EPA/904-9-78-007
APPENDICES TO
TECHNICAL SUPPORT DOCUMENT
VOLUME I
A-C
United States Steel Corporation
Number 8 Blast Furnace
Fairfield, Alabama
UNITED STATES
ENVIRONMENTAL PROTECTION AGENCY
REGION IV
345 Courtland Street
Atlanta, Georgia 30308
-------
APPENDICES TO THE
TECHNICAL SUPPORT DOCUMENT
U. S. STEEL No. 8 BLAST FURNACE
Volume 1
A-C
-------
TABLE OF CONTENTS
Appendix A
A-l
A-2
A-3
A-4
A-5
A-6
Appendix B
B-l
B-2
B-3
B-4
B-5
B-6
Appendix C
Air Quality
Air Quality Statistical Analysis
Proposed Action .For U. S. Steel Modernization
Attachment I - EPA Calculations on the New Coke
Battery Coal Flow Employed in AQDM
Attachment II - Calculations Used to Find the
Auxiliary Sources Emission Rates Employed in AQDM
Air Quality Display Model Sources Identified For
Conditions 1-5
Computer Model Using Large and Small Grids For
Conditions 1, 2, 3, 4, and 5
Particulate and S02 Emissions For 1973 and 1978
(Projected) From Coal Storage, Handling, and
Coking Operations at the Fairfield Works Provided
By the U. S. Steel Corporation
Existing and Identifiable Air Pollution Control
Devices and Residue Disposal Methods
Biology
Periphyton Diversity Indices
Macro-Invertebrate Diversity Indices
Birds of the Black Warrior River Basin
Mammal Abundance Indicators
Species of Alabama Identified As Rare and Endangered
Terrestrial Vegetation of the Black Warrior River Basin
Cultural
-------
APPENDIX A
AIR QUALITY
-------
APPENDIX A-1
AIR QUALITY STATISTICAL ANALYSIS
-------
STATISTICAL ANALYSIS
PACE
COUNTY . STATE-AREA: OlrO.3,40
ALABAMA PROJtCT: POPULAT ION-OB IENTFD SURV.
BESScXER, JCFF£ftSON CO < iM "3<.(!OUl G01 ) . ".
OIOXIOF. SAMPLING INTERVAL: ._ DAILY
PERIOD: . 76/01/01 TO 76/09/30 .
METHOD: GAS BUBBLE"
ANALYSIS: WEST-GAEKE SULFAMJC ACID
UNITS:. PARTS PER MILLI ON , (VOL/VOL>
PRIMARY STANDARD
SECONDARY STANDARD(S)
1*00 UG/K3 (0 C) .5 PPM 3 HR. MAX, 1 PER Yfl
.>'WL
...OBS
MIN
OPS
1C
. ... PERCENTILFS
^^•••••••WM*
30~.~_7.. .5w!.IIl"7!pZZZ9.A .
95
96
97 98
99
KAX
.OBS
?01
.114.. _. .000 . .001 ... .001.. _ ...0.01 ,001 ..001 .001_ ,0.0.1 ..00.2_.. .002_ ..002 ,.002
. HIGH.READINGS
PERCENT_
STD
(2) _(3) , . ACTUAL i?EAN DEV MF.AN DEV
GEO -.GEO .. .
...00.2 *CQ2 M..8 ...00.1 _..
.000 .001 1.148
-------
STATISTICAL ANALYSIS PAGE 13
COUNTY . _ _.. _. STATE-APEA:._.01-0340_ _ PERIOD:. 76/01/.01 TO. 76/10/30
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUPBLER
BESSEMER, JEFFERSON CO (01 034 0001 G 01 ) ... __. ... .ANALYSIS: NASN SOD I UM ARSENlT£
EJU—NITROGEN. DIOXIDE... . . ... S AMPLING . INT ER V A L i— DAILY .. UNITS: PAR.TS PER MIL-LION. (VOL/VOL)
PRIMARY STANDARD(S) . __ ..SECONDARY STAN DAR0 ( S ) -
100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN 00 UG/M3 C25 C) .05 PPM ANNUAL ARITHMETIC
PERCENTILES . .
SITE SUM M1N .--: . - «AX
095 .. ... OBS. 10 . 30 , 50 7Q 90 S5 96. _ _97 98 99 OBS
166. .007 .01C .012 __ .OU .. ...019 .025 .QJO_._.031 .037 .038- -.038 . .999
_ . . HIGH READINGS . PERCENT, ~ARITH.l STD .,GEO GEO
. (2) (3) ACTUAL MEAN... ,DEV_. MEAN .OEV___ _ . ... .
_.. . .999 .C4t .. 61.4_ . ... _ .027 ...... .102 .016 .1.773 . ...
-------
STATISTICAL ANALYSIS PAGE
COUNTY... . _ STATErAREA:....01r0380 PERIOD: ... 76/01/01. TO 76/12/31..
ALAGAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
._. . . NORTH O'HAH, BIRMINGHAM, J t F F ERSON..CO ( 0 1 038 0005G02 ) - . . .. . ANALYSIS: NON DI SP ERS IVE . INFRA-RE D
£ai_C ARSON.. MONOXIDE S AMPLJNG_1N.TER VAL : 0.1._HOURS UNITS: P ARTS -PEJL.MILLION - (VOL7VOL
PRIMARY STANDARD(S) .. . .... .. SECONDARY STANOARD(S)
10tOOO UG/M3 (0 C) 9 PPM 8 MR. MAX, 1 PER YR. 40,000 UG/M3 (0 C) 35 PPM 1 HR. MAX, 1 PER Y
..... ______ PERCENTILES . ...... .... _____ ,. . _________ .
SITE... NUM ..... KIN ________________ -.-_- ---- - — - ______________________ . _________________ MAX
_UU!« ________ CBS _____________ CDS . 10 . .....30 ________ 50 ___ 7.0 _ 9.0 _______ 95 __ 9.6 ___ 9.Z ____ 98 ___ 95 __ OBS
-005 __________ 6,073. ________ .0.... 1.5 ...... .2.2 ______ 2.6 __ 3.2 _ 4.3___5.2 ___ S..5 _ 5..8_. 6.3 _____ 6.3 ____ U.5_
_______ ...... HIGH READINGS _. PERCENT _______ ARIT.H ________ STD _______ I^GEQ ~~'~" G'fQ "~^~ "_ _" "
______ ........ . ._(2) ._ .. (3).. _____ A.CTUAL ________ MEAN ______ DEV __________ MEAN _____ OEV ________ "
13.2. 12. 0_ 69.3 _2.80 1.30 2..5S 1.57
-------
STATISTICAL ANALYSIS PAGE 16
COUNTY .... _ . . . _ STATE-AREA: 01-0380 . . PERIOD: 76/01/01 TO 76/07/27
A L A G A C A PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
.NORTH B'HAM, 0 I £ M NGH AC> , JEFFERSON C 0 _( 1)1 0380005G02 )_ ANALYSIS: FLAME IONIZATION
R:. JLOTAL_HYDROCAC80NS .. S AMRL ING . 1 N T E R V AL : 01 HOURS _.. UNITS:. PARTS P ER__ M I L L I ON (VOL/VOL)
PKIMARY' STANDARDS) .. . . SECONDARY STANDARD(S)
160 UG/f'3 (0 C) 3 HOUR MAXIMUM, 1 PER YEAR. 160 UG/M7 (0 C) 3 .HOUR MAXIMUM, 1 PER YEAR.
(.11-0 ffm) (.ItO efm)
. . .. __________ PERC EN TILES ..... ..... _____ ._ . . ___
KUri _MIN ._ _. ___________ rrj^r- — : --- _ ____________ _________ r>AX
"
.OBS . _. . OBS . 10 30 ______ 5J_ ____ 70 ___ _. 90 _ _. 95.... ...96 ______ _9.7_ _____ 96 ...99 _______ QBS __________
__ ..... 4.C35 .....6_ .1.5 ____ 1.9__..2..3 ___ 3.1 _____ 8.1 _____ 11 . 3. .. . 1 2 . 0 _____ 1 2.. <• _ .. 1 2 . 6 12.fi ___ 1.6.1 ___ ____
.._ HIGH READINGS _ . PERCENT _ARITH S T_D GEO._ GEO
.(2) (3) ACTUAL MEAN DEV MEAN D E v
1.6 ..0. .15.9 80.8...__ 3.A8 2_. 9.f_ 2.. 76 1.&7 . .
-------
STATISTICAL ANALYSIS PAGE 17
COUNTY. ._ _.. ... STATErAPEA:_Ol-0380 .PERIOD: 76/0.1./0.1_TO_l67.05./J7_
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. ' METHOD: INSTRUMENTAL
NORTH U'HAM, BIRMINGHAM, JEFFERSON CO. ( 01 0380005G02 ) ANALYSIS:
SPEED .__ _ SAMP.LING._JNT.ERVAL : OJ_HQURS UNUS :..... .-KNOTS
.PERCENTILES . _ ._.
5» S.ITE NUM KIN -r-r-^-n--- '.. ...r.< MAX
JL -NUM «3S OBS ... .10 30 50 70 .90 95 96 97 98 99._ OBS.
I --- --- --_ __ — _. _. __ — _. -- — -_
ui
-JC5 3,351.. 0. -1. 2. 3. 5.. 7-. 9.. 9. .9. . 10. 10. 15,
. ' HIGH READINGS PERCENT ARITH SID GEO . GEO
. . _ .(?).. _.. (3) ACTUAL MEJU DEV MLAN_ .. . _ DEV ,
15.. . U. 9.8.9 3_._65 2.6.3 Z..25 . 3.77
-------
STATISTICAL ANALYSIS PAGe 13
COU'JTr _ .STATE.-APEA:. 01-0380 .. .. PERIOD: 76/01 ./01._TO.76/05/17_
.ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
NORTH U'HAM, BIRMINGHAM, JEFFERSON CO ( U1 0 38 000 5G 0 2 ) __ . .ANALYSIS: _ ". ""
£?:. k.iND.DiP£CTiON.__ _..__. .SAMPLING.INTERVAL:. .. Q1 .HOURS UNITS: .. DEGREES.. (.COMPASS) ~__U
-: .--.-. .. ... .PERCENTILES .. . _ ...
* IT E _ fa y M KIN _____ — _ — «. — — MAX
3., -"Ul 09S OHS 10 "~^ 0 ' ~ 5 0~~ 7 0 90___1_..9§ 96 .. .. 97. ._ 98 99 ~" OBS
i> DCS
...5. 40. 150. 190. 260.__3£Q. 350.. 360.. 360._ 360,._ 360. 400.
~ _. HIGH HEADINGS eER.CEN.1 ARI.TK SJO GEO ._ ... GEO
(2) ^(.3) ACIU&I MEAN p.EV .MEAN OEV
360. 360._ 98..S 19.5;.53 1.0J..6.Z 154..J8 2^33.
