&EPA
           United States
           Environmental Protection
           Agency
           Municipal Environmental Research  EPA-600/2-78-185b
           Laboratory         September 1978
           Cincinnati OH 45268
           Research and Development
Short Course
Proceedings
Applications
of Computer Programs
in the Preliminary
Design of Wastewater
Treatment  Facilities

Section II
Users' Guide and
Program Listing

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.   Environmental Health Effects Research
      2.   Environmental Protection Technology
      3.   Ecological Research
      4.   Environmental Monitoring
      5.   Socioeconomic Environmental  Studies
      6.   Scientific and Technical Assessment Reports (STAR)
      7.   Interagency  Energy-Environment Research and Development
      8.   "Special" Reports
      9.   Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION  TECH-
 NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                      EPA-600/2-78-185b
                                      September 1978
            Short Course Proceedings

            APPLICATIONS OF COMPUTER
       PROGRAMS IN THE PRELIMINARY DESIGN
       OF WASTEWATER TREATMENT FACILITIES

  Section II:  Users' Guide and Program Listing
                       by
       Richard G. Eilers and Robert Smith
      U.S. Environmental Protection Agency
             Cincinnati, Ohio  45268
                Stephen P. Graef
Metropolitan Sanitary District of Greater Chicago
            Chicago, Illinois  60611
                  James W. Male
           University of Massachusetts
          Amherst, Massachusetts  01003
         Hisashi Ogawa and Phong Nguyen
        Illinois Institute of Technology
            Chicago, Illinois  60616
              Grant No. R-805134-01
                 Project Officer

                Richard G. Eilers
          Wastewater Research Division
   Municipal Environmental Research Laboratory
             Cincinnati, Ohio  45268
   MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
       OFFICE OF RESEARCH AND DEVELOPMENT
      U.S. ENVIRONMENTAL PROTECTION AGENCY
             CINCINNATI, OHIO  45268

-------
                           DISCLAIMER
     This report has been reviewed by the Municipal Environmental
Research Laboratory, U. S. Environmental Protection Agency, and
approved for publication.  Approval does not signify that the
contents necessarily reflect the views and policies of the U. S.
Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation
for use.
                               11

-------
                           FOREWORD
      The Environmental Protection Agency was created because of
increasing public and government concern about the dangers of
pollution to the health and welfare of the American people.
Noxious air, foul water, and spoiled land are tragic testimonies
to the deterioration of our natural environment.  The complexity
of that environment and the interplay between its components
require a concentrated and integrated attack on the problem.

      Research and development is that necessary first step in
problem solution, and it involves defining the problem, measur-
ing its impact, and searching for solutions.  The Municipal
Environmental Research Laboratory develops new and improved
technology and systems to prevent, treat, and manage wastewater
and solid and hazardous waste pollutant discharges from munici-
pal and community sources, and to minimize the adverse economic,
social, health, and aesthetic effects of pollution.  This pub-
lication is one of the products of that research--a most vital
communications link between the research and the user community.

      The information presented here is a users' guide for the
Executive Program.  This computer program provides the quan-
titative expressions for calculating the performance and cost of
wastewater treatment systems as a function of the nature of the
wastewater to be treated and the design criteria associated with
the individual unit processes that comprise the system.  As such,
it can be a valuable tool to the design engineer for determining
the most cost-effective system for achieving any specific waste-
water treatment goal.
                               Francis T. Mayo
                               Director, Municipal Environmental
                               Research Laboratory
                               111

-------
                            ABSTRACT
      This document contains a portion of the material used for
the Short Course on the Applications of Computer Programs in the
Preliminary Design of Wastewater Treatment Facilities.  The
short course lectures appear in Section I of the report, under
separate cover.

      Section II, contained herein, contains the users' manual
and program listing for the Executive Program for Preliminary
Design of Wastewater Treatment Systems.  The users' manual
describes the use of the program and subroutines.  Several ex-
amples show appropriate input and expected output for a variety
of applications.  In addition, the theoretical basis for the
calculations are shown in the form of conventional mathematical
and equivalent fortran equations.

      The program listing includes the fortran listing for the
main program (EXECMAIN) and each of the 27 subroutines, repre-
senting different treatment processes, energy consumption, and
cost calculations.  The program listings include extensive docu-
mentation and can be easily related to the theoretical equations
in the users' manual.

      This report was submitted in partial fulfillment of Grant
Number R~805134-01 by the Pritzker Department of Environmental
Engineering at the Illinois Institute of Technology under the
sponsorship of the U. S. Environmental Protection Agency.  This
report covers a period from May 23, 1977 to June  22,  1978 and
work was completed as of June  22,  1978.

-------
                            CONTENTS


Foreword  	iii
Abstract	  . ^Y
Figures	viii
Tables   	   1X
Acknowledgement  	    x

   1.   Main Program, EXECMAIN  	    1
          Introduction  	    1
          Program Description   ...  	    3
          Input Requirements 	    6
          Output	   10
          Program Listing	   23
   2.   Preliminary Treatment,  PREL	   29
          Users Guide	   29
          Program Listing	   32
   3.   Prelimary Sedimentation, PRSET  	   34
          Users Guide	   34
          Program Listing	   39
   4.   Activated Sludge - Final Settler, AERFS	   41
          Users Guide	   41
          Program Listing	   59
   5.   Stream Mixer, MIX	   64
          Users Guide	   64
          Program Listing	   66
   6.   Stream Splitter, SPLIT  	   67
          Users Guide	   67
          Program Listing	   68
   7.   Anaerobic Digestion, DIG	   69
          Users Guide	   69
          Program Listing	   74
   8.   Vacuum Filtration, VACF	   77
          Users Guide	   77
          Program Listing	   83
   9.   Gravity Thickening, THICK	   85
          Users Guide	   85
          Program .Listing	   90
  10.   Elutriation, ELUT	   92
          Users Guide	   92
          Program Listing	   98
  11.   Sand Drying Beds, SEEDS	100
          Users Guide	100
          Program Listing	103
  12.   Trickling Filter - Final Settler, TRFS 	  105
                                v

-------
                    CONTENTS (Cont.)
       Users Guide	105
       Program Listing  	  117
13.  Chlorination - Dechlorination, CHLOR 	  121
       Users Guide	121
       Program Listing	126
14,  Flotation Thickening, TFLOT   	  129
       Users G.uide	129
       Program Listing  	  135
15.  Multiple Hearth Incineration, MHINC  	  138
       Users Guide	138
       Program Listing  	  144
16.  Raw Wastewater Pumping, RWP	147
       Users Guide	147
       Program Listing  	  150
17.  Sludge Holding Tanks, SHT	152
       Users Guide	152
       Program Listing  	  155
18.  Centrifugation, CENT	157
       Users Guide	157
       Program Listing  	  162
19.  Aerobic Digestion, AEROB 	  165
       Users Guide	  165
       Program Listing  	  178
20.  Post Aeration, POSTA	182
       Users Guide    	182
       Program Listing  	  194
21.  Equalization, EQUAL   	  199
       Users Guide	199
       Program Listing  	  212
22.  Second Stage Anaerobic Digestion, DIG2 	  218
       Users Guide	218
       Program Listing	222
23.  Land Disposal of Liquid Sludge, LANDD.  .....  224
       Users Guide	224
       Program Listing  	  229
24.  Lime Addition to Sludge, LIME	232
       Users Guide	  232
       Program Listing  	  235
25.  Rotating Biological Contractor, RBC	  237
       Users Guide	237
       Program Listing  	  247
26.  Energy Consumption and Cost, ENGY	250
                           VI

-------
                       CONTENTS (Cont.)

          Program Listing 	   250
   27.  Total Plant Cost Calculation, COST	   255
          Users Guide     	   255
          Program Listing 	   265
   28.  Output Subroutine, PRINT  	   268
          Program Listing 	   268

References	   274
                               Vll

-------
                             FIGURES

Number                                                      Page

  1    Example system flow diagram 	   4

  2    Flowchart of EXECMAIN showing major branches
         and iterations	  22
                             vixi

-------
                             TABLES

Number

  1      Unit processes contained in the executive
           program	  2

  2      Contents of the stream matrix  (SMATX)	  5

  3      Sample output of process information	  8

  4      Arrangement 1 of Fortran format for input
           data cards	  9
  5      Arrangement 2 of Fortran format for input
           data cards	 11

  6      Sample output of stream characteristics	 13

  7      Sample output of process characteristics	 16

  8      Output showing total plant cost	 19

  9      Output showing energy consumption and cost	 20
                               IX

-------
                       ACKNOWLEDGEMENTS
     Many people contributed to the preparation for the Short
Course on Applications of Computer Programs in the Design of
Wastewater Treatment Facilities.  Without their efforts, ar-
rangements would have been  incomplete and material unprepared.

     Contributing to the massive  typing effort were Margaret
Nolan, Mary Keeley, Pat Woods, Mary Pierce and Janet Peterson.
In addition, Russ Ritchie helped  with local arrangements and
everyday details.

     Resourses provided by  both the U.S. Environmental Protec-
tion Agency and Illinois Institute of Technology are greatfully
acknowledged.

-------
                           SECTION 1

                     Main Program, EXECMAIN
INTRODUCTION
     The Executive Program is a digital computer program which
can be used to compute the quasi-steady-state performance and
cost of wastewater treatment systems.  Groups of conventional
and advanced wastewater treatment processes arranged in any lo-
gical configuration can be simulated using this program.  Table
1 gives a listing of the 24 unit process models that are pre-
sently included in the program along with the subroutine name
and identification number for each process.  Each unit process
is handled as a separate subroutine, which makes it possible to
add additional process models to the system as they are
developed.

     Initial development began on the Executive Program in 1967
and has continued until the present time.  The program is writ-
ten in FORTRAN IV.  The complete FORTRAN source card listing
of the computer program is included in this section.  The system
presently consists of the main program, entitled EXECMAIN, 24
process subroutines  (each subroutine computes the performance
and the costs associated with building and operating the unit
process), and 3 additional subroutines entitled COST, PRINT,
and ENGY.  EXECMAIN reads the input data to the program, handles
the iteration for system recycle streams, and calls the proper
subroutines to perform the needed calculations.  The COST sub-
routine sums and updates (by means of cost indicies) the costs
of the individual processes and adds additional charges for
yardwork, land, engineering, legal-fiscal-administrative ser-
vices, and interest during construction.  PRINT simply prints
out all of the pertinent input and output data in a prescribed
format.  ENGY computes and prints out the energy requirements
(electrical power, fuel oil, natural gas, etc.) associated with
operating each unit process.

     The Executive Program can be used as a valuable prelimi-
nary design tool by the consulting engineer or planner.  The
performance of existing and proposed wastewater treatment plants
can be simulated along with providing cost estimates for build-
ing and operating these plants.  It is also possible to mathe-
matically optimize a particular treatment system by varying
design parameters and noting the effect on performance and cost.

-------
Subroutine Name                            Identification Number
PREL, preliminary treatment                          1
PRSET, primary sedimentation                         2
AERFS, activated sludge-final settler                3
MIX, stream mixer                                    4
SPLIT, stream splitter                               5
DIG, single stage anaerobic digestion                6
VACF, vacuum filtration                              7
THICK, gravity thickening                            8
ELUT, elutriation                                    9
SEEDS, sand drying beds                             10
TRFS, trickling filter-final settler                11
CHLOR, chlorination-dechlorination                  12
TFLOT, flotation thickening                         13
MHINC, multiple hearth incineration                 14
RWP,  raw wastewater pumping                         15
SHT,  sludge holding tanks                           16
CENT, centrifugation                                17
AEROB, aerobic digestion                            18
POSTA, post aeration                                19
EQUAL, equalization                                 20
      ;
DIG2, second-stage anaerobic digestion              21
LANDD, land disposal of liquid sludge               22
LIME, lime additional to sludge                     23
RBC,  rotating biological contactor-final settler    24
  Table 1   Unit processes contained in the executive program

-------
Furthermore, alternate treatment systems can be compared with
respect to performance and cost.  Cost-effectiveness studies
along these lines are becoming increasingly important because of
the soaring construction costs that are now being experienced.

PROGRAM DESCRIPTION

     The first step in using the Executive Program is to draw a
system flow diagram showing the processes to be used and the
connecting and recycle streams.  The process symbols are shown
in each of the Subroutine Users Guides.  An example system flow
diagram is shown in Figure 1.  Each process and stream is as-
signed a number by the program user.  Any stream can be numbered
2 through 30, and any process can be numbered 1 through 20.
However, the principal influent stream to the system must always
be assigned the number one (1).  The number zero (0) must always
be given to the processes that require no input decision data.
Only the stream mixer (MIX) and the stream splitter (SPLIT) need
no input data.  Notice that the volume of the split stream must
be supplied by a downstream process, such as gravity thickening,
flotation thickening or sludge elutriation.

     The program reads the influent stream characteristics and
stores them with all the computed stream characteristics in the
stream matrix (SMATX) which has 20 rows and 30 columns.  One
stream vector is stored in each column of SMATX corresponding
to the user assigned stream number on the system diagram.  A
temporary stream matrix (TMATX) with 20 rows and 30 columns is
used internally by the program to store newly computed stream
vectors until they can be compared with the previously computed
values during the program's recycle iterations.  The iteration
error (EPS) which will be tolerated when recycle streams are
involved is designated by an easily changeable FORTRAN state-
ment in EXECMAIN.  The value for EPS currently used in the pro-
gram is .10 mg/1.  Each stream is referenced by the assigned
stream number in the first row of SMATX, the volume flow in mgd
in the second row, and the concentration of 17 contaminants in
rows 3-19.  Row 20 is unassigned at present, although, the num-
ber of contaminants contained in the stream vector may increase
as new unit process subroutines are added to the program in the
future.  A list of the information contained in the stream vec-
tor is shown in Table 2 along with the FORTRAN variable names
that are used.

     A decision matrix (DMATX) is provided with 16 rows and 20
columns for storing input design parameters such as settler
overflow rates, solids loading rates, detention times, chemical
doses, and so on.  One decision vector is stored in each column
of DMATX corresponding to the user assigned process number on
the system diagram.  In other words, input parameters for pro-
cess N are stored in the Nth column of DMATX.  Column 20 of
DMATX is reserved for cost parameters which apply to all

-------
RWP
PREL       MIX   PRSET
AERFS      SPLIT     CHLOR
        6     ^ 25   /\  26
    MHINC      VACF       SHT
   Figure 1  "Example system flow diagram

-------
  Row        FORTRAN
Number    Variable Name
  1      SMATX(1,I)  I
  2      SMATX(2,I)  Q
  3      SMATX(3,I)  SOC
  4      SMATX(4,I)  SNBC

  5      SMATX(5,I)  SON
  6      SMATX(6,I)  SOP
  7      SMATX(7,I)  SFM
  8      SMATX(8,I)  SBOD
  9      SMATX(9,I)  VSS
 10      SMATX(10,I) TSS
 11      SMATX(11,I) DOC
 12      SMATX(12,I) DNBC

 13      SMATX(13,I) DN
 14      SMATX(14,I) DP
 15      SMATX(15,I) DFM
 16      SMATX(16,I) ALK
 17      SMATX(17,I) DBOD
 18      SMATX(18,I) NH3
 19      SMATX(19,I) N03
 20      not used
     Parameter Definition
stream number
volume flow, mgd
solid organic carbon, mg/1
solid nonbiodegradable carbon,
mg/1
solid organic nitrogen, mg/1
solid organic phosphorus, mg/1
solid fixed matter, mg/1
solid 5-day BOD, mg/1
volatile suspended solids, mg/1
total suspended solids, mg/1
dissolved organic carbon, mg/1
dissolved nonbiodegradable
carbon, mg/1
dissolved nitrogen, mg/1
dissolved phosphorus, mg/1
dissolved fixed matter, mg/1
alkalinity, mg/1
dissolved 5-day BOD, mg/1
ammonia nitrogen as N, mg/1
nitrate as N, mg/1
Nominal Value
    for
Plant Influent
     10.
    105.
     30.

     10.
      2.
     30.
    140.
    224.
    254.
     43.
     11.

     19.
      4.
    500.
    250.
     60.
     15.
      0.
             Table 2  Contents of the stream matrix (SMATX)

-------
processes, such as electrical power cost, construction cost
index, hourly labor wage rates, and so on.  Row 16 of DMATX  (and
additional preceding rows if required, such as in the AERFS  pro-
cess) is reserved for the excess capacity factor  (ECF), which  is
a multiplier on the calculated design size of the process, to
allow shutdown for cleaning and maintenance work.

     For processes having a non-zero process number  (N), the
contents of the Nth column for DMATX are read into the program
from 2 input data cards which follow the process card for the
Nth process.  For the stream mixer and the stream splitter,
where no process number is assigned (the number "0"  is given),
the 2 cards containing decision parameters are omitted.  A list-
ing of the contents of DMATX for each unit process is given  in
the Subroutine Users Guides, along with definitions  of the vari-
ables and nominal input values.

     An output matrix (OMATX) is provided with 20 rows and 20
columns for storing computed output parameters from  the various
process subroutines.  Output parameters for the Nth  process  are
stored in the Nth column of OMATX.  A listing of the contents  of
OMATX for each unit process is .given in the subroutine Users
Guides along with definitions of the computer output parameters.

     The main program (EXECMAIN) has the function of calling the
process subroutines for computing the performance and cost of
the  individual unit processes in the proper order.   When a re-
cycle loop occurs, this involves recomputing all of  the pro-
cesses within the recycle loop in an iterative manner until  each
element of all stream vectors ceases to vary by more than the
prescribed tolerance  (EPS).

INPUT REQUIREMENTS

     A description of the system configuration  (the  process  lo-
cations and interconnecting streams) is communicated to the
computer by an input deck of process cards.  One card is used
for  each process with the process number  (N) punched in columns
3 and 4  (right-justified).  The type of process is specified by
an assigned identification number as given in the Subroutine
Users Guides.  This number is punched in columns 7 and 8  (right-
justified) of the process card.  If desired, the process sub-
routine name can be punched in columns 10 to 16 in order to
clearly identify the process card and to include this informa-
tion in the final program printout.  The number of the principal
input stream to the process  (IS1) is punched in columns 20 and
21.  If a second input stream exists, the number of  the stream
(IS2) is punched in columns 30 and 31.  The principal output
stream from the process  (OS1) is punched in columns  40 and 41.
If a second output stream exists, the number  (OS2) is punched  in
columns 50 and 51.  IS1,  IS2, OS1 and OS2 are all punched as
right-justified data.  Notice that the principal input and output

                                6

-------
streams must correspond to the designation shown in the Sub-
routine Users Guides.  The two DMATX input cards follow immedi-
ately after the process card where required.  Also, the user
should be careful to arrange the logical order of the process
cards so that no streams are used before they are computed.

     A listing of the process cards is printed out as part of
the output from the program.  The process card information for
the sample system shown in Figure 1 is listed in Table 3.

     The FORTRAN format for the input data can be input in two
ways.  The first is for both a single design case and multiple
design cases, where each design case has a different flow dia-
gram.  The second arrangement is used for multiple design cases
that all utilize the same flow diagram.  The second arrangement
simplifies the preparation of input data.

Single Design Case

     Table 4 gives Arrangement 1 of the FORTRAN format for read-
ing the input data to the program.  Input card 1 tells the pro-
gram how many data cases (NCASE) are to be run (columns 1 and 2).
In addition, REPEAT = "0" in column 4 indicates that each design
case will have a different flow diagram.  REPEAT = "1" in column
4 indicates that the original flow diagrem is repeated in each
design case.  Repeat is usually "0" in Arrangement 1.  CHECKl
= "1" in column 6 causes the raw sewage composition and process
design criteria to be printed out at the beginning of the first
iteration.  It is used for trouble shooting when one or more of
the subroutines produces an overflow calculation error.  CHECKl
is usually set equal to zero "0" in column 6 to avoid excess
printout.

     Input card 2 is the title card for each data case.  Any
alpha-numeric identifying data may be punched anywhere on this
card, and this information will be the title of the program
printout.

     Input cards 3, 4 and 5 give the composite flow and concen-
trations of the raw sewage input stream to the treatment plant
which is always labeled as Stream 1.  Input cards 6 and 7 pro-
vide the general cost information.  This is stored in column 20
of the decision matrix (DMATX).

     The next input cards represent the processes.  Each process
will have three cards, unless the process number is "0"  (SPLIT
and/or MIX).  The three cards will consist of a process card
(card 8 in Table 4) and two decision cards  (where necessary,
cards 9 and 10 in Table 4).  The last card in the data deck has
a "9" in column 1.  No other data is punched on the termination
card.  This last card is important because it indicates end-of-
file for each data case.  Note that the value of K in column 1

-------
                                                         EXECUTIVE
                                                 DIGITAL  COMPUTER PROGRAM
                                                           FOR
                                    PRELIMINARY  DESIGN OF WASTEWATER TREATMENT SYSTEMS

                                                           HY
                                                      ROBERT SMITH
                                                     RICHARD G. EILERS

                                           U.b.  ENVIRONMENTAL PROTECTION AGENCY
                                         MUNICIPAL  ENVIRONMENTAL RESEARCH CENTER
                                              bASTEWATER RESEARCH DIVISION
                                          TECHNOLOGY  DEVELOPMENT SUPPORT BRANCH
                                          SYSTEMS AND ECONOMIC ANALYSIS SECTION
                                                 CINCINNATI. OHIO   45268

                                                     (513) 684-7618
                     DESIGN CASE NO. 1
                     10 MGD
EXECUTIVE PROGRAM STANDARD TEST SYSTEM 1    10-28-1976   JAN 1975 **«
00
                                         PROCESS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
y
1
2
0
3
4
0
0
b
6
7
«
9
0
0
10
11
0
Ib
1
4
2
3
5
4
8
6
21
16
7
4
4
14
12
0
RlftP
PREL
MIX
PRSET
AERf-'S
SPLIT
MIX
THICK
DIG
UIG2
SHT
VACF
MIX
MIX
MHINC
CHLOR

                                                     SYSTEM DIAGRAM
                                                       INPUT DATA

                                                         IS1       1S2
                                             OS1
                                                       OS2
1
2
3
4
5
6
7
9
10
11
12
13
20
22
14
2b
0
0
0
14
0
0
0
8
24
0
0
0
0
21
23
0
0
0
2
3
4
5
6
25
9
10
11
12
13
14
22
19
15
26
0
0
0
0
7
8
24
0
20
0
21
0
23
0
0
0
0
0
                                 Table  3   Sample output of process information

-------
 Input Card 1:
 Input Card 2:
 Input Cards 3, 4, 5:
 Input Cards 6, 7:
 Input Card 8:
 Input Cards 9, 10:
 Input Cards 11 and
   on:
NCASE, REPEAT, CHECKl
FORMAT (312)

LIST
FORMAT (40A2)

(SMATX(I,1) , I = 2,20)
FORMAT (8F10.0)

(DMATX(I,20), I = 1,16)
FORMAT (8F10.0)

K,N,IPROC, (NAME(I) , I = 1,3),
  IS1,IS2,OS1,OS2
FORMAT (I1,1X,I2,2X,I2,1X,3A2,
  4X,l2,8X,I2,8X,l2,8Xf12)

(DMATX(I,N), I = 1,16)
FORMAT (8F10.0)
Continue with additional process
  cards.
Process card with a "9" in column
  1 indicates end-of-file.
Begin next data case with Input
  Card 2, etc.
Table 4  Arrangement 1 of Fortran  format  for  input data cards

-------
of each process Identification Card, e.g. 8, 11, 14, etc.,
should be zero "0" except for the termination card.

Multiple Design Cases

     Table 5 gives Arrangement 2 of the FORTRAN format for read-
ing multiple input data to the program.  On the first input card
a value of one for REPEAT (a "1" in column 4) indicates that the
multiple design cases will repeat, or utilize the flow diagram
used in the original design case.  A "0" in column 4 indicates
that the original flow diagram is not being repeated, which in
essence, is the format of Arrangement 1.  CHECKl can have a
value of "0" in column 6.  A "1" causes a printout of raw sewage
composition and process design criteria to be printed out at the
beginning of the first iteration.  A value of "0" eliminates
this initial printout.

  "'' Input cards 2 through M use the same format as in Arrange-
ment 1.

     Rather than repunch all M cards for a second  (or multiple
design case, a simplified, easy to punch format can be followed.
Card M+l indicates whether new raw sewage composition, SMATX
 (1,1), and/or new cost parameters, DMATX(I,20), and/or new pro-
cess design criteria, DMATX(I,N) will be used.  A value of "1"
for NEWRAW in column 2, NEWCOS in column 4 and/or NEWDMX in col-
umn 6 indicates that new values are to be added in that category.
A value of "0" indicates no new values will be added.  Input
card M+2 is the title.  Beginning with input card M+3 are sev-
eral possible cards.  First, three SMATX(1,1) cards will follow
if NEWRAW has a value of "1" rather than "0".  Two DMATX(I,20)
cards will then follow if NEWCOS has a value of "1" rather than
"0".  Finally, a series of cards will follow to indicate which
processes are to have new design values, and what the new values
should be.  This of course is for the case where NEWDMX has a
value of "1".  On the next card NPROC indicates how many of the
original processes will have new design criteria added.  The
value for NPROC is entered in columns 1 and 2 (right-justified).
PROC(II) is an array which contains the user assigned number for
each of the processes which will be given new design criteria.
Finally, there will be two additional design criteria DMATX(I,N)
cards for each of the NPROC processes being updated.

     In Arrangement 2 a card with a "9" in column 1 is not
placed at the end of design case 2, 3, etc. because it is not
needed.  Also, if three or more design cases are to be evaluated
using Arrangement 2, the input cards should repeat the format of
input cards M+l through M+3 etc. for each new design case.

OUTPUT

     Sample output from the program is shown in Tables 3 and 6

                               10

-------
 Input Card 1
 Input Card 2
 Input Cards 3, 4, 5
 Input Cards 6,7
 Input Card 8
 Input Cards 9, 10
 Input Cards 11
   through M
 Input Card M+l


 Input Card M+2
NCASE, REPEAT, CHECK1
FORMAT (312)

LIST
FORMAT (4 OA2)

(SMATX(I,1), I = 2,20)
FORMAT (8F10.0)

(DMATX(I,20),  I = 1,16)
FORMAT (8F10.0)

K,HIPROC,(NAME(I), I = 1,3),
  IS1, IS2,OS1,OS2
FORMAT (I1,1X,I2,2X,I2,1X,3A2,
  4X,I2,8X,I2,8X,I2,8X,I2)

(DMATX(I,N), I = 1,16)
FORMAT (8F10.0)

Continue with additional process
cards.  Card M will be the design
case termination card with a (9)
in column(1).   The Repeat of the
same design flow diagram with diff-
erent raw sewage stream characteris-
tics, SMATX(I,1), cost parameters
DMATX(I,20) and/or process design
criteria DMATX(I,N) begins with the
next card

NEWRAW, NEWCOS, NEWDMX
FORMAT (312)

LIST
FORMAT (40A2)
Table 5   Arrangement 2 of Fortran  format  for  input  data cards
                               11

-------
Input Card M+3
(SMATX(I,1), I =
FORMAT (8F10.0)

    and/or

(DMATX(I,20) I =
FORMAT (8F10.0)

    and/or
2,20)  only if new raw
      sewage character-
      istics will be
      added

1,16)  will then fol-
      low if new
      cost parameters
      will be added
                         NPROC,  (PROCNO(II)
                           II =  1, NPROC)
                         FORMAT  (1012)
                    will then follow
                    if new process
                    design criteria
                    will be added for
                    one or more of the
                    original processes
                          (DMATX(I,N) I = 1,16) will then follow
                         FORMAT  (8F10.0)
                      for each pro-
                      cess which will
                      be given new
                      process design
                      criteria
                         For repeated design cases which use
                         the same flow diagram as the original
                         design case, a termination card is
                         not used.  For each additional
                         repeated design case, the sequence
                         of input cards M+l, M+2, M+3 etc.
                         is repeated.
                       Table 5   (continued)
                                12

-------
                                               STREAM  CHARACTERISTICS
        S 1.
OJ
        S 2.
        S 3.
        S  4,
        S 5.
        S 6.
        S  7.
                                                                    VOLUME FLOW*  MILLIONS OF GALLONS PER nAY
                                                                    CONCENTRATIONS. MILLIGRAMS PER  LITER
 NH3
15.000
 N03
  .000
 NH3
15.000
 N03
  .000
 NH3
15.000
0
10.000
ALK
250.000
Q
10.000
ALK
250.000
G
10.000
ALK
250.000
0
12.261*
ALK
267.645
Q
12.249
ALK
267.6^5
ti
11.963
ALK
267. 64b
Q
.Olb
ALK
267.645
soc
105.000
DOC
43.000
SOC
105.000
DOC
43.000
SOC
105.000
DOc
43.QOO
SOC
96.539
DOC
38.117
SOC
1*8.330
DOC
38.117
SOC
6.044
DOC
I3.fabl
SOC
38615.554
DOC
38.117
SNBC
30.000
DNBC
11.000
SNBC
30.000
DNBC
11.000
SNBC
30.000
DNBC
11.000
SNBC
31.693
DNBC
11.000
SNUC
15.866
UN8C
11.000
SNBC
1.832
DNBC
11.000
SNBC
12677.282
UNBC
11.000
SON
10.000
ON
19.000
SON
10.000
ON
19.000
SON
10.000
ON
19.000
SON
9.340
ON
23.530
SON
4.676
ON
23.530
SON
.712
DN
21.697
SON
3736.050
DN
23.530
SOP
2.000
DP
4.000
SOP
2.000
DP
4.000
SOP
2.000
DP
4.000
SOP
1.787
DP
5.079
SOP
.89?,
DP
5.079
SOP
.060
DP
5.422
SOP
714.860
OP
5.079
SFM
30.000
DFM
500.000
SFM
30.000
DFM
500.000
SFM
30.000
DFM
500.000
SFM
31.491
DFM
500.000
SFM
15.765
DFM
500.000
SFM
1.725
DFM
500.000
SFM
12596.289
DFM
500.000
SROD
140.000
DROD
60.000
SROD
140.000
DROD
60.000
SROD
140.000
DBOD
60.000
SPOD
121.098
DBOD
5Q.839
SPOD
60.625
DROD
50.839
SROD
7.986
DROD
4.958
SPOD
4843P.36?
DROD
HO. 839
VSS
224.000
TSS
254.000
VSS
224.000
TSS
254.000
VSS
224.000
TSS
254.000
VSS
208.103
TSS
239.594
VSS
104.182
TSS
119.947
VSS
14.386
TSS
16.110
VSS
83241.124
TSS
95837.414
                                                                                                     • 000
 NH?
15.000
 N03
  .000
 NM3
15.000
 N03
  .000
 NH3
15.000
 N03
  .000
 NH3
15.000
 MO 3
  .000
                           Table 6   Sample output  of stream  characteristics

-------
 s  a.
 s 9,
S10.
Sll.
S12.
S13.
S14.
S15.
Gi
.265
ALK
267. 64b
0
.281
ALK
267.645
0
.059
ALK
267.645
Q
.059
ALK
31+66. 444
Q
.020
ALK
,3466.444
Q
.020
ALK
3466.444
0
.004
ALK
17866.779
G
.000
ALK
.000
soc
2276.345
DOC
13.651
SOC
4260.209
DOC
It. 967
SOC
19414.194
DOC
13.817
SOC
6468.503
DOC
126.036
SOC
15167.705
DOC
126.036
SOC
15l&7.705
DOC
126. Q36
SOC
78186.274
DOC
649.689
SOC
.000
DOC
.000
SNBC
669.802
DNBC
11.000
SNBC
1344.234
ONHC
11.000
SNHC
6123.395
DNBC
11.000
SNBC
6123.395
UNHC
11.000
SNBC
143b8.475
DNBC
11.000
SNBC
14358.475
UNBC
11*000
SNBC
74014.870
DNBC
56.703
SNBC
.000
UNBC
.000
SON
268.169
DN
21.697
SON
457.491
DN
21.798
SON
2086.842
DN
21.710
SON
708.346
DN
917.732
SON
1660.970
ON
917.732
SON
1660.970
DN
917.732
SON
6561.944
DN
4730.712
SON
.000
ON
.000
SOP
22. 763
DP
5.422
SOP
60.547
DP
b.403
SOP
275.106
DP
5.419
SOP
93. 3RD
DP
187.145
SOP
218.964
DP
187.145
SOP
218.964
DP
187.145
SOP
1128.710
DP
964.690
SOP
.000
DP
.000
SFM
649.528
DFM
500.000
SFM
1301.736
DFM
500.000
SFM
5928.239
DFM
500.000
SFM
5928.239
DFM
500.000
SFM
13900.863
DFM
500.000
SFM
19725.863
DFM
5oO«000
SFM
101682.606
DFM
2577.393
SFM
.000
DFM
.000
SROD
3007.512
DROD
4.958
SPOD
5487.770
OROD
7.463
SPOD
25014.690
DPOD
5.268
SRon
64f,.353
DBOD
215.118
SROU
1513.259
DBOD
215.118
SHOD
l5l3.259
DBOD
215.118
SPOD
7800.527
DBOD
1108.885
SBOD
.000
DBOD
.000
vss
5417.702
TSS
6067.230
VSS
9666.310
TSS
1096R.046
VSS
44071 .76n
TSS
50000.000
VSS
15395.037
TSS
21323.276
VSS
36099.137
TSS
50000.000
VSS
36099.137
TSS
55825.QOO
VSS
186083.332
TSS
287765.941
VSS
.000
TSS
.000
 NH3
15.000
                                                                                               .000
                                                                                              NH?
                                                                                             15.000
                                                                                              N03
                                                                                               .000
                                                                                              NH3
                                                                                             15.000
                                                                                              N03
                                                                                               .000
                                                                                              NH3
                                                                                             15.000
                                                                                              N03
                                                                                               .000
                                                                                              NH3
                                                                                             15.000
                                                                                              N03
                                                                                               •000
                                                                                              NH3
                                                                                             15.000
                                                                                              N03
                                                                                               .000
                                                                                              NH?
                                                                                               .000
                                                                                              N03
                                                                                               .000
                                 Table  6    (continued)

-------
S19.
S20.
S21.
S22,
S26.
0
2.2611
ALK
34b.57b
Cl
2.209
ALK
267.615
0
.039
ALK
34fab. «*•+!+
(..
2.244J
ALK.
,}2*.722
u
.016
ALK
3l6b.44i+
(j
1.967
ALK
2b7.64b
Q
9.996
ALK
2fa7.b1b
U
9.99b
ALK
2b7.64b
soc
59.171
DOC
16.551
SOC
27.319
DOC
13.817
SOC
Itt77.bl2
DOC
126.036
SOC
b9.206
DOC
lb.749
SOC
bl.310
DOC
126. Oib
SOC
6.0H
DOC
I3.bbl
SOC
6.0t*1
DOC
l3.fabl
SOC
6. OU<»
DOC
I3.6bl
SNBC
39.171
pNUC
11.000
SNUG
ft. 626
OMBC
11.000
SMBC
1777.U38
DNbC
li.Ono
bKBC
39.081
UNUC
11.000
bNBC
51.1U1
DNdC
11. one
SNbC
1.832
UNBC
11>000
SNBC
1.832
ONBC
11-000
SNBC
1.632
UNBC
11.000
SON
6.426
DN
«»3.539
SON
2.9^0
DN
21.710
SON
205.612
DN
917.732
SON
6.129
DN
37.137
SON
5.9bl
DN
917.732
SON
.712
DN
21.697
SON
.712
DN
21.697
SON
.712
ON
21.697
SOP
.847
DP
9.84ft
SOP
,38R
DP
5.419
SOP
27.106
DP
187.145
SOP
,84ft
DH
8.54ft
SOP
.781
DP
187.145
SOP
.060
DP
b.422
SOP
.060
DP
5.422
SOP
.060
DP
5.422
SFM
38.074
DFM
500.000-
SFM
8.351
DFM
500.000
SFM
1720.790
DF->'.
bQO. 000
SFM
37.836
DFM
500.000
SFM
70.670
DFM
500.000
SFM
1.725
DFM
500.000
SFM
1.725
DFM
500. 000
SFM
1.725
DFM
500.000
SEOD
37.621
DBOD
10.381
SHOD
35.238
DPOD
5.26«
spon
187.327
Dt»OD
215.118
SHOD
37.857
DPOD
8.882
SBOD
5.421
DBOD
215.118
SBOD
7.986
DBOD
4.958
SBOD
7.986
DBOD
4.958
SBOD
7.986
DBOD
4.958
VSS
137.891
TSS
175.969
VSS
62.084
TSS
70.435
VSS
U<*6*.718
TSS
6189.508
VSS
137.957
TSS
175.793
VSS
129.330
TSS
200.000
VSS
14.386
TSS
16.110
VSS
14.386
TSS
16.110
VSS
14.386
TSS
16.110
 NH3
15.000
                                                                                                .000
 NH3
15.000
 NO 7>
  .000
 NH3
15.000
 N03
  .000
                                                                                               NH3
                                                                                              15.000
                                                                                               N03
                                                                                                .000
                                                                                               NH3
                                                                                              15.000
                                                                                               N03
                                                                                                .000
                                                                                               NH3
                                                                                              15.000
                                                                                               N03
                                                                                                • 000
 NH3
15.000
 N03
  .000
                                 Table 6   (continued)

-------
                     PROCESS CHARACTERISTICS
                                  CCOST = CAPITAL COST*  DOLLARS
                                  COSTO = OPERATING + MAINTENANCE COST,  CEMTS/IOOO GAL.
                                  ACOST = AMORTIZATION COST, CENTS/IOOO  GAL.
                                  TCOST = TOTAL TREATMENT  COST, CENTS/IOOO GAL.
P 1 KHW nASTtWATER HEAD (jP
PUMPING 30.00 14.81
P 2 PKELlMNAkY IPRtL
IkEATMtlMT 1.0
P 3 PRIMARY FRPS URPS
btOI.viENTATION .bO "+00. 0


P 4 ACTIVATED SLUDGE- BOD MLSS
FINAL SETTLER 13.0 2000.
BOU2 DObAT
111.5 10.8
MLNBSS MLDSS
"+64. 30.






HPWK GPS APS
14.0 1375.2 10.701
SETTLER
SLUDGE
PUMPS
DEGC CAER20 DO
20.00 1.00 1.00
XKSS AFS CAER
.0080 20.54 1.00
MLISS FOOD RTURN
217. 4b.9 .464
AERATOR
BLOWER
SLUDGE
PUMPS
FINAL
SETTLER
CCOST
710223.
CCOST
216086.
PGPM
128.
CCOST
312019.
95348.
AEFF20
.05
CEDR
.125
CNIT
.321
CCOST
600279.
254571.
160196.
506368.
COSTO
.520
COSTO
.569

COSTO
.276
.308
URSS
3.00
VAER
2.319
ARCFD
4153202.
COSTO
.000
.951
.349
.422
ACOST
1.522
ACOST
.463

ACOST
.669
.204
GSS
700.00
VNIT
3.648
BSIZE
2884.
ACOST
1.287
.546
.343
1.085
TCOST
2.0^2
TCOST
1.032

TCOST
.945
.512
HEAD
30.00
MLASS
248.
CFPGL
.34
TCOST
1.287
1.497
.693
1.507
ECF
1.00
ECF
1.00

FCF
1.20
1.00
ALMD
.00
MLBSS
1041.
OR
5.679
ECF
1.20
1.00
1.00
1.20
Table 7   Sample output  of process characteristics

-------
P 5  faKAviTY
     ThlCKtNllMfc
 P  b  bXKfcLb STAGE
     ANAtHOtJlt
     UiGtbTlON
P 7  btCOIMU
     AUAtKOBlC
     UlGtb'l
P b  bLUDbfc. HOLDING
H 9
PlO  MULTIPLE htAKTH
     I NCINEKAT ION
Pll  CHLOKlNATION-
     UhChLuRINATIUN
T«K
.95

TO
lb.0

THK
.61
TO
lo.O
VHL
14 .90
hH
71.2
ML
2.0
FHA
soa.

OCL2
h.OO

1SS
50000.

TuIG
30.0

TSS
50000.
VbHT
41 .0
HpVyK
35.
AVF
671.1
NINC
1.0
WFYH
290968.

TCL2
30.0

(jTh
700.0

C1UIG
.234

TO
15.0

TSS
200.
HbDD
949B.
HPWK
35.0
PbDD
9505.

CCL2
220.00

GSTH ATHM WRT
8.0 4860.5 7.08
CCOST
185807.
C20IG vniO CH4
1154. 154.143 124331.
CCOST
624828.
VDIG CCOST
118.571 521959.
CCOST
188161.
IVACF FECL3 CAO
1.0 42.00 176.00
CCOST
960780.
SPER WV HV
5.0 .0 10000.0
ECOST FCOST
1637. 11668.
CCOST
773168.
DS02 CS02 BVOL
2.50 180.00 41762.
CCOST
CONTACT 129678.
BASIN

COSTO
.153
CO?
65296.
COSTO
.410
COSTO
.410
COSTO
.272
CFECL
,06<+0
COSTO
1.384
TYPE
1.0

COSTO
.935
CUSE
121.57
COSTO
.000

ACOST
.398

ACOST
1.339
ACOST
1.119
ACOST
.403
CCAO
.0125
ACOST
2.059
FC
.300

ACOST
1.657
SUSE
37.99
ACOST
.278

TCOST
.551

TCOST
1.749
TCOST
1.529
TCOST
.675
DPOLY
15.00
TCOST
3.443
CNG
.970

TCOST
2.592

TCOST
.278

ECF
1.50

ECF
1.30
ECF
1.00
ECF
1.00
CPOLY
,3300
ECF
1.00


ECF
1.00

ECF
1.50
                                      Table  7   (continued)

-------
00
            AijMINlSTKATlv/t
            AND LABUKATOKY
            AND
            LABOKATOKY
            U^EKATIUIM
            YAKD,VUKK
            OPEhAlION
XLAB
    1.0
                                                              Cl_2 FEED
                                                              SYSTEM

                                                              S02 FEED
                                                              SYSTEM
                                           106436.


                                            33261.      .266
            .9ft3      .228     1.211      1.20


                     .071      .337      1.20
CCOST    COSTO    ACOST    TCOST
221023.     .572     .474    1.045


CCOST    COSTO    ACOST    TCOST
 65407.     .000     .140     .140


CCOST    COSTO    ACOST    TCOST
     0.      .646     .000      .646


CCOST    COSTO    ACOST    TCOST
     0.      .354     .000      .354
                                              Table  7   (continued)

-------
                                                TOTAL PLANT COST
                                 TOTAL CAPITAL  COST  =



                            TOTAL AMORTIZATION  COST  =




                                   TOTAL 0 + M  COST  =




                               TOTAL TREATMENT  COST  =
                                             6665598. DOLLARS                TOT



                                               14.286 CENTS/1000 GALLONS     TAMM




                                                9.778 CENTS/1000 GALLONS     TOPER




                                               24.064 CENTS/1000 GALLONS     TOTAL
  CC1
              1.675
                RI




                .060
              YRS




               25.0
               DHR




               4.73
              PCT




               .150
               DA




              1000.
             CCINT
                                                                                      .06
            XLAB




              1.00
              CKWH




                .020
RATIO




  1.331







 ACHE.




  19.yb
  TCAP




500S9oO.






    AF




  .07823
 YARD



701254.
   TCC




5710214.
XLAND




 19977.
  ENG




470179.
 SU8T1



6200370.
FISC




39740.
 SUBT2




6240110.
 XINT



425488.
                            Table  8  Output showing total  plant cost

-------
0 210.23






  9234.7'*
                                      ENtKGY CONSUMPTION AND COST
10.00
10.00
10.00
It). 00
.00
2b.OO
14b0.31
K> .00
10.00
10.00
1.00
.00
bt>.37
.00
10.00
10.00
2.00
.00
107.30
00
. u w
10.00
10.00
3.00
.00
btt75.37
.00

10.00
10.00
8.00
.00
20.42
.00

10.00
10.00
6.00
.00
453.30
.00

10.00
10.00
21.00
.00
4b3.30
.00

10.00
10.00
16.00
.00
.00
.00

10.00
10.00
7.00
.00
352.17
.00

10.00
10.00
14.00
.00
245.25
.00

10.00
10.00
12.00
.00
.72
.00

10.00
10.00
.00
.00
.00
.00

                       Table 9  output showing  energy consumption  and cost

-------
through 9 for the example wastewater treatment system.  For a
particular design case, the first group of output shows the
title of system and the process cards which describe the simu-
lated wastewater treatment system (see Table 3).  The second
group of output data  (Table 6) shows the volume flow and concen-
trations of the 17 contaminants in each numbered stream.  The
stream is identified by the letter S followed by the number in
the left-hand column of the printout.  For example, stream num-
ber 3 is identified by S3.  The third part of the output (Table
7) lists the unit processes according to process number and
gives the name of the process with all pertinent input and out-
put parameters and cost data relating to the process.  The pro-
cess is identified by the letter P followed by the process num-
ber in the left hand column of the printout.  For example,
process number 3 identified by P3.  The fourth set of printout
(Table 8) gives the total costs for the entire plant and general
items relating to the cost calculations.  The fifth and final
part of the printout  (Table 9) gives the energy requirements of
the unit processes used.  The electrical power, natural gas,
fuel oil, gasoline, etc., required for operation of the plant
are converted to British Thermal Units  (BTU).  This conversion
provides an easy means to compare total energy use for alternate
treatment systems.

     A flow chart of EXECMAIN is shown in Figure 2.  The chart
shows the major branches and loops in the program.

     Discussion of individual process subroutines used in con-
junction with EXECMAIN is found in the following sections.
                               21

-------
(
 Figure 2.  Flowchart
 of EXECMAIN showing
 major branches and
 iterations.
                                      22

-------
c
c
(,
c
c
c
c
c
c
        EXECMAIN                                                  EXE00100
        EXECUTIVE PROGRAM FOR DESIGN OF WASTEWATER TREATMENT PLANTEXE00200
C
C
C
C
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
        RICHARD G. EILtRS, ROBERT SMITH AND  ILLINOIS  INSTITUTE
        OF TECHNOLOGY, ENVIRONMENTAL ENGINEERING DEPARTMENT
        AUG. 1977
        COMMON  INITIAL STATEMENTS
                                                                     EXE00300
                                                                     EXEOO<*00
                                                                     EXE00500
                                                                     EXE00600
                                                                     EXE00700
                                                                     EXE00600
                                                                     EXE00900
                                                                     EXE01000
                                                                     EXE01100
       INTEGER  OS1,OS2,REPEAT,CHECK1,PROCNO
       DIMENSION  NAME<3),LIST(40)
       COMMON SMATx(2Cr30),TMATX(20»30)•DMATX(20,20>tOMATX(20»20).IP<20),ExE01200
      lINP,IO,Ibl,IS2,OSl,OS2,N,IAERF,cCOST(20,5),COSTOf20,5),ACOST(20.5)EXE01300
      2rTCOST(20r5)rDHR»PCT»WPI,CLAND,DLAND»PROCNO(10)»FLOW<25),POW(25>rTEXEOlUOO
     3KWHD(2b)
        DEFINE AN INTERNAL FILE FOR TEMPORARY STORAGE OF PROCESS
        DATA USED LATER IN THE EXECMAIN

DEFINE FILE 2(bOi15rUfNNNNN)
        ASSIGNMENT OF NUMBERS REPRESENTATIVE OF THE USERS INPUT*
        INP, AND OUTPUT. 10. DEVICES
      10=6
              INPUT   FIRST DATA CARD

      REAL)  (INP.10) NCASE,REPEAT,CHECKl
   10 FORMAT  (312)
        MAJOR LOOP FOR EACH DESIGN CASE

DO 770 111=1.NCASE
IF (III.£0.1) GO TO 20
IF (REPEAT.EO.O) GO TO 20
           INPUT   REPEATED DESIGN CASES ONLY - REPEATED FLOW
           DIAGRAM WITH NEW VALUES FOR RAW SEWAGE STREAM, COST
           PARAMETERS AND/OR DESIGN MATRIX VALUES

   HEAD (INP,1Q) NEWRAW»N£WCOS»NE*DMX
   GO TO 50
20 CONTINUE
           INITIAL ZEROING OF ARRAYS - NOT NECESSARY IN SUBSEQUENT
           DESIGN CASES WHICH USE SAME FLOW DIAGRAM

   DO 30 1=1,20
   DO 30 J=l,30
   SMATX(I,J)=Q.
                                                                     EXE01500
                                                                     EXE01600
                                                                     EXE01700
                                                                     EXE01800
                                                                     EXE01900
                                                                     EXE02000
                                                                     EXE02100
                                                                     EXE02200
                                                                     EXE02300
                                                                     EXE02tOO
                                                                     EXE02500
                                                                     EXE02600
                                                                     EXE02700
                                                                     EXE02flOO
                                                                     EXE02900
                                                                     EXE03000
                                                                     EXE03100
                                                                     EXE03200
                                                                     EXE03300
                                                                     EXE03400
                                                                     EXE03500
                                                                     EXE03600
                                                                     EXE03700
                                                                     EXE03800
                                                                     EXE03900
                                                                     EXEO<+OOO
                                                                     EXE04100
                                                                     EXE01200
                                                                     EXEO«»300
                                                                  ExEO'tSOO
                                                                  EXE04700
                                                                  EXE04900
                                                                  EXE05000
                                                                  EXE05100
                                                                  EXE05200
                                                                  EXE05300
                                                                  EXE05400
                                                                  EXE05500
                                                                  EXE05600
                                                                  EXE05700
                                                                  EXE05800
                                      23

-------
    DO  40  J=l,20
    OMATXtI,J)=Q.
    CONTiNUt
            INITIAL  ZEROING  OF  ARRAYS
 eiO
      CONTINUE                                                           EXE05900
      00 40  1=1,20                                                      EXE06000
      IP(I>=0                                                           EXE06100
                                                                        EXE06200
                                                                        t.xEOf>300
   40  CONTINUE                                                           EXE06400
                                                                        EXE06bOO
                                                                        EXE06600
                                                                        EXE06700
                                                                        EXE06800
                                                                        EXE06900
                                                                        EXE07000
                                                                        EXE07100
                                                                        EXE07200
                                                                        EXE07300
                                                                        EXE07400
                                                                        EXE07500
                                                                        EXE07600
                                                                        EXF07700
                                                                        EXE07800
                                                                        EXE07900
                                                                        EXE08000
                                                                        EXE08100
                                                                        EXE08200
                                                                        EXE08300
                                                                        EXE08400
                                                                        EXE08500
                                                                        EXE08600
                                                                        EXE08700
                                                                        EXE08800
                                                                        EXE08900
                                                                        EXE09000
                                                                        EXE09100
                                                                        EXE09200
                                                                        EXE09300
                                                                        EXE09400
                                                                        EXE09500
                                                                        EXE09600
                                                                        EXE09700
      READ (INP,loO) LIST                                               EXE09800
  100  FORMAT (40A2)                                                     EXE09900
      WRITE (10,110)                                                    EXE10000
  110  FORMAT (1H1,//,55X,'EXECUTIVE',/,47X,'DIGITAL COMPUTER PROGRAM',/,EXE10100
     156X,'FOR',/,34X,'PRELIMINARY DESIGN OF WASTEWATER TREATMENT SYSTEMEXE10200
     2S',//,58X,'BY',/,53X,'ROBERT SMITH',/,5lX,'RICHARD G. EILERS',/)  EXE10300
      WRITE (10,120)                                                    EXE10400
  120  FORMAT (41X,»U.S. ENVIRONMENTAL  PROTECTION  AGENCY',/,39X,'MUNICIPAEXE10500
     1L ENVIRONMENTAL RESEARCH CENTER',/,45X,'WASTEWATER RESEARCH DIVISIEXE10600
     20N',/,40X,'TECHNOLOGY DEVELOPMENT  SUPPORT BRANCH',/,40X,'SYSTEMS AEXE10700
     3ND ECONOMIC ANALYSIS SECTION',/,47X,'CINCINNATI, OHIO   45268',//,EXE10800
     452X,«(513)  684-7618'»/////)                                       EXE10900
      WRITE (10,130) III                                                EXE11000
      FORMAT (/,20X,'DESIGN CASE NO.',I2,//)                            EXE11100
      WRITE (10,1^0) LIST                                               EXE11200
      FORMAT (20X,40A2»//,52X,'SYSTEM DIAGRAM',/,54X,'INPUT DATA',//,28XEXE11300
     1, ' K',5X,'N',5X,'PROCESS'r9X,'IS1',7X,'IS2',7X,'OS1',7X,«052',/)   EXE11400
      IF  (III.EQ.D GO TO 150                                           EXE11500
      IK  (REPEAT.EO.l.AND.NEwRAW.EO.O) GO TO 160                         EXE11600
  150  CONTINUE                                                           EXE11700
C                                                                       EXE11800
C                                                                       EXE11900
C             INPUT   NEW AND SOME REPEATED DESIGN CASES                EXE12000
C                                                                       EXE12100
                     (SMATX(I,1),1=2,20)                                EXE12200
                                                                        EXE12300
                    GO TO 170                                           EXE12400
COM 1NUE.
DO bO I-lf2b
FLOMI)=0.
P0w(i UO.
TKwHUd 1=0.
CONTINUE
UO 70 1=1,20
DO 70 J=l,30
TMATX(I,J)=0.
CONTINUE
DO ttO 1=1,20
DO 80 J=l,20
OMATX(I,J)=0.
CONTINUE
DO 90 1=1.20
DO 90 J=l,b
CCOSTd ,J)=Q.
COSTOd ,J)=0.
ACOSTl IrJ)=0.
TCObl(I,J)=o.
CONTINUE
IAEHF=0
CLAND=0.
DLANU=0.
tPS=.l
            INPUT   NEW AND REPEATED DESIGN CASES
130

140
    READ (INP,180)
IfaO CONTINUE
    IF (III.EO.l)
                                   24

-------
      IF (REPEAT.EQ.l.AND.NE*COS.EG.0) GO TO 190
  170 CONTINUE
C
C
C
C
              INPUT   NEW AND SOME REHEATED DESIGN CASES

      READ (1NP,180) (DMATX(I,20),I=1,16)
  160 FORMAT (tJFlO.O)
  190 CONTINUE
      WPI=UMATX( ,2,20 1/1.122
      Dhk=UMATX(b,20)
      PCT=UMATX(b,20)
      IF (lll.tu.l) GO TO 230
      IF (REPEAT.EQ.O) GO TO 230
      WRITt (10,200)
  200 FORMAT (/////,40X,'PROCESS AND STREAM NUMBERING SAME AS DESIGN
     IE NO. 1')
      IF (NEWDMX.EQ.O) GO TO 340
                                                          EXE12SOO
                                                          EXE12600
                                                          EXE12700
                                                          EXE12800
                                                          EXE12900
                                                          EXE13000
                                                          EXE13100
                                                          EXE13200
                                                          EXE13300
                                                          EXE13400
                                                          EXE13500
                                                          EXE13600
                                                          EXE13700
                                                          EXE13800
                                                          EXE13900
                                                       CASEXE14000
                                                          EXE14100
              INPUT
              CAbES
                      SOME REPEATED DESIGN CASES ONLY - NOT FOR NEW
      READ  
-------
  340 CONTINUE
  350 !TtH=0
C
C
C
C
C
C
c
c
t
c
c
t
c
              BEGINNING OF ITERATIVE LOOP IN WHICH THE STREAM
              PARAMETERS ARE REEVALUATED TO REFLECT THE EFFECT OF
              POSSIBLE RECYCLE STREAMS BACK TO THE BEGINNING SECTIONS
              OF THE PLANT
  360
      ITLR=ITER+1
      II- UTEK.NE.l)
                     GO TO 370
              INITIAL VALUES OF ALL PROCESSES AND STREAMS WILL BE
              PRINTED IF CHECK1 IS EQUAL TO 1 - TROUBLESHOOTING AID
              IF PROGRAM EXECUTION IS INTERRUPTED
      IF (CHECK1.EQ.O) GO TO
      CHtCKl=0
      CALL PRINT
  370 CONTINUE
                             370
      IFAIL=0
      IF  (1TER-25) 400»400»380
  380 WRITt  (10,390)
  390 FORK.AT 600.610»620>630»640»650>660>» IPROC                       EXE24800
  430 CALL PREL                                                          EXE24900
      GO TO 670                                                          EXE25000
  440 CALL PRSET                                                         EXE25100
      GO TO 670                                                          EXE25200
  450 CALL AERFS                                                         EXE25300
                                                                         EXE25400
                                                                         EXE25500
              IF THE REQUIRED MLASS, BOD5 OR MLSS CAN NOT BE ATTAINED    EXE25600
                                     26

-------
c
c
c
c
             IN THE AERFS SUBROUTINE,  IAERF WILL HE RETURNED FROM
             AEKFS WITH A VALUE OF  i  (ONE) - THIS TRANSFER CONTROL
             TO STATEMENT 7faO WHICH WILL TERMINATE THE DESIGN CASE
       IF  (1AEKF) 670,670*760
  <+60  CALL MIX
       GO  TO 670
  **70  CALL SPLIT
       GO  TO fa70
  UbO  CALL DIG
       GO  TO 670
  «*90  CALL VACF
       GO  TO 670
  500  CALL THICK
       GO  TO 670
  510  CALL ELUT
       GO  TO 670
  520  CALL SBEDS
       GO  10 670
  530  CALL TRFS
       GO  TO 670
  5**0  CALL CHLOR
       GO  TO 670
  550  CALL TFLOT
       GO  TO 670
  560  CALL MHINC
       GO  TO 670
  570  CALL RWP
       GO  TO 670
  5BO  CALL SHT
       GO  TO 670
  590  CALL CENT
       GO  TO 670
  600  CALL AEKOB
       GO  TO 670
  610  CALL POSTA
       GO  TO 670
  620  CALL EQUAL
       GO  TO 670
  630  CALL OIG2
       GO  TO 670
  6UO  CALL LANDO
       GO  TO 670
  650  CALL LIME
       GO  TO 670
  660  CALL KBC
C
C
C
C
C
C
C
C
C
c
            CHECK IF DIFFERENCE BETWEEN LATEST STREAM VALUES*
            SMATX(I,OS1), ANU PREVIOUS STREAM VALUES* TMATX(I,051),
            IS LESS THAN THE ALLOABLE ERROR* EPS» IN MG/L - IF NOT»
            SET THE ITERATION ERROR TEST PARAMETER IFAIL=1 AND
            CONTINUE THE ITERATIVE EFFORT TO REFINE THE STREAM
            PARAMETER VALUES - IF LESS THAN OR EQUAL TO ALLOWABLE
            ERROR* CHECK THE STREAM PARAMETERS FOR OS2

670 DO 680 1=2*20
    IF (ABS(SMATX(I,OS1)-TMATX(I»OS1»-EPS> 660*680*710
680 CONTINUE
    IF (OS2) 720*720*690
C
C
C
C
C
C
            CHECK PARAMETERS FOR OS2 - IF GREATER THAN ALLOWABLE
            ERROR. SET THE ITERATION ERROR TEST PARAMETER IFAILsl
            AND CONTINUE THE ITERATIVE EFFORT TO REFINE THE STREAM
            PARAMETER VALUES - IF LESS THAN OR EQUAL TO ALLOWABLE
EXE25700
EXE25800
EXE25900
EXE26000
EXE26100
EXE26200
EXE26300
EXE26100
EXE26500
EXE26600
EXE26700
EXE26800
EXE26900
EXE.27000
EXE27100
EXE27200
EXE27300
EXE27UOO
EXE27500
EXE27600
EXE27700
EXE27800
EXE27900
EXE28000
EXE28100
EXE28200
EXE28300
EXE28400
EXE28500
EXE28600
EXE28700
EXE28BOO
EXE28900
EXE29nno
EXE29100
EXE29200
EXE29300
EXE29400
EXE29500
EXE29600
EXE29700
EXE29800
EXE29900
EXE30000
EXE30100
EXE30200
EXE30300
EXE30400
EXE30500
EXE30600
EXE30700
EXE30800
EXE30900
EXE31000
EXE31100
EXE31200
EXE31300
EXE31UOO
EXE31500
EXE31600
EXE31700
EXE31800
EXE31900
EXE32000
EXE32100
EXE32200
                                    27

-------
C             ERROR, RLPLACE THE PREVIOUS STREAM VALUES, TMATX, WITH    EXE32300
C             THE LATEST STRLAM VALUES. SMATX                           EXE32400
C                                                                       EXE32500
  690 00 700 1=2.20                                                     EXE32600
      IF 
-------
                                             SECTION 2

                                    PRELIMINARY TREATMENT, PREL
Subroutine Identification Number 1

Preliminary Treatment >  PREL


1.  Process symbol.
                                    Rev. Date 8/1/77
                                                                  IS1:   Liquid input  stream

                                                                  OS1:   Liquid output stream

                                                                    N:   User assigned number
                                                                        to the process
2.  Input parameters and nominal values.
    DMATX(l.N) = IPREL
    DMATX(16,N) = ECF
Program control number:  0 = grit removal and flow
measurement; 1 = grit removal and flow measurement
and screening, [l. ]

Excess capacity factor for the process.
3.  Output parameters which are printed on computer output sheets.


    IPREL = DMATX(l.N)

    CCOST = Capital cost, (dollars).

    COSTO = Operating and maintenance cost,(cents/1000 gal)•

    ACOST = Amortization cost,(cents/1000 gal).

    TCOST = Total treatment cost /cents/1000 gal) •

      ECF = Excess capacity factor.


4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.


    SMATX(I.OSl) = SMATX(I.ISl)                                               PRE02400

         SMATX(I.OSl)  =  SMAIX(I.ISl)   [mg/l]

         I  =  2,20 Q.SOC.SNBC.SON.SOP.SFM.SBOD.VSS.TSS.DOC.DNBC.DN.DP.DFh.ALK.DBOD.NHS.NOS
                                                  29

-------
    IPREL o DMATXCl.N)                                                         PRE018°°

        IPREL = DMATX(l.N)

    References:   Smith, 1969

                  Patterson and Banker, 1971
5.  Cost functions.

    a.  Capital cost

        Function of  Qjsl*ECF


        X = ALOG(SMATX(2,IS1)*DMATX(16,N))                                     PRE03000

            X •= ln(QIsl*ECF)


        (1)  For preliminary treatment consisting of grit removal and flow measurement


             CCOST(N,1) = EXP (2. 566569+. 619151*X)*1000.                        PRE03700

                 CCOST = lOOOe2 • 566569+0 . 619151X   [dollars]


        (2)  For preliminary treatment consisting of grit removal, flow measurement and
             screening


            CCOST(N,1)   EXP(3. 259716 +.619151*X)*1000.                        PRE04500

                CCOST = I000e3-259716+-619151*x    [dollars]


    b.  Operating manhours, maintenance manhours, and materials/supplies costs

        Function of
        X = ALOG(SMATX(2,IS1))                                                PRE05100

            X = ln(QIsl)


        (1)  Operating manhours


            OHRS = EXP(6.398716+.230956*X+.164959*X**2.-.014601*X**3.)        PRE05700

                OURS = e6.398716+.230956*X+.164959*X2-.014601*X3
        (2)  Maintenance manhours


            XMHRS = EXP(5.846098+.206513*X+.068842*X**2+.023824*X**3.-.004410*X**4.)  PRE05800

                XMHRS = e5-846098+-206513*x+-0688/(2*x2+'023824*X3-.004410*X/'    fh  /   1
                                                30

-------
    (3)  Total materials and supplies





        TMSU = EXP(7. 235657+. 399935*X-.224979*X**2.+.110099*X**3.-.011026*X**4.) PRE06000



                 = e7. 235657+. 399935*X-.224979*X2+.110099*X3-.011026*X4
c.  Total operating and maintenance costs





    COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.          PRE06600





        rnoTn _ (OHRS+XMHRS) *DHR* ( 1 +PCT) +TMSU*WPI    r     .,„--   .-.
        COblO - J - — - ' - * — -,,n/ -     [cents/1000 gal]

                      Qplant Inf.*  365°







      Cost  curves, Patterson and  Banker pages  35,36,85,86
                                           31

-------
c
c
c
c
c
c
c
c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
           PRELIMINARY TREATMENT
           PROCESS IDENTIFICATION NUMBER
   SUBROUTINE PREL
                                                                   PRE00100
                                                                   PRE00200
                                                                   PRE00300
                                                                   PRE00400
                                                                   PRE00500
                                                                   PRE00600
                                                                   PRE00700
                                                                   PRE00800
                                                                   PRE00900
 INTEGER OSlrOS2                                                   PRE01000
 COMMON SMATX<«:0.30>FTMATX(20»30>«DMATX<20f20)»OMATX(20»20)»lP(20)rPREOUOO
llNP.IO»ISl»lS2fOSl»OS,d»N'IAERFfCCOST(20f5).COSTO(20»5)rACOST<20»5)PRE01200
           COMMON INITIAL STATEMENTS
     2«TCOST(20»5)>UHR»PCT»*P1'CLANDfDLAND'FLOW125)»POW(25)»TKWHD(25)
           ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS

   IPR£L=DMATXU»N)
           EFFLUENT STREAM CALCULATIONS

   DO 10 I=2r20
10 SMATX(IrObl)=bMATX(I»lSl>
           CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
           CAPACITY

   X=AL06(SMATX<2rISl)*DMATX(16fN»
   IF (1PREL) 30«20»30
                CALC. OF CAPITAL COSTS FOR PRELIMINARY FACILITY
                CONSISTING OF GRIT REMOVAL AND FLOW MEASUREMENT

20 CCOST(N»l)=EXP(2.5665o9+.619151*X)*1000.
   GO TO 40
                CALC. OF CAPITAL COSTS FOR PRELIMINARY FACILITY
                CONSISTING OF GRIT REMOVAL AND FLOW MEASUREMENT AND
                SCREENING

30 CCOST(Nrl)=EXP(3.2597l6+.619151*X)*1000.


           CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE*
           DOES NOT INCLUDE EXCESS CAPACITY

40 X=ALO(,(SMATX<2»IS1M
                CALC.OF  OPERATING  MANHOURS*  MAINTENANCE MANHOURS
                AND  MATERIALS  AND  SUPPLIES

   OHRS=EXP(6.398716+.230956*X+.164959*X**2i-.Ol4601*X**3.)
                                                                   PRE01300
                                                                   PRE01400
                                                                   PRE01500
                                                                   PRE01600
                                                                   PRE01700
                                                                   PRE01800
                                                                   PRE01900
                                                                   PRE02000
                                                                   PRE02100
                                                                   PRE02200
                                                                   PRE02300
                                                                   PRE02400
                                                                   PRE02500
                                                                   PRE02600
                                                                   PRE02700
                                                                   PRE02800
                                                                   PRE02900
                                                                   PRE03000
                                                                   PRE03100
                                                                   PRE03200
                                                                   PRE03300
                                                                   PRE03400
                                                                   PRE03500
                                                                   PRE03600
                                                                   PRE03700
                                                                   PRE03800
                                                                   PRE03900
                                                                   PRE04000
                                                                   PREOU100
                                                                   PRE01200
                                                                   PREOU300
                                                                   PREOU400
                                                                   PRE04500
                                                                   PRE01600
                                                                   PREOH700
                                                                   PRE04800
                                                                   PRE04900
                                                                   PRE05000
                                                                   PRE05100
                                                                   PRE05200
                                                                   PRE05300
                                                                   PRE05HOO
                                                                   PRE05500
                                                                   PRE05600
                                                                   PRE05700
      XMHRS=EXP(5.846098+.2U65l3*X+.068842*X**2.+.023a24*X**3.-.00«*tlO*XPRE05800
                                      32

-------
C
C
1**'*')
 TMS>U=EXP(7.23b657+.;599935*X-.22<*979*X**2.
1*4*')
              OPERATING COST EQUATION

 COSTO(N.l)=((OHRS+XMHRS)*DHR*(l.+PCT)*TMSu*«Pl)/SMATXl2.1)/3650.


