&EPA
United States
Environmental Protection
Agency
Municipal Environmental Research EPA-600/2-78-185b
Laboratory September 1978
Cincinnati OH 45268
Research and Development
Short Course
Proceedings
Applications
of Computer Programs
in the Preliminary
Design of Wastewater
Treatment Facilities
Section II
Users' Guide and
Program Listing
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-78-185b
September 1978
Short Course Proceedings
APPLICATIONS OF COMPUTER
PROGRAMS IN THE PRELIMINARY DESIGN
OF WASTEWATER TREATMENT FACILITIES
Section II: Users' Guide and Program Listing
by
Richard G. Eilers and Robert Smith
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
Stephen P. Graef
Metropolitan Sanitary District of Greater Chicago
Chicago, Illinois 60611
James W. Male
University of Massachusetts
Amherst, Massachusetts 01003
Hisashi Ogawa and Phong Nguyen
Illinois Institute of Technology
Chicago, Illinois 60616
Grant No. R-805134-01
Project Officer
Richard G. Eilers
Wastewater Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental
Research Laboratory, U. S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the U. S.
Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation
for use.
11
-------
FOREWORD
The Environmental Protection Agency was created because of
increasing public and government concern about the dangers of
pollution to the health and welfare of the American people.
Noxious air, foul water, and spoiled land are tragic testimonies
to the deterioration of our natural environment. The complexity
of that environment and the interplay between its components
require a concentrated and integrated attack on the problem.
Research and development is that necessary first step in
problem solution, and it involves defining the problem, measur-
ing its impact, and searching for solutions. The Municipal
Environmental Research Laboratory develops new and improved
technology and systems to prevent, treat, and manage wastewater
and solid and hazardous waste pollutant discharges from munici-
pal and community sources, and to minimize the adverse economic,
social, health, and aesthetic effects of pollution. This pub-
lication is one of the products of that research--a most vital
communications link between the research and the user community.
The information presented here is a users' guide for the
Executive Program. This computer program provides the quan-
titative expressions for calculating the performance and cost of
wastewater treatment systems as a function of the nature of the
wastewater to be treated and the design criteria associated with
the individual unit processes that comprise the system. As such,
it can be a valuable tool to the design engineer for determining
the most cost-effective system for achieving any specific waste-
water treatment goal.
Francis T. Mayo
Director, Municipal Environmental
Research Laboratory
111
-------
ABSTRACT
This document contains a portion of the material used for
the Short Course on the Applications of Computer Programs in the
Preliminary Design of Wastewater Treatment Facilities. The
short course lectures appear in Section I of the report, under
separate cover.
Section II, contained herein, contains the users' manual
and program listing for the Executive Program for Preliminary
Design of Wastewater Treatment Systems. The users' manual
describes the use of the program and subroutines. Several ex-
amples show appropriate input and expected output for a variety
of applications. In addition, the theoretical basis for the
calculations are shown in the form of conventional mathematical
and equivalent fortran equations.
The program listing includes the fortran listing for the
main program (EXECMAIN) and each of the 27 subroutines, repre-
senting different treatment processes, energy consumption, and
cost calculations. The program listings include extensive docu-
mentation and can be easily related to the theoretical equations
in the users' manual.
This report was submitted in partial fulfillment of Grant
Number R~805134-01 by the Pritzker Department of Environmental
Engineering at the Illinois Institute of Technology under the
sponsorship of the U. S. Environmental Protection Agency. This
report covers a period from May 23, 1977 to June 22, 1978 and
work was completed as of June 22, 1978.
-------
CONTENTS
Foreword iii
Abstract . ^Y
Figures viii
Tables 1X
Acknowledgement x
1. Main Program, EXECMAIN 1
Introduction 1
Program Description ... 3
Input Requirements 6
Output 10
Program Listing 23
2. Preliminary Treatment, PREL 29
Users Guide 29
Program Listing 32
3. Prelimary Sedimentation, PRSET 34
Users Guide 34
Program Listing 39
4. Activated Sludge - Final Settler, AERFS 41
Users Guide 41
Program Listing 59
5. Stream Mixer, MIX 64
Users Guide 64
Program Listing 66
6. Stream Splitter, SPLIT 67
Users Guide 67
Program Listing 68
7. Anaerobic Digestion, DIG 69
Users Guide 69
Program Listing 74
8. Vacuum Filtration, VACF 77
Users Guide 77
Program Listing 83
9. Gravity Thickening, THICK 85
Users Guide 85
Program .Listing 90
10. Elutriation, ELUT 92
Users Guide 92
Program Listing 98
11. Sand Drying Beds, SEEDS 100
Users Guide 100
Program Listing 103
12. Trickling Filter - Final Settler, TRFS 105
v
-------
CONTENTS (Cont.)
Users Guide 105
Program Listing 117
13. Chlorination - Dechlorination, CHLOR 121
Users Guide 121
Program Listing 126
14, Flotation Thickening, TFLOT 129
Users G.uide 129
Program Listing 135
15. Multiple Hearth Incineration, MHINC 138
Users Guide 138
Program Listing 144
16. Raw Wastewater Pumping, RWP 147
Users Guide 147
Program Listing 150
17. Sludge Holding Tanks, SHT 152
Users Guide 152
Program Listing 155
18. Centrifugation, CENT 157
Users Guide 157
Program Listing 162
19. Aerobic Digestion, AEROB 165
Users Guide 165
Program Listing 178
20. Post Aeration, POSTA 182
Users Guide 182
Program Listing 194
21. Equalization, EQUAL 199
Users Guide 199
Program Listing 212
22. Second Stage Anaerobic Digestion, DIG2 218
Users Guide 218
Program Listing 222
23. Land Disposal of Liquid Sludge, LANDD. ..... 224
Users Guide 224
Program Listing 229
24. Lime Addition to Sludge, LIME 232
Users Guide 232
Program Listing 235
25. Rotating Biological Contractor, RBC 237
Users Guide 237
Program Listing 247
26. Energy Consumption and Cost, ENGY 250
VI
-------
CONTENTS (Cont.)
Program Listing 250
27. Total Plant Cost Calculation, COST 255
Users Guide 255
Program Listing 265
28. Output Subroutine, PRINT 268
Program Listing 268
References 274
Vll
-------
FIGURES
Number Page
1 Example system flow diagram 4
2 Flowchart of EXECMAIN showing major branches
and iterations 22
vixi
-------
TABLES
Number
1 Unit processes contained in the executive
program 2
2 Contents of the stream matrix (SMATX) 5
3 Sample output of process information 8
4 Arrangement 1 of Fortran format for input
data cards 9
5 Arrangement 2 of Fortran format for input
data cards 11
6 Sample output of stream characteristics 13
7 Sample output of process characteristics 16
8 Output showing total plant cost 19
9 Output showing energy consumption and cost 20
IX
-------
ACKNOWLEDGEMENTS
Many people contributed to the preparation for the Short
Course on Applications of Computer Programs in the Design of
Wastewater Treatment Facilities. Without their efforts, ar-
rangements would have been incomplete and material unprepared.
Contributing to the massive typing effort were Margaret
Nolan, Mary Keeley, Pat Woods, Mary Pierce and Janet Peterson.
In addition, Russ Ritchie helped with local arrangements and
everyday details.
Resourses provided by both the U.S. Environmental Protec-
tion Agency and Illinois Institute of Technology are greatfully
acknowledged.
-------
SECTION 1
Main Program, EXECMAIN
INTRODUCTION
The Executive Program is a digital computer program which
can be used to compute the quasi-steady-state performance and
cost of wastewater treatment systems. Groups of conventional
and advanced wastewater treatment processes arranged in any lo-
gical configuration can be simulated using this program. Table
1 gives a listing of the 24 unit process models that are pre-
sently included in the program along with the subroutine name
and identification number for each process. Each unit process
is handled as a separate subroutine, which makes it possible to
add additional process models to the system as they are
developed.
Initial development began on the Executive Program in 1967
and has continued until the present time. The program is writ-
ten in FORTRAN IV. The complete FORTRAN source card listing
of the computer program is included in this section. The system
presently consists of the main program, entitled EXECMAIN, 24
process subroutines (each subroutine computes the performance
and the costs associated with building and operating the unit
process), and 3 additional subroutines entitled COST, PRINT,
and ENGY. EXECMAIN reads the input data to the program, handles
the iteration for system recycle streams, and calls the proper
subroutines to perform the needed calculations. The COST sub-
routine sums and updates (by means of cost indicies) the costs
of the individual processes and adds additional charges for
yardwork, land, engineering, legal-fiscal-administrative ser-
vices, and interest during construction. PRINT simply prints
out all of the pertinent input and output data in a prescribed
format. ENGY computes and prints out the energy requirements
(electrical power, fuel oil, natural gas, etc.) associated with
operating each unit process.
The Executive Program can be used as a valuable prelimi-
nary design tool by the consulting engineer or planner. The
performance of existing and proposed wastewater treatment plants
can be simulated along with providing cost estimates for build-
ing and operating these plants. It is also possible to mathe-
matically optimize a particular treatment system by varying
design parameters and noting the effect on performance and cost.
-------
Subroutine Name Identification Number
PREL, preliminary treatment 1
PRSET, primary sedimentation 2
AERFS, activated sludge-final settler 3
MIX, stream mixer 4
SPLIT, stream splitter 5
DIG, single stage anaerobic digestion 6
VACF, vacuum filtration 7
THICK, gravity thickening 8
ELUT, elutriation 9
SEEDS, sand drying beds 10
TRFS, trickling filter-final settler 11
CHLOR, chlorination-dechlorination 12
TFLOT, flotation thickening 13
MHINC, multiple hearth incineration 14
RWP, raw wastewater pumping 15
SHT, sludge holding tanks 16
CENT, centrifugation 17
AEROB, aerobic digestion 18
POSTA, post aeration 19
EQUAL, equalization 20
;
DIG2, second-stage anaerobic digestion 21
LANDD, land disposal of liquid sludge 22
LIME, lime additional to sludge 23
RBC, rotating biological contactor-final settler 24
Table 1 Unit processes contained in the executive program
-------
Furthermore, alternate treatment systems can be compared with
respect to performance and cost. Cost-effectiveness studies
along these lines are becoming increasingly important because of
the soaring construction costs that are now being experienced.
PROGRAM DESCRIPTION
The first step in using the Executive Program is to draw a
system flow diagram showing the processes to be used and the
connecting and recycle streams. The process symbols are shown
in each of the Subroutine Users Guides. An example system flow
diagram is shown in Figure 1. Each process and stream is as-
signed a number by the program user. Any stream can be numbered
2 through 30, and any process can be numbered 1 through 20.
However, the principal influent stream to the system must always
be assigned the number one (1). The number zero (0) must always
be given to the processes that require no input decision data.
Only the stream mixer (MIX) and the stream splitter (SPLIT) need
no input data. Notice that the volume of the split stream must
be supplied by a downstream process, such as gravity thickening,
flotation thickening or sludge elutriation.
The program reads the influent stream characteristics and
stores them with all the computed stream characteristics in the
stream matrix (SMATX) which has 20 rows and 30 columns. One
stream vector is stored in each column of SMATX corresponding
to the user assigned stream number on the system diagram. A
temporary stream matrix (TMATX) with 20 rows and 30 columns is
used internally by the program to store newly computed stream
vectors until they can be compared with the previously computed
values during the program's recycle iterations. The iteration
error (EPS) which will be tolerated when recycle streams are
involved is designated by an easily changeable FORTRAN state-
ment in EXECMAIN. The value for EPS currently used in the pro-
gram is .10 mg/1. Each stream is referenced by the assigned
stream number in the first row of SMATX, the volume flow in mgd
in the second row, and the concentration of 17 contaminants in
rows 3-19. Row 20 is unassigned at present, although, the num-
ber of contaminants contained in the stream vector may increase
as new unit process subroutines are added to the program in the
future. A list of the information contained in the stream vec-
tor is shown in Table 2 along with the FORTRAN variable names
that are used.
A decision matrix (DMATX) is provided with 16 rows and 20
columns for storing input design parameters such as settler
overflow rates, solids loading rates, detention times, chemical
doses, and so on. One decision vector is stored in each column
of DMATX corresponding to the user assigned process number on
the system diagram. In other words, input parameters for pro-
cess N are stored in the Nth column of DMATX. Column 20 of
DMATX is reserved for cost parameters which apply to all
-------
RWP
PREL MIX PRSET
AERFS SPLIT CHLOR
6 ^ 25 /\ 26
MHINC VACF SHT
Figure 1 "Example system flow diagram
-------
Row FORTRAN
Number Variable Name
1 SMATX(1,I) I
2 SMATX(2,I) Q
3 SMATX(3,I) SOC
4 SMATX(4,I) SNBC
5 SMATX(5,I) SON
6 SMATX(6,I) SOP
7 SMATX(7,I) SFM
8 SMATX(8,I) SBOD
9 SMATX(9,I) VSS
10 SMATX(10,I) TSS
11 SMATX(11,I) DOC
12 SMATX(12,I) DNBC
13 SMATX(13,I) DN
14 SMATX(14,I) DP
15 SMATX(15,I) DFM
16 SMATX(16,I) ALK
17 SMATX(17,I) DBOD
18 SMATX(18,I) NH3
19 SMATX(19,I) N03
20 not used
Parameter Definition
stream number
volume flow, mgd
solid organic carbon, mg/1
solid nonbiodegradable carbon,
mg/1
solid organic nitrogen, mg/1
solid organic phosphorus, mg/1
solid fixed matter, mg/1
solid 5-day BOD, mg/1
volatile suspended solids, mg/1
total suspended solids, mg/1
dissolved organic carbon, mg/1
dissolved nonbiodegradable
carbon, mg/1
dissolved nitrogen, mg/1
dissolved phosphorus, mg/1
dissolved fixed matter, mg/1
alkalinity, mg/1
dissolved 5-day BOD, mg/1
ammonia nitrogen as N, mg/1
nitrate as N, mg/1
Nominal Value
for
Plant Influent
10.
105.
30.
10.
2.
30.
140.
224.
254.
43.
11.
19.
4.
500.
250.
60.
15.
0.
Table 2 Contents of the stream matrix (SMATX)
-------
processes, such as electrical power cost, construction cost
index, hourly labor wage rates, and so on. Row 16 of DMATX (and
additional preceding rows if required, such as in the AERFS pro-
cess) is reserved for the excess capacity factor (ECF), which is
a multiplier on the calculated design size of the process, to
allow shutdown for cleaning and maintenance work.
For processes having a non-zero process number (N), the
contents of the Nth column for DMATX are read into the program
from 2 input data cards which follow the process card for the
Nth process. For the stream mixer and the stream splitter,
where no process number is assigned (the number "0" is given),
the 2 cards containing decision parameters are omitted. A list-
ing of the contents of DMATX for each unit process is given in
the Subroutine Users Guides, along with definitions of the vari-
ables and nominal input values.
An output matrix (OMATX) is provided with 20 rows and 20
columns for storing computed output parameters from the various
process subroutines. Output parameters for the Nth process are
stored in the Nth column of OMATX. A listing of the contents of
OMATX for each unit process is .given in the subroutine Users
Guides along with definitions of the computer output parameters.
The main program (EXECMAIN) has the function of calling the
process subroutines for computing the performance and cost of
the individual unit processes in the proper order. When a re-
cycle loop occurs, this involves recomputing all of the pro-
cesses within the recycle loop in an iterative manner until each
element of all stream vectors ceases to vary by more than the
prescribed tolerance (EPS).
INPUT REQUIREMENTS
A description of the system configuration (the process lo-
cations and interconnecting streams) is communicated to the
computer by an input deck of process cards. One card is used
for each process with the process number (N) punched in columns
3 and 4 (right-justified). The type of process is specified by
an assigned identification number as given in the Subroutine
Users Guides. This number is punched in columns 7 and 8 (right-
justified) of the process card. If desired, the process sub-
routine name can be punched in columns 10 to 16 in order to
clearly identify the process card and to include this informa-
tion in the final program printout. The number of the principal
input stream to the process (IS1) is punched in columns 20 and
21. If a second input stream exists, the number of the stream
(IS2) is punched in columns 30 and 31. The principal output
stream from the process (OS1) is punched in columns 40 and 41.
If a second output stream exists, the number (OS2) is punched in
columns 50 and 51. IS1, IS2, OS1 and OS2 are all punched as
right-justified data. Notice that the principal input and output
6
-------
streams must correspond to the designation shown in the Sub-
routine Users Guides. The two DMATX input cards follow immedi-
ately after the process card where required. Also, the user
should be careful to arrange the logical order of the process
cards so that no streams are used before they are computed.
A listing of the process cards is printed out as part of
the output from the program. The process card information for
the sample system shown in Figure 1 is listed in Table 3.
The FORTRAN format for the input data can be input in two
ways. The first is for both a single design case and multiple
design cases, where each design case has a different flow dia-
gram. The second arrangement is used for multiple design cases
that all utilize the same flow diagram. The second arrangement
simplifies the preparation of input data.
Single Design Case
Table 4 gives Arrangement 1 of the FORTRAN format for read-
ing the input data to the program. Input card 1 tells the pro-
gram how many data cases (NCASE) are to be run (columns 1 and 2).
In addition, REPEAT = "0" in column 4 indicates that each design
case will have a different flow diagram. REPEAT = "1" in column
4 indicates that the original flow diagrem is repeated in each
design case. Repeat is usually "0" in Arrangement 1. CHECKl
= "1" in column 6 causes the raw sewage composition and process
design criteria to be printed out at the beginning of the first
iteration. It is used for trouble shooting when one or more of
the subroutines produces an overflow calculation error. CHECKl
is usually set equal to zero "0" in column 6 to avoid excess
printout.
Input card 2 is the title card for each data case. Any
alpha-numeric identifying data may be punched anywhere on this
card, and this information will be the title of the program
printout.
Input cards 3, 4 and 5 give the composite flow and concen-
trations of the raw sewage input stream to the treatment plant
which is always labeled as Stream 1. Input cards 6 and 7 pro-
vide the general cost information. This is stored in column 20
of the decision matrix (DMATX).
The next input cards represent the processes. Each process
will have three cards, unless the process number is "0" (SPLIT
and/or MIX). The three cards will consist of a process card
(card 8 in Table 4) and two decision cards (where necessary,
cards 9 and 10 in Table 4). The last card in the data deck has
a "9" in column 1. No other data is punched on the termination
card. This last card is important because it indicates end-of-
file for each data case. Note that the value of K in column 1
-------
EXECUTIVE
DIGITAL COMPUTER PROGRAM
FOR
PRELIMINARY DESIGN OF WASTEWATER TREATMENT SYSTEMS
HY
ROBERT SMITH
RICHARD G. EILERS
U.b. ENVIRONMENTAL PROTECTION AGENCY
MUNICIPAL ENVIRONMENTAL RESEARCH CENTER
bASTEWATER RESEARCH DIVISION
TECHNOLOGY DEVELOPMENT SUPPORT BRANCH
SYSTEMS AND ECONOMIC ANALYSIS SECTION
CINCINNATI. OHIO 45268
(513) 684-7618
DESIGN CASE NO. 1
10 MGD
EXECUTIVE PROGRAM STANDARD TEST SYSTEM 1 10-28-1976 JAN 1975 **«
00
PROCESS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
y
1
2
0
3
4
0
0
b
6
7
«
9
0
0
10
11
0
Ib
1
4
2
3
5
4
8
6
21
16
7
4
4
14
12
0
RlftP
PREL
MIX
PRSET
AERf-'S
SPLIT
MIX
THICK
DIG
UIG2
SHT
VACF
MIX
MIX
MHINC
CHLOR
SYSTEM DIAGRAM
INPUT DATA
IS1 1S2
OS1
OS2
1
2
3
4
5
6
7
9
10
11
12
13
20
22
14
2b
0
0
0
14
0
0
0
8
24
0
0
0
0
21
23
0
0
0
2
3
4
5
6
25
9
10
11
12
13
14
22
19
15
26
0
0
0
0
7
8
24
0
20
0
21
0
23
0
0
0
0
0
Table 3 Sample output of process information
-------
Input Card 1:
Input Card 2:
Input Cards 3, 4, 5:
Input Cards 6, 7:
Input Card 8:
Input Cards 9, 10:
Input Cards 11 and
on:
NCASE, REPEAT, CHECKl
FORMAT (312)
LIST
FORMAT (40A2)
(SMATX(I,1) , I = 2,20)
FORMAT (8F10.0)
(DMATX(I,20), I = 1,16)
FORMAT (8F10.0)
K,N,IPROC, (NAME(I) , I = 1,3),
IS1,IS2,OS1,OS2
FORMAT (I1,1X,I2,2X,I2,1X,3A2,
4X,l2,8X,I2,8X,l2,8Xf12)
(DMATX(I,N), I = 1,16)
FORMAT (8F10.0)
Continue with additional process
cards.
Process card with a "9" in column
1 indicates end-of-file.
Begin next data case with Input
Card 2, etc.
Table 4 Arrangement 1 of Fortran format for input data cards
-------
of each process Identification Card, e.g. 8, 11, 14, etc.,
should be zero "0" except for the termination card.
Multiple Design Cases
Table 5 gives Arrangement 2 of the FORTRAN format for read-
ing multiple input data to the program. On the first input card
a value of one for REPEAT (a "1" in column 4) indicates that the
multiple design cases will repeat, or utilize the flow diagram
used in the original design case. A "0" in column 4 indicates
that the original flow diagram is not being repeated, which in
essence, is the format of Arrangement 1. CHECKl can have a
value of "0" in column 6. A "1" causes a printout of raw sewage
composition and process design criteria to be printed out at the
beginning of the first iteration. A value of "0" eliminates
this initial printout.
"'' Input cards 2 through M use the same format as in Arrange-
ment 1.
Rather than repunch all M cards for a second (or multiple
design case, a simplified, easy to punch format can be followed.
Card M+l indicates whether new raw sewage composition, SMATX
(1,1), and/or new cost parameters, DMATX(I,20), and/or new pro-
cess design criteria, DMATX(I,N) will be used. A value of "1"
for NEWRAW in column 2, NEWCOS in column 4 and/or NEWDMX in col-
umn 6 indicates that new values are to be added in that category.
A value of "0" indicates no new values will be added. Input
card M+2 is the title. Beginning with input card M+3 are sev-
eral possible cards. First, three SMATX(1,1) cards will follow
if NEWRAW has a value of "1" rather than "0". Two DMATX(I,20)
cards will then follow if NEWCOS has a value of "1" rather than
"0". Finally, a series of cards will follow to indicate which
processes are to have new design values, and what the new values
should be. This of course is for the case where NEWDMX has a
value of "1". On the next card NPROC indicates how many of the
original processes will have new design criteria added. The
value for NPROC is entered in columns 1 and 2 (right-justified).
PROC(II) is an array which contains the user assigned number for
each of the processes which will be given new design criteria.
Finally, there will be two additional design criteria DMATX(I,N)
cards for each of the NPROC processes being updated.
In Arrangement 2 a card with a "9" in column 1 is not
placed at the end of design case 2, 3, etc. because it is not
needed. Also, if three or more design cases are to be evaluated
using Arrangement 2, the input cards should repeat the format of
input cards M+l through M+3 etc. for each new design case.
OUTPUT
Sample output from the program is shown in Tables 3 and 6
10
-------
Input Card 1
Input Card 2
Input Cards 3, 4, 5
Input Cards 6,7
Input Card 8
Input Cards 9, 10
Input Cards 11
through M
Input Card M+l
Input Card M+2
NCASE, REPEAT, CHECK1
FORMAT (312)
LIST
FORMAT (4 OA2)
(SMATX(I,1), I = 2,20)
FORMAT (8F10.0)
(DMATX(I,20), I = 1,16)
FORMAT (8F10.0)
K,HIPROC,(NAME(I), I = 1,3),
IS1, IS2,OS1,OS2
FORMAT (I1,1X,I2,2X,I2,1X,3A2,
4X,I2,8X,I2,8X,I2,8X,I2)
(DMATX(I,N), I = 1,16)
FORMAT (8F10.0)
Continue with additional process
cards. Card M will be the design
case termination card with a (9)
in column(1). The Repeat of the
same design flow diagram with diff-
erent raw sewage stream characteris-
tics, SMATX(I,1), cost parameters
DMATX(I,20) and/or process design
criteria DMATX(I,N) begins with the
next card
NEWRAW, NEWCOS, NEWDMX
FORMAT (312)
LIST
FORMAT (40A2)
Table 5 Arrangement 2 of Fortran format for input data cards
11
-------
Input Card M+3
(SMATX(I,1), I =
FORMAT (8F10.0)
and/or
(DMATX(I,20) I =
FORMAT (8F10.0)
and/or
2,20) only if new raw
sewage character-
istics will be
added
1,16) will then fol-
low if new
cost parameters
will be added
NPROC, (PROCNO(II)
II = 1, NPROC)
FORMAT (1012)
will then follow
if new process
design criteria
will be added for
one or more of the
original processes
(DMATX(I,N) I = 1,16) will then follow
FORMAT (8F10.0)
for each pro-
cess which will
be given new
process design
criteria
For repeated design cases which use
the same flow diagram as the original
design case, a termination card is
not used. For each additional
repeated design case, the sequence
of input cards M+l, M+2, M+3 etc.
is repeated.
Table 5 (continued)
12
-------
STREAM CHARACTERISTICS
S 1.
OJ
S 2.
S 3.
S 4,
S 5.
S 6.
S 7.
VOLUME FLOW* MILLIONS OF GALLONS PER nAY
CONCENTRATIONS. MILLIGRAMS PER LITER
NH3
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
0
10.000
ALK
250.000
Q
10.000
ALK
250.000
G
10.000
ALK
250.000
0
12.261*
ALK
267.645
Q
12.249
ALK
267.6^5
ti
11.963
ALK
267. 64b
Q
.Olb
ALK
267.645
soc
105.000
DOC
43.000
SOC
105.000
DOC
43.000
SOC
105.000
DOc
43.QOO
SOC
96.539
DOC
38.117
SOC
1*8.330
DOC
38.117
SOC
6.044
DOC
I3.fabl
SOC
38615.554
DOC
38.117
SNBC
30.000
DNBC
11.000
SNBC
30.000
DNBC
11.000
SNBC
30.000
DNBC
11.000
SNBC
31.693
DNBC
11.000
SNUC
15.866
UN8C
11.000
SNBC
1.832
DNBC
11.000
SNBC
12677.282
UNBC
11.000
SON
10.000
ON
19.000
SON
10.000
ON
19.000
SON
10.000
ON
19.000
SON
9.340
ON
23.530
SON
4.676
ON
23.530
SON
.712
DN
21.697
SON
3736.050
DN
23.530
SOP
2.000
DP
4.000
SOP
2.000
DP
4.000
SOP
2.000
DP
4.000
SOP
1.787
DP
5.079
SOP
.89?,
DP
5.079
SOP
.060
DP
5.422
SOP
714.860
OP
5.079
SFM
30.000
DFM
500.000
SFM
30.000
DFM
500.000
SFM
30.000
DFM
500.000
SFM
31.491
DFM
500.000
SFM
15.765
DFM
500.000
SFM
1.725
DFM
500.000
SFM
12596.289
DFM
500.000
SROD
140.000
DROD
60.000
SROD
140.000
DROD
60.000
SROD
140.000
DBOD
60.000
SPOD
121.098
DBOD
5Q.839
SPOD
60.625
DROD
50.839
SROD
7.986
DROD
4.958
SPOD
4843P.36?
DROD
HO. 839
VSS
224.000
TSS
254.000
VSS
224.000
TSS
254.000
VSS
224.000
TSS
254.000
VSS
208.103
TSS
239.594
VSS
104.182
TSS
119.947
VSS
14.386
TSS
16.110
VSS
83241.124
TSS
95837.414
• 000
NH?
15.000
N03
.000
NM3
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
MO 3
.000
Table 6 Sample output of stream characteristics
-------
s a.
s 9,
S10.
Sll.
S12.
S13.
S14.
S15.
Gi
.265
ALK
267. 64b
0
.281
ALK
267.645
0
.059
ALK
267.645
Q
.059
ALK
31+66. 444
Q
.020
ALK
,3466.444
Q
.020
ALK
3466.444
0
.004
ALK
17866.779
G
.000
ALK
.000
soc
2276.345
DOC
13.651
SOC
4260.209
DOC
It. 967
SOC
19414.194
DOC
13.817
SOC
6468.503
DOC
126.036
SOC
15167.705
DOC
126.036
SOC
15l&7.705
DOC
126. Q36
SOC
78186.274
DOC
649.689
SOC
.000
DOC
.000
SNBC
669.802
DNBC
11.000
SNBC
1344.234
ONHC
11.000
SNHC
6123.395
DNBC
11.000
SNBC
6123.395
UNHC
11.000
SNBC
143b8.475
DNBC
11.000
SNBC
14358.475
UNBC
11*000
SNBC
74014.870
DNBC
56.703
SNBC
.000
UNBC
.000
SON
268.169
DN
21.697
SON
457.491
DN
21.798
SON
2086.842
DN
21.710
SON
708.346
DN
917.732
SON
1660.970
ON
917.732
SON
1660.970
DN
917.732
SON
6561.944
DN
4730.712
SON
.000
ON
.000
SOP
22. 763
DP
5.422
SOP
60.547
DP
b.403
SOP
275.106
DP
5.419
SOP
93. 3RD
DP
187.145
SOP
218.964
DP
187.145
SOP
218.964
DP
187.145
SOP
1128.710
DP
964.690
SOP
.000
DP
.000
SFM
649.528
DFM
500.000
SFM
1301.736
DFM
500.000
SFM
5928.239
DFM
500.000
SFM
5928.239
DFM
500.000
SFM
13900.863
DFM
500.000
SFM
19725.863
DFM
5oO«000
SFM
101682.606
DFM
2577.393
SFM
.000
DFM
.000
SROD
3007.512
DROD
4.958
SPOD
5487.770
OROD
7.463
SPOD
25014.690
DPOD
5.268
SRon
64f,.353
DBOD
215.118
SROU
1513.259
DBOD
215.118
SHOD
l5l3.259
DBOD
215.118
SPOD
7800.527
DBOD
1108.885
SBOD
.000
DBOD
.000
vss
5417.702
TSS
6067.230
VSS
9666.310
TSS
1096R.046
VSS
44071 .76n
TSS
50000.000
VSS
15395.037
TSS
21323.276
VSS
36099.137
TSS
50000.000
VSS
36099.137
TSS
55825.QOO
VSS
186083.332
TSS
287765.941
VSS
.000
TSS
.000
NH3
15.000
.000
NH?
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
N03
•000
NH3
15.000
N03
.000
NH?
.000
N03
.000
Table 6 (continued)
-------
S19.
S20.
S21.
S22,
S26.
0
2.2611
ALK
34b.57b
Cl
2.209
ALK
267.615
0
.039
ALK
34fab. «*•+!+
(..
2.244J
ALK.
,}2*.722
u
.016
ALK
3l6b.44i+
(j
1.967
ALK
2b7.64b
Q
9.996
ALK
2fa7.b1b
U
9.99b
ALK
2b7.64b
soc
59.171
DOC
16.551
SOC
27.319
DOC
13.817
SOC
Itt77.bl2
DOC
126.036
SOC
b9.206
DOC
lb.749
SOC
bl.310
DOC
126. Oib
SOC
6.0H
DOC
I3.bbl
SOC
6.0t*1
DOC
l3.fabl
SOC
6. OU<»
DOC
I3.6bl
SNBC
39.171
pNUC
11.000
SNUG
ft. 626
OMBC
11.000
SMBC
1777.U38
DNbC
li.Ono
bKBC
39.081
UNUC
11.000
bNBC
51.1U1
DNdC
11. one
SNbC
1.832
UNBC
11>000
SNBC
1.832
ONBC
11-000
SNBC
1.632
UNBC
11.000
SON
6.426
DN
«»3.539
SON
2.9^0
DN
21.710
SON
205.612
DN
917.732
SON
6.129
DN
37.137
SON
5.9bl
DN
917.732
SON
.712
DN
21.697
SON
.712
DN
21.697
SON
.712
ON
21.697
SOP
.847
DP
9.84ft
SOP
,38R
DP
5.419
SOP
27.106
DP
187.145
SOP
,84ft
DH
8.54ft
SOP
.781
DP
187.145
SOP
.060
DP
b.422
SOP
.060
DP
5.422
SOP
.060
DP
5.422
SFM
38.074
DFM
500.000-
SFM
8.351
DFM
500.000
SFM
1720.790
DF->'.
bQO. 000
SFM
37.836
DFM
500.000
SFM
70.670
DFM
500.000
SFM
1.725
DFM
500.000
SFM
1.725
DFM
500. 000
SFM
1.725
DFM
500.000
SEOD
37.621
DBOD
10.381
SHOD
35.238
DPOD
5.26«
spon
187.327
Dt»OD
215.118
SHOD
37.857
DPOD
8.882
SBOD
5.421
DBOD
215.118
SBOD
7.986
DBOD
4.958
SBOD
7.986
DBOD
4.958
SBOD
7.986
DBOD
4.958
VSS
137.891
TSS
175.969
VSS
62.084
TSS
70.435
VSS
U<*6*.718
TSS
6189.508
VSS
137.957
TSS
175.793
VSS
129.330
TSS
200.000
VSS
14.386
TSS
16.110
VSS
14.386
TSS
16.110
VSS
14.386
TSS
16.110
NH3
15.000
.000
NH3
15.000
NO 7>
.000
NH3
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
N03
.000
NH3
15.000
N03
• 000
NH3
15.000
N03
.000
Table 6 (continued)
-------
PROCESS CHARACTERISTICS
CCOST = CAPITAL COST* DOLLARS
COSTO = OPERATING + MAINTENANCE COST, CEMTS/IOOO GAL.
ACOST = AMORTIZATION COST, CENTS/IOOO GAL.
TCOST = TOTAL TREATMENT COST, CENTS/IOOO GAL.
P 1 KHW nASTtWATER HEAD (jP
PUMPING 30.00 14.81
P 2 PKELlMNAkY IPRtL
IkEATMtlMT 1.0
P 3 PRIMARY FRPS URPS
btOI.viENTATION .bO "+00. 0
P 4 ACTIVATED SLUDGE- BOD MLSS
FINAL SETTLER 13.0 2000.
BOU2 DObAT
111.5 10.8
MLNBSS MLDSS
"+64. 30.
HPWK GPS APS
14.0 1375.2 10.701
SETTLER
SLUDGE
PUMPS
DEGC CAER20 DO
20.00 1.00 1.00
XKSS AFS CAER
.0080 20.54 1.00
MLISS FOOD RTURN
217. 4b.9 .464
AERATOR
BLOWER
SLUDGE
PUMPS
FINAL
SETTLER
CCOST
710223.
CCOST
216086.
PGPM
128.
CCOST
312019.
95348.
AEFF20
.05
CEDR
.125
CNIT
.321
CCOST
600279.
254571.
160196.
506368.
COSTO
.520
COSTO
.569
COSTO
.276
.308
URSS
3.00
VAER
2.319
ARCFD
4153202.
COSTO
.000
.951
.349
.422
ACOST
1.522
ACOST
.463
ACOST
.669
.204
GSS
700.00
VNIT
3.648
BSIZE
2884.
ACOST
1.287
.546
.343
1.085
TCOST
2.0^2
TCOST
1.032
TCOST
.945
.512
HEAD
30.00
MLASS
248.
CFPGL
.34
TCOST
1.287
1.497
.693
1.507
ECF
1.00
ECF
1.00
FCF
1.20
1.00
ALMD
.00
MLBSS
1041.
OR
5.679
ECF
1.20
1.00
1.00
1.20
Table 7 Sample output of process characteristics
-------
P 5 faKAviTY
ThlCKtNllMfc
P b bXKfcLb STAGE
ANAtHOtJlt
UiGtbTlON
P 7 btCOIMU
AUAtKOBlC
UlGtb'l
P b bLUDbfc. HOLDING
H 9
PlO MULTIPLE htAKTH
I NCINEKAT ION
Pll CHLOKlNATION-
UhChLuRINATIUN
T«K
.95
TO
lb.0
THK
.61
TO
lo.O
VHL
14 .90
hH
71.2
ML
2.0
FHA
soa.
OCL2
h.OO
1SS
50000.
TuIG
30.0
TSS
50000.
VbHT
41 .0
HpVyK
35.
AVF
671.1
NINC
1.0
WFYH
290968.
TCL2
30.0
(jTh
700.0
C1UIG
.234
TO
15.0
TSS
200.
HbDD
949B.
HPWK
35.0
PbDD
9505.
CCL2
220.00
GSTH ATHM WRT
8.0 4860.5 7.08
CCOST
185807.
C20IG vniO CH4
1154. 154.143 124331.
CCOST
624828.
VDIG CCOST
118.571 521959.
CCOST
188161.
IVACF FECL3 CAO
1.0 42.00 176.00
CCOST
960780.
SPER WV HV
5.0 .0 10000.0
ECOST FCOST
1637. 11668.
CCOST
773168.
DS02 CS02 BVOL
2.50 180.00 41762.
CCOST
CONTACT 129678.
BASIN
COSTO
.153
CO?
65296.
COSTO
.410
COSTO
.410
COSTO
.272
CFECL
,06<+0
COSTO
1.384
TYPE
1.0
COSTO
.935
CUSE
121.57
COSTO
.000
ACOST
.398
ACOST
1.339
ACOST
1.119
ACOST
.403
CCAO
.0125
ACOST
2.059
FC
.300
ACOST
1.657
SUSE
37.99
ACOST
.278
TCOST
.551
TCOST
1.749
TCOST
1.529
TCOST
.675
DPOLY
15.00
TCOST
3.443
CNG
.970
TCOST
2.592
TCOST
.278
ECF
1.50
ECF
1.30
ECF
1.00
ECF
1.00
CPOLY
,3300
ECF
1.00
ECF
1.00
ECF
1.50
Table 7 (continued)
-------
00
AijMINlSTKATlv/t
AND LABUKATOKY
AND
LABOKATOKY
U^EKATIUIM
YAKD,VUKK
OPEhAlION
XLAB
1.0
Cl_2 FEED
SYSTEM
S02 FEED
SYSTEM
106436.
33261. .266
.9ft3 .228 1.211 1.20
.071 .337 1.20
CCOST COSTO ACOST TCOST
221023. .572 .474 1.045
CCOST COSTO ACOST TCOST
65407. .000 .140 .140
CCOST COSTO ACOST TCOST
0. .646 .000 .646
CCOST COSTO ACOST TCOST
0. .354 .000 .354
Table 7 (continued)
-------
TOTAL PLANT COST
TOTAL CAPITAL COST =
TOTAL AMORTIZATION COST =
TOTAL 0 + M COST =
TOTAL TREATMENT COST =
6665598. DOLLARS TOT
14.286 CENTS/1000 GALLONS TAMM
9.778 CENTS/1000 GALLONS TOPER
24.064 CENTS/1000 GALLONS TOTAL
CC1
1.675
RI
.060
YRS
25.0
DHR
4.73
PCT
.150
DA
1000.
CCINT
.06
XLAB
1.00
CKWH
.020
RATIO
1.331
ACHE.
19.yb
TCAP
500S9oO.
AF
.07823
YARD
701254.
TCC
5710214.
XLAND
19977.
ENG
470179.
SU8T1
6200370.
FISC
39740.
SUBT2
6240110.
XINT
425488.
Table 8 Output showing total plant cost
-------
0 210.23
9234.7'*
ENtKGY CONSUMPTION AND COST
10.00
10.00
10.00
It). 00
.00
2b.OO
14b0.31
K> .00
10.00
10.00
1.00
.00
bt>.37
.00
10.00
10.00
2.00
.00
107.30
00
. u w
10.00
10.00
3.00
.00
btt75.37
.00
10.00
10.00
8.00
.00
20.42
.00
10.00
10.00
6.00
.00
453.30
.00
10.00
10.00
21.00
.00
4b3.30
.00
10.00
10.00
16.00
.00
.00
.00
10.00
10.00
7.00
.00
352.17
.00
10.00
10.00
14.00
.00
245.25
.00
10.00
10.00
12.00
.00
.72
.00
10.00
10.00
.00
.00
.00
.00
Table 9 output showing energy consumption and cost
-------
through 9 for the example wastewater treatment system. For a
particular design case, the first group of output shows the
title of system and the process cards which describe the simu-
lated wastewater treatment system (see Table 3). The second
group of output data (Table 6) shows the volume flow and concen-
trations of the 17 contaminants in each numbered stream. The
stream is identified by the letter S followed by the number in
the left-hand column of the printout. For example, stream num-
ber 3 is identified by S3. The third part of the output (Table
7) lists the unit processes according to process number and
gives the name of the process with all pertinent input and out-
put parameters and cost data relating to the process. The pro-
cess is identified by the letter P followed by the process num-
ber in the left hand column of the printout. For example,
process number 3 identified by P3. The fourth set of printout
(Table 8) gives the total costs for the entire plant and general
items relating to the cost calculations. The fifth and final
part of the printout (Table 9) gives the energy requirements of
the unit processes used. The electrical power, natural gas,
fuel oil, gasoline, etc., required for operation of the plant
are converted to British Thermal Units (BTU). This conversion
provides an easy means to compare total energy use for alternate
treatment systems.
A flow chart of EXECMAIN is shown in Figure 2. The chart
shows the major branches and loops in the program.
Discussion of individual process subroutines used in con-
junction with EXECMAIN is found in the following sections.
21
-------
(
Figure 2. Flowchart
of EXECMAIN showing
major branches and
iterations.
22
-------
c
c
(,
c
c
c
c
c
c
EXECMAIN EXE00100
EXECUTIVE PROGRAM FOR DESIGN OF WASTEWATER TREATMENT PLANTEXE00200
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RICHARD G. EILtRS, ROBERT SMITH AND ILLINOIS INSTITUTE
OF TECHNOLOGY, ENVIRONMENTAL ENGINEERING DEPARTMENT
AUG. 1977
COMMON INITIAL STATEMENTS
EXE00300
EXEOO<*00
EXE00500
EXE00600
EXE00700
EXE00600
EXE00900
EXE01000
EXE01100
INTEGER OS1,OS2,REPEAT,CHECK1,PROCNO
DIMENSION NAME<3),LIST(40)
COMMON SMATx(2Cr30),TMATX(20»30)•DMATX(20,20>tOMATX(20»20).IP<20),ExE01200
lINP,IO,Ibl,IS2,OSl,OS2,N,IAERF,cCOST(20,5),COSTOf20,5),ACOST(20.5)EXE01300
2rTCOST(20r5)rDHR»PCT»WPI,CLAND,DLAND»PROCNO(10)»FLOW<25),POW(25>rTEXEOlUOO
3KWHD(2b)
DEFINE AN INTERNAL FILE FOR TEMPORARY STORAGE OF PROCESS
DATA USED LATER IN THE EXECMAIN
DEFINE FILE 2(bOi15rUfNNNNN)
ASSIGNMENT OF NUMBERS REPRESENTATIVE OF THE USERS INPUT*
INP, AND OUTPUT. 10. DEVICES
10=6
INPUT FIRST DATA CARD
REAL) (INP.10) NCASE,REPEAT,CHECKl
10 FORMAT (312)
MAJOR LOOP FOR EACH DESIGN CASE
DO 770 111=1.NCASE
IF (III.£0.1) GO TO 20
IF (REPEAT.EO.O) GO TO 20
INPUT REPEATED DESIGN CASES ONLY - REPEATED FLOW
DIAGRAM WITH NEW VALUES FOR RAW SEWAGE STREAM, COST
PARAMETERS AND/OR DESIGN MATRIX VALUES
HEAD (INP,1Q) NEWRAW»N£WCOS»NE*DMX
GO TO 50
20 CONTINUE
INITIAL ZEROING OF ARRAYS - NOT NECESSARY IN SUBSEQUENT
DESIGN CASES WHICH USE SAME FLOW DIAGRAM
DO 30 1=1,20
DO 30 J=l,30
SMATX(I,J)=Q.
EXE01500
EXE01600
EXE01700
EXE01800
EXE01900
EXE02000
EXE02100
EXE02200
EXE02300
EXE02tOO
EXE02500
EXE02600
EXE02700
EXE02flOO
EXE02900
EXE03000
EXE03100
EXE03200
EXE03300
EXE03400
EXE03500
EXE03600
EXE03700
EXE03800
EXE03900
EXEO<+OOO
EXE04100
EXE01200
EXEO«»300
ExEO'tSOO
EXE04700
EXE04900
EXE05000
EXE05100
EXE05200
EXE05300
EXE05400
EXE05500
EXE05600
EXE05700
EXE05800
23
-------
DO 40 J=l,20
OMATXtI,J)=Q.
CONTiNUt
INITIAL ZEROING OF ARRAYS
eiO
CONTINUE EXE05900
00 40 1=1,20 EXE06000
IP(I>=0 EXE06100
EXE06200
t.xEOf>300
40 CONTINUE EXE06400
EXE06bOO
EXE06600
EXE06700
EXE06800
EXE06900
EXE07000
EXE07100
EXE07200
EXE07300
EXE07400
EXE07500
EXE07600
EXF07700
EXE07800
EXE07900
EXE08000
EXE08100
EXE08200
EXE08300
EXE08400
EXE08500
EXE08600
EXE08700
EXE08800
EXE08900
EXE09000
EXE09100
EXE09200
EXE09300
EXE09400
EXE09500
EXE09600
EXE09700
READ (INP,loO) LIST EXE09800
100 FORMAT (40A2) EXE09900
WRITE (10,110) EXE10000
110 FORMAT (1H1,//,55X,'EXECUTIVE',/,47X,'DIGITAL COMPUTER PROGRAM',/,EXE10100
156X,'FOR',/,34X,'PRELIMINARY DESIGN OF WASTEWATER TREATMENT SYSTEMEXE10200
2S',//,58X,'BY',/,53X,'ROBERT SMITH',/,5lX,'RICHARD G. EILERS',/) EXE10300
WRITE (10,120) EXE10400
120 FORMAT (41X,»U.S. ENVIRONMENTAL PROTECTION AGENCY',/,39X,'MUNICIPAEXE10500
1L ENVIRONMENTAL RESEARCH CENTER',/,45X,'WASTEWATER RESEARCH DIVISIEXE10600
20N',/,40X,'TECHNOLOGY DEVELOPMENT SUPPORT BRANCH',/,40X,'SYSTEMS AEXE10700
3ND ECONOMIC ANALYSIS SECTION',/,47X,'CINCINNATI, OHIO 45268',//,EXE10800
452X,«(513) 684-7618'»/////) EXE10900
WRITE (10,130) III EXE11000
FORMAT (/,20X,'DESIGN CASE NO.',I2,//) EXE11100
WRITE (10,1^0) LIST EXE11200
FORMAT (20X,40A2»//,52X,'SYSTEM DIAGRAM',/,54X,'INPUT DATA',//,28XEXE11300
1, ' K',5X,'N',5X,'PROCESS'r9X,'IS1',7X,'IS2',7X,'OS1',7X,«052',/) EXE11400
IF (III.EQ.D GO TO 150 EXE11500
IK (REPEAT.EO.l.AND.NEwRAW.EO.O) GO TO 160 EXE11600
150 CONTINUE EXE11700
C EXE11800
C EXE11900
C INPUT NEW AND SOME REPEATED DESIGN CASES EXE12000
C EXE12100
(SMATX(I,1),1=2,20) EXE12200
EXE12300
GO TO 170 EXE12400
COM 1NUE.
DO bO I-lf2b
FLOMI)=0.
P0w(i UO.
TKwHUd 1=0.
CONTINUE
UO 70 1=1,20
DO 70 J=l,30
TMATX(I,J)=0.
CONTINUE
DO ttO 1=1,20
DO 80 J=l,20
OMATX(I,J)=0.
CONTINUE
DO 90 1=1.20
DO 90 J=l,b
CCOSTd ,J)=Q.
COSTOd ,J)=0.
ACOSTl IrJ)=0.
TCObl(I,J)=o.
CONTINUE
IAEHF=0
CLAND=0.
DLANU=0.
tPS=.l
INPUT NEW AND REPEATED DESIGN CASES
130
140
READ (INP,180)
IfaO CONTINUE
IF (III.EO.l)
24
-------
IF (REPEAT.EQ.l.AND.NE*COS.EG.0) GO TO 190
170 CONTINUE
C
C
C
C
INPUT NEW AND SOME REHEATED DESIGN CASES
READ (1NP,180) (DMATX(I,20),I=1,16)
160 FORMAT (tJFlO.O)
190 CONTINUE
WPI=UMATX( ,2,20 1/1.122
Dhk=UMATX(b,20)
PCT=UMATX(b,20)
IF (lll.tu.l) GO TO 230
IF (REPEAT.EQ.O) GO TO 230
WRITt (10,200)
200 FORMAT (/////,40X,'PROCESS AND STREAM NUMBERING SAME AS DESIGN
IE NO. 1')
IF (NEWDMX.EQ.O) GO TO 340
EXE12SOO
EXE12600
EXE12700
EXE12800
EXE12900
EXE13000
EXE13100
EXE13200
EXE13300
EXE13400
EXE13500
EXE13600
EXE13700
EXE13800
EXE13900
CASEXE14000
EXE14100
INPUT
CAbES
SOME REPEATED DESIGN CASES ONLY - NOT FOR NEW
READ
-------
340 CONTINUE
350 !TtH=0
C
C
C
C
C
C
c
c
t
c
c
t
c
BEGINNING OF ITERATIVE LOOP IN WHICH THE STREAM
PARAMETERS ARE REEVALUATED TO REFLECT THE EFFECT OF
POSSIBLE RECYCLE STREAMS BACK TO THE BEGINNING SECTIONS
OF THE PLANT
360
ITLR=ITER+1
II- UTEK.NE.l)
GO TO 370
INITIAL VALUES OF ALL PROCESSES AND STREAMS WILL BE
PRINTED IF CHECK1 IS EQUAL TO 1 - TROUBLESHOOTING AID
IF PROGRAM EXECUTION IS INTERRUPTED
IF (CHECK1.EQ.O) GO TO
CHtCKl=0
CALL PRINT
370 CONTINUE
370
IFAIL=0
IF (1TER-25) 400»400»380
380 WRITt (10,390)
390 FORK.AT ////,iox,'EXECUTIVE ITERATION DOES NOT CONVERGE',
1R1NTOUT IS FOR THE LAST ITERATION')
GO TO 760
C
C
C
C
C
READING THE PROCESS ANO STREAM NUMBERS STORED IN THE
TEMPORARY INTERNAL FILE
400 READ (2'KKK)
KKK=KKK-fl
K ,N» IPROC , IS1 , IS2 .051 , OS2
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AFTER ALL PROCESSES HAVE BEEN CALCULATED FOR THE FIRST
ITERATION AND THE NEXT PROCESS DATA TO BE READ FROM
THE INTERNAL FILE IS THt ONE WITH THE LONE VALUE OF
K=9 IN COL. 1., IFAIL WILL BE EQUAL TO 1 AND STATEMENT
410 WILL BE EXECUTED
IF (K-9) 420»410»410
WHEN IFAIL=1, CONTROL WILL SHIFT TO STATEMENT 3&0 WHICH
LEADS TO THE INCREMENTATION OF ITER AND RESETTING
IFAIL=0 - A SECOND, THIRD, FOURTH,.,.NTH... ITERATION
WHERE ALL THE PROCESSES WILL BE CALCULATED WILL FOLLOW
- EVENTUALLY TWO COMPLETE ITERATIONS WOULD BE CALCULATED
WITHOUT IFAIL BEING SET EQUAL TO 1 BY STATEMENT 710 -
CONTKOL WILL THEN SHIFT TO STATEMENT 760 FOR THE
BEGINNING OF A NORMAL TERMINATION OF THE DESIGN CASE
EXE19100
EXE19200
EXE19300
EXE19400
EXE19500
EXE19600
EXE19700
EXE19800
EXE19900
EXE20000
EXE20100
EXE20200
EXE20300
EXE20400
EXE20500
EXE20600
EXE20700
EXE20800
EXE20900
EXE21000
EXE21100
EXE21200
EXE21300
EXE21400
EXE21500
'PEXE21600
EXE21700
EXE21800
EXE21900
EXE22000
EXE22100
EXE22200
EXE22300
EXE22400
EXE22500
EXE22600
EXE22700
EXE22800
EXE22900
EXE23000
EXE23100
EXE23200
EXE23300
EXE23400
EXE23500
EXE23600
EXE23700
EXE23800
EXE23900
EXE24000
EXE24100
EXE24200
EXE24300
EXE24400
EXE24500
EXE24600
410 IF (IFAIL) 760,760,360
420 GO TO <430,440.4bO»460,470,480*490»500»510»520»53o,540»550»560»570ExE24700
I»b80»590>600.610»620>630»640»650>660>» IPROC EXE24800
430 CALL PREL EXE24900
GO TO 670 EXE25000
440 CALL PRSET EXE25100
GO TO 670 EXE25200
450 CALL AERFS EXE25300
EXE25400
EXE25500
IF THE REQUIRED MLASS, BOD5 OR MLSS CAN NOT BE ATTAINED EXE25600
26
-------
c
c
c
c
IN THE AERFS SUBROUTINE, IAERF WILL HE RETURNED FROM
AEKFS WITH A VALUE OF i (ONE) - THIS TRANSFER CONTROL
TO STATEMENT 7faO WHICH WILL TERMINATE THE DESIGN CASE
IF (1AEKF) 670,670*760
<+60 CALL MIX
GO TO 670
**70 CALL SPLIT
GO TO fa70
UbO CALL DIG
GO TO 670
«*90 CALL VACF
GO TO 670
500 CALL THICK
GO TO 670
510 CALL ELUT
GO TO 670
520 CALL SBEDS
GO 10 670
530 CALL TRFS
GO TO 670
5**0 CALL CHLOR
GO TO 670
550 CALL TFLOT
GO TO 670
560 CALL MHINC
GO TO 670
570 CALL RWP
GO TO 670
5BO CALL SHT
GO TO 670
590 CALL CENT
GO TO 670
600 CALL AEKOB
GO TO 670
610 CALL POSTA
GO TO 670
620 CALL EQUAL
GO TO 670
630 CALL OIG2
GO TO 670
6UO CALL LANDO
GO TO 670
650 CALL LIME
GO TO 670
660 CALL KBC
C
C
C
C
C
C
C
C
C
c
CHECK IF DIFFERENCE BETWEEN LATEST STREAM VALUES*
SMATX(I,OS1), ANU PREVIOUS STREAM VALUES* TMATX(I,051),
IS LESS THAN THE ALLOABLE ERROR* EPS» IN MG/L - IF NOT»
SET THE ITERATION ERROR TEST PARAMETER IFAIL=1 AND
CONTINUE THE ITERATIVE EFFORT TO REFINE THE STREAM
PARAMETER VALUES - IF LESS THAN OR EQUAL TO ALLOWABLE
ERROR* CHECK THE STREAM PARAMETERS FOR OS2
670 DO 680 1=2*20
IF (ABS(SMATX(I,OS1)-TMATX(I»OS1»-EPS> 660*680*710
680 CONTINUE
IF (OS2) 720*720*690
C
C
C
C
C
C
CHECK PARAMETERS FOR OS2 - IF GREATER THAN ALLOWABLE
ERROR. SET THE ITERATION ERROR TEST PARAMETER IFAILsl
AND CONTINUE THE ITERATIVE EFFORT TO REFINE THE STREAM
PARAMETER VALUES - IF LESS THAN OR EQUAL TO ALLOWABLE
EXE25700
EXE25800
EXE25900
EXE26000
EXE26100
EXE26200
EXE26300
EXE26100
EXE26500
EXE26600
EXE26700
EXE26800
EXE26900
EXE.27000
EXE27100
EXE27200
EXE27300
EXE27UOO
EXE27500
EXE27600
EXE27700
EXE27800
EXE27900
EXE28000
EXE28100
EXE28200
EXE28300
EXE28400
EXE28500
EXE28600
EXE28700
EXE28BOO
EXE28900
EXE29nno
EXE29100
EXE29200
EXE29300
EXE29400
EXE29500
EXE29600
EXE29700
EXE29800
EXE29900
EXE30000
EXE30100
EXE30200
EXE30300
EXE30400
EXE30500
EXE30600
EXE30700
EXE30800
EXE30900
EXE31000
EXE31100
EXE31200
EXE31300
EXE31UOO
EXE31500
EXE31600
EXE31700
EXE31800
EXE31900
EXE32000
EXE32100
EXE32200
27
-------
C ERROR, RLPLACE THE PREVIOUS STREAM VALUES, TMATX, WITH EXE32300
C THE LATEST STRLAM VALUES. SMATX EXE32400
C EXE32500
690 00 700 1=2.20 EXE32600
IF
-------
SECTION 2
PRELIMINARY TREATMENT, PREL
Subroutine Identification Number 1
Preliminary Treatment > PREL
1. Process symbol.
Rev. Date 8/1/77
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number
to the process
2. Input parameters and nominal values.
DMATX(l.N) = IPREL
DMATX(16,N) = ECF
Program control number: 0 = grit removal and flow
measurement; 1 = grit removal and flow measurement
and screening, [l. ]
Excess capacity factor for the process.
3. Output parameters which are printed on computer output sheets.
IPREL = DMATX(l.N)
CCOST = Capital cost, (dollars).
COSTO = Operating and maintenance cost,(cents/1000 gal)•
ACOST = Amortization cost,(cents/1000 gal).