-------
STATISTICAL ANALYSIS PAGE 19
COUNTY.... . .. . , STATL-APEA: .01.-0330 PERIOD: ..76/01/07 TO 76/08/31
ALABAMA PROJECT: SOURCE-OR IENTED AMBIENT SURV. METHOD: TAPE SAMPLER
NORTH O'HAM, OIRflf.GHAK, JEFFERSON CO ( 01 038 0005G02) ANALYSIS: TR ANSMIT T ANC E
£R: SOILING INDEX C COH/1 OCOLF )_ SAMPLING.. INTERVAL:. . 92. HOURS UNITS:. _ COHS /.1 000 LI N E AR FEET
PERCENT1LES
SITE. .. HUM .. KIN .. .... .....; ... __ .. MAX
-NUN ODS... . . . OES 10.._..30 . .5 C. 70 90. _.. 95 96 97 . ... 98 99 OBS
.005 2,582 _ . .C ' .2 .5 .8 1.3 2.7.. .3.4 3.5 ..3.7_ 4.0. 4.0... . 3.4
_ .. ... WIGH READINGS PERCENT .. ARITH .. . STD GEO GEO
... .. (2) (3) ACTUAL MEAN.. DEV. MEAN . DEV.._. _
.7.1 . 6.4 9.0.8 1.J15 _.1.0t. .76 2.9.1 _ ....
-------
STATISTICAL ANALYSIS PAGE 21
COUNTY __ _ ... _ STATb-A.REA.:_01-0380 PERIOD: 761 01 / 01_T 0_.76 /J 2 /30
ALABAMA PROJECT: SOURCE-OK i ENTEo AMBIENT SURV. METHOD: GAS BUBBLER
NORTH B'HAM, BIRMINGHAM, JEFFERSON CO ( i) 1 038 0 005G 02 J .._ . ...ANALYSIS: WEST-GAEKE SULFAMIC ACID
tR,-_SULFU«_ DIOXIDE SAMPLING ..1N.T EflVAL : _DAIL^_ UNITS:... ^PARTS PER K I LL I ON. _( VOL / VOL )
^ .. .._. . PRIMARY STANDARD(S) . . ._ _ .SECONDARY STANDARD(S)
i _ .. _ — —---— ___ _.— _ ^ ^ ^ ^ ^ ^ —__ _^
03 1300 UG/M3 (0 C) .5 P.PM 3 HR. MAX, 1 PER YR.
_.. . PERCENTILES .__._._
SITE NUH MN _. _r-. .— -.-.-.. __ .. . MAX
__«iU". ...OPS. ._ OBS. 10 3U 50 70 9(1 9.5 96 97 98 99 OBS__
j!G5 . 227.._. .000 .001 .00.1 ..002 .002 .004 ..O.Q5 .005 .006 .006 .006 .011
^_7 _ HIGH READINGS ... PERCENT ARITH. . _. S T D GEO _. GEO
(2) (3) ACTUAL MEAN DEV MEAN DEV
.009. . .005. _. 6 2..4 .002 .00.2 ..002_ 1.663
-------
STATISTICAL ANALYSIS PAGE 22
COUNTY STATt-AiUA:.. 01-0330 ..... _ PERIOD: 76/01/01..TO 76/12/30
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: GAS BUDBLER
.NOPTh B'HAM, BIRMINGHAM, JEFFERSON. C0 . (010380005G02> 1.. ANALYSIS: NASN SODIU" ARSENITE
.EB.I_.NITROG£N DIOXIDE . ... . . SAMPLING..INTERVAL : O.AILY._ UNITS:.. PARTS P ER. .11 LLI ON _(VOL /VOL )
PRIMARY STANDARD.(S) _ . S ECON D AR Y . S T ANDA R D ( S )
100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN 100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
. PERCENTILES
S..IT.E NUM ..MIN. ... --.ir"_-r:r-- .. MAX...
NUM DBS OBS _ .10 30 SD 7.0 ?0_ «5_ 96 97 98 9.9. Q_S_
_005 236 .011. . ...01.6..__..Q2.1 ,_0_2_« .0.3.0. ._0.42 ._OA8 ...049.._..0^9 ..05.6. ..0.5.6 f.O72
HIGH READINGS P.ERC.ENJ ARITH SJD G.EO GEO
(_2 ) (.3 )_ A C JU AL ME A N_ O.EV ME AN DEV
.. 060 ..05.8. .. 64.^8 .02.1 ..Q JJ). • 02 5 1, 43.7
-------
STATISTICAL AMALYS1S PAGE 25
COUNTY .. .. .. ._ _ _ . . STATE-AREA: 01..-03EQ _ _. PERIOD:. 76/08/C4 TO.76/12/31
ALAOAfA PROJECT: POPULATION-ORIENTED SURV. METHOD: INSTRUMENTAL
. DOWNTOWN BIRMINGHAM, JEFFERSON CO. (010380012G01) ANALYSIS: NOND1SPERS I VE INFRA-RED
£Ri_CAHflON .MONOXIDE _. _ ... SAMPLING ..-INTER VAL :... . 01.HOURS UNITS: PARTS. PER MILLION. (VOL/VOL)
PRIMARY STANDARD(S) — . SECONDARY STANDARD(S)
i
O 10,000 UG/M3 (0 C) 9 PPM 8 HR. MAX, 1 PER YR. 40,000 UG/M3 (0 C) 35 PPM 1 HR. MAX, 1 PER YR.
. .. PERCENTILES... . .. . _ . .
SITE Ml !-> f'.II* ... . .-—.-.__ . . - MAX
. _. OBS .. .035 10 .. 30 . ..50 70. _9.0 95 96 . 97 93... 99 05S
3,356 .0 .6 _ . 1.0 . .1.5 2.2 <>.3_ ,__5..7 _.6.3_ 7.0 7..9 _...?.9 25.1
. HIGH READINGS PERCENT ARITH .... ...S.TD GEO GF.O
._ (2) (3) ACTUAL MEAN DEV MEAN . ._DEV_
1.5.2 U.3 93.2 2.94 1.8_A 1.51 .2.19
-------
STATISTICAL ANALYSIS PAGE
.-COUMTY _ .._ STATE.-AREA:.._01-G380 PERIOD: 76/ 037 01_TO_76/_1A/30 __
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: INSTRUMENTAL
DOWNTOWN BIRMINGHAM, JEFFERSON CO. .( 01 03800.1 2G 0 1 > - ._. ANALYSIS:
'.£3_L_ WIND .SPEED . . SAMPLING __LNJ.ERV_AL.: 01 ..HOURS UNITS.: MILES.. P.ER_.HOUR_
. . . ... PERCENTILES ... - _ . ....
SITE NUM MJN .... ..: _.... ._ _ _.. MAX
.^ _.HUP .. DOS .. . COS _. 10 30.. _ 50 70 90 95 96 97 .. .93 99 DBS
i
- --- .-.6,138 .0.. ....1.0 2.5.-. 3.5 5 ..0 .Z..O... £.5 8.5 9.0 1C.O ..10.0 17.5
HIGH READINGS.. ..-.PERCENT ARITH STD GEO GEO . . ..
(2).. ._ .. .(3) ACTUAL.. MEAN DEV MEAN DEV... . ._
.16.5... .... 16.5 76.6 3..S9. 2.42 2.9.1_ . . _. 2.63
-------
STATISTICAL ANALYSIS PAGE 28
COUNTY STATE-AREA: 01-0380 . PERIOD: 76/01/01 TO 76/11/3o
ALADAXA PROJECT: POPULAT I ON-0R1ENTED SURV. METHOD: INSTRUMENTAL
. _ DO. MO «-N BIRMINGHAM,JEFFERSON CO.. (01038U012G01) . ANALYSIS: _ . ..
'£': UIND DIRECTION SAMPLING _ INTERVAL :. 01 HOURS UNITS: . ,D EGR E E.S. _(COMPASS)
— . _ . __ PERCENT I LES_ . .... _ .„. .
•f SITE MUM MN _ _____ _ .. . . ..... MAX
7"1 -^UM .... ODS _. . _.OBS 1 0 _._.._ 30 . _... 50' 70 90 95 _._96 .97 98.,. ...99... . OBS
ro
..012...... 6,035 5. .35 90. ..175..... 260. 33.5.._ ..350. _?50. ...355. 355.. 355. _ 375
HIGH READINGS _ PERCENT ARIT.H_. . STD . . GEO GEO
(2) ( 3) ..._._ .ACTUAL MEAN ... D E V ...... M E AN . DEV
360.. 360. 7S..3.- 1.80.59 JM0...98 131.31 .. 2.59.
-------
STATISTICAL ANALYSIS PAGE 29
.COUNTY, .... STATE-AREA:_01_-.0380 PERIOD:. 76/01 /01_..T.O .76yQ9/.21
ALABAMA PftOJICT: POPULATION-ORIENTED SURV. METHOD: TAPE SAMPLER
. DOJNTOwN OIRMlNGhAM,J£FFfcRSON CO. (010380012G01) . _ . ANALYSIS: TRANSM ITTANCE . -
E_R:_SOILING. INDEX (COH/1000LF) .. .. . SAMPLING . INTERVAL :._ . 02..HOURS.. .UNITS: .COHS/ 1 000 . LINEAR. FEET.
- . PERCENTILES . ..' ...
SITE.. . MUM KIN . . _ ._ -_ . . _ MAX
_Nl/* 085 CDS 10 30 5.0. 70 90. 95 96 97 98 .....99 DBS.
_D_12 3(10<, .? .1 ... ..3 .5 .. ..£... 1.7 2.4 2.6. 3.0 3.2 .3.2.. 6.9
. HIGH READINGS PERCENT AR1TH . ST0 _.GEO GEO . ..
. .. . (Z> (3) . ACTUAI MEAN DEV_ MEAN. ... DEV ...
5.9 5.6 98.0 .76 ..7.7 ..49 2.63
-------
STATISTICAL ANALYSIS PAGE 31
COUNTY .. . STATE-AREA: 01.-0380 -- .--PERIOD: 76/01/01 TO 76/12/30.. .
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
DOl.tJTO»-N BIRMINGHAM, JEfFERSON. CO. ( 0 1 033 00 1 2G 01 ) - ... - ANALYSIS: WEST-GAEKE SULFAMIC ACID
ER:.SULf UR..DJ.OXIDE . S AKPL ING_INT.Eft V AL: DAILY UNITS: PAR T S_P E.R__M I LLl ON (VOL/VOL)
_ PRIMARY STANDARD(S) .. - _ . SECONDARY STANDARD(S)
13CO UG/H3 (0 C) .5 PPM 3 HR. "AX, 1 PER YR
PERCENTILES
jITE NUH MN .. . • KA.X
_NU1.. ..CDS .. OBS... _ . 10 - .. ._ 30 .50 70 90. . 95 96 97. 98 99 OL-S
O12.__ 216.__ .000 .001 _..001... .002 .003 . 004 .. . . 004 ._ ..005 . .005 __.005 .005 .020
HIGH READINGS . .. PERCENT _ARII.H.. ... STD . GEO .GEO..
(2) (3) ......ACTUAL... __M.EAN _... OEV... . MEAN _ _DEV
.006 .. ,.006 59.3 .OQ2 .002 _ . .O02._ __ 1.857
-------
STATISTICAL ANALYSIS PAGE 32
COUNTY _ .STA.Te-AREA: .Q1-OL380 __.!._._ PERIOD: .. 76/01/01.TO 76/12/30 _.
