RESEARCH TRIANGLE INSTITUTE STATUS REPORT #9 STABILITY OF PARTS-PER-MILLION ORGANIC CYLINDER GASES AND RESULTS OF SOURCE TEST ANALYSIS AUDITS G. B. Howe J. R. Albritton C. K. Sokol R. K. M. Jayanty C. E. Decker Center for Environmental Measurements Research Triangle Institute Research Triangle Park, North Carolina 27709 EPA Contract No.: 68-02-4125 D. 0. von Lehmden Quality Assurance Division Environmental Monitoring Systems Laboratory Research Triangle Park, North Carolina 27711 Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 September 1987 POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NORTHCAR0LINA 27709 ------- STATUS REPORT #9 STABILITY OF PARTS-PER-MILLION ORGANIC CYLINDER GASES AND RESULTS OF SOURCE TEST ANALYSIS AUDITS by G. B. Howe J. R. Albritton C. K. Sokol R. K. M. Jayanty C. E. Decker Center for Environmental Measurements Research Triangle Institute Research Triangle Park, North Carolina 27709 EPA Contract No.: 68-02-4125 D. 0. von Lehmden Quality Assurance Division Environmental Monitoring Systems Laboratory Research Triangle Park, North Carolina 27711 Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 September 1987 ------- NOTICE This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommenda- tion for use. ii ------- FOREWORD Source measurement and monitoring efforts are designed to anticipate potential environmental problems, to support regulatory actions by develop- ing data bases needed in developing regulations and to provide means of mon- itoring compliance with regulations. The Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, has the responsibility for implementation of agency-wide Quality Assurance programs for air pollu- tion measurement systems; and supplying technical support to other groups in the Agency including the Office of Air and Radiation, the Office of Toxic Substances, and the Office of Enforcement. The need for reliable standards for auditing and documenting the accu- racy of source emission measurement of gaseous hydrocarbons, halocarbons, and sulfur compounds is well established. The Quality Assurance Division of EPA's Environmental Monitoring Systems Laboratory has responded to this need through the development of organic compounds in the parts-per-million (PPM) levels in compressed gas cylinders. The primary objectives of this ongoing project are (1) to provide accurate gas mixtures to EPA, state/local agen- cies, or their contractors for performance audits to assess the accuracy of source emission measurements in certain organic chemical manufacturing in- dustries, (2) to verify the vendor's certified analysis of the gas mixtures, (3) to determine the stability of gas mixtures with time, and (4) to develop new audit materials as requested by EPA. This report describes the current status of this project. Included in the report are (1) a description of the experimental procedures used for the analyses of gas mixtures, (2) a de- scription of the audit procedure, and (3) currently available audit results and stability data. John C. Puzak Deputy Director Environmental Monitoring Systems Laboratory Research Triangle Park, North Carolina ill ------- ABSTRACT The U.S. Environmental Protection Agency has evaluated the suita- bility of 45 gaseous compounds including hydrocarbons, halocarbons, oxygenated, and sulfurous species for use as standards for measuring stationary source emissions. The main objectives of this on-going pro- ject are (1) to provide gas mixtures to EPA, state/local agencies, or their contractors, as performance audit standards to assess the accura- cy of measuring source emissions from certain organic chemical manufac- turing industries, (2) to corroborate the vendor's certified analysis of the gas mixtures by in-house analysis, (3) to determine the stabili- ty of the gas mixtures with time by in-house analysis, and (4) to explore the feasibility of new audit materials as requested by EPA. Thus far, 31 mixtures have been used to conduct 214 different au- dits. The results of these audits, a description of the experimental procedures used for analyses, and available stability data are present- ed in this status report. Compound stabilities have been determined through multiple anal- yses of the cylinders containing them. .Stability data for up to 8 years is available for many compounds and over 5 years for most com- pounds. Compounds that are unstable and not suitable for use as an audit material are identified. iv ------- CONTENTS NOTICE 11 FOREWORD i i i ABSTRACT i v TABLES v i 1. INTRODUCTION 1 Objectives 1 Audit Materials Currently Available .: 1 2. EXPERIMENTAL PROCEDURES 5 Instrumentation 5 Calibration 5 Quality Control 6 3. PERFORMANCE AUDITS 8 4. STABILITY STUDIES 31 5. SUMMARY AND CONCLUSIONS 33 REFERENCES 34 ATTACHMENT 1 - STABILITY DATA AS OF SEPTEMBER 1987 35 ------- TABLES Number Page 1 Audit Materials Currently Available 3 2 Pressure-Dilution Quality Control Results 7 3 Hydrogen Sulfide Analysis Quality Control Results '.. 7 4 Summary of Performance Audit Results 9 vi ------- SECTION 1 INTRODUCTION OBJECTIVES The need for reliable standards for auditing source emission mea- surement of gaseous hydrocarbons, halocarbons, oxygenated, and sulfu- rous compounds is well established. The Research Triangle Institute (RTI), under contract to the U.S. Environmental Protection Agency (EPA), has responded to this need through the development of cylinder gases for 39 compounds. The primary objectives of this ongoing project are (1) to provide accurate gas mixtures to EPA, state/local agencies, or their contractors for performance audits to assess the relative accuracy of source emission measurements in certain organic chemical manufacturing industries, (2) to examine the vendor's certified anal- ysis of the gas mixtures by in-house analysis, (3) to determine the stability of the gas mixtures with time by in-house analysis, and (4) to develop new audit materials, as requested by EPA. This report describes the current status of this project. In- cluded are (1) a description of the experimental procedures used for initial cylinder analyses and collection of stability data, (2) a de- scription of the audit procedure, and (3) currently available audit results and stability data. Complete details of the study with statis- tical analyses for ten (10) halocarbons and eight (8) other organics are presented in two journal publications (1,2). AUDIT MATERIALS CURRENTLY AVAILABLE Currently, 45 gaseous compounds have been investigated as audit materials. Six compounds have been found to be unstable in cylinders and not suitable as audit materials. The other 39 gaseous compounds in compressed gas cylinders are suitable for conducting performance audits during source testing. The compounds were selected based on the antic- ipated needs of the Emission Measurement Branch, Office of Air Quality. Planning and Standards, U.S. EPA. Table 1 lists the 45 compounds, the concentration ranges and the number of cylinders containing these com- pounds currently in the repository, and the cylinder construction material. In Table 1, the audit materials fall into two concentration ------- ranges. The low concentration range, between 5 and 50 parts-per-mil- lion (ppm), simulates possible emission standard levels. The high con- centration range, between 50 and 700 ppm, simulates expected source emission levels. The balance gas for all gas mixtures is pure nitro- gen. ------- TABLE 1. AUDIT MATERIALS CURRENTLY AVAILABLE Low Concentration Range High Concentration Range Compound No. of Cylinders Benzene Ethylene Propylene Methane/Ethane Propane Toluene Hydrogen Sulfide Meta-Xylene Methyl Acetate Chloroform Carbonyl Sulfide \jtkfcW_.1 Vlft .i-i-i AM*» ji ». Methyl Mercaptan Hexane 1 , 2-Dichloroethane Cyclchexane Methyl Ethyl Ketone Methanol 1 , 2-Dichloropropane Trichloroethylene 1,1-Dichloro- etnylene **l,2-Dibrono- ethylene Perchloro- ethylene Vinyl Chloride 1,3-Butadiene Acrylonitrile **Aniline Methyl Isobutyl Ketone 7 3 3 - 3 4 6 2 2 4 1 2 4 ' - 4 1 2 2 2 - 2 8 3 3 - 1 Concentration Range (ppn) 5- 5- 5- «•••••• 5 - 5 - 5 - 5 - 5 - 5 - 5 - 3__ — 20 - 5- ^H«M 5- 30 - 3- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 20 20 20 20 20 50 20 20 20 20 in 1U 90 20 50 80 20 20 20 20 30 60 20 20 Cylinder Construction* S Al Al - Al Al Al S S S Al Al Al Al Al - Al Al Al Al Al - S S Al Al - Al Nb, of Concentration Cylinder Cylinders Range (ppm) Construction* 10 4 6 3 4 3 4 4 7 2 2 1 4 — 4 1 - - 2 2 2 - 2 - 1 - — 60- 300- 3000- 30Q- 1000 - 200 - 300- 1000- 100- 100- 300- 300 - 300- 100 - 100- 80 - 300- 100 - 100 - 300 - 300 - 400 700 20,000 700 9000(M), 800(E) 700 20,000 700 700 700 700 700 400 600 200 700 600 600 700 500 S Al Al Al Al Al Al LS Al LS S S Al - Al Al - - Al Al Al - LS - - Al - - Al = Aluminum; S = Steel; LS = Low Pressure Steel. **, Cylinders are no longer available; the compounds were found to be unstable in the cylinders. (Continued) ------- TABLE 1. AUDIT MATERIALS CURRENTLY AVAILABLE Low Concentration Range High Concentration Range Compound No, of Concentration Cylinder No, of Concentration Cylinder- Cylinders Range (ppm) Construction* Cylinders Range (ppm) Construction* **Para-dichlorobenzene **Etnylanine **Fonnaldehyde Me thy lene Chloride Carbon Tetrachloride Preon 113 Methyl Chloroform Ethylene Oxide Propylene Oxide Allyl Chloride Acrolein Chlorobenzene Carbon Bisulfide **Cyc Ichexanone ***EPA Method 25 Mixture Ethylene Dibrcmide Tetrachloroethane 4 4 1 1 5 1 1 1 3 - - 6 2 1 ^•^•H ^HMB 1 - 5- 5- 5- 5- 5 - 5 - 5- 5 - ••••• 100- 5 - 5- » 20 20 20 20 20 20 20 20 20 200 20 20 Al Al Al Al Al Al S Al Al - - Al S S - - 1 1 1 - 1 - 4 2 ™ ' VMHHBB ^^^HKVB 75 - 75 - 100- 75 - 750- 50- ^•••HMM 200 200 300 200 2000 300 WIV - - Al S Al - Al - Al S — fAl = Aluminum; S = Steel; LS = Low Pressure Steel. Cylinders are no longer available; the compounds were found to be unstable in the cylinders. gas mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon dioxide in nitrogen. Concentrations shown are in ppnC. ------- SECTION 2 EXPERIMENTAL PROCEDURES Analysis of the cylinder gases is required to corroborate the con- centrations reported by the company which prepared the gas mixtures and also to measure concentration changes with time, that is, estimate sta- bility of the compounds. INSTRUMENTATION Analyses are presently performed with (1) a Perkin-Elmer Sigma 4 Gas Chromatograph with a flame ionization detector (FID), and (2) a Tracor 560 Gas Chromatograph with a flame photometric detector. The flame photometric detector has principally been used for measurement of the sulfur-containing species. Gaseous samples are injected onto the appropriate column by means of Valco gas sampling valves constructed of Hastalloy C (high nickel content and low adsorptive properties). These valves are equipped with interchangeable sample loops to allow the in- jection of variable volumes of gas. The gas Chromatographic parameters used in the measurement of in- dividual compounds and any problems with the analysis are listed in Attachment 1. CALIBRATION Calibration of the gas Chromatographs is accomplished using appro- priate calibration standards comprised of known concentrations of gases in air or nitrogen. The source or method of preparation of calibration standards varies depending on the gas involved. National Bureau of Standards, Standard Reference