EPA/904-9-78-007
             APPENDICES TO
   TECHNICAL SUPPORT DOCUMENT
                 VOLUME I
A-C
          United States Steel Corporation
             Number 8 Blast Furnace
                Fairfield, Alabama
                  UNITED STATES
            ENVIRONMENTAL PROTECTION AGENCY
                    REGION IV
                  345 Courtland Street
                 Atlanta, Georgia 30308

-------
       APPENDICES TO THE
   TECHNICAL SUPPORT DOCUMENT
U. S. STEEL No. 8 BLAST FURNACE
            Volume 1
               A-C

-------
                          TABLE OF CONTENTS
Appendix A
          A-l
          A-2
          A-3

          A-4

          A-5
          A-6


Appendix  B
          B-l
          B-2
          B-3
          B-4
          B-5
          B-6
Appendix  C
Air Quality
Air Quality Statistical Analysis
Proposed Action .For U. S. Steel Modernization
Attachment I  - EPA Calculations on the New Coke
Battery Coal  Flow Employed  in AQDM
Attachment II - Calculations Used to Find the
Auxiliary Sources Emission  Rates Employed in AQDM
Air Quality Display Model Sources Identified For
Conditions 1-5
Computer Model Using Large  and Small Grids For
Conditions 1, 2, 3, 4, and  5
Particulate and S02 Emissions For 1973 and 1978
(Projected) From Coal Storage, Handling, and
Coking Operations at the Fairfield Works Provided
By the U. S.  Steel Corporation
Existing and  Identifiable Air Pollution Control
Devices and Residue Disposal Methods
Biology
Periphyton Diversity Indices
Macro-Invertebrate Diversity Indices
Birds of the Black Warrior  River Basin
Mammal Abundance Indicators
Species of Alabama Identified As Rare and Endangered
Terrestrial  Vegetation of the Black Warrior River Basin
Cultural

-------
APPENDIX A
AIR QUALITY

-------
          APPENDIX A-1
AIR QUALITY STATISTICAL ANALYSIS

-------
                                           STATISTICAL  ANALYSIS
                                                                                                    PACE
   COUNTY    .                              STATE-AREA:  OlrO.3,40
   ALABAMA                  PROJtCT:  POPULAT ION-OB IENTFD SURV.
     BESScXER,  JCFF£ftSON CO  < iM "3<.(!OUl G01 )          .  ".
           OIOXIOF.                      SAMPLING  INTERVAL: ._  DAILY
                                                                	PERIOD:  . 76/01/01 TO 76/09/30	 .
                                                                    METHOD:   GAS  BUBBLE"
                                                                    ANALYSIS: WEST-GAEKE SULFAMJC  ACID
                                                                    UNITS:.   PARTS  PER MILLI ON , (VOL/VOL>
                     PRIMARY  STANDARD
                                                                      SECONDARY  STANDARD(S)
                                                                   1*00 UG/K3 (0 C)   .5   PPM  3 HR.  MAX, 1 PER Yfl
.>'WL
...OBS
MIN
OPS
                               1C
           .  ...  PERCENTILFS
                   ^^•••••••WM*
30~.~_7.. .5w!.IIl"7!pZZZ9.A .
                                                           95
                                    96
97	98
                      99
 KAX
.OBS
?01
		.114.. _.  .000 .  .001 ... .001.. _ ...0.01	,001	..001    .001_	,0.0.1	..00.2_.. .002_  ..002	,.002	
 	 . 	 HIGH.READINGS
PERCENT_
                                                                 STD
               	(2)		_(3)   ,  . ACTUAL	i?EAN	 DEV  	MF.AN	 DEV
GEO	-.GEO  .. 	.
                   ...00.2	*CQ2		M..8	...00.1 _..
                                                        .000	.001	1.148

-------
                                           STATISTICAL  ANALYSIS                                           PAGE    13
	 COUNTY       .  _   _..                _.  STATE-APEA:._.01-0340_	  _   PERIOD:.   76/01/.01  TO. 76/10/30
    ALABAMA                  PROJECT:  POPULATION-ORIENTED SURV.            METHOD:    GAS  BUPBLER
	  BESSEMER, JEFFERSON CO  (01 034 0001 G 01 )	  ...        __.            ...  .ANALYSIS:  NASN SOD I UM ARSENlT£
EJU—NITROGEN. DIOXIDE... .         .    ...   S AMPLING . INT ER V A L i—	DAILY  ..  	UNITS:     PAR.TS  PER  MIL-LION. (VOL/VOL)
                     PRIMARY  STANDARD(S)                .  __                 ..SECONDARY  STAN DAR0 ( S ) -
         100 UG/M3  (25  C)  .05  PPM ANNUAL ARITHMETIC  MEAN           00 UG/M3 C25 C)  .05  PPM ANNUAL ARITHMETIC
                                                	PERCENTILES	 .  .
 SITE	 SUM          M1N                                .--:	  	               .  -        «AX
          095    .. ...    OBS.     10   .  30    ,  50	7Q  	90      S5	96.  _  _97      98 	 99     OBS

               166.     .007    .01C   .012 __ .OU .. ...019	.025    .QJO_._.031    .037    .038- -.038  .  .999
           _  .    .   HIGH  READINGS    . PERCENT,    ~ARITH.l	    STD	.,GEO          GEO
                .     (2)       (3)      ACTUAL	MEAN...	  ,DEV_.	MEAN        .OEV___	_  . ... 	.

              _..  .  .999      .C4t     .. 61.4_  . ...  _ .027  ......   .102  	 .016       .1.773	    .  ...

-------

                                             STATISTICAL  ANALYSIS                                             PAGE
	COUNTY...			  .     	_	STATErAREA:....01r0380	PERIOD: ... 76/01/01. TO 76/12/31..

    ALAGAMA                  PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.        METHOD:    INSTRUMENTAL
._. .  .  NORTH O'HAH,  BIRMINGHAM, J t F F ERSON..CO ( 0 1 038 0005G02 ) -   . . ..  .   	ANALYSIS: NON DI SP ERS IVE . INFRA-RE D

£ai_C ARSON.. MONOXIDE			S AMPLJNG_1N.TER VAL :	0.1._HOURS	UNITS:	P ARTS -PEJL.MILLION - (VOL7VOL
                       PRIMARY STANDARD(S) ..     .  	  ....       ..      	SECONDARY STANOARD(S)
       10tOOO UG/M3  (0 C)    9 PPM   8  MR. MAX,  1  PER  YR.        40,000 UG/M3  (0  C)    35  PPM  1 HR. MAX,  1 PER Y
                                                 ..... ______ PERCENTILES  .    ...... .... _____ ,.     .     _________  .
 SITE...     NUM   .....  KIN                 ________________ -.-_- ---- - — - ______________________ . _________________ MAX
 _UU!« ________ CBS _____________ CDS .     10  . .....30 ________ 50 ___ 7.0 _ 9.0 _______ 95 __ 9.6 ___ 9.Z ____ 98 ___ 95 __ OBS


 -005 __________ 6,073.  ________ .0....   1.5 ...... .2.2 ______ 2.6 __ 3.2 _ 4.3___5.2 ___ S..5 _ 5..8_. 6.3 _____ 6.3 ____ U.5_

 _______ ...... HIGH READINGS     _. PERCENT _______ ARIT.H ________ STD _______ I^GEQ  ~~'~"    G'fQ    "~^~ "_ _"  "
 ______ ........ .   ._(2) ._  ..   (3).. _____ A.CTUAL ________ MEAN ______ DEV __________ MEAN _____ OEV   ________ "
  			13.2.     12. 0_	69.3		_2.80	1.30	2..5S	   1.57

-------
                                            STATISTICAL  ANALYSIS                                             PAGE     16
   COUNTY     .... _   .   .  .                  _ STATE-AREA:  01-0380      	.  .  PERIOD:   76/01/01 TO  76/07/27

   A L A G A C A                   PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.        METHOD:   INSTRUMENTAL

	.NORTH  B'HAM, 0 I £ M NGH AC> , JEFFERSON C 0 _( 1)1 0380005G02 )_	    ANALYSIS: FLAME IONIZATION

 R:. JLOTAL_HYDROCAC80NS                  .. S AMRL ING . 1 N T E R V AL :	 01  HOURS _..  UNITS:.    PARTS P ER__ M I L L I ON (VOL/VOL)
                      PKIMARY' STANDARDS)               ..	.  .              SECONDARY  STANDARD(S)
         160 UG/f'3  (0  C)   3 HOUR  MAXIMUM,  1  PER YEAR.              160 UG/M7 (0 C)   3  .HOUR MAXIMUM, 1 PER  YEAR.
          (.11-0 ffm)                                                                    (.ItO efm)

                                    .         . .. __________ PERC EN TILES ..... ..... _____  ._ .    .          ___
          KUri         _MIN         ._       _. ___________ rrj^r- — : --- _    ____________              _________ r>AX
                                                  "
         .OBS   . _.   . OBS  .    10      30  ______ 5J_ ____ 70 ___ _. 90 _  _. 95....  ...96 ______ _9.7_ _____ 96    ...99 _______ QBS __________


    __ ..... 4.C35      .....6_ .1.5 ____ 1.9__..2..3 ___ 3.1 _____ 8.1 _____ 11 . 3. .. . 1 2 . 0 _____ 1 2.. <• _ .. 1 2 . 6    12.fi ___ 1.6.1 ___  ____
                .._  HIGH READINGS _   . PERCENT	_ARITH	S T_D	 GEO._ 	GEO
               	.(2)       (3)      ACTUAL       MEAN         DEV        MEAN   	   D E v
                	1.6 ..0.	.15.9	80.8...__	3.A8	2_. 9.f_	2.. 76	1.&7 .  .

-------
                                                 STATISTICAL ANALYSIS                                            PAGE     17
      	COUNTY.	._	_..   ...	STATErAPEA:_Ol-0380	.PERIOD:	76/0.1./0.1_TO_l67.05./J7_

         ALABAMA                   PROJECT: SOURCE-ORIENTED AMBIENT SURV.   '    METHOD:    INSTRUMENTAL
            NORTH  U'HAM, BIRMINGHAM,  JEFFERSON  CO. ( 01 0380005G02 )	ANALYSIS:
               SPEED .__	_    	SAMP.LING._JNT.ERVAL :	OJ_HQURS	UNUS :..... .-KNOTS	
                   	                      	     	  .PERCENTILES	 	  .                	_  ._.
5»   S.ITE	NUM	      KIN        	-r-r-^-n---	'..                 ...r.<	MAX
JL   -NUM	«3S	  OBS  ... .10	30	50	70	.90	95	96	  97     98   	99._	OBS.
 I      ---       ---          --_     __     —      _.     _.      __     —     _.      --     —      -_      	
ui

     -JC5	 3,351..      0.     -1.	2.	3.	5..	7-.	9..	9.	  .9.  .  10.	10.	15,

     	.          '      HIGH  READINGS  	 PERCENT	ARITH	SID	GEO .         GEO		 	
     		 . . _   .(?)..  _.. (3)	ACTUAL	MEJU	DEV	MLAN_ ..  . _ DEV	,	
                           15..  .    U.	9.8.9	3_._65	2.6.3	Z..25      .  3.77	

-------
                                              STATISTICAL  ANALYSIS                                            PAGe    13




    	COU'JTr                             _    .STATE.-APEA:. 01-0380  ..        ..  PERIOD:    76/01 ./01._TO.76/05/17_

      .ALABAMA                 PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.       METHOD:    INSTRUMENTAL

    	   NORTH U'HAM, BIRMINGHAM,  JEFFERSON CO  ( U1 0 38 000 5G 0 2 )   __ .   	  .ANALYSIS:     _ ". ""

    £?:. k.iND.DiP£CTiON.__       _..__.	.SAMPLING.INTERVAL:.  .. Q1 .HOURS	UNITS:    .. DEGREES.. (.COMPASS)	~__U
   -:	.--.-.     ..       ...	 .PERCENTILES	..       . _ ...    	  	
   * IT E _	fa y M         KIN                                _____ — _ — «. — —                                    MAX
3., -"Ul	09S	 	OHS      10   "~^ 0  ' ~ 5 0~~    7 0	90___1_..9§	96 .. ..  97. ._   98     99 ~"    OBS
i>   DCS
                         ...5.	40.	150.	190.	260.__3£Q.	350..	360..   360._  360,._  360.	400.
                 ~  _. HIGH HEADINGS	eER.CEN.1	ARI.TK	SJO	GEO	  ._ ... GEO	
                	(2)	^(.3)	ACIU&I	MEAN	p.EV	.MEAN	OEV	
    	360.	360._	98..S	19.5;.53	1.0J..6.Z	154..J8	2^33.	

-------
                                             STATISTICAL  ANALYSIS                                             PAGE     19
	COUNTY.... .  ..           .   ,  	STATL-APEA: .01.-0330	PERIOD:   ..76/01/07  TO 76/08/31

    ALABAMA                  PROJECT:  SOURCE-OR IENTED  AMBIENT SURV.        METHOD:    TAPE SAMPLER

       NORTH O'HAM,  OIRflf.GHAK, JEFFERSON CO ( 01 038 0005G02)   	           ANALYSIS:  TR ANSMIT T ANC E

£R: SOILING INDEX  C COH/1 OCOLF )_	SAMPLING.. INTERVAL:.  . 92. HOURS    UNITS:.   _ COHS /.1 000  LI N E AR FEET
                                                        PERCENT1LES                       	
SITE.  ..  HUM   ..       KIN          ..     ....  	 .....;	                        ... __  ..   MAX
-NUN  	 ODS... .     .  . OES      10.._..30    . .5 C.	70	90. _..   95      96      97  .  ...  98	 99	  OBS


 .005	    2,582 _   .   .C '     .2	 .5      .8	1.3	2.7..  .3.4    3.5  ..3.7_    4.0.   4.0... . 3.4

   _  ..     ...      WIGH READINGS       PERCENT  ..   ARITH ..  .    STD       GEO          GEO
	...         ..  (2)      (3) 	  ACTUAL  	MEAN..	DEV.      MEAN     .    DEV.._.  _  	
                    .7.1    .  6.4 	9.0.8	1.J15	  _.1.0t.   	  .76  	  2.9.1	 _ ....

-------
                                                STATISTICAL  ANALYSIS                                            PAGE     21
   	COUNTY        __	_      ...  _  	STATb-A.REA.:_01-0380	PERIOD:	761 01 / 01_T 0_.76 /J 2 /30	

      ALABAMA                    PROJECT: SOURCE-OK i ENTEo AMBIENT SURV.        METHOD:    GAS  BUBBLER
   	  NORTH B'HAM,  BIRMINGHAM,  JEFFERSON  CO  ( i) 1 038 0 005G 02 J  .._ 	 . ...ANALYSIS:  WEST-GAEKE  SULFAMIC ACID


   tR,-_SULFU«_ DIOXIDE	  	   	SAMPLING ..1N.T EflVAL :	_DAIL^_	UNITS:... ^PARTS PER K I LL I ON. _( VOL / VOL )
^    ..          .._. .     PRIMARY  STANDARD(S)	    .       .     ._ _  .SECONDARY  STANDARD(S)
i    	  _  ..     _       — —---—  ___	_.— _     ^   	  	   ^     ^   ^ ^ 	 ^  —__	_^


03                                                                     1300  UG/M3 (0  C)   .5   P.PM   3  HR.  MAX,  1  PER YR.
                                               _.. 	 .  PERCENTILES .__._._
   SITE       NUH          MN         	_.		_r-.	.— -.-.-..  		__  ..         .   	       MAX
   __«iU".     ...OPS.  ._     OBS.     10  	3U	50	70	9(1	9.5	96	97      98  	99	OBS__



   j!G5	  . 227.._.   .000    .001	.00.1	..002	.002	.004	..O.Q5	.005	.006   .006   .006  	.011


   ^_7         _      HIGH READINGS    ...  PERCENT	ARITH.   . _. S T D	GEO _.       GEO
                        (2)       (3)       ACTUAL      MEAN         DEV        MEAN         DEV
                       .009.  .   .005. _. 	6 2..4	.002	.00.2	..002_   	1.663

-------
                                                STATISTICAL  ANALYSIS                                               PAGE      22
	COUNTY                                     STATt-AiUA:.. 01-0330    ..... 	_  PERIOD:    76/01/01..TO 76/12/30

     ALABAMA                   PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.         METHOD:    GAS  BUDBLER

	.NOPTh B'HAM, BIRMINGHAM,  JEFFERSON. C0 . (010380005G02>	1..		ANALYSIS: NASN SODIU" ARSENITE
.EB.I_.NITROG£N DIOXIDE  .  ...      .  .   	SAMPLING..INTERVAL :	O.AILY._ 	 UNITS:..   PARTS P ER. .11 LLI ON _(VOL /VOL )
                         PRIMARY  STANDARD.(S)	  _	  . S ECON D AR Y . S T ANDA R D ( S )
           100 UG/M3  (25  C) .05  PPM ANNUAL ARITHMETIC  MEAN           100 UG/M3 (25  C)  .05  PPM ANNUAL ARITHMETIC  MEAN
		         .                  		PERCENTILES			   	  	
 S..IT.E	NUM	   ..MIN.  ...    	--.ir"_-r:r--	.. 	MAX...
  NUM	DBS	OBS	_ .10	30      SD	7.0	?0_	«5_	96	97	98	9.9.	Q_S_
_005	236	.011. .  ...01.6..__..Q2.1	,_0_2_«	.0.3.0.	._0.42	._OA8	...049.._..0^9	..05.6.	..0.5.6	f.O72	
                      HIGH READINGS   	P.ERC.ENJ	ARITH	SJD	G.EO	GEO	
                  	(_2 )	(.3 )_	A C JU AL	ME A N_	O.EV	ME AN	DEV	
                      .. 060	..05.8.	..	64.^8	.02.1	..Q JJ).	• 02 5	1, 43.7	

-------
                                                 STATISTICAL AMALYS1S                                             PAGE     25
   	COUNTY  ..   ..	..  ._ _  _  .      .	STATE-AREA: 01..-03EQ	  _ _.	PERIOD:.   76/08/C4  TO.76/12/31

       ALAOAfA                   PROJECT:  POPULATION-ORIENTED  SURV.            METHOD:    INSTRUMENTAL

   .	   DOWNTOWN  BIRMINGHAM, JEFFERSON  CO.  (010380012G01)             		ANALYSIS: NOND1SPERS I VE  INFRA-RED
   £Ri_CAHflON .MONOXIDE _. _  ...         	SAMPLING ..-INTER VAL :... . 01.HOURS	UNITS:     PARTS. PER MILLION. (VOL/VOL)
                          PRIMARY  STANDARD(S)            —  .                         SECONDARY  STANDARD(S)
 i
O        10,000 UG/M3  (0 C)     9  PPM  8  HR.  MAX,  1  PER YR.        40,000 UG/M3  (0  C)    35  PPM  1 HR.  MAX,  1  PER YR.
                                                     .   ..   PERCENTILES...  . .. .  _  . .
   SITE        Ml !->          f'.II*                        ... 	  .  	.-—.-.__   . .                 -            MAX
        .  _.   OBS  ..      .035      10    ..  30 .  ..50	70.		_9.0	95	96   .   97      93...   99     05S


                3,356        .0      .6 _ .  1.0  .  .1.5	2.2	<>.3_  ,__5..7  _.6.3_    7.0     7..9 _...?.9    25.1

         .               HIGH READINGS       PERCENT  	ARITH   .... ...S.TD   	GEO          GF.O
              	._  (2)       (3)		ACTUAL	MEAN	DEV	MEAN    .  ._DEV_		


                        1.5.2	U.3 	93.2	2.94	1.8_A	1.51        .2.19	

-------
                                                 STATISTICAL  ANALYSIS                                               PAGE
       .-COUMTY	_   	.._ 	 STATE.-AREA:.._01-G380	PERIOD:	76/ 037 01_TO_76/_1A/30 __

        ALABAMA                   PROJECT:  POPULATION-ORIENTED SURV.             METHOD:    INSTRUMENTAL
          DOWNTOWN BIRMINGHAM, JEFFERSON CO. .( 01 03800.1 2G 0 1 >  - 	   	._. ANALYSIS:				

   '.£3_L_ WIND .SPEED	 	.	.	SAMPLING __LNJ.ERV_AL.:	01 ..HOURS	UNITS.:	MILES.. P.ER_.HOUR_
                                         . . .              ...  PERCENTILES      ... -	_    .        .... 		 	
    SITE       NUM          MJN        	     	 		  .... ..:	_....           ._ _ 	   _.. MAX
.^   _.HUP	..  DOS   ..     .  COS _.  10	30..	 _ 50	70	90	 95 	96	 97  ..  .93 	99	 DBS

i
          - --- .-.6,138	.0..  ....1.0	2.5.-.  3.5	5 ..0	.Z..O...  £.5	8.5	9.0    1C.O  ..10.0     17.5
                         HIGH  READINGS..  ..-.PERCENT	 ARITH	  STD  	GEO           GEO   	  .   . ..
                          (2).. ._  ..  .(3)	 ACTUAL..		MEAN		 DEV	MEAN	 	  DEV... 	  . ._
                        .16.5...  .... 16.5	76.6	3..S9.	2.42	2.9.1_  .  . _. 2.63

-------
                                                    STATISTICAL ANALYSIS                                              PAGE     28
       	COUNTY                                    STATE-AREA:  01-0380   .           PERIOD:    76/01/01  TO 76/11/3o

          ALADAXA                    PROJECT:  POPULAT I ON-0R1ENTED  SURV.             METHOD:    INSTRUMENTAL


      .  _   DO. MO «-N BIRMINGHAM,JEFFERSON  CO.. (01038U012G01)	         .     ANALYSIS:    _       . ..

      '£': UIND  DIRECTION                     	SAMPLING _ INTERVAL :.     01  HOURS     UNITS:   .  ,D EGR E E.S. _(COMPASS)
      —  .                                  _  .   __  		PERCENT I LES_    .   ....     _  .„.     	.
•f    SITE       MUM          MN         _         _____		_               ..   .  .       .....      MAX
7"1    -^UM  ....   ODS   _. .   _.OBS      1 0 _._.._ 30 . _... 50'	70	90  	 95   _._96	 .97	98.,. ...99...  . OBS

ro

      ..012......    6,035        5.   .35	90.   ..175..... 260.	33.5.._ ..350.    _?50. ...355.	355..   355.  _  375
                           HIGH READINGS	 _ PERCENT	ARIT.H_.	  .  STD .  .     GEO      	GEO
                            (2)       ( 3) ..._._ .ACTUAL 	 MEAN	  ... D E V ...... M E AN   .   	DEV
                           360..      360.	7S..3.-	1.80.59	JM0...98 	 131.31  .. 	2.59.	

-------
                                             STATISTICAL ANALYSIS                                            PAGE     29
    .COUNTY,  ....        		STATE-AREA:_01_-.0380	PERIOD:.   76/01 /01_..T.O .76yQ9/.21

     ALABAMA                  PftOJICT: POPULATION-ORIENTED SURV.            METHOD:    TAPE SAMPLER
 	.   DOJNTOwN OIRMlNGhAM,J£FFfcRSON CO.  (010380012G01) .  _  .		ANALYSIS:  TRANSM ITTANCE  .  -

 E_R:_SOILING. INDEX  (COH/1000LF)     .. ..  . SAMPLING . INTERVAL :._ .  02..HOURS..  .UNITS:    .COHS/ 1 000 . LINEAR. FEET.
 	             -                     .                  PERCENTILES   .   ..'	 ...           	
 SITE..  .  MUM          KIN                .       .    _  ._	-_      	.             . _  	  MAX
_Nl/*	085          CDS     10   	  30      5.0. 	70	90.    95	96	 97      98  .....99	  DBS.


_D_12	   3(10<,        .?     .1  ...  ..3      .5   .. ..£...	1.7     2.4	2.6.   3.0     3.2  .3.2..   6.9

	 .           HIGH READINGS       PERCENT     AR1TH	   . ST0    _.GEO          GEO        .  ..
	.			.. .    (Z>      (3)  .	ACTUAI		 MEAN	  DEV_		MEAN. ...    DEV  		  ...
   	  5.9      5.6	98.0	.76	..7.7	..49	2.63

-------
                                            STATISTICAL ANALYSIS                                            PAGE     31
 	COUNTY   ..  		      .       	STATE-AREA: 01.-0380	  --  .--PERIOD:    76/01/01  TO 76/12/30..  .
     ALABAMA                  PROJECT:  POPULATION-ORIENTED SURV.            METHOD:    GAS  BUBBLER
       DOl.tJTO»-N  BIRMINGHAM, JEfFERSON. CO.  ( 0 1 033 00 1 2G 01 ) -	   ... -  	ANALYSIS:  WEST-GAEKE SULFAMIC  ACID
 ER:.SULf UR..DJ.OXIDE		  .  	S AKPL ING_INT.Eft V AL:	DAILY	UNITS:	PAR T S_P E.R__M I LLl ON  (VOL/VOL)
               _      PRIMARY STANDARD(S)     ..    -  	_     .                 SECONDARY  STANDARD(S)

                                                                   13CO UG/H3 (0 C)   .5   PPM  3 HR.  "AX,  1 PER YR

                                               	 PERCENTILES
jITE      NUH          MN                   ..  . 	   	•	                                    KA.X
_NU1..    ..CDS	   ..  OBS... _ . 10 - .. ._ 30     .50	70 	90.  .   95      96      97.     98     99      OL-S

 O12.__	216.__    .000   .001 _..001... .002	.003	. 004 .. . . 004 ._ ..005 .   .005  __.005	.005     .020
                    HIGH  READINGS  .  .. PERCENT	_ARII.H.. ...    STD     .  GEO         .GEO..
                     (2)   	(3)	......ACTUAL...	__M.EAN _... 	   OEV... .    MEAN      _  _DEV
                    .006  ..  ,.006	59.3	.OQ2	 .002  _ .    .O02._ __ 1.857

-------
                                                STATISTICAL ANALYSIS                                            PAGE     32
        COUNTY _                   	   .STA.Te-AREA: .Q1-OL380 __.!._._	  PERIOD: .. 76/01/01.TO 76/12/30    	_.
        ALABAMA                  PROJECT:  POPULATION-ORIENTED  SURV.             METHOD:   GAS BUBBLER
          DOWNTOWN  BIRMINGHAM,JEFFERSON  CO. .. < 01 33&001 2G 01 ) .  ...	   ANALYSIS: NASN.SODIUM ARSENITE       _ _ .
    ER:  NITROGEN .DIOXIDE   ..  .._ 	S AMPL IN.G_INT£R VAL :.	DAILY.	UMTS:   . PARTS  PER. MILLION  ( VOL / VOL ) __.
>           .             PRIMARY STANDARD(S)	   	 _        . _  _    	     SECONDARY_STANDARD(S)
i	_  _	        _
i
en            100 UG/M3  (25 C) .05 PPM  ANNUAL ARITHMETIC MEAN          100  UG/M3  (25 C) .05 PPM  ANNUAL ARITHMETIC  MEAN
                                 	   	... 	PERCENTILES	 	         ...„.  _.   .
    SITE	KUM ._       l-'lii  	.r.---rrr-rr.r	   ...	    _ ..  MAX
    _NUf	OBS	  .. OBS	10	30	5.0	70	90	95	96  .._??	98..._ .. 99   .  OBS _ . ..

    .012	22L  .   .011_	.017	.022.	..030	.037.......049	.0.63	.065  _..06.9	.069... .069	 .078
      	  ..   HIGH READINGS	PERCEN.T	ARITH		S.TLD	GEO    	GEO		
    	(2)	(_3)	A.CI.UA.I.	MEAN.	DE.V	MEAN	DFV	
              	.077	..074	60...7	..032	..O.U	..02.9	1.520	

-------
                                             STATISTICAL ANALYSIS                                            PAGE
  ._.COUNTY          . ..     .                ...STATE-AREA: 01-0350       ..  	PERIOD:    76/01/01 T0_76/06/30
    ALABAMA                   PROJECT: POPULATION-ORIENTED  SURV.            METHOD:    GAS  BUBBLER
 	  EAST  THOMAS B IRPINCHAK,JEFFERSON  CO.  ( 01 0360019G01 )   	._.	 ANALYSIS:  W E S T - G A E K E . S UL F AM I c ACID

 £R:_SULFUR.DIOXIDE.	_..            _.  _S AMPL I NG_.INTER VAL :	DAILY	UNITS:     PARTS PER. M 1 LLl ON_ ( VOL / VOL >
                  _  .PRIMARY  STANDARDS.)  	 	   .  .  	   SECONDARY  STANDARD(S)  .  	


                                                                    1300  UG/N3 CO C)   .5   PPM   3  HR.  MAX,  1  PER YR
                                     ._..  _..		 PERCENTILES	.               ... 	
 i'U      NUM    ..   .  WIN   .      .. 		 .  	----------_"-	          .                MAX
 -H«      CDS _.  .      OBS      10    ....30  .....50	70	90   _ 95      96     97      98 	  99      OfcS


 -51» 	   	 38... _ ... .001    .001    .002  _.003	. 006_.__. .01 0	.0.13.	.O.U.   .015    .017. .  ..017_  ,.017

  ...  ..  .  	  _...HIGH READINGS  	PERCENT	ARITH_  	S.T D ~__Z- .."I G E 0          GEO
		  ..	 	(2)    ..  (3)   _    ACTUAL	MEAN	DEV._    	MEAN         DEV
                   ..017	 01.5. .._  .  4S..6_.	.005	.004.   .._  .003       2.385

-------
                                            STATISTICAL  ANALYSIS                                             PAGE     35
   -COUNTY		__	_.STATErAREA:..C.1-0380	PERIOD:   .76/01/01_TO_.7.6/J 0/30	  __

    ALABAMA                  PROJECT:  POPULATION-ORIENTED  SURV.            METHOD:   GAS  BUBBLER
	EAST. THOMAS B1RKINGHAM,JEFFERSON.CO.  ( 0103C001 9G01J			ANALYSIS: NASN..SODIUM ARSENITE
ER_:_HIJROGEN_D10XJDE			SAHPLJNG_INTER.VALJ	DAIJJf.	UNITS.:  . _. PAR15_PER_ MlLUON_.(.VOL/ VOLJ.
                      PklMARY  STANDARD(S)..         _	 _.			SECONDARY  STANDARD (S)	
          100 UG/M3 (25 C)  .05  PPM ANNUAL  ARITHMETIC MEAN          100'UG/M3  (25 C) .05  PPM ANNUAL  ARITHMETIC  MEAN


                                      ' .  .  _ 	  ...    .PERCENTILES ..... ...
SITE       HUM         r.IN       	_ ._ ._ .1	  _. ..._r--r--------	           	      MAX
.NUM.	  06S	 . ..ObS	  10-	30_	 .50.	7.0	9_(L	.9.5..  	96      97__. ,.98	9.9	  . 03S


.019	,_	.158	_.013_... .020 ......030	.036..	,04A	..fl5.9..__ .066.  .0.70    .071 ........074	«C7*     .086    _ .  ....

	.....     .    HIGH  READINGS .    .  PERCENT	AU.I.TH	=_ S.TJ>.. _   	 .GEO      	  .CEO		  _
  	  ..   ._...( 2.) _,	 (3).		A.C.TUAL	ME.AN_	D.EV.		.MEAN	._ D.i V	 	  		
              	.085.	.080	5 2.1	..038	..015	.035	1. * 7,6.

-------
                                                STATISTICAL ANAL-SIS                                             PAGE
    	COUNT*   	                     .STATE-AREA:. 01-25 '0	PERIOD:    76/01/01.TO 76/12/31



                                 PROJECT: POPULATION-ORIENTED  S - R V .            METHOD:    INSTRUMENTAL
         HUFFMAN,   JEFFERSON  CO  ( 01 CS 7 0002 GO 1 )  .....		ANALYSIS: C HEM I LUM IN E S C ENC E



   E.R:_OZON£ 			  _       .   .    . .SAMPLING .INTERVAL:	Q1..HOURS-	UNITS:    .PARTS. PER MILLION  (VOL/VOL).
                         PK1MAKY  STANDARD(S)             _..          .           _  SECONDARY STANDARD(S).
—.        160 UG/«3  (25 C)  .6PPM  1  HR. MAX,  1  PER YEAR              NONE
co
                                                       ...  PERC ENTILES-	 ..              .        . . -

   SITE     .  NUrl          MIN           .       .    	 __    ...---	. 	  ...                _           MAX

   -NUM	09S	..OBS    .10	30 	50 	70	90	95	96	97  .   .98 ......_ 99.	 OL'S._. ...





   -5C2	.	8,066  .   .000    .005._._.005	,017._._.03l	053	.065	.068	.072    .076._.076	 .128	
                       HIGH READINGS. . .._. PERCENT	 ARITH.    ...  STD.  	GEO          GEO

                        (2)       (3)	ACTUAL	MEAN	 DEV	MEAN._     _ DEV
                     ....127.    ..123	9.2....1	..023.	.020	. 0.15.	2.594	

-------
                                               STATISTICAL  ANALYSIS                                            PAGE    67
      _.CCUN.TY .  .                             STATErAREA:__01.r.1300	  	PERI 00 :._ 76/01/01  TO..76/09/02	

        ALABAMA                  PROJECT: SOURCE-ORIENTED  AMBIENT SURV.        METHOD:    INSTRUMENTAL

         .FAIRFIELD.JEFFER1.ON  CO ( 0 1 1 3 00003G02 )  ..              		  ANALYSIS: NONDJSP£RS IVE INFRA-RED
       _.CARBO..N_MONOX1DE	      	_  SAMPLING. INTERVAL:	QJL-HOURS	UNITS:. ....PARTS  P£.R_ MI LLION _( VOL / VOL )
                          PRIMARY  STANDARD(S)                  	.. .           SECONDARY STANDARD(S)
^        10,000 UG/M3  (&  C)     9 PPM  8 HR. MAX,  1  PER  YR.        40,000  UG/M3 (0 C)   35  PPM   1  HR. MAX,  1  PER  YR,

vo
      	                                   -            PERCENTILES
     ITE	._  N'UM          M1N                   _ .  .. ._	   -------—.-  . ...                         .      MAX
     '•'UK	03S..     .    COS      10 .    30.. 	30	70	9.0	95		 96. ...  97   _  98   . ,99...._	OES



     '0.3	5,123        .0     1."    1.3   ...1.6....  1.9	2 . 5._	2.8  .. .3.0.  .3.1    3.3	3.3     5.7
                        HIGH  READINGS      PERCENT  _ .  ARITH  	 _STD   . ..   GEO     .. .  GEO
                         (2)       (3)      ACTUAL       MEAN        DEV        MEAN        DEV
                                  5.5   ...  87.1      .  . 1.69 	.63	  1.57   . ... .1.49

-------
                                                STATISTICAL  AHALYSIS
                                                                                      PAGE
                                                                                      63
     	COUNTr                              .    STATE-AREA:  01-1300



        ALABAMA                  PROJECT:  SOURCE-OH1EHTED  AMBIENT SURV.



     	. M1RMELD, JEF.FER10N CO  ( 011 300003G02)        	_ 	  _ ....



    ER;_ SULFU«_IHOXIDE	            .  .. SAMPL I NG _ INTERVAL :.__  01  HOURS
                                                     .PERIOD:    76/01/01  TO.76/,1 2/31   .  . _.


                                                      METHOD:    INSTRUMENTAL


                                                      ANALYSIS:  COULOMETRIC    	

                                                      UNITS:     PARTS. PER M I LL ION . ( VOL / VOL ).
                          PRIMARY  STAHDARD(S)	
                                             	SECOND ARY__STANDARD.(S).. .
                                                                        1300 UG/M3 (0  C)   .5  PPM   3  HR.  MAX,  1  PER YR,
 i
ro
o
   _SIT£ _
          	OdS
OBS
     	_ 	PERCENTILES     	_..   		


1 0 T7_ .30 7 77. 50     70      90 ~_ 7 9.5      9697  .71 "98 7'_~.~Ij
                                MAX

                           	OBS
.000    .005	..005	..00.5	..01.2	...025... .040	.048 _... 05S._  ..065..  .06.5.
                                                                                                               .250
                        HIGH READINGS

                       . .(2)  	(.3).
              	PERCENT,
              	A.CTUAL._
                                _STD	
                 	M.EAN,	PEV __
_.GE.O..  	  GEO	

 M.E4N.	 ... ... DEV	
                                 .207	90..0	.OJ.3	.017	.00?.  .  _2.127_	

-------
                                               STATISTICAL  ANALYSIS
                                                                                                 PAGE
                                                                                             69
   	COUN1Y .                         ... 	STATE-AREA:_01-.1300	PERIOD:    76/01/01  TO 76/12/31
        ALABAMA                  PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.        METHOD:    INSTRUMENTAL
   	   FAI9F1ELD, JEFFEHSON CO ( 01 1 3 OOOC3G02 )      . ._.            ...     _. .  . AN AL Y SI S :  CHEM ILUMINESCENCE
   U?:_OZONt.,                          	SAMPLING..1NT£RVAL: .._  _01_ HOURS..   UNITS:     PARTS PER  MILLION (VOL/VOL)
                          PRIMARY STANDARDCS)
                                                                    SECONDA-RY STANDARD(S)
i
ro
          160 UG/M3  (25  C)  .fiPPM 1  HR. MAX, 1 PER  YEAR
                                                      NONE
                                                          PERCENTILES
   .SITE.
NUH
OBS
MN
oas
                                   .10
..30.
50	70 	90 .... . ..95..
..96
      	  MAX
97   .. .96	99	 OBS
   -JB.03.
  .5,187
.000   .005	.005. _,...Q1.2	.023	..042.... ..05.4...  .057  ..061    .066	..066	 .126.
                        HIGH READINGS
                         (2)      (3)
                             PERCENT	ARI.TH
                             ACTUAL       MEAN
                                          STD
                                          DEV
                                     GEO
                                     MEAN
                                          GEO
                                          DEV
                        .119
                   .119   	59.2..
                              ...018 	.0.1_7_
                                       .012  .
                                         2.438

-------
                                                STATISTICAL ANALYSIS                                              PAGE     71
      .COUNTY...  	     .             	 ....STATfc-ABEA:  01-1300	PERIOD:    76/0 1 / 01 _TO._76/.1 1 / 3 0.



       ALABAMA                   PROJECT:  SOURCE-ORIENTED AMBIENT SURV.        METHOD:    INSTRUMENTAL
   	 fAIRFIfLD.JEfFERSON CO (011300003G02).-. .  . -. .  _   _   	 . _ .  ... . ...-ANALYSIS:



   ERJ_WIND DIRECTION                	_S AMPLJWG. JNTE R V AL :	  0.1 -HOURS.... —-UN ITS :_ - D E GR E ES _( C OMP ASS )
                  -                                        PERCENTILES             .....               -   -

 ,  -SITE      KUM   .        ,MN   .        .                ,     --T-. -------     .   .  .  ____             ..       .. MAX
        . .__. OBS  .         03S     10 _____ 30   _ 50 ______ 70 __ _90 _____ 95 ______ 96 ______ 97     .98:  ____ 99   __03S.
r\j  ---      ---           ---     -_      __     __      __      __     __      __      __      __      __      ___
ro


  -OC3.        7,fi19        5.     35. ._  1.10.    170. -.230. ____ 335.__350.  _355.  .._355.,..  360.  -..360. _   1180.


    —  .                HIGH  HEADINGS .  -.  PERCENT  ...... ARITH _____    STD        GEO          GEO

    ---  .     . .        (2)       (3) __________ ACTUAL ....... _____ MEAN _______   . D E V _ .. ....  MEAN   ..... __D£V._..  .._ _ ____  .  .
                      1100.      770.	9.7.5	17 8..0.1		1C8.19.__  132.71  .   ..  ,2.50_._

-------
                                                 STATISTICAL  ANALYSIS                                             F>AG£    72
    	COUNTY            .                     .STATE-AREA:  01-1300  .    	..PERIOD:    76/01/01  TO  76/09/21.

         ALABAMA                  PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.        f'.ETHOD:    TAPE SAMPLER

    	.   FAIRFIELOt JEFFERSON CO (01 13C0003G02) .     ..  	   ~.  '..  ...""ANALYSIS:  TRANSMITTANCE

    ER;  SOILING .INDEX  (COH/ 1 CPCLf)      ..... SAMPLING  INTERVAL:. .   02.HOURS   . UNITS:     COHS/1000  LINEAR FEET
    	  		 ...                   	PERCENT1LES  ._	...._.    		_
    .SITE  	 .NUM....      MIN         	rjr.Trr.--T.r-rr		   _.._MAX
T  _>HIK	__08S ......_..   OBS   	10	30.	50	70	.	90	95	96	97	  ?8_.._  .9.9	09S_.
i    ~"~       ~~~
ro
W  _"C3.  .._ ..3,131        .C      .1	.2	.4	.6	1.0	1 ..4	J.4	1.6     1.8.  _1.8__ 3.8
                         HIGH READINGS	PERCENT	A.RITH. ..   . STD  	GEO_._.. _ .    GEO
                          (2)       (3)	ACTUAL	.ME.AN__.	..OEV	MEAN	      DEV


                          3.4       3.3 ...	98..S	.5J	.4.3	..34..    .  3.00.

-------
                                             STATISTICAL ANALYSIS                                            PAGE     74.
   _COUNTY                                   STATE-AREA:..OT-1300             P E«10 0 :.  76/01/01  TO 76/12/10




    ALABAMA                   PROJECT: SOURCE-0R1ENTED AMBIENT SURV.        METHOD:   GAS  BUBBLER
   ... .FAIPfltLC, JEFFERSON  CO  
-------
                                                STATISTICAL  ANALYSIS                                            PAGE     75
   	COUNTY                               	STATE-AREA:., 0.1.-1300.	PERIOD:    76/01 701. ..TO..7.6/1 2/30
        ALABAMA                  PROJECT:  SOURCE-ORIENTED  AMBIENT SURV.        METHOD:    GAS  BUBBLER
   	..  FAIRFIELD.JEFFEPSON CO ( 011 300003G02)			_._.._..  	ANALYSIS: NASN  SODIUM ARSENITE
   .EJLl_MTROGt.V  DIOXIDE           ... _._  ._ SAMPLING -INTERVAL L	DAILY	UNITS:    PARTS  PER.MILLION  (VOL/VOL).
3>

l
                          PKIMARY STANDARD(S)             .... 	  . . ._ ._	 	  SECONDARY  STANDARD(S)
             100 UG/M3 (25 C) .05 PPf.  ANNUAL ARITHMETIC  MEAN          100  UG/M3 (25 C)  .05  PPM ANNUAL ARITHMETIC MEAN


                                                     .._  ..  PERCENTILES    .
   SITE       MK       .   KIN           .   	._  		-r.-r	.-	 .   .              -  .  	_MAX
   .-NUM..   . DOS      ...   OBS     10   ...30	5Q	70	90    ..95	96.   ... 97      98. .... 99	08S	


   _D03._..._      223.    ..008    .012    .016	.020	..024	.036. ... .047 .. _.049._  .055    .057 .  .057	.064

   	               HIGH READINGS       PERCENT	AR1TH   . .   STD      . GEO          GEO          	
   	_            (2)       (3)   .   .ACTUAL	MEAN ....     DEV  _    .MEAN.    .   DEV  ..    ._...._
                        .064      .060	62.6	.023	  __.011. _   ....020.	1.538

-------
                                               STATISTICAL  ANALYSIS                                            PAGE    117
        COUMY                                 SUTE-APEA:  01-21AO         	PERIOD:   _76/08 / 1 6. TO. 76/.1 1 / 30  _ 	
        ALABAMA                  PROJECT: FOPULATIOK-ORIENTED SURV.            METHOD:    INSTRUMENTAL
          LEEDS, JEFFERSON  CO  (01 2 UQ003G01 )   .       .                  __.._. ANALYSIS:
    £R:_WIND. SPEED.   ..	  ..           	SAMPLING . INTERVAL :	  01.. HOURS	UNITS: ..._KNOTS	 .  _	
 I
en
              	                                    .  PERCENTILES  _   .. _    .               . .
SITE	. .NUM 	 .  .   KIN                    ;.	   		   __                     __    IJJAX
-NU*	00S	   035     10   . ._ 30._  .._.50	70.   _ 90.._  .. 9.5 __ __ .96 . *_  ..97   __.~98 "!'„_99~___J OBS_

 003	  __2,361_	_.0.      0.  ... 1.	2.	4	6	7.	7	8	8	8.. . _  .55.
             .  .  HIGH  READINGS      PERCENT .__ ARITH       _.STD	 .  ..GEO           GEoT
	._ (2)       (3)   ,  ACTUAL_.	MEAN	  	DEV	..__MEAN.._"	_OEV..l	'.. _"	
                        1*.       13.       .91.9	  2.86	2.47.	1.«9.. 	4.72

-------
                                                STATISTICAL  ANALYSIS                                            PAGE    118
    	COUNTY                                  STATE-APEA:  01-214G     _"__"  J.__.~PE R100:    76/08/16 T0_76/11/30


        ALA2APA                  PROJECT:  POPULATION-ORIENTED  SURV.            METHOD:    INSTRUMENTAL


    	   LEEDS,JEFFE»SOf« CO ( 01 2 U 0 D03GC11)  7	 "  Y.I.71  .    .   '. '~~. ~. ~~ 7".~AN AL Y S I S :        """1777


    .EB:_WIND DIRECTION .                _  ....SAMPLING  INTERVAL:  	 01.HOURS	 UNITS:     DEGREES. (COMPASS)
>  -                                               	PERCENTILES... .	              _  „
1,  SITE      r,UH.  .      .flN .         	         	__.-		  ..	                       ,.,AX
^  _'*U'*. .  .   ORS      .    DBS      10  	 30   _  50	70 	  90. _.._ "5.  .__.?6 	.97      98 .  . ..99    .  06S



    .O.U3	      3,365       0.     35.    1?5.   175.._  275... _ 330... _  3*5.  .. .350.. . 35C.    355.  _355.    3AOO,

    	.    ..          HIGH READINGS 	   PERCENT_	ARITH	SJD.	GEO	   GEO '_'.'.  '_   _
    	_..     .    .     (2)       (3)._	.ACTUAL	MEAN.	DEV	MEAN. 		DEV	
                       1650.     1100.	92.1	185.68	.134.2?	133.67	2.66_.

-------
                                                 STATJSTICALANALYSIS                                             PAGE    11V
      — COUNTV             .          __		STATE-AREA:._01-2UO	PER I 00 : .. . 767 0 1 / 01  10^76/08731  _

         ALABAMA                  PROJECT: POPULATION-ORIENTED  SURV.            METHOD:    TAPE  SAMPLER

     	   LEEDS, JEFFERSON  CO  ( 01 2 UOU03GO 1 )             .        ..           ...... ANALYSIS: TRANSMITTANCE
    -£«:_. SOILING .INDEX (COH710COLF)	S AMPL I NG -1N.T E.RVAL.:	02 HOURS	UNITS:	COHS.7100C .LINEAR  f E £.T
3»                                         .              .. PERCENTILES.
L  -SITE  .  _   NUN         rlN.                     		T			       		  .  MAX
^ -_NU1	..  OBS,._   .    03S      10	30_ 	50	7.0	90	.95	96	97.	98	99	OBS
oo   	       	         	      —     —      __     __      —     __      __      __     __      —      	

          ... .    2,399        .0      .0	.1	.2	.4	.8	.9	1 .0 _ .._1 .2—.. 1.4	 1.4...    3.6

                        HIGH  READINGS  .    .PERCENT.	ARITH   ..    STD        GEO.  .„  ..._   GEO
            	          (2)        (3)_  	  ACTUAI	MEAN	.OEV_ _  	 MEAN  	0£V	  .  	


             	           3.6        3.2 . . ... .82.3	32   	  . . 35	.13.	5.7.1.  	

-------
                                              STATISTICAL  ANALYSIS
                                                                                                  PAGE   121
   	COUNTY_ . .           	...  .  STATt-AREA:_01-2140_


       ALABAMA                  PROJECT: POPULATION-ORIENTED  SURV.


   	LEEDS,JEFFEkSON  CO ( 012140J03G01) -   .          . ...
                                                                  PERIOD: ._76/01/01 TO  76/09/30


                                                                  METHOD:    GAS BUBBLER


                                                                  ANALYSIS:  WEST-GAEKE SULFAH1C ACID
   r.R:_SULFUR DIOXIDE
                          	SAMPLING,INTERVAL:	DAILY. 	__.UNJTS:.    PARTS PER MILLION (VOL/VOL>_
                         PRIMARY  STANDARD(S)
                                                                     SECONDARY STANDARD(S)
ro  	—
to
                                                                     1300 UG/K3  (0 C)   .5  PPM  3  HR.  MAX, 1 PER YR
                                                        .PERCENTILES
SITE
 NUM

.. OBS .....
                          KIN

                          OBS
                                                                                                        MAX
                                10	.30	_50	.70	90	95	96	9.7.	98 	99	OBS	
  _J)03	 	11.1..   .000   .001._... .001._._.001	.001	.001...... .C0.1	.001	.001 .  .001.   .001	.002


   	... ..           .  HIGH READINGS.  . . _. P ERC ENT ._.  _ _AR ITH   ...  .STD	.GEO.  	   GEO      	.

   	.  	   (2)      (3)	ACTUAL	MEAN_ _ .	 ._DEV	MEAN	. DEV   .		
   		 .001
                    .001	40.7 	.00.1	.fO.O	.001	 1.073

-------
                                                  STATISTICAL  ANALYSIS                                             PAGE    122
     _. ..COUNTY  ,                           	  STATE-AREA:  01-2T.Q    __ _	 PERIOD:    76/01/01  TO 76/10/30


         ALABAMA                   PROJECT: POPULATION-ORIENTED  SURV.            METHOD:    GAS  BUBBLER


       .-._  LEEDS, JEFFERSON CO ( 0 1 2 U0003 GO 1 >  .__.  _._._..       _     .	 ANALYSIS: NASN  SODIUM AHSENJTE


     £",-  MTROGEN .DIOXIDE                     S AMPL I NG _IN1E R V AL ;	DAILY	__..UNITS:     PARTS  PER MILLION (VOL/VOL.>_.
 i
CO
o
                           PRIMARY  STANDARD(S)       ...  .._             _. .   .. 	 SECONDARY  STANDARD(S)
              100 UG/H3  (25  C) .05  PPH ANNUAL ARITHMETIC MEAN          100 UG/M3  (25 C)  .05  PPM ANNUAL  ARITHMETIC MEAN



                                                          .  PERCENTILES       ~I '_   _~ '
   .ilTE	 _.  NUM         MIN                              		      _   	                        KAx

   _NfK	  OBS	.. .  OBS      10  ... . 3C   .   5C 	"_~70	" 9.0      95 7. II. _?6 1._ _97      98.^    99     OcS



   -90.3!	  .... 17i      .005   ..005 .._.010 _..  .01.1	. O.U	.021	.025.	.026	.026   .027   ..027  ..  .033


   	          HIGH  READINGS  	  P ERC ENT__IIH~AR I TH_ ,.~ _I  S T D _Z .ZUc
-------
                                                STATISTICAL  ANALYSIS                                           pAG£    191
        COUNTY. ..	  ..         _ .   ._ STATL-AREA:._.flt-3200	PERIOD:~- 76/Ol/-01-_IO_76/09/30. 	

        ALABAMA                  PROJECT:  POPULATION-ORIENTED  SURV.            METHOD:    GAS BUBBLER
    	TARRANT  CITY, JEFFERSON CO  (0132 00001G01 )           .   ...              ANALYSIS:  WEST-GAEKE  SULFAMIC ACID

    LR^_SULFUR  DIOXIDE _  .          .    	SAMPLING INTERVAL.:	DAILY	UNITS:	PARTS PER MILLION _
                          PKIKARY  STANDARD(S)         .      ._.._.              ...   SECONDARY STANOARD(S)
    		      		      	

•j-1                             '                                       1300 UG/M3  (0  C)   .5  PPM   3  MR. MAX, 1  PER  YR,
CO
                                                      .  ... PERCENTJLES_ .  	  .. .
    SITE       MUrt          M1N                         .   .....-—.	  		...     .                 MAX
    _NUH . .     CDS          CBS      10     30. 	 50 	70	.9.0	.95	96	97 ...  98 .     99   . DOS


    _C01. .      .   113     .000    .001    .001.  .OG1_.  .001	 .002.... .002	.003....003   .003-   .003    .003

    _..                  HIGH  READINGS.     PERCENT   	ARITH       STD   	GEO    .  .   GEO   .      .  .
                         (2)       (3>      ACTUAL .._	KEAN_ _	DEV   .	MEAN ......   DEV   _  .  .	..
                        .003 .  .   .003       41.4   	.001  ...  .._ .000	.001...  _  . 1.337  .   	

-------
                                                STATISTICAL  ANALYSIS                                           PA^E    192
    	COUNTY                                 STATE-AREA:  01-3200      _...   PERIOD:    76/01./01  TO 76/10/30    .    	

         ALABAMA                  PROJECT: POPULATION-ORIENTED SURV.            KETHOD:    GAS  BURDLER

    	  ...  T ARRANT  CITY,JEFFERSON CO.(013200001601)       _    __.       _  ..  .  ANALYSIS:  NASN SODIUM ARSEN1TE

    JE?.:._NITROG.EN DIOXIDE         _   	 _     SAKPL ING . INTER VAL :	DAILY	UNITS: 	  P ARTS_ PER _.M I LL ION (VOL/VOL)	
Ul
IN3
              _  .     .      PRIMARY STANDARD(S)	  .  _   .  _  _ ..	SECONDARY S T AN D A R D ( S > ...  . ._ . .	


              100 UG/M3  (25  C)  .05 PPM ANNUAL  ARITHMETIC MEAN          100  UG/H3 (25  C)  .05 PPM ANNUAL  ARITHMETIC  MEAN
                                        _. ..  ...  ._  	.PERCENTILES  ..	  _    		  ....
    _SITE_     MJM ...   ._   KIN       . 	•_	".7.---_--- ~~	   MAX	
    _MUM _._. .   DOS.  	    OBS  _.   10	30	50	70   	_9Q	95	9.6	97	98	_?9	OBS	


    _OC.1_. 	185	 .005	 .011 _ _.OH ._ ..017..	.023	.032_. ... .036	.038    .0^.6   .050    .050    .999
                         HIGH  READINGS  		PERCENT	ARJTH	STD	GEO	 GEO.
                         _ ( 2 )	( 3 )	A C TU A L	HE. AN	P E V	K E A_N	D E V
                    	.05.3  . 	.050	61.1	.J)25	_..07.3	.0.19	1_. 646.

-------
                APPENDIX A-2
PROPOSED ACTION FOR U. S. STEEL MODERNIZATION

-------
                     STEEL MILL MODERNIZATION

INTRODUCTION
                In the  simplest of terms, raw ingot production at any
integrated steel producing facility is dependent upon the production
of three commodities—namely, coke, pig iron (i.e., hot metal), and
steel.  The last fifteen years have seen significant advances in the
technology of making iron and steel.  In the early 1960's, the
typical primary production facilities associated with an integrated
steel  plant consisted  of batteries of coke ovens, in the 3 to 4 meter
range,  for the  production of coke; blast furnaces, whose burdens
consisted of large amounts of raw ore along with smaller amounts of
pellets, sized  ore and sinter, for the production of pig iron; and
open  hearth furnaces for the production of steel.  Today, coke ovens
are still the basic production tool for the manufacture of coke.
However, coal preparation and coke-making technology have been advanced
to make a better, lower sulfur fuel for the blast furnace.  In addition,
the size of new batteries has increased to the six to eight meter
range.  Blast furnace  feed materials have been changed from run-of-the-
mine  varieties  to closely sized, select ores, and to sinter and pellets
made  from less  suitable ores.  The use of these beneficiated burdens,
along  with higher blast temperatures and fuel injection, have resulted
in increased hot metal  production at significantly lower coke rates.
Steel making technology has changed from one dominated by open-hearth
technology to one dominated by basic oxygen and electric arc furnaces.
Two hundred ton heats  which formerly took 5 to 10 hours to produce in
the open hearth shop are now produced in 30 to 40 minutes by basic
oxygen  furnaces.
                In the  late 1960's, U.  S. Steel  operated 7 coke batteries,
6 blast furnaces, and  17 open hearth furnaces in their Fairfield-Ensley
complex.  Except for blast furnace top gases, the emissions associated
with these processes were esentially uncontrolled.  This resulted in
yearly emissions in the range of 63,069 tons per year (see Appendix A-2.1)
The pre-1972 Fairfield-Ensley complex breakdown is given in Table 1.
                               A-2-1

-------
                                Table  1
                   Pre-1972  Fairfield-Ensley  Complex
                         Production  Breakdown


  I.   Coke  Production   (all  coke produced  at  Fairfield)

      Battery 23                  264,000 tons/year
      Battery 24                  264,000 tons/year
      Battery £5                  406,000 tons/year
      Battery 26                  406,000 tons/year
      Battery $7                  380,000 tons/year
      Battery 28                  380,000 tons/year
      Battery #9                  156,000 tons/year

                    Total        2,256,000 tons/year

 II.   Iron  Production  and Coke  Consumption

      A.   Fairfield
                            Iron Production  (tons/year) Coke Rate (Ibs/ton)
      25  Furnace                  515,500                  1,095
      #6  Furnace                  515,500                  1,140
      27  Furnace                  704,600                  1,124

      Total  Iron Produced =  1,735,600  tons/year
      Total  Coke Consumed =   972,409  tons/year

      B.   Ensley

                           Iron Production (tons/year) Coke Rate (Ibs/ton)
      21  Furnace                  399,400                 1,295
      #2  Furnace                  418,600                 1,295
      23  Furnace                  382,100                 1,295

      Total  Iron Produced =  1,200,100  tons/year
      Total  Coke Consumed =   777,100  tons/year

      C.   Fairfield-Ensley Complex

          Iron Production -  2,935,700  tons/year
          Coke Consumption - 1,749,500 tons/year

III.   Steel  Production,  Iron and Scrap Consumption

      A.   Fairfield (12  open hearths)
          Steel  Production = 2,700,000 tons/year
          Iron Consumption = 1,927,800 tons/year
          Scrap  Consumption   =  1,061,100 tons/year

      R.   Ensley (5 open hearths)
          Steel  Production = 800,000 tons/year
          Iron Consumption = 634,800 tons/year
         Scrap  Consumption  = 293,600  tons/year

                              A-2-2

-------
  Table 1  (cont'd)


      C.  Fairfield-Ensley Complex
          Steel Production = 3,500,000 tons/year
          Iron Consumption = 2,562,600 tons/year
          Scrap Consumption = 1,354,700 tons/year

 IV.  Rolling Mill Capacity

      A.  Fairfield
          46" mill = 1,477,000 tons/year
          45" mill =   671,000 tons/year
          Total      2,148,000 tons/year

      B.  Ens ley
          44" mill = 852,000 tons/year

      C.  Fairfield-Ensley Complex
          rolling mill capacity = 3,000,000 tons/year

  V.  Reason for Difference in Coke Production and Consumption

      The difference between coke production and consumption (2,256,000 tons/
      year - 1,749,500 tons/year = 506,500 tons/year) is explained by the
      fact that in the pre-1972 years, approximately a half a million tons
      of coke per year was shipped from Fairfield to U.  S. Steel's South
      Works (Chicago, Illinois).

 VI.  Reason for Difference in Iron Production and Consumption

      The difference between iron production and consumption (2,935,700
      tons/year - 2,562,600 tons/year = 373,100 tons/year) is consumed
      by a foundry which is operated at the Fairfield works.

VII.  Reason for Difference in Steel Production and Rolling Mill  Capacity

      The difference between steel production and rolling mill capacity
      C3,500,000 tons/year - 3,000,000 tons/year = 500,000 tons/year) is
      due to Toss of tonnage in processing the raw steel into a marketable
      product.
                                 A-2-3

-------
With the advent of pollution control requirements, U. S. Steel
decided not to put control devices on their open hearths, but rather
to modernize the Fairfield-Ensley complex and switch their steel
production from 17 uncontrolled open hearths to 3 very well controlled
Q-BOP furnaces.
               Prior to 1971, U. S.  Steel had the capability of pro-
ducing 2.7 million tons of steel at their Fairfield open hearth shop
and 0.8 million tons of steel at their Ensley open hearth shop.  Their
modernization plan called for no increase in steel production for the
Fairfield-Ensley complex and thus, rolling mill  capacity at the complex
has, and will in the near future, remain constant at approximately
3.0 million tons per year.  However, the switch in steel production from
open hearth technology to Q-BOP technology necessitated major changes
in other primary production facilities.
               Open hearth technology is characterized by great flexi-
bility in the percentage of hot metal which can be used in the process.
Anywhere from 30 percent to 80 percent of the metallic charge in an
open hearth will  consist of hot metal with the remainder being scrap.
However, basic oxygen furnaces by their very nature are high hot metal
consumers.  These furnaces need at least 65 percent or more of their
metallic charge to consist of hot metal  (the Fairfield Q-BOP1s require
approximately 85 percent of their metallic charge to be hot metal).
Thus, in order to produce an equivalent amount of steel  from Q-BOP
technology which was previously produced by open hearth technology, an
additional quantity of hot metal is  needed.   U.  S. Steel plans to obtain
the additional  hot metal  needed by replacing their three existing
Ensley blast furnaces (yearly production equal  to approximately 1.2
million tons/year)  with a new 4,949  tons/day (1.803 million tons/year)
furnace and by improving the burdens and thereby increasing production
on two of their three existing Fairfield blast furnaces.  This will
result in increasing their hot metal  production capability from 2,935,700
(pre-1972 capability) to  3,500,000 (capability at the completion of
their present modernization program).
                               A-2-4

-------
                In order  to produce more hot metal it is generally
necessary  to  have more coke.  The only manner in which more hot metal
can be  produced without  requiring more coke is to improve the blast
furnace coke  rate.  The  coke rate improvement anticipated by U. S. Steel,
due to  the construction  of their new blast furnace and improvement of
the burdens on  5, 6, and 7 blast furnaces, will allow them to produce
the additional  hot metal needed without increasing coke plant production.
However, the  deteriorating condition of the older coke batteries at
Fairfield  (batteries 3,  4, 7, and 8) required that a new six meter
battery of coke ovens be constructed in order to maintain the coke plant
production at near its present rate.
                The switch from open hearth technology to Q-BOP technology
was started in  1972 with the start of construction of the first two
Q-BOP vessels at Fairfield.  The Q-BOP's at Fairfield are housed by the
same building structure  which formerly contained the 12 open hearth
furnaces.   By mid-1972,  construction of the two Q-BOP vessels had
progressed to the point  where it was necessary to dismantle three of the
open hearth furnaces to  make room for the Q-BOP vessels.   The Toss of the
three open hearth furnaces had the result of reducing steelmaking
capability at Fairfield.  For example, yearly production for the Ensley-
Fairfield  complex was only about 3.0 million tons in 1972 versus
approximately 3.3 million tons in 1970.   This reduced steelmaking capa-
bility  continued during  1973 and 1974, and will  continue to some extent
until  the  completion of  the modernization program.   In August of 1974,
the first  of  the two Q-BOP vessels was put into operation.   In
September, the  second vessel  was put into operation.  Throughout the fall
of 1974 and into 1975,  Q-BOP production  continued to increase as start-
up problems were solved.   Correspondingly, open hearth furnaces at
Fairfield were phased out of operation.   The last Fairfield open hearth
furnaces were phased out of operation in March of 1975.
                              A-2-5

-------
               To EPA's knowledge, the two Q-BOP furnaces and the  then
existing iron and coke making facilities were thought to be adequate to
allow U. S. Steel to produce at a production rate sufficient to allow
the closing of not only the 12 Fairfield open hearth furnaces, but also
the 5 Ensley open hearth furnaces.  However, in early 1975, U. S. Steel
met with EPA and indicated that they thought that it was understood by
all parties that the two Q-BOP vessles were only designed to replace
the Fairfield steelmaking capability.  U. S. Steel  stated that they had
not previously committed themselves to a course of action for Ensley
and only now were they willing to make such a commitment—the commitment
being that they would replace Ensley's production capability by building
a  third Q-BOP vessel at Fairfield--but that this course of action would
necessitate the building of a new blast furnace and coke battery.  U. S.
Steel further noted that such a commitment could not possibly have been
given in 1972 because Q-BOP technology was new technology and it was
necessary to insure that the first two vessels produced up to expecta-
tion before further commitments could be made.  In  addition, U.  S.  Steel
indicated that this modernization problem would not be completed until
late 1977, and it would be necessary to operate the Ensley open hearths
until the completion of the program.
               U. S. Steel's revelations resulted in a series of meetings
and conferences which were terminated by the signing of a consent
agreement between U. S. Steel  and EPA.  The consent agreement allowed the
operation of the Ensley open hearths  at reduced production rates until
June 30, 1976.   It should be noted that although not specifically stated
in the consent agreement, it was understood by all  parties that the
phasing out of the Ensley open hearths would be accompanied by the
continuation of the modernization program.