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
DOWNTOWN BIRMINGHAM,JEFFERSON CO. .. < 01 33&001 2G 01 ) . ... ANALYSIS: NASN.SODIUM ARSENITE _ _ .
ER: NITROGEN .DIOXIDE .. .._ S AMPL IN.G_INT£R VAL :. DAILY. UMTS: . PARTS PER. MILLION ( VOL / VOL ) __.
> . PRIMARY STANDARD(S) _ . _ _ SECONDARY_STANDARD(S)
i _ _ _
i
en 100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN 100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
... PERCENTILES ...„. _. .
SITE KUM ._ l-'lii .r.---rrr-rr.r ... _ .. MAX
_NUf OBS .. OBS 10 30 5.0 70 90 95 96 .._?? 98..._ .. 99 . OBS _ . ..
.012 22L . .011_ .017 .022. ..030 .037.......049 .0.63 .065 _..06.9 .069... .069 .078
.. HIGH READINGS PERCEN.T ARITH S.TLD GEO GEO
(2) (_3) A.CI.UA.I. MEAN. DE.V MEAN DFV
.077 ..074 60...7 ..032 ..O.U ..02.9 1.520
-------
STATISTICAL ANALYSIS PAGE
._.COUNTY . .. . ...STATE-AREA: 01-0350 .. PERIOD: 76/01/01 T0_76/06/30
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
EAST THOMAS B IRPINCHAK,JEFFERSON CO. ( 01 0360019G01 ) ._. ANALYSIS: W E S T - G A E K E . S UL F AM I c ACID
£R:_SULFUR.DIOXIDE. _.. _. _S AMPL I NG_.INTER VAL : DAILY UNITS: PARTS PER. M 1 LLl ON_ ( VOL / VOL >
_ .PRIMARY STANDARDS.) . . SECONDARY STANDARD(S) .
1300 UG/N3 CO C) .5 PPM 3 HR. MAX, 1 PER YR
._.. _.. PERCENTILES . ...
i'U NUM .. . WIN . .. . ----------_"- . MAX
-H« CDS _. . OBS 10 ....30 .....50 70 90 _ 95 96 97 98 99 OfcS
-51» 38... _ ... .001 .001 .002 _.003 . 006_.__. .01 0 .0.13. .O.U. .015 .017. . ..017_ ,.017
... .. . _...HIGH READINGS PERCENT ARITH_ S.T D ~__Z- .."I G E 0 GEO
.. (2) .. (3) _ ACTUAL MEAN DEV._ MEAN DEV
..017 01.5. .._ . 4S..6_. .005 .004. .._ .003 2.385
-------
STATISTICAL ANALYSIS PAGE 35
-COUNTY __ _.STATErAREA:..C.1-0380 PERIOD: .76/01/01_TO_.7.6/J 0/30 __
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
EAST. THOMAS B1RKINGHAM,JEFFERSON.CO. ( 0103C001 9G01J ANALYSIS: NASN..SODIUM ARSENITE
ER_:_HIJROGEN_D10XJDE SAHPLJNG_INTER.VALJ DAIJJf. UNITS.: . _. PAR15_PER_ MlLUON_.(.VOL/ VOLJ.
PklMARY STANDARD(S).. _ _. SECONDARY STANDARD (S)
100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN 100'UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
' . . _ ... .PERCENTILES ..... ...
SITE HUM r.IN _ ._ ._ .1 _. ..._r--r-------- MAX
.NUM. 06S . ..ObS 10- 30_ .50. 7.0 9_(L .9.5.. 96 97__. ,.98 9.9 . 03S
.019 ,_ .158 _.013_... .020 ......030 .036.. ,04A ..fl5.9..__ .066. .0.70 .071 ........074 «C7* .086 _ . ....
..... . HIGH READINGS . . PERCENT AU.I.TH =_ S.TJ>.. _ .GEO .CEO _
.. ._...( 2.) _, (3). A.C.TUAL ME.AN_ D.EV. .MEAN ._ D.i V
.085. .080 5 2.1 ..038 ..015 .035 1. * 7,6.
-------
STATISTICAL ANAL-SIS PAGE
COUNT* .STATE-AREA:. 01-25 '0 PERIOD: 76/01/01.TO 76/12/31
PROJECT: POPULATION-ORIENTED S - R V . METHOD: INSTRUMENTAL
HUFFMAN, JEFFERSON CO ( 01 CS 7 0002 GO 1 ) ..... ANALYSIS: C HEM I LUM IN E S C ENC E
E.R:_OZON£ _ . . . .SAMPLING .INTERVAL: Q1..HOURS- UNITS: .PARTS. PER MILLION (VOL/VOL).
PK1MAKY STANDARD(S) _.. . _ SECONDARY STANDARD(S).
—. 160 UG/«3 (25 C) .6PPM 1 HR. MAX, 1 PER YEAR NONE
co
... PERC ENTILES- .. . . . -
SITE . NUrl MIN . . __ ...--- . ... _ MAX
-NUM 09S ..OBS .10 30 50 70 90 95 96 97 . .98 ......_ 99. OL'S._. ...
-5C2 . 8,066 . .000 .005._._.005 ,017._._.03l 053 .065 .068 .072 .076._.076 .128
HIGH READINGS. . .._. PERCENT ARITH. ... STD. GEO GEO
(2) (3) ACTUAL MEAN DEV MEAN._ _ DEV
....127. ..123 9.2....1 ..023. .020 . 0.15. 2.594
-------
STATISTICAL ANALYSIS PAGE 67
_.CCUN.TY . . STATErAREA:__01.r.1300 PERI 00 :._ 76/01/01 TO..76/09/02
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
.FAIRFIELD.JEFFER1.ON CO ( 0 1 1 3 00003G02 ) .. ANALYSIS: NONDJSP£RS IVE INFRA-RED
_.CARBO..N_MONOX1DE _ SAMPLING. INTERVAL: QJL-HOURS UNITS:. ....PARTS P£.R_ MI LLION _( VOL / VOL )
PRIMARY STANDARD(S) .. . SECONDARY STANDARD(S)
^ 10,000 UG/M3 (& C) 9 PPM 8 HR. MAX, 1 PER YR. 40,000 UG/M3 (0 C) 35 PPM 1 HR. MAX, 1 PER YR,
vo
- PERCENTILES
ITE ._ N'UM M1N _ . .. ._ -------—.- . ... . MAX
'•'UK 03S.. . COS 10 . 30.. 30 70 9.0 95 96. ... 97 _ 98 . ,99...._ OES
'0.3 5,123 .0 1." 1.3 ...1.6.... 1.9 2 . 5._ 2.8 .. .3.0. .3.1 3.3 3.3 5.7
HIGH READINGS PERCENT _ . ARITH _STD . .. GEO .. . GEO
(2) (3) ACTUAL MEAN DEV MEAN DEV
5.5 ... 87.1 . . 1.69 .63 1.57 . ... .1.49
-------
STATISTICAL AHALYSIS
PAGE
63
COUNTr . STATE-AREA: 01-1300
ALABAMA PROJECT: SOURCE-OH1EHTED AMBIENT SURV.
. M1RMELD, JEF.FER10N CO ( 011 300003G02) _ _ ....
ER;_ SULFU«_IHOXIDE . .. SAMPL I NG _ INTERVAL :.__ 01 HOURS
.PERIOD: 76/01/01 TO.76/,1 2/31 . . _.
METHOD: INSTRUMENTAL
ANALYSIS: COULOMETRIC
UNITS: PARTS. PER M I LL ION . ( VOL / VOL ).
PRIMARY STAHDARD(S)
SECOND ARY__STANDARD.(S).. .
1300 UG/M3 (0 C) .5 PPM 3 HR. MAX, 1 PER YR,
i
ro
o
_SIT£ _
OdS
OBS
_ PERCENTILES _..
1 0 T7_ .30 7 77. 50 70 90 ~_ 7 9.5 9697 .71 "98 7'_~.~Ij
MAX
OBS
.000 .005 ..005 ..00.5 ..01.2 ...025... .040 .048 _... 05S._ ..065.. .06.5.
.250
HIGH READINGS
. .(2) (.3).
PERCENT,
A.CTUAL._
_STD
M.EAN, PEV __
_.GE.O.. GEO
M.E4N. ... ... DEV
.207 90..0 .OJ.3 .017 .00?. . _2.127_
-------
STATISTICAL ANALYSIS
PAGE
69
COUN1Y . ... STATE-AREA:_01-.1300 PERIOD: 76/01/01 TO 76/12/31
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
FAI9F1ELD, JEFFEHSON CO ( 01 1 3 OOOC3G02 ) . ._. ... _. . . AN AL Y SI S : CHEM ILUMINESCENCE
U?:_OZONt., SAMPLING..1NT£RVAL: .._ _01_ HOURS.. UNITS: PARTS PER MILLION (VOL/VOL)
PRIMARY STANDARDCS)
SECONDA-RY STANDARD(S)
i
ro
160 UG/M3 (25 C) .fiPPM 1 HR. MAX, 1 PER YEAR
NONE
PERCENTILES
.SITE.
NUH
OBS
MN
oas
.10
..30.
50 70 90 .... . ..95..
..96
MAX
97 .. .96 99 OBS
-JB.03.
.5,187
.000 .005 .005. _,...Q1.2 .023 ..042.... ..05.4... .057 ..061 .066 ..066 .126.
HIGH READINGS
(2) (3)
PERCENT ARI.TH
ACTUAL MEAN
STD
DEV
GEO
MEAN
GEO
DEV
.119
.119 59.2..
...018 .0.1_7_
.012 .
2.438
-------
STATISTICAL ANALYSIS PAGE 71
.COUNTY... . ....STATfc-ABEA: 01-1300 PERIOD: 76/0 1 / 01 _TO._76/.1 1 / 3 0.
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: INSTRUMENTAL
fAIRFIfLD.JEfFERSON CO (011300003G02).-. . . -. . _ _ . _ . ... . ...-ANALYSIS:
ERJ_WIND DIRECTION _S AMPLJWG. JNTE R V AL : 0.1 -HOURS.... —-UN ITS :_ - D E GR E ES _( C OMP ASS )
- PERCENTILES ..... - -
, -SITE KUM . ,MN . . , --T-. ------- . . . ____ .. .. MAX
. .__. OBS . 03S 10 _____ 30 _ 50 ______ 70 __ _90 _____ 95 ______ 96 ______ 97 .98: ____ 99 __03S.
r\j --- --- --- -_ __ __ __ __ __ __ __ __ __ ___
ro
-OC3. 7,fi19 5. 35. ._ 1.10. 170. -.230. ____ 335.__350. _355. .._355.,.. 360. -..360. _ 1180.
— . HIGH HEADINGS . -. PERCENT ...... ARITH _____ STD GEO GEO
--- . . . (2) (3) __________ ACTUAL ....... _____ MEAN _______ . D E V _ .. .... MEAN ..... __D£V._.. .._ _ ____ . .
