RESEARCH TRIANGLE INSTITUTE
STATUS REPORT #9
STABILITY OF PARTS-PER-MILLION ORGANIC CYLINDER GASES
AND RESULTS OF SOURCE TEST ANALYSIS AUDITS
G. B. Howe
J. R. Albritton
C. K. Sokol
R. K. M. Jayanty
C. E. Decker
Center for Environmental Measurements
Research Triangle Institute
Research Triangle Park, North Carolina 27709
EPA Contract No.: 68-02-4125
D. 0. von Lehmden
Quality Assurance Division
Environmental Monitoring Systems Laboratory
Research Triangle Park, North Carolina 27711
Environmental Monitoring Systems Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
September 1987
POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NORTHCAR0LINA 27709
-------
STATUS REPORT #9
STABILITY OF PARTS-PER-MILLION ORGANIC CYLINDER GASES
AND RESULTS OF SOURCE TEST ANALYSIS AUDITS
by
G. B. Howe
J. R. Albritton
C. K. Sokol
R. K. M. Jayanty
C. E. Decker
Center for Environmental Measurements
Research Triangle Institute
Research Triangle Park, North Carolina 27709
EPA Contract No.: 68-02-4125
D. 0. von Lehmden
Quality Assurance Division
Environmental Monitoring Systems Laboratory
Research Triangle Park, North Carolina 27711
Environmental Monitoring Systems Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
September 1987
-------
NOTICE
This document has been reviewed in accordance with U.S. Environmental
Protection Agency policy and approved for publication. Mention of trade
names or commercial products does not constitute endorsement or recommenda-
tion for use.
ii
-------
FOREWORD
Source measurement and monitoring efforts are designed to anticipate
potential environmental problems, to support regulatory actions by develop-
ing data bases needed in developing regulations and to provide means of mon-
itoring compliance with regulations. The Environmental Monitoring Systems
Laboratory, Research Triangle Park, North Carolina, has the responsibility
for implementation of agency-wide Quality Assurance programs for air pollu-
tion measurement systems; and supplying technical support to other groups in
the Agency including the Office of Air and Radiation, the Office of Toxic
Substances, and the Office of Enforcement.
The need for reliable standards for auditing and documenting the accu-
racy of source emission measurement of gaseous hydrocarbons, halocarbons,
and sulfur compounds is well established. The Quality Assurance Division of
EPA's Environmental Monitoring Systems Laboratory has responded to this need
through the development of organic compounds in the parts-per-million (PPM)
levels in compressed gas cylinders. The primary objectives of this ongoing
project are (1) to provide accurate gas mixtures to EPA, state/local agen-
cies, or their contractors for performance audits to assess the accuracy of
source emission measurements in certain organic chemical manufacturing in-
dustries, (2) to verify the vendor's certified analysis of the gas mixtures,
(3) to determine the stability of gas mixtures with time, and (4) to develop
new audit materials as requested by EPA. This report describes the current
status of this project. Included in the report are (1) a description of the
experimental procedures used for the analyses of gas mixtures, (2) a de-
scription of the audit procedure, and (3) currently available audit results
and stability data.
John C. Puzak
Deputy Director
Environmental Monitoring Systems Laboratory
Research Triangle Park, North Carolina
ill
-------
ABSTRACT
The U.S. Environmental Protection Agency has evaluated the suita-
bility of 45 gaseous compounds including hydrocarbons, halocarbons,
oxygenated, and sulfurous species for use as standards for measuring
stationary source emissions. The main objectives of this on-going pro-
ject are (1) to provide gas mixtures to EPA, state/local agencies, or
their contractors, as performance audit standards to assess the accura-
cy of measuring source emissions from certain organic chemical manufac-
turing industries, (2) to corroborate the vendor's certified analysis
of the gas mixtures by in-house analysis, (3) to determine the stabili-
ty of the gas mixtures with time by in-house analysis, and (4) to
explore the feasibility of new audit materials as requested by EPA.
Thus far, 31 mixtures have been used to conduct 214 different au-
dits. The results of these audits, a description of the experimental
procedures used for analyses, and available stability data are present-
ed in this status report.
Compound stabilities have been determined through multiple anal-
yses of the cylinders containing them. .Stability data for up to 8
years is available for many compounds and over 5 years for most com-
pounds. Compounds that are unstable and not suitable for use as an
audit material are identified.
iv
-------
CONTENTS
NOTICE 11
FOREWORD i i i
ABSTRACT i v
TABLES v i
1. INTRODUCTION 1
Objectives 1
Audit Materials Currently Available .: 1
2. EXPERIMENTAL PROCEDURES 5
Instrumentation 5
Calibration 5
Quality Control 6
3. PERFORMANCE AUDITS 8
4. STABILITY STUDIES 31
5. SUMMARY AND CONCLUSIONS 33
REFERENCES 34
ATTACHMENT 1 - STABILITY DATA AS OF SEPTEMBER 1987 35
-------
TABLES
Number Page
1 Audit Materials Currently Available 3
2 Pressure-Dilution Quality Control Results 7
3 Hydrogen Sulfide Analysis Quality Control Results '.. 7
4 Summary of Performance Audit Results 9
vi
-------
SECTION 1
INTRODUCTION
OBJECTIVES
The need for reliable standards for auditing source emission mea-
surement of gaseous hydrocarbons, halocarbons, oxygenated, and sulfu-
rous compounds is well established. The Research Triangle Institute
(RTI), under contract to the U.S. Environmental Protection Agency
(EPA), has responded to this need through the development of cylinder
gases for 39 compounds. The primary objectives of this ongoing project
are (1) to provide accurate gas mixtures to EPA, state/local agencies,
or their contractors for performance audits to assess the relative
accuracy of source emission measurements in certain organic chemical
manufacturing industries, (2) to examine the vendor's certified anal-
ysis of the gas mixtures by in-house analysis, (3) to determine the
stability of the gas mixtures with time by in-house analysis, and (4)
to develop new audit materials, as requested by EPA.
This report describes the current status of this project. In-
cluded are (1) a description of the experimental procedures used for
initial cylinder analyses and collection of stability data, (2) a de-
scription of the audit procedure, and (3) currently available audit
results and stability data. Complete details of the study with statis-
tical analyses for ten (10) halocarbons and eight (8) other organics
are presented in two journal publications (1,2).
AUDIT MATERIALS CURRENTLY AVAILABLE
Currently, 45 gaseous compounds have been investigated as audit
materials. Six compounds have been found to be unstable in cylinders
and not suitable as audit materials. The other 39 gaseous compounds in
compressed gas cylinders are suitable for conducting performance audits
during source testing. The compounds were selected based on the antic-
ipated needs of the Emission Measurement Branch, Office of Air Quality.
Planning and Standards, U.S. EPA. Table 1 lists the 45 compounds, the
concentration ranges and the number of cylinders containing these com-
pounds currently in the repository, and the cylinder construction
material. In Table 1, the audit materials fall into two concentration
-------
ranges. The low concentration range, between 5 and 50 parts-per-mil-
lion (ppm), simulates possible emission standard levels. The high con-
centration range, between 50 and 700 ppm, simulates expected source
emission levels. The balance gas for all gas mixtures is pure nitro-
gen.
-------
TABLE 1. AUDIT MATERIALS CURRENTLY AVAILABLE
Low Concentration Range
High Concentration Range
Compound No. of
Cylinders
Benzene
Ethylene
Propylene
Methane/Ethane
Propane
Toluene
Hydrogen Sulfide
Meta-Xylene
Methyl Acetate
Chloroform
Carbonyl Sulfide
\jtkfcW_.1 Vlft .i-i-i AM*» ji ».
Methyl Mercaptan
Hexane
1 , 2-Dichloroethane
Cyclchexane
Methyl Ethyl Ketone
Methanol
1 , 2-Dichloropropane
Trichloroethylene
1,1-Dichloro-
etnylene
**l,2-Dibrono-
ethylene
Perchloro-
ethylene
Vinyl Chloride
1,3-Butadiene
Acrylonitrile
**Aniline
Methyl Isobutyl Ketone
7
3
3
-
3
4
6
2
2
4
1
2
4 '
-
4
1
2
2
2
-
2
8
3
3
-
1
Concentration
Range (ppn)
5-
5-
5-
«••••••
5 -
5 -
5 -
5 -
5 -
5 -
5 -
3__
—
20 -
5-
^H«M
5-
30 -
3-
5 -
5 -
5 -
5 -
5 -
5 -
5 -
20
20
20
20
20
50
20
20
20
20
in
1U
90
20
50
80
20
20
20
20
30
60
20
20
Cylinder
Construction*
S
Al
Al
-
Al
Al
Al
S
S
S
Al
Al
Al
Al
Al
-
Al
Al
Al
Al
Al
-
S
S
Al
Al
-
Al
Nb, of Concentration Cylinder
Cylinders Range (ppm) Construction*
10
4
6
3
4
3
4
4
7
2
2
1
4
—
4
1
-
-
2
2
2
-
2
-
1
-
—
60-
300-
3000-
30Q-
1000 -
200 -
300-
1000-
100-
100-
300-
300 -
300-
100 -
100-
80 -
300-
100 -
100 -
300 -
300 -
400
700
20,000
700
9000(M),
800(E)
700
20,000
700
700
700
700
700
400
600
200
700
600
600
700
500
S
Al
Al
Al
Al
Al
Al
LS
Al
LS
S
S
Al
-
Al
Al
-
-
Al
Al
Al
-
LS
-
-
Al
-
-
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
**,
Cylinders are no longer available; the compounds were found to be unstable in the cylinders.
(Continued)
-------
TABLE 1. AUDIT MATERIALS CURRENTLY AVAILABLE
Low Concentration Range High Concentration Range
Compound
No, of Concentration Cylinder No, of Concentration Cylinder-
Cylinders Range (ppm) Construction* Cylinders Range (ppm) Construction*
**Para-dichlorobenzene
**Etnylanine
**Fonnaldehyde
Me thy lene Chloride
Carbon Tetrachloride
Preon 113
Methyl Chloroform
Ethylene Oxide
Propylene Oxide
Allyl Chloride
Acrolein
Chlorobenzene
Carbon Bisulfide
**Cyc Ichexanone
***EPA Method 25 Mixture
Ethylene Dibrcmide
Tetrachloroethane
4
4
1
1
5
1
1
1
3
-
-
6
2
1
^•^•H
^HMB
1 -
5-
5-
5-
5-
5 -
5 -
5-
5 -
•••••
100-
5 -
5-
»
20
20
20
20
20
20
20
20
20
200
20
20
Al
Al
Al
Al
Al
Al
S
Al
Al
-
-
Al
S
S
-
-
1
1
1
-
1
-
4
2
™ '
VMHHBB
^^^HKVB
75 -
75 -
100-
75 -
750-
50-
^•••HMM
200
200
300
200
2000
300
WIV
-
-
Al
S
Al
-
Al
-
Al
S
—
fAl = Aluminum; S = Steel; LS = Low Pressure Steel.
Cylinders are no longer available; the compounds were found to be unstable in the cylinders.
gas mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon dioxide in
nitrogen. Concentrations shown are in ppnC.
-------
SECTION 2
EXPERIMENTAL PROCEDURES
Analysis of the cylinder gases is required to corroborate the con-
centrations reported by the company which prepared the gas mixtures and
also to measure concentration changes with time, that is, estimate sta-
bility of the compounds.
INSTRUMENTATION
Analyses are presently performed with (1) a Perkin-Elmer Sigma 4
Gas Chromatograph with a flame ionization detector (FID), and (2) a
Tracor 560 Gas Chromatograph with a flame photometric detector. The
flame photometric detector has principally been used for measurement of
the sulfur-containing species. Gaseous samples are injected onto the
appropriate column by means of Valco gas sampling valves constructed of
Hastalloy C (high nickel content and low adsorptive properties). These
valves are equipped with interchangeable sample loops to allow the in-
jection of variable volumes of gas.
The gas Chromatographic parameters used in the measurement of in-
dividual compounds and any problems with the analysis are listed in
Attachment 1.
CALIBRATION
Calibration of the gas Chromatographs is accomplished using appro-
priate calibration standards comprised of known concentrations of gases
in air or nitrogen. The source or method of preparation of calibration
standards varies depending on the gas involved.
National Bureau of Standards, Standard Reference Materials (NBS-
SRMs) of methane and propane in nitrogen or air were used for the cal-
ibration of the GC for the measurement of methane, ethane, propane,
ethylene, and propylene audit materials. An NBS-SRM of benzene in ni-
trogen was used for calibration of the GC for the measurement of ben-
zene audit cylinder concentrations and an NBS-SRM of perchloroethylene
in nitrogen was used for the measurement of perchloroethylene audit
cylinder concentrations.
-------
A second method for preparation of calibration standards involves
the use of gravimetrically calibrated permeation tubes. For example,
the calibration gases for hydrogen sulfide and ethylene oxide have been
generated in this manner. The permeation tube is placed in a tempera-
ture-controlled chamber and nitrogen is passed over the permeation tube
at a known flow rate. The resultant gaseous mixture is further di-
luted, if necessary, using additional nitrogen in a glass dilution
bulb. The final mixture is collected in a gas sampling syringe and
analyzed by GC-FID. The permeation rates of the tubes are determined
by periodic weight loss measurements.
A third method for developing a calibration standard is the pres-
sure-dilution technique. A known volume of the compound, either gas or
liquid, is injected into an evacuated glass bulb or stainless steel
sphere of known volume. (The volume of the bulb or sphere is deter-
mined gravimetrically.) The bulb or sphere is then pressurized with a
balance gas of choice. If a pure liquid is injected, total vaporiza-
tion is assumed and the concentration is calculated by using the ideal
gas law. Additional dilutions are also made, if necessary, by partial-
ly evacuating to a known pressure and pressurizing with a balance gas
to a known pressure.
With each of these approaches, multipoint calibration curves are
prepared each time a cylinder mixture is analyzed.
QUALITY CONTROL
Replicate injections of both audit cylinder gases and calibration
standards are performed until no trends in the detector response are
observed and the relative standard deviation of replicate injections is
less than 1 percent.
As a quality control check on the accuracy of calibration mixtures
prepared by the pressure-dilution technique, NBS-SRMs of benzene in
nitrogen or propane in nitrogen were analyzed by GC-FID against se-
lected compound calibration standards. The prepared calibration mix-
ture was used to establish the detector response on an area per ppm-
carbon basis. This calibration was then used to determine the ppm-car-
bon concentration of the analyzed NBS-SRM. Concentrations were con-
verted to ppm by volume before comparison with certified values. The
-------
results of these analyses are shown in Table 2. Validation of the pres-
sure-dilution technique for these five compounds provides a high level
of confidence in the results for other compounds since the same tech-
nique and preparation system were used.