TCOST = Total treatment cost /cents/1000 gal) •
ECF = Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(I.OSl) = SMATX(I.ISl) PRE02400
SMATX(I.OSl) = SMAIX(I.ISl) [mg/l]
I = 2,20 Q.SOC.SNBC.SON.SOP.SFM.SBOD.VSS.TSS.DOC.DNBC.DN.DP.DFh.ALK.DBOD.NHS.NOS
29
-------
IPREL o DMATXCl.N) PRE018°°
IPREL = DMATX(l.N)
References: Smith, 1969
Patterson and Banker, 1971
5. Cost functions.
a. Capital cost
Function of Qjsl*ECF
X = ALOG(SMATX(2,IS1)*DMATX(16,N)) PRE03000
X •= ln(QIsl*ECF)
(1) For preliminary treatment consisting of grit removal and flow measurement
CCOST(N,1) = EXP (2. 566569+. 619151*X)*1000. PRE03700
CCOST = lOOOe2 • 566569+0 . 619151X [dollars]
(2) For preliminary treatment consisting of grit removal, flow measurement and
screening
CCOST(N,1) EXP(3. 259716 +.619151*X)*1000. PRE04500
CCOST = I000e3-259716+-619151*x [dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of
X = ALOG(SMATX(2,IS1)) PRE05100
X = ln(QIsl)
(1) Operating manhours
OHRS = EXP(6.398716+.230956*X+.164959*X**2.-.014601*X**3.) PRE05700
OURS = e6.398716+.230956*X+.164959*X2-.014601*X3
(2) Maintenance manhours
XMHRS = EXP(5.846098+.206513*X+.068842*X**2+.023824*X**3.-.004410*X**4.) PRE05800
XMHRS = e5-846098+-206513*x+-0688/(2*x2+'023824*X3-.004410*X/' fh / 1
30
-------
(3) Total materials and supplies
TMSU = EXP(7. 235657+. 399935*X-.224979*X**2.+.110099*X**3.-.011026*X**4.) PRE06000
= e7. 235657+. 399935*X-.224979*X2+.110099*X3-.011026*X4
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. PRE06600
rnoTn _ (OHRS+XMHRS) *DHR* ( 1 +PCT) +TMSU*WPI r .,„-- .-.
COblO - J - — - ' - * — -,,n/ - [cents/1000 gal]
Qplant Inf.* 365°
Cost curves, Patterson and Banker pages 35,36,85,86
31
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
PRELIMINARY TREATMENT
PROCESS IDENTIFICATION NUMBER
SUBROUTINE PREL
PRE00100
PRE00200
PRE00300
PRE00400
PRE00500
PRE00600
PRE00700
PRE00800
PRE00900
INTEGER OSlrOS2 PRE01000
COMMON SMATX<«:0.30>FTMATX(20»30>«DMATX<20f20)»OMATX(20»20)»lP(20)rPREOUOO
llNP.IO»ISl»lS2fOSl»OS,d»N'IAERFfCCOST(20f5).COSTO(20»5)rACOST<20»5)PRE01200
COMMON INITIAL STATEMENTS
2«TCOST(20»5)>UHR»PCT»*P1'CLANDfDLAND'FLOW125)»POW(25)»TKWHD(25)
ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS
IPR£L=DMATXU»N)
EFFLUENT STREAM CALCULATIONS
DO 10 I=2r20
10 SMATX(IrObl)=bMATX(I»lSl>
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
X=AL06(SMATX<2rISl)*DMATX(16fN»
IF (1PREL) 30«20»30
CALC. OF CAPITAL COSTS FOR PRELIMINARY FACILITY
CONSISTING OF GRIT REMOVAL AND FLOW MEASUREMENT
20 CCOST(N»l)=EXP(2.5665o9+.619151*X)*1000.
GO TO 40
CALC. OF CAPITAL COSTS FOR PRELIMINARY FACILITY
CONSISTING OF GRIT REMOVAL AND FLOW MEASUREMENT AND
SCREENING
30 CCOST(Nrl)=EXP(3.2597l6+.619151*X)*1000.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE*
DOES NOT INCLUDE EXCESS CAPACITY
40 X=ALO(,(SMATX<2»IS1M
CALC.OF OPERATING MANHOURS* MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
OHRS=EXP(6.398716+.230956*X+.164959*X**2i-.Ol4601*X**3.)
PRE01300
PRE01400
PRE01500
PRE01600
PRE01700
PRE01800
PRE01900
PRE02000
PRE02100
PRE02200
PRE02300
PRE02400
PRE02500
PRE02600
PRE02700
PRE02800
PRE02900
PRE03000
PRE03100
PRE03200
PRE03300
PRE03400
PRE03500
PRE03600
PRE03700
PRE03800
PRE03900
PRE04000
PREOU100
PRE01200
PREOU300
PREOU400
PRE04500
PRE01600
PREOH700
PRE04800
PRE04900
PRE05000
PRE05100
PRE05200
PRE05300
PRE05HOO
PRE05500
PRE05600
PRE05700
XMHRS=EXP(5.846098+.2U65l3*X+.068842*X**2.+.023a24*X**3.-.00«*tlO*XPRE05800
32
-------
C
C
1**'*')
TMS>U=EXP(7.23b657+.;599935*X-.22<*979*X**2.
1*4*')
OPERATING COST EQUATION
COSTO(N.l)=((OHRS+XMHRS)*DHR*(l.+PCT)*TMSu*«Pl)/SMATXl2.1)/3650.
PROCESS ENERGY INDICES
PLOW(N)=SMATX(2,IS1)
PRE05900
PRE06100
PRE06200
PRE06300
PRE06«»00
PRE06500
PRE06600
PRE06700
PRE06600
PRE06900
PRE07000
PRE07100
PRE0720S
PRE07300
PRE07tOO
33
-------
SECTION 3
PRIMARY SEDIMENTATION, PRSET
Subroutine Identification Number 2
Primary Sedimentation, PRSET
1. Process symbol.
Rev. Date 8/1/77
IS1
OS1
OS2 (Sludge)
2. Input parameters and nominal values.
IS1: Liquid input stream
OS1: Liquid output stream
OS2: Sludge output stream
N: User assigned number to
the process
DMATX(l.N) •= FRPS
DMATX(2,N) = URPS
DMATX(3,N) = HPWK
DMATX(15,N) = ECF
DMATX(16,N) = ECF
Fraction of solids entering the primary settler which
is removed from the main stream and sent on to the
sludge handling process, fraction. [.5]
Ratio of solids concentration in OS2 from the primary
settler to the solids concentration in IS1 to the
primary settler. [400.]
Hours per week that the primary sludge pumps are
operated, hr/wk. [14.]
Excess capacity factor for primary sludge pumps. [l.J
Excess capacity factor for primary settler basin. [1.2]
3. Output Parameters which are printed on computer output sheets.
FRPS = DMATX(l.N)
URPS = DMATX(2,N)
HPWK = DMATX(3,N)
GPS = OMATX(l.N)
APS •= OMATX(2,N)
PGPM = OMATX(3,N)
CCOST
COSTO
ACOST
TCOST
ECF
Overflow rate for the primary settler, [gpd/sq/ft].
Surface area of the primary settler, [sq ft/1000].
Firm pumping capacity of the primary sludge pumps, [gpm]
Capital cost, [dollars] .
Operating and maintenance costs, [cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
34
-------
4. Theory and function - FORTRAN statement followed by equivalent algebraic equation.
HPWK - DMATX(3,N)
HPWK - DMATX(3,N) [hr/wk]
PRS01800
SMATX(2,OS2) - DMATX(1,N)*SMATX(2,IS1)/DMATX(2,N)
Qos2 •
LMGD]
URPS
FRS02400
SMATX(2,OS1) - SMATX(2,IS1)-SMATX(2,OS2)
- °-OS2 CMGD]
PRS02500
TEMPI = (1.-DMATX(1,N))*SMATX(2,IS1)/SMATX(2,OS1)
TEMPI = Cl.O-FKPS)*^! [no units]
Qosi
PRS02600
TEMP2 = DMATX(1,N)*SMATX(2,IS1)/SMATX(2,OS2)
TEMP2
FRPS*Q.
IS1
QOS2
[no units]
PRS02700
SMATX(I.OSl) = TEMP1*SMATX(I,IS1)
SMATX(I,OS1) - TEMP1*SMATX(I,IS1) [mg/l]
where I = 3,10 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS
PRS03300
SMATX(I,OS2) = TEMP2*SMATX(I,IS1)
SMATX(I,OS2) = TEMP2*SMATX(I,IS1) [mg/l]
where I = 3,10
PRS03400
SMATX(I,OS2) = SMATX(I.ISl)
SMATX(I,OS2) = SMATX(I.ISl) [mg/l]
where I = 11,20 i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
PRS03600
SMATX(I,OS1) = SMATX(I,OS2)
SMATX(I.OSl) = SMATX(I,OS2) [mg/l]
where I = 11,20
PRS03700
35
-------
GPS - -2780.*ALOG(DMATX(1,N))-551.7 PRS04300
GPS = -(2780*ln FEPS)-551.7 [gpd/ft ]
APS - SMATX(2,IS1) *1000./GPS*DMATX(16,N) PRS04400
QT *1000ECF
APS = Gps [lOOOftl
PGPM = SMATX(2,OS2)*116666.7/HPWK*DMATX(15,N) PRS04200
Q- *116666.7*ECF
PGPM -
Reference: Smith, 1969
Smith and Eilers, 1975
Patterson and Banker, 1971
5. Cost Functions.
a. Settler
(1) Capital cost for the settler
Function of APS
X = ALOG(APS) PRS05000
X = In APS
CCOST(N.l) = EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000. PRS05100
CCOST = ioooe3-71635440'389861^0-084560512-0-004718^ [dollars]
(2) Operating manhours, maintenance manhours and materials/supplies costs
Function of APS/ECF
X = ALOG(APS/DMATX(16,N)) PRS05900
Apt;
x = lnti
(a) Operating manhours
OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.) PRS06500
_ 5.846565+0.254813X+0.113703X2-0.010942X3 rv . ,
- e Lhrs/yrJ
36
-------
(b) Maintenance manhours
XMHRS - EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.) PRS06600
._„„„, 5.273419+0.228329X+0.122646X2-0.011672X3 r. . -,
XMHKo = e Lhrs/yrj
(c) Total materials and supplies
TMSU - EXP(5.669881+.750799*X) PRS06700
TMSU - e5.669881+0.750799X [$/yr]
(3) Total operating and maintenance costs
COSTO(N.l) - ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. PRS07200
COSTO - [ (OHRS+XMHRS)DHR(1+PCT) ]+(TMSU*WPI) [cents/10oO galj
%lant inf.*3650
b. Sludge pumps
(1) Capital cost for sludge pumps
Function of PGPM
X = ALOG(PGPM) PRS07800
X » In (PGPM)
CCOST(N,2) = EXP(2.23733CH-.207628*X+.026479*X**2.)*1000. PRS07900
CCOST = 10oOe2-237330+0-207628X+0-026479x2 [dollars]
(2) Operating manhours, maintenance manhours and materials/supplies costs
Function of PGPM/ECF
X = ALOG(PGPM/DMATX(15,N)) PRS08500
(a) Operating manhours
OHRS = EXP(4.945155+.419391*X) PRS09100
-„.,_ 4. 945155+0. 419391X r. , n
OHRS = e [hrs/yr]
(b) Maintenance manhours
XMHRS = EXP(3. 993365+. 444966*X) PRS09200
XMHRS = e3.993365+0.444966X [hrs/yr]
37
-------
(c) Total materials and supplies
TMSU = EXP(4.433129+.642272*X) PRS09300
/.433129+0.642272X [$/yr]
(3) Total operating and maintenance costs
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. PRS09800
COSTO - [(OHRS+XMHRSjDHRd+PCTnCTMS^WFI) [centS/lOOOgal J
QT»I *. T c *
xPlant Inf.
38
-------
c
c
c
c
c
c
c
c
PRIMARY SEDIMENTATION
PROCESS IDENTIFICATION NUMBER 2
SUBROUTINE PRSET
COMMON INITIAL STATEMENTS
INTEGER osi»os2
COMMON SMMTX<20r30) rTMATX(20»30) »DMATx (20.20 > »OMATX(20>20 ) »IP(20)
PRS00100
PRS00200
PRS00300
PRSOOHOO
PRS00500
PRS00600
PRS00700
PRSU0800
PRS00900
PRS0100U
tPRSOllOO
llNP»lO»ISlrlSi:»OSl»052.N»IAERF»CCOST(20r5)»COSTOC20.5)»ACOST'.20.5JPRS01200
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
2'TCOST(20f5)»UHR»PCT»KPI»CLAND»DLAND»FLOW(2ijUPOW(25>>TKWHD(25>
ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS
HHWK=UMATX(3»N)
PROCESS RELATIONSHIPS REQU. To CALC. EFFLUENT STREAM
CHARACTERISTICS
SMATXl2fOb2)=UMATX(lMM)*SMATX<2»ISl)/OMATx
20 SMATX(IrObl)=bMATX(I'OS2>
CALC. OF OUTPUT SIZES AND QUANTITIES
PGPM=bMATx(2'OS2>*116o66.7/HPWK*DMATX(15»N)
GHb=-*i780 . *ALOG ( DMATX ( 1 r N ) ) -551 . 7
APS=SMATX(2»Ibl)*1000./GPS*DMATX(16iN)
CALC. OF CAPITAL COSTS FOR PRIMARY SETTLER BASIN BASED
OIM DESIGN PLUb EXCESS CAPACITY
X=ALO(i(APb>
PRS01300
pRSomoo
PRS01500
PRS01600
PRS01700
PRS01800
PRS01900
PRS02000
PRSU2100
PRS02200
PRS02300
PRS02<400
PRS02500
PRS02600
PRS02700
PRS02800
PRS02900
PRS03000
PRS03100
PRS03200
PRS03300
PRS03<*00
PRS03500
PRS03600
PRS03700
PRS03800
PRS03900
PRS04000
PRSOU100
PRSOU200
PRSOU300
PRS04400
PRSOtSOO
PRS04600
PRS01700
PRS04800
PRS04900
PRS05000
CCOST(N»l)=EXP(3.7l63i><++.389861*X+.08t5faO*X**2.-.00<*718*X**3. ) *100PRS05100
C
C
C
C
c
c
10.
CALC. OF OPERATING COSTS FOR PRIMARY SETTLER BASIN BASED
ON DEbIGN CAPACITY ALONE* DOES NOT INCLUDE EXCESS
CAPACITY
PRS05200
PRS05300
PRSOSIOO
PRS05500
PRS05600
PRS05700
PRS05800
39
-------
X=ALOt>(APb/DMATX<16rN)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALC. OF OPERATING MANHOURSf MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
. 25481 3*X + . 113703*X**2.-.Ul(W2*X**3. )
XMHRS=EXPl5.273+TMSu**Pl)/SMATXC2»l)/3650,
CALC. OF CAPITAL COSTS FOR SLUDGE PUMPS BASED ON DESIGN
PLUS LXCEbS CAPACITY
X=ALOo(PGPM)
. )*1000.
CALC. OF OPERATING COSTS FOR SLUDGE PUMPS BASED ON
DtSIGN CAPACITY ALONEf DOES NOT INCLUDE EXCESS CAPACITY
X=ALOli(PGPM/DMATX(15rN> )
CALC. OF OPERATING MANHOURSf MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
OHRS=tXPU.9<*bl55+.4U9391*X)
XMHRS=EXP I 3.993365+. t<+i+966*X)
TMbU=LXP (t. U33129+.
OPERATING COST EQUATION
CObTO(N*2)=«OHRS+XMHRS)*OHR*(l.+PCT>+TMSu**Pl)/SMATX(2»l)/36bO.
ASSIGNMENT OF VALUES TO OMATX
OMATX(lrN)=GPS
OMATX(2rN)=APb
OMATX(3»N)=PGPM
PROCESS ENERGY INDICES
FLOW(|J)=SMATX12.IS1)
POw(N)=2.
RLTURN
ENU
PRS05900
PRS06000
PRS06100
PRS06200
PRS06300
PRS06400
PRS06500
PRS06600
PRS06700
PRS06600
PRS06900
PRS07000
PRS07100
PRS07200
PRS07300
PRS07UOO
PRS07500
PRS07600
PRS07700
PRS07800
PRS07900
PRS08000
PRS08100
PRS08200
PRS08300
PRS08UOO
PRS08500
PRS08600
PRS08700
PRS08800
PRS08900
PRS09000
PRS09100
PRS09200
PRS09300
PRS09400
PRS09500
PRS09600
PRS09700
PRS09800
PRS09900
PRS10000
PRS10100
PRS10200
PRS10300
PRS10«*00
PRS10500
PRS10600
PRS10700
PRS10800
PRS10900
PRS11000
PRS11100
PRS11200
PRS11300
40
-------
SECTION 4
ACTIVATED SLUDGE - FINAL SETTLER, AERFS
Subroutine Identification Number 3
Activated Sludge - Final Settler, AERFS
1. Process Symbol.
Rev. Date 8/1/77
IS1
/OS1
OS2 (Sludge)
2. Input parameters and nominal values.
DMATX(l.N) - BOD
DMATX(2,N) = MLSS
DMATX(3,N) - DEGC
DMATX(4,N) - CAER20
DMATX(S.N) = DO
DMATX(6,N) = AEFF20
DMATX(7,N) = URSS
DMATX(8,N) - GSS
DMATX(9,N) = HEAD
DMATX(IO.N) = ALMD
DMATX(13,N) = ECF
DMATX(IA.N) = ECF
DMATXaS.N) " ECF
DMATX(16,N) = ECF
IS1: Liquid input stream
OS1: Liquid output stream
OS2: Sludge output stream
N: User assigned number to the process
Demand concentration of 5-day BOD in the final
effluent from the aeration process, mg/l.[l3.]
Total concentration of suspended solids in the
aerator, mg/1 mass.[2000.]
Water temperature, degrees Centigrade.[20.J
Rate constant used for sizing the aerator when
the water temperature is 20° C. l/(hr gm/L)[l.]
Concentration of dissolved oxygen in the aerator,
mg/1 oxygen.[1.]
Efficiency of the air diffusers in the aerator
at zero dissolved oxygen and 20°C.[.05]
Ratio of solids concentration in OS2 (underflow
stream) from the final settler to the total
solids concentration in the aerator.[3.]
Design overflow rate for the final settler,
gpd/sq ft.[700.]
Pumping head for the sludge return pumps, ft.[30.J
Dose of aluminum added to the aerator, mg/1
aluminum.[0.]
Excess capacity factor for the final settler.[1.2]
Excess capacity factor for the sludge return pumps.[l.J
Excess capacity factor for the air blowers.[l.J
Excess capacity factor for the aeration tanks.[1.2]
41
-------
3. Output parameters which are printed on computer output sheets.
BOD = DMATX(1,N)
MLSS = DMATX(2,N)
DEGC = DMATX(3,N)
CAER20 = DMATX(4,N)
DO = DMATX(5,N)
AEFF20 = DMATX(6,N)
URSS = DMATX(7,N)
GSS = DMATX(8,N)
HEAD = DMATX(9,N)
ALMD = DMATX(IO.N)
BOD2 = OMATX(1,N)
DOSAT = OMATX(2,N)
XRSS = OMATX(3.N)
ATS = OMATX(A.N)
Influent concentration of 5-day BOD to the
aeration process, mg/1.
Saturation value for dissolved oxygen in the
aerator at one-half the water depth, mg/1
oxygen.
Ratio of solids concentration of OS1 from
the final settler to the total solids
concentration in the aerator.
Surface area of the final settler,
sq ft/1000.
42
-------
CAER - OMATX(5,N)
Rate constant for sizing the aerator corrected
for water temperature, (l/(hr gm/L)).
CEDR - OMATX(6,N)
Rate at which active solids are destroyed by
natural causes in the aerator, fraction of
mass per day.
VAER = OMATX(7,N)
VNIT - OMATX(8,N)
Volume of the aerator, million gallons.
Volume of the aerator required to achieve
nitrification, million gallons.
MLASS = OMATX(9,N)
XMLAS, concentration of active solids held
in the aerator, mg/1 mass.
MLBSS - OMATX(IO.N)
XMLBS, concentration of unmetabolized bio-
degradable solids held in the aerator, mg/1
mass.
MLNBSS - OMATX(ll.N)
XMLNB, concentration of non-biodegradable
organic solids held in the aerator, mg/1
mass.
MLDSS = OMATX(12,N)
XMLDS, concentration of non-biodegradable
solids in the aerator caused by the destruction
of active solids through natural causes, mg/1
mass.
MLISS = OMATX(13,N)
XMLIS, concentration of inert inorganic solids
in the aerator caused by inorganic solids in
the influent stream, mg/1 mass.
FOOD = OMATX(14,N)
Synthesis rate of 5-day BOD to active solids
in the aerator each day, mg/1 oxygen.
RTURN = OMATX(15,N)
CNIT = OMATX(16,N)
ARCFD = OMATX(17,N)
Sludge return ratio for the aerator.
Rate constant for nitrification. (I/day)
Diffused air requirement for the aerator,
scf/day.
43
-------
BSIZE «= OMATX(18,N) Required size of the blower for supplying to
the aerator, cfm.
CFPGL = OMATX(19,N) Diffused air requirements for the aerator,
scf/gallon of sewage entering the system.
QR = OMATX(20,N) Volume of the return sludge stream, mgd.
CCOST Capital cost,[dollars].
COSTO Operating and maintenance costs,[cents/lOOOgal]
ACOST Amortization cost,[cents/1000gal].
TCOST Total treatment cost,[cents/1000gal].
ECF Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
BOD2 = SMATX(8,IS1)+SMATX(17,IS1) AEF02000
BOD2 = SBOD +DBOD [mg/l]
IS1 IS1
DBOD2 = SMATX(17,IS1) AEF02100
DBOD2 = DBODisl [mg/l]
CEDR = .18*1.047**(DMATX(3,N)-28.) AEF02200
CEDR = 0.18(1.047)DEGC~28 [-A_]
LDayJ
CAER = DMATX(4,N)*1.047**(DMATX(3,N)-20.) AEF02300
CAER = CAER20[1.047]DEGC~20
r i I
[hrffi ]
SA = DMATX(2,N)/1000. AEF02400
c, KLSS
SA 1000 [gm/1]
TA = (BOD2-DMATX(1,N))/(DMATX(1,N)*CAER*SA*24.) AEF02500
TA = - [days]
BOD*CAER*24*SA
VAER = SMATX(2,IS1)*TA AEF02600
VAER = QIS1*TA [MG]
44
-------
XRSS - 556.1*DMATX(8,N)**.4942/DMATX(2,N)**1.8165/(TA*24.)**.4386 AEF02700
-,0.4942
. 556.1*[GSS]
ALD = DMATX(10,N)*.87*SMATX(14,IS1)
ALD = 0.87ALMD*DP
XS1
PALS = 1.305*SMATX(14,IS1)+3.*ALD
PALS - 1.305DP +3ALD
IS1
ASMAX = DMATX(1,N)/XRSS/.685
ASMAX 525
0.685XRSS
XMLAS = (ASMAX+ASMIN)/2.
ASMAX+ASMIN
XMLAS
FOOD = SMATX(8,IS1)+DBOD2
FOOD = SBODIS1+DBOD2
FMAX = FOOD
FMAX = SBOD +DBOD2
J.O _L
ERROR = FMAX-FMIN
ERROR = FMAX-FMIN
FOOD = (FMAX+FMIN)/2.
FOOD =
DBOD4 = SMATX(17,IS1)-FOOD
DBOD4 = DBOD -FOOD
J.O .L
[no unitsJ
AEF02800
[mg/1]
AEF03000
[mg/1]
AEF03300
[mg/1]
AEF03800
[mg/1]
AEF03900
[mg/1]
AEF04000
[mg/1]
AEF04300
[mg/1]
AEF04500
[mg/1]
AEF04700
[mg/1]
45
-------
SBOD4 - SMATX(8,181)
SBOD4 = SBOD
JLo 1
SBOD4 = (SMATX(8,IS1)+SMATX(17,IS1)-FOODJ*.7
SBOD4 0.7(SBOD +DBOD -FOOD)
xDJ. LoJ,
DBOD4 = .233*SBOD4
DBOD4 = 0.233*0.7(SBOD +DBODT01-FOOD)
J.D.L LoX
TEMPI = .50*FOOD/XMLAS-XRSS
0.50FOOD
TEMPI
XMLAS
-XRSS
AEF04800
[ing/1]
AEF05000
[mg/1]
AEF05100
[mg/1]
AEF05200
[no units]
SMATX(2,OS2) = (SMATX(2,IS1)*TEMP1-CEDR*VAER)/(DMATX(7,N)-XRSS) AEF05300
(QIS1*TEMP1)-(CEBR*VAER)
°-OS2
URSS-XRSS
SMATX(2,OS1) = SMATX(2,IS1)-SMATX(2,OS2)
0 = O -0
XIS1 ^ISl ^OS2
TEMP2 = XRSS*SMATX(2,OS1)+DMATX(7,N)*SMATX(2,OS2)
TEMP2 = (XRSS*Q )+(URSS*Q „)
OS1 OS2
[MGD]
AEF05400
[MGD]
AEF05700
[MGD]
XMLBS = SMATX(2,ISl)*SBOD4/TEMP2/.8
QTC *SBOD4
XMLBS =
0.8TEMP2
SMATX(8,OS1) = (XMLAS*.685+XMLBS*.8)*XRSS
SBOD = (0.685XMLAS+0.8XMLBS)XRSS
SMATX(17,051) = DBOD4
DBOD = DBOD4
AEF05800
[mg/1]
AEF05900
[mg/1]
AEF06000
[mg/1]
46
-------
TBOD5 - SMATX(8,OS1)+SMATX(17,OS1)
TBOD5 = SBODOS1+DBODOS1
TBOD5 = XMLAS*XRSS*.685
TBOD5 = 0.685XMLAS*XRSS
FMIN - (CEDR*VAER/SMATX(2,IS1)+XRSS)*XMLAS/.50
CEp^VAER+XRSS-j,
FOOD = FMIN
FOOD = ^Sii~|VE"K"VASK +XRSS
FMAX = FOOD
FMAX = FOOD
FMIN = FOOD
FMIN = FOOD
XMLNB = SMATX(4,IS1)*SMATX(2,IS1)*2.13/TEMP2
SNBC *Q *2.13
XMLNB =
TEMP2
XMLIS = SMATX(2,IS1)*(SMATX(7,IS1)+PALS)/TEMP2
+PALS)
XMLIS
is
TEMP 2
XMLDS = .12*SMATX(2,IS1)*FOOD/TEMP2-.185*XMLAS
XMLDS
0.12Q *FOOD
ISI
TEMP 2
-- 0.185XMLAS
AEF06100
[mg/1]
AEF06300
[mg/1]
AEF06600
[mg/1]
AEF06700
[mg/1]
AEF07300
[mg/1]
AEF08000
[mg/1]
AEF08200
[mg/1]
AEF08300
[mg/1]
AEF08400
[mg/1]
TEMP3 = XMLAS+XMLBS+XMLNB+XMLDS+XMLIS
TEMP3 = XMLAS+XMLBS+XMLNB+XMLDS+XMLIS
AEF08500
[mg/1]
47
-------
TEMP4 = TEMP3-DMATX(2,N)
TEMP4 - TEMP3-MLSS
ASMIN = XMLAS
ASMIN = XMLAS
ASMAX = XMLAS
ASMAX = XMLAS
SMATX(3,OS1) = (XMLDS+XMLAS)*XRSS/2.46+(XMLBS+XMLNB)*XRSS/2.33
SOC
'OS1
(XMLDS+XMLAS)XRSS , (XMLBS+XMLNB)XRSS
2.46
2.33
SMATX(4,OS1) = XMLNB*XRSS/2.33+(XMLDS+.185*XMLAS)*XRSS/2.46
SNBC
_ XMLNB*XRSS (XMLDS+0.185XMLAS)XRSS
"OS1 2.33 2.46
TEMPS = XRSS*XMLAS/2.46
XRSS*XMLAS
TEMPS
2.46
SMATX(5,OS1) = .234*TEMP5+(SMATX(3,OS1)-TEMP5)/10.
SOC -TEMPS
SONOS1 = 0.234TEMP5+ —gi
SMATX(6,OS1) = SMATX(3,OS1)*.01
P^ = 0.01SOC
OS1 OS1
SMATX(7,OS1) = XMLIS*XRSS
SFM_, = XMLIS*XRSS
AEF08600
[mg/1]
AEF09500
[mg/1]
AEF09700
[mg/1]
AEF10300
[mg/1]
AEF10400
[mg/1]
AEF10500
[mg/1]
AEF10600
[mg/1]
AEF10700
[mg/1]
AEF10800
[mg/1]
48
-------
SMATXC3,OS1)*2.38
2.38SOC
OS1
AEF10900
[mg/1]
SMATX(lO.OSl) = SMATX(7,OS1)+SMATX(9,OS1)
TSSosi - s™osi+vssoai
AKF11000
[mg/1]
SMATX(I,OS2) = SMATX(I,OS1)*DMATX(7,N)/XRSS
SMATX(I,OS2) > SMATX(I,OS1)*URSS
XRSS
where I = 3,10 I.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS
SMATX(ll.OSl) = SMATX(12,IS1)+DBOD4/1.87
DBOD4
DOC
OS1
DNBC+
AEF11200
[mg/1]
AEF11300
[mg/1]
SMATX(12,OS1) = SMATX(12,IS1)
AEF11400
[mg'/l]
SMATX(13,OS1) = (SMATX(2,IS1)*(SMATX(5)IS1)+SMATX(13,IS1))-(SMATX(5,OS1)*SMATX(2,OS1)
+SMATX(5,OS2)*SMATX(2,OS2)))/(SMATX(2)OS1)+SMATX(2,OS2))
Q (SON +DN )-(SON *Q +SON *Q )
DN - Igl IS1 IS1 IS1 OS1 OS2 OS2
OS1 ~
QOS1+QOS2
AEF11500
[mg/1]
SMATX(14,OS1) = (SMATX(2,IS1)*(SMATX(6,IS1)+SMATX(14,IS1))-(SMATX(6,OS1)*SMATX(2>OS1)
+SMATX(6,OS2)*SMATX(2,OS2)))/(SMATX(2,OS1)+SMATX(2,OS2))
DP
OS1
Q (SOP +DP )-(SOP *Q +SOP *Q )
IS1V IS1 IS1; V OS1 WOS1 OS2 OS2
%S 1^032
AEF11800
[mg/1]
SMATX(15,OS1) = SMATX(15,IS1)
DFM
OS1
DFM
SI
AEF12100
[mg/1]
49
-------
SMATX(I,OS2) = SMATX(I.OSl)
SMATX(I,OS2) = SMATX(I.OSl)
where I = 11, 15 i.e. DOC,DNBC,DN,DP,DFM
AEF12300
Cmg/1]
QR = (SMATX(2,IS1)*(1.-.50*FOOD/XMLAS)-H:EDR*VAER)/(SMATX(7,N)-1.) AEF12400
QR
URSS-1
RTURN = QR/SMATX(2,IS1)
RTURN = -2£-
QIS1
X4X3 = (l.+RTURN)/RTURN/SMATX(7,N)
X4X3
1+RTURN
RTURN*URSS
DN3 = SMATX(13,IS1)/(1.+RTURN)
DN.
DN3
ISl
1+RTURN
X3Y = DN3*.99/(X4X3-1.)
YIV - 0-99PN3
J ~ X4X3-1
CNIT = .18*EXP(.116*(DMATX(3,N)--15.))
CNIT 0.18e°-116(DEGC-15>
TTAN = (l.+RTURN)*ALOG(X4X3)+4.605/(DN3+X3Y))/CNIT
TTAN = (1+RTURN)*ln X4X3+ 4-&05
(DN3+X3Y)CNIT
Cmg/1]
AEF12500
Cno units]
AEF12600
[no units]
AEF12700
Cmg/1]
AEF12800
Cmg/1]
AEF12900
[I/days]
AEF13300
[days]
50
-------
VNIT - SMATX(2,IS1)*TTAN
I*
SI
VNIT - Q *TTAN
xs
AEF13400
[MG]
SMATX(16,OS1) - SMATX(16,IS1)+3.57*(SMATX(13,OS1)-SMATX(13,IS1)) AEF13600
SMATX(16,081) - SMATX(16,181)
ALK - ALK
081 IS1
AEF13800
[mg/1]
SMATX(16,OS2) = SMATX(16,OS1)
^
082
AEF13900
[mg/1]
SMATX(17,OS2) = SMATX(17,OS1)
AEF14000
[mg/1]
SMATX(18,OS1) = SMATX(18,IS1)
NH3 =. NH3
081 181
AEF14100
[mg/1]
SMATX(18,OS2) = SMATX(18,IS1)
NH3 = NH3
082 IS1
SMATX(19,OS1) = SMATX(19,IS1)
N03 = N03
OS1 181
SMATX(19,082) = SMATX(19,IS1)
N03 = N03
082 IS1
AEFU200
[mg/1]
AEF14300
[mg/1]
AEF14400
[mg/1]
51
-------
SMATX(20,OS1) = SMATX(20,IS1) AEF14500
For future parameter [fflg/l]
SMATX(20,OS2) = SMATX(20,IS1) AEF14600
For future parameter [mg/l]
DOSAT = (14.16-.3943*DMATX(3,N)+.007714*DMATX(3,N)**2.-.0000646*DMATX(3,N)**3)*1.221
DOSAT = 1.221(14.16-0.3943DEGC+0.007714DEGC2-0.0000646DEGC ) [mg/l] AEF15100
AEFF = DMATX(6,N)*(DOSAT-DMATX(5,N))*1.02**(DMATX(3,N)-20.)/DOSAT AEF15300
AEFF = AEFF2Q^DOSAT-DO)*[1.02]DEGC"2° , ,
DOSAT L unlcsJ
WFOOD = SMATX(2,IS1)*FOOD*8.33 AEF15400
WFOOD = 8.33Q *FOOD [ib/day]
IS1
WAS = XMLAS*VAER*8.33 AEF15500
WAS = 8.33XMLAS*VAER [ib/day]
ARCFD = (.577*WFOOD+1.16*CEDR*WAS)/AEFF/.232/.075 AEF15600
ARCFD = 0- 577WFOOD+(1.16 DECR*WAS) f t3.
0.232AEFF*0.075 tdiy-1
WDN = (SMATX(2,OS1)*SMATX(13,OS1)+SMATX(2,OS2)*SMATX(13,OS2))*8.33 AEF15700
WDN = 8.33((Qosi*DNosi)+ (Qos2*BNos2» [lb/day]
ARCFD = ARCFD+4.6*WDN/AEFF/.232/.075 AEF15900
ARCFD = ARCFD+ 4'6WDN ^..3,, -,
0.232AEFF*0.75 L /dayj
52
-------
BSIZE = DMATX(15,N)*ARCFD/1440. AEF16000
ECF *ARCFD
BSIZE " - — Ccfm]
CFPGL = ARCFD/1000000./SMATX(2,IS1) AEF16100
CFPGL = ARCFD ft3air -,
10000000 Lgal sewageJ
IS1
VAER = VAER*DMATX(16,N) AEF16200
VAER = VAER*ECF [gal]
QK = QR*DMATX(14,N) AEF16300
QR = QR*ECF [MGD]
AFS = SMATX(2,OS1)*1000./DMATX(8,N)*DMATX(13,N) AEF16400
1000 Q*ECF 2
- S
GSS
Pump efficiency - Current values used in program; each can be changed by the replacement
on punched card.
PEFF =0.70 For QR<1.44MGD AEF23800
PEFF =0.74 For QR<10.08MGD AEF24100
PEFF =0.83 For QRXL0.08MGD AEF24300
References:
Smith, 1969
Patterson and Banker, 1971
5. Cost Functions.
Aerator
a. Capital cost
Function of VAER
X = ALOG(VAER*1000./7.48) AEF17000
X = In IQOOyAER
53
-------
CCOST(N.l) = EXP(2.414380+.175682*X+.084742*X**2.-.002670*X**3.)*1000. AEF17100
CCOST = 1000e2.414380+0.175682X+0.084742X2-0.002670X3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours AEF17800
OHRS = 0 [hrs/yr]
(2) Maintenance manhours AEF17900
XMHRS = 0 [hrs/yr]
(3) Total materials and supplies AEF18000
TMSU = 0 [dollars/yr]
c. Total operating and maintenance costs AEF18100
COSTO(N.l) = 0 [cents/lOOOgal]
Blower
a. Capital cost
Function of BSIZE
X = ALOG(BSIZE/1000.) AEF18700
X In BSIZE
1000
CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000. AEF18800
CCOST = iooOeA-145454+0-633339X+0-031939x2~°-002419x3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of BSIZE/ECF
b
X = ALOG(BSIZE/1000./DMATX(15,N)) AEF19500
BSIZE
X = In
1000ECFb
54
-------
(1) Operating manhours
OHRS - EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.) AEF20100
nme _ 6. 900586+0. 323725X+0.059093X2-0.004926X3 [hrs/yr]
OHRS -~ e
(2) Maintenance manhours
AEF20200
XMHRS - EXP (6 . 169937+. 294853*X+. 175999X**2 .- . 040947*X**3 .+. 003300*X**4 . )
6. 169937+0. 294853X+0.175999X2-0.040947X3+0.003300X4 [hrs/yr]
(3) Blower horsepower
HP = BSIZE/DMATX(15,N)*8.1*144./(33000.*.8)
BSIZE*8. 1*144
HP
ECFb*33000*0.8
AEF20400
[horsepower]
(4) Blower kilowatts
XKW = .8*HP
= BSIZE*8. 1*144
33000ECFL
AEF20500
[kilowatts]
(5) Blower kilowatt years
XKWPY = XKW*24.*365.
XKWPY = 24XKW*365
(6) Energy cost
ECOST = XKWPY*DMATX(10,20)
ECOST = XKWPY*CKWH
(7) Service cost
SCOST = EXP(.621382+.482047*X)*1000.
SCOST = 10oOe0-621382+°-482047X
AEF20600
[kw hr/yr]
AEF20700
[dollars/yr]
AEF20800
[dollars/yr]
55
-------
c. Total operating and maintenance costs AEF21300
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
COSTO = (OHSS+XMHRS)DHR(1+PCT)+(SCOST*WPI)+ECOST [cents/lOOOgal]
Slant Inf. 365°
Sludge pumps
a. Capital cost
Function QR
X = ALOG(QR) AEF22000
X = In QR
CCOST(N,3) = EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000. AEF22100
rrncT nnnn 3.481553+0. 377485X+0.093349X2-0.006222X3 [dollars]
LLuol = lUOue
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of QR/ECF
P
X = ALOG(QR/DMATX(14,N)) AEF22800
(1) Operating manhours
OHRS = EXP(6.097269+.253066*X-.193659*X**2.+.078201*X**3.-.006680*X**'-.) AEF23400
OHRS = e6-097269+0-253066X"°-:1-93659x2+0-07820:1-x3-0-006680x4 [hrs/yr]
(2) Maintenance manhours
XMHRS EXP(5.911541-.013158*X+.076643*X**2.) AEF23600
XMHRS = e5- 911541-0. 013158X+0.076643X2 [hrs/yr]
56
-------
(3) Kilowatt hrs per year
YRKW = QR*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24.*365.
YRRW = 1000000QR*HEAD*0.7457*24*365
1440*3960PEFF*0.9
(4) Energy cost
ECOST = YRKW*DMATX(10,20)
ECOST = YRKW*CKWH
(5) Service cost
SCOST = EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.)
SCOST = e5-851743+0.301610X+0.197183X2-0.017962X3
(6) Total materials and supplies
TMSU - ECOST+SCOST*WPI
TMSU = ECOST+(SCOST*WPI)
c. Total operating and maintenance costs
COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
COSTO
(OHRS+XMHRS)DHR(1+PCT)+TMSU
Inf.*3650
AEF24400
[kw hr/yr]
AEF24500
[dollars/yr]
AEF24600
[dollars/yr]
AEF24700
[dollars/yr]
AEF25200
[cents/lOOOgal]
Final settling tank
a. Capital cost
Function of AFS
X = ALOG(AFS)
X = In AFS
AEF25800
CCOST(N,4) = EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000. AEF25900
[dollars]
CCOST = lOOOe
3.716354+0.389861X+0.084560X2-0.004718X3
57
-------
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of AFS/ECFQ
X = ALOG(AFS/DMATX(13,N))
In
AFS
ECF=
AEF26600
(1) Operating manhours
OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)
5.846565+0.254813X+0.113703X2-0.010942X3
OHRS
(2) Maintenance manhours
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)
XMHRS
5.273419+0.228329X+0.122646X2-0.011672X3
AEF27200
[hrs/yr]
AEF27300
[hrs/yr]
(3) Total materials and supplies
TMSU = EXP(5.669881+.750799*X)
TMSU = e5-669881+0.750799X
c. Total operating and maintenance costs
COSTO(N,4) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO „ (OHRS+XMHRS)DHR(1+PCT)+(TMSU*HPI)
QP
lant Inf.
*3650
AEF27400
[dollars/yr]
AEF27900
[cents/lOOOgal]
58
-------
c
c
c
c
c
c
c
c
ACTIVATED SLUuGE - FINAL SETTLER
PKOCESS IDENTIFICATION NUMBER 3
SUbROUTINt AEKFS
AEF00100
AEF00200
AEF00300
AEF00400
AEF00500
AEF00600
AEF00700
AEF0080U
AEF00900
INTEGLR OblfOS2 AEF01000
COMMON SMATX(20»30)>TMATX(20»30)»DMATX(20,2U)»OMATX(20»20)ilP(20)rAEF01100
HNP»J')»ISl»lSt:,OSl.OS«;fN»IAERF»CCOSTC20»5)n.OSTO0»5)»ACOST<20»5)AEF01200
COMMON INITIAL STATEMENTS
2»TCOST(20rb)iUHR»PCT»WPI>CLAND»DLAND»FLOW(2b)»POW(2b)»TKWHD<25)
PKOCESS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM
CHARACTERISTICS
HE.AU=L)MATX(9»N)
BCU2=bMATx (b' IS1) +SMATX (171 ISi )
DoOD2=SMATXU7»ISl)
CtDR=.18*l.(m**-2e.)
CALK=UMATxU»N)*1.0i*7»*(DMATX{3»N)-20.)
SA=DMrtTX(iirN)/1000.
TA=(BoD2-L)MATX(l'N))/(DMATX(lfN)*CAER*SA*2U.)
VAEK=bMATA< 2»1S1> *TA
XKSS=b56.1*DMATX(8»N)**.«*9t2/DMATX(2»N)**l.al65/(TA*2<*.)**. 10.20.10
iO PALS=1.30b*SMATX(m.ISl)+3.*ALD
GO TO 30
20 PALS=U.
oO ASMAX=DMATX(l*N)/XRSS/.68b
ASMIN=0.
NALR=U
IF (AbMAX-DMAlX(2»N)> 50»50»«*0
40 AbMAX=OMATX(2»N)
bO XMLAS=(ASMAX+ASMlN)/2.
FOOO=bMATx(8•1S1)+DBOU2
FMAX=KOOD
Nl=l
GO TO 110
faO EHROR=FMAX-FMIN
IF (EKROR-.D 2«tO»240»70
70 FOOU=tFMAx-i-FMlN)/2.
80 IF (FOOD-SMATX(17»IS1J) 90»90rlOO
^0 DbOD'*=SMATX(17»ISl)-FOOD
SbODl=SMATX(8rISl)
GO TO 110
1U0 SbODt=(SMATX(8»ISI)+SMATX(17»ISI)-FOOU)*.7
DBOD'+=.233*SBOD'+
110 TEMPl=.50*FOOb/XMLAS-XRSS
SMATX(2»Ob2)=(SMATX(2»ISl)*TEMPl-CEDR*VAER)/(UMATxi7rN)-XKSS)
SMATX(2»osi)=SMATX < 2•isi)-SMATX < 2.052)
Nl=Nl+l
IF (Nl-2> 130.130.120
120 TtlMP2=XRSS*SMATX(2»OSl)+DMATX(7.N)*SMATX<2»OS2>
XMLBS=SMAIX(2»ISl)*SBOD'*/TEMP2/.8
AEF01300
AEF01UOO
AEF01500
AEF01600
AEF01700
AEF01800
AEF01900
AEF02000
AEF02100
AEF02200
AEF02300
AEF02'*00
AEF02500
AEF02600
AEF02700
AEF02800
AEF02900
AEF03000
AEF03100
AEF03200
AEF03300
AER03«*00
AEF03500
AEF03600
AEF03700
AEF03800
AEF03900
AEF04000
AEFOmOO
AEFOU200
AEF04300
AEFO^IOO
AEFOH500
AEF04600
AEFO«*700
AEFOU800
AEFOU900
AEF05000
AEF05100
AEF05200
AEF05300
AEF05100
AEF05500
AEF05600
AEF05700
AEF05800
59
-------
150
170
ItiO
2UO
210
2/XRSS
SMATX (11.OSD=SMATX (12. ISI )-»-DBOD4/1.87
SMATX(12.0Sl)=SMATX(li:,ISl)
SMATX(13.0Sl)=(SMATX(2.ISl)*(SMATX(5.1Sl)+SMATX(l3.lSl))-(SMATX(5rAEF11500
10Sl)*bMATx(2.0Sl)+SMATX(5.0S2)*SMATX(2.0S*!)))/(SMATX(2.0Sl)+SMATX(AEF11600
22.0S2)) AEF11700
SMATX(14.0S1>=(SMATX(2.IS1)*(SMATX(6'1S1)+SMATX(14,IS1))-(SMATX(6.AEF11800
10bl)*bMATx(2.0SD+SMATX(6»OS2)*SMATX(2.0S2)))/(SMATX(2rOSl)+SMATX(AEF11900
22.0S2)) AEF12000
SMATX(15.OSI)=SMATX(lb.ISI) AEF12100
AEF05900
AEF06000
AEF06100
AEF06200
AEF06300
AEF06UOO
AEF06500
AEF06600
AEF06700
AEF06800
AEF06900
AEF07000
AEF07100
AEF07200
AEF07300
AEF07400
AEF07500
AEF07600
AEF07700
AEF07800
AEF07900
AEF08000
AEF08100
AEF08200
AEF08300
AEF08400
AEF08500
AEF08600
AEF08700
AEFOB800
AEF08900
AEF09000
AEF09100
AEF09200
AEF09300
AEF09UOO
AEF09500
AEF09600
AEF09700
AEF09800
AEF09900
AEF10000
AEF10100
AEF10200
AEF10300
AEF10400
AEF10500
AEF10600
AEF10700
AEF10800
AEF10900
AEF11000
AEF11100
AEF11200
AEF11300
AEFll«fOO
60
-------
330
350
3bO
370
3&0
390
c
c
c
c
100
C
C
C
C
C
C
c
c
c
c
DO 330 I=ll»lb
SMATX(I»Ob2)=SMATX(l»OSl)
QK=(SMATX(2rIbl)*ll.-.50*f:OOD/XMLAS)-t-CEDR*VAER)/(UMATX(7»N)-l.)
RTURN=GR/bMATx(2»lSD
X1X3=(1.+KTURN>/RTURN/DMATX(7»N>
AEF12200
AEF12300
AEF12UOO
AEF12500
AEF12600
AEF12700
AEFi2800
AEF12900
AEF13000
AEF13100
AEF13200
AEF13300
AEF13tOO
AEF13500
AEF13600
AEF13700
AEF13800
AEF13900
AEF11000
AEFli*100
AEF1<*200
AEF1U300
X3Y=Du3*.99/(X4X3-l.>
CNIT=.18*tXP(.116*(DMATX(3»N)-15.))
IF (XtX3> 3^0>3<*0>350
TTAN=0.
GO TO 360
TTAN=U.+RTURI«)*(ALOG(X<*X.5)-HU605/{DN3+X3Y) )/CNlT
VN1T=SMATX(2'1S1>*TTAN
IF (VNIT-VAER) 370»37u»3BO
SMATX(16•GS1)=SMATX(IbrlSl)+3.57*(SMATX(13»uSl)-SMATX(13»IS1)>
GO TO 390
SMATX(let osi)=SMATX(io»isi)
SMATXU6»OS2>=SMATX(lo»OSl)
SMATX(17•US2)=SMATX(17.OSl)
SMATX (18 »USD=SMATX(lo» ISD
SMATX(18»OS2)=-SMATX(la»ISl)
SMATX(19»OS1)=SMATX(19»ISD
SMATX(19rOS2)=SMATX(19.ISl)
SMATX(20»USD=SMATX(2U»IS1)
SMATX(20»OS2)=SMATX(20r IS1) AEF1<*600
AEF1U700
AEF14800
CALC. OF OUTPUT SIZES AND QUANTITIES AEF1U900
AEF15000
DOSAT=(11.16-.39'*3*DMATX<3»N)-«-.0077lU*DMATX(3rN)**2-.00006<+6*DMATXAEF15100
L(3»N)**3)*1.2iil AEF15200
ALFF=uMATx(b»N)»(DOSAT-DMATX(5fN»*1.02**lDMATX(3»N)-20.)/DOSAT
*FOOD=SMATX(2»IS1)*FOuD*8.33
WAS=XMLAS*VAEK*8.33
ARCFD=(.577*WFOOD+l.lo*CEDR*WAS)/AEFF/.232/.075
WDN=(bMATx(2»OSl)*SMAlX(13»OSl)+SMATX(2»OS2)*SMATx(l3»OS2))*8.33
IF (VNIT-VAER) <+00><+OU»UlO
ARCFD=ARCFD+'+. 6*WL)N/AtFF/. 232/. 075
BSIZE=DMATX(lb»N)*ARCFD/11«*0.
CFPGL=ARCFD/1000000./bMATX(2»ISD
VAER=VAER*DMATX(lfa»N)
AFS=SMATX(2»OS1)*1000./DMATX(8»N)*DMATX(13»N)
CALC. OF CAPITAL COSTS
EXCESS CAPACITY
X=ALOfa(VALR*1000./7.1ti)
FOR AERATOR BASED ON DESIGN PLUS
AEF15300
AEF15UOO
AEF15500
AEF15600
AEF15700
AEF15800
AEF15900
AEF16000
AEF16100
AEF16200
AEF16300
AEF16400
AEF16500
AEF16600
AEF16700
AEF16800
AEF16900
AEF17000
CCOSTlN»U=EXP(2.tlt3aO+.175682*X+.08U7t2*X**2.-.002670*X**3.)*100AEF17100
10,
CALC. OF
CAPACITY
OHRS=O.
XMHRS=O.
TMSU=O.
CObTO(N»l)=0.
OPERATING COSTS FOR AERATOR bASEU ON DESIGN
ALONtf DOES NOT INCLUDE tXCESS CAPACITY
CALC. OF CAPITAL COSTS FOR BLOWER BASED ON DESIGN PLUS
EXCESS CAPACITY
AEF17200
AEF17300
AEF17UOO
AEF17500
AEF17600
AEF17700
AEF17800
AEF17900
AEF18000
AEF18100
AEF18200
AEF18300
AEF18UOO
AEF18500
AEF18600
61
-------
X=ALOG(BSIZE/1000.1 AEF18700
CCOST*100AEF18800
10. AEF18900
c AEF19000
c AEF19100
C CALC. OF OPERATING COSTS FOR BLOWER BASED ON DESIGN AEF19200
c CAPACITY ALONE» DOES NOT INCLUDE EXCESS CAPACITY AEF19300
C AEF1940Q
X=ALOG A£F20«»00
XKw=.b*HP AEF20500
XKWPY=XKW*21.*365. AEF20600
ECOST=XKWPY*DMATX ( 10 '20 ) AEF20700
SCOST=EXPl.621382+.<*8«dO<+7*X)*1000. AEF20800
C AEF20900
C AEF21000
C OPERATING CObT EQUATION AEF21100
C AEF21200
COSTOlN»2) = ((OHRS+XMHKS)*DHR*(l.+PCT>-»-SCOST*WPH-ECOST)/SMATX(2.1)/AEF21300
I3bb0. AEF21)*100AEF22100
10. AEF22200
C AEF22300
C AEF22400
C CALC. OF OPERATING COSTS FOR SLUDGE PUMPS BASED ON AEF22500
C DtSIGN CAPACITY ALONE* DOES NOT INCLUDE EXCESS CAPACITY AEF22600
C AEF22700
X = ALOt,(QR/DMATX(l<+»NM AEF22800
C AEF22900
C AEF23000
C CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS AEF23.10Q
C AND MATERIALS AND SUPPLIES AEF2320Q
C AEF233QO
OHRS=EXP(o.097269+.25^066*X-.193659*X**2.-»-.078201*X**3»-.0066aO*X*AEF23«»Op
I*1*-) AEF23500
XMHRS=EXP(5.9ll5<*l-.Ol3l58*X-»-.076613*X**2.} AEF23600
IF (QK-l.t
-------
COSTOlN»3)=((OHRS+XMHRS)*DHR*+TMSU)/SMATX<2»l)/36bO.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CALC. OF CAPITAL COSTS FOR
PLUS EXCESS CAPACITY
FINAL SETTLER BASED ON DESIGN
X=ALOfa(AFS>
AEF25200
AEF25300
AEF25<*00
AEF25500
AEF25600
AEF25700
AEF25800
CCOST(N»<+)=EXP(3.7163b=AFb
OMATX(5»N)=CAER
OMATX16»N)=CEDR
OMATX(7»N)=VAtR
OMATX(B>N)=VN1T
OMATX(9»N)=XMLAS
OMATX (10 HxiUXMLBS
OMATX(11»N)=XMLNB
OMATX(12»N)=XMLDS
OMATX113MM)=XMLIS
OMATX(in»N)=FOOD
OMATX(15»N)=R1URN
OMATX116»N)=CNIT
OMATX(17»N)=ARCFD
OMATX(18»N)=BSIZE
OMATXU9»N)=CFPGL
OMATX120»N)=QR
PROCESS ENERGY INDICES
FLOw(N)=SMATX(2»ISl)
POW(N)=3.
RETURN
END
AEF26000
AEF26100
AEF2b200
AEF26300
AEF26400
AEF26500
AEF26600
AEF26700
AEF26800
AEF26900
AEF27000
AEF27100
AEF27200
AEF27300
AEF27400
AEF27500
AEF27600
AEF27700
AEF27800
AEF27900
AEF28000
AEF28100
AEF28200
AEF2B300
AEF28fOO
AEF28500
AEF28600
AEF28700
AEF28800
AEF28900
AEF29000
AEF29100
AEF29200
AEF29300
AEF29400
AEF29500
AEF29600
AEF29700
AEF29800
AEF29900
AEF30000
AEF30100
AEF30200
AEF30300
AEF30400
AEF30500
AEF30600
AEF30700
AEF30800
AEF30900
AEF31000
AEF31100
63
-------
SECTION 5
STREAM MIXER, MIX
Subroutine Identification Number 4
Stream Mixer, MIX
1. Process symbol.
IfLL
Rev. Date 8/1/77
IS1: Primary input stream
IS2: Secondary input stream
OS1: Primary output stream
N: User assigned number to
the process, must be zero
for mixer
IS2
2. Input parameters and nominal values.
No input data.
3. Output parameters which are printed on computer output sheets.
No output data.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(2,OS1) = SMATX(2,IS1)+SMATX(2,IS2)
QOSI = Qisi+Qis2
MIX01900
TEMPI = SMATX(2,IS1)/(SMATX(2,IS1)+SMATX(2,IS2))
TEMPI = °-Isl
MIX02100
TEMP2 = SMATX(2,IS2)/(SMATX(2,IS1)+SMATX(2,IS2))
QTCT
TEMP2 -
MIX02200
64
-------
SMATX(I.OSl) = TEMP1*SMATX(I)IS1)+TEMP2*SMATX(I,IS2) MIX02800
SMATX(I.OSl) = n ™1 — *SMATX(I,IS1) +- - |P — *SMATX(I,IS2) [mg/l]
-
where I - 3,20 I.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,
DP,DFM,ALK,DBOD,NH3,N03
5. Cost functions.
No cost functions.
65
-------
c
c
c
c
c
c
c
c
STREAM MIXER
PKOCESS IDENTIFICATION NUMBER
SUBROUTINt MIX
COMMON INITIAL STATEMENTS
MIX00100
MIX00200
MIX00300
MIXOO<*00
MIX00500
MIX00600
MIX00700
MIX00800
MIX00900
INTEGER OS1»OS2 MIX01000
COMMON SMATX(^0»30)rTMATX(20r30)»DMATx(20.2o)»OMATX(20i20)»lP(20)»MIX01100
llNP.IO»ISlrlSi:»OS1.0S2rNrJAERF»CCOST<20»5)»COSTO(20»5)»ACOST(20»5)MIX01200
2'TCOST(20.5)»uHR»PCT»wPI»CLAND»DLAND'FLOW(25)»POWC25)»TKWHD(25) MIX01300
MIXOltOO
MIX01500
PKOCESS RELATIONSHIPS REGD. TO CALC. EFFLUENT STREAM MIX01600
CHARACTERISTICS Mixoi70o
MIX01800
MIX01900
MIX02000
MIX02100
MIX02200
MIX02300
MIX02UOO
MIX02500
MIX02600
MIX02700
MIX02BOO
MIX02900
MIX03000
SMATX(2fObl)=SMATX(2»ISl>+SMATX<2rIS2)
IF (SMATX(2rOSl) ) 10OO>10
10 TLMPl=SMATX(2f IS1) / (SMATX (2» IS1)+SMATX (2» ISii) )
TEMP2=SMATX(2 rIS2)/(SMATX(2»ISI)+SMATX(2»IS2))
EFFLULNT STREAM CALCULATIONS
DO 20 1=3.20
SMATX ( I »OS1 ) =TEMP1*SMATX ( I r IS1 ) +TLMP2*SMATX 1 1 , IS2)
END
66
-------
SECTION 6
STREAM SPLITTER, SPLIT
Subroutine Identification Number 5
Stream Splitter, SPLIT
1. Process symbol.
Rev. Date 8/1/77
(Wash Water) for TFLOT
ELUT
THICK
IS1: Primary input stream
OS1: Primary output stream
OS2: Secondary output stream
N: User assigned number to
the process, must be
zero for splitter
2. Input parameters and nominal values.
No input data.
3. Output parameters which are printed on computer output Sheets.
No output data.
4. Theory and functions- FORTRAN statement followed by equivalent algebraic equation.
SMATX(2,OS1) - SMATX(2,IS1)-SMATX(2,OS2) SPL01900
QOSI = Qisi-Qos2
SMATX(I.OSl) - SMATX(I.ISl)
SMATX(I.OSl) - SMATX(I.ISl) [mg/l]
SPL02500
where I =3,20 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,
DNBC,DN,DP,DFM,ALK.DBOD,NH3,N03
SMATX(I,OS2) - SMATX(I,IS1)
SMATX(I,OS2) = SMATX(I.ISl) [mg/l]
5. Cost functions.
No cost function.