1100. 770. 9.7.5 17 8..0.1 1C8.19.__ 132.71 . .. ,2.50_._
-------
STATISTICAL ANALYSIS F>AG£ 72
COUNTY . .STATE-AREA: 01-1300 . ..PERIOD: 76/01/01 TO 76/09/21.
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. f'.ETHOD: TAPE SAMPLER
. FAIRFIELOt JEFFERSON CO (01 13C0003G02) . .. ~. '.. ...""ANALYSIS: TRANSMITTANCE
ER; SOILING .INDEX (COH/ 1 CPCLf) ..... SAMPLING INTERVAL:. . 02.HOURS . UNITS: COHS/1000 LINEAR FEET
... PERCENT1LES ._ ...._. _
.SITE .NUM.... MIN rjr.Trr.--T.r-rr _.._MAX
T _>HIK __08S ......_.. OBS 10 30. 50 70 . 90 95 96 97 ?8_.._ .9.9 09S_.
i ~"~ ~~~
ro
W _"C3. .._ ..3,131 .C .1 .2 .4 .6 1.0 1 ..4 J.4 1.6 1.8. _1.8__ 3.8
HIGH READINGS PERCENT A.RITH. .. . STD GEO_._.. _ . GEO
(2) (3) ACTUAL .ME.AN__. ..OEV MEAN DEV
3.4 3.3 ... 98..S .5J .4.3 ..34.. . 3.00.
-------
STATISTICAL ANALYSIS PAGE 74.
_COUNTY STATE-AREA:..OT-1300 P E«10 0 :. 76/01/01 TO 76/12/10
ALABAMA PROJECT: SOURCE-0R1ENTED AMBIENT SURV. METHOD: GAS BUBBLER
... .FAIPfltLC, JEFFERSON CO
-------
STATISTICAL ANALYSIS PAGE 75
COUNTY STATE-AREA:., 0.1.-1300. PERIOD: 76/01 701. ..TO..7.6/1 2/30
ALABAMA PROJECT: SOURCE-ORIENTED AMBIENT SURV. METHOD: GAS BUBBLER
.. FAIRFIELD.JEFFEPSON CO ( 011 300003G02) _._.._.. ANALYSIS: NASN SODIUM ARSENITE
.EJLl_MTROGt.V DIOXIDE ... _._ ._ SAMPLING -INTERVAL L DAILY UNITS: PARTS PER.MILLION (VOL/VOL).
3>
l
PKIMARY STANDARD(S) .... . . ._ ._ SECONDARY STANDARD(S)
100 UG/M3 (25 C) .05 PPf. ANNUAL ARITHMETIC MEAN 100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
.._ .. PERCENTILES .
SITE MK . KIN . ._ -r.-r .- . . - . _MAX
.-NUM.. . DOS ... OBS 10 ...30 5Q 70 90 ..95 96. ... 97 98. .... 99 08S
_D03._..._ 223. ..008 .012 .016 .020 ..024 .036. ... .047 .. _.049._ .055 .057 . .057 .064
HIGH READINGS PERCENT AR1TH . . STD . GEO GEO
_ (2) (3) . .ACTUAL MEAN .... DEV _ .MEAN. . DEV .. ._...._
.064 .060 62.6 .023 __.011. _ ....020. 1.538
-------
STATISTICAL ANALYSIS PAGE 117
COUMY SUTE-APEA: 01-21AO PERIOD: _76/08 / 1 6. TO. 76/.1 1 / 30 _
ALABAMA PROJECT: FOPULATIOK-ORIENTED SURV. METHOD: INSTRUMENTAL
LEEDS, JEFFERSON CO (01 2 UQ003G01 ) . . __.._. ANALYSIS:
£R:_WIND. SPEED. .. .. SAMPLING . INTERVAL : 01.. HOURS UNITS: ..._KNOTS . _
I
en
. PERCENTILES _ .. _ . . .
SITE . .NUM . . KIN ;. __ __ IJJAX
-NU* 00S 035 10 . ._ 30._ .._.50 70. _ 90.._ .. 9.5 __ __ .96 . *_ ..97 __.~98 "!'„_99~___J OBS_
003 __2,361_ _.0. 0. ... 1. 2. 4 6 7. 7 8 8 8.. . _ .55.
. . HIGH READINGS PERCENT .__ ARITH _.STD . ..GEO GEoT
._ (2) (3) , ACTUAL_. MEAN DEV ..__MEAN.._" _OEV..l '.. _"
1*. 13. .91.9 2.86 2.47. 1.«9.. 4.72
-------
STATISTICAL ANALYSIS PAGE 118
COUNTY STATE-APEA: 01-214G _"__" J.__.~PE R100: 76/08/16 T0_76/11/30
ALA2APA PROJECT: POPULATION-ORIENTED SURV. METHOD: INSTRUMENTAL
LEEDS,JEFFE»SOf« CO ( 01 2 U 0 D03GC11) 7 " Y.I.71 . . '. '~~. ~. ~~ 7".~AN AL Y S I S : """1777
.EB:_WIND DIRECTION . _ ....SAMPLING INTERVAL: 01.HOURS UNITS: DEGREES. (COMPASS)
> - PERCENTILES... . _ „
1, SITE r,UH. . .flN . __.- .. ,.,AX
^ _'*U'*. . . ORS . DBS 10 30 _ 50 70 90. _.._ "5. .__.?6 .97 98 . . ..99 . 06S
.O.U3 3,365 0. 35. 1?5. 175.._ 275... _ 330... _ 3*5. .. .350.. . 35C. 355. _355. 3AOO,
. .. HIGH READINGS PERCENT_ ARITH SJD. GEO GEO '_'.'. '_ _
_.. . . (2) (3)._ .ACTUAL MEAN. DEV MEAN. DEV
1650. 1100. 92.1 185.68 .134.2? 133.67 2.66_.
-------
STATJSTICALANALYSIS PAGE 11V
— COUNTV . __ STATE-AREA:._01-2UO PER I 00 : .. . 767 0 1 / 01 10^76/08731 _
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: TAPE SAMPLER
LEEDS, JEFFERSON CO ( 01 2 UOU03GO 1 ) . .. ...... ANALYSIS: TRANSMITTANCE
-£«:_. SOILING .INDEX (COH710COLF) S AMPL I NG -1N.T E.RVAL.: 02 HOURS UNITS: COHS.7100C .LINEAR f E £.T
3» . .. PERCENTILES.
L -SITE . _ NUN rlN. T . MAX
^ -_NU1 .. OBS,._ . 03S 10 30_ 50 7.0 90 .95 96 97. 98 99 OBS
oo — — __ __ — __ __ __ __ —
... . 2,399 .0 .0 .1 .2 .4 .8 .9 1 .0 _ .._1 .2—.. 1.4 1.4... 3.6
HIGH READINGS . .PERCENT. ARITH .. STD GEO. .„ ..._ GEO
(2) (3)_ ACTUAI MEAN .OEV_ _ MEAN 0£V .
3.6 3.2 . . ... .82.3 32 . . 35 .13. 5.7.1.
-------
STATISTICAL ANALYSIS
PAGE 121
COUNTY_ . . ... . STATt-AREA:_01-2140_
ALABAMA PROJECT: POPULATION-ORIENTED SURV.
LEEDS,JEFFEkSON CO ( 012140J03G01) - . . ...
PERIOD: ._76/01/01 TO 76/09/30
METHOD: GAS BUBBLER
ANALYSIS: WEST-GAEKE SULFAH1C ACID
r.R:_SULFUR DIOXIDE
SAMPLING,INTERVAL: DAILY. __.UNJTS:. PARTS PER MILLION (VOL/VOL>_
PRIMARY STANDARD(S)
SECONDARY STANDARD(S)
ro —
to
1300 UG/K3 (0 C) .5 PPM 3 HR. MAX, 1 PER YR
.PERCENTILES
SITE
NUM
.. OBS .....
KIN
OBS
MAX
10 .30 _50 .70 90 95 96 9.7. 98 99 OBS
_J)03 11.1.. .000 .001._... .001._._.001 .001 .001...... .C0.1 .001 .001 . .001. .001 .002
... .. . HIGH READINGS. . . _. P ERC ENT ._. _ _AR ITH ... .STD .GEO. GEO .
. (2) (3) ACTUAL MEAN_ _ . ._DEV MEAN . DEV .
.001
.001 40.7 .00.1 .fO.O .001 1.073
-------
STATISTICAL ANALYSIS PAGE 122
_. ..COUNTY , STATE-AREA: 01-2T.Q __ _ PERIOD: 76/01/01 TO 76/10/30
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
.-._ LEEDS, JEFFERSON CO ( 0 1 2 U0003 GO 1 > .__. _._._.. _ . ANALYSIS: NASN SODIUM AHSENJTE
£",- MTROGEN .DIOXIDE S AMPL I NG _IN1E R V AL ; DAILY __..UNITS: PARTS PER MILLION (VOL/VOL.>_.
i
CO
o
PRIMARY STANDARD(S) ... .._ _. . .. SECONDARY STANDARD(S)
100 UG/H3 (25 C) .05 PPH ANNUAL ARITHMETIC MEAN 100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
. PERCENTILES ~I '_ _~ '
.ilTE _. NUM MIN _ KAx
_NfK OBS .. . OBS 10 ... . 3C . 5C "_~70 " 9.0 95 7. II. _?6 1._ _97 98.^ 99 OcS
-90.3! .... 17i .005 ..005 .._.010 _.. .01.1 . O.U .021 .025. .026 .026 .027 ..027 .. .033
HIGH READINGS P ERC ENT__IIH~AR I TH_ ,.~ _I S T D _Z .ZUc
-------
STATISTICAL ANALYSIS pAG£ 191
COUNTY. .. .. _ . ._ STATL-AREA:._.flt-3200 PERIOD:~- 76/Ol/-01-_IO_76/09/30.
ALABAMA PROJECT: POPULATION-ORIENTED SURV. METHOD: GAS BUBBLER
TARRANT CITY, JEFFERSON CO (0132 00001G01 ) . ... ANALYSIS: WEST-GAEKE SULFAMIC ACID
LR^_SULFUR DIOXIDE _ . . SAMPLING INTERVAL.: DAILY UNITS: PARTS PER MILLION _
PKIKARY STANDARD(S) . ._.._. ... SECONDARY STANOARD(S)
•j-1 ' 1300 UG/M3 (0 C) .5 PPM 3 MR. MAX, 1 PER YR,
CO
. ... PERCENTJLES_ . .. .
SITE MUrt M1N . .....-—. ... . MAX
_NUH . . CDS CBS 10 30. 50 70 .9.0 .95 96 97 ... 98 . 99 . DOS
_C01. . . 113 .000 .001 .001. .OG1_. .001 .002.... .002 .003....003 .003- .003 .003
_.. HIGH READINGS. PERCENT ARITH STD GEO . . GEO . . .
(2) (3> ACTUAL .._ KEAN_ _ DEV . MEAN ...... DEV _ . . ..
.003 . . .003 41.4 .001 ... .._ .000 .001... _ . 1.337 .