TABLE 2. PRESSURE-DILUTION QUALITY CONTROL RESULTS
NBS-SRM Analysis
Calibration Standard
Toluene
M-Xylene
Hexane
Cyclohexane
1,3-Butadiene
Compound
Benzene
Benzene
Propane
Propane
Propane
NBS
Cone., ppm
9.78
9.78
98.5
98.5
98.5
RTI Measured
Cone., ppm
10.1
9.79
100
100
101
Percenta
Difference
3.3
0.1
1.5
1.5
2.5
a RTI Cone. - NBS Cone.
NBS Cone.
X100
Two different cylinders containing hydrogen sulfide in nitrogen
were received from the National Bureau of Standards and analyzed along
with the audit cylinders as a quality control check. The analysis re-
sults are shown in Table 3.
TABLE 3. HYDROGEN SULFIDE ANALYSIS QUALITY CONTROL RESULTS
Cylinder Number
NBS Certified
Cone., ppm
RTI Measured
Cone., ppm
Percent
Difference
1
2
5.14
15.4
4.84
15.2
-5.8
-1.3
-------
SECTION 3
PERFORMANCE AUDITS
RTI supplies cylinder gases for audits upon request from the EPA,
state or local agencies or contractors. A contractor must be perform-
ing source emission tests at the request of EPA or a state or local
agency in order to qualify for the performance audit. When a request
is received, the contents of the cylinders are analyzed, the tank pres-
sures are measured and the cylinders are shipped by overland carrier.
Tank regulators are also provided when requested. A letter is included
with the cylinders which provides general instructions for performance
of the audit. The audit material concentration and cylinder pressure
are provided to the requesting agency audit coordinator.
To date, 214 individual audits have been initiated, and 194 are
complete; The audit results currently available are presented in Table
4. The results of the audits show that most auditee reported concen-
trations agree within 15 percent of the audit material concentrations
measured by RTI, although the difference for some compounds is some-
times quite substantial. This indicates the importance of the perfor-
mance audit program and the need for reliable quality assurance cali-
bration standards by the laboratories being audited.
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS
Audit
No.
1
2
3
4
5
6
7
8
9
10
11
12
Client***
A
A
A
A
A
A
B
C
D
E
F
F
Industry
Ethylene oxide
production
Ethy-ene oxide
production
Ethylene oxide
production
Acetone
production
Maleic anhydride
production
Ethylene oxide
production
Maleic anhydride
product ion
Maleic anhydride
production
Ethyl benzene
styrene
manufacturer
Gasoline bulk
tenninal
Gasoline transfer
terminal
Gasoline transfer
tenninal
Audit material
Ethylene in N2
Ethylene in N2
Methane/ethane in N2
Methane/ethane in N2
Methane/ethane in No
Methane/ethane in N2
Benzene in No
Benzene in N2
Benzene in N2
Benzene in No
Ethylene in N2
Ethylene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in No
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in No
RTI audit
cone, (ppm)
3,240
21,200
l,710Me/220Et
8,130Me/597Et
l,021Me/315Et
6,207Me/773Et
79.0
374.0
138
300
5,440
18,900
80.0
355
101
387
71.0
229
62.0
80.0
142
294
268
343
Client audit
% bias (Avg.)*
-22.5
-20.0
+9/-20
+9/-1.00
+21.5M.50
+23.5/-4.50
-19.0
-11.0
-9.40
•*4.70
-27.0
-33.0
+2.30
+27.5
+12.9
+14.5
-2.80
-3.90
+3.80
+3.40
-3.50
+3.20
-11.8
-1.00
Status of
audit**
B
B
B
B
B
B
B
B
B
B
B
B
-------
TABLE 4. SMlAIu7 OF PERFOIMANCE AUDIT RESULTS (Continued)
Audit
No.
13
14
15
16
17a
17b
18
19
20
21
22
23
Client***
F
F
C
F
F
F
G
F
F
F
F
F
Industry
Gasoline transfer
terminal
Gasoline transfer
terminal
Nitrobenzene
manufacturing
Gasoline bulk
terminal
Gasoline bulk
terminal
Gasoline bulk
terminal
Coke o/en
Gasoline bulk
terminal
Gasoline bulk
terminal
Linear alkyl-
benzene manu-
facturing
Gasoline bulk
terminal
Gasoline bulk
terminal
Audit material
Benzene in N2
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N«
Benzene in N2
Hydrogen sulfide in N2
Hydrogen sulfide in No
Benzene in N2
Benzene in No
Benzene in No
Benzene in No
Benzene in No
Benzene in N2
Benzene in N2
Benzene in No
Benzene in N2
Benzene in No
Benzene in No
KTI Audit
cone, (pan)
129
318
10.7
9.73
269
8.20
140
9.50
127
9.50
127
7.05
9.73
12.0
218
7.65
396
98.0
294
331
9.85
81.0
10.2
61.0
Client Audit
% bias (Avg.)*
+4.70
+8.70
+2.60
-4.60
-2.60
-2.30
-1.80
+10.4
-2.80
+12.5
-6.30
-24.8
-22.9
-0.80
+7.30
+16.3
+1.50
+5.70
+6.80
+4.50
-4.10
-6.80
+4.60
-9.50
Status of
audit**
B
B
B
B
B
B
B
B
B
B
B
B
-------
TABLE 4. SUGARY OF EERPOBMANCE AUDIT RESULTS (Continued)
Audit
No.
24
25
26
27
28A
283
28C
29
Client*** Industry
H Industrial
surface coating
process
C Acrylic acid and
ester Production
C Acrylic acid and
ester Production
E Maleic anhydride
A Carbon adsorber
A Carbon adsorber
A Carbon adsorber
EPA, QAD . Instrument
check-out
Audit material
Toluene in N2
Propylene in N2
Propane in. 1*2
Methane/ethane in N2
Propane in N2
Propane in N2
Propane in N2
Propane in N2
Benzene in N2
Benzene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Toluene in N2
Ethylene in N2
Ethylene in N2
Ethylene in N2
Ethylene in N2
Ethylene in No
KTI audit
cone, (ppm)
14.8
474
20.3
l,64GMe/195et
10.1
710
5.1
607
10.2
218
8.55
405
8.55
405
8.55
405
4.75
19.6
312
3020
20400
Client audit Status of
% bias (Avg.)* audit**
-1.90 B
+0.20
-2.X
-13.5(as methane)
+8.60 B
+5.60
+17.6 B
-3.60
NA C
NA
-6.40 B
-1.00
+4.10 B
NA
-8.80 B
NA
+4.00 B
+3.10
-O.80 .
+5.30
-8.60
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
30
31
32
33
34
35a
35b
Client*** Industry
EPA, QAD Instrument
check-out
EPA, QAD Instrument
check-out
EPA, QAD Instrument
check-out
EPA, QAD Instrument
check-out
EPA, QAD Instrument
check-out
I Vegetable oil
plant
I Vegetable oil
plant
Audit material
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Toluene in N2
Toluene in N2
Methyl acetate in N2
Methyl acetate in N2
Methyl acetate in N2
Methyl acetate in N2
Propylene in N«
Propylene in N2
Propylene in No
Propylene in N2
Propane in No
Propane in ^
Propane in N2
Hexane in N2
Hexane in N2
Hexane in N2
Hexane in No
KTI Audit
cone, (ppra)
8.20
78.0
133
348
405
579
6.80
17.2
326
455
4.90
19.7
300
685
14.6
303
439
82.2
1980
82.2
1980
Client Audit Status of
%bias (Avg.)* audit**
+0.30 B
-0.90
-4.00
-0.90
+3.20 B
+1.00
-2.60 B
+1.70
-1.50
-1.30
-22.4 B
-7.80
+1.00
-1.80
-0.70 B
+7.60
+6.20
+8.10 B
+3.00
-1.20 B
-1.30
36
Carbon adsorber Toluene in
8.20
-2.40
-------
TABLE 4. SUWAIff (F PEREOFMANCE AUDIT RESULTS (Continued)
Audit
No.
37
38
39
40
41
42
43
44
45
46
Client*** Industry
B Coke even
D Ethylbenzene/
styrene
B Coke oven
Byproduct
D Coke oven
Byproduct
H Paint spray
H Tire
manufacturing
B Coke oven
D Ethylbenzene/
styrene
F Industrial
surface coating
EPA, QAD Tire
manufacturing
Audit material
Benzene in N£
Benzene in N2
Benzene in N2
Benzene in N£
Benzene in N2
Benzene in N£
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in Wn
m-Xylene in N2
Cyclohexane in N2
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Propane in N2
Propane in Air
Propane in Air
Propane in Air
Propane in Air
KTI audit
cone, (ppm)
12.1
105
9.90
77.9
345
8.20
85.4
10.9
147
10.8
16.4
93.4
7.54
225
8.20
74.5
10.6
316 .
450
15.0
316
Client axlit
% bias (Aug.)*
•K).80
+2. 90
+5.70
+3.60
+1.50
-2.60
-8.70
+20.0
+6.80
NA
NA
-11.1
+0.10
+0.40
-3.40
-0.20
-3.00
-3.20
-2.00
NA
NA
Status of
audit**
B
B
B
C
B
B
B
B
C
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
47
48
49
50
51
52
53
54
Client*** Industry
EPA, QAD Tire
manufacturing
D Dimethyl
terephthalate
production
EPA, QAD Instrument
check-out
EPA, QAD Tire oven
manufacturing
EPA, QAD Instrument
check-out
D Styrene
manufacturing
I Veg. oil
manufacturing
M Research
Audit material
Propane in air
Propane in air
Meta-xylene in N2
Toluene in N2
Methanol in N2
Propane in air
Propane in air
Propane in air
Propane in air
Propane in air
Benzene in N2
Benzene in N2
1,3-^utadiene in N2
Cyclohexane in N«
Chloroform in N2
Chloroform in N0
KTI audit
cone, (ppm)
20.8
453
487
61.5
55.2
4.90
613
718
20.8
316
106
358
20.9
99.0
16.5
531
Client audit
% bias (Avg.)*
-18.4
+13.4
-2.10
NA
NA
-48.8
+16.9
+16.8
+20.0
-9.20
-4.90
-3.70
+23.8
-3.50
NA .
NA •
Status of
audit**
B
B
C
B
B
B
B
C
55
Research
Ethylene in N^
300
+1.40
B
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
56
57
58
59
60
61
62
63
64
65
Client*** Industry
K Reactivity of
vent activated
charcoal
EPA, QAD Instrument
check-out
C Coil coating
L Maleic
anhydride
M Research
EPA (State of Conn. ) Maleic
anhydride
0
M Paper and pulp
P Research
E Coke oven
Byproduct
Reco/ery
Audit material
Chloroform in No
••
Hydrogen sulfide
in No
Propane in Air
Propane in Air
Benzene in N«
Benzene in Nn
Audit not initiated
Benzene in N2
Meta-xylene in No
Hexane in N2
Methyl raercaptan
in N2
Benzene in N~
Methyl ethyl ketone
in N2
Benzene in N2
Benzene in N2
RTI audit
cone, (ppra)
8.11
16.2
5.20
472
9.45
341
—
133
760
1990
4.44
13.4
44.5
7.93
132
Client audit Status of
% bias (Avg.)* audit**
NA. C
NA C
NA. B
-8.40
NA. C
NA.
— —
NA. C
NA. C
NA.
NA c
NA c
NA. •'
-2.90 B
-H.39
-------
TABLE 4. SUMMARY (F PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
66
67
68
69
70
71
72
73
Client*** Industry
D Rubber
manufacturing
E Coke o/en
Byproduct
Recovery
EPA, Region II Vinyl chloride
manufacturing
EPA, QAD Instrument
Check
EPA, Region I Vinyl chloride
manufacturing
E Degr easing
vent
EPA, QAD Instrument
check-out
EPA, QAD Conbustion
efficiency
test
Audit material
Benzene in N2
Benzene in N2
Benzene in N2
Benzene in N2
Hexane in N2
Hexane in N2
Propane in Air
Propane in Air
Benzene in N2
Benzene in N2
Vinyl chloride in N2
Vinyl chloride in N2
Propylene in N2
Propylene in N2
Vinyl chloride in N2
Trichloroethylene in N2
Trichloroethylene in N2
Hexane in N£
Hydrogen sulf ide in N2
Methyl mercaptan in N2
Rtl audit
cone, (ppn)
12.0
10.2
100
335
79.8
3080
9.97
314
8.29
75.7
5.74
28.3
328
725
7.50
14.9
566
3080
16.2
8.22
Client audit Status of
% bias (Avg.)* audit**
+14.2 B
0
+6.40
+6.00
+1.80
-7.50
-3.20
-10.8
-2.20 B
-2.50
NA C
NA.
. -7.00 B
-8.30
NA. C
-0.40 B
-8.70
NA ' C
-7.50 B
-8.90
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
74
75
76
77
78
79
80
81
82
83
Client***
E
N
F
D
EPA, Region VII
D
F
P
J
I
Industry
Vinyl chloride
manufacturing
Coil coating
Coil coating
Maleic
anhydride
Instrunent
checkout
Maleic
anhydride
Plywood /v eneer
drying
Plywood Areneer
drying
Polypropylene
manufacturing
Coke even
Audit material
1,2-Dichloroethane in N2
1,2-Dichloroethane in N2
Propane in air
Propane in ''air
Propane in air
Propane in air
Benzene in N2
Benzene in N2
Benzene in N2
Hexane in N2
Benzene in N2
Benzene in N2
Propylene in N2
Propylene in N2
Toluene in N2
Propylene in N2
Propylene in N2
Toluene in N2
Propylene in.N2
Propane in N2
Propane in N2
Hydrogen sulf ide in N2
Hydrogen sulf ide in N2
Carbonyl sulf ide
RTI audit
cone, (ppa)
9.30
462
10.0
309
10.0
309
9.46
66.9
120
30.2
9.46
128
14.8
328
430
20.3
479
487
9.63
19.7
296
437
647
101
Client audit Status of
% bias (Avg.)* audit**
+6.00 B
+3.70
NA C
NA
m. c
-6.60 B
-11.7
NA C
NA
-4.60 B
+12.5
-4.70 B
+4.40
-0.80
+18.2 B
-22.5
+32.5
-0.35 B
+0.84
+0.45
+4.90 B
-16.5
+1.98
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
oo
Audit
No.