Materials (NBS- SRMs) of methane and propane in nitrogen or air were used for the cal- ibration of the GC for the measurement of methane, ethane, propane, ethylene, and propylene audit materials. An NBS-SRM of benzene in ni- trogen was used for calibration of the GC for the measurement of ben- zene audit cylinder concentrations and an NBS-SRM of perchloroethylene in nitrogen was used for the measurement of perchloroethylene audit cylinder concentrations. ------- A second method for preparation of calibration standards involves the use of gravimetrically calibrated permeation tubes. For example, the calibration gases for hydrogen sulfide and ethylene oxide have been generated in this manner. The permeation tube is placed in a tempera- ture-controlled chamber and nitrogen is passed over the permeation tube at a known flow rate. The resultant gaseous mixture is further di- luted, if necessary, using additional nitrogen in a glass dilution bulb. The final mixture is collected in a gas sampling syringe and analyzed by GC-FID. The permeation rates of the tubes are determined by periodic weight loss measurements. A third method for developing a calibration standard is the pres- sure-dilution technique. A known volume of the compound, either gas or liquid, is injected into an evacuated glass bulb or stainless steel sphere of known volume. (The volume of the bulb or sphere is deter- mined gravimetrically.) The bulb or sphere is then pressurized with a balance gas of choice. If a pure liquid is injected, total vaporiza- tion is assumed and the concentration is calculated by using the ideal gas law. Additional dilutions are also made, if necessary, by partial- ly evacuating to a known pressure and pressurizing with a balance gas to a known pressure. With each of these approaches, multipoint calibration curves are prepared each time a cylinder mixture is analyzed. QUALITY CONTROL Replicate injections of both audit cylinder gases and calibration standards are performed until no trends in the detector response are observed and the relative standard deviation of replicate injections is less than 1 percent. As a quality control check on the accuracy of calibration mixtures prepared by the pressure-dilution technique, NBS-SRMs of benzene in nitrogen or propane in nitrogen were analyzed by GC-FID against se- lected compound calibration standards. The prepared calibration mix- ture was used to establish the detector response on an area per ppm- carbon basis. This calibration was then used to determine the ppm-car- bon concentration of the analyzed NBS-SRM. Concentrations were con- verted to ppm by volume before comparison with certified values. The ------- results of these analyses are shown in Table 2. Validation of the pres- sure-dilution technique for these five compounds provides a high level of confidence in the results for other compounds since the same tech- nique and preparation system were used. TABLE 2. PRESSURE-DILUTION QUALITY CONTROL RESULTS NBS-SRM Analysis Calibration Standard Toluene M-Xylene Hexane Cyclohexane 1,3-Butadiene Compound Benzene Benzene Propane Propane Propane NBS Cone., ppm 9.78 9.78 98.5 98.5 98.5 RTI Measured Cone., ppm 10.1 9.79 100 100 101 Percenta Difference 3.3 0.1 1.5 1.5 2.5 a RTI Cone. - NBS Cone. NBS Cone. X100 Two different cylinders containing hydrogen sulfide in nitrogen were received from the National Bureau of Standards and analyzed along with the audit cylinders as a quality control check. The analysis re- sults are shown in Table 3. TABLE 3. HYDROGEN SULFIDE ANALYSIS QUALITY CONTROL RESULTS Cylinder Number NBS Certified Cone., ppm RTI Measured Cone., ppm Percent Difference 1 2 5.14 15.4 4.84 15.2 -5.8 -1.3 ------- SECTION 3 PERFORMANCE AUDITS RTI supplies cylinder gases for audits upon request from the EPA, state or local agencies or contractors. A contractor must be perform- ing source emission tests at the request of EPA or a state or local agency in order to qualify for the performance audit. When a request is received, the contents of the cylinders are analyzed, the tank pres- sures are measured and the cylinders are shipped by overland carrier. Tank regulators are also provided when requested. A letter is included with the cylinders which provides general instructions for performance of the audit. The audit material concentration and cylinder pressure are provided to the requesting agency audit coordinator. To date, 214 individual audits have been initiated, and 194 are complete; The audit results currently available are presented in Table 4. The results of the audits show that most auditee reported concen- trations agree within 15 percent of the audit material concentrations measured by RTI, although the difference for some compounds is some- times quite substantial. This indicates the importance of the perfor- mance audit program and the need for reliable quality assurance cali- bration standards by the laboratories being audited. ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS Audit No. 1 2 3 4 5 6 7 8 9 10 11 12 Client*** A A A A A A B C D E F F Industry Ethylene oxide production Ethy-ene oxide production Ethylene oxide production Acetone production Maleic anhydride production Ethylene oxide production Maleic anhydride product ion Maleic anhydride production Ethyl benzene styrene manufacturer Gasoline bulk tenninal Gasoline transfer terminal Gasoline transfer tenninal Audit material Ethylene in N2 Ethylene in N2 Methane/ethane in N2 Methane/ethane in N2 Methane/ethane in No Methane/ethane in N2 Benzene in No Benzene in N2 Benzene in N2 Benzene in No Ethylene in N2 Ethylene in N2 Benzene in N2 Benzene in N2 Benzene in N2 Benzene in No Benzene in No Benzene in No Benzene in N2 Benzene in No Benzene in N2 Benzene in N2 Benzene in N2 Benzene in No RTI audit cone, (ppm) 3,240 21,200 l,710Me/220Et 8,130Me/597Et l,021Me/315Et 6,207Me/773Et 79.0 374.0 138 300 5,440 18,900 80.0 355 101 387 71.0 229 62.0 80.0 142 294 268 343 Client audit % bias (Avg.)* -22.5 -20.0 +9/-20 +9/-1.00 +21.5M.50 +23.5/-4.50 -19.0 -11.0 -9.40 •*4.70 -27.0 -33.0 +2.30 +27.5 +12.9 +14.5 -2.80 -3.90 +3.80 +3.40 -3.50 +3.20 -11.8 -1.00 Status of audit** B B B B B B B B B B B B ------- TABLE 4. SMlAIu7 OF PERFOIMANCE AUDIT RESULTS (Continued) Audit No. 13 14 15 16 17a 17b 18 19 20 21 22 23 Client*** F F C F F F G F F F F F Industry Gasoline transfer terminal Gasoline transfer terminal Nitrobenzene manufacturing Gasoline bulk terminal Gasoline bulk terminal Gasoline bulk terminal Coke o/en Gasoline bulk terminal Gasoline bulk terminal Linear alkyl- benzene manu- facturing Gasoline bulk terminal Gasoline bulk terminal Audit material Benzene in N2 Benzene in N2 Benzene in No Benzene in No Benzene in No Benzene in N2 Benzene in N2 Benzene in N2 Benzene in N2 Benzene in N« Benzene in N2 Hydrogen sulfide in N2 Hydrogen sulfide in No Benzene in N2 Benzene in No Benzene in No Benzene in No Benzene in No Benzene in N2 Benzene in N2 Benzene in No Benzene in N2 Benzene in No Benzene in No KTI Audit cone, (pan) 129 318 10.7 9.73 269 8.20 140 9.50 127 9.50 127 7.05 9.73 12.0 218 7.65 396 98.0 294 331 9.85 81.0 10.2 61.0 Client Audit % bias (Avg.)* +4.70 +8.70 +2.60 -4.60 -2.60 -2.30 -1.80 +10.4 -2.80 +12.5 -6.30 -24.8 -22.9 -0.80 +7.30 +16.3 +1.50 +5.70 +6.80 +4.50 -4.10 -6.80 +4.60 -9.50 Status of audit** B B B B B B B B B B B B ------- TABLE 4. SUGARY OF EERPOBMANCE AUDIT RESULTS (Continued) Audit No. 24 25 26 27 28A 283 28C 29 Client*** Industry H Industrial surface coating process C Acrylic acid and ester Production C Acrylic acid and ester Production E Maleic anhydride A Carbon adsorber A Carbon adsorber A Carbon adsorber EPA, QAD . Instrument check-out Audit material Toluene in N2 Propylene in N2 Propane in. 1*2 Methane/ethane in N2 Propane in N2 Propane in N2 Propane in N2 Propane in N2 Benzene in N2 Benzene in N2 Toluene in N2 Toluene in N2 Toluene in N2 Toluene in N2 Toluene in N2 Toluene in N2 Ethylene in N2 Ethylene in N2 Ethylene in N2 Ethylene in N2 Ethylene in No KTI audit cone, (ppm) 14.8 474 20.3 l,64GMe/195et 10.1 710 5.1 607 10.2 218 8.55 405 8.55 405 8.55 405 4.75 19.6 312 3020 20400 Client audit Status of % bias (Avg.)* audit** -1.90 B +0.20 -2.X -13.5(as methane) +8.60 B +5.60 +17.6 B -3.60 NA C NA -6.40 B -1.00 +4.10 B NA -8.80 B NA +4.00 B +3.10 -O.80 . +5.30 -8.60 ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. 30 31 32 33 34 35a 35b Client*** Industry EPA, QAD Instrument check-out EPA, QAD Instrument check-out EPA, QAD Instrument check-out EPA, QAD Instrument check-out EPA, QAD Instrument check-out I Vegetable oil plant I Vegetable oil plant Audit material Benzene in N2 Benzene in N2 Benzene in N2 Benzene in N2 Toluene in N2 Toluene in N2 Methyl acetate in N2 Methyl acetate in N2 Methyl acetate in N2 Methyl acetate in N2 Propylene in N« Propylene in N2 Propylene in No Propylene in N2 Propane in No Propane in ^ Propane in N2 Hexane in N2 Hexane in N2 Hexane in N2 Hexane in No KTI Audit cone, (ppra) 8.20 78.0 133 348 405 579 6.80 17.2 326 455 4.90 19.7 300 685 14.6 303 439 82.2 1980 82.2 1980 Client Audit Status of %bias (Avg.)* audit** +0.30 B -0.90 -4.00 -0.90 +3.20 B +1.00 -2.60 B +1.70 -1.50 -1.30 -22.4 B -7.80 +1.00 -1.80 -0.70 B +7.60 +6.20 +8.10 B +3.00 -1.20 B -1.30 36 Carbon adsorber Toluene in 8.20 -2.40 ------- TABLE 4. SUWAIff (F PEREOFMANCE AUDIT RESULTS (Continued) Audit No. 37 38 39 40 41 42 43 44 45 46 Client*** Industry B Coke even D Ethylbenzene/ styrene B Coke oven Byproduct D Coke oven Byproduct H Paint spray H Tire manufacturing B Coke oven D Ethylbenzene/ styrene F Industrial surface coating EPA, QAD Tire manufacturing Audit material Benzene in N£ Benzene in N2 Benzene in N2 Benzene in N£ Benzene in N2 Benzene in N£ Benzene in N2 Benzene in N2 Benzene in N2 Benzene in Wn m-Xylene in N2 Cyclohexane in N2 Benzene in N2 Benzene in N2 Benzene in N2 Benzene in N2 Propane in N2 Propane in Air Propane in Air Propane in Air Propane in Air KTI audit cone, (ppm) 12.1 105 9.90 77.9 345 8.20 85.4 10.9 147 10.8 16.4 93.4 7.54 225 8.20 74.5 10.6 316 . 450 15.0 316 Client axlit % bias (Aug.)* •K).80 +2. 90 +5.70 +3.60 +1.50 -2.60 -8.70 +20.0 +6.80 NA NA -11.1 +0.10 +0.40 -3.40 -0.20 -3.00 -3.20 -2.00 NA NA Status of audit** B B B C B B B B C ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. 47 48 49 50 51 52 53 54 Client*** Industry EPA, QAD Tire manufacturing D Dimethyl terephthalate production EPA, QAD Instrument check-out EPA, QAD Tire oven manufacturing EPA, QAD Instrument check-out D Styrene manufacturing I Veg. oil manufacturing M Research Audit material Propane in air Propane in air Meta-xylene in N2 Toluene in N2 Methanol in N2 Propane in air Propane in air Propane in air Propane in air Propane in air Benzene in N2 Benzene in N2 1,3-^utadiene in N2 Cyclohexane in N« Chloroform in N2 Chloroform in N0 KTI audit cone, (ppm) 20.8 453 487 61.5 55.2 4.90 613 718 20.8 316 106 358 20.9 99.0 16.5 531 Client audit % bias (Avg.)* -18.4 +13.4 -2.10 NA NA -48.8 +16.9 +16.8 +20.0 -9.20 -4.90 -3.70 +23.8 -3.50 NA . NA • Status of audit** B B C B B B B C 55 Research Ethylene in N^ 300 +1.40 B ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. 