SPL02600
67
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
STREAM SPLITTER
PKOCEbS IDENTIFICATION NUMBER 5
SUBROUTINE SPLIT
COMMON INITIAL STATEMENTS
INTEGER Obl»OS2
COMMON SMATxUOrSO)»TMATX(20»30)»OMATX(20»20)rOMATX(20»20)»IP(20)
SPL00100
SPL00200
SPL00300
SPL00400
SPL00500
SPL00600
SPL00700
SPL00800
SPL00900
SPL01000
»SPL01100
2'TCOST(20»5) »bHR»PCT • wPI rCLANDr DUAND'FLOW I2a) .POW125) »TKWHD(25)
PROCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM
CHARACTERISTICS
SMATX(2.0bl)=SMATX(2»ISD-SMATX(2»OS2)
EFFLUtNT STREAM CALCULATIONS
DO 10 I=3f20
SMATX i i , osi > =SMATX ( i » isi )
10 SMATXUrOb2)=bMATXU»lSl>
ENU
SPL01300
SPLOl'tOO
SPL01500
SPL01600
SPLOIVOO
SPL01800
SPL01900
SPL02000
SPL02100
SPL02200
SPL02300
SPL02UOO
SPL02500
SPL02600
SPL02700
SPL02800
68
-------
SECTION 7
ANAEROBIC DIGESTER, DIG
Subroutine Identification Number 6
Anaerobic Digester , DIG
1. Process symbol.
Rev. Date 8/1/77
IS1: Sludge input stream
OS1: Sludge output stream
N: User assigned number
to the process
2. Input parameters and nominal values.
DMATX(l.N) = TD
DMATX(2,N) « TDIG
DMATX(16,N) = ECF
Digester dentention time, days. [15.J
Sludge temperature in digester, degrees Centigrade. [33.J
Excess capacity factor. [1.3]
3. Output parameters which are printed on computer output sheets.
TD = DMATX(l.N)
TDIG = DMATX(2,N)
C1DIG = OMATX(l.N)
C2DIG = OMATX(2,N)
VDIG = OMATX(3,N)
CH4 = OMATX(4,N)
C02 = OMATX(5,N)
CCOST
COSTO
ACOST
TCOST
ECF
Rate constant for digester, [I/day].
Rate constant for biodegradable carbon, [I/day].
Volume of digester facilities, [cu.ft./lOOO].
Standard cubic feet of methane produced in the
digester each day, [scf/day methane].
Standard cubic feet of carbon dioxide produced
in the digester each day, [scf/day carbon dioxide]
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
69
-------
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
C1DIG - .28/EXP(.036*(35.-DMATX(2,N)))
C1BIG -
0.28
0.036(35-TDIG)
C2DIG - 700.*EXP(.10*(35.-DMATX(2,N)))
C2DIG
DIG13 = C2DIG/CC1DIG*DMATX(1,N)-1.)
DIG13
C2DIG
CIDIG(TD) -1
DIG12 - SMATX(3,IS1)-SMATX(4,IS1)+SMATX(11,IS1)-SMATX(12,IS1)
DIG12 = SOCIS1 - SNBCIS1 +
C-r I - DNBC
- total biodegradable carbon
TEMPI = (DIG12-DIG13)/(SMATX(3,IS1)+SMATX(U, Bl))
DIG12 - DIG13
TEMPI
SOCIS1+ DOCIS1
fraction of biodegradable carbon remaining relative
to total organic carbon entering digester
SMATX(2,OS1) = SMATX(2,IS1)
QOSI - QISI
SMATX(3,OS1) = SMATX(4,IS1)+.75*DIG13
SOCOS1 = SNBCIS1+0.75(DIG13)
SMATX(4,OS1) = SMATX(4,IS1)
SNBCntn = SNBCT_.
Ub± IS1
SMATX(5,OS1) = (1.-TEMPI)*SMATX(5,IS1)
SONQS1 = (1-TEMP1) SONIS
SMATX(6,OS1) = (1.-TEMP1)*SMATX(6,OS1)
S°POS1 = (1-TEMP1> SOPISi
DIG02500
r_l ,
^ days -*
DIG02600
mg/i-,
Lday J
DIG02700
[mg/1]
DIG02800
[mg/1 ]
DIG02900
DIG03400
[MGD]
DIG03500
[mg/1]
DIG03600
[mg/1]
DIG03700
[mg/1]
DIG03800
[mg/1]
70
-------
SMATX(7,OS1)
SFMOS1
SMATX(7,IS1)
S™IS1
DIG03900
SMATX(8,OS1) - (SMATX(3,OS1)-SMATX(4,OS1))*1.87
(SOCQS1 - SNBCQS1)1.87
SMATX(9,OS1) = SMATX(3,OS1)*2.38
VSSQS1
SMATX(10,OS1)
TSSosi
SMATX(ll.OSl)
DOC
QS1
(SOCOS1)2.38
SMATX(9,OS1)+SMATX(7,OS1)
vssosi + s™osi
SMATX(12,IS1)+.25*DIG13
DNBCIS1 + D.25DIG13
SMATX(12,OS1) = SMATX(12,IS1)
DNBCOS1
SMATX(13,OS1)
DNQS1 =
SMATX(14,OS1)
DPOS1 =
SMATX(15,OS1)
SMATX(13)IS1)+SMATX(5,IS1)*.65*TEMP1
NIS1 + (SONIS1)0.65TEMP1
- SMATX(14,IS1) + TEMP1*SMATX(6,IS1)
DP
OS1
SMATX(15,IS1)
SMATX(16,OS1) = SMATX(16,IS1)+(SMATX(13,OS1) - SMATX(13,IS1))*3.57
ALKQS1 = ALKIS1 + 3.57(DNOS1 - DN.^)
SMATX(17,OS1) = (SMATX(11,OS1)-SMATX(12,OS1))*1.87
DBOD
QS1
1.87
CH4 = 163.85*(DIG12-DIG13)*SMATX(2,IS1)
GH4 = 163.85(DIG12-DIG13) QIS1
C02 = 249.9*(DIG12-DIG13)*SMATX(2,IS1) - C
C02 = 249.9(DIG12-DIG13) QIgl - CH4
DIG04000
[mg/l]
DIG04100
Cmg/1]
DIG04200
Cmg/l]
DIG04300
[mg/l]
DIG04400
[mg/l]
DIG04500
Cmg/l]
DIG04600
[mg/l]
DIG04700
[mg/l]
DIG04800
[mg/l]
DIG04900
[mg/l]
DIG05700
[scfd]
DIG05800
[scfd]
71
-------
VDIG = SMATX(2,IS1)*DMATX(1,N)*1000/7.48*DMATX(16,N) DIG05900
VIDG = QM1 * TD * 1000.ECF ^
References :
Patterson and Banker, 1971
Lawrence and McCarty, 1969
O'Rourke, 1968
Smith, 1969
5. Cost functions.
a. Capital cost
Function of VDIG
X = in VDIG DIG065°°
3
(1) Digester facilities less than 20000 ft
CCOST(N,1) = EXP(4.594215+.127244X-.004001*X**2.)*1000- DIG07200
CCOST =1000e4.594215+0.127244X-0. 004001X2 [dollars]
(2) Digester facilities equal or greater than 20000 ft3 DIG07900
CCOST(N.l) = EXP(7. 679634-1. 949689*X+.402610*X**2.-.018211*X**3.)*1000.
CCOST = lOOOe----*--
I do .Liars J
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of VDIG/ECF
X = In (VDIG/ECF) DIG08600
(1) Digester facilities less than 20000 ft3
(a) Operating manhours
OHRS = EXP (6. 163803+0. 166305*X-.012470*X**2. ) DIG09400
OHRS = e6-163803+0-1663°5X-0.012470X2 [hrs/yr]
(b) Maintenance manhours
XMHRS = EXP(5.726981+.113674*X) DIG09500
XMHRS = e5- 726981+0. 113674X [hrs/yr]
72
-------
(c) Total materials and supplies
TMSU = EXP(6.531623+.198417*X+.021660*X**2.) DJS09600
TMSU , e6.531623+0.198417X40.021660X2 [dollars/yr]
2. Digester facilities equal or greater than 20000 ft
(a) Operating manhours DIG10400
OHRS - EXP(9.129250-1.816736*X+.373282*X**2.-.017290*X**3.)
OHRS = e9-129250-1.816736X+0.373282X2-0.017290X3 [hrs/yr]
(b) Maintenance manhours DIG10500
XMHRS = EXP(8.566752-1.768137*X+.363173*X**2.-.016620*X**3.)
XMURS = e8.566752-1.768137X+0.363173X2-0.016620X3 ._h ^
(c) Total materials and supplies D1G10600
TMSU = EXP(8.702803-1.182711*X+.282691*X**2.-.013672*X**3.)
TMSU . e8.702803-1.182711X+0.282691X2-0.013672X3 [dollars/yr]
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1*-PCT)+TMSU*WPI)/SMATX(2,1)/3650. DIG11100
rnt!Tf. _ (OHRS+XMHRS)DHR(1+PCT)+TMSU(WPI)
Qplant Inf.* 3650[cents/1000 gal]
73
-------
SINGLE STAGE ANAEROBIC
PROCESS IDENTIFICATION
DIGESTION
NUMBER 6
SUBROUTINE DIG
DIG00100
DIG00200
DIG00300
DIG00400
DIG00500
DIG00600
DIG00700
DIG00800
DIG00900
INTEGER osi.os2 DIGOIOOO
COMMON SMATX(iiOr30)»TMATXl20»30)»DMATX(20»20)»OMATX(20»20).lP(20)»DIG01100
llNPflO»ISl.IS<:.OS1.0S2.N'IAERFfCCOST(20»5)»tOSTOl20»5)»ACOST(20r5)DIG01£00
COMMON INITIAL STATEMENTS
2>TCoST(20r 5) »QHR»PCT» aPI »CLANDfDLAND»FLOW(2b) iPOWl25)
FORCING DIGESTER TO HAVE AT LEAST iu DAYS DETENTION TIME
IF (DMATX(lrN)-lO. ) Iu>10r20
10 DMATX(lrN)=10.
PROCESS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM
CHARACTERISTICS
20 C1UIG=.28/EXP(.036*(35.-DMATX(2»N)))
C2DIG=700.*EXP(.10*(3S.-DMATX12»N)»
D1G13=C2DIG/(C1DIG*DMATX(1»N)-1.)
DiGl2=SMATX(3.ISl)-SMATX('*»ISl)+SMATX(ll»ISl)-SMATX(12»ISl)
ThMPl=
SMATX(6rObl)=(l.-TEMPl)*SMATX(6»ISl)
SMATXl7»Obl)=bMATX(7»lSl)
SMATX (8»Obl)=(SM ATX (3»OS1) -SMATX (1» OSl) )*1.67
SMATX (9» Obi )=SMATX(3»uSD*2.38
SMATX ( 10 rOSD=SMATX(9»OSl)+SMATX(7»OSl)
SMATX 1 11 »OSD=SMATX( 12 »IS1) + .25*01613
SMATX(12'OSD=SMATX(12»IS1)
SMATXll3fOSD=SMATX(lorISl)+SMATX(5»ISl)*.6b*TEMPl
SMATX(14»OSl)=SMATX(lt»ISl)+TEMPl*SMATX(6.ISl)
SMATX (is»osi )=SMATX ( is. isi )
SMATX(16rUSl)=SMATX(lo»ISl>-KSMATX(l3»OSl)-bMATX(13»ISl))*3.57
SMATX117.0S1)=(SMATX<11.0S1)-SMATX(12»OS1))*1.B7
SMATXU8»OSl>=SMATX(ltt»lSl>
SMATX ( 19 »osi)=SMATX(iy. isi)
SMATXl20rUSl)=SMATX(2u.ISl)
CALC. OF OUTPUT SIZES AND QUANTITIES
CH4=lb3.8b*(DlG12-DIG13)*SMATX<2'lSl>
DIG01300
DIG01400
DIG01500
DIG01600
D1G01700
DIG01800
DIG01900
DIG02000
DIG02100
DIG02200
DIG02300
DIG02fOO
DIG02500
DIG02600
DIG02700
DIG02BOO
DIG02900
DIG03000
DIG03100
DIG03200
DIG03300
DIG03400
DIG03500
DIG03600
DIG03700
DIG03800
DIG03900
DIGOtOOO
DIG04100
DIG04200
DIG04300
DIG01HOO
DIG04500
DIG04600
DIG01700
DIG04800
DIG04900
DIG05000
DIG05100
DIG05200
DIG05300
DIG05400
DIG05500
DIG05600»
DIG05700
DIG05800
74
-------
c
c
c
c
c
c
c
o
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
VUlG=bMATx<2»lSl>*DMATXCl»N>*1000./7.<+B*DMATX(l6'N)
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
,50
DIG05900
DIG06000
DIG0610U
DIG06200
OIG06300
DIGC6400
DIG06500
DIG06600
OIG06700
DIG06600
OIG06900
DIG07000
OIG07100
OIG07200
DIG07300
DIG07400
DIG07500
CALC. OF CAPITAL COSTS FOR LARliE DIG FACILlTYr EQUAL DIG07600
OR GREATtR THAN 20000 CU. FT. DIG07700
DIG07800
CCOST(Nrl)=EXP(7.6796j«*-1.9<49689*X-»-.1026lO*X**2.-.018211*X**3.)*lODIG07900
X=ALOii(VDlG)
IF (VJlG-iiO.) 30»HO»»*0
CALC. OF CAPITAL COSTS FOR SMALL DIG FACILITY, LESS
THAN 200UO CU. FT.
CCOSTlN»l)=EXPU.b9<+2l5+.1272'*<**X-.00<*OOl*X**2. J*1000.
GO TO 50
100.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE,
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOb(VDIG/DMATX(16»N»
IF (VUlG-iiO.) 60 » 70, 70
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES FOR DIG FACILITY, LESS
THAN 200UO CU. FT.
60 OHRS=LXP(b.l6i803+.16b305*X-.012170*X**2.)
XMHKS=EXP(5.726981+.11367**X)
TMSU=tXP(fa.53l623+.l96iU7*X+.021660*X**2.)
GO TO 60
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES FOR DIG FACILlTYr EQUAL
OR GKEATtR THAN 20000 CU. FT.
OHRS=EXP(9.12y250-1.8l673b*X+.373282*X**2.-.Ol7290*X**3.)
XMHRS=EXPC8.5b675<:-1.768137*X+.363173*X**2.-.016620*X**3.)
TMSU=£XP< 6. 702803-1. la2711*X+.282691*X**2.-.013672*X**3.)
70
60
OPERATING COST EQUATION
»l) = «OHRS+XMHkS)*DHR*(l.+PCT>+TMSU*wlPl)/SMATX(2»l)/3650.
ASSIGNMENT OF VALUES TO OMATX
OMATX(1,N)=C1DIG
OMATX(2,N)=C2uIG
OMATX(3rN)=VDlG
OMATX (t,N)=CH4
OMATX(5,N)=C02
PHOCEbS ENERGY INDICES
DIG06000
DIG08100
DIG08200
DIG08300
DIG08100
DIG08500
DIG08600
DIG08700
DIG08800
DIG08900
DIG09000
DIG09100
DIG09200
DIG09300
DIG09400
DIG09500
DIG09600
DIG09700
DIG09800
DIG09900
DIG10000
DIG10100
DIG10200
DIG10300
DIG10100
DIG10500
DIG10600
DIG10700
DIG10800
DIG10900
DIG11000
DIG11100
DIG11200
DIG11300
oientoo
DIG11500
DIG11600
DIG11700
DIG11800
DIG11900
DIG12000
DIG12100
DIG12200
DIG12300
DIG12400
75
-------
FLO*(N)=SMATX12»IS1) 01613500
PowlN)=6. DIG12600
RtTuRN DIG12700
DI612800
76
-------
SECTION 8
VACUUM FILTRATION, VACF
Subroutine Identification Number 7
Vacuum Filtration, VACF
1. Process symbol.
IS1
2. Input parameters and nominal values.
DMATX (1,N) = VFL
DMATX (2,N) = HPWK
DMATX (3,N) = TSS
DMATX (4,N) = IVACF
DMATX (5,N) = FECL3
DMATX (6,N) = CAO
DMATX (7,N) = CFECL
DMATX (8,N) = CCAO
DMATX (9,N) = DPOLY
DMATX (10,N) = CPOLY
DMATX (16,N) = ECF
3. Output parameters which are printed on
IVACF = DMATX (4,N)
FECL3 = DMATX (5,N)
CAO - DMATX (6,N)
CFECL - DMATX (7,N)
Rev. Date 8/1/77
IS1: Sludge input stream
OS1: Sludge cake output stream
OS2: Liquid recycle output stream
N: User assigned number to the
process
Vacuum filter loading rate, gph/sij ft. [4.9]
Hours per week that the vacuum filter is operated,
hr/wk. [35.]
Total suspended solids concentration of OS2,
mg/1. [200.]
Program control: 0 = landfill disposal of sludge,
1 = incineration disposal of sludge. [1.]
Dose of ferric chloride added to condition the
sludge, Ib/ton. [42.]
Dose of lime added to condition the sludge,
Ib/ton. [176.]
Cost of ferric chloride, $/lb. [.064]
Cost of lime, $/lb. [.0125]
Dose of polymer added to condition the sludge,
Ib/ton. [15.]
Cost of polymer, $/lb. [.33]
Excess capacity factor for the process, [l.]
computer output sheets.
CCAO = DMATX (8,N)
DPOLY = DMATX (9,N)
CPOLY = DMATX(IO.N)
77
-------
WP = OMATX(l.N)
AVF = OMATX(2,N)
PSDD •= OMATX(3,N)
CCOST
COSTO
ACOST
TCOST
ECF
Percentage of moisture in the filtered sludge.
Surface area of the vacuum filter, sq.ft.
Amount of dry solids produced by the vacuum
filter, Ib/day.
Capital cost, [dollars].
Operating and maintenance costs,[cents/1000 gal],
Amortization cost, [cents/1000 gal].
Total treatment cost,[cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(7,IS1) = SMATX(7,IS1)+(FECL3-H:AO+DPOLY)*SMATX(10,IS1)/2000. VAC02900
SFM.
•isi = SFMisi4
(FECL3+CAO+DPOLY)TSS
IS1
2000
[mg/1]
SMATX(lO.ISl) = SMATX(10,IS1)+(FECL3+CAO+DPOLY)*SMATX(10,IS1)/2000. VAC03000
(FECL3+CAO+DPOLY)TSS
TSSIS1 • TSSIS1+ 2000-
SMATX(10,OS2) = DMATX(3,N)
TSSOS2 = TSS
WP = 88./(SMATX(10,ISl)/10000.)**.123
88
ISI
[mg/1]
[mg/1]
VAC03100
VAC03200
WP =
rTssisii
Lioooo J
0.123
SMATX(lO.OSl) = (100.-WP)*10000.
TSSOS1
VAC03300
SMATX(2,OS1) =CSMATX(2,IS1)*SMATX(10,IS1))/(SMATX(10,OS1)-SMATX(10,OS2))
Q - QIS1*TSSIS1
031 TSSosrTSSos2
VAC03400
78
-------
SMATX(2,OS2) - SMATX(2,IS1)-SMATX(2,OS1)
Q - Q -Q
OS2 IS1 OS1
Emg/1]
TEMP2 - SMATX(10,OS1)/SMATX(10,IS1)
TSS
TEMP 2
OS1
TSS
[no units]
IS1
TEMP3 = SMATX(10,OS2)/SMATX(10,IS1)
TSS
TEMP3
OS2
TSS
[no units]
IS1
SMATX(I,OS1) = TEMP2*SMATX(I,IS1)
SMATX(I.OSl) - TEMP2*SMATX(I,IS1) [mg/l]
where I - 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I,OS2) - TEMP3*SMATX(I,IS1)
SMATX(I,OS2) • TEMP3*SMATX(I,IS1) [mg/l]
where I = 3,9
SMATX(I.OSl) = TEMP2*SMATX(I,IS1)
SMATX(I.OSl) = TEMP2*SMATX(I,IS1) [mg/l]
where I " 11,17 i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD
SMATX(I,OS2) = SMATX(I.ISl)
SMATX(I,OS2) = SMATX(I.ISl) [mg/l]
where I = 11,17
SMATX(18,OS1) = SMATX(18,IS1)
NH3 = NH3
OS1 IS1
[mg/l]
SMATX(18,OS2) = SMATX(18,IS1)
NH3 = NH3
OS2 IS1
[mg/l]
SMATX(19,OS1) = SMATX(19,IS1)
N03 = N03
OS1 IS1
[mg/l]
VAC03600
VAC03700
VAC03800
•VAC04400
VAC04500
VAC04700
VAC04800
VAC04900
VAC05000
VAC05100
79
-------
SMATX(19,OS2) = SMATX(19,IS1)
N03 « N03
OS2 IS1
SMATX(20,OS1) - SMATX(20,IS1)
SMATX(20,OS1) - SMATX(20,IS1)
SMATX(20,OS2) = SMATX(20,IS1)
SMATX(20,OS2) = SMATX020.IS1)
SF = SMATX(10,IS1)/10000.
Cmg/1]
Future parameter
Future parameter
TSS
SF
IS1
10000
SC = 100.-WP
SC = 100-WP
FVF = DMATX(1,N)/11.99/(1./SF-1./SC)
FVF
_ VFL
"•"IsF-fc
[Ib/hr/ft ]
AVF
TS!si*Qisi*58-3l*ECF
FVF*HPWK
PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33
PSDD = TSS *Q *8.33
IS1 IS1
References:
Smith and fillers, 1975
Patterson and Banker, 1971
5. Cost functions.
a. Capital cost
Function of AVF
X = ALOG(AVF)
X = In AVF
[ft2]
Clb/day]
VAC05200
VAC05300
VAC05400
VAC05900
VAC06000
VAC06100
AVF = SMATX(10,IS1)*SMATX(2,IS1)*58.31/FVF/DMATX(2,N)*DMATX(16,N) VAC06200
VAC06400
VAC07000
80
-------
CCOST(N.l) = EXP(3.288028+.194537*X+.038313*X**2.)*1000.
VAC07100
3.288028+0.194537 X+0.038313X
CCOST • lOOOe
[dollars]
b.
Operating manhours, maintenance manhours and materials/supplies costs
Function of PSDD
X » ALOG(PSDD*365./2000.) VAC07700
X - in 365 PSDD
2000
(1) Operating manhours
(a) For IVACF - 0
Landfill operation
OHRS = EXP(6.069419-.009894*X+.042699*X**2.)
2
6. 069419-0.
OHRS = e
(b) For IVACF • 1
[hrs/ys]
Incineration operation
VAC08400
VAC09100
[hrs/yr]
VAC09700
OHRS = EXP(3.714368+.850848*X-.074615*X**2.+.005085*X**3.)
3.714368+0.850848X-0.074615X2+0.005085X3
OHRS = e
(2) Maintenance manhours
XMHRS = EXP(4.306110-.093695*X+.047738*X**2.)
4.306110-0.093695X+0.047738X2
XMHRS = e [hrs/yr]
(3) Supplies
SUPP = EXP(-3.113515+.718466*X)*1000.
-3.113515+0.718466X
SUPP = lOOOe Cdollars/yrJ
(4) Chemicals
CHEM = PSDD*365./2000.*(FECL3*CFECL+CAO*CCAO+DPOLY*CPOLY) VAC09900
PSDD*365*[(FECL3*CFECL)+(CAO*CCAO)+(DPOLY*CPOLY)
VAC09800
CHEM
2000
[dollars/yr]
81
-------
c. Total operating and maintenance costs VAC10400
COSTO(N,1) - CCOHRS+XMHRS)*DHR*a.+PCT)+SUPP*WPI+CHEM)/SMATXC2,l}/3650.
COSTO = C(OHRS+XMHRS)*DHR*(1+PCT)>(SUPP*HPI)+CHEM [Cents/i000 gal]
"Plant inf.*3650
Cost curves, Banker and Patterson page 50.
82
-------
L VAC00100
C VACUUM FILTRATION VAC00200
C PKOCEbS IDENTIFICATION NUMBER 7 VAC00300
C VAC00100
SUBROUTINE VACF VAC00500
C VAC00600
C VAC00700
C COMMON INITIAL STATEMENTS VAC00800
C VAC00900
INTEGER Obl»OS2 VAC01000
COMMON SMATX(20.30)»TMATX120»30)»OMATX(20»2G)»OMATX(20»20),IP(20>»VAC01100
llNP.IOf !SlrlSi;»OSl»OSi:.N»IAERF»CCOST<20»5).cOSTO(20r5)»ACOST(20»5)VAC01200
2»TCOST(20»b)»L»HR»PCT•*PI»CLANO»DLAND'FLOW(2b)tPOW(25> »TKWHD(25> VAC01300
C VAC01UOO
C VAC01500
C AbSIGUMENT OF DESIGN VALUES TO CHEMICAL PARAMETERS VAC01600
C VAC01700
FECL3=DMA1X(5.N) VAC01800
CAO=DMATX(6»N) VAC01900
CFECL=DMATX(7iN) VAC02000
CCAO=JMATX(6»N> VAC02100
DPOLY=DMATX(9»N> VAC02200
CPOLV=DMATX(10»N) VAC02300
C VAC02UOO
C VAC02500
C PKOCEbS RELATIONSHIPS REQO. To CALC. EFFLUENT STREAM VAC02600
c CHARACTERISTICS VAC02?oo
C VAC02600
SMATX(7t Ibl)=bMATx(7»lSl>-HFECL3+CAO-*DPOLY)*SMATX(10»ISl>/2000. VAC02900
SMATX<10'lSl>=SMATX(lUtlSl>+(FECL3+CAO+DPOLY>*SMATX(10'lSl>/2000. VAC03000
SMATX(10»OS2>=OMATX(3iN) VAC03100
WP=a8./(SMATX(10'ISl)/10000.>**.123 VAC03200
SMATX(10»USD = (10U.-WP)*10000. VAC03300
SMATX(2»Obl)=lSMATX(2rIbl)*SMATX(10»Ibl))/(bMATX(10.0Sl)-bMATx(10.VAC03<*00
I0b2)> VAC03500
SMATXl2»Oi,2)=bMATX(2'ISl)-SMATX(2»OSl) VACU3600
TLMP2=SMATX(10.0S1)/SMATX(10»ISD VAC03700
TLMP3=SMA1X(10•OS2)/SMATX <10»IS1) VAC03800
C VAC03900
C VACOtOOO
C EFFLULNT bTKEAM CALCULATIONS VACOmOO
C VAC04200
DO 10 I=3»9 VACOU300
SMATX(I,Obl)=1EMP2*SMATX=SMATX(i6fisi> VACOSOOO
SMATX (19»OSD=SMA7X( 19» IS1) VAC05100
SMATX(19»yS2>=SMATX(iyilSD VAC05200
SMATX(20>oSl>=SMATX(2u*ISl> VAC05300
SMATX(20'US2>=SMATX(2U»IS1> VAC05400
C. VAC05500
C VAC05600
t CALC. OF OUTPUT SIZES AND QUANTITIES VAC05700
C VAC05800
83
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
t
t
c
c
c
SF=SMATXUO»IS1>/1000U.
SC=lOO.-WP
FVF=DMATX *SMATX(2iISl)*58.31/FVF/DMATx(2»N)*DMATX(16»N>
IVACF=DMAlX(<+fN)
PbDD=SMATA(lOrISl)*SMATX<2.ISl)*8.33
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
X=AL06(AVF)
CCOST(N»1)=EXP(3.288028+.194537*X+.038313*X**2.)*1000.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONEt
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOt>(PSuD*3b5./2000.)
IF (IVACF) I0»30»«t0
CALC. OF OPERATING MANHOURS IF LANDFILL DISPOSAL IS
USED
30 OHRS=tLXP(b. 069419-. 009894*X+ .
GO TO 50
<*0 OHRS=£XP(.i.71 /3faVAC 10UOO
VAC10500
VAC10600
VAC10700
AbSIGNMENT OF VALUES TO OMATX VAC10800
VAC10900
OMATXll,N)=WP VAC11000
OMATX(2»N)=AVF VAC11100
OMATXl3rN)=PSUD VAC11200
VAC11300
VAC11100
PKOCEbS ENERGY INDICES VAC11500
VAC11600
VAC11700
VAC11800
VAC11900
VAC12000
150.
FLOW(N)=SMATX(2»IS1)
PO«(N)=7.
RETURN
END
84
-------
SECTION 9
GRAVITY THICKENING, THICK
Subroutine Identification Number 8
Gravity Thickening, THICK
Rev. Date 8/1/77
1. Process symbol.
IS1 (Sludge)
IS2 (Wash water)
OPTIONAL
OS2 (Recycle)
OS1
2. Input parameters and nominal values.
DMATX(l.N) = TRR
DMATX(2,N) = TSS
DMATX(3,N) = GTH
DMATX(4,N) = GSTH
DMATX(16,N) = ECF
IS1: Sludge input stream
IS2: Wash water input stream
OS1: Liquid output stream
OS2: Recycle output stream
N: User assigned number to the
process
Solids recovery ratio for thickening. [.95]
Total suspended solids concentration of OS1,
mg/1. [50,000.]
Design overflow rate for the thickener, gpd/sq
ft. [700.]
Design solids loading rate for the thickener,
Ib/day/sq ft. [8.]
Excess capacity factor for the process. [1.5]
3. Output parameters which are printed on computer output sheets.
TSSncl = DMATX(2,N)
ATHM = OMATX(l.N)
WRT = OMATX(2,N)
CCOST
COSTO
ACOST
Surface area of the gravity thickener, [sq. ft.J
Ratio of dilution stream flow in mgd/influent
sludge stream flow In mgd.
Capital cost, [dollars].
Operating and maintenance cost,
[cents/1000 gal],
Amortization cost, [cents/1000 gal].
85
-------
XCOST Total treatment cost,[cents/1000 gal].
ECF Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMAT(I) - 0 THI02100
where I = 1,20
SMAT(I) = SMATX(I,IS2) THI02400
SMATCIX=SMATX(I,IS2) [MGD and mg/l]
where I = 1,20
i.e. I, Q, SOC, SNBC, SON, SOP, SFM, SBOD, VSS, TSS, DOC, DNBC, DN, DP, DFM,
ALK, DBOD, NH3.N03
SMATX(2,OS1) = DMATX(1,N)*(SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))/SMATX( 10,081)
Qosr
[MGD]
TSS
OS1
TEMP = DMATX(4,N)/DMATX(3,N)*1000000./8.33
TEMP _ 1000000 GSTH
8.33 GTH
HRT = (SMATX(10,IS1)-TEMP)/(TEMP-SMAT(10))
WRT
TSS .-TEMP
TEMP- TSS IS2
SMATX(2,IS2) = WRT*SMATXC2,IS1)
[mg/l]
[mg/l]
[MGD]
SMATC2) SMATX(2,IS2)
SMAT(2) Q
IS2 [MGD]
SMATX(2,OS2) = SMATX(2,IS1)+SMAT(2)-SMATX(2,OS1)
QOS2 = QIS1+QIS2"QOS1 [MGI)]
TEMP = SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMATC10)
TEMP = QIS1*TSSB1+0IS2 *TSSIS2 [MGD-mg/l]
SMATX(10,OS2) = (TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)
TSS
OS2
[mg/l]
THI02600
THI02800
THI03200
THI03300
THI03400
THI03500
THI03600
THI03700
OS2
86
-------
TEMP =• TEMP/(SMATX(2,IS1)+SMAT(2)) THI03800
TEMP "
TEMPI - SMATX(10,OS1)/TEMP THI03900
TSS
Cno units]
m
TEMP
TEMP2 = SMATX(10,OS2)/TEMP THI04000
TSS
TEMP2 i _ OS2 [no units]
TEMP
TEMP3 - (SMATX(2,IS1)*SMATX(I,IS1)+SMAT(2)*SMAT(I))/(SMATX(2,IS1)+SMAT(2))
TEMP3 (QISl*^TX(I'IS1))+(QIS2*SMAT(:i" Dug/!]
TEMP3 - - - - — - - »' THI04600
q!Sl QB2
where I - 3,9
i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I.OSl) = TEMP1*TEMP3 THI04800
SMATX(I.OSl) - TEMPI * TEMP3 [mg/l]
where I « 3,9
SMATX(I,OS2) = TEMP2 * TEMP3 THI04900
SMATX(I,OS2) - TEMP2*TEMP3 [mg/l]
where I = 3,9
SMATX(I.OSl) = (SMATXCI,IS1)*SMATX(2,IS1)+SMAT(I)*SMAT(2))/(SMATXC2,IS1HSMATC2))
CSMATX(I,IS1)*Q )+CSMATCD*QIS2) .
SMATX(I.OSl) = - n .„ - - - [mg/l] THI05100
QIS1+QIS2
where I = 11,20
i.e. DOC,DNBC,DN,DP.DFM,ALK,DBOD,NH3,N03
SMATX(I,OS2) = SMATX(I,OS1) THI05300
SMATX(I,OS2) = SMATX(I.OSl) [mg/l]
where I = 11,20
ATH1 = (SMATX(2,OS2)+SMATX(2,OS1))*1000000,/DMATX(3,N)*DMATX(16,N)
ATH1 _- OS20Sl [£t] THI05800
GTH
87
-------
ATH2 = SMATX(2,IS1)*SMATX(10,IS1)*8.33/DMATX(4,N)*DMATX(16,N)
THI06000
QIsl*TSSlsl*8.33*ECF
GSTH
ATHM = ATH2
ATHM = ATHl
References :
Smith and Eilers, 1975
Patterson and Banker, 1971
5. Cost functions.
a. Capital cost
Function of ATHM
X = ALOG (ATHM/ 1000.)
X- In AIM
1000
[For ATHl - ATH2 <0]
[For ATHl - ATH2 >0]
THI06200
THI06400
THI07000
CCOST(N.l) = EXP(3.725902+.397690*X+.075742*X**2.-.001977*X**3.-.000296*X**4.)*1000,
THI07100
CCOST = 1000e3-725902+0-397690x+0-075742x2-0-001977x3-°-000296x4 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of ATHM/ECF
X = ALOG(ATHM/1000./DMATX(16,N))
THI07800
X = In
ATHM
THI08700
1000ECF
(1) For (EXP(X)-KO)
(a) Operating manhours
OHRS = 350 [hrs/yr]
(b) Maintenance manhours
XMHRS 190 [hrs/yr]
(c) Total materials and supplies
TMSU 250 [dollars/yr]
(2) For (EXP(X)-1>0)
(a) Operating manhours
OHRS = EXP(5. 8465654-. 254813*X+. 113703*X**2.-.010942*X**3. ) THI09600
5. 846565+0. 254813X+0. 113703X2-0.010942X3 r . ,
e [hrs/yr]
-------
(b) Maintenance manhours
XMHRS - EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.) THI09700
.__..,. 5.273419+0.228329X+0.122646X2-0.011672X3 ru . -,
XMnKa • e Lnrs/yrJ
(c) Total materials and supplies
TMSU - EXP(5.669881+.750799*X) THI09800
_..., 5.669881+0.750799X r, .. . -,
TMSU = e Ldollars/yrJ
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. THI10300
COSTO =(OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI) [cents/1000 gal]
%lant inf.*3650
89
-------
C THIOOIOO
C GRAVITY THICKtNING THI00200
C PROCESS IDENTIFICATION NUMBER 8 THI00300
C THlOOtOO
SUoROUTINt. THICK THI00500
C THI00600
C THI00700
C COMMON INITIAL STATEMENTS THI00800
C THI00900
INTEGER osi»os2 THIOIOOO
DIMENSION SMAT(20) THI01100
COMMON sMATx(20»3o>,TMATX<20>3o>»DMATX(20,20)»OMATX(20•20),IP(20)>THI01200
UNP.IUfIS1»IS2»OS1»OS2»N'IAERF»CCOSTC20»5)»COSTO<20.5)•ACOST(20i5)THl01300
C
C
C
C
C
2'TCOST(20»5)»UHR'PCT»wPI»CLANDrDLAND»FLOWl2b)»POW{25)»TKWHD(25)
PKOCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM
CHARACTERISTICS
DO 10 I=l»20
10 SMAT(1)=0.
IF (IS2) 40>0»50'60
50 WKT=0.
GO TO 70
00 WRT=(SMATx(10»ISl)-TEMP)/(TEMP-SMAT(10) )
SMATX12»IS2)=WRT*SMATX(2»IS1)
SMAT<<:)=SMATX(2«IS2)
70 SMATX(2,Ob2)=SMATxl2'iSD+SMAT(2)-SMATX(2.0Sl)
TLMP=bMATx ( 2 f IS1 ) *SMA T X 1 1 0 » I S 1 ) +SMAT ( 2 ) *SMAT ( 10 )
SMATX110HJS2>=(TEMP-SMATX12.0S1)*SMATX(10»OS1))/SMATX(2»OS2)
TtMP=lEMP/(SMATX(2»ISl)+SMAT(2)>
TtMPl=SMATX(lU»OSl)/TtMP
TE.MP2=SMATX ( 10 »OS2) /T£MP
EFFLULNT STREAM CALCULATIONS
DO faO I=3»9
THI02700
THI02800
THI02900
THI03000
THI03100
THI03200
THI03300
THI03UOO
THI03500
THI03600
THI03700
THI03800
THI03900
THI04000
THIOUIOO
THIOU200
THIOU300
THI04400
THI04500
TtMP3=(SMATX<2»ISl)*SMATX(IrISl)-i-SMAT(2)*SMATm)/lSMATXC2»lSl>+SMTHl04600
1AT(2» THIO<*700
SMATXII,OS1)=TEMP1*TEMP3 THIOU800
60 SMATXU,OS2)=TEMP2*TEMP3 THIOU900
DO 90 I=llf20 THI05000
SMATXII»OS1)=ISMATXII.IS1)*SMATX(2»IS1)+SMAT(I)*SMAT<2))/(SMATX(2.THI05100
HSl)-»-SMAT(2) ) THI05200
90 SMATXII.OS2)=SMATX(I»OS1) THl053^)0
C THlOb<*00
C THI05500
C CALC. OF OUTPUT SIZES AND QUANTITIES THI05600,
C THI05700
ATHl=lSMATX(2»OS2)+SMATX(2fOSl))*1000000./DMATX(3»N)*DMATX(16»N) Tril05800
90
-------
IF (IS2) 120.100»120
1UO ATH2=SMATX(2»IS1>*SMATX(10»IS1)*8.33/DMATXU.N)*DMATX(16»N)
IF (ATH1-ATH2) 110.12u.l20
110 ATHM=ATH2
GO TO 130
120 ATHM=ATH1
C
C
C
C
C
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
130 X=ALOG(ATHM/1000.)
CCOSTlN.l)=EXP(3.7259U2+.397690*X+.07b742*X**2.-.OOl977*X**3.
1296*X**(+.)*1000.
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONF.
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOG(ATHM/1000./DMATX(16»N))
IF (EXPU)-l.) 140.15U.15U
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALb AND SUPPLIES FOR THICK FACILITY.
LESS THAN 1000 SQ. FT.
OHRS=350.
XMHRS=190.
TMSU=2bO.
GO TO 160
CALC.OF OPERATING MANHOURS. MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES FOR THICK FACILITY.
EQUAL OR GREATER THAN 1000 Su. FT.
IbO OHRS=EXP
-------
SECTION 10
ELUTXIATION, ELUT
Subroutine Identification Number 9
Elutriation, ELUT
Rev. Date 8/1/77
1. Process symbol.
IS2 (Wash Water)
IS1: Sludge input stream
IS2: Wash water input stream
OS1: Sludge output stream
OS2: Recycle output stream
N: User assigned number to
the process
2. Input parameters and nominal values.
DMATX(l.N) - ERR
Solids recovery ratio for elutriation.
[.76]
DMATX(2,N) - TSS
Total suspended solids concentration of
OS1, mg/1. [60,000.]
DMATX(3,N) = WRE
DMATX(4,N) = GE
Wash water ratio for elutriation. [3.]
Design overflow rate for elutriation,
gpd/sq ft. [800.]
DMATX(5,N) = GES
Design solids loading rate for elutriation,
Ib/day/sq ft. [9.]
DMATX(16,N) «= ECF
Excess capacity factor for the process.
[1.5]
92
-------
3. Output parameters which are printed on computer output sheets.
ERR = DMATX(l.N)
TSS = DMATX(2,N)
WRE = DMATX(3,N)
GE = DMATX(4,N)
GES = DMATX(S.N)
AE = OMATX(l.N)
CCOST
COSTO
ACOST
TCOST
ECF
Surface area of the elutriation
tank, sq. ft.
Capital cost, [dollarsJ
Operating and maintenance cost,
[cents/1000 gal]
Amortization cost, [cents/1000
gal]
Total treatment cost, [cents/
1000 gal]
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(lO.OSl) = DMATX(2,N)
TSSQSl = TSS [mg/1]
ELU01900
SMATX(2,IS2) = DMATX(3,N)*SMATX(2,IS1)
QIS2 = WRE *
[MGD]
ELU02000
AE1 = SMATX(2,IS1)*1000000./DMATX(4,N)
AE1 =
QIS1 * 1000000
GE
ELU04500
[ft2]
93
-------
AE2 - SMATX(2,IS1)*SMATX(10,IS1)*8.33/DMATX(5,N)
"isi * TSSisi * 8'33 [ft2]
AE2
GES
AE = AE1*DMATX(16,N) If (AE1-AE2)>0
AE = AE1 * ECF [ft2]
ELU04600
ELU04800
AE = AE2*DMATX(16,N)
If (AE1-AE2)<0
AE AE2 * ECF [ft ]
ELU05000
SMATX(2,OS1)=DMATX(1,N)*SMATX(2,IS1)*SMATX(10,IS1)/SMATX(10)OS1)
ERR * QIgl * TSSIgl
TSS
OS1
ELU02100
SMATX(2,OS2)=SMATX(2,IS1)+SMATX(2,IS2)-SMATX(2)OS1)
IS1
- QOS1 [MGD]
ELU02200
TEMP - SMATX(2,IS1)*SMATX(10,IS1)+SMATX(2)IS2)*SMATX(10,IS2)
TEMP = [QIS1*TSSIS1J + [QIS2*TSSIS2J [MGD-mg/l]
ELU02300
SMATX(10,OS2)=(TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)
TSS
TEMP -[QOS1*TSSOS1]
OS2
[mg/1]
ELU02400
TEMP = TEMP/(SMATX(2,IS1)+SMATX(2,IS2))
TEMP
TEMP
QIS1+QIS2
[mg/1]
ELU02500
TEMPI = SMATX( 10,031) /TEMP
TEMPI =
TSSOS1
TEMP
[no units]
ELU02600
94
-------
TEMP2 = SMATX(10,OS2)/TEMP ELU02700
TSS
TEMP2 = TEMp [no units]
TEMP3 = (SMATX(2,IS1)*SMATX(I,IS1)+SMATX(2,IS2)*SMATX(I,IS2))/(SMATX(2,IS1)+SMATX(2,IS2))
[QIS1*SMATX(I,IS1)] + [QIS2*SMATX(I,IS2)]
TEMP 3
QIS1
where I = 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I.OSl) = TEMPI * TEMP3 ELU03500
SMATX(I.OSl) = TKMP1 * TEMP3 [mg/l]
where I = 3,9
i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I,OS2) = TEMP2 * TEMP3 ELU03600
SMATX(I,OS2) = TEMP2 * TEMP3 [mg/l]
where I = 3,9
SMATX(I.OSl) = (SMATX(I,IS1)*SMATX(2,IS1)+SMATX(I,IS2)*SMATX(2,IS2))/(SMATX(2,IS1)+SMATX(2,IS2))
(SMATX(I,IS1)*Q .)+(SMATX(I,IS2)*Q ) ELU03800
SMATX(I.OSl) = isi iii. [mg/l]
where I = 11,20 i.e. DOC.DNBC.DN.DP.DFM.ALK.DBOD.NHS.NOS
SMATX(I,OS2) = SMATX(I.OSl) ELU04000
SMATX(I,OS2) = SMATX(I.OSl) [mg/l]
where I = 11,20.
References!
Smith and Eilers, 1975
Patterson and Banker, 1971
95
-------
ELU°56°°
5. Cost functions.
a. Capital cost
Function of AE
X = ALOG(AE/1000.)
X = In AE
1000
CCOST(N.l) EXP(3.725902+.397690*X+.075742*X**2.-.001977*X**3.-.000296*X**4.)*1000,
CCOST = I000e3-725902+0-397690x+0-075742x2~0-001977x3~0>000296x4
ELU05700
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of AE/ECF
X = ALOG(AE/1000./DMATX(16,N))
X In AE
1000*ECF
(1) Operating manhours
ELU06400
(a) EXP(X)<1
OHRS 350.
(b) EXP(X)>1
[hrs/yr]
ELU06500
ELU07200
ELU06500
OHRS = EXP(5. 846565+. 254813*X+.113703*X**2.-.010942*X**3. ) ELU08200
OHRS = e5- 846565+0. 254813X+0.113703X2-0.010942X3 [hrs/ r]
(2) Maintenance manhours
(a) EXP(X)<1
XMHRS = 190.
[hrs/yr]
ELU06500
ELU07300
(b) EXP(X)n ELU06500
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.) ELU08300
XMHRS = e5-273^19+0.228329X+0.122646X2-0.011672X3 [hrs/yr]
96
-------
(3) Total materials and supplies
(a) EXP(X)<1 ELU06500
TMSU = 250 [dollars/yr] ELU07400
(b) EXP(X)>1 ELU06500
TMSU = EXP(5.669881+.750799*X) ELU08400
TMSU „ e5.669881+0.750799X [dollars/yr]
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1^PCT)+TMSU*WPI)/SMATX(2,1)/3650. ELU08900
COSTO _ (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI) _ , .
Qplant Inf. *3650 [cents/1000 gal]
97
-------
c
c
c
c
c
c
c
c
c
ELUTRIATION
PROCESS IDENTIFICATION NUMBER
SUBROUTINE ELUT
ELU00100
ELU00200
i ELU00300
ELUOO.TMATX(20»30)»DMATX<20r2u>»OMATX(20f20)rlP<20>»ELU01100
HNP»IOfISl»lS2»OSl»OSiirN»lAERF»CCOST(20»5)»COSTO(20»5)»ACOST(20»5)£LU01200
COMMON INITIAL STATEMENTS
2>TCOST(20r5) »UHR»PCT»
»CLANDrDLAND»FLOW(2b> »POW(25) »TKWHD(25)
PROCESS RELATIONSHIPS REQD.
CHARACTERISTICS
TO CALC. EFFLUENT STREAM
10
ELU01300
ELUOIOOO
ELU01500
ELU01600
ELU01700
ELU01800
ELU01900
ELU02000
ELU02100
ELU02200
ELU02300
ELU02400
ELU02500
ELU02600
ELU02700
ELU02800
ELU02900
ELU03000
ELU03100
DO 10 I=3»9 ELU03200
T£.MP3=(SMATX(i:»ISl)*SMATXlI»ISl)+SMATX(2»lS2)*SMATX{I>IS2)>/(SMATXELU03300
<2f IS1)+SMATX(2»IS2» ELU03UOO
SMATXlI.Obl)=TEMPl*TEMP3 ELU03500
SHATXlI.Ob2)=lEMP2*TEMP3 ELU03600
DO 20 1=11 r20 ELU03700
SMATX(I»Obl)=(SMATX(IrISl)*SMATX(2»lSl)+SMATX(I»IS2)*SMATX(2»IS2))ELU03800
SMATX110•osi)=DMATX(2 r N)
SMATX(2»IS2)=DMATX<3»N)*SMATX(2»IS1)
SMATX(2rObl)=UMATX(l»N)*SMATX(2»ISl)*SMATx(lO»ISl)/SMATX(10»OSl)
SMATXl2fOb2)=bMATXl2'ISD-t-SMATX(2>IS2)-SMATx(2rOSl)
TtMP=bMATx(2'lSl)*SMATX(10»ISl)-t-SMATX(2rIb2J*SMATXllO»IS2)
SMATX(10»OS2)=(TEMP-SMATX(2»OSl)*SMATX(10.0bl))/SMATX(2»OS2)
TEMP=TEMP/(SMATX<2»lSl)+SMATX<2fIS2))
TEMPl=SMATX(10»OSl)/TtMP
TtMP2=SMAT X(10»OS2)/TtMP
EFFLUENT STREAM CALCULATIONS
l/(SMATX(2»ISl)+SMATX(,2f IS2)
SMATXU.Ob2>=SMATX
CALC. OF OUTPUT SIZES AND QUANTITIES
AEl=SMATX(2»Ibl)*1000uOO./DMATX(t»N)
AL2=SMATX(2»Ibl)*bMATX(10»ISl)*8.33/DMATX(5,N)
IF (Atl-At2) tOrtOf30
AE=AE1*DMATX(16»N)
GO TO 50
iO
CALC. OF
CAPACITY
50 X=ALOG(AE/100U.)
CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
ELU03900
ELUOtOOO
ELUOU100
ELU04200
ELU04300
ELUOUUOO
ELU04500
ELUOU600
ELUO<*700
ELU04800
ELU04900
ELU05000
ELU05100
ELU05200
ELU05300
ELUOSfOO
ELU05500
ELU05600
CCOSTlNrl)=EXH(3.72b9U2+.397690*X+.0757i|2*X**2.-.OOl977*X**3.-.OOOELU05700
)*1000
ELU05800
98
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALC. OF OPERATINfa COSTS BASED ON DESIGN CAPACITY ALONE*
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOfa(AE/1000./DMATX(lb*N) >
IF lEXP(X)-i.) 60»70'70
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FOR ELUT FACILITY' LESS
THAN 1000 SQ. FT.
faO OHRS=350.
XMHRS=190.
TMSU=250.
GO TO 80
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FOR ELUT FACILITY* EQUAL
OR GREATER THAN 1000 SQ. FT.
70 OHRS=EXP(b.6'+b565+.254813*X+.113703*X**2.-.ul09'+2*X**3. )
XMHRS=EXPl5.273«U9-t-.3«i8329*X+.122fa«*6*X**2.-.011672*X**3.>
TMSU=c.XP ( b . 669881+ . 75U799*X )
OPERATING COST EQUATION
80 COSTO(N'1>=<(OHRS-UMHRS>*DHR*<1.+PCT>+TMSU**PI)/SMATX{2*1)/3650.
ASSIGNMENT OF VALUES TO OM&TX
OMATX(1.N)=AE
PROCESS ENERGT INDICES
FLOrv(N)=SMATX(2'ISl)
POrV ( N) =9.
RETURN
END
ELU05900
ELU06000
ELU06100
ELU06200
ELU06300
ELU06«*00
ELU06500
ELU06600
ELU06700
ELU06800
ELU06900
ELU07000
ELU07100
ELU07200
ELU07300
ELU07400
ELU07500
ELU07600
ELU07700
ELU07800
ELU07900
ELU08000
ELU08100
ELUU8200
ELU08300
ELU08100
ELU08500
ELUU8600
ELU08700
ELU08800
ELU08900
ELU09000
ELU09100
ELU09200
ELU09300
ELU09tOO
ELU09500
ELU09600
ELU09700
ELU09800
ELU09900
ELU10000
ELUiOlOO
ELU10200
99
-------
SECTION 11
SAND DRYING BEDS, SEEDS
Subroutine Identification Number 10
Sand Drying Beds , SEEDS
1. Process symbol.
OS2 (Recycle)
IS1
N
OS1
Rev. Date 8/1/77
IS1: Sludge input stream
OS1: Sludge cake stream
OS2: Recycle output stream
N: User assigned number
to the process
2. Input parameters and nominal values.
DMATX(l.N) = SOUT
DMATX(2,N) = TSS
DMATX(16,N) = ECF
Percent solids of OS1, fraction, [.35]-
Total suspended solids concentration of OS2, mg/1, [50.]-
Excess capacity factor for the process, [1.5].
3. Output parameters which are printed on computer output sheets.
SOUT = DMATX(l.N)
TSS = DMATX(2,N)
ASB = OMATX(l.N)
CCOST
COSTO
ACOST
TCOST
ECF
Area of the sludge drying beds, [sq. ft.J.
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 gal].
Amortization cost , [cents/1000 gal].
Total treatment cost , [cents/1000 gal].
Excess capacity factor.
100
-------
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(2,OS2) = SMATX(2,IS1) SBE01800
%S2 ° QISI [MGD]
SMATX(10,OS2) = DMATX(2,N) SBE01900
TSSOS2 - TSS [mg/l]
TEMP = SMATX(10,OS2)/SMATX(10,IS1) SBE02000
TSSQS2
TEMP= [no units]
SMATX(I,OS2) = TEMP*SMATX(I,IS1^ SBE02200
SMATX(I,OS2) = TEMP*SMATX(I,IS1) [mg/l]
where I = 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I,OS2) = SMATX(I.ISl) SBE02400
SMATX(I,OS2) = SMATX(I.ISl) [mg/l]
where I = 11,20 i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
SF = SMATX(10,IS1)/10000. SBE02900
SF = TSSIS1 [%]
10000
SC = DMATX(1,N)*100. SBE03000
SC - SOUT*100 [%]
FSB = (29.84*SF-33.3)/SC SBE03100
FSB = 29.84SF-33.3 |-lb dry sollds applied/ft2/30 days]
DL>
TEMP = SMATX(2,IS1)*SMATX(10,IS1)*249.9 SBE03200
TEMP = QIS1*TSSIS1*249.9 [Ib dry solids/30 days]
ASB = TEMP/FSB*DMATX(16,N) SBE03300
.„„ _ TEMP*ECF 2n
ASB -- FSB~ tft ^
PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33 SBE03400
PSDD = TSSIS1*QIS1*8.33 [Ib dry solids applied/day]
101
-------
Reference: Smith and Eilers, 1975
Patterson and Banker, 1971
5. Cost functions. (Cost curves, Patterson and Banker pages 48,102,103)
a. Capital cost
Function of ASB
X = ALOGCASB/1000.) SBE04000
X = In (MIL)
1000'
CCOST(N,1) = EXP(1.971125+.083841*X+.146751*X**2.-.007718*X**3.)*1000. SBE04100
CCOST = ioooe1-97112^0-083841^-146751^-0'007718^ [dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of PSDD
X = ALOG(PSDD*365./2000.) SBE04800
X = In (SPSDD) [in(tons applied/year)]
(1) Operating manhours
OHRS = EXP(6.345052-.476780*X+. 101319 *X**2.) SBE05400
OHRS = e6. 345052-0. 476780X+0. 101319 X2 [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(4.290089-.098293*X+.075453*X**2.) SBE05500
XMHRS = e4. 290089-0. 098293X+0.075453X2 ^ . ^
(3) Total materials and supplies
TMSU = EXP(. 693148+1. 000000*X) SBE05600
TMSU = e°'6931A8+X [dollars/yr]
c. Total operating and maintenance costs
COSTO(N,1) = ((OHRS+XMHRS)*DHR*(1+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
SBE06100
[ (OHRS+XMHRS) *DHR* (1+PCT) ]+[TMSU*WPl]
Qplant mf. *3650 - [cents/1000 gal]
102
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SAND DRYING BEDS
PKOCEbS IDENTIFICATION NUMBER
SUBROUTINE SBLDS
COMMON INITIAL STATEMENTS
SBE00100
SBE00200
10 SBE00300
SBE00400
SBE00500
SBE00600
SBE00700
SBE00800
SBE00900
INTEGER osi.os2 SBEOIOOO
COMMON SMATX(H0>30)»TMATX(20.30)»DMATX(20.2u> »OMATX<20.20> »IP(20).SBE01100
llNP.IO.ICl.lSi:.OS1.0Si:.N.lAERF.CCOST(20.5)»cOSTO(20.5).ACOST<20.5)SBE01200
2»TCOST(20.5)»UHR»PCT»wPI.CLAND.DLANp.FLOWI2i>)»POW(25>»TKWHD(2b) SBE01300
SBE01UOO
SBE01500
SBE01600
SBE01700
SMATX12»os2)=SMATX(2»isi)
SMATX(io•oS2)=DMATX(2.N)
TEMP=bMATx(10.OS2)/SMATX <10»ISI)
Do 10 1=3.9
10 SMATX(i.os2)=TEMP*SMATXci.isi)
DO 20 1=11.20
HO SMATX(I.OS2)=SMATX(I»1S1)
EFFLUENT STREAM CALCULATIONS
CALC. OF OUTPUT SIZES AND QUANTITIES
SF=SMATX<10.IS1)/10000.
SC=UMATX(i»N>*100.
Fbb=(29.8t*SF-33.3)/SC
T£MP=SMATX(2»1S1)*SMATX(10»IS1)*2«*9.9
AbU=TLMP/FSB*IJMATX(16.N)
PbUD=bMATxUO.ISl)*SMMTX(2»ISl)*8.33
CALC. OF CAPITAL COSTS BASED
CAPACITY
ON DESIGN PLUS EXCESS
X=ALOti(ASb/1000.)