84
85
86
87
88
89
90
91
Client*** Industry
J Compliance
testing
I Steel
manufacturing
I Oil shale
Q Maleic Anhy-
dride Produc-
tion
R Refining
Air Quality Bureau, Refining
New Mexico
S Oil shale
F Compliance
testing &
demonstrat ion
Audit material
Benzene in N2
Hexane in N2
Toluene uvN2
Methyl mercaptan in N2
Hydrogen sulfide in N2
Carbonyl sulfide in N2
Hydrogen sulfide in N2
Carbonyl sulfide in N2
Methyl mercaptan in N2
Benzene in N2
Hexane in N2
Hydrogen sulfide in N2
Hydrogen sulfide in N2
Hydrogen sulfide in N2 .
Carbonyl sulfide in N2
Methyl mercaptan in N2
Hydrogen sulfide in N2
Trichlorethylene in N2
Propane in N2
Propane .in N2
Propane in N2
RTI audit
cone, (ppm)
7.45
72.6
15.0
5.40
647
9.08
437
117
8.42
55.7
324
17.5
437
647
117
8.42
437
94.6
10.0
309
73.8
Client audit Status of
%bias(Avg.)* audit**
23.0 B
0.6
-8.7
NA
5.0 B
1.0
-3.0 B
-4.6
-13.3
+528.4 B
+20.5
21.1 B
22.0
NA C
-29.1 B
-14.8
-3.65
NA B
NA
-54.0
8.7
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No. Client***
92 EPA, Region I
93 D
94 USEPA, Region I
95 E
96 USEPA, Region I
97 Tewksbury State
Hospital, MA
98 T
99 U
Industry
Research Method
Development
Method
Validation
Research-
Method
Development
Acrylonitrile
Production
Resource Re-
covery Garbage
Burning Emis-
sions
Research-
Method Develop-
ment
Plywood
Veneer
Hazardous
Materials
Incineration
RTI audit
Audit material cone, (ppra)
Toluene in N2
Hydrogen sulfide in N2
Vinyl chloride in N2
l.l^dichloroethylene in N2
Trichloroetnylene in N2
Perchloroethylene in N2
Acrylonitrile in N2
Acrylonitrile in N2
Propane in N2
Propane in N2
Vinyl chloride in N2
1,1-dichloroethylene in
N2
Trichloroethylene in N2
Tetrachloroethylene in N2
Method 25 gas in N2
Method 25 gas in N2
Trichloroethylene in N2
Perchloroethylene in N2
Chloroform in No
347
8.32
8.39
14.2
13.5
7.94
413
10.8
10.0
296
8.39
14.2
13.5
7.94
102 as C
1940 as C
8.91
7.94
16.5
Client audit
% bias (Avg.)*
NA
NA
-20.2
+10.6
+55.6
+48.1
NA
6.94
-35.0
-17.2
+57
-9.9
-4.4
+48.6
NA
NA
NA
NA
NA
Status of
audit**
C
C
B
B
B
B
C
C
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
IV)
o
Audit
No.
100
101
102
103
104
105
106
107
108
109
110
Client*** Industry
USEPA, Region I Research Method
Development
U Hazardous
Materials
Incineration
Allegheny Solvent Coating
County
I Hazardous
Waste Incin-
eration
I Hazardous
Waste Incin-
eration
USEPA, Region VI Plastics
USEPA, Region VI Vinyl Chloride
Manufacturing
V Instrument
Check
Q Gasoline Termi-
nal
P Chemicals
Manufacturing
MD Dept. of Health Instrunent
Check
RTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Chlorobenzene in N2
Benzene in N2
Hexane in N2
Meta-xylene in N2
Trichloroethylene in N2
Perchloroethylene in N2
Toluene in N2
Methyl ethyl ketone in N2
Acrylonitrile in N2
Methyl isobutyl ketone in N2
Vinylidiene chloride in N2
Vinylidiene chloride in N2
Vinyl chloride in N2
Vinyl chloride in N2
Methyl chloroform in N2
Perchloroethylene in N^
, Propane in air
Toluene in N2
Benzene in N2
1,2-Tdichloroethane in N2
Benzene in N2
Perchloroethylene in No
9.20
128
30.2
6.82 (cold
2.68 (warm
13.5
14.5
8.51
38.7
11.6
9.49
14.2
9.00
8.41
8.44
10.2
7.94
1.18%
16.4
7.3
8.1
9.64
14.5
NA.
NA
NA
bulb) NA
bulb)
m.
NA.
NA
NA
NA.
NA
12.3
10.0
NA.
NA
+7.8
+15.9
-4.2
17.3
NA
NA
-6.6
+60.1
Status ot
audit**
C
C
C
B
B
C
C
B
B
B
B
-------
TABLE 4. SLbMAKf OF PERFORMANCE AUDIT RESULTS (Continued)
Audit
No.
Ill
112
113
114
115
116
117
118
119
120
121
122
Client***
V
J
GA State EPA
Sacranento County,
California
U
V
X
F
K
Z
K
LA State EPA
Industry
Instrument
Check
Research, Method
Development
Plastics
Instrument
Check
Instrument
Check
Instrument
Check
Carbon Adsorp-
tion
Surface Coating
Instrument Check
Solvent Coating
Instrument Check
Plastic
Manufacturing
Kii audit unenc auait
Audit material cone, (ppn) % bias (Avg.)*
Chloroform in N2
Carbon tetrachloride in N2
Trichloroethylene in N2
Freon 113 in N2
- Propane in N2
Toluene in N2
Vinyl chloride in N2
Ethylene oxide in N2
Benzene in N2
Chlorobenzene in N2
Methanol in N2
Toluene in N2
Methyl ethyl ketone in N2
Methylene chloride in N2
Method 25 gas in N2
Freon 113 in N2
Toluene in N2
Toluene in N2
Perchloroethylene in N2
Benzene in No
Vinyl chloride in No
1 ,2-dichloroethane in N2
Carbon tetrachloride in No
16.5
10.5
13.5
9.76
628
347
8.44
10.1
389
9.20
55.2
16.1
38.7
9.67
96.8 as C
9.76
8.51
558
7.94
9.64
8.44
13.8
10.5
+3
+33.0
+4.0
0
+0.6
+2.0
+10.2
NA.
-35.7
-43.1
NA
NA
+127.3
NA
+38.8
-3.1
NA .'
-30.5
191.5
-37.0
status ot
audit**
B
B
B
C
B
C
^C
B
C
B
C
B
123
Paper Manufac-
turing
Vinyl chloride in N2
6.60
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
ro
rv>
Audit
No.
124
125
126
127
128
129
130
131A
131B
132
133
Client***
LA State EPA
Y
I
F
Y
J
Region Vll
South Coast Air
Quality Manage-
ment District
South Coast Air
Quality Manage-
ment District
Maryland Dept.
of Health
State of Cali-
fornia Air
Resources Board
Industry
Instrument
Check
Surface Coating
Oil Shale
Surface Coating
Surface Coating
Research, Method
Development
Instrument Check
Hazardous Waste
Landfill
Hazardous Waste
Landfill
Instrument
Check
Quality Assur-
ance Audit of
Standards
Audit material
Toluene in No
Methylene chloride in N2
Method 23 gas in N2
Method 25 gas in N2
Carbonyl sulfide in N2
Carbonyl sulfide in N2
Hydrogen sulfide
Methyl mercaptan
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Methyl ethyl ketone in N2
Acrylonitrile in N2
Benzene in N2
Methane in N2
Methane in N2
Benzene in N2
Trichloroethylene in N2
Hexane in N2
Methyl isobutyl ketone in
l,2HDichloroethane in N2
Methylene chloride in N2
Chloroform in N2
Perchloroethylene in No
KIT audit
cone, (ppn)
8.51
9.67
107 as C
775 as C
10.7
116
627
8.42
775 as C
205 as C
1040 as C
38.7
11.6
134
6460
6460
7.9
9.4
32.8
N2 8.4
13.9
9.2
4.6
10.5
Carbon tetrachloride in N2 9.6
Trichloroethylene in N2
Freon-113 in No
14.0
11.0
Client audit
% bias (&rg.)*
-34.2
96.8
80.4
39.5
NA
NA
NA
NA
-26.5, -18.7
21.5
18.9
NA
-29.3
-28
+0.6
-2.5
-11.1
-31.6
-18.5
+15.4
-2.1
+7.6
+2.2
+14.3
+1.0
+7.1
-9.1
Status ot
audit**
B
B
C
B
B
C
B
B
B
B
B
-------
TABLE 4. SUMMARY OP PERFORMANCE AUDIT RESULTS (Continued)
ro
CO
Audit
No.
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
Client***
AA .
FF
J
I
F
BB
EPA Region II
Gcranonwealth of
Massachusetts
EPA Region II
State of Dela-
ware
EE
DO
State of Dela-
ware
OC
F
BB
Industry
Hbod Steve
Bnissions
Polyester Resin
Production
Instrunent
Check
Coil Coatirg
Compliance
Testing
Coil Coating
Metal Refining
Instrunent
Check
Methane Recovery
Plant
Plastic
Manufacturing
Plastic
Manufacturing
Paper Coating
Instrunent
Check
Gasoline Terminal
Vinyl Coating
Plastic
Manufacturing
RTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Benzene in N2
Method 25 gas in N2
Benzene • in N2
Benzene in N2
Method 25 gas in N2
Methanol in N2
Methyl ethyl ketone in N2
Method 25 gas in N2
Benzene in N2
Benzene in N2
Trichloroethylene in N2
Methyl ethyl ketone in N2
Benzene in N2
Vinyl chloride in N2
Vinyl chloride in N2
Method 25 gas in N2
Propane in air
Toluene in N2
Benzene in N2
Propane in N2
Propane in N2
Methyl ethyl ketone in N2
Method 25 gas in N2
310
103.8 as C
10.3
121
195 as C
48.8
40.4
1060 as C
376
7.9
14.0
40.4
7.8
7.75
20.3
96.1 as C
10.9
546
7.9
2052
308
40.4
764 as C
+5.2
+28.1
+12.2
+6.2
-18.3
+10.7
-5.9
-4.0
-11.2
+5.1
-4.3
+31.2
-5.1
-11.0
-10.3
-24.5
-4.6
-8.6
-20.6
NA
-1.0
-25
-9.3
Status of
audit**
B
B
B
B
B
B
B
B
B
B
B
B
B
C
B
B
-------
TABLE 4. StfrMARY OF PERFORMANCE AUDIT RESULTS (Continued)
ro
Audit
No.
150
151
152
153
154
155
156
157
158
159
160
Client***
EPA Region I
EPA Region II
EPA Region II
Ccnrnonwealth of
Massachusetts
J
•
EPA Region I
EPA Region II
EPA Region I
Allegheny
County
Minnesota Pollu-
tion Control
Agency
J
Industry
Wire Coatirg
Instrument
Check
Chemical
Feedstock
Formulation
Paper
Coatipg
Instrument
Check
Paper Coating
Wire Coatiqg
Wire Coating
Instrument
Check
Instrument Check
Methylene
Chloride
Manufacturing
RTI audit Client audit
Audit material cone, (pprn) % bias (Avg.)*
Method 25 gas in N2
Benzene in N2
Method 25 gas in N2
Method 25 gas in N2
Methyl ethyl ketone in N2
Benzene in N2
Benzene in N2
1,1-Dichloroethylene in N2
1 , 1-Dichloroethylene in N2
Propane in N2
Propane in N2
1,2-Dichloroethane in N2
Trichloroethylene in N2
Perchloroethylene in N2
Toluene in N2
Method 25 gas in N2
Hexane in N2
Benzene in N2
Toluene in N2
Trichloroethylene in N2
Perchloroethylene in N2
Propane in N2
Hydrogen Sulfide in N2
Benzene in N2
Toluene in N2
Methylene Chloride in N2
Methylene Chloride in N2
187 as C
9.90
1930 as C
95.8 as C
40.4
96.0
10.2
8.78
479
10.9
607
14.1
9.40
13.3
184
1020 as C
88.2
11.9
8.70
14.0.
6.88
10.9
30.5
10.3
18.9
10.4
6.01
'
+52.0
-5.4
-71.0
-73.1
+220
-5.5
+3.0
NA
w.
NA.
+3.1
-11.3
-1.1
-2.3
MA.
-48.2
NA
-2.5
NA
NA
-93.0
NA
NA
-37
-30
-4.0
-3.7
Status of
audit**
B
B
B
B
B
C
B
C
B
B
B
-------
TABLE 4. SLHMARY OF PERFOIMANCE AUDIT RESULTS (Continued)
ro
ui
Audit
No.
161
162
163
164
165
166
167
168
169
170
171
172
Client***
Florida Dept. of
Health, Welfare
and Bioenv iron-
mental Services
Texas Air
Control Board
Pennsylvania
Dept. of En/ iron-
mental Resources
GG
EPA Region I
Texas Air
Control Board
W
J
N
W
J
N
Industry
Printing
Operation
Instrument
Check
Printing Press
Printing
Operation
Paper Coating
Instrument Check
Plastics
Manufacturing
Instrument Check
Solvent Ink
Coating Process
Surface Coating
Instrument 1
Instrument 2
Instrument 1
Instrument 2
Methylene Chloride
Manufacturing
Solvent Coating
Audit material
Method 25 gas in N2
Method 25 gas in N2
Benzene in N2
Acrylonitrile in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Toluene in N2
Toluene in N2
Method 25 gas in N2
Vinyl Chloride in N2
Vinyl Chloride in N2
Benzene in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Methylene Chloride in N2
Methylene Chloride in N2
Method 25 gas in N2
Method 25 gas in No
RTI audit
cone, (ppa)
1930 as C
187 as C
97.3
424
1093 as C
99.2 as C
196 as C
618
368
99.6 as C
8.15
20.6
7.89
196 as C
1093 as C
-
99.2 as C,
806 as C
1.13
10.4
196 as C
806 as C
Client audit
% bias (Avg.)*
+16
+55
+2.8
-33
-11
+69
NA
+36.9
+11.4
+5.7
+0.6
+0.5
-9.6
+30.6
+13.4
+7
+150
+5
+21
+22
+4
+25
+3
Status of
audit**
B
B
B
C
B
B
B
B
B
B
B '
B
-------
TABLE 4. SUMMARY CF PERFORMANCE AUDIT FESULTS (Continued)
ro
CTl
Audit
No.