         PROCESS ENERGY INDICES

 PLOW(N)=SMATX(2,IS1)
                                   PRE05900
                                  PRE06100
                                  PRE06200
                                  PRE06300
                                  PRE06«»00
                                  PRE06500
                                  PRE06600
                                  PRE06700
                                  PRE06600
                                  PRE06900
                                  PRE07000
                                  PRE07100
                                  PRE0720S
                                  PRE07300
                                  PRE07tOO
33

-------
                                             SECTION 3

                                   PRIMARY SEDIMENTATION, PRSET
Subroutine Identification Number 2

Primary Sedimentation, PRSET


1.  Process symbol.
                                  Rev. Date 8/1/77
      IS1
                                    OS1
                     OS2 (Sludge)
2.  Input parameters and nominal values.
                          IS1:  Liquid input stream

                          OS1:  Liquid output stream

                          OS2:  Sludge output stream

                            N:  User assigned number to
                                the process
    DMATX(l.N) •= FRPS




    DMATX(2,N) = URPS



    DMATX(3,N) = HPWK


    DMATX(15,N) = ECF

    DMATX(16,N) = ECF
Fraction of solids entering the primary settler which
is removed from the main stream and sent on to the
sludge handling process, fraction. [.5]

Ratio of solids concentration in OS2 from the primary
settler to the solids concentration in IS1 to the
primary settler. [400.]

Hours per week that the primary sludge pumps are
operated, hr/wk. [14.]

Excess capacity factor for primary sludge pumps. [l.J

Excess capacity factor for primary settler basin. [1.2]
 3.  Output Parameters which are printed on computer output sheets.
    FRPS = DMATX(l.N)

    URPS = DMATX(2,N)

    HPWK = DMATX(3,N)

    GPS = OMATX(l.N)

    APS •= OMATX(2,N)

    PGPM = OMATX(3,N)

    CCOST

    COSTO

    ACOST

    TCOST

    ECF
Overflow rate for the primary settler, [gpd/sq/ft].

Surface area of the primary settler, [sq ft/1000].

Firm pumping capacity of the primary sludge pumps, [gpm]

Capital cost, [dollars] .

Operating and maintenance costs, [cents/1000 gal].

Amortization cost, [cents/1000 gal].

Total treatment cost, [cents/1000 gal].

Excess capacity factor.

               34

-------
4.  Theory and function - FORTRAN statement followed by equivalent algebraic equation.
    HPWK - DMATX(3,N)

           HPWK - DMATX(3,N)    [hr/wk]
                                                                               PRS01800
    SMATX(2,OS2)  - DMATX(1,N)*SMATX(2,IS1)/DMATX(2,N)
Qos2 •
                                LMGD]
                    URPS
                                                                    FRS02400
    SMATX(2,OS1)  - SMATX(2,IS1)-SMATX(2,OS2)

                       - °-OS2    CMGD]
                                                                    PRS02500
    TEMPI = (1.-DMATX(1,N))*SMATX(2,IS1)/SMATX(2,OS1)

           TEMPI = Cl.O-FKPS)*^!    [no units]
                        Qosi
                                                                    PRS02600
    TEMP2 = DMATX(1,N)*SMATX(2,IS1)/SMATX(2,OS2)
           TEMP2
                   FRPS*Q.
                         IS1
                    QOS2
                                       [no units]
                                                                    PRS02700
    SMATX(I.OSl) = TEMP1*SMATX(I,IS1)

           SMATX(I,OS1) - TEMP1*SMATX(I,IS1)     [mg/l]

           where I = 3,10  i.e.   SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS
                                                                    PRS03300
    SMATX(I,OS2)  = TEMP2*SMATX(I,IS1)

           SMATX(I,OS2)  = TEMP2*SMATX(I,IS1)     [mg/l]

           where  I = 3,10
                                                                    PRS03400
    SMATX(I,OS2)  = SMATX(I.ISl)

           SMATX(I,OS2)  = SMATX(I.ISl)     [mg/l]

           where  I = 11,20  i.e.   DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03
                                                                    PRS03600
    SMATX(I,OS1)  =  SMATX(I,OS2)

           SMATX(I.OSl)  =  SMATX(I,OS2)     [mg/l]

           where  I  =  11,20
                                                                    PRS03700
                                               35

-------
    GPS - -2780.*ALOG(DMATX(1,N))-551.7                                        PRS04300

           GPS = -(2780*ln FEPS)-551.7    [gpd/ft ]
    APS - SMATX(2,IS1)  *1000./GPS*DMATX(16,N)                                   PRS04400

                 QT  *1000ECF
           APS =     Gps	    [lOOOftl
    PGPM = SMATX(2,OS2)*116666.7/HPWK*DMATX(15,N)                           PRS04200
                   Q-   *116666.7*ECF
            PGPM -
    Reference:   Smith, 1969

               Smith and Eilers, 1975

               Patterson and Banker, 1971

5.  Cost Functions.


    a.  Settler

        (1)  Capital cost  for  the settler

             Function of APS

                X =  ALOG(APS)                                                   PRS05000

                    X =  In APS

             CCOST(N.l)  =  EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000. PRS05100

                CCOST =  ioooe3-71635440'389861^0-084560512-0-004718^    [dollars]


        (2)  Operating manhours, maintenance manhours and materials/supplies costs

             Function of APS/ECF

                X =  ALOG(APS/DMATX(16,N))                                       PRS05900
                          Apt;
                    x =  lnti

             (a)   Operating  manhours

                  OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)    PRS06500

                          _  5.846565+0.254813X+0.113703X2-0.010942X3    rv   .  ,
                          -  e                                            Lhrs/yrJ
                                               36

-------
         (b)  Maintenance manhours



              XMHRS - EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)   PRS06600



                  ._„„„,    5.273419+0.228329X+0.122646X2-0.011672X3    r.    .  -,
                  XMHKo = e                                            Lhrs/yrj
         (c)  Total materials and supplies



              TMSU - EXP(5.669881+.750799*X)                                PRS06700




                 TMSU - e5.669881+0.750799X    [$/yr]






    (3)  Total operating and maintenance costs



         COSTO(N.l) - ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. PRS07200




            COSTO - [ (OHRS+XMHRS)DHR(1+PCT) ]+(TMSU*WPI)     [cents/10oO galj


                             %lant  inf.*3650






b.  Sludge pumps



    (1)  Capital cost for sludge pumps




         Function of PGPM



            X = ALOG(PGPM)                                                  PRS07800



                X » In (PGPM)




         CCOST(N,2) = EXP(2.23733CH-.207628*X+.026479*X**2.)*1000.           PRS07900




            CCOST = 10oOe2-237330+0-207628X+0-026479x2    [dollars]






    (2)  Operating manhours, maintenance manhours and materials/supplies costs




         Function of PGPM/ECF



            X = ALOG(PGPM/DMATX(15,N))                                      PRS08500
        (a)  Operating manhours



             OHRS = EXP(4.945155+.419391*X)                                 PRS09100



                -„.,_    4. 945155+0. 419391X    r.    ,  n
                OHRS = e                      [hrs/yr]





        (b)  Maintenance manhours



            XMHRS = EXP(3. 993365+. 444966*X)                                 PRS09200



                XMHRS = e3.993365+0.444966X    [hrs/yr]
                                             37

-------
    (c)   Total materials and supplies




         TMSU = EXP(4.433129+.642272*X)                                 PRS09300
                  /.433129+0.642272X    [$/yr]
(3)   Total  operating and maintenance costs




     COSTO(N,2) =  ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650. PRS09800





       COSTO - [(OHRS+XMHRSjDHRd+PCTnCTMS^WFI)          [centS/lOOOgal J

                         QT»I  *. T c *
                         xPlant Inf.
                                        38

-------
c
c
c
c

c
c
c
c



PRIMARY SEDIMENTATION
PROCESS IDENTIFICATION NUMBER 2

SUBROUTINE PRSET


COMMON INITIAL STATEMENTS

INTEGER osi»os2
COMMON SMMTX<20r30) rTMATX(20»30) »DMATx (20.20 > »OMATX(20>20 ) »IP(20)
PRS00100
PRS00200
PRS00300
PRSOOHOO
PRS00500
PRS00600
PRS00700
PRSU0800
PRS00900
PRS0100U
tPRSOllOO
llNP»lO»ISlrlSi:»OSl»052.N»IAERF»CCOST(20r5)»COSTOC20.5)»ACOST'.20.5JPRS01200

C
C
C
C

C
C
C
C
C




C
C
C
C






C
C
C
C



C
c
c
c
c

2'TCOST(20f5)»UHR»PCT»KPI»CLAND»DLAND»FLOW(2ijUPOW(25>>TKWHD(25>


ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS

HHWK=UMATX(3»N)


PROCESS RELATIONSHIPS REQU. To CALC. EFFLUENT STREAM
CHARACTERISTICS

SMATXl2fOb2)=UMATX(lMM)*SMATX<2»ISl)/OMATx
20 SMATX(IrObl)=bMATX(I'OS2>


CALC. OF OUTPUT SIZES AND QUANTITIES

PGPM=bMATx(2'OS2>*116o66.7/HPWK*DMATX(15»N)
GHb=-*i780 . *ALOG ( DMATX ( 1 r N ) ) -551 . 7
APS=SMATX(2»Ibl)*1000./GPS*DMATX(16iN)


CALC. OF CAPITAL COSTS FOR PRIMARY SETTLER BASIN BASED
OIM DESIGN PLUb EXCESS CAPACITY

X=ALO(i(APb>
PRS01300
pRSomoo
PRS01500
PRS01600
PRS01700
PRS01800
PRS01900
PRS02000
PRSU2100
PRS02200
PRS02300
PRS02<400
PRS02500
PRS02600
PRS02700
PRS02800
PRS02900
PRS03000
PRS03100
PRS03200
PRS03300
PRS03<*00
PRS03500
PRS03600
PRS03700
PRS03800
PRS03900
PRS04000
PRSOU100
PRSOU200
PRSOU300
PRS04400
PRSOtSOO
PRS04600
PRS01700
PRS04800
PRS04900
PRS05000
CCOST(N»l)=EXP(3.7l63i><++.389861*X+.08t5faO*X**2.-.00<*718*X**3. ) *100PRS05100

C
C
C
C
c
c
10.


CALC. OF OPERATING COSTS FOR PRIMARY SETTLER BASIN BASED
ON DEbIGN CAPACITY ALONE* DOES NOT INCLUDE EXCESS
CAPACITY

PRS05200
PRS05300
PRSOSIOO
PRS05500
PRS05600
PRS05700
PRS05800
39

-------
      X=ALOt>(APb/DMATX<16rN)
c
c
c
c
c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
             CALC. OF OPERATING  MANHOURSf  MAINTENANCE MANHOURS
             AND MATERIALS  AND SUPPLIES
                        . 25481 3*X + . 113703*X**2.-.Ul(W2*X**3. )
      XMHRS=EXPl5.273+TMSu**Pl)/SMATXC2»l)/3650,
        CALC. OF CAPITAL COSTS FOR SLUDGE PUMPS BASED ON  DESIGN
        PLUS LXCEbS CAPACITY
      X=ALOo(PGPM)
                                                    . )*1000.
        CALC. OF OPERATING COSTS FOR SLUDGE PUMPS BASED ON
        DtSIGN CAPACITY ALONEf DOES NOT INCLUDE EXCESS CAPACITY

X=ALOli(PGPM/DMATX(15rN> )
             CALC. OF OPERATING MANHOURSf MAINTENANCE MANHOURS
             AND MATERIALS AND SUPPLIES

OHRS=tXPU.9<*bl55+.4U9391*X)
XMHRS=EXP I 3.993365+. t<+i+966*X)
TMbU=LXP (t. U33129+.
             OPERATING COST EQUATION

CObTO(N*2)=«OHRS+XMHRS)*OHR*(l.+PCT>+TMSu**Pl)/SMATX(2»l)/36bO.

        ASSIGNMENT OF VALUES TO OMATX

OMATX(lrN)=GPS
OMATX(2rN)=APb
OMATX(3»N)=PGPM

        PROCESS ENERGY INDICES

FLOW(|J)=SMATX12.IS1)
POw(N)=2.
RLTURN
ENU
 PRS05900
 PRS06000
 PRS06100
 PRS06200
 PRS06300
 PRS06400
 PRS06500
 PRS06600
 PRS06700
 PRS06600
 PRS06900
 PRS07000
 PRS07100
 PRS07200
 PRS07300
 PRS07UOO
 PRS07500
 PRS07600
 PRS07700
 PRS07800
 PRS07900
 PRS08000
 PRS08100
 PRS08200
 PRS08300
 PRS08UOO
 PRS08500
 PRS08600
 PRS08700
 PRS08800
 PRS08900
 PRS09000
 PRS09100
 PRS09200
 PRS09300
 PRS09400
 PRS09500
 PRS09600
 PRS09700
 PRS09800
 PRS09900
 PRS10000
 PRS10100
 PRS10200
 PRS10300
 PRS10«*00
 PRS10500
 PRS10600
PRS10700
PRS10800
PRS10900
PRS11000
PRS11100
PRS11200
PRS11300
                                     40

-------
                                             SECTION 4

                              ACTIVATED SLUDGE - FINAL SETTLER, AERFS

Subroutine Identification Number 3

Activated Sludge - Final Settler, AERFS


1.   Process Symbol.
                                           Rev. Date 8/1/77
      IS1
/OS1
                        OS2  (Sludge)

2.   Input parameters and nominal values.

     DMATX(l.N) - BOD


     DMATX(2,N) = MLSS


     DMATX(3,N) - DEGC

     DMATX(4,N) - CAER20


     DMATX(S.N) = DO


     DMATX(6,N) = AEFF20


     DMATX(7,N) = URSS



     DMATX(8,N) - GSS


     DMATX(9,N) = HEAD

     DMATX(IO.N) = ALMD


     DMATX(13,N) = ECF

     DMATX(IA.N) = ECF

     DMATXaS.N)  " ECF

     DMATX(16,N)  = ECF
IS1: Liquid input stream

OS1: Liquid output stream

OS2: Sludge output stream

  N: User assigned number to the process
                 Demand  concentration of 5-day BOD in the final
                 effluent  from  the aeration process, mg/l.[l3.]

                 Total concentration of suspended solids in the
                 aerator,  mg/1  mass.[2000.]

                 Water temperature, degrees Centigrade.[20.J

                 Rate constant  used for sizing the aerator when
                 the water temperature is 20° C. l/(hr  gm/L)[l.]

                 Concentration  of dissolved oxygen in the aerator,
                 mg/1 oxygen.[1.]

                 Efficiency of  the air diffusers in  the aerator
                 at zero dissolved oxygen and 20°C.[.05]

                 Ratio of  solids concentration in OS2 (underflow
                 stream) from the final settler to the  total
                 solids  concentration in the aerator.[3.]

                 Design  overflow rate for the final  settler,
                 gpd/sq  ft.[700.]

                 Pumping head for the sludge return  pumps, ft.[30.J

                 Dose of aluminum added to the aerator, mg/1
                 aluminum.[0.]

                 Excess  capacity factor for the final settler.[1.2]

                 Excess  capacity factor for the sludge  return  pumps.[l.J

                 Excess  capacity factor for the air blowers.[l.J

                 Excess  capacity factor for the aeration tanks.[1.2]


                   41

-------
3.  Output parameters which are printed on computer output sheets.



    BOD = DMATX(1,N)


    MLSS = DMATX(2,N)


    DEGC = DMATX(3,N)


    CAER20 = DMATX(4,N)


    DO = DMATX(5,N)


    AEFF20 = DMATX(6,N)


    URSS = DMATX(7,N)


    GSS = DMATX(8,N)


    HEAD = DMATX(9,N)


    ALMD = DMATX(IO.N)
    BOD2 = OMATX(1,N)
    DOSAT = OMATX(2,N)
    XRSS = OMATX(3.N)
    ATS = OMATX(A.N)
Influent concentration of 5-day BOD to the
aeration process, mg/1.
Saturation value for dissolved oxygen in the
aerator at one-half the water depth, mg/1
oxygen.
Ratio of solids concentration of OS1 from
the final settler to the total solids
concentration in the aerator.
Surface area of the final settler,
sq ft/1000.
                                             42

-------
CAER - OMATX(5,N)
Rate constant for sizing the aerator corrected
for water temperature, (l/(hr gm/L)).
CEDR - OMATX(6,N)
Rate at which active solids are destroyed by
natural causes in the aerator, fraction of
mass per day.
VAER = OMATX(7,N)


VNIT - OMATX(8,N)
Volume of the aerator, million gallons.
Volume of the aerator required to achieve
nitrification, million gallons.
MLASS = OMATX(9,N)
XMLAS, concentration of active solids held
in the aerator, mg/1 mass.
MLBSS - OMATX(IO.N)
XMLBS, concentration of unmetabolized bio-
degradable solids held in the aerator, mg/1
mass.
MLNBSS - OMATX(ll.N)
XMLNB, concentration of non-biodegradable
organic solids held in the aerator, mg/1
mass.
MLDSS = OMATX(12,N)
XMLDS, concentration of non-biodegradable
solids in the aerator caused by the destruction
of active solids through natural causes, mg/1
mass.
MLISS = OMATX(13,N)
XMLIS, concentration of inert inorganic solids
in the aerator caused by inorganic solids in
the influent stream, mg/1 mass.
FOOD = OMATX(14,N)
Synthesis rate of 5-day BOD to active solids
in the aerator each day, mg/1 oxygen.
RTURN = OMATX(15,N)


CNIT = OMATX(16,N)


ARCFD = OMATX(17,N)
Sludge return ratio  for the aerator.
Rate constant for nitrification.  (I/day)
Diffused air requirement for the aerator,
scf/day.
                                         43

-------
     BSIZE  «= OMATX(18,N)                      Required  size  of  the blower  for  supplying to
                                             the aerator, cfm.

     CFPGL  = OMATX(19,N)                      Diffused  air requirements  for  the  aerator,
                                             scf/gallon of  sewage entering  the  system.

     QR = OMATX(20,N)                         Volume of the  return sludge  stream, mgd.

     CCOST                                    Capital cost,[dollars].

     COSTO                                    Operating and  maintenance  costs,[cents/lOOOgal]

     ACOST                                    Amortization cost,[cents/1000gal].

     TCOST                                    Total treatment cost,[cents/1000gal].

     ECF                                     Excess capacity factor.

4.   Theory and functions  -  FORTRAN  statement followed  by equivalent algebraic equation.

     BOD2 = SMATX(8,IS1)+SMATX(17,IS1)                                  AEF02000

         BOD2 = SBOD   +DBOD                                            [mg/l]
                    IS1     IS1



     DBOD2  = SMATX(17,IS1)                                              AEF02100

         DBOD2 = DBODisl                                                [mg/l]




     CEDR = .18*1.047**(DMATX(3,N)-28.)                                 AEF02200

         CEDR = 0.18(1.047)DEGC~28                                      [-A_]
                                                                        LDayJ


     CAER = DMATX(4,N)*1.047**(DMATX(3,N)-20.)                          AEF02300


         CAER = CAER20[1.047]DEGC~20
r   i    I
[hrffi  ]
     SA =  DMATX(2,N)/1000.                                              AEF02400


          c,   KLSS
          SA   1000                                                     [gm/1]


     TA =  (BOD2-DMATX(1,N))/(DMATX(1,N)*CAER*SA*24.)                    AEF02500
         TA =         -                                           [days]
              BOD*CAER*24*SA

    VAER = SMATX(2,IS1)*TA                                              AEF02600

         VAER = QIS1*TA                                                 [MG]

                                                44

-------
XRSS - 556.1*DMATX(8,N)**.4942/DMATX(2,N)**1.8165/(TA*24.)**.4386     AEF02700


                      -,0.4942
          . 556.1*[GSS]
ALD = DMATX(10,N)*.87*SMATX(14,IS1)


     ALD = 0.87ALMD*DP
                      XS1



PALS = 1.305*SMATX(14,IS1)+3.*ALD
     PALS - 1.305DP   +3ALD
                   IS1
ASMAX = DMATX(1,N)/XRSS/.685




     ASMAX	525	
             0.685XRSS




XMLAS = (ASMAX+ASMIN)/2.



             ASMAX+ASMIN
     XMLAS
FOOD = SMATX(8,IS1)+DBOD2
     FOOD = SBODIS1+DBOD2
FMAX = FOOD
     FMAX = SBOD   +DBOD2
                J.O _L
ERROR = FMAX-FMIN


     ERROR = FMAX-FMIN




FOOD = (FMAX+FMIN)/2.



     FOOD =
DBOD4 = SMATX(17,IS1)-FOOD
     DBOD4 = DBOD   -FOOD
                 J.O .L
 [no unitsJ





AEF02800



 [mg/1]




AEF03000



 [mg/1]




AEF03300




 [mg/1]





AEF03800




 [mg/1]




AEF03900



 [mg/1]




AEF04000



 [mg/1]




AEF04300



 [mg/1]




AEF04500




 [mg/1]




AEF04700



 [mg/1]
                                           45

-------
SBOD4 - SMATX(8,181)



     SBOD4 = SBOD
                 JLo 1



SBOD4 = (SMATX(8,IS1)+SMATX(17,IS1)-FOODJ*.7



     SBOD4   0.7(SBOD   +DBOD   -FOOD)
                     xDJ.     LoJ,




DBOD4 = .233*SBOD4
     DBOD4 = 0.233*0.7(SBOD   +DBODT01-FOOD)
                           J.D.L     LoX
TEMPI =  .50*FOOD/XMLAS-XRSS



             0.50FOOD
     TEMPI
                XMLAS
                          -XRSS
AEF04800



 [ing/1]



AEF05000



 [mg/1]




AEF05100



 [mg/1]




AEF05200




 [no units]
 SMATX(2,OS2) =  (SMATX(2,IS1)*TEMP1-CEDR*VAER)/(DMATX(7,N)-XRSS)    AEF05300


            (QIS1*TEMP1)-(CEBR*VAER)
     °-OS2
                  URSS-XRSS
SMATX(2,OS1) = SMATX(2,IS1)-SMATX(2,OS2)


     0    = O   -0
     XIS1   ^ISl ^OS2
TEMP2 = XRSS*SMATX(2,OS1)+DMATX(7,N)*SMATX(2,OS2)


     TEMP2 =  (XRSS*Q   )+(URSS*Q  „)
                    OS1         OS2
 [MGD]



 AEF05400


 [MGD]



 AEF05700


 [MGD]
XMLBS = SMATX(2,ISl)*SBOD4/TEMP2/.8


             QTC *SBOD4
     XMLBS =
                0.8TEMP2
SMATX(8,OS1) = (XMLAS*.685+XMLBS*.8)*XRSS


     SBOD    = (0.685XMLAS+0.8XMLBS)XRSS
SMATX(17,051) = DBOD4
     DBOD    = DBOD4
 AEF05800




 [mg/1]




 AEF05900



 [mg/1]




 AEF06000


 [mg/1]
                                          46

-------
TBOD5 - SMATX(8,OS1)+SMATX(17,OS1)
     TBOD5 = SBODOS1+DBODOS1
TBOD5 = XMLAS*XRSS*.685
     TBOD5 = 0.685XMLAS*XRSS

FMIN - (CEDR*VAER/SMATX(2,IS1)+XRSS)*XMLAS/.50
             CEp^VAER+XRSS-j,


FOOD = FMIN

     FOOD = ^Sii~|VE"K"VASK +XRSS
FMAX = FOOD
     FMAX = FOOD

FMIN = FOOD
     FMIN = FOOD

XMLNB = SMATX(4,IS1)*SMATX(2,IS1)*2.13/TEMP2
             SNBC   *Q   *2.13
     XMLNB =
                TEMP2
XMLIS = SMATX(2,IS1)*(SMATX(7,IS1)+PALS)/TEMP2
                        +PALS)
     XMLIS
              is
                 TEMP 2
XMLDS = .12*SMATX(2,IS1)*FOOD/TEMP2-.185*XMLAS
     XMLDS
0.12Q   *FOOD
     ISI
   TEMP 2
                           -- 0.185XMLAS
AEF06100

 [mg/1]

AEF06300
 [mg/1]

AEF06600

 [mg/1]


AEF06700

 [mg/1]


AEF07300
 [mg/1]

AEF08000
 [mg/1]

AEF08200

 [mg/1]

AEF08300

 [mg/1]

AEF08400

 [mg/1]
TEMP3 = XMLAS+XMLBS+XMLNB+XMLDS+XMLIS
     TEMP3 = XMLAS+XMLBS+XMLNB+XMLDS+XMLIS
                                                    AEF08500

                                                     [mg/1]
                                         47

-------
TEMP4 = TEMP3-DMATX(2,N)

     TEMP4 - TEMP3-MLSS


ASMIN = XMLAS

     ASMIN = XMLAS


ASMAX = XMLAS

     ASMAX = XMLAS


SMATX(3,OS1) = (XMLDS+XMLAS)*XRSS/2.46+(XMLBS+XMLNB)*XRSS/2.33
     SOC
        'OS1
              (XMLDS+XMLAS)XRSS  ,  (XMLBS+XMLNB)XRSS
                     2.46
                                         2.33
SMATX(4,OS1) = XMLNB*XRSS/2.33+(XMLDS+.185*XMLAS)*XRSS/2.46


     SNBC
     _ XMLNB*XRSS    (XMLDS+0.185XMLAS)XRSS
"OS1       2.33              2.46
TEMPS = XRSS*XMLAS/2.46

             XRSS*XMLAS
     TEMPS
                 2.46
SMATX(5,OS1) = .234*TEMP5+(SMATX(3,OS1)-TEMP5)/10.
                          SOC   -TEMPS
     SONOS1 = 0.234TEMP5+ —gi	
SMATX(6,OS1) = SMATX(3,OS1)*.01
       P^   = 0.01SOC
        OS1          OS1
SMATX(7,OS1)  = XMLIS*XRSS

     SFM_,  = XMLIS*XRSS
AEF08600


[mg/1]

AEF09500


[mg/1]

AEF09700

[mg/1]


AEF10300


[mg/1]


AEF10400


[mg/1]


AEF10500


[mg/1]



AEF10600


[mg/1]


AEF10700

[mg/1]



AEF10800

[mg/1]
                                            48

-------
               SMATXC3,OS1)*2.38
               2.38SOC
                     OS1
                                                     AEF10900


                                                      [mg/1]
SMATX(lO.OSl) = SMATX(7,OS1)+SMATX(9,OS1)


     TSSosi - s™osi+vssoai
                                                     AKF11000


                                                      [mg/1]
SMATX(I,OS2) = SMATX(I,OS1)*DMATX(7,N)/XRSS

     SMATX(I,OS2) > SMATX(I,OS1)*URSS
                         XRSS
      where I = 3,10  I.e.  SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS

SMATX(ll.OSl) = SMATX(12,IS1)+DBOD4/1.87

                    DBOD4
     DOC
        OS1
              DNBC+
                                                     AEF11200


                                                      [mg/1]



                                                     AEF11300

                                                      [mg/1]
SMATX(12,OS1) = SMATX(12,IS1)
                                                     AEF11400

                                                      [mg'/l]
SMATX(13,OS1) = (SMATX(2,IS1)*(SMATX(5)IS1)+SMATX(13,IS1))-(SMATX(5,OS1)*SMATX(2,OS1)
                 +SMATX(5,OS2)*SMATX(2,OS2)))/(SMATX(2)OS1)+SMATX(2,OS2))
             Q   (SON   +DN   )-(SON   *Q   +SON   *Q   )
     DN    -  Igl    IS1   IS1      IS1  OS1    OS2  OS2
       OS1 ~
                             QOS1+QOS2
                                                     AEF11500

                                                      [mg/1]
SMATX(14,OS1) = (SMATX(2,IS1)*(SMATX(6,IS1)+SMATX(14,IS1))-(SMATX(6,OS1)*SMATX(2>OS1)
                +SMATX(6,OS2)*SMATX(2,OS2)))/(SMATX(2,OS1)+SMATX(2,OS2))
     DP
       OS1
Q   (SOP   +DP   )-(SOP   *Q   +SOP   *Q   )
 IS1V   IS1   IS1; V   OS1 WOS1    OS2  OS2

                  %S 1^032
AEF11800

 [mg/1]
SMATX(15,OS1) = SMATX(15,IS1)
     DFM
        OS1
              DFM
                  SI
                                                     AEF12100

                                                      [mg/1]
                                           49

-------
SMATX(I,OS2) = SMATX(I.OSl)

     SMATX(I,OS2) = SMATX(I.OSl)

     where I = 11, 15  i.e. DOC,DNBC,DN,DP,DFM
AEF12300


Cmg/1]
QR = (SMATX(2,IS1)*(1.-.50*FOOD/XMLAS)-H:EDR*VAER)/(SMATX(7,N)-1.)  AEF12400
     QR
                     URSS-1
RTURN = QR/SMATX(2,IS1)


     RTURN = -2£-
             QIS1



X4X3 = (l.+RTURN)/RTURN/SMATX(7,N)
     X4X3
            1+RTURN
            RTURN*URSS
DN3 = SMATX(13,IS1)/(1.+RTURN)
           DN.
     DN3
             ISl
           1+RTURN
X3Y = DN3*.99/(X4X3-1.)


     YIV - 0-99PN3
      J  ~ X4X3-1
CNIT = .18*EXP(.116*(DMATX(3,N)--15.))


     CNIT   0.18e°-116(DEGC-15>



TTAN = (l.+RTURN)*ALOG(X4X3)+4.605/(DN3+X3Y))/CNIT


     TTAN = (1+RTURN)*ln X4X3+	4-&05
                              (DN3+X3Y)CNIT
Cmg/1]



AEF12500


Cno units]




AEF12600


[no units]



AEF12700



Cmg/1]



AEF12800


Cmg/1]



AEF12900


[I/days]



AEF13300



[days]
                                           50

-------
VNIT - SMATX(2,IS1)*TTAN


                I*
              SI
VNIT - Q   *TTAN
        xs
AEF13400


[MG]
SMATX(16,OS1) - SMATX(16,IS1)+3.57*(SMATX(13,OS1)-SMATX(13,IS1))   AEF13600
SMATX(16,081) - SMATX(16,181)
     ALK    - ALK
        081      IS1
                                                              AEF13800


                                                              [mg/1]
SMATX(16,OS2) = SMATX(16,OS1)
     ^
        082
                                                              AEF13900


                                                              [mg/1]
SMATX(17,OS2) = SMATX(17,OS1)
                                                              AEF14000


                                                              [mg/1]
SMATX(18,OS1) = SMATX(18,IS1)


     NH3    =. NH3
        081      181
                                                              AEF14100


                                                              [mg/1]
SMATX(18,OS2) = SMATX(18,IS1)
     NH3    = NH3
        082      IS1
SMATX(19,OS1) = SMATX(19,IS1)


     N03    = N03
        OS1      181
SMATX(19,082) = SMATX(19,IS1)


     N03    = N03
        082      IS1
                                                              AEFU200


                                                              [mg/1]




                                                              AEF14300


                                                              [mg/1]




                                                              AEF14400


                                                              [mg/1]
                                           51

-------
SMATX(20,OS1) = SMATX(20,IS1)                                      AEF14500

     For future parameter                                          [fflg/l]



SMATX(20,OS2) = SMATX(20,IS1)                                      AEF14600

     For future parameter                                          [mg/l]


DOSAT = (14.16-.3943*DMATX(3,N)+.007714*DMATX(3,N)**2.-.0000646*DMATX(3,N)**3)*1.221


     DOSAT = 1.221(14.16-0.3943DEGC+0.007714DEGC2-0.0000646DEGC )  [mg/l]   AEF15100



AEFF = DMATX(6,N)*(DOSAT-DMATX(5,N))*1.02**(DMATX(3,N)-20.)/DOSAT     AEF15300


     AEFF =  AEFF2Q^DOSAT-DO)*[1.02]DEGC"2°                        ,        ,
                    DOSAT                                          L   unlcsJ



WFOOD = SMATX(2,IS1)*FOOD*8.33                                    AEF15400

     WFOOD = 8.33Q   *FOOD                                         [ib/day]
                  IS1



WAS = XMLAS*VAER*8.33                                             AEF15500

     WAS = 8.33XMLAS*VAER                                          [ib/day]



ARCFD = (.577*WFOOD+1.16*CEDR*WAS)/AEFF/.232/.075                 AEF15600


     ARCFD = 0- 577WFOOD+(1.16 DECR*WAS)                              f t3.
              0.232AEFF*0.075                                      tdiy-1



WDN = (SMATX(2,OS1)*SMATX(13,OS1)+SMATX(2,OS2)*SMATX(13,OS2))*8.33     AEF15700


     WDN = 8.33((Qosi*DNosi)+ (Qos2*BNos2»                         [lb/day]



ARCFD = ARCFD+4.6*WDN/AEFF/.232/.075                              AEF15900


     ARCFD = ARCFD+  4'6WDN	                                   ^..3,,  -,
                     0.232AEFF*0.75                                L   /dayj
                                          52

-------
     BSIZE = DMATX(15,N)*ARCFD/1440.                                    AEF16000
                   ECF *ARCFD

          BSIZE " -    —                                          Ccfm]
     CFPGL = ARCFD/1000000./SMATX(2,IS1)                                AEF16100



          CFPGL = ARCFD                                                  ft3air    -,
                  10000000                                              Lgal sewageJ
                          IS1



     VAER = VAER*DMATX(16,N)                                            AEF16200


          VAER = VAER*ECF                                               [gal]
     QK = QR*DMATX(14,N)                                                AEF16300


          QR = QR*ECF                                                   [MGD]




     AFS = SMATX(2,OS1)*1000./DMATX(8,N)*DMATX(13,N)                    AEF16400

                1000  Q*ECF                                              2

              -              S
                    GSS



Pump efficiency - Current values used in program; each can be changed by the replacement
                  on punched card.


     PEFF =0.70 For QR<1.44MGD                                         AEF23800


     PEFF =0.74 For QR<10.08MGD                                        AEF24100


     PEFF =0.83 For QRXL0.08MGD                                        AEF24300



References:


Smith, 1969


Patterson and Banker, 1971


5.   Cost Functions.


     Aerator


     a.   Capital cost


          Function of VAER


     X = ALOG(VAER*1000./7.48)                                          AEF17000


          X = In IQOOyAER


                                               53

-------
CCOST(N.l) = EXP(2.414380+.175682*X+.084742*X**2.-.002670*X**3.)*1000.     AEF17100


     CCOST = 1000e2.414380+0.175682X+0.084742X2-0.002670X3         [dollars]



b.   Operating manhours, maintenance manhours and materials/supplies costs


(1)  Operating manhours                                                    AEF17800


     OHRS = 0                                                      [hrs/yr]



(2)  Maintenance manhours                                                  AEF17900


     XMHRS = 0                                                     [hrs/yr]



(3)  Total materials and supplies                                          AEF18000


     TMSU = 0                                                      [dollars/yr]



c.   Total operating and maintenance costs                                 AEF18100


     COSTO(N.l) = 0                                                [cents/lOOOgal]
 Blower


 a.   Capital cost


     Function of BSIZE


 X = ALOG(BSIZE/1000.)                                                      AEF18700


     X   In BSIZE
             1000



 CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.     AEF18800


     CCOST = iooOeA-145454+0-633339X+0-031939x2~°-002419x3         [dollars]



 b.   Operating manhours, maintenance manhours and materials/supplies costs


     Function of BSIZE/ECF
                          b


 X = ALOG(BSIZE/1000./DMATX(15,N))                                          AEF19500


            BSIZE
     X = In
            1000ECFb
                                          54

-------
(1)  Operating manhours


OHRS - EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.)         AEF20100


     nme _  6. 900586+0. 323725X+0.059093X2-0.004926X3              [hrs/yr]
     OHRS -~ e



(2)  Maintenance manhours
                                                                   AEF20200

XMHRS - EXP (6 . 169937+. 294853*X+. 175999X**2 .- . 040947*X**3 .+. 003300*X**4 . )


              6. 169937+0. 294853X+0.175999X2-0.040947X3+0.003300X4  [hrs/yr]
(3)  Blower horsepower


HP = BSIZE/DMATX(15,N)*8.1*144./(33000.*.8)


          BSIZE*8. 1*144
     HP
          ECFb*33000*0.8
AEF20400


 [horsepower]
(4)  Blower kilowatts


XKW = .8*HP


         = BSIZE*8. 1*144

              33000ECFL
 AEF20500



 [kilowatts]
 (5)  Blower kilowatt years


XKWPY = XKW*24.*365.


    XKWPY = 24XKW*365




 (6) Energy cost


ECOST = XKWPY*DMATX(10,20)


    ECOST = XKWPY*CKWH




 (7) Service cost


SCOST = EXP(.621382+.482047*X)*1000.




    SCOST = 10oOe0-621382+°-482047X
  AEF20600


 [kw hr/yr]
  AEF20700


 [dollars/yr]
  AEF20800
 [dollars/yr]
                                          55

-------
c.  Total operating and maintenance costs                           AEF21300



COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
    COSTO = (OHSS+XMHRS)DHR(1+PCT)+(SCOST*WPI)+ECOST                [cents/lOOOgal]


                         Slant Inf. 365°
 Sludge pumps



a.  Capital cost



    Function QR



X = ALOG(QR)                                                        AEF22000




    X = In QR






CCOST(N,3) = EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.   AEF22100




    rrncT   nnnn 3.481553+0. 377485X+0.093349X2-0.006222X3          [dollars]
    LLuol = lUOue






b.  Operating manhours, maintenance manhours and materials/supplies costs



    Function of QR/ECF

                      P




X = ALOG(QR/DMATX(14,N))                                            AEF22800
 (1) Operating manhours




OHRS = EXP(6.097269+.253066*X-.193659*X**2.+.078201*X**3.-.006680*X**'-.)    AEF23400




    OHRS = e6-097269+0-253066X"°-:1-93659x2+0-07820:1-x3-0-006680x4    [hrs/yr]





(2) Maintenance manhours



XMHRS   EXP(5.911541-.013158*X+.076643*X**2.)                       AEF23600




    XMHRS = e5- 911541-0. 013158X+0.076643X2                         [hrs/yr]
                                          56

-------
(3)  Kilowatt hrs per year

YRKW = QR*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24.*365.

    YRRW = 1000000QR*HEAD*0.7457*24*365	
              1440*3960PEFF*0.9


(4) Energy cost

ECOST = YRKW*DMATX(10,20)

    ECOST = YRKW*CKWH


(5) Service cost

SCOST = EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.)

    SCOST = e5-851743+0.301610X+0.197183X2-0.017962X3


(6) Total materials and supplies

TMSU - ECOST+SCOST*WPI

    TMSU = ECOST+(SCOST*WPI)


c.  Total operating and maintenance costs

COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
    COSTO
            (OHRS+XMHRS)DHR(1+PCT)+TMSU
                       Inf.*3650
                                                                   AEF24400

                                                                   [kw hr/yr]
AEF24500

[dollars/yr]



AEF24600

[dollars/yr]




AEF24700

[dollars/yr]



AEF25200

[cents/lOOOgal]
Final settling  tank

a.  Capital cost

    Function of AFS

X = ALOG(AFS)

    X = In AFS
                                                                   AEF25800
CCOST(N,4) = EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000.  AEF25900
                                                                   [dollars]
    CCOST = lOOOe
                 3.716354+0.389861X+0.084560X2-0.004718X3
                                            57

-------
b.  Operating manhours, maintenance manhours and materials/supplies costs

    Function of AFS/ECFQ
X = ALOG(AFS/DMATX(13,N))
        In
AFS
ECF=
                                                                    AEF26600
(1) Operating manhours

OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)

            5.846565+0.254813X+0.113703X2-0.010942X3
    OHRS
 (2) Maintenance manhours
XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)


    XMHRS
  5.273419+0.228329X+0.122646X2-0.011672X3
AEF27200

[hrs/yr]




AEF27300

[hrs/yr]
 (3) Total materials and supplies

 TMSU = EXP(5.669881+.750799*X)

    TMSU = e5-669881+0.750799X



 c.  Total operating and maintenance costs

 COSTO(N,4) =  ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.

    COSTO „ (OHRS+XMHRS)DHR(1+PCT)+(TMSU*HPI)
                     QP
                       lant Inf.
                     *3650
                                                         AEF27400


                                                         [dollars/yr]




                                                            AEF27900

                                                         [cents/lOOOgal]
                                          58

-------
c
c
c
c
c
c
c
c
        ACTIVATED SLUuGE - FINAL SETTLER
        PKOCESS IDENTIFICATION NUMBER   3
SUbROUTINt AEKFS
                                                                    AEF00100
                                                                    AEF00200
                                                                    AEF00300
                                                                    AEF00400
                                                                    AEF00500
                                                                    AEF00600
                                                                    AEF00700
                                                                    AEF0080U
                                                                    AEF00900
 INTEGLR OblfOS2                                                    AEF01000
 COMMON SMATX(20»30)>TMATX(20»30)»DMATX(20,2U)»OMATX(20»20)ilP(20)rAEF01100
HNP»J')»ISl»lSt:,OSl.OS«;fN»IAERF»CCOSTC20»5)n.OSTO0»5)»ACOST<20»5)AEF01200
        COMMON INITIAL STATEMENTS
     2»TCOST(20rb)iUHR»PCT»WPI>CLAND»DLAND»FLOW(2b)»POW(2b)»TKWHD<25)


              PKOCESS RELATIONSHIPS REQD. TO CALC.  EFFLUENT STREAM
              CHARACTERISTICS

      HE.AU=L)MATX(9»N)
      BCU2=bMATx (b' IS1) +SMATX (171 ISi )
      DoOD2=SMATXU7»ISl)
      CtDR=.18*l.(m**-2e.)
      CALK=UMATxU»N)*1.0i*7»*(DMATX{3»N)-20.)
      SA=DMrtTX(iirN)/1000.
      TA=(BoD2-L)MATX(l'N))/(DMATX(lfN)*CAER*SA*2U.)
      VAEK=bMATA< 2»1S1> *TA
      XKSS=b56.1*DMATX(8»N)**.«*9t2/DMATX(2»N)**l.al65/(TA*2<*.)**. 10.20.10
   iO PALS=1.30b*SMATX(m.ISl)+3.*ALD
      GO TO 30
   20 PALS=U.
   oO ASMAX=DMATX(l*N)/XRSS/.68b
      ASMIN=0.
      NALR=U
      IF (AbMAX-DMAlX(2»N)> 50»50»«*0
   40 AbMAX=OMATX(2»N)
   bO XMLAS=(ASMAX+ASMlN)/2.
      FOOO=bMATx(8•1S1)+DBOU2
      FMAX=KOOD
      Nl=l
      GO TO 110
   faO EHROR=FMAX-FMIN
      IF (EKROR-.D 2«tO»240»70
   70 FOOU=tFMAx-i-FMlN)/2.
   80 IF (FOOD-SMATX(17»IS1J) 90»90rlOO
   ^0 DbOD'*=SMATX(17»ISl)-FOOD
      SbODl=SMATX(8rISl)
      GO TO 110
  1U0 SbODt=(SMATX(8»ISI)+SMATX(17»ISI)-FOOU)*.7
      DBOD'+=.233*SBOD'+
  110 TEMPl=.50*FOOb/XMLAS-XRSS
      SMATX(2»Ob2)=(SMATX(2»ISl)*TEMPl-CEDR*VAER)/(UMATxi7rN)-XKSS)
      SMATX(2»osi)=SMATX < 2•isi)-SMATX < 2.052)
      Nl=Nl+l
      IF (Nl-2> 130.130.120
  120 TtlMP2=XRSS*SMATX(2»OSl)+DMATX(7.N)*SMATX<2»OS2>
      XMLBS=SMAIX(2»ISl)*SBOD'*/TEMP2/.8
                                                                  AEF01300
                                                                  AEF01UOO
                                                                  AEF01500
                                                                  AEF01600
                                                                  AEF01700
                                                                  AEF01800
                                                                  AEF01900
                                                                  AEF02000
                                                                  AEF02100
                                                                  AEF02200
                                                                  AEF02300
                                                                  AEF02'*00
                                                                  AEF02500
                                                                  AEF02600
                                                                  AEF02700
                                                                  AEF02800
                                                                  AEF02900
                                                                  AEF03000
                                                                  AEF03100
                                                                  AEF03200
                                                                  AEF03300
                                                                  AER03«*00
                                                                  AEF03500
                                                                  AEF03600
                                                                  AEF03700
                                                                  AEF03800
                                                                  AEF03900
                                                                  AEF04000
                                                                  AEFOmOO
                                                                  AEFOU200
                                                                  AEF04300
                                                                  AEFO^IOO
                                                                  AEFOH500
                                                                  AEF04600
                                                                  AEFO«*700
                                                                  AEFOU800
                                                                  AEFOU900
                                                                  AEF05000
                                                                  AEF05100
                                                                  AEF05200
                                                                  AEF05300
                                                                  AEF05100
                                                                  AEF05500
                                                                  AEF05600
                                                                  AEF05700
                                                                  AEF05800
                                      59

-------
150
170
ItiO
2UO
210
2/XRSS
      SMATX (11.OSD=SMATX (12. ISI )-»-DBOD4/1.87
      SMATX(12.0Sl)=SMATX(li:,ISl)
      SMATX(13.0Sl)=(SMATX(2.ISl)*(SMATX(5.1Sl)+SMATX(l3.lSl))-(SMATX(5rAEF11500
     10Sl)*bMATx(2.0Sl)+SMATX(5.0S2)*SMATX(2.0S*!)))/(SMATX(2.0Sl)+SMATX(AEF11600
     22.0S2))                                                           AEF11700
      SMATX(14.0S1>=(SMATX(2.IS1)*(SMATX(6'1S1)+SMATX(14,IS1))-(SMATX(6.AEF11800
     10bl)*bMATx(2.0SD+SMATX(6»OS2)*SMATX(2.0S2)))/(SMATX(2rOSl)+SMATX(AEF11900
     22.0S2))                                                           AEF12000
      SMATX(15.OSI)=SMATX(lb.ISI)                                        AEF12100
AEF05900
AEF06000
AEF06100
AEF06200
AEF06300
AEF06UOO
AEF06500
AEF06600
AEF06700
AEF06800
AEF06900
AEF07000
AEF07100
AEF07200
AEF07300
AEF07400
AEF07500
AEF07600
AEF07700
AEF07800
AEF07900
AEF08000
AEF08100
AEF08200
AEF08300
AEF08400
AEF08500
AEF08600
AEF08700
AEFOB800
AEF08900
AEF09000
AEF09100
AEF09200
AEF09300
AEF09UOO
AEF09500
AEF09600
AEF09700
AEF09800
AEF09900
AEF10000
AEF10100
AEF10200
AEF10300
AEF10400
AEF10500
AEF10600
AEF10700
AEF10800
AEF10900
AEF11000
AEF11100
AEF11200
AEF11300
AEFll«fOO
                                      60

-------
330
350
3bO

370

3&0
390
c
c
c
c
  100
C
C
C
C
C
C
c
c
c
c
    DO 330 I=ll»lb
    SMATX(I»Ob2)=SMATX(l»OSl)
    QK=(SMATX(2rIbl)*ll.-.50*f:OOD/XMLAS)-t-CEDR*VAER)/(UMATX(7»N)-l.)
    RTURN=GR/bMATx(2»lSD
    X1X3=(1.+KTURN>/RTURN/DMATX(7»N>
                                                                         AEF12200
                                                                         AEF12300
                                                                         AEF12UOO
                                                                         AEF12500
                                                                         AEF12600
                                                                         AEF12700
                                                                         AEFi2800
                                                                         AEF12900
                                                                         AEF13000
                                                                         AEF13100
                                                                         AEF13200
                                                                         AEF13300
                                                                         AEF13tOO
                                                                         AEF13500
                                                                         AEF13600
                                                                         AEF13700
                                                                         AEF13800
                                                                         AEF13900
                                                                         AEF11000
                                                                         AEFli*100
                                                                         AEF1<*200
                                                                         AEF1U300
 X3Y=Du3*.99/(X4X3-l.>
 CNIT=.18*tXP(.116*(DMATX(3»N)-15.))
 IF  (XtX3>  3^0>3<*0>350
 TTAN=0.
 GO  TO  360
 TTAN=U.+RTURI«)*(ALOG(X<*X.5)-HU605/{DN3+X3Y) )/CNlT
 VN1T=SMATX(2'1S1>*TTAN
 IF  (VNIT-VAER)  370»37u»3BO
 SMATX(16•GS1)=SMATX(IbrlSl)+3.57*(SMATX(13»uSl)-SMATX(13»IS1)>
 GO  TO  390
 SMATX(let osi)=SMATX(io»isi)
 SMATXU6»OS2>=SMATX(lo»OSl)
 SMATX(17•US2)=SMATX(17.OSl)
 SMATX (18 »USD=SMATX(lo» ISD
 SMATX(18»OS2)=-SMATX(la»ISl)
 SMATX(19»OS1)=SMATX(19»ISD
 SMATX(19rOS2)=SMATX(19.ISl)
 SMATX(20»USD=SMATX(2U»IS1)
 SMATX(20»OS2)=SMATX(20r IS1)                                        AEF1<*600
                                                                   AEF1U700
                                                                   AEF14800
        CALC. OF  OUTPUT  SIZES  AND QUANTITIES                      AEF1U900
                                                                   AEF15000
 DOSAT=(11.16-.39'*3*DMATX<3»N)-«-.0077lU*DMATX(3rN)**2-.00006<+6*DMATXAEF15100
L(3»N)**3)*1.2iil                                                    AEF15200
 ALFF=uMATx(b»N)»(DOSAT-DMATX(5fN»*1.02**lDMATX(3»N)-20.)/DOSAT
 *FOOD=SMATX(2»IS1)*FOuD*8.33
 WAS=XMLAS*VAEK*8.33
 ARCFD=(.577*WFOOD+l.lo*CEDR*WAS)/AEFF/.232/.075
 WDN=(bMATx(2»OSl)*SMAlX(13»OSl)+SMATX(2»OS2)*SMATx(l3»OS2))*8.33
 IF  (VNIT-VAER)  <+00><+OU»UlO
 ARCFD=ARCFD+'+. 6*WL)N/AtFF/. 232/. 075
 BSIZE=DMATX(lb»N)*ARCFD/11«*0.
 CFPGL=ARCFD/1000000./bMATX(2»ISD
 VAER=VAER*DMATX(lfa»N)
      AFS=SMATX(2»OS1)*1000./DMATX(8»N)*DMATX(13»N)
              CALC. OF CAPITAL COSTS
              EXCESS CAPACITY

      X=ALOfa(VALR*1000./7.1ti)
                                   FOR AERATOR BASED ON DESIGN PLUS
                                                                      AEF15300
                                                                      AEF15UOO
                                                                      AEF15500
                                                                      AEF15600
                                                                      AEF15700
                                                                      AEF15800
                                                                      AEF15900
                                                                      AEF16000
                                                                      AEF16100
                                                                      AEF16200
                                                                      AEF16300
                                                                      AEF16400
                                                                      AEF16500
                                                                      AEF16600
                                                                      AEF16700
                                                                      AEF16800
                                                                      AEF16900
                                                                      AEF17000
      CCOSTlN»U=EXP(2.tlt3aO+.175682*X+.08U7t2*X**2.-.002670*X**3.)*100AEF17100
     10,
            CALC.  OF
            CAPACITY
    OHRS=O.
    XMHRS=O.
    TMSU=O.
    CObTO(N»l)=0.
                     OPERATING COSTS FOR AERATOR bASEU ON DESIGN
                     ALONtf  DOES NOT INCLUDE tXCESS CAPACITY
            CALC.  OF CAPITAL COSTS FOR BLOWER BASED ON DESIGN PLUS
            EXCESS CAPACITY
                                                                   AEF17200
                                                                   AEF17300
                                                                   AEF17UOO
                                                                   AEF17500
                                                                   AEF17600
                                                                   AEF17700
                                                                   AEF17800
                                                                   AEF17900
                                                                   AEF18000
                                                                   AEF18100
                                                                   AEF18200
                                                                   AEF18300
                                                                   AEF18UOO
                                                                   AEF18500
                                                                   AEF18600
                                      61

-------
      X=ALOG(BSIZE/1000.1                                                 AEF18700
      CCOST*100AEF18800
     10.                                                                  AEF18900
c                                                                         AEF19000
c                                                                         AEF19100
C             CALC. OF OPERATING  COSTS FOR BLOWER BASED ON DESIGN        AEF19200
c             CAPACITY ALONE»  DOES NOT INCLUDE EXCESS CAPACITY           AEF19300
C                                                                         AEF1940Q
      X=ALOG                          A£F20«»00
      XKw=.b*HP                                                           AEF20500
      XKWPY=XKW*21.*365.                                                  AEF20600
      ECOST=XKWPY*DMATX ( 10 '20 )                                            AEF20700
      SCOST=EXPl.621382+.<*8«dO<+7*X)*1000.                                 AEF20800
C                                                                         AEF20900
C                                                                         AEF21000
C                  OPERATING CObT EQUATION                               AEF21100
C                                                                         AEF21200
      COSTOlN»2) = ((OHRS+XMHKS)*DHR*(l.+PCT>-»-SCOST*WPH-ECOST)/SMATX(2.1)/AEF21300
     I3bb0.                                                               AEF21)*100AEF22100
     10.                                                                  AEF22200
C                                                                         AEF22300
C                                                                         AEF22400
C             CALC. OF OPERATING  COSTS FOR SLUDGE PUMPS BASED ON         AEF22500
C             DtSIGN  CAPACITY  ALONE* DOES NOT INCLUDE EXCESS CAPACITY    AEF22600
C                                                                         AEF22700
      X = ALOt,(QR/DMATX(l<+»NM                                              AEF22800
C                                                                         AEF22900
C                                                                         AEF23000
C                  CALC. OF  OPERATING  MANHOURS' MAINTENANCE MANHOURS     AEF23.10Q
C                  AND MATERIALS  AND SUPPLIES                            AEF2320Q
C                                                                         AEF233QO
      OHRS=EXP(o.097269+.25^066*X-.193659*X**2.-»-.078201*X**3»-.0066aO*X*AEF23«»Op
     I*1*-)                                                                AEF23500
      XMHRS=EXP(5.9ll5<*l-.Ol3l58*X-»-.076613*X**2.}                        AEF23600
      IF  (QK-l.t
-------
      COSTOlN»3)=((OHRS+XMHRS)*DHR*+TMSU)/SMATX<2»l)/36bO.
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
        CALC. OF  CAPITAL  COSTS  FOR
        PLUS EXCESS CAPACITY
FINAL SETTLER BASED ON DESIGN
      X=ALOfa(AFS>
AEF25200
AEF25300
AEF25<*00
AEF25500
AEF25600
AEF25700
AEF25800
      CCOST(N»<+)=EXP(3.7163b=AFb
OMATX(5»N)=CAER
OMATX16»N)=CEDR
OMATX(7»N)=VAtR
OMATX(B>N)=VN1T
OMATX(9»N)=XMLAS
OMATX (10 HxiUXMLBS
OMATX(11»N)=XMLNB
OMATX(12»N)=XMLDS
OMATX113MM)=XMLIS
OMATX(in»N)=FOOD
OMATX(15»N)=R1URN
OMATX116»N)=CNIT
OMATX(17»N)=ARCFD
OMATX(18»N)=BSIZE
OMATXU9»N)=CFPGL
OMATX120»N)=QR
        PROCESS ENERGY INDICES

FLOw(N)=SMATX(2»ISl)
POW(N)=3.
RETURN
END
                               AEF26000
                               AEF26100
                               AEF2b200
                               AEF26300
                               AEF26400
                               AEF26500
                               AEF26600
                               AEF26700
                               AEF26800
                               AEF26900
                               AEF27000
                               AEF27100
                               AEF27200
                               AEF27300
                               AEF27400
                               AEF27500
                               AEF27600
                               AEF27700
                               AEF27800
                               AEF27900
                               AEF28000
                               AEF28100
                               AEF28200
                               AEF2B300
                               AEF28fOO
                               AEF28500
                               AEF28600
                               AEF28700
                               AEF28800
                               AEF28900
                               AEF29000
                               AEF29100
                               AEF29200
                               AEF29300
                               AEF29400
                               AEF29500
                               AEF29600
                               AEF29700
                               AEF29800
                               AEF29900
                               AEF30000
                               AEF30100
                               AEF30200
                               AEF30300
                               AEF30400
                               AEF30500
                               AEF30600
                               AEF30700
                               AEF30800
                               AEF30900
                               AEF31000
                               AEF31100
                                      63

-------
                                             SECTION 5


                                         STREAM MIXER,  MIX
Subroutine Identification Number  4


Stream Mixer, MIX



1.  Process symbol.
       IfLL
                                                               Rev.  Date 8/1/77
                                                        IS1:  Primary input stream

                                                        IS2:  Secondary input stream


                                                        OS1:  Primary output stream


                                                          N:   User assigned number to
                                                              the process, must be zero
                                                              for mixer
        IS2
 2.  Input parameters and nominal values.
         No input data.
 3.  Output parameters which are printed on computer output sheets.
         No output data.
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
    SMATX(2,OS1) = SMATX(2,IS1)+SMATX(2,IS2)

                   QOSI = Qisi+Qis2
                                                                           MIX01900
TEMPI = SMATX(2,IS1)/(SMATX(2,IS1)+SMATX(2,IS2))


               TEMPI =    °-Isl
                                                                               MIX02100
TEMP2 = SMATX(2,IS2)/(SMATX(2,IS1)+SMATX(2,IS2))


                          QTCT
               TEMP2 -
                                                                               MIX02200
                                                 64

-------
    SMATX(I.OSl)  = TEMP1*SMATX(I)IS1)+TEMP2*SMATX(I,IS2)                       MIX02800


                   SMATX(I.OSl)  = n    ™1 — *SMATX(I,IS1) +- - |P — *SMATX(I,IS2)   [mg/l]
                                      -
                   where I - 3,20   I.e.   SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,
                                         DP,DFM,ALK,DBOD,NH3,N03
5.  Cost functions.
         No cost functions.
                                               65

-------
c
c
c
c
c
c
c
c
        STREAM MIXER
        PKOCESS IDENTIFICATION NUMBER
SUBROUTINt MIX
        COMMON INITIAL STATEMENTS
                                                                    MIX00100
                                                                    MIX00200
                                                                    MIX00300
                                                                    MIXOO<*00
                                                                    MIX00500
                                                                    MIX00600
                                                                    MIX00700
                                                                    MIX00800
                                                                    MIX00900
 INTEGER OS1»OS2                                                    MIX01000
 COMMON SMATX(^0»30)rTMATX(20r30)»DMATx(20.2o)»OMATX(20i20)»lP(20)»MIX01100
llNP.IO»ISlrlSi:»OS1.0S2rNrJAERF»CCOST<20»5)»COSTO(20»5)»ACOST(20»5)MIX01200
2'TCOST(20.5)»uHR»PCT»wPI»CLAND»DLAND'FLOW(25)»POWC25)»TKWHD(25)    MIX01300
                                                                    MIXOltOO
                                                                    MIX01500
         PKOCESS RELATIONSHIPS REGD. TO CALC. EFFLUENT  STREAM       MIX01600
         CHARACTERISTICS                                            Mixoi70o
                                                                    MIX01800
                                                                    MIX01900
                                                                    MIX02000
                                                                    MIX02100
                                                                    MIX02200
                                                                    MIX02300
                                                                    MIX02UOO
                                                                    MIX02500
                                                                    MIX02600
                                                                    MIX02700
                                                                    MIX02BOO
                                                                    MIX02900
                                                                    MIX03000
      SMATX(2fObl)=SMATX(2»ISl>+SMATX<2rIS2)
      IF (SMATX(2rOSl) ) 10OO>10
   10 TLMPl=SMATX(2f IS1) / (SMATX (2» IS1)+SMATX (2» ISii) )
      TEMP2=SMATX(2 rIS2)/(SMATX(2»ISI)+SMATX(2»IS2))
              EFFLULNT STREAM CALCULATIONS

      DO 20 1=3.20
      SMATX ( I »OS1 ) =TEMP1*SMATX ( I r IS1 ) +TLMP2*SMATX 1 1 , IS2)
      END
                                    66

-------
                                             SECTION 6

                                      STREAM SPLITTER, SPLIT
Subroutine Identification Number 5

Stream Splitter, SPLIT


1.  Process symbol.
     Rev. Date 8/1/77
                           (Wash Water) for TFLOT
                                            ELUT
                                            THICK
IS1: Primary  input stream

OS1: Primary  output stream

OS2:  Secondary output stream

  N:  User assigned number to
      the process, must be
      zero for splitter
2.  Input parameters and nominal values.

         No input data.


3.  Output parameters which are printed on computer output Sheets.

         No output data.


4.  Theory and functions-  FORTRAN statement followed by equivalent algebraic equation.

    SMATX(2,OS1)  - SMATX(2,IS1)-SMATX(2,OS2)                                   SPL01900

                   QOSI = Qisi-Qos2
    SMATX(I.OSl) - SMATX(I.ISl)

                   SMATX(I.OSl) - SMATX(I.ISl)   [mg/l]
                SPL02500
                   where I =3,20  i.e.    SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,
                                         DNBC,DN,DP,DFM,ALK.DBOD,NH3,N03
    SMATX(I,OS2) - SMATX(I,IS1)

                   SMATX(I,OS2) = SMATX(I.ISl)   [mg/l]


5.  Cost functions.

        No cost function.
                SPL02600
                                                 67

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
        STREAM SPLITTER
        PKOCEbS IDENTIFICATION NUMBER   5
SUBROUTINE SPLIT
        COMMON INITIAL STATEMENTS

INTEGER Obl»OS2
COMMON SMATxUOrSO)»TMATX(20»30)»OMATX(20»20)rOMATX(20»20)»IP(20)
                                                                     SPL00100
                                                                     SPL00200
                                                                     SPL00300
                                                                     SPL00400
                                                                     SPL00500
                                                                     SPL00600
                                                                     SPL00700
                                                                     SPL00800
                                                                     SPL00900
                                                                     SPL01000
                                                                    »SPL01100
     2'TCOST(20»5) »bHR»PCT • wPI rCLANDr DUAND'FLOW I2a) .POW125) »TKWHD(25)
           PROCESS RELATIONSHIPS REQD.  To CALC.  EFFLUENT STREAM
           CHARACTERISTICS

   SMATX(2.0bl)=SMATX(2»ISD-SMATX(2»OS2)
           EFFLUtNT STREAM CALCULATIONS

   DO 10 I=3f20
   SMATX i i , osi > =SMATX ( i » isi )
10 SMATXUrOb2)=bMATXU»lSl>
      ENU
                                                                  SPL01300
                                                                  SPLOl'tOO
                                                                  SPL01500
                                                                  SPL01600
                                                                  SPLOIVOO
                                                                  SPL01800
                                                                  SPL01900
                                                                  SPL02000
                                                                  SPL02100
                                                                  SPL02200
                                                                  SPL02300
                                                                  SPL02UOO
                                                                  SPL02500
                                                                  SPL02600
                                                                  SPL02700
                                                                  SPL02800
                                    68

-------
                                            SECTION 7

                                     ANAEROBIC DIGESTER, DIG
Subroutine Identification Number 6

Anaerobic Digester , DIG


1.  Process symbol.
                                 Rev. Date 8/1/77
                                                             IS1:  Sludge input stream

                                                             OS1:  Sludge output stream

                                                               N:  User assigned number
                                                                   to the process
2.  Input parameters and nominal values.
    DMATX(l.N) = TD

    DMATX(2,N) « TDIG

    DMATX(16,N) = ECF
Digester dentention time, days. [15.J

Sludge temperature in digester, degrees Centigrade. [33.J

Excess capacity factor. [1.3]
3.  Output parameters which are printed on computer output sheets.
    TD = DMATX(l.N)

    TDIG = DMATX(2,N)

    C1DIG = OMATX(l.N)

    C2DIG = OMATX(2,N)

    VDIG = OMATX(3,N)

    CH4 = OMATX(4,N)


    C02 = OMATX(5,N)


    CCOST

    COSTO

    ACOST

    TCOST

    ECF
Rate constant for digester, [I/day].

Rate constant for biodegradable carbon, [I/day].

Volume of digester facilities, [cu.ft./lOOO].

Standard cubic feet of methane produced in the
digester each day, [scf/day methane].

Standard cubic feet of carbon dioxide produced
in the digester each day, [scf/day carbon dioxide]

Capital cost, [dollars].

Operating and maintenance cost, [cents/1000 gal].

Amortization cost, [cents/1000 gal].

Total treatment cost, [cents/1000 gal].