SBE01800
SBE01900
SBE02000
SBE02100
SBE02200
SBE02300
SBE02UOO
SBE02500
SBE02600
SBE02700
SBE02800
SBE02900
SBE03000
SBE03100
SBE03200
SBE03300
SBE03400
SBE03500
SBE03600
SBE03700
SBE03800
SBE03900
SBE04000
CcOST(N»l)=EXP<1.971125-»-.0838'41*X4.1«*b75l*X**2.-.007718*X**3.)*100SBEO
-------
C OPERATING COST EQUATION SBE05900
C SBE06000
COSTO(N.l) = ((OHRS+XMHKS)*DHR*ll.-»-PCT>+TMSU**Pl)/SMATX(2»l>/36bO. S8E06100
C 5BE06200
C SBE06300
C ASSIGNMENT OF VALUES TO OMATX SBE06<*00
C SBE06500
OMATX(lrN)=ASb SBE06600
(. SBE06700
C SBE06800
C PKOCESS ENERGY INDICES SBE06900
C SBE07000
FLOw(lM)=SMATX(2»ISl) SBE07100
POrt(N)=10. SBE07200
RtTURN SBE07300
END SBE07400
104
-------
SECTION 12
TRICKLING FILTER - FINAL SETTLER, TRFS
Subroutine Identification Number 11
Trickling Filter - Final Settle^
Rev. Date 8/1/77
1. Process symbol.
OS2 (Sludge)
2. Input parameters and nominal values.
DMATX(l.N) = BOD
DMATX(2,N) = DEGC
DMATX(3,N) = HQ
DMATX(4,N) = SAREA
DMATX(5,N) = URSS
DMATX(6,N) = XRSS
DMATX(7,N) = RECYCL
DMATX(8,N) = GSS
DMATX(9,N) •= HEAD
DMATX(IA.N) = ECF
DMATX(15,N) = ECF
DMATX(16,N) = ECF
3. Output parameters which are printed
BOD = DMATX(1,N)
IS1: Liquid input stream
OS1: Liquid output stream
OS2: Sludge output stream
N: User assigned number to the process
Demand concentration of 5-day BOD in the final
effluent from the trickling filter process. [26.J
Water temperature, degrees Centigrade.[20-]
Hydraulic loading on the filter, based on sewage
flow and not recycly, mgd/acre,[10.]
Specific surface area of the filter, sq ft/cu ft.
[10.]
Ratio of solids concentration in OS2 (underflow
stream) from the final settler to the total solids
concentration in the filter effluent,[2. ]
Ratio of solids concentration in the final settler
effluent to the solids concentration in the filter
effluent.[.6]
Trickling filter recycle ratio.[l.J
Design overflow rate for the final settler,
gpd/sq ft.[2000.]
Pumping head of the sludge return pumps, ft.[30.J
Excess capacity factor fot the sludge return
pumps.[1.5]
Excess capacity factor for the final settler.[1.2]
Excess capacity factor for the filter [1.2]
on computer output sheets.
105
-------
DEGC = DMATX(2,N)
HQ = DMATX(3,N)
SAREA = DMATX(4,N)
URSS = DMATX(5,N)
XRSS = DMATX(6,N)
KECYCL • DMATX(7,N)
GSS = DMATX(8,N)
HEAD = DMATX(9,N)
AFS = OMATX(l.N) Surface area of the final settler, sq ft/1000.
VOL •= OMATX(2,N) Trickling filter total volume, cu ft.
FAREA = OMATX(3,N) Area of the face of the filter, sq ft.
DEPTH = OMATX(4,N) Depth of the trickling filter, ft.
CCOST Capital cost, [dollars]
COSTO Operating and maintenance cost,[cents/1000gal]
ACOST Amortization cost,[cents/1000gal]
TCOST Total treatment cost,[cents/1000gal]
ECF Excess capacity factor
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
BODIN = SMATX(8,IS1)+SMATX(17,IS1) TRF02000
BODIN = SBODIS1+DBODIS1 [mg/l]
BETA = . 0245*1. 035**(DMATX(2,N)-20.) TRF02100
BETA = 0.0245*[1.035]DEGC~20 [constant]
XN = .91-6.45/DMATX(4,N) TRF02200
301 = °'91- si [constant]
FAREA = SMATX(2,IS1)/DMATX(3,N)*43560. TRF08500
0*43560
FAREA = -ISI_ - [ft2]
Q6 = DMATX(7,N)*SMATX(2,IS1) TRF02300
Q6 = RECYCL*Qisl [MOD]
106
-------
RHQ = ((DMATX(7,N)+1.)*DMATX(3,N))**XN
RHQ = [(RECYCL+1)*HQ]XN
BOD - (SMATX(17,IS1)+DMATX(6,N)*SMATX(8,IS1))/DMATX(1,N)
DBODT01+(XRSS*SBODT01)
BOD
"1817
IS1
BOD
'OS1
TRF02400
[MGADxn]
TRF02500
[no units]
DEPTH = RHQ*ALOG((BOD+DMATX(7,N))/(DMATX(7,N)+1.))/(BETA*DMATX(4,N)) TRF02600
[ft]
RHQ jjvi/1 *.VLJWJ-*-
BETA*SAREA ln 1+RECYCL
XPO = EXP(BETA*DMATX(4,N)*DEPTH/RHQ)
BETA*SAREA*DEPTH
XPO = e
RHQ
BODO = BODIN/(XPO*(DMATX(7,N)*(1.-1./XPO)+1.))
BOD IN
-XPO*[RECYCL*(1-
BODO
DBODO = SMATX(17,IS1)/(XPO*(DMATX(7,N)*(1.-1./XPO)+1.))
DBOD,
DBODO
IS1
XPO*[RECYCL*(1-
XPO
SBOD4 = BODO-DBODO
BODIN-DBOD
SBOD4 =
IS1
XPO*[RECYCL*(1- 5
SBOD5 = SBOD4*DMATX(6,N)
SBOD5 = SBOD4*XRSS
BETAN = . 00307*1. 141**(DMATX(2,N)-20.)
BETAN = 0.00307*[1.141]DEGC~20
TRF02700
TRF02800
[mg/1]
TRF02900
[mg/1]
TRF03000
[mg/l]
TRF03100
[mg/1]
TRF03200
[empirical parameter]
107
-------
XPON = EXP(BETAN*DMATX(4,N)*DEPTH/RHQ)
BETAN*SAREA*DEPTH
XPON = e
RHQ
SON4 = SMATX(5,IS1)*SBOD4/SMATX(8,IS1)
SON *SBOD4
SON4 =
IS1
SBOD
IS1
DN4 - (SMATX(13,IS1)+SMATX(5,IS1)-SON4)/(XPON+(XPON-1.)*DMATX(7,N))
DN4
DNisi+SONisrSON4
XPON+CXPON-I)*RECYCL
DNS DN4
DNS
XPON+(XPON-1)*RECYCL
SONS = SON4*DMATX(6,N)
SON5 = SON4*XRSS
OS1
XRSS-URSS
QISI*(I-XRSS)
052 URSS-XRSS
TRF03300
[empirical parameter]
TRF03400
[mg/1]
TRF 03500
[mg/1]
TRF03600
[mg/1]
TRF03700
[mg/1]
SMATX(2,OS1) = SMATX(2,IS1)*(1.-DMATX(5,N))/(DMATX(6,N)-DMATX(5,N)) TRF04200
[MGD]
SMATX(2,OS2) = SMATX(2,IS1)*(1.-DMATX(6,N))/(DMATX(5,N)-DMATX(6,N)) TRF04300
[MGD]
SMATX(4,OS1) = SMATX(4,IS1)*DMATX(6,N)
TRF04400
[mg/1]
SMATX(4,OS2) = SMATX(4,IS1)*DMATX(5,N)
TRF04500
[mg/1]
SMATX(5,OS1) = SONS
SONOS1 = SON5
108
TRF04600
[mg/1]
-------
SMATX(5,OS2) = SON4*DMATX(5,N)
SON = SON4*URSS
OS2
SMATX(6,OS1) = SMATX(6,IS1)*DMATX(6,N)*SBOD4/SMATX(8,IS1)
SOP,
SOP *XRSS*SBOD4
OS1
SBOD
IS1
SMATX(6,OS2) = SMATX(6,IS1)*DMATX(5,N)*SBOD4/SMATX(8,IS1)
SOP *URSS* SBOD4
SOP.
OS2
SBOD
IS1
SMATX(7,OS1) = SMATX(7,IS1)*DMATX(6,N)
smosl = S™ISI*XRSS
SMATX(7,OS2) = SMATX(7,IS1)*DMATX(5,N)
S™os2 - S™ISI*URSS
SMATX(8,031) = SBOD4*DMATX(6,N)
„ = SBOD4*XRSS
SMATX(8,OS2) SBOD4*DMATX(5,N)
SBOD = SBOD4*URSS
us^
SMATX(9,OS1) = SBOD4*DMATX(6,N)+SON5+SMATX(4,IS1)*DMATX(6,N)
VSS = (SBOD4*XRSS)+SON5+(SNBCTC *XRSS)
OS1 J.ol
TRF04700
TRF04800
Cmg/1]
TRF04900
[mg/1]
TRF05000
[mg/1]
TRF05100
[mg/1]
TRF05200
[mg/1]
TRF05300
[mg/1]
TRF05400
[mg/1]
SMATX(9,OS2) = SBOD4*DMATX(5,N)+SON4*DMATX(5,N)+SMATX(4,IS1)*DMATX(5,N) TRF05500
VSSQS2 = URSS*(SBOD4+SON4+SNBCIS1) [mg/l]
109
-------
SMATX(lO.OSl) =• SMATX(9,OS1)+SMATX(7,OS1)+SMATX(6,OS1)
TSSOS1 - VSSOS1+SFMOS1+SOPOS1
SMATX(10,OS2) = SMATX(9,OS2)+SMATX(7,OS2)+SMATX(6,OS2)
TSSOS2 ' VSSOS2+SFMOS2+S°POS2
SMATX(12,081) SMATX(12,181)
SMATX(12,OS2) = SMATX(12,IS1)
SMATX(13,OS1) = DNS
DNosi = DN5
SMATX(13,OS2) DN5
DNOS2 - DN5
SMATX(14,OS1) SMATX(14,IS1)+SMATX(6,IS1)*(1.-SBOD4/SMATX(8,IS1))
HP
SBOD4
OS1 IS1IS1
SMATX(14,OS2) = SMATX(14,OS1)
DP = DP
OS2 081
SMATX(15,OS1) = SMATX(15,IS1)
DFM = DFM
OS1 IS1
SMATX(15,OS2) = SMATX(15,181)
DFM = DFM
OS2 IS1
TRF05700
[mg/1]
TRF05800
TRF05900
[mg/1]
TRF06000
[mg/1]
TRF06100
[mg/1]
TRF06200
[mg/1]
TRF06300
[mg/1]
TRF06400
[mg/1]
TRF06500
[mg/1]
TRF06600
[mg/1]
110
-------
SMATX(16,OS1) - SMATXC16.IS1)
SMATX(16,OS2) = SMATX(16,IS1)
^032 - ^ISl
SMATX(17,OS1) = DBODO
DBOD = DBODO
OS1
SMATX(17,OS2) = SMATX(17,051)
DBOD = DBODO
OS2
SMATX(3,OS1) = (SBOD5+1.87*SHATX(4,OS1))/1.87
SBOD5+(1.87*SNBC^,
SOCnq, =
051 1.87
UoX.
TRF06700
[mg/1]
TRF06800
[mg/1]
TRF06900
[mg/1]
TRF07000
[mg/1]
TRF07100
[mg/1]
SMATX(3,OS2) = (SMATX(8,OS2)+1.87*SMATX(4,OS2))/1.87
SOC,,
°OS2
1.87
SMATX(11,OS1) = (DBODO+1.87*SMATX(12,OSlJ)/1.87
DBODO+(1.87*DNBC )
DOC
OS 2
1.87
SMATX(11,OS2) = SMATX(ll.OSl)
D°COS2 - D°COS1
SMATX(18,OS1) = SMATX(18,IS1)
™3osi - ^isi
SMATX(18,OS2) = SMATX(18,IS1)
TRF07200
[mg/1]
TRF07300
[mg/1]
TRF07400
[mg/1]
TRF07500
[mg/1]
TRF07600
[mg/1]
111
-------
SMATX(19,OS1) = SMATX(19,IS1)
N03OS1 - N03IS1
SMATX(19,OS2) = SMATX(19,IS1)
N03OS2 - N°3IS1
SMATX(20,OS1) = SMATX(20,IS1)
Future parameter
SMATX(20,OS2) = SMATX(20,IS1)
Future parameter
PCR = (BODIN-DMATX(1,N))*100./BODIN
PCR = (BODIN-BOD)*100
BODIN
AFS SMATX(2,IS1)*1000./DMATX(8,N)*DMATX(15,N)
AFS
Q *1000*ECF
GSS
VOL = FAREA*DEPTH*DMATX(16,N)
VOL FAREA*DEPTH*ECF
References
Roesler and Smith, 1969
TRF07700
[mg/1]
TRF07800
Cmg/1]
TRF07900
[mg/1]
TRF08000
[mg/1]
TRF08600
[%]
TRF08700
[ft2/1000]
TRF08800
[ft3!
5. Cost functions.
Trickling filter
a. Capital cost
Function of VOL
X = ALOG(VOL/1000.)
X = In
VOL
TMO
TRF09400
112
-------
CCOST(N,1) = EXP(2.924951+.036285*X+.114673*X**2.-.004587*X**3.)*1000. TRF09500
[dollars]
2.924951+0.036285X+0.114673X2-0.004587X3
CCOST - lOOOe
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of QIS1/HQ
X = ALOG(SMATXC2,IS1)/DMATX(3,N)*43560./1000.)
Q *43560
X = In
HQ*1000
(1) Operating manhours
OHRS = EXP(4.536510-.095731*X+.173718*X**2.-.010114*X**3.)
OHRS = e^-536510-0.095731X40,173718X2-0.010114X3
(2) Maintenance manhours
XMHRS = EXP(4.312739-.052122*X+.157473*X**2.-.010245*X**3.)
4.312739-0.052122X+0.157473X2-0.010245X3
(3) Total materials and supplies
TMSU = EXP(5.105946+.465100*X)
TMSU = e5-105946+0.465100X
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO = [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*WPI)
*3650
lant Inf.
Final settler
a. Capital cost
Function of AFS
X = ALOG(AFS)
X = In AFS
TRF10200
[In
ft 1
TCUOJ
TRF10800
[hrs/yr]
TRF10900
[hrs/yr]
TRF11000
[dollars/yr]
TRF11500
[cents/lOOOgal]
TRF12100
113
-------
CCOSTCN.2) - EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000. TRF12200
CCOST - 10ooe3-716354W-38986UW-084560x2"0-004718x3 [dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of AFS/ECF
X = ALOG(AFS/DMATX(15,N)) TRF12900
X = In
AFS
ECF
(1) Operating manhours
OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)
OHRS
5.846565+0.254813X+0.113703X2-0.010942X3
(2) Maintenance manhours
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)
5.273419+0.228329X+0.122646X2-0.011672X3
(3) Total materials and supplies
TMSU = EXP(5.669881+.750799*X)
TMSU e5.669881+0.750799X
c. Total operating and maintenance costs
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO _ [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*WPI)
Q.., _ , *3650
Plant Inf.
TRF13500
[hrs/yr]
TRF13600
[hrs/yr]
TRF13700
[dollars/yr]
TRF14200
[cents/lOOOgal]
Waste sludge pumps
a. Capital cost
Function of Q *ECF
-Lb 1
X = ALOG(SMATX(2,IS1)*1.5*DMATX(14,N))
X = In Q *1.5*ECF
J.O J.
TRF14800
114
-------
CCOST(N,3) - EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000. TRF14900
CCOST = lOOOe
3.481553+0.377485X+0.093349X2-0.006222X3
[dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of QISi
TC = ALOG(SMATX(2,IS1)*1.5) TRF15700
X •- In (QIS1*1.5)
(1) Operating manhours
TRF16300
OHRS = EXP(6.097269+.25306T5*X-.193659*X**2.+.078201*X**3.-.006680*X**4.)
OHRS = e6'°97269+0'253066x-0'193659x2+0'07820:Lx3-0'006680x4 [hrs/ r]
(2) Maintenance manhours
XMHRS = EXP(5.911541-.013158*X+.076643*X**2.)
.2
XMHRS
5.911541-0.013158X+0.076643X*
TRF16500
[hrs/yr]
(3) Kilowatt hrs per year
Pump efficiency - current values used in program; each can be changed by the
replacement on punched card.
PEFF =0.70 for QIS1<1
.44MGD
PEFF = 0.74 for Q <10.08MGD
IS1
PEFF = 0.84 for QIS1:>10.08MGD
YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24 *365.
QTC1*1000000*HEAD*0.7457*24*365
YRKW = —
1440*3960*PEFF*0.9
(4) Energy cost
ECOST = YRKW*DMATX(10,20)
ECOST = YRKW*CKWH
TRF16800
TRF17100
TRF17300
TRF17400
[kilowatt/yrs]
TRF17500
[dollars/yr]
115
-------
(5) Supplies
SCOST - EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.) TRF17600
SCOST - e5.851743+0.301610X+0.197183X2-0.017962X3 [$/yr]
(6) Total materials and supplies
TMSU = ECOST+SCOST*WPI TRF17700
TMSU - ECOST+(SCOST*WPI) [dollars/yr]
c. Total operating and maintenance costs
COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATXC2,1)/365Q. TRF18200
- [(OHRS+XMHRS)*DHR*(1+PCT)]+TMSU
Qplant Inf.*3650 [cents/lOOOgal]
116
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TklCKLlNG FILTER - FINAL SETTLER
PKOCEbS IDENTIFICATION NUMBER 11
SubROUTINt. TRFS
TRF00100
TRF00200
TRF00300
TRFOOtOO
TRF00500
TRF00600
TRF00700
TRF00800
TRF00900
INTEGER osirO<>2 TRFOIOOO
COMMON SMATX<*:()»30) »TMATX(20»30) »DMATX(20.2U> fOMATX(20»20) »IP(20) »TRF01100
HNPrIO»ISl»lS*:.OSl»OS2»N»IAERFrCCOST(20»5)rCObTO(20»5)»ACOST<20.5)TRF01200
COMMON INITIAL STATEMENTS
2»TCOST(20»5)rbHRiPCT»wPI»CLAND»DLAND'FLOW(26).POW(25)»TKWHD(2b)
PKOCEbS RELATIONSHIPS
CHARACTERISTICS
REOD. TO CALC. EFFLUENT STREAM
TRF01300
TRF01400
TRF01500
TRF01600
TRF01700
TRF01800
TRF01900
TRF02000
TRF02100
TRF02200
TRF02300
TRF02400
TRF02500
HEAD=UMATX(9'N)
BOUIN=SMATX(8fISl)+SMATX(17rISl)
BtTA=.024t>*l.U35**(DMATX<2»N)-20.)
XN=.91-6.45/DMATX(*,N)
Qo=DMATX(7»N)*SMATX(2»ISl)
RHQ=((DMATX(7fN)+l.)*UMATX(3»N))**XN
BOD=(bMATx(l7.ISl)-»-DMATX<6fN)*SMATX(8»ISl))/DMATX(l,N)
DEPTH=RHQ*ALOG((BOD+DMATX17»N)>/*DEPTH/RHQ) TRF02700
BuDO=bODlN/(XPO*(DMATx(7»N)*(l.-l./XPO)+l.)J TRF02800
DbODO=SMATX(17•IS1)/(APO*(DMATX(7iN)*(1.-1./XPO)+!.))
SbOD**=BODo-DBoDO
SbOD5=SBOUt*DMATX(b»N)
BtTAN=.00307*1.!«*!** (DMATX (2»N)-20.)
XPON=EXP*DEPTH/RHQ)
SON4=i>MATx(b'ISl)*SbOU4/SMATX(8rISl)
DNH= (bMATx (13»IS1) +SMATX (5»I SI) -SON<+) / (XPON+ (XPON-1. ) *DMATX (7 r N) )
EFFLUENT STREAM CALCULATIONS
SMATX(2»Obl)=bMATx(2'iSl)*(l.-DMATX(5>N))/(uMATX(6.N)-DMATX(5>N))
SMATX(2»Ob2)=bMATX(2'151)*(l.-DMATX(6iN))/(uMATX(5»N)-DMATX(6.N))
SMATXC+»Obl)=SMATX(1»ISD*DMATX(6»N)
SMATX(«*»Ob2)=bMATX(H»ISD*DMATX(5»N)
SMATXl5»Obl)=bON5
SMATXt5»Ob2)=bONt*DMATX(5.N>
SMATXl6.0bl)=bMATX(b»lSl)*DMATX(6rN)*bBODt/bMATX(8.lSl)
SMATX{6»Ob2)=bMATX(6»lSl)*DMATX(5»N)*bBOD<*/bMATX(8rlSl)
5MATX(7fObl)=bMATX(7»iSl)*DMATX(6»N)
SMATX(7rOb2)=bMATX(7»iSD*DMATX(5«N>
SMATX(8»Obl)=bBODt*DMATX(6»N)
SMATX(8»OS2)=bBODH*DMATX(5iN)
SMATX(9»Obl)=SBOD'+*DMATX(6»N)+SON5-(-SMATX(<*.ISl)*DMATX(6»N)
SMATX(9»Ob2)=bBODH*OMATX<5rN)+SON1*DMATX(5»N)+SMATX(t»rISl)*DMATX(5TRF05500
i»N) TRF05600
SMATX(10»OSD=SMATX(9.0S1)+SMATX(7»OS1)*SMATX(6»OS1) TRF05700
SMATX(10»OS2)=SMATX(9»OS2)+SMATX(7fOS2)+SMAIX(6»OS2) TRF05800
TRF02900
TRF03000
TRF03100
TRF03200
TRF03300
TRF03I+00
TRF03500
TRF03600
TRF03700
TRF03800
TRF03900
TRF04000
TRFOmOO
TRF01200
TRF04300
TRFO<4<*00
TRFOU500
TRF04600
TRFO<+700
TRFOtSOO
TRF04900
TRF05000
TRF05100
TRF05200
TRF05300
TRF05«*00
117
-------
c
c
c
c
c
c
c
c
c
t
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TRF05900
TRF06000
TRF06100
TRF06200
TRF06300
TRF06100
TRF06500
TRF06600
TRF06700
TRF06800
TRF06900
TRF07000
TRF07100
TRF07200
TRF07300
TRF07UOO
TRF07500
TRF07600
TRF07700
TRF07800
TRF07900
TRF08000
TRF08100
TRF08200
TRF08300
TRFOStOO
TRF08500
TRF08600
TRF08700
TRF08800
TRF08900
TRF09000
TRF09100
TRF09200
TRF09300
TRF09HOO
-.00«*587*X**3.)*100TRF09500
TRF09600
TRF09700
TRF09800
TRF09900
TRF10000
TRF10100
TRF10200
TRF10300
TRF10400
MAINTENANCE MANHOURS TRFIOSOO
TRF10600
TRF10700
TRFIOSOO
TRF10900
TRF11000
TRF11100
TRF11200
TRF11300
TRF11400
TRF11500
TRF11600
TRF11700
TRF11800
TRF11900
V-A n ,.r- , TRF12000
X-ALOo(AFb) TRF12100
C'-OST(IM,2)=EXP<3.7l63biH-.389861*X+.OBi»560*X**2.-.00'm8*X**3.)*10UTRF12200
1 ' TRF12300
TRF12tOO
SMATXU2ruSD=SMATXU2.lSl)
SMATX(12'OS2>=SMATX<12,IS1)
SMATX(13'OS1)=DN5
SMTX U^'OSl) =SMATX (It. IS1)+SMATX <6. IS1) * (1 .-SBOD4/SMATX (8» IS1) )
SMATX(l«trUS2)=SMATX(l«»»OSl)
SMATX(15»OSl)=SMATXll5rlSD
SMATX(15'US2>=SMATX(lb.lSD
SMATX (16» OS1) =SMATX (lt>» IS1)
SMATX(lb»US2)=SMATX(lbrlSl)
SMATX117 >usi)=OBOOO
SMATX(17•oS2 >=SMAT x <17•osi)
SMATX(3»Obl)=(SB005+1.87*bMATX(H»OSl))/1.67
SMATX(3fOb2)=tSMATX<8»OS2)+1.87*SMATX(U»OS2))/l.87
ShATX(ll»OSl) = (DBODO+1.87#SMATX(12»OSl»/l.a7
SMATX(11»OS2)=SMATX(11.0S1)
SMATX(18»OSD=SMATX(16.IS1)
SMATX(18'US2)=SMATX(lti»lSl)
SMATX(19rusi)=SMATX(iy»isi)
SMATXtl9fOS2)=SMATX(19iISl)
SMATX(20»OSl)=SMATX(2UfISl)
SMATX120'OS2)=SMATX(2U»IS1)
CAL.C. OF OUTPUT SIZES AND QUANTITIES
FAR£.A=SMATX(2rISl)/DMATX(3»N)*43560.
PCR=(t(ODlN-DMATXU'N> )*100./BODIN
AFb=SMATX(2rIbl)*1000./DMATX(8rN)*DMATX(lij»N)
VOL=FAREA*DEPTH*DMATX(16»N)
CALC. OF CAPITAL COSTS FOR TRICKLINto FILTER BASED ON
DtSIGN Pi-US EXCESS CAPACITY
X=ALOb(VOL/1000.)
CCOST(N»l)=EXP(2.92U9bl+.036285*X+.im673*X**2
10.
CALC. OF OPERATING COSTS FOR TRICKLING FILTER BASED ON
DtSIGlM CAPACITY ALONEr DOES NOT INCLUDE EXCESS CAPACITY
X=ALOt.(SMATX (2>IS1)/DMATX(3»N)*(+3560./1000.)
CALC. OF OPERATING MANHOURS'
AND MATERIALS AND SUPPLIES
OHRS=EXPU.53b510-.096731*X+.173718*X**2.-.
XMHRS=EXP(«f.3l2739-.032122*X+.157H73*X**2.-.0102'*5*X**3.)
TMSU=EXP1)/3650.
CALC. OF CAPITAL COSTS FOR FINAL SETTLER bASED ON DESIGN
PLUS LXCEbS CAPACITY
118
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
DESIGN CAPACITY ALONEf DOES NOT INCLUDE EXCESS CAPACITY
X=ALOb(AFS/DMATXU5f N)
CALC. OF OPERATING MANHOURS'
AND MATERIALS AND SUPPLIES
MAINTENANCE MANHOURS
OHRS=tXP(b.8<+b565+.25'+8l3*X+.113703*X«'*2.-.Ol09t2*X**3.)
XMHRS=EXP(5.273«*19+.228329*X+.122bt6*X**2.-.011672*X**3.)
TMSU=tXP(b.669881+.75o799*X)
OPERATING COST EQUATION
COSTO(N»2)=((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU**PI)/SMATX(2i1)/3650.
CALC. OF CAPITAL COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN PLUS EXCESS CAPACITY
X=ALOo(SMATX(c>I SI)*1.5*DMATX(IHtN))
TRF12500
TRF12600
TRF12700
TRF12800
TRF12900
TRF13000
TRF13100
TRF13200
TRF13300
TRF13400
TRF13500
TRF13600
TRF13700
TRF13800
TRF13900
TRF14000
TRF1U100
TRF1U200
TRF14300
TRF14500
TRF14600
TRF14700
TRF1U800
CtOST(N»3)=EXP(3.<+815b3+.377485*X+.0933<*9*X**2.-.006222*X**3.)*100TRFm900
10. TRF15000
TRF15100
TRF15200
TRF15300
TRFlStOO
TRF15500
TRF15600
TRF15700
TRF15800
TRF15900
TRF16000
TRF16100
TRF16200
OHRS=EXP(to.097269+.25.i066*X-.193659*X**2.+.076201*X**3.-.006680*X*TRF16300
1*4.) TRFlbtOO
CALC. OF OPERATING COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN CAPACITY ALONE» DOES NOT INCLUDE EXCESS
CAPACITY
X=ALOG(SMATX(2>IS1)*1.5)
CALC. OF OPERATING MANHOURS»
AND MATERIALS AND SUPPLIES
MAINTENANCE MANHOURS
C
c
c
c
c
c
c
c
XtoHRS=EXPl5.9115'U-.013l58*X+.0766'*3*X**2.)
X=ALOto(SMATX<2rISi»
IF (SMATX(2»Ibl)-l. 30r
-------
t TRF19100
C TRF19200
C PKOCEbS ENERGY INDICES TRF19300
C TRF19UOO
FLOw(N)=5MATX(2»ISl) TRF19500
PUW(N)=11. TRF19600
RLTURN TRF19700
TRF19800
120
-------
SECTION 13
CHLORINATION - DECHLORINATION, CHLOR
Subroutine Identification Number 12
Chlorination - Dechlorination, CHLOR
1. Process symbol.
IS1
2. Input parameters and nominal values.
DMATX(l.N) - DCL2
DMATX(2,N) = TCL2
DMATX(3,N) - CCL2
DMATX(4,N) - DS02
DMATX(5,N) -= CS02
DMATX(U.N) «= ECF
DMATX(15,N) - ECF
DMATX(16,N) - ECF
Rev. Date 8/1/77
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number to the process
Dose of chlorine, mg/1. [8.J
Chlorine contact time, minutes. [30.J
Cost of chlorine, $/ton. [220.]
Dose of sulfur dioxide, mg/1. [2.5]
Cost of sulfur dioxide, $/ton. [180.J
Excess capacity factor for the sulfur
dioxide feed system. [1.2]
Excess capacity factor for the chlorine
feed system. [1.2]
Excess capacity factor for the contact
basin. [1.5]
3. Output parameters which are printed on computer output sheets.
DCL2 = DMATX(l.N)
TCL2 - DMATX(2,N)
CCL2 - DMAIX(3,N)
DS02 - DMATX(4,N)
CS02 = DMATX(5,N)
BVOL - OMATX(l.N)
Volume of the chlorine contact basin,
[cu. ft.].
121
-------
CUSE = OMATX(2,N)
SUSE - OMATX(3,N)
CCOST
COSTO
ACOST
TCOST
ECF
Amount of chlorine used, [tons/yr].
Amount of sulfur dioxide used, [tons/yr].
Capital cost, [dollars].
Operating and maintenance cost,
[cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
BVOL = SMATX(2,IS1)*TCL2/1.44/7.48*1000.*DMATX(16,N)
BVOL
*TCL2*1000*ECF
1.44*7.48
CUSE = SMATX(2,IS1)*DCL2*8.33*365./2000.
CUSE =
QIS ^0.2*8.33*365
2000
SUSE = SMATX(2,IS1)*DS02*8.33*365./2000.
QT *DS02*8.33*365
SUSE =*_ IS1
2000
FACTR = CUSE/(CUSE+SUSE)
FACTR
CUSE
CUSE+SUSE
OC • FACTR*OHRS
OC - FACTR*OHRS
XC = FACTR*XMHRS
XC = FACTR*XMHRS
References:
Smith, 1969
Patterson and Banker, 1971
[ft3]
[tons/yr]
[tons/yr]
[no units]
CHL03300
CHL03400
CHL03500
CHL03600
CHL07800
CHL07900
122
-------
5. Cost functions.
a. Capital cost
Contact basin:
Function of BVOL
X «= ALOG(BVOL/1000.)
X - In
CHL04200
BVOL
1000
CCOST(N.l) = EXP(2.048061+.521909*X-.002674*X**2.+.004159*X**3.)*1000.
CHL04300
2.048061+0.521909X-0.002674X2+0.004159X3
CCOST - lOOOe
Cl_ feed system:
CUSE = SMATX(2,IS1)*DCL2*8.33*365./2000.
Q_ *DCL2*8.33*365
[dollars]
CHL03400
CUSE =
2000
SUSE = SMATX(2,IS1)*DS02*8.33*365./2000.
SUSE
QIgl*DS02*8.33*365
2000
FACTR = CUSE/(CUSE+SUSE)
[tons/yr]
[tons/yr]
CHL03500
CHL03600
FACTR
CUSE
[no units]
CUSE+SUSE
Function of CUSE
X = ALOG(CUSE*2000./365.*DMATX(15,N)+SUSE*2000./365.*DMATX(14,N))
X «= ln((CUSE*ECF +SUSE*ECF )*2000)
° 8 365
CHL05500
XCOST = EXP(2.264294-.044271*X+.065029*X**2.-.002536*X**3.)*1000.
CHL05600
XCOST = lOOOe
CCOST(N,2) = FACTR*XCOST
2.264294-0.044271X+0.065029X2-0.002536X3
[dollars]
CHL06100
CCOST
CUSE
CUSE+SUSE
*XCOST
[dollars]
SO. Feed system (If used)
Function of SUSE
CCOST(N,3) = XCOST-CCOST(N,2)
CCOST = XCOST-CCOST
[dollars]
CHL10500
123
-------
b. Operating roarihours, maintenance manhours and materials/supplies costs
Function of (CUSE+SUSE)
X - ALOG (CUSE+SUSE) CHL06900
X • In (CUSE+SUSE)
(1) Operating manhours (C12+S02 Feed Systems)
OHRS = EXP(4.538517+.543669*X) CHL07000
OHRS = e
[hrs/yr-,
(2) Maintenance manhours (Cl.+SO. Feed Systems)
XMHRS = EXP(3.752071-.224812*X+.158849*X**2.-.006064*X**3.)
. 752071-0. 224812X+0.158849X2-0.006064X3
(3) Total materials and supplies (Cl^+SO- Feed Systems)
TMSU = EXP(6.126105+.287016*X)
6.126105+0.287016X
TMSU = e
c. Total operating and maintenance costs
Contact Basin:
Operating cost assumed zero
COSTO(N,1) - 0
COSTO = 0
Cl. Feed System
(1) Operating manhours
OC = FACTR*OHRS
(2) Maintenance manhours
XC = FACTR*XMHRS
(3) Total materials and supplies
TMSUC = CUSE*CCL2+FACTR*TMSU
TMSUC = (CUSE*CCL2)+(FACTR*TMSU)
[dollars/yr]
[cents/1000 gal]
CHL07100
CHL07200
CHL04900
CHL07800
CHL07900
CHL08000
[dollars/yr]
124
-------
COSTOCN.2) - ((OC+XC)*DHR*(1.+PCT)+TMSUC)/SMATX(2,1)/3650.
CHL08500
COSTO . [(OC+XC)*DHR*(1+PCT)]+TMSUC
Slant Inf.*3650
SO. Feed System (If Used)
(1) Operating manhours
OS - OHRS-OC
(2) Maintenance manhours
XS - XMHRS-XC
(3) Total materials and supplies
TMSUS - SUSE*CS02+(1.-FACTR)*TMSU
TMSUS = (SUSE*CS02)+[(1-FACTR)*TMSU]
[cents/1000 galJ
[dollars/yr]
CHL11200
CHL11300
CHL11400
COSTO(N,3) = ((OS+XS)*DHR*(1.+PCT)+TMSUS)/SMATX(2,1)/3650. CHL12000
COSTO = [(OS+XS)*DHR*(1+PCT)]+TMSUS
Q01 . T , *3650 [cents/1000 gal]
riant Int.
125
-------
c
c
c
c
c
c
c
c
CHLORINATION - DECHLORINATION
PKOCESS IDENTIFICATION NUMBER
SUBROUTINE CHLOR
CHL00100
CHL00200
12 CHL00300
CHL00400
CHL00500
CHL00600
CHL00700
CHLOOBOO
CHL00900
INTEGER Obl»OS2 CHL01000
COMMON SMATX(20f30)iTMATX(20r30)rDMATX(20.20)»OMATX<20»20)rlP(20>•CHL01100
UNP»lUfISi»lS2»OSlK3S2»N»lAERF»CCOST<20r5)»COSTO(20r5)»ACOST<20»5)CHL01200
COMMON INITIAL STATEMENTS
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
2»TCOST(20.5)»DHR»PCT»wPI»CLAND.DLAND»FLOW(25>fPOWC25>»TKWHD<25)
ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS
DCL2=UMATX(1»N)
TCt_2=UMATX(2'N)
CCL2=UMATx(3»N)
DS02=JMATXU»N)
CS02=UMATX(5rN)
EFFLUENT STREAM CALCULATIONS
00 10 I=2«20
10 SMATX(I»Obl)=SMATX(I.lSD
CALC. OF OUTPUT SIZES AND QUANTITIES
BVOL=bMATX(2»ISl>*TCL2/lt'*<+/7.^8*1000.*DMATx(16»N)
CUSE=bMATx (2 •IS1>*DCL2*8. 33*365. /2000.
SUSt=bMATX(2'lSD*US02*8.33*365./2000.
FACTR=CUSL/(CUSE+SUSEJ
CALC. OF CAPITAL COSTS FOR CONTACT bASlN BASED ON DESIGN
PLUS EXCESS CAPACITY
X=AL06(BVOL/1000.)
CHL01300
CHLOltOO
CHL0150U
CHL01600
CHL01700
CHL01800
CHL01900
CHL02000
CHL02100
CHL02200
CHL02300
CHL02100
CHL02500
CHL02600
CHL02700
CHL02600
CHL02900
CHL03000
CHL03100
CHL03200
CHL03300
CHL03400
CHL03500
CHL03600
CHL03700
CHL03800
CHL03900
CHL04000
CHLOmOO
CHL04200
CCOST(N.U=EXP(2.0**80ol+.521909*X-.00267«**X**2.-»-.004l59*X**3.)*100CHLO'*300
C
C
C
C
C
C
C
C
C
C
C
10.
CALC. OF OPERATING COSTS FOR CONTACT BASIN
COSTOIN»1)=0.
CALC. OF CAPITAL COSTS FOR CHLORINE AND SULFUR DIOXIDE
FEED SYSTEMS bASED ON DESIGN PLUS EXCESS CAPACITY
X^ALOt.(CUbE*2uOO./365.*DMATX(15rN)-fSUSE*200u./365.*DMATX(lt»N))
XCOST=EXPl2.26429H-.0<+4271*X-»-.065029*X**2.-.00253b*X**3.)*1000.
,
CHLOttOO
CHLOU500
CHL04600
CHL01700
CHLOU600
CHL01900
CHL05000
CHL05100
CHL05200
CHL05300
CHL05400
CHL05500
CHL05600
CHL05700
CHL05800
126
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALC. OF CAPITAL COSTS FOR CHLORINE FEED SYSTEM
CCOST(N,2)=FACTR*XCOST
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS AND
MATERIALS AND SUPPLIES FOR CHLORINE AND SULFUR DIOXIDE
FtED SYSTEMS bASED ON DESIGN CAPACITY ALONE' DOES NOT
INCLUDE EXCESS CAPACITY
X=ALOG(CUbE+SUSE>
OhRS=EXP (<*.538517+ . 5**3669*X)
XMHRS=EXP(3.7t>2071-.2«i<+8l2*X-«-.1588<+9*X**2.-.OU606ff*X**3.)
TMSU=EXP(o.l2t>105+.287016*X)
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FOR CHLORINE FEED SYSTEM
OC=FACTR*OHRS
XC=FACTR*XMHRS
TMbUC=CUSt*CCL2+FACTR*TMSU
OPEARTINb COST EQUATION FOR CHLORINE FEED SYSTEM
) = «OC+XC>*DHR* = i(os+xs)*DHR*(i.+PCT)+TMSUS)/SMATX(2»i)/aeso.
ASSIGNMENT OF VALUES TO OMATX
CHL05900
CHL06000
CHL06100
CHL06200
CHL06300
CHL06400
CHL06500
CHL06600
CHL06700
CHL06800
CHL06900
CHL07000
CHL07100
CHL07200
CHL07300
CHL07«»00
CHL07500
CHL07600
CHL07700
CHLU7800
CHL07900
CHL08000
CHL08100
CHL08200
CHL08300
CHLOBtOO
CHL08500
CHL08600
CHL08700
CHL08800
CHL08900
CHL09000
CHL0910Q
CHL09200
CHL09300
CHL09UOO
CHL09500
CHL09600
CHL09700
CHL09800
CHL09900
CHL10000
CHL10100
CHL10200
CHL10300
CHL10100
CHL10500
CHL10600
CHL10700
CHL10800
CHL10900
CHL11000
CHL11100
CHL11200
CHL11300
CHL11<*00
CHL11SOO
CHL11600
CHH1700
CHL11800
CHL11900
CHL12000
CHL12100
CHL12200
CHL12300
127
-------
C CHL12100
HO OMATXUrN)=BVOL CHL12500
OMATX12»N)=CUSE CHL12600
OMATXl3,N)=SUbE CHL12700
C CHL12600
C CHL12900
C PKOCESS ENERGV INDICES CHL13000
c CHL13100
FLO«f CHL13200
PO«(NJ=12. CHLi3300
RETURiM CHL13tOO
CHLi3500
128
-------
SECTION 14
FLOTATION THICKENING, TFLOT
Subroutine Identification Number 13
Flotation Thickening, TFLOT
1. Process symbol.
! ISl (Sludge)
Rev. Date 8/1/77
l
L _
N
OS2 (Recycle)
IS2 (Wash water)
OPTIONAL
OS1
2. Input parameters and nominal values.
DMATX(1,N) = TRR
DMATX(2,N) = TSS
DMATX(3,N) = GTH
DMATX(4,N) = GSTH
DMATX(S.N) = HPWK
DMATX(6,N) = DPOLY
DMATX(7,N) = CPOLY
DMATX(15,N) = ECF
ISl: Sludge input stream
IS2: Wash water input stream
OS1: Sludge output stream
OS2: Recycle output stream
N: User assigned number to the process
Solids recovery ratio for thickening. [.95]
Total suspended solid concentration of OS1,
mg/1. [40,000.]
Design overflow rate for the thickener,
gpd/sq ft. [1150.]
Design solids loading rate for the thickener,
Ib/day/sq ft. [48.3
Hours per week that the thickener is operated,
hr/wk. ClOO.]
Dose of polymer, Ib/ton [lO.J
Cost of polymer, $/ton. [.45]
Excess capacity factor for the process. [2.J
3. Output parameters which are printed on computer output sheets.
TRR = DMATX(l.N)
TSS = DMATX(2,N)
GTH = DMATX(3,N)
GSTH = DMATX(4,N)
HPWK = DMATX(S.N)
DPOLY • DMATX(6,N)
129
-------
CPOLY = DMATX(7,N)
AIHM = OMATX(l.N) Surface area of each flotation thickener used,
Isq ft.]
XN = OMATX(2,N) Number of flotation thickeners used.
ATHM1 = OMATX(3,N) Total required surface area for flotation
thickening, [sq ft].
CCOST Capital cost, [dollars].
CQSTO Operating and maintenance cost, [cents/ lOOOgal].
ACOST Amortization cost, [cents/1000 gal].
XCOST Total treatment cost, [cents/1000 gal].
ECF Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMAT(I) = SMATX(I, IS2) TFL02500
SMAT(I) = SMATX(I,IS2) [mg/l]
where I = 1,20 i.e. I,Q,SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,DP,DFM,
ALK,DBOD,NH3,N03
SMATX(lO.OSl) = DMATX(2,N) TFL02600
TSS = TSS [mg/l]
OS1
SMATX(2,OS1) = DMATX(1,N)*(SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))/SMATX(10,OS1)
TRK* [[Qi
osi
ATH1 = (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33/DMATX(4,N)*168./DMATX(5,N)
ATH1 - TSTS 2]
GSTH*HPWK
ARCY = . 00288* ATH1 TFL03400
ARCY 0.00288ATH1 [MGD]
SMATX(2,IS2) ARCY TFL03500
QIS2 = ARCY [MGD]
130
-------
SMATX(2,OS2) = SMATX(2,IS1 )+SMAT(2)-SMATX(2,OSl)
°-OS2 - QIS1^IS2-QOS1 ^MGD]
ATH2 = SMATX(2,OS2)*1000000./DMATX(3,N)*168./DMATX(5,N)
ATH2
QnBi>*1000000*168 [ft2-j
GTH*HPWK
ATHM = ATH2*DMATX(16,N)
ATHM = ATH2*ECF
ATHM = ATH1*DMATX(16,N)
ATHM = ATH1*ECF
[ft2!
[ft2!
TEMP = SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10)
TEMP = [QIsl*TSSIsl]f[QIS2*TSSIS2J [MGD
SMATX(10,OS2) = (TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)
,,) [MGD (mg/1)]
TSS
OS 2
OS 2
TEMP = TEMP/(SMATX(2,IS1)+SMAT(2))
TEMP = - TEMP
QIS1+ QIS2
TEMPI = SMATX( 10,031) /TEMP
TSS,
TEMPI
OS1
[no units]
TEMP
TEMP2 = SMATX(10,OS2)/TEMP
TSS
TEMP 2
OS2
[no units]
TFL03700
TFL03800
TFLOAOOO
TFL04200
TFL04300
TFL04400
TFL04500
TFL04600
TFL04700
TEMP
131
-------
TEMPS = (SMATX(2,IS1)*SMATX(I,IS1)+SMAT(2)*SMAT(I))/(SMATX(2,IS1)+SMAT(2))
Q *SMATX(I,IS1)+QT *SMAT(I)
TEMP3 IS1 _ IS2 _ [mg/1] TFL05300
where I = 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I.OSl) = TEMP1*TEMP3 TFL05500
SMATX(I,OS1) = TEMP1*TEMP3 [mg/l]
where I = 3,9
SMATX(I,OS2) = TEMP2*TEMP3 TFL05600
SMATX(I,OS2) TEMP2*TEMP3 [mg/l]
where I = 3,9
SMATX(I.OSl) =(SMATX(I,IS1)*SMATX(2,IS1)+SMAT(I)*SMAT(2))/(SMATX(2,IS1)+SMAT(2))
[SMATX(I,IS1)*Q ]+[SMAT(I) *Q J
SMATX(I,OS1) - IS1 - ^1 [mg/1] TFL05800
IS14 QIS2
where I = 11,20 I.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
SMATX(I,OS2) = SMATX(I.OSl) TFL06000
SMATX(I,OS2) SMATX(I,OS1) [mg/l]
where I 11,20
References:
Smith and Eilers, 1975
McMichael, 1973
Patterson and Banker, 1971
Cost Functions.
a. Capital cost
Function of ATHM
X = ALOG(ATHM) TFL09600
X In ATHM
132
-------
CCOST(N.l) = EXP(1.717538+.453735*X)*1000.*XN
1.717538+0.453735X
CCOST - 1000XN*e
TFL09700
[dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of ATHM*XN/ECF
X = ALOG(ATHM/DMATX(16,N)*XN) TFL10300
x „ ln ATHM*XN
ECF
(1) Operating manhours
OHRS = EXP(4.992517-.325053*X+.084026*X**2.)
4.992517-0.325053X+0.084026X2
(2) Maintenance manhours
XMHRS = EXP(4.832373-.336504*X+.083020*X**2.)
j^y = e4.832373-0.336504X+0.083020X2
(3) Materials and supplies
HPD = EXP(-1.254959+.852347*X)
-1.254959+0.852347X
HPD = e
[hrs/yr]
[hrs/yr]
TFL10900
TFL11000
TFL11100
ELEC = HPD*4.54*(DMATX(5,N)/7.)
ELEC = HPD*4.54*HPWK
TFL11200
[dollars/yr]
PWAS = (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33 TFL11300
PWAS = C(QK1*TSSIS1)+ (QIS2*TSSIS2)]*8.33 [ib/day]
133
-------
POLC - PWAS*365./2000.*DMATX(6,N)*DMATX(7,N) TFL11400
PWAS*365*DPOLY*CPOLY
2000
r
Ldollars/yr]
c. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+ELEC+POLC)/SMATX(2,1)/3650.
TFL11900
- [ (OHRS+XMHRS)*DHR*(1+PCT) ]+ELEC+POLC r , .,
Q^ . *3650 Ccents/lOOOgalJ
134
-------
C TFL00100
c FLOTATION THICKENING TFLOOZOO
C PKOCEbS IDENTIFICATION NUMBER i3 TFL00300
C TFL00400
SUbROUTINL TFLOT TFL00500
C TFL00600
C TFL00700
c COMMON INITIAL STATEMENTS TFLOOSOO
C TFL00900
INTEGER OS1.0S2 TFL01000
DIMENSION Y(12)»SMAT<20) TFL01100
COMMON SMATX(i!0»30) >TMATX(20»30) »UMATX(20r20).OMATX(20»20),IP(20)»TFL01200
llNP»lO»ISl>lSi;fOSliOS2fN»IAERFfCCOST<20»5)»COSTOl20»5)rACOST<20»5)TFL01300
2'1COST(20»5)»UHR»PCT»rtPl»CLAND»DLAND»FLOW(2b)iPOW(2b)rTKWHD(25) TFL01400
DATA r/25.r50.f 100. rlt>0.»200.»250.»300. »<»00. r500.»600. »800. ,1000./TFLO1500
C TFL01600
C TFL01700
C PROCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM TFL01800
c CHARACTERISTICS TFLOigoo
C TFL02000
DO 10 I=l»20 TFL02100
10 SMAT(1)=0. TFL02200
IF (Ii>2) ^0,40.20 TFL02300
20 00 30 I=l»20 TFL02400
JO SMAT(I)=SMATX(I,IS2) TFL02500
10 SMATX(10»USD=DMATX(2»N) TFL02600
SMATX(2»Obl)=DMATX(lrN)*(SMATX(2»lSD*SMATX(10»ISl)+SMAT(2)*SMAT(lTFL02700
10))/SMATX(10»OSD TFL02800
ATHl=(SMATX(2fISl)*SMATX<10»ISl)+SMAT<2)*SMAT(10))*8t33/DMATX(U>N)TFL02900
1*168./DMATX(5»N) TFL03000
IF (Ib2) 60*50*60 TFL03100
bO ARCY=0. TFL03200
GO TO 70 TFL03300
oO AKCY=.002&8*ATH1 TFL03UOO
SMATX<2»IS2)=ARCY TFL03500
70 ShAT(i)=A«CY TFL03600
SMATX(2»Ob2)=SMATX(2'lSl)+SMAT(2)-SMATX(2*OSl) TFL03700
ATH2=i>MATA(2'OS2>*100uOOO./DMATX(3>N)*16B./DMATX<5»N) TFL03800
IF (ATH1-ATH2) 80»90»yO TFL03900
ttO ATHM=ATH2*DMA1X(16»N) TFL01000
GO TO 100 TFL04100
90 ATHM=ATH1*DMA1X(16»N) TFL04200
100 TLMP=bMATX(2»lSl)*SMATX(lOrISlH-SMATf2)*SMAT<10) TFL01300
ShATX(10»uS2) = (TEMP-SMATX(2»osi)*SMATX(10,osi))/SMATX(2.OS2) TFLO^IOO
TtMP=lEMP/(SMATX(2»ISl)*SMAT(2)) TFL04500
TLMPI=SMATX(10 »osi)/TEMP TFLOU&OO
TEMP2=SMA1X(10»OS2)/TEMP TFLOU700
C TFL01800
C TFLO«»900
C EFFLULNT STREAM CALCULATIONS TFL05000
C TFL05100
DO 110 I=3r9 TFL05200
TEMP3=(SMATX(ii»ISl)*SMATX(I.ISl)+SMAT(2)*SMATlI))/(SMATX(2»lSl)+SMTFL05300
1AT(2)> TFL05400
SMATX(I»OS1)=TEMP1*TEMP3 TFL05500
110 SMATX(I»Ob2)=TEMPi:*TEMP3 TFL05600
DO 120 1=11*20 TFL05700
SMATX(I*Obl)=(SMATX(I.ISl)*SMATX(2»ISl)+SMAT(I)*SMAT(2))/(SMATX(2.TFL05800
135
-------
1IS1)+;>MAT<2»
SMATXlI.Ot>2)=bMATX
CALC. OF OUTPUT SIZES AND QUANTITIES
ATHM1=ATHM
XN=O.
xx=o.
K=0
00 160 I=1»12
IF (ATHM-r(D) 130>13U>140
1.10 ATHM=riD
GO TO 170
140 IF (I-12> 160rl50»lbO
IbO ATHM=Y(12)
loo CONTINUE
170 IF (ATHM-25.) 180.1aO»190
laO ATHM=25.
XN=1.
GO TO 240
190 IF (ATHMl-1000.) 230*230•200
2UO XN=ATHM1/1000.
K=XN
XX=K
IF ((XN-Xx)*1000.-500.) 210»210r220
210 XN=XX+.5
GO TO 210
220 XN=XX+1.
GO TO 240
ATHM=ATHM/2.
c
c
c
c
c
c
c
c
c
c
c
c
L
C
C
C
c
c
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
240 X=AL06UTHM)
CCOST(N»l)=EXP(1.7175.i8+.453735*X)*lOOO.*XN
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONEr
DUES NOT INCLUDE EXCESS CAPACITY
X=ALOfaUTHM/DMATX
-------
OMATX12»N)=XN TFL12500
OMATXl3rN)=ATHMl TFL12600
C TFL12700
C TFL12800
C PKOCESS ENERGY INDICES TFL12900
C TFL13000
FLO*(N)=SMATX12»IS1) 7FL13100
POW(N)=13. TFL13200
RETURN TFL13300
END TFL13400
137
-------
SECTION 15
MULTIPLE HEARTH INCINERATION, MHINC
Subroutine Identification Number 14
Multiple Hearth Incineration, MHINC
Rev. Date 8/1/77
1. Process symbol.
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number
to the process
2. Input parameters and nominal values.
DMATX(l.N) = ML
DMATX(2,N) = NINC
DMATX(3,N) = HPWK
DMATX(A,N) = SPER
DMATX(5,N) = WV
DMATX(6,N) = HV
DMATX(7,N) = TYPE
DMATX(8,N) = FC
DMATX(9,N) = CNG
DMATX(16,N) = ECF
Mass loading, lb/hr/sq ft of hearth area. [2.J
Number of multiple hearth incinerators. [1.]
Hours per week that the incinerators are operated
hr/wk. [35.]
Number of startup periods per week. [5.J
Wind velocity, mph. [O.J
Higher heat value for volatiles, Btu/lb. [10,000.]
Program control: type of fuel used; 1 • fuel oil,
2 = natural gas, 3 •= digester gas. [l.]
Cost of fuel oil, $/gallon. [.30]
Cost of natural gas, $/1000 cu ft. [.97]
Excess capacity factor for the process. [l.J
3. Output parameters which are printed on computer output sheets.
OMATX(l.N) = FHA
OMATX(2,N) = WFYR
OMATX(3,N) = PSDD
OMATX(4,N) = ECOST
OMATX(5,N) = FCOST
Total hearth area, [sq ft].
Total fuel usage, [lb/yr].
Amount of dry solids to be incinerated, [lb/day].
Cost of electrical power to operate the incinerator, [$/yr],
Cost of fuel to operate the incinerator, [$/yr].
138
-------
CCOST
COSTO
ACOST
TCOST
ECF
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33 MHI02500
PSDD = 8.33TSSIS1*QIS1 [Ib/day]
FHAT • 58.31*SMATX(2,IS1)*SMATX(10,IS1)/DMATX(3,N)/DMATX(1,N)*DMATX(16,N)
MHI02600
FHAT =58.31 QIS1*TSSIS1*ECF
HPWK*ML
XX - FHAT/DMATX(2,N)
XX
FHAT
NINC
FHA = SFHA(I)
FHA = SFHA(I)
where I « 1,59
FHA = 3120
CYT = 13.+.024*FHA (For FHA <_ 1700)
CYT - 13+0.024FHA
CYT = .09*(FHA-1100.) (For FHA _< 2300)
CYT = 0.09(FHA-1100)
PASH = (SMATX(10,IS1)-SMATX(9,IS1))/SMATX(9)IS1)
PASH = TSSIS1-VSSIS1
MHI03400
VSS
HASH = 68.*PASH
HASH = 68PASH
IS1
[ft2]
MH102800
[ft2]
MH 103100
[ft2]
[ft2]
MH103900
[hrs]
MHI04200
[hrs]
MHI04500
[no units]
MH 104600
[BTU/lb dry VS]
139
-------
PWAT = (1000000.-SMATX(10,IS1))/SMATX(9,IS1)
PWAT =1000000-TSSisi
vssisl
HWSL - 1404.3*PWAT
HWSL = 1404.3PWAT
SAREA = 64.03*FHA**.51
SAREA = 64.03[FHA]
0.51
VSPH = SMATX(9,IS1)*SMATX(2,IS1)*58.31/DMATX(3,N)
VSPH = VSSISl*QlSl*58-31
HPWK
HC = 1.735*(1.+.374*DMATX(5,N))
HC = 1.735(1+0.374WV)
QTRAN = (1.279+HC)*100.*SAREA*DMATX(2,N)/VSPH
QTRAN = 100(1.279+HC)*SAREA*NINC
VSPH
QCOOL = 267.*FHA*DMATX(2,N)/VSPH
QCOOL = 267FHA*NINC
VSPH
QNET = 2725.+HASH+HWSL+QCOOL+QTRAN-DMATX(6,N)+246.
QNET = 2725+HASH+HWSL+QCOOL+QTRAN-HV+246
TEMP = SMATX(9,IS1)*SMATX(2,IS1)*8.33*365.
TEMP = VSST *Q *8.33*365
1DJ. IS1
QNET = QNET*TEMP
QNET = QNET*VSSIS1*QIS18.33*365
YSBH = 8.*CYT/9.+8736.-52.*DMATX(3,N)*7./9.
YSBH=8CYT+8736_52HPWK*Z
YHUH = 10.*CYT/9.+52.*CYT*DMATX(4,N)/9.
YHUH = 10CYT+(52CYT*SPER)
9
MHI04700
[no units]
MH104800
[BTU/lb dry VS]
MHI04900
[ft2]
MHI05000
[lb dry VS/hr]
MHI05100
[BTU/hr/ft2]
MHI05200
[BTU/lb dry VS]
MHI05300
[BTU/lb dry VS]
MHI05400
[BTU/lb dry VS]
MHI05700
[lb dry VS/yr]
MHI05800
[BTU/yr]
MHI05900
[hr/yr]
MHI06000
[hr/yr]
140
-------
QHUP = YHUH*1913.*FHA*DMATX(2,N)
QHUP = YHUH*1913FHA*NINC
QSB - YSBH*315.*FHA*DMATX(2,N)
QSB = 315YSBH*FHA*NINC
QTOT = QHUP-HJSB+QNET
QTOT - QHUP+QSB+QNET
WFYR = QTOT/15019.
(For oil)
QHUP+QSB-KJNET
15019
FCOST = WFYR/7.481*DMATX(8,N)
WFYR*FC
FCOST
7.481
WFYR QTOT/15581. (For nat. gas)
FCOST = WFYR/45.8*DMATX(9,N)
FCOST = QTOT*CNG
15581*45.8
CFDG = QTOT/8967./.0695 (For dig gas)
CFDG = QTOT
8967*0.0695
TYR = SMATX(10,IS1)*SMATX(2,IS1)*1.52
TYR = TSSIS1*QIS1*1.52
WTON = 554.24/FHA**.3572
554.24
WTON
[FHA]
,0.3572
ECOST = WTON*TYR*DMATX(10,20)
ECOST = WTON*TYR*CKWH
DPTON = FCOST/(PSDD*365./2000.)
