(- i; ii 0 0 u o o 0 u (i n 0 0 0 I) u 0 0 0 (I 0 0 • o 0 * * '(, s c u 0 u u 21) () II 0 11 0 0 0 o 0 0 0 0 II 0 . II 0 o 0 0 K < M 1 n < . ^ m ^ * • m . • . w 0 • • • • 0 • • 0 ( 0 ; t ' 1 F 1 J t 1 . ^ B „ m t 9 . : ^ ^ 0 . ^ w „ 0 • 1 0 ) 110 ; t < • c ( W f p B B a ^ . ^ „ : B ^ u 0 m ^ , 0 • J 0 ( 3 0 ( ; E < : c ( > I) L . m ^ ^ „ ^ . • * 6 9 i * ^ 0 • ) (i t i , i I 30 i ) U ( ; t < : N t > i . ^ t . ^ . ^ „ ; * * 0 % • * * 0 • ) 20 ( ( , 1 . ) 170 P P E s C vl t p 0.32 1 .34 1 .08 1.18 0.37 0.90 glsi. 1.26 0. 73 2.87 0.68 1.85 0.50 1. 31 O.bO 1 .30 0.23 1.7b 0.32 0.36 0.^:8 O.b2 0.26 0. 1 b ) 2.^0 i 0 . 64 » 0 . bb 1 ibb ) 1 .bO L p H 3.7 3.P .9 J-7 3^7 4.1 3.9 4.3 4.0 3.8 3.9 4.0 4.0 4.3 4.0 4.3 3.6 3.4 4.1 4.0 3.8 3.8 4.2 4.3 4 . 1 ^ . i 4|4 L C 0 N D 50 c,e^ 25 45 85 20 30 n 50 55 180 65 100 40 65 25 150 105 50 55 95 1 10 85 30 55 25 N C T N 0 T P OKH21SOU ON33PPPF 9M.g 1.26 0.47 1.99 0-07 0.03 0.00 9.9 0.65 0.49 0.90 0-03 0.03 0.00 0.0 0.30 0.22 O.S4 0.03 0.02 0.00 26.1 0.60 0.37 0.61 0.04 0.03 0.00 . 2.0 0.48 0.17 0.63 0.02 0.0? 0.01 l?.l 0.61 0.33 1.77 0.00 0.00 0.00 6.0 0.23 0.07 0.30 0.0? 0.0? 0.00 12.1 0.48 0.23 1.36 0.05 0.04 0.01 l?.i 0.31 0.15 0.44 0.01 0.01 0.00 H.I O.b4 0.29 O.b'5 0.0? 0.01 0.01 10.3 0.21 0.06 0.29 0.00 0.00 0.00 4 25.3 0.62 0.40 0.57 0.0? 0.01 0.00 7 4.7 0.41 0.19 0.6? 0.01 0.01 0.01 4 14.5 0.44 0.07 1.14 0.01 0.00 0.00 7.9 O.b4 0.25 0.54 0.01 0.01 0.00 6./ 0.31 0.1? 0.30 0-03 0.0? 0.00 3.2 0.46 0.19 0.39 0.01 0.01 0.00 7.6 0.41 0.30 0.60 0.03 0.03 0.00 1.3 0.53 0.18 0.34 0.02 0.01 0.00 10.7 0.81 0.42 0.76 0.02 0.02 0.01 14.1 1.02 0.66 0.66 0.0? 0.01 0.00 13.0 0.42 0.27 0.45 0.03 0.02 0.01 13.7 0.7b 0.45 0.39 0.03 0.03 0.00 11.9 0.97 0.59 0.41 O.OR 0.07 0.02 25.6 1.85 1.10 1.00 O.Ofl 0.05 0.03 2.5 0.31 0.05 0.16 0.01 0.01 0.00 <«.b O.b9 0.38 0.29 0.01 0.01 0.01 7.5 0.53 0.38 0.4P 0.01 0.01 0.01 1^.3 0.22 0.20 0.2S 0.00 0.00 0.00 6.4 0.42 0.13 0.18 0.01 0.01 0.00 bTA=51VF04 0 T H 1 S 1 110 11.HIM81 111 18JIJNH1 12 25JUN81 13 02JI'I PI 14 16JIIIP1 15 23JUL81 16 05AUGP1 17 13AIJ081 13:40 lhJbi\M 1 1 ' 53 2bJU''4h 1 0 : 35 or JM ft 10:10 2 * r • b J 0 ( b^> 0 '0 (1 1U 121' 1 J:) 0 i F S E S t S E S t < •> 7 X C C M M f F t ( ) N NUUNNtt^ I- ) 0 000..... ^0 20 1) 0 0 . fb ...... • 60^020 ) U O^UOOOOOO ( 1 0 000 p K L E C iES ESC L OC ; C C N N 1 P NO < D 0 IIP H DO .. ..0.313.9 50 1' . . . . 0 . 3b 4.0 BO 2C .. ..1.734.5 15 c . . . . 0.103.8 80 . . ..1.8b3.8 65 c I 00 80 0 2.14 4.0 65 2C .. . . 0. 74 4. 0140 f N 1.06 0.75 0.48 0.29 N O T T s P P 16.1 0.41 0.39 0.67 50 16.1 0.55 0.24 0.60 0.2 0.83 0.28 0.99 5.5 0.170.11 0.01 0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.23 0.00 0.00 0.00 1 0.01 0.00 1 0.01 0.01 1.31 0 0.58 5.6 65 20.2 0.39 0.23 0.58 0.01 0.01 0.00 ' 8.0 0.46 0.20 0.32 0.01 0.01 0.00 0 23
-------
wtIfALL STATION OATA



0 T
H I
S 1
11H 26AUOH1
1 19 02SFPM1
120 09StPHI
121 30SHPM1
122 150CTH1
12J 200CTH1
124 O^NOVfti
125 2SNOVH1
126 K'OECHl





I
12:35 (ICsrH*
13:4f, 1/StKM
11:20 02u'. 1 '

1 1 :OC 2»uH \K
1 3 : IS 0(?N(Wr
12:07 0 \\H C"




[

j











t.
f-
H
2 Jt> .
..i '•O 0
0 .30 0
_< i<) 0

/ <-0 U
250 .

2 (i^ 0



^
ft

(I
0
0

'
0
o
o
(1



K
/
I-J
6
60

'
Ml

(i
130



S t
; c
N U
0 .
0 U
hfl 0
CL OCT NO T H
NN1H N OK H 2T S OH
I1PH 0 DN 3 3P P PF
. . 1.96 4.5 30 2.9 0.55 0.21 0.36 0.01 0.01 0.01
. . 0.36 4.1 50 7.8 0.42 0.29 0.54 0.02 0.02 0.01
0 0 1.28 4.1 40 3.8 0.57 0.30 0.56 0.02 0.01 0.00
. . 0.40 4.1 55 14.2 O.ft6 0.47 0.53 0.03 0.01 0.01
»»0.273ci 110 19.4 * 1.000.94 . * 0.02
1JO 0 2.34 4.5 55 7.4 0.73 0.2b 0.34 0.10 0.09 0.07
. . 0.20 3.7 100 8.H 0.76 0.45 0.69 0.02 0.01 0.01
. . 0.62 4.1 1J5 5.1 0.47 0.32 0.42 0.02 0.02 0.00
. . 1.00 . . 3.2 0.58 0.24 0.14 0.02 0.01 0.01

-------
                                                                           flHYKALL  STATION  DATA
                                                                                                                                                                       127
~n
en
OBS Til 11^ 1U1S CO!) M-i3 TKN NU23 OH TP EPH EZN tCU EMr
1 1 ODtC80:09: 3t> 1 fiit (.f 1.1 : 0<* : ab . 200.0 ? . t". ^.03 b.9b 0.08 0.39 0 474 0
2 1 7Df ( 80 : 09!5'5 22nt: i 80 : 1 2 •• 35 ?H? MI'.O 1.1" 8.37 >*.s'£1 : 12:^2 O'-tjMjrtl : 1^:46 3o« l<>b.o 1.03 3.'*0 3.63 O.Ob O.lb 0 316 158
4 nfijANPI ! |P!/.5 lhj/.l.,81 : IT : Ob 9?^ JM.O 1.03 4.9H b./7 0.00 0.32 869 869 237
5 16JAhS 1 : 1 1 :0b' «?i>jArj« 1 s 1 3: 10 b'j? J-6A.O ^-.05 5.69 6.b7 O.OH 0.63 0 2?91 237
6 22JAN81 ! 13:30 0 }F t .<« 1 : 1 3! 3u 12^0 40/.0 3.40 8.37 b.(,(> I.** . 1106 869 b'b"3 63,
7 03FEH81 : 13:30 09F thH | : I i : 00 569 197.0 O.rt7 2. S3 2.^2 O.Q6 0.71 0 513 395 19"
fl 09FEH81 s 12:00 12F bHHl : 1 .l:iO b3 8s. 3 1.50 b.77 6.^3 0.24 0.71 0 474 0 Ibf
9 12FKH81 : 13:50 2<.F EPm : 13:40 345 P21.0 ^.85 13.27 7.35 . 0.79 0 671 0
10 24FEH81 : 1.3S40 09MAu'-Jl : 1 2 : bo 2820 1110. n 1.11 16.90 12.01 O.OH 2.21 94& 987 15M 75(
11 09MAPH] ! 1 2:50 ?5>.0 4.11 18.70 1.82 0.95 1.11 0 390 0
23 25JUNR1 : 13:00 02JHI.81 : 1 1 Miu 474 435.0 3.40 19.20 2.61 0.55 1.58 0 950 0
24 01JUL81 : 1 1 :00 08JHI. HI : 13:2(1 <.u2 29-^.0 5.29 ^7./3 2.76 2.53 3.71 0 671 0
25 08JUL81 : 13:20 1SJLJL81 :()9! JO 900 20-*. I) 0.16 6.00 4.50 0.00 0.6J 0 158 0
26 15JUL81 109:30 23JULM 1 : 1 j: 4-, 2H4 227.0 0.63 2.21 3.40 0.08 0.55 0 750 0
27 23JUL81 : 1 3:45 29JULt)l : 12:'»0 2bl 107.0 0.71 0.9b 2.53 0.08 0.16 0 434 0
28 293ML81 : 12:40 u6Aih^ 1 : 1 1 : Jb 727 251.0 0.32 2.21 3.79 0.08 0.55 0 395 0 19
29 06A(i(,ai : 1 1 :35 |4AHOdl : 1 1 : JS 7^7 u09.0 14. S3 63.32 2.05 5.13 7.11 0 671 0
30 14AUG81 : 1 1 :35 ISftlM.iHl : l.r. 15 758 274.0 8.14 70.77 2.05 7.0J 8.45 0 316 0
31 19AUG81 : 13: 15 26iH.I(,H 1 : 1 2 : 2U 190 167.0 0.63 4.58 2.84 0.16 0.55 0 513 0
32 26AUOP1 : 12:?0 l.nsKi'rt 1 : 1 i : S 1 600 HH.5 0.79 4.82 2.21 0.00 0.55 0 434 Q
33 03StP81 : 13:21 KlSe.HHl :09: 30 14? 116.0 0.47 3.40 2.53 0.00 1.03 0 197 0
34 10StP81 :09:30 1 7SKkb) : lo:5U 1500 ?050.0 0.3? 5.45 7.8? 0.00 0.93 0 395 0 79
35 17St.P8J : 10:50 21bt.HH| : 1 2 : D5 :i?9 143.0 1.58 5.37 4.90 0.00 0.47 0 316 0
36 215I-H81 : 1?:55 ?4SH-tU ! |M!2d 174 . ?.J7 7.50 1.26 0.00 0.55 0 316 0 15
37 24SEP81 : 14:28 (J 10CT8 1 : 1 (' : 5S r-b3 175.0 0.71 3.55 2.61 0.08 0.55 0 316 0
3b OlnCTei : 10:55 07.Ul.Tai : 1 3: 1 1 J 1 1JJ.O l.llj 6.32 1.26 0.08 0.<-7 0 237 0
39 020CT81 : 13! 1 1 'HOC To 1 = 1 ^ = 15 379 ?b4.() O.b7 16.19 l.»2 0.16 1.34
40 OPOCTP 1 : 1?: 15 1 Mil, 1 H 1 : 1 ^ : ou .<16 Vo.o !).7v 2.05 2.53 O.U3 0.32 0 316 0
41 140CTA1 : 12:CO 2UOCIMI : 1 j:SM '-C 1 f 1 : 1 u : Sb ~<- .\1 l«*b.U J.J2 ?.t~b <4.7t (.1! : 1 < : 1 n . . 1.03 . 3.24 1.11 ...
53 30DEC81 :09:35 OMJ/.IJH^ : 1 3 : 1 / . 238.0 1.97 5.61 3.32 0.00 0.32 1185 948 355 59
4 E:FE
•
4
> 2191'
J 568"
< 369:
1 2503^
3
703
1741
1 418
477
347
? i93i:
tc
) f
' (
I (
) (
(
3 (
.K ECU tNI
0 23S
0 C
) 0 (
0 27(
) 0
0
•
•
•
•
6
6
6
•
•
0
0
*
197
) 0 19
PHF
,
>
30
37
33
42
}



-------
                                                                 UP.YFALL STATION DATA
Tl
OHS Tl
54 10I-F.H81
55 12FFM81
56 24Ff-:hai
57 09MAH81
5b 17MAK81
59 26MAPM1
60 01APKU1
61 02APWH1
6? 06M'P8)
63 lOAF'KBI
64 15Apk«l
65 30APK*1
66 06MAYH1
67 l4MAYdl
68 21MAYB1
69 29MAYB1
70 ObJIJNHl
71 12JHN81
ft 18JUNBI
73 26JMN8I
74 01JMLH1
75 08JUI.81
76 17JUL81
77 23JUL81
78 30JUL8I
7V P6Al.lC,8l
HO 1'tfllH.dl
81 19A|)(jrtl
82 26A|l(iHl
H3 02SfHttl
84 09SFH81
05 17SF.P8I
86 21SEPB1
. d7 aSStPH)
an nioCTai
H9 020CIK1
90 07(>CT81
91 160CTB1
92 200CT81
93 280CTBI
94 OfcNHv/Hl
95 OW10VH1
96 I3NO*/81
97 19NIH/8I
98 25MOV8I
99 031JEC81
100 lOOt CM 1
101 16UF.C81
10? 2.3HH..WI
ri-
ii) ID? ii?FFt«Hi
12:40 2*t-Hidl
1 3 : 15 liVNArhl
Ii:i5 ittifii-dl
14:40 26i"AKHi
13:15 01AHW81
14: 15 uY/.Pnal
IDIIO ObAPkH]
lli:05 IOAPKHI
in:40 15APKM1
1 1 =55 3U/-PHM1
l'j:i>5 ur-^Arttl
11 = 16 1<»MA1M
lu:i:u 2H-AY61
11 MS ^->MAI-<|
1 (I : lb (Jb.Ml^l
l?:bO Ir'Ji.ltiHl
IPIB IfJtmtil
lo: IS ?'jj'iN«l
l^:t/0 OIJ'JLol
1^:30 driJULttl
1'. :?0 1 /JUL^l
10:40 23JULH1
I?:u5 30JHLH1
1 1 :20 C?>AUi.iHl
10:00 l^i'U(,81
ID .'I'D l^AUi'il
lo:'»5 ^D/M/I il
(H:35 O^SLt-rtl
Ji:i5 OVSh>41
li:50 1/^ttfil
n:5() dl^JHl
l^Mib r'bbe.HHJ
UV:U5 UH.'CTIl
1^:JO dc!i.>CIHI
O'JtO/ (J/uClll
09:<.0 IMiClHl
13:<*0 2UCiCl»l
1S!JS ^HuCIHl
1 1! '• 3B 0<«f!<)vHl
1 1 :t,o owiOvH i
I.I! 20 r»l,Ov«i
oy:^b i^i'iOi/o I
lllOb ^SNOVdl
IPlbb 03L)KCM1
13'- 15 loiiKfMl
13:35 iMJtCyl
1^:30 ^.UikLHl
u:oo 3o(/L(.Mi
^
































(

t













	 ^IA = MUI-I)<: 	
TOTS COD WH3 TKN N0?3 OP TP tPB E?N ECU EM^
?:<»0 1?6 26.1 l.lfl 2.92 2.76 0.00 0.16 0 <.7A 0 (
JM5 ?OS ISfr.O 6.00 8.69 b.71 0.08 0.32 0 869 0
1:15 <«bO J40.0 J..V 7.3S S.Mb O.OH D.uJ o 790 0 <»7*
'•^U h3 126.0 l.bO 2.37 2.^.5 0.16 0.39 869 197 0 (
j:i5 300 r'37.0 I.a2 6.08 3.00 0.16 0.71 0 237 0 (
3 54.5 2.05 5.61 3.08 0.32 0.4? 0 513 0 23
!:<•() 126 B'i.9 1.30 2.13 1.82 0.2<* 0.24 0 395 0
11:^0 ^J 7^.^ l.t-t- 1.^7 l.lb 0.00 0.68 0 237 0
j8 :<.<=, l^^ '3-..U l.ir'fe 1.97 l.bO O.OH 0.24 0 Q
l!(Jb • 9-3 31. h l.bM 2.1J 2.13 0.00 0.16 0 0
2:^5 23? 61. b 2.84 b.4E. 3.79 0.00 0.24 0 316
J!15 d4-i ')0.b l.bC 2.0". 2.13 0.00 0.2<» 669 158
Jtjb 743 h7.\ 3.00 3.63 1.74 0.08 O.lb 0 237
u!3n 4bM 9<».pi 1 ,bb 4. 'a! 3.40 0.00 O.Ob 0 1027
t,:<\C\ 47 31.^ 2.69 S.06 3.^0 0.08 0.16 0 474
1!45 4? L.7.4 1.11 4.bB 0.9b 0.24 0.3? 0 237
4 EFI
) 79
»
» 292
) 2521
) 462
) 252(
) (
) 1581

















387












96









'. ECI
)
•
3
3
1
3 19
)
) (








































* EC
3
•
3
3
)
'
3
3




































15



5 EN
3 (
•
3
3 15(
3 151
3 23
) 27(
3 27(








































1 PBf
)
»
»
1
i
r
i
3












13
11
10
14










































































-------
ALL STATION DATA
                                                                      139
OHS Til Tic
103 22APK81 : 13:00 30APK81
104 30APK81 : 10:50 06MAV8I
105 06MAY61 :l I :JU )4I.;AY8J
106 14MAY81:J]:00 21H4181
107 21MAY81 : 1 1 :00 29K«Y81
108 39MMBI : 10 = 07 ObJilNHJ
109 05 JUN8 1:12:40 1 1! JUIM8 1
110 12JUN81 : 1 1 :i)5 lnjllh8l
111 18 JIINS1 : 10:25 25JUN81
112 25JUN81 :09:45 02JULbl
M3 01JUL8 1:14:30 ObJiJLbl
4 16JUL81 : lo: 18 2JJULol
115 23JUL81 : 12:25 30JHLH1
116 30JML81 : 1 1 :40 06AU081
U7 06ADGP1 :09:45 14/'U(-H1
8 14Atlbr)l :09:r:0 19£uub]
119 19flU'.81 : 1 1 :00 26«Un|
126 30SEP81 : 1 1 :30 02UC181
137 020CT8I :09:oo u7oCM|
128 07UCTH1 : lo:00 16UC181
129 16UCT81 : 13:30 20OCIM1
130 200CT8I : 15:30 2n('CIHl
131 280CT81 : 12: 15 04hOv*l
133 04K.QV81 : 1 1 :25 06M)v81
133 06MOV81 : 13:25 13MOVr)
134 13NOV81: 0»:30 19MUV81
135 19NOV8i:il : 15 23r,'OVHl
136 25NOV81 : 12!45 03l.iLC81
137 03UFCKi:i3:2S 10L.tl.bl
138 10DEC81 : 13:45 160F.I.H1
139 16HEC81 : 14:20 23IJU..H1
140 23DFC81 : 13:40 3oDhi_M|
OHS Til Tl/
141 11JUNH1 13:40 Irijitfibl
142 18JUN81 11:53 25JUiv>fcM
143 25JUN81 09:55 o2.HlLfc?l
144 02JUL81 10:35 OMJUI.81
145 08JUL81 12:20 IfjJULlI
146 16JML81 10:10 23JHLdl
147 23JIJI.81 11:50 29JUL81
148 29JDL81 11:50 Ob«IJi,Wl
149 ObAUGB) 13:10 13AUl,Hl
150 13AUG81 10:10 19AlK,bl
TOTS (
10:50 900.0 c
11:30 434.0 '
11:00 P4S.O ••
11:00 743.0 l
10:07 513.0 1
1^:40 245.0 ?
11:05 3H7.0 i
10:25 142.0 '•
09:4S ?C4.0
14:30 474.0
1«:35 47.3
12:25 126.0
11:40 79.0
Ov:45 331.0
09:20 332. 0
li:oo 221 .0
0-^:10 964 .0
11:05 2733.0
lj:-5 ^21.0
1 1 :4C 5.17.0
12:00
0 9 : 1 2 506.0
11:30 .')4H .0
0 9 : 0 0 79.0
10:00 221.0
13:30 49o.o ;
15:30 300.0
12:15 4^7.0 ;
li:2S 3on.o
13:25 221.0
Od:30 158.0
1 1 : 1 5 1 1 1 . r,
12:45 363.0
13:25
13:45 403.0
l4:?(, 2b4.o
13=40 95.0
12:00 213.0
' TOTS
1 1 :S3 4 7.'.
09:55 63.0
0:35 300.0
2:20 15. H
OMO 142.0
1 :5o 32.0
1:50 15. b
3MO 374.0
10:10 1122.0
lo:3b 506.0
	 b>l fl = bllJf OJ 	
:OU NH3 TKN N023 OP TP EPB E7N ECU EMS
>71.0 1.42 30.88 5.21 0.00 4.03 . . 0
H2.0 1.58 11.14 2.92 0.00 1.11 . . 0
06.0 J.OO 12. bO 1.90 0.08 0.87 . .0
>22.0 1.49 46.05 4.34 5.85 7.90 . . 0
J96.0 3.40 20.60 3.40 0.95 2.37 0 553 0
>22.0 3.87 7.98 0.95 0.00 0.24 0 1027 0
JH:>.0 4.03 4.27 0.95 0.00 0.47 0 590 0
• 4t;.0 1.18 3.00 2.21 0.00 0.32 0 470 0
64.0 0.79 3.40 1.58 0.00 0.39 0 390 0
5d.O 0.79 3.95 2.45 0.08 0.63 0 790 0
73.5 2.21 4.96 1.18 O.Ob 0.24 0 355 0
56.0 2.^9 15.64 1.18 1.58 2.05 0 474 0
15.0 1.H2 2.76 0.79 O.OH 0.24 0 632 0
39.0 0.55 1.26 0.79 0.16 0.16 0 00.
lb.0 2.61 5.45 1.11 0.00 0.24 0 632 0
*-0.0 l.fh 7.90 1.11 0.95 1.97 0 276 0
9U.fi 0.16 3.95 4.58 0.00 0.95 0 513 0
1.03 9.32 4.03 0.00 1.66 0 513 0
7o.O l.lb 5.21 4.03 0.08 0.63 0 829 0
79.0 3.16 10. 9* 3.63 0.24 0.95 0 790 0
2n.O 1.42 4.34 0.9S 0.00 0.33 0 337 0 15
94.0 5.37 7.66 5.06 0.00 0.34 0 395 0
<<1.4 O.S5 0.9b 1.26 0.00 0.16 0 395 0
73.5 0.^7 5.77 1.26 0.08 0.24 0 1422 0
52.1 0.39 3.55 0.95 0.00 0.24
J??.0 1.42 2.84 3.3? 0.00 0.39 0 1501 158
Ms/. 3 0.74 3.87 1.11 0.08 0.16 0 434 0
?33.0 3.32 9.48 4.98 0.39 0.79 869 790 0 15
30.0 1.42 2.9? 1.82 0.16 0.16 0 434 0
32.4 l.ll 4.50 0.67 0.08 0.16 0 237
7^-7 . 1.50 ).6^ 0.00 0.24 0 316
52.3 1.74 1.97 2.61 0.00 0.16 0 513
74.3 1.58 5.45 3.95 0.08 0.24 790 1264
7b.2 1.74 2.H4 3.16 0.00 0.16 0 237
17.7 2.53 4.11 1.42 0.08 0.24 0 592
82.2 1.^0 2.61 4.19 0.08 0.08 0 1145
7b.2 1.34 3.32 2.05 0.08 0.08 0 1145
6.3 2.05 6.16 1.90 0.16 0.32 0 237
OiU NH3 TlvN N023 OH TP EPB E7N ECU EMr
st.i) (j.*t 2.64 1.11 0.00 0.16 0 390 0
64.0 0.47 3.08 1.U2 0.00 0.39 0 320 0
•vo.O 0.7v 3.40 1.H2 0.00 0.24 0 350 0
50.6 2.13 4.9H 1.32 0.24 0.55 0 316 0
5-.I 1.11 4.50 1.97 0.00 0.08 000
5'.. 5 0.63 1 . /4 3.34 0.08 0.34 0 158 0
9J.5 1.34 3.39 0.79 0.08 0.16 0 . 0
4S-.5 O.V1 1.58 1.58 0.08 0.39 000
56.1 l.>-2 6.*7 1.11 0.16 0.87 0 513 316 59!
50.6 0.32 3.76 1.2h 0.08 0.55 0 0 0
EFt












260





344






276









J EFI








\ 893<
•
EC



































: E<








\ (
9
H ECC






























15




> EC








)

) Et



































5 E








1 1

n PWF










14
39























Ml PH



6
1
3
3

;e
•





































»
•
•
3
i
J
9

.
.

-------
                                                                  ALL STATION DATA
130

OBS Til
151 19»ii(,fll :
152 26AU(- t-'fl 1 :
155 n^e^Ml :
156 24i^>ai :
157 30^r P81 :
158 020CT81:(
159 OVOCTHi:
160 150CTHJ:
161 200C181:
162 280CT8I:
163 04hUVttl :
164 06N'OV8| :
165 12UUV81:
166 1HNOV/81:
167 25NOVHM
168 03DECH1:
169 100ECH1!

T It
":35 2'>Atj<>Hl
o : <*^| 0 c* St ^*b 1
2 : 3^> 09SLPb 1
3:40 1 7 S * ^ '*!> 1
o : 36 2'tbt^el
2:2n SOSi-.^bl
1 :2n 11201.1 hi
j9 : 0 7 0/"CT81
0:00 1500181
0:30 20D(. Fbl
1 : 00 2«dCl r> \
2:20 04'iuVil
3M5 06KIUVHI
2:50 l^NOVHl
2:15 IctrjoVHl
2142 P5NuVol
2:o/ ti30fC81
1:42 1 Ul)h C^* 1
2:2b IbOkCHI

TUTS CUD NM.J Tf\N N023 OH TK EPB EZN ECU Ef
10:42 316 13f..O 0.47 3.24 -l«?t> 0.24 0.79 94H 237 0
lc;:35 _'V9 (T'M.iJ o.(>4 21'. BO ^.b3 2.05 2.14 0 15H 0
1.3:41.1 t.7v f'lo.O 9,9^ JO. 09 | ,5H 2.29 J.40 0 00
lo:3o . 30.0 0.95 2.*i'-> 1.90 0.00 0.32 0 15*3 0
lc-:20 y* »2.2 0.95 5.45 2.37 0.00 0.39 0 31h 0
Iis2h ?c?l 120.0 0.9b 3.4d 1.74 0.16 0.39 . . .
13:30 \*,> 31. -3 O.M 1.34 l.t^ 0.00 0.16 0 2567 0
Kisno m 23.7 0.39 2.^4 0.79 0.08 O.lb . . .
lo:30 47 30. f 0.6.< 3.<»0 1.74 0.08 O.OH 0 355 0
11 sou 15h ?<*.5 D.95 3.1i 1.-.2 O.Ob 0.16 0 237 0
1^:20 50b 11.9 D.vS <>.((-, 0.39 0.16 O.lb 0 0 0
13:15 ?53 '.s.d u.7u 2.13 1.50 0.24 0.24 . 237 0
12¥-50 47 4<4.2 O.t'3 3.63 0.71 0.08 0.24 0 197
12:15 4? 4-1.6 1.11 3.00 1.34 O.OH 0.24 0 276
l^:i.2 4 1 15.8 0.79 3.0b 1.50 0.00 0.16 0 0
12:0f . 30.0 1.74 <».74 2.29 0.00 0.16 869 197
lis<«2 ^04 lr>.^ 1.74 2.53 2.05 0.00 0.16 0 0
1^:25 790 r,6.9 2.05 3.24 2.37 0.00 0.16 0 0
]
-------
HIGH VOLUME: STATION DATA
OHS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
71 ORS
ID
21
?2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3H
39
40
DATE
15APP80
15MAY80
14JUN80
14JULHO
13AUG80
24St.P80
180CT60
29NUVHO
16JAN81
15FLH81
1 7MAP61
16APW81
16MAY81
15JUN81
15JUL81
14AUG81
13StP81
130C181
18NOV61
loDtCfcl
DATE

15APP80
1SMAY80
!4JUNbO
14JUL80
IJAUObO
24SLP80
180CT80
IVNUVbO
J6JAiN8J
IbFLhbl
1 7MAKH1
16APW81
16MAY81
IbJU^Bl
15JIA81
20fi.iJi.jtil
13Shr-bl
130C[8'1
iHNoVb 1
IttULCal
TSUSP
3<+.3
5b.2
7v.y
60. h
hi .9
46.6
•
31 .rt
b9.0
/S.O
Jb.O
114 . J
44.4
74.4
b3.1
^l.b
109.0
50.7
fid. 2
4b.3
1SUSP

3b.b
bb.S
7S.6
fo.d
/J.7
62.3
•
35.4
vj.O
b'o. V
<».>.
-------
OHS
41
42
43
44
45
46
47
48
49
1?
52
53
54
55
56
57
-n
1, OHS
58
59
60
61
62
63
64
65
66

68
OHS
69
70
71
72
73

75
76
77
78
79
80
81
82
DATE
15/iPPr.o
15MAY80
14JilLrtO
13^0680
18SFP80
180CT80
1 7NOVHO
23MOVHO
17UECHO
nMAkbl
16APK81
16MAY81
15JUN81
14AUIJ81
13SEP81
13UCT81
DATE
15'APKHO
IbMAYHO
14JUL.CO

IttSE^fci)
18GCTm)
23NOVHO
1 bf t db 1
1 7 M A w f 1
1 f) A P H f 1
16MAY81
0/iTE
15APP80
1 5M>*YfaO
l4JULbO
1 JAU'-OO
] 8St^HO
i ttoc. Ft) o
1 /'I'jUVcM)
?3NUVdO
17fJhC80
16JAN81
15FKH81
16APP81
16MAY81
15JUL81
TSUSP
2b. 7tt
43 • t>0
53.t>2
51.15
42.02
3'4. 77
J2.95
bO . 16
35.90
82.52
*4 t* • U f
ij T _ ^) T
}*~> . 76
bb.2b
77.53
85.43
^2.02
1SUSP
27.7?
51 .26
65.61
07.79
55.30
41.2^
71 . Ib
7 b . b 0
f><+ . f^b
M .SO
3<4. 16
TSUbK
2b.2B
42i 7U
b>4 . 7*»
'4^.02
41 .41

40.20
btt.26
60. HH
«b . 3 7
7 7 . 8 v
55.17
39.59
92. 71
T*N
0.14
0.08
0.13
0.10
0.17
m
0.39
0.19
0.30
1 .67
0.23
0.44
0.32
0.63
0. 78
1 .26
0.31
TKN
0.06
0.11
0.22
0.14
O.lb
0.03
0.49
0 » f4
0.20
0.40
0.24
TKN
0.07
0.0<»
0.15
0.07
0 . 36
0.0^
,
.
0.56
1.25
0.59
0.38
0.50
0 .dV
TH
0.01
0.01
0.01
0.02
0.02
9
0.01
0.01
0.00
0.07
0.03
0.09
0.03
0.06
0.07
O.Ob
0.04
TP
0.01
0.02
0.0?
0.02
0.0?
0.01
0.0?
0.06
0.03
0.10
0.0?
TU
0.01
0.02
O.U2
0.02
0.03
0.01

.
0.01
0.08
0.06
0.09
0.03
0.04
N023
1 .99
3.06
5.05
4.30
4. 74
1.82
2. 75
3.19
4. J4
8.06
3^77
2.48
3.68
6.65
5.14
4.96
N023
1.95
4.43
I" 5 . 6 7
5.67
5.09
1.06
b.14
10.19
2.97
3.59
2.04
NO* 3
1 .04
2.04
5.94
3.28
} . v9
1 .40

4l47
4.70
12.23
8.24
3.59
3.59
1 .86
HIGH VOLUME STATION DATA
       STA=51HV03 	
         OP    ECU     EPB
       STA=51HV04
           OP
       STA=5lHv05
         OP    F.CU
        EZN
        EMN
        EFE
ECR
               ECD
0.04
0.07
0.05
0.04
0.03
0.04
0.04
0.04
0.04
8:83
0.06
0.10
0.09
0.30
0.14
0.09
EC
8:
0.
0.
0.
0.
0.
0.
0.
0.
0.















U
01
01
0?
04
02
02
04
01
02
02
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0










.04
.10
.17
.13
.19
.09
.59
.59
.27
:§i
!04
.11
.15
.20
.26
.29
EPB
0.04
0.26
0.18
0.27
0.23
0.20
0.69
0.66
0.11
0.27
0.10
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0










.01
.00
.06
.02
.05
.04
.04
.04
.04
:88
loo
.15
:i?
.21
.25
EZ
8:
0.
0.
0.
0.
0.
0.
0.
0.
0.














0
N
U
8!
14
05
02
00
00
64
22














01 0
EMN E























11 (
:FE E(























) (
:R E(























)
:o









EPb
EZN
EMN
EFE
ECR
        ECO
0.01
0.01
0.0^
0.03
0.04
0.04
0.02
0.02
O.Ob
0.05
0.'04
0.02
0.04
0.04
0.07
0.04
0.12
0.04
0.18
0.21
0.37
0.43
0.60
0.45
0.55
0.15
0.07
0.15
0.02
0.00
0.05
0.00
S:?B
0.09
0.09
0.03
0.00
0.00
0.00
0.22
0.22
                                         01
                                0 05

-------
HIGH VOLUME STATION  DATA
OSb D~Tt
fl3 ItMilOdl
84 iJStKOl
85 JJilLldl
DBS DATE
86 Ib^PMHO
B7 IbM AY no
Htt l4JUt\!tHl
89 l4JuLc<0
90 13AUOHU
91 18UCTBO
93 17K-OVHO
93 17DLCOO
94 IbJA'lHl
9S IbFtMHl
-n 96 17MA;val
1 97 loAPKfl
"~t 98 loMATOl
99 IbJUNtU
100 IbJULd)
101 144U081
102 135>t.P81
103 13UC1M
104 18NU \ttil
105 iBULCbl
106 1 7JANb?
OriS DATE
107 lbAH'80
108 Ib'^AYfau
109 InJUNhU
110 14JUL8U
111 13AU(,HU
112 18SLP80
113 IbOCTHO
114 17NUV8U
lib 14I)LCBI>
116 lbJAN81
17 jbFI-H81
18 13MAR81
19 16APRB1
20 IbMAYBl
21 15JUNB1
22 IbJULBl
23 14AU(-81
24 16SEPH1
rsu:>p
9o. /h
9.l.b9
/V. Jo
fsUbP
J(i
b7
If
71
H3
3^
J9
5b
91
1 IM
r!9
6^
Jb
r>3
jj
^
90
bb
bJ
Jb
^b
1 oUbP
^1 .0
^9.^;
bd. f
*+V . 4
b/.i
'i'l.M
6 1 .H
JT. J
^4.<^
9^.b
fab . b
b^.O
79.0
3b.8
71 .0
•
(.>-->.<*
•
TKN
O.nb
1 .^H
0.71
TKNJ
O.dM
•
O.bO
O.S2
*
0.19
U.t'd
O.b?
0. 7b
•
0.^0
^.(V
O.bb
1 .20
0.2S
0.96
1 .dl
0 . 3 3
1 .63
1.07
o.^y
THN
0.^0

ol^b
0.43
0. J'*
0.-16
0.4^
0.33
O.^c?
1 .b7
0.97
O.bO
o.ab
1.11
1 .40
0. 00
O.vd
0.43
TP
0.06
O.lib
0.07
TP
O.OP

0 '. 0 3
0.03
•
0.03
0.0^
0 . 0 3
0.04
•
0.04
0 . 1 b
0.1)4
0.0 9
0. 04
0.07
0.04
O.Ob
0.03
0.01
0.0?
Tf
0.03
0 . 0 3
0 .04
0.04
0.03
O.Oc"
0.01
o.oi
0.0?
0.06
O.Ob
O.Ob
>
.
0.13
0.05
0.0?
O.Ob
0.03
N0?3
6.0^
6.dO
b.3?
NO? 3
•
»
^
•
•
•
•
—
•
•
0.44
•
0.2b
1 .80
0. f9
3.1 1
1 .14
l.l/
1 .40
•
O.bZ
NO/^3
0.3V
0.83
1.19
1.19
0.83
ir.3b
I:K
•
•
•
•

•
0.90
•
l.bO
0.84
b 1 fi-*3
OP
•
•
1MV03 	
tcu
0.04
0.07
. 6. 05
OP ECU
•

*
•
•
•
•
•
•
•
0.01
•
0.00
o.oa
0.01
0.00
0.0?
0.01
0.01
t
0.00
C 1 A — C
D 1 P — D
OP
0.00
0.01
0.04
0.02
0.03
•
•
•
•
•
•
•
•
•
0.01
•
0.00
0.01
0.04
0.06
O.Ob
0.07
o.ou
0.06
0-OB
0.13
0 . 1 b
0.17
O.Ob
0.09
O.OB
0.
-------
HIGH  VOLUME. STATION DATA
OBS
125
126
127
128
OBS
129
130
131
132
133
134
135
136
137
- -n 138
£ 139 .

1X3 12?
142
143
144
]45
146
147
148 J
149
150
151
IbZ
OATt
lUOCFbl
15NO'/81
IHUtCbl
1«+JM,MH2
Ow Ft
15A('KbO
1 b M A Y ti 0
14JUN80
14JULHO
J 3Ai/uHO
j bSI" MM (1
IbOCTWO
1 7HU VM I)
l4l)tCHO
1 b J Ai-Jb 1
1 5 F h. n b 1
1 3 K p *•' b 1
]6APKbl
16MAY81
IB Ji IN 81
15JUL81
14AUGH1
1 6sh Pb 1
130tFbl

IbUtCMl
"""""""
OATt
13uClbl
TSUSP
H 3 . 3
29.7

56." 4
TSUSP
21 .0
44. b
b4 . 6
44. b
b2 • H
'i -» . •+
HM . a
4b . b
29 . b
/b.9
49. y
ol .b
bv . j
4H.3
b 0 . 4
77.?
yo.'-t
.
52 . 3
3 U . ?

52! V
1SUSP
^9li3
TKN
0.43
0.06
0.91
1.33
TKN
0.27
u. 39
0.30
0.41
0. vb
0.63
0 .4b
0.53
0.12
*
0.14
0.38
0.60
0 . h 7
1.39
0.24
0.76
0.53
0.39
0.13
0 . 9 1
1 .3?
(1.63
O.b'3
TP
0.02
0.02
0.01
0.01
TP
0.01
0.02
0.0^
0 . 0 3
0.04
0.03
0.03
0.02
0.00
,
0.03
0.08
O.Oh
0.02
O.Ob
0.06
0.05
0.0^
0.02
O.u?
0.01
0. 02
. 0.05
0.04
(4023
1.33
0.6V
0.91
1.25
M023
0.34
0.54
1.05
O.V2
0.7^*
1 .26
*
1 .14
.
,
,
.
.
0.31
1 .05
o.eti
1.14
0 . ^2
1. 19
O.bS
O.SS*
0.24
N023
6 '. I b
b! A=S1
OP
0.01
0.00
0.00
nvu/ 	
ECU
0.07
0.04
0.03
0.00 0.04
OP ECU
0.00
0.01
0.03
0.03
0.02
•
•
•
•
•
•
•
•
0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
b 1 A-b 1
OP
•
•
0.14
0.22
0.34
0.20
0.04
0.03
0.03
0.04
0.04
0.07
0.03
0.03
0.03
0.02
0.06
0.04
0.03
0.03
0.04
0.02
0.02
0.03
ECU
0.06
O.Ob
EPB
0.28
0.11
0.14
0.21
EPB
0.02
0.12
0.17
0.16
0.27
0.17
0.62
0.57
0.09
0.30
0.12
0.09
0.12
0.07
0.17
0.12
0.18
0.17
0*46
0.11
0.21
0.20
EPB
0.26
O.b5
EZN EMN EFE ECR ECO
0.04 0.01 0.18 0 0
0.08 ....
0.05 ....
0.14 0.01 0.11 0 0
EZN EMN EFE ECR ECD
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.11
0.33
0.05
0.00
0.00
0.00
0.00
0.13
0.36 0
0.35
• 0.02
0.05 0
0.07
0.04














02 0


02 0
















59


25










































0.06 0 01 0 09 0 0
EZN EMN EFE ECR ECD
0.16 . . . .
0.22 0.02 0.14 0.04 0

-------

OCCOQUAN WATERSHED
MONITORING LABORATORY
                FINAL REPORT - MWCOG NURP
                  Prepared for
             Department of Environmental Programs
          Metropolitan Washington Council of Government
                1875 Eye Street, N.W.
               Washington, D.C. 20006
                VIRGINIA TECH
                DEPARTMENT OF
                CIVIL ENGINEERING
                                 MANASSASf
                                 VIRGINIA

-------
OCCDQUAN WATERSHED
MONITORING LABORATORY
                FINAL REPORT - MWCOG NURP
                  Prepared for
             Department of Environmental Programs
          Metropolitan Washington Council of Government
                1875 Eye Street, N.W.
               Washington, D.C. 20006
                VIRGINIA TECH
                DEPARTMENT OF
                CIVIL ENGINEERING
                                 MANASSAS,
                                 VIRGINIA

-------
             FINAL REPORT - MWCOG NURP
                   Prepared for
       Department of Environmental Programs
  Metropolitan Washington Council of Governments
              1875 Eye Street, N.W.
             Washington, D.C.  20006
                    Prepared Dy
Virginia Polytechnic Institute and State University
          Department of Civil Engineering
             94Q8 Prince William Street
             Manassas, Virginia  22110

                     May 1983

-------
                               TABLE OF CONTENTS


CHAPTER                                                                  PAGE

  1         INTRODUCTION 	    1-1

  2         SITE SELECTION	    2-1
            BMP Site Selection	    2-1
            Critical Watershed Site Selection  	    2-2
            Atmospheric Sampling Site Selection  	  ...    2-3
               High Volume Sampling Stations  	  	    2-3
               Wetfall/Dryfall Sampling Stations 	    2-3

  3         STATION DESIGN AND INSTALLATION  	    3-1
            Monitoring Considerations  	    3-1
            Precipitation Measurements 	    3-1
            Flow Measurements	    3-2
               Critical Watershed  	    3-3
               BMP Sites	    3-4
            Sample Retrieval  	    3-10
               Critical Watershed  	    3-10
               BMP Stations	    3-12
            Data Recording	    3-13
               Critical Watersheds 	    3-13
               BMP Stations	    3-13
            Station Installation 	    3-16
               Housings	    3-16
               Interfacing	    3-16
               Activation and Shut-Down  	    3-16
            Wetfall/Dryfall Sampling	    3-18
            References	    3-21

  4         FIELD METHODS  	    4-1
            Site Visitation	    4-1
            Rating Verification  	    4-2
            Sample Collection  	    4-9

  5         LABORATORY METHODS 	    5-1
            Sample Handling  	    5-1
            Analytical Program	'	    5-1
            Analytical Methods 	    5-4
            Quality Assurance  	    5-4
            References	    5-6

  6         DATA MANAGEMENT	    6-1
            Data Base Manager	    6-1
            Computing Facilities	    6-1
            Variable Codes 	    6-1
            Data Storage	    6-1
               General	    6-1
               Cassette Tape Data Storage	    6-2
            Data Transfer	    6-2
            Data Base Absract	    6-3
            References	    6-5

-------
CRITICAL WATERSHED STUDIES 	   7-1
Introduction 	   7-1
Base Flow	   7-1
   Seneca Creek  	   7-1
   Piscataway Creek  	   7-3
Storm Runoff	   7-3
   Total Suspended Solids  	   7-3
   Chemical Oxygen Demand  	   7-3
   Nitrogen	   7-6
   Phosphorus	   7-6
   Metals	   7-16

BMP MONITORING	   8-1
Introduction 	   8-1
BMP Pairings	   8-1
Retention and Detention Ponds  	   8-1
   Data Analysis	   8-2
   Runoff	   8-4
   Suspended Solids-Retention Ponds  	   8-4
   Suspended Solids-Detention Ponds  	   8-7
   COD-Retention Ponds 	   8-7
   COD-Detention Ponds 	   8-7
   Nitrogen-Retention Ponds  	   8-7
   Nitrogen-Detention Ponds  	   8-15
   Phosphorus-Retention Ponds  	   8-15
   Phosphorus-Detention Ponds  	   8-19
   Metals-Retention Ponds  	   8-19
   Metals-Detention Ponds  	   8-22
Non-Pond BMP's	   8-22
   Data Analysis	   8-22
   Precipitation 	   8-25
   Suspended Solids  	   8-25
   Chemical Oxygen Demand  	   8-28
   Nitrogen	   8-28
   Phosphorus	   8-36
   Metals	   8-36
References	   8-42

ATMOSPHERIC SOURCES  	   9-1
Introduction 	   9-1
Total  Suspended Particulate Monitoring 	   9-1
   Particulates  	   9-1
   Phosphorus	   9-4
   Nitrogen	   9-4
   Metals	   9-4
Dryfall   	   9-12
   Solids	   9-13
   Chemical Oxygen Demand  	   9-13
   Nitrogen	   9-13
   Phosphorus	   9-19
   Metals	   9-19
Wetfall   	   9-24
   COD	•	   9-24
   Nitrogen	   9-24

-------
             Phosphorus	   9-30
             Metals	   9-30
             Hydrogen Ion Activity 	   9-36

10        TRACE METALS IN SOILS OF BMP SITES	   10-1
          Study Sites	   10-1
             Fai ridge	   10-4
             Stratton Woods  	   10-7
             Route 234	   10-7
             Stedwick	   10-8
             Bulk Mail	   10-8
             KMart	   10-10
          Sampling and Sample Selection  	   10-10
             Surface Soils 	   10-10
             Grassed Swale	   10-10
             Detention Basins  	   10-17
             Depth Sampling	   10-20
          Laboratory Methods 	   10-26
             Total Enriched Trace Metals 	   10-26
             Soil Property Determinations  	   10-26
          Results-Surface Soils  	   10-27
             Grassed Swales  	   10-27
             Patterns at Swale Sites 	   10-41
             Impacts of Galvanized Culverts  	   10-45
             Detention Basins	   10-51
          Results-Depth Investigations 	   10-85
             Grassed Swales  	   10-87
             Detention Basins  	   10-103
          Discussion-Surface Soils 	   10-117
             Grassed Swales  	   10-117
             Detention Basins  	   10-119
          Results-Depth Investigations 	   10-122
          Summary  	   10-124
          References 	   10-126

11        SEDIMENTATION AND PARTICLE SIZE ASSOCIATION STUDIES  . . .   11-1
          Introduction 	   11-1
          Methods	   11-1
             Sampling Sites	   11-1
             Sample Collection 	   11-2
             Sample Analysis 	   11-4
          Results	   11-6
             Solids	   11-6
             Organic Matter  	   11-9
             Phosphorus	   11-19
             Nitrogen	   11-19
             Metals	   11-23
             Col i forms	   11-25
             Particle Size	   11-25
          References	   11-35

12        BIOAVAILABILITY OF NUTRIENTS 	   12-1
          General	   12-1
          Methods	   12-1

-------
Results	   12-5
   Wet Ponds	   12-6
   Dry Pond	   12-6
   Infiltration Pit	   12-6
   Grassed Swales  	   12-8
   Porous Paving 	   12-8
References	   12-9

APPENDIX A	   A-l

APPENDIX B	   B-l

APPENDIX Cl  . .	   Cl-1

APPENDIX C2	   C2-1

APPENDIX D	   D-l

APPENDIX E	   E-l

APPENDIX F	   F-l

-------
                                1.  Introduction

     In May,  1979, the Metropolitan Washington Council of Governments (MWCOG),
the  Northern Virginia Planning District Commission (NVPDC), and the Virginia
Polytechnic  Institute and State University (VA TECH) jointly prepared and sub-
mitted a grant application to the United States Environmental  Protection Agency
(EPA) for funding of a project under the auspices of the Nationwide Urban Runoff
Program  (NURP).  A revised version of that grant application was approved by EPA
with MWCOG acting as the lead agency.
     In late  1979 negotiations between MWCOG and VA TECH were begun to develop a
detailed plan of work for the field studies required as a part of the MWCOG
NURP.  Because of delays in the execution of a final  contract  document, MWCOG
obtained EPA permission to extend authorization to VA TECH for the procurement
and deployment of equipment prior to the completion of negotiations.  Data
collection actually began in June, 1980, and the contract between MWCOG and VA
TECH was executed that same month.
    The plan of work for the project was developed around the  following general
categories:
              o Critical Watershed Studies
              o BMP Effectiveness Studies
              o Atmospheric Source Studies
              o Priority Pollutant Studies
              o Special  Studies
    Of the above categories, studies in each were conducted by VA TECH, with the
exception of the priority pollutant category for which VA TECH only retrieved
samples.
                                 1-1

-------
    In the course of the program, VA TECH instrumented two critical  watershed
monitoring stations, sixteen BMP monitoring stations, four atmospheric source
stations, and received samples from an additional seven high volume  atmospheric
sampling stations.  In all, hydrologic and chemical data from over 600 station-
storms were collected at the critical watershed and BMP stations.  The
wetfall/dryfall and hi-volume stations produced an additional  observations  for
the data base.
    It is the purpose of this document to convey the final results of the field
studies conducted by VA TECH as required by Tasks 3f, 3g, 4f,  5h,  and 5i of the
MWCOG-VA TECH Contract of  18 June, 1980.
                                 1-2

-------
                               2.  SITE SELECTION

     In order to avoid problems with monitoring program start-up,  VA  TECH  staff
began working with representatives of MWCOG,  NVPOC,  NAHB,  and  NVBA on  the task
of monitoring site review and selection in February, 1980.   this  date  was
substantially in advance of final work plan adoption and execution of  a contract
document between MWCOG and VA TECH, but, as stated earlier,  was deemed by all
parties to be necessary to avoid scheduling problems at a  later date.

BMP  Site Selection
     Proposed BMP monitoring sites were reviewed by a five  member  committee com-
posed of members from the organizations cited above.  Following tentative appro-
val  of a site by the committee, VA TECH staff conducted an additional  examina-
tion to determine the suitability from a monitoring  standpoint.
     The final project design included 12 monitoring  sites, six of which were
pond facilities (retention or detention) requiring inflow  and  outflow  moni-
toring.  Nine of these sites were included in the original study  design,  which
was  to be performed in two phases, involving  a shifting of monitoring  station
locations after a pre-determined period of time.   However, later  considerations
of late start-up and size of data base made the phased approach unfeasible, and
it was decided to retain the BMP monitoring sites throughout the  project.   A
summary of the pertinent data from all  the selected  BMP monitoring sites  is
shown in Table 2-1.
    Because of the alterations to the original  plan  of work  that  took  place over
the course of the study, the following observations  should be  made with respect
to Table 2-1.
         o Site V.A.  - Bulk Mail  Center (51UR13,  51URU) was deleted
           from the original  sampling plan because of site monitoring
                                 2-1

-------
           problems and unacceptable hazards to personnel.
         o Site  I.B.  - Defief  (51UR18) was added to the initial  network
           of BMP monitoring stations to provide information on  moderate
           density single family catchments drained by grassed swales
           (in a Maryland suburb).
         o Site  III.B. - Lake  Ridge  (51UR07, 51UR08) was originally
           instrumented as a part of the EPA Chesapeake Bay Program.
           The site was continued under MWCOG NURP, but was not
           equipped with compatible  instrumentation.
         o IV.A  - Rockville City Center (51UR19) was added to the work
           plan  because of the desire to include a porous asphalt parking
           surface in the project.
         o VLB  - Fair Oaks Mall (51UR20, 51UR21) was added to the
           project plan using  external funds contributed by the mall
           developer.
Given the above  observations,  it may be determined that the final project design
for BMP assessment was distributed as follows:
                  Retention Ponds -  3 sites
                  Detention Ponds -  2 sites
                  Grassed Swales - 3 sites
                  Infiltration Pits  - 2 sites
                  Porous Paving 1 site
The MWCOG NURP station numbering scheme is presented in Table 2-2.

Critical Watershed Site Selection
    At the direction  of COG staff, VA TECH personnel arranged to meet  with
representatives  of the USGS Towson District Office for the purpose of  selecting
                                 2-2

-------
suitable monitoring sites on Seneca and Piscataway Creeks.   The  sites  requested
by COG staff were located at existing USGS gaging stations  as  follow:
      STATION               USGS STATION            MWCOG NURP STATION
  Seneca Creek at             01645000                    51UR01
  Dawsonville, Md.
  Piscataway Creek at         01653600                    51UR02
  Piscataway, Md

Atmospheric Sampling Site Selection
High Volume Sampling Stations.  COG staff selected a network of  eight  high
volume atmospheric particulate monitoring stations in the Washington,  D.C.
region.  These stations were all operated by other agencies, and arrangements
were made to provide filter mats and air flow data to meet  the program analyti-
cal needs.  The stations names and numbers are summarized in Table  2-2.

Wetfall/Dryfall Sampling Stations.  Originally, three wetfall/dryfall  monitoring
stations had been envisioned for the project.  These were to be  placed near BMP
sites for which atmospheric source data were required near  other urban areas for
which atmospheric source data would be useful.  At the end  of  the EPA  Chesapeake
Bay Sub-Study performed by VA TECH, an additional  wetfall/dryfall sampler became
available, and permission was secured from the owner, the Virginia  State Water
Control Board, to use the equipment in the project.  The final wetfall/dryfall
sampling site locations are shown in Table 2-2.  It should  be  noted that one
site, Burke Village Center, was instrumented with two samplers in order to  allow
determination of the differences between general  air mass sources and  near-
ground sources.
                                 2-3

-------
                                         Table 2-1. - Continued
ro
MONITORING BMP
SITE TYPE

A.
B.
C.

Stratton Hoods Grassed Swale
Duflef Grassed Swale .
Hestleigh Inflowi Met Pond
Outflowi
STORAGE
(cu.ft.)
I. Large-Lot Single
189,000
BMP INFLOW % BMP '
OTHER DATA COVERAGE
Family Residential
MeanJSwala 260 ft. 1C. 100%
Mean Swale Slope
1.8%
Mean Swale Length 1C. 100%
44S ft.
Mean Swale Slope
5.1%
Pond Surface Area Monitor 100%
50,000 sq. ft.
II. Medium. Density Single Fully Rasidental
A.
B.

A.
B.
C.
Palridge Grassed Swale
Burke Ponds Inflowi Wet Pond
Outflow! Hat Pond

Stedwick Inflowi Dry Pond
Outflow!
Lakeridge Inflowi Dry Pond
Outflow!
Dandrldge Infiltration Pits
351,000
III. Townhouse/Garden
38,000
(NPS)
210,000
(10 yr. 2 hr.)
4060
(Void Space)
Mean Swale Length I IB 89.4%
423 ft.
Mean Swale Slope
4.1%
Pond Surface Area Monitor 100%
41.000 sq. ft.
Apartatents
5.51 36" Riser Monitor 100%
1/2* Perforations
7.5' Riser Monitor 100%
Perforated 6* III A, B 47.6%
Tile Drains
IV. Office
A.
Rockville City
Center Porous Pavement
27.400
(void space)
Perforated 6* Tile III A, B. 91.1%
Drains
v. Industrial
A.
Bulk Mall Center Inflowi Dry Pond
Outflows
68,000
(NPS)
1.5* B' Dlaa. Riser Monitor 1OO%
1" Perforations
VI. Shopping Center
A.
R
Burke Village
Shopping Center Infiltration Pits
Fair Oaks Uet Pond
11,240
(void apace)
13 t^ft

	 	 1OO»
                     SOURCE:  NVPDC

-------
             Table 2-1.  BMP Monitoring Sites for MWCOG NURP
WATERSHED AVERAGE
MONITORING AREA DEIISITY
SITE (acres) (du/acre)

A. Stratton Woods 9.48 1.8
B. Duflaf 11.84 2.2
C. Westleigh
Inflowi 40.9 1.2
Outflow. 47.9
EFFECTIVE
IMPERVIOUS • IMPERVIOUS REPRESENTATIVE
GROUND COVER GROUND COVER SLOTS
(«) ' (%) (»»
I. Large Lot Single Fully Residential
22.2 16.5 . 1.6
18.5 11.1 8.5
21.2 14.0 1.7
24.2 16.1
WATERSHED WATERSHED
AREA WITH AREA WITH
SEPARATE STORM CURB t GUTTER
SEWERS (»( It)

100 . O
10O 0
100 81.7
II. Medlusi Density Single Family Residential
A. Fairldga 18.8 2.8
B. Burke Pond
f\3 Inflowi 18.3 3.O
1 Outflowi 27.1
cn

A. Stedwlck
Inflowi 27.4 6.1
Outflowi 14.4
a. Lakerldge
Inflowi 66.3 9.O
Outflowi 88.4
C. Dandrldge 2.46 16.0
14.1 21.0 4.1
32.7 25.1 4.5
11.5 24.5
III. Townhouse/Garden Apartments
11.8 22.1 4.7
10. 5 19.2
32.6 17.2 7.9 ' '
30.7 24.7
54.5 11.6 1.6
100 0
100 100

100 79.7
100 68.1
100 100
IV. Office
A.Rockvllle Center 4.2 M/A
69.5 69. 5 2.6
100 74. J
V. Industrial
A. Bulk Mall
Center Inflowi 19.0 M/A
Outflowi 2O. 1 H/A

A. Burke Village
Shopping Center 4.S H/A
B. Fair Oaks 54.7 M/A
81.0 81.0 •
78.5 78.5
VI. Shopping Centers
79.2 79.2 1.6
90.0 90.0 •
100

100 B2.0
• •
SOURCE:  NVPDC

-------
                    Table 2-2.  MWCOG NURP STATION NUMBERS
RUNOFF SITES
STATION NO.
HI-VOL FILTER SITES
STATION NO.
Seneca Creek
Piscataway
Burke Pond (in)
Burke Pond (out)
Dandridge
Stratton Woods
Lake Ridge


Lake Ridge

Fai ridge
Stedwick (in)
Stedwick (out)
Rockville Police HQ
Bulk Mail (in)

Bulk Mail (out)
Westleigh (in)

Westleigh (out)
Burke Village Center
Defief
Rockville
Fair Oaks (in)
Fair Oaks (out)
UR 1
UR 2
UR 3
UR 4
UR 5
UR 6
UR 7
(CB 7)

UR 8
(CB 8)
UR 9
UR 10
UR 11
UR 12
UR 13

UR 14
UR 15

UR 16
UR 17
UR 18
UR 19
UR 20
UR 21
Catholic University, D.C. HV
Hadley Hospital, D.C. HV
Hall, MD HV
Rockville, MD HV
Laurel, MD HV
Arlington, VA HV
Fort Belvoir (Fairfax) HV

Massey (Fairfax) HV


NURP WETFALL AND DRYFALL SITES
LOCATION STATION NO
Haines Point, D.C. WF 1
DF 1
Burke Village Center WF 2
(on roof)
DF 2
Burke Village Center WF 3
(on ground)
DF 3
Stedwick WF 4
DF 4



1
2
3
4
5
6
7

8



•













                                2-6

-------
                      3.  STATION DESIGN AND INSTALLATION

Monitoring Considerations
     It has been shown that good monitoring program design is  an essential  com-
ponent of the success of a project such as the MWCOG NURP. The regional  nature
of the program dictated that monitoring stations and equipment be located in the
District of Columbia and in the Virginia and Maryland suburbs.  In fact,  if a
polygon were constructed on a map with the outermost sampling stations  located
at its vertices, it would encompass in excess of 3,000 square miles.  The far-
flung nature of the monitoring program and the performance of that program by a
single contractor dictated a heavy reliance on automation and unattended  opera-
tion of the remote sampling network.
     For purposes of site design and equipment selection, station functions were
divided into the following categories:
         o Precipitation Measurement
         o Flow Measurement
         o Sample Retrieval
         o Data Recording
An additional constraint imposed was that all station functions, including bat-
tery power, be enclosed in a fiberglass housing measuring approximately 1.8 m x
1.6 m x 2.0 m high.

Precipitation Measurements
    Tipping bucket rain gages having a measurement sensitivity of 0.01  inch were
selected for use in the project.  With the exception of one location  in the
Piscataway Creek drainage basin, all precipitation gages were located on  the BMP
monitoring sites discussed in Chapter 2.  The Piscataway Creek gage was
installed at the request of COG staff to provide rainfall data for use  in the
                                 3-1

-------
Critical Watershed segment of the study.
    The rain gages located at the BMP monitoring sites were selected for use
with a data recording device querying the instrument on a fixed time increment.
For this reason, a rainfall totalizing circuit was employed.  At each tip of  the
rain gage bucket, the circuit was designed to increase the potential  across a
set of contacts by 5.0 mvdc.  Therefore, at each query from the recording
device, a voltage proportional to total precipitation would be sensed.  From
these data, total rainfall, incremental rainfall and intensities could be com-
puted.
    The rain gages rainfall totalizers were acquired based on specifications
developed by VA TECH staff, and included in Appendix A.  The successful  bidders
on the devices were WeatherMeasure  (3-1) and Science Associates (3-2), providing
a model P501-1 rain gage and a model 584 event accumulator, respectively.  In
the course of the study, the rain gage hardware generally performed well, but
significant problems were experienced with the accumulator circuits.  These,  on
many occasions, led to the loss of  rainfall data.

Flow Measurements
    The provision of accurate and precise flow data was deemed to be essential
to the successful completion of the project.  Flow measurement activities were
generally divided into two categories:
         Perennial streams          -     Critical Watershed Studies
         in natural channels
         Intermittent flows in      -     BMP Studies
         manmade conduits or
         channels
The need for obtaining data of suitable accuracy and precision in each of the
above situations required different approaches to the measurement of flow.

Critical Watersheds.  As noted in Chapter 2, the critical watershed monitoring
                                 3-2

-------
 stations on Seneca and Piscataway Creeks were established at existing gaging
 stations operated by the U.S. Geological Survey.  The Seneca Creek gage is one
 of the oldest in Maryland, having records continuously since 1930.  The
 Piscataway gage has not been in operation so long, but the records are con-
 sidered good.  Because of the prior effort by US6S in establishing the gaging
 stations mentioned, it was not necessary to create new rating curves at the
 sites.  These stage-discharge relationships had already been computed and their
 accuracy determined.  Although reliable stage-discharge relationships were
 available at the two sites, direct access to USGS recorders and records was not.
 USGS policy did not permit non-agency personnel to manipulate the equipment at
 either location.  Arrangements were made, however, to allow the installation of
 VA TECH equipment in the gage house at the Seneca Creek site (51UR01).  Because
 initial project plans had included the assumption that USGS recording equipment
 would be available, it was necessary to acquire an additional stage recorder.  A
 Stevens Type A-35 (3-3) recorder was procured by VA TECH and used for the dura-
 tion of the study at no cost to the project.  This device was installed in the
 same stilling well as the USGS instrument and operated in parallel with it.  The
 device described operates by means of a float suspended on a metal tape which
 drives a gear wheel connected to the pen on a strip chart recorder.  A rating
 table was supplied by USGS for the stage to discharge conversion (3-4).
    At the Piscataway Creek site (51UR02), it was not possible to place equip-
ment in the gage house operated by USGS.  For this reason, permission was
 obtained to expend funds for the purchase of an additional fiberglass shelter as
well  as the flowmeter required to instrument the station.  Instead of the con-
 ventional  float-recorder arrangement, however, site conditions made it necessary
to utilize a different type of device.  The flowmeter selected was of the type
installed at all  the BMP monitoring sites.  The instrument was a secondary
                                 3-3

-------
device of the bubbler type.   It was equipped with an air compressor  and  storage
tank to provide a source of the operating gas.  The air reservoir was  connected
to a fixed orifice in the USGS stilling well and to an electronic pressure
transducer in the flowmeter.  The latter was able to sense the static  head on
the orifice, and thereby able to output a stage height signal  on a continuous
basis.  The instrument used was also equipped with an erasable, programmable,
read-only memory (EPROM) which allowed the internal computation of discharge
using a stored rating curve.  The rating curve was that supplied by  USGS (3-5)
and offset by 2.42' to account for the orifice location in the stilling  well.
The flowmeter was also equipped with aregulated motor strip chart which  had a
multiple overrange feature to permit the recording of very high flows.   The
device was purchased based on specifications developed by VA TECH staff, and
included in Appendix A.  The  instrument used was an ISCO model 1870  flowmeter
(3-6).

BMP Sites.  As noted earlier, flow measurements at the BMP sites generally
involved discharges from round pipes or some regularly configured man-made chan-
nel.  No situations were encountered where pressurized flow occurred regularly,
although some flow records were lost as a result of infrequent episodes  of such
conditions.
    In contrast to the perennial streams at the critical watershed sites, no
rating relationships were available for the sixteen other sites monitored in the
BMP evaluation phase of the study.  As a result, some primary flow measurement
device was installed at each  of the locations monitored.  In situations  where
round pipe flow measurements were required, Palmer-Bowlus flumes were  used
exclusively (3-7).  A schematic of the design variation selected is  shown in
Figure 3-1.  All Flumes were  fabricated by a specialty sheet metal jobber from
galvanized metal.  To prevent sample contamination, all flumes were  coated with

                                 3-4

-------
- D/4
D/4
                   D/2
FIGURE 3-1.  CROSS SECTIONAL SCHEMATIC OF
             PALMER-BOWLUS FLUME USED
             IN MWCOG NURP PROJECT
                3-5

-------
epoxy paint.  For most of the applications encountered, standard rating curves
were available for the flumes fabricated.  In one instance,  however,  a  flume
size was required for which no rating relationship was readily  available.   In
that instance, a rating table was constructed from a graphical  solution based on
energy relationships in the upstream pipe and the flume throat  (3-8).   The
Arredi diagram and resulting rating curve for the 33-inch flume are shown  in
Figures 3-2(a) and 3-2(b), respectively.
    The remaining BMP flow measurements were made using Type H  flumes.   These
devices are not true flumes, but may be considered a cross between  a  flume and  a
weir.  They were originally developed by the Agricultural Research  Service to
measure irrigation return flows in open channels, but have proven to  be well-
suited for a variety of other applications (3-9).  Rating tables for  a  variety
of sizes, having maximum flows from 0.34 to 85 cfs, are available.
    Table 3-1 summarizes the primary devices for each station included  in  the
program.
    The secondary devices employed at each of the BMP monitoring stations  were
of the same type selected for the Piscataway Creek station.   In each  case, the
rating curve for the primary device used was stored on an EPROM chip  located in
the flowmeter.  This made it possible to perform the conversion from  stage to
flow in the field, and thus made automatic composite sample  collection  possible.
It should be noted also that each of the flowmeters was equipped with an analog
signal  output in addition to a strip chart recorder.  This configuration made
possible recording of flow data by a data logging system.  In general,  the
bubbler type flowmeters functioned well, but they were found to be  subject to
erratic behavior under cold weather conditions.   Icing was found to produce
spurious stage readings, and caused the flowmeter to assume  that actual  stage
increases had occurred, signaling an increase in flow, and,  therefore,  the need

                                 3-6

-------
CM  O>
 >|c\i
 o
 CO
 01
 Q.
 Q.
 O)
 a
                                                           Note:   All  Discharges
                                                                  in cfs
Pipe Cross
  Section
                   1.0       2.0        3.0       4.0       5.0       6.0


                                        Area, ft2


              FIGURE  3-2(a).  ARREDI  DIAGRAM FOR 33" PALMER-BOWLUS  FLUME
                                    7.0
                                  3-7

-------
GO
I
00
     o
     O
     CQ
     ex

     (X


     o
     o.
     0>
     o
         2.4
         2.1  -
         1.8  -
         1.5  -
         1.2  -
0.9  -
         0.6  -
         0.3
                                                    Discharge, cfs


                              FIGURE 3-2(b).   RATING CURVE FOR 33" PALMER-BOWLUS  FLUME

-------
                       TABLE 3-1.  NURP MONITORING SITES
STATION NO.

  51UR01
  51UR02
  51UR03
  51UR04
  51UR05
  51UR06
  51UR07
  51UR08
  51UR09
  51UR10
  51UR11
  51UR15
  51UR16
  51UR17
  51UR18
  51UR19
  51UR20
  51UR21
   STATION NAME

Seneca Creek
Piscataway Creek
Burke Pond
Burke Pond
Dandridge
Stratton Woods
Thousand Oaks
Thousand Oaks
Fa i ridge
Stedwick
Stedwick
Westleigh
Westleigh
Burke Village Ctr.
Dufief
Rockville
Fair Oaks
Fair Oaks
     BMP TYPE
     PRIMARY DEVICE
   N/A
   N/A
Wet Pond Inflow
Wet Pond Outflow
Gravel Pits
Grassed Swales
Dry Pond Inflow
Dry Pond Outflow
Grassed Swales
Dry Pond Inflow
Dry Pond Outflow
Wet Pond Inflow
Wet Pond Outflow
Gravel Trenches
Grassed Swales
Porous Paving
Wet Pond Inflow
Wet Pond Outflow
   Existing Rating
   Existing Rating
33" Palmer-Bowl us Flume*
36" Palmer-Bowl us Flume*
15" Palmer-Bowl us Flume*
27" Palmer-Bowl us Flume*
3.0' Type H Flume
^2.5' Type H Flume
30" Palmer-Bowl us Flume*
2.5' Type H Flume
2.5' Type H Flume
42" Palmer-Bowl us Flume*
2.5' Type H Flume
27" Palmer-Bowl us Flume*
2.5' Type H Flume
0.75' Type H Flume
60" Palmer-Bowl us Flume*
2.5' Type H Flume
 *A11  Palmer-Bowl us  Flumes  fabricated for direct
  round  pipe inservtion,  30° side slopes, and D/6
  floor  height.
                                   3-9

-------
to trigger the associated sampler.  An example of this is shown on the strip
chart in Figure 3-3.  The data shown are from Christmas Eve,  1981, at 51UR10.
The  rapid rise and steady stage height is indicative of ice.   The vertical  lines
on the trace are event marks from attempted sampler activations.

Sample Retrieval
     The same sampling device was employed at both critical watershed and BMP
monitoring sites.  The sampler was selected based on the need to have a device
capable of maintaining intake velocities in excess of 3 feet  per second, storing
either discrete samples or field-constructed composites, and  being activated
either by an external signal or an internal timer.  In addition, the device was
required to operate on 12 vdc electrical supply.  Specifications developed for
the  samplers used are reproduced in Appendix A.  The device selected was the
Manning S-4040 Automatic Sampler, equipped with discrete and  composite sample
collection bases (3-10).  These devices were of the vacuum type, equipped with a
metering chamber and repeat sample features in order to provide the capability
of collecting equal volumes upon each sample activation,  this feature is essen-
tial if field composites are to be collected.  At all stations, sampler intakes
were place so as to collect from well-mixed locations.

Critical Watershed.  Although the same sampling device was employed at all  sta-
tions, there were two methods of activation.  The first of these was employed  at
only one station - the Seneca Creek Critical Watershed Site (51UR01).  Because
of the decision to use a conventional Stevens A35 recorder, no sample activation
signal was available to allow the construction of field composites,  the sample
activation procedure adopted was described by Grizzard, et_ aj_ (3-11).  The
system was a simple one, relying only on magnetic reed switch closures to acti-
vate the sampler.  The recorder-float wheel which was equipped with magnets

                                   3-10

-------
1 NO. 62S40O --;
;
h
'
-





—

•— — -
-





—




r - •

i ! : wo i j ;
! : _!? : : :
i 1 L ; : i
\ ••[•'•• I
IUO
- : i i
: i 1 •
! 9°
i • on
T
7n -< ' 70-
/ V.' . T / v>
[ ! j

T
!
: i ; ; .

• ] '
: I 1 :
; ^ 	 I . ;
i
r'n
J.U
• i f ;
1 s F
' "~ ' ' — "
- ' " \ ,v- on-
= / >• ' T--
' 'OP' I *•** ^ Q
l ' }• " T
i ?* j \ i ^ 	
	 • • - If/ — r • -
! 6 J "I
!"• "
LL I. _J-
. ! j i i i i i i i i ' i I I 'i I I

-—
	







:__








..L_
















—




-V ^

r- 	
~~1
1

i r."



1
..'r-
4-




1
--
--


'-•





—-
:-. .

:...-








^ -
"-



i~







	
— .-i-i
— •
~-


J




.-•'

• -:
V—"



"~T f

»
f t
i 7 T\
A|«-

"7-7-4 -
	 -\ .—
... 1: - -
— 90 "4:-.: — i
_• — f 	 1 — rr:
-.1 	 I •:. .-..r .
"- a'n~-=^~~-~1 "~-
.. O
7"




V


r>
U
~
..-..






::fe>
4^1
4

3"

n

0:"

«
--—
:• v.H





Q GRAPHIC CONTROLS CORPORATION BUFFALO. NCVV YORK



- •:
J

'- :, —

;

-;:- i " _
~t i ~
. L_ ._
•
'•_-.-
I .
".. '


1

i1 r if i
- .-._

"1

:r^j



	
_
...!.~
— IOOH —
.-- ' T---
^
-•-!^^--i-0







•_.



- - 1
--..:...-
••.^
-
.r-


—


:-~. -...
- .'-'•'•


•-
1 i




"L"
J




:










-•:"









o
7"


6

5
•;-4

73

«
A
---
O:-?

0 '•"•".







o





=z:j
-r'r^


--.— -
	
.:=^

:rr
~
.
'• "-
. 	 i _:: .
- j ".'
'.-_..
-;•".
—

..-'i

-::
_.=:.
•~rt-.-.--
*• ...i..-..: .



.
i . , .-, :,-.

: -
•h 1
-.f
r
.
-- "
•
T


^rfcP

jjir.-rhi" _
.1 _ . - 1 —
• • - 1

-




- -
-~-
-






- f "._
;
. •_• • • .


.
. •!
.-=;-rL-.r
- - .
. — 1. .
• - *r
• -•_•(. •
_


_.' o
)0
O^J
0," '
_.v

• ;....[-„
» —
r:--rr
. .
J- - : .
1 -
Jo
j
t- .—
-.=-••

cU ;

'A


_ t





IV.


..-_








•-.-









--




-




1
-f"
r i r TI i 'i i i i i i i
i i
—



1 1 i
Figure 3-3.   Effects of Icing on Flowmeter Performance

-------
 spaced equidistant on its circumference.  As the wheel  was turned  by rising and
 falling stage the magnets passed by a reed switch placed at the  recorder base,
 causing it to close.  Upon activation, the reed switch provided  a  contact clo-
 sure to the station sampler, activating it.  An event marker was installed in
 parallel with the sampler and left a mark on the recorder trace  at each  activa-
 tion.  Because the activating magnets were placed equidistant on the float
 wheel, the sample activations occurred at equal increments of rising or  falling
 stage.  This approach to sampler activation has the virtue of being mechanically
 and electrically simple, but it also has some drawbacks.  First, only discrete
 samples may be collected, and, therefore, only a limited number  of activations
 may take place because of the availability of only 24 bottles in the sampler
 base.  Second, because of the reliance on stage change to activate the sampler,
 it follows that sustained periods of high flow may not allow continued sampler
 activation unless the selected stage increment is very small.  If  that increment
 is too small, an excessive number of samples will be taken - exhausting  the
 storage capacity of the device.  The solution- to the problem is  to select a
 compromise stage increment for sampler activation - one small enough to  give
 adequate storm resolution, but large enough to avoid exhausting  the sampler
 storage capacity.
    In order to keep the laboratory workload at a manageable level, it was
 decided to conduct most analyses on flow-weighted composite samples.  For the
 stage-activated station, the composite was constructed manually  using event mark
time and flow date.  The procedure is illustrated in Figure 3-4.  This com-
putation is, of course, easily adapted to a programmable calculator or
microcomputer.

BMP Stations.  The second critical  watershed station (51UR02) and  all  the
NURP-funded BMP stations were configured to allow collection of  a  flow-weighted
                                   3-12

-------
composite in the field.  This was made possible by a feature  of  the  flowmetering
equipment used for these stations.  The flowmeters were all equipped with an
internal total flow accumulator which tracked total volume and also  output a
signal at pre-selected volume increments.  That signal  was used  to place an
event mark on the sampler trace (see Figure 3-4) and to activate the sampler.
Because the signals occurred at equal volumes of total  flow,  and the samplers
collected equal volume aliquots, it was possible to composite these  directly in
the field using a single large vessel in the sampler base. Because  there was no
longer any limitation on sample numbers, the activation interval could  be set to
a much smaller value, assuring more samples over the course of a runoff event.
The technique is illustrated schematically in Figure 3-5.   It should be noted
that analysis of the composite sample produced by either method  would produce a
value of the event mean concentration (EMC).

Data Recording
Critical Watersheds.  At the critical watershed stations,  budget limitations
prohibited the use of data recording devices other than the flowmeter and rain-
fall strip charts discussed earlier.

BMP Stations.  The BMP stations were, in all instances, established  on  very
small catchments with rather short times of concentration, creating  a need for
good time base resolution between rainfall and runoff recording.  In addition,
the inflow/outflow monitoring stations (wet/dry ponds)  would  present a  need to
reconcile the hydrologic data from two flowmeters - particularly with respect to
timing.  For these reasons, it was decided to make use  of data logging  devices
at each of the BMP monitoring stations.  The specifications for  the  devices were
developed by VA TECH staff, and are included in Appendix A.  The successful
bidder on the data loggers was A-D Data Systems, providing the ML-10A portable
                                   3-13

-------
       LU
       CD
                                time
NOTES:  1.  PQ and PR are the begin  and  end  times  for the event *•
            no samples are taken.
        2.  S. are the sample points.
        3.  V. are incremental  areas under the  hydrograph.
The volume req'd for any sub-aliquot of  the  composite is expressed by:
                          V.                     n-1
                    -vj  = 7^  x c   where,   VT  =   z  V.
                                            V.  = aliquot volume for
                                            1   each sample, S^
                                            C   = desired final composite volume
,
                          *   v,
                                for i = 2 to n-2
                FIG. 3-4.  COMPUTATION OF COMPOSITE
                           ALIQUOT VOLUMES
                             3-14

-------
OJ
fO
o
I/)
                      time

  NOTES:  1.  With the exception of V-|, all V^ are equal.

          2.  If V-j is very small, the error induced by
              unequal volume represented by sample 1 and
              unsampled volume past sample 12, will also
              be small.

          3.  If Vj is small, a better representation of
              flow near peak is also obtained.
         FIG. 3-5.  SCHEMATIC OF SAMPLING TECHNIC FOR
                    AUTOMATED COLLECTION OF FLOW-
                    WEIGHTED COMPOSITES
                      3-15

-------
data logger  (3-12).  The principle advantages derived from using a central  data
logger at each station may be summarized as follow:
              o Recording all data on a system with quartz
                crystal timing accuracy reduced the problems
                of reconciling inflow/outflow event timing
                between stations.
              o Recording all data (rainfall, runoff, event marks,
                date-time) on a single logging system at each station
                eliminated rainfall/runoff timing problems that had
                been encountered previously.
              o Providing the ability to record field data in a
                directly machine-readable format eliminated the
                human errors invariably associated with reducing
                data from strip charts.

Station Installation
Housings.  As noted previously, the equipment at 51UR01 was placed in the same
building as the USGS stage recorder.   All other equipment (excepting rain gage
receivers) was mounted in molded fiberglas enclosures manufactured by Western
Power Products (3-13) according to specificatons in Appendix A.

Interfacing.  Because each of the types of instrumentation used in the study was
obtained from a different manufacturer, a substantial task existed to interface
them all into an adequately-functioning station.  The electronic interfaces and
connections were, in general, designed and fabricated by VA TECH staff.   A sche-
matic diagram of the instrument arrangements for the BMP monitoring stations is
shown in Figure 3-6.

Activation and Shut-Down.  The station dates for first and last grab and runoff
                                   3-16

-------
CO
                                                                Flowmeter/Sampler
                                                                Interface
                                       Rain Gage
                                       Accumulator
                         n
n
                         12 vdc Battery
                                                                                               Sampler
                                                                                               Intake
                                       FIG.  3-6.   MONITORING  STATION  SCHEMATIC

-------
sampling are shown in Table 3-2.

Uetfall/Dryfall Sampling
    Specifications for wetfall/dryfall  samplers were developed  by  VA TECH  staff,
and are included in Appendix A.  The successful bidder on the devices,  Aerochem
Metrics provided the model  301 wetfall/dryfall  sampler used  (3-14).   The device,
which incorporated a precipitation sensor,  allowed for automatic collection  and
segregation of wetfall and  dryfall in acid  washed polypropylene buckets.   During
periods of dry weather, the dryfall bucket  was  exposed to the atmosphere while a
"roof" covered the wetfall  bucket.  A few raindrops at the start of  a storm
event caused the movable roof to cover the  dryfall bucket and thus expose  the
wetfall bucket.  At the cessation of a rain event, the roof  moved  back  over  the
wetfall bucket, thus again  exposing the dryfall bucket.  By  making use  of  the
surface area of the bucket, computations of dryfall loads in mass/area/time  of
operation could be made after analysis of bucket contents.  Direct analysis  of
precipitation samples made  possible the determination of loads  from  that source.
    Significant delays were experienced in  delivery of the wetfall/dryfall
samplers.  The monitoring period for the three  NURP samplers and for the one
loaned from the Virginia State Water Control  Board is shown  in  Table 3-3.
                                   3-18

-------
Table 3-2.  Inclusive Station Sampling Dates
STATION
NO.
51UR01
51UR02
51UR03
51UR04
51UR05
51UR06
51UR07
51UR08
51UR09
51UR10
51UR11
51UR13
51UR14
51UR15
51UR16
51UR17
51UR18
51UR19
51UR20
51UR21
STATION NAME
Seneca Creek
Piscataway Creek
Burke Pond (inlet)
Burke Point (outlet)
Dandridge
Stratton Woods
Lake Ridge (inlet)
Lake Ridge (outlet)
Fai ridge
Stedwick (inlet)
Stedwick (outlet)
Bulk Mail Center (inlet)
Bulk Mail Center (outlet)
Westleigh (inlet)
Westleigh (outlet)
Burket Town Center
Dufief
Rockville Gr.
Fair Oaks (inlet)
Fair Oaks (outlet)
FIRST GRAB
SAMPLE
8/25/80
8/25/80
N/A
N/A
N/A
N/A
8/25/80
8/25/80
N/A
N/A
N/A
8/25/80
9/15/80
N/A
9/15/80
N/A
N/A
N/A
N/A
9/21/81
FIRST RUNOFF
SAMPLE
8/11/80
11/24/80
10/18/80
11/24/80
9/17/80
10/25/80
8/3/80
8/2/80
10/2/80
10/18/80
10/3/80
N/A
N/A
10/25/80
8/15/80
9/10/80
2/8/81
2/20/81
9/15/81
10/26/81
LAST GRAB
SAMPLE
12/07/81
11/30/81
N/A
N/A
N/A
N/A
7/27/81
7/27/81
N/A
N/A
N/A
9/8/80
9/15/80
N/A
12/7/81
N/A
N/A
N/A
N/A
12/7/81
LAST RUNOFF
SAMPLE
11/30/81
10/26/81
12/1/81
10/26/81
12/15/81
10/26/81
8/3/81
8/3/81
12/1/81
12/23/81
12/23/81
N/A
N/A
12/1/81
12/1/81
12/4/81
10/26/81
11/6/81
1/4/82
10/26/81
                   3-19

-------
                  Table 3-3.  Wetfall/Dryfall Sampling Periods
   Station Name

Haines Point (D.C.)
Burke Village Centre
   Roof (VA)

Burke Village Centre
   Ground (VA)

Stedwick (Md.)
Station No.

   51WF01
   51DF01
   51WF02
   51DF02

   51WF03
   51DF03

   51WF04
   51DF04
Monitoring Period

12/20/80-1/2/82



2/10/81-12/30/81


3/22/81-12/23/81


6/11/81-12/16/81
Number of
 Wetfall
 Samples

   39
   39


   30


   17
Number of
 Dryfall
 Samples

   52
   49


   38


   29
                                   3-20

-------
                                   References

3-1      WeatherMeasure Division, Systron .Donner, Box 41257,  Sacremento, CA
         95841.
3-2      Science Associates, Inc., 230 Nassau St., Box 230,  Princeton, NJ
         08540.
3-3      Leupold and Stevens, Inc., Box 688, Beaverton, OR 97005.
3-4      USGS, Towson District Office, Rating Curve for Station 01645000.
3-5      USGS, Towson Disrict Office, Rating Curve for Station 01653602.
3-6      Instrumentation Specialities Company (ISCO), Box 5347, Lincoln, NE
         68505.
3-7      Palmer, H.K. and F.D. Bowlus, "Adaptation of Venturi  Flumes to Flow
         Measurements in Conduits," Trans. A.S.C.E., 101, pp  1195-1216, (1936).
3-8      Wastewater Engineering:  Collection and Pumping of  Wastewater,
         Metcalf and Eddy, Inc., McGraw-Hill Book Co., New York, NY, 1981.
3-9      Field Manual for Research in Agricultural Hydrology,  Agriculture Hand-
         book No. 224, ARS, Soil and Water Conservation Research Division,
         USDA, Washington, D.C. 1962.
3-10     Manning Environmental Corp., 120 DuBois Street, Santa Cruz, CA 95061.
3-11     Grizzard, T.J., C.W. Randall, and R.C. Hoehn, "Data  Collection
         for Water Quality Modeling in the Occoquan Watershed, EPA 600/9-76-016,
         pp 819-823, 1976.
3-12     A.D. Data Systems, Inc. 200 Commerce St., Rochester,  N.Y. 14623.
3-13     Western Power Products, Inc., 900 Portway Ave., Hood  River, OR 97031.
3-14     Aerochem Metrics, 6832 SW 81 Street, Miami, FL 33143.
                                   3-21

-------
                               4.  FIELD METHODS

Site Visitation
    VA TECH staff performed site maintenance visits on a minimum weekly fre-
quency.  The same site visitation schedule was also adhered to for
wetfall/dryfall sampling stations.
    At each station visit, staff carried out routine maintenance activities
including the following:
         o battery changes
         o equipment performance checks
         o equipment changes, as required
         o minor instrumentation repairs, as required
         o major and minor site maintenance and repair,
           as required
    All technical staff members involved in field operations received instruc-
tion in sufficient detail to enable them to diagnose, and in many cases repair,
malfunctioning equipment in the field.  In cases where this has proven imprac-
tical, staff noted symptoms on site visitation logs, and returned malfunctioning
equipment to the laboratory for repair in-house or for forwarding to the manu-
facturer.  On a number of occasions since the beginning of the project, site
damage occurred either as a result of natural  forces or vandalism.  In no case
did either situation result in the loss of equipment or instrumentation.  All
incidents of vandalism were easily corrected.   For the most part, they consisted
of the disconnection of flowmeter bubbler tubes or the destruction of flume
approach boxes.
    It should be noted that, because of the hydraulic stresses placed upon the
primary devices at each station, a great deal  of regular maintenance work was
required just to maintain the integrity of sample intakes, primary devices,
secondary device sensing hoses, and rain gage  connections.

                                   4-1

-------
    Maintenance activities at each site were recorded on  forms  provided for that
purpose.  These site visitation forms also contained pertinent  station operating
data, and have been retained as a permanent part of the project record.  A
sample is reproduced as Figure 4-1.
Rating Verification
    A major concern in the successful management of a runoff quality  and quan-
tity data collection program is the measurement of discharge.   This presents a
task far more difficult than is generally supposed by those unfamiliar with the
hydraulics of open channels.  In order to minimize the errors  in mass loadings
due to poor quality flow measurements, VA TECH staff instrumented most MWCOG
NURP stations with primary devices.  The only two exceptions were the two criti-
cal watershed stations in Maryland, but these sites both  had previously-prepared
rating curves.
    The two types of primary devices employed in the field study were the Type H
flume and the Palmer-Bowlus flume.  Even though these devices  are quite
reliable, experience has shown that an independent verification of the stage-
discharge relationship is desirable.  For this reason, VA TECH  staff  conducted
such a program of verification with tracer dilution studies performed using
1 ithium chloride.
    Because lithium is rare as a dissolved species in most aquatic systems, it
often makes an excellent choice for chemical gaging systems,  this is due to the
fact that elimination of a need for background correction eliminates  one entire
set of sampling equipment from the system.
    Figure 4-2 is a schematic of the tracer injection dilution  system used, and
also shows the nomenclature for the calculations necessary to compute flow.
Constructing a mass balance around the upstream manhole,  it may be seen that
equation 1 results:
                                   4-2

-------
00
       1.  Date:  ,„
       4.  Personnel:
                      OWML SITE VISIT LOGBOOK - NURP

                 lf_f_ 2.  Site:    \A R.   7      3-  Time:      I O O S

                 J^	&_£	
       5.  Equipment  Changes (Note Serial  0 When Changes Are Made)
             0  NONE
             Q  OTHER,  If so, what?
6.   Equipment Maintenance
     D NONE
     d BATTERY CHANGED
     Ef CHART CHANCED
                                     /_C
             13  CASSETTE TAPE CHANCED  ei~f~   r u.
             E)  OTHER                       '
                                                           C A f C if id '
7.   Sample Collection
     GJ NONE
     D STORM SAMPLES
                                                       7
             D  CRAB SAMPLES        TOTAL PRECIPITATION

8. Equipment Settings After Site Visit (Circle One)
CHART SPEED
RECORDER FULL
SCALE SPAN
LEVEL UNITS
MODE (Primary
Device)
AND TYPE
SAMPLE INITIATION
SIGNAL
SCALING CONSTANT
TOTAL FLOW
1/8 1/4 1/2 1 rfj 4
NORMAL /"" 1st EXPANDED^ 2nd EXPANDED
. FEET^ METERS
LEVEL X 1^ 2 3 4
'ban

10 /"' 100 ) 1000
j>. TO ci

                                                                                                        9.   Sampler Setting After Site Visit
O FLOW D. Mult. Bottle , l)
0 Mult. Sample 6
D TIME Mln. Mrs.
3.7 1
7.5 2
15 4

30 6
12
24
10. DATA LOGGER
Power [3 ON
D OFF
D Not In Use
DATA SKIP
Digital D Yes H No
Clock D Yes D No
Tlmeset D Reset Time?
0 Run
?*'-io'.ll
Channel
Temp.
Skip
2345
7 8 9 10
Approximate Sample Size In
Inches Hg vacuum
Bottle Type
Q 500 ml
O 1 liter bottle
D composite bottle

In Use
01 t 1 / ^ A
1 L J M J O
0__1_2 3456
Volts/~b 1 2^ 3 4 5 6
SCAN INTERVAL
Sec. 10 30 Scon
Mln. 1 5 (\j£) 30
Tape Q
OFF RC Reading

ml 5 " ->






789
789
789
O Manual
Si Internal
D External
23 t rfff)
J
Q Record RC Interface Reset

D Yea
a NO
                                                                                                       11.   Weather:
                                                                                                                  D Clear  0  Partly Cloudy   D Overcast    D  Rain     D Snow
                                                                                                       12.   Final Check
                                                                                                            CD  Instrument Doors  Shut
                                                                                                            Cl  Sample Electronically Advanced
                                                                                                            Q  Sampler Pressure  Sensor In Place
                                                                                                       13.   Site Activity: 	
                                                                                                                                                        Air Line  Connected
                                                                                                                                                        Air Line  Not Pinched
                                                                                                                                                        Battery Plugs Connected
                                                    FIGURE 4-1.   EXAMPLE  OF NURP  SITE  VISITATION  SHEET

-------
               TRACER METERING SYSTEM
                                                   AUTOMATIC SAMPLING STATION
, "U
                MASS BALANCE!
                           CD = <)„(:„ + QTCT
                NOTE!   IF Cy = 0 AND Q^> QJf THEN:
       FIGURE 4-2.   SCHEMATIC DIAGRAM  OF TRACER  DILUTION  SYSTEM

-------
                     QU+QT
                                 =  c                       (i)
where, Qu = Flow upstream
       GU = Trace Concentration upstream
       Qj = Tracer input flow
       Cj = Tracer input concentration
       QD = Flow downstream
       CQ = Tracer concentration downstream
Equation 1 may be simplified in the following manner:
     (1)  Note that the value of GU = 0 (If Proper Tracer is Used)
     (2)  Note that QD + QU+QT and QT « ^   .
Rewriting Equation 1 yields:
                                  QTCT
                          QD  »   —                 (2)
                                  CD
In this manner, discrete flow measurements may be made at the time of each
sample collection.  Using the concomitant stage measurements made by the
downstream flowmetering system, a rating curve of stage vs. actual  discharge may
be constructed.
     Lithium chloride is soluble at a concentration of over 6x10^ mg/1  at 20C.
Lithium represents 16.37 percent of the compound by weight, therefore a solution
approaching saturation would contain over 98 grams of the metal  per liter.  In
addition, lithium may be detected at the sub-part per million level  (100 ppb) by
either emission or atomic absorption spectroscopy.  Therefore,  using a saturated
solution, and assuming dilution to the detection limit would allow the measure-
ment of a sewer flow almost a million times larger than the tracer flow.  At a
tracer flow of 100 mL/min., for instance, this would correspond  to about 60 cfs.
                                   4-5

-------
    A portable metering system was constructed for field  use from the following
components:
       o Low current drain  (<100 ma), low volume, high  accuracy
         positive displacement metering pump, operating on  12 vdc
       o 12 vdc motorcycle  battery
       o Float switch
       o Plastic tracer reservoir
       o Container for entire system
    A 5 gallon carboy containing the tracer solution  was  inserted in a metal
drum, a false floor placed  above it to carry the metering pump and battery, and
the whole suspended in a storm sewer manhole with an  expandable  "chinning bar."
A float switch was placed in series with the metering pump  so that the onset of
flow in the conduit started the system.  Prior to leaving the system unattended,
a calibration of the pumping rate in place was carried  out  with  a graduated
cylinder and stop watch.  A schematic of the injection  system is also shown in
Figure 4-3.
    Figure 4-4 shows the results of a number of tracer  analyses  at station UR15.
This site was of particular concern to VA TECH staff  because of  the rather steep
slope of the approach to the flume.  To assure the maintenance of a sub-critical
flow regime upstream of the flume, an artificial barrier  was placed in the flow
just upstream of the measuring section.  As may be seen from the results in the
figure, the agreement between the theoretical and observed  flows is quite good,
indicating that no adjustments were required to the flow  data base.
    Rating verifications of this type were carried out  wherever  concern existed
over the accuracy of the primary device alone.  Examples  of conditions that
prompted a verification study included:
         o Suspicion of deformed primary devices.
                                   4-6

-------
                   MANHOLE COVER
METERING
  PUMP
                        •BATTERY
      FLOAT SWITCH
SCHEMATIC OF CHEMICAL GAGING
        FEED  APPARATUS
            FIGURE  4-3.
         4-7

-------
0)
O»
0)
4->

CL
                        1               2

                          Indicated Discharge,  cfs
FIGURE 4-4.
                           RESULTS OF RATING VERIFICATION STUDY
                           FOR 42-INCH PALMER-BOWLUS FLUME AT
                           UR15.
                             4-8

-------
         o Suspicion of super critical  flow upstream
           of primary devices

Sample Collection
    Stormwater samples from the critical  watershed and BMP stations were
collected immediately following the cessation of runoff.   At  times, in  order to
prevent samples from standing in the field for extended time  periods, portions
of storm runoff composite samples were  collected and returned to  the  laboratory
prior to event completion.  Samples were always transported in insulated  con-
tainers and refrigerated immediately upon return to the laboratory.   In general,
samples remained in the stations no more than twelve hours following  the  collec-
tion of the first aliquot of a composite.
    Wetfall and dryfall samples were generally retrieved  following the  comple-
tion of a runoff event.  However, if an additional precipitation  event  began
prior to sample retrieval, the bucket was generally allowed to remain in  place.
Begin and end times were recorded to coincide with sample bucket  deployment  and
retrieval, not actual times open to the atmosphere.
                                   4-9

-------
                             5.  LABORATORY METHODS
 Sample Handling
    Upon receipt in the laboratory, all samples were logged in  and  placed  in the
 custody of the laboratory supervisor.  While in storage, prior  to preparation
 for analysis, all samples were held at 4 c in dedicated refrigerator  compart-
 ments.  No preservation other than refrigeration was used,  with the exception  of
 samples prepared for metals analysis.  These were prepared  and  acidified to pH 4
 prior to storage.
    EPA (5-1) and APHA (5-2) guidelines were used in developing laboratory pro-
 cedures for handling samples prior to analysis.  Sample container preparation
 was given high priority in the protocol designed to protect sample  integrity.
 Sample bottles were cleaned by the following procedure between  uses in  the
 field:
                   1.  Phosphorus-free detergent wash
                   2.  Chromic acid wash for contaminants as needed
                   3.  1+1 HC1  wash for adsorbed inorganic removal
                   4.  3 deionized water rinses
                   5.  Air dry
 Analytical  Program
    The analytical  program for the MWCOG NURP was jointly developed by  MWCOG and
 VA TECH.  Table 5-1 summarizes the constituents measured for the five classes  of
 sample retrieved:  baseflow, runoff, wetfall, dryfall, and  High Volume  par-
ticulate.    Figure 5-1 shows a sample flow diagram from time of laboratory
 receipt through completion of analysis.
                                   5-1

-------
Table 5-1.  Basic Analytical Program for MWCOG NURP

Plant Nutrients
a) Wet
b) Digested
C) Chlorophyll a
Solids
a) TSS
b) VSS
c) TDS
d) TS
Organics
a) BODt} and/or 20
b) COD
c) TOC
Heavy Metals
a) Cadmium
b) Chromium
c) Copper
d) Iron
e) Lead
f) Manganese
g) Nickel
h) Zinc
Bacteriological
a) Total Coli forms
b) Fecal Coli forms
c) Fecal Streptococci
Physical
a) Alkalinity
b) Dissolved Oxygen
c) pH
d) Secchi Disk
e) Specific Conductance
• f) State
g) Temperature
Baseflow
X
X

X



Monthly
X

E & S






V
Monthly

V

X
X

X
X
X
Runoff
X
X

X



Monthly
X

E & S






^






/
Monthly

\

/
Monthly

X

X

X
NOTE: E-Extractable S-Soluble
Wetfall
X
X





Monthly
X

E & S






\







/



Monthly

X

X

X

Dryfall
X
X




X

X

E






\







/









\

Hi - Vol
X
X








E






\/











                  5-2

-------
oo ui
>- >
n: o
Q- s:
                    Fig.  5-1.  MWCOG  NURP ANALYTICAL FLOW SHEET





                                Samples  Retrieved


                      Flow, Time, Date  Information  Recorded
                                Samples  Logged  In


                             Raw Data  Sheet  Initiated


,£ BO


D C

oo
5:
UJ
^-
OD

o
£
-
DIGESTION
                               SOLUBLE    TOTAL

                                 KN     SOLUBLE

                                            P
                                                                    N03
           FKN     Total P
                                                                            BAC-T
                                    5-3

-------
Analytical Methods
    The analytical procedure utilized in the study are summarized and referenced
in Table 5-2.  Methods were selected from accepted procedures in the classical
and automated analysis literature.  Some procedures were modifications of origi-
nal methods developed by VA TECH and utilized routinely in the laboratory.  The
decision to make extensive use of automated analysis was brought about by the
workload already experienced by OWML and the increase anticipated as a result of
the NURP effort.

Quality Assurance
    Analytical quality assurance was recognized to be an integral  part of the
MWCOG NURP.  The performance of all  analytical  tasks for the project was under-
taken with the same in-house quality assurance program operated by the VA TECH
Occoquan Watershed Monitoring Laboratory (OWML).  A copy of the quality
assurance plan was transmitted to COG Staff on 25 September, 1980, and is also
included as Appendix B.
                                   5-4

-------
                                   TABLE 5-2
ANALYSIS

BOD5
BOD2Q

COD
TSS
ORTHO
PHOSPHORUS

TOTAL
PHOSPHORUS
TOTAL
SOLUBLE
PHOSPHORUS

AMMONIA

TOTAL
KJELDAHL
NITROGEN

SOLUBLE
KJELDAHL
NITROGEN

NITRITE AND
NITRATE
FECAL
COLIFORM

EXTRACTABLE
METALS

SOLUBLE
METALS
            ANALYTICAL PROCEDURE REFERENCE
                      MWCOG NURP

	COMMENTS	      REFERENCE

Determined using the static bottle method.        5-2
BOD2Q was inhibited.

Determined by the normal range method or       5-1, 5-2,
by the automated procedure.                    5-3

Determined according to the references,        5-1, 5-2
with the following exception:  A 70mm
glass fiber filter was utilized to allow
a larger volume of filtrate to pass before
clossing.  This filtrate was used in the
determination of soluble nutrients and
metals as detailed below.

Determined by the single reagent automated        5-2
method.

Determined upon digests done according to      5-3, 5-4
(5-4) and analyzed according to the
low-level automated method (5-2).

Identical to the above except that the         5-3, 5-4
sample was an aliquot of filtrate from
the Total Suspended Solids analysis.

Determined by automated method.                   5-3

Determined upon digests done according to      5-3, 5-4
(5-4) and analyzed according to the
automated method.

Identical to above except that the sample      5-3, 5-4
was an aliquot of the filtrate from the
Total Suspended Solids analysis.

Determined by the automated reduction             5-3
method.  Data reported as the sum of
N02 + NOa as N.

Done according to the multiple tube               5-2
fermentation technic in (5-2).

Determined by Atomic Absorption Spec-             5-1
troscopy on acid extracts.

Identical to above except that the sample         5-1
was an aliquot of filtrate from the Total
Suspended Solids analysis.
                                      5-5

-------
                                   References

5-1.      Methods of Chemical  Analysis for Water and Wastes.   U.S.E.P.A.,
          Washington, D.C. (1979).

5-2.      Standard Methods for the  Examination of Water and Wastes.   APHA,
          15th Edition (1980).

5-3.      AutoAnalyzer II Industrial  Methods Manual.  Technicon Corporation,
          Tarreytown, N.Y.

5-4.      Personal Communication:  "Total  Phosphorus and TKN (micro  semi-
          automated method)",  Mark  Carter, EPA, Chicago, Illinois (1975).
                                   5-6

-------
                              6.  Data Management

    Data management activities undertaken as a part of the project  included
coding, computer storage and transfer of data to project participants.

Data Base Manager
    The Statistical Analysis System (SAS) was chosen as the computer-based  data
management and analysis system for the project (6-1).  VA TECH  experience with
SAS over a period of some years has led staff to conclude that  it is  one of the
most flexible and easily-used data management systems available.  SAS data  sets
containing project numeric data were stored on disk packs and backed  up on  tapes
at the computing facility utilized.

Computing Facilities
    All SAS operations, and, therefore, data storage and manipulation were
carried out on the IBM 370/158E located in the Virginia Tech Computing Center in
Blacksburg.  Access to the system from the Manassas laboratory  was  by remote
ASCII compatible terminals.

Variable Codes
    The list of variable code names was developed as  an expansion  of  the SAS
variable names already used by VA TECH-OWML.   SAS variable names  have a  limit  of
eight characters, and, as a result, abbreviations have been adopted for  most of
the variables stored on the NURP data set.   For the most part,  the variable
names are self-explanatory and/or have become familiar with continued use.
However, to serve in a reference capacity,  a  list of  NURP variables,  their SAS
names, and units of expression is included  as Appendix C.
Data Storage
General.  Upon the completion of sample log-in procedures, a data  coding sheet
                                   6-1

-------
was initiated for each sample to be analyzed.  The data collected from field
observations were initially coded into selected fields and the sheet  then  filed
to await completion of analytical tasks.  Upon completion of the analytical
work, the remaining data were coded on the sheet, which was then passed on  for
initial entry into a SAS input file.  Data from the stations monitored remained
in such temporary storage until checks for accuracy of keying and transcription
could be made.  Following such checks, the data were periodically updated  into
hard disk storage on OS data sets.  Following storage, data retrieval  checks
were again made to assure the accuracy of the update.  The procedure  described
herein adequately describes the storage procedure for all data except  the  preci-
pitation and instantaneous flow data for those stations equipped with  data
loggers.

Cassette Tape Data Storage.  The NURP stations established to measure  BMP  effec-
tiveness were all equipped with portable data loggers as discussed in  Chapter 3.
These devices were configured to provide 10-minute data for flow and  precipita-
tion at all stations.  In addition, the loggers were set up to scan the flow
channel and leave an event mark in another channel at each sample activation.
The machine-readable tapes from the data loggers were retrieved at the end  of
each runoff event and returned to the laboratory for direct transmission to the
host computer using a Techtran Model 816 data cassette reader (6-1) and the
RDTAPE Utility provided by the Virginia Tech Computing Center (6-2).   It may
easily be seen that this device provided a great savings in staff time and
potential coding error elimination.  The precipitation and flow data  were  main-
tained in separate hydro!ogic data files.

Data Transfer
    Because NVPDC has also made use of the mainframe computing facilities  in
Blacksburg, most data transfers to that agency have been performed on  the

                                   6-2

-------
system.  Transfers to COG were by means of generation  of an update tape  and
mailing it from Blacksburg, to Washington.
    Data transfers to EPA were required to be in a  machine-readable  STORE! for-
mat.  It was recognized that the SAS formats used for  the project were not com-
patible with STORET.
    At the request of MWCOG staff, NVPDC modified and  supplied  VA TECH with  a
version of a State Water Control Board computer program designed to  translate
information in SAS data sets to a format compatible with the  requirements of the
EPA STORET system.  Initial testing of the program showed it  to be incapable of
translating boundary times on composite samples, and to be equally deficient in
its inability to load over 30 variables per observation.
    Because of the noted deficiencies, VA TECH staff undertook  the construction
of a new translation program to transmit data in the ?04 storage procedure
required in the NURP Data Management Procedures Manual.  The  program was tested
and used in all data tape transfers.  The program itself was  provided to EPA to
serve as a guide for other involved in similar transfers. The  program state-
ments are reproduced in Appendix C.

Data Base Abstract
    It is interesting to note the size of the data  base created by the MWCOG
NURP.  In the course of the study, the following have  been compiled:
                                       Number of Observations
              Hydrologic Data                  77,077
              Runoff Quality Data               1,238
              Soil Solution Data                  323
              Wetfall  Quality Data                126
              Dryfall  Quality Data                169
              High Volume Sampler Data             53
                                   6-3

-------
    The above summary, of course, does not show the extensive list of variables
included in each observation.
                                   6-4

-------
                                    References


6-1      Statistical  Analysis System,  SAS Institute,  Inc.,  Box  8000,  Gary,  NC
         27511.

6-2      Techtran Industries, Inc.,  200 Commerce Drive,  Rochester,  NY 14623.

6-3      Virginia Tech Computing Center, Blacksburg,  VA  24061.
                                  6-5

-------
                         7.  CRITICAL WATERSHED STUDIES

 Introduction
    Monitoring data were collected at two critical  watershed stations
established on Seneca Creek near Darnestown (UR01)  and on Piscataway Creek at
Piscataway (UR02).  The sites, their instrumentation, and operation have been
described elsewhere in this report.

Base Flow
    Regular base flow sampling took place throughout the course of the study in
order to provide non-storm characterizations of water quality in the two
streams.  Table 3-2 shows the inclusive base flow sampling dates for the two
streams.
Seneca Creek.  A seasonal summary of base flow water quality data is given in
Table 7-1.  As may be seen, 48 samples were collected and analyzed in  a moni-
toring period that encompassed the summer and fall  seasons of 1980 and 1981, and
the winter and spring seasons of 1981.  Examination of the data in Table 7-1
leads to the conclusion that base flow water quality in the stream is  generally
quite good in all  seasons.  Total suspended solids  were always below 10 mg/L,
and average oxygen demand as measured by COD was always less than 15 and less
than 10 mg/L for most seasons.
    Average seasonal  total phosphorus concentrations never rose above  0.1 mg/L.
The soluble and ortho forms were generally less than 0.08 and 0.06, respec-
tively.  Unoxidized nitrogen was never higher than  0.6 mg/L as N.  A substantial
concentration of nitrate was maintained in the stream throughout the year,
ranging from 3.36 to  4.07 mg/L as N.  The very high inorganic nitrogen to total
soluble phosphorus ratio would assure that from a macro-nutrient standpoint, the
                                   7-1

-------
Table 7-1.  Base Flow Data Summary for Seneca Creek
                   (1980-1981)


Number of Samples
TSS, mg/L
COD, mg/L
Ortho-P, mg/L
Total Soluble P, mg/L
Total P, mg/L
NH3-N, mg/L
TKN, mg/L
(N02+N03)-N, mg/L
Total N, mg/L
D.O., mg/L
PH
Winter
7
4.7
4.7
0.02
0.05
0.06
0.06
0.45
3.49
3.99
13.6
6.2
Spring Summer
9
9.8
13.9
0.02
0.05
0.07
0.11
0.59
2.77
3.36
9.3
6.04
14
8.9
8.1
0.06
0.07
0.10
0.06
0.51
3.46
3.96
8.4
7.1
Fall
18
2.5
6.2
0.06
0.08
0.09
0.04
0.42
3.64
4.07
10.7
6.8
                    7-2

-------
stream would be phosphorus limited.

Piscataway Creek.  A seasonal summary of base flow water quality  data  is  given
in Table 7-2.  The sample summary shows that 41 base flow samples were collected
in the course of the study.  The seasonal distribution was as  noted  above for
Station UR01.  The summer data show generally the greatest departure from the
other seasonal averages.  Summer average COD's at the monitoring  station
exceeded 20 mg/L while the dissolved oxygen was only 6.8 mg/L  on  average.  Total
phosphorus averaged over 0.16 mg/L with ortho-P averaging 0.08 mg/L.  Much lower
concentrations of nitrogen forms were observed than at the UR01 station.   From
the relative abundance of phosphorus compared to nitrogen it appears that from  a
macro nutrient standpoint, the stream would generally be nitrogen limited.  The
extreme low summer flows, which averaged 2.8 cfs on the dates  sampled, reduced
the dilution available and contributed to the higher concentrations  observed.

Storm Runoff
    Figures 7-1 through 7-12 show the distribution of storm runoff loading data
for the critical watershed stations.  All loads are expressed  in  units of
pounds/acre/inch of runoff.  This, it should be noted, is only a  convenient nor-
malization of event mean concentration.  The data have been plotted  in the fami-
liar box-and-whisker format to allow comparisons between UR01  and UR02.

Total  Suspended Solids.  The distribution of total suspended solids  storm
loadings are shown in Figure 7-1.  As may be seen, the median  value  for UR01 is
lower than that for UR02, but the interquartile range is greater. Both distri-
butions are positively skewed, which is to be expected with hydrologic and/or
water quality data sets.

Chemical Oxygen Demand.  The COD data loading distribution is  shown  in Figure
                                   7-3

-------
Table 7-2.  Base Flow Data Summary for Piscataway Creek
                      (1980-1981)
Constituent

Number of Samples
TSS, mg/L
COD, mg/L
Ortho-P, mg/L
Total Soluble P, mg/L
Total P, mg/L
NH3-N, mg/L
TKN, mg/L
(N02+N03)-N, mg/L
Total N, mg/L
D.O., mg/L
pH

Winter
7
2.5
8.4
0.01
0.03
0.04
0.54
0.78
0.67
1.49
13.6
5.8
--..-.._-...... S P a ^
Spring
8
5.7
16.7
0.04
0.06
0.10
0.10
0.61
0.44
1.05
9.3
6.2
nn— .-.— .........
Summer
10
7.9
21.3
0.08
0.10
0.16
0.10
0.66
0.15
0.80
6.8
6.7

Fall
16
3.7
12.7
0.04
0.06
0.10
0.04
0.44
0.26
0.71
10.5
6.5
                       7-4

-------
   180.
   150.
S
C
H
E
H
A
T
I
C

p
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
120.
90.0
                                          *	»
60.0
  30.0
   .0
  STA
  STA
                         31UR01
                                             SIURO:
          Figure  7-1.   Distribution  of  Total  Suspended Solids
                        Loads at Critical  Watershed Stations
                        in Ibs/acre/in runoff.
                             7-5

-------
 7-2.  Again, the median loadings for UR02 were higher than  those  for  UR01.   The
 median loadings in the Figure correspond to event mean concentrations of  42.2
 and 72.6 mg/L for UR01 and UR02, respectively.

 Nitrogen.  Distributions of loadings for various nitrogen forms are shown in
 Figures 7-3 through 7-7.  Examination of Figures 7-3 and 7-5  shows that a rela-
 tively small fraction of the runoff TKN loadings at UR01 and  UR02 were in the
 ammonia form.  Figure 7-4 shows the soluble kjeldahl nitrogen loading distribu-
 tions.  If compared to the TKN data in Figure 7-5, it may be  seen that approxi-
 mately 40 percent and 25 percent of the loadings at UR01 and  UR02 respectively,
 were in the soluble form.  The runoff oxidized nitrogen loading distributions
 may be seen in Figure 7-6.  The data from UR01 exhibited a  dramatically higher
 median loading rate (0.53 Ib./acre-in.) than those from UR02  (0.11 lb./acre-in.).
 This is consistent with the base flow .concentration trends  discussed  in Tables 7-1
 and 7-2.  The total nitrogen loading distributions are shown  in Figure 7-7.  The
 median runoff loads for UR01 and UR02 were found to be 0.98 and 0.68
 Ib./acre-inch, respectively.  These correspond to EMC's of  4.3 and 3.0 mg/L,
 respectively.  A major difference between the two stations, however,  is that 57
 percent of the median loadings at UR01 were inorganic nitrogen, while only  21
 percent were in that form at UR02.  In evaluating nutrient  availability,  then,
 it is apparent that the differences between the runoff from UR01  and  UR02 are
 greater than Figure 7-7 would indicate.

 Phosphorus.  The storm runoff loading distributions for phosphorus forms  are
 shown in Figures 7-8,  7-9, and 7-10.  As may be seen in Figure 7-8, the ortho-
 phosphorus loadings were uniformly low.  Likewise, the total  soluble  phosphorus
 loadings in Figure 7-9 exhibited very low values and a narrow range.   The total
phosphorus loading distributions are shown in Figure 7-10.  The median loading
                                   7-6

-------
   30.0
S
C
H
E
N
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
e
   23.0
                        •f	+
20.0
                                           	*
13.0
10.0
                           t—
   ;.oo
   .0
  STA
  STA
                         31UR01
                                              51UR02
          Figure 7-2.
                     Distribution of COD Loadings  for Critical
                     Watersheds  in Ibs/acre/in runoff.
                           7-7

-------
 1.30
 1.23
 1.00
 .730
 .500
 .230
 .0
STft
     *
     0
     I

    *—«
   •—I	
    31UR01
                                           *- + -»
                                            31UR02
        Figure 7-3.
Distribution of Ammonia Loadings for
Critical Watersheds in Ibs/acre/in
runoff.
                           7-8

-------
 1.50
 i.:
 i.oo
 .730
 .100
                           I
                           I
                         •f—+
                         I  + I
                         *—*
                         I   I
                         •f	+
                           I
 .0
STA
STA
    S1UR01
                                            S1UR02
        Figure  7-4.
Distribution of Soluble  Kjeldahl
Nitrogen  Loadings for Critical
Watersheds  in Ibs/acre/in  runoff,
                            7-9

-------
   1.50
S
c
H
C
H
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
   1.25
1.00
.730
. soo
                                           —
                                             t—+
   .230
   .0
  STA
  STA
                         31UR01
                                           31UR02
       Figure  7-5.   Distribution of Total  Kjeldahl  Nitrogen
                     in Ibs/acre/in runoff.
                            7-10

-------
   1.30
S
c
H
E
M
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
   1.23
1.00
.730
                        t	+
 SOO
  .0
  STA
  STA
                         J1UK01
                                             31UR02
         Figure  7-6,
                    Distribution of Oxidized Nitrogen  Loadings
                    for Critical Watersheds in  Ib/acre/in
                    runoff.
                            7-11

-------
   1.30
   1.25
S
C
H
E
M
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
1.00
.730
                                           —t
 ;oo
   .230
   .0
  STA
  STA
                         :IUROI
                                             S1UR02
         Figure  7-7.  Distribution of Total Nitrogen  Loadings
                       for Critical  Watersheds  in  Ibs/acre/in
                       runoff.
                            7-12

-------
   .400
   300
S
c
H
E
H
A
T
I
C

P
L
0
T
S

F
0
K

V
A
R
I
A
B
L
E
.400
.300
.200
   . 100
   .0
  STA
  STA
                         *
                         I
                        *- + -»
                       -—I	
                         31UR01
          Figure 7-8.
                     Distribution of Ortho-Phosphorus  Loads
                     for Critical  Watersheds in  Ibs/acre/in
                     runoff.
                            7-13

-------
   .600
   .500
S
C
H
E

A
T
I
C  .400

P
L
0
T
S
   .300
   .200
   . 100
                            *

                            I

                           *	*
                                             *	«
   .0
  STA
  STA
    31UR01
                                             SIURO:
          Figure 7-9.
Distribution  of Total Soluble Phosphorus
Loadings for  Critical Watersheds  in
Ib/acre/in  runoff.
                            7-14

-------
 .600
  500
 .400
 .300
  :oo
                                           *—*
 . 100
 .0
STft
STA
  S1UR01
                                            51UR02
        Figure 7-10.
Distribution  of Total Phosphorus  Loadings
for Critical  Watersheds in Ib/acre/in
runoff.
                         7-15

-------
values were 0.11 and 0.23 Ib./acre-inch for UR01  and  UR02,  respectively.   These
data correspond to EMC's of 0.5 and 1.0 mg/L as P.

Metals.  Loading distributions for exractable zinc  (conventional AA) and  total
lead (graphite furnace AA) are shown  in Figures 7-11  and 7-12,  respectively.
The median values for stormwater-borne zinc loadings  were 1.03  and  1.63
lb./acre-in., for UR01 and UR02,  respectively.
    For the greater part of the study, lead concentrations, and therefore,
loadings were below the detection limit of the analytical technique employed,  a
limited number of storms, however, were analyzed  for  lead using the capabilities
of graphite furnace atomic absorption spectroscopy.   The distributions of these
low level lead loadings are shown in  Figure 7-12.  The  median values of the
loadings shown correspond to median values of EMC's of  approximately 20 yg/L.
                                   7-16

-------
 180.
 ISO.
 120.
 40.0
 60.0
 30.0
 .0
STA
STA
                                           MUW02
        Figure 7-11.   Distribution of  Extractable Zinc
                       Loadings for Critical  Watersheds
                       in  Ib/acre/in runoff.
                            7-17

-------
 100.
 80.0
 60.0
 <>0.0
 20.0
 .0
STA
ST4
        Figure 7-12.
Distribution of  Extractable Lead
Loadings for Critical  Watersheds
in Ib/acre/in runoff.
                             7-18

-------
                               8.  BMP MONITORING

 Introduction
    As discussed in Chapters 2 and 3, a total  of sixteen automatic  monitoring
sites were instrumented for BMP effectiveness  studies.   Descriptions  of  the
sites, the BMP types, station numbering, and flow measurement  devices were pre-
sented in Tables 2-1, 2-2, and 3-1.  It is the purpose  of this section to pre-
sent in more detail the results of the BMP monitoring-specifically  to do so  in a
graphical format that allows rapid visual  comparison of pollutant export data
between monitoring stations.  To this end, the data presentation will  be under-
taken using box-and-whisker diagrams as described previously in Chapter  6, and
used in Chapter 7.  The raw data from the BMP monitoring are contained in
Appendix E.