Excess capacity factor.
                                                  69

-------
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
    C1DIG - .28/EXP(.036*(35.-DMATX(2,N)))
          C1BIG -
                        0.28
                   0.036(35-TDIG)
    C2DIG - 700.*EXP(.10*(35.-DMATX(2,N)))


          C2DIG
    DIG13 = C2DIG/CC1DIG*DMATX(1,N)-1.)
          DIG13
                     C2DIG
                  CIDIG(TD) -1
    DIG12 - SMATX(3,IS1)-SMATX(4,IS1)+SMATX(11,IS1)-SMATX(12,IS1)
      DIG12  = SOCIS1  - SNBCIS1 +
                                       C-r I - DNBC
                - total biodegradable carbon


TEMPI = (DIG12-DIG13)/(SMATX(3,IS1)+SMATX(U, Bl))

                   DIG12  - DIG13
           TEMPI
                   SOCIS1+ DOCIS1
                  fraction of  biodegradable  carbon  remaining  relative
                  to total organic  carbon  entering  digester
SMATX(2,OS1) = SMATX(2,IS1)

      QOSI - QISI


SMATX(3,OS1) = SMATX(4,IS1)+.75*DIG13

      SOCOS1 = SNBCIS1+0.75(DIG13)


SMATX(4,OS1) = SMATX(4,IS1)

      SNBCntn = SNBCT_.
          Ub±       IS1

SMATX(5,OS1) = (1.-TEMPI)*SMATX(5,IS1)

      SONQS1 = (1-TEMP1)  SONIS


SMATX(6,OS1) = (1.-TEMP1)*SMATX(6,OS1)

      S°POS1 = (1-TEMP1>  SOPISi
                                                                         DIG02500

                                                                         r_l	,
                                                                         ^ days -*


                                                                         DIG02600
                                                                          mg/i-,
                                                                         Lday  J
DIG02700


[mg/1]


DIG02800




[mg/1 ]


DIG02900
                                                                               DIG03400

                                                                               [MGD]


                                                                              DIG03500

                                                                               [mg/1]


                                                                               DIG03600

                                                                               [mg/1]


                                                                               DIG03700

                                                                               [mg/1]


                                                                               DIG03800

                                                                               [mg/1]
                                                70

-------
SMATX(7,OS1)





      SFMOS1
               SMATX(7,IS1)





               S™IS1
                                DIG03900
SMATX(8,OS1) - (SMATX(3,OS1)-SMATX(4,OS1))*1.87
               (SOCQS1 - SNBCQS1)1.87
SMATX(9,OS1) = SMATX(3,OS1)*2.38
      VSSQS1






SMATX(10,OS1)




      TSSosi





SMATX(ll.OSl)
      DOC
         QS1
               (SOCOS1)2.38
                SMATX(9,OS1)+SMATX(7,OS1)
               vssosi + s™osi
                SMATX(12,IS1)+.25*DIG13




               DNBCIS1 + D.25DIG13
SMATX(12,OS1) = SMATX(12,IS1)




      DNBCOS1






SMATX(13,OS1)




      DNQS1 =






SMATX(14,OS1)





      DPOS1 =





SMATX(15,OS1)
                SMATX(13)IS1)+SMATX(5,IS1)*.65*TEMP1




               NIS1 + (SONIS1)0.65TEMP1
              - SMATX(14,IS1) + TEMP1*SMATX(6,IS1)





              DP
                OS1





                SMATX(15,IS1)
SMATX(16,OS1) = SMATX(16,IS1)+(SMATX(13,OS1)  - SMATX(13,IS1))*3.57




      ALKQS1 = ALKIS1 + 3.57(DNOS1 - DN.^)






SMATX(17,OS1) = (SMATX(11,OS1)-SMATX(12,OS1))*1.87
      DBOD
          QS1
                                   1.87
CH4 = 163.85*(DIG12-DIG13)*SMATX(2,IS1)




      GH4 = 163.85(DIG12-DIG13) QIS1






C02 = 249.9*(DIG12-DIG13)*SMATX(2,IS1) - C




      C02 = 249.9(DIG12-DIG13) QIgl - CH4
                                DIG04000




                                [mg/l]






                                DIG04100




                                Cmg/1]






                                DIG04200





                                Cmg/l]





                                DIG04300




                                [mg/l]






                                DIG04400




                                [mg/l]






                                DIG04500




                                Cmg/l]






                                DIG04600




                                [mg/l]






                                DIG04700




                                [mg/l]






                                DIG04800




                                [mg/l]






                                DIG04900




                                [mg/l]






                                DIG05700




                                [scfd]






                                DIG05800




                                [scfd]
71

-------
     VDIG = SMATX(2,IS1)*DMATX(1,N)*1000/7.48*DMATX(16,N)                     DIG05900


           VIDG = QM1 * TD * 1000.ECF                                         ^



References :

     Patterson and Banker, 1971


     Lawrence and McCarty, 1969


     O'Rourke, 1968


     Smith, 1969



5.  Cost functions.


     a.  Capital cost


          Function of VDIG


          X = in VDIG                                                          DIG065°°

                                                    3
          (1)  Digester facilities less than 20000 ft


              CCOST(N,1) = EXP(4.594215+.127244X-.004001*X**2.)*1000-          DIG07200


                  CCOST =1000e4.594215+0.127244X-0. 004001X2                    [dollars]




          (2)  Digester facilities equal or greater than 20000 ft3              DIG07900


              CCOST(N.l) = EXP(7. 679634-1. 949689*X+.402610*X**2.-.018211*X**3.)*1000.
                  CCOST = lOOOe----*--
                                                                               I do .Liars J



     b.  Operating manhours, maintenance manhours, and materials/supplies costs


          Function of VDIG/ECF


          X = In (VDIG/ECF)                                                    DIG08600


         (1)  Digester facilities less than 20000 ft3


              (a)  Operating manhours


                   OHRS = EXP (6. 163803+0. 166305*X-.012470*X**2. )               DIG09400


                      OHRS = e6-163803+0-1663°5X-0.012470X2                    [hrs/yr]



              (b)  Maintenance manhours


                   XMHRS = EXP(5.726981+.113674*X)                             DIG09500


                      XMHRS = e5- 726981+0. 113674X                              [hrs/yr]
                                                72

-------
         (c)  Total materials and supplies

              TMSU = EXP(6.531623+.198417*X+.021660*X**2.)                DJS09600

                 TMSU , e6.531623+0.198417X40.021660X2                    [dollars/yr]


     2.   Digester facilities equal or greater than 20000 ft

         (a)  Operating manhours                                          DIG10400

              OHRS - EXP(9.129250-1.816736*X+.373282*X**2.-.017290*X**3.)

                 OHRS = e9-129250-1.816736X+0.373282X2-0.017290X3         [hrs/yr]



         (b)  Maintenance manhours                                        DIG10500

              XMHRS = EXP(8.566752-1.768137*X+.363173*X**2.-.016620*X**3.)

                  XMURS = e8.566752-1.768137X+0.363173X2-0.016620X3       ._h    ^



         (c)  Total materials and supplies                                D1G10600

              TMSU = EXP(8.702803-1.182711*X+.282691*X**2.-.013672*X**3.)

                 TMSU . e8.702803-1.182711X+0.282691X2-0.013672X3         [dollars/yr]



c.  Total operating and maintenance costs

     COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1*-PCT)+TMSU*WPI)/SMATX(2,1)/3650.     DIG11100


         rnt!Tf. _ (OHRS+XMHRS)DHR(1+PCT)+TMSU(WPI)
               	Qplant Inf.* 3650[cents/1000 gal]
                                           73

-------
        SINGLE STAGE ANAEROBIC
        PROCESS IDENTIFICATION
                                  DIGESTION
                                  NUMBER   6
SUBROUTINE DIG
                                                                    DIG00100
                                                                    DIG00200
                                                                    DIG00300
                                                                    DIG00400
                                                                    DIG00500
                                                                    DIG00600
                                                                    DIG00700
                                                                    DIG00800
                                                                    DIG00900
 INTEGER osi.os2                                                    DIGOIOOO
 COMMON SMATX(iiOr30)»TMATXl20»30)»DMATX(20»20)»OMATX(20»20).lP(20)»DIG01100
llNPflO»ISl.IS<:.OS1.0S2.N'IAERFfCCOST(20»5)»tOSTOl20»5)»ACOST(20r5)DIG01£00
        COMMON INITIAL STATEMENTS
  2>TCoST(20r 5) »QHR»PCT» aPI »CLANDfDLAND»FLOW(2b) iPOWl25)
           FORCING DIGESTER TO HAVE AT LEAST iu DAYS DETENTION  TIME

   IF (DMATX(lrN)-lO. )  Iu>10r20
10 DMATX(lrN)=10.
           PROCESS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM
           CHARACTERISTICS

20 C1UIG=.28/EXP(.036*(35.-DMATX(2»N)))
   C2DIG=700.*EXP(.10*(3S.-DMATX12»N)»
   D1G13=C2DIG/(C1DIG*DMATX(1»N)-1.)
   DiGl2=SMATX(3.ISl)-SMATX('*»ISl)+SMATX(ll»ISl)-SMATX(12»ISl)
   ThMPl=
   SMATX(6rObl)=(l.-TEMPl)*SMATX(6»ISl)
   SMATXl7»Obl)=bMATX(7»lSl)
   SMATX (8»Obl)=(SM ATX (3»OS1) -SMATX (1» OSl) )*1.67
   SMATX (9» Obi )=SMATX(3»uSD*2.38
   SMATX ( 10 rOSD=SMATX(9»OSl)+SMATX(7»OSl)
   SMATX 1 11 »OSD=SMATX( 12 »IS1) + .25*01613
   SMATX(12'OSD=SMATX(12»IS1)
   SMATXll3fOSD=SMATX(lorISl)+SMATX(5»ISl)*.6b*TEMPl
   SMATX(14»OSl)=SMATX(lt»ISl)+TEMPl*SMATX(6.ISl)
   SMATX (is»osi )=SMATX ( is. isi )
   SMATX(16rUSl)=SMATX(lo»ISl>-KSMATX(l3»OSl)-bMATX(13»ISl))*3.57
   SMATX117.0S1)=(SMATX<11.0S1)-SMATX(12»OS1))*1.B7
   SMATXU8»OSl>=SMATX(ltt»lSl>
   SMATX ( 19 »osi)=SMATX(iy. isi)
   SMATXl20rUSl)=SMATX(2u.ISl)
           CALC.  OF OUTPUT SIZES AND QUANTITIES

   CH4=lb3.8b*(DlG12-DIG13)*SMATX<2'lSl>
                                                                   DIG01300
                                                                   DIG01400
                                                                   DIG01500
                                                                   DIG01600
                                                                   D1G01700
                                                                   DIG01800
                                                                   DIG01900
                                                                   DIG02000
                                                                   DIG02100
                                                                   DIG02200
                                                                   DIG02300
                                                                   DIG02fOO
                                                                   DIG02500
                                                                   DIG02600
                                                                   DIG02700
                                                                   DIG02BOO
                                                                   DIG02900
                                                                   DIG03000
                                                                   DIG03100
                                                                   DIG03200
                                                                   DIG03300
                                                                   DIG03400
                                                                   DIG03500
                                                                   DIG03600
                                                                   DIG03700
                                                                   DIG03800
                                                                   DIG03900
                                                                   DIGOtOOO
                                                                   DIG04100
                                                                   DIG04200
                                                                   DIG04300
                                                                   DIG01HOO
                                                                   DIG04500
                                                                   DIG04600
                                                                   DIG01700
                                                                   DIG04800
                                                                   DIG04900
                                                                   DIG05000
                                                                   DIG05100
                                                                   DIG05200
                                                                   DIG05300
                                                                   DIG05400
                                                                   DIG05500
                                                                   DIG05600»
                                                                   DIG05700
                                                                   DIG05800
                               74

-------
 c
 c
 c
 c
 c
 c
 c
 o
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
       VUlG=bMATx<2»lSl>*DMATXCl»N>*1000./7.<+B*DMATX(l6'N)
           CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
           CAPACITY
    ,50
                                                                      DIG05900
                                                                      DIG06000
                                                                      DIG0610U
                                                                      DIG06200
                                                                      OIG06300
                                                                      DIGC6400
                                                                      DIG06500
                                                                      DIG06600
                                                                      OIG06700
                                                                      DIG06600
                                                                      OIG06900
                                                                      DIG07000
                                                                      OIG07100
                                                                      OIG07200
                                                                      DIG07300
                                                                      DIG07400
                                                                      DIG07500
                CALC. OF CAPITAL COSTS FOR LARliE DIG FACILlTYr EQUAL  DIG07600
                OR GREATtR THAN 20000 CU. FT.                         DIG07700
                                                                      DIG07800
   CCOST(Nrl)=EXP(7.6796j«*-1.9<49689*X-»-.1026lO*X**2.-.018211*X**3.)*lODIG07900
       X=ALOii(VDlG)
       IF  (VJlG-iiO.)  30»HO»»*0
                CALC. OF CAPITAL COSTS FOR SMALL DIG FACILITY, LESS
                THAN 200UO CU. FT.

   CCOSTlN»l)=EXPU.b9<+2l5+.1272'*<**X-.00<*OOl*X**2. J*1000.
   GO TO 50
      100.
           CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE,
           DOES NOT INCLUDE EXCESS CAPACITY

   X=ALOb(VDIG/DMATX(16»N»
   IF (VUlG-iiO.) 60 » 70, 70
                CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
                AND MATEKIALS AND SUPPLIES FOR DIG FACILITY, LESS
                THAN 200UO CU. FT.

60 OHRS=LXP(b.l6i803+.16b305*X-.012170*X**2.)
   XMHKS=EXP(5.726981+.11367**X)
   TMSU=tXP(fa.53l623+.l96iU7*X+.021660*X**2.)
   GO TO 60
                CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
                AND MATEKIALS AND SUPPLIES FOR DIG FACILlTYr EQUAL
                OR GKEATtR THAN 20000 CU. FT.

   OHRS=EXP(9.12y250-1.8l673b*X+.373282*X**2.-.Ol7290*X**3.)
   XMHRS=EXPC8.5b675<:-1.768137*X+.363173*X**2.-.016620*X**3.)
   TMSU=£XP< 6. 702803-1. la2711*X+.282691*X**2.-.013672*X**3.)
    70
60
                OPERATING COST EQUATION

          »l) = «OHRS+XMHkS)*DHR*(l.+PCT>+TMSU*wlPl)/SMATX(2»l)/3650.


           ASSIGNMENT OF VALUES TO OMATX
      OMATX(1,N)=C1DIG
      OMATX(2,N)=C2uIG
      OMATX(3rN)=VDlG
      OMATX (t,N)=CH4
      OMATX(5,N)=C02
           PHOCEbS ENERGY  INDICES
DIG06000
DIG08100
DIG08200
DIG08300
DIG08100
DIG08500
DIG08600
DIG08700
DIG08800
DIG08900
DIG09000
DIG09100
DIG09200
DIG09300
DIG09400
DIG09500
DIG09600
DIG09700
DIG09800
DIG09900
DIG10000
DIG10100
DIG10200
DIG10300
DIG10100
DIG10500
DIG10600
DIG10700
DIG10800
DIG10900
DIG11000
DIG11100
DIG11200
DIG11300
oientoo
DIG11500
DIG11600
DIG11700
DIG11800
DIG11900
DIG12000
DIG12100
DIG12200
DIG12300
DIG12400
                                      75

-------
FLO*(N)=SMATX12»IS1)                                               01613500
PowlN)=6.                                                         DIG12600
RtTuRN                                                            DIG12700
                                                                  DI612800
                              76

-------
                                              SECTION 8

                                       VACUUM FILTRATION, VACF
Subroutine Identification Number 7

Vacuum Filtration, VACF


1.  Process symbol.
     IS1
2.  Input parameters and nominal values.

    DMATX (1,N) = VFL

    DMATX (2,N) = HPWK


    DMATX (3,N) = TSS


    DMATX (4,N) = IVACF


    DMATX (5,N) = FECL3


    DMATX (6,N) = CAO


    DMATX (7,N) = CFECL

    DMATX (8,N) = CCAO

    DMATX (9,N) = DPOLY


    DMATX (10,N) = CPOLY

    DMATX (16,N) = ECF

3.  Output parameters which are printed on

    IVACF = DMATX (4,N)

    FECL3 = DMATX (5,N)

    CAO   - DMATX (6,N)

    CFECL - DMATX (7,N)
                        Rev. Date 8/1/77
                 IS1:  Sludge input stream

                 OS1:  Sludge cake output  stream

                 OS2:  Liquid recycle output stream

                   N:  User assigned number to the
                       process
   Vacuum filter loading rate, gph/sij ft. [4.9]

   Hours per week that the vacuum filter is operated,
   hr/wk.  [35.]

   Total suspended solids  concentration of OS2,
   mg/1.  [200.]

   Program control: 0 = landfill disposal of sludge,
   1 = incineration disposal of sludge.   [1.]

   Dose of ferric chloride added to condition the
   sludge, Ib/ton.  [42.]

   Dose of lime added to condition the sludge,
   Ib/ton.  [176.]

   Cost of ferric chloride, $/lb.  [.064]

   Cost of lime, $/lb.  [.0125]

   Dose of polymer added to condition the sludge,
   Ib/ton.  [15.]

   Cost of polymer, $/lb.  [.33]

   Excess capacity factor for the process,  [l.]

computer output sheets.

   CCAO = DMATX (8,N)

   DPOLY = DMATX (9,N)

   CPOLY = DMATX(IO.N)
                                                  77

-------
   WP = OMATX(l.N)



   AVF = OMATX(2,N)



   PSDD •= OMATX(3,N)





   CCOST



   COSTO



   ACOST



   TCOST



   ECF
                          Percentage of moisture in the filtered sludge.



                          Surface area of the vacuum filter, sq.ft.



                          Amount of dry solids produced by the vacuum

                          filter, Ib/day.



                          Capital cost, [dollars].



                          Operating and maintenance costs,[cents/1000 gal],



                          Amortization cost, [cents/1000 gal].



                          Total treatment cost,[cents/1000 gal].



                          Excess capacity factor.
4. Theory and functions  - FORTRAN statement followed by equivalent algebraic equation.



        SMATX(7,IS1)  = SMATX(7,IS1)+(FECL3-H:AO+DPOLY)*SMATX(10,IS1)/2000.      VAC02900
            SFM.
              •isi =  SFMisi4
                             (FECL3+CAO+DPOLY)TSS
                                                IS1
                                   2000
                                              [mg/1]
        SMATX(lO.ISl)  =  SMATX(10,IS1)+(FECL3+CAO+DPOLY)*SMATX(10,IS1)/2000.     VAC03000



                              (FECL3+CAO+DPOLY)TSS
            TSSIS1  • TSSIS1+	2000-
        SMATX(10,OS2)  = DMATX(3,N)
            TSSOS2  =  TSS
        WP = 88./(SMATX(10,ISl)/10000.)**.123




                       88
                                                 ISI
                                              [mg/1]
                                              [mg/1]
                                                                               VAC03100
                                                                               VAC03200
            WP  =
rTssisii
Lioooo J
                         0.123
        SMATX(lO.OSl) =  (100.-WP)*10000.




            TSSOS1
                                                                               VAC03300
        SMATX(2,OS1) =CSMATX(2,IS1)*SMATX(10,IS1))/(SMATX(10,OS1)-SMATX(10,OS2))
           Q    - QIS1*TSSIS1

            031   TSSosrTSSos2
                                                              VAC03400
                                               78

-------
SMATX(2,OS2) - SMATX(2,IS1)-SMATX(2,OS1)
    Q    - Q   -Q
     OS2    IS1  OS1
   Emg/1]
TEMP2 - SMATX(10,OS1)/SMATX(10,IS1)
              TSS
    TEMP 2
                 OS1
              TSS
                          [no units]
                 IS1
TEMP3 = SMATX(10,OS2)/SMATX(10,IS1)
               TSS
    TEMP3
                  OS2
               TSS
                          [no units]
                   IS1
SMATX(I,OS1) = TEMP2*SMATX(I,IS1)


    SMATX(I.OSl) - TEMP2*SMATX(I,IS1)              [mg/l]


    where I - 3,9  i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS


SMATX(I,OS2) - TEMP3*SMATX(I,IS1)


    SMATX(I,OS2) • TEMP3*SMATX(I,IS1)              [mg/l]


    where I = 3,9


SMATX(I.OSl) = TEMP2*SMATX(I,IS1)


    SMATX(I.OSl) = TEMP2*SMATX(I,IS1)              [mg/l]


    where I " 11,17  i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD


SMATX(I,OS2) = SMATX(I.ISl)


    SMATX(I,OS2) = SMATX(I.ISl)                    [mg/l]


    where I = 11,17


SMATX(18,OS1) = SMATX(18,IS1)
    NH3    = NH3
       OS1      IS1
[mg/l]
SMATX(18,OS2) = SMATX(18,IS1)
    NH3    = NH3
       OS2      IS1
[mg/l]
SMATX(19,OS1) = SMATX(19,IS1)
    N03    = N03
       OS1       IS1
[mg/l]
                                                                      VAC03600
                                                                      VAC03700
                                                                       VAC03800
                                                                      •VAC04400
                                                VAC04500
                                                VAC04700
                                                VAC04800
                                                VAC04900
                                                                       VAC05000
                                                                       VAC05100
                                       79

-------
          SMATX(19,OS2)  = SMATX(19,IS1)

              N03    « N03
                 OS2      IS1

          SMATX(20,OS1)  - SMATX(20,IS1)

              SMATX(20,OS1)  - SMATX(20,IS1)

          SMATX(20,OS2)  = SMATX(20,IS1)

              SMATX(20,OS2)  = SMATX020.IS1)

          SF = SMATX(10,IS1)/10000.
          Cmg/1]
Future parameter
Future parameter
                     TSS
              SF
                        IS1
                      10000

          SC = 100.-WP

              SC = 100-WP

          FVF = DMATX(1,N)/11.99/(1./SF-1./SC)
              FVF
                  _  VFL
                     "•"IsF-fc
           [Ib/hr/ft ]
              AVF
                       TS!si*Qisi*58-3l*ECF
                      FVF*HPWK

          PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33

              PSDD = TSS   *Q   *8.33
                        IS1  IS1

References:

          Smith and fillers, 1975

          Patterson and Banker,  1971

5.   Cost functions.

    a.     Capital cost

          Function of AVF

              X = ALOG(AVF)

                  X = In AVF
           [ft2]
           Clb/day]
                                                                                VAC05200
                              VAC05300
                              VAC05400
                              VAC05900
                              VAC06000
                              VAC06100
          AVF = SMATX(10,IS1)*SMATX(2,IS1)*58.31/FVF/DMATX(2,N)*DMATX(16,N)      VAC06200
                              VAC06400
                              VAC07000
                                                80

-------
CCOST(N.l) = EXP(3.288028+.194537*X+.038313*X**2.)*1000.
                                                                            VAC07100
                   3.288028+0.194537 X+0.038313X
      CCOST • lOOOe
                                                         [dollars]
b.
      Operating manhours,  maintenance manhours and materials/supplies costs

      Function of PSDD

          X » ALOG(PSDD*365./2000.)                                         VAC07700

              X - in  365  PSDD
                        2000
(1)   Operating manhours

      (a) For IVACF - 0
                              Landfill  operation
          OHRS = EXP(6.069419-.009894*X+.042699*X**2.)

                                                     2
                         6. 069419-0.
                 OHRS = e
      (b) For IVACF • 1
                                                         [hrs/ys]
                              Incineration operation
                                                                            VAC08400
                                                                            VAC09100


                                                                         [hrs/yr]




                                                                            VAC09700
          OHRS = EXP(3.714368+.850848*X-.074615*X**2.+.005085*X**3.)

                         3.714368+0.850848X-0.074615X2+0.005085X3
                 OHRS  = e


(2)    Maintenance manhours

      XMHRS  = EXP(4.306110-.093695*X+.047738*X**2.)

                          4.306110-0.093695X+0.047738X2
                 XMHRS = e                                   [hrs/yr]


(3)    Supplies

      SUPP = EXP(-3.113515+.718466*X)*1000.

                             -3.113515+0.718466X
                 SUPP  = lOOOe                           Cdollars/yrJ
(4)    Chemicals

      CHEM = PSDD*365./2000.*(FECL3*CFECL+CAO*CCAO+DPOLY*CPOLY)              VAC09900

                        PSDD*365*[(FECL3*CFECL)+(CAO*CCAO)+(DPOLY*CPOLY)
                                                                            VAC09800
                 CHEM
                                            2000
                                                                          [dollars/yr]
                                            81

-------
c.    Total operating and maintenance costs                       VAC10400




      COSTO(N,1)  - CCOHRS+XMHRS)*DHR*a.+PCT)+SUPP*WPI+CHEM)/SMATXC2,l}/3650.





             COSTO =  C(OHRS+XMHRS)*DHR*(1+PCT)>(SUPP*HPI)+CHEM   [Cents/i000 gal]



                                   "Plant inf.*3650








      Cost curves, Banker and Patterson page 50.
                                           82

-------
L                                                                       VAC00100
C             VACUUM FILTRATION                                         VAC00200
C             PKOCEbS IDENTIFICATION NUMBER   7                         VAC00300
C                                                                       VAC00100
      SUBROUTINE VACF                                                   VAC00500
C                                                                       VAC00600
C                                                                       VAC00700
C             COMMON INITIAL STATEMENTS                                 VAC00800
C                                                                       VAC00900
      INTEGER Obl»OS2                                                   VAC01000
      COMMON SMATX(20.30)»TMATX120»30)»OMATX(20»2G)»OMATX(20»20),IP(20>»VAC01100
     llNP.IOf !SlrlSi;»OSl»OSi:.N»IAERF»CCOST<20»5).cOSTO(20r5)»ACOST(20»5)VAC01200
     2»TCOST(20»b)»L»HR»PCT•*PI»CLANO»DLAND'FLOW(2b)tPOW(25> »TKWHD(25>   VAC01300
C                                                                       VAC01UOO
C                                                                       VAC01500
C             AbSIGUMENT OF DESIGN VALUES TO CHEMICAL PARAMETERS        VAC01600
C                                                                       VAC01700
      FECL3=DMA1X(5.N)                                                  VAC01800
      CAO=DMATX(6»N)                                                    VAC01900
      CFECL=DMATX(7iN)                                                  VAC02000
      CCAO=JMATX(6»N>                                                   VAC02100
      DPOLY=DMATX(9»N>                                                  VAC02200
      CPOLV=DMATX(10»N)                                                 VAC02300
C                                                                       VAC02UOO
C                                                                       VAC02500
C             PKOCEbS RELATIONSHIPS REQO. To CALC.  EFFLUENT STREAM      VAC02600
c             CHARACTERISTICS                                           VAC02?oo
C                                                                       VAC02600
      SMATX(7t Ibl)=bMATx(7»lSl>-HFECL3+CAO-*DPOLY)*SMATX(10»ISl>/2000.   VAC02900
      SMATX<10'lSl>=SMATX(lUtlSl>+(FECL3+CAO+DPOLY>*SMATX(10'lSl>/2000. VAC03000
      SMATX(10»OS2>=OMATX(3iN)                                          VAC03100
      WP=a8./(SMATX(10'ISl)/10000.>**.123                               VAC03200
      SMATX(10»USD = (10U.-WP)*10000.                                    VAC03300
      SMATX(2»Obl)=lSMATX(2rIbl)*SMATX(10»Ibl))/(bMATX(10.0Sl)-bMATx(10.VAC03<*00
     I0b2)>                                                             VAC03500
      SMATXl2»Oi,2)=bMATX(2'ISl)-SMATX(2»OSl)                            VACU3600
      TLMP2=SMATX(10.0S1)/SMATX(10»ISD                                 VAC03700
      TLMP3=SMA1X(10•OS2)/SMATX <10»IS1)                                 VAC03800
C                                                                       VAC03900
C                                                                       VACOtOOO
C             EFFLULNT bTKEAM CALCULATIONS                              VACOmOO
C                                                                       VAC04200
      DO 10 I=3»9                                                       VACOU300
      SMATX(I,Obl)=1EMP2*SMATX=SMATX(i6fisi>                                        VACOSOOO
      SMATX (19»OSD=SMA7X( 19» IS1)                                        VAC05100
      SMATX(19»yS2>=SMATX(iyilSD                                        VAC05200
      SMATX(20>oSl>=SMATX(2u*ISl>                                        VAC05300
      SMATX(20'US2>=SMATX(2U»IS1>                                        VAC05400
C.                                                                       VAC05500
C                                                                       VAC05600
t             CALC. OF OUTPUT SIZES AND QUANTITIES                      VAC05700
C                                                                       VAC05800
                                      83

-------
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
t
t
c
c
c
       SF=SMATXUO»IS1>/1000U.
       SC=lOO.-WP
       FVF=DMATX *SMATX(2iISl)*58.31/FVF/DMATx(2»N)*DMATX(16»N>
       IVACF=DMAlX(<+fN)
       PbDD=SMATA(lOrISl)*SMATX<2.ISl)*8.33
           CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS  EXCESS
           CAPACITY

   X=AL06(AVF)
   CCOST(N»1)=EXP(3.288028+.194537*X+.038313*X**2.)*1000.
           CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY  ALONEt
           DOES NOT INCLUDE EXCESS CAPACITY

   X=ALOt>(PSuD*3b5./2000.)
   IF (IVACF) I0»30»«t0
                CALC. OF OPERATING MANHOURS IF LANDFILL DISPOSAL  IS
                USED
   30 OHRS=tLXP(b. 069419-. 009894*X+ .
      GO TO 50
<*0 OHRS=£XP(.i.71 /3faVAC 10UOO
                                                                   VAC10500
                                                                   VAC10600
                                                                   VAC10700
        AbSIGNMENT OF VALUES TO OMATX                              VAC10800
                                                                   VAC10900
OMATXll,N)=WP                                                       VAC11000
OMATX(2»N)=AVF                                                     VAC11100
OMATXl3rN)=PSUD                                                    VAC11200
                                                                   VAC11300
                                                                   VAC11100
        PKOCEbS ENERGY INDICES                                     VAC11500
                                                                   VAC11600
                                                                   VAC11700
                                                                   VAC11800
                                                                   VAC11900
                                                                   VAC12000
     150.
      FLOW(N)=SMATX(2»IS1)
      PO«(N)=7.
      RETURN
      END
                                      84

-------
                                          SECTION 9

                                  GRAVITY THICKENING, THICK
Subroutine Identification Number 8

Gravity Thickening, THICK
                                Rev. Date 8/1/77
1.  Process symbol.
                         IS1  (Sludge)
 IS2  (Wash water)
       OPTIONAL
OS2 (Recycle)
                         OS1

2.  Input parameters and nominal values.

     DMATX(l.N) = TRR

     DMATX(2,N) = TSS


     DMATX(3,N) = GTH


     DMATX(4,N) = GSTH


     DMATX(16,N) = ECF
IS1:  Sludge input stream

IS2:  Wash water input stream

OS1:  Liquid output stream

OS2:  Recycle output stream

  N:  User assigned number to the
      process
             Solids recovery ratio for thickening. [.95]

             Total suspended solids concentration of OS1,
             mg/1.     [50,000.]

             Design overflow rate for the thickener, gpd/sq
             ft.  [700.]

             Design solids loading rate for the thickener,
             Ib/day/sq ft.    [8.]

             Excess capacity factor for the process. [1.5]
3.  Output parameters which are printed on computer output sheets.

     TSSncl = DMATX(2,N)
     ATHM = OMATX(l.N)

     WRT = OMATX(2,N)


     CCOST

     COSTO


     ACOST
             Surface area of the gravity thickener, [sq. ft.J

             Ratio of dilution stream flow in mgd/influent
             sludge stream flow In mgd.

             Capital cost,  [dollars].

             Operating and maintenance cost,
            [cents/1000 gal],

             Amortization cost,  [cents/1000 gal].
                                            85

-------
     XCOST                                  Total  treatment cost,[cents/1000 gal].

     ECF                                    Excess capacity factor.

4.   Theory and functions  -  FORTRAN statement followed by equivalent algebraic equation.

        SMAT(I)  - 0                                                        THI02100

             where I =  1,20

        SMAT(I)  = SMATX(I,IS2)                                              THI02400

             SMATCIX=SMATX(I,IS2)                  [MGD and mg/l]

             where I =  1,20

             i.e.  I, Q,  SOC,  SNBC,  SON, SOP, SFM,  SBOD, VSS, TSS, DOC, DNBC, DN, DP, DFM,
                   ALK, DBOD,  NH3.N03

        SMATX(2,OS1) =  DMATX(1,N)*(SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))/SMATX( 10,081)
             Qosr
                                                      [MGD]
                                   TSS
                                      OS1
        TEMP = DMATX(4,N)/DMATX(3,N)*1000000./8.33
             TEMP _ 1000000 GSTH
                       8.33 GTH
        HRT = (SMATX(10,IS1)-TEMP)/(TEMP-SMAT(10))
             WRT
                    TSS   .-TEMP
                    TEMP- TSS IS2

        SMATX(2,IS2) = WRT*SMATXC2,IS1)
                                              [mg/l]
                                                      [mg/l]
                                                      [MGD]
SMATC2)   SMATX(2,IS2)

     SMAT(2)    Q
                       IS2                            [MGD]


        SMATX(2,OS2) = SMATX(2,IS1)+SMAT(2)-SMATX(2,OS1)


             QOS2 = QIS1+QIS2"QOS1                     [MGI)]

        TEMP  =  SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMATC10)

             TEMP = QIS1*TSSB1+0IS2 *TSSIS2           [MGD-mg/l]


        SMATX(10,OS2) = (TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)
            TSS
               OS2
                                              [mg/l]
                                                                           THI02600
                                                                           THI02800
                                                                           THI03200
                                                                           THI03300
                                                                           THI03400
                                                                   THI03500
                                                                   THI03600
                                                                           THI03700
                           OS2
                                            86

-------
 TEMP  =•  TEMP/(SMATX(2,IS1)+SMAT(2))                                 THI03800
     TEMP "


TEMPI - SMATX(10,OS1)/TEMP                                         THI03900

               TSS
                                                      Cno units]
               m
               TEMP

TEMP2 = SMATX(10,OS2)/TEMP                                         THI04000

                TSS
     TEMP2 i _ OS2                                [no units]
                TEMP

TEMP3 - (SMATX(2,IS1)*SMATX(I,IS1)+SMAT(2)*SMAT(I))/(SMATX(2,IS1)+SMAT(2))


     TEMP3    (QISl*^TX(I'IS1))+(QIS2*SMAT(:i"       Dug/!]
     TEMP3 - - - - — - -      »'          THI04600
                     q!Sl  QB2

     where I - 3,9

     i.e.  SOC,SNBC,SON,SOP,SFM,SBOD,VSS

SMATX(I.OSl) = TEMP1*TEMP3                                         THI04800

     SMATX(I.OSl) - TEMPI * TEMP3                     [mg/l]

     where I « 3,9

SMATX(I,OS2) = TEMP2 * TEMP3                                       THI04900

     SMATX(I,OS2) - TEMP2*TEMP3                       [mg/l]

     where I = 3,9

SMATX(I.OSl) = (SMATXCI,IS1)*SMATX(2,IS1)+SMAT(I)*SMAT(2))/(SMATXC2,IS1HSMATC2))

                 CSMATX(I,IS1)*Q   )+CSMATCD*QIS2)     .
     SMATX(I.OSl) = - n   .„ -   -       -   [mg/l]      THI05100
                               QIS1+QIS2

     where I = 11,20

     i.e.   DOC,DNBC,DN,DP.DFM,ALK,DBOD,NH3,N03

SMATX(I,OS2) = SMATX(I,OS1)                                        THI05300

     SMATX(I,OS2) = SMATX(I.OSl)                      [mg/l]

     where I = 11,20

ATH1 = (SMATX(2,OS2)+SMATX(2,OS1))*1000000,/DMATX(3,N)*DMATX(16,N)
     ATH1 _-   OS20Sl                                [£t]         THI05800
                   GTH
                                    87

-------
ATH2 = SMATX(2,IS1)*SMATX(10,IS1)*8.33/DMATX(4,N)*DMATX(16,N)
                                                                    THI06000
            QIsl*TSSlsl*8.33*ECF
                          GSTH



        ATHM = ATH2



        ATHM = ATHl



References :



        Smith and Eilers,  1975



        Patterson and Banker,  1971



5.  Cost functions.



        a.  Capital cost



             Function of ATHM



             X = ALOG (ATHM/ 1000.)



                 X- In AIM
                        1000
                            [For ATHl - ATH2 <0]



                            [For ATHl - ATH2 >0]
                                                                    THI06200



                                                                    THI06400
                                                                   THI07000
CCOST(N.l) = EXP(3.725902+.397690*X+.075742*X**2.-.001977*X**3.-.000296*X**4.)*1000,

                                                                      THI07100



     CCOST = 1000e3-725902+0-397690x+0-075742x2-0-001977x3-°-000296x4    [dollars]




b.  Operating manhours,  maintenance manhours and materials/supplies costs



     Function of ATHM/ECF



     X = ALOG(ATHM/1000./DMATX(16,N))
                                                                   THI07800
         X = In
                ATHM
                                                                   THI08700
                1000ECF



(1)  For (EXP(X)-KO)



     (a)  Operating manhours



     OHRS = 350     [hrs/yr]



     (b)  Maintenance  manhours



     XMHRS   190       [hrs/yr]



     (c)  Total materials and supplies



     TMSU   250         [dollars/yr]



(2)  For (EXP(X)-1>0)



     (a)  Operating manhours




     OHRS = EXP(5. 8465654-. 254813*X+. 113703*X**2.-.010942*X**3. )    THI09600




                    5. 846565+0. 254813X+0. 113703X2-0.010942X3      r   .   ,
                   e                                              [hrs/yr]

-------
        (b)  Maintenance manhours



        XMHRS - EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)         THI09700




             .__..,.    5.273419+0.228329X+0.122646X2-0.011672X3          ru   .  -,
             XMnKa • e                                                  Lnrs/yrJ



        (c)  Total materials and supplies



        TMSU - EXP(5.669881+.750799*X)                                      THI09800




             _...,    5.669881+0.750799X             r, ..   .   -,
             TMSU = e                               Ldollars/yrJ



c.  Total operating and maintenance costs



        COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.  THI10300




             COSTO =(OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI)           [cents/1000 gal]


                                   %lant inf.*3650
                                               89

-------
C                                                                        THIOOIOO
C             GRAVITY THICKtNING                                         THI00200
C             PROCESS IDENTIFICATION NUMBER   8                          THI00300
C                                                                        THlOOtOO
      SUoROUTINt. THICK                                                   THI00500
C                                                                        THI00600
C                                                                        THI00700
C             COMMON INITIAL STATEMENTS                                  THI00800
C                                                                        THI00900
      INTEGER osi»os2                                                    THIOIOOO
      DIMENSION SMAT(20)                                                 THI01100
      COMMON sMATx(20»3o>,TMATX<20>3o>»DMATX(20,20)»OMATX(20•20),IP(20)>THI01200
     UNP.IUfIS1»IS2»OS1»OS2»N'IAERF»CCOSTC20»5)»COSTO<20.5)•ACOST(20i5)THl01300

C
C
C
C
C






2'TCOST(20»5)»UHR'PCT»wPI»CLANDrDLAND»FLOWl2b)»POW{25)»TKWHD(25)


PKOCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM
CHARACTERISTICS

DO 10 I=l»20
10 SMAT(1)=0.
IF (IS2) 40>0»50'60
50 WKT=0.
GO TO 70
00 WRT=(SMATx(10»ISl)-TEMP)/(TEMP-SMAT(10) )
SMATX12»IS2)=WRT*SMATX(2»IS1)
SMAT<<:)=SMATX(2«IS2)
70 SMATX(2,Ob2)=SMATxl2'iSD+SMAT(2)-SMATX(2.0Sl)
TLMP=bMATx ( 2 f IS1 ) *SMA T X 1 1 0 » I S 1 ) +SMAT ( 2 ) *SMAT ( 10 )
SMATX110HJS2>=(TEMP-SMATX12.0S1)*SMATX(10»OS1))/SMATX(2»OS2)
TtMP=lEMP/(SMATX(2»ISl)+SMAT(2)>
TtMPl=SMATX(lU»OSl)/TtMP
TE.MP2=SMATX ( 10 »OS2) /T£MP


EFFLULNT STREAM CALCULATIONS

DO faO I=3»9
THI02700
THI02800
THI02900
THI03000
THI03100
THI03200
THI03300
THI03UOO
THI03500
THI03600
THI03700
THI03800
THI03900
THI04000
THIOUIOO
THIOU200
THIOU300
THI04400
THI04500
      TtMP3=(SMATX<2»ISl)*SMATX(IrISl)-i-SMAT(2)*SMATm)/lSMATXC2»lSl>+SMTHl04600
     1AT(2»                                                             THIO<*700
      SMATXII,OS1)=TEMP1*TEMP3                                           THIOU800
   60 SMATXU,OS2)=TEMP2*TEMP3                                           THIOU900
      DO 90 I=llf20                                                      THI05000
      SMATXII»OS1)=ISMATXII.IS1)*SMATX(2»IS1)+SMAT(I)*SMAT<2))/(SMATX(2.THI05100
     HSl)-»-SMAT(2) )                                                      THI05200
   90 SMATXII.OS2)=SMATX(I»OS1)                                          THl053^)0
C                                                                        THlOb<*00
C                                                                        THI05500
C             CALC. OF OUTPUT SIZES AND QUANTITIES                       THI05600,
C                                                                        THI05700
      ATHl=lSMATX(2»OS2)+SMATX(2fOSl))*1000000./DMATX(3»N)*DMATX(16»N)   Tril05800
                                      90

-------
      IF  (IS2) 120.100»120
  1UO ATH2=SMATX(2»IS1>*SMATX(10»IS1)*8.33/DMATXU.N)*DMATX(16»N)
      IF  (ATH1-ATH2) 110.12u.l20
  110 ATHM=ATH2
      GO  TO 130
  120 ATHM=ATH1
C
C
C
C
C
            CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
            CAPACITY

130 X=ALOG(ATHM/1000.)
    CCOSTlN.l)=EXP(3.7259U2+.397690*X+.07b742*X**2.-.OOl977*X**3.
   1296*X**(+.)*1000.
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
            CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONF.
            DOES NOT INCLUDE EXCESS CAPACITY

    X=ALOG(ATHM/1000./DMATX(16»N))
    IF (EXPU)-l.) 140.15U.15U
                 CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
                 AND MATEKIALb AND SUPPLIES FOR THICK FACILITY.
                 LESS THAN 1000 SQ. FT.

    OHRS=350.
    XMHRS=190.
    TMSU=2bO.
    GO TO 160
                   CALC.OF OPERATING MANHOURS. MAINTENANCE MANHOURS
                   AND MATEKIALS AND SUPPLIES FOR THICK FACILITY.
                   EQUAL OR GREATER THAN 1000 Su. FT.
IbO OHRS=EXP
-------
                                       SECTION 10

                                    ELUTXIATION,  ELUT
Subroutine Identification Number 9

Elutriation, ELUT
                 Rev. Date 8/1/77
1.  Process symbol.
            IS2 (Wash Water)
                                                          IS1:   Sludge  input  stream

                                                          IS2:   Wash water input stream

                                                          OS1:   Sludge  output stream

                                                          OS2:   Recycle output stream

                                                           N:   User assigned number to
                                                                the  process
2.  Input parameters and nominal values.
         DMATX(l.N) - ERR
Solids recovery ratio for elutriation.
[.76]
         DMATX(2,N) - TSS
Total suspended solids concentration of
OS1, mg/1.  [60,000.]
         DMATX(3,N) = WRE


         DMATX(4,N) = GE
Wash water ratio for elutriation.  [3.]
Design overflow rate for elutriation,
gpd/sq ft.  [800.]
         DMATX(5,N) = GES
Design solids loading rate for elutriation,
Ib/day/sq ft.  [9.]
         DMATX(16,N) «= ECF
Excess capacity factor for the process.
[1.5]
                                            92

-------
3.   Output parameters which are printed on computer  output  sheets.


         ERR = DMATX(l.N)


         TSS = DMATX(2,N)


         WRE = DMATX(3,N)


          GE = DMATX(4,N)


         GES = DMATX(S.N)
          AE = OMATX(l.N)
         CCOST
         COSTO
         ACOST
         TCOST
          ECF
                                        Surface area of the elutriation
                                        tank, sq.  ft.


                                        Capital cost, [dollarsJ
                                                           Operating  and maintenance cost,
                                                           [cents/1000  gal]
                                        Amortization cost,  [cents/1000
                                        gal]
                                        Total treatment cost,  [cents/
                                        1000 gal]
                                        Excess capacity factor.
4.    Theory and functions - FORTRAN statement   followed by equivalent  algebraic  equation.
     SMATX(lO.OSl)  = DMATX(2,N)
                   TSSQSl = TSS   [mg/1]
                                                    ELU01900
     SMATX(2,IS2)  = DMATX(3,N)*SMATX(2,IS1)
QIS2 = WRE *
                                      [MGD]
                                  ELU02000
     AE1  = SMATX(2,IS1)*1000000./DMATX(4,N)
                   AE1 =
       QIS1 * 1000000

           GE
                                 ELU04500
[ft2]
                                           93

-------
 AE2 - SMATX(2,IS1)*SMATX(10,IS1)*8.33/DMATX(5,N)

                           "isi * TSSisi * 8'33    [ft2]
                   AE2
                                 GES
 AE = AE1*DMATX(16,N)                 If  (AE1-AE2)>0

                   AE  = AE1 * ECF   [ft2]
                                                                         ELU04600
                                                                         ELU04800
 AE = AE2*DMATX(16,N)
                                    If  (AE1-AE2)<0
                    AE   AE2  * ECF   [ft  ]
                                                                          ELU05000
SMATX(2,OS1)=DMATX(1,N)*SMATX(2,IS1)*SMATX(10,IS1)/SMATX(10)OS1)

                           ERR  * QIgl  * TSSIgl
                                TSS
                                   OS1
                                                                          ELU02100
 SMATX(2,OS2)=SMATX(2,IS1)+SMATX(2,IS2)-SMATX(2)OS1)
                          IS1
                                      - QOS1   [MGD]
                                                                         ELU02200
TEMP - SMATX(2,IS1)*SMATX(10,IS1)+SMATX(2)IS2)*SMATX(10,IS2)
                   TEMP = [QIS1*TSSIS1J + [QIS2*TSSIS2J     [MGD-mg/l]
                                                                         ELU02300
SMATX(10,OS2)=(TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)
                   TSS
                            TEMP -[QOS1*TSSOS1]
                      OS2
                                                      [mg/1]
                                                                         ELU02400
TEMP = TEMP/(SMATX(2,IS1)+SMATX(2,IS2))

                              TEMP
                   TEMP
                           QIS1+QIS2
                                             [mg/1]
                                                                         ELU02500
TEMPI   = SMATX( 10,031) /TEMP
                   TEMPI   =
                            TSSOS1
                             TEMP
[no units]
                                                                           ELU02600
                                             94

-------
TEMP2  = SMATX(10,OS2)/TEMP                                                      ELU02700

                               TSS
                   TEMP2  = 	TEMp	    [no units]




TEMP3  = (SMATX(2,IS1)*SMATX(I,IS1)+SMATX(2,IS2)*SMATX(I,IS2))/(SMATX(2,IS1)+SMATX(2,IS2))

                              [QIS1*SMATX(I,IS1)] + [QIS2*SMATX(I,IS2)]
                   TEMP 3
                                     QIS1
                   where I = 3,9 i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS



SMATX(I.OSl) = TEMPI * TEMP3                                                    ELU03500


                   SMATX(I.OSl) = TKMP1 * TEMP3        [mg/l]

                   where I = 3,9

                   i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS



SMATX(I,OS2) = TEMP2 * TEMP3                                                    ELU03600

                   SMATX(I,OS2) = TEMP2 * TEMP3    [mg/l]

                   where I = 3,9



SMATX(I.OSl) = (SMATX(I,IS1)*SMATX(2,IS1)+SMATX(I,IS2)*SMATX(2,IS2))/(SMATX(2,IS1)+SMATX(2,IS2))

                                  (SMATX(I,IS1)*Q  .)+(SMATX(I,IS2)*Q   )      ELU03800
                   SMATX(I.OSl) =	isi	iii.    [mg/l]


                   where I = 11,20  i.e.  DOC.DNBC.DN.DP.DFM.ALK.DBOD.NHS.NOS



SMATX(I,OS2) = SMATX(I.OSl)                                                     ELU04000

                   SMATX(I,OS2) = SMATX(I.OSl)              [mg/l]

                   where I = 11,20.



References!

              Smith and Eilers, 1975

              Patterson and Banker, 1971
                                             95

-------
                                                                    ELU°56°°
5.  Cost functions.


    a.  Capital cost


        Function of  AE



        X = ALOG(AE/1000.)

            X = In  AE
                   1000



        CCOST(N.l)   EXP(3.725902+.397690*X+.075742*X**2.-.001977*X**3.-.000296*X**4.)*1000,


            CCOST =  I000e3-725902+0-397690x+0-075742x2~0-001977x3~0>000296x4
                                                                    ELU05700
    b.  Operating manhours, maintenance manhours and materials/supplies costs


        Function of AE/ECF



        X = ALOG(AE/1000./DMATX(16,N))


            X   In     AE
                    1000*ECF



        (1)  Operating manhours
                                                                    ELU06400
     (a)   EXP(X)<1


          OHRS    350.



     (b)   EXP(X)>1
                                    [hrs/yr]
                                                                    ELU06500


                                                                    ELU07200


                                                                    ELU06500
     OHRS = EXP(5. 846565+. 254813*X+.113703*X**2.-.010942*X**3. )      ELU08200


         OHRS = e5- 846565+0. 254813X+0.113703X2-0.010942X3    [hrs/ r]
(2)   Maintenance  manhours



     (a)   EXP(X)<1


          XMHRS = 190.
                                     [hrs/yr]
                                                                    ELU06500


                                                                    ELU07300
(b)   EXP(X)n                                                        ELU06500


     XMHRS  = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)     ELU08300

         XMHRS  =  e5-273^19+0.228329X+0.122646X2-0.011672X3    [hrs/yr]
                                  96

-------
    (3)   Total materials and supplies


         (a)   EXP(X)<1                                                        ELU06500

              TMSU = 250       [dollars/yr]                                   ELU07400


         (b)   EXP(X)>1                                                        ELU06500

              TMSU = EXP(5.669881+.750799*X)                                   ELU08400


                 TMSU „ e5.669881+0.750799X       [dollars/yr]



c.   Total operating and maintenance costs


    COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1^PCT)+TMSU*WPI)/SMATX(2,1)/3650.          ELU08900


        COSTO _ (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI)      _     ,         .
                     Qplant Inf.   *3650               [cents/1000 gal]
                                          97

-------
c
c
c
c
c
c
c
c
c
              ELUTRIATION
              PROCESS IDENTIFICATION NUMBER
      SUBROUTINE ELUT
                                                                      ELU00100
                                                                      ELU00200
                                            i                          ELU00300
                                                                      ELUOO.TMATX(20»30)»DMATX<20r2u>»OMATX(20f20)rlP<20>»ELU01100
  HNP»IOfISl»lS2»OSl»OSiirN»lAERF»CCOST(20»5)»COSTO(20»5)»ACOST(20»5)£LU01200
              COMMON INITIAL STATEMENTS
  2>TCOST(20r5) »UHR»PCT»
                              »CLANDrDLAND»FLOW(2b> »POW(25) »TKWHD(25)
              PROCESS RELATIONSHIPS REQD.
              CHARACTERISTICS
                                       TO CALC. EFFLUENT  STREAM
   10
                                                                  ELU01300
                                                                  ELUOIOOO
                                                                  ELU01500
                                                                  ELU01600
                                                                  ELU01700
                                                                  ELU01800
                                                                  ELU01900
                                                                  ELU02000
                                                                  ELU02100
                                                                  ELU02200
                                                                  ELU02300
                                                                  ELU02400
                                                                  ELU02500
                                                                  ELU02600
                                                                  ELU02700
                                                                  ELU02800
                                                                  ELU02900
                                                                  ELU03000
                                                                  ELU03100
DO 10 I=3»9                                                       ELU03200
T£.MP3=(SMATX(i:»ISl)*SMATXlI»ISl)+SMATX(2»lS2)*SMATX{I>IS2)>/(SMATXELU03300
<2f IS1)+SMATX(2»IS2»                                             ELU03UOO
SMATXlI.Obl)=TEMPl*TEMP3                                          ELU03500
SHATXlI.Ob2)=lEMP2*TEMP3                                          ELU03600
DO 20 1=11 r20                                                     ELU03700
SMATX(I»Obl)=(SMATX(IrISl)*SMATX(2»lSl)+SMATX(I»IS2)*SMATX(2»IS2))ELU03800
      SMATX110•osi)=DMATX(2 r N)
      SMATX(2»IS2)=DMATX<3»N)*SMATX(2»IS1)
      SMATX(2rObl)=UMATX(l»N)*SMATX(2»ISl)*SMATx(lO»ISl)/SMATX(10»OSl)
      SMATXl2fOb2)=bMATXl2'ISD-t-SMATX(2>IS2)-SMATx(2rOSl)
      TtMP=bMATx(2'lSl)*SMATX(10»ISl)-t-SMATX(2rIb2J*SMATXllO»IS2)
      SMATX(10»OS2)=(TEMP-SMATX(2»OSl)*SMATX(10.0bl))/SMATX(2»OS2)
      TEMP=TEMP/(SMATX<2»lSl)+SMATX<2fIS2))
      TEMPl=SMATX(10»OSl)/TtMP
      TtMP2=SMAT X(10»OS2)/TtMP
              EFFLUENT STREAM CALCULATIONS
     l/(SMATX(2»ISl)+SMATX(,2f IS2)
      SMATXU.Ob2>=SMATX
           CALC. OF OUTPUT SIZES AND QUANTITIES

   AEl=SMATX(2»Ibl)*1000uOO./DMATX(t»N)
   AL2=SMATX(2»Ibl)*bMATX(10»ISl)*8.33/DMATX(5,N)
   IF (Atl-At2) tOrtOf30
   AE=AE1*DMATX(16»N)
   GO TO 50
   iO
           CALC. OF
           CAPACITY

50 X=ALOG(AE/100U.)
                 CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
ELU03900
ELUOtOOO
ELUOU100
ELU04200
ELU04300
ELUOUUOO
ELU04500
ELUOU600
ELUO<*700
ELU04800
ELU04900
ELU05000
ELU05100
ELU05200
ELU05300
ELUOSfOO
ELU05500
ELU05600
      CCOSTlNrl)=EXH(3.72b9U2+.397690*X+.0757i|2*X**2.-.OOl977*X**3.-.OOOELU05700
               )*1000
                                                                        ELU05800
                                       98

-------
c
c
c
c
c


c
c
c
c
c
c




c
c
c
c
c
c



c
c
c
c

c
c
c
c

c
c
c
c






CALC. OF OPERATINfa COSTS BASED ON DESIGN CAPACITY ALONE*
DOES NOT INCLUDE EXCESS CAPACITY

X=ALOfa(AE/1000./DMATX(lb*N) >
IF lEXP(X)-i.) 60»70'70


CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FOR ELUT FACILITY' LESS
THAN 1000 SQ. FT.

faO OHRS=350.
XMHRS=190.
TMSU=250.
GO TO 80


CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATERIALS AND SUPPLIES FOR ELUT FACILITY* EQUAL
OR GREATER THAN 1000 SQ. FT.

70 OHRS=EXP(b.6'+b565+.254813*X+.113703*X**2.-.ul09'+2*X**3. )
XMHRS=EXPl5.273«U9-t-.3«i8329*X+.122fa«*6*X**2.-.011672*X**3.>
TMSU=c.XP ( b . 669881+ . 75U799*X )


OPERATING COST EQUATION

80 COSTO(N'1>=<(OHRS-UMHRS>*DHR*<1.+PCT>+TMSU**PI)/SMATX{2*1)/3650.


ASSIGNMENT OF VALUES TO OM&TX

OMATX(1.N)=AE


PROCESS ENERGT INDICES

FLOrv(N)=SMATX(2'ISl)
POrV ( N) =9.
RETURN
END
ELU05900
ELU06000
ELU06100
ELU06200
ELU06300
ELU06«*00
ELU06500
ELU06600
ELU06700
ELU06800
ELU06900
ELU07000
ELU07100
ELU07200
ELU07300
ELU07400
ELU07500
ELU07600
ELU07700
ELU07800
ELU07900
ELU08000
ELU08100
ELUU8200
ELU08300
ELU08100
ELU08500
ELUU8600
ELU08700
ELU08800
ELU08900
ELU09000
ELU09100
ELU09200
ELU09300
ELU09tOO
ELU09500
ELU09600
ELU09700
ELU09800
ELU09900
ELU10000
ELUiOlOO
ELU10200
99

-------
                                            SECTION 11

                                      SAND  DRYING  BEDS,  SEEDS
Subroutine Identification Number  10

Sand Drying Beds ,  SEEDS


1.   Process symbol.
OS2 (Recycle)
IS1




N

OS1

                                        Rev. Date 8/1/77
                                                                  IS1:   Sludge  input  stream

                                                                  OS1:   Sludge  cake stream

                                                                  OS2:   Recycle output  stream

                                                                    N:   User assigned number
                                                                         to the  process
2.  Input parameters  and  nominal values.
        DMATX(l.N)  = SOUT

        DMATX(2,N)  = TSS

        DMATX(16,N)  = ECF
Percent solids of OS1, fraction, [.35]-

Total suspended solids concentration of  OS2, mg/1, [50.]-

Excess capacity factor for the process,  [1.5].
3.  Output parameters which are  printed on computer output sheets.
        SOUT = DMATX(l.N)

        TSS = DMATX(2,N)

        ASB = OMATX(l.N)

        CCOST

        COSTO

        ACOST

        TCOST

        ECF
Area of the sludge drying beds, [sq. ft.J.

Capital cost, [dollars].

Operating and maintenance cost, [cents/1000 gal].

Amortization cost , [cents/1000 gal].

Total treatment cost , [cents/1000 gal].

Excess capacity factor.
                                                100

-------
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.



    SMATX(2,OS2) = SMATX(2,IS1)                                    SBE01800


                   %S2 ° QISI   [MGD]


    SMATX(10,OS2) = DMATX(2,N)                                    SBE01900


                   TSSOS2 -  TSS   [mg/l]



    TEMP = SMATX(10,OS2)/SMATX(10,IS1)                            SBE02000

                           TSSQS2
                   TEMP=           [no units]
    SMATX(I,OS2)  = TEMP*SMATX(I,IS1^                               SBE02200

                   SMATX(I,OS2)  = TEMP*SMATX(I,IS1)    [mg/l]

                   where I = 3,9  i.e.   SOC,SNBC,SON,SOP,SFM,SBOD,VSS



    SMATX(I,OS2)  = SMATX(I.ISl)                                    SBE02400

                   SMATX(I,OS2)  = SMATX(I.ISl)    [mg/l]

                   where I = 11,20  i.e.  DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03



    SF = SMATX(10,IS1)/10000.                                     SBE02900


                   SF = TSSIS1   [%]
                        10000


    SC = DMATX(1,N)*100.                                          SBE03000

                   SC - SOUT*100   [%]



    FSB = (29.84*SF-33.3)/SC                                      SBE03100


                   FSB = 29.84SF-33.3   |-lb dry sollds applied/ft2/30 days]
                              DL>


    TEMP = SMATX(2,IS1)*SMATX(10,IS1)*249.9                       SBE03200

                   TEMP = QIS1*TSSIS1*249.9   [Ib dry solids/30 days]



    ASB = TEMP/FSB*DMATX(16,N)                                    SBE03300

                   .„„ _ TEMP*ECF       2n
                   ASB -- FSB~    tft ^


    PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33                        SBE03400

                   PSDD = TSSIS1*QIS1*8.33   [Ib dry solids applied/day]
                                              101

-------
    Reference:  Smith and Eilers, 1975
                Patterson and Banker,  1971

5.  Cost functions.   (Cost curves, Patterson and Banker pages 48,102,103)


    a.  Capital cost

        Function of  ASB


            X = ALOGCASB/1000.)                                    SBE04000


                X =  In (MIL)
                        1000'



        CCOST(N,1) = EXP(1.971125+.083841*X+.146751*X**2.-.007718*X**3.)*1000.    SBE04100


           CCOST = ioooe1-97112^0-083841^-146751^-0'007718^   [dollars]
    b.  Operating manhours,  maintenance manhours,  and materials/supplies costs


        Function of PSDD



            X = ALOG(PSDD*365./2000.)                              SBE04800


                X = In (SPSDD)    [in(tons applied/year)]
        (1)  Operating manhours



             OHRS = EXP(6.345052-.476780*X+. 101319 *X**2.)          SBE05400

                OHRS = e6. 345052-0. 476780X+0. 101319 X2    [hrs/yr]



        (2)  Maintenance manhours



             XMHRS = EXP(4.290089-.098293*X+.075453*X**2.)         SBE05500

                XMHRS = e4. 290089-0. 098293X+0.075453X2    ^  .   ^



        (3)  Total materials and supplies



             TMSU = EXP(. 693148+1. 000000*X)                        SBE05600


                TMSU = e°'6931A8+X    [dollars/yr]



    c.   Total operating and  maintenance costs



             COSTO(N,1) = ((OHRS+XMHRS)*DHR*(1+PCT)+TMSU*WPI)/SMATX(2,1)/3650.

                                                                  SBE06100
                        [ (OHRS+XMHRS) *DHR* (1+PCT) ]+[TMSU*WPl]
                                  Qplant mf.  *3650 -    [cents/1000 gal]
                                              102

-------
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
               SAND  DRYING  BEDS
               PKOCEbS  IDENTIFICATION  NUMBER
      SUBROUTINE SBLDS
              COMMON  INITIAL  STATEMENTS
                                                                      SBE00100
                                                                      SBE00200
                                          10                          SBE00300
                                                                      SBE00400
                                                                      SBE00500
                                                                      SBE00600
                                                                      SBE00700
                                                                      SBE00800
                                                                      SBE00900
   INTEGER osi.os2                                                    SBEOIOOO
   COMMON SMATX(H0>30)»TMATX(20.30)»DMATX(20.2u> »OMATX<20.20> »IP(20).SBE01100
  llNP.IO.ICl.lSi:.OS1.0Si:.N.lAERF.CCOST(20.5)»cOSTO(20.5).ACOST<20.5)SBE01200
  2»TCOST(20.5)»UHR»PCT»wPI.CLAND.DLANp.FLOWI2i>)»POW(25>»TKWHD(2b)    SBE01300
                                                                      SBE01UOO
                                                                      SBE01500
                                                                      SBE01600
                                                                      SBE01700
   SMATX12»os2)=SMATX(2»isi)
   SMATX(io•oS2)=DMATX(2.N)
   TEMP=bMATx(10.OS2)/SMATX <10»ISI)
   Do 10 1=3.9
10 SMATX(i.os2)=TEMP*SMATXci.isi)
   DO 20 1=11.20
HO SMATX(I.OS2)=SMATX(I»1S1)
              EFFLUENT  STREAM  CALCULATIONS
              CALC. OF OUTPUT SIZES AND QUANTITIES

      SF=SMATX<10.IS1)/10000.
      SC=UMATX(i»N>*100.
      Fbb=(29.8t*SF-33.3)/SC
      T£MP=SMATX(2»1S1)*SMATX(10»IS1)*2«*9.9
      AbU=TLMP/FSB*IJMATX(16.N)
      PbUD=bMATxUO.ISl)*SMMTX(2»ISl)*8.33
           CALC.  OF CAPITAL COSTS BASED
           CAPACITY
                                           ON DESIGN  PLUS  EXCESS
      X=ALOti(ASb/1000.)
SBE01800
SBE01900
SBE02000
SBE02100
SBE02200
SBE02300
SBE02UOO
SBE02500
SBE02600
SBE02700
SBE02800
SBE02900
SBE03000
SBE03100
SBE03200
SBE03300
SBE03400
SBE03500
SBE03600
SBE03700
SBE03800
SBE03900
SBE04000
      CcOST(N»l)=EXP<1.971125-»-.0838'41*X4.1«*b75l*X**2.-.007718*X**3.)*100SBEO
-------
C                  OPERATING COST EQUATION                               SBE05900
C                                                                        SBE06000
      COSTO(N.l) = ((OHRS+XMHKS)*DHR*ll.-»-PCT>+TMSU**Pl)/SMATX(2»l>/36bO.   S8E06100
C                                                                        5BE06200
C                                                                        SBE06300
C             ASSIGNMENT OF VALUES TO OMATX                              SBE06<*00
C                                                                        SBE06500
      OMATX(lrN)=ASb                                                     SBE06600
(.                                                                        SBE06700
C                                                                        SBE06800
C             PKOCESS ENERGY INDICES                                     SBE06900
C                                                                        SBE07000
      FLOw(lM)=SMATX(2»ISl)                                                SBE07100
      POrt(N)=10.                                                         SBE07200
      RtTURN                                                             SBE07300
      END                                                                SBE07400
                                     104

-------
                                            SECTION 12

                              TRICKLING FILTER - FINAL SETTLER, TRFS

 Subroutine Identification Number 11

 Trickling Filter - Final Settle^
                             Rev. Date 8/1/77
 1.   Process symbol.
                         OS2  (Sludge)
 2.   Input parameters and nominal values.

     DMATX(l.N) = BOD


     DMATX(2,N) = DEGC

     DMATX(3,N) = HQ


     DMATX(4,N) = SAREA


     DMATX(5,N) = URSS



     DMATX(6,N) = XRSS



     DMATX(7,N) = RECYCL

     DMATX(8,N) = GSS


     DMATX(9,N) •= HEAD

     DMATX(IA.N) = ECF


     DMATX(15,N) = ECF

     DMATX(16,N) = ECF

3.   Output parameters which are printed

     BOD = DMATX(1,N)
         IS1: Liquid input stream
         OS1: Liquid output stream
         OS2: Sludge output stream
           N: User assigned number to the process
     Demand concentration of 5-day BOD in the final
     effluent from the trickling filter process. [26.J

     Water temperature, degrees Centigrade.[20-]

     Hydraulic loading on the filter, based on sewage
     flow and not recycly, mgd/acre,[10.]

     Specific surface area of the filter, sq ft/cu ft.
     [10.]

     Ratio of solids concentration in OS2 (underflow
     stream) from the final settler to the total solids
     concentration in the filter effluent,[2. ]

     Ratio of solids concentration in the final settler
     effluent to the solids concentration in the filter
     effluent.[.6]

     Trickling filter recycle ratio.[l.J

     Design overflow rate for the final settler,
     gpd/sq ft.[2000.]

     Pumping head of the sludge return pumps, ft.[30.J

     Excess capacity factor fot the sludge return
     pumps.[1.5]

     Excess capacity factor for the final settler.[1.2]

     Excess capacity factor for the filter [1.2]

on computer output sheets.
                                                105

-------
    DEGC =  DMATX(2,N)


    HQ = DMATX(3,N)


    SAREA = DMATX(4,N)


    URSS =  DMATX(5,N)


    XRSS  = DMATX(6,N)


    KECYCL • DMATX(7,N)


    GSS  = DMATX(8,N)


    HEAD  = DMATX(9,N)


    AFS  = OMATX(l.N)                         Surface area of  the  final  settler,  sq  ft/1000.


    VOL  •= OMATX(2,N)                         Trickling filter total volume,  cu ft.


    FAREA =  OMATX(3,N)                       Area of the face of  the  filter,  sq  ft.


    DEPTH =  OMATX(4,N)                       Depth of the trickling filter,  ft.