New Source Construction in Non-Attainment AQCR's
               Headquarters has just  recently (January 16, 1976) issued
a draft policy concerning new source  construction in non-attainment
AQCR's.   This policy basically states that:
                               A-2-6

-------
                1.   BACT must  be  employed on all  such  new  sources
                    constructed.
                2.   Emission reductions equivalent  to  or greater than
                    the emissions associated with any  new  facilities
                    must be accomplished prior to the  start-up of any
                    such facilities.  These emissions  reductions will
                    normally be the responsibility  of  the  facility
                    which  has  requested permission  to  construct a new
                    source.  The  emission reductions or trade-offs
                    will generally be accomplished  by  upgrading RACT on
                    existing processes at the facility to  BACT.
                Region IV  would like to discuss each of these points as
 it  relates  to  the proposed modernization of U. S.  Steel's Fairfield-
 Ensley  complex.
                The  Region certainly agrees that BACT  should be employed
 on  all  new  facilities constructed in non-attainment AQCR's.  Appendix
 A-2.2 indicates what type of  control equipment U.  S.  Steel has proposed
 for its  new facilities and the emissions which will result.  It is
 interesting to  note that  U. S. Steel has proposed  no  control equipment
 for the  blast  furnace cast house and blast furnace material loadings.
 In  addition, less than BACT has been proposed for  Q-BOP fugitive
 emissions,  coke battery quenching, and coke battery underfiring stacks.
                In regard  to trade-offs, the Region understands the
 philosophy  imparted in the draft policy but believes caution is necessary
 when applying that  policy.  When compliance schedules under the original
 SIP  called  for achieving  compliance by phasing out an uncontrolled
 production  technology and replacing it with a controlled  alternative
 production  technology, special problems can be encountered.  If the
 construction of the new or replacement technology  extends past the July,
 1975 attainment date and  if that construction is to take  place in a non-
attainment AQCR, then an  unusual  set of circumstances can occur.
Appendix A-2.2 shows the  emissions which will  result  (2,348 tons/yr) from
                              A-2-7

-------
the construction of a third Q-BOP  vessel,  a  new blast  furnace,  and a new
coke battery at Fairfield.   Strict interpretation  of the  new draft policy
would require that U. S.  Steel  further reduce  emissions by  at least
2,348 tons/yr from their  present operations  before the new  sources could
be put into operation [actually, only a reduction  of 827  tons/yr would
be required if BACT were  applied on all  emission points associated with
the new sources (see Appendix A-2.3)].   The  Region feels  that requiring
trade-offs for those new  sources is most unfair for the following reasons:
               1.   Table  1  illustrates the primary facilities'  production
                   mode for the Fairfield-Ensely complex  prior  to 1972,
                   while  Table  2 shows what  the production  capabilities
                   will be  at the  conclusion of the modernization program.
                   Correspondingly, Appendix A-2.1  shows  the emissions
                   which  were generated by these facilities  prior to 1972
                   and Appendix A-2.4 shows  those  which will  be generated
                   at the conclusion of the  modernization.   Note that the
                   modernization program will  reduce the  pre-1972 emission
                   level  by approximately  88.8 percent.   The modernization
                   program  is nothing more than a  compliance schedule with
                   an extended  time frame  necessitated by the construction
                   of replacement  technology.   If  U. S. Steel had needed
                   an extended  time frame  necessitated by the construction
                   of replacement  technology.   If  U. S. Steel had needed
                   an extended  time frame  to put control  technology on the
                   original  primary production facilities,  no trade-off
                   emissions would be required of  the  corporation.   This
                   would  be true despite the fact  that putting  control
                   devices  on the  original production  facilities would
                   result in only  a 74.6 percent reduction  (see Appendix
                   A-2.5) in the pre-1972  emission levels as compared to the
                   88.8 percent reduction  which will be achieved by the
                   modernization program.  Thus. U.  S. Steel's  decision
                   to modernize their Fairfield-Ensley complex, thereby
                   reducing emissions by 8,997 tons/yr more  than if

                               A-2-8

-------
                                Table 2
              Post-Modernization Period Fairfield-Ensley
                     Complex Production Breakdown


  I.   Coke Production (all coke produced at Fairfleld)

      Battery #5                   374,000 tons/year
      Battery #6                   374,000 tons/year
      Battery #9                   350,000 tons/year
      New Battery                  900,000 tons/year

                   Total         1 ,998,000 tons/year

 II.   Iron Production and Coke Consumption (all  iron will  be produced at Fair-field

#5 Furnace
#6 Furnace
#7 Furnace
#8 Furnace
Iron Production (tons/yr)
411,000
551 ,000
735,000
(new furnace) 1,803,000
Coke Rate (Ibs/ton)
1065
1065
1100
911
                   Total         3,500,000

      Total Coke Consumed = 1,737,800 tons/year

III.   Steel Production, Iron and Scrap Consumption  (all  steel  will  be  produced
                                                          at Fairfield)

      3 Q-BOP Shop Production = 3,500,000 tons/year
      Iron Consumption        = 3,381,000 tons/year
      Scrap Consumption       =   597,000 tons/year

 IV.   Rolling Mill Capacity

      A.   Fairfield
          46" mill 1,505,000 tons/year
          45" mill   846,000 tons/year
          Total     2,351,000 tons/year

      B.   Ensley
          44" mill = 560,000 tons/year

      C.   Fairfield-Ensley Complex
          rolling mill  capacity = 2,911,000 tons/year

  V.   Reason  for Difference in  Coke Production  and  Consumption

      At  the  completion of the  modernization program,  Fairfield  will no
      longer  produce excess coke for shipment to  other U,  S.  Steel  Plants.
      However, a surplus production of approximately a quarter of million
      tons  per year is  necessary in the event that  raw materials used  for  blast
      furnace fuel  injection (natural  gas  and Bunker C oil)  would not  be avail-
      able.   This  explains  the  difference  between production  and consumption.
      (1,998,000 tons/year  - 1,737,800 tons/year  =  260,200 tons/year).

                                     A-2-9

-------
  Table 2 (cont'd)


 VI.   Reason for Difference in  Iron Production  and  Consumption
                                                      t
      Again, the difference between iron  production and  consumption (3,500,000
      tons/year - 3,381,000 tons/year =  119,000 tons/year)  is  consumed by
      the foundry operations at Fairfield.

VII.   Reason for Difference in  Steel  Production and Rolling Mill  Capacity

      Again, the difference between raw  steel production and rolling mill
      capacity (3,500,000-tons/year - 2,911,000 tons/year = 589,000 tons/year)
      is due to the loss  of product in the  processing  operations.
                             A-2-10

-------
                   control equipment had been put on the original
                   facilities, will result in the corporation being
                   penalized by having to further reduce emissions on
                   their existing emission points by an additional 827
                   to 2,348 tons/yr.  This seems inherently unfair.
                   If U. S. Steel had expanded production capabilities,
                   during their modernization program, then trade-offs
                   for the emissions associated with any production
                   increases would seem appropriate.  However, when only
                   replacement capabilities on a ton per ton basis are
                   involved, there would appear to be no place for the
                   trade-off policy.
               2.  As has already been discussed, the U. S. Steel-EPA
                   consent agreement was predicated on the fact that
                   the modernization program would take place.  It would
                   seem unfair for EPA to now change the ground rules
                   before that modernization program had a chance to be
                   completed.
               There is yet another area where great caution must be
used in applying the proposed trade-off policy.   This can be demonstrated
by using the Fairfield-Ensley modernization program as an example.  A
very large number of factors determine the production capability of a
basic oxygen furnace shop.  The most important of these factors can be
summarized as follows:
               1.  The amount of heats which can be processed by the
                   BOF or Q-BOP vessels available.
               2.  The amount of gas which the gas cleaning facilities
                   can handle.
               3.  The oxygen and nitrogen gas capabilities of the shop.
               4.  The support facilities available—teeming facilities,
                   rail  lines,  engines, ingot buggy cars, etc.
               5.  Slab casting facilities available.
                              A-2-11

-------
               6.  Soaking pit capacity of plant.
               7.  Limitations of conversion and finishing facilities.
               8.  Feed materials available—hot metal and scrap.
               If the modernization plan indicated by Table 2 is followed,
 each of the preceding factors except one would limit U. S. Steel's
 Fairfield Q-BOP  shop production to 3.5 million tons/yr.  The one factor
 which does not limit Fairfield1s steel production to 3.5 million tons is
 the amount of heats which the three vessel  Q-BOP shop can process.  All
 other factors not considered, the Fairfield Q-BOP shop will have the capa-
 bility of producing 5.0 million tons/yr.
               As noted earlier, U. S. Steel's modernization program calls
 for retiring the Ensley blast furnaces (furnaces 1, 2, and 3) and coke
 batteries (3, 4, 7, and 8) from service.  It should be noted, however,
 that U. S. Steel has the capability of operating each of these units in
 compliance with existing SIP regulations.   Suppose that U. S. Steel is
 given permission to proceed with their modernization program without the
 need for obtaining trade-offs for the emissions associated with the new
 facilities.  Such permission being granted  on the basis that no expansion
 in product capabilities will result from the modernization plan (i.e.,
 replacement of production x produced by technology 1  with production x
 produced by technology 2) and thus, the modernization program represents
 nothing more than an extended compliance schedule.   Now, however, assume
 that at the completion of the modernization program business conditions
 are such that U.  S.  Steel could sell  more  products than the 3.5 million
 production rate will  allow.   U. S.  Steel could then decide to keep
 operating the Ensley blast furnaces and the old coke batteries.  Operation
 of the Ensley blast furnaces would produce  an additional  1,200,100 tons/yr
 of hot metal  over that which is shown in Table 2.   Operation of the
 blast furnaces would require 777,100 tons/yr of coke but that could
 easily be supplied by the old coke batteries which have a production
 capability of 1,288,000 tons/yr.   If the 1,200,100 tons of hot metal
were consumed in  the Q-BOP process, an additional  1,242,500 tons of steel
                             A-2-12

-------
could be produced.  This is well within the limits of the Fairfield
Q-BOP shop  (1,242,500 + 3,500,000 = 4,742,500 tons/yr) which as previously
noted has a production capability of 5.0 million tons/yr.  Thus, if
U. S. Steel expanded their gas cleaning facilities, oxygen and nitrogen
producing facilities, support facilities, slab casting facilities,
soaking pit capacity, and conversion and finishing mills, they could
increase their production capabilities by 1.2 million tons/yr.  Note
that the emissions associated with the preceding facilities, which would
be the facilities for which construction permits would be necessary, are
quite small.  Therefore, the amount of trade-off emissions which could
be demanded of U. S. Steel for increasing their production capabilities
by 1.2 million tons/yr would be next to nothing, despite the fact that
emissions would actually increase by over 3,100 tons per year from the
Fairfield-Ensley complex (see Appendix A-2.6).   It would appear that when
replacement construction is approved in non-attainment AQCR's, the permit
would have to be conditioned to allow no future expansion of production
at the facility without first obtaining appropriate trade-offs.
               The final point which the Region would like to make in
reference to Headquarters draft policy concerns the type of emission
reductions which can be considered to be appropriate for trade-off
consideration.  The question is whether a source has already reduced
emissions by a greater amount than that required by the existing SIP
regulations, and is the differential amount of emissions eligible to be
considered as trade-off emissions.  It is the Region's belief that if a
company agrees to a permit condition requiring that the source be
operated at the reduced emission levels, then the differential emissions
should be eligible to be counted as trade-off.
                             A-2-13

-------
      ATTACHMENT I TO APPENDIX A-2
EPA CALCULATIONS ON THE NEW COKE BATTERY
      COAL FLOW EMPLOYED IN AQDM

-------
                  ATTACHMENT  I TO APPENDIX A-2

EPA Calculations on the New Coke Battery Coal Flow Employed in AQDM


1.  Railroad car to existing  No. 3 coal unloading station to conveyor
    belt.

2.  Coal for existing batteries which  is processed through the No. 3
    station is dumped on the  ground for storage.

3.  Coal for new batteries is stored in three 10,000 ton storage silos.

4.  No emission factor or estimate was made by U. S. Steel for car dump
    stations.  EPA estimated, based on a similar facility for another
    coke producer, that emissions are  equal to :

    (120,900 SCFM)( 02 gr/SCF)(60 min/hr)(2,080 hrs/yr)
       (7,000 gr/lb)(6,020 tons/day)(365 days/yr)

    = 0.0196 Ibs/ton of coal  processed.
      Therefore, the mass emission rate, as reported in the EIS is:
      0.0196 Ibs/ton x 6,020  tons/day  x 1 day/24 hrs = 4.9 Ibs/hr

      The car dump operated 16 hours a day on the average.

5.  Emissions from storage silos are as follows (based on U. S. Steel
    input):

   (8,800 SCFM)(60 min/hr)(.Q2 gr/SCF)(3 units)(16 hrs/day)(365 days/yr)
              (7,000 gr/lbj(156 tons of coal/hrj(8,760 hrs/yr)

    = 0.0193 Ibs/ton of coal  processed.
      Therefore, the mass emission rate, as reported in the EIS is:
      0.0193 Ibs/ton x 156 tons/hr = 3.01 Ibs/hr

6.  Coal  from storage silos flows to the primary coal pulverizer.   Emissions,
    based on U.  S.  Steel input, are as follows:

    (23,581 SCFM)(60 min/hr)(.Q2 gr/SCF)(16 hrs/day)(365 days/yr)
          (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

    = 0.0173 Ibs/ton of coal processed.
      Therefore, the mass emission rate, as reported in the EIS is:
      0.0173 Ibs/ton x 156 tons/hr = 2.69 Ibs/hr

7.  Coal  from primary coal  pulverizer flows to the coal mixer.  Emissions,
    based on U.  S.  Steel input, are as follows:

-------
     (6,342 SCFM)(60 min/hr)(.Q2 gr/SCF)  (16  hrs/day)(365 days/yr)
           (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

     = 0.00465 Ibs/ton  of coal  processed.
       Therefore, the mass emission  rate,  as  reported in the EIS is:
       0.00465 Ibs/ton  x 156 tons/hr =  0.725  Ibs/hr

 8.   Coal  from coal  mixer goes  to 100 ton  diverter hoppers where coal
     is diverted either to a 3,500 ton  silo hopper for new battery
     or to the existing batteries.   Emissions,  based on U. S.  Steel
     input, are as follows:

      (5,111  SCFM)(60 min/hr)(.Q2 gr/SCF)(16  hrs/da.y)(365 days/yr)
           (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

     = 0.00374 Ibs/ton  of coal  processed.
       Therefore, the mass emission  rate as reported in the  EIS is:
       0.00374 Ibs/ton  x 156 ton/hr  = 0.583 Ibs/hr

 9.   Coal  from divertion hopper goes to storage  (3,500 tons)  silo which
     supposedly produces no  emissions.

10.   Coal  from 3,500 ton storage silo goes to secondary pulverizer.
     Emissions, based on U.  S.  Steel  input, are  as follows:

     (13,200 SCFM) (60  min/hr)  (.02  gr/SCF)(24  hrs/day)(365  days/yr)
           (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

     = 0.0145 Ibs/ton of coal processed.
       Therefore, the mass emission  rate as reported in the  EIS is:
       0.0145 Ibs/ton x 156  ton/hr = 2.26  Ibs/hr

     (Note: Permit shows two  units,  but only  one unit operates  at a  time.)

11.   Coal  from secondary pulverizer  goes onto conveyor belts which transfer
     coal  to preheater.   Emissions,  based  on  U.  S.  Steel  input, from con-
     veyor belts are as follows:

     (5,111 SCFM)(60 min/hr)(.Q2 gr/SCF)(24 hrs/day)(365 days/yr)
          (7,000 gr/lb)(156  tons of  coal/hr)(8,760 hrs/yr)

     = 0.00562 Ibs/ton  of coal  processed.
       Therefore, the mass emission  rate as reported in the  EIS is:
       0.00562 Ibs/ton  x 156 ton/hr  = 0.876 Ibs/hr

12.   Emissions, based on U.  S.  Steel  input, from preheater are  as follows:

     (19,254 SCFM)(2 units)(60  min/hr)(.031 gr/SCF)(24 hrs/day)(365  days/yr)
              (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

     = 0.0656 Ibs/ton.
       Therefore, the mass emission  rate as reported in the  EIS is:
       0.0656 Ibs/ton x 156  ton/hr = 10.2  Ibs/hr

-------
 13.   Dried and heated coal is transferred by covered conveyor to a 500
      ton bin where it is briefly stored.   From there the coal is trans-
      ferred into eight premetering hoppers.   The hoppers then discharge
      the coal to a larry car for charging into the coke ovens.   Nitrogen
      or process gas from the adjacent coal  pre-heat system is used to
      flush ambient air from the larry car.   The same flushing system
      is used to evacuate dust-laden gas from the larry car when it is
      being charged with coal.  The scrubbers operate only when  the larry
      cars are being flushed or evacuated.  Emissions, based on  U.  S. Steel
      input, are as follows:

      (1,285 SCFM wet)(.508 vol. percent air)(2 units) (10.9 mm/hr)
                 (.02 gr/DSCF)(24 hrs/day)(365 days/yr)	
            (7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)

      = .000261 Ibs/ton of coal processed.
        Therefore, the mass emission rate, as reported in the EIS is:
        .000261 Ibs/ton x 156 tons/hr = 0.0408 Ibs/hr

 14.   Total emissions from coal handling:

      a.  Car Dump                        0.0196

      b.  Storage Silos                    0.0193

      c.  Primary Coal Pulverizer         0.0173

      d.  Coal Mixer                      0.00465

      e.  100 Ton Diverter                0.00374

      f.  Secondary Pulverizer            0.0145

      g.  Conveyor Belts                  0.00562

      h.  Preheater                       0.0656

      i.  Larry Car Loading               0.000261

                                          0.150571  or
          Total                 0.151 Ibs/ton of dry coal

           or

          Total                           0.08471 or
                                0.085 Ibs/ton of wet coal


*The emissions from the preheater were handled as a point source in
 the model.  Therefore, the total emissions from coal handling
 considered in AQDM was 0.084971 Ib/ton of dry coal.

-------
Charging
     a.  Uncontrolled - same.
     b.  Controlled.
         (1.5 Ibs/ton - raw)(0.05 stage or preheated coal  failure rate)
         = 0.075 Ibs/ton.
Doors
     a.  Controlled.
         (66 gr/leaking door/min)(H.4 doors  leaking)(60 min/hr)(8,760 hrs/yr)
                   (7,000 gr/lb)(156  tons  of  coal/hr)(8,760 hrs/yr)
         = 0.0413 Ibs/ton of coal  charged.
     b.  Uncontrolled (assume  40% leakage  rate).
         Factor equals 0.165 Ibs/ton  of coal  charged.

Topside
     a.  Controlled.
         (22 gr/1eak/min)(5.7  leak a!lowed)(60 min/hr)(8,760 hrs/yr)
                (7,000 gr/lb)(156 tons  of coal/hr)(8,760 hrs/yr)
         = 0.00689 Ibs/ton of  coal charged.
     b.  Uncontrolled (assume  40% leakage  rate).
         Factor equals 0.0551  Ibs/ton of coal charged.

Pushing
     a.  Uncontrolled.
         = 2.25 Ibs/ton of coke.
     b.  Controlled.
         = [(2.250)(.15)  + 0.03]  = 0.3675  Ibs/ton  of coke.

-------
Underfirinq
     a.  Uncontrolled - An emission factor of 0.39 Ibs/ton  of coal  was
                        obtained from a source test conducted by  U.  S.
                        Steel on their No. 3 underfiring stacks at
                        Fairfield.

     b.  Controlled.

         (116,500 SCFM)(60 min/hr)(.Q3 gr/SCF)(8,760 hrs/yr)
             (7,000 gr/lb)(6,020 tons/day)(365 days/yr)

         = 0.119 Ibs/ton of coal.
Coke Screening

         (28,000 ACFM)(520 SCF)(60 min/hr)(.Q2 gr/SCF)(2,912  hrs/yr)
             (7,000 gr/lb)(610 ACF)(6,020 tons/day)(365  days/yr)

         = 0.00542 Ibs/ton of coal charged.
Coke Transfer Building

         (8,375 SCFMH60 min/hr)(.Q2 gr/SCF)(8.760  hrs/yr)
          (7,000 gr/lb)(156 tons of coal/hr)(8,760  hrs/yr)

         = 0.00920 Ibs/ton of coal  charged.
Burden Coke/Ratio Pre-1972

                    Fairfield                              Ensley

     No. 5             2.75               No.  1             2.41

     No. 6             2.87               No.  2             2.36

     No. 7             2.74               No.  3             2.42

(515,500)0.095) 2.75 + (515,500)0 .145)  2.87  +  (704,600)(1.125) 2.74 +
      2,000                   2,000                    2,000

(399,400)0.295) 2.41 + (418,600)0,295)  2.36  +  (382,100)0.295) 2.42
      2,000                   2,000                    2,000

= 4,570.768 tons of raw materials stored  for blast furnace  use.

-------
     ATTACHMENT II TO APPENDIX A-2
CALCULATIONS USED TO FIND THE AUXILIARY
SOURCES EMISSION RATES EMPLOYED IN AQDM

-------
     The following calculations were used in the AQDM to identify auxiliary
emissions sources at the U.S. Steel Facilities:
     jj-8 Blast Furnace Stockhouse Emissions
Screening Baghouse:
For 24 hr screening:
(3)(.005)(60,000)(60)(8,700)/(2,000)(7,000) = 33.8 T/yr
Average Screening Time = 15 hr/day
(15/24)(33.8 T/yr) = 21.1 T/yr
The emission rate calculated in the EPA analysis (Appendix A-2) for the
blast furnace stockhouse was used for the old stockhouse in the AQDM.
The emission calculated above was used in conditions 4 and 5 for the
new blast furnace stockhouse.
     #2 Battery Preheater
Emission Factor = 0.066 lb/T Coal
U.S. Steel's Calculation:
     1978
    (0.006 lb/T coal )(1. 434 x 106 T coal )/(2, 000 Ib/ton) = 47.3 T/yr
Modeling Calculations based on the above data:
     1978
     (0.042 lb/T coal )(8, 790 hr/yr)(156 T coal/hr)/(2,000 Ib/ton)  = 28.30  T/yr
     28.7 T/yr was used in both conditions 4 and 5 since it is a new source.
     Blast Furnace Slag Handling
                                     pE  2
Pedco Study Emission Factor = .33 T (g)  Ib/ton
            2
           )  = .23 Ib/ton of slag

-------
U.S.  Steel's Calculations

     1971
     Ensley   (310,000 Tons  of slag)(0.23 lb/ton)/(2,000 Ib/ton)   = 35.7 T/yr

     Fairfield (440,000 Tons of s1ag)(0.23 1b/ton)/(2,000 Ib/ton)  = 50.6 T/yr

                                                            Total  = 86.3 T/yr

     1978
     Fairfield (440,000 Tons of slag)(0.23 lb/ton)/(2,000 Ib/ton)  = 50.6 T/yr

     BF #8 (350,000 Tons of  slag)(0.23 lb/ton)/(2,000  Ib/ton)      = 40.3 T/yr

                                                            Total  = 90.9 T/yr

Additional  Data
     1978:   BF #8 has a rate of 350,000 tons  slag/1,825,000  tons  hot metal

                                  Slag (tons)          Hot Metal  (tons)
     1971:   Ensley BF #1       100,000 (114,114)*      350,000  (399,400)
            Ensley BF #2       110,000 (115,115)       400,000  (418,600)
            Ensley BF #3       100,000 (109,171)       350,000  (382,100)

            Fairfield BF #5     125,000 (128,875)       500,000  (515,000)
            Fairfield BF #6     125,000 (128,875)       500,000  (515,500)
            Fairfield BF #7     200,000 (176,150)       800,000  (704,600)
*
 All  the values in parentheses are adjusted to  production rates oeing used
 in AQDM.

Modeling Calculations based  on the above data.

Condition #1

     Ensley (338,400 tons of s1ag)(0.23 lb/ton)/(2,000 Ib/ton)    = 38.9 T/yr

     Fairfield (433,900 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton)  = 49.9 T/yr

                                                            Total  = 88.8 T/yr

Condition #2

     Control equipment and production for Fairfield and Ensley furnaces
     would be exactly the same used for pre-1972 emission calculations
     Thus, emissions would be 38.9 T/yr + 49.9  T/yr =  88.8 T/yr

Condition #3

     Condition #3 describes  existing conditions including blast furnaces
     three at Fairfield and  three at Ensley,  at full  production.   Therefore,
     emissions from slag handling are:  38.9 T/yr  + 49.9 T/yr  = 88 8 T/yr

-------
Condition #4
     Ensley (338,400 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton)    = 38.9 T/yr
     Fairfield (433,900 tons of slag)(0.23 1b/ton)/(2,000 Ib/ton) = 49.9 T/yr
     Fairfield (345,780 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 39.8 T/yr
                                                            Total = 128.6 T/yr
Condition #5
     Fairfield (345,780 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 39.8 T/yr
     Fairfield (424,250 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 48.8 T/yr
                                                            Total = 88.6 T/yr
                                   Slag (tons)       Hot Metal  (tons'
     1978:  Fairfield BF #5     125,000 (102,750)*  500,000 (411,000]
            Fairfield BF #6     125,000 (137,750)   500,000 (551,000)
            Fairfield BF #7     200,000 (183,750)   800,000 (735,000)
            Fairfield BF #8     350,000 (345,780) 1,825,000 (1,803,000)
*
 All the values in parentheses are adjusted to production rates  being
used in AQDM.

     Fugitive Emission Hot Metal Mixer

Hot Metal Mixers  - Emission Factor = 0.12 Ib/ton permit  application (1970)
Reladling Station - Emission Factor = 0.06 Ib/ton
                                       1 2
Control Devices   - Emission Factor = -^ = .005 Ib/ton
U.S. Steel's Calculations:
     1971
     Mixer - Ensley (564,000 T. Hot Metal)(0.12 lb/T)/(2,000 Ib/T)     =  33.8  T/yr
     Mixer - Fairfield (940,500 T. Hot Metal)(0.12 lb/T)/(2,000  Ib/T)  =  56.4  T/yr
     Reladling - Fairfield (940,500 T.  Hot Metal)(0.06 Ib/T)/
                                                         (2,000  Ib/T)  =  28.2  T/yr
                                                                Total = 118.4  T/yr

-------
     1977
     Mixer - Fairfield (2,000,000 T. Hot Metal )(0.12 lb/T)/(2,000 Ib/T)  = 120.0 T/yr
     Relading - Fairfield (256,000 T. Hot Metal)(0.06 1b/T)/(2,000 Ib/T) =   7.7 T/yr
                                                                   Total = 127.7 T/yr
     1978
     North Mixer - Fairfield (1,657,000 T. Hot Metal)(0.12 Ib/T)/
                                                    (2,000 Ib/T)   = 99.4 T/yr
     South Mixer - Fairfield (1,657,000 T. Hot Metal )(0.005 Ib/T)/
                                                    (2,000 Ib/T)   =  4.1 T/yr
                                                             Total = 103.5 T/yr
Modeling Calculations based on the above data:
Condition #1
     Fairfield - (1,350,000 T.  Hot Metal)(0.12 lb/T)/(2,000 Ib/T) =   81.0 T/yr
     Fairfield - (1,350,000 T.  Hot Metal)(0.06 lb/T)/(2,000 Ib/T) =   40.5 T/yr
                                                            Total =  121.5 T/yr
     Ensley - (800,000 T.  Hot Metal)(0.12  lb/T)/(2,000  Ib/T)       =   48.0 T/yr
                                                            Total  =   48.0 T/yr
Condition $2
     Fairfield - (1,350,000  T.  Hot Metal)(.005 lb/T)/(2,000 Ib/T) =    3.3 T/yr
     Fairfield - (1,350,000  T.  Hot Metal)(0.06 lb/T)/(2,000 Ib/T) =   40.5 T/yr
                                                            Total  =   43.8 T/yr
     Ensley - (800,000 T.  Hot Metal)(.005  1b/T)/(2,000  Ib/T)       =    2.0 T/yr
                                                            Total  =    2.0 T/yr
Condition #3
     Fairfield - (2,000,000  T.  Hot Metal)(0.12 1b/T)/(2,000 Ib/T) =  120.0 T/yr
     Fairfield - (333,333  T.  Hot  Metal)(0.06  lb/T)/(2,000  Ib/T)    =   10.0 T/yr

                                                            Total  =  130.0 T/yr
Condition #4
     'Jill  be  the same as condition #5 which  is 109.4 T/yr

-------
Condition #5
     Fairfield (1,750,000 T. Hot Metal )(0. 12 lb/T)/(2,000 Ib/T)
     Fairfield (1,750,000 T. Hot Metal) (0.005 lb/T)/(2,000 Ib/T)
                                                               105.0 T/yr
                                                                 4.4 T/yr
                                                       Total = 109.4 T/yr
   BOILERS NO. 9 AND 10
   Fuel Consumption for Two Boilers
        Blast Furnace Gas 2.903025 x
                               12
        Coke Oven Gas .782855 x 10
        Natural Gas -  None
        No. 6 Fuel Oil 6.135208 x 10
                                 12
                                       BTU/yr = 38.707 x 10  CF/yr @    -
                                             =  1.5026 x 10  CF/yr @
                                             = 40.2039 x 10  gal/yr
                                                           152,500
     Total 9.821088 x 1012 BTU/yr             = 8000,000 Ib/hr steam
           or 1,263 x 106 BTU/hr
Operating (24 hr/day)(360 day s/yr)(. 9(10%  downtime)) = 7,776 hr/year
For one boiler r               /-
     1 ,263 x 10° -r 2 = 632 x 10° BTU/hr
     Oil = 6.135208 x 1012/2 = 3.062604 x  1012 BTU/yr = 394 x 106 BTU/hr
                       EMISSIONS PER BOILER
Emissions From B.F. Gas
Participate
     (.005 gr/SCF)(38.707 x 109 SCF/yr)(7>OOQ gr/^\  2>QQQ  1b/J)/2 = 6.912 T/yr
        NO
        CO
                                    From Making,  Shaping  S Treating     0
                       No Data Available                               0
                                                                        0
Emissions From Coke Oven Gas
Participate
     (15 lb/106 CF)(1.5026 x 106   )
                                              1b/T
                                                  )/2
                                                                  =  56.3  T/yr
                                                                  =  14.5  Ib/hr

-------
               CF  H2°   U 09109   1b
               CFCQ  GasM. 09109
             ,64.06  =  MW  S02^/    Ton
      CF
= MW H2SM2,000 Ib'
  (1.5026 x 109 ££)
     NOX

     CO

Emissions  From  #6  Oil
Particulate
No Data Available
From Making,  Shaping & Treating
=  322 T/yr
= 82.7 Ib/hr
    0

    0
\,io ID/ i u ga i
S02 ([157][1]
ND C^n Jk

CO (c lb )

H^u^uo.y x lu g
lb/103 gal) (40203
y)(.94 reduction
(40203.9 x 103
(40203.9 x 103 ^
ai/yrn2,000 1b;/
0 Y 1 0 rn 1 /w W
. j x i u ga i / yr ) \~ QQ
in firing)
ml / \t\~\ { \ /°
gai/yrM7 nnn -ih;/6
t- 9 \J\J\J 1 U
K \ / o
o r\r\r\ i K /*
u 9 UUw I U
i Ji
= 33.6
\ 79 _ 1 C7O
o ibj/t- ls578
= 406
- 472
= 122
50
13
i/yr
Ib/hr
T/yr
Ib/hr
T/yr
Ib/hr
T/yr
Ib/hr
PER BOILER
Total Emissions

Particulate
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
S02
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
6.9 T/yr )
56.3 T/yr >
131 T/yr )
0 T/yr )
322 T/yr }
1,578 T/yr )
Total
194 T/yr /
(49.9 Ib/hr)
1,900 T/yr
(489 Ib/hr)
Allowable
JC 199 T/yr
EPA 246 T/yr
JC 4,423 T/yr
EPA 2,310 T/yr



-------
                        PER BOILER (Cont'd)
NOX
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
CO
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil

0 T/yri
0 T/yr>
472 T/yr I

0 T/yr-)
0 T/yr I
50 T/yrf
Total
472 T/yr
(121 Ib/hr)

50 T/yr
(13 Ib/hr)
Allowable
JC 645 T/yr
EPA 645 T/yr


Therefore, the total  particulate emissions  per boilers  are
     6.9 T/yr + 56.3 T/yr + 131  T/yr = 194  T/yr
The emission rate of 194 T/yr was used in the  AQDM  for  conditions 4 and 5.

Allowable Emissions
Particulate
                      - 44      fi
     JCHC:  c = 1.38 H 'HH lb/10  BTU
           AE = (1.38)(632p44  (632)  =  51.1  Ib/hr  =  199 T/yr
      EPA: AE = .1H = (.1)(632)         =  63.2 Ib/hr  =  246 T/yr
so2
     JCHD: AE = (1.8)(H) = (1.8)(632)  =  1.138 Ib/hr = 4,423 T/yr
      FDA.  c = (% oil BTUH1.4) + (% C.O.  Gas + B.F. Gas BTU)(2.2)
                  (% oil  BTU + % C.-O. Gas BTU  + % B.F.  Gas BTU)
      % BTU
         oil  6.135208 x 1012/9.821088 x 1012 = 62.5%
         C.O. Gas + B.F.  Gas     100 - 62.5 = 37.5%
            c - (62.5H1.4)  + (37.5H2.2) . ,  -, _m/ln6
            t -            100              i./ gm/iu
           AE = (.94)(632)  = 594 Ib/hr  = 2,310  T/yr

-------
                       PER BOILER (Cont'd)
N0x
        JCHD:   Oil:  E = (.3)(H) = (.3)(394 x,106 BTU H)
                                 = 118 lb/hr[
               Gas:    = (.2)(H) = (.2)(238) >    166 Ib/hr = 645 T/hr
                                 = 47.6 Ib/hrJ
        EPA-    "      E = (.20)(% gaseous) + (.30)(liguid %)
                                         100%
                       = (.2)(37.5)  + (.3)(62.5) = .2625 lb/106 BTU
                                   100
                    AE = (.2625)(632)            = 166 Ib/hr = 645 T/yr

COKE BY-PRODUCT PLANT
U. S. Steel Calculations:
Participates
Tar Heater:    (78 MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs)  = 0.585 T/yr
Pitch Heater:  (3.6MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs)  = 0.027 T/yr
Hot Oil:       (18 MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs)  = 0.131  T/yr
     Source                 Natural  Gas       Particulate Emissions
                             (MCF/yr)                (T/yr)	
     Tar Heater                78.0                   0.585
     Pitch Heater               3.6                   0.027
     Hot Oil                    18.0                   0.131
     Waste Gas Flare Stack     21.5                     --
                              121.1                   0.734
Therefore, to find the total  particulate  emissions including the  flare
stack,  the following calculations  were made:
     121.1 -  21.5 = 0.1775 or 17.75% of the total  natural  gas is  waste gas
         121.1
Thus (0.734 T/yr)(1.1775) =  0.875  T/yr (total  emissions)
Since the particulate emissions  0.002 T/day (0.875 T/yr)  is  such  a small
number,  it was not included  in  the AQDM.

-------
                     APPENDIX A-2.1
PRE-1972 EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
   (COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX

-------
                               APPENDIX A-2.1
               Pre-1972 Emissions from the Primary Production
       Facilities (coke,  iron,  steel)  at the Fairfield-Ensley  Complex
I.   Blast Furnace
    A.   Fairfield - Top Gas
        1.   Control equipment venturi  scrubbers  (99% efficient)  - per U.  S.
            Steel 114 response.
        2.   From U. S.  Steel  permit for their new blast furnace,  inlet grain
            loading to  control  device  is equal to 4 gr/SCF.
        3.   From U. S.  Steel  114 response,  total  blast furnace gas flow rate
            (numbers 5, 6,  and 7 furnaces)  is equal  to 362,000 CFM at 350°F.
        4.   Emissions equal:
        [(4)(362,000 x  530/810)(60)(24)(365)/(7,000)(2,000)].01  = 355.7 tons/yr
    B.   Fairfield - Casthouse
        1.   See Appendix A-2.2 for source of emission factor.
        2.   No control  equipment on cast houses.
        3.   Emissions equal:
        (0.435)0,735,600)/(2,000) = 377.5  tons/yr
    C.   Fairfield - Stockhouse
        1.   Assume control  per ton as  efficient as for the new blast  furnace -
            See Appendix A-2.2.
        2.   Emissions equal:
        (22.5  tons/yr)(1,735,600/1,803,000)  = 21.7 tons/yr
    D.   Fairfield - Material  Loading
        1.   See Appendix A-2.2  for source of emission factor.
        2.   No control  equipment on material  loading.
        3.   Emissions equal:
        (0.17)0,735,600)/(2,000)  = 147.5 tons/yr
    E.   Fairfield - Leaks and Kicks
        1.   See Appendix A-2.2  for emission  factor.
        2.   Emissions equal:
        (0.25)0,735,600)/(2,000)  = 217.0 tons/yr
                                  A-2.1-1

-------
F.  Fairfield - Storage Piles

    1.  Assume U. S. Steel will insure storage piles have enough surface
        moisture to minimize emissions (90% control).
    2.  Emission factor of 0.27 Ibs/ton obtained from AP 42.
    3.  Emissions equal:  36.5 tons/yr

G.  Total for Fairfield

    355.7 + 377.5 + 21.7 + 147.5 + 217.0 + 36.5 = 1,155.9 tons/yr

H.  Ensley - Top Gas

    1.  Control equipment for 60% of top gas flow rate was a multi-cyclone
        (83% efficient - per U. S. Steel  114 response).  Control for re-
        maining 40% of gas stream is a low energy wet scrubber and ESP in
        series (98% efficient - per U. S.  Steel 114 response).
    2.  From U. S. Steel permit for their new blast furnace, inlet grain
        loading to control device is equal  to 4 gr/SCF.
    3.  From U. S. Steel 114 response, total blast furnace gas flow rate
        (numbers 1, 2, and 3 furnaces) is equal to 295,000 CFM at 350°F.
    4.  Emissions equal:

    [(4)(295,000 x 530/810)(.6)(60)(24)(365)/(2,000)(7,000)].17 = 2,956.7 tons/yr

    [(4)(295,000 x 530/810)(.4)(60)(24)(365)/(2,000)(7,000)].02 =   231.9 tons/yr

                                                          Total  = 3,188.6 tons/yr

I.  Ensley - Cast House

    1.  See Appendix A-2.2 for source of emission factor.
    2.  No control on cast houses.
    3.  Emissions equal:

    (0.435)0,200,100)/(2,000) = 261.0 tons/yr

J.  Ensley - Stackhouse

    1.  Assume control  per ton as efficient as for the new blast furnace -
        see Appendix A-2.2.
    2.  Emissions equal:

    (22.5 tons/yr)(l,200,100/1,803,000) =  15.0 tons/yr

K.  Ensley -  Material  Loading

    1.  See  Appendix A-2.2 for source of  emission factor.
    2.  No control  equipment  on material  loading.
    3.  Emissions  equal :

    (0.17)(1,200,000)/(2,000) = 102.0 tonsA -
                             A-2.1-2

-------
     L.   Ensley - Leaks and Kicks
         1.   See Appendix A-2.2 for source of emission factor.
         2.   Emissions equal:
         (0.25)(1,200,100)/(2,000)  = 150.0 tons/yr
     M.   Ensley - Storage Piles
         1.   Assume U. S. Steel will insure storage  piles  have  enough  surface
             moisture to minimize emissions (90% control).
         2.   Emission factor  of 0.27 Ibs/ton obtained  from AP 42.
         3.   Emissions equal:
         25.2 tons/yr
     N.   Total  for Ensley
         3,188.6 + 261 .0 + 15.0 + 102.0 + 150.0  + 25.2 = 3.741.8 tons/yr
     0.   Total  for Fairfield  - Ensley Complex
         1,155.9 + 3,741.8 =  4,897.7 tons/yr
II.   Open Hearth Furnaces
     A.   Fairfield - Stack
         1.   No control  equipment employed.
         2.   Emission factor  of 23.8 Ibs/ton was obtained  for October,  1975
             source test of No. 9 open hearth furnace  at Ensley.
         3.   Emissions equal:
         (23.8)(2,700,000)/(2,000)  = 32,130 tons/yr
     B.   Fairfield - Fugitive
         1.   No control  equipment employed.
         2.   Emission factor of 4.76 Ibs/ton is  an estimate  by  Region  IV
             based on October,  1975 observations during source  test of
             No.  9 open  hearth  furnace at Ensley [i.e., fugitive emissions
             judged to be equal  to  about 20% of  stack  emissions or (23.8)
             (.2)  = 4.76 Ibs/ton .
         3.   Emissions equal:
         (4.76)(2,700,000)/(2,000)  = 6,426  tons/yr
     C.   Total  for Fairfield
         32,130 +  6,426  = 38,556 tons/yr

                                   A-2.1-3

-------
      D.   Ensley  -  Stack
          1.   No  control  equipment employed.
          2.   Emission  factor same as  used for Fairfield.
          3.   Emissions equal:
          (23.8)(800,000)/(2,000)  = 9,520 tons/yr
      E.   Ensley  -  Fugitive
          1.   No  control  equipment employed.
          2.   Emissions factor  same as used for Fairfield.
          3.   Emissions equal:
          (4.76)(800,000)/(2,000)  = 1,904 tons/yr
      F.   Total for Ensley
          9,520 + 1,904 = 11,424  tons/yr
      G.   Total for Fairfield - Ensley Complex
          38,556  +  11,424 =  49,980 tons/yr
III.   Coke Plant  -  All  Coke  Produced at Fairfield
      A.   Coal Handling
          1.   Assume BACT employed for coal  handling.
          2.   See Appendix A-2.2  for source of emission  factor.
          3.   Yield taken from data provided  by U.  S.  Steel  (.6839).
          4.   Emissions equal:
          (.085)(2,256,000/.6839)/(2,000)  = 140.2 tons/yr
      B.   Charging
          1.   No  control  employed.
          2.   Emission  factor of  1.5 Ibs/ton  of coal was obtained from AP 42
          3.   Emissions equal:
          (1.5)(2256,000/.6839)/(2,000) =  2,474.0 tons/yr
      C.   Coking  (Door  and Topside Leaks)
          1.   No  control  employed.
          2.   Emission  factor of  0.22  Ibs/ton of coal  was obtained from
             Attachment  1 to Appendix A-2.
          3.   Emissions equal:
              (0.22)(2,256,000/.6839)/(2,000) = 362.9 tons/yr
                                    A-2.1-4

-------
D.  Pushing

    1.  No control employed.
    2.  Emission factor of 2.25 Ibs/ton of coke was provided by DSSE.
        The factor was an average of the emission measured for
        moderately green coke from a variety of sources.
    3.  Emissions equal:

        (2.25)(2,256,000/2,000) = 2.538 tons/yr

E.  Quenching

    1.  No control employed.
    2.  Emission factor of 1.2 Ibs/ton of coal was based on EPA source
        tests performed at the Loraine Works of U. S. Steel Corporation.
        A controlled (clean water and baffles) emission factor of 1.2
        Ibs of particulate/ton of coal charged was provided by DSSE.
    3.  Emissions equal:

        (1.2)(2,256,000/.6839)/(2,000) = 1,979.2 tons/yr

F.  Underfiring Stacks

    1.  No control equipment employed.
    2.  Emission factor of 0.39 Ibs/ton of coal was obtained from
        Attachment 1 to Appendix A-2.
    3.  Emissions equal:

        (0.39)(2,256,000/.6839)/(2,000) = 643.3 tons/yr

6.  Coke Screening

    1.  Assume dry collector employed.
    2.  See EPA calculations for source of emission factor (Attachment I)
    3.  Emissions equal:

    (0.00542)(2,256,000)(.6839)/(2,000)  = 8.9 tons/yr

H.  Coal Storage Piles

    1.  Assume U. S. Steel  will  insure storage piles have enough surface
        moisture to minimize emissions (90% control).
    2.  Emission factor of 0.27 Ibs/ton obtained from AP 42.
    3.  Emissions equal:
    (0.27)(.1)[%^£%(2,000) = 44.5 tons/yr
                               A-2.1-5

-------
     I.   Total  Coking Emissions
         140.2  + 2,474 + 362.9 +  2,538  +  1,979.2  +  643.3  +  8.9  +  44.5  =  8,191  tons/yr
IV.   Total  Emissions  from Fairfield-Ensley  Complex
         4,897.7 + 49,980 +  8,191  =  63,068.7  tons/yr
                                    A-2.1-6

-------
        APPENDIX A-2.2
EMISSIONS FROM NEW FACILITIES

-------
                   EMISSIONS FROM NEW FACILITIES

I.   Blast Furnace
    A.   Blast Furnace Top Gas
        1.   Control equipment consists of a dustcatcher followed by a
            venturi scrubber (70" pressure drop).   This is considered
            to be best technology (BACT).
        2.   U. S. Steel (in their permit application to Jefferson County)
            reported the raw furnace gas to contain 6 gr/SCFD.   The dust-
            catcher is reported to be 33 percent efficient and  thus the
            gas contains 4 gr/SCFD as it enters the venturi scrubber.  The
            venturi scrubber is reported to be 99.87 percent efficient
            and the gas leaves the scrubber containing 0.005 gr/SCFD.
        3.   Emissions are then calculated to be:
            (300,000)(.005)(60)(24)(365)/(7,000)(2,000) = 56.3  tons/yr
    B.   Blast Furnace Cast House
        1.   No control equipment has been proposed by U.  S. Steel.   BACT
            would be building enclosure and venting the entire  building
            to a control device.  It should be noted that this  would
            involve the treatment of tremendous gas volumes and would
            consume considerable quantities of energy.   RACT would  be
            well designed canopy hoods vented through a high efficiency
            scrubber or ESP-
        2.   Bethlehem Steel Corporation performed  test of casthouse
            emissions on their "J" blast furnace at their Sparrows
            Point, Maryland, facility.  The results (0.435 Ibs/ton  of
            iron produced) were reported in an inter-office memorandum
            from T. 6. Keller, Assistant Air Pollution Control  Engineer
            to R. M. McMullen, Senior Air Pollution Control Engineer
            (October 24, 1974).
        3.   Emissions are then calculated to be:
            (0.435)(1,803,OOP tons/yr*) = 392.2 tons/yr
                      2,000
            *Per U. S. Steel permit application
                             A-2.2-1

-------
Stockhouse
1.  Control equipment consists of enclosing screening stations
    and conveyor transfer points and venting the emissions to a
    baghouse.  This is considered to be BACT.
2.  U. S. Steel (in their permit application) reported the
    vented gases to contain 5 gr/SCFD.  The baghouse was reported
    to be 99.9 percent efficient and the exit gas was reported
    to contain 0.02 gr/SCFD.
3.  Emissions are then calculated to be:
    (30,000)(.02)(60)(24)(365)/(7,000)(2,000) = 22.5 tons/yr
Material Loading
1.  Furnaces to be charged by skip car, no control  equipment
    proposed.  BACT would be covered conveyor.
2.  Emission factor of 0.17 Ibs/ton of iron produced was taken
    from EPA memorandum—Air Quality Impact of an Integrated
    Steel Mill--sent to Roger Strelow from B.  J.  Steigerwald
    (September 19, 1975).
3.  Emissions are then calculated to be:
    (0.17)0,803,000)/(2,000) = 153.3 tons/yr
Leaks and Kicks
1.  Control  is achieved by maintaining good operating practices
    to minimize the occurrence of leaks and kicks (considered
    BACT).
2.  Emission factor of 0.25 Ibs/ton of iron produced was taken
    from EPA memorandum—Air Quality Impact of an Integrated Steel
    Mill.
3.  Emissions are  then calculated to be:
    (0.25)(1,803,000)/(2,000) = 225.4 tons/yr
Storage Piles
1.  BACT would be  water sprays on storage piles.   U. S.  Steel
    has proposed no control  for their storage piles.
2.  Assume  U.  S.  Steel  will  insure storage piles  have enough
    surface  moisture to minimize emissions (90% control).

                     A-2.2-2

-------
         3.   Emission factor of 0.27 Ibs/ton obtained  from AP  42.
         4.   Emissions are then calculated to be:
             (0.27)(.l)[(1-803j^g^11)](3.46)/(2iOOO)=  38.4  tons/yr
     G.   Total  Emissions from Blast Furnace:
             56.3 + 392.2.+ 22.5 + 153I3 + 225.4 + 38.4 = 881.1  tons/yr
II.   Q-BOP Furnace
     A.   Stack
         1.   A  high energy wet scrubber (99.8% efficient) will  be  used  to
             control  stack emissions.   This is considered to be  BACT.
         2.   U.  S. Steel tested the existing Q-BOP stacks in November of
             1974 and arrived at emission rate of  0.0081  Ibs/ton of
             steel produced.
         3.   Emissions would then be calculated to be:
             (.0081)(3,500,000/3)/(2,000) = 4.7 tons/yr
     B.   Fugitive (Charge/Tap, etc.)
         1.   BACT would be building enclosure and  venting the  entire  building
             to  a control  device.   RACT would be well designed hooding  with
             emissions vented through  a high efficiency scrubber or ESP.  On
             their existing Q-BOP's, U.  S.  Steel uses a type of local
             enclosure and hoods  to control  fugitive emissions.  Jefferson
             County has not issued  the  two  existing vessels an operating
             permit because they  have  not been satisfied  with  the  fugitive
             control  system.   U.  S.  Steel  has  proposed  to  have a fugitive
             control  system on their new Q-BOP vessel which is identical to
             those used on their  existing vessels.
        2.   In  February and  March  of  1975,  U.  S.  Steel tested the roof
             monitors  of their Q-BOP shop.   The  results were that  emissions
             averaged  2,174.8 Ibs per day.
        3.   Emissions  for the  new  Q-BOP  vessel  are then  calculated to  be:
    2,174.8  x 3.196  (daily production  for one  vessel)         x   365 = 234.6
              5,407  (shop  production during  Feb & March,  1975) 2,000    tons
    C  Total Emissions  from  Q-BOP  = 239.3 tons/.yr

                              A-2.2-3

-------
III.    Coke Battery
       A.   Coal  Handling
           1.   BACT would be to  hood and duct to baghouse.   It is assumed
               that U.S.  Steel will  employ BACT.
           2.   Emission factor of 0.151  Ibs/ton  coal  was  obtained from EPA
               calculations  on the new  coke battery coal  flow.   (See
               Attachment I)
           3.   Emissions would then  be  calculated to  be:
               (0.151)(1,316,000)7(2,000)   =                 99.4 tons/yr
       B.   Charging
           1.   BACT would be stage or pipeline charging.  U.S.  Steel  has
               indicated that they will  employ stage  charging or equivalent.
               They use stage charging  on  existing  batteries.
           2.   Emission factor of 0.075  Ibs/ton  coal  was  obtained from EPA
               calculations  on the new  coke battery coal  flow (See
               Attachment I)
           3.   Emissions would then  be  calculated to  be:
               (0.075)(1,316,000)7(2,000)   =                49.4  tons/yr
       C.   Coking  (Door and  Topside  Leaks)
           1.   BACT is  to employ good operating  and maintenance practices
               to  minimize such  occurrences.   U.S.  Steel  does  an excellent
               job of minimizing emissions  on  their existing  batteries.   It
               is  assumed that U.S.  Steel  will control  these  emissions in a
               comparable fashion on their new battery.   However,  it  should
               be  pointed  out that tall  oven doors  (new battery) are  much
               harder to seal than the doors on  the existing  batteries.
           2.   Emission factor of 0.0482 Ibs/ton  coal was obtained from EPA
               calculations  on the new coke battery coal  flow.   (See
              Attachment  I)
           3.   Emissions  would then  be calculated to  be:
               CO.0482)(1,316,000) ,/(2,000)  =                31.7  tons/yr
       D.   Pushing
           1.  BACT would  be use of  shed,  hood,  enclosed  car,  or equivalent.
              U.S. Steel  has proposed to employ  an enclosed car.

                                 A-2.2-4

-------
    2.  Emission factor of 0.3675 Ibs/ton of coke was obtained from
        EPA calculations at the new coke battery coal flow (see
        Attachment I)
    3.  Emissions would then be calculated to be:
        (.3675)(900,000)/(2,000) =                  165.4 tons/yr
E.  Quenching
    1.  BACT would be dry coke quenching which would result in an
        emission reduction of approximately 97.5%.  U. S. Steel has
        proposed only to use baffles in the quenching tower.
    2.  Emission factor of 0.39 Ibs/ton of coal was obtained from
        Attachment 1 to Appendix A-2.
    3.  Emissions are then calculated to be:
        (1.2)(1,316,000)/(2,000) =                  789.6 tons/yr
F.  Underfiring Stacks
    1.  BACT is good operating and maintenance practices to minimize
        improper combustion and oven wall leakage or control  device
        (ESP, etc.).
    2.  An emission factor of 0.119 Ibs/ton of coal  was obtained
        from EPA calculations on the new coke battery coal  flow
        (see Attachment I).
    3.  Emissions are then calculated to be:
        (0.119)(1,316,000)/(2,000)  =                 78.3 tons/yr
G.  Coal Storage Piles
    1.  BACT would be water sprays on storage piles.
    2.  No emissions because all coke for new battery stored  in silos
        rather than dumped on ground.  Emission from silo included
        in coal handling emission factor.
H.  Coke Handling
    1.  Emissions from coke screening are accounted for in blast
        furnace stockhouse calculations.  Coke screening is done in
        stockhouse.
    2.  U. S.  Steel  has proposed BACT (dry collector) at coke transfer
        building.
    3.  See EPA calculations

                         A-2.2-5

-------
         4.   Emissions are calculated  to  be:
             (0.00920)0,366,560)7(2,000)  =              6.3  tons/yr
     I.   Total  Emissions  from  Coke  Battery:
             99.4 + 49.4  + 31.7  + 165.4 +  789.6 +  78.3 + 6.3 =
                                                        1,220.1  tons/yr
IV-   Total  emissions  from  new  construction are:
     888.1  + 239.3 +  1,220.1 =                           2.347.5  tons/yr
                            A-2.2-6

-------
               APPENDIX A-2.3
EMISSIONS FROM NEW FACILITIES IF BACT APPLIED

-------
            EMISSIONS FROM NEW FACILITIES IF BACT APPLIED
I.    If BACT were applied to the following emissions points,  the corres-
     ponding emission reductions would result:
     A.  Blast Furnace Casthouse
         1.  BACT would result in the following emissions:
         (0.25 lbs/ton)+0,803,000 TPY)/(2,000  Ib/ton)  = 225.4 tons/yr
         2.  Emissions shown in Appendix A-2.2  = 392.2  tons/yr
         3.  Emission reduction = (392.2 - 225.4) =   166.8 tons/yr
     B.  Blast Furnace Material Loading
         1.  BACT would result in the following reduction in  the emission
             rates calculated in Appendix A-2.2
         (0.99)*(153.3 tons/yr) =                     151.8 tons/yr
     C.  Q-BOP Fugitive Emissions
         1.  BACT would result in the following reduction in  the emission
             rate calculated in Appendix A-2.2.
         (0.99)*(234.6 tons/yr) =                     232.3 tons/yr
     D.  Coke Battery Pushing
         1.  BACT would result in the following reduction in  the emission
             rate calculated in Appendix A-2.2.
         (0.97)+(165.4 tons/yr) =                    160.4 tons/yr
     E.  Coke Battery Quenching
         1.  BACT would result in the following emissions:
         (l.2**lbs of emissions/ton of coal  charged)(l  - .975)  = .03  Ibs/ton
         (,03 lbs/ton)(l,316,000 tons of coal charged)/(2,000 Ibs/ton)  =
                                                     19.7  tons/yr
         2.  Emissions shown in Appendix A-2.2  =     789.6 tons/yr
         3.  Emission reduction = (789.6  - 19.7)  =    769.9 tons/yr
     F.  Coke Battery Underfiring Stacks
     * Region emission reduction estimate
     + EPA memorandum - Air Quality Impact of an Integrated Steel Mill
    ** See Attachment I

                               A-2.3-1

-------
           1.   BACT  would  result  in  the  following  reduction  in  the emissions
               calculated  in  Appendix  A-2.2
           (0.5)*(78.3 tons/yr) =                         39.2  tons/yr
 II.    Total  Emission  Reduction =                         1, 520.4tons/yr
III.    Emissions  from  new  facilities when all emissions  points  employ
       BACT =
       2,347.5  tons/yr  (Appendix A-2.2)  - 1,520.4  tons/yr (emissions  reductions)
                                                         827.1  tons/yr
      ^Regional  emission reduction estimate

                                A-2.3-2

-------
                 APPENDIX A-2.4
 EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX
 AT THE COMPLETION OF THE MODERNIZATION PROGRAM

-------
               EMISSIONS FROM THE PRIMARY PRODUCTION
      FACILITIES (COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY
      COMPLEX AT THE COMPLETION OF THE MODERNIZATION PROGRAM

I.    Blast Furnaces - All  Iron Produced at Fairfield
     A.   Top Gas
         1.  For furnaces  5, 6, and 7 at Fairfield the control  equipment
             is the same as for the pre-1972 calculations.
         2.  Emissions for 5, 6, and 7 furnaces will be the same except
             for changes in production.
         3.  Emissions for 5, 6, and 7 furnaces equal:
         (355.7 tons/yr -  pre-1972 emission)(1,697,000 tons/yr  Production Post Mod.)
                                            (1,735,600 tons/yr  Production pre-1972)
             = 347.8 tons/yr
         4.  Emissions for new furnace same as  calculated  in Appendix  A-2.2
             =56.3 tons/yr
         5.  Total  = 347.8 + 56.3 =                       404.1  tons/yr
     B.   Cast House
         1.  No control equipment employed.
         2.  See Appendix  A-2.2 for source of emission factor.
         3.  Emissions equal:
         (0.435)(3,500,000)/(2,000) =                     761.3  tons/yr
     C.   Stockhouse
         1.  Emissions for 5, 6, and 7 furnaces the  same as  for  pre-1972
             except for production adjustment.   Emissions  equal:
         (21.7 tons/yr) (];^000) =                      21.2 tons/yr
         2.  Emissions for new furnace same  as  in  Appendix A-2.2  = 22.5 tons/yr.
         3.  Total  = 21.2  + 22.5 =                        43.7 tons/yr
     D    Material Loading
         1.  Emission  for  5, 6,  and 7 furnaces  the same as for pre-1972
             except for production adjustment.   Emissions  equal:
         (147.5  tons/yr)(]|697|000)  =                     144.2  tons/yr
         2.   Emissions for new furnace same  as  in  Appendix A-2.2
             =  153.3 tons/yr.
         3.   Total  = 144.2 + 153.3 =                      297.5  tons/yr
                              A-2.4-1

-------
      E.  Leaks and Kicks
          1.  Emissions for 5, 6, and 7 furnaces the same as for pre-1972
              except for production adjustment.   Emissions equal:
          (217.0 tons/yr) [j^97,000j =                    212.1 tons/yr

          2.  Emissions for new furnace same as  in Appendix A-2.2
              = 225.4 tons/yr
          3.  Total = 212.1 + 225.4 =                     437.5 tons/yr
      F.  Storage Piles
          1.  See Appendix A-2.2 for source of emission factor
          2.  Emissions equal:
          ,-(411,000)(1,065)-. 7 7, ,  [-(551,000)0,065)-.  9 R7 ,
          L       2,000     J ^'/b   L      2,000     J  ^'b/
          .-(735,000)0,100)-. ? 7 ,  r(l,803,000)011)-. ^ ., _ , ~q~
          L       2,000     J       L        2,000   J   4  ~ b»jyj'lbb
          (5,393,165)(.27)(.10/2,000) =                    72.8 tons/yr
      G.  Total  for Iron Production
          404.1  + 761.3 + 43.7 + 297.5 + 437.5 + 72.8 =   2,016.9 tons/yr
II.    Q-BOPs - All  Steel  Produced at Fairfield
      A.  Stack
          1.   See Appendix  A-2.2 for source of emission factor
          2.   All  Q-BOP's use high  energy wet scrubbers
          3.   Emissions equal:
          (0.0081)(3,500,000)/(2,000)  =                    14.2 tons/yr
      B.  Fugitive
          1.   Emissions for each vessel  of the three  vessel  Q-BOP shop
              are the  same  as  calculated for the new  Q-BOP vessel  in
              Appendix  A-2.2  =  234.6 tons/yr
          2.   Emissions equal:
          (234.6  tons/yr)(3)  =                             703.8 tons/yr
      C.   Total Emissions for  Steel  Production
          14.2 +  703.8  =                                   718.0 tons/yr
                                A-2.4-2

-------
III.  Coke Plant - All Coke Produced at Fairfield
      A.  Coal Handling
          1.  Assume BACT for coal handling on all  batteries
          2.  See Appendix A-2.2 for source of emission factor
          3.  Yield taken from data provided by U.  S.  Steel  (.6839)
          4.  Emissions equal:
          (0.085)(1,098,0007.6839)/(2,000)  = 68.2 + 99.4 =
                                                          167.6 tons/yr
      B.  Charging
          1.  Stage charging or equivalent employed on all  batteries
              Considered to be BACT
          2.  See Appendix A-2.2 for source of emission factor
          3.  Emissions equal:
          (0.075)(1,098,OOO/.6839)/(2,000)  = 60.2 + 49.4 =
                                                          109.6 tons/yr
      C.  Coking (Door and Topside Leaks)
          1.  BACT (good operating and maintenance  practices)  employed
              on all batteries
          2.  See Appendix A-2.2 for source of emission factor.   Emission
              factor adjusted for SIP compliance requirements
          3.  Emissions equal:
          (0.0757)0,098,0007.6839)7(2,000)  = 60.8  + 31.7 =
                                                         92.5 tons/yr
      D.   Pushing
          1.   BACT  not employed.   However, credit is given for applying
              RACT  (operational  techniques)  for  all   batteries
          2.   See Appendix A-2.2  for  source  of emission  factor
          3.   Emissions  equal:
          (2.25)(1,098,0007.6839)7(2,000) =  1,306.2  + 165.4 =
                                                         1.971.6 tons/yr
      E.   Quenching
          1.   BACT not employed.  However, credit is given for using
              baffles  in all  quench towers.
                               A-2.4-3

-------
          2.  See Appendix A-2.2 for source of emission factor
          3.  Emissions equal:
          (1.2)(1,998,0007.6839)/(2,000)  =                  1,752.9 tons/yr
      F.   Underfiring Stacks
          1.  BACT not employed
          2.  See Appendix A-2.2 for source of emission factor
          3.  Emissions equal :
          (0.119)(1,998,000/.6839)/(2,000)  =               173.8 tons/yr
      G.   Storage Piles
          1.  Water sprays for  surface  moisture to  minimize emissions
          2.  See Appendix A-2.2 for source of emission factor
          3.  Emissions equal:
          (0.27)(0.1)(1,093,000/.6839)7(2,000)  =            21.7 tons/yr
      H.   Coke Screening
          1.  See EPA calculations  for  emission factor (Attachment to
              Appendix A-2)
          2.  Coke transfer building (new)                  6.3 tons/yr
          3.  Emissions equal:
              a.   Coke screening old batteries
              (.00542)(1,098,000/.6839)/(2,000) =           4.4 tons/yr
              b.   Total
              4.4 + 6.3 =                                   10.7 tons/yr
      I.   Total  Emissions  From  Coke  Battery:
          167.6  + 109.6 +  92.5  + 1,971.6  +  1,752.9  +  173.8  + 21.7 +
               10.7 =                                      4,300.4 tons/yr
IV.    Total  Emissions from Fairfield-Ensley Complex
      2,016.9  +  718.0 + 4,300.4 =                           7,035.3 tons/yr
 V.    Reduction  in Pre-1972 Emission  Level
      f63,068.7  - 7,035.3-.  .    _
      L        63,068.7   J  10°  " 88'8/°
                                A-2.4-4

-------
                 APPENDIX A-2.5
 EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX
 IF CONTROL DEVICES HAD BEEN EMPLOYED ON PRE-1971
OPERATIONS RATHER THAN MODERNIZING THE COMPLEX

-------
           EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
        (COKE,  IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX IF
       CONTROL  DEVICES HAD BEEN EMPLOYED ON PRE-1971  OPERATIONS
                  RATHER THAN MODERNIZING THE COMPLEX
 I.    Blast Furnaces
      A.   Fairfield - Control equipment and production for Fairfield
          furnaces would be exactly the same as used  for pre-1972
          emission calculations.  Thus, emissions would be the same
          as those calculated in Appendix A-2.1
                                                   1,155.9 tons/yr
      B.   Ensley
          1.  It is assumed that all blast furnace top gas would have
              to be cleaned to the 98% efficiency at  which the blast
              furnace stove gas was cleaned in order  for compliance to
              be achieved.
          2.  Top gas emission would then be:
              [(4)(295,000 x 530/810)(60)(24)(365)/(2,000)(7,000)] .02
                                                   579.7 tons/yr
          3.  The remaining emission points would be  the same as those
              calculated in Appendix A-2.1 (total = 553.2 tons/yr).
          4.  Total emissions would then be:
              579.7 + 553.2 =                      1,132.9 tons/yr
      C.   Total  for Fairfield-Ensley Complex
          1,155.9 tons/yr + 1,132.9 tons/yr =      2,288.8 tons/yr
II.    Open Hearth Furnaces
      A.   Fairfield - Stack
          1.  Application of an ESP would result in an outlet grain loading
              of .02 grains/SCF - per U.S. Steel.
          2.  Stack flor rates (114 response) for open hearth furnaces
              were 40,000 CFM at 600°F.
          3.  Emissions equal:
              (12)(40,000)(530/1,060)(60)(24)(365)(.02)7(7,000)(2,000)
                                                   180.2 tons/yr

                             A-2.5-1

-------
       B.   Fair-field  -  Fugitive
           1.   No  logical  control  equipment which  can be applied.   There-
               fore,  emissions would  be  the same as  those calculated in
               Appendix A-2.1.   =                    6,426 tons/yr
       C.   Total  for  Fairfield = 180.2 + 6,426  =    6,606.2 tons/yr
       D.   Ensley  - Stack
           1.   Application of an ESP  would  result  in an outlet grain loading
               of  .02 grains/SCF - per U.S.  Steel.
           2.   Stack  flow  rate  (114 response) for  open hearth furnaces were
               41,200 CFM  at  600°F.
           3.   Emissions equal:
               (5)(41,200)(530/1,060)(60)(24)(365)(.02)/(7,000)(2,000)
                                               =    77.3 tons/yr
       E.   Ensley-Fugitive
           1.   No  logical  control  equipment which  can be applied.   Therefore
               emissions would be  the same  as those  calculated in  Appendix A-2.1
                                                    1,904 tons/yr
       F.   Total  for  Ensley = 77.3 +  1,904  =        1,981.3 tons/yr
       G.   Total  for  Fairfield-Ensley Complex
           6,606.2  +  1,981.3  =                       8,587.5 tons/yr
III.    Coke Plant  - All  Coke  Produced at Fairfield
       A.   Coal  Handling
           1.   Control  equipment and  production are  the same as  used for
               pre-1972 emission calculations.   Thus, emissions  would be the
               same as  those  calculated  in  Appendix  A-2.1
                                                    140.2 tons/yr
       B.   Charging
           1.   Stage  charging employed on all batteries
           2.   See  Appedix A-2.2 for  source of  emission factor.
           3.   Yield  taken from  data  supplied by U.S. Steel  (.6839).
           4.   Emissions equal:
               (0.075)(2,256,000)/.6839)/(2,000) =   123.7 tons/yr
       C.   Coking  (Door and Topside Leaks)
           1.   BACT (good  operating and  maintenance  practices) employed
               on all  batteries.
                                 A-2.5-2

-------
    2.  See Appendix A-2.4 for source of emission factor.
    3.  Emissions equal:
        (.0757)(2,256,000/.6839)/(2,000) =   124.9 tons/yr
D.  Pushing
    1.  BACT not employed.  However, credit is given for applying
        RACT (operation techniques) for all batteries.
    2.  See Appendix A-2.1 for source of emission factor.
    3.  Emissions equal:
        (2.25)(2,256,000)/(2,000) =          2,538.0 tons/yr
E.  Quenching
    1.  BACT not employed.  However, credit is given for using baffles
        in all quench towers.
    2.  See Appendix A-2.1 for source of emission factor.
    3.  Emissions equal:
        (1.2)(2,256.000)/.6839)/(2,000) =    1,979.2 tons/yr
F.  Underfiring Stack
    1.  BACT employed.
    2.  See Appendix A-2.2 for source of emission factor.
    3.  Emissions equal:
        (0.119)(2,256,OOO)/.6839)/(2,000) =  196.3 tons/yr
G.  Coke Screening
    1.  Assume dry collector employed.
    2.  See Appendix A-2.1 for source of emission factor.
    3.  Emissions equal:
        (.00542)(2,256,000)/(.6839)/(2,000) = 8.9 tons/yr
H.  Coal Storage
    1.  Storage piles will have enough surface moisture to minimize
        emissions (90% control).
    2.  See Appendix A-2.1 for source of emission factor.
    3.  Emissions equal:
        (0.27)(.l)[(2>(^39))]/(2aOOO) =    44.5 tons/yr
I.  Total  Emissions from Coke Production:
    140.2  + 123.7 + 124.9 + 2,538.0 + 1,979.2 + 196.3 + 8.9 + 44.5 =
                                             5,155.7 tons/yr

                          A-2.5-3

-------
IV.    Total  Emissions  from Fairfield-Ens ley Complex

      2,238.8 + 8,587.5  + 5,155.7  =                 16,032 tons/yr
 V.    Reduction in pre-1972  Emission  Level

      [63.068.7 -  16,032-.  1QO  =  74  6%
      L     63,068.7     J  IUU    ^M
                             A-2.5-4

-------
                     APPENDIX A-2.6
EMISSIONS ASSOCIATED WITH OPERATING ENSLEY BLAST FURNACES
AND OLD COKE BATTERIES AFTER COMPLETION OF MODERNIZATION

-------
              Emissions Associated with Operating the
         Ensley Blast Furnaces and the Old Coke Batteries
           After Completion of the Modernization Program


  I.   Blast Furnaces

      A.  Emissions would be the same as those calculated for the Ensley
          furnaces in Appendix A-2.5
                                                     =   1.132.9 tons/yr

 II.   Q-BOP Furnaces

      A.  Stack

          1.  See Appendix A-2.2 for source of emission factor.

          2.  Emissions equal:

              (0.0081)0,242,500)/(2,000)  =                 5.Q tons/yr

      B.  Fugitive

          1.  In February and March of 1975, U. S.  Steel  tested  the roof
              monitors of their Q-BOP shop.  The results  were that
              emissions averaged 2,174.8 Ibs per day.