BMP Pairings
    When the BMP evaluation is directed towards an inflow/outflow practice such
as a pond, it is a simple matter to make calculations of efficiencies of pollu-
tant by observing inflow and outflow loads and adjusting for the additional
direct drainage area between the inlet point and the point of  outflow.  The  pro-
cedure is less clear for practices such as infiltration pits,  grass swales,  and
the like.  The reason for this is that there is generally no clearly  defined
control available for such on-site practices.   In the case of  a pond,  which  is
an off-site practice, the basin serves as its  own control. Table 2-1 contains
some suggestions regarding the control to be used for non-pond type BMP's.

Retention and Detention Ponds
    As may be seen in Table 2-1, six pond monitoring sites were included in  the
study plan.  Because of physical problems encountered in the study, two  of the
                                   8-1

-------
pond sites were dropped from the monitoring network.  The deleted ponds  and  the
reasons for their elimination were:
Pond
Bulk Mail
Fair Oaks
Station(s)
UR13, UR14
UR20, UR21
Reason for Abandonment
Backwater submergence
of pond inflow point.
Leaking outlet riser
                                          in wet pond.
At the former site, no instrumentation was ever placed, and therefore,  the  data
base contains no observations for the site.  At the latter site (Fair Oaks)
equipment was placed and in operation before the leaking riser was discovered.
A limited number of outflow storm events is available, but they are insufficient
for use in pond efficiency estimates.  The upstream monitoring station  (UR20),
however, has been included in the non-pond BMP data base because it is  represen-
tative of a shopping mall catchment with high frequency vacuum cleaning of  the
parking lot.  One of the remaining pond pairs was not originally instrumented
for the MWCOG NURP, but was actually a holdover from the USEPA Chesapeake Bay
Program.  The site  (UR07, UR08) was instrumented with flow measurement  equipment
not used in the MWCOG NURP, and, as a result, different data recording  and
sample compositing techniques were used (8-1).

Data Analysis.  When conducting BMP studies, the best result is a data  base con-
sisting only of synoptic storm events monitored on ponds at inflow and  outflow
points draining 100 percent of the tributary area.  This situation, however, is
the exception rather than the rule.  In the first instance, ponds draining  equal
areas at the inflow and outflow points are a rarity.  Usually, direct drainage
to the pond supplements the flow entering the principal inlet, or there is  more
than one principal inlet.  However, it is generally possible to locate  facili-
ties, for monitoring purposes, that have a principle inflow point.  For effi-
                                    8-2

-------
ciency calculations, adjustments may be made to account  for  the  differing

drainage areas.  For this study, the percentage of total  pond  drainage  repre-

sented by the monitored inflow ranged from 67.5 to 85.4  percent.

    The potential problems in data base analysis posed by attempting to rely

only on synoptic data at inflow and outflow points are more  complicated.   In

general, monitoring programs relying on automatically  functioning  stations will

produce a number of non-paired storm events in the course of a project.   It is

the opinion of the writer that excluding such storms from the  analytical data

base seriously weakens the BMP efficiency analysis for the following reasons:

         o Long-term monitoring of unpaired storm events  has been
           a generally accepted procedure for comparing  pollutant
           export from catchments of different land uses.

         o The pond may be viewed as an off-site treatment that
           alters the export characteristics only at the  point
           of outflow.  A comparison of the pollutant  loading
           populations from the inflow and outflow stations,
           then, is more easily justified than the paired
           catchment approach because the data originate  in
           runoff from the same basin.

         o The approach allows, in general, the use of a  much
           larger data base.  The statistical  analysis power,
           if any, lost from using other than paired storms
           is more than compensated for by generally providing
           a longer term description of BMP behavior.

         o If the precipitation and/or runoff population
           distributions for the inflow/outflow stations  can
           be shown to be similar, it may be reasoned  that the
           resulting pollutant export characteristics  are like-
           wise comparable.  This is stated in full knowledge
           that all storms of similar volume do not produce
           identical  pollutant loads.  It is reasonable  to
           conclude,  however, that if a sufficiently large
           number of storms are monitored, the full range of
           pollutant load variations will be represented  in
           the data set for all  storms.

         o It is also reasonable to conclude that, due to the
           skewed nature of the loading distributions, compari-
           sons of the median values of the inflow and outflow
           loading distributions will provide an adequate
           estimate of pond removal  efficiencies.
                                  8-3

-------
    Efficiency estimates may be made by comparing the inflow and outflow  popula-
tion medians of loading data developed in the following ways:
         o From event mean concentrations (EMC's) multiplied by
           total flow between first and last sample points,  and
           normalized by dividing by depth of precipitation.
         o From EMC's multiplied by total flow between first and
           last sample points and normalized by dividing by  depth
           of runoff over the basin.
         o From EMC's multiplied by total flow between beginning
           and end of hydrograph, and normalized by dividing by
           depth of precipitation.
         o From EMC's multiplied by total flow between beginning
           and end of hydrograph, and normalized by dividing by
           depth of runoff over the basin.
For the purposes of this report, the second approach was selected for
inflow/outflow comparisons, as well as for comparisons of loads between BMP's
and their control sites.  The data are present in Appendix E to allow  the other
estimates to be made.

Runoff.  Figure 8-1 shows the distribution of runoff at the  inflow and outflow
stations for all ponds monitored.  The data set was purged of anamolies in
hydrologic data before the figure was produced.  Such anamolies consisted of
storms with irreconcilable precipitaton-runoff relationships.  The same
storms were also excluded from subsequent BMP efficiency analyses.  A  listing of
the suspect events is in Appendix E.  Observation of the paired box and whisker
diagrams shows that, indeed, the runoff populations were very similar, lending
strong support to the conclusion that the use of the entire  runoff data base was
warranted.

Suspended Solids-Retention Ponds.  Figure 8-2 shows the distribution of
suspended solids loadings.  The retention ponds showed mixed performance:  Burke
Pond effected no reductions, while Westleigh effected substantial  load reduc-
                                   8-4

-------
1.50




1.35
5
C
-
5
4
I 1.00
A

s
b

r .750

^

»
5

2 .500

t
-

I
i
3
.
\i ?S 0
J*
L
J


0.
1
STA
ST«
•





°
o


o 1
1
0

o o

•
o
0 •
1 tt *

1
1
. 1 « .
Itf O
0 «
1 0 «
1 •
1 » 10 «
.-. «-* » | 0 «
1 1 1 1 II
1 1 1 1 III
I'll* i
Mill 1 1 »
»-» || | 0 .-. «*» 0
1 1 »-« 1 1 1 1 1 1 1 1
1 II • 1 • «-« 1
1 1 II •-• »-» II 1*1 «-•
| | |.| .-« o_. ._o |H |
1 1 1 1 1 1 1 1 »-« 1 1 •-• 1

SIUW03 SltlKd/ 5111^10 51UR15
S1UWO". 51UB08 51UR11 51U(?16
       Figure 8-1.  Distribution of Runoff Depth  (in inches) for
                    Storms Monitored at Pond BMP  sites.
                            8-5

-------
   5<».0
C  36.0

3


h    -
   27.0
   1H.O
   9.00
   .0
  STA
  STA
1
i
1
1
1
1
t
#
1
1
1
1
1
1
1 »
1
1
1
1
1

1
i

i
i *
i
i
i
i
*
I
1
i
i «
1
i
i
i
*
i i
i
! i
1* # * * -
1 1 »-
1 <*-** 1
1 II*-



















4


















. +
. 0
" 1
> *

» — <









•







.t














> — 4
1
1

1
1
1
1
















i

























.















>_•










-
1
1

1
1
1
I
1

1














4


•






.






>
t .
1

1

!
o-
1

1
1
* -












t
t
1

» (
„











*-
1

1

1

1
.»
1 «
« •
i t
1 1 ••
.. «
...
«-0
	 1 	










»

)












• » •
^







•
•• 1
1 1
•• : t
...
1 «l
•-«
..»
5IUK03
                       S1UWO<.
                   51UR08
                         51UWK)
                                      51UR15
                                            51UR16
           Figure 8-2.   Distribution of TSS  Loadings in Ib/acre-in
                         of runoff at Pond BMP's.
                                 8-6

-------
tions, as well as a compression of the interquartile range of the data.  A
possible explanation of the apparent poor performance of the Burke Pond is that
the  influent median TSS concentrations were very low initially-less than 15
mg/L.  Removal percentages "based in median loading rates are summarized for all
ponds in Table 8-1.

Suspended Solids-Detention Ponds.  As with the wet ponds, the detention ponds
exhibited mixed performance with respect to solids removal.  Negative removals
and  relatively high positive removals were observed at Lake Ridge and Stedwick,
respectively, as shown in Figure 8-2.  The removals are summarized in Table 8-1.
COD-Retention Ponds.  At the median population values, both ponds exhibited
positive removals.  These are shown in Figure 8-3, and summarized in Table 8-1.
Burke Pond produced a 21.4 percent removal, while Westleigh pond produced 23.2
percent, but also a substantial interquartile range compression.

COD-Detention Ponds.  Both detention ponds exhibited positive COD removals.
Stedwick Pond, in addition, effected a substantial range reduction.

Nitrogen-Retention Ponds.  Figures 8-4 through 8-8 show the loading distribu-
tions of nitrogen forms at retention and detention pond inflow-outflows.  All
the nitrogen loading data are plotted on a common scale so that visual  com-
parisons may be made between forms.  Both the retention ponds exhibited positive
removals of all nitrogen forms except for TKN at the Westleigh Pond.  Using the
discrete forms of nitrogen as indicators of removal in wet ponds is probably a
poor practice, however, because their long detention times allow sufficient time
for chemical transformations to take place.  For instance, referring to Table
8-1, it may be seen that the two retention ponds exhibited removal  efficiencies
of 76.1 and 44.8 percent.  It is not likely that these resulted from any direct
                                   8-7

-------
Table 8-1.  Estimated Removals of Stormwater Pollutants
            by Detention and Retention Ponds



00
1
00
POND NAME
Burke
Lake Ridge
Stedwick
Westleigh
NOTE:
TYPE TSS COD NH3-f
Retention -33.3 21.4 26.7
Detention -16.1 18.0 0.0
Detention 79.1 38.3 0.0
Retention 71.2 23.2 31.8
Removal percentages are calculated
values from populations based on:
J SKN
12.5
0.0
17.0
7.4
TKN
10.9
13.3
15.4
0.0
Ox-N
76.1
10.8
0.6
44.8
TN
32.1
15.0
12.7
37.0
OP
76.7
0.0
0.0
90+
TSP
48.6
0.0
20.0
63.0
TP
39.2
8.2
14.3
42.7
Zn
83.7
11.3
46.0
44.2
Pb
37.8
14.4
64.4
81.8
using median loading
Load, #/acre-inch = (EMC) (FLO) (At) fi „.
xlO-5






                pA
          where,
             EMC = Event mean concentration, mg/L
             FLO = Event mean flow, cfs
             At  = Event duration (sample to sample), sec.
             p   = precipitation, inches
             A   = basin area, ft

-------
JU.U <
3S.O
S
C
H
r
A
T
I
C ?0.0

o
b
T
5
r
D 15.0


V
A
7
i
L 10.0


r
3
0
s.oo




, 	 1







O



, 	 .


•


1

0
a o
1 0


1

1 1 0
i
;-;
i
i i



o 1 «-»
1 1 1
III •
1 1 1
0
0 1*1
1 1 1
1
1 •-« 1 «-» 1 1 1
1 Ill-Ill II 1
1 1 1
III 11 1
1 1 1 -T |.| i-i 1
.1. 1 II
i »i i ii
u.o i ij
II 1 •-•
1 1 *-• 1
1 I ' 2 II T~t
1 •-« 0 II II
l li l II
l ii l II i«i
i ii .i. - rr
1 1 ««« 1 1 1 1 II
1 1 1 1 1 ••« i 1
1 1 1
1 II
*-*
1 1

* - * ii •- *
ill i
iii i
i
i i i
1 1
i i i
iii i
01 1
SIA SIUt<03 SlUHOf 51UH10 51URI5
STA blUROA 51U»08 51UR11 51U&16
Figure 8-3.   Distributions  of  COD  Loadings  in Ib/acre-inch
             of runoff at Pond BMP's.
                     8-9

-------
 .780
 .650
 .530
 .390
 .130
 .0
STA
STfl
               4*4

               I  I

        0
        I
       * • #
                •I-
 I
» — *

!  !
o.o
4 — 4
 I
 I
4 — #
I  I
• _ o
I  I
                                               11
51UWOJ
             blUKO?
                                 51UK08
                        51UR15
                  51UR11       S1UR16
         Figure 8-4.  Distributions of Ammonia Nitrogen  Loadings
                      in  Ib/acre-inch of  runoff at Pond  BMP's.
                             8-10

-------
. loo





.650
S
C
H
r.
A
T
C .520
I
T
5

r
0 .390
R
A
R
I
A
3
L . ?^0
£


r
S
*<
\j

.130




, 	 0 	 . 	 .
0
1
I
1
1
1 1
I !
1 i l
l l •
l i *
j
! !
0 1 1
0
1
! ° 1
i • i
i «-»




i
1 " \ «-» i
i » ! i
i • ii
1 i i
i i i
» i ii
101 1 i»
1 • 1 »
1 1 1 1 II
1 II
1 1 0 •-« 1
1 1 1
«-« »-• 1 1 II
I
l • •
|
1
10
1
# 1
4-+ 1
1 1 '
1 1 •
1 1 «-»
•-« 1 1
l»l .-» 1 1 •_• 1 •»•
»-« 1 1 • 1 1 1 II II
II II •-• 1 II
»-» .-« 1 • 1 II 1 »-« 1 «-»
1 1 1 1 1*1 •-« 1 »-« 1
1 1 «_•«_« 1 1 1 i
11111 T
i •-» •-» II 1 1 l
i i l t i l
i ill
1 1
1 |
i i •
STA 51UP03 61UP07 51UH10 51UR15
STA 51UKO<« 51UR08 51UB11 51U»16
Figure 8-5.  Distributions of Soluble Kjeldahl  Nitrogen
             in Ib/acre-inch of runoff at Pond  BMP's.
                     8-11

-------
. IBV






.650
S
C
H
r
A
C .520

3
b
T
S

r
0 .390

V
A
^
I
3
•'


r
T
\,






0
1

I
1
1
1
1
1
1
1 ••
1 0 I
*-« 0 1
II 0 1
1 1 1
1 1
i 1 1
1*1 1
1 1 1
II ... 1
1 1 1
O-4 «.
II — 1
! 1 i
»-. 1
1 »-• 1
1 1 1
1 1
1 '
1
1
1















••
I r
i
i i
i

>i 1

i i
i i
•« i
i i
i r-
i i
i
i
•»















i
i
i

• *
!.

i
1 «

*• i *•
| |

i j
i i
•i i
i i
• * *• -

i

i












4
1
1
1








.»
1
1
1 <


I


4



-1 "
1
1
1
1
1
1

1
1
1
1
t— 4
'








4>




»_«





> — 4
I
1
1
1

C














,.







1
t ••
1

*













• <
1
*

0

i
•

.*

t


+ - +
1 1
1*1
1 1
• 9 »«•»
1 1
1 |
• 4






 . 130
                             I      I
 .0
STA
STA
     51UK03       51UH07       51UR10        51UR15
            5IUHO'.       51UR08        51UW11       51UB16

Figure 8-6.   Distribution of Total  Kjeldahl Nitrogen
              Loadings in Ib/acre-inch of runoff  at
              Pond BMP's.
                              8-12

-------
 .780
 .530
 .390
 .260
 .130
 .0

STA
STA
                 I
                * — *

                I I

                I I

                I I
                I I
              I* I
              I  I
              0.0
 I
• — +

I I
                                   I  I

                                   I  I
n
« —o
I I
* —*
 I
 I
»- *

I.I
I  I
• _o
I  I
                                                     *.»
                                                     I I
                                              I
                                             * —»

                                             I I

                                             1*1
                                             Q — O

                                             I I
                                                      !      I  !
51UH03        S1UP07       51UK10       5JUR15

                   51UH08        51UR11       51U"16
         Figure 8-7.   Distributions of Oxidized Nitrogen Loadings

                       in  Ib/acre-inch  of runoff at  Pond BMP's,
                              8-13

-------
. rso » 	
1
1
1
1
1
1
.650 »
	 ""1 	
I
1
+ — *









1


S 1 •-«
C 1 1
\ 1 1
H 1 1
A 1 1





1
* — *
1 1



.
1 1
1 1 1
III-
C .530 • 1
1 1
'1 1












1 1 "I
0 II*
U 1

1
0 «-« 1 1
T 1 1
S 1
I 1
c 1 1
3 .390 « 1
1




1


1

1 1
1 1
3 1 1 •-*
I «-• 1 1
V 1
IX 1
3 I
I I
5 1
l_ .?6« .
1
1
f I
T 1
V 1
1
1
.130 •
1
1
1
1
1
1
1






1 1 i-.
II »-* 1
«•» 1
1 1
1 1
1 1
* — *
1
+ - «


1 1
1
1










1














c






































«












> — 4
1
1
1
j
1

















	 ,



• 1


* — + 4
1

1
y
• 1 1
1 1 1

1
III *
... 1 1
t





.L

*"T
«!
i
1 1 1
«•• •••





1
1
» — *
1
1
1
1






.







ST« S1UH03 5IUW07 51UR10 51UK15
STA S1UWO". 51UR08 blURll 51UH16
Figure 8-8.   Distributions of Total  Nitrogen  Loadings
             in Ib/acre-inch of runoff at  Pond  BMP's.
                    8-14

-------
removal of nitrite or nitrate, but rather from their conversion to other forms.
It is most likely that the mechanism in the case of oxidized forms is biological
uptake and incorporation into biomass.  Bacterial  biomass may then be removed by
sedimentation processes.  Some direct reduction of nitrate loads probably occurs
as a result of rooted aquatic plant uptake.  The examination of TKN removals in
the wet ponds is of limited use for the same reasons.  While ammonium ion may
directly adsorb to negatively charged sediment surfaces, it is also likely that
another component of its removal, as well as that for SKN and TKN is oxidation
to nitrate and subsequent removal of that anion as discussed above.  The net
result is that, in very long detention time facilities, the only fair estimate
of nitrogen removal is the Total N value
Nitrogen-Detention Ponds.  The detention ponds, because they fill  and return to
a dry condition for each event, have much shorter residence times.  As a result,
fewer chemical /biological transformations of nitrogen would be expected to
occur.  This is generally confirmed in the removal data seen in Figure 8-4
through 8-8 and in Table 8-1.  For Lake Ridge and Stedwick ponds,  the nitrogen
forms generally thought of as soluble (Nfy-N, SKN, OX-N) displayed generally low
removals.  The two exceptions to this were SKN (17% at Lake Ridge) and OX-N
(10.8% at Stedwick).  The removals of those forms associated with  suspended
solids were generally more consistent, and as they constituted the greater frac-
tion of the total nitrogen load that consistency was transmitted to the total.

Phosphorus-Retention Ponds.  Loading distributions for all phosphorus forms are
shown for all pond types in Figures 8-9, 8-10, and 8-11.  The median value
loading reductions are summarized in Table 8-1.  Many of the same  arguments made
for the soluble/insoluble forms of nitrogen, and to their incorporation into
biomass (bacteria, algae, rooted aquatics, etc.) may be applied to phosphorus.
                                   8-15

-------
.200
 ItiO
.120
*
V
A
^
A
3
L .flOOO-01

F
0
3


.'.OOO-O 1








«
STA



o



o



0
1

i
» » »
1 1
1 1
»-» 0
... |
1 4-.
| 040
S1UK03


0
0



1
o | .
4 — *
1*1
• ! I
1 I
" III
0 ft 0_1> •
« III
o « Mi
1 0 •-• •
I 1 1
.-» 4-4 |
0.0 0.0 j
* — 4 4 — 4 |
blUR07 51UK10
0
»



• ' 1
4 * 4
|




4~4
1 « •
-» 1 1 1
II*
•-» . 1
- * *-* 1
1 1
I »
1 0 1
»44 |
5JUH15
       Figure 8-9.  Distributions of Ortho-Phosphorus  Loadings
                    in Ib/acre-inch of  runoff at Pond  BMP's.
                               8-16

-------
          I
   .200    »
5         I

          i

5         I
4         I
T         I

C  .160    «

3         I
LI
3         I
T         I
S         I

          !
3  .\20
1         I

VI
«         I

?         I

3
L


MOOD-01








<»OOD-01





«

n


»


0
1


t
* » *
1 1
1 1
1 1
«-o
».«
1
1
1










o
o
e
0
1
1
1 »-•
»-• 1*1
O • O 0-O
* - * » - »
1
0 1
1 1

1 1
1 *~ *
1 1 1
1 1 1
«-• 1 .-» •
• l»l I* l»l
II 1 1
0 «-0 | | 1
* II II II
| | •_» .-0 «
•-• 1 II •
Oil •-•
1 1 •-• 1
1 1
e*o 1 | •«<»
» — » *• »
1 1
  STfl            51UW03        blUHO?       51UMO        51UR15
  STA                  S1UM(I<»        51UH08       51UR11        51U«16

          Figure 8-10.  Distributions of Total  Soluble Phosphorus

                         Loadings in Ib/acre-inch of runoff at

                         Pond  BMP's.
                               8-17

-------
 .800
 .160
 , 120
        I
 .aooo-oi»
        I
 .4000-01•

        i
                                                      I I
1 1
1 •-
1
1
» — *
1*1
1 1 «-
1 I
1 1
»_»
MY 1
* - * * - * * -
i «•« i
1 V* 1

>










j
1
1
*l
1 «
I
»_«
1
1
t
> — »
1
1
J

|
j
1
1
_o
1
1
— *
1
1
1
1
I
j
> • <
*


»•<

> — <
1
1

1*

» j
1
1

1
> •.
1
> » •.
1
!







»

t










* .


h.
» •
1
1
4




• «
1
1 I
•; i
i
 .0
STA

STA
      S1LW03       510R07        51UH10       51UR15
             S1UR04       51UR08       51UR11       51UR16


Figure 8-11.  Distributions of Total  Phosphorus Loadings

               in Ib/acre-inch of runoff at Pond BMP's.
                               8-18

-------
The figures and Table 8-1 show substantial  compression of the interquartile
ranges and reduction of the median loading  values for all  three phosphorus  forms
at both retention ponds.  In fact, although the total phosphorus removals  ranged
between 39.2 and 42.7 percent, the removals of the soluble forms (the  most
biologically available) ranged from 48.6 to 63.0 percent.

Phosphorus-Detention Ponds.  Examination of the loading distributions  and median
value load reductions for detention ponds in Figures 8-9 through 8-11  and  Table
8-1 show that the performance with respect  to phosphorus was  generally quite
poor.  The data show essentially no change  in the population  interquartile
ranges or in the median loading values for  ortho phosphorus.   In fact, for  total
soluble phosphorus, the interquartile range for Stedwick actually increased
through the pond.  This poor performance is no doubt due to the short  detention
times and lack of opportunity for the soluble forms to attach to the suspended
load.  The removal of total phosphorus, although positive, was quite disap-
pointing, ranging from 8.2 to 14.3 percent.

Metals-Retention Ponds.  Figures 8-12 and 8-13 show the distributions  of inflow
and outflow loading data for zinc and lead  at all pond BMP sites.  The estimated
removals based on changes in median loading values are shown  in Table  8-1.    The
data shown for lead in Figure 8-13 and Table 8-1 are based on a much smaller
population than the zinc data.  This is because the majority  of exractable  lead
analyses performed by conventional aspiration atomic absorption spectroscopy
(AAS) fell at or below the detection limit  of the instrument.  Limited analyses
were performed on storm samples from the later months of the  study using the
lower detection limits provided by graphite furnace AAS.  The number of obser-
vations comprising the low level data set was substantially smaller.
                                   8-19

-------
.nuuu-u i






.5000-01







«'.000-01




.3000-01







• 20 OD~0 1








.1000-01





. n
1
1
1
1
1
1
1 o

1
1
1

1
1
1
*
1
1
1 i
1
1
4
1
"
1
1 o
1

i o
1 0 *
« 0 • '
I 1
i 1
1
I 1
•
1 1 0
1 1 1
1 .-- 1
i l.l 1
1 o. o 4
1 1 1
II 1
1 II 1
1 •-» 1
1 1 1
1 1 1
? 1
• «
» 0
«

•
0 • |
4

1
4 i
1 1
•
» 1
1 • 1

0 1
1
"I o 1
I "
i 1
1 1
«
1 1
"l 1 1
1 1 1
1 1 1
II 1
1 1 1
i 4-4 o e • 1
-'III 0 1
1 1 «l 0 «
«-• 1 1
III 1 0 0
• -" 1
1 II 1
-4 1
1 II 1
1 »-• II «-» 1 1
.-« 1 1 •«» «
I I 4| | I 4
1 «-» 1 1 1
1 1 1 1 «-••-»• 1
1 1 1 1 1 1
1 I |l J ^
i *T* it
i i ||
i 1 II
                  51UR07       S1UH10        51UR15
            bluHO*       S1UR08       blURll       51U»16
Figure 8-12.
Distribution of Extractable Zinc Loadings
 in  Ib/acre-inch of runoff at Pond BMP's.
                    8-20

-------
STft
STft
2400-01





2000-01






1600-01
'
1ZOD-01





flOOO-0?





4000-02

'





n

-


o


v




o













* — +
1 1 0
1 1 1
1 1 1
1 1 1
0-0 «-•
II I* 1
• _ * 0_ V
+ — *
1 1
•1-
1
_







«








._
1
1
















»






L









»

















-1 •
1
1
1
»• —





*



"



'7



















4











>


.






'












1
h— <












«








» — t

_
'l
1














4








1 1
1 1
* — *
1



"l
1
» i •
..!
*T*
i •
* * #
i
• i i
»_» i
+ * * * * *
i •-•
* — *
1
51UM07       51UR10       51UR15
      5IUR08       51UR11       51UR16
         Figure 8-13.  Distribution  of Extractable Lead (furnace
                       AA) Loadings  in Ib/acre-inch of runoff at
                       Pond BMP's.
                           8-21

-------
 Substantial  reductions in zinc loadings were observed at both the wet pond
 sites,  ranging from 44.2 percent  (Westleigh) and 83.7 percent (Burke).  Using
 the  limited  low level data base for lead loadings, the removals varied from 81.8
 to 37.8 percent for the same two stations.  This has limited water quality
 significance, however, because the lead concentration ranges for the samples
 used were all below 30 ug/L.

 Metals-Detention Ponds.  The loading distributions for zinc and lead at the two
 detention pond sites are shown in Figures 8-11 and 8-12.  The median loading
 reductions are summarized in Table 8-1.  While the highest loading rate distri-
 butions for  zinc and lead were observed at the Lake Ridge inflow site, the remo-
 val  percentages were also the lowest observed.  The zinc and lead reductions
 attained at  the Stedwick site were much higher, and, in fact, were comparable to
 those from the wet pond sites.

 Non-Pond BMP's
    As may be seen in Table 2-1, six non-pond BMP's were included in the study
plan.  These consisted of 2 infiltration pits, 3 grassed swales,  and one porous
paving application.  All the non-pond BMP's, therefore, fell  into the volume
control category-indicating that, at least in part, the functional  mechanism of
pollutant removal was assumed to be reduction of flow volume.  This reasoning,
of course, derives from the design features of such practices that  allow some
portion of the runoff flow to be directed into the soil profile.

Data Analysis.  As stated earlier in the section on pond data analysis,  flow
volumes in ponds may be assumed to balance between inflow and outflow over  the
long term.  For that reason, an analysis of pond efficiencies based on long-term
observations of pollutant exports at the inflow and outflow points  seemed
appropriate.
                                       8-22

-------
    The situation is less clear for volume control BMP's.   The  study  design
called for the use of the uncontrolled station at a pond BMP pair  as  the control
for the volume control BMP monitored at a similar land use.  In the project
planning stages this seemed to be a logical method for maximizing  the efficiency
of limited resources available for site instrumentation and monitoring.  The
realities of the study, however, have made it apparent that selection of control
catchments based only upon similarities of development density  and imper-
viousness makes such comparisons difficult.  Differences in soils, slopes, and
                                                            f
traffic patterns may have contributed materially to the problems experienced in
establishing adequate control watersheds for the volume control BMP's.  In
retrospect, it now seems clear that site selection for such a study should focus
(with limited monitoring resources available) not only on the location of
control watersheds having very similar physical attributes to the  BMP watershed,
but also on the proximity of the control and BMP-applied catchments.  For stu-
dies of relatively short duration, a dataset of sufficient size may not be
created to allow comparisons of pollutant export under similar  hydrometeorologic
conditions.
    As stated earlier, volume control BMP's function, at least  in  part, by
directing a portion of the runoff flow into the soil profile.  For this reason,
effectiveness comparisons made on the Ib/acre/inch of runoff basis used in the
pond evaluations are not suitable.  A more logical choice would be comparisons
based on pollutant export generated as a result of the initial  driving force:
rainfall.  An efficiency analysis was attempted using the loading  populations
developed from Ib/acre/inch of precipitation and control/BMP catchments as
follow:
                                           8-23

-------
     BMP TYPE                   SITE                        CONTROL SITE
Infiltration Pit     Dandridge (UR05)                   Stedwick  Inflow  (UR10)
                     Burke Village Center (UR17)        Fair  Oaks  Inflow (UR20)

Swale Drain          Stratton Woods (UR06)              Westleigh  Inflow (UR15)
                     Fairidge (UR09)                    Burke Inflow (UR03
                     Dufief (UR18)                     Westleigh  Inflow (UR15)

Porous Paving        Rockville City (UR19)              Fair  Oaks  Inflow (UR20)
Paired as shown above, the BMP and control  site comparisons  suffer  from the

following deficiencies:

         o The Dandridge site was not entirely representative  of
           outflow from an infiltration  pit as 52 percent  of the
           site drainage reached the monitoring point unobstructed.
           In addition, the site is extremely remote from  its
           control basin, the inflow to  Stedwick pond.  There  were,
           as well, substantial  differences in site  imperviousness
           and development density.

         o The infiltration pit  site at  Burke Village Center might
           have successfully used the wetfall  and dryfall  loads
           reaching the surface  as estimators of the uncontrolled
           loading.  However, it is suspected that the ground-level
           dryfall collector on  a principally parking catchment does
           not do an adequate job of collecting direct deposits from
           motor vehicle undercarriages.   Using the  Fair Oaks  Pond
           inflow point as a control  has  some deficiencies of  its
           own:  the control site already had its own BMP  practice
           (vacuum sweeping) and the storm event data base-was quite
           small  (10 events).

         o The Stratton Woods and Westleigh inflow catchments  appeared
           to have sufficient physical similarity to permit  comparisons,
           but the wide separation of the sites and  the very different
           rainfall distributions have made this doubtful.  Careful
           editing of the datasets to include storms of more similarity
           might remedy this.

         o The Fairidge and Burke Pond inflow sites  also displayed
           substantial  physical  similarity, but the  wide separation
           of the catchments and differences in rainfall populations
           contributed to the limited suitability of the pair.

         o The Dufief and Westleigh inflow sites were located  in the
           same area.  The development densities were high at  the
           Dufief site, but the  net impervious  percentages were
           similar.  This pair probably  had the best opportunity
           to serve in the control-BMP function.  However, due to
                                   8-24

-------
           the late date in the program at which the Dufief  site
           was established, and the very low runoff volumes  pro-
           duced, only eight runoff events were available for
           analysis.  The Westleigh data set was much larger,  and
           therefore, more representative of catchment export
           behavior.
         o The Rockville City-Fair Oaks inflow pair suffer from
           the same problems as noted earlier with the Burke Village
           Center-Fair Oaks inflow.  In addition, the sites  were
           widely separated.
Having summarized the apparent weaknesses of the selected pairs, the limited
effectiveness data may be viewed in proper context.

Precipitation.  As stated earlier, because of the unknown quantity  of  runoff
directed into the soil profile with volume control BMP's, comparisons  with the
control catchments would be best performed using unit area pollutant export per
unit rainfall.  Figure 8-14 presents the rainfall data distributions for the
volume control BMP sites and their selected control basins.  As may be seen, the
median rainfall values were similar for the following pairs:
                            UR05 - UR10
                            UR17 - UR20
                            UR19 - UR20
Of the above pairs, it should be remembered that the Dandridge site received
52 percent of its drainage directly-not through the infiltration pit.  An addi-
tional limitation of the pairings above is the relatively small size  (10 events)
of the Fair Oaks inflow (UR20) data set.
    It is likely that editing of the data sets of the other  proposed pairs would
produce similar "driving force" populations that would make  the resulting pollu-
tant export comparisons more meaningful.

Suspended Solids.  Figure 8-15 shows the suspended solids loading distributions
for the volume control BMP sites.  While strictly not a volume control site,
UR20 has been included because it is a vacuum swept catchment  and also its
                                       8-25

-------
r£ . tA • tl
     .0
    STrt
    STA
  EOF:
51UR03     51UR06      51UR15
     51UR03_	51UR10     31UR09
             Figure 8-14.  Distributions of Rainfall Data at  Volume
                           Control  and Control BMP Sites.
                                8-26

-------
'



20.0
S
I,
-4
c
14
A
T
I
C 16.0

3
b
T
S
F
D 1 ? » 0
'
V
A
3
I
A
3
L 8.00

l

S
S
F 4.00
L





1 1
II
1
1
1 1
1 1
» 1 i
1 i
» 1 1
1 I 1
1 1 1
« — . 1
1 III
1 1 1

0

"


*


o
0
1


.--- •




1
•— I I ! i



*




'










| . . 	 . o 	 .
1 I
1 i • 1


1 • 	 • 1 1
i — • 1 1
1 1 1
!| |
i i
1 ! 1


1 1 1
i i •
j I l

i 1 i
i i
i i i
•_-_• i
• i j
ii i
i i i
i *
» — . i
i
i
> i
*
i
i i
1 ' !
	 ! ! II
111 * » * • • n l l
II w • » — w y | |
| I . 	 . | | .-.-« |
STA SlUkOb ' sluw09 ' 51UR18 5IU»20
STA SHJW06 51U917 51UR19
Figure 8-15.   Distribution of TSS Loadings  in  Ib/acre-in
              of precipitation at Volume Control  BMP's.
                8-27

-------
 loading data have been used for the control for sites UR17 and UR19.   The esti-
 mated efficiency data for the volume controls for TSS are given in Figure 8-2.
 These were developed using the available loading distributions from the BMP
 sites and their selected control sites (loads expressed as Ib/acre/in-Precip).
 As may be seen, the results are not encouraging for any of the swale  drain
 sites, with efficiencies ranging from -17.8 to -224 percent.   It is possible,
 however, that these poor estimated performances are artifacts of the  site and
 rainfall distribution differences.  Similarly poor results were obtained from
 the Dandridge infiltration pit, and probably for the same reasons.  The Burke
 Center infiltration pit, however, appeared to perform quite well when compared
 to the Fair Oaks inflow, producing a TSS removal estimate of  36.9%.  Likewise,
 the Rockville Center porous paving site was estimated to achieve a TSS reduction
 of 82.5 percent.

 Chemical Oxygen Demand.  The COD loading distribution data are shown  in Figure
 8-16.  It is interesting to note that two of the residential  swale sites, UR06
 and UR09, exhibited very similar median loading rates, while  the third site,
 UR18 was substantially lower,  it is also interesting to note that the lowest
 loading distribution of all  was derived from the Rockville Center porous paving
 site.  Reference to Table 8-2 again shows the disappointing volume control  per-
 formance, with two exceptions:  Burke Village Center (UR17) and Rockville Center
 (UR19), which produced median COD loading reductions of 36.9  and 82.5 percent,
 respectively.

 Nitrogen.  The loading distributions of ammonia, soluble Kjeldahl  nitrogen,
total  Kjeldahl  nitrogen, oxidized nitrogen, and total  nitrogen are shown in
Figures 8-17 through 8-21,  respectively.   As may be seen from comparing the
values from common scales on the ordinates, TKN was generally the dominant  form
at all sites.  Nitrate loadings at the UR06 and UR18 swale drainage sites were
                                   8-28

-------
Table 8-2.  Estimated Removals of Stormwater
            Pollutants at Non-Pond BMP Sites

oo
i
ro
UD



SITE NAME
Dandridge (UR05)
Stratton Woods (UR06)
Fai ridge (UR09)
Burke Ctr. (UR17)
Dufief (UR18)
Rockville (UR19)
BMP TYPE CONTROL STATION
Infiltration Pit
Swale Drain
Swale Drain
Infiltration Pit
Swale Drain
Porous Paving
UR10
UR15
UR03
UR20
UR15
UR20
TSS
-66.
-133
-50.
50.
31.
96.

7
0
0
0
0
PERCENT
COD
-144
-224
-48.1
36.9
-17.8
82.5
TN
-200
-187
-18.
-9.
36.
59.
REMOVALS

2
8
5
9
TP
-267
-220
-9.1
-8.0
-23.3
88.1
ZN
-160
-581
-140
48.2+
-173
99+
Pb
-234
-543
-328
-
33.3
-

-------
n.uu




5.00
5
C
_f
r
\i
T
C 4.00

3
b
T
S
r
3 3.00
}

A
*
i
a
L ?.00
"


L
3
r 1.00
L


»-------|---|---
1 !





















i
i
1
i
i
i
i
i
i

I
»___• i
1
1
i
i
i
i
i
i
i
i
i
i














i








i
i
1
i
i
i
i
i
• i
i
1
.._o
1
1
i .
i
i
i

i
i
i

I
i
i
1












_.












i i
i i
i i
1 !


i i
* — - — *
i
i
i
i

1

i
1
i


--- i ---
1
i
i

1
i
i i


i
1 IT.
i i u
i i



I "
1 *.
\ 2
a
"I 1 =
i
1 1 i




* — ~ "



i
i

i
i






i

• — *•


























•











•











* — 4
1
1



i














~<








— •
i
i
&___•
! !
i
!
i
i
i
------ ----i --—------«
1
". i
0 1
, T I
! i i


5
£ 1
x i
i









1'
1
|
1
*
|

|


>— -— * i
*
i
I
i
i
1
1
• . i
*
i
,.._ i
i
i
i
i
i
i
«
« 	 « |





i
* — -
1
i

i
•— *



STA 51UKOS 51UR09 51UH18
STA 5JUH06 51UB17




1
1

!
i !
51UR20
51UP19
Figure 8-16.   Distribution of COD Loadings  in  Ib/acre-in
              of precipitation at Volume  Control  BMP's.
                8-30

-------



.300
s
£
?
A
T
C .160

3
o
T
S
D .130

V
A
7
I
A
3
L .flOOO-01
F


L
D
H
3

L


















i
0
<

1
1
1
1
1
1 !
i


i
1 1
1














•





















1
1 *
1 • 1
I

i""i « i
i i
i i
i i
i i •

i • i i
i i i « — •
III II!
1 1 1 1 II
i— 1 1 1 ! i— i
Ii «
i
i i i i • i i
i i i i • — •
• 	 o i I . 	 • n i
•— 1 1 1 1 10 1
III** **l 1
| | *... * «... * | |

i i iii •---« i
ST* S1UK05 51UR09 SlURlb 51UR?0
STA 51UH06 51UP17 51UR19
Figure 8-17.  Distribution of Ammonia Nitrogen Loadings
              in Ib/acre-inch of precipitation at Volume
              Control  BMP's.
                 8-31

-------
1 1
1
1
1
1
1
1
.200
1
I

j
j
. 160 •
1
1
I

1

.120
1
1
1
1

1
1
.8000-01*


















_






1
1
1
1
1
.400(>-01*

I
1

1
t
1
1



















-_






__



,












•











4










i


1



1



















.— *



















1







•








1













* —


I
1










I
~_







.







*
i
I
i
i
i
i
i
i
i
i
i
i
i

i








•







|

1
1
1
1

















i
i
i
I
i
i
i
i i

i i
i *


i
*
i


a .- — •

4









*
_ *











___<









	 .

















•
















TA MUSOS 5lu«ov
T A 5 luk Ot»






_






















._






















.



*--
1
1 <
1
# — — — * *•»•
1 1 1
o 	 . (
1 » 1 » —
1 1

1
1

»









.— *
I
> 1
1
.— •
1
1






51UP18
51U»17 51UR19






"






















1
1
1
1
1
»
1
1
1
1
i
i
»
i
i
i
i
i
»
i
i
i


i |
i
i
51UR30
Figure 8-18.   Distribution  of SKN  Loadings  in  Ib/acre-inch
              of precipitation at  Volume  Control  BMP's.
                8-32

-------
• c •* 0





.300
5
C
?
t(
A
T
C .ItoO
B
T
5
r
3 .130

y
A
3
I
3
L .8000-01



L

f
^
VI
F .<.OOD-01
L






, 	






















	










<_--



•







* — -
|











1 1

» »




»

o — _





1



1

1
1
| |
| |



1
1
1





1
1


1
1

1
1
I
1
1

STA SUIH05




















i







i

•



i.— -







1
>













	



-— - •













1
1
1

1 1





1
1

1


-— » * ~~_ +
1
1
1
1
1
1
1
1
1
1


51UR09













































>


























STA SlUHOto 51UH17








i _ i


r* I
d
• i •







0


i

i
5
O
UJ

1




4
1
1

i i
1 1

1
1
4
i i
» -—— « i
1 1 *
i 1 i
> — »
i 1*1
i i
i •___•
• — • i i ,
• i 1 1
1* — — — *
i
1 I
i
. — . i
t i
51UR18 51UR30
51UR19
Figure 8-19.   TKN Loadings  in Ib/acre-inch of precipitation
              at Volume  Control  BMP's.
               8-33

-------
.<:«u




.200
C

q
£
T
' .160
3
b
T
S

0 .120

V

3
I
^
t .flOOD-01

L

3
2
^ .<»000-01

L





1 1 1
1 I 1
1 1 0
1 1 1
1 1
o — _-•
i i i
i i » — •
ii ii.
r~. ii i .











1







• i i i i
i it iii
I I
| *--- *
I I I
t i
i»li
1 I 1
i i i
i i i
I 1 1
» — « i i
i i i
loll
1 . — .
1 1
1
1 i
1 1
1 1
1 1 1
. — . i i i
. — . i
I'll
i • i i
* i i i
• — • i i
1
1
1 1



» 1 •

• — • 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1 « — « «
1
i 1
1 1
« — « 1

1
1
4
0
1
1 1
I I !.... ..!..
• — * i i » i i
ii ii
i • — •
STA S1UHOS 51U»09 51UP18 51UR24
STA 51UW06 51U»17 S1UB19
Figure 8-20.   Distribution of  Oxidized Nitrogen Loadings
              in  Ib/acre-inch  of  precipitation at Volume
              Control  BMP's.
              8-34

-------
•?"° -- 	 I— 1—






• '°°
H
r
A
T
C . 160

3
t
5
T
S
^
3 • 1 20
*
V
A
3
I
&
U .flOOO-01

L
T
^
F
L .<.OOD-01





1 1
1 1
!
1 1
1 1

~
1 ° 1
1 • 1
1 z j
' S '
i *i
i *
* — — — *
i

i

i
i
i

i
*
i
i
i
— I— I— 1 	





-— _<

































vO
O

^
«*
1










i
1
1





































10
2

1
a
LU
£















1
1 !
!
1 1
i i
i i •
i i
i i
i i
1 1
i i
'

ST* 51UKOS blURO1*
STA SlU»06 51UR17































•



....











1













4
t




*




•

&1UR18
I














.
l__.»4





















.



1
1
1

,_
1 ".
0

5
o
S

*
1






|






1






T



















4
1











51UR20
51UB19
Figure 8-21.   Distribution of Total  N Loadings in
              Ib/acre-inch of precipitation at Volume
              Control  BMP's.
                 8-35

-------
 similar, but were both substantially different from those at UR09.  Estimated
 removal percentages for total nitrogen are given in Table 8-2.  Of the swale
 drainage sites, only Dufief exhibited a positive removal (36.5 percent).   The
 only  other site of any type exhibiting a positive removal was UR19 (Rockville
 Center), which was estimated to remove 59.9 percent of the total  nitrogen.

 Phosphorus.  The loading distributions for phosphorus forms are shown in  Figures
 8-22  through 8-24.  As may be seen, the lowest loadings for any of the sites
 monitored were produced by the Rockville Center porous paving catchment.   At the
 other sites, the figures show substantial fractions of the total  phosphorus
 loadings to be either in the ortho or soluble form.  Reference to Table 8-2
 shows that of all the sites monitored, only the Rockville Center porous paving
 BMP exhibited a positive estimated phosphorus removal (88.1 percent).  It should
 be noted again at this point, however, that the negative values at other  sites
 may,  to some extent, be artifacts of the comparison data sets chosen.
 Metals.  The loading distributions for flame AAS zinc and furnace AAS lead are
 shown in Figures 8-25 and 8-26.  The estimated removals of the two metals at
 the volume control  sites are shown in Figure 8-2.  No estimates are given for
 lead  for those sites utilizing UR20 as a control, because of the paucity  of
 loading data available at that site.  For zinc, all sites except Rockville
 Center produced negative estimated efficiencies.
    Only the Dufief site produced a positive efficiency estimate for lead remo-
 val.  The data from all  other sites produced strongly negative efficiency esti-
mates.  It should be again suggested that a further examination of the loading
data be undertaken using similar rainfall data sets for the treatment and
control  sites.
                                   8-36

-------
\^0

. 100
s
c
H
r
M
A
T
C .HOOO-01

0
b
T
S
r
3 .6000-01
'
V
&

I
3
L .-.000-01
i

L
I

L .aooo-oi




• 0 4
STA
STA



































1
» «
1 1
1
1
1
1 «

1
1
1 • 1
1 1
1
1 0
1 1
II m
I

II i
> 	 » 1
1 1
» i 1
1 1
1 1
1 1 1
1 1 '
I I . 	 .
1 1 1 » 	 • 1
III 1
III 1
|| .
1 1 1 • 	 • »
| •_._•
Ill 1
1 1 • 	 • 1
I •_-_» | »-__. «_•_• • |
| | •-__• | ))• •__-•

blOKOb 51UR09 51UR18 \ 51UR20
51UH06 51UR17 51UR19
      Figure 8-22.   Distributions  of Ortho-Phosphorus  Loadings
                    in Ib/acre-inch  of precipitation at  Volume
                    Control  BMP's.
                      8-37

-------
. I£U



s -100
c
H
5
A
T
C .8000-01

3
5
^

r
0 .6000-01


V
A
I
A
3
L .<.OOD-01
"

'_
3
S
3
F .aooo-oi
L






«
5TA
STA

0
I) '
1
f

1
1

• 0
1
1
1
1 1
0
1 0
1
. — . II «
1 1 1
1 1
1 • — »
1
1
1 *«* * I
1 II 1
1 1 1 1 1 «
I III -i-.
1 1 1 1 1 1
1 1 1 1 • 1 I
'•— ..!-. * 1 1
1 1 • — •
III •
• 1
1 • 	 « 1 1
1 1 1 • — • 1 1 1
. 	 . 1 1 ..... • •_..»
I -T- I I ?~i ' I
i i « — • i iii » — • i
i i i i » i »-.-» i
i i i . — • • — • i
SlUKOS 51UW09 51UH18 51UR30
SlUKOb 51UR17 51UR19
Figure 8-23.   Distribution of Total  Soluble  Phosphorus
              Loadings in Ib/acre-inch of  precipitation
              at Volume Control  BMP's.
               8-38

-------
 .\^0
 .100
 .8000-01
 .6000-01
 ,<.000-01
 .?000-01
 .0
STft
STA







































< —

















.

















»_



































•
a










i
1
i
i
1
i
i
.-!..
i i


o- » -


,

1
1
1
1
1



















> _•










— a

. -


























•






B_ ,

-_ •




1
1
1
1

i
i
i
i
t
i
i
»-.-<
i
|

i
i
i
i
i *
i
i
i
i
....

i
i
i
i
i
# — -— <
i
i
i
i
i
i
i












>










»
*
•


•
'
> •
i
• i
i i •
• -..• g
1 1 1
1 1 .-.-•

l" .III*









^



1









»...<



I
i

1
1
1
1
1



1


1
1
1
i

i
I
i
i
i
i
1
i
i
l
«.
1
I
i
•
i
> i
i
i
i

i
i
i
i
i
i
l
i
1
•
S1UKOS          51UR09         S1UP18         51UP20
       51UW06          51U017         51UR19
        Figure 8-24.   Distribution of Total  Phosphorus Loadings
                       in Ib/acre-inch of precipitation at Volume
                       Control  BMP's.
                          8-39

-------
1
1
1
1
1
1
. 1500-01*
1
1
1
1
1
I
1
.1300-01*
1
1

1
1
1
."000-03*
1

1 <
1

1
1
.6000-03*

1
1
1
1
1
1
.3000-03*
1

i
i

j
i
i
i
i

•

i
i
i
i
i
i
i
i
i
i
i

i
.. !

i

i
i

i
i
i

i







i
i
i
i

i
i
i
•
i
i
i
i
i
i
i
» ...*
i
i

i

i
*. i
j
....

.
i
i

i
i
i
i
•
i
1
i

i
i
i
i
i
» — -










*










>...








i
j
•
i

i
i
i
i
i
•
i i
•
i
i
i

i
i
i
i
i
i
i
i
i
i
i
i

i
i
i
• i
i i
«..






>


	


>.















„_










• «










i i
i
i
i
i
i
»
i
i i
i i
I
* i i
..... i
ii
*
i i
i i
i i
i i
i i
i i
i •
i i
!i
i
i
i • i

1 0 1
1 .1
II
1 1
1 1
..... i 1
1 1 '
ill 1
1 1
1 1
1
. — • , — . 1
il
!
1 1
..... ,

STA
STA
              S10H06
                                   51UH1B         51UR80
                            51UPJ7         51UR19
Figure 8-25.
                       Distribution of Extractable Zinc Loadings
                       in lb/ acre-inch of  precipitation at Volume
                       Control BMP's.
                         8-40

-------
. JOOU-01* 	
1
1
1
1
1
1
1
1
.3500-01*
S 1
C 1
H 1
H 1
A 1
T 1
I 1
C .3000-01*
1
' 1 1
b 1 1
T 1 •
S I 1
1
0 .1500-01* 1
9 1 1
If 1
V 1
A 1 1
3 1
1 I i— i
3 III
L .1000-01* 1 1
1 T— T
1 I 1
I III

F .5000-03* » 	 *
L 1

| I. .11
1 I * 1
1 1 1
( * — — — *
1
1
1
1
1
1
0 1
1
•
1
1
1
1
1
1
1
*
1
1
1 1

1 i

*
1
1 |
1 1 1
1 1 1
1 ! 1
i i i
It *
1*1 1
1 1 1
1 1 1
1 ! !
O__— 0 •
» — » 1 1 1
1 1 1
1 1 1
1 » — «
•-•-• 1 i
1
1
1 1
STA
STA
                       SlUWOb
                           51UR19
                                                         51UR30
         Figure  8-26.
Distribution of Furnace  AAS Lead  Loadings
in Ib/acre-inch precipitation at  Volume
Control BMP's.
                             8-41

-------
                                    References
8-1      "Evaluation of Management  Tools  in  the Occoquan  Watershed,"  VA  TECH
         Department of Civil  Engineering,  Manassas,  VA  22110.
                                  8-42

-------
                            9.  ATMOSPHERIC SOURCES

 Introduction
     The atmospheric source monitoring program consisted of three elements:
 suspended participate sampling and analysis, dryfall sampling and analysis,  and
 wetfall sampling and analysis.  The locations of the total  suspended participate
 sampling stations were fixed by an existing network.  Eight stations were
 distributed between Virginia, the District of Columbia and Maryland.  The sta-
 tion names and numbers were presented previously in Table 2-2.  The dryfall  and
 wetfall sampling sites were located together in all cases because of the design
 of the equipment employed.  The wetfal1/dryfal1 sampling sites were installed
 and  operated by VA TECH staff.  The total suspended particulate samples were
 obtained by MWCOG staff and delivered to VA TECH.
     The wetfall/dryfall and total suspended particulate data base is contained
 in Appendix F.  The locations and inclusive sampling dates for the atmospheric
 source stations are shown in Table 9-1.

 Total Suspended Particulate Monitoring
    Samples were obtained from MWCOG staff, and consisted of 20x25 cm glass
 fiber filter mats from high volume air samplers located at the locations in
 Virginia, Maryland and the District of Columbia as shown in Table 9-1.   The  air
 flow data for each sampler were transmitted with the filter mat, making it
 possible to compute a 24-hour average air mass  concentration in ug/m3.   The
 results of the filter mat analyses are shown in box plots in Figures 9-1 through
 9-8 for total  suspended particulates, nutrients, and heavy metals.

 Particulates.   No immediately apparent trends in atmospheric particulate load
are apparent from Figure 9-1.  With the exception of Station HV03 (Hall,
                                   9-1

-------
                                        Table 9-1.  Atmospheric Source Monitoring
             STATION TYPE
     STATION NAME
      Total Suspended Particulate
10
ro
      Wetfall/Dryfall
Catholic University, DC

Hadley Hospital, DC

Hall, MD

Rockville, MD

Laurel, MD

Arlington, VA

Fort Belvoir, VA

Massey Bldg., VA

Haines Point, DC
                                    Burke Village Center
                                       (Roof)  (VA)

                                    Burke Village Center
                                       (Ground)  (VA)

                                    Stedwick, MD
STATION NO.

   HV01

   HV02

   HV03

   HV04

   HV05

   HV06

   HV07

   HV08

   WF01
   DF01

   WF02
   DF02

   WF03
   DF03

   WF04
   DF04
    MONITORING PERIOD

5-16-80 through 12-18-81

5-16-80 through 12-18-81

5-16-80 through 10-13-81

5-16-80 through 5-16-81

5-16-80 through 10-13-81

5-16-80 through 01-17-82

5-16-80 through 01-14-82

5-16-80 through 01-14-82

12-20-80 through 01-02-82


02-10-81 through 12-30-81


03-22-81 through 12-23-81


06-11-81 through 12-16-81
NO. SAMPLES

     20

     18

     17

      9

     17

     21

     22

     22

     39
     52

     39
     49

     30
     38

     17
     29

-------
1 -V .
100.
S
C
H
E
rt
A
T
I
C 90.0

P
L
0
T
S

F
0 60.0
R

V
A
K
I
A
8
L 40.0
E


T
S
U
S
P
20.0
<
Q







0


)




*
t



0
»•-* +-»
+-+ i-+



t--f

t *t
*-* +-t
1
1 *-«
1 +
+ 1
1
t-+ 1 1
1 <-*






t


-














t t





*-+ 1 1 t-f
1 1 1



+ - +
1 1
*•-+ »+»
+-+ 1 1
!• f- +


+ « + »
t'*


I- +


1 (•-+ t-f t-t
1 1 t
1 *•-+ 1
1 1 1
1 1 1

1

0
STA 51HU01 31HV03 51HV03 51HY07 31HV09
STA 31HV02 S1HV04 51HW04 31HV08
Figure 9-1.  Distribution of Total  Suspended
             Particulates in Ambient Air Mass
             as yg/m3.
                   9-3

-------
 Maryland), the median values of total suspended particulates for the entire net-
 work  vary only about +10 percent, indicating remarkable air mass uniformity with
 respect to particulate burden.

 Phosphorus.  The data shown in Figures 9-2 and 9-3 illustrate that, for the sta-
 tions where ortho and total phosphorus analyses were performed, most of the
 phosphorus was found to be in the non-ortho form.  In general, the
 orthophosphorus forms comprised only about 25 percent of the total.  In looking
 at inter-jurisdictional variations, it may be seen that the DC stations exhi-
 bited the highest median concentrations, followed by Virginia, and Maryland.
 The lowest median total P concentration was observed at the Rockville, Maryland
 site, with a value of 0.02 pg/m .  The highest median concentration, 0.045
 ug/m3, was observed at the Hadley Hospital site in DC (HV02).

 Nitrogen.  TKN and oxidized nitrogen forms from Hi-Vol mat analyses are shown
 in Figures 9-4 and 9-5, respectively.  An interesting trend may be observed by
 observing the nitrogen data on a jurisdictional basis.  The highest oxidized
 nitrogen concentrations (N02+N03) were observed at the Maryland sites.
 Conversely, the lowest TKN values were observed at the same sites.  The opposite
 trends were observed at the Virginia and DC sites.  No reason for this obser-
 vation is immediately apparent, but the consistency in the data is undeniable.

 Metals.  Trace metals associated total  suspended particulates are shown in box
 and whisker plots in Figures 9-6, 9-7,  and 9-8.
    The lead data are shown in Figure 9-6.  There are no apparent trends by
                                    s
 jurisdiction, but it does appear that the most suburban of the stations, HV03,
 HV07, and HV08 (Hall, MD; Ft. Belvoir,  VA; and Massey Building, VA) exhibited
the lowest air mass concentrations.
                                   9-4

-------
t TVVW — V 1
.7500-01
S
c
H
E
M
A
T
I
C .6000-01
P
L
0
T
S
F
0 .4300-01
R
V
A
R
I
A
6
L .3000-01
E
0
P



.1SO&-01







rt 1
. U '
3TA
STA









.








*





0 <



t-t +-t 0 0
III III
1 1 +1 III
III 1 t-t 1
1 + 1 1 1 1
III 1 1
*-« «-* *-« +« *-+
Itl l+l
II II
1 1 »-t
II II
II II
S1HV01 51HW03 51HVOI 31HV07 31HW09
51HV02 51HV04 51HV06 S1HV08
Figure 9-3.  Distribution of Ortho Phosphorus  in
             Ambient Air Mass as yg/m3.
                  9-5

-------
. /uwu-oi
.7300-01
S
C
H
E
H
A
T
I
C .6000-01
p
L
0
T
5

F
0 .4300-01
K

V
A
R
I
A
B
L .3000-01
E
T
f-

. 1500-01







f


*









+ -t


*




0


*


«-«
t 1
1
I
1
1


_. 	 -_-













*


*


+-+ * +-+



^



-«






<



*

0

* t-
















t+f







t









0




0 +-+ +- +
1
1
1
t
1
Y +- +
1 1
1 1
*-«
1 1
1 1
+ - +



i 1
t 1
*+*
1 1
1 1
+-+ +-+


^

+
•*



*-« +-+ 0 *-* +-f

t
1
1
1
1
1
STA SlH'JOl 51HU03 51HV05 31HV07 31HVC9
STA 51HV02 51HV04 I1HV06 S1HVOB
Figure 9-2.  Distribution of Ortho Phosphorus  in
             Ambient Air Mas as yg/m3.
                  9-6

-------
J • VV
2. 30
S
C
H
E
M
A
T
I
C 3.00
P
L
0
T
S
F
a 1.30
R

V
A
R
I
A
B
L 1.00
E

T
K
N


.500








• 0
STA
*
t







0 *
0




* «
0
*

*
0 «
*

+ - +
1
1 . *- +

f- +
+ f «
+ - +
+ -+ +
1 1 «• *- +
II 'I *- +
«-* +-t 1 1 «-* *l *t*
1 14-1 1
4-1 1 1 I-* «-«
4-+ 1 t-+ *-* 1 1 1
1 +-+ *-« II II »-*• 1
1 1 1 Itl II +-+ »-+
1 1 1 «-« III 1
1 »-+ 1 1 1 1 1 1
1 *•-+ 1 1 1
1 1 +- +
31HY01 S1HW03 51HW03 S1HW07 31HVO?
. .J
                    ;IHVO:
                                        51HV06
                                                 31HV08
         Figure 9-4.   Distribution of Total Kjeldahl  Nitrogen
                       in  Ambient Air Mass as yg/m3.
                            9-7

-------
1 -• . u 1
10.0
s
c
H
E
H
A
T
I
C 8.00
P
U
0
T
S

F
0 6.00
R

V
A
R
I
A
B
L 4.00
E


N
0
2
3
2.00








0
•








0



















+ - +
1 1
*t«
t-+ 1 1
+-f 1 1 II



t- +

n

f
*-*



* f- +
1

1 1 *•- +
1 1
1 1
1 1
1 1
ft. l + l
1 1
*-«
1 1
1 1
1 1
1 1 *
+-t

*
1
0 *-+ 1
II 1 10
II II
+-t f-t 1 +-+ +-+ 1
1 1 *+* 1 *+* *t* t-+
«+l II II +-+ 1 1
*•-«• f-t t-+ 1 «+*
II 1 1 +-+
II II
STA S1HV01 51HV03 51HVOS 31HV07 51HV09
STA 31HV02 51HY04 I1HV06 51HV08
Figure 9-5.   Distribution of Oxodized Nitrogen  in
             Ambient Air Mas as
                   9-8

-------
. OVU 1


.300
S
C
H
E
M
A
T
I
C .400
F
L
0
T
S

F
0 .300
R
V
A
R
I
A
B
L .200
E


E
P
B


.100



*
0































*















*- +
t- +








•








f


»-







+ - +



> t-







,



«

I






+ -t







•+ +-+ <
*-«


•»




*-«



f-+
1
+ 1




h 1-
(•-









+ <










Y









•










«•- +



-« +-4- t-f fit
|
1
1
1 «-*
+ 1
*-«
1
+-t +-+ 1 +-+
1 +-+ 1
1 +-+ 1
1 I
+ -t
0
1
STA S1HV01 51HU03 31HV03 51HV07 51HV09
STA 51HV02 51HV04 J1HV06 31HV08
Figure 9-6.   Distribution of Extractable Lead  in
             Ambient Air Mass as yg/m3.
                  9-9

-------
• JVV

.250
S
C
H
E
H
A
T
I
C .200
P
L
0
T
S
F
0 .130
R
w
A
R
I
A
B
L .100
E

E
2
N


.3000-01





*





*

t


*

41
0
































t-t










*-+ i
1 1
1 II
*•- +
1 1
1 + 1
.
*-
*-« 1-

"



^




k




;'
-*

•+ 1
II II








l--f










1



f









•





















+






:-






















I- +




















*








'






t
1






-









+ - +



•
*+*







"





•

>

11 +






»-« • 1
1 1 1
.0 t 	 + - + 	 + - + 	 1 	 *- + 	 *- + 	 + - + 	 + - + 	 +- + 	 +•
STA SIHyOl 31HV03 S1HV03 51HW07 31HW09
STA S1HU02 51HW04 31HW06 51HV08
Figure 9-7.   Distribution of Extractable Zinc  in
             Ambient Air Mass as
                  9-10

-------
.600

.100
s
C
H
E
H
A
T
I
C .400
P
L
0
T
3
F
0 .300
R

V
A
R
I
A
8
L .200
E
E
C
U


.100








(










*


)
)













4-4 1












*




*

»•

*


4

1
•*

*
+ -+ +-4- 4-4
1 141
4-4 1 1
141 411
*-* 4-4 1 1 1
1 1 141 -* .*-* 1
II 1 1 0 * II 4
1 1 *-« II II 4-4 tO*
4-4 4-4 4-4 *-* 4-4 4-4 1 1
1 1 1 1 141 1 «-«
1 «4* 4-4 1 1
4-4 1
STA 31HV01 31HY03 I1HV03 31HU07 31HVI09
STA 51HY02 51HV04 51HW06 3IHW08
      Figure 9-8.  Distribution of Extractable Copper in
                   Ambient Air Mass as yg/nr.
                       9-11

-------
    The zinc data, shown in Figure 9-7, show an interesting jurisdictional
trend.  The highest concentrations were observed at the Maryland stations,  while
the DC and Virginia stations were generally lower.
    Copper concentration distributions in the air mass particulates are shown in
Figure 9-8.  The highest median concentration (1.9 yg/m ) was observed at the
Hadley Hospital site  (HV02).  Median concentrations at other sites in the net-
work ranged from 0.22 to 0.89 ug/m3.
Dryfall
    Dryfall data were collected at the four locations cited in Table 9-1.  Two
of the sites, DF02 and DF03 were located in the same catchment, but at different
elevations above the ground surface.  This was done because of concerns that the
data collected at the ground surface would be biased by multiple sampling of
dryfall resuspended by vehicular movement and/or wind action.  It was reasoned
that a collector placed at roof level would be less influenced by such resuspen-
sion than one at the ground surface.  The problem with this approach is that it
runs the risk of discounting all dryfall originating at or near the ground  sur-
face.  The evaluation of data from the paired collectors must, therefore, be
somewhat subjective, but still should provide valuable insights into the accumu-
lation of dryfall pollutants.
    Accumulation rates were computed as follows:
              Ra =  M
                   "ATT
                         where,
                                  Ra = accumulation rate, M/L -t
                                   M = mass in collector, M
                                   A = collector area, L
                                  At = exposure time, t
Because of the inability to measure the period of time the dryfall  collector was
closed (e.g. during rain events) the accumulation rates have been  calculated
                                   9-12

-------
assuming exposure during the  entire time period.  This is not thought to intro-
duce a great deal of bias  into the results because of the relative lengths  of
the dry and wet periods in a  given time interval.  More simply, it may be seen
that most of a given period of time consists of dry conditions with relatively
short periods of intervening  wetfall.
    Figure 9-9 through 9-17 show the distributions of pollutant accumulation
rates for the course of the field monitoring period in 1980 and 1981.

Solids.  As shown in Figure 9-9, dryfall solids accumulations were highest  at
the Haines Point station in the District of Columbia (DF01), with a median  value
of approximately 78 mg/m2/day.  At the Burke Village Center stations (DF02,
DF03) it may be seen that  the ground level collector produced a median solids
accumulation rate some 42  percent higher than the roof top collector.  The  accu-
mulation rates at the Stedwick site (DF04) were very similar to the rooftop
values at Burke Village Center.

Chemical Oxygen Demand.  The  COD data showed distribution trends very similar to
those for total solids.  Figure 9-10 shows box plots of the accumulation rates
at the four stations.

Nitrogen.  Distributions of ammonia, TKN, and oxidized nitrogen accumulation
rates are shown in Figures 9-11, 9-12, and 9-13, respectively.  Examination of
the figures shows little difference between sites for ammonia accumulation. For
TKN, the highest accumulation rates were observed at the Haines Point Station
(DF01), and were probably  associated with the elevated solids accumulations at
that site.  The lowest rates  were at the Stedwick Site (DF04).  The rooftop site
at Burke Village Center (DF02) exhibited slightly lower accumulations than  the
                                   9-13

-------
130.

150.
S
C
H
E
11
A
T
I
C 121.

F
L
0
T
S
F
0 71.0
R
V
A
R
I
A
B
L 41.3
E
R
T
0
T
S
31.7




n A A
i. t V\t
STA
STA
0


0
*


0

1
0
« 0
0

0
f 	 1




*
	

i- — +
+

(•--- +
t 	 +
•f

f 	 + t
	 *
1
* 	 + —
i + — +
1 1
1
1 +f--+
1 1 1
51DF01 31DF03
51DF02 31DF04
      Figure 9-9.  Dryfall Total Solids Distributions  in
                   mg/m2-day.
                         9-14

-------
Y8 .U
30.0
s
C
H
E
M
A
T
I
C 44.0

F
L
0
T
S

F
a 4S.o
R

V
A
R
I
A
B
L 32.0
E

R
C
0
n
16.0







. 0 <
STA
STA
t 	 ____ 	 	 	 _ 	 --T
* *
*


*
. 1
0




t

f



0
0
*-+-+

0




1
	
+---+
0
t — t +
4. — +

* 	
+
t — +
f — + 1 1
« — « 1 1 1
II 1 III
+ — + t — *
1 1 1
1 -f 	 4-
1
1
31HF01 510F03
51DFO: S10F04
Figure 9-10.  Dryfall Chemical Oxygen Demand Distri
              butions in mg/m^-day.
                      9-15

-------
_' . 4U
3.00
S
C
H
E
H
A
T
I
C 1.60
P
L
0
T
S
F
0 1.20
R
V
A
R
I
A
8
L .000
E
R
N
H
3

.400







. 0
STA
STA
t 	 	 	 	 	 	 	 	 	 -._.--.___--- 	 _--- 	 -T
1




*




*


*'
*




»


0 <




0
0 0
1
•i — + 1
1
+ 1
¥ 	 + 0
•f 	 + 1 t 1 1
1 + 1 « 	 « 1
	 * 	 « 1 1 I- + - +
1 1 * 	 + 1 1
t 	 + 1 « 	 <
t 	 + 1 1 1
1 1 1 1
51&F01 51DF03
SlUFO: 51DF04
Figure 9-11.  Dryfall  Ammonia Nitrogen Distributions
              in mg/m2-day.
                 9-16

-------
   :.40
s
c
H
E
H
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
   2.00
1.60
1.20
.300
   .400
                    •f	+
                                       t	+
                                                  I    I
                                                  I    I
                                                  I	«
                                                  I    I
                                                  *	+
                                                    I
                                                    I
                                                    I
                                                    I
   .0
  STA
                     51DF01
                                          S1BF03
                                                      51CF04
         Figure 9-12.   Dryfall Total  Kjeldahl  Nitrogen
                         Distributions  in mg/m^-day.
                            9-17

-------
J. 4U

2.00
S
C
H
E
M
A
T
I
C 1.60
f
L
0
T
S

F
0 1.20
R

V
A
R
I
A
B
L .800
E

R
N
0
2
3
.400








1
STA
STA
t 	 	 	 	 	 	 	 	 	 	 	 T










*





* *

0
0
0




*
1


1 1 0
1 -f I 1
1 1 1 t — +
1 1 1
t — « 1
1 1 t — + *
t 	 + 1 4- 1 -f
III 1
1 * 	 * 1 	 « + 	 +•
II II III
1 + 	 + + 	 + * 	 «
1 1 1 1
1 1 1 1
1
1 <
51DF01 S1DK03
I1DF02 I1DF04
Figure 9-13.
Dryfall Oxidized Nitrogen Distributions
in mg/m^-day.
                      9-18

-------
 ground  level site  (DF03).  This pattern is very similar to that exhibited by the
 solids  data in Figure 9-9.  Oxidized forms of nitrogen exhibited a different
 pattern,  as shown  in Figure 9-13.  The Haines Point Site (DF01) showed the
 highest  rates, but there was very little difference between the roof and ground
 level collectors at Burke Village Center.  This is probably because the nitrate
 and nitrite anions do not associate with dustfall solids to the degree of ammo-
 nia and  TKN.

 Phosphorus.  Distributions of ortho and total.phosphorus accumulation rates are
 shown in  Figures 9-14 and 9-15, respectively.  For ortho phosphiate phosphorus,
 little  difference was observed between the median values at all four stations,
 but a much wider range was observed in the data at Haines Point (DF01).  The
 total phosphorus data, by contrast, exhibit the same pattern as the dustfall
 solids.   The non-ortho forms of phosphorus associate closely with the solids in
 the dustfall, and, therefore, this pattern is to be expected.

 Metals.   The lead and zinc accumulation data are shown in Figures 9-16 and 9-17.
 As may be seen in Figure 9-16, no boxes were produced for the accumulation of
 lead.  This is because of the preponderance of values at or below the detection
 limit.  As a result, only the mean values were available for comparisons between
 sites.  The highest mean accumulation rate was observed at the Haines Point Site
 (DF01).   Little difference was observed between the three remaining sites.
 Figure 9-17 shows the distribution of accumulation rates for zinc at the dryfall
 sampling  stations.   A change of the trends observed for most other parameters
 occurred  in that the highest median zinc accumulation rate was observed at the
 Burke Village Center ground level  collector (DF03).  The median rate at that
 site was over 1.8 times higher than that at the associated roof top sampler.
This is probably due to the fact that the dryfall zinc originates from automo-
                                   9-19

-------
.JOO

.250
S
C
H
E
M
A
T
I
C .200
F
L
0
T
S
F
0 .1.0
R
V
A
R
I
A
g
L .100
E

R
0
P
.3000-01






. 0
5TA
t- 	 _____ 	 ________________________________ — ___.__..--_--.,
*
*


*
*

*



•
*
*



0





t


*
•f
«
*• 	 +

0
0 1 1
0 1 t
1 1 1
1 t — + + — t
+-+-* II II
* — * 1 1 « — * t — 1 '
+ 	 + * 	 « II II
31DF01 S1DF03
STA
                                                31DF04
       Figure 9-14.  Dryfall Ortho-Phosphorus Distributions
                     in mg/nr-day.
                         9-20

-------
. jyo
.250
S
C
H
E
n
A
T
I
C .200
P
L
0
T
F
0 .ISO
R
V
A
R
I
A
L .100
E
R
T
F
.5000-01


















* 0



4- 	 +
1

















f











t 	






*






0
+
0 1
0 + 	 +



t — t «• — +
+ *
t 	 +

* 	 »
1
1 1 1
1 1 * 	 +
1 1 1
1 1 1
STA 51DF01 51HF03
STA S10F02 51DF04
Figure 9-15.  Dryfall Total Phosphorus Distributions
              in mg/m2-day.   '
                 9-21

-------
1 JO *



113.
S
c
H
E
M
A
T
I
C 90.7
F
L
0 .
T
S

F
0 68.0
R
V
A
R
I
A
L 43.3
E
R
e
p
B
12.7
Ct
1 V
STA
STA
* «
*
* *
*
*
t
* «
1




*




*

* •












'


t
51DF01 51DF03
SHiFO: I1DF04
Figure 9-16.  Dryfall  Extractable Lead Distributions
              in
                 9-22

-------
   310.
S
C
H
E
H
A
T
I
C

p
L
0
T
S

F
0
ft

V
A
R
I
A
B
L
E
   173.
   140.
   103
   70.0
                    « — *
R
E
Z
N
   35.0
   .0
  STA
  ST.".
                               t — +
                      1DF01
                                          --0	
                                           31DF03
                                 IDF 02
                                                      5 IDF 04
          Figure 9-17.   Dryfall  Extractable  Zinc in yg/m2-day.
                            9-23

-------
 bile and truck tire wear, and, therefore, is principally present in the near-
 surface collector.  That the Haines Point (DF01) and Stedwick (DF04) sites
 displayed lower accumulation rates can be explained by their relative isolation
 from paired areas as compared to the Burke Village Center ground level  site
 (DF03).  As noted before, the zinc accumulations are generally the result of
 tire abrasion, and probably do not migrate far (vertically or horizontally) from
 the point of detachment.

 Wetfall
    Wetfall data were collected at the same four stations discussed previously
in the dryfall section and described in Table 9-1.  The roof and ground-level
stations at Burke Village Center were operated as for dryfall, but because of
the lack of near-ground sources of wetfall, it was not anticipated that vertical
variations in quality would be observed.
COD.  The distribution of COD concentrations in wetfall at the four monitoring
sites is shown in Figure 9-18.  As postulated above, there was little observed
difference in the distribution of data between stations WF02 and WF03,  con-
firming the homogeneity of the precipitation falling at each site, with respect
to oxidizable organics.  With the exception of the Haines Point site (WF01), all
the median wetfall COD data fell at or below 10 mg/L.  the median value at the
Haines Point site was about 15 mg/L.  The extremes in the distributions were
considerably above these values, but, in general, it can be concluded that
oxygen-demanding substances are not a problem in wetfall.

Nitrogen.  Substantial concentrations of nitrogen were observed in wetfall at
all four monitoring stations, as shown in Figures 9-19 through 9-22.  Median
ammonia concentrations were in the vicinity of 0.25 mg/L as N.  In general,
ammonia represented about 50 percent of the TKN concentration.  The total
                                       9-24

-------
   30.0
   23.0
   20.0
P
L
0
T
S

F
0
R

V
A
K
1
A
13.0
                                            t	+
   10.0
   3.00
   .0
  STA
  STft
                  •f	+
                31UF01
                                    31UF03
                                                31UF04
          Figure 9-18.   Wetfall  COD Distributions  as mg/L,
                      9-25

-------
1 . UU
1 .50
S
C
H
E
H
A
T
I
C 1.20
F
L
0
7
S
F
0 .700
R
V
R
I
A
B
L .600
£

M
H
3

. 300







. 0
STA
STA
t 	 . 	 -_- 	 	 	 	 	 	 	 T








•

1
*

*


•
0
0 «

0



1
(• — + 1
t — t 1
f 	 + + 	 +•
1 1 1
f + * — *
— * 1 1
— * « — « + — +
1 1 1
f 	 -f t 	 + 1
— + 1 1 1
1 1 1 1
1 1
51UF01 31UF03
51UF02 51UF04
Figure 9-19.
Wetfall Ammonia Nitrogen
Distributions as mg/L.
                9-26

-------
l.SO
S
c
H
E
M
A
T
I
C

P
L
0
T
S

F
0
R
1 .20
. 900
,600
.300
   .0
  STA
  Sift
                 0
                 0
                + — t
                                              +
                                            *—«
                                   + --- -f
                 1UF01
                                   I1UF03
                          SlUFO:
                                             S1UF04
       Figure  9-20.  Wetfall TKN  distributions as mg/L.
                     9-27

-------
 1.80

1.30
S
C
H
E
H
A
T
I
C 1.20
P
L
0
T
S

F
0 .900
R
V
A
R
I
A
B
L .400
E

_
N
0
:
3

.300

. ft j
t *
*

1

t

1



t



0 0
0




+ 	 f
+ — + 1 1
1
1 t — + + — +
+ 1 If
— * 1 t 1
1 -+-«
1 — *
* 	 *
1
t
1
1 + — t
f — * t — t + — f

1
1
STA
STA
                  1UF01
                                   I1UF03
                          51UF02
                                            51UF04
       Figure 9-21.  Wetfall  Oxidized Nitrogen,
                      Distributions as mg/L.
                     9-28

-------
 1.30
 1.30
C
H
E
H

T
I
C

P
L
0
T
5

F
a
R

v
A
R
I
A
B
L
 1.20
 .900
                                              *	
                                              t	+
 .600
 .300
 .0
5TA
3TA
                   31UF01
                                      51UF03
                           S1UF02
                                              51UF04
         Figure 9-22.  Wetfall  Total  N Distributions
                        as  mg/L.
                      9-29

-------
nitrogen concentration was divided almost equally between TKN and oxidized
forms.  Approximately three quarters of the wetfall  nitrogen concentration could
then be taken to be inorganic.  This has some interesting implications with
respect to nitrogen availability in runoff waters from the affected catchments.
It is, in fact, probable that substantial portions of the runoff nitrogen budget
for the watersheds investigated originated in wetfall.  Although nitrogen mana-
gement does not appear to be generally required for receiving water protection
in the metropolitan Washington area, in areas where it is important, such wet-
fall inputs would be significant.  Of most interest would be the high con-
centrations of oxidized nitrogen forms, which could be expected to remain in the
soluble phase in resulting runoff waters, and also to be generally the most
algal-available.

Phosphorus.  The distributions of wetfall concentrations of ortho-P and total P
are shown in Figures 9-23 and 9-24, respectively.  The plots show very low
median concentrations of ortho-phosphate phosphorus, with only the Stedwick
Station (WF04) median rising above zero  (0.045 mg/L) at the resolution of the
plots.  The total phosphorus concentration medians were in the range of 0.015 to
0.03 mg/L as P.  From the standpoint of serving as a significant source of
algal-available phosphorus leaving the catchments as runoff, it would appear
that precipitation plays a minor role.  As far as inter-station trends are con-
cerned, the highest concentrations were observed at the Haines Point Site (WF01)
and the lowest at the Stedwick Site (WF04).  The intermediate concentrations
were observed at the Burke Village Center sites (WF02, WF03), where essentially
no difference was detected between the rooftop and ground level population
medians.

Metals.  Figures 9-25 through 9-27 show wetfall  concentration distributions for
                                   9-30

-------
   .600D-01+-
S
c
H
E
H
A
T
I
C

P
L
0
T
3

F
0
R

V
A
R
I
A
B
L
E
   .3000-01
.4000-OH-
.300D-01
.2000-01
   .100D-01
   .0
  3TA
  3TM
                  •f	+
                                      f --- 1
                31UF01
                                   31UF03
                                               t --- +






•f


























+








4- 1
1
1
1
1
1
                                                31UFO-I
          Figure 9-23.  Wetfall Ortho-Phosphate.
                         Phosphorus  Distributions as mg/L,
                          9-31

-------
.6000-01+-
,5000-01+
.4000-01+
.3000-01
.2000-01+
.100D-01+
                * --- +
                t --- +
                          «	*
                          t- --- +
                                     +	+
                                        1
                                        I
                                        I
                                        I
                                       • I
                                        I
                                        I
                                        I
                                     *	*
                                        I
                                        I
                                        I
                                        I
                                        I
                                        I
                                        I
                                        I
                                     	+
 .0
STA
STA
                --0	
                 31UF01
                                    31UF03
                            1UF02
                                              31WF04
       Figure  9-24.   Wetfall  Distributions  of Total
                       Phosphorus as  mg/L.
                     9-32

-------
 24.0
 :o.o
 16.0
 12.0
 8.00
 4.00
                                  *	«
 .0
3TA
STA
S1UF01
                  S1UF03
                                            S1UF04
        Figure  9-26.   Wetfall Distributions of Lead
                       (pg/L) Using  Graphite Furnace
                       AA Spectroscopy.
                       9-33

-------
   24.0
   20.0
S
C
H
£
H
A
T
I
C

P
L
0
T
S

F
0
R

V
A
R
I
A
B
L
E
16.0
12.0
a.oo
   4.00
   .0
  STA
  STA
              -*	»	
                51UF01
          Figure  9-25.
• *—*—
 SIUFO:
-*—* —
 51UF03
-*	1	

 31UF04
                      Wetfall Distributions of Lead
                      (as  yg/L) by  Direct Aspiration
                      AA Spectroscope.
                        9-34

-------
 240.
 300.
s
C
H
E
H
A
T
I
C

F
L
0
r
3

F
0
R
 160.
 120.
 30.0
 40.0
 .0
3TA
STA
                   '1UF01
                                      51UF03
                           S1UF03
                                              I1UF04
        Figure 9-27.   Wetfall  Distributions (as yg/L)
                        of Zinc.
                       9-35

-------
 lead  (direct aspiration AA), lead  (graphite furnace AA), and zinc, respectively.
    As may be seen from the examination of Figure 9-25, the many lead values at
 or  below the detection limit of the instrument precluded the construction of box
 plots, as the median values were all at zero at the detection limit of the
 instrument.  Means, however, ranged from 4 to 8 ug/L.  Using the much lower
 detection limit capabilities of the graphite furnace procedure, a limited number
 of  wetfall samples were analyzed for lead.  These data distributions may be seen
 in  Figure 9-26.  The highest median value recorded in this limited population
 was 7.6 ug/L at the Haines Point Site (WF01).  The other sites displayed very
 low values, which were, in fact, sufficiently low to postulate that wetfall-
 borne lead does not constitute a significant fraction of the total finding its
 way into catchment drainage.
    The distributions of zinc at each site are shown in Figure 9-27.  As in
 the case of the lead data, the zinc concentrations in wetfall were observed to
 be  quite low, with one dramatic exception.   A large difference between the data
 distributions for the roof-mounted (WF02) and ground-level (WF-03) collectors at
 the Burke Village Center site may be observed.  Site inspection lead to the
 hypothesis that this difference was probably due to the spatter of low-pH rain
waters on the galvanized coated fence surrounding the collector.
 Hydrogen Ion Activity.  Upon the return of the wetfall  collector vessels to the
 laboratory, pH measurements were routinely made on the bulk samples.  The data
distributions that resulted are shown in Figure 9-28.  The most immediately
striking feature of the Figure is the general  uniformity of the distributions.
All  exhibited median pH values very close to 4.0.  At sea level, carbon dioxide
equilibria would make a pH of about 5.5 possible in distilled water.  It
follows, then, that any values below that figure must necessarily be due to the
                                      9-36

-------
 6.00
S
C
H
E

A
T
I
C

F
L
0
T
S

F
0
R

v
A
R
I
A
B
L
E
 3.00
 4.00
 3.00
 2.00
 1.00
  0
  I
  I
  I
t	+
I   I

I   I
  *
  0

  I
4.	+
I   I
«- + -*
<•	+
  I
  I
  I
  I
  I
  I
+	+
*-«•-*
I  I

  I
  I
  0
  I
+ — +
*-+-*
+ —+
STA
STA
                  S1UF01
                                        1UF03
                           31UF02
                                               31UF04
         Figure 9-28.  Wetfall pH  Distributions,
                        Standard Units.
                      9-37

-------
presence of an acid other than the equilibrium concentration  of carbonic acid.
It should be noted that the depression of pH from 5.5 to 4.0  involves more than
a ten-fold increase in hydrogen ion concentration.  A stoichiometric analysis of
the nitrate data shows the range of concentrations present in the wetfall  to be
sufficient to account for the pH values observed if it were all  associated with
nitric acid (See Figure 9-21).  It is likely, however, that mineral  acidity from
other sources is also present.  There are no additional anion analyses to  sup-
port this supposition, but the acid rain data reported in the literature for the
east coast report generally high concentrations of sulfate.
    The low rainfall pH measurements have many implications,  not all of which
are related to water quality.  A major water quality concern, however, is  the
mobilization of cations in catchment soils and paving materials  that would,
under more neutral  conditions, be fixed.
                                       9-38

-------
                    10.  TRACE METALS IN SOILS OF BMP SITES

Study Sites
    Six study sites were located in a four-county area surrounding Washington,
D.C. (Figure 10-1).  The sub-study described herein utilized three Best
Management Practice (BMP) sites (UR09, UR06, and UR10-UR11) that were being
monitored in the MWCOG NURP.  Another study sites, UR13-UR14, was to have been
included in the NURP monitoring network, however installation of adequate
instrumentation was not possible.  The two additional study sites, KMart and Rt.
234 were included in the present study because they were representative of land
uses that receive large loadings of trace metals, they had been in use a relati-
vely long period of time, and they could be sampled without expensive equipment.
Other NURP sites did not have one or more of these characteristics.
    The study sites were evenly divided between grassed swale drains and deten-
tion basins.  Fairidge (UR09), Stratton Woods (UR06), and Rt. 234 were the swale
drain sites.  Stedwick (UR10-UR11) Bulk Mail (UR13-UR14), and KMart were the
detention basin sites.
    The soils and geology of the study sites were typical of many Piedmont and
Coastal  Plains locations in the Washington, D.C. area.  Five of the sites were
located in the Piedmont Geologic Province; the Triassic Basin, drainageway, and
upland landscapes positions were represented.  Only the Bulk Mail site was
located on a Coastal Plain land surface.  Table 10-1 provides a summary of the
soils present at the time of construction at each site.  However, it is impor-
tant to remember that construction activities have drastically altered the soil
profiles.  In ssome situations, the solum may have been almost completely
removed leaving only the substratum.
    Different phases of the present research utilized various combinations of
                                   10-1

-------
                                                      MARYLAND
                                                PRINCE GEORGES
                                                     CO.
Fig. 10-1    Location of study sites in the Washington, D.C. area.
                            10-2

-------
                                                  Table 10-1.
                                        Sunniary of study site sot Is.
O
i
                                  Site
                                  Fa(ridge
                                  Stratton Moods
Rt. 234
                                  Stcdwick


                                  Bulk Mail


                                  KMart
                   Nature of Area
                     Summarized
Primary Soil
Series Present
                                              Soil  Family*
entire development   Glenelg**

                     Manor

entire development   Iredell**

                     Penn1

                     Elbert

highway vicinity     Penn S
                     Clbert
                     Croton

                     Readington

                     Blrdsboro


detention basin      Manor**


detention basin      Collington*


detention basin      Elbert
                    Fine-loamy, nixed, mesic
                    Typic Hapludults
                    same as above

                    Fine, montmorlllonitlc,  thermic
                    Typic llapludalfs
                    Fine-loamy, mixed. Dies I c
                    I!)tic llapludalfs
                    same as above

                    same as above
                      U   II   •

                    Flne-silty, mixed, mesic
                    Typic Fraytagualfs
                    Fine-loamy, mixed, mesic
                    Typic Fragiudalfs
                    Fine-loamy, mixed, mesic
                    Typic Hapludults

                    Course-loamy, micaceous, thermic
                    Typic Oystrochrepts

                    Fine-loamy, mixed, mesic
                    Typic Hapludults

                    Fine, montmorlllonlttc.  mesic
                    Typic Ochraguaffs
•from refer*
"reference
*reference
^reference
Ireference
>nce (99) unless otherwise noted.
18|.
33).
120).
79).

-------
soil samples from the site sites (Table 10-2).   An initial  investigation  of  site
characteristics and metal accumulation and variability in surface  soils was  con-
ducted at each site.  Based on site characteristics, land use,  background data,
and trace metal accumulation, four sites were selected for further study, Bulk
Mail, Stedwick, Fairidge, and Stratton Woods.  As can be seen,  the NURP sites
were favored.  For these sites, depth samples were taken to assess downward
migration of metals in the soil profiles, and the amounts of Teachable  (soluble
plus exchangeable) trace metals in the surface  soils were determined.  The Bulk
Mail and Fairidge surface soil samples were selected for use in adsorption
isotherm experiments.

Fairidge.  The Fairidge site is a subdevelopment in the Montgomery Village
planned community near Gaithersburg, Maryland.   Table 10-3 summarizes some of
the important characteristics of Fairidge and other swale drain sites.  The
streets of this residential area do not have curbs or gutters.   Instead,  runoff
from the edge of the street flows into grassed  swales, which are a continuous
part of residential lawns.  The swales are 10 to 20 m long, with the center  of
the swale approximately 3m from the edge of the street.  The swales are usually
separated by driveways to homes.  Galvanized steel culverts allow  runoff  in  one
swale drain to flow under driveways to the next lower swale.  Storm sewer inlets
are located in periodic swales to prevent excessive waterflow and  subsequent
erosion in the swales.
    The Fairidge subdevelopment was built on soils of the Glenelg  Series  (10-1).
These soils are characterized by loam to silt loam texture surface soils, with
subsoil  textures ranging from silt loam to silty clay loam.  The total solum
depth is from 45 to 76 cm.  The substratum is derived from micacious loamy
saprolite; depth to hard rock is 1 to 3 m or more (10-2).
                                   10-4

-------
                          Table 10-2.    Summary of sites  from which  soil  samples were  used
                                         during various  research  phases.
o
I
en
RESEARCH PHASE
Site
Stedwlck
(basin)
Bulk Mall
(basin)
KMart
(basin)
Fairidge
(swale)
Stratton
(swale)
Rt. 234
(swale)
metal accumul .
& variability In
surface soils
X
X
X
X
Woods X
X
downward
metal
movement
X
X

X
X

leachablllty BMP sorptlve
of surface capacity
soil metals effects
X
X X

X X
X

soil property/
metal sorptlon
correlation

X

X



-------
                Table  10-3.  Age and land use characteristics of urban stormwater
                            swale drains examined  during  study.
SITE
Fa 1 ridge
Stratton
Woods
Rt. 234
COMPLETION YEARS(S) TRAFFIC FLOW
1972 - 1976* 100**
vehicle trips/day
/ha
1976 - 1978* 46**
vehicle trips/day
/ha
1971"*"* 29,000*
vehicles/12 hrs.
WATERSHED LAND USE
Medium density single family
dwellings. 1.2 - 2.0 dwelling
units per ha
Large lot single family
dwellings. 1.2 dwelling
units per hectare
Four lane, divided highway
in commercial area
 *based on conversations with residents.
**national average for given land use,  reference (177).
 ^reference (18).
++reference (197).
 #1980 av. traffic count, reference (197).

-------
Stratton Woods.  This large lot single family subdevelopment near Reston,
Virginia has a design similar to the Fairidge site.  One major difference  is  the
presence of a 2 to 3 m graveled shoulder between the road and the swale drain.
As a  result, the center of the swale is 3 to 4 m from the edge of the road.   The
swales vary in length from 10 to 30 m.  Zinc culverts allow runoff to pass
beneath driveways from one swale to the next.  Periodic storm sewer inlets
remove excessive runoff from the swales.
    Soil from several series were present when the Stratton Woods project  was
initiated  (10-1).  All have fine textured soils and allow only slow downward
percolation of water through soil profiles.  The Elbert Series has silt loam  or
silty clay loam surface soils with clay subsoils; solum depth is  76 to 127 cm.
With a total depth to hard rock of 0.9 to 2.4 m, the Elbert substratum is  com-
posed of weathered materials derived from basic rocks such as basalt.  Penn
soils have silt loam surface soils with B horizons of silt loam to clayey  silt
loam.  Total solum dpeth is usually less than 86 cm and total  depth to bedrock
is usually less than 1 m.  Substratum was derived from shale,  sandstone, and
siltstone.  The Iredell  series typically has silt loam to clay loam surface
soils and plastic clay subsoils; total solum depth is 511 to 91 cm.   Extending
to a depth of no more than 1.8 m, the substratum derived is from  diabase,
basalt, and other basic rocks (10-2).
Route 234.  The U. S. Route 234  study site is a 1600 m long section of median
for a four-land highway through an intensively developed commercial  area of
Prince William County, Virginia.  With many shopping centers,  stores, and  fast
food resturants, this segment of highway is a classic example of  American  strip
development.  The site was selected because of its very large traffic volumes
and the relatively long period of time that the swales have been  receiving
runoff.
                                   10-7

-------
    The highway median has two sets of swale drains, one on the inside of the
southbound lane and one on the inside of the northbound lane.   The middle of the
swales are 4 to 5 m from the edge of the highway.  As with the other swale drain
sites, stormsewer inlets are located at periodic intervals to  remove excessive
runoff and reduce erosion.  The drains are only partly effective;  a significant
percentage of the grassed swales have been gullied due to erosion.
    Some of the most abundant soils that occur along this segment  of Rt.  234 are
classified in the Penn, Elbert, and Croton Series (10-3).  The Penn and Elbert
Series have already been discussed.  The Croton Series soils are derived  from
Triassic aged shale or siltstone.  Surface and subsoil textures range from silt
loam to clay loam; sol urn depth is 51 to 102 cm and the total depth to bedrock is
less than 1.5 m (10-2).  Other soils common to the area include the fine  tex-
tured soils of the Readington and Birbsboro Series (10-3).

Stedwick.  Located in Montgomery Village, not far from the Fairidge site, the
Stedwick subdevelopment detention basin had a 13.9 ha watershed with a mixture
of townhouse, school, street, and powerline right-of-way land uses (Table 10-4).
The basin was created by construction of a dam in a natural drainage.
Surrounded by a chain-link fence, the dry pond has a main concrete channel to
prevent erosion.  In 1980, the outlet of the basin was changed from a narrow
pipe through the base of the dam to a perforated riser pipe that allowed  longer
detention times of runoff and a greater opportunity for infiltration of water
into the soil.  The basin was built in a landscape position occupied by soil of
the Manor Series (10-1).  Characteristics of this series have already been
discussed.

Bulk Mail.  The study sites was one of several detention basins that control
runoff from the U. S. Postal Service Bulk Mail Center near Capitol Heights,
                                   10-8

-------
Maryland.  The watershed of the study basin was dominated by parking lots  and
roads of the complex  (Table 10-4).  These impervious surfaces are very heavily
traveled by large tractor trailers.  The dry pond was formed by construction of
a dam in a natural drainage.  In addition, excavation of the site created  a
flat-bottomed, steep-sided structure.  The original outlet,  a narrow pipe
through the dam, was  replaced by a riser in 1980 to increase the detention time
of the stormwater runoff in the basin.  Fenced in by chain-link fence, the
detention basin is overgrown with either vegetation species  typical  of the
pioneer stages of old field successsion or emergent vegetation species.  Even
during extended period of dry weather, the marshy areas tend to still  have some
standing water.
    The original soil at the site was a member of the Collington Series (10-4).
This series has surface soils that tend to have silt loam to sandy loam textures
with sandy clay loam, loam, or clay loam subsoils (10-5).  The solum is less
than 81 cm thick, and the parent material consists of very deep marine sediments
containing moderate amounts of glauconite.
    For most of the study sites the surface soils surrounding the BMP structures
seemed to be very similar to those in the structure, but the surface soils
around the Bulk Mail site were significantly different than  the basin soils.
The soils outside the basin were a combination of natural soils profiles on two
sides of the dry pond and soil disturbed by construction on  the other two  sides
surrounded by the basin.  The original A horizon of the the  soil  in  the basin
had been completely removed.  A new organic matter-rich surface soil  was forming
in the marsh areas of the basin.  The mineral  soil closest to the surface  was a
heavy clay loam from the original  argillic horizon of the original  soil  profile.
Below the clayey layer was a region of sandy sediments with  a much lower clay
content.
                                   10-9

-------
KMart.  Located near the  intersection of Interstate 66 and U.  S.  Route  234, west
of Manassas, Virginia the detention basin receives runoff primarily  from the
parking lot of a KMart shoping center (Table 10-4).  Built in  1974,  the small
dry pond was constructed  by excavating a pit-like structure in a  relatively flat
area of fill-dirt.  The basin is approximately three meters deep, in some  places
down to bedrock.  As a result there is little opportunity for  infiltration and
movement downward of water through soil or regolith.  However, when  ponding of
water occurs in the basin, some water may move laterally through  the soil  of the
steep side slopes of the  structure.  The outlet is a horizontal pipe at the bot-
tom of the basin.  Prior  to construction, the soil of the site was mapped  as a
member of the Elbert Series (10-3).  The basin floor is swampy with  some
emergent vegetation as well as various terrestrial shrub, grass,  and tree
species.

Sampling And Sample Selection
Surface Soils.  The same  basic technique was used to collect all  of  the surface
soil samples.  A 2.54 cm  diameter soil tube was utilized to remove five to ten
cores from the top 5 cm of mineral soils at each sampling area.   The cores were
composited and stored in  500 ml polyethylene bags.
    Before the actual soil sampling could be conducted, a sampling design  had to
be established for each study site.  Every site had enough unique charac-
teristics to make a uniform sampling layout impossible.  As a  result, each site
had a sampling layout that was at least a little different than every other
site.  The surface sampling was conducted during the months of October  and
November, 1980.

Grassed Swale.  The first procedure used to establish a sampling  layout was to
map the area, as shown for the Fairidge site in Figure 10-2.  Once mapped, 20 of
                                   10-10

-------
                             Table 10-4  Age and  ^and use characteristics of urban stormwater
                                         detention basins examined during study.
o
I
SITE COMPLETION YEAR
Stedwlck 1973**
(194)*
WATERSHED AREA WATERSHED LAND USE
13.9 ha Townhouse 9.0 ha (65%)
, Jr. High School 0.8 ha (6%)
Powerllne right of way 2.8 ha
(20%)
Paved road 1.3 ha (9%)
Bulk Mall 1973
(195)
KMart 1974
(196)
9.1 ha Parking lot and roads 3.2 ha
(36%)
Building roof 1.8 ha (20%)
Grassed area 2.2 ha (24%)
Uooded area 1.8 ha (20%)
4.6 ha Parking lot 4.2 ha (81%)
Grassed area 0.4 ha (9%)
               ^Number 1n parentheses  refers  to  source  of  Information for each site.

              **Reference (197).

-------
                                             22
                                                  49
                                                               N
                                                               /
                                                      LEGEND
                                           paved street
                                           swale drain

                                           swale drain
                                           sampled (surface)
                                                      A  depth sample
                                             Lot. = 39° IO1 58" N
                                             Long. = 77° 12' 6"  W
                                                     25m
                                                     SCALE

                                           MEADOWCROFT  CT.
                                            5)   (e}  _Z	a
                                    •~Hg)
Figure  10-2.
Sampling layout for Fairidge subdivision grassed swale
site.
                              10-12

-------
 the  total  50  swales at the Fairidge site were randomly selected to be sampled.
     The  expected pattern of trace metal, especially Pb and Zn, distribution in
 soil was a decrease in concentration as the distance away from the road
 increased.  If trace metals had accumulated significantly in the soil of the
 swales,  then  the normal pattern of metal distribution should have been altered.
 If the concentration of metals in the swale soils was greater than or equal to
 the  metal concentration of soils closer to the street, then a strong case could
 be made  for accumulation of trace metals in swale soils due to stormwater BMP
 usage.
     Therefore, three sampling zones parallel to the street were established at
 the  swales that had been selected to be sampled (Figure 10-3).  One zone was
 located  between the edge of the street and the swale (street zone), approxima-
 tely 0.5 to 2 m from the edge of the street.  Another sampling zone was a
 straight line down the center of the swale (swale zone), approximately 3 m from
 the  edge of the street.  Finally, a sampling zone was located on the far side of
 the  swale from the street (yard zone), 4 to 5 m from the edge of the street.  In
 each zone, a minimum of ten cores were collected along the length of the zone
 (the length of the swale) and composited (Figure 10-4).
    The sampling logic and implementation for the Stratton Woods site was very
 similar to that of Fairidge.  The site was mapped and 20 swales randomly
 selected (Figure 10-5).  Three sampling zones were established at each swale.
 However, there was a 2 to 3 m graveled shoulder at the site that forced the
 sampling zones to be located further from the edge of the paved surface than the
 Fairidge site.  The road zone was 2 to 3 m from the paved surface, the swale
 zone 3 to 4 m, and the yard zone 4 to 5 m.
    The findings from the sampling procedures described above indicated an accu-
mulation of Zn in the swales of the Fairidge and Stratton Woods sites.  To
                                   10-13

-------
                   SAMPLES
SAMPLES
          ROAO
                                   SWALE
Figure 10-3. Cross-section of residential  swale study sites (not
             drawn to scale).
                              10-14

-------
                    .5-2m    3m     4-5m
 LEGEND

    sampling zone
    necr street

    main pert of
    grassed swale

    sampling zone
    furthest from
    street

O   sampling point
Figure 10-4.Overhead view of sampling scheme for an individual swale
            at the Fairidge site.
                            10-15

-------
                                                                  N
                                                          paved street

                                                          swale drain

                                                          swale drain
                                                          sampled (surface)

                                                      A  depth sample
                                              Lat. = 38" 56' 18" N
                                              Long.= 77° 22' 51" W
                                                        SOm
                                                        SCALE
Figure 10-5.  Sampling layout  for  Stratton Woods subdivision  grassed
              swale site.
                               10-16

-------
 determine if the elevated zinc levels in the swale soils could  be attributed  to
 urban  runoff or to the zinc coating of the culverts connecting  the swales,  an
 additional set of surface soils samples were collected at the Fairidge and
 Stratton Woods sites.  For each site, four swales were selected with soils  that
 had significantly greater Zn concentration than the surrounding soil.  For  these
 swales, at distances of 1, 5, 9, and 13 m downstream from the culverts, 5 to  6
 soil cores were collected within a 30 cm diameter circlue in the center of  the
 swale  and composited.  If galvanized culverts were the source of zinc in the
 swale  soils, then the soil-zinc concentrations should decrease  with distance
 away from the culverts.
    For the Route 234 study site, the 1600 m median strip was divided into  15
 equal  segments (Figure 10-6).  Within each segment, a 60 m long section of  swale
 was located that had not been recently disturbed by the construction of exits or
 turn-arounds.  Also, lengths of swale that were seriously eroded were avoided.
    For each of the 15 segments, the swale on one side of the median was
 sampled, but not both sides.  The number of swales sampled on the north side  of
 the median was approximately equal to the number of swales on the south side.
    Much like the other two swale study sites, three sampling zones were
 established (Figure 10-7).  The road zone was 1 to 4 m from the edge of the
 highway; the swale zone was in the center of the swale 4 to 5 m from the edge of
 the highway; and the median zone was 5 to 8 m from the highway.   In each zone,
 ten soils cores were collected and composited.

 Detention Basins.  The main concept behind the detention basin  sampling designs
was to compare soils around the basin that had not been exposed to urban runoff
 (control soils),  with those soils in the detention basins that  had been used  to
control urban runoff (basin soils).  To minimize differences  in  parent material
and soil properties between the control  soils and basin soils,  the control
                                   10-17

-------
            38° 46' 58" N
            77° 31' I4"W
                                                 single lane
                                                 paved road
                                                       38° 46' OI"N
                                                       77° 29'  57" W
                                                          ^y
                                                                  #•
Figure 10-6.   Sampling layout for Route 234 grassed swale site.
                               10-18

-------
         NORTH SIDE
SOUTH SIDE
          ADO
     D   A

HIGHWAY
i
A
                                                 HIGHWAY
              SWALE
  SWALE
Figure 10-7. Cross-section of Route 234 grassed swale site (not
           drawn to scale).
                          10-19

-------
sample areas were located as close as possible to the basin,  without being
influenced by urban runoff.
    At the Stedwick site, the fence surrounding the basin and the channel  in the
basin were the reference points for the sampling layout (Figure 10-8).   For the
control samples, 9 m by 10 to 35 m blocks were established outside the  fence and
above the level of the riser pipe.  Within each block, ten cores were collected
at random and composited (Figure 10-9).  The basin samples were collected  at
sample points.  Ten cores were collected within a 2 m diameter circle and  com-
posited.  The sample points were spaced every 5.5 m along the channel and  a 1,
5, and 9 m spacings on either side of the channel.
    The control samples for the Bulk Mail site were collected in a similar
manner to the Stedwick site.  Soils cores were gathered and composited  within 6
m by 12 m blocks that were outside the fence and above the level of the dam
(Figure 10-10).  Uithin the basin, sample points were located every 6 m on four
north-south transects that were 12 m apart.  At each sample point five  to  ten
cores were taken and composited.  Some of the basin samples were very difficult
to collect due to very wet, marshy conditions.
    The sampling design for the KMart site was unique among the detention  basin
sites.  For the control samples, rather than sampling within  blocks, sample
points were used a 5 m spacings around the outside of the basin (Figure 10-11).
Since some movement of runoff through the sideslope of the basin was expected,
sample points were located every 5 m around the basin on the  sideslopes within  1
m of the basin floor.  The basin floor sample points had 5 m  by 3 m spacings.
Depth Sampling.  Unless otherwise noted, a 7.6 cm bucket auger was used to
collect soil  samples at the following depth intervals, 0 to 5 cm, 5 to  15  cm, 15
to 30 cm, and 30 to 60 cm.   The soil from each depth interval  was removed  from
the auger and stored in polyethylene bags.  The depth sampling was conducted
                                   10-20

-------
                                                          LEGEND

                                                        sampling  pt.
                                                        in basin (surface)

                                                        sampling  area
                                                        outside  basin (surface)

                                                        active area of
                                                        detention  basin

                                                        depth sample
                                               L0f. * 39° 10' 9" N
                                               Long. = 77° 12' 41" W
Figure  10-8.  Sampling  layout for Stedwick detention basin  site (see
              also Figure 15a).
                                10-21

-------
              depth  sample
Figure 10-9;.   Enlargement of the lower portion of the Stedwick
               detention basin to show location of depth  samples.
                              10-22

-------
                                                                N
                                                          sampling  pt.
                                                          in basin (surface)

                                                          sampling  area
                                                          outside basin (surface)

                                                          emergent  veg.

                                                          steep  sides of
                                                          detention  basin

                                                          depth sample
                                   SCALE
Lor. = 38" 52' 49" N
Long.» 76° 50' 55" W
Figure  10-10.   Sampling layout  for Bulk Mail detention basin site.
                                 10-23

-------
                    LEGEND

                    steep side
                    slopes of basin

                 Q sample pf. in
                    basin bottom

                 r-j sample pt.
                 LJ on side slopes

                  A sample pf.
                 ^* outside basin
              Lot. * 38° 47- 08" N
                    77° 31' 08" W
Figure 10-11.    Sampling layout for  KMart detention basin  site.
                                  10-24

-------
during the months of March, April, and May, 1981.
    As previously mentioned, depth samples were taken at the  Bulk  Mail,
Stedwick, Fairidge, and Stratton Woods sites.  At  each site,  the  results  of the
surface sampling experiment were used to identify  either typical  control
sampling locations or BMP locations that had elevated trace metal
concentrations.
    Five swales were selected for sampling at each of the swale drain  sites.  At
a random point along the length of the swale a series of three depth samples
were taken.  For the Fairidge swales, the samples  were located at  1, 3, and 5  m
from the edge of the street, the 3 m sample was in the center of  the swale. The
Stratton Woods samples were taken at 3 to 3.5 m, 4 to 5 m, and 7  to 8  m from the
road; the 4 to 5 m sample was in the center of the swale.
    Because the samples were collected in residential lawns,  special precautions
had to be taken to not disturb the site.  For each sample taken,  the grass  sod
was removed with a tilling spade.  The sample was  taken with  a bucket  auger and
the hole filled in with soils that had been transported from  off  the site.
Finally, the sod was replaced and tamped in place.
    At each detention basin site, five depth samples were taken in the area
surrounding the basins.  At the Stedwick site, the in-basin depth  samples were
routinely collected in areas shown to have elevated soil trace metal con-
centrations.  However, the procedure to sample the in-basin soils  at the  Bulk
Mail site was more difficult.  The use of a bucket auger was  impossible due to
contamination of the soil  samples as they were being pulled up through the  muck
of the waterlogged soils of the basin.  Naturally, these were the  locations with
the greatest trace metal concentrations.  As a result, at four points, a  120 cm
length of 5.1 cm inside diameter polyvinyl  chloride (PVC) pipe was driven in the
soil to a depth of 60 cm with a block of wood and  a sledge hammer.  The open end
                                   10-25

-------
of the pipe was then  sealed  with a  rubber stopper, and the soil was dug away
from the pipe with a  shovel.   After approximately two thirds of the buried pipe
had been exposed, the pipe could be pulled out of the soil with the soil  core
intact in the PVC pipe.   Finally, the pipes were frozen and then cut off at the
appropriate lengths with  a band saw.

Laboratory Methods
Total Enriched Trace  Metals.   The concentrations of Pb, Zn, Cu, and Cd were
determined in all of  the  surface soil samples and depth samples with a modifica-
tion of a technique described  by Agemian and Chau (10-6).  The metals determined
by direct aspiration  using a Model  703, Perkin-Elmer (Norwalk, Conn.) Atomic
Absorption Spectrophotometer.  Quality control measures included a series of
blanks, replications, and spikes.

Soil Property Determinations.  The  Virginia Tech Department of Agronomy Soil
Testing and Plant Analysis Laboratory performed routine soil chemistry analyses
for all of the depth  samples  (10-7).  The properties measured included pH, orga-
nic matter, phosphorus, calcium, magnesium, and potassium.  The organic matter
method used a sodium  dichromate-sulfuric acid digestion followed by a colori-
metric measurement.   pH was  determined by a potentiometric measurement of one to
one soil-water suspention.   Soil P, Ca, Mg, and K were exracted with a dilute
double acid solution, 0.05 _N_ HC1 in 0.025 _N_ HgSO/j.  P was determined by an ammo-
nium molybdate colormetric method;  K was determined by emission spectroscopy,
while Ca and Mg were  determined by  atomic absorption.
    The cation exchange capacity was determined with a method that was a slight
modification of a technique  commonly used in the Virginia Tech Department of
Agronomy (10-8).
    Free oxides of Fe, Al, and Mn were measured by a procedure refined by Miller
(10-9).
                                   10-26

-------
Results-Surface Soils
    The purpose of the surface soil investigation was to detrmine if trace
metals had accumulated in the surface soils of urban runoff control  structures.
To this end, the surface soil trace metal concentrations from the various
sampling zones of the study sites were compared to identify any metal
accumulations.
    If trace metal accumulations could be documented in surface soils  of BMP
structures, this would serve as presumptive evidence that there is significant
interaction between the soil surface and the trace metals transported  by storm-
water runoff.  In addition, trace metal accumulations would imply that partial
treatement of stormwater runoff can be accomplished by overland flow and/or soil
percolation.  To obtain as much separation of the probable treatment mechanisms
as possible, the results for the swale drain sites are presented separately from
the results of the detention basin sites.

Grassed Swales.  The trace metal distributions of the grassed swale  sites, as
determined by this investigation are presented in Figures 10-13 through 10-24.
Figure 10-12 explains the symbols and terms used in these figures.  A  common
factor among these graphs is the variation of trace metal concentrations from
swale to swale.  In fact, the same swale may not have had large concentrations
of all of the study metals.  Topography, traffic patterns, and length  of swale
are but a few of the possible explanations of this phenonmenon.  This  variation,
however, is not especially important.  The important comparison is of  the metal
concentrations for the three sampling zones at each swale (i.e., the road zone,
the swale zone, and the yard zone).
    Examination of the figures reveals that there were dramatic accumulations of
Zn in the surface soils of the swales at both the Fairidge and Stedwick study
                                   10-27

-------
o

_l

-------


i.
o.
•o
LU
; _J
CO
J-
^
? £
£ w
1 —
ac
zl
'
in
o



0.
0.

0.

0.


0.



o.



0.

0.
7-
6-
-
5-
•
4-
.

3-



2-
.

•
1-

0-
A



• oa
A
an D
A
• a a
• a
a a
A
a A a
n A A a B • D A
a •
AA • a A
• « »A A OD
• • A
«
A •

           0    3   6    9   12   IS   18  21   24  27   30   33  36   39  42   45
                                 SAMPLING LOCATION IN SWALE  SITE

Figure 10-13.  Comparison  of  surface soil 0.5 N_HC1 extractable Cd concentrations of three
              sample  zones,  Falrldge swale site (See also Figure 9).

-------
o
I
CO
o
                        400-
                        300-
                    o



                    c



                    UJ


                    CO
                        200-
                    o
                    n:
                        100-
                          0-
                                                                                         a
                                                                          .  J
                            0    3   6    9   12  15   18  21   24  27   30  33   36   39  42   45

                                                    SAMPLING LOCATION  IN  SWALE SITE


                Figure  10-14.  Comparison of surface soil 0.5 ^ HC1  extractable Zn concentrations  of three

                              sample zones, Fairidge swale site (See  also  Figure 9).

-------









O
1
00










a
Q.
O
	 |
CO

j „
UJ
g
X
LU
O
a:
z|
in
O


8 -

7 -
6 -
5 -




4 -
3 -


2 -


1 -
0 -

g

AD"
4.« °° *
A A A
A A • „ Q A
D
9 n A ri n
A • A • A AD
1°. ' *•"• - ' t
• A 0 •
•

rt A m

•



             0
6    9  12   15   18   21   24  27   30  33  36   39  42  45
             SAMPLING LOCATION IN SWALE SITE
Figure 10-15.  Comparison of surface soil  0.5 h[ HC1  extractable Cu concentrations of three
               sample zones, Fairldfje swale site (See also  Figure 9).

-------
           400-
           300-
       o_
       LU
       o  200-
           100
             0-
                      D
                      •••
                                  A
                                  D
      A   0
   D6
•  °      AA
   •  •  ••0
D
V
                                                         liiiniiiimmi'HiniiHiHHiiiiH
               0    3    6   9   12   15   18   21   24   27  30   33  36  39   42  45
                                       SAMPLING LOCATION IN SWALE SITE
Figure 10-16.     Comparison of  surface soil 0.5 N HC1 extractable Pb concentrations of three
                 sample zones,  Fairidge swale site (See also Figure 9).

-------
o
I
OJ
CO

0.25-

| 0.20-
o
LU
m 0.15-
H-
X
^ 0.10-
CJ
ac
in
CD 0.05-
0.00-
o a A
BA A A
A n a a A
« A a a •
a aa a
• o a • •
• • a • a A a
A* • • A
• AA a a «a
A • • •


                          0    3   6    9   12  15   18  21   2*   27  30   33  36   39   42  45   48

                                                     SAMPLING LOCATION IN SWALE SITE
               Figure 10-17.  Comparison  of  surface soil 0.5 f[ HC1 extractable Cd concentrations of three
                              sample  zones,  Stratton Woods swale site (See also Figure  12).

-------



g.
Q.
C
LU
— 1
CQ
O
O J—
1 X
CO LU
G
2=1
in
O


175-
•
150-
125-
•
100-
75-
,
50-
•
25-
0-

D
a
a a
a
a
a
DD
a
a
D °
0 a
A A * A A A
* * t ,t* .* ** t« t • « •«
         0    3    6   9   12  15   IB  21   24   27  30   33  36  39   42  45   48  51
                                     SAMPLING LOCATION IN SWALE SITE


Figure 10-18.   Comparison of surface  soil 0.5 N_ HC1 extractable Zn concentrations of  three
               sample zones, Stratton Woods swale site (See also Figure 12).

-------
CO
en
                o
                CO
o

-------
o
I
oo
en
CO



o
               o
               LO


               o
                   175-
                   150-
                   125-
                   100-
                    75-
                    50-
                    25-
                     0-
            A



          BO  A
                                               5    „•
                                                                D
                                                                             A

                                                                             0
                                             .
                       n.t.nn.iipinminn	!	,.

                       0    3
                                                     •|""M""M'
[ I • « »"• |m»t[tini['
                  6   9   12  15   18  21  24   27  30   33  36   39  42   45  48   51

                                   SAMPLING LOCATION IN SWALE SITE
              Figure  10-20.   Comparison of surface soil 0.5 N^ HCl extractable Pb concentrations of three

                             sample zones, Stratton Woods swale site (See also Figure 12).

-------


1
0.
TJ
CJ
_J
ca
o
3 I
1 UI
CO
If)
0


2.1-
1.8-
1.5-

1.2-
0.9-
0.6-

0.3-
0.0-
0




a
a
oa a
A A A &
U D
A a a
A a a
B A A A
A A a
A A
• . • ' . • • • • .

             0    I    2    3    4    5    6    7    8    9   10   11   12  13   14   15

                                    SAMPLING  LOCATION  IN SWALE SITE
Figure 10-21.  Comparison of surface soil 0.5 f[ HC1  extractable  Cd  concentrations of three
               sample zones, Route 234 swale site (See also Figure  13).

-------
00
     o
     in


     o
         175-1
        150-
        125-
         100-
          75-
         50-
          25-
                           Bo
                                                                                  O
                                             a
                                                                                  a



                                                                                  A
                                                  D
                                                  A
           0-
                i.^....|....|....|....|...


             0    1    2    3   4    5    6   7    8    9  10   11   12   13   14   15


                                    SAMPLING LOCATION IN SWALE  SITE
Figure 10-22.   Comparison of surface soil 0.5 N. HC1  extractable  Zn concentrations of three

               sample zones, Route 234 swale site (See also Figure 13).

-------
40 -
•
1 3° "
o
|^|
_j
CQ
| 20 -
o ><
i,
ID r-
O
o:
zl
tn JO -
o
0 -


D
°
a
A
A • A
0 A
A a DA
D °
8 ° A . ' A % . a °
A D
* •
• • A *
•
*


0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 1 4 15
                                     SAMPLING LOCATION IN SWALE SITE
Figure 10-23. Comparison of surface soil 0.5 N. HC1 extractable Cu concentrations of three
              sample zones, Route 234 swale site (See also Figure 13).

-------
•£»
O
                       2000-
                   g.
                   Q.
                  CO
                  t
                  I—
                  LU   1000
CJ
z|
in
°*     500
                          0-
                                      D
                                                                                a
                                                                           00
                             0    I    2    3   4    5    6   7    8    9  10   II    12   13   14  15
                                                    SAMPLING LOCATION IN SWALE SITE
               Figure  10-24.   Comparison  of  surface soil 0.5 N HC1 extractable Pb concentrations  of three
                               sample zones,  Route 234 swale site (See also Figure 13).