    CCOST                                   Capital cost, [dollars]


    COSTO                                   Operating and maintenance  cost,[cents/1000gal]


    ACOST                                   Amortization cost,[cents/1000gal]


    TCOST                                   Total treatment  cost,[cents/1000gal]


    ECF                                      Excess capacity  factor


4.  Theory and  functions - FORTRAN statement followed by equivalent algebraic equation.


    BODIN =  SMATX(8,IS1)+SMATX(17,IS1)                                     TRF02000


       BODIN =  SBODIS1+DBODIS1                                             [mg/l]



    BETA =  . 0245*1. 035**(DMATX(2,N)-20.)                                   TRF02100


       BETA  = 0.0245*[1.035]DEGC~20                                        [constant]



    XN = .91-6.45/DMATX(4,N)                                               TRF02200



       301 =  °'91-  si                                                       [constant]
     FAREA =  SMATX(2,IS1)/DMATX(3,N)*43560.                                 TRF08500

               0*43560
        FAREA = -ISI_ -                                                  [ft2]




     Q6 = DMATX(7,N)*SMATX(2,IS1)                                           TRF02300



        Q6 =  RECYCL*Qisl                                                    [MOD]




                                               106

-------
RHQ = ((DMATX(7,N)+1.)*DMATX(3,N))**XN

   RHQ = [(RECYCL+1)*HQ]XN

BOD - (SMATX(17,IS1)+DMATX(6,N)*SMATX(8,IS1))/DMATX(1,N)
         DBODT01+(XRSS*SBODT01)
   BOD
            "1817
                IS1
               BOD
                  'OS1
 TRF02400

[MGADxn]

TRF02500


[no units]
DEPTH = RHQ*ALOG((BOD+DMATX(7,N))/(DMATX(7,N)+1.))/(BETA*DMATX(4,N))   TRF02600

                                                                       [ft]
   RHQ         jjvi/1 *.VLJWJ-*-
BETA*SAREA ln  1+RECYCL
XPO = EXP(BETA*DMATX(4,N)*DEPTH/RHQ)
          BETA*SAREA*DEPTH
   XPO = e
               RHQ
BODO = BODIN/(XPO*(DMATX(7,N)*(1.-1./XPO)+1.))

                   BOD IN
         -XPO*[RECYCL*(1-
   BODO
DBODO = SMATX(17,IS1)/(XPO*(DMATX(7,N)*(1.-1./XPO)+1.))

                    DBOD,
   DBODO
                        IS1
               XPO*[RECYCL*(1-
                               XPO
SBOD4 = BODO-DBODO
           BODIN-DBOD
   SBOD4 =
          IS1
           XPO*[RECYCL*(1-  5
SBOD5 = SBOD4*DMATX(6,N)

   SBOD5 = SBOD4*XRSS


BETAN = . 00307*1. 141**(DMATX(2,N)-20.)


   BETAN = 0.00307*[1.141]DEGC~20
 TRF02700




 TRF02800



 [mg/1]


 TRF02900


 [mg/1]


 TRF03000


 [mg/l]


  TRF03100


 [mg/1]

  TRF03200


 [empirical parameter]
                                            107

-------
XPON = EXP(BETAN*DMATX(4,N)*DEPTH/RHQ)
           BETAN*SAREA*DEPTH
   XPON = e
                  RHQ
SON4 = SMATX(5,IS1)*SBOD4/SMATX(8,IS1)
          SON   *SBOD4
   SON4 =
   IS1
   SBOD
                 IS1
DN4 -  (SMATX(13,IS1)+SMATX(5,IS1)-SON4)/(XPON+(XPON-1.)*DMATX(7,N))

   DN4
DNisi+SONisrSON4
          XPON+CXPON-I)*RECYCL
DNS   DN4

   DNS
         XPON+(XPON-1)*RECYCL
 SONS = SON4*DMATX(6,N)
    SON5 = SON4*XRSS
    OS1
            XRSS-URSS
          QISI*(I-XRSS)
    052   URSS-XRSS
TRF03300

[empirical parameter]

TRF03400

[mg/1]


TRF 03500

[mg/1]


TRF03600

[mg/1]

TRF03700

[mg/1]
 SMATX(2,OS1) = SMATX(2,IS1)*(1.-DMATX(5,N))/(DMATX(6,N)-DMATX(5,N))    TRF04200
                                                             [MGD]
SMATX(2,OS2) = SMATX(2,IS1)*(1.-DMATX(6,N))/(DMATX(5,N)-DMATX(6,N))    TRF04300
                                                             [MGD]
SMATX(4,OS1) = SMATX(4,IS1)*DMATX(6,N)
                                                             TRF04400

                                                             [mg/1]
SMATX(4,OS2) = SMATX(4,IS1)*DMATX(5,N)
                                                             TRF04500

                                                             [mg/1]
SMATX(5,OS1)  = SONS
   SONOS1 = SON5
                                           108
                                                             TRF04600

                                                             [mg/1]

-------
SMATX(5,OS2) = SON4*DMATX(5,N)




   SON    = SON4*URSS

      OS2
SMATX(6,OS1) = SMATX(6,IS1)*DMATX(6,N)*SBOD4/SMATX(8,IS1)





   SOP,
SOP   *XRSS*SBOD4
      OS1
                  SBOD
                      IS1
SMATX(6,OS2) = SMATX(6,IS1)*DMATX(5,N)*SBOD4/SMATX(8,IS1)


            SOP   *URSS* SBOD4


   SOP.
      OS2
               SBOD
                   IS1
SMATX(7,OS1) = SMATX(7,IS1)*DMATX(6,N)



   smosl = S™ISI*XRSS







SMATX(7,OS2) = SMATX(7,IS1)*DMATX(5,N)



   S™os2 - S™ISI*URSS





SMATX(8,031) = SBOD4*DMATX(6,N)



         „ = SBOD4*XRSS
SMATX(8,OS2)   SBOD4*DMATX(5,N)



   SBOD    = SBOD4*URSS
       us^





SMATX(9,OS1) = SBOD4*DMATX(6,N)+SON5+SMATX(4,IS1)*DMATX(6,N)




   VSS    = (SBOD4*XRSS)+SON5+(SNBCTC  *XRSS)
      OS1                          J.ol
TRF04700











TRF04800







 Cmg/1]







TRF04900






 [mg/1]







 TRF05000





 [mg/1]







 TRF05100





 [mg/1]





 TRF05200





 [mg/1]





TRF05300





 [mg/1]





 TRF05400




 [mg/1]
SMATX(9,OS2)  = SBOD4*DMATX(5,N)+SON4*DMATX(5,N)+SMATX(4,IS1)*DMATX(5,N)   TRF05500




   VSSQS2 = URSS*(SBOD4+SON4+SNBCIS1)                                  [mg/l]
                                            109

-------
 SMATX(lO.OSl) =• SMATX(9,OS1)+SMATX(7,OS1)+SMATX(6,OS1)


   TSSOS1 - VSSOS1+SFMOS1+SOPOS1



 SMATX(10,OS2) = SMATX(9,OS2)+SMATX(7,OS2)+SMATX(6,OS2)



   TSSOS2 ' VSSOS2+SFMOS2+S°POS2



 SMATX(12,081)   SMATX(12,181)
 SMATX(12,OS2) = SMATX(12,IS1)
 SMATX(13,OS1) = DNS
   DNosi = DN5
 SMATX(13,OS2)   DN5



   DNOS2 - DN5
SMATX(14,OS1)   SMATX(14,IS1)+SMATX(6,IS1)*(1.-SBOD4/SMATX(8,IS1))
   HP
                            SBOD4
     OS1     IS1IS1
SMATX(14,OS2) = SMATX(14,OS1)


   DP    = DP
     OS2     081



SMATX(15,OS1) = SMATX(15,IS1)


   DFM    = DFM
      OS1      IS1
SMATX(15,OS2) = SMATX(15,181)


   DFM    = DFM
      OS2      IS1
TRF05700


[mg/1]


TRF05800
TRF05900



[mg/1]



TRF06000


[mg/1]



TRF06100


[mg/1]



TRF06200



[mg/1]




TRF06300



[mg/1]



TRF06400



[mg/1]


TRF06500



[mg/1]



TRF06600



[mg/1]
                                           110

-------
SMATX(16,OS1) - SMATXC16.IS1)
SMATX(16,OS2) = SMATX(16,IS1)
   ^032 - ^ISl
SMATX(17,OS1) = DBODO


   DBOD    = DBODO
       OS1
SMATX(17,OS2) = SMATX(17,051)
   DBOD    = DBODO
       OS2
SMATX(3,OS1) = (SBOD5+1.87*SHATX(4,OS1))/1.87

            SBOD5+(1.87*SNBC^,

   SOCnq,  = 	
      051           1.87
                            UoX.
TRF06700



[mg/1]



TRF06800



[mg/1]




TRF06900



[mg/1]





TRF07000


[mg/1]





TRF07100




[mg/1]
SMATX(3,OS2) = (SMATX(8,OS2)+1.87*SMATX(4,OS2))/1.87



   SOC,,
     °OS2
                   1.87
SMATX(11,OS1) = (DBODO+1.87*SMATX(12,OSlJ)/1.87


            DBODO+(1.87*DNBC   )
   DOC
      OS 2
                      1.87
SMATX(11,OS2) = SMATX(ll.OSl)
   D°COS2 - D°COS1
SMATX(18,OS1) = SMATX(18,IS1)



   ™3osi - ^isi




SMATX(18,OS2) = SMATX(18,IS1)
TRF07200




[mg/1]





TRF07300




[mg/1]




TRF07400



[mg/1]





TRF07500



[mg/1]





TRF07600



[mg/1]
                                          111

-------
     SMATX(19,OS1)  =  SMATX(19,IS1)
        N03OS1 - N03IS1
     SMATX(19,OS2)  =  SMATX(19,IS1)
        N03OS2 - N°3IS1
     SMATX(20,OS1)  = SMATX(20,IS1)

        Future parameter


     SMATX(20,OS2)  = SMATX(20,IS1)

        Future parameter


     PCR = (BODIN-DMATX(1,N))*100./BODIN

        PCR = (BODIN-BOD)*100
                   BODIN
     AFS   SMATX(2,IS1)*1000./DMATX(8,N)*DMATX(15,N)
        AFS
Q   *1000*ECF

      GSS
     VOL = FAREA*DEPTH*DMATX(16,N)

        VOL   FAREA*DEPTH*ECF

References

     Roesler and Smith,  1969
TRF07700

[mg/1]


TRF07800

Cmg/1]


TRF07900

[mg/1]

TRF08000

[mg/1]

TRF08600


[%]


 TRF08700


[ft2/1000]


 TRF08800

[ft3!
5.   Cost functions.

     Trickling filter

     a.  Capital cost

        Function of VOL

     X = ALOG(VOL/1000.)
        X = In
 VOL
 TMO
                                                               TRF09400
                                                 112

-------
CCOST(N,1) = EXP(2.924951+.036285*X+.114673*X**2.-.004587*X**3.)*1000.   TRF09500



                                                                       [dollars]
2.924951+0.036285X+0.114673X2-0.004587X3
   CCOST - lOOOe




b. Operating manhours, maintenance manhours, and materials/supplies costs



   Function of QIS1/HQ
   X = ALOG(SMATXC2,IS1)/DMATX(3,N)*43560./1000.)


          Q   *43560
   X = In
             HQ*1000
 (1)  Operating manhours



 OHRS = EXP(4.536510-.095731*X+.173718*X**2.-.010114*X**3.)



   OHRS = e^-536510-0.095731X40,173718X2-0.010114X3





 (2)  Maintenance manhours



 XMHRS = EXP(4.312739-.052122*X+.157473*X**2.-.010245*X**3.)



            4.312739-0.052122X+0.157473X2-0.010245X3
 (3)  Total materials and supplies



 TMSU = EXP(5.105946+.465100*X)




   TMSU = e5-105946+0.465100X






 c. Total operating and maintenance costs



 COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.



   COSTO = [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*WPI)

                                 *3650
                        lant Inf.
Final settler



a. Capital cost



   Function of AFS



X = ALOG(AFS)



   X = In AFS
                                                                       TRF10200
                                                                       [In
                                                           ft  1
                                                           TCUOJ
                                                       TRF10800





                                                       [hrs/yr]








                                                       TRF10900





                                                       [hrs/yr]









                                                       TRF11000





                                                       [dollars/yr]









                                                       TRF11500





                                                       [cents/lOOOgal]
                                                        TRF12100
                                            113

-------
 CCOSTCN.2) - EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000.  TRF12200




    CCOST - 10ooe3-716354W-38986UW-084560x2"0-004718x3                [dollars]




 b.  Operating manhours, maintenance manhours, and materials/supplies  costs



    Function of AFS/ECF


 X = ALOG(AFS/DMATX(15,N))                                               TRF12900
    X =  In
AFS

ECF
 (1)   Operating manhours


 OHRS  =  EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)
    OHRS
            5.846565+0.254813X+0.113703X2-0.010942X3
 (2)  Maintenance manhours



 XMHRS  =  EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)



             5.273419+0.228329X+0.122646X2-0.011672X3
 (3)   Total materials and supplies



 TMSU  =  EXP(5.669881+.750799*X)



   TMSU  e5.669881+0.750799X





 c. Total operating and maintenance costs



 COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.



   COSTO _ [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*WPI)

                    Q..,    _ , *3650
                     Plant Inf.
                                                             TRF13500




                                                             [hrs/yr]







                                                             TRF13600




                                                             [hrs/yr]







                                                             TRF13700




                                                             [dollars/yr]







                                                             TRF14200




                                                             [cents/lOOOgal]
Waste sludge pumps



a. Capital cost




   Function of Q   *ECF
                -Lb 1



   X = ALOG(SMATX(2,IS1)*1.5*DMATX(14,N))




        X = In Q   *1.5*ECF
                J.O J.
                                                              TRF14800
                                           114

-------
CCOST(N,3) - EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.   TRF14900
   CCOST = lOOOe
                3.481553+0.377485X+0.093349X2-0.006222X3
                                                                    [dollars]
b. Operating manhours, maintenance manhours, and materials/supplies costs

   Function of QISi

TC = ALOG(SMATX(2,IS1)*1.5)                                              TRF15700


   X •- In (QIS1*1.5)


(1)  Operating manhours
                                                                    TRF16300

OHRS = EXP(6.097269+.25306T5*X-.193659*X**2.+.078201*X**3.-.006680*X**4.)

  OHRS = e6'°97269+0'253066x-0'193659x2+0'07820:Lx3-0'006680x4       [hrs/ r]
 (2)  Maintenance manhours

XMHRS = EXP(5.911541-.013158*X+.076643*X**2.)

                                        .2
   XMHRS
            5.911541-0.013158X+0.076643X*
                                                                    TRF16500

                                                                    [hrs/yr]
 (3)  Kilowatt hrs per year
Pump efficiency - current values used in program; each can be changed by the
                  replacement on punched card.
PEFF =0.70 for QIS1<1
                   .44MGD
PEFF = 0.74 for Q   <10.08MGD
                 IS1

PEFF = 0.84 for QIS1:>10.08MGD


YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24 *365.

          QTC1*1000000*HEAD*0.7457*24*365
   YRKW = —	
          1440*3960*PEFF*0.9


(4)  Energy cost

ECOST = YRKW*DMATX(10,20)

   ECOST = YRKW*CKWH
 TRF16800

 TRF17100

 TRF17300


 TRF17400


 [kilowatt/yrs]




TRF17500

 [dollars/yr]
                                           115

-------
(5)  Supplies

SCOST - EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.)             TRF17600


   SCOST - e5.851743+0.301610X+0.197183X2-0.017962X3                    [$/yr]



(6)  Total materials and supplies

TMSU = ECOST+SCOST*WPI                                                 TRF17700

   TMSU - ECOST+(SCOST*WPI)                                             [dollars/yr]



c. Total operating and maintenance costs

COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATXC2,1)/365Q.          TRF18200


         - [(OHRS+XMHRS)*DHR*(1+PCT)]+TMSU                                     	
         	Qplant  Inf.*3650	                         [cents/lOOOgal]
                                         116

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
        TklCKLlNG FILTER - FINAL SETTLER
        PKOCEbS IDENTIFICATION NUMBER  11
SubROUTINt. TRFS
                                                                   TRF00100
                                                                   TRF00200
                                                                   TRF00300
                                                                   TRFOOtOO
                                                                   TRF00500
                                                                   TRF00600
                                                                   TRF00700
                                                                   TRF00800
                                                                   TRF00900
 INTEGER osirO<>2                                                   TRFOIOOO
 COMMON SMATX<*:()»30) »TMATX(20»30) »DMATX(20.2U> fOMATX(20»20) »IP(20) »TRF01100
HNPrIO»ISl»lS*:.OSl»OS2»N»IAERFrCCOST(20»5)rCObTO(20»5)»ACOST<20.5)TRF01200
        COMMON INITIAL STATEMENTS
     2»TCOST(20»5)rbHRiPCT»wPI»CLAND»DLAND'FLOW(26).POW(25)»TKWHD(2b)
        PKOCEbS RELATIONSHIPS
        CHARACTERISTICS
                               REOD. TO CALC. EFFLUENT STREAM
TRF01300
TRF01400
TRF01500
TRF01600
TRF01700
TRF01800
TRF01900
TRF02000
TRF02100
TRF02200
TRF02300
TRF02400
TRF02500
      HEAD=UMATX(9'N)
      BOUIN=SMATX(8fISl)+SMATX(17rISl)
      BtTA=.024t>*l.U35**(DMATX<2»N)-20.)
      XN=.91-6.45/DMATX(*,N)
      Qo=DMATX(7»N)*SMATX(2»ISl)
      RHQ=((DMATX(7fN)+l.)*UMATX(3»N))**XN
      BOD=(bMATx(l7.ISl)-»-DMATX<6fN)*SMATX(8»ISl))/DMATX(l,N)
      DEPTH=RHQ*ALOG((BOD+DMATX17»N)>/*DEPTH/RHQ)                                TRF02700
      BuDO=bODlN/(XPO*(DMATx(7»N)*(l.-l./XPO)+l.)J                      TRF02800
      DbODO=SMATX(17•IS1)/(APO*(DMATX(7iN)*(1.-1./XPO)+!.))
      SbOD**=BODo-DBoDO
      SbOD5=SBOUt*DMATX(b»N)
      BtTAN=.00307*1.!«*!** (DMATX (2»N)-20.)
      XPON=EXP*DEPTH/RHQ)
      SON4=i>MATx(b'ISl)*SbOU4/SMATX(8rISl)
      DNH= (bMATx (13»IS1) +SMATX (5»I SI) -SON<+) / (XPON+ (XPON-1. ) *DMATX (7 r N) )
        EFFLUENT STREAM CALCULATIONS
      SMATX(2»Obl)=bMATx(2'iSl)*(l.-DMATX(5>N))/(uMATX(6.N)-DMATX(5>N))
      SMATX(2»Ob2)=bMATX(2'151)*(l.-DMATX(6iN))/(uMATX(5»N)-DMATX(6.N))
      SMATXC+»Obl)=SMATX(1»ISD*DMATX(6»N)
      SMATX(«*»Ob2)=bMATX(H»ISD*DMATX(5»N)
      SMATXl5»Obl)=bON5
      SMATXt5»Ob2)=bONt*DMATX(5.N>
      SMATXl6.0bl)=bMATX(b»lSl)*DMATX(6rN)*bBODt/bMATX(8.lSl)
      SMATX{6»Ob2)=bMATX(6»lSl)*DMATX(5»N)*bBOD<*/bMATX(8rlSl)
      5MATX(7fObl)=bMATX(7»iSl)*DMATX(6»N)
      SMATX(7rOb2)=bMATX(7»iSD*DMATX(5«N>
      SMATX(8»Obl)=bBODt*DMATX(6»N)
      SMATX(8»OS2)=bBODH*DMATX(5iN)
      SMATX(9»Obl)=SBOD'+*DMATX(6»N)+SON5-(-SMATX(<*.ISl)*DMATX(6»N)
      SMATX(9»Ob2)=bBODH*OMATX<5rN)+SON1*DMATX(5»N)+SMATX(t»rISl)*DMATX(5TRF05500
     i»N)                                                                TRF05600
      SMATX(10»OSD=SMATX(9.0S1)+SMATX(7»OS1)*SMATX(6»OS1)              TRF05700
      SMATX(10»OS2)=SMATX(9»OS2)+SMATX(7fOS2)+SMAIX(6»OS2)              TRF05800
                                                                   TRF02900
                                                                   TRF03000
                                                                   TRF03100
                                                                   TRF03200
                                                                   TRF03300
                                                                   TRF03I+00
                                                                   TRF03500
                                                                   TRF03600
                                                                   TRF03700
                                                                   TRF03800
                                                                   TRF03900
                                                                   TRF04000
                                                                   TRFOmOO
                                                                   TRF01200
                                                                   TRF04300
                                                                   TRFO<4<*00
                                                                   TRFOU500
                                                                   TRF04600
                                                                   TRFO<+700
                                                                   TRFOtSOO
                                                                   TRF04900
                                                                   TRF05000
                                                                   TRF05100
                                                                   TRF05200
                                                                   TRF05300
                                                                   TRF05«*00
                                    117

-------
c
c
c
c
c
c
c
c
c
t
c
c
c
c
c
c
c
c
c
c
c
c
c
c
                                                                    TRF05900
                                                                    TRF06000
                                                                    TRF06100
                                                                    TRF06200
                                                                    TRF06300
                                                                    TRF06100
                                                                    TRF06500
                                                                    TRF06600
                                                                    TRF06700
                                                                    TRF06800
                                                                    TRF06900
                                                                    TRF07000
                                                                    TRF07100
                                                                    TRF07200
                                                                    TRF07300
                                                                    TRF07UOO
                                                                    TRF07500
                                                                    TRF07600
                                                                    TRF07700
                                                                    TRF07800
                                                                    TRF07900
                                                                    TRF08000
                                                                    TRF08100
                                                                    TRF08200
                                                                    TRF08300
                                                                    TRFOStOO
                                                                    TRF08500
                                                                    TRF08600
                                                                    TRF08700
                                                                    TRF08800
                                                                    TRF08900
                                                                    TRF09000
                                                                    TRF09100
                                                                    TRF09200
                                                                    TRF09300
                                                                    TRF09HOO
                                                -.00«*587*X**3.)*100TRF09500
                                                                    TRF09600
                                                                    TRF09700
                                                                    TRF09800
                                                                    TRF09900
                                                                    TRF10000
                                                                    TRF10100
                                                                    TRF10200
                                                                    TRF10300
                                                                    TRF10400
                                           MAINTENANCE MANHOURS     TRFIOSOO
                                                                    TRF10600
                                                                    TRF10700
                                                                    TRFIOSOO
                                                                    TRF10900
                                                                    TRF11000
                                                                    TRF11100
                                                                    TRF11200
                                                                    TRF11300
                                                                    TRF11400
                                                                    TRF11500
                                                                    TRF11600
                                                                    TRF11700
                                                                    TRF11800
                                                                    TRF11900
 V-A n ,.r- ,                                                         TRF12000
 X-ALOo(AFb)                                                         TRF12100
 C'-OST(IM,2)=EXP<3.7l63biH-.389861*X+.OBi»560*X**2.-.00'm8*X**3.)*10UTRF12200
1 '                                                                  TRF12300
                                                                    TRF12tOO
      SMATXU2ruSD=SMATXU2.lSl)
      SMATX(12'OS2>=SMATX<12,IS1)
      SMATX(13'OS1)=DN5

      SMTX U^'OSl) =SMATX (It. IS1)+SMATX <6. IS1) * (1 .-SBOD4/SMATX (8» IS1) )
      SMATX(l«trUS2)=SMATX(l«»»OSl)
      SMATX(15»OSl)=SMATXll5rlSD
      SMATX(15'US2>=SMATX(lb.lSD
      SMATX (16» OS1) =SMATX (lt>» IS1)
      SMATX(lb»US2)=SMATX(lbrlSl)
      SMATX117 >usi)=OBOOO
      SMATX(17•oS2 >=SMAT x <17•osi)
      SMATX(3»Obl)=(SB005+1.87*bMATX(H»OSl))/1.67
      SMATX(3fOb2)=tSMATX<8»OS2)+1.87*SMATX(U»OS2))/l.87
      ShATX(ll»OSl) = (DBODO+1.87#SMATX(12»OSl»/l.a7
      SMATX(11»OS2)=SMATX(11.0S1)
      SMATX(18»OSD=SMATX(16.IS1)
      SMATX(18'US2)=SMATX(lti»lSl)
      SMATX(19rusi)=SMATX(iy»isi)
      SMATXtl9fOS2)=SMATX(19iISl)
      SMATX(20»OSl)=SMATX(2UfISl)
      SMATX120'OS2)=SMATX(2U»IS1)
              CAL.C. OF OUTPUT SIZES AND QUANTITIES

      FAR£.A=SMATX(2rISl)/DMATX(3»N)*43560.
      PCR=(t(ODlN-DMATXU'N> )*100./BODIN
      AFb=SMATX(2rIbl)*1000./DMATX(8rN)*DMATX(lij»N)
      VOL=FAREA*DEPTH*DMATX(16»N)
        CALC. OF CAPITAL COSTS FOR TRICKLINto FILTER  BASED ON
        DtSIGN Pi-US EXCESS CAPACITY
      X=ALOb(VOL/1000.)
      CCOST(N»l)=EXP(2.92U9bl+.036285*X+.im673*X**2
     10.
        CALC. OF OPERATING COSTS FOR TRICKLING FILTER BASED  ON
        DtSIGlM CAPACITY ALONEr DOES NOT INCLUDE EXCESS  CAPACITY

X=ALOt.(SMATX (2>IS1)/DMATX(3»N)*(+3560./1000.)
             CALC. OF OPERATING MANHOURS'
             AND MATERIALS AND SUPPLIES

OHRS=EXPU.53b510-.096731*X+.173718*X**2.-.
XMHRS=EXP(«f.3l2739-.032122*X+.157H73*X**2.-.0102'*5*X**3.)
TMSU=EXP1)/3650.


        CALC. OF CAPITAL COSTS FOR FINAL SETTLER bASED ON DESIGN
        PLUS LXCEbS CAPACITY
                                      118

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
              CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
              DESIGN CAPACITY ALONEf DOES NOT INCLUDE EXCESS CAPACITY
      X=ALOb(AFS/DMATXU5f N)
              CALC. OF OPERATING MANHOURS'
              AND MATERIALS AND SUPPLIES
                                                MAINTENANCE MANHOURS
      OHRS=tXP(b.8<+b565+.25'+8l3*X+.113703*X«'*2.-.Ol09t2*X**3.)
      XMHRS=EXP(5.273«*19+.228329*X+.122bt6*X**2.-.011672*X**3.)
      TMSU=tXP(b.669881+.75o799*X)
                   OPERATING COST EQUATION

      COSTO(N»2)=((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU**PI)/SMATX(2i1)/3650.


              CALC.  OF CAPITAL COSTS FOR SLUDGE RETURN PUMPS BASED
              ON DESIGN PLUS EXCESS CAPACITY

      X=ALOo(SMATX(c>I SI)*1.5*DMATX(IHtN))
                                                     TRF12500
                                                     TRF12600
                                                     TRF12700
                                                     TRF12800
                                                     TRF12900
                                                     TRF13000
                                                     TRF13100
                                                     TRF13200
                                                     TRF13300
                                                     TRF13400
                                                     TRF13500
                                                     TRF13600
                                                     TRF13700
                                                     TRF13800
                                                     TRF13900
                                                     TRF14000
                                                     TRF1U100
                                                     TRF1U200
                                                     TRF14300
                                                                   TRF14500
                                                                   TRF14600
                                                                   TRF14700
                                                                   TRF1U800
 CtOST(N»3)=EXP(3.<+815b3+.377485*X+.0933<*9*X**2.-.006222*X**3.)*100TRFm900
10.                                                                TRF15000
                                                                   TRF15100
                                                                   TRF15200
                                                                   TRF15300
                                                                   TRFlStOO
                                                                   TRF15500
                                                                   TRF15600
                                                                   TRF15700
                                                                   TRF15800
                                                                   TRF15900
                                                                   TRF16000
                                                                   TRF16100
                                                                   TRF16200
 OHRS=EXP(to.097269+.25.i066*X-.193659*X**2.+.076201*X**3.-.006680*X*TRF16300
1*4.)                                                               TRFlbtOO
              CALC. OF OPERATING COSTS FOR SLUDGE RETURN PUMPS BASED
              ON DESIGN CAPACITY ALONE» DOES NOT INCLUDE EXCESS
              CAPACITY
      X=ALOG(SMATX(2>IS1)*1.5)
CALC. OF OPERATING MANHOURS»
AND MATERIALS AND SUPPLIES
                                                MAINTENANCE MANHOURS













C
c
c
c

c
c
c
c




XtoHRS=EXPl5.9115'U-.013l58*X+.0766'*3*X**2.)
X=ALOto(SMATX<2rISi»
IF (SMATX(2»Ibl)-l. 30r
-------
t                                                                      TRF19100
C                                                                      TRF19200
C             PKOCEbS ENERGY  INDICES                                    TRF19300
C                                                                      TRF19UOO
      FLOw(N)=5MATX(2»ISl)                                              TRF19500
      PUW(N)=11.                                                        TRF19600
      RLTURN                                                           TRF19700
                                                                       TRF19800
                                  120

-------
                                        SECTION 13

                           CHLORINATION - DECHLORINATION,  CHLOR

Subroutine Identification Number 12

Chlorination - Dechlorination,  CHLOR


1.  Process symbol.
   IS1
2.  Input parameters and nominal values.

      DMATX(l.N) - DCL2

      DMATX(2,N) = TCL2

      DMATX(3,N) - CCL2

      DMATX(4,N) - DS02

      DMATX(5,N) -= CS02

      DMATX(U.N) «= ECF


      DMATX(15,N) - ECF


      DMATX(16,N) - ECF
                   Rev. Date 8/1/77
IS1:  Liquid input stream

OS1:  Liquid output stream

  N:  User assigned number to the process




Dose of chlorine, mg/1.  [8.J

Chlorine contact time, minutes.  [30.J

Cost of chlorine, $/ton.  [220.]

Dose of sulfur dioxide, mg/1.   [2.5]

Cost of sulfur dioxide, $/ton.  [180.J

Excess capacity factor for the sulfur
dioxide feed system.   [1.2]

Excess capacity factor for the chlorine
feed system.        [1.2]

Excess capacity factor for the contact
basin.     [1.5]
3.  Output parameters which are printed on computer output sheets.

      DCL2 = DMATX(l.N)

      TCL2 - DMATX(2,N)

      CCL2 - DMAIX(3,N)

      DS02 - DMATX(4,N)

      CS02 = DMATX(5,N)

      BVOL - OMATX(l.N)
Volume of the chlorine contact basin,
[cu. ft.].
                                            121

-------
      CUSE = OMATX(2,N)


      SUSE - OMATX(3,N)


      CCOST


      COSTO



      ACOST


      TCOST


      ECF
                              Amount of chlorine used,   [tons/yr].

                              Amount of sulfur dioxide used, [tons/yr].


                              Capital cost,  [dollars].


                              Operating and maintenance cost,
                              [cents/1000 gal].


                              Amortization cost, [cents/1000 gal].


                              Total treatment cost, [cents/1000 gal].

                              Excess capacity factor.
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.
      BVOL = SMATX(2,IS1)*TCL2/1.44/7.48*1000.*DMATX(16,N)
           BVOL
   *TCL2*1000*ECF
                      1.44*7.48


      CUSE = SMATX(2,IS1)*DCL2*8.33*365./2000.
           CUSE =
QIS ^0.2*8.33*365


     2000
      SUSE = SMATX(2,IS1)*DS02*8.33*365./2000.
                  QT  *DS02*8.33*365
           SUSE =*_ IS1
                       2000


      FACTR = CUSE/(CUSE+SUSE)
           FACTR
                      CUSE
                  CUSE+SUSE


      OC • FACTR*OHRS


           OC - FACTR*OHRS


      XC = FACTR*XMHRS


           XC = FACTR*XMHRS


References:


      Smith,  1969


      Patterson and  Banker,  1971
                                                        [ft3]
[tons/yr]
                                     [tons/yr]
                                     [no units]
                                                                    CHL03300
                                                 CHL03400
                                                                    CHL03500
                                                 CHL03600
                                                 CHL07800
                                                 CHL07900
                                          122

-------
5.  Cost functions.

      a.  Capital cost

          Contact basin:

          Function of BVOL

           X «= ALOG(BVOL/1000.)

               X - In
                                                              CHL04200
                  BVOL
                        1000
      CCOST(N.l) = EXP(2.048061+.521909*X-.002674*X**2.+.004159*X**3.)*1000.
                                                                   CHL04300
                        2.048061+0.521909X-0.002674X2+0.004159X3
     CCOST - lOOOe

Cl_ feed system:

CUSE = SMATX(2,IS1)*DCL2*8.33*365./2000.

            Q_  *DCL2*8.33*365
                                                                        [dollars]
                                                                    CHL03400
           CUSE =
                      2000
      SUSE = SMATX(2,IS1)*DS02*8.33*365./2000.
           SUSE
                  QIgl*DS02*8.33*365
                     2000

      FACTR = CUSE/(CUSE+SUSE)
                                                 [tons/yr]
                                                 [tons/yr]
                                                                    CHL03500
                                                              CHL03600
           FACTR
                    CUSE
                                         [no  units]
                    CUSE+SUSE

      Function of CUSE

      X = ALOG(CUSE*2000./365.*DMATX(15,N)+SUSE*2000./365.*DMATX(14,N))
           X «= ln((CUSE*ECF +SUSE*ECF )*2000)
                           °         8   365
                                                             CHL05500
      XCOST = EXP(2.264294-.044271*X+.065029*X**2.-.002536*X**3.)*1000.
                                                                    CHL05600
           XCOST = lOOOe

      CCOST(N,2) = FACTR*XCOST
                        2.264294-0.044271X+0.065029X2-0.002536X3
                                                                 [dollars]

                                                             CHL06100
           CCOST
                     CUSE
                   CUSE+SUSE
                              *XCOST
                                             [dollars]
      SO. Feed system (If used)

           Function of SUSE

      CCOST(N,3) = XCOST-CCOST(N,2)

          CCOST = XCOST-CCOST
                                        [dollars]
                                                              CHL10500
                                          123

-------
b.  Operating roarihours, maintenance manhours and materials/supplies  costs



      Function of (CUSE+SUSE)



      X - ALOG (CUSE+SUSE)                                            CHL06900




           X • In (CUSE+SUSE)



 (1)  Operating manhours  (C12+S02 Feed Systems)



OHRS = EXP(4.538517+.543669*X)                                       CHL07000





      OHRS = e
                                              [hrs/yr-,




(2)  Maintenance manhours (Cl.+SO. Feed Systems)



XMHRS = EXP(3.752071-.224812*X+.158849*X**2.-.006064*X**3.)
                 . 752071-0. 224812X+0.158849X2-0.006064X3
(3)  Total materials and supplies (Cl^+SO- Feed Systems)




TMSU = EXP(6.126105+.287016*X)





              6.126105+0.287016X
      TMSU = e




c.  Total operating and maintenance costs




      Contact Basin:




      Operating cost assumed zero




      COSTO(N,1) - 0




             COSTO = 0




      Cl. Feed System




(1)  Operating manhours




      OC = FACTR*OHRS




(2)  Maintenance manhours




      XC = FACTR*XMHRS




(3)  Total materials and supplies




      TMSUC = CUSE*CCL2+FACTR*TMSU




           TMSUC = (CUSE*CCL2)+(FACTR*TMSU)
                                                [dollars/yr]
                                          [cents/1000 gal]
                                                                     CHL07100
                                                                     CHL07200
                                                                     CHL04900
                                                                     CHL07800
                                                                     CHL07900
                                                                     CHL08000
                                                     [dollars/yr]
                                          124

-------
COSTOCN.2) - ((OC+XC)*DHR*(1.+PCT)+TMSUC)/SMATX(2,1)/3650.
               CHL08500
      COSTO . [(OC+XC)*DHR*(1+PCT)]+TMSUC


                     Slant Inf.*3650



SO. Feed System (If Used)



(1)  Operating manhours



      OS - OHRS-OC



(2)  Maintenance manhours



      XS - XMHRS-XC



(3)  Total materials and supplies



      TMSUS - SUSE*CS02+(1.-FACTR)*TMSU



           TMSUS = (SUSE*CS02)+[(1-FACTR)*TMSU]
[cents/1000 galJ
 [dollars/yr]
                CHL11200
                CHL11300
                CHL11400
      COSTO(N,3) = ((OS+XS)*DHR*(1.+PCT)+TMSUS)/SMATX(2,1)/3650.    CHL12000





           COSTO = [(OS+XS)*DHR*(1+PCT)]+TMSUS

                            Q01  .  T , *3650           [cents/1000 gal]
                             riant Int.
                                          125

-------
c
c
c
c
c
c
c
c
        CHLORINATION - DECHLORINATION
        PKOCESS IDENTIFICATION NUMBER
SUBROUTINE CHLOR
                                                                   CHL00100
                                                                   CHL00200
                                        12                         CHL00300
                                                                   CHL00400
                                                                   CHL00500
                                                                   CHL00600
                                                                   CHL00700
                                                                   CHLOOBOO
                                                                   CHL00900
 INTEGER Obl»OS2                                                   CHL01000
 COMMON SMATX(20f30)iTMATX(20r30)rDMATX(20.20)»OMATX<20»20)rlP(20>•CHL01100
UNP»lUfISi»lS2»OSlK3S2»N»lAERF»CCOST<20r5)»COSTO(20r5)»ACOST<20»5)CHL01200
        COMMON INITIAL STATEMENTS

c
c
c
c





c
c
c
c


c
c
c
c




c
c
c
c
c

2»TCOST(20.5)»DHR»PCT»wPI»CLAND.DLAND»FLOW(25>fPOWC25>»TKWHD<25)


ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS

DCL2=UMATX(1»N)
TCt_2=UMATX(2'N)
CCL2=UMATx(3»N)
DS02=JMATXU»N)
CS02=UMATX(5rN)


EFFLUENT STREAM CALCULATIONS

00 10 I=2«20
10 SMATX(I»Obl)=SMATX(I.lSD


CALC. OF OUTPUT SIZES AND QUANTITIES

BVOL=bMATX(2»ISl>*TCL2/lt'*<+/7.^8*1000.*DMATx(16»N)
CUSE=bMATx (2 •IS1>*DCL2*8. 33*365. /2000.
SUSt=bMATX(2'lSD*US02*8.33*365./2000.
FACTR=CUSL/(CUSE+SUSEJ


CALC. OF CAPITAL COSTS FOR CONTACT bASlN BASED ON DESIGN
PLUS EXCESS CAPACITY

X=AL06(BVOL/1000.)
CHL01300
CHLOltOO
CHL0150U
CHL01600
CHL01700
CHL01800
CHL01900
CHL02000
CHL02100
CHL02200
CHL02300
CHL02100
CHL02500
CHL02600
CHL02700
CHL02600
CHL02900
CHL03000
CHL03100
CHL03200
CHL03300
CHL03400
CHL03500
CHL03600
CHL03700
CHL03800
CHL03900
CHL04000
CHLOmOO
CHL04200
CCOST(N.U=EXP(2.0**80ol+.521909*X-.00267«**X**2.-»-.004l59*X**3.)*100CHLO'*300

C
C
C
C

C
C
C
C
C


C
C
10.


CALC. OF OPERATING COSTS FOR CONTACT BASIN

COSTOIN»1)=0.


CALC. OF CAPITAL COSTS FOR CHLORINE AND SULFUR DIOXIDE
FEED SYSTEMS bASED ON DESIGN PLUS EXCESS CAPACITY

X^ALOt.(CUbE*2uOO./365.*DMATX(15rN)-fSUSE*200u./365.*DMATX(lt»N))
XCOST=EXPl2.26429H-.0<+4271*X-»-.065029*X**2.-.00253b*X**3.)*1000.
,

CHLOttOO
CHLOU500
CHL04600
CHL01700
CHLOU600
CHL01900
CHL05000
CHL05100
CHL05200
CHL05300
CHL05400
CHL05500
CHL05600
CHL05700
CHL05800
                                     126

-------
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
                CALC. OF CAPITAL COSTS FOR CHLORINE FEED SYSTEM

   CCOST(N,2)=FACTR*XCOST
           CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS AND
           MATERIALS AND SUPPLIES FOR CHLORINE AND SULFUR DIOXIDE
           FtED SYSTEMS bASED ON DESIGN CAPACITY ALONE' DOES NOT
           INCLUDE EXCESS CAPACITY

   X=ALOG(CUbE+SUSE>
   OhRS=EXP (<*.538517+ . 5**3669*X)
   XMHRS=EXP(3.7t>2071-.2«i<+8l2*X-«-.1588<+9*X**2.-.OU606ff*X**3.)
   TMSU=EXP(o.l2t>105+.287016*X)
                CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
                AND MATERIALS AND SUPPLIES FOR CHLORINE FEED SYSTEM

   OC=FACTR*OHRS
   XC=FACTR*XMHRS
   TMbUC=CUSt*CCL2+FACTR*TMSU
                OPEARTINb COST EQUATION FOR CHLORINE FEED SYSTEM

            ) = «OC+XC>*DHR* = i(os+xs)*DHR*(i.+PCT)+TMSUS)/SMATX(2»i)/aeso.
           ASSIGNMENT OF VALUES TO OMATX
 CHL05900
 CHL06000
 CHL06100
 CHL06200
 CHL06300
 CHL06400
 CHL06500
 CHL06600
 CHL06700
 CHL06800
 CHL06900
 CHL07000
 CHL07100
 CHL07200
 CHL07300
 CHL07«»00
 CHL07500
 CHL07600
 CHL07700
 CHLU7800
 CHL07900
 CHL08000
 CHL08100
 CHL08200
 CHL08300
 CHLOBtOO
 CHL08500
 CHL08600
 CHL08700
 CHL08800
 CHL08900
 CHL09000
 CHL0910Q
 CHL09200
 CHL09300
 CHL09UOO
 CHL09500
 CHL09600
 CHL09700
 CHL09800
 CHL09900
 CHL10000
 CHL10100
 CHL10200
 CHL10300
 CHL10100
 CHL10500
CHL10600
 CHL10700
 CHL10800
 CHL10900
 CHL11000
CHL11100
CHL11200
CHL11300
CHL11<*00
CHL11SOO
 CHL11600
CHH1700
CHL11800
CHL11900
CHL12000
CHL12100
CHL12200
CHL12300
                                     127

-------
C                                                                        CHL12100
   HO OMATXUrN)=BVOL                                                    CHL12500
      OMATX12»N)=CUSE                                                    CHL12600
      OMATXl3,N)=SUbE                                                    CHL12700
C                                                                        CHL12600
C                                                                        CHL12900
C             PKOCESS ENERGV INDICES                                     CHL13000
c                                                                        CHL13100
      FLO«f                                               CHL13200
      PO«(NJ=12.                                                         CHLi3300
      RETURiM                                                             CHL13tOO
                                                                         CHLi3500
                                    128

-------
                                             SECTION 14

                                     FLOTATION THICKENING, TFLOT
Subroutine Identification Number 13

Flotation Thickening,  TFLOT


1.  Process symbol.




      !                  ISl (Sludge)
                    Rev. Date 8/1/77
      l
      L _
                      N
                                  OS2 (Recycle)
      IS2 (Wash water)

           OPTIONAL
                        OS1
2.  Input parameters and nominal values.

    DMATX(1,N)  = TRR

    DMATX(2,N)  = TSS


    DMATX(3,N)  = GTH


    DMATX(4,N)  = GSTH


    DMATX(S.N)  = HPWK


    DMATX(6,N)  = DPOLY

    DMATX(7,N)  = CPOLY

    DMATX(15,N)  = ECF
     ISl: Sludge input stream

     IS2: Wash water input stream

     OS1: Sludge output stream

     OS2: Recycle output stream

       N: User assigned number to the process




Solids recovery ratio for thickening.  [.95]
Total suspended solid concentration of OS1,
mg/1.  [40,000.]

Design overflow rate for the thickener,
gpd/sq ft.  [1150.]

Design solids loading rate for the thickener,
Ib/day/sq ft.  [48.3

Hours per week that the thickener is operated,
hr/wk.  ClOO.]

Dose of polymer, Ib/ton  [lO.J

Cost of polymer, $/ton.  [.45]

Excess capacity factor for the process.  [2.J
3.  Output parameters which are printed on computer output sheets.

    TRR = DMATX(l.N)

    TSS = DMATX(2,N)

    GTH = DMATX(3,N)

    GSTH = DMATX(4,N)

    HPWK = DMATX(S.N)

    DPOLY • DMATX(6,N)
                                                129

-------
   CPOLY = DMATX(7,N)

   AIHM = OMATX(l.N)                          Surface area of each flotation thickener used,
                                              Isq ft.]

   XN  = OMATX(2,N)                            Number of flotation thickeners used.

   ATHM1 = OMATX(3,N)                         Total required surface area for flotation
                                              thickening, [sq ft].

   CCOST                                      Capital cost, [dollars].

   CQSTO                                      Operating and maintenance cost, [cents/ lOOOgal].

   ACOST                                      Amortization cost, [cents/1000 gal].

   XCOST                                      Total treatment cost,  [cents/1000  gal].

   ECF                                       Excess capacity factor.


4.  Theory  and functions  -  FORTRAN  statement  followed by equivalent algebraic equation.

          SMAT(I)  = SMATX(I,  IS2)                                            TFL02500

              SMAT(I)  = SMATX(I,IS2)        [mg/l]

              where I = 1,20   i.e.  I,Q,SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,DP,DFM,
                                   ALK,DBOD,NH3,N03


          SMATX(lO.OSl) = DMATX(2,N)                                         TFL02600

              TSS    =  TSS                  [mg/l]
                 OS1


          SMATX(2,OS1)  =  DMATX(1,N)*(SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))/SMATX(10,OS1)

                      TRK*  [[Qi

               osi
          ATH1 = (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33/DMATX(4,N)*168./DMATX(5,N)
              ATH1 -                TSTS                      2]
                               GSTH*HPWK
          ARCY = . 00288* ATH1                                                TFL03400

              ARCY    0.00288ATH1     [MGD]


          SMATX(2,IS2)    ARCY                                               TFL03500

              QIS2  = ARCY              [MGD]
                                               130

-------
SMATX(2,OS2) = SMATX(2,IS1 )+SMAT(2)-SMATX(2,OSl)

    °-OS2 - QIS1^IS2-QOS1      ^MGD]

ATH2 = SMATX(2,OS2)*1000000./DMATX(3,N)*168./DMATX(5,N)
    ATH2
             QnBi>*1000000*168        [ft2-j
                 GTH*HPWK
ATHM = ATH2*DMATX(16,N)
    ATHM = ATH2*ECF

ATHM = ATH1*DMATX(16,N)
    ATHM = ATH1*ECF
                                [ft2!
                                [ft2!
TEMP = SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10)
    TEMP = [QIsl*TSSIsl]f[QIS2*TSSIS2J        [MGD

SMATX(10,OS2) = (TEMP-SMATX(2,OS1)*SMATX(10,OS1))/SMATX(2,OS2)

                                ,,)          [MGD  (mg/1)]
    TSS
       OS 2
                       OS 2
TEMP = TEMP/(SMATX(2,IS1)+SMAT(2))
    TEMP = - TEMP
             QIS1+ QIS2
TEMPI = SMATX( 10,031) /TEMP
              TSS,
    TEMPI
                 OS1
                                  [no units]
                 TEMP
TEMP2 = SMATX(10,OS2)/TEMP
             TSS
    TEMP 2
                OS2
                                  [no units]
                                                                    TFL03700
                                                                    TFL03800
                                                                     TFLOAOOO
                                                                     TFL04200
                                                                     TFL04300
                                                                     TFL04400
                                                                     TFL04500
                                                                      TFL04600
                                                                      TFL04700
             TEMP
                                      131

-------
         TEMPS = (SMATX(2,IS1)*SMATX(I,IS1)+SMAT(2)*SMAT(I))/(SMATX(2,IS1)+SMAT(2))

                      Q   *SMATX(I,IS1)+QT  *SMAT(I)
             TEMP3      IS1 _       IS2 _      [mg/1]       TFL05300
             where I = 3,9     i.e.  SOC,SNBC,SON,SOP,SFM,SBOD,VSS


         SMATX(I.OSl)  = TEMP1*TEMP3                                      TFL05500

             SMATX(I,OS1) = TEMP1*TEMP3                      [mg/l]

             where I = 3,9


         SMATX(I,OS2)  = TEMP2*TEMP3                                      TFL05600

             SMATX(I,OS2)    TEMP2*TEMP3                      [mg/l]

             where I = 3,9



         SMATX(I.OSl)  =(SMATX(I,IS1)*SMATX(2,IS1)+SMAT(I)*SMAT(2))/(SMATX(2,IS1)+SMAT(2))

                            [SMATX(I,IS1)*Q    ]+[SMAT(I) *Q   J
             SMATX(I,OS1)    - IS1  - ^1 [mg/1]    TFL05800
                                          IS14 QIS2


             where I = 11,20   I.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03


         SMATX(I,OS2)  = SMATX(I.OSl)                                      TFL06000

             SMATX(I,OS2)    SMATX(I,OS1)                     [mg/l]

             where I   11,20
References:
        Smith and Eilers,  1975
        McMichael,  1973
        Patterson and  Banker, 1971



        Cost  Functions.


        a.  Capital cost


           Function of ATHM


           X = ALOG(ATHM)                                                TFL09600

               X   In ATHM
                                              132

-------
    CCOST(N.l) = EXP(1.717538+.453735*X)*1000.*XN



                        1.717538+0.453735X

        CCOST - 1000XN*e
                                                                    TFL09700
[dollars]
b.  Operating manhours, maintenance manhours, and materials/supplies costs



    Function of ATHM*XN/ECF



    X = ALOG(ATHM/DMATX(16,N)*XN)                                   TFL10300


        x „ ln ATHM*XN

                 ECF
(1) Operating manhours



    OHRS = EXP(4.992517-.325053*X+.084026*X**2.)



                4.992517-0.325053X+0.084026X2






(2) Maintenance manhours



    XMHRS = EXP(4.832373-.336504*X+.083020*X**2.)



        j^y   = e4.832373-0.336504X+0.083020X2




(3)  Materials  and supplies



    HPD = EXP(-1.254959+.852347*X)



               -1.254959+0.852347X
        HPD = e
[hrs/yr]
[hrs/yr]
           TFL10900
           TFL11000
           TFL11100
    ELEC = HPD*4.54*(DMATX(5,N)/7.)
        ELEC =  HPD*4.54*HPWK
            TFL11200




 [dollars/yr]
    PWAS  = (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33        TFL11300





       PWAS  = C(QK1*TSSIS1)+ (QIS2*TSSIS2)]*8.33         [ib/day]
                                       133

-------
    POLC - PWAS*365./2000.*DMATX(6,N)*DMATX(7,N)                 TFL11400




                PWAS*365*DPOLY*CPOLY
                       2000
                                                         r
                                                         Ldollars/yr]
c.   Total operating  and maintenance costs



    COSTO(N.l)  =  ((OHRS+XMHRS)*DHR*(1.+PCT)+ELEC+POLC)/SMATX(2,1)/3650.


                                                                 TFL11900

             -  [ (OHRS+XMHRS)*DHR*(1+PCT) ]+ELEC+POLC    r      ,       .,
             	Q^	.   *3650	   Ccents/lOOOgalJ
                                     134

-------
C                                                                       TFL00100
c             FLOTATION THICKENING                                      TFLOOZOO
C             PKOCEbS IDENTIFICATION NUMBER  i3                         TFL00300
C                                                                       TFL00400
      SUbROUTINL TFLOT                                                  TFL00500
C                                                                       TFL00600
C                                                                       TFL00700
c             COMMON INITIAL STATEMENTS                                 TFLOOSOO
C                                                                       TFL00900
      INTEGER OS1.0S2                                                   TFL01000
      DIMENSION Y(12)»SMAT<20)                                          TFL01100
      COMMON SMATX(i!0»30) >TMATX(20»30) »UMATX(20r20).OMATX(20»20),IP(20)»TFL01200
     llNP»lO»ISl>lSi;fOSliOS2fN»IAERFfCCOST<20»5)»COSTOl20»5)rACOST<20»5)TFL01300
     2'1COST(20»5)»UHR»PCT»rtPl»CLAND»DLAND»FLOW(2b)iPOW(2b)rTKWHD(25)   TFL01400
      DATA r/25.r50.f 100. rlt>0.»200.»250.»300. »<»00. r500.»600. »800. ,1000./TFLO1500
C                                                                       TFL01600
C                                                                       TFL01700
C             PROCESS RELATIONSHIPS REQD. To CALC. EFFLUENT STREAM      TFL01800
c             CHARACTERISTICS                                           TFLOigoo
C                                                                       TFL02000
      DO 10 I=l»20                                                      TFL02100
   10 SMAT(1)=0.                                                        TFL02200
      IF (Ii>2) ^0,40.20                                                 TFL02300
   20 00 30 I=l»20                                                      TFL02400
   JO SMAT(I)=SMATX(I,IS2)                                              TFL02500
   10 SMATX(10»USD=DMATX(2»N)                                          TFL02600
      SMATX(2»Obl)=DMATX(lrN)*(SMATX(2»lSD*SMATX(10»ISl)+SMAT(2)*SMAT(lTFL02700
     10))/SMATX(10»OSD                                                 TFL02800
      ATHl=(SMATX(2fISl)*SMATX<10»ISl)+SMAT<2)*SMAT(10))*8t33/DMATX(U>N)TFL02900
     1*168./DMATX(5»N)                                                  TFL03000
      IF (Ib2) 60*50*60                                                 TFL03100
   bO ARCY=0.                                                           TFL03200
      GO TO 70                                                          TFL03300
   oO AKCY=.002&8*ATH1                                                  TFL03UOO
      SMATX<2»IS2)=ARCY                                                 TFL03500
   70 ShAT(i)=A«CY                                                      TFL03600
      SMATX(2»Ob2)=SMATX(2'lSl)+SMAT(2)-SMATX(2*OSl)                    TFL03700
      ATH2=i>MATA(2'OS2>*100uOOO./DMATX(3>N)*16B./DMATX<5»N)             TFL03800
      IF (ATH1-ATH2) 80»90»yO                                           TFL03900
   ttO ATHM=ATH2*DMA1X(16»N)                                             TFL01000
      GO TO 100                                                         TFL04100
   90 ATHM=ATH1*DMA1X(16»N)                                             TFL04200
  100 TLMP=bMATX(2»lSl)*SMATX(lOrISlH-SMATf2)*SMAT<10)                  TFL01300
      ShATX(10»uS2) = (TEMP-SMATX(2»osi)*SMATX(10,osi))/SMATX(2.OS2)      TFLO^IOO
      TtMP=lEMP/(SMATX(2»ISl)*SMAT(2))                                  TFL04500
      TLMPI=SMATX(10 »osi)/TEMP                                          TFLOU&OO
      TEMP2=SMA1X(10»OS2)/TEMP                                          TFLOU700
C                                                                       TFL01800
C                                                                       TFLO«»900
C             EFFLULNT STREAM CALCULATIONS                              TFL05000
C                                                                       TFL05100
      DO 110 I=3r9                                                      TFL05200
      TEMP3=(SMATX(ii»ISl)*SMATX(I.ISl)+SMAT(2)*SMATlI))/(SMATX(2»lSl)+SMTFL05300
     1AT(2)>                                                            TFL05400
      SMATX(I»OS1)=TEMP1*TEMP3                                          TFL05500
  110 SMATX(I»Ob2)=TEMPi:*TEMP3                                          TFL05600
      DO 120 1=11*20                                                    TFL05700
      SMATX(I*Obl)=(SMATX(I.ISl)*SMATX(2»ISl)+SMAT(I)*SMAT(2))/(SMATX(2.TFL05800
                                      135

-------
     1IS1)+;>MAT<2»
      SMATXlI.Ot>2)=bMATX
              CALC. OF OUTPUT SIZES  AND  QUANTITIES

      ATHM1=ATHM
      XN=O.
      xx=o.
      K=0
      00 160  I=1»12
      IF (ATHM-r(D) 130>13U>140
  1.10 ATHM=riD
      GO TO 170
  140 IF (I-12> 160rl50»lbO
  IbO ATHM=Y(12)
  loo CONTINUE
  170 IF (ATHM-25.) 180.1aO»190
  laO ATHM=25.
      XN=1.
      GO TO 240
  190 IF (ATHMl-1000.) 230*230•200
  2UO XN=ATHM1/1000.
      K=XN
      XX=K
      IF ((XN-Xx)*1000.-500.) 210»210r220
  210 XN=XX+.5
      GO TO 210
  220 XN=XX+1.
      GO TO 240
      ATHM=ATHM/2.
c
c
c
c
c
c
c
c
c
c
c
c
L

C
C
C
c
c
            CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
            CAPACITY

240 X=AL06UTHM)
    CCOST(N»l)=EXP(1.7175.i8+.453735*X)*lOOO.*XN


            CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONEr
            DUES NOT INCLUDE EXCESS CAPACITY

    X=ALOfaUTHM/DMATX
-------
      OMATX12»N)=XN                                                     TFL12500
      OMATXl3rN)=ATHMl                                                   TFL12600
C                                                                       TFL12700
C                                                                       TFL12800
C             PKOCESS ENERGY  INDICES                                     TFL12900
C                                                                       TFL13000
      FLO*(N)=SMATX12»IS1)                                               7FL13100
      POW(N)=13.                                                         TFL13200
      RETURN                                                            TFL13300
      END                                                               TFL13400
                                      137

-------
                                          SECTION  15

                              MULTIPLE HEARTH  INCINERATION,  MHINC

Subroutine Identification Number  14

Multiple Hearth Incineration, MHINC
                                    Rev.  Date 8/1/77
1.  Process symbol.
                                                            IS1:   Liquid input stream

                                                            OS1:   Liquid output stream

                                                              N:   User assigned number
                                                                  to the process
 2.  Input parameters and nominal values.
     DMATX(l.N) = ML

     DMATX(2,N) = NINC

     DMATX(3,N) = HPWK


     DMATX(A,N) = SPER

     DMATX(5,N) = WV

     DMATX(6,N) = HV

     DMATX(7,N) = TYPE


     DMATX(8,N) = FC

     DMATX(9,N) = CNG

     DMATX(16,N) = ECF
Mass loading, lb/hr/sq ft of hearth area. [2.J

Number of multiple hearth incinerators. [1.]

Hours per week that the incinerators are operated
hr/wk. [35.]

Number of startup periods per week. [5.J

Wind velocity, mph. [O.J

Higher heat value for volatiles, Btu/lb. [10,000.]

Program control:  type of fuel used; 1 • fuel oil,
2 = natural gas, 3 •= digester gas. [l.]

Cost of fuel oil, $/gallon. [.30]

Cost of natural gas, $/1000 cu ft. [.97]

Excess capacity factor for the process. [l.J
 3.  Output parameters which are printed on computer output sheets.
     OMATX(l.N) = FHA

     OMATX(2,N) = WFYR

     OMATX(3,N) = PSDD

     OMATX(4,N) = ECOST

     OMATX(5,N) = FCOST
Total hearth area, [sq ft].

Total fuel usage, [lb/yr].

Amount of dry solids to be incinerated,  [lb/day].

Cost of electrical power to operate the  incinerator,  [$/yr],

Cost of fuel to operate the incinerator, [$/yr].
                                               138

-------
     CCOST

     COSTO

     ACOST

     TCOST

     ECF
                       Capital cost, [dollars].

                       Operating and maintenance cost, [cents/1000 gal].

                       Amortization cost, [cents/1000 gal].

                       Total treatment cost, [cents/1000 gal].

                       Excess capacity factor.
4.  Theory and functions  -  FORTRAN statement  followed by equivalent algebraic equation.


     PSDD = SMATX(10,IS1)*SMATX(2,IS1)*8.33                                  MHI02500

          PSDD = 8.33TSSIS1*QIS1                                             [Ib/day]


     FHAT • 58.31*SMATX(2,IS1)*SMATX(10,IS1)/DMATX(3,N)/DMATX(1,N)*DMATX(16,N)


                                                             MHI02600
FHAT =58.31 QIS1*TSSIS1*ECF
            HPWK*ML
     XX - FHAT/DMATX(2,N)
          XX
     FHAT
     NINC
     FHA = SFHA(I)

          FHA = SFHA(I)

          where I « 1,59


     FHA = 3120


     CYT = 13.+.024*FHA       (For FHA <_ 1700)

          CYT - 13+0.024FHA


     CYT = .09*(FHA-1100.)     (For FHA _< 2300)

          CYT = 0.09(FHA-1100)


     PASH = (SMATX(10,IS1)-SMATX(9,IS1))/SMATX(9)IS1)

          PASH = TSSIS1-VSSIS1
                                                   MHI03400
                   VSS



     HASH =  68.*PASH

          HASH  =  68PASH
             IS1
    [ft2]
                                                                   MH102800
    [ft2]
                                                                   MH 103100

                                                                   [ft2]
    [ft2]
    MH103900

    [hrs]


    MHI04200

    [hrs]


    MHI04500


    [no units]



    MH 104600

[BTU/lb dry VS]
                                              139

-------
PWAT = (1000000.-SMATX(10,IS1))/SMATX(9,IS1)

     PWAT =1000000-TSSisi
               vssisl

HWSL - 1404.3*PWAT

     HWSL = 1404.3PWAT
SAREA = 64.03*FHA**.51

     SAREA = 64.03[FHA]
0.51
VSPH = SMATX(9,IS1)*SMATX(2,IS1)*58.31/DMATX(3,N)

     VSPH = VSSISl*QlSl*58-31
                 HPWK
HC = 1.735*(1.+.374*DMATX(5,N))

     HC = 1.735(1+0.374WV)


QTRAN = (1.279+HC)*100.*SAREA*DMATX(2,N)/VSPH

     QTRAN = 100(1.279+HC)*SAREA*NINC
                      VSPH


QCOOL = 267.*FHA*DMATX(2,N)/VSPH

     QCOOL = 267FHA*NINC
                 VSPH


QNET = 2725.+HASH+HWSL+QCOOL+QTRAN-DMATX(6,N)+246.

     QNET = 2725+HASH+HWSL+QCOOL+QTRAN-HV+246


TEMP = SMATX(9,IS1)*SMATX(2,IS1)*8.33*365.

     TEMP = VSST  *Q   *8.33*365
               1DJ.  IS1


QNET = QNET*TEMP

     QNET = QNET*VSSIS1*QIS18.33*365


YSBH = 8.*CYT/9.+8736.-52.*DMATX(3,N)*7./9.
     YSBH=8CYT+8736_52HPWK*Z
YHUH = 10.*CYT/9.+52.*CYT*DMATX(4,N)/9.

     YHUH = 10CYT+(52CYT*SPER)
                    9
 MHI04700


    [no units]



 MH104800

[BTU/lb dry VS]


 MHI04900

    [ft2]


 MHI05000

 [lb dry VS/hr]



 MHI05100

 [BTU/hr/ft2]


 MHI05200


[BTU/lb dry VS]


 MHI05300


[BTU/lb dry VS]


 MHI05400

[BTU/lb dry VS]


 MHI05700

[lb dry VS/yr]


 MHI05800

    [BTU/yr]


 MHI05900

    [hr/yr]


 MHI06000

    [hr/yr]
                                         140

-------
QHUP = YHUH*1913.*FHA*DMATX(2,N)


     QHUP = YHUH*1913FHA*NINC



QSB - YSBH*315.*FHA*DMATX(2,N)


     QSB = 315YSBH*FHA*NINC



QTOT = QHUP-HJSB+QNET


     QTOT - QHUP+QSB+QNET
WFYR = QTOT/15019.
(For oil)
            QHUP+QSB-KJNET
                15019
FCOST = WFYR/7.481*DMATX(8,N)


             WFYR*FC
     FCOST
              7.481
WFYR   QTOT/15581.    (For nat. gas)
FCOST = WFYR/45.8*DMATX(9,N)


     FCOST = QTOT*CNG
             15581*45.8
CFDG = QTOT/8967./.0695     (For dig gas)


     CFDG = QTOT
            8967*0.0695



TYR = SMATX(10,IS1)*SMATX(2,IS1)*1.52


     TYR = TSSIS1*QIS1*1.52



WTON = 554.24/FHA**.3572


            554.24
     WTON
            [FHA]
                 ,0.3572
ECOST = WTON*TYR*DMATX(10,20)


     ECOST = WTON*TYR*CKWH



DPTON = FCOST/(PSDD*365./2000.)


     DPTON = FCOST
             365PSDD
              2000
MH106100


 [BTU/yr]



MH106200


 [BTU/yr]



MH 106300


 [BTU/yr]



MHI06900



 [Ib/yr]




MHI07000



 [dollars/yr]



MHI07700



 [Ib/yr]




MH 107800



 [dollars/yr]




 MHI08500


 [ft3/yr]




 MH109100






 MH 109200
                                                MHI09300


                                                [dollars/yr]


                                                MHI09900



                                                [dollars/ton]
                                          141

-------
References:


     Patterson and Banker,  1971


     Smith and Eilers,  1975



5.  Cost functions.



     a.  Capital cost


          Function of PSDD*ECF


          X - ALOG(PSDD/24.*DMATX(16,N))                                       MHI10500


              X = In PSDD*ECF
                       Z3



          CCOST(N.l) * EXP(2. 377364+. 598986*X)*1000.                          MHI10600



              CCOST = iQOOe2- 377364+0. 598986X                                 [dollars]




     b.  Operating manhours, maintenance manhours and materials/supplies costs


          Function of PSDD*VSSIS1
          X = ALOG(PSDD*365./2000.*(SMATX(9,IS1)/SMATX(10,IS1)))              MHI11200


              x _ ln 365PSDD*VSSisi

                       2000TSSIS1



          (1)  Operating manhours


               OHRS = EXP(3. 402537+1. 215130*X-.157203*X**2.+.009771*X**3.)    MHI11800


                  OHRS   e3-402537+1-215130x-0.157203X2+0.009771X3
                                                                              [hrs/yr]



          (2)  Maintenance manhours


               XMHRS = EXP(3.906553+.702471*X-.088337*X**2.+.006827*X**3.)    MHI11900


                   XMHRS = e3-906553+0-702471x-0-088337X2+0.006827X3              ,




          (3)  Total materials and supplies


               TMSU = EXP(7. 864729-. 338816*X+.054026*X**2.)                   MHI12000


                           7-864729-0.338816X+0.054026X2
                          e                                                   [dollars/yr]
                                               142

-------
c.  Total operating and maintenance costs                                     MHI12500

     COSTO(N, 1)  - ((OHRS+XMHRS)*DHR*(1 .+PCT)+TMSU*WPI+ECOST+FCOST) /SMATX(2,1) /3650.

