0, .
1,98E*01
Ot
o,
3.22E.01
0,
9,75E»02
0,
7,67E«08
0,
0,
o,
0,
o.
2,20E»03
0.
0,
0,
1.16E+01
6.21E+00
o',
- 500i — Y— 1000, Y
i, 0,
.70E-11 7.86E-17
>t
i!aiE«i5
1, ---
>ll3EtOO
.,38E+oa
t.ioE+oa
.>,18E + 00
(!S6E»03
.!|l6E-00
i,23E+02
'..97E-01
•It
;'t
?!82E + 01
.62E-02
i ,
.77E+01
>,73Et01
,91E»01
i.
,98E*01
1,
I, -
<,21Eo01
'J75E-02
'I67E-08
i.
>t
>t
1 ,
>!20E>03
1.
>t
>t
.IfcFtOl
.,21EtOO
>!
0,
o,
1.90E.20
0,
0,
6,13E+00-
1,3«E+00
2lj5E+01
2,18Et08
0.
3,561+05
0,
2,t5E--00
3.23E+02
6.97E-01
0.
0,
o, -
2.B2E+01
1.56E-02
0,
1.77E+01
3.06E+01
3.73E+01
1.91E+01
8.02E+01
0,
1.98E401
o.
o,
3.21E-01
0,
9,75E«02
0.
7,67E«08
0.
0,
0,
2|20E«03
0,
o,
o,
1.16E+01
6.21E+00
o!
sooo, r
o,
0,
0,
o,
o,
o,
6.13E+00
l,3aE+00
2,iOE+00
2.1SE+01
2.18E+06
0,
3.56E+OS
0,
2.10E-08
3.23E+02
6.97E-01
0,
0.
0.
2.82E+01
1.15E-02
0,
1.77E+01
3.86E+01
3.73E+01
1.91E»01
«,92E+01
0,
1.98E+01
0.
0.
3.16E-01
0.
9.75E-02
0.
7,67E»P8
0.
0.
o,
0,
0,
2.20E-03
0.
0.
0.
Ot
1,16E*01
6,2lEtOO
t,56Et02
0.
16000, Y100000, Y«»**«»* Y I
0. 0, 0.
o. o, o, i
o.
o,
o.
6,13EtO«
l,30E+Ofl
2.10E+04
2.15E+OS
2.18E+04
0,
3.S6E+03
0.
2.05E-00
3.23E+02
6.96E-01
0.
0.
0.
2.82E+01
7.8QE-03
o,
1,77E*01
3J73E+01
1.9JE+01
«,92E+01
0,
1.98E+01
o!
3, HE. 01
0,
o!
7.67E.08
0.
o.
0.
2.20E-03
0.
0.
0.
o, - -
1,16E»01
*,21E*00
0.
o.
o.
6,13I+0«
i,30E*oa
?,06E»01
2,t8E+08
0.
o!
1.87E-04
6^9aE»01
0.
0.
0.
2.82E+01
7.62E-06
0,
1,77E»01
3.86E+01
3.73E+01
1.91E+01
«,92E+01
o,
1.96E+01
o,
0,
2.31E-01
0,
o!
7.67E.06
o.
0.
0.
0.
0.
2.20E-03
0.
0,
0.
o. --
.1,16E*01
6,11E»00
«!
Ot
o.
9, i
o.
1 ,sa£»0«
2.10E+OC
1.36E+01
0,
I.56E+OJ
0,
1.23E-04
3,311+02
6.73E-01 '
Ot
0, 1
Ot
2.82E+01
0.
0,
U77E + OJ
3,fl6E+01 1
3.73E+01
1.91E+01
«,92E»01
0,
1.981*01 •
Ot
l,19E.Ol
0.
9.75E-OJ
0.
7,671-06
0.
o.
o,
o. ,
2.20E.03 '
o»
o,
o.
o»
1.16E»01
6,J1E*00
•• A-IV-
92
-------
POWER*
SNUB
8N119H~
3Ntl9
8N120
r~3Nt21M~
|_3N122
3N123
8N124
f 8N125M
3Nt25
I 38121
38123
38124
1 S8t26
TEt25M
7E125
i TE». 2*
TA180
TA181
1 TAI82H
TA182
Mtao
W18I
N183H
Mte3
M184
Wt85M
W1B5
M87
TOTAL
" e
i.
4.
0,
t.
o!
o.
8.
0.
0.
1.
o.
o.
o.
o.
o.
o.
0 O 0 O 0 C
u.
o.
0.
o.
0.
o.
o,
o,
o,
11.
o,
o.
o.
o.
o.
4.
91 t VCkUT
38,'aOMW, BURNUPa 33000. Md
HARGE DISCHARGE
38E+02 1.39E+02
ajE+02 4 aaE+02
2,13£-03
59E*02 1»57E+02
11E+02 6%12E+02
4 57E-03
1,<>7E"52
91E*01 8$90E+Ol
l*31E«05
12E+02 1,12E»02
3*iaE-!l
6,10E«01
. 2,90E-02
1 J97E-05
0.
8.67E-11
'T~ ' 8.96E-04
5,29E-Oa
1.01E-02
1 .1 7E«Oa
o.
o.
o,
o.
0.
0.
0
Q
S:
5:
0-9E+05 3.94E+05
1.. f
1.39E+82
4.4aEt02
1.28E-03
1T57E+02
6.12E+02
B^OE + Ol
0.
a,75E-06
1,12E+02
o.
a a5E«17
6,10E-01
' 2,90E-02
2J39E-06
1.J95E.02
0^
4*73E.oa
1.29E-02
jj,n...
Q
0
o.
Q
Q
O.
0
0
1:
,94E»05
int^
ID, FLUX* 3
.- N|JCI
BASIS
10, Y
1.39E+02
1.41E-07
1.57E+02
o!
o!
5.75E-14
1.12E+02
0.
0.
fc.UE-Ol
2,90E«-02
7J65E-23
1.93E-03
0,
0.
9.16E-04
a,70E«05
3.08E-02
1.17E.04
0.
0,
0.
0,
". "
0.
o,
o.
o,
o.
o,
o.
3,94E+05
u«ae
.'98E+13N/C
IDC CONCEh
• MT OF
50. Y
1.39E+02
3j59E»25
1.57E+02
6,12Et02
2.91E.03
0.
8,90E»01
0.
0.
J.12E+02
0.
0,
6.12E.01
2.90E-02
0.
0.
o.
0.
l|ti3E»09
3.28E.02
1.17E«Oa
0.
0.
0.
o.
0, " ' -' -
o.
0.
o.
o,
o,
o.
o,
o.
3.98E*05-
E* t
M«*2«SEC
ITRATIONS*
HEAVY HETA
100. Y
1.39E+02
o!
1.S7E+02
6.12E402
1.85E.03
0.
8.90E+01
0.
0.
1,12E«02
0.
o.
6.13E-01
2.90E-02
0.
0.
1,78E»13 '
0.
0.
3I2BE-02
t,17E«04
0.
o. - -
o,
o.
o.
o,
o.
o.
<".
o,
o,
3,94t+05"
GRAH9
L CHARGED
500. Y
1.39E402
0,
1.S7E+02
6.12Et02
a.eoE-os
o.
8.9QE+01
0,
0.
1.12E+02
o, -
o,-
6.15E-01
2.9QE-02
0.
o.
0,
o,
o,
9,16E«04~
0.
3.28E-02
1.17E-04
0.
0.
0.
o,
o,
o.
o.
o.
o.
o.
o,
o,
o,
3.94E+05~
TO REACT
1000.
1.39C+02
8,a«Et02
o,
1.57E+02
6.12E402
5.02E-07
0,
8,90E»01
0.
0.
1.12E+02
0.
o.
6.15E-01
2.90E-02
o.
0.
o, —
o.
o.
9.16E.08
o,
3,28E>02
J.17E.04
o,
0,
o.
0.
0.
0.
0, '
o,
o.
o,
o,
o,
o,
3,94E»05
t,j_au
3R
Y fOOO, Y
1.39E+02
a, aaE+02
0,
1.57Et02
6.12E+02
7,14E«23
0.
8,90E»01
0.
0.
1.12E+02
0,
6|l5E>01
2,90E«02 ;
0.
0.
0.
0.
0.
s|28E>02
1.17E-04
0,
0,
o, -
o,
o.
o.
0.
o.
o, — -
o.
o.
3,94E»05
10000. Y
.39E+02
,aaE*02
J12E+02
.11E-42
0.
8.90E+01
o.
l|l2E+02
0.
6ll5E«01
2.90E-02
0.
o.
0.
0.
0.
9, 16E« 04
3I2SE-02
1.17E-04
0.
0.
o, - -—
o.
0.
0. '
o.
o.
o,
o.
o.
o.
o.
TABLE A-
(contin
iboooo, Y<
1.39E+02
4,aaE+02
0.
1.57C»OZ
6.12E+02
0.
0.
8,90t*01
o.
0.
1.12E+02
0.
o.
6.15E-01
2,90E«02
0.
0.
o.
0.
0,
9.16E-04
0,
3.28E-02
1,17E«04
0.
0.
0,
0.
o,
o, --
o.
o.
o,
e.
o.
o.
o.
-TV-2 1
ued)
t****** y -
1.39E+02
0.
6ll2E+02
o. '
0.
8,90E»01
0,
1,12E*02
0.
o.
6.15E-01
2.90E-02
0.
o,1
0,
0.
0.
9.16E.04
0.
3.28E-02
1.17E-04
o.
0.
o,
0.
o,
o.
o,
o.
o»
o.
o.
o.
o.
o.
3,94E*05
A-IV-
93
-------
PMR • BU » 33.000 WASTE DECAY TIMES
CASE E«l
HE's
POKER* 38,'aOMH, BURNUPs 33000,MHO, FLUXs 3>8E+1 3N/CM**2-SEC
TABLE A-IV-2
(continued)
HE a
TL307
CHARGE'
NUCLIOE CONCENTRATIONS; ~GP.AMS • -~
BAStS » MT OF HEAVY H£T»L CHARGED TO REACTOR
TL309
PB206
CPB307"
PB208
PB309
P8210 '
PB311
PB?12
r~P8?ia
81^09
81310
BI311-
RI312
BI31!
T 81?-1« "
j PQ310
P0311
P0312"
P0318
-AT217-
RN319
RN220-
•RN322"
FR',21
RA32«
RA=?25
AC325
^•*C327-
AC328
TH327
|—TH228 -
TH?29
TH230
"— TH331-
TH332
TH333
1—TH334 -
PA331
PA332
'-PA333 ~
PA334M
0,
0.
-o,—
0.
0.
-o,—
o.
o,
~o,—
o.
o.
o.
o,
o,
"0,
o.
o,
~ o.—
o,
o,
-o,
o,
o,
". 0 .
o.
0.
~0. '
o,
o,
^o,—
o,
o,
-o,--
o,
o.
o,"~
o,
o.
DISCHARGE
2,aeE-oi
5,a2E-15
0.
0.
o,-
o,
o,
"Ot~
6,
0,
0,
0.
0.
"0.
o.
l.P«E-18
1.01E.13
" 3.aiE-JO
6,B5E"07
7.55E-15
~7.17E.12
4.17E-14
1.61E-09
"5.01E.16
6.58E-11
4."60E-15
' 2.49E-15
1.53E-10
3.S3E-15
3.01-E-20
8.09E-21
2.66E-24
6.?3E»23
3.53E-20
6,a«E-15
5.81E-17
' 2.11E-20
8.00E-17
2,a5E«12
1.67E-13
1.93E-16
4.06E-16
2.01E-11
l.aOE-OB
8.78E-13
l.feBE-08
1.1 lE-14
5.91E-13
' 1.53E-08
1. 16E-1B
3.32E.11
2.77E-06
!.h2E-07
l.jaE.03
3.2SE-08
2,27E-0«
0.
1.36E-05
5.10E-08
2.21E«'i8
'1^60E«05
4.57E-10
. 1, Y
2.92E-01
7,8aE"iS
2,3fcE-12
1.87E.18
1.97E-13
5.91E-10
1.11E-06
7.61E-15
S.09E-U
6.0UE»t«
1.37E-09
6,52E»16
7.28E.11
7.10E-15
3.60E-15
1.31E-10
1.85E-15
4.79F-16
1.30E-13
a;35E'?o
6.90E«21
2.69E-28
8.11E.23
5.11E-JO
5,a9P-i5
7,5fcE-l7
2,iaE-?0
1.16E-16
2.09E.12
J.39E-13
l,96E-i6
S.a3E«j6
2.90E.11
1.19E-.08
8.B5E-13
2.16E-08
1.59E-ia
5.99E-13
2.0UE-08
1.66E-18
a.65E'll
2.32E.06
1.62E-07
l.iaE»03
1.63E.JO
2.28E-04
0.
1.38E-07
5.10E-04
",
1.60E-05
4.67E-12
10, Y
«,57E«01
3,79E"ia
1,9bE»13
2.20E-18
2.63E-11
1.67E-08
3.35E-06
9.02E-15
2.21E-10
2.92E-13
l.lflE-10
3.32E-15
2.07E-10
1.4UE-13
1.7«E-U
1.09E-11
3.16E-15
J I ^ I C «• I C.
2,IOE»19
5.73E-22
3.18E-24
a,12E«22
2,a7E-19
a,56E-16
3.85E-I6
2.52E-20
5.60E.16
1.73E.13
7.06E-13
2.31E-16
2.63E-15
!,aoE-10
9.92E-10
l,OaE-12
1.10E-07
7.ISE-lfl
7.06E-13
9.89E-08
7,a7E-lfl
2,25E»10
1.93E-07
1.92E-07
1,17E«03
1.63E-10
2,33E-Oa
0.
6.78E-08
5,10E*04
0.
1.61E-05
2.29E-.12
50. Y
7.70E-01
1.03E.13
8.77£»ia
1.07E-17
2.00E-09
2.52E»07
a.81E»06
«.39E»ia
3.29E-09
7.9UE.13
5.09E.11
1.61E.18
S.87E-09
2.15E-12
a.73E-l«
8.85E-12
1.06E.18
i.ief.ia
5.92E-11
5.72E-19
2.56E.22
1.55E-23
2.00E-21
6.72E-19
2 A /I C _ \ i.
f \J ** C * 1 O
1.86E-15
1.23E-19
1.52E.15
7.76E-ja
3.82E.12
1.13E.-15
7.16E.15
3.81E.10
8.8UE»10
5.09E-12
5.33E.07
1.16E.13
3.88E-12
2.69E-07
1.22E-17
6,1 1E-10
8.65E-08
9.33E-07
J.36E.03
1.63E-10
2.56E.08
0.
6.7SE.08
5. HE- 04
0.
1.62E-05
2.29E-12
100, Y
9.31E-01
1.23E-I3
5,a2E.ja
3.76E.17
1.23E>OB
*>.9«E-07
5.95E-06
1.5«F-13
9.75E-09 '
9.50E-13
3.15E.11
3,saE-ia
1.08E.08
6.37E-12
5.6fcE-18
3.00E-12
3.72E.18
2.60E-18
1.75E.IO
6,8aE-19
1.58E-22
5.82E-23
a.aoE-21
8,OaE«19
« 3 1 r * i.
1 jCPC-WlO
8,10E»15
8.30E-J9
1.82E-15
a,79E-ia
7,5aE-12
3.95E-15
8.56E-15
a,56E-10
2,7flE.10
1.78E-11
1.17E-06
1 .31E-13
1.20E.11
3.21E.07
1.36E-17
7.31E-10
5.35E.08
3.27E-06
1.75E-03
1.63E.10
2.86E.04
0.
6.78E-08
5.13E-08
0.
1.68E-05 "
2.29E.12
500, Y 1000, Y'5000,"^r 10000, YlOOOOO, **••*•** T
1.53E+00 1.92E+00 2,8aEtOO S.aeE+00 «,72E+aO 2.1SE+61
1,31E'13 1.35E-13 l,6aE»13 2,OaE-13 1,38E-12 1,90E«12
1.15E.15 9,abE-18 5.66E.19 1.31E-18 2.02E-17 2,06E«lfc
9.10E-16 3.66E.J5 8,53E«14 2.98E-13 6,96E»12 l,56E»ll
9.70E-07 7.05E-06 fc,35E-0« 3.57E-03 3.95E-OJ 4.73E+00
«,6aE-Ob 9,TIE.06 5.52E.05 1.25E-08 5.77E-03 1.35E-01
7.75E-06 7.78E.06 7.78E-06 7.79E-06 B.lOE-Ofc a.l5£.OS
3.72E-12 1.50E-11 3.89E-10 1.22E-09 2,85E-08 6.37E.08
1.75E-07 6,aaE-07 S.02E-05 2.62E-05 2.06E-04 5.S2E-05
1.01E-12 1.08E-12 1.26E-12 1.57E«12 1.07E.11 l.abE.ll
6.69E-13 5.50E-15 3,29E«16 7.60E-16 1.17E-18 1.20E.13
e,38E-13 1.59E-12 2.53E-11 6.47E-11 5.09E-10 1.37E.10
1,18E»06 9.17E-06 1.10E-03 8.02E.03 2.53E+00 1,03E*02
1.15E-10 8,21E«10 6.68E-09 1.71E-08 1.38E.07 3.61E-08
6.02E-18 "6,18E-t8 7.51E-18 9,38E«ia 6.36E-13 8,72E-13
6.38E-ia 5.28E-16 3.18E-17 7.28E-17 1.12E-15 l,iaE»14
9.0JE-13 3.62E-12 8.8aE"ll 2.95E-10 6.88E.09 l-.5flE.08
3.19E-13 1.17E-12 1.H6E.11 8.76E-11 3,7aE«10 1.00E.10
3,lfcE-09 1.16E-08 l,8aE»07 4.71E-07 3.70E-06 9.98E.07
7.28E-19 7,a8E.19 9.08E-19 1.13E-18 7.69E-t8 1.05E-17
3.37E-28 2.77E.26 S.66E-27 3.82E-27 5.90E-2* 6.03E-25
1.31E-21 5.27E-21 1.23E-19 8.30E-19 l.OOE-17 2.28E-17
5.80E-20 1.98E-19 3.18E-18 8.0SE.18 6.33E.17 1.70E-17
8.56E-19 8.79E-19 1.07E-18 1.33E-18 9,0«E«18 1.24E-17
2.66E-18 2.20E-20 1.32E-21 3.0UE-21 4.70E«20 8.80E-19
S.03E-14 1.85E-13 2,93E»12 7.50E-12 S.90E.11 1,58E«H
1.08E-17 8.19E.17 9.76E-16 3.81E.15 7.96E-18 1.T8E.13
l,9aE-l5 1.99E-15 2.42E.15 S.02E-15 2.05E.14 2,»lE.la
1.02E.15 8.37E-18 5.01E-19 1.16E-18 t,79E«17 1,82C«U
9,2aE-tl 3.39E-10 5.38E-09 1.38E.08 1,06E«07 2.91E-08
9.55E-18 3,saE-J3 8..95E..12 3.13E.11 7.29E-10 1.63E-09
9.12E-15 9,36€.15 l.laE-18 1.82E-18 9.62E-18 1.32E.13
8.86E.10 fl.99E.10 6.06E.10 7.57E-10 5.13E-09 7.08E.09
5.83E.12 8.79E.14 2.87E-15 6.62E-15 1,02E«13 1.04E.J2
8.31E-10 1.73E-09 4,'oaE.08 1.81E-07 S.30E.06 7.36E.06
l.aaE«05 S.2BE.05 8.38E.04 2.15E-03 1.69E-02 4.53E-03
2.88E-13 8.00E-13 1.96E-12 8.53E-12 6.99E-11 7.1SE.10
2.92E.10 1.17E-09 2.73E-08 9.55E-08 2.23E.06 4.98E.06
3.a2E-07 3.51E-07 8.27E-07 5.33E-07 3.61E.06 4.96E.06
2.58E-17 a,18E-17 2.05E.16 4.73E-16 7.29E-15 7,85E.la
7.79E-10 7.99E-10 9.71E-10 1.21E.09 8.22E-09 1.13E.08
1.18E-09 9.38E-12 5.59E-13 1.29E-12 1.99E-11 2.04E-10
7.91E-05 3,18E-Oa 7,aiE-03 2.59E-02 6.05E-01 1.35E+00
6.98E.03 1.83E-02 7.19E-02 l.aoE.Ol 8,57E»01 2.30E.01
1.6flE«10 1.66E-10 1.86E-10 2.20E-10 6.87E.10 6.82E.10
5.30E-08 8.57E.04 a,20E-03 9.70E-03 1,50E-01 l,53EfOO
°t 0, 0, 0. 0, 0,
6.78E-08 6.78E-08 6,78E-08 6.78E-OS 6,78E«08 fc.76E.08
5.28E-04 5.38E-04 6,58E-Oa 8..16E-04 5.53E.03 7.59E-OJ
<>• 0. 0. 0. 0. 0,
1.73E-05 ~1.79E-OS 1.88E-05 l.SaE-OS 1.78E.05 1.33E.05
2.29E.12 2.29E-12 2.29E-12 2.29E-12 2.29E-12 2.29E-12
A-IV-
94
-------
PWR - 6U e 33,000 . WASTE DECAY TIMES
CASE E-l
POWER* 38,'aOMH, BURNUPe 33000.MHO, FtUXo 3."98E + 13N/CM**2«SEC
HE's-
TABLE A-IV-2
(continued)
DISCHARGE
1.58E-10
1.B6E-06
--2^88E-05
8.65E-01
Pu>3«>
- PU?38
— Pu?ai
AHPUI
r
AM?aa
AM385
CM:>a2
CM308
CM250
BK?89
CF350
CF251
CF252
CF?53
CF>54
ES?53
TOTAL
0.
o.
e,
o.
o.
o.
o.
o,
o.
o,
o.
°t
o.
o,
o.
Oi
o.
0.
o.
o.
o.
•o,
o,
o,
o.
Ot
o,
-o.
o.
o.
0,
o.
o.
-o,
o.
o.
o.
o.
2.051+Ot
l.B«E»07
4.71E+03
0.
3.a3E»2a
5.33E-66
0.65E + 02
2.29E-P6
7.309
3.02E-10
0.
0,
0.
5,07Et03
50. Y
7.91E-13
3.23E-06
7.39E.03
2.31E+00
1,75E»08
8.7JE+03
0.
8.72E.20
0,
0.70E+02
0.
7.35E-05
8.08E.21
0.
1.93E-11
2,7aE+01
3,10E*01
5.86E-01
2,2aE+00
1.35E«la
2,a8E»09
0.
6.a7E+01
3,77E-oa
a,52E»09
8.89E+01
1.92E-23
0.
9.07E-07
3.02E-02
3,61E»00
2.«9E»OJ
J.95E-02
3,97E»Oa
2.61E.-03
0,
2.25E-14
0.
a.75E-21
1.66E-11
1 .69E.17
6.67E-09
8.49E-15
0.
0.
0.
5,47E»03
100, -Y
7.91E-1S
2.00E-06
1.49E-02
3.30E+00
a,03E*01
2.06E+01
!,6a£.n9
8,71Et03
0.
9.89E-20
0.
a,75Et02
0.
7.32E-05
8.19E.21
0.
1,01E>16
2,13E09
1.74E-20
0,
0,
0.
5,47E»03
' 500, - Y
7.91E-13
a,2flE-08
7.73E«02
5.29E*00
«,06E+01
2.21E+01
l,25f»ll
U.71E+03
0,
«,76E«19
0.
5.03E+02
0,
7.06E-05
a, HE- 20
0.
0,
9,a3E-02
3,06E*01
3,30E*01
«,17E«Oa
1.35E-ia
2.50E-08
0.
3.18E+01
a,8BE«05
5.81E-10
8.53E+01
1.98E-22
0,
1.17E-07
1,76E»06
1.18E-07
2,«OE-01
2.76E-02
3,97E»Oa
2,81E«05
0.
i.88E»10
0.
3.97E-21
0.
o.
o.
o,
o.
5,a7E»03
"1000, Y
7.91E-13
3,««E-10
~1,59E-01
5,38E*00
4.11E+01
2,37E+01
1.20E.11
4.71E+03
0,
9.53E-19
0.
- 5,20E*02
0,
6.75E-05
8.22E-20
0,
0,
1.92E.03
3,38E*01
3,1«E»01
4,OOE>04
2.2UE+00
1.35E-14
8.99E'08
0.
1.43Et01
4.95E-06
5.98E.11
8.15E»01
3.87E-22
0.
1.19E»08
3.49E-11
7.13E-16
2.30E-01
2.56E-02
3.97E-04
2.81E.05
0,
1.38E>14
0.
3.25E«21
0,
1.16E-17
3.21E-09
0,
0.
-0,
e.
5,47E*05
5000, -~V
7,91E-13
6.45E-27
8.27E-01
5,32E+00
a,60Et01
3.81E+01
6.55E-12
4.71E+03
0.
0.75E-18
0.
5.33E+02
0.
8.69E-05
4,10E«19
0,
0,
6.75E-18
5.32E+01
2.08E+01
2,86E«08
2,23E*00
1.35E-18
2,89E»07
Ot
3.25E-02
5.90E-14
7.09E-19
3.67E+01
1.93E-21
0.
1,a2E.i6
0.
7,07E«16
l,6aE«Ot
1.12E-02
3.97E.08
2.79E-05
0,
J.13E-15
0.
6.60E-22
0,
2.35E«18
1.47E-10
0.
0.
0,
0.
5,47E»03
10000,- Y100000," Y
7.91E-13 7.91E-13
7.99E-48 0,
1.65E+00 t,36Ef01
5,25EtOO 8,ta£+00
S.aaEtOl 1.60E+02
4,23E»01 5,45E*01
5,62E*12 2,96E»15
4,7lEtOS 8,71E»03
0. 0.
9,aaE»ie e,62E»i7
0. 0.
5,33E+oa 3.17E+02
0, 0,
2.98E-05 8.57E-09
8.15E«19 7.44E-18
0. Oe
0, 0,
8.42E-24 0,
6,50E*01 9,03E»00
1.25E+01 1.22E-03
J.B8E.04 9,91E«08
2.22E+00 1,89E«00
1.35E-14 1,35E«14
4.95E-07 a.52E-06
0. 0,
5.S9E-03 3.10E-06
7.37E-24 0,
8.B5E-29 0,
3,61E*01 1.0aE-02
3.84E-21 3.51E-20
0, 0,
1,78E«26 0,
0. 0,
1.4JE.15 1.28E-14
1.08E.01 5.69E.03
6.82E>03 J,21E»08
3.97E.08 3.95E.08
2.76E-05 2,31E»05
0. 0,
8.26E-16 1.14E-31
0. 0.
9,01E«23 2,aiE«38
0. 0,
3.2IE-19 8.60E-35
3.13E.12 0,
0. 0.
0, 0.
o, - o.
0, 0,
3,47E*03 3,49E*03
******* -Y — '
7.92E-13
0.
3.05E*01 '
5.68E.01
1.69E+OZ
5.31E+01 —
o,
4.72E+03
0.
3.95E.16
0.
3.B6E + 02 '
0,
1.45E-13 '
3,81E»17
0.
o.
o. i
5,aeE.07
1.66E-08
Ot
3.64E-OI
1.30E.14
0.
0.
0,
0,
1.73E.OT
1.61E-19
o.
0,
3,88E*1I
0.
Ot
3.81E.04
3.93E.O*
0 1 "~~ "
0.
o,
o,
o,
o,
o*
o.
o.
Ot '
o.
S,49EtO)
A-^IV-
95
-------
POWER* SS.'COHH, BURNUPI
CHARGE
H J 0,
ZN 72 0,
— 8A 72 o, -
GE 72 0.
GA 73 0,
r-GE 73 - 0,— -
GA 74 0.
j BE 70 0,
GA 7! 0,
GE 75M 8,
GE 75 0,
LAS 75 0,
GA 7b C,
GE 76 0.
AS 76 0,
SE 76 0,
6£ 77M 0.
»t 77 o,
AS 77 0.
SE 77M 0.
3E 77 Ot
6E 76 0,
AS 78H 0.
AS 78 0,
SE 78 0.
AS 79 0,
•• SE 79n o,
SE 79 0,
BR 79 0,
CAS 80 0,
SE 80 0.
BR 80M 0.
SR 80 0,
KR 80 0.
*8 81 0.
:SE SIM o,
SE ei o,
RR 81 0,
KR 81H 0,
KR 61 0.
SE 82 0,
• • BR 82H 0,
BR 82 0.
KR 82 0,
S£ 83M 0,
SE 83 0.
BR 83 0,
— KR 83M 0,
KR 83 0,
SE ea o.
BR 84M 0.
8R 80 0,
DISCHARGE
5.87E-03
1.10E-33
4.80E-34
6.09E-03
o.
1.53E-02
0.
S,68E«02
°,
!:
8,a«E»02
°,
2,95E-01
1 ,16E»53 "
1,95E«03
o,
3, 72»121
2.30E-37
8.80E«aa
9^86E«01 "
0.
s
0.
2.56E*00
o.
5jfc7E*00
5,6«E-07
0,
9,89E+00
0.
o, - -
!:
0,
1 .'536-02
0,
3*25E+01
°<
1<09E«43
2'
0.
o,
•!:• —
j;
" 5: '
i 33000. H
J, Y
5.71E»03
!:
6,k09E.03
0.
1.53E-02
5.'68E-02
o,
I:
e.aaE.o2
0.
2,95E»01
l!95E-03
o.
<»Ja6E-or
°t
o.
°. "
2.56E + 0.0
o.
o,
5.67E+00
3.08E«05
0.
9,89E+00
0.
si
0,
l.'53E-62
0.
0,
3^25E+01
°«
o,
1<09E«43
IS
o.
o.
?<
o.-
O.!t
*0, FLUX» S.'96E+13N/
NUCUIOE CONCE
BASIS 9 MT OF
10. Y SO. Y
3.44E.03 3.61E.04
0. 0.
0, 0,
6,09E«03 6.09E.03
0. 0,
1.53E-02 1.53E.02
0. 0.
5,68E»02 S.68Eo02
0. 0.
0. 0.
0. 0.
8,aaE-02 e.aaE.02
0. 0.
2.95E-OJ 2.95E-01
0. 0.
1.95E-OS 1.95E-03
0, 0,
0, 0,
0, 0.
0, 0.
9.H6E-01 9.«6E«Ot
0. 0.
0, 0.
2.56E+00
"i
o, --
5.67E+00
5,75E-Oa
Ot
9.89E+00
0,
0,
o.
o, .
o.
o,
1.53E-02
0.
0,
3.25E+01
0, -
o,
1,09E»43
0,
o.
0,
0.
0.
0.
0,
0,
0.
2.56E*00
0.
0.
5.67E+00
J.OOE-03
0.
9.89E+00
0.
o. --
o.
0,
o, - ••—
o,
1.53E-02
0.
0.
3.25Et01
0.
0.
1.09E««3
0.
0.
0.
0,
0.
0.
o.
0.
(H**2*SEC
MIRATIONS, -
HEAVY ME"*
100. "
2.15E.05
0.
0.
6.09Eo03
0.
1.53E.02
0.
5.68E-02
0,
0.
0,
8,flaE«02 "
0,
2.95E-01
o, -
1,95E«03
0.
o, — - -
0.
0.
9,46E«01 '"
0,
0.
o. •- -
2.56E400
0,
o, •- -
5.67E+00
6.02E-03
0, - - - -
9.89E+00
0.
0,
o.
o.
o. -
o.
1.53E-02
0.
o.
3,25Et01
0.
0,
1.09E-43
0.
0.
«t
o,
0.
0.
0,
o.
CRAMS'" •
I CHARGED
500, Y
3.09E-15
0.
0.
6.09E>03
0.
1.53E-02
0.
5.68E-02
o,
0.
0.
8,«flE»02-
0,
2.95E-01
"t ;
1.95E-03
0.
o, ----- -
0.
0.
9,46E"Or
0.
0.
o. •-
2.56E+00
0.
0.
5.64E+00
3.02E-02
0,
9,89EtOO
0.
o,
o.
o,
0,
o.
1.53E-02
0,
0.
3.25E»01
0,
0.
t,09E-«3
o,
0,
0.
0,
0.
0.
0.
0.
TO REACTO
1000. Y
2.02E-27
0.
o.
6.09E-03
0.
1.53E-02
0.
5,68E>02
0.
o.
o.
e.aaE-02
0.
2.9SE-01
"0,
1.95E-OJ
0.
"0,
o.
o.
9,46E«Ot
8,
0.
o,
2.56E+00
0.
o.
5.61E+00
6.02E-02
" 8t
9.89E+00
0.
0.
o.
0,
0,
o,
1.53E-02
0.
0.
5.25E+01
0,
0.
1,09E*«3
0.
0.
e.
o.
o.
o.
o. -
o,
»
5000, Y
0.
0.
0,
6.09E-03
o, •
1.53E-02
0.
5.68E-02
0.
0.
0,
«,«aE-oz
o,
2.95E-01
0,
l,95E«03
0,
o,
o.
o,
9,46E>01
o,
0.
0,
2,56EtOO
0,
0.
S,J8E»00
2.95E-01
e,
9,89EtOO
«,
o,
0.
o,
o.
«•
1.53E-02
«,
0,
3,25E»01
0,
0.
1.09E.43
0,
o,
o,
o,
o,
o,
o, -
0.
10000, V
«.
o.
o.
6.C9E.03
«.
1.53C-02
0,
5.68E-02
0.
0.
0.
e.aaE-02
0.
2.95E.01
o,
1.95E-03
e.
o.
o.
o,
9,46E-Ot
o,
0.
o,
2.56E+00
0.
0.
5.10E+00
5.70E«01
o.
9.896*00
0.
o,
o.
0-
o.
l|53E-02
o,
o.
1.25E+01
e,
o,
1.09E.43
0.
0.
o,
o.
o.
o.
o.
o.
TABLE A-TV-2
(continued)
100000, y******* v
0. 0.
0. 0.
0. 0,
6.09E»03 6.09E-OJ
0. 0.
1.53E-02 1, 536-02
0, 0,
5.66E-02 5,686*02
0, 0,
0, 0,
0, 0.
8,«aE«02 6,446*02
0, 0,
2.95E.01 2.95E.OJ
0, 0,
1, 956*03 J, 95S.6S
e. o,
0, 0,
0. 0,
0, 0,
9,466*01 9,066*0}
0, 0,
0, 0,
0, 0,
2,566*00 2,566*00
0. 0,
0, 0,
1.95E*00 1,336.04
3,72E*00 5,676*00
0, 0,
9,B96*00 9,896*00
0. 0.
0, 0,
0, 0,
0, 0.
0, 0,
o. o,
1,536*02 1.536*02
0. 0,
0, 0,
3.256*01 3,256*01
e, o,
0, 0,
1,096*43 1.09E.4J
0. 0,
0, 0.
0, 0,
0. 0.
0. 0.
0, 0.
0, 0,
0. 0.
A-IV-
96
-------
PNR . BU • 53,000
WASTE DECAY TIMES CASE E-l
33000.MHO, FLUX* 3.'98E + 13N/CM**2>8EC
TABLE A-IV-2
(continued)
NUCLIOE CONCENTRATIONS,
BASIS • MT or HEAVV ME'At CHARGED TO REACTOR
KR 04
3E 05
BR 05
KR 05H
KR 05
r RB 05
OR 06
I KR 06
*~RB 06M^
RB 06
3R 06
r BR 07
KR 07
RB 07
L— 3R 07K—
3R 87
BR 80
KR 00
RB 00
8R 88
— BR 09
KR 09
RB 89 .
GR 09
Y 89
R 90
B 90
3R 90
Y 90M
QY 90
R 90
R 91
"B 91
3R 91
Y 91M
Y 91
ZR 91
KR 92
RB 92
8R 92
Y 92
KR 93
RB 93
"— 3R 93
Y 93
ZR 93
CNB 93M
Nfl 93
KR 94
RB 94 —
8R 94
CHARGE
B.
B.
o!
B,
B.
0.
B.
0,
B,
B',
B,
B.
B.
0,
B.
B.
B.
B.
B.
0.
B.
0.
0*
0.
B.
0.
0.
0.
0,
0.
0.
B.
B.
B.
B!
P.-
1
0 O 0 0 O O
! 1
i 1
oooooooo
DISCHARGE
5:
5:
0.
».3ie»oi
B.
oj.
llsOE-Ot
1:3«E*02
B.
0*
._.
3.43Et02
S: " ~
2.83EtOO
4,S5E+02
0.
5^36E*02
1^3"»E-Or
0.
B.
°>
5»TlC^OO
5 96E 1 0 2
Q
- IU«
Q
Q
7*28E»02
' 5.55E-04
2.87E-05
0.
1 , Y
t: '
«r"
o.
1.06E-08
1.30E-01
B."
2*3aE*02
o. -
I:
3,43Et02
Q
Q
Q
4j57E+02
0.
5*30e+02
0,
3ll2E+Ol
1:
B,
6.63E«01
6,OIE+02
6*55E+02
L.
7|o8E-04
4,4BE-05
B,
B.
B.
10, Y
0.
B.
0,
B.
B.
9.31E+01
B,
B.
o,
B.
1.30E-01
0,
2J34E+02
0,
o,
o, -
o,
3,43Et02
o, • •- -
B,
0,
2.30E-20
4.58E*02
0.
0.
4,24Et02
0,
1.10E-01
1.37E+02
0.
B.
B.
B,
9,79E"18
6.01E+02
B,
6,
B,
B,
6.55E+02
6,
0,
0.
B,
7.28E+02
2,87E»03
9,04E«04
B,
o.,
0.
50, Y
0.
0,
o, '"
o,
B/
9.31E+01-
0.'
o.
0.
o.
1.30E-01
0.
0.
2.34E+02
0 ,
6,72E«OS
0.
o. --
o.
3.43E402
o. -
o.
o.
o.
4.58E+02
0.
o. -• —
l,58Et02
0.
4. HE. 02"
4.03E+02
0.
0.
0.
e.
0.
6.01E+02
0.
0,
0.
0,
6.SSE+02
0.
0,
o.
0.
7.28E+02
6.11E.03
J.11E-02
0.
0,
0,
100, '
fl,
o.
o.
o.
0.
9,31E*0|-
o.
o,
o.
o.
1.30E.01
0.
2?34E+02
6,
6.73E«05
0,
0,
0.
3,43Et02
o.
0.
0.
o.
4,58Et02
0.
0,
4.61E+01
0.
1.20E-02
5.15E+02
0,
o, —
0,
0,
0.
6.01E+02
0.
0,
o.
o.
6.S5E+02
0.
o.
o,
o.
7.28E+02
6.56E.03
2.75E-OZ
0.
0,
o.
' 500, Y
0.
0.
'0,'
B,
0.
9,31E>OI—
o.
o.
o,
o.
1.30E-01
BI
0,
2.34E462
0 |
t>,06E*05
0.
-o,
0.
3.43E+02
0,
o.
0.
— o.-
4.58E+02
0,
o, -
2.39E-03
0,
-6.20E-07-
5«6JE+02
0,
-o,
0.
0.
o.
6.01E+02
0,
0,
0.
0,
6.55E+02
0.
0,
o,
0,
7.20E+02
6,60E*03
1.62E-01
0.
- o,
o,
1000, Y
B.
0.
B.
0,
o.
9,31E»01
o.
0,
°.
B.
1.30E-01
o,
o.
2.34E+02
0 m
7.02E-05
0,
o, •-• -
3.
3.43E+02
0,
0,
0,
o.
4,S8E+02
o,
o, --
1.05E-08
0.
2.73E-12
5.61Et02
0.
°»
o.
o.
B.
6.01E+02
o.
0. .
o.
0.
6.55E+02
0.
0,
8,
0,
7,27Et02
6.60E-03
S.30E-01
o.
0.
o,
fOOO, Y
B,
0.
o,
o.
o.
9.31E401
o,
o.
0,
o,
1.30E-01
0 9
B.
o ,
8.J2E-05
0.
o,
0.
3.43E+02
o, -
o.
o.
0..
4.58E*02
0,
0,
0.
o.
o.
5.61E+02
0.
0.
0.
o.
0.
6.01E+02
o.
o.
o.
0.
6.55E+02
0,
o,
o,
Oi
7,26E»02
6.58E-03
1,67E*00
0.
0,
"•
10000, V!
0.
0,
0.
o!
o!
o.
o,
e,
1.30E«01
o.
o,
2,3«E402
0,
9.95E-05
0.
o.
o,
3.«3Et02
0,
e.
0.
0.
«.58E*02
0.
0.
0.
o.
0.
5,6tC*02
o.
o,
o.
0.
6|oiE+02
0.
0.
0.
o.
6.55E+02
0.
0.
o,
0,
7,2«E+02
6.57E-03
3,35E*00
0.
o.
B,
100000, V
B.
B.
0, r
0.
B.
9,311*01
0.
o.
o.
o,
l.SOE-01
B.
B.
2,3«E«0>
0.
3.92E-04
B,
B.
6,
3.43E402
B.
B.
0.
0.
«.58E+02
B,
0,
B.
B.
0.
5.61CO2
B.
B.
B.
B.
B.
B!
B,
B,
B.
6,55E*02
0.
0.
B.
o.
6,95Et02
6.30E.03
3.29E*01
B,
B,
B.
**•***• V
o.
B,
B,
B.
B.
o!
o.
B,
6,
1.30E.81
B,
BI
B(
3.32E-03
B,
B, '
B.
B!
B.
B.
B.
B!
B.
B.
B.
B,
s,6ie«oz
B.
B.
B.
0.
B.
6,01E*02
B,
B.
B.
B.
6.55E+02
B.
B.
B.
B(
«,58E»02
4.16E-03
2.69E+02
B,
B, ,
0, *
97
-------
PWR * §U s SS»096 WASTg SEC*? .TJMES
POWERe 38.*fl8MW, BURNUPs 33000. MWDi> FlUX*
Y 90
ZR 98
RB 95"
SR 95
Y 95
fie 95M~~
1 NB 95
Y f*
ZR 96
N8 96
MQ 96
Y 97
ZR <*7
NB 97M
NB 97
CMQ 97
ZR 98
NB 98M
NB 98
MO 98
NB 99
7C 99H
TC 99
"— RU 99
NBtee
MOtOO
Ruteo
NBt81
^ «otei -
TCtOl
RUtOl
H H0102 '-
TC102M
TC182
H010S
tctes
CRlMOS
RH103M
RM183
TC10«
RH»O«
— "0109 —
CHARGE !
e.
o.
o,
o,
o.
el
6,
8.
o,
0,
0,
0.
o.
oe
8.
0.
o.
8.
8,
0.
0.
8.
0.
0.
o.
0.
8.
8.
8.
0.
8.
8,
0.
8.
o,
8.
8,
8.
0.
o,
0.
8.
8.
8,
8.
8«
8.
8.
o.
0.
3ISCHARGE
8."
8.'
S.18E+01
l.fl5E-02
1.2flE*0!
•7,001*02
8*2«E+02
5.06E-61
S.91E»OI
8,
t ,80E»78
1.69E-81
1.36E-79
8,31E+Oa
0.
8°;
e'
6^80E«21
8.39E+82
0.63E-83
9*75E*82
8.
5,97E*Ol
8.
!:m.«
7/776*02
8.
8.
2,OOEtOO
2.01E«83
3.88E+82
8.
8.
S,60E*02
8.
2*526*02
5:
7*86E*02
-o. •
e.
o.
1,69E+00 -
1*9JE*00
7.65E+02
0,
0.'
e!stE*o2
SI
o.
«}
1.61E-39
6*39E+02
6.81E-03
8.
9.7SE+82
0.
5,97E*81
8.
8.
0,
Q
Q
Q
• m f T t ^02
0 '
8J20E-82
8,28E-05
o!
8.
5,68E*02
8,
0,
e|
NUCl
9»SI.
10, Y
7°86E+02
8,
8.
8,
1.00E-1S
J.23E-16
1,!7E»15
a!
o!
3.91E+01
0.
8,
8,
8.
8.31E+82
0.
8.
0,
8,50E*02
8,
8,
8,
8.39E+02
3,07E-02
8,
9,75E+82
8.
5,97E*01
8,
o!
7,78E»02
8,
8,
8,
7,77E*02
8,
0,
8,'
8,
3,90E*02
8,
8,
5.60E*02
8,
8,
2.92E*02
0*.
£<»§£
E«l
.IDE CONCENTRATIONS.
}s MT OF HEAVY ME'
50. Y 100, '
0. 0,
T.86E+02 7,86E*02
ol
8.
8,
8.
0.
7,68E»8f
e,
8,28E«82
0. ~
3.91E+81
0.
8.
8.
8l3jE*82
0.
8.
0.
e!
8.
8.
8.39E+82
t.aeE-oi
8.
9.75E+82
8.
5.97E*Ol
8.
8.'
7,78E*02
0.
0,
8.
7,77E»02
8.
8.
0.
8.
3,906*02
8.
8.
?,60E»02
8.
8.
2.52E*02
0.
o.
o,
o,
o,
o, - - -
8.
8,
el
8,28E*82
0.
ol
o,
8,
8,
8.31E*02
0.
0.
0.
8.50E*02
8,
8,
8,
8.39E*02
2.78Eo01
8,
9,75E*02
8,
5,97E*Ot
8,
8,
8,
7,78E*02
8,
8,
8,
7,77E»02
8,
8.
8,
8,
3,90E*02
8,
8,
5.60E*02
8,
8,
e!
8.
GRAMS
At CHARGED
'- 506. V
8,
7,86E*02
8,
8.
8.
8,
6.
8,
8.28E+02
il91E*Oi
8.
8.
8.
8.
8,S1E*02
0.
8.
-o, -
8,SOE*02
8,
«,- -
8,
8.38E+02
t,37E*88
8.
9,75E*02
0.
5.97E*0|
0,
8,
8,
7,78E*02
0.
8.
8.
7,776*82
0.
8,
8,
8,
3.90E*02
8,
8.
5.60E*02
0.
0,
2,52E*02
0,
9.
FP's
TO REACTOR
jooo. r seoo, Y
8. 0.
7,86E*02 7,861*81
8, - 8,
8, Oe
e, o9
e , -
e«
el
S.28E*02
8,
3,9iE*Oi
8.
8.
el
o'.
o,
e.
8,SOE*02
8,
8, -
0.
8,36E*02
2.7«E*00
8,
9,75E*02
0,
5.97E*01
0,
0.
8.
7,786*02
8.
e!
7,776*02
e,
8,
8,
8,
o!
8,
5,60E*02
0.
0.
2.526*02
0.
8.
9,
o»
o!
o.
ol
8°.
8,
8,
8,506*02
0,
0,
0.
1,366*01
8,
9,756*02
8.
o!
0.
8,
7,786*02
8,
8.
8.
T, 776*02
0.
8,
8,
8,
3,906*02
8,
8.
5,606*02
0.
8,
2.926*02
8.
0.
TABLE A-IV-2
(continued)
18000. V
o.
<*I
8.
8*.
0.
8,
0.
ol
8,
8,
8,906*02
o!
8.
8.126*02
2.706*01
8.
9,796*02
9l976*0t
0,
8,
8,
7,706*02
8.
8,
0.
0*.
8.
8.
8,
3,906*02
8.
0,
9.606*02
0.
8.
o!
o.
100000, ¥«••**** V
Tt8&e*0£ 7,866*0£
ot «!
0, 0.
0, 9,
6, 0,
9, 0,
o! 8^
o* o!
ol o|
0, 0.
0, 9.
0, 9,
o'. o't
0, 0,
0, 0.
o! o!
0, 0,
0, 0.
6,056*02 3,196*01
2.306*02 6,076*02
0. 0,
9,796*02 9,756*02
0. 0.
9,976*01 5,976*01
0, 0,
0, 0.
0, 0,
7,786*02 7,786*02
0, 0.
0, 0.
0, 0,
T. 776*08 7.776*08
0, 0.
0. 0.
0. 0,
0, 0,
3,906*02 3,906*08
8. 0,
0. 0,
9,606*08 5,606*08
0. 0.
0. 0,
2.926*08 2,986*08
0. 0.
0. 0. A-IV
98
-------
PHR • BU • 33*000 HASTE DECAY TIHEB
POWER* 38. '40
RIM05
RH105M
L- *Ht05
PDIOS
TC106
|— RU106
RHt06H
"H106
PD106'
RUt07
EP01.07M
P0107
AG107
RU100
RHtOS
PDtOS
r~ *otoe
CD108
|_ RH109
P0t09
AG1Q9M
|—AGt09
C0109
[_HHUO
*GUOM
*GUO
|— couo •
PDIII
*— »GU1M
AGU1
CDU1M
r— CDiir
AG112
*— COU2
PDU3
AGU3M
|— AG113
C0113M
CDU3
"— IN113
POUO
AGtlO
r~CD1IO -
IN110N
[_INttO
PDUS
CHARGE
o.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
o.
o.
1 i
; i '
oooooooooooo
o.
o.
o.
0.
o)
0.
o,
0.
o.
o)
o,
o.
0.
0.
e.
o,
o.
o,
o,--
o,
o,
- o,
o,
CASE E-l
MM, BURNUPa 33000. HMD, FLUX* 3>B6 + 13N/C
DISCHARGE
l)836*37
2,786+02
o.
" 1. '366+02
o,
1,286-04
3,626+02
0.
?, 026+02
3,OOE-05
0.
0,
1.60E+02
4*61E-07
2*3lE-99
1,346-15
6.15E+01
1.316-09
3.52E+01
5,806-01
8,08E-08
" 4,09E+01
0, "
o)
1,82E»01
2.076-65
4.40E-66
0.
o.
5^08E-02
2.07E-01
0*
0.
' 1.266+01
5.936-06
9.50E-U
oj
Si"'
2*786+02
9*62E+Ol
0.
9,10E*05
0,016+02
ii-
2,02E+02
o,60E-OS
;L+o2
0^616-07
1*02E-15
- 6,t5E»01
3)52E+01
3.50E-01
5,1«E-08
0.51E+01
-i: -
7*136-16
1*826+01
o*
9,806+00
5:
fl)96E-02
2.07E-01
-3.83E-03
l|26E+01
0.71E-07
7.S8E-12
3.30E-04
0.
NUCl
BASH
10, Y
0.
o,
0, ' -"
2,786+02
0.
1,936-01
0,
1.83E-07
0,976+02
0,
0,
0.
2.02E+02
2,626-00
0,
1%06 + 02
0.
a.616-07
0.
0,
0,
6.60E-18
6.15E+01
6.50E-12
0.
3.52E+01
0,30E-05
6.30E-12
a,50E+Oi
o,
0,
0,
0,
0,
1,826+01
0,
o,
9,806+00
o,
0.
0.
3.17E-02
2.07E-0!
2.16E-02
0.
0.
1.26E+01
7.59E-27
1.22E-31
3.30E-04
o,
ID6 CONCEN
1 • HT OF
50, V-
0.
0.
o, - —
2.786+02
0.
2.006-13
0.
1.906-19
0.976+02
o.
o.
o.
2.026+02
1.22E-03
0.
0.
1.606+02
0.
a.616-07
0.
0.
0.
1.30E-27
6.15E+01
1.276-21
0.
3.52E+01
1.796*22
J.60E-29
O.SaEtOl
0.
0.
• o.
0.
o.
1,021+01"
o.
0.
9,806+00
0.
0.
fl.38E.03
2.07E-01
fl.906-02
0.
0.
1.266+01
0,
3*346.04
0.
H-*2-86C
TRATIONSi
HEAVY HE1
100. ^
0,
o.
2)786+02
0.
2.096-28
0.
1. 986-30
4,976+02"
0.
0.
0.
2.02E+02
2,02E-03
0.
o.
1,606+02
0.
0.61E-07
0.
o, ••-
0.
9.06E-40
6,iS6+01
9.26E-30
0.
3.32E+01
0.
o,
0,506+Ot
o,
o.
o.
o,
1.826+Of
o.
o.
9.006+00
o.
o.
3.686-04
2.07E-01
5.30E-02
0,
0,
1,266+01
0.
0,
3,346-04
0
GRAMS
AL CHARGED
50o, T
0,
0.
2.706+02
0.
0,
o.
0.
0,976+02
o,
0.
*•
2.02E+02
1,206-02
0.
1,606+02
0,
0,616-07
0,
o,
o,
o.
6.156+01
0.
0,
o,
0.
-0,506 + 01-
0,
0.
• o.
o.
o.
-1,026+01-
0.
0,
" 9,806+00—
0.
o.
- o,
9.21E-13
2.07E-01
T5.33E-02
0,
0.
- 1.266+01-
0,
0.
-3,306-04-
0,
FP's
TAWT.F. A TV
(continuec
TO R6ACTOR
-looo, — y
0,
0.
°t
2,706+02
0.
o, --- — •
o.
0.
4,976+02-
0.
0.
o,
2.026+02
2,006-02
o,.
0,
1,646+02
0.
4,616-07
0,
0,
0,
0.
6.156+01
0.
0,
o',
o,
0,506+01
o)
o,
o,
o.
1,826+01
0.
0.
9,806+00-
0.
6.
0.
1,636-23
2.076-0.1
5.336-02
0.
0.
1.266+01
0,
o.
3,346-04
0.
-5000, y
o.
o,
2)786+02
o.
t
o.
o,
4,976+02"
o.
0.
0.
2,426+02
1,206-01
0.
0.
1.646+02
0.
0,616-07
o.
o,
o.
o.
6,156+01
0.
3)526+01
o,
o,
4,546+01-
o, •
0,
o,
o,
o,
1,826+01
0.
0.
9,806+80
0.
0,
0,
0.
2.076-01
5.336-02
0,
0.
1,266+01
o,
o,
3,346*04
0,
10000. Y
S:
2)706+01
o.
o.
o,
4,976+02
0,
o.
2)026+02
2,006-01
e.
o.
1,646+02
0.
0.616-07
0.
o.
o.
o.
6.156+01
0.
))526+01
o.
o,
4,546+01
o.
o.
o,
o.
o.
1.626+01
0.
o.
9.806+00
0. '
0.
0.
0.
5)336^2
o.
o.
1.266+P1
o.
0.
3,346*04
o.
r-2
I)
tooooo, y*-***** Y
0, 0.
o, o,
0, 0,
2,706+02 2. 706+02
o. o,
o, o,
o. o,
o, o,
4,976+02 4,976+02
o. o,
o. o.
o. o,
2,406+02 2,1*6+02
2,396+00 2,286+01
0, 0,
0, 0.
1.646+02 f. 646+02
0. 0.
4,616*07 4, 616-07
0, 0,
0. 0.
o. o.
0. 0.
6.156+01 6,156+01
0. 0,
0. 0,
3,526+01 3,526+01
o, o,
0, 0,
4,546+01 4,546+01
o, o,
o. o,
o, o,
0. 0.
o. o,
1,026+01 1.026+01
0. 0.
o. o.
9.006+00 9,006+00
o. o.
0. 0.
0. 0,
0. 0.
2,076-01 2,076*0}
5,336*02 5.336*02
0. 0,
e. o.
1,266+01 1.266+01
0. 0.
o. o.
3.346*04 3,146*00
0. 0, A-IV-
99
-------
PWR • BU • 33.000 HASTE DECAY TIHE8
POWER* 38,'ooMH, BURNUP
[ CHAR86 - DlSCMARSe
AOtlSM 0,
»CUS C.
— cot ISH ~o,
COM! 0.
INH5M o.
~~ IN11S 0, -
«NtlS 0,
AGU6 0.
— com — o,
IN116K 0.
INU6 0.
— 3NU6 0,
*GUT 0.
COM7K 0.
— CDM7 — 0,-
INIJTM 0,
INU7 0,
- SNU7M o, -
SNU7 0.
CDU8 0,
iNt 18M 0,
IN118 0,
SNtlS 0.
CDt 19M 0,
COVJ9 0.
INU9H 0,
INt 1' 0|
SNll'M 0.
3NU9 0,
CD120 0,
IN120M 0,
IN120 0,
3N120 0,
C012I 0.
iNt2iM o,
" I N 1 2 1 o,
SN121M 0.
8Nt21 0,
• 38121 Oi
IN1Z2 0.
3N12Z 0,
"' 8B122M 0,
SBI2Z 0.
TE122 0.
IN123H " 0|
IN12S 0.
3N123H 0.
-3Nt23 0,
88123 0,
TE12SM 0,
TetZS ' 0( '
INU4 0.
0.
o
1,426-03
0,OSE-27
3.70E-28
1,22E+00
2.00E-01
o|
S.B7E*00
o.
0,
2.88E+00
o;
o;
«;
0^
o.
1,216-07
a, oic*oo
«;
°1
o.
0,106*00
0,
o.
«*
o.
2,756-03
o.23E*eo
o<
5:
0,016*00'
oj
£
o.
1,556-05
!, 566-51
fl.fcOEtOO
0,
5.166*00
0.
6.01E-23
3.336«OJ
o,
oj
o'
«. 826-01
5.2flE*00
3.166-05
5.16E-00
o!
• 33000, MUD, FLUX*
It T
0 '
0
7,a9E-05
o:
o:
1.22E»00
2,OOE-01
o;
3,87E»00
0,
oj
2.88E+00
o;
oj
0,
0,
0*
1.046-11
«. 016*00
0.
-o, - - —
o.
0.106*00
0.
o.
o.
o, - -
1.666-0)
0,23E»00
0.
0.
o.
0,016*00
o|
«.
o,
lj55E-05
'0,606*00
o;
5.166*00
0,
1.956-flJ
3,336-Ot
o,
°H
o.
1.75E-01
5.^56*00
1,076-05
5.376-OS
o;
CASE
6-1
3,'98E*13N/CM*«2.8EC
- - NUCLI06 CONC6NTRATTONS
BASIS • MT OF HEAVY ME
10, Y 50. Y 100.
0.
0.
o,
o,
0,
1,22E*00
2.00E-0!
0.
3,87E*00
0.
0.
2.886*00
0.
0.
0.
o,
Oi
o.
0,016*00
o.
o.
<>4
0.106*00
o,
o.
o.
0,
1.82E-07
0,20E*00
Oi
0,
0.
0,016*00
0,
0,
Oi
1,026-05
0,
0,606*00
0.
5,166*00
o,
0,
3,336-OJ
0,
0,
<>•
2,126-09
5,726*00
3,736-10
5,086-00
0.
0.
o.
"«
0,
o.
1.226*00
2.00E-01
0.
3.87E*00
0.
0.
2.886*00
•
9,896-06
0.
(60C+QO
o.
5,166*00
0.
0.
3,336-01
o,
o.
e.
o.
5.72E*00
0.
5.486-04 -
«.
0,
o,
0.
0.
o.
1,226*00
2,006-01
0.
5.87E*00
9,
0.
2,886*00
0.
0.
0,
0.
0.
0,
4.016*00
0.
0.
0,
4,106*00
o.
o,
o,
Oi
0.
4,206*00
0,
0,
0.
4,016*00
0,
0,
o, --
6.27E-0*
0.
0,606*00
0.
5,166*OC
0,
0,
3.336-01
Oi
0.
o.
o,
5.726*0(
0.
5,486-0*
0.
CRAMS
'AL CHARGED
' - 500,- Y
0,
o,
""»•
o.
o,
!. 226*00
2.00E-01
0,
~ 3,876*00 -
0.
o.
2,886*00-
0.
0.
~ 0 ,
o,
«t
- o.
4,01E*00
0.
o.
o.
4,106*00
— >"0« '•"• "~ "
o,
o.
o,
o.
0,206*00
8«
e,
o.
• O,OJE*OO
o.
o.
--o,
1.63E-07
0.
0,606*00
0,
5,16E*00
e,
o.
3.336-01
0,
0.
o.
e.
5.726*00
o.
t flBt'Ot
e.
FP's
TABLJi A- IV i.
(continued)
TO REACTOR
iOOO, V 5000. Y
»,
o,
o,
o,
0,
1,226*00
2,006-01
0,
3,876*00
0,
o,
2,88E*00
0.
o.
o. - •
0.
o,
o.
a, 016*00
0.
0,
o,
0.106*00
0,
o.
o.
o«
o,
4,206*00
0.
0.
o.
«,01E*00
o,
o.
o,
1,716-09
0.
0,606*00
0.
5.166*00
0.
0.
3.5JE-01
6.
0.
0,
0,
5,726*00
0,
5,086-04
0.
0.
0.
o, -—
o.
o. •
1,226*00
2,006-01
«t
3,876*00
0,
0.
2,886*00
0.
0.
0,
o,
0.
0,
«, 916*90
0,
0,
0.
4.106*00
0,
o,
o,
o, - -
Oi
0,206*00
0.
0.
o,
4,016*00
0.
o,
o.
2.426-25
0,
4,606*00
0.
5,166*00
0,
0.
3,336-01
0.
0.
o.
o,
5,726*00
0.
5,086-04
0.
10000, Y100000, **•*«•»• V
o.
o,
o.
o,
o.
1,226*00
2.066-Oi
0.
3,876*00
0.
0.
2,886*00
8.
8.
0.
o.
0.
0.
4,016*00
0.
o.
0,
4.106*00
0.
8.
0.
o.
«.
0,206*00
8.
8,
0.
4,416*00
0.
8.
8,
3.786.45
8.
4.606*00
o.
5.166*00
8.
0.
3.336-0)
8.
0.
o,
o.
5,726*00
0.
5.486-04
o.
0.
o,
8,
8,
o.
1.226*00
2,006-01
8.
3.876*00
0.
8.
2,886*00
0.
o.
o.
o.
o.
o.
0.016*00
o.
Oi
o.
0,106*00
8|
8,
o.
°«
8,
«, 2*6*00
0.
0.
0.
0,016*00
0.
8.
8.
8.
8.
4,606*00
0.
5.166*00
o.
o,
3,336-Ot
8,
0.
0.
o.
5,726*00
0.
5.486-04
0,
o.
0.
8.
8,
0.
1,226*00
2.00E-OI
0,
3,876400
0,
0,
2.886*09
0.
o.
8.
8.
4.
8.
4,016*00
0.
Oi
0.
4,106*00
8.
8,
0.
8«
0.
4,101*09
Ot
o.
o.
4,016+00
0.
o.
o*
o.
o.
4.606*00
0.
5.146*00
0.
o.
3, 316»0|
Oi
o.
8.
8.
5.726*00
o,
5,«ae.o«
°» A- IV
100
-------
BU m 33*000 WASTE DECAY TIKES
CASE e-i
POWER* 38.40MH, BURNUPa 33000|MMO» FLUX* 3.'98EM3N/CH**2-3CC
FP's
TABLE A-IV-2
(continued)
NUCLTOC CONCENTRATIONS-GRAHS
BASIS a HT OF HEAVY HE"Al CHARGED TO REACTOR
8N124
3B124H
38124
TE124
8N125H
|~3N125
88125
LTE12SH
TE125
8N126
3B126M
38126
TE126
|_ SN127H
3N127
38127
TE127H
TE127
1127
»N126
IB12BH
•B128
TE128 .