-------
sites  (Figures  10-14 and 10-18).  Beyond this observation,  no other clear trends
are  visually apparent.  The statistical analyses, however,  allowed a closer exa-
mination of the data.
     For all of the study trace metals, the results of the Friedman Rank Sums
Tests  provide very strong evidence that there were differences among the
sampling zones at each of the study sites (Table 10-5).  To evaluate if the
trace  metals had accumulated in the swale zone soils, control-treatment com-
parisons, based on Firedman Rank Sums were employed.  The road zone was used as
the  control, with which the swale zone and yard zone metal  concentrations were
compared.  If the swale zone metal concentrations were greater than the road
zone metal concentrations, then a case would be made for enrichment in the swale
zone soil.  Control-treatment comparisons, rather than all  treatment com-
parisons, were used because smaller differences can be more readily detected due
to fewer total comparisons.  A summary of the comparisons is given in Table
10-6.
     It was found that both Cd and Zn concentrations were greater in the swale
zone than in the road zone at the Fairidge Subdivision site.  For the Stratton
Woods  site, only Zn was found to be significantly greater in the swale zone
soil.  The comparisons indicate that for the Rt. 234 site,  Cd, Zn, and Cu were
not very likely to have different concentrations in the swale zone soil than in
the road zone.  The comparison results also strongly indicated that the road
zone Pb concentrations were greater than the swale zone concentrations.  In
addition, for all  metals, at each of the sites, the test results strongly showed
that the road zone soil trace metal concentrations were greater than the yard
zone trace metal concentrations.

Patterns at Swale Sites.   The total enriched Cd levels were much lower than any
                                   10-41

-------
  Table 10-5.  Results of Friedman Rank Sums analyses of differences
               among trace metal concentrations of surface soil  from
               three sample zones at grassed swale study sites.
                              Friedman Rank            Level  of*
Site/Trace Metal              Sums Statistic           Significance
Fairidge Subdivision
Swale Site, n - 20
     Cd                            16.0                 < 0.001
     Zn                            32.4                 <  .001
     Cu                            25.6                 <  .001
     Pb                            34.9                 <  .001

Stratton Woods Subdivision
Swale Site, n = 17
     Cd                            13.7                    .0015
     Zn                            22.8                 <  .001
     Cu                            24.4                 <  .001
     Pb                            23.4                 <  .001
Rt.




234, n = 15
Cd
Zn
Cu
Pb

23.3
22.5
20.1
24.1

< .001
< .001
< .001
< .001
"Chi square distribution large sample approximation.

Alternate Hypothesis (Ha):  metal concentrations of sampling zones,
yard, swale, and road, are not equal.
                            10-42

-------
  Table 10-5.   Comparison of trace metal concentrations in surface
                soil from swale zone and yard zone  to concentration
                in road zone of the swale study sites; based on
                Friedman Rank Sums.
                               swale                     yard
                          direction of*P57    direction of
Site/Trace Metal           difference             difference
Fairidge Subdivision
Swale Site
     Cu                       +         .0371         -          .0072
     Zn                       +         .0042         -          .0002
     Cu                       0                                < .00001
     Pb                       -         .00198        -        < .00001

Stratton Woods
Subdivision Swale
Site
     Cd                       +         .3410         -          .0052
     Zn                       +         .0446         -          .0026
     Cu                       -         .0002         -        < .00001
     Pb                       -         .0058         -        < .00001
Rt 234 Swale Site
Cd
Zn
Cu
Pb

+ .2872
+ .5922
+ .3570
.0327

< .00001
< .00001
.00001
< .00001
*  + = metal cone, swale zone > metal cone, road zone
   0 = equal rank sums
   - = metal cone, swale zone < metal cone, road zone.

**level of significance.
                             10-43

-------
other of the study metals.  The Stratton Woods site had the lowest Cd con-
centrations and the Rt. 234 site had the highest (Figures 10-13, 10-17,  and
10-21).  With the exception of one observation, all data points were less than
1.2 ppm.  The enrichment of Cd in the swales of the Fairidge site is evident in
Figure  10-13.  The difference between the 0.5 N^ HC1 extractable Cd of the swale
zone soil, and soil of the surrounding zones was no more than approximately 0.2
ppm.
    Whereas the swale zone soil of the Fairidge site had slightly elevated Cd
levels, the Zn concentrations of both residential sites were much greater in the
swales  than surrounding areas (Figures 10-14 and 10-18).  Differences between
swale and adjoining zones were as much as several hundred ppm.  The Zn enrich-
ment in the Fairidge swales was greater than that of Stratton Woods swales.  The
maximum concentration observed at the Fairidge site was more than 350 ppm; the
maximum Zn concentration for Stratton Woods was less than half of the Fairidge
observed maximum.  The soil Zn concentrations in the sampling zones of the Rt.
234 site were in the same range as those of the Stratton Woods site (Figures
10-18 and 10-22).
    At each of the study sites, Cu was the third most abundant of the study
metals.  The Cu concentrations were smallest at the Fairidge site, and greatest
at the Rt. 234 (Figures 10-15 and 10-23).  The typical  roadside pattern  of
decreased trace metal  concentrations with increased distance from the road was
evident at the Stratton Woods site (Figure 10-19).
    The same pattern of decreased concentrations with distance form the  road was
observed for Pb at each of the study sites (Figures 10-16, 10-20, and 10-24).
However, the Rt.  234 site had the largest Pb concentrations and the strongest
pattern (Figure 10-24).   The Pb levels at the Fairidge  site were generally
greater than the Stratton Woods site (Figures 10-16 and 10-20).  At both of these
                                   10-44

-------
residential sites, the differences between the Pb concentrations  of  the  swale
soil and road soil were relatively small; sometimes the swale  soil had equal or
greater concentrations of Pb.
    The dramatic accumulation of Zn in the swale soils of the  Fairidge and
Stratton Woods site is unusual .in light of the Zn pattern at the  Rt.  234 site.
This highway had been in use a longer time than either of the  residential areas
and it had much higher traffic volumes than the residential areas.   However, the
Rt. 234 Zn levels were no greater than those of the Stratton Woods site. Also,
there was no significant accumulation of Zn in the highway median swales.
Another factor, in addition to urban runoff, seemed to be involved in the Zn
enrichment of the resident swale soils.
    To put the accumulation of Zn and Cd in swale soils in perspective,  the
median concentration increase and associated load are presented in Table 10-7.
The increase was calculated as the difference between the metal concentration of
a swale soil and the concentration of its associated yard soil.  The assumption
that 100 percent of the metal remains in the surface five cm of soils will be
substantiated later in this chapter.  Both the total Zn increase  and the rate of
Zn increase were greater at the Fairidge site than the Bulk Main  site.   The Cd
concentration increase and load were very modest at the Fairidge  site.

Impacts of Galvanized Culverts.  To determine if the Zn enrichment of residen-
tial swale soils was due to the presence of galvanized culverts,  the additional
surface sampling, described in the previous chapter, was conducted.   Figures
10-25 through 10-28 show the distribution of trace metal concentration with
distance dowslope of culverts.  Zinc had the most dramatic concentration
decrease with distance from the culverts.
    For the Fairidge site, the results of the Page Ordered Alternative Tests
                                   10-45

-------
o
I
                      Table 10-7.   Accumulation and loads  of trace  metals  found  to  have
                                   significant enrichment  1n swale  surface soils.
Site/Metal
Fa i ridge Subdivision
Swale Site
Cd
Zn
Median
concentration
Increase (ppm)

0.11
129.0
Median Cone.*
Increase per
year (ppm/yr)

0.02
21.5
Median**
load
(kg/ha)

0.08
96.4
Median**
load rate
(kg/ha/yr)

0.01
16.1
          Stratton Woods
          Subdivision Swale
          Site

               Zn                   64.4                16.1                48.1              12.0

           *assumes uniform accumulation over time.
          **assumes 100% of metals applied to soil  retained In upper 5  cm.

-------
         80  -I
         60  -
         40  -
         20 -
           0 -
     Q.


     .a
     a.

     LU

     CO
                                                Fa i ridge Site
8      10      12       14
     x
     LU
     CJ
    ID
      •

    O
         80  -4
         60  -
         40  -
         20  -
                                             Stratton Woods
                                                   a
                                                   f
                                                   t
                              4       6        3       10

                              DISTANCE FROM CULVERT  (m)
• • • i •

 12
                       14
Figure 10-25.   Variation of 0.5 N^ HC1 extractable Pb of swale surface
                soils with distance downs!ope of culverts at the
                Fairidge and Stratton Woods sites.
                               10-47

-------
       20 -
       15 H
       10 -I
        s -\
    a     o
                                                  Fairidge Site
                                                             •   a

                                        8       10       12      14
LU
_l
ca

£
o
<
o;

x
LU



i 20 H


=n

in


o 15 -|
       10 -J
        5 -j
        0 -J
                                              Stratton Woods Site
                                                 •
                            4       6       8      10      12


                                DISTANCE FROM CULVERT (m)
                                                                14
Figure 10-26. Variation of 0.5 N. HCl extractable Cu of swale surface

              soils with distance downslope of culverts at the Fairidge

              and Stratton Woods sites.
                              10-48

-------
   0.3-

   0.4-5

   0.3-

   0.2-5

   0.1-

o 0.0-
£      0
•a

03
     as
LU
§ 0.5H
s=l
"J 0.4-
o

   0.3-J

   0.2-j

   0.1-5

   0.0-
                 •   •
                                               Fairidge  Site
                                                    10
                                                       12
14
                                               Stratton  Woods Site
                        4        6        3       10
                         DISTANCE FROM CULVERT (m)
                                                            12
                                                               14
Figure 10-27.-
          Variation  of  0.5  N. HC1 extractable Cd of swale surface
          soils  with distance downslope of culverts at the  Fairidge
          and Stratton  Woods sites.
                               10-49

-------
600-

450-
300-

150-
0-
I
CL
c
CQ

o 300—
150-
0-

• ' Fai ridge Site

9
* •
• * *
• 1

1 	 ''1 	 ,.......,-1.........! 	 | 	 .., 	 ,
0 2 4 S 3 10 12 14



Stratton Woods Site




I
8 9
: i •
4       6       8       10
 DISTANCE FROM CULVERT (m)
                                                             12
14
Figure 10-28.  Variation of 0.5 N_ HCl extractable In of swale surface
               soils with distance downslope of culverts at the Fairidge
               and Stratton Woods sites.
                               10-50

-------
 strongly show a decrease of Zn and Cu concentrations with distance from culverts
 (Table  10-8).  The test results, with less confidence, also reveal a decrease of
 Pb concentrations with distance downslope from culverts.  Cadmium, Zn,  and Pb
 all had significant concentration decreases with distance from culverts at the
 Stratton Woods site; the P value (level of significance, probability of Type I
 error) of Zn was especially small.
    The changes in trace metal concentrations with distance from the culverts,
 were estimated by the slopes of Theil regression equations (Table 10-9).   The
 large slopes of the Zn equations reflected the sharp drop of Zn concentrations
 with distance from the culverts.  Copper and Cd had significant slopes.
 However, the slopes of the lines were small for both elements.  The P values of
 the Pb slopes were much greater than any of the other metals found to have con-
 centration decreases downslope of culverts.  Also, the slopes of the Pb models
 were small and of questionable significance.

 Detention Basins.  The trace metals distributions and spatial  patterns  for the
 detention basin sites are presented in Figures 10-30 through 10-53.  The even
 number figures in this section are box plots that compare the trace metal  con-
 centrations of basin site sampling zones (i.e., basin zone, control zone outside
 the basin, and for the KMart site, sideslope zone).  Figure 10-29 provides an
 explanation of the box plots used in this section.  The even numbered figures
 are isoconcentration maps that illustrate the spatial pattern of trace  metal
 distribution at the swale sites.  For the isoconcentration maps, it is  important
 to note that the contour intervals are not uniform.  Instead of including  con-
 tour lines that could not be substantiated by the data to make uniform  contour
 intervals, only those lines that could be established directly from the trace
metal  data points were included.
    Figures 10-30,  10-32,  10-34, and 10-36 illustrate the range of metal  con-
                                   10-51

-------
         Table  10-8.   Page Ordered Alternative Test (based on
                      Friedman Rank Sums) of surface soil trace
                      metal concentration  differences due to
                      distance from galvanized culverts at the
                      Fairidge and Stratton Woods sites.
                              Page Statistic            Level of*
Site/Trace Metal           (large sample approx.)       Significance
Fai ridge Subdivision
Swale Site
-Cd
Zn
Cu
Pb
Stratton Woods
Subdivision Swale Site
Cd
Zn
Cu
Pb

.35
2.77
2.08
1.39

1.82
2.77
0.52
1.99

.363
.003
.019
.082

.034
.003
.302
.023
*Test statistic and level of significance based on normal theory
 approximations.

 Ha:  metal concentrations decrease with distance from culvert.
                              10-52

-------
                Table 10-9.    The1l linear regression models  relating  surface soil  trace
                               metal concentration and distance downsiope  from galvanized

                               culverts at the Fairidge and Stratton Moods  sites.
o
I
01
co
Site/Metal
Fairidge Subdivision
Swale Site
Zn
Cu
Pb
Stratton Moods
Subdivision Swale
Site
Cd
Zn
Pb
Model

y = 314.31 - 16.38x
y = 6.36 - 0.12x
y - 42.76 - 0.99x

y = 0.2024 - .0074x
y = 128.54 - 6.11x
y = 17.82 - 0.39x
Significance* 95% Confidence
Level Interval for Slope

.003 (-32.
.026 (- 0.
.199 (- 3.

.039 (- 0.
.003 (-14.
.133 (- 1.

87, -3.78)
68, 0.01)
67, 1.35)

1500, 0.0000)
68, -1.52)
08, 0.22)
           kHa:   slope  less  than  zero.


           NOTE:  y  for each metal  =  0.5  t± IIC1  extractable  metal  (ppm).

                 x  = distance  down slope from  culvert  (m).

-------
                                   3
                     EXTREME UPPER OUTLIERS
                      All ae»«rv (3MIOR1 + 3Q
                                      MILD UPPER OUTUERS
                                        All oOt«rvoflon«> IQ -0.3KIQR)


                                   •0 MILD LOWER OUTLIERS
                                  .1
                     All aeswaftoni < IQ -O.SKIQR),
                     But > IQ-OXfOR)
                                  «  EXTREME  LOWER OUTUERS
                                      All ao«»rvonon«< IO-;3)(IOfl)
Figure 10-29.
Component  description  of box  plots  of  surface  soil
trace metal  concentrations of detention  basin  sites;
even  numbered figures, 36 through  59 (reference 86).
                                     10-54

-------
                        0.40



i
Q.


-o
LU
_J
CD
2
0
OS
X
LU

5
"""
Z'
ITi
0







0.35

0.30




0.25



0.20



0.15


0 10
w • 1 w
0.05



n nn
o
.
o
.

X
1

1
1
1 0
1
1 °
1
1
1 ,
1
1
1


1
1
1
X
X

                                   basin    control

                                    SAMPLING ZONE
Figure 10-30.
Comparison of 0.5 N_ HC1 extractable Cd of basin and
control surface soils, Stedwick detention basin site
(See also Figure 15).
                                10-55

-------
                                 .20
Figure 10-31.
Surface soil 0.5 ^ HC1 extractable Cd isoconcentration
map (ppm), Stedwick detention basin site (See also
Figure 15).
                               10-56

-------
45
40
35
,§ 30
g;
ui 0_
3!
1 20
UJ
^~
m
o
10
5
0
• 80 r •
EX1
75 ' COf
oui
.
-
§
o
8
f X
1

LpJ
1 X
1
                                  basin    control

                                     SAMPLING ZONE
Figure 10-32.
Comparison of 0.5 N_ HC1 extractable Zn of basin and
control surface soils, Stedwick detention basin site
(See also Figure 15).
                                10-57

-------
Figure 10-33.
Surface soil 0.5 N_ HC1 extractable Zn isoconcentration
map (ppm), Stedwick detention basin site (See also
Figure 15).
                               10-58

-------




i
Q.
o
LU
_1
CD
§
<
0£
X
Ul

f-
851
ID
O



9.0
8.0

7.0
6.0

5.0



4.0




3.0


2.0
1.0
n n
o
•
0 •:
X
•
i

— - —


1
• i
1

|
x 1
1
1
X


*
•

                                   basin      control

                                    SAMPLING ZONE
Figure 10-34.  Comparison of 0.5 N. HC1 extractable Cu of basin
               and control surface soils, Stedwick detention basin
               site  (See also Figure 15).
                               10-59

-------
Figure 10-35.
Surface soil 0.5 N. HC1 extractable Cu isoconcentration
map (ppm), Stedwick detention basin site (See also
Figure 15).
                                 10-60

-------
                    a.

                    LU
                   <

                   X
                       225
                       200
                       175
                       150
                       125
                       100
                   in   75
                   o
                        50
                        25
                    M      S
                              X
                                  basin    control

                                   SAMPLING ZONE
Figure 10-36.
Comparison of 0.5 N^ HC1 extractable Pb of basin and
control surface soils, Stedwick detention basin site
(See also Figure 15).
                              10-61

-------
Figure 10-37.
Surface soil 0.5 N_ HC1 extractable Pb isoconcentration
map (ppm), Stedwick detention basin site (See also
Figure 15).
                               10-62

-------
                       13.0 p
                       12.0
                       10.0
                   Q.


                   •a
                  CO
                  55
                  CJ
                  
                    •
                  o
4.0
                        2.0
                        0.0 I	f-	^—
                                   basin    control


                                    SAMPLING ZONE
Figure 10-38. Comparison of  0.5  H  HC1  extractable Cd of  basin and
              control surface  soils,  Bulk Mail  detention basin site
              (See also Figure 16).
                               10-63

-------
Figure 10-39.  Surface  soil  0.5 ^ HC1 extractable Cd  isoconcentration
               map  (ppm),  Bulk Mail detention basin site (See also
               Figure 16).
                               10-64

-------
                      1200
                      1000
                  £   800

                  c

                  LU
                       600
                  X
                  UJ
                  O

                  zl   400
                       200
                                   basin    control

                                      SAMPLING ZONE
Figure 10-40.  Comparison of 0.5 N. HC1  extractable In of basin and
               control  surface soils, Bulk Mail  detention basin site
               (See also Figure 16).
                               10-65

-------
Figure 10-41
Surface soil 0.5 N. HC1 extractable Zn isoconcentration
map (ppm), Bulk Mail detention basin site (See also
Figure 16).
                                10-66

-------
                        140
                        120
                    i.
                   ~   100
                   c_>
                   UJ
                   CD

                   h    80
                    X
                    LU
                    CJ
                    tr>
                    o
                         60
                         40
                         20

                                  basin    control

                                   SAMPLING ZONE
Figure 10-42.  Comparison  of 0.5 N. HC1  extractable Cu of basin and
               control  surface soils,  Bulk Mail  detention basin site
               (See  also Figure 16).
                                10-67

-------
Figure 10-43.
Surface soil 0.5 N. HC1 extractable Cu isoconcentration
map (ppm), Bulk Mail Detention basin site (See also
Figure 16).
                               10-68

-------


I
a.
.O
a.
oa
o
^C
0£
X
LU

-------
Figure. 10-45. Surface soil 0.5 N. HCl extractable Pb isoconcentration
              map (ppm), Bulk Mail detention basin (See also Figure 16}
                               10-70*

-------
                     z.oor
                     1.75.



^ 1.50
s
0.
S 1.25
LLJ
CD
2
g i.oo
X
LU
i 0.75
Zi
i
LO
O
0.50
0.25

n nn
f
1
1
1
1
1
i
1
1
1

O
O
•


1
1
I -JL_
1
^""^ X
A ¥*
X
                               basfn     sideslope  control

                                    SAMPLING ZONE
Figure 10-46.  Comparison of 0.5 N. HCl extractable Cd of basin,  sideslope,
              and control surface soils, KMart detention basin  site
              (See also Figure 17).
                              10-71

-------
                                             X
                                               X
                                          X
                                          0.2*


                                       	basin outline
Figure 10-47.  Surface soil 0.5 N_ HC1  extractable Cd isoconcentration
               map  (ppm), KMart detention  basin site (See also Figure 17}
                                10-72

-------
                   220
                   200
               a.



               c
                   150
              I
              o
                    TOO
                    50
                                         JL
                              basin   sideslope  control



                                    SAMPLING ZONE
Figure 10-48.
Comparison of 0.5 N_ HC1  extractable Zn  of  basin,  sideslope,

and control surface soils,  KMart detention  basin  site

(See also Figure 17).
                               10-73

-------
                                    	basin  outline
Figure 10-49.  Surface soil 0.5 N. HC1 extractable Zn isoconcentration
               map (ppm), KMart detention basin site (See also Figure  17)
                               10-74

-------
                      35.Or
                      30.0 •
                      25.0 -
o
LU
co 20.0
£
«_>
•a:
CC
1—
X
141 15.0
o
3=
Z|
IT)
o' 10.0


»

















0







r | T
! i
* n1""! °
— j
X —
                       5.0 •
                                basin   sideslope control

                                      SAMPLING ZONE
Figure 10-50. Comparison of 0.5 N. HC1 extractable Cu of basin, sideslope,
              and control surface soils, KMart detention basin site
              (See also Figure 17).
                              10-75

-------
                                   	basin outline
Figure 10-51.  Surface soil 0.5 N. HC1 extractable  Cu  isoconcentration
               map CPProK KMart detention  basin  site  (See  also  Figure 17)
                                10-76

-------
                      800
                      700
                      600
a.
a.
LU
_)
oa
c£
O
|
X
UJ
z
in
o







500



400



300

200

TOO



0











PB^MM




1HBMM1M




~r

o









i
1 —
1
1
i
X \
1
i
it
^^
                                basin  sideslope control

                                      SAMPLING ZONE
Figure 10-52. Comparison of 0.5 M_HC1 extractable Pb of basin, sideslope,
              and control surface soils, KNart detention basin side
              (See also Figure 17).
                              10-77

-------
                                — — - basin  outline
Figure 10-53.  Surface soil 0.5 N^ HC1 extractable  Pb  isoconcentration
               map (ppm), KMart detention basin site  (See also  Figure  17)
                               10-78

-------
 centrations for basin and control soils at the Stedwick site.   Clearly,  Pb,
 followed by Zn, had the greatest concentrations in the basin soil.   Most of  the
 Zn concentrations of the control soils were fairly uniform.   One very large
 exception was an extreme upper outlier that was greater than all other control
 or basin samples.  No explanation is offered; although it is relevent to note
 that the nonparametric statistics methods used to analyze the data  are less  sen-
 sitive to outliers than normal theory statistics.
    The spatial distribution of the study metals can be seen in a series of  iso-
 concentration maps of the Stedwick site (Figures 10-31, 10-33, 10-35, and
 10-37).  The concentration of Cu is basically uniform throughout the basin and
 control areas (Figure 10-35).  All of the other study metals were found to have
 elevated concentrations around the basin outlet and in zones or pockets  near the
 concrete channel.  The pattern is most pronounced for lead.   The slightly ele-
 vated Pb levels in the control area, near the head of basin  were probably due to
 the proximity of Stedwick Road.
    The trace metal accumulation in the basin soil of the Bulk Mail  site was a
 sharp contrast to the Stedwick site.  For the Stedwick site, Pb was  the  only
 study metal with distinct concentration differences between  the basin and
 control soils.  At the Bulk Mail Study site, all of the study  metals were much
 greater in the basin soil than the control soil.
    The greatest Cd concentrations observed during the study were at the Bulk
 Mail site (Figure 10-38).  The control soil Cd concentrations  were  well  below
 one ppm; but the basin concentrations reached a maximum of greater  than  twelve
ppm, with many observations in the one to four ppm range.  The greatest  Cd con-
centrations were found relatively near the basin inlet, in a zone north  of the
emergent vegetation and west of the inlet (Figure 10-39).  The area  of emergent
vegetation had fairly large Cd concentrations, but not the maximum observations.
                                   10-79

-------
A very similar pattern of trace metal distribution was recorded for the  other
study metals  (Figures 10-41, 10-43, and 10-45).
    Like Cd,  the greatest concentration of Zn observed during the study  was  in
the Bulk Mail detention basin.  Figure 10-40 illustrates the difference  between
the basin and control soils.  The soil Zn concentrations near the outlet of  the
structure were greater than the Zn concentration of most of the control  samples
(Figure 10-35).  On the other hand, the outlet region was not a zone of  great
enrichment.   Many other areas in the basin had greater Zn concentrations than
the outlet region.
    The maximum soil Cu concentrations were also recorded at the Bulk Mail Site
(Figure 10-42).  The difference between the control and basin soils was
apparent.  Although the spatial distribution patter of Cu in the basin was simi-
lar to the other study metals, the zone of emergent vegetation seemed to have a
larger proprotion of the large Cu observations (Figure 10-43).
    The Pb concentrations of the basin surface soil at the Bulk Mail site were
not as great  as the Pb concentrations of the surface soils at the Rt. 234 or the
KMa'rt study sites.  However, the difference between the control and basin soils
was striking  (Figure 10-44).  Similar to other metals, the smallest Pb con-
centrations were at the south end of the basin (Figure 10-45).
    Figure 10-11 presents the sampling layout of the KMart site.  Although not
to the extent of the basin soil of the Bulk Mail  site, the basin soil and
sideslope soil of the KMart site had been enriched with Cd (Figure 10-46).   Main
areas of enrichment were near the mouth of the basin and in a elongated  zone
near the outlet (Figure-47).  All of the other study metals had similar  distri-
bution patterns.
    Zinc was  the second most abundant study metal at the KMart site (Figure
10-48).  Zones of maximum accumulation were in isolated depressed areas  near the
                                   10-80

-------
outlet and in midddle portion of the basin (Figure 10-49).
    The small difference in Cu content between the sideslope and control  soils
can be observed in Figure 10-50.  This difference was much  smaller than that of
the other metals for these two sampling zones.  Figure 10-51 shows the spatial
distribution of Cu at the KMart site.
    Of the three detention basins, the greatest accumulation of Pb was noted in
the basin soils of the KMart site (Figure 10-52).  Only the Rt. 234 swale site
had Pb concentrations higher than the KMart site.  In spite of the large dif-
ference in concentration between Pb and the other study metals, the spatial
distribution pattern of Pb was very similar to the other metals (Figure 10-53).
    The results of the statistical analyses for the detention basin surface soil
investigation are presented in Tables 10-10 through 10-12.   The basis for the
comparisons made with the statistical tests was that the trace metal  con-
centrations of the soil outside of the basins (i.e. control zone) were the
background levels.  Any trace metal  concentrations observed in the basin soils
that were significantly greater than the background levels  could be considered
due to contributions from stormwater runoff.
    In general, the results of the statistical tests confirmed the trends that
were evident from the box plots and isoconcentration maps.   Results of the
Wilcoxon Rank Sums Tests for the Stedwick site revealed that when the basin
samples were compared as a whole to the control  samples, only Pb was  distinctly
greater in the basin soil (Table 10-10).   A difference in Zn concentrations bet-
ween the control  and basin soils was likely,  but with a much lower level  of
significance.  For the Bulk Mail site, highly significant differences were
detected with the Wilcoxon Ranked Sums Test between the control and basin soils
for all of the study metals.
    The results of the Kruskal-Wallis Tests for differences of metal  con-
                                   10-81

-------
      Table 10-10.
Results of Wilcoxon Rank Sum analyses of
differences between trace metal  concentrations
of basin and control  surface soils  of the
Stedwick and the Bulk Mail sites.
Site/Trace Metal
   Wilcoxon Rank Sum
     Test Statistic
Level of *
Significance
Stedwick Detention
Basin Site
Cd
Zn
Cu
Pb
Bulk Mail Detention
Basin Site
Cd
Zn
Cu
Pb

-0.68
-1.30
-0.76
-4.99

-4.59
-4.75
-4.74
-5.04

.2483
.0968
.2236
< .0002

< .0002
< .0002
< .0002
< .0002
*Test statistic and level  of significance based on normal  distribution
 approximations.

 Ha:  trace metal concentration of control soil less  than
      trace metal of basin soil.
                            10-82

-------
        Table  10-11.   Results of Kruskal-Wallis analyses  of
                       differences among soil  trace metal  con-
                       centrations of sampling zones of the
                       KMart detention basin site.
Metal
Cd
Zn
Cu
Pb
Kruskal-Wallis
Statistic
31.8 '
32.5
25.3
34.6
Level of*
Significance
< .001
< .001
< .001
< .001
 *Chi square distribution Irage sample approximation (2 d.f.).

  Ha:  soil trace metal concentrations of the 3 zones,
       basin, side slope, and control, are not equal.

NOTE:  Sample sizes for the various sampling zones:
          n (basin) = 12
          n (side slope) = 13
          n (control) = 19.
                             10-83

-------
      Table 10-12.   Multiple comparisons, based on Kruskal-Wallis
                    Rank  Sums, of surface soil trace metal  concentrations
                    from  three sampling zones of the KMart  detention
                    basin site.
Significance Level /Metal
S.L.



S.L.




= 0.15
Cd
Zn
Cu
= 0.05
Cd
Zn
Cu
Pb
Sampling Zones

A
A
A

A
A_
A
A

B.
B.
B

B
B.
B
B


C_*
C_
C

C
C.
C
C

*Sites scored by  the  same  line not significantly
 different at stated  significance level.

NOTE:  A = control  zone
       B = sideslope  zone
       C = basin  zone

       where  differences occurred, A
-------
 centrations among the three sampling zones at the KMart site indicated that
 there were very significant differences as show in Table 10-11.  All  treatment
 multiple comparisons were used to establish the order of the differences (Table
 10-12).  For each metal, with the exception of Cu, the sideslope metal con-
 centrations were greater than the control metal concentrations at a significance
 level of 0.05.  For all of the study metals, the basin soil  metal concentrations
 were found to be greater than the control soil metal  concentrations at the 0.05
 significance level.
    Table 10-13 summarizes the accumulation and loads of trace metals at the
 detention basin sites.  The KMart site had the greatest concentration, accumula-
 tion and load of Pb.  The Bulk Mail detention basin had the largest con-
 centrations, accumulations, and loads of Cd, Zn, and Cu.  The Stedwick basin had
 mild enrichment of Zn, and Cd in basin soils and only Pb accumulated to notable
 levels.

 Results - Depth Investigations
    The purpose of the depth investigation was to determine if trace metals had
 leached downward in the soil profiles of areas that had large surface soil  con-
 centrations of trace metals due to contributions from stormwater runoff.  To
 accomplish this, soil trace metal concentrations in the depth intervals from the
 basin or swale sampling zone were compared to the trace metal concentations of
 the appropriate control zone at the same depth intervals.  The locations of the
 sampling points have been previously shown graphically in an earlier section.
    The downward movement of trace metals has at least two potential  implica-
tions for soils that are used to control  urban runoff.  First, the downward
movement can be an index of the rate at which the trace metal sorptive capaci-
                                  10-85

-------
                                  Table 10-13.
Accumulation and  loads of trace metals found  to have
significant enrichment in detention basin surface soils.
o
 i
oo
en
Site/Metal
Stedwtck Detention
Basin Site
2n
Pb
Dulk Mail Detention
Dastn Site
Cd
Zn
Cu
Pb
KMart Detention
Basin Site
Cd
Zn
Cu
Pb
mean cone.
increase
(ppn»)

3.8
29.3

2.79
224.1
19.0
112.3

0.75
114.1
12.4
360.4
mean cone. *
Increase per
year (ppni/yr)

O.S
4.2

0.40
32.0
2.7
16.0

0.12
19.0
2.1
61.4
mean**
load
(kg/ha)

2.8
21.9

2.08
167.4
14.2
83.9

O.S6
86.2
9.3
275.2
mean**
load rate
(kg/ha/yr)

0.4
3.1

0.30
23.9
2.0
12.0

0.09
14.2
l.S
45. 9
                              'assumes uniform accumulation over time.
                             '•assumes 1001 of metals applied to soil retained  in upper 5 cm.

-------
ties of the soils are being exhausted.  The observation of the distribution of
trace metals with depth may provide an estimate of the life expectancy of a BMP
structure.  Second, excessive downward leaching of trace metals could potentially
contaminate ground water supplies.  The observation of the vertical  distribution
of trace metals can help to assess potential hazards to ground water.  To allow
the maximum separation of trends and mechanisms, the results of the  swale drain
sites and detention basin sites are presented separately.
Grassed Swales.  The results of the swale site depth study are presented in
Figures 10-55 through 10-62.  Figure 10-54 provides a partial  guide  to the depth
plots.  A few additional points, however, must be clarified.  For the swale
sites, a sample point for a given depth interval from the swale zone is related
to a specific point in the same depth interval for the road zone and yard zone.
At each of the five swales sampled at a study site, a soil core was  taken from
the road zone, swale zone, and yard zone.  Therefore, the results of a swale
zone sample must be compared to the results from the sample taken from the adja-
cent road or yard zone.  Unfortunately, due to a large number  of data points,
and a very wide range of trace metal concentrations, unique symbols  for each
swale could not be used.  At the lower depths the different symbols  would have
been crammed together and meaningless.  The plus symbol was selected to allow
maximum differentiation of points with close spacings.
    Due to the complex nature of the depth graphs for the swale sites, the
assessment of clear trends from the graphs by themselves is difficult.  For this
reason the graphical  presentations and statistical  analyses shall  be described
simultaneously.
    The results of Friedman Rank Sums Tests and comparisons are presented in
Tables 10-14 through 10-17.  For the comparisons, the depth samples  collected  in

                                  10-87

-------
                                   SOIL SURFACE
             0


           -10



        J. -20

        £
        Q -30


           -40


           -50
   t  t   *  *     *

t *  *  (5-l5cm)




*  (IS-SOcm)
(O-5cm)
  I) points  at midpoint  of
    sampling  depth

 2) unless  otherwise  noted,
    5 observations at each
    depth (som« are  hidden)
 (30-€0cm)
                        0.5 N HC1 EXTRACTABLE METAL
Figure 10-54.   Description of depth plots of soil  trace metal
                concentrations; Figures 61 through  76.
                                10-88

-------
?
X
o.
LU
a



u
X
a.
LU
a



5
X
LU
a


-20-i
-30-|
-40-:
-50-
o.
Q-J
-10-
-20-
-30-
-40-j
-50-
o.
0_

-20-
-30-
-40-
-50-
o.
•t- + +• +
f +
ROAD
V



1 • • ' • 	 1 • • 	 1 ' 	 1 ......... J .... 1 .... 1
00 0.08 0.16 0.24 0.32 0.40
* + + -t-
SWALE



00 0.08 0.16 0.24 0.32 0-40
* +• -r +•
YARD
t + + +



i • • • 	 ,.....,... | 	 , , 	 	 | 	 ,
00 0.08 0.15 0.24 0.32 0.40
                     0.5 N.HC1 EXTRACTABLE Cd (ppm)
Figure 10-55.  Distribution of 0.5 N^ extractable  soil  Cd with  depth
               for three sampling  zones,  Fairidge swale site.
                            10-89

-------

u
iCL




s
z
a.



1*
u
i.
a.
a


-10-
-20-
-30-^
-40-3
-50-
fl— 1
-10-
-20-j
-30-
-40-j
-50-
n_
-20-:
-30-
-40-
-50-

•M- -h
-H-
ROAD


+
t • • 	 •! 	 , . . . 	 	 i • • 	 i 	 i
0 150 300 450 600 75Q
+ +•»•+ -r
•H + -I-
SWALE
*


*
i 	 • • i 	 i 	 , | 	 	 |
0 150 300 450 600 750
* YARD
•*•



0 150 300 450 500 750
                      0.5 N_HC1 EXTRACTABLE Zn  (ppm)
Figure 10-56. Distribution of 0.5 M^ HCl  extractable soil  Zn  with
              depth for three sampling zones,  Fairidge  swale site.
                           10-90

-------
-10-
J-20-
£-30-
Q. :
o -40-4
-50-
O-J
_ -10-:
5 -20-
^ -30-
Q.
0 -40-
-50-
n-
^ -10-
£ -20-
^ -30-
0.
ixl
Q -40-,
-50^
* •(•+•(•
ROAD
•»••«•+ +


-i- 4-H- •••
01 2345678
•H- +• •*•
•H- + -i- +
SWALE


•H-f •(• *
01 2345678
+H- -f
* * ** YARD
+ ••• -i- •(•-(•


                           2      3      4      5      S

                          0.5 IN HC1  EXTRACTABLE Cu (ppm)
3
Figure 10-57.   Distribution of 0.5 N_ HC1  extractable soil  Cu with
                depth for three sampling zones,  Fairidge swale site.
                             10-91

-------

u
s
1—
0.
LU
o

u
t—
n
LU
a


u
t—
a,
LU
o

-10-
-20-j
-30-
-40-
-50-
0-
-10-
-20-
-30-
-40-
-50-
O-i
-10-
-20-
-30-i
-40-i
-50-
+•»•+•+ *
4<-H-
ROAD
•n-
i ••••••••• i 	 ..,....,...., 	 • • • i 	 i
0 20 40 60 SO 100
•i-H-f +
"^^ * SWALE
•P+ -r


'
0 20 40 60 80 100
•H*
YARD

1 II
                   20          40          60         80

                       0.5 N^ HC1  EXTRACTABLE Pb (ppm)
100
Figure 10-58. Distribution of 0.5 N. HC1 extractable soil  Pb with
              depth for three sampling zones, Fairidge swale site.
                            10-92

-------

u
z
Q.
°


U
X
a.
0



u
a.
°

-10-
-20-
-30-

-40-
-50-
0.
0-
-10-
-20-
-30-

-40-
-50-
o.
OJ
-10-
-20-
-30-
-40-
-50-
+ •*-•)-
•*-•»••»• •*••»•
ROAD
+ + + +


* + * +
00 0.05 0.10 0.15 0.20 0.25 0-3
* + + +
SWALE



*
• ' ' ' i ' ' ' 	 i 	 i 	 i 	 i • • • 	 i
00 0.05 0.10 0.15 0.20 0.25 0.3<
•»••*••*•
•»• + + +
YARD
•»••»• + -h



        0.00
•0.05     0.10     0.15     0.20     0.25

          0.5 N EXTRACTABLE Cd (ppra)
0.30
Figure 10-59.  Distribution of 0.5  N_ HC1 extractable soil  Cd with
              depth for three sampling zones, Stratton Woods swale
              site.
                           10-93

-------

5-20-
£ -30-
Q_
JJ
Q -40-
-50-
0—
^ -10-
1-20-
£-30-
0 -40-
-50-

-10-
1-20-
? -30-
a. :
o -40-
-50-
•»•* •»•
ROAD


II 1 T
1 ' ' 	 	 	 j 	 ' • | 	 ' 1 • • ' 	 1
0 20 40 60 30 100
+ -f- -f +
-W~M- +
SWALE


* + +•
0 20 40 60 30 100
•H+"f
YARD
•H- -H-


-«• -H-
                    20          40          60         80

                         0.5 N_HC1  EXTRACTABLE Zn  (ppm)
100
Figure 10-60.  Distribution of 0.5 N. HCl  extractable soil Zn with
               depth for three sampling  zones,  Stratton Woods swale
               site.
                             10-94

-------

u
X
0.
a



&
u
X
0.
UJ
a


u
Q-
LU
O

-10-
-20-
-30-
-40-
-50-
0— I
-10-
-20-i
-30-
-40-
-50-
Q-4
-10-
-20-j
-so-;
-40-
-50-
4-1- 4-4-
4> 4 4- + *
44 4- 4- 4-

44- 4- 4-4 ROAD

i ••••••••• i ......... , 	 ,.,........., 	 ,
0 5 10 15 20 25
4> 4 4- 4- 4-
44 4-4

SWALE
i 	 i 	 i 	 i 	 ' • ' i ' 	 ' ' i
0 5 10 15 20 25
+ * +
4-H- 4 4-
+ * 4 4

YARD
+ + + 4- 4>
                     5          10         15          20

                       0.5 N_ HC1 EXTRACTABLE  Cu (ppm)
25
Figure 10-61.  Distribution of 0.5 N HC1 extractable soil  Cu with
               depth  for  three sampling zones, Stratton Woods swale
               site.
                            10-95

-------
s
i
LU
O






-2-
£
1—
f\
O




^"
(J
£=
a.
UJ




-20-
-30-
-40-

-50-



-10-

-20-^
-30-|
-40-
-50^

n
-io-i

-20-i
-30-^

-40-:

-50-

t\wnL/
+ + -H- -H


•H- +• ++

i 	 i 	 i 	 i ' ' ' '> i
0 5 10 15 20 25

* * +* * * * * *
* SWALE
+ •* +•


* * + +•
• ' ' i ' 	 i • • 	 i • 	 i 	 i
0 5 10 15 20 25

+ +. -H- +
YARD
* + + + +



•»• + 4- •»• +

i 	 i 	 i 	 i ••••••••• i •••• 	 ,
0 5 10 15 20 25
                     0.5 N. HC1 EXTRACTABLE Pb (ppra)
Figure 10-62.  Distribution of 0.5 N. HCl  extractable soil  Pb  with
               depth for two sampling zones,  Stratton !^oods  swale
               site.
                            10-96

-------
          Table 10-14.   Results of Friedman Rank Sums analyses
                        of differences among soil trace metal
                        concentrations for three sampling zones
                        at various depths; Fairidge Swale Site.
                              Friedman Rank             Level of*
Depth (cm)/Metal              Sums Statistic          Significance
0-5
Cd
Zn
Cu
Pb
5 - 15
Cd
Zn
Cu
Pb
15 - 30
Cd
Zn
Cu
Pb
30 - 60
Cd
Zn
Cu
Pb

8.4
8.4
8.4
7.6

3.1
2.8
0.4
1.2

5.2
3.6
10.0
5.2

4.1
1.2
5.2
2.8

.008
.008
.008
.024

.298
.367
.954
.691

.093
.182
.001
.093

.158
.691
.093
.367
*Ha:  soilmetal concentrations for sampling zones, yarcf swale,
      and road, are not equal.

NOTE:  For all depth intervals and metals, n = 5.
                           10-97

-------
Table 10-15.    At various depths, comparisons of soil trace metal
                   concentrations of swale zones and road zone to
                   yard  zones of the rairidge swale site; based on
                   Friedman Rank Suns.
Depth/Metal
(cm)
road
di f ference of* P*"
direction
yard
direction of
difference

p
  0-5

   Cd                             -          .3336          -        .0028
   Zn                             -          .0697          -        .0028
   Cu                             -          .3336          -        .0028
   Pb                             -          .6024          -        .0131

 15-30

   Cd                             -          .1052          -        .0517
   Zn                             •          .0697          -        .3336
   Cu                             -          .1406          *        .1406
   Pb                             +          .0337          -        .4815

 30 - 60

   Cd                             -          .0697          -        .1844
   Cu                             -          .1406          *        .4815

 ** * metal  cone,  road  zone > metal cone, swale zone
    0 » equal  rank sums
    - « metal  cone,  road  zone < metal ccnc. swale zone.

 **leve1  of significance.

 MOTE:  Comparisons  made  for metals that had significant
        differences  for a given depth as determined by
        Friedman  Rank  Suns Test.
                          10-98

-------
        Table  10-16.   Results of Friedman Rank Sums  analyses
                      of difference among soil trace metal
                      concentrations for three sampling zones
                      at various depths; Stratton Woods swale site.
                           Friedman Rank          Level  of*
Depth (cm)/metal           Sum Statistic          Significance
0-5
Cd
Zn
Cu
Pb
5 - 15
Cd
Zn
Cu
Pb
15 - 30
Cd
Zn
Cu
Pb
30 - 60
Cd
Zn
Cu
Pb

7.6
8.0
2.0
8.0

4.3
4.8
1.2
0.0

0.9
1.2
0.4
1.2

0.1
0.4
0.4
1.6

.024
.016
.470
.016

.137
.124
.691
1.000

.822
.691
.954
.691

.988
.954
.954
.522
*Ha:  soil metal concentrations for sampling zones,  yard,  swale,
      and road, are not equal.
                                                    /

NOTE: For all depth intervals and metals, n = 5.
                           10-99

-------
 Table  10-17.     At various depths, comparisons of son  trace
                     ratal concentrations of road zone and yard
                     zone to swale zone of the Strattan Woods  swale
                     site; based on Friedman Rank Sums.
                                   road              '           yard
                             direction of*   P*~       direction of    P
Depth/Metal  (on)               difference                difference


0-5

  Cd                              -        .3336            -       .0234
  Zn                              -        .2281            -       .0131
  Cu                              *        .4815            -       .4815
  Pb                              +        .2281            -       .2281

5-15

  Cd                              -        .1844            -       .0697
  Zn                              -        .0697            -       .0697

* + • metal  cone,  roaa zone  > metal cone, swale zone
  0 » equal  rank  sums
  - • metal  cone,  road zone  < metal cone, swale zone.

••level  of significance.

NOTE:  Comparisons made for metals that had significant differences  for
       a given depth as determined by Friedman Rank Sums Test.
                         10-100

-------
the swale sampling zone were used as the control.  If larger concentrations of
trace metals can be established in the various depth intervals of the swale zone
samples than the same depth intervals of the road zone and the yard zone
samples, this is strong evidence to indicate that detectable leaching of trace
metals has occurred in the swale zone soils.  Since the sample sizes were much
smaller for the depth investigation that the surface soil investigation, greater
differences among the sampling zones were required to show significant trends.
That is not to say that the Friedman test was not valuable.  Actually, the
determination of important trends would have been almost impossible without it.
    With regard to the Fairidge site, significant differences were detected
among the sampling zones for all of the study metals in the 0-5 cm depth inter-
val (Table 10-14, Figures 10-55 through 10-58).  In contrast, none of the study
metals had significantly different concentrations among the sample zones at the
5-15 cm interval.  At the deeper intervals, only Cd and Cu had test results that
showed differences among sampling zones at the 15-30 cm and 30-60 cm depths.
The P value for Cu at the 15-30 cm level was especially small, allowing a great
deal of confidence in the conclusion of differences among the sampling zones.
    Treatment-control comparisons (with the swale zone as the control) results
provided evidence of enriched Zn in swale zone samples for the surface layer,  a
finding compatible with the finds of the surface soil  investigation (Table
10-15).  At none of the other depth intervals did the test results support Zn
enrichment of swale zone soil.  At the 15-30 cm depth interval, the Zn con-
centrations of swale zone samples were significantly greater than the road
samples; but the swale zone Zn levels were less than yard zone Zn levels.  By
the 15-30 cm depth, Zn levels had decreased from the several  hundred ppm con-
centrations observed in the surface soils to less than 10 ppm (Figure 10-56).
    The phenomenon of decreasing metal  concentration with depth was not unique
                                  10-101

-------
to Zn, all of the study metals exhibited this pattern for all  of the  sampling
zones.  Pb especially seemed to be concentrated only in the surface layer
(Figure 10-58).
    Copper was unique among the study metals at Fain'dge site  in that the Cu
concentration of the yard zone at the 15-30 depth intervals seemed greater than
the Cu concentrations of the swale zone (Table 10-15, Figure 10-57.)   At  the
30-60 cm depth interval, there was no significant difference between  the soil Cu
concentration of the swale and yard zones, and the swale zone  Cu appeared
greater than the road zone Cu (P = .1406).
    Of all the study metals, Cd seemed to have the greatest amount of downward
mobility in the swale zone soil.  With a fair amount of confidence, the  conclu-
sion that Cd concentrations were greater in swale zone soil than either  road
zone soil or yard zone soil for the 15-30 and 30-60 cm depth intervals could be
made (Table 10-15).  Even though there were significant differences at these
depths, the Cd concentrations in the swale zone soil were still  quite small
(Figure 10-55).
    The Stratton Woods site had uniform trace metal distributions below  the sur-
face 5 cm (Table 10-16, Figures 10-59 through 10-62).  The only  notable  dif-
ferences among the sampling zones occurred at the 5-15 cm interval for Zn and
Cd, and the P values of these two were marginal (Table 10-16).  Control
Treatment comparisons for this interval revealed that both Zn  and Cd  con-
centrations were significantly greater in swale zone than either th yard zone or
the road zone (Table 10-17).  But, the magnitude of the differences of Zn and Cd
concentrations at the 5-15 cm level were generally quite small,  a few ppm for Zn
and less than 0.1 ppm for Cd.
    For the 0-5 cm depth interval, the Friedman Rank Sums results indicated
highly significant differences among the sampling zones for Cd,  Zn, and  Pb
                                   10-102

-------
 (Table  10-16).  On the other hand, the comparisons failed to show differences
 between  study metal concentrations of the road and swale zone soils.
 Significant differences were found between the swale zone and yard zone for the
 metals  Cd and Zn  (Table 10-17).
 Detention Basins.  The trace metal depth data are presented in Figures 10-63
 through  10-70.  Because the control zone samples and basin zone samples were
 collected independently at the detention basin sites, all of the samples from a
 given depth interval from the basin sampling zone can be compared directly to
 all of the samples from the same depth interval from the control sampling zone.
    The  results of the Wilcoxon Rank Sum Tests of differences between soil trace
 metal concentrations of the basin and control sampling zones are presented in
 Tables  10-18 and  10-20.  Estimates of the magnitute of the significant differen-
 ces between the trace metal concentrations of basin sampling zone and the
 control  sampling  zone are presented in Tables 10-19 and 10-21.
    The  Stedwick  detention basin soil  had trace metal contamination limited
 almost exclusively to the surface five cm (Table 10-18).  In general, the
 control  soil had  remarkably uniform concentration distributions in the soil pro-
 file for all of the study metals (Figures 10-63 through 10-66).  Interestingly,
 the Cu concentration of the lower three depth intervals seemed greater in the
 control  soil than basin soil; a difference in parent material is implied (Figure
 10-65).  For each study metal, with the possible exception of Cu, a distinct
 accumulation was  noted in the basin surface soil layer (Table 10-18, Figures
 10-63 through 10-66).  For the basin soil, background metal  concentrations were
usually approached by the 5-15 cm depth interval.  Lead and Zn were the only
study metals significantly greater in  the basin soil  than the control soil at
the 5-15 cm depth interval (Table 10-18).  Even these metals had very small con-
centration differences (Table 10-19).

                                  10-103

-------
   -10-


1 -2°-
ar
£ -30-

   -40-j

   -50-
                             +  +•
                                                  BASIN
          I ......... I .,..:.. ,-. ( . , r. . . , ^j . . ,  	|	T- ' I '  	| .... r^, • • J

       0.00    0.08    0.16   0.24    0.32    0.40   0.48    0.56
     -10-
     -20-
     -30-
  a  -40-
     -50-
                                                CONTROL
       0.00    0.08   0.16    0-24    0.32    0.40    0.48    0.56

                       0.5 H HC1 EXTRACABLE  Cd  (ppm)
Figure  10-63. Distribution of 0.5 N. HC1 extractable soil Cd with
             depth for  two sampling zones, Stedwick detention basin
             site.
                         10-104

-------
         0


       -10-1
    E  -2(H
       -40-
       -50-
+• ++•
               •HH-
                                                       BASIN
            i	'I	I	I	....k	T, . . § . . T^-rT, n ,,....,... J

           0      10      20      30      40  •     50      SO      70
         0


      -10-


      -20-
    5--30H
    UJ
    a

      -40-
    •»• •*•
              •f -HH-
              4- -HH--T
      -50-
    • i
   10
                                     CONTROL
20      30      40      50      60

  0.5  N HC1  EXTRACTABLE  Zn (ppn)
                                                                   70
Figure 10-64.   Distribution of 0.5 N_HC1  extractable  soil  Zn with
               depth for two sampling zones,  Stedwick detention  basin
               site.
                             10-105

-------
         -30-
        -40-
        -50-
                                                         BASIN
r
0
       • i •
       2
                                         i ......... i ......... i • • ....... i
                                         6         8        10        1-2



"i"
u
— "
o_





n
-10-
-20-


-30-

-40-

-50-



+ -Hr *

•»• * * -f +•


CONTROL

+ 4- 4- 4- +

i • ' • 	 i 	 i 	 i • • • 	 i 	 i 	 i
0 2 4 € 3 10 12
                           0.5  N.HC1 EXTRACTABLE Cu (ppm)
Figure 10-65.
Distribution of 0.5  N_ HC1 extractable soil Cu with
depth for two sampling zones, Stedwick detention basin
site.
                             10-106

-------
      0




    •10-1
     S -20^
    £  -30-1
    _u
    o


       -40-




       -50-
                    50
                                                     + ••*•
                                                      BASIN
                          | T ........ |



                         100      150
                  200
• • J



250
300
   -10-





1 ~2°-



E -30-|
LU
a


   -40-




   -50-
                    • i • •

                   50
                                                    CONTROL
                        ^ i • • • • •

                         100
         150      200      250


0.5 N_ HC1 EXTRACTABLE Pb (ppm)
         300
Figure 10-66.  Distribution  of 0.5 N_HCl extractable soil Pb with

              depth for two sampling zones,  Stedwick detention basin

              site.
                           10-107

-------
     -10--W- +•
   g -20-1
   £ -30H


     -40-


     -50-
                      I

                      4
                                                    BASIN

                                               (4 observations at
                                                  each depth)
                                         12
16
20
     -10-
0.
UJ
o
     -30-


     -40-


     -50-
                                                   CONTROL
                                 8         12          IS

                           0.5 N. HC1 EXTRACTA8LE Cd (ppra)
                                                                20
Figure 10-67.   Distribution  of 0.5 N_ HC1 extractable soil  Cd with
               depth for two sampling zones, Bulk Mail  detention
               basin site.
                            10-108

-------
     f± -30
     0.
       -40


       -50
            •iH-
.0
                        400
                                  800
                                                        BASIN

                                                    (4 observations at
                                                       each depth)
1200
1600
       -10-}
    Q_
    LU
    o
£  -30-


  •-40-


   -50-
                                                     CONTROL
                        400           800         1200

                            0.5  N_HC1  EXTRACTABLE Zn  (pom)
                                                            1600
Figure  10-68.  Distribution of 0.5  N. HC1 extractable soil  Zn with
              depth for two sampling zones, Bulk Mail  detention
              basin site.
                           10-109

-------

u
0.
'-U
a



u
a.
LU
a


-10-
-20-
-30-
-40-
-50-
0—
-10-j
-2Q-
-30-^
-50-

BASIN
^ (4 observations at
each depth)


0 25 50 75 100 125 150 1 75
.H. CONTROL
-9-


0 25 50 75 100 125 150 175
                           0.5 N. HC1 EXTRACTABLE Cu (ppm)
Figure 10-69.  Distribution  of  0.5 N_HC1  extractable  soil Cu with
               depth for  two sampling zones,  Bulk  Mail detention
               basin site.
                            10-110

-------
     'e -20H
      u
      a.
      LU
      a
        -30-
        -40-
        -50-
                                          BASIN

                                 (.4 observations at
                                      each depth)
• • I • •

150
                             300
                        450
600
750
900
        -10-
        -20-
     £-30-}
     a
        -40-
        -50-
                                         CONTROL
                    150      300      450      600      750      900

                           0.5 H HCl EXTRACTABLE Pb (ppm)
Figure 10-70.
Distribution of 0.5 N_ HCl  extractable soil Pb with
depth for two sampling zones, Bulk Mail detention
basin site.
                            10-111

-------
         Table 10-18.  Results of Wilcoxon Rank Sum Tests of
                       differences between soil trace metal
                       concentrations of basin and control sampling
                       zones  at various depths; Stedwick detention
                       basin site.
                              Wilcoxon Rank*            Level of**
Depth/Metal (cm)              Sum Statistic             Significance
0-5
Cd
Zn
Cu
Pb
5-15
Cd
Zn
Cu
Pb
15 - 30
Cd
Zn
Cu
Pb
30 - 60
Cd
Zn
Cu
Pb

40.0
40.0
32.0
40.0

23.5
35.0
19.0
35.0

22.0
25.5
20.0
31.0

20.0
26.0
24.0
26.0

.004
.004
.210
.004

> .500
.075
> .500
.075

> .500
> .500
> .500
.274

> .500
> .500
> .500
> .500
 *Rank sum for basin sample.

**Ha:  Soil trace metal concentration from basin
       greater than control area.

NOTE:  For basin and control depth samples, n = 5.
                            10-112

-------
         Table  10-19.   Estimates of trace metal concentration
                       differences between basin and control
                       soils at various depths^ Stedwick
                       detention basin site.*
                               Estimate of           95% Confidence
Depth/Metal                    Med. Diff.                Interval
   (cm)                          (ppm)                     (ppm)
0-5

  Cd                             0.24                  0.38,   0.08
  Zn                            39.1                  53.9 ,  14.9
  Cu                             1.6                   4.1, - 1.1
  Pb                           217.2                 257.6,  66.8

5 - 15
Zn
Pb
1.9
14.2
6.9,
44.0,
0.5
- 2.4
*Based on Wilcoxon Rank Sum Test.
                            10-113

-------
    As shown by the results of the surface soil investigation,  the Bulk Mail
site had the greatest accumulation of Cu, Cd, and Zn of any study site.  The
results of the depth study substantiated this conclusion (Figures 10-67 through
10-70).  In fact, one observation was recorded in the 0-5 cm interval  for each
of the study metals that was much greater than any value observed during the
surface study.  This is not surprising since the depth samples  were basically
point samples, while the surface samples were composites from a larger area.
The probability of an extreme observation is much greater for the point samples.
    Even though the concentrations of trace metals in the surface soil  layer
were very large, the movement of the metals down through the soil profile was
minimal.  Significant differences between the Cd concentrations of the control
and basin soils were not detected below the 0-5 cm soil layer (Table 10-20,
Figure 10-67).  Wilcoxon Rank Sum Tests showed, with decreasing confidence as
depth increased, that the Cu concentrations of the basin soil were greater than
the Cu and Pb concentrations of the control soil.  At the 30-60 cm depth inter-
val, the null hypothesis of equal Cu or Pb concentrations could not be rejected
(Table 10-20).  Except for the 15-30 cm interval, test results  indicated very
confidently that Zn concentrations were greater in the basin soil than control
soil (Table 10-20).  However, all of the intervals below the surface layer that
had enrichment of any of the study metals, the differences were very small  com-
pared to the large metal concentrations of the 0-5 cm interval  (Table  10-21).
For example, the estimated median difference between the Zn concentrations of
the basin and control  soils from the 5-15 cm interval  was only  2.7 percent of
the estimated median difference for the surface layer (Table 10-21).   The Zn
differences at the lower depths represented even small  percentages of  the sur-
face layer Zn accumulation.
                                  10-114

-------
         Table  10-20.   Results of Wilcoxon Rank Sum Tests of
                       differences between soil trace metal
                       concentrations of basin and control  sampling
                       zones  at various depths; Bulk Mail  detention
                       basin site.
                              Wilcoxon Rank*           Level  of **
Depth/Metal (on)              Sum Statistic            Significance
0-5
Cd
In
Cu
Pb
5-15
Cd
In
Cu
Pb
15 - 30
Cd
Zn
Cu
Pb
30 - 60
Cd
Zn
Cu
Pb

30.0
30.0
30.0
30.0

23.0
29.0
27.0
28.0

22.0
24.0
24.0
25.0

23.5
30.0
13.0
23.5

.008
.008
.008
.008

.278
.016
.056
.032

.365
.206
.206
.143

.242
.008
> .548
.242
       sum for basin sampie.

**Ha:  Soil trace metal concentration from basin
       greater than control area.

NOTE:  For basin samples, n = 4; control samples, n = 5.
                           10-115

-------
         Table 10-21.  Estimates of trace metal concentration
                       differences between basin and control
                       soils at various depths; Bulk Mail
                       detention basin site.*
Depth/Metal
(cm)
0-5
Cd
Zn
Cu .
Pb
5 - 15
Zn
Cu
Pb
15 - 30
Zn
Cu
Pb
30 - 60
Zn
Estimate of
Median Diff.
(ppm)

7.71
539.7
44.7
268.3

14.7
1.4
6.9

3.6
0.4
1.8

5.0
95% Confidence
Interval
(ppm)

19.24,
1484.9 ,
152.0 ,
786.8 ,

110.6 ,
5.2 ,
48.4 ,

36.5 ,
1.5 ,
11. S ,

10.6 ,

6.28
395.2
32.2
215.8

2.5
- 1.6
- 2.4

- 1.3
- 1.1
- 1.6

- 0.9
*Based on Wilcoxon Rank Sum Test.
                            10-116

-------
Discussion - Surface Soils
Grassed Swales.  The statistical analyses revealed cases of clearcut enrichment
in  grassed swales for two trace metals, Zn and Cd (Table 10-6).   The enrichment
occurred at the two swale study sites probably the least likely  to have espe-
cially high concentrations of trace metals in urban runoff, the  Fairidge and
Stratton Woods sites.  These residential areas had not been in existence very
long, they had low intensity urban land uses and they had small  traffic volumes
(Table 10-2).  Yet, very large accumulations of Zn were observed In the swales
of  both sites and significant accumulation of Cd in the Fairidge swales (Figures
10-13, 10-14 and 10-18).  In the same areas, Cu and Pb had typical  roadside pat-
terns of decreasing metal concentrations with increasing distance from the road,
and in general the concentrations were not exceptionally large (Figures 10-15,
10-16, 10-19 and 10-20).
    The residential trends were especially surprising in light of the Rt. 234
swale results.  The highway median swales had been in operation  several years
longer, and were exposed to much greater traffic volumes than the residential
sites, but none of the study metals had accumulated in the median swales to con-
centrations significantly greter than the road zone concentrations (Table 10-2
and 10-6).  Actually, the Cd, Cu and Zn concentrations in the Rt. 234 swales
seemed to be much the same in the road zone (Table 10-6).  Perhaps stormwater
runoff had increased the concentrations of these three metals in the swales to
equal those near the road.  If so, the pattern of decreasing metal  con-
centrations in the soil  with increasing distance from the road had been broken.
However, if accumulation of metals had occurred, it was small compared to the Zn
accumulation in the swales of the residential  sites.  Another interesting obser-
vation was that the soil Zn concentrations at the Rt. 234 site had approximately
the same range as the Stratton Woods soil Zn concentrations, whereas the soil Pb
concentrations were one  or two orders of magnitude greater at the Rt. 234 site
                                  10-117

-------
(Figures 10-18,  10-20,  10-22, and  10-24).
    If automobile and roadway pollutants were the primary source of trace metals
at all three sites, the  results were illogical.  Logic seemed to demand that
additional sources of Zn were present at the residential  swale sites.   The
results of the additional surface  soil sampling in the residential  swales pro-
vided strong evidence that the galvanized steel culverts under each driveway
were the latent  sources.  At the swales sampled, the Zn concentrations decreased
with increased distance  downslope  of the culverts (Figure 10-28).  The Thei1
regression equation slope estimates of approximately 16 ppm per m for  the
Fairidge site and approximately 6  ppm per m for the Stratton Woods  site
demonstrated the sharp  change with distance (Table 10-8). 'By contrast, galva-
nized material was not  used at the Rt. 234 site, but rather concrete pipe or
ditches transported runoff between swales.
    The results  established with reasonable certainty that Zn enrichment of the
residential swale soil  was the result of Zn leaching from the galvanized
coatings of the  culverts as runoff passed through the pipes.  Likewise, the
metal was then transferred to the  soil while the runoff passed over the soil
surface or as the water  infiltrated into the soil profile.  The occurrence of
acid rainfall (and therefore acid  runoff) in the eastern United States has been
well-documented, and rainfall precipitation pH measurements by the Occoquan
Watershed Monitoring Laboraory in  the Northern Virginia area are frequently as
low as 3.5.  The acid precipitation has probably reduced pH levels  of  runoff
waters and contributed  significantly to the leaching process by increasing the
solubility of Zn.
    The accumulation of  Zn in the  swales at the Fairidge site were much greater
than at the Stratton Woods site (Figures 10-14 and 10-18).  An obvious factor in
the difference in the Zn concentrations was the age difference between the two
                                   10-118

-------
developments  (Table 10-2).  When time is considered as a factor,  however,  the
Fairidge site still had a greater rate of Zn concentration  increase (Table
10-9).  Two factors that might explain the differential  Zn  accumulation  rates
are watershed slope and swale length.  As observed in the field,  the roads and
watershed in  general has a significantly greater slope at the Fairidge site.
Therefore, a  greater percentage of precipitation was probably delivered  to the
swales and culverts as runoff at the Fairidge site.  The swales are generally
longer at Stratton Woods than Fairidge and thus, there are  fewer  culverts  per
unit length of swale to contribute Zn.
    Cadmium, Cu, and Pb concentrations in the soils also showed signs of being
related to galvanized culverts (Table 10-7 and 10-8).  Cadmium and Pb had  small
but significant equation slopes for the Thei1 regression model of concentration
decrease with distance from culverts for the Fairidge site;  Cu had a small  but
significant slope for the Stratton Woods site.  The culverts were probably
contributing minor amounts of trace metals, possibly impurities in the galva-
nized coatings, other than zinc.  The variation in which metals had significant
decreases with distance from culverts for a given site may  have been a function
of the manufacturer.  That is, different manufacturers would likely use  dif-
ferent zinc ore and impurities in the areas would probably  vary from source to
source.

Detention Basins.  Clearcut differences among the land use  characteristics of
the detention basin watershed were reflected in the accumulation  patterns  of
trace metals in the basin surface soils.  The Stedwick watershed  was comprised
of primarily clustered residential developments, roads,  and open  space (Table
10-3).  Lead and zinc accumulated moderately in the basin surface soil of  this
site (Figures 10-30 through 10-37).   Uith a watershed dominated by roads and a

                                  10-119

-------
parking lot that was heavily used by large trucks, the Bulk Mail  site  had the
greatest accumulations of Cu, Cd, and Zn of any study site and zinc was  found in
the greatest concentrations of any of the study metals (Table 10-3, Figurs  10-38
through 10-43).  The KMart basin watershed was mainly the KMart shopping center
parking lot (Table 10-3).  In the surface soils of this basin, the largest  Pb
concentration of any detention basin site was found while zinc was the second
most abundant metal measured at the site (Figures 10-48, 10-49, 10-52  and
10-53).
    Although the trace metal concentrations were much larger at the KMart site,
the general patterns of trace metal accumulation of the KMart and Stedwick  basin
were similar.   In each case, Pb was the major metal, with an important Zn com-
ponent.  Cadmium, while present in low concentrations, had increased  signifi-
cantly relative to background levels.  Copper either did not show signs  of  accu-
mulation or had only small increases compared to background levels.
    The common  factor for the two sites was the automobile.  For the  Washington,
D.C. area, Helsel ^t_£l_.  (10-10) noted that Pb and Zn were the main trace metal
contaminants in urban runoff and that Pb and Zn concentrations in stormwater
runoff were positively correlated with the traffic volumes and the percent
impervious cover of monitored catchments.  Even though the Stedwick site was a
year older than the KMart site, the higher metal concentrations observed at the
KMart site were hardly surprising because it had a much greater traffic  volume
and greater impervious surface area than the Stedwick site.  The similar
ordering of trace metal concentrations at the two sites is evidence that the
trace metal sources at the two sites were the same, i.e., automobiles.  Rubber
worn from tires was probably a major source of both Zn and Pb, while  motor  oil
added additional Zn, and  gasoline combustion products contributed the largest
portion of the  Pb  (10-11).
                                  10-120

-------
     The  trace metal accumulation pattern for the Bulk Mail basin was unlike the
 other  two  study  basins.  Zinc was the dominant trace metal, rather than Pb, and
 Cd  and Cu  were observed to have much larger concentrations than at any other
 site examined during the study.
     The  trace metal sources at the Bulk Mail basin must have been at least par-
 tially,  different  in nature, from those at the other two detention basin sites.
 During the  field sampling, a distinct petroleum product odor was present in the
 basin.   In  places, the iridescent color patterns of some floating petroleum pro-
 duct were  visible  on the standing water in the basin's marshy areas.  In addi-
 tion to  the normal automobile products more typical of roads and commercial
 parking  lots, the  Bulk Mail basin was probably receiving large loads of petro-
 leum material from crankcase oil drippings, oil spills, and fuel oil spills.
 Crankcase  oil has  an especially large Zn content and could easily be responsible
 for  the  elevated Zn concentrations in the basin surface soil (10-11).  Lead may
 have come  from the normal sources of gasoline exhaust products and rubber.
 Identification of  potential Cd and Cu sources is more difficult.  Antifreeze is
 one  of the  automobile-related substances that has a very important Cu component
 (10-11).   The information available concerning Cd is too incomplete to allow
 speculation.
     Basin topography was an important factor with regard to the spatial  variabi-
 lity of  trace metals.  At the Stedwick site, the accumulation patterns were
 clear, the  greatest metal concentrations occurred where the water backed up most
 frequently, that is, near the basin outlet and in depressions and overlfow areas
 along the concrete channel  (Figures 10-31, 10-33 and 10-37).  For most of the
 life of  both the Stedwick and Bulk Mail  detention basins, the primary function
 of the structures was runoff quantity control, rather than control of water
quality.  The fairly recent change of the outlet structures to allow longer
                                 10-121

-------
detention times at  the sites  probably has altered the trace metal  patterns  and
increased the  rate  of trace metal enrichment in the basin.  At the KMart site,
trace metal concentrations were greatest near the inlet, near the outlet of the
structure, and in depressions in the middle of the basin.  Also, the steep  side
slopes showed  signs  of trace  metal enrichment from the impoundment of runoff
from large precipitation events (Figures 10-47, 10-49, 10-51, and 10-53).  At
the Bulk Mail  site,  the outlet of the basin was not a zone of accumulation  but,
instead, the area of large trace metal concentrations were in the midpart of the
basin.  Runoff did  not seem to have backed up frequently at the basin outlet,
but had dissipated  primarily  in the interior of the basin.

Results - Depth Investigations
    The results of  the depth  studies demonstrated that accumulation of the  study
trace metals was limited primarily to the surface soil sampling zone for all BMP
sites.  Any additional accumulation was almost always limited to the 5-15 cm
depth sampling interval.  Researchers working with the application of metals in
the form of sewage  sludge have reached similar conclusions (10-12, 10-13,
10-14).  Also, the  results are compatible with the research findings of
Nightingale (10^15).  He found that large concentrations of In, Pb, and Cu  were
limited to the surface 5 cm of soil in California stormwater detention basins
and that background  levels were reached by the 15-30 cm soil  depth interval.
    The one instance of trace metal movement below the 15 cm interval at the
swale drain sites was for Cd  at the Fairidge site (Table 10-15, Figure 10-55).
The downward movement of Cd is not surprising.  Of the study trace metals,  Cd
and Zn are normally  the most  mobile in soil environments.  Since the mobility  of
Zn and Cd are  roughly equivalent, it was surprising to see the movement of  Cd
without strong evidence of Zn leaching.  Especially since the surface con-
                                  10-122

-------
 centrations for Zn were greater than those of Cd.  However,  the Cd concentration
 increases were small.
    The conditions at the Bulk Mail site seemly should have  been very conducive
 to the downward migration of trace metals.  Based on the surface soil study,  if
 any of the study sites were going to have leaching problems, Bulk Mail  should
 have been the one.  The concentrations of Cd, Cu and especially Zn were very
 high in the surface soil and a large part of the basin was submerged for long
 periods of time, a situation conducive to the production of  organic compounds
 that can form soluble complexes with trace metals.  Organic  pollutants, in the
 form of petroleum products were also present and could have  potentially
 increased the metal solubility as well.  Further, the soil profile was  very
 sandy 25 cm below the soil surface or deeper.
    In spite of all the conditions, serious leaching was not a problem.  There
was no significant statistical evidence of the downward movement of Cd, while Cu
 and Pb concentration differences were small or did not exist below 15 cm.   Zinc,
 had hugh surface concentrations but, by the 30-60 cm sampling interval  the con-
 centrations were no more than 10 or 11 ppm greater in the basin soil  than  in  the
control soil (Table 10-21).
    Several mechanisms were in operation that prevented the  large-scale downward
movement of trace metals.  First, the organic load of the urban runoff  was pro-
bably not great enough to create the anaerobic conditions necessary for acce-
lerated biochemical production in the basin soils, even with long periods  of
submersion.  Also, the high clay content surface soil  layer  prevented rapid
infiltration to the sandy soil beneath.  In fact, marsh areas were typically
underlain by a very clayey layer and below the clay was a region of unsaturated
sandy sediments with lower clay contents.  The slow downward movement of water
combined with large CEC values, organic matter, and the clay content  of the sur-

                                 10-123

-------
face soils probably prevented the leaching of trace metals.
    If during the construction of the basin the soil  had been  excavated deep
enough to expose the underlying sandy sediments, the rate of downward movement
of trace metals in the soil profile probably would have been much greater.  The
soil infiltration rate would have been greatly increased, thereby eliminating
the marshy areas and decreasing the quanitity of runoff leaving the  basin.  If
the sandy sediments were at the surface, the basin could handle larger volumes
of runoff and eliminate most surface runoff, but there would be a much greater
likelihood of the trace metals exhausting the soils sorption capacity and conta-
minating the ground water.

Summary
    The results of this phase of the study seemed to indicate  that the use of
grassed swale drains and detention basins to control  urban stormwater runoff has
few harmful effects to soil with respect to the trace metals Cd, Cu, Zn and Pb.
The field investigations revealed little evidence to show that these metals
accumulated in swale drains due to contributions from urban  runoff.  The metals,
especially Pb and Zn, were found to accumulate in the surface  soils  of the
basins, but if any downward movement of these metals occurred, it was very
small.  This finding is not surprising in view of the fact that the  exchangeable
fractions of these metals for soils and incoming stormwater  solids were small.
    The conclusion that the accumulations of trace metals in the detention basin
soils were not harmful is certainly a relative judgement.  For the BMP sites,
several factors must be considered.  As mentioned above, for the time and con-
ditions of the current study, leaching to ground water did not appear to be a
problem.  Also, the land used for the study BMP's, and most  other stormwater
control structures, were not in prime agricultural areas, but-in urban environ-
                                 10-124

-------
merits.  Food is not produced from these areas, so there is little food chain
hazard associated with the trace metal accumulations.  The primary concern with
regard to the trace metal accumulations may be the additional  increase of trace
metals in the urban environment as a whole.  Daily trace metal  insult to humans
may have chronic effects that have yet to be defined.  This potential  problem is
not restricted to storm water detention basins, but encompasses the entire urban
area.
    The findings of this research project relate to specific areas in the
Washington, D.C. region.  The soils of the study sites were generally fine tex-
tured and appeared to have relatively low infiltration rates.   The removal of
trace metals from urban runoff at these sites was primarily a  surface phenome-
non.  In swale drains, particulate metals may have been removed as the runoff
flowed across the sideslopes of the swales.  In addition, a large part of the
total stormwater flow probably moved the downslope swale drains rather than
infiltrating into the soil profile.  At the detention basins,  stormwater was
generally impounded for short periods of time, but most of the  water gradually
escaped through the basin outlet instead of infiltrating into  the soil profile.
The primary removal mechanism for metals at the basin site was  probably
settling.  Other BMP structures with different soils may have  very different
trace metal  vertical and horizontal distribution patterns.  For example, coarse
textured soils would allow the majority of the runoff in BMP structures to move
downward in the soil profile, rather than moving across the soil  surface.
                                 10-125

-------
                                   References
10-1     Bragan, R. J.,  "Memorandum to Working Group for Selection of National
         Urban Runoff BMP Monitoring Sites," Council of Governments,
         Washington, D.C. (1980).

10-2     Lietzke, D. A., Guide to Soil Taxonomy and Key to Virginia Soils,
         Piedmont Division, Virginia Tech Extension Division Publication
         MA-218, Blacksburg, 95 p. (1978).

10-3     Kaster, D. L. and Porter, H. P., SgiIs of Prince William County
         (associated maps), Prince William County Virginia, Virginia Tech
         Agronomy Department, and U.S.D.A. Soil Conservation Service,
         Blacksburg (undated).

in /I     n,4.,-~.,~i ^--,---,4.4— c-4i c	,—  iir-l i J—4.J- c.-J— ii nffi~i,-\
J.U-T     iia v. i 
-------
                  11.  Sedimentation and Particle Size Association Studies

 Introduction
     It was the objective of this sub-study to examine the degree of pollutant
 removal attainable by gravity sedimentation of stormwater derived from highly
 impervious areas.  A laboratory-scale settling column was used to simulate a
 full-scale basin.  Stormwater samples were collected from three commercial
 (shopping center) catchments and used in a series of studies to determine pollu-
 tant  removals of a variety of constituents of water quality significance as well
 as of various particle sizes in suspension.

 Methods
    The commercial sites selected for study were all  located near the Occoquan
Watershed Monitoring Laboratory.  This was a requirement in selecting the sites
because of the need to minimize travel time for sample collection.  Because of
the large volumes of sample required for settling column analyses, it was not
practical to retrieve them with the automated equipment utilized in the BMP eva-
luations, nor was it possible to collect flow-weighted composites.  In summary,
then, the sites selected for this sub-study were not  all NURP BMP sites, and the
samples retrieved were manually-collected grabs.
Sampling Sites.  The three commercial areas chosen for sampling locations were
Fair Oaks Mall in Fairfax, Virginia, and Manassas Mall and Manassas Shopping
Center in Manassas, Virginia.  These sites were selected because of their large
impermeable surface areas.  They were also typical of locations in urban regions
where detention/retention basins are used to control  runoff.
    Fair Oaks Mall is a relatively new covered shopping mall.  Samples were
collected from a 60 inch culvert that drains directly into a  retention pond
                                 11-1

-------
currently in use.  The pond discharges into Difficult Run,  which flows  into the
Potomac River.
    At the Manassas Mall site, samples were taken from a 42 inch storm  sewer
that receives drainage from a covered shopping mall.  The storm sewer system
discharges to a tributary of Bull Run, which flows into the Occoquan Reservoir.
    The final site involved sample collection from a 42 inch culvert under
Portner Avenue in Manassas.  This culvert collects runoff from the  Manassas
Shopping Center, which is of the strip commercial type, and discharges  into a
concrete channel.  The channel eventually flows into Bull Run, which discharges
into the Occoquan Reservoir.
    Parking and road areas at Manassas Mall and Fair Oaks Mall are  cleaned
daily.  Manassas Shopping Center is cleaned five days a week.  Cleaning prac-
tices at all three sites involve vacuum trucks and sweeping by hand.  Table 11-1
lists the sampling sites, their characteristics, and the dates on which samples
were collected.

Sample Collection.  Stormwater was collected by retrieving grab samples from the
storm drainage systems during a runoff event.  Five 5V2-9«>llon Polyethylene car-
boys were used for collection.  The samples were then transported to the
Occoquan Watershed Monitoring Laboratory in Manassas, Virginia.
    At the laboratory, 4 liters (1.06 gallons) from each of the five carboys
were placed in a sixth carboy to obtain composite samples.   Because of  the
variations in pollutant concentrations with time and flow,  this was done to
minimize any differences in pollutant concentrations between the carboys.
Composited samples were then placed in four Plexiglass columns.  The columns
were five feet deep, six inches in diameters, and had quarter inch  thick walls.
Each column contained approximately 20 liters (5.28 gallons) of sample.  Three
                                  11-2

-------
                    Table 11-1.   Sampling Sites and Sampling Dates
                    Drainage Area    Collection     aCleaning   Sampling   Experiment
Site                    Acres           Site        Frequency     Date          No.


Fair Oaks Mall           54.66       60in. Culvert     Daily     6/20/81         3
                                                                7/4/81           1
                                                                10/23/81        4

Manassass Mall           23.0        42in. Culvert     Daily     7/5/81           2
                                                                7/26/81         5
                                                                8/11/81         6

Manassas Shopping
   Center               30.0        42in. Culvert   5 days/wk.  9/15/81         7


aVacuum trucks  plus sweeping by hand.

-------
ports on each column were used to withdraw sample at one foot  intervals,  and at
designated times.  A schematic of the column design is shown  in  Figure  11-1.
    The first storm sampled, which was on June 20 from Fair Oaks Mall,  was  used
as a preliminary sample.  This was treated differently from all  others  in that
only one column was used and only solids, nutrients, and heavy metals deter-
minations were made.  Sampling depths were at one, two, and three feet.
Sampling times were zero, two, six, and twenty-four hours.   The  preliminary
sample was taken to prepare for subsequent analytical  procedures and sampling
techniques.
    After filling the columns, samples were withdrawn  at intervals of either
one, two, and three feet consecutive depths or one, two and four feet.  The
sampling began immediately following sample addition and after two,  six,  twelve,
twenty-four, and forty-eight hours.  Samples were collected at the one  foot
depth at time zero from each column to determine if any major  variations  existed
in pollutant concentrations between the columns.  This comparison was performed
for five storms.

Sample Analysis.  Each sample was analyzed for total suspended solids,  volatile
suspended solids, particle size distribution, lead, zinc, copper, nckel,  chro-
mium, cadmium, nitrate and nitrite, total and soluble  Kjeldahl nitrogen,  ammo-
nia, total  and soluble phosphorus, and ortho-phosphate.  Total and fecal  coli-
form bacteria and 5-day biochemical oxygen demand were also examined, but with
less frequency,  at zero, two, and twenty-four hours.  Chemical oxygen demand
time intervals were at zero, two, twenty-four, forty-eight  hours.  Total  and
soluble organic  carbon determinations were made at zero, two,  twelve, twenty-
four, and forty-eight hours.  All water quality parameters  were  determined  by
the methods of analysis described previously in Chapter 5.  All  particle  size
                                 11-4

-------
r
2'
       Ports
      2'
      L
          ffi
                  •I.D. '
                                  8'
                   12"
FIG.  11-1.   LABORATORY  SETTLING COLUMN  (41)
               11-5

-------
distribution determinations were made using a HIAC Particle Size Analyzer Model
PC-320  (11-2).

Results
The pollutant concentrations in the seven samples varied widely.  For example,
the initial TSS concentrations ranged from 15 to 721 mg/L, and the initial  COD
concentration range was even greater, from 6.8 to 908 mg/L.  By contrast, the
nickel, chrofliiiiiTi and Cadmium concentrations were always less than the 20 U9/'1-
detection limit of the instrument used.  In addition, only one sample had a
copper  concentration greater than the 20 ug/L detection limit, and it decreased
below the limit after only two hours of settling.  The initial concentrations of
the more significant parameters are tabulated in Table 11-2.

Solids.  The storms sampled were numbered according to the initial TSS con-
centration because most of the pollutants removed by sedimentation will  be
related to the particulate matter in some way.  These numbers are cross-
referenced with the sampling sites and dates in Table 11-1.  A summary of TSS
removal by sedimentation for all of the experiments is given in Table 11-3.  The
concentrations observed at three difference depths were averaged for each
sampling time to obtain the data in this table.  The results show that TSS remo-
val was 80% or greater for all tests.  They also show that after 6 hours of
settling the highest TSS concentration observed was 40 mg/L, with an average of
25 mg/L, even though there was a very large variation in the initial con-
centrations.  After 24 hours, all  TSS concentrations were less than 20 mg/L,
which would be equal  in quality to the flows discharged by well-operated secon-
dary sewage treatment plants.
    Graphical  analyses for the performance of the columns in removing selected
                                 11-6

-------
     TABLE 11-2.  Initial  Pollutant Concentrations in Urban  Runoff Samples


EXPERIMENT                   Pollutant Concentrations, mg/L	_^___^	
    NO.     TSlCUDTOTBODs   TN   NH3-N  (N02+N03+N)    TP   TSP   PbZfT
    1        15  6.8   22   —   2.32  0.20       0.06     0.83  0.72  ND   ND

    2        35   82   --   --   1.57  0.07       2.26     G.19  0.06  ND   .368

    3        38   	   5.47  1.92       2.14     0.14  0.06  ND   .302

    4       100   87   23   30   3.11  0.38       0.76     0.45  0.24  .27  .112

    5       155   50    9   —   2.03  0.07       0.77     0.25  0.10  .44  .160

    6       215  138   17   35   3.00  0.28       0.74     0.48  0.21   .37  .172

    7       721  908  322  210   4.44  0.19       0.04     0.82  0.30  .913 .692

No detectable (ND) concentration of nickel, chromium and cadmium,  and only one
(No. 7) had detectable copper (75 g/1).   No. 4 and No. 5 had  24 million and
240,000 total  coliforms per 100 ml.,  respectively.
                                11-7

-------
TABLE 11-3.  Settleability of Suspended Solids in Urban Runoff
Experiment
No.
i
2
3
4
5
6
7
Total
Suspended
Solids
Concentrati
Sedimentation Time,
Initial
1 C
J. J
35
38
100
155
215
721
2
1 A
1*+
20
24
45
21
67
103
6
14
18.5
16
34
17
40
34
12
13
18
--
30
12
26
30
on, mg/L
hours
24
11
14.5
6
19
9
17
18


48
2
7
-
7
7
9
18
Maximum
%
Removal
87
80
84
93
95
96
98
                       11-8

-------
constituents were conducted using methods common to the study  of flocculant
suspensions  (11-1).
    The settling of the suspended solids with water column depth and time was
analyzed using isoconcentration lines.  Flocculant particles will  describe a
curved isoconcentration line whereas discrete particles will produce a  straight
isoconcentration line.  The resulting curves, shown in Figures 11-2 through
11-8, indicate that the TSS in urban runoff behave like a mixture of discrete
and flocculant solids, with the discrete particles settling out rapidly while
the flocculant solids sometimes did not settle well until the  second day.  The
degree of flocculation that occurred did not seem to correlate with initial TSS
concentrations.  Nonetheless, the time required to achieve a specific % removal
did correlate well with the initial TSS concentration, as the  data in Figure
11-9 show.  The results indicate that urban runoff TSS can be  adequately ana-
lyzed using flocculant settling techniques.  It was also generally observed that
removal percentages other than 00% were closely related to initial TSS  con-
centration.  Figure 11-10 shows a summary of the data at the six hour mark for
all seven experiments.  This increase in removal with increasing initial  TSS
concentrations is consistent with flocculant settling phenomena.
    The volatile fraction (% VSS) of the TSS varied from 23 to 60% initially.
During settling the inorganic fraction usually settled faster  than the  volatile
(organic) fraction resulting in an increasing % VSS in the solids still
suspended in the water column.  These increases ranged from 9  to 36.5%,  but with
no correlation with initial  TSS.  During two of the experiments, Numbers 2 and
4, the VSS settled faster than the inorganic suspended solids  and this  was par-
ticularly pronounced for Experiment No. 4.

Organic Matter.  The removal of COD and TOC that occurred is summarized  in Table
                                 11-9

-------
 - 14    15      13
 - 15    14      13
                                             Initial TSS=15 mg/L
 11
12
 - 14    12       12
11
                        TSS CONCENTRATION, mg/L
                                i
026        12
24
                         SETTLING TIME (HOURS)
48
FIG.  11-2.  CHANGES IN  SUSPENDED  SOLIDS CONCENTRATIONS
                 WITH SETTLING TIME FOR EXPERIMENT 1 .
                        11-10

-------
r 2
a.
UJ
o
   3  -
   4  -
                            TSS CONCENTRATION. mg/L
    02    6
     FIG. 11-3.
  12              24


           SETTLING TIME (HOURS)
CHANGES  IN SUSPENDED SOLIDS CONCENTRATIONS WITH

         SETTLING TIME  FOR EXPERIMENT 2.
                             11-11

-------
3  3
o


oe
LU
»—
 - 24  16
                                             Initial TSS=>39 mg/L
                        TSS CONCENTRATION, mg/L
02     6
FIG.  11-4.
                    12              24
                         SETTLING TIME (HOURS)
                                                               48
                  CHANGES  IN SUSPENDED SOLIDS  CONCENTRATION MITH

                           SETTLING  TIME FOR  EXPERIMENT 3.
                          11-12

-------
rr 2
- 44    33      29
s
cc.
                             TSS CONCENTRATION, mq/L
     - 49   38      33
026        12
                                   24
                              SETTLING TIME (HOURS)
                                                             48
     FIG.  11-5.   CHANGES IN SUSPENDED SOLIDS CONCENTRATIONS WITH
                          SETTLING TIME FOR  EXPERIMENT 4.
                            11-13

-------
   1  -
cr 2
   3  -
3
oe
- 19.3  14.7  •   13.3
                                                 Initial TSS=155 mg/L
                               TSS CONCENTRATION, rag/L
                                                             6.7
     026       12
                              24

                          SETTLING TIME (HOURS)
48
     FIG. 11-6.   CHANGES  IN SUSPENDED SOLIDS  CONCENTRATIONS WITH
                           SETTLING TIME FOR EXPERIMENT 5.
                              11-14

-------
_ 2
- 62
8
     - 73
       i     i        i
                              TSS CONCENTRATION, mg/L
    026       12
                             24
                               SETTLING TIME (HOURS)
48
     FIG. 11-7.   CHANGES IN SUSPENDED SOLIDS  CONCENTRATIONS WITH
                          SETTLING  TIME FOR EXPERIMENT 6.
                               11-15

-------
     - 105
                  20
                                                              19
-  89   31
                                   18
                                   I
                                                 18
8  3
     - 114   37
  29
                                                             18
                             TSS CONCENTRATION, mg/L
    02    6
     FIG. 11-8.
  12
                              24
                              SAMPLING TIME (HOURS)
48
CHANGES  IN SUSPENDED  SOLIDS CONCENTRATIONS WITH
         SETTLING TIME FOR EXPERIMENT 8.
                             11-16

-------
o
-C
rtj

i
Si
t-

O
    40i-
    30
    20
    10

                100
                          200
600
700
                                300        400        500


                              Initial TSS Concentration, mg/L



FIG.  11-9.  THE EFFECT  OF INITIAL TSS CONCENTRATIONS ON REMOVAL RATEiS
800

-------
                   Sedimentation Time » 6 hours
         100   200    300    400   500
           Initial TSS  Concentration   mg/l
                         600   700
FIG.  11-10.
THE EFFECT OF PARTICLE CONCENTRATION
ON TSS  REMOVAL FROM  URBAN RUNOFF BY
           SEDIMENTATION
               11-18

-------
 11-4.
    COD removal was low for the samples with low TSS concentrations, but was 47%
 or greater, with an average removal of 57%, for the four experiments when the
 initial TSS was 200 mg/L or greater.  TOC % removals were less but generally
 followed this trend except during Experiment No. 6.  This test had a very high
 COD removal but a low TOC removal.  It is possible the initial TOC concentration
 of this sample was inaccurately measured.
    The BODs removal was measured after 2 and 24 hours of settling for Experi-
 ment No. 4, 6 and 7.  The initial concentrations were 30, 35 and 210 mg/L,
 respectively.  The % removals after 2 hours of settling were 57, 23, and 56%,
 respectively, whereas the removals were 60, 63 and 60% after 24 hours of
 sedimentation.
    The removal of organic matter could be characterized fairly consistently by
 % removals during these experiments but the concentrations remaining in the
 water column were quite variable, as were the initial concentrations.

 Phosphorus.  Table 11-5 summarizes the total phosphorus removal data.  The maxi-
 mum % removals varied from 42 to 85% with an average of 56%.  The 24 hour sample
 for Experiment No. 6 was apparently mis-analyzed.  If it is ignored, the results
 show that removals were nearly complete after 24 hours of settling, and that the
 additional removals after 12 hours were relatively small in terms of con-
 centration reductions.  As with the organic matter, the final  concentrations
were very variable, ranging from 0.07 to 0.47 mg/L.

 Nitrogen.  As shown by Table 11-6, total  nitrogen removals during the experi-
ments ranged from 9 to 77% with an average of 32.5%.   Removals were substan-
tially higher for the samples with initial TSS concentrations  of 100 mg/L or
greater, ranging from 29 to 77% with an average of 47%.  The final  con-
                                 11-19

-------
Table 11-4.  Settleability  of  Organic  Matter  in Urban Runoff
EXPERIMENT NUMBER
Settling COD Concentration, mg/L
Time, hrs. 1
Initial 6.8
2 6.7
12
24 4.9
48
Max. %
Removal 28
2
82
72
--
69
47
18
4
87
77
--
66
46
47
5
50
23
—
23
20
60
6
138
77
--
46
47
67
7
908
713
—
455
425
53
TOC Concentration, mg/L
1
22
20.6
--
19.6
—
11
4
23.1
15
14.8
14.1
12.4
46
5
9
6.6
6.6
6.2
4.6
49
6
17
18
16
12
13
29
7
322
311
207
209
203
37
                      11-20

-------
Table 11-5.  Settleability of Total Phosphorus in Urban Runoff
Total Phosphorus Concentration, mg/L
Experiment
No.
1
2
3
4
5
6
7
Maximum
Sedimentation Time, hours %
Initial
0.83
0.19
0.14
0.45
0.25
0.48
0.82
2
0.79
0.16
0.12
0.33
0.12
0.32
0.61
6
0.83
0.13
0.10
0.30
0.11
0.26
0.40
12
0.74
0.13
--
0.33
0.12
0.10
0.30
24
0.54
0.11
0.08
0.28
0.12
0.24
0.24
48
0.47
0.09
—
0.26
0.14
0.07
0.28
Removal
43
53
43
42
56
85
71
                        11-21

-------
Table 11-6.  Settleability of Total Nitrogen in Urban Runoff
Total Nitrogen Concentrati
Experiment
No. Initial
1 2.32
2 4.57
3 5.47
4 3.11
5 2.03
6 3.00
7 4.44
on, mg/L

Maximum
Sedimentation Time, hours %
2
2.27
4.36
5.46
2.25
1.32
2.17
1.72
6
2.27
4.32
5.27
2.20
1.31
1.90
1.25
12
2.20
4.13
--
2.34
1.35
2.01
1.23
24
2.12
3.97
4.84
2.37
1.48
1.70
1.03
48
2.62
3.64
—
2.28
1.29
1.64
1.19
Removal
9
20
12
29
36
45
77
                       11-22

-------
centratlons achieved did appear to be strongly related to the initial  TSS con-
centration because the % removed increased as the initial TSS concentration
increased.  The final nitrogen concentrations were also influenced by  the ini-
tial nitrogen concentrations.  Surprisingly, the two highest initial total
nitrogen concentrations observed were in the two samples that had very low TSS
concentrations.  Removals from those two samples occurred at approximately the
same rate.
    The % removals of TKN were very similar to those of total nitrogen.  Nitrate
removals were generally poor as would be expected because they are highly
soluble and have very little affinity for sorbing on paritculate surfaces.   The
average reduction of nitrate concentrations in the experiments was less than 10%
although Experiment No. 6 achieved a removal of 27%.  Ammonia removals were very
small in terms of concentration and frequently increased during the settling
test.  The largest concentration decrease was 0.12 mg/L whereas the largest
increase was 0.19 mg/L.

Metals.  The removal of zinc was monitored during six of the experiments.  The
results are given in Table 11-7.  As shown, the % removals ranged from 12 to 73%
with an average of 44%.  Average removal for samples with an initial TSS con-
centration of 100 mg/L or greater was 57.5% with three of the four removals in
excess of 50%.  The two samples with the lowest initial TSS concentrations  had
high concentrations of zinc and poor removals were obtained.  In fact, the final
concentrations in those two samples were the highest observed.
    It was possible to monitor lead removal in only four of the experiments, but
the removals obtained were very good.  They ranged from 78 to 94% with an
average of 86% .   Nevertheless, a residual  concentration of 100 pg/L was
observed after 48 hours of settling the sample with the highest concentration.
                                 11-23

-------
Table 11-7.  Settleability of Total Zinc in Urban Runoff
Total Zinc Concentration
Experiment
No.
2
3
4
5
6
7
ug/L

Maximum
Sedimentation Time, hours %
Initial
368
302
112
160
172
692
2
353
260
80
53
155
275
6
350
317
80
45
115
193
12
350
—
68
45
113
195
24
350
242
58
43
135
- 195
48
325
--
55
43
130
200
Removal
12
20
51
73
34
72
                     11-24

-------
The  results are shown in Table 11-8.
Coliforms.  The coliform concentrations were so high that the dilutions selected
did  not yield any usable removal information except for tests No.  4 and 5.   In
Experiment No. 4, the total coliforms were reduced from 24 million per 100  ml  in
24 hours.  A similar reduction was obtained for fecal coliforms with a 24 hour
concentration of 13,000 per 100 ml measured.  In Experiment No. 5, the total
coliforms were reduced from 460,000 to 199,000 per 100 ml in 24 hours, but  no
reduction in fecal coliforms was observed.

Particle Size.  The particle size distribution of all seven of the samples  was
measured and the percent of the particles in each size range is given in Table
11-9.  The results show that an average of 80% of the total  particles were  less
than 25 yg in diameter and 57% had diameters less than 15 urn in diameter.  It  is
of interest to note that 92% of the particles in the most concentrated sample
collected (Experiment No. 7) had diameters less than 25 yg,  the highest percen-
tage observed.
    Estimates were also made of the fraction of total suspended matter surface
area that was present in specific particle size ranges.  This was  done by making
the assumption of spherical shape for all particles, and arriving  at a represen-
tative diameter for each size range based upon the geometric mean:
         Diameter for range = /[largest diameter x smallest  diameter)
The total surface area in each range was then determined by  multiplying the
number of particle counts by the area of a spherical  particle  having the
geometric mean diameter.  Table 11-10 shows the distribution of surface area
amongst the various particle size ranges for the raw  samples.   It  is interesting
to note that 109 square microns is 1,000 square meters, indicating quite a  large
surface area ranges for samples having less than 1 gram per  liter  of suspended

                                 11-25

-------
Table 11-8.  Settleability of Total  Lead in Urban Runoff
Experiment
No.
4
5
6
7

Initial
127
144
370
913
Total
Lead Concentration
, yg/L

Maximum
Sedimentation Time, hours %
2
88
25
122
260
6
62
24
116
130
12
67
21
85
120
24
40
15.5
70
100
48
28
9
59
100
Removal
78
94
84
89
                    11-26

-------
Table 11-9.  Particle Size Distribution of Urban Runoff Suspended Solids
Experiment
No.
1
2
3
4
5
6
7
Average
Particle Diameter, ym
15
64
48
54
52
54
63
65
57
15-25
21
20
23
23
25
22
27
23
25-35
7
11
10
11
12
9
4
9
35-45
3
5
5
6
4
4
2
4.3
45-55
2
4
3
3
2
1
1
2.3
55-65
1
C
w
2
2
1
1
1
1.7
65
2
C.
\j
3
3
2
1
1
2.3
                            11-27

-------
         Table  11-10.   Total  Initial  Surface Area  of Suspended Particles and the Percent of the Total in Each Size Range
ro
CO
Experiment Initial
No.

1

2

3

4

5

6

7
TSS
(mg/L)
15

35

38

100

155

215

721
Initial Total
Surface Area
(microns)^/!.
2.6 x 10/
8
2.3 x 10
7
2.5 x 10
8
5.9 x 10
6
3.0 x 10
5
8.3 x 10
9
2.2 x 10




Initial Percent of Total
5-15
12

1

7

6

9

13

18
15-25
19

7

14

14

20

22

37
25-35
16

10

14

16

22

20

14
35-45
13

9

13

16

12

15

13

Surface
45-55
10

9

11

13

12

9

6

Area in
55-65
8

18

10

10

8

7

4





Ecich Particle Size Range [microns)
65-75
6

8

7

7

5

4

2
75-85
5

10

9

7

4

3

2
85-95
5

8

6

4

3

2

1
95-105
4

9

5

4

3

2

2
105-115
3

9

4

2

2

1

1

-------
matter.  Note that the majority of surface area was found in  particles  of  the 15
to 35 micron size range with the exception of the Experiment  2 sample in which
the most surface ara was associated with particles in the 55  to 65  size range.
This distribution remained approximately the same throughout  the settling  period.
Using the Statistical Analysis System (SAS), Pearson product  moment correlation
coefficients were computed between incremental  reductions in  surface area  and
incremental reductions in other sample pollutants (11-3).  The data from the
seven available samples were grouped according to initial TSS as follows:
                        Low - Experiment 1, 2,  3
                        Moderate - Experiments 4, 5, 6
                        High - Experiment 7
Correlation coefficients were computed for 8 constituents, and are  listed  in
Table 11-11.  As may be seen, in general, the poorest correlations  existed bet-
ween surface area and pollutant removal  for the low TSS group.  Notable excep-
tions in this group were suspended zinc, total  phosphorus, and suspended
phosphorus.
    With the exception of total and suspended zinc, the correlations for the
moderate size storms were all quite high.  For the single large storm,  the
incremental removal  correlations were quite high for all  constituents.   Given
the implied relationship between reductions in surface area and reductions in
pollutant concentrations, it was decided to extend the analysis to  incremental
reductions in surface area in each particle size range.  This was done  to  deter-
mine if there were specific associations between selected pollutants and given
particle size ranges.
    The analysis was undertaken using the stepwise regression capability of SAS
(11-3).  Incremental reductions in surface area in each particle size range were
established as the independent variables.  The stepwise regression  procedure  was

                                 11-29

-------
TABLE 11-11.
RELATIONSHIP BETWEEN THE PERCENT
REDUCTION OF TOTAL SURFACE AREA
AND MATER QUALITY PARAMETERS
Parameter
Total Phosphorus


Suspended
Phosphorus

Total Kjeldahl
Nitrogen

Suspended
Kjeldahl
Nitrogen
Total Lead


Suspended Lead


Total Zinc


Suspended Zinc


TSS
GROUPING
low
moderate
high
low
moderate
high
low
moderate
high
low
moderate
high
low
moderate
high
low
moderate
high
low
moderate
high
low
moderate
high
Correlation
Coefficient
0.68
0.77
0.95
0.64
0.84
0.95
0.18
0.76
0.98
0.12
0.80
0.98
_
0.81
0.98
_
0.86
0.94
0.48
0.32
0.98
0.97
0.46
0.97
n
38
45
16
38
45
16
38
45
16
38
45
16
—
44
15
_
44
15
24
44
15
24
44
15
               11-30

-------
then allowed to select the best one, two, or three independent  variable  model  to
describe reductions in pollutant concentrations.  The sample  data  were also
segregated into low, moderate, and high TSS groupings prior to  conducting  the
stepwise analysis.  The procedure was conducted in such a way as to identify the
highest correlation coefficients for multi-variate regressions  having no more
than three independent variables.  What this means is that the  regression  proce-
dure identified the reductions is TSS in the particle size ranges  that were most
responsible for the observed reductions in pollutant concentrations.
    The results of the stepwise regression procedure are summarized in Table
11-12.  One of the most striking things about the data in the Table is the con-
sistency of the results with respect to particle size for the high TSS storm
(initial TSS=721 mg/L).  For each parameter investigated, correlation coef-
ficients in excess of 0.87 were observed.  Only in one instance (suspended orga-
nic carbon), was a three independent variable model  required, and  even then the
size ranges selected were all less than 45 microns.   In fact, the  data in  Table
11-12 clearly show that, at least in the high TSS storm, the  pollutant asso-
ciations are very strongly skewed towards the small  particles.   In fact, in all
cases except the one cited initially the association was best described  by a
single 10 micron range, all of which were less than  or equal  to 45 y.
    For the low and moderate TSS storms, somewhat poorer correlations were
obtained.  Specifically, in the low TSS storms, no strong relationships  were
observed for TKN, total zinc, suspended zinc, total  phosphorus,  and organic
nitrogen.  For the moderate TSS storms, poor correlations resulted only  for
suspended organic carbon, and total  and suspended zinc.  In all  cases, poor
correlations were produced for oxidized nitrogen forms (nitrite and nitrate) as
these anions do not associate well  with the generally negatively-charged
suspended matter surfaces.
                                 11-31

-------
Table 11-12.  Relationship Between Reductions in Pollutant Concentration  and
                 Surface Area Reductions in Various Particle-Size Ranges
PARAMETER
Suspended Lead
Suspended
Kjeldahl
Nitrogen
Suspended
Organic
Carbon
Total Lead
Total Kjeldahl
Nitrogen
Total Zinc
Suspended Zinc
Total Phosphorus
Total Nitrogen
Nitrites and
Nitrates
Organic Nitrogen
TSS
GROUPING
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
Low
Moderate
High
MULTIPLE
CORRELATION
COEFFICIENT
0.86
0.87
0.86
0.79
0.99
0.33
0.98
0.88
0.99
0.06
0.78
0.99
0.37
0.35
0.99
0.36
0.30
0.96
0.52
0.69
0.97
0.73
0.99
0.25
0.07
0.11
0.88
0.99
PARTICLE SIZE
RANGE
(microns)
65-75, 25-35,35-45
15-25
105-115
105-115
35-45
25-35
15-25, 35-45, 5-16
75-85, 35-45, 55-65
35-45
55-65
105-115, 15-35, 35-45
35-45
45-55, 15-25
105-115, 95-105, 75-85
35-45
105-115, 5-15
105-115
15-25
25-35, 55-65, 65-75
25-35, 35-45, 95-105
25-35
105-115, 15-25, 35-45
35-45
5-15
5-15
55-65
105-115, 25-35, 35-45
35-45
NOTE:  Particle size ranges are shown in order of importance when more  than  one
       range is listed for a coefficient.
                                 11-32

-------
    Using the information provided by the regression analysis,  a  design
particle-size range can be chosen to be used in developing criteria  for  the  most
efficient removal of pollutants.  For example, the reduction  of TKN  in the
sample with an initial TSS concentration of 721 mg/L would depend on the reduc-
tion of particles in the 35 to 45 micron size range.  The design  criterion for
reducing TKN concentrations, therefore, would focus on the removal of particles
35 microns or less.  Using Stokes1 Law, a settling velocity for a particle with
a 35 micron diameter can be determined and then converted to  an overflow rate.
Those particles with settling velocities equal to or greater  than the overflow
rate settling velocity will be removed.  Particles with settling  velocities  less
than the overflow rate will be removed in direct proportion of  their settling
velocity to overflow rate settling velocity ratio.
    Carrying the example further, a particle 35 microns in diameter  would have
an overflow rate settling velocity of 143 gpd/ft2 according to  Stokes1 Law by
assuming a water temperature of 20°C (y = 1.0007; p = 0.998)  and  a specific  gra-
vity of 1.10.  This particular specific gravity was chosen to represent  a small
diameter particle.  In Figure 11-11, a wide range of specific gravity values were
plotted against the corresponding overlfow rates from Stokes' Law using  a par-
ticle diameter of 50 microns.  Large specific gravity values  would represent
heavy particles such as sands, and the lower end of the scale would  represent
smaller particles such as silts.  Therefore, a low specific gravity  was  chosen
for the 35 micron particle used.  An overflow rate settling velocity of  143
gpd/ft2 would correspond to a column depth and time interval  of four-feet and
5.6 hours.  These data could then be used with settling column  data  for  the
stormwater in question to arrive at adequate detention times  for  the removals
required.
                                 11-33

-------
•o
CL
Ol

-------
                                   References
11-1.    Eckenfelder,  W.  W.  and Ford,  D.  L.,  Water Pollution  Control,
         Jenkins Book  Publishing Company,  Austin and New York,  pp.  59-63
         (1970).

11-2.    Knocke, W.  R.,  Personal  Communication,  Department  of Civil
         Engineering,  Virginia Polytechnic Institute and State  University,
         Blacksburg, Virginia, 1981.

11-3.    SAS Institute Incorporated,  "SAS  User's Guide 1979 Edition."
         Raleigh, North  Carolina (1979).
                                 11-35

-------
                       12.  Bioavailability of Nutrients

 General
     It was the purpose of this sub-study to develop data for the examination of
 nutrient availability in stormwater runoff from the urban catchments studied.
 In addition, it was desired to examine the effects on nutrient availability of
 some of the inflow-outflow BMP structures monitored.
    This was established as a sub-study goal because of the relative abundance
 of information on nutrient transport in urban stormwaters, and the paucity of
 information on the availability of those nutrients to biological  systems.   Such
 information is critical, because it is, after all, the nutrient availability
 that classifies nitrogen or phosphorus as pollutants, not their respective
 concentrations.

 Methods
    Samples were obtained from splits of the flow-weighted composites collected
 at the BMP monitoring stations described in Chapters 3 and 4.  Selection of
 storms for assay was based, in part, on having sufficient composite volume to
 conduct the full range of NURP analyses and to perform the assay.   Because of
 the limited scope of this sub-study, no attempt was made to assay  the availabi-
 lity of sediment-bound nutrient forms.  The sample aliquots selected for the
 algal assays, therefore, passed through an acid-washed glass fiber filter.  A
 portion was reserved for the algal  assays, and an aliquot set aside for nutrient
 analyses as described in Chapter 5.
    Algal  growth potentials were measured on collected stormwater  samples  using
a modification of the Algal Assay Bottle Test recommended by the USEPA National
 Eutrophication Research Program (12-1).  The green alga Selenastrum capricor-
                                 12-1

-------
nutum was selected as the test species because of its unicellular  nature, inabi-
lity to fix nitrogen, and ease of culture.  In addition,  the nutritional
requirements and growth dynamics of the organism are well-documented  in the
literature (12-2).
    Test containers used were 125 milliliter (ml), acid-washed  Erlenmeyer
flasks, and were stoppered with sterile cotton plugs to permit  gas exchange and
minimize the possibility of contamination.  The recommended 40  ml. of sample was
used to insure an adequate surface to volume ratio (12-1).   Stock  cultures of
Selenastrum capricornutum were maintained in synthetic medium,  and the suspen-
sions were transferred on a weekly basis.  Because it was desirable to process
as many storms as possible, it was necessary to shorten the length of the assay.
This was accomplished by increasing the inoculum concentration  from 1,000
cells/ml to approximately 1.0 mg/1 dry weight,  this permitted  the test cultures
to reach their maximum growth in 4 to 7 days.
    The asssay scheme consisted of two undiluted replicate flasks  serving as
controls, a 1.0 mg/1 N03-N addition and a 0.5 mg/1 P04-P  addition. While this
phosphorus addition is quite large, it was necessary because of the high
phosphorus concentrations found in the runoff samples.  It  was  felt that if
small additions were made, growth-limitation by phosphorus  would be masked in
certain cases by normal variations in flask concentration.
    Samples were incubated under 400 foot-candles of continuous fluorescent
light as a temperature of 24 + 0.5° C.  Test flasks were  swirled daily to insure
maximum availability of carbon dioxide for growth.
    Measurement of biomass was conducted by using a Photovolt photofluorimeter
Model 520 modified for use in measuring fluorescence of chlorophyll a_.
    Conversion of relative photometric units to biomass was achieved  by use of a
                                 12-2

-------
                    Table 12-1.  Algal Assays for MWCOG NURP
STATION  STATION NAME
   No.
                              LAND USE
BMP TYPE
YEAR   STORM NO.
51UR03   Burke Pond-In   Single Family Res.   Wet Pond Inflow   1981
51UR04   Burke Pond-Out  Single Family Res.   Wet Pond Outflow  1981
51UR06   Stratton Woods  Single Family Res.

51UR09   Fairidge        Single Family Res.

51UR10   Stedwick-In     Townhouse/Apts.


51UR11   Stedwick-Out    Townhouse/Apts.
                                              Grassed Swales    1981

                                              Grassed Swales    1981

                                              Dry Pond Inflow   1981


                                              Dry Pond Outflow  1981
51UR15   Westleigh-In    Single Family Res.   Wet Pond Inflow   1981
51UR16   Westleigh-Out   Single Family Res.   Wet Pond Outflow  1981
51UR17   Burke Village   Shopping Center
             Ctr.
51UR18   Dafief          Single Family Res.

51UR19   Rockville Ctr.  Office Building

51UR21   Fair Oaks-Out   Shopping Center
                                              Infiltration
                                                  Pits
               1981
                                              Grassed Swales    1981

                                              Pourous Paving    1981

                                              Wet Pond Outflow  1981
         242.0
         258.0

         242.0
         258.0

         258.0

         335.0

         258.0
         299.0

         258.0
         299.0
         335.0

         242.0
         298.0

         242.0
         298.0

         242.0
         299.0
         335.0

         299.1

         296.0

         299.0
                                 12-3

-------
Table 12-2.  Algal Assay Results - MWCOG NURP


BMP TYPE

Wet Ponds







Dry Pond



Infiltra-
tion Pit

Grassed
Swale

Pourous
Paving


STATION
No.
UR03/04



no /c /i a
«.>/ -/ .kv



UR/0/11



UR17


UR06
UR09
UR18
UR19



IN OR OUT

In
Out
In
Out
In
Out
In
Out
In
Out
In
Out










ACTUAL

27.9
1.1
49.3
7.4
IScl
1.2
16.2
21.4
26.5
24.2
8.1
7.0
27.4
12.3
63.6
82.7
44.5
20.7
0.2

Yi P! d ma/1 Drv
"• i i c i m *"y/ i u* j
THEORETICAL-N

29.6
5.3
43.3
9.1
16,3
10.3
22.0
11.8
23.9
25.5
8.7
8.0
23.6
14.4
60.0
82.5
46.4
25.5
33.4

Upiaht 	

THEORETICAL-P

51.6
4.3
98.9
12.9
60.2
4.3
81.7
25.8
94.6
103
55.9
60.2
47.3
51.5
60.2
331
81.7
154.8
0.0



LIMITING
NUTRIENT
N
P
N
N&P
N
P
N
N&P
N
N
N
N
N
N
N&P
N
N
N
P

                    12-4

-------
 spike exceeded the control flasks by 20% or more, the growth-limiting nutrient
 prediction was considered to be confirmed.

 Results
    A total of thirty algal assays were conducted in the course of the sub-
 study.  Of that number, nine were discarded because the standing crop did not
 approach within 20 percent of the theoretical  yield based on the limiting
 nutrient coiiiputation.  The successful assays are summarized by station and storm
 number in Table 12-1.
    Table 12-2 also summarizes the assay results, including maximum standing
 crop attained and an assessment of limiting nutrient.  Miller, et al. (12-3),
 proposed the following productivity classes for the maximum yield of Selenastrum
 capricornutum:
              Low = 0.00 to 0.10 mg/1 dry weight
              Moderate = 0.11 to 0.80 mg/1 dry weight
              Moderately high = 0.81 to 6.00 mg/1 dry weight
              High = greater than 6.10 mg/1 dry weight
    Using the above as a guide, it may be seen that all the pond inflows and the
 outflows from all other BMP sites except the porous paving site fell into the
 high productivity classification.  In fact, of the sites mentioned as being in
 the high productivity class, the lowest exceeded the threshold by a factor
 of 1.3 and the highest by 13.5.  It is clear from these results that the
 nutrient burden of the urban stormwaters studied (even when only the soluble
 forms remain) is sufficient to stimulate the growth of large quantities of algal
mass.  This observation is fully consistent with the conclusions of Grizzard, et al
 (12-4) from an earlier study in the region.
                                 12-5

-------
Wet Ponds.  While the wet pond inflows exhibited consistently  high productivity
for the storms sampled  (27.4 mg/L dry weight, mean),  the outflows showed  an
average reduction of almost 70 percent.  Also, in two cases, the  level  of pro-
ductivity was reduced from high to moderately high.  In addition, in  each case,
the nutrient limitation shifted between the inflow and outflow samples.   In all
four inflow samples, nitrogen was found to be the limiting nutrient.   In  two of
the outflow samples nutrient limitation shifted to phosphorus, and in the
remaining two, to a combination of phosphorus and nitrogen. What this  implies
is a shift in the algal-available phosphorus to nitrogen ratio.  If this  ratio
is greater than 0.088 then nitrogen limitation may be expected, and phosphorus
limitation if the reverse is true.  The phenomenon witnessed in the wet ponds
indicates a more efficient removal mechanism at work  with respect to  algal -
available phosphorus.  This is a positive indication, because  of  the  general
existence of phosphorus limited conditions in most receiving waters.   For that
reason, the shift to a phosphorus-limited condition is desirable.  The  removals
of N and P shown in the BMP performance data also generally parallel  the  algal
growth studies.

Dry Pond.  The two assays conducted at the Stedwick site were  not very
encouraging.  The two storms sampled encompassed a wide range  of  algal  growth
potential, exhibiting inflow standing crops of 26.5 and 8.1 mg/L  dry  weight.
Over this wide range of inflow stimulation potential, however, the reduction
efficiencies were only 8.1 and 13.6 percent, respectively. This  poor perfor-
mance with respect to removal of algal-available nutrients is  mirrored  in the
BMP efficiency data.

Infiltration Pit.  Although no control data are available for  the infiltration
                                 12-6

-------
standard curve produced from the stock suspensions,  using concentrations
increased by centrifugation and decreased by serial  dilution.   The  standard
curve was checked periodically for the duration of the study and was  found to be
an accurate estimate of biomass.
    Samples were removed and assayed on a daily basis until maximum standing
crop was attained, and sample aliquots used for analysis were  returned  to the
test flasks,  the sample cuvette was rinsed three times with double-distilled
water after each sample, and was acid-washed before  the initial reading each
day.  In between samples, the meter was zeroed using double-distilled water as a
reference solution.  At the conclusion of the assay, three drops of 1%  phe-
nolphthalein solution were added to the test flasks  to judge whether  or not car-
                     \
bon dioxide was in limiting supply.
    According to results by Shiroyama, et. al. (12-2), the maximum  growth
response of Selenastrum capricornutum can be predicted from nitrogen  and
phosphorus data in the absence of other growth-limiting nutrients and toxicity.
their research shows that waters containing or exceeding 0.010 mg/1
orthophosphorus can be expected to produce 0.43 mg Selenastrum capricornutum dry
weight per 0.001 mg P/l.  For nitrogen, each 0.001 mg/1 of total soluble inorga-
nic nitrogen will yield 0.038 mg dry weight of the alga per liter,  the authors
state that actual yields falling within + 20% of the predicted yields are con-
sidered statistically significant.
    For the purposes of this sub-study, the predicted maximum  yield was calcu-
lated from the orthophosphorus and total  soluble inorganic nitrogen data, and
the lower figure was considered to be the maximum theoretical  yield.  Either
nitrogen or phosphorus was then predicted to be the  growth-limiting nutrient
based on the lowest figure for the maximum yield.  If the respective  nutrient
                                 12-7

-------
pit BMP, it is apparent that the algal growth potential of the outflows  was
quite high for the storms sampled.  It is also clear that, from a concentration
standpoint, the nutrient supplies were typical for the site.   This finding would
cast some doubt on the efficacy  of infiltration pits to effectively  function  as
stormwater quality BMP's beyond their ability to redirect portions of the flow
into the groundwater.
Grassed Swales.  As a group, the grassed swales produced the  single highest  AGP
of any sample in the sub-study.  Even discounting that observation, the
remaining yields were all in the high productivity class.  As in the  section
above, this must cast some doubt on the practice as an effective BMP  outside of
its ability to reduce erosion and offsite flow volumes.  Uptake of algal-
available nutrients by the grassed waterways appeared to be slight.

Porous Paving.  It is unfortunate that more assays were not available for the
porous paving site, because the one that was performed produced the single
lowest yield of the entire sub-study - well into the moderate productivity
range.  Examination of the BMP data set for the site, however, showed the con-
centration of phosphorus (the limiting nutrient) for the assay performed to  be
typical for the period of record,  this is an encouraging result, and projects
many questions about nutrient removal mechanisms at work on the site.
                                  12-8

-------
                                   References
12-1.    U. S. Environmental  Protection Agency,  Algal  Assay  Procedure:   Bottle
         Test, USEPA,  Corvallis,  Oregon, (1971).

12-2.    T. Shiroyama, W.  E.  Miller,  and J.  C.  Greene, Proceedings:
         Biostimulation and Nutrient  Assessment  Workshop,  EPA  660/3-75-034,
         (1975).