56 57 58 59 60 61 62 63 64 65 Client*** Industry K Reactivity of vent activated charcoal EPA, QAD Instrument check-out C Coil coating L Maleic anhydride M Research EPA (State of Conn. ) Maleic anhydride 0 M Paper and pulp P Research E Coke oven Byproduct Reco/ery Audit material Chloroform in No •• Hydrogen sulfide in No Propane in Air Propane in Air Benzene in N« Benzene in Nn Audit not initiated Benzene in N2 Meta-xylene in No Hexane in N2 Methyl raercaptan in N2 Benzene in N~ Methyl ethyl ketone in N2 Benzene in N2 Benzene in N2 RTI audit cone, (ppra) 8.11 16.2 5.20 472 9.45 341 — 133 760 1990 4.44 13.4 44.5 7.93 132 Client audit Status of % bias (Avg.)* audit** NA. C NA C NA. B -8.40 NA. C NA. — — NA. C NA. C NA. NA c NA c NA. •' -2.90 B -H.39 ------- TABLE 4. SUMMARY (F PERFORMANCE AUDIT RESULTS (Continued) Audit No. 66 67 68 69 70 71 72 73 Client*** Industry D Rubber manufacturing E Coke o/en Byproduct Recovery EPA, Region II Vinyl chloride manufacturing EPA, QAD Instrument Check EPA, Region I Vinyl chloride manufacturing E Degr easing vent EPA, QAD Instrument check-out EPA, QAD Conbustion efficiency test Audit material Benzene in N2 Benzene in N2 Benzene in N2 Benzene in N2 Hexane in N2 Hexane in N2 Propane in Air Propane in Air Benzene in N2 Benzene in N2 Vinyl chloride in N2 Vinyl chloride in N2 Propylene in N2 Propylene in N2 Vinyl chloride in N2 Trichloroethylene in N2 Trichloroethylene in N2 Hexane in N£ Hydrogen sulf ide in N2 Methyl mercaptan in N2 Rtl audit cone, (ppn) 12.0 10.2 100 335 79.8 3080 9.97 314 8.29 75.7 5.74 28.3 328 725 7.50 14.9 566 3080 16.2 8.22 Client audit Status of % bias (Avg.)* audit** +14.2 B 0 +6.40 +6.00 +1.80 -7.50 -3.20 -10.8 -2.20 B -2.50 NA C NA. . -7.00 B -8.30 NA. C -0.40 B -8.70 NA ' C -7.50 B -8.90 ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. 74 75 76 77 78 79 80 81 82 83 Client*** E N F D EPA, Region VII D F P J I Industry Vinyl chloride manufacturing Coil coating Coil coating Maleic anhydride Instrunent checkout Maleic anhydride Plywood /v eneer drying Plywood Areneer drying Polypropylene manufacturing Coke even Audit material 1,2-Dichloroethane in N2 1,2-Dichloroethane in N2 Propane in air Propane in ''air Propane in air Propane in air Benzene in N2 Benzene in N2 Benzene in N2 Hexane in N2 Benzene in N2 Benzene in N2 Propylene in N2 Propylene in N2 Toluene in N2 Propylene in N2 Propylene in N2 Toluene in N2 Propylene in.N2 Propane in N2 Propane in N2 Hydrogen sulf ide in N2 Hydrogen sulf ide in N2 Carbonyl sulf ide RTI audit cone, (ppa) 9.30 462 10.0 309 10.0 309 9.46 66.9 120 30.2 9.46 128 14.8 328 430 20.3 479 487 9.63 19.7 296 437 647 101 Client audit Status of % bias (Avg.)* audit** +6.00 B +3.70 NA C NA m. c -6.60 B -11.7 NA C NA -4.60 B +12.5 -4.70 B +4.40 -0.80 +18.2 B -22.5 +32.5 -0.35 B +0.84 +0.45 +4.90 B -16.5 +1.98 ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) oo Audit No. 84 85 86 87 88 89 90 91 Client*** Industry J Compliance testing I Steel manufacturing I Oil shale Q Maleic Anhy- dride Produc- tion R Refining Air Quality Bureau, Refining New Mexico S Oil shale F Compliance testing & demonstrat ion Audit material Benzene in N2 Hexane in N2 Toluene uvN2 Methyl mercaptan in N2 Hydrogen sulfide in N2 Carbonyl sulfide in N2 Hydrogen sulfide in N2 Carbonyl sulfide in N2 Methyl mercaptan in N2 Benzene in N2 Hexane in N2 Hydrogen sulfide in N2 Hydrogen sulfide in N2 Hydrogen sulfide in N2 . Carbonyl sulfide in N2 Methyl mercaptan in N2 Hydrogen sulfide in N2 Trichlorethylene in N2 Propane in N2 Propane .in N2 Propane in N2 RTI audit cone, (ppm) 7.45 72.6 15.0 5.40 647 9.08 437 117 8.42 55.7 324 17.5 437 647 117 8.42 437 94.6 10.0 309 73.8 Client audit Status of %bias(Avg.)* audit** 23.0 B 0.6 -8.7 NA 5.0 B 1.0 -3.0 B -4.6 -13.3 +528.4 B +20.5 21.1 B 22.0 NA C -29.1 B -14.8 -3.65 NA B NA -54.0 8.7 ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. Client*** 92 EPA, Region I 93 D 94 USEPA, Region I 95 E 96 USEPA, Region I 97 Tewksbury State Hospital, MA 98 T 99 U Industry Research Method Development Method Validation Research- Method Development Acrylonitrile Production Resource Re- covery Garbage Burning Emis- sions Research- Method Develop- ment Plywood Veneer Hazardous Materials Incineration RTI audit Audit material cone, (ppra) Toluene in N2 Hydrogen sulfide in N2 Vinyl chloride in N2 l.l^dichloroethylene in N2 Trichloroetnylene in N2 Perchloroethylene in N2 Acrylonitrile in N2 Acrylonitrile in N2 Propane in N2 Propane in N2 Vinyl chloride in N2 1,1-dichloroethylene in N2 Trichloroethylene in N2 Tetrachloroethylene in N2 Method 25 gas in N2 Method 25 gas in N2 Trichloroethylene in N2 Perchloroethylene in N2 Chloroform in No 347 8.32 8.39 14.2 13.5 7.94 413 10.8 10.0 296 8.39 14.2 13.5 7.94 102 as C 1940 as C 8.91 7.94 16.5 Client audit % bias (Avg.)* NA NA -20.2 +10.6 +55.6 +48.1 NA 6.94 -35.0 -17.2 +57 -9.9 -4.4 +48.6 NA NA NA NA NA Status of audit** C C B B B B C C ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) IV) o Audit No. 100 101 102 103 104 105 106 107 108 109 110 Client*** Industry USEPA, Region I Research Method Development U Hazardous Materials Incineration Allegheny Solvent Coating County I Hazardous Waste Incin- eration I Hazardous Waste Incin- eration USEPA, Region VI Plastics USEPA, Region VI Vinyl Chloride Manufacturing V Instrument Check Q Gasoline Termi- nal P Chemicals Manufacturing MD Dept. of Health Instrunent Check RTI audit Client audit Audit material cone, (ppm) % bias (Avg.)* Chlorobenzene in N2 Benzene in N2 Hexane in N2 Meta-xylene in N2 Trichloroethylene in N2 Perchloroethylene in N2 Toluene in N2 Methyl ethyl ketone in N2 Acrylonitrile in N2 Methyl isobutyl ketone in N2 Vinylidiene chloride in N2 Vinylidiene chloride in N2 Vinyl chloride in N2 Vinyl chloride in N2 Methyl chloroform in N2 Perchloroethylene in N^ , Propane in air Toluene in N2 Benzene in N2 1,2-Tdichloroethane in N2 Benzene in N2 Perchloroethylene in No 9.20 128 30.2 6.82 (cold 2.68 (warm 13.5 14.5 8.51 38.7 11.6 9.49 14.2 9.00 8.41 8.44 10.2 7.94 1.18% 16.4 7.3 8.1 9.64 14.5 NA. NA NA bulb) NA bulb) m. NA. NA NA NA. NA 12.3 10.0 NA. NA +7.8 +15.9 -4.2 17.3 NA NA -6.6 +60.1 Status ot audit** C C C B B C C B B B B ------- TABLE 4. SLbMAKf OF PERFORMANCE AUDIT RESULTS (Continued) Audit No. Ill 112 113 114 115 116 117 118 119 120 121 122 Client*** V J GA State EPA Sacranento County, California U V X F K Z K LA State EPA Industry Instrument Check Research, Method Development Plastics Instrument Check Instrument Check Instrument Check Carbon Adsorp- tion Surface Coating Instrument Check Solvent Coating Instrument Check Plastic Manufacturing Kii audit unenc auait Audit material cone, (ppn) % bias (Avg.)* Chloroform in N2 Carbon tetrachloride in N2 Trichloroethylene in N2 Freon 113 in N2 - Propane in N2 Toluene in N2 Vinyl chloride in N2 Ethylene oxide in N2 Benzene in N2 Chlorobenzene in N2 Methanol in N2 Toluene in N2 Methyl ethyl ketone in N2 Methylene chloride in N2 Method 25 gas in N2 Freon 113 in N2 Toluene in N2 Toluene in N2 Perchloroethylene in N2 Benzene in No Vinyl chloride in No 1 ,2-dichloroethane in N2 Carbon tetrachloride in No 16.5 10.5 13.5 9.76 628 347 8.44 10.1 389 9.20 55.2 16.1 38.7 9.67 96.8 as C 9.76 8.51 558 7.94 9.64 8.44 13.8 10.5 +3 +33.0 +4.0 0 +0.6 +2.0 +10.2 NA. -35.7 -43.1 NA NA +127.3 NA +38.8 -3.1 NA .' -30.5 191.5 -37.0 status ot audit** B B B C B C ^C B C B C B 123 Paper Manufac- turing Vinyl chloride in N2 6.60 ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) ro rv> Audit No. 124 125 126 127 128 129 130 131A 131B 132 133 Client*** LA State EPA Y I F Y J Region Vll South Coast Air Quality Manage- ment District South Coast Air Quality Manage- ment District Maryland Dept. of Health State of Cali- fornia Air Resources Board Industry Instrument Check Surface Coating Oil Shale Surface Coating Surface Coating Research, Method Development Instrument Check Hazardous Waste Landfill Hazardous Waste Landfill Instrument Check Quality Assur- ance Audit of Standards Audit material Toluene in No Methylene chloride in N2 Method 23 gas in N2 Method 25 gas in N2 Carbonyl sulfide in N2 Carbonyl sulfide in N2 Hydrogen sulfide Methyl mercaptan Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Methyl ethyl ketone in N2 Acrylonitrile in N2 Benzene in N2 Methane in N2 Methane in N2 Benzene in N2 Trichloroethylene in N2 Hexane in N2 Methyl isobutyl ketone in l,2HDichloroethane in N2 Methylene chloride in N2 Chloroform in N2 Perchloroethylene in No KIT audit cone, (ppn) 8.51 9.67 107 as C 775 as C 10.7 116 627 8.42 775 as C 205 as C 1040 as C 38.7 11.6 134 6460 6460 7.9 9.4 32.8 N2 8.4 13.9 9.2 4.6 10.5 Carbon tetrachloride in N2 9.6 Trichloroethylene in N2 Freon-113 in No 14.0 11.0 Client audit % bias (&rg.)* -34.2 96.8 80.4 39.5 NA NA NA NA -26.5, -18.7 21.5 18.9 NA -29.3 -28 +0.6 -2.5 -11.1 -31.6 -18.5 +15.4 -2.1 +7.6 +2.2 +14.3 +1.0 +7.1 -9.1 Status ot audit** B B C B B C B B B B B ------- TABLE 4. SUMMARY OP PERFORMANCE AUDIT RESULTS (Continued) ro CO Audit No. 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 Client*** AA . FF J I F BB EPA Region II Gcranonwealth of Massachusetts EPA Region II State of Dela- ware EE DO State of Dela- ware OC F BB Industry Hbod Steve Bnissions Polyester Resin Production Instrunent Check Coil Coatirg Compliance Testing Coil Coating Metal Refining Instrunent Check Methane Recovery Plant Plastic Manufacturing Plastic Manufacturing Paper Coating Instrunent Check Gasoline Terminal Vinyl Coating Plastic Manufacturing RTI audit Client audit Audit material cone, (ppm) % bias (Avg.)* Benzene in N2 Method 25 gas in N2 Benzene • in N2 Benzene in N2 Method 25 gas in N2 Methanol in N2 Methyl ethyl ketone in N2 Method 25 gas in N2 Benzene in N2 Benzene in N2 Trichloroethylene in N2 Methyl ethyl ketone in N2 Benzene in N2 Vinyl chloride in N2 Vinyl chloride in N2 Method 25 gas in N2 Propane in air Toluene in N2 Benzene in N2 Propane in N2 Propane in N2 Methyl ethyl ketone in N2 Method 25 gas in N2 310 103.8 as C 10.3 121 195 as C 48.8 40.4 1060 as C 376 7.9 14.0 40.4 7.8 7.75 20.3 96.1 as C 10.9 546 7.9 2052 308 40.4 764 as C +5.2 +28.1 +12.2 +6.2 -18.3 +10.7 -5.9 -4.0 -11.2 +5.1 -4.3 +31.2 -5.1 -11.0 -10.3 -24.5 -4.6 -8.6 -20.6 NA -1.0 -25 -9.3 Status of audit** B B B B B B B B B B B B B C B B ------- TABLE 4. StfrMARY OF PERFORMANCE AUDIT RESULTS (Continued) ro Audit No. 150 151 152 153 154 155 156 157 158 159 160 Client*** EPA Region I EPA Region II EPA Region II Ccnrnonwealth of Massachusetts J • EPA Region I EPA Region II EPA Region I Allegheny County Minnesota Pollu- tion Control Agency J Industry Wire Coatirg Instrument Check Chemical Feedstock Formulation Paper Coatipg Instrument Check Paper Coating Wire Coatiqg Wire Coating Instrument Check Instrument Check Methylene Chloride Manufacturing RTI audit Client audit Audit material cone, (pprn) % bias (Avg.)* Method 25 gas in N2 Benzene in N2 Method 25 gas in N2 Method 25 gas in N2 Methyl ethyl ketone in N2 Benzene in N2 Benzene in N2 1,1-Dichloroethylene in N2 1 , 1-Dichloroethylene in N2 Propane in N2 Propane in N2 1,2-Dichloroethane in N2 Trichloroethylene in N2 Perchloroethylene in N2 Toluene in N2 Method 25 gas in N2 Hexane in N2 Benzene in N2 Toluene in N2 Trichloroethylene in N2 Perchloroethylene in N2 Propane in N2 Hydrogen Sulfide in N2 Benzene in N2 Toluene in N2 Methylene Chloride in N2 Methylene Chloride in N2 187 as C 9.90 1930 as C 95.8 as C 40.4 96.0 10.2 8.78 479 10.9 607 14.1 9.40 13.3 184 1020 as C 88.2 11.9 8.70 14.0. 