-------
STATISTICAL ANALYSIS PA^E 192
COUNTY STATE-AREA: 01-3200 _... PERIOD: 76/01./01 TO 76/10/30 .
ALABAMA PROJECT: POPULATION-ORIENTED SURV. KETHOD: GAS BURDLER
... T ARRANT CITY,JEFFERSON CO.(013200001601) _ __. _ .. . ANALYSIS: NASN SODIUM ARSEN1TE
JE?.:._NITROG.EN DIOXIDE _ _ SAKPL ING . INTER VAL : DAILY UNITS: P ARTS_ PER _.M I LL ION (VOL/VOL)
Ul
IN3
_ . . PRIMARY STANDARD(S) . _ . _ _ .. SECONDARY S T AN D A R D ( S > ... . ._ . .
100 UG/M3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN 100 UG/H3 (25 C) .05 PPM ANNUAL ARITHMETIC MEAN
_. .. ... ._ .PERCENTILES .. _ ....
_SITE_ MJM ... ._ KIN . •_ ".7.---_--- ~~ MAX
_MUM _._. . DOS. OBS _. 10 30 50 70 _9Q 95 9.6 97 98 _?9 OBS
_OC.1_. 185 .005 .011 _ _.OH ._ ..017.. .023 .032_. ... .036 .038 .0^.6 .050 .050 .999
HIGH READINGS PERCENT ARJTH STD GEO GEO.
_ ( 2 ) ( 3 ) A C TU A L HE. AN P E V K E A_N D E V
.05.3 . .050 61.1 .J)25 _..07.3 .0.19 1_. 646.
-------
APPENDIX A-2
PROPOSED ACTION FOR U. S. STEEL MODERNIZATION
-------
STEEL MILL MODERNIZATION
INTRODUCTION
In the simplest of terms, raw ingot production at any
integrated steel producing facility is dependent upon the production
of three commodities—namely, coke, pig iron (i.e., hot metal), and
steel. The last fifteen years have seen significant advances in the
technology of making iron and steel. In the early 1960's, the
typical primary production facilities associated with an integrated
steel plant consisted of batteries of coke ovens, in the 3 to 4 meter
range, for the production of coke; blast furnaces, whose burdens
consisted of large amounts of raw ore along with smaller amounts of
pellets, sized ore and sinter, for the production of pig iron; and
open hearth furnaces for the production of steel. Today, coke ovens
are still the basic production tool for the manufacture of coke.
However, coal preparation and coke-making technology have been advanced
to make a better, lower sulfur fuel for the blast furnace. In addition,
the size of new batteries has increased to the six to eight meter
range. Blast furnace feed materials have been changed from run-of-the-
mine varieties to closely sized, select ores, and to sinter and pellets
made from less suitable ores. The use of these beneficiated burdens,
along with higher blast temperatures and fuel injection, have resulted
in increased hot metal production at significantly lower coke rates.
Steel making technology has changed from one dominated by open-hearth
technology to one dominated by basic oxygen and electric arc furnaces.
Two hundred ton heats which formerly took 5 to 10 hours to produce in
the open hearth shop are now produced in 30 to 40 minutes by basic
oxygen furnaces.
In the late 1960's, U. S. Steel operated 7 coke batteries,
6 blast furnaces, and 17 open hearth furnaces in their Fairfield-Ensley
complex. Except for blast furnace top gases, the emissions associated
with these processes were esentially uncontrolled. This resulted in
yearly emissions in the range of 63,069 tons per year (see Appendix A-2.1)
The pre-1972 Fairfield-Ensley complex breakdown is given in Table 1.
A-2-1
-------
Table 1
Pre-1972 Fairfield-Ensley Complex
Production Breakdown
I. Coke Production (all coke produced at Fairfield)
Battery 23 264,000 tons/year
Battery 24 264,000 tons/year
Battery £5 406,000 tons/year
Battery 26 406,000 tons/year
Battery $7 380,000 tons/year
Battery 28 380,000 tons/year
Battery #9 156,000 tons/year
Total 2,256,000 tons/year
II. Iron Production and Coke Consumption
A. Fairfield
Iron Production (tons/year) Coke Rate (Ibs/ton)
25 Furnace 515,500 1,095
#6 Furnace 515,500 1,140
27 Furnace 704,600 1,124
Total Iron Produced = 1,735,600 tons/year
Total Coke Consumed = 972,409 tons/year
B. Ensley
Iron Production (tons/year) Coke Rate (Ibs/ton)
21 Furnace 399,400 1,295
#2 Furnace 418,600 1,295
23 Furnace 382,100 1,295
Total Iron Produced = 1,200,100 tons/year
Total Coke Consumed = 777,100 tons/year
C. Fairfield-Ensley Complex
Iron Production - 2,935,700 tons/year
Coke Consumption - 1,749,500 tons/year
III. Steel Production, Iron and Scrap Consumption
A. Fairfield (12 open hearths)
Steel Production = 2,700,000 tons/year
Iron Consumption = 1,927,800 tons/year
Scrap Consumption = 1,061,100 tons/year
R. Ensley (5 open hearths)
Steel Production = 800,000 tons/year
Iron Consumption = 634,800 tons/year
Scrap Consumption = 293,600 tons/year
A-2-2
-------
Table 1 (cont'd)
C. Fairfield-Ensley Complex
Steel Production = 3,500,000 tons/year
Iron Consumption = 2,562,600 tons/year
Scrap Consumption = 1,354,700 tons/year
IV. Rolling Mill Capacity
A. Fairfield
46" mill = 1,477,000 tons/year
45" mill = 671,000 tons/year
Total 2,148,000 tons/year
B. Ens ley
44" mill = 852,000 tons/year
C. Fairfield-Ensley Complex
rolling mill capacity = 3,000,000 tons/year
V. Reason for Difference in Coke Production and Consumption
The difference between coke production and consumption (2,256,000 tons/
year - 1,749,500 tons/year = 506,500 tons/year) is explained by the
fact that in the pre-1972 years, approximately a half a million tons
of coke per year was shipped from Fairfield to U. S. Steel's South
Works (Chicago, Illinois).
VI. Reason for Difference in Iron Production and Consumption
The difference between iron production and consumption (2,935,700
tons/year - 2,562,600 tons/year = 373,100 tons/year) is consumed
by a foundry which is operated at the Fairfield works.
VII. Reason for Difference in Steel Production and Rolling Mill Capacity
The difference between steel production and rolling mill capacity
C3,500,000 tons/year - 3,000,000 tons/year = 500,000 tons/year) is
due to Toss of tonnage in processing the raw steel into a marketable
product.
A-2-3
-------
With the advent of pollution control requirements, U. S. Steel
decided not to put control devices on their open hearths, but rather
to modernize the Fairfield-Ensley complex and switch their steel
production from 17 uncontrolled open hearths to 3 very well controlled
Q-BOP furnaces.
Prior to 1971, U. S. Steel had the capability of pro-
ducing 2.7 million tons of steel at their Fairfield open hearth shop
and 0.8 million tons of steel at their Ensley open hearth shop. Their
modernization plan called for no increase in steel production for the
Fairfield-Ensley complex and thus, rolling mill capacity at the complex
has, and will in the near future, remain constant at approximately
3.0 million tons per year. However, the switch in steel production from
open hearth technology to Q-BOP technology necessitated major changes
in other primary production facilities.
Open hearth technology is characterized by great flexi-
bility in the percentage of hot metal which can be used in the process.
Anywhere from 30 percent to 80 percent of the metallic charge in an
open hearth will consist of hot metal with the remainder being scrap.
However, basic oxygen furnaces by their very nature are high hot metal
consumers. These furnaces need at least 65 percent or more of their
metallic charge to consist of hot metal (the Fairfield Q-BOP1s require
approximately 85 percent of their metallic charge to be hot metal).
Thus, in order to produce an equivalent amount of steel from Q-BOP
technology which was previously produced by open hearth technology, an
additional quantity of hot metal is needed. U. S. Steel plans to obtain
the additional hot metal needed by replacing their three existing
Ensley blast furnaces (yearly production equal to approximately 1.2
million tons/year) with a new 4,949 tons/day (1.803 million tons/year)
furnace and by improving the burdens and thereby increasing production
on two of their three existing Fairfield blast furnaces. This will
result in increasing their hot metal production capability from 2,935,700
(pre-1972 capability) to 3,500,000 (capability at the completion of
their present modernization program).
A-2-4
-------
In order to produce more hot metal it is generally
necessary to have more coke. The only manner in which more hot metal
can be produced without requiring more coke is to improve the blast
furnace coke rate. The coke rate improvement anticipated by U. S. Steel,
due to the construction of their new blast furnace and improvement of
the burdens on 5, 6, and 7 blast furnaces, will allow them to produce
the additional hot metal needed without increasing coke plant production.
However, the deteriorating condition of the older coke batteries at
Fairfield (batteries 3, 4, 7, and 8) required that a new six meter
battery of coke ovens be constructed in order to maintain the coke plant
production at near its present rate.
The switch from open hearth technology to Q-BOP technology
was started in 1972 with the start of construction of the first two
Q-BOP vessels at Fairfield. The Q-BOP's at Fairfield are housed by the
same building structure which formerly contained the 12 open hearth
furnaces. By mid-1972, construction of the two Q-BOP vessels had
progressed to the point where it was necessary to dismantle three of the
open hearth furnaces to make room for the Q-BOP vessels. The Toss of the
three open hearth furnaces had the result of reducing steelmaking
capability at Fairfield. For example, yearly production for the Ensley-
Fairfield complex was only about 3.0 million tons in 1972 versus
approximately 3.3 million tons in 1970. This reduced steelmaking capa-
bility continued during 1973 and 1974, and will continue to some extent
until the completion of the modernization program. In August of 1974,
the first of the two Q-BOP vessels was put into operation. In
September, the second vessel was put into operation. Throughout the fall
of 1974 and into 1975, Q-BOP production continued to increase as start-
up problems were solved. Correspondingly, open hearth furnaces at
Fairfield were phased out of operation. The last Fairfield open hearth
furnaces were phased out of operation in March of 1975.
A-2-5
-------
To EPA's knowledge, the two Q-BOP furnaces and the then
existing iron and coke making facilities were thought to be adequate to
allow U. S. Steel to produce at a production rate sufficient to allow
the closing of not only the 12 Fairfield open hearth furnaces, but also
the 5 Ensley open hearth furnaces. However, in early 1975, U. S. Steel
met with EPA and indicated that they thought that it was understood by
all parties that the two Q-BOP vessles were only designed to replace
the Fairfield steelmaking capability. U. S. Steel stated that they had
not previously committed themselves to a course of action for Ensley
and only now were they willing to make such a commitment—the commitment
being that they would replace Ensley's production capability by building
a third Q-BOP vessel at Fairfield--but that this course of action would
necessitate the building of a new blast furnace and coke battery. U. S.
Steel further noted that such a commitment could not possibly have been
given in 1972 because Q-BOP technology was new technology and it was
necessary to insure that the first two vessels produced up to expecta-
tion before further commitments could be made. In addition, U. S. Steel
indicated that this modernization problem would not be completed until
late 1977, and it would be necessary to operate the Ensley open hearths
until the completion of the program.