          2.  Emissions equal:

              ,, ,7A R   3,404(daily production if old facilities operated)    365
              ^'l/4lb x 5,407(oven shop production  during Feb &  Mar 1975)    2,000

                                                           249.9 tons/yr

III.   Coke Batteries

      A.  Emissions would be the same as those calculated in  Appendix A-2.5
          except that Appendix A-2.5 emissions would have to  be  reduced to
          take into account only the emissions associated with the coke
          needed to operate the Ensley blast furnaces.

      B.  Emissions equal:

                        ,777,100 coke needed for Ensley blast furnace^
               5,15b./  4,256,000 Appendix A-2.5 coke production    '

                                                        1.775.9  tons/yr

 IV.   Total  Emissions

      1,132.9+5.0+249.9+1,775.9                =  3.163.7  tons/yr
                                A-2.6-1

-------
                         APPENDIX A-3
AIR QUALITY DISPLAY MODEL SOURCES IDENTIFIED FOR CONDITIONS 1-5

-------
          AQDM SOURCES IDENTIFIED FOR CONDITION 1
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
5C6.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3708.0
3708.0
3708.0
3708.0
3708.0
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)*
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Ensley-Top Gas (Boiler)
Blast Furnace-Ensley-Top Gas (Stove)
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens! ey-Leaks & Kicks
Open Hearth Furnace-Fairfi eld-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Ens! ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Open Hearth Furnacs-Ensl ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Stockhouse
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
                        A-3-1

-------
                   AQDM SOURCES IDENTIFIED FOR CONDITION 1

                SOURCE LOCATION
SOURCE
NUMBER
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(KILOMETERS)
HORIZONTAL VERTICAL
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.1
508.6
506.7
506.8
506.8
506.8
506.8
506.8
506.7
506.5
507.4
506.1
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3704.8
3704.3
3708.0
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.0
3708.7
3704.3
EMISSION SOURCE
Blast Furnace-Ensley-Cast House
Blast Furnace-Ensley-Cast House
Blast Furnace-Ensley-Cast House
Blast Furnace-Ens! ey-Stockhouse
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Storage Piles
Blast Furnace-Fairfield-Storage Piles
Open Hearth Furnace-Fairfield-Fugitive
Open Hearth Furnace-Ensley-Fugitive
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Coke Screening
Coke Plant-Fairfield-Coal Storage Pile
Blast Furnace-Fairfield Slag Handling
Hot Metal Mixer-Ensley
Hot Metal Mixer-Fairfield
*
61          507.3         3708.7     Blast Furnace-Ensley-Slag Handling

It was assumed that the top gas for the blast furnace at the Fairfield Works would be
considered a combined point source since only 400 ft separated the boiler and the
stove.  This is applicable to all  five conditions.
                                       A-3-2

-------
                          AQOM SOURCES IDENTIFIED FOR CONDITION 2
                SOURCE LOCATION
SOURCE           (KILOMETERS)
            HORIZONTAL    VERTICAL                   EMISSION SOURCE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3708.0
3708.0
3708.0
3708.0
3708.0
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Ensley-Top Gas (Boiler)
Blast Furnace-Ensley-Top Gas (Stove)
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Bl ast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfi el d-Casthouse
Blast Furnace-Fai rf i el d-Casthouse
Bl ast Furnace-Fai rf i el d-Stockhouse
Blast Furnace-Fairfi eld-Material Loading
Blast Furnace-Fai rfield-Material Loading
Blast Furnace-Fai rfield-Material Loading
                                       A-3-3

-------
                          AQDM SOURCES IDENTIFIED FOR CONDTION 2


                SOURCE LOCATION
SOURCE           (KILOMETERS)
NUMBER_	HORIZONTAL	VERTICAL	EMrSS_Ip_N_SpjJRCE.	

  40          507.4        3708.7      Blast Furnace-Ensley-Casthouse
  41          507.3        3708.7      Blast Furnace-Ensley-Casthouse
  42          507.4        3708.7      Blast Furnace-Ensley-Casthouse

  43          507.3        3708.7      Blast Furnace-Ensley-Stockhouse
  44          507.4        3708.7      Blast Furnace-Ensley-Material  Loading
  45          507.3        3708.7      Blast Fumace-Ensley-Material  Loading

  46          507.4        3708.7      Blast Furnace-Ensley-Material  Loading
  47          507.3        3708.7      Blast Furnace-Ens!ey-Storage Piles
  48          506.5        3704.8      Blast Furnace-Fairfield-Storage Piles

  49          506.1         3704.3      Open Hearth Furnace-Fairfield-Fugitive
  50          508.6        3708.0      Open Hearth Furnace-Ensley-Fugitive
  51          506.7        3705.2      Coke Plant-Fairfield-Coal  Handling

  52          506.8        3705.2      Coke Plant-Fairfield-Charging
  53          506.8        3705.2      Coke Plant-Fairfield-Coking
  54          506.8        3705.2      Coke Plant-Fairfield-Pushing

  55          506.8        3705.2      Coke PIant-Fairfield-Quenching
  56          506.8        3705.2      Coke Plant-Fairfield-Coke  Screening
  57          506.7        3705.1       Coke Plant-Fairfield-Coal  Storage Pile

  58          506.5        3705.0      Blast Furnace-Fairfield-Slag Handling
  59          507.4        3708.7      Hot Metal  Mixer-Ensley
  60          506.1         3704.3      Hot Metal  Mixer-Fairfield

  61          507.3        3708.7      Blast Furnace-Ens!ey-Slag  Handling
                                       A-3-4

-------
AQDM SOURCES IDENTIFIED FOR CONDITION 3
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
SOURCE LOCATION
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.8
506.8
506.7
506.7
506.8
506.8
506.1
506.5
506.5
506.5
506.5
506.5
506.5
506.5
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.7
506.8
506.8
506.8
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.3
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
3708.7
3708.7
3708.7
3708.7
3708.7
3708. 7
3708.7
3708.7
3704.8
3705.2
3705.2
3705.2
3705.2
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Ens! ey-Top Gas (Boiler)
Blast Furnace-Ens! ey-Top Gas (Stove)
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens ley-Leaks & Kicks
Blast Furnace-Ensl ey-Leaks & Kicks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Q-BOP-Fairfi eld-Stack
Blast Furnace-Fairfield-Casthouse
Bl ast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfi el d-Stockhouse
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensley-Casthouse
Blast Furnace-Ensl ey-Stockhouse
Blast Furnace-Ens! ey-Material Loading
Blast Furnace-Ensl ey-Material Loading
Blast Furnace-Ensl ey-Material Loading
Blast Furnace-Ens ley-Storage Piles
Blast Furnace-Fairfi eld Storage Piles
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
               A-3-5

-------
                          AQDM SOURCES IDENTIFIED FOR CONDITION 3


                SOURCE LOCATION
SOURCE           (KILOMETERS)
NUMBER_	HORIZONTAL _ VERTICAL	EMISSION. SOURCE	

  37          506.8        3705.2      Coke Plant-Fairfield-Quenching
  38          506.8        3705.2      Coke Plant-Fairfield-Coke Screening
  39          506.7        3705.1       Coke Plant-Fairfield-Coal Storage Piles

  40          506.1        3704.3      Q-BOP-Fairfield-Fugitive
  41          506.5        3705.0      Blast Furnace-Fairfield-Slag Handling
  42          506.1        3704.3      Hot Metal  Mixer-Fairfield

  43          507.3        3708.7      Blast Furnace-Ensley-Slag Handling
                                      A-3-6

-------
          AQDM SOURCES IDENTIFIED FOR CONDITION 4
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
506.8
506.8
509.1
509.4
507.4
507.3
507.4
506.8
506.4
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3705.1
3708.6
3708.7
3708. 7
3708.7
3708.7
3705.2
3704.3
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfield-Top Gas (New)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks (New)
Q-BOP-Fairfi eld-Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Blast Furnace-Ensley-Top Gas
Blast Furnace-Ensley-Top Gas
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Blast Fumace-Ensley-Leaks & Kicks
Coke Plant-Fairfield-Preheater
Boilers-Fairfield
Blast Furnace-Fairfi el d-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfield-Casthouse (New)
Blast Furnace-Fairfi el d-Stockhouse
Blast Furnace-Fairfield-Stockhouse (New)
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading (New)
Blast Furnace-Storage Piles
Blast Furnace-Storage Piles
Q-BOP-Fairf iel d-Fugi ti ve
Coke Plant-Fairfield-Coal Handling
£oke Plant-Fairfield-Charging
toke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
                        A-3-7

-------
          AQDM SOURCES IDENTIFIED FOR CONDITION 4
SOURCE LOCATION
SOURCE
NUMBER
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
(KILOMETERS)
HORIZONTAL VERTICAL
506.8
506.7
506.8
506.7
506.7
506.7
506.7
506.7
506.7
506.8
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.1
506.5
507.3
3705.2
3705.1
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3704.3
3705.0
3708.7
EMISSION SOURCE
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Blast Furnace-Ens! ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Stockhouse
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensl ey-Storage Piles
Blast Furnace-Fairfield-Slag Handling
Hot Metal Mixer-Fairfield
Blast Furnace-Ensl ey-Slag Handling
                         A-3-8

-------
          AQDM SOURCES IDENTIFIED FOR CONDITION 5
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
506.8
506.4
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.8
506.7
506.8
506.5
506.1
507.3
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3704.8
3705.2
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.0
3704.3
3708.7
EMISSION SOURCE
Blast Furnace-Fairfi eld-Top Gas (Boiler and Stove)
Blast Furnace-Fairfield-Top Gas (New)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks (New)
Q-BOP-Fairfi eld-Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Boilers (9 & 10)-Fairfield
Coke Plant-Fairfield-Preheater
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse (New)
Blast Furnace-Fairfield-Stockhouse
Blast Furnace-Fairfield-Stockhouse (New)
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading (New)
Blast Furnace-Storage Piles
Blast Furnace-Storage Piles
Q-BOP-Fai rf iel d-Fugi ti ve
Coke Plant-Fairfield-Coal Handling
Coke PI ant-Fa irfi eld-Charging
Coke PI ant- Fa irfi eld-Co king
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Blast Furnace-Fairfi eld-Slag Handling
Hot Metal Mixer-Fairfield
Blast Furnace-Ensley-Slag Handling
                       A-3-9

-------
               APPENDIX  A-4

COMPUTER MODEL USING LARGE AND SMALL  GRIDS
      FOR CONDITIONS 1,  2, 3,  4,  and  5

-------
                APPENDIX A-4.1



COMPUTER MODEL USING SMALL GRID FOR CONDITION 1

-------
                           U.S. STEEL   FAIRFIELO OPERATIONS    CONDITION  NO.  1
SOURCE DATA
* *
* SOURCE * SOURCE LOCATION
* NUM8ER * (KILOMETERS)
* * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•

1
2
3
5
6
7
3
9
10
11
12
13
14
15
16
1 7
18
19
20
21
23
25
26
27
24
29
30
31
32
33
34
35
36
37
38
39
ao"
41
42
43
44
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ft
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
" 507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.1
508.6
506.7
506.8
506.8
506. P
506.8
506.8
506.7
506.5
507.4
506.1
507.3

A
A
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
*
A

3704.
3704.
3704.
3705.
3708.
370S.
3708.
3708.
3708.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3708.
3703.
3708.
3708.
3708.
3705.
3704.
3705.
3705.
3705.
3705.
3704.
3704.
3705.
3704.
3704.
3704.
3705.
3708.
3708.
3708.
3708.
3708.
370a.
3708.
3708,
3704.
3704.
3708.
3705.
3705.
3705.
3705.
3705.
3705.
3705.
3705.
3708.
3704.
3708.

8
8
9
0
6
7
7
7
7
3
3
3
3
3
3
3
3
3
3
3
3
0
0
0
0
0
6
4
2
1
2
1
3
9
0
9
a
9
0
7
7
7
7
7
7
7
7
8
3
0
2 •
2
2
2
2
2
1
0
7
3
7

A
* SOURCE AREA A
A SQUARE »
* KILOMETERS *
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ft
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00'
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.09
.01
.36
.36
.36
.36
.36
.06
.06
.30
.01
.01
.30

*
*
*
*
»
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.1
ANNUAL SOURCE
EMISSION HATE
(TONS/DAY)
502 PART
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
..000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-1
.975
.177
.177
.241
8.101
.635
.157
.143
.131
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
5.216
5.216
5.216
5.216
5.216
.206
.206
.317
.317
.590
.122
.307
.307
.420
.050
.120
.120
.164
.238
.249-
.228
.041
.093
.099
.089
,.069
'.100
17.605
5.216
.217
6.778
.994
6.953
5.422
.024
.122
.137
.132
.333
.107

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

HT
("0
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.6
49.6
61 .0
61.0
61.0
61 .0
61.0
61.0
61.0
61.0
61.0
61.0
61.0
61.0
54.1
54.1
54.1
54.1
54.1
68.6
69.6
63.0
68.0
76.0
76.0
23.0
23.0
23.0
.5
49.0
49.0
51.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
30.0
30.0
9.1
24.0
9.1
30.0
61.0
3.0
3.0
3.0
30.0
30.0
3.0

STACK DATA
DTAM VEL
CM) CM/SEC)
2.4
1 .2
1.2
1.1
4.1
5.3
1.2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.7
2.7
2.7
2.7
3.8
3.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

7.6
9.3
9.3
15.5
6.4
5.5
9.0
9.0
9.0
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
10.2
10.2
7.2
3.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

A
A
TEMP *
COEG.lO »
505. *
450. A
450. *
450. A
450. *
672. A
450. A
450. A
450. A
539. A
589. A
589. A
599. A
589. A
589. A
589. *
589. *
•589. A
589. A
589. A
589. A
866. *
866. *
866. A
866. *
866 . »
477. 'A
477. A
533. »
533. *
533. *
477. A
0. *
0. A
0. A
0. *
0. A
0. A
0. «
0. *
0. +
0. A
0. A
0. A
0. A
0. A
0. A
0. A
0. A
0. »
0. A
0. A
0. A
0. A
0. A
0. A
0. •
0. A
0. A
0. A


-------
  U.S.  STEEL    FAIRF1ELO  OPERATIONS    COMDITKHM Mil.  1



KECEPTllP.  DATA

LOCATIONS  TO  BE USED AS WFCEPTUPS IN  AODfTIUru Tfl  THt  1 i? 1  »EC TANPl.M. Af» RKIU  UJCATIHM3

  KECEPTOW       K-CQOROINATE       Y-COO»UINATE
                 (KILIIMETERS)       (K ILO^F T EPS )
     \2?            505.6               3702.1

     123            5(16.1               3706.5

     l^a            506.6               3703.0

     i
-------
                     U.S.  STEFL
FAIPFIfcLL)
                                                            CONDI TlflU  Mil.  1
              MFTt'URfJLUGICAL INPUT DATA  FOW THt ANNIIAl  SEASflN
MIXING DEPTH = IbOO. METFHS
AMBIENT  TEMPERATURE =   29fl. DFRF,fcEP , K U L V 1 N
AMBIENT  PRESSURE =  1000.
STAHILITY  CLASS  1

WIND DIRECTION
N
NNfc
ME
EME
E
ESt
SE
SSE
S
SSW
Sl»
WSW
ft
WNul
MM
NN*/

1
.000«
.POOb
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.oooa
.0002
.0001
. 0 0 0 b
.0003
.000?
.ooos

'I
. 0 0 (1 7
.0003
.OOOfl
.0003
.000-5
.0003
.0002
.ooos
.0003
.0003
.0002
.0003
.OOdft
.0003
.OOOb
.0005
wlNn.SPF.fci)
I
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
CLASS
a
.0000
.0000
.0000
.0000
. 0 0 (1 0
.0000
. I) 0 0 0
.0000
.0000
.0000
.0000
.0000
. I) 0 0 0
. 0 (1 0 0
.0000
. U 0 0 0

5
.0000
.000 1)
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 IJ 0 0
.0000

h
.0000
.OOPO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 (1 0
. 0 0 0 0
. 0 0 0 0
.0000
.0000
.000 0
                                  A-4.1-3

-------
                    U.S.  STEtL    FA1RFIELO OPEP4TIOMS   CUUOITION NU. 1
             METEOROLOGICAL  INPUT  DATA  FHR  THE  ANMUAl. SMSON
STABILITY CLASS  2

WIND DIRECTION
M
NNt
NE
ENE
E
ESE
SE
SSE
S
SSrt
SW
WSrt
|V
>VNW
NW
NNrt

1
.0016
.0020
.0013
.0015
.002U
.0016
.0015
.00?0
.0023
.0019
.001 1
.0010
.0021
.0014
.0017
.0013

2
.003h
.0033
.00?!
.0023
. 0 0 (t 3
.0023
.0027
.0027
.002°
.0021
.00 IP
.ooia
.0035
.002"
.0031
.0032
KlNOSPtFI)
i
.0021
.0010
.0012
.0007
.002S
.0012
.0007
. o u l a
.0010
.0010
.0005
.0007
.0020
.001 ?
.001 *
.001 1
CLASS
U
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
.0000
.0000
.0000

5
. (1000
. 0 () 0 ( I
.0000
.000 0
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
. n u o o
.0000
.0000
.0000
.0000

f,
.000 (I
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.000 0
                                 A-4.1-4

-------
                      U.S. b T11 L
DPtRM ll.r-JS   CJMDITIUN "J'.l.  1
              MEIFURULUGJCAL  IiM^tll l)*IA  FOP THfc ANMJAL StASHM
STABILITY  CLASS

WIND 0 INACTION
IM
NMfc'
ME
ENE
e
ESt
SE
sst
s
SSW
Srt
WSW
.11
V4NM
NM
NNw

1
.0013
.00?«*
.oosa
.OOl'a
.0021
.0014
.0009
.0080
.ooia
.0006
,000«
.0007
.0008
.0005
.0008
.0007

2
.001H
.0013
.0017
hlMOSPEFl)
3
.0050
.0034
.001 b
.0010
.0053
.0025
.00?9
.005S
.0034
.0030
.00?7
.0027
.003H
.003?
.003f
.0040
CLASS
4
.0007
.GOO'S
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.0008
.0006
.U002
.0005
.0001

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OOOU
.0001
.0001
. n o o o
.0000
.0001
.0000
. o n o o
.0000

b
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                     A-4.1-5

-------
                     U.S. STEkL   FATRFTELD UPERATTOMS    CONDITION  Mil.  1
              METEO«'ILOGIC*L INPUT  DATA  KOR THt ANNUAL  Sk'ASMN
STABILITY CLASS
                                                   CLASS
WIND DIRECTION
N
MNt
NE
EME
F.
ESE
SE
SSE
S
ssw
sw
rtSh
rt
WMrt
NW
NNW
1
.0023
.0029
.0021
.0023
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.0011
.0018
.0010
.0017
.0016
2
.OOH5
.0066
.0054
.0043
.0116
.0040
.0056
.0075
.0069
.0049
.0028
.0038
.0073
.0035
.0055
.0045
3
.0162
. 0 0 '1 6
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.0096
.0097
4
.0114
.OOJ5
.0004
.0009
.0041
.0029
.007 1
.0093
.0122
.0115
.0076
.0045
.009fl
.00(54
.0
-------
                                  U.S. STEEL   FAIRFIELO OPERATIONS   CONDITION NO.
INPUT REGRESSION PARAMETERS ARE:




     POLLUTANT           Y-INTERCEPT
    PARTICIPATES
.0
                SLOPE
                                                1 .0000
                                 A-4.1-7

-------
u.s.  STEEL
FAIPFIELD
                      COMUITTUN
*
*
RECEPTOR CONCErtTfcAT IU* DAT*
* *
* 9ECEPTJR *
* MUMBFrt *
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTCR LOCATION
* (KILOMETERS)
* MOklZ VERT

1
2
1
a
5
6
7
a
9
10
11
12
13
14
15
Ib
1 7
16
19
20
21
22
?3
24
25
26
27
28
29
3o
31
32
33
34
35
36
37
36
39
40
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

503.0
503.0
503.0
503.0
303.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504 .0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
+
*
*
*
+
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
ft

3701
3702
370?
3704
?705
3706
3707
3708
370P
3710
371 1
3701
3702
3701
3704
37D5
3706
3707
3708
3709
3710
3711
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3701
3702
3703
37UU
37U5
3706
3707

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
ft
ft
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
•ft
ft
it
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
ft
ft
*
*
ft
ft
ft
ft
ft
ft
ft
*
ft
*
*
*
ft
EXPECTED ARITHMETIC r-'tAN *
*
(MCRQGKAMS/CU. i-'EUR) *
sna PAKTICULATER *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
K
*
A
*
*
*
*
*
*
*
*
A
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*

1
-------
U.S.  STEEL
             FAIRFIELD OPERATIONS
COwl'ITUiN NCI. 1
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTUR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
K
*
*
*


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
frl
62
63
64
65
66
67
68
60
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

506.0
506.0
b 0 b . 0
506.0
507.0
5U7.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
508.0
508.0
bOh.O
508.0
506.0
508.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
50°.0
509.0
510.0
510.0
510.0
*
*
*
*
*
*
*
*
*
#
*
*
*
*
*
1C
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
lit
*
*
*
*
*
*
*
*

3708.0
3709.0
3710.0
3711.0
3701 .0
37o2.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3705.0
3703.0
*
*
*
*
*
*
*
*
*
*
*
IT
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
+
EXPECTED ARITHMETIC MF.AN *
*
C" ICROGRAN'S/CU. METF") *
SO? PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
A
*
*
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*

170.
ll)«.
75.
61 .
1 13.
152.
213.
417.
334.
?99.
224.
24P.
132.
t)4.
61 .
68 .
8°.
107.
160.
193.
Ib6.
?27.
292.
123.
77.
52.
47.
55.
71 .
89.
103.
91 .
99.
127.
bU.
53.
40.
37.
44.
46.
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
It
it
*
+
*
*
*
*
ft
*
*
*
*
*
                             A-4.1-9

-------
U.S.  STEtL   FAIRF1ELU OPERATIONS    COMDITiONi NO. 1
*
* RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NU^riEU *
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ir
«
*
*
it
*
*
lit
*
*
*
if
it
*
*
*
*
•*
*
*
*
*
*
*
*


M
ft2
83
84
85
86
87
86
89
90
91
92
93
94
95
96
97
98
99
1 00
101
102
103
1 04
105
106
107
108
109
1 1 0
1 1 1
1 12
113
114
1 15
1 1ft
1 17
118
119
120
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
it
it
*
it
it
*
*
RECEPTOR LOCATION
(KILOMETERS)
riOh'IZ VERT

510.0
510.0
510.0
510.0
510.0
510.D
510.0
510.0
511.0
511.0
511.0
5H.O
511.0
511.0
511.0
511.0
511.0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
51?. 0
*
*
*
K
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
370U.O
3705.0
37U6.0
3707.0
3706.0
3709.0
3710.0
3711.0
37ul .0
3702.0
3703.0
37H4.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701 .0
3702.0
3703.0
3701.0
3705.0
3706.0
3707.0
370M.O
3709.0
37)0.0
*
*
*
*
*
*
nr
it
*
it
*
*
*
*
It
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*•
*
*
*
EXPECTED ARITHMETIC MEAN *
*
CMCRI
SCi2

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
..GKAMS/CU. '-'STEP) *
PARTICULATES *
*
*
*
*
*
*
*
it
it
it
*
*
*
w
,
*
*
f
it
*
*
*
*
*
4
It
w
*
*
*
*
*
*
*
*
*
*
*
*
*
*

63.
68.
5S.
19.
61.
10.
33.
2«.
31.
3d.
36.
16 .
52.
42.
35.
37.
ib.
23.
*?.
23.
25.
32.
38.
41 .
31.
2B.
27.
22.
1».
17 .
20.
22.
27.
1,?.
34.
29.
el.
22.
19.
15.
it
*
*
*
*
*
*
*
it
it
it
*
*
*
*
*
*
it
*
*
*
*
•*
*
*
n
*
*
*
*
*
*
*
*
*
*
*
*
^
*
*
                           A-401-10

-------
  U.S. STEEL
               FATHFIF.LD  OPERATIONS
                                       CONDITION N'O. 1
                  RECEPTOR  CONCENTRATION OATA
*          *
* RECEPTOR *
*  NUMbER  *
RECEPTOR LOCATION
                HXPECTtO
                                                MEAN
                  (K UOMETERS)
                            VERT
                             (MICPOGRAMS/CII.  MtTER)
                             SO?         PAhTICULATES
    121
        *
 513.0  *
 S05.b  *
 •506.1  *
37H.O   *
570?.l   *
370^.5   *
               13.
              3?a.
              31 1 .
                506.6   *
                50«.«   *
                507.6   *
           3703.a
           3702.0
           370?.a
                                40 f>.
                                2H1 .
                                ?0a.
    127
    128
    129

    130
 504.6
 50U.O
 504.a

 505.3
3704.0
3705.3
3703.1

3708.4
0.
0.
0.

0.
42?.
?32.
350.

1 3fl.
                                A-4.1-11

-------
  U.S. STEEL   FMRFIELO OPERATIONS    CDiMDITlPIv 'MO.  1




SOURCE CONTRIBUTIONS TO FIVE MAXIMUM   RECEPTORS




ANNUAL   PARTICIPATES




;-iICROG*A"S PER CUPIC
* SOURCE * *
* *
* 1 *
* *
* a *
* *
4 3 *
4 4
* 44
4 4
* 5
* *
4 6 *
4 4
474
* Ik
4 8 4
4 4
4 94
4 4
4 10 4
* *
* 11 *
* *
* 12 *
* *
4 13 4
* *
* 14 *
* *
* 15 *
* *
* 1 fe *
* *
* 17 *
* *
* 18 *
* *
4 19 .
4 4
* 20 4
4 4
* 21 4
4 4
IECEPTOR
37
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0345
.00 7,
.0014
.00 X
.0007
.00 X
.0008
.00 X
.0007
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 %
.0000
4 R
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
ErEr>TO*
38
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 *
.0293
.00 X
.0013
.00 X
.0005
.00 Z
.0005
.00 X
.0005
.00 X
.0000
.00 7.
.0000
.00 X
.0000
.00 7.
.OnOO
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
4 F
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
(ECEPTOR * (
26 *
. 0 0 X 4
.0015 *
.00 X 4
.0003 *
.00 X *
.0003 *
.00 X 4
.0004 +
.00 x 4
.0314 4
.00 % 4
.0015 *
.00 X 4
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
. 0 0 X *
.0031 *
.00 X 4
.0031 4
. 0 0 X 4
.0031 4
.00% 4
.0031 *
.00 X 4
.0031 «
.OCX 4
.0031 4
.00 X 4
.0040 4
.00% 4
.0040 4
.OCX 4
.0040 4
.00 X 4
.0040 4
.00 X 4
.0040 4
. 0 0 X 4
.0040 4
RECEPTOR * >
3fc *
.00 X. *
.0013 *
.00% 4
.000? *
.00 x *
.0002 *
.00 X 4
.0003 *
. 0 1 X *
. 0 J Q « 4
. 0 0 X *
.0018 4
.OCX *
.0008 4
.00% *
.000° *
.or, 7. 4
.0008 4
.00 x *
. 0 0 X 4
.009i 4
. 0 0 7. 4
.0093 *
. 0 0 X 4
.0093 *
.OdX t
.no 7. 4
.0093 *
.00 X 4
.0087 *
.0(1 X 4
.0087 4
. 0 0 X 4
.00% 4
.0087 4
.OCX *
.0087 4
. 0 fl '/. 4
.0087 4
RECEPTOR
.00 X
.00(4
.00 X
.0003
. 0 0 X
.0003
.00 X
. 0 0 u 4
.01 X
.0359
. 0 0 X
. 0 0 1 «
.00 %
.0008
.00 7.
.OOt'P
.00 X
.0007
.00 X
.012?
.00 %
.0122
.00 7,
.0122
. 0 0 X
.012?
» 'J U %
.0122
. 0 0 7.
.012?
.00 '/
.U127
.00 X
.0127
.00 X
.0127
.no x
.0127
.00 '/.
.0127
. U 0 X
.0127
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
4
*
*
*
*
*
*
*
*
*
*
*
*
If
*
*
*
*
*
*
                                  A-4.1-12

-------
  U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION NO.  1




SOURCE CONTRIBUTIONS TO FIVE MAXIMUM  RECEPTORS




ANNUAL   PARTTCULATES




4ICRGGRAMS PER CUBIC METER
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
ft
ft
ft
*
4
*
ft
ft
SOURCE
22
23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
36..
39
40
41
42
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
ft
*
*
ft
*
*
*
*
*
ft
*
*
*
*
ft
*
*
*
ft
RECEPTOR
37
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0002
.00 X
.0000
.00 X
.0004
.00 X
.0004
.00 X
.0008
.00 X
.0002
1.60 X
14.9398
1.51 X
14.0899
1.73 X
16.1751
.37 X
3.4655
.24 X
2.2771
.24 X
2.2703
.31 X
2.8521
.10 X
.9291
.10 X
,953fl
.0° X
.8778
*
*
*
*
«
*
A
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0001
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
1 .20 X
10.7045
1 .52 X
13.5336
7.44 X
30.6597
.56 X
5.1480
.09 X
.7744
.09 X
.7755
.13 X
1.1746
.14 X
1 .2627
.15 X
1.2971
.13 i
t .1663
*
w
*
*
«
*
*
*
*
«
ft
*
*
*
*
*
*
*
«
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
RECEPTOR *
£6 *
. 0 0 X *
.0074 *
.00 X »
.0074 ft
.00 X •
.0074 «
.00 X *
.0074 *
. Ol> X «
.0074 «
.00 X ft
.0004 *
.00 X *
.0002 *
.00 X *
.0004 *
.OCX *
.0004 *
.00 X •
.0007 *
.00 X *
.0002 *
.71 X *
4.5307 »
.73 X «
4.6567 «
1 .04 X *
6.6573 *
.15 X *
.9872 *
.19 X *
1.2290 »
.20 X *
1.2918 *
.28 X *
1.7909 *
.1^ X *
.9887 *
. 1 6 X »
1.0249 *
.15 X *
.9322 «
RECEPTOR
36
.00 X
.00*3
.00 X
.0063
.00 X
.0063
.00 X
.0063
.00 1.
.0063
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.000?
.00 X
.OOOu
.oc •*
.0001
.84 •/.
4.4892
.81 X
4.3341
1.00 '/.
5.3478
.17 X
.9097
.24 X
1 .2P96
.24 Z
1.2593
.29 X
1.5615
.13 X
.71Rfc
.14 X
.7381
.13 *
.6*17
*
*
*
*
*
*
*
*
*
4
ft
*
*
ft
*
ft
*
«
*
*
*
#
«
*
ft
*
ft
*
v
*
*
*
*
*
ft
*
*
*
«
*
t
ft
RECEPTOR
.00 X
.0071
.00 X
.0071
. 0 0 *
.0071
.00 V.
.0071
.00 X
.0071
.00 y.
.00 X
.0003
.00 X
.0005
.Of- X
.OOOS
.00 y.
.0009
.00 X
.000?
.77 X
-1.0546
.76 X
3.9725
.97 X
5.0976
.15 X
.SI 02
.25 X
1 .307*
.25 X
1 .2P79
.31 X
1 .6549
.16 X
.8151
.16 X
.8457
.15 X
.7689
*
*
*
w
*
*
*
*
A
*
*
*
*
V
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
                                A-4.1-13

-------
  U.S. STEEL   FUSFIELO OPERATIONS




SOURCE CONTRIBUTIONS TO FIVE VAX




AfJftlUAL   P4R7ICUL&TES




MICROG«*MS B£S CU3IC M£T£R
                                      CONDITION  HO.  1
*
*
*
*
*
,
*
*
'
*
*
I
*
*
*
*
*
*
*
*
*
*
*
*
*
•#•
*
*
*
*
»
SOURCE
43
4U
45
46
47
48

-------
                APPENDIX A-4.2



COMPUTER MODEL USING SMALL GRID FOR CONDITION 2

-------
                           U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION NU.  2
SOURCE flATA
 SOURCE •     SOURCE LOCATION
 NUMBER •      (KILOMETERS)
        » HORIZONTAL «  VERTICAL
* SOURCE AREA  •
•   SSUAHE     *
• KILOMETFHS   «
  ANNUAL SnuRCE
  EMISSION PATF
   (TONS/OAT)
30?        PART
                                                                                 STACK DATA
 HT   DtAM    VEL     TEMP  '
(M)   (Ml   (M/SEC)  (DEG.K)'
*
*
•
*
*
*
*
*
*
„
*
ft
*
ft
•
*
*
*
*
*
ft
*
*
*
*
*
ft
*
•
*
*
ft
ft
*
*
*
4
ft
ft
1
2
3
a
5
6
7
8
9
10
11
12
13
U
15
16
17
14
19
20
21
22
23
2a
25
26
27
2ft
29
30
31
35
33
3u
35
3fe
37
3
.00 ft
.00 ft
.00 •
.00 •
.00 *
.00 •
.00 •
.00 •
.00 •
.00 ft
.00 •
.00 •
.00 •
.00 •
.00 •
.00 «
.00 «
.00 •
.00 •
.00 «
.00 •
.00 •
.00 «
.00 •
.00 •
.01 «
.01 «
.01 •
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.noo
.000
.000
.000
.000
.000
.000
.000
.DUO
.000
.975
.177
.177
.201
."•53
.(.35
.1.57
.103
.131
.011
.011
.011
.011
.001
.011
.011
.001
.011
.001
.001
.on
.012
.012
.012
.002
,ni?
.063
.063
.097
.097
.191
.057
.307
.307
.120
.059
.120
.120
. 1fi>7 .0
* 19 .b
ft 09.6
• 19.6
« 61 .0
• 61.0
• 61.0
• (>1.0
• 61.0
• 61.0
• 61.0
• 61.0
• 61.0
ft 61.0
• 61.0
• 61.0
• 51.1
• 51.1
• 51.1
• "50.1
• 5i. 1
« 68. h
• 68.6
• hH.l)
• h8.0
• 76.0
* 76.0
• 23.0
• 2<-0
• ?3.0
• .5
• "1.0
• 19.0
* 51.0
Z.I
1.2
1 .2
1 .1
o.l
5.3
1 .2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.
2.
2.
2.
2.
2.0
2.0
2.0
?..n
2.0
2.7
2.7
2.7
2.7
3.«
3.fl
.0
. 0
.0
.0
.0
. a
•"
7 .b
9.8
9.fl
15.5
0.1
5.5
9.0
9.0
9.0
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
6. i
6.3
6.3
6. f
6. i
6.3
6.3
10.2
10.2
7 .2
5.1
.0
.ri
.0
.0
. . •
866. «
H66. •
H66 . *
866. •
177. .
177. «
553. •
553. ft
533. .
177 . •
0. *
0 . •
0. ft
0. •
0. «
I). •
1 . •
                                            A-4.2-1

-------
ft
ft
ft
,
ft
•
.
ft
•
ft
ft
•
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
00 •
4| ft
«2 •
• 1 .
• a *
•5 •
• 6 •
• 7 •
•a •
49 ft
SO •
51 •
52 •
53 •
54 •
55 •
56 •
57 ft
58 •
59 •
60 •
61 •
SU/.o
507.3
507.4
507.3
507.0
507.3
507.*
507.3
506.5
506.1
508.6
506.7
506. It
506.8
506.*
506.6
506.6
506.7
506.5
507.4
506.1
507.3
«
ft
•
.1/110.
3708.
3708.
/ •
7 «
7 •
• 3708.7 •
•
•
*
*
*
ft
•
*
•
*
•
.
*
•
•
*
*
•
3708.
3708.
3708.
3706.
3704.
370«.
3708.
3705.
370S.
3705.
3705.
3705.
3703.
3703.
3705.
3708.
3704.
3706.
7 •
7 •
7 •
7 •
6 •
3 •
0 •
2 •
1 •
2 •
2 •
2 •
2 •
1 •
0 •
7 «
3 •
7 ft
.tiw •
.00 •
.00 •
.00 •
.00 •
.00 *
.00 •
.01 •
.01 •
.09 ft
.01 •
.36 •
.36 •
.36 •
.36 •
.36 •
.06 •
.06 •
.30 •
.01 •
.01 •
.30 •
.uuu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.?}*
.249
.228
.0*1
.093
.097
.«89
.069
.100
17.605
3.216
.217
.339
.342
6.933
3.422
.024
.122
.137
.003
.241
.107
• ct.1l
• 23.A
• 21.0
• .3
• 23.0
• 23.0
• 23.0
• .0
• .0
• 30.0
• 30.0
• 9.1
• 24.0
• 9.1
• 30.0
• 61.0
• 3.0
• 1.0
• 3.0
• 3W.O
• 3.0
• 3.0
.11
.0
.0
.0
.0
.0
.0
.0
.«
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.11
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
II. ft
0. ft
0. ft
0. ft
n. •
0. *
. ft
. ft
. ft
. ft
. ft
. ft
0. •
0. •
0. ft
0. «
0. •
0. •
A . ft
0. •
0. *
0. •
A-4.2-2

-------
  U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 2



RECEPTOR DATA

LOCATIONS TO BE USED AS RECEPTORS IN ADDITION TO THE 131 RECTANGULAR GRID LOCATIONS

  RECEPTOR      X-COORDINATE      Y-COOROINATE
   NUMBER       (KILOMETERS)      (KILOMETERS)
     122           505.6             3702.1

     123           506.1             3706.5

     124           506.6             3703.4

     125           504.4             3702.0

     126           507.6             3705.4

     127           504.6             3704.0

     128           504.0             3705.3

     129           504.4             3703.1

     130           505.3             3708.4
                                  A-4.2-3

-------
                    U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 2
             METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE =  29
-------
                    U.S.  STEEL    FAIRFIELD  OPERATIONS   CONDITION NO. 2
             METEOROLOGICAL  INPUT  DATA  FOR  THE  ANNUAL SEASON
STABILITY CLASS  2

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
w
WNW
NW
NNW

1
.0016
.0020
.0013
.0015
.0024
.0016
.0015
.0020
.0022
.0019
.0011
.0010
.0021
.ooia
.0017
.0013

2
.0036
.0033
.0021
.0023
.0013
.0023
.0027
.0027
.0029
.0021
.0019
.0014
.0035
.0024
.0034
.0032
WINDSPEED
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.0005
.0007
.0020
.0013
.0016
.0011
CLASS
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                 A-4.2-5

-------
                    U.S.  STEEL    FAIRFIELD  OPERATIONS    CONDITION  NO.  2
             METEOROLOGICAL  INPUT  DATA  FOR  THE  ANNUAL  SEASON
STABILITY CLASS  3

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
w
WNW
NW
NNW

1
.0013
.0039
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.0005
.0008
.0007

2
.0018
.0019
.0012
.0016
.0045
.0016
.0016
.0030
.0029
.0017
.0014
.0018
.0030
.0019
.0023
.0017
WINDSPEEO
3
.0050
.0034
.0016
.0010
.0053
.0025
.0029
.0058
.0034
.0030
.0027
.0027
.0038
.0032
.0038
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.0008
.0006
.0002
.0005
.0003

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                     A-4.2-6

-------
                    U.S. STEEL   FAIRFIELD OPERATIONS    CONDITION  NO.  2
             METEOROLOGICAL INPUT DATA  FOR THE  ANNUAL  SEASON
STABILITY CLASS  a

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
WSW
w
WWW
NW
NNW

1
.0023
.0039
.0021
.0023
.00*17
.0012
.0012
.0033
.0023
.ooia
.0007
.0011
.0018
.0010
.0017
.0018

2
.0085
.0066
.0051
.ooas
.0116
.0049
.0056
.0075
.0069
.0049
.0028
.0038
.0073
.0035
.0055
.0045
W1NDSPEED
5
.0162
.0006
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
4
.0114
.0025
.0004
.0009
.0041
.0029
.0071
.0093
.0122
.0115
.0076
.0045
. .0098
.0064
.0065
.0088

5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0024
.0003
.0007
.0005

6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
                                  A-4.2-7

-------
                    U.S.  STEEL    FAIRFIELO  OPERATIONS    CONDITION  NO.  ?_
             METEOROLOGICAL  INPUT  DATA  FOR  THE  ANNUAL  SEASON
STABILITY CLASS  5

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
W3w
w
WNW
NW
NNW

1
.0169
.0*136
.0507
.0236
.0297
.0079
.0066
.0131
.0071
.0038
.0020
.0022
.0061
.0032
.0037
.0051

2
.0132
.0173
.0138
.0096
.0162
.0015
.0077
.0129
.0080
.0043
.0023
.0029
.0069
.0033
.00a3
.0047
WINOSPEED
3
.0044
.0018
.0007
.0010
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.0014
.0033
.0016
.0017
.0017
CLAS3
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                  A-4.2-8

-------
                                  U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 2
INPUT REGRESSION PARAMETERS  ARE:



     POLLUTANT            Y-INTERCEPT             SLOPE
    PARTICIPATES                 .0               1.0000
                                      A-4.2-9

-------
U.S.  STEEL    FAIRFIELD OPERATIONS   CONDITION NO.  2
*
ft
RECEPTOR CONCENTRATION DATA
*
* RECEPTOR
* NUMBER
*
*
*
*
*
w
*
*
*
*
*
*
*
*
*
*
*
*
x
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


1
2
3
4
5
b
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
25
26
27
28
29
30
31
32
33
34
35
36__
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
ft
ft
ft
ft
*
ft
ft
ft
ft

3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3103.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*

-------
U.S. STEEL    FAIRFIELD OPERATIONS   CONDITION NO. 2
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
56
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"76"
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
w
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

506.0
506.0
506.0
506.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
510.0
510.0
510.0
*
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0" "~
3711.0
3701.0
3702.0
3703.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
---
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
*
Ik
*
*
*
... . ^_.._
*
*
Ik
*

145.
92.
62.
51.
93.
126.
174.
326.
241.
218.
165.
222.
116.
72.
52.
56.
73.
89.
132.
150.
137.
211.
277.
112.
68.
45.
40.
46.
58.
75.
84.
76.
90.
120.
77.
47.
34.
31.
3fe.
39.
*
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
                           A-4.2-11

-------
U.S.  STEEL    FAIRFIElD OPERATIONS   CONDITION NO.  2
*
*
*
*
*
*
*
*
*
*
*
•ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
it
*
*
*
A
*
*•
*
*
*
*
*
K
*
*
*
*
RECEPTOR CONCENTRATION DATA
*
RECEPTOR *
NUMBER «


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
__115.
116
117
118
119
120
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
.513.0 .
513.0
513.0
513.0
513.0
513.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
ik
*
*
*
it
*
*
*
*
*
*
*
*

3704.0
37U5.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0..
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
. 0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*

53.
55.
46.
43.
59.
35.
29.
24.
25.
25.
30.
39.
43.
34.
29.
33.
22.
19.
18.
19.
21.
27.
32.
34.
28.
23.
23.
19.
15.
14.
16.
18.
22.
26.
88.
23.
20.
19.
Ife.
13.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

                             A-4.2-12

-------
U.S. STEEL   FAIRFIELD  OPERATIONS   CONDITION NO. 2
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
A
*
*
*
*
*
*
it


iei
123
123
124
125
126
127
128
129
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

513.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
A
*
*
*
*
*
*
*
*
*

3711
3702
3706
3703
3702
3705
3704
3705
3703

.0
.1
.5
.4
.0
.4
.0
.3
.1
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
A
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICULATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
A
*
A
*
*
*
A

11.
274.
243.
340.
242.
152.
370.
188.
302.
A
*
A
A
A
A
A
A
*
A
  130
505.3  *   3708.4
115.
                               A-4.2-13

-------
  U.S.  STEEL   FAIRFIELD  OPERATIONS    CONDITION  NO.  2




SOURCE  CONTRIBUTIONS  TO  FIVE  MAXIMUM   RECEPTORS




ANNUAL    PARTICULATES




MICROGRAMS PER  CUBIC  METER
* SOURCE
*
*
*
*
*
*
X
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
1
2
3
4
5
6
7
8
9
10
11
12
13
la
15
16
17
18
19
20
21
* RECEPTOR
* 37
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
.00 I
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0041
.00 X
.ooia
.00 Z
.0007
.00 X
.0008
.00 Z
.0007
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 X
.0000
* RECEPTOR
* 38
*
Ik
*
*
Ik
*
Ik
*
Ik
*
*
*
*
Ik
*
*
*
*
*
*
ft
*
*
t
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 X
.oosa
.00 Z
.0013
.00 X
.0005
.00 Z
.0005
.00 Z
.0005
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
* RECEPTOR
* 26
•ft
ft
ft
ft
*
*
ik
it
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
ft
ft
ft
ft
ft
*
*
*
*
*
*
ft
ft
.00 Z
.0015
.00 X
.0003
.00 X
.0003
.00 X
.0001
.00 X
.0037
.00 Z
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
* RECEPTOR
* 36
*
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
it
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
.00 X
.0013
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 X
.0046
.00 X
.0018
.00 X
.0008
.00 X
.0009
.00 Z
.0008
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 2
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
* RECEPTOR
* 25
ft
ft
*
*
ft
*
ft
ft
ft
ft
«
ft
*
ft
ft
ft
ft
*
ft
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
fr
.00 Z
.0014
.00 X
.0003
.00 x
.0003
.00 X
.0004
.00 X
.0042
.00 X
.0018
.00 2
.0008
.00 X
.0008
.00 X
.0007
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
ft
ft
ft
ft
ft
Tk
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
                                   A-4.2-14

-------
  U.sl STEEL   FAIRFIELD  OPERATIONS    CONDITION  NO.  S




SOURCE CONTRIBUTIONS TO FIVE  MAXIMUM   RECEPTORS




ANNUAL   PARTICULATES




MICROGRAMS PER CUBIC METER
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SOURCE
22
23
SH
25
26
27
28
29
30
31
32
33
34
35
36
37
. 38
39
40
41
42
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* •
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0000
.00 Z
.0001
.00 Z
.0001
.00 Z
.0002
.00 Z
.0001
1.73 Z
14.9398
1.64 Z
14.0899
1.88 Z
16.1751
.40 Z
3.4655
.26 Z
2.2771
.26 Z
2.2703
.33 Z
2.8521
.11 Z
.9291
.11 Z
.9538
.10 Z
.8778
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
1.57 Z
10.7045
1.98 Z
13.5336
4.48 Z
30.6597
.75 X
5.1480
.11 Z
.7744
.11 Z
.7755
.17 Z
1.1746
.18 Z
1.2627
.19 Z
1.2971
.17 Z
1.1863
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
.. *. .
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 Z
.0001
.00 Z
.0001
.00 Z
,0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0002
.00 Z
.0000
.78 Z
4.5307
.80 Z
4.6587
1.15 Z
6.6573
.17 Z
.9872
.21 Z
1.2290
.22 Z
1.2918
.31 Z
1.7909
.17 Z
.9887
.18 Z
1.0249
.16 Z
.9322
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0000
.96 Z
4.4892
.92 Z
4.3341
1.14 Z
5.3478
.19 Z
.9097
.28 Z
1.2898
.27 Z
1.2593
.33 X
1.5615
.15 Z
.7188
.16 Z
.7381
.15 Z
.6817
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
25
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 2
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0002
.00 Z
.0003
.00 Z
.0001
.87 Z
4.0546
.85 Z
3.9725
1.09 X
5.0976
.17 Z
.8102
.28 Z
1.3076
.28 Z
1.2879
.35 Z
1.6549
.17 Z
.8151
.18 Z
.8457
.16 Z
.7689
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
                                 A-4.2-15

-------
  u.s.  STEEL    FAIRFIELD  OPERATIONS    CONDITION  NO.  2



SOURCE  CONTRIBUTIONS  TO  FIVE  MAXIMUM   RECEPTORS



ANNUAL    PARTICULATES



MICROGRAMS PER  CUBIC  METER
r
*
*
*
*
it
*
*
•ft
*
+
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
SOURCE
•43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
BACK-
GROUND
TOTAL
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
It
*
*
*
*
It
*
*
*
It
X
*
RECEPTOR
37
.03 X
.1579
.04 X
.3639
.04 X
.3723
.04 X
.3434
.03 X
.2628
.76 X
6.5171
52.70 X
454.4827
2.87 X
24.7636
.63 X
5.4010
.85 X
7.3153
.98 X
8.4309
15.97 X
137.6528
5.98 X
51.4888
.08 X
.6768
.46 X
3.9722
.55 X
4.7215
.OQ X
.0192
11.10 X
95.6359
.04 X
.3789
.00 X
0.
100.0 X
861 .7952
*
*
•*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
K
*
*
*
*
*
*
X
*
RECEPTOR
38
.03 X
.2153
.07 X
.4953
.07 X
.5071
.07 X
.4648
.05 X
.3555
.96 X
6.5960
48.82 X
333.8609
4.39 X
29.9892
1.35 X
9.2031
1.41 X
9.6754
1.99 X
13.6227
23.47 X
160.4891
3.62 X
24.7719
.20 X
1.3384
1.09 X
7.4783
1.18 X
8.0943
.00 X
.0259
1.41 X
9.6673
.08 X
.5585
.00 X
0.
100.0 X
683.9500
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
26
.03 X
.1688
.07 X
.3858
.07 X
.3985
.06 X
.3634
.05 X
.2855
.27 X
1.5862
70.12 X
405.8816
3.76 X
21 .7666
.34 X
1.9593
.51 Z
2.9602
.52 X
3.0214
10.42 X
60.3285
7.76 X
44.8920
.05 X
.2639
.25 X
1.4522
.30 X
1 .7149
.00 X
.0207
1 .20 Z
6.9507
.08 X
.4433
.00 X
0.
100.0 X
578.9460
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
«
*
*
*
*
*
*
K
*
*
X
*
RECEPTOR
36
.03 X
.1220
.06 X
.2811
.06 X
.2877
.06 X
.2664
.04 I
.2042
.35 X
1 .6566
63.43 X
297.2751
4.30 X
20.1354
.42 X
1 .9791
.66 X
3.1027
.68 X
3.1684
13.49 X
63.2080
9.99 X
46.8344
.06 X
.2627
.31 X
1.4521
.27 X
1.2766
.00 X
.0150
1.19 X
5.5867
.06 X
.3025
.00 X
0.
100.0 X
468.7576
*
*
*
*
*
*
*
*
*
*
*
*
*
it
It
it
*
*
*
*
ft
*
ft
ft
it
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
25
.03 X
.1406
.07 X
.3211
.07 X
.3321
.06 X
.3026
.05 ^
.2293
.29 X
1.3680
67.13 %
314.2585
4.08 X
19.0805
.37 X
1 .7176
.57 X
2.6675
.58 X
2.7082
11.65 X
54.5382
8.85 X
41 .4464
.04 X
.1960
.23 X
1 .0598
.26 X
1 .2106
.00 %
.0166
1.20 X
5.6333
.08 X
.3771
.00 X
0.
100.0 X
466.2317
*
*
*
it
it
it
*
*
*
*
*
*
*
*
it
ft
it
*
*
ft
it
*
*
ft
*
it
*
ik
*
ft
*
*
*
*
*
*
ft
*
*
ft
*
*
*
*
                                  A-4.2-16

-------
                APPENDIX A-4.3



COMPUTER MODEL USING SMALL GRID FOR CONDITION 3

-------
                         U.S. STStL   FAIRFIELD OPERATIONS   CONDITION MO.  3
SOURCE DATA
* •
• SOURCE • SOURCE LOCATION
• NUMSER * CKILOMETERS)
*
.
•
•
*
*
*
,
*
•
.
*
*
*
•
*
*
*
*
*
•
*
.
*
»
*
•
*
*
•
*
*
»
*
»
*
*
*
•
*
*
*
•
*

1
2
3
4
3
6
7
a
9
10
11
12
13
10
15
16
17
18
19
20
21
22
23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
33
39
40
41
02
03
• HORIZONTAL <
• 506.4 «
• 506.5 •
• 506.5 •
• 506.5 •
• 509.1 •
« 509.0 •
« 507.0 *
* 507.3 •
" 507.0 «
• 506.8 *
. 506.8 •
* 506.7 •
• 506.7
• 506.8 •
• 506.8 •
« 506.1 •
• 506.5 •
• 506.5 •
« 506.5 «
" 506.5 «
• 506.5 »
• 506.5 •
• 506.5 *
• 507.0 .
• 507.3 *
• 507.4 •
• 507.3 «
* 507.0 •
* 507.3 «
* 507.4 •
« 507.3 *
« 506.5 •
• 506.7 «
« 506.8 *
• 506.8 •
• 506.8 «
« 506.8 »
• 506.8 •
« 506.7 «
""• 506.1 «
• 506.5 •
• 506.1 *
* 507.3 *
*
. SOURCE »REA »
• SQUARE «
VERTICAL • KILOMETERS •
3700
3700
3704
3705
3706
3708
3708
3708
3708
3705
3700
3705
3705
3705
3705
3704
3704
3700
3705
3700
3700
3700
3705
3706
3708
3708
3708
3708
3708
3708
3708
3700
3705
3705
3705
3705
3705
3705
3705
3704
3705
3700
3708
.8 •
.8 •
.9 •
.0 •
.6 •
.7 •
.7 •
.7 •
.7 •
.6 •
.0 •
.2 •
.1 •
.2 •
.1 «
.3
.» •
.9 .
.0 •
.9 •
.8 •
.9 «
.0 •
.7 •
.7 •
.7 *
.7 «
.7 •
.7 «
.7 «
.7 •
.8 •
.2 •
.2 *
.2 •
.2 «
.2 •
.2 •
.1 «
.3 "•
.0 «
.3 •
.7 «
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1 .00
.01
.01
.01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.36
.36
.36
.36
.36
.06
.06
.02
.30
.01
.30
•
*
•
.
t
t
*
Ik
•
*
*
*
*
*
*
.
t
•
*
*
*
*
*
*
*
*
•
*
•
*
*
#
*
*
*
*
V
*
*
*
*
*
•
ANNUAL SOURCE *
EMISSION BATE •
CTONS/OAY) .
S02
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PART
.975
.177
.177
.201
8.101
.635
.137
.143
.131
.206
.206
.097
.097
.594
.037
.026
.307
.307
.420
.059
.120
.120
.164
.236
.249
.228
.001
.093
.097
.089
.069
.100
.384
.258
.342
6.953
5.422
.024
.122
1.285
.137
.356
.107
HT
STACK
OIAM
DATA
VEL
« CM) CM) (M/SEC)
.
•
«
*
•
•
*
*
*
*
*
*
*
•
*
,
*
•
*
*
*
*
•
'
,
*
*
*
*
*
*
*
*
.
*
«
*
*
*
.
*
*
*
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.6
49.6
68.6
66.6
69.0
68.0
76.0
76.0
46.*
23.0
23.0
23.0
.5
49.0
09.0
51.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
9.1
24.0
9.1
30.0
61.0
3.0
3.0
30. 0
3.0
30.0
3.0
2.4
1.2
1.2
I.I
4.1
5.3
1.2
1.2
1.2
2.7
2.7
2.7
2.7
3.8
3.8
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
7.6
9.8
9.9
IS. 5
b.4
5.5
9.0
9.0
9.0
6.3
0.3
10.2
10.2
7.2
3.u
32.0
.0
.1)
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
TEMP .
COEG.K)*
505. «
45U. •
450. •
450. «
050. •
672. *
450. «
«50. .
450. .
077. -
«77. •
533. «
533. •
533. •
477. •
850. •
0. «
0. «
0. •
0. •
fl . *
n . *
0. «
0. •
0. «
0. «
0. •
0. «
0 . •
0. •
0. •
0. •
0. •
0. «
0. •
0. •
0. »
0. •
0. «
0. •
n . »
0. «
0. •
                                         A-403-l

-------
  U.S. STEEL    FAIRFIF-LD OPERATIONS   CPNDITION  Mil.  3



RECEPTOR DATA

LOCATIONS  TO  HE  USED AS RECEPTORS  IN ADDITION  Tf>  THE  1 e 1 RECTMGDL AR GUID LOCATIONS

  RECEPTOR       X-COOROINATE       V-COOKI) I M TE
                 (KILOMETERS)       (KILOMETERS)
     133            505.6              3703.1

     133            SOh.1              3706.5

     12«            506.6              3703.4

     t35            50a.q              3702.0

     1?6            507.6              3?05.«

     127            50«.6              37(>a.O

     138            50«.0              3705.3

     139            50'l.fl              3703.1

     130            505.3              3708.«
                                     A-4.3-2

-------
                     U.S.  STEEL
FAIRFIELD C1PF_RATIOMS
                                                         CONDITION  NH.
             MFTEIJROLUGICAL  INPUT  DATA hO* THE ANNUAL SEASON
MIXING DEPTH =  1500.  METERS
AMBIENT TEMPERATURE =   29
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
". 0 0 0 0
.0000
.0000
.0000
.0000
                                  A-4.3-3

-------
                     U.S.  STEEL   FAIHFIELO  OPERATIUHS   CUNOiriUN N'l.
             METEOROLOGICAL ItvPUT DATA  FOR  THE  ANNUAL SFASMM
STABILITY CLASS   2

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
SSrt
S"V
wSW
w
(MNW
NW
NNrt

1
.0018
.0020
.0013
.0015
,ooa000
.0000
.000 0
.0000

f,
.0000
."000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.000 0
                                 A-4.3-4

-------
                     U.S.  STEEL
FAIWFItLO nPEKATlDNS
                                                          ClINDT
                                                                    WH.
             METEOROLOGICAL  INPUT DATA FOR THE ANNUAL  StASflM
STABILITY CLASS   3

KINO DIRECTION
N
NNE
NE
ENF.
E
ESE
SF
SSE
S
SSW
sw
wsw
IV
WNid
I>JW
NNH

1
.0013
.0029
.OOP4
.OOlb
.0021
.001«
.0009
.00?0
.0012
.0006
.000«
.0007
.0008
.OOOi
.0006
.0007

a
.0018
.0019
.001?
.UOlf.
.00«5
.OOtb
.0016
.0030
.0029
.0017
.0011
.OOlfl
.0030
.0019
.0023
.0017
wlNOSPEFD
3
.OOSO
.003a
.OOlb
.0010
.0053
.ooss
.00?9
.005fl
,003«
.0030
.00?7
.00??
.003^
.no
-------
                     U.S.  STEEL   FAIRFIELO OPERATIONS   CONDITION  NO.  3
             METEOROLOGICAL IMPUT DATA FOR  THE  AMMIIAL SEASUiJ
STABILITY CLASS

WIND DIRECTION
N
NNE
ME
tNE
E
ESE
SE
SSE
S
SSW
SH
wsw
w
rtNW
NW
NNW

1
.0023
.0039
.00?!
.002?
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.001 1
.0016
.0010
.0017
.0018

2
.0065
.0066
. 00 5 a
.0043
.01 Ih
.0049
.0056
.0075
.0069
.0049
.002*
.OOiR
.0073
.0035
.00b5
.0045
irjirjnsPtFu
3
.0162
.OOflf,
.0027
.0041
.0107
.0064
.0101
.0129
.016'!
.0151
.0093
.0057
.0107
.0077
.009f,
.0097
CLASS
4
.0114
.0025
.0004
.0009
.0041
.0029
.0071
.0093
.0122
.01 15
.0076
. 0 0 « 5
.0090
.0064
.0065
.OOHH

5
.0003
.0001
.0000
.000 0
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0024
.0003
.0007
.0005

6
.000 0
.0000
.0000
.0000
.000)
.00(10
.0000
.0001
.000 0
. 0 0 0 0
.0000
.0001
.0001
.0000
.0001
.000 0
                                 A-4.3-6

-------
                     U.S.  STEEL   FAIRFItLD  OPERAUUNS    C'lNOITIUN Nil.
              METEOROLOGICAL  INPUT DATA  FOR  THE ANNUAL  SFASll'M
STABILITY  CLASS

WIND DIRECTION
N
NNE
ME
ENE
E
ESE
SE
SSE
S
SS«
sw
WSW
W
1/vNri
NW
NNW

1
.016"
.0«3t>
.0507
.0236
.0397
.0079
.0086
.0131
.0071
.0038
.0020
.002?
.OOM
.0032
.0037
.0051

2
.0132
.0173
.0138
.0096
.0162
.0015
.0077
.0120
.0080
.0003
.0023
.0029
.0069
.0033
.0013
.0047
wTNDSPEEO
<
.004 a
.0018
.0007
. 0 1) 1 0
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.001 H
.0033
.001*5
.001 1
.001 7
CLASS
a
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

h
. oOOD
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000(1
. 0 0 0 0
                                      A-4.3-7

-------
                                 U.S. STEEL   FAIRF1ELD OPERATIONS   CONDITION NO. 3
INPUT  REGRESSION  PARAMETERS ARE:
    POLLUTANT            Y-INTERCEPT
    PARTICULATES
                                .0
                                               SLOPE
i .0000
                                      A-4.3-8

-------
U.S.  STEEL    FAIRFJELD OPERATIONS   CONDITIOU NO.  3
ft
ft
RECEPTOR CONCENTRATION DATA
ft ft
* RECEPTOR *
* NUMBER *
*
ft
,
*
*
ft
A
*
*
*
*
*
*
ft
A
*
*
*
*
ft
«
*
*
ft
«
*
*
*
*
«
*
*
*
*
*
ft
ft
*
*
*
*
*
*


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
36
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATTON
(KILOMETERS)
HORIZ VERT

503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
50U.O
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
»
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
ft

3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
37U7.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
*
«
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
«
*
*
*
ft
ft
*
*
ft
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
EXPECTtD APITHMETIC *1E'
*
*
V^ *
*
(KICPOGRAMS/CU. METER) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft

72.
73.
67.
71 .
75.
48.
32.
?5.
27.
22.
20.
79.
98.
101.
111.
103.
63.
35.
39.
33.
27.
24.
Ob.
111.
161 .
178.
164.
95.
67.
50.
46.
32.
25.
e5.
92.
175.
340.
346.
154.
IDS.
*
ft
*
*
*
*
ft
ft
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1c
*
*
                            A-4.3-9

-------
U.S.  STEEL   FAIRFIELO OPERATIONS   COHPITIUN NO.  3
*
*
RECEPTOR COiMCE'^TSiATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
«
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


"1
42
U3
44
45
46
47
4*1
49
50
51
52
53
54
55
5b
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HOKIZ VERT

506
50fc
506
506
507
507
507
507
507
507
507
507
507
507
507
50fl
508
508
508
508
508
506
508
508
508
508
509
509
509
509
509
509
509
509
509
509
509
510
510
51 0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
*
*
it
ft
*
ik
*
*
*
It
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
it
it
ft
Ik
*
*
it
ft
*
*
*
*

370P.O
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
370S.O
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
370U.O
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.1
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
it
it
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
Ik
*
*
*
Ik
*
*
*
*
*
*
*
*
*
*'
*
*
*
*
*
*
*
EXPECTED ARITHMETIC *FAM *
*
CMICROGRAMS/CU. METEP) *
562 PAkTICUl ATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