6.88 10.9 30.5 10.3 18.9 10.4 6.01 ' +52.0 -5.4 -71.0 -73.1 +220 -5.5 +3.0 NA w. NA. +3.1 -11.3 -1.1 -2.3 MA. -48.2 NA -2.5 NA NA -93.0 NA NA -37 -30 -4.0 -3.7 Status of audit** B B B B B C B C B B B ------- TABLE 4. SLHMARY OF PERFOIMANCE AUDIT RESULTS (Continued) ro ui Audit No. 161 162 163 164 165 166 167 168 169 170 171 172 Client*** Florida Dept. of Health, Welfare and Bioenv iron- mental Services Texas Air Control Board Pennsylvania Dept. of En/ iron- mental Resources GG EPA Region I Texas Air Control Board W J N W J N Industry Printing Operation Instrument Check Printing Press Printing Operation Paper Coating Instrument Check Plastics Manufacturing Instrument Check Solvent Ink Coating Process Surface Coating Instrument 1 Instrument 2 Instrument 1 Instrument 2 Methylene Chloride Manufacturing Solvent Coating Audit material Method 25 gas in N2 Method 25 gas in N2 Benzene in N2 Acrylonitrile in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Toluene in N2 Toluene in N2 Method 25 gas in N2 Vinyl Chloride in N2 Vinyl Chloride in N2 Benzene in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Methylene Chloride in N2 Methylene Chloride in N2 Method 25 gas in N2 Method 25 gas in No RTI audit cone, (ppa) 1930 as C 187 as C 97.3 424 1093 as C 99.2 as C 196 as C 618 368 99.6 as C 8.15 20.6 7.89 196 as C 1093 as C - 99.2 as C, 806 as C 1.13 10.4 196 as C 806 as C Client audit % bias (Avg.)* +16 +55 +2.8 -33 -11 +69 NA +36.9 +11.4 +5.7 +0.6 +0.5 -9.6 +30.6 +13.4 +7 +150 +5 +21 +22 +4 +25 +3 Status of audit** B B B C B B B B B B B ' B ------- TABLE 4. SUMMARY CF PERFORMANCE AUDIT FESULTS (Continued) ro CTl Audit No. 173 174 175 176 177 178 Client*** Industry HH Steam Stripping EPA/ASRL Lab #1, Inst. #1 Lab #1, Inst. #2 Lab #2, Inst. #1 Lab nt Inst. #2 II Instrument Check L Synthetic Rubber Manufacturing L Synthetic Rubber Manufacturing MM Asphalt Plant Audit material 1,2-Dichloroethane in Vinyl Chloride in N^ Methylene Chloride in Benzene in N2 Toluene in N£ 1,3-Butadiene in N£ Meta-Xylene in N2 Benzene in N£ Toluene in N2 1,3-Butadiene in N2 Meta-Xylene in N2 Benzene in N2 Toluene in N2 1,3-Butadiene in N2 Meta-Xylene in N2 Benzene in N2 Toluene in N2 1,3-Butadiene in N2 Meta-Xylene in N2 Method 25 gas in N2 Chlorofonn in N2 Carbon Tetrachloride Carbon Tetrachloride Chlorofonn in N2 1,3-Butadiene in N2 1,3-Butadiene in N2 Method 25 gas in N2 Method 25 gas in No RTI audit cone, (ppra) No 422 7.75 N2 6.01 7.89 10.2 13.4 11.1 7.89 10.2 13.4 11.1 7.89 10.2 13.4 11.1 7.89 10.2 13.4 11.1 806 as C 9.08 in N2 5.88 in N2 18. 1 22.1 52.9 32.3 99.6 as C 806 as C Client audit %bias (Avg.)* +71 -36 +45 -K).6 -14.4 -9.2 -10.8 -3.2 -8.6 -10.8 -9.2 +1 -1 0 +6 +5 -8 +1 +10 +24 +7 +28 +21. -1 -6 -4 MA NA Status of audit** B B B B B B B B C C ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) rv> Audit No. 179 180 181 182 183 184 185 186 187 188 189 190 Client*** U HH BB L KK F V CO F BB BB KK Industry Plastics Manufacture Steam Stripping Process Lignite Power Plant Synthetic Rubber Manufacturing Plant Can Coating Operation Surface Coating Operation; Instrument #1 Instrument #2 Instrument Check Instrument Check Vinyl Coating Manufacturing Can Coating Operation Can Coating Operation Can Coating Operation KTI audit Client audit Audit material cone, (ppm) % bias (fug.)* Hexane in N2 1,2-Dichloroethane in N2 1,1-Dichloroethylene in N2 Vinyl Chloride in N2 Method 25 gas in N2 Carbon Tetrachloride in N2 Carbon Tetrachloride in N2 Method 25 gas in N2 Methyl Ethyl Ketone in N2 Methyl Ethyl Ketone in N2 Methylene Chloride in % Method 25 gas in N2 Toluene in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 2139 97.2 15.2 6.1 99.2 as C 21.8 as C 10.6 as C 1093 as C 45 45 6.01 1904 as C 618 99.6 as C 1968 as C 806 as C -2 -90 -44 -5 -33 0 -2 -53 +20 +16 -17 +2 +3 NA. m. +17 Status of audit** B B B B B B B B B C C B ------- TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued) 00 Audit No. 191 192 193 1% 195 196 197 198 199 200 201 Client*** Industry JJ Instrument Check LL Organic Emissions Fran Building Materials U Paint Shop Incinerator PP Limestone Quarry QQ Bulk Gasoline Terminal RR Research Method Development; Instrument #1 .Instrument #2 DD Manufacturer of Vinyl Wall Coverings Ml Asphalt Plant J Method Development Research LL Instrument Check Bfi Municipal Incinerator KTI audit Client audit Audit material cone, (ppm) % bias (Avg.)* Method 25 gas in N2 Hexane in No Toluene in N2 Toluene in N2 Chlorobenzene In N2 Hexane in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Propane In N2 Propane in N2 Hydrogen Sulf ide in N2 Hydrogen Sulf ide in N2 Methyl Ethyl Ketone in N2 Methyl Isobutyl Ketone in Methanol in N2 Method 25 gas in N2 Method 25 gas in N2 1,3-Butadiene in N2 Ethane in N2 Ethylene in N2 Toluene in N2 Propane in N2 99.2 as C 92.1 21.6 303 14.4 34.8 1904 1093 196 10.1 ' 21300 537 537 45.0 No 10.2 56.8 1093 as C 196 as C 52.9 300 4.72 10.2 14.6 -1 -7 +1 0 46 -10 -W -14 -11 -21 -1 -10 -5 Status of audit** B B B B B B B A A A A A ------- TABLE 4. SUMMARY OF PERFOFWANCE AUDIT RESULTS (Continued) ro 10 Audit No. 202 203 204 205 206 207 208 209 210 211 212 Client*** F W SS L J TT UU W H Q WW Industry Paper Coating Process Catalytic Incinerator Coke Oven Enissions Instrunent Check Instrument Check Instrunent Check Instrunent Check Municipal Incinerator Paper Coating Process 0/en Incinerator Auto Assembly Industrial Manufacturing RTI audit Client audit Audit material cone, (ppn) % bias (Avg.)* Methyl Acetate in N2 Method 25 gas in N2 Method 25 gas in N2 Hydrogen Sulfide in N2 Trichloroethylene in N2 Ethylene Oxide in N2 Ethylene Oxide in N2 Perchloroethylene in N2 Perchloroethylene in N2 Carbonyl Sulfide in N2 Carbonyl Bisulfide in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Method 25 gas in N2 Benzene in N2 437 NA 1968 196 787 101 -1 0.868 -1 9.09 +10 7.83 NA 551 NA. 103.3 105 806 as C +9 196 as C 146 as C 1904 as C 395 Status of audit** C A A B B C A B B A A ------- TABLE 4. SUMMARY OF PERFOIWANCE AUDIT RESULTS CO o Audit No. 213 214 Client*** ED XX Industry Paper Coating Process Paint Manufac- turing Audit material Toluene in N2 Vinyl Chloride in N2 Rn audit cone, (ppm) 264 8.13 Client audit Status of % bias (Avg.)* audit** A A NA = Not Analyzed *Client % Bias 100 X Client-Measured Concentration - BTI-Measured Concentration RTI-Measured Concentration **Status Codes: A = Audit in progress; B = Audit complete; C = Audit complete without analysis of audit materials by client. ***Whenever the auditee is known, an alphabetical letter is shown. Whenever the auditee is unknown or the request is for a self-audit, the nane of the agency requesting the audit is shown. 1977 - Audits 1-8 1982 - Audits 83-86 1978 - Audits 9-28 1983 - Audits 87-106 1979 - Audits 29-49 1984 - Audits 107-130 1980 - Audits 50-75 1985 - Audits 131-159 1981 - Audits 76-82 1986 - Audits 160-176 1987 - Audits 177-214 ------- SECTION 4 STABILITY STUDIES An ideal calibration standard or audit material should be both accurate and stable over its total time of usage. The stabilities of the compounds were studied through periodic reanalyses of the cylinder contents. In this project, the cylinder gas mixtures are initially analyzed upon receipt from the specialty gas vendor to assess the vendor's analysis. The gas mixtures are again analyzed at 1 month, at 2 months, and at one year following the initial analysis to determine the stability of the gas mixtures. In some cases, analyses are not performed on the dates specified above; however, every attempt is made to acquire the data on this schedule. Some cylinders have also been analyzed yearly after completion of the new cylinder stability study, providing additional data for estimating stability. As the number of analyses per cylinder increases, statistical sta- bility analyses will be performed. The results of the statistical analyses will be presented in a future report. Statistical stability analyses for ten (10) halocarbons and eight (8) other organics have been published in the open literature (1,2). Absolute accuracies of the cylinder analyses have not been deter- mined due to the lack of NBS standards above one ppm for most of the organic gas mixtures. An examination of the data in Attachment 1 shows that values for individual cylinder analyses usually vary less than 10 percent between analyses for 4-8 analyses over 2-6 years. This varia- tion may indicate changes in cylinder contents (i.e., instability), the imprecision of the measurement process, or both. Possible sources of experimental error that could result in apparent differences in con- centrations include (1) the variability of the analytical technique used for analysis, (2) stability of calibration standards, and (3) the accuracy of independently producing calibration standards where NBS- SRMs do not exist. These sources of variability contribute to the net uncertainty of the resulting data presented in Attachment 1. Estimates 31 ------- of day-to-day measurement uncertainty (repeatability) for all compounds have not been performed. However, the measurement uncertainties for ten halocarbons have been published (2). The measurement uncertainty varied from less than 1 percent to 10 percent depending on the com- pound, and the major portion of the uncertainty was attributed to the method of preparation of the calibration standard. The uncertainty for the gas chromatographic analysis was determined to be less than 2 per- cent by multiple injections of the gas during same day analysis. For the most recent analyses (1987) shown in Attachment 1, the un- certainty in the concentration has been estimated based on considera- tion of the uncertainties of several parameters associated with the measurement and calibration procedures. The equation below was then used to estimate the total uncertainty based on the individual uncer- tainties. Total Uncertainty = Where * 2 = two standard deviations (95 percent confidence limit) ei = individual component error, (percent coefficient of variation) n = total number of error components. For analyses involving the use of NBS-SRMs as calibration stan- dards, the total uncertainty is estimated to be 3.5 percent; for analy- ses using permeation tube based calibration standards - 5.3 percent; and for analyses using pressure/dilution based calibration standards - 5.6 percent. 32 ------- SECTION 5 SUMMARY AND CONCLUSIONS Cylinder gases of hydrocarbons, halocarbons, sulfurous, and oxy- genated species have been used successfully as audit materials to assess the relative accuracy of gas chromatographic systems used to measure source emissions. Absolute accuracy has not been determined due to the lack of NBS standards for most of the organic 'gas mixtures above 1 ppm; instead an estimated interlaboratory bias between the audit results and RTI results has been reported for the performance audits conducted during source testing. This interlaboratory bias has been generally less than 15 percent for both low and high concentration gases (Table 4). Of the 45 gaseous compounds studied or currently under study, 39 have demonstrated sufficient stability in cylinders to be used further as audit materials. Five compounds (ethylamine, paradichlorobenzene, cyclohexanone, 1,2-dibromoethylene, and aniline) are not recommended as audit materials for various reasons as discussed in Attachment 1. One compound (formaldehyde) was ordered but the speciality gas manufacturer indicated that cylinder gases of this compound could not be prepared. Detailed statistical analyses which separate statistical deviations from true concentration changes with time for 18 gaseous compounds have been published in a journal publication; statistical analyses for the remaining compounds will be presented in a future report. 