173
174
175
176
177
178
Client*** Industry
HH Steam Stripping
EPA/ASRL Lab #1, Inst. #1
Lab #1, Inst. #2
Lab #2, Inst. #1
Lab nt Inst. #2
II Instrument Check
L Synthetic Rubber
Manufacturing
L Synthetic Rubber
Manufacturing
MM Asphalt Plant
Audit material
1,2-Dichloroethane in
Vinyl Chloride in N^
Methylene Chloride in
Benzene in N2
Toluene in N£
1,3-Butadiene in N£
Meta-Xylene in N2
Benzene in N£
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Benzene in N2
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Benzene in N2
Toluene in N2
1,3-Butadiene in N2
Meta-Xylene in N2
Method 25 gas in N2
Chlorofonn in N2
Carbon Tetrachloride
Carbon Tetrachloride
Chlorofonn in N2
1,3-Butadiene in N2
1,3-Butadiene in N2
Method 25 gas in N2
Method 25 gas in No
RTI audit
cone, (ppra)
No 422
7.75
N2 6.01
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
7.89
10.2
13.4
11.1
806 as C
9.08
in N2 5.88
in N2 18. 1
22.1
52.9
32.3
99.6 as C
806 as C
Client audit
%bias (Avg.)*
+71
-36
+45
-K).6
-14.4
-9.2
-10.8
-3.2
-8.6
-10.8
-9.2
+1
-1
0
+6
+5
-8
+1
+10
+24
+7
+28
+21.
-1
-6
-4
MA
NA
Status of
audit**
B
B
B
B
B
B
B
B
C
C
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
rv>
Audit
No.
179
180
181
182
183
184
185
186
187
188
189
190
Client***
U
HH
BB
L
KK
F
V
CO
F
BB
BB
KK
Industry
Plastics
Manufacture
Steam Stripping
Process
Lignite Power
Plant
Synthetic Rubber
Manufacturing
Plant
Can Coating
Operation
Surface Coating
Operation;
Instrument #1
Instrument #2
Instrument Check
Instrument Check
Vinyl Coating
Manufacturing
Can Coating
Operation
Can Coating
Operation
Can Coating
Operation
KTI audit Client audit
Audit material cone, (ppm) % bias (fug.)*
Hexane in N2
1,2-Dichloroethane in N2
1,1-Dichloroethylene in N2
Vinyl Chloride in N2
Method 25 gas in N2
Carbon Tetrachloride in N2
Carbon Tetrachloride in N2
Method 25 gas in N2
Methyl Ethyl Ketone in N2
Methyl Ethyl Ketone in N2
Methylene Chloride in %
Method 25 gas in N2
Toluene in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
2139
97.2
15.2
6.1
99.2 as C
21.8 as C
10.6 as C
1093 as C
45
45
6.01
1904 as C
618
99.6 as C
1968 as C
806 as C
-2
-90
-44
-5
-33
0
-2
-53
+20
+16
-17
+2
+3
NA.
m.
+17
Status of
audit**
B
B
B
B
B
B
B
B
B
C
C
B
-------
TABLE 4. SUMMARY OF PERFORMANCE AUDIT RESULTS (Continued)
00
Audit
No.
191
192
193
1%
195
196
197
198
199
200
201
Client*** Industry
JJ Instrument Check
LL Organic Emissions
Fran Building
Materials
U Paint Shop
Incinerator
PP Limestone Quarry
QQ Bulk Gasoline
Terminal
RR Research Method
Development;
Instrument #1
.Instrument #2
DD Manufacturer of
Vinyl Wall
Coverings
Ml Asphalt Plant
J Method Development
Research
LL Instrument Check
Bfi Municipal
Incinerator
KTI audit Client audit
Audit material cone, (ppm) % bias (Avg.)*
Method 25 gas in N2
Hexane in No
Toluene in N2
Toluene in N2
Chlorobenzene In N2
Hexane in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Propane In N2
Propane in N2
Hydrogen Sulf ide in N2
Hydrogen Sulf ide in N2
Methyl Ethyl Ketone in N2
Methyl Isobutyl Ketone in
Methanol in N2
Method 25 gas in N2
Method 25 gas in N2
1,3-Butadiene in N2
Ethane in N2
Ethylene in N2
Toluene in N2
Propane in N2
99.2 as C
92.1
21.6
303
14.4
34.8
1904
1093
196
10.1 '
21300
537
537
45.0
No 10.2
56.8
1093 as C
196 as C
52.9
300
4.72
10.2
14.6
-1
-7
+1
0
46
-10
-W
-14
-11
-21
-1
-10
-5
Status of
audit**
B
B
B
B
B
B
B
A
A
A
A
A
-------
TABLE 4. SUMMARY OF PERFOFWANCE AUDIT RESULTS (Continued)
ro
10
Audit
No.
202
203
204
205
206
207
208
209
210
211
212
Client***
F
W
SS
L
J
TT
UU
W
H
Q
WW
Industry
Paper Coating
Process
Catalytic
Incinerator
Coke Oven
Enissions
Instrunent Check
Instrument Check
Instrunent Check
Instrunent Check
Municipal
Incinerator
Paper Coating
Process
0/en Incinerator
Auto Assembly
Industrial
Manufacturing
RTI audit Client audit
Audit material cone, (ppn) % bias (Avg.)*
Methyl Acetate in N2
Method 25 gas in N2
Method 25 gas in N2
Hydrogen Sulfide in N2
Trichloroethylene in N2
Ethylene Oxide in N2
Ethylene Oxide in N2
Perchloroethylene in N2
Perchloroethylene in N2
Carbonyl Sulfide in N2
Carbonyl Bisulfide in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Method 25 gas in N2
Benzene in N2
437 NA
1968
196
787
101 -1
0.868 -1
9.09 +10
7.83 NA
551 NA.
103.3
105
806 as C +9
196 as C
146 as C
1904 as C
395
Status of
audit**
C
A
A
B
B
C
A
B
B
A
A
-------
TABLE 4. SUMMARY OF PERFOIWANCE AUDIT RESULTS
CO
o
Audit
No.
213
214
Client***
ED
XX
Industry
Paper Coating
Process
Paint Manufac-
turing
Audit material
Toluene in N2
Vinyl Chloride in N2
Rn audit
cone, (ppm)
264
8.13
Client audit Status of
% bias (Avg.)* audit**
A
A
NA = Not Analyzed
*Client % Bias
100 X
Client-Measured Concentration - BTI-Measured Concentration
RTI-Measured Concentration
**Status Codes:
A = Audit in progress;
B = Audit complete;
C = Audit complete without analysis of audit materials by client.
***Whenever the auditee is known, an alphabetical letter is shown. Whenever the auditee is unknown or the request
is for a self-audit, the nane of the agency requesting the audit is shown.
1977 - Audits 1-8 1982 - Audits 83-86
1978 - Audits 9-28 1983 - Audits 87-106
1979 - Audits 29-49 1984 - Audits 107-130
1980 - Audits 50-75 1985 - Audits 131-159
1981 - Audits 76-82 1986 - Audits 160-176
1987 - Audits 177-214
-------
SECTION 4
STABILITY STUDIES
An ideal calibration standard or audit material should be both
accurate and stable over its total time of usage. The stabilities of
the compounds were studied through periodic reanalyses of the cylinder
contents. In this project, the cylinder gas mixtures are initially
analyzed upon receipt from the specialty gas vendor to assess the
vendor's analysis. The gas mixtures are again analyzed at 1 month, at
2 months, and at one year following the initial analysis to determine
the stability of the gas mixtures. In some cases, analyses are not
performed on the dates specified above; however, every attempt is made
to acquire the data on this schedule. Some cylinders have also been
analyzed yearly after completion of the new cylinder stability study,
providing additional data for estimating stability.
As the number of analyses per cylinder increases, statistical sta-
bility analyses will be performed. The results of the statistical
analyses will be presented in a future report. Statistical stability
analyses for ten (10) halocarbons and eight (8) other organics have
been published in the open literature (1,2).
Absolute accuracies of the cylinder analyses have not been deter-
mined due to the lack of NBS standards above one ppm for most of the
organic gas mixtures. An examination of the data in Attachment 1 shows
that values for individual cylinder analyses usually vary less than 10
percent between analyses for 4-8 analyses over 2-6 years. This varia-
tion may indicate changes in cylinder contents (i.e., instability),
the imprecision of the measurement process, or both. Possible sources
of experimental error that could result in apparent differences in con-
centrations include (1) the variability of the analytical technique
used for analysis, (2) stability of calibration standards, and (3) the
accuracy of independently producing calibration standards where NBS-
SRMs do not exist. These sources of variability contribute to the net
uncertainty of the resulting data presented in Attachment 1. Estimates
31
-------
of day-to-day measurement uncertainty (repeatability) for all compounds
have not been performed. However, the measurement uncertainties for
ten halocarbons have been published (2). The measurement uncertainty
varied from less than 1 percent to 10 percent depending on the com-
pound, and the major portion of the uncertainty was attributed to the
method of preparation of the calibration standard. The uncertainty for
the gas chromatographic analysis was determined to be less than 2 per-
cent by multiple injections of the gas during same day analysis.
For the most recent analyses (1987) shown in Attachment 1, the un-
certainty in the concentration has been estimated based on considera-
tion of the uncertainties of several parameters associated with the
measurement and calibration procedures. The equation below was then
used to estimate the total uncertainty based on the individual uncer-
tainties.
Total Uncertainty =
Where *
2 = two standard deviations (95 percent confidence limit)
ei = individual component error, (percent coefficient of
variation)
n = total number of error components.
For analyses involving the use of NBS-SRMs as calibration stan-
dards, the total uncertainty is estimated to be 3.5 percent; for analy-
ses using permeation tube based calibration standards - 5.3 percent;
and for analyses using pressure/dilution based calibration standards -
5.6 percent.
32
-------
SECTION 5
SUMMARY AND CONCLUSIONS
Cylinder gases of hydrocarbons, halocarbons, sulfurous, and oxy-
genated species have been used successfully as audit materials to
assess the relative accuracy of gas chromatographic systems used to
measure source emissions. Absolute accuracy has not been determined
due to the lack of NBS standards for most of the organic 'gas mixtures
above 1 ppm; instead an estimated interlaboratory bias between the
audit results and RTI results has been reported for the performance
audits conducted during source testing. This interlaboratory bias has
been generally less than 15 percent for both low and high concentration
gases (Table 4).
Of the 45 gaseous compounds studied or currently under study, 39
have demonstrated sufficient stability in cylinders to be used further
as audit materials. Five compounds (ethylamine, paradichlorobenzene,
cyclohexanone, 1,2-dibromoethylene, and aniline) are not recommended as
audit materials for various reasons as discussed in Attachment 1. One
compound (formaldehyde) was ordered but the speciality gas manufacturer
indicated that cylinder gases of this compound could not be prepared.
Detailed statistical analyses which separate statistical deviations
from true concentration changes with time for 18 gaseous compounds have
been published in a journal publication; statistical analyses for the
remaining compounds will be presented in a future report.
33
-------
REFERENCES
1. R. K. M. Jayanty, C. Parker, C. E. Decker, W. F. Gutknecht, J. E.
Knoll and D. J. VonLehmden, "Quality Assurance for Emissions Anal-
ysis Systems," Environmental Science and Technology, 17_ (6),
257-263A (1983).
2. G. B. Howe, R. K. M. Jayanty, A. V. Rao, W. F. Gutknecht, C. E.
Decker and D. J. VonLehmden, "Evaluation of Selected Gaseous Halo-
carbons for Use in Source Test Performance Audits," J. of Air Pol-
lution Control Association, 33 (9), 823-826 (1983).
34
-------
ATTACHMENT 1
Stability Data
as of
September 1987
1.0 BENZENE
2.0 ETHYLENE
3.0 PROPYLENE
4.0 METHANE/ETHANE
5.0 PROPANE
6.0 TOLUENE
7.0 HYDROGEN SULFIDE
8.0 META-XYLENE
9.0 METHYL ACETATE
10.0 CHLOROFORM
11.0 CARBONYL SULFIDE
12.0 METHYL MERCAPTAN
13.0 HEXANE
14.0 1,2-DICHLOROETHANE
15.0 CYCLOHEXANE
16.0 METHYL ETHYL KETONE
17.0 METHANOL
18.0 1,2-DICHLOROPROPANE
19.0 TRICHLOROETHYLENE
20.0 1,1-DICHLOROETHYLENE
21.0 1,2-DIBROMOETHYLENE
22.0 PERCHLOROETHYLENE
35
-------
23.0 VINYL CHLORIDE
24.0 1,3-BUTADIENE
25.0 ACRYLONITRILE
26.0 ANILINE
27.0 METHYL ISOBUTYL KETONE
28.0 CYCLOHEXANONE
29.0 PARADICHLOROBENZENE
30.0 ETHYLAMINE '
31.0 FORMALDEHYDE
32.0 METHYLENE CHLORIDE
33.0 CARBON TETRACHLORIDE
34.0 FREON 113
35.0 METHYL CHLOROFORM
36.0 ETHYLENE OXIDE
37.0 PROPYLENE OXIDE
38.0 ALLYL CHLORIDE
39.0 ACROLEIN
40.0 CHLOROBENZENE
41.0 CARBON DISULFIDE
42.0 METHOD 25 GAS MIXTURE
43.0 ETHYLENE DIBROMIDE
44.0 1,1,2,2-TETRACHLOROETHANE
NOTE: PPM concentrations shown in Attachment 1 are expressed on a
mole/mole basis, except for EPA Method 25 mixture which is on
a mole carbon/mole basis.
36
-------
1.0 BENZINE STABILITY STUDY
Cylinder No. 1A IB
Cylinder Construction* Al Al
Manufacturer ppm
Concentration
Date
ppn
Day
ppm
Day
ppn
Day
ppn
Day
ppm
BTI Day
Concentration ppm
Day
ppm
Day
-. ppm
Day
PP"
Day
ppm
Day
ppm
Day
ppm
Day
ppn
65.4 324
7/27/77 7/27/77
(79.0) (374)
136 136
(74.0) (337)
156 156
(78.0) (350)
167 167
(80.0) (355)
630 402
(77.9) (331)
** 433
(343)
969
(358)
1274
(348)
1491
(324)
2056
(305)
2438
(319)
3065
(326)
3716
(338)
1C ID
Al Al
200 117
7/27/77 7/27/77
(241) (138)
247 29
(216) (144)
252 157
(215) (134)
381 252
(218) (129)
** 290
(127)
414
(127)
1247
(132)
2438
(121)
3065
(125)
3609
(127)
IE
S
61.0
2/10/78
(62.0)
78
(62.0)
216
(61.0)
385
(65.0)
722
(66.9)
1337
(55.7)
1858
(58.7)
2246
(60.4)
2867
(62.3)
3409
(62.5)
IF
S
71.0
2/10/78
(71.0)
232
(73.0)
385
(75.0)
586
(74.5)
882
(75.7)
1292
(65.7)
2246
(70.0)
2867
(72.0)
3410
(71.3)
1G
S
80.0
2/10/78
(80.0)
78
(81.0)
216
(81.0)
385
(84.0)
504
(85.4)
1292
(74.0)
2246
(78.3)
2867
(80.7)
3410
(81.1)
Al = Aluninun; S = Steel; IS = LowPressure Steel.