70.
52.
3?.
eb.
45.
61 .
fi"?.
154.
1 3?.
116.
d7.
1 16.
74.
38.
24.
27 .
35.
41 .
58.
75.
51 .
36.
41 .
34.
23.
1«.
17.
20.
27.
32.
41 .
31.
21 .
19.
19.
15.
14.
14.
17.
16.
*
if
it
ft
*
*
*
*
ft
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
                          A-4.3-10

-------
U.S.  STEEL    FAIRFIELD OPERATIONS   CONDITION NO. 3
* it
» RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
it
t
*
*
*
*
*
Ik
*
*
*
ft
*
ft
1k
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
ik
*
Ik
ft
Ik
*
*
^

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
96
99
100
101
102
103
104
105
106
107
100
109
110
111
112
113
114
115
116
117
116
119
120
*
*
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

510.0
510.0
510.0
510.0
510.0
510.0
510.0
•510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511 .0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513. u
513.0
513.0
513.0
513.0
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
1k
Ik
Ik
Ik
1k
*
*
ik
*
*

3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
5711.0
370) .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
370°.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
*
*
*
*
*
*
*
1k
*
*
*
*
*
*
Ik
*
*
*
*
*
*
Ik
*
*
*
*
*
ik
*
Ik
Ik
*
*
*
*
*
*
*
*
*
*
ft
it
EXPECTED ARITHMETIC wFAM *
CMCROGfcAMS/CU. Mfelfc") *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
it
Ik
Ik
ik
ik
*
*
Ik
Ik
Ik
*
*
ft
*
*
*
*
*
ft
*
ft
*
Ik
*
ft
*
*
*
1k
*
*
Ik
Ik
•ft
*
*
*
*
*
*
*

24.
?«.
?A .
14.
13.
13.
I 1 .
4.
1?.
1?.
13.
17.
21 .
17.
13.
10.
9.
8.
8.
9.
9.
12.
14.
17.
14.
10.
e.
8.
7.
6.
8.
R.
10.
12.
14.
12.
Q _
7.
6.
6.
*
*
Ik
*
•*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
                           A-4.3-11

-------
U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION M). 3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NIJMHEK *
*
*
*
*
*
*
it
•
*
«
*
*
*


121
I??.
123
12"
125
126
127
128
129
130
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VF.RT

513
505
506
50b
504
507
504
500
504
505

.0
.6
.1
.6
.a
.6
.6
.0
.4
.3
*
*
*
*
*
*
*
*
*
*
*

3711
3702
3706
3703
3702
3705
370a
5705
3703
3708

.0
.1
.5
.0
.0
.4
.0
.3
.1
•«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
fcXPECTtO ARITHMETIC MEAN *
*
(MICRUGH4MS/CU. MFTtR) *
S02 PARTICULARS *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
* 5.
* 120.
* 130.
* 153.
* 100.
* 7R.
* 139.
* 1(10.
* 125.
* b" .
*
*
*
*
*
*
*
*
*
*
*
                            A-4.3-12

-------
  U.S. STEEL   FAIRFIELD  OPERATIONS    CONDITION  MO.  3




SOURCE CONTRIBUTIONS TO FIVE  MAXIMUM   RECEPTORS




ANNUAL   PARTICULATES




           PER CUBIC METER
*
*
*
ft
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
it
t
ft
It
ft
%
It
It
ft
*
*
*
*
*
*
*
4
*
*
*
*
*
*
SOURCE
1
2
3
4
5
6
7
»
9
10
11
12
1?
la
15
16
17
IS
19
20
21
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
3«
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.01 x
.0293
.00 X
.0013
.00 X
.0005
.00 X
.0005
.00 X
.0005
.00 X
.0001
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 X
.0000
3.09 X
10.7045
3.91 X
13.5336
8.36 x
30.6597
.69 X
2.3881
.22 X
.77aa
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
RECEPTU9
37
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.01 X
.0345
.00 X
.001*
.00 x
.0007
.00 X
.0008
.00 7.
.0007
.00 %
.0002
.00 X
.0000
.00 X
.0001
.00 X
.0001
.00 X
.0008
.00 X
.0001
.00 X
.0000
4.40 X
14.9398
a. 15 i
14.0t>99
4.76 X
16.1751
.40 X
1.3740
.67 «
2.2771
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 X
.0015
.00 X
.0003
.00 X
.0003
.00 X
.0004
.U2 X
.0314
.00 X
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0004
.00 x
.0002
.00 X
.0001
.00 X
.0001
.00 X
.0007
.00 X
.0000
.00 X
.0000
2.54 X
4.5307
2.62 X
4.6587
3.74 X
6.6573
.37 X
.6654
.69 X
1 .2290
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
it
ft
*
*
*
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
R6CEP10K
•*6
.00 X
.0013
.00 7.
.0002
.00 X
.0002
.00 'i
.0003
.02 X
.0394
.00 %
.0018
.00 X
.0008
.00 X
.0009
.00 X
.0008
.00 X
.0003
.00 X
.0003
.00 %
.0001
.no x
.0001
.00 X
.0004
.00 X
. 0 (i 0 0
.00 X
. 0 u 0 0
2.56 X
4.469?
2.47 X
4.3341
3.05 X
5.3478
.28 X
.4621
.74 X
1.299d
*
*
«
*
*
ft
*
ft
*
ft
ft
ft
*
ft
*
ft
ft
ft
*
*
*
ft
*
*
*
ft
>
*
ft
»
ft
ft
ft
it
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
RECEPTOR
27
.00 X
.0013
.00 X
.0003
.00 X
.OOU3
.00 X
.0004
.02 X
.0286
.00 X
.0013
.00 X
.0005
.00 X
.0006
.00 X
.0005
.00 X
.0002
.00 x
.0002
.00 X
.0001
.TO X
.0001
.00 X
. o n o 7
.00 x
.0001
. 0 0 X
.0000
2.99 X
4.HS56
3.15 X
5.1545
'4.94 X
ft. 0893
.43 X
.7073
.71 X
1.1626
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
                                    A-4.3-13

-------
  U.S.  STEEL    FAIRFIELD  OPERATIONS    CONDITION  NO.  3




SOURCE  CONTRIBUTIONS  TO  FIVE  MAXIMUM   RECEPTORS




ANNUAL    PARTICULATES




MICROGRAMS PER CUBIC  METER
*
*
*
*
*
*
It
It
*
*
*
*
*
*
it
*
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
«
4
*
*
*
*
*
*
*
*
SOURCE
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38__
39
ao
ai
42
IT
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.22 X
.7755
.31 X
1.17U6
.36 X
1.2627
.37 X
1 .2971
.34 X
1 .1863
.06 X
.2153
.14 X
.4953
.15 X
.5071
.13 X
.4646
.10 X
.3555
1.89 X
6.5245
4.71 X
16.2856
2.13 X
7.3657
3.93 X
13.6147
46.38 X
160.4891
7.16 X
24.7719
.39 X
1 .3384
2.16 X
7.4783
7.60 X
26.2958
2.34 X
8.0943
2.15 X
7.4390
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
ft
*
*
*
*
*
ft
it
ft
(*
*
*
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
RECEPTOR
37
.67 X
2.2703
.84 X
2.6521
.27 X
.9291
.28 X
.9538
.26 X
.8778
.05 X
.1579
.11 X
.3639
.11 X
.3723
.10 X
.3434
,06 X
.2628
1.91 X
6.4863
2.81 X
9.5576
1 .64 X
5.5691
2.48 X
8.4260
40.50 X
137.6528
15.15 X
51.4888
.20 X
.6768
1.17 X
3.9722
11.78 X
40.0470
1.39 X
4.7215
3.73 X
12.6673
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
ft
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
RECEPTOR
26
.73 X
1 .2918
1.01 X
1.7909
.56 X
.9887
.58 X
1 .0249
.52 X
.9322
.09 X
.1688
.22 X
.3858
.22 X
.3985
.20 X
.3634
.16 X
.2855
.89 X
1.5833
1.95 X
3.4672
1.27 X
2.2536
1 .70 X
3.0196
33.87 X
60.3265
25.20 X
44.8920
.15 X
.2639
.82 X
1.4522
14.58 X
25.9683
.96 X
1.7149
4.13 X
7.3511
»
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.72 X
1.2593
.89 X
1.5615
.41 X
.7188
.42 X
.73S1
.39 X
.681 7
.07 X
.1220
. 16 X
.281 1
.16 X
.2877
.15 X
.2664
.12 X
.2042
.94 X
1.6541
2.00 X
3.5022
1.35 %
2.3620
1.81 X
3.1665
36.09 X
63.2080
26.74 X
46.8344
.15.X
.2627
.83 X
1.4521
12.99 X
22.7533
.73 X
1 .2766
3.58 X
6.2655
*
*
*
*
*
*
*
*
ft
*
*
«
ft
*
*
*
*
*
*
*
*
*
*
*
«
ft
*
*
*
ft
*
*
*
*
*
ft
ft
*
*
*
*
ft
*
«
RECEPTOR
27
.74 X
1.2161
1.15 X
1.8835
.76 X
1 .2511
.SO X
1 . 3040
.72 X
1.1757
.13 X
.2153
.30 X
.4888
.31 X
.5079
.28 X
.4589
.22 X
.3615
.96 X
1 .5781
2.38 %
3.9023
1.49 X
2.4352
2.05 X
3.3573
39.14 X
64.0495
25.80 X
42.2282
..20 X.
.3295
1.17 X
1 .9147
5.73 %
9.3824
1.46 X
2.3860
1 .63 X
2.6607
ft
*
*
*
*
ft
*
*
*
ft
*
ft
*
*
*
A
*
*
*
*
ft
*
*
ft
ft
*
*
*
*
*
ft
ft
*
*
_*
*
A
*
*
*
*
*
*
*
                                  A-4.3-14

-------
  U.S. STEEL   FATRFIELD OPERATIONS   CONIIJTION NO. 3
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM  RECEPTORS
ANNUAL   PAKTICULATES
MICRIJGRAMS PER CUBIC METER
*
*
*
*
*
*
*
*
SOURCE

'13

BACK-
GROUND
TOTAL

*
*
*
*
*
*
X
*
RECEPTOR
38
.16 %
-S585
.00 X
0.
100.0 %
316.0813
*
*
»
*
*
*
X
*
RECEPTOR
37
.11 X
.3789
.00 X .
0.
100.0 X
339.9226
*
*
*
*
*
*
X
*
RECEPTOR
26
.25 X
.«433
.00 *
0.
100.0 X
178.1183
it
*
*
*
*
*
X
*
RECtPTOR
36
.17 7.
.30?5
.00 Z
0.
100.0 %
175. ISO's
*
*
*
*
*
*
X
*
RECEPTOR
27
.33 Z
.•533«
.00 X
0.
i o o . n %
163.6510
*
*
*
*
*
+
*
*
                                    A-4.3-15

-------
                APPENDIX A-4.4



COMPUTER MODEL USING SMALL GRID FOR CONDITION 4

-------
                          U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION NO. a
SOURCE  DATA
ft *
* SOUSCE « SOURCE LOCATION
• NUMBER • (KILOMETERS)
* * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
2
3
a
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
00
41
12
13
la
15
16
47
48
49
50
51
52
53
51
55
56
57
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.3
506. 6
506.7
506.8
506.8
509.1
509. a
507.4
507.3
507.4
506.8
506.4
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.8
506.7
506.8
506.7
506.7
506.7
506.7
506.7
506.7
506.8
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.1
506.5
507.3
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3701.4
3705.1
3705.2
3705.1
3706.6
3708.7
3708.7
3708. 7
3708.7
3705.2
3704.8
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.6
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3708.7
3708.7
3708.7
3708.7
3708.7
3706.7
3706.7
3708.7
3704.3
3705.0
3708.7
*
* SOURCE AREA *
* SQUARE *
* KILOMETERS *
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.02
.36
.36
.36
.36
.36
.06
.06
.36
.36
.36
.36
.36
.06
.06
.00
.00
.00
.00
.00
.00
.00
.01
.01
.30
.30
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ANNUAL SOURCE
EMISSION RATE
(TONS/DAY)
S02 PART
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.000
.000
.000
.953
.154
.141
.189
.252
.618
.039
.215
.080
.091
.091
.083
8.101
.635
.137
.143
.131
.079
.532
.245
.328
.438
1.075
.058
.058
.096
.128
.171
.420
.094
.105
1.928
.25"
.300
.253
5.402
4.802
.059
.029
.065
.057
.056
1.171
.913
.021
.004
.236
.249
.228
.041
.093
.097
.089
.069
,246
.352
.107
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
«
*
*
«
*
*
«
*
*
ft
«
*
*
«
*
NT
CM)
50.0
64.8
53.0
53.0
74.0
74.0
46.9
6S.6
69.6
68.0
76. U
fed.b
65.0
67 .u
49.6
49. b
49. b
56. ft
163.2
23.0
23.0
23.0
30.0
.5
.5
49. U
49.0
51.0
3.0
3.0
3.0
30.0
9.1
24.0
9.1
30.0
61.0
3.U
1.0
9.1
24.0
9.1
30.0
61.0
3.0
1.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
30.0
3.0
3.U
STACK
DIAM
(M)
2.4
2.4
1.2
1.2
1 .1
1.1
2.0
2.7
2.7
3.8
3.8
3.6
4.1
5.7
1 .2
1 .2
1 .2
1 .3
3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
DATA
V£L
CM/SEC)
7.6
7.6
9.8
9.3
15.5
15.5
32.0
10.2
10.2
7.2
i.4
7.2
0.4
5.5
9.0
9.U
9.0
11.6
9.1
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
ft
ft
TEMP *
CDEG.K)*
505. •
5U5. «
"5(1. «
450. .
450. ft
450. *
850. .
477. «
533. «
533. «
U77. «
533. •
450 . »
672. .
U50. «
450. »
450. *
366. *
442. »
0. *
0. *
0. *
0. ft
0. *
0. *
0. *
0. *
n. *
0. *
0. .
0. •
0. «
0. ft
0. ft
0. •
0. «
0. ft
0. *
0. ft
0. *
0. ft
0. *
0. »
0. «
0. *
0. *
0. *
0. •
0. ft
0. ft
0. ft
0. ft
0. ft
0. .
0. »
0. *
0. *
                                            A-4.4-1

-------
  U.S. STEEL   FATKFIELD OPERATIONS   CONDITION NO. 1



RECEPTOR DATA

LOCATIONS TO BE USED AS RECEPTORS IN ADDITION TO THE 121 RECTAMGULAK GUI!) LOCATIONS

  RECEPTOR      X-COOROINATE      Y -COORDINATE
                (KILOMETEKS)      (KILOMETERS)
                   505.h             3702.1


     1
-------
                    U.S. STEEL
F-AIRFIKLD OPERATIONS   CONDITION NO. a
             METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
MIXING DEPTH = 1500.
AMBIENT TEMPERATURE =  294. OEGRFfcS,KtLV IN
AMBIENT PRESSURE = 1000. MILLIBARS

STABILITY CLASS  1

WIND DIRECTION
N
NME
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
to
WNW
NW
NNH

1
.0004
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.000?
.000?
.0001
.0006
.0003
.000?
.OOOb

2
.0007
.0003
.0008
.0003
.0005
.0003
.000?
.0005
.0003
.0003
.000?
.0003
.OOOP
.0003
.0006
.0005
WJMJSPEFIJ
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.oono
.0000
.0000
.0000
.0000
.0000
CLASS
It
.0000
.0000
.1)000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 I) 0
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 (I
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

f>
.0000
.0000
.0000
.0000
. 0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.1)000
.0000
.0000
.0000
.0000
.000(1
                               A-4.4-3

-------
                    U.S.  STtEL    FAIPHIrLD OPERATIONS   CU'JOIIION  M).
             METEOROLOGICAL  INPUT  OATA FOR THE ANNUAL SEASON
STABILITY CLASS

WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SF
SSE
S
SSW
SW
WS*
1*
WNrt
Ml*
NNW

1
. 0 0 1 H
.0020
.0013
.0015
.0024
.OOlb
.0015
.0020
.00^2
.0019
.0011
.0010
.0021
.0014
.0017
.001 3

a
.0036
.003?
.0021
.002?
.0003
.0023
.0027
.0027
.0029
.0021
.O
-------
                    U.S. STEEL   FAIPFIELP UPFK A T HliMS    CUNUIFIUN  fJU.  a
             METEOROLOGICAL INPUT DATA FOR TH£  ANNUAL  SEASON
STABILITY CLASS  3

•MIND DIRECTION
N
UNE
NE
ENE
E
ESE
SE
SSE
S
SSW
sw
WSrt
w
WNW
NW
NNW

1
.0013
.0029
,OU?'4
.0015
.0021
.0014
.0009
.0080
.ooia
.noob
.0004
.0007
.0008
.ooo'D
.OOOB
.0007

2
.0018
.0019
.0012
.OOlfc
.0045
.OOlf,
.0016
.0030
.00?9
.0017
.0014
.ooin
.0030
.0019
.0023
.0017
WlNDSPEED
?
.OOSO
.0034
. 0 0 1 f>
.001 (1
.0053
.002^,
.0029
.0058
.0034
.0030
.0027
.0027
. 0 0 3 H
.0032
.003H
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.ooos
.0003
.0003
. 0 0 0 fl
.OOOh
.0002
.0005
.0003

s
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OU01
.0001
.0000
. 0 U 0 (.1
.0001
.0000
.0000
.0000

h
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                   A-4.4-5

-------
                      U.S.  STEEL   FAJRFItLU IIPfcPAT KINS    CHI-JOT THIN IV).  0
              METEOKULIIGICAL  INPUT DATA  FOR  THE  ANNUAL  SEASON
STABILITY  CLASS

DIRECTION
N
NNE
NE
EME
E
ESE
SE
SSE
s
SSrt
sw
WSW
*
*N«
NW
NNnV

1
.0023
.OOP9
.0021
.0023
.0007
.0012
.0012
.0033
.0023
.0010
.0007
.001 1
.0018
.0010
.0017
.0018

2
.0065
.0066
.0050
.0003
.0116
.0009
.0056
.0075
.0069
.0009
.0028
.0038
.0073
.0035
.0055
.0005
WINHSPEFI)
3
.0162
.0006
.0027
.0001
.0107
.0060
.0101
.0129
.016'4
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
0
.0110
.0025
.0000
.0009
.0001
.0029
.0071
.0093
.0122
.0115
.0076
.0005
.0048
.0060
.0065
.OOS8

5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0020
.0003
.0007
. 0 U 0 5

6
.0000
.0000
.0000
.0000
.0001
.0000
.00011
.0001
.0000
. 0 000
.0000
.0001
.0001
. U 0 0 0
.0001
. 0 0 0 0
                                        A-4.4-6

-------
                    U.S. STEEL   FAIKFIELD OPERATIONS    CUMOTFIUM  NO.  4
             METEUKOLOGICAL INPUT DATA HOR THE ANNUAL
STABILITY CLASS  5
                                       iMNDSPEFD CLASS
WIND D1HECTION
N
NME
NE
ENE
E
ESE
SE
SSE
S
SSiAl
sw
wsw
W
WNW
NW
NN«
1
.0169
.()«36
.0507
.0?36
.0?o7
.0079
.0086
.0131
.0071
.003B
.00?«
.00??
.OOM
.003?
.0037
.0051
?
.013?
.0173
.0138
.0096
.016?
.ooas
.0077
,01?9
.0080
.0043
.0023
.00?9
.0069
.0033
. 0 0 u 3
. 0 o a 7
^
. o o a u
.0018
.0007
.0010
.0019
.0011
.001S
.0019
.00??
.00?!
.001?
.ooia
.0033
.0016
.001 7
.0017
"
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.OdOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
S
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OQOO
.0000
.0000
.0000
. 0 0 0 0
. 0 0 0 0
.0000
fe
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
                                 A-4.4-7

-------
                                  U.S.  STEEL    FAIRFIELD  OPERATIONS    CONDITION NO.  
-------
*
*
RECEPTOR CUNCE'XiTkATIOfc DATA
* *
* RECEPTfJrt *
* NUM8ES *
*
t
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
IT
*
*
*
*
*
*
*
*
*
it
*
*
*


1
2
3
4
5
6
7
8
9
10
1 1
12
13
la
15
Ib
17
18
19
20
21
22
23
24
25
?6
27
28
29
30
31
32
33
34
35
36.
37
38
39
au
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*

3701.0
3702.0
3703.0
3704.0
3705.0
370ft. 0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701.0
370?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
.37u3.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
»
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
EXKECTED ARITHMETIC MEAN *
*
CMICRfJGRAMS/CU. METER) *
S02 HARTICULATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
It
*
*
*
•»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

8?.
64.
76.
81 .
tth.
54.
35.
28.
30.
25.
23.
90.
11?.
117.
125.
122.
h9.
40.
«4.
37.
30.
27.
99.
127.
191.
217.
202.
108.
77.
57.
51.
36.
28.
73.
1 05.
20«.
435.
503.
166.
118.
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
it
*
*
*
#
*
*
*
*
*
A-4.4-9

-------
U.d.  STEEL    FAIRFIELD  nHE«ATIu/SS    CONDITION  ISO.  a
ft
ft
WECEPTQR CONCENTRATION DATA
ft *
* RECEPTOR *
* NUM8E9 *
»
*
«
*
ft
*
*
*
«
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
»
*
*
*•
*
*
*
«
*
«
*
*
*


ai
42
a3
44
45
46
47
'48
49
50
51
52
53
54
55
5o
57
5a
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
„
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

506.0
506.0
i06.0
506.0
507.0
507. o
507 .0
507.0
507.0
507.0
b07.0
507.0
507.0
507.0
507.0
500.0
508 .0
508.0
508.0
503.0
50fe.O
503.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
500.0
509.0
509.0
509.0
509. C
509.0
509.0
510.0
510.0
510.0
,
*
*
»
*
*
*
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
*
.
*
ft
.
*
*
*
*

3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3700.0
3710.0
371 1 .0
3701 .0
3702.0
3703.0
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
ft
*
*
ft
*
ft
*
*
ft
ft
ft
ft
*
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
*
ft
*
ft
*
EXPECTED AKITHNETIC VI-AIV *
(MICRUGSAMS/CU. f-'tTER) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
*
ft
ft
*
ft
ft
*
*
it
it
it
*
*
*
*
*
*
*
,
*

76.
56.
35.
28 .
50.
o7.
1 00.
171 .
180.
127.
94.
121 .
77 .
40.
26.
2q .
38.
46.
65.
87.
56.
40 .
43.
36.
25.
20.
19.
22.
30.
35.
47 .
34.
23.
21 .
2) .
17.
1 S.
15.
19.
18.
*
*
n
*
*
*
*
*
it
*
*
*
*
*
*
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
•ft
a
ft
ft
ft
ft
ft
ft
ft
                               A-4.4-10

-------
U.S.  STEEL   FAIfcFIELD OPERATIONS   CONDITION NO.  4
*
»
RECEPTOR CONCENTRATION DATA
* *
• RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
-*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*


8t
32
83
84
85
86
87
88
89
90
91
93
93
9U
95
96
97
98
99
100
101
102
103
104
105
106
107
10«
109
110
111
112
113
114
.115.
116
117
118
119
iao
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

•510.0
510.0
510.0
510.0
5 1 0 . 0
510.0
510.0
510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
51 1 .0
511.0
511.0
511 .0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3704.0
3705.0
3706.0
3707,0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
370«.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
370=1.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
»
*
*
*
*
*
*
*
it
*
*
EXPECTED ARITHMETIC »«EAr-l *
*
(i*ICROGi*AMS/CU. -IfcTfJ «
SU2 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
n
*
*
*
*
*
*
*
*
*
*
*
*
»
it
*
*
*
*
*
»
t
*
it
*
*
*
*
*
*
*
*
*
*
*
*
if

26.
32.
23.
16.
14.
14.
12.
1».
13.
13.
14.
19.
24.
18.
14.
1 1 .
10.
9.
9.
10.
1 1 .
13.
16.
19.
15.
1 1 .
9.
«.
7.
7.
9.
9.
11.
13.
16.
13.
10.
8.
7.
6.
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
                            A-4.4-11

-------
  U.S. STFEL    F4IRF1ELD OPERATIONS   CONDITION MlJ. a
                   KECF.PTUR  CUNCFNTH4TION DATA
* RECEPTOR  *
*  NUMDttV   *
                RECEPTOR LOCATION
                                             EXPECTED AKITHMF.1IC  MFAN
                  (KILOMETERS)
                             VFRT
{MlCHOGfcAMS/CU.
SU3         I'ART ICULATE.S
*
*
*
*
*
*
(r
*
*
*
*

131
133
133
I3a
135
136
137
138
139
130
*
* 513
* 505
* 506
* 506
* 3(1 '4
» 507
* 501
* 50a
* 50U
* 505

.0
.6
.1
.6
.4
.6
.6
.0
•"
.3
*
*
*
*
*
*
*
*
*
*
*

3711
3703
3706
3703
5703
3705
370a
370S
3703
570fl

.C
.1
.5
.4
.0
•"
.0
.3
. 1
.0
*
*
*
*
*
*
*
*
*
*
*

0.
0.
0.
n.
0.
0.
0.
0.
o.
0.
*
*
*
*
*
*
*
*
*
*
*

5.
137.
150.
175.
115.
«7.
164.
1 16.
146.
65.
*
*
*
*
A
*
*
*
*
*
*
                                 A-4.4-12

-------
  U.S. STEtL   FAIriFIELU OPERATIONS   CONDITION  MLi.  4




SOURCE CONTRIBUTIONS TO FIVE MAXIMUM  RECEPTORS




ANNUAL   PARTICIPATES



•IICRQGSAMS PER CUBIC METER
* SOJRCE
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
2
3
4
5
6
7
6
9
10
1 1
12
13
14
15
16
17
18
19
?0
21
*
*
*
*
*
*
*
*
*
*
*
*
-
*
*
*
*
it
*
*
*
ft
*
ik
*
*
it
it
*
*
*
*
*
*
*
*
*
RECEPTOR
33
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.01 X
.0293
.1)0 X
.0013
.00 X
.0005
.00 X
.0005
.00 X
.0005
.00 X
.0001
.00 X
.0000
1.70 X
d.5427
2.87 X
14.4593
*
*
*
*
it
*
*
*
*
*
*
*
*
*
it
it
*
*
*
It
*
*
it
it
it
*
H
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 X
.0001
.00 I
.0001
.00 X
.0000
.00 X
.0001
.00 x
.0001
.00 X
.0004
.00 X
.0000
.00 X
.0003
.00 i
.0000
.00 X
.0001
.00 X
.0001
.00 x.
.0001
.01 X
.0345
.00 X
.0014
.00 X
.0007
.00 X
.oooe
.00 x.
.0007
.00 a
.0002
.00 X
.0000
2.74 X
11.9226
3.46 X
15.0538
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
it
it
*
it
*
*
*
*
*
RECEPTOR
26
.00 X
.0014
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 X
.0004
.00 X
.0011
.00 X
.0000
.00 X
.0003
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 X
.0001
.01 X
.0314
.00 X
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0002
.00 X
.0007
I.b7 X
3.6157
2.30 X
4.9774
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
H
*
*
*
*
*
lit
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR *
36 *
.00 X *
.0012 *
.00 X *
.0002 *
. 0 o X *
.00 X *
.0003 *
. 0 0 X *
.0003 *
. 0 0 X *
. 0 0 0 h *
.00 X *
.0000 «
.00 X *
.0002 *
. 0 1) 7. *
.0001 *
. 00 X *
.0001 *
.00 X *
.0001 *
. 0 0 X *
.0001 *
.02 Z *
.0394 *
. 0 (i "/. *
.0015 *
.no x *
.00 % *
.0009 *
.01.', *
.0008 »
.Ou "/. *
.0003 *
. 0 0 % *
.0006 *
1 .76 X *
3.5b26 *
~r> . 2 7 '/, «
4.6305 *
RECEPTOR
27
.00 X
.0013
.00 X
.0002
.00 X
.0002
.00 2
.OOU^
. ii 0 X
. ') 0 0 4
.00 X
.00 X
.0000
.00 X
.0003
. 0 0 X
.0001
.00 X
. 0 0 o I
.00 X
.0001
.00 •/.
.DOOl
. 0 1 '/.
. 0 0 X
.0013
.00 X
.0005
.00 •>.
.0006
.On '/.
. o o o s
.00 X
.0001
.00 X
.0007
1.93 X
3.39*9
3.5070
*
it
it
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
p
*
*
*
A
*
*
*
*
*
*
it
                                    A-4.4-13

-------
  U.S. STEEL   FAIRFIELD OPERATION'S   CONDITION1  "-0.  4




SOURCE CONTRIBUTIONS TO FI«/E MAXIMUM  KECEPH1RS




ANNUAL   PARTICULATES




           PER CUBIC METER
* SOURCE * RECEPTOR *
« * 38 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
#
A
*
*
*
*
*
*
*
*
*
*
*
*
22 * 6.35 X *
* 31.9736 *
23 • 10.59 % *
* 53.2936 *
24 * 1.01 X *
* 5.0608 *
25 * 2.06 X *
* 10.3629 *
26 * .12 X *
* .6195 *
27 * . 1 6 X »
* .8272 *
26 * .24 X *
* 1.2247 *
29 * 13.70 X *
* 68.9787 *
30 * 1.22 X *
* b. 1330 *
31 * 1 .36 X *
* 6.6507 *
32 * 3.20 X *
* 41.2545 *
33 * 2 . 1 7 X «
* 10.9420 «
34 * 1 .70 X *
* 3.5648 *
35 * 2.00 X «
* 10.0717 *
36 * 24.77 X *
* 124. 6888 *
37 * 4.36 X *
* 21.9392 *
38 * .72 X *
* 3.641 1 *
39 * .33 X *
* 1.6424 *
40 * .55 X *
* 2.7567 *
41 * .34 X «
* 1.6950 *
42 » .49 X *
* 2.4598 *
RECEPTOR *
37 *
3.80 X *
16.8683 *
8.02 x. *
34.8789 *
.78 X *
3.4066 *
.61 X *
2.6372 *
.42 X *
1.8217 *
.56 X *
2.4216 *
. 6 6 X *
2.9739 *
4.54 X *
19.7722 *
1 .40 X *
6.097 1 *
1.57 i »
6.8106 *
16.88 X *
73.4557 *
6.4215 *
1 ,49 X *
6,4757 *
1 .43 X *
6.2333 *
24.56 X *
106.9466 *
10.46 X *
45,6010 *
. 4 4 X *
1.9340 *
.19 i »
.8280 *
.37 X *
1.6176 *
.29 X *
1.2405 *
.33 t *
1.4436 *
«EC£PTO *
26 *
3.21 * *
6.9426 »
7.37 X *
15.9563 *
.45 X *
.9704 *
.47 X *
1.0188 *
.45 X *
.9832 *
.64 X *
1.3779 ,
.86 X *
1.8673 *
3.38 X «
7.3156 *
.69 X *
1.4863 *
.77 X *
1.6624 *
17.99 2 «
38.955° *
1 .08 X *
2.3295 *
1 . 2 1 X *
2.6204 *
1 .03 X *
2.2338 *
21 .65 X *
46.8710 *
1 h . 3 6 X *
39.7567 «
.33 X *
.7071 *
.15 X .
.3224 »
.27 X *
.5869 *
.24 X *
.5091 *
.24 X *
.5237 *
RECfcPTOP *
36 *
2.73 X +
5 . c 7 ^ '- *
6.26 X +
12.771C *
.44 % *
.8945 *
.38 X *
.7655 *
.51 X *
1.0319 *
.66 X *
1.3432 *
. 3 0 '/, *
2 . 7 1 i *
5.5213 *
. 7 6 '/. *
1.5549 *
.85% *
1.7368 *
15.93 t, *
3?.497h *
1 . 1 5 X *
2.3530 *
! .35 X *
1 . 1 5 X *
24.07 X *
49.1081 *
20.33 % *
41.4789 *
.35 X *
.7070 *
. 1 6 '/. *
.29 X »
.5926 *
.25 X *
.5139 *
.267. *
KECEPTUH
a . 1 8 t
9.56 X
19.3160
.56 7.
1 . 1248
.66 X
1 .3415
.46 X
.9301
1.2972
.97 f.
4 . b 8 X
9.US07
.73 X
. •"*? X
1 .6570
7.08 •',
14.2929
1.30 X
2.621"
1.40 V.
i.23 y.
2.4336
24.64 X
44.7620
77 .7995
.46 X
.9323
.20 X
. 4028
.33 •>.
.6605
.27 X
.5553
.29 X
*
*
*
*
T
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
*
Hr
*
*
*
W
                                    A-4.4-14

-------
  u.s. STEEL   PAIKFIELD OPERATIONS    CONDITION  NU.  a
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM  RECEPTORS
ANNUAL   PARTICULATES
•IICRQGKAIS HER CUBIC METER
ft
ft
ft
*
ft
ft
*
ft
ft
ft
ft
*
*
it
ft
ft
ft
*
*
*
ft
ft
ft
*
ft
*
*
ft
ft
ft
ft
*
SOURCE
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
dACK-
GKUUND
TOTAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
ft
ft
ft
ft
ft
X
*
KECEPTuR
38
5.52 X
27.7810
.79 X
.26 X
1.2872
.04 X
.2242
.25 X
1.2627
.26 X
1.2971
.24 X
1 .1863
.04 X
.2153
.10 %
.4953
.10 X
.5071
.09 X
.4648
.07 X
.3555
1.02 X
5.1404
4.13 X
20.7968
.11 X
.5585
.00 X
0.
100.0 X
503.5723
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
X
#
RECEPTQK
37
5.37 X
23.3428
1 .99 X
8.6385
. 16 X
.6037
.03 Z
.1 130
.21 X
.9291
.22 X
.9538
.20 X
.8778
.04 X
.1579
.Oa X
.3639
.09 4
.3723
.08 X
.3434
.06 X
.2628
2.01 X
6.7533
2.79 X
12.1313
.09 X
.3789
.00 X
0.
100.0 X
435.2012
it
ft
ft
ft
*
*
it
ft
*
*
*
*
ft
*
ft
ft
ft
*
ft
ft
*
ft
ft
*
ft
*
ft
ft
ft
*
X
*
RECEPTOR
26
4.80 X
1G.3S84
3.57 X
7.7263
.12 X
.2500
.02 %
.0440
.46 X
.9887
.47 X
1 .0249
.43 X
.9322
.08 X
.1688
.18 X
.3858
.18 X
.3985
.17 X
.3634
.13 X
.2655
2.35 X
5.0797
2.04 x
4 .4061
.20 X
.4433
.00 X
0.
100.0 X
216.5201
*
*
1
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR *
36 *
5 . 1 a X *
10.4816 "
3.80 X *
. 1 2 X *
.2500 *
. 0 2 X *
.0436 *
.35 X *
.7188 *
.36 X *
.7381 *
.33 X *
.6817 *
.Oh 2 ft
.1220 *
.14 X +
.2811 *
. 1 4 X *
.2677 ft
.li x *
.2664 *
.10 X *
2.12 X *
4.3295 *
1 . 6 1 X *
3.2601 *
. I b x *
.3P?5 *
. 0 1) X *
0. *
100.0 % X
2U4.0392 *
RECEPTOR
27
5.50 X
1 1 .1146
<.58 X
7.2383
,16 X
.3296
.03 X
.055"
.62 X
1.2511
.65 X
1 .?040
.58 X
1. 1757
.11 X
.?t5?
.24 X
.4888
.25 X
.5079
.23 V.
.45*9
.18 •/.
.3615
.91 X
1 .^386
3.0'4 •>.
6. 1304
.26 X
.5338
.00 %
(1 .
in 0.0 X
?01 .9836
ft
ft
ir
*
ft
*
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
*
                                    A-4.4-15

-------
                APPENDIX A-4.5



COMPUTER MODEL USING SMALL GRID FOR CONDITION 5

-------
                          i.3. STEtL    FAtKFtELD IIPFRATI'INS   CUNIMrTMM Nu. 5
SOURCE DAT*
ft ft *
« SUUWCE • SllllPCE LUCATIIIN • SOURCF AHFA •
• NuM'HR • (» ILO:4ETER3) • SUUAWF •
* • HDRUOMTAL • VERTICAL » KILfMFTERS •
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
,
2
'
•1
5
<•
7
jj
g
10
1 1
12
1 5
10
IS
16
i ;
is
19
20
21
22
23
20
25
26
27
215
29
30
31
32
35
3'l
35
.
ft
ft
ft
ft
ft
ft
ft
ft
.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
.
ft
ft
ft
ft
ft
,
ft
*
i
ft
506.4
506.5
5Uh.5
506. S
506.5
506.5
506.
506.
506.
S(16.
506.
SOh.O
506. fl
506. 5
506.5
SOb. 5
506.5
506.5
506.5
506.5
506. S
506.5
506.5
506.5
506.5
506.1
506.7
506. «
506. H
506. ft
50*. 6
506.7
SQ6.fl
506.5
506.1
*
*
«
ft
*
*
*
*
*
ft
*
*
*
ft
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
J700
3705
3700
3700
3705
3705
3700
3705
1700
370-1
3705
3700
3705
37na
3700
3705
3705
3700
3705
3700
3700
3705
3705
3700
37CO
1700
3705
3705
3705
1705
J/Ob
< 70^
3705
3705
3700
.8 *
.0 •
.8 »
.9 *
.0 •
.0 •
.3 *
.2 •
.0 *
• 1 *
.2 •
.1) «
.2 •
.R *
.9 •
.0 *
.0 •
.9 *
.0 •
.H *
.9 *
.U «
.0 *
.H •
.8 »
.3 •
.2 •
.2 *
.2 •
.2 »
.2 •
. 1 *
.2 «
.0 *
.3 •
.00 •
.00 •
.01) ft
.00 ft
. no «
.00 «
.00 «
.00 •
.00 *
.00 «
.00 •
.00 •
.no •
.00 «
.00 ft
.00 •
.00 •
.00 «
.00 •
.01 •
.01 •
.01 ft
.01 ft
.01 ft
.01 .
.02 »
.36 •
. 1b *
.113 •
.16 ft
.16 •
.06 *
.06 ft
. »0 *
.01 •
ANNUAL SIUIRCF
EMTSSTDN BATF
(TIINR/IJAY)
,SO? PAUT
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.noo
.000
.000
.000
.noo
.ouo
.1)00
.01)"
.001)
.uco
.OO'i
.951
.15"
.111
.139
.252
.6lt
.039
.21^
,l)|«>
.OH9
.083
.55?
.079
.2 '15
.12*
.038
1 .075
.05"
.058
. 096
.121
.171
.020
.090
.105
1 .92fl
.25"
.300
.351
S.H02
a. 0112
. 159
.H29
.1 57
.mo
*
*
ft HT
« (.1)
• SlJ.O
ft 60 .M
« "5.0
ft SI. II
* 70.0
• 7 '1 . 0
. „(,_,
• 6". 6
ft 68 .6
ft 6M.I)
* 76.1)
• 165.2
• 56. *
• 23.0
» 23.0
• 25.0
• 30.0
« .5
* . ^
> 09.0
ft O'l.O
• 51.0
• 3.0
• 1.0
» 3.H
» 3il.n
» 9.1
* 20.0
• J.I
• lil.O
• 61 .0
• * . O
* 1 .11
. ,_,,
. iv.v
ST'CK
(M)
2.0
2.1
1 .2
1 .2
1 .1
1 .1
2.0
2.7
2.7
2.7
1 .H
3.5
1.3
.0
.0
. f)
.n
.0
.0
.0
.0
.0
.0
.0
.0
.11
.0
.1)
. Il
.0
.0
.*'
. (i
.u
. o
LIATI
VKL
•VSEC)
7.'.
7.6
".1
.,.„
15.5
15.5
52.0
10.2
10.2
Hi. 2
5.0
9.1
11.1
.0
. 0
.0
. ll
.11
_(,
. 0
.0
.,-,
.1)
.0
.0
.
-------
  U.S. STEEL   FATRFIELD OPERATIONS   COC401TION NO. 5



HECEPTijR DATA

LOCATIONS  TO RF  USED  AS RECEPTORS  IN  ADDITION TO THE 121 RECTANGULAR (44 ID LOCATIONS

  RECEPTOR       X-COIJRDINATE       Y-COORniNAFE
   NUMHFH        (KILOMETERS)       (KILOMETERS)
                    505.6              370?.1

     153            506.1              3706.5

     124            506.6              570J.4

     125            500.4              370^.0

     126            507.6              370S.U

     1?7            500.6              3704.0

     128            50a.O              7705.3

     129            504.a              3703.1

     130            505.3              3708.a
                                         A-4.5-2

-------
                    U.S. STEEL   FAIRFJF.LD  OPERATIONS    CONDITION MI).  5
             METEOROLOGICAL INPUT DATA FOk  THE  ANNUAL  SEASON
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE =  29«. DEGREES,KELVIN
AMBIENT PRESSURE = 1000. MILLIBARS

STABILITY CLASS  1

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
ssw
SW
wsw
w
WNW
NW
NNW

1
.0004
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.ooo«
.000?
.0002
.0001
.0006
.0003
.0002
.0005

2
.0007
.0003
.uooe
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0008
.0003
.0006
.0005
WTNDSPEFD
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.nooo
.0000
.0000
CLASS
u
.0000
.0000
.0000
.0000
.0000
. 0 0 II 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000

5
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

h
.0000
.0000
.0000
.01)00
.0000
.0000
.000 0
.0000
.0000
.000 0
.1)000
.0000
. 0 0 P 0
.0000
.0000
.0000
                                   A-4.5-3

-------
                      U.S.  STtEL    FAltfFItLD UF6 H 4 T I UiMS    ruNDiriON Mil.
              'HF.TEDHULflMC *L INPUT  I"H T A  h OW THc  ANNUM.  SfcASOM
STABILITY CLASS

rtINO DIRECTION
N
NNE
NE
tNE
E
ES£
SE
SSE
S
SSN
SW
«s«
1M
rtNW
NW
NNA

1
.0016
,00?U
.0013
.0015
.ooa«
.0016
.0015
.00?0
.00?2
.001%1M)SPEHJ
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.000"S
.0007
.0020
.0013
.Oolb
.0011
CLASS
14
.IIOoO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.OoOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                      A-405-4

-------
U.S. SlfFL   MlHUtLD OPERATIONS
                                                                  r II1N  Nu.  S
              "IF TEUWOLtiGlCAL INPUT  DATA FOR  THE AM.MIIAL  SEAtiON
STABILITY  CLASS  3

WINO DIRECTION
N
NNE
WE
ENE
E
ESE
SE
SSE
S
SSW
sw
rtSrt
w
WWW
NW
NNH

1
.0013
.0029
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.OOOb
.0008
.0007

2
.001B
.0019
.0012
.0016
. 0045
.0016
.0016
.0030
.0029
.0017
.0014
.0018
.0030
.0019
.0023
.0017
hJNOSPEEl*
3
.0050
.0034
.0016
.0010
.0055
.0025
.0029
.0058
.0034
.0030
.0027
.0027
.0036
.0032
.003H
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.000«
.0006
.0002
.0005
.0003

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000

*
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                      A-4.5-5

-------
                    U.S. STEEL   FA1RFIELI)  UPEH*TH).MS   CONOITIO'1  NO.  S
             METEOROLOGICAL INPUT DATA  KIW  THE ANNUAL SEASON
STABILITY CLASS  U

WIND DIRECTION
N
NNE
NE
EME
E
F.SE
5F_
SSE
S
ssw
sw
WSW
IV
WNH
NW
NNW

1
.002?
.00?9
.0021
.0023
.00*17
.0012
.0012
.003?
.00?3
.0014
.0007
.0011
.001P
.0010
.0017
. 0 01 H

2
.OOPS
.OOhfe
.0051
.00(43
. I) 1 1 fc
.00/49
.0056
.0075
.0069
. 0 0 U 9
.002R
.0038
.007?
.0035
.0055
.ooas
hi, \OSPEFU
?
.Olb2
. 0 0 1 >>
.0027
.0011
.0107
.00h«
.0101
.0129
.0161
.0151
.0093
.OOS7
.0107
.0077
.009b
.0097
CLASS
a
. 0 1 I  0 I
.0000
.0000
. 0 0 0 0
.0003
.0010
.0005
.0012
.0004
.0005
.0007
. 0 u ? '4
.0003
. 0 (1 0 7
.0005

b
.0000
.0000
.0000
.0000
.0001
.0000
.000 0
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
                                   A-405-6

-------
                    U.S. STEEL   (-'AIRFIELD OPERATIONS    CONDITION  NO.  5
             METEOROLOGICAL INPUT PATA FOR  THE  ANNUAL  StASO'l
STABILITY CLASS  5

WIND DIRECTION
N
NNE
NE
ENE
E
ESfc
SE
SSE
S
SSW
SIN
WSW
w
WNW
NW
NNW

1
.016°
.0436
.0507
.0356
.02°7
.0079
.0086
.0131
.0071
.0038
.0021
.0023
.0061
.0033
.0037
.0051

2
.0132
.0173
.01 i»
.0096
.0162
.0045
.0077
.0129
.OOBO
.0043
.0023
.0029
.006°
.0033
.0013
.0017
WIMDSPEF.O
3
.0044
.ooiq
.0007
.0010
.0019
.0011
.0015
.0019
.00??
.0021
.0012
.0014
.0033
.0016
.0017
.0017
CLASS
'4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000

5
.000(1
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

ft
.0000
.0000
.0000
.0000
.0000
.OOOK
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                  A-4.5-7

-------
                                  U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 5
INPUT REGRESSION PARAMETERS ARE:




     POLLUTANT           Y-INTERCEPT            SLOPE
    PARTICULATES                .0              1.0000
                                       A-4,5-8

-------
U.S. STEEL    F4IRFIELD OPERATIONS   CONDITION NO. 5
ft
*
RECEPTOR CONCENTRATION DATA *
ft ft
* RECEPTOR *
* NUM8E3 *
*
*
*
ft
*
*
*
»
#
*
ft
*
*
*
*
*
»
»
*
*
*
»
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*


1
2
3
a
5
6
7
S
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
?6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ik
ft
ft
ft
*
ft
*
*
*
ft
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505. 0
50b.O
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*

3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
,3703.0
3704.0
370S.O
3706.0
3707.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
(MICRUGRAMS/CU. METER) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
ft
ft
ft
ft

70.
70.
63.
67.
71 .
43.
2*5.
21.
22.
20.
19.
77.
95.
100.
106.
102.
54.
31.
33.
28.
25.
22.
84.
110.
168.
19(J.
172.
67.
59.
42.
36.
29.
22.
62.
90.
179.
3*8.
445.
155.
67.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
-it
*
*
*
*
*
ft
ft
*
ft
ft
*
ft
ft
*
                             A-4.5-9

-------
U.S.  STEEL    FAIriFIELD  OPERATIONS    CUNOITION NO. 5
*
*
rtECEPTU^ CONCENTRATION DATA
* *
* WECEPTQk *
* NlJMSEr? *
*
*
*
*
*
*
*
*
*
*
*
*
*
'
*
*
*
,
*
*
#
*
*
#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


41
43
43
4U
45
4fa
47
48
49
50
51
5d
53
Su
bi
5b
S7
5d
59
60
61
63
63
64
65
66
67
b8
h-i
70
71
73
73
74
75
76
77
78
79
80
*
*
*
ft
*
ft
w
ft
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
>
*
*
ft
*
*
*
*
RECEPTOR LOCATION
(KILO^ETEKS)
HORIZ VERT

506.0
506.0
506.0
506.0
507.0
507 .0
507.0
507.0
507 .0
507.0
507.0
507 .0
507.0
507.0
507.0
508.0
50rt.u
506.0
50B.O
508.0
50o.O
508.0
508.0
508.0
503.0
508.0
509.0
509.0
509.0
5.0 9 . 0
509.0
509.0
509.0
509.0
509.0
50«. 0
509.0
510.0
510.0
510.0
ft
ft
*
*
*
*
*
*
•*
*
*
*
,
*
*
*
+
*
*
*
*
it
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*

3708.0
3709.0
3710.0
3711.0
3701.0
310?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701 .0
370?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3703.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701.0
3703.0
3707.0
«
ft
*
*
*
*
ft
*
*
*
*
*
*
*
ft
*
*
«
ft
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MF.
*
»
& rvt *
*
(MIC«QGRAMS/CU. METER) *
SG2 PARTICIPATES »

0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft

4°.
33.
35.
30.
43.
57.
b5.
146.
156.
\(I2.
65.
40 .
38 .
22.
17.
34 .
33.
39.
55.
73.
44 .
30.
36.
30.
16.
14.
15.
Itt.
35.
30.
40.
37.
17.
15.
13.
I?..
1 1 .
13.
Ib .
15.
.
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
«
*
„
*
*
„
«
*
t
*
*
*
*
                              A-4.5-10

-------
U.S. STEEL   FAIRFIELO  OPERATIONS   CONDITION NO. 5
it
ft
RECEPTOR CONCENTRATION DATA
* *
* -JECEPT3R «
* M J NI H E R *
*
*
it
*
.
ft
*
«
«
*
,
*
»
,
*
*
*
*.
It
*
ft
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
«
»
*
*
ft


61
62
H3
84
*5
96
87
98
«9
°0
91
°2
95
ou
9b
9b
97
9«
99
100
101
102
103
1 na
105
106
107
10*
109
110
111
112
113
114
115
llo
117
118
119
120
*
*
*
*
ft
*
*
A
*
*
*
ir
*
*
*
*
*
*
*
,
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

510
510
510
510
510
510
510
510
51
51
51
51
51
511
511
511
511
51 1
51 1
512
512
512
512
512
512
512
512
512
512
512
513
513
513
513
513
513
513
513
513
513

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
ft
ft
*
ft
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*

570U
370-5
370fe
3707
370?
S709
3710
3711
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3701
3702
570?
3704
3705
370ft
3707
3709
i709
3710
3711
3701
3702
?703
3704
370-5
3706
3707
3708
3709
3710

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
*
*
*
#
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
»
»
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC vEAN *
*
(MICRI
S02

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TGRA^S/CU. f-'ETER) »
PARTICIPATES *
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*

22.
27.
16.
12.
10.
10.
9.
a.
11.
n.
12.
16.
. 20.
15.
1 1 .
a.
7 .
7.
7.
«.
o _
1 1 .
13.
16 .
13.
9.
7.
6.
5.
5.
7.
7.
Q ^
11 .
13.
1 1 .
a.
6.
5.
5.
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
it
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
*
*
*
ft
*
                            A-4.5-11

-------
  U.S. STEEL    FAIRFIELI) OPERATIONS    CONDITION NCI.  5
                   KECEPTOR CUMCENTHATIOM DATA
* RFCEPTQR *
*  NUMBE-i  *
                RECEPTOR LOCATION
                                            EXPECTED  ARITHMETIC MtAM
                  (KTLCMF.TERS)
                 HOWIZ      VERT
                                             SU?
                                   MEIER)
                             PAKT1CULATES
    123
                 513.0
                 505.6
                 506. 1
371 1 .0
370?. 1
  t.
lift.
1 1«.
                 •50U.il
                 507 .6
3703. a
370?.0
370S.a
109.
 94.
 71 .
    127
    12rt
    129

    130
                 504.6
                 505.3
370fl.O
3705.3
3703. 1

3708.0
111 .
 96.
126.
                               A-4.5-12

-------
  u.s. STFEL   FAIKFIELO  OPERATIONS   criuoiTiPrv NCI. 5




3f)U"CE CONT»IBUTIONS  TO FIVE  MAXIMUM  RECEPTORS




ANNUAL   PARTICIPATES



           PE1* CUBIC  METER
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
ft
it
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
snuRCE
l
2
3
4
5
6
7
e
9
10
11
12
13
14
15
16
17
IP
19
an
21
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 %
.uooo
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 X
.0000
.00 X
.0000
.00 %
.0001
1.9P *
8.5437
3.25 X
14.4593
7.18 2
31.973B
11.97 X
53.2936
1.14 X
5.0608
2.33 2
10.3629
.14 2
.6195
.19 2
.8272
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 X
.0001
.00 %
.0001
.00 X
.0000
.Ou %
.0001
.00 X
.0001
.00 It
.0004
.00 X
.0000
.00 x
.0003
.00 X
.0000
.00 X
.0001
.Ou i
.0001
.00 X
.0000
.00 X
.0002
3.07 X
11 .9226
3.88 X
15.0536
4.35 X
16.8663
8.99 2
34.8789
.88 X
3.4U68
.68 X
2.6372
.47 X
1.8217
.62 X
?.4216
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 X
.0014
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 2
.0004
.00 X
.0011
.UO 2
.0000
.00 2
.0003
.00 2
.0001
.00 2
.0001
.00 2
.0001
.00 X
.0007
.00 2
.0002
1.90 2
3.6157
2.62 X
4.9774
3.66 X
6.9426
6.40 X
15.9563
.51 2
.9704
.54 2
1.0168
.52 X
.9832
.7? 2
1.3779
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
K
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
ft
*
*
RECEPTOR
?6
.00 X
.0012
.00 X
.0002
.OU X
.0002
.00 X
.0003
.00 •/.
.0003
.00 X
.GOOrt
.OU X
. 0 0 0 0
.00 •/.
.0002
.00 Z
.0001
.00 X
.0001
.00 x
.0001
.Od X
.0006
.00 X
.000?
2.00 X
3.5826
2.58 X
4.6305
3.11 Z
5.5769
7.13 2
12.7710
.50 X
.8943
.44 2
.7*55
.56 X
1 .0319
.75 X
1.3432
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
«
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
27
.00 •/.
.0013
.00 X
.000?
.00 X
.0002
.00 X
.0003
.00 v.
.0004
.00 X
.0011
.00 2
.onoo
.00 X
.0003
.00 2
.0001
.00 2
.0001
.00 2
.0001
.00 2
.0007
.00 2
.0003
2.27 2
3.4939
i.21 2
5.5070
4.91 2
".4360
11.25 X
19.3160
.65 2
1 .1248
.78 2
1.3415
.54 2
.9301
.76 2
1.2972
*
*
*
«
*
*
*
*
#
*
*
*
*
*
«
*
«
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*>
*
*
*
*
«
*
*
«
*
«
                                    A-4.5-13

-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO.
5UU&CE CONTRIBUTIONS TO FIVE '^AVJMUV. RECEPTORS
ANNUAL PARTICULATES
:-iICROGR AMS PER C'JRIC METER
* SOURCE * RECEPTOR * RECEPTOR * RECEPTOR *
A A 36 * 37 * 26 *
A
A
A
A
A
*
A
A
A
A
A
A
A
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
22 *
* 1 .
23 * 15.
* 69.
24 * 1 .
« b.
2r> * 1 .
6.
26 * 9.
* 41 .
27 * 2.
* 10.
28 * 1 .
* 8.
29 « 2.
* 10.
30 * 23.
* 124.
31 * 4.
* 21.
32 *
* 3.
33 *
* \ f
34 * l.
* 8.
35 * 1.
* 6.
e« : 0;
TOTAL * 100
* 445.
26 X *
2247 *
49 X *
9787 *
38 X *
1330 «
54 X *
8507 *
26 X *
2545 *
46 X *
9420 ft
92 X ft
5648 *
26 X «
0717 *
00 X «
6888 «
03 x *
9392 *
8? X *
641 1 .
37 X *
82 X *
0943 *
41 X *
2688 *
00 X *
*
.0 X X
2.
5.
19.
1.
6.
1 .
6.
18.
73-.
1 .
6.
1 .
fc .
1 .
6.
27.
106.
11.
45.
1 »
.
1 .
4 .
2.
10.
0.
100
387.
77 j *
9739 *
10 X *
7722 *
57 I *
0971 *
76 X »
8106 *
94 X *
4557 *
66 X *
«2I5 *
67 Z *
4757 *
61 Z *
2333 *
57 Z *
9466 *
76 X *
6010 *
5 0 % *
Q340 *
21 Z *
8280 *
222 *
7215 *
75 X *
6747 *
00 X *
*
.OX X
9573 *
1 .
3.
7.
•
•
1 .
20.
38.
) .
2.
1 .
2.
1 .
2.
46.
20.
39.
•
•
•
1.
3.
6.
0.
100
189.
98 X *
8673 *
85 X *
3156 *
78 X *
B8 X *
6624 *
52 X *
9559 *
23 X *
3?95 *
38 X *
6204 *
18 X *
2338 *
68 X *
6710 *
94 X *
7587 *
37 X *
7071 *
17 X .
32?« *
90 X *
7149 *
26 X *
00 X *
*
.OX X
6895 *
5
RECEPTOR »
36 *
.
1 .
3.
5.
1 .
1 .
1«.
32.
1 .
2.
1 .
?.
1 .
2.
27.
"9.
23.
41 .
•
•
1.
2.
5.
0.
100
179.
91 X *
6281 «
08 % *
S213 *
67 X *
554V +
97 % *
7368 *
1<4 X *
4S76 *
31 Z *
3530 *
53 •/. *
7465 *
31 X *
3425 *
41 % *
1081 *
15 Z *
4789 ft
39 % *
7070 *
18 % *
3209 *
71 X *
2766 *
95 X *
2799 *
00 X *
*
.OX X
1726 *
PECE
27
1 .
1 .
5.
q .
1 .
i!
8.
1 4 .
2.
1 .
2.
1 .
2«.
49.
21.
37.
m
:
i .
2.
1 .
2.
0.
100
171.
°TUh
14 X
9639
51 X
r6 X
•4 M 3 4
96 %
32 X
2Q29
6218
65 X
3316
u5 X
97 t.
7620
77 X
3995
54 X
9323
23 f.
4028
39 X
3860
31 %
2422
00 r.
.0 X
7764
*
ft
*
ft
*
ft
*
*
ft
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.5-14

-------
                APPENDIX A-4.6



COMPUTER MODEL USING LARGE GRID FOR CONDITION 1

-------
                          U.S. STEEL   PMRFIELO  '3PE»»TIONS   CONDITION NO. 1
SOURCE 0»T»
 SOURCE •      SOURCE LOC»TIO»I     • SOURCE ARE*
 NUH9ER •       (KILOMETERS)       •   SOU»RE
        •  HORIZO«T»L •  VE5T1C4L  * KILOMETERS
  «fiNU»L  SOURCE
  ci-ISSION BITE
   (TQNS/&4T)
502        P»RT
                                                                                STACK  DAT*
 HT   OIA»   VEL    TEMP  .
CO   CM)   (M/SEC) (OES.K).
•
*
*
*
*
t
t
*
•

I
*
•
*
*
*
*
•
t
*
*
\
•
i
2
4
5
6
7
9
9
10
11
12
13
10
15
16
17
18
19
20
21
22
23

25
26
27
29
29
30
31
32
33
35
36
37
38
39
00
01
42
43
00
05
46
47
49
49
50
51
52
53
SO
55
56
57
58
59
60
*
*
«
*
\
m
*
*
*
•

j
*
*
*
*
*
*
*
*
f
j
'
*
*
*
*
*
*
S06.0
506. 5
506.5
506.5
509.1
509.0
507.4
507.3
507.0
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6

508.6
508.6
506.8
506.3
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
507.4
507.3
507.0
507.3
507.4
507.3
507.4
507.3
506. 5
506.1
508.6
506.7
506.9
506.8
506.8
506. 8
506.8
506.7
506.5
507.4
506.1
. 3700.8 •
« 3700.9 «
• 3700.9 •
• 3705.0 •
• 3709.6 •
« 3708.7 .
« 3708.7 •
» 3708.7 «
• 3708.7 •
• 3700.3 .
• 3700.3 •
• 3700.3 «
• 3704.3 •
• 3700.3 •
• 3704.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3708.0 •
* 3708.0 •

• 3708.0 •
• 3708.0 •
• 3705.6 •
• 3700.4 .
• 3705.2 «
• 3705.1 •
• 3705.2 •
• 3705.1 •
• 3700.8 •
• 3704.9 •
• 3705.0 •
• 3700.9 •
• 3704.8 •
• 3700.9 •
• 3705.0 •
• 3709.7 «
• 3708.7 •
• 3708.7 •
« 3708.7 •
• 3708. •
• 3708. •
• 3708. •
• 3708. •
« 3704. «
• 3700.3 •
* 3708.0 •
« 3705.2 •
• 3705.2 •
• 3705.2 •
• 3705.2 •
« 3705.2 •
• 3705.2 •
• 3705.1 •
« 3705.0 •
« 3708.7 «
• 3704.3 .
.00 «
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00
.00 •
.00 •
.00 •
.00 •
.00 >
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.01 •
.01 •
.01 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.01 •
.01
.09 «
.01
.36 •
.36 •
.36 •
.36 •
.36 •
.06 •
.06 •
.30 •
.01
.51 .
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. UO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOP
.000
.000
.000
.000
.oon
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.97;
.177
.177
.201
0.101
.635
.137
.143
.131
7.360
7.360
7.360
7.361
7^360
7.360
7.3oO
7.J60
7.360
7.3oO
7.360
5.216
5.216

5.216
5.216
.206
.206
.317
.317
.594
.122
.307
.307
.420
.059
.120
.120
.164
.23e
.249
.22'
.001
..193
.099
.08"
.069
.101
IT. 605
5.216
.217
.994
6.953
5.022
.020
.122
.137
.132
.333
B
*
*
*
*
f
f
*
*
•

*
*
*
*
m
'
•
\
\
.
•
*
•
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.0
09.6
61.0
61 .0
61.0
61.0
61.0
61.0
61.0
61.0
51. 0
Sl.G
61.0
61.0
54.1
54.1

54.1
50.1
68.6
68.6
63.0
hi.O
76.0
7o.O
23.0
23.0
23.0
.5
49.0
49.0
51. u
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
3C.O
30.0
9.1
24.0
9.1
;o.o
61.0
3.0
3.0
3.0
30.0
30.0
2.4
1.2
1.2
1.1
o.l
5.3
1.2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.0

2.0
2.0
2.7
2.7
2.7
2.7
3.9
3.9
.0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.a
.0
.0
7.6
9.3
9.8
15.5
6.4
5.5
9.U
9.0
5.3
5.3
5.3
5.J
5.3
5.3
5.3
5.!
5.)
5.3
5.3
5.3
o.J
6.3

6.3
b.3
6.3
b.3
10.2
10.2
7.2
3.4
.0
.0
,f\
. U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
505.
450.
450.
450.
450.
672.
450.
450.
J50.
599.
539!
5a9!
59'.
599.
519.
539.
599.
5»9.
Woe.