U. S. Steel's revelations resulted in a series of meetings
and conferences which were terminated by the signing of a consent
agreement between U. S. Steel and EPA. The consent agreement allowed the
operation of the Ensley open hearths at reduced production rates until
June 30, 1976. It should be noted that although not specifically stated
in the consent agreement, it was understood by all parties that the
phasing out of the Ensley open hearths would be accompanied by the
continuation of the modernization program.
New Source Construction in Non-Attainment AQCR's
Headquarters has just recently (January 16, 1976) issued
a draft policy concerning new source construction in non-attainment
AQCR's. This policy basically states that:
A-2-6
-------
1. BACT must be employed on all such new sources
constructed.
2. Emission reductions equivalent to or greater than
the emissions associated with any new facilities
must be accomplished prior to the start-up of any
such facilities. These emissions reductions will
normally be the responsibility of the facility
which has requested permission to construct a new
source. The emission reductions or trade-offs
will generally be accomplished by upgrading RACT on
existing processes at the facility to BACT.
Region IV would like to discuss each of these points as
it relates to the proposed modernization of U. S. Steel's Fairfield-
Ensley complex.
The Region certainly agrees that BACT should be employed
on all new facilities constructed in non-attainment AQCR's. Appendix
A-2.2 indicates what type of control equipment U. S. Steel has proposed
for its new facilities and the emissions which will result. It is
interesting to note that U. S. Steel has proposed no control equipment
for the blast furnace cast house and blast furnace material loadings.
In addition, less than BACT has been proposed for Q-BOP fugitive
emissions, coke battery quenching, and coke battery underfiring stacks.
In regard to trade-offs, the Region understands the
philosophy imparted in the draft policy but believes caution is necessary
when applying that policy. When compliance schedules under the original
SIP called for achieving compliance by phasing out an uncontrolled
production technology and replacing it with a controlled alternative
production technology, special problems can be encountered. If the
construction of the new or replacement technology extends past the July,
1975 attainment date and if that construction is to take place in a non-
attainment AQCR, then an unusual set of circumstances can occur.
Appendix A-2.2 shows the emissions which will result (2,348 tons/yr) from
A-2-7
-------
the construction of a third Q-BOP vessel, a new blast furnace, and a new
coke battery at Fairfield. Strict interpretation of the new draft policy
would require that U. S. Steel further reduce emissions by at least
2,348 tons/yr from their present operations before the new sources could
be put into operation [actually, only a reduction of 827 tons/yr would
be required if BACT were applied on all emission points associated with
the new sources (see Appendix A-2.3)]. The Region feels that requiring
trade-offs for those new sources is most unfair for the following reasons:
1. Table 1 illustrates the primary facilities' production
mode for the Fairfield-Ensely complex prior to 1972,
while Table 2 shows what the production capabilities
will be at the conclusion of the modernization program.
Correspondingly, Appendix A-2.1 shows the emissions
which were generated by these facilities prior to 1972
and Appendix A-2.4 shows those which will be generated
at the conclusion of the modernization. Note that the
modernization program will reduce the pre-1972 emission
level by approximately 88.8 percent. The modernization
program is nothing more than a compliance schedule with
an extended time frame necessitated by the construction
of replacement technology. If U. S. Steel had needed
an extended time frame necessitated by the construction
of replacement technology. If U. S. Steel had needed
an extended time frame to put control technology on the
original primary production facilities, no trade-off
emissions would be required of the corporation. This
would be true despite the fact that putting control
devices on the original production facilities would
result in only a 74.6 percent reduction (see Appendix
A-2.5) in the pre-1972 emission levels as compared to the
88.8 percent reduction which will be achieved by the
modernization program. Thus. U. S. Steel's decision
to modernize their Fairfield-Ensley complex, thereby
reducing emissions by 8,997 tons/yr more than if
A-2-8
-------
Table 2
Post-Modernization Period Fairfield-Ensley
Complex Production Breakdown
I. Coke Production (all coke produced at Fairfleld)
Battery #5 374,000 tons/year
Battery #6 374,000 tons/year
Battery #9 350,000 tons/year
New Battery 900,000 tons/year
Total 1 ,998,000 tons/year
II. Iron Production and Coke Consumption (all iron will be produced at Fair-field
#5 Furnace
#6 Furnace
#7 Furnace
#8 Furnace
Iron Production (tons/yr)
411,000
551 ,000
735,000
(new furnace) 1,803,000
Coke Rate (Ibs/ton)
1065
1065
1100
911
Total 3,500,000
Total Coke Consumed = 1,737,800 tons/year
III. Steel Production, Iron and Scrap Consumption (all steel will be produced
at Fairfield)
3 Q-BOP Shop Production = 3,500,000 tons/year
Iron Consumption = 3,381,000 tons/year
Scrap Consumption = 597,000 tons/year
IV. Rolling Mill Capacity
A. Fairfield
46" mill 1,505,000 tons/year
45" mill 846,000 tons/year
Total 2,351,000 tons/year
B. Ensley
44" mill = 560,000 tons/year
C. Fairfield-Ensley Complex
rolling mill capacity = 2,911,000 tons/year
V. Reason for Difference in Coke Production and Consumption
At the completion of the modernization program, Fairfield will no
longer produce excess coke for shipment to other U, S. Steel Plants.
However, a surplus production of approximately a quarter of million
tons per year is necessary in the event that raw materials used for blast
furnace fuel injection (natural gas and Bunker C oil) would not be avail-
able. This explains the difference between production and consumption.
(1,998,000 tons/year - 1,737,800 tons/year = 260,200 tons/year).
A-2-9
-------
Table 2 (cont'd)
VI. Reason for Difference in Iron Production and Consumption
t
Again, the difference between iron production and consumption (3,500,000
tons/year - 3,381,000 tons/year = 119,000 tons/year) is consumed by
the foundry operations at Fairfield.
VII. Reason for Difference in Steel Production and Rolling Mill Capacity
Again, the difference between raw steel production and rolling mill
capacity (3,500,000-tons/year - 2,911,000 tons/year = 589,000 tons/year)
is due to the loss of product in the processing operations.
A-2-10
-------
control equipment had been put on the original
facilities, will result in the corporation being
penalized by having to further reduce emissions on
their existing emission points by an additional 827
to 2,348 tons/yr. This seems inherently unfair.
If U. S. Steel had expanded production capabilities,
during their modernization program, then trade-offs
for the emissions associated with any production
increases would seem appropriate. However, when only
replacement capabilities on a ton per ton basis are
involved, there would appear to be no place for the
trade-off policy.
2. As has already been discussed, the U. S. Steel-EPA
consent agreement was predicated on the fact that
the modernization program would take place. It would
seem unfair for EPA to now change the ground rules
before that modernization program had a chance to be
completed.
There is yet another area where great caution must be
used in applying the proposed trade-off policy. This can be demonstrated
by using the Fairfield-Ensley modernization program as an example. A
very large number of factors determine the production capability of a
basic oxygen furnace shop. The most important of these factors can be
summarized as follows:
1. The amount of heats which can be processed by the
BOF or Q-BOP vessels available.
2. The amount of gas which the gas cleaning facilities
can handle.
3. The oxygen and nitrogen gas capabilities of the shop.
4. The support facilities available—teeming facilities,
rail lines, engines, ingot buggy cars, etc.
5. Slab casting facilities available.
A-2-11
-------
6. Soaking pit capacity of plant.
7. Limitations of conversion and finishing facilities.
8. Feed materials available—hot metal and scrap.
If the modernization plan indicated by Table 2 is followed,
each of the preceding factors except one would limit U. S. Steel's
Fairfield Q-BOP shop production to 3.5 million tons/yr. The one factor
which does not limit Fairfield1s steel production to 3.5 million tons is
the amount of heats which the three vessel Q-BOP shop can process. All
other factors not considered, the Fairfield Q-BOP shop will have the capa-
bility of producing 5.0 million tons/yr.
As noted earlier, U. S. Steel's modernization program calls
for retiring the Ensley blast furnaces (furnaces 1, 2, and 3) and coke
batteries (3, 4, 7, and 8) from service. It should be noted, however,
that U. S. Steel has the capability of operating each of these units in
compliance with existing SIP regulations. Suppose that U. S. Steel is
given permission to proceed with their modernization program without the
need for obtaining trade-offs for the emissions associated with the new
facilities. Such permission being granted on the basis that no expansion
in product capabilities will result from the modernization plan (i.e.,
replacement of production x produced by technology 1 with production x
produced by technology 2) and thus, the modernization program represents
nothing more than an extended compliance schedule. Now, however, assume
that at the completion of the modernization program business conditions
are such that U. S. Steel could sell more products than the 3.5 million
production rate will allow. U. S. Steel could then decide to keep
operating the Ensley blast furnaces and the old coke batteries. Operation
of the Ensley blast furnaces would produce an additional 1,200,100 tons/yr
of hot metal over that which is shown in Table 2. Operation of the
blast furnaces would require 777,100 tons/yr of coke but that could
easily be supplied by the old coke batteries which have a production
capability of 1,288,000 tons/yr. If the 1,200,100 tons of hot metal
were consumed in the Q-BOP process, an additional 1,242,500 tons of steel
A-2-12
-------
could be produced. This is well within the limits of the Fairfield
Q-BOP shop (1,242,500 + 3,500,000 = 4,742,500 tons/yr) which as previously
noted has a production capability of 5.0 million tons/yr. Thus, if
U. S. Steel expanded their gas cleaning facilities, oxygen and nitrogen
producing facilities, support facilities, slab casting facilities,
soaking pit capacity, and conversion and finishing mills, they could
increase their production capabilities by 1.2 million tons/yr. Note
that the emissions associated with the preceding facilities, which would
be the facilities for which construction permits would be necessary, are
quite small. Therefore, the amount of trade-off emissions which could
be demanded of U. S. Steel for increasing their production capabilities
by 1.2 million tons/yr would be next to nothing, despite the fact that
emissions would actually increase by over 3,100 tons per year from the
Fairfield-Ensley complex (see Appendix A-2.6). It would appear that when
replacement construction is approved in non-attainment AQCR's, the permit
would have to be conditioned to allow no future expansion of production
at the facility without first obtaining appropriate trade-offs.
The final point which the Region would like to make in
reference to Headquarters draft policy concerns the type of emission
reductions which can be considered to be appropriate for trade-off
consideration. The question is whether a source has already reduced
emissions by a greater amount than that required by the existing SIP
regulations, and is the differential amount of emissions eligible to be
considered as trade-off emissions. It is the Region's belief that if a
company agrees to a permit condition requiring that the source be
operated at the reduced emission levels, then the differential emissions
should be eligible to be counted as trade-off.
A-2-13
-------
ATTACHMENT I TO APPENDIX A-2
EPA CALCULATIONS ON THE NEW COKE BATTERY
COAL FLOW EMPLOYED IN AQDM
-------
ATTACHMENT I TO APPENDIX A-2
EPA Calculations on the New Coke Battery Coal Flow Employed in AQDM
1. Railroad car to existing No. 3 coal unloading station to conveyor
belt.