UJU
Cylinder anpty.
ANALYTICAL CONDITIONS: Plane ionization detector, .10% OV-101 on Chronosorb WHP colunn at 100
degrees Celsius.
CALIBRATION: An NBS-SIM of benzene in nitrogen is used to calibrate the detector response.
37
-------
1.0 BENZENE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
HTI
Concentration
ppm
Date
ppn
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppn
Day
ppm
Day
ppn
Day
ppm
Day
ppm
Day
ppm
Day
ppn
1H
S
100
2/8/78
(101)
65
(102)
206
(98.0)
237
(101)
434
(105)
773
(106)
831
(100)
1294
(92.0)
2380
(96.0)
2925
(99.2)
3412
(101)
11 U
S S
139 232
2/9/78 2/9/78
(139) (229)
49 233
(139) (237)
50 386
(142) (243)
% 557
(139) (225)
127 **
(140)
205
(138)
505
(147)
1293
(128)
1338
(128)
2380
(134)
2868
(137)
3412
(138)
IK
S
265
2/9/78
(264)
49
(261)
50
(268)
69
(254)
84
(269)
**
1L
S
296
2/9/78
(295)
49
(292)
51
(294)
93
(298)
205
(294)
237
(302)
809
(295)
1294
(290)
2379
(285)
2868
(293)
3412
(301)
LM
S
326
2/9/78
(319)
49
(316)
51
(318)
%
(323)
433
(345)
830
(335)
1294'
(320)
2379
(310)
2868
(316)
3412
(332)
IN
S
344
2/9/78
(332)
49
(327)
54
(342)
69
(335)
809
(342)
**
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
Cylinder empty.
38
-------
1.0 BENZENE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
-•
ppm
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppm
Day
ppn
Day
ppn
10
S
389
2/9/78
(387)
64
(369)
205
(396)
809
(3%)
1294
(389)
2247
(376)
2868
(386)
3412
(395)
IP
S
8.04
4/21/78
(8.37)
4
(8.33)
25
(8.20)
26
(8.34)
56
(8.19)
134
(7.81)
434
(8.21)
766
(7.93)
1222
(7.68)
2175
(7.90)
2797
(8.20)
3339
(8.22)
1Q 1R
S S
9.85 9.89
4/21/78 4/21/78
(9.99) (10.0)
5 4
(9.88) (10.1)
25 13
(10.1) (9.73)
332 332
(9.71) (9.77)
** 1018
(9.46)
1270
(9.64)
2797
(9.75)
3339
(9.68)
IS IT
S S
9.93 10.0
4/21/78 4/21/78
(10.0) (10.7)
4 25
(10.1) (10.2)
26 146
(9.80) (9.20)
56 362
(9.50) (9.90)
146 1222
(8.90) (9.56)
628 **
(9.57)
738
(9.45)
**
1U
S
10.9
4/21/78
(11.5)
4
(10.7)
25
(10.8)
332
(10.7)
434
(10.9)
759
(10.2)
1222
(9.69)
2175
(9.90)
2853
(10.2)
3339
(10.4)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
** ,.
Cylinder empty.
39
-------
1.0 BENZENE SIABUnY SUJDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
•'
ppm
Date
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
Day
ppm
IV
S
12.2
4/25/78
(12.7)
1
(12.5)
21
(12.3)
109
(12.0)
358
(12.1)
755
(12.0)
1218
(11.7)
2171
(11.9)
2849
(12.2)
3335
(12.3)
1W IX
S S
8.09 11.0
5/19/78 5/4/78
(8.10) (11.2)
105 132
(7.70) (10.2)
287 **
(8.10)
438
(8.20)
784
(8.30)
1194
(7.45)
2147
(7.80)
2769
(7.89)
3311
(8.00)
1Y
S
11.2
5/4/78
(10.9)
132
(9.90)
302
(10.7)
393
(10.8)
2162
(10.3)
2840
(10.6)
3326
(1016)
12 1M
S S
8.09 9.14
5/4/78 5/4/78
(8.20) (9.10)
132 132
(7.04) (7.80)
302 302
(7.70) (8.50)
473 1005
(7.54) (8.17)
** 1209
(8.42)
2162
(8.40)
2784
(8.72)
3326
(8.88)
1AB
S
270
7/27/77
(300)
29
(319)
157
(312).
2056
(305)
**
*A1 = Alumintm; S = Steel; 13 » Low Pressure Steel.
**CyliiKier empty.
40
-------
2.0 EIHENE (ETHYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
•ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
2A
Al
2920
2/23/78
(3070)
49
(3120)
198
(2880)
809
(3200)
2291
(3280)
2856
(3120)
3241
(3080)
26
Al
3000
2/23/78
(3130)
49
(3180)
198
(2940)
809
(3270)
2291
(3350)
2856
(3180)
3241
(3150)
2C
Al
4960
2/23/78
(5210)
48
(5340)
201
(4660)
809
(5380)
2291
(5520)
2856
(5310)
3241
(5240)
2D
Al
4970
2/23/78
(5200)
48
(5280)
201
(4910)
809
(5340)
2291
(5480)
2856
(5270)
3241
(5220)
2E
Al
19900
2/24/78
(20400)
48
(20800)
200
(20200)
808
(18900)
2290
(20600)
2855
(20400)
3240
(20600)
2F
Al
19900
2/24/78
(20600)
48
(20800)
200
(20300)
808
(19000)
2290
(20700)
2855
(20600)
3240
(20800)
2G
Al
4.95
4/27/78
(4.70)
29
(4.70)
106
(4.85)
741
(4.62)
1180
(5.12)
2224
(4.50)
2804
(4.72)
3176
(4.82)
*A1 =
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, Durapak n-octane on Porasil C colunn
at 30 degrees Celsius.
CALIBRATION: An NBS-SFM of propane in nitrogen is used to calibrate the detector response.
41
-------
2.0 ETHENE (ETHXLENE) STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppm
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppm
Day
ppn
Day
ppn
Day
ppn
2H
Al
10.0
4/27/78
(9.70)
29
(9.60)
106
(9.90)
740
(8.40)
1180
(10.0)
2224
(9.50)
2587
(9.54)
2804
(9.76)
3176
(9.81)
21
Al
15.0
4/28/78
(14.4)
28
(14.4)
104
(14.9)
739
(18.0)
1179
(14.4)
2223
(14.2)
2803
(14.5)
3177
(14.6)
2J
Al
19.9
4/28/78
(19.2)
28
(19.3)
104
(20.3)
739
(21.5)
1179
(18.9)
222?
(18.9)
**
2K
Al
300
4/28/78
(306)
33
(319)
105
(312)
728
(300)
2223
(291)
2793
(290)
3177
(293)
2L
Al
448
4/28/78
(468)
33
(493)
104
(473)
740
(457)
2225
(435)
2793
(437)
3177
(439)
2M
Al
603
4/28/78
(629)
34
(646)
104
(636)
740
(606)
2225
(583)
2793
(590)
3177
(587)
2N
Al
701
4/28/78
(740)
34
(749)
•104
(737)
740
(703)
2225
(678)
2793
(684)
3177
(683)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
**Cylinder empty.
42
-------
3.0 PROPENE (PROPYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Cay
ppn
Day
ppn
Day
ppn
Day-.
ppn
Day
ppn
Day
ppn
3A
Al
4.94
4/27/78
(4.86)
26
(4.94)
27
(4.78)
104
(4.98)
749
(4.93)
2229
(4.80)
2601
(4.75)
2804
(4.78)
3178
(4.88)
3B
Al
9.91
4/27/78
(9.83)
26
(9.85)
104
(10.3)
749
(9.76)
1250
(9.63)
2229
(9.80)
2804
(9.81)
3C
Al
14.8
4/27/78
(14.6)
26
(14.5)
104
(14.8)
749
(14.8)
**
3D
Al
20.0
4/27/78
(19.8)
27
(19.0)
104
(20.0)
749
(20.3)
2229
(19.7)
2804
(19.8)
3178
(19.8)
3E
Al
298
4/27/78
(2%)
27
(286)
104
(317)
750
(324)
820
(328)
**
3F
Al
446
4/27/78
(442)
27
(428)
105
(474)
750
(479)
2229
(444)
2794
(449)
3178 '
(441)
33
Al
585
4/27/78
(577)
27
(560)
104
(629)
750
(620)
2229
(579)
2794
(589)
3178
(578)
3H
Al
683
4/27/78
(672)
27
(655)
105
(729)
750
(721)
820
(725)
2229
(676)
2794
(688)
3178
(674)
Al = Aluminum; S = Steel; IS = Low Pressure Steel.
**fcylinder snpty.
ANALYTICAL CONDITIONS: Flame ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees
Celsius
CALIBRATION: An NBS-SRM of propane in nitrogen is used to calibrate the detector response.
43
-------
4.0 METHANE/ETHANE STABILITY SUJDY
Cylinder No.
Cylinder Construct ion*
Audit Material**
Manufacturer
Concentration
RTI
Concentration
pom
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
4A
Al
M
6000
7/21/78
(6210)
264
(5980)
662
(6580)
2145
(6460)
2722
(6525)
3097
(6440)
E
714
7/21/78
(773)
163
(715)
264
(684)
662
(703)
2145
(730)
2722
(746)
3097
(751)
4B
Al
M
8130
7/21/78
(8130)
35
(7550)
264
(7820)
662
(8590)
2145
(8430)
2722
(8553)
3097
(8410)
E
597
7/21/78
(654)
35
(663)
163
(606)
264
(577)
662
(598)
2145
(619)
2722
(632)
3097
(628)
4C
Al
M
1000
7/21/77
(1020)
264
(983)
1027
(1290)
2510
(1068)
3087
(1059)
3097
(1050)
E
295
7/21/77
(315)
163
(292)
264
(283)
1027
(284)
2510
(300)
3087
(300)
3097
(2%)
4D
Al
M
1670
7/21/77
(1710)
35
(1560)
264
(1640)
1027
(1950)
2510
(1770)
3087
(1755)
E
202
7/21/77
(220)
29
(218) .
157
(202)
258
(195)
1027
(206)
2510
(207)
3087
(207)
Al = Aluminun; S = Steel; IS = Low Pressure Steel.
**M = Methane; E =» Ethane.
ANALYTICAL CONDITIONS: Flane ionization detector, Durapak n-octane on Porasil C colunn at 30 degrees
Celsius.
CALIBRATION: An NBS-SFM of propane in nitrogen is used to calibrate the detector response.
44
-------
5.0 PROPANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
'
RTI
Concentration
ppn
Date
ppm
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
5A
Al
5.01
4/25/78
(4.90)
24
(4.90)
108
(5.10)
605
(4.89)
729
(5.20)
**
5B
Al
10.0
4/25/78
(9.70)
24
(9.80)
108
(10.1)
513
(10.6)
752
(10.0)
914
(10.0)
2220
(10.9)
2851
(10.1)
3184
(10.1)
5C
Al
14.6
4/25/78
(14.3)
25
(14.5)
108
(14.9)
582
(15.0)
736
(14.7)
2220
(14.8)
2589
(14.8)
2806
(14.6)
3179
(14.8)
5D
Al
20.0
4/25/78
(19.5)
25
(19.8)
108
(20.3)
582
(20.8)
736
(20.1)
1252
(19.7)
2220
(20.0)
2806
(20.0)
3179
(20.2)
5E
Al
303
4/26/78
(304)
24
(301)
107
(305)
530
(316)
581
(316)
735
(313)
752
(314)
913
(309)
1251
(2%)
2219
(308)
2795
(308)
3178
(308)
5F
Al
439
4/26/78
(441)
24
(436)
107
(440)
530
(450)
581
(453)
728
(472)
**
5G
Al
604
4/26/78
(615)
27
(615)
107
(607)
604
(613)
735
(628)
2218
(607)
2795
(617)
3179
(612)
5H
Al
708
4/27/78
(730)
26
(723)
106
(710)
603
(718)
734
(734)
2218
(715)
2794
(717)
3178
(713)
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.
**Cylinder empty.
ANALYTICAL CONDITIONS: Flame ionization detector, Durapak n-octane on Porasil C column at 30 degrees
Celsius.
CALIBRATION: An NBS-SEM of propane in nitrogen is used to calibrate the detector response.
45
-------
5.0 PROPANE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppm
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
51
Al
1000
3/3/83
(1027)
452
(1070)
734
(1006)
1022
(1040)
1407
(1020)
5J
Al
2000
3/3/83
(2100)
452
(2180)
734
(2052)
1022
(2060)
1407
(2050)
5K
Al
10,000
3/3/83
(11800)
452
(13000)
734
(13021)
1022
(12500)
1407
(12600)
5L
Al
20,000
3/3/83
(20700)
452
(21000)
• 734
(21302)
1022
(21300)
1407
(21200)
*,.
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
46
-------
6.0 TOLUENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
6A
LS
408
12/6/78
(405)
3
(405)
86
(394)
100
(393)
**
6B
LS
606
12/6/78
(585)
3
(579)
86
(577)
358
(615)
2079
(663)***
2338
(603)
2632
(618)
6C
S
16.2
10/3/78
(17.3)
48
(14.9)
365
(15.0)
1373
(14.8)
**
6D
S
9.11
10/3/78
(9.62)
64
(8.50)
66
(8.60)
160
(8.20)
**
6E
S
9.00
3/29/83
(8.51)
744
(8.04)
1063
. (9.07)
1548
(9.37)
6F
S
430
7/1/80
(430)
861
(347)
1115
. (338)
1505
(427)***
1765
(351)
2059
(368)
**
Al = Aluninun; S « Steel; LS a Low Pressure Steel.