12.3.    W. E. Miller, T.  E.  Maloney, and J. C.  Greene,  Water  Research,  8,
         667-679, (1974).                           s

12-4     T. J. Grizzard, et a!..  Progress in Water  Technology,  12, 883-896,
         (1980K
                                 12-9

-------
          APPENDIX A



FIELD EQUIPMENT SPECIFICATIONS



             FOR



         MWCOG   NURP

-------
                       NURP FLOWMETER SPECIFICATION
1.  The device shall be a portable, pressure transducer type flowmeter,
    operating on 12 vdc, and being capable of obtaining its pressurized gas
    supply from either an internal pump or an external  pressure-regulated
    source.  Any required peripheral devices shall be powered from the flow-
    meter itself.

2.  The device shall be enclosed in a weatherproof case, and all  electronic
    components shall be sealed and equipped with renewable dessicant cartridges,

3.  The device shall be capable of measuring liquid level over a range of 0 to
    3 feet, with independently selectable ranges of 1 foot, 2 feet, and 3 feet.
    Alternatively, the device shall be equipped, if required by the purchaser,
    to operate in ranges of 0-2, 0-4, 0-6 feet.  Electronic calibration of
    the unit shall be accomplished by front panel  adjustment.

4.  The device shall be equipped with a modular, replaceable read-only memory
    (ROM) that allows an internal storage of stage-discharge relationships
    for four flow control sections.  The primary device types required shall
    be as follows:  (1)  90° V-notch weir, (2) Palmer-Bowl us flumes, (3)
    Parshall  Flumes, and (4) Type-H flumes.  The four specific device
    combinations and sizes for each ROM shall be detailed by the  purchaser.

5.  The device shall be equipped with an integral  strip chart recorder pro-
    viding a continuous record of either stage, or instantaneous  flow as
    determined from the integral ROM.  The recorder shall have a  minimum chart
    width of 4 inches, and a minimum of three selectable speeds ranging from
    one to four inches per hour.  Chart paper with a minimum length of 65
    feet shall be available for the recorder.  The recorder shall have a re-
    roll feature to take up chart paper as it is used.   The recorder trace
    shall be provided to continue recording should the  measured instantaneous
    flow exceed the full-scale value.  In addition to the chart data output,
    the flowmeter shall provide a digital front panel LED readout of flow
    rate or stage.

6.  The device shall provide a calibration control to allow the data output
    to be read in any volumetric flow unit.  A periodic 12 vdc pulse shall
    be provided at three switch selectable increments of flow to  activate
    an associated water sampler.  In addition, upon sampler activation the
    device shall place an event mark on the permanent strip chart trace.
    The supplier shall provide a separatequote for any  peripherals that may
    be needed to meet this requirement with sampling devices manufactured by
    others.

7.  The device shall be equipped with auxiliary data output capability as
    follows:
    (a)  A 4-20 ma signal proportional to instantaneous flow rate.
    (b)  A 12 vdc pulse in conjunction with the flowmeter sampler initiation
         signal.
    (c)  A 12 vdc pulse output at each tenth increment  of total  flow.
    The external connections for data output shall be of the weatherproof
    "Cannon"  type.  The supplier shall provide schematics identifying the
                                  A-l

-------
    pins for each data acquisition point.  Any peripherals needed to supply
    this capability shall obtain power from  the flowmeter.

8.  The supplier shall provide a one year parts and labor warranty on the
    flowmeter as specified herein.

9.  The supplier shall provide 2 days of on-site factory maintenance and
    repair training to an individual designated by the purchaser.  Transporta-
    tion and lodging costs for this item shall be borne by the supplier.
                                     A-2

-------
                    NURP AUTOMATIC SAMPLER SPECIFICATION


 1.  The unit shall be a portable, automatic water sampler powered by 12 vdc.

 2.  The unit shall be weatherproofed to withstand constant exposure to pre-
     cipitation and a high humidity environment.  In addition, the control
     circuitry shall be waterproofed to the extent necessary to allow accidental
     submersion without damage.  A replaceable dessicant cartridge shall be
     provided to minimize exposure of internal components to moisture.

 3.  The unit shall be sufficiently small  to pass through a 30 inch manhole
     opening and retrieved from same without tilting.

 4.  The unit must provide interior space for addition of ice to afford sample
     cooling.

 5.  The unit shall be capable of retrieving a 500 ml sample against a suction
     lift of 20 feet with a hose length and I.D. of 25 feet and 3/8 inch,
     respectively.  The minimum sample transport velocity shall be 3 feet per
     second against a suction head of 15 feet.

 6.  The unit shall be equipped with a distribution system capable of discretely
     depositing a minimum of 24 samples in bottles contained in a removable
     base.

 7.  The unit shall be equipped with a set of 24 polypropylene sample bottles
     of 1.0 liter capacity each, contained in an integral  base.  The unit shall
     also be equipped with a 15 liter composite bottle contained in an integral
     base interchangeable with the 24-bottle base.  Two spare sets each of
     discrete and composite bottles shall  be provided.

 8.  The unit shall have the capability of collecting up to four (4) samples
     of equal volume per bottle and of distributing a simgle sample among as
     many as four (4) bottles.

 9.  The unit shall have the capability of being activated by an external
     contact closure or by an internal  timing mechnaism.   The time activa-
     tion shall  have as a minimum the following activation intervals:
     15 min., 30 min., 1  hr., 2 hr., 4 hr.,  16 hr., 24 hr.

10.  Upon activation, the unit shall provide an air purge  of the sample intake
     line both before and after the sample cycle.

11.  The sample path following entry into  the unit shall at all  times  have a
     sufficient negative slope to prevent  suspended material  from depositing
     on surfaces in contact with the liquid  being  sampled.

12.  The supplier shall  make arrangements  to provide loaner units to purchaser
     on two days notice to replace any failed unit for the duration of the
     warranty period.

13.  The supplier shall  provide for one employee of the purchaser two  (2)
     days of service and maintenance training for  the equipment at the factory
     site.   Expenses for the training (transportation, food, and lodging)  shall
     be borne by the supplier.
                                     A-3

-------
14.  Upon selection of the successful bidder, all  units included in this  order
     shall be delivered within 45 days of the order date.
                                     A-4

-------
               NURP DATALOGGER SPECIFICATION FOR ACQUISITION

                            OF HYDROLOGIC DATA


1.  The device shall  be a portable datalogger operating  on  12 vdr.  provided
    by an internal, rechargeable gel-cell battery.   The  device shall  be
    enclosed in a weather-proof case and provided with sealed connectors
    for all inputs and outputs.

2.  The device shall  be equipped with a digital  cassette recorder designed
    for use with a Phillips type 300 foot certified data cassette.

3.  A minimum of eight independent channels must be provided for recording
    data from external sources.  The input signals may be 4-20 ma,  0-12
    volt, 0-12 volt pulses, or contact closures.  At the time of purchase,
    the user will specify the exact combinations of input signals to  be
    provided.  For bid purposes, these may be shown as options where  a price
    differential is involved.

4.  The device shall  contain an internal digital clock recording days, hours
    and minutes.  The device, upon initiation of a data  scan, must  record
    time data along with channel values to the digital cassette.

5.  The device must have a switch-selectable scan rate of 1, 5, 10, 30, in
    60 minutes.  In addition, the device must initiate a scan of all  channels
    upon the input of a contact closure or a 12 v. pulse  (at the purchaser's
    option) from another channel.
                                                                  *
6.  The supplier shall provide interface cables  for associated instruments.
    Details for the interfaces will be provided  by the purchaser.

7.  The supplier shall provide an operator's manual, maintenance manual,  and
    four certified digital cassettes for each device.

8.  The supplier shall provide on-site orientation for purchaser's  staff  in
    device use maintenance, and routine troubleshooting. The supplier shall
    warrant equipment performance for one calendar year  from installation
    date.
                                    A-5

-------
                      NURP RAIN GAGE SPECIFICATION
1.  The supplier shall furnish a tipping bucket rain gage having a sensitivity
    of 0.01 inches of rainfall.  The receiver shall maintain accuracy of
    95% or better at rainfall intensities of up to 6 inches per hour.  The
    rain gage shall provide a momentary contact closure from a mercury switch
    to two output terminals.

2.  The receiver shall be equipped with brackets to enable it to be firmly
    secured to a mounting surface.
                                    A-6

-------
                 NURP EVENT ACCUMULATOR SPECIFICATION
1.  The supplier shall  furnish an event accululator powered by  12 VDC,  for
    use with a tipping  bucket rain gage.

2.  The device shall  produce an output voltage proportional  to  the number of
    contact closures  occurring accross its input terminals.   The full  scale
    output voltage range shall be 0 to 5 VDC.   The device shall  accumulate
    1,000 contact closures, at 0.005 VDC per closure, prior to  resetting
    the output voltage  to zero.

3.  The device will  be  supplied with a manual  reset to zero capability, and
    shall be designed in such a way as to facilitate field calibration.
                                    A-7

-------
                  NURP SPECIFICATION FOR WET/DRY SAMPLER


1.  The supplier shall provide an automatic wetfal1/dryfall sampler operating
    on 12 VDC.

2.  The equipment shall have separate collectors for dryfall and wetfal1
    sample deposition.  Samples shall contact no metallic surfaces in either
    collector.

3.  The sampler shall have equal cross sectional areas exposed to the atmosphere
    for both wet and dry collectors.  Upon sensing the onset of precipitation
    the device shall close the dryfall collector to the atmosphere and expose
    the wetfall side.  Upon sensing the end of precipitation, the device shall
    reverse the sequence.

4.  The supplier shall provide one spare set of replaceable containers,  one
    each for both wetfall and dryfall collection.
                                     A-8

-------
               NURP SPECIFICATION FOR FIBERGLASS ENCLOSURES


1.  Molded, one piece construction of reinforced polyester,  ready  for instal-
    lation.

2.  Minimum inside dimensions 36 inches length,  34 inches width  and  50 inches
    height; comparable to Western Power Products Model  42-2.

3.  Lift-off door engaged with lip type fastener.

4.  Two louvres, each approximately 4 inches  square.
                                   A-9

-------
               APPENDIX B
       QUALITY ASSURANCE PROGRAM

                FOR THE

OCCOQUAN WATERSHED MONITORING LABORATORY
     VIRGINIA POLYTECHNIC INSTITUTE
          AND STATE UNIVERSITY
        9408 PRINCE WILLIAM ST.
          MANASSAS, VA  22110

-------
                                  INTRODUCTION
     The  data produced in any analytical laboratory are not an end in themselves,
 but  will presumably be interpreted to provide a basis for management decisions
 and  further action.  It is therefore imperative that such data be reliable.
 Reliability, in turn, can be adequately established only through an organized,
 routine  program of quality assurance.
     In the evaluation of any scientific data, both accuracy and precision are of
 concern.  The former represents how well the measured data agree with the true
 (but usually unknown) value, while the latter indicates the reproducibility of
 the  measurement.  These characteristics are dependent upon variables introduced
 during the course of analysis which are related to the sampling procedure, the
 analytical methodology employed, the instrumentation used, and the analyst
 himself.
     The  errors which are present in any datum may be conceptually classified as
 random or systematic in nature.  Random errors are those which are equally
 likely to affect the datum in a positive or negative manner, thus giving no
 inherent bias to the result.  This type of error may be described by a normal
 statistical distribution.  Another type of error, however, may be regarded as
 systematic in nature.  Such an error may result in a consistently high or low
 result,  such that it is not due to chance alone.  It may be due to technician
error, equipment malfunction or a number of other causes.  While random errors
will  be present in any analysis, systematic errors can be identified and elimi-
nated.  One of the goals of a quality assurance program is to eliminate such
systematic error from reported data.
    A program of quality assurance (QA) is carried out by the Occoquan Watershed
Monitoring Laboratory (OWML) to insure the reliability of the data produced in
the course of all  its investigations.  The program,  of course, concerns itself
                                         B-l

-------
with analytical procedures but also with the maintenance and calibration of
field equipment, sample identification, data logging and other activities which
impinge upon the production of a representative, reliable data base.   The
following pages are intended to document the individual  aspects of  the QA
program, and to indicate how the reported laboratory results may be used with
confidence.
                                Field Operations
    Quality Assurance in the field is often neglected, yet it is obvious that a
valid analytical result can only be had if a representative sample  is  taken, and
if reliable field data are available.  The primary field equipment  employed con-
sist of flow control sections, flowmeters and automatic samplers.
    All monitoring sites utilized are serviced regularly, at which  time several
check procedures are carried out.  The batteries which provide power to the
monitoring equipment are replaced with freshly charged ones.  The automatic
samplers are checked to a ssure a full complement of bottles is ready  to receive
samples, and for proper operation of the sampler.  Specific check procedures are
incorporated into a written log by field personnel on site visits.
    The flowmeters are checked to assure correct zero (both mechanical  and
electronic) in the field.  The recording mechanism is tested for correct ten-
sion, pen span and speed, and labeled accordingly.  The chart paper supply is
also checked, and replaced as needed.  Data loggers, if present, are checked out
and cassette tape supply examined.
    The flow control sections utilized have been constructed to exact  dimen-
sions, and carefully installed in a manner to provide an upstream control sec-
tioin.  Particular attention was paid to leveling the apparatus. Although self
cleaning to a large extent, the flumes are mopped out and the stilling well
flushed during site visits by field personnel.  Each flume is checked  on a bi-
                                        B-2

-------
 monthly  basis to assure the proper orientation is maintained.
     Immediately following storm events, samples are retrieved from the various
 monitoring  sites.  All sample containers are labeled in the field and returned
 to  the laboratory and logged in.  Transport time is minimized.  At the same time
 the samples are transported, the record charts and tapes (if any) from the
 corresponding flowmeter are returned.    x
     Occasionally, spiked samples and preservative blanks are prepared in the
 field and returned to the laboratory for analysis.  These provide an indication
 of  any problems with field sampling procedures.
     A record is kept in the laboratory on each major piece of field equipment,
 so  that  any continuing problems or malfunctions can be easily discerned.  These
 records  include any repairs or modifications made to the equipment.

                       Sample Identification and Handling
     Samples are taken automatically during the course of a storm and are
 retrieved by field personnel.  At the time of retrieval the sample bottles are
 labeled  with identifying information, such as station, time and the sample
 sequence number.  The samples are then brought back to the laboratory and logged
 into the laboratory record by the field technician.  At the same time, the
 flowmeter record is examined and the sampling points identified so that a stage
may  be recorded along with each sample.  At this point, the samples may be com-
posited according to flow, or analyzed independently as sequential  samples.   All
samples are refrigerated until  the analyses are carried out.   Samples are often
composited automatically in the field when the appropriate equipment is present
in the station.   The flow data  checks carried out are very similar to the above.
    The laboratory record is routinely checked by the laboratory supervisor  to
determine if all  the required analytical  work has been completed.   If the work
                                        B-3

-------
has been completed satisfactorily, he initials the record book and  has  the
samples discarded.

                                Data Processing
    As samples are analyzed for the parameters of interest,  the results and
corresponding calculations are entered into analytical  bench notebooks, dated
and initialed by the analyst.  All data are screened for gross errors and com-
patibility at this time, and analyses are rerun if necessary.
    The automated analyzer used by the OWML is interfaced with a microcomputer
so that the raw data are stored on a diskette as they are generated.  This
system allows the technician to assign identifying descriptive data to  each
sample so that a complete record is generated upon analysis.  This  process mini-
mizes data handling and reduces transcribing error in the analytical process.
It also eliminates the possibility of the analyst intentionally biasing the
data, because once recorded on diskette, the information cannot be  changed.  The
editing of data can be accomplished, but is outside the responsibilities and
capabilities of the bench technicians employed.
    Data are recorded on individual computerized files  according to sampling
site.  Retrievals are obtained on a regular basis and proofread to  guard against
keypunching errors and to assure data integrity.  Computer storage  is done in a
manner to allow later minipulation and statistical analysis.  Both  a backup com-
puter file and hard-copy permanent record are maintained of all data generated.

                       Control of Analytical Performance
    The theory of control charts was developed over a half-century  ago  by Walter
Shewhart to evaluate the quality of products from manufacturing processes.
(Grant, 1974; U.S. EPA, 1972).  Simply put, a chart can be constructed  on the
basis of statistical calculations such that an indication is given  as to whether

                                       B-4

-------
 the  errors  observed are  random or systematic in nature, as well as their rela-
 tive magnitude.   An unexpectedly high random error or a systematic error would
 be  reason to  suspect  something to be wrong with the process.  At this point the
                                                                       N
 process  is  said to be "out-of-control" and is stopped until the problem is
 resolved.   A  process  which is seen to be within the limits expected due to
 natural, random error is termed "in control."  Such charting techniques can be
 used in  analytical laboratories to insure that both the precision and accuracy
 of the various analyses  are acceptable, or "in control."

 Precision
     The  precision of  a particular analytical method must be determined by the
 analysis of replicate samples.  The intial precision criterion for a particular
 analytical  procedure  should be developed from replicate results accumulated
 during the  routine analysis program.  One reference (EPA, 1972) suggests a mini-
 mum  of 15 replicate sets be used for this purpose.
     After a minimum number of replicate samples has been analyzed, the range of
 each  set of results may  be calculated.  For a replicate set of two samples.
                           R - Hi - X2]                    (1)
            where          R = The absolute difference in
                               results between the replicate
                               set " ".
    The mean range (R~) may then be calculated by summing the individual  ranges
 and dividing by the number of replicate sets:
                               ZR
                           Tf = —                           (2)
            where          n = no. of replicate sets
    The Upper Control  Limit on the range (UCLR)  can then be calculated according
to the formula:
                           UCLR = D4"JT                       (3)
                                       B-5

-------
The factor 04 is dependent upon the size of the replicate group  (Table  1).  For
duplicate samples 04 is 3.27 when three standard deviations  are  used  to fix the
UCLR.
    By plotting the individual ranges from a replicate measurement  on a chart on
which the UCLR has been drawn, it can be determined whether  or not  a  given pro-
cedure is statistically in or out of control.  A range above the UCL  is con-
sidered an indication of an out-of-control procedure.  In such an instance the
observed error is greater than what would be expected from random sources alone,
and the analyses would be stopped until the problem was resolved.  Questionable
data would be discarded, and the analyses rerun if possible.
    Note that for the particular instance of laboratory precision a lower
control limit is not required because there are no adverse economic or  scien-
tific consequences of improved precision.  Therefore only the Upper Control
Limit need be of concern here.
    Sometimes an Upper Warning Limit on the range (UWLR) is  calculated  in addi-
tional to the UCL.  The UWLR provides another reference point for process
control.  If the range of a replicate set is found to be greater than the UWL it
is commonly taken to signify a potential problem developing.  The process is not
stoped, but is watched more closely.  An Upper Warning Limit for the  range
       can be calculated according to the formula:
                             UWLR =   (2D4+1)               (4)
A typical graph resulting from this procedure is shown in Figure 1.

Accuracy
    The evaluation of analytical accuracy is usually accomplished through the
use of "known" samples, or standards.  In the analysis of environmental  samples
this task is often accomplished by recovery of the analyte from  a spiked sample,
                                       B-6

-------
 i.e., a sample to which a known amount of the analyte has been  added.   Shewhart
 control charts can then be used in conjunction with these procedures  to assure
 that laboratory accuracy continue under control.

 Use of Analytical Control Charts
    Control charts are constructed in accordance with the procedures  outlined
 above, thus providing a continuing check on the precision and accuracy  of the
 analyses.  A separate chart for both precision and accuracy  is  required for each
 analytical procedure.
    The data required for the construction and subsequent use of the  control
 charts requires the analysis of both replicate and spiked samples.  Although the
 use of field spikes is often desirable, the compositing of samples  in the
 laboratory makes this an awkward and burdensome chore.  Therefore,  spiked
 samples are routinely prepared in the laboratory and only occasional  field spi-
 kes are carried out as a check on collection and sampling procedures.   For auto-
 mated analyses, using a standard tray with a capacity of 40  samples,  two sets of
 duplicate samples and two spiked samples are analyzed,  these are interspersed
 in the analytical  sequence so as to produce an early indication of  poor perfor-
 mance.  These samples alone represent 15% of the samples analyzed.
    The initial collection of quality assurance data provides a basis for calcu-
 lating the applicable limits needed to construct a control chart for  each analy-
tical  parameter of interest.  The results are recorded as obtained  in a per-
manently bound laboratory notebook reserved for QA samples.   When control  limits
are periodically calculated a control  chart is constructed in the same  notebook.
The QA results are plotted on the control  chart at the same  time they are
entered into the notebook.  At that time it is also noted whether the process is
in control  or not.  In the later instance the analytical  process is halted until
                                       B-7

-------
the problem is  resolved, and  appropriate remarks are entered in the QA notebook.
A particular procedure  is deemed out-of-control if:
    1.  A control  limit is  exceeded on either precision or accuracy
        control charts.
    2.  A sequence of seven values fall on same side of the mean value
        line on an accuracy control plot.
    Warning Limits on the control charts are used to identify the development  of
potential problems in an analytical procedure.  An analysis is more closely
observed under  either of the  following conditions:
    1.  A warning  limit is  exceeded on either precision or accuracy control
        charts.
    2.  A sequence of sevel values fall on the same side of the mean value
        line on an accuracy control chart.

Performance Checks
    During the course of analysis, a number of blank samples and standards  are
routinely run to verify the  operating standard curve and check instrument opera-
tion.  Approximately nine of these analyses are run in the course of an auto-
mated analysis with a standard 40 compartment tray.  These are in addition  to
the replicate and spiked samples required for control  chart purposes.
    In addition to the use of quality control charts and standards,  several
other means are used to insure confidence in the laboratory data produced.   For
example, the Occoquan Watershed Monitoring Laboratory participates in a round-
robin testing program administered by the U.S. Geological Survey on  a quarterly
basis.  A performance evaluation is also submitted to the U.S. Environmental
Protection Agency on an annual basis, and EPA check samples are run  when it  is
considered prudent.  These activities allow comparisons with the performance of
other laboratories and the identification of any deficiencies.
    A minimum of 15 spiked samples is run during normal laboratory operations to
                                        B-8

-------
 establish  the mean  recovery of the analytical procedures.  The percent recovery
 for  any  analytical  method may be calculated using the formula:
                              p = 100(0-8)                  (5)
                                     f
         where      P  = percent recovery
                    0  = observed value in spiked sample
                    B  = background value  (from unspiked sample)
                    T  = added value (spike)
     The  mean percent  recovery (F) and standard deviation (Sp)  can be calculated
 using the  following equations (EPA, 1978b.):
                        n
                        ZP
                       =1
                        n
(6)
            Sp =

1
-1

n
ZP2 -
=1

n
(SP)2
=1
n _
(7)
            where n = no. of results.
    The control and warning limits are then calculated as follows:
         UCL = "F + 3 Sp                                     (8)
         UWL = J + 2 Sp                                     (9)
         LWL = "P - 2 Sp                                     (10)
         LCL =~P - 3 Sp                                     (11)
    These values may be used to construct a control chart such as that shown in
Figure 2.
    Other checks on laboratory performance are provided by splitting samples
between other laboratories.  Continual comparisons are made between OWML results
and those reported by the Upper Occoquan Sewage Authority on effluent streams.

                                       B-9

-------
For some parameters, split samples are analyzed by OWML, the Fairfax  County
Water Authority and the Civil Engineering Department at Virginia Tech.

                                 Administration
    The Quality Assurance Program for the OWML is under the direct  supervision
of a QA coordinator.  The QA coordinator is a research associate of the  labora-
tory who possesses a graduate degree and laboratory experience.   This  position
reports directly to the Laboratory Director.
    Specific duties of the QA Coordinator include:
         1.  Administration of the QA plan.
         2.  Measurement of the precision and accuracy of
             analytical procedures.
         3.  Maintenance of a permanent record of quality
             control charts.
         4.  Identification of training needs and methodology gaps.
         5.  Coordination of the laboratory quality control
             activities with other agencies.
    As problems in procedures or analytical accuracy and precision  are encoun-
tered, the QA coordinator consults with the laboratory supervisor to identify
the source of the problem.
    The resolution of QA problems will be made by the coordinator in concert
with the laboratory supervisor.  A report of all such activities is made on a
routine basis to the laboratory director.
                                       B-10

-------
                                   References


1.  U. S. Environmental Protection Agency, 1972.  Handbook for Analytical
    Quality Control in Water and Wastewater Laboratories.  Cincinnati, Ohio.
    102 pp.

2.  U. S. Environmental Protection Agency, 1978a.  Minimal Requirements for a
    Water Quality Assurance Program.  Cincinnati, Ohio.  32 pp.

3.  U. S. Environmental Protection Agency, 1978b.  Quality Assurance Program
    for the Analysis of Chemical Constituents in Environmental Samples.
    Cincinnati, Ohio.  22 pp.

4.  Hazardous Materials Control Research Institute, et. al. 1978.   Quality
    Assurance of Environmental  measurements.   Information Transfer; !nc=
    Silver Spring, MD.  225 pp.

5.  Grant, Eugene L., 1964.  Statistical Quality Control, 3rd Edition.  McGraw
    Hill  Book Co., New York.  610 pp.

6.  U. S. Environmental Protection Agency.  Data Collection Quality Assurance
    for the Nationwide Urban Runoff Program.   Washington, D.C.  49 pp.
                                       B-ll

-------
    APPENDIX C-l



VARIABLE CODE NAMES



        FOR



     MWCOG NURP

-------
                        VARIABLE CODE NAMES

                 NATIONWIDE URBAN RUNOFF PROJECT

                    RUNOFF MONITORING STATIONS


CODE                                   PARAMETER
STA                   Station Identification Number (51URXX)

STRMNO                Storm Number (Day of Year)

TYPE                  Type of Sample
                           1.0  Base Flow Sample
                           2.0  Storm Runoff Samples
                           3.0  Grab Samples

Til                   Date and Time Sample Taken (ODMMMYY:HH:MM)

TI2                   Date and Time of  Final Sample Collected (composited
                      storm samples only) (DDMMMYY:HH:MM)

HYD                   Portion of Hydrograph during which storm sample taken
                           1  Beginning
                           2  End
                           3  Peak
                           4  Dip
                           5  Rising
                           6  Falling

STG                   Stage (feet)

FLO                   Flow (cfs)

SAMNO                 Number of Samples (for sequential  samples includes
                      order taken)

CMT                   Comments (storm runoff only)
                           1.0  Complete Storm
                           2.0  Equipment Hal functions
                                  2.1 Flow Recrorder
                                  2.2 Sampler
                                  2.3 External Sampling  Line
                                  2.4 Vandalasm
                                  2.5 Power Failure
                           3.0  Flow Not Storm Generated
                                  3.1 Snow Melt
                                  3.2 Impoundment Release
                           4.0  Sample Lost
                           5.0  Frozen Line or Equipment
                           6.0  Insufficient Stage Increase to Trigger
                                Sampling

LpH                   pH - laboratory (standard units)

LCOND                 Conductivity - laboratory (pmhos)

LTALK                 Total Alkalinity - laboratory (mg/1)

TCALK                 Carbonate Alkalinity - laboratory  (jng/1)

LTEMP                 Temperature -  laboratory (°C)

COD                   Chemical Oxygen Demand (mg/1)

                                Cl-1

-------
DBOD5
B005
DBOD2o
BOD2Q
TSS
TOTS
DTCOLI
TCOLI
DFCOLI
FCOLI
DFSTREP
FSTREP
TKN
SKN
NH3
N023
TP
TSP
OP
EPB
SPB
EZN
SZN
ECU
SCU
EMN
SMN
EFE
SFE
ECR
SCR
ECD
SCO
EN I
SNI
PH
00
Descriptive Biochemical Oxygen Demand- Five Day
Biochemical Oxygen Demand - Five Day (mg/1)
Descriptive Biochemical Oxygen Demand - Twenty Day
Biochemical Oxygen Demand - Twenty Day (mg/1)
Total Suspended Solids (mg/1)
Total Solids ;(mg/1)
Descriptive Total Coliform
Total Coliform (MPN)
Descriptive Fecal Coliform
Fecal Coliform (MPN)
Descriptive Fecal Streptococci
Fecal Streptococci (MPN)
Total Kjeldahl Nitrogen (mg/1)
Soluble Kjeldahl Nitrogen (mg/1)
Soluble Ammonia (mg/1 as N)
Soluble Nitrate plus Nitrite (mg/1 as N)
Total Phosphorus (mg/1 as P)
Total Soluble Phosphorus (mg/1 as Px
Soluble Ortho-phosphorus (mg/1 as P)
Extractable Lead (pg/1)
Soluble Lead (yg/1)
Extractable Zinc (pg/1)
Soluble Zinc (y9/l)
Extractable copper (yg/1)
Soluble Copper (yg/1)
Extractable Manganese (yg/1)
Soluble Manganese (yg/1)
Extractable Iron (ug/1)
Soluble Iron (yg/1)
Extractable Chromium (yg/1)
Soluble Chromium (vig/1)
Extractable Cadnium  (yg/1)
Soluble Cadnium (vg/1)
Extractable Nickel fog/1)
Soluble Nickel (yg/1)
pH - field  (standard units)
Dissolved Oxygen (mg/1)
                                Cl-2

-------
TEMP                   Temperature - field (°C)
COND                   Conductivity - field (ymhos)
PRECIP         .        Precipitation ( inches)
Description for BOD5 ?OD20 TCOLI FCOLI FSTREP:
     G  Greater Than
     L  Less Than
     E  Equal  To
                                Cl-3

-------
 CODE
 STA
 Til
 TI2

 PRECIP
 PRP DUR
%LpH
 LCOND
 LTEMP
 LTALK
 LCALK
 DBOD5
 BOD5
 DBOD2o
 BOD2Q
 COD
 TKN
 SKN
 NH3
 N023
 TP
 TSP
 OP
 TOTS
 Description for
       G  Greater Than
        L   Less  Than
        E   Equal  To
      VARIABLE CODE NAMES
NATIONWIDE URBAN RUNOFF PROJECT
            WETFALL

                   PARAMETER
  Station Identification Number (51WFXX)
  Beginning Date and Time (DDMMMYY:HH:MM)
  Date and Time of Final Sample Collected
  (DDMMMYY:HH:MM)
  Precipitation (inches)
  Precipitation Duration (minutes)
  pH - Laboratory (standard units)
  Conductivity - laboratory (pmhos)
  Temperature - laboratory (°C)
  Total Alkalinity - laboratory (mg/1)
  Carbonate Alkalinity - laboratory (mg/1)
                                             «
  Descriptive Biochemical Oxygen Demand -  Five Day
  Biochemical Oxygen Demand - Five Day (mg/1)
  Descriptive Biochemical Oxygen Demand -  Twenty Day
  Biochemical Oxygen Demand - Twenty Day (mg/1)
  Chemical Oxygen Demand (mg/1)
  Total Kjeldahl Nitrogen (mg/1)
  Soluble Kjeldahl Nitrogen (mg/1)
  Soluble Ammonia (mg/1 as N)
  Soluble Nitrate Plus Nitrite (mg/1 as N)
  Total Phosphorus (mg/1 as P)
  Total Soluble Phosphorus (mg/1 as P)
  Soluble Ortho-phosphorus (mg/1 as P)
  Total Solids (mg/1)
BOD20.:

              Cl-4

-------
                            VARIABLE CODE NAMES
                      NATIONWIDE URBAN RUNOFF PROJECT
                                  DRYFALL

CODE                                    PARAMETER
STA                     Station Identification Number (51DFXX)
Til                     Date and Time Sample Taken (DDMMMYY:HH:MM)
TI2                     Date and Time of Final Sample Taken
TOTS                    Total Solids (mg/m2)
COD                     Chemical Oxygen Demand (mg/m2)
NH3                     Soluble Ammonia (mg/m2 as N)
TKN                     Total Kjeldahl  Nitrogen (mg/m2)
SKN                     Solubel Kjeldahl Nitrogen (mg/m2)
N023                    Soluble Nitrate Plus Nitrite (mg/m2 as N)
OP                      Soluble Ortho-Phosphorus (mg/m2 as P)
TSP                     Total Soluble Phosphorus (mg/m2 as P)
TP                      Total Phosphorus (mg/m2 as P)
                                    Cl-5

-------
CODE
STA
STRMNO
Til
LpH
LCOND
LTEMP
TKN
SKN
NH3
N023
TP
TSP
OP
COD
TOC
SOC
TSS
DTCOLI
TCOLI
DFCOLI
FCOLI
DFSTREP
FSTREP
      VARIABLE CODE NAMES
NATIONWIDE URBAN RUNOFF PROJECT
           LYSIMETERS

                 PARAMETER
  Station Identification Number (51LYXX)
  Storm Number (Day of Year)
  Date and Time Sample Collected (DDMMMYY:HH:MM)
  pH - laboratory (standard units)
  Conductivity - laboratory (ymhos)
  Temperature - laboratory (°C)
  Total Kjeldahl Nitrogen (mg/1)
  Soluble Kjeldahl  Nitrogen (mg/1)
  Soluble Ammonia (mg/1 as N)
  Soluble Nitrate plus Nitrite (mg/1  as N)
  Total Phosphorus (mg/1 as P)
  Total Soluble Phosphorus (mg/1 as  P)
  Soluble Ortho-Phorphorus (mg/1 as  P)
  Chemical Oxygen Demand (mg/1)
  Total Organic Carbon (mg/1)
  Soluble Organic Carbon (mg/1)
  Total Suspended Solids (mg/1)
  Descriptive Total Coliform
  Total Coliform (MPN)
  Descriptive Fecal. Coliform
  Fecal Coliform (MPN)
  Descriptive Fecal Streptococci
  Fecal Streptococci (MPN)
   Description for TCOLI  FCOLI  FSTREP
       G  Greater Than
       L  Less Than
       E  Equal To
                                 Cl-6

-------
                           VARIABLE  CODE  NAMES
                     NATIONWIDE URBAN RUNOFF PROJECT
                             HI-VOL  FILTERS

 CODE                                 PARAMETER
 STA                   Station Identification Number (51HVXX)
 DATE                  Date  Sample  Taken  (YYMMDD)
 TKN                   Total  Kjeldahl  Nitrogen (yg/m3)
 SKN                   Soluble Kjeldahl Nitrogen  (pg/m3)
 NH3                   Soluble Ammonia (yg/m3 as  N)
'TP                    Total  Phosphorus (ug/m3 as  P)
 TSP                   Total  Soluble  Phosphorus (yg/m3  as  P)
 OP                    Soluble Ortho-Phosphorus (yg/m3  as  P)
 N023                  Soluble Nitrate Plus  Nitrite  (vig/m3 as  N)
 TSUSP                  Total  Suspended Particulate (yg/m3)
                                  Cl-7

-------
                             VARIABLE CODE NAMES

                       NATIONWIDE URBAN RUNOFF PROJECT

                                   DRYFALL



CODE                                     PARAMETER
STA                      Station  Identification Number  (51DFXX)


Til                      Date and Time Sample Taken  (DDMMMYY:HH:MM)


TI2                      Date and Time of Final Sample  Taken


TOTS                     Total  Solids  (mg/m2)


COD                      Chemical Oxygen Demand (nig/m2)

                                              O
NHj                      Soluble  Ammonia (mg/m  as N)


TKN                      Total  Kjeldahl  Nitrogen (mg/m2)


SKN                      Solubel  Kjeldahl  Nitrogen (mg/m2)


N023                     Soluble  Nitrate Plus Nitrite  (mg/m2  as  N)


OP                       Soluble  Ortho-Phosphorus  (mg/m2  as P)


TSP                      Total  Soluble Phosphorus  (mg/m2  as P)


TP                       Total  Phosphorus (mg/m2 as  P)
                                     Cl-8

-------
       APPENDIX C-2



SAS TO STORET TRANSLATION



         PROGRAM

-------
 RF

 t nanca cntl
                              REGION-AOOK,T 1'ME^IO
//OWMLNGS JOB
/fLONGKEY
/*ROUTE PRINT VM2.OCCUGUAN
/*PRIORITY IDLE
/*JOBPARM LINES=100
//STEP1 EXEC SAS
//MYSAS DD DSN=A51340.NURP2.DBASE.ONLINE,DI!SP-(OLD,KEEP)
//SYSIN DD *
DATA TEMPI;
SET MYSAS. UR03 MYSAS. UR01 MYSAS. LJR02 MYSAS . URO-1  MYSAS.UR05 f1YSA3 . URO&
MYSAS.UR07 MYSAS.UROO MYSAS.UR09 MYSAS .UK' 10  MYSAS.UR11
MYSAS.UR13 MYSAS.UR14 MYSAS.UR15 MYSAS.UR1A  MYSAS.UR17?
IF TI2 NE . THEN CVT='B' ;
IF TI2 NE .
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
EPB
SPB
EZN
SZN
ECU
SCU
EMN
SMN
EFE
SFE
ECR
SCR
ECD
SCD
ENI
SNI
<100
<100
<20
<20
<20
<20
<20
<20
<100
<100
<20
<20
<20
<20
<20
<20
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
EFB
SPB
EZN
SZN
ECU
SCU
EMN
SMN
EFE
SFE
ECR
SCR
ECU
SCD
ENI
SNI
NE
NE
NE .
NE .
NE .
NE .
NE .
NE .
NE
NE
NE .
NE ,
NE .
NE .
NE .
NE .
. THEN
. THEN
THEN
THEN
THEN
THEN
THEN
THEN
. THEN
. THEN
THEN
THEN
THEN
THEN
THEN
THEN
DO; EPEiF<-~'
DO
no;
DO;
DO;
no;
DO;
DO;
DO
DO
DO;
DO;
DO;
DO;
DO;
DO;
; SPUR
EZNR=
SZNR =
ECUR =
SCUR =
EMNR =
SMNR =
:~
f
/
/
/
/
/
?EFER=
rSFER
ECRR =
SCRR =
ECDR =
SCDRa
ENIR =
SNIR--
:-
/
/
/
/
/
/
'K
K'
K'
K'
K'
K'
K'
'K
'K
K'
K'
K'
K'
K'
K'
K
'
i
t
r
y
;
;
'
'
J
;
;
r
;
T
                                          '  SPB=100fENDr
                                           EZN=20FENDf
                                           S2N=20FEND»
                                           ECU=20;END;
                                           SCU=20FENDr
                                           t:MN=2o;t:Ni:i;
                                           SMN--20JENDF
                                          :  EFE-ioo;END;
                                            SFE=IOO;END;
                                           ECR=20fEND»
                                           SCR=20»END;
                                           ECD=20»ENDJ
                                           Bci:i---2o;END;
                                           ENI=20»END»
                                           SNI=20 SEND;
 DATA TEMPIA;
 SET  MYSAS.HYD03  MYSAS.HYD04 MYSAS.HYD05 MYSAS.HYn06  MYSAS.HYD09
 MYSAS. HYD11  MYSAS. HYD15  MYSAS. HYD16 MYSAS . HYD.17
 MYSAS.HYD10  MYSAS.HYD18  MYSAS.HYD19J
 TIl=TIMEi;
 IF TIME2  NE  .  THEN  DELETE;
 IF SAMPLE='Y'  THEN  SAMPLE*'!'?
 DATA TEMPIB;
 SET  TEMPI  TEMPIA;
 DATA TEMP1C;
 SET  MYSAS.LY01 MYSAS.LY02 MYSAS.LY03  MYSAS.LY04
 MYSAS.LY05 MYSAS.LYOA  MYSAS.LY07 MYSAS,LYOB
 MYSAS.LY09 MYSAS.LY10J
EZN=TZN;
LCU=TCU;
TMN=TMN;
FFE=TFEJ
LCR=TCRf
'ECD=TCDi
HNI=TNI;
                               C2-1

-------
JF EPB <100 AND EPB NE
IF SPB <100 AND SPB NE
IF EZN <20 AND EZN ME
IF SZN <20 AND SZN NE
IF ECU <20 AND ECU NE
IF SCU <20 AND SCU NE
IF EMN <20 AND EMN NE
IF SMN <20 AND 3MN NE
IF EFE <100 AND EFE NE
IF SFE <100 AND SFE NE
IF ECR <20 AND ECR NE
IF SCR <20 AND SCR NE
IF ECD
10 AND  ECD  NE
IF SCD <20 AND SCD NE
IF ENI <20 AND ENI NE
IF SNI <20 AND SNI NE
DATA TEMPin?
SET TEMP1B TEMP1C?
DATA TEMPIE?
SET MYSAS.DF01?
IF TOTS=. THEN DELETE?
. THEN HO»EPBR=='K'
. THEN DO;SPBR---'K'
. THEN IiO»EZNR=--'K'»
. .THEN riOrSZNR='K'?
. THEN DOfECUR-'K';
. THEN Bo;scuR-"'K'r
, THEN DOfEMNR=/K/?
. THEN DO»SMNR='K';
, THEN DOfEFER-'K'
, THEN DOJSFER='K'
, THEN DOJECRR=/K'»
. THEN DO;SCRR='K' r
. THEN DOJECDR='K';
. THEN DO»SCDR='K'f
. THEN DO»ENIR='K' ?
. THEN DOtSNIR='K'f
? E.PB--100?ENn;
? SPB- i oo ; END;
tiZN-::>o,ENDy
£2N-20;END;
CCU.-20iENDt
SCU=20rEND;
E'MN=20»END»
!)MN--2o;ENn;
? EFE- 100 ; END;
; SFE=100»ENDf
ECF«=20fENBf
SCR=20JENBf
ECD=20rENDi
SCn=20FENDf
ENI=20»ENB?
SNI =20 FEND;
TI3=(TI2-TI1)/86400;
IF EPB <100 AND EPB NE
IF SPB <100 AND SPB NE
IF EZN <20 AND EZN NE
IF SZN <20 AND SZN NE
IF FCU <20 AND ECU NE
IF SCU <20 AND SCU NE
IF EMN <20 AND EMN NE
IF SMN <20 AND SMN NE
IF EFE <100 AND EFE NE
IF SFE <100 AND SFE NE
IF ECR <20 AND ECR NE
IF SCR <20 AND SCR NE
IF ECD <20 AND ECD NE
IF SCD <20 AND SCD NE
IF ENI <20 AND ENI NE
IF SNI <20 AND SNI NE
DEPB=ROUND((EPB*,001)/
DEZN=ROUND<(EZN*.001)/
DECU=ROUND((ECU*.001)/
DEMN=ROUND((EMN*.001)/
DEFE=ROUND((EFE*,001)/
DECR=ROUND((ECR*.001)/
DECD=ROUND((ECD*.001)/
DENI=ROUND((ENI*.OOD/
DCOD=ROUND(COD/(TOTS*.
DTOTS=ROUND((TOTS*.001


«
»
t
*
.
,


•
,
*
*
t
*
(
<
(
(
(
(
c
(
. THEN
. THEN
THEN
THEN
THEN
THEN
THEN
THEN
. THEN
. THEN
THEN
THEN
THEN
THEN
THEN
THEN
TOTS*.
TOTS*.
TOTS*.
TOTS*.
TOTS*.
TOTS*.
TOTS*.
TOTS*.
000001)
)
/TI3, .
DO? EPB=100
DO; SPB=IOO
DO? EZN=20 »
DO; szN=2o ;
DO; ECU-=20 y
DO? SCU<=20 ;
DO? EMN=20 y
DO? SMN=20 r
DO? EFE=100
DO; SFE^IOO
no; ECR=2o ;
DO? SCR=20 ;
no; Ecn=2o ;
DO; scn=2o ;
no; ENi=2o ;
no; SNi=2o ;
oooooi) fi>;
oooooi) »D ;
000001) rl>?
oooooi) r D;
oooooi) »D;
oooooi >F D;
oooooi) f i) ;
OOOOOI) rl);
t .D;
D ;
» EPBR=
» SPB
EZNR=
SZNR=
ECUR =
SCUR-
EMNR =
SMNR =
R —
'K
'K
'K
'K
'K
'K
J EFER=
; SFER=
ECRR =
SCRR =
ECDR =
SCBR =
ENIR =
SNIR =










'K
'K
'K
'K
'K
'K










'K'?END;
'K' ;END;
' SEND;
' ;END;
' ;END;
' ;END;
' ?END;
' ;END;
'K' ;END;
' K ' ; END ;
' ;END;
' ;END;
' ;END?
' ;END?
' ;END?
' ;END;










                              C2.-2

-------
ENH3=ROUND(NH3/(TOTS*.000001),.01)?
ETKN=fv1OUND
C=COMPRESS(D)J
PUT C Qi
NEXTCOL=LENGTH(C)+1J
PUT (? NEXTCOL DATE YYMMDDA. @',
NEXTCOL=NEXTCOLi6f
PUT 0 NEXTCOL H 22. Bi
NEXTCOL=NEXTCOL+2;
PUT (? NEXTCOL hM 22,  &r
NEXTCOL=NEXTCOL-H>;
                              C2-3

-------
IF CFS NE ,  THEN DO!
A='p6i>'::CFS::',';
LINK COM;
L:ND;
IF STRMNO NE  . THEN DO;
A='Pi34t'::STRMNO::',•;
LINK COM;
END;
IF RAIN NE .  THEN DOr
A='Pi93i':IRAIN::',' ;
LINK COM;
END;
IF SAMPLE ='!' THEN DOr
A='P2?»':ISAMPLE::'»';
LINK COM;
END;
IF LTALK NE . THEN DOf
A='P4iOr'::LTALK::',• ;
LINK COM;
END;
IF LCALK NE , THEN DO;
A='P430r'::LCALK::'»';
LINK COM;
END;
IF LPH NE .  THEN DO;
A='P403f'::LPH::',';
LINK COM;
END;
IF LCOND NE , THEN DO;
A='P95»':ILCOND::',';
LINK COM;
END;
IF PRECIP NE  . THEN DOr
A='P8238i»'::PRECIP: ;', ",
LINK COM;
END;
IF BOD5 NE  ,  THEN DO i
A='P310» ' ! !BOD5! ,'DBODS ! i  ' r ' ;
LINK COM;
END;
IF TSS NE  .  THEN DO;

LINK COM;
END;
IF TOTS NE  . THEN DO;
A='P500,':ITOTS: :' r';
LINK COM;
END;
IF DTOTS NE  . THEN DO;
A='P82375»'::DTOTS: :', •',
LINK COM;
END;
                              Q2-4

-------
£=','»
F=COMPRESS(E> »
PUT F @f
rtEXTCOL=NEXTCOL + LENGTH(F> J
IF TI2=. THEN GO TO  JUMP?
PUT 0 NEXTCOL DATE2  YYMMDDA.  (? i
NEXTCOL=NEXTCOL+6f
PUT 0 NEXTCOL H2 22.  0;
NEXTCOL = NEXTCOL-f2»
PUT 0 NEXTCOL MM2 22. 0;
NEXTCOL=NEXTCOL+2;
E='F'J
F = C:OMPRESS(E) ',
PUT F 0}
NEXTCOL=NEXTCOL+LENGTH
NEXTCOL=NEXTCOLf2 J
PUT 0 NEXTCOL '»' 0?
NEXTCOL=NEXTCOL+1?
JUMP: IF FCOLI NE .  THEN DOr
A=--'P31615r ' ! ,'FCOLI ! JDFCOLI ! ! ' » ' >
LINK COM;
IINDJ
IF STG NE , THEN DO;
A='P65»'i:STG: !'»'»
LINK COM;
END i
IF HSTG NE .  THEN DO?
A='P65i'! JHSTG! ! ' t ' »
LINK COM?
END;
IF FLO NE , THEN DO9
A='P6i»'::FLO::',' ;
LINK COM?
END;
                              C2-5

-------
IF BOD20 NE . THEN DO;
A = ' P324 t ' \ \ BOD20 !  ,' DBOD20 ',','?'
LINK COM?
END.
IF COD NE . THEN  D0»
A='paoii6f ' : icon: : ' » ' ;
LINK COM;
END;
IF DCOD NE  . THEN DO;
A='P339» ' ! iDCODI i ' , ' ?
LINK COM;
END;
IF TCOLI NE  . THEN  DO;
A='p3i505f ' : : TCOLI: JDTCOLI ; :
LINK COM;
END;
IF FSTREP NE . THEN  DO?
A='P31677> ' : : FSTREP: IDFSTREF
LINK COM;
END»
IF TKN NE . THEN  DO?
A='p625f ' j :TKN: : ' ? • ;
LINK COM;
END;
IF ETKN NE  . THEN DO;
A='F627f ' : IETKN: : ' r ' ;
LINK COM;
END;
IF SKN NE . THEN  DO;
A='p623r ' j :SKN: ; '» ';
LINK COM;
END;
IF ESKN NE  . THEN DO?
A='P8253?» ' : :ESKN: ,"r ' ?
LINK COM;
END;
IF NH3 NE , THEN  DO?
A='P608r ' ! 1NH3! ! ' t ' i
LINN COM?
END;
IF ENH3 NE  . THEN DO?
A='P611» ' ,' JENH3! ! 'r ' ;
LINK COM;
END;
IF N023 NE  . THEN DO ;
LINK COM;
END?
IF EN023 NE ,  THEN DO?
rt='P633» ' ,' JEN023: ! ' r ' ?
LINK COM;
END?
IF TP NE ,  THEN DO?
A='P665r ' ! ,'TPI I ' r ' ;
LINK COM;
CND;
IF ETP NE ,  THEN DOJ
A=--'P668» ' ! !ETP! \ ' , ' i
LINK COM?
END?
IF TSP NE .  THEN DO?
A='P666»' ! !TSP! ! ' , ' ',
LINK CON?
IF ETSP NE . THEN DO?
A='P70509»' : IETSP: : ' r
LINK COM?
END;
IF OP NE . THEN DO?
A='p&7i»' ! :OP: : ' , ' ;
LINK COM?
END?
IF EOP NE . THEN  DO?
A='P79511r'S JEOP! ',',
LINK COM?
END;
IF PH NE . THEN DO;
A='P400r',' ,'PH! ! ' 1 ",
LINK COM?
END;
IF DO NE . THEN DO?
A='p2?9r. ' : :DO: : 'r ' ;
LINK COM?
IF TEMP NE .  THEN DO;
A='pio» ' : ITEMP: j ' , • ;
LINK COM;
ENUi
IF COND NE .  THEN DO;
A='P94r ' ! ICOND! ! '» ' »
LINK COH;
END;
IF EPS ME .  THEN DO;
A='F1051» ' ,' IEPB! IEPBR! ,' ' t ' ?
LINK COM;
END;
IF HEPB NE .  THEN DO?
A='P1052; ' ! ,'DEPBJ ! EPBR ,' .' " > ' t
LINK C0rt>
tTND J
IF SPB NE  .  THEN DO;
A= 'Pio^? F ' : : SPB : : SPBR ! : ' f ' ;
LINK COM;         •     -     i
END;
                               C2-6

-------
IF EZN NE
A='P1092»'
LINK COM;
END;
IF DEZN NE
A='P1093>'
LINK COM;
END;
IF SZN NE
A='P1090»'
LINK COM;
END;
IF ECU NE
A='P1042>'
LINK COM;
END;
IF DECU NE
A='P1043»'
LINK COM;
END;
IF SCU NE
A='P1040»'
LINK COM;
END;
IF EMN NE
A='P1055»'
LINK COM;
END;
IF DEMN NE
A='P1053>'
LINK COM;
END;
IF DEFE NE
A='P1170»'
LINK COM;
END;
IF SMN NE i
A='P1056f'i
LINK COMJ
END*
IF EFE NE ,
A='P1045f'!
LINK COM?
END;
IF SFE NE ,
A='P1046» ' !
LINK COM;
END;
IF ECR NE ,
            THEN Dli;
            :EZNJIEZNR;;', f;
            . THEN DO;
            IDEZN::EZNR::' r';
            THEN DO;
            :SZN:ISZNR: :' r' f
            THEN DO;
           !ECU!!ECUR!!'»'?
           . THEN DO;
           !DECU!IECUR::'»';
            THEN DO?
            ! SCU ! ,' SCUR ! ! ' f ' r
            THEN DO;
            :EMN:JEMNR::'r';
           . THEN DO;
           ! DEMN! !EMNR i !',' >
           . THEN DO;
           ,'DEFE! ,'EFER! ! ' » 'r
            THEN DO;
           !SMN! ,'SMNR; ,' ' f "r
            THEN D0»
           :EFEJIEFER:!
            THEN DO;
           :SFE!;SFER:!'»'
            THEN no;
           !ECR!;ECRR!!'f'
 IF DECR NE
.  THEN DO;
:DECR:IECRR:
LINK COM;
L:ND;
IF SCR NE .
A='P1030r' !
LINK COM;
END;
IF ECD NE .
A='P1027r ' !
LINK COM;
END;
IF DECD NE
A='P1028»' !
LINK COM;
END;
IF SCD NE .


THEN no;
,'SCR,1 ,'SCRR!


THEN DO;
:ECD: IECDRJ


. THEN DO;
IDECD: IECDR


THEN no;
                                                  ISCD!1SCDR!
 THEN DO;
     ,'ENIR!
,  THEN DO*
IDENI! ,'ENIR
 LINK COM;
 END;
 IF  ENI  NE
 A='P1067r'
 LINK COM;
 END;
 IF  DENI NE
 A='P1068» ' !
 LINK COM;
 END;  .
 IF  SNI  NE  . THEN DO?
 A='P1065»/J ISNI ! ,'SNIR! !
 LI.>/K COM;
 END;
 PUT;
 GO  TO LOOP;
 COMJB=COMPRESS(A>;
 PUT 0 NEXTCOL B (?;
 LEN=LENGTH (B);
 NEXTCOL=--NEXTCOL+LENr
 IF NEXTCOL >60 THEN DOr
 PUT ;
NEXTCOL=i;
END?
RETURN;
/*
LINK COM;
£:.ND;
                               C2-7

-------
        APPENDIX D





    RAW DATA LISTINGS






CRITICAL WATERSHED STUDIES

-------
STATION PUNOFF DATA
OMS
1
2
3
If
5
b
7
8
9
10
la
13
14
13
17
10
19
20
a i
aa

25
26
?7

29
30
31
32
33
34
3S
36
37
3H
39
40
41
42
43
4S
46
47

49
5/1
52
53

STPI'MO
2?4
224
2?p
.
.
.
f
f
f
299
•
^
.
329"
^
,
t
,
.
t
33
, ^
**£
b4

.
,
s
102
1 04
*
t
1 ? 1
^
13S
*
1^1^
.
154
\®
f
\ ft**
f
f
1 f*S
.
•
?U9
.
TYPL

?
?






1



'



1
1
1
l?
1

?
1
1
1
1
2

1

1

1

1

I
1

1

?
i
i
•f
i


1 i Auoeo:
1 sAiioMO :
OWbf Pf4 0 •
1 SSt P^O :
2o:
<-"2L*k C^ 0 :
OK JAMMI :
1 pjAKjfl 1 :
26 JA'^JH 1 :
O^K t MH 1 :
f)9f t h'Wl :
1 1 (• t' ^ H 1 :
P3^"tPHl :
09MAKH1 :
l6MAPf
-------
STATION PUNOFF DATA
OriS
55
56
57
58
Sy
60
61
62
63
6**
65
STPVNO TYPE Til
.
1 IQAUORI 13:OS
22^ 2 llAinibi 23:50
224 2 12AUI.8] li:oo
228 2 16fii)(iM 00:10
.
.
1 17AUO«1 12.MI5
1 24Au'-81 12:00
242 2 jfiAi».i«i 07:00
m
1 14SKPH1 11:05
25^i 2 ItiStH'U 16:30
.
.
1 21St-.^81 1 1 :55
! 2^StkHl 11: **5
66 274 2 010CTM1 1«:00
67
68
6V
70
71
73
74
7 "3
76
77
O
ro 	 	
OHS
78
79
HO
HI
H2
83
H<»
HS
8fr>
87
88
89
90
91
92
93
V4
95
96
97
9M
99
100
101
102
.
1 050CT«1 11:04
1 I2UC.T81 11:35
296 2 230CT81 16:50
29d 2 260CTH1 11:05
.
•
.
.
^t

STPMNO T
.
,
.
.
f
.
32MHI : I/*! 30
> OOA^nei : 13t3b
06APRW 1108:44
lOAPRMi : 13:55
fl_0 SAMNO CMT PREC1P
38.50
.
139.00 3 1
165.00 9 1
97.00 8 1
44. bO
29.00
89.00 1
25.80
^
^
1

84.00 10 1
34.20
23.80
^
m
37.80 4 1
24.80
27.90
50.50 «
106.10 1
31.60
37*18
32^90
35.60
[
\
1

•
,

54.83 4 1
37.10 1




















FLO SAMNO CMT PRtCIP
0.605
33.400
14.100
1.760
9.590
2.750
46.000
S.bOO
6.000
3.040
4.250
2.270
6.180
16.100
31.690
77.160
14.460
12.500
9.480
14. POO
8.370
16.300
34.000
21 .500
34.600
1
1
1 *
1 *
1

4 llfl
1
1
1
1
1
1
i
5 2.1
15 1.0
i* 1.0 0
1
1 .
3 1.0 0
1 .
2 1.0 0
2 6.0 0
16 lio















15


13

19
?6


-------
                                                                   STAI ION WUK'OFF OAF*
CD
CO
	 b1M = -3IUK(.><*!.
258.
£bO.
.
.
.

299.
B
.
B
t
336.
NO
00

00

00

00
00

01
03
00
00
00

00
01
0?
oo

00
DO

00

00

00



00
00
00




00




00
TYPf.
p
\
2
1
2
1
2
1
2
2
2
1

2
2
2
1
'g>
2
1
2
1
2
1
2
1
1
1
2
2
1
1
1
1

1

1
1
2
Til
lOftkKHl
2 0 A H' W H |
24 APkn 1
2 7 A k W H )
29APR8 1
04MM Y H 1
15MAY81
1 RMAYP1
19MAYS1
28MAYM
01JUU61
O&JIIPiHl
lOJMlifll
1 3 Jl IM8 j
14JUMS1

^ S J U ' •J ^ I
• 02JUL61
0^» Jl JL ^ 1
i 3JULH1
13JULH1
2UJUL8 1
25JUL81
2 7JIILH1
2fA,ji)LH 1
0 3 A I J (.i ^ 1
1 fl AU'i8 1
1 7 A IJOM 1
3 1 ALMiH 1
i7stp"!
2 1 S t ^ H 1
^^f,tPy l
OSnC T ^ 1
120C.181
l"?NUVf
-------
STATION NUTP1ENT DATA
,,KS ST,,HO
2 iV4
3 f*/'i
A
9 .
6
7
3 ;
10 P'VSI
1 1
12
11
14
15 322
16 32*
17
1 M •
i ^ .
2 •')
21
22
23
24 3.'i

27 54
?^ •
2-J
30
31
32 1 0 s.
33 10"
14 •
3S
16 121
37
38 1 35

4 'J 1 ^ ''
41
'•2 Itrt
<• ') 155
44 15 t
**t:3 •
2 7 '""
*+H .
" ^ 1 iS
51 I

5'-»
rvPt
^
C'
1
1
1
1
1
1
1
1
1
f
?»
1
1
1
1
1
1
s
l"
2
1
1
1

^
1
1
2
1

1
i
s
2
£
1
l!
\
1

1
1
1

1 UlKiHIj:
1 S AU(j^ 0 :
oast "->MO:
1 5 S t. ^ 8 0 I
p ;,> c; (.• p- f< Q ;
2s*st:PWu:
200CT80:
^uumi:
03"iowhui
1 OhiovttO :
1 7.MGVHU!
1 7Ui»v«ti:
^4NU V40 :
OlUtCrtO:
OrtUb CfelU •
1 *"iiJLC Bo •
? f>t)t t^ri o :
os J A Mb 1 :
?io*Hfe{:
0 f' f f ^ • 8 1 :
OVFt i^b 1 :
MK£«!I
OsyMdfH 1 i
1 6NiAf!--kbl :

(i i M c, y ft i :
0 4 M /. y M | :
i^MAybi •
lc,-l6Yrt 1 :
OlJiiMbl :
OJ.JUMbl :
Oi4,M Ihlb 1 '•
(fjjui.bi :
(.riJiitiH 1 :
l<..n."f'fci] :
?^.n IMH l :
?'-* Ji-i^'t 1 •
0".JOLMl :
1 .UL'LK 1 j
^JULM!
O.lAl-G** 1 '•
Til
0/:?6
^>.<:30
11:00
1 :« ; 09
moo
lo:ib
11 100
(n!s^
11 isti
12:00
1 o : 0 v
1 U : 1 0
lo:oo
1 1 :20
l.i: Db
1 J : 3b
10:30
!•*: in
1 1 ;45
us: 00

lul^s
lirii ii

10:00
2 J : 06
ov:oo
1 1;30

lllbO
1 0 : 32
1 ^ : ') 0
10: 15
^•c;:.30
10; 30

?.c :^b
0 o : 00
1 1 '• 1 0
o t> ' 0 o
1 0 : -^

0 -« ! llO
It. : J-;
1 1 : m
10:^0
l-y!00
1 'd' DO
	 bl
HO
14KO
1 <^b . 0
43.2
35.6
40.0
41 .6
166.0
31.8
351.0
bl .6
3b.6
4] .6
34.2
132.0
340.0
hl.O
43.2
37.1
36.0

3bl5
S5o!d
6". 6
V39.0
•4bl .0
"3.2
70.9
46.4
iviio
222.0
HI .6
61 .0
181 .0
111.0
115.0
61.0
120.0
57.1

3 1 0 ! 0

H3l9
1 « 7 . 0
4^1 1
%«.! .0

Jiilb
Plb.O
3b.b
1 A-3 IUXIP |
TKN
K26
0.76
O.bO
0.3b
0.35
0.32
0.26
0.59
2.16
0.68
0.33
0.39
0.30
O.btl
2.06
0.29
0.37

o!2H
0.21
0.38
0.53
5.65
0.67
5.73
b.50
O.bb
0.27
0^65
1.78

olbb
0.34
1.87
0.6P

o!b3
1 .6V
0. 70
1 .b6

3^02
0 . b2
0.4"
O.fcQ
O.bfc

Ol4b
0.67
Ol41
SKN
o!40
0.40
O.bO
0.27
0.35
0.30
0.26
0.45
0.62
O.b2
0.31
O.Jb
0.27
0.4H
1.09
0.29
0.37
0^5
0.2b

olso
2.11
0.57
1.83
1.36
0.5b
0.27
Ol60
1.30
0.44
0.51
0.34
0.72
0.40
0.69
0.63
O.S6
0.36
O.b4
0. Jb
0.50
0.44
O.HtJ
0.6/
0.34
1.J1
0.4J
0.4S
O.b4
0.77
0.31
NH3
o!o6
0.06
0.05
0.08
0.16
0.06
0.04
0.04
0.08
0.07
0.04
0.01
0.02
0.16
0.1U
0.09
0.05
0.00
0.06
0.03
0.01
0.04
0.68
0.11
0.46
0.57
0.07
0.10
0.05
0.06
O.lb
0.14
0.05
0.09
0.16
0.17
0 • ?9
0.12
Oll5
0.20
0.14
0.10
O.OQ
0.10
Olo7
0.21
Q-Q7
0.04
0.06
0.27
0.06
N023
2^17
2.31
3.27
3.37
2.93
3.61
3.93
3.91
1.76
2.5B
3.7b
3.59
3.72
2.52
2.42
2.78
3.20
3.75
4.00
2.95

2^45
3.30
2.50
3^22
3.41
?:fi
1.86
2.31
2.49
2.73
1.95
2.14
1 .98
3. 54
1.87
2I&0
3.18
2.38
3.23
2.69
3.46
3.76
2.06
3:51
m
3.34
TP
0^32
0.15
0.0
0.14
0.10
0.14
0. 11
0.20
O.U1
0.13
0.13
0.14
0.09
0.18
0.47
0.03
0.06
0.06
0.05
0.04
0.08
0.10
1.30
0.05
1:9?

0104
o:os
0.20
1.56
0.05
0.05
0.40
0.07
0.3v
0.05
0.56
0.11
0.60
1.08
1.00
0.09
OlOB
0.05

8:8^
^
0.09
TSP
o!o6
0.04
0.10
0.10
0.09
0.13
S:U
0.11
0.08
0.13
0.12
0.07
0.07
0.14
0.03
0.06
0.05
0.03
0.03
oloe
0.53
0.03
0.10
0.15
.
0.03
ol04
0.11
0.05
0.05
0.05
0.08
0.05
0.06
0.03
0.08
0.08
0.08
0.10
0.04
0.06
8:§46
0.04
0.12
0.04
0.04
0.05
0.06
0.06
OP
o!o2
0.00
0.07
0.09
0.07
0.12
0. 10
0.14
0.06
0.06
0.11
0.09
0.05
0.06
0.09
0.03
0.06
0.04
0.03
0.01
8.04
.05
0.14
0.03
0.08
0.06
0.01
0.01
0.02
0.01
0.0?
0.05
0.01
0.02
0.04
0.02
0.06
0.02
8:8^
.
0.06
0.02
0.03
0.05
0.03
0.02
0.09
8:8^
0.04
0.06
0.05

-------
                                                             STA1ION NUTRIENT DATA
I
cn
OHS blr^hO TYPt Til
SS
S6 ,'<><+
57 22«.
',H • 22''
60 I
*2 ?"?
63 ^5 A
6't
h^ .
6 h 2 V '+
6« :
70 29*
71
72
7J
74
7S .
76 33".
77
1 lOM II-M
^ ) 1 A t Mih 1
£ !£/>!£§!
i j"'fl!i!'H!
I \ fc^f t-H 1
•f 1 "?^t ^f I
1 2 1 ^ r. V b 1
1 2MSh^bl
2 0 1 (>C T H J
1 0-jul. [hi
1 1/OC1M
2 2oOCTbl
1 U/^'l'^h 1
1 ( i y » -j o v B i
1 16MUVbl
1 ^ ji-jr>VH 1
1 .io-H.VMl
^ Moi-iOvb 1
1 '<: <>5
^ j : L"> 0
1 1 :no
Oil : in
/:os
c:no
) / : (i n
1 :uS
-3:30
1 : 5S
1 : us
n:no
l : 04
c.isn
1 :05
0 : 5S
o:s(i
1 • no

U • ^"^
?i sob
1 0 7L>tC!>l 1 1 : 1 7
(IMS si Kiviiii.i i iMh TII
7H 1
79
Hf)
HI
M2
83
M4 3,'Js
^lb
Hi,
«7
hf,
"9
91)
-y |
9? ~* 1
•VI -i H
94 Au
96
97 /S
9X
99 ^1
100 9~.
101
10? 99
1
1



ll'l



1
1
1
1
in) c.

on c;
1
on d
1
(III C
DC {
\
On <-
nsOCTnO
e? 00(.' 1^0
?7f>C THO
(j Ji-,'(jV M0
1 (if It.) V' ^0
1 /nOvHO
^•i*i-jU\.' »* 0
()H|jt (. MO
isuKCHO
s?_\ft. on
iJSw'^NH ]
1 ^JAhh 1
/^ h ^1 /' N K 1
[ | LJ f." J- ^ ^ J
^ ( j j, j. |-> H )
22Kth'hl
Ob^io^h 1
ieN*K?l
1 (^r-ittf*M 1
23rt'>H(J 1
Ol/VPkMl

Of> APf*H ]
09»t-'^H 1
1 '* : U 0
1 i :;in

09 : ^S
11- /3t^
1 P : t* (i
1 7 :>-»-,
(j^ : 4 d
1 1 • '^''i
13:10
1 1 :»n
Ov : JT
n : 1 n

[ u ; L» /
^1 :nS
1 2 : U 3
13:33
1 3 : 1 0
17: no
13:o5
?i:30
0?: lb
I4:3n
13:35
	 bi
HO
.lh.50
139.00
•i 1 1 0 0
29lno
bS.oo
ri'^Ino
34.20
23.30
J/.HO
24.rt()
27.90
10r>I 1U
31 .60
37.10
37. 10
32.90
3b.60
b4.t3
3V. 10
	 bT
H.O
0.005
33.400
14. 100
1 . 760
9 .b^U
S. . 75(1
"•ti .000
5 . b 0 0
6.000
3.0'»0

2!270
6. 1MO
1 1. :. . i n n
Jl -69U
T 1 . 160
1<4.460
12.500
9.480

b!370
16.300
34.000
?.\ .bOO
34.600
TKN
0.4H
1 .00
1 .«4
1.71
0 . 7 3
0.46
Gl49
m
0.66
0.71
0.57
0.3H
0.64
\'^7
2. 7<«
0.48
0.(«H
0.51
0.31
U.bH
0.97
0.53
A=5 1 URO? •
TKN
0.33
0.73
O.bO
0.3H
0.4?
U.rb
2.06
0.26
0.19
0.22
0.45
1.19
•
1 .27
1 .bl
2.22
?.03
0.6?
0.3B
0. 72

7llO
7.10
l.OH
0.72
SKN
0.3.3
0.5H
0. 78
0.71
O.bb
0.35
0.57
ol«2
0.60
0.64
0.46
0.32
O.o4
H?
0.4fl
0.4H
0.51
0.31
0.55
0.97
0.53
SKN
0.33
0.57
O.bO
0.31
0. J7
C.21
0.53
0.2b
0.19
0.22
0.43
1 .06
•
1.13
0. 76
0.73
0.62
0.62
0.27
0.33
*
0.42
0. 76
0.91
0.45
NH3
0.10
0.06
0.24
0.07
0.04
0.01
0.20
0.03
0.17
0.06
0.07
0.03
0.01
0.03
0. 17
0.33
0.04
0.05
0.04
0.02
0.08
0.14
0. 10
NH3
*
0.05
0.10
0.02
0.00
0.02
O.OB
0.03
0.02
o.go
0.17
0.33
2.39
0.65
0.^2
•
0.27
0.11
0.12
0. 12
0.05
0.15
0. 19
0.20
0.12
N023
2.98
2.29
3.34
2.02
3.11
3.88
I'M
2.31
3.31
4.08
3.7<.
2.11
4.54
2.78
1.64
3.24
3.46
4.26
4.02
4.83
3.94
3.89
N023
•
0.92
0.93
0.28
0. 16
0.04
0.58
0.43
0.35
0.48
0.16
0.82
0.64
0.94
1 .04
l.Ofl
0.90
0.9fi
0.64
0.74
0.52
0.46
0.49
1.05
0.49
TP
0. 11
0.21
0.52
0.50
0. 14
0.10
0.43
0.09
0.32
0.09
0.10
0.13
0.08
0. 08
0.24
0.68
0.08
0.06
0.06
0.07
O.Ob
0.45
0.07
TP
0.10
0.14
0.08
0.07
0.13
0.07
0.71
0.05
0.05
0.09
0.03
0.04
0.05
0.02
0.90
0.63
0.72
0.02
0.05
0.26

•
•
0.09
0.36
TSP
0.06
0.04
8:8?
0.05
0.09
oloe
O.Ofl
0.07
O.OH
0.06
8:8?
8:?2
0.07
0.05
0.05
0.07
0.07
0.36
0.06
TSP
0.08
0.05
0.05
0.06
0.07
0.05
0.06
0.04
0.03
0.04
0.0?
0.03
0.05
•
0.04
0.04
0.04
0.01
0.04
0.04
•
0.04
0.07
0.05
0.06
OP
0.05
0.02
0.05
0.05
0.05
0.07
0.03
0.06
0.02
0.06
0.06
0.04
8.06
.04
8:85
0.04
0.04
0.02
0.05
0.07
0.05
0.06
OP
.
0.04
0.05
0.04
0.03
0.03
0.02
0.03
0.01
0.03
0.00
0.01
0.01
0.01
0.02
0.03
0.02
0.01
0.02
0.02
0.02
0.02
0.04
0.03
0.02

-------
STATION NUTRIENT DATA
OKS btr-
SS
S6 rV
S7 ?,>.
•^Q
M.)
6? ?'"
M" '•'b
h'.
KC.
^ 27
hH
70 ?9
71
72
7 <
74
7S
?6 j '
7 7
OHS Sl-
7H
79
HO
H 1
H2
H T
Hi. 7ijt'
•*S
^f'.
£p
rt 9
''I!
•' 1
•V? ". 1
••n •_•>.<

9^
97 r->

99 -M
1DO 'yi
101
•/'llKlbl
1 1 7M'bH i
1 PI. A IK 'HI
d ?n/H;'i41
| ] <. s (• H b 1
* 1 -iSh HM 1
1 21Sr. ^hl
1 c* " Sh P^ 1
•? (il'tCTHl
1 O^uC. fMl
2 ^ioCTb'l
1 * 02KJ*'h)
1 d9i-lOV(tl
1 lt>M(.)Vbl
1 /^ 1 i J f ' V H 1
1 i 1 1 ' J (. ' V ^ 1
t' ^ Ui-IDv h [
1 07IJtC!)l
i/,, n HH TII
1 OhoCTnO
1 ^OOtl^O
i^ 7 ^ i C T H t \
0 't i ; u v M i )
1 or 10 v**0
1 /I'jOuHl)
(/(I r> ^4i-iOV."<0
(jhljf (_^i)
1 MJh Cl'O
 j : Sd
1 1 :oo
0 o : in
Icino
n 7 : 0 o
1 1> ; 3 b
1 1 : bs
1 1 |4b

1 1 : 3b
1 j'ins

1 0 • Sd
1 1 :oo

1 u:4'i
••>. 1 : 0 0
1 1 : 1 7

1 '. | 0 0

09145
0 ^ • '* S
'i:^'

1 7 I /^'i
ijQ :  \ . ^00
TKN
0.48
1.00
I.b4
1.71
0.73
0^49

0 .66
0.71
O.b7
0.3H
0.64
2^4
ol48

ol5l
0.31
O.bH
0.97
O.S3
TKN
0.33
0.73
0.50
0.3b

0.25
2.06
0 . 2b
0.19
0.2?
1 *19

1 \c-.l

'd . if?
?.0 j
0.6?
0.3b
0. 72
^
7.10
/. 10
l.OM
0.7?
SKN
0.33
O.bH
o.?e
0.71
O.bb
0.35
O.b7
0.47
0 .H2
O.bO
0.04
0.46
0.32
I)!b9
1.17
0.48
0.4fl
O.bl
0.31
O.bS
0.97
0.53
SKN
0.33
O.b7
O.bO
0.31
O.J?
0.21
O.b3

0*19

1 Io6
p
1.13
0. 76
0.73
0 .^>2
0.4.2
0 .27
0.33
m
0.42
0. 76
0.9|
0.4S
N
0
0
g
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N

0
0
0
0
0
0
0
0
0
0
0
2
0
0

0
g
0
0
0
0
0
0
H3
.10
.06
IDT*
104
.01
.20
.03
.17
.06
.07
.03
.01
.03
.17
.33
.04
.05
.04
.02
.08
.14
.10
H3
>
^Ob
.10
.02
.00
.02
.Ob
.03
.02
:?9
.33
. 39
.65
.42

127
"12
Il2
-Ob
.16
.19
.20
.12
N023
2.98
2.29
3.34
2.02
3.11
3.88
2.39
4.61
2.31
3.31
4.08
3.74
2.11
4.54
2.78
1.64
3.24
3.46
4.26
4.02
4.83
3.94
3.89
N023
t
0.92
0.93
0.28
0.16
0.04
0.58
0.43
0.35
0.4B
0. 16
0.82
0.64
0.94
1.04
l.OA
0.9H
0.9ft
0.64
0.74
0.52
0.46
0.49
1.05
0.49
TP
0.11
0.21
0.52
0.50
0.14
0.10
0.43
0.09
0.32
0.09
0.10
0.13
0.08
0.08
0.24
0.68
0.08
0.06
0.06
0.07
0.08
0.45
0.07
TP
0.10
0.14
0.08
0.07
0.13
0.07
0.71
0.05
0.05
0.09
0.03
0.04
0.05
0.02
0.90
0.63
0./2
8-8?
0.05
0.26

*
.
0.09
0.36
TSP
0.06
0.04
8:8*
0.05
0.09
0.07
0.08
0.08
0.07
O.OH
0.06
8:8?
8l?2
fllo7
0.05
0.05
0.07
0.07
0.26
0.06
TSP
0.06
0.05
0.05
0.06
0.07
0.05
0.06
0.04
0.03
0.04
0.02
0.03
0.05
^
0.04
0.04
0.04
8:8i
o!o4
t
0.04
0.07
0.05
0.06
OP
0.05
0.0?
0.05
0.05
jj:8?
Ol§6
0.02
0.06
0.06
0.04
0.06
0.04
0.04
0.09
0.04
0.04
0.02
0.05
0.07
0.05
0.06
OP
%
0.04
0.05
0.04
0.03
0.03
0.02
0.03
0.01
0.03
0.00
0.01
0.01
0.01
0.02
0.03
0.02
8:82
o!o2
0.02
0.02
0.04
0.03
0.02

-------
                                                            STATION NUTRIENT  DATA
O
I
0>J5 STKM-li:
103 00 00
104
105 1-4
1!^
07 19
Ob
09 .«!
10 US
1 1
1 2 3'»
13 :t^
1 *4 ** l*
IS tl
16 '.-,?
1 7
1 H 1 l> 1
19 1>,4
20 J.,4
21 /?
22
i 23 1"3
24 1 c1 b
?S
26 1 •*-
>q ?„..
29
"10 20"
!?
"1 1
34 ?-3
35 ? b ^
36 ?'.!,
37
3*
1"
'•0
'«! 2;'9
4?
4 3
44
1 45
1-6
147 "l.tn

00

(Ml

00
11(1

0 1
'1. t
i'O
.1"
lli'

U (.'
i) 1
i),-
Illl

III)
On

11(1
on

00


00
III;
00



no





110
r T--K
r-
\
e
i
£
i
r
e
\
?
2
f
if
?
i
(• %
'f
s
r
1
c-
S
i
^
C
1
f
1
1
d.
S.
^
\


,





f.
Til KLO 1KN SKN NH3 N023 TP TSP OP
in.iMivf'i
«•(!«. i'H>l I
f- 4 4 P h H 1
^7AK^hl
cVAHKHl
0 4 M « Y M 1
1 IMAY.?1
15NAYH1
| f.Mtt Yh 1
19M'\r«l
^* fl M A Y ^ 1
? r4 "1 A Y H 1
j|.1»YMl
I) | JUIMfc- 1
II A J'J( If". 1
1 O.JU'J^ 1
1 3.UINM1
j I* J( JJ-iM 1
f 0 »jl INf 1
/ 9 , 1 U F-* ^ 1
6?J'lL>i|
04 J'lLHl
I JJi'LHI
1 .tJllLol
^JUI bl
f f.»lLh\
r"f -I' 'Li 1
03'MH-^l
1 7fl(.iu^l
JJMIO*!
l^-st.f-al

f* 1 Sc KO 1
^H st (' o 1
O^ijtTM
l?OCTbl
e'bOCTHl
i>^NO>/*>. 1
iJ9uu\/Ml
1 ^rujVI 1
2 Ji-JOVri 1
jOf-iij V '< 1
OJ-ilt( H 1
15:00 30.200 1.90 0.47 0.13 0.48 0.86 0.04 0.02
1".»:40 4.590 O.J9 o.<-H 0.05 0.35 0.03 0.03 0.03
00:40 6b.400 3.47 O.b9 0.21 0.57 1.47 0.04 0.04
13:21 10.300 0.21 0.21 0.07 0.13 0.06 0.05 0.04
Os:40 •f.BSO 2.26 0./4 0.26 0.20 0.93 0.05 0.0?
M:32 10.300 0.44 0.^7 0.07 0.29 0.07 0.06 0.02
00:26 4b.J90 J.4Q 0.97 '0.18 0.49 1.62 0.09 0.05
13:47 6b.OOO 2.02 0.47 0.09 0.74 1.07 0.08 0.06
12:50 10.300 0.62 O.bl 0.10 0.62 0.10 0.06 0.04
07:1? 25.500 1.99 0.65 0.22 0.46 0.87 0.06 0.03
14:?? 16.900 2.26 0.46 0.10 0.72 0.89 0.05 0.04
1^:31 22.b4() 3.H7 0.4S 0.09 0.52 1.32 0.04 0.04
14:?.4 b.H?0 3.11 0.38 0.10 0.53 1.68 0.08 0.03
I4:i)" 5r.?bO 1.H7 0.34 0.08 0.57 1.71 0.21 0.05
1 K-.S b.OOO O.Hl 0.4? 0.09 0.48 0.13 0.07 0.06
HS:44 36.130 4.07 0.34 0.06 0.21 1.92 0.05 0.05
?M :S9 757.000 2.70 0.58 0.31 0.71 1.48 0.21 0.1H
13:. in 46.630 2.74 0.92 0.39 0.47 1.25 0.16 0.07
17:S7 ^.HHO 1.39 0.76 0.13 0.19 0.48 0.10 0.06
l?:->2 
-------
                                                             STATION  CHEMICAL  DATA
00
OHS STivMNu I
1 22*»
2 22*
3 ?2d
u .
<^ .
6
7
fl
Q
10 29 *
1* :
13

1^ 32,!- <
1* (2-» ,
17
11
1 *•» •
20

2 2 •
23
24 ~»J £
25
26  / ,
** b'
*+^ 1 ^i** <
u7

<4<5 1 M t> <
SO
M
b2
b? ;>19 ,

rHt
•
' . 1 S u u(ib o • ,
o j»vf-. HBO :
I S ^ f r* f ' U :
22SkPB(i:
?9St PHO :
060CTHO:
20UCTHU !
' 2SOCTHO:
270CTHO;
lONOVHO:
1 7NOVHO '•
1 1 7 f -4 u v b o :
?4NUV*JU !
0 1 0 1. C ^ 0 :
(IH|lt (.HO !
l*^:Jt CbO •
? r L J t. C H 0 J
Ob J£ ''IH 1 :
) ^JAN^ 1 !
^^jAfgHJ :
' n2H fc bf 1 : i
')9h K-K 1 !
1 ] K r i><4i :
23f-"K-if*l!
iiV.'Af,Pl :
1 h'-'.AHM 1 :

•" 1 2AHHH 1 : i
- j t, AP^H | t 1
'<; 0 ft P w P 1 !
py/tPrirtl :
: 0 1 ^i A Y b 1 i
t)^f't u T H 1 :
: IV.aY^. 1 :
1HMA.Y81 '
' c*9MflYyl!i
i o UtJNfl :
'. a jjiiNHl :
.; f|i, J|J|J> ] I ,
~' (i^. JII.JH l :
'i^ J!.i'J8 1 :
•* [ ** Jl INH 1 • 1
JH i :
2vjiiMH i :
04JIJLH|:(
13JULH1 :
2fl JULP 1 :
2?JULM1 :
-1 2^* Jl iL b 1 I
f)3«tiOPl :
Til
J7:JO
^3:30
11:00
*» • 09
1:00
0:15
1;00

id|00

2 : o o
6 : 09
d: 10
0:00
1:20
3:05
3 • J5
O: JO
<4 : 1 0
1 !4S
0:^1
)^:00
o : us
o: JO
0:55
1 :on
o: Jb
0 :00
'. 3 : 0 0
j'3 ! 00
1 • 30
O'.OS
1 • t>0
o: J2
2'- 00
0: IS
>'<;•• JO
o: JO
2:^S
•>2:4S
J6:oo
1 : 10
'b • 0 0
0;t>5

i§:UU
0 • 3S
1 ; J "-)
0 • (^0
4:l)o

FLO
14UO

43^2
35.6

<« 1 .6
1 h6 . 0
31 .8
351.0
51. *
35.6
^* 1 • 6
34.2
1 J 2 • 0
340.0
61 .0
*3.2
J7.1
36. 0
4J.2
JU.b
Jb.6
5bO.O
64. h
9J9.0
481 .0
** 3 • '
-------
STATION CHEMICAL DATA
OH? sTWMtju FYPK
bb . 1
bO £?n (>
b7 r?S.^ t.
b8 <^n 2
^9 . 1
6(1 . 1
61 ?us. 2
*?. . 1
63 2bb 
77 . 1
0
1
OhS -iT'-HiNU TrPt
7fl
79
MO
81
h2
H3
84 32<>.0n ^
US
f t")
M7 . !

H9 !
Vli ' .
91
*? bi.no £
93 bJ.Od d

95 I 1
96 . I
97 7S.OD f.
99 41 1 00 <;
100 96. QU £•
101 . 1
102 99.01' c
Til
1 nation i
1 1 At Ki^ 1
1 f3 M JOH 1
16MIOH1
1 7AUObl
P 1
\it^t PHI
1 5 S 1 1-' H 1
>bbf'?El
6 K)C 1 8 1
ObOCTHl
1 £UC 1 b I
^ 3«)C [ 8 1
c'O'jClbl
0 2 'M 0 V t? I
(I9M.H/H 1
1 6MJ Vb 1
2 3NO VH 1
3CNUVM1
fi7L)LCH|
13
f> '\
\\
00
1 'ft
1 f'
07"
1 1
16
11
1 ^
li
1 1
16
11

10
11
10
)l


:os
: So
:oo
: 10
: ub
: o 0
:oo
:ob
: Jfl
jbb
• U 0
:U4
:3b
:bO
:p^

:bO
:00
:^n
: 17

FLO
J8.50
139.00
lbb.00
97.00
44 . HO
29.00
89.00
25.80
b4.no
^.'hO
37. bO

27I90
bO.50
106. 10
.H .60
37.10
37.10
32.90
35.60
37l 10

• blA=b
LPH
f
6l9
6.5
6.6
m
m
7.3
^
6.8
•
7l2

m
,
%
,
9
.
•
1\2
9

UKOl 	
LCOND LTALK LCALK PH
7.5
335
255
290
9
e
220

235
•
265 40

a
,
^
.
•
37
•t
200 35
30









5






0

.

,
7.4
7.4

7lfl

7!e
6.9

7.8
7.3

^
7.6
7.5
8.0
7.8
7.6
0 0
0 0 7.5 ,

00
8.1

m
,
7.5
10.6

9^9
.
9.0
8.3

10." 1
6.9
.
• .
9.1
13*3
11.4
9.9
11.8
10^4

TEMP
25.0

^
.
21.0
18.5
.
20.5

Ibio
16.0
^
u*o
11.0
.
*
15.0


3.0
6.0
4lo

COND
200

^
.
205
275

310
.
§55
m
255
260
*
.
210
205
210
205
190
185


Tl 1
06C-C IHO: !<•
20',.Lrno: 1 1

0.1iNJ' jVP 0 ! 09
1 ONOVHO : 13
1 /'-JOvdo! 1^
?^4 >'jtj \/HO : 17
CHutCbO : 09

?20tC«o: 13
OSJANhl : n

^•6 jflfjy i : ) li
09h h HM | ! 1 '/
^OF I-HH1 : 18
221- MsH 1 : ? 1

(j9"ld\vH 1 i 1 3
lf,:i (\wHl : l (
l»v"!AKH 1 : 1 7
?3^1AwHl : 1 3
01 AHKH1 :21
06APhH j ! 02
Of'APWH j:14
OVAHKnl : 13

:00
: JO

I 45
: £§
:-»u
• ^b
:30
:b"i
: 10
:00

: 10

:<.?
: ub
• 0 3

: 10
:no
:o'r>
••'JQ
|lb

:jb
fLO
0.605
33. <«00
!<•. 100
1 .760
9.590

*» O . 0 0 0
5.500
6.000
3.040

2^270
6. 180
If. 100
jl .690
77. 160

I?l500
9.480
14.800
8.370
16.300
34.000

34I60U
LPH LCOND LTALK LCALK PH
t
.
,
,
t
t
b.a

f
^
^
.
*
.
6.7
6.4
5.6


6.3
6l8
6.7
^
6.1
6.8
,
6.0

,
,
160 .

m
9
13.0
• i
,
.
C C -? ' •
20S

ills

165 I
125 I
175

6.5
6.4
) 6.0
5.8
5.5
•
6.2
6.6
6.3
5.4
5.6
5.7
5.0
.
.

6.1
5.9
*
6.8
,
6.3
165 13lo 0
00
07
8.7
10.6
10.2

1 1 • o
0
10.4
11.4
14.4
14.2
12.6
12.8
14.2
v
.

12.0
12.2
.
16.8
.
10.4
.
TEMP
16.0
14.5
9.0
6.0
10.0
5.0
.
9.0
4.0
1.0
2.0
1.0
4.0
1.0
,
.

6.0
7.0
,
7.0
.
11.0
•
COND


1 45
140
40
130
.
145
160
145
175
iao
165
160
«
.

155
145
•
140
.
150
.

-------
                                                              STATION CHEMICAL DATA
O
I
OBS
103
104
105
106
107
1 08
109
110
111
1 12
Ii43
1 1 ^
116
III
119
120
1 ? 1
122
123
124
125
126
127
128
129
30
31
32
33
34
35
36
37
3P
139
140
141
14?
143

145

1471
ST"MN(J
100.00
^
1 14.00
.
1 19.00

131 !oo
13S.OO
*
139.01
1 39.03
1 4 8 . n (i
1 5 1 . 0 n
152.00
1 6 1 I 0 0
1 64 . () 1
164.02
1 72.00
f
In 3. 00
185.00
*
194.00
9
206.00
9
3 0 ^ » 0 (•
B
f

2O.OO
ifSH.Oo
?^0 .00
f
r
f
f
299. OU
*

^
m

336. OU
TYI't
d
1
2
1

f
2
1

£
£
d
\
d.
2

{
\

d.
\

1
2
1
tL
I
1
1

^
t'
1
1
1
1
1
1
1
1
1

Til
1 UAIJi-'81
^ p /\ ^- *jft |
24 At-kH I
2 "/ ^ P w 8 1
2 V A H r^ rt 1
"4MA1M1
15KM8I
1 8«6 Y8 1
] ^/h" A Y 8 1
2H-AY61
3JMAr81
01JUI-J81
08JUN81
1 OJUM81
13JUNH1
14JIUH1
20JIIN81
l**7 JUNH J
0 ? Jl IL H 1
04 JULH1
1 3JULHJ
1 3JUL81
20JUL81

2 / j( IL fci 1
2% JDLH 1
0 3»*uG8 1
10AUG81
1 7 M IG8 1
3 1 Al Itj8 1
1 6^h P8 1
1 7SI- i-'h 1
2 1 ^ t P8 1
^8 St ^8 1
o 5 ( i c l w i
l?liCTHl
O?WVP{
09NOV8.1
16^0^/81
23NOV8 1
3 0 ^'J Cl v 8 1
C?UE. CP 1
15:00
13:40
00:40
13:21
0^:40
1 j : 32
6n:^6
13:47
1 d : 50
0 7:12
lrt:3f
14:24
14:09
13:45
05:44
^o : 5 v
13;J*

J p ; u £
09:56
1 0 :28
12:40
i 4 : 40
13: JO
17:16
13-15

14:20
1 4 : 25
14: 25
15:44
12:1^
1 s '• 35
l4:o5

13:10
] *^ * ** *3
11 :b9
13:25
13;20

13:?n
01 :c3
FLU
J8.200
9.590
(?5.400
10.300
9.850
10.300
45.390
65.000
10.300
25.500
16.900
5^820
56.250
6.000
36.130
757.000
46.630
2.H80

81910
15.400
0.429
1 1 .400
0.578
9.650
1 .020
22.700
3.510
3.680
3.890
19.600
22.900

41460
4.680
2.000
0.662
49.100
jr.fioo
4.2bO
2.330
3.040
3.04Q

b 1 H=31
LPH
7.1

6l3
.
5.9

bia
6.6
,
6.6
6.7
6.8
/.I
7.2

7!2
7.1
6.5

6 • 0
6.1'

els
*
7.0

6.7
w
m

b'.i
6.7
7.5
^
^
B
^
l.d
%
1
%
.
7.2
LCONO LTALK LCALK PH
160
12
175
.
155

ffi
.
140
140
120
130
110
120
85
100
140

155
120 18

130

250

205

m

120
120
105




15b

20


140 16
0 0 6.7
.















5


















0


5.5
,
6.5
:
6.3

•
.
.
6.1
,
.
m
6.0

.
6.7

00 TEMP CONO

• .
11.0 14 155
.
i .
11.0 16 135
,
t .
9.0 15 125
;
8.' 9 1
.
•
.
,
7.5 2
.
.
^
8.8 1

9

3 12




85



135


5.3 25 140

t .
6lo 6.4 28 115

&I?

6l7
6.9
6.9

m
.
•
• .
8.4 24 110
,
5.1 2.
7.3 2l
» *
3 125
> 120
7.2 23 105
.
^
,
» .
» .
» •
7.5 8.7 17 130
6.7 6.4 18 140
7.5
6.7
7^0
6.9
7.3
7.3
6.9
5 6
10.2 14 130
7.6 1
i | P^j
6l6 17 130
l^.^ 13 130
10.4 1
I 140
9.4 4 125
11.? 7 120
.
1 .

-------
STATION SOLIDS AMI) ORGANICS DATA
ORS
1
5
4
s
h
/
H
9
10
11
12
13
1 4
' 15
16
17
1 *"*
14
^0
d\
??.
?3
?**
?^>
26
27
2*

3d
31
32
33
34
35
3"b
37
3«
J9
40
41
** ?
** 3
4^
^S
A h
47
4H
49
51
52
53
54
STKf'NO
224
224
.
.
.
w
.
,
299
f
f
*
.
322
329

w
.
.
,
,
.-
33
9
42
54
m
.
,
B
1 ft^
1 6**
9
,
1 f* 1
. .
1 3b
,
1 1* 9
.
1 b*+
1 ^>b
1 b V
^
) t><*


1H5


209
.
TY^E
m
*
1
1
1
1
1
1
'f>
I
1
1
1
2

1
1
1
1
1
1
1
^
i
2

1
1
1
1

2
i
1

1

1
^
1
'(?
c
'g
1
<"*
i
1
/
i
1

1
Til
*
j 1 AU(>80:ii7:30
OHSKP8Q '11:00
15SFP80: 14:09
22StP80 : 1 1 : 00
29SEH>bO: 10:15
060CT60: 1 1 :00
l(JW(M -
COO
^
.J9l2
8^2
8.0

4^0
3.6
8.5
58.0
10.5
6.0
10.0
7.5
24.0
20.0
5.9
5.9
2.3
4.8
3.6
2.2
3.8
137.0
9.9
160.0
UO.O
^
<*.*>
** » 2
11.5
170.0
111.0
7.9
12.7
24.0
12.2
33.9
9.6
36.0
8.8
73.4
84.0
168.0
4.6
13.9
50.1
7. a
76.6
12.6
10.4
6.1
122.0
6.2
ISS DBOD5 BOIJ5 080020 BOD20
<
130 !o
194.0
3.0
30.0
5.0
2.0 1
1.5
1.5
643.0
11.5 2
1.5 L 1
2.0
3.0

203lo
3.0 L 1
3.0
0.0
H.O
3.0 1
1.0
4.0
1S70.0
20.4 4
6
1649.0
2.5 3
1.0
1.0
1.0
1735.0
982.0
5.0 1
4.0
277.0
6.0
254.0
16.0
396.0
15.0
/72.0
932.0
20.0
16.0
139.0
19.0
6.0
685 • 0
5.0 L 1
4.0
5.0
2090.0
d.O




8



6 3
0




0 2



4 2



2 6
2 G 13

0 3





7 5















0 1











S





1



0



3
0

7





0















9




-------
                                                        STATION SOLIDS AND OWGANICS DATA
o
ro
OriS
5 'j
56
57
58
59
60
61
62
63
^4
65,
66
67
68
69
70
71
72
73
74
75
76
77
OHS
78
79
no
81
82
"3
H4
8S
86
8 1
Hrt
89
90
91
92
93
94
95
96
97
9M
STk'-'NU
•
224
224
2^8
•
•
242
•
25fc
•
•
274
•
•
296
2VH
•
•

•

334

rm. in
1 lOAUObl
C llAMObl
2 12AUO«1
2 IhAljGril
1 7AUOH1
24Alld81
2 30AUC.8
14StfJ61
2 15bt.Pbl
2 1 SF PH 1
28SEPbj
2 OldCTbl
050CT81
120CT81
2 23HCT81
2 260CT81
02NOV81
09NOVH1
I6NOV81
23NOVbl
30MIVH1
 06AHHB1 :02: 15
OOAPKHI : 1<«: 30
3 OVAHRHl : 13:35
	 v,|fl=3
FLO
38.50
139.00
165.00
97iOO
44.80
29.00
HV.OO
25.80
84.00
34.20
23.80
37.80
. 24. bO
27.90
50.50
106.10
31.60
37.10
37.10
32.90
35.60
5*.. 83.
37.10
C T A — C
FLO
0.605
33.400
14.100
1 .760
9.590
2. 750
4H.OOO
5.500
6.000
3.040
4.250
2.270
6.180
16.100
31.690
77.160
14.H60
12.500
y . 4 tf 0
14.800
8.370
16.300
J<».000
21 -SOO
34.600
1UKUI -
COD
•
19. b
32.0
28.3
14.4
9.6
6l3
25.8
6.1
7.6
46.6
B.l
4.8
25.9
46.8
7.8
7.4
4.6
3.4
6.2
34.3
3.4
COD
*
16.3
14.5
14.0
1H.O
12.8
36.0
9.9
8.6
6.4
10.4
4.6
12.4
Ulo7
7b.O
•
Sri
21.6
5.0
146.0
30H.O
36.?
3b.O
TSS
22.0
1 1H.O
425.0
352.0
31.0
2.0
341.0
1 .0
J62.0
3.0
2.0
79.0
0.5
1.5
107.0
149.0
1.0
1.0
2.0
2.5
0.5
200.0
0.5
DBOD5 BODS DHOD20 BOU20

















1




















3 2




















3




TSS DBOD5 BODS DBOD20 BOD20
2.5
15.
6.
1.
b.
0.
251.
2.
1 .
0.
5.
1 .
1.
6.
350.
114:
i:
12S.
0.
94^.
2032.
H.
144.
5
0 3.0 3.3
0 L 1 .0
0 . .
5
0 . .
0 . .
5
0
0 2.2 3. 9
0
0
4 4.0 6.0
0
0
0 . '
84.8 S.5
.
0
0
0
0
0
0 2.1 4.1

-------
                                                        STATION  SOLIDS AND OHfiANICS UATA
O
I
UBS
103
104
105
106
107

109
1 10
11
1 12
1 1 3
114
1 15
11?
"9

20
21
122
1 ? 3
124

126
127
12M
129
30
131
32
33
3*+
3S
36
37
34
39
140
1 4 1
142
145
144
145
146
147
STI'MMU 1 YPt T 1 1
100.00 2 10APWHI
1
? 0 A P H H 1
114.00 2 ?4APKbl
1
119.00 i
1
? / A M k 8 1
' 29APP61

131.00 2 I1.-1AY81
Ub.OO 2 lbMAY81
I
It-iMAYdl
139.01 2 l^MAYbl
139.03 f
' P' o M (» y H 1

isjloo 2 3IMAY81
152.00 2 01JI 1(481
1 UHJUN81
161.00 2 10JUH81
I64.ni c: 13JUHM
I'j4.li2 2 14JUN81
1 72.0(1 2 20 JMM41
.
p-y J( if.JH 1
l*O.l'U 2 O^JHI-81
lnb. (H) t
.
1 44 . (Ml c
.

" 'I
' 04 H IL ** 1
IJji'Lttl

20JUI.H1
* 25 J1 'L ti 1
2/JULHI
209.00 2 2«JULPl
.
^
.
243.00
2SH. 00
260.00
f
B
^
.
/"-*9 . (' 0
t
m
t
f
a
336.00 ,
03Al)L-b 1
1 OAUC-f 1
1 7* UO h I
3 1 A t'O^ 1
IfStfbl
1 /btP81

p^c;f fjfi J
6'iuCTbl
12()Crbl

02(<0\/b 1
09MOVH 1
1 bMOV 8 1
2 3 N 0 V H 1
30NOVP1
e O^DtCHI
15:00
1 j : 4 0
Oo:40
13|21

13:32
0 ') : 26
13:47
12:50
0 7 : 1 ?

1 o : 31
4:^4
14:09
3:45
Ob; 44

j : "^
/ : 5 /
12J42

o:2H
1^:40
14:40
1 3:30
1 1 • \ 6
1 3 : 1 5

14J20

4 • 25
b : 44
1 2 : 1 9
12* 35
4 : ijb

3|IO

1:59
4:00
3:2S
1 j|20

1 3 : 1 H
0 1 :?3
FLO
3H.200
9.590
b5.4QO
10.300
9.850
10.300
45.390
bS.OOO
10.300
25.500
16.900
22.540
5.820
bloOO
36.130
757.000
46.630

2!750

15I400
0.4^9
1 1 .400
0.578
9.650
1 .020

-------
SIM 1 DM MtTALS  DATA
85
On 3
1 •
2
3
<4
s
^>
}
H
j
\ ft
11
j ?_
j 'i
1 4
IS

1 /
M
1 y
20
1 21
22
J 23
* ^4
p-^
2^
2 7
2H-
2 •'
i ')
31
32
3.3
'34
3'i

TM
'>}
4d
4 1
43
•^ 3
44
4 ••,
4 b
47
4»<
4 'V

,
f
^
,/!*'*
•
rr^

t
f.
l
1
I
1
i
i
£•
1
1
1
i
f
s
\
\
1
1
1
1
1
/•
1
X
^
1
1
1
1
z
s
1
1
d
t
f
1
s
\
l(J*;bO
1 /riov»d
1 f'.OvftO
?'4l'!(;v.'Hi
0 101" (.. 5 0
( i H 1 1 1 C 8 ' '
1 '") 1 ' f ( HO
22' '^ ( f* (]
( • S . ) ('. f r* 1
1 2. 1''!''," 1
^hJftiMf' 1
d^f F1 '• r;
0 V ^ r ^ r-
1 1 K>- •>''
2 U'Li"
I) Vi" rt '•' i'1
1 fi.'C.KM
^>'/.|'K
(Ifi A^-1^ H
j t ' f\ p K -
j .,0|-PH
/^ 0 A 1' I-* ^
p/ap:^
O 1MJ> Y b
0 1, .••! A y M
1 ^ 1 1 /'. v M
^ ^ '-1 /i Y H
('• 1 Jl.l'W
li.i Jur-'.i
(i i. u ir i J*
IK. Ji ill)'
!• H Jl I. 1 H
[ t* JI IMI'
;VJMK~<
><^.jl ir.|><
I' '* J' 'L ^
1 J.J'O.
f1 f/ J' 't_ *^
2 / Ji U. h
^(•, JI || K
(i JlUM^


(I/
2 3
1
M
1
U
1
1 4
II H
1 1
11

10
U
0
1
1.1
.1
II
,1
1
n

0
111
II
1 1
1)
H)
.11

iry
i i
ti
i
d
in

1 !i
J
\) f-
lift
1
Ob
d
in
Us.
1"
1 1
II
V
1 ,'
1 U

: 30
: M)
:oo
: O'y
:(JO
: IS
• 0 0
• 4^
:0(i
:ss
:SD
: ii 0
: (14
: 10
:no
• 20
: os
; 1. 1^
• 3(1
: i (i

; P |
; M o
:ns
: 3d
; t. ^
: i) ii
:.ts
:00
• OS
; u o
:UO
; ^ o
: OS
; -^ o
i 'in
: i ^
• '*(!
: Ui
: t"^
; u ^
: (1(1
: lo
:nn
: ss
: i u
too
:.iS
: IS

: do
: no
n.

1-1
1 2S
4J
JS
40
4 1
1 bb


b 1
3t)
4 1
34
1 32
JnO
t>l
t4 }
\ f
J^
** 3
3H
j *>
StO
f> '*
4J^>
•4 r 1
M 3
vo

vs
1 v i
Cf ?
ft 1
t; \
\ *"* 1
ll'i
'> 1
120
b/
^ J4
310
134
83
IW

'. *
'14 1
4 1
J^
38

"3b
- ^
0
•
.0
.0
.2
.6
.0
. f*
• 0
. y
• 0
• b
. O
.6
.2
• 0
.u
.0
. ;?
a j
• 0

. ^
. ^
.0

!n
. 0
.2
.V
. 4
« H
.0
• 0
. b
. 0
. o
.0
.0
.u
. 0
. 1
.0
. 0
.0
.4
.0
. M
. 1
» 0
.h
(^
.S
. 0
.fl
"tPB
•
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
(1
0
0
0
(I
•
0
0
0
0
0
0
0
0
0
1 10
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
SPt)
•
0
0
0
0
0
8
0
•
0
0
0
•
0
0
0
0
0
I)
0
1)
II
0
u
n
u
0
u
0
0
0
u
0
*
0
0
0
0
0
0
0
0
(>
0
u







0
EZN
•
3bO
•
0
0
25
8
0
0
0
0
0
•
0
50
0
0
0
0
?0
105
0
170
0
115
80
•
<»0
0
0
ao
60
0
0
25
45-
0
HO
0
75
AO
35
35
0
60
0
120
0
0
0
85
0
SZN
•
10
10
0
8
0°
0
•
0
0
•
•
0
» 15
•
0
0
0
20
0
0
0
0
50
•
20
0
0
0
0
30
0
0
0
*
0
0
0
•
35
40
•
0
0
30
0
0
0
0
0
65
0
ECU
•
0
•
0
0
0
8
0
0
0
0
0
•
0
0
0
0
0
0
0
0
0
65
0
40
0
•
0
0
0
0
30
0
0
0
0
0
0
0
0
30
20
7S
0
0
0
0
20
0
0
0
?5
0
SCU PHF
6
0
0
0
8
8
0
*
0
0
0
•
0
0
0
0
0
0
0
0
0
0
0
0
•
0
0
0
0
0
25
0
0
0
0
0
0
0
0
30
0
2S 14
0
0 6
0
0
0 28
0
0
0
0 72
0
Zf
0 1<






































5

4


0



0

«IF
)


















































-------

0"\ Mi
ss
S^ 'f t
S7 ?,
SP rr
^0
f" 0
*~» 1 i^*'1
*?
63 c":
f->'*
*}*->
«^A f
f^ 7
».fl
*•> '-* /•'
70 ^ -
7 1
7?(
/**
75
76 -•>.
It
0-Q
Qfl
^ 1
'•*? ': 1
'v 3 *•• "5
'->/» r>u
sS
' /f™i
')! /*,
l»^
-V 4 ' • 1
100 i;
I'll
102 >J

.1-0 M"t Tl
I llifllH.nl
••4 f I | HIM- M|
' * 2 I ^•«t '(''< I
'• s )f->;i("-hi
i i 7..ii<.m
I r><.au<,HI
•^ 2 JUA'.M-*!
I l'»:.M--M|
•• T 2 I s '^ \ lj h I
I /i^H'bl
] 2oSi-'-"-l
(- 2 nii'( r(; I
I liSlll. lri|
. I I c«(. I ^ I
»f • ^ • ^ t: J(^ T M |
•« /• rn(IC 1 n I
1 IV'II.".'^ i
: 1 U;.!I'!'!VM|
• 1 ^ JI'M 1 »/ ~i I
1 JIIMliVM
»•• (': 1 HO
^/'l^i^o
J hl-'ilVHO
1 /l'ji;VH l
'!') / ^i»!ci)v/HO
OMUf.CHO
1 ^Dl- GMl
^^Mt- LHO
')S JAM- 1
) X* J A j-l f \
r'f.JRI-^ 1
1;LM- h i- '' |
illl .-• ^-OK1- I'M
IH> f •>'i'\ L1- " 1
•Jt- r (^t->^l;'^ p H
I (I1-.' /; i-l.
| | 6<-i i\ \-' f'
i;0 c ir'-i.Ml-H
1 it .<•< • '^ >•
I'M) ^ 1) | di-t'r'
i; l* ^ O^>'II-"VM
1 OhAPHf
on ,: o^An'^H 1

1
i OS
''3 ^ D
I DO
o J 1 0
U OS
\,'. 00
0 7 0 0
1 Ob
* 1C
1 -5^

c 0 0
} '!<«
1 .'S
r> ^-1 0
1 OS
u SH
i' no
0 ^0

? 1 00
1 17
l'<4 :oo
It :.MI
!' r : ^
'.' ^['c'^
1 2 : *»o
1 V ! ^ 6
f)1-': .MI
I 1 |SS

1 l : 1 1 j o

M: To
1 2 : <• 0
1*: W
<-' !('S
l/^SlI (
r<: 13
1 : 1 o
1 7: oil
1 t: i)S
-M :.jo
.1^: IS

1 .'i : US

H LO
j ?1 . S 0
1 J-/.00

y/Ioo
**4 . lr*0
2S .00
rtV.OO

C54* * 00
J** • 2 0
2 3 . M 0
J/.HO

l~ 1 .40
Si.i.50
lun. 10
31 .00
J7.10
J/.IO
3 *•* '^ 0
Jbl^O
b'* ^3
37.10
	 -5
hl.U
O.bOS
:i j . ^ o o
IH. 100
v!s4U
2 . 750
^ M . 0 0 0
b.bOO
h.OOO
3.0^0
^* * ^"i>0
^ • ^* / U
(.. JHO
1^. 100
.) 1 .h'-^O
/ / . 160
1 ** • ^»6 0
i 2 . ?> 0 0
V . 4 M ()
) t, . n 0 D
»-. . J / U
16.30(1
J<*.000

J1* .600
STATION METALS UATA

      TA = S
                                                                 86
fcHH

  0
  0
  0
  0
  0
  0
  u
  0
  0
  0
  0
  0
100

  8

  8
  0
  0
  0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
SPH
•
0
0
0
0
0
0
0
0
0
0
0
0
0
8
(1
0
8
0
0
SPt«
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EZN
0
0
0
30
0
0
0
•
6
0
0
0
0
0
0
0
0
0
50
•
E7N
20
0
0
0
0
3S
25
0
0
QS
65
0
0
70
70
60

<>0
3D
0

210
25
0
SZM
.
0
0
0
0
m
0
0
0
0
0
0
0
0
8
8
8
35
0
SZN
fS
0
0
0
0
15
20
0
0
0
0
0
.
30
25
0
0
25
20
0
25
55
0
.
ECU
0
0
25
25
0
0
0
•
*
0
0
0
0
20
*
•
9
*
ECU
0
0
8
0
0
0
0
25
0
0
0
0
0
0
0
0
*
25
0
0
410
0
0
20
SCU PBf
.
0
0 2'
0 22
0
0
0 1<
0
8
8 ;
. (
0 <
0

1
<
c
«
SCU H6f
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
0
.
ZNF
•

. 59
? 60
•

* 46
•
•
•
r 26
•
•
> 13
r 66
*
I
•
•
i 78

7NF
































































-------
STM ION Ht TALS  tlATA
                                                                                                                                                                        87
O
 I
en
0-iS STI-"
103 • | ml
|iw,
!OK ] ] •
^ f [\- 't-' ^
{>lIMtl' "
lli.I-.AYH 1
1 1 '•!" v>: 1
1 S -M V *-. 1
1 r-'-i:v Yr1 1
1 w ->AYM j
20-'1 '< Y *' i
2«.'-l«VMl
jliiAYK
1,) .(iif.,j
l.lf'.ll'rg--
1 II . Jl l^i ^

1 't ,J; tl J '•
^ (1 Jl (1-.^
("J.J.iN-"
u^ Jl l(_ ^
l.K, Jl l| H
1 3 Ji ll. I*
i 3 j' li. M
/il Jin *
(- (-, j, H f-
^ / 1 1 1 L H
f-H.Ji iL H
l'i!u!i(:M
1 7.MK.-M
Jl 'tljl>u
) 1 ) ^ 1. r ^
1 7se KM


0 '^ ( ) L 1 f'-
i i-'i'C i f
2 ^ 1 1 C T o
G2MW H
(^ O|.|( }\j H
1 ^i . ' ( t y '^
/. 3 M 1. 1 -
1 FLO
l'--:0il 3n.200
13:-.n v.svo
» n : u o f)^> • •-» (i 0
f : 2 1 1 0. 3110
.'i l) : <» (i V . K "^0
.M32 10.JOO
'O:/';; '.s.jvo
n:*.7 oS.Odu
2:s<> lu.300
" 7 : 1 2 ^'_i.SOu
1^ : ''? 1 h.VOO
1^:31 'ft1 • S'» o
-+:*-'i* "3«rt20
l^IilV Sh.2^0
}:--.s ('.oou
"•.•j;.4 3i^.l30

'<: i»i ui.Ii., jo
/:•-•? 2 . c ri n
l/;.'4^ 2.7SO
(•s*:sh e.slO
10:.--.( 1S.400
< I <* 0 11.429
4:-.n li.i+'.io
1 3 : in o .b7y
7 • 1 ^) ^ • b S 0
13:l-i> 1.1)20
s:?n 2V. 700
<-:<-ij J.S10
^•:2r. j!r.SO
s:-.4 1^.600
^:|^* 2/^.voo
2-l"> 1^*»/(IO


3! 1 i) ^I()00
3I4S 0.662
1 :S9 44. 100
'. : u 0 3 / . M 0 0
'< : r"~> t .2SI.I
3:2H ^.330
?:u."i j.o'-o
3: !'• t.0^0
fi 1 :2 ) -y.dr.0
              0
              ti
              0
              0
              0
              0
              0
              I)
              0
              0
              0
              0
              0
              0
              0
              0
              0
              0
              (I
              p
              0
              0
              0
              0
              0
              0
              0
              n
              n
              o
              o
              o
              0
              0
              0
              0
              •
              0
              0
              0
              0
              0
              (I
              n
              0
SHH
0
0
I)
0
0
0
0
0
0
0
0
0
I)
0
0
0
0
0
0
6







6

it
0
0
0
0
(I
0
0
0
0
0
0
0
(1
0
t?N
so
ISO
0
100
0
290
90
0

HS
170
60
40
80
90
100
8>

0
50
2S
0
110
0
75
0
60
0
0
0
ISO
70
HO
0

.
0
30
0
30
SO
0
0
0
SZN
8
40
0
40
0
75

0
35
25
20
35
30
30
55
60
85
0
0
20
0
0
20
0
*
0

*

6
0
0
0
0
0
0
0
0
0
30
0
0
0
0
ECt)
0
0
0
0
0
0
2S
20
0
0
0
0
0
0
0
0
20
0
0
8
0
0
20
0
0
0
0
0
0
0
0
0
0
20










scu
8
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
n
0
0
0

6

0

0
0
0
0
0
0
0
*
0






PBF
.
.
,
.
.
I
,
.
.
.
.
t
.
.
40.4
53.1
23.8
11 .4
•
b'.Q
,
37.0
9
23.0
9
30.0
,
,
.
9
21.0
22.0
m
m
9
,
1R.O
»
.
,
,
*
1.0
7NF
•
,
.
.
.
,
.
.
.
.
.
.
.
,
•
m
*
•
.
9
.
9
.
9
95
9
9
.
9
85
91
,
.
.
,
63

.
.
9
9
14

-------
                                                              SfATION METALS DATA
                                                                                                                                           106
O
I
OI-S STK-"IO
1 224
2 22"
3 ??*
i<
5
7 I
H
9
10 /"i-v
11
12
13
14
15 322
16 32'J
17
18
19
20
21
?? •
23
2b
2^ 4 2
27 b"
2H'
29
30
31
3? 102
33 1 0'.
34
JS •
3^1 121
37
38 13?
39
40 !"•>
"1
"3 |Vi
"4 1 b /
"5
"h | h'l
"7
"8
"9 IC.tj
bP

S2 .
53 2CIV
S4
T(r-t
.
? (bo ''!•"!]
I lif^t-HHtl
1 1 b ~i t (•' ti U
1 ^V^tPnll
1 iry.if TrilJ
1 2 IH. ""1H II
r' ^ Su( T Hli
1 2 /i >(' T HO
1 II.II.UV'IO
1 1 (i.ilj'voO
1 1 / •','( * '/ f. d
2 1 •/.•!(.' Vtid
£.' ^ "''llj''^.!!
1 (ili/rCX)

i 1 bi ' f ( M (1
1 r* c' t ' t C ( " )
1 <) :>.."» N o 1
| 1 2 ) A MI 1
1 f'OJ'iM'.' 1
{ H2» 1 1-^ 1
1 .r^f^Mi
c lUt'-'Jl

I i;l^-f.(-'r 1
1 1 OH Ah* 6 1
1 2 ii-i(:kr} |
1 1 1 o » p t* H |
r 1 fAMh'tf j
^ I i,al't- -H I
1 2 0 " K K o 1
1 /•' 7 /• ^ ^ t- 1
2 (• 1 K « Y fc 1
1 O"'' A Y ^ 1
^ ) Si"A TO |
f l^MnYHl
/-* f -7!-. 'i Y ^ |
1 U 1 .ICtJll
^ 114 Jl ir-il; 1
/ 0*1 J1 U-H 1
I Onjiirjf-l


1 ^9.!tJfMrt 1
2 04 J1 IL >j 1
1 1 .1 Jill.H 1
1 <^OJilLui
1 2 ' JULH 1
2 2H.JI Jl h 1
1 H.t/iIJt.Hl
Til

0/:30
^j: 30
1 1 MiO
I":ii9
1 1 :00
lo: IT
1 1 : o u
1 4 : " b
0^:00
1 i : bb
1 1 :bO

1 0 • ' ' sy
lo: 10
10:00
1 1 : e o
13 : 0 b

1 0 : 30
1 " : 1 0
1 1 |"b

loiob
1 0; 30

1 1 :iin
1 0 : 3S
KKOO
1 1 :nb

u v : o 0
11J30

11 : 5 0
1 U : Jr*
12:00
I 0 : 1 b
22: JO
1 o : J u
22:"b
n-i.:00
ll:lO
Ob: (id
1 0 : bb
lu: Ib
0 v : u 0
1 0 : Jt>
1 1 : 1 b

19100
12 : no
FLO

1 4 1 \ i)
" 3 1 2
Jb.b
"0.0
"1.6
1 (ff* 0
31 .d
Jbl .0
r-1 .t>
.'b.b
" 1 .b
3" • 2
1 J2.0
J40.U
T. 1 . 0

j?;f

"3l<;
JH.b
3b.b
•DbO.U
64. «

"HI lo
43.2
70.9
"fi ."
9^ • H
191.0
222.0
r)l .6
ol .0
iai.0
1 1 I .0
1 15.0
61 .0

(
jiolo
134.0

l"7lo

"«! i
34 1 .0
*• \ •&
32.9
3H.b
^15.0
"jb.b
	 b
LMN

400
*

,
0

*

90
30
*

1 9^>
^»0b


a
*
70

^
70
1630

.
m
*
^
^

70
a
a
^
^
.
^
•
^
^
,
m
t
bb

B
^
60
.
.
fl = bll
SMN

1
C
t
5^
i
3!
3^

(
(
b(

5i
b(
14(



5


161
16!
(


























jwui 	
J EFt
,
5950
)
)
> •
' 500
) •
> .
13225
) 840
) 260
)

) 1175
) 3200
) 535

9
,
190
t
t
1 *
) ?Ab
•> •
) *
,
t
,
t
•
,
210
.
»
.
.
•
*
•
*
.
»
*
^
2JO
•
.
.
IBS
«
.
SFE ECR
e
270
135
0
240
130
180 0
0
175

525 0
1HO 0
180
a
175
325
360 0
0
115
205
IbO 0
• *
• *
m o
£8 30
310
,
*
,
,
u
,
16 0
9
9
t
.
•
9
•
.
.
.
.
*
0
•
«,
.
0
.
.
SCR ECO
• *
25 0
0 0
0
0
0
0 0
0
0
0
0 0
0 0
0
m 0
0 0
0 0
0 0
.
»
.
o
^
.
0
0 0
30 0
0
.
.
.
•
.
»
0
9
•
,
•
•
•
t
.
•
•
•
»
0
•
•
v
0
•
«
EMI

75
.
.
6
.
.
75
0
65
.
,
30
0
0
•
.
,
30
,
,
0
0
*
•
•
*
•
.
•
0
*
.
•
.
•
•
•
I
•
•
•
1
0
•
•
*
0
•
•
SNI CC
C
0
0
0
0
0
0
0
0
• .
0
0
0
f
0
0
0
•
*
*
0
*
*
0
*
0
0
t
•
•
•
0
•
0
*
.
*
,
•
•
•
.
•
•
•
t
•
•

•
•
•
•
F



















































-------
00
STATION METALS HATA 107
QMS STtv'.'Mii IY|.|-. ri) • i-LC) tMN SMN Ef E SFt ECR SCR ECO ENI SNI CDF
S6 224 <> 11 a!!!',*!
57 22" d. |
70 ?ir- r ^ti"C IM
71 . Or' '• 1 ( i V ^
72 . UVMIIVO
73 . |;>f<0 10
1 2 : i) 0 29 . o d
0/Mid h9.oO
11: db 2b.no
1 6 : 3d H4 .00
li:5b 34.20 4
11:45 ^ 3 . M()
1 r> : Oo 37 .M(I
1 1 : 04 2«* .MO
11:35 27.90
lt>:r>0 50.50
1 1 =05 Kit. . 10
lu:bb 31.60
lu:so 37.10
1 1 :iiO 37. 10
10:20 32.90
1 0 : H 3 .35.60
c'l*00 b**.rJ3
1 1 : 1 7 3 J . 1 d


•3



















faB




23l














26









20







% 9
m m
0 0
• •
• *
• •
• •
0 0

B .
0 0

I 2 I
0 0
0 0
9 m
• •
• •
9 9
0




















5
0
.
9
0

.
.
.
0
*
*
0
0
9
*
*
t

0

QMS •;TI->..INO Tft^ 1J FLU tMN SMN EFE Sf E ECR SCW .ECO ENI SNI CDF
7H
7 9
PO
M 1
*2
H 1.1
A £4 '\ g. '-i
H5
86
q 7
flU
H9
90
01
92 bl
93 ^3
94 64
95
96
97 75
98
99 vl
1UO y6
101
102 99
Uf". I'M..
f.i><:<~ 1 '•()
^ ^'.'C T ^ 0
.J.'ll-.'iV'H)
j 1 1 -j 1 1 v ^' 0
1 1, .O'/rtO
Hll c' ^ t*f-|( IV 'Ml
U-j(JE.f.fO
IbDtf.HO
^ 2 L. t C M 0
(r->J/if-;H |
1 ^ J u f . i H 1
^" 6 J /* f- ' f 1
1 d',Mh'ol
0(1 / 2HI- f ('Ml
(1(1 2 /'/Kl't-'U
0(1 i! (J T W /. fr H |
| (1 ^N1 A P»i ]
1 i6l-/lMHl
00 2 1 h M A W h 1
J ^J^fi^HJ
flO ^ 0 i *KHH 1
0 d ^ (.i''. w^kM 1
f (' 6/1 L'h'H }
0(J •-•: <«S l-.ldO 9Q 0 940 605 000 00
(w:4'J 1./60 lob 30 690 690 0 0 0 50 0
1 J ' £*b 9.bVO .0 . 400 . 0 . .0
1^-'*0 c^./^O . 4S • 4^0 . 0 * • 0
l/ic'o HM.dOO 
-------
STATION Ht TALS  DATA
108
OF-S
103
104
105
106
107
10S
1 09
1 10
111
112
1 13
1 14
115
1 16
117
118
IIS
120
0 I?)
l 122
^ 1?3
^ 124
12S
12^
127
128

130
131
133
134
135
13r>
137
13H
1 3*3
140

1^+2
1 ** 3
1 '» A
1 ^S
1 Ah
1 **7
STf< '.I1'1
ioo.no
.
1 1'».00
.
14.00
.
Jl .nO
35. on
,
34.1-1
] ~J « ' J "J
•;»H.l.nl
S 1 . 'J 0
t>^ • 0 0
.
1'. l .on
!(-•• .a 1
1 o >* . ( • *-'
7^>.l'(i
.
1*3.00
1 ^V>. <;O
\
1 '4/» .00
.
 .00
.
»
.
^
?S*4 .00
B
B
^
.
.
1 Jf^ • 00
T t Kt
^

£
i
^
i
f>
z
i
f
£
d
cL
C
1
f_
£
S_
s.
1
^
f
i
s
1
ft
1
£
1
1
1
^
-f-
/




/





£
T 1
1 nai-i/^ |
f-ij/i^^rf 1
f 14 A p p ** j
^/AI Pal
^vy/i Lip v, |
0 i, M A Y H 1
1 1 .'1 A Y H I
I "iMA Yp I
1 oMflYH 1
1 Vri/*Yd 1
£* lll'I'* Y M 1
f. -1 i" fl 1 ,-1 1
J 1 l-:fi Yb 1
n 1 ji 'ft1 1
uri JIII.H 1
1 I.IJMIiClj
1 J j ' ; N ^* ]
1 ^ J1 II: ^ |
£• IU1 inh i
c: -tjllt-.n 1
lu' J' 11 f' 1
'.'"•JIM nl
1 J.i!.iLt> 1
1 3 Jiil bl
<0 JULMl
^J'.'Lbl
cT /• .)iiL'.il
f>t* Jl IL ^ I
o .UK K..-< i
!V'!IM!:M
.1 l »' i(-M l
I tj "^ r I- H I
I 7>t Pol
r. ISH-Hl
2 o :> !•. P H I
UD>'C. I C'l
I ^ ' > C ( i- 1
^t>iiCT " 1
1)2' :t'V H 1
n v' M J v *^ 1


.1 dhow ^ 1
(VU1- Chi

is: on -jM
3 : 4 0 ' y
on: 4ii ^s
3 : £• 1 10

3:32 10
no:^fi <»s
13:47 hS
l/i:SO 10
!'/:!«' 2S

rt • J 1 ft*
1 '+ : £ t* ^
\ M • 0 V S ft
1 J • ^b D
i'-j:^^ Jb
,r'u:t>V /VV
l ; Jf) a f^
/ : -i / ^/
' • ^f' (•*
0 V I li h ^
u:J-> li
12*40 0
4:40 11
13: 30 o
1 r: Ih  12
4 : o S 4
j : **s <+
3 | 1 i) 2

1 : '_•> 4 ^ **
14 : uo J 7
1 J : ^S 4
J • f (> t-
2:bO 3
1 3 : 1 B 3
ol i^:) 4
fLO
.200
Isvo
• ** 0 0
.300

1300

!ooo
.300
.SOO
• 4Q 0
. b** 0
,^>^o
f**3 0
.000
.130
.000
.630

• 7S 0
.yio
.400

1400
.b7b
• f^SU
.020
. 700
.blO

.000
.•*<>0
.700

. (jttO
.000

' 100
.100
• c. ^0
. J30
.0<»0
• u*» u
.060
	 blfl
tMN

UO



^
^
m
^
•

^
^

9
m
B
B
B
<*0

w
^
^
^

40

^
35

020

30

m

bOO

*
^
s
^
.
SMN Eft SFt ECR S(

6 640 3b5 6 (
• • • •

^
* * » *

• • • •
• • • •

• • • •

• • • •

• * • •

* • • •

• • • •
870 . 0
0 ...
* * * t

. • • •
. • . *
* . • •
670 . 0
. • . •
• . • •
6 a^o 7^6 6
B ,
0 6700 355 0
• . •
7bO . 0
• * • •
0 . 500 . (
0 (
0 7170 395 0 (
0 (
. ...
• • . .
. • • •
• • • •
0
:R ECD

i 6

9

•
f
.
,
.
^
,
.
e
.
9
•
s
,
0

*

#
•
t
. o
9
9
0
.
0
9
0
.
)
) 0
3 0
) 0
.
^
.
,
0
FNI sr

0 (



9
9
9
9
.
9
9
.
•
•
•
•
9
*
0

.
9
9
.
9
0
0

6

40
9
130
•
9
•
0
.