          COSTO  ,  (OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI)+ECOST+FCOST
                          Qplant  Inf. * 365°                            [cents/1000 gal]
                                         143

-------
c
c
c
c
c
c
c
c
c
c
c
c
           MULTIPLE HEARTH INCINERATION
           PKOCEbS IDENTIFICATION NUMBER
   SUBROUTINE MHINC
           COMMON INITIAL STATEMENTS
                                                                    MHI00100
                                                                    MHI00200
                                          •                          MHI00300
                                                                    MHI00400
                                                                    MHI00500
                                                                    MHI00600
                                                                    MHI00700
                                                                    MHI00800
                                                                    MHI00900
 INTEGER osi»os2                                                    MHIOIOOO
 DIMENSION SFHA159)                                                 MHlOllOO
 COMMON SMATX(20r30>.TMATX(20r30)»DMATX<20.20>.OMATX(20.20)»;P(20)»MHI01200
lIl\iP,IO.ISl»lS^.OSl»OSci»N»IAERF»CCOST(20»5)rCOSTO(20»5}»ACOST(20»5)MHl01300
2»TCOST(20r5)'UHR»PCTfwPI»CLAND.DLAND»FLOW(2S)»POW(25)»TKWHD(25)    MHlOmOO
 DATA bFHA/85.»98.»112..l25.»126.»140.»145.t166.•187.•193.•208.»225MHl01500
l.»256.,27o. »2b8. »319.r323..351.»364.»383. (" ' "   lilr"  e'"   "'"  "c  	
2'b72«»760.»b4b. 1857.»944.»988.»1041.•1068.
3•1268..1400.i1410.r1463.•1540.f1580.f1591,
                         ,»2090.»2275.»2350,
     4H675..l9i3. »ii060.»20B4.
     5/
                                                 .»452.r510.«560.r575.MHI01600
                                              »1117.»1128.,1249.»1260.MHl01700
                                                    • 1675.f1752.•1849.MHI01800
                                                    •2600.t2860.>3120
. »!6faO
.»24b4
  lUO
  110
           CALC. OF OUTPUT SIZES AND QUANTITIES
MHI01900
MHI02000
MHI02100
MHI02200
MHI02300
MHI02400
MHI02500
10

20

-50
4U

bO
oU

70
UO
      PSDD=bMATx(lOrISl)*SMATX(2»ISl)*8.33                              nniucauu
      FHAT=68.31*SMATX(2»IS1)*SMATX(10'IS1>/DMATX(3.N)/DMATX(1»N)*DMATX(MHI02600
      lb»N)                                                             MHI02700
      XX=FHAT/DMATX12»N)                                                MHI02800
      DO 20 1=1,59                                                      MHI02900
      IF (XX-SFHA(D) 10»10»20
      FHA=SFHA(1)
      GO TO 30
      CONTINUE
      FHA=3120.
      IF (FriA-200.)
               40»40»50
      Gu
      IF
    TO 100
    (FHA-1700.)
      GO
      IF
    TO 100
    (FHA-2oOO.)
                     60r60»70
                     80»80»yO
   GO TO 100
   CYT=1U8.
   PASH=(SMATX(10,IS1)-SMATX(9,IS1))/SMATX(9»Isl)
   HASH=o8.*PASH
   Ph AT=( 1000000. -SMATX < 10 »ISD) /SMATX (9»IS1)
      SAERA=64.03*FHA**.51
      VbPH=^MATxf9'lSl)*SMATX(2»ISl)*58.31/DMATX(3»N)
   QTRAN=(1.279+HC)*100.*SAERA*DMATX(2»N)/VSPH
   QCOOL=267.*FHA*DMATX/VSPH
   QNET=i:725.+HAbm-H*SL+UCOOL-t-QTRAN-DMATX(6'N)+2<*6.
   IF (QUET)  110rllO,l20
   QNET=U.
   TEMP=bMATX(9»ISD*SMATX (2»IS1)»8.33*365.
   QNET=UNET*TEMP
                         MHI03000
                         MHI03100
                         MHI03200
                         MHI03300
                         MHI03400
                         MHI03500
                         MHI03600
                         MHI03700
                         MHI03BOO
                         MHI03900
                         MHI04000
                         MHIOU100
                         MHI04200
                         MHI04300
                         MHIOU400
                         MHI04500
                         MHIOU600
                         MHI04700
                         MHI04800
                         MHI04900
                         MHI05000
                         MHI05100
                         MHI05200
                         MHI05300
                         MHI05400
                         MHI05500
                         MHl0560a
                         MHI05700
                         MHI05800
                                     144

-------
       YbbH=B.*CTT/9.+8736.-i2.*DMATX(3»N)*7./9.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
       QhUP=YHUH*191.i.*FHA*DMATXl2»N)
       ClbB=YbBH*.ilb.*FHA*DMATX{2»N)
       QTOT=tJHUP+QSB+GNET
                    CALC.  OF  FUEL  COSTS IF FUEL OIL IS USED
       IF  (DMATX(7»N)-1.)  130»l30fl«K)
   130  WFYR=UTOT/15019.
       FCOST=rtFYK/7.<*81*UMATX(a'N)
       GO  TO  180
 C
 C
 C
 C
             CALC. OF FUEL COSTS  IF NATURAL  GAS  IS  USED
  ItO IF  (DMATX(7»N)-2.) 15G»150»160
  lt>0 WFYR=uTOT/155bl.
      FCOST=WFYR/i+5.8*DMATX(9»N)
      GO  TO 180
C
C
C
C
             CALC. OF FUEL COSTS  IF DIGESTEK GAS  IS USED
  loO IF  (DMATX(7»N)-3.) 170»170»180
  170 CFDG=
             RATIO OF FUEL COST TO AMOUNT OF DRY SOLIDS TO BE
             INCINERATED

DPTON=FCObT/(PSDD*3fa5./2000.)
        CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
        CAPACITY
X=ALOG(PSUD/2<+.*DMATX(16»N) )
CCOST(N»l)=EXP(2.3773o*t+.b98986*X)*lOOO.
        CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONEr
        DOES NOT INCLUDE EXCESS CAPACITY

X=ALOi3(PSUD*3fa5./2000.*(SMATX(9»ISl)/SMATx(lO.ISl)>)


             CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
             AND MATERIALS AND SUPPLIES

OHRS=LXP(J.102537+1.215130*X-.157203*X**2.+.009771*X**3.)
XMHRS=EXP(3.906553+.7u2l7i*X-.088337*X**2.+.006827*X**3.)
TMSU=hXP(7.66<+729-..j3B8l6*X+.05f026*X**2.)
             OPERATING CObT EQUATION
MHI05900
MHI06000
MHI06100
MHI06200
MHI06300
MHI06400
MHI06500
MHI06600
MHI06700
MHI06800
MHI06900
MHI07000
MHI07100
MHI07200
MHI07300
MHl07tOO
MHI07500
MH107600
MHI07700
MHI07800
MHI07900
MHI08000
MHI08100
MHI08200
MHI08300
MHI08UOO
MMI08500
MHI08600
MHI08700
MHI08800
MHI08900
MHI09000
MHI09100
MHI09200
MHI09300
MHI09400
MHI09500
MHI09600
MHI09700
MHI09800
MHI09900
MHllOOOO
MHI10100
MHI10200
MHI10300
MHI10UOO
MHI10500
MHI10600
MHI10700
MHI10800
MHI10900
MHlllOOO
MHllllOO
MHI11200
MHI11300
MHllllOO
MHI11500
MHI11600
MHI11700
MHI11800
MHI11900
MHI12000
MHI12100
MHI12200
MHI12300
MHI12400
                                     145

-------
      COSTO(Mr 1) = «OHRS+XMHKS)*DHR*(1.+PCT)+TMSU*wPl+ECOST+FCOST)/SMATX(MHI12500
     I2rl)/3650.                                                          MHI12600
C                                                                        MHI12700
C                                                                        MHI12800
C             ASSIGNMENT OF VALUES TO OMATX                              MHI12900
C                                                                        MHI13000
      OMATX(1»N)=FHA                                                     MHI13100
      OMATX12»N)=WFYR                                                    MHI13200
      OMATX(3.N)=PSDD                                                    MHI13300
      OMATX(i*fN)=ECOST                                                   MHI13HOO
      OMATX(5rN)=FCoST                                                   MHI13500
      OMATX(fa»N)=CFD6                                                    MHI13600
C                                                                        MHM3700
c                                                                        MHI13800
C             PKOCESS ENERGY INDICES                                     MHI13900
c                                                                        MHI11000
      FLOw(N)=SMATX(2»ISl)                                                MHI14100
      POW(N)=1».                                                          MHIIU200
                                                                         MHI14300
                                                                         MHI14400
                                     146

-------
                                        SECTION  16

                               RAW WASTEWATER PUMPING, RWP

Subroutine Identification Number  15

Raw Wastewater Pumping, RHP


1.  Process symbol.
   IS1
\OS1
                                   Rev. Date 8/1/77
IS1:  Liquid  input stream

OS1:  Liquid  output stream

  N:  User assigned number to the process
2.  Input parameters and nominal values.

          DMATX(1,N) = HEAD                 Pumping  head  of  the  influent pumps,  ft.   [30.J
          DMATX(16,N)  • ECF
                 Excess capacity factor for the pumps.  [l.J
3.  Output parameters which are printed on computer  output  sheets.
          HEAD = DMATX(l.N)


          QP = OMATX(l.N)



          CCOST


          COSTO


          ACOST


          TCOST


           ECF
                 Peak flow capacity of the raw wastewater pumping
                 system, [MGD],
                 Capital cost, [dollars].
                 Operating and maintenance cost,[cents/lOOOgal].
                 Amortization cost,[cents/1000gal].
                 Total treatment cost,[cents/1000gal].
                 Excess capacity factor.
                                            147

-------
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.




          SMATX(I.OSl)  = SMATX(I,IS1)                                   RWP01900



                 SMATX(I.OSl) = SMATX  (I.IS1)       [mg/l]




          HEAD =  DMATX(l.N)                                             RWP02400




                 HEAD = DMATX (1,N)    [ft.J




          QP = 1.78*SMATX(2,IS1)**.92                QP = 1.78[Q   f '9      [MGD]


                                                               131     RWP02500




          Pump Efficiency -  Current values used in program; each can be changed by

                            the replacement on punched card.






               PEFF =0.70 for QTC,<1.44 MGD                           RWP04900
                                IS i





               PEFF =  0.74 for QIS1<10.08 MGD                          RWP05200






               PEFF =  0.83 for QISI yo.08 MGD                         RWP05400




References:




               Patterson and Banker,  1971
5.  Cost functions.




          ei.  Capital  cost




                Function of QP * ECF




                X   ALOG(QP*DMATX(16,N))                                RWP03100



                     X = In (QP * ECF)
             CCOST(N.l)   EXP(4.004828+.519499*X+.082262*X**2.-.006492*X**3. )*1000,


                                                              _        RWP03200


             CCOST =  10oo*e4-004828+-519499X+-082262X --006492XJ           [dollars]
         b. Operating manhours, maintenance manhours and materials/supplies costs




               Function of QTC1
                            _Lo L




               X = ALOG(SMATX(2,151))                                  RWP03900




                    X   in (Q)
                                          148

-------
      (1)  Operating manhours
      OHRS = EXP(6.097269+.253066*X-.193659*X**2.+.078201*X**3.-.006680*X**4. )
                                                                        RWP04500
                 i e6.097269+0.253066X-0.193659X +0.078201X -0.006680X      [hrs/yr]

      (2)  Maintenance manhours
      XMHRS =  EXP(5.911541-.013158*X+.076643*X**2.)                RWP04700

                    5.911541-0.013158X+0.076643X2               r,    ,  -,
           XMHRS = e                                            [hrs/yr]

      (3)  Kilowatt hrs per year
      YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/.9*.7457*24.*365.
                                                                  RWP05500
                  Q_  *1000000HEAD*.7457*24*365                rv „ .    ,
           YRKW =  IS1	                [KwHr/yrJ
                       1440*3960*PEFF*0.9

      (4)  Energy cost
      ECOST =  YRKW*DMATX(10,20)                                    RWP05600
           ECOST = YRKW*CKWH       [dollars/yr]

      (5)  Supplies cost
      SCOST =  EXP(5.851743+.301610*X+.197183*X**2,-.017962*X**3.)  RWP05700

           -„„_   5.851743+0.301610X+0.197183X2-0.017962X3      r , , ,     .   .
           SCOST =e                                              Ldollars/yrJ

      (6)  Total materials and supplies
      TMSU = ECOST + SCOST * WPI                                   RWP05800
           TMSU = ECOST +  (SCOST * WPI)        C$/yr]

c.  Total operating and maintenance costs
      COSTO(N,1) =  «OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
                                                                  RWP06300
                COSTO =   (OHRS+XMHRS)*DHR*(1 +PCT)+TMSU           [cents/lOOOgal]
                         QPlant Inf.
    Cost curves,  Patterson and  Banker  pages  34,  83, 84
                                       149

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
        RAW WASTEKATEK PUMPING
        PKOCESS IDENTIFICATION NUMBER
SUBROUTINE RWP
        COMMON INITIAL STATEMENTS
                                                                      RNP00100
                                                                      RWP00200
                                          15                          RWP00300
                                                                      RNP00400
                                                                      RwPOOSOO
                                                                      RWP00600
                                                                      RWP00700
                                                                      RWP00800
                                                                      RMP00900
   INTEGER OS1.0S2                                                    RWP01000
   COMMON SMATX(20.30).TMATX(20»30).DMATX(20.20).OMATX(20.20)»IP(20).RwPOllOO
  llNP»IUrISl»lSi;.OSlr1jS
        CALC. OF OUTPUT SIZES AND QUANTITIES

Hfc.AD=LlMATA(l»N)
QP=1.78*SMATX(2»IS1)**.92
        CALC. OF CAPITAL COSTS BASED ON DESIGN  PLUS  EXCESS
        CAPACITY
              CALC. OF OPERATINb COSTS BASED ON  DESIGN  CAPACITY ALONE.
              DUES NOT INCLUDE EXCESS CAPACITY
                                                                      RbPGlSDO
                                                                      RWP01900
                                                                      RWP02000
                                                                      RWP02100
                                                                      RMP02200
                                                                      RWP02300
                                                                      RWP02400
                                                                      RWP02500
                                                                      RWP02600
                                                                      RWP02700
                                                                      RWP02800
                                                                      RWP02900
                                                                      RWP03000
   X=ALOt>(QP*DMATX(16»N) )                                             RWP03100
   CCOST(N.1)=EXP(1.001*828*.519U99*X+.082262*X**2.-.006'»92*X**3. ) *100RwP03200
  10.                                                                 RWP03300
                                                                      RWP03400
                                                                      RWP03500
                                                                      RWP03600
                                                                      RWP03700
                                                                      RMP03800
                                                                      RWP03900
                                                                      RMP01000
                                                                      RwPomoo
                                                                      RWPO<(200
                                                                      RWP04300
                                                                      RWP04400
   OHRS=LXP(t).097269+.25o066*X-.193659*X**2.-«-.078201*X**i.-.006680*X*RwPOi*500
  I*1*.)                                                               RWP04600
   XMHKS=EXP(5.9115^1-.01315a*X-»-.0766
-------
C                                                                       RWP05900
C                                                                       RMP06000
C                  OPERATING CObT EQUATION                              RWP06100
C                                                                       RMP06200
      COSTO(N»H=((OHRS+XMHrtS)*DHR*(l.+PCT)+TMSu)/SMATXl2,l)/3650.      RWP06300
C                                                                       RrtP06tOO
C                                                                       RWP06500
C             ASSIGNMENT OF VALUES TO OMATX                             RWP06600
C                                                                       RMP06700
      OMATX(1,N)=QP                                                     RWP06800
C                                                                       RWP06900
C                                                                       RMP07000
C             PKOCESS ENERGY INDICES                                    RWP07100
C                                                                       RWP07200
      FLOW(N)=SMATXC2»IS.1)                                               RWP07300
      POW(N)=15.                                                         R«P07*tOO
      RLTURN                                                            RrtP07500
      END                                                               RWP07600
                                     151

-------
                                          SECTION  17

                                   SLUDGE  HOLDING  TANKS,  SHT
Subroutine Identification  Number  16

Sludge Holding Tanks ,  SHT


1.  Process symbol.
            Rev. Date 8/1/77
        IS1
                     OS1
2.  Input parameters and nominal  values.

          DMATX(l.N) = TD


          DMATX(16,N) = ECF
IS1:  Sludge input stream

OS1:  Sludge output stream

  N:  User assigned number to the process
Sludge holding tank detention time, days.
[15.]

Excess capacity factor for the process.
[1.]
3.  Output parameters which are printed  on  computer  output  sheets.

          TD = DMATX(l.N)
          VSHT = OMATX(l.N)


          CCOST

          COSTO


          ACOST

          TCOST

           ECF
Volume of the sludge holding tanks, cu ft/
1000.

Capital cost, [dollars].

Operating and maintenance cost,
[cents/1000 gal].

Amortization cost, [cents/1000 gal].

Total treatment cost, [cents/1000 gal].

Excess capacity factor.
4.  Theory and functions - FORTRAN statement  followed  by equivalent  algebraic equation.

          SMATX(I.OSl)  = SMATX(I.ISl)                                        SHT01900

               SMATX(I.OSl) - SMATX(I.ISl)           [mg/l]

               where I  = 2,20

               i.e.   Q, SOC, SNBC,  SON,  SOP,  SFM,  SBOD, VSS,  TSS, DOC,  DNBC, DN,  DP,  DFM,

                     ALK, DBOD,  NH3,  N03
                                              152

-------
          VSHT - SMATX(2,IS1)*DMATX(1,N)*1000./7.48*DMATX(16,N)
                                                           SHT02400
VSHT
QTq.*TD*ECF *1000
   7748
                                               [ft/1000]
          VI • SMATX(2,ISl)*DMATX(l,N)*1000./7.48
References:
               VI
                     Q_  *TD*1000
                      lb 1
                         7.48
                                [ft /1000]
               Smith and Eilers,  1975
               Patterson and Banker,  1971
                                                           SHT03800
5.  Cost functions.
          a.  Capital cost
               Function of VSHT
                    X = ALOG(VSHT)
                         X = In VSHT
                                                           SHT03000
          CCOST(N,1) = EXP(2.625751+.484180*X+.000613*X**2.+.002252*X**3.)*1000.
                                                                          SHT03100
               CCOST = 1ooOe2-625751+0-484180X+0-000613X +°-°°2252X3      [dollars]

          b.  Operating manhours, maintenance manhours and materials/supplies costs
               Function of VI
                    X = ALOG(V1)                                          SHT03900
                         X - In  (VI)
          (1)  Operating manhours
          OHRS = EXP(5.727345+.000762*X+.098701*X**2.-.006786*X**3.)      SHT04500
               ,.,„,,,    5. 727345+0. 000762X+0.098701X2-0.006786X3
               OHRS = e

          (2)  Maintenance manhours

          XMHRS = EXP(4.506628+.214662*X+.071402*X**2.-.004681*X**3.)

                        4. 506628+0. 214662X+0.071402X2-0.004681X3
          (3)  Total materials and supplies
          TMSU = EXP(5. 479939+. 299282*X+.106008*X**2.-.008658*X**3.)
               TMSU = e
                       5.479939+0.299282X+0.106008X2-0.008658X3
                                                        [hrs/yr]



                                                           SHT04600

                                                         [hrs/yr]



                                                           SHT04700

                                                         [dollars/yr]
                                            153

-------
c.  Total operating and  maintenance  costs                         SHT05200
                                  /


COSTO(N,1) - ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.
     COSTO -  CCOHRS+XMHRS)*DHR*(I+PCT) >(BBIWI)     [cents/1000 gal]

                     T>lant Inf.


 Cost curves, Patterson and Banker pages 46,98,99
                                  154

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
              SLUDGE HOLDING TANKS
              PKOCESS IDENTIFICATION NUMBER
      SUBROUTINE SHT
              COMMON INITIAL STATEMENTS
                                                                     SHT00100
                                                                     SHT00200
                                          16                         SHT00300
                                                                     SHTOO«*00
                                                                     SHT00500
                                                                     SHT00600
                                                                     SHT00700
                                                                     SHT00800
                                                                     SHT00900
   INTEGER Obl»OS2                                                   SHT01000
   COMMON SMATX<20»30)>TMATX(20»30)fDMATX(20.2u>»OMATX<20»20)»IP(20>rSHTOHOO
  HNP»IO»ISlrlSi:»OSl»OS2rN»lAERF»CCOST(20.5)»COSTO(20.5)»ACOST<20»5)SHT01200
  2»TCoST(20r5)>UHR»PCT»wPI»CLAND»DLAND»FLOW(25).POW(25)iTKWHD(25)   SHT01300
                                                                     SHT01400
                                                                     SHT01500
                                                                     SHT01600
                                                                     SHT01700
   DO 10 1=2.20
10 SMATX(I.OSl)=bMATX(I»ISD
        EFFLUENT STREAM CALCULATIONS
              CALC. OF OUTPUT SIZES AND QUANTITIES

      VSHT=bMATX(2»ISl)*DMATX(l»N)*1000./7.'»8*DMATX(16»N)
              CALC. OF CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
              CAPACITY
      X=AL06(VSHT)
      CCOSTCN.l)=EXP(2.6257l»l+,
     10.
              CALC. OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE»
              DOES NOT INCLUDE EXCESS CAPACITY

      V1=SMATX(2»IS1)*DMATXU.N)*1000./7.U8
      X=ALOfa(Vl)
             CALC. OF OPERATING MANHOURS* MAINTENANCE MANHOURS
             AND MATERIALS AND SUPPLIES

OHRS=EXP(b.7273<*5+.OOu762*X+.09870l*X**2.-.OOb786*X**3.)
XMHRS=EXP(U.50662b+.211662*X-«-.07m02*X**2.-.00«*68l*X**3.)
TMbU=LXP(b.**79939+.299282*X-«-.106008*X**2.-.006658*X**3.)
             OPERATING COST EQUATION

COSTOlN»l)=((OHRS+XMHRS)*UHR*(l.+PCT>+TMSU*wPl>/SMATXl2»l)/3650
        ASSIGNMENT OF VALUES TO OMATX

OMATX(1»N)=VSHT
     SHT01800
     SHT01900
     SHT02000
     SHT02100
     SHT02200
     SHT02300
     SHT02'*00
     SHT02500
     SHT02600
     3HT02700
     SHT02800
     SHT02900
     SHT03000
)*100SHT03100
     SHT03200
     SHT03300
     SHT03UOO
     SHT03500
     SHT03600
     SHT03700
     SHT03800
     SHT03900
     SHTOUOOO
     SHT01100
     SMT01200
     SHTOU300
     SHTOU400
     SHT04500
     SHTOU600
     SHTOU700
     SHT04800
     SHTO<*900
     SHT05000
     SHT05100
     SHT05200
     SHT05300
     SHT05UOO
     SHT05500
     SHT05600
     SHT05700
     SHT05800
                                     155

-------
c                                                                       SHT05900
C             PKOCEbS ENERGY  INDICES                                    SHT06000

c                                                                       SHT06100
      FLOw(N)=SMATX(2»ISl)                                               SHT06200
      Po*fN)=16.                                                         SHT06300

                                                                        SHT06<*00
                                                                        SHT06500
                                    156

-------
                                       SECTION 18

                                  CENTRIFUGATION, CENT

Subroutine Identification Number 17

Centrifugation , CENT
                  Rev. Date 8/1/77
1.  Process symbol.
   IS1
                          OS2 (recycle)
                                OS1
2.  Input parameters and nominal values.

     DMATX(l.N)  - CRR

     DMATX(2,N)  = TSS


     DMATX(3,N)  - HPWK


     DMATX(4,N)  = XCEN


     DMATX(5,N)  = POLY


     DMATX(6,N)  = CPOLY

     DMATX(7,N)  = GPMN



     DMATX(8,N)  = CNMIN

     DMATX(16,N) = ECF

3.  Output parameters which are printed

     HPWK = DMATX(3,N)

     XCEN = DMATX(4,N)

     POLY = DMATX(5,N)

     CPOLY • DMATX(6,N)

     GPMN = DMATX(7,N)
         IS1: Sludge  input stream

         OS1: Sludge cake output stream

         OS2: Centrate output stream

           N:  User assigned number to the process.




  Solids recovery ratio for centrifugation. [.95]

  Total suspended solids concentration of OS1, mg/1.
  [200,000.]

  Hours per week that the centrifuges are operated,
  hr/wk.  [35.]

  Program control:  0 = landfill sludge disposal,
  1 = incineration sludge disposal.  [0.]

  Dose of polymer added to condition sludge, Ib/ton.
  [2.]

  Cost of polymer, $/lb.  [2.]

  Capacity of each centrifuge that is used (4 sizes
  of centrifuges are possible depending on the type
  of sludge), gpm.  [100.]

  Minimum number of centrifuges to be used.  [2.]

  Excess capacity factor for the process.  [1.]

on computer output sheets.
                                            157

-------
    CUMIN  - DMATX(8,N)




    CGPM - OMATX(l.N)




    DSOL - OMATX(2,N)




    AFC •  OMATX(3,N)





    CSIZE  - OMATX(4,N)




    CN - OMATX(5,N)




    CCOST




    COSTO




    ACOST




    TCOST




    ECF




    References:


        Patterson and  Banker,  1971


         Smith and Ellers,  1975




4.  Theory and functions  -  FORTRAN statement followed by an  equivalent  algebraic  equation.
                                    Design capacity of the centrifuges, [gpm.]




                                    Dry solids incl.  chem fed to centrifuges, [tons/yr.J




                                    Amortization factor for centrifuges based on a

                                    10 year lifetime.



                                    Size of each centrifuge used, [gpm.]




                                    Number of centrifuges used.




                                    Capital cost, [dollars]




                                    Operating and maintenance cost,  [cents/1000 gal.]




                                    Amortization cost, [cents/1000 gal.J




                                    Total treatment cost, [cents/1000 gal.J




                                    Excess capacity factor.
    SMATX(7,IS1)  » SMATX(7,IS1)+POLY*SMATX(10,IS1)/2000.
                                                             CEN02900
                          POLY*TSS
                                  IS1
    SMATX(lO.ISl)  = SMATX(10,IS1)+POLY*SMATX(10,IS1)/2000.
                                                             CEN03000
                         POLY*TSST
-------
SMATX(10,OS2) - ((1.-DMATX(1,N))/(1.-DMATX(1,N)*SMATX(10,IS1)/DMATX(2,N)))*SMATX(10,IS1)
   TSS
            (1-CRR)*TSS
                       IS1
      OS2
             CRR*TSS
            1-
                       IS1
                                       [•8/1]
                   TSS
                      OS1
TEMPI - DMATX(2,N)/SMATX(10,IS1)


           TSS
   TEMPI
              OS1
           TSS
              IS1
TEMP2 - SMATX(10,OS2)/SMATX(10,IS1)


            TSS,
                                                                  CEN03200
                                                               CEN03400
                                                                  CEN03500
   TEMP2 •*-
              "OS2
            TSS
               IS1
SMATX(lO.OSl) = DMATX(2,N)                                        CEN03600


   TSSosi ' TSSosi                        Cnig/1]

SMATX(2»OS1) - (SMATX(10,IS1)-SMATX(10,OS2))*SMATXC2,IS1)/(SAMTX(10,OS1)-SMATXC10,OS2))



                                          [MGD]
       (TSSisrTSSos2>*Qisi
0    .
 081
SMATX(2,OS2) = SMATX(2,IS1)-SMATX(2,OS1)
   QOS2
                                       [MGD]
SMATX(I,OS1) = TEMP1*SMATX(I,IS1)


   SMATX(I,OS1) = TEMP1*SMATX(I,IS1)      [mg/l]


   where I • 3,9


   I.e.  SOC, SNBC,SON,SOP,SFM,SBOD,VSS


SMATX(I,OS2) - TEMP2*SMATX(I,IS1)


   SMATX(I,OS2) = TEMP2*SMATX(I,IS1)      [mg/l]


   where I = 3,9


SMATXj(I,OSl) - SMATX(I,IS1)


   SMATX(I.OSl) = SMATX(I.ISl)            [mg/l]


   where I = 11,20


   I.e.  DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03


SMATX(I,OS2) = SMATX(I.ISl)


   SMATXCI.OS2) = SMATX(I,IS1)            [mg/l]


   where I = 11,20
CEN03700



CEN03900






CEN04500
                                                              CENOA600
                                                              CEN04800
                                                              CEN04900
                                     159

-------
     CN - CUMIN


        CN -  CNMIN

     CGPM = SMATX(2,  IS1)*116666.7/HPWK*DMATX(16,N)/CN
        CGPM
               116666.7*Qigl*ECF
[gpm/centrifuge]
                  HPWK*CN

     CSIZE = ,275*GPMN


        CSIZE = 0.275  GPMN


     CSIZE - .350*GPMN


        CSIZE = 0.350  GPMN


     CSIZE • .590*GPMN


        CSIZE = 0.590  GPMN


     CSIZE = GPMN


        CSIZE = GPMN


     NCN = CGPM/CSIZE


        NCN =CGPM.
             CSIZE


5.  Cost  functions.  (Cost curves, Banker and Patterson page 109)


     a.   Capital cost


         Function of GPMM, CSIZE and CN


     CCOST(N.l) = 78500.*(1.-.044*(CN-2.))*CN


        CCOST = 78500CN*(l-0.044(CN-2))                  [dollars]
                                                                       CEN05400
                               CEN05500
                               CEN05700
       [For (CGPM-CSIZE)>0]    CEN06400




       [For (CGPM-CSIZE)>0]    CEN06600




       [For (CGPM-CSIZE)>0]    CEN06800




                               CEN06900
                               CEN09000
     CCOST(N.l)  - 98000.*(!.-.044*(CN-2.))*CN


        CCOST =  98000GN*(l-0.044(CN-2))




     CCOST(N.l)  = 140000.*(!.-.044*(CN-2.))*CN


        CCOST =  140000CN*(l-0.044(CN-2))
                [dollars]
                [dollars]
                               CEN09800
                               CEN10600
     CCOST(N.l)  =  160000.. *(!.-. 044* (CN-2.))*CN


        CCOST  =  160000CN*(l-0.044(CN-2))
                [dollars]
                               CEN11400
                                          160

-------
Amortization factor for centrifuges



AFC - DMATX(3,20)*(1.+DMATX(3,20))**10./((1.+DMATX(3,20))**10.-1.)



          DTI ._, ,10

   AFC •
                                                                  CEN11900
Amortization cost



ACGST(N.l) - CCOST(N,1)*AFC/SMATX(2,1)/3650.




           CCOST * AFC
         CEN12000
           Q,.,  _ T , *3650
           xPlant Inf.
                                                 [cents/1000 gal]
b.  Operating manhours, maintenance manhours and materials/supplies costs



       Function of DSOL.
           X = ALOG  (DSOL)



               X = In DSOL



 (1)    Operating manhours



           (For XCEN = 0)



 OHRS = EXP(7.621517-.476977*X+.071516*X**2.)




       nuDO    7.621517-0.476977X+0.071516X2
       UUKo ° e



           (For XCEN + 0)



 OHRS = EXP(7.264153-.466246*X+.069552*X**2.)




       nlroc    7.264153-0.466246X+0.069552X2
       UHRS 9 e



 (2)  Maintenance manhours



 XMHRS = EXP(5.997115-.493809*X+.070892*X**2.)




       „.._.,    5.997115-0.493809X+0.070892X2
       XMnKS = e



 (3)  Total materials and supplies



 SUPP = EXP(-2.822519+.700948*X)*1000.






       SUPP = 10oOe-2-822519+0-700948X


 CHEM = DSOL*POLY*CPQLY



       CHEM = DSOL*POLY*CPOLY



 c.  Total operating and maintenance costs
         CEN12600
         CEN13300
[hrs/yr]
         CEN14000
[hrs/yr]
         CEN14600





 [hrs/yr]







         CEN14700





[dollars/yrJ



         CEN14800



[dollars/yrJ
COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+SUPP*WPI+CHEM)/SMATX(2,1)/3650.


                                                                  CEN15300
       COS TO
               (OHRS+XMHRS)*DHR*(1+PCT)+(SUPP*WPI)+CHEM
                                      inf.
                                          *3650
        [cents/1000 gal]
                                      161

-------
C                                                                        CEN00100
c             CLNTRIFUGATION                                             CENOOZOO
C             PROCESS IDENTIFICATION NUMBER   17                         CEN00300
C                                                                        CENOOHOO
      SUBROUTINE CENT                                                    CEN00500
C                                                                        CEN00600
C                                                                        CEN00700
C             COMMON INITIAL STATEMENTS                                  CEN00800
C                                                                        CEN00900
      iNTEGtR Obl»OS2                                                    CEN01000
      COMMON SMATX(20.30) »TMATX(20»30)»DMATX(20»2u).OMATX(20f20)»IP<20).CEN01100
     llNP»lO.ISl»lSi:fOSl.oS2»N.IAERF»CCOST<20»5)>CObTO(20»5).ACOST<20.5)CEN01200
     2.TCOST120.5).OHR.PCT.WPI•CLAND»DLAND»FLOW(2b>»POW(25).TKWHD(25>   CEN01300
C                                                                        CEN01100
C                                                                        CEN01500
C             ASSIGNMENT  OF DESIGN VALUES To  PROCESS PARAMETERS         CEN01600
C                                                                        CEN01700
      HP*K=UMATX(3»N)                                                    CEN01800
      XCEN=uMATX«trN)                                                    CEN01900
      POLY=DMATX(b'N)                                                    CEN02000
      CPOLY=DMATX(6»N)                                                   CEN02100
      GPMN=UMATX(7»N)                                                    CEN02200
      CNMlN=DMATX(8rN)                                                   CEN02300
C                                                                        CEN02400
C                                                                        CEN02500
C             PROCESS RELATIONSHIPS REQD. To  CALC. EFFLUENT STREAM      CEN02600
c             CHARACTERISTICS                                            CEN02700
C                                                                        CEN02800
      SMATX(7»ISl)=bMATX(7»iSl)-»-POLY*SMATX(10»ISl}/2000.                 CEN02900
      SMATX(10»ISl)=SMATX(10»lSl)-»-POLY*SMATX(10»ISl)/2000.               CEN03000
      DbOL=bMATA(10»ISl)*SMATX(2»ISl)*8.33*365./2000.                    CEN03100
      SMATX(10rOS2)=((l.-DMATX(l»N))/(l.-DMATX(l»N)*SMATX(10»ISl)/DMATX(CEN03200
     12.N)))*SMATX<10»Ibl)                                               CEN03300
      TtMPl=DMAlX(2>N)/SMATX(10rISl)                                     CEN03400
      TLMP2=SMATX(10»OS2)/SMATX(10»IS1)                                  CEN03500
      SMATX(10'OSD=DMATX(2»N)                                           CEN03600
      SMATX(2.0bl)=(SMATXIlu»lSl)-SMATX(10.OS2))*SMATX(2rlSi)/(SMATX(10»CEN03700
     lObl)-bMATx(10.0S2))                                                CEN03800
      SMATX(2rOb2)=bMATX(2'lSD-SMATX(2»OSl)                             CEN03900
C                                                                        CENOHOOO
C                                                                        CENO<*100
C             EFFLUENT STREAM CALCULATIONS                               CEN01200
C                                                                        CEN04300
      DO 10 I=3»9                                                        CENOHHOO
      SMATX(i,obi> =TEMPI»SMATX(i»isi>                                    CENO^SOO
   10 SMATX(IfOb2)=TEMP2*SMATX                                          CEN01800
   20 SMATX(I,Ob2)=SMATX(I>lSl>                                          CEN04900
C                                                                        CEN05000
C                                                                        CEN05100
C             CALC. OF OUTPUT SIZES AND  QUANTITIES                       CEN05200
C                                                                        CEN05300
      CN=CNMIN                                                           CENOSUOO
      CGPM=bMATX(2.1SD*116b66.7/HPWK*DMATX(16»N)/CN                    CEN05500
      GHMM=bMATX(2.1Sl)*1000000./l*»40.                                   CEN05600
                                                                         CEN05TIOO
                                                                         CEN05800
                                     162

-------
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
    30
    <*0
    50
    60
    70

    bO
    90

   100
   110

   120
   150
 c
 c
 c
 c
 c
 c
 C
 C
 C
 C
 C
 C
 C
 C
 c
 c
 c
 c
            CALC.  OF  CAPITAL  COSTS  BASED  ON DESIGN PLUS EXCESS
            CAPACITY

     IF  (CGPM-CS1ZE) 60.60.30
     CSIZE=.350*GPMN
     IF  (Cl>PM-(.SIZt) 80 r BO»40
     CS1ZE=.590*GPMN
     IF  (CGPM-CSIZL) 100.100.50
     CSIZE=GPMu
     NCN=CbPM/CSIZ£
     CN=NCN+1
     GO  TO  120
     IF  (GHMM-CSIZt* >*CN
                 CALC. OF CAPITAL COSTS FOR CENT FACILITY WHOSE
                 DESIGN CAPACITY DOES NOT EXCEED b9* OF THE CAPACITY
                 OF EACH CENTRIFUGE
  160
    CCOST ( N.l)=l**0000.*(l.-.0
-------
      X=ALOG(DSuL)
      IF  (XCEN) 200»190i200
C
C
C
C
C

C
C
C
C
C
                 CALC. OF OPERATING MANHOURS  IF  LANDFILL DISPOSAL
                 USED
                                                      CEN12500
                                                      CEN12600
                                                      CEN12700
                                                      CEN12800
                                                      CEN12900
                                                   IS  CEN13000
                                                      CEN13100
                                                      CEN13200
                                                      CEN13300
                                                      CEN13400
                                                      CEN13500
CALC. OF OPERATING MANHOURS  IF INCINERATION DISPOSAL CEN13600
IS USED                                               CEN13700
                                                      CEN13800
                                                      CEN13900
190 OHRS=tXP(7.621517-.<*7o977*X+.071516*X**2.)
      GO TO 210
  200 OHRS=EXP(7.26<+153-.<+6o2<+6*X+.069552*X**2.)                         CEN14000
C                                                                        CEN1»HOO
C                                                                        CEN14200
C                  CALC. OF MAINTENANCE  MANHOURSr  SUPPLIES AND CHEMICAL CEN1U300
C                  COSTS                                                 CENl^mOO
C                                                                        CEN14500
  '210 XMHRS=EXP(5.997115-.t93809*X*.070892*X**2.)                        CEN1^600
      SUPP=t-XP(-2.822519+.7U09'+8*X)*1000.                                CEN1<*700
      CHEM=USOL*POLY*CPOLY                                               CENI«*SOO
C                                                                        CEN1<*900
C                                                                        CEN15000
C                  OPERATING COST EQUATION                               CEN15100
C                                                                        CEN15200
      COSTO(N»1J=((OHRS+XMHRS)*DHR*(1.+PCT)+SUPP*«,PI+CHEM)/SMATX(2»1)/36CEN15300
     150.                                                                CEN15HOO
C                                                                        CEN15500
c                                                                        CEN15600
C             ASSIGNMENT OF VALUES TO OMATX                              CEN15700
c                                                                        CEN15800
      OMATX(1,N)=CGPM                                                    CEN15900
      OMATX12»N)=DSOL                                                    CEN16000
      OMATX(3rN)=AFC                                                     CEN16100
      OMATX(1fNJ=CS!ZE                                                   CEN16200
      OMATX(5.NJ=CN                                                      CEN16300
c                                                                        CEN16400
c                                                                        CEN16500
c             PROCESS EMERGY INDICES                                     CENieeoo
c                                                                        CEN16700
      FLOw(lM)=SMATX(2rISl)                                               CEN16800
      POMN)=17.                                                         CEN16900
      RETURN                                                             CEN17000
      END                                                                CEN17100
                                     164

-------
                                            SECTION 19

                                     AEROBIC DIGESTION,  AEROB
Subroutine Identification Number  18

Aerobic Digestion,  AEROB


1.  Process symbol.
                                                  Rev. Date 8/1/77
   IS2 (Sludge) J
     Optional   .
             IS1 (Sludge)
                                   OS2 (Recycle)
                        OS1
2.  Input parameters  and  nominal values.
                              IS1:  Primary sludge input stream

                              IS2:  Secondary sludge input stream

                              OS1:  Sludge output stream

                              OS2:  Supernatant recycle output
                                    stream

                                N:  User assigned number to
                                    the process
    DMATX(l.N)  - XL
    DMATX(2,N)  - XAFS
    DMATX(3,N)  •

    DMATX(4,N)  «

    DMATX(5,N)  •

    DMATX(6,N)  •

    DMATX(7,N)  •

    DMATX(8,N)  •

    DMATX(13,N)

    DMATX(14,N)

    DMATX(15,N)

    DMATX(16,N)
 DTA

 TSS1

 TSS2

 BOD2

 GSS

 HEAD

• ECF

= ECF

= ECF

• ECF
Program control: this input variable is set equal to the
user assigned process number  (N) which the user assigned
to the aeration (AERFS) process to allow the AEROB sub-
routine to use output parameters calculated in the
aeration process,  [varies]

Program control: 0 = no final settler or sludge return
pumps are required, 1 = a final settler and sludge return
pumps are required with the aerobic digestion process.  [l.J

Detention time for the aeration, days.  [30.J

Total suspended solids in OS1, mg/1.  [40,000.]

Total suspended solids in OS2, mg/1.  [150.J

Concentration of 5-day BOD in OS2, mg/1.  [50.]

Overflow rate for the final settlers, gpd/sq ft.  [150.J

Pumping head of the sludge return pumps, ft.  [30-]

Excess capacity factor for the final settlers.  [1.2]

Excess capacity factor for the sludge return pumps.  [1.25]

Excess capacity factor for the air blowers.  [1.5]

Excess capacity factor for the aeration tank.  [1.2]
                                                 165

-------
3.   Output parameters which are printed on computer  output  sheets.


    XL = DMATX(l.N)

    XAFS = DMATX(2,N)

    DTA = DMATX(3,N)

    TSS1 = DMATX(4,N)

    TSS2 - DMATX(5,N)

    BOD2 = DMATX(6,N)

    GSS - DMATX(7,N)

    HEAD = DMATX(8,N)

    VAER = OMATX(l.N)

    ACFM = OMATX(2,N)
    QPUMP = OMATX(3,N)

    AFS = OMATX(4,N)

    CCOST

    COSTO

    ACOST

    TCOST

    ECF
                         Volume  of  the  aerator,  cu  ft/1000.

                         Required size  of  the blower  for  supplying air to the
                         aerator, cfm.

                         Volume  of  the  return stream  flow to  the aerator, mgd.

                         Surface area of the final  settler, sq  ft/1000.

                         Capital cost,  [dollars].

                         Operating  and  maintenance  cost,  [cents/1000 galj.

                         Amortization cost, [cents/1000 gal].

                         Total treatment cost,  [cents/1000 gal].

                         Excess  capacity factor.
4.  Theory and functions  -  FORTRAN  statement  followed  by equivalent  algebraic equation.


                                                                                AE002400

                                                                       [mg/1]
SMAT(I)  = SMATX(I,IS2)

     SMAT(I)  = SMATX(I,IS2)
         where I = 1,20  i.e.   I,Q,SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,
                               DN,DP,DFM,ALK,DBOD,NH3,N03
    TEMPI = (SMAT(4)*2.13+(SMAT(8)+SMAT(17))*.65*.18)*SMAT(2)

         TEMPI = (2.13SNBCIS2+0.65(SBODIS2+DBODIS2)0.18)QIS2
                                                                                AE002600
                                                                   [mg/i MGD]
    TEMP2   (OMATX(9,L)*.18+OMATX(10,L)*.0938-H3MATX(11,L)+OMATX(12,L))*DMATX(7,L)*SMATX(2,IS1)
                                                                                AE002700
         TEMP2 = (0.180MATX(9,L)+0.09380MATX(10,L)+OMATX(11,L)+OMATX(12,L))*DMATX(7,L)*QIS1

                                                                               [mg/1 MGD]
                                               166

-------
TEMP3 - SMAT(7)*SMAT(2)


     TEMP3 - SFMIS2*QIS2




TEMP4 - OMATX(13,L)*DMATX(7,L)*SMATX(2,IS1)


     TEMP4 • OMATX(13,L)*DMATX(7,L)*QIS1
 AE002900



[ mg/1 MGD ]




 AE003000



[ mg/1 MGD ]
SMATX(2,OS1)  = ((TEMP1+TEMP2+TEMP3+TEMP4)-(SMATX(2,IS1)+SMAT(2))*  AE003500

  DMATX(5,N))/(DMATX(4,N)-DMATX(5,N))
     Q    » TEMPl+TEMP2+TEMP3+TEMP4-(QIsl4qIS2)TSS2

                       TSS1 - TSS2
SMATX(2,OS2) = SMATX(2,IS1)+SMAT(2)-SMATX(2,OS1)




     QOS2 ' QISl"M5IS2~QOSl




VOLPC = (TEMP1+TEMP2)/(TEMP1+TEMP2+TEMP3+TEMP4)


                   TEMP1+TEMP2
     VOLPC
             TEMP1+TEMP2+TEMP3+TEMP4
SMATX(9,OS1) = DMATX(4,N)*VOLPC
     VSSQS1 = TSS1*VOLPC
SMATX(7,OS1) - DMATX(4,N)-SMATX(9,OS1)


     SFMoS1 = TSS1 - VSSOS1





SMATX(3,OS1) = SMATX(9,OS1)/2.13
     SOCQS1 = VSSOS1
        031   ^
SMATX(4,OS1)  = SMATX(3,OS1)
               SOC
                  OS1
SHATX(5,OS1) = SMATX(3,OS1)/10.
     SONQS1 = SOCOS1
SMATX(6,OS1) = SMATX(3,OS1)/100.
[ MGD]




  AE003700



[ MGD]




  AE003800




 [no units]





  AE003900



 [mg/1]




  AE004000
  AE004100




 [mg/1]





  AE004200




 [mg/1]




  AE004300




 [mg/1]





  AE004400





 [mg/1]
                                            167

-------
SMATX(lO.OSl)  = DMATX(4,N)
     TSSQS1   TSS1
SMATX(10,OS2) = DMATX(5,N)

     TSSQS2 = TSS2


SMATX(9,OS2) = SMATX(10,OS2)*VOLPC
     VSSQS2 = TSS2*VOLPC
SMATX(3,OS2) = SMATX(9,OS2)/2.13

     cnr    = VSSQc2
               2.13


SMATX(4,OS2) = SMATX(3,OS2)

     SNBCOS2 = SOCOS2


SMATX(5,OS2)   SMATX(3,OS2)/10.

     qnvt    = SOC0g2
     QViNi-ioO    —	
        os^     10


SMATX(6,OS2)   SMATX(3,OS2)/100.
     SOP,
              SOC,
        OS2
                 OS2
                100
SMATX(7,OS2) = SMATX(10,OS2)-SMATX(9,OS2)

     SFMoS2 = TSSQS2 - VSSQS2


SMATX(ll.OSl)   (500.-SMATX(9,OS2)*1.42)/3.2

     DOC    = 500-1.42VSSOS2
        031        3.2


SMATX(11,OS2) = SMATX(11,OS1)

     DOCnCT = DOC_-
        OS2      OS1
 AE004600

[mg/1]


 AE004700

[mg/1]


 AE004800

[mg/1]


 AE004900

[mg/1]


 AE005000

[mg/1]


 AE005100

[mg/1]


 AE005200

[mg/1]


AE005300

[mg/1]


AE005500

[mg/1]


AE005600
                                           168

-------
SMATX(12,OS1)  = SMATX(ll,OS2)/2.                                   AE005700

     DNBCOS1 = £2032
SMATX(12,OS2)  - SMATX(12,OS1)                                      AE005800

     DNBCQS2 = DOCOS2
ENTN = SMATX(2,IS1)*(SMATX(5,IS1)+SMATX(13,IS1))+SMAT(2)*(SMAT(5)+SMAT(13))
                                                                   AE005900
     ENTN - QIsl(SONIsl+DNIsl)+qiS2(SONIS2+DNIg2)                  [MGD mg/1]


EXSN = SMATX(2,OS1)*SMATX(5,OS1)+SMATX(2,OS2)*SMATX(5,OS2)         AE006100

     EXSN = (Q0Sl*SONosi)+(QOS2*SONOS2)                             CMGD "g/1]


SMATX(13,OS1)  = (ENTN-EXSN)/(SMATX(2,OS1)+SMATX(2,OS2))            AE006200

     DNOSI
SMATX(13,OS2)  = SMATX(13,OS1)                                       AE006300
ENTP = SMATX(2,IS1)*(SMATX(6,IS1)+SMATX(14,IS1))+SMAT(2)*(SMAT(6)+SMAT(14))
                                                                   AE006400
     ENTP = Qlsi(SOPIs+DP)40(SOP+DP)                  [MGD mg/1]
EXSP = SMATX(2,OS1)*SMATX(6,OS1)+SMATX(2,OS2)*SMATX(6,OS2)         AE006600

     EXSP = (Qosi*SOP0sl>+%S2*SOPOS2>                            [MGD mg/1]


SMATX(14,OS2)  = (ENTP-EXSP)/(SMATX(2,OS1)+SMATX(2,OS2))            AE006700

             ENTP-EXSP
SMATX(14,OS1)  = SMATX(14,OS2)                                      AE006800


     DPOS1 = DPOS2                                                 C"871]


SMATX(15,OS1)  = SMATX(15,IS1)                                      AE006900
                                            169

-------
SMATX(15,OS2)  = SMATX(15,IS1)
     DFMQS2
              DFM
                IS1
SMATX(17,OS1) - DMATX(6,N)-50.
     DBODQS1 - BOD2-50
SMATX(17,OS2) - SMATX(17,OS1)
     DBODog2 - BOD2-50
SMATX(18,OS1) - SMATX(18,IS1)
SMATX(18,OS2) - SMATX(18,IS1)
     NH3
        OS2
SMATX(19,081) = SMATX(19,IS1)
     N03osi - N03isi
SMATX(19,OS2) = SMATX(19,IS1)
     N03
        QS2
SMATX(20,OS1) = SMATX(20,IS1)

     Future parameter


SMATX(20,OS2) = SMATX(20,IS1)

     Future parameter
AE007000

[mg/1]



AE007300
                                                                   AE007400
                                                                   AE007500
                                                                   AE007600

                                                                   [mg/1]


                                                                   AE007700
                                                                   AE007800

                                                                   [mg/1]
                                                                    AE007900

                                                                   [mg/1]


                                                                    AE008000


                                                                   [ mg/1]


VAER1 = (SMATX(2,IS1)+SMAT(2))*DMATX(3,N)*1000./7.48*DMATX(16,N)    AE008500
     VAERl =  (QlSl+QlS2)1000DTA*ECFa
                     7.48
                                                                      ftj
                                                                     1000
 VAER2 =  (SMATX(2,IS1)*SMATX(10,IS1)+SMAT(2)*SMAT(10))*8.33/.05/1000.*DMATX(16,N)

                                                                    AE008600
              r ff\	*TCC   *l_Lfn   *TOO    \n Q  TOt-m?
      VAER2 =
                       0.05*1000
                                                                      1000
                                            170

-------
    BSIZE - 20.*VAER*DMATX(15,N)


         BSIZE = 20VAER*ECF

                                                                             AE009200
AFS - (SMATX(2,IS1)+SMAT(2))*1000./DMATX(7,N)*DMATX(13,N)



     AFS - 1000(QIsl-H}IS2)ECFa


                  GSS




DEMO - (SMATX(9,IS1)*SMATX(2,IS1)+SMAT(9)*SMAT(2)-TEMP1-TEMP2)*8.33*1.5


     DEMO = 8..33[(VSSIS1*QIS1)+(VSSIS2*QIS2)-TEMP1-TEMP2]*1.5




CFM - DEMO/.075/.232/.05/1440.*DMATX(15,N)
                                                                                AE009600
                 DEMO*ECFij
         CFM -	—	5.
               0.075*0.232*0.05*1440
    QPUMP - (SMATX(2,IS1)+SMAT(2))*DMATX(14,N)*1.5


         QPUMP = (QIsl-K}IS2)*1.5ECFp
                                                                       LminJ
                                                                   [MGD]
    Pump efficiency - Current values used in program; each can be changed by

                      the replacement on punched card.

    PEFF - 0.70  for QPUMP<1.44 MGD


    PEFF =0.74  for QPUMP<10.08 MGD


    PEFF =0.83  for QPUMP>10.08 MGD
    References:
                                                                                AE009700
                                                                                AE009900
                                                                             AE010400
                                                                             AE019000


                                                                             AE019300


                                                                             AE019500
              Patterson and Banker, 1971
5.   Cost  functions.


    Aerator


    a.  Capital cost


       Function  of VAER




       X - ALOG(VAER)


           X <• In VAER




    CCOST(N.l) =  EXP(2.414380+.175682*X+.084742*X**2.-.002670*X**3.) *1000.
                                                                             AE011000
                                                                             AE011100
        CCOST - 1ooOe2t414380+0>:L75682X+0l084742X  0>002670X
                                                                   [dollars]
                                                 171

-------
b.  Operating manhours,  maintenance manhours and materials/supplies costs


    (1)  Operating manhours                                        AE011700

         OHRS = 0                                                  [hrs/yr]


    (2)  Maintenance manhours                                      AE011800

         XMHRS - 0                                                 [hrs/yr]


    (3)  Total materials and supplies                              AE011900

         TMSU - 0                                                  [dollars/yr]


c.  Total operating and maintenance costs                          AE012000

    COSTO(N.l) = 0                                                 [cents/1000 gal]
Blower

a.  Capital cost

    Function of ACFM

    X = A10G(ACFM/1000.)                                            AE012600

        X = In ACFM
               1000


    CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.     AE012700


         CCOST = 10oOe4-145454+0-633339X+0-031939x2-0-002419x3     [dollars]


b.  Operating manhours, maintenance manhours and materials/supplies costs

    Function of ACFM/ECFb

    X = ALOG(ACFM/1000./DMATX(15,N))                                AE013400
        X = In
  _ACFM
1000ECFb
             ACFM
             1000ECFb


         (a)   Operating manhours                                    AE014100

              OHRS = 850                                           [hrs/yr]


         (b)   Maintenance manhours                                  AE014200

              XMHRS   350                                          [hrs/ yr]


                                            172

-------
     (a)  Operating manhours
          OHRS  - EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.)     AE014400


                                                                       [hrs/yr]
                OHRS - e6-900586+0-323725x+0-059093x2~°-004926x3
     (b)  Maintenance manhours

                                                                        AE014500
         XMHRS  =  EXP(6.169937+.294853*X+.175999*X**2.-.040947*X**3.+.003300*X**4.)

                        =  e6.169937+0.294853X+0.175999X2-0.040947X3+0.003300X4

                                                                       [hrs/yr]
(3)   Blower horsepower

     HP = ACFM/DMATX(15,N)*8.1*144.7(33000.*.8)

              8.1ACFM*144
         HP
              ECFb*33000*0.8
(4)  Blower kilowatts
     XKW = .8*HP
         XKW
               8.1ACFM*144
               33000 ECF,
                                                                        AE014700


                                                               [horsepower]
                                                                        AE014800
                                                              [kilowatts]
(5)  Blower kilowatt years


     XKWPY = XKW*24.*365.

        XKWPY = 24XKW*365


(6)  Energy cost


     ECOST = XKWPY*DMATX(10,20)

        ECOST = XKWPY*CKWH


(7)  Service cost



     SCOST = EXP(.621382+.482047*X)*1000.


        SCOST = 100Oe0-621382+0-482047X
                                                                        AE014900
                                                              [kwhr/yr]
                                                                        AE015000

                                                              [dollars/yr]
                                                                        AE015100


                                                              [dollars/yr]
                                       173

-------
c.  Total operating and maintenance costs
                                                                  AE015600
    COSTO(N,2) - ((OHRS+XMHRS)*DHR*(1*PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.

        COSTO = (OHRS+XMHRS)DHR(1+FCT>+(SCOST*WPI)+ECOST         rcents/1000 gal]
                        Qplant Inf. * 365°                       L
Sludge pumps

a.  Capital cost

    Function of QPUMP

    X = ALOG(QPUMP)                                               AE016700

        X = In QPUMP

    (1)  QPUMP < 5                                                AE016500

         CCOST   20000                                           [dollars]

    (2)  QPUMP > 5                                                AE016800

         CCOST(N,3) = EXP(3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.

             CCOST = 1000e3.481553+0.377485X+0.093349X2-0.006222X3   [dollars]


b.  Operating manhours, maintenance manhours and materials/supplies costs

    Function of QPUMP/ECF


    X = ALOG(QPUMP/DMATX(14,N))                                    AE018500

               DPUMP
    (1)  Operating manhours

         (a)  QPUMP «, ,
               ECF    7                                           AE018100
                  P
              OHRS   400                                         [hrs/yr]


         097269+0-253066x"0-193659x2+0-078201x3"0-006680x4   [hrs/yr]

                                            174

-------
(2)  Maintenance manhours
          XMHRS - 250


          QPUMP


          XMHRS = EXP(5.911541-.013158*X+.076643*X**2.)

                                                  .2
              XMHRS = e
(3)  Total materials and supplies
                       5. 911541-0. 013158X+0.076643X
           ECFp

          TMSU = 200.+(DMATX(8,N)/30.)*400.

                          400HEAD
                             30
             TMSU = 200 +
          QPUMF   ,
           ECF-17
          TMSU = ECOST+SCOST*WPI

             TMSU = ECOST+(SCOST*WPI)
(4)   Kilowatt hrs per year
                                                      AE018200


                                                     [hrs/yr]


                                                      AE018800




                                                     [hrs/yr]





                                                      AE018300




                                                     [dollars/yr]


                                                      AE019900





                                                     [dollars/yr]


                                                      AE019600
     YRKW = QPUMP*1000000.*DMATX(8,N)/1440./3960./PEFF/.9*.7457*24.*365.


                                                             [kwhr/yr]
YRKW = 1000000QPUMP*0.7457HEAD*24*365
             1440*3960PEFF*0.9
(5)   Energy cost


     ECOST = YRKW*DMATX(10,20)

         ECOST = YRKW*CKWH


(6)   Service cost
                                                      AE019700




                                                     [dollars/yr]


                                                      AE019800
     SCOST = EXP(5.851743+,301610*X+.197183*X**2.-.017962*X**3.)

                 05.851743+0.301610X+0.197183X2-0.017962X3
         SCOST = ej
                                                     [dollars/yr]
                                        175

-------
c.  Total operating and maintenance costs                          AE020400


    COSTO(N,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.


       COSTO =  1 acre                                              AE021400

         CCOST(N,4) = EXP(3.716354+.389361*X+.084560*X**2.-.004718*X**3.)*1000.


             CCOST = 10oOe3-716354+0-389861X+0-084560x2-0-00/l718x3        [dollars]



b.  Operating manhours,  maintenance manhours and materials/supplies costs

    Function of AFS/ECFS



    X = ALOG(AFS/DMATX(13,N))                                      AE023000
    (1)  Operating manhours



            ~  < 1                                             AE022600
                 s

              OHRS = 300                                         [hrs/yr]


         (b)   H|  >_ -L                                             AE023100


              OHRS = EXP(5. 846565+. 254813*X+.113703*X**2.-.010942*X**3.)


                 OHRS = e5-846565+0-25A813x+0-113703x2-°-010942x3      [hrs/ r]



                                           176

-------
(2)   Maintenance manhours





     (a)  H|  < 1                                            AE022700





         XMHRS = 150                                         [hrs/yr]





     (b)  £2$.  > 1                                            AE023200
         ECF  —
             s



         XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)



              XMHRS  = e5. 273419+0. 228329X+0.122646X2-0.011672X3      [hrs/yrl






(3)   Total materials  and  supplies





     (a)  H|  < i                                            AE022800

             S



         TMSU = 125                                         [dollars/yr]





     (b)      -  >l                                            AE023300
          TMSU = EXP(5.669881+.750799*X)




             TMSU = e5- 669881+0. 750799X                      [dollars/yr]






(4)   Total operating and  maintenance  costs                    AE023800





     COSTO(N,4)  = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.




         COSTO = (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI)            r              .

                      Qplant  ln£_  * 3650                      [cents/1000 gal]
                                      177

-------
c                                                                         AE000100
C             AtROBIC DIGESTION                                           AE000200
C             PKOCEbS IDENTIFICATION  NUMBER  18                          AE000300
C                                                                         AE000400
      SUBROUTINE AEKOB                                                    AE000500
C                                                                         AE000600
C                                                                         AE000700
C             COMMON INITIAL STATEMENTS                                   AE000800
C                                                                         AE000900
      INTEGER Obi.os2                                                     AEOOIOOO
      DIMENSION SMAT(20)                                                  AE001100
      COMMON SMATX ( 20 .30) »TMATX(20r30) .DMATXC20.20) »OMATX(20 .20) . IP(20) » AE001200
     HNP.Io.ISl.lSii.OS1.0S<:,N»IAERF.CCOST(20.5).COSTO(20.5)»ACOST(20.5)AE001300
     2'TCOS1 (20r5) »UHR»PCT« wPI » CLAND.DLAND'FLOW (25) »POW(25> »TKWHD(25)    AE001400
C                                                                         AE001500
C                                                                         AE001600
C             PKOCESS RELATIONSHIPS REQD.  To  CAl_C. EFFLUENT STREAM       AE001700
c             CHARACTERISTICS                                             AEOOIBOO
C                                                                         AE001900
      DO 10 1=1.20                                                        AE002000
   10 SMAT(1)=0.                                                          AE002100
      IF                                               AE002900
      TLMP4=OMATX ( 13 • L ) *DMATX ( 7 r L > *SMATX ( 2 ' IS1 )                          AE003000
c                                                                        AEOU3100
c                                                                        AE003200
C             EFFLUENT STREAM CALCULATIONS                               AE003300
C                                                                        AE003400
                 ) = ((TEMPl + TEMP2«-TEMP3+TEMP'+)-(i,MATx<2HSl>-»-SMAT<2))*DMAAE003500
     lTX(b'N))/(DMATX(trN)-UMATX(5»N))                                   AE003600
      SMATX(2rOb2)=bMATX(2»lSl)+SMAT(2)-SMATX(2rOSl)                     AE003700
      VOLPC= =SMATX ( 10 . os2 ) *VOLPC                                   AEOO^SOO
      SMATX ( 3 . Ob2 ) =bMATX ( 9. uS2 > /2. 13                                     AFOOU900
      SMATX(4,Ob2)=SMATX(3.0S2)                                           AE005000
      SMATX(5.0b2)=bMATX(3.0S2)/10.                                      AE005100
      SMATX(6.0b2)=SMATX(3'OS2)/100.                                     AE005200
      SMATXl7.0S2)=bMATx(lO,OS2)-SMATX(9,OS2)                            AE005300
      SMATX(8.0b2)=bO.                                                    AE005UOO
      SMATX c n . osi ) = 1 500 . -SMATX ( 9. 052 ) *i . nz ) /3.2                         AFOOSSOO
      SMATX111.0S2)=SMATX(11.0S1)                                        AE005&80
      SMATX (12. OSI )=SMATX(U,oS2)/2.                                     AE005700
      SMATX ( 12. OS2>=SMATX(lii. 051)                                        AE005800
                                     178

-------
C                                                                        AE012500
      X=ALOt»(ACFM/lUOO.)                                                 AE012600
      CCOST(N.2)=EXHU.l<»b»t5                                     AE013400
C                                                                        AE013SOO
C                                                                        AE013600
C                  CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS    AE013700
C                  AND ELECTRICAL POWER AND SUPPLY COSTS                AE013800
C                                                                        AE013900
      IF (ACFM/1000./DMATX(15»N)-1.) I«f0»l50.150                        AE01UOOO
      OHRS=050.                                                          AEOmiOO
      XMHRS=350.                                                         AE01«*200
      GO TO 160                                                          AE01«t300
  IbO OHRS=t,XP(t>.900586+.32.i725*X-«-.059093*X**2.-.uO+SCOST*WPI+ECOST)/SMATX(2»
13650.


CALC. OF CAPITAL COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN PLUS EXCESS CAPACITY

IF (DMATX12.N)) 170. 3b0.170
170 IF (QPUMP-.5) 180.190.190
ItiO CCOST(N.3)=20000.
GO TO 200
190 X=ALOu«SPUMP)
AE015200
AE015300
AE015100
AE015500
D/AE015600
AE015700
AE015800
AE015900
AE016000
AE016100
AE016200
AE016300
AE016400
AE016500
AE016600
AE016700
CCOST(N.3)=EXP(3.«*8l5b3+.377U85*X+.0933*«9*X**2.-.006222*X**3.)*100AE016800

C
C
C
C
C
C
C
C
C
C






10.