(Cylinder anpty.
Trlrlr
HAH
Questionable value.
ANALYTICAL CONDITIONS: Flane ionization detector, Porasil C colunn at 200 degrees Celsius.
. CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards
fron reagent grade toluene.
47
-------
6.0 TOLUENE STABILITY STUDY (Continued)
^Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppa
6G
Al
18.2
7/27/83
(16.1)
383
(19.1)***
**
6H
Al
9.0
7/1/80
(8.50)
1505
(9.40)
2064
(8.15)
2549
(8.72)
61
Al
10.3
12/11/84
(9.27)
192
(8.70)
440
(10.2)
926
(9.80)
6J
Al
21.7
12/11/84
(20.3)
121
(18.9)
440
(21.6)
926
(21.0)
6K
LS
1%
12/11/84
(183)
141
(184)
436
(195)
926
(180)
6L
LS
310
12/11/84
(290)
141
(281)
436
(303)
1021
(335)
Al = Aluninum; S = Steel; LS = Low Pressure Steel.
**Cylinder enpty.
^Questionable value.
48
-------
7.0 HYDROGEN SULFLDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
7A
Al
399
10/1/78
(371)
38
(424)
111
(414)
1030
(437)
2270
(444)
2446
(401)
2795
(395)
3047
(411)
7B
Al
9.15
7/7/78
(9.73)
87
(6.72)
124
(7.11)
197
(6.36)
6%
(6.23)
1116
(8.32)
2399
(8.00)
2424
(6.60)
2545
(6.00)
2848
(5.75)
3118
(6.44)
7C
Al
16.7
10/1/78
(16.1)
38
(16.5)
111
(15.7)
580
(16.2)
1030
(17.5)
2270
(14.5)
2300
(15.3)
2446
(15.6)
2762
(16.0)
3298
(14.0)
7D 7E
Al Al
649 6.95
10/1/78 10/1/78
(641) (7.05)
38 87
(655) (5.75)
111 124
(690) (5.62)
1030 197
(647) (5.23)
6%
** (5.14)
1116
(5.38)
2325
(4.6)
2446
(4.4)
2762
(3.88)
3032
(4.28)
7F
Al
6.45
10/1/78
(4.94)
38
(5.14)
111
(4.81)
580
(4.35)
1030
(3.71)
2325
(4.3)
2446
(4.1)
2762
(3.03)
3032
(3.56)
7G
Al
671
3/2/83
(628)
687
(683)
833
(654)
1182
(737)
1436
(715)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
**Cylinder empty.
ANALYTICAL CONDITIONS: Plane photometric detector, Chronosil 330 coluroi at 50 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards from pure
hydrogen sulfide. A penneation tube is used for generation of calibration mixtures for lower level «100
ppn) cylinder analyses.
ANALYTICAL PROBLEMS: Only a Teflon® column and Teflon® sanple loop should be used. The air-to-hydrogen
ratio is critical to the sensitivity of the FPD.
49
-------
7.0 HXDRCGEN SULFIDE STABILITY SIUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
7H
Al
20.77
1/17/85
(17.7)
25
(20.6)
146
(21.0)
462
(21.2)
734
(20.1)
71
Al
29.27
1/17/85
(22.6)
25
(30.4)
146
(30.5)
462
(29.0)
734
(30.2)
7J
Al
39.14
1/17/85
(31.6)
25
(42.4)
146
(40.5)
462
(39.8)
**
7K
Al
97.31
1/17/85
(83.7)
146
(92.1)
495
(97.8)
746
(101)
7L
Al
206.3
1/16/85
(200)
147
(210)
4%
(198)
758
(200)
7M
Al
323.2
1/16/85
(291)
147
(320)
496
(306)
758
(324)
7N
Al
417
1/16/85
(398)
147
(415)
4%
(420)
750
(424)
70
Al
503.2
1/16/85
(489)
147
(514^
496
(537)
750
(538)
*A1 = Aluninun; S = Steel; LS = Low Pressure Steel.
Cylinder empty.
50
-------
8.0 1,3-DlMETfflIBENZENE (M-XYLENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
SA
is
405
10/5/78
(480)
63
(445)
158 .
(425)
412
(487)
606
(507)
**
8B
LS
613
10/5/78
(720)
63
(676)
158
(656)
606
(760)
2140
(598)
**
8C
S
17.3
10/5/78
(16.6)
63
(17.2)
166
(20.8)
302
(16.4)
1036
(19.0)
**
8D
S
7.33
10/5/78
(6.20)
63
(6.81)
166
(6.82)
1036
(5.66)
2694
(4.39)
8E
15
601.0
6/7/85
(5%)
257
(552)
749
(438)
8F 8G
LS Al
351.4 12.1
6/7/85 6/7/85
(362) (11.5)
257 257
(344) (11.1)
749 749
(328) (10.1)
Al = Aluninuir;- S = Steel; LS = Low Pressure Steel.
**Cylinder anpty.
CALIBRATION: A pressure-dilution technique is used for generation of a series of standards fron
reagent grade nrxylene.
ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C column at 250 degrees Celsius.
51
-------
9.0 METHXL ESTER ACETIC ACID (METHXL ACETATE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
FTI
Concentration
ppn
Date
ppn
Day
ppn
• Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
9A
S
326
10/13/78
(271)
230
(340)
286
(324)
629
(348)
2442
(336)
2742
(320)
3183
(310)
9B
S
455
10/13/78
(428)
230
(437)
286
(442)
629
(479)
2442
(470)
2742
(437).
3268
(462)
9C
S
6.84
10/13/78
(5.29)
230
(4.86)
286
(5.02)
630
(5.88)
2442
(5.32)
2742
(5.89)
3183
(5.36)
9D
S
17.2
10/13/78
(12.9)**
230
(12.5)**
286
(11.8)**
630
(12.5)**
2442
(17.2)
2742
(16.5)
3183
(15.4)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
Questionable value.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP
colum at 125 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for generation of a
series of standards firm reagent grade methyl acetate.
52
-------
10.0 TOICHLDBCMETHANE (CHLOHOEOFM) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppm
Concentration
Date
ppn
Day
ppn
Day
KTI ppn
Concentration
Day
ppn
Day
ppn
Day
ppn
Day
ppn
10A
S
520
10/17/78
(529)
161
(515)
256
(514)
553
(531)
**
10B
S
348
10/17/78
(345)
161
(351)
256
(340)
975
(325)
2422
(333)
2S42
(326)
3176
(344)
IOC
S
8.70
10/17/78
(8.08)
161
(7.39)
256
(7.50)
553
(8.11)
2422
(4.26)
2642
(4.52)
3176
(4.76)
1QD 10E
S Al
16.9 9.81
10/17/78 1/10/86
(17.6) (8.92)
161 534
(16.5) (9.45)
256
(16.2)
553
(16.5)
2422
(14.9)
2642
(15.0)
3176
(14.9)
10F
Al
22.0
1/10/86
(21.1)
534
(21.8)
Al = Aluninun; S = Steel; IS = Low Pressure Steel.
Cylinder empty.
ANALYTICAL CONDITIONS: Flane ionization detector, Porasil C column at 150 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for generation of a series of standards
froa reagent grade chloroform.
53
-------
11.0 CARBONYL SULFIDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppm
Date
ppm
Day
ppn
Day
ppm
11A
S
251
11/3/78
(276)
78
(281)
185
(275)
**
11B
S
100
11/3/78
(109)
78
(111)
185
(95.0)
**
11C
S
9.96
11/3/78
(9.10)
78
(8.66)
185
(8.23)
**
11D
S
7.03
11/3/78
(6.81)
78
(6.48)
185
(6.41)
**
11E
AL
9.54
9/18/81
(12.9)
35
(12.5)
222
(9.08)
**
11F
AL
101
9/18/81
(111)
35
(117)
**
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.
**Cylinder anpty.
ANALYTICAL CONDITIONS: Plane photometric detector, Carbopack B colunn at 50 degrees Celsius or
Chranosil 330 column at 60 degrees Celsius.
CALIBRATION: A pressure-dilution technique is used for generation of a series of standards from
pure carbonyl sulfide.
ANALYTICAL PROBLEMS: Only a Teflon® colunn and Teflon® sanple loop should be used. The
air-to-hydrogen ratio is critical to the sensitivity of the FPD.
54
-------
11.0 CARBONXL SULFIDE STABILITY STUDY (Continued)
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
11G
Al
99.2
1/11/85
(101)
150
(96.5)
517
(105)
**
11H
Al
225
1/11/85
(228)
150
(199)
517
(205)
985
(206)
111
Al
414
1/11/85
(423)
150
(404)
• 517
(420)
985
(472)
11J
Al
10.71
1/11/85
(9.3)
150
(10.0)
517
(11.7)
985
(12.1)
11K
Al
101
1/11/85
(99.0)
150
(98.0)
517
(105)
*A1 = Aluninum; S = Steel; LS = Low Pressure Steel.
*'tylinder anpty.
55
-------
12.0 MEHHANEIHIOL (METHYL MERCAPTAN) STABILITY SHOW
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
1ZA
Al
8.03
1/24/79
(5.66)
104
(5.60)
139
(5.65)
985
(5.40)
2194
(5.45)
2331
(4.70)
2690
(5.70)
2938
(4.78)
12B
Al
10.0
1/24/79
(7.%)
104
(8.10)
139
(7.90)
985
(8.42)
2194
(8.00)
2331
(8.00)
2690
(9.84)
2938
(9.21)
12C
Al
3.55
1/24/79
(3.65)
104
(3.50)
139
(3.56)
985
(3.64)
2194
(3.80)
2331
(3.40)
2690
(3.73)
2938
(3.75)
12D
Al
4.22
1/24/79
(4.23)
104
(4.76)
139
(4.54)
**
*A1 =» Aluminum; S = Steel; LS = Low Pressure Steel.
Cylinder anpty.
ANALYTICAL CONDITIONS: Plane photometric detector, Chronosil 330 column at
60 degrees Celsius.
CALIBRATION: A permeation tube is used for generation of calibration mix-
tures.
ANALYTICAL PKOBLEMS: Only a Teflon® colunn and Teflon® sampling loop should
be used. The air-to-hydrogen ratio is critical to the sensitivity of the
FPD.
56
-------
13.0 HEXANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
. Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppm
Day
ppn
Day
ppa
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
ISA
IS
1975
2/6/79
(2170)
6
(1980)
337
(2070)
469
(1990)
1886
(1990)
2586
(2139)
**
13B
LS
2973
2/6/79
(3070)
6
(2860)
338
(2950)
469
(3080)
1886
(2980)
**
13C
Al
30.6
2/6/79
(30.8)
296
(30.1).
337
(30.6)
469
(32.0)
523
(30.0)
835
(30.2)
1886
(32.8)
2586
(34.8)
3066
(29.2)
13D
Al
79.2
2/6/79
(82.2)
296
(81.0)
337
(81.3)
469
(79.8)
835
(80.2)
1247
(82.7)
**
13E
Al
80.0
3/25/83
(83.2)
376
(88.2)
1117
(92.1)
1558
(84.6)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
**Cylinder eaipty.
ANALYTICAL (DNDITIONS: Plane ionization detector, Porasil C colunn-at 150 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making a series of standards
fron reagent grade hexane.
57
-------
14.0 1,2H)ICHLORCETHANE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppn
Concentration
Date
ppa
Day
ppn
Day
ppn
Day
BTI ppn
Concentration
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
14A
Al
14.4
1/19/79
(14.1)
58
(15.2)
155
(14.9)
811
(14.2)
835
(13.5)
1964
(13.9)
2333
(14.1)
2546
(13.6)
3083
(14.4)
14B
Al
9.64
1/19/79
(9.20)
58
(10.8)
155
(10.0)
811
(9.56)
835
(9.19)
1964
(9.68)
2333
(9.30)
2546
(8.65)
3083
(9.75)
14C
Al
100
1/19/79
(96.2)
58
(103)
155
(98.2)
501
(87.3)
920
(102)
1964
(94.9)
2333
(96.7)
2546
(97.5)
3083
(97.0)
14D
Al
526
1/19/79
(498)
58
(534)
155
(524)
14E
Al
6.92
4/5/79
(10.0)
30
(9.42)
69
(9.30)
501 586
(592)*** (9.14)
920 811
(502) (9.70)
1964
(477)
2333
(496)
2546
(490)
**
835
(9.16)
2247
(9.32)
2470
(8.85)
3007
(9.91)
14F
Al
12.5
4/5/79
'(15.2)
30
(14.7)
69
(14.3)
811
•(14.5)
835
(13.8)
1888
(13.9)
2247
(14.3)
2470
(13.8)
3007
(14.6)
14G
Al
97.9
4/5/79
(102)
30
(105)
69
(99.0)
425
(87.3)
844
(101)
1888
(92.4)
2247
(96.0)
2470
(97.2)
3007
(95.8)
14H
Al
439
4/5/79
(463)
30
(451)
69
(462)
589
(432)
697
(451)
844
(453)
1888
(416)
2247
(427)
2470
(422)
3007
(424)
Al = Alunirun: S = Steel; 15 = Low Pressure Steel.
Cylinder anpty.
***Questionable value
ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C colunn of 225 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making a series of standards frcm reagent
grade 1,2-dichloroethane.
58
-------
15.0 CYCLQHEXANE SX&BILnY STUDY
Cylinder No. ISA
Cylinder Construction* Al
Manufacturer ppn 99.1
Concentration
Date 3/19/79
ppn (106)
Day 147
ppn (93.4)
KTI Day 394
Concentration ppn (99.0)
Day 926
ppn (102)
Day 1966
ppn (95.9)
Day 2559
ppn (100)
Day 3025
ppn (100)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, Porasil C column
at 125 degrees Celsius.
CALIBRATION: A pressure-dilution technique is used for making a
series of standards from reagent grade cyclohexane.
59
-------
16.0 2-HJEANONE (METHYL ETHYL KETONE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
BTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
PP31
Day
ppn
Day
ppn
Day
ppn
16A 16B
S
43.7 5.00
5/23/79 7/1/87
(42.3) (5.19)
28
(40.0)
58
(39.9)
380
(44.5)
653
(38.7)
1847
(40.4)
2520
(45.0)
16C 16D
30.0 15.1
7/1/87 7/1/87
(29.5) (16.0)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on
Ghronosorb WHP colum at 150 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making
a series of standards fron reagent grade methyl ethyl ketone.