,
.
,
.
•JI Cl

1










































)F











































3

-------
    APPENDIX E





RAW DATA LISTINGS





    BMP SITES

-------
STATION WIJNOFF  DATA
0"S
14*
150
151
152
153
15*.
155
156
157
159
IbO
1M
162
lll
\K
i ?i
175
1 /b
1 77
17h
179

Ibl

1H3

Ih5
1*7
1 bd
M9

191

Iv4
195
19b
197

, 199
200
201
STH^tVJ
293.00
292.00
393.00
293 I 00
392. 10
2^3. lo
29,;. 10
2^2. Ifi
293. 10
393. 10
393. 10
293.10
3'?3. 10
2^2. 10
392. 10
393. 10
393. 1 0
3^2. 10
393. 10
393. 10
^:ll!
2v3. 1 0
293. 1 0
393! lo
393. 10
309.00
J14. 00
329.00
332.00
34^.00

51 .00
51.10
52.00
53.00
63.00
/s.OO
'b9.01
4-1. 0 1

*H 9 • L1 1
f.9l01
89.01
H9.ol
b9.0)

89!o3
90.00
95.00
TYPF.
3
3
3
3
3
3
3
3
3
\
3
3
3
3
3
3
3
3
2
3
3
3
3
2
3
3
3
3
p
3
^>
^»
£
2

2
2
2
2
2
Til
18iiClhO:09: lb
loOLTbO: 10: 14
IHOCCMO: 1 1 : 19
IbOCTbo: 12:27
18OC1PO : 14: 13
1 HOLl HO : J6:4h
laocrno: I6:5b
Ibocitn: 17: lb
180CFHO: 1 7:53
IBOCIbO: 18:36
180C180: It-: 39
1HOC180: IK-.uu
IHOCTHO: ib:5o
lancTHo: lri:57
180C180: 19:07
IHOCTHO: 19:15
1 fvHl : 09: 13
30MAKM j : 09:2«»
30MAP81 : 09: 3h
30MftP8 1 : 09:5j
30MfikHl : 10: 19
30MAR81 : 13:20
31MAHR1 ! 10:44
05AHP81 : 1 7 : 30
b 1 »=S1UKU J 	
04MOVbO: 13:4<
09NOV80: 16:5(
25NOV80: 1 i:b<
2VNOV80!12:2(
09UtC80:i5:5.
24DEC80:OB:3
20FEH81 :00:4
21FEH81 :0b: 1'
22FEH8i:i2:i
25FEbbl :09:ol
05MAWBi:OV:21
16MAK61 :04:o<









31MAP81 :08:3<
02APW81 : 19:5'
05APK81 :21 :0
> FLO
0. 12000
0.13000
0.09000
0.06000
0.03000
O.SbOOO
0.43000
0.13000
0.13000
0.33000
1 .1 1000
O.b9000
0.89000
0.67000
0.43000
0.43000
0.43000
0.42000
0.43000
0.33000
0.33000
0.21000
0.21000
0.67000
1 . 1 1000
o!&7000
0.42000
0.19000
) 0.58000
? 0.36000
) 0.12000
> 0.29000
3 0.15000
1 0.61000
) 0.15000
7 0.16064
J 0.33264
i 0. 47000
« 0.05000
O.lbOOO
0.18000
0.27000
0.33000
0.39000
0.43000
0.45000
0.36000
0.24000
0.15000
« 0.47000
* 0.12bb2
7 O.bOOOO
SAMNO CMT
1.50 1
2.50 1
3.50 1
4.50 1
5.50 1
1 .24 4
2.24 4
3.24 4
4.24 4
5.24 4
6.24 4
7.24 4
b.24 4
9.24 4
10.24 4
il.24 4
12.24 4
13.24 4
JS. 24 4
15.24 4
16.24 4
17.24 4
18.34 4
19.34 4
20.24 4
21.24 4
2^.24 4
23.24 4
24.24 4
17.00 1
3.00 1
38.00 1
21.00 1
4.00 1
12.00 1
2.00 1
ft. 00 1
12.00 1
77.00 1
25.00 2
21.00 1
1.10 j
2.10 1
3.10 1
4.10 1
3:18 f
7.10 1
8.10 1
9.10 I
10.10 I
29.00 1
26.00 1
8.00 1
PRECIP
,
0.63
0.31
0.20
0.13
0.33
0.06
0.15
1.30
0.45
0.14
,
.
»
•
•
.
^
.
»
0.98
0.14
0.43

-------
                                                           STATION RUNOFF DATA
I
ro
OHS
202
203
2l>4
20S
2D6
2 Of
20M
21' 9
210
21 1
2 1 2
213
214
21S
11*
218
219
220
221
2^2
223
224

226
227

22V
230
231
232
233
234
23*
236
23?
2JH
2 J V
2-.0

21v!u
223.0
2 '{. 1 . 0

i?4* 3 • 0
2b'1.0
2 ^ H • 0
2 r- 0 . 0
26S.O
£70.0
2/4.0
24 1 .0
29 fio
2*^.0
300.0
,'DS. 0
TYPt
2
2
2
2
2
2
2
2
2
2
2
2
2
?
2
2
2
2
2
2
2
2
2

2
2

2
2
2
2
2
2
2
2
2
2
i>
2
2
2
2
2
2
2
T 1
OqAPKHl
1 ^APivH 1
1 4 Af-Kc1 1
1 7 APk8 1
<•• 3APHH 1
1 0 ^ A Y « 1
1 & »•' u Y M
2H^1 A Y h \
29'*A YHJ
3 0 M u Y H 1
01JUN81
03JMNM1
04JLINH1
06. Ji jMft j
oojuNbi
10JUM81
13JUNH1
1 9JIINH 1
25JMMH1
03JllL^l
O^JULt" 1
20JULf-. 1
d 1 JL'L ^ 1
24 IUL K 1
26JULH1
28JUL81
(1 J AIJG& 1
O^AllljM |
0 7 A ^i G A 1
1 1 AUG>i 1
1SAUG81
10 AtJGM 1
3UUGH1
Oh?tPH 1
1 5^L P h 1
I 7St P8 I
22^tP8 t
^jytjtPP 1
010CTH1
1HOCTHJ
230CTH1

250CTH 1
270CIH1
OlOtCHl
1
: 10:56
: 1^:53
: 1 6 : 2 3

: 1 9 : Ob
: 1 4 : 23
: 13 : 38
: 0 1 : 0 7
: 1 u : 33
: 2 3 : 4 u
: i 3 : 1 b
: 19:25
:20:56
: 2 1 : 1 0
:01 :0b
: 1 7 : 1 b

:20:J2
: Ob : 1 1
: 0 6 : n Sy
: 19:41
: 15:32
! 1 4 ! ?u
• 19:54
:uO: lt>
: 1 f> : 26
: 1 0 : 32
• 1 1 : ? J
:2o: 04
:20:44
: OH : 4rt
: 10:20
M3:08
* 1 7 ! U 1
• 2 (i ; ^ £
• 1 O * 1 Q
• 1 Q * ? (I
• ? 1 • ^ V
: 1 7:57
!21« 52
; 12;04

: l l : 40
i>l A = S1UK
Tl
09APP81
1 4 AP^h 1
1 b APP8 1
18APP81
24APK81
11MAY81
20MAY8J
(•* 9 M A Y b 1
30MAY81
31MAYbl
03JUNbl
04JUNbl
05JUN81
07JUNH1
09JIJN8J
1 1 JUNb J
15JUN81
20JUN81
26JUN81
03JUL81
04JUL81
21JULH1
22JULH1
26JUL81
27JUL81
29JUL81
04AUG81
07AUGbl
08AIJG81
13AUG81
16AUG81
31AUG81
01SEP81
OBStPbl
1 1» S K P B 1
ISSfcPHl
23SEPbl
28StP81
02UCTP1
180CT81
240CT61
260CT81
270CI01
280CT81
02UEC81
u J
2
:13
:I2
:10
:09
:09
:06
:>0
:09
:0b
:07
:05
:08
:07
:10
Hi
:09
:00
:10
:07
: 10
: 12
:09
:OM
:07
:08
:ob
:OH
:.13
:10
:23
:ou
:oh
:13
:OH
:03
:03
:o7
:0«
:19
:o7
:07
:01
:06
:00

:49
: 3 1
: 4 1
: 5^
:07
:33
:S4
:08
:4?
:00
:57
:20
5 *» 0
! 4 0
:44
1^*3
• ^4
: 1 2
; j^>
t Sb
:5b
:26
•37

"• J 1
• 46
:
-------
STATION KUNOFF DATA
tmS
2W
2*8
2*9
250
2S1
2b2
2b3
25*
2S5
Ib7
258
2b9
2bli
26 1
2b2
263
2*3**
265
2bb
2f>7
26^
2(>9
2711

§73
27*
275
2 / f>
2X7
276
279
IS?
OHS
*8§
2**

286
287
288
289
290
291
292
293
29<*
STK.-NO
329
332
33
*2
bO
53
89
90
95
102
1 0**
IO/
110

131
1 3t>
1 3v
163
15*
Ibl

i n
1 7o
i«b
207
208
223
22'
2*2
2*. 3

260
27-
299
STKMNO
22*. 10
2/9.00
2h 1 . oO
26v. on
30-^.00
3 1 * . 0 0
321 .00
329.01

329li) j
332.00
3**. no
33.00
TYPL
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
^
2
2
2
2
|
2

2

2
2
2
2
TYPL
•
2

2
2
?
2

p
|
TI 1
2*Nuv80 : l<»:5<«
27NUV80:22:<*8
02FKHH) : 10:36
1 1FLH81 :0*:S6
19FLB81 : 15:29
22FLH8] : lH:<.b'
30M«K8| : Ib: 09
3 1 M ** P H l : 13:51
ObAp^h ] : 17:^*9
09fipkHj : 13:25
120PW81 :20: 02
1 <« AKW8 1 : 1 5 : 4o
1 74PW81 : 20 : 50
20APW81 |07|5b

1 1MAY81 : 1 1 :5B
15MAY81 : 1* :22
19MAYH1 : 09:*2
02JUN81 :0b:58
03JUN81 :20:00
10JUM81 :05:38
13JUN81 :22: 10
20JUNH1 : 15:50
25JUM81 :20: 32
0*JUL81 508: 10
2(SJUL8|:2i:3'«
27JUL81 512:32
1 1 AU081 520:39
IbflUOHl :20:bb
30AUOH1 : l*:20
31 AU081 :09: 32
15SLPH1 521501
1 7St P8 1521510
Ol6CT81|23!01
Til
•
•

25btPHO:03:0(J
0<>NOV80 • OH : Ib
09NUV80 : 1 b : *• 1
16iiOv8o:oi : ib
?'^^JO\/rtlJ:01 :22
2<«NOVfco: 10:25
2*UUV^o: 15:02
/•>7NUVHO:OHS26
09L/t.C80: 10:SH
TI2
25NOV80:08:b5
28NOV80:08:^2
02FEH81 :20:06
12FEH81 :0i:57
22FEH81 : 12:06
2*FEB81 :09:03
31MAP81 : 05:23
02APR8U03:*5
06APR61 :05:21
10APP.81 :o*:««b
13APR81 :09:13
15APU81 :o9:^2
18APH81 :OB:20
20APR81 : 18:30
02MAY81 : 15:36
12MAY81 :00: 10
16MAY81 :oo:30
21MAY81 : 00 :*0
03JUN81 :0/:55
0*JUN81 :07:23
10JUN81 : 10:*0
1*JUNH1 : 10:bb
20JUNH1 :21 :0*
27JIIN81 :02:*8
05JUL81 :01 : 10
27JUL81 :07:05
29JUL8H09:50
12AUG81 : 17:b*
16AUG81 :0b:23
31AUG81 :07!38
01SLP81 :01 :06
17SEP81 S02:**
18stH8i :oe:23
0?OCT81 !0*:*3
280CT81:09:il
T12
•
•
1CSEP80:01 :*9
2bStP80: 12:02 .
O'.NOVbO: IbS'tb
10NOV80:02:36
16NOvbo:07:09
2*NOV80: 10:07
2*NOV80 : 1*:25
25NOV80:OOSOb
i^7NOVHO*2J* 1 '/
100EC8050b:b2
02F L'bBl :20 '•O't
FLO
0.6800*
0.5*71*
0.18000
0.76000
0.15000
O.*5000
0.33795
0.20009
0.21676
0. 13000
0.59418
0.1 1000
0.05000
0.05002
0.58*55
0.52000
O.*9068
0.09000
0.11000
0.16000
0.29999
0.3*000
O.*8000
0.16000
1.30000
8:458*8
0.30000
0.35000
0.2*000
0.60000
0.50000
0.17335
0.28000
0.35000
FLO
•
0.0*
0.27
§I03
0.03
0.10
0.3b
0.07
0.10
0.03
0.08
SAMNO
*
2
5
53
23
59
16
27
5
25
6
2

si
23
17
10
12
5
6
17
8
19
70
1*
19
11
12
33
51
7
5f
SAMNO
•
•
3.0
6.0
1*.0
8.0
7.0
30.0
6.0
5.0
53.0
21.0
36.0
CMT
2




1
1
1
1
f

]
i
f
i
i
i
t
i



i

i
i
i
i
1
1
1
1
CMT
*
•
1.0
1.0
i *°
1.0
1.0
1.0
1.0
1.0
2.2
1:8
PhECIP
0.63
0.31
0.80
1.07
0.57
1.30
0.98
0.1*

olg5
0.71
0.09
0.18
0.05
1.16
1.09
0.65
0.*7
0.79
0.0*
0.66
0.56
0.21
0.65
2.65
0.13
0.60
1.09
0.50
1.25
,
i.ei
0.30
0.50
1.58
PHECIP
•
o!31
.
•
•
0.90
•
•
•
0.21
0.20
0.8*

-------
STATION RUNOFF DATA
OHS
2Vh
247
2^b
29V
300
301
302
303
304
30b
30b
307
30b
309
310
311
3 1 i?
313
314
315
.116
317
3 1 b
31V
320
321
322
323
324
325
32b
327
32H
32v
330
331
332
333
334
33S
336
337
33b
33V
J<«0
34 ^
3<»3
3<44
SlKl-lMU
3V. 0
4 1 . 0
^0.0
03.0
/b.O
r:9.0
91.0
Vb.O
•y V . 0
101.0
102.0
10J.O
107.0
llb.O
1 18.0
1 ld.0
121.0
130.0
131.0
13*. 0
13b. 1
1 3M . (1
1 ** M • U
llU.O
1S2.0
1 b4 . 0
160.0
1 h 1 . 0
1^4.0
1V3.0
1H2.0
201 .U
2o v . 1
223.0
224. 1
2 S • 0
274.0
2 ? v . I)
2 V f . 0
2' t*\J(i^ 1
3 i Au<''fu
09btP81
15St(-f 1
1 S^h M H 1
? 2 S t P tl 1
0 1 1'C T ^ 1
Of,oCTH 1
2 lOCTf 1
?buC T 6 1
2f.uCTfil
270CT81
niDtCHl
04UkC81
ISIItCHl
1
:23:b8

: 1 v : ^9
:0b: 14
:07:2b
:13:40
:13:16
:li:31
: 10:41
: 1 8 : 48
:14:32
|OH:b3
: 1 fi : 1 2

: 14 : b3
: 1 4 : 35
: 1 1 ibb
: j M : 25
: 2 1 : 1 2

: '{? ; o,J
:13:27
|2n:20

: 1 4 : b4
: 1 7 : 4 7
; j 5 : ^4
•07-48
: 1 H : 4 1
: 16: 16
:19:37

: i ^> : S3
:03: 13
: 1 7 : ? 3
• ^0 * 0*»
: 18:.T3

! 1 b ! b9
: (jf, ; (jb
: J4; | 4
; |p; 1 14
: Oft -.27
: 2 1 : 0 7
:ii:b7
: 18:00
:il :33
O 1 M - _J 1 \jn U3 —
l^Fthbl
20FfB81
06MARbl
1 7MAh81
31MAR81
02APR81
0 t>^H^B 1
10APR81
1 1APRB1
13APR81
1 ^* APK b 1
18AHR81


01MAY81
11MAY81
11MAYH1
15MAY81
1 VM A Y b 1
r^&M A Y B I
31MAY81
02JUN81

lOJIJNbl
1 1JUN81
1 4 JUN8 1
23JUMH1
01JUL81
2 1 JUL8 1
2 V JUL8 1
1 1AUG81
12AUG81
31AUG81
IbStPBl
1 ^>S>tPH 1
22SKP81
020CT01
ObOClol
240C T81
?SOC 181
260CT81
270CT81
OlDtCBl
04UEC81
IbUECBl
:19
:10

:03
:07
:06
= 01
:il
:j°

:03


:19
:03
\\l
;22

: lo

: 0 3
: 02
:il
:12
: 10
• 10
: 09
:12
: 02
:20
! }°-

ioe
: 17
:04
:19
:10
:22
:08
:?3
:19
:19
•po
:20
:ib
TI2
ibO
|57

:07
:09
:30
:b7

J21

:40
•

:18
:29
:16
:bO
:ib

!bo

: 40
: 25
:53
:17
:21
: 49
• 52
:27
: 2S
:39
:03
HI
U2
I AA
:S9
:34
!31
:S1

:12
:07
i^I
:3b
:il
FLO
0.03
0.09
0.07
0.09
0.07
0.05
0.06
0.06
0.07
0.09
0.08
0.05
0.05
0.01
0.41
0.04
0.13
0.07
0.08
0.10
O.Ob
0.04
O.Oti
0.04
0.03
0.01
0.04
0.03
0.05
0.02
0.10
0.04
0.05
0.09
0.14
0.15
0.02
0.16
0.06
0.24
0.09
0.04
0.03
0.03
0.07
0.06
0.11
0.03
0.0?
0.05
5AMNO CMT
27.0
45.0
25.0
69.0
!a:8
36.0
33.0
24.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
4.0 1.6
31.0
8.0
.0
.0
30.0 1.6
1.3 2.2
2.3 2.2
3.3 2.2
20.0 2.2
15.0 1.0
23.0 2.0
5.0 1.0
6.0 .0
5.0 .0
5.0 .0
7.0 .0
9.0 .0
2.0 .0
24.0 .0
12.0 .0
20.0 .0
10.0 .0
4.0
7.0
11.0
3.0
9.0
7.0
3.0
3.0
.0
.0
.0
.0
.0
.0
.0
.0
18.0 1.6
5.0 1.0
41 .0
5.0
15.0
4.0
.0
.0
.0
.0
13.0 1.0
11.0 1.0
6.0 1.0
B.O 1.0
2.0
7.0
.0
.0
PRECIP '
0.31
0.85
0.49
0.59
X:!i
0.38
0.40
0.34
0.08
0.68

O.'l2
,
0.19
1.33
0.44
0.50
0.14
0.20
0.29
0.32
0.63
0.28
0.12
0.60
0.10
0.59
0.10
0.14
0.10
1.20
1.92

1 • ?5
O.lf
0.39
0.74
0.56
0.57
0.56
0.69
0.22
0.56
0.63
0.43
0.44
o.oe
0.20

-------
                                                             STATION HUNUFF DATA
I
en
OHS
345
346
347
34H
349
350
352
353
354
355
356
357
35M
351*
360
361
362
363
364
365
.166
367

369
370
371
372
373
374
375
376
377
Or
3 M t>
3tt7
3*8

390
391
39?
STK'-'NO
29-<.Ol)
32?. 00
32^.00
332.00
33.01
3.t.0?
39.00
42.00
50. 00
51.00
53.10
64.00
99.00
102.00
121.00
1 3 1 . (I li
13V.OO
!«»••*: 0(1
15d.OO
15?. OU
1M .00
1^4.00
171 .00
1 7?. 00
185.00
20V. 00
223.00
227.00
242.00
25". 00
29r> . OU
299.00
STKMUO
^04.0
204. 1
211.0
214.0
2 1 1 . 0
216.1
231 .0
w
254 . o
^
f
26^.0
i^ h 9 • 0
269.0
TYPE
?
£
2
2
2
2
2
2
2
2
2
2
2
|
2
2
?
2
c
2
p>
2

2
2
f
2
2
T YPK
2
2

2
2
2
1
2
1

2

?
Til
?5uCT*o:os:39
1 7KUVfco: 15:59
24UOVP.O : 1 0 : 22
27uovwO:21 :04
0?Kh HH 1 : Ofi : 27
02H.'ttH| : 12: 13
Otu tHHl : 13:43
1 1 !• t H
-------
STATION PUNOFF DATA
OHS
393
394
3^5
39^
)9 f
39H
3V9
400
40 1
4H2
403
404
405
40b
407
40H
40V
410
41 1
412
413
4 14
415
4 If,
417
4JH
41S)
420
421
422
423

4?S
*»2*}
42?
42*
42'i
4 JO
4J1
432
433
43'4
435
436
437
43M
439
440
441
442
443
444
4 4 1>
44f)
ST^r'NO TYPt
269.0 2 <
2^9. 0 2 <
2b9. 1) 2 <
3 <
276.0 2 (
1 (
1 /
299.0 2 <
1 <
302.0 2 <
1 (
3()'».0 2 (
1
329.0 <: e
332.0 <> ,
1 (
1 (
1
1
1 ,
1 <
52.0 2 • 0 2 '
! i i
161.1 2
	 bl«=DlUKO
Til
^5Sr HH.O : OH : 06
fb^ti-'HO : 1 0 :5b
?5st HMO : 12: 43
'V^h PHO : 1 2:45
j?OClHii:2J :50 030CT80:
J60tTbO: 10:00
:'00:09:25
:?50CTHO:o9:oo 250CT80:
?7nt,T8<>: 10:20
••ROCl 10:06:20 280CT80:
)3NJOVMO:Ob:30
j4N|(.)vfio:o«: 1 3 04NOV80:
OhUVrtO: 14:45
'4NOVMo:o3: Id 25MOV80:
'7Nl.)VHO: lb:bb 28NOV80:
JIDtCHo: I4:4b
JHUtCBO : Ob: 30
SDtCHO: 10:30
^2UtCHn: I4:2b
'hjANHl : 14:20
j9FtbMi : i 3:50
>1F> HM : 00 : 1 0 21F EH61 :
J2Ftr?Hl : 12:OB 2^f tBbl :
UMAMMI : 16:00 06MAH61:
^MukM] : 14 ; lb
>3MAk^l : )4 : Ob
iOM*xw^i:o7:5t4 31MAKbl*
1 At'kHl : 1 3: 19 OlAHRtti:
)bAMK81 : lh:()0
IVAPkMl :()9:22 OVAPR81:
2/JpWHi;i7:40 13ApW8ls
4APKH1 : l 7: Ob 14AHK61:
7AP^81» 09*12 17APKt?l5
'OAHKM1 : 14:40
7APtvt?| : J4j 35

lOAPPMi :23:()3 OlMAYbi:
) l MA YH i : ov: 3b 0?MAYbl :
)4MAYbl : 14:30
0">AY«1 : 14 : ?4 10MAYS1:
Or-'*Yftl :20: 15 10MAYB1:
IMA»MJ:O?SOH llMAYfli:
iMAYbl : 1 1:0'2 JlMAYHi:
JMAYH1 = 19:51 1 1MAY81 :
a"AYHl:oo:47 IPMAYrtl!
SMAYPI : 1 1 :SO 1SMAY81 :
HMAYMl I 1 3 !45
1JU(4H1 : 1?:20 01JUN81:
)2JUMH1 '• 03:50 02JUN81:
)bjUN«l : lb:05
ojijNHl : in: 12 10JUNH1:
, 	
TI2

B
,
i
0^:02
.

15:00

12:10

1^:15
9
03:0^
08:bO

,
.
t
t
w
12:41
12:36
09: lo
•

11:50
1?: 15
9
15 : J2
04:27
18:5f<
13:45

•
12:oO
00:56
13:i;y

17:50
21 :53
08:51
}6:16
23:32
17:46
14:10
9
(J9 * <4?
2?:02
22:00
09:03

20:10
FLO
0.1340
0.0407
0.0186
0.0686
O.lbOO
0.0021
0.0105
7.1 100
0-. 0234
0.1100
O.OK3
O.B200
0.0073
1 .0200
0 .4200
0 . 01 05
0.0021
0.0073
0.0143
0.0021
0.0143
0. 1800
0.6600
0.1300
0.0234
0.0186
0.2900
0.^000
0.0186
0.4800
0.9100
0.5400
0.4100
0.0050
O.OIBb
0.2600
0.4400
3.6000
0.0186
0.3600
1 .2200
O.?b00
l.BdOO
1.1400
0.5HOO
0.6400
0.0166
0.4200
0.4200
0.6600
0.1400
2.3200
0.02«b
0.9200
SAMNO CMT
4.6 1.0
5.6 1.0
6.6 1.0
1.0
5.0 1.0
1.0
1.0
12.0 1.0
1.0
6.0 1.0
1.0
11.0 2.5
1.0
12.0 1.0
4.0 1.0
1.0
1.0
1.0
1.0
1.0
1.0
5.0 1.0
30.0 1.0
5.0 2.2
1.0
1.0
16.0 1.0
8.0 2.4
1.0
10.0 .0
15.0 .0
6.0 .0
5.0 .0
1.0
8^
.0
4.0 .0
33.0 2.1
1 .0 .
6.0 .0
10.0 .0
4.0 .0
11.0 .0
6.0 .0
10.0 -0
6.0 .0
1.0
4.0 .0
a.o .0
5.0 .0
4.0 .0
14.0 .0
1.0
8.0 1.0
PRfCIP
f
,
0.37
,
0.51
.
^
2.25
,
0.04
,
0.28
.
0.78
0.37

.
.
.
.
m
0.09
0.85
0.37
m
.
0.52
0.21
,
0.25
0.56
0.10
0.17

•
0.12
0.10
0.72

o! 12
0.17
0.07
0.44
0.21
0.22
0.18
f
0.41
0.05
o.oe
0.21
0.50
^
0.17

-------
m

OI5S SlKi-'NO TfHE
4^7 164.0 2
44H 1 7 1 . (J 2
4 *+9 1 7^ ' « 0 2
450 . 1
451 r/fc.o 2
4bt>4 ^ 32 • u **
4 fib . \
466 <;69.i) 2
40 / 269 .11 2
46ft £69.U 2
469 ^69.0 2
4 7 (1 . 1
""'] . • '

•«O ' *° I" l
474 rJVS.I) 'S
4fb . 1

4/f 309^0 2
4 7H . 1
4 79 322. 0 2
4 HO J32 • 0 2
4fU . 1
4 ri f* 33/.0 2
4 M j 3 3 / . 0 d

"^ ' '. 1
4^56 J-^^.iJ d
4F ? . 1

4MV ! 1
4MO 3^.0 2
491 • 1
49^ SO.O 2
493 bl.O 2
444 bf?.0 2
SI A
Til
1 3JUNH1 :?! :47
20 JUn81 : 15:53
<>\ JIINHJ : 19 :08
22JUHB1 : 1^:22
25JUMH 1 : ?0 : 20
29JUMH1 : !"»: 15
02JUL>M :23: 01
04JULP1 : 05:47
1 3JUL«1 : 13:40
20JULHI : 14:35
r*4 Ji >L ^ 1 : 1 3 : 52
^bJULHl :07:24
27JULH1 : 14: 33
03ALK)H j : \u :t,y
TI t
0 1 «(J'jHO : 14 : 30
16Auo8o:o?:49
1 H A \j\?H 0*06: 12
19AlibHO: 07:31
OASK(--H(): 15:ob
2^tKMniofri32
i'SSti-HO: lo:o5
irS<;t MHO: 1 3:06
2'J^t MHO '• 1 3 : 00
06OCT80: 10110
1 1 (1C T^-0 : 1 5 : 3v
200CTMO: 10:50
2'iOClAo :OH : ID
270C 180 : 10 : 3b
0.iNUV8o:Ob: 3U
04Nuy/8o:ori:27
10MOVHO : 14:50
1 /NiJViO : 15:41
/•7MOVHO: 16:?0
I) intern: ]4!bO
O^Ut.CHO : 1 9 : n»«
02DtCho : 20 : 04
Oi^f'EC^O'^l : 12
o?.ntCMO:OH:30
09l)tCho: 10:0b
1513tC«o: 10:30
22ULCHO: 13:50
t;6jAN^ 1 : 1 4 : 20
UfjFtf-H 1 : 10:21
09 Ft. i* HI : 1J:50
19FLHH1 :?J:00
<*i.iFh.h8| : O9:<»r
21F trtBl :00:30
now HUNOFF DATA
C T A — C. 1 llOt\7
TI2
14JUN81 04: 09
20JHN81 18:20
2 1 JUN8 1 2 1 : 54

25JUNH1 2?:b5
.
03JUL81 00:01
04JUL81 15:15
,
f
24JUL81 16:47
25JUL81 07:54
^
04AUG81 13:15
T12
01AUG80: 17:43
16Ai)G80:09:45
16AU080: 09:2B
19AUG60: 1 1 :43
.
•
.
,
•

1 lOCTbO: 17: 10
9
^^OCTbO s 15 • Ib
a
*
04NOV80: 14:30
^
18NOVfO:02:22
28NOV80:05:05
*
^
,
f
.
090tCbO: 15:S5
B
*

08FEP81 : 16: 19
,
20FE.H81 :o6:00
20FEH81 : 14:44
21FtHbi:i2:09

FLO
1.7100
0.6600
4. 1600
0.0143
3.2300
0.0045
1.2700
7.0700
0.0143
0.0045
0.6500
3.8500
0.0686
0.1200
FLO
1.4400
0.0400
0.3500
0.2800
0.0061
0.0406
0.1176
0.0406
0.0121
0.0089
0.0009
2.3600
0.0018
6.2000
0.0089
0.0089
0.3400
0.0038
0.9200
0.4900
0.0158
0.1275
0.3280
0.1275
0.0089
0.3200
0.0018
0.0018
0.0018
0.3000
0.0121
0.9000
0.2500
0.3000

SAMNO
14
3
14

12
1
4
16
1

7
6
1
10
SAMNO
7.0
3.0
5.0
12.0
1.0
1.4
2.4
3.4
4.4
1.0
1.0
5.0
1.0
11.0
1.0
1.0
6.0
1.0
8.0
5.0
1.0

t • 3
3.3
1.0
4.0
.0
.0
.0
3.0
.0
1 .0
4.0
4.0

CMT
1.0
1.0
1 .0
*
1.0

ilo
1.0


1.0
2.2

2l2
CMT
1.0
1.0
1.0
1 .0
.
1 .0
i.o
1.0
1.0
9
B
1.0

i!o
*
.
1.0

i!o
1.0

ilo
1.0
1.0

i!o

,
.
1 .0
9
1.0
1.0
1.0

PRECIP
0.45
0.12
0.38

o'.s\

0^22
1.98
m
9
0.21

.
0.38
PRECIP
0.67
0.10
0.42
0.17
.
•
.
0.37
m
m
0.05
.
2.25
»
.
0.28
.
1.05
0.37
*
.
*
0.05
.
0.17
,
«
,
0.20
t
0.33
0.04
0.09

-------
                                                           STATION RUNOFF DATA
00
Oh 3
4vS
496
497
4^f4
499
51)0
bul
-SU2
503
bi'4
bl'b
b 06
Sn7
S(.;H
Si) -t
sio
51 1
512
513
5 1 u
bib
Sit,
51 /
blrt
519
^)f^{)
521
S£^*
br*3
3£4
S^^
526
527
52')
529
5 JO
531
S Jir?
S 3 J
534
Of.?
53S
S.T/
b.18
54U
541
542
STl • 0
^
2,s.o
Sl^o
29'vIu>J
3 OS'. 0(1
J 1 <4 . 0 U
v*It!i
3 /* * • 0 )
332. UU
TYPt
2
1
1
2
^
^
1

^
d
d
\
d
£
1
2
2
2
1
2
d
1
2
1
2
^
^
2
1
£
1
2
^>
2
1
1
d
^
i

TYPE
|
^
^
j>
• 2

Til
^jr,. HH] : 09: 10
09M(\K^1 : 14: is
23MrtPf< 1 : 14 : OS
30"<;KH| :OH: 1 j
ni At^WH) : i 3:40
OSAHPrtj : 13:29
06ACKK1 : 16:00
09AijpHi : u9 : 43
l^At-WH) : i«: 13
14APR81 : 1 1 :42
17APK8] : l o :07
^OAPPHl • 14*45
23ApHKi:?l:n
27APHH1 :03: 32
27AHP.H1 • 14:45
3nAr>WHl : 09: 35
01MAY«j!fo:5b
0 4 M A Y H 1 : 14: i j
1 HAYbl •' 1 1 :?5
1 S^AYM 1 : 1 2 : Ob
ItlMAYfM • 13»4b
^9MAfH| I 'd \ • 22
UttJUNM : 14:54
IP JUNK 1 : 18 : 19
1 SJUN'Jl :22: 00
20J'JNhl : 15:23
d 1 JiJ'1'^ 1 • 20 : 22
2? JON8 1 : 1 4 : 2y
25 Jl iNtfl '20J41
29 JuNtf 1 : 14 : 25
02JUl.fi! : 13:35
03jiJL81 :04:&o
04 JULH 1 : 02 : 51
13JUL8) : 13:SO
^ 0 JUL t^ 1 * I'+'SS
2** juLBI : 1^:24
^SJuLBl I 0 7 J 44
'°


.0
•IT
,0
.0
.0
.0
.0
.0
.0
.0
PRECIP
0.85

9
0.52
0.21
0.38

0^25
0.56
0.10
0.17

0.*48
0.08
9 \
0.12
0.10
0.72

Ol44
0.18

oloe

Oil?
0.45
0.12
0.38

olsi

Olo7
0.15
1 .90
w

0.21
1.43

0.38
PRECIP
0.91
.
,
1.25
1.32

olao

-------
                                    STATION PUNOFF DATA
bub
b47
bun
bbO
bbl
bb3
bbn
bbb
bb6
bb7
bbl
b^2
bM

b6b
ti'ltt
bos'
b/U
b71
572
57'.
575
b'bl
ibl . 0


 3-)Io

 •42lo


 ^.1 ID
 ':> J . 11
 l.tv.d
 W 1 . i.
 Sb.C
       1 0 / . 0
       1 lil.ll

       1 3D. (I
       1 Jb.D
       lbb.0
       1/1.0
       lh2.U
       2 1 «. 0
 .3.1
2b I . 0
       300.0
       304.0
       33b.O
                               Til

                          09ULCPO:1?::
     : 1 b: 1 1

     : IjSb'O
piARj* I : OS1: O1*
uHrfhl :15:12
                                1 : 10 :t
                  17APKH1:11 : Ib
                          : 01:55
                          iOh: 15
                          :lb:3b
                          llr'HV
                          i20:i?l
                          i^d:57
                         . i 1 7 : (l 1
                  ?IUUMH1:UC!56
                  OU'lLf'l :07! 10
                  03JULH1 : ISJcJt)
                  2H JULHJ : 10 : irs*
                          1
                         31AOL-bl : ] 1 : IV
                                     36
                  2*>uCT81 : l?:3y
                  ?70(;rHl :o?!'.2
                                 t 16:<«o
                          1 ?SLP61:0«:1«
                          OlOCTAI:21:14
                          1MUCIB1\\7\2
                    TI2

               10UEC80:10:40
               IbUECBO:18:34
               23DEC80:20:28
               03FEHHi:Oi:20
               08FEbbl:l5:iO
                                           20FEH81:;
                                    OSAPPbl
                                    09APR81
                                           17APH81
                                           20APR81

                                           12MAY81
               03JUN61
               04JUN81
               20JUN81
               OlJULbl
               03JULbl
               irOJULbj

               ObAUObl
                                           30AUGU1
                                           OMStPbl
:13!22

\IM
iOblbb
:07:S5
:04:Io
:23:07
 15:53
 12J24

 06J34

  5JOO

 1 7! 17
                                            75EPHJ
                         OlUtCHl : 1 1 :
                                           ?60CTbl '•

                                           06MOV81:
                                                            FLO
0.13
0.19
0.20
0.47
0.22
0.<»6
0.30
0.21

olou
0.36
0. 19
0.18
0.4ft
0.36
0.25
O.b7
                                                            0.17
                                                            1 .07
                                                            0.67
1.25
O.S9
1 .OH
1.25
0.15
O.b9
0.24
0.33
                                                  :07:00    O.JO
                                                  :23:04    0.20
                                   2(C
                                 0.05
                                 0.28
                                 0.35
                                 0.58
                                 0.14
                  SAMNO

                    9
                    8
                    7
                   32

                   56

                   34
                   22
                                           3
                                           4
                                          22
                                           2

                                          45
14
 9
20
 4
24



13
23


1 1

30
                   10
                   22

                    6
        CMT

        1.0
        1.0
        1.0
        1.0
        1.0
        1.0
        1.0
        1.0
        1.0
1.0
1.0
1.0
1.0
1 .0
1.0

1:8

1:8
1.0
1.0
1.0
1 .0
2.3
1.0
1.0
1.0
1.0
1.0

1:8

 :8
 .0
 .0
 .0
 .0
1.0
PRECIP

 0.20
 0.06
 0.05
 1.25
 0.26

 ol3b
 0.52
 0.88
 0.31
 0.31
 0.29
 0.2B

 o!o6
 o.oa
 1.53

 ol56
 0.22
 0.82
 0.28
 0.14
 1.63

 oluo
 8.02
 0.56
 1.4Q
 0.32
 1.46
                         8:ii
                         0.25
                         0.54

                         ol33
                         0.53

-------
                                                             STATION WUNOFF  DATA
I
o
S8<
Sbh
5^
5M9
540
S.41
b4T
b4a
545
5v6
597
598
549
600
601
602

hll<«
hii-^
606
h(l 7
60 H
bli'-y
t. 1 0
61 1
t> i i?
613
bl4
6lb
h 1 7
6 j ri
614
62P
621
622
(? ^ 1
*b ? **
0 c -J
ftc**)
h ^* 7
62H
610
i>3 1
STK'-IMJ
244.11
322lu
324.0
3-44 . 0
33.0
3-v.o
b 0 . (i
SI .0
53.0

9 1 ! 0
9b.O
VV. 0
101 .U
0 <+ . 0
21 .u
30 .0
31 .U
3-..0
34. (i
1W.U
1 <• .i . !)
1 << ••> . (.'
IS 0.0
1 b 2 . 1)
i b<» . 0
IbS.ii
lbb.0
160.0
IBjio
Id'. . 0
2fl5.li
2 \ 4 ! 0
22? lo

<; fVJ . (;
<; 7<« . o

2 ?4 » u
33i. o
j 3 / . '/
TYPE
2
2
2
^>
2
2
2
c.
2
2
2

^>
2
2

2

2
2
2
^
2
2
2
^
fi
2
$
tL
2
2
^
2

^
<:

^
2
2
TI
2bOL I Hf
^NUWBl
24NUV^'
()4O£CHf
OHRriM
1 4 F L b n 1
2 0 F L h ^ 1
22F fc.^1 H 1
1 oMAkH 1
01 AI'KHl
05 ^ HMH 1
0 4 A H k H ]
1 1 AHH"i 1
1 U A P K h 1
0 1 MA f H 1
1 0 M A Y 8 1
1 l^AYHl
1 H M A Y b 1
19MAY81
2 / M A Y H 1
2 ^* M A Y c* 1
< I
I
: o "< :
H§i
:io:
|I3|

:23:
J 22 :
: 22 «
• 12:
: 1 6 :
:16:

: lo:
: ()b :
: oti :
: 2 1 :
: 1 2 :

j 13:

• 1 3 •
: 1 4 :
: 1 1 :
:13:

1 1 7 i

ill!
: 13i

llhi
!?«!
• ^ ^ •
• 1 6 t
: Q^ ;
: 2 \ :
:on:
: 1 1 :
: 09!
: Ob!

3h
\l
05
48
34
18
49
4b
4b
30
34
L,^
Ib
32
0 ^
3d
Ib

^* /
53
flc!
t*6
10
S9
3^3
Oh


-------
STATION RUNOFF DATA
UHS STK
632 2/7
633 277
63* ell
63b ///
636 2^2
6.17 ,-',2
6<»0 d^d
6tl d^f
6*3 292
f,i»h i;4V
6^7 jO^
648 J2S,
t> M 4 3 2 •>
6~>0 M^
6SI 3^H
6 ""> 2 3 j
6 b ) '-i'i
6bM 101
6bb ' 130
6b6 1 3 1
6b/ 13,1
6b^ 139
6b9 14W
660 14ii
661 149
66? IbO
663 1S2
66'* Ibb
6t>7> !->/
6H6 171
6t,/ ltd
6r>n 1 /t>
6t-9 Io3
6 7 i) in*
6/1 d(l'>
r-.Tr- d\*
fcM 
6/9 3b/
•*IMl)
.00
.00
. UO
.00
. 0 0
.00
. 0 0
.00
.uO
.0(1
. liu
.01
. ') r*
.00
.0(1
.00
. Oil
. 00
.00
.1,0
.00
.01)
.0(1
.1(1
.00
.00
loo
loo
.00
.1,0
.00
.0')
.00
. 10
. IJIJ
. 00
. 00
. 00
.00 •
.00
.00
TYPt
^
'ft
d
'£
t
'l>
'c>
•£
'£
ft
£
'£
£>
*
2
^
^
p
f*
f>
d
e
d

2
d

~d
d
d
Tl 1
03IICTHO: 1 1
03DL THO : i 3
1 MOC1 MO : OH
1 HOC! HO: 0'9
lHUClbO:09
1'HKrflo: 10
iMOCTbO: 10
IHdC (Ho : i i
2b"C I HO : 0*
0 't ' •! 0 V H 0 • OH
2'»'H)V*iO.: l()
^'•NDV >•'(): ? r*
d 7 lfi u V H 0 : S f
OOULLHO: 14
0 pi' ^ it j- 1 : o o
(jVAH^rt 1 ; ]Q
1 JAh^K] : )()
lO^AfHj : d 1
llM«Ybl!l?
IH^AYH! *2l
19M4Y81 : 14
<>flMA YH 1 : 15
29^A YH 1 : 14
(i 1 JUK"?! : 15
06 jui'i^ 1:01
2fl vH)!'-*''1 1*12
2 1 JuNH i : 20
2bJUwfi 1 : i 9
0?JUL^ 1 : IS
OlJULH 1 : 16
2HJMLhl : IS
0 6 ALlOl 1 • 1 2
07/UH>rtj ;23
OlC'tlMl :?3
26f,CT8i : i i
010F.LH1 : 1 1

^30tCHl : 04
ill
:03
:06
:39
:06
|23
: 10
:39
: *6
:30
• "t>
ten
: 10
• S 7
|bl

J52

: lb
:20
: 26
:44
|36
:50
•44
:3J
: 56
: *^0
:OB
:02
:3S
; Q t^
\U
;0 3

:46
: ^9
:6?
b! A=blUK
? 6 0 C T 8 0
0**NO VHO
24NOVbO

2f^NOV80
OSUKCHO

OVAPWR1
1 3APK6 1
1 1MAY61
1 IMAYbl
19MAY81

2HMAYH1
30MAYbl
02JUNbl
OSJUN81
06JUNH1
20JUNB1

26JUN81
03JUL81
OSJUL81
P'JJULHl
06AUOH1

020C181
2/OCTbl
02UtCbl
IbUECbl
23l)tC81
1 1
: 02
: 13
:1.7

; Q3
:17

J16

: 08

• OS
:00
:"
loo
• 0 1
:09
:02
: OS
:22
:00
:00
:ll
no
|16

• j\ (_j
• 0 1
; ^^
• o i
* 0 o
: 09
TI2
: 45
:36
:17

• S 1
: SI

J34

J16

• 06
:32
:44
iI5
;!?

:12
:04
:16
m
:07
; ^^
:49
; Q^>
: 0 /
:33
•>dl
:46
FLO
0.00100
0.00100
0.00100
0.00400
0.03000
0.06000
0.06000
0.06000
0.05000
0.05000
0.04000
0.03000
0.03000
0.00500
0.86000
0.16000
1.40000
0.52000
0.12000
0.1 1000
0.76000
0.53000
0.58000
0.44000
0.49000
0.10000
0.50000
0.32000
0.65000
0.71000
0.45000
0.72000
0.7bOOO
0.65000
0. 19784
0.26000
0.15152
0.06592
0.53000
1 .56000
0.52764
8.41000
.30000
0.26611
0.48000
0.12000
0.19000
0.19666
SAMNO O
1.4
2.4
3.4
4.4
1.1
2.1
3.1
eli
9.}
10.1
67.
4.
34.
1.
2.
3.
48.
12.
65.
16.
18.
4.
18.
7.
13.
2*l
45.
33.
10.
7.
4.
3.
5.
56.
99.
6.
1§."
2.
29.
6.
9.
4.
0
0
0
0
0
0
0
0
0
0
0
0
0
IT PRECIP
•
•
•
•
•
•
•
*
1.50
•
0.30
0.20
1.21
0.28
0.91
0.37
0.31
0.22
0.27
0 0.18
0 1 0.27
0
0
0.46
0.17
0 1 0.41
0 2 0.22
0 1
0 1 0.20
0 1 0.11
0 1 0.10
0
0
0.31
1 .46
0 1 1.72
0 1 0.26
§
0
0
0.49
1 .46
0.44
1.54
0 1 0.62
0 1 1.00
0 1 0.14

-------
                           unS


                           t>« 1
                          f •• n (->
I

ro
                           /IMJ
                           7(11
                           7im
                           707
                           /OH
                           709
                           710
                           711
                           712
                           71 J
                           /I 7
                          7? 3
                           729
                           730
                           7)1
                           /32
                           733
    .0
   '.0
2 V*. 0
2'*v. (i
2v-<.0
                                  (•.'•«-/. 1
 21.11
 .iJ.d
 J9.0
 bO.O
 SI. II
 S^. il
                                   V-..0
                                   vj. o
 vs.. 0
1 0 I . (J
1 0 1 . 0
1 o 1 .0
1 (I I. IJ
lti^.0

id'^Iu

1U2*U
1U2.0
1(12.0

ll"l2'I(J
                                             1 YPt
                               STATION HUNOFF  DATA




                         Til
?SuCrAo:OSt 1 1
       I:OS:37


       i:07: 1 I
       i:07:4S
       i: 10: b 3
       i:11:28
       i:j2:ol



2S((Cl8o: 15:15
                        ;««:17:bO

                   09utCHo:12'bl
   .thhl : lo:bY
                            ZO-. 15
                           . : 17:00
                           :1H : 1 i
                   ObAI-^C 1 : If" :<*9
                         HI : in:36
                         H 1 : j j : o /

                           :12:ll
                                                             :11:27
                                                             : 19:11
                                                            i : 19:32
                                                           .\
?.i
?.i
.0 0.20
.0 0.16
.0 0.28
.0 0.80
.0 1.27
.0 0.90
.0 0.09
.0 1.66
.0 0.60
.0
.0
.0 0.28
.0
.0
.0
.0 0.30
.0
.0
.0
.0
.0
:8 :
.0
.0
.0
.0
.0
.0

-------
                                                                STATION RUNOFF  DATA
I
CO
O'.S
/3<4
7Jb
7 3^>
737
7')?
739
7^* 0
7M
1'*?.
7<»3
/ *+'*
1 <-*t~*t
7**O
7*4 7
7nH
/HV
7SO
7S1
7r?

7b**
7S5
7^7
7bH
7V'
7iii-
7ol
7^^
7 b \
7 r*<4
7 f» t>
l 7r^
7>i 7
7»jM
7/.I
771
i fd
7/3
7 /"
7/S
111
bl>,
1 0/.
1 fi 1 •
1 T* *
Idr-.

fill.
elM.
d\i 9 »
/^ 1 b .
^*£ 0 •
^? 3.
'df*i.
?>*r_.
c '". 1 I
P-7:
,;-y I .
^4t>.
.10'*!
J.3^«
NO
0
o
0
0
u
d
(j
u
n
u
u
it
it
o
D
u
u
1;
1)
I)
1;
U
(,
U
1)
\;
1
(1
U
1
(t
0
0
0
1.
0
o
i,
U
0
U
I,
1 YPt
^
d
d
f
d
'd
t*_
t>
d
'd
d
,>
d
d
d
'£
f>
d
d

'd
d

^
j>
d.
~t>
}
,>
'd

d
d
d
d
c1
'd
d
'd
'd
d
T 1
1 ^A'-'KH 1
i ?OH>tvH j
1 ^AfRH j
1 ^apKH i
1 3AH^M 1
13AHHH1
1 '\ & H (v .4 )
1 1 A r K -* i
| 3rt»'^H 1
1 3 A H H ^ 1
I* "J ' • H ' rl H 1
^ } ft K^^* 1
t1 J A r1 y H 1
1) 1 ^ A Y H 1
1 0 '^ A Y 8 1
1 1 MA T a 1
1 S M w Y >> 1
1 n '•* 'W H 1
l yMAr.Mi
«-MMw Yol
U1JUUH1
OhJUNHl
10JMN81
1 JJ'JUMI
1)1 JULH 1
(MJuLPl
d<\ JUL81
d* JUL^ 1
r*t> JUL *^ i
Of> AljOH 1
y H A U 0 H 1
i i A UOH i
lr?"UOh 1
3<)£lil>fi 1
oisM'Nl
ii'ntVS!
1HOCTM1
r'TOO t ri j
2 'IS
• 2 -J • 1 V
• 
:00:00
• o o t ?b
• o i * Sw
: (j^ : 4<^
:07:52
: 1 0 : 1 7
• ? D * ^> V
: ^ i : o t>
• d \ • 2b
• 10" f* J
• ^ 1 • i^b
• 1 ? • 0*^
: 1?: 10
: 1 9 ; *4^
• 1 *4 1 ? ^
: i ? : UM
: j 7 ; 1 3
:uo:?o
I U? I *•» 1
• ? V * ^ ^
: IS: 3?
: Z 1 : 1 0
;i«:lb

: i ^ ; 23
j 1 6 : 1 6

• \h • 54
: ^0 ; />*$
•07! ?3
: 04: (i?
: Iblbo
•21:10

'• 07 : bb
i^iob
: 12: 32
bl A=blUW









14AHk«l



01MAY81
1 IMAY81
1 1MAY81
15MAY61

1 ^MA y H 1
28MAY81
02JUN81
03JUM81
06JUN81
10JUM81
I4JUN81
01JUL81
01JUL81
20JUL81
?HJULH1

06AU081
08AUG81

16AUGH1
30AUOH1
31AUGH1
OSSLHdl
O^UCToi
IbOCTbl
i"«OCT81
06MOVbl
OlDtCM
Ib 	
T12









:08: 1



: 19: 10
102:28
: 14:36
: 18:26
: 20 : 52
: 15!^b

:07:07
:23|39
:06:27
:01 : 18
: 15:b6
• ??• ?5
• 1 8 ! 59
; 12145
: 2 1 : o 1
I 1 5 : 48
:07:33
; 12135
t 0 1 S46
: 1 1 : AO
: 1 S : 34
:06: J5
:il|05

:04:06
:o?:^3
:23:03
FLO
0.75000
0.50000
0.46000
1.50000
0.96000
0.21000
0.21000
0.21000
0.04000
0.28000
1.04000
1 .8«000
0.79000
1.12000
0.91000
0.40000
0.19060
0.1 7000
0.29000
0.40580
0.76000
1.70000
1 .42000
0.55000
1.54000
0.21000
0.06000
3.96000
0.67000
0.42000
0.39000
0.26000
0.76000
0.57000
0.78000
0.40000
0.36000
0.49000
0.29000
1.30000
0.32000
0. 45005
0.29762
0.35000
SAMNO
10.18
11. IB
12.18
13.18
14.18
15.18
16.18
17.18
18.18
10.00
1.30
2.30
3.30
29.00
6.00
4.00
4.00
2.00
2.00
6.00
6.00
'1:88
6.00
5.00
3.00
4.00
10.00
2.00
o.OO
6.00
4.00
26.00
4.00
13.00
11.00
4.00
17.00
14.00
3.00
16.00
463:88
9.00
CMT
1.0
1.0
1.0
1 .0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
i.o
1.0
1.0
i.o
1.0
1.0
i.o
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
i.o
1.0
1.0
1.0
1.0
1.0
i.o
1.0
i .0
i.o
1.0
1.0
1:8
2.2
PRECIP
9
4
,
m
.
.
m
^
*
0.36
.
^
0.26
1 .64
0.50
0.42
0.36
0.28
0.31
0.42
0.60
8:*8
0.52
0.40
0.22

0^94
0.10
0.69
0.15
0.46
2.10
0.39
1.40
1.30
0.33
1.23
0.53
0.19
0.72
Ol22
0.87

-------
STATION P.UNOFF DATA
01 IS SI".'
r/b ?,'h
1 /v
van
781
/ t^P
7*3
78b
7H'i
/H i
7dH 3JV
7V(j
/9 1
7^2
/ V 3
/^4
7^'-,
7!-*^
7v7 -,J
74M bl
/vS( V.
f.' 0 0 hj
on]
r I)*:
nl>3 /b
,•; 1 1 <.
rtl'b h^
>-i(i 7
r () H '* '-*
"10 10<»
H 1 1 1 II /
H 1 £
^ i 3 1 I J
n \ i*
0 I b 1 1 H
fe 1 t- 1 i" 1
* \ h 1 Jn
r1. 1 y
*
*VJ 13.-
«2b !•'?
f5fT>
h(> / 1 b )
tV9 !iti who : 09
^4^vhu':o6
01uKCHO:09
o^ut cy o : IT
15UECK(i: 14
P^l'tC^O : 09
1?JA"JH1!1T
^^ J ANJM 1 : lo
0 g^ [- t; M 1 ; ) (j
^OJ-Lh^l :i)l
^ ~W (: r. ^. i : 6 t}
n4'->At/a 1 : 1 i
O^"/-.I-H!:! j
IhMfiwrtl : 1()

^'VTAi-'^1 1 : 09
"fOi-t 1 : 09
(i l A(-Prt 1 : 1 7
Q^APRM l:lo
1 | ui-'ivH 1 : 10
1 ^ u P w f 1 1 : o 3
^OAnWt< 1:10
<-'3AH(j/i^^^] ; jy
o I IIAVH 1 : i o
1 Of-'A Yf 1 : 1 11
1 1 M A Y >" 1 : 1 0
11 1« IH\ : l ^
jS.lflY^l • 1?
!"'^Y«!!?O
r-^lAYelilb
D1JUNH1 : 11
Q^ jdMf J : u4
03JUNH1 j?2
OH J1 INH 1:11
10JUN41 Mir"

: 30
: **8
: Ob
: bO
:30
: IS
:10
: 06
: '(•()
• 4b
:4 7
:30
:30
:00
• ^#S
; (jf)
• ^0
1^5
; } ^
Iu3
|.17
:up

:30
:03
\

Tli
1SAUG80:21:5








1«NOVHO|07|P







20Ff Hbl :06:b
irIFEHbl :07: It
£jt tbbl :2j:3t


16HA(<81 :20:3
30MAK31 :23: It
01APN81 :22:3:
09APK81 :ib:3:
13APPHi:os:be
J4APP.8J : 15 !4
18APP81 :oi :n'
«
24APW81 :04! 1C
*
28APH8i:20:2i
02MAY81 :01 :4(
t
1 1MAYH1 :0t>: 1C
1
llMAYbl :?i:0(
1 O^A Yd) *00»^
1 VMAyBI :0o:^i
c-cJMA Ybl • 16 : b<
i
02JUN61 !09:0
04JUNbj :00: H
06JUNH1 : 16:3'
«
lOJUNel : 12:bi
> FLO
r i.«5o
0.005
0.005
0.005
0.005
0.005
0.005
0.010
0.010
0.010
0.630
1.220
0.010
0.010
0.010
0.005
0.005
0.005
0.005
0.490
J 0 .490
0.100
0.010
0.020
0.130
» o°:?oo°
1 °o:^
5 0.3SO
> 0.250
' 5.380
I 0.020
0.010
) 0.290
0.010
> 0.130
' o:88§
) 0.230
0.020
) O.lbO
' O.U70
0.005
I 0.000
0.140
> O.H?0
0.005
0 .2*0
' I'290
. 0.070
0.005
. 0.220
SAMNO
23
1
1
1
1

j

1
2!
i
i
i
t
i
i
i
13
4?
6
i
5
5
f

12
i
7
i
2
57
7
1
6
3
1
3
1
4
'i
1
6
CMT
1

9
9
9
,
•
.
*
1

m
.
9
9
.
9
1
i
1
*
1
i
i
i
i

i



i

I
i
i
1
*
1
1

i
PRECIP
e
9
m
9
9
9
•
.
,
1.05
1.25

,
,
0
.
*
9
1.27

ol&o
9
0.21
Ol33
o!o4
8:]|
0106
^
0^6
,
0.10
1 .64
olso
.
0.42
0.36
olae
0.31
.0.42
.
0.60
0.60
0.30
.
0.52

-------
                                                                STATION WUNOFF DATA
en
CHS S|i'i--4li
S32 1;>4
tO3 1 1 \
H.14 1 ft
b'JS If. 3
djh l.>b
M j / r- (i 1
r 3t>
fcO9 2'"*
>(•»(] •> 4 3 .
H.44 242
«4b tr^il
H46 2'->tf
H<4 7
h<'c
tf > /
OnO .
nS-V
ci'-i) J.lb
no 1
U~.S $]^.'l"JU
6*2 2h3 ^bb 26-1.0
*'>h 2*0.11
fc'c/ 2Mr-.0
int." d*-*c • 0
O'-V t"lr!'0
h'V fTV^.l)
H / J £V^. I)
H /V ~) j/r. i)
o/3 . 344.t;
H/4 _)->•'..(;
a '/ b /•• i . o
H7<: Jj.ll
H77 j/.n
h 7 r< 4 f . ii
M7V -7(1.11
lype TI
? 1.1JU'-i81
? 20JUNH1
2 2-iJi^!hl
? 0?JULH1
2 04JULrl
2 2DJULH1
1 f/JUL*-l
2 ^r-.JULMl
2 nhAlll-Hl
? OUAIJfjril
1 inuui'Hl
1 24AI,'('fil
? 30 "UGH 1
2 O^stPBl
2 Ib^Kktl
1 ?lSt^«l
2 0 1 u<- T e 1
1 PbnCTMl
1 l^ncr*-!
? l"i;l.. Tel
^ 230CTH1
2 rSuCIf-1
1 O^MUVHl
^ n^f;UVHl
\ (IV»H(IVbl
1 lf-i;UVfrl
1 23iJOV^l
1 JONOVHl
2 0 lot Cm
1 07uKf.nl
TYPt TI
2 IHbfcPfU)
2 IbStPHO
2 lUbEPSO
? ^Ibt^HO
2 rMlffr.i)
? IboCTWO
2 IHuClbO
^ DuCTHU
2 luiiCTHO
? IS^UCTHO
2 2/^OVttO
2 0^l;tC«0
'(• 2 (Utf HO
? 21J6IYM
? OPf-'thHl
^ O^htHhl
2 IULHH1
2 IVKtltS)

?3
01
IV
13
Ob
lr<
0V
12
12
Ul
11
12
OP.
i?
Ir
21
1 1
12
17
in
17
10
01
10
10
09
0V
10
10

03
06
10
19
21
20
22
01
Of>
• 12
Ih
\'c
U9
114
:o*
10
04
22

:20
:06
:4d
:09
:u4
:27
:bO
:bb
:37
:02
:b5
:bO
: 12
:44
:?1
:2S
:b7
:<«b
: IS
:'j7
:b2
•Ml
: lb
:4V
: 10
•• 10
:JS
:bft
:^2
:»0

:00
:2b
:30
:b3
:04
: 10
:02
:34
:os
:37
:34
: 14
:40
:J3
:4h
:b9
:b2
:37
STA=51UW16
14JUN81 :
20JUNbl :
26JUNbl :
02JUL81 :
04JUL01 :

-------
                                             ION KUNOFF DATA
OtS

mil)
•if 3
140

H')d
'MID.
"U I
"Or
"I! '

•) I) ••,


Sii7
V10
VI 1

VI 3
VI V
        S 1 r<•. o
         1 M .o
         )
            . .0
            -.0
         ' (i t .0
         ' } •:>. U
         f--> i • o
         'd^r* • 0
         (-•nil . 0
         <.' / II . 0

         c: »^ . II
         i 't- . 0


         j'.JUN81 :04:56
03JUL81 :p8|29

2SJUL81 :21 :26
r-/JULbl :07t4b
03AUG81 !19t36
06AUGB1 : la:4b
12AUGB1 ! 11 !56
31AUG81 :09:28
31AUGttl :?2:04
OBSEPB1!1B:00
17SEP81!03:S4
1BSEP81 :09:41
?7StP81 :23:47
070CT81 106:55
240CT81 :0b:?2
?60CTbl :0«:57
270CTbl :01 !OH
ObNOVHl : 10:t5
O^UtCbl '-08S39
ObUtCBl :04S06
FLO
0.25
oloe
8 '36
8:ft
8:89
0.32
0.06
0.16
0.17
0.20
0 . 54
0.11
0.05
0.06
0.15
0.22
0.18
0.08
0.25
0.41
0.07
0.19
0.31
0.12
0.23
0.01
0.34
8:33
oln
0.21
0.1?
0.17
0.10
0.13
8:?|
0:12
0.09
SAMNO
39
3
?9
2?
^
5
5
42
10
1 4
6
30
9
19
9
90
!8
16
11
18
2
a
32
^
7
2
29
3

9
5
6
12

27
18
4
CMT
2.2
1.0
1:8
1:8
1:8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1:8
j.o
1.0
1.0
1.0
1.0
1.0
1.0
1.0
?:§
1.0
1.0
1.0
PHECIP
1.10
0.19
8:2!
8:9?
8:11
0.29
0.15
1.19
0.46
0.62
0.32
0.29
0.24
0.23
0.37
0.79
0.43
0.56
0.21
0.65
0.14
o.ia
1.31
0.13
0.34
°:18
1.25
0.28
2.22
0.38
. 0.28
0.13
0.56
?:le
0.64
0.5B
.

-------
STATION RUNOFF DATA.
0,b ST,,.V,0
•'23 JV 1)
*Jt?'t 3-t u
^2S Ir.'l U
v2t> 1 3\» u
S/?7 ' lb<« (j
4/v ISM !!
,3,,
U-'b Sli'MMO
••:>! ~>\ (I
-t \f^ ^ 1
-.<3;< f.t
*-1 \U *3 J
'•MS 7b
•^ iij -i-*
SM/ -yt>
','.<•-* |,'lT
* U U 1 ... J
••"• 1 1 1 J
-.',U 1 /r,
VM Ir.J
vb^ fH) S.
'• i s J ^ 1 1 ->
•*••>** £ 1)^
vbb /rie

4'i/ CVJ
v s c* ^ /* /
VV-r ^'l/'
v^
^ t*l
'-'r-.'t c''*O
^^ Jit)
1
I)
i
i
(
i
u
1
{
0
1!
(I
II
II
II
0
u
II
u
0
II
0
II
(.1
u
0
II
II
11
II
C)
u
II
0
TYPt
-d
'£
/>
'/>_
?
^
'" •
TYPL
f
~f>
'i>
f
2
p
'{
C.
e>

?
?
?
f>
'^
2
2
^
p
^
^>
~f>
?
4

'g>
"p
£
P
r1
TI
nnf t HBl
2 ^ t HB 1
01MAYH1
1 l)HA Yfl 1
03JUNH1
Y^ShPH!
f'.UClBl
Tl
^0(. t hh)
~f* o^ t ^* H 1
?^r t HH i


3(|M^Ph 1
OSAPH^I
?l2p^{
1 3 A HU- H 1
2 T .v t-1 M B 1
j fll-./V VH 1
In^AYe!
JO'-AYS}
1 3JUN^1
POJUNh 1
'S^jllt^ \
02JHLH1
21 JULhI
24 JUL ft 1
2b Ji iL ^ I
Of> AUG^ 1
OH At <(i^ 1
1 1 'uic.a i
1 bMJGfc 1
TO uUGH 1
1 SS t H H 1
22St Pn 1
JHuCTM
PbUCTHl

1
:13:SS
:09:27
• 1 fr • 0 ^*
: 1 5 ; 5!?
j v> "1 • f. O
;oi : 1 1
ivi : 10
1
: 0 0 : 0 7
• 1 ^ l 0 7
: 1 f- J**o
• i* "•* • U 0
; 1 A I 1 b
; Qg ; ^9
: 19:^0
: 1 1 :3<»
; 1 (J I ^ 7
:^l :31
I1MS5
;13;07
:nv:i?5
: 2 3 : 1 5

:06: JJ
:07:b3
: i ^ : ^»Q
:00:53
: ^ 0 • <+ b
: 1 0 :C'2
• 1 "1 " 0 ?
: 06 : 22
: 19:^7
• ? 1 • 34
• 09 : 20
: 1 7 t 34
: IH: 59
:
-------
    co
STATION HUNOFF DATA
U->S SIi-1-.MO TrPf Til TI2
v(^r> c-ih ? (SSt^Hl 17:^1 lbSt>8 1 : Ob:21 4
:^h? ,-,'TI 's ;V'Sh-'M 14:06 ?£StK81 :2l)!0l 15
^'•n <• /<• ? (iliiLlHl 17:1J 020CT81 :04:02 11
.-y-v ;;/>< c1 ()M.iC(M |fi:bh 060CT 8 1 : 1 4 : 37 15
v^o >"^l 2 IMuCTbl ln:ib 180CT81 : 18:42 2
v/1 <^ -»b ? 2rii)CTt'P 1 : 09:20 0.
yVh 1 ^K-iKPb 1 : of1 : Jb 0.
4/V 1 nSuCT(v!uHl:oH:3n ol
vt^ 1 30i>iuvhi :on:45 0.
"x1 1 1 07L*fcLti 1 : OH : 55 0.

FLO
156
125
.18
.25
.75
.84
.63

120
.51
LO
035
029
028
014
420
019
035
023
023
014
Oil

SAMNO CMT
10 j
9 9
4 1
2 1
9 1
2 1
18 1
5 1
6 1
3 1
SAMNO CMT
1
1

4!
1
!
i
t

PRECIP
0.90
0.3B
0.49
0.26
0.16
0.61
?• 1 **
• 16
0.32
0.35
'
PRECIP


1 16




V

-------
STATION NUTPItNT  OAT*
OHS
14*
149
1 '_iO
1 *"* 1
152
1S3
154
1-S5
IS6
157
15H
] '•)*?
i MI
1M
i ^>?
1-3
1 64
i — ^
i ^^
) — 7
i >.H
1-9
70
VI

1 7.1

7S
7-^
77
/tt
70
~o

**?
M "1
P/,
.-I Q
HA>
J 7
u-8
-4'J
gij
^' 1
'*?
*•) T
'*/»
*^
^f,
.> 7
1 9U
^^
200
2'Jl
sm,,x,
?92.0"
293.no
393.i)i)
39 .-^ • ij o
3'.<2. on
39?. It,
392. 1 !l
393. 1 0
392. lo
293. 11
3^3. lu
f"-i f> « ) ' '
2^3. In
393. 1"
2v3. 1 ii
292.1"
'f'-tf'. 111
2-3. !•'•

2 v! i"
2-V. !'•
3'<3. Hi
29r.'. 1 0
2'V. 1 "
?.•>'>. 1 '.
2V?. lu
2V.-'. 1"

2v! Iv
3l'9 • UU
J 1 4 .I'M 1
°1 3 ? . 'J "
"J 3 •'' . '.' i

'i^'1 . ni
Si . t: '
vi* '.;

* i } « 1 1 »
ij J * 1 II
V -j . i o
•-. < . '. 1
~*.' 1
«*.< 1
" J . ! 1
-.'-(.• 1
•-••••.1 1
•"..I 1
- J . 1 1
«9.i 1
. • -I . i 1

9i . rri

rvpr
^
^
s
fj
3
3
/
3
3
3
3
^
3
^
3
2
^ '
>• i
,*»
r'
f
3
{
£
'c
3
f
r-
S
C
C

(-
r
3
c
{
'f
,
r".
i1.
^
i'
f.

j
^
;•
/
f
/
f

/
T
IMUCIHO
1 1' 1 1 ( ! I MO
KOC Tf^O
1 ^i i(, T 4O
1"OCT HO
1 HOC 1 Mil
1 ^UCTnO
IhUtT nO
H'ilCTHO
1 h!)L T M 0
1 MOC T M(I
1 MI )C 1 1*. 0
|hO(. 1 MO
j Hi )C 1 h 0
M 1 1 C 1 o 0
KO(. T P. (1
Ml H~ | HO
MUL 1 MO
M')C 1 M 0
KUC 1 MO
'l(}(."Trt(i
MUCT H(i
MUCThO
f t i(j i ^ 0
HdC IPO
I'tlCl r-0

IMuiJTriO
IhiiCloO
04UUV\iO
09* h ) V H 0
34fj(j v H ()
c 7' 1UV M 0
'l ^ 1 1 h C M 0
2 iUK>U
f" o ^ r •" M
3 " »• r f M i
£ | f. ^ M ^ J
^ ^- f ^ u ^ |
(1 4 -I A f- fr 1
1 c.'-tMh h 1
jdMAt-M 1
J 11 M " H * \
\ J)1^/- 1- M 1
J 0 « 'i f« r 1
J ( j M A I- r-
J j)f,J |^ (. u-
JO'- I'-'H
J 0 !'> A K M
JO*- « i' >•
^,',r.- Ul, ^ |
•('i-il'.h' |
• ^1 	 ,--•!

fLO TKN SKN Nh3 N023 TP TSP OP
19:1" 0.12000 . . 2.88 8.44 0.65 0.36 0.23
lo:iu 0.12000 . . 2.19 7.63 . . 0.20
11:19 0.09000 . . 2.11 7.43 0.73 0.61 0.18
12:27 0.0-000 . . 3.07 7.43 0.83 0.62 0.20
U:13 0.03000 . . 1.99 7.43 0.41 0.34 0.18
|h:4H 0.58000 . . 1.48 1.80 . . 0.19
\h-^^ i).«2(lou . . 1.4b 1.35 . . 0.16
17:|f 0.13000 . . 3.4b 1.62 . . 0.67
17:^3 d.12000 . . 1.36 1.62 . . 0.34
lf:2f 0.33000 . . 1.02 0.99 . . 0.23
|n:^4 1. 11000 2.SM 1.30 0.43 0.45 0.59 0.18 0.18
If.jV 0.09000 . 3.33 0.80 0.69 . 0.64 0.64
lt<:<44 O.H9000 3.14 .61 0.58 0.59 0.65 0.50 0.41
)H:SO O.»>7000 . l.«5 .53 0.62 0.47 0.54 0.44 0.39
1><:57 0.42000 1.65 .44 0.58 0.41 0.48 0.46 0.36
19:07 0.".3000 1.52 .24 0.50 0.33 0.44 0.38 0.31
19:15 0.43000 1.30 .22 0.48 0.33 0.39 0.36 0.31
\'>'.-f"t 0.43000 . . 0.7h 0.33 . • 0.33
i(;::n o.wooo i-hL> i«JJ 0.52 0.33 0.45 0.38 0.32
l'<:44 0.33000 . . 0.58 0.37 . . 0.40
|-):VT U..OOOO . . 0.76 0.41 . . 0.40
?(i:il 0.21000 . . 0.58 0.43 . . 0.35
20:39 0.31000 . . 0.63 0.43 . . 0.36
2M :«n 0.6/000 . . 0.90 0.25 . . 0.44
30:^3 1.11000 . . 0.36 0.21 . . 0.12
20:^7 1.33000 1.9S !.•*« 0.6« 0.31 0.57 0.42 0.35
2i:il2 0.09000 1.67 1.37 0.44 0.33 0.52 0.44 0.35
21!Ur! 0.0/000 I.b2 1.39^ 0.56 0.35 0.51 0.47 0.40
21:1*-. 0.42000 1./2 1.67 0.76 0.36 0.63 0.63 0.50
PMI32 0.19000 O.b9 0.61 0.00 0.46 0.29 0.20 0.00
1S:44 0.5«00ll 3.99 2.34 0.11 1.43 0.26 0.08 0.05
0^:27 0.36000 1.32 1.22 0.36 0.54 0.20 0.17 0.16
IM^h 0.12000 0.83 0.83 O.OH 0.84 0.10 0.10 0.07
I^ISS 0.29000 l.HS 1.60 0.17 0.49 0.12 O.Ofl 0.06
On.)* 0.1^000 1.79 .6H 0.23 ?.77 0.17 0.14 0.12
no:|4 O.MoOo . . O.?0 0.36 . . 0.02
M:|I O.nOOO 0.70 0.49 0.12 0.72 0.06 0.02 0.02
\"->- )' n.16064 1.19 0.93 0.14 1.45 1.86 1.86 0.71
l/:il O.J3264 1.76 1.34 0.24 0.54 0.11 0.08 0.06
19:b7 0. "4/000 1.10 0.«3 0.17 0.96 0.14 0.10 0.07
12:il O.O'iOOO 1.25 0.07 0.40 1.04 0.65 0.50 0.44
07:jf} O.IMOOO . . 0.«4 2.53 . . 0.10
OH: 04 H.1M000 . . 0.76 1.50 . . 0.66
0*:2M 0.2/000 . . 0.08 1.18 . . 0.84
OM:45 O.J3000 . . 0.32 0.95 . . 0.04
OM:(,O O.J'->000 . « 0.32 0.83 . . 0.04
o-j:n n.«.tO()0 . . 0.30 0.59 . . 0.06
u':^'. d.<»SuOO . . 0.40 0.51 . . 0.05
tV:j- H.J6000 . . 0.32 0.53 . . 0.05
()t.:S1 0. 24000 . . 0.17 0.53 . . 0.05
1 o : | '. o.ibOOu . . 0.23 0.79 • . 0.08
1 »:,•(! (1.4/uOo 2.'r>9 2.1". 0.38 0.49 0.24 0.12 0.11
|i.:4u O.I2MV >.0^ l.sh 0.13 1.64 0.12 0.05 0.05
1 /:./ 3.14 0.43 0.49 0.22 0.11 0.10

-------
                                                           sTM ION NUTWltNT DATA
I
ro
o
n .S l l.-t :•-. 1 YPI-. r 1 1
?•>? -,-J.:> / tUjnp,.-'
>''? I'V
2i>4 1 • -
<(;'•; 11.7
2"6 1 1 J
207 i in
2. in I i-
? i t Q 1 . 4 >-•
? \ !l 1 '• '?
?ii ibo

213 1 '•'»
214 i ^i
2 I *-• 1 *W
216 1 i-,
?l 7 1- I
21" 1''.
? 1 *•) 1 M •
??!> 1 /'.
22 1 1 "i
'22 l'-t'
?P 1 ^ 1' I
2^4 i ' ' r
22S ,-ir..
226 /r"f
227 ^ (i •/
2 ? I* 21*".'
?r><3 'r | i
2 JO 21V
P "3 j /-* ^ 3
^ 1 ? i^ ^ 7
r* ^ "3 £"**/•'
? 3 ** ^ *o
? )b (^"' 1
pi jf-, £ 1^ ,3
? "i 7 r* *•> d
^ IP ^ t - -i
?"J^ /^ M-

?-*i ;;^i*

c ^t T *- '^ /
P ** A ,- -* ^
s*** C, J ft U
2^*, ns
f. ,-' | ^ 'in*.* H
'.; *- j ti ;'i" •• -
I t ' | / ..,.-<
•i ^ / !•,-»-• f- w
ii f \ tn-it\ i ^
.' ^. I ''r- /• v K
" f /)•'-.:- ) >'

i . > jl I -; a T 1
i <-" -I) JMI:J-
i •• ;t jt.ji H IM
i <• liA .11 'I (M
1 f * ( : h J 1 ( f\, r
f (»r> Jil|.|.-i
' ^ J (' J1 'f'r
: ^ M )' lf!>^
S \ ^--t )' :f t -
• ff ,-S |. '| •/•
" r 'J,i |iiL ^
f c ()u,h l| h
'• ^ .:'*! jn\. *.
\ ' r f J *J' 'I ^
1! ^ /^C* Jl )Lrt
'.- /" ^-'^JULr*
n f> /^tlJt IL t4
'i <" u i/-»U(.-h
n 'f. o^m.'i.fi

2 1 1 *^ ' J ^ '*
^ | S A '' H i >*
i» ^ }(} ^\>(;n
!• < Jl »!.!(•«

i' r lt.-SKpo
0 rf 1 f.SL'l-H

^ > 7 s[- t- M
."> <- 'lJ')Clh
r IfdCTH
• ^ f  i

iif
1 1
Sf
s t
x <
^'*
(< '^
<
i-
1-1

•Ml

S^,
-.•,
1C
f(}
\ih
] *-*
1
I I

4 I
\ r>
r"*
54
1"

32

04
4't
4 n
'<-(}
0^
•* 1
** P
IS

..'J
S7
l'i

fi'.

^0
hLU TKN
'1.53000 3. MM
n.^/o-i^ .2.71
(•.l-jOOll
0 . i 1 10 1 0 • 6 }
(I.r2*<46 1.09
i../-/'.:)/ l.'.w
I'./MOOO 1 .(16
0.^*3 1 . 0 ^
d.1/000 1.4-4
p.^*-io76 l.4l
0.'|400P 1.11
1 . J/OOl) '-• . 35
l'.^.-1^'* 1.1V
c.r OiiOn 1 .05
•-.ooooo o.^^
0.1- 1«J r.40
O.lTJjOJ O.r-*
O.^f-000 O.H7
0 . 1 h 1 9 1 2.31
O.IHOOO 0.41
0.10000 O.MO
0.16000 O.bH
0.0"546
0. J 9403
0.^6000
O.^bOOO
0. J341 7
1 .40000
0 . V .> 0 0 0
0 .3<*00000
0.44000
0.^-4000
IP. IbOOO
O.s«000
0 . J J 0 0 0
0.20000
.34
.35
.67
.73
.75
. C*H
.17
• t^4
.80
.43
.50
.10
• 3v
36
.39
. J4
.17
SKN
3. 10
^* . 4S
II. 5S
0.5*^
0 .0*
1 .4ri
0. /9
0.60

2. Ob
(i . 6 1
O.D3

(U4*
1 .44
(1 . ^4
n . v l
r" . 0 ?
1.01

II.. I/*
i . - /
ii.'s^
0.71
0.54
0.21
O.b7
0.51
1.30
0.7b
1.25
0.5b
0^0
O.V7
I .ttl
I .t^>3
1 .^7
O.s/o
1 .26
5.67
l.<^0
1 .06
1.17
1 .^5
0.9H
NH3
2.16
0.50
0.07

ol2b
0.22
0.1 J
0.23
0.02
0.4S»
O.lb
0 . 0 o
0. 7V
0.10
0.^8
0.36
0.05
1 ^t*
0.17
0.29
0.11
0.30
0. 16
O.lb
O.Ob
0«14
0.1V
0.10
0.20
0.14
0.23
0.30
0.26
0.52
o. ia
0.49
0.48
0. 15
0.33
0.95
0.17
0.21
0.23
0.^5
0.28
N023
0.28
0.81
1.03
0.77
0.93
0.4?
0.38
0.76

K25
0.41
1.21
1.38
?.75

0.*67
0.53
0.70
0.74
0.73
0.15
1 .02
O.b2
0.37
0.45
0.51
0.54
0.85
1.11
0.67
0.57
0.51
0.47
0.50
0.34
1 .00
1.06
0.98
0.6R
1.39
0.40
0.52
0.14
0.22
0.50
TP
0.40
0.28
•
0.06
0.11
0. 12
0.10
0.13
0.05
0.07
0.11
O.OH
0.12
0.35
0.69
0 . 52
0. 13
0.3B
0.23
0.13
0.16
0.35
•
0.14
0.09
0.32
0.14
0.09
O.Q9
0.2H
0.27
0.20
0.19
0.29
0.34
0.15
0.20
0.16
0.22
0.35
0.21
?.34
0. 19
0.15
0.36
TSP
0.24
0.25
0.05
0.05
0.07
O.l'O
0.06
0.05
0*04
0.03
0.04
0.03
0.10
0.06
.
0 , 44
0.08
O.lb
0.19
0.10
0.15
0.14
0.07
0.11
0.07
0.29
0.10
0.05
0.06
0.19
0 . ?4
0. 15
0.14
0. 10
0.30
0. 12
0.1 1
0.10
0.18
0.25
0.17
2.U
0.17
0.12
0.17
OP
0.17
0.13
0.02
0.04
0.06
0.05
0.04
0.05
0.03
0.03
0.04
0.03
0.09
0.01
0.53
0.30
0.05
•
*
0.07
0.11
0.14
0.07
0.09
0.04
0.05
0.07
0.03
0.03
0.14
0. 19
O.Ob
0.07
•
0.?2
0.07
0.0ft
0.06
0.14
0.16
0.09
1.51
0.11
0.08
0.11

-------
                                                              STATION NUTRIENT UATA
ro
0-S SI N'liNd 1 t^r. Til
?'•>' IlJ? f ,'"/'. UViO
?49 33 f (>?FK-A|
? S 1 ' <* ? < 1 1 (• t 1 *H
?'i 1 .)0 ^ 1 Ml- f H H
?S? S3 s t>~s\ t-. ^ H
?S3 '-i*^ (^ jO-^AHw
?S4 -n <• 31"'/\>.''i
PC,S -o r* nSAi'M^
? S *i 9 -* r' ( i V a H li ~i
?S7 uc f 1^ A «-'»-*
?S» im f- |',AP(.H
? b Q ' i "/ ^ 1 7 A •"• f- H.
?•>(! 1 l) ^ /Ml /UJi<(<
?*" 1 ^ I t 0 | " A Y w
?'i? 31 /• | i>;avH
?-.! 3b f • IS'-iuyh
?'•£* IV / 1 VM»» r *•
?^S o 1 <' u^ ji INH
?^>6 %M (•' II..1 Jl ll'.'f
?'i7 -> I <•• Ki.liiNf
rV.r* f 't * 1 3 Ji if'**
?'-9 /I ^ /MI jin ic.
''. 1 1 fS , Ilk J!l| ••
? 7 ? ^ i' 7 r /-'-JllL^
" '1 r'!>" /• f'V JtJL^
? /^ <- fT-> .- 1 1 H'.ltih
?^ r^'/ r ISAU'jH
?7'i ^"r: n«u(.>H
p/7 ^^."1 ^ JlAllliM
;J 7 M r")r> ^ I S S r. H f »
? /^ r'*'^' r' 17^^ '•'^
. ?^n r /'-. r- II I -.)(", If
^P : *•* 4
id: 3^
IK* : '>'.
1 s : ^ 9
1 ^< : <* i
1 1* ' (t^
r< : s i
1 7 : i* •-*
1 '< : ''-.
'/ (\ ', (}'r
j [ ct : ••* f>
? 0 : b f i
07: So
1 i : /^
11 :b-
1 A : ??
tr*:^/'
n o : ^ -i
/•O: HI'
•) ~i : ' ^«
? ? : 1  1 1 ; -, c,
1 '*:<•' 0
(19 1 1?
/I :U1
? 1 : 1 (I
? 3 : 0 1
?^1 ^^ r rfe';CIM|.l/.S/
o " •- ft- .-NI, r i^t Til
?i^ /-,••*.!•!
^ 1 .) '' / - 'J\> . .
P-4.', i.J('il »M, f" ^/Shr'.'IO 1 ,** SI
?KL- -^l. V l.y <• ^^i>r>-r(i ij Jl |j «
/'.I'- Jt'- uD /' 'lll-IUVMO vlb IS
?«7 .1 1 <• du c (isi-im/Sfi ID '•I
?M." 3^-1 !)C. /• l'-.I.UV»'il ''I J 1 ('
?i • 3v •< 'M ^ <'^^.•llVf••ll dl rv
?'HI lc' y Ci.r ( f'-'tf.UV'-O |0 cb
?'*/•' ,ij/i Mil ^ /'/NnVhd on <">
^>9 1 (44 llu /• 09IJHC *(l 1 '.1 ^n
?'•)'> \\ 'III ^ (!/(• f ':hl (if, j /

i)
o
0
(>
0
II
0
0
o
o
(1
0
0
(I
0
(1
0
(1
d
0
II
0
1)
1
0
0
(1
u

0
0
0
d
0
r LU
.•>£*'/ 1 tt
. 1HOOO
. /POOO
. 1 bO I) 0
. nbO 0 0
.33 /9b
.^0009
. ? 1 b 7 6
. 13000
. S9i« 1 y
.i IDOO
.UbOOO
.osno^:
. brt*< ^S
.b?000
• H 9 0 b rt
.09000
. 1 1000
. 1 h U 0 U
• ^9999
.34000
.'•MOdO
. IbOOO
. j lid 01)
. IbUOl)
I JUOOO
• JsO 0 0
. ?^* 00 0
. h 0 0 0 0
.50000
. 1 7335
.?*000
1.51

.
1.3H
u * y^
£* • 0 0
I.c7
1 .bl
1 . 3/^
1.31
m
1 .!«

#
1 .34
0.9?
0.99
1 . 3**
1 . **9
S . 9b
t>. 1 1
1 .b3
ol9S
1 .OS
1.37
olbl
1 .67
0.94
1.10
1 .?0
1.1?
1 .70
.3oOOO 1.43
t T A — t-liit,/\C
HLO TKN










^
O.Ot

U . 04
(i . 0 3
11.03
U. 10
U.3b
0.07
0.10
0.03
d.O^
m
1 .bb
1.1?
3. Ib

0 . H6
1*19
l'/n
0 . tib
3'^H
SKN
0.9H
\
1
1
0
1
0
(J
r
0

0


1
o
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
. *+ 0
.0?
. I«
. /b
.'ft
.«S
. bH
.91
.9H
^
.71

.
.13
.9?
. 7?
.13
.9H
.53
. ** H
.bb
.OH
.77
• v9
.60
. 73
.brt
.bl

19?
.69
.8?
.8?
.00
SKN
^
0.
0.
3.
1.
ol

4:
0.


9?
bb
db
3b
Mb

\l
30

Nh3
O.lb
0. Ib
0.??
0.?4
0. Ib
0.^.4
0.15
0. 15
0. 15
O.?b
O.?0
0.11
0.30
O.U
0.35
0.6?
O.bO
0.^9
0.39
0.97
Ob**
0.?5
0. Ib
0.15
0.14
0. !<•
8:!S
0.13
0.06
0.10
0.17
0.1 7
0.19
0. 17
NH3
^
0.?6
0. 3"«
?. 1?

ol36
0.50
0.70
O.?0
0.04

NO? 3
0.14
0.29
0.23
0.?5
0.?4
0.?8
O.lb
0.?3
0.17
O.OP
0.15
O.Ob
0.09
0.05
0.?5
0.?4
O.?b
O.?b
0.17
0.45
0. 10
0.08
0.11
0.05
0.13
0.04
0.06
0.61
0.04
0.08
0.04
0.07
0.12
0.11
0.03
M0?3
*
9
0.61
O.HH
0.89
Ml
1.Q4
0.7?
0.88
0.98
0.4?
0.98
TP
0.13
0.15

o: 10
O.Ob
0.10
0.13
0.10
0.10
0.11

o: 13

.
0.13
0.1?
0.11
0.10
0.10
0.41
0.1H
0. 11
0.08
0.09
0.13
O.f?
8:06
0.06
0.05
0.06
0. 16
0. 11
0.16
0.12
TP
t
0.34
0.27
1 -3B
0.36
0.?4
0.3?
1.5?
0^9
0.?3
1 .46
TSP
0.04
0.09
0.04
0.04
0.03
0.05
0.07
0.05
0.05
0.07

o:os

.
0.09
0.10
0.07
0.08
0.05
O.Ob
0.07
0.04
o1:^
0.09
0.04
0.03
0.04
0.04
0.05
0.04
0.06
0.06
0.06
0.06
TSP
t
0. 16
0.21
1 .36
8:!8
0.30
1 .50
OO9
0.11
1.12
OP
0.02
O.Ob
0.0?
0.0?
0.01
0.04
0.04
0.0?
0.01
0.0?
0.0?
0.00
0.03
0.0?
0.07
0.07
0.05
0.04
0.03
0.05
0.04
0.01
0.01
0.0?
0.04
0.01
0.01
o.oi
0.0?
0.00
0.00
0.03
0.03
0.0?
0.01
OP
t
0.09
0.20
1 -dO
0.14
0. 14
0.30
1.26
4:5*
0.10
1.00

-------
                                                                STATION  NUTKIENT DATA
I
ro
0,5, ST.,..
jjs 3v
iP'v- u |
?'v7 ju
2 Wrt ') 1
2*9 7;.,
3')!' f'
^'i^ -'-i
311 3 ••<'<
3d', J i, |
3 'I': 1" <
M'l/ In/
3n." !!>•
3 ns 1 1 '•
.1 1 '.' 11 r
311 1 r' 1
312 1-1"
3 1 J 1 J 1
314 1 1b
'i 1 -1 lib
3i; )'«•-
3 1 / )-'
31" !'>••
31-' 1 v
•-!?']' InO
J2> i»i
T ^ * 1 'v
Jd;. I/.'
3^ 1
I Of" C ^ ^' 1
1 ^H hbT 1
0'tiV;AMl|
1 ^ S A ^ H 1
Ol'^Pkol
(ISA P^h 1
n ^AP^H l
1 1 Ur-'kr j
1 7APRt. j
2MAPM«1
/^ 't (ft H K ct )
^ -I (tp,V(^ |
0 jr-'.AYb)
1U M A Y 0 1
1 iNAYUl
Ib'-AYrM
IbMAYHl
t'.-l-A^l
JOM«vel
01 ju'i'.']
O.uu'ir 1
1 u JUNol
I?JU:M«!
?2JiJi>lnl
(i i JUL ^ 1
i-OjULBI
2t!JULM
1 lAUOtU
If'AllGrtl
iUAUOBl
Ii9'-t Pb|
ISSt i-;M

t1 f~* t '"* ^ 1
OK'CTnl
'.iMJCTol
/.'U'CTrl
^sucrt-i
2MICT01
27l)CTtil
01ULCM
O'*lie L«l
1 bl.il: Cel
FLO TKN SKN Nn3 N023 TP TSP OP
lo:?b 0.03 3. Hi 3.6b 1.12 0.76 1.12 . 0.86
^l<:o^ 0.09 3.02 ^.61 1.30 0.78 1.10 0.99 0.86
It.: no 0.07 4.116 3.6^ 1.53 0.98 0.57 0.45 0.39
\^>:?.-> 0.09 2.01 1.93 0.59 1.12 0.38 0.33 0.27
Ub:iH 0.07 l.<*4 0.57 0.36 1.49 0.22 0.05
U?:?b 0.05 1.19 0.6<» 0.^2 0.86 0.34 0.24 0.16
13:-'«0 0.06 2.03 1.20 0.<.0 1.02 0.41 0.24 0.21
1JS16 0.06 1.07 0.6J 0.17 0.55 0.22 0.15 0.12
11:31 0.07 0.93 . 0.55 0.65 0.25 0.21 0.18
10:41 0.09 1.49 1.09 0.35 1.28 0.15 0.10 0.05
lb:4P O.Od l.hb 1.49 0.37 0.75 0.30 0.25 0.24
IH:.)^ 0.05 1.21 O.bH 0.37 1.20 0.17 0.09 0.07
U»:^J O.Ob 1.03 0.76 0.22 0.91 0.16 0.07 0.07
1 J •• 1 7 o.Ol . . 1.62 1.30 . . 0.18
U':U' U.<*1 . . 0.81 0.56 . . 0.10
\^:?e 0.04 . . 1.19 1.14 . . 0.28
l-*:Sj 0.13 1.75 1.47 0.56 0.47 0.53 0.50 0.41
J<.:3b 0.07 1.39 0.90 0.40 0.40 0.18 0.11 0.08
li:?9 o.OH l.Sh 1.07 n.38 0.38 0.35 0.27 0.22
li:5b 0.10 2.52 1.17 0.30 0.94 0.28 0.07 0.07
IB^v 0.05 1.67 O.HB 0.48 0.82 0.26 0.11 0.09
2i:i0 0.01 j.^6 O.b9 0.19 1.55 0.20 0.13 0.11
|O:IK. 0.04 1.40 1.07 0.25 0.93 0.26 0.20 0.16
l-.:s^ U.03 3.31 2.75 1.68 0.95 0.39 0.30 .
17:47 0.05 1.09 O.M 0.22 0.94 0.36 0.23 0.09
lti:b'. 0.02 3.12 1.47 0.59 0.76 O.b3 0.33
OJ:<*& 0.10 3.24 1.58 0.72 0.77 0.58 0.18 0.17
IB:'.! 0.04 4.1« J.64 1.40 1.72 1.01 0.99 0.56
I6:it> 0.05 1.41 1.19 0.32 0.89 0.62 0.59 0.49
19:j/ 0.09 l.hb 1.33 0.45 0.73 0.57 0.54 0.47
OH:?/ 0.14 0.9b O.H7 0.?3 0.97 0.7 0.03 1.19 1.19 0.70 0.76 0.41 0.41 0.37
IbMtO 0.02 \.£l \.d\ 0.70 2.18 0.26 0.26 0.21
li:.JJ O.Ob l.bb 1.55 0.69 1.11 1.30 0.62

-------
                                                                STATION  NUTRIENT DATA
ro
CO
0-s
3"l>
3 -*f.
34 /
34 -
3'"'
3t> (i
3'"J/J
V:> J
3V*
3-v?
"* -» /
3 ••>•••
I;;;
3- 1
3':»<->
3S 3
3">'-i
3*v~>
3^'
3V;
'1 /'
3/1
37?
3/3
3 /u
"' 7 ~>
37-

o.^
37*
3T-*
3. MI
3" 1
3^2
3M

I'^s
j ~i ?•>
3->7
"*"/
390
391
392
S 1 K.- MO 1 1 ^J^
S't •> Ull c
J /.' ^
3r"v
t J,-
J.I
J3
:^
*-j u
^ i
r!c
4 -,
t/<
jt
.i-j
'. -i
<4 *
i. i
-> ^
»"• 1
f '+
/ 1
i '/<•
i >•->
^M
,-V i
,' ... S
^ - : -;
s""' ,

0 u ^
l'i) C'
ii U f.
ill r!
U, e
u U ^
t'(i /•
U u i'1
Oil £*
111 C
u I. i-:
••iii ,.
0 U f-
fin t!
'/I' ^
i ' i , ^
en <
I'll r-.
0 •>' ^
I'D f.
Illl f
(1 If f1
•l-.l r'
•i(j  1 '•
2 11 u r-
 ii ^y
1
I
'SI: •> II ^
2c^ 0 r:
	 sl
1 I 1 ^LU
/'SdCTiMi
1 7-"s;IJ Vh 1)
^'*i-'d VfMi
>'7:il'V/o«
'I 'f hrc-1

MF^HM
j vvf. j; ^^ j
r ' 0 h t h f*- t
U^IUK"!
' t ' *i 1- K n 1
1 ^ A^kH 1
1 j^«Y = !
| V *' A ^ h 1
Sh* »i YH 1
3(1-"^!
OUDNo 1
1 Ii Jt IN Ml
<"JJl.lMr:oh 0«f;i*00
l>3aiu.r-fi : S'\ : « 7 1.0/00
1 KaijbnU : o^ : *?/ i.ubou
lyflliOni) : 025S7 O.oOOO
0«Si-.PdO: lb:00 O.OOS5

l^sl- MHO: 1 o: 3S (i!ou21
2?Stl'iO! Ii! 30 O.OO^i
i'b'if.V^O I ()S : S2 d.^J^O
rA = bllJK06
TKN
1 34
0^79

i !oo

,
U72
1 .33
O.bB
2.61
1.19
1 .76

1*53

U67
1 Ibh

2io6
2I&S
1 .01
3.61
lic-3
1.77

1 . b9
1.34
TKN
O.HS
O.HV
O.V3

1 1/4
1 .60
J.bl

U47

oil?
ll?3
3.10
O.H6
SKN
1.01
0 . b6
.
1 .00
1.24
*
U31
1.11
0. 70
1*72
1*17
1.30
2! 10
1 .IH
1.92
1.41
l*4j'
1.97
1.19
I.Ob
1.59
0.90
ill?
1 .06
1.45

1 • ft)
1 .^0
SKN
0.33
0.41
0 . 4 .3
I «2b
1 . 1 b
0.67
O.bl
0.32
0 • bH
1.10
O.Ob
0.2S
0.71
0.70
0.84
NH3
0.30
0.08
4.10
0. 10
0.30
0.20
0.35
0.18
0.26
0. 10
8:18
0.19
0.25
O.b8
0.60
0.20
0.65
0.39
0.49
0.^2
0.62
0.25
0.39
8:f-53
0.31
0.15
0.25
0.17
1 .33
0.12
0.06
NH3
O.OH
0. 14
0.06
O.?b
0 . 3f
0. Ib
0. l
-------
                                                            STATION NUTRItNT DATA
ro
•fa

(VS ^ 1 M- i'-*u I n'\-
3 '•* ^ /•" ** '•' n r .
J ' **J r t i1 v
3'*V) ^*> •'
l^r*
'3V 7 ;-/(-
3^t.
V'(#
i+i)0 ^"-Jv»
/»n 1
*»<)? 3«i,r
*+ f» .1
4 i 1 A 'V ) *-*
<»05
6 f ) *> T P -y
A 07 IV
4 uf*
6 f) 9
<* 1 0
A 1 1
^11
<* U1
* \ ;H
•« i ** *•><*
^ 1 S o /
" l i
U | M
•* 1 *•* <~ V
'*£0 '•* 1
^?l

4 *•* '] I " "*
aX, i,,:;

<.^7
*?<'. i™
iu '^
4.3^! in
4 J J >i>
4 >A .U
<'•>-, ") 1
..'(A M
"'<7 <^
4')t- (S
'. 1Q
'.«. II J -*
4'. 1 J .'

A '-4 3 3 .-'
' /. u <> -> j
u ..« '->
'. ., '•> '.• 1
'.' f'
II /-
1
II r
1
1
Ii ?
1
'I C
\
0 ^
1
(1 ^
'J r. t
1 '
1
1
1
1
I
11 r-
|i f'
1
1
0 •'.
'1 f.
\
II f
'' c'

" r*
1
1
I j
o ^
1
II r:
I -1
ll /••
1
> ,•
M ,-'
1
(l s
\
ii /•
') X
1) /
J
i ?

TI
clL>l
? S '^ ^ ^ u 1 1
?Ll\f ^;^.(l
0^'lC 1 f 0
f'^'^C T ^ 11
? (Ii 1C t r> H
(-•Si.iC T ^ 0
? ?uc r^o
(^ ^ 1 1 C 1 H 0
I) 4Nt IV ^ 0
!"•« f M.1 V '••' 0
1 0"|l iV(<0
^'Af-ill V HO
/•7'.'OV"0
uii.iexnn
f i H 1 j K C w 0
I^Dr Ch'l
i-1? Oh CfO
c-*.j&' M i
(>9f> - f 1
t lf>."-l
? ? K H t • K 1
n''.-!ftL-M
? "^' 1 A|' M |
./£[<£}
(JA,.lftYM 1
|(i:-iAYr. 1
| l.i:-1 ti t ^. 1
1 1 :• >• f f 1
1 1 1'1^ > l< i
I j 'a Y ^ 1
1 ^'-ift YM 1
|S'»flr?|
1 'y'-i fl t d 1
1 'y'lAYb 1
^'l"|4 YM 1
(i | JijMK 1
0/MU'inl
ii o ji irjf , l
1 fl jllliH 1

1
: OH : on
•10" b^
: 1 ? : •> 3
J 1 -' : M b
J ? 1 : ">0
: lo: ud
; (i <) : £> s
: 09: (16
: 1 0 :^i>
: 0'- : f o
:ot' : 311
: o >i : 13
: 1 '« : M b
: o "'. : 1 H
: 1 S : S6
: K :<.'•.
: ( ; M : ^ o
: 1 O::: o;'
: l 1 :nx
: 1 w : :> ]

j j ll i bo
• 0? • 5 /
: ' •"! i t' s

: l/.vii
: IM : so
: 1 n : n b


FLO
(-.1340
0.0<*0 ?
0 . 0 1 bt>
(1 . 0*>H6
0 . 1 ^>00
o.oo?i
O.OlOb
7. 1 100
0 . 0<'34
o. i ioo
0.014J
O.h?00
0.0073
1 .0?00

0 1 01 Ob
'• . 0 0? 1
0.00/3
0.0 In3
0.00^1
0 . 0 1 <* .i
0 . 1 1 0 0
n . t^tj o i)
0. 1300
o.o i«6
0 • i^^O 0
O.ttOOO
O.OIH6
O.^noo
0 . v 1 0 0
O.S^OO
O.MOO
O.OObO
0 . U 1 f h
O.^SOO
0.<«.00
n . 6 n o o
0.0186
0. J600
1 . f */ 0 0
O.?30(l
1 . 0*300
1 . 1400

III 0 1 86
0 . 4 ? 0 0
(i . ^^*o 0
0. 6-500
o. 1400
?. 3/^00
O.O^t-6
O.V?Oll
5 1 B-DlUf U 1
TKN
0.66
0. 78
0.33
O.?0
.
0 . ?4
0 . ?3
1 . ?4
0.?7
0.47
0.19
1.86
0.18
1 .16
0.86
0.4?
0.1?
O.pb

o!49
0.36
O.b'l
1.34
0.54
0.33
.
?.H?
? . 4 0
O.tH
0.90
1.73

olbb
0.31
0.37
?.33
o"?4
llbb
I.h4

U?V
1.17
1 .06
0^30

0 • t*?
1 «6V
0 . 99
1 . ft*
0 . ** f-
1 .^b

SKN
O.b4
0. 70
0.33
O.?0
.
0.??
0.?3
O.B1

ol43
0.17
1.39
0. 18
0.97
0.64
0 .?t>
0.1?
O.Ob
0. Ib
0.31
0. jb
0.30
0.49
0.33
0.33
.
0. 76
1.4?
0.48
0.73
0.67
0.6?
O.b3
Ol33
l.OS
0.49
0.86
0.24
l.Oo
O.bV
0./4
U.76
0.54
0.89
A.?0
.30
O.bt
0.6?
II. 90

otnti
O.-tti
0.61

NH3
O.?0
0.14
0.06
0.10
26.82
0.10
0.06
0.40
0.07
0.14
0.07
0.09
0.01
0.2?
0.04
0.16
O.OB
0.05
O.Ob
0.16
0.09
0. IB
0.44
0.04
0.09
O.Ob
0.49
1.07
0.08
0.17
0.41
0.11
0.1?
0.07
0.09
0.32
0.12
0.41
0.07
0.4?
o. ib
Q.t'd
0.20
0. Ib

OJ4J
0.08
0.17
0.11
0 . 3b
O.OB
0.16
0.09
0. 18

N023
0.51
0.73
0.47
0.12
4.06
0.23
0.08
0.97
0.25
0 • **3
0.05
0.81
0.12
0.66
0.84
0.22
0.02
0.06
0.06
0.43
0.31
0.66
0.60
1.00
0. 16
0.05
0.34
0.79
0.13
0.46
0.78
0.55
0.46
8:8^
0.85
0.89
olo1!
0.51
0.23
0.65
0.35
0.26
0.67
olo!
0.58
0 . 44
1.51
0.43
0.?7
1.45
0.55

TP
0.09
0.10
0.07
0.02
.
0.02
0.01
0.70
0.01
0.08
0.02
0.29
0.04
0.23
0.1?
1 .46
0.01
0.00
0.10
0.02

olo9
0.37
0.10
.
0.81
0.43
0.04
0.12
0.23
0.90
0.11

ol29
0.11
0.52
0.0?

ol35
O.OB
0.21
0.38
0.14
0.3B
0.02
0.12
0.14
0. 16
0. 18
0.3t.
0 • U**
0.57

TSP
0.06
0.07
0.05
0.02
.
0.02
0.00
0.21
0.01
0.03
0.00
0.11
0.03
0.14
0.05
1 .46
0.01
0.00
0.02
0.01

olo?
9
0.05
,
0.17
0.18
0.03
0.04
0.05
0.04
0.03
8i8i
0.04
0.05
0.05
O.OZ
0.06
0.05
0.04
0.10
0.06
0.07
8:81
0.04
0.10
0.05
0.03
O.OS
0.03
0.09

OP
0.02
0.02
0.01
0.01
3.18
0.02
0.00

o!oi
0.0?
0.00
0.01
0.00
0.14
0.04
0.12
0.01
0.00
0.00
0.01
o.oi
0.02
0.11
oloo
0.01
0.17

o!o?
0.03
0.05
0.00
0.03
8:8?
0.01
0.02
0.05
0.00
0.06
0.03
0.03
0.09
0.03
0.06
0.01
O.OI
0.02
O.Ofe
0.00
0.01
O.OS
0.00
0.03

-------
                                                                         MM JO'M UUFKltNr IJATu
 I
ro
en
llj^ S(.-
••.47 ).,„
4 4 < 171
44 * i /;•
4^11
* '7 j 1 f n
(*S^
4 '•} i 1 • • J
•.S'« 1 .-0
i-SS
••« S 'i
'i S 7 .- i ' -j
• i1., i

M-s ,„.
'•M ,:l-
..>-,' ,-,-•,
:- '- 1 2 .i 1
 . • • - -
4': t .'•• -,
. f- ' ,-'f,>
t •-• y r* ' l>
:;^j,
'. 7 (
<* 7'* •• '.• •'
-. 7 ;
/. 7 / <••'-•
! . 1 f\
'.79 J,v
4MM t )^
4M |
4X2 33 7
4HJ Jj/
•th't _•..)/
4f-.5
4 H *•> A'* ^
'.('.7
4 H ^
4 -JO J9
4'* 1
4 't 2 4 0
44') ->1
•LII 1 i^•^
I
t t'
11 f'
\
'• r
1
1
i; x
1
1
u ^
1

•i ,i 1 f."
' r
'
1 :
M s
1
'. i>
e
n rr
'• r
I
1
i t'
I
'.. f*
l
l
1! ••
i
M c
ii ^
i
" t*
I." f
l.i /••
i
j, ^
\
\
i
0 2
1
0 2
'! ^
1 1
1 IJI'I'r.
-• -l.li i •.
^| Ii . 'f
^ /-.Jl tiv;
21 M '•>•
;••( II i id
IV Jl 1 >•
(IJJI 1. H
1 j ll 1 .-1
/'li.J1 1. "
>'t Ii 1. >•
- 7.JI.L-1:
i: 'L.I M •;•
1 1
(l 1 /U.I.-,
1 •,•.' . , i.
1 • i ii,:ij
1 * ; . i '•;*;)
(•••-.I 1^ M
? ^ i' l~ ^ H 0
/^SSt- t H 'i
r'JSf. '-'''I'
fVSh (• Ml
|ln()L I Hi)
1 I'.K. lot-
r~(ttCMO
Oi^DF.CtiO
(VUf f.ld
i V 1 J K C t* u
Or.'JKCt-O
C'li't.COO
1 suh cnt.'
tVl't CbH
^^HHI
r. <(• t >'H
] t*h f- ^ M i
201- 1 l-f< 1
2 1 FK jf- i

/.' 1 - V
1 'i :- T
1 - '•) -
1 '-4 ? V
/•'ll r-0
i- is
r < (1 1
(.-. •• 7
1 .< <•'•
|M ^
U I-'
II / '..
1 . \\
|.| -.'J

1 .|;0

1;^ I 1 ^
('• / : '<• \
i"':'.'?