DPTON = FCOST
365PSDD
2000
MH106100
[BTU/yr]
MH106200
[BTU/yr]
MH 106300
[BTU/yr]
MHI06900
[Ib/yr]
MHI07000
[dollars/yr]
MHI07700
[Ib/yr]
MH 107800
[dollars/yr]
MHI08500
[ft3/yr]
MH109100
MH 109200
MHI09300
[dollars/yr]
MHI09900
[dollars/ton]
141
-------
References:
Patterson and Banker, 1971
Smith and Eilers, 1975
5. Cost functions.
a. Capital cost
Function of PSDD*ECF
X - ALOG(PSDD/24.*DMATX(16,N)) MHI10500
X = In PSDD*ECF
Z3
CCOST(N.l) * EXP(2. 377364+. 598986*X)*1000. MHI10600
CCOST = iQOOe2- 377364+0. 598986X [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of PSDD*VSSIS1
X = ALOG(PSDD*365./2000.*(SMATX(9,IS1)/SMATX(10,IS1))) MHI11200
x _ ln 365PSDD*VSSisi
2000TSSIS1
(1) Operating manhours
OHRS = EXP(3. 402537+1. 215130*X-.157203*X**2.+.009771*X**3.) MHI11800
OHRS e3-402537+1-215130x-0.157203X2+0.009771X3
[hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(3.906553+.702471*X-.088337*X**2.+.006827*X**3.) MHI11900
XMHRS = e3-906553+0-702471x-0-088337X2+0.006827X3 ,
(3) Total materials and supplies
TMSU = EXP(7. 864729-. 338816*X+.054026*X**2.) MHI12000
7-864729-0.338816X+0.054026X2
e [dollars/yr]
142
-------
c. Total operating and maintenance costs MHI12500
COSTO(N, 1) - ((OHRS+XMHRS)*DHR*(1 .+PCT)+TMSU*WPI+ECOST+FCOST) /SMATX(2,1) /3650.
COSTO , (OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI)+ECOST+FCOST
Qplant Inf. * 365° [cents/1000 gal]
143
-------
c
c
c
c
c
c
c
c
c
c
c
c
MULTIPLE HEARTH INCINERATION
PKOCEbS IDENTIFICATION NUMBER
SUBROUTINE MHINC
COMMON INITIAL STATEMENTS
MHI00100
MHI00200
• MHI00300
MHI00400
MHI00500
MHI00600
MHI00700
MHI00800
MHI00900
INTEGER osi»os2 MHIOIOOO
DIMENSION SFHA159) MHlOllOO
COMMON SMATX(20r30>.TMATX(20r30)»DMATX<20.20>.OMATX(20.20)»;P(20)»MHI01200
lIl\iP,IO.ISl»lS^.OSl»OSci»N»IAERF»CCOST(20»5)rCOSTO(20»5}»ACOST(20»5)MHl01300
2»TCOST(20r5)'UHR»PCTfwPI»CLAND.DLAND»FLOW(2S)»POW(25)»TKWHD(25) MHlOmOO
DATA bFHA/85.»98.»112..l25.»126.»140.»145.t166.•187.•193.•208.»225MHl01500
l.»256.,27o. »2b8. »319.r323..351.»364.»383. (" ' " lilr" e'" "'" "c
2'b72«»760.»b4b. 1857.»944.»988.»1041.•1068.
3•1268..1400.i1410.r1463.•1540.f1580.f1591,
,»2090.»2275.»2350,
4H675..l9i3. »ii060.»20B4.
5/
.»452.r510.«560.r575.MHI01600
»1117.»1128.,1249.»1260.MHl01700
• 1675.f1752.•1849.MHI01800
•2600.t2860.>3120
. »!6faO
.»24b4
lUO
110
CALC. OF OUTPUT SIZES AND QUANTITIES
MHI01900
MHI02000
MHI02100
MHI02200
MHI02300
MHI02400
MHI02500
10
20
-50
4U
bO
oU
70
UO
PSDD=bMATx(lOrISl)*SMATX(2»ISl)*8.33 nniucauu
FHAT=68.31*SMATX(2»IS1)*SMATX(10'IS1>/DMATX(3.N)/DMATX(1»N)*DMATX(MHI02600
lb»N) MHI02700
XX=FHAT/DMATX12»N) MHI02800
DO 20 1=1,59 MHI02900
IF (XX-SFHA(D) 10»10»20
FHA=SFHA(1)
GO TO 30
CONTINUE
FHA=3120.
IF (FriA-200.)
40»40»50
Gu
IF
TO 100
(FHA-1700.)
GO
IF
TO 100
(FHA-2oOO.)
60r60»70
80»80»yO
GO TO 100
CYT=1U8.
PASH=(SMATX(10,IS1)-SMATX(9,IS1))/SMATX(9»Isl)
HASH=o8.*PASH
Ph AT=( 1000000. -SMATX < 10 »ISD) /SMATX (9»IS1)
SAERA=64.03*FHA**.51
VbPH=^MATxf9'lSl)*SMATX(2»ISl)*58.31/DMATX(3»N)
QTRAN=(1.279+HC)*100.*SAERA*DMATX(2»N)/VSPH
QCOOL=267.*FHA*DMATX/VSPH
QNET=i:725.+HAbm-H*SL+UCOOL-t-QTRAN-DMATX(6'N)+2<*6.
IF (QUET) 110rllO,l20
QNET=U.
TEMP=bMATX(9»ISD*SMATX (2»IS1)»8.33*365.
QNET=UNET*TEMP
MHI03000
MHI03100
MHI03200
MHI03300
MHI03400
MHI03500
MHI03600
MHI03700
MHI03BOO
MHI03900
MHI04000
MHIOU100
MHI04200
MHI04300
MHIOU400
MHI04500
MHIOU600
MHI04700
MHI04800
MHI04900
MHI05000
MHI05100
MHI05200
MHI05300
MHI05400
MHI05500
MHl0560a
MHI05700
MHI05800
144
-------
YbbH=B.*CTT/9.+8736.-i2.*DMATX(3»N)*7./9.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
QhUP=YHUH*191.i.*FHA*DMATXl2»N)
ClbB=YbBH*.ilb.*FHA*DMATX{2»N)
QTOT=tJHUP+QSB+GNET
CALC. OF FUEL COSTS IF FUEL OIL IS USED
IF (DMATX(7»N)-1.) 130»l30fl«K)
130 WFYR=UTOT/15019.
FCOST=rtFYK/7.<*81*UMATX(a'N)
GO TO 180
C
C
C
C
CALC. OF FUEL COSTS IF NATURAL GAS IS USED
ItO IF (DMATX(7»N)-2.) 15G»150»160
lt>0 WFYR=uTOT/155bl.
FCOST=WFYR/i+5.8*DMATX(9»N)
GO TO 180
C
C
C
C
CALC. OF FUEL COSTS IF DIGESTEK GAS IS USED
loO IF (DMATX(7»N)-3.) 170»170»180
170 CFDG=
RATIO OF FUEL COST TO AMOUNT OF DRY SOLIDS TO BE
INCINERATED
DPTON=FCObT/(PSDD*3fa5./2000.)
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
X=ALOG(PSUD/2<+.*DMATX(16»N) )
CCOST(N»l)=EXP(2.3773o*t+.b98986*X)*lOOO.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONEr
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOi3(PSUD*3fa5./2000.*(SMATX(9»ISl)/SMATx(lO.ISl)>)
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
OHRS=LXP(J.102537+1.215130*X-.157203*X**2.+.009771*X**3.)
XMHRS=EXP(3.906553+.7u2l7i*X-.088337*X**2.+.006827*X**3.)
TMSU=hXP(7.66<+729-..j3B8l6*X+.05f026*X**2.)
OPERATING CObT EQUATION
MHI05900
MHI06000
MHI06100
MHI06200
MHI06300
MHI06400
MHI06500
MHI06600
MHI06700
MHI06800
MHI06900
MHI07000
MHI07100
MHI07200
MHI07300
MHl07tOO
MHI07500
MH107600
MHI07700
MHI07800
MHI07900
MHI08000
MHI08100
MHI08200
MHI08300
MHI08UOO
MMI08500
MHI08600
MHI08700
MHI08800
MHI08900
MHI09000
MHI09100
MHI09200
MHI09300
MHI09400
MHI09500
MHI09600
MHI09700
MHI09800
MHI09900
MHllOOOO
MHI10100
MHI10200
MHI10300
MHI10UOO
MHI10500
MHI10600
MHI10700
MHI10800
MHI10900
MHlllOOO
MHllllOO
MHI11200
MHI11300
MHllllOO
MHI11500
MHI11600
MHI11700
MHI11800
MHI11900
MHI12000
MHI12100
MHI12200
MHI12300
MHI12400
145
-------
COSTO(Mr 1) = «OHRS+XMHKS)*DHR*(1.+PCT)+TMSU*wPl+ECOST+FCOST)/SMATX(MHI12500
I2rl)/3650. MHI12600
C MHI12700
C MHI12800
C ASSIGNMENT OF VALUES TO OMATX MHI12900
C MHI13000
OMATX(1»N)=FHA MHI13100
OMATX12»N)=WFYR MHI13200
OMATX(3.N)=PSDD MHI13300
OMATX(i*fN)=ECOST MHI13HOO
OMATX(5rN)=FCoST MHI13500
OMATX(fa»N)=CFD6 MHI13600
C MHM3700
c MHI13800
C PKOCESS ENERGY INDICES MHI13900
c MHI11000
FLOw(N)=SMATX(2»ISl) MHI14100
POW(N)=1». MHIIU200
MHI14300
MHI14400
146
-------
SECTION 16
RAW WASTEWATER PUMPING, RWP
Subroutine Identification Number 15
Raw Wastewater Pumping, RHP
1. Process symbol.
IS1
\OS1
Rev. Date 8/1/77
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number to the process
2. Input parameters and nominal values.
DMATX(1,N) = HEAD Pumping head of the influent pumps, ft. [30.J
DMATX(16,N) • ECF
Excess capacity factor for the pumps. [l.J
3. Output parameters which are printed on computer output sheets.
HEAD = DMATX(l.N)
QP = OMATX(l.N)
CCOST
COSTO
ACOST
TCOST
ECF
Peak flow capacity of the raw wastewater pumping
system, [MGD],
Capital cost, [dollars].
Operating and maintenance cost,[cents/lOOOgal].
Amortization cost,[cents/1000gal].
Total treatment cost,[cents/1000gal].
Excess capacity factor.
147
-------
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(I.OSl) = SMATX(I,IS1) RWP01900
SMATX(I.OSl) = SMATX (I.IS1) [mg/l]
HEAD = DMATX(l.N) RWP02400
HEAD = DMATX (1,N) [ft.J
QP = 1.78*SMATX(2,IS1)**.92 QP = 1.78[Q f '9 [MGD]
131 RWP02500
Pump Efficiency - Current values used in program; each can be changed by
the replacement on punched card.
PEFF =0.70 for QTC,<1.44 MGD RWP04900
IS i
PEFF = 0.74 for QIS1<10.08 MGD RWP05200
PEFF = 0.83 for QISI yo.08 MGD RWP05400
References:
Patterson and Banker, 1971
5. Cost functions.
ei. Capital cost
Function of QP * ECF
X ALOG(QP*DMATX(16,N)) RWP03100
X = In (QP * ECF)
CCOST(N.l) EXP(4.004828+.519499*X+.082262*X**2.-.006492*X**3. )*1000,
_ RWP03200
CCOST = 10oo*e4-004828+-519499X+-082262X --006492XJ [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of QTC1
_Lo L
X = ALOG(SMATX(2,151)) RWP03900
X in (Q)
148
-------
(1) Operating manhours
OHRS = EXP(6.097269+.253066*X-.193659*X**2.+.078201*X**3.-.006680*X**4. )
RWP04500
i e6.097269+0.253066X-0.193659X +0.078201X -0.006680X [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(5.911541-.013158*X+.076643*X**2.) RWP04700
5.911541-0.013158X+0.076643X2 r, , -,
XMHRS = e [hrs/yr]
(3) Kilowatt hrs per year
YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24.*365.
RWP05500
Q_ *1000000HEAD*.7457*24*365 rv „ . ,
YRKW = IS1 [KwHr/yrJ
1440*3960*PEFF*0.9
(4) Energy cost
ECOST = YRKW*DMATX(10,20) RWP05600
ECOST = YRKW*CKWH [dollars/yr]
(5) Supplies cost
SCOST = EXP(5.851743+.301610*X+.197183*X**2,-.017962*X**3.) RWP05700
-„„_ 5.851743+0.301610X+0.197183X2-0.017962X3 r , , , . .
SCOST =e Ldollars/yrJ
(6) Total materials and supplies
TMSU = ECOST + SCOST * WPI RWP05800
TMSU = ECOST + (SCOST * WPI) C$/yr]
c. Total operating and maintenance costs
COSTO(N,1) = «OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
RWP06300
COSTO = (OHRS+XMHRS)*DHR*(1 +PCT)+TMSU [cents/lOOOgal]
QPlant Inf.
Cost curves, Patterson and Banker pages 34, 83, 84
149
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RAW WASTEKATEK PUMPING
PKOCESS IDENTIFICATION NUMBER
SUBROUTINE RWP
COMMON INITIAL STATEMENTS
RNP00100
RWP00200
15 RWP00300
RNP00400
RwPOOSOO
RWP00600
RWP00700
RWP00800
RMP00900
INTEGER OS1.0S2 RWP01000
COMMON SMATX(20.30).TMATX(20»30).DMATX(20.20).OMATX(20.20)»IP(20).RwPOllOO
llNP»IUrISl»lSi;.OSlr1jS
CALC. OF OUTPUT SIZES AND QUANTITIES
Hfc.AD=LlMATA(l»N)
QP=1.78*SMATX(2»IS1)**.92
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
CALC. OF OPERATINb COSTS BASED ON DESIGN CAPACITY ALONE.
DUES NOT INCLUDE EXCESS CAPACITY
RbPGlSDO
RWP01900
RWP02000
RWP02100
RMP02200
RWP02300
RWP02400
RWP02500
RWP02600
RWP02700
RWP02800
RWP02900
RWP03000
X=ALOt>(QP*DMATX(16»N) ) RWP03100
CCOST(N.1)=EXP(1.001*828*.519U99*X+.082262*X**2.-.006'»92*X**3. ) *100RwP03200
10. RWP03300
RWP03400
RWP03500
RWP03600
RWP03700
RMP03800
RWP03900
RMP01000
RwPomoo
RWPO<(200
RWP04300
RWP04400
OHRS=LXP(t).097269+.25o066*X-.193659*X**2.-«-.078201*X**i.-.006680*X*RwPOi*500
I*1*.) RWP04600
XMHKS=EXP(5.9115^1-.01315a*X-»-.0766
-------
C RWP05900
C RMP06000
C OPERATING CObT EQUATION RWP06100
C RMP06200
COSTO(N»H=((OHRS+XMHrtS)*DHR*(l.+PCT)+TMSu)/SMATXl2,l)/3650. RWP06300
C RrtP06tOO
C RWP06500
C ASSIGNMENT OF VALUES TO OMATX RWP06600
C RMP06700
OMATX(1,N)=QP RWP06800
C RWP06900
C RMP07000
C PKOCESS ENERGY INDICES RWP07100
C RWP07200
FLOW(N)=SMATXC2»IS.1) RWP07300
POW(N)=15. R«P07*tOO
RLTURN RrtP07500
END RWP07600
151
-------
SECTION 17
SLUDGE HOLDING TANKS, SHT
Subroutine Identification Number 16
Sludge Holding Tanks , SHT
1. Process symbol.
Rev. Date 8/1/77
IS1
OS1
2. Input parameters and nominal values.
DMATX(l.N) = TD
DMATX(16,N) = ECF
IS1: Sludge input stream
OS1: Sludge output stream
N: User assigned number to the process
Sludge holding tank detention time, days.
[15.]
Excess capacity factor for the process.
[1.]
3. Output parameters which are printed on computer output sheets.
TD = DMATX(l.N)
VSHT = OMATX(l.N)
CCOST
COSTO
ACOST
TCOST
ECF
Volume of the sludge holding tanks, cu ft/
1000.
Capital cost, [dollars].
Operating and maintenance cost,
[cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
SMATX(I.OSl) = SMATX(I.ISl) SHT01900
SMATX(I.OSl) - SMATX(I.ISl) [mg/l]
where I = 2,20
i.e. Q, SOC, SNBC, SON, SOP, SFM, SBOD, VSS, TSS, DOC, DNBC, DN, DP, DFM,
ALK, DBOD, NH3, N03
152
-------
VSHT - SMATX(2,IS1)*DMATX(1,N)*1000./7.48*DMATX(16,N)
SHT02400
VSHT
QTq.*TD*ECF *1000
7748
[ft/1000]
VI • SMATX(2,ISl)*DMATX(l,N)*1000./7.48
References:
VI
Q_ *TD*1000
lb 1
7.48
[ft /1000]
Smith and Eilers, 1975
Patterson and Banker, 1971
SHT03800
5. Cost functions.
a. Capital cost
Function of VSHT
X = ALOG(VSHT)
X = In VSHT
SHT03000
CCOST(N,1) = EXP(2.625751+.484180*X+.000613*X**2.+.002252*X**3.)*1000.
SHT03100
CCOST = 1ooOe2-625751+0-484180X+0-000613X +°-°°2252X3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of VI
X = ALOG(V1) SHT03900
X - In (VI)
(1) Operating manhours
OHRS = EXP(5.727345+.000762*X+.098701*X**2.-.006786*X**3.) SHT04500
,.,„,,, 5. 727345+0. 000762X+0.098701X2-0.006786X3
OHRS = e
(2) Maintenance manhours
XMHRS = EXP(4.506628+.214662*X+.071402*X**2.-.004681*X**3.)
4. 506628+0. 214662X+0.071402X2-0.004681X3
(3) Total materials and supplies
TMSU = EXP(5. 479939+. 299282*X+.106008*X**2.-.008658*X**3.)
TMSU = e
5.479939+0.299282X+0.106008X2-0.008658X3
[hrs/yr]
SHT04600
[hrs/yr]
SHT04700
[dollars/yr]
153
-------
c. Total operating and maintenance costs SHT05200
/
COSTO(N,1) - ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO - CCOHRS+XMHRS)*DHR*(I+PCT) >(BBIWI) [cents/1000 gal]
T>lant Inf.
Cost curves, Patterson and Banker pages 46,98,99
154
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SLUDGE HOLDING TANKS
PKOCESS IDENTIFICATION NUMBER
SUBROUTINE SHT
COMMON INITIAL STATEMENTS
SHT00100
SHT00200
16 SHT00300
SHTOO«*00
SHT00500
SHT00600
SHT00700
SHT00800
SHT00900
INTEGER Obl»OS2 SHT01000
COMMON SMATX<20»30)>TMATX(20»30)fDMATX(20.2u>»OMATX<20»20)»IP(20>rSHTOHOO
HNP»IO»ISlrlSi:»OSl»OS2rN»lAERF»CCOST(20.5)»COSTO(20.5)»ACOST<20»5)SHT01200
2»TCoST(20r5)>UHR»PCT»wPI»CLAND»DLAND»FLOW(25).POW(25)iTKWHD(25) SHT01300
SHT01400
SHT01500
SHT01600
SHT01700
DO 10 1=2.20
10 SMATX(I.OSl)=bMATX(I»ISD
EFFLUENT STREAM CALCULATIONS
CALC. OF OUTPUT SIZES AND QUANTITIES
VSHT=bMATX(2»ISl)*DMATX(l»N)*1000./7.'»8*DMATX(16»N)
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
X=AL06(VSHT)
CCOSTCN.l)=EXP(2.6257l»l+,
10.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE»
DOES NOT INCLUDE EXCESS CAPACITY
V1=SMATX(2»IS1)*DMATXU.N)*1000./7.U8
X=ALOfa(Vl)
CALC. OF OPERATING MANHOURS* MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
OHRS=EXP(b.7273<*5+.OOu762*X+.09870l*X**2.-.OOb786*X**3.)
XMHRS=EXP(U.50662b+.211662*X-«-.07m02*X**2.-.00«*68l*X**3.)
TMbU=LXP(b.**79939+.299282*X-«-.106008*X**2.-.006658*X**3.)
OPERATING COST EQUATION
COSTOlN»l)=((OHRS+XMHRS)*UHR*(l.+PCT>+TMSU*wPl>/SMATXl2»l)/3650
ASSIGNMENT OF VALUES TO OMATX
OMATX(1»N)=VSHT
SHT01800
SHT01900
SHT02000
SHT02100
SHT02200
SHT02300
SHT02'*00
SHT02500
SHT02600
3HT02700
SHT02800
SHT02900
SHT03000
)*100SHT03100
SHT03200
SHT03300
SHT03UOO
SHT03500
SHT03600
SHT03700
SHT03800
SHT03900
SHTOUOOO
SHT01100
SMT01200
SHTOU300
SHTOU400
SHT04500
SHTOU600
SHTOU700
SHT04800
SHTO<*900
SHT05000
SHT05100
SHT05200
SHT05300
SHT05UOO
SHT05500
SHT05600
SHT05700
SHT05800
155
-------
c SHT05900
C PKOCEbS ENERGY INDICES SHT06000
c SHT06100
FLOw(N)=SMATX(2»ISl) SHT06200
Po*fN)=16. SHT06300
SHT06<*00
SHT06500
156
-------
SECTION 18
CENTRIFUGATION, CENT
Subroutine Identification Number 17
Centrifugation , CENT
Rev. Date 8/1/77
1. Process symbol.
IS1
OS2 (recycle)
OS1
2. Input parameters and nominal values.
DMATX(l.N) - CRR
DMATX(2,N) = TSS
DMATX(3,N) - HPWK
DMATX(4,N) = XCEN
DMATX(5,N) = POLY
DMATX(6,N) = CPOLY
DMATX(7,N) = GPMN
DMATX(8,N) = CNMIN
DMATX(16,N) = ECF
3. Output parameters which are printed
HPWK = DMATX(3,N)
XCEN = DMATX(4,N)
POLY = DMATX(5,N)
CPOLY • DMATX(6,N)
GPMN = DMATX(7,N)
IS1: Sludge input stream
OS1: Sludge cake output stream
OS2: Centrate output stream
N: User assigned number to the process.
Solids recovery ratio for centrifugation. [.95]
Total suspended solids concentration of OS1, mg/1.
[200,000.]
Hours per week that the centrifuges are operated,
hr/wk. [35.]
Program control: 0 = landfill sludge disposal,
1 = incineration sludge disposal. [0.]
Dose of polymer added to condition sludge, Ib/ton.
[2.]
Cost of polymer, $/lb. [2.]
Capacity of each centrifuge that is used (4 sizes
of centrifuges are possible depending on the type
of sludge), gpm. [100.]
Minimum number of centrifuges to be used. [2.]
Excess capacity factor for the process. [1.]
on computer output sheets.
157
-------
CUMIN - DMATX(8,N)
CGPM - OMATX(l.N)
DSOL - OMATX(2,N)
AFC • OMATX(3,N)
CSIZE - OMATX(4,N)
CN - OMATX(5,N)
CCOST
COSTO
ACOST
TCOST
ECF
References:
Patterson and Banker, 1971
Smith and Ellers, 1975
4. Theory and functions - FORTRAN statement followed by an equivalent algebraic equation.
Design capacity of the centrifuges, [gpm.]
Dry solids incl. chem fed to centrifuges, [tons/yr.J
Amortization factor for centrifuges based on a
10 year lifetime.
Size of each centrifuge used, [gpm.]
Number of centrifuges used.
Capital cost, [dollars]
Operating and maintenance cost, [cents/1000 gal.]
Amortization cost, [cents/1000 gal.J
Total treatment cost, [cents/1000 gal.J
Excess capacity factor.
SMATX(7,IS1) » SMATX(7,IS1)+POLY*SMATX(10,IS1)/2000.
CEN02900
POLY*TSS
IS1
SMATX(lO.ISl) = SMATX(10,IS1)+POLY*SMATX(10,IS1)/2000.
CEN03000
POLY*TSST1
TSST01 = TSS + iik
IS1 IS1 2000
DSOL = SHATX(10,IS1)*SMATX(2,IS1)*8.33*365./2000.
TSSisi*QIsl*8.33*365
DSOL
2000
CEN03100
[ton/yr]
158
-------
SMATX(10,OS2) - ((1.-DMATX(1,N))/(1.-DMATX(1,N)*SMATX(10,IS1)/DMATX(2,N)))*SMATX(10,IS1)
TSS
(1-CRR)*TSS
IS1
OS2
CRR*TSS
1-
IS1
[•8/1]
TSS
OS1
TEMPI - DMATX(2,N)/SMATX(10,IS1)
TSS
TEMPI
OS1
TSS
IS1
TEMP2 - SMATX(10,OS2)/SMATX(10,IS1)
TSS,
CEN03200
CEN03400
CEN03500
TEMP2 •*-
"OS2
TSS
IS1
SMATX(lO.OSl) = DMATX(2,N) CEN03600
TSSosi ' TSSosi Cnig/1]
SMATX(2»OS1) - (SMATX(10,IS1)-SMATX(10,OS2))*SMATXC2,IS1)/(SAMTX(10,OS1)-SMATXC10,OS2))
[MGD]
(TSSisrTSSos2>*Qisi
0 .
081
SMATX(2,OS2) = SMATX(2,IS1)-SMATX(2,OS1)
QOS2
[MGD]
SMATX(I,OS1) = TEMP1*SMATX(I,IS1)
SMATX(I,OS1) = TEMP1*SMATX(I,IS1) [mg/l]
where I • 3,9
I.e. SOC, SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(I,OS2) - TEMP2*SMATX(I,IS1)
SMATX(I,OS2) = TEMP2*SMATX(I,IS1) [mg/l]
where I = 3,9
SMATXj(I,OSl) - SMATX(I,IS1)
SMATX(I.OSl) = SMATX(I.ISl) [mg/l]
where I = 11,20
I.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
SMATX(I,OS2) = SMATX(I.ISl)
SMATXCI.OS2) = SMATX(I,IS1) [mg/l]
where I = 11,20
CEN03700
CEN03900
CEN04500
CENOA600
CEN04800
CEN04900
159
-------
CN - CUMIN
CN - CNMIN
CGPM = SMATX(2, IS1)*116666.7/HPWK*DMATX(16,N)/CN
CGPM
116666.7*Qigl*ECF
[gpm/centrifuge]
HPWK*CN
CSIZE = ,275*GPMN
CSIZE = 0.275 GPMN
CSIZE - .350*GPMN
CSIZE = 0.350 GPMN
CSIZE • .590*GPMN
CSIZE = 0.590 GPMN
CSIZE = GPMN
CSIZE = GPMN
NCN = CGPM/CSIZE
NCN =CGPM.
CSIZE
5. Cost functions. (Cost curves, Banker and Patterson page 109)
a. Capital cost
Function of GPMM, CSIZE and CN
CCOST(N.l) = 78500.*(1.-.044*(CN-2.))*CN
CCOST = 78500CN*(l-0.044(CN-2)) [dollars]
CEN05400
CEN05500
CEN05700
[For (CGPM-CSIZE)>0] CEN06400
[For (CGPM-CSIZE)>0] CEN06600
[For (CGPM-CSIZE)>0] CEN06800
CEN06900
CEN09000
CCOST(N.l) - 98000.*(!.-.044*(CN-2.))*CN
CCOST = 98000GN*(l-0.044(CN-2))
CCOST(N.l) = 140000.*(!.-.044*(CN-2.))*CN
CCOST = 140000CN*(l-0.044(CN-2))
[dollars]
[dollars]
CEN09800
CEN10600
CCOST(N.l) = 160000.. *(!.-. 044* (CN-2.))*CN
CCOST = 160000CN*(l-0.044(CN-2))
[dollars]
CEN11400
160
-------
Amortization factor for centrifuges
AFC - DMATX(3,20)*(1.+DMATX(3,20))**10./((1.+DMATX(3,20))**10.-1.)
DTI ._, ,10
AFC •
CEN11900
Amortization cost
ACGST(N.l) - CCOST(N,1)*AFC/SMATX(2,1)/3650.
CCOST * AFC
CEN12000
Q,., _ T , *3650
xPlant Inf.
[cents/1000 gal]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of DSOL.
X = ALOG (DSOL)
X = In DSOL
(1) Operating manhours
(For XCEN = 0)
OHRS = EXP(7.621517-.476977*X+.071516*X**2.)
nuDO 7.621517-0.476977X+0.071516X2
UUKo ° e
(For XCEN + 0)
OHRS = EXP(7.264153-.466246*X+.069552*X**2.)
nlroc 7.264153-0.466246X+0.069552X2
UHRS 9 e
(2) Maintenance manhours
XMHRS = EXP(5.997115-.493809*X+.070892*X**2.)
„.._., 5.997115-0.493809X+0.070892X2
XMnKS = e
(3) Total materials and supplies
SUPP = EXP(-2.822519+.700948*X)*1000.
SUPP = 10oOe-2-822519+0-700948X
CHEM = DSOL*POLY*CPQLY
CHEM = DSOL*POLY*CPOLY
c. Total operating and maintenance costs
CEN12600
CEN13300
[hrs/yr]
CEN14000
[hrs/yr]
CEN14600
[hrs/yr]
CEN14700
[dollars/yrJ
CEN14800
[dollars/yrJ
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SUPP*WPI+CHEM)/SMATX(2,1)/3650.
CEN15300
COS TO
(OHRS+XMHRS)*DHR*(1+PCT)+(SUPP*WPI)+CHEM
inf.
*3650
[cents/1000 gal]
161
-------
C CEN00100
c CLNTRIFUGATION CENOOZOO
C PROCESS IDENTIFICATION NUMBER 17 CEN00300
C CENOOHOO
SUBROUTINE CENT CEN00500
C CEN00600
C CEN00700
C COMMON INITIAL STATEMENTS CEN00800
C CEN00900
iNTEGtR Obl»OS2 CEN01000
COMMON SMATX(20.30) »TMATX(20»30)»DMATX(20»2u).OMATX(20f20)»IP<20).CEN01100
llNP»lO.ISl»lSi:fOSl.oS2»N.IAERF»CCOST<20»5)>CObTO(20»5).ACOST<20.5)CEN01200
2.TCOST120.5).OHR.PCT.WPI•CLAND»DLAND»FLOW(2b>»POW(25).TKWHD(25> CEN01300
C CEN01100
C CEN01500
C ASSIGNMENT OF DESIGN VALUES To PROCESS PARAMETERS CEN01600
C CEN01700
HP*K=UMATX(3»N) CEN01800
XCEN=uMATX«trN) CEN01900
POLY=DMATX(b'N) CEN02000
CPOLY=DMATX(6»N) CEN02100
GPMN=UMATX(7»N) CEN02200
CNMlN=DMATX(8rN) CEN02300
C CEN02400
C CEN02500
C PROCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM CEN02600
c CHARACTERISTICS CEN02700
C CEN02800
SMATX(7»ISl)=bMATX(7»iSl)-»-POLY*SMATX(10»ISl}/2000. CEN02900
SMATX(10»ISl)=SMATX(10»lSl)-»-POLY*SMATX(10»ISl)/2000. CEN03000
DbOL=bMATA(10»ISl)*SMATX(2»ISl)*8.33*365./2000. CEN03100
SMATX(10rOS2)=((l.-DMATX(l»N))/(l.-DMATX(l»N)*SMATX(10»ISl)/DMATX(CEN03200
12.N)))*SMATX<10»Ibl) CEN03300
TtMPl=DMAlX(2>N)/SMATX(10rISl) CEN03400
TLMP2=SMATX(10»OS2)/SMATX(10»IS1) CEN03500
SMATX(10'OSD=DMATX(2»N) CEN03600
SMATX(2.0bl)=(SMATXIlu»lSl)-SMATX(10.OS2))*SMATX(2rlSi)/(SMATX(10»CEN03700
lObl)-bMATx(10.0S2)) CEN03800
SMATX(2rOb2)=bMATX(2'lSD-SMATX(2»OSl) CEN03900
C CENOHOOO
C CENO<*100
C EFFLUENT STREAM CALCULATIONS CEN01200
C CEN04300
DO 10 I=3»9 CENOHHOO
SMATX(i,obi> =TEMPI»SMATX(i»isi> CENO^SOO
10 SMATX(IfOb2)=TEMP2*SMATX CEN01800
20 SMATX(I,Ob2)=SMATX(I>lSl> CEN04900
C CEN05000
C CEN05100
C CALC. OF OUTPUT SIZES AND QUANTITIES CEN05200
C CEN05300
CN=CNMIN CENOSUOO
CGPM=bMATX(2.1SD*116b66.7/HPWK*DMATX(16»N)/CN CEN05500
GHMM=bMATX(2.1Sl)*1000000./l*»40. CEN05600
CEN05TIOO
CEN05800
162
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
30
<*0
50
60
70
bO
90
100
110
120
150
c
c
c
c
c
c
C
C
C
C
C
C
C
C
c
c
c
c
CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
CAPACITY
IF (CGPM-CS1ZE) 60.60.30
CSIZE=.350*GPMN
IF (Cl>PM-(.SIZt) 80 r BO»40
CS1ZE=.590*GPMN
IF (CGPM-CSIZL) 100.100.50
CSIZE=GPMu
NCN=CbPM/CSIZ£
CN=NCN+1
GO TO 120
IF (GHMM-CSIZt* >*CN
CALC. OF CAPITAL COSTS FOR CENT FACILITY WHOSE
DESIGN CAPACITY DOES NOT EXCEED b9* OF THE CAPACITY
OF EACH CENTRIFUGE
160
CCOST ( N.l)=l**0000.*(l.-.0
-------
X=ALOG(DSuL)
IF (XCEN) 200»190i200
C
C
C
C
C
C
C
C
C
C
CALC. OF OPERATING MANHOURS IF LANDFILL DISPOSAL
USED
CEN12500
CEN12600
CEN12700
CEN12800
CEN12900
IS CEN13000
CEN13100
CEN13200
CEN13300
CEN13400
CEN13500
CALC. OF OPERATING MANHOURS IF INCINERATION DISPOSAL CEN13600
IS USED CEN13700
CEN13800
CEN13900
190 OHRS=tXP(7.621517-.<*7o977*X+.071516*X**2.)
GO TO 210
200 OHRS=EXP(7.26<+153-.<+6o2<+6*X+.069552*X**2.) CEN14000
C CEN1»HOO
C CEN14200
C CALC. OF MAINTENANCE MANHOURSr SUPPLIES AND CHEMICAL CEN1U300
C COSTS CENl^mOO
C CEN14500
'210 XMHRS=EXP(5.997115-.t93809*X*.070892*X**2.) CEN1^600
SUPP=t-XP(-2.822519+.7U09'+8*X)*1000. CEN1<*700
CHEM=USOL*POLY*CPOLY CENI«*SOO
C CEN1<*900
C CEN15000
C OPERATING COST EQUATION CEN15100
C CEN15200
COSTO(N»1J=((OHRS+XMHRS)*DHR*(1.+PCT)+SUPP*«,PI+CHEM)/SMATX(2»1)/36CEN15300
150. CEN15HOO
C CEN15500
c CEN15600
C ASSIGNMENT OF VALUES TO OMATX CEN15700
c CEN15800
OMATX(1,N)=CGPM CEN15900
OMATX12»N)=DSOL CEN16000
OMATX(3rN)=AFC CEN16100
OMATX(1fNJ=CS!ZE CEN16200
OMATX(5.NJ=CN CEN16300
c CEN16400
c CEN16500
c PROCESS EMERGY INDICES CENieeoo
c CEN16700
FLOw(lM)=SMATX(2rISl) CEN16800
POMN)=17. CEN16900
RETURN CEN17000
END CEN17100
164
-------
SECTION 19
AEROBIC DIGESTION, AEROB
Subroutine Identification Number 18
Aerobic Digestion, AEROB
1. Process symbol.
Rev. Date 8/1/77
IS2 (Sludge) J
Optional .
IS1 (Sludge)
OS2 (Recycle)
OS1
2. Input parameters and nominal values.
IS1: Primary sludge input stream
IS2: Secondary sludge input stream
OS1: Sludge output stream
OS2: Supernatant recycle output
stream
N: User assigned number to
the process
DMATX(l.N) - XL
DMATX(2,N) - XAFS
DMATX(3,N) •
DMATX(4,N) «
DMATX(5,N) •
DMATX(6,N) •
DMATX(7,N) •
DMATX(8,N) •
DMATX(13,N)
DMATX(14,N)
DMATX(15,N)
DMATX(16,N)
DTA
TSS1
TSS2
BOD2
GSS
HEAD
• ECF
= ECF
= ECF
• ECF
Program control: this input variable is set equal to the
user assigned process number (N) which the user assigned
to the aeration (AERFS) process to allow the AEROB sub-
routine to use output parameters calculated in the
aeration process, [varies]
Program control: 0 = no final settler or sludge return
pumps are required, 1 = a final settler and sludge return
pumps are required with the aerobic digestion process. [l.J
Detention time for the aeration, days. [30.J
Total suspended solids in OS1, mg/1. [40,000.]
Total suspended solids in OS2, mg/1. [150.J
Concentration of 5-day BOD in OS2, mg/1. [50.]
Overflow rate for the final settlers, gpd/sq ft. [150.J
Pumping head of the sludge return pumps, ft. [30-]
Excess capacity factor for the final settlers. [1.2]
Excess capacity factor for the sludge return pumps. [1.25]
Excess capacity factor for the air blowers. [1.5]
Excess capacity factor for the aeration tank. [1.2]
165
-------
3. Output parameters which are printed on computer output sheets.
XL = DMATX(l.N)
XAFS = DMATX(2,N)
DTA = DMATX(3,N)
TSS1 = DMATX(4,N)
TSS2 - DMATX(5,N)
BOD2 = DMATX(6,N)
GSS - DMATX(7,N)
HEAD = DMATX(8,N)
VAER = OMATX(l.N)
ACFM = OMATX(2,N)
QPUMP = OMATX(3,N)
AFS = OMATX(4,N)
CCOST
COSTO
ACOST
TCOST
ECF
Volume of the aerator, cu ft/1000.
Required size of the blower for supplying air to the
aerator, cfm.
Volume of the return stream flow to the aerator, mgd.
Surface area of the final settler, sq ft/1000.
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 galj.
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
AE002400
[mg/1]
SMAT(I) = SMATX(I,IS2)
SMAT(I) = SMATX(I,IS2)
where I = 1,20 i.e. I,Q,SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,
DN,DP,DFM,ALK,DBOD,NH3,N03
TEMPI = (SMAT(4)*2.13+(SMAT(8)+SMAT(17))*.65*.18)*SMAT(2)
TEMPI = (2.13SNBCIS2+0.65(SBODIS2+DBODIS2)0.18)QIS2
AE002600
[mg/i MGD]
TEMP2 (OMATX(9,L)*.18+OMATX(10,L)*.0938-H3MATX(11,L)+OMATX(12,L))*DMATX(7,L)*SMATX(2,IS1)
AE002700
TEMP2 = (0.180MATX(9,L)+0.09380MATX(10,L)+OMATX(11,L)+OMATX(12,L))*DMATX(7,L)*QIS1
[mg/1 MGD]
166
-------
TEMP3 - SMAT(7)*SMAT(2)
TEMP3 - SFMIS2*QIS2
TEMP4 - OMATX(13,L)*DMATX(7,L)*SMATX(2,IS1)
TEMP4 • OMATX(13,L)*DMATX(7,L)*QIS1
AE002900
[ mg/1 MGD ]
AE003000
[ mg/1 MGD ]
SMATX(2,OS1) = ((TEMP1+TEMP2+TEMP3+TEMP4)-(SMATX(2,IS1)+SMAT(2))* AE003500
DMATX(5,N))/(DMATX(4,N)-DMATX(5,N))
Q » TEMPl+TEMP2+TEMP3+TEMP4-(QIsl4qIS2)TSS2
TSS1 - TSS2
SMATX(2,OS2) = SMATX(2,IS1)+SMAT(2)-SMATX(2,OS1)
QOS2 ' QISl"M5IS2~QOSl
VOLPC = (TEMP1+TEMP2)/(TEMP1+TEMP2+TEMP3+TEMP4)
TEMP1+TEMP2
VOLPC
TEMP1+TEMP2+TEMP3+TEMP4
SMATX(9,OS1) = DMATX(4,N)*VOLPC
VSSQS1 = TSS1*VOLPC
SMATX(7,OS1) - DMATX(4,N)-SMATX(9,OS1)
SFMoS1 = TSS1 - VSSOS1
SMATX(3,OS1) = SMATX(9,OS1)/2.13
SOCQS1 = VSSOS1
031 ^
SMATX(4,OS1) = SMATX(3,OS1)
SOC
OS1
SHATX(5,OS1) = SMATX(3,OS1)/10.
SONQS1 = SOCOS1
SMATX(6,OS1) = SMATX(3,OS1)/100.
[ MGD]
AE003700
[ MGD]
AE003800
[no units]
AE003900
[mg/1]
AE004000
AE004100
[mg/1]
AE004200
[mg/1]
AE004300
[mg/1]
AE004400
[mg/1]
167
-------
SMATX(lO.OSl) = DMATX(4,N)
TSSQS1 TSS1
SMATX(10,OS2) = DMATX(5,N)
TSSQS2 = TSS2
SMATX(9,OS2) = SMATX(10,OS2)*VOLPC
VSSQS2 = TSS2*VOLPC
SMATX(3,OS2) = SMATX(9,OS2)/2.13
cnr = VSSQc2
2.13
SMATX(4,OS2) = SMATX(3,OS2)
SNBCOS2 = SOCOS2
SMATX(5,OS2) SMATX(3,OS2)/10.
qnvt = SOC0g2
QViNi-ioO —
os^ 10
SMATX(6,OS2) SMATX(3,OS2)/100.
SOP,
SOC,
OS2
OS2
100
SMATX(7,OS2) = SMATX(10,OS2)-SMATX(9,OS2)
SFMoS2 = TSSQS2 - VSSQS2
SMATX(ll.OSl) (500.-SMATX(9,OS2)*1.42)/3.2
DOC = 500-1.42VSSOS2
031 3.2
SMATX(11,OS2) = SMATX(11,OS1)
DOCnCT = DOC_-
OS2 OS1
AE004600
[mg/1]
AE004700
[mg/1]
AE004800
[mg/1]
AE004900
[mg/1]
AE005000
[mg/1]
AE005100
[mg/1]
AE005200
[mg/1]
AE005300
[mg/1]
AE005500
[mg/1]
AE005600
168
-------
SMATX(12,OS1) = SMATX(ll,OS2)/2. AE005700
DNBCOS1 = £2032
SMATX(12,OS2) - SMATX(12,OS1) AE005800
DNBCQS2 = DOCOS2
ENTN = SMATX(2,IS1)*(SMATX(5,IS1)+SMATX(13,IS1))+SMAT(2)*(SMAT(5)+SMAT(13))
AE005900
ENTN - QIsl(SONIsl+DNIsl)+qiS2(SONIS2+DNIg2) [MGD mg/1]
EXSN = SMATX(2,OS1)*SMATX(5,OS1)+SMATX(2,OS2)*SMATX(5,OS2) AE006100
EXSN = (Q0Sl*SONosi)+(QOS2*SONOS2) CMGD "g/1]
SMATX(13,OS1) = (ENTN-EXSN)/(SMATX(2,OS1)+SMATX(2,OS2)) AE006200
DNOSI
SMATX(13,OS2) = SMATX(13,OS1) AE006300
ENTP = SMATX(2,IS1)*(SMATX(6,IS1)+SMATX(14,IS1))+SMAT(2)*(SMAT(6)+SMAT(14))
AE006400
ENTP = Qlsi(SOPIs+DP)40(SOP+DP) [MGD mg/1]
EXSP = SMATX(2,OS1)*SMATX(6,OS1)+SMATX(2,OS2)*SMATX(6,OS2) AE006600
EXSP = (Qosi*SOP0sl>+%S2*SOPOS2> [MGD mg/1]
SMATX(14,OS2) = (ENTP-EXSP)/(SMATX(2,OS1)+SMATX(2,OS2)) AE006700
ENTP-EXSP
SMATX(14,OS1) = SMATX(14,OS2) AE006800
DPOS1 = DPOS2 C"871]
SMATX(15,OS1) = SMATX(15,IS1) AE006900
169
-------
SMATX(15,OS2) = SMATX(15,IS1)
DFMQS2
DFM
IS1
SMATX(17,OS1) - DMATX(6,N)-50.
DBODQS1 - BOD2-50
SMATX(17,OS2) - SMATX(17,OS1)
DBODog2 - BOD2-50
SMATX(18,OS1) - SMATX(18,IS1)
SMATX(18,OS2) - SMATX(18,IS1)
NH3
OS2
SMATX(19,081) = SMATX(19,IS1)
N03osi - N03isi
SMATX(19,OS2) = SMATX(19,IS1)
N03
QS2
SMATX(20,OS1) = SMATX(20,IS1)
Future parameter
SMATX(20,OS2) = SMATX(20,IS1)
Future parameter
AE007000
[mg/1]
AE007300
AE007400
AE007500
AE007600
[mg/1]
AE007700
AE007800
[mg/1]
AE007900
[mg/1]
AE008000
[ mg/1]
VAER1 = (SMATX(2,IS1)+SMAT(2))*DMATX(3,N)*1000./7.48*DMATX(16,N) AE008500
VAERl = (QlSl+QlS2)1000DTA*ECFa
7.48
ftj
1000
VAER2 = (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33/.05/1000.*DMATX(16,N)
AE008600
r ff\ *TCC *l_Lfn *TOO \n Q TOt-m?
VAER2 =
0.05*1000
1000
170
-------
BSIZE - 20.*VAER*DMATX(15,N)
BSIZE = 20VAER*ECF
AE009200
AFS - (SMATX(2,IS1)+SMAT(2))*1000./DMATX(7,N)*DMATX(13,N)
AFS - 1000(QIsl-H}IS2)ECFa
GSS
DEMO - (SMATX(9,IS1)*SMATX(2,IS1)+SMAT(9)*SMAT(2)-TEMP1-TEMP2)*8.33*1.5
DEMO = 8..33[(VSSIS1*QIS1)+(VSSIS2*QIS2)-TEMP1-TEMP2]*1.5
CFM - DEMO/.075/.232/.05/1440.*DMATX(15,N)
AE009600
DEMO*ECFij
CFM - — 5.
0.075*0.232*0.05*1440
QPUMP - (SMATX(2,IS1)+SMAT(2))*DMATX(14,N)*1.5
QPUMP = (QIsl-K}IS2)*1.5ECFp
LminJ
[MGD]
Pump efficiency - Current values used in program; each can be changed by
the replacement on punched card.
PEFF - 0.70 for QPUMP<1.44 MGD
PEFF =0.74 for QPUMP<10.08 MGD
PEFF =0.83 for QPUMP>10.08 MGD
References:
AE009700
AE009900
AE010400
AE019000
AE019300
AE019500
Patterson and Banker, 1971
5. Cost functions.
Aerator
a. Capital cost
Function of VAER
X - ALOG(VAER)
X <• In VAER
CCOST(N.l) = EXP(2.414380+.175682*X+.084742*X**2.-.002670*X**3.) *1000.
AE011000
AE011100
CCOST - 1ooOe2t414380+0>:L75682X+0l084742X 0>002670X
[dollars]
171
-------
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours AE011700
OHRS = 0 [hrs/yr]
(2) Maintenance manhours AE011800
XMHRS - 0 [hrs/yr]
(3) Total materials and supplies AE011900
TMSU - 0 [dollars/yr]
c. Total operating and maintenance costs AE012000
COSTO(N.l) = 0 [cents/1000 gal]
Blower
a. Capital cost
Function of ACFM
X = A10G(ACFM/1000.) AE012600
X = In ACFM
1000
CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000. AE012700
CCOST = 10oOe4-145454+0-633339X+0-031939x2-0-002419x3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of ACFM/ECFb
X = ALOG(ACFM/1000./DMATX(15,N)) AE013400
X = In
_ACFM
1000ECFb
ACFM
1000ECFb
(a) Operating manhours AE014100
OHRS = 850 [hrs/yr]
(b) Maintenance manhours AE014200
XMHRS 350 [hrs/ yr]
172
-------
(a) Operating manhours
OHRS - EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.) AE014400
[hrs/yr]
OHRS - e6-900586+0-323725x+0-059093x2~°-004926x3
(b) Maintenance manhours
AE014500
XMHRS = EXP(6.169937+.294853*X+.175999*X**2.-.040947*X**3.+.003300*X**4.)
= e6.169937+0.294853X+0.175999X2-0.040947X3+0.003300X4
[hrs/yr]
(3) Blower horsepower
HP = ACFM/DMATX(15,N)*8.1*144.7(33000.*.8)
8.1ACFM*144
HP
ECFb*33000*0.8
(4) Blower kilowatts
XKW = .8*HP
XKW
8.1ACFM*144
33000 ECF,
AE014700
[horsepower]
AE014800
[kilowatts]
(5) Blower kilowatt years
XKWPY = XKW*24.*365.
XKWPY = 24XKW*365
(6) Energy cost
ECOST = XKWPY*DMATX(10,20)
ECOST = XKWPY*CKWH
(7) Service cost
SCOST = EXP(.621382+.482047*X)*1000.
SCOST = 100Oe0-621382+0-482047X
AE014900
[kwhr/yr]
AE015000
[dollars/yr]
AE015100
[dollars/yr]
173
-------
c. Total operating and maintenance costs
AE015600
COSTO(N,2) - ((OHRS+XMHRS)*DHR*(1*PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)DHR(1+FCT>+(SCOST*WPI)+ECOST rcents/1000 gal]
Qplant Inf. * 365° L
Sludge pumps
a. Capital cost
Function of QPUMP
X = ALOG(QPUMP) AE016700
X = In QPUMP
(1) QPUMP < 5 AE016500
CCOST 20000 [dollars]
(2) QPUMP > 5 AE016800
CCOST(N,3) = EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.
CCOST = 1000e3.481553+0.377485X+0.093349X2-0.006222X3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of QPUMP/ECF
X = ALOG(QPUMP/DMATX(14,N)) AE018500
DPUMP
(1) Operating manhours
(a) QPUMP «, ,
ECF 7 AE018100
P
OHRS 400 [hrs/yr]
097269+0-253066x"0-193659x2+0-078201x3"0-006680x4 [hrs/yr]
174
-------
(2) Maintenance manhours
XMHRS - 250
QPUMP
XMHRS = EXP(5.911541-.013158*X+.076643*X**2.)
.2
XMHRS = e
(3) Total materials and supplies
5. 911541-0. 013158X+0.076643X
ECFp
TMSU = 200.+(DMATX(8,N)/30.)*400.
400HEAD
30
TMSU = 200 +
QPUMF ,
ECF-17
TMSU = ECOST+SCOST*WPI
TMSU = ECOST+(SCOST*WPI)
(4) Kilowatt hrs per year
AE018200
[hrs/yr]
AE018800
[hrs/yr]
AE018300
[dollars/yr]
AE019900
[dollars/yr]
AE019600
YRKW = QPUMP*1000000.*DMATX(8,N)/1440./3960./PEFF/.9*.7457*24.*365.
[kwhr/yr]
YRKW = 1000000QPUMP*0.7457HEAD*24*365
1440*3960PEFF*0.9
(5) Energy cost
ECOST = YRKW*DMATX(10,20)
ECOST = YRKW*CKWH
(6) Service cost
AE019700
[dollars/yr]
AE019800
SCOST = EXP(5.851743+,301610*X+.197183*X**2.-.017962*X**3.)
05.851743+0.301610X+0.197183X2-0.017962X3
SCOST = ej
[dollars/yr]
175
-------
c. Total operating and maintenance costs AE020400
COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
COSTO = 1 acre AE021400
CCOST(N,4) = EXP(3.716354+.389361*X+.084560*X**2.-.004718*X**3.)*1000.
CCOST = 10oOe3-716354+0-389861X+0-084560x2-0-00/l718x3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of AFS/ECFS
X = ALOG(AFS/DMATX(13,N)) AE023000
(1) Operating manhours
~ < 1 AE022600
s
OHRS = 300 [hrs/yr]
(b) H| >_ -L AE023100
OHRS = EXP(5. 846565+. 254813*X+.113703*X**2.-.010942*X**3.)
OHRS = e5-846565+0-25A813x+0-113703x2-°-010942x3 [hrs/ r]
176
-------
(2) Maintenance manhours
(a) H| < 1 AE022700
XMHRS = 150 [hrs/yr]
(b) £2$. > 1 AE023200
ECF —
s
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)
XMHRS = e5. 273419+0. 228329X+0.122646X2-0.011672X3 [hrs/yrl
(3) Total materials and supplies
(a) H| < i AE022800
S
TMSU = 125 [dollars/yr]
(b) - >l AE023300
TMSU = EXP(5.669881+.750799*X)
TMSU = e5- 669881+0. 750799X [dollars/yr]
(4) Total operating and maintenance costs AE023800
COSTO(N,4) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI) r .
Qplant ln£_ * 3650 [cents/1000 gal]
177
-------
c AE000100
C AtROBIC DIGESTION AE000200
C PKOCEbS IDENTIFICATION NUMBER 18 AE000300
C AE000400
SUBROUTINE AEKOB AE000500
C AE000600
C AE000700
C COMMON INITIAL STATEMENTS AE000800
C AE000900
INTEGER Obi.os2 AEOOIOOO
DIMENSION SMAT(20) AE001100
COMMON SMATX ( 20 .30) »TMATX(20r30) .DMATXC20.20) »OMATX(20 .20) . IP(20) » AE001200
HNP.Io.ISl.lSii.OS1.0S<:,N»IAERF.CCOST(20.5).COSTO(20.5)»ACOST(20.5)AE001300
2'TCOS1 (20r5) »UHR»PCT« wPI » CLAND.DLAND'FLOW (25) »POW(25> »TKWHD(25) AE001400
C AE001500
C AE001600
C PKOCESS RELATIONSHIPS REQD. To CAl_C. EFFLUENT STREAM AE001700
c CHARACTERISTICS AEOOIBOO
C AE001900
DO 10 1=1.20 AE002000
10 SMAT(1)=0. AE002100
IF AE002900
TLMP4=OMATX ( 13 • L ) *DMATX ( 7 r L > *SMATX ( 2 ' IS1 ) AE003000
c AEOU3100
c AE003200
C EFFLUENT STREAM CALCULATIONS AE003300
C AE003400
) = ((TEMPl + TEMP2«-TEMP3+TEMP'+)-(i,MATx<2HSl>-»-SMAT<2))*DMAAE003500
lTX(b'N))/(DMATX(trN)-UMATX(5»N)) AE003600
SMATX(2rOb2)=bMATX(2»lSl)+SMAT(2)-SMATX(2rOSl) AE003700
VOLPC= =SMATX ( 10 . os2 ) *VOLPC AEOO^SOO
SMATX ( 3 . Ob2 ) =bMATX ( 9. uS2 > /2. 13 AFOOU900
SMATX(4,Ob2)=SMATX(3.0S2) AE005000
SMATX(5.0b2)=bMATX(3.0S2)/10. AE005100
SMATX(6.0b2)=SMATX(3'OS2)/100. AE005200
SMATXl7.0S2)=bMATx(lO,OS2)-SMATX(9,OS2) AE005300
SMATX(8.0b2)=bO. AE005UOO
SMATX c n . osi ) = 1 500 . -SMATX ( 9. 052 ) *i . nz ) /3.2 AFOOSSOO
SMATX111.0S2)=SMATX(11.0S1) AE005&80
SMATX (12. OSI )=SMATX(U,oS2)/2. AE005700
SMATX ( 12. OS2>=SMATX(lii. 051) AE005800
178
-------
C AE012500
X=ALOt»(ACFM/lUOO.) AE012600
CCOST(N.2)=EXHU.l<»b»t5 AE013400
C AE013SOO
C AE013600
C CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS AE013700
C AND ELECTRICAL POWER AND SUPPLY COSTS AE013800
C AE013900
IF (ACFM/1000./DMATX(15»N)-1.) I«f0»l50.150 AE01UOOO
OHRS=050. AEOmiOO
XMHRS=350. AE01«*200
GO TO 160 AE01«t300
IbO OHRS=t,XP(t>.900586+.32.i725*X-«-.059093*X**2.-.uO+SCOST*WPI+ECOST)/SMATX(2»
13650.
CALC. OF CAPITAL COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN PLUS EXCESS CAPACITY
IF (DMATX12.N)) 170. 3b0.170
170 IF (QPUMP-.5) 180.190.190
ItiO CCOST(N.3)=20000.
GO TO 200
190 X=ALOu«SPUMP)
AE015200
AE015300
AE015100
AE015500
D/AE015600
AE015700
AE015800
AE015900
AE016000
AE016100
AE016200
AE016300
AE016400
AE016500
AE016600
AE016700
CCOST(N.3)=EXP(3.«*8l5b3+.377U85*X+.0933*«9*X**2.-.006222*X**3.)*100AE016800
C
C
C
C
C
C
C
C
C
C
10.
CALC. OF OPERATING COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS
CAPACITY
CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES
2UG IF 210.220.220
210 OHRS=«*00.
XMHRS=250.
TMSU=200.+(DMATX(&.N>/30.)*tOO.
GO TO 280
220 X=ALOG(QPUMP/UMATx(l
-------
ENTN=bMATx(2»ISl)*(SMATX(5.ISl)+SMATX(13»ISD)+SMAT(2)*(SMAT(5)+SMAE005900
1AK131) AE006000
ExbN=bMATA(2»OSl)*SMATX(5.0SmSMATX<2.0S2)*SMATXl5»OS2) AE006100
SMATX(13.0S1>=/(SMATX(2.0S1)+SMATX(2»OS2)) AE006200
SMATX(13»oS2)=SMATX(lJ.OSl) AE006300
ENTP=bMATx(2»lSD*(SMATX<6.1Sl)+SMATX(l«t»ISl) )+SMAT (2) * (SMAT(b)+SMAE006400
lATdt)) AE006500
EXbP=bMATX(2.0Sl>*SMATX<6.051)+SMATX<2»OS2)*SMATX(6.0S2)
SMATX (i<*. uS2 > = ( ENTP-EXSP ) / ( SMATX (2. osi) +SMAT x (2. OS2))
SMATX (1.ISl)
SMATX (15.052 >=SMATXUt>» IS1)
SMATX(16.0S1)=300.