1128
XE12S
8N129M
SN129 '
3B129
TE129M
TE129-
1129
XE129M
' XE129
SN1SO
8B130H
88130
TE130
HJOH
1130
XE130
SNlSt
3B131
TE131H
TE131
1131 '
XE131H
XE131
SN132
38132M
38132
"— TE132 -'
1132
CHAR
0.
0.
0."
0.
0.
8.
0,
0.
0.
0,
0.
0.
0.
o.
o.
0.
o.
o,
o,
o.
o.
o,
0.
o.
o.
o,
o.
o.
o.
o,
o,
o.
o.
o.
o,
o.
o.
Of
o.
0.
o.
or
0.
o,
0.
o.
0.
o.
o.
o.
o,
o,
GE DISCHARGE
7,71E+00
?«
2.9-5E-03
1.13E-01
o.
2.J5E-07
7,99EtOO
I.90E-01
3.29E*00
1.99E+01
7,18E-09
6.77E-06
4^38E-02
0.
0 '
2*28E-15
6.77E-01
2.40E-03
4,04E-02
°.
o.
o,
1.37E*02
o,
!:
o.
*)olE"02
5.43E-05
2.31E-01
o.
o.
o,
fr.
o.
4.28E+02
0.
6.90-112
!:
o,
1.93E-45
4.91E-48
1,35E-09
!:
",
!: ,
5.81E-17
1.77E-2J
. >• r
7^71E*00
2*
3.58E-04
l^lbE-6l
8,
3,04E-J3
7.03E+00
1.71E-01
«.27E»00
1»99E*01
7.18E-09
6.73E-06
1,S8E-02
o.
1%8E«29
2 12E-01
7,53E-0«
5<07E-01
0.
037E + 02
o. -
•:
o.
l^SE-03
1.31E-06
2.90E-01
o.
5,62E«09
o»
o.
fl*28E*02
°* _.._
o*
6.90-112
«-; .
°.
o.
1,99E-16
7.38E-16
1»35E-09
°«
0.
0.
7,OOE-3«
2.KIE-S5
10, Y
7.71E+00
0.
1.15E-20
1.16E-01
0.
0.
ft.^TE-Ol
1.70E-02
1.08E+01
1,99E»01
7.18E-09
6.73E-06
4.S1E-02
0.
0.
0.
1.77E-10
6.27E-13
7, JOE. 01
0,
-o,
0,
1.37E+02
Oi
0,
0,
0.
0.
o,
°l
2.92E-01
0,
1, 13E-07
0,
o,
o,
4,28E*02
0,
0.
6,90-112
0,
'0,
0,
o,
o.
0,
1.35E-09
0,
0,
0.
0,
0.
. 50, Y
7,71E»00
0.
0.
1.16E-01
0.
0.
2.42E-05
5.89E-07
1.15E»01
1,99E*01
7,18E-09
6.73F-06
5.06E-02
0.
0.
8.
0,
0. '
7.20E-01
0.
0,
0,
1.37E»02
0,
o,
o.
o.
o.
o,
o,
2.92E-01
o.
5.88E-07
0.
o.
o.
4.28E+02
0.
0.
6,90-112
0,
8.
8.
8.
8.
lj35E-09
8,
8,
8.
0,
8.
100. "
7,71E*00
8.
8.
1.16E-01
8,
8,
6.42E.11
1.57E-12
1.15E*01
1.99E+01
7.18E-09
6.73E-06
S.75E.02
8.
8, -
8.
8.
8.
7.20E-01
8,
o, -
0.
1.37E+02
0,
8,
0.
8,
8.
8.
*,
2,92E-01
8,
1.18E-06
8.
8,
8.
4,2BE*02
0,
8,
6,90-112
0.
8,
8.
0,
8,
8,
1.35E-OY
8,
8.
8,
8, '
8,
500, Y
7.71E+00
o.
8.
1.16E-81
8,
8,
8.
8.
1.15E+01 -
l,98Et01
7.16E-09
6.71E-06
1.12E-01
8.
o..
8.
8.
8.
7,201-01
8.
o,- -
8,
1.37Et02
8,
8,
8,
8,
8,
8.
8,
2.92E-81
8,
5.90E-06
8,
8,
8,
4,28E*02
8,
8,
6.90-112
8.
8,
8,
o.
8,"
8,
1.35E-09
8,
8.
8,
0,
8,
1080, Y
7,7tE*00
8.
8.
1.16E-01
8.
o,
8,
0,
1.1SE+01
1,97E*01
7.13E-09
6.69E-06
1.81E-01
8.
0.
8.
0.
8,
7.20E-01
8,
8,
8,
1.37E+02
o, - -
8,
8. .
0,
8.
8,
o. -
2.92E-01
0,
1.19E-05
8,
8,
0,
a,28E*OI
o,
8,
6,90-112
8,
8,
8,
0,
8.
8,
1.35E-09
°«
8,
8.
8. "
8,
5000, V
7,71EtOO
0,
0.
1.16E-01
8,
8,
8.
8,
1.15E+01
1.92E+0!
6,9ttE-09
6.SOE-06
7.21E-01
8.
0,
o,
0,
8,
7.20E-01
8,
0,
8,
1.37E+02
8,
8.
8,
Oi
0,
0,
o , - - - -
2.91E-01
8,
5,9flE-05
8,
o,
0,
4,26E*Ot
8,
8,
6,90-112
8,
8,
8.
8,
8,
8.
1.35E-09
8,
0,
o,
8,
o,
10008, V
7,?tE*00
0.
0.
1.16E-01
0.
o,
o.
0.
.15E+01
.85E+01
,70E-09
.28E-06
.37E+00
o.
0,
S:
o,
7.20E-01
8,
o, - ~
l|37e»02
o.
o,
0,
o. -
«,
0.
2|9lE-01
1.19E-04
».
0,
o.
4.28E+01
o.
8.
6,90*112
8.
8,
8.
8,
o,
8.
1.35E-09
8,
8.
8.
8.
o.
100000, Y
7,T1C*00
o.
o.
1.16E-01
o.
o.
o.
o.
l,15E*Ot
9.94E+00
3.59E-09
3,37E-06
9,98EtOO
0.
8.
0.
o.
0,
7.20E-OI
8,
o,
0.
1.37Et02
0.
0,
0.
0,
0.
8.
0.
2.90E-01
0.
1.19E-03
8.
o,
0.
4,28E40t
o,
o.
6,90-112
8,
8,
8.
0,
o.
8.
1.35E-09
8,
8.
8.
0.
o.
******* y
7,71E*00
0.
0.
1.16E-01
0.
Ot
8.
0.
1,15E*01
1.94E-02
7.01E-12
6,57E-09
l,99Etfll
0.
o,
0.
0.
8,
7.20E-01
0,
8,
0,
1,37E»02
0.
0,
0,
o»
0.
8.
0.
2.80E.01
0,
1.16E-01
8,
o.
0.
4,
-------
_^R_lJU "_?3'oe°_ **8TE OEC*Y TIMES CASE t»l
POWER* se^aoMH, BURNUP> 33000.HMO, FLUX* 3,'98E+i3N/cn*«2-sEc
FP's
TABLE A-IV-2
(continued)
NUCLIOE CONCENTRATIONS,~6RAM3— "-
BASIS • MT OF HEAVY ME"Al CHARGED TO REACTOR
98133
7E133
1133
CXE133H
XE133
CS133
88131
TE134
1134
cstsaM
BA 1 38
TE135
1135
XE135
CS135M
C5135
BA135M
BA135
I , I ' 36
XE136
C3136
BA136
1137
XE137
1 CS137
BA137M
| BA137
1138
XC138
CS138
G A 1.38
1139
E139
3139
BA139
LA139
LXEtao
csiao
BA140
LA 140
CE140
rCS141 ~
BA141
1 LA141
— CE101
p. PR141
CHARGE DISCHARGE
0. 0.
0. 0,
" •
0.
o.
o.
o.
o,
o,
o.
o.
0.
o.
o,
o,
o.
0.
o.
0.
o.
0.
0.
o.
0.
0.
o.
o.
o.
0.
o.
o»
o.
0.
o.
o.
Ot
o.
0,
o.
o.
o.
o«
o.
o.
0.
0.
o.
"or
o.
X:
2.33E-66
S:
9,9«E*02
!:
0.
1.75E*02
9.1TE*Ot
0.
0,
0.
o. .
2.53E*02
4.03E-51
3.35E-02
0,,
2,25E*01
0.
1 ,24E*03
1.87E-08
Si
J.22E*03
1'276*03
ol •
o,
1.29E-03
1 ,94E"04
Q
Q
5:
1 ,25E*00
1.19E*03
1, Y tO. Y
S.81E-17 5,81E-17
0, 0,
!i " "
0,
JP
lj:
lll9E*02
0.
o.
Q ' "
Q
0 '
2|53E*02
o.
3,36E»02
0,
2?25E»Ol
S:
1,22E*03
1.85E-04
p
p
0,
6*52E-08
9.81E-09
1,S1E*03
Si
2J52E-02
1.19E*03
"0.
0.
o.
o.
o,
9.99E+02
0, " "
o,
o.
o,
o.
7.05E+00
2.60E+02
o.,
0.
0,
o.
o.
2,53E*02
0,
o, -----
0.
0,
2.25E*01
0,
0.
9,92E*02
1 • 50E *0 fl
2 • *?2E^ 02
o.
o.
o.
1,22E*03
0,
0,
0.
0.
1,27E*OS
0.
o.
o.
o.
1.31E*03
0,
o,
o.
o.
o.
t,19E*03
50, Y
5,8JE«17
0.
0.
o*
0( , -,..-
0.
9.99E*02
0.
0.
0,
o.
o.
9.41E-06
2.67E*02
0.
0.
0,
0.
o.
2.53E+02-
0.
5,60E-02
0.
o,
0.
2,25E*01
0.
0.
S^SE.OS
8,9iE*02
0.
0.
o.
t.22E*03
0.
0.
0,
o.
t.27E*03
0.
0.
0.
0.
1.3lE*03
0.
0.
0.
0.
l|l9E*03
too.
5.81E-17
0,
0,
0,
0.
0,
9,99E*02
o. - -
o,
o.
0.
0.
4.27E-13
2.67E*02
0.
0.
o, - -
0.
0.
2,53E*02
0,
3,94£«02
0 , -- - -
0.
0.
2,25E*01
0.
0.
1,24E*02
1.87E.03
1,16E*03
0.
0.
0,
1,22E*03
0.
0.
o,
0.
1.27E*03
0.
0.
0.
o.
1.31E+03
0.
0,
0,
0.
0.
1,19E*03
- 500. Y
3.81E-17
0.
o, -
o,
o,
o.
o,
9,99E»02
o.
o.
0.
o.
o.
o.
2,67E»02~
0.
0.
0.
o.
o.
•2,53E*02-
0.
6.27E-02
0,
0.
2.25E*01
0,
0,
1.20E-02
1.81E-09
1,28E*03
0.
0,
0.
1,22E*03
0.
0.
0,
0.
1.27E*03
0,
0,
0,
0.
1,31E*03
0.
o.
o,
o.
o .
1.19E*03
JOOO, Y
S.81E-17
o.
0,
0.
0.
o,
0.
9,99E*02
e,
0.
o,
0.
o.
o.
o,
o.
o.
o.
2,33E*02~
e,
9.19E-02
0,
0.
0.
2,25E*01
0,
o.
1.15E-07
l|2BE*03
o,
0,
0.
1.22E+03
0.
0.
0.
0.
1,27E*03
0.
0.
0.
0,
1.31E*03
0.
0.
0.
0.
0.
1.19E*03
3000. Y
3.81E-17
0.
0,
0.
0.
o. -
0.
9,99E*02
0.
0.
0,
o.
o.
o.
o!
o.
o, - -
o.
2l5SE*02
0,
3.25E-01
0,
0.
0.
2,25E*01
0.
0,
o.
0, .
1,28E*03
o,
0.
0.
1.22E*03
0.
0.
0.
Ot
1,27E*03
0,
0.
0.
o.
1,31E*03
o,
0.
o.
Ot
0.
1.196*03
10000. Y
5.81E-17
0.
o.
o.
o.
o.
o.
9,99E*02
o.
o.
o.
0.
o.
o.
2,67E*02
0.
0.
o,
o,
o.
2,52E*02
0.
6.17E-01
0.
o.
0.
2.25E*01
o.
o.
«.
o.
1,28E»03
o.
0.
l|22E*03
0.
0,
o.
o.
1.27E*03
0.
0.
0.
o.s
o!
o.
o,
o.
o.
100000, Y******* V
s.eie-17 3.8iE-if
0. '0,
o! o!
0, 0,
0, 0.
0, 0.
9,99E*02 9,99E*Ot
o. o,
0, 0,
0. 0.
o. o.
0. 0.
o. o.
o) o!
o, o.
o. o.
0, 0.
o, ,o,
2.47E*02 2,01E*02
0, 0,
3.81E+80 3,22E*01
0. 0.
0. 0.
0. 0.
2.25E+01 2,25E*Ol
0, 0,
0. 0,
0, 0,
0, 0,
1,28E*OS 1,28E*03
o. o,
0. 0,
0. 0.
1,226*03 1,226*03
0, 0.
0. 0.
0. 0.
0. 0.
1.276*03 1,27E*03
0. 0.
0. 0.
0. 0.
0. 0.
1,31E*03 1,31E*03
0. 0.
e. o.
0, 0,
0. 0.
0. 0.
1.19E*03 1.19E*OB A-IV-
102
-------
PMR
• BU • 33,000 HA3TC DECAY TIMES
CASE
E-t
FP's
?0*ER« 38,'OOMW, BURNUPa 33000, MUD, FLUX» }.'98E*13N/CM**2*3EC
XEt82
CS182
Bit 42
Ut82
CEV82
[— PRU2 —
*ota2
1 XE\83
CS183
BAt83
Uta3
r~ CEtas —
PR 1.83
L_ ND183
CEtaa
PRtaa
CNoiaa -
CEtaS
PRtaS
NDtiS
CEt«6
PRt8»
f~ "0186
CE187
|_PR187
*DtS7
PM187
3M187
LCEiae
PRt88
NDt88
PHtaBM—
PM\88
SMtaB
f— PR189
I NDt89
I PMI89
9Mt89
NDt50
l»Mt50
LSM150
NOtSi
PMtSl
3*151
EIM51
PN1S2
r 3Mt52
1 EU'52M
1 EU152
60152
PM153
CHAR6E •
0.
o«
0,
0,
0,
*.
0.
o,
o,
o.
o.
0.
o,
o,
o,
o,
0,
o.
o.
o.
o.
o,
o.
o,
o.
o,
1 1
1 '
: 1
| ;
oooooooooooo
0.
o.
o.
0,
o,
o.
o,
o,
o.
o,
o,
o,
o,
o,
DISCHARGE'
S:
1?17E*03
1.C3E-70
2.19E*01
?.
0.
o,
0.
2.19E-00
2.85E-03
T.79E*02
o<
2,6SE»02
l,iaE-02
1.09E*03
o.
o,
*l87E*02
!:
~ 7^03E*02
0,
o.
1.05E-08
1.0SE*02
5.39E*01
~ o.
S!73E*02
"B«9«E-02
9.2aE"08
t,57E»02
o,
o,
2,83E-25
7.73E+00
1,79E+02
o.
S^06E*02
2'o3F-88
8,61E+01
2.26E-01
".
9.68E»01
0.
S,88E»02
1.16E-01
0.
" ~ »• Y
S;
!:
1.17E*OS
0,
2,19E*01
o.
- o. - -
5:
o, -
2.38E-07
7.79E»02
o,
1.72E+02
7.27E-03
1,18E+OJ
!:
6.B7E+02
J:
7.05E»02
2;
- 1*16E-09
9,17E»01
6.68E+01
0.
o.
3,73E*08
a.39E.03
a.53E-95
1,58E*02
o,
0.
7*73E»00
1.79E+02
0.
a,06E»02
s*
«J39E+01
«,10E-01
o,
9.68E*01
o.
fl.35E*02
- 1,17E»01
o.
NUCLIDE CONCENTRATIONS
BASIS « MT OP HEAVY ME'
10, Y 50, Y 100, '
0. 0. 0,
0, 0. 0,
0,
o.
1.17E+03
0,
2.19E+01
0,
o,
o,
»,
0,
o.
7,79E»02
o,
5.63E-02
2.38E-06
1.36E+03
0.
0,
6.87E402
0,
0.
7,05E*02
0,
o,
o,
8,48E+00
1.50E+02
o.
o,
3,73E*02
0,
o.
1.58E+02
0,
0,
0.
7.73E+00
1.79E+02
0.
a.06E+02
o.
o.
8,27E»01
3,59E*00
0.
9,68E«01
0|
2.59E-02
1.22E-01
o,
0,
0.
1.17E+03
0,
2.19E+01
0.
0.
0.
0.
o. ••-•
0.
7.79E+02
0.
1.83E-17
7.75E-22
1.36E+03
0,
0,
6.87C+02
0,
8,
7.05E+02
0.
0.
0,
2.15E-04
1.59E+02
0.
0.
3,73Ef02
0,
0.
1.58E+02
0.
o.
o.
7.73E+00
1.79E+02
0.
a,06E+02
«.
0.
3.11E+01
1,53E«01
0.
9.bftE*01
0.
2.57E.03
l,28E»Or
0,
o." -
0,
1.17E+03
<>•
J.19E+01
0,
0, ' ~
0.
0.
0.
0,
7,79E*02
o,
8.01E.37
3.39E-41
1.36E+03
0.
0,
6,87Ef02
0,
0,
7.05E+02
0.
o.
o. •--•
3.86E-10
1,59E*02
0.
0.
3.73E402
0,
0,
l,56Et02
e.
o.
o.
7.73E+00
t.79E*02
0,
8,06Et02
0,
0|
2,09E*Ol
2,35E«01
0,
9,68EtO]
0.
l.flJE-04
1.29E-01
0.
CRAMS
AL CHARGED
' 500, Y
0,
0.
0,
0,
1,17E*03
2J9E + 01
0.
o.
0.
o,
«.
o.
7.79E+02
o.
0.
0,
1.36E+03
o,
0.
6.87E+02
0,
0.
7.05E+02
0,
0.
- o,- -
0,
1.59E»02
- o, -
o,
3,7JE*02
0.
0,
1,58E*02
o.
o, -
0,
7.73E+00
l,79Et02
0,
a,06E*02
0.
0,
8.61E-01
a,55E*01
0,
9,66e+0t
0,
1.32E-14
- 1.29E-01 -
«,
TO REACTOR
1000, Y 9000. Y
0. 0.
0, 0.
o, ~— -
o.
1,17E*OS
0,
2,19£»01
o,
o,
o.
o.
o.-— -
o.
7,79E*OZ
0,
o.
o,
1.36E+03
0.
o,
6.87E+02
0,
o.
7,05E*02
0,
0.
o, •- •--
o,
1.59E+02
o,
0,
3,73E»Ol
o,
9.
1.58E+02
9,
o.
o,
7,7JE*00
1.79E+02
9.
8,06E»02
9,
9,
1.60E-02
8,63E»01
9,
9,68E*Ot
0.
3,76E«27
1.29E-01
9.
o, —
0.
1,17E>0)
0,
2.19E+01
0,
9,
0.
0.
0,
0.
7,79E*Ot
0.
9.
9.
l,3fcE+03
0.
9,
6,87E*02
9,
0,
7,05E*OJ
9.
9.
9,
9.
1,39E+02
9,
9.
3.73E+02
0,
9,
1.38E+02
9,
9,
0.
7.73EtOO
J.79E+02
0.
a,06E»02
9.
9,
2.30E-16
a,63E*01
9,
9,68E*01
9,
0,
1.29E.01
9.
TA
(c
10000, Y
0.
S:
o.
1,17E«0)
9.
2,19E*01
9.
9.
9.
9.
9.
9.
7.79E402
9,
9.
l!36E+03
0.
0.
6,87E»02
0.
9.
7.05E»OZ
9.
9.
9,
9.
t.39E»02
9.
9.
3,73E*02
9,
9,
1.38E+02
9.
9.
9,
7,73E»00
1,79E*02
!06E»01
•
!l5E-33
,63E*01
|«8E*01
9,
9,
1,29E«01
9,
BLE A-IV-2
ontinued)
100000, ¥••••«*• Y
9. 0.
0. 0,
0. 0.
0. 0,
1,171*0) l,17t*0)
0, 0.
2,19C*01 2,19E*01
0, 9.
0. 0.
9, 0,
0, 0.
9. 0.
0. 0.
7,79E*02 7,79E*0»
9. 0.
9. 9,
. 9.
,36E*03 1.3«E*03
• o,
. 9.
,B7E*OI *,B7E*0»
0.
o. o.
7.0SE*02 7,05E*02
9, 9,
0. 0.
9. 9.
9, 0.
1.59E»OI 1,59E*OI
9. 9.
9, 9.
3,73E*OI 3,13E*02
9. 0.
9, 0,
l,58E*Ol 1,38E*02
9. 9,
9. 0,
0. 0,
f.75E*00 7,7)E»00
1.79E+02 l,79E*Ol
9, 0,
8,06E»Of 8,06E*02
9, 0,
9. 9,
°> 9,
«,63E*01 8.63E+01
9, 0.
9,68E*01 9,k8E+Ol
9, 0,
0, 0,
1.29E-01 1.29E.01
0, 0, A-IV
103
-------
PWR
• BU i 33,000 HASTE DEC*V TIMES
POWER* 38.40HN, BURNUP* 33000. MWD, FLUX* 3
SH153
EU15S
60153
SH154
" EU154
GD154
8M15S
EU155
60155
SM156
E0156
G0156
8M157
^ EU157
60157
EU158
LS0158
EU159
60159
EU160
60160
CTB160
DYlfcO
60161
TB161
DY161
60162
DTB162H-
TB162
TB163
OY16J
TB164
OY165H
1 — OYT65
H0165
OY166
r MO 166
ER166
CR167
TOTAL
CHARGE
0.
0.
o.
o.
o.
o,
o.
o.
o.
o,
0.
o.
o.
o,
0.
o,
o.
o.
o,
0,
0,
0.
0.
o.
o.
o.
o,
o.
o.
o.
o,
0.
o.
o.
0.
o.
0 • *
Q •
o.
0.
o.
0.
o.
0.
DISCHARGE'
1.17E-28
1.18E*02
5.67E-03"
0.
S,80E*01
5.38E+01
0?
" 5.72E+00"
1.27E+00
0.
"1.39E-03
1.05E+02
o.
1.60E-89
o.'
" 1 .83E+01
0.
1 .85E+00
0,
i.OOE+00
2,61E-02
4.80E-01
0.
-7.55E-J1
2%36E»01
oj
1*93E-01
i:,7E-0,
'2,72E«62
0*
l*t6E«01
4%77E»04
S|l2£«02
2.88E+04
";• i. Y
l|'l8E + 02
3.36E-03 ~
3*80E+01
5,27E+01
0*
a.73E*no
2.27E*00
0.
3.00E-07
1,05E+02
°!
4,1
,*9BE»I3N/
IDE CONCE
• MT OF
50. Y
l|j8E+02
1.83E.25
3!eoE*oi
6.30E+00
5.03E*01
0.
3.3aE-08
6.99E+00
o.
0.
1.05E»02
0.
0.
4,48E»02
0.
1.43E401
0.
0,
1.85E+00
0.
l.OOEfOO
0.
0.66E-01
0.
0,
2.36E-01
0.
0.
0.
1.93C-01
0,
0.
2,17E«01
0,
6.89E.02
0,
0.
I.16E-01
0.
4.64E«04
0.
3.12E.02
5.54E-03
2,88E*Oa
CM»*2-SEC
NTRATIONr,
HEAVY ME'
100,
0.
1.18E+02
o,
0.
3.80E*01
7.22E-01
5.59E+01
0.
1 ,blE»16
6.99E+00
0.
o,
J.05E+02
0,
0,
4,48E»02
0,
1.43E+01
0.
0,
— 1 ftCEpAAA
o.
1,OOE*00
• 0
4.66E-OI
0,
0,
2.36E-01
0,
0.
0.
1.93E-01
0,
0.
2.17C-01
0.
6,09E«OI
0.
0.
1.16E.01
0,
4,5ie-o«
o.
3.12E-02
5.50E.O!
2,88E+Ot
GRAna
AL CHARGED
500^ — V-
0,
1.18E+02
"0.
0,
j,eoE»oi
-2,15E«08-
5,66E«01
0,
0,
6.99E+00
o,
0,
1.05E+02
0.
°«
4,48E*02
0,
- 1.83E + 01 —
0.
0.
-l.BSEtOO—
0.
l.OOEtOO
-o. - -
4.66E-01
0,
o, --•- —
2.36E-0!
0.
0.
0,
1.93E-01
- o, -
0,
2.17E-01
-o.
6.89E-02
0,
1.16E-01
0,
- 3.S8E-04
0.
3,13E-02
- 5f50Eo03
2,88E»00
TO REACTOI
-1000.- Y
0.
1.18E+02
o,-— • -•
0,
3,80E*01
8.40E-1B
5.66E+01
0.
0,
6.99E+00
0,
o. --- -
1.05E+02
0,
0,
4,46E>02
0.
1.43E+01
0,
0.
1.85E+00*
0.
l.OOE+00
0.
4,66E-01
0.
0.
2.36E-01
o,
o.
o,
1.93E-01
o,
0.
2.17E-01
o,
6.89E-02
o.
0, •
1.16E-01
0,
2.6BE-04
0,
3.14E-02
5,54E«03
2,66Et04
FP's '
?
-5000^ Y
0.
1,18E»02
o,
0,
3,60E*01
0,
5,66E*01
0.
0.
6.99E+00
0.
1.05Et02
0,
4,4BE>02
0,
1.43E+01
0.
o,
1.85E+00
0,
I.OOE+00
o,
4.66E-01
o.
0.
J.36E«01
o.
0.
o.
1.93E-01
0.
o.
2.17E-01
0.
6.89E-02
o,
0,
S.lfcE-Ol
0.
2.66E-05
o,
3.16E-02
5,5flE«03
2,88E*04
LAULK A-LV-2
(continued)
tOOOO. Y100000. ¥*•**••* V
0. 0. 0.
1.18E*02 l,t8E»OI 1,J8E*02
0. 0. 0.
0, 0, 0,
3,»OE*01 3,80E*01 3,80E»Ol
0. 0, 0,
?.66E»01 5.66E*01 5.66E+01
0. 0, 0,
0. 0, 0,
6,99E»00 6.99E»00 6,»9E*06
0, 0. 0,
0. 0. 0,
1.05E»02 1,05E*02 1.05E+02
0. 0. 0.
0. 0. 0,
4.48C-02 4.48E-02 a.aBE.Ot
0, 0, 0.
1.43Et01 l,a3E*01 t,43E»01
0. 0, 0,
0. 0, 0,
1.85E*00 1,85E*00 J.85E+00
0. 0, 0,
1,OOE»00 1,001*00 1,OOE»00
0, 0, 0,
4,66E«01 a,66E-01 4.66E.01
0, 0. 0,
0. 0. 0,
2.36E.01 2.S6E-01 2, 361.01
0, 0, 0,
0. 0. 0,
0, 0. 0,
1.93E.01 1.93E-01 1.93E.01
0. 0. 0.
0. 0, 0,
2.17E-01 2.17E.01 2,17f.0t
0, 0. 0,
6.89E-02 6,89E«OI 6.89E-OI
0, 0, 0,
0, O/ 0,
1.16E-01 1,1*E«01 1.16E-01
0. 0, 0,
1.48E-0* 0, 0,
0, 0, 0,
3,17E«02 3,J7£»02 3,17E»0»
5,58E«03 5,5aE»03 5.54E.03
2.88E*04 2,88E*04 2,88E«0«
A-IV-
104
-------
PWR • BU » 33,000 WASTE DECAY TIMES C*8C_?^ Clad TABLE A-IV-2
POWER" 38.40MW, BURNUP» 33000,MWD, FLUX" 3>8E+13N/CM**2-SEC (continued)
H 1
H 2
M 3
H 4
HE 3
HE 6
LI 6
LI 8
BE e
GE 9
E 10
E It
B 11
B 12
C 12
C 13
' C 1«
N 15
N 10
N 15
LN 16
0 16
0 17
0-18
0 19
r 19
f 20
NE 20
NE 21
— NE 22
NE 23
NA 22
rNA 23
NA 24
NA 25
MS 25
MS 26
CMC 27
AL 27
AL 28
AL 29
SI 28
SI 29
SI 30
81 31
P 31
P 32
P 33
CHARGE DISCHARGE "
0, 0,
0, 0.
o,
8,
8.
0,
8.
8.
o;
0,
o.
e.
Ot
e,
o,
8,
8,
8,
o,
8,
8,
0,
8,
o, -
8.
0.
0,
8.
o,
o.
0.
e,
o.
o.
o,
o,
o,
o.
o.
- 0,"
o.
o.
o,
8.
3.19E-07
o.
o.
8!
0,
«:
si
o,
o*
Q
0 •
0'
o. .
o.
8.
8,
8. ' "
o.
-o,
0.
0.
0^
!;
6,27E»06
5.57E-05
;- i, Y
!:
oj
o;
0,
o;
0%
o,
S:
Q
°f
j:
o.
S:
Si
o,
r '
<
0*
Li.
3?52Ei.07
NUCLIDE THERMAL POWER) 'WATTS ~ "' '" ""
BASIS * MT OF HEAVY MET/ 1 CHARGED TO REACTOR
'- 10, Y
0,
o,
3.04E-07
0.
0,
o, •-
0.
8,
Of
8.
0,
o,
o,
o,
Of
o,
o,
o,
e,
a,51E»06
0 .
o,
t
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
o,
8,
e,
8.
8, ••
o,
o.
o ,
o.
o,
o,
0.
o.
Oi
o,
0,
Of
o,
8.
e.
3.
8.
e.
o|
o.
o.
o.
e.
e.
o.
e.
e.
o.
e,
8.
o.
",
o.
o.
o,
o,
o.
0.
o.
o.
o.
o.
0,
0.
o,
o,
e.
e.
o.
6.
0.
o.
o!
o.
o.
o.
o.
o.
8.
0.
0.
8.
0.
50, Y 100, Y
8,
0,
49E«08 - 1,90E«09
0.
; o.
o!
o.
o.
o.
o.
8,
6,
8.
8.
0,
0.
Of
0,
4SE-06 4.46E-06
o,
0,
0.
o,
o,
o.
Of
o.
o,
o,
o.
o.
Of
o.
8.
0.
o.
8,
o,
0,
o,
o«
o.
o.
Of
o.
o.
Of
o.
o.
o,
o.
'••• 500,
8.
8,
3.06E-19
8,
8.
Of
8.
8.
8.
8.
0,
0,
0,
o.
0.
0.
0.
Of
o,
4t25E-06
0,
0.
8,
Of
o,
o,
8,
0.
o.
Of
o,
o.
o,
8,
8,
°t '
8,
0.
0,
o.
o.
Of
o,
o,
Of
o,
o,
0,
o,
o.
Of
o,
r 1000, y-
8.
o.
1.78E«3r-
o,
8.
8,
8.
8,
8.
8.
8.
8,
0-,
8.
o,
8,
o,
- 0, •
o,
«,OOE*06
0,
8,
8,
o,
8.
o,
Of
o.
8,
8,
8,
8.
8,
8.
8,
- o, -
o.
o.
o,
o.
o,
o.
o.
o,
o.
o,
o.
o,
8.
8t
8.
5000, Y
8,
8,
0,
8,
8,
Of
8,
0,
o.
0,
Of
o,
o,
Of
o.
o,
Of
o,
2,06E»06
8,
8,
8.
Of
0,
o,
ot
0,
o,
&!
o.
8, "'
e!
8.
8,
8.
0 ,
8,
0,
8,
8,
8,
o,
o,
o,
o,
8,
8.
0,
o.
10000, Y100000-, 1
o, o,
o, o.
8.
8.
8.
8.
8.
8.
8,
0.
Of
8,
o.
8,
8.
8.
o, -•• -
8.
1.35E-06
8.
8.
8, -
0,
8,
o, -
8,
o.
0.
8.
8.
o, -
8.
8.
8,
8.
8.
8.
8.
8.
8,
8,
o.
8.
8.
8,
8.
6.
0.
8,
0,
8.
8.
o, - -
8,
8,
0,
8.
8,
0,
0,
8,
o,
5:
e,
8, ,
2.51E-11
0,
o,
o.
8.
o,
8,
8,
8.
8.
0.
8,
0,
8.
8,
8,
8,
8.
8.
8.
0,
0,
0,
o,
8,
8,
8,
8.
o, - -
8,
8.
8.
8.
•••*«•*
8.
0,
o, -
0.
0.
8.
8,
0.
0,
0.
8.
8,
8.
0.
0,
8.
8,
8.
8.
8,
8,
0,
8,
8.
8.
8.
8.
8.
8,
0.
8.
8.
8,
8,
8.
8.
8.
8.
8,
8.
8.
8.
Of
8,
8,
8,
8,
8.
8,
8,
8.
8,
A-IV-
105
-------
POWER*
f 34
S 32
3 33
3 34
S SS
1 S Sfe
3 37
[_eu 35
CL 37
CL ss
f~ AR 36
' AR 37
AR 38
'—AB 39 -
AR 40
AS 41
r" K 39
j K ao
K at
— K 42"
K 43
K 44
[— CA ao
i CA 01
i CA 42
CA 43
CA 44
CA a5
i — CA 46
1 C4 47
CA 48
~CA 49
8c as
r'SC 47
SC 48
. SC 49
' 3C 50
Tl 06
Tl 07
rTl 08
T! 09
1 TJ SO
— Tl 51
V 49
V 50
V 51
V 52
V 53
V 5«
CR 50
u * iitovv no
S It UC.I.UT
tinea
38.40MN, BURNUPs 33000, MHO, FLUXa
CHARSE "DISCHARGE""
0, 0.
0, 0.
0,
0,
0.
8,
0.
o,
o.
o.
8,
0,
os
08
"0.
0,
0.
o,
o.
o,
o,
o,
8.
" o. -
o.
o.
o,
8,
8,
"8. "
0,
o.
e.
8.
0."
8.
o.
0.
0,
Oi
8.
8,
0,
8,
o,
8.
8.
0,
0.
o,
o.
0.
1.74E-OS
5: "
8.
6.80E-11"'
0,
8,
l'asE-10
o.
1.55E-16
0.
0.
o.
1 .16E-29
0.' .
6,48-118
l,48E-67
8.
" «.
!:
8.
3?60E-06
5*09E»19
0.
{''ME-,*
1 .U8E-18
4.66E-33
0.
0.'
0.
0.
8.
8.
9,
S:
0
0
o.
e.
°i
Si,*.*
o*
o.
6,80E«J1
S:
3*
-------
PKR • 8U • 33»000
PONER« 31
WASTE DECAY TIMES
CASE E-l
BURNUP* 33000.MHO, FLUX* 3."98E+i3N/CM**2-sEc
Clad
TABLE A-IV-2
(continued)
NUCtlDE THERMAL"POWER .—WATTS
BASIS B HT OF HEAVY MET a CHARGED TO REACTOR
CR 51
CR 52
L— CR 53 -
CR 54
CR 55
rMN 50 —
MN 55
MN 56
M u « T —
MN 58
Ft 54
FE 55 -
FE 56
FE 37
u FE ss-
FE 59
CO 58H
- CO 58
CO 59
CO 60M
^~CO 60
CO 61
CO 62
ru* CA
NI 59
NI 60
'-NI 61
NI 62
NI 63
rNl 60 " -
NI 65
CU 62
iu 63
CU 64
CU 69
rCU 66
ZN 63
ZN 64
1 " ZN 65
ZN 66
ZN 67
L7.H 68
ZN 69M
ZN 69
ZN 70
ZN 71M
ZN 71
LOA 69
0* 70
GA 71
BE 70
3R 88
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHARGE— DISCHARGE -
, 6.31E-01
t 8.
' I*
i 8.
8.
, 1.68E*00
8.
8,
• ">«
I*'
• °<
. 2.78EtOO
2'
n<
• 8.
. 9,83E-02
t 8.
. - 9,70E»00
n<
« °«
, l.JSEtOZ
. 8.
• 8,
« °«
s<
t 8,
1 """ 2«
• 8,
, 0.06E-02
2'
• 8,
s
i *.
, 2,58*103
• °.
S«
• 8,
, 1,29E«03
8.
8,
S»
t 8.
8.
J*
• 8,
8.
• **
• 8,
S«
**
> 8.
I. *
6.65E-03
8,
Si"
1,11E«00
!:
2*43EtOO
8.
5*90E-03
8.
l,64Et08
1*29E+02
8.
••
5:
8.
!:
4.04E-0*
8.
8.
8.
i;
°.
7*69E»04
8.
8.
o, --•-
8,
8.
°«
•
8,
8.
8,
8.
8,
8,
8,
8.
0.
8,
8,
o.
8,
8.
8.
8,
8,
8,
8.
8,
8.
8,
9.01E-00
o, — :
8,
8.
8,
8,
8.
8,
8.
8.
8,
8,
8.
Ot
8,
8.
8,
8,
8.
o,
8.
8,
8.
e,
-1000, Y
8,
8,
8,
8.
8,
8,
8,
8.
8,
8,
8,
8.
0.
8,
8.
8,
8.
o, -----
8.
8,
8,
8.
8.
8,
3.
Ot
8.
8,
2.17E-05
8, -
8,
8,
8,
8,
8.
0,
8.
8,
"t
8.
8.
°»
8,
8.
8,
8,
8,
8,
8,
8.
8.
Oe
5000, Y
0.
0.
o,
o,
8,
8(
8,
8,
8,
8,
8,
0,
8,
0.
0,
8.
8,
o, --•
8,
0.
8,
8,
8,
8,
8,
8,
8.
o,
1.76E-18
8, -
8,
8,
0,
81
8,
o , -
8.
8.
o, — - -
8.
8,
o, -- •--
8.
8.
8,
8.
8,
8,
8,
8.
°o
e.
10000,
8.
8.
o. - •--
8.
8.
o. -
8.
8.
o. - •
8,
0.
o, -
8,
8.
I
ooooooooo
8,
8.
8,
8,
7J66E-S5
8.
8.
8.
o,
0.
8.
8. -
0,
8.
8.
8,
8,
8. -
8.
8.
o,
0.
8.
o. •••-
8.
8,
o,
9.
Y100000,
8,
0.
8,
8.
8,
8.
8.
«.
8.
8.
8.
8,
8.
8.
8.
8,
8,
8.
8.
8.
8,
8,
8.
- o,
8.
8,
8.
8,
8,
8.
8,
8.
8,
8.
8.
8.
8,
8.
8,
8.
8.
0,
8.
8.
8.
8.
8.
.0. -
8.
9.
9, -
».
Y««(
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
8
o
0
0
0
0
0
0
0
0
0
0
e
0
0
0
0
«.
9S
»*••• Y
A-IV-
107
-------
PNR •
POWER*
SR 89
SR 90
8R 91"
Y 90M
Y 90
Y 91M
Y 91
ZR 90
~ZR 91
ZR 92
ZR 93
~ 7R 98
ZR 95
ZR 96
NB 93M
N9 93
N8 95
NB 96
" NB 97
MO 92
MO 93
MO 93H
MQ 9a
MO 95
MO 96
MO 97
MO 98
MO 99
— TC 99H
TC 99
TCtOl
"UtOl
COUJM
COM3
COU5H
CDM5
CDU9M
C0t21
INU3
"INU'M
INU9
IN121
8N115
SN116
8NUTM
" Ch
0.
_°«
o!
o,
o,
o,
0.
«t
o.
0,
o.
0.
0.
o!
o.
0.
0.
o.
Ot
o,
.0,
Ot
o,
o,
0.
0.
0.
o,
o.
0 OO
Oi
0.
o.
0.
0,
0,
o.
o,
o,
0.
Oi
Ot
0,
0.
0.
BU • 33(000 HASTE DECAY TIMES
38,'aOMW, BURNUPa
ARGE DISCHARGE
7.77E-03
7.06E.07
"""" 3\7E.C6
2|e5E.02
o.
s:
6.55E-06
0,
l,86Et01
1,376.07
1.70E.Q6
0.
1,55E«06
2.57E»Ol
7.06E-59
o,
0.
1.79E-05
Q
Q
o.
o.
o.
b.56t«20
0.
o. .
2.68E-20
9.51E-06
o,
0.
7J76E-31
Q •
0 •
0.
o.
°t
o,
o.
0,
i 33000, M
It Y
6 '8tE«oa
6.97E.07
Q
3 _ 1 3E ^0 o
o.
oj
6*55E»06
0,
o|
5,59E«13 "
2,19E«06
lSsE-06
a.OOE+00
0.
o. - -
l|79E«05
0.
i: '
1J33E-39
o.
5,a2E«aO "
9.51E-06
o.
i:
o,
j:
o,
i!
2*OOE»07
CASE
40, FLUX« 3,"98E+13N/C
NUCLIDE THEF
BASIS » MT OF
10, Y 50, Y
6,3SE*23 0,
5.59E.07 2,08E«07
o. o,
0, 0.
2.51E-06 9.36E.07
0, 0.
a,89E-20 0.
0, 0.
0. 0.
0. 0.
6.55E-06 6.55E.06
0, 0.
1.2aE«15 0.
0, 0,
9J29E-06
0,
1.55E.06
2,ajE-t5
0.
0,
0.
1.79E-05
0.
0,
0.
o, --- -
0,
o,
o, - •-
o,
o,
9,'51E-06
o,
0,
o,
o,
o,
Oi
o, -
o.
o.
o,
o,
o,
0,
o,
o,
o.
o,
0.
1.99E.05
0,
1 .55E-06
0,
0.
o. •- --
0.
1.79E-05
0.
0.
0,
o. -
o.
0.
o,
o,
o.
9)siE«06
o«
o, - -
0.
o.
°».~
o!
o.
o.
o.
'
!
0 O 0 0 O O
0.
o.
E«l
H*
MA
HE
o.
6,
0.
0,
2,
0,
0,
o.
o.
o.
o'.
o.
o.
0.
o!
1.
o,
o,
o.
o.
It
o.
o,
o.
o,
o.
o.
c.
o.
o,
o.
9,
o.
o.
o,
o.
o,
o,
o,
o.
o.
o.
o,
o.
o,
o,
o.
o.
0.
o.
•2-SEC
u POWER, WATTS
AVY MET»L CHARGED
100, Y 500, Y
0,
OTE.08 3.14E.12
0,
0,
73E-07 l,aiE«ll
o.
o,
o.
Oi
5SE-06 6J5SE-06
o,
o.
o.
13E.05 sJlOf.OS
0,
55E.06--1.55E»06 -
0,
0.
0.
78E-05 1.73E-05
/ 0,
o.
o,
Ot
o.
o.
Ot
!r
o,
51E.06 9,50E>06
0.
0.
o,
0,
0,
o,
o,
o,
0,
o,
o.
o,
Ot
o.
Clad
TABLE A-IV-2
(continued)
TO REACTOR
1000, Y
0.
1.38E-17
0,
o,
6.21E-17
0.
o,
0,
Ot
o,
6.S5E-06
o. -
0.
o,
Oi
2,13t.05
0,
1.55E-06
o!
«t
o.
1.66E-05
o,-
o,
o.
o.
o.
o.
o,
o,
9,a8E»06
0.
o,
o,
o,
0,
0.
o!
o , -
o,
o,
o, - -
o,
o,
o,
5000, Y
0,
0,
0,
o,
o,
o,
o,
o.
o.
o,
6,5aE«06
0,
o,
o.
Oi
2.07E.05
0.
1.55E-06
0.
0.
o,
o.
1.22E.05
0,
o,
o.
Ot
o.
o,
0, "•:--
0,
0.
o, - - -
9.36E.06
o,
0.
0|
o,
Oi
o.
o.
o,
o,
o.
0,
o.
o,
o.
o,
o.
o,
o.
10000, V
o,
o.
o,
o.
o.
o,
o,
o,
o.
o.
6.52E.06
0.
0.
0.
0.
2.02E-05
0,
1.5SE.06
0.
0.
o.
0.
8.30E.06
0.
0.
0.
o.
o.
o.
Ot
o.
o.
o, - -
o!
o,
o,
o,
o o o o o o
o,
o.
o,
o.
o.
o.
o,
o.
100000, Y
o.
o,
o.
o.
o,
o,
o,
o,
o,
o,
6,26E»06
o.
o.
o.
o.
1,8SE-OS
o,
1.S4E-06
0.
0,
0,
0.
B.10E-09
0.
o,
o.
0.
o.
o.
0.
o.
o.
o.
6,84E-06
o.
o.
o.
0.
o.
o.
o,
o.
o.
o.
o,
o.
o.
o.
o.
o!
o.
****••* V
o.
o.
Ot
0,
o,
o,
o.
0,
o,
o,
0.13E.06
0.
o,
o.
o.
1. 22E.OS
o,
1,50E«06
0.
0.
0.
0.
0,
0.
o.
0.
o.
o.
o,
o.
o.
o.
o,
3.51E.OT
o.
o,
o.
Ot
o.
o.
o,
o,
o.
o,
o,
o,
o,
o.
o,
o.
Oi
0. A-IV
108
-------
PWR • BU
POWER» 36
3NU7
, SNUS
— SNU9K
8Ntl9
9N120
SN121
1 8N122
SM2JH
SN123
|_set2t
3Bt2«
:S8t26M
SHI 26
TE125H
TE1.2S
rT£ 1 26 •
, TA180
TA181
1 — TA182M
TA182
Mt80
rwtsi
Nt82
W183M
wteo
W185H
W185
H186
Wt87
TOTAL
• 33*000 WASTE DECAY
,'flOMH. BURNUPs 33QOO.H
~ CHARGE DISCHARGE
0. 0.
0, 0.
o,
0.
0,
0 •
Q _
o,
o.
o.
0.
o.
o(
o.
o.
o.
o.
o..
o?
o,
o.
o.
o,
0.
o.
o«
o.
0.
Ot
o.
o.
o.
0.
o.
o..
0.
0.
o"
0 ,
°\
o,
2,06E«08
Q
0
0,
9.50E-02
9'35E-08
0,
o?
ji
o.
o.
Si
o.
o.
o«
1 .93E + 02
o; li Y
2.97E-03
o.
o.
1.86E-00
o,
ft
Q
1^38E»0«
?|92E«i«
o.
l\K.O*
0*
°I
7^32E»03
oj- " "
0^
Q
Q
Q
;!.,,„
TINES
WO, FLUX*
; N
BASI
10. Y
o.
o,
3.27E-07
0,
0,
l,7JE-Ofl
0,
0,
o,—
1,67E*12
0.
o. - - -
0,
0,
0. ' ~ '
l!75E"20
8.29E-03
0.
0,
0,
7.28E-Oa
0.
o, - -
0,
0.
0,
o.
0.
o,
o.
o.
I O O O O O C
>
t
1
1 1
' 6 l
3 ."9
UCL
S «
o.
o.
e,
o.
o.
1.
o.
o.
o,
o.
o.
o.
o,
0,
o.
o.
o.
2.
o.
o.
0.
2,
0.
0.
o.
o.
o.
0.
0.
0.
Oi
o.
0.
o,
0.
0.
2.
CASE E"t
8E+13N/CM**2-SEC
IDE THERMAL POWE
MT OF HEAVY ME
50, Y 100,"
0.
0.
33E-25 0,
0.
0,
19E-00 T.53E-OS
0.
0.
0.
0.
0.
0.
o,
0.
<>•
o.
o.
87E-07 7,6«E»13
- o!
52E-08 6l71E-l«
0.
0.
0.
0.
Oi
0.
o.
- -• - o,
o,
0.
o.
o.
o.
o,
o.
31E-01 1.96E»02
R, WATT8
TAL CHARGED
Y--500.— Y
0,
0.
0.
_ 0,
c|
o.
o.
o,
o.
ot
o.
o,
o.
o.
Oi
o,
o(
o,
o,
Oi
o,
0.
o.
0.
o.
o,
o,
9t
o,
o.
Oi
o.
o.
l.OOE-03
Clad
TO REACTOR
-"1000, Y 5000, Y
0. 0.
0, 0,
o,
o,
2.05E-08
0,
0,
0.
0,
0.
0,
0,
0,
o.
o.
0.
o,
o.
o,
o«
o.
o.
1
1 I
DOOOOOOOOI
0,
0.
0.
8.138-05
0,
0.
2.91E-29
0.
0,
o.
o.
o.
ot
o,
o.
o,
o,
o.
o.
Oi
- o ,
0.
o,
ot
o,
o.
- o, -
0.
o.
0,
0, .
o.
o, - --
o,
o,
o,
o.
o.
TABLE A-IV-2
(continued)
toooor *
o,
0.
o.
o.
o,
a.55C-«0
0,
0.
o, - -
0.
0.
o,
o,
o.
o!
o.
o.
o*
0,
o.
o.
0. — •
o.
o.
0. "
o.
o.
o, -•
o.
o.
o,
o.
o.
fl.7lE«05
100000, Y
o.
o.
o, -
o!
o,
o.
o.
o. •---
o.
o,
o>
o.
o.
0,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o. -
o,
o.
o,
o.
o.
o.
o.
o.
o,
o.
o.
3,3IC«09
******* V
0.
o.
o.
S:<
o.
o.
o.
o.
0.
o.
o.
«t
o.
0.
o.
«!
Of
o.
o.
0.
o,
o.
o,
0.
o.
.0.
o.
o*
o.
o.
o,
o,
o.
o.
0,
o.
1.82E-05
A-IV-
109
-------
PHR « B
POWER?
HE a
TU207
7U?09
Pe?ofe
Pg?07
Pg?08
?g;>09
P82 j o
PB;?U
BI210
«I?1S
P0313
P0?l«
; — po? js
Pd?l&
' — ATS 17
5?N?j9
RN*20
— SNJ22
FR?21
"— RA?23
*C?27
TH227
TH228
TH329
TH230
TH231
PA232
CHA
9.
c,
0.
o,
9,
0.
0,
o.
o,
o!
o,
o.
9,
0,
0 ."
8,
0,
" o,
8,
0,
Oi
o,
o.
0,
0.
0,
6.
9,
- o, -
o,
o,
o. "
9!
"0»
9,
9.
0,
0,
8.
8,
0.
8,
9,
0,
"8,
< 0.
U • 33.000 . «
ASTE DECAY
S6.80MW, BURNUPa 33000, M
R6E~ DISCHARGE
3*'11E-09
S .B8E-05
1.23E-11
Q
Q
°*
3*«5E-09
3022E->Ot>
u,00t»l 1
0.
l.'50E-12
«,01E»OB
2*11E«MO
1?37E-10
7.'«9E»10
9[iBE<*OS
5.9SE-10
s'sOE-05
5.J6E-10
1.2BE-09
'3.66E-1 1
3.58E-08
7.67E»05
2.27E-11
5.63E-10
1.38E»ia
3.61E-08
l|o5E-09
J .36E«0!j
6.01E-13
0.
1 . 12E-00
7,aiE-07
7.22E-05
1.62E-OJ
1, Y
8.
" l|60E-05
0*
3*'66E-ta
•5.9?!EM1
s|'81E"08
aJlUE-io
3 9 B E ffl 1 0
6 y 9E * 0 5
9*75E«!C
6.53E-08
7.83E-05
7.75E-10
7l?5E"05
a*fl7E-!l
5.18E-08
6.5«E-05
2.29E-11
2187E-16
7j«9E-10
5*05E"08
6.23E-05
1,05E"09
6.28E-07
6.79E-08
6.02E-13
l*iaE-06
7,aiE-07
o,
fl,a3E-oa
1.65E-05
riMES
•ID, FLUX«
N
BASI
10, Y
6,
2.17E-08
1 .33F-06
1,«7E-H
9,
o.
9,
7)a2E-13
2I28E-07
o!
2',8SE»07
2.76E-06
2.52E-10
1,51E"09
5.39E-06
1 ,99E-09
a,96E"99
3.16E-07
6.50E-06
3.9UE-09
1.72E-09
2.92E-07
6,92E"Ofc
3.5UE-09
1.52E-09
2.36E-10
2.51E-97
?|70E-H
3,08F.-09
t ,29E»15
l,aiE»99
3.63E-09
8,89E-ia
2.U5E-07
S.19E-06
l,2«E"09
6!79E-08
6.16E-13
9.
5.S9E-07
7,«2E»07
8.
e|o8E«06
CASE
S.'96E*13N/
JCLIDE THE
SB MT OF
50. Y
0.
5.91E-OB
S.96E-07
7.18E.11
0.
9,
9,'
2.3oE»10
l.llE-ir
6.S5E-08
1.02E.07
1.26E-09 -
9.
7.02E-10
78fe3E"07
1.23E-06
1.23E.09
7S33E-09
2lbOE-09
2,«1E-06
9.70E-09
2.aoE-08
8.55E.07
2.91E-06
1.91E-08
8.37E-09
7.93E.07
2.69E-06
1.72E-08
7.83E-09
6181E-07
2.U3E-06
l,3lE«10
1.89E.08
2.1CE*15
6.85E-09
9.87E-99
2,33E»06
6,OaE-09
7.50E-07
6.80E-08
6.78E-13
9.
5.59E-07
7.83E.07
9.
a,U8E«oa
8.08E-06
E-l
CM**2-8EC
RHAL POWER
HEAVY MET
JOO. V
0,
7.07E-08
3.68E-07 '
?,52E«JO
0,
0.
o,
a.oae-io
3.28E-11
7,8aE-08
6.30E-08
9!
2,08E«09
9.I3E-07
7.63E-07
2^U9E»08
S.llEi-09
3,«OE«08
S,29E»08
1.03E-06
1.80F-06
2|93E.08
9,a9E»07
!,67E»06
3.78E-08
2.60E.08
7.68E-10
8.1WE-07
1.50E-06
a,60E-10
3.29E*08
2.36E-15
2,aoE-08
1.18E-08
1.62E-13
7.96E-07
1 ,aaE»06
2.11E-08
9.6aE-07
6.81E-08
el
5,59E«07
7,a5E«07
8,
a,52E«oa
8.08E-06
"WATTS -
M CHARGED
- 500. " Y
0,
7.53E-08
'7.83E-99
6.09E-99
8.
8. - "
9,
1.95E-08
5.9lE«10 •
8.35E-08
1,}4E-«09
9^
3.75E-08
9.73E-07
1.62E-08
1,98E-07
3I31E-09
3.17E-08
8.22E-07
U09E-9&
3.82E-08
5.16E-07
7.09E-97
l.OJE-06
3,5aE«08
a.6aE-07
6.30E-07
8.19E-10
8,68E»07
3.19E-08
1. HE-OB
ala?E-15
5.81E-07
1.26E-OB
3.98E-13
8,a7E«97
3.06E-08
5.12E-07
3.83E-06
6.8fcE-0«
1,«OE«12
9.
5.59E-07
7.62E-07
8,
e!o6E-06
,
HE s -
TO REACTOR
1000, Y
e.
7.73E-08
2^a5E-08
8,
8,
8,
7.82E-08
2.17E-09
8.57E-08
J.18F-H
1.27E-07
8,
1.38E-07
l!33E-10
712BE-97
1.65E-06
3,aOE-09
2.60E-10
S,30E»06
1 ,12E»06
38S«E-19
1.P9E-06
2.85E-06
2J91E-10
1,706-06
ajaoE-io
8.91E-07
2.62E-10
8,a8E-08
S.a8E«96
7.22E-15
2.3aE-06
1.29E-08
a,97E-13
8.70E-07
2.51E-10
2.06E-06
7.87E-06
6.98E-08
2.27E-12
9,
5.59E-07
7,82E«97
0,
a,95E-oa
8.08E-06
, 3000.- Y
9,
9.39E-08
3,85E-12
5.71E-07
9,
8.
9.
1.82E-06
3,aaE-oe
1.04E-07
6.S6E-13
2.02E-06
8,
2.18E-06
7197E-12
9.75E-06
1.15E-05
2.&1E-OS
a, 13E-09
J,56E-11
7.70E-05
3.78E-05
1.56E-06
J .88E-11
3.00E-05
6.65E-05
1.26E-06
1.7UE-1!
2.70E-05
5.90E-OS
1.02E-09
1.08E-06
1.57E-11
t ,oaE-06
-2.35E-05
385aE-18
5,«5E-05
1.57E-08
2,aaE-12
1.06E-06
l.SOE-tl
8.80E-05
3.95E-05
7.78E-08
l.HE.ll
8.
5.59E-07
9,50E-07
0,
8,08E-06
TABLE A-IV-
( continued'
10000, Y
9,
1.17E-07
8.89E-12
1.99E-06
8,
8.
9.
6,37E«06
8.80E-08
i.30E«07
1.52E-12
5.17E-06
6.
5,58E«06
1.51E-06
l,8aE-ll
3.81E-05
2.95E-05
sll5E-09
3.60E-S1
9I67C-05
1.70E-06
a,3aE-Jl
7,69E»05
2.32E-0«
1.57E-06
4.02E-11
6.91E-05
2.96E.08
1.27E-09
! .35E-06
3.63E-11
3.65E-06
6.01E-05
6,17E»ja
1.90E-OQ
J.96E-08
5.63E-12
1.32E-06
3,«7E-ll
1 ,68E-Oa
7.70E-05
9.19E-08
2.56E-11
8. .
5.59E-07
l.!9E«06
8.
S.OBE-Ofl-
8.08E-06
100000, Yi
0.
7,98E,.07
aIi5E-05
8,
0.
8,
l.a9E-OS
sleiE-o?
2.35E-H
a,06E-OS
0.
«,39E»OS
1.03E»05
2,saE»10
7995E-08
2.32E-08
3.a9E.08
5.55^-10
7lfeOE»08
J.15E-05
6.69E-10
6,oaE-oa
5.a2E-03
1.07E-05
*.20E-10
5,auE-oa
8.81E-03
9'l5E-06
5.60E-10
8.51E-05
U26E-12
l!33E-07
8,fc6E-H
8.98E-06
5.36E-10
3.91E-03
a.7iE«oa
2.70E-07
3.96E-10
8.
S.59E-07
e!
a,93E-04
B,08E-06
0
******* Y * —
Ot
1.09E-06
1 ,aOE-09
U8AE-04
0,
o!
3.33E»Oa
U86E-07 -
1.21E-06
2,flOE-10
1 ,09E-05
0.
1.16E-09
2l90E-0«>
i.aie.oa
0,79E«08
5.67E-09
2,oaE-oa
1 ,58E=05 f
6.84E-09
1.21E-02
aliaE.09
1.86E-Oe
1.08E-02
1.19E-08
1.26E-05
5.72E-09
i,90E-Ofl
1.27E-88
1.29E.H
9.93E-03
8J87E-10
1.23E»05
5,a7E»09
8.75E-03
1.J7E-08
2.S5E-07
a!
5.59E.O?
1.10E-OS
9,
J,66E«Ofl
8,08E«06 A-IV-
110
-------
PHR . B.U « 33.000 WASTE DECAY TIMES
POWER* 38.80MK, BURNUPs 33000.**
U?32
U238
U?35
U>38
"P236
I — NP?37'
I Np?j9
NP?UO
PypTf,
i — Pu?38
! PU'39
'— Pu?ai "
PU?a2
Pu?a3
^ - p j ? a a --
PU? a5
AWJaS
,— AM388
CM302
CH?a5
S£l
CM350
Cf 2a9
1 CF250
— CF>51
CF352
1 — Cf ?58
E3353
TOTAL
CHARGE [
0,
o.
0.
5.65E-02
1 .90E-03
0,
o.
8.16E-03
0.
0,
0,
6.
0,
0,
6.
0,
0,
o,
0.
o.
o.
o,
o.
o.
o.
o.
o.
o.
- o,
o.
o.
o, • • -
o,
o,
o,
o!
0.
0.
o.
o,
o.
o.
o.
o.
o.
o,
o.
6.65E-02
>ISCHARGE
2.85E-06
1.29E-06
7.9aE-09
2i39E-06
"3.5?E-05
9.99E-06
3.97E-05
0.
3.98E-20
9.08E-63
9.A3E-03
2.98E-23
2.32E-02
8.01E-17
o.
sil«E-02
'2.59E-02
2.57E-08
2.88E-13
8,83E«19
o.
7.36E+00
1.31E-06
6 12E-06
6.27E-01
6.16E-20
3.91E»?8
1 |a9E»01
6.P2E»Oi
li39E-03
3.01E-08
1.10E-09
1.86E-08
2|l8E-18
3,aOE«2a
1 .6"E-16
a.55E«Ofe
a.aoE-07
- 3.93E-10
1.82E-07
«a[53E-19
-1.86E»33
- - 1, Y
l!'S2E-06
"2.83E-08
1.55E-na
2.39E-06
3.52E-05
9.72E-06
3.97E-05
P.
5.57E»t8
0,
9.63E-03
o.
2.32E-02
2,81E-17
0.
5.35E-05
1.56EtOO
5.15E-02
7.89E-02
2.53E-02
2.57E-08
o!
T.37E+00
6^1 1E-06
6.27E-01
*.31E»20
1 .?!E-a5
2.23E+02
l.asE-fll
l)39E-o3
l'lOE-09
1 .86E-08
0.
2.18E-18
1.05E-81
1 ,«>8E-1fe
8.13E-06
3.37E-07
3.93E-10
1.2«E-07
0.
•3.70E-28
o.
J.OOE+02
«D, FLUXB :
Nl
BASI!
10, Y
i,a3E«oe
3.08E-06
3.96E-07
2.10E-08
2.39E-06
3.52E-05
3|97E-05
o.
t,05E-16
0,
9,65E-03
0,
2.32E-02
5.30E-16
o,
5,99E-Ob
2,aOE»00
5.16E-02
1.25E-01
1.65E-02
2,57E-oa
8.97E-U
2.33E-15
0.
7.50E+00
1.25E-06
5.86E-06
6.26E-01
8.18E-19
0.
3.22E-08
1.22E-01
8.78E+01
1.39E-03
3.00E-08
1.10E-09
1.U6E-08
0.
2.17E-18
0,
1.68E-16
7.01E-07
2,86E»09
3.90E-10
1.I8E-08
0.
o!
5.02E+01
CASE
E*l
5,"98E+13N/CM**2»SEC
JCLIDE THERMAL POWER
3s MT OF HEAVY MET*
50. Y 100. Y
1.U3E-08 l,a3E-08
2.22E-06 1.37E-06
2.0UE-06 a,HE-P6
a.iiE-oa 5,eeE-oa
2.39E-06 2,aOE-06
3.5UE-05 ' 3.57E-OS '
9.50E-07 8.91E-08
3.97E-05 3.97E-05
o. -o.
5.a7E-16 1.10E-15
0, 0.
9.73E-03 9.88E.03-
0, 0,
2.31E-02 2.30E-02
2.76E-15 5.5SE-15-
0. 0.
