RESEARCH   TRIANGLE    INSTITUTE
                                   STATUS  REPORT #9

                STABILITY  OF  PARTS-PER-MILLION ORGANIC CYLINDER GASES
                     AND  RESULTS OF  SOURCE TEST ANALYSIS AUDITS
                                     G. B. Howe
                                  J. R. Albritton
                                    C. K. Sokol
                                  R. K. M. Jayanty
                                    C. E. Decker
                       Center for Environmental Measurements
                            Research Triangle Institute
                   Research Triangle Park, North Carolina  27709
                           EPA Contract No.:  68-02-4125
                                 D. 0. von Lehmden
                             Quality Assurance Division
                    Environmental Monitoring Systems Laboratory
                   Research Triangle Park, North Carolina  27711
                    Environmental Monitoring Systems Laboratory
                         Office of Research and Development
                        U.S. Environmental Protection Agency
                   Research Triangle Park, North Carolina  27711
                                   September 1987
POST  OFFICE BOX 12194   RESEARCH  TRIANGLE PARK, NORTHCAR0LINA 27709

-------
                   STATUS REPORT #9

STABILITY OF PARTS-PER-MILLION ORGANIC  CYLINDER  GASES
      AND RESULTS OF SOURCE TEST ANALYSIS AUDITS
                          by

                      G.  B.  Howe
                   J.  R.  Albritton
                    C.  K.  Sokol
                   R.  K.  M.  Jayanty
                    C.  E.  Decker
        Center  for  Environmental Measurements
             Research  Triangle  Institute
    Research  Triangle  Park,  North Carolina  27709
           EPA  Contract  No.:   68-02-4125
                 D. 0. von Lehmden
             Quality Assurance Division
     Environmental Monitoring Systems Laboratory
    Research  Triangle Park, North Carolina  27711
     Environmental Monitoring Systems Laboratory
          Office  of  Research and  Development
         U.S.  Environmental Protection Agency
    Research Triangle  Park, North Carolina  27711
                   September 1987

-------
                                  NOTICE
     This document has been reviewed  in  accordance  with  U.S.  Environmental
Protection Agency  policy  and  approved for  publication.   Mention  of trade
names or commercial products does not constitute endorsement or recommenda-
tion for use.
                                     ii

-------
                                  FOREWORD

     Source measurement  and  monitoring efforts  are designed  to  anticipate
potential environmental problems, to support  regulatory  actions  by develop-
ing data bases needed in developing regulations and to provide means of mon-
itoring compliance with  regulations.   The Environmental  Monitoring Systems
Laboratory, Research Triangle  Park,  North Carolina, has  the responsibility
for implementation of  agency-wide Quality Assurance programs for  air pollu-
tion measurement systems; and supplying technical support to other groups in
the Agency  including  the Office of Air  and  Radiation, the  Office  of Toxic
Substances, and the Office of Enforcement.
     The need for reliable standards  for  auditing and documenting the accu-
racy of  source  emission  measurement  of  gaseous  hydrocarbons, halocarbons,
and sulfur compounds is well established.  The Quality Assurance Division of
EPA's Environmental Monitoring Systems Laboratory has responded to this need
through  the development  of organic  compounds in the parts-per-million (PPM)
levels  in  compressed  gas  cylinders.   The primary objectives of this ongoing
project  are (1)  to  provide accurate gas  mixtures  to EPA, state/local agen-
cies, or their  contractors for performance  audits to assess the accuracy of
source  emission  measurements  in certain  organic  chemical manufacturing in-
dustries,  (2) to verify the vendor's certified  analysis of the gas mixtures,
(3) to determine the stability of gas mixtures  with  time, and  (4) to develop
new audit  materials  as  requested  by EPA.   This report describes the current
status of  this  project.   Included in the  report  are  (1) a description of the
experimental  procedures used  for the  analyses  of  gas mixtures,  (2)  a de-
scription  of  the audit procedure, and (3) currently available audit results
and stability data.
                                              John  C.  Puzak
                                              Deputy Director
                                Environmental  Monitoring  Systems  Laboratory
                                   Research  Triangle Park,  North  Carolina
                                        ill

-------
                               ABSTRACT

     The U.S.  Environmental  Protection  Agency has evaluated the suita-
bility  of  45  gaseous  compounds  including  hydrocarbons,   halocarbons,
oxygenated,  and  sulfurous species  for  use as  standards  for measuring
stationary source emissions.  The main objectives of this on-going pro-
ject are (1)  to  provide gas mixtures to  EPA, state/local  agencies, or
their contractors, as performance audit standards to assess the accura-
cy of measuring source  emissions from certain organic chemical manufac-
turing  industries,  (2)  to corroborate the  vendor's certified analysis
of the  gas mixtures by  in-house analysis,  (3) to determine  the stabili-
ty  of   the  gas mixtures  with  time  by  in-house  analysis,  and  (4)  to
explore the feasibility of new audit materials  as requested by EPA.
     Thus far, 31 mixtures  have  been used to conduct 214 different au-
dits.   The  results  of these audits, a  description  of the  experimental
procedures used for analyses, and available stability data  are present-
ed in this status report.
     Compound  stabilities  have  been determined  through  multiple anal-
yses of the  cylinders  containing  them.   .Stability data  for up  to  8
years is available  for many compounds and  over 5 years  for  most  com-
pounds.  Compounds  that  are  unstable  and not  suitable  for  use  as  an
audit material are identified.
                              iv

-------
                               CONTENTS

NOTICE 	  11
FOREWORD 	 i i i
ABSTRACT 	  i v
TABLES 	  v i
    1.  INTRODUCTION	   1
             Objectives	   1
             Audit Materials Currently Available 	.:	   1
    2.  EXPERIMENTAL PROCEDURES 	   5
             Instrumentation 	   5
             Calibration 	   5
             Quality Control 	   6
    3.  PERFORMANCE AUDITS 	   8
    4.  STABILITY  STUDIES	  31
    5.  SUMMARY AND CONCLUSIONS 	  33
    REFERENCES  	  34
    ATTACHMENT  1 - STABILITY DATA  AS OF SEPTEMBER 1987 	  35

-------
                                TABLES
Number                                                            Page
  1  Audit Materials Currently Available	    3
  2  Pressure-Dilution Quality Control  Results  	    7
  3  Hydrogen Sulfide Analysis Quality  Control  Results  	'..    7
  4  Summary of Performance Audit  Results	    9
                               vi

-------
                                SECTION 1
                              INTRODUCTION

 OBJECTIVES
      The  need for reliable standards for auditing source  emission  mea-
 surement  of  gaseous hydrocarbons,  halocarbons,  oxygenated,  and  sulfu-
 rous  compounds is well  established.  The  Research  Triangle  Institute
 (RTI),  under  contract  to the  U.S.  Environmental   Protection  Agency
 (EPA),  has responded to this  need  through  the development of  cylinder
 gases for  39  compounds.  The primary objectives of this  ongoing project
 are (1) to provide accurate gas mixtures to EPA, state/local  agencies,
 or  their   contractors  for   performance  audits to  assess  the  relative
 accuracy  of  source  emission measurements in  certain  organic  chemical
 manufacturing  industries,  (2)  to examine the  vendor's certified anal-
 ysis  of the  gas  mixtures  by  in-house  analysis,  (3)  to determine  the
 stability  of  the  gas mixtures  with  time  by  in-house analysis, and  (4)
 to develop new audit materials,  as requested by EPA.
     This  report  describes the current  status  of  this  project.   In-
 cluded  are (1) a  description  of the  experimental  procedures  used  for
 initial cylinder  analyses  and  collection of  stability data,  (2) a  de-
 scription  of  the  audit  procedure,   and  (3)  currently  available audit
 results and stability data.  Complete details of the study with statis-
 tical  analyses  for ten  (10) halocarbons and eight  (8)  other  organics
 are presented in two journal publications (1,2).
 AUDIT MATERIALS CURRENTLY AVAILABLE
     Currently, 45  gaseous compounds  have  been  investigated  as audit
 materials.  Six compounds  have been found to  be  unstable in cylinders
 and not suitable as audit materials.  The other 39 gaseous compounds  in
 compressed gas cylinders are suitable for conducting performance  audits
 during source testing.   The compounds were selected based on the  antic-
 ipated needs  of the  Emission Measurement Branch,  Office of Air Quality.
 Planning and Standards, U.S. EPA.  Table 1  lists  the 45 compounds,  the
 concentration ranges and the number  of  cylinders  containing these com-
 pounds  currently   in  the  repository,  and   the  cylinder  construction
material.   In Table  1, the  audit  materials  fall  into two concentration

-------
ranges.  The  low  concentration  range, between 5  and  50 parts-per-mil-
lion (ppm), simulates possible emission standard levels.  The high con-
centration range,  between  50 and  700 ppm,  simulates  expected  source
emission levels.  The balance gas  for all  gas mixtures  is  pure  nitro-
gen.

-------
                            TABLE 1.  AUDIT MATERIALS CURRENTLY AVAILABLE
                        Low Concentration Range
High Concentration Range
Compound No. of
Cylinders
Benzene
Ethylene

Propylene
Methane/Ethane

Propane

Toluene
Hydrogen Sulfide
Meta-Xylene
Methyl Acetate
Chloroform
Carbonyl Sulfide
\jtkfcW_.1 Vlft .i-i-i AM*» ji ».
Methyl Mercaptan
Hexane
1 , 2-Dichloroethane
Cyclchexane
Methyl Ethyl Ketone
Methanol
1 , 2-Dichloropropane
Trichloroethylene
1,1-Dichloro-
etnylene
**l,2-Dibrono-
ethylene
Perchloro-
ethylene
Vinyl Chloride
1,3-Butadiene
Acrylonitrile
**Aniline
Methyl Isobutyl Ketone
7
3

3
-

3

4
6
2
2
4
1
2
4 '
-
4
1
2
2
2

-

2

8
3
3
-
1
Concentration
Range (ppn)
5-
5-

5-
«••••••

5 -

5 -
5 -
5 -
5 -
5 -
5 -
3__
—
20 -
5-
^H«M
5-
30 -
3-
5 -
5 -



5 -

5 -
5 -
5 -


5 -
20
20

20


20

20
50
20
20
20
20
in
1U
90
20

50
80
20
20
20



20

30
60
20


20
Cylinder
Construction*
S
Al

Al
-

Al

Al
Al
S
S
S
Al
Al
Al
Al
Al
-
Al
Al
Al
Al
Al

-

S

S
Al
Al
-
Al
Nb, of Concentration Cylinder
Cylinders Range (ppm) Construction*
10
4
6
3
4

3
4
4
7
2
2
1
4
—
4
1
-
-
2
2
2

-

2

-

1
-
—
60-
300-
3000-
30Q-
1000 -
200 -
300-
1000-
100-
100-
300-
300 -
300-
100 -


100-
80 -




300-
100 -
100 -




300 -





300 -




400
700
20,000
700
9000(M),
800(E)
700
20,000
700
700
700
700
700
400


600
200




700
600
600




700





500




S
Al
Al
Al
Al

Al
Al
LS
Al
LS
S
S
Al
-
Al
Al
-
-
Al
Al
Al

-

LS

-
-
Al
-
-
  Al = Aluminum; S = Steel; LS = Low Pressure Steel.
**,
  Cylinders are no longer available; the compounds were found to be unstable in the cylinders.




                                                                                     (Continued)

-------
                              TABLE 1.  AUDIT MATERIALS CURRENTLY AVAILABLE


                         Low Concentration Range	             High Concentration Range
Compound
 No, of    Concentration     Cylinder        No, of     Concentration     Cylinder-
Cylinders  Range   (ppm)   Construction*    Cylinders   Range   (ppm)   Construction*
**Para-dichlorobenzene
**Etnylanine
**Fonnaldehyde
Me thy lene Chloride
Carbon Tetrachloride
Preon 113
Methyl Chloroform
Ethylene Oxide
Propylene Oxide
Allyl Chloride
Acrolein
Chlorobenzene
Carbon Bisulfide
**Cyc Ichexanone
***EPA Method 25 Mixture
Ethylene Dibrcmide
Tetrachloroethane
4
4
1
1
5
1
1
1
3
-
-
6
2
1
^•^•H
^HMB
1 -
5-
5-
5-
5-
5 -
5 -
5-
5 -

•••••
100-
5 -
5-
»
20
20
20
20
20
20
20
20
20


200
20
20
Al
Al
Al
Al
Al
Al
S
Al
Al
-
-
Al
S
S
-
-
1
1
1
-
1
-
4
2
™ '
VMHHBB
^^^HKVB
75 -
75 -
100-

75 -

750-
50-
^•••HMM


200
200
300

200

2000
300
WIV
-
-
Al
S
Al
-
Al
-
Al
S
—
  fAl = Aluminum; S = Steel; LS = Low Pressure Steel.

  Cylinders are no longer available; the compounds were found to be unstable in the cylinders.

      gas mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon dioxide in
  nitrogen.  Concentrations shown are in ppnC.

-------
                                SECTION 2
                         EXPERIMENTAL PROCEDURES

     Analysis  of  the  cylinder  gases  is required to corroborate the con-
 centrations  reported  by  the  company  which  prepared the gas mixtures and
 also to measure concentration  changes with time,  that  is,  estimate sta-
 bility of the  compounds.
 INSTRUMENTATION
     Analyses  are presently  performed with  (1)  a Perkin-Elmer Sigma  4
 Gas  Chromatograph with  a  flame  ionization  detector  (FID),  and   (2)  a
 Tracor 560  Gas Chromatograph  with  a flame  photometric  detector.   The
 flame photometric detector has  principally been used for measurement of
 the  sulfur-containing  species.   Gaseous samples  are  injected onto  the
 appropriate column by means of  Valco  gas sampling  valves constructed of
 Hastalloy C (high nickel content  and  low adsorptive properties).   These
 valves are equipped with  interchangeable sample loops to  allow the  in-
 jection of variable volumes of  gas.
     The gas Chromatographic parameters  used in the measurement  of  in-
 dividual  compounds  and  any  problems with  the  analysis are  listed  in
Attachment 1.
CALIBRATION
     Calibration of the gas Chromatographs  is accomplished  using  appro-
 priate calibration standards comprised of  known concentrations of  gases
 in air or nitrogen.  The source or method  of preparation of calibration
 standards varies depending on the gas involved.
     National  Bureau  of  Standards, Standard Reference Materials   (NBS-
SRMs) of  methane and propane in nitrogen or  air were used  for the cal-
 ibration  of  the GC  for  the measurement  of methane,  ethane, propane,
 ethylene, and  propylene  audit materials.   An NBS-SRM  of benzene  in  ni-
trogen was used for calibration of the GC for  the measurement of ben-
zene audit cylinder concentrations and  an  NBS-SRM of  perchloroethylene
 in nitrogen  was  used  for  the  measurement of  perchloroethylene   audit
cylinder  concentrations.

-------
     A  second method  for  preparation of calibration standards  involves
the  use of  gravimetrically calibrated  permeation  tubes.   For  example,
the  calibration gases for  hydrogen  sulfide  and ethylene oxide  have  been
generated in this manner.   The permeation tube is placed in a  tempera-
ture-controlled chamber and nitrogen  is passed over  the permeation  tube
at  a known  flow rate.   The resultant  gaseous mixture  is  further  di-
luted,  if necessary,  using additional  nitrogen  in a  glass   dilution
bulb.   The  final mixture  is  collected in  a gas  sampling  syringe  and
analyzed by GC-FID.   The  permeation  rates  of  the tubes are determined
by periodic weight loss measurements.
     A  third method for developing  a calibration standard is the pres-
sure-dilution technique.  A known volume  of  the compound, either gas  or
liquid,  is  injected  into  an   evacuated glass  bulb  or  stainless steel
sphere  of known  volume.    (The  volume of  the bulb or  sphere is deter-
mined gravimetrically.)  The bulb or sphere is then pressurized with  a
balance  gas of choice.   If a  pure  liquid is injected,  total vaporiza-
tion is  assumed  and the concentration is  calculated by using the ideal
gas  law.  Additional dilutions  are  also made,  if necessary,  by  partial-
ly evacuating to  a  known  pressure  and  pressurizing  with  a balance  gas
to a known pressure.
     With each of  these approaches,  multipoint  calibration  curves  are
prepared each time a cylinder mixture is  analyzed.