CALC. OF OPERATING COSTS FOR SLUDGE RETURN PUMPS BASED
ON DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS
CAPACITY


CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES

2UG IF  210.220.220
210 OHRS=«*00.
XMHRS=250.
TMSU=200.+(DMATX(&.N>/30.)*tOO.
GO TO 280
220 X=ALOG(QPUMP/UMATx(l
-------
      ENTN=bMATx(2»ISl)*(SMATX(5.ISl)+SMATX(13»ISD)+SMAT(2)*(SMAT(5)+SMAE005900
      1AK131)                                                             AE006000
      ExbN=bMATA(2»OSl)*SMATX(5.0SmSMATX<2.0S2)*SMATXl5»OS2)           AE006100
      SMATX(13.0S1>=/(SMATX(2.0S1)+SMATX(2»OS2))              AE006200
      SMATX(13»oS2)=SMATX(lJ.OSl)                                         AE006300
      ENTP=bMATx(2»lSD*(SMATX<6.1Sl)+SMATX(l«t»ISl) )+SMAT (2) * (SMAT(b)+SMAE006400
      lATdt))                                                             AE006500
      EXbP=bMATX(2.0Sl>*SMATX<6.051)+SMATX<2»OS2)*SMATX(6.0S2)
      SMATX (i<*. uS2 > = ( ENTP-EXSP ) / ( SMATX (2. osi) +SMAT x (2. OS2))
      SMATX (1.ISl)
      SMATX (15.052 >=SMATXUt>» IS1)
      SMATX(16.0S1)=300.
      SMATX(16.0S2)=300.
      SMATXU7.0Sl)=DMATX(6.N)-bO.
      SMATX117.0S2)=SMATX(17.0S1)
      SMATXiis.usi)=SMATX(la.isi)
      SMATX(18.oS2>=SMATX(lb.151)
      SMATX(19»oSD=SMATXU9»ISl)
      SMATX(19.0S2)=SMATX(19.IS1)
      SMATX(20'.OSI)=SMATX (20.151)
      SMATX120.OS2)=SMATX(20.151)
              CALC. OF OUTPUT SIZES  AND  QUANTITIES

      VAERl=(SMATX(2»ISl)+SMAT<2))*DMATX(3.N)*1000./7.46*DMATX(16.N)
      VALR2=(SMATX(*:.IS1)*SMATX110.IS1)+SMAT(2)*SMAT{10))*8.33/.05/1000
     1*UMATX(16.N)
      IF  (VAER1-VAEK2) 50.60.60
   bO

   60
   70

   tiO
 GO TO 70
 VAER=VAER1
 BblZE=20.*VAEk*DMATX(15.N)
 IF (DMATX12.NJ) 90.80*90
 AFS=0.
 GO TO 100
 AH S=(SMATA(2.1SI)+SMA7(2))*1000./UMATX(7.N)*DMATX(13.N)
                                                           AE006600
                                                           AE006700
                                                           AE006600
                                                           AE006900
                                                           AE007000
                                                           AE007100
                                                           AE007200
                                                           AE007300
                                                           AE007HOO
                                                           AE007500
                                                           AE007600
                                                           AE007700
                                                           AE007800
                                                           AE007900
                                                           AE008000
                                                           AE008100
                                                           AE008200
                                                           AE008300
                                                           AE008400
                                                           AE008500
                                                          .AE008600
                                                           AE008700
                                                           AE008800
                                                           AE008900
                                                           AE009000
                                                           AE009100
                                                           AE009200
                                                           AE009300
                                                           AE009400
                                                           AE009500
                                                           AE009600
  100 DEMO=(SMATX(9»ISl)*SMATX(2»ISl)+SMAT<9)*SMAT<2)-Tt>iPl-TEMP2)*a.33>»AE009700
  110
  120
C
c
C
c
11.
 CFM=DLMO/.075/.232/.05/lt
-------
IF 2oO»260
250 PEFF=.74
60 TO 270
2t>0 PEFF=.83
270 YRKW=UPUMP*1000000.*DMATX(8.N)/l*mO./3960./pEFF/.9*.7457*24.*365.
ECOST=YRKw*DMATX ( 10 r 20 )
SCOST=EXPl5.8bm3+.3U16lO*X+.197183*X**2.-.017962*X**3.)
TMSU=tCOSl +SCUST*WP1
C
C
C OPERATlNb COST EQUATION
C
2ttO COSTO < N » 3 ) = « OHRS+XMHKS ) *UHR* ( 1 . +PCT > +TMSU ) /SMATX ( 2 • 1 ) /3650 .
C
C
C CALC. OF CAPITAL COSTS FOR FINAL SETTLER PASED ON DESIGN
C PLUS EXCESS CAPACITY
C
IF (AFS-1.) 290r300r300
290 CCOST(N»4)=25000.
60 TO 310
300 X=ALOto(AFS)
AE018900
AE019000
AE019100
AE019200
AE019300
AE019400
AE019500
AE019600
AE019700
AE019800
AE019900
AE020000
AE020100
AE020200
AE020300
AE020400
AE020500
AE020600
AE020700
AE020800
AE020900
AE021000
AE021100
AE021200
AE021300
CCOST(N»t)=EXP(3.7163bt+.389861*X+.08t560*X**2.-.OOt718*X**3.)*100AE021'tOO
10.
C
C
C CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
C DLSI6N CAPACITY ALONE» DOES NOT IftCLUuE EXCESS CAPACITY
C
C
C CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
C AND MATERIALS AND SUPPLIES
C
310 IF (AFS/DMATX(13»N)-1.) 320*330.330
320 OMRS=300.
XMHRS=150.
TMSU=125.
60 TO 340
330 X=AL06(AFS/DMATX(13rNM
OHRS=t,XP(b.8'+fab65-«-.25<*8l3*X+.113703*X**2.-.Ul09'*2*X**3.)
XMHRS=EXPl5.273U19+.2t:8329*X+.1226t6*X**2.-.Oll67a*X**3.>
TMSU=tXP 1 5. 669881+ . 750799*X )
C
C
C OPERATING COST EQUATION
C
340 COSTO IN. 4)= ( (OHRS+XMHRS) *UHR* ( 1 ,+PCT> +TMSU*«PI ) /SMATX (2.D/3650.
C
C
C ASSIGNMENT OF VALUES TO OMATX
C
360 OMATXll»N)=VALR
OMATXl2rN)=ACFM
OMATX (3>N)=oPuMP
OMATX(4»N)=AFS
C
C
C PROCESS ENERGY INDICES
C
FLOrt
PUtf(N)=18.
RETURN
END
AE021500
AE021600
AE021700
AE021BOO
AE021900
AE022000
AE022100
AE022200
AE022300
AE022400
AE022500
AE022600
AE022700
AE022800
AE022900
AE023000
AE023100
AE023200
AEOii3300
AE023400
AE023500
AE023600
AE023700
AE023600
AE023900
AE024000
AE024100
AE024200
AE024300
AE024400
AE024500
AE024600
AE024700
AE024800
AE024900
AE025000
AE025100
AE025200
AE025300
AE025400
181

-------
                                            SECTION  20

                                      POST  AERATION, POSTA
Subroutine Identification Number  19

Post Aeration, POSTA
                  Rev. Date  8/1/77
1.   Process symbol-
       IS1
                                 OS1
2.   Input parameters  and  nominal values.

     DMATX(l.N)  •= ITYPE




     DMATX(2,N)  = L





     DMATX(3,N)  •= DOIN


     DMATX(4,N)  = DOUT


     DMATX(5,N)  = TL

     DMATX(6,N)  = TD

     DMATX(7,N)  = TW

     DMATX(8,N)  = AERFO


     DMATX(9,N)  = HPHRO


     DMATX(10,N)  = ALT

     DMATX(11,N)  = CFMDF

     DMATX(12,N)  = DIFFT

     DMATX(13,N)  = DD

     DMATX(15,N)  = ECF

     DMATX(16,N)  = ECF
                                                  IS1: Liquid  input  stream
                                                  OS1: Liquid  output stream
                                                   N: User  assigned number to  the  process
Program control: -1 - mechanical aeration system
is used, 0 = diffused air aeration system is used
(plug flow), +1 = diffused air aeration system
is used (complete mix).[-l.]

Program control: set equal to the user assigned
process number (N) given to the aeration process
(AERFS) to allow the POSTA subroutine to use
output parameters calculated in the aeration
process.[varies].

Dissolved oxygen concentration in the influent
stream to the post aeration process, mg/l.[l.]

Dissolved oxygen concentration in the effluent
stream from the post aeration process, mg/l.[4.J

Water temperature, degrees Centigrade.[20.J

Tank depth (for diffused air only), ft.[15.]

Tank width (for diffused air only), ft.[24.]

Aeration efficiency at standard conditions (for
diffused air only), fraction.[.08]

Efficiency measure for the mechanical aerators,
Ib of oxygen transferred per hp-hr.[3.5]

Altitude of the plant site above sea level. ft.[0<],

Capacity of each air diffuser, scfm.[l5.]

Number of diffusers per foot of tank length.[1.]  *

Depth of diffusers below the water surface, ft*[13*3$

Excess capacity factor for the air supply system.[1.1

Excess capacity factor fot the aeration basin.[l.]

    182

-------
3.    Output parameters which are printed on computer output sheets

     ITYPE = DMATX(l.N)

     L = DMATX(2,N)

     DOIN - DMATX(3,N)

     DOUT = DMATX(4,N)

     TL = DMATX(5,N)

     TD - DMATX(6,N)

     TW = DMATX(7,N)

     AERFO = DMATX(8,N)

     HPHRO - DMATX(9,N)

     ALT - DMATX(IO.N)

     CFMDF = DMATX(ll.N)

     DIFFT = DMATX(12,N)

     DD = DMATX(13,N)

     VAER •= OMATX(l.N)

     CFM = OMATX(2,N)

     HP = OMATX(3,N)
    TMIN = OMATX(4,N)

    VMG = OMATX(5,N)

    AERFF = OMATX(6,N)

    CLEN   OMATX(7,N)

    HPI = OMATX(8,N)



    XN - OMATX(9,N)

    THP = OMATX(IO.N)


    WIDTH = OMATX(ll.N)
Volume of  the post aeration basin, cu  ft/1000.

Air requirement  for  the dlffusers, cfm.
Installed brake horsepower for mechanical aeration,
hp.

Detention time in the post aeration basin, minutes.

Volume of the post aeration basin, million gallons.

Aeration efficiency corrected to plant conditions.

Aeration channel length  (plug flow), ft.

Installed brake horsepower (HP) rounded off to
the next higher available size mechanical aerator,
hp.

Number of mechanical aerators required.

Total mechanical aeration horsepower required
(HP1*XN), hp.

Mechanical aeration basin width, ft.
                                                183

-------
     DEPTH = OMATX(12,N)

     TLEN = OMATX(13,N)


     CCOST

     COSTO

     ACOST

     TCOST

     ECF

References:

     Smith, Eilers and Hall,  1973
Mechanical aeration basin depth, ft.

Aeration basin length  (diffused air, complete
mix), ft.

Capital cost,                 [dollars].

Operating and maintenance cost,[cents/1000gal].

Amortization cost,            [cents/lOOOgal],

Total treatment cost,         [cents/lOOOgal],

Excess capacity factor,
4.   Theory and functions - FORTRAN statement  followed  by equivalent algebraic equation.

     S = SMATX(8,IS1)+SMATX(17,IS1)                                         POS05200

        S = SBODIS1+DBODIS1                                                 [mg/1]


     XA = OMATX(9,L)*OMATX(3,L)                                              POS05300

        XA = OMATX(9,L)*OMATX(3,L)                                           [mg/l]


     SMATX(I.OSl) = SMATX(I.ISl)                                             POS03900

        SMATX(I,OS1)  = SMATX(I,IS1)                                         Cmg/l]

        where I = 2,20  i.e. Q.SOC,SNBC,SON,SOP,SFM,SBOD,VSS,TSS,DOC,DNBC,DN,DP,DFM,ALK,DBOD,
                             NH3.N03
     CSS = 14.652-.410220*TL+.007991*TL**2.-.000078*TL**3.

        CSS = 14.652-0.410220TL+0.007991TL2-0.000078TL3


     RP = (760.-.025*ALT)/760.

        „„   760-0.025ALT
        OT	760
                              POS07200

                              [mg/1]


                              POS07300

                              [no units]
                                             184

-------
CSV - RP*CSS*BETA

   CSW - RP*CSS*BETA


AERK1 - . 31942* (CSW-DOUT)*HPHRO*ALPHA*1. 025** (TL-20.)


   AERK1 - 0.31942(CSWHDOUT)*HPHRO*ALPHA*(1.025)TL~20


AERK2 = .58*CAER*XA*S/CY+1.16*CE*XA
           0.58CAER*XA*S +  (H6CE*XA)
                 CY
HP = (SMATX(2,IS1)*(DOUT-DOIN)+AERK2*VMG)/AERK1*DMATX(15,N)

       [Q   *(DOUT-DOIN)+(AERK2*VMG)]ECF
   HP =  TSl - . -
                    AERK1
VCF = (17.+.53*HP)**2.*(5.+,07*HP)


   VCF = (17+0.53HP)i*(5+0.07HP)


VMG = VCF*7. 48/1000000. *DMATX (16 ,N)

   yjj- = 7.48VCF*ECF
           1000000


VDEL = ABSCVMG-VMGP)

   VDEL = | VMG-VMGP |


HP1 = SIZE(I)    (For HP£ size (I))

   HP1 = SIZE(I)

   where I = 1,14


XN =HP /150.
   XN =
HP
T5~0
POS07400


[mg/1]


POS07700


[I/day]


POS07800



^day ^


POS08100


[horsepower]



POS08200


[ft3]


POS08400


[MG]



 POS08500

[MG]


 POS09300


[horsepower]




 POS09800


[number]
                                          185

-------
  THP - HP1*XN


    THP « HP1*XN



  WIDTH - 17.+.53*HP1


    WIDTH - 1740.53HP1



  DEPTH • 5.+.07*HPl


    DEPTH = 5+0.07HP1



 VCF « DEPTH*WIDTH**2.


    VCF = DEPTH*WIDTH2



 VMG = (VCF*7.48/1000000.)*XN


    VMG = ?.48VCF*XN
            1000000



 HPMG  - THP/VMG
    HPMG
THP
VMG
 DAYS = VMG/SMATX(2,IS1)
   DAYS
          VMG
TMIN = DAYS*1440.


   TMIN = 1440 DAYS



VAER = VMG*1000./7.48



   VAER = 1000VMG
            7.48
 POS10100


 [horsepower]



 POS10200


 [ft]



 POS10300


 [ft]



 POS10400


 [ft3 1



 POS10500



 [MG]




 POS10600



 [JlH]
 MG


 POS10700



 [days]




POS10800


[min]


POS10900



rft3
LiUUUJ
                                         186

-------
CFMMG - CFMDF*DIFFT*1000000./TD/TW/7.48
                                                                      POSH 100
   CFMMG - CFMDF*DIFFT*1000000
            7.48TD*TW
AERFF - AERFO*(DD/13.)**.66666*(8./CFMDF)**.2

                      0.66666   o    0.2
   AERFF - AERFO*
                                                                      POS11200

                                                                       [no units]
AERK1 • .33347*CFMMG*AERFF*ALPHA*1.025**(TL-20.)

   AERK1 = 0.33347CFMMG*AERFF*ALPHA*(1.025)TL~20


AERK2 - .58*CAER*XA*S/CY-1.16*CE*XA

           0.58*CAER*XA*S .
                 CY
                                                                     POSH 300

                                                                       [I/day]

                                                                       POS11400
TEMP = (AERK1*(CSW-DOUT)-AERK2)/(AERK1*(CSW-DOIN)-AERK2)

   TEMp . AERK1(CSW-DOUT)-AERK2
          AERK1(CSW-DOIN)-AERK2
DAYS = -l.*ALOGCTEMP)/AERKl

            In TEMP
   DAYS » -
             AERK1
                                                                       POS11500

                                                                       [no  units]


                                                                       POS11600


                                                                       [days]
TMIN = DAYS*1440.

   TMIN = 1440 DAYS


VFM = SMATX(2,IS1)*92.84/TD/TW
         92.84Q
   VFM =
               IS1
          TD*TW
                                                                      POS11700

                                                                      [min]


                                                                      POS11800


                                                                      [ft/min]
CLEN = VFM*TMIN
          92.84Q   *TMIN
   CLEN
                IS1
             TD*TW
                                                                       POS11900


                                                                       [ft]
                                          187

-------
CFM = CLEN*CFMDF*DIFFT*DMATX(15,N)



   CFM = CLEN*CFMDF*DIFFT*ECF
                             s



CFMMG = CFMDF*DIFFT*1000000./TD/TW/7.48



           CFMDF*1000000DIFFT
   CFMMG
              7.48TD*TW
AERFF = AERFO*(DD/13.)**.66666*(8./CFMDF)**.2
   AERFF = AERFO(22.)
                   0.66666
                              8
                                   0.2
                            CFMDF
AERK1 = .33347*CFMMG*AERFF*A1PHA*1.025**(TL-20.)




   AERK1 = 0.33347CFMMG*AERFF*ALPHA*[1.025]TL~2°




AERK2 = .58*CAER*XA*S/CY-1.16*CE*XA
         . 0.58CAER*XA*S _(1.i6CE*XA)

              CY
   VMG
QTC1(DOUT-DOIN)ECF
 ZS1  	b	

AERKl(CSW-DOUT)-AERK2
DAYS = VMG/SMATX(2,IS1)



          VMG
   DAYS =
           IS1
TMIN = DAYS*1440.



   TMIN   1440DAYS





TLEN = VMG*1000000./TD/TW/7.48



          1000000VMG
   TLEN
                                                              POS12000



                                                              [cfm]




                                                              POS12200




                                                              [ft3/MG]





                                                              POS12300




                                                              [no unitg]





                                                             POS12400




                                                              [I/days]




                                                               POS12500
VMG = SMATX(2,IS1)*(DOUT-DOIN)/(AERK1*(CSW-DOUT)-AERK2)*DMATX(16,N)    POS12600



                                                                       [MGJ
          7.48TD*TW
                                                              POS12700




                                                              [days]





                                                              POS12800



                                                              [mln]




                                                              POS12900




                                                              [ft]
                                          188

-------
     VAER- VMG*1000./7.48                                                    POS13000




       VAER = 1«G_                                                     rft3 ^









     CFM  - CFMMG*VMG*DMATXC15,N)                                              POS13100




       CFM = CFMMG*VMG*ECFS                                                 [cfm]







5.    Cost functions.




     Post aeration basin




     a. Capital  cost




       Function of VAER



     X =  ALOG(VAER)                                                           POS14300




       X = In VAER




     CCOST(N.l)  = EXP(2.180040+.351346*X+.064188*X**2.-.003403*X**3.)*1000.    POS14400




       CCOST =  1000e2-180040+0'3513'i6X+0.064188X2-0.003403X3               [dollars]






     b. Operating manhours, maintenance  manhours  and materials/supplies  costs




     (1)  Operating manhours                                                  POS15200




       OHRS = 0                                                            [hrs/yr]






     (2)  Maintenance manhours                                                POS15300




       XMHRS =  0                                                           [hrs/yr]






     (3)  Total  materials and supplies                                        POS15400




       TMSU = 0                                                            [dollars/yr]






     c. Total operating and maintenance  costs



     COSTO(N.l)  = 0                                                           POS15500




       COSTO =  0                                                           [cents/lOOOgal]
                                               189

-------
Mechanical aeration




a.  Capital cost



    Function of THP



X - ALOG(THP)                                                         POS16600




    X = In THP




For THP < 20



CCOST(N,2) - 20000.                                                   POS17300



    CCOST - 20000                                                     [dollars]






For THP > 20



CCOST(N,2) - EXP(2.848804-.223685*X+.142476*X**2.-.005985*X**3.)*1000.   POS18000





    CCOST - 1000e2.848804-0.223685X+0.142476x2-0.005985X3             [dollm]







b.  Operating manhours, maintenance manhours, and materials/supplies costs




    Function of THP/ECF,,
                       s


X = ALOG(THP/DMATX(15,N))                                             POS18800
    y _ IT,
           ECF



     (*) For  (THP/ECFg < 40)



     C**) For  (THP/ECF. > 40)
                     9 <^j



     (1)  Operating manhours                                             POS19500



         (*)  OHRS = 600                                               [hrs/yr]




         (**) OHRS = EXP(6.716272-.310684*X+.112744*X**2.-.004877*X**3.)     POS20400




                 OHRS = e6. 716272-0. 310684X+0.112744X2-0.004877X3      [hrs/yr]






     (2)  Maintenance manhours                                          POS19600




         (*)  XMHRS = 300                                              [hrs/yr]




         (**)  XMHRS = EXP(4.251092+.467681*X+.008276*X**2.)           POS 20500



                 YMHRC _ .4. 251092+0. 467681X+0.008276X2                r    ,   ,
                 XMhRS - e.                                             [hrs/yr]





     (3)  Blower kilowatts




         XKW = .8*THP/DMATX(15,N)                                      POS21000






                                                                       [kilowatts]







                                          190

-------
    (4)  Blower kilowatt years

        XKWPY -  XKW*24.*365.                                         POS21100

              XKWPY • 24XKW*365                                       [kwhr/yr]


    (5)  Energy cost

        ECOST -  XKWPY*DMATX(10,20)                                   POS21200

             ECOST - 24XKW*365*CBWH                                   [$/yr]


    (6)   Service  cost

        PCFM - THP/DMATX(15,N)/8. 1/144. *(33000.*.8)/1000.            POS21300

             PCFM „ THP*33000*0.8                                    r  -  -,
             PCFM   8.1ECFS*144*1000                                 [cfm]




         SCOST =  EXP(.621382+.482047*ALOG(PCFM))*1000.                 POS21400
             SCOST = 1000e-'           ?CFM)                   [$/yr]



c.  Total operating and maintenance costs                             POS21900

    COSTO(N,2)  = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.


         COSTO  = (OHRS+XMHRS)DHR(1+PCT)+(SCOST*WPI)+ECOST             ,      ,         -.
                        Qplant Inf. *  365°                            [cents/1000  gal]



Diffused aeration

a.  Capital cost

    Function of CFM

X = ALOGCCFM/1000.)                                                   POS22700
        In
           CFM
           1000

    (*)   For
    (*)   CCOST = 13000                                POS23400        [dollars]

    (**)   CCOST(N,2)  = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.
                                                                      POS24100

               CCOST  = iooOe4<145A54+0-633339x+0-031939x2~0-002419x3
                                          191

-------
b.  Operating manhours, maintenance manhours and materials/supplies costs





    Function of CFM/ECF
                       O



    X - ALOG(CFM/1000,/DMATX(15,N))                                   POS24900
        X =» In
                  CFM
               lOOOECFg




    (*)  For ( . CFM -  < 1)

              1000ECFC
                     s
    (**) For (
             ('

              —   -

              1000ECFg  =





    (1)  Operating manhours                                              POS25700




         (*)  OHRS = 850                                              Chrs/yrl




         (**) OHRS = EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.)    POS26600





                 OHRS = e6-900586+0-323725x+0-059093x2~°-004926x3     fhrs/ rl






    C2)  Maintenance manhours                                          POS25800




         C*)  XMHRS = 350                                             [hrs/yr]




         (**) XMHRS = EXP(6.169937+.294853*X+.175999*X**2.-.040947*X**3.+.003300*X**4.)




                 XHIIRS = e6. 169937+0. 294853X+0.175999X2-0.040947X3+0.003300X4  [hrs/yr]


                                                                               POS26700


    (3)  Blower horsepower




         CHP   CFM/DMATX (15 ,N)*8. 1*144. / (33000.*. 8)                   POS27300




               CHP = CFM*8. 1*144

                     ECFS*33000*0.8                                   [horsepower]





    (4)  Blower kilowatts




         XKW = .8*CHP                                                 POS27400





               XKW = CFM*8. 1*144

                     ECF *33000                                       [kilowatts]
                        S





    (5)  Blower kilowatt years




         XKWPY   XKW*24.*365.                                          POS27500




               XKWPY - 24XKW*365                                      [kwhr/yr]






    (6)  Energy cost




         ECOST = XKWPY*DMATX(10,20)                                    POS27600




               ECOST = 24XKW*365CKWH                                   [$/yr]
                                          192

-------
    (7)   Service  cost




         SCOST  -  EXP(.621382+.482047*X)*1000.                         POS27700





                 SCOST -  100Oe0-621382+0-482047X                      [$/yr]






c.  Total operating  and maintenance costs                             POS28200




    COSTO(N,2)  -  ((OHRS+30fflRS)*DHR*(l.+PCT)+SCOST*WPI+ECOST)/SMATX(2,l)/3650.




         COSTO  =  (OHRS+XMHRS)DHR(1+PCT^(SCOST*WPI)+ECOST             [cents/1000 gal]
                                          193

-------
c
c
c
c
              POST AERATION
              PROCESS IDENTIFICATION NUMBER
                                19
      SUBROUTINE POSTA
              COMMON INITIAL STATEMENTS
                                                                    POS00100
                                                                    POS00200
                                                                    POS00300
                                                                    POS00100
                                                                    POS00500
                                                                    POS00600
                                                                    POS00700
                                                                    POS00800
                                                                    POS00900
 INTEGER osi»os2                                                    POSOIOOO
 DIMENSION SIZLUt)                                                 POS01100
 COMMON SMATX.OMATX<20.20).IP<20)»POS01200
llNP»IO»ISl.IS2.0S1.0Si!»N.IAERF.CCOST<20»5>»COSTO(20.5).ACOST<20.5)PoS01300
2»TCOST(20.5).DHR.PCT.wPI»CLAND»DLAND»FLOW(25>»POW(25>»TKWHD(25)    POS01400
 DATA SIZE/5.r7.5rlO.»15.'20.»25.»30.'
 TL=OMATX(b»N)
 TD=DMATX(b»N)
 T«=DMATX(7rN)
 AERFO=DMATX(8rN)
 HPHRO=DMATX(9»N)
 ALT=DMATX(10»N)
 CFMDF=DMATX(11»N)
 D1FFT=DMATX(12»N>
 DD=DMATX(13rNJ
              ASSIGNMENT OF DESIGN VALUES To PROCESS  PARAMETERS
EFFLUENT STREAM CALCULATIONS
      DO 10 1=2.20
   10 SMATXUfObl)=SMATX(I»ISD
              CALC. OF OUTPUT SIZES AND QUANTITIES
POS02100
POS02200
POS02300
POS02400
POS02500
POS02600
POSU2700
POS02800
POS02900
POS03000
POS03100
POS03200
POS03300
POS03400
POS03500
P0503600
POS03700
POS03800
POS03900
POS04000
POS04100
POS04200
POS04300
POSOH100
POS04500
      IF (7.5-DOUT) 20»tO»HO
      WRITE (I0r30>
      FORMAT                                                              POS01800
      CL=.li>5                                                            POS0^900
      ALPHA=.9                                                           POS05000
      BtTA-.95                                                           POS05100
      S=SMATX(6,IS1)+SMATX <17.IS1)                                       POS05200
      XA=OMATX(9.L)»OMATX(3.L)                                           POS05300
      ^M=°'                                                             POS05UOO
      "p=0.                                                              POS05500
      CFMMG-0.                                                            POS05600
      HPMG-U.                                                            POS057130
      DtPTH=0.
                                                                         POS05800
                                     194

-------
    TMIN=0.                                                            POS05900
    VAER=U.                                                            POS06000
    VMG=0.                                                             POS06100
    VCF=0.                                                             POS06200
    VU£.L=U.                                                            POS06300
    W1DTH=0.                                                           POS06100
    ALRFFzO.                                                           POS06500
    CLEN=O.                                                            poso660o
    VFM=0.                                                             POS06700
    TLEN=U.                                                            POS06800
    HPlrO.                                                             POS06900
    XN=0.                                                              POS07000
    THP=O.                                                             POS07100
    CSS=l'*.65«i-.«U0220*Tl-+.007991*TL**2.-.00007a*TL**3.                POS07200
    RP=(7oO.-.025*ALT)/760.                                            POS07300
    CSw=RP*CSb*BETA                                                    POS07UOO
    IF UTYPE) 50>mO»150                                              POS07500
 bO VM6=0.                                                             POS07600
    AERKl=.319»»2*(CSW-DOUT)*HPHRO*ALPHA*1.025**{TL-20.)                POS07700
    At.RK2=.58*CAEK*XA*S/CY+1.16*CE*XA                                  POS07800
    NT=0                                                               POS07900
 60 NT=NT>1                                                            POS08000
    HP=(SMATX(2»IS1)*(DOUT-DOIN)+AERK2*VMG)/AERK1*DMATX(15»N)          POS08100
    VCF=(17.+.53*HP)**2.*15.+.07*HP)                                   POS08200
    VMfaP=VMG                                                           POS08300
    VMb=VCF*7.«+8/1000000.*DMATX(16fN)                                  POSOStOO
    VDEL=ABS(VMG-VM6P>                                                 POS08500
    IF (NT-25) 90»90»70                                                POS08600
 70 WHITE (I0»80)                                                      POS08700
 80 FORMAT (////»iOXr'POST AERATION  ITERATION  DOES  NOT CONVERGE'»////)Po508800
    60 TO 100                                                          POS08900
 90 IF (VDEL-.0001) 100rlUO»60                                         POS09000
100 DO 120 I=l»lAYS*14«*0.                                                    POS11700
    VFM=SMATX(2»Ii>l)*92.8'*/TD/TW                                       POS11800
    CLEN=tfFM*TMIN                                                      POS11900
    CFM=CLEN*CFMDF*DIFFT*UMATX(15»N)                                   POS12000
    60 TO 160                                                          P0512100
150 CFMMG=CFMUF*DlFFT*100oOOO./TD/TW/7.«*8                              POS12200
    AERFF=AERFO*(UD/13.)**.66666*(8./CFMDF)**.2                        P0512300
                                    195

-------
c
c
c
c
c
c
           l = .33.i<+7*CFMMG*AERFF*ALPHA*1.025***DMATXU6.N) POS12600
      DAYS=VMG/SMATX(2.IS1>
      TM1N=UAYS»1U<+0.
      TLEN=VMG* 1000000
      VAER=\/MG*1000./7.<*8
      CFM=CFMMG*VMG*DMATX(li>»N)
              CALC. OF CAPITAL  AND  OPERATING COSTS FOR POSTA BASIN

   160  IF  (ITYPE)  170.180.170
                   CALC. OF  CAPITAL  COSTS  FOR  POSTA BASIN BASED ON
                   DESIGN PLUS  EXCESS  CAPACITY IF MECHANICAL AERATION
                   OR DIFFUSED  AIR OF  COMPLETE Mix IS USED
   17u X=AL06(VAER)
                                                                       POS12700
                                                                       POS12800
                                                                       POS12900
                                                                       POS13000
                                                                       POS13100
                                                                       POS13200
                                                                       POS13300
                                                                       POS13UOO
                                                                       POS13500
                                                                       POS13600
                                                                       POS13700
                                                                       POS13800
                                                                       POS13900
                                                                       POS14000
                                                                       POS1<*100
                                                                       POS1U200
                                                                       POS1U300
                   CALC. OF OPERATING COSTS FOR  PoSTA  BASIN BASED ON
                   DESIGN CAPACITY ALONE* DOES NOT  INCLUDE EXCESS
                   CAPACITY
      OHKS=O.
      XMHRS=O.
      TMSU=O.
      COSTO(N»1)=0.
              CALC. OF CAPITAL AND OPERATING COSTS  FOR  AERATION
  ISO  IF  (ITYPE) 190.260.26U
    CCOST(N.l)=EXP(2.1800'*0-»-.3513'+6»X+.06*H88*X**2.-.003l+03*X**3.)*100POSl<*«»00
   10.                                                                 POSltSOO
                                                                       P051U600
                                                                       POS14700
                                                                       POS11800
                                                                       POS1U900
                                                                       POS15000
                                                                       POS15100
                                                                       POS15200
                                                                       POS15300
                                                                       POS15400
                                                                       POS15500
                                                                       POS15600
                                                                       POS15700
                                                                       POS15800
                                                                       POS15900
                                                                       P0516000
                                                                       POS16100
                                                                       POS16200
                                                                       POS16300
                                                                       POS16400
                                                                       POS16500
                                                                       POS16600
                                                                       POS16700
                                                                       POS16800
                                                                       POS16900
                                                                       POS17000
                                                                       POS17100
                                                                       POS17200
                                                                       POS17300
                                                                       POS17400
                                                                       POS17500
                                                                       POS17600
                                                                       POS17700
                                                                       POS17800
                                                                       POS17900
210 CCOST(N.2)=EXP(2.8"+880t-.223685*X+.l<»2«*76*X**2.-.005985*X**3,)»100PoS18000
                   CALC. OF CAPITAL COSTS FOR MECHANICAL  AERATION
                   SYSTEM BASED ON DESIGN PLUS EXCESS  CAPACITY
  190 X=ALOG(THP)
      IF (THP-20.) 200»210»210
  2UO CCOST(N»2)=20uOO.
      GO TO 220
                        CALC. OF CAPITAL COSTS FOR SMALL  AERATION
                        CAPACITY. LESS THAN 20 HP.
                        CALC. OF CAPITAL COSTS FOR LARGE AERATION
                        CAPACITY. EQUAL OR GREATER THAN 20 HP.
     10.
                 CALC. OF OPERATING COSTS FOR MECHANICAL  AERATION
                 SYSTEM BASED ON DESIGN CAPACITY ALONE. DOES  NOT
                 INCLUDE EXCESS CAPACITY
      X=ALOG(THP/DMATX(15.N»)
      IF (THP/DMATX(15.N)-UO.) 230»2«*0
POS18100
POS18200
POS18300
POS18400
POS18500
POS18600
POS1870*
POS18800
POS18900
                                      196

-------
  2.10 OHRS=600.
      XMHKS=300i
      60 TO £50
                                                 POS19000
                                                 POS19100
CALC. OF OPERATING MANHOUKS  AND  MAINTENANCE      POS19200
MANHOURS FOR AERATION CAPACITY*  LESS  THAN  «fO  HP  POS19300
                                                 POS19100
                                                 POS19500
                                                 POS19600
                                                 POS19700
                                                 POS19800
                                                 POS19900
CALC. OF OPERATING MANHOURS  AND  MAINTENANCE      POS20000
MANHOURS FOR AERATION CAPACITY*  EQUAL OR
GREATER THAN HO HP.
  210 OHRS=tXP(b.71b272-.31068<+*X+.1127<*4*X**2.-.00'*877*X**3.
      XMHRS=EXPIH.251092+.<*67bBl*X+.008276*X**2.)
                        CALC. OF SUPPLIES AND ELECTRICAL POWER  COSTS

  250 XKW=.ti*THP/DMATX(15*N)
      XKwPY=XKW*2<+.*365.
      ECOST=XKWPY*DMATX(10»20)
      PCFM=THP/UMATX(l5*N)/b.l/l«*<*.*<33000.*.8)/lOOO.
      SCOST=EXP(.62l382+.<+82047*ALOG(PCFM)>*1000.
                        OPERATING COST EQUATION
                   CALC. OF CAPITAL COSTS FOR DIFFUSED  AIR  AERATION
                   SYSTEM BASED ON DESIGN PLUS EXCESS CAPACITY
C
C
C
C
C
                                                                      POS20100
                                                                      POS20200
                                                                      POS20300
                                                                      POS20UOO
                                                                      POS20500
                                                                      POS20600
                                                                      POS20700
                                                                      POS20800
                                                                      POS20900
                                                                      POS21000
                                                                      POS21100
                                                                      POS21200
                                                                      POS21300
                                                                      P0521<*00
                                                                      POS21500
                                                                      POS21600
                                                                      POS21700
                                                                      POS21800
    COSTO(Ni2)=((OHRS+XMHRS)*DHR*(1,+PCT)+SCOST*WPI+ECOST)/SMATX(2•1>/POS21900
   13650.                                                             POS22000
    GO TO 330                        .                                 POS22100
                                                                      POS22200
                                                                      POS22300
                                                                      POS22400
                                                                      POS22500
                                                                      POS22600
                                                                      POS22700
                                                                      POS22800
                                                                      POS22900
                                                                      POS23000
                                                                      POS23100
                                                                      POS23200
                                                                      POS23300
                                                                      POS23UOO
                                                                      POS23500
                                                                      POS23600
                                                                      POS23700
                                                                      POS23800
                                                                      POS23900
                                                                      POS24000
280 CCOSTlN»2)=EXP(4.1<45tb-1.)
            300*310*310
CALC. OF OPERATING MANHOUKS AND MAINTENANCE
MANHOURS FOR AIR REQUIREMENT* LESS THAN  1000
CFM.
                                      197

-------
300
c
c
c
c
      OHRS=fl50.
      XMHRS=350.
      GO TO 320
c
c
c
c
c
c
                      CALC. OF OPERATING MANHOUHS  AND MAINTENANCE
                      MANHOURS FOR AIR REQUIREMENT*  EQUAL OR GREATER
                      THAN 1000 CFM.

310 OHRS=tXP(b.900586+.323725*X+.059093*X**2.-.00«»926*X**3.)
    XMHRS=EXP(6.169937+.29U853*X+.175999*X**2.-.0(*09<»7*X**3.<
   1**H.)
                                                                    POS25600
                                                                    POS25700
                                                                    POS25800
                                                                    POS25900
                                                                    POS26000
                                                                    POS26100
                                                                    POS26200
                                                                    POS26300
                                                                    POS26HOO
                                                                    POS26500
                                                                    POS26600
                        CALC. OF  SUPPLIES AND ELECTRICAL POWER COSTS
320
      CHP=CFM/DMATX(15»N>*8.1*14<*./<33000.*.8>
      XKW=.8*CHP
      XKWPY=XKW*2<*.*365.
      ECOST=XKWPY*DMATX(10»20)
      SCOST=EXPI.621382*.
c
c
c
c
c
c
c
c
                      OPERATING COST EQUATION
     13650.
  330
                                                                   POS26800
                                                                   POS26900
                                                                   POS27000
                                                                   POS27100
                                                                   POS27200
                                                                   POS27300
                                                                   POS27400
                                                                   POS27500
                                                                   POS27600
                                                                   POS27700
                                                                   POS27800
                                                                   POS27900
                                                                   POS28000
                                                                   POS28100
          = «OHRS+XMHRS)*DHR*U.+PCT>+SCOST*WPI+ECOST)/SMATX(2»1)/POS28200
                                                                   POS28300
                                                                   POS28tOO
                                                                   POS28500
        ASSIGNMENT OF  VALUES  TO  OMATX                             POS28600
                                                                   POS28700
OMATX(1»N)=VAER                                                    POS28800
OMATX(2»N)=CFM                                                     POS28900
OMATX(3»N)=HP                                                      POS29000
OMATX(<*»N)=TM1N                                                    POS29100
OMATX (5rN)=VMt,                                                     POS29200
OMATX (6»N)=AEKFF                                                   POS29300
OMATX(8,N)=HP1                                                     POS29500
OMATX (9rN)=XN                                                      POS29600
OMATX(10»N)=THP                                                    POS29700
OMATX(11»N)=WIDTH                                                  POS29800
OMATX ( 12 »N)=DtPTH                                                  POS29900
OMATX(13»N)=TLEN                                                   POS30000
                                                                   POS30100
                                                                   POS30200
        PROCESS ENERGY INDICES                                     POS30300
                                                                   POS30400
FLO«|(N)=SMATX(2»IS1)                                               POS30500
PO«
-------
                                    SECTION 21

                                EQUALIZATION, EQUAL
Subroutine  Identification Number  20
Equalization,  EQUAL

1.      Process  symbol.

         v_	

                         /
                                   OS1
                                                       Rev. Date 8/1/77
IS1:  Liquid input stream

OS1:  Liquid output stream

  N:  User assigned number to the process
Input parameters and nominal values.
    DMATX(l.N) = IAER
    DMATX(2,N) = RLW


    DMATX(3,N) = COSTL

    DMATX(4,N) = HEAD


    DMATX(5,N) = IMAT
    DMATX(14,N) = ECF


    DMATX(15, ) = ECF


    DMATX(16,N) = ECF
                                               Program control: 0 = Small impeller mechanical
                                               aerators on floating platforms are used, 1 =
                                               large impeller mechanical aerators on station-
                                               ary platforms are used.   [1.]

                                               Ratio of length to width for the equalization
                                               basin.                    [1.]

                                               Cost of pond lining material, $/sq ft.  [.5]

                                               Pumping head of effluent pumps from the equali-
                                               zation basin, ft.         [10.]

                                               Program control: 0 = Earthen pond with
                                               mechanical aeration is used for the equaliza-
                                               tion basin, 1 = concrete tank with diffused
                                               air is used for the equalization basin. [0.]

                                               Excess capacity factor for the pumping
                                               system.                   [1.25]

                                               Excess capacity factor for the surface
                                               aerators.                 [1.]

                                               Excess capacity factor for the equalization
                                               basin.                   '[*!.]
Output parameters which are printed on computer output sheets.

    IAER = DMATX(l.N)

    RLW = DMATX(2,N)

    COSTL = DMATX(3,N)

    HEAD = DMATX(4,N)
                                      199

-------
IMAT = DMATX(5,N)

WIDTH = OMATX(l.N)

AREA = OMATX(2,N)


VUMG= OMATX(3,N)


VOMG = OMATX(4,N)


VT = OMATX(5,N)


SAREA = OMATX(6,N)


HP = OMATX(7,N)

HP1   OMATX(8,N)


XN = OMATX(9,N)

THP = OMATX(10,N)


PLAND = OMATX(ll.N)




CLAND = OMATX(12,N)



VAER = OMATX(13,N)


ECFM = OMATX(14,N)


CCOST

COSTO

ACOST

TCOST

ECF
Equalization basin width at the water line, ft.

Equalization basin area at the water surface,
acres.

Usable liquid volume of the equalization
basin, mg.

Minimum liquid volume of the equalization
basin, mg.

Total liquid volume of the equalization basin
(VDMG + VOMG), mg.

Area of the lining required for the equaliza-
tion basin, sq ft.

Mechanical aerator brake horsepower, hp.

Brake horsepower (HP) rounded off to the next
higher available size mechanical aerator, hp.

Number of mechanical aerators required.

Total mechanical aeration brake horsepower
required (HPl*XN),hp.

Amount of land needed for the equalization
basin (this land area requirement is included
in the total land area requirement, ACRE, for
the whole plant), acres.

Cost of land needed for the equalization basin
(this cost is included in the total plant cost,
XLAND, for land), $.

Volume of the concrete tank used for the
equalization basin, cu ft/1000.

Required size of the blower for supplying air
to the concrete equalization basin, cfm.

Capital cost,[dollars].

Operating and maintenance cost,[cents/1000gal].

Amortization cost,[cents/1000 gal].

Total treatment cost,[cents/1000 gal].

Excess capacity factor.
                                    200

-------
Theory and functions - FORTRAN statement followed by equivalent algebraic equation.

    QP = 1.78*SMATX(2,IS1)**.92                                      EQU04400


        QP = 1.78[QIS1]°'92                     [MGD]


    VTJ = SMATX(2,IS1)*.12*1000000./7.48*DMATX(16,N)                  EQU04500

              0   *0.12*1000000*ECF
        VU - _IH	            [ft3]
                   7.48



    SAREA = (2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90.)+20.*(24.+
             (l.+RLW)*WIDTH)
                                                                     EQU05200
        SAREA = (2WIDTH(1+RLW)-156)*53.76+(WIDTH-90)(RLW*WIDTH-90)+20(24+(1+RLW)WIDTH)
                                                                            [ft2]

    WIDTH = (300.*(l.+RLtt)+(90000.*(l.+RLW)**2.-40.*RLW*(12000.-TO))**.5)/20./RLW
        WTnTH _  300 (1+RLW) +[90000 (1+RLW) -40RLW(12000-VU) ]   rff.-,
        WIDTH -- - 20RLW - ---  -        EQU05500
    AREA = RLW*WIDTK**2./43560.                                       EQU05700
        AREA =  RLW(WIDTH) _       [acre]
                   43560
    VMIN = 5.*RLW*WIDTH**2.-375.*WIDTH*(1.+RLW)+28500.               EQU05800


        VMIN = 5RLW(WIDTH)  -375WIDTH(1+RLW)+28500


    SAREA = (2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90>)-20.*(24.+
             (l.+RLW)*WIDTH)
        SAREA = (2WIDTH(1+RLW)-156)53.76+(WIDTH-90) (RLW*WIDTH-90)+20(24+(1+RLW)WIDTH)

                                                                            [ft2]

    WIDTH = (300.*(1.+RLW)+(90000.*(1.+RLW)**2.-40.*RLW*(12000.-VU))**.5)/20./RLW

                                         2                 Q 5       EQU06200
              =  300(1+RLW)+[90000(1+RLW) -40RLW(12000-VU)]                 [ft]
                                   20RLW
                                      201

-------
AREA = RLW*WIDTH**2./43560.


                      2
    AREA
            RLW (WIDTH).

               43560
VMIN = VU*.2857


    VMIN = 0.2857VU




VUMG = VU*7.48/1000000.



           7.48VU
    VUMG
           1000000
                               [acre]
                               [ft3!
                               [MG]
VOMG = VMIN*7.48/1000000.
    VOMG = 7'48VMIN
           1000000
                               [MG]
VT = VUMG+VOMG
    ™ = 7.48(VU+VMIN)

           1000000
                               [MG]
HPA = VT*29.88 (For VT>1.4)


    HPA= 29.88VT              [horsepower]




HPA = VT*35.36/(VT**.5)  (For VT<1.4)



    HPA _  35.36VT             [horsepower]


            (VT)°-5
HPB = VT*59./(VT**.4254)



          59VT
    HPB
          (VT)
              0.4254
                                [horsepower]
HP = HPB*DMATX(15,N)  (For HPA
-------
           HP - HPA*DMATX(15,N)  (For HPA>HPB)                                EQU07900


               HP = HPA*ECF      [horsepower]




           HPL = SIZE(I)                                                      EQU082°°


               HP1 = SIZE(I)      [horsepower]


               where I = 1,14



           Pump efficiency - Current values used in program; each can be changed by the
                             replacement on punched card.


           PEFF =0.70 for Q   <1.44MGD                                        EQU11500
                            XS1


           PEFF = 0.74 for Q   <10.08MGD                                       EQU11800
                            XS1



           PEFF = 0.83 for Q   £10.08MGD                                       EQU12000
                            15-L



           VAER = VT*1000./7.48                                                EQU15000



               VAER =  1000VT      [ft3/1000]




           ECFM = 20.*VAER*DMATX(15,N)     [ft3/min]                           EQU17000


               ECFM = 20VAER*ECF



           SMATX(I.OSl) = SMATX(I,IS1)



               SMATX(I.OSl) = SMATX(I.ISl)     [mg/l]


               where I = 2.20  i.e. Q,SOC,SNBC,SON,SGt',SFM>SBOD,VSS,TSS,DOC,DNBC,DN>DP,DFM,

                                    ALK,DBOD,NH3,N03



References:


       Patterson and Banker, 1971


       Smith Eilers Hall Feb 1973
                                                   203

-------
5.  Cost functions.
    Equal basin
    a.   Capital  cost
        Function of VAER
        X = ALOG(VAER)                                                    EQU15600
           X =  In VAER
        CCOST(N,1) = EXP(2.414380+. 175682*X+.084742*X**2.-.002670*X**3.)*1000.
                                                    2          3         EQU15700
           CCOST - 1000e2-414380+0.175682X+0.084742X -0.002670X            [doiiars]

    b.   Total operating and maintenance costs                             EQU16400
        COSTO(N.l) = 0                                                      [cents/lOOOgal]
    Blower
    a.   Capital  cost
        Function of ECFM
        X = ALOG(ECFM/1000.)                                              EQU17100
                  ECFM
            X = In
                   1000
        CCOST(N,2) = EXP(4.145454+.633339*X+.031939*X**2.-.002419*X**3.)*1000.
                                                     o           3         EQU17200
            CCOST = 1000e4.145454+0.633339X+0.031939X -0.002419X
    b.   Operating manhours, maintenance manhours, and materials/supplies  costs
        Function of  ECFM/ECF
        X = ALOG(ECFM/1000./DMATX(15,N))                                  EQU17900

            X = In   ECFM
                   1000ECF
        (1)  Operating manhours
        OHRS  =  EXP(6.900586+.323725*X+.059093*X**2.-.004926*X**3.)        EQU18500
                                                2           3
           ™DO     6.900586+0.323725X+0.059093X -0.004926X                r
           OHRS  =  e                                                       [hrs/yrj
                                           204

-------
    (2) Maintenance manhours
                                                                      EQU18600
    XMHRS = EXP(6.169937+.294853*X+.175999*X*.*2.-.04097*X**3,+.QQ3300*X**4,}


                                             234
                 6.169937+0.294853X+0.175999X -0.040947X +0.003300X
        XHHRS - e                                                      [hrs/yr]
(3) Blower horsepower


EHP = ECFM/DMATX(15,N)*8.1*144./(33000.*.8)



    TO,, _  8.1ECFM*144
           33000ECF*0.8



(4) Blower kilowatts


XKW = .8*EHP



    v-nr _  8.1ECFM*144
             33000ECF



(5) Blower kilowatt years


XKWPY = XKW*24.*365.


    XKWPY = 24XKW*365




(6) Energy cost


ECOST = XKWPY*DMATX(10,20)


    ECOST = 24XKW*365*CKWH




(7) Supplies cost


SCOST = EXP(.621382+.48:047*X)*1000.
        SCOST = lOOOe
                     0.621382+0.482047X
                                                                      EQU18800




                                                                       [hp]







                                                                      EQU18900




                                                                       [kw]







                                                                      EQU19000


                                                                       [kw-yrs J
                                                                      EQU19100


                                                                       [dollara/yr ]
                                                                  EQU19200




                                                                   [dollars/yr]
c.  Total operating and maintenance costs                             EQU19700


    COSTO(N,2)  = ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.
        COSTO
          = j^OHRS+XMHRS)*DHR*(l+PCT)]+(SCOST*WPI)+ECOST

                         Q^,         *3650
                          Plant inf.
                                                                       [cents/lOOOgal]
                                       205

-------
Pumping system of concrete tank

a.  Capital cost

    Function of QIS1*ECF

    X = ALOG(SMATXC2,IS1)*DMATX(1M))                                    EQU09600

        X = In (QIS1*ECF)

    CCOST(N,3) = EXPC3.481553+.377485*X+.093349*X**2.-.006222*X**3.)*1000.
                                                                         EQU09700
        CCOST = iooOe3-481553+0'377485X+0-093349x2~°-006222x3           [dollars]


b.  Operating manhours, maintenance manhours and materials/supplies costs

    Function of
    X = ALOG(SMATX (2,181))                                               EQU10500

        X = In QIgl

    (1)  Operating manhours                                              EQU11100

         OHRS = EXP (6 . 097269+. 253066*X- . 193659*X**2 .+. 078201*X**3 .- . 006680*X**4. )

             OHRS = e6- 097269+0. 253066X-0.193659X2+0.078201X3-0.006680X4   [hrs/yr]


    (2)  Maintenance manhours

         XMHRS = EXP(5.911541-.013158*X+.076643*X**2.)                    EQU11300

             XMHRS . e5. 911541-0. 013158X+0.076643X2                      [hrs/yr]


    (3)  Kilowatt hrs per year                                            EQU12100

         YRKW = SMATX(2,IS1)*1000000.*HEAD/1440./3960./PEFF/. 9*. 7457*24. *365.

                  _ QiSi*1000000*HEAD*0. 7457*24*365
                         1440*3960*PEFF*0.9                             [kwhr/yr]


    (4)  Energy cost

         ECOST = YRKW*DMATX(10,20)                                        EQU12200

             ECOST = YRKW*CKWH                                           [dollars/yr]
                                           206

-------
    (5) Supplies cost


    SCOST " EXP(5.851743+.301610*X+.197183*X**2.-.017962*X**3.)



                 5.8517 A3-H). 301610X+0.197183X2-0.017962X3
        SCOST m e




    (6) Total materials and supplies


    TMSU - ECOST+SCOST*WPI


        TMSU - ECOST+(SCOST*WPI)




c.  Total operating and maintenance costs


    COSTO(N,3) • (COHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.
        COSTO
                [(OHRS+XMHRS)*DHR*(1+PCT)]+TMSU
                          .nt Inf.
                                 *3650
EQU12300



[dollars/yr]
EQU12400


[dollars/yr]
EQU12900



[cents/lOOOgal]
Pumping system of earthen pond


a.  Capital cost



    Function of Q   *ECF
                 1.D J.



    X • ALOG(SMATX(2,IS1)*DMATX(14,N))



        X
    CCOST(N,4) • EXP(8.109253+.646743*X)



                 8. 109253+0. 646743X
b.  Total operating and maintenance costs


    COSTO(N.A) = 0
EQU13500







EQU13600




[dollars]




EQU14200


[cents/lOOOgal]
                                        207

-------
Equal basin for earthen pond


a.  Capital cost


    Function of AREA


    X   ALOG(AREA)                                                   EQU20400



        X = In AREA




    (1) For AREA<1 ACRE                                              EQU21100


    CCOST(N.l) = 22000                                                 [dollars]




    (2) For AREA>1 ACRE                                              EQU22500


    CCOST(N.l) = EXP(3.501091+.422086*X+.079097*X**2.-.008338*X**3.)*1000.


                                                 2          3
                     3.501091+0.422086X+0.079097X -0.008338X
        CCOST = lOOOe                                                  [dollars]




b.  Operating manhours, maintenance manhours and materials/supplies costs


    (1) For AREA
-------
    (b) Maintenance manhours


    XMHRS = EXP(4.844423+.327982*X+.017677*X**2.)                     EQU23400



                 4.844423+0.327982X+0.017677X2
        XMHRS = e                                                      [hrs/yr]


    (c) Total materials and supplies                                  EQU23900


    TMSU = 0                                                           [dollars/yr]




 c.  Total operating and maintenance costs                             EQU24400


    COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.



        COSTO _  (OHRS+XMHRS)*DHR*(1+PCT)+(TMSU*WPI)
                            Q          *3650                           [cents/lOOOgal]
                             Plant Inf.
Blower for earthen pond


a.  Capital cost


    Function of THP


    X = ALOG(THP)                                                     EQU25000


        X = In THP


    (1) For IAER = 0                                                  EQU25800


    CCOST(N,2) = EXP(.647120+.438812*X+.031192*X**2.)*1000.



                     0 . 647120+0 . 438S12X+0 . 031192X2
        CCOST = lOOOe                                                  [dollars]


    (2) For IAEROO                                                   EQU26600


    CCOST (N, 2) = EXP(3.141014-.218751*X+.136739*X**2.-.006042*X**3.)*1000.


                                                 2          3
        n™o^   lnnn 3. 141014-0. 218751X+0.136739X -0.006042X
        CCOST   lOOOe                                                  [dollars]




b.  Operating manhours, maintenance manhours and materials/supplies costs


    Function of THP/ECF


    X = ALOG(THP/DMATX(15,N))                                         EQU27300
                                         209

-------
   (1) Operating manhours                                              EQU27900


   OHRS = 0                                                            [hrs/yr]


   (2) Maintenance manhours                                            EQU28000


   XMHRS = 0                                                           [hrs/yr]



   (3) Blower kilowatts


   XKW =  .8*THP/DMATX(15,N)                                            EQU28100




       XKW =  0.8THP                                                   [kw]

               ECF

    (4) Blower kilowatt years


   XKWPY  = XKW*24.*365.                                                EQU28200


       XKWPY =  24XKW*365                                               [kw/yrs]


    (5) Energy cost


   ECOST  = XKWPY*DMATX(10,20)                                          EQU28300


       ECOST =  24XKW*365*CKWH                                          [dollars/yr]


    (6) Supplies  cost


    SCOST  = EXP(4.016957+.534211*X)                                     EQU28400



       r.™™     4.016957+0.534211X
       SCOST =  e                                                      [dollars/yr]




c.   Total  operating  and maintenance  costs                                 "


    COSTO(N,2) =  ((OHRS+XMHRS)*DHR*(1.+PCT)+SCOST*WPI+ECOST)/SMATX(2,1)/3650.



       COSTO =   (OHRS+XMHRS)*DHR*(1+PCT)+(SCOST*WPI)+ECOST            [cents/lOOOgal]


                               QPlant  Inf.*365°
                                       210

-------
Fond lining
a.  Capital cost
    CCOST(N,5) - SAREA*COSTL

b.  Total operating and maintenance costs
    COSTO(N,5) = 0
EQU29500
[dollars]

EQU30000
[cents/lOOOgaJ.]
    Land requirement
    Function of AREA
    X = ALOG(AREA)
        X = In AREA

    PLAND = EXP(1.588306+.529246*X+.038611*X**2.)
                                             2
        PLAND = e
    CLAND = PLAND*DMATX(7,20)
                 1.588306+0.529246X+0.038611X
        CLAND = DA*e
                    1.588306+0.529246X+0.038611X
EQU30500


EQU30600

[acres]

EQU30700

[dollars]
                                        211

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
           EQUALIZATION
           PKOCESS IDENTIFICATION  NUMBER
   SUtfROUTINt EQUAL
           COMMON INITIAL STATEMENTS
           ASSIGNMENT OF DESIGN  VALUES  To PROCESS PARAMETERS
                                                                     EQU00100
                                                                     EQU00200
                                          20                         EOU00300
                                                                     EQU00400
                                                                     EOU00500
                                                                     EQU00600
                                                                     EQU00700
                                                                     EQU00800
                                                                     EGU00900
  INTEGLR osi»os>2                                                    EQUOIOOO
  DlMENblON SIZEUt)                                                 EQU01100
  COMMON SMATX(20»30).TMATX(20»30)»DMATX(20.20)»OMATX(20»20)r!P(20)r£QU01200
 llNP»IO»ISIrlSi:»OSlrOS2»N»IAERFrCCOST<20r5)»COSTO(20»5)rACOST(20»5)EOU01300
 2»TCOST(20»5)tUHR»PCT»»PI»CLAND»DLAND»FLOW(2b> »POW(25> »TKWHD(25)   EGUOltOO
  DATA bIZE/5.»7.5'10.»15.»20..25.r30.iHO.>bO.»60.»75.»100.r125.t150EQU01500
 !•/                                                                 EQU01600
                                                                     EQU01700
                                                                     EOU01800
                                                                     EQU01900
                                                                     EQU02000
                                                                     EQU02100
                                                                     EQU02200
                                                                     EQU02300
                                                                     EQU02100
                                                                     EQU02500
                                                                     EQU02600
                                                                     F.QU02700
                                                                     EQU02800
                                                                     EQU02900
                                                                     EQU03000
                                                                     EQU03100
                                                                     EGU03200
                                                                     EQU03300
                                                                     EQU03100
                                                                     EQU03500
                                                                     EQU03600
                                                                     EQU03700
                                                                     EQU03800
                                                                     EGU03900
                                                                     EQU04000
                                                                     EGU01100
                                                                     EQU04200
                                                                     EQUO
           CALC. OF OUTPUT SIZES AND QUANTITIES

   QH'=1.76*SMATX(2»IS1)**.92
   VU=SMATX(i:.lSl)*.12*lUOOOOO./7.i*8*DMATX(lb»N)
   IF (IMAT) 50»20»50
20 IF (VU-39000.) 30r30»HO
30 Vu=39000.
   WJIDTH=90.
   AKEA=.18595
   VMlN=1500.
   SAREA=(2.*WIDTH*(1.+RLW)-156.)*53.76+(WIDTH-90.)*(RLW*WIDTH-90
                                     212

-------
    SAREA=(2.*WIDTH*<1.+RLW)-156.)*53.76+IWIDTH-90.)*(RLW*WIDTH-90.)+2EQU05900
   10.*(2<*.-H1.+RLW>*«IDTH>                                            EOU06000
    60 T0 60                                                           EGU06100
 50 W1DTH=( 300. *(1.+RLW) + (90000. *<1.+RLW>**2.-«*C).*RLW*< 12000. -VU>)**.5EQU06200
   D/20./RLW                                                          EQU06300
    AKLA=KUW*wIDTH**2./«t3360.                                          EGU06UOO
 oO VUMG=VU*7.70'170
 70 IF (Vl-l.t)  90»90»80
 60 HPA=VT*29.88
    60 TO 100
 yO HPA=VT*35.36/(VT**.5)
100 HPb=VT*59./(VT**.425«*)
    IF (HPA-HPB) 110»120»120
110 HP=HPtl*DMATX<15rN)
    60 TO 130
120 HP=HPA*DMATX(15»N)
1JO 00 15U 1=1 flU
    IF (HP-SIZE(D) If0rl40»150
    HPl=SiZE(D
    XN=1
    60 TO 160
    CONTINUE
    HPl = lt>0.
    XN=HP/150.
    IXN=XlM
    XN=IXN+1
loo THP=HPI*XN
            CALC. OF CAPITAL COSTS FOR PUMPINi, SYSTEM OF CONCRETE
            TANK bASED ON DESIGN PLUS EXCESS CAPACITY
                                                                       EQU06600
                                                                       EQU06700
                                                                       EQU06600
                                                                       EOU06900
                                                                       EOU07000
                                                                       EQU07100
                                                                       EQU07200
                                                                       EQU07300
                                                                       EQU07UOO
                                                                       EQU07500
                                                                       EQU07600
                                                                       EQU07700
                                                                       EOU07800
                                                                       EQU07900
                                                                       EOU08000
                                                                       EOU08100
                                                                       EQU08200
                                                                       EOU08300
                                                                       EOU06UOO
                                                                       EOU08500
                                                                       EOU08600
                                                                       EOU08700
                                                                       EQU08800
                                                                       EOU08900
                                                                       EOU09000
                                                                       EQU09100
                                                                       EQU0920Q
                                                                       EOU09300
                                                                       EOU09100
                                                                       EQU09500
170 X=ALOb(SMATX(2»ISl)*DMATX(l«lrN))                                   EOU09600
    CCOST(N»3)=EXP(3.4815b3+.377t85*X+.0933«»9*X**2.-.006222*X**3.)*100EQU09700
   10.                                                                 EQU09800
                                                                       EQU09900
                                                                       EQU10000
                                                                       EOU10100
                                                                       EOU10200
                                                                       EQU10300
                                                                       EQU10100
                                                                       EOU10500
                                                                       EQU10600
                                                                       EOU10700
                                                                       EGU10800
                                                                       EOU10900
                                                                       EQU11000
    OHRS=tXP(o.097269+.25i066*X-.1936b9*X**2.+.078201*X**3.-.006680*X*EQU11100
   1*4.)                                                               EOU11200
    XMHRS=EXP15.9115«U-.013158*X+.0766<+3*X**2.)                        EQU11300
    IF (SMATX(2»ISl)-1.4t) 180»190»190                                 EOUimOO
ItJO P£FF=.70                                                           EOU11500
    60 TO 220                                                          EQU11600
190 IF  200r210r210                                EQU11700
200 PEFF=.74                                                           EQU11800
    60 TO 220                                                          EOU11900
210 PLFF=.83                                                           EOU12000
2«iO YKKw=bMATX<2»lSl)*100UOOO.*HEAD/l'+«*0./396U./PEFF/.9*.7U57*2
-------
c
c
c
c

c
c
c
c
c


c
c
c
c
c

c
c
c
c




c
c
c
c
c



OPERATINo COST EQUATION

COSTOlNr3)=«OHRS+XMHKS)*DHR*(l.+PCT)+TMSU)/SMATX(2»l)/3650.


CALC. OF CAPITAL COSTS FOR PUMPING SYSTEM OF EARTHEN
POND BASED ON DESIGN PLUS EXCESS CAPACITY

X=ALOG
-------
c
c
c
c
 EHP=ECFM/UMATX( 15. N)*8.1*l<*4./( 33000 .*.B>                         EQU18800
                                                                   EQU18900
                                                                   EQU19000
                                                                   EQU19100
                                                                   EQU19200
                                                                   EQU19300
                                                                   EQU19100
                                                                   EQU19500
                                                                   EQU19600
          »=((OHRS+XMHKS)*DHR*(1.+PCT)+SCOST*WPI+ECOSTJ/SMATX(2.1)/EQU19700
I3o50.                                                             EQU19BOO
 GO TO 310                                                         EOU19900
XKWPY=XKW*2<*.*365.
ECOST=XKWPY*DMATX(10.20)
SCOST=EXP1.621382+.«*B«£0<*7*X)*1000.
                  OPERATING COST EQUATION
C
c
c
c


c
c
c
c
c


CALC

240 X=ALOb(ARtA)
IF IAKEA-1.)







. OF CAPITAL AND OPERATING COSTS FOR EARTHEN POND


250.260.260


CALC. OF CAPITAL COSTS FOR EQUAL BASIN. LESS THAN
1 ACRE

2&0 CCOST(N»1)=22000.
C
C
c
c
c



c
c
c
c
c





QHRS=oOO.
XMHRS=100.
GO TO 270







CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
FOR EQUAL BASIN. LESS THAN 1 ACRE






CALC. OF CAPITAL COSTS FOR EQUAL BASIN. EQUAL OR
GREATER THAN 1 ACRE

EQU20000
EQU20100
EQU20200
EQU20300
EQU20100
EOU20500
EQU20600
EQU20700
EQU20800
EOU20900
EQU21000
EOU21100
EQU21200
EQU21300
EQU21400
EQU21500
EQU21600
EQU21700
EQU21800
EQU21900
EQU22000
EQU22100
EQU22200
EOU22300
EOU22400
2bO CCOST(N»1)=EXP(3.501091+.*»22086*X+.079097*X**2.-.008338*X**3.)*100EQU22500

C
C
C
c
c


c
c
c
c

G
C
C
C

c
c
c
c
c

10.




OMfiC^h ¥ D f »v t*.
Wnr>3~bAr » O • 3
1*4.)
XMHRS=EXP(M.




270 TMSU=0.




COSTO(N»1)=(





X=ALOG(THP)



CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
FOR EQUAL BASIN. EQUAL OR GREATER THAN 1 ACRE
(l *7 fi ii. 9 + 9f*l>£*1ii.^Y4> ftt^Q9QQ*y*&O v rill/J.CIllAV*A^t A fiftlllQilAY
*t *U*Tfc* • cOfcOw**A* • UOOt"O*"*t • • U*JH'j"*A**J • T • UUAH"H*A
84i*«f 23+.327982*X+.017677*X**2. )


CALC. OF SUPPLIES AND MATERIALS FOR EQUAL BASIN




OPERATING COST EQUATION FOR EQUAL BASIN

(OHRS+XMHRS ) *DHR* ( 1 .+PCT > +TMSU*wPl ) /SMATX (2 » 1 ) /3650 .


CALC. OF CAPITAL COSTS FOR BLOwER BASED ON DESIGN
PLUS EXCESS CAPACITY


IF (IAER) 290.280.290
C
C




EQU22600
EOU22700
EOU22800
EQU22900
EQU23000
EQU23100
ACr^i loxonn
"tOUt JcUU
EQU23300
EQU23400
EQU23500
EQU23600
EQU23700
EQU23800
EOU23900
EQU24000
EOU24100
EQU24200
EQU2U300
EQU24400
EQU24500
EQU24600
EQU2H700
EQU24800
EQU2U900
EQU25000
EQU25100
EQU25200
EQU25300
                              215

-------
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
                         CALC. OF CAPITAL COSTS FOK BLOWER  IF  SMALL
                         IMPLLLER MECHANICAL AERATORS ON FLOATING
                         PLATFORMS ARE USED

   260 CCOST(N,2)=EXPU6»+7l2u+.«*38812*X+.03U92*X**2.)*1000.
       GO TO 300
C
C
C
C

C
C
C
C

C
C
c
c
c
c
c
c
                         CALC.  OF CAPITAL COSTS FOK BLOWER  IF LARGE
                         IMPLLLER MECHANICAL AERATORS ON STATIONARY
                         PLATFORMS ARE USED
      10,
300 X=ALOG(THP/DMATXU5»NM
                      CALC.  OF OPERATING MANHOUKS. MAINTENANCE
                      MANHOURS AND ELECTRICAL POWER AND SUPPLY COSTS
                                                                        EQU25
-------
 OMATXC8.N)=HP1                                                    EOU31900
 OMATX(9.N)=XN                                                     EOU32000
 OMATX(10»N)=THP                                                   EQU32100
-OMATXlll»N)=Pl.AND                                                 EQU32200
 OhATXU2»N>=CLAND                                                 EQU32300
 OMATX(13»U)=VAER                                                  EQU32UOO
 OMATX(11rN)=ECFM                                                  EQU32500
                                                                   EQU32600
                                                                   EOU32700
         PKOCEbS ENERGY INDICES                                    EoU32aoo
                                                                   EOU32900
 FLO*(N>=SMATXl2rISl)                                              EQU33000
 POW(N)=20.                                                        EOU33100
                                                                   EQU33200
                                                                   EOU33300
                                 217

-------
                                           SECTION 22

                              SECOND STAGE ANAEROBIC DIGESTION, DIG2

Subroutine Identification Number 21

Second Stage Anaerobic Digestion, DIG2
                                   Rev. Date 8/1/77
1.  Process symbol.
                                                           IS1:  Sludge input stream

                                                           OS1:  Sludge output stream

                                                           OS2:  Supernatant output stream

                                                             N:  User assigned number to
                                                                 the process
2.  Input parameters  and nominal values.
       DMATX(l.N)  =  TRR


       DMATX(2,N)  =  TSS

       DMATX(3,N)  =  TD

       DMATX(16,N) = ECF
Solids recovery ratio for the second stage anaerobic
digestion, [.81].