3.57E-IO 1.86E-1S
1.75E+00 1.19E+00
5.22E-02 5.29E-02
2.13E-01 2.33E-01
2,876-03 2.32E-08
2.57E-Oa 2.57E-08
8.97E-11 8.97E-11
1.22E-18 2,aaE»18
0. 0,
7.80EtOO 6.89E+00
I,0a£-i06 8,30E«07
8.89E-06 3.89E-06
6.28E-01 6.21E.OI
a,2«E-18 8.52E-18
0, 0,
l.HE-Oa 8.81E.05
5.UE-02 1.73E-02
1.02E+01 1.51E+00
1.38E-OS 1.37E-03
2.98E-Oa 2.96E-OS
1.10E-09 1.10E-09
l.afcE-OS l.afcE-08
0. 0,
o| o*.
1.65E-16 1.62E-16
6)9lE-lfc &I75E-16
3.76E^10 3.68E-10
3.31E»13 6.77E.19
0. 0,
0, 0.
0. 0,
2.0SE+01 1.05E+01
WATTS '
IL CHARGED
-500. Y
1.83E-08
2,92C.Ofl
2.13E-05
9.83E-08
2.81E-06
3.80E-05
6.76E-10
3.97E-05
o.
5.52E-15
0,
l.OaE-02
9.
2.22E-02
2.79E-18
o!
5.27E-02
5.82E-02
2.27E-01
l,7fcE-06
2.57E-08
l!23E«13
0,
3,6«E*00
1.38E-07
fc,28E»07
5.99E-01
8.28E-17
0.
1.82E-05
2.96E-06
3.35E-07
1.33E-03
2,79E»fla
1.10E-09
1.U6E-08
0.
1.78E-18
o.
1.38E-16
0.
5.76E-16
2.67E-10
0,
0,
0,
0.
«,61E»00
HE'S
TO REACTOR
" 1000. Y
l,a3E-08
2.37E-10
a,37E-05
9.58E-08
2,aa£-06
8.08E-05
6.86E-10
S,97E»05
o.
o!
1,08E>02
0,
2.12E-02
5,57E-ia
0,
o.
1.08E-03
6.85E-02
2.16E-01
1.69C.06
2.57E-08
U.97E-11
2.85E-13
0.
l,fc3E»00
1.37E-08
5*73E«01
8.55E-17
0,
1.85E-06
5.90E-11
2.02E-15
1.27E-03
2.60E»Oa
1.10E-09
1.86E-08
0.
o!
1.13E-I6
0.
8.72E-16
1.82E-10
0.
0,
o.
o,
2,52E»00
5000, V
l,a3E«08
a.83E-27
2.28E-OU
9.88E-Oa
2.78E-06
5.87E-05
a,63E-10
3.97E-OS
0,
5,50E»18
o.
1.10E.02
0.
1,88E»02
2.78E-13
0,
o.
3.77E«ia
i , DIE. 01
1.83E-01
1.21E-06
2.57E-08
a,97E-ll
1.22E-12
0.
J.72E-OJ
1.63E-16
7.65E-16
3,99E«01
8.26E-16
0.
o'.
2.00E-15
9,HE-0«
1 ,aaE«oa
1.10E-09
l,«5E«08
o.
2,97E«15
0,
2.30E-17
0.
9.5BE-17
8.35E-12
0.
o,
o.
o,
»,76E«Ol
TABLE
A-IV-2
(continued)
10000,- Y
1,«3E"08
5,89E-a8
a,55E-oa
9.35E-08
3.23E-06
7.28E-05
3.05E-10
3.97E-05
0,
1.09E-1S
0.
1,10E«02
0.
9.38E-03
5.52E-13
o!
a,7lE-2«
1.28E-01
8,5f.E-02
7.98E-07
2,55E«Oa
a,97E-ll
2,a3E«l2
0.
6.39E-08
2.08E-26
9,5fcE-26
2.53E-01
8,aeE-ifc
2|l7E-2«
0,
3.08E-15
5,«9E«0«
6.9QE.05
1.10E-09
1.88E-08
0.
a,05E-16
0.
3.13E-18
0,
ll7eE.13
o.
o,
o.
o.
a.eeE.oi
100000, V
1.83E-08
0,
3.75E-03
7.37E-08
9.52E-06
9.36E-05
l.fclE-13
3.97E-05
0,
9.99E-13
o.
1.07E-02
0.
2,69E*06
5.08E-12
0,
•o,
o,
1.72E-02
S.aoE-06
a,18E«10
2,17E-0«
a,95E-u
2.22E-11
o.
3.55E-07
0,
0,
7,27E«05
7.7aE-15
0.
0.
o.
3.68E-18
S.ie»E-07
i,22E*10
U20E-08
0.
1.09E-31
0.
8,39E«3a
0.
3.51E-33
0.
0,
o,
o,
o.
******* Y
1.83E.08
0.
8.82E-03
l.OlEoOa
l.OOE-05
0,
3.97E-09
0.
a,57E-12
0,
8,01E»03
0,
a,58E-ll
2,31E»11
9,
0.
1, oaf. 09
1.18E.10
a,t9E.05
8.76E-1S
i .02E«10
0,
0,
0.
Ot
i,23E-OC
o!
0,
c,
i,67E«13
0.
o.
1.06E-09
2.08E«09
0.
o.
o!
0.
o,
o,
o,
o,
-v
111
-------
PWR • BU • 33.000 WASTE DECAY TIMES CASE E-l r „
FP's TABLE A-IV-2
POWER* SS.'flOMW, 8URNUP» 33000,MO, FLUX« 3,'<»eE*l3N/CM**2»SEC (continued)
NUCtlDE THERMAL PO«EI!rTATTS *"
BASIS * MT OF HEAVY ME 'Al CHARGED TO REACTOR
CHARGE "DISCHARGE 1, Y 10, Y 50, V 100, ' 500, Y 1000, Y 5000, Y 10000, Y100000, Y*******
H 3 0, 2,02E»03 1,'97E-03 1,18E«03 1.20E.04 7.03E-06 1.20E-15 6.95E-28 0, 0, 0, 0,
ZN 72 0, 1,S8E-30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
~OA~72 0, 3.20E-29~0," 0, 0, "" 0, " 0, 0, "" 0. 0. 0, 0,
GE 72 0, 0. 0, 0, 0, 0. 0, 0, 0, 0, 0. 0.
SA 73 0, 0» 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.
[—GE 73 o. -o, o. o, o, - o, o. o, o, o, ~ o. - o.
GA 74 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.
[_GE 7« o, o, o. o, o, o, o, o, o, o, o, o,
GA"75 0, 0, 0^ 0, 0, 0, 0, 0, '" 0, 0. ~~ 0, 0,
GE 75M 0, 0. 0, 0, '' 0. 0, 0, 0, 0, 0, 0, 0,
GE 75 0, 0. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
I~AS 75 0, 0^ 0, " - 0, - - 0, 0, 0, 0, 0, 0, 0, 0,
"A 76 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. 0. 0,
I SE 76 o, o, o, o, o, o, o, o, o, o, o, o,
A3 76 0, - 2.49E-5I~"Oj 0, 0, 0, ' 0, 0. 0, 0, -" " 0, 0,
SE 76 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
GE 77M_0, 0. 0, 0, 0, 0. 0, 0, 0, 0, 0, 0.
I GE 77' 0, 1,37<»116 0, ~ 0, " 0, ~ 0, 0,— 0, 0, 0, 0, 0,
*S 77 0, 3.50E-34 0. 0, 0, 0, 0, 0, 0, 0, 0, 0,
_S£ 77M 0, 7.03£«37_ 0, 0, 0. 0, 0, 0. 0, 0. 0, 0,
SE 77 0, 0, 0, 0," 0. 0, "0, 0, 0, 0, - " 0, - 0,
GE 78 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0. 0,
AS T8M_0, 0. _ 0. 0, 0, 0, 0, 0, 0, 0, 0, 0,
[~AS 78 • o. o, - o. - o, o, o, o, o, o, o, o. --- o,
! SE 78 0. 0, 0, 0, 0. 0, 0, 0, 0, 0, 0, 0.
I *S 79 0. 0 0 0, 0, 0, 0, 0, 0, 0, 0, 0,
8E'79H~0. 0, 0, 0, . 0, 0, 0, 0, 0, 0. 0, " 0,
SE 79 0. 1.50E-04 1.50E-04 1.50E-04 l.SOE-04 1.50E-04 1,49E»04 1.48E-04 1.42E-04 t,3SE»0« 5,16E>03 J,«
BR 79 0, 0, 0. 0, 0, _°«_ °« °« °« °t 0, 0.
I AS 80 0, 0, "" 0, ' ""0, 0, 0, ' 0, ~0, 0, ~ 0, ' 0, 0,
SE 80 0, 0, 0, 0, 0, 0, 0. 0, 0, • O. O. O,
I BR 80H 0, 0. 0 0, 0, 0, 0, 0, 0, 0, O, 0,
BR 80 0, 0, 0, 0, 0, 0.- 0, 0, 0, 0, ~ 0, 0, '
KR 80 0. 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0,
*S 81 0. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
[—SE 81H-0. 0, 0. 0, 0, 0, — 0, 0, 0, 0, 0, 0,
SE si o. o. o. o, o. o. o, o, o, o. o. e,
BR 81 0, 0
-------
PHR • BU • 33*000 WASTE DECAY TIMES
CASE E-t
FP's
POWER" 38,'OOMK, BURNUP" 33000,MUD, FLUX« 3,'98E*13N/CM«*2»SEC
TABLE A-IV-2
(continued)
' NUCLIOE THERMAL"
BASIS m MT OF HEAVY HE 'AL CHARGED TO REACTOR
KR 84
BE es
BR 85
KR 85M
KR 85
r "8 85
BR 86
KR 86
1 — RB 86M
RB 86
BR 86
r BR 87
KR 87
RB 87
1 — SR 87FT
BR 87
BR 88
EKR 86
RB 88
BR 88
KR 89
RB 89
Y 89
KR 90
nfl 90
BR 90
Y 90M
r Y 90
ZR '90
KR 91
RB 91
8R 91
Y 91H
[— Y 91
ZR 91
KR 92
L- • RB 92
SR 92
Y 92
r- ZR 92
I KR 93
RB 93
— SR 93"
Y 93
ZR 93
LNB 93M
NB 93
KR 94
RB 94
SR 94
CHARGE— DISCHARGE -
o, o.
0. 0.
0.
o.
o.
Ot
o.
o,
o«
o..
o,
o.
o,
Ot
o.
o.
Ot
0.
o.
Ot
o,
o.
,
0.
o,
Ot
o.
o,
o. -
o.
o.
Ot
o..
o.
o.
o.
0.
0.
o,
o.
- o, --
o.
o.
0.
0.
o.
o.
o.
o.
o.
0,
ol
u,
o.
0,
Q
fj
o.
»..
5:
«,
o.
o.
i;
2.
y
0
o.
oj
i:
o o m o o o
o!
55E-03
26E-06
87Et02
«..„
I:
!;
<2.
o.
o,
0.
79E-05
1. Y
e.
o*
.„
«.
o.
°*
•»
°,
°.
4.07E-06
o.
o.
o.
1,26E-08
°»
o.
o.
°<
o,
o;
°«
o.
o.
t31Ct01
o.
o.
0« " ""
9.B2E+01
o.
4.41E*02
o,
oj
o.
o,
o.
6,16E»01
o
o<
o.
o,
o;
o.
o<
o.
o.
o.
2.21E-04
3.56E-05
o,
2' -----
°,
o.
JO, Y
0.
0,
o.
0.
0,
o , • - • - -
o,
o,
0,
0.
o,
o.
o,
1.26E-08
0,
0,
o.
o.
o.
o.
0,
o,
o.
I 3Mt«lO
o.
o,
o.
7.86E+01
0,
3,53Et02
0.
o.
0,
o,
o, .
9.10E-16
0,
0.
o,
o,
0.
0,
0.
0,
o.
o.
2.21E-04
1.45E-04
o.
o,
0,
o,
50, Y
o.
o.
0.
•
tOOOO, Y100000, »•••*••• V
e.
0.
0,
0.
0,
0.
Ot
0.
0,
0.
0.
o.
0.
1.26E«08
0.
0.
0,
o.
0,
o.
o,
o.
o.
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o. -••
o.
o.
o.
o.
o.
o.
o,
o.
o.
o.
2.20E-04
J.30E-04
0.
0.
0.
o.
o. ,-
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
0,
o.
1,26E«08
o.
o.
o,
o.
o.
o. ,
o.
o.
o.
0,
o,
o.
o. -
o,
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
0.
o.
o.
2.HE-04
3.17E«04
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
0.
o.
1.26E-08
o.
0.
o.
o.
o.
o.
o,
0.
o.
o.
0.
o,
o.
o.
o.
o.
o.
0.
o.
o.
o.
o.
o.
0.
o,
o.
o.
o,
o,
o.
o.
0.
2|fl9E«04
o.
o,
o§
113
-------
PWB
&EC*T TIMES
CMC
FP's
TABLE A-IV-2
POWERS
Y 9«
ZR 90
RB 95
3R 95
Y 95
ZR 95
NB 95M
NB 95
— MO 95
Y 96
ZR 96
NB 96
MO 96
Y 97
"— ZR 97
NB 97M
NB 97
[ — MO 97
ZR 98
NB 98M
NB 98
MO 98
NB 99
p MO 99 -
TC 99M
TC 99
RU 99
NBIOO
HOtOO
TCtOO -
Rutoo
NBtOl
^MQtOl ~
TCtOl
RUtOl
MQ 1 o2
TCt02M
TCt02
*— RIM 02
M0103
TCt03
Rutos
RHtOSM
RH103
M0108"
TCtO«
Ruto«
RHtOflM
RHto«
"— M0103"
TCtOS
S8.00MH5 BURNUPs 33008, MHO, PLUSe
CHARGE DISCHARGE
0, 0.
0.
6,
0,
o.
0,
0,
0,
0.
0.
o.
o,
o.
o.
o,
o,
o.
o.
o.
o,
0,
o.
o,
0."
o,
o.
0,
o.
0.
o.
0.
o,
o.
o,
o,
0,
o.
0,-
0.
o,
o,
0.
o.
0.
o,
o,
o.
o.
o,
o.
o,
o.
0.
0,
0*
1.31E+03
7.39E+00
2.35E+03
0.
0.
o:
1.09E-56
0.
o..
3.19E-7D
l.fl6E-7fl
2.53E-7a
0.
0.
o.
0.
0.
0,
1.53E-16
3.01E-17
9.66E-03
0.
0,
0
0
Oa'
0
o.
o.
*;
0.
o.
o.
°,
0.
2,12E*02
3 05E+01
0.
0,
o:
o.
0
0
::
3.-9«E«SSN,e
"••«"«
NUCLIDE THERMAL HOXEI
BASIS s MT OF HEAVY ME1
1, Y
0,'
o;
°< " ~
°!
o: .
1<87E*02
1.05E+00
3.65E+02
0,
o;
o
o.
0
o
o; -
0,
0,
0.
o
o* -
o<
0*
3.09E-36
6.15E-37
9.66E-03
0.
0,
•*
0,
Q
0
Q
Q
0
o.
0.
o<
oj
o.
6,65E*00
1.25E+00
o,
o,
ol
o.
Q
0 •
0
10, Y
o.
o.
0,
o,
o.
1 , 1 1 E»l 3
6,27E>16
2.22E-13
o,
o.
0.
o, "
o,
o.
o .
o.
o,
o,
o,
o,
0,
0.
o,
o,
o,
9.66E-03
0.
o.
0.
o.
o,
o,
o, -
o,
o,
o,
o..
o.
o.
o,
o,
o,
o.
o,
0 |
o.
o,
o.
Oi
o,
o , - - -
o,
50, Y
o.
o.
0.
o.
o.
0. -" "
o.
o.
0. "
o.
o.
0.
o.
".
o.
o,
o.
o.
o.
o.
o.
0.
0.
o.
9.66E-03
o.
o.
o.
0.
o.
o.
0,
o.
o.
o.
o..
o.
o.
0.
o,
o.
o.
o.
o.
0.
o,
o,
o.
o.
o,
100,
o.
o.
o, "
o,
o.
o.
o,
o.
o.
o.
o.
o.
o.
o,
o.
o.
0.
o,
o,
o.
0,
o,
o.
o,
o,
9,66E>03
o.
o,
o.
o.
o,
o.
o,
o,
o,
o.
o,
o,
0,
o.
o,
•
o,
0.
o,
o,
o.
o<
o.
o.
0.
o.
(continued)
A«, CHARGED
500, V
0,
o.
6,
0,
0,
0 a
o.
o.
o.
o.
o,
0 §
o.
0,
o.
o.
o.
o,
o.
o.
" o.
o.
o,
0.
o.
9.65E-OS
- o,
o.
o,
u t
o.
o,
o.
o,
°»
o,
o.
"•
o.
o.
o.
o.
o.
- o,
o.
o.
0,
' Ot
o.
o.
TO REACTOR
1600, Y
0,
o.
o,
o.
o.
o.
o,
0.
6.
o.
o.
o,
o.
o.
o.
o.
o,
0,
o.
o.
o,
o.
o.
o,.
o.
9.63E-03
o.
0.
0.
,
o,
0."
o, - -
o,
o,
,
o,
o,
0,
o.
o,
,
o.
o.
o, •-- -
o,
o.
°t
o.
o,
o,
S000« V
o.
o.
0,
o.
o.
o,
o,
o,
o.
o.
o.
o,
0,
0,
0.
o,
0.
0,
o,
o.
o,
o,
o,
o.
o,
9.51E.03
o,
o,
o.
,
o.
o,
0, -
o.
o,
•
o.
Oi
o,
o,
o.
•
o,
o,
o.
o,
o.
1
o.
o,
o,
0. 0. 0.
o.
o,
o,
o.
o,
o.
o.
o.
o.
o,
o.
o,
o.
o.
o.
o,
0,
o.
o.
o.
o.
o,
o.
o.
o!
o.
o.
,
o,
o,
o.
o,
o.
1
o.
o,
o.
o.
o.
•
o.
o.
o, — -
o.
o.
Ot
o,
o.
"•
o.
o.
c
o.
o.
o«
o.
o.
0,
o.
o,
1
o.
o,
o, -- -
o,
o,
o.
o,
o,
o.
o.
o,
o.
o.
6.97E-03
o.
o.
o,
•
o,
o,
o,
o.
o.
•
o.
o.
o.
Ot
o.
•
o.
o,
o.
o,
«.
1
Ot
o.
o,
o,
«
Or
0,
t
0.
o,
o.
o.
0,
•
0,
0,
o.
0,
o,
o,
0,
o.
o,
o,
o,
0,
o,
3.A7E.OS
0.
0,
0,
o.
o.
o,
o.
8(
i
o.
0,
0.
o.
o,
t
o.
Ot
o.
o,
«•
1
Ot
o,
S; A-IV
114
-------
PUR . BU • 33*080 MA8TE DECAY TIMES
CASE E-i
36,'aOMH,
33006. HMD, riUXB 3.*9BE+l3N/CM**2-8EC
TABLE A-IV-2
(continued)
RU105
RHtOSH
RHIOS
PDtOS
TCtOfc
RU106
RHt06M
RH106
PDt06
RIM07
RMt07
'-PDt07H-
P0t07
AGt07
^ RUtOB
RHtOB
r— AGtOB
CDtOB
RM109
P0109M '
P0109
AG109H
46109
CD109
RHtlO
POtlO
ACUOM
AGllO
Ecot to
POttlM
POttt
A C 1 1 1 M ' ' '
AGttl
COtllH
ECOtll
P0112
AGU2
CDtlZ
PDU3
AGU3M
ECOU3H
CDU3
tNtlS
P0tl4
*6tlO
CINU4M
INU4
9Ntl4
POU5
CHARGr
8.
8.
0.
8,
8.
8.
8.
8.
8.
8.
8.
8.
8.
8,
8.
8.
8,
8.
8,
8;
8.
8.
8.
8.
8.
0.
8.
0,
8.
8.
e!
8.
8.
8,
8.
a!
e.
o!
e.
8.
e,
e.
8,
8,
8.
8,
8,
DISCHARGE
"" 2,01C*34 '
8,
8,
oj.
4,79Et03
ii
8,
9,60E-06
8.
1
8,
3*63E-09
8,
3.46E-09
6.
4?63E«01
2,59E»00
1:
8. "
6,06E-06
2.22E-62
8.
8.
8.
o . -
1.52E-02
8,
8.
8.
8.
_0 .... ...
1.47E-04
*,18E»04
~5:
. *• Y
8*
1.91E+01
3j39E*03
>on#oniooooooooo«;oooa
» -« »
ni A o
mm n
• • •
o o o
00 0-
o.
2,81E*01
I,57E«00
j:
2,84E-1J
\\
° •
1*4BE>02
8,
1J7E-05
!:"""
- - - NUCLIOC THE*
BASIS » MT OF
10, Y 50, Y
8, 0,
8. 8.
0, 0,
0, 0.
0, 0.
J.85E-02 3.99E-14
8. 0,
6.83E»00 7.07E-12
8,
8,
8,
8,
9.60E-06
8,
8,
8.,
8.
8.
8.
8.
8,
8.
1.79E-11
8,
1.71E-11
8,
0, .
3.44E-03
1.92E-04
8,
8,
8,
0, '
8,
8,
8,
8.
8,
0, "• '
8.
8,
8,
9.48E-83
8,
8,
8,
8,
8,
1.68E-2S
7.92E-25
8,
0,
8,
8.
8.
8.
9.60E-06
8.
'
O O 0 O O O
o,
3*SOE.21
8.
3.34E*21
8.
8. '
1.42E-20
7.92E-22
6.
8.
8.
8,
6,
8.
8, ~
8.
8.
0,
8.
0.
8.
1.31E.03
8.
8. '
8.
8.
0.
8.
8.
8,
0.
KAt PO«EI
HEAVY ME
100,'
8.
8,
8,
8.
8.
a,17E-29
8,
7.S9E-27
8.
8,
8,
9.60E-06
8.
8.
8.
8,
0,
8.
8.
8,
0.
2.55E-33
0,
2.44E-33
0.
8,
8.
8.
0.
8.
8,
8,
8,
8.
8,
8.
8,
8,
8.
0.
8.
a!
o.
8.
8,
8. ' '
8.
8.
8,
8.
!, KATT3
•AL CHARGED
'- 500, Y
8.
8.
o, -
8.
8.
8,
8,
8.
8.
8.
8,
9.60E-86
8,
8.
8.
8.
- o,
8.
8.
8.
8.
8,
8,
8.
8.
8,
8,
8.
0,
8,
8.
" 8,
8,
8,
8,
8.
8.
8,
e!
2.75E«13
8.
0,
8.
8.
--0,
0,
8.
8,
0,
TO REACTOR
1000. Y
8.
8.
°.«
e!
a!
8.
8.
8.
8.
8,
9.60E-06
8.
8,
8.
8.
8,
8.
8.
*«
8.
8,
8.
a!
8,
8.
8,
8, - - -
8,
8.
8,
8.
8.
8.
8.
8,
6.
8.
8, -
8l
8, -
8,
8,
8, -
8.
8.
8,
e.
SOOO. Y
8.
0,
8,
8.
8.
o, -
8.
8.
8.
8.
0,
9.59E-0*
8,
8,
8.
8.
8,
8.
8.
8,
8,
8,
8,
8.
8,
o, -
8,
8,
0,
0, •
8,
8,
8,
8.
8, -
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8.
o,
o, - -
0,
10000. Y100000, Y**
0. 0,
8. 0.
8, 0.
0. 0.
8. 0.
8, -' 8,
8. 0.
0, 0.
0. 0.
8. 8.
8. 8.
8, " ~ " 8,
9.59E-0* 9.50E«0*
8. 8.
o, - o,
0. 0.
0. 0.
0, 0.
8. 8.
8. 8.
0, 0,
8, 0.
8. 8.
0, 0,
8, 8.
8. 0.
0, 0,
0, 0,
0, 0,
8. -' - 8,
8. 0.
0. 0.
o, - o,
8.
8. .
8.
8. - .
8.
o. ,
8.
8. .
8,
, .
, •
, i
. t
• *
• t
t •
••••* Y
69E.O*
4
A-rv-
115
-------
PWR . BU « 33,000 WASTE DECAY
TIMES
POWER* 38.40MW, BURNUP* 33000. MWD, FLUX»
CASE
E-l
3.'98E + 13N/CM**2-SEC
FP
c
'a
TABLE A-IV-2
(continued)
"" ' " NUCIIDE THERMAL" POWEI7~*IA7TS ~ " "
BASIS a MT OF HEAVY ME' AL CHARGED TO REACTOR
AGM5M
AGtlS
COUSM-
CD115
INU5M
1 I N 1 1 5
[_AGU6
COU*
iNt 16M
INU6
i 8*n is
i AGU7
COU7M
"-COU7 -"
IN117H
INU7
1 SNU7M
SNU7
1 cotie
INU8H
iNtlB
3N118
r~ co \ i 9pi
COU'
INU9M
IN119
SNU9M
SNtj9
1 CD120
INT20M
IN120
3N120
CD121
IN121M
I XN\ 21
3N121M
1 SN121
3B121"'
1N122
3Nt22
C8B122H
8B122
TE122
IN i23w
!Nt23
SN123M
•"SNtZS
SB123
TE12JM
T£t23 -
CHARGE
8.
8.
0.
0.
8.
0,
8.
8.
0.
8.
8,
o.
8.
8,
8.
0.
8.
8.
8.
8.
0.
8.
8,
8,
8.
8.
8.
8.
8.
8.
8,
8.
8.
8..
8,
0,
0.
8.
8.
8.
8.
8,
8,
8.
0,
8.
8.
8.
8.
8.
6, •-' '
0.
DISCHARGE
8.
8.
1.37E-01
6.87E.24
4.03E-24
8.
8.
8.
0,
0 •
8.
8,
e:
8 1
8.
0.
3.fe6E«OS
8.
8?
9.
o,
ej
8.
8.
1,271-82
8^
'0, ~
8.
0,
8,
0.
7.66E-07
8.64E-49
0,
o
8.
8.
1.95E-19
8.
0 . ,
8.
1,45E*01
o
8.44E-04
o;
0.
1, Y 10. Y
Q
Q
7,24E»03
o]
8.
8,
0.'
0,
ot
o
0
0
Q
0 ~°
o.
8,
Q JSt^O*
6.
oj
0,
8,
0,
0-
°^
-o.
7.67E-03
8.
" 0,
0,
0,
-o, —
8,
«•>
8,
7.63E-07
8.
' 0^ " ~ •"
o
0,
8.
4.51E-J9
8,
0 .
8.
8.
5.27B*00
8.
0,
0,
8.
0.
0,
0,
o,
8,
8,
0.
8,
8.
8.
8.
8.
8.
0,
0.
o,
8,
8.
8.
8,
8.
8,
0.
8,
8.
8,
8.44E-87
8.
8.
8.
8,
0.
8,
8.
8.
7.02E-07
8,
8.
8.
8,
8,
8,
8,
0,
8.
8.
6.38E-08
8.
9.95E-13
8,
0,
50. Y
8.
0.
8.
8.
8.
0.
8.
8.
8.
8.
8.
8,
0.
8.
8.
8.
0.
8.
8.
0.
8.
0, ' —
0.
8.
0.
2.15G-24
8.
8.
8.
8.
o.
8.
8.
8.
4.88E.87
8,
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8 .
8.
100.
8.
0.
8.
0.
8.
8.
8.
8,
0. "
8.
0.
o,
0.
0.
0.
0.
8.
*>.
8.
o.
8.
8,
0, '
0.
8.
8.
0, •
8.
8.
8.
8.
8.
0.
8.
8,
o, -
3,09C«OT
8.
8.
8.
8,
8.
8.
8,
8,
8.
8.
8.
8.
8,
0 f
0.
500. Y 1000, Y
8.
8,
8,
8,
8,
8.
0.
6.
8.
8.
8.
8,
8,
8.
8,
8,
8,
o.
8,
8.
8.
8,
8,
0 f
8.
8.
0 1
8,
8.
0,
8,
8,
8.
8,
8.
0 1
8,
8,
8.
8.
8,
*>.
8.
8,
0.
8.
8.
8.
8.
8,
u.
8.
8.
8.
8,
8.
6.
- - o.
8,
8.
0 y
8,
8.
0 ,
8.
8,
0,
8.
8.
8.
8.
8. .
8.
8,
9,
0 1
8.
°t
8,
8.
8,
0,
8.
8.
8,
8.
8.
0,
05E«09 8,«1E«U
9.
' 8. - -
8.
8.
8.
8,
8.
8,
8.
8.
8.
9,
8,
0,
9.
5000. Y
8.
8,
0,
8,
8. '
8,
8.
8.
o ^
8,
8.
8.
8,
8,
8.
8,
8.
0,
8.
8,
8,
8,
8,
8, •- '
8,
8.
8,
8,
8.
8, -
8,
8,
o, - -
8.
8.
8.
1.20E-26
8.
8.
8,
8.
8.
8.
8,
8.
8.
8,
8.
8.
8,
8,
8.
10000, Yiooeoo,
8,
8.
8. -
8.
8.
6.
8.
o.
0,
8.
8.
0.
8.
6,
8.
8.
8.
8,
8.
8.
8.
8.
8,
8,
8.
8.
8.
8.
8.
8, • —
8.
8.
8,
8,
8.
8.
1.87E-46
8.
8. •
8.
0.
o.
8,
8.
8,
8.
0,
0,
8.
o.
8,
0.
8.
8.
8,
8.
8.
o.
8,
8,
8.
8.
8.
8,
8,
8.
8.
0,
8.
8.
8.
8.
8.
8,
8,
8.
8.
8.
8.
8.
8.
8,
8.
8.
8.
8.
0,
0.
8.
8.
0.
8.
8.
e.
8.
0,
8,
0.
8.
0.
8.
o.
8,
0.
?*****•« V
0.
8.
8.
8.
8,
0.
8.
8.
8.
8.
8,
8.
8,
8.
8.
8,
8,
0,
0.
8,
0.
0.
8,
81
8.
0.
0.
8.
0.
8.
8.
8.
0.
8.
0.
8.
8.
0.
0.
0.
0.
e.
0.
0.
0.
0.
8,
0,
0.
0.
0 •
0* A-IV-
116
-------
-?NL"-VBU ...* SS»°°
"*3TE DECAY
ssoob. MHO, FLUX«
CA3E B-l
FP's
TABLE A-IV-2
(continued)
9N124
SB124M
88(24
TE124
3N125H
88125
TE125H
— TE125 —
SN12&
SB126M
8B126
TE126
3N127M
3hit27
38127
TE127M
'net
M27
9B128M —
8B128
TE128
I leo
IE128
IN129M
3N129
3Bt29
TE129H
TE129
XE129M
XE129
3N130
8B130M
98130
TE130
I130M
1130
XE130
8N131
[— SB131
TE131H
TE131
n 3 1
XE131M
XE131
i — 9N132 •
8B132H
SB132
H32
~CHA
0.
0.
0,
0.
o.~
0,
0.
0.
0,
0,
o.
o.
o.
0.
o,
o,
o.
0.
0,
o.
0.
0,
o.
o.
0,
0.
o.
o,
o.
0.
0.
u,
o,
o.-
0.
o,
o,
o. -
o.
o.
o.
o.
o.
u.
o.
o.
o.
0.
RGE DISCHARGE
°I
o?
o.
3.43E+01
5.89E+00
6*09E-04
3.B1E-03
7.31E-03
o.
3*S2E»00
1 , 02E + 01
o,
j:
oj
°<
o.
0^
4. 17E+00
2.48E-08
o.
Q
£
o.
1 ,92*107
j:
2*19E-fll
2,l3E-42
5.83E«07
o,
Q
ol
-•' 8.02E-14
3.14E-16
8*63E*02
I'lSE-iO
S*02E+01
o*
6.09E-04
3.81E-03
7.27E-03
j:
2*4BE-26
1.10E+00
3,19E*00
Q
Q
Q
Q
!:
8*59E-02
1.01E-01
3,11E-08
o.
o, - -
0.
o,
1:
Q
Q
8*62E-J«
1.21E-13
i;
0.86E-31
3.80E-30
'
BAS
f 10, '
o,
o,
2,77E»18
0,
0.
0,
2,99EtOO
5.26E-01
0,
6.09E-04
3.61E.03
7.27E-03
0,
0,
0,
0,
9.19E-10
2.66E-09
0,
0,
0.
0.
0.
o.
o.
o,
o,
0,
3.13E-08
0.
o,
o.
o.
0,
o,
o.
o.
,0.
o,
o.
o,
o,
o,
o,
o,
o,
o,
o,
o,
IUCLIDE THERMAL PowEiir WATTS' "~~
IS • MT OF HEAVY HE' AL CHARGED
r so, Y loo, " -500; — y
0. 0, 0,
0. 0, 0.
0.
o.
0.
o.
1.04E»04
1.82E-05
0.
6.08E-04
3.81E-03
7.26E-03 --
0.
0.
0.
o,
0.
0.
0.
0.
o.
o.
o.
o.
o.
o.
o.
o,
0.
0,
3.13E-06
0.
0,
0.
o.
o, • -
o.
o.
o,
o,
o.
o.
o.
o.
0.
o.
o.
o.
8,
ol
o.
o,
o,
o.
0,
2.76E-10
4.85E-U
o, --- -
6,08E-04
3.81E-03
7.26E-03-
0.
0.
0,
0.
0,
o,
o.
o.
o,
o.
o,
o.
o.
0.
o,
o.
o,
3.13E-08
0,
0.
o.
0.
o,
o.
o.
0,
o.
0.
o.
o.
0.
o,
0.
o.
o,
0.
o.
o,
o.
o, ---
o,
o.
o,
o.
o.
o.
6.07E-04
3.80E-03
7.24E-03
0.
0,
0.
0,
0, -
0,
o.
o.
o.
o,
o.
0,
o.
o.
o.
o.
o.
3.13E-08
0.
o,
o.
o.
o,
o.
o.
o,
o.
o,
o.
o.
o,
o.
o.
o, - -
o,
o.
o,
o.
TO REACTOR
- looo, Y $000, y
0, 0.
0, 0,
o.-- o,
0, 0,
0, 0,
o,
o.
0,
o,
6.04E-04
3.79C-03
7.22E-03
0.
0.
o, -
o.
o, .
o.
o.
o,
o.
o.
o,
o.
o.
o.
o.
o,
0,
3. 13E-08
o.
0, '
8,
0.
o , -
0.
o.
o,
o.
0.
o.
o.
o,
o,
o,
o.
o.
o.
o,
o,
o,
o,
o.
o,
- o, •—
5.88E-04
3.68E«03
7.02E-03
0.
0.
o, -
0.
0.
o,
0.
0,
-o, -
0,
0,
o,
o.
o,
o,
o,
o,
o.
3.13E-OB
0,
o,
o,
o,
o.
o,
0.
o, — —
o,
o.
o,
o.
o,
o.
o,
o.
8,
o,
o,
t).
o.
10000. V
o,
e.
o.
o.
o.
o.
o.
o.
0.
5.68E-04
3.56E-03
6.78E»03
0,
0.
0.
0,
0,
0,
o!
o,-
0.
0.
o.
0.
o.
o.
o.
o.
3.13E-08
0.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
0,
o.
o.
o.
o,
o.
o.
o.
looooo. y
o!
o.
o,
o.
o.
o,
o,
o,
3.04E-04
I.91E-03
3.63E-03
0.
o.
o.
o.
o.
o,
o.
o,
o!
o.
o,
o.
o.
o, -
o.
o.
o.
3.12E-08
o.
o,
o.
o.
o.
o.
o.
o,
o,
o,
o,
0.
o,
o.
o.
o.
o.
o,
o,
o.
o.
******
o.
o.
0.
o,
o. /
o.
1
!72(
7,0«
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
3.00E
o.
o.
o.
o.
0.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o,
0.
o.
o.
0.
0.
o,
* y
?06
•06
•oa
117
-------
PHR » BU » 33»000 WASTE DECAY TIMES
CASE E-i
FP's
TABLE A-IV-2
(continued)
POWER* Se.aOMW, BURNUPi
XE132
SB133
TE133M
TE133
1133
1 — XE133H
XEtS3
CSt33
satsa
TEt3«
M38
1 — XE138-
C313an
cstsa
8A138
TE135
It35
— XE13SH
XEt35
C3135M
— C3135
BAt35M
BA135
XE136
C3t36
BA136
1137
XEt37
— CS137-
BAtS7M
BAt37
1138
XE138
CS138
~ BA138 -
M39
XEt39
8A139
Ut39
— XEtao~
cstao
BMUO
CEtao
CStal
BAtai
LAtai
CEiaf
PRial
CHARGE
o,
8.
0.
0.
0,
0.
8,
8,
8.
0.
0.
0,
0.
0,
0,
0,
0.
Of
o,
0.
o.
0.
o,
8,
0.
0.
8,
0.
0,
0.
0.
8,
0.
0.
-o.
• o.
0.
8i
0,
0,
0,
o,
o.
o!
o.
o.
o.
o.
o.
DISCHARGE™
Q
Q
?:83E.*2
Q
0
ll
8,
s'aiEtoj
Si
8,
0.
8.
1.09E-04
i,eaE-ea
o.
.
o,
5,a6E«02
si
1 ,76E»02
e*
1
8,
1
- 1*90E+00
S:
8.
8,
8.
i 33000. HMD, FLUX* :
1 , Y
8.
S;
0^
3*07E-fa
0%
°J
-------
PWR - BU • 33.000 HASTE DECAY TIMES
CASE E-l
POWER" 38.40MH, BURN(jP« 33000. MHO, FLUX" !
XEta2
Csta2
B»i42
LAta2
CE1B2
PR142
*0ta2
XEias
CS\U3
8*103
LAta3
i PRtas
NQ183
CEtaa
PRiaa
CEtaS
PRtaS
Nota5
CE106
PRtab
, CEla7
1 PRia7
1 — ND147"
PMia7
3M147
rCEtaB
PRiaB
Notas
•— PMtaeM--
PMtaB
3MtaB
t— PRta« —
ND149
PMta9
— SMta9
NDISO
PM150
E3M150 --
N0151
PMHJ
«M151 —
EutSl
PM152
L9M152--
EU152M
EU152
00152 —
PNtSJ
CHARGE D
0.
0.
0.
0.
0.
o.
0.
o.
o.
o.
0.
0,
o.
o.
0.
0.
o.
o.
o.
o,
Ot
o,
o.
Ot
0.
o.
Ot
o.
o.
Ot
o.
0.
Ot
o..
o.
Ot
0.
o.
o.
0.
o.
Ot
o.
o.
o.
0.
0.
o.
o.
o,
o, —
o.
ISCHARGE "
!:
!:
o.
6.a3E»67-
j:
o,
7,?4E»37
3.55E-01
o.
o,
7,01E+02
6.68E+03
!:
;.
8
o,
o.
2?72E«02
5^01E*01
Si
0.
2.336*01
1^22E*00
•:
2*62E>22
•o.
S:
o*7«E.45
2.19E*00 '
|:
1*57E-01
!:
" 1, Y
!:
!:
i
i
0 ^
3.44E-05
;»
0,
0.49E+02
4.25E+03
I:
1
3.03E-07
«,39E+01
1*14E*00
6,01E-02
i
5:
o.
2|lflE»00
j:
l*53E-01
!:
- - - • • Nl
BASI.
10. Y
o.
o,
0,
o,
o.
o.
o.
o.
o,
o.
o.
o.
o.
o,
o, - --
1.47E-01
t,39E*00
o.
o,
o,
o,
o,
o,
o,
o.
o,
o.
0.06E+00
o.
o,
o,
o.
Ot
o,
o. .
o,
o,
o.
o. -
o.
o,
o, -
o.
o,
2,03E*00
o,
o.
o,
o,
9.09E-02
o,
o,
J.*98E*13N/f
JCLIDE THEf
) • MT OF
50, V
0.
0.
0.
0.
0.
o. —
0.
0.
0. '
0.
0.
o, •- — -
0.
0.
o.
fl.79E.17
0.53E.16
0.
0.
0.
0,
0.
0.
0.
0.
o.
o.
1.03E.04
0.
0.
0.
0.
- o.
0.
0.
o. - -
o.
o.
0.
o.
o.
o.
0.
o.
l.«7E*00
0.
0.
0.
o.
9.02E«03
o.
o.
M*«2*SEC
1MAL POKEI!?-WA
HEAVY ME- AL c
"100,
0.
Ot
0.
o.
o.
o.
o.
o.
o.
0.
o.
0 .
o.
o.
o.
2.09E-36
1.9BE-35
0.
o.
o.
Ot
o,
o.
Ot
o.
o.
o. - -
t,B5E«10
o.
o.
o,
o.
o.
o.
o.
0 ,
o.
o.
o.
o.
o.
0,
0.
o,
9.90C.OJ-
o.
0.
o,
o.
5.02C-0'
0,
o.
— 5
o,
o,
o,
o.
o.
Ut
o.
o.
o.
o.
o.
"t
o.
0.
o.
0.
o.
o,
o,
o,
«t
o.
o.
o,
o.
o.
»>t
o.
o.
o,
o,
o,
o.
o.
o.
o.
o.
o.
o.
o.
o,
o,
o.
o.
• •<
o.
o,
o.
o.
«t<
o.
o,
TTS
HARGEO TO REACTO
oo; — Y looo. Y
0.
0.
0.
0.
0.
Ot
o.
o.
Ot
o.
o.
Ot
o,
o,
Ot
o.
o.
Ot
o.
o,
Ot
o,
o.
Ot
o.
o.
<>t
o,
o.
o,
o,
o.
o.
o.
o,
o,
o.
0.
0 ,
o.
o.
o.
o,
o,
>9E«Ot 7,61t«04
o.
o.
o.
o,
!>3E-14 I.32E-26
o.
o.
R
5000. V
0.
o.
o,
o,
o,
o. •--
o.
o.
-o.
o,
o.
"0,
o,
o.
0,
o.
o.
o,
o.
o.
o.
o.
o.
o, -
o,
o.
o, -
o.
o.
o,
o,
o.
o,
o.
o,
o.
o.
o.
o.
o,
o,
o.
o.
o.
1.09E.17
o.
o.
o.
o.
o.
o.
o.
10000. Y
o.
o.
o,
o.
o.
o.
o.
o.
o. -
o.
0.
-o,
o.
o.
o. •--
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
o.
0.
o.
o.
3.44E.35
o.
o.
o.
o.
o.
o.
o.
(continued)
100000, ¥••••*••
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0,
0. 0.
0. 0.
0. 0,
0, 0,
0. 0.
0. 0.
0. 0.
0. 0.
o, o.
o. o.
0. 0.
0. 0,
0. 0,
0. 0.
0. 0,
0. 0.
0. 0,
Ot 0.
0. 0.
0. 0.
0. 0,
0. 0.
0. 0,
0. 0.
0. 0.
0. 0,
0. 0.
0. 0,
0. 0,
0. 0,
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0,
0, 0.
0. 0,
0. 0,
0. 0.
0. 0,
0. 0.
0. 0.
0. 0,
Of 0,
0, 0,
A-IV-
119
-------
CASE E-l
POWER* 38.'
SH153
EU153
— 60153"
PHtsa
3M154
SM155
EU155"
60155
8M156
P EU156
6D156
L EU1.57 -
S0157
EU158
P SD158
GO 159
EU168
B0168
TB160
DY160
G0161
Tatfci
C0162
I — T8t62H
TB162
I OY162
TBU3
DY163
PYlba
I DY165M
OY165
H0165
OY166
I — H0166M
H0166
ER166
"— ER167 -
TOTAL
CHARGE
8.
0.
8.
8.
6.
0.
8.
o.
8,
8.
8.
e!
8.
! !
ooooooooo
!
0.
8.
8.
8,
8.
"•
8.
8.
8.
8.
8,
8.
8.
8.-
8,
8.
8.
8,
8.
8.
o,
8.
aOHW, BURNUP
DISCHARGE
1.13E-25
2,BBC«02
< e
6,aiE+01
Q
Q
6,iaE+00
7*71E«01
8,26E"86
Q
0
:•
I''
l ,aa£*08
o]
i;
2.11E-58
Q
Q
0 /
7|fl2E-19
9.22E-06
6,OOE«18
2]o8E+oa
• 33000. HMD, FLUX»
N
BASI
" 1, Y 10. Y
°, 8,
0, 0,
~ !<71E«02 1.39E-06
8< 0.
0. 0.
6,28E+01 a.25E+81
0, 0,
0, 0.
5,07E»00 1.61E-01
8? al
1.67E-00 0,
0, 0.
0, 0,
!; !:
e, o.
8, 0,
8» 0,
e< e.
e» o,
8, 8,
8. 8,
«,33E-01 8,taE-15
8. 8,
°« . o.
'1.55E-16 8,
8, ' '8,
8< 8.
8. 8,
8 0,
8 0,
0. 0,
8* 8,
8. 8.
0. 8,
8, 0,
8, 8,
8 , 0 .
5jo5E-35 el
9.21E«06 9.1TE-06
3.88E-30 0.
0 0,
8, 8,
1.21Et04 1,OSE*83
3.*98E + 13N/
UCLIOE THE
3 • MT OF
50. Y
0.
0.
9.29E-25
0.
8,
7.51E+00
0.
0.
3.59E«08
8.
8.
8.
8.
8.
8. '
6.
8.
8.
8.
8.
8.
8.
0.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8. " '
8.
8.
8.
8,
8,
8.
8.
8.
8.96E-06
8.
8.
8.
3.52E*02
CM»*2-3EC
RMAL" POWEI!, XATTS" ~
HEAVY HE 'AL CHARGED
100. " 500, Y
0. 0.
0. 0.
o. --- "
8.
0.
8.6IE-01
0.
0.
1.73E-16 ~
0.
8.
o,
0.
0.
ooooooooo
1
o,
8.
8.
8.
8,
8.
8.
8,
8.
8,
8,
8,
8.
8.
8.
8.
8.
8,
8,70E.Ot
8.
8.
e, -
1.06E+0!
8.
8.
8.
2,56E«08 -
8.
8.
8.-
8,
8.
o.
8.
8,
8.
8.
8.
8.
8,
o.
8.
8.
8.
8,
8,
8,
8.
8.
°t
8,
8.
8,
8,
8. "•—
8.
8.
0,
8.
8.
6.91f86
8.
8.
8.
7.10E-02
TO
1
8.
8.
8.
8.
8.
1.
8.
8.
8,
8,
8.
8.
8.
8.
8,
8.
8.
8.
8.
8.
8.
8.
8,
8.
8,
8.
8.
8.
8.
8,
8,
8,
8.
8,
8,
8,
8,
8,
8.
8.
8.
5.
8.
8.
8.
2.
REACTOR
000. Y 5000, Y
8.
8.
e!
8.
OOE«17 0.
8.
8.
:" ' 8," --•
8,
8,
- o, ---
8,
8,
-- •- - o, -
8,
8.
8.
8.
8.
'" 8,
8,
8,
- 8,
8.
8,
8,
8,
8.
- o, "
8.
8.
• - - o, " -
8,
8,
8,
8.
8,
8,
8.
8,
17E-06 5.13E.07
8,
8,
8.
28E.02 2.UE-02
1
(
10000, V
8.
8,
8,
8.
8.
8.
8.
8.
o o o o o o o o o o o o o o o o o o
,
'
0. ~
8.
8.
o,
8.
8.
8.
8.
8.
8,
8,
8.
8.
8,
8.
2.86E«8fl
8.
8,
8.
2. 11E« 02
'ABLE A- IV- 2
continued)
100000, Y*»»**** Y
8. 0,
8. 8.
8, 0,
8. 8.
8, 0,
8. 0.
0, 0,
8, 8,
8. 8,
8. 0.
0, 0,
8, 0,
8, 8,
8. 0,
8, 0.
8. 8.
8, 8,
8. 0,
8. 0,
8, 0,
8. 0.
8, 8.
8. 0,
8. 0,
8. 0.
8, . 0,
0, 0,
8. 0,
8, 0.
8, 0.
8. 8.
8. 0.
o. o.
8, 0.'
e, e,
0. 0,
0. 0.
8. 0,
8. 0.
8\ «t
8, 0.
8. 0,
8, 0.
8, 8,
8, 8,
1,J5E-C8 8,221.8*
A-IV-
120
-------
?UR - BU = 33^003 WASTE DECAY TIMES CASE E-*
POUFR= 36.40HU* BURNUP= 33000.MWO» FL.UX= 1.42E*13N/CM**2-SEC
Clad
H
B-:
c
p
s
CL
AS
; A
SC
CR
MN
c c
CD
MI
ZM
S3
Y
ZR
M3
MO
TC
SM
S3
TE
TOTALS
0.
0.
C.
a.
C.
0.
0.
0.
3 .
0.
0 .
0.
0.
C.
0 .
0.
c .
0.
0.
0.
D.
0.
0 .
0.
0 .
ELEMENTAL ACTIVITY* CUUTS
3ASIS = IT Or HEAVY 1 E T k'_ CHARGED TO REACTOR
TABLE A-IV-3
ORIGEN Data
Mixed Oxide Recycle
ISCHAR5E
1.83E-03
1.93E-33
7.86E-C2
2.33E-32
4.85E-n9
1.44E-13
2.9&E-03
1.93E-"!
5.64E01
1.02E+02
7.712
3.BOE+03
9.16E*91
2.13E-P2
l.lOE+ifl
3.B5E+ 1"
l.C7E+°3
2.04E+P3
2.5tE-C3
2.DGE-03
3.90E + T?
8.13E>0n
3.26E*0"
7.96E+03
1. T
1.78E-03
1.451-07
4 «93i-04
5.j3i-Q3
4.E5E-09
4.67E-15
1.38E-03
4.2bE-02
5.94E-(il
6.72i*01
6,. 741 + 12
3.19E>03
9.12E+01
1.27E-02
9.65E-02
4 .48i-Cl
1.55E+02
3.191+02
2.56E-33
2.06E-03
2.16E+OD
7. n8E+an
2.92L+r)0
4.51F+03
10. Y
1.07E-13
1.45E-07
1.93E-03
C.
3.14E-1"
4.85E-09
7.91E-16
1.38E-09
&.82E-14
0.
3.64E-02
6.11E+01
9.49E+02
8.53E+01
] .1 &E-C6
7.23E-05
7.24E-05
1.98E-02
9.S2E-03
2.06E-03
5.82E-02
7.D1E-01'
2.91E-01
1.10E+P3
50. T
1.12E-04
1.92E-93
0. '
0.
4.'85E-09
7.14E-16
0.
D.
0 .
1.11E-16
1 . 43E-03
4 .87E + Q 0
6.32E+01
1.29E-24
2.70E-05
2.7DE-05
1 .98E-02
2.04E-02
2.55E-03
2.6&E-t3
4.03E-02
2.43E-05
1.01E-05
6.82E+01
6.71C-D6
1.5 1E-03
0.
3.
4..85E-09
6.27E-16
0.
0.
0.
7.94E-35
2.32E-09
6.70E-03
4.3fcE»01
0.
7.85E-06
7.B6E-0&
1.96E-C2
2.19E-02
2.06E-D3
2.55E-32
6. * 6E-1 1
2. &6E— 1 1
4.37E+01
1
j
Q
0
-------
TL
°3
= 1
P3
AT
TH
PA
J
MP
PU
AM
CM
3K
TOTALS
; - BU = 33*i)OJ WASTE DiCAY TIMES CASE E-»
•R= 38.4QMU, BUR^JUP= 33000. MUD, FLUX= 1 . 42E + 1 3N/ CM** 2-SEC H£'s
ELEMENTAL ACTIVITY* CURIES
CHARGE
0 .
0 .
0 .
0 .
0 .
0 .
0 »
0.
f, .
0 .
5.
3 .19E-01
0 .
1 «28E + nfe
n .
c .
0.
0.
1.28E+06
DI SCH ARSE
7.11E-14
7.11E-?4
1.17E-'>3
3. 9?E-n:3
7. HE- 14
4 . 3 8 E - 0 9
7.11E-04
3»2 OE-Oft
3.1UE-OJ
3.87E-11
1. 29E-T1
4 . R8E+^2
S>.4bE + 13
4.?7E+']3
3.1 8T+ 05
8.24E-13
2. OSE-n2
3.28E*05
1y
. Y
2.19E-04
6.Q8E:-04
$. "8E-04
9.97E-04
4.07E-05
fe. r8E-Q4
1 .58E-09
6 . utiE-0 4
4 , QoS-PS
3.72t-03
9.00E-02
1 .26E-01
4.88E+02
b . 03£+ C3
4 .C 7E+D3
1.S2E+05
8.24E-13
1.88E-02
1.93E+05
BASIS = MT OF
1 rt V c rt *
1 0 • Y
2.33E-05
6 . 4 4 E- G 5
6.44E-05
1. 05E-"4
5.77E-C9
6.4 4 E-Ob
8.14E-09
6.44E-?5
1. 75E-?7
1 . £ 1E-53
9.91E-02
8.31E-02
4« 8 7E+ T2
4.77E+ J3
4.P8E+C3
4.6 5E+ Q4
8.21E-13
3.07E-OI
5.78E+04
•J U . 1
1.3DE-05
3.53E-G5
3-53E-05
5«7£E-n5
5. 6 9 1 - 08
3.53E-05
fr <,35ET = 08
3.53E-05
5.31E-07
1 .58E-03
1 «45E-01
1 .45E-02
4.05E+02
1 ,&6El*lj3
3.55C +03
1 . 95E+04
8.08E-13
2.1DE-06
1.66E+04
HEAVY 1ET
10 f\ V
.1 1| « Y
8.35E-06
2.24E-05
2.24E-05
3.S1E-05
2. 55E-07
2.23E-05
2o &3E-07
2.24E-05
8.55E-C7
1.57E-73
1.99E-01
3.76E-03
4.33E+C2
9. 1 4E+02
3.71E+T3
1.57E+03
7.92E-13
9."8E-07
6.66E*C3
\L CHARSED
c ft rt v
D U J a T
l.*5i-06
1.42--05
1.12E-05
1.12--05
1.27--35
l.*7i-06
1 .27^-05
1 .42E-C5
1. 37:1-05
1.56T-93
5=07E-oi
3.53F-03
1.66i+C2
2 . 49r+^2
2 . 1 7r-*03
1.69E+01
6.75E-13
6.67"-T7
2.90F+33
TO REACTOR
3.12E-06
7.47F-05
7.47E-05
7.31E-05
7.32E-05
1.52E-06
7.32E-05
7.47E-05
7.47E-T5
1.S3E-03
6.38E-01
9.58E-D3
4.H6E+D2
2.17E+02
l.JP.E+03
1.S2E+01
5.53E-13
4 .54E-07
1 .9 DE + 03
7.71^-05
3.02T-03
3.02E-03
2.96E-C3
3.01E-03
1 .03E-05
3.C1E-03
3.021-03
3.C2E-03
4 .73E-03
8.-67E-01
4.13E-02
3.11C+02
1.P9T+02
3.22E+02
1.13E+01
1.12E-13
2.ne:-os
8.34T+02
TABLE A- IV- 3
(continued)
i n ii n fl vinnnnn v
i U U U U » TJUUUUU* T
3.031-01 1.11E-02
1.17E-02
1.17E-02
1. 15E-02
1.17E-02
4.&6E-05
1.17E-02
1.17E-02
1.17E-02
1.38E-02
8.80E-01
7. 3fE-0 2
1.98E+02
1.6IE+02
2. 04E+02
7.26E+00
1.53E-14
4.43E-10
5.71E+02
3.14E-01
3.14E-91
3. 07i-01
3. lOi-Ol
4.25E-03
3. 10E-01
3.141-03
3.14i-01
3.23 E-01
8.86C-01
3 . 7 4 E -0 1
9. 37E-01
1. 34 I' + Ol
6. 0*1-32
3.61E-03
4.11E-30
4.111-30
1.82i+01
2.17E-02
7.05E-01
7.05E-01
6.S9E-01
6.98E-T1
6.40E-03
S.98E-01
7.05E-T1
7 . 0 5 E -'0 1
7.12E-01
6. 66E-0 1
7.62E-01
6.58E-01
3.61E-02
7.11E-06
9.90E-06
0.
0.
7.-77E + 00
A-IV-
122
-------
PHR - 60 = 3?,000 WASTE D£CAY TI.liS CASE E-4
= 38.*CnW* EUR>JUP= 33300.MUDt FLUX= 1 . 4JZT* 1 3\/C»!«« 2-SiC
FP'
TABLE A-IV-3
(continued)
BASIS =
ACTIVITY. ClHIES
XT Oz HEAVY 1£T»L CH^GCD TO REAr
H
Si
^3
S*
Y
Z*
N3
10
TC
*J
S.H
? i
»3
CD
1 \
SM
S3
T£
I
x:
c s
34
Lft
•• r
ND
PI
SM
L.J
CD
T3
jr
40
TOTALS
CHARGE
3.
C.
0.
3.
8 .
0.
C .
C.
0 .
0.
0 .
0.
0 .
0.
0.
0.
n.
j.
o.
0.
0.
0.
.
3.
C.
o .
C.
o.
0.
J.
0.
a.
0.
OISCHAR3E
7.50C+01
3.31E-T1
1.81E-0!
S.87E+ It
1 .45£»0?
2.31E+15
4.5SE+05
3.70E-14
1 .18E»11
8.51E+95
B.S1E+05
2.4 9E-11
3.57E+H3
5.47E+nl
l.ltE-Bl
b.4?E»03
1.41E+ 14
2. 54E+H4
2.20E-04
1.
2.11E+35
1 . 04E + ?*>
1.03E+92
7.3'jE*?1;!
7.62C + !>'?
i . 6 ft E * 'T5
2.12E+B3
1 . C£E+r. 4
1.26E+31
2.67E+T2
1.21E-15
1.02C-"*
1,b7E«T6
1. Y
7.29E+01
3.31T-01
2.19E-04
:i
1.11E+03
1.11C»C3
2.4QE-01
2.S5E-R1
b.21"»jj
1.49E-22
9.7»t-01
1.23E»03
5.C7E+32
b.'^SE-GS
C.
9.32E+04
8.34E + .T4
3.
i.53E»U2
J.
1.34E+0*
1.97E»''3
3.52E+33
6.13i-"4
8.S7E-13
0.
4.1PE-U4
2.70E»06
50. Y
H.&1E+3T
3.5] t-31
1.09E-05
1 .3ui»34
i.3C'E»34
1.44i*00
1.3*C»30
r.
1 .4fii»!51
1 .15E-09
1 .15C-09
2.4CE-01
2.66f>19
P..57E-01
C) ,
5.77:-11
1 .9SE*CC
i .7bi-C2
b. OSi-05
b.
3.54E»34
3.31i»34
U.
4I98E-14
0.
3.39E-01
1 .43i»03
6 .39E + 02
4 .13i-22
0.
r. .
3.91E-04
9.S5E+04
1 C i» . Y
2.75E-01
3.3CE-:i
1 . 09t-05
3.76i+C3
3.78i»' 3
1.44E+9C
1.4 4E + 0?
1.
1.48E+31
1.20E-24
1. 201-24
2.40E-01
1.16E-3"
7.21E-02
0.
9.77E-P1
1.94E+CC
4.&P-1-OS
6.IbE-05
0.
1.11E+34
1. 14i+ t4
U. /
2.JBE-J3
n.
b. 39E-C7
5.ill«02
7.311+31
0.
0.
G. /
3.79E-34
3.02E+04
6 J ^ • T
4.46--11
3.29r-31
1 .09"- J5
1 .96"-31
1 .5&i -f-1
1 .44r + 00
1.44i+00
3.
1.46E + 'T1
3 •
u .
2.40E-OJ
3.
1.80C-10
D.
9.7»r_.)1
1 .94T + 00
0.
a.35~-35
D.
1.55-+00
l.Olt+01
n.
*
3.
3.
1 .
5.97i+01
2.17E-C6
3.
;.
3 .
3.B1E-04
S.38-+31
1)00. Y
2.5PE-23
3.27E-C-1
i.o ^r-ns
fc.ilE-i.-7
8.S1E-C7
1 ,»4E» j 0
1 .4 *Z + nG
0.
1.4BE+31
U.
,) .
2.^i'E— 01
•j •
3.1-5E-21
•J .
9.7uE-Cl
1 .93E + ITO
0.
6 .3bE-Ob
3.
4.S9E-C1
9.SPE-06
•
C •
fl *
** •
7 .Sfr-Tl
8 .» 9E-1 b
? .
0.
3.
2.24E-34
2.2JE+11
5033. Y
0.
3.14E-01
1 . 09i-35
n.
3.
1 ,44i+OQ
1.441+83
0.
1.46i+01
>) .
3.
2.401-01
3.
0.
J.
9.44T-01
1 .88i+30
J .
6.05--35
n
^ • 69 L ~0 1
•).
0.
•
0.
0.
0.
1.361-14
J.
3.
1.
', .
2.24^-05
2.13E+01
nnoo. T
3.
2.97E-B1
1.09E-05
0.
r.
1.44E+30
1. 44E+OH
n
V .
1. 43E+01
3.
0.
2.40E-01
3.
0.
3.
9.12E-01
1.S1E+00
C.
6.05C-05
B.
4.&8E-01
U •
•
C.
i;.
j.
5.28r-32
a.
c.
3.
3.
1. 25i-06
2.09E+01
]?U'JOO. Y<
3.
1. 14 i—Ol
1.09i-05
0.
3.
1.38i»00
1.36£+00
9.
1. 07i»01
?.
3.
2 . 3 9 1 -0 1
3.
0.
C.
4.89i-01
9.72E-01
3.
6.03T-05
ft
4.59i-01
C.
•
3.
3.
3.
0 .
C.
c.
0.
T.
3.
1.57i+01
0.
7.72E-J6
1.09E-15
0.
0.
9.1UE-31
9.10E-01
0.
5.63E-01
«»
C.
2.17E-01
1.
0.
C.
9.54E-04
1.90E-03
0.
5.B1C-05
C.
3.72E-31
a.
3.
•
C.
0.
a.
3.
0.
0.
3.
j ,
3.
2.98E+00
A-IV-
123
-------
fVR - 8U s 33,000 UASTE DECAY TIMES CASE E-4
POUER= 38.40MWf BUR\UP= 33C30.MWDt FLUX= 1. 42E*13N/CM** 2-SiC
ELEMENT CONCENTRATIONS.
H
Hi
LI
3E
3
C
N
0
F
ME
MA
IS
AL
SI
P
s
CL
A*
<
CA
sc
TI
V
:R
M.M
cr
CO
NI
CJ
z.v
SR
Y
ZR
MS
.10
TC
RJ
:3
IV
SN
S3
TE
TOTALS
CHARGE
1-62E*04
0.
0 .
0.
0 .
3.45E*00
0.
2.60E*05
0.
0.
0 •
0.
3.13E*dl
6.51E+01
1 .95E»00
1.29E+00
C.
0.
0.
0.
ID.
5.58E+Q1
0.
2.00E*03
1.08E*02
3.97E*03
7.C9E*01
3.70E+03
1.86E+01
0.
0.
0-
1.21E*J5
3.23E+02
1.99E*02
0.
0.
6.18E-03
6.33E-03
1.83E»03
0.