QUALITY CONTROL

     Replicate injections  of both audit cylinder  gases  and calibration
standards are  performed  until   no trends  in the  detector  response  are
observed and the relative standard deviation of replicate injections  is
less than 1  percent.
     As a quality control  check on the accuracy of calibration mixtures
prepared  by  the pressure-dilution  technique,  NBS-SRMs  of  benzene  in
nitrogen or  propane in nitrogen  were  analyzed  by  GC-FID  against  se-
lected  compound calibration standards.   The prepared  calibration  mix-
ture was used to  establish the detector  response  on an area  per  ppm-
carbon basis.   This calibration was  then used to determine the ppm-car-
bon  concentration of  the   analyzed  NBS-SRM.   Concentrations were  con-
verted  to ppm by  volume  before comparison with certified  values.   The

-------
 results  of these  analyses  are shown  in  Table 2.   Validation  of the  pres-

 sure-dilution  technique  for these  five  compounds  provides  a  high  level
 of  confidence  in  the  results for  other  compounds  since  the  same  tech-
 nique  and  preparation system were  used.
           TABLE 2.  PRESSURE-DILUTION QUALITY CONTROL  RESULTS
NBS-SRM Analysis

Calibration Standard
Toluene
M-Xylene
Hexane
Cyclohexane
1,3-Butadiene

Compound
Benzene
Benzene
Propane
Propane
Propane
NBS
Cone., ppm
9.78
9.78
98.5
98.5
98.5
RTI Measured
Cone., ppm
10.1
9.79
100
100
101
Percenta
Difference
3.3
0.1
1.5
1.5
2.5
a RTI Cone. - NBS Cone.

       NBS Cone.
       X100
     Two  different  cylinders  containing   hydrogen   sulfide  in  nitrogen
were  received  from  the  National  Bureau  of Standards  and  analyzed  along
with  the  audit  cylinders as  a quality  control  check.   The  analysis  re-
sults are shown in Table 3.
      TABLE 3.  HYDROGEN SULFIDE ANALYSIS QUALITY CONTROL RESULTS
Cylinder Number
NBS Certified
   Cone., ppm
RTI Measured
 Cone., ppm
 Percent
Difference
       1
       2
      5.14
     15.4
     4.84
    15.2
  -5.8
  -1.3

-------
                                SECTION  3
                           PERFORMANCE AUDITS

     RTI  supplies  cylinder gases for audits upon request  from  the  EPA,
 state or  local  agencies  or contractors.  A contractor must  be  perform-
 ing  source emission tests  at the request  of  EPA or  a  state or  local
 agency  in order to qualify for  the  performance  audit.  When a  request
 is received, the contents  of  the cylinders  are analyzed,  the tank  pres-
 sures  are measured and the cylinders  are shipped by  overland  carrier.
 Tank regulators are also provided when  requested.  A  letter  is  included
 with the  cylinders which  provides general instructions for  performance
 of the  audit.   The audit  material  concentration and  cylinder  pressure
 are provided to the requesting  agency audit coordinator.
     To date,  214  individual   audits  have been  initiated,  and  194  are
 complete;   The audit results  currently  available are  presented  in Table
 4.  The results of the audits  show  that  most  auditee reported concen-
 trations  agree  within  15  percent of the  audit material  concentrations
 measured  by  RTI,  although the  difference for some  compounds is some-
 times quite substantial.   This  indicates  the  importance  of the perfor-
mance audit program  and  the  need for reliable quality assurance cali-
 bration standards by the laboratories being audited.

-------
TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS
Audit
No.
1
2
3
4
5
6
7
8
9
10
11
12
Client***
A
A
A
A
A
A
B
C
D
E
F
F
Industry
Ethylene oxide
production
Ethy-ene oxide
production
Ethylene oxide
production
Acetone
production
Maleic anhydride
production
Ethylene oxide
production
Maleic anhydride
product ion
Maleic anhydride
production
Ethyl benzene
styrene
manufacturer
Gasoline bulk
tenninal
Gasoline transfer
terminal
Gasoline transfer
tenninal
Audit material
Ethylene in N2
Ethylene in N2
Methane/ethane in N2
Methane/ethane in N2
Methane/ethane in No
Methane/ethane in N2
Benzene in No
Benzene in N2
Benzene in N2
Benzene in No
Ethylene in N2
Ethylene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in No
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in No
RTI audit
cone, (ppm)
3,240
21,200
l,710Me/220Et
8,130Me/597Et
l,021Me/315Et
6,207Me/773Et
79.0
374.0
138
300
5,440
18,900
80.0
355
101
387
71.0
229
62.0
80.0
142
294
268
343
Client audit
% bias (Avg.)*
-22.5
-20.0
+9/-20
+9/-1.00
+21.5M.50
+23.5/-4.50
-19.0
-11.0
-9.40
•*4.70
-27.0
-33.0
+2.30
+27.5
+12.9
+14.5
-2.80
-3.90
+3.80
+3.40
-3.50
+3.20
-11.8
-1.00
Status of
audit**
B
B
B
B
B
B
B
B
B
B
B
B

-------
TABLE 4.  SMlAIu7 OF PERFOIMANCE AUDIT RESULTS (Continued)
Audit
No.
13
14
15

16
17a
17b
18
19
20
21

22
23
Client***
F
F
C

F
F
F
G
F
F
F

F
F
Industry
Gasoline transfer
terminal
Gasoline transfer
terminal
Nitrobenzene
manufacturing
Gasoline bulk
terminal
Gasoline bulk
terminal
Gasoline bulk
terminal
Coke o/en
Gasoline bulk
terminal
Gasoline bulk
terminal
Linear alkyl-
benzene manu-
facturing
Gasoline bulk
terminal
Gasoline bulk
terminal
Audit material
Benzene in N2
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N«
Benzene in N2
Hydrogen sulfide in N2
Hydrogen sulfide in No
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in N2
Benzene in No
Benzene in N2
Benzene in No
Benzene in No
KTI Audit
cone, (pan)
129
318
10.7
9.73
269
8.20
140
9.50
127
9.50
127
7.05
9.73
12.0
218
7.65
396
98.0
294
331
9.85
81.0
10.2
61.0
Client Audit
% bias (Avg.)*
+4.70
+8.70
+2.60
-4.60
-2.60
-2.30
-1.80
+10.4
-2.80
+12.5
-6.30
-24.8
-22.9
-0.80
+7.30
+16.3
+1.50
+5.70
+6.80
+4.50
-4.10
-6.80
+4.60
-9.50
Status of
audit**
B
B
B

B
B
B
B
B
B
B

B
B

-------
TABLE 4. SUGARY OF EERPOBMANCE AUDIT RESULTS (Continued)
Audit
No.
24
25
26
27
28A
283
28C
29
Client*** Industry
H Industrial
surface coating
process
C Acrylic acid and
ester Production
C Acrylic acid and
ester Production
E Maleic anhydride
A Carbon adsorber
A Carbon adsorber
A Carbon adsorber
EPA, QAD . Instrument
check-out
Audit material
Toluene in N2
Propylene in N2
Propane in. 1*2
Methane/ethane in N2
Propane in N2
Propane in N2
Propane in N2
Propane in N2
Benzene in N2
Benzene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Ethylene in N2
Ethylene in N2
Ethylene in N2
Ethylene in N2
Ethylene in No
KTI audit
cone, (ppm)
14.8
474
20.3
l,64GMe/195et
10.1
710
5.1
607
10.2
218
8.55
405
8.55
405
8.55
405
4.75
19.6
312
3020
20400
Client audit Status of
% bias (Avg.)* audit**
-1.90 B
+0.20
-2.X
-13.5(as methane)
+8.60 B
+5.60
+17.6 B
-3.60
NA C
NA
-6.40 B
-1.00
+4.10 B
NA
-8.80 B
NA
+4.00 B
+3.10
-O.80 .
+5.30
-8.60

-------
                           TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
30



31

32



33



34


35a

35b

Client*** Industry
EPA, QAD Instrument
check-out


EPA, QAD Instrument
check-out
EPA, QAD Instrument
check-out


EPA, QAD Instrument
check-out


EPA, QAD Instrument
check-out

I Vegetable oil
plant
I Vegetable oil
plant
Audit material
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Toluene in N2
Toluene in N2
Methyl acetate in N2
Methyl acetate in N2
Methyl acetate in N2
Methyl acetate in N2
Propylene in N«
Propylene in N2
Propylene in No
Propylene in N2
Propane in No
Propane in ^
Propane in N2
Hexane in N2
Hexane in N2
Hexane in N2
Hexane in No
KTI Audit
cone, (ppra)
8.20
78.0
133
348
405
579
6.80
17.2
326
455
4.90
19.7
300
685
14.6
303
439
82.2
1980
82.2
1980
Client Audit Status of
%bias (Avg.)* audit**
+0.30 B
-0.90
-4.00
-0.90
+3.20 B
+1.00
-2.60 B
+1.70
-1.50
-1.30
-22.4 B
-7.80
+1.00
-1.80
-0.70 B
+7.60
+6.20
+8.10 B
+3.00
-1.20 B
-1.30
36
Carbon adsorber   Toluene in
8.20
-2.40

-------
TABLE 4.  SUWAIff (F PEREOFMANCE AUDIT RESULTS (Continued)
Audit
No.
37
38
39
40
41
42
43
44
45
46
Client*** Industry
B Coke even
D Ethylbenzene/
styrene
B Coke oven
Byproduct
D Coke oven
Byproduct
H Paint spray
H Tire
manufacturing
B Coke oven
D Ethylbenzene/
styrene
F Industrial
surface coating
EPA, QAD Tire
manufacturing
Audit material
Benzene in N£
Benzene in N2
Benzene in N2
Benzene in N£
Benzene in N2
Benzene in N£
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in Wn
m-Xylene in N2
Cyclohexane in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Propane in N2
Propane in Air
Propane in Air
Propane in Air
Propane in Air
KTI audit
cone, (ppm)
12.1
105
9.90
77.9
345
8.20
85.4
10.9
147
10.8
16.4
93.4
7.54
225
8.20
74.5
10.6
316 .
450
15.0
316
Client axlit
% bias (Aug.)*
•K).80
+2. 90
+5.70
+3.60
+1.50
-2.60
-8.70
+20.0
+6.80
NA
NA
-11.1
+0.10
+0.40
-3.40
-0.20
-3.00
-3.20
-2.00
NA
NA
Status of
audit**
B
B
B

C
B
B
B
B
C

-------
                           TABLE 4.   SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
47
48
49
50
51
52
53
54

Client*** Industry
EPA, QAD Tire
manufacturing
D Dimethyl
terephthalate
production
EPA, QAD Instrument
check-out
EPA, QAD Tire oven
manufacturing
EPA, QAD Instrument
check-out
D Styrene
manufacturing
I Veg. oil
manufacturing
M Research

Audit material
Propane in air
Propane in air
Meta-xylene in N2
Toluene in N2
Methanol in N2
Propane in air
Propane in air
Propane in air
Propane in air
Propane in air
Benzene in N2
Benzene in N2
1,3-^utadiene in N2
Cyclohexane in N«
Chloroform in N2
Chloroform in N0
KTI audit
cone, (ppm)
20.8
453
487
61.5
55.2
4.90
613
718
20.8
316
106
358
20.9
99.0
16.5
531
Client audit
% bias (Avg.)*
-18.4
+13.4
-2.10
NA
NA
-48.8
+16.9
+16.8
+20.0
-9.20
-4.90
-3.70
+23.8
-3.50
NA .
NA •
Status of
audit**
B
B
C
B
B
B
B
C

55
Research
Ethylene in N^
300
+1.40
B

-------
TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
56


57

58

59

60
61

62

63

64


65


Client*** Industry
K Reactivity of
vent activated
charcoal
EPA, QAD Instrument
check-out
C Coil coating

L Maleic
anhydride
M Research
EPA (State of Conn. ) Maleic
anhydride
0

M Paper and pulp

P Research


E Coke oven
Byproduct
Reco/ery
Audit material
Chloroform in No

••
Hydrogen sulfide
in No
Propane in Air
Propane in Air
Benzene in N«
Benzene in Nn
Audit not initiated
Benzene in N2

Meta-xylene in No
Hexane in N2
Methyl raercaptan
in N2
Benzene in N~
Methyl ethyl ketone
in N2
Benzene in N2
Benzene in N2

RTI audit
cone, (ppra)
8.11


16.2

5.20
472
9.45
341
—
133

760
1990
4.44

13.4
44.5

7.93
132

Client audit Status of
% bias (Avg.)* audit**
NA. C


NA C

NA. B
-8.40
NA. C
NA.
— —
NA. C

NA. C
NA.
NA c

NA c
NA. •'

-2.90 B
-H.39


-------
TABLE 4.  SUMMARY (F PERFORMANCE AUDIT RESULTS  (Continued)
Audit
No.
66







67


68

69

70

71

72

73


Client*** Industry
D Rubber
manufacturing






E Coke o/en
Byproduct
Recovery
EPA, Region II Vinyl chloride
manufacturing
EPA, QAD Instrument
Check
EPA, Region I Vinyl chloride
manufacturing
E Degr easing
vent
EPA, QAD Instrument
check-out
EPA, QAD Conbustion
efficiency
test
Audit material
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Hexane in N2
Hexane in N2
Propane in Air
Propane in Air
Benzene in N2
Benzene in N2

Vinyl chloride in N2
Vinyl chloride in N2
Propylene in N2
Propylene in N2
Vinyl chloride in N2

Trichloroethylene in N2
Trichloroethylene in N2
Hexane in N£

Hydrogen sulf ide in N2
Methyl mercaptan in N2

Rtl audit
cone, (ppn)
12.0
10.2
100
335
79.8
3080
9.97
314
8.29
75.7

5.74
28.3
328
725
7.50

14.9
566
3080

16.2
8.22

Client audit Status of
% bias (Avg.)* audit**
+14.2 B
0
+6.40
+6.00
+1.80
-7.50
-3.20
-10.8
-2.20 B
-2.50

NA C
NA.
. -7.00 B
-8.30
NA. C

-0.40 B
-8.70
NA ' C

-7.50 B
-8.90


-------
TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
74
75
76
77
78
79
80
81
82
83
Client***
E
N
F
D
EPA, Region VII
D
F
P
J
I
Industry
Vinyl chloride
manufacturing
Coil coating
Coil coating
Maleic
anhydride
Instrunent
checkout
Maleic
anhydride
Plywood /v eneer
drying
Plywood Areneer
drying
Polypropylene
manufacturing
Coke even
Audit material
1,2-Dichloroethane in N2
1,2-Dichloroethane in N2
Propane in air
Propane in ''air
Propane in air
Propane in air
Benzene in N2
Benzene in N2
Benzene in N2
Hexane in N2
Benzene in N2
Benzene in N2
Propylene in N2
Propylene in N2
Toluene in N2
Propylene in N2
Propylene in N2
Toluene in N2
Propylene in.N2
Propane in N2
Propane in N2
Hydrogen sulf ide in N2
Hydrogen sulf ide in N2
Carbonyl sulf ide
RTI audit
cone, (ppa)
9.30
462
10.0
309
10.0
309
9.46
66.9
120
30.2
9.46
128
14.8
328
430
20.3
479
487
9.63
19.7
296
437
647
101
Client audit Status of
% bias (Avg.)* audit**
+6.00 B
+3.70
NA C
NA
m. c
-6.60 B
-11.7
NA C
NA
-4.60 B
+12.5
-4.70 B
+4.40
-0.80
+18.2 B
-22.5
+32.5
-0.35 B
+0.84
+0.45
+4.90 B
-16.5
+1.98

-------
                                           TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
oo
Audit
No.
84



85

86


87


88

89

90


91



Client*** Industry
J Compliance
testing


I Steel
manufacturing
I Oil shale


Q Maleic Anhy-
dride Produc-
tion
R Refining

Air Quality Bureau, Refining
New Mexico
S Oil shale


F Compliance
testing &
demonstrat ion

Audit material
Benzene in N2
Hexane in N2
Toluene uvN2
Methyl mercaptan in N2
Hydrogen sulfide in N2
Carbonyl sulfide in N2
Hydrogen sulfide in N2
Carbonyl sulfide in N2
Methyl mercaptan in N2
Benzene in N2
Hexane in N2

Hydrogen sulfide in N2
Hydrogen sulfide in N2
Hydrogen sulfide in N2 .