36*!
477.
J77.
533.
533.
477.
n .
n .
0.
u .
n.
0.
0.
0.
J.
n .
0.
n .
0.
u.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
•
'•
f
i
•
B
•
•

•
B
•
'•
•
,
*
*
*
*
*
.
*
                                      A-4.6-1

-------
  'J.i. STEEL    FAtKFIFLD  QPfWATTUMS    CPI"n I 1 I lllv  NO.  1
           DATA

LOCATIONS  T(t HE  dSF.D  AS RKCFPTIJWS  IN  ADOJTIW.  in Ihf-   7?  PEC I « ''ifillL Al-1 r.klD LCCATfONS
                   X-CniJRI)I"IA IF       Y
                   (KILi^'t TERb)       IKfLUMFTEWS)
       73              S 0 5 . h                3 7 I) ? . 1

       7 'I              506.1                ? 7 0 6 . S

       7S              50f>.f-                3703.0

       7 h              Sua.'l                3702.0

       77              507. f,                37»b.«

       7 H              =! 0 « . f>                3 7 0 a . 0

       7"              5 0 a . 0                3705.3

       HO              sou.«                57113. i

       81              505.3                * 7 0 P.. a
                                                A-4.6-2

-------
                    U.S. STEEL
FA1RFTELO OPERATIONS
rUNOITTON NO. 1
             METEOROLOGICAL  INPUT DATA  FOtf  THE  ANNUAL  SEASON
MIXING DEPTH z 1500. METEMS
AMBIENT TEMPEHATUHE =  ?<>«. OERkFES,KtLV 1 N
AMBIENT PHESSIIWE =  1000. MILLIBARS

STABILITY CLASS  1

DIRECTION
N
NNE
ME
ENE
E
ESE
SE
SSE
S
SS'fll
sw
WSW
w
WNw
nlW
MMrt

1
.0004
.0008
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.0002
.0002
.0001
.0006
.0003
.0002
.0005

2
.0007
.0003
.0008
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0008
.0003
.000f>
.0005
MNOSPEEO
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
CLASS
u
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.»<» on
.1)000
. 0 0 0 0
.0000
. 0 0 0 0

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

b
.0000
.0000
.000 0
.0000
.0000
." 0 0 () 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.onoo
                                      A-4.6-3

-------
                      U.S.  STtFL    FAIRFItLU  HPF-.R A T T IMS    C ONI; 1 T I ON  N'J. 1
              METEUkOLUGlCAL INPUT  DATA FI.IW  THE  ANNUAL  SEASON
STABILITY  CLASS

DIRECTION
N
NNE
NF
EME
E
ESE
SE
SSE
S
SSw
sw
.s.
*
rtNW
NW
NN/J

1
.0018
.0020
.0013
.0015
. 0 0 2 a
.0016
.0015
.0020
.0022
.001 9
.001 1
.00)0
.0021
.001 U
.0017
.0013

2
.0036
.0033
.0021
.0023
.0003
.002^
.0027
.00^7
.0029
.0021
.0019
.0014
.0035
.002'!
.0034
.0032
*iivnsPEFn
3
.0021
.0010
.0012
.0007
.0025
.0012
.0007
.0014
.0014
.0010
.0005
.0007
.0020
.001 ?
.001 f>
.001 1
CLASS
't
.0000
.0000
.0000
.00(10
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

S
.0(100
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.000 0

"
. 0 0 0 0
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                        A-4.6-4

-------
                    U.S. STEEL   FAIPFIELD OPERATIONS   CONDITION NO.  1
             METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS  3

WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SE
SSE
S
SSrt
sw
V»SW
fi
«NW
MM
NNM

1
.0013
.0029
.ooaa
.0015
.0021
.001 a
.0009
.0020
.0015
.OOOh
.0004
.0007
.OOOB
.0005
.ooos
.0007

?_
.0018
.0019
.001?
.0016
.0015
.0016
.0016
.0030
.0029
.0017
.001«
.0018
.0030
.0019
.0023
.0017
WlMOSPEEO
3
.0050
.003'4
.OOlb
.0010
.0053
.0025
.0029
.005S
.oo?a
.0030
.0027
.0037
.0038
.0032
.0038
,00«0
CLASS
a
.0007
.ooos
.0000
.0001
.0003
.0003
.0001
.0002
.000ft
.0003
.0003
.0008
.0006
.0002
.0005
.0003

5
.0000
.0000
.0000
.0000
.0000
.OuOO
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.OOOD
'.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                     A-4.6-5

-------
                    U.S. STEEL
                                           OPERATIONS
                                                         CtJMnilTOM NO. 1
             METEOROLOGICAL INPUT DATA FOR  THE  ANMUAL  SEASON
STABILITY CLASS
hlNDSPEFI)
WIND DIRECTION
N
NNE
ME
ENE
E
ESE
SF
SSE
S
SS"»
SW
wSvg
w
WNW
MW
MNw
1
.0023
.0039
.00?!
.0023
.00*47
.0015
.0012
.0033
.0033
.001*4
.0007
.001 1
.001P
.0010
.0017
.0018
2
.OCHS
.0066
.005«
. (' 0 a 3
.01 If*
.0009
.005f>
.0075
.0060
.004°
.00c>fl
.003P
.0073
. 0 0 3 S
.00b5
.00*15
*
.0162
.00«6
.0027
.oom
.0107
.006*1
.0101
.0129
.016«
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
4
. o 1 i a
.0025
.000*1
.0009
.0041
.0029
.0071
.0093
.0122
.0115
.0076
.00*45
.0098
.006/J
.0065
. 0 0 rt 8

S
.0(103
.0001
.0000
.0000
.0000
.0003
.001 0
.0005
.0012
.01)09
.0005
.0007
.002*4
.0005
.0007
.0005

6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
. 0 0 0 0
.0001
.0001
.0000
.0001
. II 00 1)
                                    A-4.6-6

-------
                      U.S. STEFL    FAJRFIFIO  OPERATIONS    CU^UITTiJN Nil.  1
              MEIFURULOGICAL  INPUT  PATA FOR  THE ANi\IIJAI  SEASON
STABILITY  CLASS

WIND DIRECTION
N
NME
NE
ENE
E
ESE
SE
sst
S
SSW
SW
WSW
W
WNi-J
NW
NNtV

1
.0169
,0
.0507
.0236
.0297
.0079
.0086
.0131
.0071
.0038
.002U
.0022
.0061
.0032
.0037
.0051

2
.013?
.017^
.0138
.0096
.016?
.(ion*
.0077
.0129
.OOHO
.ooa3
.0023
.0029
.0069
.0033
.0013
.0017
WINPSPEFU
5
. o (i a a
.0018
.0007
.0010
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.ouia
.0033
.0016
.0017
.0017
CLASS
a
.0000
.0000
.0000
.0000
. 0 0 IJ 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                      A-4o6-7

-------
                                    U.S.  STEEL   FAIKFIFLO PPFKATIUNS    CUuDJTlU'i  .>lll.  1
INPUT DEGRESSION  PARAMETERS ARE:




     POLLUTANT            Y-INTF.RCFPT              SLQPt
    PAWT1CULATES                  .0                1.0000
                                         A-4.6-8

-------
U.S.  STEEL   FAIRFIELD OPERATIONS    CONDITION NO". 1
ft
ft
*
RECEPTOR CONCENTRATION DATA ft
ft ft
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*

1
2
3
4
5
7
6
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
39
40
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
516.0
516.0
516.0
516.0
516.0
516.0
518.0
518.0
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3710.0
3714.0
3718.0
3722.0
*
*
*
*
*
*
*
ft
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) «
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0..
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
78.
121.
95.
50.
36.
27.
20.
50.
87.
257.
39a.
75.
37.
23.
16.
23.
26.
U4.
55.
33.
21 .
16.
13.
13.
16.
20.
25.
13.
11.
10.
8.
10.
10.
Ifl.
J7. ,
10.
7.
6.
6.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
                              A-4.6-9

-------
U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 1
*
*
*
RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•
*
*
*
*
*
*
*
ft
*
*


01
42
43
44
45
4b
47
46
49
50
51
52
53
54
55
5b
57
58
59
60
bl
b2
63
64
65
bb
b7
66
b9
70
71
72
73
74
75
7b
77
76
79
60
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
«
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

522.0
522.0
522.0
522.0
522.0
522.0
522.0
522.0
526.0
52b.O
526.0
526.0
52b.O
526.0
52b.O
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505. fa
506.1
506.6
504.4
507.6
504.6
504.0
504.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•

3694
3698
3702
3706
3710
37 1«
3718
3722
3690
3698
3702
3706
3710
3710
3718
372?
3690
3698
3702
3706
3710
37 1«
3718
3722
3690
3696
3702
3706
3710
3710
3718
3722
3702
3706
3703
3702
3705
3700
3705
3703

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1
.5
.«
.0
.a
.0
.3
.1
*
*
ft
*
*
ft
«
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
4
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•
EXPECTED ARITHMETIC MEAN »
*
(M1CROGRAMS/CU. METER) «
S02 PARTICIPATES «

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
4
ft
ft
ft
ft-
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft

7.
7.
11.
13.
8.
6.
5.
4.
b.
6.
9.
10.
7.
a.
4.
4.
5.
6.
8.
8.
7.
4 .
3.
3.
4.
5.
7.
7.
6.
4.
3.
3.
322.
311 .
40b.
261 .
204.
422.
232.
350.
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
•
                          A-4.6-10

-------
  U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION NO. 1
*                                                                   *
*                 RECEPTOR CONCENTRATION DATA                       *

*          *                       *                                *
* RECEPTOR «   RECEPTOR LOCATION   *      EXPECTED ARITHMETIC  MEAN   *
*  NUMBER  *                       *                                *

*          *     (KILOMETERS)       *       (MICROGRAMS/CU.  METER)    *
*          *    HORIZ      VERT    *       SOS        PARTICULATES   *

*          *           *           *                *               *
*    81    *    505.3  *  3706.1   *       0.       *    138.        *
                             A-4o6-ll

-------
  U.S.  STEEL    F4IRFIELD  OPERATIONS    COMDITION  Ki.  1




SUURCF  CONTRIBUTIONS  TO FIVE  MAXIMUM   RECEPTORS




4NMUAL    PARTICULATES




           PE°  CUBIC  METER
* SOURCE * F
* *
* 1 *
* *
« 2 *
* *
* 3 *
ft ft
* a *
* *
5 *
* *
* *> *
* *
* 7 *
* *
* 6 *
* *
+ $ *
« *
* 10 *
* ik
* 11 *
* ft
* ft
* 13 *
* *
* 1 q *
* *
* 15 *
* *
* 16 *
* *
* 17 *
* *
* 16 *
* *
* 19 *
* *
* 20 *
« *
21 *
* «
iECEPTOR * F
78 *
. 0 0 X *
.0009 *
.00 X *
.0002 »
.00 X *
.0002 «
.00 X *
.0003 *
. 0 1 X *
.0307 *
.00 X *
.0016 *
.00 X *
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
.00 X *
.0075 «
.OCX *
.0075 «
.OCX *
.0075 *
. 0 0 X *
.0075 *
. 0 0 X *
.0075 *
.00 X *
.0075 *
. 0 0 X *
.0077 *
. 0 0 X *
.0077 *
.00 X *
.0077 »
.00 X *
.0077 »
.00 X *
.0077 *
. 0 0 X »
.0077 *
JECEPTOR
75
.00 J.
. 0 0 1 b
.00 I
.0004
.00 %
.0004
.00 X
.0005
.01 X
.0382
.00 X
.0015
.00 %
.0009
.00 X
.0009
.00 X
.0006
.00 X
.0016
.00 X
.0016
.00 X
.OOlo
.00 X
.0016
.00 7.
.0016
.00 X
.OOlb
.00 X
.0012
.0(1 %
.0012
.00 X
.0012
.00 X
.0012
.00 X
.0012
.00 X
.0012
* [
*
*
*
*
*
it
*
it
»
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
1k
*
*
*
*
it
it
it
*
it
*
it
*
*
*
it
*
VECEPTOR
12
.00 X
.0011
.00 X
,00i'3
.00 X
.0003
.00 X
.0003
.01 X
.024?
.OP X
.0010
.00 X
.0003
.00 X
.000?
.00 X
.000?
.00 X
.0065
.00 %
.0065
.00 X
.0065
.00 X
.0065
.00 X
.0065
.00 X
.0065
.00 X
.006°
.00 X
.00^9
.00 X
.0069
.00 X
.0069
.00 X
.0069
.00 X
.0069
* I
*
ik
*
*
*
*
*
*
*
it
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
?ECtPTOF. * i
PU *
.00% *
.0016 *
. 0 u X *
. n 0 0 U *
. 0 0 X *
.oooa *
.00 % *
.0005 *
. 0 1 '/. *
.03?2 *
. 0 0 7, *
.0017 *
.00 X *
.0007 *
. 0 0 X *
.0007 *
. 0 0 X *
. 0 u 0 7 *
.00 X *
.0093 *
.00 X *
. 0 0 9 3 *
. 0 0 X *
. 0 0 9 j *
. 0 0 X *
.0093 *
. 0 (j X *
.0(/«3 *
. 0 0 X *
. 0 0 X *
. 0 0 X *
.0089 *
. 0 0 7. *
. 0 0 H 9 *
. 0 0 X «
.0089 ,
. 0 0 X *
. 0 
-------
  U.S. STEEL   FATKFIELD OPERATIONS   CON'OITIOi\ MO. 1
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM  RECEPTORS
ANNUAL   PARTICULATES
•1ICRUGRAMS PER CUBIC METER
4
*
4
4
4
*
*
4
4
*
4
4
4
4
4
4
*
4
4
ft
4
4
4
*
4
4
4
4
4
4
*
4
*
4
4
4
*
4
SOURCE
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
*
4
*
4
4
4
*
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
RECEPTOR
78
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.0006
.00 X
.0001
.65 X
2.7213
.67 X
2.8393
1.01 X
4.2640
.14 X
.5752
.21 X
.9012
.22 X
.9149
.31 X
1.3152
.23 X
.9820
.24 X
1.0221
.22 X
.9263
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
RECEPTOR
75
.00 X
.0055
.00 X
.0055
.Ou X
.0055
.00 X
.0055
.00 X
.0055
.00 i.
.0003
.00 X
.0001
.00 X
.0005
.00 X
.0005
.00 X
.0009
.00 X
.0002
.96 X
3.8835
.92 X
3.7324
1.12 X
4.5566
.20 X
.P314
.22 X
.8863
.21 X
.8690
.26 X
1 .0683
.17 ^
.6947
.17 X
.7074
.16 %
.6607
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
t
4
4
4
4
4
RECEPTOR
12
.00 %
.0065
.00 X
.0065
.00 X
.0065
.00 7.
.0065
.00 X
.0065
.00 X
.0000
.00 X
.000?
.00 r.
.0001
.00 X
.0001
.00 X
.000?
.00 x
.0001
1.11 X
4.3835
1.17 X
4.5993
1.82 X
7.1454
.27 X
1.0493
.26 X
1 .015f
.£7 X
1 .0600
.35 X
1.3761
.49 X
1 .91S2
.50 X
1.9661
.44 X
1 .7451
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
RECtPTOk *
PC *
.00 X 4
.0073 *
.00 /t *
.0073 *
. 0 0 •/. *
.0073 *
. 0 0 X 4
.0(17? 4
.00 X *
.0073 *
.00 X 4
.0005 *
.00 X *
.000? 4
. 0 U X 4
.0006 *
.00% 4
.0005 *
.00 X *
.0010 *
.00 X 4
.000? 4
.79 7. 4
2.7733 *
. 7 9 X 4
2.760Q 4
1.06 X 4
3.7064 4
. 16 X *
.5562 *
.27 X 4
.27 X *
.9421 *
.36 X *
1.2720 4
.24 X 4
.827b «
.25 X 4
.8607 4
.22 X 4
.7626 4
RECEPTOR
73
.00 7.
.0060
.00 X
.00 X
.u06Q
. o n 7,
.006°
.00 •'.
.00 'I.
.0005
.00 7.
.000?
.00 •/.
.00 7.
. 0 004
.00 X
,0'KI7
.OU X
.000?
.77 •/.
2.4908
.75 X
2.4190
.94 X
3.0340
.15 X
.4851
.27 X
.8577
.26 X
.634?
.33 7.
1.16-35
.20 X
.6320
.20 X
.651?
.19 X
.6000
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
                                    A-4.6-13

-------
  U.S. STEEL   FAIRFIELO OPERATIONS    CONDITION ivfl. 1



SUUKCE CONTRIBUTION'S TO FIVE  MAXIMUM   Hfe'CEPTOPP




ANNUAL   PARTICULATES



           PER CUBIC METER
* s
*
*
*
*
*
*
*
*
4
*
»
4
*
*
*
*
*
*
*
*
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*
*
iOURCE * RECEPTOR *
4 7» *
43 * .04 X *
« .1685 *
un 4 .09 X *
* .3836 *
U5 « .10 X *
46 * .09 X *
* .3614 *
47 * .07 X *
* .2837 »
48 » .24 X *
* 1.0279 *
49 * 54.71 X *
4 230.7966 4
5U * 4. 82 7, *
* 20.3311 *
51 * .37 X *
* 1.5769 *
52 * 11 .47 X *
* 4H.3858 *
53 * 1 .70 X *
* 7.1620 *
54 * 1 1 .70 X *
« a9.3474 *
55 « 8.74 X *
* 36.8860 *
56 * .04 X *
* .1757 4
57 « .23 X *
* .9509 *
58 * .23 X *
* 1.1859 *
59 « .13 X «
* .5401 *
60 * 1 . 16 X *
* 4 .9088 *
61 * . 10 X *
* .4274 *
riACK- 4 .00 X *
TOTAL X 100.0 X X
* 421.9336 *
RECEPTOR
75
.03 %
.1 167
.07 7.
.2709
.07 %
.06 ^
.2575
.05 i
.1979
.37 X
1.5133
43.63 X
176.9657
5.46 X
22.1452
.51 X
2.0630
15.32 X
62. 1213
2.32 X
9.4213
15.3° X
62.4106
10.39 X
42. 1405
.Od X
.3431
.47 X
1 .9263
,4S Z
1 .9432
.10 X
.3858
.72 X
2.9025
.07 X
.3037
.00 '<
0.
100.0 X
405.6^02
*
4
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
1t
4
*
*
*
X
4
12
.08 X
.3330
.19 X
.7574
.20 X
.7900
. 16 X
.6891
.13 X
.5263
.40 X
1 .5912
33.25 X
130.8714
7.91 X
31 .1393
.82 X
3.2122
20.55 X
80.8760
3.68 X
14.4895
16.53 X
72.9391
5.23 X
20.593?
.10 X
.4008
.47 Z
I .6615
.52 X
2.0615
.25 '/
2.2897
.21 X
.8205
.00 X
0.
lOO.f! %
393.6401
*
*
*
*
4
*
*
*
4
4
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
4
*
4
*
*
4
*
*
4
*
RECEPTOR *
80 *
.04 1 4
. 1 4 1 6 *
.09 X *
.3232 *
.10 X *
.3419 *
. 0 9 X *
.3052 *
.07 X *
.2392 *
.25 X *
.8622 *
49.86 X *
174.3373 *
5. Itt % *
18.H>33 *
.42 X *
1 .4614 *
12.73 X *
44.510^ *
1 .8P X *
13.02 X *
45.5283 *
9.°3 X *
34.7340 *
. 0 4 X *
.1531 *
.7993 *
.29 X *
1.0286 *
. 1 3 X *
.4567 *
1.09 X *
3.8119 «
. 1 0 X *
.3652 *
.00 X *
0. *
1 0 0 . 0 X x
349.671S) »
73
.03 X
.1076
.06 X
.06 X
.07 X
.06 X
.1749
.25 X
.81 54
46.86 X
150.7455
5.31 X
17 .0675
.44 r.
1 .4177
1 3.8H X
4 U . 6 4 0 7
2.05 r
0.5*70
1 4 . 1 9 X
1 n . 74 x
34 .5208
.0? X
.25 X
.807*
.28 •/.
.8855
.11 X
.3474
1.07 X
3.4357
.Ofl X
.00 X
100.0 X
321 .5820
*
*
*
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
                                    A-4.6-14

-------
                APPENDIX A-4.7



COMPUTER MODEL USING LARGE GRID FOR CONDITION 2

-------
                      U.J. STEEL   P4I9FIELO OPEB4TION3  CONDITION *1.  2
SOUHCE D»T»
                                            •NNU1L  bOUBCE
• SOURCE • SOUBCE LOCATION • SOUUCE AB£A «
• NUHAER • CXILOMETEHS) • SOUASE •
• • HORIZONTAL • VERTICAL • KILOMETERS •
1.
•
*
*
j
*
|
m
*
!..
B
*
•
'f
~-
*
\
1
2
0
5
o
7
9
10
11
12
13
14
19
16
17
11
19
20
21
22
23
24
26
27
23
29
30
31
32
33
14
35
36
37
38
39
40
41
02
0!
04
45
46
47
48
09
50
51
52
55
54
55
56
57
58
5*
60
• 506.4
• 506.5
• 506.5
• 506.5
• 509.1
• 509.0
• 507.0
• 507.3
• 507.4
• 506.1
« 506.1
• 506.1
1 506.1
• 506.1
• 506.1
• 506.1
• 506.3
• 506.3
> 506.3
• 506.2
' 108.6
. 508.6
• 508.6
• 508.6
• 508.6
• 506.8
« 506.8
• 506.7
« 506.7
• 506.3
• 506.8
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• ~ 507.0
• 507.3
• 507.0
• 507.3
• 507.4
507.3
• 507.4
• 507. 3
• 506.5
• 506.1
• 508.6
• 506.7
• 506.8
« 506.8
• 506. 9
• 506.8
• 506.8
• 506.7
• 506.5
• 507.4
• 506.1
• 3704.3 •
• 3704.8 •
• 3704.9 •
• 3705.0 •
• 3708.6 •
• 3703.7 •
« 3708.7 •
• 3708.7 .
• 3703.7 «
• 3704.3
• 3704.3 •
• 3704.3 •
• 3700.3 •
• 3704.3 «
• 3704.3 •
• 3704.1 «
• 3704.1 .
• 3704.} .
• 3704.1 .
• 3704.3 •
3708.0 •
• 3708.0 •
• 3708.0 «
. 3708.0 .
• 3708.0 •
• 3705.6 «
• 3704.0 •
• 1705. 3 •
• 3705.1 •
• 3705.2
« 3705.1 •
• 3704.8 •
• 3704.9 •
• 3705.0 •
• 3704.9 .
• 3709.8 •
• 3700.9 •
• 3705.0 «
• 3703.7 •
• 3708.7 •
• 3708.7 »
« 3708.7 •
« 3708.7 .
• 3708.7 •
• 3708.7 •
• 3708.7 •
« 3704.3 «
3704.3 •
• 3708.0 •
3705.3 •
• 3705.2 •
• 3705.3 «
• 3705.3 •
• 3705.2
• 3705.2 •
• 3705.1 .
• 3705.0 •
• 3708.7 •
• 3704.3
.00 *
.00 •
.00 •
.00 .
.00 •
.00 >
.00 •
.00 •
.00 •
.00 •
.00 *
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 «
.01 •
.01 «
.01 •
.00 •
.00 •
.00 •
.00
.00 •
.00 •
.00 •
.01 •
.01 •
.09 •
'.3k •
.36
.36 •
.36
.36 •
.06 •
.06 •
!oi
.01 •
EP'ISSIOfc SATE •
CTOH3/CAY) •
S32 PAST .
.000
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Don
.000
.000
.000
.000
.000
.000
.000
.000
.000
'.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00"
.000
.000
.00"
.000
.000
.000
.000
.000
.000
.000
.=75
.177
.177
.241
.953
.635
.137
.143
.131
.1141
.041
.041
.001
.041
.not
.nul
."41
.001
.001
.042
.04?
.042
.(<*'
.042
.063
.063
.097
.197
.141
.037
.?.)7
.307
.030
.059
.120
.130
.164
.23?
.249
.041
.003
.097
.100
17.605
5.216
.217
.339
.742
6.95!
5.493
.034
.122
.137
.005
*
*
*
•
\
•
•
^
'•
*
%
*
"
*
*
*
*
*
|
.
*
*
*
*
XT
50.0
51.0
53.0
70.0
65.11
67.0
09.6
09.6
40.6
61.0
M.O
61.3
61.0
M.O
61.0
61. J
M.O
M.u
M.u
ot. 0
54.1
50.1
5-.1
54.1
69.6
69.6
6.-.0
60.0
7o.O
7a.O
23.0
23.0
.5
09.0
44.0
51.0
23.0
23.0
23. 0
.5
21.0
23.0
23.0
.0
.0
30.0
30.0
9.1
24.0
4.1
30.0
61.0
1.0
3.0
3.0
30.3
3.0
["I
2.0
1.2
1.2
1.1
4.1
5.3
1 .?
1.2
1.2
2.1
2.1
2.1
2.1
3.1
2.1
2.1
2.1
2.1
2.1
2."
2.1
2.0
2.0-
5.7
2.7
3.6
3.9
.0
.0
.0
. n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0 C C
.0
.0
.0
.0
.0
.0
.0
.0
.0
VEL
(M/SEC)
7.6
9.3
9.*
15.5
0.4
5.5
9.0
9.0
5.3
5.1
5.3
5.3
5.1
5.2
5.3
i.J
5.5
5.3
0.1
6.1
6. J
o.;
o.3
0.1
13.2
7.2
1.4
,U
.3
.1
.3
.0
• 0
.0
.0
.0
.0
. u
.3
.0
.0
.0
.3
.0
.0
.0
.0
.0 '
.0
. 0
.0
.0
.0
.0
TEMP •
C3ES.II)-
505. •
050. •
050. .
450. •
»SO. •
673. •
450. *
450. «
539. .
599. .
J99. -
599. .
5»9. .
5S9. .
539. .
599. .
599. •
519. .
5)9. .
589. .
666. •
8 = 6. •
966. •
966. •
966. •
477. •
J77. .
511. .
5'3. .
533. •
077 . •
0. .
0. •
0. .
0. •
n . .
0. •
0. .
0. •
0. •
il . .
0. •
0. '
0. •
n . .
n . •
0. •
0. •
0. •
0. •
0. >
0. •
0. •
0. •
0. >
0. •
0. •
                              A-4.7-1

-------
  U.S.  STEEL    FAIWF1ELO PPEPAItUIvS   CllfvDl T IMN  Nil. ?
          DATA

LOCAIJIJNS  HI  HE UStD  AS KPCtPTURS  IN ADDITION  Til  THE   7? RFC F A.\J|,,IL AC

  WECFPT.JR       X-CUIJKIM'MA TE        Y-CO'JRO I N A TE
   NUMrtFH        (KILOMETERS)        (KILUMETE.HS)
       7?             SO-S.h               370?.1

       7«             506.1               3706.5

       75             506.6               ?7f!3.«

       76             50y.y               370?.I)

       77             SO7.6               3705. u

       78             S01.6               3701.0

       79             501.0               5705.3

       «0             501.1               3703.1

       ^ I             505.3               3708.1
                                           A-4.7-2

-------
                    U.S. STEEL   FAlRFItLI) OPERATIONS   CUNUTFTUN.NO. ?
             METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASOM
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE =  291. DEGREES,KELV1N
AMBIENT PRESSURE = 1000. MILLIBARS

STABILITY CLASS  1

WIND DIRECTION
N
NNE
NE
EME
E
ESE
SE
sst
S
SSW
SW
ws*i
w
ifllNW
Nto
NMrt

1
.0000
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.oooa
.0002
.0008
.0001
.0006
.0003
.000?
.0005

2
.0007
.0003
.0008
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.000t»
.0003
.0006
.0005
rtlNDSPEEO
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
CLASS
'4
.0000
.0000
.0000
.0000
.0000
.0000
.oouo
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
. I) 0 0 0
.0000

5
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

fa
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. n o 0 0
                                  A-4.7-3

-------
                      U.S.  S1EEL   FAIRHIF.LO  UPERA T [ONS    CIJ'-H) I F U'N NO.  ?
              METEOROLOGICAL  INPUT  DATA FOR  THE ANiMIIAL  SEASOM
? T A B IL II Y CLASS   2

WIND DIRECTION
N
MNE
ME
ENE
E
ESE
SE
SSE
S
SSrt
SW
wsw
',V
WNrt
NW
NNw

1
.OOlh
.0020
.00) 3
.0015
.0020
.0016
.001S
.0020
.0022
.0019
.001 1
.0010
.00?!
.0010
.0017
.0013

2
.0036
.0033
.0021
.0023
.0043
.0023
.0027
.0087
.0029
.0021
.0019
.0014
.0035
.0024
.0034
.0032
wIMlSPEFD
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.OOOS
.0007
.0020
.OOM
.0016
.0011
CLASS
4
.0000
.000 0
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                         A-4.7-4

-------
                    U.S. STEEL
FAIRFIELO OPERATIONS
riJHOITIUN Ml. ->
             METEOROLOGICAL  INPUT OATA  FOR  THE  ANNUAL  SEASON
STABILITY CLASS

DIRECTION
N
NNE
NE
ENt
E
ESF.
SE
SSE
S
ssw
sw
wSi/v
in
WNW
Nw
NNW

1
.001 3
.0029
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.0005
.0006
.0007

2
.0018
.0019
.0012
.0016
.0045
.0016
.0016
.0030
.0029
.0017
.0014
.OOlfl
.0030
.0019
.0023
.0017
WHViOSPEFU
3
.0050
.00 VJ
.0016
.0010
.0053
.002S
,00?9
.005«
.0034
.0030
.0027
.0027
.0038
.0012
.0038
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.000 3
.0003
.ooon
.0006
.0002
.0005
.0003

5
.000 0
.noon
.oono
.0000
.000 0
.0000
.0000'
.0000
.0001
.0001
.0000
.0000
.0001
.000(1
.0000
.0000

*
. 0 0 o 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
. 0 0 0 0
.0000
.0000
                                     A-4.7-5

-------
                      U.S.  STtEL    FAIRFIEIP  OPERATIONS    Cl.iWU f IiifJ rill.
                 TEUKOLUGICAL INPUT  OATA FOB  THE  ANNUAL SfcASIliM
STABILITY CLASS

WIND DIRECTION
N
NNt
NE
ENE
E
ESE
SE
SSE
S
ssw
sw
«VSW
w
iVNW
NW
N^W

1
.0033
.0029
,00?1
.00??
.0017
.001?
.0012
.0033
,00?3
.0010
.0007
.001 1
.0018
.0010
.001 7
. o o i e

2
. 0 0 fl 5
.0066
.005"
.00«3
.0116
.00«Q
.OOS6
.0075
.0069
.0009
.00,58
.003fl
.0073
.0035
.(I05S
.OOas
imlNDSPEEU
?<
.0162
.OOUh
.00?7
.0001
.0107
.00*0
.0101
.01P.9
.0160
.01M
.no<>5
.0057
.0107
.0077
.0096
.0097
CLASS
a
.Olio
.00?^
. il 0 0 0
.0009
.0001
.0029
.0071
.0093
.012?
.0115
.0076
.0005
,009fl
. 0 0 h 0
.006S
. 0 0 « H

5
.0005
.0001
.0000
.oono
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0020
.0003
.0007
.0005

b
.0000
.0000
.000')
.0000
.0001
.1)000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.ODOO
.0001
. 0 0 0 0
                                           A-4.7-6

-------
                    n.s.  STttL    KAJHUI-LD  IJPE&AT IONS   cowmiuN MM.
             METEUWnLOGICAL  INPUT  DATA  KOh  THE  AMNMAI SEASON
STAUILITY CLASS  5

W1NO OIUFCTION
N
NNE
NE
ENfc
E
tSE
SE
SSE
S
SSrt
sn
wSrt
w
(MIMrt

.0397
.0079
.0086
.0131
.(107J
.0038
.oo?a
.002?
.OOhl
.0033
.0037
.0051

£
.0133
.0173
.0138
.0096
.0162
.0005
.0077
.013"
.0080
.0043
.0023
.0029
.0069
.0033
.0003
.0047
WfNOSPF.En
3
. o o i> a
.001 M
.0007
.0011)
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.0011
.0053
.0016
.001 7
.001 /
CLASS
4
.OOOd
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

S
.0000
.000 0
.0000
.0000
.nooo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.1)000
.000 0
.0000
.0000
.0000
.0000
.0000
. (1 0 0 0
.0000
.0000
.000 0
. 0000
                                    A-4.7-7

-------
                                  U.S. STEEL   FAIKFJELO  tIPFKATIONS   CONDITION NO. ?
INPUT RF.GKESSION PARAMETERS ARE:
     POLLUTANT           Y-INTF.RCEPT
    PARTICULARS
                                .0
SLUPE
                                                1 .0000
                                         A-4.7-8

-------
U.S. STEEL   FAIRFIELD  OPERATIONS   CONDITION NO. 2
*
*
RECEPTOR CONCENTKATION DATA
* *
* RFCEPTUR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


1
a
3
4
5
6
7
%
9
10
11
12
13
la
15
16
17
18
19
20
21
22
23
24
25
2b
27
28
29
?0
31
32
33
34
35
36
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
50b.O
506.0
506.0
506.0
506.0
510.0
510.0
51U.O
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
518.0
518.0
51H.O
518.0
518.0
516.0
518.0
518.0
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

36
-------
u.s. STEEL   CAIRFIELO OPEKATIUNS   cJN>oninr* MJ. a
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* * * u M Q E R *
*
*
^
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*•
*
#
*
*
A
A
A
A
A
*
A
A
A
A
*
A
A
*



ai
«2
13
44
15
16
17
49
19
50
51
52
53
54
55
56
57
58
59
60
61
e>2
63
64
65
66
67
6e
69
70
71
72
73
74
75
7fa
77
78
79
80
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
A
A
RECEPTOS LOCATION
(KILOMET
Htmz

522.0
522.0
522.0
522.0
52?. 0
522.0
522.0
522.0
526.0
526. u
526.0
526.0
52b.O
526.0
526.0
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
531.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505.6
506.1
506.6
504.4
507.6
504. 6
504.0
504.4

A
A
*
A
A
A
A
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
ERS)
VERT

3694.0
36=8.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369P.O
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3699.0
3702.0
3706.0
mo.o
3714.0
3718.0
3722.0
3694.0
36"8.0
3702.0
3706.0
3710.0
3714. 0
371R.O
3722.0
3702.1
3706.5
3703.1
3702.0
3705.4
370U.O
3705.3
3703. I
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
«
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
A
A
A
A
A
A
A
A
A
A
EXPECTED ARITHMETIC M£AN
(
MICRO
iG*AM!
S02

0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
•
.
•
*
.
.
•
.
.
•
•
f
•
•
.
•

.
•

m
•
.
,
•
.
.
•

f
•


•


'

*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
5/CU. MCTER)
PARTICIPATES

6.
b.
4.
10.
7 .
4 .
4 .
4 .
5.
5.
7 .
8.
6.
4 .
3.
3.
4 .
5.
6.
7 .
5>
3.
3.
3.
3.
4 .
5.
6.
5.
3.
2.

274
? 4 3
310.
212.
152.
370.
188.
302.
*
*
*
*
*
*
*
*
A
*
it
it
*
*
*
V
*
*
*
*
*
*
ir
*
*
*
*
*
*
A
A
*
*
*
*
*
*
*
*
*
*
^
*
*
*
*
                             A-4.7-10

-------
  U.S.  STEEL    FAI'
-------
  U.S.  STEEL    FAIKFIELD OPERATIONS   CONDITION NO. 2
SOURCE  CONTRIBUTION  TO FIVE MAXIMU^  RECEPTORS
ANNUAL    PARTICULATES
           PER  CUBIC  MtTER
* SOURCE * R
» *
* 1 *
* *
* 2 *
it it
* 3 *
* *
* a *
* *
* 5 *
* *
* b *
* *
* 7 *
* *
* ti *
* *
* 9 *
* *
* 10 *
* *
* 11 *
* *
» 12 *
. 13 *
* *
* 14 *
* *
* 15
* *
* 16 *
* 17 *
* *
* 13 «
* *
* 1 V *
t *
* 20 *
* *
* 21 *
* «
ECEPTOR « H
78 •
.00 X *
.0009 *
. 0 0 X *
.0002 *
.00 X *
.0002 *
.00 X *
.0003 »
.00 X *
.0036 *
.00 X *
.0016 *
.00 X *
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 *
.00 X *
.0000 «
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 «
.00 X *
.0000 *
.00 X *
.0000 *
!£C£PTOrt * K
75 *
. 0 0 2. *
.0016 *
. 00 * *
.0004 *
.00 X «
,ooo« *
.002 *
.0005 •
.00 X *
. 0 0 X *
.0015 *
. 0 0 X *
.0009 *
.00 X *
.0009 *
.002 *
.ooo» *
.00 X »
.0000 *
. 00 i *
.0000 *
.00 X *
.0000 *
.002 *
.0000 *
.00 2 *
.0000 *
.00 2 *
.0000 *
.002 *
.0000 *
.00 X «
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 *
.00 X *
.0000 »
.00 2 *
.0000 *
RECEPTOR * I
12 *
. 0 0 X *
.0011 *
.00 X *
.0003 *
.00 X *
.0003 *
.00 X *
.000? *
.00 X *
.0028 *
.00 x *
.0010 *
.00 X *
.0003 *
.00 X *
.0003 *
. 0 0 X *
.000? *
.00 X *
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 «
.00 X *
.0000 *
. 0 0 X *
.0000 *
. 0 0 X *
.0000 *
.OCX *
.0000 *
.OCX *
.0000 *
. 00 X *
.0000 *
.00 X «
. t n o o *
. 0 0 X *
.0000 *
.00 X *
.0000 »
'fc.CE.PTO* * •
.00% *
. 0 0 7, *
. 0 0 X *
. o o 0 a *
. 0 0 X *
.0005 *
.00 X *
.0036 *
. 0 0 X *
.0017 *
.00 X *
.0007 *
. o o •/. *
.0007 *
. 0 0 X *
.0007 «
.00 % *
.0(i01 *
. 0 0 X »
.0001 *
. 0 0 X *
.000) *
. 0 0 X *
.0001 *
. 0 0 X *
.000] *
.00 X *
.0001 *
.002 *
.0001 *
.00% *
. 0 0 0 o *
. 0 0 '/- *
.0000 *
.00 '/. *
.OOiiO «
. 0 0 X *
. 0 0 0 0 *
. 0 0 x *
.0000 «
7?
.00 •/.
.0015
.00 X
. (' 003
. n o •/.
. 00 OU
.00 7.
.0005
.00 x
.OOUH
. (1 0 X
.00 %
.0<)0<<
. 0 0 '/.
.0009
.00 X
.0008
.00 X
.0000
.00 1,
.0000
.Of X
.0000
.00 X
.0000
.00 X
.0000
. 0 0 X
.0000
.00 X
.0000
.00 X
.0000
.00 •/.
.0000
.00 T
. J 0 0 0
.00 X
.0000
.0000
w
*
*
*
*
*
*
*
*
*
*
*
*
It
*
*
*
It
w
*
*
*
*
A
It
*
*
*
*
*
*
*
                                   A-4.7-12

-------
SOUKCE CONTRIPJTinNS  TO  FIVE MAXIMUM




ANNUAL   HArtTICULATES




MICRUGHAMS  P£P  CUBIC  METER
* SOURCE
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
78
.00 Z
.0001
.00 X
.0001
.00 %
.0001
.00 X
.0001
.00 X
.0001
.00 2
.0001
.UO X
.0001
.00 X
.0001
.00 2
.0001
.00 2
.0002
.00 2
.0000
.74 X
2.7213
.77 X
2.S393
1.15 2
4.2640
.16 Z
.5752
.24 Z
.9012
.25 Z
.9149
.36 X
1.3152
.27 Z
.9820
.26 Z
1 .0221
.25 2
.9263
* RECEPTOR
* 75
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.00 X
.0000
.00 X
.0000
.00 2
.0000
.00 Z
.0000
.00 x
.0000
.00 Z
.0001
.00 Z
.0000
.00 X
.0001
.00 2
.0002
.00 *
.0003
.00 X
.0001
1.14 Z
3.8935
1.10 Z
3.7324
1 .34 X
a. 5566
.24 2
.8314
.26 2
.8863
.26 X
.8690
.31 2
1.0683
.20 X
.6947
.21 X
.7074
.192
.6607
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
RECEPTOR *
12 *
.00 Z *
.0001 *
.00 2 *
.0001 *
.00 2 *
.0001 *
.002 *
.0001 «
.00 2 *
.0001 *
.002 *
.0000 •
.00 X «
.0001 *
.00 X *
.0000 *
.00 2 *
.0000 »
.00 2 *
.0001 *
.00 2 *
.0000 *
1.43 2 *
4.3835 *
1.50 2 *
4.5993 *
2.34 2 *
7.1454 *
.34 2 *
1.0493 *
.33 X *
1.0158 *
.35 2 *
1.0600 *
.45 Z *
1.3761 *
.63 X *
1.9182 *
.64 X «
1.^681 *
.57 2 *
1.7451 *
RtCtPTIIR
80
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 2
.0001
.00 X
.0001
. 0 11 '/.
.0002
.00 X
.0001
.00 2
.0002
.0002
.00 2
. 0 U 0 3
.00 X
.0001
.92 2
2.7733
.92 2
2.7fc09
1.23 '/
3.70*9
.18 2
.55b2
.31 7.
.31 2
.42 1.
1.2720
.27 X
.2S Z
.P607
.26 2
.74)26
A
A
A
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
KECEPTO*
73
.00 X
.0001
.00 2
.uOol
.00 %
.0001
.00 Z
.0001
.no z
.0001
.00 X
. !) 0 0 1
. UO '/.
.0001
. 0 (I 2
.0001
.on 7.
.0001
.00 z
.0002
.00 z
.0001
.^1 2
.88 2
1.11 X
i.03'4(l
.13 2
.31 2
.8577
..31 •/.
.39 2
1 .0655
.23 1
.6320
.
-------
  U.S.  STEEL    FAIRFIELD  OPEKAlIOfoa    CONDITION NO.  2




SOURCE  CONTRIBUTIONS  TO  FIVE  MAXIMUM  RECEPTORS




ANNUAL    PARTICIPATES




           PER  CUBIC  METER
*
ft
*
*
ft
*
*
*
*
*
*
*
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
ft
ft
ft
SOURCE
43
44
45
46
47
46
49
50
51
52
53
54
55
56
57
58
5?
60
61
6ACK-
GSOUMO
TOTAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR *
78 *
.05 X *
.1685 *
.10 X *
.3836 *
.1 1 X *
.3979 *
. 10 X *
.3614 *
.08 X *
.2837 *
.28 X *
1.0292 *
62.37 X *
230.7=66 *
5.49 X *
20.3311 *
.43 X *
1.5769 *
.65 X *
2.4193 *
.67 X *
2.4656 *
13.34 X «
49.3474 *
9.97 Z *
3 6 . S 8 6 0 *
.05 % *
.1757 «
.26 X *
.9509 *
.32 X »
1.1859 .
.01 % »
.0205 *
1 .20 X *
a. 0261 *
. 12 X *
.4274 *
.00 X *
0 . *
100.0 X X
370.1040 «
RECEPTOR
75
.03 i
.1167
.OS X
.2709
.Oft %
.2749
.08 X
.2575
.06 X
. 1979
.05 *
1.5172
52.02 X
176.9657
6.51 X
22.1452
.61 X
2.0630
.91 I
3.1 061
.95 X
3.2436
19.35 X
62.4106
12.39 X
42.1405
.10 X
.3431
.57 -i
1 .9263
.57 X
1 .9432
.00 X
.0146
.90 X
3.0781
.09 X
.3037
.00 X
0.
100.0 X
340.2207
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
it
*
it
it
it
it
*
*
X
*
RECEPTOR
12
.11 X
.3330
.25 X
.7574
.25 X
.7741
.23 X
.6691
.17 X
.5264
.5? *
1.5952
42.79 X
130.6714
10.18 X
31.1393
1.05 X
3.2122
1.32 X
4.0439
1 .63 %
4.9682
23.85 X
72.9391
6.73 X
20.5933
. 13 X
.400?
.61 X
1.6615
.67 X
2.0615
.01 X
.0377
.65 Z
1 .9798
.27 '/.
.6205
.00 X
0.
100.0 X
305.P916
*
*
*
ir
it
t
it
it
*
*
*
*
*
*
it
it
*
*
*
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
X
ft
RECEPTOR *
80 *
.05 X *
.1418 *
. 1 1 X *
.3232 *
. 1 1 X *
.3350 *
.10 1- *
.30^2 *
. 0 b X *
.2392 *
.29 X *
.8626 *
57. 7 F i *
174.3*7? *
6.00 X *
18.1033 *
.46% *
1.4614 *
. 7 4 •/, *
2.2255 *
.75 X *
2.2574 t
15.09 X *
45.5283 *
1 1 . 5 1 X *
34.7340 *
.05 X *
.1531 *
.26 '/ *
.7903 *
.34?. *
1 .0286 *
. 0 1 •/. *
.0173 *
1.03 '/, *
3.1153 *
. 1 2 X *
.3652 *
. 0 0 X *
0. *
100.0 X X
301.7700 *
RECEPTOR
7?
.04 X
.1076
. 3Q %
.247?
.09 %
.253°
.09 X
.07 i
.1799
.30 X
.PI b7
55.1)0 %
150.7455
I 7 .0675
.52 X
1.4177
.62 r
2.2320
.8? X
2.2677
1 6 . b 7 X
45.6148
12.61 X
3 a . 5 ? 0 8
.06 X
. 1556
.30 X
.8076
.32 X
.00 X
.01 32
1.01 X
2.7750
.10 •/.
.2670
.00 X
0.
100.0 X
273.6936
*
*
*
*
ft
ft
ft
ft
*
*
ft
ft
ft
*
ft
*
*
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
w
ft
ft
ft
ft
ft
                                    A-4.7-14

-------
                APPENDIX A-4.8



COMPUTER MODEL USING LARGE GRID FOR CONDITION 3

-------
                          U.S. STEEL   FAtfcrlELP uPE&aT[f:\S    C'jNMTnnN My.  i
bOUHCt  04TA
* *
* SOURCE *
* f
#
^
*
*
w
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
4
*
*
•JIJM.-tEi

1
a
3
'4
-j
T
7
^
•*
10
11
12
1 ?
14
13
1 S
17
U
1 1
20
21
?_j
p f
2''
2i
26
27
21
d-t
VI
31
33
«
34
tj
:
.!>2»' 4 'Ih.-I P.O
.307 4 Pj.,, .u
.307 4 £<.j .n
.420 4 P3.ii .u
."39 . . =; .0
.ian 4 u*.u .0
.120 4 4M . ,1 . '1
.164 4 qi.i, . o
.238 4 2i.u .0
.24Q 4 23. u .0
.P(JM 4 2<.'J ."
.041 * .5 .n
.093 . 25.1, .f.
.047 4 2$.'l .0
.OKQ . PJ.o .1)
.O^o 4 5.0 .0
.100 4 5 . u .0
.384 4 1.1 .11
.25" 4 24. u .0
.34P 4 -,.1 .1)
6.°53 4 Vi.y .r,
5.422 4 6L.ii
.'124 4 J.il . y
.l->? 4 <.!, .'.I
1.23= 4 j'i.u . u
.137 4 J.,i ,ii
. 33** 4 3 •'! . -1 . 0
.1'J7 4 3.u .n
OA ra
VtL
fN/5?C)
7 .^
'-> .0
9.1
lb.5
b. 4
i.3
0.,,
9 . H
?.o
6. 5
-, . <
10.2
M. 2
7.3
3.4
3i.O
.,)
••'
.T
. J
. o
>PJ
.0
.0
• j
.•i
•••»
.u
. o
• '•
.,,
.0
. J
. 0
. ••)
. H
.0
. 'i
•^
.;;
. 1
• •J
. 1
4
TE-1P 4
(,Ttu.
-------
  U.S.  3TEEL   FATRFIELD OPFKATIONS    CPtvDITiriN  NO. 3



RECEPTOR  DATA

LOCAT1UNS TO BE  USED AS RECEPTI.iWb IN  AUOJTION  Td THF  7?  REC T A. IRlll. AP l-UID  LHCAirnM3

  RECF.PTOR       X-COURIJINATE       Y-COOIVO t NATE
   NUMBER        (KILOMETERS)       (
       73             50S.6               37()?.l

       7«             =50^.1               3706.5

       75             S06.6               3703.1

       76             5')«.               3701.0

       7<>             501.0               3705.3

       »f>             500.u               3703.1

       «1             505.3               3708.1
                                         A-4.8-2

-------
                     U.S. STEEL   FAIHFIHD  DPtPA T TIMS   ClINDITTUN  NO.  .5
             METEOROLOGICAL INPUT DATA  FIIH  THE  4NPJIJAI  StASI.IN
MIXING DEPTH  =  1500.  ME1FKS
AMBIENT TEMPERATURE  =  294. DEGHEES , K F.LV 1
AMBIENT PRESSURE  =  1000.  M1LLIHAHS
STABILITY CLASS   1
                                        MNDSPtED  CLASS
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSw
S*
wsw
.;
«N»
NW
NNW
1
.oooa
.0006
.0003
.0001
.0007
.0001
.0003
.OOOb
.oooa
.0002
.0002
.0001
.0006
.0003
.0002
.0005
2
.0007
.0003
.0008
.000?
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0006
.0003
.000f>
.0005
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.000 o
.0000
.0000
"
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
fl
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
                                    A-4.8-3

-------
                      U.S. STfcEL    FAt&FIfcin DPK.fi 4T ID'i.S
                                                                 ) r r TUN  no.
              'IFTFURliLHGlCAL  INPUT DATA  FQW THt At>\|UAL
STABILITY  CLASS   2
                                                      CLASS
IJIRF.CTION
N
NME
NE
EME
E
E?E
SE
SSE
S
SSW
Sfc
HSrt
w
WNlN
NIK
NNwi
1
.0018
.0020
.001?
.OOlb
.002"
.0016
.0015
.0020
.0022
.0019
.001 1
.0010
.0021
.0111 a
.0017
.0013
2
.003*
.0033
.0021
.0023
.0013
.0023
.1)027
.0027
.0029
.0021
.0019
.0011
.0035
-002«
.003U
.003?
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
. o o i a
.0014
.0010
.0005
.0007
.0020
.0015
.001<,
.0011
a
.oouo
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
.000 0
. 0 0 0 0
.0000
.000 0
.0000
.0000
. oooo
5
.0000
.0000
.000 0
.0000
.0000
.0000
.01)00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.000 (i
*>
.000 0
.0000
.0000
.1)000
.01100
.0000
.0000
.0000
.000 0
.000 0
.0000
. 0000
.0000
.000 o
. 0000
. 1)000
                                     A-4.8-4

-------
                     U.S.  STEirL   FAIKFItLO OPERATIONS   COMfMlION  N.
              MFlFORtlLOGICAL INPUT dAlA  FDR THE  &NNIJM. S
S T A rt IL I T Y  CLASS  3
VvINn DIRECTION
N
NNE
NF
ENf
E
Ese
SE
5SE
S
SSw
SW
kvSW
w
*N*
N*
MM ill
1
.001 3
.0029
.0020
.0015
.0021
.001 a
.0009
.0020
.0012
.0006
.0000
.0007
.0008
.0005
.0008
.0007
?
. 0 0 1 8
.0019
.0012
.0016
.oou5
.00)6
.0016
.0030
.0029
.0017
. o o i a
.0018
.0030
.0019
.0023
.0017
'
.00 s.i
.0034
.0016
.0010
.0053
.0025
.0029
.0058
.0034
.003(1
.0027
.0027
.0033
.0032
.0038
. 0 0 a 0
a
.0007
.00 OS
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.000 3
.0003
.0008
.0006
.0002
.OOOS
.OOOT
1=1
.on oo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
. 0 0 0 (1
.000 0
.0000
->
. oooo
.000 0
.000 0
.0000
.000 0
. 0000
.0000
.000 0
. 0 0 0 0
.0000
.0000
.000 o
.0000
.000 o
.0000
.0000
                                      A-4.8-5

-------
                      U.S.  STfcEL    FAIRFIf:LU OPERATIONS    CONOITTON  Nil.
              METEOROLOGICAL INPUT  DATA FOR THE.  AMiMIIAL SEASON
STABILITY  CLASS

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
SS.v
3W
IV SW
W
rtNW
MW
NMW

1
.00?3
.0029
.00?!
.00?3
.0017
.001?
.001?
.0033
.0023
.0011
.0007
.0011
.0016
.001 0
.0017
. 0 0 1 «

2
.0085
.0066
.0051
.0013
.0116
.0019
.0056
.0075
. .0069
.0019
.00?H
.0038
.0073
.0035
.0055
.0015
WIMPSPEED
5
.016?
. 0 0 1 b
.00?7
.0011
.0107
.006'!
.0101
.0129
.0161
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
1
.01 11
.0025
.0001
.0009
.0011
.00?9
.0071
.0093
.012?
.0115
.0076
.0015
.009P
.0061
.0065
.OOrtfl

5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0021
.0003
.0007
.0005

6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
                                        A-4.8-6

-------
                    U.S. STEEL   FAIRFIELD OPERATIONS   CONDITION  MO.
             METEOROLOGICAL INPUT DATA FOR THE ANNUAL  SEASON
STABILITY CLASS  5
WlNDSPtFO
WIND UIRECTION
N
NNE
NF.
ENE
E
ESE
SE
SSE
S
SSd
sw
wsw
w
WNW
MW
NNW
1
.0169
.0136
.0507
.0336
.Oa<»7
.0079
.0086
.0131
.0071
.003«
.0021
.no??
.0061
.003?
.0037
.0051
2
.0132
.0173
.0138
.0096
.0162
.0005
.0077
.015"
.0060
.0003
.0023
.0029
.0069
.0033
.0013
.0017
3
.00'4'4
.OOIH
.0007
.0010
.0019
.001 1
.0015
.0019
.00?2
.0021
.0012
.001«
.0033
.noif.
.0017
.0017
CLASS
a
.0000
.ooon
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.001)0
.0000
.0000

S
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
. n o o o
.0000
                                 A-4.8-7

-------
                                  U.S.  STEEL    FAIRFIKLU OPERAIIUNS   CONOITIIllM  Nil.  3
INPUT REGRESSION PARAMETERS ARE:
     POLLUTANT           Y-INTERCFPT
    PARTICULARS
                                .0
                                                 SLOPE
                                                 1 .0000
                                       A-4.8-8

-------
U.S. STEEL   FAlkFIELD OPERATION'S   CONDITION NO.  3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBE* *
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16
19
20
?1
22
23
24
25
26
27
2B
29
30
31
32
33
34
35
36_.
37
33
39
uu
*
*
*
*
*
*
4r
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HOrtIZ VERT

502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
511.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
516.0
518.0
518.0
518.0
516.0
518.0
51S.O
518.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
#
*
+

.5694.0
3698.0
370?. 0
371)6.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3699.0
3702.0
3706.0
3710.0
3714.0
3718. n
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718. 0
372?. 0
*
*
4
*
it
*
*
*
*
*
*
*
it
*
* .
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
EXPECTED ARITHMETIC M£
*
*
*
AN *
*
(MlCRtlGftAMS/CU. MEItR) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
fi.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

30.
46.
55.
41 .
19.
1 4.
1 1 .
8.
?0.
34.
9?.
154.
32.
1 4.
u
6.
9.
10.
17.
21.
1 1 .
8.
b.
5.
5.
6.
7.
10.
=>.
4.
4.
3.
4.
4.
5.
7..
3.
3.
?.
2.
*
*
*
*
*
*
it
it
JT
+
it
*
4
*
*
*
*
*
*
*
it
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
it
it
*
                             A-4.8-9

-------
U.S.  STEEL    FAIRFIELD OPERATIONS   CONDITION NO.  3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*


41
42
43
04
45
46
47
46
49
50
51
53
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
66
69
70
71
72
73
74
75
76
77
78
79
60
*
*
•
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT

522.0
522.0
522.0
522.0
522.0
522.0
522.0
522.0
526.0
526.0
526.0
526.0
526.0
526.0
526.0
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*

3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3702.1
3706.5
3703.4
370270
3705.4
3704.0
3705.3
3703.1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
ft
(MICROGRAMS/CU. METER) *
S02 PARTICULATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
ft
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3.
3.
4.
5.
3.
2.
2.
2.
2.
2.
3.
4.
3.
2.
2.
1.
2.
2.
3.
3.
2.
2.
1.
1.
1.
2.
2.
3.
2.
2.
1.
1.
120.
130.
153.
100.
76.
13S.
100.
125.
*
*
*
*
*
*
*
A
*
*
*
ft
w
*
ft
*
ft
*
ft
*
*
ft
ft
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
*
ft
*
                            A-4.8-10

-------
  U.S.  STEEL    FAIKFIfLO  OPF.KA 1 IONS    COND 1 T I TIN Mj.  -,
*                                                                              *
*                    RECEPTOR rilNCENTKA riOlM OAFA

*            *                           *                                      *
* KF.CFPTiJH  *    KfcCtPTOW  LUCATTUN   *       EXPECTED  AkTTHMFIU. N F A M   *
             *                           *                                      *

*            *       (KILOMETEHS)       *         (MJCKUKkAi-'S/rU.  MI-1EP)     *
*            *     HUWIZ       VERT     *         SUP         F'APT JCIIl

*            *             *             #                   *
*     Rl     *     505.3  *   37()fl.y   *         0.         *      SH.
                                       A-4.8-11

-------
  U.S. STEEL   FAHFIELO OPERATIONS   CONDITION  MD.  3




SOURCE CONTRIBUTIONS Tu FIVE MAX {MUM  RECEPTORS




AlMiMUAL   P4RTTCULATES




4ICROGRAMS P£R CUBIC
K
*
*
*
*
*
*
*
*
*
g
*
*
W
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
snuRCE
i
2
3
4
5
6
7
8
9
10
1 1
12
1 3
1 '4
15
1 6
17
16
19
20
21
*
*
*
*
it
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
wECEPTOR *
12 *
. 00 X *
.0011 *
.00 X *
.0003 *
.00 X *
.0003 *
.00 X *
.0003 *
.02 X *
.0242 *
. 0 0 X *
.0010 *
.00 X *
.0003 *
.00 % •.
.0003 *
.00 X *
.00 X *
.0000 *
.00 X *
.0003 *
.00 X *
.0000 *
. 0 0 X «
.0000 *
.00 X *
.0002 *
.00% *
.0000 *
. 0 0 X *
.0000 *
2.34 X *
2.98 X *
4.5993 »
4.63 Z *
7.1 454 *
.35 X *
.54P7 «
.66 X *
1.0158 «
RECEPTOR *
75 »
.00 X *
.OOlb *
.00 X *
.0004 »
.00 X *
.0004 *
.00 X *
.0005 *
.03 X *
.0382 »
.00 * *
.0015 *
.00 X *
.0009 *
.00 X *
.0009 *
. 0 0 '. *
.0008 *
.00 X «
.0003 *
.00 X *
.0001 «
.00 x *
.0001 *
.00 X *
.0002 *
.00 X *
.0009 *
. 0 0 X *
.0001 *
. 0 (1 % *
.0000 *
3.8835 *
3.7324 *
4.5566 *
. 4 7 X *
.7119 *
.53 X »
.8863 *
RECEPTOR *
76 *
.00 X *
.0009 *
.00 X *
.0002 «
.00 X *
.0002 *
.00 X *
.0003 *
.02 X *
.0307 *
.00 X *
.0016 »
.OCX *
.0006 *
.00 X «
.0007 *
.00 X *
.0006 «
. 0 0 X *
.0003 »
. 0 0 X *
.000? *
. o 0 X »
.0001 *
.00 X *
.0001 *
.00 X *
.0006 *
.00 Z *
.0000 *
. 0 0 X *
.0000 *
1.96 X *
2.7213 *
? .OH % *
2.8393 *
3.07 X *
.36 X *
.4933 *
.65 X *
.9012 »
RECEPTDK *
74 *
.00 X *
.0011 *
. 0 0 % *
.0003 *
.0(1 7, *
.0003 *
.002 *
.0004 »
.02 Z *
.0202 *
.00 2 *
,000C *
.00 Z *
.0002 *
.00% *
.0002 >
. 0 0 X *
.0002 *
.00 X *
.0001 *
.00 X *
.0003 *
. 0 0 X *
.0001 *
. 0 0 X »
.0001 *
.00 X *
.0007 *
. o o •/. *
.0001 *
.00% *
.0000 *
2.01 % *
2.6177 *
2.06 % *
2.7158 *
3.20 Z *
4.1722 *
.24 Z *
.3110 *
.55 Z *
.7201 *
-•F.CFPTOR
60
.00 7.
.0016
.00 2
. 0004
.00 2
.0004
.00 Z
. 0 0 0 S
.03 X
.0322
.00 2
. 0 0 1 7
.00 X
.0007
.00 X
.0007
.01 X
.0007
.0<> X
.0005
.00 X
.0002
.00 X
. I) 0 0 ?
.00 Z
.0002
.00 t
. o n i o
.00 X
.0001
.00 X
.0000
2 . 2 P X
2.7733
2.21 X
2.7609
2.96 X
3.706Q
.35 X
.4351
.75 Z
.9428
*
*
*
ft
*
*
*
*
*
*
ft
r
*
*
*
*
*
#
*
*
*
*
if
*
k
*
#
*
*
*
*
*
                                   A-4.8-12

-------
PEP CUBIC METER
*
*
*
*
*
*
*
*
*
ft
*
*
*
it
ft
*
*
*
*
ft
*
*
ft
*
*
*
*
*
ft
ft
*
*
*
*
ft
it
*
*
*
*
SOURCE
22
23
24
25
26
27
26
29
30
31
32
33
34
35
36
37
^
39
40
41
42
it
*
*
Mr
It
*
*
II
*
*
*
*
*
*
*
lit
*
*
it
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
12
.69 X
1 .0600
.89 X
1 .3761
1.24 Z
1.9182
1.28 Z
1.9681
1.13 Z
1.7451
.22 X
.3330
.49 X
.7S74
.50 Z
.7741
.45 X
.6891
.34 Z
.5263
1.03 X
1.5912
3.69 Z
5.6842
2.00 Z
3.0786
3.23 X
4.9853
47.30 X
72.9391
13.35 X
20.5933
.26 X
.4008
1 .21 Z
l.«615
5.77 Z
8.8905
1.34 Z
2.0615
1.59 Z
2.4(179
ft
*
*
*
*
*
it
it
it
ft
*
*
*
*
*
it
ft
*
*
*
*
*
*
ft
*
it
it
ft
*
*
*
*
*
*
*
*
•*
RECEPTOR
75
.57 Z
.8690
.70 r.
1.0683
.46 Z
.6947
.46 X
.7074
.43 Z
.6607
.08 '/.
.1 167
.la z
.2709
.18 X
.2749
.17 Z
.2575
.1 3 Z
.1979
.99 X
1 .5133
2.39 '/.
3.6507
1.55 X
2.3646
2.12 X
3.2ul7
40.88 X
62.4106
27.60 Z
42.1405
.22 Z
.3431
1 .26 X
1 ."263
7.07 X
10.7944
1.27 X
1.9432
2.03 Z
3.: 030
*
*
*
*
*
it
*
it
*
*
*
*
I
*
*
*
*
*
*
*
*
*
*
it
it
it
ft
•ft
*
*
*
it
ft
*
*
ft
*
*
•ft
*
RECEPTOR
78
.66 X
.0149
.95 X
1.3152
.71 X
.9820
.74 X
1.0221
.67 X
.9263
.12 X
.1685
.28 X
.3836
.29 X
.3979
.26 X
.3614
.20 X
.2837
.74 X
1 .0279
2.01 Z
2.7905
1.33 X
1 .8418
1.77 Z
2.4642
35.52 X
49.3474
26.55 X
36.8860
.13 Z
.1757
.68 X
.9509
13.38 X
18.5885
.85 X
1.1859
3.78 X
5.2478
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
It
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
RECEPTCJO *
74 *
.56 % *
.7372 *
. 7 7 X *
1.009* *
2.06 X »
2.6923 *
2.13 7. *
2.7787 .
1.87 % ft
2.4446 *
.37 Z *
.4609 *
.SIX *
1.0580 ft
.83 X *
1.0873 *
.74 X »
.9607 *
.59 X *
.770? *
. 6 ft X *
.8931 *
3 . 1 5 Z *
4.1088 *
1 . B 4 X *
2.3965 *
2.76 X *
3.6015 *
45.61 X *
5". 5172 »
18.02 X *
23.5207 *
. 2 1 X *
.2761 *
1.13 X *
1.4690 *
4.69 X *
6.1225 *
1.09 X *
1.4180 *
1.25 X *
1.6375 +
-iFCEPTOR
10
.9421
1.02 Z
1 .2720
.66 Z
.5278
.69 X
.8607
.63 X
.11 X
.26 X
.3?32
.27 X
.3350
.24 X
.3052
.19 X
.239?
.69 •/.
.8622
2.07 V.
2.5861
1 . 3 S X
1 .6943
1.80 X
2.2561
"5.5283
27.75 X
34 .734(1
. 12 X
.1531
.•34 X
.7^93
11.5? X
14.4154
.82 X
I .02H6
3.26 X
4.0752
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
                       A-4.8-13

-------
  U.S. STEEL   FAIRFIELD  OPERATIONS    CONDITION  NO.  3




SOURCE CONTRIBUTIONS  TO FIVE  MAXIMUM   RECEPTORS




ANNUAL   PARTICULATES




MICROGRAMS PER CUBIC  METER
*
*
*
*
*
It
*
*
SOURCE

03

BACK-
GROUND
TOTAL

*
*
*
*
*
*
X
*
RECEPTOR
12
.53 X
.8205
.00 X
0.
100.0 X
150.2169
*
*
*
*
*
ft
X
*
RECEPTOR
75
.20 X
.3037
.00 X
0.
100.0 X
152.6707
*
*
*
*
*
*
X
*
RECEPTOR
76
.31 X
.0270
.00 X
0.
100.0 X
138.9057
*
*
*
*
*
*
X
*
RECEPTOR *
70 *
.73 X *
.9566 «
.00 X *
0. *
100.0 X X
130.0998 *
RECEPTOR
80
.2*? X
.3fii
. o o i
0.
100.0 1
i 25. 187 4.
t
i.
1
*
*
A

4
                                  A-4.8-14

-------
                APPENDIX A-4.9



COMPUTER MODEL USING LARGE GRID FOR CONDITION 4

-------
                           U.S.  STEEL    FAIPFJtLL' nPE«aTini\iS
                                                                  l T Z
                                                                        VI. a
SOURCE DATA
ft »
* SOURCE * SUJ^Ct LuCATlUM
* NUW^*:N * (KTLO>vt£TE*S)
* * HtmiHiMTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
«
*
*
*
«
*
*

*
*
*
*
*
*
ft
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
*
*
i
2
3
4
5
7
H
to
1 1
12
1 5
14
1 1
1 7

21
i!
25
29
30
32
55
3-1
35
37
40
41
42
4 5
44
47
4 i
50
52
SJ
55
56
57
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
*
ft

*
*
X
ft
* '
ft
ft
ft
ft
ft
*
ft
*
*
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
506. u
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
5 0 6 . H
506.8
S 0 7 . a
507. *
507. U

506.4
506.5
506.5
5U6.5
5 .) 6 . 5
5 J6.5
506.5
506.5
S06.S
506.5
506.1
5o6.7
506.4
506. fl
506. 9
5 ') 6 . *
516.7
506.7
506.7
506.7
S o 6 . 7
5 '16. 7
506.0
507.4
S07.3
507.4
507. 3
507. a
507. 3
507. U
507.3
506.5
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704. I5.
45u.
450.
450.
450.
*50.
477.
533.
533.
477.
553.
450.
6/2.
450 .
450.
450.
366.
442 .
0.
0.
0.
0 .
0.
n .
0.
o.
0 .
0.
0 .
0.
o .
0 .
0 .
o.
0 .
I".
0.
1.
0.
o.
••I.
I) .
II .
0.
0 .
o.
0.
0.
'1.
0.
0.
II.
*
*
*
>*
*
*
*
«
*
*
ft
*
*
*
*
«
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
«
*
*
*
*
ft
                                              A-4.9-1

-------
  U.S. STEEL    FA1RFIELO OPERATIONS    L0t>l[> I T IDN NO.  a



RECEPTOR DATA

LOCATIONS TO BE  USED AS RECEPTORS  IN  ADDITION TO THE   7?  F< EC TANRUL A R  Rrtli)  LUCATIUNS

  RECFPTUR       X-COORDINATE       Y-COURDI MATE
   NUMBER        (KILOMETERS)       (KI LOMETeWS)
                                       3702.1

      7U            506.1               3706.5

      75            506.6               370?. a
      77            507.6              3705.1

      7fl            50 a. 6              3700.0

      /9            504.0              3705.3

      «0            504. a              3703.1

      81            505.3              3708.4
                                      A-4.9-2

-------
                    U.S.  STEEL
                                  FAIRFIELD UPEHATIOMP
                                                              THIN Ml).  '4
             METEOROLOGICAL  INPUT  DATA  FDR THE ANNUAL SEASON
MIXING DEPTH =  1500.  DETERS
AMBIENT TEMPERATIJKf  r   2C»«.  OEGR EE S, KEL V] N
AMB1FNT PHFSSUPE  =  1000.  MILLIRAWS

STABILITY CLASS   1

WIND DIRECTION
M
NNF.
ME
ENE
E
ESE
se
SSF.
S
ssw
sw
WSvV
W
*IIMW
NW
NMW

1
.000«
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.0002
.000?
.0001
.OOOb
.0003
.oooa
.0005

2
.0007
.0003
.OOOtt
.0003
.0005
.0003
.000?
.0005
.0003
.0003
.0002
.0003
. 0 0 0 fl
.0003
.0006
.0005
wlNDSPEFl)
3
.0000
.0000
.0000
.000 0
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. n o n o
.000 0
CLASS
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.00(1 0
.0000
.0000
. 1) 0 0 0
.0000

5
.0000
.0000
.0000
.0000
. I) 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                    A-4.9-3

-------
                     U.S.  STtEL   FAIRI-IEIO OPEWATJfJNS
                                                                i i r i OM MU. a
              METEOROLOGICAL IfoPUT DATA  FI1W FHF.  AN'MUAL
STABILITY  CLASS  2

WIND DIRECTION
N
NNE
NE
ENt
E
ESE
SE
SSE
S
SSrt
Sw
wSW
W
WNrt
NW
NN'/i

1
.001b
.0020
.0013
.0015
.002"
.0016
.0015
.0020
.0022
.0019
.001 1
.0010
.0021
.001"
.0017
.0013

2
.0036
.0033
.0021
.002?
.004?
.0023
.0027
.0027
.002^
.0021
.001Q
. 0 0 1 a
.0035
.oopa
. 0 0 3 0
.0032
rt IfMl>S°F.Fr>
•*
.0021
.0010
.0012
.0007
.0023
.0(J1?
.0007
. 0 0 1 '4
. 0 0 1 »
. 0 0 10
.0005
.0007
.OOPO
.0013
.0016
.001 1
CL ASS
'4
. 000(1
.0000
.0000
. 0 0 0 0
.000 0
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.000 0
.0000

•5
.0001)
.0000
.0000
.0000
.0000
.ouoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

h
. 0000
. 0 0 0 0
.0000
.00(10
.0000
. 0000
.0000
.000 0
.000 0
.000 0
.0000
.0000
.0000
.000 o
.0000
.0000
                                      A-4.9-4

-------
                       U.S.  STFF.L    FAIRFIfcLU  OPfc"» A T IflilS
Ci)iJl)I r TMi'J
               N'ETEnRULl'GJCAL INPUT PATA  FD&  [HE AMivlllAL  SEASM.M
SFAtflLITY  CLASS   3

WINU UTKECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
rtSW
vd
WWW
NM
NNW

1
.0013
.00?9
.oosa
.0015
.0021
.ooia
.0009
.ooao
.ooia
.0006
.0004
.OOU7
.ooon
.0005
. 0 0 0 B
.0007

a
.0018
.0019
.001?
.001*,
.ooa5
.0016
.0016
.0030
.0059
-U017
.ooia
.OOtfl
.0030
.0019
.0023
.0017
cJThnSPfiEl)
^
.0050
.0034
.001 h
.0010
.0053
.OOP'S
.00?9
.0058
.00^4
.00^0
.0027
.0027
.0036
.0032
.00?8
. o o /a o
CLASS
4
.0007
. 0 0 0 5
.0000
.0001
.000*
.0003
.0001
.0002
.OOOfc
.000 3
.0003
. 0 0 0 H
.0006
.0002
.OOOS
.0003

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
. 0 u 0 0

6
.0000
.0000
.000 0
.ooon
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                         A-4.9-5

-------
                     U.S. SltEL    FAJPMtLO OPERATIONS   CU'-l'i I U'm MU. '4
              METEOROLOGICAL  INPUT  liATA FDR  THE  AM \IIIAL
STABILITY  CLASS

DIRECTION
N
MNt
NE
ENE
E
ESE
SF
SSE
S
SSrt
SW
rtSW
w
WN«
NW
MNlV

1
.0023
.0029
.0021
.0023
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.001 1
.0018
.0010
.0017
.ooie

*
.0085
.0066
.0054
.0043
.0116
.0049
.0056
.0075
.0069
.0049
.002*
.003H
.0073
.0035
.0055
.0045
MNOSPEEI)
3
.016?
.0046
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.00°6
.0097
CLASS
4
.0114
.0025
. 0 0 0 '1
.0009
.00/41
.0029
.0071
.0093
.0122
.01 15
.0076
.0045
.0098
.006U
.0065
.OOflft

<•
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.ooos
.0012
.0009
.0005
.0007
.00? 4
.0003
.0007
.0005

b
.0000
.0000
.001)0
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
                                       A-4.9-6

-------
                      U.S.  STEEL
                                     KAIHFItLI)  IIPErfATlflMS
                                                              CONOITIIIN MlJ.
              METF.UHOLOGICAL IhPUT  DATA f 00  THr ANNUAL .SMSnr,|
STABILITY CLASS   5

WIND DIRECTION
N
NNE
NF
ENE
E
ESF.
SE
SSE
s
SSrt
SIN
WSW
rt
WMW
NW
MNW

1
.0169
.0076
.Ob07
.0236
.0297
.0079
.0086
.0131
.0071
.0038
.00?«
.00??
.0061
.0032
.0037
.0051

i!
.0132
.0173
.0138
.0096
.0162
.000S
.0077
.0129
.OflHO
.0043
.0023
.002"
.0069
.0033
,00«3
.00-17
WINDSPEFI)
3
. 0 0 1 U
.ooin
.0007
.0010
.0(119
.001 1
.0015
.0019
.0022
.0021
.0012
.0014
.0035
.0016
.0017
.001 7
CLASS
a
.0000
.001)0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 IJ (1
.0000

s
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

b
.0000
.0000
.0000
.0000
.0000
. 0 0 1.1 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
                                        A-4.9-7

-------
                                    U.S.  STEEL   FAIRF1ELD MPERATIDNS    CONniTllJiM  l-Jl!.  u
INPUT REGRESSION PARAMETERS  ARE:




     POLLUTANT             Y-INTERCEPT
    PAKTICULATES
                                                   SLOPE
                                                   1 .0000
                                            A-4.9-8

-------
U.S.  STEEL
FAIKFIELD  OPERATIONS
                                          "  NO.  4
*
RECEPTOR CONCENTRATION OATA
* *
* RECEPTOR *
*
*
*
#
*
*
*
*
*
*
A
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
ft
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
* (KILOMETERS)


1
2
3
4
5
6
7
6
9
10
11
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
?6
27
2d
29
30
M
32
33
34
35
36
37
38
39
4U
*
^
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
HORIZ

502.0
502.0
502.0
502.0
502.0
502.0
502. U
502.0
50b .0
506.0
506.0
506.0
506.0
50b.O
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
5 1 4 . 0
5ta.O
518.0
5 1 » . 0
518.0
510.0
516.0
518.0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
VERT

3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
37U.O
3722.0
3694.0
369S.O
3702.0
3706.0
3710.0
3714.0
3716.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369P.O
3702.0
3706.0
3710.0
3714.0
371-}. 0
3722.0
*
*
*
*
*
*
#
*
+
*
*
»
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
»
*
*
*
*
*
*
EXPECTED ARITHMETIC MFAM
(MlCRGGRAi..S/CU. METER)
S02

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
it
*
it
it
*
*
*
*
*
»
*
*
*
PARTICIPATES

34.
52.
o2.
46.
21 .
16.
12.
9.
22.
38.
10S.
186.
35.
16.
10.
7.
10.
11 .
19.
23.
12.
9.
7 .
5.
5.
7.
8 .
1 1 .
6.
5.
4.
3.
4.
4 .
6.
7 .
4 .