0.
4.10E*C5
DISCHAR3E
1.3CE+03
1.10E+00
2.9SE-11
1.34E-15
3.21E-12
7. OPE* ia
6.22E-DP
2.bi;E+'?5
8.4SE-21
2.4CE-09
1.P6E-1 n
2.11E-D4
3.13E»T1
6.51E»01
1.95E*D"
1.29E+I"?
1.27E-35
8.14E-11
2.65E-12
7.33E-35
6.7.'E-r&
b.SSE*"!
1.02E+00
2.0 IE* 03
1.07E+02
3.97F+33
7.03E+T1
3.70E+13
l.BbEOl
3.92E-02
5.H8E-02
1-.58E-04
1.21E+1S
3.23E+C2
2.0IE+P2
1.20E-01
3.57E-02
1.07E-fl7
t.35E-C3
1.83E*?3
2.46E-ni
3.80E-03
3.9bE*f5
1. Y
1.30E*03
1.10E*00
2.95E-10
1.31E-05
*.b5:-12
7.oo;:*oo
e-s^E-os
2.&OE+C5
8.*5E:-21
2.iar-09
i.eeE-ic
2.11F-01
3.13t>01
&.51E+01
1.95E»CO
1.29E»00
1 .31E-05
8.16L-11
2.69E-12
7.32E-05
2.36E-06
5.58L»01
1.02E»00
2.C'QE»03
l.P7E*02
3.9^E»03
7.01E*C1
3.73E»03
i.86!:*ni
3.92E-02
5.f7E-02
1.83E-05
1.2IE»H5
3.23E*C2
2.C1E+02
1.20E-01
3.57E-02
1.07E-07
4.35E-03
1.83E*03
2.15^-01
4.72E-03
3.95E*05
BASIS = MT OF
10. Y "
1.30E+03
1.1 OE*OD
2.95E-10
l-J^E-OS
3.COE-11
7.00E+00
5.60E-07
2.60E+T5
8.*5E-21
2.10E-R''
l.Rf ~-l U
2.1 1E-01
3.13E+01
6.51E+C1
1.95E*00
1.29E+00
1.32E-05
8.16E-11
2.&9E-12
7.31E-Ob
1.1&E-06
5.58E»01
1.02E»10
2.UOE»33
l.l)7E»02
3.97E+03
6.82L*C1
3.70E+53
l.B7E!*91
3.92E-02
5.<17E-C2
1.33E-10
1.21E»05
3.23E*02
2.01E*02
1.20E-"!
3.57E-02
1.07E-07
1.35E-0.3
1.33E*C3
2.39C-01
1.07E-02
3.95E+05
3U . I
1.30E+03
1.10E+00
2.95E-10
1.3tE-05
1.1PE-10
7.no-:+oo
2.&5E-OS
2.60E+05
8.15E;-21
2.10E-09
1 .86E-1B
2.11E-0*
3.13E»01
6.51E*C1
1.95E+00
1.29E+00
1.32E-05
9.78E-11
2.69E-12
7.31E-05
i.ie!:-o6
5.58E*01
1.02E*CO
2.CCE+03
1.77E+02
3.97E»03
b.7*E*Pl
3.7nFT + ')3
1.91E+01
3.92E-P2
5.t7i-02
t.96C-ll
1.21i»05
3.23t*92
2.01E+02
1.20E-01
3.57:-C2
1.07E-07
A.35E-03
1.63E*03
2.39E-01
l.KE-02
3. 95^+05
HEAVY 1ET
100. Y
1.32E*03
1.1 OE+00
2.95ET-10
1.3tr-35
2.S3EI-1C
7.m£ + 00
5.24E-36
2.SOE*05
8.15E-?!
2.i»DE-09
1.R6E-1 C
2.11E-01
3.13E»01
6.51E+01
1.95E + O.T
1.29E+00
1.32E-Db
1.11E-10
2.i9E-12
.7.31E-05
1.18E-C6
5.5RE+01
1.02E+OC
2.0CE»r3
l.C7E»32
3.97E«C3
6.73
2.»nE-01
l.ME-02
3.J^E*J5
3U U U • I
1.30r*03
i.ior+oo
2.95E-1P
1.33E-05
i.iir-os
7.00!>00
1.97^-04
2.60"*05
8.«5=;-21
2.40E-09
1.86E-10
2.11-:-04
3.13:»01
6.51E*01
1.95E+00
1.29E+00
1.32'-05
1.73E-09
2.69E-12
7.31E-05
1.19;>0&
5.53E*01
1.C2E+00
2.00E*OJ
1.07:»02
3.97E*03
6.77E+01
3.7^E»03
2.ni::*01
3.92E-02
5.47E-02
0.
1.21'*05
3.231*02
2.01E*02
1.18E-01
3.57E-02
1 .07^-07
4.35E-C3
1.83E»03
2.40:-01
1.14E-02
3.9?E»C5
TABLE A-IV-3
(continued)
i r> n o n Vi ft n n n i V <
1 3 U u U • ij'JUUUj* TI
1.3"r*03 1.30E*03
1.1 OE*00
2.95E-10
1.33E-05
2.S1E-08
7.0UE*00
3.04E-04
2.61E*05
8.45E-21
2.40E-09
1.86E-10
2.11E-04
3.13E»C1
6.51E*01
1.95E*00
1.29E+00
1.32E-05
3.37E-09
2.6°E-12
7.31E-05
1.18E-06
5.58E»01
1.02E*00
2.0UE*03
1.07E»02
3.97!>13
6.8UE*01
3.7?E*03
2. 01E»01
3.92E-02
5.47E-02
0.
1.21E»05
3.23E*02
2.01E*02
1.16E-01
3.57E-02
1.07E-07
4.3bE-03
1.83E»03
2.4CE-01
1.14E-02
3.9SE»05
1.10E*00
2.95E-10
1.31E-05
2.77E-07
7. 00!T*CO
4.33E-04
2.60E*05
8.45E-21
2.40E-09
1.86E-in
2.11E-04
3.13i»01
6.51E*01
1.95E*00
1.29E»00
1.32E-D5
2.98E-08
2.69E-12
7.31E-05
1.18E-C6
5.5BE*01
l.C2E*00
2.00-:*03
1.07E*??
3.97£»03
7.13r*01
3.69E+03
2. 01"*C!
3.92t-02
5.47E-02
3.
1.2i:»05
3.24£»02
2.01E*02
S.59E-02
J.57E-02
1.07E-07
4. 35: -03
1.83E»03
2.40E-01
1.14T-02
3.95E«15
1.30E»03
1.10E»00
2.95E-13
l."9E-05
2.46E-06
7.00E»no
*.33E-04
2.60E»05
8.45E-21
2.40E-09
1.86E-10
2.11E-04
3.13E*91
6.51E»01
1.95E*00
1.29C*00
1.31E-C5
1.33E-37
2.69E-12
7.31E-05
1.1SE-06
5.58E»01
1.02E*00
2.DOE»?3
1.07E*02
3.97E»03
7.52E»B1
3.S9E*03
2.01E*01
3.92E-02
5.47E-92
0.
1.21E»C5
3.26EO2
2.01E»02
4.40E-03
3.57E-02
1.07E-B7
4.35E-03
1.83E»n3
2.40E-11
1.14E-02
3.95E»')5
A-IV-
124
-------
PUR - 3U = 33«000 WASTE DECAY TIMES CASET E-1
POWER= 38.40MU» bURMUP= 33105. 1 WO t FLUX= 1. 10
2.32E-09
2 . ? 5E- 05
1.67E-05
1.38E+02
5.73E+02
3.58E+03
6.95E+H2
2.11E-19
8.12E-06
9.51E+f3.
31' . T
2.2AE+01
1.51E-14
1.7BE-06
1.29E-13
1 .GOi-16
3.50E-20
3.80E-11
2.28E-10
&.50E-09
3 . 15r — 05
1.97E-"5
2.03E+02
9.92E+C2
3.53E+03
2.25E+02
2.P8E-19
5.95E-07
9.52E+03
3RAWS
HEAVY 1ET4L CHARGED
IPO. Y r«« **
2.57E-1*
2.55E-36
3.29E-09
6.23E-17
1.57E-1?
2.3?E-1 1
1.52E-10
8.21E-09
A c if • n q
2.33E-05
2.?"E+02
1.09E+03
3.151+03
1.14E+02
2.?^E-19
5. 71E-37
9.5PE+03
3.65£+31
S.56T-15
3.36E-06
7.33E-17
5.051-18
7.81E-18
5.781-16
3!=i6E-in
1.11 E-08
. o c " 1i
7.17T+02
1.12-+03
2.92E+T3
9.16r+01
1.73T-19
1.22E-07
3.16T+03
HE'S
TO REACTOR
• Mf.M Y CnMA W
111 U U. T
1.37E+01
1 .19E-11
3.53E-Q6
8.12E-06
6.73E-18
1.50E-17
l.?2E-16
1.1 3E-1 3
1 .30E-09
2.2CE-08
6.58E-C15.
9»38C*^2
1.17E+03
2 .51E + 03
8.76E+01
1.12E-19
2.87E-D7
9.16F+53
3 U WU • T
6.57i+01
2.19i-13
1.19T-05
1.93T-03
1.72E-17
1.851-15
B.1ir-16
7.70r_03
2'.OOE-07
4 per n 3
2.69E-01
1.23E+03
1.52"+03
1.61E+03
6.18E+01
2.89H!-20
1.32E-08
9.16E*03
TABLE A-IV-3
(continued)
1 n n fi n v
1 D 0 UU* T
8.25E+01
8.73E-13
6.38E-05
1.60E-C2
2.13E-17
7.18E-15
3.63E-15
2.99E-07
8.1DE-C7
1. 52E-C1
1.02E-03
5T t r *. n T
* j 9 ;.* u o
1.25E+03
1.71E+03
1.03E+C3
1.C1E+01
3.91E-21
2.80E-13
9.16E+03
1.51L+02
3.90E-11
7.59E-02
6.001+00
3.03T-16
1. 91 i-l 3
3.30i-13
1.75i-09
7.9BC-06
6.36E-05
3. 88E+00
8.93E-02
Bo A r + n T
• £. n _ * J O
1.25:+03
2.61E+02
2.95E-01
1.08E-31
1.06i-36
3.76i-33
=».92£:+a3
1.89E+02
7.12E-11
2.35E+00
2.49EJ+02
1.68E-16
1.30E-13
5.00E-13
3.91E-09
l.r9E-05
9.98E-05
2.88E+0 1
1.31E-C1
8= 1 IT *,ft T
• 3 I L *U O
9.33E+02
9.26E+00
3.70E-05
8.12E-02
0*.
0.
9.92E+03
A-IV-
125
-------
POUER= 38
H
GE
AS
s:
33
,<*
RB
SR
y
ZR
N3
HO
TC
3U
RH
PD
AS
CD
IV
SM
S3
TE
I
XE
:s
3A
LA
CE
PR
ND
PI
SM
EJ
SO
T3
3Y
HO
iR
T3TALS
,40HWt BURMUP= 33000. MUD« FLUX= 1.42E»13N/CM**2-S£C
ELEMENT CONCENTRATIONSt
CHARGt DliLHAnit.
0. 7.74E-13
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
Q .
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
c.
0.
c.
0.
0.
0.
o.
0.
0.
0.
4.38E-01
8.60E-P2
4.29E+ni
1.41E-02
Q.
1.89E+12
5.16E+92
2.57E + !>2
2.80E+03
1.15E+91
3.38E + «)3
8.69E+02
2.b8E+03
6.7l'E+«2
2.30E+03
1.64E+02
1.34E+12
3.4'JE+On
8.44E+11
2.91E+01
7.06E+92
3.69E-11
0.
3.04E+03
1.39E+03
X.20E+T3
2.5CE+53
1.06E+D3
3.44F+03
1.78E+12
8.57E+12
1.82.E+P2
1.15E+02
4.16E+!)n
2.n2E+f»9
1.12E-51
2.94£-*2
2.90E+04
1 . Y
7.53E-03
4.38E-01
8.60E-02
4.20E+D1
1.11E-02
i.9<\t-tt
1.89E»02
5.10E+02
2.55E+02
2.80E+03
1.79E+00
3.tOF+03
8.69E»02
2.81E*03
6.73E*02
2.37E»03
1.63E+02
1.34E+02
S.'iOEtOO
8.10E+01
2.79E+01
7.07E*02
1.9*E'*00
B.62E-09
3.01E+03
1.12E»03
1.20E+03
2.41E+03
1.07E+03
3.53E*03
1.56E+02
8.79E+02
1.8U + 02
1.17E+02
1.1tE+00
2.04E«i}0
1.12E-01
2.94E-C2
2.90E+04
BASIS = HT OF
10. Y "" "
4.53E-03
4.38E-01
8.60E-02
1.20E+01
l.t6E-02
3.3tE-4t
1.89E+02
1.19E+02
2.54E*02
2.86E+13
2.91E-03
3.*OF+33
8.69E+Q2
2.61E+C3
6.73C+P2
2.53E+03
1.63E*02
1.3*E+02
3.12E+QO
8.38E*'<1
1.76E+01
7.17E*02
1.31E»00
l.*5E-07
2.71E*03
1.71E*03
1.20E*03
2.27E+03
1.07E+03
3.67E»03
l.u . i
4.76E-04
4.38E-01
8.60E-02
1.20E*01
1.66E-02
3.9<»E/-*4
1.89E+a2
2.-95i*02
2.5<(£; + 02
3.02E+03
1.33E-02
3.tOE+03
8.69E+02
2.6tE*03
6.73E+02
2.53E*03
1.63E+02
1.31E+02
3.41E»00
8.38E+01
1.65E+01
7.1SE+02
1.31E+00
7.50E-07
2.n9E+03
2.34E + 0.3
1.20E*03
2.27E+03
1.07E»03
3.67E+03
3.65E-04
1.01E+03
1.68E*C2
1.54E+02
1.13E*00
2.05E+00
1.12E-01
2.9'(E-02
2.90E+0*
! RAMS
HEAVY HETAl CHARSEO
1 (*0 • T
2.B4E-05
4.38E-01
8.60E-02
A.20E+01
1.91E-02
3.94E-**
1.89E+02
2.3n£+B2
2".51E + 32
3.08E*33
2.&3E-02
3.*0£+03
8.&9E+D2
2.61E*03
6.73E+02
2.53E*03
l.b3E»02
1.3tE+02
S.'t'iE + OO
8.38E*B1
1.S5E+01
7.18E+02
1.31E+00
1.51E-06
1.82E+03
2.61E+C3
1.20E+03
2.27E+03
1.07E+03
3.67E»33
6.56E-10
9.92E+02
1.32E+02
1.58E+02
4.13E»00
2.05E+00
1.12E-01
2.94E-02
2.90E+0*
JU U * T
' .60E-15
i .38^-01
! .60E-02
' .20E»01
:..93E-02
...94E-14
: .89E+02
;:.03?:+02
;'.54E + 02
I,.11F«03
,30E:-i)l
i.tnfr+as
'I.68E + 02
!.65- + 03
..73E + 02
.'.53E + 03
..63^*02
..34E+02
S.44E+00
!.37;+01
..65E+01
'.18^ + 02
'..31E + 00
'.56T-06
1.69E+03
J.74E»03
1.20E*03
>.27r*C3
1.07E+03
5.67E+03
).
J.58E+02
>.15E+02
1.59E+02
».13r+00
>.05E+00
1.12>--01
2.95^-02
?.90E+04
FP's
TO REACTOR
10UO* Y f*™ •*
2.S6E-27
4.J8E-01
8.&OE-02
4.20E»01
6.44E-02
3.34E-44
1.89E+02
2.33E»02
2.54E+02
3.11E*03
2.S1E-01
3.4 OC*03
8.46E+02
2. 45^*03
6.73E+02
2.53E*03
l.=3E»02
1.34E+02
3.44E*00
8.3tE*01
1.S5E+C1
7.18E*C2
1.31E*90
1.51E-05
1.&9E»03
2.74E+n3
1.20E+03
2.27E*03
1.07E+03
3.S7E*03
0.
9.57E+02
2.17E*02
1.59E+02
4.13E+CO
2.0tE+00
1.12E-01
2.9'-)E-')2
2.9uE*04
3UUU « I
0.
4.38E-01
8.60E-02
4.18E»01
2.61£-01
3.94E-44
1.89E+02
2.03E+02
2.54E+02
3.11L+03
1.30E+00
3.40E+03
8.55E+02
2.6&E*03
6.73i+02
2.53E+03
1.63E+02
1.34E+02
3.44E+00
8.26r+01
1.65E+01
7.19E+02
1.31E+00
7.57E-05
1.69i+03
2.741+03
1.20E+03
2.27E+03
1.U7E+03
3.67E+03
0.
9.57£+02
2.17E+02
1.59E+02
4.13E+00
2.05i+00
1.12E-01
2.96i-02
2.90E+04
TABLE A-IV-3
(continued)
innnn vinnnnn v-
lUUOu* TlODDDu* T'
0. 0.
4.38E-01
8.60E-02
*.15E*01
*.9*E-01
3.91E-44
1.89E+02
2.03E*02
2.51E*02
3.10E»03
2.60E+00
3.*OE+03
8.41E+02
2.67E»B3
6.73E+02
2.53E»03
1.63E+02
1.31E+02
3.**E+00
8.15E»01
1.65E+01
7.20E*02
1.31E+00
1.51E-0*
1.69E*03
2.74E*03
1.20E+03
2.27E+03
1.07E+03
3.S7E*C3
0.
9.57E+02
2.17E+02
1.59E*02
A.13E+00
2.05E+00
1.12E-01
2.96E-02
2.90E*0*
«.3BE-01
8.60E-02,
3. 89t#01
3.13E+00
3.94E-44
1.89E*02
2.03E+02
2.5*1+02
3. 08^+03
2.5t:»01
3.40E»03
6.27E+02
2.89E+03
6.73E»02
2.53E*03
1.68E*02
1.3tE+02
3.4*E+00
6.661*01
1.65E»01
7.35E + 02,
1.31E*00
1.51E-03'
1.67E»03
2.75E+03
1.20r+03
2.27E+03
1.07E+03
3.67E+03
0.
9.57E»02
2.17E+02
1.59T+02
4.13E+00
2.05E+00
1.12E-OJ
2.96E-02
2.90E+04
0. .
4.38E-01
8.60E-02
3.73E»01
4.76E»00
3.94E-44
1.89E»02
2.03E»02
?.5*E»02
2.90E»93
2.08E»02
3.10E»03
3.30E+01
3.48E+33
6.73E»'»2
2.»9E»03
2.10E*02
1.3tE»02
3.44E+00
4.94E+01
1.65E«01
7.52E+02
1.30E+00
1.48E-02
1.58E»03
2.85£»03
1.20E»03
2.27E+03
1.07E»03
3.&7E+03
0.
9.57E»02
2.17E»02
1.59E»02
4.13E»00
2.05E+00
1.12E-01
2.96E-02
2.90E»04
A-IV
126
-------
pylt — so =
POWER= 38.
H
*
P
S
CL
AS
;A
sc
C3
"IN
r r
CO
VI
ZV
sn
Y
z*
NB
10
TC
3N
S3
T£
TOTALS
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
c.
p.
0 .
0.
c.
0.
0.
0.
3.
0.
0.
0.
c.
> 9 V 'J J Mrt^ 1 C. U=.l,A-r llni.» I.AO_ _ — 1
IW» 8URNUP= 330u").HWDt FLUX= 1. *2E> 1 3N/CH** 2-S£ C
ELEMENT THERMAL 'OWE*» J&TTS
ISCHARSE
3.72E-C7
3.7&E-05
6.64£-36
9.CI3E-1?
6.94E-1*
1. 81E-2&
2.7iiE-?3
2.5 'IE- PI
8.26E-1?!
1.0*E*" -
5 p 4 r* 1 1
i.itE-:?
1 .6SE-Tt
3.95E-53
1 .17E-02
5.62E+TO
9.83E*1?
6.36E-Q£
3.33E-">&
2.69E-03
3.37E-.-1?
2.81E-13
7.61E»C1
1 . Y
6.32E-38
5.72E.-07
2-22E-07
1.57:1-06
9.C3E-12
1.97^-17
8.10£-C7
5.98-:-01
2.63E-03
5.^12
1.13E-18
8.^ 1C-13
9.57E-16
0.
2.95E-04
7.97E--12
1. 1 8E*31
1.36E-02
3.22E-19
9.48E-J8
*.26E-37
2.35E-D&
3.87E-D&
6.37E-C6
3.53E-06
(,.1 OE-35
2.B4E-03.
2.50E-04
:.<49E»ni
oa . i
3.99E-09
5.69E-07
S.
!).
9.13E-12
S.90E-19
0.
U.
0.
8.98E-19
1.96E-B6
7 6 1 ~ « 0 3
1.0JE-"2
1.03E-26
3.53E-08
1.59r-37
2.35-:-C6
7.67^-06
6.35^-36
3.53E-06
4.22S-05
9.36^-08
8.66J-39
8.62E-02
HE4VY 1ET
1 U3 . Y
2.39E-1P
5.65E-07
a.
0.
9.TJE-12
8.70E-19
a.
0.
a.
6.43E-37
3. J2E-12
l f> SF — ii 4
6.88E-03
0.
1.03E-38
4.52E-OS
2.35E-36
8.19i-04
6.33i-3i
.3.53E-06
2. i£E-05
2.S2E-13
2.3 Oi-14
7.03E-S3
\L CHARGED
50 n . Y
J.36'-2n
5.39t-07
9.
D.
9.02F>12
3.10T-19
3.
C.
0.
3.
0.
3.
3.38E-04
0.
5.33T-13
2-*OE-12
2.35^-06
3.21i-16
S.14i-'J6
3.52'-n6
S.97E-17
P.
1
V *
5.59T-04
Clad
TO REACTOR
1330. Y ^"-••> «•
2.27E-32
!>.[« 7E-07
3.
0.
9.D1E-12
8.56E-20
3.
C.
0.
0.
0.
p .
7.S1E-06
0.
2.34E-18
1.35E-17
2.35E-B6
8.1 8E-06
5.J1E-B6
3.52E-06
7.2SE-C9
0.
0.
2.33E-05
3 U U L' . 1
3.
3.12^-07
3.
0.
8.93E-12
2.85E-24
n.
3.
9.
0.
C.
0»
6.33i-19
1.
0.
U.
2.34E-0&
7.98E-0&
4 .34^-06
3.48I-0&
1.04E-24
0.
Q.
l.SSi-05
TABLE A-IV-3
(continued)
1900D* T100UUD* T
0. • 0.
1.71E-07
C.
0.
8.<53£-12
7.23E-3P
0.
0.
0.
0.
0.
C.
2.75E-35
C.
0.
0.
2.34E-06
7.80E-06
2.95E-06
3.42E-06
1.S2E-44
0.
0.
1.67C-05
3.19E-12
"0.
3.
7.22E-12
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
2.24E-06
7.17i-06
2.88i-09
2.54:-06
0.
0.
0.
1.20£-05
0.
0.
c.
0.
9.65E-13
5.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0.
1.48E-06
4.90E-06
0.
1-.30E-07
0.
0.
0.
6.91C-96
.A-IV
127
-------
PUR - BU = 33.000 WASTE DECAY TIMES
POUER= 33.40MU, bURNUP- 33.">00 . Mk'D » Fl_UX =
TLE
T!_
?3
31
P3
«T
^\
r ^
*4
AC
TH
PA
J
M»
PJ
41
C *
3<
Cr
TOTALS
CHA RGE
0 .
C .
p .
0 .
0 .
0.
0 •
0 .
0 .
0.
0.
8 .12E-03
0 .
1 .32E+03
0.
0.
3.
0.
1 .32E+03
D I SCH A RGE
5.9&E-06
1.B2E-J5S
1 . 23E-r"=i
5.32E-0 ^
1.67E-10
2.7;.E-05
1 .49E-1 ?
2.43E-13
1.51E-J ">
1 .37E-H4
1.&7E-03
1 . 2?E-r'4
6.61E-01
6.C8E + -1T
1.37E+0?
1.1 6E»?*
7.36E-15
8.21E-T4
1.17E+04
1 . Y
5.10E-06
8.72E-D7
1 .Otr-05
4 EC" ", t-i
I .71E-10
2.31E-05
1 »b3E-l G
2.08E-05
1.58E-1Q
2.09E-05
1 .33E-T(
1 .27E-C4
6.61E-01
2.83E+01
1.37E+02
6.6CE+03
7.36E-15
7.39E-04
6.76E»03
CASE E-»
l. L
2[3yr-Q9
1.3tE-Ofc
2»13r-09
1.21E-06
2.19E-09
i .73E-06
2 .02E-Of
5 .89E -05
6.6GE-01
3.73E+01
1 .33E-»C2
3.67E+02
7.22E-15
7.94E-08
5.3?I*02
HEAVY MET
i ro . Y
1.32E-B7
3.31E-38
3.D8E-07
1 ^ ^i-" — u fr
1.Q7E-Q8
8.4 OT-D 7
q 49- f> 9
7.57E-07
9.0i^-D3
1.30E-06
2.75E-C4
5.9 ?E-°5
6.59E-01
2. 78E*01
1.25E+02
5. 47E + 0 1
7. H7E-15
3. 2'jE-f)8
2.08E*D?
-ATTS
4. CHARGED
50 J. Y
1.14E-08
1.8&E-08
1 . 25r-07
' 95 r — u 7
5.32T-07
5.33C-08
,. -in- n -r
5.91E-P8
'4.36--07
1.00E-C6
d .921-04
1 .39T-T4
6.45E-01
7.35H:*00
7 . 31"»01
5. ib"-?l
6.H3E-15
2. 39^-08
3.24r»01
HE'S
TO REACTOR
3 .C9E-08
8.92E-08
5.C9E-07
3.i2E-06
6.1 4E-06
2 .72E-06
2.5 1E-06
2 .9 4E-J 6
9.49E-C4
2.5 rc-^i
6.22E-1)!
6.31E»00
4.20E*31
5.1 1E-01
4.91E-15
1 .63E-08
4.96E + 0.1
Dt U U • i
1.121-06
3 »5nr -06
1-S9"-C5
1 .^yr-p^
1 • 26T -0^
^ • 36 i "07
1 1 2 r — C ^
2.36£-06
1.03E-04
9.21E-05
1.19T-03
1 .141-03
(, .44£_ni
5.55E+00
1 .17E+01
3.56E-01
l.OOE-15
7 .46E-10
1.61E+C1
TABLE A-IV-3
(continued)
10000* T100009* Y
4.34E— 06 1.24E-14
1.36E-05
7.3fE-0'5
5. 69E-04
4.89E-04
1.99E-06
4 3 4r — C 4
9.3PE-0<=
4.01E-04
3.56E-04
1.2 flE-03
2. O^E-OI
2.92E-01
4.81E»00
7. 42E»00
2.29E-01
1.37E-16
1.59E-11
1.28E»01
3.70E-04
2.07r-C3
1. 52E-02
1.30E-02
1.72E-04
1.1 5E-Q2
3.52:-04
1.06E-02
9.51E-C3
1.33E-03
1.07T-02
2.59E-02
4.17E-01
2.19E-03
1.15E-T4
3. S7E-3?
1.53T-31
5.20E-01
2.70E-0*
8.24E-OA
4.54E-C3
J.42E-02
2.93E-02
2.59E-04
2.69E-02
2.40E-02
2.13E-02
1.09E-03
2.21E-02
1.93E-02
1.07E-03
2.bOE-07
5.77E-07
3.
0.
1.85E-01
A-IV-
•128
-------
PUR - 8U = 33tCBi3
H
SE
^3
sa
r
ZR
M3
vio
TC
H'J
Sri
PD
A;
C3
IM
S>i
S3
T;
r
Ki
cs
3ft
LA
r* —
•JD
?%
S.I
ru
S3
T3
or
HO
TOTALS
3.
3.
G.
3.
0.
0.
3.
C.
C .
B.
3.
0.
3.
0.
0.
3 .
Q.
0.
U.
C.
3.
C.
0 .
0.
J.
B.
J.
0.
3.
1).
0 »
0.
C.
if<30i} WASTE DECAY TIMES CASE E-4
U, EURMUP= 33000. « WO » FLUX= 1 . 42E»1 3N/CX»*2-S-:C
ELEMENT THER1AL "OwE**
I SCH AKGT
2.67E-n3
1.25E-04
8.56E-".1
2.54E*S?
e^^E-fi?
1. 2iE» "3
2.18E«P3
1.51E-1*
1.0''E-P2
2.SbE*f>2
3.22E+ 03
1.99E-C5
5.S3E+T1
1.77E-"!
3.33E-0*
1.91E»i'l
5.77E»fil
3.&1C+OJ
b.45E-37
3.
1.2tE*n3
4.i)fiE*C2
1.82E*3i!
fa.£2E+l2
5.&5E+03
2.4.7E-32
1.22E+32
3.70E+3P
5.18E»01
1 •85£-'12
2.27E*ra
l.lJOE-1*
4.32E-06
2.1 1E*14
1 . Y
2.59E-03
1.25E-G4
9.9CE>37
7. 42E»Gl
3.01E*02
1.73T+02
3.38t»02
3. C5£-3S
1 .38i-li2
4 .24C»01
5.3GE»03
i . 99r — P 5
3. 4 2E + 0 1
2.15E-02
2.65E-05
S. 96E»C!i
5.01E+01
1 .'iSC-rOl
3.9&E-08
1.27E-13
l.C7C»03
V.05E+C2
V.22i-0b
3.F3E»"2
3.62^+03
2.76^-07
7.61^+01
o.69£»30
4. 94E»01
1 .09£-fi2
S.^SC-Ol
6.76E-35
4 .32i-0e>
1.24:»6t
BASIS = MT OF
18. Y 50. Y
1.56E-P3 l.S4£-34
1 «iCE-Ot
7.12E-09
4.56EO1
2.HSE»02
1.71E-34
1.11E-04
3.
i.ooE-ns
&.57E-12
1.17E+01
1.59E-05
t. 15E-03
8.21£-G3
4.27E-25
1 . 9faE-03
4.96E»QO
S.72L-01
3 . 9 fc E- 0 8
0.
1.89E+P2
3.2RE+32
0.
l-2bE-Pl
1.19E»00
C.
6.91E+00
3.43E+00
3.r>lE»01
H.51E-97
7.37E-25
3.
4.3JE-86
8.26E+32
1.25E-04
7.12EI-09
J .70i» 01
7.6*~+01
1.71E-B4
2.38t-04
1 .
1 .noi>32
b.8ir-14
1.21E-11
1.99E-05
1.85E-2C
1.13E-B3
0.
1.35i -n3
1 .94E-G2
3.32E-05
j.yHc-08
0. '
, 5. 79^*01
1.3C"*B2
r .
4.B8E-17
3.56S.-1&
n.
1 .75^-04
2.bCE»'10
5.27E+BO
b .95E-25
8.
0.
4 .2PE-Q6
2.69r+02
HEAVY 1ET
1 OB . Y
9.79E-C6
1 .25E-5
-------
PHOTCC.' SPECTRUM AS A FUNCTION OF TIME: FOR LIGHT ELE«£MTS» CLAOul N3 AND STRUCTURAL MATERIALS
PUR - 3U = i3,;JPO WASTE Dt-CAf T 11E S CASf E-4
POWER: 38.40 Hw» BUR\UP= 33000. 1UD» FLUXr 1.42E+-13 M»
TWELVE GROUP PHOTON RELEASE .RATES? PHOTONiS /S EC
BASIS = HT 0- HEAVY S-T4L CHARGED TO REACTOR
EdEAN
(v r~ u 1
. (L V t
3. OOE-01
b. 3JE-31
1. 1,.E+PO
1 .S5E+ - 0
1.^9E+OC
2.3&E+00
2. 75E+OC
3.2bE+aC<
3.73E+00
4.22T+00
4. 7cr+ cc
5. 25E+CO
T V T T T A 1
1 i\ JL I 1 A L.
£ . 2 C f+ 1 1
1 . 7 •". r + 1 4
2.80^+14
l.llE+ll
2. i Jl
1.79>:-78
L': .
C.
P.
C •
0.
IV
• T
1.31E+10
2. 90C+ 13
2.62E+14
1. 9SE+10
2.62L+t'7
3.55E-C5
0.
C.
0.
P.
0.
0.
TIME AFTER 01
in Y R o Y
i il * T D ' ' • T
1.1 :f. + 09 7. 25E + 07
1.90C+10 5.32E+C&
7.99E+13 4.1Q£>11
1.2JL + Q3 4.47E+02
3. 641 +01 1.3&E.+ Q1
0. C.
n. c.
L. 0.
G. n.
0. 0.
!?. 0.
3. P.
1 i f> v
1 y ' • 1
7.&1E+37
l.tlE+Db
5.6^E+33
1. 5DE+ J2
3. 95E» 3 0
U.
0.
C.
U.
0.
I
0.
tr n r v
7.83E+07
t .41E+C6
3.73E-12
6.75E-C3
2.H5E-01
0.
0.
0.
0.
0.
0.
0.
i n ft f* Y
i U U L. • . T
7.60E+07
1.
1.
2.
9.
U.
r.
a.
n.
^ .
0.
c.
41E+0&
61E-07
97E-08
OUF.-10
*2-SEC
- r. ft ft w
3 1 U U • 1
7.60E+07
4. 40E+06
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Clad
i ft ft n ft
i U U u U »
4* 'f 0 E + C 6
0.
n.
C.
0.
c.
c.
G.
0.
T.
n.
TABLE' A-IV-3
(continued)
viftn^nn v
IlUUuUU. I
6.76E+07
4. 33E»Of
D.
0.
0.
0.
0.
0.
0.
0.
p.
0.
4.46 E+ 07
4.2&E+0&
0.
a.
a.
0.
0.
0.
a.
0.
0.
0.
TOTAL
MEV/SEC
2.91E+14 7.99E+13 4.10E<
3.06E+14 8.79E+13 4.51E<
b.47E + :3 8.27E+07 8.24E+07 S.04.E + 07 7.85E + C7 7.20E+07 4.B9E+07
fc.47E+:3 2.63E+07 2.S2E+07 2.56T+07 2.50E+07 2.31E+07 1.61E+07
TWELVE GROUP E\'ESGY RELEASE RAlESt 1EV/'.'AT T-CEC
BASLS = MT OF HEAVY .1ETSL CHSRGED TO REACTOR
r v.EAiy
( M t V )
3. UDE- 01
G-SOE-c,!
1. IQE+Dil
1. 55E+DO
1. 9SE»00
2.38E.+ .1G
2.7SE+CO '
3.25E+OG
3.70E+BO
4. 22E+ i.0
4 . 7 j E » 0 C
5. 25E+ JO
TOTAL
GAMMA WATTS
INITIAL
1.72T+03 y.
2.7=1^ + 06 '
-------
PHOTOM SPECTRUM AS A FUNCTION OF TIMT FOR HEAv/Y .MCTA.S AMD THEIR DAUGHTERS
rr-uiw-n or ;. i_ i n un « a n ru.^tUiltj-v u~ lint r ij« nc.** v 1 .T :. 1 M _ s ».^_> 1 nc. 1 K y*»^uiic.^o
PUR - BU = 33tOOO JASTE DECAY THES CAST E-4 '
P3.ER= 38.40 HU* 8URMJP= 33G00.1W3. FLUX= 1.4?E».13 N**2-SE:
ACTINI3E PHOT3M RELEASE *AT:3, PHOTO^S/SCC
BASIS = MT OF HEAVY METAL CMA^SEO TO REACT3R
L ^E A N
t U f ii k
\ ™L V I
3.00E-01
6.3 !*E— 0 i
I. lilE* 00
1.5bE+00
2. 7bE+00
3.25E»UO
3.7CE*00
4.22E+OD
4. 7CE»30
b.2b£*C!0
T lu T T T A I
i ?4 1 1 i A L
2.43r»13
1.62~»13
3.71F. + I2
5 • i "^ r+ ^ 9
bljor*^
3. x2f»03
2.S?r+u8
l.bFE+38
7.=:"* J7
4.7'F»u7
1y
. T
2.39E*13
1.53E»13
3.73E*12
4.&SE* D9
5.8lit»CB
3.56E»0£
2.29E+08
1. 44E» ^8
6.63E* 07
4.25E* 07
TIME AFTES DI
1-1 v c "^ w
0 • T
2.35E»13
1.4bE»l 3
3.7'JE»12
3*37^* (3^
81 1 C" A 1 U
• 1 i r. * U D
2.35E»03
1.5! f»08
9.5:E»C7
4.5!!E«r7
t.B3E»?7
j *• . i
2.30E+13
1.44E»13
3. 66E*12
6.84E»il8
°.44E*U7
5.22E»07
3.35E»07
2. 12E* 17
1.0Ci«^7
6.30E»06
1 1 1 Y
1 J w • T
2.22E»13 1
1. 4 4 t » 13 1
3.fcbE»12 3
1.22E»B3 2
i.52r»D7 2
9.23i»D3 1
5.9:>E»3S 1
3.75r«D6 7
1.75i»CS 3
1. lii»05 2
e ^ n V
~ 'j U • T
.75C+13
. 3SE* 13
.53E*12
.3CE-07
.S3E+vib
.7bE»'.-6
. 13E»C6
.12E»C5
.37E*1b
. 12E»'n5
1 rt 1 fl Y
1 U J U* I
1.44E»13
1.32E»13
3.38E+12
?.15E»07
:.63E*Ofa
1.63E*Oa
l.C5E»OS
6.62F»05
3.13E»&5
1.97E»05
SL rt f> n Y
3 U v U * T
9.21i»12
2.3bi»12
1.45i»07
31 (* ~ * P. £.
• i O 1. * V. O
9. lbi»0b
b.86E»Ob
3. 71i»(>5
1. 75i» C5
1.10i»35
HE'S
TABLE A-IV-3
(continued)
innnn Y 1 fi rt on n Y
x y u u u • T i u y -- u u * i
b.44E»12 2.76E*10
b.8bE*12
1.49E»3 2
1.54E*"7
7.16E»C5
4.46E»C5
2.87E»"5
1.81E+05
8.55E*C4
b.38E»0»
9.99E09
4.30E»08
2.55-:»08
* ~
1.70E»04
8. 49E»03
5.45E»C3
3. 44E»03
1.63E»03
1. 02E»03
2.97E»10
l.S2E*10
1.33E»06
5.74E*08
5*> ~t r * .1 x
• £. I L.* l*J
1.53E»03
9.81E+02
6.19E»C2
2.93E»02
1.84E»02
TOTAL t.'.2?:+13
MEV/SEC ?.16r*13
3 A.17E»13 4.1lr»13
2.09E»13 2.03E»1J 2.00E»13
3.t9E*13 3.1JE»13 2.01i»13 1.28E»13 3.82E*10 «.S5E*10
1.79E»:3 1.6»E«13 1.10E»13 6.96E*J2 1.5«E»10 2.13E»10
ACTINIDE ENE^SY RELEASE *AT;3,
BASIS = M,T CF HEAVY METAL :nA^5t
""*•
3. JCE-01
6.39E-01
1.10E»CO
1* 5 w E * 0 0
1 • 9? L+ 0 0
2. 38£»0w
2. 7bL* u'O
3.2bE»Ofl
3.7CE«CO
4.22E»00
4.7i)E»CO
5.25E»C>i
T M f T T A 1
1 r4 I t i *t l»
l.ST«05
2. 65F* f 5
1 . 06E* Ob
2. £"'E»n2
1 .41 r»02
e.3?f*ci
4.56r»Cl
3.32E*'J1
2.43r»Cl
1.73f:»01
9«20C»00
t.46E»00
1 Y
1 » l
V«87E»nb
2.51E»i;b
1.06E»05
i.fcer»G2
i .TEL* 02
7.62OC1
4.1bE»Cl
3. 0) E» "1
2.2"E»P1
1.53E» Cl
8.35E»Ou
b.«7E»fn
TIME AFTEH OISCHARGi
1,1 Y c •"> v i ti r» v
(i • i
1.84r+Cj
2.3».t»05
l.OfaE+Ob
1.24E»02
8.42r»Cl
5. 03F»ni
2.7ir»ni
i.9sr»ni
1.4i)L»01
i.obr«ci
5.blE»OU
3.87E* JO
l.8j<>nb
2.37i»Cb
1 . 3bl» Ob
2.76E»C1
1.87E»P1
1.12E»11
b. U'JE»'10
4.42r»OC'
3.23E»00
2.32C»00
1.23E»PC
B.tlE-Ul
4 J L. •
2.35i»
1 . Lbi»
4. 91 i »
3.351*
J.9JE*
1.H9E*
/7.6SE-
b.7i:-
4. 13E-
2.1SE-
5
3
5
•J
C
2
0
1
1
1
1
1.5JE-; I
MEV/WATT-SEC
3 TO REACT3R
e. « ft v
3 U U • I
1. J7E»05
2.27C»ib
1.3 IE 05
9.29E-C1
6.3nE-il
3.76E-C1
2.C3E-01
1. 49r-ri
1. r3E-r-i
7.82E-02
4.12E-12
2.9.1E--2
i n n n Y
1 U U U » I
1.12E»Ob
2.17F+05
9.67E»0*
P.6SE-C1
5.aiE-fl
3.50E-01
l.fe3E-ftl
1.33E-01
:.CIE-UI
7.27C-02
3.63r-D2
C.6iE-02
c n ft ft y
j I1 U W . 1
1. bli* Ob
6. 73E* 04
5. 84i-!U
3. if i-Ol
1.96:-C1
1. obi- Dl
7.74i-G2
5.661-52
4. 07:-02
2.1bE-32
l.bli-C2
innnn Yinnrnn v
1 U U U U * IXvUwUU* 1
4.25E»04 2.15E»02
5. 60E»04
••28E*r*
f .23F-01
1.60E-01
9.b5E-T2
b.!4F-02
3.78E-02
2.76E-P2
1.99E-C2
1.05E-C2
7.3SE-C3
1» 6*E» 02
1. 23 E» 01
1. 03E»C1
3.37E-93
1.62E-C3
1.22E-C3
7.19E-P4
5.25E-34
3.73E-C*
1.99E-3*
1.40C-04
2.32E»02
2.99E»02
3.82E-02
2.32E»01
6.09E-04
3.27E-0*
2.70E-03
1.29E-0*
9.45E-05
6.60E-Ob
3.5SE-95
2.52E-05
TOTAL b.6?E»flb
GAMMA UATTS 3.46r*30
5.2PE*Ob b..?2E»Cb 5.1»i»|5
3.25F.*tn 3.21i»uO 3.1Si»:0
2.Hbt»'5 1.81E*r5 4.C2E»02 5.5«E«02
1.76i»OC 1.12E*00 2.47T-03 3.41E-03
A-IV-
131
-------
PHOTON SPECTRUM AS A FUNCTION OF TIKE FOR FISSI3N
PWR - 3U = 3 3, POO
POWER^ 38.13
TWELVE CROUP
BASIS
EMEAN
( M E V )
3 • o o r — oi
I. 10E+00
1. SJb£ + 03
1. 9'jE»ii^
2» 3£E-» 33
2. 7?E*OC
3. 25E+1/C
3. 7RE+00
4. 22E»CO
4. 7rE»lO
5.25E+OU
TOTAL
KEV/SCC
INI TI AI_
5°72f*16
2* 09E*i5
5. U?r»14
2. 71^* 1 4
5.G1T+13
3.37F+12
i.22r*ii
«.
C.
0.
0 .
7.01E»16
4.23016
1 . Y
2.45E»lfe
1.4St*35
3 . b 5 E * 1 4
l.^;JE»14
3.54E*13
2.74E* 52
8. 67E*10
0.
C.
0.
C.
3.30E*16
2.COE*16
WASTE DECAY TI1ES
M'.1. PURNUP= 33P&J.1WO
PHDTOM REL'ASL RATTS,
r HT OF HEAVY »iT*_ C
t
M
TIME AFTER DISCHARGE
1C*
1.05E+14
?. 5iF*l?
1. 59il»ll
6.!?5F»10
5.50E»09
1.74E»C6
0.
r.
C.
''•
3.98E»I5
2.52FT*15
TWELVE GROUP
EHEAN
t u r i/ \
v n h. v *
3ri r r — m
• I' U i_ ~ Ul
6.30E-11
i. icE+na
1 . 55E + Ou
1.99F+rO
S.obE'C:
2.75E»SO
3.25E+00
3.70E»00
4.22E+00
4.7Ct*'JC
5.25E+OS
TOTAL
AHMA WATTS
T M T TT A 1
1 ;M J. 1 1 H L
7 7 7 C" + ,T 7
I • i ' - * I' (,
5.53^*07
2. U4 ~* 07
1.5 IF* 07
3.11T+C&
2.77E+D5
1. (HF. + 04
<"••
a.
0.
u.
1.11E»09
b.86E:+03
IV
• 1
ry n •* c" «. P 7
./ * U O C. * I* (
4. 02E+08
4.23E* 07
1.43E* 57
S> . 8 7 E * U 6
2. 1*E* 06
1.96E»05
7.34n*03
C.
0.
U *
c.
5.21E*08
3.21E»"3
3A3I.S
I D I1 • 1
1. 31E*lb
1.6DE»13
2.3JE»11
6. 5jE»-U9
7.22F.-T.2
5. 6^E- 03
1.81E- 14
0.
C.
P.
C.
1.37E*15
8.56i>14
1 U J • I
11 £* P * i ^
• J j L * 1 J
2.27£>12
&. ft E»l C
1. 53E* J 9
7.51E-17
5.95E-13
1.89i-l ?
1.
0.
;.
0.
4.23E*!*
2.6*E*14
1
1
2
9
0
0
C
3
C
0
0
1
1
E^IERSY RELEASE RAIiS,
CASE E-4
FLUXn 1.42EH3 ,V**2-SEC
PHOTONS/StC
ARSE; TO REACTOR
500. Y IQjO. Y
tcf^i/- i ir*r*ifi
. ", ot-^lu l.ll'L*lu
.74E*11 1.3i»F + ll
.8SE»'J7 b.53E»05
.1?t,E*'l9 2.9SE*OS
.65F*n4 4.33E-01
G.
• p.
. u »
Q.
3.
. C .
3.
.91E+11 L.48E+11
.1SE*11 9.25C»10
1EV/WATT-SEC
— n fi ft y
D ' ; U U • T
1 * 07 C *• I Q
i-3iE>n
5. 45;* 04
2.fi7H>39
3.
0.
G.
.0.
C.
0.
0.
Q.
1. ««£>!!
S.99r»!0
1 n n n n v
1 vJ U U U • T
5«03E+10
1.26E*11
3. 04E*C3
2.77E*C9
0.
G.
n.
3.
n.
P.
c .
c.
1.39E*11
8.69E»10
TABLE A- IV- 3
( continued)
[OOCOO. Y*
5» 54E*-09
fc.76E»10
n.
1 . 48E*09
0.
0.
G.
0.
Q.
0.
0.
0.
7.4SE»10
4.65E*10
1.11 F* OT
i • J J L^ U *
1.32E*08
0.
2.90E+36
0.
9.
C.
0.
0.
0.
C.
0.
1.46E+08
9.09E»07
rr NT OF HEAVY MiT!L CHSR3ED.TO REACTOR
TIME AFTER OISCHAR3:
In v ^o v »n-» v
V •
In i r* n A
• U i L. ^ U D
6.13E*D7
3.01F.»06
2.23E»D5
6.23E+T3
4.34E*03
3.94E*C2
1 .48C»01
a.
0.
0 •
c.
6>.5fcF»17
4.04E»02
31 or* OS
• I O L ' ''3
2 • 15£^C7
5. lbf*05
V. 4lif* C3
3.3SC*02
4.46E-CS
4.08F-10
1.53E-11
P.
U.
Q.
C.
2.23E*07
1.37E»C2
-/'-••"
6.7i:*ts
6.51F* 4
2.bSr» 3
9.85F* 1
4. fcJE- 4
4.25;- 5
>1.60i- b
U.
•j.
0.
c.
6.87r».S
4.2Ji»,l
2
5
1
5
i)
0
0
a
0
a
0
3
1
c.-jri v inrn v
3 U J • I 1 J L U • T
.8SE»03 2.20E*03
.37E-11 1.5BE-02
.2i)E*02 1.15E*02
.llL-"3 2.24E-08
. C.
• n •
G.
C.
. C .
• ">.
. • .
.!)8E*'>3 2.41E»C3
.50E:-32 1.43E-02
^ ft h n v
j '' v U . T
8T TF ^ ft i
. J * t. * U 1
2.1*1*03
1.56E-03
1. 16E*02
0.
r.
c.
0.
0.
a.
u .
0.
2.34i»03
1.4«;-C2
1 n n n n v i ^ rt n *> n v
lUUu'J* Ti.JUUuU* T
8» 08E*01
2.07E*r3
8.69E-P5
1.12E+0,2
D.
C.
0.
n.
0.
U *
p.
c.
2.26E+03
1.39E-02
•f . OQC* Ul
1.11E*03
0.
5.93E*01
0.
0.
0.
0.
0.
0.
0.
0.
1.21E»03
7.46E-03
8.67E"02
2.16E+00
0.
1.17E-01
0.
0.
a.
0.
a.
0.
0..
0.
2.37E»09
1.46E-35
A-IV-
132
-------
H
H
H
H
HE
HE
HE
LI
LI
'.I
3E
3E
3E 10
3E 11
3 10
3 11
3 12
C 12
C 13
C 14
t 13
N 14
N IS
N 16
9 16
0 17
3 IB
0 1?
F 19
r 20
ME 20
NE 21
ME 22
ME 23
MA 22
MA 23
NA 24
MA 25
13 24
16 25
IS 26
MS 27
AL 27
AL 28
AL 29
SI 28
SI 29
SI 30
SI 31
P 31
P 32
P 33
0.
0.
o.
3.
c.
3.
3.
C.
9.
C.
0.
0.
9.
9.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
o.
0.
a.
0.
o.
o.
0.
o.
0.
c.
3.
0.
3.
0.
9.
0-
IMU. BURNL'P= 33CCO.MUO. FLUX= I . 42E* 13N/CM" 2-Si C
NUCLIOE RADIOACTIVITY
D I SCHARGE
0.
0.
1.83E-03
0.
0.
9.
0.
C.
?«
0.
0.
0.
1.45E-97
0.
9.
0.
0.
0.
0.
1.93E-03
0.
0.
0.
0.
0.
0.
C-
0.
0.
0.
0.
i).
o.
0.
0.
0.
4.83E-89
0.
3.
0.
0.
0.
0.
9.
0.
0.
C.
0.
0.
0.
6.53E-04
7.80E-92
1 • Y
9.
0.
1.78E-D3
0.
0.
0.
0.
3.
0.
0.
0.
3.
1.45E-07
0.
3.
0.
0.
0.
G.
1.93E-03
0.
9.
0.
9.
3.
0.
0.
0.
0.
2.
0.
9.
0.
0.
0.
0.
3.
0.
0.
9.
0.
0.
9.
0.
0.
0.
3.
0.
3.
0.
9.33E-08
4.93E-04
BASIS = NT OF
10. Y "" "
0.
9.
1.37E-03
0.
0.
0.
0.
C.
0.
0.
C.
0.
1.45E-07
3.
0.
3.
0.
3.
P.
1.93E-03
0.
0.
3.
0.
C.
0.
0.
C.
9.
C.
9.
3.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
9.
9.
0.
0.
0.
0.
0.
0.
0.
P.
3U • 1
0.
0.
1.12E-04
0.
0.
0.
0.
0.
9.
9.
0.
0.
1.45E-07
0.
0.
0.
0.
0.
9.
1 .92E-03
o.C
0.
0.
0.
0.
c.
0.
0.
p.
0.
9.
3.
0.
0.
0.
0.
p.
0.
0.
c.
0.
0.
0.
0.
c.
0.
n.
0.
o.
0.
0.
0.
HEAVY SET
inn v
1 OU • T
P.
0.
6.71E-06
f).
0.
9.
0.
0.
P.
9.
C.
0.
1.45E-07
0.
a.
9.
0.
0.
p.
.1.91E-03
0.
0.
9.
9.
9.
9.
0.
n.
0.
3.
0.
0.
9«/
0.
0.
0.
o.
n.
0.
9.
9.
0.
0.
9.
3.
9.
9.
0.
3.
0.
0.
3.
i CURIES
IL CHARGED
E n ^ v
50 D • T
0.
0.
1.09E-15
3.
3.
g.
3.
0.
0.
0.
0.
0.
1 .45E-07
0.
0.
P.
0.
}.
5«
1.82E-03
0.
0.
•).
0.
9.
9.
9.
3.
3.
0.
0.
0.
C.
3.
0.
3.
0.
D.
g.
9.
3.
9.
9.
9.
0.
9.
9.
P.
)•
0.
0.
3.
Clad
TO REACTOR
1 ft fl 1* V EAAA V
IV vvm T
0.
0.
6.26E-28
0.
0.
0.
9.
0.
0.
0.
0.
0.
1.45E-07
0.
0.
0.
9.
0.
0.
1.71E-03
0.
0.
C.
0.
9.
0.
0.
C.
0.
0.
9.
9.
0.
0.
3.
9.
0.
3.
0.
9.
0.
9.
C.
0.
0.
0.
9.
9.
0.
0.
0.
9.
WUUU • 1
0.
9.
0.
3.
0.
9.
0.
0.
c.
0.
0.
9.
1.45E-97
0.
9.
0.
P.
0.
0.
1.05E-03
P.
0.
0.
0.
0.
9.
9.
9.
0.
0.
0.
0.
0.
0.
0 »
?.
9.
0.
3.
0.
0.
9.
9.
9.
9.
0.
P.
0.
0.
n.
C.
?.
TABLE A-IV-3
(continued)
10UUU* TJUUDDO* T
0. 0.
0.
0.
0.
9.
0.
c.
c.
0.
0.
0.
0.
1.45E-07
0.
0.
0.
9.
0.
0.
5.76E-04
0.
0.
0.
0.
c.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
1.41E-07
g.
0.
0.
Q.
0.
0.
1.08E-08
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
9.
0.
0.
0.
c.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
1.10E-97
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
9.
0.
0.
0.
A-IV-
133
-------
PyR - BU = 33,000 WASTE DECAY TIH-.S CASi 'E-4
POUER= 36.40MU, BURNUP= 33000.MUD, FLUX= 1.42E+13N/CM**2-SEC
Clad
TABLE A-IV-3
(continued)
NUCLIDE RADIOACTIVITY, CURIES
BASIS = MT OF HE4VY METVL CHARGED TO REACTOR
CHARGE DISCHARGE
P 3*
S 32
S 33
S 34
S 35
S 36
S 37
CL 35
:L 36
CL 37
CL 38
A* 36
AR 37
A3 38
AR 39
AR 40
A* 41
K 39
X 40
.< 41
K 42
< 43
.< 44
CA 40
CA 41
CA 42
CA 43
CA 44
CA 45
CA 4,6
CA 47
CA 46
CA 49
SC 45
SC 46
SC 47
SC 48
SC 49
SC 50
TI 46
TI 47
TI 48
TI 49
TI 50
TI 51
V 49
V 50
V 51
V 52
- V 53
V 54
CR 50
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
°J
0.'
0.
0.
0.'
0.
0.
0.
c.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.-
0.
0.
0.
2.33E-02
0.
0.
0.
4.85E-f»9
0.
0.
0.
1.44E-13
0.
8.11E-16
0.
0.
H.
0.
0.
1.53-116
4.70T-66
0.
0. '
0.
0.
0.
0.
2.96E-OJ
0.
1.82E-17
0.
0.
0.
1.93E-01
2.15E-16
1.15E-31
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
1. Y
0.
0.
0.
c.
5.53E-03
0.
0.
0.
4.85E-09
0.
0.
0.
3.86E-15
0.
S.10E-16
9.
0.
0.
0.
0.
,0.,
0.
0.
0.
0.
0.
0.
0.
1.38E-03
0.
1.33E-29
0.
0.
0.
4.26E-02
5.46E-29
0.
C.
0.
0.
c.
0.
0.
0.
0.
0.
0.
p.
0.
c.
0.
c.
10. Y
n.
0.
0.
0.
3.14E-14
0.
Q.
0.
4.85E-09
0.
0.
0.
a.
0.
7.91E-16
0.
0.
0.
0.
9.
P.
0.
0.
0.
0.
0.
0.
c.
1.38E-09
0.
0.
0.
a.
I'.
6.82E-14
0.
0.
0.
0.
0.
0.
G.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
51, Y
0.
0.
0.
0.
0.'
-"•
p.
0.
4.85E-09
n.
0.
0.
0.
C.
7.14E-16
0.
3.
0.
0.
n.
o.f
9.
0.
0.
0.
C.
0.
5.
0.
0.
a.
a..
0.
0.
0.
a.
c.
9.
0.
9.
0.
a.
0.
0.
3.
0.
0.
0.
o.
?.
a.
0.
ICO. Y
0.
0.
0.
0.
0.
0.
0.
0.
4.85E-09
0.
0.
0.
0.
0.
6.27E-16
0.
0.
0.
0.
.0.
0.
9.
0.
0.
0.
0.
0.
0.
a.
0.
0.
n.
3.^
9.
C.
0.
0.
0.
0.
0.
0.
0.
0.
<).
0.
0.
0.
0.
p.
9.
0.
0.
510. Y
C.
a.
3.
0.
n .
c.
D.
Q.
-------
PUR - BU = 33*000 UASTE DECAY TIMES
1 = 38.40NU* BURVUP= 33903.MUO» FLUX=
CASE E-4
. 42E*13N/CM«*2-StC
NUCLIDE RADIOACTIVITY. CURIES
BASIS = HT OF HEAVY .MET it CHARGED TO REACTOR
C*
cs
c*
:a
CR
.IN
IV
IN
IV
.
?.
0.
9.
9.
3.
0.
0.
9.
9.
9.
-01
Clad
TO REACTOR
innn V BAAA v
A U U U« •
0.
0.
9.
9.
p*
0.
9.
0.
0.
9.
9.
C.
9.
9.
0.
0.
0.
0.
9.
C.
9.
9.
0.
0.
5.86E-01
3.
P.
0.
4.36E-02
0.
0.
C.
9.
Q..
0.
0.
0.
0.
0.
0.
0.
9.
0.
C.
0.
3.
C.
9.
P.
0.
3.
0.
ij V U U * I
0.
0.
0.
0.
0.
0.
9.
P.
P.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
9.
5.661-01
9.
3.
n.
3.95E-15
C.
9.
9.
9.
0.
!).
0.
0.
0.
3.
0.
0.
c.
ft.
0.
0.
0.
0.
9.
9.
9.
9.
0.
TABLE A-Iv^-3
(continued)
i n n n n vt n n n n n v
i u u uu» TAUUUUU* •
0. 0.
0. 0.
0.
0.
0.
0.
0'
C«
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
9.
0.
0.
0.
5.42E-01
0.
C.
9.
1.72E-31
0.
0.
9.
0.
C.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
9.
0.
0.
9.
0.
0.
D.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
2.48E-01
0.
0.
0.
9.
0.
0.
9.
0.
0,
0.
0.
9.
0.
0.
0.
c.
9.
0.
C.
9.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
6.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.02E-04
0.
0.
0.
0.
0.
0.
c.
9.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
0.
0.
A-IV-
135
-------
PUR
POWER:
SR 89
S* 90
SR 91
Y 90K
Y 90
Y 91H
Y 91
ZR 9T
ZR 91
ZR 92
ZR 93
ZR 9*
ZR 95
ZR 96
N3 92
N3 93M
N3 93
NS 9*
M3 95
N3 96
,V3 97
.13 92
10 93
10 93H
10 94
«!3 95
13 96
HO 97
13 98
)13 99
101CO
10101
T; 59n
TC 99
TC101
RJ101
CD113M
C3113
C3115N
C3115
:3119H
CD119
CD121
IU113
IV119N
1X119
IN121K
IM121
SN114
SV115
SM116
SN117H
0
0
a
0
9
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
0
o.
'0
0
0
0
0
0
c
0
0.
2,
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
1W» EURNUP
\TCpuiAPf"ir
1 1 ou n AH \jt
i.icE»nn
9.14E-'»5
G.
D.
9.15E-05
0.
3.85E+00
0.
0.
0.
1.98E-92
0.
1.D7E+93
0.
5.89L-06
1.69E-93
0.
A.76E-05
2.0.
C.
0.
U.
9.
0'
0.
0.
0.
9.
9.
C.
0.
0.
0.
0.
0.
HEAVY 1iT
1 n ft v
1 uU • T
0.
7.85E-D6
0.
0.
7.S6E-06
0.
P.
9.
C.
0.
1.98E-02
0.
0.
0.
0.
2.18E-02
0.
4.76E-05
0.
,0.
0.
0.
2.54E-03
0.
9.
9.
0.
0.
0.
9.
0.
U.
9.,
2.36E-03
0. ,
0. '
9.
9.
9.
9.
0.
0.
9.
0.
0.
9.
0.
3.
0.
0.
9.
9.
. CURIES
\L CHARGED
c n n V
500. Y
0.
1.17E-13
a.
D.
H .37i-10
0.
9.
0.
3.
3.
1.98E-02
0.
0.
0.
0.
2.19E-02
0.
1.76E-05
0.
9.
3.
0.
2.*7E-03
0.
C.
3.
0.
9.
0.
C.
9.
0.
9.
2.05E-03
e.
0.
0.
0.
3.
5.
3..
9.
9.
; .
3.
9.
9.
3.
0.
0.
0.
1.
Clad
TO REACTOR
• MftA y CAAA W
1000* Y
0.
1.79E-15
0.
0.
1 .79E-15
0.
0.
0.
0.
0.
1.98E-02
0.
0.
0.
0.
2.16E-02
0.
4.76E-05
9.
0.
0-
0.
2.57E-03
0.
0.
9.
0.
0.
0.
C.
c.
9.
0.
2.95E-03
0.
0.
0.
9 «
0.
9.
9.
0.
0.
C.
C.
C.
9.
0.
9.
0.
9.
0.
DUU U • I
0.
0.
n.
9.
0.
0.
0.
0.
0.
0.
1.98E-02
9.
0.
0.
0.
2.12E-02
0.
».76E-05
0.
0.
0.
0.
1 »7*i-03
0.
0.
9.
C.
9.
0.
0.
9.
0.
3.
2.C2E-03
0.
0.
9.
9.
0.
0.
0.
n.
c.
9.
0.
9.
0.
0.
a.
0.
0.
0.
TABLE A-IV-3
(continued)
10000* YJ 00000* Y'
0. 0.
0. 0<
0.
0.
0.
9.
0.
0.
c.
0.
1.97E-02
0.
0.
0.
0.
2.07E-02
0.
1.76E-05
0.
0.
0.
0.
1.19E-03
0.
0.
0.
0.
0.
0.
0.
e.
c.
0.
1.99E-03
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0.
0.
0.
'o.
0.
0.
0.
0.
0.
1.89E-02
D.
0.
9.
0.
1.69E-02
0.
*.7»E-05
0.