Carbonyl sulfide in N2
Methyl mercaptan in N2
Hydrogen sulfide in N2
Trichlorethylene in N2
Propane in N2
Propane .in N2
Propane in N2
RTI audit
cone, (ppm)
7.45
72.6
15.0
5.40
647
9.08
437
117
8.42
55.7
324

17.5
437
647

117
8.42
437
94.6
10.0
309
73.8
Client audit Status of
%bias(Avg.)* audit**
23.0 B
0.6
-8.7
NA
5.0 B
1.0
-3.0 B
-4.6
-13.3
+528.4 B
+20.5

21.1 B
22.0
NA C

-29.1 B
-14.8
-3.65
NA B
NA
-54.0
8.7

-------
TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No. Client***
92 EPA, Region I
93 D
94 USEPA, Region I
95 E
96 USEPA, Region I

97 Tewksbury State
Hospital, MA


98 T
99 U
Industry
Research Method
Development
Method
Validation
Research-
Method
Development
Acrylonitrile
Production
Resource Re-
covery Garbage
Burning Emis-
sions
Research-
Method Develop-
ment

Plywood
Veneer
Hazardous
Materials
Incineration
RTI audit
Audit material cone, (ppra)
Toluene in N2
Hydrogen sulfide in N2
Vinyl chloride in N2
l.l^dichloroethylene in N2
Trichloroetnylene in N2
Perchloroethylene in N2
Acrylonitrile in N2
Acrylonitrile in N2
Propane in N2
Propane in N2

Vinyl chloride in N2
1,1-dichloroethylene in
N2
Trichloroethylene in N2
Tetrachloroethylene in N2
Method 25 gas in N2
Method 25 gas in N2
Trichloroethylene in N2
Perchloroethylene in N2
Chloroform in No
347
8.32
8.39
14.2
13.5
7.94
413
10.8
10.0
296

8.39
14.2

13.5
7.94
102 as C
1940 as C
8.91
7.94
16.5
Client audit
% bias (Avg.)*
NA
NA
-20.2
+10.6
+55.6
+48.1
NA
6.94
-35.0
-17.2

+57
-9.9

-4.4
+48.6
NA
NA
NA
NA
NA
Status of
audit**
C
C
B
B
B

B


C
C

-------
                                              TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
IV)
o
Audit
No.
100




101


102



103


104


105
106

107

108

109


110

Client*** Industry
USEPA, Region I Research Method
Development



U Hazardous
Materials
Incineration
Allegheny Solvent Coating
County


I Hazardous
Waste Incin-
eration
I Hazardous
Waste Incin-
eration
USEPA, Region VI Plastics
USEPA, Region VI Vinyl Chloride
Manufacturing
V Instrument
Check
Q Gasoline Termi-
nal
P Chemicals
Manufacturing

MD Dept. of Health Instrunent
Check
RTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Chlorobenzene in N2
Benzene in N2
Hexane in N2
Meta-xylene in N2

Trichloroethylene in N2
Perchloroethylene in N2

Toluene in N2
Methyl ethyl ketone in N2
Acrylonitrile in N2
Methyl isobutyl ketone in N2
Vinylidiene chloride in N2


Vinylidiene chloride in N2


Vinyl chloride in N2
Vinyl chloride in N2

Methyl chloroform in N2
Perchloroethylene in N^
, Propane in air

Toluene in N2
Benzene in N2
1,2-Tdichloroethane in N2
Benzene in N2
Perchloroethylene in No
9.20
128
30.2
6.82 (cold
2.68 (warm
13.5
14.5

8.51
38.7
11.6
9.49
14.2


9.00


8.41
8.44

10.2
7.94
1.18%

16.4
7.3
8.1
9.64
14.5
NA.
NA
NA
bulb) NA
bulb)
m.
NA.

NA
NA
NA.
NA
12.3


10.0


NA.
NA

+7.8
+15.9
-4.2

17.3
NA
NA
-6.6
+60.1
Status ot
audit**
C




C


C



B


B


C
C

B

B

B


B


-------
                            TABLE 4.  SLbMAKf OF  PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
Ill
112
113
114
115
116

117
118
119
120
121
122
Client***
V
J
GA State EPA
Sacranento County,
California
U
V

X
F
K
Z
K
LA State EPA
Industry
Instrument
Check
Research, Method
Development
Plastics
Instrument
Check
Instrument
Check
Instrument
Check
Carbon Adsorp-
tion
Surface Coating
Instrument Check
Solvent Coating
Instrument Check
Plastic
Manufacturing
Kii audit unenc auait
Audit material cone, (ppn) % bias (Avg.)*
Chloroform in N2
Carbon tetrachloride in N2
Trichloroethylene in N2
Freon 113 in N2
- Propane in N2
Toluene in N2
Vinyl chloride in N2
Ethylene oxide in N2
Benzene in N2
Chlorobenzene in N2
Methanol in N2

Toluene in N2
Methyl ethyl ketone in N2
Methylene chloride in N2
Method 25 gas in N2
Freon 113 in N2
Toluene in N2
Toluene in N2
Perchloroethylene in N2
Benzene in No
Vinyl chloride in No
1 ,2-dichloroethane in N2
Carbon tetrachloride in No
16.5
10.5
13.5
9.76
628
347
8.44
10.1
389
9.20
55.2

16.1
38.7
9.67
96.8 as C
9.76
8.51
558
7.94
9.64
8.44
13.8
10.5
+3
+33.0
+4.0
0
+0.6
+2.0
+10.2
NA.
-35.7
-43.1
NA

NA
+127.3
NA
+38.8
-3.1
NA .'
-30.5
191.5
-37.0
status ot
audit**
B
B
B
C
B
C

^C
B
C
B
C
B
123
Paper Manufac-
turing
Vinyl chloride in N2
6.60

-------
                                              TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
ro
rv>
Audit
No.
124
125

126



127
128

129

130
131A


131B


132




133


Client***
LA State EPA
Y

I



F
Y

J

Region Vll
South Coast Air
Quality Manage-
ment District
South Coast Air
Quality Manage-
ment District
Maryland Dept.
of Health



State of Cali-
fornia Air
Resources Board
Industry
Instrument
Check
Surface Coating

Oil Shale



Surface Coating
Surface Coating

Research, Method
Development
Instrument Check
Hazardous Waste
Landfill

Hazardous Waste
Landfill

Instrument
Check



Quality Assur-
ance Audit of
Standards
Audit material
Toluene in No
Methylene chloride in N2
Method 23 gas in N2
Method 25 gas in N2
Carbonyl sulfide in N2
Carbonyl sulfide in N2
Hydrogen sulfide
Methyl mercaptan
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Methyl ethyl ketone in N2

Acrylonitrile in N2
Benzene in N2
Methane in N2

Methane in N2


Benzene in N2
Trichloroethylene in N2
Hexane in N2
Methyl isobutyl ketone in
l,2HDichloroethane in N2
Methylene chloride in N2
Chloroform in N2
Perchloroethylene in No
KIT audit
cone, (ppn)
8.51
9.67
107 as C
775 as C
10.7
116
627
8.42
775 as C
205 as C
1040 as C
38.7

11.6
134
6460

6460


7.9
9.4
32.8
N2 8.4
13.9
9.2
4.6
10.5
Carbon tetrachloride in N2 9.6






Trichloroethylene in N2
Freon-113 in No
14.0
11.0
Client audit
% bias (&rg.)*
-34.2
96.8
80.4
39.5
NA
NA
NA
NA
-26.5, -18.7
21.5
18.9
NA

-29.3
-28
+0.6

-2.5


-11.1
-31.6
-18.5
+15.4
-2.1
+7.6
+2.2
+14.3
+1.0
+7.1
-9.1
Status ot
audit**
B
B

C



B
B

C

B
B


B


B




B






-------
                                            TABLE 4.  SUMMARY OP PERFORMANCE AUDIT RESULTS (Continued)
ro
CO
Audit
No.
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
Client***
AA .
FF
J
I
F
BB
EPA Region II
Gcranonwealth of
Massachusetts
EPA Region II
State of Dela-
ware
EE
DO
State of Dela-
ware
OC
F
BB
Industry
Hbod Steve
Bnissions
Polyester Resin
Production
Instrunent
Check
Coil Coatirg
Compliance
Testing
Coil Coating
Metal Refining
Instrunent
Check
Methane Recovery
Plant
Plastic
Manufacturing
Plastic
Manufacturing
Paper Coating
Instrunent
Check
Gasoline Terminal
Vinyl Coating
Plastic
Manufacturing
RTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Benzene in N2
Method 25 gas in N2
Benzene • in N2
Benzene in N2
Method 25 gas in N2
Methanol in N2
Methyl ethyl ketone in N2
Method 25 gas in N2
Benzene in N2
Benzene in N2
Trichloroethylene in N2
Methyl ethyl ketone in N2
Benzene in N2
Vinyl chloride in N2
Vinyl chloride in N2
Method 25 gas in N2
Propane in air
Toluene in N2
Benzene in N2
Propane in N2
Propane in N2
Methyl ethyl ketone in N2
Method 25 gas in N2
310
103.8 as C
10.3
121
195 as C
48.8
40.4
1060 as C
376
7.9
14.0
40.4
7.8
7.75
20.3
96.1 as C
10.9
546
7.9
2052
308
40.4
764 as C
+5.2
+28.1
+12.2
+6.2
-18.3
+10.7
-5.9
-4.0
-11.2
+5.1
-4.3
+31.2
-5.1
-11.0
-10.3
-24.5
-4.6
-8.6
-20.6
NA
-1.0
-25
-9.3
Status of
audit**
B
B
B
B
B
B
B
B
B
B
B
B
B
C
B
B

-------
                                             TABLE 4.  StfrMARY OF PERFORMANCE AUDIT RESULTS (Continued)
ro
Audit
No.
150
151



152



153

154


155
156
157
158





159


160


Client***
EPA Region I
EPA Region II



EPA Region II



Ccnrnonwealth of
Massachusetts
J
•

EPA Region I
EPA Region II
EPA Region I
Allegheny
County




Minnesota Pollu-
tion Control
Agency
J


Industry
Wire Coatirg
Instrument
Check


Chemical
Feedstock
Formulation

Paper
Coatipg
Instrument
Check

Paper Coating
Wire Coatiqg
Wire Coating
Instrument
Check




Instrument Check


Methylene
Chloride
Manufacturing
RTI audit Client audit
Audit material cone, (pprn) % bias (Avg.)*
Method 25 gas in N2
Benzene in N2
Method 25 gas in N2
Method 25 gas in N2
Methyl ethyl ketone in N2
Benzene in N2
Benzene in N2
1,1-Dichloroethylene in N2
1 , 1-Dichloroethylene in N2
Propane in N2
Propane in N2
1,2-Dichloroethane in N2
Trichloroethylene in N2
Perchloroethylene in N2
Toluene in N2
Method 25 gas in N2
Hexane in N2
Benzene in N2
Toluene in N2
Trichloroethylene in N2
Perchloroethylene in N2
Propane in N2
Hydrogen Sulfide in N2
Benzene in N2
Toluene in N2

Methylene Chloride in N2
Methylene Chloride in N2

187 as C
9.90
1930 as C
95.8 as C
40.4
96.0
10.2
8.78
479
10.9
607
14.1
9.40
13.3
184
1020 as C
88.2
11.9
8.70
14.0.
6.88
10.9
30.5
10.3
18.9

10.4
6.01
'
+52.0
-5.4
-71.0
-73.1
+220
-5.5
+3.0
NA
w.
NA.
+3.1
-11.3
-1.1
-2.3
MA.
-48.2
NA
-2.5
NA
NA
-93.0
NA
NA
-37
-30

-4.0
-3.7

Status of
audit**
B
B



B



B

B


C
B
C
B





B


B



-------
                                             TABLE 4.  SLHMARY OF PERFOIMANCE AUDIT RESULTS (Continued)
ro
ui
Audit
No.
161



162

163


164

165

166

167

168
169

170




171

172

Client***
Florida Dept. of
Health, Welfare
and Bioenv iron-
mental Services
Texas Air
Control Board
Pennsylvania
Dept. of En/ iron-
mental Resources
GG

EPA Region I

Texas Air
Control Board
W

J
N

W




J

N

Industry
Printing
Operation


Instrument
Check
Printing Press


Printing
Operation
Paper Coating

Instrument Check

Plastics
Manufacturing
Instrument Check
Solvent Ink
Coating Process
Surface Coating
Instrument 1
Instrument 2
Instrument 1
Instrument 2
Methylene Chloride
Manufacturing
Solvent Coating

Audit material
Method 25 gas in N2
Method 25 gas in N2


Benzene in N2
Acrylonitrile in N2
Method 25 gas in N2
Method 25 gas in N2

Method 25 gas in N2

Toluene in N2
Toluene in N2
Method 25 gas in N2

Vinyl Chloride in N2
Vinyl Chloride in N2
Benzene in N2
Method 25 gas in N2
Method 25 gas in N2

Method 25 gas in N2

Method 25 gas in N2

Methylene Chloride in N2
Methylene Chloride in N2
Method 25 gas in N2
Method 25 gas in No
RTI audit
cone, (ppa)
1930 as C
187 as C


97.3
424
1093 as C
99.2 as C

196 as C

618
368
99.6 as C

8.15
20.6
7.89
196 as C
1093 as C
-
99.2 as C,

806 as C

1.13
10.4
196 as C
806 as C
Client audit
% bias (Avg.)*
+16
+55


+2.8
-33
-11
+69

NA

+36.9
+11.4
+5.7

+0.6
+0.5
-9.6
+30.6
+13.4

+7
+150
+5
+21
+22
+4
+25
+3
Status of
audit**
B



B

B


C

B

B

B

B
B

B




B '

B


-------
                                               TABLE 4.  SUMMARY CF PERFORMANCE AUDIT FESULTS (Continued)
ro
CTl
Audit
No.
173