33 ------- REFERENCES 1. R. K. M. Jayanty, C. Parker, C. E. Decker, W. F. Gutknecht, J. E. Knoll and D. J. VonLehmden, "Quality Assurance for Emissions Anal- ysis Systems," Environmental Science and Technology, 17_ (6), 257-263A (1983). 2. G. B. Howe, R. K. M. Jayanty, A. V. Rao, W. F. Gutknecht, C. E. Decker and D. J. VonLehmden, "Evaluation of Selected Gaseous Halo- carbons for Use in Source Test Performance Audits," J. of Air Pol- lution Control Association, 33 (9), 823-826 (1983). 34 ------- ATTACHMENT 1 Stability Data as of September 1987 1.0 BENZENE 2.0 ETHYLENE 3.0 PROPYLENE 4.0 METHANE/ETHANE 5.0 PROPANE 6.0 TOLUENE 7.0 HYDROGEN SULFIDE 8.0 META-XYLENE 9.0 METHYL ACETATE 10.0 CHLOROFORM 11.0 CARBONYL SULFIDE 12.0 METHYL MERCAPTAN 13.0 HEXANE 14.0 1,2-DICHLOROETHANE 15.0 CYCLOHEXANE 16.0 METHYL ETHYL KETONE 17.0 METHANOL 18.0 1,2-DICHLOROPROPANE 19.0 TRICHLOROETHYLENE 20.0 1,1-DICHLOROETHYLENE 21.0 1,2-DIBROMOETHYLENE 22.0 PERCHLOROETHYLENE 35 ------- 23.0 VINYL CHLORIDE 24.0 1,3-BUTADIENE 25.0 ACRYLONITRILE 26.0 ANILINE 27.0 METHYL ISOBUTYL KETONE 28.0 CYCLOHEXANONE 29.0 PARADICHLOROBENZENE 30.0 ETHYLAMINE ' 31.0 FORMALDEHYDE 32.0 METHYLENE CHLORIDE 33.0 CARBON TETRACHLORIDE 34.0 FREON 113 35.0 METHYL CHLOROFORM 36.0 ETHYLENE OXIDE 37.0 PROPYLENE OXIDE 38.0 ALLYL CHLORIDE 39.0 ACROLEIN 40.0 CHLOROBENZENE 41.0 CARBON DISULFIDE 42.0 METHOD 25 GAS MIXTURE 43.0 ETHYLENE DIBROMIDE 44.0 1,1,2,2-TETRACHLOROETHANE NOTE: PPM concentrations shown in Attachment 1 are expressed on a mole/mole basis, except for EPA Method 25 mixture which is on a mole carbon/mole basis. 36 ------- 1.0 BENZINE STABILITY STUDY Cylinder No. 1A IB Cylinder Construction* Al Al Manufacturer ppm Concentration Date ppn Day ppm Day ppn Day ppn Day ppm BTI Day Concentration ppm Day ppm Day -. ppm Day PP" Day ppm Day ppm Day ppm Day ppn 65.4 324 7/27/77 7/27/77 (79.0) (374) 136 136 (74.0) (337) 156 156 (78.0) (350) 167 167 (80.0) (355) 630 402 (77.9) (331) ** 433 (343) 969 (358) 1274 (348) 1491 (324) 2056 (305) 2438 (319) 3065 (326) 3716 (338) 1C ID Al Al 200 117 7/27/77 7/27/77 (241) (138) 247 29 (216) (144) 252 157 (215) (134) 381 252 (218) (129) ** 290 (127) 414 (127) 1247 (132) 2438 (121) 3065 (125) 3609 (127) IE S 61.0 2/10/78 (62.0) 78 (62.0) 216 (61.0) 385 (65.0) 722 (66.9) 1337 (55.7) 1858 (58.7) 2246 (60.4) 2867 (62.3) 3409 (62.5) IF S 71.0 2/10/78 (71.0) 232 (73.0) 385 (75.0) 586 (74.5) 882 (75.7) 1292 (65.7) 2246 (70.0) 2867 (72.0) 3410 (71.3) 1G S 80.0 2/10/78 (80.0) 78 (81.0) 216 (81.0) 385 (84.0) 504 (85.4) 1292 (74.0) 2246 (78.3) 2867 (80.7) 3410 (81.1) Al = Aluninun; S = Steel; IS = LowPressure Steel. UJU Cylinder anpty. ANALYTICAL CONDITIONS: Plane ionization detector, .10% OV-101 on Chronosorb WHP colunn at 100 degrees Celsius. CALIBRATION: An NBS-SIM of benzene in nitrogen is used to calibrate the detector response. 37 ------- 1.0 BENZENE STABILITY STUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration HTI Concentration ppm Date ppn Day ppm Day ppm Day ppm Day ppm Day ppn Day ppm Day ppn Day ppm Day ppm Day ppm Day ppn 1H S 100 2/8/78 (101) 65 (102) 206 (98.0) 237 (101) 434 (105) 773 (106) 831 (100) 1294 (92.0) 2380 (96.0) 2925 (99.2) 3412 (101) 11 U S S 139 232 2/9/78 2/9/78 (139) (229) 49 233 (139) (237) 50 386 (142) (243) % 557 (139) (225) 127 ** (140) 205 (138) 505 (147) 1293 (128) 1338 (128) 2380 (134) 2868 (137) 3412 (138) IK S 265 2/9/78 (264) 49 (261) 50 (268) 69 (254) 84 (269) ** 1L S 296 2/9/78 (295) 49 (292) 51 (294) 93 (298) 205 (294) 237 (302) 809 (295) 1294 (290) 2379 (285) 2868 (293) 3412 (301) LM S 326 2/9/78 (319) 49 (316) 51 (318) % (323) 433 (345) 830 (335) 1294' (320) 2379 (310) 2868 (316) 3412 (332) IN S 344 2/9/78 (332) 49 (327) 54 (342) 69 (335) 809 (342) ** Al = Aluminum; S = Steel; LS = Low Pressure Steel. Cylinder empty. 38 ------- 1.0 BENZENE STABILITY STUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration -• ppm Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppm Day ppn Day ppn 10 S 389 2/9/78 (387) 64 (369) 205 (396) 809 (3%) 1294 (389) 2247 (376) 2868 (386) 3412 (395) IP S 8.04 4/21/78 (8.37) 4 (8.33) 25 (8.20) 26 (8.34) 56 (8.19) 134 (7.81) 434 (8.21) 766 (7.93) 1222 (7.68) 2175 (7.90) 2797 (8.20) 3339 (8.22) 1Q 1R S S 9.85 9.89 4/21/78 4/21/78 (9.99) (10.0) 5 4 (9.88) (10.1) 25 13 (10.1) (9.73) 332 332 (9.71) (9.77) ** 1018 (9.46) 1270 (9.64) 2797 (9.75) 3339 (9.68) IS IT S S 9.93 10.0 4/21/78 4/21/78 (10.0) (10.7) 4 25 (10.1) (10.2) 26 146 (9.80) (9.20) 56 362 (9.50) (9.90) 146 1222 (8.90) (9.56) 628 ** (9.57) 738 (9.45) ** 1U S 10.9 4/21/78 (11.5) 4 (10.7) 25 (10.8) 332 (10.7) 434 (10.9) 759 (10.2) 1222 (9.69) 2175 (9.90) 2853 (10.2) 3339 (10.4) Al = Aluminum; S = Steel; LS = Low Pressure Steel. ** ,. Cylinder empty. 39 ------- 1.0 BENZENE SIABUnY SUJDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration •' ppm Date ppm Day ppm Day ppm Day ppm Day ppm Day ppm Day ppm Day ppm Day ppm Day ppm IV S 12.2 4/25/78 (12.7) 1 (12.5) 21 (12.3) 109 (12.0) 358 (12.1) 755 (12.0) 1218 (11.7) 2171 (11.9) 2849 (12.2) 3335 (12.3) 1W IX S S 8.09 11.0 5/19/78 5/4/78 (8.10) (11.2) 105 132 (7.70) (10.2) 287 ** (8.10) 438 (8.20) 784 (8.30) 1194 (7.45) 2147 (7.80) 2769 (7.89) 3311 (8.00) 1Y S 11.2 5/4/78 (10.9) 132 (9.90) 302 (10.7) 393 (10.8) 2162 (10.3) 2840 (10.6) 3326 (1016) 12 1M S S 8.09 9.14 5/4/78 5/4/78 (8.20) (9.10) 132 132 (7.04) (7.80) 302 302 (7.70) (8.50) 473 1005 (7.54) (8.17) ** 1209 (8.42) 2162 (8.40) 2784 (8.72) 3326 (8.88) 1AB S 270 7/27/77 (300) 29 (319) 157 (312). 2056 (305) ** *A1 = Alumintm; S = Steel; 13 » Low Pressure Steel. **CyliiKier empty. 40 ------- 2.0 EIHENE (ETHYLENE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date •ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 2A Al 2920 2/23/78 (3070) 49 (3120) 198 (2880) 809 (3200) 2291 (3280) 2856 (3120) 3241 (3080) 26 Al 3000 2/23/78 (3130) 49 (3180) 198 (2940) 809 (3270) 2291 (3350) 2856 (3180) 3241 (3150) 2C Al 4960 2/23/78 (5210) 48 (5340) 201 (4660) 809 (5380) 2291 (5520) 2856 (5310) 3241 (5240) 2D Al 4970 2/23/78 (5200) 48 (5280) 201 (4910) 809 (5340) 2291 (5480) 2856 (5270) 3241 (5220) 2E Al 19900 2/24/78 (20400) 48 (20800) 200 (20200) 808 (18900) 2290 (20600) 2855 (20400) 3240 (20600) 2F Al 19900 2/24/78 (20600) 48 (20800) 200 (20300) 808 (19000) 2290 (20700) 2855 (20600) 3240 (20800) 2G Al 4.95 4/27/78 (4.70) 29 (4.70) 106 (4.85) 741 (4.62) 1180 (5.12) 2224 (4.50) 2804 (4.72) 3176 (4.82) *A1 = Al = Aluninun; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees Celsius. CALIBRATION: An NBS-SFM of propane in nitrogen is used to calibrate the detector response. 41 ------- 2.0 ETHENE (ETHXLENE) STABILITY STUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppm Day ppn Day ppn Day ppn Day ppn Day ppm Day ppn Day ppn Day ppn 2H Al 10.0 4/27/78 (9.70) 29 (9.60) 106 (9.90) 740 (8.40) 1180 (10.0) 2224 (9.50) 2587 (9.54) 2804 (9.76) 3176 (9.81) 21 Al 15.0 4/28/78 (14.4) 28 (14.4) 104 (14.9) 739 (18.0) 1179 (14.4) 2223 (14.2) 2803 (14.5) 3177 (14.6) 2J Al 19.9 4/28/78 (19.2) 28 (19.3) 104 (20.3) 739 (21.5) 1179 (18.9) 222? (18.9) ** 2K Al 300 4/28/78 (306) 33 (319) 105 (312) 728 (300) 2223 (291) 2793 (290) 3177 (293) 2L Al 448 4/28/78 (468) 33 (493) 104 (473) 740 (457) 2225 (435) 2793 (437) 3177 (439) 2M Al 603 4/28/78 (629) 34 (646) 104 (636) 740 (606) 2225 (583) 2793 (590) 3177 (587) 2N Al 701 4/28/78 (740) 34 (749) •104 (737) 740 (703) 2225 (678) 2793 (684) 3177 (683) Al = Aluminum; S = Steel; LS = Low Pressure Steel. **Cylinder empty. 42 ------- 3.0 PROPENE (PROPYLENE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Cay ppn Day ppn Day ppn Day-. ppn Day ppn Day ppn 3A Al 4.94 4/27/78 (4.86) 26 (4.94) 27 (4.78) 104 (4.98) 749 (4.93) 2229 (4.80) 2601 (4.75) 2804 (4.78) 3178 (4.88) 3B Al 9.91 4/27/78 (9.83) 26 (9.85) 104 (10.3) 749 (9.76) 1250 (9.63) 2229 (9.80) 2804 (9.81) 3C Al 14.8 4/27/78 (14.6) 26 (14.5) 104 (14.8) 749 (14.8) ** 3D Al 20.0 4/27/78 (19.8) 27 (19.0) 104 (20.0) 749 (20.3) 2229 (19.7) 2804 (19.8) 3178 (19.8) 3E Al 298 4/27/78 (2%) 27 (286) 104 (317) 750 (324) 820 (328) ** 3F Al 446 4/27/78 (442) 27 (428) 105 (474) 750 (479) 2229 (444) 2794 (449) 3178 ' (441) 33 Al 585 4/27/78 (577) 27 (560) 104 (629) 750 (620) 2229 (579) 2794 (589) 3178 (578) 3H Al 683 4/27/78 (672) 27 (655) 105 (729) 750 (721) 820 (725) 2229 (676) 2794 (688) 3178 (674) Al = Aluminum; S = Steel; IS = Low Pressure Steel. **fcylinder snpty. ANALYTICAL CONDITIONS: Flame ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees Celsius CALIBRATION: An NBS-SRM of propane in nitrogen is used to calibrate the detector response. 43 ------- 4.0 METHANE/ETHANE STABILITY SUJDY Cylinder No. Cylinder Construct ion* Audit Material** Manufacturer Concentration RTI Concentration pom Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 4A Al M 6000 7/21/78 (6210) 264 (5980) 662 (6580) 2145 (6460) 2722 (6525) 3097 (6440) E 714 7/21/78 (773) 163 (715) 264 (684) 662 (703) 2145 (730) 2722 (746) 3097 (751) 4B Al M 8130 7/21/78 (8130) 35 (7550) 264 (7820) 662 (8590) 2145 (8430) 2722 (8553) 3097 (8410) E 597 7/21/78 (654) 35 (663) 163 (606) 264 (577) 662 (598) 2145 (619) 2722 (632) 3097 (628) 4C Al M 1000 7/21/77 (1020) 264 (983) 1027 (1290) 2510 (1068) 3087 (1059) 3097 (1050) E 295 7/21/77 (315) 163 (292) 264 (283) 1027 (284) 2510 (300) 3087 (300) 3097 (2%) 4D Al M 1670 7/21/77 (1710) 35 (1560) 264 (1640) 1027 (1950) 2510 (1770) 3087 (1755) E 202 7/21/77 (220) 29 (218) . 157 (202) 258 (195) 1027 (206) 2510 (207) 3087 (207) Al = Aluminun; S = Steel; IS = Low Pressure Steel. **M = Methane; E =» Ethane. ANALYTICAL CONDITIONS: Flane ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees Celsius. CALIBRATION: An NBS-SFM of propane in nitrogen is used to calibrate the detector response. 44 ------- 5.0 PROPANE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration ' RTI Concentration ppn Date ppm Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 5A Al 5.01 4/25/78 (4.90) 24 (4.90) 108 (5.10) 605 (4.89) 729 (5.20) ** 5B Al 10.0 4/25/78 (9.70) 24 (9.80) 108 (10.1) 513 (10.6) 752 (10.0) 914 (10.0) 2220 (10.9) 2851 (10.1) 3184 (10.1) 5C Al 14.6 4/25/78 (14.3) 25 (14.5) 108 (14.9) 582 (15.0) 736 (14.7) 2220 (14.8) 2589 (14.8) 2806 (14.6) 3179 (14.8) 5D Al 20.0 4/25/78 (19.5) 25 (19.8) 108 (20.3) 582 (20.8) 736 (20.1) 1252 (19.7) 2220 (20.0) 2806 (20.0) 3179 (20.2) 5E Al 303 4/26/78 (304) 24 (301) 107 (305) 530 (316) 581 (316) 735 (313) 752 (314) 913 (309) 1251 (2%) 2219 (308) 2795 (308) 3178 (308) 5F Al 439 4/26/78 (441) 24 (436) 107 (440) 530 (450) 581 (453) 728 (472) ** 5G Al 604 4/26/78 (615) 27 (615) 107 (607) 604 (613) 735 (628) 2218 (607) 2795 (617) 3179 (612) 5H Al 708 4/27/78 (730) 26 (723) 106 (710) 603 (718) 734 (734) 2218 (715) 2794 (717) 3178 (713) *A1 = Aluminum; S = Steel; LS = Low Pressure Steel. **Cylinder empty. ANALYTICAL CONDITIONS: Flame ionization detector, Durapak n-octane on Porasil C column at 30 degrees Celsius. CALIBRATION: An NBS-SEM of propane in nitrogen is used to calibrate the detector response. 