SMATX(16.0S2)=300.
SMATXU7.0Sl)=DMATX(6.N)-bO.
SMATX117.0S2)=SMATX(17.0S1)
SMATXiis.usi)=SMATX(la.isi)
SMATX(18.oS2>=SMATX(lb.151)
SMATX(19»oSD=SMATXU9»ISl)
SMATX(19.0S2)=SMATX(19.IS1)
SMATX(20'.OSI)=SMATX (20.151)
SMATX120.OS2)=SMATX(20.151)
CALC. OF OUTPUT SIZES AND QUANTITIES
VAERl=(SMATX(2»ISl)+SMAT<2))*DMATX(3.N)*1000./7.46*DMATX(16.N)
VALR2=(SMATX(*:.IS1)*SMATX110.IS1)+SMAT(2)*SMAT{10))*8.33/.05/1000
1*UMATX(16.N)
IF (VAER1-VAEK2) 50.60.60
bO
60
70
tiO
GO TO 70
VAER=VAER1
BblZE=20.*VAEk*DMATX(15.N)
IF (DMATX12.NJ) 90.80*90
AFS=0.
GO TO 100
AH S=(SMATA(2.1SI)+SMA7(2))*1000./UMATX(7.N)*DMATX(13.N)
AE006600
AE006700
AE006600
AE006900
AE007000
AE007100
AE007200
AE007300
AE007HOO
AE007500
AE007600
AE007700
AE007800
AE007900
AE008000
AE008100
AE008200
AE008300
AE008400
AE008500
.AE008600
AE008700
AE008800
AE008900
AE009000
AE009100
AE009200
AE009300
AE009400
AE009500
AE009600
100 DEMO=(SMATX(9»ISl)*SMATX(2»ISl)+SMAT<9)*SMAT<2)-Tt>iPl-TEMP2)*a.33>»AE009700
110
120
C
c
C
c
11.
CFM=DLMO/.075/.232/.05/lt
-------
IF 2oO»260
250 PEFF=.74
60 TO 270
2t>0 PEFF=.83
270 YRKW=UPUMP*1000000.*DMATX(8.N)/l*mO./3960./pEFF/.9*.7457*24.*365.
ECOST=YRKw*DMATX ( 10 r 20 )
SCOST=EXPl5.8bm3+.3U16lO*X+.197183*X**2.-.017962*X**3.)
TMSU=tCOSl +SCUST*WP1
C
C
C OPERATlNb COST EQUATION
C
2ttO COSTO < N » 3 ) = « OHRS+XMHKS ) *UHR* ( 1 . +PCT > +TMSU ) /SMATX ( 2 • 1 ) /3650 .
C
C
C CALC. OF CAPITAL COSTS FOR FINAL SETTLER PASED ON DESIGN
C PLUS EXCESS CAPACITY
C
IF (AFS-1.) 290r300r300
290 CCOST(N»4)=25000.
60 TO 310
300 X=ALOto(AFS)
AE018900
AE019000
AE019100
AE019200
AE019300
AE019400
AE019500
AE019600
AE019700
AE019800
AE019900
AE020000
AE020100
AE020200
AE020300
AE020400
AE020500
AE020600
AE020700
AE020800
AE020900
AE021000
AE021100
AE021200
AE021300
CCOST(N»t)=EXP(3.7163bt+.389861*X+.08t560*X**2.-.OOt718*X**3.)*100AE021'tOO
10.
C
C
C CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
C DLSI6N CAPACITY ALONE» DOES NOT IftCLUuE EXCESS CAPACITY
C
C
C CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
C AND MATERIALS AND SUPPLIES
C
310 IF (AFS/DMATX(13»N)-1.) 320*330.330
320 OMRS=300.
XMHRS=150.
TMSU=125.
60 TO 340
330 X=AL06(AFS/DMATX(13rNM
OHRS=t,XP(b.8'+fab65-«-.25<*8l3*X+.113703*X**2.-.Ul09'*2*X**3.)
XMHRS=EXPl5.273U19+.2t:8329*X+.1226t6*X**2.-.Oll67a*X**3.>
TMSU=tXP 1 5. 669881+ . 750799*X )
C
C
C OPERATING COST EQUATION
C
340 COSTO IN. 4)= ( (OHRS+XMHRS) *UHR* ( 1 ,+PCT> +TMSU*«PI ) /SMATX (2.D/3650.
C
C
C ASSIGNMENT OF VALUES TO OMATX
C
360 OMATXll»N)=VALR
OMATXl2rN)=ACFM
OMATX (3>N)=oPuMP
OMATX(4»N)=AFS
C
C
C PROCESS ENERGY INDICES
C
FLOrt
PUtf(N)=18.
RETURN
END
AE021500
AE021600
AE021700
AE021BOO
AE021900
AE022000
AE022100
AE022200
AE022300
AE022400
AE022500
AE022600
AE022700
AE022800
AE022900
AE023000
AE023100
AE023200
AEOii3300
AE023400
AE023500
AE023600
AE023700
AE023600
AE023900
AE024000
AE024100
AE024200
AE024300
AE024400
AE024500
AE024600
AE024700
AE024800
AE024900
AE025000
AE025100
AE025200
AE025300
AE025400
181
-------
SECTION 20
POST AERATION, POSTA
Subroutine Identification Number 19
Post Aeration, POSTA
Rev. Date 8/1/77
1. Process symbol-
IS1
OS1
2. Input parameters and nominal values.
DMATX(l.N) •= ITYPE
DMATX(2,N) = L
DMATX(3,N) •= DOIN
DMATX(4,N) = DOUT
DMATX(5,N) = TL
DMATX(6,N) = TD
DMATX(7,N) = TW
DMATX(8,N) = AERFO
DMATX(9,N) = HPHRO
DMATX(10,N) = ALT
DMATX(11,N) = CFMDF
DMATX(12,N) = DIFFT
DMATX(13,N) = DD
DMATX(15,N) = ECF
DMATX(16,N) = ECF
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number to the process
Program control: -1 - mechanical aeration system
is used, 0 = diffused air aeration system is used
(plug flow), +1 = diffused air aeration system
is used (complete mix).[-l.]
Program control: set equal to the user assigned
process number (N) given to the aeration process
(AERFS) to allow the POSTA subroutine to use
output parameters calculated in the aeration
process.[varies].
Dissolved oxygen concentration in the influent
stream to the post aeration process, mg/l.[l.]
Dissolved oxygen concentration in the effluent
stream from the post aeration process, mg/l.[4.J
Water temperature, degrees Centigrade.[20.J
Tank depth (for diffused air only), ft.[15.]
Tank width (for diffused air only), ft.[24.]
Aeration efficiency at standard conditions (for
diffused air only), fraction.[.08]
Efficiency measure for the mechanical aerators,
Ib of oxygen transferred per hp-hr.[3.5]
Altitude of the plant site above sea level. ft.[0<],
Capacity of each air diffuser, scfm.[l5.]
Number of diffusers per foot of tank length.[1.] *
Depth of diffusers below the water surface, ft*[13*3$
Excess capacity factor for the air supply system.[1.1
Excess capacity factor fot the aeration basin.[l.]
182
-------
3. Output parameters which are printed on computer output sheets
ITYPE = DMATX(l.N)
L = DMATX(2,N)
DOIN - DMATX(3,N)
DOUT = DMATX(4,N)
TL = DMATX(5,N)
TD - DMATX(6,N)
TW = DMATX(7,N)
AERFO = DMATX(8,N)
HPHRO - DMATX(9,N)
ALT - DMATX(IO.N)
CFMDF = DMATX(ll.N)
DIFFT = DMATX(12,N)
DD = DMATX(13,N)
VAER •= OMATX(l.N)
CFM = OMATX(2,N)
HP = OMATX(3,N)
TMIN = OMATX(4,N)
VMG = OMATX(5,N)
AERFF = OMATX(6,N)
CLEN OMATX(7,N)
HPI = OMATX(8,N)
XN - OMATX(9,N)
THP = OMATX(IO.N)
WIDTH = OMATX(ll.N)
Volume of the post aeration basin, cu ft/1000.
Air requirement for the dlffusers, cfm.
Installed brake horsepower for mechanical aeration,
hp.
Detention time in the post aeration basin, minutes.
Volume of the post aeration basin, million gallons.
Aeration efficiency corrected to plant conditions.
Aeration channel length (plug flow), ft.
Installed brake horsepower (HP) rounded off to
the next higher available size mechanical aerator,
hp.
Number of mechanical aerators required.
Total mechanical aeration horsepower required
(HP1*XN), hp.
Mechanical aeration basin width, ft.
183
-------
DEPTH = OMATX(12,N)
TLEN = OMATX(13,N)
CCOST
COSTO
ACOST
TCOST
ECF
References:
Smith, Eilers and Hall, 1973
Mechanical aeration basin depth, ft.
Aeration basin length (diffused air, complete
mix), ft.
Capital cost, [dollars].
Operating and maintenance cost,[cents/1000gal].
Amortization cost, [cents/lOOOgal],
Total treatment cost, [cents/lOOOgal],
Excess capacity factor,
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
S = SMATX(8,IS1)+SMATX(17,IS1) POS05200
S = SBODIS1+DBODIS1 [mg/1]
XA = OMATX(9,L)*OMATX(3,L) POS05300
XA = OMATX(9,L)*OMATX(3,L) [mg/l]
SMATX(I.OSl) = SMATX(I.ISl) POS03900
SMATX(I,OS1) = SMATX(I,IS1) Cmg/l]
where I = 2,20 i.e. Q.SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,DP,DFM,ALK,DBOD,
NH3.N03
CSS = 14.652-.410220*TL+.007991*TL**2.-.000078*TL**3.
CSS = 14.652-0.410220TL+0.007991TL2-0.000078TL3
RP = (760.-.025*ALT)/760.
„„ 760-0.025ALT
OT 760
POS07200
[mg/1]
POS07300
[no units]
184
-------
CSV - RP*CSS*BETA
CSW - RP*CSS*BETA
AERK1 - . 31942* (CSW-DOUT)*HPHRO*ALPHA*1. 025** (TL-20.)
AERK1 - 0.31942(CSWHDOUT)*HPHRO*ALPHA*(1.025)TL~20
AERK2 = .58*CAER*XA*S/CY+1.16*CE*XA
0.58CAER*XA*S + (H6CE*XA)
CY
HP = (SMATX(2,IS1)*(DOUT-DOIN)+AERK2*VMG)/AERK1*DMATX(15,N)
[Q *(DOUT-DOIN)+(AERK2*VMG)]ECF
HP = TSl - . -
AERK1
VCF = (17.+.53*HP)**2.*(5.+,07*HP)
VCF = (17+0.53HP)i*(5+0.07HP)
VMG = VCF*7. 48/1000000. *DMATX (16 ,N)
yjj- = 7.48VCF*ECF
1000000
VDEL = ABSCVMG-VMGP)
VDEL = | VMG-VMGP |
HP1 = SIZE(I) (For HP£ size (I))
HP1 = SIZE(I)
where I = 1,14
XN =HP /150.
XN =
HP
T5~0
POS07400
[mg/1]
POS07700
[I/day]
POS07800
^day ^
POS08100
[horsepower]
POS08200
[ft3]
POS08400
[MG]
POS08500
[MG]
POS09300
[horsepower]
POS09800
[number]
185
-------
THP - HP1*XN
THP « HP1*XN
WIDTH - 17.+.53*HP1
WIDTH - 1740.53HP1
DEPTH • 5.+.07*HPl
DEPTH = 5+0.07HP1
VCF « DEPTH*WIDTH**2.
VCF = DEPTH*WIDTH2
VMG = (VCF*7.48/1000000.)*XN
VMG = ?.48VCF*XN
1000000
HPMG - THP/VMG
HPMG
THP
VMG
DAYS = VMG/SMATX(2,IS1)
DAYS
VMG
TMIN = DAYS*1440.
TMIN = 1440 DAYS
VAER = VMG*1000./7.48
VAER = 1000VMG
7.48
POS10100
[horsepower]
POS10200
[ft]
POS10300
[ft]
POS10400
[ft3 1
POS10500
[MG]
POS10600
[JlH]
MG
POS10700
[days]
POS10800
[min]
POS10900
rft3
LiUUUJ
186
-------
CFMMG - CFMDF*DIFFT*1000000./TD/TW/7.48
POSH 100
CFMMG - CFMDF*DIFFT*1000000
7.48TD*TW
AERFF - AERFO*(DD/13.)**.66666*(8./CFMDF)**.2
0.66666 o 0.2
AERFF - AERFO*
POS11200
[no units]
AERK1 • .33347*CFMMG*AERFF*ALPHA*1.025**(TL-20.)
AERK1 = 0.33347CFMMG*AERFF*ALPHA*(1.025)TL~20
AERK2 - .58*CAER*XA*S/CY-1.16*CE*XA
0.58*CAER*XA*S .
CY
POSH 300
[I/day]
POS11400
TEMP = (AERK1*(CSW-DOUT)-AERK2)/(AERK1*(CSW-DOIN)-AERK2)
TEMp . AERK1(CSW-DOUT)-AERK2
AERK1(CSW-DOIN)-AERK2
DAYS = -l.*ALOGCTEMP)/AERKl
In TEMP
DAYS » -
AERK1
POS11500
[no units]
POS11600
[days]
TMIN = DAYS*1440.
TMIN = 1440 DAYS
VFM = SMATX(2,IS1)*92.84/TD/TW
92.84Q
VFM =
IS1
TD*TW
POS11700
[min]
POS11800
[ft/min]
CLEN = VFM*TMIN
92.84Q *TMIN
CLEN
IS1
TD*TW
POS11900
[ft]
187
-------
CFM = CLEN*CFMDF*DIFFT*DMATX(15,N)
CFM = CLEN*CFMDF*DIFFT*ECF
s
CFMMG = CFMDF*DIFFT*1000000./TD/TW/7.48
CFMDF*1000000DIFFT
CFMMG
7.48TD*TW
AERFF = AERFO*(DD/13.)**.66666*(8./CFMDF)**.2
AERFF = AERFO(22.)
0.66666
8
0.2
CFMDF
AERK1 = .33347*CFMMG*AERFF*A1PHA*1.025**(TL-20.)
AERK1 = 0.33347CFMMG*AERFF*ALPHA*[1.025]TL~2°
AERK2 = .58*CAER*XA*S/CY-1.16*CE*XA
. 0.58CAER*XA*S _(1.i6CE*XA)
CY
VMG
QTC1(DOUT-DOIN)ECF
ZS1 b
AERKl(CSW-DOUT)-AERK2
DAYS = VMG/SMATX(2,IS1)
VMG
DAYS =
IS1
TMIN = DAYS*1440.
TMIN 1440DAYS
TLEN = VMG*1000000./TD/TW/7.48
1000000VMG
TLEN
POS12000
[cfm]
POS12200
[ft3/MG]
POS12300
[no unitg]
POS12400
[I/days]
POS12500
VMG = SMATX(2,IS1)*(DOUT-DOIN)/(AERK1*(CSW-DOUT)-AERK2)*DMATX(16,N) POS12600
[MGJ
7.48TD*TW
POS12700
[days]
POS12800
[mln]
POS12900
[ft]
188
-------
VAER- VMG*1000./7.48 POS13000
VAER = 1«G_ rft3 ^
CFM - CFMMG*VMG*DMATXC15,N) POS13100
CFM = CFMMG*VMG*ECFS [cfm]
5. Cost functions.
Post aeration basin
a. Capital cost
Function of VAER
X = ALOG(VAER) POS14300
X = In VAER
CCOST(N.l) = EXP(2.180040+.351346*X+.064188*X**2.-.003403*X**3.)*1000. POS14400
CCOST = 1000e2-180040+0'3513'i6X+0.064188X2-0.003403X3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours POS15200
OHRS = 0 [hrs/yr]
(2) Maintenance manhours POS15300
XMHRS = 0 [hrs/yr]
(3) Total materials and supplies POS15400
TMSU = 0 [dollars/yr]
c. Total operating and maintenance costs
COSTO(N.l) = 0 POS15500
COSTO = 0 [cents/lOOOgal]
189
-------
Mechanical aeration
a. Capital cost
Function of THP
X - ALOG(THP) POS16600
X = In THP
For THP < 20
CCOST(N,2) - 20000. POS17300
CCOST - 20000 [dollars]
For THP > 20
CCOST(N,2) - EXP(2.848804-.223685*X+.142476*X**2.-.005985*X**3.)*1000. POS18000
CCOST - 1000e2.848804-0.223685X+0.142476x2-0.005985X3 [dollm]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of THP/ECF,,
s
X = ALOG(THP/DMATX(15,N)) POS18800
y _ IT,
ECF
(*) For (THP/ECFg < 40)
C**) For (THP/ECF. > 40)
9 <^j
(1) Operating manhours POS19500
(*) OHRS = 600 [hrs/yr]
(**) OHRS = EXP(6.716272-.310684*X+.112744*X**2.-.004877*X**3.) POS20400
OHRS = e6. 716272-0. 310684X+0.112744X2-0.004877X3 [hrs/yr]
(2) Maintenance manhours POS19600
(*) XMHRS = 300 [hrs/yr]
(**) XMHRS = EXP(4.251092+.467681*X+.008276*X**2.) POS 20500
YMHRC _ .4. 251092+0. 467681X+0.008276X2 r , ,
XMhRS - e. [hrs/yr]
(3) Blower kilowatts
XKW = .8*THP/DMATX(15,N) POS21000
[kilowatts]
190
-------
(4) Blower kilowatt years
XKWPY - XKW*24.*365. POS21100
XKWPY • 24XKW*365 [kwhr/yr]
(5) Energy cost
ECOST - XKWPY*DMATX(10,20) POS21200
ECOST - 24XKW*365*CBWH [$/yr]
(6) Service cost
PCFM - THP/DMATX(15,N)/8. 1/144. *(33000.*.8)/1000. POS21300
PCFM „ THP*33000*0.8 r - -,
PCFM 8.1ECFS*144*1000 [cfm]
SCOST = EXP(.621382+.482047*ALOG(PCFM))*1000. POS21400
SCOST = 1000e-' ?CFM) [$/yr]
c. Total operating and maintenance costs POS21900
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)DHR(1+PCT)+(SCOST*WPI)+ECOST , , -.
Qplant Inf. * 365° [cents/1000 gal]
Diffused aeration
a. Capital cost
Function of CFM
X = ALOGCCFM/1000.) POS22700
In
CFM
1000
(*) For
(*) CCOST = 13000 POS23400 [dollars]
(**) CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.
POS24100
CCOST = iooOe4<145A54+0-633339x+0-031939x2~0-002419x3
191
-------
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of CFM/ECF
O
X - ALOG(CFM/1000,/DMATX(15,N)) POS24900
X =» In
CFM
lOOOECFg
(*) For ( . CFM - < 1)
1000ECFC
s
(**) For (
('
— -
1000ECFg =
(1) Operating manhours POS25700
(*) OHRS = 850 Chrs/yrl
(**) OHRS = EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.) POS26600
OHRS = e6-900586+0-323725x+0-059093x2~°-004926x3 fhrs/ rl
C2) Maintenance manhours POS25800
C*) XMHRS = 350 [hrs/yr]
(**) XMHRS = EXP(6.169937+.294853*X+.175999*X**2.-.040947*X**3.+.003300*X**4.)
XHIIRS = e6. 169937+0. 294853X+0.175999X2-0.040947X3+0.003300X4 [hrs/yr]
POS26700
(3) Blower horsepower
CHP CFM/DMATX (15 ,N)*8. 1*144. / (33000.*. 8) POS27300
CHP = CFM*8. 1*144
ECFS*33000*0.8 [horsepower]
(4) Blower kilowatts
XKW = .8*CHP POS27400
XKW = CFM*8. 1*144
ECF *33000 [kilowatts]
S
(5) Blower kilowatt years
XKWPY XKW*24.*365. POS27500
XKWPY - 24XKW*365 [kwhr/yr]
(6) Energy cost
ECOST = XKWPY*DMATX(10,20) POS27600
ECOST = 24XKW*365CKWH [$/yr]
192
-------
(7) Service cost
SCOST - EXP(.621382+.482047*X)*1000. POS27700
SCOST - 100Oe0-621382+0-482047X [$/yr]
c. Total operating and maintenance costs POS28200
COSTO(N,2) - ((OHRS+30fflRS)*DHR*(l.+PCT)+SCOST*WPI+ECOST)/SMATX(2,l)/3650.
COSTO = (OHRS+XMHRS)DHR(1+PCT^(SCOST*WPI)+ECOST [cents/1000 gal]
193
-------
c
c
c
c
POST AERATION
PROCESS IDENTIFICATION NUMBER
19
SUBROUTINE POSTA
COMMON INITIAL STATEMENTS
POS00100
POS00200
POS00300
POS00100
POS00500
POS00600
POS00700
POS00800
POS00900
INTEGER osi»os2 POSOIOOO
DIMENSION SIZLUt) POS01100
COMMON SMATX.OMATX<20.20).IP<20)»POS01200
llNP»IO»ISl.IS2.0S1.0Si!»N.IAERF.CCOST<20»5>»COSTO(20.5).ACOST<20.5)PoS01300
2»TCOST(20.5).DHR.PCT.wPI»CLAND»DLAND»FLOW(25>»POW(25>»TKWHD(25) POS01400
DATA SIZE/5.r7.5rlO.»15.'20.»25.»30.'
TL=OMATX(b»N)
TD=DMATX(b»N)
T«=DMATX(7rN)
AERFO=DMATX(8rN)
HPHRO=DMATX(9»N)
ALT=DMATX(10»N)
CFMDF=DMATX(11»N)
D1FFT=DMATX(12»N>
DD=DMATX(13rNJ
ASSIGNMENT OF DESIGN VALUES To PROCESS PARAMETERS
EFFLUENT STREAM CALCULATIONS
DO 10 1=2.20
10 SMATXUfObl)=SMATX(I»ISD
CALC. OF OUTPUT SIZES AND QUANTITIES
POS02100
POS02200
POS02300
POS02400
POS02500
POS02600
POSU2700
POS02800
POS02900
POS03000
POS03100
POS03200
POS03300
POS03400
POS03500
P0503600
POS03700
POS03800
POS03900
POS04000
POS04100
POS04200
POS04300
POSOH100
POS04500
IF (7.5-DOUT) 20»tO»HO
WRITE (I0r30>
FORMAT ///•iox»'DEMAND DOUT OF POST AERATION is TOO HIGH'.////) poso^boo
CAER=.02t POSOH700
CY=t&i> POS01800
CL=.li>5 POS0^900
ALPHA=.9 POS05000
BtTA-.95 POS05100
S=SMATX(6,IS1)+SMATX <17.IS1) POS05200
XA=OMATX(9.L)»OMATX(3.L) POS05300
^M=°' POS05UOO
"p=0. POS05500
CFMMG-0. POS05600
HPMG-U. POS057130
DtPTH=0.
POS05800
194
-------
TMIN=0. POS05900
VAER=U. POS06000
VMG=0. POS06100
VCF=0. POS06200
VU£.L=U. POS06300
W1DTH=0. POS06100
ALRFFzO. POS06500
CLEN=O. poso660o
VFM=0. POS06700
TLEN=U. POS06800
HPlrO. POS06900
XN=0. POS07000
THP=O. POS07100
CSS=l'*.65«i-.«U0220*Tl-+.007991*TL**2.-.00007a*TL**3. POS07200
RP=(7oO.-.025*ALT)/760. POS07300
CSw=RP*CSb*BETA POS07UOO
IF UTYPE) 50>mO»150 POS07500
bO VM6=0. POS07600
AERKl=.319»»2*(CSW-DOUT)*HPHRO*ALPHA*1.025**{TL-20.) POS07700
At.RK2=.58*CAEK*XA*S/CY+1.16*CE*XA POS07800
NT=0 POS07900
60 NT=NT>1 POS08000
HP=(SMATX(2»IS1)*(DOUT-DOIN)+AERK2*VMG)/AERK1*DMATX(15»N) POS08100
VCF=(17.+.53*HP)**2.*15.+.07*HP) POS08200
VMfaP=VMG POS08300
VMb=VCF*7.«+8/1000000.*DMATX(16fN) POSOStOO
VDEL=ABS(VMG-VM6P> POS08500
IF (NT-25) 90»90»70 POS08600
70 WHITE (I0»80) POS08700
80 FORMAT (////»iOXr'POST AERATION ITERATION DOES NOT CONVERGE'»////)Po508800
60 TO 100 POS08900
90 IF (VDEL-.0001) 100rlUO»60 POS09000
100 DO 120 I=l»lAYS*14«*0. POS11700
VFM=SMATX(2»Ii>l)*92.8'*/TD/TW POS11800
CLEN=tfFM*TMIN POS11900
CFM=CLEN*CFMDF*DIFFT*UMATX(15»N) POS12000
60 TO 160 P0512100
150 CFMMG=CFMUF*DlFFT*100oOOO./TD/TW/7.«*8 POS12200
AERFF=AERFO*(UD/13.)**.66666*(8./CFMDF)**.2 P0512300
195
-------
c
c
c
c
c
c
l = .33.i<+7*CFMMG*AERFF*ALPHA*1.025***DMATXU6.N) POS12600
DAYS=VMG/SMATX(2.IS1>
TM1N=UAYS»1U<+0.
TLEN=VMG* 1000000
VAER=\/MG*1000./7.<*8
CFM=CFMMG*VMG*DMATX(li>»N)
CALC. OF CAPITAL AND OPERATING COSTS FOR POSTA BASIN
160 IF (ITYPE) 170.180.170
CALC. OF CAPITAL COSTS FOR POSTA BASIN BASED ON
DESIGN PLUS EXCESS CAPACITY IF MECHANICAL AERATION
OR DIFFUSED AIR OF COMPLETE Mix IS USED
17u X=AL06(VAER)
POS12700
POS12800
POS12900
POS13000
POS13100
POS13200
POS13300
POS13UOO
POS13500
POS13600
POS13700
POS13800
POS13900
POS14000
POS1<*100
POS1U200
POS1U300
CALC. OF OPERATING COSTS FOR PoSTA BASIN BASED ON
DESIGN CAPACITY ALONE* DOES NOT INCLUDE EXCESS
CAPACITY
OHKS=O.
XMHRS=O.
TMSU=O.
COSTO(N»1)=0.
CALC. OF CAPITAL AND OPERATING COSTS FOR AERATION
ISO IF (ITYPE) 190.260.26U
CCOST(N.l)=EXP(2.1800'*0-»-.3513'+6»X+.06*H88*X**2.-.003l+03*X**3.)*100POSl<*«»00
10. POSltSOO
P051U600
POS14700
POS11800
POS1U900
POS15000
POS15100
POS15200
POS15300
POS15400
POS15500
POS15600
POS15700
POS15800
POS15900
P0516000
POS16100
POS16200
POS16300
POS16400
POS16500
POS16600
POS16700
POS16800
POS16900
POS17000
POS17100
POS17200
POS17300
POS17400
POS17500
POS17600
POS17700
POS17800
POS17900
210 CCOST(N.2)=EXP(2.8"+880t-.223685*X+.l<»2«*76*X**2.-.005985*X**3,)»100PoS18000
CALC. OF CAPITAL COSTS FOR MECHANICAL AERATION
SYSTEM BASED ON DESIGN PLUS EXCESS CAPACITY
190 X=ALOG(THP)
IF (THP-20.) 200»210»210
2UO CCOST(N»2)=20uOO.
GO TO 220
CALC. OF CAPITAL COSTS FOR SMALL AERATION
CAPACITY. LESS THAN 20 HP.
CALC. OF CAPITAL COSTS FOR LARGE AERATION
CAPACITY. EQUAL OR GREATER THAN 20 HP.
10.
CALC. OF OPERATING COSTS FOR MECHANICAL AERATION
SYSTEM BASED ON DESIGN CAPACITY ALONE. DOES NOT
INCLUDE EXCESS CAPACITY
X=ALOG(THP/DMATX(15.N»)
IF (THP/DMATX(15.N)-UO.) 230»2«*0
POS18100
POS18200
POS18300
POS18400
POS18500
POS18600
POS1870*
POS18800
POS18900
196
-------
2.10 OHRS=600.
XMHKS=300i
60 TO £50
POS19000
POS19100
CALC. OF OPERATING MANHOUKS AND MAINTENANCE POS19200
MANHOURS FOR AERATION CAPACITY* LESS THAN «fO HP POS19300
POS19100
POS19500
POS19600
POS19700
POS19800
POS19900
CALC. OF OPERATING MANHOURS AND MAINTENANCE POS20000
MANHOURS FOR AERATION CAPACITY* EQUAL OR
GREATER THAN HO HP.
210 OHRS=tXP(b.71b272-.31068<+*X+.1127<*4*X**2.-.00'*877*X**3.
XMHRS=EXPIH.251092+.<*67bBl*X+.008276*X**2.)
CALC. OF SUPPLIES AND ELECTRICAL POWER COSTS
250 XKW=.ti*THP/DMATX(15*N)
XKwPY=XKW*2<+.*365.
ECOST=XKWPY*DMATX(10»20)
PCFM=THP/UMATX(l5*N)/b.l/l«*<*.*<33000.*.8)/lOOO.
SCOST=EXP(.62l382+.<+82047*ALOG(PCFM)>*1000.
OPERATING COST EQUATION
CALC. OF CAPITAL COSTS FOR DIFFUSED AIR AERATION
SYSTEM BASED ON DESIGN PLUS EXCESS CAPACITY
C
C
C
C
C
POS20100
POS20200
POS20300
POS20UOO
POS20500
POS20600
POS20700
POS20800
POS20900
POS21000
POS21100
POS21200
POS21300
P0521<*00
POS21500
POS21600
POS21700
POS21800
COSTO(Ni2)=((OHRS+XMHRS)*DHR*(1,+PCT)+SCOST*WPI+ECOST)/SMATX(2•1>/POS21900
13650. POS22000
GO TO 330 . POS22100
POS22200
POS22300
POS22400
POS22500
POS22600
POS22700
POS22800
POS22900
POS23000
POS23100
POS23200
POS23300
POS23UOO
POS23500
POS23600
POS23700
POS23800
POS23900
POS24000
280 CCOSTlN»2)=EXP(4.1<45tb-1.)
300*310*310
CALC. OF OPERATING MANHOUKS AND MAINTENANCE
MANHOURS FOR AIR REQUIREMENT* LESS THAN 1000
CFM.
197
-------
300
c
c
c
c
OHRS=fl50.
XMHRS=350.
GO TO 320
c
c
c
c
c
c
CALC. OF OPERATING MANHOUHS AND MAINTENANCE
MANHOURS FOR AIR REQUIREMENT* EQUAL OR GREATER
THAN 1000 CFM.
310 OHRS=tXP(b.900586+.323725*X+.059093*X**2.-.00«»926*X**3.)
XMHRS=EXP(6.169937+.29U853*X+.175999*X**2.-.0(*09<»7*X**3.<
1**H.)
POS25600
POS25700
POS25800
POS25900
POS26000
POS26100
POS26200
POS26300
POS26HOO
POS26500
POS26600
CALC. OF SUPPLIES AND ELECTRICAL POWER COSTS
320
CHP=CFM/DMATX(15»N>*8.1*14<*./<33000.*.8>
XKW=.8*CHP
XKWPY=XKW*2<*.*365.
ECOST=XKWPY*DMATX(10»20)
SCOST=EXPI.621382*.
c
c
c
c
c
c
c
c
OPERATING COST EQUATION
13650.
330
POS26800
POS26900
POS27000
POS27100
POS27200
POS27300
POS27400
POS27500
POS27600
POS27700
POS27800
POS27900
POS28000
POS28100
= «OHRS+XMHRS)*DHR*U.+PCT>+SCOST*WPI+ECOST)/SMATX(2»1)/POS28200
POS28300
POS28tOO
POS28500
ASSIGNMENT OF VALUES TO OMATX POS28600
POS28700
OMATX(1»N)=VAER POS28800
OMATX(2»N)=CFM POS28900
OMATX(3»N)=HP POS29000
OMATX(<*»N)=TM1N POS29100
OMATX (5rN)=VMt, POS29200
OMATX (6»N)=AEKFF POS29300
OMATX(8,N)=HP1 POS29500
OMATX (9rN)=XN POS29600
OMATX(10»N)=THP POS29700
OMATX(11»N)=WIDTH POS29800
OMATX ( 12 »N)=DtPTH POS29900
OMATX(13»N)=TLEN POS30000
POS30100
POS30200
PROCESS ENERGY INDICES POS30300
POS30400
FLO«|(N)=SMATX(2»IS1) POS30500
PO«
-------
SECTION 21
EQUALIZATION, EQUAL
Subroutine Identification Number 20
Equalization, EQUAL
1. Process symbol.
v_
/
OS1
Rev. Date 8/1/77
IS1: Liquid input stream
OS1: Liquid output stream
N: User assigned number to the process
Input parameters and nominal values.
DMATX(l.N) = IAER
DMATX(2,N) = RLW
DMATX(3,N) = COSTL
DMATX(4,N) = HEAD
DMATX(5,N) = IMAT
DMATX(14,N) = ECF
DMATX(15, ) = ECF
DMATX(16,N) = ECF
Program control: 0 = Small impeller mechanical
aerators on floating platforms are used, 1 =
large impeller mechanical aerators on station-
ary platforms are used. [1.]
Ratio of length to width for the equalization
basin. [1.]
Cost of pond lining material, $/sq ft. [.5]
Pumping head of effluent pumps from the equali-
zation basin, ft. [10.]
Program control: 0 = Earthen pond with
mechanical aeration is used for the equaliza-
tion basin, 1 = concrete tank with diffused
air is used for the equalization basin. [0.]
Excess capacity factor for the pumping
system. [1.25]
Excess capacity factor for the surface
aerators. [1.]
Excess capacity factor for the equalization
basin. '[*!.]
Output parameters which are printed on computer output sheets.
IAER = DMATX(l.N)
RLW = DMATX(2,N)
COSTL = DMATX(3,N)
HEAD = DMATX(4,N)
199
-------
IMAT = DMATX(5,N)
WIDTH = OMATX(l.N)
AREA = OMATX(2,N)
VUMG= OMATX(3,N)
VOMG = OMATX(4,N)
VT = OMATX(5,N)
SAREA = OMATX(6,N)
HP = OMATX(7,N)
HP1 OMATX(8,N)
XN = OMATX(9,N)
THP = OMATX(10,N)
PLAND = OMATX(ll.N)
CLAND = OMATX(12,N)
VAER = OMATX(13,N)
ECFM = OMATX(14,N)
CCOST
COSTO
ACOST
TCOST
ECF
Equalization basin width at the water line, ft.
Equalization basin area at the water surface,
acres.
Usable liquid volume of the equalization
basin, mg.
Minimum liquid volume of the equalization
basin, mg.
Total liquid volume of the equalization basin
(VDMG + VOMG), mg.
Area of the lining required for the equaliza-
tion basin, sq ft.
Mechanical aerator brake horsepower, hp.
Brake horsepower (HP) rounded off to the next
higher available size mechanical aerator, hp.
Number of mechanical aerators required.
Total mechanical aeration brake horsepower
required (HPl*XN),hp.
Amount of land needed for the equalization
basin (this land area requirement is included
in the total land area requirement, ACRE, for
the whole plant), acres.
Cost of land needed for the equalization basin
(this cost is included in the total plant cost,
XLAND, for land), $.
Volume of the concrete tank used for the
equalization basin, cu ft/1000.
Required size of the blower for supplying air
to the concrete equalization basin, cfm.
Capital cost,[dollars].
Operating and maintenance cost,[cents/1000gal].
Amortization cost,[cents/1000 gal].
Total treatment cost,[cents/1000 gal].
Excess capacity factor.
200
-------
Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
QP = 1.78*SMATX(2,IS1)**.92 EQU04400
QP = 1.78[QIS1]°'92 [MGD]
VTJ = SMATX(2,IS1)*.12*1000000./7.48*DMATX(16,N) EQU04500
0 *0.12*1000000*ECF
VU - _IH [ft3]
7.48
SAREA = (2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90.)+20.*(24.+
(l.+RLW)*WIDTH)
EQU05200
SAREA = (2WIDTH(1+RLW)-156)*53.76+(WIDTH-90)(RLW*WIDTH-90)+20(24+(1+RLW)WIDTH)
[ft2]
WIDTH = (300.*(l.+RLtt)+(90000.*(l.+RLW)**2.-40.*RLW*(12000.-TO))**.5)/20./RLW
WTnTH _ 300 (1+RLW) +[90000 (1+RLW) -40RLW(12000-VU) ] rff.-,
WIDTH -- - 20RLW - --- - EQU05500
AREA = RLW*WIDTK**2./43560. EQU05700
AREA = RLW(WIDTH) _ [acre]
43560
VMIN = 5.*RLW*WIDTH**2.-375.*WIDTH*(1.+RLW)+28500. EQU05800
VMIN = 5RLW(WIDTH) -375WIDTH(1+RLW)+28500
SAREA = (2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90>)-20.*(24.+
(l.+RLW)*WIDTH)
SAREA = (2WIDTH(1+RLW)-156)53.76+(WIDTH-90) (RLW*WIDTH-90)+20(24+(1+RLW)WIDTH)
[ft2]
WIDTH = (300.*(1.+RLW)+(90000.*(1.+RLW)**2.-40.*RLW*(12000.-VU))**.5)/20./RLW
2 Q 5 EQU06200
= 300(1+RLW)+[90000(1+RLW) -40RLW(12000-VU)] [ft]
20RLW
201
-------
AREA = RLW*WIDTH**2./43560.
2
AREA
RLW (WIDTH).
43560
VMIN = VU*.2857
VMIN = 0.2857VU
VUMG = VU*7.48/1000000.
7.48VU
VUMG
1000000
[acre]
[ft3!
[MG]
VOMG = VMIN*7.48/1000000.
VOMG = 7'48VMIN
1000000
[MG]
VT = VUMG+VOMG
™ = 7.48(VU+VMIN)
1000000
[MG]
HPA = VT*29.88 (For VT>1.4)
HPA= 29.88VT [horsepower]
HPA = VT*35.36/(VT**.5) (For VT<1.4)
HPA _ 35.36VT [horsepower]
(VT)°-5
HPB = VT*59./(VT**.4254)
59VT
HPB
(VT)
0.4254
[horsepower]
HP = HPB*DMATX(15,N) (For HPA
-------
HP - HPA*DMATX(15,N) (For HPA>HPB) EQU07900
HP = HPA*ECF [horsepower]
HPL = SIZE(I) EQU082°°
HP1 = SIZE(I) [horsepower]
where I = 1,14
Pump efficiency - Current values used in program; each can be changed by the
replacement on punched card.
PEFF =0.70 for Q <1.44MGD EQU11500
XS1
PEFF = 0.74 for Q <10.08MGD EQU11800
XS1
PEFF = 0.83 for Q £10.08MGD EQU12000
15-L
VAER = VT*1000./7.48 EQU15000
VAER = 1000VT [ft3/1000]
ECFM = 20.*VAER*DMATX(15,N) [ft3/min] EQU17000
ECFM = 20VAER*ECF
SMATX(I.OSl) = SMATX(I,IS1)
SMATX(I.OSl) = SMATX(I.ISl) [mg/l]
where I = 2.20 i.e. Q,SOC,SNBC,SON,SGt',SFM>SBOD,VSS,TSS,DOC,DNBC,DN>DP,DFM,
ALK,DBOD,NH3,N03
References:
Patterson and Banker, 1971
Smith Eilers Hall Feb 1973
203
-------
5. Cost functions.
Equal basin
a. Capital cost
Function of VAER
X = ALOG(VAER) EQU15600
X = In VAER
CCOST(N,1) = EXP(2.414380+. 175682*X+.084742*X**2.-.002670*X**3.)*1000.
2 3 EQU15700
CCOST - 1000e2-414380+0.175682X+0.084742X -0.002670X [doiiars]
b. Total operating and maintenance costs EQU16400
COSTO(N.l) = 0 [cents/lOOOgal]
Blower
a. Capital cost
Function of ECFM
X = ALOG(ECFM/1000.) EQU17100
ECFM
X = In
1000
CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.
o 3 EQU17200
CCOST = 1000e4.145454+0.633339X+0.031939X -0.002419X
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of ECFM/ECF
X = ALOG(ECFM/1000./DMATX(15,N)) EQU17900
X = In ECFM
1000ECF
(1) Operating manhours
OHRS = EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.) EQU18500
2 3
™DO 6.900586+0.323725X+0.059093X -0.004926X r
OHRS = e [hrs/yrj
204
-------
(2) Maintenance manhours
EQU18600
XMHRS = EXP(6.169937+.294853*X+.175999*X*.*2.-.04097*X**3,+.QQ3300*X**4,}
234
6.169937+0.294853X+0.175999X -0.040947X +0.003300X
XHHRS - e [hrs/yr]
(3) Blower horsepower
EHP = ECFM/DMATX(15,N)*8.1*144./(33000.*.8)
TO,, _ 8.1ECFM*144
33000ECF*0.8
(4) Blower kilowatts
XKW = .8*EHP
v-nr _ 8.1ECFM*144
33000ECF
(5) Blower kilowatt years
XKWPY = XKW*24.*365.
XKWPY = 24XKW*365
(6) Energy cost
ECOST = XKWPY*DMATX(10,20)
ECOST = 24XKW*365*CKWH
(7) Supplies cost
SCOST = EXP(.621382+.48:047*X)*1000.
SCOST = lOOOe
0.621382+0.482047X
EQU18800
[hp]
EQU18900
[kw]
EQU19000
[kw-yrs J
EQU19100
[dollara/yr ]
EQU19200
[dollars/yr]
c. Total operating and maintenance costs EQU19700
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
COSTO
= j^OHRS+XMHRS)*DHR*(l+PCT)]+(SCOST*WPI)+ECOST
Q^, *3650
Plant inf.
[cents/lOOOgal]
205
-------
Pumping system of concrete tank
a. Capital cost
Function of QIS1*ECF
X = ALOG(SMATXC2,IS1)*DMATX(1M)) EQU09600
X = In (QIS1*ECF)
CCOST(N,3) = EXPC3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.
EQU09700
CCOST = iooOe3-481553+0'377485X+0-093349x2~°-006222x3 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of
X = ALOG(SMATX (2,181)) EQU10500
X = In QIgl
(1) Operating manhours EQU11100
OHRS = EXP (6 . 097269+. 253066*X- . 193659*X**2 .+. 078201*X**3 .- . 006680*X**4. )
OHRS = e6- 097269+0. 253066X-0.193659X2+0.078201X3-0.006680X4 [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(5.911541-.013158*X+.076643*X**2.) EQU11300
XMHRS . e5. 911541-0. 013158X+0.076643X2 [hrs/yr]
(3) Kilowatt hrs per year EQU12100
YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/. 9*. 7457*24. *365.
_ QiSi*1000000*HEAD*0. 7457*24*365
1440*3960*PEFF*0.9 [kwhr/yr]
(4) Energy cost
ECOST = YRKW*DMATX(10,20) EQU12200
ECOST = YRKW*CKWH [dollars/yr]
206
-------
(5) Supplies cost
SCOST " EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.)
5.8517 A3-H). 301610X+0.197183X2-0.017962X3
SCOST m e
(6) Total materials and supplies
TMSU - ECOST+SCOST*WPI
TMSU - ECOST+(SCOST*WPI)
c. Total operating and maintenance costs
COSTO(N,3) • (COHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
COSTO
[(OHRS+XMHRS)*DHR*(1+PCT)]+TMSU
.nt Inf.
*3650
EQU12300
[dollars/yr]
EQU12400
[dollars/yr]
EQU12900
[cents/lOOOgal]
Pumping system of earthen pond
a. Capital cost
Function of Q *ECF
1.D J.
X • ALOG(SMATX(2,IS1)*DMATX(14,N))
X
CCOST(N,4) • EXP(8.109253+.646743*X)
8. 109253+0. 646743X
b. Total operating and maintenance costs
COSTO(N.A) = 0
EQU13500
EQU13600
[dollars]
EQU14200
[cents/lOOOgal]
207
-------
Equal basin for earthen pond
a. Capital cost
Function of AREA
X ALOG(AREA) EQU20400
X = In AREA
(1) For AREA<1 ACRE EQU21100
CCOST(N.l) = 22000 [dollars]
(2) For AREA>1 ACRE EQU22500
CCOST(N.l) = EXP(3.501091+.422086*X+.079097*X**2.-.008338*X**3.)*1000.
2 3
3.501091+0.422086X+0.079097X -0.008338X
CCOST = lOOOe [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) For AREA
-------
(b) Maintenance manhours
XMHRS = EXP(4.844423+.327982*X+.017677*X**2.) EQU23400
4.844423+0.327982X+0.017677X2
XMHRS = e [hrs/yr]
(c) Total materials and supplies EQU23900
TMSU = 0 [dollars/yr]
c. Total operating and maintenance costs EQU24400
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO _ (OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI)
Q *3650 [cents/lOOOgal]
Plant Inf.
Blower for earthen pond
a. Capital cost
Function of THP
X = ALOG(THP) EQU25000
X = In THP
(1) For IAER = 0 EQU25800
CCOST(N,2) = EXP(.647120+.438812*X+.031192*X**2.)*1000.
0 . 647120+0 . 438S12X+0 . 031192X2
CCOST = lOOOe [dollars]
(2) For IAEROO EQU26600
CCOST (N, 2) = EXP(3.141014-.218751*X+.136739*X**2.-.006042*X**3.)*1000.
2 3
n™o^ lnnn 3. 141014-0. 218751X+0.136739X -0.006042X
CCOST lOOOe [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of THP/ECF
X = ALOG(THP/DMATX(15,N)) EQU27300
209
-------
(1) Operating manhours EQU27900
OHRS = 0 [hrs/yr]
(2) Maintenance manhours EQU28000
XMHRS = 0 [hrs/yr]
(3) Blower kilowatts
XKW = .8*THP/DMATX(15,N) EQU28100
XKW = 0.8THP [kw]
ECF
(4) Blower kilowatt years
XKWPY = XKW*24.*365. EQU28200
XKWPY = 24XKW*365 [kw/yrs]
(5) Energy cost
ECOST = XKWPY*DMATX(10,20) EQU28300
ECOST = 24XKW*365*CKWH [dollars/yr]
(6) Supplies cost
SCOST = EXP(4.016957+.534211*X) EQU28400
r.™™ 4.016957+0.534211X
SCOST = e [dollars/yr]
c. Total operating and maintenance costs "
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)*DHR*(1+PCT)+(SCOST*WPI)+ECOST [cents/lOOOgal]
QPlant Inf.*365°
210
-------
Fond lining
a. Capital cost
CCOST(N,5) - SAREA*COSTL
b. Total operating and maintenance costs
COSTO(N,5) = 0
EQU29500
[dollars]
EQU30000
[cents/lOOOgaJ.]
Land requirement
Function of AREA
X = ALOG(AREA)
X = In AREA
PLAND = EXP(1.588306+.529246*X+.038611*X**2.)
2
PLAND = e
CLAND = PLAND*DMATX(7,20)
1.588306+0.529246X+0.038611X
CLAND = DA*e
1.588306+0.529246X+0.038611X
EQU30500
EQU30600
[acres]
EQU30700
[dollars]
211
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
EQUALIZATION
PKOCESS IDENTIFICATION NUMBER
SUtfROUTINt EQUAL
COMMON INITIAL STATEMENTS
ASSIGNMENT OF DESIGN VALUES To PROCESS PARAMETERS
EQU00100
EQU00200
20 EOU00300
EQU00400
EOU00500
EQU00600
EQU00700
EQU00800
EGU00900
INTEGLR osi»os>2 EQUOIOOO
DlMENblON SIZEUt) EQU01100
COMMON SMATX(20»30).TMATX(20»30)»DMATX(20.20)»OMATX(20»20)r!P(20)r£QU01200
llNP»IO»ISIrlSi:»OSlrOS2»N»IAERFrCCOST<20r5)»COSTO(20»5)rACOST(20»5)EOU01300
2»TCOST(20»5)tUHR»PCT»»PI»CLAND»DLAND»FLOW(2b> »POW(25> »TKWHD(25) EGUOltOO
DATA bIZE/5.»7.5'10.»15.»20..25.r30.iHO.>bO.»60.»75.»100.r125.t150EQU01500
!•/ EQU01600
EQU01700
EOU01800
EQU01900
EQU02000
EQU02100
EQU02200
EQU02300
EQU02100
EQU02500
EQU02600
F.QU02700
EQU02800
EQU02900
EQU03000
EQU03100
EGU03200
EQU03300
EQU03100
EQU03500
EQU03600
EQU03700
EQU03800
EGU03900
EQU04000
EGU01100
EQU04200
EQUO
CALC. OF OUTPUT SIZES AND QUANTITIES
QH'=1.76*SMATX(2»IS1)**.92
VU=SMATX(i:.lSl)*.12*lUOOOOO./7.i*8*DMATX(lb»N)
IF (IMAT) 50»20»50
20 IF (VU-39000.) 30r30»HO
30 Vu=39000.
WJIDTH=90.
AKEA=.18595
VMlN=1500.
SAREA=(2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90
212
-------
SAREA=(2.*WIDTH*<1.+RLW)-156.)*53.76+IWIDTH-90.)*(RLW*WIDTH-90.)+2EQU05900
10.*(2<*.-H1.+RLW>*«IDTH> EOU06000
60 T0 60 EGU06100
50 W1DTH=( 300. *(1.+RLW) + (90000. *<1.+RLW>**2.-«*C).*RLW*< 12000. -VU>)**.5EQU06200
D/20./RLW EQU06300
AKLA=KUW*wIDTH**2./«t3360. EGU06UOO
oO VUMG=VU*7.70'170
70 IF (Vl-l.t) 90»90»80
60 HPA=VT*29.88
60 TO 100
yO HPA=VT*35.36/(VT**.5)
100 HPb=VT*59./(VT**.425«*)
IF (HPA-HPB) 110»120»120
110 HP=HPtl*DMATX<15rN)
60 TO 130
120 HP=HPA*DMATX(15»N)
1JO 00 15U 1=1 flU
IF (HP-SIZE(D) If0rl40»150
HPl=SiZE(D
XN=1
60 TO 160
CONTINUE
HPl = lt>0.
XN=HP/150.
IXN=XlM
XN=IXN+1
loo THP=HPI*XN
CALC. OF CAPITAL COSTS FOR PUMPINi, SYSTEM OF CONCRETE
TANK bASED ON DESIGN PLUS EXCESS CAPACITY
EQU06600
EQU06700
EQU06600
EOU06900
EOU07000
EQU07100
EQU07200
EQU07300
EQU07UOO
EQU07500
EQU07600
EQU07700
EOU07800
EQU07900
EOU08000
EOU08100
EQU08200
EOU08300
EOU06UOO
EOU08500
EOU08600
EOU08700
EQU08800
EOU08900
EOU09000
EQU09100
EQU0920Q
EOU09300
EOU09100
EQU09500
170 X=ALOb(SMATX(2»ISl)*DMATX(l«lrN)) EOU09600
CCOST(N»3)=EXP(3.4815b3+.377t85*X+.0933«»9*X**2.-.006222*X**3.)*100EQU09700
10. EQU09800
EQU09900
EQU10000
EOU10100
EOU10200
EQU10300
EQU10100
EOU10500
EQU10600
EOU10700
EGU10800
EOU10900
EQU11000
OHRS=tXP(o.097269+.25i066*X-.1936b9*X**2.+.078201*X**3.-.006680*X*EQU11100
1*4.) EOU11200
XMHRS=EXP15.9115«U-.013158*X+.0766<+3*X**2.) EQU11300
IF (SMATX(2»ISl)-1.4t) 180»190»190 EOUimOO
ItJO P£FF=.70 EOU11500
60 TO 220 EQU11600
190 IF 200r210r210 EQU11700
200 PEFF=.74 EQU11800
60 TO 220 EOU11900
210 PLFF=.83 EOU12000
2«iO YKKw=bMATX<2»lSl)*100UOOO.*HEAD/l'+«*0./396U./PEFF/.9*.7U57*2
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
OPERATINo COST EQUATION
COSTOlNr3)=«OHRS+XMHKS)*DHR*(l.+PCT)+TMSU)/SMATX(2»l)/3650.
CALC. OF CAPITAL COSTS FOR PUMPING SYSTEM OF EARTHEN
POND BASED ON DESIGN PLUS EXCESS CAPACITY
X=ALOG
-------
c
c
c
c
EHP=ECFM/UMATX( 15. N)*8.1*l<*4./( 33000 .*.B> EQU18800
EQU18900
EQU19000
EQU19100
EQU19200
EQU19300
EQU19100
EQU19500
EQU19600
»=((OHRS+XMHKS)*DHR*(1.+PCT)+SCOST*WPI+ECOSTJ/SMATX(2.1)/EQU19700
I3o50. EQU19BOO
GO TO 310 EOU19900
XKWPY=XKW*2<*.*365.
ECOST=XKWPY*DMATX(10.20)
SCOST=EXP1.621382+.«*B«£0<*7*X)*1000.
OPERATING COST EQUATION
C
c
c
c
c
c
c
c
c
CALC
240 X=ALOb(ARtA)
IF IAKEA-1.)
. OF CAPITAL AND OPERATING COSTS FOR EARTHEN POND
250.260.260
CALC. OF CAPITAL COSTS FOR EQUAL BASIN. LESS THAN
1 ACRE
2&0 CCOST(N»1)=22000.
C
C
c
c
c
c
c
c
c
c
QHRS=oOO.
XMHRS=100.
GO TO 270
CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
FOR EQUAL BASIN. LESS THAN 1 ACRE
CALC. OF CAPITAL COSTS FOR EQUAL BASIN. EQUAL OR
GREATER THAN 1 ACRE
EQU20000
EQU20100
EQU20200
EQU20300
EQU20100
EOU20500
EQU20600
EQU20700
EQU20800
EOU20900
EQU21000
EOU21100
EQU21200
EQU21300
EQU21400
EQU21500
EQU21600
EQU21700
EQU21800
EQU21900
EQU22000
EQU22100
EQU22200
EOU22300
EOU22400
2bO CCOST(N»1)=EXP(3.501091+.*»22086*X+.079097*X**2.-.008338*X**3.)*100EQU22500
C
C
C
c
c
c
c
c
c
G
C
C
C
c
c
c
c
c
10.
OMfiC^h ¥ D f »v t*.
Wnr>3~bAr » O • 3
1*4.)
XMHRS=EXP(M.
270 TMSU=0.
COSTO(N»1)=(
X=ALOG(THP)
CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
FOR EQUAL BASIN. EQUAL OR GREATER THAN 1 ACRE
(l *7 fi ii. 9 + 9f*l>£*1ii.^Y4> ftt^Q9QQ*y*&O v rill/J.CIllAV*A^t A fiftlllQilAY
*t *U*Tfc* • cOfcOw**A* • UOOt"O*"*t • • U*JH'j"*A**J • T • UUAH"H*A
84i*«f 23+.327982*X+.017677*X**2. )
CALC. OF SUPPLIES AND MATERIALS FOR EQUAL BASIN
OPERATING COST EQUATION FOR EQUAL BASIN
(OHRS+XMHRS ) *DHR* ( 1 .+PCT > +TMSU*wPl ) /SMATX (2 » 1 ) /3650 .
CALC. OF CAPITAL COSTS FOR BLOwER BASED ON DESIGN
PLUS EXCESS CAPACITY
IF (IAER) 290.280.290
C
C
EQU22600
EOU22700
EOU22800
EQU22900
EQU23000
EQU23100
ACr^i loxonn
"tOUt JcUU
EQU23300
EQU23400
EQU23500
EQU23600
EQU23700
EQU23800
EOU23900
EQU24000
EOU24100
EQU24200
EQU2U300
EQU24400
EQU24500
EQU24600
EQU2H700
EQU24800
EQU2U900
EQU25000
EQU25100
EQU25200
EQU25300
215
-------
c
c
c
c
c
c
c
c
c
c
CALC. OF CAPITAL COSTS FOK BLOWER IF SMALL
IMPLLLER MECHANICAL AERATORS ON FLOATING
PLATFORMS ARE USED
260 CCOST(N,2)=EXPU6»+7l2u+.«*38812*X+.03U92*X**2.)*1000.
GO TO 300
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
CALC. OF CAPITAL COSTS FOK BLOWER IF LARGE
IMPLLLER MECHANICAL AERATORS ON STATIONARY
PLATFORMS ARE USED
10,
300 X=ALOG(THP/DMATXU5»NM
CALC. OF OPERATING MANHOUKS. MAINTENANCE
MANHOURS AND ELECTRICAL POWER AND SUPPLY COSTS
EQU25
-------
OMATXC8.N)=HP1 EOU31900
OMATX(9.N)=XN EOU32000
OMATX(10»N)=THP EQU32100
-OMATXlll»N)=Pl.AND EQU32200
OhATXU2»N>=CLAND EQU32300
OMATX(13»U)=VAER EQU32UOO
OMATX(11rN)=ECFM EQU32500
EQU32600
EOU32700
PKOCEbS ENERGY INDICES EoU32aoo
EOU32900
FLO*(N>=SMATXl2rISl) EQU33000
POW(N)=20. EOU33100
EQU33200
EOU33300
217
-------
SECTION 22
SECOND STAGE ANAEROBIC DIGESTION, DIG2
Subroutine Identification Number 21
Second Stage Anaerobic Digestion, DIG2
Rev. Date 8/1/77
1. Process symbol.
IS1: Sludge input stream
OS1: Sludge output stream
OS2: Supernatant output stream
N: User assigned number to
the process
2. Input parameters and nominal values.
DMATX(l.N) = TRR
DMATX(2,N) = TSS
DMATX(3,N) = TD
DMATX(16,N) = ECF
Solids recovery ratio for the second stage anaerobic
digestion, [.81].