2. Coal for existing batteries which is processed through the No. 3
station is dumped on the ground for storage.
3. Coal for new batteries is stored in three 10,000 ton storage silos.
4. No emission factor or estimate was made by U. S. Steel for car dump
stations. EPA estimated, based on a similar facility for another
coke producer, that emissions are equal to :
(120,900 SCFM)( 02 gr/SCF)(60 min/hr)(2,080 hrs/yr)
(7,000 gr/lb)(6,020 tons/day)(365 days/yr)
= 0.0196 Ibs/ton of coal processed.
Therefore, the mass emission rate, as reported in the EIS is:
0.0196 Ibs/ton x 6,020 tons/day x 1 day/24 hrs = 4.9 Ibs/hr
The car dump operated 16 hours a day on the average.
5. Emissions from storage silos are as follows (based on U. S. Steel
input):
(8,800 SCFM)(60 min/hr)(.Q2 gr/SCF)(3 units)(16 hrs/day)(365 days/yr)
(7,000 gr/lbj(156 tons of coal/hrj(8,760 hrs/yr)
= 0.0193 Ibs/ton of coal processed.
Therefore, the mass emission rate, as reported in the EIS is:
0.0193 Ibs/ton x 156 tons/hr = 3.01 Ibs/hr
6. Coal from storage silos flows to the primary coal pulverizer. Emissions,
based on U. S. Steel input, are as follows:
(23,581 SCFM)(60 min/hr)(.Q2 gr/SCF)(16 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.0173 Ibs/ton of coal processed.
Therefore, the mass emission rate, as reported in the EIS is:
0.0173 Ibs/ton x 156 tons/hr = 2.69 Ibs/hr
7. Coal from primary coal pulverizer flows to the coal mixer. Emissions,
based on U. S. Steel input, are as follows:
-------
(6,342 SCFM)(60 min/hr)(.Q2 gr/SCF) (16 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.00465 Ibs/ton of coal processed.
Therefore, the mass emission rate, as reported in the EIS is:
0.00465 Ibs/ton x 156 tons/hr = 0.725 Ibs/hr
8. Coal from coal mixer goes to 100 ton diverter hoppers where coal
is diverted either to a 3,500 ton silo hopper for new battery
or to the existing batteries. Emissions, based on U. S. Steel
input, are as follows:
(5,111 SCFM)(60 min/hr)(.Q2 gr/SCF)(16 hrs/da.y)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.00374 Ibs/ton of coal processed.
Therefore, the mass emission rate as reported in the EIS is:
0.00374 Ibs/ton x 156 ton/hr = 0.583 Ibs/hr
9. Coal from divertion hopper goes to storage (3,500 tons) silo which
supposedly produces no emissions.
10. Coal from 3,500 ton storage silo goes to secondary pulverizer.
Emissions, based on U. S. Steel input, are as follows:
(13,200 SCFM) (60 min/hr) (.02 gr/SCF)(24 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.0145 Ibs/ton of coal processed.
Therefore, the mass emission rate as reported in the EIS is:
0.0145 Ibs/ton x 156 ton/hr = 2.26 Ibs/hr
(Note: Permit shows two units, but only one unit operates at a time.)
11. Coal from secondary pulverizer goes onto conveyor belts which transfer
coal to preheater. Emissions, based on U. S. Steel input, from con-
veyor belts are as follows:
(5,111 SCFM)(60 min/hr)(.Q2 gr/SCF)(24 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.00562 Ibs/ton of coal processed.
Therefore, the mass emission rate as reported in the EIS is:
0.00562 Ibs/ton x 156 ton/hr = 0.876 Ibs/hr
12. Emissions, based on U. S. Steel input, from preheater are as follows:
(19,254 SCFM)(2 units)(60 min/hr)(.031 gr/SCF)(24 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.0656 Ibs/ton.
Therefore, the mass emission rate as reported in the EIS is:
0.0656 Ibs/ton x 156 ton/hr = 10.2 Ibs/hr
-------
13. Dried and heated coal is transferred by covered conveyor to a 500
ton bin where it is briefly stored. From there the coal is trans-
ferred into eight premetering hoppers. The hoppers then discharge
the coal to a larry car for charging into the coke ovens. Nitrogen
or process gas from the adjacent coal pre-heat system is used to
flush ambient air from the larry car. The same flushing system
is used to evacuate dust-laden gas from the larry car when it is
being charged with coal. The scrubbers operate only when the larry
cars are being flushed or evacuated. Emissions, based on U. S. Steel
input, are as follows:
(1,285 SCFM wet)(.508 vol. percent air)(2 units) (10.9 mm/hr)
(.02 gr/DSCF)(24 hrs/day)(365 days/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= .000261 Ibs/ton of coal processed.
Therefore, the mass emission rate, as reported in the EIS is:
.000261 Ibs/ton x 156 tons/hr = 0.0408 Ibs/hr
14. Total emissions from coal handling:
a. Car Dump 0.0196
b. Storage Silos 0.0193
c. Primary Coal Pulverizer 0.0173
d. Coal Mixer 0.00465
e. 100 Ton Diverter 0.00374
f. Secondary Pulverizer 0.0145
g. Conveyor Belts 0.00562
h. Preheater 0.0656
i. Larry Car Loading 0.000261
0.150571 or
Total 0.151 Ibs/ton of dry coal
or
Total 0.08471 or
0.085 Ibs/ton of wet coal
*The emissions from the preheater were handled as a point source in
the model. Therefore, the total emissions from coal handling
considered in AQDM was 0.084971 Ib/ton of dry coal.
-------
Charging
a. Uncontrolled - same.
b. Controlled.
(1.5 Ibs/ton - raw)(0.05 stage or preheated coal failure rate)
= 0.075 Ibs/ton.
Doors
a. Controlled.
(66 gr/leaking door/min)(H.4 doors leaking)(60 min/hr)(8,760 hrs/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.0413 Ibs/ton of coal charged.
b. Uncontrolled (assume 40% leakage rate).
Factor equals 0.165 Ibs/ton of coal charged.
Topside
a. Controlled.
(22 gr/1eak/min)(5.7 leak a!lowed)(60 min/hr)(8,760 hrs/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.00689 Ibs/ton of coal charged.
b. Uncontrolled (assume 40% leakage rate).
Factor equals 0.0551 Ibs/ton of coal charged.
Pushing
a. Uncontrolled.
= 2.25 Ibs/ton of coke.
b. Controlled.
= [(2.250)(.15) + 0.03] = 0.3675 Ibs/ton of coke.
-------
Underfirinq
a. Uncontrolled - An emission factor of 0.39 Ibs/ton of coal was
obtained from a source test conducted by U. S.
Steel on their No. 3 underfiring stacks at
Fairfield.
b. Controlled.
(116,500 SCFM)(60 min/hr)(.Q3 gr/SCF)(8,760 hrs/yr)
(7,000 gr/lb)(6,020 tons/day)(365 days/yr)
= 0.119 Ibs/ton of coal.
Coke Screening
(28,000 ACFM)(520 SCF)(60 min/hr)(.Q2 gr/SCF)(2,912 hrs/yr)
(7,000 gr/lb)(610 ACF)(6,020 tons/day)(365 days/yr)
= 0.00542 Ibs/ton of coal charged.
Coke Transfer Building
(8,375 SCFMH60 min/hr)(.Q2 gr/SCF)(8.760 hrs/yr)
(7,000 gr/lb)(156 tons of coal/hr)(8,760 hrs/yr)
= 0.00920 Ibs/ton of coal charged.
Burden Coke/Ratio Pre-1972
Fairfield Ensley
No. 5 2.75 No. 1 2.41
No. 6 2.87 No. 2 2.36
No. 7 2.74 No. 3 2.42
(515,500)0.095) 2.75 + (515,500)0 .145) 2.87 + (704,600)(1.125) 2.74 +
2,000 2,000 2,000
(399,400)0.295) 2.41 + (418,600)0,295) 2.36 + (382,100)0.295) 2.42
2,000 2,000 2,000
= 4,570.768 tons of raw materials stored for blast furnace use.
-------
ATTACHMENT II TO APPENDIX A-2
CALCULATIONS USED TO FIND THE AUXILIARY
SOURCES EMISSION RATES EMPLOYED IN AQDM
-------
The following calculations were used in the AQDM to identify auxiliary
emissions sources at the U.S. Steel Facilities:
jj-8 Blast Furnace Stockhouse Emissions
Screening Baghouse:
For 24 hr screening:
(3)(.005)(60,000)(60)(8,700)/(2,000)(7,000) = 33.8 T/yr
Average Screening Time = 15 hr/day
(15/24)(33.8 T/yr) = 21.1 T/yr
The emission rate calculated in the EPA analysis (Appendix A-2) for the
blast furnace stockhouse was used for the old stockhouse in the AQDM.
The emission calculated above was used in conditions 4 and 5 for the
new blast furnace stockhouse.
#2 Battery Preheater
Emission Factor = 0.066 lb/T Coal
U.S. Steel's Calculation:
1978
(0.006 lb/T coal )(1. 434 x 106 T coal )/(2, 000 Ib/ton) = 47.3 T/yr
Modeling Calculations based on the above data:
1978
(0.042 lb/T coal )(8, 790 hr/yr)(156 T coal/hr)/(2,000 Ib/ton) = 28.30 T/yr
28.7 T/yr was used in both conditions 4 and 5 since it is a new source.
Blast Furnace Slag Handling
pE 2
Pedco Study Emission Factor = .33 T (g) Ib/ton
2
) = .23 Ib/ton of slag
-------
U.S. Steel's Calculations
1971
Ensley (310,000 Tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 35.7 T/yr
Fairfield (440,000 Tons of s1ag)(0.23 1b/ton)/(2,000 Ib/ton) = 50.6 T/yr
Total = 86.3 T/yr
1978
Fairfield (440,000 Tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 50.6 T/yr
BF #8 (350,000 Tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 40.3 T/yr
Total = 90.9 T/yr
Additional Data
1978: BF #8 has a rate of 350,000 tons slag/1,825,000 tons hot metal
Slag (tons) Hot Metal (tons)
1971: Ensley BF #1 100,000 (114,114)* 350,000 (399,400)
Ensley BF #2 110,000 (115,115) 400,000 (418,600)
Ensley BF #3 100,000 (109,171) 350,000 (382,100)
Fairfield BF #5 125,000 (128,875) 500,000 (515,000)
Fairfield BF #6 125,000 (128,875) 500,000 (515,500)
Fairfield BF #7 200,000 (176,150) 800,000 (704,600)
*
All the values in parentheses are adjusted to production rates oeing used
in AQDM.
Modeling Calculations based on the above data.