0 '.I i2
J o: iiS
lj:ou
1 3 = on
|)' - ' "
10:50
(>•) : 1 '3
lu:.ii
ii,-.: 'in
'>-:27
I4ISO
lt>:4i
10:20
1 ** • ^">0
1 9 = 44
?o: 04
^> 1 ; | ^
Oo:30
1 0 • 0^
1 «: jn
1 J : b 0
14:^0
1 « : ^ 1
I i:so •
P j i (i (i
on: 30
l-LO
I .7 I no
0 . • nO 0
4 . t n 0 U
O.OI* J
3.2 jiKI
0 . 00" ')
I .(-'700
V .0 700
(i . 'I I 4 J
(I .004^
H:Pboo
O.O^iMo
n. I, .KI
r I.O
l . 4 4 fl 0
O.UuOO
0 . *^ 0 0
u • 2 H 0 0
0. 006]
0 .040b
(i . I I 7b
0 .040'3
0 . 0 I 2 1
0.0089
0.0009
2. 
-------
                                                            STATION NUTRIENT DATA
I
ro
cr>
OMS
495
•-» ^ 1.1
t» -y /
/.9*
,,Q'V
S'O'I
sol
SfiP
SO 3
5 OS
SOO
*>0 /
SOrt
SO •»
SI 0
SI 1
511
SI-'.
si-^
51-5
SI /

SI i
521
521
522
523
524
S2*j
S27
s?"5
S3')
lj~M
S J
172 ii 2
1
1/00 2
1
1  APKh 1
(I -rfiSHPH 1
1^-i-^H
1 /Akt-n
2 o A u i- y
2 3 u H K H
f* f tl t-f'^
p / a f- K *>
'U) Al- w^
3 0 A >j t' h 1
(.1 '. --i A r *"•
) 1 l-l A Y h 1
1 S M « Y 8 1
1 ^l1' A Y 4 1
29" A r^ll
i)H Jl ii 18
) IJJt K ;M 1
1 .uiuib

2 1 H i'.1^ 1
22Jlifv'H 1
2^'jilnb
02 JHL81
n3J(iL%l
("-JI.il. HI
13Ji.il. Ml
20 JUI ^1
?4 Jill Ml
^SJULHl
2 /Jill. Ml
0 -< : 1 0
1H|1S

do: 13

13: 29
1 h : u o
(1^:41
1 n : 1 3
I/: 4?
1 o : 07
1 >• : 6S
'<• 1 : 1 )

14:4-5

? t : '» 7
1;!:33

1 (^ : OS
1 J • 4 S
21:22

i ft • i ^
P^: no
1 n i ^ J
^*o • ^*?
1 ** - 2 0
l^i^i
1 j : 3S
ft-: 50
?l!so
1 i j 3S

07:46
(4:4)
	 bl
H.O
1.3000
0.0350
0.0200
0.4^00
0.4600
0.4t<00
0.0200
0.5500
1.0000
0.2c-00
0.2100
0.0200
1.1000
0.2700
0.0250
0.2600
0.3900
1 .1600
0.0121
2.5400
0.2400
0.0121
0.5600
0.0200
1 .OSOO
1 . J900
0.4100
1 .2200
0.0061
3.7100
o! 3000
0.5100
ol0061
0.0038
0 .5900
3.6700
0.0465
«=w> JUKUb
TKN
1.02
0.39
m
2.11
1.31
1.51
0.50
O.V9
1.73
1 .09
0.53
0.53
2.91

0^4 7
1.22

2^24
0.55
1.21
1 .50
0.23
0.75
0.51
2.69
2.1b

1 156
0.91
Ol56
1.21
1.16
1.3H
0.69
0.75
4.32
2.72
0.50
03AiK.ti| 12:0(1 0.2600 2.23
L TA— tlllLjntl
Til
f)20( Tao : |f.:6o
2S(|(- Fni1 : u3 • 60
IJ4NliVf10 ! 1 '» ! 29
O^Mivno : uo : 2 /
24MWf 0 : 07 : ot-
24r>iov^0 • ) M • "^4
/^7M()vi(i : J4: \t;
SKN
0.49
0.35
.
0.93
0.42
0.47
0.50
0.52
0.67
0.48
0.38
0.38
0.93

ol J5
0.72
0.49
O.d2
0.47
0.55
0.82
0.21
0.60
U.^2
0.67
0.65
1.04
0.58
0.91

oI/B
0.54
8:15
0.69
2. OH
1.15
0.50
0.87
\ LO TKN si*. N
0.22
0 .^2
0.11
0.1V
n . 70
\j . « \i
1 .20
0.11

t
3* 16
l.Jl
2.53
2. 7fc
9.70
5.76
1 .85
m
21*3
1.31
1.07
? . SS
f . J ^*
0.63
b. 7«.
1 .7*1
NH3
0.46
0.07
0.05
0.52
0. 13
0.15
0.09
0.11
0.34
0.07
0.12
0.05
m
0.17
0.07
0.18
0.24
0.34
0.15
0.22
0.25
0.16
0.20
0.17
0. 10
0.04
0.35
0.19
0.41
0.1H
0.33
0.14
0.06
0. 10
0.27
0.26
0.36
0.34
0.07
0. Ib
NM3
5.25
1.34
0.43
0.09
0.55
0.16
3.?4
0.32
N023
0.73
0.12
0.05
0.57
0.47
0.35
0.11
0.37
0.65
0.29
0.44
0.08
.
^
0.07
1.01
1.60
0.93
0.00
0.29
0.6B
0.09
0.18
0.54
0.41
0.51
0.89
0.56
0.15
0.39
0.11
0.60
0.62
8:fii
0109
1.31
0.73
0.48
1.07
N023
? 81
KOI
O.fll
1.81
0 .68
0.30
1.49
0.92
TP
0.29
.
.
0.70
0.31
0.36
0.03
0.15
0.23

olo5
0.60
9
0.04
0.13
0.24
8.60
.04
0.21
0.18
0.05
0.10
0.04
0.62
0.53
0.20
0.41
0.05
0.48
0.04
0.28
0.18
8:5*5
0.05
0.60
0.55
0.05
0.54
TP

ll35
0.35
0.42
0.56
0.44
0.43
0.14
TSP
0.05
.
.
0.08
0.05
0.05
0.03
0.04
0.05
0.03
0.04
0.03
0.05
,
0.02
0.05
0.05
0.12
0.02
0.05
0.02
0.04
0.05
0.03
0.04
0.04
0.07
0.07
0.05
0.23
0.03
0.17
0.07
8:ii
0.03
0.04
0.04
0.05
0.12
TSP

U35
0.35
0.29
0.53
0.22
0.42
0.13
OP
*
0.00
0.01

Olo5
0.05
0.01
0.01
0.05
0.02
0.02
0.01
.
0.01
0.02
0.02
0.02
8:00
olo4
0.02
0.01
0.01
0.01
0.03
0.03
0.01
0.03
0.01
8:8?
0.07
0.01
8:4?
0.01
0.02
0.03
o.oa
0.09
GP
0.99
1.19
0.26
0.18
0.40
0.21
0.31
O.OH

-------
                                                                 STATION NUTRIENT  DATA
I
ro
•),««
S^l
5'+**
S^» '•»
S** '••
^>£* 7
S**""»
V-v
bt> '.
SS 1
^o,^
b'b-
5-.-,
Sot.
5S7
b~> -*
Sf.O
Sol
S62
S^> 1
S^/t
^8-*
L, *->*,
S*W
Kf. u
£?V

5h/.
SI K' NO
U.'4.ll
J'.l 1 . ')
*b n • I'
" j.'t. 0
J*-v . li
4/^.0
^ 'J . U
p 1 • 0
•j3.ll
t*. ^ . 0
91 .U
V :• . II
104.0
1 (,' / . 1)
1 1 0 . 0
121.0
1 JO.O
JT..O
J". 0
b-.G
u^ . ii
/ 1 . u

(• •-.. l>
^0 V . "1
^ 1 V. I)
cV ' • 0
^"•^ . d
24.1. 1

^
S.
^
f*
tt
TI
09lir-. c>'0
1 ^Ut: I:HII
2 "IL'f1 Cr<0
02KI bill
d^f Kfibl
1 UtHM
1 ^*\ t" HM 1
fiOf f hfi 1
22KK Mb 1
3 0 1 "> f- h 1
6 1 'tVrtl
L'SAh-PHl
0 9 u \- V ri 1
| it A (-- 1» 4 1
?»ttp^rtl
0 IMAYol
JOMfiTMl
I ^y\f> YH 1
1 '<[•'£ > M [
1) }w)|.if,,o 1
()i> J( )^^ j
^ i_i jt i(-jh i
u 1 Jilt n 1
(i )j(i[ >\ \
? r1* J 1 ' L h 1
Ij^'ru^i
| | n( i^jft 1
JQAlKiM]
31AUOM1
OHbt Hd 1
1 bSf H^ 1
1 ^ b t' K M I
ii lUCT^I
1»OCT')1

?'?uClhl
ObMI > VH 1
(I 1 L>t CM 1

1 ;-: 1 9
n<« :o f
1 1 :0b

12130
OiC4b
15; J 1

13150
0 9 : 0 9
1 b : 1 2
1 0 J 4 tt
O^i I 22
01 ibb
(ii: )b
lb:3S

^0121
- f J : S /
1 7 : 0 1
ui) : Kt>
o 7 : 1 o

1 0 • /'^
2l! 5*5
1 ^ 1 5 4
0 7 142
1 1 : 19
1 t) • 4 0
U" : lb
C\ • 14
17:36
1)7:3")
Ob 1^2
23: ""i4*
1 1 :OH
	 r>
KLO
0.13
0.19
0.20

(K22

o!30

0 . ?4
o.ou
0.36
0.19
0. Irt

0 .36
0.57
0.32
0.72
0.17
1 .07
1.15

U • h f
1 .39

1 I08

oll5
0.59
0.24
0.33
0.1H
0.31
0.10
U.20
O.Ob
0.2B
0.3b
0.58

» = D IUKIIV
TKN
I .23
.
B
.
2.25
2.16
1.13
0.92
1 .50
1 .09
J'?i
ili5

1 170
2.01
1 .85
2.27
2. .•}!:•

2lfn
2.52

2.32
6.64
1 . 04
1.20
1 .51
2.73
2.20
1 .24
3.01

3l52

K45
1 .85
1.82
j .87

i !oo
bKN
1 .03
.

1. 75
2.1b
2.05
1.13
O.O6
1.33
0.62
2.41
O.H4
0.94
2.40
1.11
1 .2o
1 .69
1 . 70
1.24
2.22
f. .el
1.74
1 . 70
1 .87

Olb2
0.69
0.77
1.13
2.23
1 .93
0.97
2.61
2.4tt
2.90
2.61
1 .36
1 .83
1*67
2ll3
0.95
Nh3
0.07
0.31
0.96
0.48
0.41
0.42
0.16
0.12
0.32
0.22
1 .4b
0.16
0.32
0.47
0.39
0.45
0.60
0.40
0.50
0.7H
0.55
0.47
O.H7
0.50
1 .29
0.26
0.22
0.24

ol49
0.57
0.26
1 .08
0.70
1.60
0.97
0.28
0. J8
0.25
0.14
1 .08
0.32
M023
0.90
3.77
3.38
I. 00
0.64
0.72
0.98
0.78

Ol59
0.61
0.35
0.45
0.42
2:57
0.65
0.63
0.56
0.46
0.37
0.53
1.15
1.03
o.eo
0.59
0.89
0.52

o!43
0.53
0.35
0.64
1.49
0.96
1.09
0.67
0.51
8:31
0.97
0.44
TP
0.10


0.32
0.30
0.32
0.09
0.08
0.10
0.11

o!l4
0.22
0.17
0.13
0.32
0.18
0.38
0.26
0.33
0.76
0.79
0.30
0.14
0.28
0.17
0.31
0.44
0.44
0.31
0.24
0.75
0.32
1.03
0.30
0.23
0.16
0.30
0.34
0.43
0.41
TSP
0.04

m
.
0.26
0.28
0.07
0.06
0.08
0.08
8:,I
0.11
0.18
oli?
Ol30
0.13
0.26
0.23
0.27
0.72
0.57
0.25
0.08
0.21
0.11
0.24
0.37
0.39
0.28
0.21
0.72
0.28
O.B8
0.20
0.23
0.15
0.29
0.34
0.32
0.27
OP
0.02
0.01
0.06
0.29
0.19
0.20
0.04
0.04
0.06
0.06
8:39
0.09
0.12
0.08
0.04
0.21
0.09
0.19
0.19
0.20
0.23
.
0.21
0.05
0.10
8:8?
*
0.30
0.20
0.16
0.52
0.22
O.bO
0.15
0.17
0.10
0.20
0.20
0.2fl
0.23

-------
                                                              STATION NUTWIENT DATA
m
ro
oo
CMS b 1 h""NO
5H5 ? ir1 . 1
S^7 2*9 I I
5'irt .^Cr'.i)
5>i9 3i-^.(l
590 3-.'. .0

b'/i-' j'-*.i)
S ' ' 3 ' > f ' . 0
V-/S :>llu

b'97 ••'!.')
S '-M °1 "•> . 1 1
S--*^ -<^.6
hflO llli.U
611 1 H-4.ll
Ml? ,-l.H
2.U
M2 ri4.(.i
M3 T-i.l)

615 f-ult)
M * (IH.U
M 7 03. (i
MM _ T 4 . 0

i\r"\) f'< -i , )
f , p i r* 1 "-*.')
^ 2 r* r* r* 5 • » >
fi? 3 i?r' / . l:
*• ^4 e'SJi . 0
fj^Jt. ?!•>!(. ()
b P t> 
f
^
^
,_•
s_
^
s

/•
e". .'
f.

£
f-
f
CL
e!

^
f
e.
<:

^
^<
I*
'(•
c.

c.
r1
c

^
/
^
^
,±
e>
it
n
IKUCT'*0
pflU^U
1 7UO Vrt 0
^ul'JLWMO
M 9 L) t" C ^ 0
nst M;H
UHl- K^ h 1
1 w f- (-' f ' f •
2?£^H
I 6'lAPrl 1
ni ApwHi
IjS/l Kh'h 1
(1 g f. (J (.' K i
1 ) A t-1 * >• 1
] /, ,j >j ,. H
0 1 ^'" AY'*
| (IM A Y >'
1 ] -IflY't

1'j.iarH
? 7:^A YH,
X^i-la Y r*
^ 9 '•! A Y h
3 P n A Y (i
OlJUNn
IIJJ'.Kir
()a Ji ffMl
05JUNH1
U 4 J 1 1 M r* I
| 3JI ih.iM
d^ jilLri )
0 Jjiil HI

^-IJULM

1 1 At iC'M

1 S^h MH
[ 7 ^ ^' P h
1) lUClb
^3')t fr!
Ui'ltLMl
KuEf.H
^ LO TKN SKN NH3 N023 TP TSP OP
15:25 0.34000 1.H2 1.21 0.32 2.20 0.33 0.18 0.13
m:3" l.bOOOO O.tJb 0.50 0.14 0.33 0.60 0.38 0.31
I4:i)3 l.b<*000 0.71 . 0.50 0.04 0.41 0.31 0.24 0.19
lS:^.n O.d9000 0.8h 0.84 0.51 0.50 0.44 0.40 0.35
10:o5 l.^^OOO 0.78 0.55 0.32 0.32 0.44 0.33 0.33
13:-4fi 0.2H777 . . 8.50 1.04 . . 2.10
Ot>:^S 0.^9000 4.06 3.35 1.87 0.78 1.55 1.07 0.99
1 1 : 3<« d.bHOOO 2.59 2.15 1.06 1.26 0.93 . 0.65
^•3:iH 0.55000 . 3.28 0.88 0.50 0.65 0.51 0.46
??:-4-v 0.35000 Q.7H 0.43 0.20 0.60 0.17 . 0.12
2?-:'iH 0.43000 1.00 0.77 0.16 0.64 0.17 0.13 0.11
l^:-«b" 0.27559 . . 0.40 1.10 . . 0.06
1^:30 l.OhOOO 1.74 0.54 0.36 0.46 0.49 0.15 0.15
1^:3V 0.66000 2.89 0.99 0.22 0.45 0.61 0.10 0.08
fJ9::>,» 0.<*MOOO 1.11 0.70 0.00 0.57 0.16 0.07 0.04
KKl* 0.77000 1.27 0.86 0.35 0.55 0.19 0.08 0.08
i>5:. i? 1.02972 1.3H 0.95 0.33 0.57 0.20 0.10 0.09
(i»-:u7 ().w?000 1.55 0.97 0.41 0.90 0.22 0.14 0.11
^1:3" (I.2S362 1.64 1.15 U.48 0.76 0.23 0.12 0.09
l^':ls n. 16399 . . 0.24 0.39 . . 0.07
20:32 O.OH104 1.00 0.69 0.35 0.5<« 0.13 0.09 0.07
13:«7 O.3 0.30UOO 3.62 2.95 1.56 .93 0.60 0.34 0.31
M:t/t' 0.24000 2.88 2.53 0.26 .38 0.37 . 0.17
14:<^ 0.30000 2.21 2.15 0.70 .14 0.28 0.18 0.15
I|:10 0.23000 3.27 3.21 1.26 .04 6.24 0.19
13:^9 0.29000 1.09 1.34 0.26 .20 0.16 0.16 0.11
14:35 0.99000 2.11 1.30 0.39 0.72 0.36 0.18 0.18
17:tir. 0.3'JOOO 1.05 1.22 0.24 0.76 0.36 0.23 0.20
'2:40 0.15M99 3.01 2.76 0.24 .22 0.24 0.20 0.17
JP24 1). 21512 3.01 2.59 0.30 .12 0.27 0.20 0.18
??:'»b O.b7000 2.69 2.27 0.29 0.93 0.35 0.23 O.?0
11:10 H.«8«b9 1.99 1.33 0.14 0.63 0.28 0.13 0.04
15:<"> 0.-4<«yf58 0.72 0.70 0.04 0.21 0.23 0.17 0.02
l«.:Jo 0.0fitis»ir 4.19 1.87 0.50 2.08 0.66 0.31 0.?5
l^Jr-l I.UJOOO 3.09 2.01 0.26 0.53 0.57 0.26
Ob:.<5 0.714^ O.bH 0 . bS 0.20 0.77 0.21 0.14 0.10
iQ:b2 0.1S306  1.97 0.18 1.01 0.37 0.27 0.?4
?():r>b :i.fr>66h7 0.98 0.50 0.19 0.28 0.24 0.16 0.14
lf'.:4S O.S7000 1.33 0.80 0.27 0.32 0.33 0.26 0.22
(.14:11 1.^0370 1.22 1.10 0.51 2.42 0.10 0.07 0.04
>|:>o 0.34000 l.QO 0.91 0.41 0.40 0.28 0.25 0.25
OS:Ol 0.1859rt 1.76 1.76 0.44 0.6B 0.62 0.50 0.44

-------
                                                            STATION  NUTHIENT  DATA
ro
10
()HS
632
r-j 3 3
634
63S
636
637
*>3 *i
63V
640
6^» 1
64 .'-*
64. i
644
645
646
647
h'.M
649
650
6S1
5S2
65<«
6SS
6S6
^S 7
6SM
6S9
660
66 1
662
t>6S
b'-7
h?Wl
6^. V
670
671
672
673
6 7*.
tWS
676
677
6 ?•<
S|>-.'IM<.I IT I---.
277.00 2
S / / .00 t'
2 7 / . 0 0 2
<^ / 7 .Ou £
e.'id .00 £.
S ^t 
.oo 2
< 1 V . 0 0 ^>
r'b^ 0 0 ^*
i^.Od 2

^J'jioii ^
J4r:.0() /<
JS7.00 ^
1 1
OJl'CTc>0
O.idC Ifid
03dCTfaO

1 fdCTOO
1 ^dC 1 b 0
1 ijdCTffO
IHDC rbo
IM'C led
1 n(n, frd
IHdt-TJid
1 M'C 1 rlfi
1 r.d(, | mi
1 •.'(>(. tf* ')
^MICTHO
t) ^* M (J V b (i
^t«''J(J*'H 0
f'^MOV^ ()
^ 7M() V H d
O'-vOf- ChO
O^ft^.ibl
1 1 AHWHJ
] 0 ^ A Y b 1
I l^'Afbl
1 H *» /\ y f 1
2^'Arbl
/ ^ M A Y H 1
^V«fl YH 1
01JUNMJ
OhJUNbl
21j!jf!"i
^b.J1 i^J^ I
U ^.)l ll_ o 1
OJJilLHl
Oh&IJU^ 1
0 7 Al I(?H |
1 b^t* Pri 1
OlfjL Fbl
20 in. re. i
o lot CHI
231^ Ch 1
,
: 1 0 : 1 S
: 1 1 : 1 .t

i 1.3j(iJ

: 0'*: Ofc
:09: 17
; Q <
:ov: jv
: 0 i1 : j 1
: 10:ot.
: 10:^ j
: 10:-2
: 1 1 : 10
: Ot : jv
: u '\ : H t>
: 10:36
• ??.• Ob
: e1 'r : ^6
: !'•: 10
:06:b7
: 10:51
: 10:b7
• 'd \ • ^?
: I?: .\v
:?\ : 1H
: 1.6:2"
: lS:4t
: 14:36
;i"s!"o
: 1 1 Ut
:oi : J3

: i v : o h

: 1^:02
: IS:. IS
: 12:09
: 23 is 4 /
: 1 7 : i3
: 2 i : 0 3
: 1 i : b6
: 1 1 :t6
:0<.:07
	 V, |
FLO
0.00100
0.00100
o.ooioo
0.00400
O.OJOOO
0.06000
0.06000
0.06000
O.ObOOO
O.ObOOO
o.040oo
0.03000
0.03000
o.oosoo
O.H6000
0. 16000
1.40000
0.52000
0.12000
0. 1 1000
0.76000
0.53000
0.58000
0.4i«000
0.4VOOO
0.10000
0.50000
0.32000
O.bbOOO
0.71000
0.4bOOO
0.7^000
0.7SOOO
O.bbOOO
0.19754
0.26000
0.1S1S2

olbjOOO
1 .51000

0.4 iooo
0.30000
0.2661 1
0.4HOOO
0. 1^000
0. 1VOOO
0. 19666
TKN
1.54

2ll4
2.10

m
m
m
3.44
3.12
2.98
2.7ta
3. 10
1.29
. 0.66

Olbb
0.71
1 .3b

0*66
0 .b4
1.17

0 . 79
0.69
1.40
2.04
1.96
j.87
U20
0.99
3.b5
3.10
3.55
3.b9
0.94
1.37
3.37
1.35
1.15
3.03
O.b7
2.10
O.bb
1.57
SKN
1.23
1.79
1.62
1 .46

m
.
m
2.bO
2.30
2.b4
2.34
1.79
0.9b
0.58

OIS5
0.67
1.16

2ll6
0.45
0.73
0.82

ol60
0.5H
0.93
1.94
1.79
1.63
0.79
0.93
0.7S
2.7b
2.81
3.43
3.b9
0.94
1.06
1.00
1.20
0.95
1.74
0.72
1 .93
0.80
1.42
NH3
0.21
0.57
0.31
0.33
O.bl
0.61
0.67
0.67
0.75
0.59
0.59
0.57
0.52
0.36
0.20
34.21
0.32
0.32
0.58
14.10
1.45
0.20
0.23
0.46
0.26
0.31
0.15
0.25
0.82
1.46
0.42
0.16
8.26
.24
0.63
0.51
0.83
1.09
8:28
0.22
0.22
0.27
0.69
0.03
1 .33
0.26
0.32
N023
2.69
2.63
1.65
1.25
5.25
4.24
3.58
3.66
3.27
3.25
3.13
3.13
2.95
1.45
§• 35
• 9 7
0.28
0.30
0.64
0.69
0.80
0.58
0.48
0.63
0.48
0.68
0.36
0.90
0.60
0.84
0.72
1.14
6.39
0.60
0.79
1.15
2.33
1.11
0.27
0.57
1.03
0.77
0.34
0.96
0.07
8:33
0.50
TP
0.33
0.43
0.44
0.48

,
.
f
0.57
0.54
0.52
0.52
0.54
0.35
0.58

0^37
0.43
0.34
,
o:l2
oll2
0.21

0^3
0.12
0.27
0.21
0.14
8:iJ
8:15
0.52 '
0.23
0*19
0 • 52
8:18
0.33
0.21
0.33
0.94
0.21
0.6i
0.25
0.35
TSP
0.26
0.36
0.34
0.32

.
• .
A
0.43
0.41
0.42
0.41
0.39
0.24
0.42
,
0.31
0.37
0.30
.
8:09*
olo7
0.14
.
0.08
0.06
o!i6
0.10
8:18
8*20
8:11
0.16
0.46
8:i?
0.25
0.16
0.28
0.71
0.18
0.57
0.22
0.33
OP
0.20
0.28
0.26
0.25
0.18
0.21
0.25
0.24
0.26
0.27
0.26
0.26
0.26
0.16
Q • 36
1 c • 05
0.31
0.37
0.27
3.70
8:2?
0.07
0.1 1
0.09
0.08
0.06
0.18
0.14
.
8.09
.10
0.6
0.10
>
.
0 • 26
8:42
0.22
0.13
0.24
0.57
0.10
0.51
0.22
0.28

-------
                                                          STATION NUTKILNT  DATA
I
CO
o
OhS
H M
6P9
nVU
•-91
n9£
t,Q3
tt^it*
O V~5
n9o
f.97
M'/<
f-'y •/
f 0 I)
701
70?
703
704
70S
70Ci
704
704
7 1 0
71 1
71?
71 3
71'.
71r>
/ 1 ^>
71 7
'/ 1 -l
/ i v
/po
721

7? 3
7 ?t*
72'i
721
7? 7
/?-i
724
730
731
732
733
5 1 1' '•'
d 4 -i •
r' 4 4 •
r^.'
244 .
294 •
^44 .
£44 .
L: 44 •
^ -v1* •
P'J4 .
<'*'-..
t* -y4 .
*•* ^4 .
£ 4 V •
<^44 •
£44 .
£44 .
.)44 .
21.
:!v:
so!
SI .
b/i .
S3.
r.j.

4b .
Vb.
vv.

44 .
44.
101.
101.
1 1)1 .
101 .

Io2'i
lilt.
1 OC.
\Ud .
102.
1 0£.
102.
1 1
ii
ii
u
fj
(I
1
I
1
1
J
1
1
1
1
1
1
I
1
1
1
0
Ij
0
(1
11
1)
\l
(J
II
r
0
u
(1
D
II
II
I.I
II
ll
0
1;
U
u

0
n
d
d
d.
^
2
if
£
S .'
d
',>
P
d
d
d

:d
d
d
2
2
d
?
d
d
d
d
d
s
'd
d
d
2
2
d
'd
d
d
d
d
d
d
d
d.
d
'd
d
Til
Pb'oCTttii :
P50CT80!
2SOCT80:
PsucTfOj
PSOCTsu!
2soc rao:
2SOCT80:
P S u C T B 0 :
PbUC 7 H 0 :
f b i J L 7 H 0 :
PSOCTHu:
PStlC T H 0 :
?bdC (Hli:
PSOCTHO:
PSOCTHO:
PSDCT80:
PbOCIhO:
PSUCT 80 :
ovut C8o:
c'lJAn8l :
Oaf tHUl :
l^r'KHBl :
«^OFtHHj C
Plf >H81 :
22f thul :

OSAI-Kc1 1 :
OSAl-t-81 :
ObA^' A H H K 1 :
1 1 APKM :
1 i oi-PHl :
) i A^H f 1 :
1 1 Ai-HM 1 :
!?*Kb!:
j ^apWH 1 :
If'AHMHl :
1PAPH81 :
I^AP^^^I :
IPAKH81 :
j P. APK8 1 :
1 <^APW**1 :
0.)
OS
Ob
06
07
10
11

1 3
1 4
i '+
j ^
i >-,
it.
lb

1 /
j /
1 7
1 1
\a
'l'o
? 
l €L
/-'U
17
1^
lo
10
1 1

i p
0 4
i o
10
1 1

14
?0
2o
PO
PO
? 1
2 1
:43
:37
:01
• ?£+
:il
:b3
;2t*

: ^p
: 3K
: SS
• is
: 4 ]
:03
: 24
: 4 ^
:06

:50
: 09
:£{
1^9
: S6
"47
: 49
: 40
: IS
:oo
Ml
:49
: n
:i)7
: 40
: 1 1
: S9
: po
:SO
:P7
= 32
• ^5
: 17
• SI
• S^*
; S8
:b7
: 22
F
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
2
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
2
4
3
1
0
LO
.16
.08
.16
.16
.16
.08
.08
.16
.Ob
.01
.01
.03
.12
.03
.08
.22
.12
.08
. Id
.12
.08
.22
.08
.12
.12
.59
.25
:&
.85
.83
.04
.87
.33
.33
.84
.33
.7b
.00
.SO
.21
.25
.74
.04
.?b
.7S
.80
.00
.21
.84
.68
.34
.25
.96
D I U« I 3
.07
•
d.ll
1.11
1.01
).75
D.69
Q.79
D.55
0.55
•
2.11
?.01
).86
.82
.82
'.26
'.60
.49
.40
.02
.00
.42
.78
?.31
3:89"
?:&
3.90
3.92
.38
.27
•>.74
.67
.72
.03
).7b
1.4?
1.49
).47
?.83
1 .83
1.27
1 .03
.96
.00
D.96
1.49
e.ii
?.I9
1.13
1.28
1.73
SKN
13.07
3.68
2.07
0.95
0.95
0.67
0.65
0.75
0.53
0.49
.
1 .64
1.90
0. 70
1.56
1.59
1.76
2.18
1 .99
1.40
0.74
0.86
1.23
1.78
2.18
3.78
•
1:11
0.68
0.60
1.29
1.15
2.70
0.83
0.50
1 .03
0.70
0.30
0.32
0.19
0.88
0.50
0.45
0.69
0.98
0.71
0.77
1.19
0.85
0.58
0.60
1.05
1.39
NH3
3.34
1.69
1.22
0.46
0.52
0.34
0.32
0.36
0.28
?. 20
• 00
0.50
0.62
0.24
0.58
0.50
0.60
0.4B
0.44
0.30
0.32
0.24
0.38
0.40
0.46
?:!§

o!40
0.30
0.28
0.48
0.79
0.32
0.25
0.36
0.28
0.18
0.20
0.19
0.17
0.11
0.09
0.17
0.06
0.12
0.14
0.12
0.47
0.29
0.29
0.39
0.45
N023
1.99
0.70
0.49
0.32
0.28
0.19
0.26
0.36
0.17
0.13
i.22
0.86
1.20
0.45
0.88
1 .01
1.11
1.16
1.34
0.90
0.70
0.63
0.84
1.07
1.28
?:^8
8*94
8:3!
1.49
0.30
0.48
0.35
0.33
0.37
0.49
0.31
0.37
0.39
0.95
0.29
0.19
0.35
1.42
0.86
0.97
1.42
0.46
0.42
0.35
0.33
0.33
TP
2.26
0.44
0.28
0.22
0.20
0.20
0.18
0.18
0.14
0.17
0^68
0.89
0.28
0.77
0.88
0.94
0.98
0.99
0.51
0.35
0.33
0.48
0.59
0.73
R-2,6,
0. 73

d24
0.20
0.24
0.23
0.33
0.35
0.27
0.20
0.19
0.14
0.13
0.13
0.46
0.29
0.26
0.15
0*31
0*16
0.12
0.19
0.26
0.82
0.27
0.22
0.23
TSP
1.53
0.32
0.24
8:1?
0.17
0.16
0.17
0.13
0.15
ol47
0.83
0.17
0.65
0.80
0.87
0.89
0.86
0.44
0.25
0.29
0.40
0.57
0.68
8:2$
8:11
0.10
0.12
0.20
0.16
8:13
0.08
0.15
0. 14
0.08
0.08
0.06
0.07
0.06
0.05
0.10
0.07
0.06
0.08
0.14
0.06
0.05
0.07
0.12
0.16
OP
0.87
0.22
0.18
0.14
0.12
8:13
0.14
0.09
OlflS
0*47
0.69
0.15
0.53
0.63
0.68
0.67
0.71
0.30
0.24
0.24
0.36
0.40
0.50
8:?2
0*19
•
0*17
0.14
0.27
0.11
0.07
0. 1 1
0.10
0.07
0.07
0.06
0.02
0.03
0.03
0.06
0.07
0.02
0.07
0.14
0.04
0.03
0.05
0.11
0.14

-------
                                                           STATION NUTRIENT DATA
CO
7.. 14
73S
73h
737
73H
734
740
/•*!
74?
743
7'.4
74b
74 /S
747
7*9
/SO
7b 1
7b^
7 S 3
7Si*
75S
7S6
7^7
7^H
7s9
/'-'O
/'.I <
762
f (~t^4 ,
I f~l^ t
7 f->f^ • i
7^7
'/£"
770 <
7/1
772
773
7/4
77S <
776
777
, 1 KMtgO
"r'.ll
u^ .11
u2lo
u 2.' II
t< ^ • U
(K1. 0
!><•'. 0
'' ^ • (I
<.' .3 . 0
1 U 1)
1 J.ll
1 J. II
21.0
JO. '1
Jl .11
,i "D • 0
Jrt.O
.J9. U
<• '1 . 0
->r . II
:>" . (i
- /.O
bl .u
'•"+.')
n (? . i j
M2 • I
•"I- I . 0
' u 9 . II
J.'J<*. I
e M . M
^d.ii
^23.0

543lU
fSl lo
^bM. |
'9 I . u
J v r> . u
3 '-* h . 0
J 1) 9 . 0
.' Jb. II
1 YMh.
d
cr
c.
<•
'f>
d
s
s
^
t*.
s
f>
2 ••
e.
^
'£
f1
r".
(•
d
d
c

d
d
2
^
^
£T
^
i*_
*
^
'f>
;>
r-
d
^ i
] P a h H1 H 1
1 3 /"i H H r j
1 1 , t ' U I ( 1
1 1 Af-'W M 1
1 36P^fl 1
1 3 A ^ ^ H 1
I W'KMl
^ "1 A ^* K H 1
^ } 6Hk H 1
^ ^lp^ H J
0 1 r^ A Y^ 1
1 Oi*l** YM 1
1 1 M A Y h 1
ISM AY H 1

1 9; 1** Y H 1
^t*'-i/> Y h \
Ul JUNIpl

IOJUNH!
1 JJUNHJ
1) J J| |(_ r |
d 1 JULM
d D JUl. HI
d M Jl 'L H 1
06AU(.-ai
(ib ' 1 S
liHiib
: 0 0 : 0 0
: 0 0 : 2 h
' 0 1 : SH
: o^ : 49
:0 /:S2
: in: 1 7
: ? o : b9
|21 :i.i6

:foJ23
: J?:09
: 12: | o
: 19:44
!4 : ^?
2:oH
:17:13

:0?:4l
: d ? • 4 ?
• \ S : 1?
: 2 1 : "l 0
: If : Jo
: 1 1 : b3
': 1 0 : 1 ^)
:on:21
• 1 rt : b4
' c 0 • d b
ioZ!^
: 13J40
• d\ : 10
: 1 7|34

: i <, : i,f.
: ? ** : 0 b
: 12: J?
	 i>|A
fLO
(J. /bOOO
O.bOOOO
0.4hOOO
1 .bOOOO
0.9hOOO

oIt-1000
0.21000
0.04000
0.2*5000
1 .04000
1 .04000
0. 79000
1 . 12000
o.siooo
0.40000
0 . 19060
n. 1 7000
0.29000

Ol7h000
1. 7(1000
1 .42000
O.bbOOO
1 .b4000
0.21000
0.06000
3.9.-1000
0.6/000
0. 42000
0.26000
U. 76000
0.57000
0.78000
0.44QQO
0.36000
0.49000
1 130000
0.32000
0.4bOOO

oljbOOO
~J 1 UK i O
TKN
1 .53
Ol«8
0.94
^
3.06
3.06

U43
3.04
1.6b
0.04
1.93
1.78
1.01
1 .55
2.12
1.45
2.03
0. 77
1 .84
1 .35
1.00
1.18
2.20
l.lb
4.49
2.07
1.0?
1.01
0.72
1 .62
1.23
l:ii
1.75
1.72
3.29
6.55
1 .09
1.43
b.OH
1.73
SKN
1.17
olafl
0.70
0.77
1.49
2.39
2.66
2.43
1.1U
0.70
§• 26
• ** 7
1.12
0.75
0.65
0.45
1.26
1.24
1.11
0.66
1 .44
0.79
0.60
0.76
1.11
O.bH
3.44
0.66
0.54
0.84
0.59
1 .04
0.66
0.95
1.36
0.74
1 .60
2.74
3.43
0.77
1.27
b.48
1 .02
NH3
0.39
0.47

0^25
0.41
0.45
0.53
0.31
0.23
0.34
0.26
0.22
0.42
0.42
0.20
A
0.87
0.41
0.52
0.26
0.42
0.40
0.30
0.17
0.42
0.23
1.32
0.22
0.38
0.30
0.18
0.18
0.13
0.06
0.18
0.23
0.45
0.73
1.30
0.65
0.20
2.17
0.45
N023
0.29
0.35
0.54
0.42
0.33
0.33
0.37
0.44
0.52
0.63
0.38
0.22
0.26
0.60
0.26
0.26
0. 74
0.66
0.28
0.44
0.61
0.51
0.75
0.53
0.71
1.11
0.69
0.57
0.81
1.35
0.91
1.20
O.B1
0.47
0.13
0.45
0.77
0.49
1.27
1.05
0.59
0.34
1.15
0.60
TP
0.30
8:11
0.12

0^4
0.40
.
0.24
0.60
0 • 33
0 • 1 7
0.34
m
0.37
0.22
0.19
0.84
0.12
0.29
0.20
0.20
0.18
0.41
0.19
1.42
1.10
0.39
0.17
0.13
0.54
0.15
0.20
0.18
0.18
0.41
0.55
1.38
0.20
0.31
0.87
0.40
TSP
0.15
8:i°
olio
0.21
0.30
0.31
0.24
0.10
0.10
0.07
0.08
0.14
0.09
0.09
0.15
0.08
0.14
0.14
0.06
0.19
0. jj
0.11
0.12
0.12
0.13
1.14
0.23
0.39
0.13
0.10
0.48
0.10
0.18
0.15
0.16
0.37
0.44
0.65
0.16
0.2^
0.74
0.26
OP
0.13
0.13
0. 10
0.06
0.06
0.14
0.21
0.22
0.17
0.06
0.07
0.04
0.06
0.13'
0.03
0.05
0.11
o.oa
0. 13
0. 10
0.05
0.14
0.09
0.06
0.10
0.11
0.10
0.4U
0.14
8:18
0.07
0.36
0.06
0.09
0.08
0.10
0.28
0.38
0.50
»
0.19
0.65
0.22

-------
                                                          STATION NUTRIENT DATA
i
co
ro
OKS ,l™ IYM: Til
773 .ic'H.il d 1SAU'.tCfiO :
^ * "i , ] p jf\j\j8 1 :
!"'•< . S h J A N H 1 t
7 VI . 09h t HM1 :
797 si .'..* :•• 2iJfttM i :
MII2 . 1 l'-.MAK!)l:
H03 7b. u 2 lo'iAi'b 1 :
.HUH . 1 {> V1AK61 :
Hub f)^. 0 d 3Ur>ARtt j :
b 0 0 vl.U d OlQPkb]:
Mil 7 . 1 ObAHhfa 1 :
HIM W.C 2 09AHP«l:
S09 1 U 1 .1) f? 11 RKKKl '•
f* 1 1.) 1 U4 . (1 d. j . \ c>7A^'fal:
1 1 L.5 llb.o <-* e^BAPw&l!
H 1 o IcM.O s*:<.0
1 7|31

?o:io
luidO
1^:46

09: 35
d\.\ ' 36
1 b • 09
I lino

/ d • 1) ^
f) | ; ;?ft
1 1 ; 45

	 V,
HO
1.K50
0.005
0.005
0.005
0.005
0.005
0.005
0.010
0.010
0.010
0.630
0:610
0.010
0.010
0.005
0.005
0.005
O.dOb
0.490
0.^0
{»:foo
0.010
0.020
0.130
0.010
0.100
0.270
O.OOb
0..350

O^bO
0.020
0.010
0.^90
0.010
0. 130
1 .080
0.005
0.230
0.020
0. 180
0.070
0.005
0.060
0.140
O^Ob
0.260
] • i? ^ 0
0.070
0.005

TKN
0.90
0.79
1.70
0.88
0.78
0.79
0.91
0.63
0.71
0.64
0.90
1.27
0.80
1.45
1.40
1.56
1.62
1.66
1.66
1 .66
1 .55
1:53
1 .26
0.70
1.70
lllb
1.60
1.43
0.74
2.57
1.32

1:07
1.15
0.47
1.01
1.32
•1:§*
4:3?

.
1 • 32
I • 59
1.03
0.99
1.10
0.91
1.20
1.09
1.59
S
0
0
1
0
0
8
0
0
0
0
J
0
0
0
1
j
1
0
0
{

0
1
1

1
0
0
0

0
0
0
0
1
1



0
1
0
0
0
0
0
0
1
KN
.76
.21
.18
.71
.66
.65
.82
.47
.56
.52
.73
.07
.74
.82
.81
.85
.41
.51
.04
.96
.96
:U
9
.70
.15
:48
.4<*
.36
.66
.62
.91

. 75
.86
.35
.7H
.02
.05
.39

.
.
.96
.12
.76
.77
.93
.64
.91
.74
.01
NH3
0.20
0.08
0.18
0.10
0.18
0.11
0.19
0.04
0.05
0.06
0.16
0.26
0.09 •
0.11
0.16
0.14
0.29
0.64
0.15
0.96
0.50
0.48
0.51
0.59
0.65
0.64
0.73
0.63
0.46
0.18
0.14
0.23
0.19
0.39
0.11
0.20
0.15
0.22
0.31
0.45
0.56
0.45
0.4b
0.12
0.18
0.29
0.41
0.14
0.13
0.26
0.26
0.38
0.09
0. 17
N023
0.14
0.03
0.07
0.10
0.65
0.26
0.40
0.40
0.28
0.39
0.40
8:1!
0.82
0.86
1.09
1.43

0 . 94
0.62
0.58
0.48
0.66
0.82
0.68
0.96
1.06
1.01
0.90
0.73
0.60
0.48
0.50
0.44
0.47
0.48
0.32
0.46
0.37
0.29
0.99

o!41
0.33

0 • 3 0
o.ie
0.21
0.21
0.33
0.21
0.07
0.04
TP
0.07
0.07
0.13
0.08
0.06
0.03
0.05
0.04
0.05
0.04
0.09
0.21
o.To
o.io
0.08
0.06
0.07

0 . 1 4
0.16
0.15
8:11
0.07
0.10
0.12
*
0.10.
0.11
0.11
0.12
0.23
0.09

0:07
0.08
0.04
0.07
0.16
O.Ob
0.09
8:49
0.03
0.10
0.13
0.12
0.15
0.14
0.06
0.09
0.10
0.07
0.13
TSP
0.04
0.04
0.06
0.04
0.04
8:83
0.03
0.04
0.03
0.05
0.16
0.06
0.05
0.03
0.03
0.03
0.05

0^5
0.05
0.07
0.10
.
o.oa
0.04
*
0.06
0.07
0.07
O.Ob
0.04
0.05
^
0.04
0.05
0.02
0.04
0.07
0.06
0.05
0.07
0.05
0.02
0.05
0.04
0.04
0.04
0.05
0.01
0.04
0.06
0.04
0.06
OP
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
8:
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.

01
01
01
01
02
01
01
00
00
00
02
14
03
02
01
00
01
00
04
03
03
u
05
03
03
05
02
02
02
02
01

03
01
02
01
00
03
01
02
01
01
02
01
00
00
00
01
01
00
01
01
01

-------
                                                             STATION NUTRIENT  DATA
CO
CO

I)HS
H32
f-3 '
H3'.
MJS
H3'->
«3/
M3'»
MJ4 •
H40
r««l
,«42
MA 3
MA4
H4D
f>4h
n<* /
M4rt
l«49
Msn
M?,l
rtS.?
Mb 3
ri"it
bbb
HS*3
*S ;
H^M
rtb9
h60
MM
O'lS
H*!^
M63
R(i4
Hfi5
H^S
Rh 1
Hfih
Vr,
R 73
M/M
H 7^.
hlh
H //
B7r,
H /«

b 1 KI-'NI)
U)4
I / 1
lYc,
|f<->
1Mb
All
.
dO'-i
2 Id
dd"
,
.
d^d
?5I
<"i>M
.
<•?<.
^vi
d.'»~>
XVr;
•
Jll>
,
•
•
33b
*
Si xl MU
•JtV.O
./8 1
IhllOVMl
23MOVhl
3l)NOvnl
01DKCH1
:?J:^0 0.300
:0):06 0.190
1-^:48 y.190
.13:09 0.800
OH:04 1-700
.lrt:<^7 0.980
•Ov:bO 0.005
12:5S 0.270
1^:37 0.240
01:02 0.180
11:55 o.ooo
12:50 0.000
na:i? 0.510
1^:44 0.140
l/:^7 0.350
12:25 0.005
?|:b7 0.150
•11:45 0.005
J2:iS 0.005
I7:s7 O.?10
lo:b? 0.260
17:)i 0.350
10:15 0.005
•01:49 0.140
1 0: 10 0.005
•lo:io 0.005
:o-*:35 0.005
:ov:58 0.005
=10:22 0.190
07ULCH1 : jo: 10 0.005
Til KLO
1 tMfi: l(i:.TQ 0.04
2l5t^«'>: 19:53 0.03
^ISf P«o:21 :04 0.03
MOTTdn :^u: 10 0.24
lHOCTrt(i:2?:n2 U.17
19(;CTb(i:oi :34 o.OS
isudoo: Oo:0b 0.02
19oCTe<>: I?:3V 0.00
^ 7li(iVf H : It.: J'* 0.1S
(ivut: CHO : 1^: 3-« 0.07
?3l)ECyo:o^:40 0.17
2lJANoi:u4:3J 0.02
Or'KtHhl :u^:4b 1.21
OH.F t HUl : lo:bV 0.15
1 IFt nul :u4:b2 0. Itt
ls
TKN
1.39
1.59
?:??
2:723
2.82
1.20
2.86

U31
1.46
1.73
2.02
1.73
1.57
1.82
1.32
1.78
1.88
1 .65
1.43
0.90
1.43
0.91
0.99
0.56
0.73
0.89
0.61
ST A = 5 1 UR 1 7
TKN


SKN
0.90
1.25
S:^
?:639-
0.96
0.20
1 .35
0.75
0.58
0.89
1.01
1.71
0.61
0.71
0.84
0.52
?:S8
1.04
0.9tt
0.82
1.18
0.89
0.86
0.56
0.73
0.83
O.bl
SKN
•


NH3 N023 TP
0.19 0.04 0.21
0.43 0.11 0.19
8:?? f
8:38 •:
1:81 8:1?
!:8Z 8:§i
0.08 0.04 0.32
0.06 0
0.60 1
03 0.72
.94 0.30
0.10 0.73
0.09 0.02 0.14
0.08 0.04 0.10
0.12 0.02 0.12
0.13 0.02 0.22
0.09 0.01 0.26
0.14 0.05 0.11
0.13 0.02 0.09
0.09 0.02 0.11
0.09 i
0.20 1
l^ 8:15
0.18 0.06 0.19
0.12 0.20 0.15
0.16 0.27 0.05
0.30 0.32 0.07
0.17 0.55 0.04
0.20 0.70 0.05
0.10 0.82 0.02
0.08 0.97 0.03
0.10 0.92 0.10
0.10
0.04
NH3 N023 TP
•
• •

TSP
0.08
0.04
8:?$
8:12
0.06
0.26
0.07
0.05
0.05
O.OS
0.06
0.07
O.OS
0.05
8:8!
0.0?
0.05
0.04
0.06
0.04
0.06
0.03
0.04
0.02
0.02
0.08
0.04
TSP
•
: . 0.14 2.14
•
*
•
8:8$ i
hli :
•
0.03 3.70
1.01
0.89
0.93
0.58

1 -}2
1.12
0.80
1.14
I'M
I .31
0.83
0.81
0.48
0.79
0.54
9
8:*8
0.70
•
0^2
0.51
0.39
0.04
0.02
0.06
0.00
0. 10
0.06
0.00
0.07 j
0.04
8:1?
.89 0.33
.64 0.23
.28 0.63
.64 0.20
.87
:?S 8:?l
?.77 0.05
3.66 0.11
la? 8:14
0.27
0.11
0.54
0. 14
•
8.18
.02
0.02
0.08
0:13
0.1H 0.70 0.41
0.12
0.18
0.08

OP
0.01
0.01
8:8?
8:8?
0.01
0.01
0.02
0.01
0.00
0.01
0.00
0.01
0.02
0.01
8:81
8:8?
0.01
0.01
0.01
0.01
0.01
0.01
0.01
•
0.03
0.02
OP
•
0.03
8:8?
0.03
0.17
0.06
0.40
0.09
0.03
8.16
.00
0.00
0.05
0.13
0.04
0.18
0.08

-------
                                                          STATION NUTRIENT DATA
CO
O'U.
8.11'
88]
882
8n 1
H ^/»
8Mb
886
8d 1
8rt8
8' 9(i
89 1
892
8*-y 3
H94
b VS
8--^
84 /
90 (i
**<) 1
902
9 DJ
9 0<«
9l|CS
9(i/i
90 I
90f
'•MO
91 1
912
913
914
91S
91',
917
*j \ 'r*.
919
9?n
921
SlHfitlu
b.i.d
/'.) . U
r.< V . U
^t) • U
VS/.ll
1(12.0
I ()<••. 0
1 U /.O
1 13 . u
121 lo
1 30.0
HI .11
l.ts.u
1 Jb. 1
1 3^.o
139.1)
1 f4<<. (J
Inl !o
)(•><• .0
1 1 i .U

1 Mt, . (,
c Or- .(1
d 0 S . U
^ 0 f . 0
2 1 b • U
d 1 b . 0
24, '.0
P*4 j . U
2b'l .0
2bb • u
2bO • 0
27u.ii
lv?:o
^ y H • o
2 w • u
Jo1*, u
i.:ft:o
T rPk'
,,
^
'd
'£
£
d
d
£
't
$
'f
2
^
2.'
c

£
<5
^
d
^
d
'd
d
2
d
2
2
2

15|23

ov: lb
Hj57

1 7 I 5^
£>() i ^^
19:21
1 I :08
14116
d 0 : 3 3
12:33
d 1 : Ob
ll|0b
	 b
FLO
0.2b
oioa
0.17
0.36
0.24
0.11
0.08
0.07
0.32
0.06
0.16
0.17
0.20
0.54
0.11
O.Ob
0.06
0.15
o! 1H
0.08
0.25
0.41
0.07
0.19
0.31
0.12

oloi
0.34
0^33
0.11
0.21

o!l7
0.10
0.13
0.06
0.17
0.25
0.12
0.09
A=31UK1
TKN
m
.
1.03
0.91
0.47
1.07
0.92
0.61
0.99
1.18
1.21
1.33
0 • B^t
1.40
0.90
0.63
0.60
1 .34
0.56
1 Io5
2 . b 1
1 .38
1.40
1.31

Ol86
1 .20
0.63
1.00
0.92
1.13
0.82
0.50
0.76

ll55
ol66
0.79
1.21
1.15
0.67
SKN

^
0.46
0.53
0.40
0.60
0.71
0.59
0.74
8:^8
1.07
0.69
0.81
0.42
0.48
0.58
0.70
0.52
0.65
0.61
0.96
0.69
1.35
0.78
0.58
0.62
^
0.51
0.62
0.79
0.72
0.61
0.33
0.63
0.97
0.33
0.82
0.55
0.50
0.50
0.59
0.61
NH3 1

olia ;
0.40 I
0.02
0.10
0.21
0.05 <
0.12
0.16
0.04 ;
0.24 1
0.18
0.12 i
0.21
0.09 i
0.09 ;
0.14
0.14
0.08
0.07
0.03
0.34
0.12
0.29 t
0.08 (
0.12 i
0.08
0.24
0.08
0.01 (
0.03 1
0.03 l
0.03
0.07 1
0.15
0.05 1.
0.03
0.05 (
0.04 (
0.06 (
0.15 1
\\\\ \
>J023 TP

?I90 !
J.92 0.22
.12 0.15
.64 0.22
.24 0.22
?.66 0.09
.96 0.12
.96 0.12
>.83 0.11
).85 0.19
.48 0.16
J.86 0.18
.48 0.19
?.24 0.14
?.72 0.06
.99 0.09
172 8:?2
104 0^43
.24 0.28
.43 0.61
.01 0.35
?.24 0.31
).75 0.24
).49 0.24
.33 0.34
.48 0.15
0.08
1.57 0.23
i.45 0.18
J.67 0.16
.67 0.07
).40 0.13
.41 0.17
25 0.27
.78 0.14
1.75 0.14
1.95 0.17
|.39 0.19
J.71 0.32
.52 0.14
!.62 0.09
TSP

f
0.07
0.10
0.19
0.08
0.06
0.10
0.08

olos
0.13
0.07
0.05
0.05
0.07
8:1?

oll6
0.12
0.27
0.14
0.19
0.24
0.11
0.05
0.13
0.12
0.09
0.04
0.10
0.14
0.18
0.05
0.11
0.09
0.14
0.13
o:i£
OP

o!o5
0.07
0.07
0.16

oloi
0.09
0.05
8:?3
0.07
0.13
0.06
0.05
0.04
0.07
0.09
0.11
oloa
9
0.10
0.25
0.11
0.15
0.14
0.07
0.03
0.09
0.10
0.07
0.01
O.OB
0.12
0.15
0.04
0.10
0.02
0.1?
0.13
8:05

-------
                                                             STATION NUTHIENT  DATA
i
co
en
OHs S [KMJU [ rPt
9^1 ^
92'~. b--.
92S 1 r1 1
92^ 139
9?H 1 b /
929 i-:s>.

Oi'S blPNlM
931 bl.
932 bl.
931 b.t.
934 63.
93b 7b.
93') b9.
937 9b.
93-H 99.
939 101.
94 IJ 103.
941 ||3.
942 1 2 1 •
943 (JO.
"44 | Jb.
94'j 1 jo .
940 140.
947 IbO.
94H 104.
949 171.
9bO 170.
951 103.

*•* b 3 { L.' *? .
^^4 c*U 9 .
9b> 21.1.

95 7 223 .
9b'9 2<<2!
960 2b*1.
9fi 1 r'ha.
9 ^ /"* c? V I .
9 ^~» 3 ^ v *5 .
96S Jiul
u i A Y c1 1
03JHN>il
Ib'St PtM
1
13
09
1 6
1 ^
23
01
1 7

:Sb
: 27
: 0^>
; ^j^
: 1 1
: d^
	 bl
H-0
0.07
0.4B
0.41
0.06
0.20
0.02
0.05
fl=blUW[B
TKN
1.99
SKN
NH3 N023 TP
0.49 0.46
TSP
0.94
0.20 6.32
1.78
2.43
2.38
1.97
*
2M.iCTtfl ^1:10 0.07 1.63
Tl 1
?UFt bbl :
20F th8| :
~f>~f*t t Mb J I
O**M AU-g | :
1 Iti ' 1 A (V o 1 I
3 (INI AJ-*M 1 :
0 5 A P P h 1 '
09Ai->P>< i :
1 1 Ak^b i :
1 JAHkBl :
PJAM-'bl !
I'IMAfHi :
1 0 *•' A Y b 1 ;
1 bJ^6 f B 1 :
1 hMA i 8 1 :
^rf^AYMJ I
30 4A I'Hl :
13JUMM1 :
? 0 JLIfjH 1 I
2bJMM81 :
02JUL8I :
PUiiLHl :
24 JUL h 1 :
2fci Jt IL fc 1 •
OhAuOfa 1 :
otJAuoo i ;
1 1 Aut>b i :
IbAUOhl :
IbHt PH 1 :
1HOCT81 j
06Nt)Vr)l :
KLO TKN
00;

1 *> •
? J *
li4:

19:

1 1 :
1 o *
's l •
ii:
1 /:
1 J:
21 :
0 v '
?9J
Ob!
07:
1^:
no:
? u :
1 0 :
1 3 *
0') •
1 9 •
21 :
17:
111 i

Oo:
07

^ o
00
16

?o

JA
S /
3 1
Of"
c^S
07
4(1
25
02
3.1
53

53
<*b
^p
0^5
22
^7
2*0
34
39
^
34
O.OH4
0.032
0.051
0.032
0.017
0.024
0.034
0.042
0.024
0.014
0.052
0.117
0.027
0.04S
0.032
0.010
0.017
O.Obl
0.012
0.029
0.018
0.005
0.007
0.054
0.031

0 . 282
0.022
0.041
0.115
0.002
0.009
0.033
0.069
0.016
0.47
0.40
0.39
0.40
O.b7
0.44
0.41
0.37
0.44
0.27
0.47
0.51
0.51
0.54
0.24
0.66
0.64
0.33
O.H5
0.60
0.39
O.H2
0.63
0.36
0.40
0.79
0.38
0.91
0.68
0.39
0.59
1 .08
8:18
0.45
1.43
1.61
1.49
1.33
0.27 0.29 0.38
0.11 0.36 0.33
0.43 i
0.40 (
).53 0.73
1.65 0.54
0.29
0.20
0.43
0.36
0.80 0.74
1.57
SKN
0.47
0.40
0.27
0.38
O.bl
0.40
0.41
0.37
0.42
0.27
0.45
0.3d
0.42
0.45
0.24
0.62
0.51
0.23
o.bb
0.47
0.39
0.57
0.53
0.32
0.40
0.34
0.36
O.bl
0.68
0.31
0.42
0.90
0.55
O.B6
0.45
0.16 0.39 0.49
NH3 N023 TP
0.12
0.06
0.04
0.03
0.08 0.86 0.02
0.1 1
0. 14 i
0.07
.05 1
0.05
.00 0.02
?.64 0.06
.76 0.04
20 0.04
.03 0.04
0.13 O.B6 0.02
0.05 0.90 0.02
0.10
0.16

olo9
.64 0.04
.14 0.04
0.03
l.?4 0.02
0.05 0.66 0.02
0.17
0.04
0.05
.30 0.03
.16 0.06
.12 0.20
0.04 2.63 0.19
0.04
0.04
0.10
0.02
0.07
0.06
.51 0.05
1.91 0.07
.62 0.10
.84 0.11
.00 0.05
.15 0.09
0.08 0.99 0.24
0.02 0.71 0.03
0.15 0.93 0.04
0.07 0.74 0.04
0.05 0.63 0.04
0.03 1.65 0.13
0.04
0.06
0.15
0.07
I.R5 0.07
5.91 0.05
1.45 0.02
1.05 0.03
0.43
TSP
0.03
0.02
0.01
0.01
0.04
0.03
0.03
0.03
0.02
0.01
0.03
0.03
0.02
0.01
0.0?
0.03
0.03
0.02
0.04
0.05
0.07
0.10
0.10
0.05
0.07
0.18
0.02
0.03
0.04
0.04
0.10
0.05
0.04
0.01
0.02
OP
m
dl3
0.18
0.12

olse
0.34
OP
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.00
0.00
0.01
0.01
.
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.0?
0.01
0.01
0.02
0.02
0.03
,
0.0?
0.01
0.01
0.03
0.01
0.00
0.00
0.01

-------
                                                            STATION NUTKIENT  DATA
I
co
a\
Oi;S bT(-.MNi) f YK. T 1 1
96^> 2 5 a d ISStPfcl
^67 i>t3*-> 2 ?2StPHl
96H 274 ^ fll'lCffcl
969 2/9 2 06UCT81
970 291 c- IbOCTbl
971 29ti 2 23DCFM1
973 299 2 26OLI81
974 309 d ObMUVBl
975 335 2 dliJECHl
1 7:41
19: 06 1
1/:13 1
	 3 i «
FLO
4.11
5.56
1.25
lt<:56 15.18
jH : 1 5
1 ^ : 54
1 2 : 12
21: 04
1 0 : 24
976 «. 2 (I4JAM82 lb:06
OMS ^Th>'-iNO 1 fHt T 1 1
J7 7 ?1SI- kftl : (M: 20 0
97* liSOLTnl : U-:j:b5 0
^"0 12DCTH1 :o^: 15 0
'-«MI  1 U" c 1
TKN
0.79
0.82
0.60
0.71
1.57
0.44
0.56
0.62
0.45
0.80
0.70
SKN
0
0
1
1
1
0
0
0
0
0
1
.57
.61
.18
.68
.63
.93
.71
.49
.99
.93
.42
SKN
0.58
0.79
0
0
0
0
0
0
0
0
0
.42
.66
.87
.33
.54
.56
.33
.58
.53
NH3
0.11
0.23
0.59
0.63
0.63
0.15
0.09
0.06
0.27
0.36
0.69
NH3
0.12
0.11
0.17
0.05
0.18
0.16
0.07
0.06
Ol06
0.07
N023
0.55
0.64
0.66
0.54
1.25
0.69
0.69
0.18
0.83
0.98
1.18
N023
0.23
0.25
0.27
0.28
0.29
0.27
0.22
0.22
0.19
0.21

TP
0.11
0.22
0.20
1.28
0.22
0.38
0.09
0.19
0.22
0.17
0.09
TP
0.04
0.02
0.05
0.02
0.25
0.03
0.02
0.03

o!o4
TSP
0.04
0.04
0.10
0.97
0.06
Olil4
ol05
0.07
0.07
0.03
TSP
0.02
0.01
0.03
0.00
0.06
0.02
0.01
0.03
0.01
0.02
0.02
OP
0.
0.
0.

ol
0.
0.
0.
0.
0.
0.
OP
0.
0.
0.
0.
0.
0.
0.
0.
0.
o!

01
01
on

02
0?
0?
03
0?
00
0°0
01
00
02
01
00
00
00
01

-------
                                                              STATION CHEMICAL DATA
i
CO
(IBS
14^
14-J
ISO
1S1
1S2
1S3
1S4
ISS
1S6
157
I5H
1 59
160
161
162
163
164
165
1 6f>
167
1 65
1 cli
1 70
171
172
173
1 i **
17S
17n
17/
17n
179
1 hi)
1H1
1 H2
1 P 1
1?4

1 b6
1 K 7
IBM
I tii
1 9d
191
192
193
1 9**
I9b
196
1 Q /
19H
194
200
201
STHMNO
292.00
2 9 £ . 1 1 0
292.DO
292.00
29c'. oo
292. 10
29^. 10
29,;. In
292. 10
292.10
292. I.I
292. ID
292. 10
292. Id
292. 10
292. in
29^. 1 i'l
die- . I II
292. Ill
292. 1 0
292.10
292. 1 0
292. 10
d'-*d. 10
r'92. Ill
292. 1 0
29
30MAP81 • 08104
30i'lAk8l «08:28
3of-lAHbi :ob:45
30KAWol : 09 : 00
30'-'AHB1 : 09: 13
30MAR81 :o9:24
30MAWbl : 09: 36
JOH»KH1 :()9:53
30MAROI : 10: 19
:»oMAkbi : i 3:20
31'-iAN81 : 1 0 !44
ObAPkdl : 1 7:30
FLO
0.12000
0.12000
0.09000
0.06000
0.03000
0.58000
0.42000
0. 12000
0. 12000
0.33000
1 . 1 1000
O.B9000
0.69000
0.67000
0.42000
0.42000
0.42000
0.42000
0.42000
0.33000
0.33000
O.P1000
0.21000
0.67000
1 . 1 1000
1 .23000
0.89000
0.67000
0.42000
0. 19000
O.SHOOO
0.36000
0.1POOO
0.29000
0.1SOOO
0.61000
0.1SOOO
0. 16064
0.33264
0.47000
0.05000
0.18000
0. 18000
0.27000
0.33000
0.39000
0.4POOO
0.45000
0.36000
0.24000
0.15000
U. 4/000
0 . 12682
0.60000
bl A = b
LPH
7.2
B.e
9.5
9.4

9*8
B.5
7.7
7.6
7.7
9.3
B.4
8.0
7.9
7.8
7.7
7.7
7.6
7.6
7.5
7.3
7.3
7.3

5i2
5.7
6.1
6.3
6.4
6.7
6. 7
5.6
6.4
5.7
§-2
7.0
6.7
6.6
6.9
5.8
6.9
m
m
.
.
«
9
,
,
9
,
b.5
t».l
6.5
i 	
COND LTALK LCALK PH DO TEMP CONO
315
360
305
345
325
165
80
205
165
75
75
50
55
50
50
55
60
60
55
55
65
390
30
45
50
50
55
45
150
90
130
120
250
170
310
140
120 2
105
65
Bb

















































































































































































































































-------
                                                              STATION CHEMICAL DATA


                                                                       =51UR03
I
CO
oo
Oi?S
202
203
205
206
20/
20*
209
2)0
21 1
212
213
P \ it
21b
216
217
218
219
220
221
?'^

(?? **
225
226
227
22*
2?9
230

li

235

i? 3 /
23(1
£M
f'.^'c'
2^ 3
£t* U
2** S
i?9
3uu
33b
•
•
•
.
.
•
,
.
.
^
.
.
,
.
B
^
a
.
t
.
.
.
.
.
.
.

4
t
.
.
•
.
.
.
.
.
0
0
0
0
0
0
(1
0
U
1
0
0
II
0
o
U
(I
0
1)
II
II
ll
0
1)
0
1)
0
0
0

()
^
0
0
'.)
U
II
ll
(1
tl
2
2
2
2
2
£
2
2
2
2
2
2
2
2
2
2 '
2
?
2

2
2
2
2
1
2
2
1
2
2
2
2
2
i
2
',>_
2
2
c
Til
l^P^Si :
fii^Ytt1!:
2hriAY81l!
2vt'u Y81 :
30MAY81 :
01.IUNH1 :
0 *+ J 1 1 N fl 1 1
ObJUMHl :
OM ii INM 1 :
IOJUNBI :
13JUNM1 :
1 VJiJNHl :
2SJUNl3l :
03JUL81 :
O^+JULdl *
20JULdl :
21JULH1 :
24jui.«l :
26 J1JL8 1 !
28 Jt IL8 1 I
HhAU^rtl:
07fliJGhl :
1 lauGbl :
ioAUhbl!
3 1 AIJ08 1 :
OtJbtPdl :
1 bStPU 1 :
1 7SPP81 •
2'7SLPbl :
OlUCTbl :
1 buCTul :
?.)UCT31 :
2'»<>CTti 1 :
260CTH) :
27(iCTHl I
OlLitCbl :
10
06
U9
i?
1 H
2 3
1^
20
21

0 I
17

20
Ob
Ob
IV

14
19
00
lo
18
20
ss
10
13
17

19
f)
U

12

1 1
:^6
:^4
:OM
:23
:38
:07
: 33
: 4 h
:1S
:2S
:S6
: 10

:08
|18

il2
:il
|09

; ^P
:24
:S4
: 16
:32
:23
:04
.'44
:20
:ou
;4J

J20
!b7
' 10
: ^>£
!04
; ?4
: <«o
0
0
0
0
0
0
• 0
0
0
0
0
0
0
0
0
0
0
1
0
0
b
0
0
0
0
0
8
0
0
8
0
1
0
0
0
0
U
0
y
0
0
0
0
n.o
.53000
.27684
.15000
.13301
.22646
.29^,37
.26000
.24000
.10000
.09000
.22000
.OVOOO
.06000
.09465
.12000
.25876
.14000
.32000
.5892V
.20000
.60000
. 1 4 1 *4 3
.15363
.26000
.181V1
.18000
. 10000
.16000
.08596
.19403
.26000
.48000
.33417
.40000
.92000
.34000
.18000
.24000
.30000
,<»<.ooo
. 2** 000
. 15000
.54000
.33000
.20000
bl A=b
LPH
6.7
6.2
$
9
7
7
7
6
6
8
7
7
7
6
6
6
6
6
7
7
7
7
7
]
7
6
7
7
6
6
6
7
6
7
7
b
7
7
.8
.3
.8
.4
:A
.3
.3
.9
.9
.0
.0
.1
.1
.8
.0
.3
.2
.3
.3
.5
.4
.6
.4
'&
17
.8
.1
.4
• C
• J
.0
.9
.3
.4
:\
.3
.4
.6
.0
.0
LCOND LTALK LCALK PH DO TEMP COND
75
120
f§0 58
fii
m
305
245
130
245
500
170
285
165
m
180
85
35 11
220
205
105
160
435
205
205 21
^115
5110
175
105
65 16


5













5





5































5 0

















































































































-------
                                                               STATION CHEMICAL DATA
CO
10
ot.s ST^MMO rrt-e in FLO LPH LCOND LT/
2'- 7 3<^ 'd 2^'UVHU: 14 :54 0.6H004 5.4 55
24* 333 ^ 2 /uOV«():32:4H 0.54714 7.3 55
24'J J3 3 02F tBdl : 10:36 O.lhOOO 5.3 85
350 43 3 1 IKt-HMl :o4:5h 0.76000 7.1 35 13
351 ^.0 d 19FtH«l : 15:39 0.15000 7.3 35
252 53 3 22F tH»l : lb:45 0.45000 6.9 90
353 b9 3 30MAkijl : 16:i>9 0.33795 6.0 70
354 ^(i 3 31?'AP«I : 13:51 0.20009 6.4 90
35S * 3 OnjuLdl :U8: lu 1.30000 6.2 55
272 2u7 3 26JULfal =21 : 34 0.15000 6.7 330
2/3 2Ud 2 2/JUL«l : 12:32 0.09872 6.4 ?05
274 223 s ] l/uJ&ol !2Ui39 0.30000 6.9 165
375 227 3 15AUGH1 =20:55 0.35000 6.7 110
276 24^ 3 30AUG81 : 14:?0 0.24000 6.9 45
3/7 343 3 31AUOM1 :i>9: 32 0.60000 6.7 55
27H 250 3 15StPril :21 :01 0.50000 6.2 55
37V 360 2 1 7SEPU1 :?1 : 10 0.17335 6.2 55
2HO 2^4 3 010CT81 :?3:01 0.2BOOO 6.5 90
t*\ 2-*V 3 /bUCTbl : 13:5? 0.35000 7.1 105 16
\LK LC<
5
5 (
VLK t
"
>
3H (
)0 Tf
.MP C(
)NO
ORS SI«MI;U i rnt Til FLO LPH LCONO LTALK LCALK PH DO TEMP CONU
                         361. uU
                         ^t.v.nu
                         'J (r>. 01)
                         jl^.iio
                         J31.UD
                  293
                  394
J3v.OJ
33<^.UO
J44.00
 3J.OO
                   1 7SKP^(i: in:bl
                   35SI:kdO:n3SOb
                   U<«NUVbO :OH: 15
                   oS'NUi/oO: 1S:41
                   l6NOV*o:01 : 16
                                                   : 15:02
OS/DtCHO: lO^B
03FtHMl :06: 17
0.04
0.37
0.04
0.03
0.03
0.10
0.35
0.07
0.10
0.03
0.06
7.5
7.3
6.7
6.8
5.3
5.7
5.4
5.3
4.9
7.0
5.3
 30
 60
 95
 95
110
 75
 75
100
 75
 25
155
14 5

-------
                                                            STATION CHEMICAL DATA
i
-p"
O
OH s STHMNO TYHF.
2°^ 39.0 2
296 *1.0 2
297 bO.U f
29H bJ.O 2
299 ?S.n 2
300 tl9.0 2
301 91. n <-
302 9^.0 M.| ^
13* 2t>'->.o <•"
33b 27*.0 2
)3>3 2/9.11 ^
337 2vo.il 2
3H 2yfi.ll 2
339 2'y'J.ii ^
3''!) 3 00. (1 2
3*1 'Hi9. 0 x
3*? 333. (1 2
3*3 3JM.U 2
3** 3*9.1) f
TI
OMFtttfcl
1 OF K 1" H 1
j Qf j: [-1^ i
(I t C A k « 1
1 bMAKcJl
JO^AWBl
OlAPKbj
n^Appg j
1 1 APMHl
1 ^ APWrt 1
1 3AP^81
1 /APkdl
2 ci A K R b 1
^tfAMKO 1
ifO'Vl-'WO 1
0 1 M A Y8 1
KlMAYbl
1 1 "•' A Y H 1
IbMAYHl
1 b N1 A Y b 1
1MMAYH1
^ tl M A Y tj 1
30MAYH1
o l jijftbl
03JUNy 1
o ^ jt)rJM 1
1 OJUNbl
13JUNH1
22 JUNO 1
OlJ'ILbl
20JHLU1
2fc>JUL« 1
1 JAiJIiHJ
iui^bl
0 V^tPH 1
Ib^tPHl
1 bSfc HH 1
^ ^ *•> E *-* M 1
OlOCTbl
ObllCfrfl
230CT81

2bn(~ f b 1
2/UCTH1

0 1 Lit CM 1
0*(.ltCHl
1 bDt.CM 1

10:3b
^ 3 : Ob
16 = 00
19:29
05: 1*
07:<-b
J3:*0
13:16
1 1 :jl
10:*1
1 8 : **b
1 "* : j2
Od:b3
17:17
B • 1 2

I*ib3
1^:35
1 1 ;29

1 6 : ^b
21 : 12
PI i 12

13:27
20:20
16;0*

17:<«7
lb:b*
U7:«»b

16:T<3
1 9 : J 7
Or): 2.7
03:13

r* 0 ! O'*
1&: J3
21 !nS
1 8 : b9
06J06
l*:l*
12:1*
OK.V/
^ 1 : o 7
1 1 : b 7
la: oo
11:33
FLO
0.03
0.09
0.07
0.09
8:8b
p!o6
0.06
0.07
O.OS
O.OH
O.Ob
O.Ob
0.01
O.*l
0.0*
0.13
0.07
0.08
0.10
O.Ob
0.0*
O.Ob
0.0*
0.03
0.01
0.0*
0.03
O.Ob
0.02
0.10
0.0<»
O.Ob
0.09
0.1*
0.15
0.02
0. lb
O.Ob
0.2*
0.09
0.0*
0.03
0.03
0.07
O.Ob
0.11
0.03
0.02
O.Ob
bl A =
LPH
5.2
6.9
6.9
6.7
6.6
6.8
6.4
6.7
6.7
6.2
6.2
6.3
5.9
5.8
6.*
6.6
6.2
6.7
6.6
6.9
6.5
6.8
7.0
b.b
7.0
6.9
7.0
6.*
6.9
b.b
6.2
6.5
6.5
3.6
*.6
3.8
3.3
3.0
3.9
<.. 1
b.O
6.6
6.S
6.5
b.*
6.H
6.0
6.0
6.1
.
                                                                          LCONt)
LTALK
110
75 2*
1*5
110 17
!88
65
80
90
90
130 25
90
195
95
60
*5
30
bO
1*5
95
2*0
b5
360
2*5
1*0
5361
210
205
m
7030
US
315
IfcS
700 10
31b
1195
665
185
105
**5
580 7
3890 6

5
0





5





















5





5
0
LCftLK


  •
  0
                  PH
00
TEMP
COND

-------
STATION CHEMICAL DATA
OHS
34S
34h
347
}UH
1'»9
.15 0
is t
3S2
153
:1bf

156
357
35H
TS9
3*0
^•S I
)^2
36 3
lf>4
3'> 5
}66
167
368
)h9
3/0
371
372
373
37?
'^ 76
)77
OHS
37H

3HO

382
3h 1
3«4
386
387
38fl
3H9
390
391
39?
bTKMNO
299. 1)0
32^.00
32V.OO
33^.00
3 J . I) 1
33.D2
3V.OO
42.00
50.00
51 .00
53. Ill
b<». Oil
9V. 00
lUc'.OO
121.00
131 .00
13^.00
!<•(}. UU
14v.no
IbU.OU
152.00
1 M . 0 0
16<«. 00
1 71.00

Ids. 00
20'*. 00
223.00
227.00
2"2.00
<^46 ,00
<^99. 00
S ! PMNU
204.0
204. 1
211.0
214.0
21^.0
21^.1
231. 0
2.12.0

254 !o
.
.
269 . 0
269.0
269.0
1 VK.
2
2
2
t?
ft
2
2
2
2

2
£
S.
2
r"
2

TYMt
2
^
lL
^
^
c.
1
2
1
^
c.
2
Til FLO
250CTbO:oc.:39 0.33
1 7NOV80: 15:^9 0.29
24NOV80: 10:22 0.58
27NOvbO :5 0.2d
1 3StH"hI : 1 Aib*. O.lv
23()Crbl : 16:23 0.06
2bOC181 : \Z-^f. 0.23
Til FLO
22JUL80: 19:26 5.2300
22JULBO :22:SO 1.2700
29JML80 : 02 : 06 0.4900
ol »U(.HO : 1<4 :o6 0.6000
03AIJOMO : 1 1> : Of> O.B400
03uuG&u : 23 : 4 7 1.0700
IhAuoHO: Ob:b2 1.0500
1 9fiUtiKO : 02 : 57 0.8000
OUStr'HO: 15:00 0.0055
10SF.P80:01 :09 0.3400
15StP80: 10:35 0.0021
22Se.H*o: 15:30 0.0021
JbStPhO : 03:55 0.0939
25SKP80:05:52 0.2340
?5StMfto:<)7:44 0.2340
• -> 1 A ~o
LPH
6.4
6.6
5.6

sis
5.6
5.5
6.9
7.0
7.0
7.1
6.5
6.6
6.9
6.2
6.7
7.2
6.9
7.1
6.9
7.1
6.8
7.2
6.7
6.1
6.3
7.0
6.2
6.5
g:?
7.1
U«Ut> 	
LCONO LTALK LCALK PH 00 TEMP COND
100 26 0 0
75
75
135
140 16
165
135
60 28
170
185
150
185
120
130
90
150
150
170
115
135
140
130
90
70
150
60 19
145
110
115
lli
100



o


5

















5


























































































































































7.6 110
LHH LCOND LTALK LCALK PH 00 TEMP COND
6.2 35 . .
6.S
6.6
6.5
6.7
6.5
7.0
6.3

6ll

7^3
7.6
7.6
85 ...
1<*5 . • •
21S ...
]<*5 . *
120
90 ...
95 ...
ft. 7 8 20 26.0 440
150 ...
7.2 8 15 20.0 4flQ
8.1 5 00 24.0 305
1V5 . .
70 ...
80 ...

-------
                                                              STATION CHEMICAL DATA
I
-p.
ro

OHS
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
2U
413
i.14
415
416
417
418
419
4^0
421

423
424
425
426
427
42*
429
430
431
432
433
4 J4
STPMMO T
269.11 ,
2b9.(i ,
269.0 ,
•Pt TI
' 2Sst'J8(i
^ 25StiJ/bO
p 25tt'JHu
. j 2 9 *-i t K h 0
276.0 f OPOCT80

.
1 OM'CtHU
1 200CTftO
1
:OB :06
: 1 0 : 55
: i ,,< : i»3
: 12:45
:21 :50
: 10:00
:09:25
29Q.O 'd 25(>C T8u : 09: uO
,
1 27(.)CiaO
:io:20
J0?.o ? 28(itT80: 06:^0
B
309.0 <
^
1 03 NO V80
^ o^fjovt'o
i 10MOV80
329.0 . 2 P4MOVHU
332.0 1
.
•
:
.
i 27NOVPO
('lU'tChO
•OHUt C80
1 5L>i:.Cy 0
^JANMl
09F LnBl
b2.0 d 21FKHRI
53.0 c
22F h bH 1
63.0 f (j 4 M A K 6 1
.
^
09MAHM 1
^ 3 M fl ^ 8 1
89.0 2 aoMAh'Pi
91.0 2 OlAP^tjl
.
99.0 i
H^j^K^ |
; 09APPH1
: Oft :30
:&8: 13
: 14:45
: 0 3 : 1 8
:|5:56
: 14:45
: 08 : 30
: 10:30
: 14:^5
:l4:20
: 13:50
: u o : 1 0

: l6:oO
|14:15

:07:54
:13:19
••16:00
-.09:22
102.0 d 12APKB1 : 1 7 !40
104.0 c
^ 1 ^ ^p(v^ I
107.0 s 17APWH1
.
.
120.0 t
20/>^kHl
^7APk8 1
•* j(jAPWHl
:i7:o6
row: 12
: 14:40
:U:35

120.1 2 40«^wHl : ?3 : u3
121.0 c
.
- 01MAYH1

130.0 2 10MAY81
1 11'. 1 £ llir'AYf!
109:36
: 1^:30
: 14:24
:20:is

435 31.1 iL 1 1MAYH1
436
437
:ii:o?
31.2 2 1 1MAY81 : 19:51
J2.0 i
' 1 2 M A Y H 1
43h 35.0 d. 15MAYH1
439
441)
44)
442
443
444
445

39.11 l
• 00 • ** 7
:ii:bd
m%
:13:15
149.0 2 29MAYH1 :20 :5ft
1^2.0 2 01JUNH1
.'
161.1 i
ObvlUNttl
; 10JUNH1
:03:50
: 15:05
:in:i2
FLO
0.1340
0.0407
0.0186
0.0686
0.1600
0.0021
0.0105
7.1 100
0.0234
0.1100
O.OJ43
0.8200
0.0073
1 .0200
8:8?8S
0.0021
0.0073
0.0143
0.0021
0.0143
0.1HOO
0 .6600
0.1300
0.0234
0.01H6
0.2900
0.6000
0.01H6
0.4800
0.9100
0.5400
0.4100
0.0050
O.OIBb
0.2600
0.4400
3.6000
O.Olf-6
0.3600
1 .2200
0.2500
1 . tt^lO 0
1 .1400
0.5800
0.6400
0.0186
0.4200
0.4200
0.6400
0. 1400
2.3200
0.02*8
0.9200
LPH
7.5
7.3
7.1

&I2

.
5.5
.
5.5
^
6.8
9
5.5
6.1
.
,
•
.
6.7
6.3
6.8
^
^
6.2
6.1

7l2
6.9
7.3
5.2
*

6ll
6. a
^

6.5
6.7
7.4
7.0
6.8
7.2
6.5
el?
7.0
6.7
?i5

7^0
LCOND LTALK LCALK PH
105
200
180
40
595

.
60 26
39
145
41
65
9
95
105 37




135
120
115
33

85
105

85
90
135
95
27
*
180
110


90
50
105
60
45
50
90
95
100
95
?!

eo


0



5
5

0



5







0








5


















.
9
7.9
9
6.7
5.8

5^4

&!s

6^4

6^6
5.5
6.4
6.7
5.9
6.4

.
.
6.5
6.2

^
6.0
m
9
m
u
5.9
5.8
.
.
B
6.0
^
.
.
.
.
.
.
6.3
.
.
I
5^3

DO
9
.
,
8.3

9la
9.8
.
11.8

10^4

10.*4

10^2
10.8
11.4

13^2

.
.
11.4
11.6

.
10.6
.
.
.
.
9.0
9.8
.
.
,
8.8
.
»
•
.
•
«
»
9.6
•
•
9
6.5
•
TEMP
,
.
,
21.0

lals
12.0

ulo

&!o

lolo

12*0
8.5
7.0
0.5
5.0
2.0

.
.
7.0
7.5
,
^
10.5
,
0
9
^
13.0
le.o
.
.
.
17.0
.
,
.
.
.
,
.
14.0
.
.
:
27.0
•
COND
,
.
.
215

290
220
.
165

190

155

240
190
185
?95
125

.
.
iao
120
.
.
140
.
.
.
,
130
115
.
.
.
120
.
,
.
.
.
.
»
115
.
.
;
460
•

-------
bTATION CHEMICAL DATA
UBS
44 f
<*4 3
449
450
451
452
453
**54
455
457
45rt
459
460
OHS
461
4b2
4b3
m 4^4
L ilt)5
/I <»66
00 467
4bH
469
470
471
472
473
474
476
477
*< 78
479
4fiO
4H1
4M?
4H3
** t3^*
£4 h5
** B^>
4H7
48ft
4h9
490
A 9 1
A 9?
493
494
ST«MN(J
1 f>4 . II
1 71. u
1 72.0
.
1 7b.O
.
1 w J . 1
IHb.l)
,
2nblu
2 Ob. 0
.
?lb.O
STRUNG
214.0
j >y 1)
23U1
(^ 3 ^* • 1 J
»
^vlo
269 . 0
269.0
^
^
2H5.U
,
299.0
.
J09.0

3<*2 • 0
J 32 . 0
,
) J 7 , (i
J 3 ' . 0
JJ7.0

J<*4 . 0

•
.10.0
5n!o
si .0
52.0
1 YPK
?
^
2
1
^
1
2
2
1
1
2
1
2
TrPt
,,
t
£•
1
<
^
^
1

^
1
f
1

1

(*
1
c
c
£
i
£-
1
1
1
P>
,J
f
\ 1 1
13.MINH1 :21 :47
20JUNbl : 15:53
21 JUMB1 : 19:5H
22JUM6I : 1 4 :22
25JUNhl :20:2o
2VJUN«1 : 14: 15
02 JUL d 1 : 23 : 0 1
04JULH1 :05:47
1 JJULrtl : 1 3:40
20 JIJLB1 : 14 : 35
24jiiLrtl : 1 3:52
2bJUL8l :o7:24
2 7 JUL« 1 : J4 : 33
O.'iAUf'M 1 ! 1 4 ! 49
TI 1
01 At.1080: 14: JO
lfH
6.8
6.8
6.4
6.4

7l2
7^3
7.2

^
6.6
.
5.5
*
6.6

b'.b
5.9

b!3
b.5
5.8

6^6

•
7^0
6 • 7
7.0
6.7
310
m
85

ffl
125
175
44

235
*
feS $
'. 39
140
•
55
1 10
31
110
95
HO

Hb

•
50
100
150 '
145
•
m
6.7
•
•
*
.
5 0 7.7
6.8
.
6.4
i 8 5l7
0 0 6.1
.
6.2

^
0 6.3
.
.
^
6.5
4
6.5
6.7
6.1
ble
9
.
.
DO
9
•
^
6.5
:
.
.
8.0
7.6
*
8.8
1U4
11.2
.
10.0
.
^
10.6
.
*
.
10.6
«
12.4
nil
&ib
9
,
.
TEMP
0
:
*
25.0
;
.
,
19.0
14.0
.
11.0
iilo
6.0
»
10.0
»
,
11.5
.
.
^
7.5
•
6.0
0.0
3.0
3;0
1
.
.
COND
m
•
.
415
:
,
.
240
245
.
225
150
165
.
140
.
.
175
.
.
,
165
«
150
260
205
155
•
.
•

-------
                                                           STATION CHEMICAL DATA
m
	 	 	 — r-~
OBS
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
42?
523
524
525
526
527
52"
52^
530
531
53?
bJ4

0ns
53^
S 36
S37
S3-4

"S40
541
542
STPMNO
53.1
.
H9;0
91 Io
95.0
99lo
jo?!o
104.0
107.0
.
1 1 3 . 0 .
117.0
.
120.0
120.1
121.0
^
131.1
135.0
.
l'>9.0
.
161.1
1 f • 4 • 0
1 71 . 0
17?.0
.
176.0
9
1*3.0
184,0
1HS.O
.
,
205.0
206.0
.
2 1 b . t>
STHMUU
t?76 . 00
^9-y.OO
JO^.OO
J14.00
J22.00
J2J.01
J29.03
J32.00
TYPt
c
\
\
2
f>
£
1
2
2
2
1

2
1
2
2
2
1
2
2
1
2
1
2
2
2
£-
1
2
1
2
£
2
1
1
2
£
1

1 r^t
,
^
'^
2

c>
'ft
S_
Til
23rKi«l :t)9: 10
U9MAK81 : 14: 15
?3MA*Hj : J4 : 05
30MAK81 :0b: 13
0 1 APWMl : 1 3:40
05ACR81 : 13:29
OfrAPRBl : 16: 00
09AHK81 :09:43
1?/\PK81 : 18: 13
14«MU81 : l 7:42
1 7AH-'81 : 1 (i: 07
20APH81 : 14J45

276HW81 :03:32
27AHIV81 : 14:45
30AMK81 :09:35
,30Aprt8 1 : 23 ;47
01k'A rfll : 1 o :56
04MAV8 1:14:33
1 1MAY81 : 1 1 :25
15KAY81 : l?:os
1 8'"AY81 : 1 j^'j
^^^•^Y^J :21 :22
OHJUNH1 : 14:54
lOJUNrtl : 18: 19
1 TJUM81 !?2! 00
20JHN81 : 15:23
21JUM81 :20:22
22JUN8) : 14:20
25J1IU81 «20:4l
2^JUNtJULH1 •07***'*
? 7 Jl^L ftl • 1 **•**• 1
03AUOB1UZ.UO
T 1 1
0?OCT80 : l(.i'.6
?sncTMn:o3:40
04MOV80 ! 14 :ii9
09MOvbO ' 00 : ^7
1 /NOV«0 '• 1 6 : 03
24NO*/SO ! 07 ! 06
24MOVbO ! 1 U '• J4
^ 7MUV80 ! 1 4 ' 1 2
FLO
1.3000
0.0350
0.0200
0.4900
0.4600
0.4800
0.0200
0.5500
1 .0000
0.2200
0.2100
0.0200
1.1000
0.2700
0.0250
0.2600
0.3900
1 .1600
0.0121
2.5400
0.2400
0.0121
0.5600
0.0200
1 .0500
1.3900
0.4100
1.2200
0.0061
3.7100
0.0089
0.3000
0.5100
4.6200
O.OOhl
0.003U
0.5900
3.6700
0.0465
0.2600
FLO
0.22 .
0 . bi^
0.1 1
0.19
0.7o
1.20
0.11
0.06
LPH
6.3

6l8
6^7
6.5
6.'7
6.4
6.0
6.2

6^2

^
6.1
6.3
6.4
m
6.5
7.1

&I7

7ll
7.2
6.6
6.7

6^3

6^2
6.2
6.4

t
6.6
6.6

|U«Od 	
LCOND LTALK LCALK PH DO
130 . ...
38 0 5.5 10.2
85
105
95
85
90
IBS
115
3
70
9
•
105
85
60

65
105

150

80
75
150
85
,
65

160
135
45

.
550
270







.




























6.9 13.0
B 9
, .
6.1 7.B
9 .
. .
, .
6.5 8.2

9 .
5.? 6,e

. .
. .
6.4 5.4

m .
6*1 e*^»
9 ,
5.5 7.3
. .
. .
. »
9 .
6.1 6.4
. .
6.? 6.8

. ,
4 ,
b*4 7.3
6.4 7.1
. »
^ c
6.2 10.3
TEMP
9
8
7
^
.
13
,
.
9
16

.
23

.
.
24
.
.
14
^
?7
.
.
^
.
30
.
?8
.
.
,
?8
30
.
A
31
COND
,
120
115
0
.
130
.
.
,
120

.
115

.
.
120

,
1 15
*
355
.
.
.
.
210
.
245
*
.
,
350
335
.
A
185
6^4 ?£5 ... .
LPH LCONU LTALK LCALK PH DO
6.3
6.4
S.3
6.3
6.6
5.7
b.S
5.3
600 .
?140 ao o o
. IDS
125
75
100
195
Ub
TEMP








COND









-------
                                                           STATION CHEMICAL  DATA
tn
OF'S
543
b**4
54b
54b
547
548
549
550
bbl
552
553
554
5bb
55b
S57
SSrt
SS^
^60
SM
Sf"1 d.
bt>3
S*<»
St>S
S66
So f
b£3
570
571
IK
574
576
577
j I O
C 7 Cj
Sdn
b<5 I
bH2
583
5H<»
ST*
34«*
Jbl
35o
' 3J
39
*+ (*
50
51
bJ
bv
91
9b
99
1 0^»
!()/
1 10
131
1 JO
1 Jb
IJn
15<<
155

182
1H4
cd't
tin
219
22J
£2j"
<3l
27*
29 1
c*9b
c"*b
c? V V
JOI)
JOV
3Jb
••INI)
.0
.0
.0
.0
.0
.0
.0
.0
.0
. II
.0
. u
.0
.u
.0
.0
.0
.u
.0
. 1)
.0
.0
.0
. II
.0
.u
.0
.0
.0
:Y
.11
. 0
.u
• u
.0
.u
.u
.u
. u
.0
.0
TYPE
^
^
2
^
2
ff
2

s.
2
/
^
^
^
'f>
s
f
/>
r!
/_
f>
f
^
S
2
2

^
2
^
2
«r
2
^
^
^
c'
T 1
OvOtCoO
IfaDLCbO
2 3 0 1 C n 0
0?F LHbl
o ^FL bbi
1 JFtH81

30FtHbl
33FLHH1
6 1 ApKb t
ObfllJKH 1
09 ApWb 1
1 nAKt-'y i
1 /APKbl
3 0 A H r? b I
01MAY81
1 U M A Y f. 1
1 5 M tt Y b 1
1 M M A / H 1
03JHMbl
04 JU'Jf 1
20JUNH1
OlJULbl
OJJULbl
OfiAiiiih 1
U 7AU()f I
1 lAlJObl
JOAIK.BJ
Jl AIJ081
(IbStHbl
oiocrb!
IbOClBl
2 30C r b 1
c?50C T 6 1
2 bOC T b 1
2 ?OCTb 1
')5NIWbl
OlDtCHl
1
: 13

• 1 1
; 06
: 13
:oo
: 1S

: i 3
III

; J Q
I 05
: ] i
• 0 1
|00

• I ?
•
-------
QMS
5H5
5H6
5H7
588
5H9
590
591
592
593
594
595
596
597
594
b99
600
601
h02
603
604
60b
606
fiO 7
60y
609
610
611
612
613
614
615
616
617

619
620
6?1
622
623

625
6?h
627
02H
62V
63<>
fO!
STt^-NO
292.1
294 . II
2 c' v . 1
3^V . D
329.11
344 . 0
33.0
3v. n
5 0.0
51.0
53.0
91 I 0
9^.0
9 V . 0
101.0
0 4 . LI
21 .d
30.0
31.1'
U'. d
3y . ii
147. rt
1 4 h . 0
4 V . 0
ISO.u
1S2.0

ISbl'l
156.0
160.0
164.0
1H3.0
94.0
205.0
209.1
219.0

2 2 f . li
2^0 • 0
? ^ 0 » 0
274 . 0
?.'-»3 . 0
2^'' . "
3 3 T> • 0
V>d . 0
3*-> / . ('
TYPt
2
2
£>
2
2
2
2
2
2
2
2
2
2
2
d
2
2
2
^
2
2
2
2
d
2
2
^j
d
2
2
2
2
2
2
2
2

2
2
'd
d
2
r1
2
c1
's.
'<:
T
IbOCTO
2Sv«
01 A^kd
ObAh-Rn
Qt-y Xl^Jf^^
1 1 APPd

0 ItiAia
1 0 M A Y H
1 1 f A Y ^
l^f-'AY*
1 VMAY8
2/MAYb
^ h i-l A Y 4
2vMAfH
•)(if.'AY8
01 JUMrt
03JIINB
04JIIMH
DbJUMM
09JIINb
1 3 JUfo8
02JULH
03JULM
24JULM
20JULb
O^AUGrt
1 1 wijtjrt
1 b A u('O
1^-St^M
1 /btPH
OlUCTb
23l;C I 6
2f>OC F H
0 1 1 j t C H
l<.|)hCB
? i 1.1 1 C n
11
): 15:25
j: 03: 3H
) : 14*03
i: 15:48
1: 1 o: Ob
J.'13:4H
1 :06:25
: 1 1 : 34
:23: IH
: 22 : 49
:f2:45
: 16:30
:16:39
:09:52
: 1 o : i H
: fib: 32
:od:07
: 2 1 : 38
: 12: 15
:2n:i2
: 13:47
; 1 ^ I S 3
:i3:b2

: 1 1 : i 0
:13:59
:i4:3b
: 17:06
|22;40

• 22 .45
: 1 3 : 1 0
: 1 5 : 25

j 1 6 j ? 1

i i ° 1 ^

: j ^ ; £4 5
:04: 1 1
: 21 soft
: Ob : 04
" 1 1 • 26
: 0 9 : 2 H
s 15:20
: OStOl
FIO
0.34000
1 .60000
1 .54000
O.H9000
1 . 24 00 0
0.2P7/7
0.4^000
O.ShOOO
0.55000
0.35000
0.43000
0.27559
1 .06000
0.66000
0.4MOOO
i). 77000
1.02972
0.93000
0.253b2
0. 16399
0. OP 104
0.23000
0.36000
0.24000
0.30000
0.23000
0.29000
0.99000
0.39000
0.15699
0.21512
0.57000
B.8HBB9
0.4476H
0.06892
1 .03000
0.71429
0. 15306
3.66667
0.57000
1 .20370
0.37267
0. IhOOO
0.64000
0.16000
0. 34000
0 . 1 HS9fj
b 1 A = b
LHH
6.5
6.5
6.3
6.7
5.7
6.6
5.7
5.6
7.2
7.0
7.1
7ll
6.8
6.7
6.B
6.9
6.7
6.4
6.5
6.7
7.1
6.8
7.0
6.9
6.9
6.7
7.1
7.0
7.0
7.1
7.1
6.2
6.3
6.6
6.6
7.0

bis
(7.4
6.7
6.2
6.9
6. ft
6.7
.
.
STATION CHtMICAL DATA

              10 	

               LCOND    LTALK
 50
120
 60
 50
1Mb
290
495
150

3t)0
 d5
 65
 60

 751
 75
 75
240
130
 65
 90
290
340
2/0
365
185
 85
270
355
240
200
1Z5
 40
140
150

us
 95
390
 50
155
 20
 5b
135
                        36
                        16
                        12
                        17
                 LCALK
                                          PH
00
TEMP
COND

-------
STATION CHEMICAL UATA
OMS
632
633
b34
635
636
637
63H
639
640
641
642
643
644
64b
64b
647
64 »)
64s)
650
6bl
b52
bb3
654
65S
656

6Stf
b^'V
66'j
661
662
663
664
hfiS
666
66 Y

669
670
671
672
673
67b
676
677
*-> 7 n
67S>
STKM
277.
277.
277.
277.
292.
292 .
29<-* .
292.
292.
292.
292^
292.
292.

30^ .
329.
1 2v
332.
344.
3 3 .
99.
101 .
13 U.
131.
no.
1 3-*.
140.
140.
J4V.
150.
IS2.

1^!
171.
172.
1 70.
113.
184.
2 O'y •
21H.
25rt!
 0
110
00
00
00
00
0(1
00
00
00
oo
00
00
00
00
01
l) et
00
00
00
00
00
00
00
00
no
00
Id
oo
00
00
00
00
00
00
00
00
00
10
00
00
00
00
no
UO
(M)
(10
7 Yijt:
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
^
2
f
2
2
2
2
2
2
2
d
2
r i
03UC1MO
0 JUC 1 r>0
01ULTHO
03UCTHO
1 HOCTHO
1HOCTHU
1HOCTMO
IbOCTHO
UUICTHO
1 HOLT 80
IbUCTbO
1 ^(>C T ^0
IHOCTbO
IhOClbO
2bOCIbO
O^NOVbO
' 24NUVbO
24MOVbO
27t;OVbo
"s/ULChll
02^ t f-ib 1
OVAPPo 1
1 1 APkbl
10MAY81
1 1 M « Y H 1
1 hM A *i tj 1
1 VM A Yb 1
2b MA YH 1
2 h M A Y b 1
2VMAYH1
30'IAYHl
0 IJUNbl
04JIIN61
06 JUNb 1
20J'JW81
21JUM81

02JULH1
03JULbl
2bJULbl
06AUCiril
0 /AMbM j
IbStPrtl
010CTM1
260CU11
Glut Cttl

2.30iit^l
1
: 10
• 1 1
: 12
: 13
I OH
: 09
I 09
: 09
: 09
:?0
: 10
: 10
|11

:o8
: 10
:22
:22
: |4

i lo

' 2 1
: 1?

i 14

lib
: 14
)22

• 1 1
: u i
• } 2
: 20

• 1 b
: 16
; ] 5
U2
;23
J23

: 1 1
: lf1


:15
: 13
• 0 *^
:0-3

:06
: 17

:39
in
:23
|42

: j9
146
:36
:OS
:26
: 10
|57

:57
: c,2
:39
: 1ft
:20
:26
! 44
: jf,
:oo

144
: 33
• 56
:SO
:08
• 29
:02
• 35
:09
i33
:Q3

• «*6
• 29
• 07

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
FLO
.00100
.00100
.00100
.00400
.0.3000
.06000
.06000
.06000
.ObOOO
.ObOOO
.04000
.03000
.03000
.00500
.86000
. 16000
.40000
.52000
.12000
. 1 1000
.76000
.53000
.58000
.44000
.49000
.10000
.50000
.32000
.65000
. 71000
.45000
.72000
.75000
.65000
.197b4
.26000
.15152
.OH592
.53000
.56000
.52764
.41000
.30000
.26611
.48000
. 12000
.19000
. 19666
b 1 A
L
6
3
5

£4
8
8
7
7
7
7
7
7
6
.6
5
5
5
6
5
6
7
6
6
6
7
7
6
7
6
6
7
7
6
fc
fc
6
6
6
6
7
6
5
7
6


p
•

m
•
*

•
•
•
•
•
•
.
.
•
•
•
.
.
f
.
.

.

.
w
w
•
^
.
a
9
.
m
f
^
.
.
f
.
B
f
f
i
.
3
H
5
5
5

2
0
0
8
8
T,
b
5
6
2
7
5
7
b
2
b
7
3
6
7
7
4
0
9
0
9
9
3
2
4
5
4
6
5
6
9
0
9
8
0
9


CUND LTALK LCALK PH 00 TEMP COND
120
275
160
90
230
its
170
lib
m
155
130
60
30 7
510
35
95
240
2bO 12
60
6b
75
90
60
95
100
85
130
60
260
145
345
190
70 16
175
24b
155
50
100
55 15
130 13












5




5














5





5
0


























































































_














































































































-------
                                                             STATION CHEMICAL DATA
C»
OriS

680
                6tl7
                711$
                704
                7Gb
                707
                Kin
                709

                W

                W
                711
                71 7
                7lrt
                7^7
                730
                731
                732
                733
                       STI'MMU
34" . 0
 21.d
 3 i.n

 bulo
 bl.O

 53 !o
 C>J.U
 95.0
 95.0
 9i. 0
                        w. D
                        'v^.O
                        V-J.O
                        101.0
                        101.0
                        101
                        lol
                        Uu
   .d
   .0
   . I)
   . 0
                        1(12.0
10^ . (I
1 0 C . (I
                                               1 II
                                                 :03:19
                           Jb: 11
                         >:ob:37
                          :0b:oi
                          :0b:24
                          : 0 7 M 1
                  25oCT80:07:4b
                  250CTHO:10:^3
                           11:28
                                                 )Mb"Mb
                                          2bOCT«(i: 15:41
                                                 irlb:U3
                                                0 M 6:4 3
                                                OM 7:0b
                                            ".'ClfcOJ I 7:26
                     iCFbO:
fVKtfcM
       ; 1 Q: 5


  ;FHbli'
?!!fgu
       : 17:00
       :16!ii

       : 10:36
       :11:0 V
       : 1 1 :«.0
           11
OVAPKbl
1 1 APHbl SO'i:
1 l&PPBl MO:

1 UPh(81 ill!
1PAPWM1 My:
       ! 14!
       !1Q!
      bO

      11
                            I!b8
                             SO 7
                                    KLO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
o
0
0
0
0
0
0
0
0
0
d
0
0
0
0
0
0
0
0
0
0
1
I)
0
0
0
1
0
0
1
0
2
4
3
1
I)
. Ib
.06
.Ib
.Ib
.Ib
.08
.OB
.Ib
.05
.01
.01
.03
.12
.03
.Ob
.22
• 1 2
• 08
.12
.12
.08
.22
:?2b
•12

I?5
.23

185
.83
.0<»
.87
.33
.33
. 84
.33

!oo
.bo
.21

!74
.04
. 2b
• 7b
.HO
.00
.21

• 68
. 14
. 2b
.4b
6.2
b.5
b.b
b.b
3.7
S.b
5.9
6.0
b.l
b.2
6.4
6.5
6.4
b.4
b.3
6.1
6.7
b.4
6.2
6.3
6.6
6.4
6.2
b.4
b.2
6.9
5.7
b.9
5.9
7.2
6.9
6.5
6.9
5.9
b.b
6.9
6.B
6.7
fe.v
7.0
6.6
7.3
7.4
7.4
7.2
7.1
7.3
7.2
7.0
7.2
7.3
7.P
7.2
7.2
STA=51UP15 	

 LPH    LCONU     LTALK
                                   200
                                    55
                                    45
                                    35
                                   100
                                    25
                                    30
                                    3b
                                    20
                                    10
                                    70
                                    40
                                   105
                                    40
                                   100
                                   105
                              IbO
                               55
                               bO
                               70
                               70
                              130
                              135
                               50
                             8525
                              135      1
                              185
                              100
                              140
                               70
                              475
                              100
                              200
                             1?30
                              1 IS
                              130
 40
105
 bb
                                    7Q



                                    45
                                    50
                                                                                              LCALK
                                                                                                       PH
                                                                   DO
                                                                    TEMP
                                              CONO

-------
I
-p»
VO
OHS
734
735
736
737
738
739
740
741
742
7*3

741}
74h
747
74H
749
750
751
752
753
754
755

757'
758
759
760
761
7*2
763
76u
765
76b
767
76^
769
770
771
772
773
774
776
777
STrfMNO
102^0
102.0
102.D
102.0
102.0
102.0
02.0
02. U
OJ.O
1 J.O
1 J.O
1 J . i1
21 .'}
)O.U
31 .U
I'D. I)
3 o.i.
39.1
** o * t
15c.'
1 5^ . i
IS 7.0
161.0
1 6-4 . II
1H2.0
IBd. 1
2nl .U
209.0
219. 1
21*. U
220.0
22J.ii
2 2 7 • '/
2 4 ^ . Ij
24 j. I)
251.0

2'74'!o
291 . fi

309l()
335.0
TYHt
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
t-
2
• ^
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TI 1
1 2 APJJ8 1 : 22 : 15
1 24^8 1 :23 : 19
1 c-APPbl :2J:45
1 Jlil-Krtl : OOMIO
l.jAPknl :i)0:2H
1 iftHvv£i:ol:5H
1 JAHRHl :04:<,9
1 ja^WHl : 0 7 : S2
1 JAf-Rol : 10: i /'
2J«tJWbl :20 :59
23A^Hc*l:2i:06
2JnPk81 :21 :26
oli-">Yel : 10 = 23
J 0 f ' A Y t* 1 "^1 "?S
4 l IMAYHI : 12|09

Itv^^Yril i 19:*+^*
1 wf' a Yd 1 : 1 4 : 22
i-M-i/vYti 1 : 1 2 : OH
0 1 JUNH 1 : 17 : 1 3
0 ijiiNul :21 :*^0
O* jijNtM : 00 : 20
IO.IUNHI :o2:4i
1 3Ji)M«l :22!42
OlJULbl : 15:32
01JULH1 :21 : 10
POJULUl : 18: lb
28JiiLbl : 1 1 :53
2HJDL81 : 19:23
06Al)(,81 : 10 : 16
Of*Aii(i« 1:06:21
1 lAij(-,di : 18:54

• 30AUGrtl : 1)7:23
» 3 1 AijGH 1 : 0 '•» : 0 2
OfcSI: Mh 1 ! 1 3 !40
lSSt.^bl • 16:5^
01UC fbl :21 : 10
IMIJCTHI : 1 7: 34
2Jf'CT«l :07:SH
25DCTH : 14:46
05h'OV>il :23.'05
OlUKCwl : U:32
FLO
0.75000
0.50000
0.46000
1 .50000
0 • 9^0 U 0
0.21000
0.21000
0.21000
0.04000
0.2HOOO
1.04000 .
1 .64000
0.79000
1 .12000
0.91000
0.40000
0.19060
0. 17000
0.29000
0.<«05bO
0.76000
1 .70000
1 .42000
0.55000
1 .54000
0.21000
0.06000
3.96000
0.67000
0.42000
0.39000
0.26000
0.76000
0.57000
0.78000
0.44000
0.36000
0.49000
0.29000
1 .30000
0.32000
0.45QOO
0.29762
0.35000
SI A = b
LPH
7.2
7.1
7.1
7.2
7.3
6.9
7.0
7.0
7.0
7.1
6.1
6.2
6.3

6^7
6.8
7.3
7.2
7.3
7.0
7.2
6.6
7.3
7.5
7.2
6.5
6.5
6.5
6.6
6.9
7.0
7.0
6.4
6.4
6.6
6.9
6.7
7.0
6.6
7.8
6.9
7.4
6.8
6.H
STATION CHEMICAL DATA

               5	

               LCOND

                 50
                 60
                 65
                 45
                 45
                 70
                130
                175
                200
                145
                 70
                 50
                 50

                 60
                 65
                 55
 55
 50
 50
 60
 50
100
 BO
 60
105
480

its
145
125
 70
 45
 70
 95
 b5
100
120
 85
                                                                            lie
                                                                             75
                                                                                    LTALK
                                                                                             LCALK
                                                                                                      PH
                                00
                              TEMP
                                                                                                                          CONO
17
22

11

-------
                                                            STATION CHEMICAL DATA
i
en
O
OHS
77H
779
m
?§*
784
78b
786
787
788
789
790
791
792
793
794
795
79h
797
79^
799
flOll
fOl
802
803
^ (14
805
80n
807
HOB
809
810
811
812
813
814
815

81 7

H 1 V
820
821
H22

824
825

827
928
829
830
831
STKMNO
228.1)
.
;
:
.
,
.
.
322.0
329.0
*
m
.
.
.
.
w
SI .0
SI . 1
SM .1)
ft3.U
,
7*5 . 0
,
8V. 0
91.0

99 I 0
101.0
1 04.0
107.0
.
113.0
9
1 1M.U

B
1 ~^0 • U
,
1 1 1 • '1
1 1S.U
^
13d.o
1 H'i.O
|4o.U
w
1S3.U

15 7 In
9
161.0
T YPI-:
2
1
1
i
1
1
1
I
2
2
1
1
1
1
1 .
1
1
2
^
2
¥
i
2
1
2
2
1
2
2
2
2
1
2
1
d

1
2
1
2
2
1
2
2
2
1
2
2
2
1
2
Tl
ISuilfiOO
ISSt PHO
2vStPOU
061 1C THO
2UOCTHO
27(K,lriO
OJNOVMO
1 ()NOV«0
1 /l-iUVlO
1 7NHV80
24tlOVMO
OUitCBO
OHJtOO
IbDLCMO
22DLCHO
1 2 J Ahri 1
2b J6M8 1
O^F t ^ ^ 1
~c (.' H. (i P 1
Sdt t ^ ^ 1
2-')f th8 1
(1 u M A ^ K 1
) fi M A P y i
1 hPAWIn 1
2 3'-' AW Ml
T 1) M A K M 1
(1 1 APPMJ
Ot)Atjky i
09APPB1
1 1 APPH 1
[ *« APk/B 1
1 7 AMP H 1
20APRbl
23APPB1
2/APPrt 1
2 1^ A PP^j 1
(llf-'AYbl
0 ') M a Y 8 1
1 0 M A Y 1 1
1 1MAY81
1 1 M A Y ^ 1
IbMAYHl
IttMftYrtl
1 HMAYol
1 VMA Yt^ 1
f*H,M A Y tJ 1
OIJUNHl
02JUNH1
03JUNM)
OhJUNbl
08JUN81
10JUN81
1
: 18:30

iiojos
il j:30
= 14! IS
: 1 1 : 10
: 1 1 :0t
: 10:20
: OQ : 4b
: 1 6 : 3 7

:09: 30
i13:30

: 09 : 45
|13:no

: 10J2S

:^3: 3H
: U 0 : 0 M
ill :20
:io:oo
: 13:09
: 0 9 : 3 o
:C9:()3
: 17 : 2 7
: 1 0 : 35
: 10:b9
: 10:3S
: 0 3 : 1 7
: 1 1 : 3 1
: 10:50
• 1 1 : S 1
:09:40
: 17:31
: 1 0 = 44
: 09 : b1^
: 16:30
: 10:00
: 1 2 : 46
: 12:39
iP,9:?15

•15: ov
: 1 b : 45
: 1 1 :oo
|04:20

:01 :2f<
: 11:45
:02:bO
FLO
1 .850
O.OOb
0.005
O.OOb
0.005
O.OOb
O.OOb
0.010
0.010
0.010
0.630
1.220
0.010
0.010
0.010
0.005
0.005
0.005
0.005

0^440
0. 720
0. 100
o.nio
0.020
0.130
0.010
0.100
0.270
0.005
0.350
0.250
0.3HO
0.020
0.010
0.290
0.010
0. 130
1 .080
0.005
0.230
0.020
0. 180
0.070
0.005
0.060
0.140
0.420
0.005
0.260
1 .290
0.070
O.OOb
0.220
LPH
6.7

•
I
m
%
9
^
5.4
5.7

,
^
.
0
9

6.7
6. 1
6.0
6.0
,
6.9
9
6.7
7.2

&I7

6l9
6.3

6^2

m
6 * *»
m
6.6

&I9
7.0

7.4
7.2
6.9
e
7.1
7.2
7.0
^
7.1
UK 16 	
LCOND LTALK LCALK PH
75

20

16
17


75
7
14






235
210
190
15! 28
.
1 ^0
.
175
175

170

490
115

1 <*5
,
m
155

120

120
120

110
110
110
*
105
95
100

90



5
0




5









0










5



















7.6
8.4
7.5
7.7
8.4
6.7
6.7
8.4
7.5

m
DO TEMP

8.1 23. 0
5.6, 26.0
B.b 18.0
9.4 19.0
9.6 16.0
0.7 10.0
0.8 10.0
1.0 12.5
2.0 6.0


6.2 12.2 9.5
5.3 10.6 11.0
5.4
6.0
5.1
6.0
1.6 4.0
2.6 2.5
2.4 0.0
1.0 5.0
6.2 14.4 2.0

^
.
* .

. ,
bis lllo 5ls
6.0 13.2 8.0
.
9 .
6.1 16.? 6.0
,
^
. .

6.5 11.0 11.0
,
.
.
.
# 9
m .
. .
, .
6.8 10.2 15.0
,
. m
8.5 10.6 17.0
^
^
6.2
,
6.4
.
.
6.0
•
t
.
6.2
.
,

6.2
.
9 9
^ ^
8.4 16.0
9 9
8.4 19.0
. »
. 9
7.6 15.0
• •
» •
v v
7.B 23.0
9 9
, .
. .
7.4 24.0
. .
COND

85

9S
65
70
65
65

9
65
70
85
80
315
370
265

m
9
125
135

125

^
85
9
9
9
9
285
.
120
9
m
110
9
110
.
.
100
.
•
.
105
,
.
9
70
.