Total suspended solids concentration of OS1, mg/1, [50,000.]

Second stage anaerobic digester detention time, days, [15.].

Excess capacity factor for the process, [l.].
3.  Output parameters which are printed on computer output sheets.
       TRR = DMATX(l.N)

       TSS = DMATX(2,N)

       TD = DMATX(3,N)

       VDIG = OMATX(l.N)

       CCOST

       COSTO

       ACOST

       TCOST

       ECF
Volume of the second stage anaerobic digester, cu. ft./lOOO.

Capital cost, [dollars].

Operating and maintenance cost, [cents/1000 gal].

Amortization cost, [cents/1000 gal].

Total treatment cost, [cents/1000 gal].

Excess capacity factor.
                                                 218

-------
4.  Theory and functions - FORTRAN statement followed by equivalent algebraic equation.




    VDIG = DMATX(3,N)*SMATX(2,IS1)*133.69*DMATX(16,N)                         DI204100


           VDIG = TD*QIS1*133.69*ECF  [ft3/1000]




    SMATX(10,OS2) = ((1.-DMATX(1,N))/(1.-DMATX(1,N)*SMATX(10,IS1)/DMATX(2,N)))*SMATX(10,IS1)




           TSS0::: - (1-TRR)*TSSIS1                                            DI201900

              082      TRR*TSSIS1
                         TSS
    TEMPI - DMATX(2;N)/SMATX(10,IS1)                                          DI202100



                     TSS
           TEMPI =    °        [no units]

                   TSSISl




    TEMP2 = SMATX(10,OS2)/SMATX(10,IS1)                                       DI202200


                   TSSnq,
           TEMP2 = - 2§£      rno units]

                   TSSIS1
     SMATX(lO.OSl) = DMATX(2,N)                                                DI202300



                    TSS
     SMATX(2,OS1) =  (SMATX(10,IS1)-SMATX(10,OS2))*SMATX(2,IS1)/(SMATX(10,OS1)-SMATX(10,OS2))



                            TB
-------
    SMATX(I.OSl) =  SMATX(I.ISl)                                               DI203500




          SMATX(I.OSl) = SMATX(I.ISl)



          I  =  11,20  i.e.  DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03







    SMATX(I,OS2) =  SMATX(I.ISl)                                               DI203600




          SMATX(I,OS2) - SMATX(I,IS1)




          I  =  11,20







    References:




               Smith, 1969




               Patterson and Banker,  1971




5.  Cost functions.




    a.  Capital cost




        Function of VDIG




        X =  ALOG(VDIG)                                                        DI204700




            X = In  VDIG






        (1)  Digester facilities  less  than  20000  ft3






            CCOST(N.l)   EXP(4.594215+.127244*X-.004001*X**2.)*1000.          DI205400



                CCOST =  lOOOe*- 594215+0.127244X-0.004001X2     [dollars]







        (2)  Digester facilities  equal or greater than  20000 ft                DI206100






            CCOST(N.l) = EXP(7.679634-1.949689*X+.402610*X**2.-.018211*X**3.)*1000.



                CCOST  !OOOe7-679634-1.949689X+0.402610X2-0.018211X3   [Collars]







    b.  Operating manhours,  maintenance manhours,  and  materials/supplies costs




        Function of VDIG/ECF
        X = ALOG(VDIG/DMATX(16,N))




            X =  ln(VDIG/ECF)
DI206800
                                                220

-------
    (1)  Digester  facilities  less  than  20000  ft3




        (a)  Operating manhours






             OHRS - EXP(6.163803+.166305*X-.012470*X**2.)               DI207600





                  OHRS - e6-163803+0.166305X-0.012470X2      [hrs/yr]







        (b)  Maintenance manhours






             XMHRS = EXP(5.726981+.113674*X)                            DI207700



                 XMHRS = e5-726981-H).113674X      [hrs/yr]







        (c)  Total materials and  supplies






             TMSU = EXP(6.531623+.198417*X+.021660*X**2.)               DI207800




                 TMSU = e6-531623+0-198417x+0-°21660X2    [dollars/ r]







    (2)  Digester  facilities  equal or greater  than  20000  ft3




        (a)  Operating manhours                                         DI208600






             OHRS = EXP(9.129250-1.816736*X+.373282*X**2.-.017290*X**3.)




                 OHRS = e9-129250-1.816736X+0.37.3282X2-0.017290X3      [hrs/yr]







        (b)  Maintenance manhours                                      DI208700




             XMHRS = EXP(8.566752-1.768137*X+.363173*X**2.-.016620*X**3.)




                 YWUDC -  8566752-1.768137X+0.363173X2-0.016620X3         r^c/w 1
                 APulivD ™~ 6                                                 I [iiS/yr j







         (c)   Total materials and  supplies                              DI208800






              TMSU =  EXP(8.702803-1.182711*X+.282691*X**2.-.013672*X**3.)





                  TMSU  =  e8-702803-1-182711^0-282691^"0'013672^     [dollars/yr]






c.  Total  operating and maintenance costs                               DI209300






    COSTO(N.l)  = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.





        COSTO = (OHRS+XMHRS)DHR(1 +PCT)+TMSU(WPI)       rcents/1000 gal]


                     Qplant Inf.     *3"°               L
                                           221

-------
 c
 c
 c
 c
 c
               StCOND  STAGE  ANAEROBIC  DIGESTION
               PKOCEbS IDENTIFICATION  NUMBER  21
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
c
c
       SUBROUTINE  DIt.2
              COMMON  INITIAL  STATEMENTS
           PKOCEiS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM
           CHARACTERISTICS
                                                                    01200100
                                                                    DI200200
                                                                    DI200300
                                                                    01200400
                                                                    01200500
                                                                    01200600
                                                                    01200700
                                                                    DI200600
                                                                    01200900
 INTEGER osi»os2                                                    01201000
 COMMON SMATX(20r30)>TMATX(20>30)rDMATX(20.20)»OMATX(20'20)«lP(20)>OI201100
llNP.Iu»ISl»lSi»OSl»OSk:rN'IAERF.CCOST(20»5)fCOSTO(20.5J»ACOST(20.5)Dl201200
2»TCOST(20»5)»UHR»PCT»»iPI'CLAND»DLAND»FLOW(2t>).POW(25>»TKWHD<25)    DI201300
                                                                    DI2Q1400
                                                                    01201500
                                                                    DI201600
                                                                    DI201700
                                                                    DI201800
 SMATX(10»OS2)=((l.-DMATX(lrN))/(l.-DMATX(l»N)*SMATX(10.lSl)/DMATX(Dl201900
12»N)))*SMATX(10»Ibl)                                                DI202000
 TLMPl=DMA7X(2»N)/SMATA(lOfISl)                                     DI202100
 TLMP2=SMATX(10.OS2)/SMATX110•ISI)                                  DI202200
 SMATX110'OS1)=DMATX(2»N)           '                                01202300
            )=lSMATX(lU.ISl)-SMATX(10»OS2))*i,MATX(2.iSl)/(SMATX(10fDl202400
                                                                    DI202500
                                                                    DI202600
                                                                    DI202700
                                                                    DI202800
                                                                    01202900
                                                                    01203000
                                                                    DI203100
                                                                    DI203200
                                                                    01203300
                                                                    DI203400
                                                                    DI203500
                                                                    DI203600
                                                                    DI20370Q
                                                                    DI203800
                                                                    DI203900
                                                                    DI204000
                                                                    DI204100
                                                                    OI20420Q
                                                                    DI204300
                                                                    01204400
                                                                    01204500
                                                                    DI204600
                                                                    DI204700
                                                                    DI20480Q
                                                                    01204900
                                                                    DI205000
                                                                    DI205100
                                                                    DI205200
                                                                    DI205300
                                                                    DI20540Q
                                                                    DI205500
                                                                    DI205600
                                                                    DI2057CO
                                                                    DI2U5800
     10bl)-bMATX(10rOS2))
      SMATX(2.0b2)=SMATX(2»ISD-SMATX(2»OSl)
           EFFLULNT STREAM CALCULATIONS

   DO 10 I=3f9
   SMATX(i»0bi)=TEMPI*SMATX

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
                   EQUAL OR GREATER THAN 20000 CU. FT.                  DI205900
                                                                        01206000
   40 CCOST(N»1)=EXP (7.6796,S<*-1,9<+9689*X+.1026lO*X**2.-.018211*X**3.>*lODl206100
     100.
              CALC.  OF OPERATING COSTS BASED ON DESIGN CAPACITY ALONE*
              DOES NOT INCLUDE EXCESS CAPACITY

      X=ALO&(VD1G/DMATX<16»N))
      IF 305*X-.012«»70*X**2.)
   XMHRS=EXP 15.726981 + . 11367<+*X)
   TMbU=tXP(b.53l623+.l9tm7*X+.021660*X**2.)
   GO TO 80


                CALC. OF OPERATING MANHOURS. MAINTENANCE MANHOURS
                AND MATERIALS AND SUPPLIES FoR DIG2 FACILITY. EQUAL
                OR GREATER THAN 20000 CU. FT.

70 OHRS=EXP<9.129250-1.8 J.673b*X+.373282*X**2.-.Ol7290*X**3.)
   XMHRS=EXPl8.5b6752-1.768l37*X+.363l73*X**2.-.016620*X**3.)
   TMSU=EXP(6.702803-1.16271l*X+.2B2b91*X**2.-.Ol3672*X**3.)


                OPERATING COST EQUATION

60 CQSTO(N.1) = ((OHRS+XMHKS)*DHR*(1.+PCT>+TMSU**Pl)/SMATX12.1)/3650.
           ASSIGNMENT OF VALUES TO OMATX

   OMATX(lrN)=VDlG
              PKOCEbS ENERGY  INDICES

      FLO«/(N)=SMATX(2fISl)
      PO«(N)=21.
      RETURN
      END
DI206200
DI206300
DI206UOO
DI206500
01206600
01206700
DI206800
DI206900
01207000
DI207100
01207200
DI207300
DI207400
DI207500
DI207600
DI207700
DI207800
DI207900
DI2U8000
DI208100
DI208200
01208300
DI208400
01208500
DI208600
DI208700
DI20B800
DI208900
DI209000
DI209100
01209200
01209300
DI209400
DI209500
DI209600
01209700
01209800
DI209900
DI210000
DI210100
DI210200
01210300
DI210400
DI210500
DI210600
                                       223

-------
                                           SECTION 23

                              LAND DISPOSAL OF LIQUID  SLUDGE, LANDD

Subroutine Identification  Number  22
                                                                   Rev.  Date 8/1/77
Land Disposal of Liquid  Sludge, LANDD
1.  Process symbol.
   IS1
                                     OS1
                IS1:  Sludge input stream

                OS1:  Zero output since sludge
                      percolates into soil

                  N:  User assigned number to
                      the process
2.  Input parameters and  nominal values.
    DMATX(l.N)    TAYR

    DMATX(2,N)  - SP

    DMATX(3,N)    DIST


    DMATX(4,N)  = TS


    DMATX(5,N)  = YRSL

    DMATX(15,N)  = ECF

    DMATX(16,N)  = ECF
Amount of dry solids disposal, tons/acre/yr.  [15.J

Sludge storage period before disposal, yr.  [.25]

Round trip sludge hauling distance by truck,
miles.  [10.]

Sludge leading capacity of trucks used for
hauling, gallons.  [1200.]

Amortization period for trucks, yr.  [6.J

Excess capacity factor for trucking capacity.  [l.J

Excess capacity factor for the sludge holding
lagoon,  [l.]
3.  Output parameters which are  printed on  computer  output  sheets.


    TAYR = DMATX(l.N)

    SP = DMATX(2,N)

    DIST = DMATX(3,N)

    TS = DMATX(4,N)

    YRSL = DMATX(5,N)

    TYT = OMATX(l.N)

    TTYR = OMATX(2,N)
Total number of trips made per year by each truck.

Total number of trips made per year by all the trucks,
                                                224

-------
   TRKN - OMATX(3,N)

    SLV - OMATX(4,N)

   TONS - OMATX(5,N)

   ALAND = OMATX(6,N)




   DLAND - OMATX(7,N)


   COL • OMATX(8,N)


   AFT = OMATX(9,N)


   CCOST

   COSTO

   ACOST

   TCOST

   ECF
                                 Total number  of  trucks  needed  to haul  the  sludge.

                                 Volume  of  sludge in storage, cu ft/1000.

                                 Amount  of  dry solids applied to the land,  tons/yr.

                                 Required land area for  spreading the sludge  (this
                                 land area  requirement is  not included  in the total
                                 land area  requirement,  ACRE, for the whole plant),
                                 acre.

                                 Interest cost on the capital investment in land for
                                 sludge  spreading, $/yr.

                                 Capital cost  of  land area required for sludge
                                 spreading, $.

                                 Amortization  factor for trucks based on a  6
                                 year lifetime.

                                 Capital cost,  [dollars].

                                 Operating  and maintenance cost, [cents/1000  gal].

                                 Amortization  cost, [cents/1000 gal].

                                 Total  treatment  cost, [cents/1000  gal].

                                 Excess  capacity  factor.
4.   Theory  and  functions - FORTRAN  statement   followed by  equivalent algebraic equation.
    TYT - 260.*8./(.04*DIST+.5)
         TYT  =
                  260*8
               0.04DIST+0.5
                                              LAN02700


                                 [trips/yr/truck]
TTYR = 365.*SMATX(2,IS1)*1000000./TS          LAN02800


                                 [trips/yr]
         TTYR =   365*1000000QIS1
                     TS
    TRKN =  TTYR/TYT


         TRKN = 1™
                                              LAN02900
                                 [number]
    NNN =  TRKN*DMATX(15,N)                         LAN03000

        NNN = TRKN*ECF               [number]


    TRKN = NNN+1                                   LAN03100

        TRKN =  (TRKN*ECF)+1          [number]
                                               225

-------
    SLV - SP*365.*SMATX(2,ISl)*1000000./7. 48/1000. *DMATX(16,N)               LAN03200


         „„   365SP*QIS1*1000000ECF         ,
         SLV = _ X151 -      ff fVlOOOl
                   7.48*1000              L " /±uuu-l




    TONS = (SMATX(10,IS1)+SMATX(15,IS1)*SMATX(2,IS1)*8. 33*365. /2000.         LAN03300


         TONS = (TSSIS1+DFMIS1) *QIgl*8 . 33*365

               - 2000 -     [tons/yr]
    ALAND = TONS/TAYR                                                        LAN03400


         AT Am =  TONS               .     .
         ALAND =  ^^               [acres]
    COL = ALAND*DMATX(7,20)                                                  LAN03500


         COL = ALAND*DA              [dollars]




    DLAND = COL*DMATX(3,20)                                                  LAN03600


         DLAND = COL*RI              [dollars]




    AF = DMATX(3,20)*(1.+DMATX(3,20))**DMATX(4,20)/((1.+DMATX(3,20))**DMATX(4,20)-1.)



                                                                             LAN03700
    AFT = DMATX(3,20)*(1.+DMATX(3,20))**YRSL/((1.+DMATX(3,20))**YRSL-1.)       UM03900



         AFT =
               [1+RI]YRSL_1




    References :


         Smith and Eilers,  1975


         Patterson and Banker,  1971





5.  Cost functions.


    Sludge storage


    a.   Capital  cost


        Function of SLV


        X = ALOG(SLV)                                                         LAN05000


            X =  In SLV
                                              226

-------
CCOST(N.l) - EXP(. 375449+. 394996*X+.014726*X**2.)*1000.                    LAN05100

     CCOST - W00e<>'V5U9+0.39U<)6™.OW26X2        [dollars]



b.  Operating manhours, maintenance manhours and materials/supplies costs

    Function of TONS

    X - AIOG(TONS)                                                          LAN05700

        X - In TONS


    (1)  Operating manhours


         OHRS - EXP(6. 567594-. 971759*X+.095689*X**2.)*SP                   LAN06300


              OHRS = SP*e6-567594-°-971759x+0-°95689X2    [hrs/yr]



    (2)  Maintenance manhours


         XMHRS - EXP(-2. 087393+2. 395831*X-.340388*X**2.+.017499*X**3.)*SP  LAN06400

              XMHRS = SP*e-2.087393+2.395831X-0.340388X2+0.017499X3     [hrs/yr]



    (3)  Total materials and supplies


         TMSU = 0                        [dollars/yr]                       LAN06500


C.  Total operating and maintenance costs


    COSTO(N.l) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.     LAN07000

         COSTO = C (OHRS+XMHRS) *PHR* (1+PCT) ]+(TMSU*WPI)
                         Qplant Inf. *3650                    l-Cen S      g3  J


Sludge transportation

a.  Capital cost

    Function of TX

    X = ALOG(TS/1000.)                                                      LAN07600
    CCOST(N,2) = EXP(1. 317230+3. 959678*X-2.592107*X**2.+.583467*X**3.)*(1. 506/1. 761)*1000*TRKN


         CCOST = 1-506 *lOOOTRKN*e1 • 317230+3 . 959678X-2 . 592107X2+0 . 583467X3
                 1.761
                                            227

-------
                                                                    LAN08300
b.  Amortized cost

    ACOST(N,2) - CCOST(N,2)*AFT/SMATX(2,1)/3650.

         ACOST - CCOST*AFT	^^           [cents/1000  gal]
                 Qplant Inf.  *3650


c.  Operating manhours, maintenance manhours  and materials/supplies  costs
    For TS 21 5500

    OM - 0.475*DIST*TTYR                     [hrs/yr]


    For TS < 2500

    OM = 0.305*DIST*TTYR                     [hrs/yr]


    For TS 21 2500

    OM = 0.425*DIST*TTYR                     [hrs/yr]


    Maintenance manhours

    TMHR = TTYR*(.04*DIST+.5)

         TMHR = TTYR*(0.04DIST+0.5)           [hrs/yr]


d.  Total operating and maintenance  costs


    COSTO(N,2) •= (TMHR*DHR*(1.+PCT)4OM*WPI)/SMATX(2,1)/3650.

         COSTO = [TMHR*DHR*(1+PCT)]4(OM*WPI)  [cents/1000  gal]
                                                                    LAN09400

                                                                    LAN10000

                                                                    LAN09500

                                                                    LAN09600

                                                                    LAN09500

                                                                    LAN09800



                                                                    LAN10100
                                                                     LAN10600
                     *Plant Inf.
                                 *3650
Interest on capital investment

a.  Capital cost assumed zero

    CCOST(N,3)  = 0


b.  Total operating and maintenance  costs

    COSTO(N,3)  = DLAND/SMATX(2,1)/3650.

                     DLAND
         COSTO
                 Qplant Inf.  *3650
                                              [dollars]
                                              [cents/1000 gal]
LAN11200
                                                                     LAN11300
                                           228

-------
        LAND DISPOSAL OF LIQUID SLUDGE.
        PKOCEbS IDENTIFICATION NUMBER  22
SUBROUTINE. LANDD
                                                                   LAN00100
                                                                   LAN00200
                                                                   LAN00300
                                                                   LAN00400
                                                                   LAN00500
                                                                   LAN00600
                                                                   LAN00700
                                                                   LANOOBOO
                                                                   LAN00900
 INTEGER OS1.0S2                                                   LAN01000
 COMMON SMATX(5).ACOST(20.5)LAN01200
        COMMON INITIAL STATEMENTS

c
c
c
c





c
c
c
c










2»TCOST(20.b) .UHR.PCT. *PI »CLAND.DLAND»FLOW(25> .POW125) »TKWHD(25)


ASSIGNMENT OF DESIGN VALUES TO PROCESS PARAMETERS

TAYR=L)MATX(1.N)
SP=OMATX(i!.N)
DIST=L)MATX(3»N)
TS=DMATX(i*»N)
YKSL=UMATX(5»N)


CALC. OF OUTPUT SIZES AND QUANTITIES

TYT=2t>0.*ti./(.04*QIST+.5)
TTYK=J65.*SMATX(2»ISD*1000000./TS
TRKN=TTYR/TYT
NUN=TKKN*OMATX < is » N )
TfcKN=HNN+l
SLV=SH*366.*SMATX(2»ISl)*1000000./7.t8/1000.*DMATX(16»N)
TONS=(SMATX(lU.ISl)+SMATX(15»ISl))*SMATX(2rISl)*8.33*365./2000.
ALAND=TONb/TAYR
COL=ALAND*DMATX(7.20>
DLAND=COL*DMATX(3>20)
LAN01300
LAN01<400
LAN01500
LAN01600
LAN01700
LAN01800
LAN01900
LAN02000
LAN02100
LAN02200
LAN02300
LAN02HOO
LAN02500
LAN02600
LAN02700
LAN02800
LAN02900
LAN03000
LAN03100
LAN03200
LAN03300
LAN03100
LAN03500
LAN03600
AF=DMATX(3»20)*(1.+DMATX(3'20) ) **DMATX U.20) /( ( 1 .+QMATX (3.20) J **DMLAN03700


C
C
C
C

c
c
c
c
c


c
c
c
c
c

c
1ATXC4»20)-1.)
AFT=DrtATX 1 3r 20 ) * ( 1 . +DMATX (3.20)) **YRSL/ ( ( 1 . +DMATX (3.20)) ** YRSL-1 .


COST CALCULATIONS

IF (SLV) 10.20.10


CALC. OF CAPITAL COSTS FOR SLUDGE STORAGE BASED ON
DtSIGN PLUS EXCESS CAPACITY

10 X=ALOb(SLV>
CCOST(N.l)=EXP(.375i*<«9+,39'*996*X+.01«*726*X**2.)*lOOO.


CALC. OF OPERATING COSTS FOR SLUDGE STORAGE BASED ON
DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS CAPACITY

X=ALOfa(TONS)

LAN03800
JLAN03900
LAN04000
LANOtlOO
LAN04200
LAN04300
LANOU100
LANOH500
LANOU600
LANOU700
LAN01800
LAN01900
LAN05000
LAN05100
LAN05200
LAN05300
LAN05<+00
LAN05500
LAN05600
LAN05700
LAN05800
                               229

-------
c
c
c
c



c
c
c
c

c
c
c
c
c



c
c
c
c

c
c
c
c
c
c
c
c
c
c







c
c
c
c
c

c
c
c
c
c
c
c



CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES

OHKS=LXP< 6. 56759<*-.9717b9*X+.095669*X**2 •)*:•>?
XMHRS=EXP 1 -2 .087393+2. 395831 *X-.3<*038b*X**2. + ,Ol7«t99*X**3. )*SP
TMSU=O.


OPERATING COST EQUATION

COSTO ( N ' 1 ) = « OHRS+XMHRS ) *DHR* < 1 . +PCT ) +TMSU*wPl ) /SMATX < 2 » 1 ) /3650


CALC. OF CAPITAL COSTS FOR SLUDGE TRANSPORTATION BASED
ON DESIGN PLUS EXCESS CAPACITY

20 X=ALOG(TS/1000.)
CCOSTlN'2)=EXP(1.317230+3.959678*X-2.592l07*X**2.+.583U67*X**3.
11. 506/1. 7fal)»1000.*TRKN


CALC. OF AMORTIZATION COSTS

ACOST ( N , 2 ) =CCOST ( N » 2 > *AFT/SMATX ( 2 ' 1 ) /3650 .


LAN05900
LAN06000
LAN06100
LAN06200
LAN06300
LAN06400
LANU650Q
LAN06600
LAN06700
LAN06800
LAN06900
• LAN07000
LAN07100
LAN07200
LAN07300
LAN07400
LAN07500
LAN07600
)*(LAN07700
LAN07BOO
LAN07900
LAN08000
LANOB100
LAN08200
LAN08300
LANOBtOO
LAN08500
CALC. OF OPERATING COSTS FOR SLUDGE TRANSPORTATION BASED LAN08600
ON DESIGN CAPACITY ALONE' DOES NOT INCLUDE EXCESS
CAPACITY


CALC. OF OPERATING MANHOURS' MAINTENANCE MANHOURS
AND MATEKIALS AND SUPPLIES

IF (TS-5500.) 30»60»60
30 IF (Tb-2500.) <*0'bO»50
tO OM=.305*D1ST*TTYR
GO TO 70
bO OM=.t25*DiST*TTYR
GO TO 70
toO OM=.<»75*D1ST*TTYR
70 TMHR=TTYR*( .o^oisT+.b)


OPERATING COST EQUATION
COSTO(N'2)=/3650.


CALC. OF CAPITAL AND OPERATING COSTS FOR INTEREST ON
THE CAPITAL INVESTMENT
CCOST(N'3)=0.
COSTO(N'3)=DLAND/SMATX(2'1)/3650.

ASSIGNMENT OF VALUES TO OMATX
OMATXU,N)=TYT
OMATX(2'N)=TTYR
OMATX(3»N)=TRKN
OMATX UrN)=SLV
OMATX(5,N)=TONS
OMATX(6rN)=ALAND
OMATX(7»N)=DLAND
LAN08700
LAN08800
LAN08900
LAN09000
LAN09100
LAN09200
LAN09300
LAN09400
LANU9500
LAN09600
LAN09700
LAN09800
LAN09900
LAN10000
LAN10100
LAN10200
LAN10300
LAN10100
LAN10500
LAN10600
LAN10700
LAN10800
LAN10900
LAN11000
LAN11100
LAN11200
LAN11300
LAN11400
LAN11500
LAN11600
LAN11700
LAN11800
LAN11900
LAN12000
LAN12100
LAN1220fl
LAN12300
LAN12400
230

-------
      OMATX18.N)=COL                                                    LAN12500
      OMATX(9.N)=AFT                                                    LAN12600
c                                                                       LAN12700
C                                                                       LAN12800
C             PROCESS ENERGY INDICES                                    LAN12900
c                                                                       LAN13000
      Fl_Ort(N)=SMATXl2>IS>l)                                              LAN13100
      PO«(N)=22.                                                        LAN13200
                                                                        LAN13300
                                                                        LAN13»*00
                                       231

-------
                                        SECTION 24

                               LIME ADDITION TO SLUDGE,  LIME

Subroutine Identification Number 23

Lime Addition to Sludge,  LIME
         Rev. Date 8/1/77
1.  Process symbol.
         IS1
                            OS1
2.  Input parameters and nominal values.

          DMATX(l.N)   DLIME


          DMATX(2,N) = CLIME


          DMATX(16,N) = ECF
IS1:  Sludge input stream

OS1:  Sludge output stream

  N:  User assigned number to the
      process
Dose of lime, Ib of CaO/ton of dry
solids.  [200.]

Cost of lime, $/ton.  [25.J
Excess capacity factor for the process,
[1.]
3.  Output parameters which are printed on computer output sheets.

          DLIME = DMATX(l.N)

          CLIME = DMATX(2,N)

          PPDL = OMATX(1,N)                           Lime addition rate,  Ib of CaO/day.
          DTON = OMATX(2,N)


          CCOST

          COSTO


          ACOST

          TCOST

           ECF
Amount of sludge to be treated with
lime, tons/day of dry solids.

Capital cost , [dollars].

Operating and maintenance cost,
[cents/lOOOgal].

Amortization cost, [cents/lOOOgal].

Total treatment cost, [cents/lOOOgal].

Excess capacity factor.
                                            232

-------
4.   Theory and functions  - FORTRAN statement  followed by equivalent algebraic equation.



          DLIME = DMATX(l.N)                                           LIM01800



                DLIME = DMATX(l.N)           [ib  CaO/ton dry  solids]
          CLIME • DMATX(2,N)


                CLIME - DMATX(2,N)
                                                             LIM01900
                                   [$/tonJ
          DTON = (SMATX(10,IS1)+SMATX(15,IS1))*SMATX(2,IS1)*8.33/2000.




                                           '1—'	      [tons/day]   LIM02400
                        2000


PPDL = DLIME * DTON * DMATX(16,N)


      PPDL = DLIME*DTON*ECF




SMATX(I.OSl) = SMATX(I.ISl)


      SMATX(I.OSl) - SMATX(I.ISl)


      where I = 2,6


      i.e.   Q, SOC, SNBC, SON, SOP




SMATX(7,OS1) = SMATX(7,ISl)+PPDL/8.33/SMATX(2,ISl)




                     ^	            [mg/i]
                                                      [ib/day]
                                                         [mg/l]
                                8.33Q
                                     "LSI
          SMATX(8,OS1) = SMATXC8.IS1)
          SMATX(9,OS1) • SMATX(9,IS1)


                vssosrvssisi

          SMATX(lO.OSl) = SMATX(10,ISl)+PPDL/8.33/SMATX(2,ISl)
                      =
                   OS1    IS1
                        PPDL
                                                    [mg/l]
                                  8.33*QT
          SMATX(I.OSl) = SMATX(I.ISl)



                SMATX(I.OSl) = SMATX(I,IS1)



                where I = 11,20


                i.e.   DOC,  DNBC, DN, DP, DFM, ALK, DBOD, NH3,  N03
                                                                       LIM02500
                                                                       LIM03100
                                                                       LIM03200
                                                             LIM03300
                                                                       LIM03400
                                                             LIM03500
                                                                       LIM03700
                                            233

-------
References:




Smith and Eilers, 1975




Patterson and Banker, 1971






5.   Cost functions.




          a.   Capital cost




                Function of  PPDL




                     X = ALOG(PPDL)




                          X  = In  PPDL




          CCOST(N.l)  = EXP(-1.800487+.670797*X)*1000.
                                                             LIM04300
                                                             LIM04400
                CCOST - lOOOe
                             -1.800487+0.670797X
                                               [dollars]
          b.  Operating manhours,  maintenance manhours and materials/supplies costs




                Function of PPDL/ECF




                     X = ALOG(PPDL/DMATX(16,N))
                                                             LIM05000
                          X=ln   HSf-

                                  ECF




               (1)  Operating manhours




                     OHRS - 0.




                          OHRS   0     [hrs/year]






                (2) Maintenance manhours




                     XMHRS = EXP(6.060054+.197073*X)
                                                             LIM05500
                                                             LIM05600
                          XMHRS
                                    - 060054+0. 197073X
                                                  [hrs/yr]
                (3) Total materials and supplies




                     CHEM = PPDL*365.*CLIME/2000.
                                                                       LIM06100
                          CHEM
                       PPDL*365*CLIME

                             2000
                                                        [ton CaO/yr]
c.  Total operating and maintenance costs




COSTO(N,1)   ((OHRS+XMHRS)*DHR*(1.+PCT)+CHEM)/SMATX(2,1)/3650.



                                                             LIM06600


                                                     r     ,,nnn  ,->
                                                     [cents/lOOOgal]
                        [(OHRS+XMHRS)*DHR*(1+PCT)>CHEM
                               QPlant Inf.*3650
                                           234

-------
c
c
c
c
c
c
c
c
c
c
c
c
        LIME ADDITION TO SLUDGE
        PKOCESS IDENTIFICATION NUMBER
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
SUBROUTINE LIME
                                                                   LIMOOIOO
                                                                   LIM00200
                                        23                         LIM00300
                                                                   LIMOOUOO
                                                                   LIM00500
                                                                   LIM00600
                                                                   LIM00700
                                                                   LIM00800
                                                                   LIM00900
 INTEGER OS1.0S2                                                   LIM01000
 COMMON SMMTX(e:0»30)»TMATX(20»30)>DMATx(20r2o>»OMATX<20»20)»IP(20)»LIM01100
HUP»IO»ISl»lSi!rOSl»OS<>»N»IAERF>CCOST<20»5)»COSTO«20»5).ACOST<20r5)|_IM01200
                                                                   LIM01300
                                                                   LIM01<*00
                                                                   LIM01500
                                                                   LIM01600
                                                                   LIM01700
                                                                   LIM01BOO
                                                                   LIM01900
                                                                   LIMU2000
                                                                   LIM02100
                                                                   LIM02200
                                                                   LIM02300
                                                                   LIM02100
                                                                   LIM02500
                                                                   LIM02600
                                                                   LIM02700
                                                                   LIM02800
                                                                   LIM02900
                                                                   LIM03000
                                                                   LIM03100
                                                                   LIM03200
                                                                   LIM03300
                                                                   LIM03<*00
                                                                   LIM03500
                                                                   LIM03&00
                                                                   LIM03700
                                                                   LIM03800
                                                                   LIM03900
                                                                   LIMOHOOO
                                                                   LIMOU100
                                                                   LIM04200
                                                                   LIMOU300
                                                                   LIMOH400
                                                                   LIM04500
                                                                   LIM01600
                                                                   LIMU4700
                                                                   LIM04800
                                                                   LIMOH900
                                                                   LIM05000
                                                                   LIM05100
                                                                   LIM05200
                                                                   LIMU5300
                                                                   LIMU5UOO
                                                                   LIM05500
                                                                   LIM05600
                                                                   LIM05700
                                                                   LIM05800
        COMMON INITIAL STATEMENTS
     2'TCOST(20»5) >DHRiPCTf «/PI » CL AND »DLAND» FLOW I2i>) »POW(a5> >TKWHD(2b)


              ASSIGNMENT OF DESIGN VALUES TO CHEMICAL PARAMETERS

      DLIME=DMATX(1>N)
      C|_1ME=DMATX(2»N>
        CALC. OF OUTPUT SIZES AND QUANTITIES

DTON=(SMATX(10 fisi)+SMATX(i5»isi))*SMATX(2»isi)*s.33/2000.
PPDL=ULIMt*DTON*DMATX(Ib r N)
              EFFLUENT STREAM CALCULATIONS

      DO 10 I=2>6
   10 SMATXII»OS1)=SMATX(I»1S1)
      SMATX < 7•osi> =SMATX(7»isi>+PPDL/S.33/SMATX12.isi>
      SMATX(8*Obi)=SMATx(8»isi>
      SMATX(9.0bl)=SMATX(9»lSl)
      SMATX cio»osi> =SMATX(10•isi> +PPDL/B.BS/SMATX12risi)
      DO 20 I=ll»20
   20 SMATX(IfObl)=SMATX(l»ISD
        CALC. OF
        CAPACITY
CAPITAL COSTS BASED ON DESIGN PLUS EXCESS
      X=ALOG(PPUL)
      CCOSTIN»1)=EXP(-1.800'*87+.670797*X)*1000.
        CALC. OF OPERATING COSTS BASED ON
        DOES NOT INCLUDE EXCESS CAPACITY

X=ALOG(PPUL/DMATX(16»N))
                         DESIGN CAPACITY ALONE.
             CALC. OF OPERATING MANHOURS ANu MAINTENANCE MANHOURS
      OnKS=0.
      XMHRS=EXP (6.
                                     235

-------
c
c
c
c
c
c
c
c
c
c
             CALC. OF LIME DOSAGE  COSTS

CHEM=H>PDL*365.*CL1ME/2000.


             OPERATING COST EQUATION

CObTOIN»1) = ((OHRS+ XMHKS)*UHR*11.+PCT > +CHEM)/SMATX(2,1)/3650.


        ASSIGNMENT OF VALUES TO OMATX

OMATXllfNJzPPbL
OMATX(2»N)=DTON


        PROCESS ENERGY INDICES

Fi_0*(N)=SMATX<2»ISl)
POw(N)=23.
RETURN
END
 LIM05900
 LIM06000
 LIM06100
 LIM06200
 LIM06300
 LIM06400
 LIM06500
 LIM06600
 LIM06700
 LIM06BOO
 LIM06900
 LIM07000
 LIM07100
 LIM07200
 LIM07300
 LIM07400
 LIM07500
LIM07600
LIM07700
LIM07SOO
LIM07900
LIM06000
                                     236

-------
                                            SECTION 25

                       ROTATING  BIOLOGICAL  CONTACTOR - FINAL SETTLER,  RBC

Subroutine Identification Number  24

Rotating  Biological  Contactor   -  Final Settler,  RBC


1.   Process  symbol.
                     Rev.  Date  8/1/77
      IS1
                            ol
                    OS2 (Sludge)

2.   Input  parameters and nominal values.

     DMATX(l.N) - BOD


     DMATX(2,N) - XNSTG


     DMATX(3,N) - DEGC


     DMATX(A,N) - QPABI


     DMATX(5,N) - QPANI


     DMATX(6,N) - GSS


     DMATX(7,N) - BOON


     DMATX(8,N) - TSS


     DMATX(9,N) = CPDY

     DMATX(15,N) - ECF

     DMATX(16,N) = ECF
        IS1: Liquid  Input  stream
        OS1: Liquid  output stream
        OS2: Sludge  output stream
         N: User  assigned number for the process
Demand concentration of 5-day BOD in the final
effluent  stream, mg/l,[i3.]

Number of stages in series for the RBC
process.[4.]

Temperature of the water, degrees centrigrade.
[20.]

Rate constant for BOD removal at 20°C,
gpd/sq ft.[7.]

Rate constant for nitrification at 20°C,
gpd/sq ft.[4.45]

Design overflow rate (based on average flow) for
the final settler, gpd/sq ft.[800.]

Concentration of BOD at which nitrification
begins, mg/l.[20.]

Concentration of waste solids from the final
settler underflow, percent.[3.5]

Cost of installed concrete, $/cu.yd.[233.]

Excess capacity factor for the final settler.[l.J

Excess capacity factor for the rotating biological
contactor.[1.]
                                                237

-------
3.   Output parameters which  are  printed on  computer output  sheets

     BOD = DMATX(1,N)

     XNSTG = DMATX(2,N)

     DEGC = DMATX(3,Nl

     QPABI = DMATX(4,N)

     QPANI = DMATX(5,N)

     GSS = DMATX(6,N)

     BODN = DMATX(7,N)

     TSS   DMATX(8,N)

     CPDY = DMATX(9,N)

     QPAB = OMATX(l.N)
     QPAN = OMATX(2,N)


     APSTG = OMATX(3,N)

     AREA = OMATX(4,N)

     FNSTG = OMATX(5,N)



     RNSTG   OMATX(6,N)


     RATIO = OMATX(7,N)


     PREM   OMATX(8,N)

     QPAT = OMATX(9,N)

     AFS   OMATX(10,N)

     PDSD = OMATX(11,N)

     URSS = OMATX(12,N)
Rate constant for BOD removal after correction
for water temperature, gpd/sq ft.

Rate constant for nitrification after correction
for water temperature, gpd/sq ft.

Area per RBC stage, sq ft/stage.

Total RBC active area, sq ft.

Number of stages required to achieve the BOD
concentration (BODN) at which nitrification
begins.

Number of remaining stages for nitrification
(XNSTG - FNSTG).

Ratio of total BOD in the effluent stream to
total BOD in the influent stream.

Percentage of ammonia nitrogen removal.

Overall hydraulic loading, gpd/sq ft.

Surface area of the final settler, sq ft.

Solids wasting rate, Ib of dry solids/day.

Ratio of solid nonbiodegradable carbon
concentration in the effluent stream to the
concentration in the influent stream.
                                               238

-------
    NTRN = OMATX(13,N)                         Number of  100,000  sq  ft  shafts per  stage.


    NSHFT = OMATX(14,N)                        Number of  100,000  sq  ft  shafts required.


    COSTM = OMATX(15,N)                        Materials  and  supplies cost,  $/yr.


    COSTE = OMATX(16,N)                        Electrical power cost, $/yr.


    COSTL = OMATX(17,N)                        Operation  and  maintenance  labor  cost, $/yr.


    CCOST                                      Capital cost,  [dollars].


    COSTO                                      Operating  and  maintenance  cost,  [cents/lOOOgal]


    ACOST                                      Amortization cost,[cents/1000gal].


    TCOST                                      Total  treatment cost,[cents/1000gal].


    ECF                                        Excess capacity factor.




4.   Theory and  functions - FORTRAN  statement  followed by equivalent algebraic  equation.


    QPAB = DMATX(4,N)*1.04**(DMATX(3,N)-20.)                              RBC03200




         QPAB = QPABI*1.04DEGC~20                                         [gpd/ft2]




    QPAN = DMATX(5,N)*1.04**(DMATX(3,N)-20.)                              RBC03300



         QPAN = QPANI*1.04DEGC~20                                         [gpd/ft2]




    RATIO = DMATX(1,N)/(SMATX(17,IS1)+SMATX(8,IS1))                       RBC03400
     TEMPI = ALOG(RATIO)/DMATX(2,N)                                        RBC03500
    TEMP2 = l./EXP(TEMPl)-l.                                              RBC03600



         TEMP2 = - - -- 1                                           [no units]
                  TEMPl
                 e
    APSTG = SMATX(2,IS1)*1000000.*TEMP2/QPAB                              RBC03700


                 QT01*1000000*TEMP2
         APSTG = -^£± -                               [ft2]
                        QPAB
                                              239

-------
PDSD =  .34*(SMATX(8,IS1)+SMATX(17,IS1)+SMATX(10,IS1))*SMATX(2,IS1)*8.33-.3*AREA/1000.


                                                                      RBC03800

                                                                      [Ib/day]
                                              0 3AREA
PDSD = 0.34(SBODIS1+DBODIS1+TSSIS1)*8.33QIS1- -'1000
TEMP3 = l./(l.+QPAB*APSTG/SMATX(2,ISl)/1000000.)



                     1
     TEMP3 =
             ,  QPAB*APSTG

                QIS1*1000000
RATIO = DMATX(7,N)/(SMATX(17,IS1)+SMATX(8,IS1))
     RATIO
                    BOON
             DBODIS1+SBODIS1
 FNSTG = ALOG(RATIO)/ALOG(TEMP3)


             In RATIO
     FNSTG
             In TEMP3
 RNSTG = XNSTG-FNSTG
     RNSTG = XNSTG-
                    ln
                    In TEMP3
RATIO =  (l./(l.+QPAN*APSTG/SMATX(2,ISl)/1000000.))**RNSTG


                     ,         "1 RNSTG
     RATIO =
             1+
                QPAN*APSTG
                QIS1*1000000
SMATX(18,OS1) = SMATX(18,IS1)*RATIO
              NH3IS1*RATIO
SMATX(2,OS2) = PDSD/DMATX(8,N)/10000./8.33


                   PDSD
            TSS*10000*8.33



SMATX(2,OS1) = SMATX(2,IS1)-SMATX(2,OS2)
      OS1 =  IS1~OS2
SMATX(10,OS1) = 4.5+.51*DMATX(l,N)


     TSSosi = 4-5+0-51 BOD
                                                                RBC04000



                                                                [no units]





                                                                RBC04100



                                                                [no units]




                                                                RBC04200



                                                                [no units]




                                                                RBC04300



                                                                [no units]




                                                                RBC04400



                                                                [no units]





                                                                RBC04900


                                                                [mg/1]




                                                                RBC05000



                                                                [MGD]




                                                                RBC05100


                                                                [MGD]




                                                                RBC05200


                                                                [mg/1]
                                         240

-------
SMATX(10,OS2)  - DMATX(8,N)*10000                                     RBC05300


     TSSQS2 =  10000 TSS                                              [mg/l]



SMATX(8,OS1) = (SMATX(10,OSl)-4.5)*.897                               RBC05400


     SBODOS1 = (TSSogl-4.5)*0.897                                    [mg/l]



SMATX(17,OS1)  = DMATX(1,N)-SMATX(8,OS1)                               RBC05500


     DBODQS1 = BOD-SBODQS1                                           [mg/l]




SMATX(19,OS1)  = SMATX(18,IS1)-SMATX(18,OS1)                           RBC05600



     N03osi '  ^isr^osi                                          Cmg/1]



URSS - SMATX(2,IS1)/(SMATX(2,OS1)+SMATX(2,OS2)*SMATX(10,OS2)/SMATX(10,OS1))

                     Q                                               RBC05700

     URSS = - n - Hio -                                 Cno units]
            0    |  WOS2 TSSOS2

            Q
             °sl  TSSosi
SMATX(4,OS1) = URSS*SMATX(4,IS1)                                     RBC05900


     SNBC    = URSS*SNBC                                             [mg/l]
SMATX(3,OS1) = DMATX(l,N)*1.6/2.7+SMATX(4,OSl)                        RBC06000
     socosi = a?:H««*osi                                        Cmg/1]



SMATX(5,OS1) = .1*SMATX(3,OS1)                                       RBC06100


     SONQS1 = 0.1SOCOS1                                              [mg/l]




SMATX(6,OS1) = .01*SMATX(3,OS1)                                      RBC06200


     SOP  , = 0.01SOC                                                [mg/l]
        OS1          OS1
                                          241

-------
SMATX(7,OS1)  = URSS*SMATX(7,IS1)


     SFMOS1  = URSS*SFMisi


SMATX(9,OS1)  = SMATX(10,OS1)-SMATX(7,OS1)
     vssosi • TSSosrSFMosi
SMATX(ll.OSl) = SMATX(12,ISl)+SMATX(17,OSl)*1.6/2.7

                       1.6DBOD,,
     DOCnB1  = DNBCT5,+
       °OS1
                  IS1
                              OS1
                          2.7
SMATX(12,OS1)   SMATX(12,IS1)
SMATX(13,OS1) = .1*SMATX(11,OS1)+SMATX(18,OS1)+SMATX(19,OS1)

     DNogl = 0.1DOCOS1+NH3OS1+N03OS1
SMATX(14,OS1) = SMATX(14,IS1)
     DPOS1 = DPIS1
SMATX(15,OS1) = SMATX(15,IS1)
     DFMOS1
              DFM.
                 IS1
SMATX(16,OS1) = SMATX(16,IS1)-10.*(SMATX(18,IS1)-SMATX(18,OS1))
 SMATX(20,OS1) = SMATX(20,IS1)

     Future parameter


 TEMP4 = SMATX(10,OS2)/SMATX(10,OS1)
             TSS
     TEMP4 = 	°i2	
             TSSosi
RBC06300


[mg/1]


RBC06400

[mg/1]



RBCQ6500



[mg/1]



RBC06600


[mg/1]


 RBC06700


[mg/1]


 RBC06800


[mg/1]


 RBC06900


[mg/1]


 RBC07000


[mg/1]


 RBC07100

[mg/1]


  RBC07200


[no units]
                                           242

-------
SMATX(J,OS2) • TEMP4*SMATX(J,OS1)


     SMATX(J,OS2) - TEMP4*SMATX(J,OS1)


     where J = 3,9  i.e. SOC,SNBC,SON,SOP,SFM,SBOD,VSS



SMATX(J,OS2) = SMATX(J.OSl)


     SMATX(J,OS2) - SMATX(J.OSl)


     where J - 11,20  i.e. DOC,DNBC,DN,DP,DFM,ALK,DBOD,NH3,N03



AFS = SMATX(2,OS1)*1000000./DMATX(6,N)*DMATX(15,N)


           Q   *1000000*ECF
     AFS
                  GSS
PREM • (SMATX(18,IS1)-SMATX(18,OS1))*100./SMATX(18,IS1)
     PREM
            100(NH3   -NH3   )
                   IS1    OS1
                  NH3
                     IS1
QPAT = SMATX(2,IS1)*1000000./APSTG/XNSTG


            
-------
5.   Cost functions.


     Contactor


     a.    Capital cost


     (1)   NSHFT-2CXO                                                       RBC09500


     CCOST(N.l)  = (28500.+45.*DMATX(9,N))*NSHFT*1.506/2.1215              RBC10100



          CCOST  - (28500+45CPDY)*NSHFT*1.506                              ^^^




     (2)   NSHFT-20>0                                                       RBC09500


     CCOST(N.l)  = (23000.+45.*DMATX(9,N))*NSHFT*1.506/2.1215              RBC10800



          rwio.r  - (23000+45CPDY)*NSHFT*1.506                              ..   ,,    ,
          CCOST	2.1215	                          [dollars]



     b.    Operating manhours,  maintenance  manhours  and materials/supplies costs


     Function of AREA/ECF


     X =  ALOG(AREA/1000./DMATX(16,N))                                      RBC11400


                 AREA
          X = In
                 1000ECF
     (1)   Operating  manhours


     OHRS  = EXP(1.323670+.524215*X+.023076*X**2.)                          RBC12000



          OHRS  =  e1-323670+0.524215X+0.023076X2




     (2)   Maintenance manhours


     XMHRS   EXP(-.124185+.840104*X+.007757*X**2.)                         RBC12100



          XMHRS = e-°-124185+0-84°104X+0.007757X2




     (3)   Total materials and supplies


     COSTL = (OHRS+XMHRS)*DHR*(1.+PCT)                                     RBC12200


          COSTL = (OHRS+XMHRS)*DHR*(1+PCT)                                 [dollars/yr]
                                               244

-------
COSTM - (CCOST(N,1)-45.*DMATX(9,N)*NSHFT*1.506/2.1215)*.02
     ™<:TM   rrrrviT  45*CPDY*NSHFT*1.506-,.. „„
     COSTM = [CCOST	2.1215	]*0.02
COSTE = NSHFT*5.*.746*24.*365.*DMATX(10,20)



     COSTE = NSHFT*5*0.746*24*365*CKWH





TMSU = COSTM+COSTE



     TMSU = COSTM+COSTE





c.   Total operating and maintenance costs



COSTO(N,1) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU)/SMATX(2,1)/3650.




     COSTO = (OHRS+XMHRS)*DHR*(1+PCT)+TMSU
                              Inf.
                                  *3650
RBC12300





[dollars/yr]





RBC12400



[dollars/yr]





RBC12500



[dollars/yr]








RBC13000





[cents/lOOOgal]
Final Settler



a.   Capital cost



Function of AFS



X = ALOG(AFS/1000.)
     X = In
            ATS
RBC13600
CCOST(N,2) = EXP(3.716354+.389861*X+.084560*X**2.-.004718*X**3.)*1000.


                                                                     RBC13700
     CCOST = lOOOe
                  3.716354+0.389861X+0.084560X -0.004718X
[dollars]
                                           245

-------
b.   Operating manhours,  maintenance manhours, and materials/supplies costs



Function of AFS/ECF


X = ALOG(AFS/1000./DMATX(15,N))                                        RBC14400



            AFS
     X = In
            1000ECF
(1)  Operating manhours


OHRS = EXP(5.846565+.254813*X+.113703*X**2.-.010942*X**3.)           RBC15000




     „  „    5.846565+0 ;254813X+0.113703X2-0.010942X3                r.    .  ,
     OHRS = e                                                        [hrs/yr]





(2)  Maintenance manhours



XMHRS = EXP(5.273419+.228329*X+.122646*X**2.-.011672*X**3.)          RBC15100



     XMHRS = e5.273419+0.228329X+0.122646X2-0.011672X3               [hrg/yr]





(3)  Total materials and supplies



TMSU = EXP(5.669881+.750799*X)                                       RBC15200



     mr     5.669881+0.750799X
     TMSU   e                                                        [dollars/yr]





c.   Total operating and maintenance costs



COSTO(N,2) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.   RBC15700




     COSTO   [(OHRS+XMHRS)*DHR*(1+PCT)]+(TMSU*«PI)                   [cents/lOOOgal]


                           Plant Inf.
                                           246

-------
C                                                                       RBC00100
C             ROTATING BIOLOGICAL CONTACTOR - FINAL SETTLER             RBC00200
C             PROCESS IDENTIFICATION NUMBER  2«*                         RBC00300
C                                                                       RBCOOtOO
      SUbROUTINE RBC                                                    RBC00500
C                                                                       RBC00600
C                                                                       RBC00700
C             COMMON INITIAL STATEMENTS                                 RBC00800
C                                                                       RBC00900
      INTEGER Obi»0b2                                                   RBCOIOOO
      COMMON SMATX(20»30)»TMATX<20»30)»DMATx<20»20)»OMATX(20»20)rlP(20)rRBC01100
     llNP.lO»ISl»lSii.OSlrOS2»NaAERF»CCOST<20»5)fCOSTO<20»5)»ACOST<20r5>RBC01200
     2»TCOST(20>5)»DHR»PCT»I»PI'CLAND.DLAND»FLOW125).POW125)»TKWHD<25)   RBC01300
C                                                                       RBC01UOO
C                                                                       RBC01SOO
C             ASSIGNMENT OF DESIGN VALUES TO PROCESS PAKAMETERS         RBC01600
C                                                                       RBC01700
      BOD=DMATXll.NJ                                                    RBC01800
      XNSTG=DMATX(2.N>                                                  RBC01900
      DEGC=UMATX13»N)                                                   RBC02000
      QHABI=DMATXC*.N)                                                  RBC02100
      QPANl=DMATX(5»N)                                                  RBC02200
      GSS=DMATX16»N)                                                    RBC02300
      BODN=UMATX(7»N)                                                   RBC02100
      T$S=DMATX18»N)                                                    RBC02500
      CPDY=OMATX(9»N)                                                   RBC02600
C                                                                       RBC02700
C                                                                       RBC02800
C             PROCESS RELATIONSHIPS REQD. TO CALC. EFFLUENT STREAM      RBC02900
c             CHARACTERISTICS                                           RBCOSOOO
C                                                                       RBC03100
      GPAB=UMATx(t r N)*1.OU**(QMATX(3»N)-20•>                            RBC03200
      QPAN=UMATX(5»N)*1.0<***(DMATX(3»N)-20.J                            RBC03300
      RATlO=DMATX(lrN)/(SMATX(17»ISl)-«-SMATX(8»ISl))                     RBC03«»00
      TtMPl=ALO&(RATIO)/DMATX(2»N)                                      RBC03500
      TEMP2=1./EXP(TEMP1)-1.                                            RBC03600
      APSTG=SMATX(2.IS1)*lOuOOOO.*TEMP2/QPAB                            RBC03700
      PUSQ=.3U*(SMATX(8»ISH+SMATX(17»ISl)-«-bMATX(lO»ISll)*SMATX{2.ISl)*aRBC03800
     1.33-0*ARLA/1000.                                                 RBC03900
      TEMP3=1./(1.+UPAB*APSTG/SMATX(2»IS1)/1000000.)                    RBCO<*000
      RATlO=DMATX(7rN)/(SMATX(17»ISl)+SMATX(8»ISl))                     RBC04100
      FNSTG=ALO/ALOl»(TEMP3>                                     RBC04200
      RNSTG=XNSTG-FNSTG                                                 RBCOISOO
      RATlO=(l./(l.+QPAN*APi>TG/SMATX(2»ISl>/10000ijO.))**RNSTG           RBCO<+«*00
C                                                                       RBC01500
C                                                                       RBCOU600
C             EFFLUENT STREAM CALCULATIONS                              RBCO<+700
C                                                                       RBCOtBOO
      SMATX(18»OSl)=SMATX(lt>»IS1)*RATIO                                 RBCOU900
      SMATX(2»OS2)=PDSD/DMATX(8»N)/10000./8.33                          RBC05000
      SMATX(2»OSl)=bMATX(2HSl)-SMATX(2fOS2)                            RBC05100
      SMATX(10'OS1)='*.5+.51*DMATX(1»N)                                  RBC05200
      SMATX(10»OS2)=DMATX(8»N)*10000.                                   RBCU5300
      SMATX(8»OS1)=(SMATX(10»OS1)-U.5)*.897                             RBC05400
      SMATX(IT» osi> =DMATX(i•N)-SMATX(srosi)                             RBCOSSOO
      SMATX(i9»osi> =SMATX(ib.isi>-SMATXiia» osi>                         Racoseoo
      URSS=S>MATX(2»IS1>/(SMATX(2»OSl)+SMATX{2»OS2)*SMATxtlO»OS2)/SMATX(lRBC05700
                                                                        RBC05800
                                      247

-------
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
       SMATXU.OS1)=URSS*SMATX(<*.IS1)
       SMATX 13.Obi )=UMATX(1»N>*1.6/2.7+SMATXU.OS1)
       SMATX(5.0bl)=.l*SMATX(3.0Sl>
       SMATX16.Obi>=.01*bMATX(3»OSl>
       SMATXl7tObl)=URSS*SMATX(7»ISl)
       SMATX<9.0bl)=bMATx(10.OS1)-SMATX(7.051)
       SMATX(ll»OSl>=SMATX(li;.ISl)+SMATX(17.0Sl>*1.6/2.7
       SMATXU2.0S1>=SMATX(12»IS1)
       SMATX(13.oSl>=.l*SMATx(11.0Sl)+SMATX(18.0bl)+SMATx=SMATX(15.IS1>
       SMATX(16.OS1>=SMATX(lto»ISl)-10.*(SMATX(18.IS1)-SMATXU8»OS1)>
       SMATX(20.OS1>=SMATX(2U»IS1)
       TEMP<+=SMATX(10 •OS2)/SMATX(10 »OS1)
       DO  10  J=3.9
    10  SMATX(J.Ob2)=TEMP4*SMATX(Jf051)
       DO  20  J=ll»20
    20  SMATXIJ»OS2)=SMATX(J.OSD
              CALC. OF OUTPUT SIZES  AND  QUANTITIES

       AFb=SMATX<2.0Sl)*1000000./DMATX(6.N)*DMATx(l5,N>
       PKEM=lSMATX(lt>»ISl)-SMATX(18.0Sl))*lOO./SMATX(lB»ISl>
       QPAT=bMATx(2»lSD*100GOOO./APSTG/XNSTG
       NTKN=APSTfa*DMATX(16.N)/100000.
       NTKN=NTRN+1
       NSHFT=NTRIM*XNSTG
       XNTKN=NTRN
       XSHFT=NSHFT
       AREA=XSHFT*100000.
           CALC. OF CAPITAL COSTS FOR ROTATING  BIOLOGICAL CONTACTOR
           BASED ON DESIGN PLUS EXCESS CAPACITY

    IF  (NbHFT-20) 30»30»tu


                CALC. OF CAPITAL COSTS FOR SMAU. RBC  FACILITYr  EQUAL
                OR LESS THAN 20 SHAFTS

30 CCOST(N.l)=(2ti500.+15.*UMATX(9rN))*NSHFT*l.506/2.1215
   GO TO 50


                CALC. OF CAPITAL COSTS FOR LAR&E RBC  FACILlTYr
                GREATER THAN 20 SHAFTS

tO CcosT(N.l)=(23000.-m5.*DMATX(9»N))*NSHFT*l.506/2.1215


           CALC. OF OPERATING COSTS FOR KBC FACILITY  BASED ON
           DESIGN CAPACITY ALONE. DOES NOT INCLUDE EXCESS CAPACITY

50 X=ALOt,(AREA/1000./DMATX(l6»N) )


                CALC. OF OPERATING MANHOURS' MAINTENANCE  MANHOURS
                AND MATERIALS AND SUPPLIES

   OHKS=EXP (1.32i670-»-. 524215*X+. 023076*X**2. J
   XMHRS=EXP(-.li<+185+.eH010'4*X+.007757*X**2.)
   CObTL=(OHKS+XMHRS)*DHK*(l.+PCT)
   COSTM=(CCOST(N.I)-45.*DMATX(9»N)*NSHFT*1.506/2.1215)*.02
   COSTE=NSHFT*5. *.7i*6*2<+. *365. *DMATX (10,20 >
 RBC05900
 RBC06000
 RBC06100
 RBC06200
 RBC06300
 RBC06400
 RBC06500
 RBC06600
 RBC06700
 RBC06800
 RBC06900
 RBC07000
 RBC07100
 RBC07200
 RBC07300
 RBC07400
 RBC07500
 RBC07600
 RBC07700
 RBC07800
 RBC07900
 RBC08000
 RBC08100
 RBC08200
 RBC08300
 RBC08400
 RBC08500
 RBC08600
 RBC08700
 RBC08800
 RBC08900
 RBC09000
 RBC09100
 RBC09200
 RBC09300
 RBC09UOO
 RBC09500
 RBC09600
 RBC09700
 RBC09800
 RBC09900
 RBC10000
 RBC10100
 RBC10200
 RBC10300
 RBClOtOO
 RBC10500
 RBC10600
 RBC10700
 RBC10800
 RBC10900
 RBC11000
 RBC11100
 RBC11200
 RBC11300
 RBC11400
 RBC11500
 RBC11600
 RBC11700
 RBC11800
 RBC11900
RBC12000
RBC12100
RBC12200
RBC123tO
RBC12400
                                    248

-------
      TMSU=COSTM+COSTE
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
             OPERATING COST EQUATION

COSTOlN.l)=((OHRS+XMHKS)*DHR*(l.+PCT>+TMSu)/SMATX(2fl)/3650.