Total suspended solids concentration of OS1, mg/1, [50,000.]
Second stage anaerobic digester detention time, days, [15.].
Excess capacity factor for the process, [l.].
3. Output parameters which are printed on computer output sheets.
TRR = DMATX(l.N)
TSS = DMATX(2,N)
TD = DMATX(3,N)
VDIG = OMATX(l.N)
CCOST
COSTO
ACOST
TCOST
ECF
Volume of the second stage anaerobic digester, cu. ft./lOOO.
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
218
-------
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
VDIG = DMATX(3,N)*SMATX(2,IS1)*133.69*DMATX(16,N) DI204100
VDIG = TD*QIS1*133.69*ECF [ft3/1000]
SMATX(10,OS2) = ((1.-DMATX(1,N))/(1.-DMATX(1,N)*SMATX(10,IS1)/DMATX(2,N)))*SMATX(10,IS1)
TSS0::: - (1-TRR)*TSSIS1 DI201900
082 TRR*TSSIS1
TSS
TEMPI - DMATX(2;N)/SMATX(10,IS1) DI202100
TSS
TEMPI = ° [no units]
TSSISl
TEMP2 = SMATX(10,OS2)/SMATX(10,IS1) DI202200
TSSnq,
TEMP2 = - 2§£ rno units]
TSSIS1
SMATX(lO.OSl) = DMATX(2,N) DI202300
TSS
SMATX(2,OS1) = (SMATX(10,IS1)-SMATX(10,OS2))*SMATX(2,IS1)/(SMATX(10,OS1)-SMATX(10,OS2))
TB
-------
SMATX(I.OSl) = SMATX(I.ISl) DI203500
SMATX(I.OSl) = SMATX(I.ISl)
I = 11,20 i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
SMATX(I,OS2) = SMATX(I.ISl) DI203600
SMATX(I,OS2) - SMATX(I,IS1)
I = 11,20
References:
Smith, 1969
Patterson and Banker, 1971
5. Cost functions.
a. Capital cost
Function of VDIG
X = ALOG(VDIG) DI204700
X = In VDIG
(1) Digester facilities less than 20000 ft3
CCOST(N.l) EXP(4.594215+.127244*X-.004001*X**2.)*1000. DI205400
CCOST = lOOOe*- 594215+0.127244X-0.004001X2 [dollars]
(2) Digester facilities equal or greater than 20000 ft DI206100
CCOST(N.l) = EXP(7.679634-1.949689*X+.402610*X**2.-.018211*X**3.)*1000.
CCOST !OOOe7-679634-1.949689X+0.402610X2-0.018211X3 [Collars]
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of VDIG/ECF
X = ALOG(VDIG/DMATX(16,N))
X = ln(VDIG/ECF)
DI206800
220
-------
(1) Digester facilities less than 20000 ft3
(a) Operating manhours
OHRS - EXP(6.163803+.166305*X-.012470*X**2.) DI207600
OHRS - e6-163803+0.166305X-0.012470X2 [hrs/yr]
(b) Maintenance manhours
XMHRS = EXP(5.726981+.113674*X) DI207700
XMHRS = e5-726981-H).113674X [hrs/yr]
(c) Total materials and supplies
TMSU = EXP(6.531623+.198417*X+.021660*X**2.) DI207800
TMSU = e6-531623+0-198417x+0-°21660X2 [dollars/ r]
(2) Digester facilities equal or greater than 20000 ft3
(a) Operating manhours DI208600
OHRS = EXP(9.129250-1.816736*X+.373282*X**2.-.017290*X**3.)
OHRS = e9-129250-1.816736X+0.37.3282X2-0.017290X3 [hrs/yr]
(b) Maintenance manhours DI208700
XMHRS = EXP(8.566752-1.768137*X+.363173*X**2.-.016620*X**3.)
YWUDC - 8566752-1.768137X+0.363173X2-0.016620X3 r^c/w 1
APulivD ™~ 6 I [iiS/yr j
(c) Total materials and supplies DI208800
TMSU = EXP(8.702803-1.182711*X+.282691*X**2.-.013672*X**3.)
TMSU = e8-702803-1-182711^0-282691^"0'013672^ [dollars/yr]
c. Total operating and maintenance costs DI209300
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)DHR(1 +PCT)+TMSU(WPI) rcents/1000 gal]
Qplant Inf. *3"° L
221
-------
c
c
c
c
c
StCOND STAGE ANAEROBIC DIGESTION
PKOCEbS IDENTIFICATION NUMBER 21
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
SUBROUTINE DIt.2
COMMON INITIAL STATEMENTS
PKOCEiS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM
CHARACTERISTICS
01200100
DI200200
DI200300
01200400
01200500
01200600
01200700
DI200600
01200900
INTEGER osi»os2 01201000
COMMON SMATX(20r30)>TMATX(20>30)rDMATX(20.20)»OMATX(20'20)«lP(20)>OI201100
llNP.Iu»ISl»lSi»OSl»OSk:rN'IAERF.CCOST(20»5)fCOSTO(20.5J»ACOST(20.5)Dl201200
2»TCOST(20»5)»UHR»PCT»»iPI'CLAND»DLAND»FLOW(2t>).POW(25>»TKWHD<25) DI201300
DI2Q1400
01201500
DI201600
DI201700
DI201800
SMATX(10»OS2)=((l.-DMATX(lrN))/(l.-DMATX(l»N)*SMATX(10.lSl)/DMATX(Dl201900
12»N)))*SMATX(10»Ibl) DI202000
TLMPl=DMA7X(2»N)/SMATA(lOfISl) DI202100
TLMP2=SMATX(10.OS2)/SMATX110•ISI) DI202200
SMATX110'OS1)=DMATX(2»N) ' 01202300
)=lSMATX(lU.ISl)-SMATX(10»OS2))*i,MATX(2.iSl)/(SMATX(10fDl202400
DI202500
DI202600
DI202700
DI202800
01202900
01203000
DI203100
DI203200
01203300
DI203400
DI203500
DI203600
DI20370Q
DI203800
DI203900
DI204000
DI204100
OI20420Q
DI204300
01204400
01204500
DI204600
DI204700
DI20480Q
01204900
DI205000
DI205100
DI205200
DI205300
DI20540Q
DI205500
DI205600
DI2057CO
DI2U5800
10bl)-bMATX(10rOS2))
SMATX(2.0b2)=SMATX(2»ISD-SMATX(2»OSl)
EFFLULNT STREAM CALCULATIONS
DO 10 I=3f9
SMATX(i»0bi)=TEMPI*SMATX
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
EQUAL OR GREATER THAN 20000 CU. FT. DI205900
01206000
40 CCOST(N»1)=EXP (7.6796,S<*-1,9<+9689*X+.1026lO*X**2.-.018211*X**3.>*lODl206100
100.
CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE*
DOES NOT INCLUDE EXCESS CAPACITY
X=ALO&(VD1G/DMATX<16»N))
IF 305*X-.012«»70*X**2.)
XMHRS=EXP 15.726981 + . 11367<+*X)
TMbU=tXP(b.53l623+.l9tm7*X+.021660*X**2.)
GO TO 80
CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FoR DIG2 FACILITY. EQUAL
OR GREATER THAN 20000 CU. FT.
70 OHRS=EXP<9.129250-1.8 J.673b*X+.373282*X**2.-.Ol7290*X**3.)
XMHRS=EXPl8.5b6752-1.768l37*X+.363l73*X**2.-.016620*X**3.)
TMSU=EXP(6.702803-1.16271l*X+.2B2b91*X**2.-.Ol3672*X**3.)
OPERATING COST EQUATION
60 CQSTO(N.1) = ((OHRS+XMHKS)*DHR*(1.+PCT>+TMSU**Pl)/SMATX12.1)/3650.
ASSIGNMENT OF VALUES TO OMATX
OMATX(lrN)=VDlG
PKOCEbS ENERGY INDICES
FLO«/(N)=SMATX(2fISl)
PO«(N)=21.
RETURN
END
DI206200
DI206300
DI206UOO
DI206500
01206600
01206700
DI206800
DI206900
01207000
DI207100
01207200
DI207300
DI207400
DI207500
DI207600
DI207700
DI207800
DI207900
DI2U8000
DI208100
DI208200
01208300
DI208400
01208500
DI208600
DI208700
DI20B800
DI208900
DI209000
DI209100
01209200
01209300
DI209400
DI209500
DI209600
01209700
01209800
DI209900
DI210000
DI210100
DI210200
01210300
DI210400
DI210500
DI210600
223
-------
SECTION 23
LAND DISPOSAL OF LIQUID SLUDGE, LANDD
Subroutine Identification Number 22
Rev. Date 8/1/77
Land Disposal of Liquid Sludge, LANDD
1. Process symbol.
IS1
OS1
IS1: Sludge input stream
OS1: Zero output since sludge
percolates into soil
N: User assigned number to
the process
2. Input parameters and nominal values.
DMATX(l.N) TAYR
DMATX(2,N) - SP
DMATX(3,N) DIST
DMATX(4,N) = TS
DMATX(5,N) = YRSL
DMATX(15,N) = ECF
DMATX(16,N) = ECF
Amount of dry solids disposal, tons/acre/yr. [15.J
Sludge storage period before disposal, yr. [.25]
Round trip sludge hauling distance by truck,
miles. [10.]
Sludge leading capacity of trucks used for
hauling, gallons. [1200.]
Amortization period for trucks, yr. [6.J
Excess capacity factor for trucking capacity. [l.J
Excess capacity factor for the sludge holding
lagoon, [l.]
3. Output parameters which are printed on computer output sheets.
TAYR = DMATX(l.N)
SP = DMATX(2,N)
DIST = DMATX(3,N)
TS = DMATX(4,N)
YRSL = DMATX(5,N)
TYT = OMATX(l.N)
TTYR = OMATX(2,N)
Total number of trips made per year by each truck.
Total number of trips made per year by all the trucks,
224
-------
TRKN - OMATX(3,N)
SLV - OMATX(4,N)
TONS - OMATX(5,N)
ALAND = OMATX(6,N)
DLAND - OMATX(7,N)
COL • OMATX(8,N)
AFT = OMATX(9,N)
CCOST
COSTO
ACOST
TCOST
ECF
Total number of trucks needed to haul the sludge.
Volume of sludge in storage, cu ft/1000.
Amount of dry solids applied to the land, tons/yr.
Required land area for spreading the sludge (this
land area requirement is not included in the total
land area requirement, ACRE, for the whole plant),
acre.
Interest cost on the capital investment in land for
sludge spreading, $/yr.
Capital cost of land area required for sludge
spreading, $.
Amortization factor for trucks based on a 6
year lifetime.
Capital cost, [dollars].
Operating and maintenance cost, [cents/1000 gal].
Amortization cost, [cents/1000 gal].
Total treatment cost, [cents/1000 gal].
Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
TYT - 260.*8./(.04*DIST+.5)
TYT =
260*8
0.04DIST+0.5
LAN02700
[trips/yr/truck]
TTYR = 365.*SMATX(2,IS1)*1000000./TS LAN02800
[trips/yr]
TTYR = 365*1000000QIS1
TS
TRKN = TTYR/TYT
TRKN = 1™
LAN02900
[number]
NNN = TRKN*DMATX(15,N) LAN03000
NNN = TRKN*ECF [number]
TRKN = NNN+1 LAN03100
TRKN = (TRKN*ECF)+1 [number]
225
-------
SLV - SP*365.*SMATX(2,ISl)*1000000./7. 48/1000. *DMATX(16,N) LAN03200
„„ 365SP*QIS1*1000000ECF ,
SLV = _ X151 - ff fVlOOOl
7.48*1000 L " /±uuu-l
TONS = (SMATX(10,IS1)+SMATX(15,IS1)*SMATX(2,IS1)*8. 33*365. /2000. LAN03300
TONS = (TSSIS1+DFMIS1) *QIgl*8 . 33*365
- 2000 - [tons/yr]
ALAND = TONS/TAYR LAN03400
AT Am = TONS . .
ALAND = ^^ [acres]
COL = ALAND*DMATX(7,20) LAN03500
COL = ALAND*DA [dollars]
DLAND = COL*DMATX(3,20) LAN03600
DLAND = COL*RI [dollars]
AF = DMATX(3,20)*(1.+DMATX(3,20))**DMATX(4,20)/((1.+DMATX(3,20))**DMATX(4,20)-1.)
LAN03700
AFT = DMATX(3,20)*(1.+DMATX(3,20))**YRSL/((1.+DMATX(3,20))**YRSL-1.) UM03900
AFT =
[1+RI]YRSL_1
References :
Smith and Eilers, 1975
Patterson and Banker, 1971
5. Cost functions.
Sludge storage
a. Capital cost
Function of SLV
X = ALOG(SLV) LAN05000
X = In SLV
226
-------
CCOST(N.l) - EXP(. 375449+. 394996*X+.014726*X**2.)*1000. LAN05100
CCOST - W00e<>'V5U9+0.39U<)6™.OW26X2 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of TONS
X - AIOG(TONS) LAN05700
X - In TONS
(1) Operating manhours
OHRS - EXP(6. 567594-. 971759*X+.095689*X**2.)*SP LAN06300
OHRS = SP*e6-567594-°-971759x+0-°95689X2 [hrs/yr]
(2) Maintenance manhours
XMHRS - EXP(-2. 087393+2. 395831*X-.340388*X**2.+.017499*X**3.)*SP LAN06400
XMHRS = SP*e-2.087393+2.395831X-0.340388X2+0.017499X3 [hrs/yr]
(3) Total materials and supplies
TMSU = 0 [dollars/yr] LAN06500
C. Total operating and maintenance costs
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. LAN07000
COSTO = C (OHRS+XMHRS) *PHR* (1+PCT) ]+(TMSU*WPI)
Qplant Inf. *3650 l-Cen S g3 J
Sludge transportation
a. Capital cost
Function of TX
X = ALOG(TS/1000.) LAN07600
CCOST(N,2) = EXP(1. 317230+3. 959678*X-2.592107*X**2.+.583467*X**3.)*(1. 506/1. 761)*1000*TRKN
CCOST = 1-506 *lOOOTRKN*e1 • 317230+3 . 959678X-2 . 592107X2+0 . 583467X3
1.761
227
-------
LAN08300
b. Amortized cost
ACOST(N,2) - CCOST(N,2)*AFT/SMATX(2,1)/3650.
ACOST - CCOST*AFT ^^ [cents/1000 gal]
Qplant Inf. *3650
c. Operating manhours, maintenance manhours and materials/supplies costs
For TS 21 5500
OM - 0.475*DIST*TTYR [hrs/yr]
For TS < 2500
OM = 0.305*DIST*TTYR [hrs/yr]
For TS 21 2500
OM = 0.425*DIST*TTYR [hrs/yr]
Maintenance manhours
TMHR = TTYR*(.04*DIST+.5)
TMHR = TTYR*(0.04DIST+0.5) [hrs/yr]
d. Total operating and maintenance costs
COSTO(N,2) •= (TMHR*DHR*(1.+PCT)4OM*WPI)/SMATX(2,1)/3650.
COSTO = [TMHR*DHR*(1+PCT)]4(OM*WPI) [cents/1000 gal]
LAN09400
LAN10000
LAN09500
LAN09600
LAN09500
LAN09800
LAN10100
LAN10600
*Plant Inf.
*3650
Interest on capital investment
a. Capital cost assumed zero
CCOST(N,3) = 0
b. Total operating and maintenance costs
COSTO(N,3) = DLAND/SMATX(2,1)/3650.
DLAND
COSTO
Qplant Inf. *3650
[dollars]
[cents/1000 gal]
LAN11200
LAN11300
228
-------
LAND DISPOSAL OF LIQUID SLUDGE.
PKOCEbS IDENTIFICATION NUMBER 22
SUBROUTINE. LANDD
LAN00100
LAN00200
LAN00300
LAN00400
LAN00500
LAN00600
LAN00700
LANOOBOO
LAN00900
INTEGER OS1.0S2 LAN01000
COMMON SMATX(5).ACOST(20.5)LAN01200
COMMON INITIAL STATEMENTS
c
c
c
c
c
c
c
c
2»TCOST(20.b) .UHR.PCT. *PI »CLAND.DLAND»FLOW(25> .POW125) »TKWHD(25)
ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS
TAYR=L)MATX(1.N)
SP=OMATX(i!.N)
DIST=L)MATX(3»N)
TS=DMATX(i*»N)
YKSL=UMATX(5»N)
CALC. OF OUTPUT SIZES AND QUANTITIES
TYT=2t>0.*ti./(.04*QIST+.5)
TTYK=J65.*SMATX(2»ISD*1000000./TS
TRKN=TTYR/TYT
NUN=TKKN*OMATX < is » N )
TfcKN=HNN+l
SLV=SH*366.*SMATX(2»ISl)*1000000./7.t8/1000.*DMATX(16»N)
TONS=(SMATX(lU.ISl)+SMATX(15»ISl))*SMATX(2rISl)*8.33*365./2000.
ALAND=TONb/TAYR
COL=ALAND*DMATX(7.20>
DLAND=COL*DMATX(3>20)
LAN01300
LAN01<400
LAN01500
LAN01600
LAN01700
LAN01800
LAN01900
LAN02000
LAN02100
LAN02200
LAN02300
LAN02HOO
LAN02500
LAN02600
LAN02700
LAN02800
LAN02900
LAN03000
LAN03100
LAN03200
LAN03300
LAN03100
LAN03500
LAN03600
AF=DMATX(3»20)*(1.+DMATX(3'20) ) **DMATX U.20) /( ( 1 .+QMATX (3.20) J **DMLAN03700
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
1ATXC4»20)-1.)
AFT=DrtATX 1 3r 20 ) * ( 1 . +DMATX (3.20)) **YRSL/ ( ( 1 . +DMATX (3.20)) ** YRSL-1 .
COST CALCULATIONS
IF (SLV) 10.20.10
CALC. OF CAPITAL COSTS FOR SLUDGE STORAGE BASED ON
DtSIGN PLUS EXCESS CAPACITY
10 X=ALOb(SLV>
CCOST(N.l)=EXP(.375i*<«9+,39'*996*X+.01«*726*X**2.)*lOOO.
CALC. OF OPERATING COSTS FOR SLUDGE STORAGE BASED ON
DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS CAPACITY
X=ALOfa(TONS)
LAN03800
JLAN03900
LAN04000
LANOtlOO
LAN04200
LAN04300
LANOU100
LANOH500
LANOU600
LANOU700
LAN01800
LAN01900
LAN05000
LAN05100
LAN05200
LAN05300
LAN05<+00
LAN05500
LAN05600
LAN05700
LAN05800
229
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES
OHKS=LXP< 6. 56759<*-.9717b9*X+.095669*X**2 •)*:•>?
XMHRS=EXP 1 -2 .087393+2. 395831 *X-.3<*038b*X**2. + ,Ol7«t99*X**3. )*SP
TMSU=O.
OPERATING COST EQUATION
COSTO ( N ' 1 ) = « OHRS+XMHRS ) *DHR* < 1 . +PCT ) +TMSU*wPl ) /SMATX < 2 » 1 ) /3650
CALC. OF CAPITAL COSTS FOR SLUDGE TRANSPORTATION BASED
ON DESIGN PLUS EXCESS CAPACITY
20 X=ALOG(TS/1000.)
CCOSTlN'2)=EXP(1.317230+3.959678*X-2.592l07*X**2.+.583U67*X**3.
11. 506/1. 7fal)»1000.*TRKN
CALC. OF AMORTIZATION COSTS
ACOST ( N , 2 ) =CCOST ( N » 2 > *AFT/SMATX ( 2 ' 1 ) /3650 .
LAN05900
LAN06000
LAN06100
LAN06200
LAN06300
LAN06400
LANU650Q
LAN06600
LAN06700
LAN06800
LAN06900
• LAN07000
LAN07100
LAN07200
LAN07300
LAN07400
LAN07500
LAN07600
)*(LAN07700
LAN07BOO
LAN07900
LAN08000
LANOB100
LAN08200
LAN08300
LANOBtOO
LAN08500
CALC. OF OPERATING COSTS FOR SLUDGE TRANSPORTATION BASED LAN08600
ON DESIGN CAPACITY ALONE' DOES NOT INCLUDE EXCESS
CAPACITY
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES
IF (TS-5500.) 30»60»60
30 IF (Tb-2500.) <*0'bO»50
tO OM=.305*D1ST*TTYR
GO TO 70
bO OM=.t25*DiST*TTYR
GO TO 70
toO OM=.<»75*D1ST*TTYR
70 TMHR=TTYR*( .o^oisT+.b)
OPERATING COST EQUATION
COSTO(N'2)=/3650.
CALC. OF CAPITAL AND OPERATING COSTS FOR INTEREST ON
THE CAPITAL INVESTMENT
CCOST(N'3)=0.
COSTO(N'3)=DLAND/SMATX(2'1)/3650.
ASSIGNMENT OF VALUES TO OMATX
OMATXU,N)=TYT
OMATX(2'N)=TTYR
OMATX(3»N)=TRKN
OMATX UrN)=SLV
OMATX(5,N)=TONS
OMATX(6rN)=ALAND
OMATX(7»N)=DLAND
LAN08700
LAN08800
LAN08900
LAN09000
LAN09100
LAN09200
LAN09300
LAN09400
LANU9500
LAN09600
LAN09700
LAN09800
LAN09900
LAN10000
LAN10100
LAN10200
LAN10300
LAN10100
LAN10500
LAN10600
LAN10700
LAN10800
LAN10900
LAN11000
LAN11100
LAN11200
LAN11300
LAN11400
LAN11500
LAN11600
LAN11700
LAN11800
LAN11900
LAN12000
LAN12100
LAN1220fl
LAN12300
LAN12400
230
-------
OMATX18.N)=COL LAN12500
OMATX(9.N)=AFT LAN12600
c LAN12700
C LAN12800
C PROCESS ENERGY INDICES LAN12900
c LAN13000
Fl_Ort(N)=SMATXl2>IS>l) LAN13100
PO«(N)=22. LAN13200
LAN13300
LAN13»*00
231
-------
SECTION 24
LIME ADDITION TO SLUDGE, LIME
Subroutine Identification Number 23
Lime Addition to Sludge, LIME
Rev. Date 8/1/77
1. Process symbol.
IS1
OS1
2. Input parameters and nominal values.
DMATX(l.N) DLIME
DMATX(2,N) = CLIME
DMATX(16,N) = ECF
IS1: Sludge input stream
OS1: Sludge output stream
N: User assigned number to the
process
Dose of lime, Ib of CaO/ton of dry
solids. [200.]
Cost of lime, $/ton. [25.J
Excess capacity factor for the process,
[1.]
3. Output parameters which are printed on computer output sheets.
DLIME = DMATX(l.N)
CLIME = DMATX(2,N)
PPDL = OMATX(1,N) Lime addition rate, Ib of CaO/day.
DTON = OMATX(2,N)
CCOST
COSTO
ACOST
TCOST
ECF
Amount of sludge to be treated with
lime, tons/day of dry solids.
Capital cost , [dollars].
Operating and maintenance cost,
[cents/lOOOgal].
Amortization cost, [cents/lOOOgal].
Total treatment cost, [cents/lOOOgal].
Excess capacity factor.
232
-------
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
DLIME = DMATX(l.N) LIM01800
DLIME = DMATX(l.N) [ib CaO/ton dry solids]
CLIME • DMATX(2,N)
CLIME - DMATX(2,N)
LIM01900
[$/tonJ
DTON = (SMATX(10,IS1)+SMATX(15,IS1))*SMATX(2,IS1)*8.33/2000.
'1—' [tons/day] LIM02400
2000
PPDL = DLIME * DTON * DMATX(16,N)
PPDL = DLIME*DTON*ECF
SMATX(I.OSl) = SMATX(I.ISl)
SMATX(I.OSl) - SMATX(I.ISl)
where I = 2,6
i.e. Q, SOC, SNBC, SON, SOP
SMATX(7,OS1) = SMATX(7,ISl)+PPDL/8.33/SMATX(2,ISl)
^ [mg/i]
[ib/day]
[mg/l]
8.33Q
"LSI
SMATX(8,OS1) = SMATXC8.IS1)
SMATX(9,OS1) • SMATX(9,IS1)
vssosrvssisi
SMATX(lO.OSl) = SMATX(10,ISl)+PPDL/8.33/SMATX(2,ISl)
=
OS1 IS1
PPDL
[mg/l]
8.33*QT
SMATX(I.OSl) = SMATX(I.ISl)
SMATX(I.OSl) = SMATX(I,IS1)
where I = 11,20
i.e. DOC, DNBC, DN, DP, DFM, ALK, DBOD, NH3, N03
LIM02500
LIM03100
LIM03200
LIM03300
LIM03400
LIM03500
LIM03700
233
-------
References:
Smith and Eilers, 1975
Patterson and Banker, 1971
5. Cost functions.
a. Capital cost
Function of PPDL
X = ALOG(PPDL)
X = In PPDL
CCOST(N.l) = EXP(-1.800487+.670797*X)*1000.
LIM04300
LIM04400
CCOST - lOOOe
-1.800487+0.670797X
[dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of PPDL/ECF
X = ALOG(PPDL/DMATX(16,N))
LIM05000
X=ln HSf-
ECF
(1) Operating manhours
OHRS - 0.
OHRS 0 [hrs/year]
(2) Maintenance manhours
XMHRS = EXP(6.060054+.197073*X)
LIM05500
LIM05600
XMHRS
- 060054+0. 197073X
[hrs/yr]
(3) Total materials and supplies
CHEM = PPDL*365.*CLIME/2000.
LIM06100
CHEM
PPDL*365*CLIME
2000
[ton CaO/yr]
c. Total operating and maintenance costs
COSTO(N,1) ((OHRS+XMHRS)*DHR*(1.+PCT)+CHEM)/SMATX(2,1)/3650.
LIM06600
r ,,nnn ,->
[cents/lOOOgal]
[(OHRS+XMHRS)*DHR*(1+PCT)>CHEM
QPlant Inf.*3650
234
-------
c
c
c
c
c
c
c
c
c
c
c
c
LIME ADDITION TO SLUDGE
PKOCESS IDENTIFICATION NUMBER
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE LIME
LIMOOIOO
LIM00200
23 LIM00300
LIMOOUOO
LIM00500
LIM00600
LIM00700
LIM00800
LIM00900
INTEGER OS1.0S2 LIM01000
COMMON SMMTX(e:0»30)»TMATX(20»30)>DMATx(20r2o>»OMATX<20»20)»IP(20)»LIM01100
HUP»IO»ISl»lSi!rOSl»OS<>»N»IAERF>CCOST<20»5)»COSTO«20»5).ACOST<20r5)|_IM01200
LIM01300
LIM01<*00
LIM01500
LIM01600
LIM01700
LIM01BOO
LIM01900
LIMU2000
LIM02100
LIM02200
LIM02300
LIM02100
LIM02500
LIM02600
LIM02700
LIM02800
LIM02900
LIM03000
LIM03100
LIM03200
LIM03300
LIM03<*00
LIM03500
LIM03&00
LIM03700
LIM03800
LIM03900
LIMOHOOO
LIMOU100
LIM04200
LIMOU300
LIMOH400
LIM04500
LIM01600
LIMU4700
LIM04800
LIMOH900
LIM05000
LIM05100
LIM05200
LIMU5300
LIMU5UOO
LIM05500
LIM05600
LIM05700
LIM05800
COMMON INITIAL STATEMENTS
2'TCOST(20»5) >DHRiPCTf «/PI » CL AND »DLAND» FLOW I2i>) »POW(a5> >TKWHD(2b)
ASSIGNMENT OF DESIGN VALUES TO CHEMICAL PARAMETERS
DLIME=DMATX(1>N)
C|_1ME=DMATX(2»N>
CALC. OF OUTPUT SIZES AND QUANTITIES
DTON=(SMATX(10 fisi)+SMATX(i5»isi))*SMATX(2»isi)*s.33/2000.
PPDL=ULIMt*DTON*DMATX(Ib r N)
EFFLUENT STREAM CALCULATIONS
DO 10 I=2>6
10 SMATXII»OS1)=SMATX(I»1S1)
SMATX < 7•osi> =SMATX(7»isi>+PPDL/S.33/SMATX12.isi>
SMATX(8*Obi)=SMATx(8»isi>
SMATX(9.0bl)=SMATX(9»lSl)
SMATX cio»osi> =SMATX(10•isi> +PPDL/B.BS/SMATX12risi)
DO 20 I=ll»20
20 SMATX(IfObl)=SMATX(l»ISD
CALC. OF
CAPACITY
CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
X=ALOG(PPUL)
CCOSTIN»1)=EXP(-1.800'*87+.670797*X)*1000.
CALC. OF OPERATING COSTS BASED ON
DOES NOT INCLUDE EXCESS CAPACITY
X=ALOG(PPUL/DMATX(16»N))
DESIGN CAPACITY ALONE.
CALC. OF OPERATING MANHOURS ANu MAINTENANCE MANHOURS
OnKS=0.
XMHRS=EXP (6.
235
-------
c
c
c
c
c
c
c
c
c
c
CALC. OF LIME DOSAGE COSTS
CHEM=H>PDL*365.*CL1ME/2000.
OPERATING COST EQUATION
CObTOIN»1) = ((OHRS+ XMHKS)*UHR*11.+PCT > +CHEM)/SMATX(2,1)/3650.
ASSIGNMENT OF VALUES TO OMATX
OMATXllfNJzPPbL
OMATX(2»N)=DTON
PROCESS ENERGY INDICES
Fi_0*(N)=SMATX<2»ISl)
POw(N)=23.
RETURN
END
LIM05900
LIM06000
LIM06100
LIM06200
LIM06300
LIM06400
LIM06500
LIM06600
LIM06700
LIM06BOO
LIM06900
LIM07000
LIM07100
LIM07200
LIM07300
LIM07400
LIM07500
LIM07600
LIM07700
LIM07SOO
LIM07900
LIM06000
236
-------
SECTION 25
ROTATING BIOLOGICAL CONTACTOR - FINAL SETTLER, RBC
Subroutine Identification Number 24
Rotating Biological Contactor - Final Settler, RBC
1. Process symbol.
Rev. Date 8/1/77
IS1
ol
OS2 (Sludge)
2. Input parameters and nominal values.
DMATX(l.N) - BOD
DMATX(2,N) - XNSTG
DMATX(3,N) - DEGC
DMATX(A,N) - QPABI
DMATX(5,N) - QPANI
DMATX(6,N) - GSS
DMATX(7,N) - BOON
DMATX(8,N) - TSS
DMATX(9,N) = CPDY
DMATX(15,N) - ECF
DMATX(16,N) = ECF
IS1: Liquid Input stream
OS1: Liquid output stream
OS2: Sludge output stream
N: User assigned number for the process
Demand concentration of 5-day BOD in the final
effluent stream, mg/l,[i3.]
Number of stages in series for the RBC
process.[4.]
Temperature of the water, degrees centrigrade.
[20.]
Rate constant for BOD removal at 20°C,
gpd/sq ft.[7.]
Rate constant for nitrification at 20°C,
gpd/sq ft.[4.45]
Design overflow rate (based on average flow) for
the final settler, gpd/sq ft.[800.]
Concentration of BOD at which nitrification
begins, mg/l.[20.]
Concentration of waste solids from the final
settler underflow, percent.[3.5]
Cost of installed concrete, $/cu.yd.[233.]
Excess capacity factor for the final settler.[l.J
Excess capacity factor for the rotating biological
contactor.[1.]
237
-------
3. Output parameters which are printed on computer output sheets
BOD = DMATX(1,N)
XNSTG = DMATX(2,N)
DEGC = DMATX(3,Nl
QPABI = DMATX(4,N)
QPANI = DMATX(5,N)
GSS = DMATX(6,N)
BODN = DMATX(7,N)
TSS DMATX(8,N)
CPDY = DMATX(9,N)
QPAB = OMATX(l.N)
QPAN = OMATX(2,N)
APSTG = OMATX(3,N)
AREA = OMATX(4,N)
FNSTG = OMATX(5,N)
RNSTG OMATX(6,N)
RATIO = OMATX(7,N)
PREM OMATX(8,N)
QPAT = OMATX(9,N)
AFS OMATX(10,N)
PDSD = OMATX(11,N)
URSS = OMATX(12,N)
Rate constant for BOD removal after correction
for water temperature, gpd/sq ft.
Rate constant for nitrification after correction
for water temperature, gpd/sq ft.
Area per RBC stage, sq ft/stage.
Total RBC active area, sq ft.
Number of stages required to achieve the BOD
concentration (BODN) at which nitrification
begins.
Number of remaining stages for nitrification
(XNSTG - FNSTG).
Ratio of total BOD in the effluent stream to
total BOD in the influent stream.
Percentage of ammonia nitrogen removal.
Overall hydraulic loading, gpd/sq ft.
Surface area of the final settler, sq ft.
Solids wasting rate, Ib of dry solids/day.
Ratio of solid nonbiodegradable carbon
concentration in the effluent stream to the
concentration in the influent stream.
238
-------
NTRN = OMATX(13,N) Number of 100,000 sq ft shafts per stage.
NSHFT = OMATX(14,N) Number of 100,000 sq ft shafts required.
COSTM = OMATX(15,N) Materials and supplies cost, $/yr.
COSTE = OMATX(16,N) Electrical power cost, $/yr.
COSTL = OMATX(17,N) Operation and maintenance labor cost, $/yr.
CCOST Capital cost, [dollars].
COSTO Operating and maintenance cost, [cents/lOOOgal]
ACOST Amortization cost,[cents/1000gal].
TCOST Total treatment cost,[cents/1000gal].
ECF Excess capacity factor.
4. Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
QPAB = DMATX(4,N)*1.04**(DMATX(3,N)-20.) RBC03200
QPAB = QPABI*1.04DEGC~20 [gpd/ft2]
QPAN = DMATX(5,N)*1.04**(DMATX(3,N)-20.) RBC03300
QPAN = QPANI*1.04DEGC~20 [gpd/ft2]
RATIO = DMATX(1,N)/(SMATX(17,IS1)+SMATX(8,IS1)) RBC03400
TEMPI = ALOG(RATIO)/DMATX(2,N) RBC03500
TEMP2 = l./EXP(TEMPl)-l. RBC03600
TEMP2 = - - -- 1 [no units]
TEMPl
e
APSTG = SMATX(2,IS1)*1000000.*TEMP2/QPAB RBC03700
QT01*1000000*TEMP2
APSTG = -^£± - [ft2]
QPAB
239
-------
PDSD = .34*(SMATX(8,IS1)+SMATX(17,IS1)+SMATX(10,IS1))*SMATX(2,IS1)*8.33-.3*AREA/1000.
RBC03800
[Ib/day]
0 3AREA
PDSD = 0.34(SBODIS1+DBODIS1+TSSIS1)*8.33QIS1- -'1000
TEMP3 = l./(l.+QPAB*APSTG/SMATX(2,ISl)/1000000.)
1
TEMP3 =
, QPAB*APSTG
QIS1*1000000
RATIO = DMATX(7,N)/(SMATX(17,IS1)+SMATX(8,IS1))
RATIO
BOON
DBODIS1+SBODIS1
FNSTG = ALOG(RATIO)/ALOG(TEMP3)
In RATIO
FNSTG
In TEMP3
RNSTG = XNSTG-FNSTG
RNSTG = XNSTG-
ln
In TEMP3
RATIO = (l./(l.+QPAN*APSTG/SMATX(2,ISl)/1000000.))**RNSTG
, "1 RNSTG
RATIO =
1+
QPAN*APSTG
QIS1*1000000
SMATX(18,OS1) = SMATX(18,IS1)*RATIO
NH3IS1*RATIO
SMATX(2,OS2) = PDSD/DMATX(8,N)/10000./8.33
PDSD
TSS*10000*8.33
SMATX(2,OS1) = SMATX(2,IS1)-SMATX(2,OS2)
OS1 = IS1~OS2
SMATX(10,OS1) = 4.5+.51*DMATX(l,N)
TSSosi = 4-5+0-51 BOD
RBC04000
[no units]
RBC04100
[no units]
RBC04200
[no units]
RBC04300
[no units]
RBC04400
[no units]
RBC04900
[mg/1]
RBC05000
[MGD]
RBC05100
[MGD]
RBC05200
[mg/1]
240
-------
SMATX(10,OS2) - DMATX(8,N)*10000 RBC05300
TSSQS2 = 10000 TSS [mg/l]
SMATX(8,OS1) = (SMATX(10,OSl)-4.5)*.897 RBC05400
SBODOS1 = (TSSogl-4.5)*0.897 [mg/l]
SMATX(17,OS1) = DMATX(1,N)-SMATX(8,OS1) RBC05500
DBODQS1 = BOD-SBODQS1 [mg/l]
SMATX(19,OS1) = SMATX(18,IS1)-SMATX(18,OS1) RBC05600
N03osi ' ^isr^osi Cmg/1]
URSS - SMATX(2,IS1)/(SMATX(2,OS1)+SMATX(2,OS2)*SMATX(10,OS2)/SMATX(10,OS1))
Q RBC05700
URSS = - n - Hio - Cno units]
0 | WOS2 TSSOS2
Q
°sl TSSosi
SMATX(4,OS1) = URSS*SMATX(4,IS1) RBC05900
SNBC = URSS*SNBC [mg/l]
SMATX(3,OS1) = DMATX(l,N)*1.6/2.7+SMATX(4,OSl) RBC06000
socosi = a?:H««*osi Cmg/1]
SMATX(5,OS1) = .1*SMATX(3,OS1) RBC06100
SONQS1 = 0.1SOCOS1 [mg/l]
SMATX(6,OS1) = .01*SMATX(3,OS1) RBC06200
SOP , = 0.01SOC [mg/l]
OS1 OS1
241
-------
SMATX(7,OS1) = URSS*SMATX(7,IS1)
SFMOS1 = URSS*SFMisi
SMATX(9,OS1) = SMATX(10,OS1)-SMATX(7,OS1)
vssosi • TSSosrSFMosi
SMATX(ll.OSl) = SMATX(12,ISl)+SMATX(17,OSl)*1.6/2.7
1.6DBOD,,
DOCnB1 = DNBCT5,+
°OS1
IS1
OS1
2.7
SMATX(12,OS1) SMATX(12,IS1)
SMATX(13,OS1) = .1*SMATX(11,OS1)+SMATX(18,OS1)+SMATX(19,OS1)
DNogl = 0.1DOCOS1+NH3OS1+N03OS1
SMATX(14,OS1) = SMATX(14,IS1)
DPOS1 = DPIS1
SMATX(15,OS1) = SMATX(15,IS1)
DFMOS1
DFM.
IS1
SMATX(16,OS1) = SMATX(16,IS1)-10.*(SMATX(18,IS1)-SMATX(18,OS1))
SMATX(20,OS1) = SMATX(20,IS1)
Future parameter
TEMP4 = SMATX(10,OS2)/SMATX(10,OS1)
TSS
TEMP4 = °i2
TSSosi
RBC06300
[mg/1]
RBC06400
[mg/1]
RBCQ6500
[mg/1]
RBC06600
[mg/1]
RBC06700
[mg/1]
RBC06800
[mg/1]
RBC06900
[mg/1]
RBC07000
[mg/1]
RBC07100
[mg/1]
RBC07200
[no units]
242
-------
SMATX(J,OS2) • TEMP4*SMATX(J,OS1)
SMATX(J,OS2) - TEMP4*SMATX(J,OS1)
where J = 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS
SMATX(J,OS2) = SMATX(J.OSl)
SMATX(J,OS2) - SMATX(J.OSl)
where J - 11,20 i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
AFS = SMATX(2,OS1)*1000000./DMATX(6,N)*DMATX(15,N)
Q *1000000*ECF
AFS
GSS
PREM • (SMATX(18,IS1)-SMATX(18,OS1))*100./SMATX(18,IS1)
PREM
100(NH3 -NH3 )
IS1 OS1
NH3
IS1
QPAT = SMATX(2,IS1)*1000000./APSTG/XNSTG
-------
5. Cost functions.
Contactor
a. Capital cost
(1) NSHFT-2CXO RBC09500
CCOST(N.l) = (28500.+45.*DMATX(9,N))*NSHFT*1.506/2.1215 RBC10100
CCOST - (28500+45CPDY)*NSHFT*1.506 ^^^
(2) NSHFT-20>0 RBC09500
CCOST(N.l) = (23000.+45.*DMATX(9,N))*NSHFT*1.506/2.1215 RBC10800
rwio.r - (23000+45CPDY)*NSHFT*1.506 .. ,, ,
CCOST 2.1215 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
Function of AREA/ECF
X = ALOG(AREA/1000./DMATX(16,N)) RBC11400
AREA
X = In
1000ECF
(1) Operating manhours
OHRS = EXP(1.323670+.524215*X+.023076*X**2.) RBC12000
OHRS = e1-323670+0.524215X+0.023076X2
(2) Maintenance manhours
XMHRS EXP(-.124185+.840104*X+.007757*X**2.) RBC12100
XMHRS = e-°-124185+0-84°104X+0.007757X2
(3) Total materials and supplies
COSTL = (OHRS+XMHRS)*DHR*(1.+PCT) RBC12200
COSTL = (OHRS+XMHRS)*DHR*(1+PCT) [dollars/yr]
244
-------
COSTM - (CCOST(N,1)-45.*DMATX(9,N)*NSHFT*1.506/2.1215)*.02
™<:TM rrrrviT 45*CPDY*NSHFT*1.506-,.. „„
COSTM = [CCOST 2.1215 ]*0.02
COSTE = NSHFT*5.*.746*24.*365.*DMATX(10,20)
COSTE = NSHFT*5*0.746*24*365*CKWH
TMSU = COSTM+COSTE
TMSU = COSTM+COSTE
c. Total operating and maintenance costs
COSTO(N,1) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
COSTO = (OHRS+XMHRS)*DHR*(1+PCT)+TMSU
Inf.
*3650
RBC12300
[dollars/yr]
RBC12400
[dollars/yr]
RBC12500
[dollars/yr]
RBC13000
[cents/lOOOgal]
Final Settler
a. Capital cost
Function of AFS
X = ALOG(AFS/1000.)
X = In
ATS
RBC13600
CCOST(N,2) = EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000.
RBC13700
CCOST = lOOOe
3.716354+0.389861X+0.084560X -0.004718X
[dollars]
245
-------
b. Operating manhours, maintenance manhours, and materials/supplies costs
Function of AFS/ECF
X = ALOG(AFS/1000./DMATX(15,N)) RBC14400
AFS
X = In
1000ECF
(1) Operating manhours
OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.) RBC15000
„ „ 5.846565+0 ;254813X+0.113703X2-0.010942X3 r. . ,
OHRS = e [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.) RBC15100
XMHRS = e5.273419+0.228329X+0.122646X2-0.011672X3 [hrg/yr]
(3) Total materials and supplies
TMSU = EXP(5.669881+.750799*X) RBC15200
mr 5.669881+0.750799X
TMSU e [dollars/yr]
c. Total operating and maintenance costs
COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. RBC15700
COSTO [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*«PI) [cents/lOOOgal]
Plant Inf.
246
-------
C RBC00100
C ROTATING BIOLOGICAL CONTACTOR - FINAL SETTLER RBC00200
C PROCESS IDENTIFICATION NUMBER 2«* RBC00300
C RBCOOtOO
SUbROUTINE RBC RBC00500
C RBC00600
C RBC00700
C COMMON INITIAL STATEMENTS RBC00800
C RBC00900
INTEGER Obi»0b2 RBCOIOOO
COMMON SMATX(20»30)»TMATX<20»30)»DMATx<20»20)»OMATX(20»20)rlP(20)rRBC01100
llNP.lO»ISl»lSii.OSlrOS2»NaAERF»CCOST<20»5)fCOSTO<20»5)»ACOST<20r5>RBC01200
2»TCOST(20>5)»DHR»PCT»I»PI'CLAND.DLAND»FLOW125).POW125)»TKWHD<25) RBC01300
C RBC01UOO
C RBC01SOO
C ASSIGNMENT OF DESIGN VALUES TO PROCESS PAKAMETERS RBC01600
C RBC01700
BOD=DMATXll.NJ RBC01800
XNSTG=DMATX(2.N> RBC01900
DEGC=UMATX13»N) RBC02000
QHABI=DMATXC*.N) RBC02100
QPANl=DMATX(5»N) RBC02200
GSS=DMATX16»N) RBC02300
BODN=UMATX(7»N) RBC02100
T$S=DMATX18»N) RBC02500
CPDY=OMATX(9»N) RBC02600
C RBC02700
C RBC02800
C PROCESS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM RBC02900
c CHARACTERISTICS RBCOSOOO
C RBC03100
GPAB=UMATx(t r N)*1.OU**(QMATX(3»N)-20•> RBC03200
QPAN=UMATX(5»N)*1.0<***(DMATX(3»N)-20.J RBC03300
RATlO=DMATX(lrN)/(SMATX(17»ISl)-«-SMATX(8»ISl)) RBC03«»00
TtMPl=ALO&(RATIO)/DMATX(2»N) RBC03500
TEMP2=1./EXP(TEMP1)-1. RBC03600
APSTG=SMATX(2.IS1)*lOuOOOO.*TEMP2/QPAB RBC03700
PUSQ=.3U*(SMATX(8»ISH+SMATX(17»ISl)-«-bMATX(lO»ISll)*SMATX{2.ISl)*aRBC03800
1.33-0*ARLA/1000. RBC03900
TEMP3=1./(1.+UPAB*APSTG/SMATX(2»IS1)/1000000.) RBCO<*000
RATlO=DMATX(7rN)/(SMATX(17»ISl)+SMATX(8»ISl)) RBC04100
FNSTG=ALO/ALOl»(TEMP3> RBC04200
RNSTG=XNSTG-FNSTG RBCOISOO
RATlO=(l./(l.+QPAN*APi>TG/SMATX(2»ISl>/10000ijO.))**RNSTG RBCO<+«*00
C RBC01500
C RBCOU600
C EFFLUENT STREAM CALCULATIONS RBCO<+700
C RBCOtBOO
SMATX(18»OSl)=SMATX(lt>»IS1)*RATIO RBCOU900
SMATX(2»OS2)=PDSD/DMATX(8»N)/10000./8.33 RBC05000
SMATX(2»OSl)=bMATX(2HSl)-SMATX(2fOS2) RBC05100
SMATX(10'OS1)='*.5+.51*DMATX(1»N) RBC05200
SMATX(10»OS2)=DMATX(8»N)*10000. RBCU5300
SMATX(8»OS1)=(SMATX(10»OS1)-U.5)*.897 RBC05400
SMATX(IT» osi> =DMATX(i•N)-SMATX(srosi) RBCOSSOO
SMATX(i9»osi> =SMATX(ib.isi>-SMATXiia» osi> Racoseoo
URSS=S>MATX(2»IS1>/(SMATX(2»OSl)+SMATX{2»OS2)*SMATxtlO»OS2)/SMATX(lRBC05700
RBC05800
247
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SMATXU.OS1)=URSS*SMATX(<*.IS1)
SMATX 13.Obi )=UMATX(1»N>*1.6/2.7+SMATXU.OS1)
SMATX(5.0bl)=.l*SMATX(3.0Sl>
SMATX16.Obi>=.01*bMATX(3»OSl>
SMATXl7tObl)=URSS*SMATX(7»ISl)
SMATX<9.0bl)=bMATx(10.OS1)-SMATX(7.051)
SMATX(ll»OSl>=SMATX(li;.ISl)+SMATX(17.0Sl>*1.6/2.7
SMATXU2.0S1>=SMATX(12»IS1)
SMATX(13.oSl>=.l*SMATx(11.0Sl)+SMATX(18.0bl)+SMATx=SMATX(15.IS1>
SMATX(16.OS1>=SMATX(lto»ISl)-10.*(SMATX(18.IS1)-SMATXU8»OS1)>
SMATX(20.OS1>=SMATX(2U»IS1)
TEMP<+=SMATX(10 •OS2)/SMATX(10 »OS1)
DO 10 J=3.9
10 SMATX(J.Ob2)=TEMP4*SMATX(Jf051)
DO 20 J=ll»20
20 SMATXIJ»OS2)=SMATX(J.OSD
CALC. OF OUTPUT SIZES AND QUANTITIES
AFb=SMATX<2.0Sl)*1000000./DMATX(6.N)*DMATx(l5,N>
PKEM=lSMATX(lt>»ISl)-SMATX(18.0Sl))*lOO./SMATX(lB»ISl>
QPAT=bMATx(2»lSD*100GOOO./APSTG/XNSTG
NTKN=APSTfa*DMATX(16.N)/100000.
NTKN=NTRN+1
NSHFT=NTRIM*XNSTG
XNTKN=NTRN
XSHFT=NSHFT
AREA=XSHFT*100000.
CALC. OF CAPITAL COSTS FOR ROTATING BIOLOGICAL CONTACTOR
BASED ON DESIGN PLUS EXCESS CAPACITY
IF (NbHFT-20) 30»30»tu
CALC. OF CAPITAL COSTS FOR SMAU. RBC FACILITYr EQUAL
OR LESS THAN 20 SHAFTS
30 CCOST(N.l)=(2ti500.+15.*UMATX(9rN))*NSHFT*l.506/2.1215
GO TO 50
CALC. OF CAPITAL COSTS FOR LAR&E RBC FACILlTYr
GREATER THAN 20 SHAFTS
tO CcosT(N.l)=(23000.-m5.*DMATX(9»N))*NSHFT*l.506/2.1215
CALC. OF OPERATING COSTS FOR KBC FACILITY BASED ON
DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS CAPACITY
50 X=ALOt,(AREA/1000./DMATX(l6»N) )
CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES
OHKS=EXP (1.32i670-»-. 524215*X+. 023076*X**2. J
XMHRS=EXP(-.li<+185+.eH010'4*X+.007757*X**2.)
CObTL=(OHKS+XMHRS)*DHK*(l.+PCT)
COSTM=(CCOST(N.I)-45.*DMATX(9»N)*NSHFT*1.506/2.1215)*.02
COSTE=NSHFT*5. *.7i*6*2<+. *365. *DMATX (10,20 >
RBC05900
RBC06000
RBC06100
RBC06200
RBC06300
RBC06400
RBC06500
RBC06600
RBC06700
RBC06800
RBC06900
RBC07000
RBC07100
RBC07200
RBC07300
RBC07400
RBC07500
RBC07600
RBC07700
RBC07800
RBC07900
RBC08000
RBC08100
RBC08200
RBC08300
RBC08400
RBC08500
RBC08600
RBC08700
RBC08800
RBC08900
RBC09000
RBC09100
RBC09200
RBC09300
RBC09UOO
RBC09500
RBC09600
RBC09700
RBC09800
RBC09900
RBC10000
RBC10100
RBC10200
RBC10300
RBClOtOO
RBC10500
RBC10600
RBC10700
RBC10800
RBC10900
RBC11000
RBC11100
RBC11200
RBC11300
RBC11400
RBC11500
RBC11600
RBC11700
RBC11800
RBC11900
RBC12000
RBC12100
RBC12200
RBC123tO
RBC12400
248
-------
TMSU=COSTM+COSTE
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
OPERATING COST EQUATION
COSTOlN.l)=((OHRS+XMHKS)*DHR*(l.+PCT>+TMSu)/SMATX(2fl)/3650.
CALC. OF CAPITAL COSTS FOR FINAL SETTLER BASED ON DESIGN
PuUS EXCESS CAPACITY
X=ALOG(AFS/1000.)
CCOSTtN»2)=EXP(3.71635»H-.389861*X+.08<*560*X**2.-.0047i8*X**3.)*100RBC13700
RBC12500
RBC12600
RBC12700
RBC12800
RBC12900
RBC13000
RBC13100
RBC13200
RBC13300
RBC13400
RBC13500
RBC13600
10.
CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
DESIGN CAPACITY ALONE. DOES NOT iNCOJuE EXCESS CAPACITY
X=ALOG(AFS/1000./DMATX(15»N))
CALC. OF OPERATING MANHOURS'
AND MATERIALS AND SUPPLIES
MAINTENANCE MANHOURS
OriKS=EXP
TMSU=tXP(b.669881+.750799*X)
OPERATING COST EQUATION
COSTOIN >2) = ((UHRS+XMHKS)*DHR*(1.+PCT>+TMSU**PI)/SMATX< 2 r 1)/3650.
ASSIGNMENT OF VALUES TO OMATX
OMATX(lfN)=QPAB
OMATX (2»N)=QPAN
OMATX13»N)=APSTG
OMATX15»N)=FNSTG
OMATX(6»N)=RNSTG
OMATX(7»N)=RATIO
OMATX (8rN)=pRtM
OMATX(9»N)=QPAT
OMATX(10'N)=AFS
OMATX ( 11 »N)=PUSD
OMATX(12»N)=URSS
OMATX(13»IM)=XNTRN
OMATX (lt»N)=XSHFT
OMATX(15»N)=COSTM
OMATX(16»N)=COSTE
OMATX117»N)=COSTL
PROCESS ENERGY INDICES
FLOw(N)=SMATX(2rISl>
POW(N)=2<+.
RETURN
END
RBC13800
RBC13900
RBCl^OOO
RBC14100
RBC14200
RBC14300
RBC11HOO
RBC14500
RBC11600
RBC14700
RBC11800
RBC1U900
RBC15000
RBC15100
RBC15200
RBC15300
RBC15<*00
RBC15500
RBC15600
RBC15700
RBC15800
RBC15900
RBC16000
RBC16100
RBC16200
RBC16300
RBC16100
RBC16500
RBC16600
RBC16700
RBC16800
RBC16900
RBC17000
RBC17100
RBC17200
RBC17300
RBC17I+00
RBC17500
RBC17600
RBC17700
RBC17800
RBC17900
RBC18000
RBC18100
RBC18200
RBC18300
RRC1B400
RBC18500
RBC18600
249
-------
SECTION 26
ENERGY CONSUMPTION AND COST, ENGY
C ENG00100
c ENERGY CONSUMPTION AND COST ENGOOZOO
C ENG00300
SUBROUTINE ENGY ENGOO«*OO
c ENG00500
c ENG00600
c COMMON INITIAL STATEMENTS ENGOOTOO
c ENGOOBOO
INTEGER Obi.0b2 ENGOOSOO
COMMON SMATXUO,30).TMATX(20.30)»DMATX<20.20>.OMATX(20.20).IP(20).ENG01000
llNP.IO.ISl.lSi:.OS1.0Sii.N.IAERF.CCOST(20»5)fCObTO<20.5)»ACOST<20.5)ENG01100
2»TCOST<20.5) .DHR.PCT.WPI»CLAND.DLAND'FLOW(2b) »POW(25) »TKWHD<25) ENG01200
<• ENG01300
C ENG01t*00
C ASSIGNMENT OF VALUES TO PROCESS PARAMETERS ENG01500
C _ ENG01600
PLANT=DMATX<11.20) ENG01700
TOTKW-0. ENG01800
Puw(25)=2b. ENG01900
• ENG02000
ENG02100
C CALC. OF ENERGY COSTS FOR PROCESSES ENG02200
c DO ,3u 1=1,25
FLOW(I)=SMATX(2rl) ENG02500
IF (PUM(I)) 5iO.530.10 ENG02600
10 K=POW(I) iNG02700
GO TO <20,30.10.50,60,70.110,li*0,170»180.19u.220.270.280.310.370.3ENG02800
18U.41U, U20. **3u.«t^Ori+8U, i*90. 500. 510). K ENG02900
ENG03000
ENG03100
ENG03200
20 Q=ALOb(FLOW(I»
ENG03700
ENG03800
ENG03900
c
c ENGOH400
C HR5ET ENGOtSOO
c KKbtl ENGO<*600
ENG05000
C
C ENG05400
C AERFS ENG05560
C ALKt-b ENG05600
250
-------
C
C
C
C
C
C
W2=EXP(3.b077u7+.925l'*7*Q+.OH6507*Q**2.-.OlU295*Q**3.)
HP=£XH(.«*05a3b+.2'*826^*Q+.138237*Q**2.-.Oo9l62*G**3.)
W1=2.t>6*EXP(G)
TKWHD(I)=
60 TO 520
C
C
C
C
C
C
C
C
C
C
C
C
bO TKWHDU)=0.
GO TO 520
oO TKWHD(I)=0.
60 TO 520
MIX
SPLIT
DIG
C
C
C
C
70 Q=ALOG(FLO«(D)
IF (PLANT) aO»80»90
ao W1=EXPU.<+27327+.301912*0+.056086*Q**2.-.005112*Q**3.)
GO TO 100
90 Wi=£XPU. 665033+.392918*0+.07**689*Q**2.-.0178<+3*0**3.+,
1.)
100 W2=EXP(2.a7b'+78+.a077i5*0+.033342*Q**2.-.OOts5l3*0**3.)
TKWHD(I)=wl+W2
GO TO 520
C
C
C
C
VACF
110 Q=ALOG(FLOW(I»
IF (PLANT) 120»120»130
120 TKWHDlI)=LXP(2.3(f28b8+1.001088*Q+.02l774*U**2.-.0068l7*Q**3.)
GO TO 520
130 TKWHD( I )=t_XPU.0^2635+.585«H7*0+.ll«tt99*0**2.-.0109)
IF (PLANT) 150»150»160
150 TK»HD(I)=LXP<2.321386+.28b528*0+.0222<*7*Q**id.-.007060*Q**3.)
GO TO 520
loO TKWHD(I>=LXP<2.321272+.301985*0)
60 TO 520
170 TKWHD(I)=0.
GO TO 520
LLUT
SBEDS
TKWHD(I)=0.
GO TO 520
ENG05900
ENG06000
ENG06100
ENG06200
ENG06300
ENG06100
ENG06500
ENG06600
ENG06700
ENG06800
ENG06900
ENG07000
ENG07100
ENG07200
ENG07300
ENG07fOO
ENG07500
ENG07600
ENG07700
ENG07800
ENG07900
ENG08000
ENG08100
ENG08200
ENGU8300
ENG08UOO
ENG08500
ENGOB700
ENGOB800
ENG08900
ENG09000
ENG09100
ENG09200
ENG09300
ENG09500
ENG09600
ENG09700
ENG09800
ENG09900
ENG10000
ENG10100
ENG10200
ENG10300
ENG10400
ENG10500
ENG10600
ENG10700
ENG10800
E NIG 10 900
ENG11000
ENG11100
ENG11200
E NIG 11300
ENG11400
ENG11500
ENG11600
ENG11700
ENG11800
ENG11900
ENG12000
ENG12100
ENG12200
ENG12300
ENG12400
251
-------
TRFS
190 Q=ALOto(FUOW(IM
»/l=EXPU.11084t-».9723tjt*Q-.002399*Q**2.)