-------
                                                            STATION CHEMICAL DATA
i
cn
OBS
832
833
834
835
836
837
83H
439
840
841
842
843
844
845
84b
^t+ 7
84P
P49
BbO
8b2
b53
854
855
856
857
858
859
bbO
b61
005
862
863

M65
Hb6
667
H??t*
669
870
B71

873
874
H/S
876
877
87H
879
STRMNO
164
171
17b
1 43
1Mb
201
,
209
218
220
,
.
242
251
?Sti
,
'f 7*+
.
.
?91
?9b
.
310
•
i
,
33b
STHMNO
262.0
262.0
262.0
2t>b.O
2bb.O
292.0
29^.0
d*J t* • 0
29,?.0
eftyi? • 0
3 3/1* • U
34n.O
Jbtt.O
21.0
33.0
39. u
42.0
bO.O
T ri-'t
2
f.
c
2
c-
2
1
2
2
2
1
1
2
c
c
1
2
1
1
2
2
1
2
1
1

2
T














































YPE
2
2
2
2
2
2
2
^
2
f
'f>
s
2
2

2
2
^
Til
13JUMH1 :23:20
20JUNB1 :ui :06
25 Jl i:\iHl : 19:48
02JULHI : 13:09
04JULH1 :OH:04
20JMLH1 : lb:27
27JUL41 :09:50
28JULP1 : 1?:55
06AUL.81 : 12:37
OHAuGHj :0| |02

24
r1 ^U.1 V H 0 ' \ *? I Jt**
0 '-* h I • C B o : 1 2 • J **
23ULC80 ! 09 • 40
21JANMJ !04! 33
02F L H 81:06:46
OHFKHB1 : 1 0:b-J
1 iF'tHhl :04!b^
19F> Mgi :e>2- J7
FLO
0.300
0.190
0. 190
0.800
1 .700
0.9HO
0.005
0.270
0.240
8.180
.000
0.000
0.510
0.140
0.350
0.005
0.150
0.005
0.005
0.210
0.260
0.350
0.005
0.140
0.005
0.005
0.005
0.005
0.190
0.005
FLO
0.1 1
0.07
0.04
0.03
0.03
0.24
0.17
0.05
0.02
0.00
0 . Ib
0.0?
0.1 '1
0.02
1.21
O.lb
0.1H
0.08
- blA=b
LPH
6.9
6.6
7.0
6.4
6.1
6.8

&I7
7.2

^
%
7.0
7.0
6.9

6.8
m
.
8.4
7.0
6.9
*
7.3

*
*
lUKlb 	
LCOND LTALK LCALK PH 00
90
105
100
90
80
90

250
230

^
m
80
100
85

100

.
100
105 21
100

85
I 11


7.0 95 17


















5



5


m ^
m ^
m .
9 ^
^ 9
6.9 8.00

# ,
• .
81 &. An
.1 D . OU
7.3 7.50
. .

9 ,
8.9 8.70

9l2 9^15
9.3 9.30

^ ^
7.3 8.70
• .
7.3 J3.10
7.3 10.30
7.9 9.90
7.4 10.90
00..
0 0 7.1 10.20
LPH LCONO LTALK LCALK PH 00
m
7^3
7.5
7.0
7.0
7.3
7.3
7.3
7.2
7.2
6.4
6.1
5.3
6.2
5.4
5.7
6.9
7.1
•
?70
190
180
165
105
110
95
115
70

15S
39b
6SO
17S 19 0
?00
55 27 0
130
TEMP






24



2 »
26

9
m
19

18
15
•
.
16
.
1?
4
7
•
COND






10


.
85
80
.
.
.
70
.
70
75
•
.
75
»
75
75
75
80
TEMP CONO





































-------
m
Ul
ro
STATION CHEM1CALDATA
OHS STrtMNO TYl-t 111 FLU LPH LCONt) LT/
880 '53.0 2 23FE.hHJ :il:«5 0.25
681 fb.O c. IbMAUHl : 13:^b 0.08 6.8 18U
8fl2 o9'.0 2 30MAK81 :y7:«»3 0.17 6.8 110
883 9b.i) 2 uS^PKBl : 17:35 0.36 6.6 105
8tf<« vv. o s_ (WAPHH j : j 1 : J4 0.24 6.7 13S
8Hb 102.0 2 l2flPKH] : !>:b<» 0.11 6.2 120
«M6 l< lU'.O ^ £• 3£HKM :20:n2 0.32 6.3 150
rtn<* 120.0 ^ 30A^KMi: 10: Jt- 0.06 6.0 205
8S(0 121.0 c; OlMfltbl : 10:31 O.lb 7.3 90
H91 13d.li d lOMArol : lb: 15 0.17 7.8 135
*V2 Ul.i) <-: 1 H-AYbl : 1^:29 0.20 7.2 100
893 35.0 2 15MAYfai:i2:l2 0.54 6.5 120
B9<» 3b.l 2 15MAY81 : l: 19 0.15 7.1 155
H9h lsc.it ^ 01JUN81 : M: la 0.22 7.0 155
89'J lol.u 2 1 UJUMH] :u-<:26 0.18 6.9 90
900 It^.u ^ 1 jJUhtfl : IO:H£: O.Od 7.7 120
901 1M.O ^ i?OJUWrtl :00:ot> 0.25 6.1 125
90? 1/b.U 2 25JUNiM :20:«;l 0.41 6.9 85
903 1«'4.U 2 0 JJULb 1 :o5:oo 0.07 6.2 210
9tK <^C^.O ,e 21.)«'LB1 : IS: JO 0.19 b.9 100
90S 2ilb.() c S^JULHl : 16: 02 0.31 7.1 170
906 2l>7.0 ^ 26JHLH1 : 19:-46 0.12 7.6 3<»b
907 21b.O ^ 0.jAuu*l : lb:23 0.2J 7.0 245
90H 21H.C 2 06AuL,yl : 13:^0 0.01 7.3
909 223.0 2 1 UUGfl t20: 1<« 0.34 b.<* 110
910 2'.2.0 ^ JO«lK,Hl to*: lo 0.2A 7.0 90
911 2^3.0 ^ 31ALIG81 : 1 1 :b7 0.33 7.0 HO
912 251.0 2 OwSiPbl !U:07 0.11 7.2 155
913 25^.0 2 ISSf Pol : 17!b2 0.21 6.9 95
9U 260. u 2 1 7«,tPH| I20S49 0.12 7.0 115
9 IS 2/0.0 2 27StP8l : 1^:21 O.I/ 7.0 110
916 279.0 2 ObOCTKl : 11 :08 0.10 6.7 95
9!/ 296.0 2 230tm ! 14: 16 0.13 7.0 100
918 2VM.O 2 23()Cr81 .'20:33 0.06 7.4 155
919 2V4.0 2 2nOCTHl :12!33 O.I/ 7.1 100
920 30V. 0 2 05NUVM :21 :0b 0.25 7.0 100
9?1 33^.0 c' OlUtLH] : 1 1 ;(j"3 0.12 J.d 140 2^
922 33*. U 2 04[itCM ! 18:t>2 0.09 /.S 100
»LK LC'
t
«
\LK 1
->H 1
)0 Tl
[MP C(
'
)NO

-------
                Ous
                       sffVMNu
                                 TYPE
                                               Til
  STATION CHEMICAL DATA
	 STA=51URlb 	
 FLO     LKH    LCONL)
                                                                                   LTALK
LCALK
                                                                                                      PH
                                                                                                            00
                      TEMP
COND
CO
92*. b^.o r1 23Fh.MH 1 : 09 : 2 1 0.4O 6.0 100
925 121.0 '-> 01"AYHl : 1 ^: U4 O.M 6.0 75
92h 1J9.0 d l-JM«rhl : lb:^b O.Oo 7.0 125
927 Ib't.n d (>3 JUNb 1 '• £3 '• *»V O.cIO 7«j 60
92H Ib/.O 2 Ot.Jil^M :01 : 1 1 0.0£ 7.0 100
9?9 2-.'.*.'! d IbSfcP^l s IVtt-ii O.Ob 6.B 105
930 2'^.l d ?fOCTH| :<•>! : 10 0.07 6.0 100 Zl 5 0
OHS <;r>v«NO Ty^t Til FLO LHM LCUNl) LTAl
931 b 1 . d 'd 2UI- k>H 1 : On : 0? 0.0h<. 7.7 345
932 bl.l 2 • 2i-Ff bHl : li,:n? 0.032. 7.8 3^0
Q-\i, fc.t.d <• (i4MA-^j :23:oo 0.032 6.6 300 100
9^b 7'j.U 2 1 ^M-A~H 1 • 1 ^ : 1 S 0.017 7.0 S^O
QTf, H9.() 2 Jiri*(vH 1 : 0'-»! S>v li.Oc'4 6.H 39S
g'ty |()l lit 2 1 l«.PrV>ii ! 1 1 :.T« ol"24 t.Iy 30b
940 IdJ.O <; 1 j"Pt^nl : 1 U : b / 0 . u 1 •« h.H 31b
041 IU.O 2 23"k^8l :21 !31 O.Obt 7.0 3^b 112
94? 121. U 2 (I JKAYHl ! 1 1 ! OH 0.117 7.4 29S
94 J I tll.O 2 10MAYK1 : 1 ?!2t> 0.027 7.9 310
044 1 tb.l) 2 IbMAYHl : 1 3:0 / 0.04b 7.2 290
94b IJH.U 2 1HMAYH1 :?1 !4H 0.032 7.8 ' 2H5
94h J4M.O 2 2bMAYH j ! 09: >b 0.010 7.0 420
947 IbD.O ? JO-IAYHl :?3: Ib 0.017 7.2 3SO
948 U.4.0 2 1 3JUMH1 : 19:02 O.Obl H.I 260
949 1M.O 2 ?OJHM81 :Oh:3J 0.012 5.9 3'i.0 2 !SStP81 : 1 V:3'» O.llb 8.4 30b
9M 2fi">.0 2 22St I-1 81 : 1" : \-> 0.002 7.8 630
962 291.0 2 ItKiCrol :?n: 1 1 0.009 9.1 410
963 d*i'..(> ? 2j(.iCTHi:io:r>^ 0.033 H.6 370 11B
964 2^^'U ^ 2bL)CTtl 1 : Io!b6 0.06V d.O ?40
965 .110.0 2 06NOVM 1 : 01) 1 31* 0.016 y.O 265
.K LC*
U
0
\LK f
JH I
)0 Tf
:MP c(
DND

-------
                                                              STATION CHEMICAL  DATA
rn
l
	 il A=blUK20 	
OHS STMMNO TYPt Til FLO LPH LCONU LTALK LCALK PH 00
966 2bt< 2 IbSt PHI : 1 ?:41 4.H 9.4 1
96? 26b ^ ?2il-^HI : 19:()6 Ib.b6 6.7 1
968
970 !
971 t
97? ,
973 ,
9y^+
'*7l-i } (i^>'ifTKl*iH*'^K 1 *^ 1 n A/»
.•7 C. l'Ol'CI~I«J'*»^O 1 J • 1 O O»*r
f91 2 IHiitTfij : IM: ib 2.2b ?.9 1
^9b rL c J!)C IM :p-C<»^ 3.7b 6.6
•*9d d 2Sf)CThl : 1«»:S4 0.8<« 6.5
^99 2 2K>CTt< 1 : If : \2 9.r>3 6.7
}(j9 ^ ()~>'1'j(^\/^l»?l»04 4.**b 7.0
975 J3b S. OllJtl'ttl : 10:24 1.20 h.6 1
976

<* e O'.JAt-jf'?: lb:f)b O.bl

20
10

10
50
C,Q
50
80
10 15 0
• • •











Ot-S STPMNO TYPt ^ Til FLO LPH LCONO LTALK LCALK PH 00
977
978
9V9
981)
9H1 29<-
98?
9H3
984
9HS
9H6
9H7
1 21^tMfll :c>9:20 0.03S
1 2t*St"IJHl!Ort!.'3fi 0.029
1 IcOCIM :<)Sii IS llldU
d C-^CJC FH1 : 1^: 33 0.420 10 2 IS
1 02fiOvM :OP. :SS 0.019
1 09NOVt
-------
                                                         STATION SOLIDS  AND OPGANICS  DATA
I
CJ1
cn
OHS
148
149
50
51
152
153
§5
156
157
58
59
160
161
62
63
1 6^
65
166
167

169
70
71
72
73
74
17b

73
79
180

83
04
85
fi6
87
1 89
1 H *-)
190
191
92
93
94
95
196
197
98
99
200
201
STH'-INO
292.00
292.00
292.00
292.00
292.00
2^2. 10
292. 10
292. 10
292. 10
292. 10
222:18
292! 10
292. 10
292. 10
2-V. 10
292.10
^^2. 1 0
292. 10
292. 10
 . . \

8s/ . 1
B9.01
8V. I 1
89. ij
90.00
95.00
TYVfc
2
2
g
p
2
2
£
2
2
£
2
2
2
2
2
2
2
2

2
2
2
2

2
2
<5
2
2

2

2
2
2

2
2

^>
£
2
2
2
p
S
2
2
T 1 1
lH()CT80:Ov: 18
1 HOC f80 : 1 0 : 1 4
jmiCT8o: 11:19
1 tincl du : 12 : 27
1 MOCTtMl : 1 4 : 1?
1 'tot. Tbo: lt>:48
180CT30: o:5f
Iduci8o: 17: 18
180CTBO: 1 7:53
18UCT80: lrt:26
J8(irTbo: id:34
louCTBO: Id: 39
180CT«0: 18:44
180CT80: ld|50

18DCT80 : 19: 07
1HOCT80: Is/: 15
InuCTbO: 1 9:24
IbOCTBO: 19:33
18UCT80: 19:44
180C F8o: 19:56
180CT8o:2o: 1 1
l8i)CT8o:Po:29
ld(JCT80:20:4B
180CT80|?0:52

180Cf80:2i:o?
1 MIJCT80 I 2 1 ' 08
18UCT80:21 : 16
04HUV80 :0d:??
09NOV80: lb:44
p i+ f1 j ( ) y H 0 * 0 '^ • tt~l
27NOV80: 16:56
09l)hC80: 12J5S
23QtCdO:08: 19
?UFtHHlSl3:iS
?lFtfjai: Ib: J2
22e triftl : i /: n
16MAKH1 : 12! 1 1
3oi'AP81 : 0 7: Jh
3DMAKH ) : 08 : 04
30MAHM1 :oo:28
30MAkhi :o^«45
3i'MAKHl : Ov: 00
31)^^1^81 lO"^* 1 3
30MAP81 r09:2^*
30MAM8) :0v:3^
30MAt>H 1 : Ov:S3
30MAP81 : lu: 19
30MAh«l : 1 j:20

05APK81 1 17: 30
	 blA=b
KLO
0. 12000
0. 12000
0.09000
O.OoOOO
0.03000
0.58000
0.42000
0.1^000
0. 12000
0. J3000
A. 11 000
.89000
0.8HJOOO
0.67000
0.42000
0.4^000
0.4^000
0.42000
0.42000
0.33000
0.33000
0.21000
0.21000
0.67000
1 . 1 1000
1 .23000
0.89000
0.67000
0.42000
0. 19000
0.58000
0.36000
0.1^000
0.29000
0. 15000
0.61000
0.15000
0. 16064
0.33264
0.47000
0.05000
0. 18000
o.ieooo
0.27000
O.J3000
0.39000
0.42000
0.45000
0.36000
0.24000
0.15000
0.47000
0. 1^682
0.60000
1U«OJ --
con
324.0
284.0
244.0
244.0
240.0
308.0
l^Io
* 82lo
9B.O
?62:H
38lo
26.0
36.0
22.0
16.0
16.0
50.4
60.1
42.7
46.7
9
144.0
1 13.0
42.7
38.8
.
24.4
16.0
56.0
1 P • 0
4.0
" 40.0
32.0
40.0
36.0
46.0
20.0
33. 3
.
m
.
.
.
.
.
,
.
,
51 .8
24.9
180.0
TSS OBOD5 HODb OBOD20 BOU20
87.0
25.0
1 1 .0
tb.O
9.0
437.0
127.0
56.0
22.0
63.0
296.0
126.0
55.0
39.0
15.0
23.0
15.0
24.0
14.0
5.0
5.0
4.0
6.0
323.0
136.0
55.0
29.0
23.0
23.0
13.0
154.0
8.0 3
1 .0
21.0
5.5
39.0
?3.0
19.0
17.0
18.0 4
22.0
84.0
49.0
141.0
98.0
73.0
67.0
429.0
200.0
57.0
34.0
102.0
11.0
57.0



























5 . 6




2 B










f






























3




8















-------
                                                        STATION SOLIDS AND OKGANICS DATA
m
i
en
CT>

O'^s
202
203
204
205

207

209
2 1 0
2 1
212
213
214
215

217
21H
219
220
221
222
223
224
225
226
227
22*
229
230
231
232
233
234
235
236
237
23H
239
?40
241
242
243
244
245
246
STKf-NU
99. U
1 0 2 . U
104. 0
1 0 / . 0
113.0
130.0
1 J«.l>
14H.O
1 4 9 . U
150 .0
1 *D2 . U
1 54 . 0
155.0
157.1
159.U
161.0
164.0
1 7(i . 0
1 7f- . 0
1 -<4 . (t
1 H1"1 • 0
20 i .0
202.0
205.0
20 7.0
209.0
215. u
21 H.u
219.0
223.0 .
227. u
24^. 0
24J.O
251 .0
25r< . u
2b0.u
2 ^1., f ft
2 7 0 . U
274 .0
291.0
29fc . d
297. u
2'yf).0
300.0
J J5. 0
TYPE
^
c.
d.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
^
2
^
/
2
2
2
2
2
2
2
t:
£
^
2
^
^
2
2
2
2
2
2
2
II
()4APRt F" P W 1
2 7 S K P b 1
01UCT81

/* 1 0 C T h 1
260CTH1
270CI^1
0 Hit CHI
1
: 10 :
: i M :
: 1 b •
; yt> ;
: 1 4 :
:14:
: 13:
: o 1 •
: iw:
; ^ "j ;
: j 3 •
: 1 v :
:20:
:21 :
:21|

: 1 7 :
: 2 3 :
:20:
: u5 •
: i>ii>:

: j 5 :
: 1 4 :
: 1 9 :
:oo:

: 1 0 :
: 1 6 :

• 1 0 •
• U6 !
:10:
; 1 j :
: 17:
:20 :
: 19:
: l g :

if?:
I13:

: OH :
: 1 1 :

^6
53
2 j
21*
6b
23
3b
07
33
4 0
1 ^,
25
56
10
20
08
1 8
3^*
12
1 1
0-y
4 1
32
24
51*
Jt>

32
23
04
44
4b
20
Ob
M

1 ?>
?0

57
10

?4
41)
fLO
0.53000
O.^7bb9
0.15000
0.13301
0.22646
0.29t37
0.26000
0.24000
0.10000
0.09000
0.22000
0.09000
0.06000
0.09465
0.12000
0.25B76
0.14000
1 .32000
0.58929
0.20000
5.60000
0.14143
0.15363
0.26000
0.18191
O.lrtOOO
0. 10000
0.16000
0.08596
0. 19403
0.26000
0.4HOOO
0.33417
1 .40000
U. 92000
0.34000
0. 1HOOO
0.24000
0.36000
0.44000
0.24000
0. 15000
O.S4000
0.33000
0.20000
COD
44.3
30.0
14.0
22.0
12.2
30.0
30.1
36.0
24.5
61 .2
32.6
36.7
36.0
20.0
40.0
24.0
24.0
60.0
20.0
3** • 3
6.1
71.5
28.0
24.0
20.0
24.0
27. H
28.5
23.3
35. H
24.5
39.7
39.7
42.7
34.6
81.6
37.7
31.5
39.3
48.2
32.1
61 .0
27.9
47.1
3S.4
T55
60.
21.
b.
4.
12.
b.
5.
19.
0.
1.
6.
9.
3.
123.
2.
12.
5.
63.
12.
10.
1 1 .
2b .
is.
4.
12.
.
b.
6.
2.
11.
20.
10.
16.
36.
4.
13.
19.
21.
10.
31.
.
13.
8.
18.
26.
DBOD5 BOD5 OBOU20 BOD80
0
0
•j
0 1
0
0
0
0
0
0
o
o
0
0
0
0
0
0
0
0
0 2
0
0
0
0

0
0
0
0
0
0
0
0
5
5
5
0
0
0

0
0
s
0


9 3
















5 5

























a
















5
























-------
                                                        STATION SOLIDS AND OkGANICS DATA
cn
	 bl»-DlUK04 	
OHS
247
24H
244
2t>0
251
252

255
256
257
258
259
2bO
261
2*2
263
2*4
265
26*
267
26H
269

271
272
271
274
27S

277
27M

280
281
0«S
STW^NU
324
332
33
42
50
53
89
45
94
102
1 ii"
107
1 Id
1 2 1
131
1 35
134
153
154
1*1
164
171
176

20 I
20H
223
227

243
2^8
2 6 o
274

ST-KhO
1 Y^t
d
2
2
2
2
2
2
2
2
2
2
i1.
2
2
2
^
d
2
2
2
2
2
2
2
2
2

2
d

2
2
2
2
1 YPt
1 I
2 4 M 0 V 8 0
2 ^N( W80
(J,Jf- f. ^fi 1
1 IFtHbl
14h (: r<81
22F^ H8]
jl'MAfJHJ
OS APf
: 02
• 4 o
: t,u
• 56
: 25
:58
:22
142
•58
:no
• 3^
|10

:*32
: 1(l

:32
:39
: 55
:'?()
;32

: 10
:oi
:52
T 1 1
FLO
0.61004
0 .54/14
0 . 18000
0. 76000
0. 15000
0.45000
0.33795
0.20009
0.21*76
0. 13000
0.59418
0.1 1000
0.05000
0.05002
0.58455
0.52000
0.49068
0.09000
0.1 1000
0.16000
0.^9499
0.34000
0.48000
0. 16000
1 .30000
0. 15000
0.09872
0.30000
0.35000
0.24000
0.60000
0.50000
0. 17335
0.28000
COD
16.0
8.0


36.0
36.0
30.0
36.5
29.4
.
26.3
26.3
.
,
25.7
90.0
22.0
15.8
24.5
57.1
36.0
36.0
27.9
40.0
27.5
11.9
19.9
17.4
6.1
11.8
17.9
24.6
30.5
29.5
0.35000 20.7
CTA— ClllD/iC.
FLO COD
TSS
20.
4.
19.
24.
20.
19.
29.
10.
16.
22.
25.
21.
23.
d*+ •
21.
22.
17.
16.
12.
78.
18.
10.
7.
7.
10.
4.
5.
5.
1.
7.
10.
10.
9.
11.
17.
DBOD5 BODS OBOD20 BOD20
0
0
0
0 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0


5





























































0
TSS DBOD5 BODS DbOD20 BOD20
                     2H?

                     284
                     2H5
                     287

                     289
                     291
                     292
                     243
                     294
  -.10
  '.no
  • .00
264.00
304.00
314.00
321 .00
324.01
324.02
324.03
3J(T.OO

 33^00
OMIOVHQ : OH: is
UVNOVHO : 1 5 '• * 1
)6HOv*io : o 1 : 16
        >1=22
0.04
0.27
0.04
O.OJ
0.03
0.10
0.35
0.0 f
0.10
0.03
0.08
41 .4
36.3
20.0
60.0
60.0
14.U
2H.O
32.0
19.0
46.0
56.0
 12.0
  6.0
 11.5
152.0
  9.0
  3.0
  5.0
  7.0
  3.0
 2?.0
 44.0
                                                     10 0      G
18 0

-------
                                                      STATION SOLIDS AND OHGANICS DATA
I
Ul
OHS
29S

397
29«
299
300
301
30?
303
304
305
306
307
3(iq
309
310
311
312
31 3
314
315
316
31?

319
320
321
32?
333
324
32S
326
327
331

33"
331
332
333
1 14
3 '5
336
337

339
(40
341
342
343
344
STKMfsiU
39.0
41.0
SO.O
63.0
/ '3 . 0
rt9.0
91 .0
•'5.0
99.0
101.0
1M2.0
103.0
107.0
1 1K.O
1 1 H . 0
118.0
121.0
130.0
131 .11
1 J5. 0

13Miu
1 4ri . il
1 5 0 . 0
1S3.0
154.0
IfcO.O
1 6 1 . 0
164.0
173.0
1^2.0
3d 1 .0
P(,9 . )
333.0

2-o! 1

3 S M . U
r"->rt . 1
21-ib. 0
274.0

2^*Io
?9A.o
2l*W . 0
in o.o

335 I 0
33M.II
3**^ . 0
IrPL
2
2
'f>
2
p
2
2
2
2
?
2
p
2
2
p>
2
2
2
2
2
2
^
2
2
2
2
2
2
2
2
p
3
2
?
?
's
2
2
^
f
'j
fi
^
p
£'

2
2
TI 1
OHf- E H8]
10F E.H81
19F tHH|
() 4 M A k H j
1 6M An b 1
3l)MAkrt 1
0 1 APf- 8 1
05 AP^H 1
09 flPKH 1
1 1 APRHj
j jnpMM j
17APKH1
28APW81
2fJ APKb 1
3 H A P p. ^ |
0 1 !•' A Y H 1
10KAYH1
1 1 M A Y H 1
1 S f-? A t rt 1
ISM£YH|
1 MMA r ^i
PHKA r H l
30HAY81
01 JUNH1
03JMNM)
10JUMH1
1 3 JiJNHl
22 JUNB 1
(>\ JULH1
20JULH]
2^ JUL H 1
1 1 AIJ('f» 1
1 2AUOH1
3 1 Aud'' 1
O^SE ^' ^ 1
1SSF Vn\
lSSt'JH)
?^^(- ^h \
OlCCTM

^3liC 1 (• \
?bt >c i ^ i
36( tC (Ml
2/OCfA
ObMOVhl

O^llFXHl
ISUECf I
10
23
16
19
05
07
13
13
11
10
IN
14
0"
17

IB
14
14
1 1
1 1

^ j
til

i3
?0
16
14
17

0 ?
I &
16
19
Oh
12
u.3
17
20
IB
21
1*

14

0 *4
i* 1
1 1

11

:36
:ou
:oo
; p>9
: 14
• ^i.
140
• 1 6
: 31
•4H
J32

! 17
112
; ^^
; 53
: j^
• f' 9
I *~>5
• 25
: 12
• 1 2
:02
:27
.'20
:04
154
:47
: |j4
t 48
: H 1
: 16
; j /
137
• t> J
: 13
: £> j
: 04
:33
1^*5
* ^^
: 06
• 1 ^
! 14
l S 7
' U 7
! 5 7
:oo
!33
	 bi
FLO
0.03
0.09
0.07
0.09
0.07
0.05
O.Ob
O.Ob
0.07
0.09
0.08
0.05
0.05
0.01
0.41
0.04
0.13
0.07
0.08
0.10
0.05
0.04
0.08
0.04
0.03
0.01
0.04
0.03
0.05
0.02
0.10
0.04
0.05
0.09
0.14
0. 15
0.0?
i). 16
0.06
0.24
0 . QS*
0.04
0.03
0.03
d.O 7
0.06
0.11
0.03
0.02
O.Ob
COL)
56.0
55.0
52.0
^
45.1
72.0
76.8
b8.b

42^0
42.0
26.0
44.4
.
.

34.0
37.8
33.8
6b. 1
i>** • 1
30. 1
84.0
44 . S/
28.6
58.0
52.0
60.0
32.0
43. b
87.3
139.0
37.7
50.1
25.6
45.6
H4 .3
71 .^
34.6
SB.O
39.3
43.6
3S.3
2b . **
W.o
31.3

26 6
62.8
34 . H
TSS
24.
43.
20.
6.
10.
37.
81.
25.
16.
23.
14.
31.
14.
101.
169.
4l.
10.
21.
24.
51 .
54.
17.
53.
8.
4.
12.
16.
12.
26.
43.
94.
53.
9.
**2 .
6.
10.
12.
-3S.
7.
21.
12.
6.
10.
e.
.
1 1* .
27.
7.
16.
.
OBOD5 BOD5 DB002.0 BOD20
0
0 6
0
0 4
0
0
0
U
0
5
0
0
0 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
^j
5
0
5
S
s

s
0
I-)
0

5 G 10

e 9







6 9




































0

4







4





































-------
                                                       STATION  50Llu5 AMD ORGANIC5>DATA
m
i
en
10
OH*;
345
346
3<*7
34 H
34Q
350
is"J
353
354
355
356
357

359
360
3f,l
3^2
V1* 3
\f~ 4
>'•>
3fi6
J67

3^ 4
370
M
373
374
376
377
OHS
374
.374
3 mi
342
343
-)H/.
3^Jb
3*4 *•»
3H7
3h^
340
341
342
SI.
249
322
32^
332
33
33
3v
42
50
Si
S3
6<.
49
102
121
131
134
14'*
!<« 9
M'

Ibf
|64
In
1 /2
•1H?

22 1
24 2
2*r>
^vs
SFKM
20'- .
2tli< .
211.
21-..
2 1 ^ .
*-*3 1 .
V JS.
f
2^1+ .
.
26^:
^f-ji^ B
^fc'J .
-NO rvPt
.00 2
Ido 
FLO
0.33
0.29
0.5H
o.o<4
0.50
o.lo
8:29
0.31
0.12
0.26
0.07
0.14
0.12
O.bl
0.26
0. 16
0.06
0. IB
0.23
0. lb
O.I/

0.60
0.28
1.13
1 .08
1 .01
1.93
0.28
Ol06
\ — j I U^'1 0 ~
COF)
 A i lOrt 0 I
y^^(- ^f, OJ
1 Obt HfO:
1 SSb PH 0 :
2^Sh P"0 :
^j^m- PHJO i
c'bSF PHO :
FLO coo
19:2b
i". 2 • 5 0
0 2 : 0 6
|4 :0b
16: 00
23:4 /
Ob:S^
u?:5/r
IbiOO
yl :0^
10:33
IS: 30
o b : ^ >f"
ti 7 :'.<«
b. 230(1
1.2700
0.4900
U . b 0 0 0
0.5400
1 .0/00
1 .0500
0.8000
0.0055
0.3<*00
0.0021
0.0021
0.0939
0.2340
0.2340
36.2

60 If
•
74^2
140.0
33.?
21.0
132.0
4.8
11 .6
70.2
.
33.2
T55
4a.o
63.0
52.0
Ts.o
221-0
10.0
65.0
114.5
4V. 0
Jl .0
72.0
25.0
7J.O
6--..0
140.0
JO.O
I'.-O
lb.0
104.0
6b.O

f9lo
9A 0
111.0
3/.0
28.0
56.0
18.0
28.0
14.0
?0'2
9l5
TSS
247.
4?4.
66.
1*8:
144.
h2b.
*w .
34.
29* .
13.
1.
60.
lb*.
42.
UbODb 8005 OB0020 HOD20
23 85


0 10
5

















2







0 0 18
3 G 10

















4 6






0
0

















0





UBOD5 H005 OBOD20 B0020
0
0
0
0
0
0
0
0
0
0

-------
                                                     STATION  SOLIDS  AND OHGANICS DATA
Oi
O
	 	 	 :>I« = :>IUKU» 	 	 — 	 	 	 — ------ — ____----- 	 -_______-_-___---_-
CH"
3V3
39**
395
396
397
39rt
3 W
400
40 1
402
403
404
405
40*
407
408
40V
4 1 II
4l 1
4 12
41 3
4 14
415
4 1 *
4i ;

41V
420
421
422
423
424
425
426
427
42(<
429
430
431
43?
4J3

4 IS
43'.
43 r
4 JH
** }9
44')
44 ]
44?
44 j
4 A'*
**-*ti
f*'t>-:
S1KI-NO
26V. 0
2 1» v . \)
269.11
a
27h.o
B
.
2 V v . (t
.
302.0
,
30V. 0

32V. 0
332-0
.
.
•
f
f
52.0
53.0

f
u
P ~t . i\
*-* \ . U
s
vv.o
102.0
1 0*+ . 0
107.0
f
^
120.0
1 2 n . 1
121.0

30 I 0
3D. 1
31.U
31 . 1
31 .2

1 .»••>. 0
,
13V.O
1 3v . |
<«V. l)
1 52 • 0
I 5 3 • 
i
i

£*
1

^
,•
i
r:
\\
2S?FPMd
^SSF ytUI
^ s ^ f- M H f i
^ y C,J. pfjf)
02('CT80
0*OC T «0
200C T tiO
250C t 80
270CT 80
2 8 (1C T ct 0
03KOV80
y t*l-j ' J ^ 1
dVF KHH l
^ j j: f i^ ^ j
£?Ff.rtM
0^*MAt<{f j
0 ^ '-J A M h 1
^ iN'iit* n 1
JUMAKbl
0 1 AMWh 1
(jhj Ankh 1
0 9 A P P h 1
1 a At-Rfci 1
1 7 APP8 1
^ 0 A f • P 8 1
X 7 A PK t 1
JOAHW^ |
JU APMH j
0 1 M A Y rt 1
0<+MAYai
(JM A Y ^ 1
0 M A Y y i
1 M 0 T n 1
J M fi V H 1
1 ^ A Yb 1
£*•'' A Y ^ 1
^n A Y ^ 1
^JMAYhl

*^H o y H t
i) ^ f.i ^ Y H 1
6 1 JUNHl
D2.JUNH 1
08 JUMP 1
1 OJUNH 1
1
: 1)8
:•!()

: 1 2
: ,' j
: '?

; U v
: i o
; 0*
:oti
; (j U,
: | it
103
: | ^
: 14
:u8
:10
:14
: '^

:uo

: 16
: 14
: 14
:o/
: 13
: lh
•'i1?
:17

: | u
I 1 4
:ov

• 0 9
: J<*

: f>o
:iJ2
: ' '

100
• 1 1
: 1 J

: j j
• ^ 0
; j ;>
:y3
: 1^


:0h
:55
• 43
; ^.LJ
: ^,u
:oo

: o o
: r>.o
• 20
:30
: 13

I 1 8
I ^6
!4S
:30
:3u
:25
:?0

1 10
:0-i
:no
: 1S

:<-4
: 19
:00
:40
|06

: 4u
• 35
;20

• 3*>
|30

lib
:0b
:n2
: ^ i
I 4 f
' b 0
• *« ^3
S57
: | s
• S^j
• 2 U
: ^y
••6s
' 1 ''
FLO
0. 1340
0.0407

0.068h
0. 1600
0.0021
0.0105
7.1100
0.0234
0.1100
0.0143
0.6200
0.0073
1.0200
0.4200
0.01 05
0.0021
0.0073
0.0143
0.0021
U .0 143
0. 1800
0.6600
0. 1300
0.023-4
0.0186
0.2900
0.6000
0.0186
0.4800
0.9100
0.5400
0.4100
0.0050
0.01B6
0.2600
0.4400
3.6000
U.0186
0.3600
1 .2200
0.2500
1 .8800
1 .1400
' 0*5800
0.0-<00
O.Olb*
0 .'«2(>0
0.4200
0 .6800
0 . 1^00
2 * 320 1>
0 • 0 2 H tf
0 .V200
COD
27.6
27.8
34.0
2.4

4l8
9.1
40.0
8.2
22.0
22.0
28.0
10.0
64.0
12.0
25.6
13.8
5.2
7.6
10.4
R.f,
32.0
5H.O
,
3.4
3.8
116.0
53.8
19.4
24.0
26.0
26.0
m
11.3
21.8
64.0
42.7
1 13.0
11.3
54.0
62.0
22.0
30.0
96.0
lb.0
ee.o
10.1
32.0
21* . 0
8fi . V
3T.9
73. a
?.. \
?f-. .0
TSS DBOD5 BODS DBOD20 BOD20
20
12
12
0
230
0
1
514
2
25
0
16
1
66
28
32
1
0
39
1
2
41
487
23
0
0
531
96
1
i?5
240
11
1
1
104
30
£*9^
i
b3
190
14
47
24b
40
158
2
38
1?
8f>
43
2 3b
0
2. VI
.0
.0
.0
.0 1
.0
.0
.5
.0
.0 2
.0
.5 1
.0
.5
.0
.0
.0 1
.0
.0
.0
.0
.4 3
.0
.0
.0
.5 2
.5
.0
.0
.0
•8
.0
.0
.0
.0 1
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
. 0
.0
. 0
.0
.0


9




5

0




1 6



0 5



9 3







8 3























_










6



0



6







7





















-------
                                                        .STATION SOLIDS  AND OWGANICS DATA
I
CTl
0^
"47
4'*rt
""Q
450
W
453
"54
455
"56
457
45H
""
OPS
"61
t*t^>'?
463
46"
"65
"66
t4 h /
46B
469
470
471
472
473
«1«
47S
476
"77
47H
479
"HO
".HI
" ^2
"HI
4 8 '••
" HS
" A6
'* M 7
" H f\
"89

"91
"9^
"93
444
SThMNO
1 6" . ii
1/1.0
1/2.0
»
l/o.O
1H3. 1
lbb.0
*
.
t"l'.u
2 IS.' U
STP-.^O
iM<».l'
C t? ^ • "
 • 0
,
'f>^^ , u
B
^
JOW.O
^
1 r^^ 1)
3 <2. (i

j r/!u
j i7.ll
3JV.li
.
1"4 . (1
B
,
.
39.1.
.
bO.u
*~3 1 • ('
b r' . i.t
TY^t
3
^
^
1
£
1
2
1
1
f
1
I fPF'
c
f>
'd
2
1
2
c
£
f>
i
i
£>
i
i1
i
i

\
d
d
i
x
P
d
i

i
i
i

i

S
<
T I 1
13JUNH1 ;21 ;"/

2 1 jUN'il : 1 9 : 5t*
22JIJN6, : 14:22
25JUNS] :20: ^0
29JI.H-JB1 : 14 : 15
04 JIILHI :oS!4/
1 3JUL81 : 1 3:40
2D JUL'' j : 14 : 35
24 v)U|_? j : 1 3: b2
2/JUL* J : 14: 3.3
TI 1
PiAiiuhO: 1^:30
1 6 AUijH (j : (1 2 : 49
1 "(AiiGt>() : Oo: 12
1 T»/.|>G6o:o7: 31
OM^tiHHO : 1 b : Ob
c'bSt"'-|o:Ot>:32 '
2t>ht MHO : Oo : 3?
c'bStH'ilJ : 1 U : Ob
2bSh PMO: 13: 08
29SLPbO! 13:00
n f-. o f r H o : 1 0 : 10
1 lOCTMo: 15:39
PODCTHO : 1 0 :50
2SOCTHO : 06 : 15
^/UCTho:ij!3?
ii JI-IOVHO : 0" : 30
('"i^OVHO : 0^- : 27
1 nMOv^O : 1 " : bo
1 /MOvbO : 1 b:41
2 /wOvhi) : i 6 : 20
"IDECBo: 1" :50
I1 d Ot t ^ H 0 : 1 v : 4 4
020LCbO : Pu ' 04
Utut (.fiO : 2 i : 1 2
OhutCbO : 6d: 30
OvDtCmi : 1 o: 05
1 oUtCHo : 1 o : 30

26 JADH j:i": 20
OHKtfiHl ! 10*21
O^H KHH1 : 13:50
I'y^fHbl :p3:00
2(>f {_>'.b\ : ov :"7
r'IF't etsl : Oo: 30
	 blA
FLO
1 .7100
0.6600
4. 1600
0.0143
olo045
1.2/00
7.0700
0.0143
0.0045
3:jjijj8
ol 1200
	 b T A
HO
1 .4"00
0^0400
0.3500

o!oo61
0.04D6
0.11/0
0.0406
0.0121
O.OOH9
0.0009
2.3600
0.0016
6.2000
O.OOH9
O.OObv
0.3"00
0.003d
0.9200
O."900
0.0158
0. 12 /b
0. J2BO
0. 1275
O.OOH9
0.3200
O.OOlb
O.OOld
0.0018
0.3000
0.0121
0.9000
0.2500
0.3000
COD
64.0
84.0
60. 0
14.5
,06.0
27l9
7ll
31. b
^H
hb^O
COO
45. b
29.4
212.0
""1.6
15.4

9
2& . G
28 • b
25 .4
'7.6
67. B
91.3
? d . 0
io.o
6.0
16.0
lb.0
2b.O
4.0
9.9
16.0
44.0
36.0
13. H
7".0
6.b
6.4
12. d
30.0
13.9
40.0
20.0
24.0
TSS DHOD5 BOD5 DB0020 BOD80
267
109
1 /4
^
114
§9
1 L L
64
lo^
,9l
TSS DHOD5 BOD5 DBOU20 BOD20
86.0
3209.0
1.32.0
bOd.O
34.0
"7b.O
O^tJ • 0
100. 0
32.0
144.0 3
3.0
47.0
10-0
164.0
2.0 6
1.5 1
159.0
2.5
11 7.0
27.0
0.0 L 1
74.0
74.0
27.0
3.0
4b.O
6.0
7.0
1 1 .0
59.0
9.6 3
240.0
34.0
4h.O








1




9 8
3




0 2









2 4
















7





4









9




-------
                                                       STATION  SOL 105 AND ONGANlCb UATA
I
O%
ro
OH<;
/.gs
4 JA
497
49^
4'V(i
500
501
SO ?
503
504
505
506
507
50H
504
510
511
51?
513
514
51S
516
517
5IH

520

522
523
524
525
526
527

529
530
531
5.32
5 S3

Of 5
535
53^
537
531
530
540
54 1
54?
SIKi-'NO
53. 1
f
,
H^ 0
91.0
95.0

9 'r 0
102.0
104.0
107.0

1 1 3 1 (I
1 17.11

12o!o
I2U.1
121.0

131 !l
135.U

1 4 -i '. 1 1
^
161.1
164.11
171.0
1 72.0

1 76. '.)
m
183.0
IH't.'J
1 f4S , 0
*

205lu
if Oo. U

2 is!.)
STP'-ti.O
2 76. 00
29'>. no
309.00
314.00
32^.00
ls"t . I! 1
3^S(.(j3
33^ .00
T,P>.
^
i
i
2
^
^
1
c
0 A^PH 1
^3APWM 1
? 7 A p P h 1
d 7APRB 1
j 0 A P P H 1
K) AMP-ci 1
0 1 M A Y H 1
II4MA Yhj
1 1 N* A Y n 1
| 5 ^ A Y T 1
1 >* M A Y H 1
t'9M« YH 1
OrUMNHl
10 J I ' N M 1
13JUN*1
20JIIM"!
21JHNH1
^t>J\ lf|M j


0 1* Jl 'L o 1
(I j JULH 1
04 JULHl
UJULbl
2oJIILn)
^4 JUL H 1
^S Jl IL M 1
^ 7 JljL f^ 1
09: 10
(4: 15
1 4 : 0 b
Ori! 1 -t
1.C40
1 J!29
lb!00
09 t 43
18:13-
1 7t4r>
1 0 | 0 7

2 11 Sill
03:32
i4:45
ov:35
^3:47
io:56
14:33
1 1 :?D
12:0o
13:45
2 1 • ?2
] <\ l ^.i.
1 *i : 1 ^
22iOU
15:23
2o:??
1^:20
^o : 4 1
1 4 : ? a
13:35
04:50
o s : 5 1
13:50
14:35
14 : 24
0 ?! 44
I 4 : 4 1
0 JAI 'OH 1 1 ^ : 00
T 1 1
020CIUO 16 4t,
^5')C 1^0 0 3 ^*0
(^4^|(^\/ °.0 I ^ ^9
()<>flO\; n 0 00 rf 7
1 7hOv;*0 i 6 03
P a ^ ( ) v H 0 u 7 0 fi
^4flOVclO 1^ -34
??KlOV(JO 14 1 i-
FLO
1 .3000
0.0350
0.0i!00
0.4QOO
0.4600
0 . 4 H 0 0
0.0200
0.5500
1 .0000
0.2200
0.2100
0.0200
1.1000
d.2700
0.0250
0.2600
0.3900
1 .1600
0.0121
2.5400
0 • c?** 0 0
0.0121
0.5600
0.0200
1 .0500
1 .3900
0.4100
1 .2200
0.0061
3.7100
O.OOB9
0.3000
0.5100
4.8200
0.0061
0.003M
0.5900
3.6700
0.0465
0.2600
FLU
0 ,?'d
0 . H
3B4.0
0.5 Z
0.5
543.0
351.0
332.0
2.0
71.0
88.0
150.0
25.0
2.0 1
466.0
44.0
7.0
36.0
126.0
410.0
4.0
93.0
104.0
4.0
55.0
6.0
560.0
562.0
1 14.0
iOl.O
4.0
369.0
13.0
125.0
101.0
22B.O
4.5 1
1.0
380.0
300.0
0.5
6 3









6 3






















6 3




*t









4






















4




127.0
TSS L»bOO5 BOU5 L)faO030 B0030
4.0
21.0 33 68
0.0
1 10.0
4.0
.
6.0
3.5

-------
                                                       STATION SOLIDS AND ORGANICS DATA
I
cn
CO
0^
543

^s

54*7
54 «

ssn
5SI
55?
SST
55*4
555
556
557
S5H
559
5*0
561
562
563

565
566
567
S''"
570
SM
57?
573
574
575
576
577
578
579
5 wo
5^* 1
Sft ?
5*3
5*'-.
si,".Nn
3 <. 4 . (.,
351 .U
J -, M . (j
~ 3 3 . (i
1 ^ • 0
I,,- . i,
'> U . U
-i 1 .0
"J j . 1 '
' i *•* . G
9 1 . (.'
•>•?. II
9*. (/
10". U
1 U 1 . (J
1 HI . o
1 <• 1 . (.
130.0
1 35.1'
1 lr .11
IV. .11

1 7J . ||
1 ">r' . II
Jf4.ll

2 1 r •'. u
2 1 v . 1.1
22 J.i)

2«jl 1
251.0

26 (J . 0
2/4.0
29) . i'
2 -< 6 . f i
29 M . 0
2 v-y U
3('ii . u
30S«. U
3 )':>.(,
TYPh
^
£
^
J?
^
^>
S
?
f
^
2

2

~ft
'^
2
2

'S
2
^
'[>
?
2

£
^>
^
^
p»
^
p
^
^
p
2

2

2
T I i
U9l)t'LMO : 12: 19
I 60K L ^ 0 : 04 : 0 /
^ 30F C H ij : 1 1 : OS
U 2^ 1 1' -M : u ^- : ^*4
(iwh i-rol : 12: jo
1 U F1- -il :oO:-5
I'.Kt.tHI : IS: 1 1
<^OF ttid 1:15: <:0
ri d 1 t b H j : j 3 : :> 0
30/'A^^i :u9:u9
o 1 AHKfj 1 : |5: 12
05APkb 1 : 16:^6
OS/APPH) : |0:48
l^ftr^dl : 1)5:22
1 /APCHl : 1 I : fb

0 1 f A Y « 1 : o H : 1 b
1 Of-'A YH 1 : 1 S : 3b
ISPAr-l : 12; iv

C3JIIN". 1 i^O :S7
04ju'-iii : i 7 : ul
20 H JNM i : o 0 : t?6
Ol JUL-il :0/: 10

Shj\iL* 1 : 1 6 :^9
0*£UO'Tl " 10-^4
((/AIJ(J&I :»^3:3*^
1 1 M.n.M : i^:54
jOAij'j'-j 1 : o7 :42
31A(ibdl : 1 1 : 19

1 5 S P. I-' 8 1 : l f > : '» u
17Sfc^A) :()**: in
0 1 (>C 1 8 1 : r" 1 : 1 4
IfM'CTfti : 1 /:3tj
23(-C IHI :o?:35
250CIol :14:5^-
jj-j/jfi^j ; j^:jv
27oCTHl :us:-*2
05hiOvvO :^3:54
n IDtL0. 1 : 1 1 : U4
	 bi
FLO
0.13
0.19
0.20
0.«7
0.22
0.46
0.30
0.21
0.2n
O.OH

Oll9
0.18

ol36
0.25

Ol32
0.7?
0.1 /
1.07
1.15
0 . 62
II. O/
1.39
1 .25

1.25
0.15
0.59

ol33
O.lb
0.31
0.10
0.20
0.05

ol35
0.58
0.14
COL)
60.0
6H.O
9
48.0
47.0
61.0
60.0
46.0
52.0
44.0
56.0
39.2
36.3
49.5
m
49.0
40.0
48.0
6? . J
41 .9
4ft. 0
60.0
59.7
/9.4
45.2
16.0
59.5
38.6
41 .4
80.5
47.1
40.4
66.5
77.4
72.7
86.8
42.4
19.3
25.4
27.4
60.6
25.6
TSS DB005 BOD5 OBOD20 BOD20
9.0
11.0
72.0
50.0 G 10
13.0
13.0 4
12.0
9.0
1 1 .0
6.0
68.0
10.0
1 1.0
13.0 2
14.0
28.0
4.0
6.0
39.0
10.0
11.0
25.0
91.0
45.0
55.0
8.0
17.0
32.0
.
14.0
11.0
10.0
2.5
4.0
30.0
113.0
69.0 4
0.5
5.5
10.0
24.0
b.O


0 G 16

? 10







0 5





















9 8







0

0







5





















9






-------
                                                        STATION SOLIDS AND 00KANICS DATA
Cn
0»S
5RS
SH6
5H7
S8^
Sh"4
590
59 1
592
593
544
SvS
S96
b97
598
599
600
601
602
6Q3
t>04
605
606
*>f) 7
•"••OH
604
6)0
61 1
612
613
614
MS

617

61 4

f>? 1
6 ??
•S23
624
6?^
626
627
621
624
^30
^> 3 1
STf
29^
299
f*4w
322
J2v
3««4
33
J«-l
so
51
:> 3
7 »jj
41
^5
4V
101
1 04
121
1 30
131

134
147
1<*6

ISO
1^2
154
1SS
Ibb
160
160
l'<3
1 HM
205

d \ ^
??J

£ jo
£^u
^ /M
^Vr>
 7
M
•
,
.
.
.
%
.
.
9
t
•
B
•
^
•
•

•
^
B
a
B
•
•

t
9
•
a
.
m
t
.
B
•

9
f
^
,
t
t
.
,
a
t
.
N(.»
1
(.
]
0
(,'
J
'
i
t
)
)
,
i
0
0
t)
0
0
0
c
^\
0
0
u
o
0
0
(1
0
('
0
ir
0
d
f
1
, i
u

D
u
(i
u
u
(i

ii
rr^K
d
c'
2
'd
^
2
2
^
c

2
2
d
^
2
2

^
^
p
^
2
2
d
d
2
2

2
2
2
2
2
d
2
2
2
d

d
f
'd
2
2
^>
^

T 1
1 >vH;THij
2 D ' i L r B (>
2 b 1 1 C T ^ 0
1 /M()y/nu
2 4 r j 0 v H ( )
l4Dt(!WO
Or'Kt t-H 1
( i ri J t h b 1
1 Vl* t~ h 8 1
2 0 h 1 1- 8 1
22"1 H MH I
} f»M/i. k8 1
0 i AKiV8 1
OS APP8 1
04AMP8I
1 lAkl'81
1 4 AF'Pti 1
(UMftYbl
10M*Y«1
1 1M/\Y81
] >^M6 Y h \
1 v M A ^ b 1
? 7 M A Y ^J 1
? rt M ^ Y 8 1
^f.'Arnl
3 0 M ^ Y H 1
OiJUMbl
03JUN81
04JllfJ81
HSJUNR i
0 ^ JLiMi3 1
13JIJMB1

'I J.IUI bl
24 JUI 8 1
2H Jill ti 1
OHOIIliB I
1 1 flliuc!!

1 5 ^ t (•' H 1
1 r'StP^l
010C.T81
2JUCT61
260(, T cl 1
Olllt f HI
1 4 f.) E C 8 1
231JK C^ 1

!-,
03
^4
^
Q
J
06
1 1
? j
ff
? ^
| ^
Iri
16

0
OS
OH
21

PQ
1 J
1 4
J
t.
1

4
7

j J
?<^
1 J

14

0 ~>
1 ^
so
It,
0^»
^ J
oy
i
o ^
it>
Ob

:?S
; ^f*
I U 3
: an
: pb
: i*^
:25
: .*4
: 1 1^
: «9
: 4^
: 4 S
:30
: 39
: <-)'£
: 1 H
:32
:07
= 38
: 1 5
:32
: 47
: S3
• 02
: ^t-
: 10

: ^s
:o6
: 40
: ?4
: 45
: 10
: /^S
: 30

• 35
• 5 2
: 25
: 45
: 11
:IJH

: 26
: 2H
: 20
:(>!

0
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
u
0
0
0
0
0
0
0
p

0
0
1
0
0
j
0
1
0
0
0
0
0
0
	 ri i
FLO
.34000
.60000
.S^OOO
.84000
. 24 000
. ? H 7 77
.49000
.SbOUO
.55000
.3SOOO
.43000
• c? 7 s^y
.06000
.66000
• 4bOOO
.77000

143000

.' 16399

123000
.36000
.24000
.30000
.23000
.^9000
.94000
.39000
. 15699
• df 1 S 1 ?
.5/000
.He889
. <4 1* 7 (^ H
.06892
.03000
• f \ *+ 2^
. 15300
.66667
.57000
.20370
.37267
. 16000
.64000
. 160UO
. 34000
. 18S98
UK 1 U --
COO
62.3
^6.0
54.0
22.0
8.0
60.0
60.0
72.0
80.0
40.0
56.0
17.6
70.0
68.6
56.4
37.6
37.6
32.0
40.0
.
33.9
23.8
97.4
37.8
45.7
28.0
21.9
44.0
52.0
40.0
4fi.O
48.0
V4.9
1H.2
100.0
56.0
30.4
2?. 3
17.4
21.2
23.1
y^> , 4
27.1
24.6
50.6
21.9

T5S DBOD5 BOOS DBOD30 BOD30
45.0
19.0 2
42.0
18.0
68.0
33.0
145.0 G 10
49.0
37.0
34.0
21.0
44.0
23b.O
14«,0
80.0
90.0
flO.O
55.0
6/.0
43.0
12.0
14.0
52.0
22.0
12.0
1 1.0
5.0
119.0
87.0
17.0
13.0
47.0
86.0
36.0 2
12.0
1 76.0
32.0
43.0
34.0
15.5
14.0
74.0
66.0
15.0
37.0
24.0
56.0
5 6




0 G 18






















6 4












5




0






















7













-------
                                                           STATION SOLIUS  AND OUbANICS UATA
CT>
CJ1
o-;s
63?
633
6 )'•
6 )5
636
637
63H
630
641.1
6<« 1
64?
643
f>*4 t\
645

647
64R
649
650
6S1
65?
653
654
6SS
6S^
657
65*
659
660
661
66?
663
664
6oS
66*
667
6*)H
669
670
671
67?
673
674
67S
67*
677
* 7 H
^ 79
Sl'<
277
277
277
27 7
f'*-i '<*
t^i (*
f>^f.
???

^Ly^
f^£
?.*>'<>
r"-*^
29^
3(H
32 v

J 3 f
$44
"33

10 7
1 JO
13)
1 3'--

1 '* (i
[ 4'<
i 4 t
150

155
Ib7
III

iH.i

^{jiy
(•* J H
219

27-'»
s w
33'^

f-_i /
!NC
.00
.(.'('

.01'
• 0 U
. 0 0
.00
. 00
.00
. 00
.00
.00
.00
. 'J U
.0(1
. Ou
.01

.06
.("J
.00

. 0 0
.1)0
. 1)11
. I! \j
. o o
1 1 (l
.10
.00
.00

.00
.no
.00
. 0 li
.00
.00
.00
. 10
• (i 0
.00
»0(i
• It (I
.00
. 00
. " ('
• ft t)
1 Y^f
f
£
f
s
(*
ff.
£>
f*
f.
£
£>
t'
f.

t
f*
£
f>
'f>
ft
/
£
{

f>
s
f>
f>
(>
d
f>
t
f*
f>
2

^
£
d.
d

f
,->
f
2
t-

1 1
OJC'CTr.O
(i jin 7^0
i) M'l IPO
0 H'<. IMI
1HGCIHO
IhdCTtM)
MOCThO
IHUCTHO
1 H 0 (.' 1 H 0
1 HOC T ^ ('
1 HI /C T H 0
1 HI.'CTHO
1 *J0( T ^ 0
1 >)(><. TUfi
^ni fjjd
(lu Ml l VH 0
^^TtO V8 0
2.4Ni>vbO
/ 7 r j o v ^ o
O^DKC«0
02f Krtal

j 1 AI-H'M 1
1 DMA Y« 1
1 1 M A f r< 1
1 rt I- A r o 1
| tyM fl y H 1
^ f< r-* A / h 1
^ H N> A If rt j
^ 9 M A Y cl 1
3 (1 M A Y b 1
01JIINH1
04JMMM1
'1 6 Jl IllH 1
2(l'jUN"!
d~i JUNb 1
02 JliLH 1
UJ.H'LO 1
2H JUL6 1
0 ^i A 1 lOH 1
0 77IJ()H 1
1 S S \ P tt 1
0 1 i'C 1 H 1
d. *' 'C T ^ 1
0 1 Of CH 1
i4i;e"c."i

1
: 10
: 1 1
: 1 •'
i 1 J
: oo
: os
:o9

: u'<

: 1 0
: ii
: 0
: 1
: J4
: 'd
; 0
: 22
• f "p
: f <•
: 1/6
: 10
: 10
:c\
' \ d
:21

: n6
: i 5
: 14
; ^2
"15
III
: o 1
120
* 1 ^
: IS

: 1 5
: i d
'• 2 J
: 7
: ^3
: i 1
: 1 1
: 1 f


: IS
: 1 3
: Of}
:03
t S*+
:0b
:17

• 3v
: ^, j
; j)^
:?J
• '* £
: 10

\ ^«f>
• 3^i
: OS
• 'f t)
: lo
:57
: 5 1
157
:S2
:39
: 1 h
i ?0
:26

:36
1 00
• so
; i+t+
:3J

; Q^J
:?;*

: 3b
: 0^
; <# 7
j3J

; S^>
: 4 *3
: 
-------
                                                        STATION SOLIDS AND ORGANICS  DATA
I
cn
CTt
	 S 1 A=31UK I t) 	
OKS
*«()
*f> i
f>^2
^P. 3
t H<»
t>H t>
^ Hfi
6*7
6fltt
£90
f-9 1
^ 92
^ Q3
6^^
f~9b
£'°h
(-97
' > ' ' Ai
t-.'1't
7no
7"!
7 "2
7".'!
7t>^
7 0 1^
7 .'i V
70rt
7ns»
710
711
71 i
1 J
71*.
71S
71b
71 7
7 If
71 V
72(1
7? 1
722
/ ? 3
72'.
72'j
7 2n
727
72H.
721*
7 30
731

73 j
SlHWJO
^'->9.ll
f1 9 "-1 . 0
2v^ . II
2 ;j u • 0
d. ••<'<. 0
2 *•* v . u
2 ~t ^ • U
29V. 0
2'J9 . I)
244. 0
299. i
299 . 1
2 '-* 9 . j
299 . 1
2'»-*. 1
,TV-». 1

2v v! 1
21';'. 1

2-»•->; i
.}<«.> . 0
^1.0
i ;* . o
.H9 . 0
b u . o
bl .0
'Dr* . U
•-. 3 . o
'->') . u
'^':> • u
V S . "1
^ V . 1!
^9.0
l-*^ • (1
9'y * 0
(.'1.0
(i 1 . 0
II 1 .0
'i 1 . (J
' ' ^ • (J
i)2. (I
02.0
f'2i (I
02. U
10 2 . U
Ids. H
102.0

rvpt
^.
f
c
'f>
c
£
2
^
2
2
2
?
2
2
2
?
2
^
J:
£
f
2
£
2
d.
d.
2
2
2
2
a
'd
£
'/
f>
^
^
?

d
2
2
2

2

~fi
2

c
d
Til
2^ocr^ j : 02 = 5''
2!''.M"l HII : 03: i s)
t-'-dCTHo: 03:43
2bO( T ^0 I 04 : 29
2SOC1HU! OS: I 1
2 bOC FH(i:uS:37
2bCH. t ^ ti : o^> • i) 1
2bOC 1 HO : Of' : 24
2bO(;Tni):o7: l l
cbOCTHoil'nibJ
2buc T HO : 1 1 : 2H
2b"OCTHijJl2:oi
2bUCTHO! 13^b2
2SUCT >io : 1 4 : 36
2b(K. THO : l 4 : bS
2SOC1 P.O : 1?: ib
 : o3
2boC T HO : 1 '/ : 2n
2bOCTtiu« lfS:4_1
2~)OL I bO : 1 7 : 06
2U'OC 1 Ho : 1 7 : 2t>
2^')CTHo: j 7 :so
c'Vnct nu : 1 'i:o9
09L)tf^HO»l2»bl
^IJ^hi^l : 10»4J
0 f' f t. H h 1 :6b!btl
Off t hul : 10 :^7
19KtfH| "22»b6
c^Oft.h'il :^^:**7
21FKHH1 : Ib:n9
22Ft b^l : 12=40
OiAH-H 1 : 1 7 : 00
Oso-r-m : JH: l l

( ; i-i A L" r-* ^ 1 I 10-36
f»*v A pP H | I | III) 7
0<,.U'Pr> 1 : 1 1 iml

1 1 AtJ|/'< 1 : OQ ! b9
1 I API^M 1 ! 1 0 ! e. 0
1 ] A^t'^1 ! l(i!bO
1 1 Ai>ivM i : i i : 2 7
12AI-.-M : p..: 1 1
12/^1^1 1: 19:32
12tHPH.i : l^i^s
I 2 A (J P H 1 ! 2 0 ! 17
1 ^ A i- P >) | : rt ( i : '-> i
l^At-'PMi :2()"b'-*
1 ^AkkH 1 : 20 !bM
l/'ut-'kHl :21 :o7
1 ^At-'t-'H 1 : 2 1 :22
FLO
0.16
O.Oy
0.16
0.16
0. 16
O.OH
O.Od
0.16
0.05
o.oj
o.oi
0.03
0.12
0.03
O.Orf
0.22
0.12
0.0«
0.12
0.12
O.Oo
0.22
0.08
0.12
0.12
0.59

2^23
O.b2
O.H5
O.b.1
0.04
O.H7
0 . JJ
0.33
0 • M4
0.3J
0 . 7b
1 .00
O.bO

0 . 2S
0. 79
1 • 0^»
0 . 2b
0 . 7S

iloo
0.21

** . 6^
J . 34
1 • 25
0.96
COD
20«.0
60.0
24.0
24.0
34.0
16.0
20.0
12.0
22.0
12.0 ,
2J.4
23.7
23.3
32.0
52.0
64.0
76.0
120.0
H6.0
56.0
bO.O
60.0
24.0
23.4
23.3
44.0
9
76.0
63.0
40.0
36.0
56.0
40.0
20 . 0
56.3
29.4
21 .6
.
,
^
.
,
.
m
»
^
.
^
w
MS. 5
^
J3.a
24.8
37.8
TSS OBOD5 BOOS DBOD20 BOD20
42
46
14
14
26
10
6
2
12
itf
16
6
36
10
4
8
6
6
IB
16
4
8
if
36
H04
604 G
171
149 ,
64 L
21
55
-> ~r
2 (
72
16
45
39
?4
13
65
4S
V^
18
tf 3 7
100
60
?0

175
120
49
2J
























G 17




GC
J











































0


























-------
SOI. I'JS AND  OWOANICS DATA
ons
7 34
735
73*>
737
73*
73=)
74(1
74 1
742
74 3
74U
745
74*.
74 7
74 M
7 4 9
750
751
752
7^ 3
7^4
755
7Sh
757
75*
759
7MI
7M
7^2
7*- 3
7*.4
7*5
7**>
7*7
7hH
769
770
77 1
772
773

775
776
777
SfK-NO
Iu2.0
1 1'2 • i'
1-12 .(,
I 'i2. ('
1 I* 2 • ('
1 1'2 . U
1 Of . U
1 1*2 . ii
1 !)2.(l
1 OJ.n
113.1.
113.1.
113.1
121 . ii
130.1.
1 M .11
1 .'b.il
1 'Ui. ii
1.19.C,
] <4 H . (,
1^2."
1 54 . n
r^.n
1 M . u
!<-.<.. U

1-2! 1

209.0
f)9 • 1
21^."
22 U i'
223.1,
2?7.r,

(-43 . ':
2-; 1 • tl
2SH . ]
274 .o
29 1 .|i
296 . (1
29d . 0
.11)9 . 1;
335 . H
T>K. Til
2 12*1-1^
2 1 f*H-H w
f*
2
f»
£
J
I
£
£l
c.
{>
d

c
'<>
e.
2
/
^ rt r- P f
*fttM*M
3 i> I 'h* M
,1 r. (•• w *
3 UMH f^
Jil^r* ^
J A > • »• H
1 »'. f - f (i
^ jdKt'fc
1 1 Af- r1 c?
j AH^H
M ^ A Y e
0 *» *'' f 0
1 v a ,• M
^KAYo
MfUi Y^
v-id y M I
S ^r.MA fhl
r> I 1 Jtlf-Hl
/? fi.l JUMM |
c' Ub jL'f''^3 1
e \ UJlH-if 1

t 0 1 JtU.'dl
^ OlJUl HI
^ i'njiH HI
,-> ^^. M tL b 1
^ <^ M j 1 1 L 6 1
> ()t>^l M:H 1
^ O'.jAuO^ 1
^ 1 1 «l 't;^ 1
^ i^flnf-Hi
/ J 0 A t J fi H 1
f.' j 1 A 1 j ( i c1 1
p i b s h H* d 1
f1 \ *~> ^ L ^ ."* 1
£T 010CTBI
^ 1 HO( TbI
^ ^.iOCTftl

c* (|'D|-JU\/H I
S 0 1 Mr CM 1
21 :
2^:
2 1 •
?~< :
Oi> :
00 :
01 :

(i /:
-lu:

s | ;
> j :
1 o:

if*
if •

i r* *
12:
1 7:
21 :
Ou:
02:
22 =
I'jj

1 M I
1 1 :
1 •*:
10:
00 :
IH:
20 :

(14 :
1 j:

21 :
1 7:
07:

2j:


39
15
1 ^
ub
0 0
?H
bH
6 4
S/1*
'l 7
S )
fif~.
'Sh
?3

f) V
10
'•*£*
? '?
OM
1 "^
'*n
?o
^* 1
**^
3^
10
1 1>
t>3
? 3
i ^
^ 1
b^*
j^^,
23
02
u 0
^fj
10

!pfl
^6
05
32
FLO
0. 7bOOO
0.50000
0.4t^000
1 .50000
0 • VfSo n 0
0.2100 II
0.21000
O.f 1000
o.o^ooo
0.2*000
1 .04000
1 .04000
0. 79000
1 . 12000
0.91000
0.40000
0. 190bO
0.17000
0 . 290 00
0.405oO
0. 7r>000
1 . 70000
1 .42000
0.55000

0 I 2 1 0 0 0
0.06000
3.9MOOO
0.^7000
0.42000
0.39000
0.26000
0. '7^000
0.57000
0. 78000
0.4'. 000
0. 3bOOO
0.4^000
0.29000
1 .30000
0.32000
0.4SOOO
0 . f 9 762
0. JbOOO
llJKlb --
COD
.
.

21.9
25 . rt
.
.
.
.
6?.0
72.7
64.6
32.3

h5.5
33. H
46.1
56.0
32.0
112.0

44 .0
44 . 0
32.0
44.0
95.3
43.7
63.5
119.0

2«l5
22.3
2B.2
29.6
47.1
33.4
42.3
30. B
51.1
131 .0
29.0
31 .0
5h . 6
.
T5S DB005 8005 DBOD20 BOD20
11.
12.
B.
B.
9.

2!
2.
2.
70.
1 10.
137.

221
16b.
24 .
102.
20.
6.
75.
26.
67.
18.
23.
33.
162.
28.

152!
32.
10.
6.
23.
33.
7.
17.
19.
75.
2^* •
102.
61.
21.
58.
25.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o
o
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0 5
o
o
5







































9 10










































6




-------
                                                        STATION SULIUS AND  GHGANICS DATA
O>
00
OPS ST.*MI:0 TYPF.
77« ??(- p 2
774
7 c* o
781
7W2
7 «3
7 H u
7HS
78^
7H7
7H8 3 1
7 (j Q ' j «-4
HOI) nj
Hfll
H I1. 2
rUi 3 7 >
Hi)"
Hc'^ ^^»
H 0 *• 91
•107

H04 101
H 1 0 lU1'
Mil 1 li '
H12
* n 1 1 1
8)4
ril1^ 1 1 1<
HI>- |?i
M17

H i 9
•^20 m
H 2 1 1 i '-*
'i22
H2 3 1 ' ^
"24 1'j'y

Ht>t\
H27 151

^29 1^7
H 10
831 Ibl
1
1
1
1

1
1
1
1
U 2
o 2
1
1
1
1
1
1
1
i. 2
1 i-
('• 2
; j ^
i
1
1. 2
1
U ^
o 2
1
l' 2
0 2
o 2
u 2
1
l. 2
1
'i ?
.£•

0 2
1

u 2
1
f i ^
ii f
u 2
1
M 2

ii 2
1
o <•
TT
l^ftilb-M)
IbShkMii
/"V '->[. ** *~ 0
^ VSfc VoO
()K()(_ |^(|
^iioc i MI
2 / 1 ' c r >^ o
031 'OVPH
1 Or;v)v '"0
1 /Nil V 80
1 /NUvHf)
^^^j^^' K0
OIDLC&O
0 8 1 ) t L H 0
1 SUE C80
2 2 0 1 C "s 0
1 2 J A i j *- 1
^ r> j A t j H [
09F tr'H 1
c> 1 1 F f h tA j
/ ' ) F F M K 1
2 J ^ E. f> ^ 1
f) i. M A -V M |
0 9 M i w >1 1
1 »> M A r '-j I
J f^l-./'iKM J
2J'-''.»'H 1
30'^ AKH 1
0 1 APP^ 1
(1 ^i A ^ k >3 )
(ju/1, i-vh |
1 1 APhrl j
1 4 MJ k h 1
1 / A f' w f{ 1
^- (i A V k h 1
2 j/MJKrt 1
2 7 A(-*Kf? i
() 1 M « f H 1
OuMAYnl
Kii^ArP]
1 1 MA YM I
] 1 M A Y (* 1
1 S r« M f M 1
1 1>.^ ry l
1><"AYM)
1 wt-fl yi< l
p^-il^^ Y M 1
01 Jt'MH]
0^ Jl IN'* 1
O.IJIINH I
(1 S It IMh 1
IliriJUM"!
1 Ci JllNy 1
1
: ] «
: ^
1 l'J

: l.i
}'^
j
: n

: O -)
• 1 *~-
: oe>
: o9
: 1J

: Q9
: 3
: fi
: 0
: 1
: 3
: 0
: 1
: 1
: li
: 3

i 04
• 1 /
: 10
t 10
: 10

: 11
: in
;] 1

: 10
: n 9
» 1 ^
:'"

• 1 e*
: o^
i r1 c
: is

: 11
: 04
• 's?
• u 1
: 1 1


:Ud
: .-» H
: ij-,
: ^o
: JO
:15
: I0

; ,>()
• tb
:37
14 7
: )(j
i JO
:00
: <,s
too

: ^^,
• \ ')
' JH
I u c1
: 1 7

: o o
: it*?
: jO
:o3
:<*'

t S9
t 3b
: 17
t 31
:SO
• b 1
: 4Q
: ***+
' b^
: JO
:oo
• 4fc
! 39
: JS
• J^l
• (| 4
* «.* *3
too
: ^(j
« i'i j
• /^^.
: '45

FLO
1 .^50
o'.ous
O.OOb
o.oos
o.oos
O.OOb
o.oos
0 . I) 1 0
0.010
0.010

1.220
0.010
0.010
0.010
O.OOb
O.OOb
0 .005
O.OOb
0.440
0.^90
0.7
-------
                                                         STrtllON  SOLIDS  AND (WGANICS DATA
10
OH< SI,,
83? 1^.-,
H33 1 7 1
834 1 7 r
a35 i»<:
1,0 ,VPt
£
'/
^
t?
T I 1
1 JJMijfil
/> (i Jl i) JM j
^" w ) 1 1 f^j ^ j
n^jUL-i]
^ "i^1 1 r S ^ U^*'UL**1
d37 ?.;il
8^8 .
^
1
^0 JUL'i 1
^ 7 Jl JL 8 )
rt34 31. V ^ 3t-JUL.Hl
84I> 3 1 ^ 3 OoA'JOH 1
841 331
84?
84 1
^
1
1
Od fi Ut.»^ J
1 0 **'• JUrt 1
^t* Al H'H j
fl44 c^? 3 30/1tl(.Hl
845 351
2
846 <^b8 3
H47
1
84 H 37<4 £
M/.Q ' .
-«l-,M ,
. . - 1 ^t--
. i -> - c." J *-
-, • i ' ' ' ' "
-' >-
C,C^ » 1 •
.1 - .*
rt^7
8^^
M1^1-)
H*0 3 >
HM
01-'^ STU>-
Hf-? 363
8f.3 3*3
"£s '?<£
8f>^ 3^il>
8 *• 7 343
H'iM f''/-'
8-: ) 3'J3
8/'1 cOr
•^'1 £'Vr-
•> f ? .") > --

/-i 7 ;, 3 -, H.
M 7fi XI
M7ri I t
r) 77 .t'?
>J 7 H -. ^
874 -jli
1
1
f
S
s
1
c
1
1
1
1
^
I
no im
l'. 3
(.' 3
I/ 3
d 3
i.i 3
u  ? F. *-* H 1
? i ^ t ^ ^ i
U10C ^1
OSUC >r. 1
li-OC ^
IrnC ^1
0
Of : 13
15:44
17:37
13:3^
31:57
1 1 :45
13:15
1 7 : r> 7
10: i3
17: U
1 0 : 1 1
ol : *4
1 u : 1 0
10: 10
0 4 t J b>
04 !5H
10133
10:10
Til
it-st^'bo :O.T: oo
1 HC.f. i^go :ofe:35
IHSt^ho: io:3o
31 '-E'HHi1 : 1S» :53
31SFi'^oi3l 104
IHiCl Sn :?o: 1 0
IMiCIMii :23: 03
ivuc "0:01:34
1 V i ( C ^ 0 • li ^ • (J *D
ll»nC IK;: 13:37
c- Xt-!ov Jo : 1 •-•: J4
0 vl 't L ': 0 : 13: j«*
3 fi''fcC L0 : 04 : HO
3l jAii^l :ij'4 : 33
U 3 1" t r. f * l :o^:t*o
0«Kt»» I : 1 (i : av
1 1 K h n M l : o <* : r> 3
1 vl- 1 hfc 1 :33 : .1 7
	 i> 1 f
M.O
0.300
0.140
0. 140
O.HOO
1 . 700
0.4rlO
0.005
0.370
o .340
0.180
0.000
0.000
0.510
0.140
0.350
0.005
u. 150
0.005
0.005
0.310
0.360
0.350
0.005
0.140
0.005
0.005
0.005
0.005
0. 140
0.005
L T *
KLO
0.11
0.0?
0.04
0.03
0.03

o!l7
0.05
0.03
0.00
0.15
0.07
0.17
0.03

oll'b
0. In
O.Ott
>=DlUKIb -
COD
30.0
35. H
54.5

**^V • 1
?tt . 0
7U. 1
S^.b
40.6
.
^
46.1
3H 7
57.7
43.3
40.0
53. 1
34.5
43.3
61.7
53. 1
27.1
3?. 3
34.3
17.4
16.0
13.5
13.3

11.^
COO
41 14
Hblb
53.6
60.0
48.0
54.0
34.0
30.0
34.0
73.0
4b . 0
44.0
40.0
46.0
88.0
3b.O
TSS DBOD5 B005 UB0030 B0020
10.0
1^.0
30.0
31.0
1"4.0
75.0
3H.O
36.0
14.0
7.0
13.0
6.0
1 1.0
33.0
1U.O
17.5
30.0
13.5
13.5
18.0
30.5
10.0
1.0
3.0
1 .0
1.0
3.5
0.5
5.0
- 0.5
























}
































TSS DBOOS BOOS OBOD20 BOD20
37lo
26.0
68.0
5.0
lb.0
17.0
13.0
4.0
10.0
111.0

5!6
10.0
Vb.O 5
lb.0
310.0 3
51 .0












6 G 10

6 9













0

6


-------
                                                       STATION SOLIDS ANO O^GANICS DATA
m

--j
o
fV<; bTivMiJl) 1 Yl-'t T I 1
HHO VI. i) 2 23KEl->w|
HH] 7S
H^ ,-•*
HHT -<^
M.°4 -<-J
3^'- (12
H'"> U'*
HK7 (i/
HuP 1 1
•^4 /n
r^O /I
H41 .10
H42 < |
14"* .r>
>(<*.. n
M4S "i.-'.
dv1-- j >
4M7 <.n
*<•!» •_,,'
h^4 t- 1
4OO •-,.«
r-»oi n
4(i? 1',
401 r.'»
'illi. 2 02
4^S tTij-j
411*- «•() /
•t ( . 7 ^ 1 >
90" ^ 1 rt
404 ^ ^ 1
410 2'. 2
-<11 ?-j
•~>\7 J^L
411 2';.1
•3|4 2r.il
91^ 2/i,
g 1 A / / 1
4)7 2'y>
'•>!'' 24ri
4|H 2 ',4
420 .tl)4
4?) JJb
422 33r
. (I d IhMAr'^l
.11 2 30MAKMJ
1) ^ (IbAPKnl
•1 / fi4aPKHJ
. i) 2 12APH^1
. 0 {. 14APP8I
0 2 ^flh'WHl
J 2 23AP*'M
. 0 2 .HlAPKrll
. 0 2 01 '-AY Ml
I) 2 lO'-'AYHl
,11 f' 1 1MAYH)
U f ISfAYMJ
. 1 2 IbMAfrJl
0 2 lir.l-'AYdl
0 f. l4KAYel
U 2 2fa*'Ai:J, 1
U ^ OlJIMf-1
0 ^ 10JUII", 1
t) 2 1 JJIIN^j
(J <: t'OJl.iNMl
0 2 25.ii.l'i"l
0 2 (IJJULH1
'1 2 ^UMLMl
0 S. £-4j(JLHl
0 2 263111^1
0 ^ 03AI)u->l
( 2 Oh/.U(.«l
I 2 lla'Jb-U
1 2 1(1 A III, M[
i 2 JlAU'^l
1 ^ (IH^ti-M)
0 2 1 s ^ i- ^ M 1
0 2 17SLP.^1
0 '•> (1^\L''*\
It 2 UhllCIHl
0 2 2:U)Clh|
U 2 250CIH1
0 2 26iiCThl
0 { (iDMOV>il
II 2 fJllJt(,«l
n 2 04l;f-:CHl
11 :'
13:<
	 bi«=aiUKi / 	 	 	
H.O COD TSS DBOD5 BODS OBOD30 BOD20
*5 0.25
•"i O.OH 21.6 11.5
07:43 0.17 76.0 22b.O
17:
1 1 :
14:1
17:-
10:'
20:'
10 :
1 0 :
35 0.36 41.9 25.0
<4 0.24 3?. 2 lri.0
i<» 0.11 26.0 122.0
>•> O.OH 16.0 11.0
34 0.07 IP. 2 7.0
*2 0.32 36.7 10.0
36 0.06 40.0 tt.O
31 O.lh 2H.O 34.0
15: IS 0.17 34.0 37.0
1 '("•'
-J4 0.20 26.1 30.0
12:12 H.54 lb.8 50.0
1 4 : <• 7 0.11 1 4 . h 77.0
1?:01 d.ob 7.4 2.0
14:
O1^:
13:
u4 : ,
iHti
oil :
IH 0.06 ^.5 3.0
9 0.15 45.9 72.0
6 0.22 16.0 7.0
•6 O.ld 32.0 49.0
»2 0.0» 44.0 28.0
j«^ 0.2b 88.0 192.0
2dt21 0.4l 47.6 222.6
Ob:bo 0.07 30.3 8.0
15:30 0.14 47.6 56.0
1*:02 0.31 15.9 20.0
14! 46 (1.12 25.9 8.0
15:23 0.23 51.6 1.0
13!uu 0.01 26.8 1.0
ti\
4 0.34 ?8.3 53.0
H 0.24 47.1 29.0
11:57 0.33 25.6 69.0
14:117 0.11 . 5.0
17:52 0.21 22.6 14.0
2 !i : '
•4 0.12 20.6 lb.0
14:^1 0.17 J£T.7 40.0
1 1 :
1-:
20:.
12:
Jrt 0.10 32.7 31.0
b 0.13 23.2 10.5
33 0.06 4.7 3.0
13 0.17 20.7 3b.O
21:05 0.2t> 40. H 105.0
ll:y-3 0.12 (?«*.0 H.O
IH:[
52 0.09 62.1 3.3















































































-------
STATION  SOLIUS AND  ORCiANICS  DATA
O><'_> STr'X.'jG
y?3 iV 0
Q? | ^* ) o
Q?^ I j'> il
9? / 1 OM U
*/?rt 1 o / U
4?9 r"r " (:
*•* ~*0 r •-**-« 1
(.''••I- SlhMMU
9)1 :, I u
l< 1? •» 1
')Tj bJ
1 > 1 *'* o l
•Ob /:•>
^ T •••> Hi.
*-v l f '"T.
CT,% -y^
^O'v 101
^ <+ u 1 0 j
°<* 1 I I .1
*•* '* ? \ £ \
^'« 3 IJu
')4i+ I }t>
^*»S 1 i'.
^ A fc 1 u c
^ '•* 7 1 b u
*•> 6 (1 | *i i*
V'.4 171
" "> 0 1 ' f^
*-*S 1 1 H J
*tc; -j ^{j -.^
'»S'+ ^0'-«
QC;S -* 1 :-
u r • *"* /^ r' 1 1
ot"» 7 ^ /^ ^
vS,, ^-^,
4*>u ^-^^
^''-l ,-rv,
v'^

u
ii
•j
u
ll
TYI-F 111
e. OhF c hH 1 : 1 3
? 2 .'F 't ' N« b Y H 1
? r'^MAY^l
30MOYP1
i l.UtlMhl
f-* 20 JUUH 1
2 2b JUMH 1
? ^ijul."!
«-* e*** Ji M ** 1
^ ?cUUL«l
^ (if" A(.K j y j
^ I) M Al if- K |
^ 1 1 *Mu>r
r ISAUS^
^ lSSt>h
,-> t V *•> t L' ^ 1
r |r(»CTHl
£ 1
? o^rjoy^ i
00

-l.f"'

/.
t\ (j
1 V
p
1
fl
/I

7
3
? \
ov
?"3
1 V
U'S
07
on
PQ
in

0 ^
Lt
t\
17
Ib
^ 0
£
00

:SS
: ^7
• 0**
• bb
• 4V
• 11
• 2b
: 10

:u7
:i)7
:-4()
: (iO
: 1-5
I "->'J
: 'f>()
l U^
; J^
:S7
: 31

: f>^
:o>
: i+P.
: ^5
; | tj
• Oi!
: 33
:b3
:S3

: ^^
• 02
• ?2
• 2 7
: J'*
:3«.
: 3s.
: 1 1
:3^
:34
FLd
0.07

o!<«i
0.06
0.20

o!ob
0.07
FLO
U.0r)4
0.03?
O.Obl
0.03?
0.017
0 . 0 ?4
U . 0 3<*
O.Ofc?

0^014
0.0b2
0.117
0.027
0.04b
0.032
0.010
0.017
O.Obl
0.01?
0.029
0.01H
0.005
0.007
0.0b4
0.031
0.020

0.022
o!ns
0.00?
0.004
0.033
0.069
0.016
1UK14 --
COD
m
48. 0
51.7
92.0
72.0
60.0
75.4
f. C~ u
coo
b<-.0
34.0
26.0

?s. s
3^.6
cb.S
ltt.0
IB. 2
10.1
3(^.0
16.0

?6. 1
4.0
25 . 9
21.9
n.o
19.9
7.0
f9l9
24.0
14.0
21 .6
6.1
3.H
37.8
H!H
21 .6
*»B • ^
'5:2
JO.?
TSS OHOU5 BOD5 DB0020 BOD20
76
19
J3
jfj
1 17
25
129
18
ISS 08005 BOD5 DB0020 B0020
b.O
1.0
3.0
3.0 1
2.0
d.O
0.0
1 .0
3.0
0.0
9!o
1.0
2.0
0.0
3.0
9.0
1.0
1 .0
b.O
1.0
1.0
4.0
4.0
1.0
1.5
1.0
1.0
?Io
1.0
^ • S
O.b
4.5
4.0


9 3





5 3























9





8






















-------
                                                       MA! ION  SOLIDS  AND ORGANIC5 DATA
ro
ons srw,-;!-iU
9^6 e?"
l)Ay r'O"1
Vf.n t'/i
^^9 t / V
^ 7 U <•" -> 1
971 ^S*n
97^ ^ ^ ( v
473 ,,g^
"J7'! jll'-*
"7b j i^>
rr^-^ Til
2 ^^(.ppj
2 22SMj^l
2 I1 1 dC 1 w 1
«.' Of?UCTU
f- \l\OL\ H \
2 2 KM. Tn 1
2 ^SOt! T H 1
P crOLl H 1
/ nm-nn-nl
^ UlUtCMI
hLO COO TSS DBOD5 BODS 080020 80020
17:"1 4.11 46.2 32
1-
1
It
If
);yf, 15.56 S4.0 114
7:13 11.25 49.2 27
J:56 15.18 66.4 M
^.'15 2.25 82.9 32
09:49 3.75 4S.9 3b
1'
4:54 0.^4 26.5 12
12:12 9.63 29.2 176
t>
: nit 4.4« 53.3 78
10:^4 1.20 t^.8 39


















47»> i.  0.0^-y 17.0 4.5
:>H U . 02b 14.0 3.5
It- 0.014 1 0 . H 2.5
-)J G.'ttO 40.1 173.0
bb 0.01V 9.1 0.5
J5 0.035 12.0 1.0
.in o.OcJ 12.5 4.0
JO 0.023 11.6 1.5
<«b 0.014 13.3 3.5
sb 0.011 10.9 1.0






2 3









5




-------
                                                                    SI MI ON  MtTAUS  DAU-
 I
^J
CO
I




















































MS • S'lNl
< 'f
'44 2-.<
1 0 '(* ' */"
M f->f
^2 f. 1?
S3 2-«2
SS 2.v^
~>^i r'Vr*
c> 7 2 ^"*
sp ;j'<^
s 4 2 ^'2
*0 2 "2
•-•1 2v2
.^p ?,^
-i3 iT"'^
^4 ? - r
2 V'
'-> *- ^ 1 s
:•• 7 ,' is
<• •> 2 > ; •
•>'-• 2v''
"i .;'-v
/i ?•"•
t? 2 •.-;
.3 «""••

V- ;-'."•
7'- >'•<,.
77 3..--.
7H 1 1 .,
?'; ).-. -
''n 3 <2
r 1 :»-.'.
.'? .?-.>".
- ") -. 1
'-.<4 ., 1
- ^ -^ f
-Ifl -> J
r> 7 • » ^
-M f ->
•«•} C-7
•;i -in
." ' 1 •* ' i
•t,(j I ru I'-
ii'.) ^
ul" e
IK) f-
ijii r"
no <•
in 2
1 U r.
1 o ^
ll- '
l-l '•
I'.) ^
In f
1 0 ''
\\- "f
1"
1 i: .-r
1 'i ^
lu
1 ': e-
1" e
It. r-
In ^
1 '.'
f • <•
I" f.
I" <^
H-.
1 '•
li
Hi r* I
tj t ^
i» ^ /
nl ,' /
i.'-i <• i

i'ii ' /
I. f
gt. ^ /
i'ii / i
no rr
1 1 • i ,'
n 1 r;
'1 1 ^
.1 1 ,•
•I 1 ^
•'• 1 r-
1 • 1 s
1 1 .
') 1 i'
'" 1 '
" 1
i 1 •:

i n s
I'd <•
1 1
'•:>(. HO
^ill, HO
"UIJ .'Ml
H-lC nil
HUC Mil
f-i'C -m
><(il_ rO
MUC1 HII
p;.'r 1^0
HtlCT-O
c.i'CT s--o
Hlj<~ 1 r 0
fii. n>fi
1-iK. Irll
t- ( i (J r' ( >
»«OL1 oO
KjLTrn
*" > j C 1^0
*- ; "„ T '4 "
/ii .1; 1 ^' Q
^uC. 1 f* (•
-"Cl-0
^-.•C oO
HUC I -»o
H ( i C T *^ 0
H'X. IMO
t-iH. 1 HO
f-u«.T*Mi
MII(. 1M)
1 (. ..|V»V *•' 0
l'-v( it ? \- l* IJ
>> tt ', ~t( i ./ •< (1
j ;, PUV/-O
ic-; ii ( >* 0
^.iijM.t 0
-dp J- t -. *- 1
^•ftrr-l
J ) I- t" r " 1
'/• *• t. r* ^ i
ti*-1' A|J^ |
^.-iM. v- 1
lli.'i'l1-" 1
!(*'•' /\h -' 1
I'l" •'* *''.•) 1
jr ••"'.-- -'1


jl;i- h h " 1
j(i .',', i-,-. |
II'-'II'I'M I
JO .'Hl'r- |
J 1 ^ /' 1 ' ' • I
is.'.n--*. j

0-
i (i
ii

i x»
{;•
1 7
1 7
1H
i *"
if.
i»
!'•
Ir
1 v
1 w
1 ^
1-
IV
I '^
'Ml
2 tt
c-ll
.-'('
2 0
^ 1
r*1

Mil
1-
OT

1 ^
(.'»•
i! n
1 '<
IS
17
!u
p
;j /
'i H
n>;
;j :•
'IV
o -
:> -t
11-7
In
1 '
in
1 7
KLl) tr-ri SPM ttH SZN ECU SCU Pf
1" 0.1^000 2^0 0 100 40 100 20
!'• 0.12000 200 0 7b 35 00
|v O.OVOOO 0 0 100 20 60 0
'7 (1. 0^000 100 100 0 . SO 0
1 ',' n.i."3uOO II 0 60 25 bO 0
<"-. O.r.^000 <«<»0 0 350 25 310 0
Sr1 0.42000 0 0 HO 10 00
1« O.lt:000 000.00
b f o.uono 0 o o 40 0
st- o.jjono ooo.oo
*'. 1.1 lODO IrtO 0 230 000
J'5 I'.r.^OOO U 0 110 0 0 0
<••-» ii.rvono 0 0 20 20 00
-in n.h70nO 0 0 25 0 00
:'•>'/ ().<»i;oOO 0 0 2b 15 0 0
07 O.'.^ono 0 0 30 20 25 0
I'-S D.M2000 0 0 90 15 30 0
r> l).«»200tl 0 0 15 15 40 0
Kt O.H^OOO (i o 2b 10 0 0
'<-• O.J.3000 000000
->'.. u. 3 3000 0 0 30 . 00
11 0.21 000 Q 0 30 20 00
.•";• o.c'1000 0 0 0 0 0 0
«.H 0.6700D 3bO 220 2flO 210 20 20
b2 1.11000 0 0 40 10 0 0
-.>/ 1 .r JOOO 0 0 25 0 00
n2 d.i.-voOO 0 0 30 0 00
Or! (i.o/UOO 0 0 20 20 00
]f 0--.20nO 0 0 2b 15 00
i-J'r" <">. I^OOH 0 0 SO . 00
o.'jsuno o 0 100 60 0
s '/ O..ir-00(l 000.00
bh <•. 1^000 0 0 Ib 19 00
".••-> D.f-vOuO 0 0 20 15 0 0
1^ U.lSoOO 0 0 70 30 00
)'. n.rlOOO 000.00
IS D.lbOOO 0 ' 0 0 0 00
'12 Ii. Ii>0'j4 0 o 0 . 0
11 n.3J^r,', 000000
V/ 0.4 /oiil) n 0 2b 0 2b 0
1 1 n.osiMlO n 0 30 25 0 0
.<* 0.1 HOOD 0 140 0
U'« ( . 1*00(1 0 60 0
2" (!.!• /ODD IJ 75 0
'«••« Ii. 1 ton ii 0 60 2b
un ii.muoo o 40 o
11 (• 4 'j o o o o MO o
o!-»'-iUllO 0 25 0
!•' O.ji-ijoo 0 75 23
'•> < O.r'tOUli 0 70 0
l-/ ii.i->ono o o 0
f<> (| .-» i (ino I' 0 35 . 0 0
•*<( O.|2r,1/ 0 ll 0 0 0 0
V n. f. nu oo n 0 2b 20 0 0
)F 2h




















































JF





















































-------

0-^ - -.|,.: -!i IT-- Tl
2(1? •/•/.,; r :.•.....,.,-
2;ii i .a . i' /• i , •<- • \
?ni. |: ., .,, , j .....-• l
?nS {{><.; .-' 1 /...•»••
?"* 11.!. > ,' <'.'."l.i.
207 1 ..; .• |d. .••, -
?.!.« 1 i.-... ,- 1": :. "
•? !•.>,... r ,-.- .'•••
^ 1 1) J -i '7 , t ,' £ **•• f > r
?n i ?(..<. .-• v •••,'••..
21 ,J i -V. " r. 'II ..I!''"'
^D i : '. . -i -• !|-«.iil,- ••
r* ] '* t *•>' ' . • • /• ;> .'* || i. . * .
f \ -> 1 'I / . 1 C' .1^.11 '"I)-.
P | •- | ',•-• . .' ,' (It- Jl ii ;r
> 1 7 i '• 1 . " - 1 I'.i \'-'r
P|P | i • • . . i f- \ '< 1 1 1 >•
?]') | 'i. ... r 1 <\i ii ••'
, ??(' 1 !<•.'•• :. <•"..) ... ^
>J ?21 1. ••« . '• /- !-.< I il."
t» 2?? 1'-^.' ^* 'I-...) -1 l<
'f>'i>U f' 1. X1 . !• , r' 1 Jt 'I '^
2?S f-:-r>.<' ,: ^'.J'lLh
22^> ^II/.M c* ^(•'J'fL^i
^^ 7 Si.-*.(, <• r:Kj.i|_*
?>.A <• 1 D. •• .- O.1/H)bb
r. r '•) fl \ !"• . i ' s ' 1 ^ ^ I ) t • * 1
? "4 il £ 1 V ' ' /* f 1 '/ /' I H i M
•MI ,-xT<:i, ,• iii'i,i..«
? T P /•''-'/. ^ 1 *^ '• i ' ^ • '*
? )'T .-'.<... ^ .«C--.IHVI
2 (6 .- '•'. > . n ^ il dlibr-
/ )'T c 3 1 . i' /• (IMS!- P>
? 1 f ; ^ S r* . 1". £ | S s f- V- M
2.17 ^.^^J.!.1 ^ l/^f^^1
?'3f< ^'O.'"' ^ (Tr'SHr-f.
?'»i' f /<..n /•; n iijc M
?'• 1 c-*l.'. C It-' ill"
i^/*r' . •*';•'.; ,:' <.i')r, 1 **
^*O r'"t*'* { <^'lCTM
/•'•*t / -7 -/ . • ' r ^^uClM
?'«^ >"i; -i/ ir < ^'<;i ^l
f">f3 .i.^bt" r (ili>r<.»'l

1
10
1
h
M'-
1''
I"
1 '
,, 1
1 •<
/•• <
1 '
r.
-. Ii
,' 1
,- 1
[1 1
1 7
~r "1
r' :1
• I1!
1 '
| L.
i '•
1 ^
or.
1(.
10
1 -
t'l!
r* 0
ij K
Hi
1 J
17
^0
1 '*
,1
i ^
1 1
•' \
1 'f1
(' ''•
11
SI AT ION
f 1.0
.,!-, f. _^ ,(J,,(J
1 > i i ' . '' / h •> 4
/' ' (i.TmOii
0.|J.).||

''.I 'i . r""4 < /
1- O.r-l""i
Ii 1 (' ./'•»0(lil
..!.' ''. 1 000(1
'•^ O.O^fOOu
1: n./"(iOO
•"-> n.ii-ll)l)()
II .')•- ()i)0
1 (i ii . (I'Wn.jS
--n 0. i <*o«i6
'* I* (i . f"~>rt f o
1 • 1' . i'.DOO
.'•• 1 ..'r 000
1 . ' '' . b *" ''^ V
1 1 li.r 0000
'•1 I • . 1"1 ..1
(- :i. 1^.11 >
^'» O.<*^000
b'. O.JMl^l
1- ft.liOOO
'ST o.logoo
Yf. (i.lhOOO
/*"< d.O^S'-Jb
.)'. O.I 94(1 J
«•* O.r'/OOO
^i< U.'t'lOdO
-•0 ll . J H'* 1 /
o >i l . '• o o o o
tl (I.VirOOO
^^ O.J'+OOO
is n.i^ooo
<4V ('I^OOO
^? (>.<«»U()f)
10 U.i"*000
->r 0.1'jOOO
!»•• C'O«»000
/"• I'tJJUOII
H') O.t'lMiOO
DMA
         F/N
                      SZM
  0
  (I
  I!
  0
  II
  (I
  I)
  0
  I)
  o
  0
  0
  0
  0
  0
  0
  0

  6
  0
  0
  0
  0
  0
1JO
.VO
  0
  u
  n
           o
          7b
          bO
           0
          ?b
           0
           0
          20

          m)
          30
          70
          50
           0

          ?0
         100
           0
           0
          en
                      30
                       0
                      65
                       0
                       0
20
AS
 0
 0
 0
AO
20
 0

§8
50
 0
 0

 6
55
 0
 Q

35

70
?0
95
ECU

  0
  0
  0
 30
  0
  0

  0
  0
  0
  0
  0
  0

  0
  o
  0
  o
  o
  o
  0
 30
  0
  0
 20
  0
 25
 20
lOb
 20
 20

  0
  0
  0
  0
  0
  0
  0
  0
              SCO
 0
£•0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 6
 0
 0
 0
 0
 n
20
 0
 0
 0
 0
                                           PBF
              7NF
                                      V7.B
                                       1.9
                                      20.3
                                       5.0
16.0
 3.0
 3.0
 6.0
96.0
         8    1§:8
                                      11.0
                                      10.0
                                      95.0
                                       9.0
                                       9.0

                                       7lo
      11.0
       7.0
      47.0
      19.0

       
-------
STATION MtTALS UATl
(i :'-i';i.> n >-<(•. Til H.O
247 if-1, f ,:'..-.(• vf(i
t' <•* r J J ^ f f' 1 *\\\ t V /•• ( I
r'<* > i j ^ O/'r- r K>:
i*SO '*^ ^ 1 J H h r'H
/•* S 1 t> I ' r1 1 *•* K K •-? n
^S^ ^>J t S f\ ^ *~ H
?^> 3 •" *^ r* .3 0'- A1-'*-'

?^} \',e- r< u. :-•!-'•'
2V' in-. c. | «...•-•,. -
2 iv 1 •.' '/ .: 1 /..iV'1.

?l-\ \ /-. 1 c " 1 '-'3 ' "

2' 3 I .Vj f 1 S.-'d V H

2Kt* | '* 1 r ''.^ J1 I'"1- '~>

, 2'i7 l-'l ir lojufi'-
„ ?'••' 1'.-. .' I3JUM"

27" l A- f s^MI-m
2/1 1 "-i .-• '.!'• Ji.'LH
2/'^ ^i;/ ^ ^'/ju'[>
//'• ,V'.J 2 ll*-l:l-X
27S 'if 1 r l^llii.-r
2/f-i 2^- f' ^ 1 0 :M u • -^
2/7 i. -o r Jl.MJl'*'
2/;' --'-»: c l^:.r'-i

.•^ •"* 1 r. * ~* f. f"" '"W ( . "I f* 1
!<.:•-'. 0.^^004
^^i-*M ll»5'*/|^t
ic::io o.ioooo

l4ic"J (•! 15000
1 H :«5 o.<»sooo
!••• :nv O.JJ/-Jb
1 }:'.•>! 0.2000 i
1 ' : 2s ii. 13000
>i-,:u2 i..^>'>Hlo
1 ':.:'./• 0.11 000
'OI'iO n.ObOOO
H 7 : -in 0 . Ob002

lljfi;' "!S2000

iiv:42 o.o^o 00
6S : -in 0.11000
'n: 00 0.1*000

22! 10 0. j>»000
I1-:-) 0 0.«.HOOO
•Ti:j2 0.16000
0^:10 I.JOOOO
~->\ :.^ 0. IbOQO
2.(.'::);y 0.30000
?o:?S 0.35UOO
] u : (- (\ o • 24 000
!i-/:.'(2 O.MIOOO
' 1 :oi O.bOOOO
2i:iO 0. 1 / JJb

• )!*-3 ^ IK •!.•*.» 1 r H- Til h LO
^^^ <•:;••-» 1 '• .
I* ^* i t.' i " ' •' • . . .
^fj.. s" i i' ^- i/*>fi-tii i .1 T! 0.114
2H'j • 0.2/
2:-*A> J! ^ III S O't^T-X' Ml- Or-. I1-. 0.04
2M/ ^14 u: ^ nvijl)/:'|. j ':> 4] O.Oj
2«--i )^-| .'i s ('...(WHO HI It- O.OJ '
2'--* .i^1- I.I < /'•l.f.^-'O 01 22 0.10
2'y.i j^>- .,- ^ /'.r.'., y:io 1 u r't' O.Jb
'.'i\ .i/". i i ' c'.Miv.'.l, I:, (.•/' 0.0?
/"r1^ i.'/: i.u .-- 2/".CV-li Ho /^t> 0.10
 j UK tj*+
KPH
0
^
0
0
0
0
0
0
U
0
0
(1
0
B
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8.
T A — C. 1 1 ILJ M l^
1 A -T5 1 UKUb
.
o
0
0
130
0
0
0
0
0
0
0
SI-H
0
9
0
0
0
0
0
U
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
*
;
0
0
0
0
0
0
0
0
KM
.
6
.
0
0
0
0
0

0
.
0
t7N
40
%
0
0
0
30
363
0
10
O U
0
0
0
0
a
0
22b
60
20
0
60
30
0
25

0
2b
0
55
0
0
0
0
0
0
t/N
•
IbO
0
HO
250
160
60
0
0

60
110
S;N
10
,
0
0
9
0
0
0
o
0
0
0
0
0
35
20
20
0
0
20
*
20
20
0
0
8
0
0
0
0
0
0
S2N
•
140
,
BO
195

55
4
,
40
.
60
ECU
0
,
0
0
0
0
0
0
38
0
2b
*
0
6b
20
0
0
10
0
0
0
0
0
8
0
0
0
0
0
0
0
0
ECU
•
40
0
.
40
0
30
0
40
0
0
0
90
SCU PBF 7NF
0
, »
0
0
, ,
0
0
0
0 .
8 :
0
0
0
0
0
0
0
0
0
0 16. S
0 4.1
• 0 6.2
0 9.4
0 3.0
8 g:8
0
0
0
0 6.0 1
0 *
0
0 •
0





























SCU PBF ZNF
14 0 41
SO 44
0
0
0
0
0
0
0
,
0
.
0

-------
ST/M ION MtT/iLS OA1A
>!'•• S , 1 r" 1
2'* 3 .* ?
/' '^» "1
Pu / ••- 1 1
J'*'4 •-* 1
X:( V /•>
TM'I i •
'"'•I Wl

iii 1 v /
'ill'. Id 1
.11.-, |il.'
Mlf i !' )
)(;/ \>-f
lr,« | | •.
ll. - II ••
.11 " 1 1 '
n i ixi

fl » 1 .M
i j t 1 * "
•11 •, 1 "•.-,
)!•' l.<"
3 i / i .. -.

tl .' I-'-,

i '.' 1 1 '.' U
.i.-'^ I'-l
1^1 | ~ •-»
v. 1 i .1
» x ! l • ,-•
Of , i. '
«x - f . '
» X • .J X t- •*
1 'i I • X •* *
ill <" 0 ''
II-' .- • i
< .1 l .".-.'•
.1 )•• r'--/
i j ^ c: / '•
j.so <;/•>
JJ/ CV

1 °1 < . .
i-4 It 1 1. t
!•• | 111
• , •' > A -'
•,•-. ) l''r
'.... I-. i
.'i 1 rrr. 1 1
.1 ,' (i-vl-r '>'
x IHM •:.•
i> /•_' 1 ''h t- • ><
•i ,.' '!•< -1/1 •-.
1 ,' | n '/' f
1; .' Ill 'I.'- f-
II ,' (> 1 ,U >• -
II X I", ":> .--
'.i '.: llv '••- 1 :)
u , MiH-'i
I.I l' | ^"l-ro
') f' 1 l.» l-'i- ('•
II X ) f ,i t- Vv M
ii X xh ;ir t-rt
ll (L rH'i^l'h

x 1 1 | - '. f h
In: .': f-
. ' / • | 1 1 / i : :
.; 1 s •• v -i
1 ,: V-, ;.. i,-
f 1 ' •, .1 V ^
,, ^ X^i". Y -1
(i x \ o •: /•- Y b
n <: n 1 J(..-i>.
ii -- n IJIH b
|, ^ fj y J| !f irt
.1 < 1 iiJl'ii-.-n
n i 1 JJ'.iN«
.1 ^ xx nif.f-
x f'U'iLri
1 ^ r •' J1 'L ^
1 r Ii -•'"••..- =
| / ] . inn-.-
1 c. .<|"IH-r-
Ii r". H'-.^c i c.
1; e 1 - • C 1 -< 1
1 S. IS -,;:*• HI
 \
ii j
? (
\ J

I'3

1 /
1 >
(1 f
lo
IV
0 - 1
U
0 ^
1 ~l

lo
^ 1
io
Ob
1 '*
\ r
'lo
' I
ll
lo
1 1
KLO
.Ui O.OJ
'If 0.09
no o.o/
r^ O.U9
14 (I.I)/
x1. O.US
••"li 0.(:>i
16 (1.0 h
.t 1 0 . 0 /
41 0.0V
4K 0.1)0
W- 0.1)5
s;< o.os
1 / 0.01
12 (' . 4 1
XX 0.04
S3 0.1J
f'D O.U/
<• -v O.Ob
-^ H.IO
/D U.llS
Is 0.04
1 ^ 0 . 0 o
02 0.04
27 O.OJ
20 0.01
l>4 0.04
S4 0.0)
4 7 0 . Ob
S4 0.02
'»f 0.10
1') d.Ub
.")/ U. 0^
x 7 0 . 1 4
'-> J U . 1 b
1 .< (l.llx
c J 0.16
(14 O.U6
JJ 0.^4
<43 0.0V
b"* 0.04
Of' O.OJ
14 O.OJ
14 0.07
r''l (1.0(1
0 1 0.11
';/ (I.DJ
iin 0.02
'< < O.Ub
l H = D i
II
0
0
0
0
0
0
0
u

(I
I)
0
(I
150
0
(1
0
0
0
0
0
210
0
(I
0
0
0
0
0
0
0
0
0
0
0
250
0
.
0
1 2u
0
0
0
0
(.'
0
0
b80
.
0
0
0
0
0
0
0
0
0
0
0
II
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(I
0
6
0
0
40
0
0
0
0
0
0
It
0

6
0
0
80
30
J5
60
8S
yo
bO
30
40
4(1
140
us
155
65
30
85
80
180
35
25

H
85
100
170
860
$0
0
0
210
130
60

h
1 15

20
JO
80
30
165

SZN
25
30
40
80
8?
30
60
30
40
255
100
80
40
45
25
1 15
60
40
70
35
25
30
50
75
90
•
•
•
130
60

^
^5
55
20

80

165
55
ECU
0
25
8
0
25
0
0
0
0
0
40
0
0
0
25
0
0
20
0
0
25
20
20
30
0
0
25
0
50
70
0
0
28
0
40
6
0
0
0
0
0
0

.

.
scu
0
0
8
0
8
8
0
0
6
0
0
0
0
0
0
0
0
25
20
20
20
8
0
0
&
0
0
8
0
35
6
0
0

6
0





PBF
.
.
10.4
3fll7
28.1
88. Q
102.0
16.0
81.0
23lo
16.0
70.0
35lo
26.0
,
25.0
21.0
20.0
25.0
34.0
14.0
25.0
.
2NF






5(
14'
7
71

13'
5t
4
3
10'

17.







i
>
i
i
»
i


4
?
3
>
i
}
»

-------
SI AT ION  MtTAL<=.  DATA
'..'•• S .-!••
'. -
'» • . i /• . '
. " / >'•••
•i 1 • V'
. u--t < t
:)'l • )
.• I 1 .'. '•
iLi,J '••i'
is i .n'
*"^ i :> 1
i-i-> •• ,\
.)Sti ~. (.
ts / ., -f
3^^ ; ,
'--• .' I
,r-'l .1|
i- 1
_< - -? • . ^
J ''•-. \ <-. ' -
.!*>•* SI
if.;-, : , £
i^ "> ' 1 1
IS/ * t.
v-r, / 1
'i- < / ,
i / >i • ,
. 7 I - , . -
.1 / J ' - J
"< / ^ f f 1
',•
r/v .-'.'
17-.
. 7 /
1,1. <\ ', 1 -
J/.'i y.y
H / -y /- l : '-.
"i"" f. 1 1
1-1 , i-

t--l - i
;;• • -. > I
•. ' -
)•/ - -..-
i ;. j
)•-•> r' -
1 :| .'---
' V 1 .' i ' '
• :> ( v-'r 1
'••.' ,• •;•••„•< T.'-I
i.-.i r I /!-<;V Yri
"c t Oc'f tl-n
i'li f- fi^ t si^
i-- .j c; 1 K T - "
"II ;' '-.Hrrn
nil r- ?(U|-'-r
In ^ /^^t.-'>
10 ;• ( 	 ...-rf
iMi ^ OvAki^f
I'll -- 1 .J .>.-!-•)
i...i c m,ii, r^-.
nil c- | 1 •-i.-,Yn
r'l f <•-... rr
-I tj ? ;••_'. -IA i M
I'l, J >" .1 .1 1- 1' ."
I'll ^ JC''°-Y^
I'll £ (! 1 Jill ,>i
i.(l f 0. .M -lib
• i'j t iJIII'-'b
.•i.' r ,•!.. I'-M.-.
I. t S. PI Jili-l-i
t, ;; f 0 -« Jl IL !•
1; 11 f1 S .- ^'1 'L •''
ii> ,- I^IH-,-
• ' I ^ S A 1 li • ll
.11 ^ 1 II ,'. 1 -t.'H
i .. ^ 1 S'--1- t-'^
.11 X- S V -f' )Hl n
r -"jji.l ''•
;• f i,| niii,.-.
^ .:.-.i"in.--i
1 ,; n 1,11 in -1
i, ^ 'Jiiu''?
i i-:ir.i :i
/- I !•;:- r >-
I ,^'- f---
.• ,- ^-. -,. t K- "
I • ^ r -»S (•'-.'
n ."• ^V.-t '-"•

,
I
i
1






























J
I
)


J
!
j
j
i
,
,
i

(. i
i ^
i u
'^ i
no
U
1.)
O-i
,j ^
s .1
^ 3
0*
1 1
1 •*
lii
0 1
I"'-,
',' /
f1 't
> 1

Or.
1 ^
1-
c'D
0 /
1 1
1 ^
'' l)
10

1 ' '
"

1 i
Sr
d ^
1 ••

^ ..
dr.
1 3
d 1

'i )
li-i
o i
	 blA = ^>IUHdb 	
FLU LPB SPb t^M SZN ECU SCU PHf
3^ 0.33 0 0 70 30 0 0
S') 0.?'V 0 0 40 . 0 0
'/? O.SM 0 0 ,<0 30 0 0
("• 0.04 0 . 55 . 0 .
f J O.DO 0 0 190 90 40 0
13 0.10 .0 . 75 . 0
43 0.14 0 0 80 70 40 30
>"t 0.?4 0 0 105 75 0 0
('4 0.31 0 0 100 60 0
•)^ O.lc; 0 0 70 55 0 0
}t- O.^b 0 0 60 50 0
17 0.0/0 0 45 65 20 0
4* 0. 14 0 0 55 40 0 0
09 0 . 1 O.Ob 0 0 120 110 35 30
< 0.17 0 0 H5 75 25 25
<•(•> 0.2* 0,0 55 50 0 0
.(S O.t^O 0 0 HO 45 20 0 30
\s O.^b 0 0 an 45 • 0 0 16
IIH 1 . l j n . 45 30 0 0
L.'? l.no 0 . 3S . 0 016
-,} 1.01 0 0 <«0 40 0 0
t;» 1.93 o o o . o o
SS 0. 0.^3 0 0 6? SS 30 25
HO tHB SHl< K?N SZM FCU SCU f
^6 b.?JOO 1?0 0 150 30 0 0
Ml \.efllin 0 0 90 35 130 0
li >•• 0.4400 0 0 190 30 0 0
do O.fiOdl) 1HO 0 1Q0 BO 20 0
i'f> !).M4()o 160 0 ?60 60 50 0
'- i 1.0/00 ^crO 0 SIO 70 30 0
:;<• 1.0000 300 0 500 10 0 0
It 0.^000 0 0 i-50 35 0 0
dd O.OOSS 0 0 100 25 0 0
dv 0.3-tOO 340 0 350 120 5S 0
,L^ ,\,tilpl n A A A 0 0
. . IJ.IIV' 1 V V U V « u
)n d.od^l n f> 190 155 0 0
-S 0.04'H 0 0 "»50 95 100 0
1V O.^j40 300 0 ?SO 105 65 0
'.4 O.^3««0 0 . SO 50 0 0
z^























0
9

0






'BF ,













JF

































?NF














-------
00
•I I i
•'. I?
•. I •}
.-. I..
'O j
'. 16
(. I V
', II-
                  '.-'I
                  •4,' •-'
                                       1 t r-r
                            /I
                           r \
                                                       111
(•.'"••M.l'f
^•-'Sl f '••
ril^-,h r<-
r'1''!1- 1 !'•
i l / 1 ' l 1 >-.

<•'!' JCIo
r1 1 ' ' >( | i'
^/i'( T'.
, ' >- 1 1 (. 1 "
-.1 < i . 1 1 v f
ji..,-,lW
Id'.'Wvr-
^a. iiiv«
ffidVi-
u 1 1."- 1 >'.
H-M.'r l i:
1 ';. i .' I V. f
'J - : 'N (. ^
fr: J.l| !(;
i . ^h |. " -»
^ 1 1 h 1 • -
? / H r. t ••*
U., r.. .......
li>'!\L"h
ni'.'-'-i';.'
.!'• .'a- .- ••
;j '- .. ! ' .. t~
\ f> <:\- 1 - ' '
\Li'^'
t* 7 •• '- 1- r
;i. ,••'!! Y T
ll-i-i * -.
1 f-i 1.. r
t | . .-. .
| ]-.,. -.
11"- -•
| ^ -i it ^
I ':.'•••- '•
j ." .H. .1
) ,-. J <,-
1 - .,.. i ,
r ' • -i •. "I -:
1. | J!l.,..

1 .,
d'.
1 7
1 /
),?
1 •
1-
."•'I
"^
1 1
i •
on
1 1
1 t

1 i
r '1
I /-
O.i
1 ••
II''
j1-,
•• 3
•4 -t
•if.
{'('
/;'T
Ij t'
,- n
-^n
3'>
1 .1
<*">
1 >'
"J1''
t, ^»
.> fi
J"
^' S
r' 0
-•0
i"
\' ^
tin
us
V'J
Illl
s-1
«,f.
i.t^
?
jo
' l«
i -j
OM
(V*
'; 1
*» y
-in
*+ ^i
s (
I s
^ • .
r-1
->"
i'^
                                                     FLU

                                                    0. 1 JMI
                                                    I). 1)40 /
                                                                     II.IHV1
                                                                     (.'.0105
                                                                     /.I 100
                                                                     0.0^ (<»
                                                                     P.I 100
                                                                     0 . 0 1 * 3
                                                                     O.tf^OO
                                                                     H.oo/3
                                                                     1.0^00
O.U105

oluu 7J
U . 0 1 4 i
O.UUrrl
0 . I' 1 '• 3
0. loOO

>')'. I 300

(lid jpb

(>!ooi>o
(; . U I rtb

olvioo
(i . S'»00
                                                                     1 . '• '1 (I 0
                                                                     o.ijlnn
                                                                     l'. J'jOO
                                                                     l .;voo
                                                                     ol-jllM)
                                                                     (i .ir'OO
                                                                     n.'-c'OO
                                                                     0 .rnOO
                                                                     0 . |-*00
                                                                     r.vr-00
u, 1 1 ion /
j i u ** • * i
tHLI
0
0
0
0
7rO
0
0
0
0
0
0
0
0
0
0
0
0
0
100
0
0
0
0
0
.
0
4 1 0
0
0
0
0
0
0
0
II
0
0
(I
0
1 10
loO
0
0

0

0
0
0

' "o
0
0
DATA
SHH
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(}
0
0
0
0
0
*
*
0
0
0
0
0
0
0
0
0
0
0
0

t/N
35
50

£5
1 40
95
50
0
105
210
35
70
US
IbO
85
140
3S
7S
110
70
SO

V5
115
bb
««0

MO
30
VO

S7N
60
60
45
50

-------
SIM ION MKTALS DATA
II. i, i- 1 '...-1:1 | ,,--
<•-.. 7 I'v. il
H -4 >• 1 I 1 I
'4M;» 1 1 -I
' .' ' 1 1
'• .. 1 1 '• "
;. -. ? |
<•'':?. 1" < (
•'iS'. 1 • . '1
'.SS I
"'••'j 1
4S7 r '. - il t
•VlH r 1" U t1
' * S ' I
	 ' 1 > ..I
i: •.. •- 1 •' , 1 i ••>
•"I ', \ ' il
/. ' . ^ V •- 1.
t .-. •• , . | |
'if , , ,
'"• ' -- i
'. /•• >.-
... .• -. . , •. ,-
'••• 1 1
•. ^ / .••'•• /
* - • i'
..... * * 1 I
• ': 1
' ' / 'l
.,..,- |
•• -~ 1
'• - . 1 V . 1
•• '1 1
- 1 ' t' 'J ' ' ' ' f
^4 1 .I - 1 1- ,'
<4 •/.'. .. . •)
1 1 1
| '< II !!•- 1 <)-> fa 7
1 '* l.iL^l 13 4(i

r>jilL"l 1 :. 5r
,|L. ji IL .-. 1 .') '/ ,'<»
^7Ji>L.-l 1<. .t.<
1 -i-.i.-l |.', '.Si
1 1 1
' I .•>-. ; o
1 t • I. "' h
1 - .u .'.:•
1 . ; ' . • n i
''••'• '• '.)
r- - . - '..II
. ''• •( " M
t • '• 1]
S <• -, F 1- ^, (J
r"-- -\ >'f II
i'f",H. 1 i II
1 !'".. if.;/
- in 'i. I •• ,•
' -• .1 i -MI
•r ' '(. l . ii
. . . ; • •' i . . 1 1
| , . i. ,• I..

r / f-\!--l'
1 |i.» I .'.I

. ,
> • • 1 1 ...'
n-iij- i ;-(.
i.'-i t ( r 1.
I'.l K. -f.'
x, .:('( ".!'
|T ^' . 1 •'• ' 1 * 1
ii <-f r • f. |
•...i . , „ i
IV K ".^1
,'ii| r r»" 1
: Ur... :>1
1 -I .1.
-1 ' ., -•
,,' 1 S
\.l .'1
1- us
' - • . _ • f
1 , • - ' .-'
I f' !'->
1 1 ' 1 "
I ) Ir'i
1 II 1 ii
!'• -f
Ill -...
1 1 * 1 1-,
i-i .»->
" -'. .1'.
!•• '•'.'

).. . ,.
: ' II
| ' <.'!
' , lit*
1 1'
•i • !il
10 'is
III III
| 4 Sll

IK l>\
1 1 SI.
X 1 IJII
l:1-1 u i
,111 •,(!
	 SIA
H.O
i . noo
(l.M)UO
*. InOO
1) . 0 1 4 ,i
!'. 00
(| . 0 (^^(5
c. i;:oo
t LO
1 .HMO II

11 • ' ~>(J I)
('• ..••-•HO
II .(Ml III
ii. 11-4 III
li. 1 ) /^
o.u'tdo
(j . ii 1 f 1
f p . 0 ('O'?
1 1 . u 0 y v

o . I1;) ] .1
• • f Oil (l
> . IMIfl i
i. II Or. V
J . .*•* \) 'J
.1 -"• A 'S
(. . . -'ud
U . 4'<(IO
(l .0 1 ^H
I1 . 1 ^ /^
(i . Jr.'.-l)
f:. If TD

ol.n'uo
11.00 1»>

(.'!.)|J(I(I
C . (l 1 f. \
(* . ^ Ii 0 0
IJ.fl 110
II. 30(111
= biU^(> f
KPH
2?0
1^(1
1 /O
0
0
0
0
0
0
0

130
0
(1

0
n
41)0
(1
0
0
1 n o
0
m
II
0

I)
II
l!
(1
I)
(1
II
(I
0
0
0
0
n
(i
0
0
B
0
0
0
0
SHH
0
0
II
^
0
^
n







^
,,
0
0
II
I)
II
0
n
II
0
0
1 1 0
c
0

0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
FXN
135
1 /O
1 15
^5
80
1 ^>0
f>0
35
85

1 3^
75
0
Ihd
t/,»
«()
10U

100
0
300
1 H IJ
i-.o
^
r*6t)
40
„
"*('
^*0
3u
P n
C1 U
30
50

20
33
50

?s
50
30
HO
50
,
0
50
^s
>?5
SZN
70
85
35
w
70
1 l-j^
60
20

150
1 15
75
^
43
57N
<;o
)0
30
15
t


*»5
**o
POO
40
40
0
20
0
30
An
** u
w
.
20
u
30
30
25
40
30
75

t
,
J5

25
ECU
0
?5
0
0
0
0
0
0
0
0
0
0
0
40
tCiJ
0
0
so
0
0
0
0
0
*
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
40
„
0
0
0
0
SCU PBK 7NF
0 78.6
0 83.0
0 88. V
0
0 49.8
0
0 42.0
0 42.0
• •»
0
0 114.0
0 133.0
0
0
SC'J PHK ZNK
0
0
0
0
0
0
0
0
0
o
0
0
o
0
0
0
(J
0
0
o
0
0
0
0
0
0
o
0
0
.
0
0
o
o































































-------
00
o
                                                        1 1
                                                         Tl 1
                      ^
                                                   /.''-nil.
                                                    ) /I''(IVHM
                                                                       (-LU
••.


. i
'.
s
'"
s
s
'i
',)
'•-t

!i
*.

',
•-i
s
•-
'->


1 ,


;1
'..


'.