        CALC. OF CAPITAL COSTS FOR FINAL SETTLER BASED ON DESIGN
        PuUS EXCESS CAPACITY

X=ALOG(AFS/1000.)
CCOSTtN»2)=EXP(3.71635»H-.389861*X+.08<*560*X**2.-.0047i8*X**3.)*100RBC13700
                        RBC12500
                        RBC12600
                        RBC12700
                        RBC12800
                        RBC12900
                        RBC13000
                        RBC13100
                        RBC13200
                        RBC13300
                        RBC13400
                        RBC13500
                        RBC13600
     10.
        CALC. OF OPERATING COSTS FOR FINAL SETTLER BASED ON
        DESIGN CAPACITY ALONE. DOES NOT iNCOJuE EXCESS CAPACITY

X=ALOG(AFS/1000./DMATX(15»N))
             CALC. OF OPERATING MANHOURS'
             AND MATERIALS AND SUPPLIES
MAINTENANCE MANHOURS
      OriKS=EXP
      TMSU=tXP(b.669881+.750799*X)
                   OPERATING COST EQUATION

      COSTOIN >2) = ((UHRS+XMHKS)*DHR*(1.+PCT>+TMSU**PI)/SMATX< 2 r 1)/3650.
              ASSIGNMENT OF VALUES TO OMATX

      OMATX(lfN)=QPAB
      OMATX (2»N)=QPAN
      OMATX13»N)=APSTG
      OMATX15»N)=FNSTG
      OMATX(6»N)=RNSTG
      OMATX(7»N)=RATIO
      OMATX (8rN)=pRtM
      OMATX(9»N)=QPAT
      OMATX(10'N)=AFS
      OMATX ( 11 »N)=PUSD
      OMATX(12»N)=URSS
      OMATX(13»IM)=XNTRN
      OMATX (lt»N)=XSHFT
      OMATX(15»N)=COSTM
      OMATX(16»N)=COSTE
      OMATX117»N)=COSTL
              PROCESS ENERGY INDICES
      FLOw(N)=SMATX(2rISl>
      POW(N)=2<+.
      RETURN
      END
RBC13800
RBC13900
RBCl^OOO
RBC14100
RBC14200
RBC14300
RBC11HOO
RBC14500
RBC11600
RBC14700
RBC11800
RBC1U900
RBC15000
RBC15100
RBC15200
RBC15300
RBC15<*00
RBC15500
RBC15600
RBC15700
RBC15800
RBC15900
RBC16000
RBC16100
RBC16200
RBC16300
RBC16100
RBC16500
RBC16600
RBC16700
RBC16800
RBC16900
RBC17000
RBC17100
RBC17200
RBC17300
RBC17I+00
RBC17500
RBC17600
RBC17700
RBC17800
RBC17900
RBC18000
RBC18100
RBC18200
RBC18300
RRC1B400
RBC18500
RBC18600
                                     249

-------
                                  SECTION 26


                      ENERGY CONSUMPTION AND  COST, ENGY

 C                                                                        ENG00100
 c             ENERGY CONSUMPTION  AND  COST                               ENGOOZOO
 C                                                                        ENG00300
       SUBROUTINE ENGY                                                    ENGOO«*OO
 c                                                                        ENG00500
 c                                                                        ENG00600
 c             COMMON INITIAL  STATEMENTS                                  ENGOOTOO
 c                                                                        ENGOOBOO
       INTEGER Obi.0b2                                                    ENGOOSOO
       COMMON SMATXUO,30).TMATX(20.30)»DMATX<20.20>.OMATX(20.20).IP(20).ENG01000
      llNP.IO.ISl.lSi:.OS1.0Sii.N.IAERF.CCOST(20»5)fCObTO<20.5)»ACOST<20.5)ENG01100
      2»TCOST<20.5) .DHR.PCT.WPI»CLAND.DLAND'FLOW(2b) »POW(25) »TKWHD<25)   ENG01200
 <•                                                                        ENG01300
 C                                                                        ENG01t*00
 C             ASSIGNMENT OF VALUES TO PROCESS PARAMETERS                ENG01500
 C      _                                                                  ENG01600
       PLANT=DMATX<11.20)                                                 ENG01700
       TOTKW-0.                                                           ENG01800
       Puw(25)=2b.                                                        ENG01900
 •                                                                        ENG02000
                                                                         ENG02100
 C             CALC. OF ENERGY COSTS FOR PROCESSES                        ENG02200

 c      DO ,3u 1=1,25
       FLOW(I)=SMATX(2rl)                                                 ENG02500
       IF (PUM(I)) 5iO.530.10                                             ENG02600
   10  K=POW(I)                                                           iNG02700
       GO TO <20,30.10.50,60,70.110,li*0,170»180.19u.220.270.280.310.370.3ENG02800
      18U.41U, U20. **3u.«t^Ori+8U, i*90. 500. 510). K                             ENG02900
                                                                         ENG03000
                                                                         ENG03100
                                                                         ENG03200

   20  Q=ALOb(FLOW(I»
                                                                         ENG03700
                                                                         ENG03800
                                                                         ENG03900
c
c                                                                        ENGOH400
C                  HR5ET                                                 ENGOtSOO
c                  KKbtl                                                 ENGO<*600
                                                                         ENG05000
C
C                                                                        ENG05400
C                  AERFS                                                 ENG05560
C                  ALKt-b                                                 ENG05600
                                     250

-------
C
C
C
C
C
C
      W2=EXP(3.b077u7+.925l'*7*Q+.OH6507*Q**2.-.OlU295*Q**3.)
      HP=£XH(.«*05a3b+.2'*826^*Q+.138237*Q**2.-.Oo9l62*G**3.)
      W1=2.t>6*EXP(G)
      TKWHD(I)=
      60 TO 520
C
C
C
C
C
C
C
C
C
C
C
C
   bO TKWHDU)=0.
      GO TO 520
   oO TKWHD(I)=0.
      60 TO 520
                   MIX
                   SPLIT
                   DIG
C
C
C
C
   70 Q=ALOG(FLO«(D)
      IF (PLANT) aO»80»90
   ao W1=EXPU.<+27327+.301912*0+.056086*Q**2.-.005112*Q**3.)
      GO TO 100
   90 Wi=£XPU. 665033+.392918*0+.07**689*Q**2.-.0178<+3*0**3.+,
     1.)
  100 W2=EXP(2.a7b'+78+.a077i5*0+.033342*Q**2.-.OOts5l3*0**3.)
      TKWHD(I)=wl+W2
      GO TO 520
C
C
C
C
                   VACF

  110 Q=ALOG(FLOW(I»
      IF (PLANT) 120»120»130
  120 TKWHDlI)=LXP(2.3(f28b8+1.001088*Q+.02l774*U**2.-.0068l7*Q**3.)
      GO TO 520
  130 TKWHD( I )=t_XPU.0^2635+.585«H7*0+.ll«tt99*0**2.-.0109)
      IF (PLANT) 150»150»160
  150 TK»HD(I)=LXP<2.321386+.28b528*0+.0222<*7*Q**id.-.007060*Q**3.)
      GO TO 520
  loO TKWHD(I>=LXP<2.321272+.301985*0)
      60 TO 520
  170 TKWHD(I)=0.
      GO TO 520
                   LLUT
                   SBEDS
      TKWHD(I)=0.
      GO TO 520
 ENG05900
 ENG06000
 ENG06100
 ENG06200
 ENG06300
 ENG06100
 ENG06500
 ENG06600
 ENG06700
 ENG06800
 ENG06900
 ENG07000
 ENG07100
 ENG07200
 ENG07300
 ENG07fOO
 ENG07500
 ENG07600
 ENG07700
 ENG07800
 ENG07900
 ENG08000
 ENG08100
 ENG08200
 ENGU8300
 ENG08UOO
 ENG08500
ENGOB700
ENGOB800
ENG08900
ENG09000
ENG09100
ENG09200
ENG09300
ENG09500
ENG09600
ENG09700
ENG09800
ENG09900
ENG10000
ENG10100
ENG10200
ENG10300
ENG10400
ENG10500
ENG10600
ENG10700
ENG10800
E NIG 10 900
ENG11000
ENG11100
ENG11200
E NIG 11300
ENG11400
ENG11500
ENG11600
ENG11700
ENG11800
ENG11900
ENG12000
ENG12100
ENG12200
ENG12300
ENG12400
                                      251

-------
                    TRFS

   190 Q=ALOto(FUOW(IM
       »/l=EXPU.11084t-».9723tjt*Q-.002399*Q**2.)
       II- (DMATX17.I)) 210f2lO»200
   2UO *l=(DMATX(7.I)+l.)*Wl
   210 HP=EXP< ,40563b+. 248262*0*. 138237*Q**2.-.OU9162*Q**3.)
 c
 c
 c
 c
       W3=2.o6*EXP(Q)
       TKWHD(I)=
       GO TO 520
 c
 c
 c
 c
                  CHLOR

 220 Q=ALOt,350
340 HE=.74
    GO TO 360
3bO H£r.8i
3t>0 HP=EXP(Q)*1000000.*DMATX(l.I)/lH40./3960./HE
    TKwHD(I)=.85*HP*24.
    GO TO 520
C
C
C
C
  370 TKWHO(K)=0.
      GO TO 520
                 SHT
                 CENT
  ENG12500
  ENG12600
  ENG12700
  ENG12800
  ENG12900
  ENG13000
  ENG13100
  ENG13200
  ENG13300
  ENG13400
  ENG13500
  EMG13600
  ENG13700
  ENG13800
  ENG13900
  EN614000
 ENG1U200
 ENG1U300
 ENG14400
 ENG14500
 ENG14600
 ENG14700
 ENG14800
 ENG14900
 ENG15000
 ENG15100
 ENG15200
 ENG1530Q
 ENG15400
 ENG15500
 ENG15600
 ENG15700
 ENG15800
 ENG15900
 ENG16000
 ENG16100
 ENG16200
 ENG16300
 ENG16400
 ENG16500
 ENG16600
 ENG16700
 ENG16800
 ENG16900
 ENG17000
 ENG17100
 ENG17200
 ENG17300
 ENG17400
 ENG17500
 ENG17600
 ENG17700
 ENG17800
 ENG17900
 ENG18000
 ENG16100
 ENG18200
 ENG18300
 ENG18400
 ENG18500
 ENG18600
 ENG18700
 ENG18600
 ENG18900*
ENG19000
                                       252

-------
3tiO Q=ALOb(FLoW(D)
IF (PLANT) 39u»390»40u
390 TKWHDII)=LXP(3.332123+.919832*Q+.045490*Q**2.-.013202*0**3.)
GO TO 520
400 TKWHDU)=tXP(4.042985+.8l3216*Q+.006793*Q**2.-.000180*Q**3.)
GO TO 520


C AEROtJ
c
410 TKWHD(I)=0.
GO TO 520
r
V
c
C HOSTA
r
V
420 TKH*HD(I)=0.
GO TO 520


C EQUAL
430 TKWHD(I)=0.
GO TO 520
C
C
C DIG2
C
440 Q=AL06(FLOW(I))
IF (PLANT) 450r450i460
4bO «1=EXP( 4. 427327+. 301912*0+. 056086*Q**2.-. 0051 12*Q**3.)
GO TO 470
ENG19100
ENG19200
ENG19300
ENG19400
ENG19500
ENG19600
ENG19700
ENG19800
ENG19900
ENG20000
ENG20100
ENG20200
ENG20300
ENG20400
ENG20500
ENG20600
ENG20700
ENG20800
ENG20900
ENG21000
ENG21100
ENG21200
ENG21300
ENG21400
ENG21500
ENG21600
ENG21700
ENG21800
ENG21900
ENG22000
ENG22100
ENG2220D
4oO W1=EXP( 4. 665033+ • 392918*0+. 074689*Q**2.-.017843*Q**3.+. 00 1578*Q**4ENG22306
1.)
470 W2=EXP( 2. 875478+. 807735*0+. 033342*Q**2.-. 00651 3*0**3.)
TK»/HD( I ) — N1+W2
GO TO 520
C
C
C LANDU
C
4aO TK«HD(I)=0.
GO TO 520
C
C
C LIME
C
490 TKWHD(I)=0.
GO TO 520
C
C
C KBC
C
500 TKWHD(I)=0.
GO TO 520
510 Q=ALOb(SMATX(2.1»
TK«HD( I )=EXP (4. 047318+. 198436*0+. 184937*Q**2.-.011184*Q**3.)
C
C
C SUM OF ENERGY COSTS FOR ENTIRE PLANT
C
520 TOTKW=TOTKW+TKWHD(I)
530 CONTINUE
C
C
C OUTPUT FORMAT OF ENERGY INDICES AND COSTS FOR PROCESSES
ENG22400
ENG22500
ENG22600
ENG22700
ENG22800
ENG22900
ENG23000
ENG23100
ENG23200
ENG23300
ENG23400
ENG23500
ENG23600
ENG23700
ENG23800
ENG23900
ENG24000
ENG24100
ENG24200
ENG24300
ENG24400
ENG24500
ENG24600
ENG24700
ENG24800
ENG24900
ENG25000
ENG25100
ENG25200
ENG25300
ENG25400
ENG25500
ENG25600
253

-------
C             AND OF TOTAL tNERGY COST FOR ENTIRE PLANT                  ENG25700
C                                                                        ENG25800
      WHITE (10.540)                                                     ENG25900
  510 FORMAT (1H1»//.<*7X.'ENERGY CONSUMPTION AND COST*)                  ENG26000
      WHITE (10.550) 
-------
                                            SECTION 27

                                TOTAL PLANT COST CALCULATION, COST
Calculate Total Plant Cost. COST


1.     Input parameters and nominal values.

          DMATX(1,20) • CCI



          DMATX(2,20) •= WPI



          DMATX(3,20) •= RI

          DMATX(4,20) = YRS

          DMATX(5,20) = DHR


          DMATX(6,20) - PCT


          DMATX(7,20) = DA

          DMATX(8,20) - CCINT


          DMATX(9,20) = XLAB



          DMATX(10,20) •= CKWH
                       Rev. Date 8/1/77
Sewage treatment plant construction cost index
to account for the variation of construction
cost with time, 1957-59 = 1. [2.252]

Wholesale price index for industrial commodities
to account for the variation of materials and
supplies cost with time, 1957-59 = 1. [1.675]

Amortization interest rate, fraction. [.06]

Amortization period, yr. [25.J

Wastewater treatment plant hourly labor rate,
$/hr. [4.73]

Fraction of direct labor cost that is charged
as indirect labor cost, fraction. [.15]

Cost of land, $/acre. [1000.J

Interest rate for the cost of interest during
plant construction, fraction. [.06]

Program control: type of plant laboratory used,
1 - activated sludge, 0 « primary or trickling
filter. [1.]

Cost of electrical power, $/kilowatt-hr.[.02]
2.     Output parameters which are printed on computer output sheets

          CCI - DMATX(li20)

          RI - DMATX(3,20)

          YRS - DMATX(4,20)

          DA - DMATX(7,20)

          CCINT « DMATX(8,20)

          XLAB • DMATX(9,20)

          RATIO • OMATX(1,20)
Multiplier used to factor into individual unit
process construction costs the cost of yardwork,
land, engineering, legal & fiscal, and interest
during construction, TOT/TCAP.
                                                255

-------
3.
          TCAP •> OMATX 02,20)




          YARD = OMATX(3,20)

          TCC » OMATXC4,20)

          XLAND = OMATX(5,20)


          ENG - OMATX(6,20)


          SUBTl = OMATX(7,20)

          FISC = OMATX(8,20)


          SDBT2 = OMATX09, 20)

          XINT - OMATX(10,20)

          ACRE = OMATX011,20)


          AF - OMATX(12,20)

          TOT = OMATX017,20)


          TAMM = OMATX018,20)


          TOPER = OMATX019,20)


          TOTAL = OMATX020,20)
                                     Total capital cost of the entire treatment sys*
                                     tern without yardwork, land,  engineering,  legal &
                                     fiscal,  and interest during  construction  costs
                                     factored in, $.

                                     Capital  cost of  yardwork, $.

                                     Subtotal of TCAP + YARD,  $.

                                     Cost of  the required land for plant construction,
                                     $.

                                     Cost of  the engineering services for plant con-
                                     struction,  $.

                                     Subtotal of TCAP+ YARD +  XLAND & ENG, $.

                                     Cost of  legal, fiscal and administrative  ser-
                                     vices during plant construction,  $.

                                     Subtotal of TCAP + YARD + XLAND + ENG + FISC,  $.

                                     Cost of  interest during construction,  $.

                                     Total land  requirement for the entire plant,
                                     acres.

                                     Amortization factor.

                                     Total capital cost of the entire plant OSUBT2  +
                                     XINT), $.

                                     Total amortization cost of the entire plant,
                                     C/1000 gallons.

                                     Total operation  and maintenance cost of the
                                     entire plant,  C/1000 gallons.

                                     Total treatment  cost of the entire plant
                                     OTAMM-+  TOPER),  o/iooo gallons.
       Theory and  functions - FORTRAN statement followed by equivalent algebraic equation.

          CCI =  CCI/1.506                                                  COS02700

                  CCI
             CCI
                              [no  unitsj
         1.506


AF = RI*Ol.+RI)**YRS/001.+RI)**YRS-l.)
                                                                          COS02800
             AF -
               "
                  01+RD¥RS-1
                                        [no unitsj
                                              256

-------
References:



       Patterson and Banker,  1971









4.     Cost functions.



       Administrative and laboratory



       a. Capital cost



       Function of  Q
                    Plant Inf.
          X - ALOG(SMATX(2,1))                                                COS03400




                     Plant Inf.
X = in Qpl
          CCOST(20,1) = EXP (3. 524005+. 383129 *X+ .077688*X**2.-.009021*X**3.)*1000.


                                                     2          3             COS03500

             CCOST = 1000e3.524005+.383129X+0.077688X2-0.009021X3
       b. Operating manhours, maintenance manhours and materials/supplies costs




       (1) Operating manhours




          OHRS = EXP(5.886104+.778820*X)                                      COS03700



                     5. 886104+0. 778820X                                       ,    .   ,
             OHRS - e                                                         [hrs/yr]





       (2) Maintenance manhours




          XMHRS = EXP(4.605170+.661110*X)                                      COS03800




             YMHPQ - 04. 605170+0. 661110X                                      r,   .   ,
             XMHRS = e                                                        [hrs/yr]





       (3) Total materials and  supplies




          TMSU = EXP (7. 24422 6+.500000*X)                                      COS03900





             TMSU = e7 ' 244226+0 ' 500000X                                       [dollars/yr ]





       c.  Total operating and maintenance  costs



          COSTO(20,1)  =  ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.


                                                                              COS04000


             r,n^n   (OHRS+XMHRS)DHR(1+PCT)+(TMSU*WPI)                         r    -  /innn   »n
             COSTO m - 7) - *3fi5n      —                      Lcents/1000 galj

                               ^Plant Inf.
                                               257

-------
Garage and shop



a. Capital cost


   CCOST(20,2) = EXP(2.28845.Q+.446606*X+.032729*X**2.)*1000.           COS04500



      CCOST = 100oe2-288450+0.446606X+0.032729X2                       ^^





b. Operating manhours, maintenance manhours and materials/supplies costs



(1) Operating manhours                                                 COS04600



   OHRS = 0                                                            [hrs/yr]




(2) Maintenance manhours                                               COS04700



   XMHRS = 0                                                           [hrs/yr]




(3) Total materials and supplies                                       COS04800



   TMSU •= 0                                                            [dollars/yr]




c. Total operating and maintenance costs                               COS04900



   COSTO(20,2) - 0                                                     [cents/1000 gal]
 Laboratory operations



 a.  Capital cost                                                         COS05500



    CCOST(20,3) = 0                                                      [dollars]




 b.  Operating manhours, maintenance manhours and materials/supplies  costs



 (1)  Operating manhours



 (a)  For XLAB = 0   Primary  or  trickling filter plant                    COS05600



    OHRS = EXP(6.551080+.447632*X)                                       COS05700



           _ 6.551080+0.447632X                                        ru   ,   _.
       OHKt> - e                                                          [hrs/yr]
                                         258

-------
(h) For XLAB-1   Activated sludge plant                                 COS05600



    OHRS - EXPC7. 892489+. 087261*X+.004753*X**2.+.006532*X**3.)          COS05900



              n7. 892489+0. 087261X+0.004753X2+0.006532X3
                                                                        r   ,  ,
                                                                        [hrs/yr]



 (2) Maintenance manhours



    XMHRS = EXP(4.700480+.368.379*X)                                     COS06000



       XMHRS = e4.70048C+0.368379X




 (3) Total materials and supplies



    TMSU = EXP(5.972471+.534838*X+.010941*X**2.+.010320*X**3.)          COS06100



       „..„..    5.972471+0.534838X+0.010941X2+0.010320X3                 _       ,  .
       TMSU - e                                                         [dollars/yr]



 c. Total operating and maintenance costs



    COSTO(20,3) = ((OHRS+XMHRS)*DHR*(1.+PCT)+TMSU*WPI)/SMATX(2,1)/3650.

                                                                        COS06200

       COSTO = COHRS+XMHRS)DHR(1+PCTH(TMSU*WPI)                        [cents/1000 gal]
 Yardwork operations



 a. Capital cost                                                        COS06800


    CCOST(20,4) = 0                                                     [dollars]



 b. Operating manhours, maintenance manhours and materials/supplies costs


 (1) Operating manhours                                                 COS06900



    OHRS = 0                                                            [hrs/yr]




 (2) Maintenance manhours


    XMHRS = EXP(6.542359+.082452*X+.184209*X**2.-.013606*X**3.)         COS07000



       XMHRS = e6.542359+0.082452X+0.184209X2-0.013606X3                [hrs/yr]
                                          259

-------
03) Total materials and supplies

   TMSU - EXPC5.991464+.650515*X)                                      COS07100


      TMSU - e5.991464+0.650515X                                       [dollars/yrj


c. Total operating and maintenance costs

   COSTO(20,4) - CCOHRS+XMHRS)*DHR*C1.+PCT)+TMSU*WPI)/SMATXC2,1)/3650.
      COSTO - COHRS+XMHRS)DHRa+PCTH(TMSU*WPt)                        [cents/1000 gal]

                                      U
Intermediate plant costs

(1) CCOST(J.I) = CCOSTCJ,D*CCI/1000.                                  COS08000
      CCOST = ":'I-   	                                          ropiiars-i
                1000                                                   L IOOQ  J

      where J •» 1,20 and I = 1,5


(2) TCAP = TCAP+CCOSTCJ.I)

      TCAP = TCAP+CCOSTCJ.I)


      where J = 1,20 and 1-1,5


(3) YARD = .14*TCAP                                                    COS08200


      YARD = 0.14TCAP                                                  .-dollars n
                                                                       L 1UOUJ

(4) TCC = ALOG(TCAP+YARD)                                               COS08300

      TCC • In (TCAP+YARD)                                             rlp dollars
                                                                       L  l 1000  JJ

   Q - ALOG(SMATX(2,1))                                                 COS08400

      Q = In 0
              Plant Inf.


(5) XLAND = EXP(2.405815+.010392*Q+.127563*Q**2.-.009133*Q**3.)*DA/1000.+CLAND/1000.
     .
+DLAND/1000.

            15+0. 010392Q
                       _
                         1000
             .,.  2. 405815+0. 010392Q+0.127563Q2-0.009133Q3             COS08500
     XLAND  = ££^ _ _ _ _ _ X +CLAND+DLAND
                                        260

-------
(6)  ENG - EXP(.557449+.462790*TCC+.021284*TCC**2.)

      _.-    0.557449+0.462790TCC+0.021284TCC2
      BUG " e
(7) SUBT1 = ALOG(TCAP+YARD+XLAND+ENG)

      SUBT1 - In (TCAP+YARD+XLANIH-ENG)


C8) FISC = EXPC-2.497954+.916338*SUBT1-.023887*SUBT1**2.)

      ____    -2.497954+0.916338SUBT1-0.023887SUBT12
      FISC ™ e


(9) SUBT2 = ALOGCTCAP+YARIH-XLAND+ENG+FISC)

      SUBT2 = In (TCAP+YARIH-XLANIM-ENG+FISC)

(10) P —1.475131+.428894*SUBT2)

      P = -1.475131+0.428894SUBT2


Cll) XINT = CCINT*P/2.*EXPCSUBT2)

      XINT = CCINT*P*eS0BT2
COS08700
(12) TOT = TCAP+YAED+XLAND+ENG+FISC+XINT

      TOT = TCAP+YARD+XLAKIHENG+FISC+XINT


(13) TCC =• EXP(TCC)

      TCC - eTCC


(14) SUBT1 = EXP(SUBTl)

      SUBT1 = eSUBT1


(15) SUBT2 = EXP(SUBT2)

      SUBT2 = eSUBT2


(16) TCAP = TCAP*1000.

      TCAP = 1000TCAP
L 1000J

COS08800

P» ^oW^

COS08900
.-dollars-.
L 1000  J
COS09000

[In
      J.VW

COS09100

[no units]


COS09200
.-dollars-,
1 1000  J
COS09300
.-dollars-,
1 1000  J

COS09400
.-dollars-.
L 1000  J

COS09500

pdollars-.
L 1000  J

COS09600

[-dollars-.
L 1000  J

 COS09700

[dollars]
                                        261

-------
(17) TOT = TOT*1000.
      TOT " 1000TOT

(18) YARD = YARD*1000.
      YARD = 1000YARD

(19) TCC - TCC*1000.
      TCC = 1000TCC

(20) XLAND - XLAND*1000.
      XLAND = 1000XLAND

(21) ENG = ENG*1000.
      ENG - 1000ENG

(22) SUBT1 = SUBT1*1000.
      SUBT1 = 1000SUBT1

(23) FISC = FISC*1000.
      FISC = 1000FISC

(24) SUBT2 - SUBT2*1000.
      SUBT2 = 1000SUBT2

(25) XINT = XINT*1000.
       XINT = 1000XINT

 (26) RATIO = TOT/TCAP

       RATIO = -TOT
                TCAP

 (27)  ACRE = (XLAND-DLAND)/DA
       4r,D1?   XLAND-DLAND
       ACRE	—	
COS09800
[dollars]

COS09900
[dollars]

COS10000
[dollars]

COS10100
[dollars]

COS10200
[dollars]

COS10300
[dollars]

COS10400
[dollars]

COS10500
[dollars]

COS10600
 [dollars]

COS10700

 [no units]

COS10800

 [acres]
                                       262

-------
Total plant cost




a. Capital cost




   CCOST(J.I) - CCOST(J,I)*1000.*RATIO                                  COS11900



      CCOST = 1000CCOST*RATIO                                          [dollars]




      where. J = 1,20 and I = 1,5






b. Amortized cost




(1) For ACOST (J, I) - 0                                                  COS12000




   ACOST(J.I) - CCOST(J,I)*AF/SMATX(2,1)/3650..                          COS12300





      ACOST _ CCOST*AF - _                                            [cents/1000 gal]
              WPlant Inf.



      where J = 1,20 and I = 1,5






 (2) For ACOST(J.I) > 0 Where ACOST calculated in subroutine e.g., LANDD.CENT




   ACOST(J.I) = ACOST(J,I)*RATIO*CCI                                    COS12100



      ACOST = ACOST*RATIO*CCI                                          [cents/1000 gal]




      where J = 1,20 and I - 1,5






 c. Treatment cost



   TCOST(J.I) • COSTO(J,I)+ACOST(J,I)                                   COS12400



      TCOST • COSTO+ACOST                                              [cents/1000 gal]




      where J = 1,20 and I = 1,5






 d. Total capital cost



   TOT = TOT+CCOST(J,I)                                                 COS12500




      TOT = TOT+CCOST




      where J = 1,20 and I =  1,5
                                          263

-------
e. Total amortized cost




   TAMM - TAMtH-ACOST(J.I)




      TAMM - TAMM+ACOST




      where J - 1,20 and I = 1,5






f. Total operating cost




   TOPER •= TOPER+COSTOIJ.I)




      TOPER = TOPER+COSTO




      where J = 1,20 and I = 1,5






g. Total treatment cost




   TOTAL = TOTAL+TCOST(J,I)




      TOTAL = TOTAL+TCOST




      where J = 1,20 and I = 1,5
COS12600



[cents/1000 gal]
COS12700



[cents/1000  gal]
COS12800



[cents/1000 gal]
                                       264

-------
c
c
c
c
c
c
c
        CALCULATE TOTAL PLANT COST
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINt COST
                                                                   COS00100
                                                                   COS00200
                                                                   COS00300
                                                                   COS00400
                                                                   COSU0500
                                                                   COS00600
                                                                   COS00700
                                                                   COS00800
 INTEGER osi»os2                                                   cosoogoo
 COMMON SMATX<20»30)•TMATX(20•30)»DMATX(20»20>.OMATX(20»20)rlP(20)rCOSOlOOO
HNP»IO»ISl»lSN»lAERFFCCOST<20»5)fCOSTO(20»5)»ACOST(20»5)COS01100
        COMMON INITIAL STATEMENTS
     2»TCOS1 (20i5)»DHR»PCTf*PI>CLANDrDLAND»FLOW(2ij)»POW<25>»T.;WHDl25)
              ASSIGNMENT OF DESIGN VALUES TO ECONOMIC PARAMETERS

      CCI=DMATX(lr20>
      Ri=DMATX(.i»20)
      YKS=DMATXUt2u)
      DA=DMATX<7»20)
      CClNT=DMATX(8r20)
      XLAB=OMATX(9»20)
        CALC. OF OUTPUT QUANTITIES

CCI=CCI/1.506
AF=RI*(l.+RI)**YRS/(U.+R1)**YRS-1.)
        CALC. OF CAPITAL AND OPERATING COSTS FOR ADMINISTRATIVE
        AND LABORATORY

X=ALOb(SMATX(2»D)
                                                                   COS01200
                                                                   COS01300
                                                                   COS01400
                                                                   COS0150Q
                                                                   COS01600
                                                                   COS01700
                                                                   COS01800
                                                                   COS01900
                                                                   COS02000
                                                                   COS02100
                                                                   COS02200
                                                                   COS02300
                                                                   COS02400
                                                                   COS02500
                                                                   COS02600
                                                                   COS02700
                                                                   COS02600
                                                                   COS02900
                                                                   COS03000
                                                                   COS03100
                                                                   COS03200
                                                                   COS03300
                                                                   COS03100
      CCOST120»1)=EXP(3.52«»005+.383129*X+.077688*X**2.-.009021*X**3.)*luCOS03500
     100.
      OHRS=£XP(b.880101+.77tt820*X)
      XMHRS=EXPf+.605170+.6olllO*X)
      TMSU=LXP(7.2(*'*226+.50UOOO*X)
                ) = ((OHRS+XMHRS)*DHR*(l.-«-PCT)+TMSU*WPI)/SMATX(2'l)/3650.
              CALC. OF CAPITAL AND OPERATING COSTS FOR GARAGE AND SHOP

      CCOST (20 *2) =EXP < 2. 2B8«*50+. «*<+6606*X+. 032729*X**2. > *1000.
      OMRS=0.
      XMHRS=0.
      TMSU=O.
      COST0120»2)=0.
         CALC. OF CAPITAL AND OPERATING COSTS FOR LABORATORY
         OPERATION

 CCOST(20»3)=0.
 IF (XLAB) 20»10t20
 OHKS=tXP(to.551080+,HU7632*X)
 GO TO 30
                                                                  COS03600
                                                                  COS03700
                                                                  COS03800
                                                                  COS03900
                                                                  COSOtOOO
                                                                  COS04100
                                                                  COS04200
                                                                  COS04300
                                                                  cosomoo
                                                                  COSOU500
                                                                  COS04600
                                                                  COSOII700
                                                                  C0504800
                                                                  COS04900
                                                                  COS05000
                                                                  COS05100
                                                                  COS05200
                                                                  COS05300
                                                                  COS05"»00
                                                                  COS05500
                                                                  COS05600
                                                                  COS05700
                                                                  COS05800
                                      265

-------
c
c
c
c
   20 OHRS=EXP(7. 892489+. 08726l*X+.004753*X**2.+.006532*X**3. )
   30 XMHRS=EXP(4.7G0480+.3o8379*X>
      TMbU=tXP*DHR**DHR*(l.+PCT)+TMSU*WPI)/SMATX(2»l)/3650.
              CALC. OF OUTPUT COSTS AND QUANTITIES

      TCAP=O.
      DO 40 J=1.20
      Du 40 I=lr5
      CCObTU»n=CCOST(J»I)*CCI/1000.
   40 TCAP=TCAP+CCObT(J»I)
      YARD=.14*TCAP
      TCC=ALOG(TCAP+YARD)
      XLAND=EXP( 2. 40581 b+.010392*Q+.127563*Q**2.-. 0091 33*Q**3.)*DA/1 000
     l+CLANu/1000.+L>LANu/10UO.
      ENG=EXP( .657449*. 462790*TCC+.021284*TCC**2. )
      subii=ALOb ( TCAP+YARD+XLAND+ENG )
      FlbC=tXP (-2. 497954+. 9l6338*SUBTl-.023887*SUbTl**2.)
      suuT2=ALOt. i KAP+YARD+XLAND+ENG+FISC )
      P=-1.4751il+.428894*SUBT2
      XlNT=CCINT*P/i:.*EXP(SUBT2)
      TOT=TCAP+YARD+XLAND+ENG+FISC+XINT
      TCC=EXP(TCC)
      SUBT1=EXP(SU8T1)
      SUbT2=EXP*AF/SMATX(2»l)/3650.
70 TCOST(J,I)=CObTO(JrI)+ACOST(JrI)
 COS05900
 COS06000
 COS06100
 COS06200
 COS06300
 COS06400
 COS06500
 COS06600
 COS06700
 COS06800
 COS06900
 COS07000
 COS07100
 COS07200
 COS07300
 COS07400
 COS07500
 COS07600
 COS07700
 COS07800
 COS07900
 cosoaooo
 COS08100
 COS08200
 COS08300
 COS08400
•COS08500
 COS08600
 COS08700
 COS08800
 COS08900
 COS09000
 COS09100
 COS09200
 COS09300
 COS09400
 COS09500
 COS09600
 COS09700
 C0509800
 COS09900
 COS10000
 COS10100
 COS10200
 COS10300
 COS10400
 COS10500
 COS10600
 COS10700
 COS10800
 COS10900
 COS11000
 COS11100
 COS11200
 COS11300
 COS11400
 COS11500
 COS11600
 COS11700
 COS11800
 COS11900
 COS12000
 COS1210Q.
 COS12200
 COS12300
 COS12400
                                    266

-------
c
c
c
c
c
c
c
c
      TOT=TOT+CCOST(J.I)
      TAMM=TAMM+ACOSTCJ»I>
      T(JPER=TOPtR+CoSTO( J. I)
      TOTAL=TOTAL+TCOST(J»I)
ASSIGNMENT OF VALUES TO OUTPUT OMATx
      OMATX(1.20)=CCI * 1.506
      DMATX(2»20)=WHI*1.122
ASSIGNMENT Of VALUES TO OMATX
      OMATX(1»20>=
      OMATX(2»20)=
      OwATX(3.20)=
      OMATXU»20> =
      OMATX<5.20)=
      OMATX 16 f 20 )=l
      OMATX(7.20)-
      OMATX(6>20>=
      OMATX(9»20)=
      OMATXtlO«i:0)
      OMATX(11»20)
      OMATX(12»aO)
      OMATXU7»20)
      OMATX(16>20)
      OMATX(19»i:0)
      OMATX120»20)
      RLTURN
    RATIO
    TCAP
    YARD
    TCC
    XuAND
    ENG
    SUBTl
    F1SC
    SUBT2
    =XINT
    =ACRE
    =AF
    =TOT
    = TAMM
    =TOPER
    =TOTAL
COS12500
COS12600
COS12700
COS12800
COS12900
COS13000
COS13100
COS13200
COS13300
COS13«*00
COS13500
COS13600
COS13700
COS13800
COS13900
COSltOOO
COSltlOO
COS1U200
COS1«*300
COS14100
COSltSOO
COS14600
COS1U700
COS14800
COS1<*900
COS15000
COS15100
COS15200
COS15300
COS15HOO
COS15500
COS15600
                                      267

-------
                                  SECTION  28


                          OUTPUT  SUBROUTINE,  PRINT

c                                                                       PRT00100
C             PRINT OUTPUT                                              PRT00200
c                                                                       PRT00300
      SUBROUTINE PRINT                                                  PRTOOtOO
C                                                                       PRT00500
C                                                                       PRT00600
C             COMMON INITIAL STATEMENTS                                 PRT00700
C                                                                       PRT00800
      iNTEGtR OS1.0S2                                                   PRT00900
      COMMON SMATX<2Q'30).TMATX<20.30)»DMATX(20,20>»OMATX(20,20)»IP(20),PRT01000
     1INP,IO,IS1.IS2,OS1.0S2.N'IAERF»CCOST(20»5) ,COSTO(20»5).ACOST(20»5)PRT01100
     2»TCOST(20»5)»bHR»PCT,wPI»CLAND»DLAND»FLOW(25>»POWl25>»TKWHD(25)   PRT01200
C                                                                       PRT01300
C                                                                       PRT01100
C             OUTPUT FORMAT FOR STREAM CHARACTERISTICS                  PRT01500
C                                                                       PRT01600
      WRITE (10.10)                                                     PRT01700
   10 FORMAT (iHi.////.<+4x» 'STREAM CHARACTERISTICS',//»66X»»VOLUME FLOW.PRTOIBOO
     1 MILLIONS OF GALLONS PER DAY'»/»66X»'CONCENTRATIONS. MILLIGRAMS PEPRT01900
     2R LITER'./)                                                       PRT02000
      DO HO 1=1.30                                                      PRT02100
      IF (SMATX(l.D) 20.40.20                                          PRT02200
   20 WRITE (10.30) (SMATX.COSTO(I,1)»ACOST(I.1).TCOST(PRT04800
     ll.l),UMATx(16,I>                                                  PRTOH900
   80 FORMAT (IX.1HP,12,2X,'PRELIMINARY',&X,'IPREL',UOX,'CCOST',4X»'COSTPRT05000
     10' ,i+X. 'ACOST' r«fX» 'TCObT' «6X, 'ECF',/r6X, 'TREATMENT' ,6X,F9.1»36X»F9.PRT05100
     20,3F9.3,F9.2»//)                                                  PRT05200
      G0 T0 610                                                         PRT05300
?.                                                                       PRT05400
•                                                                       PRT05500
;                  PRSET                                                 PRT05600
                                                                        PRT05700
   90 WRITE (10,100) I'
-------
     1COSTO(I,1)»ACOST(I»1>»TCOST(I»1>.DMATX(16.I)»CCOST(I.2).COSTO(I,2)PRT05900
     2'ACOST(I »2>rTCOST(I r 2 > ,DMATX(15rI)                                 PRT06000
  100 FORMAT  <»X» 'COSTO' »«*X» • ACOST't«»X» 'TCOST' ,6Xr 'EOF' »/t57X»PRT06300
     3'SETTuER'.2X»F9.0,3F9.3»F9.2»//»57X»'SLUDGE'»3X»F9.0»3F9.3.F9.2»/»PRT06«»00
     457X»'PUMPS•»//>                                                    PRT06500
      60 TO 610                                                          PRT06600
C                                                                        PRT06700
C                                                                        PRT06800
C                  AERFS                                                 PRT06900
C                                                                        PRT07000
  110 WRITE »DMATX (13» I)     PRT08000
  130 FORMAT  (22X»' MLNBSS • • HX.' MLDSS'»«*X i ' MLISS' i SX.' FOOD •»**X •'RTURN' r 5XPRT08100
     1»'CNIT'»UX»'AKCFD'»<*Xr'BSlZE'f1X»'CFPGL'»7X»'QR» r/.21X»3F9.0»F9.1»PRT08200
     22F9.3»2F9.0»F9.2»F9.3»//»b8Xr 'CCOST'»<*X» 'COSTO'rtXr • ACOST' »«*X. 'TCOPRT08300
     3ST'.6X»'ECF'»/»57X»'AERATOR1»2XrF9.0»3F9.3»F9.2»//.57Xt'BLOWER'>3XPRT08<*00
     «t»F9.0»3F9.3»F9.2•//»57X»'SLUDGE'»3X»F9.0»3F9.3»F9.2./»57Xr'PUMPS'»PRT08500
     5//»57X»'FINAL'»«|X»F9.0»3F9.3»F9.2r/»57X»'SETTLER'i//>              PRT08600
      GO TO 610                                                          PRT08700
C                                                                        PRT08800
C                                                                        PRT08900
C                  DIG                                                   PRT09000
C                                                                        PRT09100
  140 WRITE (I0>150) I»(DMATX(J.I).J=lr2),(OMATx(j»I)rJ=lr5).CCOST(Ifl)»PRT09200
     1COSTO(It litACOST(!»!)»TCOST(I>1)•DMATX(16»I)                       PRT09300
  150 FORMAT  (1X»1HP»I2»2X»'SINGLE STAGE'»8X»'TD'.5X»'TDIG't'*X'tClDIG'»«*PRT09i*00
     iXf'C2UIG'»5X'«VDIG'»6X»'CH«t »»6X»'C02'»/»6X>•ANAEROBIC«>6Xr2F9.1»F9PRT09500
     2.3»F9.0»F9.3»2F9.0»/»t>X»'DIGESTION'»/»68X.«CCOST'•HX»»COSTO'»«*X.'APRT09600
     3COST'rHX»'TCOST'»6Xr'tCF'i/»66X»F9.Q'3F9.3»F9.2»//>                PRT09700
      GO TO 610                                                          PRT09800
C                                                                        PRT09900
C                                                                        PRT10000
C                  VACF                                                  PRT10100
C                                                                        PRT10200
  IfaO WRITE (I0»170) Ir(DMATX(JiI)>J=l'10)»(OMATX(J»I)»J=lr3>»CCOST(I.1)PRT10300
     l»COSTO(I»l)rACOST(I.l).TCOST(I»l)rDMATX(l6»U                      PRT10«»00
  170 FORMAT  (IXt1HP»12.2X»'VACUUM'rl3X»'VFL'»5Xf'HPWK'i6Xt'TSS'»(*X»'IVAPRT10500
     1CF' »<*X» 'FECL3' .6Xr 'CAO' »<»X» 'CFECL* >5X. 'CCAO' »UX» 'UPOLY' »<+Xr 'CPOLVPRT10600
     2»/»6X.'FlLTRATION'>5X»F9.2»2F9.0»F9.1.2F9.2»2F9.'*»F9.2»F9.6Xr'EtF'»/»21X»2F9.1»F9,0»18X»F9.0»3F9.3»F9.2»//)              PRT10900
      GO TO 610                                                          PRT11000
C                                                                        PRT11100
C                                                                        PRT11200
C                  THICK                                                 PRT11300
C                                                                        PRT11«*00
  160 WRITE (I0»190) I>(DMATX(J»I)»J=lr'*)»»TRR'»6Xi'TSS'»6x»'GTH«.&x»»GSTPRT11700
     1H'»5Xr'ATHM'»bX.'«RT'i/.6X»'THICKENING',5X.F9.2.F9.0»3F9.1.F9.2.//PRT11800
     2i68X»'CCOST'»«*X»»COSTO»»«»X»'ACOST'. «»X.« TCOST'• 6X1 • ECF'»/»66X»F9.0»PRT11900

     33F9.3.F9.2.//)                                                     ^RIJ!?2S
      Go TO AID                                                          PRT12100
f     G0 T° 6l°                                                          PRT12200
C                                                                        PRT12300
C                  ELUT                                                  PRT12«»00
                                      269

-------
c                                                                        PRT12500
  ZOO WRITE (10,210) I•(DMATX(J,I> • J=l«5),OMATX(1,1),CCOST(I,D,COSTO •TCOST(I.I).DMATX(16.1)                               PRT12700
  210 FOKMAT (IX,1HP.12.2X.'ELUTRIATION',8X»«ERK',6X.«TSS»»6X.'WRE1»7X,'PRT12800
     !Gt.',6X»'GE.S'»7X,'AE'»/»2lX.F9.2,F9.0»3F9.1.F9.0,//»68X»«CCOST'.«tX.PRT12900
     2'COSTO'»<»X.'ACOST'. <»X.'TCOST',6X.'ECF'»/«66X'F9.0.3F9.3»F9.2»//>   PRT13000
      GO TO 610                                                          PRT13100
c                                                                        PRT13200
c                                                                        PRT13300
C                  SBEDS                                                 PRT13«tOO
c                                                                        PRT13500
  220 WRITE (10.230) I»(DMATX(J»I>»J=l.2).OMATX(1,1).CCOSTd»1>»COSTO(I.PRT13600
     11)r ACOST(1»D»TCOST(I>1).OMATX(16,1)                               PRT13700
  230 FORMAT (1X.1HP.I2.2X.'SANU DRYING'»7X.'SOUT'.6X.tTSS'»6X»'ASB'.22XPRT13800
     l.'CCOST' .<*X» 'tOSTO1 lUXr 'ACOST1 >HXi »TCOST'»6X» 'ECF' »/>6X» 'BEDS' >11XPRT13900
     2'F9.2.2F9.0flBX'F9.0»iF9.3»F9.2r//)                                PRT14000
      GO TO 610                                                          PRT1U100
C                                                                        PRT1U200
C                                                                        PRT1<*300
C                  TRFS                                                  PRTli*«*00
C                                                                        PRT1U500
  2<*0 WRITE (10.250) I» (DMATX( J. I) . J=l »9) . (OMATX( J. I) »J=l .«*)             PRT1«»600
  2bO FORMAT (IX.1HP.12.2X»'TRICKLING'.10X»'BOD'»5X.'DEGC'»7X.»HQ'»<*X.'SPRT14700
     1AREA' .5X»'URSS'»5X.'XKSS'»3X.'RECYCL'»6X»'GSS'»5X»'HEAD1»/.6X,'FILPRT14800
     2T£.R-'.8X.F9.1.<4F9.2.Fy.t.3F9.1./.6X.lFINAL SETTLER' ./.25X. »AFS' .6XPRT14900
     3»'VOL'»«a.'FAREA«.^X»'DEPTH'./.21X.F9.2.2F9.0.F9.2./)              PRT15000
      WRITE (10.260) CCOSTU.1>»COSTO(I..1)»ACOST(1.1)»TCOST(I»1).DMATX<1PRT15100
     16.I)»CCOST(I.2).COSTOII.2).ACOST(I.2).TCOST(I.2)»DMATX(15.I)»CCOSTPRT15200
     2(I»3)»COSTO(I.3).ACOST(i.3).TCOST(I.3).DMATX(l«*»I)                 PRT15300
  260 FORMAT (66X.' CCOST'. «*X.' COSTO'. **X.' ACOST'. «*X •' TCOST•»6X.' ECF •. / • 57PRT15UOO
     1X.'FH.TER'»3X.F9.0»3F9.3»F9.2»//.57X.'FINAL'»HX.F9.0»3F9.3»F9.2./.PRT15500
     257X,'SETTLER1»//»57X.'SLUDGE'.3X.F9.0.3F9.3,F9.2»/»57X.'PUMPS'.//)PRT15600
      GO TO 610                                                          PRT15700
C                                                                        PRT15800
C                                                                        PRT15900
C                  CHLOR                                                 PRT16000
C                                                                        PRT16100
  270 WRITE (10.280) I»(DMATX(J.I).J=l.5).(OMATX(J.I).J=1.3)             PRT16200
  2aO FORMAT (IX.1HP.I2.2X.'CHLORINATION-'»5X.'OCL2'.5X.'TCL2'»5X.»CCL2'PRT16300
     1.bX.'US02'.5X.•CS02'.bX.'bVOL'.5X.'CUSE'.5X,•SUSE•,/.6X.'DECHLORINPRT16UOO
     2ATION'.lX.F9.2»F9.1.3F9.2.F9.0.2F9.2'/>                            PRT16500
      WK1TE (10.290) CCOST(I.1).COSTO(I.I).ACOST(I.I).TCOST(1,1),DMATX(1PRT16600
     l6,I),CCOST(I,2).COSTO(I.2)»ACOST(I.2>»TCObT(I,2)»DMATX(l5.I),CCOSTPRT16700
     2 (1r 3).COSTO(1,3).ACOST(1.3),TCOST(1,3),DMATx(It»I)                 PRT16800
  290 FORMAT (6bX,•CCOST•.MA»'COSTO' . 4X, • ACOST' .<4X» • TCOST•,6X,'tCF'./.57PRT16900
     IX.'CONTACT'.2A.F9.0.3F9.3.F9.2./.57X.'BASIN',//,57X,«CL2 FEED'.1X.PRT17000
     2F9.0'3F9.3.F9.2./.57X.'SYSTEM'.//,57X,'S02 FEED" 1X.F9.0.3F9.3.F9.PRT17100
     32./.57X.'SYSTEM'.//)                                               PRT17200
      GO TO 610                                                          PRT17300
c                                                                        PRT17«fOO
c                                                                        PRT17500
C                  TFLOT                                                 PRT17600
c                                                                        PRT17700
  300 WRITE (10,310) I.(DMATX(J.I>.J=1.7).(OMATx(J.I).J=l,3)»CCOST(I,1),PRT17800
     1COSTO(I.I).ACOST(I.I).TCOST(1,1),DMATX(16.1)                       PRT17900
  310 FORMAT (ix.IMP,12,2x,'FLOTATION*»iox»»TRR»,&x,«TSS'»ex,»GTH'»sx.'GPRTISOOO
     lSTH'»bX.'HPwK',i*X.«DPOLY',i*X.'CPOLY'»/,6X,'THICKENING', 5X,F9.2»F9.PRT18100
     20»5F9.2.//,2'+X,'ATHM',7X,'XN',UX,'ATHMl'»22X.'CCOST','*X.'COSTO'r<+XPRT18200
     3''ACObT'mX,'TCOST'.6X.'ECF'./,21X,3F9.1.18x»F9.0,3F9.3,F9.2»//)   PRT18300
      GO TO 610                                                          PRT18-IOO
^                                                                        PRT18500
"I                                                                        PRT18600
C                  MHINC                                                  PRT18700
                                                                         PRT1S800
  3iiO WKITE (10,330) I,(DMATX(J,I).J=l.9),(OMATX(J.I),J=l,5)             PRT1890Q
  330 FORMAT (ix,IHP,12,2x,-MULTIPLE HEARTH*,5X,'ML',5X,'NINC'.5X,'HPWK'PRT19000
                                      270

-------
     l»5X,'SPER'»7Xi'WV'»7X»'HV'»5X»'TYPE'»7X»'FC'r6X»'CNG'»/»6Xf'INCINEPRT19100
     2RATlON'»3x»7F9.1'2F9<3i//»25X»'FHA',5X«'WFYR'»5X»'PSDD'»(*X»'ECOST'PRT19200
     3»<*X.'FCOS1•»/»21X.5F9.0»/>                                         PRT19300
      WRITE  (10»340) CCOST(1r1)»COSTO(If1)rACOST(I•1)rTCOST(I »1).DMATX(1PRT19400
     16>1)        '                                                      PRT19500
  3<*0 FORMAT <68X» 'CCOST' »«»X. 'COSTO' »4X» • ACOST• »<*X' • TCOST• »6X» 'ECF» «/.6bPRT19600
     !X»F9.0»3F9.3'F9.2i//)                                              PRT19700
      60 TO 610                                                          PRT19BOO
C                                                                        PRT19900
C                                                                        PRT20000
C                  RWP                                                   PRT20100
C                                                                        PRT20200
  3bO WRITE  •COSTO(I»1)rACOSTPRT20300
     1(I»1)»TCOST(I»1)»DMATX(16>I)                                       PRT20t00
  3oO FORMAT (1X»1HP»I2»2X»'RAW WASTEWATER*»<*X»'HEAD*»7Xr»QP»»31X»'CCOSTPRT20500
     1' • <+X»'COSTO'»<*X»•ACOST••fX»«TCOST'»6X» »ECF'i/»6X•'PUMPING»,8X»2F9.PRT20600
     22r27X»F9.0»3F9.3»F9.2»//>                                          PRT20700
      GO TO 610                                                          PRT20800
C                                                                        PRT20900
C                                                                        PRT21000
C                  SHT                                                   PRT21100
C                                                                        PRT21200
  370 WRITE  U0r380) I»DMATX(1»1)»OMATX(1,I)tCCOST(I»D»COSTO(I.1)»ACOSTPRT21300
     1(I•1» rTCOST(I•1)•DMATX(16»I>                                       PRT21400
  380 FORMAT (1X»1HP»I2»2X»'SLUDGE  HOLDING'»6X»'Tu'»5X»'VSHT'»3lX»'CCOSTPRT21500
     I1 »«*X» 'COSTO' r**X» 'ACOST' i«»X» 'TCOST' »&X» 'ECF' »/>6X» 'TANKS' f!OX»2F9.1PRT21600
     2»27X»F9.0.3F9.3»F9.2»//)                                           PRT21700
      GO TO 610                                                          PRT21800
C                                                                        PRT21900
C                                                                        PRT22000
C                  CENT                                                  PRT22100
C                                                                        PRT22200
  390 WRITE  (I0r<*00) I•IDMATX1J»I)fJ=l>8)t(OMATX(J»I)»J=1.5)tCCOST»PRT22300
     1COSTO (!»!)»ACOST (111) »TCOST (!»!)»DMATX (16» I)                      PRT22<*00
  *»oo FORMAT (ix»iHprI2»2x»'CENTRIFUGATION'»sx» «CRR« »&x» »TSS'»5x»'HPWK* »PRT22500
     15X*'XCEN'>5X»'POLY'»«*Xf'CPOLY',5Xt 'GPMN'^X»'CNMlN'»/»2lXiF9.2rF9.PRT22600
     20.3F9.1.2F9.2.F9.1»//»2«*X»'CGPMtr5X»'OSOL'»6X»'AFC'f4X»'CSIZE'i7XfPRT22700
     3'CN'»/»21X»F9.0»F9.1»F9.5»2F9.1»//»68X»'CCOST'r'+X»'COSTO'»UXr•ACOSPRT22800
     <*T'»UXi'TCOST'»6X»'ECF'./ifa6X»F9.0r3F9.3»F9.2»//)                   PRT22900
      GO TO 610                                                          PRT23000
C                                                                        PRT23100
£                                                                        PRT23200
C                  AEROB                                                 PRT23300
C                                                                        PRT23«*00
  410 WHITE  (I0r(DMATX(J»I)rJ=l'8)»(OMATX(jfI)»J=1>4)             PRT23500
  UiiO FORMAT F9. 1»2F9.21//»2«»X. • VAER'»5X•' ACFM' >IX.'OPUMP•.6X»' AFSPRT23800
     3'r/,21X»F9.3»F9.0.2F9.2»/)                                         PRT23900
      WRITE  »COSTO'»«fX»«ACOSTt.<+xr'TcosT'*6x»'ECFl»/»57pRT24<»oo
     lX,'AEKATOR'»2X»F9.0.3F9.3.F9.2i//»57X.'BLOWER'»3X»F9.0r3F9.3»F9.2.PRT2«»500
     2//»57Xf'SLUDGE'»3X»F9.0»3F9.3»F9.2»/»57X»'PUMPS'»//»57X»'FINAL'»4XPRT2«»600
     3»F9.0»3F9.3»F9.2»/»57X»'SETTLER'*//)                               PRT24700
      GO TO 610                                                          PRT21800
C                                                                        PRT24900
C                                                                        PRT25000
C                  POSTA                                                 PRT25100
C                                                                        PRT25200
  *H*0 WRITE (IQ.tSO)  I»(DMATX(J»I)»J=l»13)»(OMATX(J,I)»J=lr7)           PRT25300
  «»!»0 FORMAT (iXf 1HP» I2»2X» 'POST AERATION'»HX. ' 1TYPE1 »8Xt »L'»5X»'DOIN'»5PRT25«*00
     IX»'DOUT'»7X»'TL'»7X»'TO'»7X»'TW»«»X»'AERFO'»UX» «HPHRO't6Xr'ALT'»/iPRT25500
     221X»2F9.0»5F9.1iF9.3»2F9.2»//»23Xr'CFMDF'»'*X''DlFFT'»7X>'DD'»5X>'VPRT25600
                                     271

-------
     3ALR • » oX » ' CFM • » 7X » • HP • , 5X • • TMI N • » 6X » • VMG • » <*X , • AERFF • , 5X » • CLEN • , / • 21PRT25700
     4X,3F9.1»F9.3»F9.0»2F9.2,F9.t»F9.3»F9.2»/>                         PRT25BOO
      WRITE (10,460)  (OMATX(J,I)«J=8»13>                                PRT25900
      FORMAT (2bX, 'HP1' ,7X» »XN' ,6X, 'THP' ,4X, 'WIDTH* »«»X» 'DEPTH' » bXr • TLEN'PRT26000
     l»/,2lX,F9.2»F9.1,F9.2.2F9.1,F9.2»/>                                PRT26100
      WRITE (10,470)  CCOSTU,1>»COSTO(I»1)»ACOST,TCOST(I,2)»DMATX<15,I)      PRT26300
  470 FORMAT (66X. 'CCOST1 ,4x, 'COSTO' »4X» • ACOST' »«U» 'TCOST' »t>X» 'ECF' t/»57PRT26<*00
     !X,»BAi>lN'»HX»F9.0.3F9.3»F9.2»//»57X.'AlR'.6X'F9.0.3F9.3.F9.2»/»57XPRT26500
     2 • ' SUPPLY ' » // )                                                      PRT26600
      GO TO 610                                                         PRT26700
C                                                                       PRT26800
C                                                                       PRT26900
C                  EQUAL                                                PRT27000
C                                                                       PRT27100
  tbO WKITE (I0rt90)  I • (DMATX ( Jr I ) • J=l «5) » (OMATX( Ji I ) • J=l >14)           PRT27200
  <*90 FORMAT ( lx» 1HP> I2r2X» 'EQUALIZATION1 r6X»'lAEK' »6Xr »RLW« f HX> "COSTL1 »PRT27300
     l5X»»HLAD'r5X»«IMAT'»'*Af 'WIDTH '.5X»' AREA' »5X,«VUMGt, 5Xr«VOMG«» 7X»'VPRT27«tOO
     2T«>/.21X»2F9.i»F9.3.2F9.1»F9.2rF9iH.3F9.»*»//»23X»'SAREA'»7X»'HP'»faPRT27500
     3Xr «HPi« »7X» 'XN« »6X» 'THP1 tbX» ' VAER' »5X» 'ECFM'PRT27600
     1»/»21X»F9.1.2F9.2»F9.1»2F9.2»F9.0»F9.3»F9.0,/J                    PRT27700
      WRITE (lOrSOO)  CCOST(irl)fCOSTO(I»l)rACOST(I.l)»TCOST(I»l)»UMATXiTCOST(I»2)»DMATX(l5»I)»CCOSTPRT27900
     2lI»3)>COSTO(If3)'ACOST(I»3)fTCOST(I(3}.DMATx(it»I)»CCOST(I»U)»COSTPRT28000
     30ll,tt)rACOST(Ir«*>»TCOST(IfU)rCCOST(I»5)»COSTO(I»5)fACOST(I.5)fTCOSPRT28100
     4T(1,5)                                                            PRT28200
  5UO FORMAT (6dX» 'CCOST' »«*Xr 'COSTO' r^X» 'ACOST' »**X» 'TCOST' »6X. 'ECF*  • /»57PRT28300
     lX»'AEKATEU'»2X»F9.0»3F9.3»F9.2»/r57X"POND/TANK'f//.57Xr'AIR'.6X»FPRT28«tOO
     29.0r3F9.3.F9.i:./»b7Xr 'SUPPLY '»//»57X "PUMPING M2X i F9.0»3F9.3tF9. 2 »PRT28500
     3/ • b7X »' SYbTEM' f//f57X»' FLOW '»5X.F9.0'3F9.3»/rb7X>' MEASURING »»//r57PRT28600
     <*X t ' POND '» bX tF9.0»3F9. 3. /t57X> 'LINING' •//)                         PRT28700
      GO TO 610                                                         PRT28800
C                                                                       PRT28900
C                                                                       PRT29000
C                  DIG2                                                  PRT29100
C                                                                       PRT29200
  510 WRITE (10.520)  I>(DMATX(J»I)fJ=l»3)»OMATX(l,I)»CCOST(I»H»COSTO{I»PRT29300
     11) rACOST(Ifl) »TCOST(I»1> »DMATX(16»I)                              PRT29HOO
  520 FORMAT ( IXr IMP, I2»2X» 'SECOND  STAGE' »7x» »TRR' »6X» ' TSS' >7Xr 'TD1  »5X» 'PRT29500
     1VUIG' »13X. 'CCOST' »tX» 'COSTO' » 4Xr ' ACOST' r «tXr 'TCOST' ,6X» '£CF« »/»6X» 'PRT29600
     2ANAEROBIC' i 6Xr F9.2 »F9. 0 »F9. 1 fF9.3»9X'F9.0 » 3F9.3rF9.2»/»6X» 'DIGESTIPRT29700
     30N'r//)                                                           PRT29800
      GO TO 610                                                         PRT29900
c                                                                       PRT30000
c                                                                       PRT30100
C                  LANDD                                                PRT30200
c                                                                       PRT30300
  530 WRITE (10.540)  I . (DMATX ( J. I ) . J=l»5) r (OMATx( J. I ) » J=l ,9)            PRT30UOO
  540 FORMAT ( IX. 1HP, I2.2X* 'LAND  DISPOSAL  OF ' »2Xr 'TAYR' , 7X» »SP» »5X»  'DISTPRT30500
     l'.7X.'TS'.5X'»YRSL'./.6X. 'LIQUID SLUDGE' »2X, 3F9.2.F9.0.F9.1.//.25XPRT30600
     2» 'TYT« .5X. 'TTYR' .bX. 'TRKN' .6X. 'SLV »5X. 'TONS' . IX » 'ALAND' */)                PRT30800
      WKITE (10.550)  CCOST(I.l).COSTO(I»l)»ACOST(lrl)»TCOST(I,l)»DMATX(lPRT30900
     16.I).CCOST(I.2).COSTO(I.2)rACOST(I.2)rTCOST(I,2)»DMATX(l5(I)»CCOSTPRT31000
     2(I»3).COSTO(I.3)»ACOST(Ir3).TCOST(I.3)                            PRT3HOO
  5bo FORMAT (&ax. 'CCOST • .tx. 'COSTO' .^x. 'ACOST' »<+x» «TCOST« t&x» 'ECF«  t/»57pRT3i20o
     IX, • sTORAGt '.2X.F9.0.3F9. 3. F9. 2. /f57X» 'LAGOON' »//»b7X»' TRUCKING «flXPRT31300
     2»F9.0.3F9.3,F9.2'//,57X,'INTEREST',1X,F9.0.3F9.3./,57X»'ON LAND' I/PRT31HOO
                                                                        PRT31700
                   LIME                                                  PRT31800
                   LIMt                                                  PRT31900

  5t>0  WRITE  (10,570)  I , (DMATX( J, I ) , J=l ,2) , 
-------
  570 FORMAT      PRT32500
      SO TO 610                                                          PRT32600
C                                                                        PRT32700
C                                                                        PRT32800
C                  KBC                                                   PRT32900
C                                                                        PRT33000
  5tiO WRITE (10.590) I»(DMATX(J»I)»J=l»9)»(OMATXtJ»I)»J=l»10)            PRT33100
  590 FORMAT   6X»•TSS•»5X»tcPDY'»/.bX,•BlOPRT33300
     2LOGICAL•»5X.2F9.1r3F9.2>2F9.1r2F9.2»/t6X»«CONTACTOR-'»/»6X»'FINAL  PRT33^00
     3SETTI_LR' • 5X»' UPAB •» 5X i ' QPAN •»**X»' APSTS' 15X»• AREA'»f X»'FNSTG' > IX »«RPRT33500
     UNSTG'rtX»'RATIO'»5X.'PREM'»5X.'QPAT'»6Xr'AFS'»/>21X»2F9.2.2F9.0.2FPRT33600
     59.2>F9.3»F9.2«F9.3»F9.1»/)                                         PRT33700
      WRITE (I0r600) (OMATX(J»I).J=ll»17>iCCOST(Irl)rCOSTO(Irl>»ACOST(I»PRT33BOO
     ll)rTC05T(I»l).DMATX(lb.I)»CCOST(I»2)»COSTO(I»2)»ACOST(I»2)»TCOST(IPRT33900
     2»2)iDMATXll5a)                                                    PRT3UOOO
  6uo FORMAT  <2<*x.'PDSD»isx»»uRssffsx.»NTRN»tix*'NSHFT*»<*x»'COSTM«i«*x»'CPRTSIHOO
     lOSTEl»«*X»'COSTL'»/»2lX.F9.1.F9.3.2F9.1»3F9.0»//>68X.'C^OST'i«»X»'COPRT3«*200
     2STO' »<*X» 'ACOST' ><*X» 'TCOST' »6X» 'ECF' p/» 57Xt "CONTACTOR1 »F9.0»3F9.3»FPRT3«*300
     39.2»//r57X»'FINAL'r i*X.F9tO»3F9.3»F9.2./»57X»»SETTLER'»//>          PRT3UUOO
  610 CONTINUE                                                           PRT3<4500
C                                                                        PRT3U600
C                                                                        PRT3U700
C             OUTPUT FORMAT FOR COSTS  OF  MISCELLANEOUS FACILITIES        PRT3U800
C                                                                        PRT3«*900
      WRITE (10.620) CCOST(20.1)»COSTO(20.1).ACOST<20.1).TCOST120.1)     PRT35000
  620 FORMAT  (6xr'ADMINISTRATIVE'»H8X»'CCOST'rtXr'COSTO',«*X»'ACOST'»UXf'PRT35100
     lTCOST'f/»6X»'AND  LABORATORY't46XrF9.Ot3F9.3»//)                    PRT35200
      WRITE (10*630) CCOST(20.2).COSTO(20»2)fACOSK20.2),TCOST(20»2)     PRT35300
  630 FORMAT  (6X»• GARAGE', 5bX F ' CCOST •»4X»' COSTO • mX,' ACOST' • «*X»' TCOST' • /PRT35400
     1»6X»'AND SHOP'f52X»F9.0»3F9.3»//)                                  PRT35500
      WRITE (10•640) DMATX(9.20).CCOST(20.3)fCOSTO(20»3),ACOST(20.3).TCOPRT35600
     1ST(20»3)                                                           PRT35700
  610 FORMAT  (6X» 'LABORATORY ' »8Xf 'XLAB' »'OPERATION'r6X»F9.1»36XrF9.0»3F9.3»//)           PRT35900
      WRITE (I0>650) CCOST(20»«»)»COSTO(20r«.)rACOST(20»'*).TCOST(20.«»)     PRT36000
  6^0 FORMAT  (6x» • YARDWORK' »5iXr»ccosT' »«*x» • COSTO• x+x>'ACOST»»«»x»«TCOST'PRT36100
     l»/»6Xr'OPERATION'r51X»F9.0»3F9.3»//)                               PRT36200
C                                                                        PRT36300
C                                                                        PRT36400
C             OUTPUT FORMAT FOR TOTAL  PLANT COST                         PRT36500
C                                                                        PRT36600
      WRITE (10.660) (OMATX(J.20)»J=17.20)                               PRT36700
      FORMAT  dHi»//////»5«*x»'TOTAL PLANT COST*»///»39x»'TOTAL CAPITAL cpRT36aoo
     10ST = '»F10.0»' DOLLARS••16X»'TOT'»//3UX»'TOTAL AMORTIZATION COST  PRT36900
     2= »»Fl0.3i' CENTS/1000 GALLONS't5X>'TAMM'r//miX»'TOTAL 0 + M COSTPRT37000
     3 = '»F10.3»' CENTS/1000 GALLONS'»bX»'TOPER'»//.37x»'TOTAL TREATMENPRT37100
     «tT COST = '»F10.3»' CENTS/1000 GALLONS'»5X,'TOTAL1r/////)           PRT37200
      WRITE (10.670) (DMATX(J»20)»J=1>10)»(OMATX(J»20)»J=l»12)           PRT37300
  670 FORMAT  <7X»'CCI•»9X»•WPI'tlOXf'RI•.9Xr•YRS'»9X»'DHR'r9X»'PCT'•10X»PRT37<*00
     l'UA'»7X»lCCINT'»8X»'XLAB'»8X»'CKWH'»//»3Fl2.3fF12.1iF12.2»Fl2.3»FlPRT37500
     22.0.2F12.2»F12.3>/////•5Xi«RATIO'»8X»'TCAP'.8X»'YARD'»9X»'TCC'»7XfPRT37600
     3'XLANU'»9X»'ENG'»7X»'SUBT1'»8X»'FISC'»7X»'SUBT2'»8X»'XINT'r//»F12.PRT37700
     H3»9F12.0»///»6X»'ACRE'.10X»'AF'f//»Fl2.2»F12.5)                    PRT37800
      RETURN                                                             PRT37900
      END                                                                PRT38000
                                      273

-------
                           REFERENCES
1.   Preliminary Design  and  Simulation  of  Conventional  Waste-
    water Renovation Systems  Using  the Digital  Computer,"
    Robert Smith,  March 1968, Water Pollution Control  Research
    Series Publication  WP-20-9,  NTIS-PB215409.

2.   "Executive Digital  Computer  Program for  Preliminary Design of
    Wastewater Treatment Systems,"  Robert Smith and  Richard G.
    Eilers,  August 1968,  Water Pollution  Control Research  Series
    Publication WP-20-14, NTIS-PB 222765.

3.   "Estimating Costs and Manpower  Requirements for  Conventional
    Wastewater Treatment Facilities,"  Black  and Veatch Engineers,
    October 1971,  Water Pollution Control Research Series
    Publication 17090DAN10/71, NTIS-PB 211132.

4.   "Computer Evaluation of Sludge  Handling  and Disposal Costs,"
    Robert Smith and Richard  G.  Eilers, August  1975, Proceedings
    of the 1975 National  Conference on Municipal Sludge Manage-
    ment and Disposal,  pp.  30-59.
                              274

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/2-78-185b
                                                           3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Short Course Proceedings; APPLICATIONS OF COMPUTER PRO-
GRAMS IN THE PRELIMINARY DESIGN OF WASTEWATER TREATMENT
FACILITIES;  Section II:  Users'  Guide and Program  Listing
                                     5. REPORT DATE
                                       September 1978  (Issuing Date)
                                     6. PERFORMING ORGANIZATION CODE
1. AUTHOR(S)
Richard G.  Eilers, Robert Smith,  Stephen P. Graef,
James W. Male, Hisashi Ogawa,  and Phong Nguyen
                                                           8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Pritzker Department of Environmental Engineering
 Illinois Institute of Technology
 Chicago, Illinois  60616
                                     10. PROGRAM ELEMENT NO.

                                       1BC611
                                     11. CONTRACT/GRANT NO.

                                      R-805134-01
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory—-Cin. ,OH
Office of Research and Development
U.S.  Environmental Protection Agency
Cincinnati,  Ohio  45268
                                     13. TYPE OF REPORT AND PERIOD COVERED
                                      Final
                                     14. SPONSORING AGENCY CODE
                                      EPA/600/14
15. SUPPLEMENTARY NOTES
 EPA Project Officer:  Richard G.  Eilers  (513) 684-7618
 16. ABSTRACT
      This document contains  a portion of the material  used for the Short Course on the
 Applications of Computer Programs in Preliminary Design of Wastewater Treatment Facil-
 ities.   The short course lectures appear in Section  I  of the report which is under
 separate cover.  Section II,  contained herein, contains the users' manual and program
 listing for the Executive Program for Preliminary Design of Wastewater Treatment
 Systems.  The manual describes the use of the program  and subroutines.  Several
 examples show appropriate input and expected output  for a variety of applications.   In
 addition, the theoretical basis for the calculations are shown in the form of conven-
 tional  mathematical and equivalent fortran equations.   The program listing includes
 the main program and each of 27 subroutines, representing different treatment processes,
 energy  consumption, and cost calculations.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                        b.lDENTIFIERS/OPEN ENDED TERMS  C.  COSATI Field/Group
  Waste treatment
 *Models
  Sewage treatment
  Design
 *Cost estimates
*Performance
*Cost effectiveness
 Mathematical models
 Sewage treatment
 Water pollution
Executive program
Preliminary design
Computer program
Design engineering
Sanitary engineering
13B
18. DISTRIBUTION STATEMENT
 Release to Public
                                              19. SECURITY CLASS (This Report)
                                               Unclassified
                                                   21. NO. OF PAGES
                                                          285
                        20. SECURITY CLASS (Thispage)
                         Unclassified
                                                                          22. PRICE
EPA Form 2220-1 (Rev. 4-77)
                      275
                                                                U. S. GOVERNMENT PRINTING OFFICE: 1978 — 657-060/H81

-------