174















175
176



177

178

Client*** Industry
HH Steam Stripping


EPA/ASRL Lab #1, Inst. #1



Lab #1, Inst. #2



Lab #2, Inst. #1



Lab nt Inst. #2



II Instrument Check
L Synthetic Rubber
Manufacturing


L Synthetic Rubber
Manufacturing
MM Asphalt Plant

Audit material
1,2-Dichloroethane in
Vinyl Chloride in N^
Methylene Chloride in
Benzene in N2
Toluene in N£
1,3-Butadiene in N£
Meta-Xylene in N2
Benzene in N£
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Benzene in N2
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Benzene in N2
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Method 25 gas in N2
Chlorofonn in N2
Carbon Tetrachloride
Carbon Tetrachloride
Chlorofonn in N2
1,3-Butadiene in N2
1,3-Butadiene in N2
Method 25 gas in N2
Method 25 gas in No
RTI audit
cone, (ppra)
No 422
7.75
N2 6.01
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
806 as C
9.08
in N2 5.88
in N2 18. 1
22.1
52.9
32.3
99.6 as C
806 as C
Client audit
%bias (Avg.)*
+71
-36
+45
-K).6
-14.4
-9.2
-10.8
-3.2
-8.6
-10.8
-9.2
+1
-1
0
+6
+5
-8
+1
+10
+24
+7
+28
+21.
-1
-6
-4
MA
NA
Status of
audit**
B


B



B



B



B



B
B



B

C
C

-------
                                             TABLE 4.  SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
rv>
Audit
No.
179
180
181
182
183
184
185
186
187
188
189
190
Client***
U
HH
BB
L
KK
F
V
CO
F
BB
BB
KK
Industry
Plastics
Manufacture
Steam Stripping
Process
Lignite Power
Plant
Synthetic Rubber
Manufacturing
Plant
Can Coating
Operation
Surface Coating
Operation;
Instrument #1
Instrument #2
Instrument Check
Instrument Check
Vinyl Coating
Manufacturing
Can Coating
Operation
Can Coating
Operation
Can Coating
Operation
KTI audit Client audit
Audit material cone, (ppm) % bias (fug.)*
Hexane in N2
1,2-Dichloroethane in N2
1,1-Dichloroethylene in N2
Vinyl Chloride in N2
Method 25 gas in N2
Carbon Tetrachloride in N2
Carbon Tetrachloride in N2
Method 25 gas in N2
Methyl Ethyl Ketone in N2
Methyl Ethyl Ketone in N2
Methylene Chloride in %
Method 25 gas in N2
Toluene in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
2139
97.2
15.2
6.1
99.2 as C
21.8 as C
10.6 as C
1093 as C
45
45
6.01
1904 as C
618
99.6 as C
1968 as C
806 as C
-2
-90
-44
-5
-33
0
-2
-53
+20
+16
-17
+2
+3
NA.
m.
+17
Status of
audit**
B
B
B
B
B
B
B
B
B
C
C
B

-------
                                               TABLE 4.   SUMMARY OF PERFORMANCE AUDIT RESULTS  (Continued)
00
Audit
No.
191
192
193
1%
195
196

197
198
199
200
201
Client*** Industry
JJ Instrument Check
LL Organic Emissions
Fran Building
Materials
U Paint Shop
Incinerator
PP Limestone Quarry
QQ Bulk Gasoline
Terminal
RR Research Method
Development;
Instrument #1
.Instrument #2
DD Manufacturer of
Vinyl Wall
Coverings
Ml Asphalt Plant
J Method Development
Research
LL Instrument Check
Bfi Municipal
Incinerator
KTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Method 25 gas in N2
Hexane in No
Toluene in N2
Toluene in N2
Chlorobenzene In N2
Hexane in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Propane In N2
Propane in N2

Hydrogen Sulf ide in N2
Hydrogen Sulf ide in N2
Methyl Ethyl Ketone in N2
Methyl Isobutyl Ketone in
Methanol in N2
Method 25 gas in N2
Method 25 gas in N2
1,3-Butadiene in N2
Ethane in N2
Ethylene in N2
Toluene in N2
Propane in N2
99.2 as C
92.1
21.6
303
14.4
34.8
1904
1093
196
10.1 '
21300

537
537
45.0
No 10.2
56.8
1093 as C
196 as C
52.9
300
4.72
10.2
14.6
-1
-7
+1
0
46
-10
-W
-14
-11
-21
-1

-10
-5





Status of
audit**
B
B
B
B
B

B
B
A
A
A
A
A

-------
                                              TABLE 4.   SUMMARY OF PERFOFWANCE AUDIT RESULTS (Continued)
ro
10
Audit
No.
202
203
204
205
206
207
208
209
210
211
212
Client***
F
W
SS
L
J
TT
UU
W
H
Q
WW
Industry
Paper Coating
Process
Catalytic
Incinerator
Coke Oven
Enissions
Instrunent Check
Instrument Check
Instrunent Check
Instrunent Check
Municipal
Incinerator
Paper Coating
Process
0/en Incinerator
Auto Assembly
Industrial
Manufacturing
RTI audit Client audit
Audit material cone, (ppn) % bias (Avg.)*
Methyl Acetate in N2
Method 25 gas in N2
Method 25 gas in N2
Hydrogen Sulfide in N2
Trichloroethylene in N2
Ethylene Oxide in N2
Ethylene Oxide in N2
Perchloroethylene in N2
Perchloroethylene in N2
Carbonyl Sulfide in N2
Carbonyl Bisulfide in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Benzene in N2
437 NA
1968
196
787
101 -1
0.868 -1
9.09 +10
7.83 NA
551 NA.
103.3
105
806 as C +9
196 as C
146 as C
1904 as C
395
Status of
audit**
C
A
A
B
B
C
A
B
B
A
A

-------
                                                  TABLE 4.   SUMMARY OF PERFOIWANCE AUDIT RESULTS
CO
o
Audit
No.
213
214
Client***
ED
XX
Industry
Paper Coating
Process
Paint Manufac-
turing
Audit material
Toluene in N2
Vinyl Chloride in N2
Rn audit
cone, (ppm)
264
8.13
Client audit Status of
% bias (Avg.)* audit**
A
A
               NA = Not Analyzed

                 *Client % Bias
                      100  X
                              Client-Measured Concentration - BTI-Measured Concentration
                                            RTI-Measured Concentration
 **Status Codes:
   A = Audit in progress;
   B = Audit complete;
   C = Audit complete without analysis of audit materials by client.

***Whenever the auditee is known, an alphabetical letter is shown.  Whenever the auditee is unknown or the request
   is for a self-audit, the nane of the agency requesting the audit is shown.
       1977 - Audits 1-8         1982 - Audits 83-86
       1978 - Audits 9-28        1983 - Audits 87-106
       1979 - Audits 29-49       1984 - Audits 107-130
       1980 - Audits 50-75       1985 - Audits 131-159
       1981 - Audits 76-82       1986 - Audits 160-176
                                 1987 - Audits 177-214

-------
                                SECTION  4
                            STABILITY  STUDIES

     An  ideal  calibration  standard or  audit  material  should  be  both
 accurate  and  stable  over its total time  of  usage.   The stabilities  of
 the  compounds  were  studied  through periodic reanalyses of the  cylinder
 contents.   In this  project, the  cylinder gas  mixtures  are initially
 analyzed  upon receipt  from  the  specialty  gas  vendor  to  assess the
 vendor's  analysis.  The  gas  mixtures  are again analyzed at 1 month,  at
 2 months,  and  at  one year following the  initial  analysis to determine
 the  stability  of  the gas mixtures.  In  some  cases,  analyses  are not
 performed  on the  dates  specified above; however, every attempt is  made
 to acquire the data on this  schedule.   Some  cylinders  have also  been
 analyzed  yearly after  completion of the  new cylinder  stability  study,
 providing  additional data for estimating  stability.
     As the number of analyses per  cylinder increases, statistical  sta-
 bility  analyses  will  be performed.   The  results  of  the statistical
 analyses  will  be  presented  in a future  report.   Statistical stability
 analyses  for  ten  (10)  halocarbons and  eight  (8) other  organics  have
 been published in the open literature (1,2).
     Absolute  accuracies of  the  cylinder  analyses have not been  deter-
 mined due  to  the  lack  of NBS  standards above  one ppm for most of the
 organic gas mixtures.  An examination of the data in Attachment 1 shows
 that values for individual  cylinder analyses  usually vary less  than  10
 percent between analyses for 4-8 analyses over 2-6  years.   This  varia-
 tion may   indicate  changes  in  cylinder contents  (i.e.,  instability),
 the  imprecision of the measurement  process,  or both.   Possible  sources
 of experimental error that could result in apparent differences  in  con-
 centrations  include  (1) the  variability  of  the analytical  technique
 used for  analysis, (2) stability of calibration  standards,  and  (3) the
 accuracy  of  independently  producing calibration  standards where NBS-
SRMs  do not exist.  These sources  of  variability contribute  to  the net
uncertainty of the resulting data presented in Attachment 1.   Estimates
                                   31

-------
 of  day-to-day measurement  uncertainty  (repeatability)  for all  compounds
 have  not been  performed.   However, the  measurement  uncertainties  for
 ten halocarbons have been published  (2).   The measurement  uncertainty
 varied  from less than  1  percent to 10  percent depending  on  the  com-
 pound,  and  the  major portion of the  uncertainty was  attributed to  the
 method  of preparation of the calibration  standard.   The  uncertainty for
 the gas chromatographic analysis was  determined to be less than 2  per-
 cent by multiple  injections of the  gas during  same day analysis.
     For the most recent analyses (1987)  shown  in Attachment 1, the  un-
 certainty in the concentration  has been  estimated  based on considera-
 tion  of the uncertainties  of  several  parameters  associated  with  the
 measurement and calibration  procedures.   The  equation  below  was  then
 used to estimate the total uncertainty based  on  the  individual uncer-
 tainties.
              Total Uncertainty =

     Where *
              2 = two standard deviations (95 percent confidence limit)
             ei = individual component error, (percent coefficient of
                  variation)
              n = total number of error components.

     For analyses  involving the use  of  NBS-SRMs as  calibration  stan-
dards, the total uncertainty is estimated to be 3.5 percent; for analy-
ses using  permeation  tube  based calibration  standards  -  5.3  percent;
and for analyses using pressure/dilution  based  calibration standards -
5.6 percent.
                                  32

-------
                                SECTION  5
                        SUMMARY AND  CONCLUSIONS

     Cylinder  gases  of hydrocarbons, halocarbons,  sulfurous,  and oxy-
genated  species  have  been  used   successfully as  audit  materials   to
assess  the relative accuracy  of   gas  chromatographic systems  used   to
measure  source emissions.   Absolute accuracy has  not  been determined
due to  the lack of NBS standards  for most  of  the organic 'gas mixtures
above  1 ppm;  instead  an  estimated  interlaboratory  bias  between the
audit  results   and RTI  results has  been  reported  for  the performance
audits  conducted  during source testing.   This interlaboratory bias has
been generally  less than 15  percent  for both low  and high  concentration
gases (Table 4).
     Of the 45 gaseous compounds  studied or  currently  under  study,   39
have demonstrated  sufficient stability  in  cylinders to  be used further
as audit materials.   Five  compounds (ethylamine, paradichlorobenzene,
cyclohexanone,  1,2-dibromoethylene,  and aniline)  are not recommended  as
audit materials for various  reasons  as  discussed  in Attachment 1.  One
compound (formaldehyde) was ordered but the speciality gas manufacturer
indicated  that  cylinder gases  of  this compound could not  be  prepared.
Detailed statistical  analyses  which separate statistical  deviations
from true concentration changes with time for 18 gaseous compounds have
been published  in  a  journal  publication;  statistical  analyses  for the
remaining compounds will  be presented in a future report.
                                  33

-------
                              REFERENCES

1.   R. K. M. Jayanty, C. Parker, C. E. Decker, W. F. Gutknecht, J. E.
     Knoll and D. J. VonLehmden, "Quality Assurance for Emissions Anal-
     ysis  Systems,"  Environmental  Science  and  Technology,  17_  (6),
     257-263A (1983).
2.   G. B. Howe,  R.  K.  M. Jayanty, A.  V.  Rao, W. F. Gutknecht,  C.  E.
     Decker and D. J. VonLehmden, "Evaluation of Selected Gaseous Halo-
     carbons for Use in Source Test Performance Audits," J. of Air Pol-
     lution Control Association, 33 (9), 823-826 (1983).
                                34

-------
         ATTACHMENT 1
        Stability Data
             as  of
        September 1987
  1.0   BENZENE

  2.0   ETHYLENE

  3.0   PROPYLENE

  4.0   METHANE/ETHANE

  5.0   PROPANE

  6.0   TOLUENE

  7.0   HYDROGEN SULFIDE

  8.0   META-XYLENE

  9.0   METHYL ACETATE

10.0   CHLOROFORM

11.0   CARBONYL SULFIDE

12.0  METHYL MERCAPTAN

13.0   HEXANE

14.0   1,2-DICHLOROETHANE

15.0   CYCLOHEXANE

16.0  METHYL ETHYL KETONE

17.0  METHANOL

18.0   1,2-DICHLOROPROPANE

19.0   TRICHLOROETHYLENE

20.0   1,1-DICHLOROETHYLENE

21.0   1,2-DIBROMOETHYLENE

22.0   PERCHLOROETHYLENE
            35

-------
                      23.0  VINYL CHLORIDE
                      24.0  1,3-BUTADIENE
                      25.0  ACRYLONITRILE
                      26.0  ANILINE
                      27.0  METHYL ISOBUTYL KETONE
                      28.0  CYCLOHEXANONE
                      29.0  PARADICHLOROBENZENE
                      30.0  ETHYLAMINE   '
                      31.0  FORMALDEHYDE
                      32.0  METHYLENE CHLORIDE
                      33.0  CARBON TETRACHLORIDE
                      34.0  FREON 113
                      35.0  METHYL CHLOROFORM
                      36.0  ETHYLENE OXIDE
                      37.0  PROPYLENE OXIDE
                      38.0  ALLYL CHLORIDE
                      39.0  ACROLEIN
                      40.0  CHLOROBENZENE
                      41.0  CARBON DISULFIDE
                      42.0  METHOD 25 GAS MIXTURE
                      43.0  ETHYLENE DIBROMIDE
                      44.0  1,1,2,2-TETRACHLOROETHANE
NOTE:  PPM concentrations shown in Attachment 1 are expressed on a
       mole/mole basis,  except for EPA Method 25 mixture which is on
       a mole carbon/mole basis.
                                   36

-------
                                     1.0  BENZINE STABILITY STUDY
Cylinder No. 1A IB
Cylinder Construction* Al Al
Manufacturer ppm
Concentration
Date
ppn
Day
ppm
Day
ppn
Day
ppn
Day
ppm
BTI Day
Concentration ppm
Day
ppm
Day
-. ppm
Day
PP"
Day
ppm
Day
ppm
Day
ppm
Day
ppn
65.4 324
7/27/77 7/27/77
(79.0) (374)
136 136
(74.0) (337)
156 156
(78.0) (350)
167 167
(80.0) (355)
630 402
(77.9) (331)
** 433
(343)
969
(358)
1274
(348)
1491
(324)
2056
(305)
2438
(319)
3065
(326)
3716
(338)
1C ID
Al Al
200 117
7/27/77 7/27/77
(241) (138)
247 29
(216) (144)
252 157
(215) (134)
381 252
(218) (129)
** 290
(127)
414
(127)
1247
(132)
2438
(121)
3065
(125)
3609
(127)



IE
S
61.0
2/10/78
(62.0)
78
(62.0)
216
(61.0)
385
(65.0)
722
(66.9)
1337
(55.7)
1858
(58.7)
2246
(60.4)
2867
(62.3)
3409
(62.5)



IF
S
71.0
2/10/78
(71.0)
232
(73.0)
385
(75.0)
586
(74.5)
882
(75.7)
1292
(65.7)
2246
(70.0)
2867
(72.0)
3410
(71.3)




1G
S
80.0
2/10/78
(80.0)
78
(81.0)
216
(81.0)
385
(84.0)
504
(85.4)
1292
(74.0)
2246
(78.3)
2867
(80.7)
3410
(81.1)




 Al = Aluninun;  S = Steel; IS = LowPressure Steel.