45 ------- 5.0 PROPANE STABILITY STUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppm Date ppn Day ppn Day ppn Day ppn Day ppn 51 Al 1000 3/3/83 (1027) 452 (1070) 734 (1006) 1022 (1040) 1407 (1020) 5J Al 2000 3/3/83 (2100) 452 (2180) 734 (2052) 1022 (2060) 1407 (2050) 5K Al 10,000 3/3/83 (11800) 452 (13000) 734 (13021) 1022 (12500) 1407 (12600) 5L Al 20,000 3/3/83 (20700) 452 (21000) • 734 (21302) 1022 (21300) 1407 (21200) *,. Al = Aluminum; S = Steel; LS = Low Pressure Steel. 46 ------- 6.0 TOLUENE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 6A LS 408 12/6/78 (405) 3 (405) 86 (394) 100 (393) ** 6B LS 606 12/6/78 (585) 3 (579) 86 (577) 358 (615) 2079 (663)*** 2338 (603) 2632 (618) 6C S 16.2 10/3/78 (17.3) 48 (14.9) 365 (15.0) 1373 (14.8) ** 6D S 9.11 10/3/78 (9.62) 64 (8.50) 66 (8.60) 160 (8.20) ** 6E S 9.00 3/29/83 (8.51) 744 (8.04) 1063 . (9.07) 1548 (9.37) 6F S 430 7/1/80 (430) 861 (347) 1115 . (338) 1505 (427)*** 1765 (351) 2059 (368) ** Al = Aluninun; S « Steel; LS a Low Pressure Steel. (Cylinder anpty. Trlrlr HAH Questionable value. ANALYTICAL CONDITIONS: Flane ionization detector, Porasil C colunn at 200 degrees Celsius. . CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards fron reagent grade toluene. 47 ------- 6.0 TOLUENE STABILITY STUDY (Continued) ^Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppa 6G Al 18.2 7/27/83 (16.1) 383 (19.1)*** ** 6H Al 9.0 7/1/80 (8.50) 1505 (9.40) 2064 (8.15) 2549 (8.72) 61 Al 10.3 12/11/84 (9.27) 192 (8.70) 440 (10.2) 926 (9.80) 6J Al 21.7 12/11/84 (20.3) 121 (18.9) 440 (21.6) 926 (21.0) 6K LS 1% 12/11/84 (183) 141 (184) 436 (195) 926 (180) 6L LS 310 12/11/84 (290) 141 (281) 436 (303) 1021 (335) Al = Aluninum; S = Steel; LS = Low Pressure Steel. **Cylinder enpty. ^Questionable value. 48 ------- 7.0 HYDROGEN SULFLDE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 7A Al 399 10/1/78 (371) 38 (424) 111 (414) 1030 (437) 2270 (444) 2446 (401) 2795 (395) 3047 (411) 7B Al 9.15 7/7/78 (9.73) 87 (6.72) 124 (7.11) 197 (6.36) 6% (6.23) 1116 (8.32) 2399 (8.00) 2424 (6.60) 2545 (6.00) 2848 (5.75) 3118 (6.44) 7C Al 16.7 10/1/78 (16.1) 38 (16.5) 111 (15.7) 580 (16.2) 1030 (17.5) 2270 (14.5) 2300 (15.3) 2446 (15.6) 2762 (16.0) 3298 (14.0) 7D 7E Al Al 649 6.95 10/1/78 10/1/78 (641) (7.05) 38 87 (655) (5.75) 111 124 (690) (5.62) 1030 197 (647) (5.23) 6% ** (5.14) 1116 (5.38) 2325 (4.6) 2446 (4.4) 2762 (3.88) 3032 (4.28) 7F Al 6.45 10/1/78 (4.94) 38 (5.14) 111 (4.81) 580 (4.35) 1030 (3.71) 2325 (4.3) 2446 (4.1) 2762 (3.03) 3032 (3.56) 7G Al 671 3/2/83 (628) 687 (683) 833 (654) 1182 (737) 1436 (715) Al = Aluninun; S = Steel; LS = Low Pressure Steel. **Cylinder empty. ANALYTICAL CONDITIONS: Plane photometric detector, Chronosil 330 coluroi at 50 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards from pure hydrogen sulfide. A penneation tube is used for generation of calibration mixtures for lower level «100 ppn) cylinder analyses. ANALYTICAL PROBLEMS: Only a Teflon® column and Teflon® sanple loop should be used. The air-to-hydrogen ratio is critical to the sensitivity of the FPD. 49 ------- 7.0 HXDRCGEN SULFIDE STABILITY SIUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn 7H Al 20.77 1/17/85 (17.7) 25 (20.6) 146 (21.0) 462 (21.2) 734 (20.1) 71 Al 29.27 1/17/85 (22.6) 25 (30.4) 146 (30.5) 462 (29.0) 734 (30.2) 7J Al 39.14 1/17/85 (31.6) 25 (42.4) 146 (40.5) 462 (39.8) ** 7K Al 97.31 1/17/85 (83.7) 146 (92.1) 495 (97.8) 746 (101) 7L Al 206.3 1/16/85 (200) 147 (210) 4% (198) 758 (200) 7M Al 323.2 1/16/85 (291) 147 (320) 496 (306) 758 (324) 7N Al 417 1/16/85 (398) 147 (415) 4% (420) 750 (424) 70 Al 503.2 1/16/85 (489) 147 (514^ 496 (537) 750 (538) *A1 = Aluninun; S = Steel; LS = Low Pressure Steel. Cylinder empty. 50 ------- 8.0 1,3-DlMETfflIBENZENE (M-XYLENE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn SA is 405 10/5/78 (480) 63 (445) 158 . (425) 412 (487) 606 (507) ** 8B LS 613 10/5/78 (720) 63 (676) 158 (656) 606 (760) 2140 (598) ** 8C S 17.3 10/5/78 (16.6) 63 (17.2) 166 (20.8) 302 (16.4) 1036 (19.0) ** 8D S 7.33 10/5/78 (6.20) 63 (6.81) 166 (6.82) 1036 (5.66) 2694 (4.39) 8E 15 601.0 6/7/85 (5%) 257 (552) 749 (438) 8F 8G LS Al 351.4 12.1 6/7/85 6/7/85 (362) (11.5) 257 257 (344) (11.1) 749 749 (328) (10.1) Al = Aluninuir;- S = Steel; LS = Low Pressure Steel. **Cylinder anpty. CALIBRATION: A pressure-dilution technique is used for generation of a series of standards fron reagent grade nrxylene. ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C column at 250 degrees Celsius. 51 ------- 9.0 METHXL ESTER ACETIC ACID (METHXL ACETATE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration FTI Concentration ppn Date ppn Day ppn • Day ppn Day ppn Day ppn Day ppn Day ppn 9A S 326 10/13/78 (271) 230 (340) 286 (324) 629 (348) 2442 (336) 2742 (320) 3183 (310) 9B S 455 10/13/78 (428) 230 (437) 286 (442) 629 (479) 2442 (470) 2742 (437). 3268 (462) 9C S 6.84 10/13/78 (5.29) 230 (4.86) 286 (5.02) 630 (5.88) 2442 (5.32) 2742 (5.89) 3183 (5.36) 9D S 17.2 10/13/78 (12.9)** 230 (12.5)** 286 (11.8)** 630 (12.5)** 2442 (17.2) 2742 (16.5) 3183 (15.4) Al = Aluninun; S = Steel; LS = Low Pressure Steel. Questionable value. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP colum at 125 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards firm reagent grade methyl acetate. 52 ------- 10.0 TOICHLDBCMETHANE (CHLOHOEOFM) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer ppm Concentration Date ppn Day ppn Day KTI ppn Concentration Day ppn Day ppn Day ppn Day ppn 10A S 520 10/17/78 (529) 161 (515) 256 (514) 553 (531) ** 10B S 348 10/17/78 (345) 161 (351) 256 (340) 975 (325) 2422 (333) 2S42 (326) 3176 (344) IOC S 8.70 10/17/78 (8.08) 161 (7.39) 256 (7.50) 553 (8.11) 2422 (4.26) 2642 (4.52) 3176 (4.76) 1QD 10E S Al 16.9 9.81 10/17/78 1/10/86 (17.6) (8.92) 161 534 (16.5) (9.45) 256 (16.2) 553 (16.5) 2422 (14.9) 2642 (15.0) 3176 (14.9) 10F Al 22.0 1/10/86 (21.1) 534 (21.8) Al = Aluninun; S = Steel; IS = Low Pressure Steel. Cylinder empty. ANALYTICAL CONDITIONS: Flane ionization detector, Porasil C column at 150 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards froa reagent grade chloroform. 53 ------- 11.0 CARBONYL SULFIDE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppm Date ppm Day ppn Day ppm 11A S 251 11/3/78 (276) 78 (281) 185 (275) ** 11B S 100 11/3/78 (109) 78 (111) 185 (95.0) ** 11C S 9.96 11/3/78 (9.10) 78 (8.66) 185 (8.23) ** 11D S 7.03 11/3/78 (6.81) 78 (6.48) 185 (6.41) ** 11E AL 9.54 9/18/81 (12.9) 35 (12.5) 222 (9.08) ** 11F AL 101 9/18/81 (111) 35 (117) ** *A1 = Aluminum; S = Steel; LS = Low Pressure Steel. **Cylinder anpty. ANALYTICAL CONDITIONS: Plane photometric detector, Carbopack B colunn at 50 degrees Celsius or Chranosil 330 column at 60 degrees Celsius. CALIBRATION: A pressure-dilution technique is used for generation of a series of standards from pure carbonyl sulfide. ANALYTICAL PROBLEMS: Only a Teflon® colunn and Teflon® sanple loop should be used. The air-to-hydrogen ratio is critical to the sensitivity of the FPD. 54 ------- 11.0 CARBONXL SULFIDE STABILITY STUDY (Continued) Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn 11G Al 99.2 1/11/85 (101) 150 (96.5) 517 (105) ** 11H Al 225 1/11/85 (228) 150 (199) 517 (205) 985 (206) 111 Al 414 1/11/85 (423) 150 (404) • 517 (420) 985 (472) 11J Al 10.71 1/11/85 (9.3) 150 (10.0) 517 (11.7) 985 (12.1) 11K Al 101 1/11/85 (99.0) 150 (98.0) 517 (105) *A1 = Aluninum; S = Steel; LS = Low Pressure Steel. *'tylinder anpty. 55 ------- 12.0 MEHHANEIHIOL (METHYL MERCAPTAN) STABILITY SHOW Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 1ZA Al 8.03 1/24/79 (5.66) 104 (5.60) 139 (5.65) 985 (5.40) 2194 (5.45) 2331 (4.70) 2690 (5.70) 2938 (4.78) 12B Al 10.0 1/24/79 (7.%) 104 (8.10) 139 (7.90) 985 (8.42) 2194 (8.00) 2331 (8.00) 2690 (9.84) 2938 (9.21) 12C Al 3.55 1/24/79 (3.65) 104 (3.50) 139 (3.56) 985 (3.64) 2194 (3.80) 2331 (3.40) 2690 (3.73) 2938 (3.75) 12D Al 4.22 1/24/79 (4.23) 104 (4.76) 139 (4.54) ** *A1 =» Aluminum; S = Steel; LS = Low Pressure Steel. Cylinder anpty. ANALYTICAL CONDITIONS: Plane photometric detector, Chronosil 330 column at 60 degrees Celsius. CALIBRATION: A permeation tube is used for generation of calibration mix- tures. ANALYTICAL PKOBLEMS: Only a Teflon® colunn and Teflon® sampling loop should be used. The air-to-hydrogen ratio is critical to the sensitivity of the FPD. 56 ------- 13.0 HEXANE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer . Concentration KTI Concentration ppn Date ppn Day ppm Day ppn Day ppa Day ppn Day ppn Day ppn Day ppn Day ppn ISA IS 1975 2/6/79 (2170) 6 (1980) 337 (2070) 469 (1990) 1886 (1990) 2586 (2139) ** 13B LS 2973 2/6/79 (3070) 6 (2860) 338 (2950) 469 (3080) 1886 (2980) ** 13C Al 30.6 2/6/79 (30.8) 296 (30.1). 337 (30.6) 469 (32.0) 523 (30.0) 835 (30.2) 1886 (32.8) 2586 (34.8) 3066 (29.2) 13D Al 79.2 2/6/79 (82.2) 296 (81.0) 337 (81.3) 469 (79.8) 835 (80.2) 1247 (82.7) ** 13E Al 80.0 3/25/83 (83.2) 376 (88.2) 1117 (92.1) 1558 (84.6) Al = Aluninun; S = Steel; LS = Low Pressure Steel. **Cylinder eaipty. ANALYTICAL (DNDITIONS: Plane ionization detector, Porasil C colunn-at 150 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade hexane. 57 ------- 14.0 1,2H)ICHLORCETHANE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer ppn Concentration Date ppa Day ppn Day ppn Day BTI ppn Concentration Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 14A Al 14.4 1/19/79 (14.1) 58 (15.2) 155 (14.9) 811 (14.2) 835 (13.5) 1964 (13.9) 2333 (14.1) 2546 (13.6) 3083 (14.4) 14B Al 9.64 1/19/79 (9.20) 58 (10.8) 155 (10.0) 811 (9.56) 835 (9.19) 1964 (9.68) 2333 (9.30) 2546 (8.65) 3083 (9.75) 14C Al 100 1/19/79 (96.2) 58 (103) 155 (98.2) 501 (87.3) 920 (102) 1964 (94.9) 2333 (96.7) 2546 (97.5) 3083 (97.0) 14D Al 526 1/19/79 (498) 58 (534) 155 (524) 14E Al 6.92 4/5/79 (10.0) 30 (9.42) 69 (9.30) 501 586 (592)*** (9.14) 920 811 (502) (9.70) 1964 (477) 2333 (496) 2546 (490) ** 835 (9.16) 2247 (9.32) 2470 (8.85) 3007 (9.91) 14F Al 12.5 4/5/79 '(15.2) 30 (14.7) 69 (14.3) 811 •(14.5) 835 (13.8) 1888 (13.9) 2247 (14.3) 2470 (13.8) 3007 (14.6) 14G Al 97.9 4/5/79 (102) 30 (105) 69 (99.0) 425 (87.3) 844 (101) 1888 (92.4) 2247 (96.0) 2470 (97.2) 3007 (95.8) 14H Al 439 4/5/79 (463) 30 (451) 69 (462) 589 (432) 697 (451) 844 (453) 1888 (416) 2247 (427) 2470 (422) 3007 (424) Al = Alunirun: S = Steel; 15 = Low Pressure Steel. Cylinder anpty. ***Questionable value ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C colunn of 225 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards frcm reagent grade 1,2-dichloroethane. 58 ------- 15.0 CYCLQHEXANE SX&BILnY STUDY Cylinder No. ISA Cylinder Construction* Al Manufacturer ppn 99.1 Concentration Date 3/19/79 ppn (106) Day 147 ppn (93.4) KTI Day 394 Concentration ppn (99.0) Day 926 ppn (102) Day 1966 ppn (95.9) Day 2559 ppn (100) Day 3025 ppn (100) Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C column at 125 degrees Celsius. CALIBRATION: A pressure-dilution technique is used for making a series of standards from reagent grade cyclohexane. 59 ------- 16.0 2-HJEANONE (METHYL ETHYL KETONE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration BTI Concentration ppn Date ppn Day ppn Day ppn Day PP31 Day ppn Day ppn Day ppn 16A 16B S 43.7 5.00 5/23/79 7/1/87 (42.3) (5.19) 28 (40.0) 58 (39.9) 380 (44.5) 653 (38.7) 1847 (40.4) 2520 (45.0) 16C 16D 30.0 15.1 7/1/87 7/1/87 (29.5) (16.0) Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Ghronosorb WHP colum at 150 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade methyl ethyl ketone. 