60
-------
17.0 ME1HANQL STABILITY STUDY
Cylinder No. ' 17A
Cylinder Construction* Al
Manufacturer ppm 50.0
Concentration
Date 5/17/79
ppm (58.8)
Day 21
ppm (52.3)
Day 51
RTI ppm (51.1)
Concentration
Day 196
ppm (55.2)
Day 2020
ppm (48.8)
Day 2224
pprn (45.8)
Day 2660
ppm (56.8)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Flare ionization detector,
Chrcraosorb 101 colunn at 50 degrees Celsius or 0.2%
Carbowax 1500 plus 0.1% SP-2100 on Carbowax C at 60
degrees Celsius.
CALIBRATION: A pressure-dilution technique is
utilized for making a series of standards from
reagent grade raethanol.
61
-------
18.0 1,2-DKHLCSOPRDPANE (PROPYLENE DICHLORIDE) STABILTIY STUD?
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
ISA
Al
7.07
7/10/79
(6.06)
28
(5.52)
48
(5.94)
497
(6.03)
749
(5.59)
1793
(3.12)
1845
(3.86)
2155
(3.49)
2387
(3.25)
2914
(4.11)
18B
Al
14.6
7/10/79
(15.6)
28
(16.4)
43
(15.0)
749
(16.3)
1793
(12.1)
1845
(13.2)
2155
(13.3)
2387
(12.9)
2914
(14.4)
18C
Al
476
7/10/79
(496)
28
(455)
48
(480)
372
(497)
1793
(402)
1845
(424)
2155
(441)
2387
(429)
2914
(451)
18D
Al
664
7/10/79
' (685)
28
(621)
48
(675)
372
(685)
1793
(557)
1845
(574)
2155
(594)
2387
(576)
2914
(630)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP
colunn at 150 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making a series of
standards fron reagent grade 1,2-dichloropropane.
62
-------
19.0 TRICHLOROEDENE (mCHLOBOETHYIENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
19A
Al
9.23
5/24/79
(9.58)
77
(10.2)
92
(9.78)
683
(9.03)
820
(8.91)
1853
(9.40)
2493
(10.2)
2961
(10.5)
19B
Al
14.7
5/24/79
(14.3)
77
(15.1)
92
(14.9)
683
(13.6)
820
(13.5)
1853
(14.0)
2493
(15.5)
2961
(15.2)
19C
Al
100
5/24/79
(102)
77
(103)
92
(100)
810
(105)
820
(94.6)
1853
(105)
2493
(101)
3045
(98.8)
19D
Al
505
5/24/79
(506)
77
(503)
92
(499)
810
(522)
820
(490)
1853
(523)
2493
(494)
2961
(502)
Al = Aluminum; S - Steel; 15 = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP
colunn at 150 degrees Celsius.
CALIBRATION: A pressure-^dilution technique is used for making a series of
standards fron reagent grade trichloroethylene.
63
-------
20.0 1,1-DICHLORDETHXLENE (VDTCLIDENE CHLORIDE) STABILITY STUDY
Cylinder
No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
-
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
20A
Al
9.58
en/79
(10.3)
35
(9.90)
62
(10.1)
404
(11.5)**
818
(9.00)
1831
(9.00)
2190
(8.78)
2490
(9.87)
2957
(11.1)
20B
Al
14.8
6/1/79
(15.6)
35
(15.1)
62
(15.5)
404
(17.1)**
818
(14.2)
1831
(13.2)
2190
. (14.1)
2490
(15.2)
2957
(17.2)
20C
Al
96.8
6/1/79
(101)
35
(99.0)
62
(102)
817
(94.0)
1831
(98.4)
2190
(94.7)
2490
(97.4)
2957
(108)
20D
Al
490
6/1/79
(524)
35
(510)
62
(505)
404
(498)
1831
(488)
2190
(479)
2490
(478)
2957
(553)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
Questionable value.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chronosorb WHP
colunn at 80 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making a series of
standards fron reagent grade 1,1-dichloroethene.
64
-------
21.0 1,2-€>IBHM}EIHXLENE STABILHY STUDY
Cylinder ND.
Cylinder Construction*
Manufacturer
Concentration
BTI
Concentration
ppm
Date
ppm
Day
ppm
Day
ppn
Day
ppm
21A
LS
10.0
6/18/79
(7.90)
61
(7.80)
89
(7.40)
722
(7.72)
**
2 IB
LS
14.9
6/18/79
(12.2)
61
(12.0)
89
(11.6)
772
(8.02)
**
21C
LS
99.9
en/79
(110)
61
(107)
89
(105)
787
(99.2)
**
21D
LS
301
6/18/79
(265)
. • 61
(266)
89
(257)
643
(309)
**
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.
Cylinders returned due to partial conversion to an unknown compound.
ANALYTICAL CONDITIONS: Flame ionization detector, 10% OV-101 on Chromosorb WHP
coluon at 100 degrees Celsius.
CALIBRATION: Reagent grade "1,2-Dibranoethylene" pure liquid is used as a
standard. Pressure-dilution technique is utilized for making series of
standards for calibration.
ANALYTICAL PROBLEMS: The gas mixtures and the calibration standards contain
substantial amounts of both the cis and the trans isomers of
1,2-Dibranoethylene. The first three sets ol: analyses are questionable because
only one isomer was measured during the calibrations and cylinder analyses.
During the GC analyses on Day 1864, it was found that dibromoethylene partially
converted to an unknown compound. Hence, dibromoethylene is not practical as an
audit material.
65
-------
22.0 TETRAfflLOROEIHENE (PEHCHLOROETHnENE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
22A
S
7.98
7/6/79
(8.40)
35
(7.97)
52
(7.92)
376
(7.94)
1818
(6.88)
2162
(6.88)
2440
(7.83)
2901
(7.68)
22B
S
13.0
7/6/79
(15.0)
35
(14.9)
52
(14.7)
376
(14.5)
1818
(13.7)
2162
(13.3)
2440
(13.5)
2901
(14.5)
22C
LS
487
7/6/79
(419)
35
(453)
52
(440)
677
(361)
713
(387)
1818
(349)
2162
(353)
2450
(357)
2901
(372)
22D
LS
629
7/6/79
' ' (624)
35
(642)
52
(619)
677
(542)
713
(571)
1818
(557)
2162
(564)
2450
(551)
2901
(607)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Flame ionization detector, 10% OV-101 on Chronosorb
WHP column at 150 degrees Celsius.
CALIBRATION: An NBS-SBM of perchloroethylene in nitrogen is used to calibrate
the detector response.
66
-------
23.0 CHLOHDETHENE (VINYL CHLORIDE) STABILnY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
23A
S
5.%
10/1/79
(5.87)
18
(5.74)
700
(6.60)
1812
(6.10)
2524
(6.09)
2914
(5.62)
23B 23C
S S
8.00 8.03
10/1/79 10/1/79
(7.71) (7.82)
18 18
(7.50) (7.45)
** 700
(8.44)
1812
(8.
2524
(8.
2914
(7.
10)
05)
54)
23D
S
8.52
10/1/79
(7.85)
18
(7.
700
(8.
1812
(8.
2524
(8.
2914
(7.
,61)
41)
15)
13)
60)
23E
S
20.0
10/1/79
(19.7)
18
(19.1)
700
(20.7)
1812
(20.3)
2524
(20.4)
2914
(18.6)
23F
S
20.1
10/1/79
(20.1)
18
(19.3)
700
(20.9)
1812
(20.6)
2524
(20.6)
2914
(19.8)
23G
S
30.0
10/1/79
(29.6)
18
(28.3)
700
(29.4)
1812
(30.3)
2524
(30.3)
2914
(28.6)
23H
S
30.3
10/1/79
(29.8)
18
(28.7)
700
(29.4)
1812
(30.6)
2524
(31.1)
2914
(28.9)
231
S
7.98
10/1/79
(7.31)
18
(7.12)
700
(8.39)
1812
(7.75)
2914
(7.18)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
**Cylinder empty.
ANALYTICAL CONDITIONS: Plane kmization detector, 10% OV-101 on Chronosorb WHP column at 90 degrees Celsius.
CALIBRATION: A pressure-dilution technique is used for generation of a series of standards from pure vinyl
chloride.
67
-------
24.0 1,3-BUEADIENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Date
ppn
Day
ppn
Day
ppn
24A 24B
S Al
22.6 52.8
3/21/80 2/12/86
(20.9) (52.9)
95 511
(23.1) (53.4)
430
(24.0)
1718
(22.9)
**
24C 24D
Al Al
31.9 13.3
2/12/86 2/12/86
(32.3) (13.4)
511
(32.6)
*A1 = Aluminum; S a Steel; LS = Low Pressure Steel.
**Cyiinder anpty.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on
Chrcmosorb WHP column at 90 degrees Celsius.
CALTBRATIDN: A pressure^dilution technique is utilized for making a
series of standards from pure 1,3-butadiene.
68
-------
25.0 2-PRDPENENITRI1E (AOKLCOTTRILE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer ppn
Concentration
Date
ppn
Day
ppn
FTI Day
Concentration ppn
Day
ppn
Day
ppn
25A
LS
20.1
7/24/79
(14.6)
185
(12.7)
349
(13.2)
841
(9.%)
**
• 25B
LS
348
7/24/79
(411)
185
(416)
349
(441)
841
(397)
**
25C
LS
11.7
7/24/79
(6.38)
185
(3.35)
349
(2.87)
841
(4.05)
**
25D
LS
638
7/24/79
(678)
185
(699)
349
(703)
841
(667)
**
25E
AL
400
11/8/82
(413)
134
(410)
787
(421)
1172
(424)
1786
(384)
25F .25G
AL Al
10.0 18.0
11/18/82 1/23/86
(10.8) (15.0)
139 532
(11.7) (15.7)
787
(10.8)
1162
(9.14)
1704
(9.87)
25H
Al
22.3
1/23/86
(20.2)
532
(20.2)
Al = Aluninun; S = Steel; LS= Low Pressure Steel.
Cylinder anpty.
ANALYTICAL CONDITIONS: Plane ionization detector, Porapak Q colunn at 225 degrees Celsius.
CALIBRATION: A pressure-dilution technique is used to make a series of standards from reagent grade
aerylonitrile.
ANALYTICAL PROBLEMS: The large changes noted at the low concentration levels are, at least in part,
a result of difficulty in making precise measurements at these le/els.
69
-------
26.0 ANILINE STABILITY STUDY
Cylinder No. 26A 26B
Cylinder Construction* Al Al
Manufacturer ppm 11.3 18.4
Concentration
RTI See Analytical Problans
Analysis
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CCNDrTICNS: Flare ionization detector, 10% OV-101 on
Chronosorb WHP column at 250 Hpgrpog Celsius.
CALIBRATION: Reagent grade "Aniline" pure liquid is used as a
standard. "Glass bulb" dilution technique is utilized for making
series of standards for calibration.
ANALYTICAL PROBLEMS: Because aniline has an extremely high boil-
ing point (186°C), special handling would be required to measure
this compound. A completely heated system for sampling in the
vapor phase and for preparing standards would be required. Temper-
ature-dependent condensation in the cylinder and the regulator
causes the amount of aniline which is delivered by the cylinder to
vary. As a result, aniline is not considered to be practical as an
audit material.
70
-------
27.0 4-METHH/-2-PENIMICNE (MEEHXL ISOBOTYL KEKNE) gEVRTT.m STUDY
Cylinder No.-
Cylinder Construction*
Manufacturer
Concentration
KH
Ccncentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
27A
Al
9.51
12/18/80
(10.2)
27
(10.6)
83
(9.53)
202
(9.49)
1275
(8.40)
1643
(10.3)
1946
(10.2)
27C
Al
72.9
7/8/81
(75.4)
See Analytical
Problems
*A1 = Aluminum; S = Steel; IS = Low Pressure Steel.
ANALCTIiCAL CDNDITICNS: Flame ionizaticn detector, 0.1% SP-1000
en Carbcpadc C column at 180 degrees Celsius.
CRLJBRAXICN: A pressure-dilution techrque is utilized for making
a series of standards fron reagent grade methyl isobutyl ketone.
ANALHTCAL PRDH^e: Methyl isobutyl ketone at high concentra-
tions is not practicas as an audit material because pressurizatLon
of the cylinder above approximately 200 psi results in condensa-
tion of the analyte.
71
-------
28.0 CYOJOHEXANONE STABILITY STUDY
Cylinder No.
Cylinder Construction*
28A
Al
28B
Al
Manufacturer
Concentration
ppm
10.1
19.0
BTI
Analysis
Date
ppn
Day
ppn
12/11/80
(8.19)
85
(3.26)
12/11/80
(25.5)
85
(17.1)
See Analytical Problems.
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Flame ionization detector, 10% SP-1000 on
Supelcoport column at 200 degrees Celsius.
CALIBRATION: Reagent grade "Cyclohexanone" liquid is used as a
standard. Pressure-dilution technique is used for making series
of standards for calibration.
ANALYTICAL PROBLEMS: The analysis of cyclohexanone gas is de-
pendent on the temperatures of the cylinder and the regulator and
on the length of the sampling line between the regulator and the
gas chromatograph. The concentration in the cylinder decreases
with time. Therefore, cyclohexanone is not practical as an audit
material.
72
-------
29.0 PARADKHJOROBENZENE STABILITY STUD?
Cylinder No. 29A 29B
Cylinder Construction* S S
Manufacturer ppm 15.6 38.1
Concentration
RTI See Analytical Problems
Analysis
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% SP-1000 on
Supelcoport column at 200 degrees Celsius.
CALIBRATION: Reagent grade "Paradichlorobenzene" is used as a
standard. "Glass bulb" technique is used for making series of
standards for calibration.
ANALYTICAL PROBLEMS: The stability study for this compound was
terminated bacause of analytical difficulties and because the
cylinder pressure was less than 200 psig. Paradichlorobenzene is
a solid at room temperature with a melting point of 54°C.
Condensation in the cylinder, regulator and sampling lines was
extreme. Paradichlorobenzene is not practical as an audit
material.
73
-------
30.0 ElfflLAMINE STABILE* STUD?
Cylinder No. 30A 30B
Cylinder Construction* S S
Manufacturer ppn 10 20
Concentration
STI
Analysis See Analytical Problems
*A1 = Aluminum; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ioriization detector, 10% OV-101
on Chronosorb WHP column at 250 degrees Celsius.
CALIBRATION: Reagent grade "Ethylamine" liquid is used as a
standard. "Glass bulb" technique is utilized for making
series of standards for calibration.