UJU
 Cylinder  anpty.


 ANALYTICAL CONDITIONS:  Plane ionization detector, .10% OV-101 on Chronosorb WHP colunn at 100
 degrees Celsius.


 CALIBRATION:  An NBS-SIM of benzene in nitrogen is used to calibrate the detector response.
                                            37

-------
                      1.0  BENZENE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



HTI
Concentration








ppm
Date
ppn
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppn
Day
ppm
Day
ppn
Day
ppm
Day
ppm
Day
ppm
Day
ppn
1H
S
100
2/8/78
(101)
65
(102)
206
(98.0)
237
(101)
434
(105)
773
(106)
831
(100)
1294
(92.0)
2380
(96.0)
2925
(99.2)
3412
(101)

11 U
S S
139 232
2/9/78 2/9/78
(139) (229)
49 233
(139) (237)
50 386
(142) (243)
% 557
(139) (225)
127 **
(140)
205
(138)
505
(147)
1293
(128)
1338
(128)
2380
(134)
2868
(137)
3412
(138)
IK
S
265
2/9/78
(264)
49
(261)
50
(268)
69
(254)
84
(269)
**






1L
S
296
2/9/78
(295)
49
(292)
51
(294)
93
(298)
205
(294)
237
(302)
809
(295)
1294
(290)
2379
(285)
2868
(293)
3412
(301)

LM
S
326
2/9/78
(319)
49
(316)
51
(318)
%
(323)
433
(345)
830
(335)
1294'
(320)
2379
(310)
2868
(316)
3412
(332)


IN
S
344
2/9/78
(332)
49
(327)
54
(342)
69
(335)
809
(342)
**






Al = Aluminum; S = Steel; LS = Low Pressure Steel.




Cylinder empty.
                                         38

-------
                              1.0  BENZENE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration




KTI
Concentration
-•





ppm
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppm
Day
ppn
Day
ppn
10
S
389
2/9/78
(387)
64
(369)
205
(396)
809
(3%)
1294
(389)
2247
(376)
2868
(386)
3412
(395)




IP
S
8.04
4/21/78
(8.37)
4
(8.33)
25
(8.20)
26
(8.34)
56
(8.19)
134
(7.81)
434
(8.21)
766
(7.93)
1222
(7.68)
2175
(7.90)
2797
(8.20)
3339
(8.22)
1Q 1R
S S
9.85 9.89
4/21/78 4/21/78
(9.99) (10.0)
5 4
(9.88) (10.1)
25 13
(10.1) (9.73)
332 332
(9.71) (9.77)
** 1018
(9.46)
1270
(9.64)
2797
(9.75)
3339
(9.68)




IS IT
S S
9.93 10.0
4/21/78 4/21/78
(10.0) (10.7)
4 25
(10.1) (10.2)
26 146
(9.80) (9.20)
56 362
(9.50) (9.90)
146 1222
(8.90) (9.56)
628 **
(9.57)
738
(9.45)
**




1U
S
10.9
4/21/78
(11.5)
4
(10.7)
25
(10.8)
332
(10.7)
434
(10.9)
759
(10.2)
1222
(9.69)
2175
(9.90)
2853
(10.2)
3339
(10.4)


  Al = Aluminum; S = Steel; LS = Low Pressure Steel.


**  ,.
  Cylinder empty.
                                           39

-------
                              1.0 BENZENE SIABUnY SUJDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



KTI
Concentration


•'



ppm
Date
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
IV
S
12.2
4/25/78
(12.7)
1
(12.5)
21
(12.3)
109
(12.0)
358
(12.1)
755
(12.0)
1218
(11.7)
2171
(11.9)
2849
(12.2)
3335
(12.3)
1W IX
S S
8.09 11.0
5/19/78 5/4/78
(8.10) (11.2)
105 132
(7.70) (10.2)
287 **
(8.10)
438
(8.20)
784
(8.30)
1194
(7.45)
2147
(7.80)
2769
(7.89)
3311
(8.00)

1Y
S
11.2
5/4/78
(10.9)
132
(9.90)
302
(10.7)
393
(10.8)
2162
(10.3)
2840
(10.6)
3326
(1016)



12 1M
S S
8.09 9.14
5/4/78 5/4/78
(8.20) (9.10)
132 132
(7.04) (7.80)
302 302
(7.70) (8.50)
473 1005
(7.54) (8.17)
** 1209
(8.42)
2162
(8.40)
2784
(8.72)
3326
(8.88)


1AB
S
270
7/27/77
(300)
29
(319)
157
(312).
2056
(305)
**





 *A1 = Alumintm;  S = Steel; 13 » Low Pressure Steel.
**CyliiKier empty.
                                          40

-------
                              2.0  EIHENE (ETHYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


KTI
Concentration




ppn
Date
•ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
2A
Al
2920
2/23/78
(3070)
49
(3120)
198
(2880)
809
(3200)
2291
(3280)
2856
(3120)
3241
(3080)

26
Al
3000
2/23/78
(3130)
49
(3180)
198
(2940)
809
(3270)
2291
(3350)
2856
(3180)
3241
(3150)

2C
Al
4960
2/23/78
(5210)
48
(5340)
201
(4660)
809
(5380)
2291
(5520)
2856
(5310)
3241
(5240)

2D
Al
4970
2/23/78
(5200)
48
(5280)
201
(4910)
809
(5340)
2291
(5480)
2856
(5270)
3241
(5220)

2E
Al
19900
2/24/78
(20400)
48
(20800)
200
(20200)
808
(18900)
2290
(20600)
2855
(20400)
3240
(20600)

2F
Al
19900
2/24/78
(20600)
48
(20800)
200
(20300)
808
(19000)
2290
(20700)
2855
(20600)
3240
(20800)

2G
Al
4.95
4/27/78
(4.70)
29
(4.70)
106
(4.85)
741
(4.62)
1180
(5.12)
2224
(4.50)
2804
(4.72)
3176
(4.82)
*A1 =
 Al = Aluninun; S = Steel; LS = Low Pressure Steel.

 ANALYTICAL CONDITIONS:  Plane ionization detector, Durapak n-octane on Porasil C colunn
 at 30 degrees Celsius.

 CALIBRATION:  An NBS-SFM of propane in nitrogen is used to calibrate the detector response.
                                              41

-------
                     2.0  ETHENE (ETHXLENE) STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


KTI
Concentration





ppn
Date
ppm
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppm
Day
ppn
Day
ppn
Day
ppn
2H
Al
10.0
4/27/78
(9.70)
29
(9.60)
106
(9.90)
740
(8.40)
1180
(10.0)
2224
(9.50)
2587
(9.54)
2804
(9.76)
3176
(9.81)
21
Al
15.0
4/28/78
(14.4)
28
(14.4)
104
(14.9)
739
(18.0)
1179
(14.4)
2223
(14.2)
2803
(14.5)
3177
(14.6)

2J
Al
19.9
4/28/78
(19.2)
28
(19.3)
104
(20.3)
739
(21.5)
1179
(18.9)
222?
(18.9)
**


2K
Al
300
4/28/78
(306)
33
(319)
105
(312)
728
(300)
2223
(291)
2793
(290)
3177
(293)


2L
Al
448
4/28/78
(468)
33
(493)
104
(473)
740
(457)
2225
(435)
2793
(437)
3177
(439)


2M
Al
603
4/28/78
(629)
34
(646)
104
(636)
740
(606)
2225
(583)
2793
(590)
3177
(587)


2N
Al
701
4/28/78
(740)
34
(749)
•104
(737)
740
(703)
2225
(678)
2793
(684)
3177
(683)


  Al = Aluminum; S = Steel;  LS = Low Pressure Steel.
**Cylinder empty.
                                             42

-------
                                3.0  PROPENE (PROPYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


RTI
Concentration





ppn
Date
ppn
Day
ppn
Day
ppn
Cay
ppn
Day
ppn
Day
ppn
Day-.
ppn
Day
ppn
Day
ppn
3A
Al
4.94
4/27/78
(4.86)
26
(4.94)
27
(4.78)
104
(4.98)
749
(4.93)
2229
(4.80)
2601
(4.75)
2804
(4.78)
3178
(4.88)
3B
Al
9.91
4/27/78
(9.83)
26
(9.85)
104
(10.3)
749
(9.76)
1250
(9.63)
2229
(9.80)
2804
(9.81)


3C
Al
14.8
4/27/78
(14.6)
26
(14.5)
104
(14.8)
749
(14.8)
**




3D
Al
20.0
4/27/78
(19.8)
27
(19.0)
104
(20.0)
749
(20.3)
2229
(19.7)
2804
(19.8)
3178
(19.8)


3E
Al
298
4/27/78
(2%)
27
(286)
104
(317)
750
(324)
820
(328)
**



3F
Al
446
4/27/78
(442)
27
(428)
105
(474)
750
(479)
2229
(444)
2794
(449)
3178 '
(441)


33
Al
585
4/27/78
(577)
27
(560)
104
(629)
750
(620)
2229
(579)
2794
(589)
3178
(578)


3H
Al
683
4/27/78
(672)
27
(655)
105
(729)
750
(721)
820
(725)
2229
(676)
2794
(688)
3178
(674)

  Al = Aluminum; S = Steel; IS = Low Pressure Steel.
**fcylinder snpty.

  ANALYTICAL CONDITIONS:  Flame ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees
  Celsius

  CALIBRATION:  An NBS-SRM of propane in nitrogen is used to calibrate the detector response.
                                                 43

-------
                                  4.0  METHANE/ETHANE STABILITY  SUJDY
Cylinder No.
Cylinder Construct ion*
Audit Material**
Manufacturer
Concentration


RTI
Concentration






pom
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
4A
Al
M
6000
7/21/78
(6210)
264
(5980)
662
(6580)
2145
(6460)
2722
(6525)
3097
(6440)



E
714
7/21/78
(773)
163
(715)
264
(684)
662
(703)
2145
(730)
2722
(746)
3097
(751)

4B
Al
M
8130
7/21/78
(8130)
35
(7550)
264
(7820)
662
(8590)
2145
(8430)
2722
(8553)
3097
(8410)


E
597
7/21/78
(654)
35
(663)
163
(606)
264
(577)
662
(598)
2145
(619)
2722
(632)
3097
(628)
4C
Al
M
1000
7/21/77
(1020)
264
(983)
1027
(1290)
2510
(1068)
3087
(1059)
3097
(1050)



E
295
7/21/77
(315)
163
(292)
264
(283)
1027
(284)
2510
(300)
3087
(300)
3097
(2%)

4D
Al
M
1670
7/21/77
(1710)
35
(1560)
264
(1640)
1027
(1950)
2510
(1770)
3087
(1755)



E
202
7/21/77
(220)
29
(218) .
157
(202)
258
(195)
1027
(206)
2510
(207)
3087
(207)

  Al = Aluminun; S = Steel; IS = Low Pressure Steel.

**M = Methane; E =» Ethane.

  ANALYTICAL CONDITIONS:  Flane ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees
  Celsius.

  CALIBRATION:  An NBS-SFM of propane in nitrogen is used to calibrate the detector response.
                                                  44

-------
                                         5.0  PROPANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



'
RTI
Concentration






ppn
Date
ppm
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
5A
Al
5.01
4/25/78
(4.90)
24
(4.90)
108
(5.10)
605
(4.89)
729
(5.20)
**






5B
Al
10.0
4/25/78
(9.70)
24
(9.80)
108
(10.1)
513
(10.6)
752
(10.0)
914
(10.0)
2220
(10.9)
2851
(10.1)
3184
(10.1)



5C
Al
14.6
4/25/78
(14.3)
25
(14.5)
108
(14.9)
582
(15.0)
736
(14.7)
2220
(14.8)
2589
(14.8)
2806
(14.6)
3179
(14.8)



5D
Al
20.0
4/25/78
(19.5)
25
(19.8)
108
(20.3)
582
(20.8)
736
(20.1)
1252
(19.7)
2220
(20.0)
2806
(20.0)
3179
(20.2)



5E
Al
303
4/26/78
(304)
24
(301)
107
(305)
530
(316)
581
(316)
735
(313)
752
(314)
913
(309)
1251
(2%)
2219
(308)
2795
(308)
3178
(308)
5F
Al
439
4/26/78
(441)
24
(436)
107
(440)
530
(450)
581
(453)
728
(472)
**





5G
Al
604
4/26/78
(615)
27
(615)
107
(607)
604
(613)
735
(628)
2218
(607)
2795
(617)
3179
(612)




5H
Al
708
4/27/78
(730)
26
(723)
106
(710)
603
(718)
734
(734)
2218
(715)
2794
(717)
3178
(713)




 *A1 = Aluminum; S = Steel; LS = Low Pressure Steel.

**Cylinder empty.


  ANALYTICAL CONDITIONS:  Flame ionization detector, Durapak n-octane on Porasil C column at 30 degrees
  Celsius.


  CALIBRATION:  An NBS-SEM of propane in nitrogen is used to calibrate the detector response.
                                                  45

-------
              5.0  PROPANE  STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration

RTI
Concentration



ppm
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
51
Al
1000
3/3/83
(1027)
452
(1070)
734
(1006)
1022
(1040)
1407
(1020)
5J
Al
2000
3/3/83
(2100)
452
(2180)
734
(2052)
1022
(2060)
1407
(2050)
5K
Al
10,000
3/3/83
(11800)
452
(13000)
734
(13021)
1022
(12500)
1407
(12600)
5L
Al
20,000
3/3/83
(20700)
452
(21000)
• 734
(21302)
1022
(21300)
1407
(21200)
*,.
 Al = Aluminum; S = Steel; LS = Low Pressure Steel.
                               46

-------
                                 6.0  TOLUENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


RTI
Concentration



ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
6A
LS
408
12/6/78
(405)
3
(405)
86
(394)
100
(393)
**


6B
LS
606
12/6/78
(585)
3
(579)
86
(577)
358
(615)
2079
(663)***
2338
(603)
2632
(618)
6C
S
16.2
10/3/78
(17.3)
48
(14.9)
365
(15.0)
1373
(14.8)
**


6D
S
9.11
10/3/78
(9.62)
64
(8.50)
66
(8.60)
160
(8.20)
**


6E
S
9.00
3/29/83
(8.51)
744
(8.04)
1063
. (9.07)
1548
(9.37)



6F
S
430
7/1/80
(430)
861
(347)
1115
. (338)
1505
(427)***
1765
(351)
2059
(368)
**
   Al = Aluninun; S « Steel; LS a Low Pressure Steel.

   (Cylinder anpty.
Trlrlr
HAH
   Questionable value.

   ANALYTICAL CONDITIONS:  Flane ionization detector, Porasil C colunn at 200 degrees Celsius.

  . CALIBRATION:  A pressure-dilution technique is utilized for generation of a series of standards
   fron reagent grade toluene.
                                          47

-------
                                6.0  TOLUENE STABILITY STUDY (Continued)
^Cylinder No.
Cylinder Construction*
Manufacturer
Concentration

RTI
Concentration


ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppa
6G
Al
18.2
7/27/83
(16.1)
383
(19.1)***
**

6H
Al
9.0
7/1/80
(8.50)
1505
(9.40)
2064
(8.15)
2549
(8.72)
61
Al
10.3
12/11/84
(9.27)
192
(8.70)
440
(10.2)
926
(9.80)
6J
Al
21.7
12/11/84
(20.3)
121
(18.9)
440
(21.6)
926
(21.0)
6K
LS
1%
12/11/84
(183)
141
(184)
436
(195)
926
(180)
6L
LS
310
12/11/84
(290)
141
(281)
436
(303)
1021
(335)
  Al = Aluninum; S = Steel; LS = Low Pressure Steel.