G.
0.
0.
1.16E-06
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
l.*8E-03
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
(U
0.
0.
0.
0.
0.
0.
0.
0.
:.25E-02
0.
0.
0.
0.
1.25E-02
0.
4.60E-OS
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.58E-05
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
136
-------
PUR - BU = 33tOOO
POWER= 38.40nu«
WASTE DECAY TIMES
33000. MUDt FLUX =
CASE £-•»
. 42E»13N/CH**2-SEC
Clad
TABLE A-XV-3
(continued)
NUCLIDE RADIOACTIVITY. CURIES
BASIS = NT OF HEAVY 1ET IL CHARGED TO REACTOR
SSI 17
SM118
S1119H
SV119
SV129
SN121H
SVI21
SN122
SN123H
sms
SV124
SM125M
SN125
53121
SB123
S3124N
S3124
S3I25
S3126N
S3126
T-3124
TE125M
TE125
TE126
T4180
TA181
TA182M
TA182
11189
U181 ,
U182
W183H
i J183
•U184
U185H
U185
U186
J187
TOTAL
CHARGE
0.
0.
0.
9.
9.
0.
9.
0.
0.
0.
0.
0.
0.
9.
0.
3.
0.
9.
0.
0.
0.
C.
0.
0.
0.
0.
9.*
0.
0.
9.
0.
0.
0.
0.
9.
0.
0.
0.
0.
DISCHARSF.
9.-
9.
3.45E»9P
0.
0.
6.32E-92
6.23E-47
9.
9.
4.2PE-02
9.
0.
1.36E-96
9.
9.
0.
B.94E-92
8.94E*00
0.
9.56E-17
0.
3.26E»99
0.
0.
0.
0.
0.
9.
9.
0.
9.
0.
9.
0.
0.
0.
0.
0.
7.96E*03
1. Y
0.
3.
2.98E+90
0.
9.
6.29E-92
0.
a.
9.
1.53E-02
9.
0.
1.92E-12
9.
9.
0.
1.B7E-02
7.37E+09
0.
3.82E-11
0.
2.92E+90
0.
9.
0.
9.
0.
0.
0.
9.
9.
0.
0.
9.
9.
C.
0.
0.
4.51E+03
19. Y
0.
0.
2.29E-04
9.
0.
5.89E-92
0.
0.
0.
1.35E-19
9.
9.
9.
a.
9.
9.
3.44E-19
7.01E-01
G.
C.
9.
2.91E-91.
9«i
0.
0.
0.
9.
9.
0.
9.
P.
9.
9.
9.
0.
3.
0.
9.
1.10E»03
59. Y
0.
9.
5.82E-22
9.
n. '
4.G3C-92
0. •
0.
0.
9.
9.
C.
9.
0.
9.
0.
0.
2.43E-95
0.
r.
(i.C
1.0iE-05
0.
0.
9.
9.
1.
9.
9.
9.
0.
9.
0.
9.
9.
0.
0.
0.
6.82E+91
100. Y
0.
0.
9.
9.
P.
2.55E-92
0.
9/
0.
9.
9.
9.
9.
9.
9.
0.
9.
6.46E-11
9.
9.
9.
2.68E-11
0.
0.
n.
9.
9.
9.
0.
9.
9.
9.
9.,
9.
C.
0. '
0.
9.
4.57E»91
i
0.
9.
0.
?«
f.
6.1
9.
9.
9.
9.
9.
?.
9.
3.
9.
9.
0.
0.
9.
9.
9.
0.
0.
0.
9.
9.
D.
9.
9.
7.
9.
0.
C.
3.
9.
0.
0.
9.
2.
591. Y 1300. Y 50UO. Y 1H909. YI09999. Y«**««*« Y
75E+09
0.
0.
9.
0.
9.
6.94E-96
0.
9.
9.
9.
9.
9.
0.
C.
0.
0.
0.
9.
9.
9.
0.
9.
0.
0.
9.
C.
9.
9.
9.
9.
C.
9.
0.
P.
9.
9.
9.
0.
6.B2E-01
0.
9.
0.
0.
9.
.9.87i-22
9.
9.
9.
0.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
0.
9.
3.
9.
0.
9.
9.
9.
9.
9.
9.
0.
C.
0.
9.
0.
6.12E-01
0.
9.
0.
0.
9.
1.54E-41
0.
9.
0.
0.
9.
9.
0.
9.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
9.
0.
0.
9.
9.
0.
0.
0.
9.
5.86E-01
9.
0.
"9.
9.
9.
0.
0.
9.
0.
0.
0.
9.
9.
0.
C.
0.
9.
0.
0.
0.
0.
9.
0.
0.
9.
0.
9.
0.
0.
0.
0.
p.
0.
0.
c.
0.
9.
9.
2.88E-OI
0.
0.
0.
9.
0.
0.
0.
0.
0.
9.
0.
0.
9.
0.
0.
0.
0.
0.
0.
01
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
9.
0.
2.52E-02
A-IV-
137
-------
HE 4
TL207
TL2C8
TL2T9
P3206
P32C7
P3208
P3209
P3210
P3211
P3212
?3214
31235
31210
31211
31212
31213
31214
P0210
PP211.
P0212
PD213
'0214
PD215
= 0216
P0218
AT217
3^219
3M220
RN222
"R221
34223
34224
R4225
34226
R4228
AC225
AC227
4C228
TH227
TH228
TH229
Trl230
TH231
TH232
Tri233
TH234
PA231
PA232
PA233
PA234M
CHARGE
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
a.
o.
0.
0.
0.
0 .
0.
0.
.a.
o.
o.
p.
o.
o.
o.
o.
o.
0.
0.
0.
r.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
u.
0.
0 .
0.
0 .
0.
i,OOP (TASTE DECAY TIMES CASE E-t
IU* BURNUP= 33CUO.M'JD» FUUX= 1 .42E+13N/CM** 2-SiC
NUCLIDE RADIOACTIVITY
o>
2.60E-08
2.56E-"4
8.78E-11
0.
0.
0.
3.9SE-09
7.82E-19
2 . 6 1 E- 0 8
7.11E-P4
3.71E-17
0. .
2.20E-19
2.61E-08
7.11E-H4
3.99E-"9
3.71E-17
7.67E-21
7.83E-11
4.55E-14
3.90E--19
3.71E-17
2.&1E-OS
7.11E-14
3.71E-17
3.99E-19
2.61E-08
7.11E-04
3.71E-17
3.99E-P5
3.92E-1C
2.61E-T?
7.11E-04
4.02E-09
3.94E-17
3.P2E-13
3.9SE-39
2.80C-??
3.P2E-13
2.64E-PB
7.22E-34
4.G6E-09
8.52E-14
8.26E-03
3.12E-12
D.
3.01E-01
5.61E-07
7.14E-45
8.63E-°2
3.01E-31
1 . Y
0.
3.65E-08
2.19E-04
8.96E-11
0.
0.
.0.
4.07E-09
1.56E-18
3.67E-08
6.08E-04
5.78E-17
0.
1.56E-18
3.67E-08
fc.38F.-P4
4.07E-09
5.78E-17
7.07E-19
1 .10E-10
3.89E-04
3.98E-09
5.78,E-17
3.67E-08
6.08E-04
5.78i-17
4.U7E-09
3.67E-n.8
6 . 0 8 E -C 4
5.78E-17
4.07E-09
5.11E-1C
3.67E-08
b.ORE-04
4 .07E-09
5.78E-17
4.45E-13
4.0 7E-09
3.65E-08
4.45E-13
3.61E-08
6.95E-C4
4.07F.-09
8.52F.-14.
4 .13E-05
3.13E-12
0.
3. 07E>C3
5.62E-07
0.
8.70E-02
3.07E-03
BASIS = MT OF
10. Y
0.
1.S9E-C7
2.31E-05
1.27E-10
0.
0.
0.
5.77E-09
6.C6E-17
1.S9E-07
6.42F-Ob
3.S9E-16
C.
6.06E-17
1.69E-07
6.42E-T5
5.77E-09
3.89E-16
6.06E-17
5.08E-1 0 '
4.1 1E-05
5.61E-09
3.89E-16
1.69E-07
6.42E-C5
3.R9E-16
5.77E-Q9
1.S9E-07
6.42E-Ob
3.89E-16
5.77E-C9
2.37E-09
1.&9E-C7
6. 4 2 E- 05
5.77E-09
3.69E-lo
2.1 CE-12
5.77E-09
l.bVE-07
2.1QE-12
1.&7E-P7
6.41E-05
5.77E-09
8.52E-14
4.13E-Ofi
3.21E-12
Q.
1 .bOE-13
b.70E-07
0.
9.76E-02
1.50E-03
3U . I
0.
4.73E-07
1.25E-05
1.25E-C9
0.
0.
0.
5.69E-08
9.5PE-16
4.74E-07
3.4SE-05
1.851-15
l).
9.5PE-16
4.74E-07
3.48E-05
5.69i-Q8
1 .8C51-15
9.50E-16
1.42E-09
2.23E-C5
5.56E-08
1.85E-15
4.74E-07
3.48C-05
1.85E-15
5.69F.-D8
4.74E-07
3.46E-Ob
1.85E-15
5.69F.-08
ft .64i-09
4.74i-07
3.4BE-05
5.69E-08
1.95E-15
3.57E-12
5.69E-n8
4.74E-07
3.57E-12
4.68E-07
3 .46i-15
5.69E-08
6.51E-14
4.151-05
3.73E-12
C-
1.5UE-03
6.05E-P7
0.
1.43E-P1
1.50E-03
HEAVY 1ET
1 TO . Y
C.
5.99E-07
,7.74E-06
5.bOE-09
0.
0.
0.
2.55E-07
2.59E-15
6.01E-07
2.15E-05
3.63E-15
0.
2.59E-15
b.01E-07
2.15E-05
2.551-07
3.S3E-lb '
2.59E-15
1.80E-09
l.ifcE-05
2.49E-07
3. 63E-1 b
6.01E-37
2.15E-35
3. T3E-1 5
2.b5E-07
6.!)1E-07
2.15E-05
3.S3E-15
2.55E-C7
8. 41E-39
6 . C1 1 E -0 7
2.1 5E-05
2.55E-0'7
3.63E-15
4.66E-1?
2.55E-07
6.C1E-D7
4.SGE-12
5.^2E-D7
2.15E-05
2.5bE-07
9.51E-14
4.18E-C5
4.94E-12
Cl.
1.5C1-03
6.49E-07
P.
1.98E-01
1.50E-03
. raRirs
: L CH4R6ED
501. Y
0.
1.01E-06
1 . &5~-07
2.79E-07
n .
3.
0.
1.27E-C5
1.66T-14
1.01E-06
4 «57i-07
1 .66^-14
D.
1.&6E-14
1. 01^-06
4.57E-07
1.27E-05
1. 66E-14
1 . i6i-14
3. Q3F-09
2.93"-07
1.24C-05
1.66t-14
1.01--06
4 • 57E-17
I.fa6r-14
1.27E-05
1.01i-06
4.57F-07
1 . S6t-l 4
1.271-35
1.42i-I8
1 .01--06
4 ,57:T-07
1.27E-Ob
1.S6T-14
4.01T-11
1 .27i-f!5
1 .01F-06
4. Olr-ll
9.97T-T7
4 .57i-07
1.27E-Q5
9.48T-14
4.51r-fl5
4.01E-11
0.
1.50--03
1 .01E-06
3.
5.06E-!11
1.50i-03
HE'S
TO REACTOR
1000. Y tA«« **
0.
1 .51E-06
1.39E-39
1.S1E-06
0.
C .
G.
7.32E-35
2.98E-14
1 .51E-06
3.36E-C9
2.98E-14
C.
2.38E-14
1 .51E-06
3.36E-09
7 .3PE-05
2.9PE-14
2.98E-14
4.54E-39
2'. 4 7-E-C9
7.16E-05
2-.98E-14
1 .51E-06
3 .8 ^E-0 9
2.38E-14
7.32E-05
1 ,51E-06
3.36E-09
2.98E-14
7.32F-05
2.12E-08
1 .51E-06
•3 .36E-39
7.32E-05
2«?3E-14
1.16E-1 0
7 .32E-05
1 .51F-06
l.» f.E-1 0
1 .E-n£
3 .36E-<19
7.3?E-05.
8 .^ 4E-1 4
b .2 1E-05
l.lfaE-10
P.
1 .50E-03
1.5 IE- 0'6
0.
6.J6E-01
1.50E-03
DIl uu . 1
0...
1.08E-05
1.12E-03
6.63i-05
0.
0.
0.
3.01E-03
7.33E-14
1.08E-05
3.11E-09
7.331-14
0.
7.33E-14
1.0SE-U5
3.11E-09
3.01E-03
7.33E-14
7.33E-14
3.25F.-OS
1 .99E-09
2.95E-03
7.33E-14
1 .OST-05
3.11E-09
7.33E-14
3.01E-03
1 . nsi-G5
3.11E-P9
7.33E-14
3.C1E-03
1 .52E-07
1.081-05
3.111-09
3.P1E-03
7. 33E-14
3.1i:-09
3.01i-03
l.OBi-05
3.11E-09
1.Q7E-C5
3.11T-03
3.01E-03
3 . 16E-14
2.01E-04
3.11i-09
0.
1.50E-03
l.OBE-05
n.
8.65E-01
1.50E-03
TABLE A-IV-3
(continued)
10090. Y1POOOO* Y1
0. 0.
4.65E-05
3.34E-09
2.57E-04
r.
0.
0.
1.17E-02
7.86E-14
4.56E-05
1.07E-08
7.86E-14
0.
7.86E-14
4.66E-05
1.U7E-08
1.17E-02
7.86E-14
7.86E-14
1.40E-07
6.83E-09
1.14E-02
7.86E-14
4.56E-05
1.07E-08
7.S6E-14
1.17E-02
4.6ftE-05
1.07E-08
7.86E-14
1.17E-02
6.52E-07
4.66E-05
-1.07E-08
1.17E-02
7.S6E-14
1.07E-08
1.17E-02
4.66E-05
1.07E-08
4.6CIF-05
1.07E-08
1.17E-02
7.B1E-14
5.42E-04
1.07E-08
C.
1.5PE-03
4.66E-05
0.
8.79E-01
1.50E-03
4.24E-03
9.59E-08
5.81E-03
0.
P.
0.
3.101-01
3.65E-14
4.25E-03
2.66E-07
3:.65i-14
C.
3.65E-14
4.25E-03
2.66E-07
3.10E-01
3.65E-14
3.65E-14
1.28E-05
1.70E-07
3. 03E-01
3.65E-14
4.25:-03
2. 66i-07
3.65E-14
3.10J-01
4.25E-03
2.6&E-07
3.65E-14
3.10E-01
5.95E-05
4.25E-03
2.&&E-07
3.10E-01
3.651-14
2.661-07
3.10E-01
4.25E-03
2.66i-?7
4.19E-03
2.66E-97
3.ior-ni
3.58E-14
5.95E-03
2.661-07
C.
l.Sli-03
4.25E-03
0.
8. 80E-01
1.51E-03
0.
6.38E-03
1.30E-OS
1.54E-02
0.
P.
0.
6,» 9 8 E - 0 1
1.50E-17
6.4 OE-03
2.79E-06
1.5UE-17
P.
1.50E-17
b.40E-03
2.79E-06
6.98E-01
1.50E-17
1.50E-17
1.92E-05
1.78E-06
6.83E-P1
1.50E-17
6.40E-03
2.79E-06
1.50E-17
6.98E-01
6.40E-03
2.79E-06
1.50E-17
6.98E-G1
8.96E-C5
6.40E-03
2.79E-06
&.98E-0 1
1.50E-17
2.79E-06
6.98E-01
6.40E-03
2.79E-06
6.31E-03
2.79E-0&
6.98E-01
1.47E-17
6.40E-03
2.79E-06
0.
1.52E-03
6.4PE-03
0.
6.58E-01
1.52E-03
A-IV-
138
-------
PWR - BU = 33,000 WASTE DECAY TIMES CASE! C-4
POWER = 38.40HU, 6URNUP= 33000. HWD, FLUX= 1. 42E*13N/CM»*2-SEC
NUCLIDE RADIOACTIVITY
PA234
U232
U233
U235
J236
U237
U238
J239
U24C
VP236
MP237
V?238
N°239
NP24DM
HP240
PJ236
PJ238
PU239
PU240
PU241
PU242
PU243
PU244
PU245
A1241
4"l2E-Of<
0.
0.
0.
5.78E+04
-»W • I
1.50E-06
3.39E-05
2.44E-05
4 .15E-05
3.55E-04
1.25E-02
1.50E-03
0.
7.58E-11
0.
1 .43f-01
0.
4.85i*92
7.58E-11
0.
5.78E-09
9.56E*02
5.18E*00
1.75E*02
b.20E*02
2.00E-01
7.42E-06
7.59E-11
0.
3.47E*03
8.02E-02
8.02E-ff2
«.S5E*02
9 .661-14
0.
6.57E-02
1.40c*01
1 • 95E*04
1.57E*01
1.95E*00
7.42E-06
2.00E-05
0.
B.08.E-13
3.
8.08E-13
1.16E-96
8.11E-13
9.44E-07
1.87E-10
0.
0.
0.
1.66E+04
, CURIES
HE4VY <»ET\L CHARGED
Inn v E n n v
UU • T
1.50E-06
2.09E-95
6.1CE-05
4.18E-05
6.31E-94
1.5CE-03
1.50E-33
0.
1.52E-10
0.
1.98E-01
0.
4.S3E+D2
1.52E-10
0.
3.02E-14
6.48E*02
5.87E+00
•l.?8E»92
6.2SE»01
2. JtlE-01
7.42E-3S
1.53E-10
0. '
3.22E*03
6.38E-02
6.38E-02
4.93E*02
1.38E-13
0.
5.23E-02
4.74E*OC
1.54E«03
1.56E»51
1.93E*00
7.42E-Q6
2.00E-05
0.
7.92E-13
0.
7."2E-13
6.13E-11
7.92E-13
9.J6E-S7
3.83E-15
0.
0.
0.
6.66E*03
JU tf * I
1.50r-06
4.45T-07
S.90T-04
4.51T-05
2.93^-03
3.63E-04
1.50T-03
D.
7.54i-10
0.
5.06C-01
0.
1.66^*02
7.64--10
0.
0.
2.87r»01
1.12E»01
1.94i»02
1.51E»C1
2.02T-01
7.42i-06
7.65E-10
S.
1.70^*03
1.93T-02
1 .93^-02
4.S6?T»02
5.95E-13
0.
3.44«>03
3.17E-04
3.43E-04
1.51 T*0 1
1.82"*00
7.42E-06
2.00!!-05
0.
S.75C-13
0.
5.75E-13
0.
S.75E-13
&.67T-P7
0.
3.
3.
0.
?.90C»03
HE'S
TO REACTOR
1 U r n V ennn v
1 II U U • T
1.50E-06
3.51E-39
2.3UE-03
5.21E-05
5.S8E-03
3.48E-04
1.50E-03
0.
1.53E-09
0.
6.96C-P1
0.
4.45E+C2
1.53E-09
0.
C.
5.37E-01
1.74E*01
1.34E*02
1.45E*11
2.03E-31
7.42E-06
1.53E-39
0.
7.73E»02
1.95E-03
1.B5E-03
4.45E+32
1 .9^E-1 2
0.
8.S3E-04
l.ilE-08
3.S4E-12
1 .4bE*Ul
l.S5E*00
7.I2E-06
1.99E-05
0.
5.53E-13
0.
5.53E-13
0.
5.53E-13
4.54E-37
0.
0.
0.
0.
1.90E»03
^ U U U • 1
i.sur-06
S.76E-2S
1.61E-02
2.Cli-0»
2.32E-P2
2.49E-34
1.5CE-03
3.
7.62E-09
0.
B.65E-01
0.
3.10i*02
7.621-9?
0.
C.
2.49T-11
5.5SE»01
1.22E*02
1.94i*01
2.1lE-01
7.42=>0&
7.63i-09
0.
1.21E*01
1.261-11
1 .26i—ll
3.10i*02
9.91E-12
0.
1.03E-11
0.
9.91E-12
l.C4C*01
9.40E-01
7.42E-03
1.98E-05
0.
1.12E-13
0.
1.12E-13
0.
1.12C-13
2.081-0-3
0.
P.
0.
G.
' 8.34E»OZ
TABLE A-IV-3
(continued)
i fin n n vinnnnn v
1 'J U t1 v * rJUUUUU* T
1.50E-06 1.51E-06
8.36E-47
3.43E-02
5.42E-04
3.71E-02
1.64E-04
1.50E-03
0.
1.52E-08
0.
8.79E-01
0.
1.97£»02
1.52E-08
0.
0.
3.11E-21
8.10E»01
7. 33E*01
6.82E»00
2.15E-01
7.41E-06
1.52E-08
0.
6.83E*00
1.57E-21
1.57E-21
1.97E*02
1.97E-11
0.
1.29E-21
0.
1.97E-11
6.81E*00
4.5-li-Ql
7.41E-06
1.96E-05
0.
1.53E-14
0.
1.53E-14
0.
1.53E-14
4.43E-1 0
0.
C.
0.
0.
5.71E»02
0.
3. 09^-01
5.95£-03
5.77:-02
8.63E-08
1 .51i-03
0.
1.38E-07
0.
S.BOE-01
0.
5.66T-02
1.38E-07
0.
0.
0.
1.32E»01
7.19E-03
3.6C1-03
l.P7i-01
7.39i-06
1.39i-07
0.
3.79E-03
0.
0.
5.66E-02
1.80E-10
9.
0.
0.
1.80E-10
3.59E-03
7.931-07
7. 39i -06
1.64E-05
0.
4.11E-30
0.
4.11C-30
0.
4.11E-30
0.
0.
0.
0.
0.
•1.82E»01
1.52E-06
0.
6.98E-01
6.40E-33
5.62E-02
D.
1.52E-03
0.
6.33E-07
0.
6.58E-01
0.
7.11E-06
6.33E-37
0.
0.
0.
7.11E-06
6.34E-07
0.
3.61E-02
7.11E-06
6.34E-07
0.
0.
0.
P.
7.11E-06
8.24C-10
0.
0.
0.
8.24E-10
0.
0.
7.11E-06
2.79E-06
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.77E«00
A-IV-
139
-------
FUR - B'J = 33,003 WASTE DECAY TIKES
POWER= 3S.40MW, BUR.NUP= 33090.MUD, FLJX= 1.
01
H 3
Z\ 72
3A 72
3E 72
SA 73
3: 73
3« 74
31 74
3A 75
6E 75X
SE 75
AS 75
3A 76
3-1 76
AS 76
SE 76
SI 77H
GE 77
AS 77
SE 77 K
s: 77
31 78
AS 78M
AS 78
SI 78
AS 79
SI 79H
SE 79
3R 79
AS 89
SE 80
31 80*1
3* 80
K3 80
AS 81
SI 81M
SE 81
3R 81
K3 SIM
<3 81
SI 82
33 82H
33 82
K3 82
SE 83.^
SI 85
3R 83
<3 83M
K* 83
SI 84
33 84M
3R 84
CHARE
c .
0.
0.
0 .
0.
c .
3.
P.
0.
0.
0.
G.
0.
0 .
0 .
c.
0.
0.
3.
0.
0.
0.
0.
0.
c.
0.
G.
C .
•3 .
C.
0.
C.
D.
0.
P.
0.
P.
0.
0.
C.
0.
0.
0.
0.
c.
0.
0.
0.
0.
p.
9.
0.
>E DISCHARS*"
7.5CE+P1
1.34E-27
1.93E-27
0.
9.
0.
0.
C.
0.
0.
c.
9.
D.
0.
7.14E-50
0.
0.
1.49-114
2.56E-31
7.S8E-34
C.
0.
0.
P.
0.
0.
0.
3.31E-01
0.
0.
c.-
0.
0.
3.
9.
0.
0.
0.
p.
0.
0.
u.
4.27E-3S
0.
3.
C.
0.
0.
p.
0.
0.
0.
1
7.29E
a.
0.
0.
0.
0.
a.
0.
0.
c.
0.
0.
0.
0.
?.
n.
c.
0.
0.
a.
0.
r- ,
0.
0.
3.
0.
9.
3.31E
C •
0.
r.
0.
9.
; .
C .
U.
C.
0.
0.
0.
0.
1.
p.
0.
c.
c.
0.
c.
0.
0.
0.
a.
-01
'IKES CAS" E-4
ID, FLJX= 1.42E+13NVCH**2-SEC
NUCLIDE RADIOACTIVITY
BASIS = IT 0-
in v ^ f v
1 U • I 3 j • T
4.39E+P1 4.61:1 + 00
0. 0.
0.
0.
0.
0.
r.
0.
0.
0.
0.
o.
c.
9.
0.
0.
0.
0.
p.
T,.
9.
0.
0.
n.
0.
0.
0.
3.31E-P.1
0.
0.
c.
0.
0.
0.
c.
9.
0.
0.
0.
0.
0.
c.
1.
0 .
P.
c.
0.
0.
0.
0.
p.
9.
c.
c *
c.
0.
n f
n.
9.
0.
0.
0.
u.
p.
3.
0.
c.
9.
T.
p.
n ^
0.
0.
0.
c.
0.
c.
3.31E-01
C.
V .
f •
5.
n.
:.
0.
n .
0.
" .
p.
0.
c.
c.
c.
" .
V •
1.
3.
0.
0 >
f .
0.
0.
, CJ.RIES
HEAVY 1-:T4_ :n»R3ED
inn ¥ c r> ft v
1 U 'J • 7
2.75E-01
0.
0.
n.
0.
p.
c.
3.
c.
n.
a.
0.
0.
0.
c.
c.
0.
0.
0.
0.
c.
n.
0.
0.
ll.
0.
9.
3.30E-01
9.
0.
P.
0.
P.
0.
3.
0.
C.
0.
C.
n.
0.
c.
9.
U.
1.
0.
0.
p.
n.
V •
0.
3.
J V .' • 1
D.
0.
•j •
0.
1 .
D .
1 .
3.
0.
3.
0.
n.
9.
3.
1.
0.
n.
0.
c.
9.
3 .
D.
3.
J.
C.
n.
I.29E-01
3.
C.
?.
0.
r>.
D.
n.
3.
n .
3.
C.
3.
ft.
3.
3.
3 .
3.
*.
C.
P.
1 .
n.
0.
•3.
FP's
TO REACTOR
1TQO Y c n n n V
2.58E-23
C.
n.
a.
G.
0.
C.
•J *
0.
0.
0.
p.
u.
0.
3.
!* .
n.
0.
n.
0.
n.
0.
c.
0 .
0.
0.
0.
3.27E-C1
0.
n.
P.
P.
0.
c.
p.
p.
c.
n.
0.
3.
P.
9.
P.
P.
0.
J .
0.
P.
0.
p.
c.
3.
J •: V v * i
0.
0.
c.
0.
0.
0.
0.
0.
3.
0.
0.
0.
J.
3.
0.
3.
P.
3.
0.
n.
3.
C.
9.
9.
9.
0.
9.
3.141-01
0.
0.
0.
0.
1.
P.
C.
r>.
C.
C.
9.
C.
i.
0.
p.
1.
0.
0.
3.
R.
C.
9.
C.
0.
TABLE A-IV-3
(continued)
0* C* 0*
0. G* 0*
u *
p.
0.
0.
0.
0.
c.
0.
c.
0.
0.
9.
C.
0.
0.
3.
0.
P.
0.
0.
0.
0.
0.
0.
p.
2.97E-01
0.
C.
0.
P.
9.
0.
5.
n.
0.
0.
0.
0.
0.
0.
c.
9.
3.
0.
0.
9.
C.
C.
0.
0.
0.
0.
0.
0.
0.
0.
p.
D.
0.
C.
c.
0.
p.
0.
c.
0.
0.
3.
C.
n.
0.
0.
0.
0.
0.
1. 141-01
0.
0.
0.
0.
c.
0.
c.
0.
0.
p.
0.
0.
0.
fl ^
c.
0.
3.
0.
s.
0.
g.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
3.
p.
0.
0.
r;.
9.
0.
0.
0.
0.
9.
7.72E-06
0.
C.
0.
0.
0.
0.
1.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
140
-------
PUR - BU = 33.06C WASTE DECAY TIHtS CASE c-4
POUER= 36.40MWt BURN'UP= 33300.MUD» FLUX= 1 . 42E* 13V/C;i»*2-SiC
NUCLIOi RADIOACTIVITY. CURIES
BASIS = HT OF HEAVY 1ET4L CHAR3ED TO REACTOR
590.
-------
PWR - 3U
POUER= 38
= 33,000 WASTE DECAY TIMES
.40MW, BURNUP= 33000. MUD, FLUX=
N
r-Lj AD^r r\TOf*i_i4r»r»r-
Y 94
ZR 94
^3 95
3R 95
Y 95
Z3 95
\3 95M
13 95
,13 55
Y 96
Z^ 96
Mb 96
10 96
Y 97
Z* 97
M3 97H
M3 97
13 97
Z=» 98
M3 98M
M3 98
13 98
«I3 99
.13 99
TC 99M
TC 99
SU 99
M3100
13103
TC100
R Jl 00
N3iPl
13101
TC101
R J101
131 02
T C 1 1 2 'A
TC1C2
1U102
101P3
TC1P3
RJ103
RH103M
SH1C3
131C4
TC1C4
*U1C4
3 HI 04 M
3H1 04
PD1C4
.13105
TC1C5
vn «r\wt. L.'io^,n«r\o-_
0 . 0.
0. 0.
0 .
3.
0.
0 .
D .
0.
n.
3.
0.
0 .
0.
0.
3.
0.
0 .
0.
C.
0 .
0.
c .
0.
c.
0 .,
c.
0 .
c.
0.
c.
c.
c.
e.
0.
0.
c.
c.
0.
0.
0.
c .
3 .
c.
c.
0.
0.
0.
3.
0.
3.
0.
3.
•3.
0.
0.
2. 3 IE* OS
4.91E+03
4.51E+35
0.
0.
0.
5.27E-55
0.
0.
3.32E-72
3.19E-72
3.58E-72
0.
0.
0.
c.
0.
0.
3.7GE-14
3.54E-14
1.4fiE>rtl
0.
0.
C.
0.
0.
0.
0.
0.
c.
3.
C.
0.
0.
0.
0. .
7.23E+04
7.24E+n4
0.
C.
0.
0.
3.
C.
C.
0.
0.
IV
. T
o.
0.
0.
0.
0.
3.30E+04
7.00E+02
7.31E+04
0.
0.
0.
it.
3.
0.
0.
O.
C.
3.
0.
0.
3.
0.
0»
7.48E-34
7.15^-34
1.48E+01
0.
0.
C.
0.
n.
0.
c.
9.
0.
7.
0.
0.
f .
3.
U.
2.96E+03
2.96i»03
0.
0.
f\
'„• *
P.
a.
n. .
0 .
0.
Q.
CASE E-4
1.42E*13N/CM**2-SiC
UCLI3- RADIOACTIVITY
BASIS = IT 0=
IP V c n w
I b • T
3.
0.
0.
0.
0.
1.96E-11
4.17F-13
4.26E-11 ,
0.
0.
n ,
0.
6.
C.
V *
G.
C.
0.
0.
3.
(I.
3.
C.
0.
0.
1.48f>r!l
0.
0.
5.
C.
0.
0.
C.
>?.
.1.
n.
0.
c.
•3.
0.
0.
0.
0.
0.
0.
c.
5.
c.
3 .
1.
0.
0.
J U • 1
0.
0.
n .
0 .
0.
Or
n.
0.,
0.
0.
? .
n .
G.
n.
P.
c.
0.
?.
0.
0.
c.
0.
0.
0.
0.
1.48E+C1
i.1 •
0.
0.
c •
0.
n.
0.
n «
0.
!) .
0.
Ci
U •
C'.
3.
C.
3.
f! .
0.
0.
0.
0.
1.
? .
'J .
? .
0.
HEAVY 1iT
i ii n v
J, U U • T
0.
0.
0.
U •
0.
T.
0.
0.
0.
3.
J.
C.
0.
3.
n.
0.
0.
0.
0.
3.
0.
0.
C.
0.
3.
1.48E+31
0.
0.
0.
Q.
3.
P.
0.
3.
'J.
0.
n.
0.
0.
0.
3.
9.
0.
0.
0.
0.
p.
3.
n.
J.
n.
Q.
» CJRIrS
*. CHARGED
E n f\ y
3 U U • T
0.
5.
5 .
3.
D.
3.
0.
0.
0.
0.
1 .
3.
D.
3.
C.
v *
3.
3.
3.
5.
3.
•1.
3.
3.
3.
1.48E+31
C.
3.
0.
D.
0.
P.
3.
3.
3.
C.
n.
0.
n.
vj »
' n.
3.
3.
0 .
n.
0.
3.
0.
P.
7 .
3.
3.
FP'
TO KEACTOR
inno Y Rfiftfi Y
JLUUU* i D U L* 't • T
0. 0.
?. 0.
3.
i) .
3 .
C.
0.
D.
0.
C.
oX"
r *
'3 •
3.
0.
0 .
c.
0.
3.
0.
0.
3.
0.
3.
0.
l.*fcE+01
1.
C.
0.
0.
p.
« .
n .
3.
Ci
3 .
0.
0.
0 •
0.
3.
3.
3 .
0.
" .
3.
0.
C.
0.
0 .
3.
0.
0.
p.
3.
C.
C.
f> .
0.
n.
0.-
3.
y.
n.
0.
3.
0.
0.
0.
3.
C.
0.
0.
0.
n.
1.46E+01
r,.
3 .
P.
3.
3.
C.
0.
'J •
0.
3.
, U>
0.
3.
n.
1 *
f:.
3.
3.
3.
3.
0.
0.
n.
V •
3.
0.
's
TABLE A-IV-3
(continued)
Inpnn vinnnnn 'V
-v'U» I1UUUUU» 1
0. 0.
C. 0.
0.
n.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
D.
0.
3.
1.43E+01
n.
3.
0.
c.
0.
0.
0.
0.
0.
c.
3.
c.
0.
0.
0.
0.
3.
0.
c.
0.
0.
0.
f>.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.07E+01
0.
0.
0.
3.
0.
3.
0.
0.
3.
0.
C.
3.
0.
0.
0.
c.
0.
0.
0.
0.
c.
0.
J •
1.
3.
0.
n.
0.
0.
3.
0.
n.
0.
A.
0.
0.
0.
0.
0.
0.
0.
0.
0.
? .
0.'
3.
0.
p.
g.
c.
0.
5.63E-01
• c.
0.
0.
3.
n.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
n.
0.
3.
0.
0.
3.
-------
PKR - 8U = 33tOOC WASTE DECAY TIMES CASE E-4
POWER= 38.4PHU, BURVUP= 330 00 .^ W'D » FLUX= 1. 42E»13?J/'C«*»2-S-:;
NUCLISr RADIOACTIVITY* CURIES
BASIS = 3T 0^ HEAVY ITTAu CHARSEO TO REACTOR
RU1R5
*H105N
*H105
P31P5
T:IC&
RJ106
3H1G6S
3H1C6
°D1P6
*J107
*H107
P3107H
P31P7
A3107
3J1C8
*H1P8
P31P8
AC-1H8
C31C8
RK1C9
P31P9H
P31P9
A3199H
AJU'9
:31C9
Rrillfl
P3110
43110H
AJ11P
:3iip
»3111fl
'Dili
A3111*'
»;ui
:3inn
:3111
P3112
A3112
C3112
P3113
»3113H
A3113
:3113^
:DIIS
1X113
PD114
AS11*
:3ii«
IM1*1
IY114
SN114
P3115
g.
3 .
P.
3.
0.
p.
3.
U.
Q.
9.
P.
0.
C .
0.
n.
3.
9.
0.
n.
3.
9.
0.
0.
9.
P.
P.
P.
P.
9.
P.
P.
9.
C.
9.
9.
P.
9.
P.
0.
9.
0.
P.
C.
P.
P.
9.
P.
0.
P.
P.
3.
P.
ISCHARSE
3.
9.
2.38E-31
0.
P.
7.78E»P5
P.
7.76E»P5
U *
9.
U.
P. .
2.49E-91
P.
9.
9.
9.
9.
9.
9.
3.
6.2<»E-?3
1.65E-C6
0.
l.SSE-^6
0.
3.
3.1£>E*IM
*.11E+P2
P.
3.
9.
C.
3.15E-83
0.
C.
•4.33E-5''
5.S7E-59
9.
9.
9.
C.
S.95E»91
P.
9.
3.
G.
9.
5.92C-P2
5.72E-0?
0.
0.
1. T
0.
0.
3.
C.
9.
5.5U + P5
0.
5.51E+P.5
P.
3.
9.
9.
2.4PE-P1
C.
n.
n
0.
a.
t
'j •
9.
0.
9.
1.25E-96
3.
1.2K-96
C.
0.
1.52E+33
2.49£»02
P.
3.
U.
U.
l.»7i-19
3.
0.
3.
n.
9.
0.
a.
1).
9.79E»00
3.
3.
3.
P.
u •
4.71E-03
4.54E-P3
0.
9.
10. Y
P.
P.
C.
3.
3.
1.11E+P3
0.
1.11E»C3
C.
C.
T.
0.
2..
n.
3.
0.
1.
0. '
0.
0 •
1.59E-18
0.
1.59E-18
P.
D • '
9.67E-19
1.26E-19
C.
3.
r.
P.
n.
0.
9.
0.
p.
r .
p.
p.
D.
8.57i-91
3.
P.
P.
P.
P.
S.
C.
r. .
R.
19P. Y
9.
a.
9.
c.
p.
1.2PE-2*
9.
1.20E-2*
3.
0.
3.
P.
2.4SE-01
0.
0.
C.
0.
3.
9.
9.
P.
P.
1.16E-3C
9.
1.16E-M!
9.
P.
U.
9.
a.
0.
9.
".
0.
P.
9.
0.
C •
c.
9.
0.
C.
7.21E-C2
3.
9.
0.
0.
a.
p.
9.
C.
9.
59J. Y
U.
3.
0.
C.
•3.
a.
3.
9.
p.
9.
3.
3.
2.49E-P1
0.
3.
P.
3.
3.
3.
9.
P.
?.
a.
a.
3.
D.
9.
P.
c.
3.
a.
0.
3.
".
9.
p.
0.
9.
C.
3.
0.
3.
1.99--10
9.
9.
3.
3.
v *
P.
P.
P.
P.
100P. Y
a.
9.
0.
C.
3.
9.
C.
9.
0.
0 .
9.
9.
2.10E-91
P.
•3.
•>.
P.
C.
3.
9.
9.
9.
9.
P.
9.
3.
0.
9.
0.
3.
C.
9.
P.
P.
T.
P.
3.
P.
C.
9.
3.
0.
3.19E-21
9.
P.
0.
0.
P.
P.
9.
C.
r .
1
0.
9,
P.
9.
9,
C,
0
c-
9
3,
0,
0,
?,
P
U
n,
P
c.
9 1
f
3
0
3
n
D
9
3
0
n
9
0
0
P
r.
9
n
3
9
3
P
D
P
9
U
P
')
o
n
•1
P
0
3
.10E-01
.f TABLE A-IV-3
s
Yi ft n n n
X U U V U •
0.
9.
P.
C.
P.
P.
P.
P.
0.
P.
P.
9.
2.»CE-01
P.
0.
P.
0.
P.
P.
0.
c.
p.
p.
p.
p.
p.
p.
c.
0.
p.
9.
P.
0.
3.
P.
P.
C.
P.
9.
P.
P.
9.
P.
9.
P.
0.
9.
P.
0.
P.
P.
9.
( continued)
9.
P.
9.
9.
9.
3.
0.
9.
P.
0.
P.
9.
2.38E-P1
n.
P.
p.
P.
p.
0.
p.
9.
9.
9.
P.
f.
0.
9.
9.
3.
P.
9.
0.
9.
P.
0.
P.
P.
P.
9.
9.
P.
9.
9.
P.
P.
0.
0.
P.
9.
0.
9.
9.
0.
P.
P.
9.
o.
p.
p.
p.
0.
p.
p.
0.
2.17E-01
P.
0.
0.
0.
0.
P.
D.
P.
Q.
P.
0.
P.
P.
3.
9.
0.
n.
0.
0.
9.
0.
0.
0.
9.
0.
9.
0.
P.
P.
0.
9.
P.
P.
9.
9.
9.
9.
0.
0.
A-IV-
143
-------
PUR - BU = 33*000 WASTE DECAY TIH^S CASE E-*
POWER= 3E.tOMW, 6URNUP= 33GCO.HUD, FLUX= 1.42E+13ft/CM*»2-SEC
3-: 3ADIOACTI VI TYt CJRITS
BASIS = IT Oc HEAVY 1ET4*. CHARGED TO REACTOR
AE115F
43115
CD115H
C3115
IVI115H
IM115
5*115
A3116
C0116
I VI 16.1
IVH16
SY116
A3117
C31171
CD117
1M17H
IV117
SM17M
SV117
C3118
IN118H
IM118
SM18
C3119M
C0119
IN119H
IM119
SSI119H
SV119
CD123
IV120*
IV120
SV120
:Di2i
IN121K
I\!121
SV121M
SM121
S3121
1*122
SN122
S3122H
S3122
TC122
I.V123H
IM!23
S.M123H
SV123
S3123
TT123H
T£123
1*124
CHARGE
0 .
0.
C.
0.
0.
0.
0.
3.
0.
0.
0.
n.
9.
0.
0.
c .
0.
0.
0.
r. »
0.
0.
9.
0.
0.
d.
0.
0.
ft.
9.
0.
c.
0.
0.
0.
0.
0.
c.
9.
0.
u.
0.
0.
0.
0.
b.
9.
3.
0.
0.
r.
0.
DISCHARGF
3.
C.
t.16E*ni
2.43E-21
2.65E-21
0.
0.
3.
0.
P.
3.
P.
0.
0.
G.
C.
Q.
3.97E-03
0.
9.
0.
3.
C.
0.
C.
9.
0.
1.68E-01
0.
9.
0.
0.
3.
0.
C.
0.
3.S1E-04
1.55E-45
3.
0.
9.
9.
1.97E-17
0.
0.
Q.
0.
5.41E»93
a.
7.12ET-32
0.
0.
1. Y
0.
0.
2.36E+00
C.
0.
0.
0.
0.
0.
c.
c.
0.
0.
0.
0.
0.
o.
4.69E-07
0.
9.
0.
a.
0.
3.
c. (
».
3.
1.31E+D1
9.
C.
C.
0.
3.
a.
3.
c.
3.79E-04
C.
G.
•3.
,c.
?.
4.56ET37
9.
u.
0.
0.
1.96E»03
0.
2.11E-02
C.
0.
10. Y
0.
0.
0.
a.
0.
?.
0.
c.
0.
p.
c.
3.
o./
0.
0.
0.
0.
0.
0.
c.
0.
0.
c.
p.
3.
c.
c.
1.11E-03
0.
0.
1.
0.
9.
C.
C.
9.
3.49E-04
a.
r-.
c.
c.
a.
9.
0.
0.
,J .
r.
2.J8E-05
".
8.»OF-11
a.
0.
50. Y
0.
C.
n.
n.
P.
P.
0.
C.
9.
C.
0.
0.
0.
'J.
0.
p..
c.
0.
0.
c.
c.
c.
c.
c.
0.
n.
c.
2.84E-21
0.
P.
0.
r.
o.
n.
n.
i; .
2.43E-04
n.
C.
%
5.
n.
0.
0.
?.
n.
0.
p.
c.
0.
9.
9.
100. Y
n.
0.
0.
0.
9.
0.
P.
0.
3.
0.
n.
0.
C.
0.
0.
0.
0.
9.
a.
3.
G.
0.
0.
0.
3.
5.
G.
C.
0.
0.
0.
C.
9.
0.
C.
0.
1.54E-04
0.
C.
0.
0.
3.
9.
C.
C.
i.
0.
9.
C.
?.
0.
0.
501. Y
3.
3.
0.
C.
0.
p.
0.
c.
0.
5.
3.
P.
P.
0.
3.
0.
3.
0.
P.
3.
0.
0.
0.
3.
0.
P.
0.
9.
3.
0.
Q.
S.
C.
9.
a.
c.
H.OOE-Ofe
9.
S.
C.
9.
C.
3.
Q.
3.
3.
C.
3.
<;.
r.
i.
9.
10
0.
•3.
3.
3 .
n.
0.
c.
9.
n.
c .
0.
p.
0.
c.
0.
p.
0.
0.
c.
Q.
C.
n.
9.
0.
0^
p.
0.
0.
0.
c.
0.
0.
Q.
0.
•1.
P.
4.:
c .
c.
c.
p.
IJ .
a.
u.
n.
0.
0.
0.
0.
c.
(I.
p.
FP's
5 0 C 9 . Y
0.
P.
P.
i/ .
0.
c.
u •
P.
Q.
0.
9.
0.
0.
C.
0.
0.
C.
0.
0.
n.
9.
".
C.
0.
p.
'•> •
n.
n.
3.
p.
0.
3.
C.
Q.
P.
n.
5.95E-21
1.
0.
P.
3.
P •
3.
3.
.?.
•>.
".
0.
C.
c.
p.
p.
TABLE A-IV-3
(continued)
0. 0.
0. 3.
0. 3.
0. 9.
P. 0.
0.
r.
0.
9.
0.
0.
G.
0.
n.
0.
3.
0.
9.
n.
0.
9.
0.
0.
0.
0.
9.
0.
C.
0.
c.
c.
0.
R.
0.
0.
0.
9.28E-44
P.
0.
0.
0.
C.
0.
0.
9.
0.
0.
P.
0.
C.
r.
0.
0.
9.
P.
0.
0.
0.
c.
0.
f.
0.
G.
C.
D.
0.
0.
0.
a.
n.
9.
9.
3.
0.
3.
0.
C.
3.
9.
0.
0.
c.
0.
c.
9.
0.
0.
0.
°r
9.
e.
9.
c.
a.
c.
.0.
3.
C.
0.
0.
c.
0.
0.
9.
0.
P.
6.
c.
0.
0.
0.
0.
t.
0.
0.
c.
0.
0.
Q.
0.
0.
0.
c.
0.
0.
9.
9.
0.
9.
0.
9.
C.
0.
0.
0.
c.
9.
C.
0.
0.
C.
9.
0.
0.
p.
«t *
9.
0.
0.
0.
0.
A-IV-
144
-------
PUR - BU :
POVER= 38.
= 33*000 I/ASTC DECAY TIMES CAST E-»
.40MU? 6URMOP= 339CO.MVD, FLUX= 1. 42E*13N/C1**2-SIC
NUCLIDE RADIOACTIVITY, CURIES
BASIS = «T Or HEftVY 1ET*. CHARSED
CHARGE DISCHARGE
SM124
S3124H
S3124
TS124
SM125H
SM125
S5125
TE125W
Til25
SM126
S3126N
S3126
TE126
SM27M
SN127
S3127
TI127M
TE127
1127
SN12R
S3128H
S3128
Til28
1128
Xil28
SN129M
SM129
S3129
Til29«
TM29
1129
Xil29«l
XE129
SV139
S3139M
S3139
in 39
I130H
I13C
XE130
SV131
S3131
Til31M
Til31
1131
x;i3in
XE131
SM132
S3132H
S3132
TE132
1132
0.
0.
9.
9.
9.
0.
0.
9.
9.
0.
9.
9.
9.
C.
9.
9.
0.
9.
9.
C.
0.
0.
9. <
0.
c..
0.
0.
0.
. 9.
3.
0.
9.
0.
9.
a.
0.
9.
0.
9.
9.
9.
9.
P.
9.
9.
0.
9.
9.
9.
0.
9.
9.
9.
C.
6.03E+01
9.
9.
3.90E-03
9.
9.77E-01
9.77E-01
9.67E-91
a.
u.
o.
4.75E-24
2.58£»93
2.5bt*03
n.
p.
9.
9.
9.
9.
9. (
9.
3.
9.
4.86E»91
3.11E»91
S.93E-95
9.
9.
C.
9.
3.
0.
9.
9.
C.
0.
U.
S.
^.
2.63E-11
b.56r-ll
P.
3.
C.
n.
2.22E-28
2.2SE-28
10. Y
P.
0.
2.34C-16
0.
P.
C.
1.22E»93
5.37E»C2
0.
9.77E-91
9.77E-51
9.&7E-01
P.
P.
9.
C.
2.15E-Q6
2.12E-96
0.
9.
9.
C.
9.
9.
9.
9.
9.
0.
0.
c.
6.05E-95
3.
1.
9.
9.
9.
0.
C.
n.
9.
9.
P.
0.
D.
C.
9.
C.
0.
c.
0.
9.
0.
59. Y
Q.
U.
o.
0.
9.
0.
4.24E-02
1.76C-92
3.
S.77E-01
9.77E-91
9.67E-91
P.
0.
C.
C.
9.
C.
9.
9.
5.
n.
0.
n.
".
C.
9.
C.
C.
5.
6.05E-05
9.
2.
9.
9.
C.
0.
9.
9.
9.
9.
0.
f*
J »
J.
:i ,
0.
3.
n.
• *
u .
0.
o. .
1?0. Y
9.
0.
9.
9.
9.
0.'
1.13E-97
4.S8E-OS
9.
9.76E-91
9.74SE-31
9.»7£-91
9.
0.
C.
9.
9.
9.
9.
9.
0.
9.
9.
9.
•).
9.
9.
9.
n.
9.
6.95E-95
n.
0.
n.
0.
3.
9.
2.
C.
3.
9.
C.
.
a.
9.
3.
0.
0.
0.
1.
c.
1}.
505. Y
•>.
1.
9.
3.
0.
9.
0.
9.
0.
3.74t-Pl
9.74^-31
9.64E-01
9.
3.
9.
t.
9.
9.
9.
9.
0.
9.
9.
3.
9.
3.
?.
9.
9.
3.
S.95E-C5
S.
0.
n.
U.
n.
5.
J.
9.
0.
3.
9.
}.
5.
3.
3.
3.
0.
G.
3.
3.
3.
TO REACTOR
1809. Y
9.
0.
9.
1.
P.
9.
0.
9.
0.
9.79E-91
9.79E-91
9.51E-91
9.
3.
0.
9.
9.
9.
0.
P.
3.
9.
9.
9.
n.
c.
0.
c.
9.
').
6.I5E-95
9.,
1,.
n,.
9.
0.
9.
9.
C.
•1.
0.
•>.
9.
«. •
0.
9.
).
0.
r.
n.
3.
3.
5999. Y
9.
0.
9.
3.
0.
P.
0.
9.
0.
9.44E-91
9. -44 £-91
9.34C-01
0.
1.
e.
n.
0.
p.
9.
n.
9.
i.
0.
c.
0.
0.
0.
c.
c.
0.
6.05:-05
n.
?.
0.
n.
i.
9.
3.
P.
D.
3.
•:.
D.
t.
r, .
S.
1.
0.
0.
a.
3.
0.
FP's
TABLE A-IV-3
(continued)
10390. Y100093. Y******* Y
0.
C.
9.
9.
9.
0.
U.
9.
9.
9.12E-01
9.12E-01
9.03E-91
0.
0.
0.
0.
9.
a.
9.
9.
9.
9.
9.
C.
9.
9.
9.
n.
c.
c.
6.95E-95
0.
0.
9.
0.
9.
0.
9.
9.
9.
9.
0.
0.
0.
1.
0.
0.
c.
0.
9.'
C.
3.
9.
3.
9.
9.
C.
9.
U.
P.
9.
4.89E-91
4.89E-91
4.84E-01
9.
P.
C.
C.
9.
C.
0.
9.
D.
9.
9.
9.
9.
P.
0.
9.
P.
0.
6.03t-05
0.
9.
9.
P.
0.
9.
9.
P.
9.
C.
9.
C.
a.
•:.
9.
c.
9.
0.
3.
9.
3.
9.
9.
9.
0.
0.
9.
C.
9.
9.
9.54E-04
9.54E-94
9.44E-04
0.
9.
0.
9.
9.
9.
0.'
0.
0.
0.
0.
9.
0.
0.
0.
9.
9.
0.
5.81E-95
0.
C.
9.
9.
0.
9.
9.
9.
U.
?.
9.
C.
9.
9.
9.
9.
9.
3.
9.
9.
9.
A-IV-
-------
XE132
S3133
TE133N
TE133
1133
XE133M
XHI133
CS133
S3134
T£13*
1134
X J134
CS13*M
CS13*
31131
TT135
1135
IC1351
Xil35
CS135*
CS135
3S135K
3«135
1136
XE136
CS136
34136
1137
X^137
CS137
3A137H
34137
1138
X;139
C5138
34138
1139
KT139
CS139
3A135
LA139
X^l^O
CS14C
34110
LAI'iO
CE1 10
Krui
CS111
34111
L4111
CilH
? R 1 1 1
0 .
0.
0.
c .
c .
3 .
a .
0.
0.
0.
0.
0.
0.
c .
3.
D.
0.
D.
C.
0 .
0.
0.
0.
a.
a.
0.
0.
0.
a.
0.
0.
c.
0.
0 .
a.
0.
0.
0.
0.
3.
D.
0.
0.
U.
0 .
0.
3.
G.
3.
C.
0.
u •
3.
3.
0.
0.
2.59E-6"
3.
3.
0.
0.
3.
0.
3.
Q.
0.
C.
D.
0.
0.
3.
1.SSE-C1
5.11E-1&
0.
0.
3.
1.00E+CO
Q.
0.
0.
1.11E+B5
1.-01E+P5
-3.
0.
C.
0.
0.
0.
0.
c.
c.
0 •
3.
S.97E+11
1.03E*02
Q.
P.
0.
J.
0 •
3.32E+Ot
0.
3.
C.
3.
0.
0.
0.
1 .9.
Q.
I* •
n ^
c.
0.
n .
0.
0.
0.
3 U • 1
0.
0.
0.
0.
0.
3.
0.
0.
0.
1.
p.
- 0.
Q.
5.37E-03
n.
0.
0.
3.
0.
n. • ,
. 1.S9E-01
0.
1.
0.
3.
3.
0 .
P.
3.
3 .51E+31
3.31E+01
P.
0.
0.
3.
0.
0.
T.
(i .
u •
n.
Cl.
j •
0.
3.
0.
0.
(i .
0.
n.
u.
0.
HE6VY 1£:T
In *\ V
"u • T
3.
0.
C.
D.
0.
0.
3.
0.
U.
P.
3.
•
a.
.'!.
3.
0.
0.
P.
j •
•c.
•1.
n.
a.
TABLE A-IV-3
(continued)
J. J U lj U • TJUUUUU* T
o. n.
3. C.
0.
3.
0.
3.
n.
3.
0.
0.
3.
3.
C.
n.
0.
0.
0.
R.
0.
0.
1.S8E-01
n.
c.
0.
o.,
0.
0.
0.
c.
0.
0.
0.
0.
c.
0.
1..
n.
n.'
1.
0.
(,.
c.
0.
p..
3.
c.
0.
n.
0.
c.
0.
0.
3.
0.
^.
3.
0.
3.
0.
3.
P.
0.
3.
n.
3.
0.
3.
0.
n.
0.
1.59E-01
0.
n.
c.
a.
0.
3.
0.
3.
3.
C1.
i.
0.
0.
0.
0.
0.
0.
n.
c.
a.
0.
a.
i.
0.
c«
0.
c.
c.
0.
D.
3.
0.
0.
0.
0.
0.
0.
0.
3..
C.
D.
0.
0.
0.
0.
0.
0.
0.
0.
Q.
0.
3.72c-01
3.
B.
n.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
n.
c.
0.
0.
c.
0.
0.
3.
0.
3.
C.
0.
0.
0.
0.
0.
A-IV-
146
-------
PUR - BU = 33»000
XE142
CS142
3A142
LA142
<£14S
CS143
8A143
LA143
Y3143
LA144
Y3144
:£145
P3145
N3145
:i!46
PR146
V3147
P1147
S1147
S-M51
iJ151
PM52
S1152
EJ162
53152
P115J
0.
0.
C.
0.
0.
3.
C.
0.
0.
0.
0.
3.
C.
c.
0.
0.
Q.
0.
0.
3.
0.
3.
0.
0.
0.
0.
0.
0.
C.
0.
N3148 0.
P1148M 0.
P1148 0.
S114S 0.
»M49 0.
N3149 0.
PM49 2.
S.H149 C.
M3150 0.
PN150 o.
SM50 0.
•msi <>.
c.
0.
0.
0.
0.
EJ152M 0.
0.
0.
0.
>»DCO WASTE UELAT TIMSS CASi E-»
IW, BURNUP= 33000. MUD, FLUX= 1. 42E* 13N/CK** 2-S^C
NUCLIDE RADIOACTIVITY
TCf^LJAP^r
I 5CH AR 5v
0.
3.
3.
0.
0.
4.12E-65
0.
0.
a.
0.
0.
1.35E-34
1.5iE»r2
0.
C.
7.30E»05
7.30E»05
a.
0.
0.
3.
3.
3.
0.
0.
0.
7.62C+00
1.65E+05
U.
0.
C.
0.
2.79E+T3
2.24E»I>2
0.
C.
0.
8.60E-21
0.
0.
0.
3.
fa.
1.65E-4?
2.12E»03
1.
C.
0.
0.
3.5iE*01
0.
0.
1y
• T
0.
0.
0.
0.
c.
c.
u .
0.
0.
0.
0.
c.
1.48E-02
S.
0.
».67E»05
4.67E»05
0.
.0.
0.
0 •
0.
fl.
0.
0.
0.
S.48E-05
1.45E*05
C.
0.
J.
1.
1.37T*02
1.10E+01
3.
1.
J.
S.
3.
0.
T.
3.
t* •
a.
. 2.12E»03
J.
W •
(I.
C.
3.43E+01
3.
3.
3ASIS = IT OF
« ft y c 1 V
10. T
C.
C.
n.
3.
0.
0.
0.
3.
0.
C.
p.
0.
c.
0.
3.
1.53E+02
1.53E+02
0.
3.
C.
0.
o.
0.
0.
3.
C.
3.
1.34E+04
v •
3.
0.
3.
0.
C.
C.
I* •
C.
0.
c.
3.
0.
0.
0 .
0.
1.97E»33
•1.
3.
C.
'i.
2.04E*01
0.
C.
^U . 1
0.
G •
G.
3.
0.
3.
0.
C.
c.
c.
0.
0.
3.
0.
0.
4.98E-14
4.98E-14
3.
P.
S.
0.
u .
0.
0.
0.
c.
0.
3.39E-01
b.
t.
C *
n
0.
n.
3.
0.
0.
D.
^
* .
0.
!).
n.
n.
M •
1.43E*03
0.
3.
0.
C.
2.02E+03
•3.
C.
, cuRirs
HEAVY VITAL CHAR3ED
iiirt v R rt n v
1 U U * T •»•••• —
p.
0.
c.
9.
c.
0.
0.
J.
3.
4.
0.
3.
C.
C.
0.
2.18t-33
2.18L-53
i).
u.
0.
3.
C.
0.
3.
3.
1.
3.
6.09E-0
t.
9.
r.
J.
3.
0.
3.
0.
3.
3.
C.
0.
0.
3.
0.
0.
9.&1E*32
0.
;.
3.
3.
1.12E-C1
C.
u •
_» V V . I
n.
0.
0.
3.
0.
3.
0.
L. •
3.
3.
3.
0.
0.
a.
3.
0.
3.
n.
a.
3.
3.
3.
3.
G.
0.
3.
3.
0.
a.
3.
n.
3.
3.
B.
0.
0.
3.
0.
3.
3.
0.
A
«* •
:.
3.
3.97t»fll
3.
A.
t* •
3.
i.a»*-ii
a.
E.
FP's
TO REACTOR
innft V ennn
1 U I' U . T ".•••'"
i).
3.
C.
0.
3.
3.
0.
C.
0.
c.
0.
3.
9.
C.
I* •
3.
0.
0.
0 .
0.
3.
Q.
0.
j •
0.
0.
3.
3.
C.
3.
0.
0.
0.
'J •
0.
3.
0.
C.
>).
0.
D.
U •
.
:.
p.
p.
0.
0.
3.
C.
P.
C.
0.
0.
0.
c.
c.
0.
0.
0.
0.
0.
c.
5.2RS-32
0.
c.
c.
0.
0.
3.
0.
c.
0.
0.
c.
3 *
c.
c.
0.
0.
0.
a.
c.
3.
c.
0.
0.
:.
0.
0.
c.
3.
c.
0.
0.
3.
0.
3.
a.
c.
3.
c.
3.
c.
0.
0.
0.
u.
a.
0.
].
c.
c .
0.
0.
' 3.
0.
'..
0.
c.
0.
I w w w w ww w
Q.
3.
3.
0.
0.
S.
a.
0.
0.
0.
0.
3.
c.
p.
0.
0.
0.
0.
u«
0.
0.
0.
0.
0.
0.
0.
p.
p.
0.
3.
3.
0.
0.
0.
c.
0.
0.
0.
1.
0.
0.
Q.
w •
•>.
3.
0.
0.
0.
3.
0.
0.
3.
A-IV-
147
-------
PWR - BU = 33»3BO WASTE DECAY TIMES CASE E-*
POWER= 36.40MU* BURNUP= 33030.KWp» FLUX= 1 . 42E + 13N/CM*«2-SEC
NJCLIDE RADIOACTIVITYi
BASIS = IT U-
SM153
EU153
33153
P.1154
S115*
EJ154
331st
S.M155
EU155
33155
S>il56
EJ156
3D156
S',157
Ejl57
33157
EU158
33158
E J159
33155
T3159
EJ163
33160
T3160
3Y160
33161
T3161
3Y161
33162
T3162M
T3162
3Y162
r=163
DY163
T3164
DY16*
DY165M
3Y165
HU165
DY166
HU166H
0.
C.
TOTAL
C.
3.
C.
3.
n.
D.
G.
0.
0 .
a.
o.
o.
0.
c.
3.
3.
3.
0.
3.
0.
C.
3.
0.
o.
3.
C.
a.
o.
0.
0.
o.
k_ CHAP.SED TO REACTOR
) ISCHARSE
3.6CE-23
0.
1.28E+-1J
B.
3.
5. 4^*03
u.
;.
7. 3^E»03
0.
a.
3.57E*01
3.
0.
2.81E-S3
0.
3 .
0.
3.
2.7PE-78
3.
0.
3. .
2.S7E*?2
8.
3.
1.2CE-05
D.
•3.
3.
0.
0.
3.
0.
3.
2.08E-56
G.
C.
0.
0.
1.21E-15
4.02E-14
1.80E-15
3.
G.
4.67E+3&
1. Y
3.
C.
7.63E+Q3
0.
B.
5.32E+B3
D.
r ^
6.06E+03
0.
3.
7.71E-03
0.
n.
0.
0.
j.
j.
0 •
n.
0.
G.
J •
*.61E*01
3. f
0.
1.29E-13
0.
z •
0.
3.
3.
C.
0.
0.
&.