-,
t.
s
'-.
')
J S ' '

•/ 7
1 ' ' ' /
• '* 1
.'!(' -i
•' '
11 "1 1 ' ,
M'* j :i-*
')'-> | l.l f
Iff.
"i i i j
•M 1 1 f
1 I
I 1 1 -' '
1 :' I - I
) •<
I •• in
1 •• i > -.
1 '.
|7 !..•-
1 •>'•
\ ••• 1 " 1
,•" IP. .
,'• \ 1 ' 1
•V 1 1 ,
,' \
^U \ ( ' .
s- 'i
j »-, 1 ' '
-'7 1 • .
/;. i--
r>'-t
.1')
II j j .
^ £"!'''
< ~\
i; ; \ .
i ,-
1
1
i r
: i
f
1
• ' <'
H <.
i| f
1
i • r
f
1
1 '
• t
1
1
*-
|
f
1
1 r
'; r'
i-
• ' <
1

1
l_ ^
' 1 /•*'
:> ,r-
|
i
' ' f '
j
1 ' f-
s ** , t- -
• ; . ....
^ r .-i '•
' " ' '• .- r*
•i i i.-t- ••
<: nl'.-'l- 1
! ' ''"'','.''
l^ui-K('
1 (./• j'i-'H
| 7> K'kh
,Mlii.-l'M
^' < t;t 'Hf<
^ / tf;. M
^fV'1"/"
(I'. ... • >..
Ij 1 ' -i 1 '1
••. . • r f.
1 1 -.'>-.

l'.';;j t'j

•"!'•• II. '!••>'
| (1 II Ilirt
1 JJI.if;.".
^- (: Jl '! .^
/•I Ji.T.rt
('(•'.)'• t' i M
/'•S Jlifid
,- '^ ji )! ,^
•> J')L •'•
(.''•jut '-
1;'. JUl. -•
1 .U'lL'-.
^n JHL'-

,' i J'M i.
il'i-MM.;.
• i -
1-
! •.
f. v
1 )
1 '
1-
1 -i
17
ll.i
K
.•1
t> )

''. )
I'l
!•-
1 1

l-

'}••
\J

1 '^
-'0
1'*

1 '-•
rt

or-
) .<

i '*
IP 7
I'-

ll1
r.
1: -.
] 1
1: ll
,'V
11(1
1 3
'»/
(i /
i* S
1 1
.V
<«•;
..7
•>'>
. ^
,- ^
IIT
41?
,' /
'-, 'l
)''

» .t
r r
fV

S ~)
) '-j
SO
s'l
-i '^
J^
i.j.
-1
in.
1 . -1 1 1 0 0
r . o >*jti
(1 . 0 .- 0 (1
i.u'JOQ
i .«•••: (Ill
1 • '. ^ \J II
I ,'J?0(I
IllOOO
0 . f 2 0 0
0 . f. 1 0 0
0.0^00
1 . 1000
(i . d 1 0 0
0.11^50
o!.V-*oo
1 . loOU
0.01^1
~f* m "> ^ (.1 0
(i ^^00
0.0121
O.sbOO
(i.O^OO
1 .(isoO
1 . J'/OO
0."* 100
1 .rVOO
0 • U U(> 1
3. i\OQ
O.OOd'->
U. 1UOO
fi.blOO

0 . U 0 o 1
f. . DO JH
(i • S'J ij 0
hlliHuS
f> . ^ -s 0 0
                                                                            ION  MLTALS  DAT*

                                                                           •  hIA=Slu^O^
IrlO

  0
1M)
  II
  0
  0
  o
  0
  0
  0
  0
  0

  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  (I
110
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                    0
                                                                                  1 10
                                                                                  1 It.
                                                                                    0
                                                                                    0
                                                                             sro =
                                                                       ^ to
0
u
0
o
0
0
0
0
0
0
0
0
0
'0
0
0
*
0
M
0
0
0
0
0
0
0
0
^
0

0
0






30
'hO
*5
50
30
60
vo
70
110
20
0
250
75
105
130
^?^*5
135
30
130

7^,
f)S
105
0
0
1 15
110
30
10
30
0
0
0
0
20
n
50
25
80
b5
. 50
0
6
40
45
5 0
25
Q


S5
20

a
%
hO

to
KCU
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
20
0
0
0
0
50
0
0
0
25
0
0
0
20
0
0
0
0
0
0
SCU
0
0
0
6
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
0
0
20
0
0
0
0
•
PBF 71
*
•
•
•
.
95-3
45.6
69.8
^
68.4
^
69 .0
46.0
47.0
.
•
108.0
135.0
*
MF















1 ' »
ll J
!<•
Mil
1"
(I /
)»)

:.»-.
^.0
>7
"3
Hi
j ?
(i . ??
0 . " ^
8:14
?:^8
0.11
0.06
0

0
0
0
0
0
0
ll
ion
0
0
0
0
0
0
t
f-S
HO
so
so
»
50
                       5/TN

                        6s
                        «6
                                                                                                          50
                                                                                                                 ECU

                                                                                                                    0
                                                                                                                    0
scu

  0
  8
  0
  0
  0
                                                                                                                                 PHf
                                                         ZNF

-------
                                                                              SI AT ION Mf: I ALS  DATA
00
                      ns •>
                      SC.O
                      SM|
•V t
H6.-1
IT'
S/:>
':>7|
S is
.-.7J
S/M
'I? T
".7'j
")7/
57"
                                 lu
                                !• 'M

                                •"'•I

                                C ' '"•

                                f -,r
                                                                                                  SMH
                                                                                                           tXN
                                 I. •  I- i- • • r-.
                                 I Uf-i-
                                 |'-h t !'>-
                                 ,-uh r -f
                                 ;>.  ft -•>•.
                                 in- ;-.'.-
                                 ii| ,.| „„
                                 r'. ii H :•< f
                                 r. v;-. t iv H |
                                 1 •./..•••'Ml
                                 I / 6 ^ t-1-
                                 >• 111,1-Mr1
                                 d j •'/ TO
                                 I I'MiiyHl
                                 I :.••'« >o
                                 I i.-ii. ro
                                 fi J JU:,>-
                                 I I4.II '!.»•
                                                       .ill"	
                                                       JI "'.'.••
                                                       c-sr»-,
                                                              'l
                                                         Ini. [c
                                                        (' 1 1 if. 1. n
                                                                      n 7
                                                                      IS
                                                01
                                                56
                                                10
                                                                      1 •«
                                                        0.13
                                                        0. IV
                                                        (J.^0
                                                        O.M /
                                                                              0. JO
0 .1)0
I). J6
0.1^
0. 1H
O.th
0. )6
O.^S
O.b/
0. J2
0.7<^
(J.I/
I .or
                                                                              1 .
                                                                              i.^5
                                                                              0.15
o. :*3
0. Ib
(I. Jl
0.10
0.20
O.Ob
O.^b
0.35
0 .bo
0. !<•
                                                                                                                             ECU
                                                                                                                SCU
                                                                                                                                                PHF
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
•
0
0
0
0
0
0
u
0
•
0
0
0
0
0
0
?0
0
100
1JO
l<0
70
100
I6b
H5
0
65
bO
35
\^0
50
60
yo
75
HO
50
'.0
30
1^0
65
611
125
100
65
vo
b5
0
V5
335
130
145
•
75
60
65
60
115
50
•

•
70
55
70
65
95
6s
•
60
50
30
65
20
30
bO
•
70
50
40
30
75
70
25
65
•
65
S*0
H5
•
75
260
130
140
55
60
50
25
95
•
0
0
65
0
0
0
0
0
0
0
0
25
0
0
0
0
25
0
0
0
0
0
0
0
0
. 25
0
0
20
20
20
0
20
0
20
•
0
0
0
0
•
•
0
0
•
0
•
0
0
0
0
•
•
25
0
0
•
0
0
0
0
•
0
0
0
0
0
0
•
0
0
0
0
0
0
0
0
6
0
0
•
•
•
                                                                            ZNF
                                                                                                                                                38

-------
00
ro

OrS -si,.
S.-<7, f.'/r:
f 1 " ''•» .''••*
S"/ ,'v<
L, -t<} ^ ,• ;
'}'»< _>•!•<
~1 • /> ~ *•) t
>, >, 7 i
<;'-,? vl
"-. 9 .•< S< ' >
'-..J'J ','-J
MHI 111
MM I.'-.
f-; II ? (" 1
'••II.1 .il.1
•M!'". '"'1
•Hi', <->
Mif. .1^
M / '^ 1
Ml-. :. -.
-Nf 1 •* <* •<
' 1 • 1 l,.l
M.I •),:

M i S'3
n 1  1 O i '
Mb ic.''.
*. i r i r 3
*~- 1 ^ ^ •»
n *:' i ' /"* I.1 *
^^'1 ^ 1 •?
'•V-' f'r-J
•V.I , <• t

" ,' i ^ r. i •
'• /^ ' . ^ / • t
'V / r '">
-./'r' f^l
••'r' i 1 1'1
r- in !•.. 1
Ml )ri/

.••A;
1
0
1
M
II
1)
U
,1
1,
II
,1
(>
(I
..1
1..
II
II
II
1.!
I '
n
L.
i)
>!
1.
li
U
i;
i,
it
n
I.,
6
U
U
1
(1
t.
II
•)
(t
;,
1*
II
II
|i
II

1 0-t 11
-. l^liLl'll
t />>(>:. is,
f. .r'o'.'CU-
f .' it H 1 1 V f'
<; D'-'lih (, H
f (Ir'f K •'.<-.
i:-iF !•. l-l-
i' 1 -»h ;:,-.-
c: .' '•? 1 •••'
,- ^-^K'-.'h
^' ] K.'- -\ 1.- M
^ ,.|.l|'.-f.
': it 3 /'••-' ^h
^. (i^.XL..^^-,
^ ii/.-h/i
^ i •< 1 1- N (i
/^ (i 1 M ^» Y \4
f \ (}-: - - " '\ 1 M
^ .1 I.' ' : .1 / I!
iilJurif-
^' I' J .HINM
f* ()f4.MU'J^
^ (1 "> Ji If U,
^ nv.JlllMt-
>• l.iJIIIlM
S O^JIILf4
s fi j. ii u_ >>
'' .-''»JilLo
c" 0 c ^ i i ' j ^
^ I 1 A • M • n
r- 1 -3 ft !('•>•:
^' 1 j'^ I'h
^ I /S i'h
r- C I1' , |H
r ^ .in : in
c Xl-.ll If
/ (M f1^ I. '^
1 'till I.'-1
,' 1- '* 1 ) t '. .^

1
IS
U '
1"
10
1 <
1?
( ' ^
f S
f f>
\ /•'
1 *'
i ^
(i *V
I'l
Ob
0^
r ^

i.'0
1 1
1 -*
1 *
I''
1 1
1 j
1'.
17

i i

i j
is
it*
U'D
11

J •-
ii1*
^ I
U-1
I I
0 <
IV
ilS


,;s
-ib
0 j
•Jb
••(•
'"»4
IH
--.''
» n
••s
30
J9
L, ,>
irt
V
o/
JH

-)0
I IbOOOO
ol^ono
I li'MlHHI
O./H/ ?7
0.44000
O.b>l000
O.baOOO
fi. JSOOO
0.4 JO 00
(i . ^ / t>s9
I . 0 d 0 0 0
O.bbOOO
0.4h(MlO
0. 77000
I .(!("->/?
O.VJOOO
0 • c*b lf>(?
0 • I ^ JS4
0.0(1104
(• • 2 .^ 0 0 0
0. 3r>000
0.^4000
0.30000
0 • <^.}00 0
0.2VOOO
0.94000
0.39000

0 '. d 1 b 1 2
O.b/000
h.8f-HH9
0 . 1 4 / b h
1 I 03000
0.714^9
0. 1-3 JOn

0 I T. / 0 U 0
1 .^ru J/o
1 1 • ^ / tL b 7
0. IbOOO

til j M.IOO
0. JtOOO
0 . 1 f b ^ B
Mt TALS
-*s i u*^ i r
EJh
0
0
0
0
0
0
0
0
loo
0
0
1 10
110
110
0
0
0
0
0
0
0
0
lc'0

0
0
0
loo
0
0
0
0
0
0
1 10
110

0
0
0
0

0
0
0

360
DATA
SPK
0
0
0
0
0
0
0
0
0
0
0
U
0
0
(1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
0
0
0
0
0
0
0
0
0
0
0

L-7N
95
115

1 ** 0
?25
160
30
/Cj
bb
35

H5
155
85
70
bO
100
130
75
2b
70
130
65
65
1 25
25
65
95
35
50
35
HO
35
170
65
•
30
25

80
95
65
20
60
.
245

Si?N
60
20
30
?Q

60
70
6b
m
30
?b
85
70
75
55
40
35
75

25
25
35
7b

.
25
?5
50
,
35
50
35
0
.
120
45
30
30
25
30
50
95
55
20
60
7b
50

ECU
0
0
0
0
60
25

"o
0
0
0
0
0
0
0
0
0
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2B
•
0
0
20
30
25
0
0
.
.
35

SCU PbF ?NF
0
0
8 :
0
0
8
, .
* •
0
0
^ a
0
0
0
0
0
20
0
0
0
. 9
0
» »
0
6
0
. .
0 1B.1
0 26.7
0 21.3
0
, .
0 103.0
0 100.0
0

0 2llo 69
0 23.0 51
0 25.0 90
20 59.0 164
0 23.0 63
0 24.0 45
. 44.0 B2
...
0

-------
                                                                         SIrtllON MLTALS  (>ATA
                                                                               b! A =
                                                          111
                     (• (S
                     f- «.
                     M 17
                     '-.).•!
                     *.T>
                     'iMl
                     tl-4 1
                      .. .7
 I
oo
CJ
                     (.-'>/
                     bSH
                     h'-. 1
                              c ' '
                              f- i i
                              til
ll'l
 3 'I
 .'.I
                              c \
     III)
     DM
     mi
     i.ii
     on
                                                    li'i.'Cl -10
                      1 HOC run
                      l^'iCl bO
                      1 MX. inn
                      If'.Kt I-(l
                      I.--.JC |I!D
                      HOC I MO
                      ll'.Ut'loO
II .1)1- f • II
u;'i t.--v.-i|
I Ml. A f f- 1
1 11. « Y .-• I :
IHXAY.il
1VMUYf 1
r1 * \ • il Y H 1
Mi'-iftlMl
1)1 JM'Jnl
iluJIJI'JMl
iJ(-..llir;H
/••o.iiir.r
ti\ JlHlH
'"rJl.i'V-
U^J'IU'
D < Jul '•
<"t i."
, vii-1 ;•
                                                                 b/
                                                                 SO
                                                                 (JV
  t^ LU

0 . D 0 I 0 0
o. o o i o o
O.D01 00
0.00400
0.03000
0.06000
0.06000
O.ObOOO
O.ObOOO
0.05000
0.04000
U.03000
O.iMOOO
(l.OObOO
0.66000
0.16000
I .40000
O.b2000
U.12UOO
U. 1 1000
0. /6000
O.^.iOOU
fl.4^000
O.^VOOO
0.10000
O.bOOOO
0.32000
O.bbOOO
0. 71000
0.4bOOO
0.72000
II. OOOO
0.6^000
u.	
                                          0,
                                          0.0'lbV^
                                          O.bJOOO
                                          1 ,
                                          O.b?i
                                          0.^1000
                                          (i. .JOOOU
                                          D .(-'M-. I 1
                                          11. '< H 0 0 0
                                          <•. I ^01)0
                                          (!. I '^000
                                          0.1'
  0
  0
170
  0
  0
  0
100
  0
  0
  0
  0

100
140
  0
  •
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  (I
<^h
0
0
0
0
0
0
0
0
0
0 '
0
0
0
0
•
6
•
•
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
*


0
o
o
0
0
0
0
t7N
70
60
60
55
155
\^
2ti
60
65
60
90
190
50
40
30
50
4b
150
tt
55
0
35
40
90
90
50
30
100
30
251
30
eo
35
40
3b
6U
40
30
0
U
TO

70
SZN
35
60 .
40
llg
28
80
60
55
45
40
45
30
•
40
•
•
40
70
30
30
45
•
30
25
45
45
40
30
35
•
20
g
85
20
35
35
60
io5
•
0
30
100
50
ECU
0
0
0
0
0
0
0
8
0
0
0
0
20
0
•
0
0
30
0
0
0
0
0
0
0
0
0
20
0
0
0
20
8


0
0
0
0
25
0
0
0

•
0
scu
0
0
0
0
0
8
8
0
0
0
0
0
•
•
0
•
•
0
0
0
0
0
0
0
0
0
0
0
0
0
ao
8
0

6
0
0
0
0
0
0
0
•
•
0
PRF 7NF
m
a
9
»
•
•
*
•
*
•
•
*
*
•
•
•
*
•
9
9
•
*
*
*
•
*
•
•
•
14. a
!8:8 .
15.8
6.8
m
m
8.0
12.0 8'
14.0 5
13.0 4
6.0 3
7.0 2
22.0 4
•
•

































4
a
5

/
•
t

-------
                                                              STATION METALS DATA
m
CO
0 f->
(•••HI
f,* \
i.."1 <
'T.l'l
f~ '<>-,
iS'-tl
d-') 7
*,M>'
',„•'
f- "4t\
h't 1
'"• ' ^ C
'•>•' .t
(S'»->u.
^•-t*-,
r-> < /
n • > r1.
'> ^v
/III'
70 1
70^
7u <
7 ' ) •'*
7'K
?<.!(•>
7,17
/Or
70 W
710
71 1
71/
71.1

7IS
7 1 ••>
71 7
71'!
7 Pi

7^ 1
/ {;•
'1? <
7?..
7 '"->
7 ^*"
'I <* (
I'fi'-
1 t'l
7 in
7 U
7V
/-)'!
blH.N,,
^•>,^.,i
!•'';/'-< . i1
tl'jv . 'i
c •*•> . 'J
'' V » , "
!i'tj *" . r
f^ i. •!
£'?*'• 1'
''- 7 . ;l
P y-i. •!
r '* ^ . 1
c'-t t . \
^V,. |
^v •'. 1
<•'-•'. 1
r"-''7 . 1
•J *~* ~1 • 1
/ » v. 1
S^>. 1
r"^'-». 1
'"••<. 1
<-•?->. 1
r- - -' . 1
fT ~» ~* • 1
< -- -> . i
J1 '* •'« • 1 1
f. \ - 1*
• J .< . • '
j-'.ll
S Ij . (i
bU')
'><**. 'i
SJ.O
b.(. 0
V, . !|
V > . it
••> • < . u
l<'-' . 0
^ -y . n
'77.11
1 II 1 . II
1 II I . II
1 III .1'
101 . H •
i '"' . '1
1 (•<•-• (•

) !.'<' . II
\(lf-_,'l
1 I'^.ll
1 llr . ('
1 I'^-.O
r t •->• i
^ ^bliiJTr1.
(.' /''-•l/l.T^
^ ^SiK.Ti
^ f = i;CTp
J ..':>(. Llr.
f' ,'S!!CI'.i
> /^3(lL TM
^ ^? S * .' C. 1 V*
2 >^(-("lt>
c7 i-Sl'Clo
/ ^St'CII
/ ,'M'lTf
c' .'SHCTb
< /''buL [ c>
f- ^ S I ; c 1 n
/ /fbt'Cl o
^ < J ^~ t • C T ti
/ ,,'Sl'i T«
^ ^si.'cr?
c; ^'-tCIo
/^ ^ "i i '_ T r1
<* r"~>( 'C T ^ i
t /-; S i ' f 1 r
fi s "• ( 'w 1 c '
^ r"^ ' • 1 T n •
"Jl>l.-f
c 2 1 s* - 'if*
<• i'i^f t fio
r'. I'fh r 1- ^

^ r"jf t 1"'
^ ^IH-HH

^ 1 1 /* '-'i A f-* M
,- ubAPKfj
^ (1 ^ 11 r'^ n
<•_ Ui^'-^r)
^ (J ty C t- K H
^ (I'-A^KM
^ liVAl->^(>
y |ll.^H^
c I IA-VV
< 1 1 /lr>!'n
llMf't<(l
^ 1 c*£f K M
^ j f> j, ^jf< f^
^ 1 f' '* h ^ ^
r l^AHKn
ff l/'hl-'KO
£ {£«KK?
c | ^ C H k r
r IShrnn
	 -.,
i FLO
I:O>-:SH 0.16
i:o.i:i'y O.o^
i : u J : 4 .1 0.16
KOn:;."* 0.16
}:us: 1 1 0.16
"i : OS: 3 7 o.OH
i:i)t-:ni O.OH
):ii6:;'4 0.16
i:o?:il O.OS
i:o/:'.b 0.01
i: |o:bj 0.01
. :li:?b 0.03
i : I / : 0 1 u . 1 2
): 1 j:S^ 0.03
i : !'• : Jr> O.OH
: : 1 4 : s-j u . (»2
: : 1 S : 1 b 0.12
i: is: A i o.ort
i: l6:i)J 0.12

) : 1 1) : '. j u . o t<
i : 1 / : ') b 0 . c 2
 0.33
:l(i:.)o u.7b
: 1 1 : o / 1 .00
: 1 1 ="0 O.bO
: 1^: 1 1 o.^l

ildipo 0^7<>
: 1 (j:so 1 .0*.
: I 1 : ( 7 0.^5
li^Ml 0.7S
'Jlyjl^ 1 ^()
: I v:4b i .00
:
-------
                                                               STATION  METALS DATA
00
in
.).", V|,.r
71'. in.'
73'.. l.- /:
7 "1*~ " f1
737 i OS.
7 }^ (!<•
; 7.^') II ^
740 (l£
74 1 0 <• 1 J v
!M '
-'i
f'-tj i 15-»
r-.i r>v
/•?7 IM
/ S -< 1 *i'.
7 ^ '-* 1 ™ ^
?.^i.i 1 -v
7' 1 trfil
7-.? ,>
7 IS crrij
/ *. /TI <- ^ j
7*7 SSI
7- >• ^^f
t 'I *V X* "4 J
/71 rr'jj
7/1 ^f"
7'/V d/..
771 c^l
II* S.1-
7 7-i (- '->^
77'' ji'/
777 J..1-.
i-.D
ii
u
U
u
1;
0
IJ
U
ll
u

(_!
II
II
u
u
u
ll
II
(1
ll
II
t
l>
II
y
1
u
II
J
li
u
V
II
IJ
II
0
1
I/
(;
I/
i,
tj
(.•
1 Yl't
S
s
S
f
if
C
C
£
S
f>
s_
s.
s
;
s
S
s
f
f
S
c.
C
S
r
'r
£
(^
C
s
s
f
c'
r:
S
S
^
c*
^
S
ft
f'
f>
s
f
Tl
1 (-* A ^Mfi |
{f1 1\ \-' -» ^
f1 f" \'\J '.
\ f> AHH1^ 1
i ^A^tttt i
j Jiih'fv^j 1
1 J/^MW ^ \
1 j ^ ^ y 8 i
j j^H'KfJ
j ^ fi KPf
r* il 'JKV
^ Jrt M(V^
f "J Ct'WM
M 1 M(i YH
J 1 1 v ft f H
1 1 M A f t
1 ^ *' A Y >-*
1 r;-M rh
1 '-yf-'y* Y ?
/* <•• M M y *'
nl'ju;i^
i' jJH'it
in > i1 ir i>.
1 P jui it)
1 .K'llllt
II 1 JHLf
(i | ji IL M
r'dJULt)
i"1 J'.U. M
^*^ v'l'L ti
U *>?> ul'-S
nHfluoh 1
1 1 /HJ'.ir1 1
| S/M|i}frl
llUf-UO^ ]
J 1 ^ U ( • tt 1
OnSh ff 1
J '-, V, ^ ^J fj J
OM'Ll C 1
1 Mt'l, 1 n 1
cTJ"*.'!^ 1
<-7l.l(. 1 f--
li -t'-l\) *J r 1
ni nil. -. I
1
f 1 : J '•>
s.-,:: is
^•3: IV

00:00
00:^
(ll : Sri

u 7 : s <*
1 n : 1 /

L. \ : Oi
s\ 1st.
\r\: S i
r.\ ;':D

1^:10
ry:-4^.
14:,-,-
ij • ..M
? : 1 j
c 1 J^O
UP:^0
u t' : <* 1
d. ~£ • '+ S.
\ S : J ^
cj 1 : 1 u
1^: In
Ii:b3
}'"?•£ J
1 0 : 1 o

le^"
j' ') : /? S
i) 7 : r? 3
(i<» : os
1 'J : " 0
le^-p
cfl : 10
1 /: j-.

1 •* : ^i)
f ) : u '.)
I/: .)<:•
	 b
FLO
0. 7^000
o!suooo
0.4(^000
1 .50000
0.96000
0.21000
0.21000
0.21000
0.0*000
0 . S. t* 0 0 0
1 .0-4(100
) .44000
0. 7VOOO
1. 1*000
O.V1000
0 . 4 u fl 0 0
(I. 1 V060
0. 1 7000
0.29000
U *4 0 *"> H 0
Ol 7bOOO
1 .70000
1 .4^000
0.5bOOO
1 .54000
0.^1000
0.06000
J.^fOOO
0.67000
0.42000
0.3VOOO
0.2fjOOO
o.7eooo
0.57000
0.7faOOO
P. 44000
0.31000
0.4^000
0.29000
1 .3(1000
0.3frOOO
0 . * b 0 0 0
1 j . r? S> 1 b S.
0 . DbOOO
0 = blU
F_PH
0
0
0
0
0
0

6
0
0
0
0
0
0
0
0
0'
0
0
220
8
0
0
0
0
170
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SPh
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
• ,
8
0
0
0
0
8
•
•
•
•
0
0
0
0
0
0
0
0
0
0
0
•
0
F 7N
0
100
0
105
20
•
25
0
40
65
65

0
60
20
40
70

*ll
88
0
40
IPO
40
45
175
20
35
20
0
0
20
50
25
45
95
20
20
45
30
S7N
0
28
0
0
20
25

0
ll
25
25

25

40

.
38
20
30
45
25
45
50
35

.
t
0
25
30
0
30
90
0
«
25
ECU
0
8
0
0
0

6
0
0
0
0
120
0
0
0
0
0
0
8
zl
0
0
8
0
50
0
0
0
0
0
0
28
0
0
0
0
0
*
.
scu
0
8
0
0
0
0
0
0
8
0
0
0
0
0
0

,
8
0
0
8
8
0
0
8
0
0
0
0
0
0
0
0
8
0
•
PBF
%
•
.
,
m
.
.
,
•
,
.
.
.
4
.
.
,
%
19^5
35:8
160.0
47)0
21.0
25.0
21.0
13.0
12.0
17.0
14.0
26.0
39.0
16.0
33.0
35.6
24.0
21 .0
39.0
23.0
ZNf























si
4(
4f
4!
3:
%:
y.
5
16'
2*
6£
A'




























1
»
1
'

i
t
)
r

-------
                                                                     S14TION  MfcTALS  DATA
                             •.T-.--i-.ii
                                         1 rt-r
                                                       TI 1
 I
00
                     /M11


                     />O

                     7*5
                     /Vn
                     (v\
                     l-lt
                     7'i.t

                     74*
•11)-?
.-111.1
"II-t

Mil")
                     '-,0 '
                     M 1 II
                     nil
                     "IS
                     '"•".'


                     M .->
                     n}1
                     I'I '
                     ••} i
                     -^ I

                     "2 J
                     ^30
        I'M
        1 I'4
        I 'I /

        11J
                             1 <0
                             1 _•'
                             I '-
                             I -•
                             1 ->
                             1'>«I '(tf-0
                             1! • ;•> h p i( 0
                             (Vit: >'^ 0
                             ^fvSi- HM)
                             (IDOL i no
                             /IIUL lou
                             s MIL i ^o
                             0 (ilUVdO
                             1 OH(ny)i)
                             ^4f-iO\/hO
                             dlut Ceo
                             0'intiou

                             ?f'lit C. riO
                             l^j/.r,dl
                             ^•ijAi.in I
                             OvFt CM
                                                    !••(•. S
                                                    '•' A ^- r
'«
                             n I'-i/'re
                             C'4'.M e
                             1 0'.- !'.-•

                             1 I i » y <•
                             j •TI'.<' 11:
                             1  /•••'. rl
                             ^-li', (. yM
                             il  1 Jllt'f1
                             (!«• JUtJrt |
                             «  JJdflH J
                             Cr. JlM-H)l


                             1  (iJUfi^il
                                                           !••<: '10
     1 J; J'.)

     n i i o
     1 1 :ot-
    1 r-: 3 J
    do: 4 /
    U -^: j 0
    1 j: 30
    14 : o 0
    0 v : 4 5
                                                               1 /
01 :

iiu:
1  1 • _
1  1 :?o
111:0 o

0*: 30
    ID: 3S
    lo:5M
    10:35

    ffiif

    r,JH
    l'T: 31
    1J.-44

    1 us on
    0-7: j'ri
    ?i;: 3*1
    i •? s o9

    1 i =00
    if* if()

    o j :^r,
    1 1 :-»5
            rLt)

           1 .850
           0.005
           0.005
           0.005
           0.005
           0.005
           0.005
           0.010
           0.010
           0.010
           O.b30
           1.220
           0.010
           0.010
           0.010
           0.005
           0.005
           0.005
           0.005
                                                 0.7^0
                                                 0. 100
                                                 0.010
0. 1 30
o.oio
0. 1 00
0.^/0
0.005
0. JbO
0.2SO
0. 380
0.020
0.010
0.^0
0.010
0. 1 JO
1 .OHO
O.OOb
0.230
0.020
0. ISO
0.070
0.005
O.OhO
0. 140
0.4^0
0.005
0.2f)0
                                                                     0.0/0
                                                                     0.005
SPB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0°
0
0
0

0

^
0
0
0
0
0
0
0
tZN
0
95
68
45
BO
60
40
25
30
0
0
95
30
85
65
0
0
25

35
0
30
40
25
40
0
11
100
0
20
*
40
0
0

30
175
60
30
0

65
200

45
30
35
0
35
215
30
SZN
0
30
40
30
1 5
30
0
20
8
40
25
35
55

*
9
25
20

45
40
25
40
*
§1
30
0
20
50
0

.
30
30
70
55
30
m
%
50


20
30
0
35
125
30
ECU
0
0
88
0
0
0
0
0
0
0
0
30
0
25
0
0
45
0
0
0
0
0
6
0
0
0
8
25
0
0
?5
0
0

ao
0
0
0
0

6
25
so
0
0
0
28
20
0
SCU PBf
0
0
8
0
0
0°
0
0
8
0
0
0
0
0
0
0
0
0
0
8
0
0
0
,
6
0
0
8
0
,
0
0
0
0
0
0
0
2
0
.
m
o
0
0
0
20 4
0
0 5
7.t



































0






2

4
>lF














































-------
                                                                STATION METALS DATA
I
00
OM, „,,„,
nvi* 'K.
"i 3 .i > i
>V3-4 /h
rM O rM
- 1- .• .
!< 1 / 'III
" ' * .
- 1 « 'I, '•
-..-• f.\.
••«• | ,>,•(•
•' U £ .
•-14 >
M £, i. i-' <4 <••
^4 ^ <"S 1
f ' 4 b /* ^ .^
H-. / " .
^'•'t f1 ?t
^^» -) .
^ S ' i .
"SI ^-vl
- S ,-* <•* V 1 1
M;>3 ,"-n
-1S'> .
-sbo JlU
oS / !
"So .
'• S -y .
-»-. -i j.i'-)
MM
()•<•> all--':
.(i,^> f'.^.
"f- ) £•>£•
It'H d?'V
H'. -i f'hS
H hr> ^ ^~D
;-((,/ c'V<^
!-.*>'< £- * C1
U. *l ' £* •' C*
rt V 1) f -r f'
^ f 1 S '* t'

"l7 ) >-l<4
47'. J-3C
,;V ., ^ I
X ''.7'> . 'ill
.M. 1 M 1
^ 1 J.HK^
t? r'UjOf'b
,> P'bJlK'xo
r1 D/^ Jl 'I M
c: ii-4 .niLo
^ 'f () Jp|_ »"»
1 ^/JULri
c ? -^ . J 1 1 L n
^ t)'.IMl"jM
c' 0 "i ''• I J t ' ^
1 I ') a 1 1 1 1 .-A
I ;-H..IH-;I
^ .Jli.MKjrf
c O^1 St 1- ti
> i'3-.et-e
1 ^ 1 S h i ' ^
<> d 1 DC 1 .i
1 U^I.'C T"
i ic-ii', rf
^ 1 f^')C 1 b
£^ f'.lllt. 1 1
<^ PSut 1 o
1 I'^i-jOvn
1 l!'J'l()VOl
1 ^JW!/H!
i luliOvn 1
' lilUt'-f. I
1 l.l/!lfc CSI
III [YKt Tl
1 ^ IHStr'HU
I ~i (•
S \ .'»'. T 'Mi
f ^/.\0*/Hu
r I'-'IJt'.nO
S / jl)t I. -SO
> 0
u 1 : Of.
1 ^ : L+^
1 J: t>v
llr : 04
!<.';. '7

K :bs

0 1 : 6 ^
1 1 :SS

OM : i ^
1 ^ '• <* 4
1 V : ?. 7
1 £ • /^t->
? 1 : ~ : I ! 0
I
Oj:on

ll)J30

r I • 04
^ o • in
rV : l>^
ii i : i<4
(i'>: Ob
I d : M

I ^ ! J4
u v : 4 o
()-. : 3.i
Q o : t4^»
1 'J I SV
!)•• : Si?
?,:':>?
FLO
0.300
0. 1 vO
0. HO
0.^00
1 . /OO
0 . "J o 0
O.UOb
0.^70

ol 1*0
0.000
0.000
O.blO
0.140
(I. JbO
O.OOS
0.1 bO
0.005
O.OOb
0.210
0.260
0.350
U.OOb
0.140
O.OOb
O.OOb
0.005
O.UUb
0. 1VO
0.005
KLO
0.11
0.07
0.04
O.OJ
0.03

o I i /
O.Ob
0.0,?
0.00
0. Ib
0.07
0.17
0.0?

fll Ib
0. Id
O.OM
olA-olU"!
EPB
0
0
0
0
0
0
0
0
0
%
0
0
0
^
0
0
0
100
0
^
0
0
0
0
0
8
0
0
C.TA— C.1IID1
b I A-^? 1 UK l
tFb
0
0
9
0
0
0
0
0
0

0
0
0
0
0
0
0
0
t> 	
0
0
0
0
.
0

0

.
w
0
0
0
0
0
0
0
0
^
0
0
0
0
0
0
0
0
0
0
SHb
.
.
1^0
0
9
0
m
m
0
^
w
0
0
0
0
0
0
0
EZN
20
25
35

20
aoo
25
20
eo
^
0
70
0
9
0
**0
35
65
55
9
0

45
28
58
0
0
"
EZN
270
7S
^
200
70
eo

60
c'O
^
190

ao
50
135
30
60
195
SZN
20
0
35
20

475

9
25
.
4
60
0
0
0
0
0
0
20
^
0
Q
45
28
30
*
0
30
SZN

75
40
30
20
50
*
.
0
m
30
35
80
.
55
30

25
ECU SCU PBF
0 0 10.6
0 0 4.0
0 0 8.4
0 0 6.0
0 . 7.0
50 . 27.0
0 0
0 . 6.0
50 0 23.0
. . .
0
0 0
0 0 4.0
0
25 0 9.0
0 0
0 0 20.0
«
.
^
5.0
8.0
.
6.0
;
»
3.0
.
ECU SCU PBF
25
270 0
0
35 0
20 0
35 0
40
40
0 0
^ ^
25 25
0 0
0 0
0 0
30 0
0 0
0 0
0
ZNF
9
.
.
.
.
,
,
,
97
t
.
t
26
»
!?ft
9
82
,
.
m
24
24

30
:
.
17

ZNF



















-------
                                                               STATION METALS DATA
                 OMS
                                    I ri-i
                                                  I II
                 )}.'( I
                .1'.")
00
c»
                 ••»n I
                 9 0 n
                 VQ-y
                 4 10
                 •M I
                 912
                 •M i
                          111
                          111
                          UO
                          l<: I
                          1 ju
                          1 31
                          I Jb
                          1 Jb
                          I J".
l'.v«
i n
1 '/u
IK"
2U 2
2(ib
                                    ti
                                    f
                                    r".
                                                 'rt 1
                                            Ic'Al-Hb J
                                            I
                                            1 vl/. ry]
                                            ?rl 1)0 rlj
                                            li IJllii:')
                                            I  JJUMHI
                                            ^OJllKHl
                                            ^bJliflbl
                                            OJJUI.H1
H.JAH08J
3 I'll, 0^1
OoSh t-o 1
1 ->SM'f. 1
                                            (H-x/CTWJ
                                            ^ JOCThl
                                            (MlitC.bl
                            11:45
                            1 3: 2^
                            0/143
                            1 /: 3S
                            li:34
                            1^:54
                            1 /:59
                            10:59
                            20:42
                            lo:3h
                            1 u : 31
                            1 b : 1b
                            I ^ : 0 i
13 :
0<< ,
In <
0(1 I
Ib: 30
         13:'
                            11 : - /
                            |n:07
                            1 /:s,>
                            ^o:<*9
                           ?1 :os
                           11 : ns
FLO

0.25
O.Ob
0.17
0.36
0.24
0.1 1
O.Oti
0.0?
0.32
O.Of.
0. 16
0.17
0.20
0.54
0.11
O.Ob
0.06
O.lb
0.22
0.1H
0.00
0.2b
0.41
0.07
0.19
0.31
0.12
0.23
0.01
0.34
0.24
0.33
0.11
                     06
                     I/
                   O.?b
                   0.12
                   0.09
                              o
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                            100
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
                              0
SPB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



6
0
0
0
0
0
•
8'
0
0
0
0
0
E2N
40
80
30
340
35
75
0
65
40
90
90
0
65
70
50
20
50
0
50
40
160
105
20
40
20
.20
•
30
5?
35
30
40
•
3S1
30°
55
30
0
SZN
40
30
25
125
30
0
•
50
40
45
55
*
40
20
0
35
0
0
40
55
50
0
40
20
20
40
30
30
20
0
20
30
•
as1
8
25
30
•
ECU
•
0
?5
50
30
50
0
0
0
0
30
0
0
0
0
0
30
0
0
0
40
20
0
0
0
0
•
20
0
0
?5
0
0
•
8
8
•
•
•
scu
•
•
28
0
0
0
0
•
0
0
25
0
0
8
0
0
8
8
8
0
0
0
0
•
0
0
0
0
0
0
•
8
8
*
•
•
PBF
•
•
•
•
•
•
*
•
•
•
•
•
•
•
•
•
•
•
3fcU4
&:l
43.9
»
8.0
8.0
4.0
•
36lo
24.0
34.0
7.0
14.0
9.0
e.'o
1<«.0
4.0
18.0
40.0
3.0
5.0
ZNF





















65
4)
4<
4.
4;
4'
§«'
3 =
6£
5
3;























\
1
J
>

)
*

)

y

-------
                                                               STATION METALS DATA
co
O-iS -,!,•-.,
 /
^ er* •' f' ^ c
2 '••
n,s sr •.-.,
931 bl
^ 32 sl
•J 3 A T .1
93-'« <•>"!
'y 3 1> (^ **
' ' j 1 ~>^>
't\\ *t y
•I :* -• 1; 1
'"•1 l'"j
•j't j 3n
V4'i .* T
'}'»b J ~
^•-•o '.i"
4 4 7 MI
^^.•i *•»<«
44 -> / 1
ybi> l /•>
9S1 1*1
vS^ t\'<:
•
"S-'. cH> •*
VbS t 1 o
V ri is rV' >
4S7 rV .«
^ j ^f, '
-/(,U t't'^
'•"•"I r*'- ^
1 "' '^ f* f"-* \
ty^'i ^^N
'•*!)•-» (-"71
•^', J|(l
:'l TfVt
'1 CT
" C
0 ^
II ^
•' r*
1, £*
0 r1
1 ^

i ^
II ^
li e.
ij ^
0 d.
(i <:
0 Jii 1
1 O ' 1 C T rt 1
P' JOL 1H1
?SOL 1 HI
(KiMIJVil I
fLO
lj:Sb 0.07
0^:27 0.4b
Ibl'j4 0.41
IS.'Dh O.Ob
/ \l t*^ 0.20
()i:il 0.02
1 /:^S o.os
?1 : 10 0.0?
KLO
DO : 1)1 0.084
lb:07 0.032
lo:40 O.Obl
2j:oo 0.032
It '• Ib O.Ul 7
O^Jb^ 0.024
1^:^-0 0.034
dr:09 0.042
1 1 : :^ 0.024
2i:31 8lob2
1 1 : (iH U. 1 1 7
lj:07 o!o45
21:^0 0.032
nv :2b 0.010
r'JMS 0.017
lv:0? O.Obl
Oo:.'13 0.012
n/:bJ 0.02V
1 1 : 40 0.0 Ifl
Oij:LvJ Q.005
f 'j : <• b 0 . 0 0 V
\(i'-?r- 0.0b4
|j:():bb O.Ob'J
OU:34 0.016
D JUKI
Ptt
0
0
0
0
0
0
0
0
C | I |l> |
J 1 U K 1
EPb
150
130
IbO
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a 	
SPb
0
0
0
•
0
0
0
0
SHb
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0

•
0
•
0
0
0
0
0
0
0
0
0
0
EZN
195
iao
175
ISO
175
105
120
110
EZN
45
0
0
8
0
20
0
0
0
220
2151
20
400
0
0
25
35

0
0
60
20
85
20
0
0
30
30
0
0
0
0
SZN
100
170
175
90
70
110
SZN
0
0
0
8
0
20
0
0
0
40
8
20
25
0
0
25
30
45

9
45
50
20
85
0
8
0
0
8
0
0
ECU
35
0
0
0
0
0
0
0
ECU
0
0
0
8
0
0
0
0
0
0
58
0
35
0
25
0
0
40
0
20
25
28
50
0
0
0
0
25
8
0

scu
0
0
0
0
0
0
0
scu
0
0
0
8
0
0
0
0
0
0
8
0
20
0
0
0
0
20
0
0
25
0
40
0
8
28
0
0
0
.
PBF
U8
12.0
6.0
PBF
9
,
,
•
.
*
,
,
.
.
;
.
»
^
.
2.2
0.0
2.7
0.0
0.0
0.0
8:8
4.0
4.0
4.0
1.0
3-0
3.0
3.0
1.0
4.0
0.0
ZNF
12<
135
ZNF





















4!
n;
3f
fl
4i
4^
f!
2(
r
i
























•
\
1
>
»
j
?

-------
                                                              STATION MtTALS DATA
I
U3
O
HI, S :> 1 1- MI-IU 1 r^K. T 1
4h7 ^(,s ^ P^f-kVAl
'J^'J <•?•• <; lllMCTMl
9<^ / IV t Oolil. 1 rt)
•-*7i) <"-vl ^ lr>'.)Llnl
j 7 1 r"-*'j c (^ UK, I rt 1
V 7 / *-'v.M f* ^':K)Clhl
^ 7 J ^ S -y £ P *M ) L T H 1
*y7'* i('^ /** Ob'iUV^l
^>l^> >.):• r: 01Ut(«l
•> <• ^ (I'lJu.ifV
• in-, '.r»^-!nj i ^i- TI
,j7/ _ ?ISf i-'MI
^7(1 r'^.SKt-o 1
^74 0'jni.lijl
^;»D It^'^Lrcil
li'J 1 c"'' S >'it 1 H 1
~)'r\? 0 ^* UO V O 1
^H 1 o'^^u v fi i
v"" i«>i-iovai
*4»-< <1J^l()Vrll
4W) 3diiova 1
4H ^ 1 0 /UK CH 1

17:41
1 v : Ofi
"ij-1

1 d : l's
(i y : '. V
1 •* • t?**
1 .(if-

O'y : c"()
tin ; Jo
On : bS
0 -y • 1 S
ln:33
TIM: 55
do: 3b
HO : 3S
Oo : 3(1
nu : <»b
Or. : Sb
	 b
FLO
'•.ll
!1 •t'S
b.lH
^ » ^5
3.75
0 * d**
V.63
** • ^*H
1 • £^0
O.S1
HO
0.03b

0 . U28
0.014
O.^irO
0.019
0.035
0.023

olol4
0.011
P = t>lUK<^
EPb
.20°
(I
130
^
1 
-------
                            STATION METALS DATA
                                                                                                               109
150
151
15?
153
154
155

157
15H
1 1~>4
1 60
J^'i
1 f} j
1 f^ *U
166
m 167
1 168
^ 169
""* i 7 0
171
1 72
173
7«t
175
176
177
17B
179
180
1R 1
182
183

185
186
Ifl7
1 88
1 H*j
190

192
193

19S
196
197
198
199
20(1
201
292.00
292. no
2'<2.on
2 '2.HO
2'J,?.
2^2.
2 '-^2 •
?"?•

2^2 .
2 y2 .
2-»2.
2-<2.
2^2i
292.
2*2l
2^2*
t^Z*
d*?..
d ~id »
C? "^ ? *
292.

c' ^ 2 .
n
0
(\
0
fi
'I
0
I'
"
n
n
r\

n
n
n
n
n
n
(i
2 *•• ? • 1 n
292. 1 o
309. 00
31^.00
329. 00
332. CD
3'»'« . O'l
J S 8 . i ' 0
i>l .HO
5 1 . l n
52. on
5 3 . n 0
(.3. (Hi
vs.on
HQ . 0 1
89.01
H9.01
89. U 1
rt9.0l
H9.ni
89. (' 1
89.1)1
89.1)1
H9.'i 1
M9. .'3
'1(1 , on
95.00
2
2
i.
2
d
<:
eL
2
f_
(*
f
c
s
f1
2
S
c
ii
2
2
,;•
{>
f
S.
£
£
2

ff
()
s
t
d


 MIC i MI : 1 $ • 34
 ">:57
 M>C i iL-y : 1 •>: u /

 •'.(if 1 i(j: 1 y :<-u
        : I v : u (,
 HOCT80: 19:5b
 «OClbO:?n:1 1
 yof. IHO: 20: 29

 nuLTHo : 20 : 5ii
 8ll(. [ I; () \ ,
           : Ib
09i>hCno: 12:55
"   '  '*o:ort: 19
      bl :oo: 14
      hi:Ib:J2
   tt:Mi: 1 7: 11
        : Oh: 28
        :08:»o
       1 :0v:0()
         119: 13
       : 1 o : 1 9
       : lj:^0
       : l(j:<.<.
       : 1 7: 30
;, l,
0. 12000
(i. 12000
0 .09000
0.06000
0.03000
0.58000
D.'.20()0
0. 12000
0. 12000
0. 13000
1.11000
0.89000
U.8VOOO
u . h 7 0 0 0
0.4^000
0 . << 2 0 0 0
O.u2000
u.^2000
O.u2000
0. 33000
0.33000
0.21000
0.21000
0.67000
1 .1 1000
1 .23000
0.89000
U. 67000
0.42000
I). 19UOO
0.5WOOO
0.36000
0. 12000
0.24000
ll. 15000
0. il 000
0.15000
0 . liO'^'*
0.33264
H.47IJOO
i) . 05000
U. 11*000
li. 1POOO
i). 27000
0.33000
0.39000
0.42000
0.45000
0.36000
0.24000
0. 15000
Ij » i» 7 0 0 0
0. 126b2
0.60000
I5U
IOC
50
2L
IOC
30(
ac
(
t
0
6C
^t
<»t
(
121
2C
(J
I
C
C
c
c
c
IBt
li
*tt
I
C
6t
2C.
1
(
4(




2














80
HO
.
.
60
0
20
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
120
0
> 0
) 0
) 0
1 0
I 0
> 0
> 0
0,
) 0
) 25
0
0
0
0
25
30
80
35
0
0
0
0
0
0
0
25
o
0
0
EFt









17^
20C
15C

251
15C
22(
ec

IOC
•
*%\
ii!
\\\
?si
12C
20(




ie












SFE ECR
185

m
100
210
1 10
125
0
100
J40
125
100 C
90 (
65 25
75 C
0 G
155 (
eo c
0 C
1X8 «
, 'at 5CC
) 220 C
i 140 1
) 150 2C
> 0
50 C
I
100
) HO
170
465
160
555
150
0

Ib5
190
170
190
Ib5
520
190
230
0
230
305
160
SCR ECD
251 8
8 8
251 8
0 0
0 0
0 0
0 0
0 0
0 0
8 8
8 8
0 0
0 0
0 0
0 0
0 0
0 0
198 8
8 8
8 8
8 8
251 8
0 0
0 0
0 0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
8
0
0
ENI SN1 Ct
0
0
0
0
0
0
0
0
0
0
0
0
6 8
38 8
30 0
60 0
30 0
0 0
30 0
60 0
0 0
70 0
0 0
60 0
75 0
50 0
20 0
0 0
0 0
0 0
0
0 0
0
0
0
0
0
0
40
0
0
0
0
0
0
0
0
0
0
0
0
0
)F










































-------
                                                              STATION MtTAlS DATA
110
ro
OKS
202
203
204
20S
20b
207
208
204
210
21 1
212
213
? 1 4
21S
!ht
7
218
219
220
221
222
223
22*.
225
226
227
22M
224
^ i n
231

233
234
2^
237
23o
?3'V
2^0

 .
20 i.

20s!
20/.
20*.
2lT.
J 1 f*
C I " •
** \ * •
2£ i
2?7.
2^ ^ .
;iu j.
<>SL .
/•*(•»'( .
PhT» •
£* 7 ' 1 .
P*7'-» •
/jg l .
f* 9^ •
2 -XT' I
JIM).
U1:).
0
0
n
it
n
0
0
n
0
n
1
0
ii
n
0
ll
r,
(I
1)
0
II
0
II
11
l"l
0
(l
n
(i
n
!|
(i
0
|!
()
n
1}
o
n
ii
ii
r YKL
2
<•
f
l!
'/
£
f.
2
il'
£*
<•:
^
r1
^
2
2
2
2
^
f>
2
2

^
,>
£
ri
i-
f
f>
2
rf
£•
S
's
s
f>
S
2
2
f
C

\ \
1 7,.ijf-ril : Of'i
^ .^in^ ^ 1 ; j v
1 Inv.AYH
1 ^!*' A Y b
r'f^N'fl V*
2'*iv>'- Y^
1 1 h-l A Y 'l
i' 1 i'ir.'<<
0 1..H I'')",
(i H ..M il>in
11(1 Jl It-.'H
IJ^JIH.!"
1 ij . it J^'.^
1 -Ul '1 !^i
1 VJUh u
fb.l'll'.n
I/ .i J1 M. c'
OH JUL f
r'G xJ1 11 '%
: 1<4
: 13
••01
• l.H
• c J
: 13
: ] y
• 2o
:21
• '(* \
:()!
:i 7
:23
= 20
:0b

: 14
fUui'm : Is

c o JULo 1 : 1 v
t'bJuL1; 1 : 00
*• ^ H ! 1 1V
0 1 ' J C T t' :21
1 HtiClH : 1 7
2 J 1 1 f * T H • 1 i
2'.l;tTH
;21
2 ^IM! 7 ^ • do
o lutc^l : 1 1
!S5
: 24
:OH
:23
: .in
:U7
: 33
J4Q

: ^^
: bft
: 1C
:20
:0^
: It-
: 34
: 1 2
:ll

• ^* 1
:?*

: t,^
: 1<^
• r1^
: J>*
• r* 3
:()4
: 44
: 4h
!20
: u H
!4|
:4^
• 1 b
• 20
: 44
:b"7
; ] f)
jb2
• 24
:4<)
o
ii
0
0
0
0
0
n
0
(i
0
u
1)
(J
II
0
1
o
0
•3
0
0
u
u
u
0
0
1)
0
0
0
1)
(l
0
0
0
0
0
0
0
I!
0
0
	 S
FLO tMN
.Moon
! isooo
. 13301
.22646
.24437
.26000
.?4000
. 10000
.04000
.22000
.09000
.06000
. 0 9 4 6 b
. 12000
,2Srt/6
.14000
.32000
• 5 tt 4 2 V
.20000

!lM43
.Ib363
.26000
.IblVl
. 18000
.10000
.16000
. 1* ^ S46
.14403
.26000
. 4 H o 0 0
. J3417
.400 00
.42000
.34000
.1«000
.2^000
.36000
.44000
.24000
. ISOOO
.S4000 ?.
.33000
.20000
                                                                        SMN

                                                                          0
                                                                          0
                                                                          0
                                                                          0
                                                                         2
En


16



IS
SFt
11:
A3(
(
(




IB
15
: ECF
1
)





i
«
2(
? S(
(
(
(
(





) (
:n E(
)
i
)
>





) <
:o Et






)
)
JI St<
(
(
(
(






JI CDF
)
)
)
1

^
(
|
I
11
(
1
»
.
(
(
(
H
l
(



I
1
I
F
1
l
i
1
)
'
)
)
i
i
)

-------
                                                            STAT ION  Mt.TALS  DATA
                                                                                                                                        111
m
i
CO
GBS SlyifJO tYI-'L I]
247 329 s <:<»NOVrtf
248 332 ii ,-/r.(.iVH(
249 31 e! 02H- h8
250 42 2 llt-ti-M
251 S'l 2 IVFbS-H
252 53 ^ cVH-^i
253 «9 2 .XIMAI.-H
254 9') ,; 31'-' -XI h
255 4S e" lib<'l-''-'H
256 99 ,;• ,|S,AKPH
257 1 fV ,f I^AH-h
2 5 R If)1-* f* 1 1* fl lj P H
259 KI r c \ /ipkpi
260 110 f1 ^OA'J^n ]
261 121 t II|..IAYH
2*2 131 2 1 IMUYH
263 133 /- Ibr-AYb1
264 m c; I-II-'/IYN
265 153 <.' U2JUN8
266 15^ 2 03JUI-.H
267 |M c: lOJtir-'bl
26fl l^>-< ^ 13JUMSI
269 171 2 ^OJUt-d

271 Ir'i 2 0(.ji||.M
272 20' 2 2^JHl.ti
273 20d e: 2/JUL4
274 2?3 S 1 1 uiJOH
275 2^7 c lbAlK.8'
276 2n2 «• 3(.tUC-B
277 c-43 <• .MAi't.M
?7B c".->l £ ISS(-P8
279 ^61) ^ 1 7skMH
280 27'. ^ OluCTM
2H] 2^v ^ 2o(H.lH
1 FLU Ef
:i^:b4 0.68004 61
:22:4H o.i"71<4
I10l3f-> 0.180(10
:0^:b6 ll.7f; 000 Hc
: i:29 0.15000
: :50 U.4HOOO
:2o:32 0.16000
:OH:IO 1.30000
:21 :34 o . 15000
: 2 : 32 U . 098 ? (?
:20!39 0.30000 3
:20:b5 0.35000
:14=^0 0.24UOO
:09:3? 0.60000
=2l:ol 0.50000 4
:21 : 10 0.1 7335
:23=01 0.28000
=12:52 0.35000 4'
S 1 A = j 1 \J r
irg SM^
) t

3C
35
35
4t
I
(
I





















3


I (
C.T A = t,lll(
<(J<» 	
J EF(
37(


> 52'






















tB



ft^


I '•S
Ml C. 	
: SFE
) 10L
•
33C
37C
b6l
61C
s?«
12C
lie

















11






a 205
E(
>





i





.




















i
:R s(
c
•
c
c
c
c
• I
1
c



.




















3 i
:« E<
) (











.




















)
:D tr
) 2(











.




















3
«JI S^
) (
i
C
f
(
f
(
1
C



.




















) (
41 C(
)

'
•
}
)

'




.




















1
)F


































          OPS
                                              Til
                                                     f LO
                 22-.. lu
?H4
2Mb
287
2MH
?89
290
^fV 1
292
29J
29*.
2M .Ou
2^9.0(1
314.00
321 .00
32 <.0i
32 '.IV
J 2 ' « 0 3
(32.0(1
)4't .('U
1 l.'Mi
^.
f
2
^

^

t.'
r
1 /^EKHO
2'->r.K*-rii
H'.NUVf 0
Ow'IUVoO
JnN'JVHI)
^''UOvhO
(^'•MJVhO
^MMUVfO
fi lt,(j'jn(i
UVllF. C"U
|lrJ^ ^ i.rti
: 1?
:03
:OM
lit
:OI
: 10
: Ib
: (in
: ID
:o<^
:bl
:0rt
: IS
:<.!
: 16
= 22
: 2b
:02
••Sf>
:sa
:i7
o.
0 .
0.
0.
0.
0.
0.
u .
0.
(1.
0.
04
27
04
OJ
03
10
3i>
07
10
O.J
08
25
25
3b
50
bO
0
0
0
0
30
80
?5
20
35
50
•
.
•
•
•
•
35
150
200
•
1040
560
110
260
200
220
540
•
                                                                                    SFE
                                                                                      0
                                                                                     75
                                                                                      0
                                                                                     65
                                                                                    200
                                                                                     80
                                                                                    120

                                                                                     75

                                                                                    1U5
                                                                                           ECR
                                                                                                   SCH
                                                                                                          ECD
8      8
                                                                                                                 EN1
               0
               0
               0
               0
               0
              25
                                                                                                                        SNI
                                                                                                                               CDF

-------
STATION METALS DATA
                                                          112
on1;
?'J5
29^1
297
29b
29^
300
301
302
303
304
3 0 S
30f-»
30 /
30h
309
310
31 1
312
^T1 313
1 -)|4
^jP 3 1 S
** 31*
31V
318
319
320
321
• 322
32?
124
325
3P*"»
3^» /
3 £ **
~^f"-i
3 lu
331

333
335
3 Jr.
3 j 7
3JH
33v
TAft
341
3^2
3^3
I1*"*
s ri- ••'•N
)9.
41 !
so.
N3 .
75.
*" 9 .
9J.

S4 .
01 .
02.
(> 3
'i 7.
ll<-

1 * .
<• 1 .
.(0.
31 .
.iS.

"' ^ .
4H .
•-,() B
1 ^2 .
"•j^ .
>'1.
1M .
I54.
^:
2^1.
2';^ .
2/'l.
£•-'".

0

ij
1,
0

(1
0
(J
0
i;
0
i
n
i

o
i.
i
0
0
II
(>
I)
0
0
0
U
I)
1 YHf.
f
f.
£
^
f>
s
,3
£
i>
f
S
£
r>.
S
,*
j
2
^
f*
f

^
~s
2
r>
2

^
£
^
^
d
^
(>
^
(>
(>
?.
^
f»
f1
(>
i>
f>
^
(>
c
t
\\
iiHrhr-Mj
lOKt'f Ml
] Q [ K HH 1
O^MAJ-'h ]
IfcMAHrtl
j (1^1 AH ^ 1
0 1 A ^ K ^ 1
OS£ 1- K S 1
(iVAt-'h'b 1
1 1 £MJH 1
1 ^ fi ^- ^ ^ 1
1 J ** p H 1 1
1 7^PKttl
^ H A PK ^ 1
^j H /i p (^ ^ J
2 r< A 1- k H 1
(j ir'AYf.) 1
li|»-/»tbl
1 lr-«r.M. u vHl
Jll^ /» Y H 1
0 1 JUliM 1
u:ijurni
(i 9 Jl ihtl 1
1 () Jl M M 1
1 "J JUIlo 1
01 JIILHl
ff Q J| |[ ^ [
^bJULHl
1 | .Ujf.Ml
1 d*/* Ul» M 1
3 1 Atjdo 1
(J 9C.|- MH 1
1 5 S t \" fi 1
ISStt-Hl
o inclMl
0 ft f j C I M 1
c'3IK. If»l
t'SOC ] b 1
^^0( TM 1

: Ort
: 0 o
t ^"y
:14

:40
:lo
:.U
!4l
; i+ y
: 32

• 1 /
: ^

; 5 .'3
• ^*D
• f* *i
' St>
: ;j^
: I if
:l^
: Qt3
:2V
: 20
:04
:S4
:<4/
S^t
• ^ 1
: \h
• 3 /
! 2 /
; •} j
: 1 J
|2J

i^b
; tj^
• Ot>
:14

• ^ /
:o/
: 5 /
:bo
: 33
F
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
fl
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
r\
o
({
0
0
n
0
0
0
0
0
0
L

•
•
•
•

•
•

.
•
•
•
•
•

.
•
•

•
•
*
•
.
•
•
•
•
•
•

.
.
.
^
w
.
;
a
a
m
•
•
•
•
•
•
0 EMN
03
09 6(1
07
09 65
07
05
Ob
Of>
07
09
08
05
05
01
"1
04
13
07
OH
10
05
04
OH
0<«
03
01
04
03
05
10
OA
Ob
US'
1A
15
02
lb 35
0*
09 ^
0<4
03
03
07 2
06
11
03
02
05
     SrA=51UP05 	

         SMN    EFl
         30
          0
          0
         30
          0
         55
         30
          0
          0
         40
          0
         20
         3
730
  •
  0
SF'E

  0
210
145
  0
105
  0
130
  0
  0
  0
  0
  0
ECW

  •
  0
  •
  0
SCM

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
ECD

 •
 0
 •
 0
ENI

  •
  0
70

33




17
                       34
                       las
       17

        4 i
                                                    3
                                                    3
SN1

20
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
                                                                  COF
                                     0
                                     0

                                     6
                                    10
                                     0

                                     0
                                     0

                                     6
                                     0
                                     0
                                     0
                                     0

-------
STATION METALS DATA
                                                                 IO
                                                                                                                                      113
cn
	 M A = MUKU6 	
OHS STw.-iMi 1 m. ri] H.O EMN SMN EKE SFE ECR SCR ECD ENI SNI COF
345 Pv4.no ,' ^sucrtu»:05:34 0.33 JO 0 1660 2*0 .00 00
34f> J^?.on ^ 1 7l;UVH(i: lb:59 0.?4 l««4o 0 2240 585 .00 00
347 3?4.C1 ^ /-"41-OVoo: lo:?? O.SH jo 30 2275 1060 .00 00
34H JJ2.HO d r>. /UOVHO:?! : U<. 0.04 0
620 ... 0 0

J4f< 33.01 /^ O/^ t- *r< 1 :0b!?7 O.SO ?65 70 900 0 0 0 70 0
350 33.D? d 02H-.HH : \ 55 0 105
J5<> n<4.(,n ^ USi'flPMl :(ji«: 17 0.07 50 35 3h
357 4V.O'1 rl (I4(.PHH) : 1 1 Ii.6 0.1hl :05!03 O.lh
36? I'.H.nn ^  U.06
363 l^^.OI! d ?'hl :?()!0? 11.16 .
364 150.00 ? JOMAYfc :?\i'*h. l).?3
365 15?. 00 ? olJCNhl : 1^:45 O.lM
366 lr.1.00 it lOjiiHM :0b:3? 0.17
367 1^4. on d 1 JJUhbl : lSy:4h o.?4
368 171. on f ^ojiiK'fi : i<«:35 0.60
Jh9 17?. oo ir ^IJIJNH :?o:l? 0.?8
370 1HS.OO d 04 JULhl :()7:OM 1.13
371 209.1") ? ?hJMLBl : 1 1 :45 l.OH
37? ??J.OO ? 1 l/.i.Kjhl : 1^:51 1.01 0
373 ?.?7.no d lr>MiO :^o:jj 1.43
374 ?4?.00 s JUAiK.o : 10=^5 0.?H
375 ?SK.nO d 15sirPt< :1(.>:S4 u . 1 9
376 ?vs.oO d ^JOC TH :i^:HO: lf>:06 O.B400 690 1(
)0 3490 975 0 0 30
3H3 21^.1 d ii3'»iir.H(i:?3:47 1.0700 4bO 30 2360 290 0 0 110
384 231.0 d leutl(^HO:OS:s? 1.0500 1475 20 17300 905 0 0 100
385 23?. o 'd ls»Ai»jho:o?:S7 O.MOOO 225
0 1650 185 0 0 50
386 ' . 1 UoStkMO: 15:00 0.0055 .25 .100 0
































SNI CDF
0
0
0
0
0
0
0
0
0
387 254.0 d lusi>no:oi :U9 0.3400 800 ?55 6350 300 00 0 .
388 . 1 IbbtPbo: 1 0: 35 0.00?1 . 410 . 390 0 .
389 . 1 fPSi-^o: 15: 30 0.00?1 . b75 . 785 0
390 ?69.0 f ?5St PMi:oi:S5 0.04J4 1300 7?5 9o25 1050 000
391 269.0 ? t'SSr Ph(i: iis:5? O.?j40 350 90 4625 280 00 0
392 264.0 2 ^SbKI^MO: 07:^4 O.^J40 ^bO 80 1250 390 0 0 25'
0
0
0
0
0

-------
                                                                     SI 'U ION METALS  OATA
114
 I
UD
CTi
OHS sr^'- Tr>-t Til FLO tM^
393 269.0 d r v_.f I'rio : OM: Of- 0.13<»o 2b<
394 269.ii 2 /••>v>r i:oii : 1 o : s1-. 0.0407
39S 26'}.'.' r 2->br r'H>: 12 = 43 0.0lfc6 lb(
396 . 3 2-JSh mi) : l^r'.b 0.06rib 2b(
397 2/6. n 2 02i)(. T (-0 : 2 1 : bO 0.1600 37l
398 . 1 of-,ijCU<0 : lo: 00 u.002)
399 . 1 2"()t Tr-0:(.i9:2s O.OlOb
400 299.0 d «r->UC If o : 0'>: 00 /.1100 2H(
401 . 1 d /Of T*0: lo:20 0.0234 79(
402 302.0 £• r-nnf Ib(i:o6:2o 0.1100 44(
403 . 1 iijNUVMo:fM:30 0.0143 39'
404 309.0 d 04NOVM) : OW : 1 3 O.H200 241
405 . 1 1 oiiOvbO : 14 :4b 0.00/3
406 32v.P d <-4-i(jVc»o:oj: If l.o^oo \\\
4(l7 3V. 0 2 c '/MOVoO : 1 b: t>!. 0.4^00 lb(
408 . 1 o lut c nu: 14I4S o.olOb 50(
<«09 . 1 u-il>M *0 : IM : 30 u.OOefl
410 . 1 1S|>|- r MI : ] o : 30 0.00/3
411 . 1 o: 10 O.lfOO
4lb S3.<> d d.dHhH\ : 12JOH 0.6600
416 n3.o 2 H4i-'uH»l : lb:00 0.1300 38
417 . 1 i, •<:•.. i-M : 14: is 0.0234
4lb . 1 c ji-'i>i--bl : 1 4 : Ob O.Olbb
419 MV.H d. Mf fllvr 1 : d / :b4 0.2900
420 'M.O 2 o 1 A,-t-^l : i )•• 19 0.6000
421 . 1 orxiPt-M : 16: 00 O.OIrtb
422 tJ9.(i 2 o^«l-ijc' 1 : 09 : 22 0.4bOO
423 102.0 2 12A>-k»)l : i 7:4(j 0.9100
£,?4 iii^.o f> i 4M->kh 1 : 1 / : 06 u.5400
425 107.0 f. 1 7AK-B1 : ov: 1 2 0.41UO
426 . 1 <;OApkri|:i4:40 O.OObO 63
427 . 1 f /«;-"yH 1 : 14 : 3b d.Olfib
42^ 120." 2 jtiA^Hi j |: 09 : dO 0.2600
429 120.1 2 lOAK^h 1 : 23! 03 0.4400
430 121.0 2 o IMOY^I :09: 36 3.6000
431 . 1 l;.«:-i/-Ybl : 14:30 0.01Kb
432 130.0 d. 1 1^ tubl : p. :24 0.3600
433 130.1 d 1 1.1 r- ••'•** 1 : so : \~> 1.2200
434 Ml*'' * 1 li /. Y(- 1 : 02 : Ori 0.2500
435 iil.l 2 1 U • •- "•>! : 1 1 :o,- 1 .hhoo
436 111.2 2 1 P-'AY>- 1 : )9:bl 1.1400
437 1J2.0 d Ui-.tYt^ 1 : 00:47 O.bHOO
43b 13S.O d \^" ' '* 1 : 1 1 :bo 0.6400
439 . 1 1 -if.t Ybl : 1 j:4b 0.01M6
440 119.0 2 l^'-'Ait'l : 02 :b / 0.4200
441 1)9.1 d 19H/.YH1 : 13: lb 0.4200
442 149.0 d 29N:AYH I : 20 : b^ 0.6HOO
443 IS?. ii 2 o 1 jut.f. 1 : 12 : 20 0.1400
444 ISl.'l d 02 JUN*- 1 :03!bO 2.3200
445 . 1 OH,JUNri| : lb: OS 0.02MH
446 lbl.1 d 1 OJUNol : Iri: 12 U.9200
>> i A = r> IUKD i 	 •
J SMN LKf
) 120 72'
300
) . 135(
) 225 72i
> 140 9601
295
570
) 0 45/(
) 760 126(
) 0 901
> 3H5 153(
) bO 402^
430
> 100 236^
) 100 112(
) 500 212i
,
^
.
^
345 62
215
0
315 62C
.
,
30
0
%
0
,
.
^
540 117
.
.
.
.
m
.
.
.
•


.
.

9
.


.
SFE E
j 230
500
) 730
> 440
) 2BO
330
750
1 1060
) 645
) 510 ,
) 0 (
> 250
1205
> 1490
) 560
j loao
400
430
130
•
440
785
425
335

•
265
505
•
150
•
*

965

.
•
.
i
.
.
.
.
.
,
.
9
,
.
,

.
.
:R SCR E(
0 I
0
0 (
0 i
0 (
0
0
0 (
) 0 (
, 8 :
0 (
0
0 (
0 i
0 (
•
•
•
•
0
0
0
0
.
.
0
0
9
0
*
•
^
0
*
.
•
*


.

•
•
•
0

.


•
•
•
•
:o EN
) 10(
)
I 12'
1 1
) 12'
»
»
1 5(
)
! 3i
) 2;
»
) (
) 3
) 3(





































[ SNI a
) 0
0
3 0
) 0
5 50
0
0
1 0
) 0
! *l
> 0
0
) 0
1 0
) 0
.
•
.
9
0
0
0
25
.
.
0
0
.
0
•
•
,
0
,
•
•
•
.
•
*
•
•
•
9
•
,
•
•
•
•
•
•
)F






























1






















-------
STATION METALS DATA
                                                                         115
OHS
447
448
449
450
451
452
453
454
455
4^6
457
458
459
460
m OHS
«> 46J-
^j 462
463
464
465
466
467
46M
469
470
471
472
473
474
475
476
477
478
479
4HO
fc81
482
483
484
485
486
487
488
489
490
491
492
493
494
ST^MtjO
164.0
1 M .0
172.0

176*0
•
M3.I
1H5.0
.
f
205.0
206.0
.
215.0
STNMNU
214.0
229.0
231. 1
232.0

269ln
269.0
269.0
269.0

9
28S.O
f
299.0
^
f
309.0

322*. 0
3 12.0

3 3 7 '. 0
337.0
33 7.0

344 I 0
•

t
39.0

50*0
51.0
52.0
TYt't
2
2
t
\
2
1
2
t!
\
1
2
2
1
2
i Yt-t
2
\
1
2
2
2
2
1
1
2
1
2
1
1
2
1
2
£•
1
2
d.
2
1
2
1
1
1
2
1
2
2
2
T 1 1
13JIH.81 21:47
fdjiiNhl lb:53
21JHN81 19:b8
2?JUt;M 14:22
25J'.it;Bl 20:20
29.1'IMrfl 14: 1=,
02JULM 23:01
04 Jdl. Hi OS = 47
I3J!)L*1 13 = 40
<-O.JHl>l 14 = 35
^4juL81 U:b2
25 Ji H.81 07:24
2/Jl'l.n) 14:33
O.lo'.lC.dl |4:49
II 1
oi»;ji.80: 14:30
1 hAIJ'.MP = 02 = 49
1*01.1080 : Ot>: !<•>
l9i»iir.HO:o r: 31
(Mv-ti-fHO = 15:05
2v-t>8l = 05: .i80: 1 0 = Ot>
2S-.1-VHO: in: 08
29su'80: 13=do
OMiC'IMo: lo:io
1 KiCTHO: 15 = 39
^000180= 10=50
25001780:08 = 15
2 ?uCrMi: lo: 35
o jnijvf o = 0rt: JO
O'»i;0v/80:o8 = 27
1 ouovno : 14 = 50
1 nujvHu : ib = 4i
2 /^'0vc^0 : 16:^0
OliitCHO: 14 :3o
0^uL080= !••*:«*'.
OdutC80:20:04
02ljEti30 : 21 : l«r
0-il)tC(>0:08 : JO
O^lJtC'io: 1 u : Ob
l^ijKL8(i: 1 o:.)0
2ri.itC"(i: 1 CbO
2.-ij«|j". 1 : l'»:^u
(/••I t»81 : 10:21
!'-»• tnul : 1 j:bO
l^h t^ll :2J = 00
Cl4 tnrtl : 09! 4 /
e:^^ to.'l :0o: JO
f LO
1.7100
0 .6600
4 . 1 M) 0
0.0143
3.2300
0.004b
1 .2700
7.0700
0.0143
0.0045
0.6500
3.8500
0.06*6
0. 1200
FLO
1.4400
0.0400
0.3500
0 . 2 b 0 0
0.0061
0.0406
0. 1 1 76
0.0406
0.0121
O.D089
0.0009
2.3600
0.0018
6.2000
0.0089
0.00 "9
O.J400
0.00 18
0.9200
0.4900
0.0 15H
0. I
-------
                                                             STATION METALS DATA
                                                                                  116
m

U3
00

ORS SlKMMO T YMK T

1 FLO EMN SMN EFt SFE ECR SCR ECO ENI SNI CDF
495 53.1 2 23Ftnai
496 . 1 (i •-,,-< A P»i
497 . 1 23i"ivPb
49f( «9.(> 2 3 (iff. PM
499 -yi.i) 2 niAr-RH




500 95.0 2 05«PPr:l
501 1 H^apkH
502 99.0 d. OWvPKtt
503 102.0 2 12'^Ko
504 1U4.0 2 l4i»PPH1
511 120.1 2 30/«^b
512 121.0 c- nlMAYo


513 . 1 l.<.t..«Ybl
SI-* 131.1 2 lli'U.Yol
515 1)5." £• 15MOYH'

516 . 1 IMMOYHI
517 1 49. n ^ f> 'yfifi y h

518 . 1 OoJIIMol
519 161.1 ^ JIUMMhl
520 164.0 d 13JKWH
521 1 71 .11 2 ^DJ'.JNb
522 172.n ^ ^IJllNM
523 . 1 2<;jllHrt
524 176.0 f 25 JUNK
525 . 1 2vJl.'Nb
526 lH3.ii 2 u2JnLfc
S27 1 ^^* • o 2 OJJl'L^
52H lnb.O c: (IH.HILO







529 . 1 J3JUI.bl
530 . 1 2(>JilLMl
531 205.0 2 24ju|,tt
532 206.0 t 2^JHLb


533 - 1 c!/JULrtl
534 215-0 2 o'l-.oo*

09:10 1.3000 30 625 0 20
1^:15 0.0350
14 :05 0.0200
()o:l3 0.4900
13:40 0.4600
13:29 0.4HOO
16: 00 0.0200
0^:43 0.5500
Id:i3 1.0000
1 /:42 0.2200
lo:0/ 0.2100
1<4:4S 0.0200 39
?i:il 1.1000
03:32 0.2700
1*:45 0.0250
os<:35 0.2600
23:^7 0.3900
10:56 1.1600
14! 33 0.0121
11:25 2.5M10
l^:!^ 0.2400
13:45 0.0121
21=2? 0.5600
l'.:54 0.0200
1HM9 1.0500
?2:00 1.3900
I5:23 0.4100
20:22 1.2200
1 1 :20 0 .0061
20:41 3.7100
1<»:25 U.00b9 113
13:35 0.3000
04 :50 0.5100
P<::51 4.«200
13:50 o.onbi
14:35 0.003H
1^:2" O.bSOO
0':"4 3.6700
.
9
30
0
0























16
5









104
















127







*

350
2HO
340





73
























14:<,1 0.04b5 205 100 1005
12=00 0.2600 625 . 6600





























.
,
0
0
0






























0
0
























































3







.
.
35
0
0



























































0 00
0 0



























'









                             f YMt
535
53b
53f
538
539
540
541
542
276. On
299.0(1
30^. ou
3 1 4 . 0 u
322. Ou
32^.01
32V.OJ
332. Ou
s.
>L
2
2
2

-------
                                                            STATION MFTALS DATA
                                                                                                                                         117
ID
UD
OHS
543
544
545
546
547
54H
549
550
551
552
553

55b
S56
557
558
559
560
561
5b2
563
56^
56'3
566
567
568
569
57
<>
f>
'd
£
^
d
t
'd
d
2
d .
f>
d
d
d
^
d
f-
£
d
d
2
d
{
d
2
c
f'
f
TI
04I'>E C.MO
lM.)fc C8U
2 Jl'F CHO
0 d F E M 8 1
OHF F-'H|
llKtbbl

d UF t KB 1
d 2 F E h 8 1
30MAH61
OlAF-Hbl

1) ^ /i T' k h 1
14^-krt 1
j l Aj- (vy 1
2u t*\- H tt 1
Ol'-'ftthl
j 0 V' A Y 8 1
1 b ;•' A f H 1
1 1\ '^ /• Y 8 1
0 J Jl (Nrt 1
04 Jljhlh 1
20J1INH1
01JHLM
03JULH1

0 f J A 1 J L1 8 1
0 t A U ( ^ fj 1
1 1 ^ I ! 0 8 1
3 u 0 1 1 ( ) 8 1
31 AlKjHl
unst HH i
Ibbf.Httl

010CT81

2.VJC T81

'f'nflf. I h 1
d me. \ h i
u b^'O v ^ 1
(I 1'jt L-^l
1
: 12
:04
i ' '

; | ?
:00

: 15i
:n
:U9
: | ^
: 16
: 10
:ob
: u

I OH
" I *3
: U
• f 0
• ^0
• 1 7
:00
:07
: ib
: lu
• 1 0
• f 3
: l"n
:07
• 1 1
: i ^
• 1 6
: 04
;21

• 0 7
: 14
: i ^
:ob
* '(* J
= i 1

: 19
:07
: 05
; p^
:30
:45
• 11
120
:50
: 09
• 12
• 56
:48
;22

J55

:38
: 19
• f. 1
:b7
= 01
jbb
; ^^
: f
. 1 J 4(
.19 75
.20 14(
.4 7 6(
.22 4C
.46 (
.30

.24
.08
.36
. 19
• 1 tt
.46
.36
.25
.57
.32
.Id
.17
.07
.15
.62
.67
.39
• 2b
.59 7
.08
.25
.Ib
.59
.24
.33

I 31
.10
• 20
.Ob
.2d 2
,3b
.bb
. 1*«
- 3 l «-n
1 SM
) 30
3 75
1 •
) 0
> 30
) 0
0
30
0
0
0
0
0
0








25
0

















EKt
C
26C
244C


23L








23
2ttc

SF'E
(
(
.
315
12(
235
25f
215
24C
C
135
13C
C
C

18

ECF
) (
) (
25
> (
) (
> (









29

J SCF
) (
) (
t
1 I
) t
) (
(
1
C
(
(
C
1
c

25
3 (
? E(
) (
) (
i
i - i
i (
) (
)
)

)
)
)
)
)


i
:D EN
> <
) 61
I 65
1 3(
1 (
) (










1
SN
) (
1 4(
>
1 (
1
) (
t
f
C
f
35
{
(
C



cr
>
>
i
>

i

i
i

'

i
»



IF


















-------
                                                           STATION METALS DATA
                                                 118
O
O
OHS
585
586
567
588
589
540
591
5*2
5*3
594
595
596
597
59fl
599
600
601
602
603
bO*»
605
606
607
608
609
610
611
612
613
614
615
61ft
617
SIS
620
621
622
t>23
624
625
626
627
t>r?H
629
630
631
STUMNl"
292. 1
?'<•<. 0
299. 1
322.0
329.0
344.0
33.0
39.0
50.0
51.0
53.0
75.0
91.0
95.0
99.0
101.0
104.0
121.0
130.0
131.0
1 .J8.0
1 39 . 0
1 4 / . 0
14M.O
144.0
1'jO.O
IS^.O
154.0
15S.O
156.0
160.0
Ib4.0
1 H 3 . 0
184.0
205.0
209. 1
219.0
223.0
227.0
2bo.O
2M/.U
27n.O
29r;.0
299.0
J.O.O
34H.O
:t5/."
TYPt
2
2
2
f.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
<;
2
2
2
2
2
2
2
2
2
c1
2
2
2
2
2
2
2

2
2
2
2
2
f
2
C
2
2
TI
lnOCTM)
c'buC TblJ
/r^;iC 180
1 /MOVH(,
^4\!OVfi(P
(i9ot ceu
»2KtHHl
(lri^ EbH)
1 ^F'tBHl
2UF t'Kkfi 1
1 1 AK^BI
j i,/\K^H 1
o IMAYMJ
1 U'1>. Vrtl
I r-ia 7
0. IbOOO
O.f'4000 i'-
0. IhOOO
0.34000
0.1H598 92C
b 1 M=31U
J SMN
a 20
) 0
) 0
» 0
i 20
> 0
> 45
> 50
55
0
0
35
0
0
0
0
25



















.








) 0
                                                                            EFE

                                                                            560
                                                                           2945
                                                                           1155
                                                                            b80
                                                                            900
                                                                           2780
                                                                            33
 SFE

 160
 120
 160
 170
 255

 III
 775
1390
 150
 340
 205
 120
 IBS
   0

 2951
ECR

  0
  0
  0
  0
  0

 "8
 25
SCR
ECO
ENI
SNI
                                                                                                                              CDF
                                                                           1940
 330
                                                                                             0
                                                                                             0

                                                                                            30
0 I
0
0 I
0 (
0 (
0 <
.
0 (
0
8
0
0
0
0
J





6 i
0 (
•
) 8
3 3
1 41
) 2!
) J(
) 4
1 6
) 131












1
)
3
3
3
5
3
3
3
3 2'




3'
(
(
(







3
3
3
3
3
3
)

)
)
3
3
1

)
)

t
0
0
0
c
c
0
0
                             12

-------
                                                             STATION  METALS DATA
                                                                                                                                           119
m
_j
o

OI'S
6.32
633
634
635
636
t) 3 7
638
639
640
641
642
643

645
64ti
647
648
649
650
651
652
653
654
655
656
6S7
658
659
660
661
662

664
66S
666
667
668
669
h70
671
672
673
674
675
676
677
67H
679

SFR^'NO
277.00
277.00
277.00
277.00
292.00
292.00
292.00
29?. 00
292.00
2''2.nO
2^2 . 00
2v'2.dO
292.00
292.00
2^9. 00
T09.no
329.nl
329. i>?
3 t2. on
)•<••« . l!0
3 3 . 0 *
•jy.OO
01.00
30.oo
.11-00
30.00
.)9. PO
<«H . DO
«H. 10
49.00
b 0 . 0 0
S2.0M
S5.00
57.00
71 .00
72.00
76.00
1H3.00
1M4.IJO
209. 10
2 1 b . 0 0
2 1 '-) . U 0
2SH.OO
274.0(1
299.0')
J3b.OO
3 4 fl . 00
3-j 7. 00

TrPt
2
2

r".
2

2
2

C
2

s
2
2
2
2
c*
f1
2
2

2
^
^
j)
S
d
2
2
2
2

c.
2
2
2
2
2

2
2

2

s
2

1 1 1
o.tuCHiO : 1 0 : IS
(I.JIH:T>:O: 11:13
01UK.THO : 1 2! 06
0 Ji>(_1 i-o : 1 3: 03
1 HOC.lbO: tin :54
1 HII( Mo: Ov: 06
loUCTfio:Ov: 1 7
1 buCTHO :09:2H
1 bucibi) : 09: 39
IMu'JTtMi : 09:51
IhOCiao: 1 o:06
1 ^i)Cl no : 1 0 : 2.)
1 HvH," 1 h o : 1 o : 4 2
1 HOC ThO : 1 1 : 1 0
2 SOL In 0 : 04 : 3v
t><»i'i(i\/^0 : Ort : aft
2 '< M o v f. ( i : 1 o : j 6
^4'iOVho : ?2 : d^>
(.' 7"H'iv •>(> : 
n'->i.>E'(.frl' : 14 : 1 0
1 1 r^ M- d 1 : d b : b 7
u'."U'»-r 1 : 10:51
1 l.'-^M : lo:5/
J 0 •- A Y fi 1 J ? 1 'Si*
1 1-iAYf.i : 12: 39
l^f-uYMl:2i:lM
] wi-iu YH) : l', :20
^it..i.vrt l : Ob:26
2dfii>YH 1:15:44
^^i-'.l»YH I : 14 : 36
iO'''^Y^l :22!00
01.JHIJ81 : is: 50
04 jiiMbl : 1 1 :44
OhJIJMe 1:01:33
20JHNH i : l 2 : 56
2lJUfJH| :20«50

1 si;t Cn| : 16:29


fLO
0.00100
0.00100
0.00100
0.00400
0.03000
0.06000
0.06000
0.06000
0.05000
0.05000
0.04000
0.03000
0.03000
0.00500
O.H6000
0. 16000
1 .40000
0.52000
0. 12000
0. i 1000
0.76000
0.53000
u.bbUOO
0.44000
0.49000
0. 10000
0.50000
0.32000
0.65000
0. 71000
0.45000
0. 72000
0. 75000
0.65000
0.197H4
U. 260 00
0.15152
(I.OP592
0.53000
1 .56000
0.52764
().<• 1 OOO
0.30000
0 . <^6t> 1 1
0.4hOOO
0. 12000
ii. I'VOOO
0. 19666
	 bTA=l
EMN
50
100
50

45
60
55
50
45

50
*

m
80

50
60
70
0
245

^
^
m
m
9
s
B
.
f
#
m
.
m
,
,
.
9
9
^
'<*^>
"o

^b
.
m
25
>1UW1 1
SMN
0
40
0
0
25
25
0
0
25
30
30
30
0
0
m
^
25

m
0
50
0
0
t
,
*

.
§
t
t
0
t
.
.
9
,
0
t
,
^
0
0
.
0
,
^
0

EKt
60C
102t
40C



925
190C

i
40C



524 C
t
140(
1H91
55C
22t





















27


10




SFE ECR SCR E(
135 0 0 C
, 260 0 . 1
150 0 0 C
140 0 0 C
240 01
140 . 0 (
> 135 0 0 (
170 0 0 1
195 . 0 I
230 . 0 (
110 0 . 1
110 . 0 I
390 . 0 (
100 . 0 I
0 . (
• • •
) 990 0 0 (
0 . (
0 . (
b5 0 0
240 0 0 (
0 0
255 0
, ,
• •
• •
9 9
. .
• *
* •
• *
0 0
, .
. .
. .
• *
» .
0
• *
• *
• •
110 0 0 (
0001
• • •
105 0
0 0
• • •
) 290 0 0 <

:D ENI
) 35
100
95
50
<

) 75
50
i
) 0
) 0
) 105
) 115
) 120
) 40
•
)
) 90
) 95
100
) 45
*
.
•
.
•
.
•
•
.
•
•
.
•
.
•
•
•
•
•
.
) 0
) 0
i •
1 0
) •

i 25

SNI Cl
•rS
50
70
0
45
50
40
50
60
.
.
45
60
50
.
.
0
•


0
0
0
*
•
•
•
•
•
•
•
0
•
•
•
•
•
•
•
•
(
0 (
0 (
. I
0
. (
*
2S

)f







































1
)
)
l
1
3

»

-------
si AT ION METALS DAI A
120
ObS
680
681
682
683
684
63S
686
687
688
689
690
691
69?
693
69^»
69b
696
697
m *q*
1 699
-J 700
O 701
ro 702
703
704
70b
706
707
708
709
710
711
712
7i4J
71b
716
7)7
718

720

7 c* £
7?3
724
72'i
72-S
7?7
72H
729
730
731
732
733
b TKi'.'^O
2^.0
^99 • o
2^9 • ')
299. 1
29-*. 0
^9'-*. 0
29'-/.0

?9»J . '
29'*. o
29-*.
/^V y •

f>
2
f>
f
'c

f>
e.
S
2
2

^
^
*>
•ft
fi
•^
'S
'f>
fi
$
?
f
f
2
f>
c.
tL
C.
ri

d
2

2

2

d.
d
m
2^(«C. l>iu:02:bH
t'ot'f. 1 HO : u j: 19
dC. ?HO:o/:-«5
2bOCI>o: 10:b3
^"10(^180" 1 l «^8
2t>cc 1 80 : 1 2 : 6 1
2b(/C 1 bo : 1 3 : b2
c*b'^C T80 I 14 I 36
oc I'io: 1 /:(J6
ibfif. I M'l : 1 7 : ?t>
^S'jC r tio : 1 7 : bU
2"'-nC1ho: ib:o9
"ilJANM Jlo!21
O^f 1 t-n i : (is : sn
O^f f h«l : 10 :S7
1 vF fcHM 1 : 't£ :bb
2u^ K^»8l tc*r?:47
21^E^^1:16:49
^^Ff't^Blllc^i^O
U4vA^4 1 : Sd : lb
Ob/-t'l'8l : 1 7:00
Ob A ^M 81 • 1 ^ • 1 1
ObdP"H 1 : 1 8 '.uy
(J^fll^^'81 "10-J6
o^/iPK8 1 : i l : u?
OV^H'-'Hl • 1 1 *^tO
OVflP(V8 i:12:il
1 l flF-xd i : o1/: s*j
1 1 A F- ^ ri 1 : i (i : 2 o
i i/ipK*-i ; io«bo
1 HI L H /i i : 1 1 : f 7

Itu^f^l! 19132
l^t^K^i : 19:^*5
l^'^r'^81 :^0> 1 /
l^t^^Kdl :20.bl
l^i»(-^^l l2o»b^
12»Hf MI :2U :b8
1 cTM-k8 1 I 2 1 '• 07
l^/if-'HH 1 : d. \ :22
FLO
I/ . 1 o
0.08
0. 16
0.16
0. lb
O.Oo
U.Od
0.16
O.Ob
0.01
0.01
O.OJ
0.12
O.OJ
O.Od
U.22
0.12
O.Od
0.12
0.12
u . 03
11.22
0 .Od
0.12
O.lC
O.SV
0 .2;j
2.23
0.^2
O.Pb
0 .83
0.04
0.8?
0.3J
0.33
0.84
0.33
0.7b
1 .00
O.bO
0.21
0.2b
0. /9
1 .04
(l.2b
0.7S

1 1 no
0.21
^ ^ ^^
4 ,6a
3.34
1.2b
0.96
	 bl»=01UK
tMN SMN
• •
• •
0 0
0 0
30 2b
0 0
0 0
210 0
0 0
0 0

9
0 0

0
0

0 0
0


B
0
3b
•
3 0
40
30 50

0
0
0
0
bt> 0
0
0
0
0
0
0
0
0
0
n
0
0
n
0
0
0
0
u
0
n
ID 	
EKE
.
a
600
725
b?5
^
2bO

6bS
625

^
400
^
4bO
300
^
290
1100
m
.
^
*
^
•
13SO
,
9
.
,
,
9
1J5
.
.
t
*
.
»
.
,
.
.
.
.
.
.
a
.
.
.
.
SK£
a
t
0
0
140
0
0
0
0
0
.
^
0
m
.
.
.
180
.
9
0
m
0
0

100
760
•
1075
530
615
9HO
0
0
0
0
0
0
0
0
0
U
U
0
o
0
0
1 2U
0
0
0
110
250
ECR
.
9
50
50
200
m
0

0
0
.
.
0
,
0
0
^
0
0
,
.
.
•
m
.
7S
30
*
*
.
.
,
0
.
t
,
v
,
•
*
•
,
,
.
*
,
*
%
.
.
.
.
SCR ECU ENI
• • •
• • •
00 0
00 0
30 0 300
0 0
0 0 150
0 0
00 0
00 0
• •
• •
0 175
0
0 225
0 90
• •
0 0 70
0 200
6»
.
. .
0
0
* •
8 27!
0 60
m ,
0
0
0
0
0
0
0
n
0
o .
0
0
u •
0 •
0
0
0
0
0
0
0
0
0
0 •
0
SNI Cl

•
0
0
0
0
0
0
0
0
.
0
0

,
•
t
0
•
•
0
,
0
0
•
,,:;
0
.
0
0
40
0
0
0
0
0
0
0
0
0
0
0
t*0
0
0
0
0
0
0
0
0
0
0
)F





















































-------
                                                                            S1AT10N  METALS  DATA
                                                                                                                                                                          m
m
O
CO
DBS
734
735
736
737
738
739
740
741
742
743
744
745
746
747
74H
749
750
751
75?.
753
754
755
756
757
758
759
760
7M
76?
763
764
765
766
767
768
769
770
771
77?
773
774
775
776
777
STRMNU
1 02.D
M2.0
10? Ill
102.0
102.0
1 0 ? * 0
102.U
1 02-0
1 0 3 . 1
113.''
113-n
113.0

i 30 1 o
1 J 1 . 0

1 38". d
139.0
I48.il
152.1
154.0
1^7.0
1M .0
1 64. II
1 o? . I1
1 S2 • 1
d 0 1 . 0

2 09 . 1
2 \ H . 0
2 2 0 • ('
f 2 3 . 1'
22 7.1'
24 2 . "
243.')
2b'l .0
258. 1^

291 .0
?'*6 . i)
298.0
.109. 0
3 15. 'i
lYHt. 11
d 12 off" Ml
2 1 2 A u M ^
2 i^kS
^ ) 3,\utv A
2 13ALil'><
^ | 3 A Jj p ti ]
2 1 !i ft ^ P H 1
2 1 3 API !b i
? 1 J n u M H ]
2 2 3 Apwn ]
? 2 1 '* ^^ f^
r1 2 3 (i (-' P ; 1 !
t



19
1?

SFt
181
27j
101:
p n )
C v »
Mi
21



EC
)
I
)
1
1
)




R S(
C
1
1
C
j
1
C



j
:K EC
i
i
)



3 i
D EN1




8
)
5^
(
(
(
(
(
I
f




41 Cl
)
)
)
)
)
i
I




)F



)
)
)
)
\
t
[)
3
s
D
D
V
t
D
D

-------
SIATION METALS DATA
                                                         122
I
_J
o
OPS
778
779
7PO
781
782
783
7(1**
785
786
787
789
790
791
79^
793
794
79b
79h
797
79b
799
800
801
802
803

80b
80t>
807

809
6)0
61 1
M2
813
81'.
BIS

P17
818
R19
820
M? 1
822
fi?3
82".
P2S
P26
fl?7
H29
830
H31
STKM
??M.
.
.
,
.
.
,
,
.
3221
329.

^
B
f
.
^
.
S| ,
51;

63 •
.
t
7S.
,
8V.
91 ,
§
')9.
JUl .

1 0 7 I
.
113.

Urt .
t .
.
1 3o .

131.
1 "I'D .
B
1 T 4
ml

.
1S4'
is?:

i M .
TJO Tr^t
n 2
1
l
l
1
1
l
1
l
l
0 tf
n (i
1
1
1
1
1
1
1
(i 2
1 C.
0 2
11 2
1
1
0 ?
1
0 ?
1) 2
1
n d
0 2
0 ^
II £•
1
n c:
i
n 2
n <:
\
n '^ A Y h 1
1 M M A Y h 1
1 *«*YB j
I *-t ».* A Y tf 1
c* M M A V H 1
111 JllMfJl
OJJUN.'3l
Oo JhMH I
t\H JI.INP 1
IOJON81
1
: 18

: i o
: o^
: 13
: 1 4
• 1 1
: 1 1
: 10
.-09
: IT-
I Ofi
' 09
}2
tt
: 09
: 1 3
: i (i
: 10
; 0 |
123
:ob

• 1 1
: 10
: ll

I 0 V
; 1 7
• 1 0
• 1 0
: 10
• 0 "^
• 11

; | 1
509
: 17
: 10
JOS*
: 16
: '•'

• 1 2
: 09
; 20

i IS
: 1 1
:!22
• ol
: i i
!02

: TO
: 4^
:05
; b 0
;30

: 10
106
: ^o
i'l7
: 4 7
:30
* 30
:00

:00
: ^(}
• e^^>
' \ 9
; 38
; fly
; 1 /
• ?0
:00
I 0 ^
:30
iP'J

• IS
• ^)9
• 15
: 17
• 31
: bo
: b i
• 40
•31

• So
:30
:00

; js*
: Jb
I '36>
! ()V>
; f.L,
!00
!?3
• i>f,
'• 4b
I bO
F
1 .
0.
0.
0.
0.
0.
0.
0.
II.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
0 .
0 .
0 .
0.
0 .
(J .
0 .
0 .
0.
0.
?:
0.
0.
0.
10
«bfl
OOb
OOb
OOb
OOb
OOb
005
010
010
010
2^0
010
0 10
010
OOb
005
005
005
^4 y 0
ft w{]
720
100
010
0^0
130
010
100
270
OOb

250
3ti 0
0 c* 0
010

010
1 JO
OrtO
005
?JO
020
IrtO
0/0
005
ObO
1-0
4 £?0
DOS
£So
070
OOb
?20
tMN



0



-------
                                                           STATION METALS  OATA
                                                                                                                                    133
o
in
QMS
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
846
849
850
851
852
853
854
855
856
857

859
660
861
a"
8t>3
tif)4*
865
866
B^> 7
86b
869
870
871
872
873
874
875
ttt
678
879
ST-v-'IMU
1 IT)
i n
17^
1*3
185
201

209
21*
220

^
?W

£^H

274


291
296

310
m
t
^
9
3Jb

?t>?.o
^^^•U
?oif * u
iet>b.U
S • 0
2 v) '<* • 0
292.0
292.0
292.0
292.0
332.0
344.0
358.0
21.0
33.0
39.0
42.0
50.0
1 YPh
<-
'{
fj
2
f>
^
\

2
'^
1
1

^
^
1

f
1

^
d
1
^
1
1
1
1

1
TYPL
2
2
2
2
^*
2
2
2
2

2
2
2
2
2
2
2
T 1 1
13JMNM1 :23:20
2(uti'j8 : 01 : 06
25 Ji "''8 : 1 ^ : 4ti
H2JIILH '• 1 3:09
(lt4jli|_H : 0 ci • 0 4
20 JHLt : 1 8 : 27
2 / Jl 'L8 : 0"^ : 50
2f Jt IL 8 1 : 12: b5
OhuiM.81 : 12 = 37
(»t\Aii(>Bi:Ol:()2
1 o AI K.H 1:11: 55
24Atu,il : 12:50
30.MK.81 :OH: 12
08St Pol : 15:44
15StK81 : 1 7:27
21StP81 : 12:25
010CT81 :21 :57
iibOCIH : 1 1 :4b
!^i-'C18 :12:15
HI)(_ }t^ :!7:b7
23(K T81 : 10:52
2biiCTbi:i/:il
02N(W8 j : 10: 15
09NOV81 ! loi 10
16NOVB1 : 10 : 10
23NOV8 1 : 09: 35
30NUVH1 : U9:btl
01 Oh c 8] : lu:?2
o 7Ut CHI : 10: ID
TI 1
1PSFP80:03:00
1 85LPBO • 06 ! 25
IbSEPdO: 10:30
21 StPOO : 19 : 53
21SfP90:?l :04
1HOCT80:20: 10
lt^c)CTyO:22:o2
19UCTyo:01 :34
190CT80:06:05
190CTdO: 12:37
27NOV80: 16:34
09DEC80! 12:34
230EC80:09t40
21JAN81 :04!33
02FE.B81 :06:46
U8FtHdl : 10:59
1 1FLH81 :04:52
19FEH81 : 22: 37
FLO
0.300
0.190
0.190
O.HOO
1 . 700
0.9bO
O.OOb
0.270
0.240
0. 180
0.000
0.000
O.S10
0. 140
0.350
0.005
0.150
0.005
O.OUb
0.210
0.260
0.350
0.005
0.140
0.005
0.005
0.005
0.005
0.190
0.005
FLO
0.11
0.07
0.04
0.03
0.03
0.24
0.17
0.05
0.02
0.00
0.15
0.07
0.17
0.02
1.21
6.15
0.18
O.OB
EMN
*

^
.
^
^
175

230

*
85

%
130
65

.
m
m

50
•
—
*
m
4
9

EMN













105
0
.
                                                                    SMN
                                                                     9
                                                                            EFE
                                                                           1060

                                                                           2000
                                                                              •

                                                                            950
                                                                           2225
                                                                            775
                                                                            265
                                                                STA=51UR17  	

                                                                    SMN     EFE
                                                                      0
                                                                      0
                                                                     35
                                                                      0
                                                                      0
                                                                      0
                                                                     25
                                                                     45
                                                                    105
                                                                     20
                                                                      0

                                                                     25
 SFE








 57





 60


 27







 10
SFE
 ECR
SCR


 •

 •

 •

 0

 •

 •

 0
 •

 •


 •

 0

 •

 •

 0

 •


 6
                                                                                                        ECO
                             ENI
                             SNI
                                                                                                                             CDF
ECR



23!
6
100
70
0
50
6
65
60
265 C
0
> 135 0
105
              SCR
               0
               0
               0
               0
               0
                     ECO
                     ENI
                             70
                              •
                              0
                    SNI
                              0
                              0
                             30
                              n
                              o
                              0
                              0
                              0
                                          CDF

-------
STATION METALS DATA
                                                                 124
OHS
880
881
882
883
884
885
886
887
888
889
890
891
892
893
S94
845
89h
897
89H
899
900
901
Q(I2
90 J
904
90b
QOb
907
908
909
910
91 1
912
913

9)5
91h
9)7
9)M
919
920
9P 1
ViJ2
ST^MNO TYPE
53.0 2
75.0 2
H9.0 2
95.0 2
99.0 2
102.0 2
104.0 2
107.0 2
113.0 2
l?n.o 2
121.0 2
131.0 2
131.0 2
13S.O 2
13^.1 2
13H.O 2
139.0 2
lu^.O 2 <
1S2 . 0 2
161.0 2

17UO 2
17*.fl 2
1*4.0 2
2(12.0 2
20-1.0 2
207.0 2
21b.O 2 (
21«.0 2
223.0 2
242.0 2
24 3.0 2
?bl.U 2
2 '3 ft . 0 2
2 ^ 0 » 0 d
270.0 2
27^.0 d
296.0 2 (
29H.O d
?. V 9 . li 2
JO 9 . Ij £
3 . ) *} • 0 2
JJ^.O 2
Til
?3f tH8l : l l :45
bMAWHl M3:25
30HA^bl : 07 :43
J^A^KM) : 1 7:35
j^Af'h'ol M 1 : 34
I2AMRH1 M9:b4
[4APWH1 M 7:59
17APK81 M0:59
•> JA^PHl :20:42
JOAt'Krtl MO : 36

iiMAYtfl ilbilb
1MAYHI M2:29
bMAY^l : 12 M 2

MMA vH 1 M 2 : 0 1
v.'.YBl M-> : 1 4
•'^MAY^I :obM9
j UiiN^l M3Mb
(1 JDMM 1:04: 2b
JiJi.^Hl Mb: 42
JOj()t;:Jl =00 :06
•"^ HjhitHl :2o«21
J "OnLcJ 1 :ob!bu
f-i JUL8I MS: 3o
r-4jMLd) Mb: 02

1 jAi/GBl Mb: 23
JhAllG^l M3:40
lA.iGMl :20M4
jOA|i(.Ml :09Mrl
U AI.IOHI M 1 :b7
)wsfwf-rtiiitiin?
ib^t^'il : 17:b2
1 7c'tKdl • ^* 0 • *f V
^vstpfil M9:21
Jh'iCTnl M 1 500
^JOCTH] : i^: if.
r^PCT'Jl 'dO'- 3J
:V(. T^l i\d- ."1J
}-iN(jvol :21 : 0}
UlPtt-fl : 1 1 :0t>
>i\.'t t^ 1 : 1ft :52
FLU EM
0.25
0.08
0.17
0.36
0.24
0.11
0.08
(1.07
0.32
0.06
0.16
0.17
0.20
O.b4
0.11
O.Ob
O.Ob
O.lb
0.22
0.16
0.08
o .<;b'
0.41
0.07
0.19
0.31
0.12
0.23
0.01
0.34
0.24
0.33
0.11
0.21
0.12
0.17
0.10
0.1J
O.UD
0.17
0.^5
0.12
0.09
SMN
           0
          30
           0
           0
           0
           0
                EF't
SFE
                0
                0
                0
                0
              395
                0
                              ECR
SCR
ECO
ENI
SNI
                                                                  cor
                       10
                       155
                                                     4

-------
STATION METALS OATA
OHS
923

92b
926
927
92H
929
930
OHS
9^2
9^,3
93S
936
937
93H
939
940
94 1
942
943
^4 **
. 9tb
946
947
94H
949
95 0
9bl

^53

95b
956
9S7
95H
9S9
960
961
962
963

96S
STHHNU
39.0
54 . 0
121.0
13't.O
IS'. .0
Ib f .0
2bb.o

bl .U
bl.l
S 1 . 0
63.0
75.0
H9.0
9b . 0
99. u
101 .0
103.0
113.0
121.0
1 30.0
1 3S . 0
1 .1^ . 0
!<"->. o
ISO. 0
1 *S4 • 0
l'f\.o
1 76. U
1 O"* . 0
20?. o
20^.0
209.0
21^.0
2 s 0 . 0 •
22 i. i)
227.1'
2<*2.0

26b'!o
2'»\ .0
2 ^fi . 0
29h.O
310.0
•[YMt
2
2
2
2

2
c.
2
TYPK
2
2
2
2

^
2
2
2

^
2
^
^
2
f

2
^
2
r*
i:
r'
2
£•
f.
S
^
2
2
f>
^
tt
2
T
ObF F nH
23Ffcr-H
r, i"/> YM
l«>M«rn
ii3jurj«
OhJIIiSB
1 ^St H ^*
2o(K. If-
T
2 OF Krt;
20F t rti
22F I hn
0-4«Af rt
1 oi'' f-"' hi
ji);. uh'ii

() V M-K^
| 1 rt f't*^
1 30rrU!
2 3 f» H K ^
(i I'sdrb
1 OhA fr>
Iby^tf)
1 C4 M A T h
2^.vl<>rb
JOMATM
1 JJUhb

231 Jl "^^
02JIPL1
^ 1 J| 'L H
d** J' !L ^
2.-:Ji'Lo
ll'^'-liu^1
U O a 1 : 1 > «
1 1 i>IH.H
1 "D ** 1 <(?'•
JUMlbH
1SSF>H
2^St i-'H
1HOC. Tb
23I.H.1B
2M1CT4
n6WWH
1
1 3:'^b
09 = 27
1 ^ ; (i 4
1 •} : r>b
23 : kS
01 :l 1
1 7:25
21:10
1
: 0 0 : 0 7
: IS: 07
: 16 = 40
: 23 = 00
: K : 1 M

= 19:20
: 1^:09
: 1 1 :34
: lo:S7
:0
K SF
(
I
1

1
f
1










E EC
ro
>o
•
>0 1
c
E EC
)
)
)
)
)
)
)








5

« SCF.
0
0
•
6
) 0
:R SCF.
c
c
c
c
c
c
c








25

EC


i
c
r EC















>
•
0 Ef


i
) (
:u Eh

















n si*
(
i
4
4
1 (
) (
JI Sf
(
1
C
c
(
1
(










U CC
)
1
) '.
) (
JI Cl
)
)


)
)
)




(



3
.
)F



I
JF







3
1
3
3
I
1
3
3
3
3

-------
STATION METALS DATA
126
DBS ST^'NO IvPt

96b 23
^ 2
Til FLO EMN SMN tFE SFE ECR SCR ECO ENI SNI
[Lj^J. pb|
967 265 2 22ShPbl
968 2?4 2
(': 10C1 HI
969 2?9 2 ChOCTbl
970 291 <•

971 2^
s 2
18dClbl
230CIbl
972 29K 2 2SOC1B1
973 299 c 2tiO(, Tbl
974 309 2
975 33s 2
976 4 2
m
i

00







OBS STKMI-JU FYPt
977 1
97H
979
980
981 29l
982
983
984
985
986
987
1
1
1
i 2
1
1
1
1

1
(lbK'OVb 1
()'« JANH2
17:41 4.11 90 0 1240 0 0 0 0 25 0
19:oo 15. bb
It: 13 11.25
lh:sb 15.18
lf»:|5 2.2"^
09:49 3.7b
14:54 o.w*
12:12 9.63 R5 3 19
21:04 'f.^H
10=24 i.^o
15:(i6 ii. SI 20






4 29 0 6 0
. . .
00,
14 . 25
Til FLO tMN SMN tFt SFE ECK SCH ECO ENI SNI
21SKHH1 09:20 0.035 40 140 0.00
(^b Sh Htt 1
(j *-)(>(' f ri 1
) ^dCTH 1
c'»UC 1 Ol
0 ^ N 0 \f t^. 1
1"

i^ J N 0 V fl 1
3 n h*( ' V ^ 1
O/DEO 1
0«:36 0.029
OH : 55 () . 0 2b
09: 15 0.014
16:33 0.420
I)tt:b5 0.019
08:35 0.035
Of. : 35 0.023
O^JJO 0.023
on:'»5 n.f>14
On: 55 0.011
• • •
ooo-
•
105 0 Z
o
^
.
^
0
0
CDF
0
6
0
0
9
0
0
0
0
0
CDF



95







-------
        APPENDIX F





    RAW DATA LISTINGS





ATMOSPHERIC SOURCE STUDIES

-------
V't IFALL STA1 ION  DATA
0 T
S
1 05JAN81
2 OPJAN81
3 16JAN81
4 22J«NHl
5 03Ff.H81
6 09FEH81
7 12FtHHl
H 24FtB81
9 25MAh»81
10 02APHH1
11 10APW81
12 15APK8)
13 22APKB1
14 30APK8I
15 06MAY81
' 16 13MAY81
17 20MAY61
}b 2BMAY81
9 04JUN8I
20 12JUN81
21 19JUNH1
22 25JHNPJ
21 OlJtlLPl
24 OHJULt1!
25 15JULP]
26 21JUL6)
27 06AUbt'l
28 14AUC>M
29 2bAIJfi81
30 035tP^l
31 10SEH81
32 21SEP81
33 OIOCTHI
34 020CI81
35 140CT8J
36 200CT81
37 04NOV81
38 25NOVH1
39 10DEC61
40 30DECH1
T
2
12:50 Od.lAMMl
12:45 1 fi J ft M r |
1 1 :"5 tVJAMM
13:30 OULiiM
13:3f' O^re.^f'l
12:00 12Ftnn|
13:50 24FfMHl
13:40 09»'flt-M
1 1 : 55 u^'iP*'4 1
1 '• : 20 1 UftPHr' 1
13:45 IbAt^Mul
09:45 ^c'uPWol
09:20 3'vlAPhrl
12:55 Oo'iuroi
12 : 35 1 3">A r n 1
D 9 : JO f 1 1 <•'• A v n 1
13:45 2hi-'«rhl
12:50 (KJUNMl
14:35 l^JUNhl
15:50 19J(lNrtj
10:55 25JUNt- 1
13:00 02.Hil.Pl
11 : oo oo IULK )
13:20 15.H'LM
ov:.jn 23.;'iLfl
1 3 :-»S ?v H.JI t1 T
1 1 :35 iH.'.UL-r 1
1 1 : 3S l ~>i>nhn 1
12:20 (i.)St^ ^ 1
13:21 1 Obt-.^'il
09: 30 1 t^t PM 1
12:55 24bt^«l
10:55 02('CfM
13:11 Cmj( fi 1
12:00 2ooc T * 1
13:?0 <->3UClM
10:50 otoiovf. i
12:15 0 <»t (> 1
13:30 1 6i)f 0. 1
09:35 0«.JA^2
t. S t S K S E. S f
(• * 1 / L C t* M 1
t- x IM N il II N N 1
| (• •. 4 S 	
11' 'I "3 .. . .
13:j(i 0.200 .2(1. . .
1 *:.)U u . /() . 43 . i) . (
l^:uli 00 30 25 50 000 (
1 t:5d u 0 2S (j 00 0 0 (
lj:4(j ii u (i i) o ii 2^ ?5 (
l^:sn li (j 0 . 0 . 0 (
1 4 : ,_' o .11 . u . (i .20
13:45 . . .
ir»:4o o 0 1 1 0 0 '(U 0 . 0
09:2(1 .0 . ^5 .0 .JO
1 2 : ~>^> 0 0 25 25 o 0 . .
12:35 00 8080 00 .
09: JO .0 .20 0 0 . .

t:50 00 20 . ijO . .
I4:.ib 0 0 20 20 u 0 . .
15:5U 00 353b 00 . .
10:55 0 0 50 . 0 . . .
13:00 (i 2020 0-0 . .
1 1 : 0 0 0 5 0 5 U 00 . .

09 : JO (i 0 O 00 . .
1 j : 4 -p (i (j . 00 . .
l^:4ii o , o () 01' • .
1 1 : 35 o U u () u 0 0 II
13:21 d 0 (i . u n . .

l(i:5u 00 0 . uo . .
14:,"? U 0 30 HI (i 0 o 0 15
lj:ll uO 40 • 00 . .
12:ib 00 /•'020 un . .
13:20 n 0 /O 2*1 u (' . •
)o:bS u 0 15 i-5 u (i 0 o
1 1 : l) •> . 0 . '-« t> . .
I >. : lib 1 1 o u 0

1 3 : 1 / u ii 0 0 n (i (i o f
sr* =
<
t
t


i
) t
) (
) (
) i
(
10^

















14




1 (
= 5
> E
(
. ^


i
) (
) (
) i
i (
)
>






















; (
WFOl 	
H
P L
EC N
.StSLSCL OC T N 0 T f
;CCCNNIP MO K H 2 T S 0 t
< U I) U I I P H DO N 3 3 P P P f
, -.
•j fj
i I 61 6 II 4l3 35 frl2 Ol39 Ol21 ol21 oloO olflO oloo
) 0 00 0 0 . 5.5 40 8.6 0.70 0.25 0.61 O.Ob 0.07 0.00
) 0 00 0 0 . 4.2 45 3.3 1.64 0.15 0.19 . 0.04 0.04
10 00 . 0 . 4.5 35 4.0 0.32 0.18 0.32 0.01 0.01 0.01
10 00 . 0 . 4.1 35 24.0 0.77 0.53 0.72 0.02 0.02 0.01
0 .0 . 0 . 4.0 35 4.0 0.25 0.20 0.72 0.04 0.04 0.01
* * ^ 0 1 0 • * • • • • •
0.0.0. 3.7 75 12.0 . 0.55 0.82 . . 0.01
0 .0 . 0 . 3.8 30 24.0 1.66 0.47 1.61 0.13 0.03 0.01
. . . . . . 4.0 5 20.0 1.26 0.55 0.70 O.Ob 0.03 0.00 «
. . . . . . 3.6 75 15.2 0.95 0.69 1.43 0.03 0.03 0.00
. , . . . . 3.8 50 19. ti 0.42 0.26 0.74 0.03 0.03 0.00
. . . . . . 3.8 45 .......
	 3.b 90 8.1 0.50 0.25 2.08 0.03 0.02 0.00
. . . . . . 4.2 50 6.0 1.03 0.29 0.60 0.03 0.00 0.00
. . . . . . 4.3 20 16.1 0.22 0.07 0.36 0.03 0.02 0.00
. . . . . . 3.8 . 22.2 0.34 0.09 0.75 0.01 0.01 0.00
. . . . . . 3.9 50 20.2 0.38 0.16 0.61 0.02 O.Ol 0.01
	 40 50 17.7 0.70 0.33 0.62 0.03 0.01 0.01
	 <,.! 30 0.7 0.28 0.11 0.23 0.00 0.00 0.00 e
	 3.7 75 . 0.93 0.31 0.5<5 0.05 0.0? 0.00 1
	 4.0 Do 25.5 O.H4 0.37 0.53 0.04 0.04 0.00 (
	 3.8 50 6.8 0.37 0.17 0.44 0.01 0.01 0.01 '
0 00 0 0 . 3.9 75 9.9 0.63 0.31 0.64 0.02 0.01 0.01
. . . . . . 3.5 270 19.9 0.75 0.22 1.53 0.02 0.01 0.01
. . . . . . 4.0 50 6.2 0.46 0.14 0.36 0.01 0.01 0.00
	 3.7 110 33.1 0.94 0.5B 1.05 0.06 0.05 0.01
. . . . . . 4.1 40 5.9 0.36 0.20 0.50 0.03 0.01 0.00
000 0 0 . 3.4 105 25.4 1.07 0.80 0.79 0.02 . 0.01
	 3.7 j 05 16.2 0.91 0.63 0.49 0.04 0.03 0.00
. . . . . . 4.7 50 22.5 0.39 0.09 0.32 0.01 0.01 0.00
. . . . . . 3.b 100 14.9 1.01 0.66 0.50 0.07 0.06 0.05
0 0 0 ?i> 25 . 4.2 55 2.6 0.37 0.12 0.20 0.06 0.05 0.03
0.0... 4.6 30 . 0.42 0.23 0.34 0.08 O.Ob 0.08
0 2^ 0 . . . 4.0 60 4.6 0.55 0.46 0.50 0.02 0.01 0.01
....... . 5.4 0.1H 0.12 0.26 0.00 0.00 0.00
) 0 00 0 0 . 4.0 30 34.1 0.83 0.05 0.18 0.02 0.02 0.00
3
(














I

^











-------
                                                                K U ALL STATION  DATA
132
T|
I
ro
0 T
H I
5 1
41 lOFtHHi:
42 12FLB81:
43 24FtHbi:
44 09MAPH1 :
45 17MARH1:
46 OlAPRbl :
47 02APPbl:
48 06APR81 :
49 10APR81 :
50 15APPMJ:
51 30APR81:
52 06MAYH1 :
53 14MAYHJ :
54 21MAYH1:
55 29MAYH1:
56 05JUN81:
57 12JUN81:
58 18JIIN81:
59 01JUL81:
60 17JUI.81:
61 23JULfll :
62 30JUI.81 :
64 !4AUfi8i:
65 26AUOH1 ;
66 02StPHl :
69 21Sf Pttl :
70 S^StPn 1 :
71 OlUCTbi:
72 oaoCTHi:
73 16UC181:
74 200CTR1 :
75 04NOVH1:
77 lOOECHl!
78 IfcDbCtU:
79 30DECHI:
T
1
t
10:02 1 2ft nb l
12:40 24HI-.M1
13:15 09MAK41
11:15 ]7t'/>"il
14:40 OlAP^Ml
14:15 U2APP.H1
ID: 10 OtiAp^i
10:05 lO/>P>v«|
10:40 15APPH1
11:55 3u«P(i
10:15 1'yAi.iuMi
Oc*:3b UPbtl'rM
11 :)5 UVSt^Hl
12:05 ^bS^nl
12:30 (I?HC1H1
13:40 20DCTK1
11:40 U^I\O^H 1
12:5±, 03Gb CHI
13:35 IfcUKl.Hl
14:3u 230i-_Lrtl
1 1 ! 15 l<* JAl-ir<2
3 lib
1 : 15
4: 15
OjlO
l' : b 5
l: 15
1 1 : It)
1 u : 1 5
1 i: 1^
lu: 15
12:00
ID: oo
ID: 15
ID: ;»5
1 1 :5ii
) 1 • -3 u
1 i> : .) IP
d -> : n 1
l3Jr:0
!<•: 30
1 1 : 0 u
1 n : 1 0
t S
(i H
0 0
I) 0
0 0
U 0
0 0
0 0
0 0
0 0
. 0
0 0
. 0
. 0
0 0
0 0
0 0
0 0
0 .
0 .
D .
0 .
o o
0 0
0 0
1) .
0 .
0 0
(i 0
i) n
(1 1)
(1 .

0 0
0 0
lioo
0 0
. (1
0 0
h
N
35
0
II
0
0
n
40
0
20
Jb
0
0
0
(I
0
1)
0
0
MJ
0
•35

100
/5
I)
25
S t
7 (..
N U
25 0
0 U
. 0
0 0
0 (1
. II
0 0
0 0
hi) 0
II 0
30 0
25 0
20 D
35 0
0 0
0 0
0 0
0 U
0 0
50 0
0 0
0 0
0 0
. D
. 0
0 0
MI n
35 (1
IbO .
. (1

(I 0
. 0
75 .
0 .
1411 .
25 0
S E S E
r. ^ n ^
U h N F.
U d .0
0 20 20 0
D 0 . 0
0 0 0 0
0 0 0 0
000
') 0 .
0 50 .


0 . .


(1 . .






ii 0 0

*

(1 . .
0 00



u o .
. 0

0000
>i A = 5iwr \\£ 	 _ 	 ________ 	 	 	 _______ — ____ 	 _____________
P
P L
t C N
StSL5tSCL OCT N 0 T P
FCCCCNNIP NOK H 2 TS 0 H
E k k 'J l> I I p H <=t)DN 3 3 PP P F
00000 00 0.92 4.1 25 8.6 1.98 0.17 0.57 0.03 0.01 0.00
00000 .0 1.61 4.5 50 0.0 0.40 0.28 0.32 0.01 0.01 0.01
00000 .0 0.4t> 4.1 30 16.0 0.75 0.50 0.78 0.02 0.01 0.01
00000 OOU.964.2 65 6. 00. 38 0.13 0.19 0.02 0.02 0.01
0 0 0 0 0 40 0 O.lrt 3.9 50 . . 0.41 0.67 0.05 . 0.03
0 0 0 0 0 30 0 0.42 4.5 20 0.0 0.23 0.17 0.25 0.04 0.04 0.01
0.0.0 .0 0.32 4.6 0 0.0 0.22 0.12 0.27 0.02 0.02 0.00
0.0.0 .0 0.72 3.8 70 4.0 0.55 0.34 0.60 0.03 0.03 0.01


. 	 	 1.18 3.9 45 11.9 0.73 0.39 0.51 0.05 O.O't 0.01


	 O.f-b 4.4 20 8.0 0.15 0.15 0.28 0.02 0.02 0.00
..... . . 0>54 3.9 . 12. 1 0.33 0.25 0.7b 0.02 0.01 0.01
..... . . 1.91 4.0 45 12.1 0.39 0.22 0.44 O.OS 0.04 0.02
..... . . 2.87 4.4 20 3.6 0.23 0.10 0.25 0.01 0.00 0.00 3
	 0.6b 3.9 50 9.9 0.76 0.39 0.55 0.02 0.01 0.00 5

	 0.50 3.9 195 18.6 0.39 0.17 0.76 0.01 0.01 0.01
0 0 o 0 0 00 1.31 3.9 85 . 0.56 0.29 0.68 0.00 0.00 0.00
	 0.50 3.7 145 7.7 0.47 0.14 l.OS 0.02 • 0.01
. .... . . 1.30 4 ? 45 440 4R 0.21 0.36 0.01 0.01 0.00
	 0.23 4.0 60 8.2 0.39 0.25 0.57 0.04 0.04 0.00
	 1.75 4.2 55 2.1 0.30 0.20 0.36 0.02 0.01 0.00
	 0.32 3.6 145 10.9 0.77 0.44 2.47 0.02 0.02 0.00
00000 00 0.36 3.6 B5 16.4 0.88 0.72 0.84 0.02 0.02 0.00
	 0.28 4.0 55 14.5 . 0.63 0.45 0.04 0.02 0.00
	 	 	 0.52 4.0 55 14.5 0.80 0.59 0.47 0.03 0.00 0.00
	 . 0.2b 3.7 105 17.4 0.7^ 0.33 0.45 0.03 0.03 0.00

1?0 . 0 . 0 .0 2.20 4.3 65 2.8 0.41 0.18 0.17 0.01 0.01
. 0 . 0 0 *0 . 0.64 4.2 30 4.0 0.33 0.22 0.29 0.01 0.01 0.01
..000 . . 0.58 3.9 55 10.6 0.55 0.42 0.60 0.02 0.02 0.01

0 0 0 0 0 20 0 1.50 4.4 £5 6.4 0.42 O.Oh 0.20 0.03 0.02 0.00

-------
                                                                 "t IK ALL  STATION DATA
                                                                                                                                                133
i
co
        0
        H
 80
 PI

 t*3
 84
 85
 66
 87
 88
 89
 90
 91
 9?
 93
 94
 95
 90
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
           21MAYH1
           ?9MAY81
           05JUMP 1
           J2JUN61
           01 JiiLB)
           )6JDI. H)
           23JULH1
           3CJUL")
           06AIK,81
           14AM081
           26AIJ061
21SFP81
2bSF.PS j
30SEPM
020CTB1
16f>CTBl
i?OOCTBl
04NOV81
           lODfCBl
           •JOOF:C»I
         13:00 30''i'>->'
         l(r.5n Ohv.Mt.
         I 1 • 3° l'«i 'ATr f.
         1 1 : o n 2 1 '•' f » K
         11 : 00 ?.v*-l.n-
         I 1 : Ob"
         10:25
         1 0 • 1«

         11140
            21
            10
            00
09:
09
1 1
11
1 1

09: i?
1100
0 9 : 0 O
13:30
15:31
11-25

1 3:45
12:00
ocJULr-


3JJULM


1 VAl'Of
                          rc5.
                          ?1 st r-r
                               i f-.
               OhlJUVr1
               O.inh cc i
               1 tjl't Cb)
                                   lllibC
                   .ill

                   till
                   U/
                   •«il
                                     :3U
               1 1 :«o
         1 I :iu>
         1 1 :io
         1 1 :-»b
         1 1 :<*0
         Ic-:
            I'U
            [s
            30

            (JO
            JO
                                     t  S
                                     HP   /
                                     n h   N
                                           t   S
         1 .): 2r>
         I" :h'U
         1 I :