**Cylinder enpty.




 ^Questionable value.
                                           48

-------
                                    7.0  HYDROGEN SULFLDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



RTI
Concentration







ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
7A
Al
399
10/1/78
(371)
38
(424)
111
(414)
1030
(437)
2270
(444)
2446
(401)
2795
(395)
3047
(411)



7B
Al
9.15
7/7/78
(9.73)
87
(6.72)
124
(7.11)
197
(6.36)
6%
(6.23)
1116
(8.32)
2399
(8.00)
2424
(6.60)
2545
(6.00)
2848
(5.75)
3118
(6.44)
7C
Al
16.7
10/1/78
(16.1)
38
(16.5)
111
(15.7)
580
(16.2)
1030
(17.5)
2270
(14.5)
2300
(15.3)
2446
(15.6)
2762
(16.0)
3298
(14.0)

7D 7E
Al Al
649 6.95
10/1/78 10/1/78
(641) (7.05)
38 87
(655) (5.75)
111 124
(690) (5.62)
1030 197
(647) (5.23)
6%
** (5.14)
1116
(5.38)
2325
(4.6)
2446
(4.4)
2762
(3.88)
3032
(4.28)

7F
Al
6.45
10/1/78
(4.94)
38
(5.14)
111
(4.81)
580
(4.35)
1030
(3.71)
2325
(4.3)
2446
(4.1)
2762
(3.03)
3032
(3.56)


7G
Al
671
3/2/83
(628)
687
(683)
833
(654)
1182
(737)
1436
(715)






  Al = Aluninun; S = Steel; LS = Low Pressure Steel.

**Cylinder empty.


  ANALYTICAL CONDITIONS:  Plane photometric detector, Chronosil 330 coluroi at 50 degrees Celsius.

  CALIBRATION:  A pressure-dilution technique is utilized for generation of a series of standards  from pure
  hydrogen sulfide.  A penneation tube is used for generation of calibration mixtures for lower level «100
  ppn) cylinder analyses.

  ANALYTICAL PROBLEMS:   Only a Teflon® column and Teflon® sanple loop should be used.  The air-to-hydrogen
  ratio is critical to  the sensitivity of the FPD.


                                               49

-------
                              7.0  HXDRCGEN SULFIDE STABILITY SIUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration







ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
7H
Al
20.77
1/17/85
(17.7)
25
(20.6)
146
(21.0)
462
(21.2)
734
(20.1)
71
Al
29.27
1/17/85
(22.6)
25
(30.4)
146
(30.5)
462
(29.0)
734
(30.2)
7J
Al
39.14
1/17/85
(31.6)
25
(42.4)
146
(40.5)
462
(39.8)
**
7K
Al
97.31
1/17/85
(83.7)
146
(92.1)
495
(97.8)
746
(101)

7L
Al
206.3
1/16/85
(200)
147
(210)
4%
(198)
758
(200)

7M
Al
323.2
1/16/85
(291)
147
(320)
496
(306)
758
(324)

7N
Al
417
1/16/85
(398)
147
(415)
4%
(420)
750
(424)

70
Al
503.2
1/16/85
(489)
147
(514^
496
(537)
750
(538)

*A1 = Aluninun; S = Steel; LS = Low Pressure Steel.




 Cylinder empty.
                                                50

-------
                         8.0  1,3-DlMETfflIBENZENE (M-XYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


RTI
Concentration


ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn

SA
is
405
10/5/78
(480)
63
(445)
158 .
(425)
412
(487)
606
(507)
**
8B
LS
613
10/5/78
(720)
63
(676)
158
(656)
606
(760)
2140
(598)
**
8C
S
17.3
10/5/78
(16.6)
63
(17.2)
166
(20.8)
302
(16.4)
1036
(19.0)
**
8D
S
7.33
10/5/78
(6.20)
63
(6.81)
166
(6.82)
1036
(5.66)
2694
(4.39)

8E
15
601.0
6/7/85
(5%)
257
(552)
749
(438)


8F 8G
LS Al
351.4 12.1
6/7/85 6/7/85
(362) (11.5)
257 257
(344) (11.1)
749 749
(328) (10.1)


  Al = Aluninuir;- S = Steel; LS = Low Pressure Steel.
**Cylinder anpty.


  CALIBRATION:  A pressure-dilution technique is used for generation of a series of  standards  fron
  reagent grade nrxylene.

  ANALYTICAL CONDITIONS:   Plane ionization detector,  Porasil C column  at  250 degrees Celsius.
                                          51

-------
        9.0  METHXL ESTER ACETIC ACID (METHXL ACETATE) STABILITY  STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



FTI
Concentration




ppn
Date
ppn
Day
ppn
• Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
9A
S
326
10/13/78
(271)
230
(340)
286
(324)
629
(348)
2442
(336)
2742
(320)
3183
(310)
9B
S
455
10/13/78
(428)
230
(437)
286
(442)
629
(479)
2442
(470)
2742
(437).
3268
(462)
9C
S
6.84
10/13/78
(5.29)
230
(4.86)
286
(5.02)
630
(5.88)
2442
(5.32)
2742
(5.89)
3183
(5.36)
9D
S
17.2
10/13/78
(12.9)**
230
(12.5)**
286
(11.8)**
630
(12.5)**
2442
(17.2)
2742
(16.5)
3183
(15.4)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.

Questionable value.

ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101 on Chronosorb WHP
colum at 125 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized  for generation of a
series of standards firm reagent grade methyl  acetate.
                                    52

-------
                      10.0  TOICHLDBCMETHANE (CHLOHOEOFM)  STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppm
Concentration
Date
ppn
Day
ppn
Day
KTI ppn
Concentration
Day
ppn
Day
ppn
Day
ppn
Day
ppn
10A
S
520
10/17/78
(529)
161
(515)
256
(514)
553
(531)
**


10B
S
348
10/17/78
(345)
161
(351)
256
(340)
975
(325)
2422
(333)
2S42
(326)
3176
(344)
IOC
S
8.70
10/17/78
(8.08)
161
(7.39)
256
(7.50)
553
(8.11)
2422
(4.26)
2642
(4.52)
3176
(4.76)
1QD 10E
S Al
16.9 9.81
10/17/78 1/10/86
(17.6) (8.92)
161 534
(16.5) (9.45)
256
(16.2)
553
(16.5)
2422
(14.9)
2642
(15.0)
3176
(14.9)
10F
Al
22.0
1/10/86
(21.1)
534
(21.8)




Al = Aluninun; S = Steel; IS = Low Pressure Steel.

Cylinder empty.

ANALYTICAL CONDITIONS:  Flane ionization detector,  Porasil C column at 150 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized for generation of a series of standards
froa reagent grade chloroform.
                                            53

-------
                            11.0  CARBONYL SULFIDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration

RTI
Concentration


ppm
Date
ppm
Day
ppn
Day
ppm

11A
S
251
11/3/78
(276)
78
(281)
185
(275)
**
11B
S
100
11/3/78
(109)
78
(111)
185
(95.0)
**
11C
S
9.96
11/3/78
(9.10)
78
(8.66)
185
(8.23)
**
11D
S
7.03
11/3/78
(6.81)
78
(6.48)
185
(6.41)
**
11E
AL
9.54
9/18/81
(12.9)
35
(12.5)
222
(9.08)
**
11F
AL
101
9/18/81
(111)
35
(117)
**

 *A1 = Aluminum; S = Steel; LS = Low Pressure Steel.

**Cylinder anpty.

  ANALYTICAL CONDITIONS:  Plane photometric detector, Carbopack B colunn at 50 degrees Celsius or
  Chranosil 330 column at 60 degrees Celsius.

  CALIBRATION:  A pressure-dilution technique is used for generation of a series of standards from
  pure carbonyl sulfide.

  ANALYTICAL PROBLEMS:  Only a Teflon® colunn and Teflon® sanple loop should be used.  The
  air-to-hydrogen ratio is critical to the sensitivity of the FPD.
                                                   54

-------
                     11.0  CARBONXL SULFIDE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration






ppn

Date
ppn
Day
ppn
Day
ppn
Day
ppn
11G
Al
99.2

1/11/85
(101)
150
(96.5)
517
(105)
**

11H
Al
225

1/11/85
(228)
150
(199)
517
(205)
985
(206)
111
Al
414

1/11/85
(423)
150
(404)
• 517
(420)
985
(472)
11J
Al
10.71

1/11/85
(9.3)
150
(10.0)
517
(11.7)
985
(12.1)
11K
Al
101

1/11/85
(99.0)
150
(98.0)
517
(105)


 *A1 = Aluninum; S = Steel; LS = Low Pressure Steel.
*'tylinder anpty.
                                          55

-------
           12.0 MEHHANEIHIOL (METHYL MERCAPTAN)  STABILITY SHOW
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


KTI
Concentration





ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
1ZA
Al
8.03
1/24/79
(5.66)
104
(5.60)
139
(5.65)
985
(5.40)
2194
(5.45)
2331
(4.70)
2690
(5.70)
2938
(4.78)
12B
Al
10.0
1/24/79
(7.%)
104
(8.10)
139
(7.90)
985
(8.42)
2194
(8.00)
2331
(8.00)
2690
(9.84)
2938
(9.21)
12C
Al
3.55
1/24/79
(3.65)
104
(3.50)
139
(3.56)
985
(3.64)
2194
(3.80)
2331
(3.40)
2690
(3.73)
2938
(3.75)
12D
Al
4.22
1/24/79
(4.23)
104
(4.76)
139
(4.54)
**




*A1 =» Aluminum; S = Steel;  LS = Low Pressure Steel.

 Cylinder anpty.

 ANALYTICAL CONDITIONS:  Plane photometric detector, Chronosil 330 column at
 60 degrees Celsius.

 CALIBRATION:  A permeation tube is used for generation of calibration mix-
 tures.

 ANALYTICAL PKOBLEMS:  Only a Teflon® colunn and Teflon® sampling loop should
 be used.  The air-to-hydrogen ratio is critical to the sensitivity of the
 FPD.
                                  56

-------
                                13.0  HEXANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
. Concentration



KTI
Concentration





ppn
Date
ppn
Day
ppm
Day
ppn
Day
ppa
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
ISA
IS
1975
2/6/79
(2170)
6
(1980)
337
(2070)
469
(1990)
1886
(1990)
2586
(2139)
**


13B
LS
2973
2/6/79
(3070)
6
(2860)
338
(2950)
469
(3080)
1886
(2980)
**



13C
Al
30.6
2/6/79
(30.8)
296
(30.1).
337
(30.6)
469
(32.0)
523
(30.0)
835
(30.2)
1886
(32.8)
2586
(34.8)
3066
(29.2)
13D
Al
79.2
2/6/79
(82.2)
296
(81.0)
337
(81.3)
469
(79.8)
835
(80.2)
1247
(82.7)
**


13E
Al
80.0
3/25/83
(83.2)
376
(88.2)
1117
(92.1)
1558
(84.6)





  Al = Aluninun; S = Steel; LS = Low Pressure Steel.


**Cylinder eaipty.

  ANALYTICAL (DNDITIONS:  Plane ionization detector, Porasil C colunn-at 150 degrees Celsius.

  CALIBRATION:  A pressure-dilution technique is utilized for making a series of standards
  fron reagent grade hexane.
                                            57

-------
                              14.0  1,2H)ICHLORCETHANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppn
Concentration
Date
ppa
Day
ppn
Day
ppn
Day
BTI ppn
Concentration
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
14A
Al
14.4
1/19/79
(14.1)
58
(15.2)
155
(14.9)
811
(14.2)
835
(13.5)
1964
(13.9)
2333
(14.1)
2546
(13.6)
3083
(14.4)

14B
Al
9.64
1/19/79
(9.20)
58
(10.8)
155
(10.0)
811
(9.56)
835
(9.19)
1964
(9.68)
2333
(9.30)
2546
(8.65)
3083
(9.75)

14C
Al
100
1/19/79
(96.2)
58
(103)
155
(98.2)
501
(87.3)
920
(102)
1964
(94.9)
2333
(96.7)
2546
(97.5)
3083
(97.0)

14D
Al
526
1/19/79
(498)
58
(534)
155
(524)
14E
Al
6.92
4/5/79
(10.0)
30
(9.42)
69
(9.30)
501 586
(592)*** (9.14)
920 811
(502) (9.70)
1964
(477)
2333
(496)
2546
(490)
**

835
(9.16)
2247
(9.32)
2470
(8.85)
3007
(9.91)

14F
Al
12.5
4/5/79
'(15.2)
30
(14.7)
69
(14.3)
811
•(14.5)
835
(13.8)
1888
(13.9)
2247
(14.3)
2470
(13.8)
3007
(14.6)

14G
Al
97.9
4/5/79
(102)
30
(105)
69
(99.0)
425
(87.3)
844
(101)
1888
(92.4)
2247
(96.0)
2470
(97.2)
3007
(95.8)

14H
Al
439
4/5/79
(463)
30
(451)
69
(462)
589
(432)
697
(451)
844
(453)
1888
(416)
2247
(427)
2470
(422)
3007
(424)
   Al = Alunirun: S = Steel; 15 = Low Pressure Steel.

   Cylinder anpty.

***Questionable value

   ANALYTICAL CONDITIONS:  Plane ionization detector, Porasil C colunn of 225 degrees Celsius.

   CALIBRATION:  A pressure-dilution technique is utilized for making a series of standards frcm reagent
   grade 1,2-dichloroethane.
                                             58

-------
                  15.0  CYCLQHEXANE SX&BILnY STUDY
     Cylinder No.                    ISA
 Cylinder Construction*               Al
 Manufacturer     ppn                99.1
Concentration
                  Date             3/19/79
                  ppn               (106)

                  Day               147
                  ppn                (93.4)

     KTI          Day               394
Concentration     ppn                (99.0)

                  Day               926
                  ppn               (102)

                  Day              1966
                  ppn                (95.9)

                  Day              2559
                  ppn                (100)

                  Day              3025
                  ppn                (100)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Plane ionization detector, Porasil C column
at 125 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is used for making a
series of standards from reagent grade cyclohexane.
                                  59

-------
       16.0  2-HJEANONE (METHYL ETHYL KETONE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


BTI
Concentration



ppn
Date
ppn
Day
ppn
Day
ppn
Day
PP31
Day
ppn
Day
ppn
Day
ppn
16A 16B
S
43.7 5.00
5/23/79 7/1/87
(42.3) (5.19)
28
(40.0)
58
(39.9)
380
(44.5)
653
(38.7)
1847
(40.4)
2520
(45.0)
16C 16D
30.0 15.1
7/1/87 7/1/87
(29.5) (16.0)





Al = Aluminum; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101 on
Ghronosorb WHP colum at 150 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized for making
a series of standards fron reagent grade methyl  ethyl ketone.
                                    60

-------
          17.0  ME1HANQL STABILITY STUDY
     Cylinder No.     '                17A
 Cylinder Construction*                Al
 Manufacturer     ppm                  50.0
Concentration
                  Date              5/17/79
                  ppm                (58.8)

                  Day                21
                  ppm                (52.3)

                  Day                51
     RTI          ppm                (51.1)
Concentration
                  Day               196
                  ppm                (55.2)

                  Day              2020
                  ppm                (48.8)

                  Day              2224
                  pprn                (45.8)

                  Day              2660
                  ppm                (56.8)
 Al = Aluminum; S = Steel; LS = Low Pressure Steel.

 ANALYTICAL CONDITIONS:   Flare ionization detector,
 Chrcraosorb 101 colunn at 50 degrees Celsius or 0.2%
 Carbowax 1500 plus 0.1% SP-2100 on Carbowax C at 60
 degrees Celsius.