3.
"/ •
9.
0.
7.79E-32
4.02E-C*
l.lfei-31
U.
n.
2.73£>U6
10
U.
n.
6.18E
0.
u.
3.SOE'
u •
0.
1.93E'
0.
G.
0.
C *
3.
3.
C.
0.
0.
C.
3.
0.
0.
f\
\- *
8.67E'
C.
0.
1.
G.
0.
3.
u.
C.
3.
0.
0.
3.
C.
3.
B.
il.
a.
4.ftOE-
C.
3.
•3.
2.70E-
-04
03
H2
-13
50.
•
.13E
.37E
: IB.
5?Q.
10CO.
-22
02
I..
n.
1.29E-05
a.
a.
c.
3.
n.
o.
o.
o.
3.
t.
c.
a.
n.
o.
3.31E-04
C.
0.
•3.
7.30E+01 2.17E-06
3.
J.
2.07E-13
Ci. ?.
C. B.
0. 3.
0. 3.
a.
79E-0*
o.
3.
T.
G •
0.
u •
3.
D.
3.
0.
0.
0.
3.
3.
3.
3.
P.
0.
0.
3.
J.
J •
3.
0.
f .
0.
0.
3.
j.oir-o*
o.
3 •
3.
0.
C •
0.
V •
0.
3.
3.
3.
0.
D.
0 .
0.
3.
0.
3.
0.
0.
0.
0.
c.
u •
0.
c.
U €
0.
:.
2»:-05
35
3.
2.23E+01 2.13E+01
rp«
1 G 1
n.
0.
0.
G.
a.
0.
0.
a.
0.
1.
0.
0.
3.
0.
C.
a.
3.
0.
3.
0 •
0.
0.
0.
0.
3.
0.
c.
0.
0.
o.
0.
0.
0.
c.
c.
0.
3.
0.
c.
c •
0.
1.
c.
3.
0.
2.
s
^ A A YI n n n n n
JCU« TI'JUUUU.
0.
0.
C.
0.
3.
G.
a.
n ^
0.
3.
C.
0.
0.
1.
c.
0.
3.
0.
0.
0.
0.
c.
0.
0.
0.
3.
0.
a.
0.
a.
0.
r«.
b.
3.
0.
3.
0.
&.
C.
G.
2 b E,- 0 6 0 •
0.
)•
0.
19E*01 1.57E
TABLE A-IV-3
(continued)
0.
c.
c.
3.
3.
3.
0.
b.
Q.
0.
0.
B.
C.
0.
a.
a.
0.
a.
0.'
c.
c.
0.
3.
0.
C.
0.
a.
0.
0.
c.
0.
0.
0.
3.
0.
3.
0.
a.
a.
3.
0.
0.
'•t •
v *
0.
»01 2.96E»00
A-IV-
148
-------
PUR - BO = 33*000 WASTE DECAY TIMES CAST E-4
POWER = 3R.40KU* EURNUPr 33000. HUD* FLUX = 1. 42E»13N/CH»« 2-SEC
NUCLIDE CONCENTRATIONS, 3RAMS
BASIS = .IT OF HEAVY MtTlL CHARGED
CHARGE DISCHARGE:
H 1
H 2
H 3
H 4
HE 3
HE 4
Hi 6
LI 6
LI 7
LI 8
3i 8
3E 9
3E I'D
3E 11
3 10
3 11
3 12
: 12
: is
C 1*
N 13
M 14
X 15
V 16
0 16
0 17
0 16
0 19
? 19
f 20
NE 20
HI 21
Xi 22
XE 23
MA 22
XA 23
MA 24
NA 25
16 24
IS 25
IS 26
IB 27
»L 27
A'. 28
AL 29
SI 28
SI 29
SI 30
SI 31
P 31
P 32
P 33
1.62E*04
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.41E+OC
3.90E-02
C.
0.
0.
0.
0.
2.60E»05
0.
°0.
0.
0.
0.
0.
0.
a.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.13E*61
0.
0.
5.98E*01
3.13E»00
2.16E*00
0.
1.95E+00
0 .
0.
1.29E+33
7.52E-91
1.69E-07
8.32E-27
l.llE-fl7
1.10E*00
0.
2.95E-10
6.96E-13
U.
C.
3.21E-06
1.01E-05
0.
2.36E-12
8.BOE-13
a.
3.41E+00
3.59E*On
4.33E-04
0.
6.22E-08
5.43E-13
0.
2.60E*<15
6.37E*00
2.29E-13
0.
8.45E-21
0.
8.31E-17
9.23E-11
2.31E-09
0.
0.
1.B6E-10
5.55E-96
0.
5.05E-n5
1.1UE-04
5.03E-05
0.
3.13E*fM
0.
0.
5.98E»»1
3.13E*"0
2.16E»00
0.
1.95E+10
2.29E-T9
4.92E-07
1. Y
1.29E+03
7.52F-01
1.83E-C7
8.32E-27
1.16E-07
1.10E+QO
0.
2.95E-10
6.96E-13
0.
0.
3.21E-06
1.01E-05
0.
3.77E-12
8.8CE-13
0.
3.41E+00
3.59E»CO
4.33E-04
0.
8.B4E-08
5.43E-13
o.
2.60E+05
6.3E*05
6.J7E*t)0
2.29E-13
0.
8.45E-21
0.
8.J1E-17
9.23E-11
2.31E-09
0. ^
0.
1.B6E-10
0.
0.
5.05E-05
1.1 QE-04
5.33E-05
0.
3.J3E»01
0.
C.
5.9tE*01
3.1 3E*00
2.1fiE*30
D.
l.JSE+OO
3.
3.
TAELE A-IV-3
(continued)
5000. Y 10000. Y100000. Y«*«**** Y
1.29E*03
7.52E-01
0.
8.32E-27
3.00E-07
1.10E+00
0.
2.95E-10
6.98E-13
0.
3.
3.21E-06
1.011-05
0.
1.41E-OS
8.80E-13
0.
3.41E+00
3.59i*00
2.36E-04
0.
1.97E-04
5.43E-13
0.
2.60E+05
6.37E+00
2.29E-13
0.
8.45E-21
0.
B.31E-17
9.23E-H
2.31E-09
0.
0.
1.86E-10
0.
0.
5.05E-05
1.1UE-04
5.031-05
(i.
3.13E*01
0.
3.
5.93E»01
3.13E»00
2.ier*oo
0.
1.95E+00
0.
0.
1.29E»03
7.52E-01
0.
8.32E-27
3.0CE-07
1.10E»00
0.
2.95E-10
6.98E-13
0.
0.
3.21E-06
1.0IE-05
0.
2.91E-08
8.80E-13
0.
3.41E»00
3.59E*00
1.29E-04
0.
3.04E-04
5.43E-13
0*
2.60E+05
6.37E*00
2.29E-13
0.
8.45E-21
0.
8.31E-17
9.23E-11
2.31E-09
0.
'0.
1.86E-10
0.
•).
5.05E-05
1.10E-04
5.03E-05
0.
3.13E»01
0.
0.
5.96E*01
3.13E»00
2.16E+00
Q.
1.95E»00
0.
0.
1.29E»03
7.52E-01
0.
8.32E-27
3.00E-07
1.10E*00
0.
2.95E-10
6.98E-13
0.
0.
3.21E-06
9.86E-06
0.
2.77E-07
B.80E-13
0.
3.41E*00
3.59E+00
2.41E-09
0.
4.33E-04
5.43E-13
0.
2.60T+05
6.37E+00
2.29E-13
0.
8.45E-21
0.
8.31E-17
9.23E-11
2.31E-39
0.
0.
1.86E-10
0.
0.
5.05E-05
1.10^-04
5.03E-05
0.
3.13E+01
0.
0.
5.98E»01
3.13E*00
2.16E»00
0.
1.95E»00
0.
0.
1.29E*03
7.52E-01
0.
8.32E-27
3.00E-07
1.10E»CO
0.
2.95E-10
6.98E-13
0.
0.
3.21E-fl6
7.69E-06
0.
2.46E-n6
8.80E-13
0.
3.41E+00
3.59E»00
0.
0.
4.33E-04
5.43E-13
0.
2.bOE»05
6.37E»00
2.29E-13
0.
8.45E-21
0.
8.31E-1T
9.23E-11
2.31E-09
0.
0.
1.86E-10
0.
0.
5.05E-05
1.10E-04
5.03E-05
0.
3.13E»01
0.
0.
5.98E«01
3.13E»00
2.16E»00
0.
1.95E»00
0.
0.
A-IV-
149
-------
POUER= 38.40MWt 6URMUP
P 34
S 52
S 33
S 34
S 35
S 36
S 37
CL 35
CL 36
CL 37
CL 38
AR 36
AR 37
AR 38
AS 39
A3 10
A* 41
< 39
< 40
< 41
< 42
K 43
K 44
CA 40
CA 41
:A 42
CA 43
CA 44
CA 45
CA 46
CA 47«
CA 48
CA 49
SC 45
SC 46
s: 47
s: 48
SC 49
SC 50
ri 46
TI 47
TI 48
TI 49
TI 50
TI 51
V 49
V 50
V 51
V 52
V 53
V 54
CR 50
CHARGE
0.
1.22E+00
9.90E-03
6 .80E-22
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
,3t
D .
0 .
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
4.28E+00
4.09EXJO
4.12E+01
3.14E+00
3.10E*00
0.
0.
0.
0.
0.
0.
0.
8.38E+01
01 SCH ARGE
0."
1.22E+30
8.24E-33
6.8nE-»2
5.50E-07
7.25E-15
0.
1.25E-?5
1.51E-07
3.35E-19
C.
3.74E-13
1.42E-I8
2.41E-13
2.38E-17
8.08E-11
0.
4.99E-20
0.
2.69E-12
2.54-123
1.45E-72
0.
0.
0.
3.48E-14
7.39E-nfe
5.B8E-05
1.66E-07
6.90E-16
2.96E-23
0.
0.
1.02E-H6
5.69E-06
2.65E-22
7.72E-Z8
0.
0.
4.2sr+no
4.09E*1?!)
4.10E»01
3.37E+aO
3.11E+0"
0.
0.
5.74E-13
I.OIE+OP
0.
0.
0.
8.28E+01
= 33171)0. MUD* FLUX= 1. 42E+1 3N/CM**2-SiC
. NUCLIDE CONCENTRATIOMSt
1 . Y
0.
1.22E+00
8.24E-03
6.80E-02
1.30i-07
1.05E-14
C.
1.29E-05
1.51E-07
3.35E-09
0.
5.40E-13
3.82E-20
2.41E-13
2.38E-17
8.Q8E-11
0.
8.05E-20
0.
2.69E-12
0.
0.-
0.
0.
a.
3.4(6E-14
7.39E-06
5.88E-05
7.82E-08
6.9CE-C6
2.16E-S5
0.
0.
1.11E-06
1.26E-06
6.74E-35
0.
0.
0.
4.28E+00
4.19E*OC!
4.10E*01
3.37E+00
3.11E*00
0.
?.
5.74E-03
1.01E»00
G.
n.
0.
8.28E+01
BASIS = IT OF
10. Y
0.
1.22E*00
8.24E-03
6.80E-02
7.40E-19
6.84E-14
0.
1.31E-05
l.blE-07
3.35E-09
C.
3.53E-12
0.
2.41E-13
2-32E-17
8.36E-11
0.
6.25E-19
0.
2.69E-J2
0.
0.
0.
0.
0.
3.48E-14
7.39E-06
5.38E-05
7.86E-14
6.90E-06
0.
0.
0.
1.18E-06
2.01E-18
0.
0.
0.
0.
4.28E+CO
4.C9E+DO
4.10E+C1
3.37E+00
3.11E+00
0.
0.
5.74E-33
1.01E+QO
0.
0.
0.
8-28E-01
3 U v I
0.
1.22E+00
8.24E-33
6.80E-02
0.
3.26E-13
0.
1.31E-35
1.51E-07
3.35E-09
0.
1.6RE-11
0.
2.41E-13
2.n9E-17
8.08E-11
0.
2.90E-18
n.
2.69E-12
0.' ,
0.
0.
C.
C.
3.48E-14
7.39E-06
5.88E-05
U.
6.90E-06
0.
0.
0.
1.18E-06
0.
0.
0.
0.
0.
4.2BE+00
4.09i+00
4.10E+01
3.37E+00
3.11E+00
0.
a.
5.74E-03
1.01E+00
1.
0.
n.
8.28E+01
HEAVY 1ET
inn v
I U U . T
0.
1.22E*00
8.24E-13
6.8HE-02
0.
6-47E-13
a.
1/.31E-D5
1.51E-07
3.35E-09
0.
3.34E-1I
0.
2.41E-13
1.84E-17
8.38E-11
0.
5.43E-18
0.
.2.S9E-12
Q.
0.
0.
0.
0.
3.48E-14
7.39E-06
5.88E-D5
U.
6.90E-06
a.
Q.
0.,
1.18E-06
0.
0.
U.
0.
0.
4.28E»00
4.U9E+OP
4.1CE»01
3.37E+00
3.11E*00
5.
U.
5.74E-03
1. 31^*00
a.
0.
0.
8.2BE+01
SRAHS
VL CHARGED
e n fl V
D U 'J • I
0.
1.22i+00
S.24E-03
s.an:-02
0.
3.22E-12
0.
i. sir-ns
1.51r-07
3.35E-09
n.
1.66E-10
0.
2.41"-13
6.57E-18
B. 08E-11
0.
1.73E-17
0.
2.69E-12
0.
0.
0.
0.
0.
3.48E-14
7.59E-06
5.88E-05
0.
&.sor-a6
0.
c.
0.
1.18E-06
0.
0.
0.
0.
3.
1.2BE+00
4.B9E+00
*.10r+01
3.37-+00
3.1ir+30
D.
3.
5.74^-03
i.oir+na
0.
0.
D.
8.28E*01
Clad
TO REACTOH
11 fin V ennn v
A v UU • I
a.
1.J2E+00
8.24E-03
6.30E-02
0.
6.43E-12
0.
1 .31E-05
1.51E-07
3.35E-09
i).
3.12E-10
0.
2.41E-13
1.31E-18
8.08E-11
0.
2 .20E-17
0.
2.59E-12
0.
0.
0.
0.
0.
3.48E-14
7.39E-06
5.38E-05
0.
6.90E-06
0.
0.
0.
1.1&C-06
0.
0.
C.
0.
0.
4.28E+PO
4.89E»00
4.1 OE+01
3.57E*00
3.1 IE* 00
0.
P.
5.74E-03
1.D1E+00
0.
0.
f.
8.2fE+01
^ U V V * 1
0.
1.22E«OD
8.24E-03
6.80i:-02
0.
3.20E-11
0.
1.31E-05
1 .50E-07
3.35E-09
a.
1.65E-09
0.
2.41E-13
6.03E-23
8.08E-11
0.
2.38E-17
0.
2.69E-12
0.
0.
0.
0.
0.
3. 48E-14
7.39i-OS
5.88i-05
0,
6.90E-0&
0.
a.
f>.
1.18E<-06
3.
0.
0.'
0.
c.
4.28r»00
4.09E»00
4.10E*01
3.37E+00
3.111+OD
0.
P.
5.74E-03
l.OlE+00
0.
f.
0.
B.2BE*01
TABLE A-IV-3
(continued)
1 n n n rt Vinnnnn v<
lUwuu* ilUUDUU* i1
0. 0.
1.22E»00
8.24E-03
6.80E-02
0.
6.36E-11
0.
1.31E-05
1.48E-07
3.35E-09
0.
3.2SE-09
0.
2.41E-13
1.53E-28
8.08E-11
0.
2.38E-17
0.
2.69E-12
0.
0.
0.
0.
0.
3.48E-14
7.39E-06
5.B8E-05
C.
6.9QE-06
0.
0.
0.
1.18E-06
0.
0.
C.
0.
0.
4.28E*00
4.09E*OC
4.10E»01
3.37E»00
3.11E*00
0.
0.
5.74E-03
1.01E+00
0.
0.
0.
ff. 28E+01
1.22E+00
'3.24E-03.
&.80E-05
0.
5.76E-10
0.
1.31E-05
1.21E-07
3.35E-09
0.
2.98E-08
0.
2.41E-13
0.
8.08t-ll
0.
2.38E-17
0.
2.69E-12
0.
9.
C.
0.
0.
3.48E-14
7.39E-06
5.83E-95
0.
6.90E-06
0.
0.
3.
1.18E-06
n.
0.
e.
0.
0.
4.28E*00
4.09E*00
4.10i+01
3.37E*00
3.11E+00
0.
0.
5.74E-03
1.01E*00
0.
0.
0.
B.28E+01
0..
1.22E»00
8.24E-03
6.80E-02
0.
2.57E-09
0.
1.31E-05
1.62E-08
3.35E-09
0.
1.33E-07
0.
2.41E-13
0.
8.08E-11
0.
2.38E-17
0.
2i69E-12
0.
0.
0.
0.
0.
3.48E-14
7.39E-06
5.S8E-05
0.
6.90E-06
0.
0.
0.
1.18E-06
0.
0.
0.
0.
0.
4.28E»00
4.09E*CO
4.10E*01
3.37E»00
3.11£»I30
0.
0.
5.74E-03
1.01E»90
0.
0.
0.
6.28E*01
A-IV-
150
-------
PUR - BU = 33,000 WASTE DECAY TIMES CASE E-4
POUER= 38.40HU, BORVUP= 33000. HWD, FLUX= 1. 42E»13N/CH*«2-SEC
NUCLIOE CONCENTRATIONS,
CR 51
CR 52
:^ 53
:R 54
:* 55
IN 54
HV 55
HN 56
IV 57
IV 58
FE 54
FE 55
FE 56
FE 57
FE 58
FE 59
CO 58«
CO 58
:o 59
;3 6CM
CO 63
CO 61
CO 62
VI 58
VI 59
NI 61)
NI 61
VI 62
NI 63
VI 64
VI 65
CJ 62
CJ 63
:j 64
:U 65
:U 66
ZV 63
ZN 64
ZN 65
ZN 66
ZN 67
ZV 68
ZN 69H
ZV 69
ZN 70
ZN 71H
ZV 71
SA 69
SA 7P
ZK 71
SE 70
SR ae
0.
1.68E+03
1.94E*02
4.91E*01
0 .
0.
1.08E+02
0.
0.
0.
2.22E»02
0.
3.65E»03
8.66E>01
1.28E*01
0.
0.
0.
7.09E+01
0.
0.
C.
0.
2.49E»03
0 .
9.86£»02
4.22E»01
1.40E»02
0.
3.62E»0'1
0.
0.
1.27E»01
0.
5.92E*00
g.
0 .
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
6.12E-t>4
1.68E+03
1.92E-H2
5.16E*01
0.
1.28E-02
1.07E+12
0.
0.
3.
2.22EO2
3.asE-ni
3.64E»03
9.30E»01
1.36E*31
9.49E-05
0.
1. 52002
6.74E*"!
0.
2.93E+00
0. '
0.
2.48E»03
7.flOE*00
9.85E*02
4.4CE»
9.37E+C2
4.43E+11
1.39E»02
1.37E»00
3.52E»C1
0.
0.
1.28E+01
0.
5.94E+00
0.
0.
2.40E-02
1.41E-13
1.52E-32
0.
0.
0.
0.
9.
r.
0.
0.
0.
0.
p.
&.47E-02
3 J » I
0.
1.68E«03
1.92E+02
b. 16£*01
0.
1.39E-20
1.07E+02
C.
(1.
g.
2.22E»B2
5.71E-07
3.64E*33
9.30£>91
1.36E*01
0.
0.
0.
6.74E+01
0.
4.40E-03
0.
n.
2.48E*03
7.80E*00
5.87E+32
4.4CE*01
1.39E»02
1.02E+00
3.62E4-01
C.
0.
1 .3lE»01
0.
5.94E*00
0.
0.
2.40E-02
1.58E-28
1.52E-02
0.
0.
0.
0.
0.
0.
0.
0.
3.
C.
o.
5.47E-II2
SRAMS
HEAVY 1ETM. CHARGED
inn V enA v
1 I'U • T
0.
1.68E+03
1.32E+02
5.16E+01
0.
9.94E-39
1.07E+B2
0.
0.
0.
2.22E*02
9.27E-1J
3.64E*03
9.30E»01
1.36E+C1
0.
0.
0.
6.74E+01
3.
5.91E-06
0.
0.
2.48E*03
7.79E»00
9.97E»02
4.40E«03
1.39E»02
6.97E-01
3.S2E»Ol
0.
C.
1. J5E»01
0.
5.94E|00
C.
9.
2.40E-A2
0.
1.52E-02
0.
0.
3.
0.
3.
3.
0.
0.
0.
0.
3.
5.47E-02
a u v • i
g.
1.68E+03
1.92'*02
5.16T+01
0.
3.
1 .97E+-02
0.
0.
3.
2.22E*02
P.
3.64E»03
?.30E»01
1 .36i»01
0.
0.
0.
5.74E*01
0.
0.
0.
n.
2»48r+03
7.77E»00
?.S7E*02
4.4CE+11
1.39E+02
3.42E-02
3.62E+31
0.
a.
1.41E+01
0.
5.94E»nO
a.
3.
2.40E-02
0. .
1.52E-02
3.
0.
3.
3.
3.
C.
3.
3.
0.
D.
3.
5.47E-02
Clad
TO REACTOR
1 n n ft V cnnA V
1U T' U* T
0.
l.S8E*03
1.92E+02
S.16E*01
0.
4E«10
0.
3.
2.40E-02
0.
1.S2E-02
0.
C.
0.
Q.
0.
P .
0.
P.
0.
0.
3.
5.47E-02
^UUU • 1
0.
1.68E+03
1.92E+02
5.16E*01
0.
0.
1.07E*02
0.
0.
0.
2.22E*02
9.
3.64E+03
9.30E*01
1.36E*01
0.
0.
0.
6.77E*01
0.
0.
0.
0.
2.48E»03
7.47E«00
9.87E+02
4.40E*01
1.39E»02
6.41E-17
3.62E+01
I).
I).
1.42E+01
C.
5.94E«00
n.
3.
2.40E-02
0.
1.52E-02
0.
?.
0.
3.
0.
''.
n.
0.
9.
C.
1 •
5.47E-02
TABLE A-IV-3
(continued)
innnn vinnnnn Y
1UUUU* TJUUUUU* i
0. 0.
1.68E»03
1.92E*02
5.16E+01
C.
0.
1.07E*02
0.
0.
0.
2.22E»02
0.
3.64E+03
9.30E+01
1.36E*01
0.
0.
0.
6.80E»01
0.
0.
0.
0.
2.48E»03
7.15E»00
9.87E*02
4.40E*01
1.39-£*02
2.78T-33
3.62E*01
0.
0.
1.42E«01
0.
5.94E»00
0.
0.
2.40E-02
0.
1.52E-02
0.
0.
0.
P.
0.
P.
0.
0.
0.
0.
0.
5.47E-02
1.68E*03
1.92E*02
5. 16E*01
0.
0.
1.07E*02
0.
0.
0.
2.22E»02
0.
3.64E+03
9.30E»01
1.36E»01
0.
0.
0.
7.19E*01
0.
0.
0.
0.
2.48E«03
3.28t+00
9.87E*02
4.40E»01
1.39E«02
0.
3.62E»01
0.
0.
1.42E»01
0.
5.94E+00
0.
0.
2.40E^02
0.
1.52E-02
0.
0.
0.
0.
0.
3.
n.
9.
0.
0.
9.
5.47E-02
0.
1.68E*03
1.92E»02
5.16E»Ol
0. .
0.
1.07E»02
0.
0.
0.
2.22E»02
0.
3.64E»03
9.30E»01
1.36E»01
0.
0.
0.
7.52E»01
0.
0.
0.
0.
2.48E»03
1.35E-03
9.87E»02
4.40E»31
1.39E»02
0.
3.62E»01
0.
0. I
1.42E»01
0.
5.94E»00
0.
0.
2.40E-02
n.
1.52E-02
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.47E-02
A-IV-
-------
PyR .- BU = 33.000 WASTE DECAY TIMES CASE E-4
POWER= 38.40MU, BURNUP= 33000. HUD, FLUX= 1 . 42F>13N/CH**2-Si C
NUCLIDE CONCENTRATIONS,
SR 89
SR 90
S* 91
T 90M
Y 90
Y 91M
Y 91
ZR 90
ZR 91
Z3 92
ZH 93
ZR 9*
ZR 95
ZR 96
N3 92
N3 93H
MB 93
N3 94
X3 95
N3 96
N3 97
10 92
ID 93
ID 93M
MO 94
MO 95
ID 96
*0 97
«0 98
13 99
N01CO
.10101
TC 99H
T: 99
T:ICI
RJ101
CD113M
CD113
C3115H
:oiis
CD119M
:D119
C3121
I Ml 13
IY119H
IV119
IN121H
11(121
S«l«
SM115
SM16
SN11TN
f"Li fl D /* r*
t-n A K w L
0.
0.
0.
0.
0.
0.
0.
6.14E*04
1.35E»04
2.09E*04
0.
2.18E*04
0.
3.57E*03
0.
0.
3.23E+02
0.
0.
0.
0.
2.82E»01
0 .
0.
1.77E+01
3.13E+01
3.32E+01
1 .91E + 01
4.95E+01
0.
1.99E+01
0.
0.
n.
0.
0.
9.
6.18E-03
0.
0.
0.
0.
0.
6.33E-03
0.
0.
0.
0.
1.16E+01
6.21E+00
2.59E*02
0.
DI SCH ARGE
3.90E-01?
6.47E-07
a«
0.
1.68E-10
0.
1.58E-14
6.14E+04
1.35E+94
2.09E+»4
7.72E+*0
2.18E+04
5.07E-02
3.57E+13
4.23E-11
5.96E-P6
3.23E+02
2.50E-P1
5.20E-02
4.91E-S4
0.
2.82E+H1
6.0CE-13
0.
1.77E+P1
3.24E»91
3.46E+01
1.9 IE* 11
4.94E+01
1.38E-23
1.99E+fl
0.
1.16E-24
1.20E-01
0.
3.57E-02
0.
1.07E-07
0.
2.32E-34
0.
9.
0.
4.35E-03
0.
9.
0.
0.
1.16E*01
6.21E+00
2.b8E»02
4.41C-06
1 • Y
3.12E-06
6.39E-07
0.
0.
1 .66E-10
0.
1.83E-05
6.1*E*04
1.35E*0*
2.09E+0*
7.72E+00
2.18E+P1
7.2t!:-03
3.57E*03
1.72E-16
7.76E-OS
3.23E*02
2.50:1-01
8.11E-03
0.
0.
2.82E»01
5.99£-03
0.
1.77E+01
3.20E+01
3.'»6E*01
1.91E»01
4.94E+01
2.79E-43
1.99i*01
0.
2.39E-44
1.20E-01
0.
3.57E-02
0.
1.07E-07
P.
0.
0.
'0.
"•
4.35E-03
n.
0.
0.
0.
1.16E*01
6.21E*00
2.58E»02
5.21E-10
BASIS = HT OF
1 0. Y '" "
3.18E-25
5.12E-U7
0.
0.
1.33E-10
0.
2.71E-22
6.14E+04
1.35E*04
2.G9E*04
7.72E»aO
2.18E*ni
A.31E-18
3.'57E+03
3.
3.35E-05
3.23E»02
2.50E-01
4.92E-18
0.
0.
2.82E*31.
5.59E-03
0.
1.77E»C1
3.25E+01
3.16E+01
1.91E+01
*.94E+01
n.
1.99E*01
0.
0.
1.20E-OJ
0.
3.57E-02
0.
1.07E-07
0. '
0.
0.
0.
p.
4.35E-03
0.
D.
C.
0.
1.16E+31
6.21E*03
2.58E+02
C.
3U . 1
0.
1.91E-07
0.
0.
*.96E-11
a.
0.
6.1AE»04
1.35E+04
2.09E»0*
7.72E+00
2.18E+04
0.
3.57E+03
0.
7.19--05
3.23E»02
2.50E-01
0.
0.
o.C,
2.82E*01
5.97E-03
0.
1.77E+01
3.25E+01
3.46^*01
1.91E+01
4.94E+01
0.
1.99i*01
0.
0.
1.20E-01
0.
3.57E-02
0.
1.07E-07
0.
0.
0.
0.
0.
1.35E-03
0.
9.
P.
0.
1.16E-01
6.21E-00
2.58£*02
0.
HEAVY 1ET
« n A y
1 UU • T
0.
5.55E-08
0.
0.
1.44E-11
0.
0.
6.14E+04
1.35E+04
2.n9E»04
7.72E+00
2.J 8E*04
0.
3.57E+03
0.
7.72E-05
3.23E»02
2.50E-01
0.
,0.
0.
2.82E*01
5.95E-03
0.
1.77E+01
3.25E*01
3.46E+01
1.91E»01
4.94E»C1
0.
1.99E+D1
0.
o./
1.19E-01
0. ,
3.57E-02
°-
1.07E-07
0.
0.
0.
0.
9.
4.35E-93
n.
0.
9.
0.
1.16C+01
6.21E*00
2.58L»02
0.
3RAHS
V. CHAR6ED
c A n y
D U U • T
a.
2.88t-12
0.
0.
7.48E-16
0.
9.
$.14t*04
1.35FT + 04
2.09E+04
7.72^+90
2.18E+04
0.
3.57E*03
3.
7.7i:-n5
3.23T*02
2.5UE-01
0.
0.
0.
2.82E«01
5.77E-03
D.
1.77^*91
3.25E+01
3.46r»01
1.91E*01
4.94E»01
D.
1.99E+01
0.
P.
1.19E-01
0.
3.57E-02
0.
1.07T-07
0.
9.
0.
3.
y.
4.35E-93
0.
0.
0.
0.
1.16i»31
&.21E*00
2.5B'+02
0.
TABLE A-IV-3
Clad (continued)
TO REACTOR
ifinn v EMAA ^
1 u uu. T
1.
1.27E-17
0.
n.
3.29E-21
0.
0.
6.1
-------
PUR - BU = 33*000 WASTE DECAY TINES CASE E-4
POWER= 38.40MW, BURNUP= 33000. HUDt FLUX= 1.42E»13N/CH*»2-SEC
NUCLIDE CONCENTRATIONS, 3RAHS
BASIS = IT OF HEAVY 1ETXL CHARGED
f
CHARGE DISCHARGE
SN117
SV118
SN119M
SS119
SM120
SM121M
SY121
SN122
SN123H
SM123
SM124
SN125H
SN125
S9121
S3123
S3124N
S3124
SB125
S3126M
S3126
TE124
Til25M
T-125
Til26
TA160
TA181
TA1821
TA182
U180
U181
W182
U183H
U183
U184
K165M
U185
U186
yie?
TOTAL
1.38E+02
4.41E+02
0.
1.59E+02
6.11E+02
0.
0.
8.91E+01
0.
0.
1.12E*02
0. f
9.
0.
0.
0.
0.
0.
0.
o.
p.
0.
0.
0.
0.
0,1
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
4.10E+05
1.-38E+02
4.42E+02
7.85E-P4
1.58E+P2
6.11E+02
1.63E-03
6.49E-53
8.9"E«D1
0.
4.9b£-06
1.12E*02
0.
1.22E-I1
2.28E-01
1.U9E-02
0.
5.03E-OS
7.59E-03
0.
1.15E-11
2.05E-P4
1.81E-04
3.40E-03
1.43E-05
g.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.95E*")5
1. Y
1.38E*02
4.42E+02
4.73E-04
1.58E+02
6.11E»02
1.62E-03
0.
8.90E+01
1).
1.80E-06
1.12E*02
0.
1.73E-17
2.28E-01
1.09E-02
0.
6.10E-07
6.67E-03
0.
4.60E-16
2.09E-04
1.62E-04
4-.34E-03
1.43E-05
0.
0.
0.
0.
C.
0.
0.
C.
0.
0.
0.
0.
0.
C.
3.95E*05
10. Y
1.38E*02
4.42E+Q2
5.20E-08
1.5fiE»02
6.HE+02
1.49E-C3
0.
8.90E+01
0.
2.17E-14
1.12E*02
0.
0.
2.28E-01
1.09E-02
0.
1.96E-23
6.62E-04
0.
C.
2.10E-04
1.61E-05.
1.05E-02
1.43E-05
a.
3.
C.
0.
0.
0.
0.
0.
0.
0.
C.
9.
0.
9.
3.95E+05
50. Y
1.38E+02
4.42E*02
1.33E-25
1.5fl£+02
6.11E+02
1.04E-03
0. '
8.90E+01
0'.
0.
1.12E*02
0.
0.
2.28E-01
1.09E-02
0.
3.
2.29E-08
C.
0.
2.iQE-04
5.59E-10
1.12E-02
1.43E-05
0.
0.
C.
u.
0.
0.
0.
0.
0.
0.
n.
3.
o.
0.
3.95E»05
100. Y
1.38E*02
4.42E*02
0.
1.58E+02
6.11E+02
6.56E-04
0.
8.90E+01
ft-
0.
1.12E*02
0.
0.
2.29E-01
1.09E-02
0.
3.
6.10E-14
9.
.0.
2.10E-04
1.49E-15
1.12E-02
1.43E-OS
0.
0.'
a.
0.
0.
0.
0.
n.
o./
0.
3.
a.
n.
0.
3.95E+05
500. Y
1.38^*02
4.42E+02
0.
1.58t+02
6.11E»02
1.71^-05
D.
S.90E+01
0.
0.
1.12£»02
0.
0.
2.29T-01
1.09^-02
P.
e.
0.
0.
0.
2.10E-04
0.
1.12E-02
1.43r-05
0.
f .
0.
$.
3.
0.
0.
C.
0.
n ^
8.
0.
:.
9.
3.95i»05
Clad
TO REACTOR
1000. Y
1.38E+02
4.42E*02
0.
1.56E»02
6.11E*02
1.79E-97
0.
6.9oE*01
0.
0.
1.12E*02
0.
02
4.421+02
'0.
1.58t+02
6.11-:+«2
0.
0.
8.90E+01
C.
0.
1.12E+02
0.
0.
2.29E-01
1.09T-02
0.
0.
0.
0.
0.
2.10E-04
0.
1.12^-02
1.43E-05
0.
0.
0.
0.
c.
0.
0.
0.
c.
c.
0.
0.
0.
0.
3.95E+05
1.38E+02
4.42E+02
0.
1.58E+02
6.11E»02
0.
0.
8.90E+01
0.
0.
1.1 2E»>2
0.
0.
2.29E-01
1.09E-02
0.
0.
0.
0.
0*.
2.10E-04
0.
1.12E-02
1.43E-05
0.
0.
0.
-------
PUR - BU = 33»000
POWER= 36.40KW.
WASTE DECAY TIMES CASE E-4
= 33(100. HUD» FLUX= 1. 42E+13N/CM**2-Si:
HE'S
TABLE A-IV-3
(continued)
MUCLIDE CONCENTRATIONS* SRA»|S
BASIS = KT OF HEAVY 1ET VL CHARSEO TO REACTOR
CHARGE DISCHARGE
HE 4
TL207
TL208
TL209
P32G6
P32C7
P32C8
P3209
= 3210
P3M1
P3212
P3214
3I2C9
31210
31211
31212
31213
31214
P0210
P0211
P0212
P0213
P3214
P0215
PC216
PD218
4T217
3^219
}\'220
3N222
rS221
r:*223
RA223
3A224
R4225
3A226
HA228
AC225
AC227
AC228
TH227
TH223
TH229
TH235
TH231
TH232
TH233
TH234
?«231
PA232
PA233
PA234M
0 .
0.
C.
0.
a.
o .
0 .
0.
0.
0.
0.
3 .
C.
0.
.
0.
0.
0.
0.
0.
a.
0.
0.
G.
0.
A
•J a
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
C.
0.
0.
G.
0.
0.
C.
0.
0 .
0.
0.
0.
7.17E»00
1.37E-16
8.7BE-13
2.15E-19
0.
1.C4E-11
2.04E-T7
C.78E-16
9.64E-21
1.06E-15
5.1-QE-ia
1.13E-24
7.12E-12
1.77E-24
6.29E-17
4.R6E-11
2.12E-1 f.
8.32E-25
1.70E-24
7.61E-22
2.56C-21
3.09EI-25
1.^1E-31
8.9bE-?2
2.04E-15
1.31E-25
2.*6E-21
2.P3E-18
7.76E-13
2.tlC-22
2.25E-17
1.02E-17
5.08E-13
4.44E-09
1.02E-13
3.58E-17
1.29E-1?
6.S7E-11
3.8tE-10
1.35E-19
8.36E-13
8.79E-.1?
i.soc-np
1.3&E-12
1.56E-18
2.86E-!>5
a.
1.30E-!J5
1.1SE-35
1.57E-5T
4.22F-06
*».38E-n
1. Y
8.02E+00
1.93E-16
7.50E-13
2.19E-19
S.90E-23
l.&bE-ll
3.38E-07
8.9&r-l&
1. 92^-20
1.^8C-15
7~-n<>
0.
S. 49i-08
2.12f-05
0.
2.*7F-n5
2.19E-12
10BO. Y
4.37E+01
7.9&E-15
4.76E-18
3.94E-15
6.22E-15
3.56E-07
3.24E-06
l.SIE-11
3.S8E-16
6.13E-1*
2.7f E-15
9.09E-22
8.»2E-36
2.VDE.-19
3.S5E-15
2.S7;E-i6
3.3PE-12
6,S8E-22
6.S2E-18
t .t2E-20
1.39E-26
5.47E-21
1.13E-28
5.19E-20
1 .1 1E-20
1.05E-22
4.5nE-17
1 .18E-16
1.21E-18
1.34E-19
4.13E-13
5.53E-16
2.35E-11
2.
-------
FUR - BU = 33.POO WASTE DECAY TIMES CASE E-1
POWER= 3P.40MV, BURNUP= 33000. MUD» FLUX= 1.42F*13N/CM«*2-SEC
NUCLIDE CONCENTRATIONS,
PA234
U232
J233
J235
U236
J237
U238
J239
J240
VP236
NP237
VP238
NP239
NP249M
>|P240
PJ236
PU238
PU239
PJ24C
PJ241
PU242
PU243
PU244
PJ245
A*241
AN242M
A1242
AX243
AM244
A1J45
C1242
Z -1 2 4 3
21244
C1245
CH246
C^247
CM248
C1249
CM250
3K249
3K259
:.-249
:F250
CC251
CF252
Cr253
ES253
TOTAL
0.
0.
C.
6.57E+03
0.
U.
?.17E*05
0.
0.
0.
C.
0.
0.
0.
0.
0.
1.91E*03
3.21E*04
2.37E*34
1 .22£*04
9.90E+03
0.
0.
•0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
o.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
l.OOE+06
1.52E-1 1
6.63E-T7
4.84E-06
1.93E+11
2.87E*CJ
1.56E-06
4.blE*C3
0.
6.61E-22
1 .*6E-66
1.23E+?!?
3.77E-27
2.1 CF-n3
1.14E-21
0.
1 .84E-n6
9.26E+00
7.28E»ni
7.83E+M
5.22E + P?.
5. 13E + 1)!
1.43E-14
3.4GE-11
0.
1.05E+03
1.03E-12
1.24E-07
2.53E+33
5.37E-23
3.96E-3?
7.49E+"!
8.89E-T!
8.61E*1??
8.92E+01
6.35E+1R
8.40E-0?
1.87E-03
2.17E-17
l.OOE-12
9.5CE-24
2.12E-19
4.86E-0=
8.5nr-07
6.19E-07
1.50E-07
2.P1E-42
1 «61E-?3
1.23E-37
9.54EO3
1y
. T
1.55E-12
8.66E-07
2.44E-05
1.93E+01
2.88S»OC
1.52E-06
4.51E+03
0.
8.33E-20
0.
1.21E+02
3.
2.10E-03
7.19E-21
0.
1.63E-16
4.89t»01
7.29E»01
9.43E»31
5.10E+01
5.13E+01
2.86E-12
1.36E-09
0. '
1.05E+03
1.03E-02
1.24E-07
2.53C+03
3.39E-23
1.23E-47
3.44E«01
8.79E-ni
8.t4E+02
B.92E«U1
6.3J.E»00
8.40E-P2
4.87E-03
0.
l.OOE-12
2«94r-41
2.12E-19
4. 40^-05
b.52i-T7
S.19E-07
1.31E-37
0.
1.3K-32
0.
9.54E+03
BASIS = HT OF
« ft y en t/
1 U . T
7.58E-13
2.14E-06
3.99E-04
1.93E»C1
3.0PE»3n
9.9&E-07
4.51E+33
0.
1.57E-18
0.
1.38E»02
0.
2.09E-13
1.36E-19
0.
1.83E-07
7.73E+01
7.51E+01
3.36E+02
3.33E+31'
5.13E+P1
2.96E-12
8.J3E-08
0.
1.05E»03
<).89E-03
1.19E-07
2.53E»C3
6.39E-22
0.
5.30E-05
7.23E-01
5.98E»02
9.52E+C1
6.35E»10
8.4PE-H2
4.87E-33
0.
9.98E-13
0.
2.11E-19
7.4PE-OS
5.53E-OV
6.15E-07
1.24E-OS
a.
0.
P.
9.54E«03
JU • 1
7.58E-13
1.58E-06
2.58E-I33
1.94E+01
5.59i»00
1.53E-P7
4.51T+03
n.
8.18E-18
0.
2.03E*C2
0.
2.?9i-03
7.06i-19
P.
1.09E-11
5.66E+01
8.44E»?1
7.95E+C2
5.11E+00
5.13E+01
2.86E-12
4.29E-07
0.
1.01E+03
8.24E-03
9.90i-08
2.52E*03
3.331-21
0.
1.98E-05
3.04i-51
1.29E+02
8.89E+01
6.31E*00
8.4CE-02
4.87E-03
U.
9.-P2E-13
3.
2.08E-19
2.841-09
7.4?i-lfr
5>.56i-37
3.49E-13
0.
C.
*..
9.52E+03
HE«VY 1ET
Inn V
. 0 . T
7.58E-13
9.78E-07
6.43E-S3
1.95E»01
9.9Ar«^ip
1 . ^ 4i — OS
4.51C*03
0.
l.blE-17
0.
2.80E»02
rt.
2.08E-03
1.42E-18 .
0.
5.S8E-17
3.34E»01
'9.57C + 01
8.99E»''2
6.16E-31
5.14E*01
2.8bE-12
8.42^-37
0.
9.38E»02
6.56E-03
7.B8r-08
2.blE«D3
6.49E-21
0.
1.5PE-B5
1. 13T-11
l.?OE*31
8.95E*31
b.?6E*00
B.40E-02
4.87E-C3
n.
9.S3E-13
3.
2.03E-19
1 .50i-l 3
7.24i-lS
5.71E-37
7.15E-19
3.
0.
0.
9.bQE«03
3RAHS
C n ^ y
3 U 1 » T
7.58E-13
2.08T-08
7.28E-02
2.11^*01
4.621+01
».45E-09
4.51r+33
0.
S.25E-17
3.
7.17E+02
D.
2.00T-03
7.12:-18
0.
3.
1.70T+00
1.82T+02
3. 61^ + 02
1.49E-11
5.17-+01
2.96E-12
4.32r-06
0.
1.97E+02
1.06i-03
1.271-08
2.42t+03
3.36E-20
8.
2.55E-Ob
1.78T-05
1.23^-06
S.56r»01
5.93C»>}0
3.40^-02
4 .B^i-CS
0.
3.21T-13
0.
1.73T-19
0.
S.17i-16
1.22T-37
n.
3.
0.
).
J.46-+03
HE'S
TO REACTOR
1 ^ T ft V cnn.t w
i. J •' U • T
7.58E-13
1.S9E-1B
2.11E-31
2.43E+31
8.9*iE+ Jl
4.27C-39
4.51E+33
0.
1.S5E-16
n.
9 .3fiE+02
0.
1 .J1E-33
l.»2E-17
0.
n.
3.47E-02
2.84E+C2
8.37E+02
1.43E-C1
5.21E+01
2 .3bE-l 2
8.65C-06
n.
2.2bF»02
1.D8E-04
l.SU-39
2.31E+03
6.71E-20
0.
2.51E-07
3.51E-10
4 .5nr-n
8.21E*01
5.49E+CO
8.» ?E-02
1.02E-01
5.41i+01
2.86E-12
4.31E-05
n.
3.54E+00
1.29i-12
1.55i-17
1.61E+03
3 .34C-19
0.
3. 12^-15
0.
1.22i-13
5.97E*01
3.04i+00
8.4nr-02
4.83E-03
3.
1.37E-13
C.
2.89E-20
? .
1 »03i-16
1 .Sti-08
C.
3.
?.
?.
9.4bi»OS
TABLE A-IV-3
(continued)
i i ft n n vi ft n ft ft ft v
.1 ' U I U • TluUUI'U* T
7.58T-13 7.59i-13
3.91E-48
3.62E+00
2.53E+02
5.85E+02
2.01E-09
4.51E+03
0.
1.64E-15
0.
1.25E+03
0.
8.47E-04
1.41C-16
0.
0.
1.84E-22
1.32E+03
3.33r+02
6.71i-02
5.51E + i)l
2.66E-12
8.57E-05
3.
1.99E+00
1.61E-22
1.94E-27
1.02E+03
6.55E-19
0.
3.89E-25
0.
2.44E-13
3.S6E+01
1.4f-C»CO
8.4"E-02
4.7«r-03
0.
1.36E-14
0.
3.94E-21
0.
1 ,
-------
H
ZN
SA
3 •
3A
3E
54
S E
3A
J 1.
J -
AS
3A
SE
AS
SE
SE
SE
AS
SE
SE
SE
AS
AS
SE
AS
SE
SE
3R
AS
s-:
3R
3R
.
B.60E-02
a.
3.24E-G1
3.
7.58E-04
3.
0.
C.
3. '
. 1.08E+00
3 .
0.
3.
2.81E+00
7 .
0.
.
).
1.16^-02
).
J.03E-02
3.
3.16E-02
D.
0.
3.
3.60E-02
D.
5.24E-91
0.
7.58T-04
D.
3.
3.
3.
1.38E»90
0.
3.
0.
2.81E»C9
9.
0.
1.72C+00
2.52T-C2
9.
3.29E»09
D.
9.
9.
rt.
9.
3.
1.41T-C2
a.
0.
2.52E+91
3.
9.
3.94E-44
0.
?.
3.
3.
3.
a.
5.
0.
FP's
TO REACTOR
• n-.H v i?Ar\n V
1309* T
2.&tE-27
C.
0.
1 .16E-02
0.
2.D3E-02
C.
8.16E-02
0.
0.
P.
B.S9E-02
0 .
3.24E-01
3.
7.58E-04
0.
9.
9.
0.
1.08E+00
9.
0.
0.
2.91E»00
0.
C.
1.7CE+00
5.03E-02
3.
8.2PE»90
9.
9.
9.
9.
0.
9.
1.41E-02
0.
P.
2.32E+01
0.
9.
3.94E-44
9.
C.
0.
0.
3.
9.
3.
0.
3 u u U . 1
U.
9.
0.
1.16E-02
0.
2.93E-02
n.
3.16E-02
0.
.0.
0.
S.60E-02
3.
3.24E-01
P.
7.58i-04
0.
9.
0.
0.
1.08E*00
0.
0.
c.
2.81E»00
0.
0.
4.bOE»09
2.47E-01
P.
6.20E+00
0.
9.
0.
3.
9.
9.
1.41E-92
Q.
C.
2.52C»01
a.
r.
3 .94E-44
0.
0.
C.
3.
•P.
9.
9.
9.
TABLE A-IV-3
(continued)
i 1 ft ft o v. n n ft n n v <
li'uuu* TluUODD* I
e. o.
0.
0.
1.16E-02
3.
2.03E-B2
D.
8.16E-02
0.
0.
C.
8.&OE-B2
9.
3.24E-91
0.
7.58E-04
0.
9.
9.
n.
1.08E»00
0.
0.
9.
2.81E»00
a.
0.
4.27E»9C
4.SCE-91
a.
8.20E»00
9.
0.
C.
0.
0.
9.
1.41E-02
0.
0.
2.S?E»01
C.
0.
3.94E-44
9.
9.
0.
0.
0.
e.
n.
0.
0.
0.
1.16E-02
0.
2.03E-02
D.
9.16E-92
9.
0.
0.
8.60E-02
P.
3.24E-01
0.
7.58E-94
9.
C.
0.
0.
1.08E>90
9.
0.
0.
2.81E*00
0.
9.
1»63C»09
3« lli*00
0.
8.20t+99
0.
0.
9.
9.
C.
0.
1.41S-02
3.
1.
2.52£*01
9.
9.
3.94E-44
0.
0.
0.
0.
0.
0.
0.
0.
Oo
9.
0.
1.16E-02
0.
2.03E-02
0.
8.16C-02
C.
0.
Q.
8.&OE-02
9.
3.24E-01
0.
7.58E-04
e.
0.
C.
0.
1.08E»00
0.
0.
0.
2.81E»00
0.
0.
1.11E-04
4.75E»00
0.
8.20E»90
9.
0.
0.
0.
0.
0.
1.41E-92
0.
C.
2.52E»91
0.
0.
3.94E-44
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
156
-------
- BU = 3J.OOC
POUER=
-------
Y 94
ZR 94
33 95
S* 95
Y 95
ZR 95
M9 95H
M3 95
HO 95
Y 96
Z3 96
N3 96
MO 96
Y 97
ZR 97
M3 97H
N3 97
MO 97
ZR 98
\3 9SH
\(3 98
MO 98
SJ3 99
MO 99
T: 991
TC 99
3J 99
\31CO
M01CO
TC100
RJ1PO
N3101
T;IPI
5J101
M0102
TC1P2M
TC1C2
31)102
M0103
TC1C3
3U1C3
.3H1C31
RH103
1D1?4
TC1C4
3H104M
3 Hi 04
PD104
M0105
TC1C5
0.
G .
0.
0.
9.
0.
9.
0 .
P.
0.
C .
0.
0.
0.
0.
3.
C.
0.
0.
D.
ft
0 .
P.
9.
0..
0.
0.
0.
a.
o.
c.
c.
c.
0 .
9.
3-
0.
0.
0.
0.
c.
0.
0 .
0 .
c.
0.
p.
c.
9.
C.
0.
S,00& WASTE DECAY
1U, BURNUP= 33000. N
9.
6.41E+92
0.
0.
0.
1.S9E+"!
1.34E-!12
1.15E+"!
6.B9E+02
C.
7.42E+C2
3.71E-63
1.3tE+01
P.
1.75E-78
1.65E-81
1.33E-79
8.03u+P2
0.
0.
P.
S.5PE+92
0.
7.S3E-2P
6.7PE-21
8.69E+0?
4.77E-97
0.
1.03E+P3
U.
2.27E+P1
P.
0.
0.
8.58E+92
0.
0.
C.
8.95E+02
0.
C. .
2.26E+90
2.26E-B3
6.71E+P2
a.
P.
8.68E+92
0.
0.
1.65E+02
C.
G.
1 • Y
a.
6.41E+92
0.
C.
C.
1.5&E+00
1.91E-93
1.78E+PO
7.00E+02
G .
7»42i+92
P.
1.34E1 + 91
0.
0.
0.
3.
8.03E+02
V .
n .
n.
S.50E+02
0.
1.58E-39
1.3&T-4P
8.&9E+92
&.2SE-33
0.
1.93E+03
0.
2.27"+01
3.
0.
0.
S.58E+02
0.
9.
0.
8.95E+02
P.
0.
9.24E-92
3.24E-05
S.73E+C2
9.
0.
8.66E+02
9.
•c.
1.65E+C2
G.
P.
TIMES CASE E-1
WP, FLUX= 1.42E»13N/CM*«2-SiC
NUCLIDE CONCiNTRATlOYSt SRAMS
BASIS = NT Or
10. Y * ~ "
0.
6.41E+02
0.
0.
0.
9.28E-16
1.14E-18
1.06E-15
7.03E+02
T.
7-42Z+P2
J.
1.34E+01
0.
9.
C.
9.
8.03E+02
C.
9.
0.
8.50E+D2
C.
0.
a.
8.69E+02
3.18E-02
0.
1.03E+03
P.
2.27E+01
0.
0.
0.
8.58E+02
0.
C.
0.
8.S5E+"2
0.
0.
0.
C.
6.73E+02
0.
0.
ft.6fiE+U2
0.
0.
1.S5E+12
P.
a.
3U * 1
0.
6 . 4 1 E + 0 2
0.
9.
0.
f.
G.
a.
7.03E+02
0.
7.42t +02
P.
1.34E+01
0.
C.
C.
C.
B.03E+02
a.
n.
U.
R.5PE+02
0 .
C.
0.
8.69E+92
1.45E-P1
n.
1.C3E+93
n.
2.27E+01
9.
?.
L'.
8.58E+02
0 .
0.
1.
8.95E+92
r>.
C.
3.
P.
6.73E+02
0.
0 •
8.68E+92
0.
0.
1.65E+02
0.
0.
HEAVY MET4.
IOC. Y
6. 4 1E+C2
9.
0.
P.
0.
0.
0.
7.93E+02
P.
7.42E+02
C.
1.34E+D1
a.
9.
0.
p.
8.33E+02
0.
C.
0.
6.50E+92
C.
P.
0.
8.69E+02
2.S7E-01
3.
1.03E+03
P.
2.27E+01
0. /
0.
9. /
8.58E+02
0.
0.
9.
8.55E+22
C.
P.
Cl.
1.
6.73E+02
0.
C.
R.&6E+02
0.
C.
1.&5E+02
P.
0.
3.
s.
3.
3.
3 .
9.
C.
0.
7.
9.
7.
n.
i .
D.
0.
c.
9.
3.
3.
0.
C.
3.
9.
D.
P.
3.
1.
C.
1.
a.
2.
0.
0.
?.
3.
3.
0.
3.
3.
P.
3.
9.
C.
S .
3.
»> •
3 .
0.
0.
1.
0.
0.
CHARGED
e n n y
D U
-------
PUR - BU = 33,093
VJ1P5
V-UC5
P3105
T:ICS
RH1C6*
=«-'106
"3106
P3197H
P2107
AC-l!-7
VJ1C8
SH1C8
P3108
C31C8
431101
43110
C3110
431111
43111
C3111H
P3112
43112
CD112
P3113
43113N
43113
CD113
1*113
43114
C3114
1M14M
1 X114
PD113
C.
0.
0.
0.
n.
C.
c.
3.
G.
3.
0.
0.
0.
0.
c.
n.
0.
P31Q9H 9.
P3109 0.
4S1P9* J.
45109 0.
:31°9 C.
1H110 0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
o.
o.
c.
c.
0.
n.
o.
n.
0.
0.
c.
0.
3.
0.
i,093 VASTE D£CAY TIMES CASE E-4
IV, BURMUP= 333UO.MWD, FLUX= 1. 42E* 13.M/CK«« 2-SEC
NUCLIDE CONC:NTR«TIO>IS,
9.
0.
2.86E-37
6.42E*C2
P.
2.32E*T2
C.
2.1SE-f>4
5.6CE*?2
D.
0.
P. .
5.03E»"2
8.34E-05
0.
0.
3.58£*0?
0.
b.34E-07
0. .
0.
2.93E-99
6.36E-16
1.63E*12
6.23E-11
9.
7.41E*B1
6. 73E-'" 1
9.77E-C8
5.43E*?1
Oi
0.
3.
2.01E-98
0.
3.51E*01
3.23E-6'5
5.8UE-SS
1.87£*11
0.
0.
0.
4.40E-0-J
6.26E-01
2.56E-03
0.
C.
1.87E*T1
2.?SE-?6
4.16E-11
1.47E-R4
0.
1y
• T
0.
u.
c.
&.42E»02
0.
1.64E»02
•1.
1.55E-C4
6.27E»02
0.
a.
0.
5.03E*02
1.08E-04
0.
C.
3.58E*02
J.
5.34E-37
C.
r, ^
o.
4.81E-16
1.63E»02
4.7lt-10
U.
7.41E+C1
4.08C-91
5.92:-08
5.46i»'31
3.
0.
1.
9.37E-16
0.
3. 5 IE* 01
0.
0.
l.«7E*01
0.
1.
0.
4.29E-02
S.28E-01
3.64E-03
C.
0.
1.97EX11
2.05E-07
J.31C-12
1 .49-1-04
II.
BASIS = >1T Or
1 n V f " v
10. T
a.
0.
u.
6.42E*92
0.
3.30E--01
9.
3.12E-07
7.91E*02
0.
C.
0.
5.03E*?2
E.56E-04
a.
C.
3.58E*02
P.
5.34E-07
1,
o.
0.
3.14E-18
1-S3E*02
3.18E-12
0.
7.41E*-J1
5. 'j OE-C5
7.2f,E-l2
5.50E*.'?!
0.
0.
0.
•;.
if.
3.51E*01
0.
0.
1.97E»91
n.
0.
9.
2.75E-02
6,.2R"-'1l
1.91E-U2
3.
0.
1.37E»31
3.31C-27
5.32E-32
1 .49E-34
0.
3 a . i
0.
0.
fc.42E*02
5.
3.42E-13
0.
3.24E-19
7.91E*02
R.
C.
9.
5.C3E*')?
2.55E-03
C.
9.
3.58E*02
0.
5.34E-07
0. '
n.
0.
6.14E-28
1.63E*02
fc.OU-22
0.
7.41E*91
2.96E-22
2.99Z-29
b.50E»91
T.
o.
c.
D.
n .
3.51E»01
9.
5.
1.87E»01
0.
'.* •
U.
3.79E-03
£.28E-01
4.27E-02
' .
C.
l.S7E*01
9 .
C.
1.49E-34
0.
HEAVY *£T
1 00 • V
0.
0.
0.
6.42E*02
0.
3.57E-28
P.
3.38E-34
7.91E»02
0.
P.
C.
5.03E»C2
5.04E-03
P.
0.
3.58E*02
0.
5.34E-D7
0.
0.
G.
4.46E-4C
l.S3E*02
4. 38E-34
0.
7.4 1E*01
W •
0.
5.50E+01
a.
0.
p.
0.
p.
3. 51E*0^
9.
n.
l.B7E*01
0.
0.
0.
3.1 QE-04
f .23E-C1
4. 42E-32
n.
o.
l.B7E*01
0.
0.
1 .49E-C4
0.
3R4K5
41 CH4SGE3
- f\ ft y
D U l? • T
D.
p.
9.
i«42v*02
0.
0.
9.
3.
7.91E*02
n.
p.
ij .
5.03"+12
2.50E-P2
0.
3.
3.58E»02
D.
5.34E-07
0.
7 ,
0.
0.
1.43E>02
9.
3.
7.41E+91
0.
2.
5.30^*01
3.
U •
0.
n.
0.
3.51r»01
C.
3.
1. 87^*01
D.
0.
0.
7.9B--13
&.28'-01
1
a.
0.
0.
1 .»lE-23
6.26E-C1
4 .iiE-r;2
i).
0.
l.S7E*0]
7.
0.
1 .49f-04
a.
3 1J W If • I
a.
9.
0.
S. 421*02
a.
0.
3.
n.
7.91E*02
9.
0.
n.
5.03i»02
2.49E-01
0.
a.
3.58E*02
0.
5.34E-07
1.
0.
;» .
0.
1.63E*02
n.
0.
7.41E»01
^.
C.
5.50E»01
a.
0.
0.
0.
n.
3.51E*01
C.
;.
1.87E*01
C.
!).
' .
P.
6.28E-01
4.65E-OJ
0.
C.
1.87E*01
'0.
0.
1 .49E-04
0..
TABLE A-IV-3
(continued)
i n rt n ft Vi o P rt rt n v
luUUu* TiJiiUUU* i
0. 0.
0. P.
0.
6.42E+02
0.
0.
0.
0.
7.91E»02
0.
0.
0.
5.02E*02
4.98E-01
0.
0.
3.58E*02
0.
5.34E-07
0.
C.
C.
0.
1.63E»02
0.
0.
7.41E»01
0.
0.
5.50E»01
0.
0.
0.
(J.
0.
3.51E»01
0.
0.
1.67E»01
0.
P.
C.
0.
6.2BE-01
4.65E-02
9.
0.
1.87E*01
0.
0.
1.49E-04
0.
D.
S.42E*02
0.
P.
G.
0.
7.91£»02
0.
0.
C.
4. 98r»02
4.95E+00
0.
0.
3.58E*P2
0.
5.34E-07
P.
0.
0.
0.
1.63E«02
0.
0.
7.41E*01
0.
C.
5.50E»01
0.
0.
1.
P.
9.
3.51E»01
0.
()y
1.87E*01
0.
0.
0.
0.
6.28E-01
4.65E-92
C.
0.
1. 871*01
0.
0.
1.49E-04
0.
0.
0.
0.
6.42E*02
.0.
0.
0.
0.
7.91E»02
C.
0.
0.
4.55E»02
4.74E*01
P.
0.
3.58E*92
0.
5.34E-97
0.
0.
0.
0.
1.63E*02
0.
0.
7.41E»01
0.
0.
5.50E»01
0.
P.
0.
0.
0.
3.51E»01
P.
0.
l.B7E»01
C.
3.
0.
0.
6.28E-01
4.&5E-02
0.
1.
l.S7E«01
0.
0.
1.49E-04
0.
A-IV-
159
-------
PUR
POWER:
A3115M
A3115
CD1 15^
-31 15
IM115M
IM115
SN115
A3116
^!>1 16
IX116S
IV116
SM16
A3117
:D117H
C3117
IM17H
IN117
SN117*
SM117
C311£
IM18M
I \' 1 1 8
SM11S
10119?*.
;3H9
! M 1 9 >!
IV119
SV119N
SV119
C312P
IM120«
IV129
SN120
CD121
TM121M
m21
S^121K
SV121
S?12i
IN122
SV122
S3122M
Sil£2
TE122
IV123H
IV123
SM23«
SV123
S3!23
TT123H
T'123
IV124
0
0
P
3
P
3
n
0
3
P
0
0
fj
9
8
0
P
9
3
0
c
a
3
p
p
c
0
0
p
9
3
J
P
P
0
p
0
0
p
3
0
9
P
0
9
C
0
a
P
0
0
0
U, SURMUP= 33000. M UO » FLUX= 1 . 1 3N/CM*« 2-SiC
MUCLIDE CONCiNTRATIOMSt
BASIS = MT 0"
0.
0.
1.7 UE-13
4 . 76E-27
4.37E-2R
3.1 5C» 0 n
3.15E-11
C.
6.17E+11
R.
Q.
3.04E+9C
0.
j.
P.
0.
c.
4.98E-08
6.38E+OC
0.
C .
0.
G.47E+C"
C.
P.
C.
P.
3.82E-P.T
6.65E + ."P
0.
3.
0.
6.75E+30
C.
0.
3.
9.79E-1&
1.62E-51
7.25E+OU
P.
7.72E+30
U.
5.1&E-23
2.13E-31
0.
0.
U.
f .56E-J1
8.57E+? n
7.85E-°6
1.40E-"4
0.
i . I 1U. r
0. 0.