3.
3.
*
*
*
*
*
*
»
*
*
*
*
*
*
A
*
*
*
*
#
*
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
^
*
*
*
^
*
*
4
'
*
                           A-4.9-9

-------
U.S.  STEtL
                      OPESiiTIONS
*
*
RECEPTOR CONCENTRATION DATS
* *
* RECEPTOR *
* NUMBER »
*
*
ft
*
*
jr
*
*
if
fr
*
*
4
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-*
*
*


a •

-------
  U.S. STEEL   FAIRFIELD  OPERATIONS   CONDITION Ml. 1
*                                                                     *
*                 RECEPTOR  CONCENTRATION OATA                        *

*          *                        *                                  *
* RECEPTUR *   RECEPTOR LOCATION    *       frXHECTfcP ARITHMETIC MEAN   *
*  NUMBER  *                        *                                  *

*          *      (KILOMETERS)       *        (MCRUGHAMS/CII. MRIhR)    *
*          *    HORIZ       VERT     *        SO?        PAPTICIIl ATF.S   *

*          *           *            *                 *                *
*    81    *    505.3  *  3708.1    *        0.       *     frS.        *
                                 A-4.9-11

-------
-IS Pt* C'JoIC  ••'C.Tcr?
* SOURCE *
* *
* 1 «
* *
* 2 *
* *
* 3 *
* *
x 4 *
g *
• 5 *
« n *
* it
« 7 '
* *
* "I *
* *
* 3 *
* •»
* i 0 *
* *
* u *
X A
' 12
* *
1 3 *
« 1-4 *
» #
» 15 *
+ *
* 1 fe *
< *
. 1 7 ' «
* *
» H *
* *
» 14 *
« *
' 21 *
* *
12
. 0 0 '/.
.0011
.00 X
.0001
. 0 0 X
.0002
.00 X
.0003
.00 X
.0003
.00 X
.0007
.00 %
.0000
.00 7.
.0001
.00 X
.0001
.00 7.
.0000
.00 X
. y 0 o 0
.00 7,
. o ooo
.01 X
.0242
. u 0 X
.0010
.00 X
. o 0 u 3
.00 7.
.0003
.00 X
.0003
.00 X
.0001
.00 X
. (i007
1 . M H x
3.4442
2.64 X
a .) 0 0 7
.00 *
. u 0 o 4
.00 Z
.fjOOM
1.51 X
2.2132
2.02 *
*
*•

•
•t
*
ft
*
a
*
•
*
*
*
*
*
*
•*•
*
>
A
*
*
*
*
*
it
*
*
*
                            A-4.9-12

-------
  U.S.  STEEL   FAIhiFIELD  OPERATIONS    CO.NiD I T ION MO.  4




SOURCE  CONTRIBUTIONS TO FIVE MAXIMUM   KECEPTOP3




AM'MUAL    PAP.TICUUATES




•IICRGGRA'MS  PER  CUBIC McT£R
» SOURCE * RECEPTOR *
* * 12 *
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
it
*
*
*
*
X
*
*
*
*
*
*
+
*
22 * 4.00 X *
* 7.4516 *
23 * *.76 X *
* 16.3255 *
24 * .55 X *
* 1.0315 *
25 * .66 X *
* 1.2342 *
26 * .44 X »
* .8126 *
27 « .61 X *
* 1.1307 *
2ri * .77 X *
* 1.4349 *
29 * 4.74X *
* 0.8279 *
30 * .80 X *
* 1.4957 *
31 * .90 X *
* 1 . o 7 u 7 *
32 * 7.45 X *
* 13.8899 *
33 * 2.05 X *
* $.8191 *
34 * 1.92 X *
* 3.5797 *
35 * 1.98 X *
* 3.6879 *
3o * 30.41 X *
* 56.0687 «
37 * 9.79 X *
* 18.2385 *
36 * .49 X *
"~* .9063 *
39 * .26 X *
* .4907 *
40 * .52 X *
* .9622 *
41 * .37 % *
* .6870 *
«2 * .46 X *
* .8S86 *
RECEPTOR *
75 *
2.712 *
4.7519 *
6.02 % *
10.535o *
.47 X *
.8173 *
. 4 0 Z *
.7037 *
.40 % *
.7090 *
.53 X *
.927U *
.64 1. *
I .1 139 *
2.75 Z *
4.8233 *
.81 X *
1.4225 *
.91 X *
1.5890 *
S.86 X *
15.5209 *
1 .40 X *
P.4523 *
1 .57 X *
2.7495 *
1.37 X *
2.39«1 *
27.69 X *
48.4887 »
21.32 X *
37.3217 *
.54 X *
.9379 *
.24 X *
.4194 *
.35 X *
.6180 *
. 3 0 X *
.5233 *
.31 X *
.5514 *
RECEPTUR *
78 *
2.72 X *
4.4468 *
o.42 X *
10.5052 *
.35 X »
.39 X *
.6346 *
.44 X *
.7210 *
.60 X »
.9759 *
.84 X *
1.3713 *
2.85 X *
4.6622 '
.59 X *
.9663 *
.66 X *
1.0793 *
16.59 ~4 *
27.1380 •
1.15 X *
1.8749 *
1.31 X *
2.1416 *
1.11 X »
1.8229 *
23.44 X *
38.3394 +
19.97 % *
32.0681 i
.28 X *
.4630 *
.13 X *
.2146 *
.29 X *
.4724 *
.25 X *
.4104 *
.26 X *
.4215 *
RECEPTOR *
74 *
2.91 X *
4.3511 *
6.70 X *
10.0264 *
.38 % *
.5699 *
. 4 5 X *
.6672 *
.38 X *
.5761 *
.53 X *
.7864 *
.70 X *
1.0529 *
3.14 % «
4.7023 *
.56 X *
.8396 *
.63 X *
.9378 »
6.36 X *
9.5174 *
1 ,B4 X *
2.76d6 *
1.86 X *
1.78 X *
2.6643 *
30.69 7. *
46.2406 *
13.92 X *
20.8312 *
.4fc X *
.7153 *
.23 X *
.3377 *
.46 X »
.6955 *
.36 X *
.537:5 .
.41 X »
.6206 *
30
2.o4 X
3.3658
6.35 2
°.2869
.37 X
.5468
.36 X
.5326
.52 %
.75'ia
.69 X
1 .0049
.91 X
1.3263
2.40 X
3.5177
.55 X
.8104
.62 X
.9053
14.80 X
21.6574
1.19 7.
1 .7375
1 .35 X
1 .9701
1.14 X
1 .6690
? 4 . 1 8 X
35. 5723
21.03 X
*0. 7<=22
.27 X
.3891
.13 X
.1869
.30 2
.4378
.26 X
.3821
.27 X
.3906
*
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
*
*
*
*
*
*
*
                                      A-4.9-13

-------
          u.b.  STEEL   FAIKFIELP OPERATIONS    CLKOI TIPI,' ;.u.


        SOURCE  CONTRIBUTIUWS Tu rlvE MAXIMUM   RECEPTORS


        ANNUAL    PARTICULATES


        vlICRJGKAviS PER CUBIC METER
* SOURCE
*
« 43
*
* 44
A
A 1] "fj
A
* 4fe
A
* 47
It
* 4 H
A
A u 9
* 50
A
51
A
* 52
*
53
*
* 54
A
* S 5
A
* 56
A
* 57
*
» dACK-
* GROUND
* TOTAL_
*
*
*
*
*
*
*
*
*
*
*
*
ir
*
*
*
it
ic
«
w
*
*
*
*
*•
*
*
*
*
*
*
it
*
*
X
RECEPTOR
12
6.64 X
12.3667
1.63 2
3.4162
.17 2
.3204
.04 2
.0670
1.03 2
1.9182
1.06 2
1 .9661
.94 X
1.7451
.182
.3330
.41 X
.7574
.42 2
.7741
.37 X
.6891
.28 2
.5263
.91 2
1 .6915
2.84 2
5.2968
.8205
.00 X
0.
100.0 2
186.3361
*
*
*
*
A
A
*
A
*
A
A
*
*
A
A
*
A
A
A:
A
*
A"
A
A
*
A
A
*
A"
X
*
RECEPTOR
75
6.
10.
4.
7.
m
•
m
f
f
•
B
•
•
•
•
i .
2.
?.
a .
m
0.
100
1 75.
01 2
5211
Oi X
0599
19 X
3316
03 X
0573
00 Z
6947
40 X
7074
38 %
6607
07 X
1 167
15 X
2709
16 X
2749
15 X
2575
1 1 X
1979
22 X
1442
85 X
9927
17 X
3037
00 X
.0 2
1016
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
t
it
*
*
X
*
RECEPTUR
76
5.12 X
8.3810
3.83 2
6.2617
.10 2
.1637
.02 2
.0293
.t>0 X
.9820
.62 2
1 .0221
.57 X
.92c3
.10 X
.1685
.23 X
.3836
.24 X
,3°79
.22 %
.3614
.17 X
.2837
2.22 2
3.6263
1.86 2
3.0469
.26 2
.4270
.00 2
0.
100.0 X
163.5993
A
A
A
A
A
*
A
A
*
A
A
*
A
A
A
Ik
A
*
*
*
*
*
A
*
A
*
*
A
A
A
A
X
*
RECEPin^ *
7 4 *
6.79 % *
10.1639 *
? . 6 7 2 *
3.9903 *
. 1 7 2 *
.03 2 *
.046] *
1.80 X *
2.6923 *
l.flt 2 *
2.77B7 *
1 . 6 3 X *
.32 X *
.0609 *
.712 *
1 . 0 56 u *
.73 2 *
1 . 067* *
.64 % +
.9607 *
.51 X *
.7702 *
.76 2 *
1 .1316 *
2.03 •/. *
3.6433 «
.602 *
.9566 *
.002 *
0. *
1 0 u . 0 X x
RECEPTOR
eo
5.35 2
7.6272
^9691
. 0 9 2
.1376
.02 2
.57 X
.•<607
.53 %
.7626
.10 %
.1418
.2? 2
.323?
.23 X
.3350
.21 2
.30^2
.16 2
.239?
1.3? 2
2 . « 1 6 0
1.41 2
.25 2
. 5652
. 0 0 2
0 .
100.0 '/-
10(5.3104
*
A
*
*
A
A
A
*
*
*
A
*
'
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
 END Or  FILE ENCOUNTERED -- TERMINATE RUN.
*S1 Ot-*  0
                                            A-4.9-14

-------
                APPENDIX A-4.10



COMPUTER MODEL USING LARGE GRID FOR CONDITION 5

-------
                          U.S.  STEEL   FAIRFIELD OPERATIONS   CONDITION NO.  5
SOURCE  DATA
* *
* SOURCE * SOURCE LOCATION
* NUMBER * (KILOMETERS)
• * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
*
*
i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
*
*
*
*
*
ft
*
ft
*
*
ft
*
ft
ft
ft
ft
*
"
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.6
506.8
506.7
506.8
506. a
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.6
506,7
506.8
506.5
506.1
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3704.8
3705.2
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.0
3704.3
*
* SOURCE AREA *
ft SQUARE *
* KILOMETERS *
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.02
.36
.36
.36
.36
.36
.06
.06
.30
.01
*
*
*
.
*
*
*
*
*
*
*
*
*
*
«
ft
ft
ft
ft
*
ft
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
ANNUAL SOURCE >
EMISSION rtATE *
(TONS/DAY) •
S02 PART «
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.953
.154
.141
.189
.252
.618
.039
.215
.089
.089
.083
.532
.079
.245
.328
.438
1.075
.058
.058
.096
.128
.171
.420
.094
.105
1 .928
.258
.300
.253
5.402
4.80?
.059
.029
.137
.300
*
ft
*
.
•
«
.
•
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
.
*
*
*
•
*
*
*
*
.
»
*
*
*
HT
(M)
50.0
64. A
53.0
53.0
74.0
74.0
46.9
64.6
68.6
68.0
76.0
163.2
56.8
23.0
23.0
23.0
30.0
.5
.5
49.0
49.0
51.0
3.0
3.0
3.0
30.0
9.1
24.0
9.1
30.0
61.0
3.0
1.0
3.0
30.0
STACK DATA
DIAM VEL
CM) (M/SEC)
2.4
2.4
1.2
1.2
1.1
1.1
2.0
2.7
2.7
2.7
3.8
3.5
1.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
7.<>
7.b
9.8
9.S
15.5
15.5
32.0
10.2
10.2
10.2
3.4
9.1
11. b
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
ft
ft
TEMP •
(DEG.K)ft
505.
505.
450.
450.
450.
450.
850.
533.
477.
533.
477.
442.
366.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
fl.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
                                               A-4.10-1

-------
  U.S. STPEL   FAIWFIELD  OPERATIONS   CONDITION NO. 5



RECEPTOR DATA

LOCATIONS TO BE USED  AS RECEPTORS IN AIJUITIOM TO THE   7?  REC TAMMIL Ak GRID I.()C AT IIINS

  RECEPTOR      X-cnOROTNATE       Y-COOROINATE
                (KILOMETERS)       (K ILdt-ETfc HS)
      73           505.6              ?70i>.I

      7«           506.1              3704,.5

      75           5U6.fr              3703.«

      76           501. a              3702.0

      77           507.h              3705.1

      78           504.6              3704.0

      79           504.0              3705.3

      ttO           504.4              3703.)

      HI           505.3              370?.4
                                       A-4.10-2

-------
                     U.S. STEEL   FAIRf-TtLU UPtR A T F IMS    CMMOITIUM Nil. S
             METEOROLOGICAL INPUT  DATA  I-CIR THE AN-JIIAL  SF.ASlW
MIXING DEPTH  =  1500. METERS
AMBIENT TEMPERATURE =  ?.°n. DtGREES,KRLV IN
4MRIENT PRESSURE  = 1000. MILLIBARS

STABILITY CLASS  1

WIND DIRECTION
IM
NME
NE
ENE
E
ESE
SE
SSE
S
SSW
sw
wsw
w
wNrt
NW
NNW

1
.ooou
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.000«
.oooa
.0002
.0001
.0006
.0003
.0002
. (i (I 0 b

?
.0007
.0003
.0006
.0003
.(1005
.000?
.000?
.0005
.(1003
.0003
.0002
.0003
.000ft
.0003
.0006
.0005
UvINOSPEEO
3
.0000
.0000
.nooo
.0000
.oono
.0000
.oono
.0000
.0000
.0000
.nooo
.0000
.0000
.0000
.oono
.000 II
CLASS
a
.000 0
.ooon
.0000
.0000
.0000
.000 0
.0000
.0000
.ooon
.0000
.0000
.0000
.onoo
.0000
.0000
. II 0(1 (I

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000(1
.0000
.0000
.0000
.OOOi)

h •
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.11000
                                       A-4.10-3

-------
                     U.S.  STEEL   FAIRFIELO IJPF.K A T IONS   COMOTTIHM NO.  S
             METEOROLOGICAL  INPUT DATA FOR THE  ANWIIAL  SEASON
STABILITY CL»SS

WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
WSW
w
HNW
NW
NNfc

1
.00)8
.oo?n
.0013
.0015
.0024
.0016
.0015
.0080
.0022
.0019
.001 1
.0010
.00?!
.0014
.0017
.0013

2
,00?f,
.0033
.0021
.0023
. 0 0 « 3
.00?3
.00??
.0027
.00?P
.OOil
.00'19
.ooia
.0035
.0024
.0031
.U03?
lnINOSPtF.1)
3
.0021
.0010
.0012
.0007
.0023
.0012
.000?
.0011
.001 '1
.0010
. 0 0 0 ri
.0007
.0020
.001 J
.OOlf.
.0011
CLASS
u
.0000
.0000
.000 n
.0000
.001)0
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000

5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

«,
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
                                       A-4.10-4

-------
                       M.S. SieFL
                                     F-AIKFTHLD  (1OFV M IflUS
                                                                CilHD I T I ')(•'
                 lEUkflLMG JCAL  INPUT  P>ATA H'lh  THE ANMII4L StASOH
STABILITY CLASS
                                            W I NIKS
                                                        CLAS i
WIND OTRKCTiriN
N
NNE
NF
EN'E
E
USE
SE
SSE
S
SSrt
sw
wsw
w
WNW
IW
MNW
1
.0013
.0029
.oo?a
.OOlb
.00?!
.0010
.0009
.0020
.0012
,000f>
.0004
.0007
.0008
.0005
.OOOfl
.0007
2
.00 IP
.0014
.001?
.OOlf,
.0045
.0016
.0016
.0030
.0029
.0017
.001«
.oom
.0030
.0019
.0023
.0017
*
.0050
. o o 3 a
.OOK,
.0010
.005?
.002b
.0029
.oosa
.oo?a
.0030
.0027
.0027
.003H
.0032
.003H
.0040
M
.000 7
.OOOS
.0000
.0001
.0003
.0003
.0001
.000?
.OOOh
.0003
.0003
.0008
.OOOh
.000?
.OOOS
.0003
s
.'M,00
. nooo
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.000)
.0000
.0000
.0001
.0000
.0000
.OUOO
*
.0000
.0000
.100(1
. 0 0(1 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 1)
. 0 0 0 0
.0000
.000 0
.0000
                                         A-4.10-5

-------
                     U.S.  STtEL   FAIRFTKLD OPFRATIUUS   CONDI I ION Ml).  5
             METEOROLOGICAL  INPUT PATA FOR THE  ANMIUL  SfcASlM
STABILITY CLASS
WIND SPEED
WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SE
SSE
S
SSH
sw
*sw
w
WNw
NW
NNW
1
.0023
.0029
.0021
.00??
. 0 0 1 7
.001?
.0012
.0033
.0023
. 0 0 1 U
.0007
.0011
.0018
.0010
.0017
.0018
2
.0085
.006f>
.005U
.ooa3
.OMh
.0000
.005h
.0075
.00*9
. 0049
.002R
.003R
.0073
.0035
.00^,5
.0005
?
.01^)2
.00'4fe
.00?7
.00^1
.0107
.OOf.4
.0101
.oi?q
. 0 1 f, a
.0151
.009?
.0057
.0107
.0077
.009f,
.0097
Cl ASS
U
.0111
.0025
.000/4
.0009
.0041
.002"
.0071
.009?
.0122
.01 15
.0076
.0045
.009H
.OOM
.t)0f>5
. 0 0 fl 8

5
.000?
.0001
.0000
.0000
.00(10
.0003
. n o 1 o
.0005
.001?
.0009
.0005
.0007
.0024
.0003
.0007
.0005

ft
. 0 0 0 0
.0000
.0000
.000 <;
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
                                      A-4.10-6

-------
                    U.S. STEEL
FAIRFTELI) OPERATIONS
                                                         CMNOTTTON Nl). 5
             METEOROLOGICAL  INPUT  DATA  FOR  THE  ANNUAL SE»8UN
STABILITY CLASS
tMTNDSPtEO
WIMP DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSrt
sw
wsw
w
WNW
NW
NNW
1
.016
-------
                                  U.S. STFEL    FAIRFIFLI)  OPFKA1TONS   CHMiirTKlN NM. S
INPUT HEGRESSION PARAMETERS ARE:




     POLLUTANT           Y-INTtRCEPT
    PARTICULATES
                                .0
SLOPE
                                                 1 .0000
                                           A-4.10-8

-------
U.S. STEEL   FAIWFIEi,!} OPERATIONS   CHNOTTION l"0.
*
4ECEPTUR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUM9EH *
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
'
*
*
ft
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
«
ft
*
*
*
*
*


1
2
3
4
5
6
7
8
9
10
11
12
I j
14
15
16
1 7
Id
19
20
21
22
23
24
25
26
27
2«
29
30
31
32
33
34
35
36
37
38
39
00
ft
*
*
*
*
*
*
#
*
*
*
*
*
*
*
*
ir
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HURIZ VERT

502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
518.0
518.0
518.0
518.0
518.0
518.0
518.0
518.0
*
it
it
Ir
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369S.O
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
370fr .0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC YEAN *
*
(MlCRDGwAMS/CU. METEP) *
S02 PARTICIPATES *

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft

29.
44.
52.
37.
17.
13.
in.
7.
18.
31.
90.
155.
25.
12.
a.
5.
8.
9.
16.
18.
q-
7.
5.
4.
4.
6.
7-
0.
4.
4-
3.
3.
3.
4.
5.
6.
3.
?.
2.
2.
*
*
*
*
*
*
*
*
*
*
ft
ft
ft
k
•ft
ft
*
*
»
*
*
ft
ft
ft
*
•ft
ft
ft
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
*
ft
                               A-4.10-9

-------
U.S.  STEEL   FAIRFIELO OPERATIONS    CONDITION Ml. 5
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*


41
42
43
44
45
46
47
4«
49
50
51
52
53
54
55
56
57
sa
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
au
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
»
*
k
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VEST

522
522
522
522
522
522
522
522
526
52b
526
526
526
526
526
526
5?0
530
530
530
530
530
530
530
534
534
534
534
534
534
534
534
505
50b
506
504
507
504
504
504

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.6
.1
.6
.4
.6
.6
.0
.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3694 .0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
369« .0
3698.0
370?. 0
3706.0
3710.0
3714.0
3718.0
3722.0
3702.1
37U6.5
3703.4
3702.0
3705.4
3704.0
3705.3
3703. 1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
EXPECTtD ARITHMETIC MFAN *
*
(MICRl
302

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
!GrVAMS/CU. METE") *
PAPTICIIl ATES *
*
* 2
* 2
* 4
» 4
* 3
* ?
* 2
* 1
* 2
* 2
* 3
* u
« 2
* 1
* 1
* 1
* 2
« 2
* 3
* 3
« 2
* 1
* 1
• 1
* 1
* 2
* p
* 2
* 2
* 1
* 1
* 1
* 1 Ifl
* 1 18
* IUQ
* 99
* 71
* 141
* 06
* 126

.
•
m
,
•
.
.
•
.
.
•
.
•
»
.
•
•

•
•


•

9
•

m
'

m
'

^
•

•
•

•
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
                               A-4.10-10

-------
  U.S..STEEL    FAIKF1ELO OPERATIONS    CONDITION Mfi.
*                  RECF.PTIJR CONCENTRATION DATA                        *

*           *                         *                                  *
* HECEPTOR  *    HECfPTOK LOCATION    *       EXPECTED ARITHMETIC  MF.AM  *
*  NUMBER   *                         *                                  *

*           *      (KILOMETERS)       *        (MICRIIGK'AMS/CII.  HfclER)   *
*           *     HUM 17      VERT     *        SO?         PART I Clll ATES  *

*           *            *            *                 *                *
*    ai     *     505.3  *  370R.4    *        0.       *      IS.        *
                                  A-4.10-11

-------
  U.S.  STEEL    FAIRFIELO  OPFR&T IONS    CHNOITICN  NO. 5
SOURCE  CONTRIBUTIONS  TO FIVE  MAXIMUM   RECEPTORS
ANNUAL    PARTICULARS
           PER  CUBIC  METER
ft
ft
ft
ft
*
*
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
SOUSCF
1
2
3
u
5
6
7
d
9
10
1 1
12
13
14
15
16
17
IS
19
20
21
* RECEPTOR
* 12
* .00 X
* .0011
* .00%
» .0001
* .00 X
* .0002
* .00 X
* .0003
* .00 X
* .0003
* .00 X
* .U007
* .00 X
* .0000
» . 0 0 X
* .0001
* .00 X
* .0001
* .00 X
* .0000
* . 0 0 X
* .0000
« .00 X
* .0007
* .OCX
• .0001
« 2.25 X
* 3.4962
* 3.17 I
* 4.9140
* 4 . S 0 X
* 7.4516
> 10.52 X
* 16.3255
* .66 X
* 1.0315
* . s 0 \
* 1.2342
* .52 X
* .73 X
» 1 . 1307
« RECEPTHH
75
* .00 X
* .0016
* .00 X
* .0003
* .00 X
* .0003
* . 0 0 X
* .0004
* . 0 0 X
* .0005
* .00 I
* .0012
* .00 %
* .0000
* .00%
* .0003
* . 0 U X
* .0000
* . 0 0 t
* .0001
* .00 X
* .0001
• .00 %
* ,0009
* .00 X
* .0003
* ?.0d X
* 3.0992
* 2.67 4
* ?.9S77
* 3 . 1 8 X
* 4.7519
* 7.06 X
• 10.5356
* .55 X
* .3173
* . 4 7 X
.7037
* ,U7 X
* .7090
* .62 2
* .9270
* hECEPTGR
* 78
* . 0 0 X
* .0009
* . 0 0 X
* .0002
* . 0 0 X
* .0001
* .00 X
* .0002
* .00 X
* .0003
* .00 X
* .0007
* .00 X
* .0000
* ,uO X
* .0002
* .00 X
* .0001
* .00 %
* .0001
* .CO X
* .0001
* .00 X
» .0004
* . 0 0 X
* .0003
* 1 .54 X
* 2.1717
* 2 . 1 5 X
* 3.0335
« 3 . 1 4 X
* u.y468
* 7.43 X
* 10.5052
* . 4 0 X
* .5654
* .45 X
* .6346
* .51 X
* .7210
* .69 X
* .9759
ft
ft
I
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
80 *
. 0 0 X *
.0016 *
. 0 0 X *
.0003 *
.00 X *
.0003 *
. 0 0 X *
.0004 »
.00 '4 *
.0005 *
. 0 0 X *
.0013 *
.OCX »
.0000 *
.00% *
.0004 *
. 0 0 X *
.0001 *
. 0 0 X *
.0002 *
. 0 0 X *
.0002 *
. 0 0 X +
.0008 *
. 0 U X *
.0004 *
1 . 7 6 X *
2.213? +
2.34 X *
2 . 9U98 *
3.07% *
7.36 % *
9.2869 +
. 4 3 X +
.546? *
.42% *
. 6 (' X *
. ft 0 X »
1.004° *
74
.00 X
.0011
!ooo2
.00 X
.000?
.00 X
.0003
.00 X
.0004
.00 X
.0009
.00 X
.0000
.00 X
.0003
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 X
.Oi'Ub
.00 X
.000?
1.77 X
2!9016
a:5?u
I U . i) ? 6 4
.48 X
.56 %
.o87?
.49 X
.5761
. 7864
*
*.
*
ft
ft
*
*
*
*
*
*
*
*
•*
*
*
ft
*
*
*
ft
*
ft
*
*
ft
*
*
*
*
*
*
                                       A-4.10-12

-------
          U.S.  STEEL    FAIRFIELD  OPERATIONS    CONDITION  (-.0.  5

        SOURCE  CONTRIBUTIONS  TO FIvF  MAXIMUM   RECEPTORS

        ANNUAL    PARTICULATES

                   PER  CUBIC  METER
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
t
*
*
*
*
*
*
,
*
*
*
SOUPCE

22

23

24

25

26

27

26

29

30

31

32

33

34

35

HACK-
GROUND
TOTAL

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
X
1t
SECFPTOR
12
.92 X
1 .4349
5.69 X
8.8279
.96 X
1.4957
1.08 X
1.6707
8.95 X
13.8899
2.46 7,
J.8191
2.31 X
3.5797
2.38 X
3.6879
36.51 X
56.6687
11.75 X
18.2365
.58 X
.9063
.32 X
.4907
1.33 X
2.0615
1.33 X
2.0628
.00 X
0.
100.0 X
155.2364
it
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
75
.75 %
1 .1139
3.23 %
4.8233
.95 %
1.422b
1 .06 %
1.5690
10.39 X
15.5209
1 .64 X
2.4528
1.61 X
2.7195
1 .61 %
2.3981
32.47 %
48.4867
24.99 X
37.3217
.63 X
.0379
.28 <
.4191
1.30 %
1.9432
1 .75 X
2.6149
.00 X
0.
100.0 X
149.3332
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
*
*
*
it.
ir
ir
ir
X
*
RECEPTOR *
78 *
.97 X *
1.3713 *
3.30 X *
4.6622 *
.68 X *
.9663 *
.76 X *
1.0793 *
19.19 X *
27.1380 «
1.33 X *
1.8749 *
1.51 X *
2.1416 »
1.29 X *
1.8229 *
27.11 X *
38.3394 *
23.10 X *
32.66CT *
.33 X *
.4630 *
.15 X *
.2146 *
.84 X *
1.1859 *
3.13 X *
4.4223 *
.00 X *
0. *
100.0 X X
141.4072 *
RECEPTOR * 3ECFPTOW
80
1 .
1 .
2.
3.
.
•
.
•
17.
21.
1 .
1 .
1.
1.
1.
!•
28.
35.
21.
30.
•
•

-
.
1 .
2.
3.
.
0.
100
125.
*
Obi *
3263 *
79 '/ *
5177 *
64 ';. *
6104 *
7? X *
"053 *
20 •/. *
657u *
36 y, *
7375 *
56 X *
97IM *
33 7. *
fe°9° *
09 % *
3723 *
13 X *
76?2 *
31 X *
3891 *
15 X *
1869 *
62 X *
0286 *
73 X *
4341 *
00 X *
*
.ox y
°277 *
74
. *9 7.
1 .'1524
3.9H X
a.7023
. n x
.hi**
.7° X
.9378
8.06 X
^.5174
2 . * " %
2. 7606
2.36 X
2.7866
2.26 X
,
.7153
.29 X
.3377
1.20 '/.
1 .4160
1.17 X
1.3799
.00 7.
n.
100.0 X
1 16. te-62
4-
*
ir
*
*
*
*
*
,
*
*
*
»
'
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ir
it
*
*
 END OF FILE EiMCUUNTE&ED -- TERMINATE RUN.
*STOH* 0
                                             A-4.10-13

-------
                    APPENDIX A-4.11

   PERCENT REDUCTION OF THE EXPECTED ARITHMETIC MEAN
OF PARTICULATES FOR CONDITIONS 1-5 USING THE SMALL GRID

-------
                                               II.  S.  SUM   SMALL  l"ll>  btSHM
KEtEI'TlIM
NUUIIEM

|
2
3
4
b
6
7
B
9
10
II
| ^
13
14
15
16
17
18
|9
20
21
22
21
24
25
26
i/
in
29
10
31
32
33
34
35
36
37
in
39
40
41
42
41
44
45
46
47
on
.14
50
HFCFP1UM I.UCAIUm
(K ILUMt IfHS)
HUM 12
503.0
503.0
503.0
501.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
S04.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
S06.0
506.0
506.0
506.0
506.0
507.0
507.0
507.0
507.0
507.0
507.0
VEMI
1701.0
3702.0
3701.0
3704.0
3705.0
3706.0
3707.0
370H.O
3709.0
3710.0
3711.0
3701.0
3702.0
3701.0
3704.0
3705.0
3706.0
3707.0
170H.O
3709.0
3710.0
3711.0
3701.0
3702.0
3701.0
3704.0
3705.0
3706.0
1707.0
37fl'I.O
3709.0
3710.0
3711.0
370) .0
1702.0
3701.0
3704.0
370S.O
3/06.0
3707.0
3708.0
3709.0
3710.0
3711.0
7701.0
3702.0
3704.0
3704.0
1/05.0
3700.0
1
) CIJNI)
1
(x rnAnr.t- )
802
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.oofl
.000
.000
.000
..Olio
.000
.000
.000
.000
.floO
.000
PARI
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Don
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001,
.000
.000
.000
.000
.000
.000
.000
CIlMHTHUl
2
U Cll
Ml 12
.000
.000
.000
.000
.odo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.001)
.000
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.OdO
.000
.0(1(1
.000
.000
.000
r.mhi
HUM
r.rmi
HIM
4
ANKf ) (I CHAM.E) (X CIIAtJKF 1
PAR!
-14.497
-14 .954
-14.614
-I4.3HU
-17.401)
-19.551
-16.000
-12.703
-I4.H46
-IS. 661
-III. SOS
-14.621
-14.370
-14.517
-I4.cl0
-16.862
-19.107
-12.9311
-14.447
-14.631
-16.667
-17.119
-16.266
-13.719
-10.404
-9.74"
-17.290
-16.70)
-15.011
-14.241
-16.526
-IH.U26
-17.214
-15.464
-14.069
-12.31 1
-7.691
-23. 406
-22 .307
-19.039
-14. It If
-I5.l'42
-16. IK. 7
-16.557
- 1 7 . 47f
-1 7.4HII
-111.565
-2| . 43r'
-27 .H«;
-21.. 41,)
Sll?
.000
.ouo
.000
.0(11)
.000
.1)110
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.olio
.000
.OHO
.000
.000
.000
.0110
.(MX,
.OoO
.000
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.1)00
.!>«(•
. 000
.000
.Ouo
.000
. (1 (I 0
. OI'O
>*«HT
-(•2.D6I1
-62.539
-61.704
-64.74.1
-57. HOI
-54.610
-61.697
-66. OKI
-62.045
-6 | .44h
-60.971
-61.4H9
-61.945
-62.675
-64.117
-Si). 491
-55.446
-65. ftSn
-61.415
-61.751
-59.910
-S'). !?,»
-60.9|«
-64.751
-69.2flf>
-72.211
-5H.403
-60.S06
-61 .OKI
-62.144
-56.6^0
-57.237
-5H.775
-62.737
-64.43.1
-I.7.240
-64.51I4
-61 .194
-6il.Ht.H62
-58.797
-51 .417
-49.671
-57.697
-6 1 ,49£
-5/.H43
-56.454
-55.728
-58.214
-58.700
-56.741
-59.1H4
-50.827
-51 .271
-61.089
-59.191
-5i,. 912
-54.505
-51.1198
-55.971
-59.541
-61.616
-6i.24b
-48.640
-55.125
-56.551
-57.271
-SI .9^5
-52.16H
-54.8011
-57.907
-S9.264
-61 .031
-51. J40
-41.551
-S2.H68
-48.601
-55.209
-4D.718
-52.610
-51.770
-55.6(15
-5S.BH4
-51. 105
-SH ,4hS
- 4 h . 1 4 0
-5/. 120
cnr.ni
it rn
SU2
.000
.000
.000
.000
.000
.000
.000
.omi
.000
.poo
.000
.000
.POO
.000
.000
. II 0 0
.000
.000
.000
.0111)
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.01)0
.000
.000
.000
.OUO
.000
.000
.boo
.000
r 10.4
5
A >4!it~1
HARt
-64.201
-fc 1.1121
-65.851
-65.712
-59.131
-59.869
-66.515
-71.757
-68.627
-65.404
-1.1. SH'(
-64.415
-6'l./58
-64.154
-65.'l40
-58.7/4
-61 .669
-69.144
-6H.949
-67.472
-61.061
-6^.712
-62. (.11
-65.145
-67.971
-70. 491
-S6.!|i4
-61. XI, 2
-66. 407
-6H.44)
-65.415
-6«>. 468
-61.576
-64. 105
-6S.02I
-66.471
-5)1.447
- 5 il . 0 5 li
-60.569
-62.052
-71 .ill
-64.547
-6i.c!65
-67.0'!')
-6^.754
-6r» .854
-60. ,-91
-65.051
-54.441
-65.762
• ••    I  =  ICIINUIIIIIN  M  -  NIAIIIIAHII  CIHiU I I I Ml, I  /  S I A till kid'  C Hull I I ] nil  •  (on.





       -( CHIUIKt  IS  WKMlCIIIlN  Alill  «*  I.IIANI-I   IS  IM:'«»M

-------
              • I. S.  SIUI  SK»I.L PUIfi S»SII H
HFCf HIUH
HIIHHHI

51
S?
53
51
55
5b
57
56
59
60
hi
h?
hj
61
hS
bb
67
ha
69
70
71
72.
73
71
7s
76
77
7U
1<>
Ho
B 1
B2
BJ
B1
B5
Bh
B7
Bd
ft 9
90
0|
92
93
91
95
96
97
9b
19
1011
UECHPIOR UJCAIIIIN
(Klll)HE ItHS)
HIIRI/
507.1)
507. U
501.0
507.0
50 7.0
50H.O
5011.0
50P .0
50ft. 0
50B.O
SOB.O
SOn.O
sort.o
50H.O
50fl. 0
soa.o
500.0
509.0
509.0
SOO.O
500.0
500.0
509.0
509.0
509.0
509.0
500.0
510.0
510.0
510.0
SIO.O
510.0
510.0
510.0
510.0
510.0
SIO.O
SIO.O
51 1 .0
51 1 .0
51 1 .0
SI 1 .0
511.0
51 1.0
511.0
511.0
511.0
511.0
51 1 .0
512. l>
VIBT
3707.0
3/ON.O
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3700.0
3705.0
3706.0
3707.0
J70B.O
3709.0
3710.0
3711 .0
3701.0
3702.0
3703.0
3701.0
3705.0
3706.0
3707.0
370a.ll
3709.0
i 1 1 o . o
3711.0
5701 .0
3702.0
3703.0
3 7 0 '1 . 0
3705.0
3706.0
3707.0
370,1.0
3/09.0
3710.0
3711.0
3701 .0
3702.0
3705.0
3701.0
3705.0
3706.0
3707.0
37IH.O
3/09.0
 CIIAMl.t 1
SU2
.000
. 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0(10
.000
.000
.000
.000
.000
.000
.000
.000
.IMKI
.ouo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.0(10
.000
.1 00
.1 .0
.( 10
.( Ill
.1 Ml
.1 '0
. 1 Ml
. ' Ml
. < lO
.(Ml
. ( Ml
. ( '0
.( 'II
I'AHf
-1 7.2IH
-10.13"
- 1 ? . 205
-11.115
-in.h7f>
-17.123
-17.793
-16.916
-I7.6B7
-22.107
-1 7.72C
-7.001
-S.o'll
-9.113
-1 1 .O"?
-1 J.3H1
-15.171
-15.751
-17. sin
- 1 5. (125
-IH. JOS
-I6.no/
-9.017
-6.127
-B. II III
-1 1 .HB7
-11.536
-16.172
-I7.5BO
-15.652
-16.562
-III. / 1,1
-16.967
-12.55)
-H. 'II 1
-12.591
-1 3.595
- 1 1 .6''5
-I7.|i57
-17.^71,
-15.9?,'
-15.61-6
- t- . II 7 /
- 7.rM
- 6.715
- (y . °h 5
- 1.50.1
- 1 5 . / ,' II
-15.,' 7 I
-17.il/
tlllini I III',
3
(v ni
SH2
.000
.000
.0011
.000
.000
.000
.000
.000
.1)00
.000
.000
.000
.0110
.000
.000
.000
.000
. 000
.000
.000
.1100
.000
.11110
.OnO
.000
.000
.010
.010
.0 '0
.0 10
.010
.0)0
.0 ID
.0 10
.000
.000
.000
.000
.nun
. ouo
. lino
. OIHI
.null
. ODD
.0110
.0110
. il III1
. (HH
.HIM'
.Oilli
Alll.l- )
HAHI
-hi .1 36
-5 5.O* 5
-"'1.295
-Sl.90'1
-Ml. '196
-60.761
-/ 0 . 5fl(»
-h 1 . 6 1 II
-h (.'175
-60.H92
-69 .OSO
-H 3.972
-116 .1*77
-7^.251
-69.512
-65.77'!
-61.530
-65.553
-hi ,BI>1
-61.022
-59.92 5
-66.009
-711.926
-II1.H-39
-77.512
-71 . 521
-65.661
-6 5.312
-61 .116
- h 1 . 5 1 «
-62.776
- 5 " . 1 6 «
-62 . rt I I,
-7n .9'* rt
-79.131
-67 .25.1
-67.476
-hb . 5011
- 6 1 . 0 VI
- 6 1 . '1 6 2
-(- i . ^61,
-6 1.61 /
-S'l . '12 i
-h'l . „? 1
- 6 2 . ', 2 '1
- / t . / 9 /
-'. -I . hd '1
-h'l . 1 12
-6'l. 55'2
-n . /i'2
riiiiiniiihi
SII2
.1100
.ouo
.000
.000
.000
.000
.000
.11011
.000
.DUO
.0110
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. (Mill
.000
.000
.000
. 000
.000
.000
. 0 0 0
.O'l I
.Oil I
.00 1
.00 >
.00 1
.001
.no i
.lilt 1
. on i
.00 1
.00 i
.0.1 1
.Oil i
.001
. 'J'l'l
. ouo
. Il ',('
I'AUI
-57. -Mb
-51.311)
-11 .H75
-51 .911
-57. 190
-56. BOH
-56.M69
-56 .929
-59. SOU
-S1.B21
-66.166
- B 2 . 1 3 1
-1(5.151
-III. 5H2
-hh.»7l
-62 .521
-59 . fl29
-5«. 79|
-'il.Kirt
-611 . 31*2
-5-1.21 1
-63. I5B
-77.001
-43.125
- 7 5 . 1 7 H
-64.191
-62.106
-5H . 760
-57.071
-60 . 0011
-5/1.51 7
-St. 01 -I
-Sf.H'lt,
-67 .901
-77.570
-61.252
-61.655
-62. 561,
-56.195
-56.1171
-59.77 7
-5K.606
-5U.OJH
-5
-B3.901
-7H.6II5
-71.163
-71 .105
-60.7 1 1
-hl.41 '1
-65.951
- h 5 . tl 1 2
-62. 005
-7 5.13H
-06.966
-91.019
-H5.727
-7 1.151
-7 5.B01
-67.091
-hi.| 1 7
.65.115
-hh .19 |
-61 .17 1
-70.395
-H2. 77n
-01 .2 I /
-H '1.569
-76.792
-71 .679
-66.0311
-61 . 5 H'l
-6rj. 7 39
-65. 102
-60.M25
-66 . 7H 7
-75.105
-H 5.101
-75.567
- 7 2 . rt 1 .1
-70.609
-64.91,1
-61.120
-61, . 71. (1
-65. 359
-61 . / M
-61.2011
- h M . U 1 1
-/«.>!/ 7
-7 2 . M 9
-69.152
- 6 M . 1 H |
-h'l.hHI
- S I ftNliftRU  (; )U,I' 1 1 I 11.1 )  /

-------
                                         II.  S.  SlfEI. SMALI  r-H|l< SYSIEK
KECEHTUR
NUHbEH

101
1 0?
1 0 J
104
105
Iflb
107
lOb
109
110
III
II?
Ill
114
115
111.
117
lid
119
l?0
1 ? 1
1 ??
1 ?1
1 ?4
l?5
l?b
I?/
1 ?B
l?9
llu
HECEPIIIH LUrUIClN
(K1LIJME1F.MS)
, IIQHII
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
512.0
51?. 0
51?. 0
513.0
51 1.0
513.0
513.0
511.0
513.0
513.0
511.0
513.0
513.0
513.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
SOS. 3
WK11
170?. 0
3701.0
3704.0
3705.0
3706.0
1707.0
3708.0
3709.0
1710.0
1711.0
3701 .0
370?. 0
3701.0
3704.0
1705.0
3706.0
370.7.0
370H.O
3709.0
1710.0
371 1 .0
170?. 1
370b.5
3701.4
370?. 0
3705.'!
1704.0
3705.1
3703.1
370*. 4
STANDARD rilMI)
1
(t dlANGL)
Sll?
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
('AMI
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Ooo
.000
.000
.000
.000
.000
.000
.000
.000
.ono
.000
.000
.000
.000
.000
CMNIII 1 It'll
(I CHAM.t )
Sll?
.ono
.0110
.000
.000
.000
.OHO
.000
.000
.000
.1)00
.0110
.000
.nuo
.000
.000
.000
.0110
.000
.1100
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.OdO
.000
(•API
-17.063
-16. B??
-16.110?
-Id. 157
-11.076
-17.455
-l?.406
-14.35?
-16.3B4
-16. (16 7
-I7.5BB
-16.590
- 1 6 . 4 1 d
-16.667
-IB.4?I
- 1 H .467
-16. B7?
-14.73.;
-I4.5«5
-16.667
-17.037
-I4.B6B
-?l .96(1
- 1 6. 1 ?4
- 1 4 . 0 2 h
-?'>.5B7
- 1?. 101
-IB. 696
-1 1.70|
-16.061
CONDI HUM
i
(> CH
Sll?
.ono
.ono
.000
.0110
.0110
.000
.0110
.000
.inn)
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.ODO
.000
.000
.000
.0110
.0110
.000
.(100
.00(1
.0110
.0110
.000
Alilit')
CAM
-6d. JO?
-6?.9?B
-6 1.?? 7
-S9.4?0
-60.05B
-6? . in?
-6-1. 9?S
-65 ,?7B
-6? .71?
-61.?51
-6I.H09
-6S.S94
-61.1106
-fr?.H9 3
-59.649
-59.SH?
-6?. 140
-66.964
-6'|.405
-6?.b67
-6?. 961
-63.611
-SH.O?5
-6?. 15?
-64 ,?5B
-61 ,1140
-67.U77
-56.641)
-64. IBB
-57.S5B
ClIMlll 1 HIM

(t 1
Sll?
.nun
.000
.0110
.ono
.000
.000
.000
.01)0
.111)0
.Oill)
.0110
.ono
.000
.0011
.000
.01)0
.000
.000
.0110
.0011
.01111
.000
.000
.000
.OilO
.nno
.DUO
.000
.OHO
.Oill)
4
IUMIJE)
PAH I
-57.9.16
-511.567
-SB. 466
-VI. 14H
-55.394
-Srt.545
-6S.9I7
-61 .574
-59.1??
-59.036
-S7.?flb
-59.447
-59.J?«
-57. (16?
-54.3H6
-54.704
-5B.436
-61.B39
-61 .6??
-SB. ODD
-S9.?59
-57.4BI
-SI. 819
-•>h.B?9
-5.1. BB?
-57.63?
-61 ..«?0
-66.i)'5
-6-1. 7BO
-6 | .9B4
-6?. 718
-6f>. t>6 7
-7?. 761
-7I.S9?
-6H.667
-6H. I4B
-6«.?97
-6?. ill 4
-6 J . 1 yt)
-64.79?
- 6 'j . 4 1 1
-6b.4B'j
-5H.679
-61.9H7
-67.44?
 • **   X :  (CUNUIIIlIN N  - SIANOAHD  ClINII I I 11 IN)  / S1ANDAIVU  CIIKiD I I I (llu  •  100.

       -X CMANHE  13 HEUllCIIIIN  AND  »S CHANGE  IS INCHEASE
• SI IM'« II

-------
                    APPENDIX A-4.12

   PERCENT REDUCTION OF THE EXPECTED ARITHMETIC MEAN
OF PARTICULATES FOR CONDITIONS 1-5 USING THE LARGE GRID

-------
                                                                    ...  !>.  ill I I   I Al'l t  I 'Ml'
ro
 i
ktLf HlUll
NUMuEH

1
^
4
4
5
b
7
b
1
10
11
12
13
14
Ib
Ib
17
IB
14
20
21
?2
23
24
2b
2b
27
2o
24
30
11
32
33
34
3b
36
37
3B
31
40
41
42
41
44
45
46
47
4o
49
SO
Uf Cf HI IH LIICAIION
(KILUHtlKHS)
H.JHIZ
502.0
502.0
502.0
S02.0
502.0
502.0
502.0
S02.0
SUb.O
SOh.O
SOh.O
SOh.O
506.0
SOh.O
S 116.0
SOb. ft
510.0
510.0
510.0
510.0
510.0
510.0
510. 0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
SIH.O
SIH.O
SIH.O
SIH.O
SIH.O
5IA.O
SIH.O
SIH.O
522.0
522.0
522.0
522.0
522.0
S22.0
522.0
522. 0
S2b.O
526.0
Vml
169.1.0
369ii.O
3702.0
370o.ll
3/IU.O
1/14.0
1714.0
3722.0
1694.0
3h9rt.O
3702.0
3706.0
3710.0
3/14.0
1/IB.U
3722.0
16911.0
369H.O
3702.0
1/06.0
3710.0
3714.0
37IB.O
3722.0
3k94.0
1690.0
1/02.0
1706.0
3710.0
3714.0
3/IU.O
3/22.0
Ib94.0
3b4B.O
3702.0
3/06.0
3/10.0
l/l'I.O
37IH.O
3722.0
3614.0
3h1rt.O
3702.0
3706.0
371 0.0
3/14.0
3/111.0
3/22.0
1614.0
3h'»H.O
MAMIUITl riilll)
1
tl CIIAM.E)
SH2
.000
.000
.000
.0011
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.ouo
.000
.OuO
.000
.000
.000
.000
.000
.000
.OuO
.000
.ouo
.000
.000
. 0 II (I
.000
.nun
.0110
HAKI
.OOu
.000
.000
.oou
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.00(1
.(100
.000
.00(1
.000
.uno
.000
.OOU
.000
CdMil i HIM
2
(* CIIA.K.t )
5112
.000
.060
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.000
.000
.000
.0011
.000
.000
.OuO
.000
.000
.OOU
.OuO
.ouo
.000
.OUII
.0110
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
,0(>0
PAH1
-I6.2«2
-15. M2
-15.305
-It .546
-lb.737
-17.127
-17.407
-I/. 127
-17.2'lh
-16.724
-14 .dhl
-22.307
-Ih.Uh/
-16.354
-I6.4S6
-I7.6H1
-IH.34I
-16.041.
-I7.5HO
-16.167
-1 3.515
-16.432
-17. SOU
- 1 H.2S4
-III. 605
-IH.H6II
-17 .bHH
-1 6 . /?S
-17.037
-17.593
-17.147
-10.072
-IH.14/
-10.447
-I7.b0t
-10.713
-Ib.h42
- 1 H . 1 1 0
-I9.04H
-I1.04H
- ? II . S 4 B
-I1.I7H
-I4.U11
-Itl./Su
-19.2/7
-20. uno
-Ib./Sfl
-20.4SS
-19.2911
-IB.V5U
di.'jiii HUM
3
(» CHAM.I-)
SII2
.0011
.000
.0110
.OilO
.000
.00(1
.01111
.ouo
.000
.000
.01,0
.000
.0(10
.OuO
.000
.000
.000
.000
.OuO
.000
.00(1
.ouo
.11110
.000
.000
.000
.ouo
.ouo
.000
.000
.000
.OJO
.000
.ouo
.000
.ouo
.ouo
.000
.OuO
.ouo
. ouo
. 0 0 II
.000
.11110
.001
.000
.000
.000
. 0 II 0
.000
t'AKT
-hi . |S4
-62.294
-62.1 11
-S7.2IH
-61 .7b3
-(•1 .050
-60.741
-6I.1H6
-6 1.241
-61. 197
-64.41b
-60.H23
- S h . a 9 4
-61.194
-61.739
-62.195
-60.699
-6J.44I
-hi .416
-62. 1Mb
-6/.47>>
-63. 1HO
-62.-jOll
-62.64H
-62. 791
-61.635
-61.819
-60.151
-h2.1h3
-62.U37
-(•2.245
-hj.bbl
-62.105
-62.136
-6i; MO
-61 .404
-61.I5H
-63. 3RD
-61.905
-63.492
-61.014
-6J.OI4
-62.727
-hi . Ill
-h2.n5l
-hi ,4|H
-h2.500
-hi .164
-1.1. ISH
-61 .06^
criNnmn.j
4
(t CHAM.tt
Si 12
.000
.OOu
.000
.000
.01)0
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0011
.000
.0011
.000
.000
.ouo
.000
.000
.000
.OuO
.OOu
.ouo
.ouo
.000
.000
.000
.000
.OOU
.ouo
.ouo
.000
.000
.0110
.OOU
.000
HAH1
-S6.IS4
-S/.26I
-S6.7H7
-52. OSS
-S7.17I
-56.1177
-55.926
-Sb.UI
-Sb.nhO
-56.HI6
-S9.2b9
-S2.bbB
-S2.hlO
-57.371
-S7.S26
-57.927
-Sb.7b1
-51.140
-SI.07H
-51.H4S
-b4.b51
-51.fa24
-5B.I25
-57.116
-58.140
-57.211
-S9. 719
-S4.4BO
-Sit. 519
-51.331
-5«.lb3
-5/.<4U
-57.H9S
-S7.2H2
-5H.4SI
-56.725
-6.1.000
-S9.ISS
-S/.I4 J
-Sa.Mu
-57.544
-57.514
-S7.271
-S7.U 41
-57.H31
-SH. |H2
-5rt. 531
-S9.U9I
-57.1115
-S9. 4/5
LI'IIOII I'l.)
(t ClIANKe)
bli2
.OUII
.000
.000
. 0 0 II
.000
.OHO
.1100
.1100
.11 Oil
.0110
.(III II
.000
.000
.000
.000
.ouo
.1100
.000
.000
.Ouo
.000
.000
.000
.ouo
.000
.000
.000
.ouo
.000
.000
.000
.ouo
.ouo
.ouo
.000
.000
.000
.000
.000
.000
. 0 0 .'I
.000
. 0 0 II
.000
.01,0
.000
.olio
. 0 0 II
.000
.000
Htkl
-h J.4h2
-64. 109
-64.127
-61.222
-hi>.912
-64.bl2
-h4.HIS
-65.142
-64.215
-64.032
-fcb.OJM
-60.564
-66.265
-67.D21
-hh.9S|
-66.46}
-hb.065
-6b.6b7
-64.1H4
-66. /U/
-72.1IU
-60.^45
-66. HIS
-66. hh/
-hb.l 16
-64./HU
-hh.lt*4
-b2. >)q/i
-hH.flH9
-hh.667
-66. 42/
-hh.2bS
-6S.261
-65.049
-65.494
-64. 12/
-61.474
-66.il/
-66. 6h/
-hn.6h/
-6b.751
-6S.751
-64.14'j
-64.«44
-67.470
-67.27 i
-6I..U6/
-6'5.9(l'l
-6h.6h7
-6 /.111/
                                  i  3  (ciiNiiinim N  -  SUNIIAMII  CIINIH nnwi  / SMMIUKU  LIIHUI i nif.  •  100.


                                  -I  r.iiAuiii-  is  ill ii'iri 11 IN  Ann  «z  i n«Mi,t  is ninvtA.s^

-------
                                                                                         ,.   '..  M>tl  I Alll.t  I.
ro
Kflf I-IUH
NUMUFU

51
52
51
54
55
5b
5/
5B
59
bO
bl
b2
bl
b4
b5
bb
b(
ha
b9
70
71
/£
71
74
75
7b
7/
70
79
HO
ai
UtCFfUIH LUC U IDJI
(HIL JHtltkM
111)1' I 2
52b.O
52b.l)
52b.O
5?b.O
52b.O
52b.O
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
Sin.O
505. b
50h. I
5ub.b
504.4
50 7. b
504. b
504.0
504.4
505.3
Vt'HI
i/o,;.'i
1/Oh.U
in o.o
171 'l.o
3/IH.O
3/22.0
3 1. 9/1.0
ll>9rt.O
3702.0
1 / (I h . 0
3 / 1 II . 0
1714.0
3/ltl.O
Mfi.O
3b94 . 0
1 o 9 rt . 0
3/02.0
5/06.0
1710.0
3)14.0
3 7 1 a . (I
3722.0
3702. 1
I/Oh. 5
1/01.4
3/02.0
3705.4
3704.0
1/05. J
3 Ml 1 . 1
3/0:1.4
1
(t (HA,'
SII2
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.DUO
.000
.000
.000
.000
.000
.000
.000
.ouo
.1)00
.000
.000
.000
.000
.000
.000
COM)
f Ahl
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ofto
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ooo
.000
.000
.000
.000
.000
.000
.HOC
Llililil Illli,
^
11 CrUHGr)
SM2
.0(111
.OOP
.ouo
.000
.000
.000
.000
.000
.(100
.000
.0(10
.1,00
.000
.000
.000
.000
.(mo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
CAM!
-IS. HUH
- 1 9 . h 0 H
- 1 M . '11 4
-20.000
-14.51?
-14.444
-20.000
-IB.Sbh
-I9.4HI
-19.04(1
-I9.b47
-21,951
-?0.5»h
-IB./ 50
-?0 .511
-20.755
-19.401
-19.444
-SO. 139
-19.512
-20 .690
-21 . 429
-1 4 .HbB
-21 ,9hB
-Ib. 124
- 1 4 . 0 ? h
-25.517
-12.101
-IB. 1.91,
-1 l./ul
- 1 b . 06 1
LCI. lit 1
it rn
bllr*
.0011
.0110
.III) II
.Ouo
.OuO
.000
.000
.000
.000
. o o o
.000
.000
. 0 0 (I
.000
.000
.000
.000
.000
.000
.000
.000
.01)0
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
1 1 n 4
i
PAP I
-b^.d?2
-I. I.7h5
-h2. Ihr"
-b2.?22
-hi. 415
•hl.HH9
-hP.^22
-h2.nb4
-hi. 138
-hi. 405
-b2. 1 21
-hi. 415
-hl.7h5
-02.500
-61. 101
-h2 .?b4
-b2.bf>7
-h? , 500
-h2 . 7 1 2
-h3.4lb
-hi. Ob"
-b4.2Hb
-h2.bll
-5B.025
-h2 . 152
-h4.2SH
-bl .B40
-h/.077
-5ti.l,44
-bl . 1 Bll
-5/.55H
CD nil MI in
4
U CHAi'lC.t )
S(I2
.000
.000
. 0 U 0
.000
.000
.000
.000
. 00 II
.000
.006
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.ODO
.000
.000
.000
.000
.ouo
.000
.000
.000
HAKl
-5/.77b
-57.H41
-54.101)
-5/.//H
-5H.517
-5U.111
-57.771
-5«.b2l
-5U.442
-57.I4J
-57.5/b
-5H.51/
-5K.hV4
-54. 175
-5rt . '* / 4
-5S.44I
-5B.204
-5B. 411
-5/.b?/
-5tl.537
-5.i.b21
-57.141
-5».4fl|
-51 .849
-Sfa.«29
-5H .RH2
-S/.bl?
-hi. 221
-50.000
-5d.l52
-5i. 125
CIIMH 1 Ill'i
5
(X CHA'll.t )
Sli?
.OUO
. 000
.000
.000
.ouo
.ouo
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
FAh t
- b '1 . 4 4 4
-h5.hAh
-b7.5h»
- h .1 . a H 4
-h5. B54
-hh.hb7
-bo.bh/
-b5.5l /
-h4.435
-h1.47b
-hh.hh/
-h/1.291
-b/.bl/
-b'i.b23
-hb.bh?
-bu.Oln
-b5.b?2
-h-i.dll
-hi .101
-till. 291
-b'». 5 1 /
-fa7 . 157
-h 1, 247
-b2.0l i
-hi. |')0
-b4 . 79?
-h'j.Ut |
-bh.4B5
-5n.b7 J
-hl.'Jh/
-h7.44^
                                               t =   (CIIM)ITIOIJ  N  -  S(»,J|)AHI)  HIMfi II I(IN)  /   SIAfJOAM) CdMI I 1 I (III  >  1011.