II- (DMATX17.I)) 210f2lO»200
2UO *l=(DMATX(7.I)+l.)*Wl
210 HP=EXP< ,40563b+. 248262*0*. 138237*Q**2.-.OU9162*Q**3.)
c
c
c
c
W3=2.o6*EXP(Q)
TKWHD(I)=
GO TO 520
c
c
c
c
CHLOR
220 Q=ALOt,350
340 HE=.74
GO TO 360
3bO H£r.8i
3t>0 HP=EXP(Q)*1000000.*DMATX(l.I)/lH40./3960./HE
TKwHD(I)=.85*HP*24.
GO TO 520
C
C
C
C
370 TKWHO(K)=0.
GO TO 520
SHT
CENT
ENG12500
ENG12600
ENG12700
ENG12800
ENG12900
ENG13000
ENG13100
ENG13200
ENG13300
ENG13400
ENG13500
EMG13600
ENG13700
ENG13800
ENG13900
EN614000
ENG1U200
ENG1U300
ENG14400
ENG14500
ENG14600
ENG14700
ENG14800
ENG14900
ENG15000
ENG15100
ENG15200
ENG1530Q
ENG15400
ENG15500
ENG15600
ENG15700
ENG15800
ENG15900
ENG16000
ENG16100
ENG16200
ENG16300
ENG16400
ENG16500
ENG16600
ENG16700
ENG16800
ENG16900
ENG17000
ENG17100
ENG17200
ENG17300
ENG17400
ENG17500
ENG17600
ENG17700
ENG17800
ENG17900
ENG18000
ENG16100
ENG18200
ENG18300
ENG18400
ENG18500
ENG18600
ENG18700
ENG18600
ENG18900*
ENG19000
252
-------
3tiO Q=ALOb(FLoW(D)
IF (PLANT) 39u»390»40u
390 TKWHDII)=LXP(3.332123+.919832*Q+.045490*Q**2.-.013202*0**3.)
GO TO 520
400 TKWHDU)=tXP(4.042985+.8l3216*Q+.006793*Q**2.-.000180*Q**3.)
GO TO 520
C AEROtJ
c
410 TKWHD(I)=0.
GO TO 520
r
V
c
C HOSTA
r
V
420 TKH*HD(I)=0.
GO TO 520
C EQUAL
430 TKWHD(I)=0.
GO TO 520
C
C
C DIG2
C
440 Q=AL06(FLOW(I))
IF (PLANT) 450r450i460
4bO «1=EXP( 4. 427327+. 301912*0+. 056086*Q**2.-. 0051 12*Q**3.)
GO TO 470
ENG19100
ENG19200
ENG19300
ENG19400
ENG19500
ENG19600
ENG19700
ENG19800
ENG19900
ENG20000
ENG20100
ENG20200
ENG20300
ENG20400
ENG20500
ENG20600
ENG20700
ENG20800
ENG20900
ENG21000
ENG21100
ENG21200
ENG21300
ENG21400
ENG21500
ENG21600
ENG21700
ENG21800
ENG21900
ENG22000
ENG22100
ENG2220D
4oO W1=EXP( 4. 665033+ • 392918*0+. 074689*Q**2.-.017843*Q**3.+. 00 1578*Q**4ENG22306
1.)
470 W2=EXP( 2. 875478+. 807735*0+. 033342*Q**2.-. 00651 3*0**3.)
TK»/HD( I ) — N1+W2
GO TO 520
C
C
C LANDU
C
4aO TK«HD(I)=0.
GO TO 520
C
C
C LIME
C
490 TKWHD(I)=0.
GO TO 520
C
C
C KBC
C
500 TKWHD(I)=0.
GO TO 520
510 Q=ALOb(SMATX(2.1»
TK«HD( I )=EXP (4. 047318+. 198436*0+. 184937*Q**2.-.011184*Q**3.)
C
C
C SUM OF ENERGY COSTS FOR ENTIRE PLANT
C
520 TOTKW=TOTKW+TKWHD(I)
530 CONTINUE
C
C
C OUTPUT FORMAT OF ENERGY INDICES AND COSTS FOR PROCESSES
ENG22400
ENG22500
ENG22600
ENG22700
ENG22800
ENG22900
ENG23000
ENG23100
ENG23200
ENG23300
ENG23400
ENG23500
ENG23600
ENG23700
ENG23800
ENG23900
ENG24000
ENG24100
ENG24200
ENG24300
ENG24400
ENG24500
ENG24600
ENG24700
ENG24800
ENG24900
ENG25000
ENG25100
ENG25200
ENG25300
ENG25400
ENG25500
ENG25600
253
-------
C AND OF TOTAL tNERGY COST FOR ENTIRE PLANT ENG25700
C ENG25800
WHITE (10.540) ENG25900
510 FORMAT (1H1»//.<*7X.'ENERGY CONSUMPTION AND COST*) ENG26000
WHITE (10.550)
-------
SECTION 27
TOTAL PLANT COST CALCULATION, COST
Calculate Total Plant Cost. COST
1. Input parameters and nominal values.
DMATX(1,20) • CCI
DMATX(2,20) •= WPI
DMATX(3,20) •= RI
DMATX(4,20) = YRS
DMATX(5,20) = DHR
DMATX(6,20) - PCT
DMATX(7,20) = DA
DMATX(8,20) - CCINT
DMATX(9,20) = XLAB
DMATX(10,20) •= CKWH
Rev. Date 8/1/77
Sewage treatment plant construction cost index
to account for the variation of construction
cost with time, 1957-59 = 1. [2.252]
Wholesale price index for industrial commodities
to account for the variation of materials and
supplies cost with time, 1957-59 = 1. [1.675]
Amortization interest rate, fraction. [.06]
Amortization period, yr. [25.J
Wastewater treatment plant hourly labor rate,
$/hr. [4.73]
Fraction of direct labor cost that is charged
as indirect labor cost, fraction. [.15]
Cost of land, $/acre. [1000.J
Interest rate for the cost of interest during
plant construction, fraction. [.06]
Program control: type of plant laboratory used,
1 - activated sludge, 0 « primary or trickling
filter. [1.]
Cost of electrical power, $/kilowatt-hr.[.02]
2. Output parameters which are printed on computer output sheets
CCI - DMATX(li20)
RI - DMATX(3,20)
YRS - DMATX(4,20)
DA - DMATX(7,20)
CCINT « DMATX(8,20)
XLAB • DMATX(9,20)
RATIO • OMATX(1,20)
Multiplier used to factor into individual unit
process construction costs the cost of yardwork,
land, engineering, legal & fiscal, and interest
during construction, TOT/TCAP.
255
-------
3.
TCAP •> OMATX 02,20)
YARD = OMATX(3,20)
TCC » OMATXC4,20)
XLAND = OMATX(5,20)
ENG - OMATX(6,20)
SUBTl = OMATX(7,20)
FISC = OMATX(8,20)
SDBT2 = OMATX09, 20)
XINT - OMATX(10,20)
ACRE = OMATX011,20)
AF - OMATX(12,20)
TOT = OMATX017,20)
TAMM = OMATX018,20)
TOPER = OMATX019,20)
TOTAL = OMATX020,20)
Total capital cost of the entire treatment sys*
tern without yardwork, land, engineering, legal &
fiscal, and interest during construction costs
factored in, $.
Capital cost of yardwork, $.
Subtotal of TCAP + YARD, $.
Cost of the required land for plant construction,
$.
Cost of the engineering services for plant con-
struction, $.
Subtotal of TCAP+ YARD + XLAND & ENG, $.
Cost of legal, fiscal and administrative ser-
vices during plant construction, $.
Subtotal of TCAP + YARD + XLAND + ENG + FISC, $.
Cost of interest during construction, $.
Total land requirement for the entire plant,
acres.
Amortization factor.
Total capital cost of the entire plant OSUBT2 +
XINT), $.
Total amortization cost of the entire plant,
C/1000 gallons.
Total operation and maintenance cost of the
entire plant, C/1000 gallons.
Total treatment cost of the entire plant
OTAMM-+ TOPER), o/iooo gallons.
Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
CCI = CCI/1.506 COS02700
CCI
CCI
[no unitsj
1.506
AF = RI*Ol.+RI)**YRS/001.+RI)**YRS-l.)
COS02800
AF -
"
01+RD¥RS-1
[no unitsj
256
-------
References:
Patterson and Banker, 1971
4. Cost functions.
Administrative and laboratory
a. Capital cost
Function of Q
Plant Inf.
X - ALOG(SMATX(2,1)) COS03400
Plant Inf.
X = in Qpl
CCOST(20,1) = EXP (3. 524005+. 383129 *X+ .077688*X**2.-.009021*X**3.)*1000.
2 3 COS03500
CCOST = 1000e3.524005+.383129X+0.077688X2-0.009021X3
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours
OHRS = EXP(5.886104+.778820*X) COS03700
5. 886104+0. 778820X , . ,
OHRS - e [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(4.605170+.661110*X) COS03800
YMHPQ - 04. 605170+0. 661110X r, . ,
XMHRS = e [hrs/yr]
(3) Total materials and supplies
TMSU = EXP (7. 24422 6+.500000*X) COS03900
TMSU = e7 ' 244226+0 ' 500000X [dollars/yr ]
c. Total operating and maintenance costs
COSTO(20,1) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COS04000
r,n^n (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI) r - /innn »n
COSTO m - 7) - *3fi5n — Lcents/1000 galj
^Plant Inf.
257
-------
Garage and shop
a. Capital cost
CCOST(20,2) = EXP(2.28845.Q+.446606*X+.032729*X**2.)*1000. COS04500
CCOST = 100oe2-288450+0.446606X+0.032729X2 ^^
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours COS04600
OHRS = 0 [hrs/yr]
(2) Maintenance manhours COS04700
XMHRS = 0 [hrs/yr]
(3) Total materials and supplies COS04800
TMSU •= 0 [dollars/yr]
c. Total operating and maintenance costs COS04900
COSTO(20,2) - 0 [cents/1000 gal]
Laboratory operations
a. Capital cost COS05500
CCOST(20,3) = 0 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours
(a) For XLAB = 0 Primary or trickling filter plant COS05600
OHRS = EXP(6.551080+.447632*X) COS05700
_ 6.551080+0.447632X ru , _.
OHKt> - e [hrs/yr]
258
-------
(h) For XLAB-1 Activated sludge plant COS05600
OHRS - EXPC7. 892489+. 087261*X+.004753*X**2.+.006532*X**3.) COS05900
n7. 892489+0. 087261X+0.004753X2+0.006532X3
r , ,
[hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(4.700480+.368.379*X) COS06000
XMHRS = e4.70048C+0.368379X
(3) Total materials and supplies
TMSU = EXP(5.972471+.534838*X+.010941*X**2.+.010320*X**3.) COS06100
„..„.. 5.972471+0.534838X+0.010941X2+0.010320X3 _ , .
TMSU - e [dollars/yr]
c. Total operating and maintenance costs
COSTO(20,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
COS06200
COSTO = COHRS+XMHRS)DHR(1+PCTH(TMSU*WPI) [cents/1000 gal]
Yardwork operations
a. Capital cost COS06800
CCOST(20,4) = 0 [dollars]
b. Operating manhours, maintenance manhours and materials/supplies costs
(1) Operating manhours COS06900
OHRS = 0 [hrs/yr]
(2) Maintenance manhours
XMHRS = EXP(6.542359+.082452*X+.184209*X**2.-.013606*X**3.) COS07000
XMHRS = e6.542359+0.082452X+0.184209X2-0.013606X3 [hrs/yr]
259
-------
03) Total materials and supplies
TMSU - EXPC5.991464+.650515*X) COS07100
TMSU - e5.991464+0.650515X [dollars/yrj
c. Total operating and maintenance costs
COSTO(20,4) - CCOHRS+XMHRS)*DHR*C1.+PCT)+TMSU*WPI)/SMATXC2,1)/3650.
COSTO - COHRS+XMHRS)DHRa+PCTH(TMSU*WPt) [cents/1000 gal]
U
Intermediate plant costs
(1) CCOST(J.I) = CCOSTCJ,D*CCI/1000. COS08000
CCOST = ":'I- ropiiars-i
1000 L IOOQ J
where J •» 1,20 and I = 1,5
(2) TCAP = TCAP+CCOSTCJ.I)
TCAP = TCAP+CCOSTCJ.I)
where J = 1,20 and 1-1,5
(3) YARD = .14*TCAP COS08200
YARD = 0.14TCAP .-dollars n
L 1UOUJ
(4) TCC = ALOG(TCAP+YARD) COS08300
TCC • In (TCAP+YARD) rlp dollars
L l 1000 JJ
Q - ALOG(SMATX(2,1)) COS08400
Q = In 0
Plant Inf.
(5) XLAND = EXP(2.405815+.010392*Q+.127563*Q**2.-.009133*Q**3.)*DA/1000.+CLAND/1000.
.
+DLAND/1000.
15+0. 010392Q
_
1000
.,. 2. 405815+0. 010392Q+0.127563Q2-0.009133Q3 COS08500
XLAND = ££^ _ _ _ _ _ X +CLAND+DLAND
260
-------
(6) ENG - EXP(.557449+.462790*TCC+.021284*TCC**2.)
_.- 0.557449+0.462790TCC+0.021284TCC2
BUG " e
(7) SUBT1 = ALOG(TCAP+YARD+XLAND+ENG)
SUBT1 - In (TCAP+YARD+XLANIH-ENG)
C8) FISC = EXPC-2.497954+.916338*SUBT1-.023887*SUBT1**2.)
____ -2.497954+0.916338SUBT1-0.023887SUBT12
FISC ™ e
(9) SUBT2 = ALOGCTCAP+YARIH-XLAND+ENG+FISC)
SUBT2 = In (TCAP+YARIH-XLANIM-ENG+FISC)
(10) P —1.475131+.428894*SUBT2)
P = -1.475131+0.428894SUBT2
Cll) XINT = CCINT*P/2.*EXPCSUBT2)
XINT = CCINT*P*eS0BT2
COS08700
(12) TOT = TCAP+YAED+XLAND+ENG+FISC+XINT
TOT = TCAP+YARD+XLAKIHENG+FISC+XINT
(13) TCC =• EXP(TCC)
TCC - eTCC
(14) SUBT1 = EXP(SUBTl)
SUBT1 = eSUBT1
(15) SUBT2 = EXP(SUBT2)
SUBT2 = eSUBT2
(16) TCAP = TCAP*1000.
TCAP = 1000TCAP
L 1000J
COS08800
P» ^oW^
COS08900
.-dollars-.
L 1000 J
COS09000
[In
J.VW
COS09100
[no units]
COS09200
.-dollars-,
1 1000 J
COS09300
.-dollars-,
1 1000 J
COS09400
.-dollars-.
L 1000 J
COS09500
pdollars-.
L 1000 J
COS09600
[-dollars-.
L 1000 J
COS09700
[dollars]
261
-------
(17) TOT = TOT*1000.
TOT " 1000TOT
(18) YARD = YARD*1000.
YARD = 1000YARD
(19) TCC - TCC*1000.
TCC = 1000TCC
(20) XLAND - XLAND*1000.
XLAND = 1000XLAND
(21) ENG = ENG*1000.
ENG - 1000ENG
(22) SUBT1 = SUBT1*1000.
SUBT1 = 1000SUBT1
(23) FISC = FISC*1000.
FISC = 1000FISC
(24) SUBT2 - SUBT2*1000.
SUBT2 = 1000SUBT2
(25) XINT = XINT*1000.
XINT = 1000XINT
(26) RATIO = TOT/TCAP
RATIO = -TOT
TCAP
(27) ACRE = (XLAND-DLAND)/DA
4r,D1? XLAND-DLAND
ACRE —
COS09800
[dollars]
COS09900
[dollars]
COS10000
[dollars]
COS10100
[dollars]
COS10200
[dollars]
COS10300
[dollars]
COS10400
[dollars]
COS10500
[dollars]
COS10600
[dollars]
COS10700
[no units]
COS10800
[acres]
262
-------
Total plant cost
a. Capital cost
CCOST(J.I) - CCOST(J,I)*1000.*RATIO COS11900
CCOST = 1000CCOST*RATIO [dollars]
where. J = 1,20 and I = 1,5
b. Amortized cost
(1) For ACOST (J, I) - 0 COS12000
ACOST(J.I) - CCOST(J,I)*AF/SMATX(2,1)/3650.. COS12300
ACOST _ CCOST*AF - _ [cents/1000 gal]
WPlant Inf.
where J = 1,20 and I = 1,5
(2) For ACOST(J.I) > 0 Where ACOST calculated in subroutine e.g., LANDD.CENT
ACOST(J.I) = ACOST(J,I)*RATIO*CCI COS12100
ACOST = ACOST*RATIO*CCI [cents/1000 gal]
where J = 1,20 and I - 1,5
c. Treatment cost
TCOST(J.I) • COSTO(J,I)+ACOST(J,I) COS12400
TCOST • COSTO+ACOST [cents/1000 gal]
where J = 1,20 and I = 1,5
d. Total capital cost
TOT = TOT+CCOST(J,I) COS12500
TOT = TOT+CCOST
where J = 1,20 and I = 1,5
263
-------
e. Total amortized cost
TAMM - TAMtH-ACOST(J.I)
TAMM - TAMM+ACOST
where J - 1,20 and I = 1,5
f. Total operating cost
TOPER •= TOPER+COSTOIJ.I)
TOPER = TOPER+COSTO
where J = 1,20 and I = 1,5
g. Total treatment cost
TOTAL = TOTAL+TCOST(J,I)
TOTAL = TOTAL+TCOST
where J = 1,20 and I = 1,5
COS12600
[cents/1000 gal]
COS12700
[cents/1000 gal]
COS12800
[cents/1000 gal]
264
-------
c
c
c
c
c
c
c
CALCULATE TOTAL PLANT COST
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINt COST
COS00100
COS00200
COS00300
COS00400
COSU0500
COS00600
COS00700
COS00800
INTEGER osi»os2 cosoogoo
COMMON SMATX<20»30)•TMATX(20•30)»DMATX(20»20>.OMATX(20»20)rlP(20)rCOSOlOOO
HNP»IO»ISl»lSN»lAERFFCCOST<20»5)fCOSTO(20»5)»ACOST(20»5)COS01100
COMMON INITIAL STATEMENTS
2»TCOS1 (20i5)»DHR»PCTf*PI>CLANDrDLAND»FLOW(2ij)»POW<25>»T.;WHDl25)
ASSIGNMENT OF DESIGN VALUES TO ECONOMIC PARAMETERS
CCI=DMATX(lr20>
Ri=DMATX(.i»20)
YKS=DMATXUt2u)
DA=DMATX<7»20)
CClNT=DMATX(8r20)
XLAB=OMATX(9»20)
CALC. OF OUTPUT QUANTITIES
CCI=CCI/1.506
AF=RI*(l.+RI)**YRS/(U.+R1)**YRS-1.)
CALC. OF CAPITAL AND OPERATING COSTS FOR ADMINISTRATIVE
AND LABORATORY
X=ALOb(SMATX(2»D)
COS01200
COS01300
COS01400
COS0150Q
COS01600
COS01700
COS01800
COS01900
COS02000
COS02100
COS02200
COS02300
COS02400
COS02500
COS02600
COS02700
COS02600
COS02900
COS03000
COS03100
COS03200
COS03300
COS03100
CCOST120»1)=EXP(3.52«»005+.383129*X+.077688*X**2.-.009021*X**3.)*luCOS03500
100.
OHRS=£XP(b.880101+.77tt820*X)
XMHRS=EXPf+.605170+.6olllO*X)
TMSU=LXP(7.2(*'*226+.50UOOO*X)
) = ((OHRS+XMHRS)*DHR*(l.-«-PCT)+TMSU*WPI)/SMATX(2'l)/3650.
CALC. OF CAPITAL AND OPERATING COSTS FOR GARAGE AND SHOP
CCOST (20 *2) =EXP < 2. 2B8«*50+. «*<+6606*X+. 032729*X**2. > *1000.
OMRS=0.
XMHRS=0.
TMSU=O.
COST0120»2)=0.
CALC. OF CAPITAL AND OPERATING COSTS FOR LABORATORY
OPERATION
CCOST(20»3)=0.
IF (XLAB) 20»10t20
OHKS=tXP(to.551080+,HU7632*X)
GO TO 30
COS03600
COS03700
COS03800
COS03900
COSOtOOO
COS04100
COS04200
COS04300
cosomoo
COSOU500
COS04600
COSOII700
C0504800
COS04900
COS05000
COS05100
COS05200
COS05300
COS05"»00
COS05500
COS05600
COS05700
COS05800
265
-------
c
c
c
c
20 OHRS=EXP(7. 892489+. 08726l*X+.004753*X**2.+.006532*X**3. )
30 XMHRS=EXP(4.7G0480+.3o8379*X>
TMbU=tXP*DHR**DHR*(l.+PCT)+TMSU*WPI)/SMATX(2»l)/3650.
CALC. OF OUTPUT COSTS AND QUANTITIES
TCAP=O.
DO 40 J=1.20
Du 40 I=lr5
CCObTU»n=CCOST(J»I)*CCI/1000.
40 TCAP=TCAP+CCObT(J»I)
YARD=.14*TCAP
TCC=ALOG(TCAP+YARD)
XLAND=EXP( 2. 40581 b+.010392*Q+.127563*Q**2.-. 0091 33*Q**3.)*DA/1 000
l+CLANu/1000.+L>LANu/10UO.
ENG=EXP( .657449*. 462790*TCC+.021284*TCC**2. )
subii=ALOb ( TCAP+YARD+XLAND+ENG )
FlbC=tXP (-2. 497954+. 9l6338*SUBTl-.023887*SUbTl**2.)
suuT2=ALOt. i KAP+YARD+XLAND+ENG+FISC )
P=-1.4751il+.428894*SUBT2
XlNT=CCINT*P/i:.*EXP(SUBT2)
TOT=TCAP+YARD+XLAND+ENG+FISC+XINT
TCC=EXP(TCC)
SUBT1=EXP(SU8T1)
SUbT2=EXP*AF/SMATX(2»l)/3650.
70 TCOST(J,I)=CObTO(JrI)+ACOST(JrI)
COS05900
COS06000
COS06100
COS06200
COS06300
COS06400
COS06500
COS06600
COS06700
COS06800
COS06900
COS07000
COS07100
COS07200
COS07300
COS07400
COS07500
COS07600
COS07700
COS07800
COS07900
cosoaooo
COS08100
COS08200
COS08300
COS08400
•COS08500
COS08600
COS08700
COS08800
COS08900
COS09000
COS09100
COS09200
COS09300
COS09400
COS09500
COS09600
COS09700
C0509800
COS09900
COS10000
COS10100
COS10200
COS10300
COS10400
COS10500
COS10600
COS10700
COS10800
COS10900
COS11000
COS11100
COS11200
COS11300
COS11400
COS11500
COS11600
COS11700
COS11800
COS11900
COS12000
COS1210Q.
COS12200
COS12300
COS12400
266
-------
c
c
c
c
c
c
c
c
TOT=TOT+CCOST(J.I)
TAMM=TAMM+ACOSTCJ»I>
T(JPER=TOPtR+CoSTO( J. I)
TOTAL=TOTAL+TCOST(J»I)
ASSIGNMENT OF VALUES TO OUTPUT OMATx
OMATX(1.20)=CCI * 1.506
DMATX(2»20)=WHI*1.122
ASSIGNMENT Of VALUES TO OMATX
OMATX(1»20>=
OMATX(2»20)=
OwATX(3.20)=
OMATXU»20> =
OMATX<5.20)=
OMATX 16 f 20 )=l
OMATX(7.20)-
OMATX(6>20>=
OMATX(9»20)=
OMATXtlO«i:0)
OMATX(11»20)
OMATX(12»aO)
OMATXU7»20)
OMATX(16>20)
OMATX(19»i:0)
OMATX120»20)
RLTURN
RATIO
TCAP
YARD
TCC
XuAND
ENG
SUBTl
F1SC
SUBT2
=XINT
=ACRE
=AF
=TOT
= TAMM
=TOPER
=TOTAL
COS12500
COS12600
COS12700
COS12800
COS12900
COS13000
COS13100
COS13200
COS13300
COS13«*00
COS13500
COS13600
COS13700
COS13800
COS13900
COSltOOO
COSltlOO
COS1U200
COS1«*300
COS14100
COSltSOO
COS14600
COS1U700
COS14800
COS1<*900
COS15000
COS15100
COS15200
COS15300
COS15HOO
COS15500
COS15600
267
-------
SECTION 28
OUTPUT SUBROUTINE, PRINT
c PRT00100
C PRINT OUTPUT PRT00200
c PRT00300
SUBROUTINE PRINT PRTOOtOO
C PRT00500
C PRT00600
C COMMON INITIAL STATEMENTS PRT00700
C PRT00800
iNTEGtR OS1.0S2 PRT00900
COMMON SMATX<2Q'30).TMATX<20.30)»DMATX(20,20>»OMATX(20,20)»IP(20),PRT01000
1INP,IO,IS1.IS2,OS1.0S2.N'IAERF»CCOST(20»5) ,COSTO(20»5).ACOST(20»5)PRT01100
2»TCOST(20»5)»bHR»PCT,wPI»CLAND»DLAND»FLOW(25>»POWl25>»TKWHD(25) PRT01200
C PRT01300
C PRT01100
C OUTPUT FORMAT FOR STREAM CHARACTERISTICS PRT01500
C PRT01600
WRITE (10.10) PRT01700
10 FORMAT (iHi.////.<+4x» 'STREAM CHARACTERISTICS',//»66X»»VOLUME FLOW.PRTOIBOO
1 MILLIONS OF GALLONS PER DAY'»/»66X»'CONCENTRATIONS. MILLIGRAMS PEPRT01900
2R LITER'./) PRT02000
DO HO 1=1.30 PRT02100
IF (SMATX(l.D) 20.40.20 PRT02200
20 WRITE (10.30) (SMATX.COSTO(I,1)»ACOST(I.1).TCOST(PRT04800
ll.l),UMATx(16,I> PRTOH900
80 FORMAT (IX.1HP,12,2X,'PRELIMINARY',&X,'IPREL',UOX,'CCOST',4X»'COSTPRT05000
10' ,i+X. 'ACOST' r«fX» 'TCObT' «6X, 'ECF',/r6X, 'TREATMENT' ,6X,F9.1»36X»F9.PRT05100
20,3F9.3,F9.2»//) PRT05200
G0 T0 610 PRT05300
?. PRT05400
• PRT05500
; PRSET PRT05600
PRT05700
90 WRITE (10,100) I'
-------
1COSTO(I,1)»ACOST(I»1>»TCOST(I»1>.DMATX(16.I)»CCOST(I.2).COSTO(I,2)PRT05900
2'ACOST(I »2>rTCOST(I r 2 > ,DMATX(15rI) PRT06000
100 FORMAT <»X» 'COSTO' »«*X» • ACOST't«»X» 'TCOST' ,6Xr 'EOF' »/t57X»PRT06300
3'SETTuER'.2X»F9.0,3F9.3»F9.2»//»57X»'SLUDGE'»3X»F9.0»3F9.3.F9.2»/»PRT06«»00
457X»'PUMPS•»//> PRT06500
60 TO 610 PRT06600
C PRT06700
C PRT06800
C AERFS PRT06900
C PRT07000
110 WRITE »DMATX (13» I) PRT08000
130 FORMAT (22X»' MLNBSS • • HX.' MLDSS'»«*X i ' MLISS' i SX.' FOOD •»**X •'RTURN' r 5XPRT08100
1»'CNIT'»UX»'AKCFD'»<*Xr'BSlZE'f1X»'CFPGL'»7X»'QR» r/.21X»3F9.0»F9.1»PRT08200
22F9.3»2F9.0»F9.2»F9.3»//»b8Xr 'CCOST'»<*X» 'COSTO'rtXr • ACOST' »«*X. 'TCOPRT08300
3ST'.6X»'ECF'»/»57X»'AERATOR1»2XrF9.0»3F9.3»F9.2»//.57Xt'BLOWER'>3XPRT08<*00
«t»F9.0»3F9.3»F9.2•//»57X»'SLUDGE'»3X»F9.0»3F9.3»F9.2./»57Xr'PUMPS'»PRT08500
5//»57X»'FINAL'»«|X»F9.0»3F9.3»F9.2r/»57X»'SETTLER'i//> PRT08600
GO TO 610 PRT08700
C PRT08800
C PRT08900
C DIG PRT09000
C PRT09100
140 WRITE (I0>150) I»(DMATX(J.I).J=lr2),(OMATx(j»I)rJ=lr5).CCOST(Ifl)»PRT09200
1COSTO(It litACOST(!»!)»TCOST(I>1)•DMATX(16»I) PRT09300
150 FORMAT (1X»1HP»I2»2X»'SINGLE STAGE'»8X»'TD'.5X»'TDIG't'*X'tClDIG'»«*PRT09i*00
iXf'C2UIG'»5X'«VDIG'»6X»'CH«t »»6X»'C02'»/»6X>•ANAEROBIC«>6Xr2F9.1»F9PRT09500
2.3»F9.0»F9.3»2F9.0»/»t>X»'DIGESTION'»/»68X.«CCOST'•HX»»COSTO'»«*X.'APRT09600
3COST'rHX»'TCOST'»6Xr'tCF'i/»66X»F9.Q'3F9.3»F9.2»//> PRT09700
GO TO 610 PRT09800
C PRT09900
C PRT10000
C VACF PRT10100
C PRT10200
IfaO WRITE (I0»170) Ir(DMATX(JiI)>J=l'10)»(OMATX(J»I)»J=lr3>»CCOST(I.1)PRT10300
l»COSTO(I»l)rACOST(I.l).TCOST(I»l)rDMATX(l6»U PRT10«»00
170 FORMAT (IXt1HP»12.2X»'VACUUM'rl3X»'VFL'»5Xf'HPWK'i6Xt'TSS'»(*X»'IVAPRT10500
1CF' »<*X» 'FECL3' .6Xr 'CAO' »<»X» 'CFECL* >5X. 'CCAO' »UX» 'UPOLY' »<+Xr 'CPOLVPRT10600
2»/»6X.'FlLTRATION'>5X»F9.2»2F9.0»F9.1.2F9.2»2F9.'*»F9.2»F9.6Xr'EtF'»/»21X»2F9.1»F9,0»18X»F9.0»3F9.3»F9.2»//) PRT10900
GO TO 610 PRT11000
C PRT11100
C PRT11200
C THICK PRT11300
C PRT11«*00
160 WRITE (I0»190) I>(DMATX(J»I)»J=lr'*)»»TRR'»6Xi'TSS'»6x»'GTH«.&x»»GSTPRT11700
1H'»5Xr'ATHM'»bX.'«RT'i/.6X»'THICKENING',5X.F9.2.F9.0»3F9.1.F9.2.//PRT11800
2i68X»'CCOST'»«*X»»COSTO»»«»X»'ACOST'. «»X.« TCOST'• 6X1 • ECF'»/»66X»F9.0»PRT11900
33F9.3.F9.2.//) ^RIJ!?2S
Go TO AID PRT12100
f G0 T° 6l° PRT12200
C PRT12300
C ELUT PRT12«»00
269
-------
c PRT12500
ZOO WRITE (10,210) I•(DMATX(J,I> • J=l«5),OMATX(1,1),CCOST(I,D,COSTO •TCOST(I.I).DMATX(16.1) PRT12700
210 FOKMAT (IX,1HP.12.2X.'ELUTRIATION',8X»«ERK',6X.«TSS»»6X.'WRE1»7X,'PRT12800
!Gt.',6X»'GE.S'»7X,'AE'»/»2lX.F9.2,F9.0»3F9.1.F9.0,//»68X»«CCOST'.«tX.PRT12900
2'COSTO'»<»X.'ACOST'. <»X.'TCOST',6X.'ECF'»/«66X'F9.0.3F9.3»F9.2»//> PRT13000
GO TO 610 PRT13100
c PRT13200
c PRT13300
C SBEDS PRT13«tOO
c PRT13500
220 WRITE (10.230) I»(DMATX(J»I>»J=l.2).OMATX(1,1).CCOSTd»1>»COSTO(I.PRT13600
11)r ACOST(1»D»TCOST(I>1).OMATX(16,1) PRT13700
230 FORMAT (1X.1HP.I2.2X.'SANU DRYING'»7X.'SOUT'.6X.tTSS'»6X»'ASB'.22XPRT13800
l.'CCOST' .<*X» 'tOSTO1 lUXr 'ACOST1 >HXi »TCOST'»6X» 'ECF' »/>6X» 'BEDS' >11XPRT13900
2'F9.2.2F9.0flBX'F9.0»iF9.3»F9.2r//) PRT14000
GO TO 610 PRT1U100
C PRT1U200
C PRT1<*300
C TRFS PRTli*«*00
C PRT1U500
2<*0 WRITE (10.250) I» (DMATX( J. I) . J=l »9) . (OMATX( J. I) »J=l .«*) PRT1«»600
2bO FORMAT (IX.1HP.12.2X»'TRICKLING'.10X»'BOD'»5X.'DEGC'»7X.»HQ'»<*X.'SPRT14700
1AREA' .5X»'URSS'»5X.'XKSS'»3X.'RECYCL'»6X»'GSS'»5X»'HEAD1»/.6X,'FILPRT14800
2T£.R-'.8X.F9.1.<4F9.2.Fy.t.3F9.1./.6X.lFINAL SETTLER' ./.25X. »AFS' .6XPRT14900
3»'VOL'»«a.'FAREA«.^X»'DEPTH'./.21X.F9.2.2F9.0.F9.2./) PRT15000
WRITE (10.260) CCOSTU.1>»COSTO(I..1)»ACOST(1.1)»TCOST(I»1).DMATX<1PRT15100
16.I)»CCOST(I.2).COSTOII.2).ACOST(I.2).TCOST(I.2)»DMATX(15.I)»CCOSTPRT15200
2(I»3)»COSTO(I.3).ACOST(i.3).TCOST(I.3).DMATX(l«*»I) PRT15300
260 FORMAT (66X.' CCOST'. «*X.' COSTO'. **X.' ACOST'. «*X •' TCOST•»6X.' ECF •. / • 57PRT15UOO
1X.'FH.TER'»3X.F9.0»3F9.3»F9.2»//.57X.'FINAL'»HX.F9.0»3F9.3»F9.2./.PRT15500
257X,'SETTLER1»//»57X.'SLUDGE'.3X.F9.0.3F9.3,F9.2»/»57X.'PUMPS'.//)PRT15600
GO TO 610 PRT15700
C PRT15800
C PRT15900
C CHLOR PRT16000
C PRT16100
270 WRITE (10.280) I»(DMATX(J.I).J=l.5).(OMATX(J.I).J=1.3) PRT16200
2aO FORMAT (IX.1HP.I2.2X.'CHLORINATION-'»5X.'OCL2'.5X.'TCL2'»5X.»CCL2'PRT16300
1.bX.'US02'.5X.•CS02'.bX.'bVOL'.5X.'CUSE'.5X,•SUSE•,/.6X.'DECHLORINPRT16UOO
2ATION'.lX.F9.2»F9.1.3F9.2.F9.0.2F9.2'/> PRT16500
WK1TE (10.290) CCOST(I.1).COSTO(I.I).ACOST(I.I).TCOST(1,1),DMATX(1PRT16600
l6,I),CCOST(I,2).COSTO(I.2)»ACOST(I.2>»TCObT(I,2)»DMATX(l5.I),CCOSTPRT16700
2 (1r 3).COSTO(1,3).ACOST(1.3),TCOST(1,3),DMATx(It»I) PRT16800
290 FORMAT (6bX,•CCOST•.MA»'COSTO' . 4X, • ACOST' .<4X» • TCOST•,6X,'tCF'./.57PRT16900
IX.'CONTACT'.2A.F9.0.3F9.3.F9.2./.57X.'BASIN',//,57X,«CL2 FEED'.1X.PRT17000
2F9.0'3F9.3.F9.2./.57X.'SYSTEM'.//,57X,'S02 FEED" 1X.F9.0.3F9.3.F9.PRT17100
32./.57X.'SYSTEM'.//) PRT17200
GO TO 610 PRT17300
c PRT17«fOO
c PRT17500
C TFLOT PRT17600
c PRT17700
300 WRITE (10,310) I.(DMATX(J.I>.J=1.7).(OMATx(J.I).J=l,3)»CCOST(I,1),PRT17800
1COSTO(I.I).ACOST(I.I).TCOST(1,1),DMATX(16.1) PRT17900
310 FORMAT (ix.IMP,12,2x,'FLOTATION*»iox»»TRR»,&x,«TSS'»ex,»GTH'»sx.'GPRTISOOO
lSTH'»bX.'HPwK',i*X.«DPOLY',i*X.'CPOLY'»/,6X,'THICKENING', 5X,F9.2»F9.PRT18100
20»5F9.2.//,2'+X,'ATHM',7X,'XN',UX,'ATHMl'»22X.'CCOST','*X.'COSTO'r<+XPRT18200
3''ACObT'mX,'TCOST'.6X.'ECF'./,21X,3F9.1.18x»F9.0,3F9.3,F9.2»//) PRT18300
GO TO 610 PRT18-IOO
^ PRT18500
"I PRT18600
C MHINC PRT18700
PRT1S800
3iiO WKITE (10,330) I,(DMATX(J,I).J=l.9),(OMATX(J.I),J=l,5) PRT1890Q
330 FORMAT (ix,IHP,12,2x,-MULTIPLE HEARTH*,5X,'ML',5X,'NINC'.5X,'HPWK'PRT19000
270
-------
l»5X,'SPER'»7Xi'WV'»7X»'HV'»5X»'TYPE'»7X»'FC'r6X»'CNG'»/»6Xf'INCINEPRT19100
2RATlON'»3x»7F9.1'2F9<3i//»25X»'FHA',5X«'WFYR'»5X»'PSDD'»(*X»'ECOST'PRT19200
3»<*X.'FCOS1•»/»21X.5F9.0»/> PRT19300
WRITE (10»340) CCOST(1r1)»COSTO(If1)rACOST(I•1)rTCOST(I »1).DMATX(1PRT19400
16>1) ' PRT19500
3<*0 FORMAT <68X» 'CCOST' »«»X. 'COSTO' »4X» • ACOST• »<*X' • TCOST• »6X» 'ECF» «/.6bPRT19600
!X»F9.0»3F9.3'F9.2i//) PRT19700
60 TO 610 PRT19BOO
C PRT19900
C PRT20000
C RWP PRT20100
C PRT20200
3bO WRITE •COSTO(I»1)rACOSTPRT20300
1(I»1)»TCOST(I»1)»DMATX(16>I) PRT20t00
3oO FORMAT (1X»1HP»I2»2X»'RAW WASTEWATER*»<*X»'HEAD*»7Xr»QP»»31X»'CCOSTPRT20500
1' • <+X»'COSTO'»<*X»•ACOST••fX»«TCOST'»6X» »ECF'i/»6X•'PUMPING»,8X»2F9.PRT20600
22r27X»F9.0»3F9.3»F9.2»//> PRT20700
GO TO 610 PRT20800
C PRT20900
C PRT21000
C SHT PRT21100
C PRT21200
370 WRITE U0r380) I»DMATX(1»1)»OMATX(1,I)tCCOST(I»D»COSTO(I.1)»ACOSTPRT21300
1(I•1» rTCOST(I•1)•DMATX(16»I> PRT21400
380 FORMAT (1X»1HP»I2»2X»'SLUDGE HOLDING'»6X»'Tu'»5X»'VSHT'»3lX»'CCOSTPRT21500
I1 »«*X» 'COSTO' r**X» 'ACOST' i«»X» 'TCOST' »&X» 'ECF' »/>6X» 'TANKS' f!OX»2F9.1PRT21600
2»27X»F9.0.3F9.3»F9.2»//) PRT21700
GO TO 610 PRT21800
C PRT21900
C PRT22000
C CENT PRT22100
C PRT22200
390 WRITE (I0r<*00) I•IDMATX1J»I)fJ=l>8)t(OMATX(J»I)»J=1.5)tCCOST»PRT22300
1COSTO (!»!)»ACOST (111) »TCOST (!»!)»DMATX (16» I) PRT22<*00
*»oo FORMAT (ix»iHprI2»2x»'CENTRIFUGATION'»sx» «CRR« »&x» »TSS'»5x»'HPWK* »PRT22500
15X*'XCEN'>5X»'POLY'»«*Xf'CPOLY',5Xt 'GPMN'^X»'CNMlN'»/»2lXiF9.2rF9.PRT22600
20.3F9.1.2F9.2.F9.1»//»2«*X»'CGPMtr5X»'OSOL'»6X»'AFC'f4X»'CSIZE'i7XfPRT22700
3'CN'»/»21X»F9.0»F9.1»F9.5»2F9.1»//»68X»'CCOST'r'+X»'COSTO'»UXr•ACOSPRT22800
<*T'»UXi'TCOST'»6X»'ECF'./ifa6X»F9.0r3F9.3»F9.2»//) PRT22900
GO TO 610 PRT23000
C PRT23100
£ PRT23200
C AEROB PRT23300
C PRT23«*00
410 WHITE (I0r(DMATX(J»I)rJ=l'8)»(OMATX(jfI)»J=1>4) PRT23500
UiiO FORMAT F9. 1»2F9.21//»2«»X. • VAER'»5X•' ACFM' >IX.'OPUMP•.6X»' AFSPRT23800
3'r/,21X»F9.3»F9.0.2F9.2»/) PRT23900
WRITE »COSTO'»«fX»«ACOSTt.<+xr'TcosT'*6x»'ECFl»/»57pRT24<»oo
lX,'AEKATOR'»2X»F9.0.3F9.3.F9.2i//»57X.'BLOWER'»3X»F9.0r3F9.3»F9.2.PRT2«»500
2//»57Xf'SLUDGE'»3X»F9.0»3F9.3»F9.2»/»57X»'PUMPS'»//»57X»'FINAL'»4XPRT2«»600
3»F9.0»3F9.3»F9.2»/»57X»'SETTLER'*//) PRT24700
GO TO 610 PRT21800
C PRT24900
C PRT25000
C POSTA PRT25100
C PRT25200
*H*0 WRITE (IQ.tSO) I»(DMATX(J»I)»J=l»13)»(OMATX(J,I)»J=lr7) PRT25300
«»!»0 FORMAT (iXf 1HP» I2»2X» 'POST AERATION'»HX. ' 1TYPE1 »8Xt »L'»5X»'DOIN'»5PRT25«*00
IX»'DOUT'»7X»'TL'»7X»'TO'»7X»'TW»«»X»'AERFO'»UX» «HPHRO't6Xr'ALT'»/iPRT25500
221X»2F9.0»5F9.1iF9.3»2F9.2»//»23Xr'CFMDF'»'*X''DlFFT'»7X>'DD'»5X>'VPRT25600
271
-------
3ALR • » oX » ' CFM • » 7X » • HP • , 5X • • TMI N • » 6X » • VMG • » <*X , • AERFF • , 5X » • CLEN • , / • 21PRT25700
4X,3F9.1»F9.3»F9.0»2F9.2,F9.t»F9.3»F9.2»/> PRT25BOO
WRITE (10,460) (OMATX(J,I)«J=8»13> PRT25900
FORMAT (2bX, 'HP1' ,7X» »XN' ,6X, 'THP' ,4X, 'WIDTH* »«»X» 'DEPTH' » bXr • TLEN'PRT26000
l»/,2lX,F9.2»F9.1,F9.2.2F9.1,F9.2»/> PRT26100
WRITE (10,470) CCOSTU,1>»COSTO(I»1)»ACOST,TCOST(I,2)»DMATX<15,I) PRT26300
470 FORMAT (66X. 'CCOST1 ,4x, 'COSTO' »4X» • ACOST' »«U» 'TCOST' »t>X» 'ECF' t/»57PRT26<*00
!X,»BAi>lN'»HX»F9.0.3F9.3»F9.2»//»57X.'AlR'.6X'F9.0.3F9.3.F9.2»/»57XPRT26500
2 • ' SUPPLY ' » // ) PRT26600
GO TO 610 PRT26700
C PRT26800
C PRT26900
C EQUAL PRT27000
C PRT27100
tbO WKITE (I0rt90) I • (DMATX ( Jr I ) • J=l «5) » (OMATX( Ji I ) • J=l >14) PRT27200
<*90 FORMAT ( lx» 1HP> I2r2X» 'EQUALIZATION1 r6X»'lAEK' »6Xr »RLW« f HX> "COSTL1 »PRT27300
l5X»»HLAD'r5X»«IMAT'»'*Af 'WIDTH '.5X»' AREA' »5X,«VUMGt, 5Xr«VOMG«» 7X»'VPRT27«tOO
2T«>/.21X»2F9.i»F9.3.2F9.1»F9.2rF9iH.3F9.»*»//»23X»'SAREA'»7X»'HP'»faPRT27500
3Xr «HPi« »7X» 'XN« »6X» 'THP1 tbX» ' VAER' »5X» 'ECFM'PRT27600
1»/»21X»F9.1.2F9.2»F9.1»2F9.2»F9.0»F9.3»F9.0,/J PRT27700
WRITE (lOrSOO) CCOST(irl)fCOSTO(I»l)rACOST(I.l)»TCOST(I»l)»UMATXiTCOST(I»2)»DMATX(l5»I)»CCOSTPRT27900
2lI»3)>COSTO(If3)'ACOST(I»3)fTCOST(I(3}.DMATx(it»I)»CCOST(I»U)»COSTPRT28000
30ll,tt)rACOST(Ir«*>»TCOST(IfU)rCCOST(I»5)»COSTO(I»5)fACOST(I.5)fTCOSPRT28100
4T(1,5) PRT28200
5UO FORMAT (6dX» 'CCOST' »«*Xr 'COSTO' r^X» 'ACOST' »**X» 'TCOST' »6X. 'ECF* • /»57PRT28300
lX»'AEKATEU'»2X»F9.0»3F9.3»F9.2»/r57X"POND/TANK'f//.57Xr'AIR'.6X»FPRT28«tOO
29.0r3F9.3.F9.i:./»b7Xr 'SUPPLY '»//»57X "PUMPING M2X i F9.0»3F9.3tF9. 2 »PRT28500
3/ • b7X »' SYbTEM' f//f57X»' FLOW '»5X.F9.0'3F9.3»/rb7X>' MEASURING »»//r57PRT28600
<*X t ' POND '» bX tF9.0»3F9. 3. /t57X> 'LINING' •//) PRT28700
GO TO 610 PRT28800
C PRT28900
C PRT29000
C DIG2 PRT29100
C PRT29200
510 WRITE (10.520) I>(DMATX(J»I)fJ=l»3)»OMATX(l,I)»CCOST(I»H»COSTO{I»PRT29300
11) rACOST(Ifl) »TCOST(I»1> »DMATX(16»I) PRT29HOO
520 FORMAT ( IXr IMP, I2»2X» 'SECOND STAGE' »7x» »TRR' »6X» ' TSS' >7Xr 'TD1 »5X» 'PRT29500
1VUIG' »13X. 'CCOST' »tX» 'COSTO' » 4Xr ' ACOST' r «tXr 'TCOST' ,6X» '£CF« »/»6X» 'PRT29600
2ANAEROBIC' i 6Xr F9.2 »F9. 0 »F9. 1 fF9.3»9X'F9.0 » 3F9.3rF9.2»/»6X» 'DIGESTIPRT29700
30N'r//) PRT29800
GO TO 610 PRT29900
c PRT30000
c PRT30100
C LANDD PRT30200
c PRT30300
530 WRITE (10.540) I . (DMATX ( J. I ) . J=l»5) r (OMATx( J. I ) » J=l ,9) PRT30UOO
540 FORMAT ( IX. 1HP, I2.2X* 'LAND DISPOSAL OF ' »2Xr 'TAYR' , 7X» »SP» »5X» 'DISTPRT30500
l'.7X.'TS'.5X'»YRSL'./.6X. 'LIQUID SLUDGE' »2X, 3F9.2.F9.0.F9.1.//.25XPRT30600
2» 'TYT« .5X. 'TTYR' .bX. 'TRKN' .6X. 'SLV »5X. 'TONS' . IX » 'ALAND' */) PRT30800
WKITE (10.550) CCOST(I.l).COSTO(I»l)»ACOST(lrl)»TCOST(I,l)»DMATX(lPRT30900
16.I).CCOST(I.2).COSTO(I.2)rACOST(I.2)rTCOST(I,2)»DMATX(l5(I)»CCOSTPRT31000
2(I»3).COSTO(I.3)»ACOST(Ir3).TCOST(I.3) PRT3HOO
5bo FORMAT (&ax. 'CCOST • .tx. 'COSTO' .^x. 'ACOST' »<+x» «TCOST« t&x» 'ECF« t/»57pRT3i20o
IX, • sTORAGt '.2X.F9.0.3F9. 3. F9. 2. /f57X» 'LAGOON' »//»b7X»' TRUCKING «flXPRT31300
2»F9.0.3F9.3,F9.2'//,57X,'INTEREST',1X,F9.0.3F9.3./,57X»'ON LAND' I/PRT31HOO
PRT31700
LIME PRT31800
LIMt PRT31900
5t>0 WRITE (10,570) I , (DMATX( J, I ) , J=l ,2) ,
-------
570 FORMAT PRT32500
SO TO 610 PRT32600
C PRT32700
C PRT32800
C KBC PRT32900
C PRT33000
5tiO WRITE (10.590) I»(DMATX(J»I)»J=l»9)»(OMATXtJ»I)»J=l»10) PRT33100
590 FORMAT 6X»•TSS•»5X»tcPDY'»/.bX,•BlOPRT33300
2LOGICAL•»5X.2F9.1r3F9.2>2F9.1r2F9.2»/t6X»«CONTACTOR-'»/»6X»'FINAL PRT33^00
3SETTI_LR' • 5X»' UPAB •» 5X i ' QPAN •»**X»' APSTS' 15X»• AREA'»f X»'FNSTG' > IX »«RPRT33500
UNSTG'rtX»'RATIO'»5X.'PREM'»5X.'QPAT'»6Xr'AFS'»/>21X»2F9.2.2F9.0.2FPRT33600
59.2>F9.3»F9.2«F9.3»F9.1»/) PRT33700
WRITE (I0r600) (OMATX(J»I).J=ll»17>iCCOST(Irl)rCOSTO(Irl>»ACOST(I»PRT33BOO
ll)rTC05T(I»l).DMATX(lb.I)»CCOST(I»2)»COSTO(I»2)»ACOST(I»2)»TCOST(IPRT33900
2»2)iDMATXll5a) PRT3UOOO
6uo FORMAT <2<*x.'PDSD»isx»»uRssffsx.»NTRN»tix*'NSHFT*»<*x»'COSTM«i«*x»'CPRTSIHOO
lOSTEl»«*X»'COSTL'»/»2lX.F9.1.F9.3.2F9.1»3F9.0»//>68X.'C^OST'i«»X»'COPRT3«*200
2STO' »<*X» 'ACOST' ><*X» 'TCOST' »6X» 'ECF' p/» 57Xt "CONTACTOR1 »F9.0»3F9.3»FPRT3«*300
39.2»//r57X»'FINAL'r i*X.F9tO»3F9.3»F9.2./»57X»»SETTLER'»//> PRT3UUOO
610 CONTINUE PRT3<4500
C PRT3U600
C PRT3U700
C OUTPUT FORMAT FOR COSTS OF MISCELLANEOUS FACILITIES PRT3U800
C PRT3«*900
WRITE (10.620) CCOST(20.1)»COSTO(20.1).ACOST<20.1).TCOST120.1) PRT35000
620 FORMAT (6xr'ADMINISTRATIVE'»H8X»'CCOST'rtXr'COSTO',«*X»'ACOST'»UXf'PRT35100
lTCOST'f/»6X»'AND LABORATORY't46XrF9.Ot3F9.3»//) PRT35200
WRITE (10*630) CCOST(20.2).COSTO(20»2)fACOSK20.2),TCOST(20»2) PRT35300
630 FORMAT (6X»• GARAGE', 5bX F ' CCOST •»4X»' COSTO • mX,' ACOST' • «*X»' TCOST' • /PRT35400
1»6X»'AND SHOP'f52X»F9.0»3F9.3»//) PRT35500
WRITE (10•640) DMATX(9.20).CCOST(20.3)fCOSTO(20»3),ACOST(20.3).TCOPRT35600
1ST(20»3) PRT35700
610 FORMAT (6X» 'LABORATORY ' »8Xf 'XLAB' »'OPERATION'r6X»F9.1»36XrF9.0»3F9.3»//) PRT35900
WRITE (I0>650) CCOST(20»«»)»COSTO(20r«.)rACOST(20»'*).TCOST(20.«») PRT36000
6^0 FORMAT (6x» • YARDWORK' »5iXr»ccosT' »«*x» • COSTO• x+x>'ACOST»»«»x»«TCOST'PRT36100
l»/»6Xr'OPERATION'r51X»F9.0»3F9.3»//) PRT36200
C PRT36300
C PRT36400
C OUTPUT FORMAT FOR TOTAL PLANT COST PRT36500
C PRT36600
WRITE (10.660) (OMATX(J.20)»J=17.20) PRT36700
FORMAT dHi»//////»5«*x»'TOTAL PLANT COST*»///»39x»'TOTAL CAPITAL cpRT36aoo
10ST = '»F10.0»' DOLLARS••16X»'TOT'»//3UX»'TOTAL AMORTIZATION COST PRT36900
2= »»Fl0.3i' CENTS/1000 GALLONS't5X>'TAMM'r//miX»'TOTAL 0 + M COSTPRT37000
3 = '»F10.3»' CENTS/1000 GALLONS'»bX»'TOPER'»//.37x»'TOTAL TREATMENPRT37100
«tT COST = '»F10.3»' CENTS/1000 GALLONS'»5X,'TOTAL1r/////) PRT37200
WRITE (10.670) (DMATX(J»20)»J=1>10)»(OMATX(J»20)»J=l»12) PRT37300
670 FORMAT <7X»'CCI•»9X»•WPI'tlOXf'RI•.9Xr•YRS'»9X»'DHR'r9X»'PCT'•10X»PRT37<*00
l'UA'»7X»lCCINT'»8X»'XLAB'»8X»'CKWH'»//»3Fl2.3fF12.1iF12.2»Fl2.3»FlPRT37500
22.0.2F12.2»F12.3>/////•5Xi«RATIO'»8X»'TCAP'.8X»'YARD'»9X»'TCC'»7XfPRT37600
3'XLANU'»9X»'ENG'»7X»'SUBT1'»8X»'FISC'»7X»'SUBT2'»8X»'XINT'r//»F12.PRT37700
H3»9F12.0»///»6X»'ACRE'.10X»'AF'f//»Fl2.2»F12.5) PRT37800
RETURN PRT37900
END PRT38000
273
-------
REFERENCES
1. Preliminary Design and Simulation of Conventional Waste-
water Renovation Systems Using the Digital Computer,"
Robert Smith, March 1968, Water Pollution Control Research
Series Publication WP-20-9, NTIS-PB215409.
2. "Executive Digital Computer Program for Preliminary Design of
Wastewater Treatment Systems," Robert Smith and Richard G.
Eilers, August 1968, Water Pollution Control Research Series
Publication WP-20-14, NTIS-PB 222765.
3. "Estimating Costs and Manpower Requirements for Conventional
Wastewater Treatment Facilities," Black and Veatch Engineers,
October 1971, Water Pollution Control Research Series
Publication 17090DAN10/71, NTIS-PB 211132.
4. "Computer Evaluation of Sludge Handling and Disposal Costs,"
Robert Smith and Richard G. Eilers, August 1975, Proceedings
of the 1975 National Conference on Municipal Sludge Manage-
ment and Disposal, pp. 30-59.
274
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/2-78-185b
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Short Course Proceedings; APPLICATIONS OF COMPUTER PRO-
GRAMS IN THE PRELIMINARY DESIGN OF WASTEWATER TREATMENT
FACILITIES; Section II: Users' Guide and Program Listing
5. REPORT DATE
September 1978 (Issuing Date)
6. PERFORMING ORGANIZATION CODE
1. AUTHOR(S)
Richard G. Eilers, Robert Smith, Stephen P. Graef,
James W. Male, Hisashi Ogawa, and Phong Nguyen
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Pritzker Department of Environmental Engineering
Illinois Institute of Technology
Chicago, Illinois 60616
10. PROGRAM ELEMENT NO.
1BC611
11. CONTRACT/GRANT NO.
R-805134-01
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory—-Cin. ,OH
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
EPA Project Officer: Richard G. Eilers (513) 684-7618
16. ABSTRACT
This document contains a portion of the material used for the Short Course on the
Applications of Computer Programs in Preliminary Design of Wastewater Treatment Facil-
ities. The short course lectures appear in Section I of the report which is under
separate cover. Section II, contained herein, contains the users' manual and program
listing for the Executive Program for Preliminary Design of Wastewater Treatment
Systems. The manual describes the use of the program and subroutines. Several
examples show appropriate input and expected output for a variety of applications. In
addition, the theoretical basis for the calculations are shown in the form of conven-
tional mathematical and equivalent fortran equations. The program listing includes
the main program and each of 27 subroutines, representing different treatment processes,
energy consumption, and cost calculations.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Waste treatment
*Models
Sewage treatment
Design
*Cost estimates
*Performance
*Cost effectiveness
Mathematical models
Sewage treatment
Water pollution
Executive program
Preliminary design
Computer program
Design engineering
Sanitary engineering
13B
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
285
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (Rev. 4-77)
275
U. S. GOVERNMENT PRINTING OFFICE: 1978 — 657-060/H81
-------
|