0.
8.93E-P5
0.
g.
3.4CE+P3
3.15i-Pl
0.
6.3 7E»00
C.
P.
3.0«E«30
C.
0.
p.
c.
Q.
5.88E-12
&.38E+D3
n.
c.
0.
6.47E+QO
3.
C •
3.
9.
2.3UE-33
S.65E»OP
P."
Q.
P.
6.75E+OP
P.
0.
D.
9 .75i-06
C.
7.25E+PO
0. ,
7.72E»np
'j •
1.19E-42
2.13--P1
J .
r..
0.
2.310-01
3 .97E+00
2.661-06
1.46E-04
0.
P.
0.
0.
c.
3.* OE»00
3.15E-01
0.
6.17E+1Q
9.
0.
3.0.
•;.
2.13L-01
n.
C.
3.
r.
9.25E+03
0.
1 .48E-0*
0.
3RAHS
HEtVY MET»L CHARSED
101. Y «^««
0.
5.
P.
P.
7.
3.HDC+00
3.15E-31
0.
6.1 7E+DO
0.
3.
3.04E»00
P.
P.
P.
0.
Q.
3.
6.38E+03
P.
?.
0.
6«*7i+PO
P.
3.
0.
P.
1.
6.ibE+00
G.
9.
P. /
6. 75E»30
3.
9.
1
3.95E-1/6
0.
7.2bE+OP
n.
7.72E+OP
0.
0.
2.J3C-01
n.
u.
P.
0.
9.20E+OU
0.
1.18E-0*
n.
JIM. T
3.
n.
f .
T.
0.
3 .t3r*PO
J.15E-01
0.
D.i7r+oo
0.
9.
3. ptE+PO
3.
0.
9.
3.
D.
C.
4.38^*03
3.
0.
1 ,
S.47E+00
P.
3.
P.
C.
c .
J.65E+03
3.
0.
0.
&.75"+30
0.
0.
9.
1.B3T-07
D.
7.25-r + PO
3.>
7.72t+t30
9.
3.
2.13r-tfl
i .
l:.
0.
P.
9.2CT+JO
9.
i .ter-p*
(i.
FP's
TO REACTOR
1">TP V enrrt V
1 J J I1 . T
0.
P.
P.
3.
0 •
3.»rE+oo
3.15E-P1
0.
6.1 7E+03
9.
P.
3.P1E+00
P.
C.
9.
0.
P.
P.
G.58E»P.3
P.
o.-
0.
fi .*7E*n 0
3.
p.
n.
0.
9.
6.J5E»CO
P.
0.
0.
6.75E+30
0.
).
3.
1.9RE-09
0.
7 .2 bE*0 0
0.
7.72E*PO
6.
r.
2.13E-P1
P.
0.
0.
C.
9.20E«00
J.
] .4 HE- 14
a.
J U V t' • 1
p.
p.
p.
p.
5.
3.4PE>OP
3.15E-P1
0.
6.17T+00
0.
C.
3.P4E+00
3.
D.
0.
P.
a.
n.
S.38i+00
9.
3 .
3.
6 « 47T* PO
P.
0.
P.
P.
9.
S.65i+C0
9.
P.
•0.
6.75E+00
P.
7.
C.
1.53E-25
0.
7.25i+OP
P.
7.72T+00
a.
r.
2.13E-01
0.
P.
ii.
Q.
9.20E+00
P.
1 .481-04
0.
TABLE A-IV-3
(continued)
i n n ft ft vinpnnn v<
1 U U U U * TJUtUUU* T1
0. P.
0.
p.
3.
0.
3.4PE»00
3.15E-01
0.
6.17E*00
P.
0.
3. 94E*90
3.
P.
3.
P.
0.
U.
6.38E+00
P.
0.
0.
6.47E+00
0.
P.
0.
P.
P.
6.65E+00
0.
0.
0.
6.75£*00
a.
3.
T>.
2.39E-45
n.
7.25E+00
C.
7.72E»00
0.
P.
2.13E-C1
P.
0.
0.
0.
9.20E»03
0.
1.48E-04
0.
0.
0.
p.
c.
3.40-r»00
3.15C-01
P.
6.17C+00
0.
P.
3.04E+00
D.
P.
q.
0.
0.
9.
6.38i»P3
0.
P.
9.
6. 47E+OP
0.
P.
0.
P.
0.
S.S5E+00
P.
0.
0.
6.75C+00
0.
0.
3.
0.
P.
7.25i*00
D.
7. 72E'I*09
C.
0.
2.13E-01
0.
P.
n.
n.
9.2PE+00
9.
1.48E-04
0.
0.
0.
0.
0.
C.
3.40E»00
3.15E-01
0.
6.17E*00
P.
P.
3. 04E+00
0.
C.
0.
0.
P.
P.
6.38E»CO
0.
9.
0.
6.47E»00
0.
P.
D.
0.
0.
6.65E»90
P.
P.
0.
6.75E»PO
P.
0.
0.
0.
0.
7.25E»00
a.
7.72E»00
C.
P.
2.13E-P1
0.
0.
0.
0.
9.20E»00
3.
1.48E-04
0.
160
-------
POWER= 38.40MU. BURVUP= 33COO.MUO» FLUX= I .42E»13\-/C«**2-SiC
* -NUCLIDE coMCEtijTRftTiovs* SR»MS
BASIS = MT O.c HEAVY 1ET4L CHARSED
CHARGE DISCHAR3F 1. Y 1C. Y 50. Y lt>0. Y 503. Y
SM124
S3124H
S3124
Til24
SV125M
SM125
S3125
TE125"
TT125
SM26
S3126M
S9126
TE126
SV127M
SN127
S3127
Til27M
Til27
1127
SM128
S3128M
S3128
Til28
1128
XE128
SN129H
SM29
S3129
Til29H
Til29
1129
XE129H
XE129
SM39
S3130*
S313C
Til30
I130K
1130
XE130
SM31
S3131
TU31H
nisi
1131
XE131M
Xil31
SN132
S3132M
S3132
T-I132
1132
0.
0.
0.
9.
9.
0.
0.
0.
0.
9.
0.
c.
C.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0. >
c.
0*.
u*
9.
0.
0.
0.
.0.
0.
0.
0.
a.
0.
0.
0.
0.
0.
0.
o .
a .
0.
9.
C.
0.
C.
0.
9.
0.
0.
1.21E+T1
0.
3.44E-93
1.33E-01
0.
2.7PE-U7
1.32E»01
3.17E-31
6.37C+1!)
3.44E»01
1.24E-08
1.17E-35
3.4frE>"2
3.
9.
2.76E-15
8.72E-IU
3.1f;E-r.3
6.54E-92
0. .
9.
0.
2.13E»02
0.
0.
9.
0.
0.
6.75E-'»2
6.11E-Ob
3.i.3E-Cl
P.
C.
0.
0.
?.
4.85E+92
0.
3.54-112
0.
0.
9.
2.P3F-45
5.15E-48
1.42E-1"
9.
0.
9.
0.
C.
6.01E-17
1.83E-21
1.21E>31
n.
4.16E-04
1.36E-01
3.
3.82i-13
1.16E+C1
2.83r-01
e.COE*90
3.44C*P1
1.24E-98
1.17E-05
3.47E-92
f:.
a.
1.79E-29
2.73E-01
3.69E-94
6.66i:-ni
3.
0.
0. -
2.13E+32
9.
0.
0.
9.
9.
1.63E-33
1.47E-C6
3.69E-31
r..
7.21E-99
0.
V .
c.
4.85E*02
C.
0.
3.54-112
C.
9.
n.
0.
2.10E-16
7.76C-1&
1.42C-09
D.
a.
T.
7.28E-34
2.21T-35
1.21E+91
0.
1.34E-20
1.37E-91
P.
C.
1.15E+30
2.B1E-32
1.87F+'?!
3.44E*01
1.24E-^8
1.17E-05
3.69E-92
C.
0.
9.
2.27E-19
8.9EE-13
9.40E-D1
0.
o.
3.
2.13E+C2
9.
3.
0.
9.
9.
9.
0.
3.71E-01
9.
1.43EI-J7
C.
0.
n.
4.35E»?2
3.
9.
3.54-112
C.
•J.
9.
0.
C.
C.
1.42E-1S
0.
C.
0.
9.
0.
1.21E+B1
9.
C.
1.37E-01
0. f
9.
4.9.0E-95
9.76E-f7
1.99E+01
3.44E*91
1.24E-08
1 .17E-05
4.64-:-02
a.
9.
3.
0.
0.
9.4/^1-01
9.
9.
9.
2.13E+02
0.
9.
0.
0.
3.
0.
D.
3.71E-01
9.
7.49E-P7
0.
0.
c.
4.85E+32
9.
D.
3.54-112
5.
0.
?.
?.
D.
'J *
1.42E-H9
-/ *
0.
3.
0.
?;
1.21E«-31
9.
9.
1.37E-91
0.
0.
1.96E-10
2.59E-12
J.9?E*D1
3.44E+01
1.21E-08
1.17E-95
5.33E-02
0.
0.
3.
0.
C.
9.4-)E-91
0.
9.
9.
2.13E*02
0.
0.
C.
0.
c.
0.
0.
3.71E-91
C. t
1.51E-06
0.
S.
0,
4.85E+02
li.
c.
3.54-112
6.
0.
D.
0.
0.
9.
1.12E-03
C.
0.
0.
g.
c.
1.21E+01
0.
0.
1.37^-91
0.
9.
1.
C.
1. 99^+01
3.43E»01
1.24E-R8
1.1&E-35
1.54--91
C.
3.
3.
0.
•).
9.40\-91
9.
9.
D.
2.13-*92
9.
9.
P.
3.
1.
B.
D.
3.71E-01
9.
7.5&--3S
a.
9.
c.
4.85£»02
3.'
D.
3.54-112
0.
0.
D.
3.
1.
n
••f m
1.42E-95
a.
3.
1.
:.
9.
FP's TABLE A-IV-3
(continued)
TO REACTOR
1CCO. Y 500.S. Y 13000. YlOOOOO. Y******* Y
1.21E»01
9.
9.
1.37E-91
0.
9.
3.
0.
1.9?E#01
3.42E+91
1.23E-"8
1.16E-05
2.72E-P1
r.
9.
I?.
0.
0.
9.40E-01
0. .
0.
0.
2.13E»02
0.
9.
9.
?.
9.
9.
0.
3.71E-01
9.
1 .5JE-IJ5
3.
.
n.
c.
1 .42i-09
C.
J.
3.
C.
a.
1.21E*01
0.
0.
1.37E-01
0.
0.
n.
0.
1.99E»01
3.21E+01
l.lhE-08
1.09E-05
2.34E»00
n.
0.
9.
0.
9.
9.49E-01
9.
C.
0.
2.13E«02
0.
9.
0.
0.
0.
0.
0.
3.71E-01
0.
1.51E-04
C.
0.
0.
4.85E+02
0.
ft.
3.54-112
C.
C.
0.
0.
D.
n ^
1.42E-09
0.
0.
1.
0.
0.
i.2ir*oi
9.
0.
1.37E-01
9.
9.
0.
0.
1.99E»01
1.72E+01
6.22i-09
5.83E-06
1.72i»01
0.
9.
0.
0.
0.
9.40£-01
D.
0.
9.
2.13E*02
0.
a.
9.
0.
n.
0.
0.
3.70E-01
0.
1. 51E-03
0.
0.
9.
4.85E*02
0.
3.
3.54-112
9.
C.
0.
A
V •
9.
C.
1.42E-09
0.
C.
•).
9.
0.
1.21E*01
0.
0.
1.37E-01
9.
0.
0.
0.
1.99E«01
3.36E-02
1.21E-11
1.14E-9D
3.44E»31
0.
0.
9.
C.
9.
9.-40E-01
9.
0.
0.
2.13E»02
0.
0.
0.
0.
0.
0.
0.
3.56E-01
0.
1.48E-02
0.
n.
0.
4.85E»02
0.
0.
3.54-112
0.
0.
0.
9.
3.
0.
1.42E-09
0.
•?.
9.
C.
0.
A-IV-
161
-------
ptm - su
POWER = 36
XE132
33133
TJ133M
1:133
1133
XE133M
X £133
ES133
S3134
TT134
1134
<£134
; S 1 3 4 M
CS134
3A134
TT135
1135
X£135tf
XET135
:S135M
CS135
3A135H
3A135
1136
X ^136
:si36
3A136
1137
XE137
CS137
3A137M
34137
1138
XE138
CS138
3A138
1139
XT139
C3139
34139
LA 139
XE140
;S140
3A140
LA140
CI140
X£141
CS141
3*141
L4141
£l!41
PR141
1
- 33»000 WASTE DECAY
••40HUf 8UR.NUP= 330 00. «
CHARGt OlbtHAKot
0. C.
0 .
0.
0 .
a.
0.
c .
a.
0 .
G.
0.
0.
G.
0.
0.
a.
0,
0.
0.
0.
0.
0.
c.
c.
0.
0.
0.
0.
c.
G.
0.
o.
0.
0.
3.
0.
a.
0.
0.
0.
0.
0.
0.
0.
a.
c .
a.
0.
3.
0.
0 .
0.
a.
P.
0.
2.31E-SS
T.
C.
1.16E+03
0.
3.
0.
Q. .
U *
7.68E+01
3.81E+01
0.
C.
a.
0.
0.
5.31E+C2
6.32E-5?
5.08E-03
Q.
D.
5 .41E-95
3.07E+?!
0.
n.
1.28E+13
1.-93E-™
5.03E+01
r.
p.
0.
1.27E+T3
0.
0.
C.
0.
1.26E+03
0.
0.
1.23E-03
1 .S5E-"4
1.21E+f3
P.
Q.
0.
0.
1.16E+TO
1.06E»03
,1. Y
6.01E-17
P.
0.
Q.
0.
C.
1.04E-76
1.16E+33
0.
3.
0.
3.
0.
6.48E+C1
5. "lE+Ol
Q.
0.
0.
n.
c.
5.31E+32
n.
5.14E-03
G.
0. (
3 .19E-C9
3.07E+01
0.
0.
1.26E+-03
1.91E-04
&.53E+01
0..
P.
0.
1.27E+03
0.
C.
0.
n.
1.20E+03
3.
0.
S.23E-08
9.38F-09
1.21E+13
0.
0.
C.
C.
2.33E-02
1.07E+03
TIKES CSS£ E-»
NUCLIOE CONCENTR6TIOMS*
BASIS = «T OF
10. Y
6.01E-17
n.
0.
n.
Q e
3.
0.
1.16E+B3
0.
1.
fi«
0.
C.
3.09E+00
1.12E+02
0.
C.
0.
0 =
0.
5.31E+02 ,
0.
6.24E-03
0.
0.
n.
' 3.07E+31
0.
0.
1.02E>03
1.55E-04
3.D2E+02
0.
G.
0.
1.27E+C3
0.
0.
C.
0.
1.2CE*03
0.
0 •
0.
0.
1.21E+03
a.
0.
0.
0.
p.
1.07E»03
3D. I
6.C1E-17
0.
0.
•) .
C.
0.
0.
1.16E+03
0.
D.
0.
n.
0.
4.13E-06
1.15E»02
0.
S.
0.
"• ,
p. f.
5.31E*02
!).
1.12E-02
Q.
0.
P.
3. 57i+01
0.
3.
4.07E+02
&. 14^-05
9.20E+02
0.
C.
3.
1.27E+03
0.
0.
C.
n.
1 .20E>03
3.
3.
0.
C.
1 .21E + 03
0.
1.
0.
c.
0.
1.07E+03
HEAVY ITT
130. Y
fe.OlE-17
a.
0.
0.
03
D.
D.
C1.
D.
0.
1.07E+03
FP's
TABLE A-IV- 3
(continued)
TO READTOK
i*%nn V K n ft ft v » ft n r\h v.nnAAn V.
1500. T.
6.01E-17
0.
C.
0.
0.
0.
0.
1 .16E+33
0.
0.
0.
p.
0.
0.
1.15E+02
0.
a.
0.
0.
D .
5.31E+02
0 .
1.28E-01
0.
0.
P.
3.37E+H1
0.
3.
1.19E-37
1.30E-14
1.33E+03
0.
0 .
1 .
1.27E+03
0.
D.
1.
P.
1.2DE+03
n.
0.
? .
C.
1 .21E + Q3
C.
a.
0.
0.
o.
1.07E+03-
3 if V U « G
6.01E-17
0.
0.
0.
0.
1.
0.
l.lSi+03
a.
c.
n.
p.
0.
0.
1.15E+02
0. '
D.
0.
0.
0.
5.31->02
0.
6.19^-01
0.
G.
0.
3.07i: + 01
0.
a.
0.
D.
1.33£+03
0.
0.
^C .
1.27=1 + 03
n.
0.
0.
0.
1 .20E + 03
3.
0.
0.
0.
1 .21E + 03
0.
C.
•p.
0.
p.
1.07E+03
A U U U W • 1 .
6.Q1E-17
G.
0.
0.
0.
0.
c.
1.16E+03
0.
n.
0.
0.
0.
0.
1.15E+02
0.
0.
0.
Q.
0.
5.39E»02
0.
1.23E*00
0.
0.
0.
3.07E*01
n.
0.
Q.
0.
1.33E*03
0.
C.
0.
1.27E+03
0.
0.
0.
0.
1.20E*03
f.
0.
0.
n.
1.21E»03
0.
0.
c.
0.
0.
1.07E+03
I V W U V U » B '
6.01E-17
0.
0.
0.
c.
3.
0.
1.16E*03
0.
0.
D.
0.
3.
.
1.15E+02
0.
0.
0.
0.
c.
5.19E*02
0.
i.2i:+oi
0.
0.
0.
3.07E»01
C.
Q.
G •
0.
1.33E+03
0.
0.
3.
1.27E+03
0.
0.
0.
I).
1.20E+03
C.
0.
0.
D.
1.21E+03
0.
0.
0.
0.
0.
1.07E+03
6.01E-17
9.
0.
0.
0.
0.
0.
1.16E»03
0.
0.
0.
0.
C.
0.
1»15E*02
0.
Q.
(1.
0.
0.
4.22E*02
0.
1.10E+-02
0.
0.
a.
3.07E*91
3.
0.
0.
0.
l.JSE+IS
0.
0.
0.
1.27E+03
0.
0.
0.
0.
1.2 Ot« 03
0.
0.
n.
0.
1.21E»03
0.
0.
C.
0.
0.
1.07E»03
A-IV-
162
-------
PUR - SU :
POwER= 38,
= 33*000 WASTE OiCAY TIHIS CASE! E-4
.43MUt BURNUP= 33000. HVD. FLUX= 1. *2E*13N/CM** ?-SiC
SUCIIOE CONCENTRATIONS.
ru t. e* fr r\»c«r*i_i»o»»r-
Xil42
CS142
34112
L*142
Cil42
P3142
N3142
X£143
CS143
34143
L»143
CE143
°*143
N3143
.A144
C£144
PS144
N3144
CE145
°*145
M3145
cri4b
D3,J Hf,
^31 4&
C£147
:>*147
NOX47
P<1147
Stl47
C£14B
9*148
N0148
P1148H
P1148
S1148
P*149
V3149
P1149
S1149
M3150
°*I158
S MSiJ
^3151
pilSl
S1151
£J151
PM52
S1152
i J152H
EU152
J3152
»1153
v n *» r\ i» t. uiaL_n«n.',ic.
0. 8.
B. 0.
B.
6.
C.
0.
8.
B.
B.
B.
B.
P.
n.
3.
8.
0.
3.
8.
0.
C.
8.
3.
C.
8.
B.
8.
8.
3.
8.
8.
a.
3.
0.
0.
c.
8.
8.
A
U •
3.
3.
0.
9.
3.
0.
0.
B.
8.
8.
B .
B .
I).
0.
9.
0.
1.0bE»P3
3.5CE-7!
7.14E+RO
0.
3.
0.
0.
2.03E-40
2.29E-P3
8.54E»'?2
8.
2.2fc£*82
9.bbE-B3
7.45E*"2
B.
3.
b.5CE*32
B.
B.
5.9bE*C2
B.
8.
9.51E-T!
1.7flE»32
g.blE*1)!
0.
C.
3.76E*32
1.3JE-C1
1.37E-03
l.lbE*32
3.
B.
2.17E-25
1.2CE*i)l
2. 1 f.E»2?
0.
^.2^>t•o^
o.
2. 22E-4P
7 . i C £ * •' 1
5.3BE-31
Q.
1.54C*"?
0.
l.eoE-ni
2.15E-31
a.
1y
. T
U.
3.
D.
8.
l.CbC*03
P.
7.14E*BO
0.
B.
0.
B.
8.
2.22E-B7
8.54E*Q2
fl.
1.4bE*B2
S.19E-33
*.27E*82
0.
0.
S.50E+02
1.
C.
5.96E»n2
P. (
B.
1.0bE-09
1.5b£>32
1 . lftE*"2
0.
C.
3.7bE*rl2
b.52£-83
6.73E-C5
l.lbE+02
D.
U.
C.
1.2bE*31
2.16£*B2
0.
3.3PE*B2
0.
V •
7.77£«31
B» 10?~Q1
C .
T.54E*P2
B.
1.75E-BI
J.11C-01
B.
3ASIS = IT Or
1 ft Y en *
1 U • T
n.
B.
c.
0.
1.06E+03
3.
7.14E»no
3.
3.
U.
*^J)
1.
C.
8.54E*32
n.
4.79E-82
2.03!>8b
9.73E+P2
0.
0.
b.5BE*C2 ,
0.
C.
b.9bE»B2
B.
3.
0.
1. 44E*P1
2.&QE+02
0.
n.
3.7bE*12
B.
0.
1.16E*02
0.
n.
0.
1.2bE»01
2.1bC*02
fl«
3.3fiE»02
0.
t .
7.?3E*31
t. 1SE*T' rt
U.
1.54E*32
C.
1.B4E-11
2.S9E-01
0.
U.
3.
C.
0.
1.U6E+83
C.
7.14E*60
n.
c.
e.
0.
c.
•3.
8.54E*02
C.
1.5bE-17
6.bO£-22
9.74E*02
C.
e. '
, £>.58E»82
G.
(>.
5.9bE*B2
n.
3.
B.
3.b5E-84
2.74E*82
9.
P..
3.76E*32
n.
c .
l.lbE*02
3.
C.
0.
1.26£*31
2.16£«32
C.
3.38E»82
I'.
0 .
5.26E»81
2.59£»31
r..
1.54£»B2
n.
1.B3E-P2
2.57E-01
J.
HEAVY 1iT
Inn - Y
MU • T
B.
B.
B.
C.
1.0fct>33
8.
7.14E»03
B.
0.
.
TABLE A-IV-3
(continued)
innnn Yt n n n n i Y
1 1' il U U • 'JUUUUu* I
B. 3.
3. B.
0.
0.
1. B6E*03
n
7.14E»00
0.
B.
0.
3.
8.
B.
8.54E»02
0.
3.
0.
9.74E»02
B.
C.
b.5BE*02
C.
8.
5.96E*02
B.
B.
B.
B.
2.74E«B2
a.
8.
3.76E»02
0.
P.
1.16E*02
B.
8.
8.
1.2bE*01
2.1bE*02>
8.
3.38E»02
0.
8.
1.94E-33
7.8bE»Bl
0.
1.54E*02
8.
P.
2.59E-01
0.
a.
B.
1. Bbi*63
3.
7.14E»00
0.
3.
Q.
0.
8.
8.
8.54E*82
n.
3.
0.
9.74E»02
B.
8.
b.50E»C2
0.
3.
5.96E»02
3.
B.
0.
B.
2.74E«02
3.
B.
3.76E»02
6.
B.
1.16C*02
B.
B.
1,
1.26:«B1
2.16:«B2
8.
3.3SL*02
3.
B.
0.
7.85£»B1
B.
1.54£»B2
a;
0.
2.59E-B1
0.
0.
8.
0.
B.
l.B6E»83
•o.
7.14E»80
0.
3.
0.
0.
C.
0.
8.54E*B2
B.
B.
0.
9.74E»32
3.
0.
6.53E»B2
0.
0.
5.9bE»82
0.
0.
0.
0.
2.74E»02
C.
0.
3.7bE*02
0.
0.
1.16E»82
0.
0.
0.
1.2bE»01
2.1bE»02
a.
3.3SE»02
0.
8.
0.
7.85E»fll
C.
1.54E»B2
0.
0.
2.59E-01
0.
A-IV-
163
-------
PWR - BU =
POWER= 38
S1153
EJ153
33153
P1154
SMS*
CLJ151
3315«
SHI 55
EJ155
33155
S'llSfe
5J156
30156
S1157
EU157
33157
i J15B
33158
5U159
33159
T5159
EJ160
53160
T 5 1 A F
' 3 1 o v
3Y160
33161
T31£l
OY161
33162
T3162M
T3162
3Y162
T3163M
T3163
3Y163
T3164
3Y16*
3Y165*
3Y165
4C165
3YI66
H1166H
HC166
:*i66
TOTAL
= 33iOOO WASTE DECAY TIMES CASi
.*OMU. BURNUP= 33000 .HUD. » FLUX= 1.42E+13N/
NUCLIDE CONC5
CHARGE DISCHAKBE:
0. 8.25E-29
c .
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
c.
c .
0.
0.
0 .
0.
0 .
c.
n.
c .
0. •
•
0.
0.
0.
0.
3 .
0 .
3.
0.
0 .
0.
3.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
1.3PE+52
3.63E-"3
D.
fr.2P.E+ni
3.75E+1!
I.SL>F + ?I)
0.
5.75E+13
1.35E+00
0.
6.35E-n*
8.33E+91
C.
2. l*E-?9
9.99E-02
G.
2.62E+01
0.
2.*7E-76
4.13E+30
3.
2.12T+3"
5.07E-31
0.
1.C2E-10
s.teE-M
0.
0.
c.
1.60E-OJ
0.
n.
3.84E-11
3.71E-62
1.56E-01
0.
!).
l.lZE-fll
5.21E-21
2.2*E-3*
2.5 .
4.5.UE-01
u .
n .
S.S'iE-Ol
0.
i.a&E-oi
) •
c.
1.12E-01
3.
1 .?^E-OA
0.
2.S4E-02
3.1 1E-03
2.9'ir+O*
D J U U . 1
0.
1.38E+02
P.
7.
6.2CE+01
0.
3.9*1+01
0.
0.
7.10E+00
r.-
r. .
S.33E+01
0.
c.
9.99i-02
0.
2.62E+01
0.
a.
*.13i+CD
0.
2.12E+00
0 .
5.315-01
0.
0.
5.68E-01
0.
0.
0.
* .60E-01
C.
? .
3. 8*1-01
a.
1.06E-01
0.
0.
1.12E-01
P.
1.25E-P5
n.
2.655-02
3.315-03
TABLE A-IV-3
(continued)
1 n n n n v
1 U U U U • T
a.
1.38E+02
0.
0.
6.2CE+01
0.
3.9*E»01
0.
0.
7.10E+00
0.
0.
6.33E+01
3.
C.
9.99E-02
C.
2.S2E+01
0.
0.
*• 13E*OQ
0.
2.12E+OP
o.
5.31E-01
0. •
0.
5.S8E-01
U.
0.
0.
*.60E-01
9.
0.
3.8*E-01
0.
1. OfrE-01
0.
0.
1.12E-01
0.
6.9»E-P7
0.
2.65E-02
3.11E-03
i n n n n n v
Il'UUUU* 1
0.
i.38i+02
0.
0.
6.20E+01
0.
3.94E+01
0.
0.
7.10E+00
0.
C.
8.33E+01
0.
0.
9.99E-02
0.
2.62E+01
0.
0.
*. 13E+00
0.
2.12E+00
P.
5.31E-01
0.
C.
5.68E-31
D.
0.
0.
4.60E-01
0.
0.
3.84E-01
0.
1.06E-01
C.
0.
•1.12E-01
0.
0.
0.
2.65E-P2
3.1U-03
n.
1.38E+02
C.
0.
6.20E+01
0.
3.9*E»01
•o.
0.
7.1CE+00
0.
C.
8.33E+C1
0.
0.
9.99E-02
0.
2.62E+01
0.'
0.
4.13E+30
0.
2.12E+00
0.
5.31E-61
0.
0.
5.68E-01
0.
0.
0.
4.60E-01
0.
0.
3.84E-01
0.
1.06E-01
0.
9.
1.12E-01
0.
C.
0.
2.65E-02
3.11E-33
2.90E+0*
A-IV-
164
-------
PUR - BU = 33.000 UASTE DECAY Tints CASE £-4
POWERS 38.40MW- BURMUP= J3000.HWO, FLUX= 1.42E»13N/CN**2-SIC
Clad
TABLE A-IV-3
(continued)
NUCLIDE THERMAL POWER. UATTS
BASIS = MT OF HEAVY «£T>L CH4R3ED TO REACTOR
CHARGE DISCHARSt
H 1
H Z
H 3
H *
HC 3
HE 4
H: 6
LI 6
LI 7
LI 8
3E B
BE 9
31 10
3£ 11
3 10
9 11
3 12
: 12
: is
C 14
N 13
M 14
.1 15
N 16
0 16
3 17
0 18
0 19
r 19
f 20
Ni 20
Ni 21
Yi 22
N; 23
NA 22
MA 23
Nt 24
MA 25
IS 24
KG 25
HE 26
IS 27
A'_ 27
AL. 28
AL 29
SI 28
51 29
SI 30
SI 31
P 31
P 32
P 33
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
C.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
b.saE-is
0.
0.
0.
0.
0.
0.
0.
u.
0.
0.
0. '
0.
0.
0.
0.
0.
5.72E-07
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0»
0.
0.
0.
0.
1.35E-9&
0.
0.
0.
0.
0..
0.
0.
0.
0.
0.
0.
0.
0.
?.69E-36
S.SIE-IS
1. Y
0.
9.
6.32E-08
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
9.
0.
5.72E-07
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
a.
9.
o.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
C.
;.
0.
0.
0.
3.84E-11)
2.22E-07
10. r
0.
9.
3.81E-08
0.
9.
0.
!>.
0.
0.
0.
0.
0.
0.
0.
9.
9.
0.
0.
0.
5.72E-07
0.
0.
0.
0.
1.
0.
0.
0.
•J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
n.
0.
3.
-------
PUR - 8U = 33»000 VASTE DECAY TIMES CASE E-4
POUERs 36.40nu« BUR«IUP= 339UO.HUOf FLUX^: 1.4?E»13N/C«**2-SEC
Clad
NUCLIDE THERMAL PO^EI. WATTS
BASIS = IT 0? HEAVY .ItTIL CHARGED TO REACTOR
r LI it B fir nTf^uAo^r
P 34
S 32
S 33
S 34
S 35
S 36
S 37
CL 35
CL 36
CL 37
CL 38
AR 36
AR 37
AR 38
AR 39
AR 4C
A3 41
< 39
K 40
K 41
K 42
< 43
< 44
CA 40
CA 41
CA 42
CA 43
CA 44
CA 45
CA 46
:A 47
CA 48
CA 49
SC 45
SC 46
s: 47
S: 48
3C 49
SC 50
TI 46
TI 47
TI 43
TI 49
TI 50
TI 51
V 49
V 50
V 51
V 52
V 53
V 54
CR 50
%>nMr\ ww ui ,s^n «r\ wu
9. 0.
0.
0.
9.
0.
0.
c.
3.
0.
0.
0.
G.
0.
0.
9.
0.
0.
0.
0.
0.
9.
0.
0.
0.
9.
0.
0 »
0.
0.
0..
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
3.
9.
6.64E-96
0.
9.
0.
9.93E-12
0.
C.
9.
6.93E-16
3.
1.12E-18
0.
9.
9.
C.
9.
1.52-118
3.S1E-S8
0.
0.
0.
0.
0.
0.
1.81E-06
0.
1.46E-19
0.
0.
0.
2.70E-03
6.25E-19
2.43E-33
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
9.
9.
0.
C.
0.
1v
. T
0.
3.
0.
0.
1.57E-06
i).
C.
9.
9.03E-12
•a.
0.
0.
1.86E-17
0.
1.12E-18
0.
0.
0.
0.
0.
3.
0.
0.
0.
9.
3.
0.
0.
8.40E-07
0.
1.97E-31
0.
0.
0.
5.98E-04
1.59E-31
0.
0.
0.
0.
3.
0.
0.
9.
0.
0.
0.
9.
3.
0.
9.
0.
« A y
10. T
0.
9.
0.
0.
8.94E-18
0.
0.
C.
9.03E-12
0.
0.
3.
0.
0.
1.10E-18
P.
D.
0.
0.
0.
• 0.
9.
9.
9.
0.
9.
9.
9.
8.44E-13
9.
0.
0.
0.
3.
9.57E-16
0.
?.
0.
0.
c.
c.
0.
0.
.0.
n.
9.
D.
0.
C.
'0.
3.
0.
en y
DU . T
0.
0.
9.
0.
0.
C.
0.
0.
9.03E-12
0.
n.
9.
0.
0.
9.90E-19
9.
9.
0.
D.
3.
9.
0.
0.
9.
9.
0.
9.
0.
9.
(?«
9.
9.
0.
0.
9.
0.
0.
0.
9.
0.
5 .
C.
0.
9.
0.
C.
n.
0.
9.
e.
c.
0.
inn v
1 u u • T
0.
0.
0.
9.
0.
n.
'9.
0.
9.03E-12
0.
9.
0.
0.
0.
8.70E-19
a.
0.
9.
3.
.9.
0.
0.
0.
9.
0.
9.
9.
0.
0.
o.
0.
0.
o./
0.
9.
0.
0.
3.
0.
9.
9.
0.
9.
0.
0.
0.
0.
9.
0.
9.
0.
0.
en n y
D U ' > • T
0.
9.
S.
?.
3.
9.
0.
0.
9.92--12
0.
9.
3.
9.
0.
3.10E-19
0.
9.
3.
3.
9.
9.
J.
5.
9.
0.
0.
3.
3.
3.
0.
3.
0.
3.
3.
3.
G.
9.
0.
0.
3.
G. .
9.
9.
0.
9.
9.
3.
9.
0.
9.
o.
0.
i ft n ft v en n n • V
1UUU* T 3CUU* T
0. 9.
9.
9.
9.
9.
0.
9.
a.
9.01E-12
0.
0.
9.
9.
9.
8.56E-20
0.
0.
9.
9.
0.
9.
9.
0.
9.
C.
9'.
9.
C.
9.
9.
9.
W •
P.
0.
9.
P.
0.
9.
3.
3.
0.
f> .
0.
p.
0.
0.
0.
9.
0.
9.
9.
0.
0.
0.
0.
0.
0.
n.
9.
8.93C-12
0.
3.
3.
?.
0.
2.85E-24
0.
0.
0.
0.
3.
0.
C.
0.
0.
0.
0.
3.
3.
9.
0.
9.
9.
'9.
B .
0.
0.
9.
0.
3.
9.
9.
0.
P.
9.
0.
a.
c.
9.
c.
9.
0.
0.
IDV'JVo T1UUUQO* T
0. 0.
0.
0.
f.
0.
0.
0.
0.
8.83E-12
9.
0.
9.
9.
0.
7.23E-50
0.
0.
C.
9.
9.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
n.
0.
0.
3.
0.
0.
9.
9.
0.
0.
0.
0.
0.
0.
c.
0.
9.
0.
7.22E-12
0.
0.
0.
D.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0.
0.
0.
'3.
0.
0.
0.
e.
0.
c.
3.
0.
0.
0.
0.
0."
0.
0.
0.
c.
9.
0.
9.65E-13
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
P.'-
0.
0.
0.
0.
o.
0.
0.
0.
p.
0.
0.
0.
p.
p.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
9.
0.
0.
-------
PUR - BU = 33*000 WASTE D ETC AY TIH£S CASE E-»
POVCRs 38.43HHt 6URVUP= 33000.KUD* FLUXr 1.42E*13N/CJ1«* 2-SEC
Clad
TABLE A-IV-3
(continued)
NUCLIDE THERMAL POJCR • WATTS
BASIS = IT OF HEAVY lETtL CHARGED TO REACTOR
CHARGE OISCHAR3E
ca Si
C* 52
CS 53
C* 54
:s 55
IN 54
IN 55
1M 56
*N 57
*M 58
Fi 5*
FE 55
Ft 56
Fi 5T
Fi 58
FT 59
CD 58H
CO 58
CO 59
CD 6PN
CO 60
CO 61
CO 62
NI 58
NI 59
NI 60
MI 61
NI 62
NI 63
VI 64
MI 65
CU 62
:U 63
CJ 64
C'J 65
CJ 66
ZN 63
ZN 64
ZN 65
Z« 66
ZN 67
ZN 68
ZN 69*
ZN 6?
ZN 70
ZN 71«
ZN 71
21 69
5A 7P
S* 71
St 70
SR 88
0.
0.
P.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
b.
0.
0.
0.
0.
0.
">!
0.
0.
a.
0.
0.
0.
0.
0.
0.
u.
0.
0.
0.
0.
0.
0.
e.
3.
a.
0.
9.
0.
0.
0.
0.
0.
2.50E-31
0.
0.
0.
0.
8.26E-f»l
0.
0.
0.
0.
Q.
1.00E»00
0.
0.
0.
3.63E-02
0.
6.58E»00
0.
0.
5.19E»01
0.
0.
0.
0.
0.
0.
0.
1.46E-92
0.
0.
0.
0.
1.01-103
0.
0.
9.
0.
1.69P-P4
0.
0.
0.
0.
0.
0.
u.
0.
0.
0.
0.
e.
0.
1. Y
2.63E-Q3
C.
0.
0.
0.
5.44E-01
0.
0.
0.
1.
0.
8.76E-01
0.
a.
0.
2.18E-03
0.
1.11E+00
0.
9.
4.8t:»01
n .
3,,
3.
0. ;
0.
.•).
1.45E-02
0.
9.
3.
9.
C.
0.
0.
0.
0.
1.01E-04
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
1C. Y
0.
e.
0.
0.
0.
2.95E-04
C.
C.
9.
0.
Q.
7.97E-02
0.
0.
3.
0.
9.
1.47E-14
0.
0.
1.48E*01
0.
P.
0.
0.
0.
0.
0.
1.36E-02
0.
0.
0.
0.
0.
0.
9.
0.
0.
9.22E-09
0.
0.
0.
0.
c.
0.
0.
0.
9.
0.
0.
0.
0.
50. Y
P.
0.
0.
0.
0.
6.98E-19
0.
0.
0.
0.
0.
1.86E-06
0.
0.
0.
0.
p.
0.
r.
9.
7.61E-02
0.
3.
0.
D.
0.
0.
a.
l.OOE-02
0.
0.
0.
0.
3.
0.
9.
0.
0.
1.03E-26
1.
0.
0.
0.
0.
0.
c.
?.
0.
3.
".
3.
0.
100. Y
0.
9.
0.
9.
9.
6.43E-37
0.
0.
0.
0.
9.
3.02E-12
9.
0.
0.
0.
0.
a.
?.
.0.
1.05E-04
0.
0.
0.
0.
0.
0.
9.
6.S8E-03
0.
0.
0.
0.
c.
0.
0.
0.
9.
0.
9.
0.
0.
1.
0.
0.
0.
0.
9.
C.
0.
0.
0.
500. Y
0.
9.
C.
3.
9.
0.
0.
9.
0.
D.
D.
S.
9.
C.
9.
3.
3.
9.
0.
0.
9.
0.
0.
3.
0.
0.
0.
0.
3.38t-04
0.
S.
a.
0.
9.
9.
0.
3.
9.
3.
0.
9.
?.
0.
0.
0.
0.
0.
9.
D.
9.
0.
9.
1000. r
0.
9.
c.
0.
3.
0.
0.
0.
9.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
9.
7.B1E-06
0.
0.
0.
0.
9.
0.
0.
0.
c.
0.
0.
0.
0.
0.
c.
9.
0.
0.
9.
0.
9.
0.
e.
5000. Y
0.
0.
0.
3.
!».
0.
0.
0-
0.
9.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
6.33C-19
0.
0.
0.
9.
0.
0.
4.
3.
0.
9.
9.
0.
9.
P.
0.
0.
?.
9.
9.
C.
9.
9.
9.
10000. Y100000.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2.75F>35
0.
C.
0.
0.
9.
0.
0.
0.
9.
0.
0.
0.
9.
9.
0.
0.
0.
p.
0.
9.
0.
0.
0.
0*
0.
"0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
9.
Q.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
9.
).
J.
0.
0.
0.
0.
Y****
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
o:
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
A-IV-
167
-------
PUR - BU = 33,300 WASTE DECAY
POUER= 38.40KU, b(JRNUP= 330"O.H
SR 89
S* 9"
S* 91
Y 90H
Y 99
Y 91H
Y 91
ZR 90
Z* 91
Z* 92
Z^ 93
ZH 94
ZR 95
Z* 96
Y3 92
N3 93H
M3 93
Y3 94
\3 95
N3 96
M3 97
13 92
.13 53
13 93H
ID 94
13 95
13 96
10 97
13 98
.10 99
131CO
13101
TC 99«1
TC 99
TC1C1
3J101
Z3113H
C3113
C3115M
C3115
CD119'<
:oii9
C3121
IN113
I*119H
IM119
IV121N
IV121
SM114
S3
0.
7.09E-1fl
5.89E-07
0.
5.57E-97
9.B3E*00
1.06E-59
0.
9.
&.38E-06
0.
0.
0.
0.
C.
0.
2.56E-20
0.
0.
1.04E-20
3.53E-96
3.
0.
0.
0.
0.
3.96E-31
0.
0.
9.
0.
0.
0.
0.
0.
D.
0.
9.
6.61E-94
1y
• T
3.47E-04
1.18E-07
0.
0.
5.32E-07
9.
1.70E-03
Q.
u •
0.
2.35E-06
0.
8.01E-01
3.
2.89E-13
7.68E-07
C.
5. 57-1-37
1 »53i»00
0.
a.
0.
6.38E-06
0.
0.
0. f
0.
9.
0.
5.17E-40
E.
0.
2 «lli-4P
3.53i-06
0.
9.
n.
9.
c.
0.
u.
c.
9.
9.
0.
0.
9.
0.
9.
0.
0.
7.81E-08
TIMIS CAST E-»
UD, FLUX= 1.42E*13Ni/CM«*2-S£C
NUCLIDI THERMAL POJER
BASIS = MT Oc
1 0« Y
3.23E-23
9.48E-03
C.
Q.
4.26E-07
0.
2.52E-20
9.
0.
0.
2.35E-06
0.
4.77E-16
0.
;.
3.31E-Ot
0.
5.57E-97
9.31E-16
0.
C.
0.
6.37E-96
9.
0.
C.
C.
0.
0.
C.
9.
9.
0.
3.53E-96
0.
9.
0.
0.
3.
0.
C.
0.
.0.
e.
c.
9.
9.
C.
C.
0.
t.
0.
J ' • 1
3.
3.53E-08
0.
C.
1.59E-97
0.
3.
9.
0.
0.
2.35E-96
0.
•3.
0.
9.
7.11E-96
C.
5.57E-07
9.
0.
C « (
0.
6.35E-06
0.
0.
0.
9.
9.
9.
;.
Q.
r.
1.
3.53E-06
9.
0.
C.
9.
3.
E.
?.
6.
0.
9.
3.
I).
9.
C.
9.
0.
0.
0.
Inn v
. J • T
n.
1.03E-08
9.
0.
1.52E-08
0.
C.
0.
9.
0.
2.35E-06
9.
0.
3.
0.
7.&<»E-06
0.
5.57E-07
0.
,"•
0.
0.
6.33E-06
0.
0.
9.
C.
9.
9.
P.
0.
C.
o./
3.53E-96
9.
9.
3.
0.
9.
0.
0.
9.
C.
0.
C.
0.
9.
0.
0.
•?•
0.
0.
> LATTS
a CHARGED
con v
D 1* U • T
9.
5.33E-13
0.
0.
2. 40^-12
9.
9.
9.
0.
0.
2.35E-96
0.
n.
9.
9.
7.66E-96
n.
5.56E-07
9.
D.
9.
3.
S.14T-C6
0.
9.
9.
a.
0.
9.
9.
?.
D.
D.
3.53E-06
9.
9.
e.
?.
c •
3.
0.
0.
0.
P.
9.
0.
0.
0.
0.
!>.
9.
0.
Clad
TO REALTOR
1 1 ii n V c ft n ft v
1 J U U* T
0.
2.34E-1E
9.
0.
1.S5E-17
9.
0.
9.
0.
0.
2.35E-06
0.
0.
9.
0.
7.63E-06
9.
5.56E-07
9.
C.
0.
9.
5.91E-06
9.
0.
9.
0.
0.
C.
9.
9.
0.
0.
3.S2E-06
9.
0.
5.
9.
9.
0.
0.
S.
0.
9.
9.
0.
0.
e.
9.
c.
0.
9.
;j i' u u • i
0.
9.
0.
C.
9.
0.
0.
0.
C.
0.
2.34E-06
0.
9.
0.
0.
7.43E-OS
0.
5.56E-07
r.
0.
0.
9.
4.34:-06
9.
9.
o.
n.
0.
0.
0.
0.
9.
0.
3.48E-06
0.
9.
C.
0.
0.
9.
A
r.
0.
c.
9.
n.
C.
n.
Of
a*.
9.
0.
TABLE A-IV-3
(continued)
innnn vinnnnn Vi
1 P U "U • TJUUUUU* I '
n. g.
0.
c.
0.
9.
0.
C.
0.
0.
0.
2.34E-06
9.
0.
0.
9,
7.25E-06
C.
5.56E-07
9.
9.
9.
0.
2.95E-96
0.
0.
0.
0.
e.
0.
c.
0.
0.
0.
3.42E-96
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
Q.
0.
0.
0.
9.
0.-
n.
9.
c.
0.
0.
0.
2.24E-06
C.
9.
0.
P.
6.61E-06
9.
5.55E-07
0.
0.
0.
9.
2.88L-09
0.
0.
0.
0.
P.
0.
0.
0.
0.
0.
2.54t-96
0.
0.
0.
0.
0.
c.
t.
3.
0.
0.
0.
0.
9.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
9.
9.
0.
e.
0.
1.48E-06
0.
0.
9.
0.
4.36E-06
0.
5.38E-97
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.JOE-D7
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
168
-------
PUR - BU = 33tOOO
38.43MV»
WASTE DECAY TIKES CASE £-»
SSOOO. MUOt FLUX= 1.42E»13N/CH*i2-SiC
Clad
TABLE A-IV-3
(continued)
NUCLIDE THERMAL POKER , WATTS
BASIS = IT OF HEAVY ISTkL. C44RGEO TO REACTOR
SMUT
SN118
SM119H
SN119
SN120
SN121H
SN121
SV122
SM123M
SN123
SN124
SN125M
5*125
53121
S3123
S3124M
S3124
53125
S3126M
S3126
T-124
TL125K
TE12b
Til2&
T4180
T4181
TA162M
TA182
U180
U181
.'182
W183H
U183
U184
H185M
W185
U186
W187
TOTAL
CHARGE
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'o.
0.
0.
0.
0.
9.
3.
0.
0.
0.
0.
0.
0.
DISCHARGE
0.
0.
1.82E-03
0.
0.
6.63E-95
4.14E-50
0.
0.
1.43E-04
0.
0.
8.02E-H9
0.
C.
0.
1.15E-03
3.26E-02
0.
1.24E-98
P«
2.31E-93
C.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.61E+01
1. Y
n.
9.
1.10E-03
(I.
0.
6.60ET-05
0.
9.
0^
5.20^-05
0.
0.
1.14E-14
0.
0.
n .
1.40E-04
2.67E-02
0.
4.97E-13
0.
2.51E-03
0.
Q.
9.
G.
9.
0.
0.
3.
0.
0.
C.
9.
7.
0.
0.
0.
5.35E+01
10. Y
C.
0.
1.21E-07
0.
0.
6.08E-05
0.
9.
C.
6.30E-13
n.
0.
0.
0.
0.
?.
4.48E-21
2.84E-03
0.
0.
0.
2.50E-04
0.
G.
0.
0.
0.
0.
9.
9.
C.
0.
9.
0.
C.
".
9.
3.
1.49E»91
50. Y
C.
0.
3.07E-25
n.
9.
4.22E-05
0.
0.
0.
c.
0.
9.
9.
0.
0.
0.
0.
9.86E-06
".
'.'
f).C
3.66E-09
0.
9".
C.
0.
9.
0.
9.
0.
0.
9.
9.
9.
C.
9.
a.
c.
8.621-02
100. Y
0.
e.
0.
c.
9.
2.68E-05
0.
0.
0.
C.
9.
0.
0.
0.
9.
C.
0.
2.62E-13
a.
,c.
0.
2.30C-14
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
9.
J.
9.
9.
9.
7.93E-03
500. Y
0.
0.
0.'
9.
'C. '
6.97r-07
9.
9.
3,
}.
0.
0.
0.
0.
0.
3.
9.
0.
0.
0.
9.
0.
9.
3.
9.
*>.
0.
D.
9.
9.
9.
0.
3.
C.
C.
9.
9.
9.
3. 59^-04
moo. Y
0.
c.
9.
0.
C.
7.2BE-09
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
3.
0.
9.
9.
of.
9.
3.
0.
C.
C.
0.
».
0.
0.
9.
0.
0.
2.33E-05
5000. Y
D.
0.
9.
n.
9.
1.04t-?»
0.
9.
0.
9.
0.
9.
0.
2.
0.
0.
0.
0.
9.
3.
?..
0.
9.
q.
0.
u.
a.
q.
9.
3.
C.
9.
9.
9.
0.
9.
9.
3.
1.85i-05
IP
0.
0.
C.
0.
0.
l.i
0.
0.
0.
9.
C.
c.
0.
q.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
Q.
0.
C.
c.
0.
0.
0.
0.
0.
0.
c.
0.
1.
1P008. YlOOOOO. Y««*»««* Y
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
5.
P.
9.
0.
0.
0.
0.
0.
0.
0.
p.
0.
9.
0.
0.
0.
0.
0.
0.
0.
.67E-05 1.20E-95 6.51E-06
A-IV-
169
-------
HE 4
Ti.207
TL208
TL209
P3206
P32C7
P3208
33209
33210
= 3211
P3212
PB214
31209
31210
31211
31212
31213
31214
=>0210
P0211
P0212
P3213
PD214
P0215
"3216
PD218
4T217
3M222
-R221
34223
H4224
34225
.3A226
34228
4:225
A:227
AC228
TH227
TH228
TH229
TH233
TH231
T-1232
TH233
TH234
PA231
PA232
PA233
PA234H
CHARGE
0.
0.
0.
0.
0.
0,
Q»
n.
o.
o.
o.
o.
n
o.
0.
0.
0.
0 .
0 .
0.
c.
0 .
0 .
0.
0..
0.
0.
D.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0 .
0 .
0.
0.
0.
c.
0.
0.
0.
G.
Q.
0.
3,OOC HASTE DECAY TIKES CASE E-4
ID, BUR\UP= 33CDO.MWD. FLUX= 1. 42E* 13N/CM**2-SiC
MUCLIOE THERMAL POnER. HATTS
DISCHARGF
0.
7.86E-13
5.56T-06
1.44E-12
0.
0.
0.
4.59E-12
3.25E-2?
8.72ET-11
l.OPE-06
Q c04E-2 "
0.
b.SSE-22
I.'JJE-I"
1.23E-15
2.45E-11
5.17E-19
2.41E-22
3.4GE-12
2.41E-15
1.94E-1 't
1.6SE-18
1.14E-99
2.91E-05
1.34E-1R
1.67E-10
1.06E-09
2.7<'E-05
1.21E-18
1.46E-1?
9.1?E-13
9.B6E-11
2.13E-H5
2.64E-12
1.12E-18
2.33E-17
1.37E-1"
1.41E-11
1.6CE-15
9.19E-1"
2.3tE-"5
1.23E-10
2.41E-15
6.51E-0&
7.56E-14
G.
1.07E-34
1. TIE-IS
5.46E-47
1.17E-14
1.55E-03
1. Y
0.
1.1 HE-I o
5.1CE-06
1.46E-12
0.
0.
0.
4.68E-12
6.4fi!^-23
1.23E-10
B.72E-07
1.41E-19
Oo
4 .11E-21
1.43E-59
1 . O&E-Db
2.EPE-11
8.C5E-19
2.23ET-2C1
4.66E-12
2.C6.E-05
1 .58E-1 0
2 .64E-1B
1.61E-09
2 « 41)T-^5
2.10E-18
1.71E-10
1.4SE-09
2.31i-05
1.88E-18
1.51E-10
1.20E-12
1.27E-09
2.081-05
2.68E-12
1.64E-18
3.43E-17
1.40E-10
1.84E-11
2.36E-15
1 .24E-09
1 .98E-G5
1 .23E-10
2.41E-1E
3.26E-08
7.57E-14
n.
1.U9E-06
1.72E-08
3.
1.18E-Q4
1.58E-Q5
BASIS = «T OF
1C. Y "
0.
s.iiE-in
5.38E-07
2.08E-12
D»
C.
C1.
6.S4E-12
2.52E-21
5.67E-13
9.21E-08
9.48E-19
0.
l.bOE-iy
6.a°E-r°
1.1 IE- 06
3.55E-11
5.* 2E-1 ft
1.91E-18
2.25E-11
2.18E-J6 .
2.80E-1 o
1.77E-17
7.42E.-05
2.63E-06
1.11E-17
2.4 7.L-1 0
6.86E-09
2.43E-C6
1.27E-17
2.15E-10
5.55E-12
5.B9E-09
2.20E-C6
3.SOE-12
1.10E-17
1.62E-16
1.98E-10
8.54E-11
1.11E-14
5.75C- 09
2.10E-Cb
1 • 74E-1 1
2.4) E-lb
3.26E^U8
7.77E-14
Q.
5.35E-07
1.74E-18
0.
1.32E-04
7.74E-06
ou . i
0.
1 .43E-09
2.92E-07
2. 04E-11
S .
n .
0.
6.54E-11
3.94E-20
1.591-09
4. 9SE-OB
4.5Qi-18
n .
2.50E-1R
1 .S5i-03
&.04E-07
3.501-10
2.57E-17
2.99E-17
f.2vfiE-ll
1.18E-06
2.76E-09
6.41E-17
2.08E-08
1.42E-06
6.C.8E-17
2.38E-09
1.92C-38
1.32E-0&
&.J1E-17
2.11E-09
1.55E-11
1 .65E-08
1.19E-06
3.74E-11
5.22E-17
2.75E-16
1.95E-09
2.391-10
1 .89i-l 4
1 .61E-08
1.14E-06
1.72r-fl9
2.41i-15
3.27E-03
9.03E-14
0.
5.3b:-07
1.85E-08
0.
1 .94E-H4
7.74E-06
HEAVY IE!
C
1
1
9
0
0
0
2
1
2
3
6
2
&
2
3
1
5
8
7
7
1
1
2
8
1
1
2
8
1
Q
1
2
7
1
1
3
8
3
2
2
7
7
2
3
1
3
b
1
0
2
7
1 U II . I
«
«31E>35
.8JE>07
« 15E>11
a
.
B
.•93E-10
.07E-19
.01E-09
.PflE-OS
.84E-18
.
.81E-1P
.34E-3S
.73C-07
.56E-39
.C5E-17
.14E-17
.96E-11
.29E-&7
.24E-08
.S5E-1S
.S3E-08
.3CE-07
.31E-1&
.07E-08
.43E-7F.
.15E-07
. 1 8E-1 6
.47E-0?
. 9^7C - 1 1
.C9E-08
.36E-07
.67E-10
."3E-16
.59E-15
.74E-09
.33E-10
. 4 7E-1 4
.04E-OB
.04E-07
.E.9E-09
.4 JE-15
.79E-08
.19E-13
•
.35E-57
.58E-08
.
.S7E-04
.74E-OS
1L CH4RGEO
SOT. Y
0.
3.05E-09
3.83E-09
t . 57i-09
0.
0.
3.
1 .46i-08
6.88r-19
3.38i-09
i. 56i-10
4 • Q4E-17
^ .
1.3ST-17
3.541-U8
7.341-09
7 .30E-C8
2.31T-16
5.22T-16
1.34T-10
1 . 55T-D8
4.17^-07
7.55T-16
4 .43T-08
1 «87"-08
6.0CE-16
5.32--07
1.09E-38
1.73r-08
5.4 OT-1 6
4.72T-07
3.32E-11
3.51E-08
1 «5&~-"8
3 .35T-09
4.59T-16
3.091-15
* . 36T-07
5.10E-10
2. 13T-13
3.43T-08
1.50"-08
3.84r-07
2.40E-15
3 .56i-08
3.70E-13
S.
5.35E-07
3.08r-08
3.
S.84T-04
7.74E-06
HE'S
TO REACTOR
10CO. Y ---- "
0.
4 .56E-09
3.23E-11
2.S3E-18
0.
0.
0.
6.42F.-08
1 .24E-18
5.06E-09
5.53E-12
7.27E-17
C.
7.35E-17
5.35E-08
6.S"E-11
4.50E-07
4.15E-16
9.39F-16
2.01E-1C
1.31E-1-?
3.55E-06
l.JfcE-15
6.S3E-08
l.bSE-n
1.08E-15
3.07E-06
6.13E-08
l.»fE-10
9.72E-16
2.72E-06
4.36E-11
5.26E-08
1.32E-10
4.B2E-08
8 .44E-1 6y
1.13E-14
2.51E-Q6
7.53E-10
7.7bE-13
5 .J 4E-T8
1 .26E-1 0
2.21E-06
2.35E-15
4 .HE-OS
3.54E-12
P •
5.35E-07
4.S2E-08
n.
9.41E-04
7.74E-06
3UUU« I
0.
3.26i-08
2.60E-11
1.08E-OS
0.
0.
0.
3. 46T-OS
3 o 04i-lB
3.62^-08
4 .-46E-12
1.79E-1S
0.
1.93E-1&
4.21E-07
5.39i-ll
1.85i-05
1 »D2i-15
2.31E-15
1.431-09
1.05E-10
1.46E-04
3.34E-15
4.74E-07
1.27r-10
2.65T-15
1.25:-04
4.38C-07
1 .18E-1P.
2.39E-15
1 .12E-04
3.55E-10
3.76E-»07
1 .G5E-10
1 .98E-0&
2.37i-15
2.33C-13
1.03E-04
5.45E-09
1.65E-11
3.67E-07
1.02E-10
9.111-05
2.30i-15
1 .59i-07
7.51E-11
n.
5.3"ii-07
3.30E-07
0.
1.17E-03
7.74E-05
TABLE A-IV-3
(continued)
10000* Y100000* Y4
0.' 0.
1.40E-07
8.95E-11
4.2PE-06
0.
0.
0.
1.34E-05
3.2*. E-18
1.56i-07
1.53E-11
1.91E-16
0.
2.07E-16
1.82E-06
1.85i-10
7.18E-05
1.09E-15
2,47E-15
6.17E-09
3.62E-10
5.&7E-04
3.58E-15
2.04E-06
4.37E-13
2.B5E-}5
4.8SE-04
1.89E-06
4.05E-10
2.56E-15
4.34E-04
1.53E-09
1.&2E-06
3.S5E-10
7.58E-06
2.22E-15
8.-22E-13
4.01E-04
2.35E-08
5. 66E-11
1.58E-06
3.49E-10
3.53E-04
2.21E-15
4.2SE-07
2.56E-10
0.
5.35E-07
1.42E-06
0.
1.19E-03
7.74E-06
1 .28E-05
2.23i-09
1.11E-04
0.
0.
0.
3.56E-04
1.52E-18
1.42E-05
3.82E-10
8.90^-17
0.
9.62E-17
1.66E-34
4.62E-09
1.90E-C3
5.09E-16
1.15i-15
5.63E-07
9.03E-09
1.50E-02
1.6&E-15
1.86E-04
1.09T-08
1.32E-15
1.30i-02
1.721-04
1.01E-08
1.19E-15
1.15E-32
1.39E-07
1.48E-04
9.11E-09
2.04E-04
1.031-15
2.C5T-11
1.06i-92
2.14i-06
1.43E-09
1.44E-34
S.72E-09
9.3&r-03
1.01E-15
4. &9E-06
6.44E-09
0.
5.36E-07
1.30E-04
0.
1.19E-03
7.75E-06
0.
1.93E-05
2.34E-08
2.51E-D4
0.
0.
0.
8.03E-04
6.22E-22
2.14E-05
4.00E-09
3.65E-20
0.
3.95E-20
2.49E-34
4.84E-08
4.29E-03
2.09E-19
4.-72E-19
B.46E-37
9.45E-OR
3.39E-02
6.83E-19
2.80E-04
1.14E-07
5.43E-19
2.93E-02
2.59E-04
1.06E-97
4.SBE-19
2.60E-02
2.1CE-07
2.22E-04
9.53E-OR
4.59E-04
4.24E-19
2.15E-10
2.40E-02
3.23E-06
1.48E-38
2.17E-04
9.13E-08
2.11E-02
4.15E-19
5.05E-06
6.74E-08
0.
5.40E-07
1.95E-04
0.
8.89E-04
7.82E-06
A-IV-
170
-------
PUR - au = 33*000 WASTE DECAY TIMES CASE E-4
POUER= 38.4TMV, 3URNUP= 33000.NUD» FLUX= 1.42E»13fc/C.M*»2-SiC
HE'S
TABLE A-IV-3
(continued)
NOCLIOE THERMAL POUiR» WATTS
BASIS = HT 0? HEAVY 1ET4L CHARGED TO REACTOR
CHARGE OISCHARSC
PA234
J232
J233
J235
U236
'J237
U238
J239
U240
VP236
N?237
MP238
VP239
MP240N
VF240
PJ23&
PJ238
°J239
PJ240
PU241
"U242
PU243
PJ244
PU245
AM241
M242H
A1242
»1243
A1244
A1245
CM242
'CM243
:i244
:«24S
CK246
CS247
:i248
CN249
CM250
3K249
3K250
:r249
CrZSO
CF251
CF252
CF2S3
C-254
iS253
TOTAL
0.
0.
0.
3.91E-04
0.
0.
7.73E-03
0.
0.
3.
0.
0.
0.
0.
0.
C.
1.07E+03
6.12E+01
1.42E+C2
5.15E+01
1.14E+30
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
3.
0.
0.
9.
0.
0.
0.
0.
1.32E*03
2.73E-D4,
4.55E-17
1.34E-09
1.1SE-16
4.94E-n6
8.4bE-'"5
3.81E-!>5
0.
7.65E-18
2.49E-63
2.54E-03
4.9CE-24
b.59E-Cl
7.73L-15
0.
3.4JE-!>5
5.18E+"0
1.39E-11
5.38E-31
2.20E-M
5.90E-C3
5.25E-11
1.70E-16
0.