                                               -I  CHAIIl.t  IS  KtDllCTIIIN  AND  H  LIIANbt  Ib  INCUtASF
                                             •  (I

-------
                       APPENDIX A-5
  PARTICULATE AND SO2 EMISSIONS FOR 1973 AND 1978 (PROJECTED)
    FROM COAL STORAGE, HANDLING, AND COKING OPERATIONS
AT THE FAIRFIELD WORKS PROVIDED BY THE U. S. STEEL CORPORATION

-------
                          PARTICULATE EMISSION FACTORS


Charging
Pushing
Quenching
Coking
Underfiring
Preheaters
(1973)
Batt #3=9
1.5 Ib/Ton Coal3
.6a
.9a
.la
.39C
—
(1973)
Batt £5, 6, 9
.075 Ib/Ton Coalb
.3b
.135b
.02b
.218d
—
(1978)
Batt n
.0075 Ib/Ton Coalc
.05d
.135°
.003°
.131d
.034d
(1977)
Batt #3, 4, 7, 8
.075 Ib/Ton Coalb
.3b
.135b
.02b
.39C
—

aEPA emission factors for uncontrolled sources.
 EPA emission factors above,  adjusted by Jeff.  Co.  percentages.
CA recent study by EPA of Fairfield Works Modernization.
 Permit application for Batt  No.  2.
                         FUGITIVE  DUST  EMISSION  FACTORS
From PEDCO study for EPA - "Control Program Guidelines for Industrial  Process
Fugitive Particulate Emissions" dated December 10, 1976:  (All uncontrolled).
   Coal Unloading:       .04 Ib/ton coal
                                   2
   Coal Storage:         .33 '- (|g|)  = .23 Ib/ton coal
   Coal Crushi'ng:       Pedco EF = .16 Ib/ton coal for secondary crushing
                        and screening.  Fairfield presenty using primary
                        crushing only - no screening.
                        Use .16/2 = .08 Ib/ton coal
   Coke Transfer & Conveying:      .023 to .13 Ib/ton
                                   •°23 * J3 =  .077 Ib/ton coke
                                       A-5-1

-------
COKE CONVEYING EMISSION FACTORS

   EPA Publication - "Industrial  Process Fugitive Particulated Emissions"
   Material  Extraction and Benification:
        Transferring & conveying  coal  (open mines)
        Emission factor = 0.2 Ibs/ton  (Uncontrolled)
   Coke Making:
        Conveying & transferring  coal  (<1,000 ft conveyor,  average system)
        Emission factor = .04 to  .96 Ib/ton (Uncontrolled)
   Enclosed  Conveyors:
        Enclosing conveyors results  in  "excellent"  dust control.

   Fairfield Works System
        1.    Typical  Size (Total  existing system 1,047'  effective  length)
        2.    Moist Coal
        3.    Relatively light winds
        4.    All  rubber belts (No bucket, chain, screw conveyors,  etc.)
        5.    Most discharges in chutes
        6.    No  high speed belts
        Assume emission factor should be in lower quarter of range
        (.04  to  .96  Ib/ton).   Lower  Quarter =  .04 to  .27  Ib/ton.
        Extraction  &  benefication emission  factor above = .20  Ib/ton.
        Use  .2 Ib/ton Emission Factor for Uncontrolled Conveying.
        Assume "excellent" control for  covered conveyors  is  95% control,
        and  (.05) (.2)  = .01  Ib/ton.
        Use  .01  Ib/ton  Emission Factor  for Covered  Conveyors.
        Since transfer points generate  majority of  emissions;  for  covered
        belts with control devices at transfer points assume 98« control,
        and  (.02)(.2) = .004 Ib/ton
        Use  .004 Ib/ton Emission  Factor for Covered Conveyors  With Control
                                        Control  Devices @ Transfer Points.
        Use  .11  Ib/ton  Emission Factor  for Open Conveyors with Half of
                                                      Transfer Points.
                                  A-5-2

-------
COKE CONVEYING EMISSION FACTORS

   EPA Publication - "Industrial  Process Fugitive Particulate Emission"
   Coke Making:
        Transferring and conveying coke (<1 ,000 ft conveyor average systems)
        Emission factor = .023 -  .13 Ib/ton (.077 Avg.)
   Enclosed Conveyors:
        Enclosing conveyors results in "excellent" dust control.

   Fairfield Works System
        1.   Typical Size
        2.   Relatively light winds
        3.   All rubber belts (no bucket,  chain, screw conveyors,  etc.)
        4.   Most discharges in chutes
        5.   No high speed belts
        Assume "excellent" control for covered conveyors is 95% control,
        and (.05)(.077) = .0039 Ib/ton coke.
        Use .0039 lb/ ton Coke for Covered  Conveyors
        Since Transfer Points generate majority of emissions; for  covered
        belts with control devices at transfer points assume 98% control,
        and (.077)(.02) = .0012 Ib/ton.
        Use .0012 Ib/ton Coke for Covered  Conveyors with Control  Devices
        @ Transfer Points

COKE STOPPAGE EMISSION FACTOR

   Coke Handling _ .077 _  -, lh/tnn
   Coal Handling " .25  " "*' ID/ton
   Coke Storage Emission Factor = (.31) (Coal  Storage E.F.)
                                = .072 Ib/ton  coke
                                  A-5-3

-------
                   PARTICULATE EMISSIONS - 1973

Batt Mo.
3
4
5
6
7
8
9
Total
Charging Pushing
and Coking3
408
414
562
571
441
377
429
3,202
Quenching
167
169
230
234
180
154
176
1,310
Underfiringc
72
73
100
101
78
67
76
567

a(Charging + Pushing + Coking) (T.  Coal  Charged)/2,000 = T. Emissions/Year
 (1.5 Ib/T Coal + 0.6 + 0.1).
b(.9 Ib/T. Coal)(T. Coal charged)/2,000 = T.  Emissions/Yr.
c(.39 lb/T.Coal)(T.  Coal  charged)/2,000 = T. Emissions/Yr.

1973 Coal:
Batt     Coal(Tons)
 3        371,087
 4        376,035
 5        510,499
 6        519,522
 7        401,065
 3        342,273
 9        390,005
                              A-5-4

-------
                        1973  (1974  EPA  Survey)

Batt #
3
4
5
6
7
8
9
Production
273,000
277,000
376,000
383,000
295,000
252,000
287,000
2,143,000
Tower
3
4
5
6

7, 8, 9

Quenching
404,000
366,000
169,000
508,000

695,000

2,142,000
(99.95%)
% Total
19%
17%
8%
24%

32%

100%

1978

Assume


Batt No.   2
Batt No.  5, 6
Batt No.   9
100 % @ No.  2 Tower
100 % @ No.  5 & 6
100 % @ No.  9
                                 A-5-5

-------
                       PARTICULATE EMISSIONS 1978

Batt No.
2
5
6
9
Charging, Coking
and Pushing2
43
101
103
77
Quenching
97
34
35
26
Underfiringc Preheaterd
94 24
56
57
43

(Charging
(.075 + .
(.0075 +
+ Coking + Pushing) (T
02 + .3) = (.395) for
.003 + .05) = (.0605)
. coal charged)/2
5, 6, 9
for 2
,000 = T. Emissions/Year
D(.135 Ib/T.  Coal)(T.  Coal  charged)/25000 = T.  Emissions/Year for 2,  5,  6,  9
c(.218 Ib/T.  Coal)(T.  Coal  charged)/2,000 = T.  Emissions/Year for 5.  6.  9
 (.131 Ib/T.  Coal)(T.  Coal  charged)/2,000 = T.  Emissions/Year for 2
d(.034 Ib/T.  Coal)(T.  Coal  charged)/2,000 = T.  Emissions/Year for 2
1978 Coal:
Batt     Coal(Tons)
 2     1.434 x 106
 5         510,499
 6         519,522
 9         390,005
2.854 x 10C
                                   A-5-6

-------
                         QUENCHING EMISSIONS
1973
T. Emissions/Year = (Total)(% For Tower)
Tower
  3
  4
  5
  6
7, 8, 9
            Total  (Emissions)
                 l,310T/yr
% For Tower
     19
     17
      8
     24
     32
                                                     Emissions
                                                        249
                                                        223
                                                        105
                                                        314
                                                        419
1978
Tower
  2
  5
  6
  9
                 Emissions
                    97
                    34
                    35
                    26
ESTIMATE FUGITIVE EMISSIONS 1973
1973 Coke Production   2.143.000 _ ,  ?n7
1976 Coke Production " 1,775,600 ~ '^u/
Coal Unloading:
    (0.4 Ib/Ton Coal)(2,610,083 T°n?Q7°a )(
Coal Storage:
   (.23 Ib/Ton
Coal Crushing:
   (.08
Coke Storage:
   (.072 Ib/Ton
                                  1976    2 000 Ib
                                                  •)0.
                                    Coal
                                  1976
                                        )(
                                            Ton
                             Tons
                                          2 000

                                          Ton
                                                 r)(l.
                         ,000
                              Tons Coke Estimated
                                                     Ton
                            630 Ton/Year

                            336 Ton/Year

                             33 Ton/Year

                              6 Ton/Year
                                                     QQQ
                                 A-5-7

-------
ESTIMATE FUGITIVE EMISSIONS - 1978
   1976 Coke Production _   1.775,000 _ n nor,
   Projected 1978 Coke Production ~ 1,997,000   u'000

                                        78888 = 1J25
Coal  Unloading:
   (0.4 Ib/Ton Coal )(2, 610, 083         )(1 -^X        ) =      587 Ton/Year
Coal  Storage:
   (.23 Ib/Ton Coal )(2, 415, 574          (l J25)(iQQ0 ]b) =      157 Ton/Year

    Only half of coal  will  go to ground storage, other half
    will go to new coal  silos.
Coal Crushing:
   (.08 Ib/Ton Coal )(671, 847 T°"9^a1 )0 >125)(2>0TQ°0n ]b) =         30 Ton/Year
Coal Storage:
   / H7i ik/r^» r~i,~wion nnn Ton Coke Estimated\/  Ton   \        /, T«^/v«-,«
   (.072 Ib/Ton Coke)(120,000 tQ stQrage  in 1978)(2aOOQ 1b) -      4 Ton/Year

                    ESTIMATE PROPORTION OF COAL ON
                      DIFFERENT  TYPE OF CONVEYORS
1973:
     Say each battery uses  1/7 of total coal.
     Stocking Conveyors:
          #3 Station
               500'  Open Conveyor - 60% of coal
               100'  Underground Tunnel -  60% of coal
          £4 Station
               130'  Open Conveyor - 40% of coal
     Reclaiming Conveyors:
          100' Open Conveyor - 100% of coal
     Distribution Conveyors:
          600' Enclosed Conveyor - 2/7 of Coal
          375' Enclosed Conveyor - 2/7 of Coal
          600' Enclosed Conveyor - 3/7 of Coal
     Open Conveyors
          ?Sn- X n'!J = 322H       452' of °Pen conveyor carrying 100%
           00' x 10 - TOO')            of coal 'used
          100  x 1.0 - 100 ;            (Use emission factor = ,2 Ibs/ton)
                                  A-5-8

-------
     Enclosed Conveyors

        100'  x 0.6 =  60'
        600'  x 2/7 = 17V
        375'  x 2/7 = 107'
        600'  x 3/7 = 257'
595'  of enclosed conveyor carrying 100%
     of coal used
     (Use emission factor = 0.1  Ib/ton)
ESTIMATE PROPORTION OF COKE ON
DIFFERENT TYPES OF CONVEYORS

1978:
        Say #2 uses 50% of coal and other batteries use 1/6 of coal  each.

        #2 Batt. coal will not go to ground storage.

     Stocking Conveyors:

        #3 Unload Station

        1,320' Open Conveyor - 50% of coal (#2 Batt.)
          500' Open Conveyor - (60%)(Batt. 5, 6, 9) =  30% of coal
          100' Underground Conveyor - 50% of coal  (#2  Batt.)
          100' Underground Conveyor - 30% of coal  (#5, 6, 9 hi vol)

        #4 Unload Station

          200' Open Conveyor - (40% (Hivol) )(50%  (Batt.  5, 6, 9)  =  20%  Coal

     Reclaiming Conveyors:

          990' Open Conveyor - 50% of Coal (Batt.  5, 6, 9)

     Distribution Conveyors:

       2,075' Enclosed Conveyors with Control Devices  - 50% of Coal  (Batt.  #2)
         600' Enclosed Conveyors with Control Devices  - 50% of Coal  (Batt.
                                                                     #5, 6,  9)
         300' Enclosed Conveyors - 2/6 of coal  (Batt.  #5  &  6)
         500' Enclosed Conveyors - 3/6 of coal  (Batt.  #9)

     *Half of transfer points enclosed

     Open Conveyors:    j

        lnn'<  v 'I - ^n-l    190'      (Use Emission Factor = .2 Ib/T)
        cUU  X •t ~  fu )

     Open Conv. w/50% Enclosed Ends

        ^ooni v 'f - AQS'! T'155'   (Use Emission Factor = .11  lb/T)
          yyu  x • o "~ fyo i

     Enclosed Conveyors   .
               x 2/6 = TOOJ 350.  (Use Emission  Factor  = .01  Ib/T)
               X O/ D *"
                                 A-5-9

-------
     Enclosed Conveyors with Control  Devices
       2,075' x .5 = 1,038'
         600' x .5 =   300'
         100' x .5 =    50'
         100' x .3 =    30'
1,418'  (Use Emission Factor = .004 Ib/Ton)
ESTIMATE EMISSIONS FROM COAL CONVEYING

1973  (T-sr!!){.2) = .086
                    ^ .006
                              .092 Ib/Toh
      .092 x 2,910,500/2,000 = 134 Ton/Year
1978  190' + 1,155'  + 350'  + 1,418'  = 3,113'
                            .003
                                       .165 Ib/Ton
     (liili;)(.004) =       .005

     .165 x 2,854,000/2,000 = 235 Ton/Year
     The breakdown of the estimated emissions  from coal  conveying  for
     1973 (235 T/yr)  is shown on page  A-5-12 in  the section  entitled,

     "Total  Plant Fugitive Dust After  Modernization."
ESTIMATE EMISSIONS FROM COKE CONVEYING

1973:

     All Conveyors Enclosed
                                                °n
     (.0039 Ib/ton coke)(2,143,000 Ton Coke)(2   Q ]b)  =
1978:
     Half of conveyors with control  devices  at transfer
     points and covers over belts.   Other half with
     covers only.
     (.0039 Ib/ton Coke)(l ,997,000  Tons Coke)(.5)(2

                                  4  ion/Year
     (.0015 Ib/ton Coke)(l,997,000 Tons Coke) (-5)(2iQQQ 1b)

                                  A-5-10
                             = 1.947
                             =  .749
                                                                     3 Ton/Year

-------
                   PARTICIPATE EMISSIONS REDUCTION
        COKE BATTERY NO. 2 REPLACING BATTERIES NO. 3, 4, 7, 8
                   (At 1978 Projected Production)
Batteries #3, 4, 7 & 8
Battery #2
Reduction
Fugitive Emissions (Total Plant)
   Before Batt. No. 2
   After Batt. No. 2
   Reduction
Total Before Batt. No. 2
Total After Batt. No. 2
   Reduction
  639 Ton/Year
  320 Ton/Year
  319 Ton/Year  (50%)
1,065 Ton/Year
1.016 Ton/Year
   49 Ton/Year  (5%)
1,704 Ton/Year
1,336 Ton/Year
  368 Ton/Year
(22%}
          Particulate Emissions - Batt. §2 Vs. #3. 4, 7, 8
Batt No. 2
     Stack (underfiring)
     Preheaters
     Changing, Coking & Pushing
     Quenching
     Total:
                  94 Ton/Year
                  24
                  43
                  97
                 320 Ton/Year
Total  Plant Fugitive Dust After Modernization
     Coal Piles
     Coal Unloading
     Coke Pile
     Pulverizing - Outdoor
                 157 Ton/Year
                 587
                   4
                  30
                               A-5-11

-------
Total Plant Fugiti
10,000 T. Silos
Primary Pulverizer
Mixer
100T. Transfer Bin
ve Oust After




Secondary Pulverizer
Conveyors #26A & B
Premetering Bins
Coal Conveying
Coke Conveying
Total :
Stacks
#3 (.39)(371,
#4 (.39)(376,
%1 (.39)(401,
?8 (.39)(342,
Pushing
#3 (.30)(371,
#4 (.30)(376,
#7 (.30)(401,
#8 (.075)(342
Charging
#3 (,075)(371
#4 (.075)076
#7 (.075)(401
#8 (.075)(342
Coking
#3 (.02)(371,
n (.02)(376,
#7 (.02)(401,
#8 (.02)042,
Quenching
#3 (.135)071
#4 (.135)076
#7 (.135)(401
#8 (.135)042





(&9
087)72,000 =
035)72,000 =
065)72,000 =
273)72,000 =

087)72,000 =
035)72,000 =
065)72,000 =
,273)72,000 =

,087)72,000 =
,035)72,000 =
,065)72,000 =
,273)72,000 =

087)72,000 =
035)72,000 =
065)72,000 =
273)72,000 =

,087)72,000 =
,035)72,000 =
,065)72,000 =
,273)72,000 =
Modernization (Cont'd)
13
12
3
3 46
10
4
1
189
	 3_
1,016
73 Production^ /1,997,000>,
1977 E.F. ;x 12,143,000; @
Emissions
72
73
78
67

56
56
60
51

14
14
15
13

4
4
4
3

25
25
27
23



^

'235

s


1978 Production
Rate
67
68
73
62

52
53
56
48

13
13
14
12

3
4
4
3

23
24
25
22
Total : 639
A-5-12

-------
Total Plant Fugitive Dust Before Modernization
                                                  @ 1973 Production
                 1973 x (1.997,000/2.143.000)  =  _ Rate
Coal Piles        336                                      313
Coke Pile           6                                        6
Pulverizing        33                                       31
Coal Conveying    134                                      124
Coke Conveying      4                                        4
Coal Unloading    630                                      587
                                                Total :    1 ,065

                   SQ2 EMISSIONS - COKE BATTERY 12
Battery Underfiring:
     880 BTU/lb Hot Coal    (from Gary Works Batt. #2)
Preheater Firing:
     (from design data)
                                 * <°
                           =313 BTU/lb Hot Coal*
      (313 BTU/lb Hot Coal) (.92) = 288 BTU/lb Wet Coal** (@ 8% HgO)
Product Flow:
      (from design data)
      (34.1 Ton Hot Coal/oven) (106 Ovens/day) = 3,614.6 Tons Hot Coal*
                                                       Charged Per Day
      lien* « Ton Hot Coa1w,gc Daysx _ , -iq   In6 Tons Hot Coal*
      (3614.6 - 5ip - )(365 ^) - 1.319 x 10  charged Per Year

      n ?IQ v in6 Ton Hot  Coal ) • f 92} - i 43 x in6 Tons Wet Coa1**
      (1.319 x 10      Yi^     ) - (.92) - 1.43 x 10  Heate(j per Ygar
                                                          (@ 8% H20)
      Coke Production = 900,000 Ton/ Year
     *"Hot Coal" = Product of Preheaters = Feed to coke ovens.
    **"Wet Coal" = Feed to preheaters.

                                A-5-13

-------
            o
              Emissions - Coke Battery #2 (Cont'd)
Calculate SCL Emissions:
                           (Battery No. 2)
Coke oven gas contains 0.5% H2S
H2S = .09109 Ib/cu ft
One mole H2S yields one mole S02
Molecular Weight:   S02 = 64.06  and  H2$  =  34.08
To convert cubic feet coke oven gas burned  to
Ib S02 Emissions:
     (.005)(.09109)(£W
                           = 856.107 x 10
                                             "6
                                                    1b S0
                                                cu ft C.O.  gas
Total gas fired:
     880 + 313 = 1,193 BTU/lb Hot Coal
          n  193      BTU     U1  ,    .6 Tons Hot CoaK,,, om  Ib
          U'193  Ib  Hot CoalKlt319 x 10      Year     n2'000
                                                          Ton
        = 3.147 x 1012 BTU/Year
               ,12 BTU wcu ft coke  oven
            Y in
            X IU
                        ^       500  BTU
                 In9 cu ft coke oven  gas
               A 1 \J         \/
          4.643 x 10  cu  ft @ Battery
                    Q
          1.651 x 10  cu  ft @ Preheaters
S02 Emissions:
            x 1
            x l
                    ft C.O.
                                                  -6
                                                    1b SQ
                                                                  Ton
        = 1987 Ton  S02
                Year
        = 454 Ibs/hr (From Battery  Stack)
                                                          j Gas2)000
          (1.651 x 10
                              ftyC.O. Gas
                                     )(856JQ7 x  1Q
                                                   -6
                                                            Ton
        =  707
              Ton
              Ton
                                                         2,000
               Year
          Preheater  scrubbers  are 40% S02  efficient

          (707  Ton S02)(.6Q) =  424 Ton  S02
                Year                Year
                                 = 98.6
                                       From  Preheater
                           A-5-14

-------
                S00 EMISSIONS - COKE BATTERIES NO. 3 THRU 9
Batt. No.


Total


Total
Total
*so2

3
4
7
8
3, 4, 7
5
6
9
5, 6, 9
3 thru
_ ,cu ft
\
64.06
t

Production
Ton/Year
273,000
277,000
295,000
252,000
, 8 1,097,000
376,000
383,000
287,000
1,046,000
9 2,143,000
coke oven gasx nric
Year V
= M.W. SO, Tnn
2\/ ion
1973 Data
Coke Oven Gas
Burned-109 cu ft/Yr
1.888
1.913
2.041[
1.74U
7.583
2.597
2.643
1.984
7.224
14.807
cu ft H2S (.09109
cu ft C.O. Gas'
^

S0? Emitted
Ton/Year*
808
819
i cin /Combined\
1>619 ( Stack ]
3,246
1,112
1,131
849
3,092
6,338
Ib
cu ft H2SJ

 SO,
  k34.08 = M.W.  H2SM2,000 Ib
. (cu ft coke oven gas)(428jQ54 x 1Q-9
                                                 Ton
  "2 ~ vYear        /v^	" " '"   cu ft C.O.  Gas'
Batt. No. 3, 4, 7, 8 Adjusted to Same Production as Batt No.  2

(1>Q9°;^g)(3.246) = 2,663 Ton S02/Year

     Figures 1 and 2 summarize the particulate and S02  emissions for 1973
and 1978 (projected) from coal storage, handling, and coking  operations at
the Fairfield works.  Because of the proposed action, a reduction in S02
and particulates will occur.   Thus, no mathematical modeling  was done to
access the impact of S02 on ambient air quality.
                                  A-5-15

-------
i
en
i

CTt




T V \
/^ \\ c
OF
[







r^
•& c
7
n
o| J |
QCD
CD
Ml R 1 L II

so2
POINT LOCATION TON/YEAR
A STACK 808
B STACK 819
C STACK 1.112
D STACK 1,131
E STACK 1,619
F STACK 849
G DAT NO. 3
H BAT NO. 4
1 BAT NO. 5
J BAT NO. 6
K BAT NO. 7
L BAT NO. 8



~ \
— _ i~A\J
i* ~.f
!
1 I IOC I I 01 II
QP
°E 00
ii K | ao i HUM G

EMISSIONS -1973
PARTICIPATE S02 PARTICIPATE
TON/YEAR POINT LOCATION TON/YEAR TON/YEAR
72 M BAT NO. 9 429
73 N QUENCH TOWER 249
100 O QUENCH TOWER 223
101 P QUENCH TOWER 105
145 Q QUENCH TOWER 314
76 R QUENCH TOWER 419
408 S COAL UNLOADING 630
414 T COAL STORAGE 336
562 U COKE STORAGE 6
571 V CONVEYOR 33
441 COAL
377 CONVEYING 134
COKE
CONVEYING 4
6,338 6,222






m o
ON
Z3OA





                                 FIG. 1 S02 AND PARTICULATE EMISSIONS-1973

-------
I
en
i
                                                   A
                                                   B
                                                   C
                                                   0
                                                   E
                                                   F
                                                   G
                                                   II
                                                   I
                                                   I
                                                   K
                                                   L
                                                   M
                                                                     SO,
                                                                                EMISSIONS - 1978 (Proj.)
                                                                             PARTICULATE
                                                      SO,
                                                 POINT  LOCATION  TON/YEAR    TON/YEAR    POINT   LOCATION  TON/YEAR
                                                PARTICIPATE
                                                 TON/YEAR
   STACK
 PREHEATER
   STACK
   STACK
   STACK
  DAT NO. 2
  BAT NO. 5
  BAT NO. 6
  BAT NO. 9
QUENCIITOWER
QUENCH TOWER
QUENCIITOWER
QUENCH TOWER
1,987
 424
1,112
1,t31
 849
 94
 24
 56
 57
 43
 43
101
103
 77
 97
 34
 35
 26
   N
   O
   P
   Q
   R
   S
   T
   U
   V
   w
   X
  COAL
CONVEYING
  COKE
CONVEYING
 COAL STORAGE
COAL UNLOADING
 COKE STORAGE
  PULVERIZER
    SILOS
  PULVERIZER
   MIXER
 TRANSFER BIN
  PULVERIZER
  CONVEYOR
   BAT NO. 2
                                                                                                             5.503
157
587
  4
 30
 13
 12
  3

 10
  4
  1

189
                                                                 1,868
                                      FIG. 2 S02 AND PARTICIPATE EMISSIONS- 1978(PROJECTED)

-------
                 APPENDIX A-6

EXISTING AND IDENTIFIABLE AIR POLLUTION CONTROL
     DEVICES AND RESIDUE DISPOSAL METHODS

-------
                    EXISTING AND IDENTIFIABLE
                  AIR POLLUTION CONTROL DEVICES
                   AND RESIDUE DISPOSAL METHODS
                         FAIRFIELD WORKS
1.   Blast Furnace and Sintering Plant

       Blast Furnace Nos.  5,6 & 7 - Gas Cleaning System - Each blast
       furnace has uptake, downcomers, dustcatchers,  venturi  scrubbers,
       gas cooler with a complete water circulating system consisting
       of a hydro-thickener and cooling tower.

       Blast Furnace Nos.  1, 2 & 3 - Gas Cleaning System - Each blast
       furnace has an uptake, downcomer, horizontal dustcatcher, splits
       into two streams for boiler and stove use.  Boiler has addition-
       al two multicolnen  and dust legs.  Stove gas system cleaning
       systems consist of  hurdle type gas washer and  wet electrostatic
       gas precipitator.

       Sinter Machine No.  1 Discharge - Alterations - Eliminate three
       emission points by  blocking off three stacks and covered the
       discharge in allowing pull back into the main  center bed.

       Sinter Machine No.  2 Discharge - Alterations - Eliminate three
       emission points by  blocking off three stacks and covered the
       discharge in allowing pull back into the main  center bed.

       Sinter Machine No.  3 Discharge - Alterations - Eliminate three
       emission points by  blocking off three stacks and covered the
       discharge in allowing pull back into the main  center bed.

       Sinter Machine No.  4 - Breaker, Screens, and Mixer Building -
       Picked up by the multicolnen and put back on the center bed.
       Center bed altered  with additional hoods pull  through  main
       windbox.

       Sinter Machine No.  1 - Windbox end (Precipitator End)

       Sinter Machine No.  2 - Windbox end (Precipitator End)

       Sinter Machine No.  3 - Windbox end (Precipitator End)

       Sinter Machine No.  4 - Windbox end (Precipitator End)

       Sinter Cooler Stacks - Alterations - Increase amount of water
       sprays.
                              A-6-1

-------
       Sinter Cooler Discharge - Alterations - Cut out hood in two
       places, installed short stacks and put on protective sides
       thus reducing the capture velocity.

       Sinter Load-out Bin No. 4 - Alterations - Add more water
       sprays.

       Sinter Plant - Landfill Disposal  Operation - Dumped on the
       ground and recycled.

2.   Coke and Coal Chemicals

       No.  3 Battery - Quenching Tower - All  coke is quenched in
       quenching tower large enough to accomodate one quench car.
       Tower equiped with water circulating system with baffles
       mounted in tower to remove particulates in stream.

       No.  4 Battery - Quenching Tower - All  coke is quenched in
       quenching tower large enough to accomodate one quench car.
       Tower equiped with water circulating system with baffles
       mounted in tower to remove particulates in stream.

       No.  5 Battery - Quenching Tower - All  coke is quenched in
       quenching tower large enough to accomodate one quench car.
       Tower equiped with water circulating system with baffles
       mounted in tower to remove particulates in stream.

       No.  6 Battery - Quenching Tower - All  coke is quenched in
       quenching tower large enough to accomodate one quench car.
       Tower equiped with water circulating system with baffles
       mounted in tower to remove particulates in stream.

       Nos.  7, 8 & 9 Battery - Quenching Tower - All coke is quenched
       in quenching tower large enough to accomodate one quench car.
       Tower equiped with water circulating system with baffles
       mounted in tower to remove particulates in stream.

       No.  3 Battery - Maintenance Plan* -  Steel work bent and warped
       and  allowed brick work to crack and  leak and stacks to smoke.
       As a  result, the maintenance plan was an effort to perform  those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the  battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they  enter the atmosphere.

       No.  4 Battery - Maintenance Plan* -  Steel work bent and warped
       and  allowed brick work to crack and  leak and stacks to smoke.
       As a  result, the maintenance plan was an effort to perform  those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the  battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they  enter the atmosphere.

                               A-6-2

-------
       No. 5 Battery - Maintenance Plan* - Steel work bent and warped
       and allowed brick work to crack and leak and stacks to smoke.
       As a result, the maintenance plan was an effort to perform those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they enter the atmosphere.

       No. 6 Battery - Maintenance Plan* - Steel work bent and warped
       and allowed brick work to crack and leak and stacks to smoke.
       As a result, the maintenance plan was an effort to perform those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they enter the atmosphere.

       No. 7 Battery - Maintenance Plan* - Steel work bent and warped
       and allowed brick work to crack and leak and stacks to smoke.
       As a result, the maintenance plan was an effort to perform those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they enter the atmosphere.

       No. 8 Battery - Maintenance Plan* - Steel work bent and warped
       and allowed brick work to crack and leak and stacks to smoke.
       As a result, the maintenance plan was an effort to perform those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they enter the atmosphere.

       No. 9 Battery - Maintenance Plan* - Steel work bent and warped
       and allowed brick work to crack and leak and stacks to smoke.
       As a result, the maintenance plan was an effort to perform those
       things to minimize leaks to tops, doors and stacks through
       straightening and tightening the battery.  Quench station in-
       stalled baffles to eliminate particles from quenching before
       they enter the atmosphere.
3.  Wire Mill
       Cement Coater and Degreaser - Vapor Recovery Units Hauling
       Debris to Approved In-Plant Dump
4.  Sheet Mill
       Galvanizing Line No. 4 - Acid System - Scrubber System
       Galvanizing Line No. 4 - Alkali System - Scrubber System
       Galvanizing Line No. 4 - Zinc Dross Collector Pot - Fume System
       Hauling Debris to Approved In-Plant Dump
                               A-6-3

-------
5.  Tin Mill

       Pickle Line No. 3 - Fume Scrubber System
       Pickle Line No. 4 - Fume Scrubber System
       Electrolytic Tinning Line No. 1 - Fume Scrubber System
       Electrolytic Tinning Line No. 3 - Fume Scrubber System
       Electrolytic Tinning Line No. 4 - Fume Scrubber System
       C. A. Line - Furnace & Cleaning Sect. - Scrubber System
       Shot Blasting - Dust Collector
       Carpenter Shop Cyclone Collector
       Landfill Disposal Operation

6.  Electrical & Utilities

       Electrical Repair Shop Degreaser - Vapor Recovery Unit
       Fairfield Blast Furnace Steam Plant - Oil Burning Facilities
       Steam Line to Coke Works from Blast Furnace Steam Plant
       (Include Coke Oven Gas Line to BF Steam Plant and Water
       Treatment at BF Steam Plant)
       Steam Line to Shops Steam Plant from Blast Furnace Steam
       Plant (Proposed)

7-  Shops & Construction

       Ensley Carpenter Shop Cyclone Collector
       Landfill Disposal Operation

8.  Transportation & Material Handling

       Trucks and Other Equipment Used for Dust Control Landfill
       Disposal Operations
* See Table 3-1-  in the Environmental Impact Statement - Existing
Coke Batteries Maintenance Plan - For the Coke Oven Emission Control
Equipment see page A-6-5.
                               A-6-4

-------
 SUCTION
   MAIN
AUTOMATIC
 PRESSURE
 CONTROL
                           BY-PASS PIPE

0^
TRAVELING COAL HOPPERS (LARRY CAR)
V 1 /
^. 1 J
Z
k )
^
                                                                  HOPPER
                                                                  GATES
COLLECTOR,
  MAIN
  COMBUSTION
   CONTROL""3
   STEAM,
ASPIRATOR
      OVEN_
      DOOR"
       FUEL AND
	1  AIR IN?
      	*
                                          COMBUSTION AND
                                           REGENERATOR
                                            CHAMBERS
                        COKE OVEN EMISSION CONTROL EQUIPMENT
       Larry Boots - sleeves which provide a  seal  to  prevent  leakage  of  gas
                     and dust between the larry  hoppers and oven  charging
                     openings.
       Hopper Gates - shut-off valves which prevent escape of dust  and gas
                      through the hoppers.
       Self-Sealing Doors - door jamb castings are machined to provide a
                            flat seat for door seals.
       Steam Aspirator - Increased steam injected  into the gas line prevents
                         leakage by drawing gas  out of the oven during charging
       By-Pass Pipe - allows the aspirator to draw gas from the far end  of
                      the oven in case of a blockage  in the oven.
       Automatic Pressure Controller - controls  pressure  in oven  and  prevents
                                       over-pressure  which would  force gas
                                       out to the  atmosphere.
       Stage Charging - coal is charged sequentially.
       Combustion Control of the oven heating system  maintains proper air-fuel
       ratio to prevent stack from smoking.
       Wet Seal Stanpipe Lids, Charging Hole  Lids
       All items of maintenance are submitted in quarterly reports.
                                       A-6-5

-------
APPENDIX B
 BIOLOGY

-------
        APPENDIX B-1
PERIPHYTON DIVERSITY INDICES

-------
                 4(«J SIC>5J.;(»J)  hCl'llUSM SHANNON
  
-------
STAFIuN  :  HE-IKSS.-M  <4

                dUMBEH   1

           INDICES
          blf-lHSOuCA)  SIMPSGNCH) MClNTOSH SHANNON  M
  1.4144<»      .704172     3.3rt034   .'455965     2.33rtbb     .186956
      MCINTU8H        PlELdU       SHELDON     riEIP
                                                  .780531
           I,\IUtX A-gn  NUMdER OF IMPORTANCE VALUES (SPECIES)


          lAi-iCE       WJMbER UF IMPORTANCE
VALUES(SPECIESJ
                                       13
PKObkAM  CALUULATE6 SIX  OIVtKSiTY INDICES.
       Vt^.JF.SS INDICES,
    Out  UJMiiMANCE !
-------
        CALCULATES SIX DIVERSITY  INDICES.
FUUk fcVtN^F-'SS INDICES,
AMD ONE DOMINANCE
STATIuM : VALLEY  '<

QUAbKAT/SAMPLE .NIHBER   1

DIVERSITY i<\iDicfcs
         SlMHSilftU)  SIMPSUNU)  MCINTUbH SHANNON
 1.64354       .669171     7.64357  .62917      3.0046*7      . / i

EVENMtSo
     MCINfUSH        PiELOU        SHELUUN     nEIP
        .395041       ,       .594636

                 AND  NuMdtM OF iMHUMIAlMCb VALUtS (SHtc US)
                            B-l-3

-------
PKObKAM CALCULATES  SIX DIVERSITY  INDICES.
FuUk  tVtfciiESS I.'jOICtS,
MtO Oi'.E DOMINANCE  IiJUtX.
SIAlluN  :  VALLtr  7
ONLY  LINE  VALUE(SPECIE3)  iftl SAMPLE (QUAQRATJ  NUM6EK 1
         CALCULAff-IS  SIX DIVERSITY  INDICES.
FUUK  tVh^'JtSS li\IJlCtS,
AND OivF  :';JMIN4I\ICE  I;MDEX.
StAIIuN  :  VALLfcY H
QUAORAT/SAMPLE NU

OlVtRSIFY  INDICES
          SIMPSUN(A) SIMHSUN16) MCIN1USH SHANNON
                           4.70651   .536166     g
                          B-l-4

-------
     MCiNTusH   .     PIELOU       SHELDON     neiP
         .468477       .7S366       1.2667      1.28575

DOMINANCE  IrtOEX  AiMD NUMbEK OF IMPORTANCE VALUES CSPECIES)


                     NUMUEK OF
                                     IS
         CALCULATtS SIX OIVEKSITY INDICES.
      EVtNi>i£SS  INDICES,
 AM)  O^t  OUMINAMCE
STATION  :  VALLEY  «»

RUAOftAT/SAMPLS  MUMfltR  1

OIVt»aItY  I:\iUICES
MAM£AlEV  SlMPSUiM(A)  SIMPSUN(S) MCINTOSH SHANNON MgNHINICK
  1.47«77       .681657     3.14127  .435734     2.09?94     .123811

EVEi\NtSS  IMUICES
                     PIELUU       SHELDON
                                   .579193     .546824
DOMINANCE  i^ocx  AND  Nui«dE* OF IMPORTANCE VALOESISHECIES)


                     NOMaEK OF IMPORTANCE
VALl>E&(bPECl£S)
         .31639S                      14
PKObftAM CALCULATES  SIX  UlVERSITY
FOUM cVtN^tJJS  INDICES,
AND ONE DOMINANCE  INDEX.
STATION  :  VALLEY  10

QUAuRAT/SAMfLt

DIVERSITY  INDICES
MARi>ALE
-------
                     PItUiJU        SHcLoUiJ     H
                      .444?97       .3ttdu62

DOMINANCE  InOtX  A.MO NuMtiErt UF  IMPORTANCE VALUESCSPECIES)
     UUttlNAiMCt       NUMbEK UF IMPORTANCE
VALUES(5PtCIfcS-3
                                      14
        CALCULATES SIX DIVERSITY  INDICES.
FUUK tVti'li^EiS  INDICES,
AND UN£ OUMINANCt ItM
STATION  :  VALL&Y  11
           INOICES
MARbALEv  SIMPSO.MlA)  S Ih^SUlM IB J MCINfOSH  ShAt\jNUN MtNHlNICK
 l.^OebS*       .79<43bl    4.86029   .54b3b3     g.b4313      .137862

EVENMtSS  IiMOICES
                     HiELOU       SHELUUU
         .454048       .611562       .7U2854     .6S7214
DOMINANCE  IwDEX  AND NUMbErt UF IMPUNTANCE.  VALUES(SPECIES)


     uO>I.JAivCE       NUMbEk UF IHPUHTANCE

                                      20
        CALCULATES six DIVERSITY  INDICES.
FUUK tVhMriESS  l.\DICcS,
AND UNE DOMINANCE
STATION  :  VILLAGE
           INOICES
MAKbAt_Ev SIMPSON (A)  SIMPSUN(O) MC1NTOSH  SHANNON MENHIMCK
               .7614Ub    4.1V124   .507411      ?.4747       .656392

         INDICES
                         B-l-6

-------
DOMINANCE  INDEX  A4l>  NUMiiEK UF IMPORTANCE VALUESISPtCIES)
                     NUMbEtf OF IMPORTANCE

         .242643                      9
RKObRAM C4LCULAIES  SIX DlVEHSITY INDICES.
FOUK bVENNEbS  I4DIC£S,
AMI OuE DOMINANCE  li\)Ot:X.
STATION  :  y/llL*f.E  3

UUAUWAl/SAMPLE
          3I.'lPttON(A)  SIMHSOW(B) MCINTOSH SHANNON  MEMHIMCK
               .B6619«    /.58634  .630*36

          INDICES
     MC IN TUSH        PIELO'J  •     SHELDON     HE IP
                      .A4bi69      1.79343      1.85446
OuMlMA.MCE  i;a»EX  AND  NlJMiiEK OF I,-lPu« T A.MCE VALUES (SPECIES)
     uOMl^Ai\iCE       M
-------
      DUril *A.\lCt
VALUES (SPECIES)
                     NUNaEK OF I.MPuRIAMCE
                                       10
PKfJGHAM  C^CULATES 6IX  DIVERSITY INDICES,
FUUK  LVhN'MtSS I'MUICtS,
AIM I) G.\6  OuMlNANCE INDEX.
STATIUM  :  VILLAGE f>
PROGRAM  CALCULATES SIX  DIVERSITY INDICES.
FUUK  EVtiNMESS INDICES,
AUO Ol-iE  DOMINANCE I.«DtX.
STA1IUN  :  VILLAGE

UUM^RAT/SAMPLE NU
DlVtRSIlY  IixOICES
          SINiPSCnMlA) SIMPSUN(B) MCINTOSH  SHANNON MENHlMCK
                           a.25571  .334137      1 .5066       8,bl09l£-2
EVENN'tSi
                     PIELUU
                                   SHELDON
                                     .bb4036
                                                HEIP
                                                 .501755
OUMI\A'.'CE  I.^DEX AM) NUMBEW  IjF ,-IMPUH 1 ANCE  VALUES (SPEC 1ES )
VALUESCbPECIES)
                     NUNdEW  UF IMPORTANCE

                                       6
PRflbKAM  CALCULAIES BIX  UlVERSITY INDICES.
FUUk  tVtNNESS IN
AND QME  UUMtNANCE
STATION  ;  VILLAGE 7

QUAuWAT/SAMPLE NU.-icJER

DIVtRoIlY  INDICES


 1.45351       .7149o3

EVENNESS  UUICES.
                           ,,.-j th ) ,-ICilM IHbh
                           5.50830   .46577
                                                   i\iti>lll ti>:IC.K
                                                 2/27450      .272798
PIELDU
 .6i4466
                                   SHELDON
                                    .610264
                                                HEIP
                                                 .793037
         .5372tl3

DOMINANCE  IiMUEX A .Ml) NUMriEri  OF iMPORTANCt  VALUES ( SPEC I ES)
VALuEb(SPSCItS)
                             UF  IMPCJKTANCE

                              B-l-8  12

-------
            APPENDIX B-2
MACRO-INVERTEBRATE DIVERSITY INDICES

-------
  PROGRAM CALCULATES SIX DIVERSITY INDICES.
  FOUK EVEMNESS INDICES,
  AND ONE DOMINANCE INDEX.
  STATION : OPOSSUM CREEK 1
  ONLY ONE VALUE(SPECIES) IN SAMPLE(QUADRAT) NUMBER 1
  PROGRAM CALCULATES SIX DIVERSITY INDICES.
  FOUK EVENNESS INDICES,
  AND ONE DOMINANCE INDEX.
          : OPOSSUM CREEK 2

  OUAURAT/SAMPLE NUMBER  1

  DIVERSITY INDICES
  MARGALEV SIMPSOM(A) SIMPSONCB) MCIMTOSH SHANNON MENHINICK
   .779141       .20074      1.25116   .103601      .634755      .53346

  F.VENNtSS INDICES
                      PIELOU       SHELDON     HEIP
          .9S6776       .317378       .47164       .29552

  DOMINANCE INDEX AND NUMBER OF  IMPORTANCE VALUES(SPECIES)
       DOMINANCE      NUMBER OF  IMPORTANCE
  VALUES(SPECIES)
          .80353                       «
  PROGRAM CALCULATES SIX DIVERSITY  INDICES.
  FOUR EVENNESS  IIJOICES,
  A.\0 ONE DOMINANCE  INDEX.

  STATION :  OPOSSUM CREEK 3

  QUADRAT/SAMPLE'NUMBER  1

  DIVERSITY INDICES
  MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH  SHANNON  MENMINICK
   1.01887       .508772    2.03571   .280274      1.295        .917663
     MCIMTOSH       PIELOU       SHELDON     HEIP
         .849711       .647499      .912746     .88366?

DOMINANCE INDEX AND NUMBES OF IMPORTANCE VALUES(SPECIES)


     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
         .518004                     4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.         B  2 1

-------
STATION : OPOSSUM CHEEK  4

QUADRAT/SAMPLE NUMBER'  1

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH  SHANNON MENHINICK
 .613656      .48         1.93308   .366201      1.14012     .568348

EVENNESS INDICES
     MCINTOSH       PIELOU        SHELDON      HEIP
        .793573       .719334       1.04238      1.06357

DOMINANCE I^I)EX AND NUMBER OF  IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE.
VALUES(SPECIES)
        ,538«M                     3
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVEN.MESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VILLAGE CSEEK 1

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
 .52566       5.22923E-2 1.05518  2.6408E-2    .211451      .230556

EVENNESS INDICES
                      PIEL'JU       SHELDON     HEIR
          .963377       .105725      .308P67     7.84897E-2

  DOMINANCE  INDEX  AMD NU^UER OF IMPORTANCE VALUES (SPECIES)
       DOMINANCE       NUMBER OF IMPORTANCE
  VALUES(SPECIES)
          .947879                      4
  PROGRAM  CALCULATES SIX DIVERSITY INDICES.
  FOUR  EVENNESS  INDICES,
  AND  ONE  DOMINANCE INDEX.
  STATION  :  VILLAGE CREEK 2
  ONLY  UME  VALUE(SPECIES) IN SAMPLE(QUADRAT) NUMBER 1
  PROGRAM  CALCULATES SIX DIVERSITY INDICES.
  FOUR  EVENNESS  INDICES,
  AND ONE  DOMINANCE  INDEX.
                              B-2-2

-------
STATION : VILLAGE CHEEK 3

QUADRAT/SAMPLE NUMBER  i

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHlNICK
 1.33/73      .3054S1*    1.4398   ,16?257     1.0007

EVENNESS INDICES
     HCINTUSH       PIELOU       SHELDON     HEIP
                     .3tt«673      .455163     .34623
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES (SPEC IES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
        .701A13                     6
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND OivE DOMINANCE INDEX.
                            B-2-3

-------
STATION : VILLAGE CREEK

QUADRAT/SAMPLE NUMBER   \

        Y I un ICES
MARbALEV SIMPSON(A) SIMPSON(B) MCINTHSH  SHANNON  MENHINICK
 .686586      7.49757E-2 1.08105  3.77249E-2   .293118      .450035

EVENNESS INDICES
     MCINTOSH       PIELOU       SHELDON      HEIP
        1            .146559       .33515       .113534

DOMINANCE INDEX AND NUMBER OF IMPORTANCE  VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
        .925971                     4
PROGRAM CALCULATES six DIVERSITY INDICES.
FOUR EVENNESS INDICES,
ANn Or;E DOMINANCE INDEX.
STATION : VJLLAGE CREEK 4

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV S IMPSniM(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
 1.33773      .305459    1.4398   .162257      1.0047       .92583

         INDICES
     MCINTOSH       PIELOU       SHELDON     HEIP
        .949221      .388673      .^55183      .34622

DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUE5CSPECIES)
        .70181?                     6
        CALCULATES six DIVERSITY INDICES.
        NMEss INDICES,
AND OME DOMINANCE INDEX.
                             B-2-4

-------
ST*iiUN : VILL-GE ..KfctiK 5

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
 MARGALEV  SIMPSON(A)  SIMPSONCB)  MCINTOSH SHANNON MENHINICK
   .hBf»S86       7.49757E-2  1,03105  3.77249E-2  .29311«     .450035

 EVENNtSS  INDICES
       MCINTOSH        PIELOU       SHELDON     HEIP
          1             .146559      .33S15      .113534

  DOMINANCE  INDEX  AND NUMBER OF  IMPORTANCE VALUES(SPECIES)


                      NUMBER OF  IMPORTANCE
  VALUES(SPECIES)
          .925971                      4
  PROGRAM CALCULATES SIX DIVERSITY INDICES.
  FOUH  EVENNESS INDICES,
  ANO ONE DOMINANCE INDEX.
  STATION : VILLAGE CREEK 6

  OUADRAT/SAMPLE NUMBER  i

  DIVERSITY INDICES
  MARGALEV SIMPSON(A) SIMPSONC8) MCINTOSH SHANNON MENHINICK
   .810699      .131547    1.15147  6.79438E-2   .458666      .274721

  EVENNESS INDICES
       MCINTUSH       PIELLU       SHELDON     HEIP
          .941919      .177436      .26366      .116393

  DOMINANCE INDEX AND NUM3ER OF IMPORTANCE VAUJES(SPECIES)
       DOMIMANCE      NUMBER UF IMPORTANCE
  VALUES(SPECIES)
          .864729                     6
  PROGRAM CALCULATES SIX DIVERSITY INDICES.
  FOUR EVENNESS INDICES,
  AND ONE DOMINANCE INDEX.
                          B-2-5

-------
STATION :  VILLAGE CREEK 7

QUADRAT/SAMPLE NUMBER   1

DIVERSITY  INDICES
 'A-.j-L-V  oi .rSi'-.(«J  M'• !' i JH li. J   .Cli. i UiH OJtAi'.'.vJi"   L.MI
  .70853d       .491049    1.96082  .281621      1.2220

EVENNESS  INDICES
      MCINTDSH        PIELOU       SHELDON     HEIP
         .750770       .611201      .308633     .798000

DOMINANCE  INDEX  AND  NUMoER OF IMPORTANCE VALUES (SPEC IES)
      DOMINANCE       NUMSER OF IMPORTANCE
VALUES(SPECIES)
         .516068                      0
PROGRAM CALCULATES  SIX  DIVERSITY INDICES.
FOUR EVENNESS  INDICES,
AND OME DOMINANCE  INDEX.
 STATION  :  VALLEY  CREEK 1

 QUADRAT/SAMPLE  NUMBER  1

 DIVERSITY  INDICES
MARGALEV  SIMPSOiM(A)  SIMPSON(B)  MCINTOSH SHANNON MENHINICK
  .70010B       .30031      1.51586  .186818     .870867      .300207

EVENNESS  INDICES
      MCINTOSH        PIELOU       SHELDON     HEIP
         .526089       .376785      .079711      .309639

DOMINANCE  INDEX  AND NUMBER OF IMPORTANCE VALUES(SPECIES)


      DOiwIMANCE       NUM8ER OF IMPORTANCE
VALUES(SPECIES)
         .661260                      5
 PROGRAM  CALCULATES SIX DIVERSITY INDICES.
 FOUK  EVENNESS  INDICES,
    ONE  ^''INANCE INDEX.
 STATION  :  VALLEY  CREEK 2
 ONLY  ONE  VALUECSPECIES)  IN SAMPLECQUAORAT) NUMBER  i
PROGRAM  CALCULATES SIX DIVERSITY INDICES.
FOUR  EVENNESS  INDICES,
AND ONE  DOMINANCE  INDEX.
                                B-2-6

-------
STATION : VALLEY CREEK 3

QUADRAT/SAMPLE NUMBER  i

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSQN(B) MC1NTOSH SHANNON MENHINICK
 .843799      .347899    1.53351  .186341     .951695     .676123

EVENNESS INDICES
     MCINTOSH       PIELOU       SHELDON     HEIP
        .888639      .475848      .647524     .530032

DOMINANCE INOEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECtES)
        .662041                     4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND DIME DOMINANCE INDEX.
STATION ! VALLEY CREEK 4

QUADRAT/SAMPLE NUMBER  i

DIVERSITY JUOICES
MARGALFV SIMPSON(A) SIMPSQM(B) MCINTOSH SHANNON MENHINICK
 .360674      5.35846E-2 1.05662  2.70535E-2  .19707      .1875

EVENNESS INDICES
                    PIELOU       SHELDON     HEIP
        .96U593      .124337      .405943     .108914

DOMINANCE INDEX AMD NUMBER OF IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUEb(SPECIES)
        .946624                     3
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AMD ONE DOMINANCE INOEX.
                            B-2-7

-------
STATION : VALLEY CREEK 5

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSOIM(A) SIMPSON(B) MCINTOSH  SHANNON MENHINICK
 1.07679      .356741     1.55458   .197834      .850459     .219251

EVENNESS INDICES
     MCINTOSH       PIELOU       SHELDON      HEIP
        .805992      .26829        .26008       .16759

DOMINANCE INDEX AND NUM6ER OF IMPORTANCE  VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
        .643469                     9
PROGRAM CALCULATES SIX DIVERSITY INDICES,
FOUR EVENNESS INDICES,
AND O.Mf. DOMINANCE INDEX.
STATION : VALLEY CREEK 6

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(R) MCINTOSH  SHANNON  MENHTNICK
 .920992      .331755     1.49646   .182237      .987451      .26943

EVENNESS INDICES
     MCIMinSH       PIELOU        SHELDON      HEIP
        .825092       .351737       .383483      .280731

DOMINANCE INDEX AND NUMBER OF  IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF  IMPORTANCE
VALUES(SPECIES)
        .668736                      7
PROGRAM CALCULATES SIX DIVERSITY  INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
                          B-2-8

-------
STATION : VALLEY CREEK 7

OUAURAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
 .516784       .130128     1.14959  6.71205E-2   .398776      .219529

EVENNESS INDICES
     MCINTOSH       PIELOU       SHELDON     HEIP
         .941373       .199388       .3725        .163333

DOMINANCE  INDEX  AND NUMBER OF  IMPORTANCE  VALUES(SPECIES)
     DOMINANCE      NUMBER OF  IMPORTANCE
VALUES(SPECIES)
         .87026                       4
PROGRAM CALCULATES  SIX  DIVERSITY  INDICES.
FOUR EVENNESS  INDICES/
Af40 ONE DOMINANCE  INDEX.
STATION : VALLEY CREEK 8

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(R) MCINTOSH SHANNON MENHINICK
 2.05612      .512169    2.04989  .301146     1.71493     .498617

EVENNESS INDICES
     MCINTOSH       PIELOU       SHELDON     HEIP
        .709829      .43H95       .370018     .3P5448

DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES (SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUF.S(SPECIES)
        .488396                     15
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUk EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
                         B-2-9

-------
STATION : VALLEY CREEK 9

QUADRAT/SAMPLE .NUMBER  l

DIVERSITY INDICES
MARGALEV SIMPSONU) SIMPSON(B) MCINTOSH  SHANNON  MENHIMCK
 1.0052       .4624U2    1.86013   .266679      1.17424      .16829

EVFN.NESS INDICES
     MCINTOSH       PIELOU       SHELDON      HEIP
        .735378      .370432       .359521      .279161

DOMINANCE INDEX AND NUMBER OF IMPORTANCE  VALUEStSPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
        .537759                     9
PROGRAM CALCULATES SIX DIVERSITY  INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VALLEY CREEK
ONLY ONE VALUE(SPECIES) IN SAMPLE(OUADRAT)  NUMBER  1
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR tVENNESS INDICES,
AND DNE DOMINANCE INDEX.

STATION  :  VALLEY  CREEK  10

QUADRAT/SAMPLE  NUMBER   i

DIVERSITY  INDICES
MARGALF.V  SIMPSON(A)  SIMPSONC8)  MCINTOSH SHANNON MENHINICK
  1.U2557       .606991     2.54447   .372571      1.67642     .263609

EVENNESS  INDICES
     hCINTOSH        PIELOU        SHELDON     HEIP
         .632232       .558806       .668296     .62091

DOMINANCE  INDEX  AND  NUMBER  OF  IMPORTANCE VALUES(SPECIES)
       Ln - ' I i •' l_i_       '.''I' .tS  I.I-  1 .
 VALUESfSPECIES)
          .393667
 PROGRAM CALCULATES  SIX  DIVERSITY  INDICES.
 FOUR EVENNESS  INDICES,
 AND ONE DOMINANCE  INDEX.
                            B-2-10

-------
STATION : VALLEY CREEK 11

QUADRAT/SAMPLE NUMBER  1

DIVERSITY INDICES
MARGALEV SIMPSHN(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
 1.35653      .226482    1.29313  .120576     .801507     .208138

EVENNESS VOICES
     MCINTOSH       PIELOU       SHELDON     HEIP
        .992344      .223586      .185749     .11172*

DOMINANCE INOEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
     DOMINANCE      NUMBER OF IMPORTANCE
VALUES(SPECIES)
        .77338ft                     12
                         B-2-11

-------
            APPENDIX B-3
BIRDS OF THE BLACK WARRIOR RIVER BASIN

-------
                             TABLE B-l

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
    IDENTIFIED BY AWARE PERSONNEL DURING FIELD INVESTIGATIONS
Category
Name
     Status
Rare or Endangered
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Heron, Green
Heron, Black-crowned Night
Duck, Mallard
Duck, Wood
Duck, Common Goldeneye
Merganser, Hooded
Vulture, Turkey
Hawk, Red-shouldered
Hawk, Broad-winged
Hawk, Sparrow
Bobwhite
Turkey
Coot, American
Kill deer
Snipe, Common
Dove, Mourning
Cuckoo, Yellow-billed
Nighthawk, Common
Hummingbird, Ruby-throated
Flicker, Yellow-shafted
Woodpecker, Pileated
Woodpecker, Red-headed
Woodpecker, Downy
Phoebe, Eastern
Swallow, Cliff
Jay, Blue
Crow, Common
Wren, House
Mockingbird
Catbird
Robin
Shrike, Loggerhead
Vireo, Red-eyed
Meadow!ark, Eastern
Blackbird, Red-winged
Grackle, Common
Cardinal
Bunting, Indigo
Goldfinch, American
 C-Current
 A-Accidental
 E-Exti rpated
   X-Extinct
   I-Introduced
   H-Hypothetical
                               B-3-1

-------
                        TABLE B-l  (cont'd)

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
    IDENTIFIED BY AWARE PERSONNEL DURING FIELD INVESTIGATIONS
                                             Status
Category            Name               Rare or Endangered
C                   Sparrow, Field
C                   Sparrow, Song
                              B-3-2

-------
                             TABLE B-2

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category                         Name
C                                Loon, Common
C                                Loon, Red-throated
A, H                             Grebe, Red-necked
C                                Grebe, Horned
C                                Grebe, Eared
C                                Grebe, Pied-billed
A                                Shearwater, Greater
E                                Shearwater, Sooty
A, H                             Petrel, Wilson's
A, H                             Tropicbird, White-tailed
C                                Pelican, White
C                                Pelican, Brown
H                                Booby, Brown
C                                Gannet
C                                Cormorant, Double-crested
C                                Anhinga
C                                Frigatebird, Magnificent
C                                Heron, Great White
C                                Heron, Great Blue
C                                Heron, Green
C                                Heron, Little Blue
C                                Egret, Cattle
C                                Egret, Reddish
C                                Egret, Common
C                                Egret, Snowy
C                                Heron, Louisiana
C                                Heron, Black-crowned Night
C                                Heron, Yellow-crowned Night
C                                Bittern, Least
C                                Bittern, American
C                                Ibis, Wood
C                                Ibis, Glossy
C                                Ibis, White-faced
C                                Ibis, White
A                                Ibis, Scarlet
A                                Spoonbill, Roseate
E                                Flamingo, American
I                                Swan, Mute
                               B-3-3

-------
                         TABLE B-2 (cont'd:)




              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
Name
c
c
A
A, H
C
C
C
C
C
C
C
C
C
A
C
C
A
A, H
C
C
C
C
C
C
C
C
C
C
C
A, H
A, H
C
C
C
C
C
C
C
Swan,
Goose,
Brant
Goose,
Goose,
Goose,
Goose,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Eider,
Scoter
Scoter
Scoter
Duck,
Whistling
Canada

Barnacle
White-fronted
Snow
Blue
Fulvous Tree
Mallard
Black
Mottled
Gadwall
Pintail
Bahama
Green-winged Teal
Blue-winged Teal
Cinnamon Teal
European Widgeon
Widgeon, American
Shoveler
Wood
Redhead
Ring-necked
Canvasback
Greater Scaup
Lesser Scaup
Common Goldeneye
Bufflehead
Oldsquaw
Harlequin
King
, White-winged
, Surf
, Common
Ruddy
Merganser, Hooded
Merganser, Common
Merganser, Red-breasted
                               B-3-4

-------
           TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN

Category
C
C
A, H
C
C
C
C
C
C
C
C
C
A, H
C
C
C
C
C
C
C
C
C
C
I
C
E
C
C
C
C
C
C
A
C
C
C
C
Name
Vulture, Turkey
Vulture, Black
Kite, White-tailed
Kite, Swallow-tailed
Kite, Mississippi
Hawk, Sharp-shinned
Hawk, Cooper's
Hawk, Red -tailed
Hawk, Harlan's
Hawk, Red-shouldered
Hawk, Broad-winged
Hawk, Swainson's
Hawk, Short-tailed
Hawk, Rough-legged
Eagle, Golden
Eagle, Bald
Hawk, Marsh
Osprey
Falcon, Peregrine
Hawk, Pigeon
Hawk, Sparrow
Grouse, Ruffed
Bobwhite
Pheasant, Ring-necked
Turkey
Crane, Whooping
Crane, Sandhill
Rail, King
Rail , Clapper
Rail , Virginia
Sora
Rail , Yellow
Rail , Black
Gallinule, Purple
Gallinule, Common
Coot, American
Oystercatcher, American
                 B-3-5

-------
                        TABLE  B-2  (cont'd)

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category                         Name
C                                Plover, Semi palmated
C                                Plover, Piping
C                                Plover, Snowy
C                                Plover, Wilson's
C                                Kill deer
C                                Plover, American Golden
C                                Plover, Black-bellied
C                                Turnstone, Ruddy
E                                Woodcock, European
C                                Woodcock, American
C                                Snipe, Common
C                                Curlew, Long-billed
C                                Whimbrel
C                                Plover, Upland
C                                Sandpiper, Spotted
C                                Sandpiper, Solitary
C                                Willet
C                                Yell owlegs, Greater
C                                Yellowlegs, Lesser
C                                Knot
C                                Sandpiper, Pectoral
C                                Sandpiper, White-rumped
C                                Sandpiper, Baird's
C                                Sandpiper, Least
C                                Dunlin
C                                Dowitcher, Short-billed
C                                Dowitcher, Long-billed
C                                Sandpiper, Stilt
C                                Sandpiper, Semipalmated
C                                Sandpiper, Western
C                                Sandpiper, Buff-breasted
C                                Godwit, Marbler
C                                Sander!ing
C                                Avocet, American
C                                Stilt, Black-necked
C                                Phalarope, Red
                               B-3-6

-------
          TABLE B-2  (cont'd)



BIRDS OF THE BLACK WARRIOR RIVER BASIN

Category
C
C
A, H
H
H
C
C
C
A, H
C
A, H
C
C
C
H
C
A
C
C
C
C
C
C
I
C
C
X
C
X
C
C
A, H
C
C
C
A, H
C
C
Name
Phalarope, Wilson's
Phalarope, Northern
Jaeger, Pomarine
Jaeger, Parasitic
Gull, Great Black-backed
Gull , Herring
Gull, Ring-billed
Gull , Laughing
Gull , Franklin's
Gull , Bonaparte's
Gull , Sabine's
Tern, Gull -billed
Tern, Forster's
Tern, Common
Tern, Roseate
Tern, Sooty
Tern, Bridled
Tern, Least
Tern, Royal
Tern, Sandwich
Tern, Caspian
Tern, Black
Skimmer, Black
Dove, Rock
Dove, White-winged
Dove, Mourning
Pigeon, Passenger
Dove, Ground
Parakeet, Carolina
Cuckoo, Yellow-billed
Cuckoo, Black-billed
Ani, Smooth-billed
Owl , Barn
Owl , Screech
Owl , Great Horned
Owl , Snowy
Owl , Burrowing
Owl , Barred
                 B-3-7

-------
                        TABLE  B-2  (cont'd)

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category                         Name
C                                Owl,  Long-eared
C                                Owl,  Short-eared
A                                Owl,  Saw-whet
A                                Chuck-will's-widow
C                                Whip-poor-will
C                                Nighthawk,  Common
C                                Swift, Chimney
C                                Hummingbird, Ruby-throated
A, H                             Hummingbird, Rufous
C                                Kingfisher,  Belted
C                                Flicker, Yellow-shafted
C                                Woodpecker,  Pileated
C                                Woodpecker,  Red-bellied
C                                Woodpecker,  Red-headed
C                                Sapsucker,  Yellow-bellied
C                                Woodpecker,  Hairy
C                                Woodpecker,  Downy
C                                Woodpecker,  Red-cockaded
X                                Woodpecker,  Ivory-billed
C                                Kingbird, Eastern
C                                Kingbird, Gray
A, H                             Kingbird, Tropical
C                                Kingbird, Western
C                                Flycatcher,  Scissor-tailed
C                                Flycatcher,  Great Crested
C                                Flycatcher,  Ash-throated
A                                Flycatcher,  Stolid
C                                Phoebe,  Eastern
A                                Phoebe,  Say's
C                                Flycatcher,  Yellow-bellied
C                                Flycatcher,  Acadian
C                                Flycatcher,  Traill's
C                                Flycatcher,  Least
C                                Pewee, Eastern  Wood
C                                Flycatcher,  Olive-sided
C                                Flycatcher,  Vermilion
C                                Lark,  Horned
C                                Swallow, Tree
                               B-3-8

-------
                        TABLE  B-2  (cont'd)

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category                         Name
C                                Swallow, Bank
C                                Swallow, Rough-winged
C                                Swallow, Barn
C                                Swallow, Cliff
C                                Martin, Purple
C                                Jay, Blue
X                                Raven, Common
C                                Crow, Common
C                                Grow, Fish
C                                Chickadee, Carolina
C                                Titmouse, Tufted
C                                Nuthatch, White-breasted
C                                Nuthatch, Red-breasted
C                                Nuthatch, Brown-headed
C                                Creeper, Brown
C                                Wren, House
C                                Wren, Winter
C                                Wren, Bewick's
C                                Wren, Carolina
C                                Wren, Long-billed Marsh
C                                Wren, Short-billed Marsh
A, H                             Wren, Rock
C                                Mockingbird
C                                Catbird
C                                Thrasher, Brown
A                                Thrasher, Sage
C                                Robin
C                                Thrush, Wood
C                                Thrush, Hermit
C                                Thrush, Swainson's
C                                Thrush, Gray-cheeked
C                                Veery
C                                Bluebird, Eastern
C                                Gnatcatcher, Blue-gray
C                                Kinglet, Golden-crowned
C                                Kinglet, Ruby-crowned
C                                Pipit, Water
                               B-3-9

-------
          TABLE  B-2  (cont'd)



BIRDS OF THE BLACK WARRIOR RIVER BASIN

Category
C
C
C
I
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Name
Pipit, Sprague's
Waxwing, Cedar
Shrike, Loggerhead
Starling
Vireo, White-eyed
Vireo, Bell 's
Vireo, Yellow-throated
Vireo, Solitary
Vireo, Black-whiskered
Vireo, Red-eyed
Vireo, Philadelphia
Vireo, Warblin