 CALIBRATION:   A pressure-dilution technique is
 utilized for  making a series of standards from
 reagent grade raethanol.
                         61

-------
      18.0   1,2-DKHLCSOPRDPANE  (PROPYLENE DICHLORIDE) STABILTIY STUD?
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



RTI
Concentration





ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
ISA
Al
7.07
7/10/79
(6.06)
28
(5.52)
48
(5.94)
497
(6.03)
749
(5.59)
1793
(3.12)
1845
(3.86)
2155
(3.49)
2387
(3.25)
2914
(4.11)
18B
Al
14.6
7/10/79
(15.6)
28
(16.4)
43
(15.0)
749
(16.3)
1793
(12.1)
1845
(13.2)
2155
(13.3)
2387
(12.9)
2914
(14.4)

18C
Al
476
7/10/79
(496)
28
(455)
48
(480)
372
(497)
1793
(402)
1845
(424)
2155
(441)
2387
(429)
2914
(451)

18D
Al
664
7/10/79
' (685)
28
(621)
48
(675)
372
(685)
1793
(557)
1845
(574)
2155
(594)
2387
(576)
2914
(630)

Al = Aluninun; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101 on Chronosorb WHP
colunn at 150 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized for making a series of
standards fron reagent grade 1,2-dichloropropane.
                                       62

-------
            19.0  TRICHLOROEDENE (mCHLOBOETHYIENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration





KTI
Concentration










ppn

Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
19A
Al
9.23

5/24/79
(9.58)
77
(10.2)
92
(9.78)
683
(9.03)
820
(8.91)
1853
(9.40)
2493
(10.2)
2961
(10.5)
19B
Al
14.7

5/24/79
(14.3)
77
(15.1)
92
(14.9)
683
(13.6)
820
(13.5)
1853
(14.0)
2493
(15.5)
2961
(15.2)
19C
Al
100

5/24/79
(102)
77
(103)
92
(100)
810
(105)
820
(94.6)
1853
(105)
2493
(101)
3045
(98.8)
19D
Al
505

5/24/79
(506)
77
(503)
92
(499)
810
(522)
820
(490)
1853
(523)
2493
(494)
2961
(502)
 Al = Aluminum; S - Steel; 15 = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Plane ionization detector, 10% OV-101 on Chronosorb WHP
colunn at 150 degrees Celsius.

CALIBRATION:  A pressure-^dilution technique is used  for making a series of
standards fron reagent grade trichloroethylene.
                                    63

-------
      20.0  1,1-DICHLORDETHXLENE (VDTCLIDENE CHLORIDE) STABILITY  STUDY
Cylinder
No.
Cylinder Construction*
Manufacturer
Concentration






KTI
Concentration




-





ppn

Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
20A
Al
9.58

en/79
(10.3)
35
(9.90)
62
(10.1)
404
(11.5)**
818
(9.00)
1831
(9.00)
2190
(8.78)
2490
(9.87)
2957
(11.1)
20B
Al
14.8

6/1/79
(15.6)
35
(15.1)
62
(15.5)
404
(17.1)**
818
(14.2)
1831
(13.2)
2190
. (14.1)
2490
(15.2)
2957
(17.2)
20C
Al
96.8

6/1/79
(101)
35
(99.0)
62
(102)
817
(94.0)
1831
(98.4)
2190
(94.7)
2490
(97.4)
2957
(108)


20D
Al
490

6/1/79
(524)
35
(510)
62
(505)
404
(498)
1831
(488)
2190
(479)
2490
(478)
2957
(553)


Al = Aluninun; S = Steel; LS = Low Pressure Steel.

Questionable value.

ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101 on Chronosorb WHP
colunn at 80 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized  for making  a series of
standards fron reagent grade 1,1-dichloroethene.
                                      64

-------
                    21.0  1,2-€>IBHM}EIHXLENE STABILHY STUDY
Cylinder ND.
Cylinder Construction*
Manufacturer
Concentration

BTI
Concentration


ppm
Date
ppm
Day
ppm
Day
ppn
Day
ppm

21A
LS
10.0
6/18/79
(7.90)
61
(7.80)
89
(7.40)
722
(7.72)
**
2 IB
LS
14.9
6/18/79
(12.2)
61
(12.0)
89
(11.6)
772
(8.02)
**
21C
LS
99.9
en/79
(110)
61
(107)
89
(105)
787
(99.2)
**
21D
LS
301
6/18/79
(265)
. • 61
(266)
89
(257)
643
(309)
**
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.

 Cylinders returned due to partial conversion to an unknown compound.

 ANALYTICAL CONDITIONS:  Flame ionization detector, 10% OV-101 on Chromosorb WHP
 coluon at 100 degrees Celsius.

 CALIBRATION:  Reagent grade "1,2-Dibranoethylene" pure liquid is used as a
 standard.  Pressure-dilution technique is utilized for making series of
 standards for calibration.

 ANALYTICAL PROBLEMS:  The gas mixtures and the calibration standards contain
 substantial amounts of both the cis and the trans isomers of
 1,2-Dibranoethylene.  The first three sets ol: analyses are questionable because
 only one isomer was measured during the calibrations and cylinder analyses.
 During the GC analyses on Day 1864, it was found that dibromoethylene partially
 converted to an unknown compound.  Hence, dibromoethylene is not practical as an
 audit material.
                                        65

-------
         22.0  TETRAfflLOROEIHENE (PEHCHLOROETHnENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration



RTI
Concentration





ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
22A
S
7.98
7/6/79
(8.40)
35
(7.97)
52
(7.92)
376
(7.94)
1818
(6.88)
2162
(6.88)
2440
(7.83)
2901
(7.68)

22B
S
13.0
7/6/79
(15.0)
35
(14.9)
52
(14.7)
376
(14.5)
1818
(13.7)
2162
(13.3)
2440
(13.5)
2901
(14.5)

22C
LS
487
7/6/79
(419)
35
(453)
52
(440)
677
(361)
713
(387)
1818
(349)
2162
(353)
2450
(357)
2901
(372)
22D
LS
629
7/6/79
' ' (624)
35
(642)
52
(619)
677
(542)
713
(571)
1818
(557)
2162
(564)
2450
(551)
2901
(607)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Flame ionization detector,  10% OV-101 on Chronosorb
WHP column at 150 degrees Celsius.

CALIBRATION:  An NBS-SBM of perchloroethylene in nitrogen is used to calibrate
the detector response.
                                       66

-------
                              23.0  CHLOHDETHENE (VINYL CHLORIDE) STABILnY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration

KTI
Concentration



ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
23A
S
5.%
10/1/79
(5.87)
18
(5.74)
700
(6.60)
1812
(6.10)
2524
(6.09)
2914
(5.62)
23B 23C
S S

8.00 8.03
10/1/79 10/1/79
(7.71) (7.82)
18 18
(7.50) (7.45)
** 700
(8.44)
1812
(8.
2524
(8.
2914
(7.
10)
05)
54)
23D
S

8.52
10/1/79
(7.85)
18
(7.
700
(8.
1812
(8.
2524
(8.
2914
(7.
,61)
41)
15)
13)
60)
23E
S
20.0
10/1/79
(19.7)
18
(19.1)
700
(20.7)
1812
(20.3)
2524
(20.4)
2914
(18.6)
23F
S
20.1
10/1/79
(20.1)
18
(19.3)
700
(20.9)
1812
(20.6)
2524
(20.6)
2914
(19.8)
23G
S
30.0
10/1/79
(29.6)
18
(28.3)
700
(29.4)
1812
(30.3)
2524
(30.3)
2914
(28.6)
23H
S
30.3
10/1/79
(29.8)
18
(28.7)
700
(29.4)
1812
(30.6)
2524
(31.1)
2914
(28.9)
231
S
7.98
10/1/79
(7.31)
18
(7.12)
700
(8.39)
1812
(7.75)

2914
(7.18)
  Al = Aluminum; S = Steel;  LS = Low Pressure Steel.

**Cylinder empty.

 ANALYTICAL CONDITIONS:   Plane kmization detector, 10% OV-101 on Chronosorb WHP column at 90 degrees Celsius.

 CALIBRATION:  A pressure-dilution  technique is used for generation of a series of standards  from pure vinyl
 chloride.
                                                    67

-------
                  24.0  1,3-BUEADIENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration

KTI
Concentration


ppn
Date
ppn
Date
ppn
Day
ppn
Day
ppn

24A 24B
S Al
22.6 52.8
3/21/80 2/12/86
(20.9) (52.9)
95 511
(23.1) (53.4)
430
(24.0)
1718
(22.9)
**
24C 24D
Al Al
31.9 13.3
2/12/86 2/12/86
(32.3) (13.4)
511
(32.6)


 *A1 = Aluminum; S a Steel; LS = Low Pressure Steel.

**Cyiinder anpty.

  ANALYTICAL CONDITIONS:  Plane ionization detector, 10% OV-101 on
  Chrcmosorb WHP column at 90 degrees Celsius.

  CALTBRATIDN:  A pressure^dilution technique is utilized for making a
  series of standards from pure 1,3-butadiene.
                                      68

-------
                        25.0  2-PRDPENENITRI1E  (AOKLCOTTRILE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppn
Concentration
Date
ppn
Day
ppn
FTI Day
Concentration ppn
Day
ppn
Day
ppn
25A
LS
20.1
7/24/79
(14.6)
185
(12.7)
349
(13.2)
841
(9.%)
**
• 25B
LS
348
7/24/79
(411)
185
(416)
349
(441)
841
(397)
**
25C
LS
11.7
7/24/79
(6.38)
185
(3.35)
349
(2.87)
841
(4.05)
**
25D
LS
638
7/24/79
(678)
185
(699)
349
(703)
841
(667)
**
25E
AL
400
11/8/82
(413)
134
(410)
787
(421)
1172
(424)
1786
(384)
25F .25G
AL Al
10.0 18.0
11/18/82 1/23/86
(10.8) (15.0)
139 532
(11.7) (15.7)
787
(10.8)
1162
(9.14)
1704
(9.87)
25H
Al
22.3
1/23/86
(20.2)
532
(20.2)





Al = Aluninun; S = Steel; LS= Low Pressure Steel.


Cylinder anpty.

ANALYTICAL CONDITIONS:  Plane ionization detector,  Porapak Q colunn at  225 degrees  Celsius.

CALIBRATION:  A pressure-dilution technique is used to make a series of standards from  reagent grade
aerylonitrile.

ANALYTICAL PROBLEMS:    The large changes noted at  the low concentration levels  are,  at least in part,
a result of difficulty in making precise measurements  at  these le/els.
                                               69

-------
                   26.0  ANILINE STABILITY STUDY
     Cylinder No.                26A               26B
 Cylinder Construction*           Al                Al
 Manufacturer     ppm          11.3                18.4
 Concentration
    RTI                        See Analytical Problans
 Analysis
Al = Aluminum; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CCNDrTICNS:  Flare ionization detector, 10% OV-101 on
Chronosorb WHP column at 250 Hpgrpog Celsius.
CALIBRATION:  Reagent grade "Aniline" pure liquid is used as a
standard.  "Glass bulb" dilution technique is utilized for making
series of standards for calibration.

ANALYTICAL PROBLEMS:    Because aniline has an extremely high boil-
ing point (186°C), special handling would be required to measure
this compound.  A completely heated system for sampling in the
vapor phase and for preparing standards would be required.  Temper-
ature-dependent condensation in the cylinder and the regulator
causes the amount of aniline which is delivered by the cylinder to
vary.  As a result, aniline is not considered to be practical as an
audit material.
                                      70

-------
27.0  4-METHH/-2-PENIMICNE (MEEHXL ISOBOTYL KEKNE) gEVRTT.m STUDY
Cylinder No.-
Cylinder Construction*
Manufacturer
Concentration


KH
Ccncentration




ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
27A
Al
9.51
12/18/80
(10.2)
27
(10.6)
83
(9.53)
202
(9.49)
1275
(8.40)
1643
(10.3)
1946
(10.2)
27C
Al
72.9
7/8/81
(75.4)
See Analytical
Problems





  *A1 = Aluminum; S = Steel; IS = Low Pressure Steel.

  ANALCTIiCAL CDNDITICNS:  Flame ionizaticn detector,  0.1% SP-1000
  en Carbcpadc C column at 180 degrees Celsius.

  CRLJBRAXICN:  A pressure-dilution techrque is utilized for making
  a series of standards fron reagent grade methyl isobutyl ketone.
  ANALHTCAL PRDH^e:  Methyl isobutyl ketone at high concentra-
  tions is not practicas as an audit material because pressurizatLon
  of the cylinder above approximately 200 psi results in condensa-
  tion of the analyte.
                                   71

-------
               28.0  CYOJOHEXANONE  STABILITY  STUDY
      Cylinder No.
  Cylinder Construction*
               28A
                Al
                     28B
                      Al
 Manufacturer
Concentration
ppm
              10.1
                    19.0
     BTI
   Analysis
Date
ppn

Day
ppn
12/11/80
  (8.19)

  85
  (3.26)
                                                  12/11/80
                                                    (25.5)
85
(17.1)
                              See Analytical Problems.
Al = Aluminum; S = Steel; LS = Low Pressure Steel.

ANALYTICAL CONDITIONS:  Flame ionization detector, 10% SP-1000 on
Supelcoport column at 200 degrees Celsius.

CALIBRATION:  Reagent grade "Cyclohexanone" liquid is used as a
standard.  Pressure-dilution technique is used for making series
of standards for calibration.

ANALYTICAL PROBLEMS:    The analysis of cyclohexanone gas is de-
pendent on the temperatures of the cylinder and the regulator and
on the length of the sampling line between the regulator and the
gas chromatograph.  The concentration in the cylinder decreases
with time.  Therefore, cyclohexanone is not practical as an audit
material.
                                 72

-------
            29.0  PARADKHJOROBENZENE STABILITY STUD?
      Cylinder No.             29A                   29B
  Cylinder Construction*         S                     S
  Manufacturer     ppm         15.6                 38.1
 Concentration
      RTI                       See Analytical Problems
   Analysis
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.

 ANALYTICAL CONDITIONS:  Plane ionization detector, 10% SP-1000 on
 Supelcoport column at 200 degrees Celsius.

 CALIBRATION:  Reagent grade "Paradichlorobenzene" is used as a
 standard.  "Glass bulb" technique is used for making series of
 standards for calibration.

 ANALYTICAL PROBLEMS:    The stability study for this compound was
 terminated bacause of analytical difficulties and because the
 cylinder pressure was less than 200 psig.  Paradichlorobenzene is
 a solid at room temperature with a melting point of 54°C.
 Condensation in the cylinder, regulator and sampling lines was
 extreme.  Paradichlorobenzene is not practical as an audit
 material.
                                 73

-------
               30.0  ElfflLAMINE STABILE* STUD?
      Cylinder No.              30A           30B
  Cylinder Construction*         S             S
  Manufacturer     ppn           10            20
 Concentration
      STI
    Analysis                  See Analytical Problems
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.

 ANALYTICAL CONDITIONS:  Plane ioriization detector,  10% OV-101
 on Chronosorb WHP column at 250 degrees Celsius.

 CALIBRATION:  Reagent grade "Ethylamine" liquid is  used as a
 standard.  "Glass bulb" technique is utilized for making
 series of standards for calibration.