1.2CE+02
2.86E-35
1.34E-04
1.78E+M
1.19E-17
4.54E-2b
9.-14E+13
1.50E+CO
2.44E+03
4.95E-01
6.4»E-?3
2.33E-07
2.53E-"*
4.56E-42
9.52C-13
3.95E-?2
7.3bE-l«5
7.SPE-04
3.47E-3?
3.51C-P8
5.83C-36
5.33F-41
1.56E-18
1.22E-33
1.17C»04
1. Y
2.79E-08
5.95E-07
S.73E-09
1.15E-96
4.95E-06
B.2bE-35
3-81E-05
C.
9.b5E-lfe
0.
2.56E-03
0.
6.59E-IU
4.87E-15
0.
3.02E-H5
2.73E+01
1.39E-31
6.4bE-01
2.15E-01
5.90E-C3
1.35E-08
2.14E-14
0.
1.20^*02
2.S5E-05
1.34E-04
1.78E»01
7.48E-18
1.41E-43
4.20E+Q3
1.49i+00
2.39E»03
4.95E-01
&.44E-02
2.33E-P7
2.53E-Ob
0.
9.52E-13
1.22E-39
7.3bE-15
7.07E-04
2.66E.-15
3.51E-08
5.12E-3b
9.
1.28E-27
0.
b.76E»03
10. Y
1.37E-08
1.47E-Ob
i.ior-07
1.15E-Ob
5.29E-q&
5.40E-05
3.81E-05
0.
1.82E-14
C.
2.97E-03
C.
6.5BE-01
9.18E-14
0.
3.38E-06
4.32E*31
1.43E-01
2.31E»30
1.43E-01
5.9CE-q3
1.05E-08
4.C4E-13
n.
1.20E+02
2.74E-05
1.26E-q4
1.78E*U1
1.41E-16
0.
6.47E-03
1.22E+00
l.b9E*33
4.94E-11
6.43C-02
2.33E-07
2.53E-06
0.
9.»9E-13
3.
7.33E-15
1.2UE-J4
2.25E-17
3.48E-98
4.84E-(?7
0.
0.
0.
l.S8E»03
5". Y
1.37E-08
1.09E-06
7.11E-07
1. 15i-06
9.61E-04
8.29E-OS
3.81E-05
0.
9.48E-14
0.
4.22E-03
0.
6.56E-01
4.78E-13
0.
2.01E-10
3.17E+01
l.blE-01
b.4pȣ*00
2.116E-02
5.91E-03
1.05E-OR
2.11T-12
n.
l.lbE*02
2.28E-05
1.07E-04
1 .77E+01
7.34E-16
0.
2.42E-03
5.14":-ei
3.6bC*02
4.93E-01
b.39E-02
2.33E-07
2.5JE-Ob
0.
9.34E-13
q.
7.22E-15
4.5bi-08
3.331-14
3.J81-08
1.36E-11
3.
C.
0.
5.39T+02
100. Y
1.37E-OS
b.72E-07
1.77E-rb
l.liiE-CS
1.71E-35
9.98E-07
3.81E-05
0.
1.91E-13
0.
5.31E-03
0.
b.53E-Dl
9.&2E-13
0.
1.D5E-15
2.14E+01
1.S2E-31
&.17E»30
2.51C-B3
5.*1£-03
1.C5E-PS
4.23E-12
0.
l.U7E»^2
1.S2E-05
8.51E-05
l.TbE*Cl
1.46E-15
3.
1.93F-03
1.7^4E-01
5.4'»E»!'l
4.51E-01
b.34E-02
2.53E-D7
2.53E-OS
P.
9.15E-13
0.
7..17E-15
2.41i-12
2.96E-14
3.25E-08
2.79E-17
<».
C.
3.
2.nbE«02
501. y
1.37E-08
1.43--08
2.01'-05
1.25r-0b
7.94--05
2.41r-07
3.81E-05
0.
9.S6E-13
3.
1.49--32
9.
S.30E-31
4.82T-12
3.
3.
9.52E-91
3.47E-01
S.05E*00
S.28T-04
5.95T-03
1.05E-08
2.12E-11
0.
5.68E»01
2.93E-36
1.37--05
1.70^*01
7.41T-15
3.
3.11E-04
3.00--05
1.23E-05
4.74T-31
5.J8--D2
2.33E-07
2.53T-06
3.' '
7.80T-13
3.
i.03T-l5
0.
2.52--14
2.391-38
0.
3.
0.
9.
3.24t»01
1CPO. Y
1.57E-08
1.16E-10
5.92E-05
1.45E-06
1.54E-04
2.31E-07
3.91C-35
0.
1.91E-12
0.
2.35E-02
0.
b.02E-01
9.S5E-12
C.
0.
1.94E-02
5.42E-01
5.7bE»35
6.02E-04
5.39E-03
l.OSEfOS
4.25E-11
q.
2.5eE»'">l
3.00E-3T
1.4bt-0b
I.S3E01
1.4EE-14
0.
3.18E-C5
5.94E-1C
1.27E-13
4.55E-01
S.5bE-02
2.33E-07
2.53E-3b
Q.
6.39E-13
0.
4.34E-15
0.
Z.lf.E-14
1.S3E-08
0.
P.
0.
1.
4.J5E»31
5001. Y
1.37T-OS
2.17E-27
4.69E-04
5.58--06
b.30i-04
1.65E-07
3.41E-05
0.
9.52i-12
0.
2.54E-02
0.
4.19i-01
4.81E-11
3.
3.
8.25E-13
1.73i+03
3.81i+00
4.31E-04
6.22C-03
1.05E-09
2.12E-10
n.
4.05E-01
3,57i-15
1.&7E-14
1.13I+01
7.38i-14
0.
3.80E-13
0.
3.47i-13
3.25i-01
3.08C-02
2.33E-C7
2.51i-06
0.
1.30i-13
0.
l.OOE-15
0.
4.19:-15
7.46i-10
0.
0.
3.
C.
•i.eir+oi
10030. Y100000. Y******* Y
1.37E-08
2.S9E-48
9.98E-04
1.51i-05
l.Olt-03
1.09E-07
3.81E-05
0.
1.90E-11
0.
2.58E-02
0.
2.66E-01
9.57E-11
0.
0.
1.03E-22
2-52E+30
2.28E+00
2.83E-04
b.35E-03
1. OSi-OB
4.21E-10
0.
2.28E-01
4.4bE-25
2.09E-24
7.19E+00
1.47^-13
0.
4.75E-23
0.
b. 90i-13
2.14E-01
1.4SE-02
2«^3E-07
2.49E-06
0.
1.77i-l4
0.
1.37E-16
0.
5.72E-16
1.59E-11
0.
0.
0.
r.
1.28E+01
1.37E-08
0.
8.98E-03
l.bSE-04
1.5bi-03
5.73i-ll
3.81E-05
0.
1.73E-10
0.
2.59£-02
0.
7.b5i-05
8.73E-10
0.
0.
0.
4.11E-01
2.24i-04
1.49:-07
5.521-03
1. 05i-08
3.84i-09
0.
1.27i-04
0.
0.
2.07E-03
1.34i-12
0.
C.
0.
6.30E-12
1.13i-04
2.62i-OR
2.32E-07
2.0SC-06
r.
4.75i-30
n.
3.67E-32
i).
1.5SE-31
0.
?.
0.
3.
0.
5.20E-01
1.5BE-08
0.
2.03E-02
1.78E-94
1.52E-03
0.
3.84E-95
0.
7.92E-10
0.
1.93E-02
0.
9.S1C-09
4.00E-09
9.
0.
C.
2.21E-07
1.J8E-08
0.
1.06E-03
1.01E-08
1.76C-38
0.
0.
0.
0.
2.60E-07
6.14E-12
0.
0.
0.
2.88E-11
0.
0.
2.23E-07
3.54E-07
0.
0.
0.
0.
C.
0.
0.
0.
0.
9.
0.
1.8SC-4I
A-IV-
171
-------
PUR - BU = 33tOOC UASTE DECAY TIMES CASE E-4
POWERS 3R.40HW, EuRNUP= 33000.MtfD. FLUX= 1.42E*13N/C«*»2-SiC
FP'8
TABLE A-IV-3
(continued)
NUCLIDE THiRKAL P0a"3t I.ATTS
BASIS = HT Or HCAVY 1ETIL CHARGED TO REACTOR
CHARGE DISCHARGE
K 3
ZN 72
SA 72
3£ 72
SA 73
3E 73
3 A 74
SE 74
SA 75
3E 75*
3E 75
AS 75
3 A 76
S£ 76
AS 76
SE 76
SE 77*
SE 77
A3 77
Si 77P
SE 77
SE 78
AS 78H
AS 78
S£ 78
43 79
S: 79K
SE 79
3S 79
AS 80
SE 80
3* 8QM
31 80
KR 60
AS 81
SE 81M
SE 81
:)* 61
K3 S1H
<* 81
SE 82
3R 82H
33 82
<* 62
SE 831
Si 83
3* 83
<* 83H
<* 63
SE 84
33 84H
31 84
3.
0.
3.
P.
0.
C.
0.
0.
8.
0.
0.
9.
C.
0.
0.
0.
3.
3.
a.
0.
3.
0.
3.
C.
n
3.
0.
3.
0.
3.
C.
0.
3.
0.
C.
C.
0.
0.
3.
0.
0.
0.
0.
0.
0 .
n.
3.
0.
c.
0.
0.
0.
2.67E-D3
1.79E-JS
4.16E-20
0.
0.
9.
C.
G.
0.
0.
0.
0.
C.
6.
9.85E-52
0.
0.
1.43-116
3.S4E-J*
7.33E-37
0.
0.
3. -
0.
3.
C.
0.
1.25E-04
0.
C.
o.
3.
0.
0.
a.
3.
0.
0.
0.
3.
G.
3.
7.02E-4C
0.
0.
C.
3.
0.
0.
3.
0.
0.
1. Y
2.59E-03
C.
C.
3 .
0.
0.
C.
C.
0.
0.
3.
0.
3.
3.
0.
0.
0.
0.
0.
3.
C.
a.
J.
3.
3.
f
W *
c.
1.25E-04
V.
C.
s.
3.
P.
0.
3.
C.
0.
a.
8.
i.
0.
c .
c.
3.
C.
C.
3.
0.
3.
C.
is.
0.
1C. Y
1.56E-03
C.
3.
a.
0.
9.
3.
0.
C.
8.
C.
3.
3.
0.
0.
0.
n.
3.
0.
0.
a.
0.
c.
3.
8.
•J.
0.
1.25E-04
0.
0.
c.
0.
C.
0.
0.
3.
3.
P.
0.
8.
C.
3.
0.
3.
0.
3.
0 .
0.
b.
0.
c.
c.
53. Y
1.64E-04
3*
r.
•' . .
J.
c.
0. '
c.
0.
c.
v •
0.
0.
0.
3.
C-.
3.
3.
D.
0.
0.
0.
c.
u *
0.
c.
0.
1.25E-04
0.
3.
a.
c.
7-.
3.
3.
C.
j.
3.
a.
G •
0.
0.
0.
c.
0.
c.
c.
0.
ii .
u .
c.
p.
100. Y
9.7SE-9S
c.
3.
S.
c.
3.
0.
0.
/3.
C.
0.
0.
0.
0.
0.
0.
fl.
0.
3.
0.
0.
0.
C.
0.
a.
c.
0.
1.25E-04
0.
•).
3.
C.
0.
0.
p.
0.
c.
3.
0.
C.
0.
0 .
n.
P.
0.
).
c.
0.
0 •
0.
9.
U *
sic. Y
1.59--15
3.
0.
a *
3.
9.
3.
0.
3.
G.
3«
3.
3.
9.
3.
0.
0.
9.
u .
3.
3.
3.
C.
C .
3.
3.
D.
1.25--04
3.
0.
3.
2.
D •
3.
5.
D.
T.
I- »
a.
D.
3.
U •
3.
S .
J.
u .
D .
3.
fi ^
S.
0.
3-
1800. Y
9.16E-28
0.
3.
C.
C.
0.
c.
0.
o •
3.
C.
3.
0.
0.
3.
3.
0.
0.
0.
0.
0.
C.
0.
3.
0.
li.
i).
1.24E-04
0.
0.
3.
U •
C.
0.
3.
3.
6 .
3.
'J.
a.
0.
c.
? .
0.
n.
b .
1.
3.
J.
0.
C .
» .
5000. Y
0.
3.
0.
C.
0.
0.
J.
0.
0.
0.
3.
3.
3.
0.
C.
0.
0.
c.
•j.
G.
0.
0.
0.
0.
9.
3.
"!.
1.19E-04
P.
0.
C.
0.
').
0.
u »
0.
3.
t;
•J #
3.
C.
* .
3.
0.
U .
".
tl.
0.
3.
C.
C.
0.
100CO. Y10DOOO. T«f««
0.
c.
3.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
a.
0.
0.
3.
0.
a.
0.
c.
0.
0.
0.
c.
1.13E-04
0.
0.
c.
0.
3.
0.
3.
p.
0.
3.
0.
0.
c.
c.
3.
c.
0.
c.
3.
p.
9.
3.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
tj.
0.
0.
c.
0.
0.
3.
0.
0.
0.
8.
0.
0.
0.
0.
0.
0.
0.
0.
4.32E-05
0.
0.
0.
0.
5.
0.
0.
3.
0.
0.
3.
0.
'o.
c.
J.
0.
3.
3.
C.
0.
0.
a.
0.
0.
0.
fr.
0.
0.
0.
0.
0.
0.
(I.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
3.
0.
3.
0.
0.
8..
2.5
0.
0.
0.
3.
0.
C.
0.
0.
0.
0.
n.
3.
e.
0.
0.
b.
0.
0.
0.
0.
0.
3.
c.
0.
93E-09
A-IV-
172
-------
PUR - BU = 33*000 WASTE DECAY TIHES
POUER= 38.40KU* 3URVUP= 33«CO.MWO« FLUX =
BASIS
CASE E-4
FP's
TABLE A-IV-3
(continued)
iE THERMAL POrf£Rt WATTS
.IT OF HEAVY t^TAL CHARGED TO REACTOR
CHARGE DISCHARGE
.
C.
•J •
G.
G.
e.
0.
•t •
c.
u •
1.71E-04
2.55E-34
3.
V *
U.
0.
503. Y
0.
3.
9.
3.
3.
a.
* •
3.
3.
C.
It
3.
9.
7.12E-09
0.
S.
0.
3.
0.
c.
0.
3.
0.
0.
3.
3.
a.
2.57E-0«
9.
1.15C-03
9.
"»
W •
0.
9.
0.
3.
3.
3.
0.
3.
1.
0.
3.
3.
* •
3.
1.71C-34
2.57C-J4
0.
3.
9.
3.
19CO. Y
0.
3.
0.
0.
0.
R.
3.
0.
C.
0.
3.
3.
3.
7.12E-09
3.
G.
0.
0.
3.
0.
3.
&.
0.
C.
0.
c.
p.
1.I3E-09
0.
5.37E-CI9
0.
(I.
0.
C.
3.
3 .
C.
0.
0.
0.
0.
9.
0.
S.
3.
4.
1.71E-04
2.57E-D4
3.
1.
0.
0.
5000. Y
3.
3.
0.
0.
1.
0.
c.
0.
0.
3.
vO»
0.
3.
7.12F-09
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
3.
0.
3.
0.
3.
0.
0.
0.
0.
n.
. *
t* •
3.
0.
9.
0.
3.
0.
0.
Z .
0.
0.
1.71E-04
2'.56C-04
a.
0.
9.
3.
10000. Y100000. Y*«...«* 1
0.
0.
0.
0.
c.
0.
r.
0.
0.
0.
3.
C.
9.
7.12E-09
9.
0.
0.
0.
0.
0.
C.
0.
0.
P.
G.
3.
0.
0.
C.
0.
0.
C.
0.
0.
3.
C.
0.
0.
0.
0.
S.
0.
0.
c.
c.
c\
1.70E-04
2.56E-,34
0.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.12E-09
9.
0.
3.
0.
0.
0.
c.
9.
0.
0.
C.
•».
0.
0.
3.
3.
0.
0.
0.
0.
0.
9.
9.
3.
0.
0.
3.
0.
0.
0.
0.
0.
1.63E-04
2.45E-34
3.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
7.12E-09
0.
0.
0.
0.
0.'
C.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
9.
Q.
0.
0.
1.08E-04
1.62E-04
0.
0.
c.
0.
A-IV-
173
-------
PUR - BU = 33tCIOO WASTE DECAY TIMES CASE E-4
FOWER= 38.40NU, BURNUP= 330GO.KWOt FLUX= 1 . 42E* 13N/ C***
FP's
NUCLIDE THERMAL POJERi
3ASIS = NT Or HEAVY 1ET4L CHARGED TO REACTOR
Y 9*
Z* 9*
R3 95
S3 95
Y 95
Z* 95
M3 95M
SJ3 95
13 S5
Y 96
ZR S6
M3 56
MO 56
Y 97
Z* 97
M3 97M
M3 57
10 97
ZR 98
\3 98H
M3 96
S3 96
,\3 99
13 99
T: 59M
T: 99
VJ 99
N31CO
10100
TC100
RJ100
03
3.
0.
0.
3.
3.
0.
3.
3.
C.
p.
J.
0.
j.
0.
-D.
3.
0.
3.
0.
0.
3.
0.
u .
3.
0.
a.
130C. Y
c.
0.
c.
3.
D.
0.
0.
C.
n.
1} .
T .
0.
C .
c.
D.
" .
U.
n .
0.
J •
G.
b .
0.
C.
c.
9 .97E-C3
C.
C.
C.
0.
0.
0.
0.
fl
b •
0.
0.
0.
3.
i •
0 •
c.
3.
0.
C.
C.
0.
c.
a.
il •
0.
0.
0.
5
0.
0.
0.
.1.
c.
u .
0.
C.
3.
0 .
0 .
0.
c.
0.
n.
U •
c.
3.
C.
3.
0.
Q.
1.
a.
c.
9 .
u.
C.
3.
n.
0.
u •
0.
C.
0.
0.
0.
!)•
C •
u •
C.
k •
3.
C .
n .
p.
3.
n.
•8 .
0.
J.
3.
TABLE
A-IV-
(continued)
0.
G.
0.
a.
0.
3.
0.
C.
G.
0.
G.
0.
C.
0.
0.
n.
c.
3.
0.
c.
0.
3.
0.
0.
c.
5.
0.
a.
c.
a.
0.
c.
0.
c.
c.
0.
c.
0.
1.
G.
0.
C.
3.
a.
0.
0.
0.
0.
0.
c.
0.
0.
J V V • IJL'UUUU*
0.
c.
3.
0.
0.
3.
0.
0.
0.
0.
3.
0.
3.
a.
0.
3.
0.
C.
0.
3.
3.
0.
0.
c.
1.
0.
0.
0.
n.
0.
a.
0.
n.
0.
0.
0.
0.
0.
3.
n.
0.
c.
0.
0.
c.
0.
c.
0.
0.
0.
S9E-03 7.22i-03 3.BOE-04
3.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
ft.
0.
0.
c.
0.
a.
9.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
174
-------
POWER= 36.
VJ105
*HlCfeM
*H1C5
»D105
TC1C6
SUITS
RH1C6H
RH1C6
»D106
*Jir7
SKI 07
P31C7M
P31C7
A6107
HJ108
3Hlt)8
DD1C8
43198
CD1C8
3rtl39
PD109H
PD109
431 C9M
43109
CD1C9
*H110
PD11C
AS110M
43113
C3110
'3111H
PDlll
4G111H
4S111
CDillH
:DIII
PD112
43112
:oii2
PD113
A3113M
431 13
CD1 13M
C0113
I N113
P3114
ASH*
C311*
IM111M
IM11*
SV11*
?D115
.*OHU« EURMUPs 33003. HUO, FI_UX= 1. <(2E*13N/CM«*2-SiC
NUCLIDE TH£RKAL POi/ER
CHARGL uij>cnm\uc
0. 0.
0.
0.
0.
0.
0.
c.
ll.
0.
0.
9.
C.
3.
0.
0.
D.
C.
0.
C.
c.
a.
a.
0.
0.
0.
d.
0.
a.
0.
0.
0.
c.
u .
0.
0.
0.
3.
a.
0.
o .
r.
0,
0 .
5.
0.
3.
C.
0.
3.
a.
0.
0.
0.
3.14E-3*
0.
0.
4.61E+01
0.
8.18E*07
0.
0.
3.
a.
1.99E-05
0.
0.
0.
0.
u •
0.
0.
0.
1.53E-95
1.72E-C9
G.
1.64E-09
0.
0.
5.31E»01
2.9feE»00
0.
C.
f.
C.
7.99E-06
0.
0.
2.91E-S2
5.3tE-Sl
0.
0.
C.
C.
1.J1E-02
a.
0.
0.
a.
0.
6.39E-05
2.69E---M
0.
0.
1 . Y
G.
0.
1).
0.
0.
3.27E+01
D.
5.79E+03
1.
i).
0.
3.
1.99E-05
0.
0.
(i.
ft
\f •
C.
0.
c.
0.
3.
1.30E-09
n.
1.2*,€-09
0.
C.
J.21E+01
1.B1E+CO
l>.
0.
C.
C.
3.73E-13
C.
0.
c.
0.
•1.
0.
?.
r.
1.28E-02
0.
I.
«
..• •
r
j •
0.
s.cec-nfe
2.1A^-65
a.
0.
BASIS = MT Or
1 i k V en v
1 U» '
p.
o.
c.
tl.
c.
6.57E-02
0.
1.1TE+01
0-
C.
0.
c.
1.99E-C5
C.
0.
c.
3.
0.
c.
0.
G.
0.
8.«9E-12
3.
6.11E-12
0.
0.
3.97E-03
2.21E-01
a.
0.
b.
G.
0.
n.
0.
a.
a.
0.
3.
0.
u.
8.21E-03
0.
0 •
(<.
0.
0.
6.19E-26
3.«5^-25
5.
G.
9:1 » i
0.
0.
0.
3.
0.
6.81E-1*
C.
1.21E-11
0.
C.
P.
C.
1.99E-05
C.
0.
0.
0.
C.
.0.
c.
3.
C.
1.66E-21
0.
1 .58E-21
U.
0.
1.63^-20
?. 12^-22
3.
.. *
0.
3.
ft
V •
3.
P.
C.
a.
r.
D.
n
s •
** •
1.13E-03
U.
il .
0.
L •
i> •
a.
3.
c.
a.
• K4TTS
HE4VY 1iT4. CH4R6ED
100* Y = « « «*
0.
3.
0.
0.
C.
7.11E-23
•J.
1.26E-26
0.
0.
0.
0.
1.99E-05
0.
0.
c.
Ci.
c.
c.
0.
0.
n.
1.21E-33
0.
1.15E-33
0.
0.
0.
0.
0.
c.
0.
p.
c.
c.
0.
n.
D.
0.
0.
n.
&.
9.53E-05
n.
ii.
P.
Ci.
0.
3.
C .
(i.
0.
J V W . I
3.
3.
'3.
3.
3.
).
i.
3.
«i
r •
1.
3.
3.
1.99E-05
?.
3.
',.
0.
?.
3.
?.
9.
3.
3.
0.
9.
a.
3.
9.
C.
C.
3.
!>.
3.
0.
D.
3.
9.
0.
P.
0.
0.
3.
2.3&1-13
0.
n.
•>.
0.
3.
3.
3.
0.
a.
TO REACTOR
1 ft 4 1 ft V e n ri A v
j. u y u • T
0.
9.
P.
3.
0.
0.
D .
0.
C .
0.
G.
0.
1.99E-05
C.
C.
0.
0.
a.
O *
9.
C.
0.
C.
3.
0.
0.
0.
C.
0.
C.
u .
n.
0.
0.
3.
a.
0.
c.
0.
0.
(1.
T.
4.22E-54
0.
•*
0.
C.
0.
•3.
C .
0.
3 .
^ V V V . 1
• o.
c.
0.
c.
0.
0.
?.
c.
c.
0.
c.
a.
1.99E-05
0.
0.
0.
0.
u .
3.
a.
c.
3.
C.
0.
0.
D.
0.
0.
Q.
3.
0.
0.
0.
0.
0.
0.
0.
G.
0.
0.
n.
J •
*t •
D.
C.
n.
v* •
0.
3.
3.
0.
0.
FP's
TABLE A-IV-3
(continued)
1 0 fl ft ft. V1 n fl rt rt ft v
1 * U U U • TlUUvDU* T
0. 0.
0.
0.
c.
0.
0.
0.
0.
c.
0.
0.
0.
1.99E-05
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
r.
0.
0.
0.
/.
0.
0.
c.
u.
0.
c.
0.
0.
0.
r.
u.
P
0.
w •
9.
C.
C.
0.
9.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
0.
1.97E-05
0.
0.
0.
3.
0.
0.
0.
0.
a.
0.
3.
C.
9.
C.
0.
c.
0.
t\
3.
0.
0.
0.
0.
3.
!>.
0.
0.
3.
a.
0.
0.
D.
(I.
ft.
G.
0.
9.
0.
3.
******4f Y
0.
0.
0.
0.
0.
0.
0.
0.
0.
e.
0.
0.
1.80E-05
0.
G.
0.
C.
0.
3.
0.
3.
0.
C.
0.
D.
C.
0.
3.
0.
0.
0.
0.
C.
0.
0.
c.
0.
3.
0.
P.
13.
0.
0.
3.
n.
0.
3.
0.
C.
3.
0.
C.
A-IV-
175
-------
PUR - SU = 33tll30 HASTE DECAY TIMES CASE E-1
POWER= 36.43HW» BURNUP= 33350.HUDf FLUX= I . 42E* 13N/CM*' 2-SilC
NUCLIDE THERMAL PSJiR, WATTS
BASIS = IT OF HEAVY lETIi. CHARG
A3115
CD115
IN115K
1^115
SM115
A3116
= 3116
IN116M
IN116
SN116
A3117
:D117
1M17M
I VI17
SM17M
SN117
I^llSM
I\116
SNillS
C3119X
CD11S
1M119H
IM119
SM119M
SN119
IN12C«
IVI120
SN120
IY121M
IM121
SV121*
3N121
S5121
IM122
SN.122
S3122M
S3122
1M123M
I\il23
SV123H
SM23
S3123
TE123M
TM23
I 'Ml 24
CHARGE
0.
C.
0.
0.
0.
c.
0.
3.
0.
C .
C .
3.
3.
C.
0.
C.
0.
0.
0.
C.
C.
0.
0.
3.
P .
u •
C.
C.
0.
0.
0.
3.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
G .
C.
0.
0.
0.
0 .
0.
DISCHARGE
0.
3.
5.23E-2*
0.
G.
0.
P.
3.
b.
G.
0.
3.
0.
1.50E-05
C.
0.
3.
0.
0.
0.
3.
P.
0.
1.77E-C2
0.
0.
0.
0.
3.
0.
3.
0.
4.83E-07
C.
G.
0.
C.
5
0.
3.
Y 5G.
0.
0.
3.
0.
0.
G .
3.
C.
3.
0.
0.
0.
3.
C.
0.
0.
0.
fl.
0.
0.
0.
3.
3.
G.
1.17E-06
3.
3.
G.
4,»3E-U7
G.
C.
r, *
G.
n.
r.
c.
w •
c.
c.
£ .41E-18
C.
2.H7E-13
3.
C.
0.
0.
0.
0.
0.
3.
0.
0.
3.
C.
0.
3.
3.
G.
n.
0.
3.
0.
3.
0.
2.99E-24
0.
0.
L •
3.
3.
0.
3.08E-07
3.
r.
u .
a.
o.
i.
3.
0.
r.
3.
P.
0.
C.
130. ^
n.
c.
b.
0.
3.
3.
C.
0.
3.
3.
G.
0.
0.
3.
&.
0.
u.
3.
3.
C.
3.
n.
o.
o.
G..
3.
3.
0.
P.
U •
0.
3.
b.
0.
3.
0.
1.95E-0)
G.
C .
3.
3.
503.
0.
3.
3.
3.
3.
3.
3.
3.
j.
3.
J •
3.
D.
0.
0.
3.
3.
3.
0.
C.
0.
0 .
3.
3.
3.
0,
a.
c.,
FP
TABLE A-IV-3
's (continued)
D TO REACTOR
Y1 T n ft V CAAn v «tf«nn V< n n A M n
1 J J U • T
G.
3.
0.
3.
u »
C.
J .
3.
il.
3.
0.
0.
c.
0.
il.
p.
3.
0.
3 «
C.
0.
G.
0.
0.
3.
V .
0 .
9.
P.
0.
0 .
r .
a.
3.
3.
3.
5.31E-11
b.
3.
0.
3.
0.
b.
0.
». *
•l
P.
0.
il.
V *
3.
d.
^fl'UU* 1 1 J U L< U * IJ.'JUUUU*
P. 0. 0.
o. c. 6.
•3.
b.
3.
3.
0.
0.
3
3.
p.
3.
3.
0.
G.
0.
c.
0.
3.
3.
0.
3.
0.
0.
P.
3.
0.
0.
0.
G.
C.
C.
0 .
J .
0.
G.
7.5
3.
u .
u .
3.
0.
r.
0.
.1 .
0.
a.
0.
3.
b •
a.
a.
3.
P.
3.
0.
0.
a.
0.
9.
G.
C .
0.
0.
G.
0.
0.
b.
0.
C.
0.
C.
0.
0.
0.
c.
c.
0.
0.
0.
s.
0.
0.
0.
0.
w •
4T-27 1.18E-«6
0.
C.
C.
p.
3.
C.
p.
c.
r.
c.
c.
.1.
b.
0.
0.
G.
0.
0.
G.
0.
0.
0.
0.
0.
P.
0.
3.
0.
0.
C.
0.
0.
3.
0.
0.
0.
0.
c.
a.
0.
3.
0.
0.
P.
3.
r.
0.
0.
0.
G.
0.
a.
3.
a.
9.
D.
a.
a.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.'
p.
c.
0.
0.
0.
0.
b.
0.
0.
0.
0.
0.
0.
0.
c.
0.
c.
0.
0.
0.
0.
0.
0.
0.
e.
0.
0.
0.
0.
0.
0.
0.
0.
A-IV-
176
-------
PUR - BU = 33,000
SN129K
SN125
S3129
TC129H
1125
Til31
1131
SV1 J2
S3132H
S3132
1132
CHARGE
SN12* 0.
S3124M 3.
C.
SV125H 0.
SM125 0.
35125 b.
Til25 C.
SMI 26 0.
S31261 3.
S3126 0.
SM127H C.
SM127
S3127
Til27N 0.
Til27 C.
1127 3.
SV128
S3128« 0
S312S C
Til28
1126
0.
0.
a.
J.
C.
0.
c.
3.
0.
0.
c.
3.
0.
C.
C.
X=:i29
SN130
S3130K 0.
S?13U 0.
T£130
I133rt
1130
xriso
SN131
S3131
0.
C.
0.
c.
b.
0.
,000 WASTE OiCAY TIM^S CASi E-*
W, BUKNUPs 33CCO.HUD, FLUX= 1 . «2E»13M/CK*» 2-S^C
NUCLIOE THERf.AL POWiR, kATTS
I SCHAR3E
3.
0.
6.29E-01
C.
C.
1.91E-1*
5.69E»0>1
9.blE*CC
n.
i.csr-fis
6.6Ct-93
1.26E-32
P.
a.
0.
4.62E-J2
4. 5.
•j •
2.70E-10
b. ccr*oi
3.77E»00
3.
1.05E-03
6.6C-:-03
1.26E-C2
J.
C.
G •
3.00E-26
1. 42i»CC
4 .10£»C1
0.
0.
0.
0.
0.
b •
D.
0.
u.
n.
9.65E-02
1.13C-Q1
3.96E-08
C.
r.
o •
a.
$.
0.
3.
0.
a.
b.
".
0.
0.
9.06E-14
1.27T-13
J.
j.
i>.
C.
5.03E-31
3.93E-30
BASIS = .IT OF
If, w en w
J H* T
9.
C.
3.22E-18
?.
n.
0.
4.36E+01
h.72E-01
P.
1.0bE-03
6.SOE-33
1.26E-C.2
n
•j m
c.
c.
0.
1.18E-09
3 • ^ 2E~0 9
r
0.
c.
0.
c.
0.
0.
c.
0.
0.
9.
0.
3.98E--38
t.
0.
0.
0.
G.
3.
0.
C.
C.
n.
0.
J.
•?.
0.
0.
c.
0.
0.
0.
0.
0.
J V • 1
c.
0.
0.
3.
w •
0 •
1.72E-04
3.f?2E!-05
C.
1.C5E--13
b.60E>03
1.26^-02
G.
a.
3.
C.
8 •
0.
C.
C.
C.
" »
6.
0.
a .
c.
"•
0.
c.
c.
3.98E-38
9.
u .
&.
•r •
C •
"j •
b .
3.
b •
C.
C.
V •
J •
n.
3.
t.
0.
n.
I;.
1.
* •
hCAVY 1ET4. CHARGED
11 n V i r> n w
'' U • T
0.
0.
c.
.1.
0.
a.
1.57E-10
e« S*E-II
0.
1.1b£-13
&.&OE-03
1.2&L-32
0.
0.
0.
0.
E.
C.
a.
a.
n.
c.
a.
c.
c.
3.
3.
0.
V *
c.
3.9«E-38
0.
0.
C.
n.
a.
0.
ri.
c.
3.
0.
C.
1.
3.
3.
t *
«l •
C.
1.
J.
b.
0.
J V u • I
}.
) .
).
>.
).
).
) .
i .35 1-13
i.58i-33
l.25"-^2
1.
^ •
3.
) .
3.
3.
3 .
3.
3.
3.
j .
3.
3.
tf .
?.
0.
r
V .
?.
3. 98T-38
3.
3.
0.
3.
5 •
c.
.3.
5.
3.
to •
3.
n.
5.
c.
V •
w •
3.
3.
3.
C.
C..
FP's
TO REACTOR
i n. f n v t -in ft v
1 'J M U • T
c.
u .
j •
b.
D.
3.
E.
3.
1 .35E-"3
6.56E-33
1.25E-C2
C.
J.
0.
C.
u •
r.
u •
0.
«i* •
c*-
c.
).
3.
D.
0.
n .
3.
U •
3.3FE-08
n.
s.
u .
0.
3.
3.
C.
3.
3.
C.
C.
3.
C.
n.
? •
c .
0.
c.
c.
1.
r.
J I ' V ' • T
n.
3.
U •
3.
9.
0.
3.
C.
n .
i.02?-03
S.38--03
1.22:>02
g.
C.
.< •
0.
j •
g.
u.
0.
3.
0.
3.
0.
0.
C.
w •
C.
V •
" •
I«98i-OS
3.
P.
W •
0.
0.
3 •
P.
3.
C.
: .
0.
5.
n.
c.
3.
•>.
j •
•c.
.3.
J.
W •
TABLE A-IV-3
(continued
irnnn vioonnn v
J -; U V U • Ill'LUwU* I
3. C.
D. 0.
0.
3.
3..
C.
C.
P.
3.
9.84C-C*
6.15E-03
1-17E-02
n.
3.
0.
0.
0.
0.
3.
C.
0.
c.
0.
0.
c.
c.
u*
0.
c.
0.
3.J8E-08
C.
C.
c.
3.
0.
0.
C.
c.
0.
c.
3.
0.
0.
0.
3.
0.
0.
?.
0.
3.
C.
0.
C.
0.
w •
0.
0.
k. »
5 * 27 * ~Q%
i« 3 G ^ ™0 3
S.29E-03
3.
0.
C.
3.
0.
a.
3.
0.
0.
3.
3.
V •
9.
8.
C.
a.
0.
c.
3.9TE-08
C.
n.
a.
9.
0.
3 •
£•
i>.
C.
3.
C.
9.
C •
0.
c.
Q.
0.
3.
3.
P.
a.
c.
0.
a.
3.
5.
0.
C.
•3.
1.03E-06
6.44E-06
1.23E-05
0.
C.
0.
0.
0.
3.
0.
0.
0.
3.
3.
A
^ •
C.
D.
0.
1.
3.
0.
3.92E-08
C.
0.
c •
a.
c.
?•
0.
c.
0.
0.
0.
0.
r.
0.
U •
c.
3.
0.
0.
R.
0.
A-IV-
177
-------
PUR - BU = 33fU30 WASTE DECAY TIMES CAS£ E-1
PuUER= 3S.4UMUt 6URNUP= 33033.MlJDt FLUX= 1.42C+13N/CM*'2-SEC
NUCLIOE THERMAL POJER, WATTS
BASIS = MT OF HEftVY HETfiu CH«RC
503.
78E-08
CH ARGE DISCHAR3"
SM153
£ol53
33153
= 11 54
S"! 54
t U 1 5 4
33154
SY155
-:u:t5
33155
SS156
EU156
33156
S"157
; J157
33157
i J158
53158
i J159
33159
T3155
EJ160
33160
T3160
3Y163
33161
T3161
3Y161
33162
T5162H
73162
3Y162
T3163V
T3163
3Y163
T3i64
3Y1 1.4
3Y165M
DU65
HC165
DY166
HC166M
Ml*166
13166
iT31 67
TOTAL
0.
C .
J •
G.
3.
C.
C.
C.
3 .
0.
Q.
C.
a.
0.
0.
b •
C .
0.
I).
d .
a .
0.
u •
c .
3.
0.
3.
0.
3.
0 .
0 .
j .
0.
n.
0.
c.
0.
c .
3.
t .
3.
0.
0.
0.
3 •
0 .
8.00E-?fi
0.
1.8bE-fl2
G.
C.
4.47E+01
0.
0.
6.17O10
0.
c.
3.55E-01
G.
U.
1.G8L-95
a.
0.
0.
a.
S.S9E-73
G.
G.
0.
2.27E+OC
0.
0.
1.95E-3«
0.
0.
0.
p.-
D.
1.
0.
a.
2.89E-58
a.
0.
0.
0.
1.05E-18
4.32E-06
8.97E-18
0.
a.
2.11E+T4
1 . Y
0.
0.
1.39E-32
3.
0 .
4.37E+01
0.
0.
5.10E+00
3.
3 .
7.67E-05
0.
J.
0.
D.
0.
j .
Q.
0.
0.
C •
a.
3.S2E-01
0. (
n .
2.10E-16
•3.
0 •
0 .
0.
c.
0..
•3 .
0.
Q.
C.
3.
a.
3.
S.78E-35
4 .32E-06
5.21E-34
3.
0.
1.24E+D4
10. Y
C.
0.
8. 9 IE- 07
0.
J •
2.96E+11
0.
n.
1.62E-01
0.
0.
C.
C.
0.
c *
3.
C.
3.
j.
C.
U •
0.
0.
7.37E-15
0.
G.
0.
3.
0.
0.
c.
3.
0.
0.
0.
C.
G.
C.
0.
c.
0.
4.30E-OS
0.
J.
0.
8.26E*')?
50. Y
9 .
0.
5.95E-25
0 .
0 .
5.23E + OC>
n.
u •
3.61E-08
3.
C.
0.
G.
0.
G .
0.
3.
a.
0.
3.
0.
0.
0 .
3 .
1?.
0.
0.
Q.
0.
0 .
n.
^ ,
0.
a.
j •
9.
> j •
J •
c.
0.
0.
4.20E-06
3.
0.
0.
2.89E+02
ICO. Y
J.
0.
n.
0.
0.
5.99E-01
0.
0.
1.74E-1S
0.
C.
G.
C.
0.
a.
3.
a.
c.
0.
u *
n.
o .
0 .
3.
0.
0.
0.
0.
w «
>' *
0.
3. /
b- •
•3.
0.
0.
0 .
c.
0 •
G.
•3.
4.08E-Ob
u .
"; .
0.
8.P7E+B1
n.
n.
0.
3.
0.
1.
0.
c.
J.
0.
c.
3.
0.
0.
0 •
3fc
0.
3.
G.
0.
3.
j.
3.
0.
0.
3.
3.
0.
3 .
C.
D.
1.
n.
3.
3.
3.
5.
3.
D.
0.
0.
3 .
0.
C.
3.
1.
uit-Ol
FP's
TO REACTOR
1 fl f 11 V c ft f\ n . tf
i IM. u • T
G.
0.
c .
n.
n.
6.97E-18
0.
j.
3.
d.
3.
0.
0.
0.
J.
C .
G.
0.
0.
u .
0.
C •
c .
0.
•J •
0 .
0.
0.
C.
0.
0.
0.
0.
G .
0.
0.
0.
0.
u.
G.
G.
2.13E-06
1.
3.
0.
3.22E-02
,M U U * 1
0.
5.
0.
3*
1 .
1 .
0.
0.
a .
j.
c.
0.
G.
a.
3.
c.
a.
0.
0.
u »
G.
G.
G.
C.
•f »
G.
a.
D.
3.
0.
3.
G.
3.
C .
1.
0.
3.
r> .
n .
T.
3.
2.41E-07
0.
G .
0.
3.02E-02
TABLE A- IV- 3
(continued)
1PQOD* TIDVDOU* T*
D. 0.
G. 0.
0.
0.
G.
0.
Q.
n.
G.
G.
C.
0.
0.
0.
0.
G.
0.
G.
0.
G.
3.
0.
P.
0.
0.
c.
0.
n.
0.
0.
0.
0.
G.
0.
0.
c.
c.
0.
G.
0.
0~
1.34E-08
n.
3.
0.
2.94E-02
0.
a.
0.
0.
G.
a.
a.
n.
0.
0.
0.
0.
G.
3.
0.
0.
0.
fl.
0.
0.
0.
0.
c.
0.
0.
0.
a.
0.
3.
c.
0.
0.
0.
3.
0.
G.
a.
3.
0.
G.
0.
G.
0.
1.80E-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
G.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.-
0.
0.
Q.
0.
a.
a.
0.
0.
0.
0.
0.
0.
a.
0.
0.
c.
0.
8.69E
A-IV-
180
-------
APPENDIX A-V
TRANSURANIC-CONTAMINATED WASTE
OF LOW SPECIFIC ACTIVITY
-------
APPENDIX V
TRANSURANIC-CONTAMINATED WASTE OP LOW SPECIFIC ACTIVITY*
A-V.l BACKGROUND
In addition to the waste disposal requirements for fuel element
cladding and end pieces that contain significant quantities of trans-
uranic elements (included in the earlier discussion of high-level waste).
there Is also a disposal problem from the large volumes of waste
generated at reprocessing and mixed-oxide fabrication plants. This has
low- to intermediate-level specific activity with small, but significant,
quantities of transuranic elements. For this Appendix "TRU waste" will
designate this relatively low-specific-activity waste. Included are
such items as failed or expended equipment, cleanup expendables (paper,
clothing, plastic, rubber), filters, and liquid/sludge residue.
Defining the nature and quantity of this waste is difficult for
two reasons. First, the quantities generated, by their nature as
process expendables, vary with process design and administrative controls.
Second, there is still substantial uncertainty regarding the final con-
tent of regulations for determining what levels of contamination define
TRU waste.
Accordingly, in the following discussion this waste is characterized
only in broad terms of overall volume and amount of transuranic content.
The numerical values are as reported in the literature.
A-V.2 REGULATIONS
On September 12, 1974 the AEC gave notice (39 FR 32921) that it
was proposing rules to require that any wastes contaminated to greater
than 10 curies/gram (10 nanocuries/gram) with transuranics be treated
as "transuranic-contaminated" and sent to a Federal repository. The
original intent of this rule was to establish a reasonable level at
which TRU waste would be held in retrievable storage pending future
decisions.^ It was not specified that such waste would necessarily go
into deep geologic disposal. 10 CFR 20 306, as proposed in the
September 12, 1974 notice, would require that waste material containing
transuranic elements (undefined in the regulation but defined in the
notice as greater than 10 nCi/g) be treated at the license site in
a manner substantially identical to that for high-level waste (solidify,
package, transfer to Federal custody within 5 years). Whether deep-
geologic burial would then be used is not clear; it certainly seems to
be one possible result of the proposed regulation, since changes to
10 CFR 20.304, proposed at the same time, forbid burial of transuranic
Department of Transportation definition of "low specific activity" is
not intended here.
A-V-1
-------
waste in soil by a licensee. As yet, no action has been taken on these
proposed rules. For planning purposes, ERDA has assumed that permanent
geologic disposal is the intent of the cited proposed rules. NRC has
stated that it will replace the rule with a new proposed rule, sup-
ported by an environmental statement. NRC has also stated that this
will not be done until after completion of the ERDA study on possible
modification of the 10 nCi/g number. The "task force" draft report on .
this subject is still under review.
The presently-accepted definition of "transuranic waste" as that
contaminated to greater than 10 nCi/g derives from the criterion
for setting aside higher activity waste for presumed geologic disposal,
with lower-activity waste continuing to be buried at properly established
and controlled radioactive waste burial grounds.
Because 10 nCi/g appears to be conservative and because the
regulations may require a costly disposal option (geologic disposal),
the 10 nCi rule has been vigorously debated as overly conservative.'*)
Exploring these arguments is not germane to this study, except to take
note that substantial arguments have been made for relaxing the 10 nCi
rule for deep geologic disposal (though few would disagree that at
greater than 10 nCi/g some form of control is necessary), and that the
cost/benefits of applying 10 nCi/g for deep geologic disposal may be
an important subject of study in the future.
A-V.3 QUANTITY ESTIMATES
Assuming that the 10 nCi/g rule goes into effect, a difficulty
still arises in predicting the quantity of TRU waste to be generated
from nuclear fuel cycle activities. Not only are the original quanti-
ties difficult to predict because of their origin, but it is also
difficult to anticipate the degree of compaction that can be achieved.
Certainly, implementation of the 10 nCi/g rule would provide strong
economic incentives toward reduction in waste volume (both process
changes to reduce quantities, and disposal/packaging techniques to
reduce volume, of the waste generated). Because of the wide variety
of the waste, it is difficult to predict what specific process facilities
will be needed for treatment. Although discussion of waste control
technologies properly belongs in Task B of this report, there is
clearly an interface between estimates of waste quantities and the
technology of volume reduction, the latter having significant effect
upon the former.
ERDA 76-43 has estimated that low-level beta/gamma TRU waste
generation, prior to volume reduction, would amount to (1) 283, (2) 566,
and (3) 113 m^ of waste per MT of plutonium processed in fuel preparation,
fabrication, and reprocessing plants, respectively.(3) These numbers
originate from earlier estimates by ORNL, derived from experience at the
Rocky Flats weapons facility.^*5) Intermediate-level beta/gamma TRU
waste would add another 293 m /MT of plutonium recovered at a
A-V-2
-------
reprocessing plant. Intermediate-level TRU waste is TRU-contamlnated
waste that has external beta/gamma radiation levels in the range of
10-1000 mrem/hr and therefore may require some degree of shielding
during handling. For the early generation plutonium recycle case,
assuming that 1 MT of discharge fuel contains 12 kg of plutonium
(GESMO<6> IV E 1.2.1.1) and 1 GW-yr requires 26 MT of fuel, then the
quantity of TRU waste produced per GW-yr at a reprocessing plant is'
(26 MT/GW-yr)(12 kg/MT)(0.001 MT/kg) (L13 + 293)ra3/MT
- 127 m3. (!)
This assumes that plutonium conversion to PuO. is done at the mixed-oxide
fabrication plant, which may not be the case.
At a mixed-oxide fuel fabrication plant, assuming all the plutonium
is recycled, the TRU would be:
(26)(12)(0.001)(283 + 566) - 265 m3. (2)
In a uranium-only recycle case, using 9.5 kg Pu per MT of U02 and
assuming that TRU waste will only arise at reprocessing, the quantity
becomes:
(26)(9.5)(0.001)(406) - 100m3. (3)
In the throwaway case very little TRU waste would be generated.
These volume estimates were further clarified and a volume reduction
by a factor of 10 estimated.(7)
For comparison, NUREG 116 estimates that 29 m /GW-yr TRU waste
(uncompacted) will originate at the reprocessing plant (irrespective of
fuel cycle option) and 8 ra3/GW-yr at the mixed-oxide plant.'**'
Argonne has made estimates of fuel cycle TRU waste and has con-
cluded that a reprocessing operation would yield 50 m of combustible
trash, 50 m of noncombustibles. 7 nr of filters, and 0.5 m3 of slurries,
sludges, and resins per GW-yr.'') For a mixed-oxide fabrication facility,
the respective estimates are 60 m , 9.7 m3, 3.8 m3, and 1.5 m3.
NFS has generated waste quantity estimates based on actual operating
experience, and the results are summarized in Table A-V-1, which shows
pre-compaction TRU of 500 ft3 HEPA filters and 17,000 ft3 alpha com-
bustibles per 750 MT.^ln>) This equates to about 0.5 m3 and 16 m3 per
GW-yr. NFS further estimates that volume reduction factors of 4 and
4.6 may be achieved for this waste, resulting in 0.1 nr and 3.5 m3,
respectively. NFS estimates 4.5 m3/GW-yr of salt slurry production
dried to 4.1 m3, contaminated to "less than 0.1 g" plutonium per ft .
This information is not sufficient to determine whether these slurries
are contaminated to greater than 10 nCi/g in transuranics, although it
A-V-3
-------
TABLE A-V-1
^ RADIOACTIVE WASTES GENERATED
1
2 3
4
5
ANNUALLY
6
AT NFS DESIGN RATE (750 TONNES/YR)
. 7
8
9
Intermediate Level Waste
Original
quantity (ft.3)
Percent
of toital,
Physical
form
Chemical
form
Radio-
acidity
tft.'/final
volume)
Process
Shipping
container
Final
volume* (ft.3)
Percent of
total
High Level
Waste
1.400
1.3
Solid
Calcine
oxide of
MFP and
added
incrts
99.95% of
activity
in fuel.
-1 X 10JCi
of mixed
FP/ft.3
Calcine
1 %' X 15'v
canisters
2.800
33
Leached
Hulls Salts
9.200 4.800
8.3 4.3
Solid Slurry
Zr alloy Sodium
or stain- nitrate
less steel 40% solu-
tion +•
mercuric
iodato
0.05% of 20-40 C!
activity of mixed
in fuel. FP. 0.01
500 Ci Ci129l.
60Co/ft.3 <0.1 g
Pu/ft.1
— Dry
Steel Steel
canisters canisters
9.200 4,300
12.8 6.0
Slurry
1.635'
1.5
Slurry
Filter
aid
1-10CI/
ft.3 MFP.
<10t]Ci
Pu/g
Dry
55-gal.
drums
1.470
2.0
Source: North, E.D., Solid Waste
Rcslc
730
0.6
Solid
Organic
and min-
eral resins
1-10CI/
ft.3 MFP.
<10t)Ci
Pu/g.
Concrete
55-gal.
drums
1,460
2.0
Equipment
10.360
9.3
Solid
Metal
<1.000
rr.r/hr.
<10tjCI
Pu/g.
Dccon-
concrete at
necessary
Special
container
as required
15.500
21.6
HEPA
Filters
2,000
1.8
Solid
Gcnrjl
rlust on
rilsss filter
1 -500 mr/
hr. < 0.5 CI
P/ft.3 75%
<10TjCi,
2&% -5
mCi Pu/g.
Compaction
Special con-
tainer or •
drum
500
0.7
Solvent
200
0.2
Liquid
Diluent
T3P
>100C1
ft.J MFP.
<10 -CI
Pu/0.
Burn or
distill
Mix with
ILW waste
10
0.01
Alpha Waste
Combustible
17.000
15.3
Solid
Paper.
cloth, rub-
ber, plastic,
miscellane-
ous
~500 mr/hr.
-3 g Pu/ft.3
Compaction
55-gal.
drum*
3.700
5.2
Generation in Reprocessing Nuclear Fuel.
10
11
12
Low Specific Activity Want
Combustible
35,000
31.5
Solid
Same
<200 mr/hr.
<10qCi
Pu/g.
Compaction
or incinera-
tion
55-gal.
drumi
7,000
9.8
Sluri-y
23.300
21.0
Slurry
Water treat*
ment, iludge,
CaFj
<200 mr/hr.
<10uCIPu/g.
^*
55-flal.
drums
20.700
28.9
Salti
5.500
4.9
Slurry
Sodium
nitrate
40% solution
<200 mr/litw
<10i)CiPu/g.
Dry or absorb
55-gal.
drums
5.000
7.0
In Radioactive
Taut
Velum*
111.128
71,640
Wastes from the Nuclear Fuel Cycle. AIChE Symposium Series 154:72, 1976.
-------
3
appears to be the case (0.1 g/ft , p = 5, 10 Ci/g of plutonium Is equivalent
to 7000 nCi/g).
The IAEA regional fuel cycle study was published too late to include
final figures in this report. Working document estimates for TRU waste
generation were (per GW-yr) for reprocessing: 26 m3 combustibles
uncompacted, 0.9 m3 compacted; 4.1 m3 filters uncompacted, 2.0 compacted;
28 m3 non-combustibles unpackaged, 56 m3 packaged (to allow for void
space); 0.3 m3 slurries, sludges and resins unstabilized, 0.6 stabilized.
IAEA estimates for mixed-oxide facilities were (respectively): 5.6 m3
(0.2 m3); 0.3 m3 (0.1 m3); 0.9 m3 (1.8 m3); 0.4 m3 (0.8 m3).
Table A-V.2 summarizes these results. Considering the difficulty
associated with quantitative estimates, the wide variance is not sur-
prising.
In order to give a range of the TRU wastes, it is necessary to make
some assumptions about compaction efficiency. As pointed out above,
the degree of compaction will be strongly dependent on the ultimate dis-
posal method; geologic disposal, with its attendant high costs, would
provide strong incentives for volume reduction. For example, at least
one study shows strong cost incentives associated with incineration of
TRU combustibles (despite the fact that TRU waste incinerators may cost
about $30 million for a typical reprocessing plant. dD The following
general observations may be made regarding TRU waste volume reduction:
The IAEA volume reduction factor of 30 for combustible waste, using
an incinerator, is a reasonable assumption. Los Alamos Scientific Labor-
atory (LASL) has estimated a net volume reduction of 30-35 at its incin-
erator facility. With only a mechanical compactor, the reduction would
probably be considerably less, depending on the form of the wastes. NFS
and LASL gave identical estimates of 4.5:1. Filter volume reduction
would probably be achieved by mechanical compaction, and a volume reduction
factor of 2-4 (the range between NFS and IAEA estimates) is reasonable.
Non-combustible solid volume reduction would be possible using mechanical
compaction and/or cutting, or smelting. Another volume reduction tech-
nique could be to mix combustible residues with non-combustible to
utilize volume better, although it appears that this would gain only slight
advantage. A range of volume reduction for non-combustibles is estimated
to be from 2:1 (LASL) to 0.5:1 (IAEA). Liquids/slurries would be dried
and either packaged in metal containers (NFS) or mixed into a stabilizing
medium (cement, for example). In this case, however, the result might
be a volume increase ranging from 1 to 2.
Analyzing these observations, assuming reasonable breakdowns of
waste types where they are not given, and using an average non-combustible
quantity for the NFS data, estimates of waste quantities are given below.
In addition, it should be noted that there are currently about 33,000 m3
of TRU wastes stored at ERDA sites, with a total plutonium content in
excess of 200 kg.
A-V-5
-------
TABLE A-V-2
COMPARISON OF ESTIMATES OF TRU SOURCES M /GW-YR
ERDA 76-43 NUREG 116* Argonne NFS IAEA
16 (3.5) 26 (0.9>
0.5 (0.1) 4.1 (2.0)
— 28 (56)
4.5 (4.1) 0.3 (0.6)
— 5.6 (0.2)
~ °'3 ^'^
— 0.9 (1.8)
— 0.4 (0.8)
Combustibles .
Filters 1 124 (12) full
Reprocessing Plant \ recycle
Non-Combustibles I 98 (10) uranium
1 recycle
Liquids/ Slurries
Combustibles J
MOX Fabricators Filters ( 26° (26>
Non-Combustibles I
Liquids/Slurries )
15
2.
7.
4.
3.
0.
2.
0.
(0.7)
1
2
9
3
6
9
8
(0.
(5.
(7.
(0.
(0.
(2.
(1.
5)
3)
4)
2)
2)
5)
5)
50
7.
50
0.
60
3.
9.
1.
0
5
8
7
5
NOTE: Numbers in parenthesis are the estimate of compacted values.
*Table 4.5.
-------
Full Recycle;
Uncompacted 37-384 m /GW-yr.
Minimum compaction 163 m3/GW-yr (applying minimum compaction
factors to averages'of Table A-V.2).
Maximum compaction 48 m3/GW-yr (applying maximum compaction
factors to averages of Table A-V.2).
Uranium Recycle only:
3
Uncompacted 29-108 m /GW-yr.
Minimum compaction 74 rc/GW-yr (as above).
Maximum compaction 21 m /GW-yr (as above).
The uranium recycle-only case assumes that TRU waste appears only
at the reprocessing plant; there is close to zero TRU waste arising from
the throwaway case or from the tandem fuel cycle.
A-V.4 TRU WASTE RADIOACTIVITY AND HEAT CONTENT
The work of Blomeke et al on TRU waste quantities, which was used in
ERDA 26-43, gave the estimated TRU waste generation of 283, 566, and
113 m /MT of plutonium processed in fuel preparation, fabrication
and reprocessing, plus 293 m^/MT of intermediate level beta/gamma TRU waste
at the reprocessing plant.^ ' This work assumed plutonium loss to TRU waste
of 0.25%, 0.5%, 0.1% and 0.025% in each of these processes, for a total
Pu loss of 0.88%.(4) If 12 kg Pu/MT of fuel is processed, then total
Pu content of waste/GW-yr is:
(0.0088)(12 kg/MT)(26 MT/GW-yr) = 2.7 kg/GW-yr (4)
This quantity of plutonium loss may then be divided by estimated
waste volume to give Pu content in waste (Table A-V.3)(Table A-18).
Blomeke also estimated the curie content of a gram of plutonium
waste to be: 12.5 Ci at initial production, 0.17 Ci at 1000 yrs, and
8.1 x 10~* Ci at 1 million years.W Using 10 Ci/g as an estimated
activity level, then 2.7 kg would represent 27,000 curies of activity.
If one alpha decay is assumed to release 5 MeV of energy, the heat
rate of 1 curie of transuranics is 0.03 watts. The resultant specific
heat is shown in Table A-V.3..
The highest specific heat in Table A-V.3, 39 watt/m , is so small
a heat load it would not create any handling or temporary storage problems.
Certain components might have higher than average heat rates, however.
For example. NUREG 116 shows ventilation filters (uncompacted) at
560 g/m3.(°) A maximum volume reduction of 1:4, could result in
a heat rate of 672 watt/m3, a small but not insignificant number. The
specific heat could be reduced, if necessary, by mixing waste types.
A-V-7
-------
TABLE A-V.3
LOW/INTERMEDIATE LEVEL TRU WASTE
CURIE' AND HEAT CONTENT (PER GW-YR)*
Range of
Volume (m.)
Pu
g/m3
Ci/nf
W/nf
Full Recycle
Uncompacted
Minimum compaction
Maximum compaction
37-384
163
48
73-7
17
56
730-70
170
560
22-2
5
17
Uranium Recycle Only
Uncompacted
Minimum compaction
Maximum compaction
29-108
74
,21
93-26
36
129
930-260
360
1290
28-8
11
39
*Data assumes processing of early generation Pu recycle assemblies,
A-V-8
-------
A-V.5 COMPARISON OF SOURCE TERMS FOR TRU WASTE AND TRU CONTENT OF HIGH-
LEVEL WASTE
In the previous section, an estimate of the Pu content of TRU waste
was developed and keyed to total recycle loss of Just under 1Z. The
resulting source term is approximately 2.7 kg Pu/GW-yr of energy pro-
duction.* Since this number may be reduced somewhat, depending upon
process loss assumption, it may be characterized as being approximately
one-tenth the TRU content of high-level waste. This is approximately .
20 kg TRU/GW-yr from processed UO. assemblies and 65 kg TRU/GW-yr from
processing of assemblies from mixed-oxide fuel operation (equilibrium
cycle). Hence, in terms of TRU content and based on current estimates
of process losses, TRU waste represents a potential source of about
one-tenth that from high-level TRU waste. In addition, the TRU waste
is in much less concentrated form. Furthermore, it should be pointed
out that the potential radiotoxlcity from trash TRU waste is significantly
less than 10% of that for high-level TRU waste, because the latter have
a much higher content of transplutonium elements per unit weight. Indeed,
the untreated dilution index for total trash TRU waste/MT of spent fuel
never exceeds that for natural uranium ore required to make the fuel.
* Data used to generate Table A-V.3 assumed early generation plutonium
recycle, giving a lower plutonium content for mixed-oxide cases than
the equilibrium case. The equilibrium case is about 7 kg Pu/GW-yr.
A-V-9
-------
REFERENCES ~ APPENDIX A-V
1. Daly, G.H., and O.P- Gormley. Handling, Storage, and Disposition
of Solid Low Level Wastes. In: Radioactive Wastes from the Nuclear
Fuel Cycle. AIChE Symposium Series 154:72, 1976.
2. Rodger, W.A. Critical Evaluation of the Limit of Transuranic
Contamination of Low Level Waste. In: Radioactive Wastes from the
Nuclear Fuel Cycle. AIChE Symposium Series 154:72, 1976.
3. Alternatives for Managing Wastes from Reactors and Post-Fission
Operations in the LWR Fuel Cycle. ERDA 76 - 43, U.S. Energy
Research and Development Administration, 1976.
4. Blomeke, J.O., et al. Projections of Radioactive Wastes to be
Generated by the U.S. Nuclear Power Industry. ORNL-TM-3965, Oak
Ridge National Laboratory, 1974.
5. Blomeke, J.O., et al. Shipments in the Nuclear Fuel Cycle Projected
to the Year 2000. Nuclear News 18:8, June 1975.
6. Final Generic Environmental Statement on the Use of Recycle Plutonium
in Mixed Oxide Fuel in Light Water Cooled Reactors ("GESMO").
U.S. Nuclear Regulatory Commission, 1976.
7. Blomeke, J.O., and C.W. Kee. Projections of Wastes to be Generated.
In: Proceedings of the International Symposium on the Management
of the LWR Fuel Cycle. CONF 76-0701, Denver, Colorado, July 1976.
8. Environmental Survey of the Reprocessing and Waste Management
Positions of the LWR Fuel Cycle. NUREG 116, U.S. Nuclear Regulatory
Commission, 1976.
9. Steindler, M.J. and L.E. Trevorrow. Wastes from the Light Water
Fuel Cycle. In: Proceedings of the Symposium on Waste Management.
CONF 76-1020, Tucson, Arizona, October 3-6, 1976.
10. North, E.D. Solid Waste Generation in Reprocessing Nuclear Fuel.
In: Radioactive Wastes from the Nuclear Fuel Cycle. AIChE Symposium
Series 154:72, 1976.
11. Raudenbush, M.H. Estimated Costs for Waste Treatment from a 1500
Tonne/Yr. Reprocessing Plant. S.M. Stoller Corporation, New York,
1976.
* U.S. GOVERNMENT PRINTING OFFICE. 1979 -281-147/125
A-V-10
------- |