60 ------- 17.0 ME1HANQL STABILITY STUDY Cylinder No. ' 17A Cylinder Construction* Al Manufacturer ppm 50.0 Concentration Date 5/17/79 ppm (58.8) Day 21 ppm (52.3) Day 51 RTI ppm (51.1) Concentration Day 196 ppm (55.2) Day 2020 ppm (48.8) Day 2224 pprn (45.8) Day 2660 ppm (56.8) Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Flare ionization detector, Chrcraosorb 101 colunn at 50 degrees Celsius or 0.2% Carbowax 1500 plus 0.1% SP-2100 on Carbowax C at 60 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade raethanol. 61 ------- 18.0 1,2-DKHLCSOPRDPANE (PROPYLENE DICHLORIDE) STABILTIY STUD? Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn ISA Al 7.07 7/10/79 (6.06) 28 (5.52) 48 (5.94) 497 (6.03) 749 (5.59) 1793 (3.12) 1845 (3.86) 2155 (3.49) 2387 (3.25) 2914 (4.11) 18B Al 14.6 7/10/79 (15.6) 28 (16.4) 43 (15.0) 749 (16.3) 1793 (12.1) 1845 (13.2) 2155 (13.3) 2387 (12.9) 2914 (14.4) 18C Al 476 7/10/79 (496) 28 (455) 48 (480) 372 (497) 1793 (402) 1845 (424) 2155 (441) 2387 (429) 2914 (451) 18D Al 664 7/10/79 ' (685) 28 (621) 48 (675) 372 (685) 1793 (557) 1845 (574) 2155 (594) 2387 (576) 2914 (630) Al = Aluninun; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP colunn at 150 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade 1,2-dichloropropane. 62 ------- 19.0 TRICHLOROEDENE (mCHLOBOETHYIENE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 19A Al 9.23 5/24/79 (9.58) 77 (10.2) 92 (9.78) 683 (9.03) 820 (8.91) 1853 (9.40) 2493 (10.2) 2961 (10.5) 19B Al 14.7 5/24/79 (14.3) 77 (15.1) 92 (14.9) 683 (13.6) 820 (13.5) 1853 (14.0) 2493 (15.5) 2961 (15.2) 19C Al 100 5/24/79 (102) 77 (103) 92 (100) 810 (105) 820 (94.6) 1853 (105) 2493 (101) 3045 (98.8) 19D Al 505 5/24/79 (506) 77 (503) 92 (499) 810 (522) 820 (490) 1853 (523) 2493 (494) 2961 (502) Al = Aluminum; S - Steel; 15 = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP colunn at 150 degrees Celsius. CALIBRATION: A pressure-^dilution technique is used for making a series of standards fron reagent grade trichloroethylene. 63 ------- 20.0 1,1-DICHLORDETHXLENE (VDTCLIDENE CHLORIDE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration - ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 20A Al 9.58 en/79 (10.3) 35 (9.90) 62 (10.1) 404 (11.5)** 818 (9.00) 1831 (9.00) 2190 (8.78) 2490 (9.87) 2957 (11.1) 20B Al 14.8 6/1/79 (15.6) 35 (15.1) 62 (15.5) 404 (17.1)** 818 (14.2) 1831 (13.2) 2190 . (14.1) 2490 (15.2) 2957 (17.2) 20C Al 96.8 6/1/79 (101) 35 (99.0) 62 (102) 817 (94.0) 1831 (98.4) 2190 (94.7) 2490 (97.4) 2957 (108) 20D Al 490 6/1/79 (524) 35 (510) 62 (505) 404 (498) 1831 (488) 2190 (479) 2490 (478) 2957 (553) Al = Aluninun; S = Steel; LS = Low Pressure Steel. Questionable value. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP colunn at 80 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade 1,1-dichloroethene. 64 ------- 21.0 1,2-€>IBHM}EIHXLENE STABILHY STUDY Cylinder ND. Cylinder Construction* Manufacturer Concentration BTI Concentration ppm Date ppm Day ppm Day ppn Day ppm 21A LS 10.0 6/18/79 (7.90) 61 (7.80) 89 (7.40) 722 (7.72) ** 2 IB LS 14.9 6/18/79 (12.2) 61 (12.0) 89 (11.6) 772 (8.02) ** 21C LS 99.9 en/79 (110) 61 (107) 89 (105) 787 (99.2) ** 21D LS 301 6/18/79 (265) . • 61 (266) 89 (257) 643 (309) ** *A1 = Aluminum; S = Steel; LS = Low Pressure Steel. Cylinders returned due to partial conversion to an unknown compound. ANALYTICAL CONDITIONS: Flame ionization detector, 10% OV-101 on Chromosorb WHP coluon at 100 degrees Celsius. CALIBRATION: Reagent grade "1,2-Dibranoethylene" pure liquid is used as a standard. Pressure-dilution technique is utilized for making series of standards for calibration. ANALYTICAL PROBLEMS: The gas mixtures and the calibration standards contain substantial amounts of both the cis and the trans isomers of 1,2-Dibranoethylene. The first three sets ol: analyses are questionable because only one isomer was measured during the calibrations and cylinder analyses. During the GC analyses on Day 1864, it was found that dibromoethylene partially converted to an unknown compound. Hence, dibromoethylene is not practical as an audit material. 65 ------- 22.0 TETRAfflLOROEIHENE (PEHCHLOROETHnENE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 22A S 7.98 7/6/79 (8.40) 35 (7.97) 52 (7.92) 376 (7.94) 1818 (6.88) 2162 (6.88) 2440 (7.83) 2901 (7.68) 22B S 13.0 7/6/79 (15.0) 35 (14.9) 52 (14.7) 376 (14.5) 1818 (13.7) 2162 (13.3) 2440 (13.5) 2901 (14.5) 22C LS 487 7/6/79 (419) 35 (453) 52 (440) 677 (361) 713 (387) 1818 (349) 2162 (353) 2450 (357) 2901 (372) 22D LS 629 7/6/79 ' ' (624) 35 (642) 52 (619) 677 (542) 713 (571) 1818 (557) 2162 (564) 2450 (551) 2901 (607) Al = Aluninun; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Flame ionization detector, 10% OV-101 on Chronosorb WHP column at 150 degrees Celsius. CALIBRATION: An NBS-SBM of perchloroethylene in nitrogen is used to calibrate the detector response. 66 ------- 23.0 CHLOHDETHENE (VINYL CHLORIDE) STABILnY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn 23A S 5.% 10/1/79 (5.87) 18 (5.74) 700 (6.60) 1812 (6.10) 2524 (6.09) 2914 (5.62) 23B 23C S S 8.00 8.03 10/1/79 10/1/79 (7.71) (7.82) 18 18 (7.50) (7.45) ** 700 (8.44) 1812 (8. 2524 (8. 2914 (7. 10) 05) 54) 23D S 8.52 10/1/79 (7.85) 18 (7. 700 (8. 1812 (8. 2524 (8. 2914 (7. ,61) 41) 15) 13) 60) 23E S 20.0 10/1/79 (19.7) 18 (19.1) 700 (20.7) 1812 (20.3) 2524 (20.4) 2914 (18.6) 23F S 20.1 10/1/79 (20.1) 18 (19.3) 700 (20.9) 1812 (20.6) 2524 (20.6) 2914 (19.8) 23G S 30.0 10/1/79 (29.6) 18 (28.3) 700 (29.4) 1812 (30.3) 2524 (30.3) 2914 (28.6) 23H S 30.3 10/1/79 (29.8) 18 (28.7) 700 (29.4) 1812 (30.6) 2524 (31.1) 2914 (28.9) 231 S 7.98 10/1/79 (7.31) 18 (7.12) 700 (8.39) 1812 (7.75) 2914 (7.18) Al = Aluminum; S = Steel; LS = Low Pressure Steel. **Cylinder empty. ANALYTICAL CONDITIONS: Plane kmization detector, 10% OV-101 on Chronosorb WHP column at 90 degrees Celsius. CALIBRATION: A pressure-dilution technique is used for generation of a series of standards from pure vinyl chloride. 67 ------- 24.0 1,3-BUEADIENE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Date ppn Day ppn Day ppn 24A 24B S Al 22.6 52.8 3/21/80 2/12/86 (20.9) (52.9) 95 511 (23.1) (53.4) 430 (24.0) 1718 (22.9) ** 24C 24D Al Al 31.9 13.3 2/12/86 2/12/86 (32.3) (13.4) 511 (32.6) *A1 = Aluminum; S a Steel; LS = Low Pressure Steel. **Cyiinder anpty. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chrcmosorb WHP column at 90 degrees Celsius. CALTBRATIDN: A pressure^dilution technique is utilized for making a series of standards from pure 1,3-butadiene. 68 ------- 25.0 2-PRDPENENITRI1E (AOKLCOTTRILE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer ppn Concentration Date ppn Day ppn FTI Day Concentration ppn Day ppn Day ppn 25A LS 20.1 7/24/79 (14.6) 185 (12.7) 349 (13.2) 841 (9.%) ** • 25B LS 348 7/24/79 (411) 185 (416) 349 (441) 841 (397) ** 25C LS 11.7 7/24/79 (6.38) 185 (3.35) 349 (2.87) 841 (4.05) ** 25D LS 638 7/24/79 (678) 185 (699) 349 (703) 841 (667) ** 25E AL 400 11/8/82 (413) 134 (410) 787 (421) 1172 (424) 1786 (384) 25F .25G AL Al 10.0 18.0 11/18/82 1/23/86 (10.8) (15.0) 139 532 (11.7) (15.7) 787 (10.8) 1162 (9.14) 1704 (9.87) 25H Al 22.3 1/23/86 (20.2) 532 (20.2) Al = Aluninun; S = Steel; LS= Low Pressure Steel. Cylinder anpty. ANALYTICAL CONDITIONS: Plane ionization detector, Porapak Q colunn at 225 degrees Celsius. CALIBRATION: A pressure-dilution technique is used to make a series of standards from reagent grade aerylonitrile. ANALYTICAL PROBLEMS: The large changes noted at the low concentration levels are, at least in part, a result of difficulty in making precise measurements at these le/els. 69 ------- 26.0 ANILINE STABILITY STUDY Cylinder No. 26A 26B Cylinder Construction* Al Al Manufacturer ppm 11.3 18.4 Concentration RTI See Analytical Problans Analysis Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CCNDrTICNS: Flare ionization detector, 10% OV-101 on Chronosorb WHP column at 250 Hpgrpog Celsius. CALIBRATION: Reagent grade "Aniline" pure liquid is used as a standard. "Glass bulb" dilution technique is utilized for making series of standards for calibration. ANALYTICAL PROBLEMS: Because aniline has an extremely high boil- ing point (186°C), special handling would be required to measure this compound. A completely heated system for sampling in the vapor phase and for preparing standards would be required. Temper- ature-dependent condensation in the cylinder and the regulator causes the amount of aniline which is delivered by the cylinder to vary. As a result, aniline is not considered to be practical as an audit material. 70 ------- 27.0 4-METHH/-2-PENIMICNE (MEEHXL ISOBOTYL KEKNE) gEVRTT.m STUDY Cylinder No.- Cylinder Construction* Manufacturer Concentration KH Ccncentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 27A Al 9.51 12/18/80 (10.2) 27 (10.6) 83 (9.53) 202 (9.49) 1275 (8.40) 1643 (10.3) 1946 (10.2) 27C Al 72.9 7/8/81 (75.4) See Analytical Problems *A1 = Aluminum; S = Steel; IS = Low Pressure Steel. ANALCTIiCAL CDNDITICNS: Flame ionizaticn detector, 0.1% SP-1000 en Carbcpadc C column at 180 degrees Celsius. CRLJBRAXICN: A pressure-dilution techrque is utilized for making a series of standards fron reagent grade methyl isobutyl ketone. ANALHTCAL PRDH^e: Methyl isobutyl ketone at high concentra- tions is not practicas as an audit material because pressurizatLon of the cylinder above approximately 200 psi results in condensa- tion of the analyte. 71 ------- 28.0 CYOJOHEXANONE STABILITY STUDY Cylinder No. Cylinder Construction* 28A Al 28B Al Manufacturer Concentration ppm 10.1 19.0 BTI Analysis Date ppn Day ppn 12/11/80 (8.19) 85 (3.26) 12/11/80 (25.5) 85 (17.1) See Analytical Problems. Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Flame ionization detector, 10% SP-1000 on Supelcoport column at 200 degrees Celsius. CALIBRATION: Reagent grade "Cyclohexanone" liquid is used as a standard. Pressure-dilution technique is used for making series of standards for calibration. ANALYTICAL PROBLEMS: The analysis of cyclohexanone gas is de- pendent on the temperatures of the cylinder and the regulator and on the length of the sampling line between the regulator and the gas chromatograph. The concentration in the cylinder decreases with time. Therefore, cyclohexanone is not practical as an audit material. 72 ------- 29.0 PARADKHJOROBENZENE STABILITY STUD? Cylinder No. 29A 29B Cylinder Construction* S S Manufacturer ppm 15.6 38.1 Concentration RTI See Analytical Problems Analysis *A1 = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, 10% SP-1000 on Supelcoport column at 200 degrees Celsius. CALIBRATION: Reagent grade "Paradichlorobenzene" is used as a standard. "Glass bulb" technique is used for making series of standards for calibration. ANALYTICAL PROBLEMS: The stability study for this compound was terminated bacause of analytical difficulties and because the cylinder pressure was less than 200 psig. Paradichlorobenzene is a solid at room temperature with a melting point of 54°C. Condensation in the cylinder, regulator and sampling lines was extreme. Paradichlorobenzene is not practical as an audit material. 