ANALYTICAL PROBLEMS: Because of vapor pressure considera-
tions, the cylinders could not be fully pressurized. The
pressure in the cylinder is less than 200 psi. A completely
heated system for sampling in the vapor phase and for prepar-
ing standards would be required. Temperature-dependent
condensation in the cylinder and the regulator causes the
amount of ethylanine vhich is delivered by the cylinder to
vary. As a result of these problems, ethylamine is not con-
sidered to be practical as an audit material.
74
-------
31.0 POJMALEHKEE SIMELIIY STUK
KTI
Requested ppm 10 20
Concentration
The speciality gas supplier indicated that they could not
make gas mixtures containing formaldehyde.
75
-------
32.0 DKHLCBCMETHANE (METfflLENE CHL3RIDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
--
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
32A 32B
Al Al
10.2 1.25
3/5/82 1/27/86
(10.8) (1.13)
31 528
(10.8) (1.37)
70
(10.6)
%
(11.2)
124
(11.4)
160
(10.9)
278
(10.2)
381
(9.70)
843
(9.20)**
1198
(11.5)**
1449
(10.4)
fCfCff
32C 32D
Al Al
6.13 9.94
1/27/86 9/28/87
(6.01) (10.2)
528
(5.92)
Al = Aluminum; S = Steel; LS = Low Pressure Steel.
**Questionable value.
Cylinder anpty.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101
on Chromosorb WHP column at 100 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for
making a series of standards from reagent grade methylene
chloride.
76
-------
33.0 TEIRACHLDHCMETHANE (CARBON TETRACHLORIDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
-
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
33A 33B 33C
AL . Al Al
11.3 23.3 5.82
3/4/82 1/16/86 1/16/86
(12.7) (21.8) (5.88)
74 540 540-
(11.7) (22.0) (6.35)
74
(10.2)
98
(11.1)
124
(10.6)
161
(10.2)
382
(10.5)
832
(9.60)**
1199
(12.2)
1414
(10.6)
1954
(11.3)
33D
Al
18.6
1/16/86
(18.1)
540
(18.3)
*A1 = Akminun; S = Steel; LS = Low Pressure Steel.
**Questionable value.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on
Chronosorb WHP cokmn at 100 degrees Celsius.
CALIBRATION: A pressureniilution technique is utilized for making
a series of standards from reagent grade carbon tetrachloride.
77
-------
34.0 l.l.a-JrRICHWR^l.Z.I-TRIELUORDEnHANE (FRBON 113) STABILITY STUDY
Cylinder No. 34A
Cylinder Construction* Al
Manufacturer ppn 10.4
Concentration
Date 3/3/82
ppn (10.8)
Day 34
ppn (10.1)
Day 70
ppn (10.0)
Day 70
ppn .(9.60)
Day 98
RH ppn (10.0)
Concentration
Day 125
ppn (10.0)
Day 162
ppn (10.3)
Day 384
ppn (9.80)
Day 857
ppn (11.0)
Day 1200
ppn (8.79)
Day, 1506
ppn (10.0)
Day 2036
ppn (9.68)
*A1 = Aluminum; S = Steel; IS = Low Pressure Steel.
ANALYTICAL CONDITICNS: Flame ionization detector, 10%
OV-101 on Chronosorb WHP colunn of 75 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for
making a series of standards fron reagent grade Freon 113.
78
-------
35.0 1,1,1-TRIGHL3ROBIHANE (MCTlffL CHLOROFORM) STABILITY STUDY
Cylinder No. 35A
Cylinder Construction* Al
Manufacturer ppn 10.2
Concentration
Date 3/2/82
ppn (10.3)
Day 70
ppn (11.8)
Day 99
ppn (10.7)
RTI Day 136
Concentration ppn (10.6)
Day 161
ppn (10.0)
Day 381
ppn (10.4)
Day 858
ppn (10.0)
Day 1514
ppn (10.7)
Day 2033
ppn (10.5)
*A1 = Aluninun; S = Steel; LS = Low Pressure Steel.
ANALYTICAL CONDinONS: Plane ionization detector, 10%
OV-101 on Chronosorb WHP column at 80 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for
making a series of standards fron reagent grade methyl
chloroform.
79
-------
36.0 1,2H£PQXXETHANE (EIHHJENE OXIDE) STABILITY STUDY
Cylinder No. 36A 36B 36C 36D 36E
Cylinder Construction* Al Al Al Al Al
Manufacturer ppn 10.0 1.0 4.5 14 19.0
Concentration
Date 3/12/82 9/16/85 9/16/85 9/16/85 9/16/85
ppn (11.2) (1.19) (4.75) (14.3) (18.6)
Day 73 78 78 78 78
ppn (9.60) (0.868) (4.35) (14.2) (17.7)
Day 88 722 722 722 722
KEI ppn (9.80) (1.59)** (4.68) (14.9) (18.5)
Concentration
Day 122
ppn (9.60)
Day 157
ppn (9.80)
Day 1012
ppm (9.70)
Day 1362
ppn (9.09)
Day 2006
ppn (10.0)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
**Questionable value.
ANALYTICAL CONDITIONS: Plane ionization detector, 6 ft. x 1/8" SS column packed
with 80/100 mesh Porapak QS at 150 degrees Celsius.
CALIBRATION: Ethylene oxide permeation tube is used for GC-FID calibration.
Permeation tube is maintained at 30 degrees Celsius.
80
-------
37.0 1,2-EPOXJfPROPANE (PRDPYLENE OXIDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
Ppn
Day
ppn
Day
.ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
Ppn
Day
ppn
Day
ppn
37A
Al
9.48
8/4/82
(12.3)
55
(11.8)
76
(10.6)
743
(8.10)**
844
(9.24)
1057
(9.65)
1357
(10.2)
1882
(10.7)
37B
Al
96.0
8/4/82
(89.5)
55
(86.9)
76
(83.6)
121
(90.8)
743
(75.7)**
844
(82.8)**
1057
(91.7)
1357
(95.2)
1882
(98.2)
*A1 = Aluninun; S = Steel; IS = Low Pressure Steel.
**Questionable value.
ANALYTICAL CONDITIONS: Flane ionization detector, 10%
OV-101 on Chrcmosorb WHP cokmn at 120 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for
making a series of standards from reagent grade propylene
oxide.
81
-------
38.0 3-OflflHDPRDPENE (ALLYL CHLORIDE) STABILITY SOW
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
38A
S
10.2
8/13/82**
(11.6)
75
(5.25)
110
(5.08)
167
(5.36)
727
(4.53)
'ArA'A
38B
S
99.5
8/13/82**
(124)
74
(87.2)
110
(87.7)
167
(83.4)
727
(53.6)
***
38C 38D
S S
8.7 92.4
4/24/85** 4/30/85
(8.99) (95.7)
364 358
(6.14) (94.2)
808 803
(5.50) (86.9)
Al = Alunirun; S = Steel; LS = Low Pressure Steel.
Initial analysis was questionable
;^*Returned due to impurities.
ANALYTICAL CONDITIONS: Plane ionization detector,
cokmn at 135 degrees Celsius.
OV-101 Chronosorb KHP
CALIBRATION: A pressure-dilution technique is utilized for making a series
of standards from reagent grade allyl chloride.
82
-------
39.0 PROPENAL (ACHOLEIN) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
BTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
39A
Al
10.2
8/18/82
(10.6)
28
(11.0)
69
(9.74)
728
(6.90)**
833
(8.97)
1031
(9.11)
1346
(9.19)
1791
(8.78)
39B
Al
107
8/18/82
(90.4)
28
(103)
69
(106)
728
(80.8)**
833
(97.3)
1031
(98.4)
1346
(108)
1791
(94.7)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
^JU
Questionable value.
ANALYTICAL ODNDTTIONS: Plane ionization detector. 10%
OV-101 on Chronosorb WHP colum at 150 degrees Celsius.
CALIBRATION: A pressure-^dilution technique is utilized for
making a series of standards from reagent grade acrolein.
83
-------
40.0 CHLOHDBENZENE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
RTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
40A
S
9.66
8/6/82
(9.03)
39
(9.15)
75
(9.20)
380
(9.62)
1043
(8.11)**
1490
(9.22)
1806
(8.50)
40B
Al
14.8
10/11/83
(14.7)
612
(13.4)
1059
(14.4)
1375
(12.9)
40C
Al
4.89
10/11/83
(4.19)
612
(4.74)
1059
(5.01)
1375
(4.61)
Al = Aluninun; S = Steel; LS = Low Pressure Steel.
**Questionable value.
ANALYTICAL (DNDmONS: Plane ionization detection, 10% OV-101
on Chranosorb WHP colum at 200 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making
a series of standards from reagent grade chlorobenzene.
84
-------
41.0 CARBON DISULFIDE STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
41A
Al
108
7/14/82
(100)
34
(114)
72
(116)
41B
Al
108
2/21/85
(101)
110
(98.0)
477
(104)
**
**
Al = Alunirun; S » Steel; IS = Low Pressure Steel.
Cylinder anpty.
ANALYTICAL CONDITIONS: Plane photometric detector. 4.6' X 1/4"
Teflon® colurni packed with Carbopack B HT 100 at 75 degrees
-Celsius.
CALIBRATION: A pressure-dilution technique is used for making
a series of standards from reagent grade carbon disulfide.
ANALYTICAL PROBLEMS: There is significant peak "tailing" un-
less a very high flow rate is used. "Tailing" is also caused by
"bleed" from the sanple loop. Sample valve should be in the in-
ject position for exactly 5 seconds and then switched back to
the sampling position to attenuate tailing. All sanple lines
and regulators must be conditioned extensively.
85
-------
42.0 EPA METH3D 25 GAS MIXTURE STABILITY STUDY*
Cylinder No. 42A 42B 42C 42D 42E 42F
Cylinder Construction*** Al Al Al Al Al Al
Manufacturer ppnC 100 100 200 750 1000 2000
Concentration
Date 3/16/83 3/16/83 3/16/83 3/16/83 3/16/83 3/16/83
ppnC (102) (107) (205) (775) (1040) (1940)
Day 483 483 ** 483 483 483
RTI ppiC (97.9) (104) (779) (1060) (1930)
Concentration
Day ** ** 726 726 726
ppnC (765) (1020) (1930)
Day 1079 1079 **
ppaC (806) (1093)
Day 1657 **
ppnC (826)
Gas Mixture contains an aliphatic hydrocarbon, an arcraatic hydrocarbon, and carbon
dioxide in nitrogen.
**Cylinder anpty.
-Jri t
Al = Aluninun; S = Steel; IS = Low Pressure Steel.
ANALYTICAL CONDITIONS: Plane ionization detector, aliphatic hydrocarbon and
aromatic hydrocarbon, 10% OV-101 on Chranosorb WHP colvmn at 100 degrees Celsius.
CALIBRATION: An NBS-SRM is used as a standard for the aliphatic hydrocarbon. A
pressure-dilution technique is utilized for generation of a series of standards
from reagent grade liquid for the aromatic hydrocarbon.
86
-------
42.0 EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued)
Cylinder No.
Cylinder Construction***
Manufacturer
Concentration
RTI
Concentration
ppnC
Date
ppnC
Day
ppnC
Day
ppoC
Day
ppoC
423
Al
96.7
12/11/84
(96.4)
90
(95.8)
443
(99.2)
**
42H
Al
98.6
12/11/84
(98.9)
90
(93.3)
443
(99.6)
421
Al
147.6
12/11/84
(149)
90
(144)
443
(146)
948
(163)
42J
Al
151
12/11/84
(153)
90
(145)
443
(149)
948
(161)
42K
Al
198
12/11/84
(195)
192
42L
Al
197.5
12/11/84
(195)
90
(183)**** (isy)
443
(1%)
948
(210)
443
(1%)
1021
(206)
Gas Mixture contains an aliphatic hydrocarbon, an aronatic hydrocarbon, and carbon
dioxide in nitrogen.
l
Cylinder empty.
JU
Al = Aluninun;
^^Questionable value.
JLJLJU
Al = Aluninun; S =* Steel; LS = Low Pressure Steel.
87
-------
42.0 EPA METHOD 25 GAS MIXTURE STABILITY STUDY* (Continued)
Cylinder No.
Cylinder Construction***
Manufacturer
Concentration
KE1
Concentration
ppnC
Date
ppnC
Day
ppnC
42M
Al
1973
9/4/86
(1968)
316
(1982)
42N
Al
1970
9/4/86
.' (1904)
316
(1989)
Gas Mixture contains an aliphatic hydrocarbon, an arcmatic
hydrocarbon, and carbon dioxide in nitrogen.
**Cylinder anpty.
f
Al » Aluninun; S = Steel; 15 = Low Pressure Steel.
88
-------
43.0 1,2-DBKMDEIHANE (ETHHZNE DBHMDE) STABILITY STUDY
Cylinder No.
Cylinder Construction*
Manufacturer
Concentration
KTI
Concentration
ppn
Date
ppn
Day
ppn
Day
ppn
Day
ppn
Day
ppn
43A
S
10
10/24/84
(9.3)
54
(9.3)
243
(8.66)
516
(9.27)
994
(9.70)
433
S
20
10/24/84
(17.5)
54
(17.5)
243
(15.4)
518
(15.9)
994
(16.4)
43C
S
100
10/24/84
(96.1)
55
(107)
243
(84.0)
518
(75.1)
994
(83.6)
43D
S
300
10/24/84
(266)
55
(344)**
516
(250)
994
(262)
Al = Aluminum; S a Steel; IS = Low Pressure Steel.
Ojuestionable value.
ANALYTICAL CONDITIONS: Plane ionization detector, 10% OV-101 on Chrono-
sorb WHP columa at 150 degrees Celsius.
CALIBRATION: A pressure-dilution technique is utilized for making a
series of standards from reagent grade ethylene dibrcmide.
89
-------
44.0 1,1,2,2-TETRACHLDRDETHANE STABILITY STUDY
Cylinder No. 44A
Cylinder Construction* S
Manufacturer ppn 12.2
Concentration
RTI Date 10/9/84
Concentration ppn (11.6)
Day 533
ppn (10.9)
Day 1085
ppn (10.5)
Al = Aluminum; S = Steel; LS = Low Pressure
Steel.
ANALYTICAL CONDITIONS: Plane kmization detec-
tor, 5% OV-101 on Cnronosorb WHP column at 100
degrees Celsius.
CALIBRATION: A pressurendilution technique
is utilized for making a series of standards
fron reagent grade 1,1,2,2-tetrachloroethane.
90
------- |