 ANALYTICAL PROBLEMS:    Because of vapor pressure considera-
 tions, the cylinders could not be fully pressurized.   The
 pressure in the cylinder is less than 200 psi.  A completely
 heated system for sampling in the vapor phase and for prepar-
 ing standards would be required.  Temperature-dependent
 condensation in the cylinder and the regulator causes the
 amount of ethylanine vhich is delivered by the cylinder to
 vary.  As a result of these problems, ethylamine  is not con-
 sidered to be practical as an audit material.
                              74

-------
               31.0  POJMALEHKEE SIMELIIY STUK
      KTI
   Requested         ppm         10             20
  Concentration
     The speciality gas supplier  indicated that they could not
make gas mixtures containing formaldehyde.
                            75

-------
         32.0  DKHLCBCMETHANE (METfflLENE CHL3RIDE)  STABILITY  STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration




KTI
Concentration

--




ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
32A 32B
Al Al
10.2 1.25
3/5/82 1/27/86
(10.8) (1.13)
31 528
(10.8) (1.37)
70
(10.6)
%
(11.2)
124
(11.4)
160
(10.9)
278
(10.2)
381
(9.70)
843
(9.20)**
1198
(11.5)**
1449
(10.4)
fCfCff
32C 32D
Al Al
6.13 9.94
1/27/86 9/28/87
(6.01) (10.2)
528
(5.92)









  Al = Aluminum; S = Steel;  LS = Low Pressure Steel.

**Questionable value.

  Cylinder anpty.

  ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101
  on Chromosorb WHP column at 100 degrees  Celsius.

  CALIBRATION:  A pressure-dilution technique is utilized  for
  making a series of standards from reagent grade methylene
  chloride.
                                      76

-------
   33.0  TEIRACHLDHCMETHANE (CARBON TETRACHLORIDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration




RTI
Concentration


-



ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
33A 33B 33C
AL . Al Al
11.3 23.3 5.82
3/4/82 1/16/86 1/16/86
(12.7) (21.8) (5.88)
74 540 540-
(11.7) (22.0) (6.35)
74
(10.2)
98
(11.1)
124
(10.6)
161
(10.2)
382
(10.5)
832
(9.60)**
1199
(12.2)
1414
(10.6)
1954
(11.3)
33D
Al
18.6
1/16/86
(18.1)
540
(18.3)









 *A1 = Akminun; S = Steel;  LS = Low Pressure Steel.

**Questionable value.

  ANALYTICAL CONDITIONS:   Plane  ionization detector, 10% OV-101 on
  Chronosorb WHP cokmn at 100 degrees Celsius.

  CALIBRATION:  A pressureniilution  technique is utilized for making
  a series of standards from reagent grade carbon tetrachloride.
                           77

-------
34.0  l.l.a-JrRICHWR^l.Z.I-TRIELUORDEnHANE (FRBON 113)  STABILITY STUDY
            Cylinder No.                     34A
        Cylinder Construction*              Al
       Manufacturer        ppn            10.4
       Concentration
                           Date          3/3/82
                           ppn           (10.8)

                           Day           34
                           ppn           (10.1)

                           Day           70
                           ppn           (10.0)

                           Day           70
                           ppn           .(9.60)

                           Day           98
           RH             ppn           (10.0)
      Concentration
                           Day          125
                           ppn           (10.0)

                           Day          162
                           ppn           (10.3)

                           Day          384
                           ppn           (9.80)

                           Day          857
                           ppn           (11.0)

                           Day         1200
                           ppn           (8.79)

                           Day,         1506
                           ppn           (10.0)

                           Day         2036
                           ppn           (9.68)
      *A1 = Aluminum; S = Steel; IS = Low Pressure Steel.

       ANALYTICAL CONDITICNS:  Flame ionization detector,  10%
       OV-101 on Chronosorb WHP colunn of 75 degrees Celsius.

       CALIBRATION:  A pressure-dilution technique is utilized for
       making a series of standards fron reagent grade Freon 113.
                              78

-------
35.0  1,1,1-TRIGHL3ROBIHANE (MCTlffL CHLOROFORM) STABILITY STUDY
        Cylinder No.                    35A
    Cylinder Construction*              Al
   Manufacturer        ppn            10.2
  Concentration
                       Date          3/2/82
                       ppn           (10.3)

                       Day           70
                       ppn           (11.8)

                       Day           99
                       ppn           (10.7)

       RTI             Day          136
  Concentration        ppn           (10.6)

                       Day          161
                       ppn           (10.0)

                       Day          381
                       ppn           (10.4)

                       Day          858
                       ppn           (10.0)

                       Day         1514
                       ppn           (10.7)

                       Day         2033
                       ppn           (10.5)
 *A1 = Aluninun; S = Steel;  LS = Low Pressure Steel.

  ANALYTICAL CONDinONS:   Plane ionization detector,  10%
  OV-101 on Chronosorb WHP column  at  80 degrees Celsius.

  CALIBRATION:   A pressure-dilution technique is utilized for
  making a series of standards fron reagent grade methyl
  chloroform.
                           79

-------
               36.0  1,2H£PQXXETHANE (EIHHJENE OXIDE)  STABILITY STUDY
      Cylinder No.                     36A        36B      36C      36D      36E
  Cylinder Construction*              Al        Al      Al       Al       Al
  Manufacturer        ppn             10.0         1.0     4.5        14     19.0
 Concentration
                      Date         3/12/82     9/16/85  9/16/85  9/16/85  9/16/85
                      ppn            (11.2)       (1.19)    (4.75)    (14.3)    (18.6)

                      Day            73           78       78       78       78
                      ppn            (9.60)     (0.868)    (4.35)    (14.2)    (17.7)

                      Day            88           722      722      722      722
      KEI             ppn            (9.80)       (1.59)**  (4.68)    (14.9)    (18.5)
 Concentration
                      Day          122
                      ppn            (9.60)

                      Day          157
                      ppn            (9.80)

                      Day         1012
                      ppm            (9.70)

                      Day         1362
                      ppn            (9.09)

                      Day         2006
                      ppn            (10.0)
  Al = Aluninun; S = Steel; LS = Low Pressure Steel.

**Questionable value.

  ANALYTICAL CONDITIONS:  Plane ionization detector, 6 ft. x 1/8" SS column packed
  with 80/100 mesh Porapak QS at 150 degrees Celsius.

  CALIBRATION:  Ethylene oxide permeation tube is used for GC-FID calibration.
  Permeation tube is maintained at 30 degrees Celsius.
                                    80

-------
    37.0  1,2-EPOXJfPROPANE (PRDPYLENE OXIDE)  STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration





KTI
Concentration












Ppn

Day
ppn
Day
.ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
Ppn
Day
ppn
Day
ppn
37A
Al
9.48

8/4/82
(12.3)
55
(11.8)
76
(10.6)
743
(8.10)**
844
(9.24)
1057
(9.65)
1357
(10.2)
1882
(10.7)


37B
Al
96.0

8/4/82
(89.5)
55
(86.9)
76
(83.6)
121
(90.8)
743
(75.7)**
844
(82.8)**
1057
(91.7)
1357
(95.2)
1882
(98.2)
 *A1 = Aluninun; S = Steel; IS = Low Pressure Steel.

**Questionable value.

  ANALYTICAL CONDITIONS:  Flane ionization detector,  10%
  OV-101 on Chrcmosorb WHP cokmn at 120 degrees Celsius.

  CALIBRATION:  A pressure-dilution technique is utilized  for
  making a series of standards from reagent grade propylene
  oxide.
                             81

-------
            38.0  3-OflflHDPRDPENE (ALLYL CHLORIDE) STABILITY SOW
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


RTI
Concentration


ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn

38A
S
10.2
8/13/82**
(11.6)
75
(5.25)
110
(5.08)
167
(5.36)
727
(4.53)
'ArA'A
38B
S
99.5
8/13/82**
(124)
74
(87.2)
110
(87.7)
167
(83.4)
727
(53.6)
***
38C 38D
S S
8.7 92.4
4/24/85** 4/30/85
(8.99) (95.7)
364 358
(6.14) (94.2)
808 803
(5.50) (86.9)


   Al = Alunirun;  S = Steel; LS = Low Pressure Steel.


 Initial analysis was questionable


;^*Returned due to impurities.

   ANALYTICAL CONDITIONS:   Plane  ionization detector,
   cokmn at 135 degrees Celsius.
OV-101 Chronosorb KHP
   CALIBRATION:  A pressure-dilution technique is utilized for making a series
   of standards from reagent  grade allyl chloride.
                                82

-------
         39.0  PROPENAL (ACHOLEIN)  STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


BTI
Concentration




ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
39A
Al
10.2
8/18/82
(10.6)
28
(11.0)
69
(9.74)
728
(6.90)**
833
(8.97)
1031
(9.11)
1346
(9.19)
1791
(8.78)
39B
Al
107
8/18/82
(90.4)
28
(103)
69
(106)
728
(80.8)**
833
(97.3)
1031
(98.4)
1346
(108)
1791
(94.7)
  Al = Aluninun; S = Steel; LS = Low Pressure Steel.

^JU
  Questionable value.


  ANALYTICAL ODNDTTIONS:  Plane ionization detector. 10%
  OV-101 on Chronosorb WHP colum at 150 degrees Celsius.


  CALIBRATION:  A pressure-^dilution technique is utilized for
  making a series of standards from reagent grade acrolein.
                                   83

-------
                 40.0  CHLOHDBENZENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


RTI
Concentration




ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
40A
S
9.66
8/6/82
(9.03)
39
(9.15)
75
(9.20)
380
(9.62)
1043
(8.11)**
1490
(9.22)
1806
(8.50)
40B
Al
14.8
10/11/83
(14.7)
612
(13.4)
1059
(14.4)
1375
(12.9)



40C
Al
4.89
10/11/83
(4.19)
612
(4.74)
1059
(5.01)
1375
(4.61)



  Al = Aluninun; S = Steel; LS = Low Pressure Steel.


**Questionable value.

  ANALYTICAL (DNDmONS:  Plane ionization detection,  10% OV-101
  on Chranosorb WHP colum at 200 degrees Celsius.

  CALIBRATION:  A pressure-dilution technique is utilized for making
  a series of standards from reagent grade chlorobenzene.
                                     84

-------
              41.0  CARBON DISULFIDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration


KTI
Concentration

ppn
Date
ppn
Day
ppn
Day
ppn
41A
Al
108
7/14/82
(100)
34
(114)
72
(116)
41B
Al
108
2/21/85
(101)
110
(98.0)
477
(104)
                                        **
                                                        **
  Al = Alunirun; S » Steel; IS = Low Pressure Steel.

Cylinder anpty.

  ANALYTICAL CONDITIONS:  Plane photometric detector. 4.6' X 1/4"
  Teflon® colurni packed with Carbopack B HT 100 at 75 degrees
 -Celsius.

  CALIBRATION:  A pressure-dilution technique is used for making
  a series of standards from reagent grade carbon disulfide.

  ANALYTICAL PROBLEMS:  There is significant peak "tailing" un-
  less a very high flow rate is used.  "Tailing" is also caused by
  "bleed" from the sanple loop.  Sample valve should be in the in-
  ject position for exactly 5 seconds and then switched back to
  the sampling position to attenuate tailing.   All sanple lines
  and regulators must be conditioned extensively.
                            85

-------
                    42.0  EPA METH3D 25 GAS MIXTURE STABILITY STUDY*
      Cylinder No.               42A       42B       42C       42D       42E     42F
  Cylinder Construction***       Al        Al        Al        Al        Al      Al
 Manufacturer         ppnC      100       100       200       750       1000    2000
 Concentration
                     Date    3/16/83   3/16/83   3/16/83   3/16/83   3/16/83  3/16/83
                     ppnC      (102)     (107)     (205)     (775)    (1040)   (1940)

                     Day     483        483        **       483      483      483
      RTI            ppiC      (97.9)    (104)               (779)    (1060)   (1930)
 Concentration
                     Day        **        **                726      726      726
                     ppnC                                    (765)    (1020)   (1930)

                     Day                                   1079     1079         **
                     ppaC                                    (806)    (1093)

                     Day                                   1657       **
                     ppnC                                    (826)
   Gas Mixture contains an aliphatic hydrocarbon, an arcraatic hydrocarbon, and carbon
   dioxide in nitrogen.

 **Cylinder anpty.
-Jri t
   Al = Aluninun; S = Steel; IS = Low Pressure Steel.

   ANALYTICAL CONDITIONS:  Plane ionization detector, aliphatic hydrocarbon and
   aromatic hydrocarbon, 10% OV-101 on Chranosorb WHP colvmn at 100 degrees Celsius.

   CALIBRATION:  An NBS-SRM is used as a standard for the aliphatic hydrocarbon.  A
   pressure-dilution technique is utilized for generation of a series of standards
   from reagent grade liquid for the aromatic hydrocarbon.
                                  86

-------
             42.0  EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued)
Cylinder No.
Cylinder Construction***
Manufacturer
Concentration

RTI
Concentration






ppnC

Date
ppnC
Day
ppnC
Day
ppoC
Day
ppoC
423
Al
96.7

12/11/84
(96.4)
90
(95.8)
443
(99.2)
**

42H
Al
98.6

12/11/84
(98.9)
90
(93.3)
443
(99.6)


421
Al
147.6

12/11/84
(149)
90
(144)
443
(146)
948
(163)
42J
Al
151

12/11/84
(153)
90
(145)
443
(149)
948
(161)
42K
Al
198

12/11/84
(195)
192
42L
Al
197.5

12/11/84
(195)
90
(183)**** (isy)
443
(1%)
948
(210)
443
(1%)
1021
(206)
   Gas Mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon
   dioxide in nitrogen.
   l
    Cylinder empty.

   JU
    Al = Aluninun;


^^Questionable value.
JLJLJU
   Al = Aluninun; S =* Steel; LS = Low Pressure Steel.
                                          87

-------
42.0  EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued)
Cylinder No.
Cylinder Construction***
Manufacturer
Concentration
KE1
Concentration

ppnC
Date
ppnC
Day
ppnC
42M
Al
1973
9/4/86
(1968)
316
(1982)
42N
Al
1970
9/4/86
.' (1904)
316
(1989)
  Gas Mixture contains an aliphatic hydrocarbon, an arcmatic
  hydrocarbon, and carbon dioxide in nitrogen.


**Cylinder anpty.

  f
  Al » Aluninun; S = Steel; 15 = Low Pressure Steel.
                     88

-------
     43.0  1,2-DBKMDEIHANE  (ETHHZNE DBHMDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration




ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
43A
S
10
10/24/84
(9.3)
54
(9.3)
243
(8.66)
516
(9.27)
994
(9.70)
433
S
20
10/24/84
(17.5)
54
(17.5)
243
(15.4)
518
(15.9)
994
(16.4)
43C
S
100
10/24/84
(96.1)
55
(107)
243
(84.0)
518
(75.1)
994
(83.6)
43D
S
300
10/24/84
(266)
55
(344)**
516
(250)
994
(262)

Al = Aluminum; S a Steel; IS = Low Pressure Steel.


Ojuestionable value.

ANALYTICAL CONDITIONS:  Plane ionization detector,  10% OV-101  on Chrono-
sorb WHP columa at 150 degrees Celsius.

CALIBRATION:  A pressure-dilution technique is utilized  for making  a
series of standards from reagent grade ethylene dibrcmide.
                                     89

-------
44.0  1,1,2,2-TETRACHLDRDETHANE STABILITY STUDY
      Cylinder No.              44A
  Cylinder Construction*         S
  Manufacturer        ppn       12.2
 Concentration
     RTI             Date      10/9/84
 Concentration       ppn       (11.6)

                     Day       533
                     ppn        (10.9)

                     Day      1085
                     ppn        (10.5)
Al = Aluminum; S = Steel; LS = Low Pressure
Steel.

ANALYTICAL CONDITIONS:  Plane kmization detec-
tor, 5% OV-101 on Cnronosorb WHP column at 100
degrees Celsius.

CALIBRATION:  A pressurendilution technique
is utilized for making a series of standards
fron reagent grade 1,1,2,2-tetrachloroethane.
                      90

-------