Warbler, Black and white
Warbler, Prothonotary
Warbler, Swainson's
Warbler, Worm-eating
Warbler, Golden-winged
Warbler, Lawrence's
Warbler, Brewster's
Warbler, Blue-winged
Warbler, Bachman's
Warbler, Tennessee
Warbler, Orange-crowned
Warbler, Nashville
Warbler, Parula
Warbler, Yellow
Warbler, Magnolia
Warbler, Cape May
Warbler, Black-throated
Warbler, Myrtle
Warbler, Audubon's
Warbler, Black-throated
Warbler, Black-throated
Warbler, Cerulean
Warbler, Blackburnian
Warbler, Yellow-throated
Warbler, Chestnut-sided















Blue


Gray
Green




                 B-3-10

-------
                        TABLE  B-2 (cont'd)

              BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
Name
C
C
C
H
C
C
C
C
C
C
C
C
C
C
C
C
C
C
I
C
C
C
H
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Warbler, Bay-breasted
Warbler, Blackpoll
Warbler, Pine
Warbler, Kirtland's
Warbler, Prairie
Warbler, Palm
Ovenbird
Waterthrush, Northern
Waterthrush, Louisiana
Warber, Kentucky
Warbler, Connecticut
Warbler, Mourning
Yellowthroat
Chat, Yellow-breasted
Warbler, Hooded
Warbler, Wilson's
Warbler, Canada
Redstart, American
Sparrow, House
Bobolink
Meadow!ark, Eastern
Meadowlark, Western
Blackbird, Yellow-headed
Blackbird, Red-winged
Oriole, Orchard
Oriole, Baltimore
Oriole, Bullock's
Blackbird, Rusty
Blackbird, Brewer's
Grackle, Boat-tailed
Grackle, Common
Cowbird, Brown-headed
Tanager, Western
Tanager, Scarlet
Tanager, Summer
Cardinal
Grosbeak, Rose-breasted
                                 B-3-11

-------
                        TABLE  B-2  (cont'd)
              BIRDS OF THE BLACK WARRIOR RIVER BASIN

Category
C
C
C
C
C
C
C
H
C
C
C
A, H
C
A
C
C
C
C
C
C
C
C
C
C
A, H
A, H
C
C
C
H
C
C
C
C
C
C
C
C
Name
Grosbeak, Black-headed
Grosbeak, Blue
Bunting, Indigo
Bunting, Painted
Dickcissel
Grosbeak, Evening
Finch, Purple
Redpol 1 , Common
Siskin, Pine
Goldfinch, American
Crossbill , Red
Towhee, Green-tailed
Towhee, Rufous-sided
Bunting, Lark
Sparrow, Savannah
Sparrow, Grasshopper
Sparrow, Le Conte's
Sparrow, Henslow's
Sparrow, Sharp-tailed
Sparrow, Seaside
Sparrow, Vesper
Sparrow, Lark
Sparrow, Bachman's
Junco, Slate-colored
Junco, Oregon
Sparrow, Tree
Sparrow, Chipping
Sparrow, Clay-colored
Sparrow, Field
Sparrow, Harris1
Sparrow, White-crowned
Sparrow, White-throated
Sparrow, Fox
Sparrow, Lincoln's
Sparrow, Swamp
Sparrow, Song
Longspur, Lapland
Longspur, Smith's

Source:  Department of Conservation,  State  of Alabama.
                               B-3-12

-------
        APPENDIX B-4
MAMMAL ABUNDANCE INDICATORS

-------
 Optimum Carrying  10
 Capacity-Population
                    9
CO
 I
  Relative Abundance  °

  River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential     —•—
                    1  -
                         6.5    4.9  3.1  0.141.538.9 37.7
                                   32.4
27
19.4
1.00
                                                FIG. B-1 BEAVER (CASTOR CAMADENSIS)

-------
 Optimum Carrying
 Capacity-Population
DO
  Relative Abundance
  River Miles
     i     i    i     i    i

  Scale 1 inch = 6 River Miles
  Valley Creek
  Opossum Creek
  Relative Abundance  	
  Range  Potential      —•—
  OPPOSSUM
i _ ii
                                           III
                                                   i     i
VALLEY
  I	
                          6.5   4.9  3.1   0.1 41.5 38.9 37.7
                                        32.4
 27
19.4
9.7
1.00
                                                        TIG B-2 RACCOON (PROCYON LOTOR)

-------
 Optimum Carrying  10
 Capacity-Population
                   9

                   8
oo
 i
6


5


4


3
  Relative Abundance  °

  River Miles
        Scale 1 inch « 6 River Miles
        Valley Creek
        Opossum Creek
        Relative Abundance
        Range Potential     ——•
        OPPOSSUM
VALLEY
  t	
                        6.5   4.9  3.1 0.141.538.937.7         32.4       27             19.4

                                           FIG B-3 GRAY SQUIRREL (SCIURUS CAROLINENSIS)
                                                                                     9.7
                                             1.00

-------
   Optimum Carrying
   Capacity-Population
CO
    Relative Abundance

    River Miles
                               Scale 1 inch = 6 River Miles
                               Valley Creek
                               Opossum Creek
                               Relative Abundance   •
                               Range Potential       ——
  OPPOSSUM
i	i	i
I    I     I
VALLEY
  I	
                            6.5   4.9  3.1  0.141.538.937.7         32.4        27             19.4

                                                     FIG B-4 OPOSSUM (DIDELPHIS MARSUPIALIS)
                                                                                     9.7
                                                 1.00

-------
  Optimum Carrying  10
  Capacity-Population
                    9

                    8
CO
i
en
  Relative Abundance
  River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential      — —-
                             OPPOSSUM
                                 I    j	I
                                              VALLEY
                                                I	
                          6.5    4.9  3.1  0.1 41.538.9  37.7
                                    32.4
27
19.4
9.7
1.00
                                                  FIG B-5 STRIPED SKUNK (MEPHITIS MEPHITIS)

-------
 Optimum Carrying
 Capacity-Population
CD
 I
CT>
                   1


  Relative Abundance  "

  River Miles
                           Scale 1 inch = 6 River Miles
                           Valley Creek
                           Opossum Creek
                           Relative Abundance
                           Range Potential
OPPOSSUM
                I	I
VALLEY
_  i	
                        6.5   4.9  3.1  0.141.538.937.7        32.4       27             19.4

                                    FIG. B-6 EASTERN COTTONTAIL (SYLVILAGUS FLORIDANUS)
                                                                               9.7
                                              1.00

-------
 Optimum Carrying  10
 Capacity-Population
                   9

                   8
CD
Relative Abundance

River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance  ——
Range Potential      — -
                           OPPOSSUM
                         I    _J	I	L
                                            VALLEY
                                              I	
                        6.5   4.9  3.1  0.141.538.937.7         32.4        27             19.4

                                      FIG. B-7 WHITETAIL DEER (ODOCOILEUS VIRG1NIANUS)
                                                                              9.7
                                                                                                                    1.00

-------
 Optimum Carrying
 Capacity-Population
oo
 i
CO
                    7  -
 Relative Abundance
 River Miles
   I     I    I    I     I    I

Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance  	
Range Potential      	
                            OPPOSSUM
                          i      i     i	I
                 I    i     i
VALLEY
  i	
                          6.5   4.9  3.1  0.1 41.538.9 37.7
                                     32.4
 27
19.4
9.7
1.00
                                               FIG. B-8  MUSKRAT (ONDATRA ZIBETHICUS)

-------
  Optimum Carrying  10
  Capacity-Population
                    9

                    8
CD
 I
vo
  Relative Abundance  °
  River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential


                                         9
                            OPPOSSUM
                                      I   i
                                              VALLEY
                                             l    i	i
                          6.5    4.9  3.1  0.141.538.937.7         32.4         27              19.4

                                                     FIG. B-9 MINK(MUSTELA VISON)
                                                                                  9.7
1.00

-------
                   APPENDIX B-5
SPECIES OF ALABAMA IDENTIFIED AS RARE AND ENDANGERED

-------
CD
 I
U1
 I
                                                       TABLE  B-3


                                         RARE AND ENDANGERED AVIFAUNA OF ALABAMA

Occurance
Common Name Common Uncommon
Golden Eagle
Brown Pelican
Bald Eagle
Osprey
Peregrin Falcon
Snowy Plover
Red-Cockaded Woodpecker
Ivory-billed Woodpecker
Bachaman's Warbler
Black Rail
Reddish Egret
Mottled Duck
Little Blue Heron
Black-crowned Night Heron
Wood Stork
Swallow- tailed Kite
Sharp-shinned Hawk
Cooper's Hawk
Red Shouldered Hawk
Merlin
Sandhill Crane
American Oystercatcher
Bewick's Wren
Swainson's Warbler
Bachman's Sparrow
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Status
Rare or Endangered
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Residence
Permanent Winter Spring Summer Fall
X
X
X
X X
X

X
x (probably extinct)
XXX
XXX
X X
X
X
X
X X
X
X
X
X
X X
X
X
X
X
X

-------
                                                         TABLE  B-4

                                 ENDANGERED  AND  THREATENED  AMPHIBIANS  &  REPTILES  IN ALABAMA
            Class
    Common Name
  Scientific Name
 Status
            Order Caudata-
            Salamanders
CO
i
Ol
ro
            REPTILIA
            Order Squamate-
            Lizards  & Snakes
Flatwood salamander
Red Hills salamander
Hellbender

Seepage salamander
Mountain dusky salamander
Brown-backed salamander
Tennessee cave salamander
Georgia red-backed salamander

West Sipsy Fork waterdog
Greater siren

Eastern indigo snake
Black pine snake

Florida pine snake

Eastern milk snake

Red milk snake
                                   Pine  woods  snake
                                   Florida  green  water
                                   North Florida  black
                                     snake
                                   Eastern  diamondback
                                     snake
                    snake
                    swamp
Ambystoma cingulatum
PhaeognaThus hubrichii
GVyptobranchus alleganien-
  sis alleqaniensis
De"SMTgnathus aenmjs
Desmognathus ochrophaeus
Eurycea aquatica
Gyrinophilus palleucus
Plethodon cinereus
  polycentratus
Necturus sp.
Siren lacertina

Drymarchon Corais couperi
Pituophis melanoleucus
  lodingi
Pituophis melanoleucus
  mugitus
Lampropeltis triangulatum
  triangulatum
Lampropeltis triangulatum
  syspila
Rhadinaea flavilata
Natrix cyclopion floridana
Seminatrix pygaea pygaea
                    rattle-    Crotalus adamanteus
Endangered
Endangered
Threatened

Special Concern
Special Concern
Special Concern
Special Concern
Special Concern

Special Concern
Special Concern

Endangered
Endangered

Endangered

Special Concern

Special Concern

Special Concern
Special Concern
Special Concern

Special Concern

-------
                                                    TABLE B-4 (cont'd)

                                ENDANGERED AND THREATENED AMPHIBIANS  & REPTILES  IN ALABAMA
           Class
    Common Name
    Scientific Name
                           Status
           Order Testudinidata
00

en

CO
           AMPHIBIA
           Order Anura-
           Frogs & Toads
Atlantic loggerhead
Green turtle
Atlantic hawksbill

Atlantic ridley
Atlantic leatherback
Alabama red-bellied turtle
Flattened musk turtle

Gopher tortoise
Barbour's map turtle
Florida softshell
Eastern spiny softshell

Dusky gopher frog
Little grass frog
River frog
Wood frog
Caretta caretta caretta
Chelom'a mydas
Eretmochelys imbricata
  imbricata
Lepidochelys kempi
Dermqchelys coriacea
Pseudemys alabamensis
Sternotherus minor
  _JP	
Compherus
Graptemys
depressus_
        poiyi:
        barbourT
                                                                            )olyphemus
Trionyx ferox
Trionyx spiniferus
  spinferus
Rana areolata sevosa
Limnaoedus ocularis
Rana heckscheri
Rana sylvatica~
Endangered
Endangered
Endangered

Endangered
Threatened
Threatened
Threatened

Threatened
Special Concern
Special Concern
Special Concern

Threatened
Special Concern
Special Concern
Special Concern

-------
                                                         TABLE B-5


                                    ENDANGERED AND THREATENED FISH SPECIES IN ALABAMA
           Class
CO
I
en
Common Name
Scientific Name
Status
Pisces (Fishes) American brook lamprey
Alabama shovel nose sturgeon
Cahaba shiner
Frecklebelly madtom
Alabama cavefish
Spring Pigmy Sunfish
Watercress darter
Goldline darter
Pygmy sculpin
Blue Sucker
Atlantic sturgeon
Crystal darter
Slackwater darter
Coldwater darter
Tuscumbia darter
Warrior mascadine darter
Freckled darter
Lake sturgeon
Southern redbelly dace
Flame chub
Streamline chub
Blotched chub
Spotfin chub
Popeye shiner
Bigeye shiner
Blue shiner
Bluestripe shiner
Warpaint shiner
Lampetra lamotteni
Scaphirhynchus sp.
Notropis sp.
Noturus munitus
Speoplatyrhinus poulsoni
Elassoma sp.
Etheostoma nuchale
Percina aurolineata
Cottus pygmaeus
Cycleptus elongatus
Acipenser oxyrhynchus
Ammocrypta asprella
Etheostoma boschungi
Etheostoma ditrema
Etheostoma tuscumbia
Percina sp.
Percina lenticula
Acipenser fulvescens
Chrosomus erythrogaster
Hemitremia flammea
Hybopsis dissimilis
Hybopsis ins ignis
Hybopsis monacha
Notropis ariommus
Notropis boops
Notropis caeruleus
Notropis callitaenia
No t ro p i s co c co gen is
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern

-------
                                                         TABLE B-5 (cont'd)

                                   ENDANGERED AND THREATENED FISH SPECIES IN ALABAMA
           Class
  Common Name
   Scientific Name
Status
00

in

tn
Dusky shiner
Broadstripe shiner
Sawfin shiner
Sand shiner
Stargazing minnow
Harelip sucker
Elegant madtom
Stonecat
Brindled madtom
Southern cavefish
Whiteline topminnow
Banded topminnow
Pygmy killifish
Bluefin killifish
Shoal bass
Blenny darter
Ashy darter
Unnamed snubnose darter
Trispot darter
Northern banded darter
Blotchside logperch
Mottled sculpin
Notropis cummingsae         Special Concern
Notropis euryzonus          Special Concern
Notropis sp.                Special Concern
Notropis stramineus         Special Concern
Phenacobius uranops         Special Concern
Lagochila lacera            Special Concern
Noturus elegans             Special Concern
Noturus flavus              Special Concern
Noturus miurus              Special Concern
Typhlichthys subterraneus   Special Concern
Fundulus albolineatus       Special Concern
Fundulus cingulatus         Special Concern
Leptolucania ommata         Special Concern
Lucania goodei              Special Concern
Micropterus sp.             Special Concern
Etheostoma blennius         Special Concern
Etheostoma cinereum         Special Concern
Etheostoma sp.              Special Concern
Etheostoma trisella         Special Concern
Etheostoma z_.  zonale        Special Concern
Percina burtoni             Special Concern
                            Special Concern
                                                                 Cottus bairdi

-------
                                                        TABLE B-6

                                         RARE AND ENDANGERED MAMMALS IN ALABAMA
            Class
    Common Name
   Scientific Name
 Status
            Mammalia
00

en
I
01
Gray Myotis
Indiana Myotis
Alabama Gulf Beach Mouse

Perdido Bay Beach Mouse

Northern Black Bear
Florida Black Bear
Florida Panther
Southeastern Shrew

Southeastern Myotis

Little Brown Bat
Keen's Myotis

Rafinesque's Big-eared Bat
Florida Yellow Bat
Marsh Rabbit

New England Cottontail
Bayou Gray Squirrel

Prairie Vole

Meadow Jumping Mouse
Myotis grisescens
Myotis soda!is
Peromyscus polionotus
  ammobates
Peromyscus polionotus
  trissyllepsis
Ursus americanus americanus
Ursus americanus floridanus
Felis concolor coryi
Sorex longirostris
  longirostris
Myotis austroriparius
  austroriparius
Myotis lugofugus lucifugas
Myotis keenii septen-
  trional is
Plecotus rafinesquii
Lasiurus floridanus
Sylvilaqus palustris
  palustris
Sylvilagus transitional is
Sciurus carolinensis
  fuliginosus
Microtus ochrogaster
  ochrogaster
Zapus hudsonius
                                                                    americanus
Endangered
Endangered
Endangered

Endangered

Endangered
Endangered
Endangered
Special Concern

Special Concern

Special Concern
Special Concern

Special Concern
Special Concern
Special Concern

Special Concern
Special Concern

Special Concern

Special Concern

-------
                     APPENDIX B-6
TERRESTRIAL VEGETATION OF THE BALCK WARRIOR RIVER BASIN

-------
                              TABLE B-7

                      DOMINANT PLANT SPECIES
               OCCURRING IN MIXED RIPARION HABITATS
Forest Type
Common Name
  Generic Name
Rich Deciduous Woods
(Mixed Hardwood Forest)
Swamp Forest
(Low Woods)
Beech
Sugar Maple
Yellow Poplar
Basswood
Red Mulberry
Leather wood
Buckthorn
Hydrangea
May Apple
Blood Root
Solomon's seal
Giant chickenweed
Indian Pink

Ironweed
Sweet gum
Black gum
Water Oak
Willow Oak
Swamp Chestnut Oak
Overcup Oak
Red Maple
Green ashe
American elm
Hawthorn
Deciduous Holly
Swamp dogwood
Cane
Cross Vine
Rattan Vine
Trumpet Vine
Fagus grandifolia
Acer saccharum
Liriodendron tulipifera
Tilia heterophylla
      rubra
      palustris
                                                  Rhamnus caroliniana
                                                  Hydrangea sp.
                                                  Podophyllum peltatum
                                                  Sanguinaria canadesis
                                                  Polygonatum biflorum
Holy
Stel
    laria pubera
Spigelia marilandica

Carpiinus caroliniana
Liquidambar styraciflua
Nyssa sylvatica
Quercus nigra
Quercus phellos
Quercus michauxii
Quercus lyrata
Acer rubrum
Fraxinus pennsylvam'ca
Ulmus americana
Crataegus viridis
Ilex decidua
Cornus stricta
Arundinaria gigantea
Bignonia capreolata
Berehernia scandens
Campsis radicans
                               B-6-1

-------
                          TABLE B-7(cont'd)

                      DOMINANT PLANT SPECIES
               OCCURRING IN MIXED RIPARIAN HABITATS
Forest Type
Common Name
  Generic Name
Upland Pine-Oak Woods
Short-leaf Pine
Loblolly Pine
S. Red Oak
Laurel Oak
Mockernut Hickory
Persimmon
Winged elm
Winged Sumac
Sparkleberry
Dogwood
Sassafras
Hawthorn
Rattlebox
Spurge-nettle
Mi 1kweed
Coral beads
Phlox
Disturbed "Pine Plantation"  Loblolly pine
                            Short leaf pine
                            Sweet gum
                            Black gum
                            Black Cherry
                            Persimmon
                            Ironwood
                            Dogwood
                            Chickasaw plum
                            Wax Myrtle
                            Blackberry
                            Chinese privet
                            Trumpet vine
                            Japanese honeysuckle
                            Pepper vine
                            Poison Ivy
Pinus echinata
Pinus taeda
Quercus falcata
Quercus hemispherica
Carya tomentosa
Diospyros virginiana
Ulmus alata
Rhus copallina
Vaccinium arboreum
Cornus fTorida
Sassafras albidum
Crateagus uniflora
Crotalaria angulata
OnidoscoTus stimulosus
Asclepias variegata
Cocculus carolinus
Phlox sp~.

Pinus elliottii
Pinus echinata
Liquidambar styraciflua
Nyssa sylvatica
Prunus serotina
Diospyros virginiana
Carpinus caroliniana
Cornus florida
Prunus angustifolia
Myrica cerifera
Rubus betulifolius
                      	 sinense
                      Campsis radicans
                      Lonicera japonica
                      Ampelopsis arborea
                      Rhus radicans
                               B-6-2

-------
                              TABLE B-8

                TREES AND WOODY SHRUBS OBSERVED OR
        EXPECTED TO OCCUR IN THE BLACK WARRIOR RIVER BASIN
Common Name
Generic Name
boxelder
red maple
silver maple
shining sumac
smooth sumac
poison ivey
poison sumac
small flower pawpaw
American holly
river birch
American hornbeam
eastern hophornbeam
southern catalpa
flowering dogwood
eastern redcedar
persimmon
sourwood
Allegheny chinkapin
American beech
white oak
scarlet oak
southern red oak
turkey oak
laurel oak
overcup oak
blackjack oak
swamp chestnut oak
water oak
willow oak
northern red oak
post oak
black oak
witch-hazel
sweetgum
Acer negundo
Acer rubrum
Acer saccharinum
Rhus Copallina
Rhus glabra
Toxicodendron radicans
Toxicodendron vernix
Asimina parviflora
Ilex opaca
Betula ni'gra
Carpinus caroliniana
Ostrya virgim'ana
Catalpa bignonioides
Cornus florida
Juniperus virgim'ana
Diospyros virgim'ana
Oxydendrum arboreum
Castanea pumila
Fagus grandifolia
Quercus alba
Quercus Coccinea
Quercus falcata
Quercus laevis
Quercus laurifolia
Quercus
Quercus
        lyrata
        marilandica
Quercus michauxii
Quercus
Quercus
        mgra
        phellos
Quercus rubra
Quercus stellata
Quercus velutina
Hamamelis virgim'ana
Liquidambar styraciflua
                               B-6-3

-------
                         TABLE B-8(cont'd)

                TREES AND WOODY SHRUBS OBSERVED OR
        EXPECTED TO OCCUR IN THE BLACK WARRIOR RIVER BASIN
Common Name
Generic Name
bitternut hickory
pecan
mockernut hickory
black walnut
sassafras
redbud
honeylocust
black locust
yellow-poplar
cucumbertree
southern magnolia
sweetbay
red mulberry
southern bayberry
black tupelo
white ash
green ash
shortleaf pine
slash pine
longleaf pine
loblolly pine
American sycamore
downy serviceberry
hawthorn
plum
eastern cottonwood
black willow
sugarberry
hackberry
Georgia hackberry
winged elm
American elm
slippery elm
Garya cordiformis
Garya illinoensis
Carya tomentosa
Juglans nigra
Sassafras albidum
Cereis canadensis
Gleditsia triacanthos
Robinia pseudoacacia
Liriodendron tulipifera
Magnolia acuminate
Magnolia grandiflora
Magnolia virginiana
Morus rubra
Myrica Cerifera
Nyssa sylvatica
Fraxinus americana
Fraxinus pennsylvanica
Pinus echinata
Pinus elliottii
Pinus palustris
Pinus taeda
Platanus occidental is
Amelanchier arborea
Crataegus spp.
Prunus spp.
Populus deltoides
Salix nigra
Celtis laevigata
Celtis occidental is
Celtis tenuifolia^
Ulmus alata
Ulmus americana
Ulmus rubra
                               B-6-4

-------
APPENDIX C
CULTURAL

-------
          SPECIFIC HISTORICAL SITES IN JEFFERSON COUNTY


AGE-HERALD BUILDING - 2109 Fifth Avenue North, Birmingham; 1910;
     concrete, brick and stone structure housed newspapers Iron
     Age_ and the Herald after their merger. Art-Architecture,
     Georgian and Renaissance; Technology, Communication.

ALABAMA (CRYSTAL) CAVERNS - Near Clay, 18 miles northeast of
     Birmingham; 1940; limestone and quartz cave was a commercial
     venture, source of saltpeter during the Civil War, and a
     recreation site in the 1920s.  Military Affairs, Participation
     in Wars; Technology, Commerce.

ALABAMA POWER COMPANY - 600 18th Street North, Birmingham; c. 1937;
     twelve-story brick, stone and terra cotta structure is topped
     with a gold-leaf statue and was called the handsomest public
     utility building of its time.  Technology, Commerce.

ALABAMA THEATER - 1811 3rd Avenue North, Birmingham; 19]7; seven-
     story brick structure is the largest and most elaborate in the
     state and one of the largest remaining movie "palaces" in the
     country.  Art-Architecture, Spanish Renaissance; Art, Drama of
     State and Screen.

ARLINGTON HIGH SCHOOL - Bessemer; 1906; four-story brick structure
     designed by W. E. Benns is the oldest school in Bessemer.  Art
     Architecture, Victorian; Education, Institution.

ARLINGTON (MUDD-DEBARDELEBEN-MUNGER HOUSE) - 331 Cotton Avenue Southwest,
     Birmingham; 1828-42; two-story frame home served as military
     headquarters for Union General James B. Wilson during Civil War
     and is the city's only ante bell urn mansion.  Art-Architecture,
     Greek Revival; Military Affairs, Participation in Wars.

BANK PAWN SHOP - 2023 Second Avenue, Bessemer; 1888; one-story brick
     and concrete structure is one of the first buildings in Bessener.
     Technology, Commerce.

BANKHEAD HOTEL - Corner of Fifth Avenue and 23rd Street, Birmingham;
     c.  1921; fourteen-story brick and sandstone building was an
     early skyscraper in Birmingham.  Technology, Commerce.

BEAUMONT HOUSE - 4151 Montevallo Road, Birmingham; c.  1850; one-room
     log cabin which is now part of a ranch-style home, was once a
     commissary for Irondale Furnace.  Art-Architecture, Log Cabin;
     Technology, Commerce.
                              C-l

-------
BERNEY BANK - 1901 Second Avenue, Bessemer;  1888;  two-story brick
     building was designed by G.  M.  Torgenson,  who worked on several
     buildings for the 1887 Chicago  Exposition.  Technology, Commerce.

BESSEMER APOTHECARY - 224 19th Street North; c.  1900;  two-story brick
     structure is trimmed with white stone.   Science,  Medicine.

BESSEMER BUGGY WORKS - 20th Street at Third  Avenue North, Bessemer;
     c.  1900; two-story brick structure has good  brick detailing at
     cornice.  Technology, Commerce.

BESSEMER PUBLIC LIBRARY - 400 19th Street North,  Bessemer; early 20th
     Century; one-story masonry and  stone structure was the oldest
     post office before becoming the library and  hall  of history.
     Art-Architecture, Renaissance Revival;  Education,  Library and
     Museum.

BESSEMER SITE - Bessemer; 1100 A.D.; three mounds  of the pre-Mature
     Mississippian culture excavated in this area  in 1934-35,  have
     been almost totally obliterated by urban development.  Aboriginal
     Americans, Historic.

BETHLEHEM METHODIST CHURCH - Rutledge Springs-Dolomite; c.  1900; one-
     story frame building was constructed around the congregations
     first log church built in 1819.  Art-Architecture, Gothic
     Revival; Society, Religion.

BIRMINGHAM ICE AND COLD STORAGE - Fifth Avenue  and 22nd Street,
     Birmingham; four-story brick commercial  building was enlarged
     to seven stories in 1918.  Technology,  Commerce.

BIRMINGHAM REALTY - 2118 First Avenue North;  Birmingham; 1910; two-
     story yellow and brown brick building with terra cotta decoration
     was built by this firm that succeeded the  Slyton  Land Company,
     developers of Birmingham.  Art-Architecture,  Renaissance
     Revival; Technology, Commerce.

BIRMINGHAM SOUTHERN COLLEGE - Birmingham; 1919; formerly located in
     Greensboro, the school is now on the original site of Birmingham
     College  and is a mixture of old and new structures.  Educational,
     Institutions.

BLACK MASONIC TEMPLE - 1630 Fourth Avenue North,  Birmingham; early 20th
     Century; seven-story stone,  brick and steel  structure is  a
     principal  center of the black community.  Art-Architecture, Neo-
     classical  Revival; Society,  Black History.

BLACK (W. H.) RESIDENCE - 1108 North Seventh Avenue, Birmingham; early
     20th Century; one and a half-story structure  built and lived in
     by Blacks.   Art-Architecture, Bungalow;  Society,  Black History.
                              C-2

-------
BLESSED SACRAMENT CHURCH, SCHOOL AND RECTORY - 1525 Cotton Avenue,
     Birmingham; 1910; three brick buildings with Italian influence,
     the most imposing being the church with exquisite stained glass
     windows throughout.  Education, Institution; Society, Religion.

BLOUNT HOME - 322 Sixth Avenue North, Birmingham; c.   1906; handsome
     two-story frame structure was built by blacks.  Art-Architecture,
     Neo-Classical Revival; Society, Black History.

BRADSHAW-RAMSEY HOUSE - 2154 Highland Avenue, Birmingham; 1892;  two-
     story brick structure in the Chateauesque style  was also the
     residence of well-known engineer and inventor, Erskine Ramsay.
     Art-Architecture, Chateauesque; Technology, Industry and Invention.

BRAKE-CALVERT HOME - 302 Blake Street, Warrior; 1887; two-story  frame
     house is an excellent example of Victorian architecture. Art-
     Architecture, Victorian.

BROCK'S GAP - Alabama 150, Shades Mountain; c.  1870; railroad cut
     through 70 feet of solid limestone is now partially filled.
     Technology, Engineering.

BROWN (A. E.) HOME - 526 Fifth Street North, Birmingham; 1906; two-
     story press concrete home was built by black attorney A. E.  Brown,
     a prominent black citizen.  Society, Black History.

BROWN (DR. A. M.) HOUSE - 319 North Fourth Terrace, Birmingham;  c.  1908;
     one and a half-story structure was originally owned by this
     prominent black physician.  Black History; Science, Medicine.

BROWN-MARX BUILDING - 2000 First Avenue North, Birmingham; 1906;
     sixteen-story granite structure is one of the earliest steel-frame
     buildings in the city.  Art-Architecture, Commercial; Technology,
     Commerce.

BUCKSVILLE CEMETERY - Bucksville; 1816; old pioneer cemetery has  grave
     markers of stack stone, cast iron and marble. Society.

CAHABA METHODIST CHURCH - Birmingham; 1896; one-story structure  is
     frame.  Society, Religion.

CAHABA PUMPING STATION - Pumphouse Road and Cahaba River; 1890;  series
     of handsome brick buildings includes two cylindrical pumphouses
     called pits.  Technology, Commerce.

CANE CREEK BAPTIST CHURCH - Jefferson County 140, Warrior; 1971; two-
     story brick building serves a congregation and school organized
     in 1815.  Society, Religion.
                             C-3

-------
CANAAN BAPTIST CHURCH - 2543 Morgan Road,  Bessemer;  1943;  brick
     structure is the third to house this  congregation which was
     organized in 1818 and is the "mother  church"  of all  Baptist
     churches in Jefferson County.   Society,  Religion.

CANON HOUSE - Birmingham; early 1900s;  two-story stone structure has
     gable roof.  Art-Architecture, Victorian.

CARDIFF LOG CABIN - Cardiff Road, Cardiff;  1800s;  small,  one-room
     structure is made of hand hewn interlocking logs.  Art-
     Architecture, Log Cabin.

CARNEGIE LIBRARY BUILDING - 327 18th Street North,  Bessemer; 1907;
     one-story brick building with  terra cotta  trim  was  the  first
     library in this city and now houses the  Chamber of Commerce.
     Education, Library;  Technology, Commerce.

CARRIAGE HOUSE ANTIQUES - 1310 19th Way South,  Birmingham;  c.   1900;
     two-room brick stable is a good example  of adaptive  restoration
     and use.  Technology, Commerce.

CENTRAL FAIRFIELD DISTRICT - Fairfield; early 1900s; brick  and  terra cotta
     commercial structures and bungalow-style frame  residences  comprise
     this area which was  developed  as a cotton  field by Fairfield
     Land Company.  Technology, Commerce.

CHARLESTON BLOCK - 19th Street North and Second Avenue,  Bessemer; late
     19th Century: three- and four-story brick  commercial  structures
     were named for the real  estate company that developed  Bessemer.
     Technology, Commerce.

CHESTNUT HILL HISTORIC DISTRICT - Lakeview  Crescent  and Highland
     Avenue, Birmingham;  early 1900s; in-town residential  neighborhood
     of approximately 100 structures in early 20th  Century  styles has
     fought successfully  for 30 years to retain the  single-family
     dwelling zoning.  Art-Architecture, Varied  19th and 20th Century
     Styles.

COLLARD ROW - Alabama Avenue, Bessemer; c.   1887;  five one-story, one-
     room frame structures were built by the  railroad for  its workers.
     Technology, Transportation.

"THE COTTAGE" - Near McCalla; late  19th Century; brick and .cedar siding
     comprise this rustic structure which  is  on the  Sadler  plantation.
     Art-Architecture, Rustic.

COMER BUILDING - 2030 Second Avenue North,  Birmingham; 1912; twenty-five
     story skyscraper is  faced with granite and now  houses  City Federal
     Savings.  Art-Architecture,  Neo-Classical  Revival.
                             C-4

-------
COMMERCIAL BUILDING - 1901-03 Second Avenue North, Birmingham;  early
     1900s; three-story brick structure has distinctive cornice and
     hood moldings.  Art-Architecture, Commercial.

GRAIN HOUSE - Dolomite; 1883, one and a half-story frame structure has
     gable roof and dormers.  Art-Architecture, Victorian.

CRUMELY'S CHAPEL METHODIST CHURCH - Crumely's Chapel; 1924;  one-story
     structure is brick and frame.  Art-Architecture, Colonial
     Revival; Society, Religion.

CRUMELY LOG CABIN - 356 Crumely Chapel Road, Crumely Chapel; c.   1860;
     one-story log structure was built in loom holds.  Art-Architecture,
     Log Cabin.

DANIEL BUILDING - 15 South 20th Street, Birmingham; 1970; twenty-story
     steel reinforced concrete and glass structure is the best  example
     of International style in the State.  Art-Architecture,
     International.

DEBARDELEBEN COMMISSARY - Overton Road, Overton; 1921; one-story brick
     structure built by the coal company as a service to the miners,
     is now an adaptive restoration.  Technology, Commerce and
     Industry.

EDWARDS HOUSE - Route 5, Trussville; ante bell urn; two-story frame
     structure has several outbuildings.  Art-Architecture,  Plantation
     Style.

ELYTON CEMETERY - 425 Second Avenue North, Birmingham; 1856; deeded
     to city of Elyton in 1856, graves in this restored cemetery date
     from 1834.  Society.

EMPIRE BUILDING - 1928 First Avenue North, Birmingham; 1909; sixteen-
     story concrete, granite, marble and terra cotta  structure stands
     on one of the first lots of land sold in Birmingham.  Art-
     Architecture, Neo-Classical.

ENON BAPTIST CHURCH - Majestic Road, Morris; 1949; two-story brick
     structure is the third for the congregation organized in 1872.
     Society, Religion.

ENSLEY APOTHECARY - 1925 Avenue E, Ensley; 1928; one-story brick
     commercial structure has an eight-sided Spanish-style tower.
     Technology, Commerce.

ENSLEY MILL - U. S. Steel, Fairfield Works, Birmingham; 1899;
     Tennessee Coal and Iron built nine open hearth furnaces and six
     blast furnaces here and became the largest producer of pig iron,
     coal and coke in the South.  Technology, Industry.
                              C-5

-------
EXCHANGE SECURITY BANK (FIRST ALABAMA BANK)  -  330  19th  Street North,
     Bessemer;  c.  1889;  two-story  masonry  structure  was  designed
     with severe Neo-Classical  influence.   Technology,  Transportation.

EPISCOPAL CHURCH OF THE ADVENT -  2109 Sixth  Avenue North,  Birmingham;
     1893; two  and a half-story sandstone structure with  steeple was
     the first  Episcopal  Church founded  in  Birmingham.  Art-Architecture,
     Gothic Revival; Society, Religion.

FARLEY BUILDING - 1829 Third  Avenue North,  Birmingham;  1909;  nine-story
     brick and  steel-frame structure is  a simplified  combination of
     Sullivanesque and Commercial-style  architecture.   Art-Architecture,
     Commercial; Technology,  Commerce.

FEDERAL BUILDING AND COURTHOUSE - 18th and  19th  Streets,  at  Fifth Avenue
     North, Birmingham; 1921; three-story limestone and brick structure
     of simple  Neo-Classical  design was  originally the  Post  Office
     Building.   Art-Architecture, Neo-Classical; Political Affairs,
     Establishment and Administration of Government.

FIRST BAPTIST CHURCH - 317 22nd Street North,  Birmingham;  1903;  massive
     rock faced structure has a square tower polygonal  turret and
     projecting bay.  Art-Architecture,  Richardsonian Romanesque;
     Society, Religion.

FIRST CHRISTIAN CHURCH -  2100 Seventh Avenue North, Birmingham;  c.  1924;
     this congregation, located in  a brick  structure with  steeple and
     illuminated cross, organized the first  classes for retarded
     children in the city.  Society, Religion  and  Social  and
     Humanitarian Movements.

FIRST CHURCH OF CHRIST SCIENTIST  -  2031  llth Avenue South, Birmingham;
     concrete and brick structure was built  for  the first  congregation
     of this denomination in  Birmingham.  Art-Architecture,  Neo-
     Classical  Revival; Society,  Religion.

FIRST METHODIST CHURCH -  Sixth Avenue, Birmingham; 1891;  outstanding
     example of Richardsonian Romanesque was recently refurbished.
     Art-Architecture, Richardsonian Romanesque; Society,  Religion.

FIRST PRESBYTERIAN CHURCH - 2100  Fourth  Avenue North, Birmingham; c.
     1890; located on the oldest  church  site in  the city,  this  brick
     structure  with exquisite stained glass  windows replaced  the
     original church built in 1873.   Art-Architecture,  Gothic
     Revival; Society, Religion.

FIRST PRESBYTERIAN CHURCH - U.  S. 11, Trussville;  1899; one-story
     white frame structure originally built  for  $185  has  recently been
     altered.  Society, Religion.
                             C-6

-------
FIRST UNITED METHODIST CHURCH - 1829 Arlington Avenue, Bessemer;
     1929; two-story stone building with raised entrances in the
     fourth structure for this congregation organized in 1887.  Art-
     Architecture, Neo-Classical Revival; Society,  Religion.

FIVE MILE CREEK BRIDGE - Near McCalla and Bessemer; 1915; one of  the
     earliest concrete bridges built in Alabama is  owned by the state.
     Technology, Transportation.

FIVE MILE PRESBYTERIAN CHURCH - 1137 Five Mile Road, Birmingham;  1958;
     red brick structure with wooden bell tower and steeple is the
     fourth for this congregation which has retained its 1880
     sanctuary.  Society, Religion.

FIVE POINTS RETAIL BLOCKS - llth and Highland Avenues, Birmingham;
     1920s; these two lavishly decorated buildings  are excellent
     interpretations of the Mediterranean styles popular in this
     period.  Art-Architecture, Spanish and Moorish; Technology,
     Commerce.

"FLORENTINE" BUILDING - 2101 First Avenue, Birmingham; c.   1920;  two-
     story structure with lavish glazed terra cotta ornamentation was
     originally built as an exclusive club.  Art-Architecture,
     Mediterranean.

FOREST PARK HISTORIC DISTRICT - Birmingham; 1906-1930s;  one of
     Birmingham's oldest and finest residential  areas, the neighbor-
     hood includes over 250 homes in a variety of styles, many of
     which were and are residences of city leaders.  Included in  the
     district:

     BARRET-CAMPBELL HOUSE - Cliff Road;  c.  1910;  three-story
     fieldstone with ten columns supporting porch.

     BOUTWELL (ALBERT) - 4461  Clairmont;  c.  1930;  Jacobethan
     Revival-style home is the residence  of former  Birmingham mayor
     and Lieutenant Governor.

     COMER (DONALD) HOME - Two-story brick home is  1,000 feet above
     sea level.

     DIMMICK (F. D.) HOUSE - Cliff Road;  c.  1909;  Tudor-style house.

     DIXON HOUSE - 4219 Crescent Road, Birmingham;  late  1930s; two-
     story brick structure was formerly the home of Governor Franklin
     Murray Dixon.

     FERGUSON (HILL) HOUSE - 4243 Altamont; 1912; leader in real
     estate business resided here.
                              C-7

-------
     GASTON (C.  G.) HOUSE - 41st Street and Cliff Road;  1918;
     Italian Villa-style residence.

     HARRISON (DR.  W.  G.) - 4142 Cliff Road;  1909;  one of city's
     leading physicians resided here until  the  1940s.

     JEMISON (ROBERT,  JR.)  - 4301  Altamont; 1920s;  two-story brick
     house painted  white was the second residence of this Forest
     Park developer.

     JEMISON-WELLS  HOUSE -  4124 Crescent Road;  c.   1907;  two-story
     frame and fieldstone house, Shingle style.

     MERRILL-PRATT  HOUSE -  4166 Cliff Road; c.   1920;  two-story brick
     with limestone corners in the Colonial Revival  style.

     WOODWARD HOUSE -  4101  Altamont  Road;  1919;  two-story brick mansion
     in the Italian Villa style also has servants quarters  and guest
     houses.

     Art-Architecture, Varied 20th Century Styles;  Art,  Landscape
     Architecture,  Town and Urban Planning.

FOX BUILDING - 1828-30 Fourth Avenue North, Birmingham;  c.   1890;
     three-story brick commercial  building has  been altered at street
     level.  Technology, Commerce.

GARAGES - 10th Terrace South, Birmingham;  1929;  thirty garages have
     been appropriately assembled and restored  as curio  shops  and
     gift stores.   Technology, Commerce.

GARRY'S GAP - Old Montevallo Road;  1869-71; huge piles of rock neatly
     line this gateway to the Birmingham  cut.  Technology,  Transportation

GOODALL-BROWN BUILDING - 200 First Avenue North, Birmingham;  early
     1900s; five-story brick structure has white stone trim.
     Technology, Commerce.

GOODWILL STORE - 1715  Avenue F, Ensley; early 1900s;  three-story brick
     building has an  unusual red tile roof and  corner  finials.  Art-
     Architecture,  Commercial.

GRAND HOTEL - 200 19th Street, Bessemer;  1887-88;  three-story  brick
     structure was  one of the first  erected in  this town.   Technology,
     Commerce.

GREEN SPRINGS BAPTIST  CHURCH - Green Springs  Highway,  Birmingham; c.
     1850; one-story  frame  church was restored  and  converted to an
     antique shop.   Society, Religion; Technology,  Commerce.
                              C-8

-------
HADNOT HOUSE (DAVENPORT-HARRIS FUNERAL HOME) - 1100 North Seventh
     Avenue, Birmingham; early 1900s; two-story frame house built
     by blacks has been altered with a front addition.  Black
     History.

HAND BUILDING - 17 20th Street North, Birmingham; 1912; twenty-one
     story building in granite and marble reflects the popular
     Neo-Classical style of the period.  Technology, Commerce.

HAWKINS-GREEN HOME - Bessemer; 1888; one-story frame structure has
     gabled roof.  Art-Architecture, Italianate.

HICKMAN HOUSE - Chalkville Road, Trussville; 1855; two-story frame
     house has been greatly altered.  Art-Architecture, Greek
     Revival.

HIGHLAND AVENUE HISTORIC DISTRICT - 2700-2848 Highland Avenue,
     Birmingham; 1880-1926; three-block section around Rhodes Park
     is the last concentrated grouping of elegant homes on the city's
     first planned upper class boulevard.  These include:

     ALTAMONT APARTMENTS - 2831 Highland; 1926; seven-story brick
     U-shaped building has Neo-Classical entrance

     BURNETT-MORROW HOUSE - 2800 Highland; 1910; two-story Bungaloid
     with red brick, terra cotta tile trim was designed to be fire
     proof.

     DONNELLY HOUSE - 2838 Highland Avenue; 1908; three-story red brick
     Neo-Colonial home was recently restored.

     ENSLEN HOUSE - 2737 Highland Avenue; 1910; two-story brick with
     two-inch marble facing has paired Doric columns and full-length
     balcony.

     HARRIS-GREEN HOUSE - 2731 Highland Avenue; 1907; two-story
     rusticated stone with Neo-Classical porch now divided into
     apartments.

     JORDAN (MORTIMER) - 2834 Highland Avenue; 1910; two-story frame
     with square portico supported by paired Ionic columns is being
     restored.

     RHODES PARK - 2800 block Highland Avenue; 1905; 3.25 acres,
     located in a valley with stairs, entryways lined with fieldstone
     walls set with ceramic tiles, Mission Style influence.

     RHODES PARK MANOR - 2807 Highland Avenue; c.  1925; two-story
     Tudor-style apartment building in fieldstone and stucco.
                               C-9

-------
     SHOOK-WICKSTROM HOUSE - 1120 28th Place South;  1910;  two-story
     Tudor style in fieldstone and stucco with deep  gables and
     seven foot fieldstone wall  with iron gates.

     WARNER-GREEN HOUSE - 2733 Highland Avenue; two-story  rusticated
     stone block house with some classical  detailing,  almost identical
     to the Harris-Green home next door.

     WOOD-SAUNDERS HOUSE - 2809  Highland Avenue;  1909; two-story
     Bungaloid style in rusticated stone block has leaded  and stained
     glass windows.

     Art-Architecture, Varied 20th Century Styles; Art, Landscape
     Architecture.

HIGHLANDS METHODIST CHURCH - 1105 20th Street South, Birmingham; 1909;
     terra cotta and brick structure with red tile roof has a Baroque
     facade.  Art-Architecture,  Byzantine;  Society,  Religion.

HILLMAN HOSPITAL - Sixth Avenue  South at 20th Street,  Birmingham; 1902;
     four-story brick structure  is now used as offices by  the
     University of Alabama Medical Center.   Science, Medicine.

HOLY ROSARY CATHOLIC CHURCH - 7406 Georgia  Road,  Birmingham; 1889;
     charming one-story frame building is the oldest Roman Catholic
     Church in Birmingham on its original site.  Art-Architecture,
     Carpenter Gothic, Society,  Religion.

INDEPENDENT PRESBYTERIAN CHURCH  - 3100 Highland Avenue, Birmingham;
     1926; large stone structure with exquisite stained glass windows
     has had several additions.   Art-Architecture, Gothic; Society,
     Religion.

IRONDALE FURNACE SITE - Mountain Brook; 1864; built  to supply iron
     to the Confederate Arsenal, this furnace was constructed of
     masonry, iron-banded brick  and wood, but was partially destroyed
     by Union raiders in 1865.  Military Affairs, Defense; Technology,
     Industry.

ITALIANATE BUILDING - 2015-17 First Avenue  North, Birmingham; 1880s;
     four-story brick building is one of the oldest  commercial
     structures in central Birmingham.  Art-Architecture,  Italianate.

JACKSON BUILDING - 213 21st Street North, Birmingham;  1925; ten-story
     reinforced concrete structure covered  with brown  brick, when
     constructed it was the most up-to-date office building in town.

JACKSON HOME - 500 Eighth Avenue North, Birmingham;  early  20th Century;
     two-story frame structure was built by prosperous blacks.   Black
     History.


                             C-10

-------
JEFFERSON COUNTY COURTHOUSE - 716 North 21st Street, Birmingham; 1932;
     nine-story limestone and granite structure with terra cotta trim
     is a typical 1930s government building.  Political  Affairs,
     Establishment and Administration of Government.

JEFFERSON (THOMAS) HOTEL - 1631 Second Avenue North, Birmingham; 1929;
     twenty-story structure is noted for its terra cotta exterior.
     Technology, Commerce.

JEMISON REALTY COMPANY - 2105 Third Avenue North, Birmingham; 1928;
     two-story masonry structure has a flat roof.  Art-Architecture,
     Neo-Classical Revival.

JOHNSON HOUSE - 1006 19th Street, Birmingham; c.  1900;  two-story frame
     structure with turrent and gabled roof has a classical porch.
     Art-Architecture, Queen Anne.

KINCEY RAIL MUSEAUM - Powell Avenue; contains approximately 24 pieces
     of rolling stock and many other objects related to  railroad
     engineering.  Education, Museum.

LAKEVIEW SCHOOL - 2800 Clairmont Avenue, Birmingham; 1901; two-story
     brick building is the second oldest school in Birmingham.
     Education, Institutions.

LATHROP HOUSE - 1923 14th Avenue South, Birmingham; 1905; two-story
     stone structure with classical porch has been converted to a
     medical clinic.  Science, Medicine.

LEEDS PRESBYTERIAN CHURCH - Fifth Street, Leeds; 1913; clapboard
     structure has several gables and a bell tower.  Society, Religion.

LONG LEWIS BUILDING - 2000 Second Avenue, Bessemer; early 20th Century;
     two-story brick.building is divided into three sections by
     differing facades.  Technology, Commerce.

LYRIC THEATER - 319 18th Street, Birmingham; four-story  brick building
     no longer has a marquis and is in need of major repairs.
     Recreation.

MASON HOUSE - 1525 Avenue North, Birmingham; early 20th  Century; two-
     story permastone structure with red tile roof was built for
     Dr. U.  G. Mason, a prominent black physician.  Black History;
     Science, Medicine.

MASSEY BUILDING - Third Avenue North and 21st.Street, Birmingham;
     1920; ten-story commercial building has an elaborate roof
     line with arches and finials.  Art-Architecture, Commercial.
                             C-ll

-------
MCADORY BUILDING - 2013 First Avenue North, Birmingham; 1882; three-
     story red brick commercial building in the Italianate style
     bears its original name and date along the parapet.   Art-
     Architecture, Italianate.

MCADORY (THOMAS) HOUSE - Bessemer; 1841; two-room frame dogtrot with
     several  additions was the birthplace of Thomas McAdory Owen,
     founder of the Alabama Department of Archives and History, and
     Robert McAdory, first mayor of Bessemer.   Political  Affairs,
     Leaders.

MCCALLA CAVE - Near Five Mile Creek, south of Bessemer; 200-500 A.D.:
     burials and artifacts of the Middle Woodland Period  were uncovered
     at this site.  Aboriginal Americans, Prehistoric.

MCDANIEL HOME - 1100 Saulter Road, Homewood; 1870; two-story frame
     structure has a central  gable.  Art-Architecture, Plantation
     Style.

MCLELIAN'S BUILDING - 1904 Second Avenue, Bessemer; late  19th Century;
     two-story brick structure has tile spandrels below the cornice.
     Art-Architecture,  Commercial.

MILLSAP HOME - Bessemer;  1924; two-story brick structure  has a gable
     roof.  Art-Architecture,  Tudor Revival.

MORRIS AVENUE HISTORIC DISTRICT - 2000-2400 blocks, Birmingham; c.
     1885-1905; the city's only major concentration of late 19th
     Century brick and cast-iron architecture  which includes 27
     structures of interest is now being developed as  an  entertainment
     center.   Art-Architecture, Commercial; Technology, Commerce.

MOUNT CALVARY PRESBYTERIAN CHURCH - McHicks Road and Tekawitha, Clay;
     c.  1930; unusual  one-story fieldstone structure  serves the
     oldest Presbyterian  congregation (1806) in the country.  Society,
     Religion.

MOUNTAIN BROOK CLUB - Beechwood Road, Mountain Brook;  1930; two-story
     white-washed brick and stone structure has portico with four
     columns  and gable roof.   Art-Architecture, Colonial  Revival;
     Recreation.

MOUNTAIN BROOK VILLAGE HISTORICAL DISTRICT - Mountain  Brook; 1928;  one
     of the handsomest shopping centers in the southeast, the first
     buildings are Tudor  style.  Technology, Commerce.

MUD CREEK BAPTIST CHURCH  - Route 1, Adger; 1906; two-story frame structure
     serves congregation  organized in 1837.  Society,  Religion.
                              C-12

-------
MUNGER MILL  - Mary Munger Road, Trussville; c.  1870; frame board
     and batten mill house still has  its water wheel and dam.
     Technology, Commerce.

MURDOCK HOUSE - 2832 Balmoral  Road, Birmingham; 1930; two and a half-
     story stone structure has a gable roof.  Art-Architecture,
     Jacobethan Revival.

MUSCADORA MINE HOUSES  - Avenues J, I, Bessemer; c.  1900; one- and
     two-story frame company  houses were built in a variety of styles
     for workers and managers.  Technology, Industry.

MT. PINSON PRESBYTERIAN CHURCH - East Lake Road, Mt. Pinson; 1891;
     one-story frame structure with two-story belfry has original
     hand-hewn pews.   Society, Religion.

NABERS HOUSE - 2033 13th Avenue South, Birmingham; c.  1891; large
     two-story brick structure is now used as a Masonic Lodge.   Art-
     Architecture, Victorian; Society, Fraternal Organization.

NELSON (FRANK) BUILDING - 204 20th Street North, Birmingham; 1903;
     ten-story brick and steel framed building was remodeled in
     1940.   Art-Architecture, Commercial.

NELSON HOUSE - 1401 South 29th Street, Birmingham; 1910; two-story
     fieldstone and brick structure now houses administrative
     offices of Southeastern Bible College.  Art-Architecture,
     Richardsonian Romanesque.

NIXON BUILDING - 1728  20th Street, Ensley; 1922; located at the trolley
     crossing, the two-story brick building's second floor dance hall
     was the main social hub of the Birmingham Negro community before
     World War II and  was immortalized by Erskine Hawkins in his song
     "Tuxedo Junction."  Art, Music; Black History.

NORWOOD BOULEVARD - Birmingham; c.  1900; Birmingham Realty's first
     planned development on the north side features a beautiful
     boulevard and park surrounded by approximately 200 single family
     bungaloid homes in brick and wood.  Art, Landscape Architecture
     and Town and Urban Planning.

OAK HILL CEMETERY - 1120 19th Street North, Birmingham;  1872;  the
     city's  first cemetery contains graves of the 1873 cholera
     victims, early city leaders, and a Memorial Chapel built in
     1928.   Art-Architecture, Jacobethan Revival; Society, Religion.

OFFICE BUILDING - 2107 Second Avenue North, Birmingham;  c.  1890;
     three-story brick structure has a heavy pressed metal cornice.
     Art-Architecture, Commercial; Technology, Commerce.
                             C-13

-------
OFFICE BUILDING - 2117 Second Avenue North,  Birmingham;  c.   1870;
     three-story masonry building has a cast iron facade on the
     upper floors.   Art-Architecture, Neo-Classical  Revival;
     Technology, Commerce.

OFFICE BUILDING - 209-211  22nd Street North, Birmingham; c.  1891;
     three-story brick structure is  accented by a large  overhanging
     metal cornice.   Art-Architecture, Commercial;  Technology,
     Commerce.

OWENS HOUSE - Bessemer; 1883-38; originally  a two-room structure
     with main  portion added in 1838, the  two-story enclosed dogtrot
     house is being  restored to depict plantation life in the early
     19th Century.   Art-Architecture, Plantation Style.

OXMOOR GENERAL  STORE (GOODWIN MERCANTILE COMPANY) - Route 1, Oxmoor;
     1911; one-story frame  structure was one of the first sources for
     ice delivery in the county.  Technology, Commerce.

PARKER (A. H.)  HOME  - 522  First Street North, Birmingham; 1920s;
     handmade pressed concrete block house was built by  and for blacks.
     Art-Architecture, Bungaloid;  Black History.

PERSONS (JOHN C.) ARMORY -  Graymont  Avenue;  c.   1939;  two-story
     brick building  is located on  the grounds of Legion  Field.   Art-
     Architecture, Commercial.

PETTI FORD HOUSE - 612 16th  Street  North, Birmingham; early  20th
     Century; two-story clapboard  house, originally part of Sixteenth
     Street Baptist  Church, was built by blacks.   Black  History.

PHARROW HOME -  309 North Fourth Terrace, Birmingham; early  20th
     Century; two-story frame structure was  built by and for blacks.
     Black History.

PHYTHIAN TEMPLE - 310 18th  Street  North, Birmingham; c.   1910;  six-
     story brick and steel-frame structure has been the  center  for
     much important  social  and educational endeavors in  the black
     community.   Black History; Society, Fraternal  Organization.

PINSON CAVE - Near Pinson;  c.   1000  A.D.;  burial  cave revealed
     evidence of the Late Woodland Period  when excavated in 1970
     by the University of Alabama.   Aboriginal  Americans, Historic.

PINSON GRIST MILL -  Turkey  Creek,  Pinson;  mid-19th  Century; nothing
     remains but grist wheel  and component parts of the  mill which
     operated until  1966.   Technology, Agriculture.
                             C-14

-------
PLEASANT HILL METHODIST CHURCH - McCalla;  1835;  original  portion  of
     the one-story structure is now brick  veneered and has  1941  interior
     additions.  Society, Religion.

PORTER HOUSE - 1627 Clarendon Avenue,  Bessemer;  c.  1905; two-story
     frame structure has a columned portico.   Art-Architecture,  Neo-
     classical Revival.

POWELL SCHOOL - 2331 Sixth Avenue North, Birmingham; 1888;  although
     the second building for Powell, this  three-story brick structure
     is the oldest school in the city and  is  on  the site  of the
     first Powell School.  Education,  Institution.

PRAYTOR HOUSE - 119 Dexter Avenue, Mountain Brook; c.  1854; originally
     a two-room dogtrot, this is the oldest house in Mountain Brook.
     Art-Architecture, Log Cabin.

PROTECTIVE LIFE BUILDING - 2027 First Avenue  North, Birmingham;  1928;
     fourteen-story structure of granite and  terra cotta  is steel
     framed.  Technology, Commerce.

RAYFIELD HOUSE - First Avenue South, Birmingham; 1920s; one and  a half-
     story frame home was the residence of Negro architect  W. A.
     Rayfield.  Art-Architecture, Bungaloid;  Black History.

RED MOUNTAIN MUSEUM - Red Mountain Expressway, Birmingham;  1973-76;
     planned after a highway cut in 1973 revealed all of  Alabama's
     geological history, will include exhibits and ramps  to various
     levels when it opens soon.  Education, Museum; Science,
     Geology; Technology, Transportation.

ROSEDALE PUMPING STATION - Lynn Boulevard, Homewood; 1910;  one-story
     brick pumphouse has handsome fanlited windows.  Technology,
     Engineering.

RUHAMA BAPTIST CHURCH - 7901 Second Avenue South, Birmingham; 1926;
     two-story brick building serves congregation founded by Baptist
     historian Hosea Holcome in 1819.   Art-Architecture,  Neo-Classical
     Revival; Society, Religion.

SADLER HOUSE - Near McCalla; 1828-38;  two-story  frame house is being
     restored by the West Jefferson County Historical Society.  Art-
     Architecture, Plantation Style.

SALEM BAPTIST CHURCH - Spring Street,  Mount Pinson; 1941; brick
     building with wooden gable roof was built by congregation
     organized in 1818.  Society, Religion.
                             C-15

-------
SAMFORD UNIVERSITY - 800 Lakeshore Drive, Birmingham; 1841-1965;
     chartered as Howard College in Marion, Alabama, in 1841, moved
     to Birmingham in 1887, then to the present site in 1957; the
     Baptist school took its present name in 1965.  Art-Architecture,
     Modern; Education, Institution.

ST. MARY'S-ON-THE-HIGHLANDS EPISCOPAL CHURCH - 1900 12th Avenue,
     Birmingham; 1891; sandstone structure with bell tower is
     Romanesque in style.   Art-Architecture, Romanesque; Society,
     Religion.

ST. NICHOLAS RUSSIAN ORTHODOX CHURCH - Cardiff Road, Brookside; 1916;
     one-story brick structure with wooden onion dome cupola was the
     only congregation of this denomination in the South when organized
     in 1894 to serve Slavic miners.  Society, Religion.

SCOTT-WHISENANENT HOUSE - Bessemer; 1906; two-story frame structure
     has gable roof.   Art-Architecture, Victorian and Greek Revival.

SELLERS HOME - Bethel Community; c.  1896; two-story frame house has
     brick columns.  Art-Architecture, Victorian.

SIXTEENTH STREET BAPTIST CHURCH - 1530 Sixth Avenue North, Birmingham;
     1911; sandstone and brick structure was designed by black archi-
     tect, W. A. Rayfield.   Art-Architecture, Romanesque and
     Byzantine; Society, Religion.

SLOSS FURNACE - First Avenue and 32nd Street, Birmingham; 1882-83;
     early iron and steel  facility with the city's oldest blast
     furnace is scheduled for demolition.  Technology,  Industry.

SOUTH HIGHLAND PRESBYTERIAN CHURCH - 2035 Highland Avenue South,
     Birmingham; c.  1895;  one-story limestone structure with a two-
     story bell tower is noted for its stained glass windows.  Art-
     Architecture, Gothic Revival;  Society, Religion.

SOUTHERN RAILROAD INBOUND  FREIGHT - 9 20th Street South, Birmingham;
     1906; three-story brick office building is attached to a long,
     one-story freight warehouse which was erected in 1890.
     Technology, Transportation.

SOUTHERN RAILWAY TERMINAL STATION - Bessemer; 1916; two-story brick
     structure has leaded glass windows and hand carved woodwork.
     Technology, Transportation.

SOUTHSIDE BAPTIST CHURCH -  1016 19th Street South, Birmingham; 1911;
     brick and Georgia marble structure is this congregation's fourth
     structure.  Art-Architecture,  Neo-Classical  Revival; Society,
     Religion.
                              C-16

-------
STALLINGS BUILDING - 1829 First Avenue North,  Birmingham;  c.   1915;
     seven-story brick office towers in the city.   Technology,
     Commerce.

STEINER BANK BUILDING - 2101  First Avenue North,  Birmingham;  1890;
     four-story brick structure was one of the best commercial  uses
     of Richardsonian Romanesque in the city and  featured  the first
     elevator in Alabama.  Art-Architecture, Richardsonian Romanesque;
     Technology, Commerce.

STERN HOUSE - 2437 Tyler Road, Hoover; 1840s;  two-story log and
     weatherboard dogtrot structure was moved from Pinson  to Hoover  in
     the 1920s.  Art-Architecture, Rustic.

STRATON BUILDING - 425 19th Street, Ensley; early 20th Century; two-
     story granite faced structure has a balustraded parapet.  Art-
     Architecture, Neo-Classical;  Technology,  Commerce.

SWANN (THEODORE) HOUSE - 3536 Redmont Road, Birmingham; 1929; five-
     story sandstone English  manor-style house was designed to
     duplicate details and styles  of specific homes in England.
     Art-Architecture, Tudor  Revival.

SWEET HOUSE - 1830 Arlington  Avenue, Bessemer; 1906; two-story frame
     structure is an unusual  combination of Victorian and  Neo-
     classical styles.  Art-Architecture, Victorian.

TEMPLE BETH-EL - 2179 Highland Avenue, Birmingham; 1926; brick and
     terra cotta building with many stained glass windows  has elements
     of the Romanesque style.  Society, Religion.

TEMPLE EMANUEL - Highland Avenue and 21st Street  South, Birmingham;
     1912; two-story brick structure with dome is noted for exceptional
     acoustics.  Art-Architecture, Greek Revival  and Byzantine;
     Society, Religion.

TEMPLE OF SYBIL - U. S. 31 and Shades Crest Road, Vestavia Hills;  1924;
     marble and concrete circular temple was moved from a  church to
     this city park site.  Art-Architecture, Neo-Classical.

THIRD PRESBYTERIAN CHURCH - 617 22nd Street, Birmingham; 1902; brick
     and stone structure is noted for beautiful  stained and leaded
     glass windows.  Society, Religion.

TITLE GUARANTY BUILDING - 2030 Third Avenue North, Birmingham; 1903;
     nine-story brick building was the second steel frame  office
     building in Birmingham.   Art-Architecture,  Richardsonian
     Romanesque; Technology,  Commerce.
                             C-17

-------
TOADVINE BRIDGE - Over Valley Creek on the Toadvine-Oak Grove Road;
     1908: four span erector-set style bridge was built on concrete
     piers.  Technology, Engineering and Transportation.

TURKEY CREEK SITE - On Turkey Creek near Trussville;  18th Century;
     an upper creek town was located on this site.   Aboriginal
     Americans, Historic.

TYNES HOME - 2917 Fairway Drive, Birmingham; 1928;  two-story home was
     designed after Mount Vernon.   Art-Architecture,  Colonial Revival.

VALLEY VIEW MINE - Mountain Brook; 1875; one of the most modern mines
     in the South during this period, it is now obscured by over-
     growth.   Technology, Industry.

VENETIAN VILLAGE BUILDING - 1200 llth Avenue South, Birmingham: 1925;
     terra cotta commercial block  of ornate and charming detail has
     been partially obscured by metal "slipcovers."  Technology,
     Commerce.

VULCAN (STATUE OF) - U.  S.  31,  Red Mountain; 1903;  the largest  cast
     iron statue in the  world is 55 feet tall  and the focal  point
     of a park.  Art, Sculpture; Recreation.

WALKER MEMORIAL METHODIST CHURCH - Tuscaloosa Avenue  and Third  Street;
     1921; two-story brick  structure has an especially handsome
     portico  with stone  columns.  Art-Architecture, Neo-Classical
     Revival; Society, Religion.

WATTS BUILDING - 303 20th Street North, Birmingham; c.   1920; seventeen'
     story structure is  a good  example of the Modernistic style.
     Technology, Commerce.

WEBER HOUSE - 2132 Tyler Lane,  Vestavia Hills; c.   1890;  part of this
     two-story shingled  house may  have been a resort  pavilion in the
     1830s.  Art-Architecture,  Victorian.

WESTERN HEALTH CENTER -  722 17th Street, Ensley; early 20th Century;
     two-story brick structure  of  Neo-Classical  Revival  design  has
     elaborate Corinthian pilasters.  Technology, Commerce.

WILSON CHAPEL METHODIST  CHURCH  ("BROWN CHURCH IN THE  WILDWOOD") - 408
     Cumberland Drive, Birmingham; 1916; brick structure is built in
     the form of a cross.  Society, Religion.

WOODLAWN CITY HALL - 5525 First Avenue North; Birmingham; three-story
     brick and stone structure  is  now used by retailers since Woodlawn
     became part of Birmingham.  Political Affairs, Establishment and
     Administration of Government; Technology.
                             C-18

-------
WOODLAWN METHODIST CHURCH - 5400 First Avenue North, Birmingham; 1912;
     two-story building is limestone over brownstone.  Art-Architecture,
     Romanesque; Society, Religion.

WOODWARD BUILDING - 1927 First Avenue North, Birmingham; 1902;  ten-story
     brick structure was the first steel framed building in Birmingham.
     Technology, Commerce.

YOUNG AND VAN SUPPLY COMPANY - 1725-1731 First Avenue North, Birmingham;
     three-story brick structure has attached two-story warehouse which
     is one of the city's better examples of commercial Romanesque style.
     Art-Architecture, Romanesque; Technology, Commerce.
                              C-19

-------