73 ------- 30.0 ElfflLAMINE STABILE* STUD? Cylinder No. 30A 30B Cylinder Construction* S S Manufacturer ppn 10 20 Concentration STI Analysis See Analytical Problems *A1 = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ioriization detector, 10% OV-101 on Chronosorb WHP column at 250 degrees Celsius. CALIBRATION: Reagent grade "Ethylamine" liquid is used as a standard. "Glass bulb" technique is utilized for making series of standards for calibration. ANALYTICAL PROBLEMS: Because of vapor pressure considera- tions, the cylinders could not be fully pressurized. The pressure in the cylinder is less than 200 psi. A completely heated system for sampling in the vapor phase and for prepar- ing standards would be required. Temperature-dependent condensation in the cylinder and the regulator causes the amount of ethylanine vhich is delivered by the cylinder to vary. As a result of these problems, ethylamine is not con- sidered to be practical as an audit material. 74 ------- 31.0 POJMALEHKEE SIMELIIY STUK KTI Requested ppm 10 20 Concentration The speciality gas supplier indicated that they could not make gas mixtures containing formaldehyde. 75 ------- 32.0 DKHLCBCMETHANE (METfflLENE CHL3RIDE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration -- ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 32A 32B Al Al 10.2 1.25 3/5/82 1/27/86 (10.8) (1.13) 31 528 (10.8) (1.37) 70 (10.6) % (11.2) 124 (11.4) 160 (10.9) 278 (10.2) 381 (9.70) 843 (9.20)** 1198 (11.5)** 1449 (10.4) fCfCff 32C 32D Al Al 6.13 9.94 1/27/86 9/28/87 (6.01) (10.2) 528 (5.92) Al = Aluminum; S = Steel; LS = Low Pressure Steel. **Questionable value. Cylinder anpty. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chromosorb WHP column at 100 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade methylene chloride. 76 ------- 33.0 TEIRACHLDHCMETHANE (CARBON TETRACHLORIDE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration - ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 33A 33B 33C AL . Al Al 11.3 23.3 5.82 3/4/82 1/16/86 1/16/86 (12.7) (21.8) (5.88) 74 540 540- (11.7) (22.0) (6.35) 74 (10.2) 98 (11.1) 124 (10.6) 161 (10.2) 382 (10.5) 832 (9.60)** 1199 (12.2) 1414 (10.6) 1954 (11.3) 33D Al 18.6 1/16/86 (18.1) 540 (18.3) *A1 = Akminun; S = Steel; LS = Low Pressure Steel. **Questionable value. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP cokmn at 100 degrees Celsius. CALIBRATION: A pressureniilution technique is utilized for making a series of standards from reagent grade carbon tetrachloride. 77 ------- 34.0 l.l.a-JrRICHWR^l.Z.I-TRIELUORDEnHANE (FRBON 113) STABILITY STUDY Cylinder No. 34A Cylinder Construction* Al Manufacturer ppn 10.4 Concentration Date 3/3/82 ppn (10.8) Day 34 ppn (10.1) Day 70 ppn (10.0) Day 70 ppn .(9.60) Day 98 RH ppn (10.0) Concentration Day 125 ppn (10.0) Day 162 ppn (10.3) Day 384 ppn (9.80) Day 857 ppn (11.0) Day 1200 ppn (8.79) Day, 1506 ppn (10.0) Day 2036 ppn (9.68) *A1 = Aluminum; S = Steel; IS = Low Pressure Steel. ANALYTICAL CONDITICNS: Flame ionization detector, 10% OV-101 on Chronosorb WHP colunn of 75 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade Freon 113. 78 ------- 35.0 1,1,1-TRIGHL3ROBIHANE (MCTlffL CHLOROFORM) STABILITY STUDY Cylinder No. 35A Cylinder Construction* Al Manufacturer ppn 10.2 Concentration Date 3/2/82 ppn (10.3) Day 70 ppn (11.8) Day 99 ppn (10.7) RTI Day 136 Concentration ppn (10.6) Day 161 ppn (10.0) Day 381 ppn (10.4) Day 858 ppn (10.0) Day 1514 ppn (10.7) Day 2033 ppn (10.5) *A1 = Aluninun; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDinONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP column at 80 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards fron reagent grade methyl chloroform. 79 ------- 36.0 1,2H£PQXXETHANE (EIHHJENE OXIDE) STABILITY STUDY Cylinder No. 36A 36B 36C 36D 36E Cylinder Construction* Al Al Al Al Al Manufacturer ppn 10.0 1.0 4.5 14 19.0 Concentration Date 3/12/82 9/16/85 9/16/85 9/16/85 9/16/85 ppn (11.2) (1.19) (4.75) (14.3) (18.6) Day 73 78 78 78 78 ppn (9.60) (0.868) (4.35) (14.2) (17.7) Day 88 722 722 722 722 KEI ppn (9.80) (1.59)** (4.68) (14.9) (18.5) Concentration Day 122 ppn (9.60) Day 157 ppn (9.80) Day 1012 ppm (9.70) Day 1362 ppn (9.09) Day 2006 ppn (10.0) Al = Aluninun; S = Steel; LS = Low Pressure Steel. **Questionable value. ANALYTICAL CONDITIONS: Plane ionization detector, 6 ft. x 1/8" SS column packed with 80/100 mesh Porapak QS at 150 degrees Celsius. CALIBRATION: Ethylene oxide permeation tube is used for GC-FID calibration. Permeation tube is maintained at 30 degrees Celsius. 80 ------- 37.0 1,2-EPOXJfPROPANE (PRDPYLENE OXIDE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration Ppn Day ppn Day .ppn Day ppn Day ppn Day ppn Day ppn Day Ppn Day ppn Day ppn 37A Al 9.48 8/4/82 (12.3) 55 (11.8) 76 (10.6) 743 (8.10)** 844 (9.24) 1057 (9.65) 1357 (10.2) 1882 (10.7) 37B Al 96.0 8/4/82 (89.5) 55 (86.9) 76 (83.6) 121 (90.8) 743 (75.7)** 844 (82.8)** 1057 (91.7) 1357 (95.2) 1882 (98.2) *A1 = Aluninun; S = Steel; IS = Low Pressure Steel. **Questionable value. ANALYTICAL CONDITIONS: Flane ionization detector, 10% OV-101 on Chrcmosorb WHP cokmn at 120 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade propylene oxide. 81 ------- 38.0 3-OflflHDPRDPENE (ALLYL CHLORIDE) STABILITY SOW Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn 38A S 10.2 8/13/82** (11.6) 75 (5.25) 110 (5.08) 167 (5.36) 727 (4.53) 'ArA'A 38B S 99.5 8/13/82** (124) 74 (87.2) 110 (87.7) 167 (83.4) 727 (53.6) *** 38C 38D S S 8.7 92.4 4/24/85** 4/30/85 (8.99) (95.7) 364 358 (6.14) (94.2) 808 803 (5.50) (86.9) Al = Alunirun; S = Steel; LS = Low Pressure Steel. Initial analysis was questionable ;^*Returned due to impurities. ANALYTICAL CONDITIONS: Plane ionization detector, cokmn at 135 degrees Celsius. OV-101 Chronosorb KHP CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade allyl chloride. 82 ------- 39.0 PROPENAL (ACHOLEIN) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration BTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 39A Al 10.2 8/18/82 (10.6) 28 (11.0) 69 (9.74) 728 (6.90)** 833 (8.97) 1031 (9.11) 1346 (9.19) 1791 (8.78) 39B Al 107 8/18/82 (90.4) 28 (103) 69 (106) 728 (80.8)** 833 (97.3) 1031 (98.4) 1346 (108) 1791 (94.7) Al = Aluninun; S = Steel; LS = Low Pressure Steel. ^JU Questionable value. ANALYTICAL ODNDTTIONS: Plane ionization detector. 10% OV-101 on Chronosorb WHP colum at 150 degrees Celsius. CALIBRATION: A pressure-^dilution technique is utilized for making a series of standards from reagent grade acrolein. 83 ------- 40.0 CHLOHDBENZENE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration RTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn Day ppn Day ppn 40A S 9.66 8/6/82 (9.03) 39 (9.15) 75 (9.20) 380 (9.62) 1043 (8.11)** 1490 (9.22) 1806 (8.50) 40B Al 14.8 10/11/83 (14.7) 612 (13.4) 1059 (14.4) 1375 (12.9) 40C Al 4.89 10/11/83 (4.19) 612 (4.74) 1059 (5.01) 1375 (4.61) Al = Aluninun; S = Steel; LS = Low Pressure Steel. **Questionable value. ANALYTICAL (DNDmONS: Plane ionization detection, 10% OV-101 on Chranosorb WHP colum at 200 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade chlorobenzene. 84 ------- 41.0 CARBON DISULFIDE STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn 41A Al 108 7/14/82 (100) 34 (114) 72 (116) 41B Al 108 2/21/85 (101) 110 (98.0) 477 (104) ** ** Al = Alunirun; S » Steel; IS = Low Pressure Steel. Cylinder anpty. ANALYTICAL CONDITIONS: Plane photometric detector. 4.6' X 1/4" Teflon® colurni packed with Carbopack B HT 100 at 75 degrees -Celsius. CALIBRATION: A pressure-dilution technique is used for making a series of standards from reagent grade carbon disulfide. ANALYTICAL PROBLEMS: There is significant peak "tailing" un- less a very high flow rate is used. "Tailing" is also caused by "bleed" from the sanple loop. Sample valve should be in the in- ject position for exactly 5 seconds and then switched back to the sampling position to attenuate tailing. All sanple lines and regulators must be conditioned extensively. 85 ------- 42.0 EPA METH3D 25 GAS MIXTURE STABILITY STUDY* Cylinder No. 42A 42B 42C 42D 42E 42F Cylinder Construction*** Al Al Al Al Al Al Manufacturer ppnC 100 100 200 750 1000 2000 Concentration Date 3/16/83 3/16/83 3/16/83 3/16/83 3/16/83 3/16/83 ppnC (102) (107) (205) (775) (1040) (1940) Day 483 483 ** 483 483 483 RTI ppiC (97.9) (104) (779) (1060) (1930) Concentration Day ** ** 726 726 726 ppnC (765) (1020) (1930) Day 1079 1079 ** ppaC (806) (1093) Day 1657 ** ppnC (826) Gas Mixture contains an aliphatic hydrocarbon, an arcraatic hydrocarbon, and carbon dioxide in nitrogen. **Cylinder anpty. -Jri t Al = Aluninun; S = Steel; IS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane ionization detector, aliphatic hydrocarbon and aromatic hydrocarbon, 10% OV-101 on Chranosorb WHP colvmn at 100 degrees Celsius. CALIBRATION: An NBS-SRM is used as a standard for the aliphatic hydrocarbon. A pressure-dilution technique is utilized for generation of a series of standards from reagent grade liquid for the aromatic hydrocarbon. 86 ------- 42.0 EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued) Cylinder No. Cylinder Construction*** Manufacturer Concentration RTI Concentration ppnC Date ppnC Day ppnC Day ppoC Day ppoC 423 Al 96.7 12/11/84 (96.4) 90 (95.8) 443 (99.2) ** 42H Al 98.6 12/11/84 (98.9) 90 (93.3) 443 (99.6) 421 Al 147.6 12/11/84 (149) 90 (144) 443 (146) 948 (163) 42J Al 151 12/11/84 (153) 90 (145) 443 (149) 948 (161) 42K Al 198 12/11/84 (195) 192 42L Al 197.5 12/11/84 (195) 90 (183)**** (isy) 443 (1%) 948 (210) 443 (1%) 1021 (206) Gas Mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon dioxide in nitrogen. l Cylinder empty. JU Al = Aluninun; ^^Questionable value. JLJLJU Al = Aluninun; S =* Steel; LS = Low Pressure Steel. 87 ------- 42.0 EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued) Cylinder No. Cylinder Construction*** Manufacturer Concentration KE1 Concentration ppnC Date ppnC Day ppnC 42M Al 1973 9/4/86 (1968) 316 (1982) 42N Al 1970 9/4/86 .' (1904) 316 (1989) Gas Mixture contains an aliphatic hydrocarbon, an arcmatic hydrocarbon, and carbon dioxide in nitrogen. **Cylinder anpty. f Al » Aluninun; S = Steel; 15 = Low Pressure Steel. 88 ------- 43.0 1,2-DBKMDEIHANE (ETHHZNE DBHMDE) STABILITY STUDY Cylinder No. Cylinder Construction* Manufacturer Concentration KTI Concentration ppn Date ppn Day ppn Day ppn Day ppn Day ppn 43A S 10 10/24/84 (9.3) 54 (9.3) 243 (8.66) 516 (9.27) 994 (9.70) 433 S 20 10/24/84 (17.5) 54 (17.5) 243 (15.4) 518 (15.9) 994 (16.4) 43C S 100 10/24/84 (96.1) 55 (107) 243 (84.0) 518 (75.1) 994 (83.6) 43D S 300 10/24/84 (266) 55 (344)** 516 (250) 994 (262) Al = Aluminum; S a Steel; IS = Low Pressure Steel. Ojuestionable value. ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chrono- sorb WHP columa at 150 degrees Celsius. CALIBRATION: A pressure-dilution technique is utilized for making a series of standards from reagent grade ethylene dibrcmide. 89 ------- 44.0 1,1,2,2-TETRACHLDRDETHANE STABILITY STUDY Cylinder No. 44A Cylinder Construction* S Manufacturer ppn 12.2 Concentration RTI Date 10/9/84 Concentration ppn (11.6) Day 533 ppn (10.9) Day 1085 ppn (10.5) Al = Aluminum; S = Steel; LS = Low Pressure Steel. ANALYTICAL CONDITIONS: Plane kmization detec- tor, 5% OV-101 on Cnronosorb WHP column at 100 degrees Celsius. CALIBRATION: A pressurendilution technique is utilized for making a series of standards fron reagent grade 1,1,2,2-tetrachloroethane. 90 ------- |