Condition #1
Ensley (338,400 tons of s1ag)(0.23 lb/ton)/(2,000 Ib/ton) = 38.9 T/yr
Fairfield (433,900 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 49.9 T/yr
Total = 88.8 T/yr
Condition #2
Control equipment and production for Fairfield and Ensley furnaces
would be exactly the same used for pre-1972 emission calculations
Thus, emissions would be 38.9 T/yr + 49.9 T/yr = 88.8 T/yr
Condition #3
Condition #3 describes existing conditions including blast furnaces
three at Fairfield and three at Ensley, at full production. Therefore,
emissions from slag handling are: 38.9 T/yr + 49.9 T/yr = 88 8 T/yr
-------
Condition #4
Ensley (338,400 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 38.9 T/yr
Fairfield (433,900 tons of slag)(0.23 1b/ton)/(2,000 Ib/ton) = 49.9 T/yr
Fairfield (345,780 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 39.8 T/yr
Total = 128.6 T/yr
Condition #5
Fairfield (345,780 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 39.8 T/yr
Fairfield (424,250 tons of slag)(0.23 lb/ton)/(2,000 Ib/ton) = 48.8 T/yr
Total = 88.6 T/yr
Slag (tons) Hot Metal (tons'
1978: Fairfield BF #5 125,000 (102,750)* 500,000 (411,000]
Fairfield BF #6 125,000 (137,750) 500,000 (551,000)
Fairfield BF #7 200,000 (183,750) 800,000 (735,000)
Fairfield BF #8 350,000 (345,780) 1,825,000 (1,803,000)
*
All the values in parentheses are adjusted to production rates being
used in AQDM.
Fugitive Emission Hot Metal Mixer
Hot Metal Mixers - Emission Factor = 0.12 Ib/ton permit application (1970)
Reladling Station - Emission Factor = 0.06 Ib/ton
1 2
Control Devices - Emission Factor = -^ = .005 Ib/ton
U.S. Steel's Calculations:
1971
Mixer - Ensley (564,000 T. Hot Metal)(0.12 lb/T)/(2,000 Ib/T) = 33.8 T/yr
Mixer - Fairfield (940,500 T. Hot Metal)(0.12 lb/T)/(2,000 Ib/T) = 56.4 T/yr
Reladling - Fairfield (940,500 T. Hot Metal)(0.06 Ib/T)/
(2,000 Ib/T) = 28.2 T/yr
Total = 118.4 T/yr
-------
1977
Mixer - Fairfield (2,000,000 T. Hot Metal )(0.12 lb/T)/(2,000 Ib/T) = 120.0 T/yr
Relading - Fairfield (256,000 T. Hot Metal)(0.06 1b/T)/(2,000 Ib/T) = 7.7 T/yr
Total = 127.7 T/yr
1978
North Mixer - Fairfield (1,657,000 T. Hot Metal)(0.12 Ib/T)/
(2,000 Ib/T) = 99.4 T/yr
South Mixer - Fairfield (1,657,000 T. Hot Metal )(0.005 Ib/T)/
(2,000 Ib/T) = 4.1 T/yr
Total = 103.5 T/yr
Modeling Calculations based on the above data:
Condition #1
Fairfield - (1,350,000 T. Hot Metal)(0.12 lb/T)/(2,000 Ib/T) = 81.0 T/yr
Fairfield - (1,350,000 T. Hot Metal)(0.06 lb/T)/(2,000 Ib/T) = 40.5 T/yr
Total = 121.5 T/yr
Ensley - (800,000 T. Hot Metal)(0.12 lb/T)/(2,000 Ib/T) = 48.0 T/yr
Total = 48.0 T/yr
Condition $2
Fairfield - (1,350,000 T. Hot Metal)(.005 lb/T)/(2,000 Ib/T) = 3.3 T/yr
Fairfield - (1,350,000 T. Hot Metal)(0.06 lb/T)/(2,000 Ib/T) = 40.5 T/yr
Total = 43.8 T/yr
Ensley - (800,000 T. Hot Metal)(.005 1b/T)/(2,000 Ib/T) = 2.0 T/yr
Total = 2.0 T/yr
Condition #3
Fairfield - (2,000,000 T. Hot Metal)(0.12 1b/T)/(2,000 Ib/T) = 120.0 T/yr
Fairfield - (333,333 T. Hot Metal)(0.06 lb/T)/(2,000 Ib/T) = 10.0 T/yr
Total = 130.0 T/yr
Condition #4
'Jill be the same as condition #5 which is 109.4 T/yr
-------
Condition #5
Fairfield (1,750,000 T. Hot Metal )(0. 12 lb/T)/(2,000 Ib/T)
Fairfield (1,750,000 T. Hot Metal) (0.005 lb/T)/(2,000 Ib/T)
105.0 T/yr
4.4 T/yr
Total = 109.4 T/yr
BOILERS NO. 9 AND 10
Fuel Consumption for Two Boilers
Blast Furnace Gas 2.903025 x
12
Coke Oven Gas .782855 x 10
Natural Gas - None
No. 6 Fuel Oil 6.135208 x 10
12
BTU/yr = 38.707 x 10 CF/yr @ -
= 1.5026 x 10 CF/yr @
= 40.2039 x 10 gal/yr
152,500
Total 9.821088 x 1012 BTU/yr = 8000,000 Ib/hr steam
or 1,263 x 106 BTU/hr
Operating (24 hr/day)(360 day s/yr)(. 9(10% downtime)) = 7,776 hr/year
For one boiler r /-
1 ,263 x 10° -r 2 = 632 x 10° BTU/hr
Oil = 6.135208 x 1012/2 = 3.062604 x 1012 BTU/yr = 394 x 106 BTU/hr
EMISSIONS PER BOILER
Emissions From B.F. Gas
Participate
(.005 gr/SCF)(38.707 x 109 SCF/yr)(7>OOQ gr/^\ 2>QQQ 1b/J)/2 = 6.912 T/yr
NO
CO
From Making, Shaping S Treating 0
No Data Available 0
0
Emissions From Coke Oven Gas
Participate
(15 lb/106 CF)(1.5026 x 106 )
1b/T
)/2
= 56.3 T/yr
= 14.5 Ib/hr
-------
CF H2° U 09109 1b
CFCQ GasM. 09109
,64.06 = MW S02^/ Ton
CF
= MW H2SM2,000 Ib'
(1.5026 x 109 ££)
NOX
CO
Emissions From #6 Oil
Particulate
No Data Available
From Making, Shaping & Treating
= 322 T/yr
= 82.7 Ib/hr
0
0
\,io ID/ i u ga i
S02 ([157][1]
ND C^n Jk
CO (c lb )
H^u^uo.y x lu g
lb/103 gal) (40203
y)(.94 reduction
(40203.9 x 103
(40203.9 x 103 ^
ai/yrn2,000 1b;/
0 Y 1 0 rn 1 /w W
. j x i u ga i / yr ) \~ QQ
in firing)
ml / \t\~\ { \ /°
gai/yrM7 nnn -ih;/6
t- 9 \J\J\J 1 U
K \ / o
o r\r\r\ i K /*
u 9 UUw I U
i Ji
= 33.6
\ 79 _ 1 C7O
o ibj/t- ls578
= 406
- 472
= 122
50
13
i/yr
Ib/hr
T/yr
Ib/hr
T/yr
Ib/hr
T/yr
Ib/hr
PER BOILER
Total Emissions
Particulate
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
S02
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
6.9 T/yr )
56.3 T/yr >
131 T/yr )
0 T/yr )
322 T/yr }
1,578 T/yr )
Total
194 T/yr /
(49.9 Ib/hr)
1,900 T/yr
(489 Ib/hr)
Allowable
JC 199 T/yr
EPA 246 T/yr
JC 4,423 T/yr
EPA 2,310 T/yr
-------
PER BOILER (Cont'd)
NOX
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
CO
Blast Furnace Gas
Coke Oven Gas
No. 6 Fuel Oil
0 T/yri
0 T/yr>
472 T/yr I
0 T/yr-)
0 T/yr I
50 T/yrf
Total
472 T/yr
(121 Ib/hr)
50 T/yr
(13 Ib/hr)
Allowable
JC 645 T/yr
EPA 645 T/yr
Therefore, the total particulate emissions per boilers are
6.9 T/yr + 56.3 T/yr + 131 T/yr = 194 T/yr
The emission rate of 194 T/yr was used in the AQDM for conditions 4 and 5.
Allowable Emissions
Particulate
- 44 fi
JCHC: c = 1.38 H 'HH lb/10 BTU
AE = (1.38)(632p44 (632) = 51.1 Ib/hr = 199 T/yr
EPA: AE = .1H = (.1)(632) = 63.2 Ib/hr = 246 T/yr
so2
JCHD: AE = (1.8)(H) = (1.8)(632) = 1.138 Ib/hr = 4,423 T/yr
FDA. c = (% oil BTUH1.4) + (% C.O. Gas + B.F. Gas BTU)(2.2)
(% oil BTU + % C.-O. Gas BTU + % B.F. Gas BTU)
% BTU
oil 6.135208 x 1012/9.821088 x 1012 = 62.5%
C.O. Gas + B.F. Gas 100 - 62.5 = 37.5%
c - (62.5H1.4) + (37.5H2.2) . , -, _m/ln6
t - 100 i./ gm/iu
AE = (.94)(632) = 594 Ib/hr = 2,310 T/yr
-------
PER BOILER (Cont'd)
N0x
JCHD: Oil: E = (.3)(H) = (.3)(394 x,106 BTU H)
= 118 lb/hr[
Gas: = (.2)(H) = (.2)(238) > 166 Ib/hr = 645 T/hr
= 47.6 Ib/hrJ
EPA- " E = (.20)(% gaseous) + (.30)(liguid %)
100%
= (.2)(37.5) + (.3)(62.5) = .2625 lb/106 BTU
100
AE = (.2625)(632) = 166 Ib/hr = 645 T/yr
COKE BY-PRODUCT PLANT
U. S. Steel Calculations:
Participates
Tar Heater: (78 MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs) = 0.585 T/yr
Pitch Heater: (3.6MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs) = 0.027 T/yr
Hot Oil: (18 MCF/yr)(15 Ibs/MCF)(Ton/2,000 Ibs) = 0.131 T/yr
Source Natural Gas Particulate Emissions
(MCF/yr) (T/yr)
Tar Heater 78.0 0.585
Pitch Heater 3.6 0.027
Hot Oil 18.0 0.131
Waste Gas Flare Stack 21.5 --
121.1 0.734
Therefore, to find the total particulate emissions including the flare
stack, the following calculations were made:
121.1 - 21.5 = 0.1775 or 17.75% of the total natural gas is waste gas
121.1
Thus (0.734 T/yr)(1.1775) = 0.875 T/yr (total emissions)
Since the particulate emissions 0.002 T/day (0.875 T/yr) is such a small
number, it was not included in the AQDM.
-------
APPENDIX A-2.1
PRE-1972 EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX
-------
APPENDIX A-2.1
Pre-1972 Emissions from the Primary Production
Facilities (coke, iron, steel) at the Fairfield-Ensley Complex
I. Blast Furnace
A. Fairfield - Top Gas
1. Control equipment venturi scrubbers (99% efficient) - per U. S.
Steel 114 response.
2. From U. S. Steel permit for their new blast furnace, inlet grain
loading to control device is equal to 4 gr/SCF.
3. From U. S. Steel 114 response, total blast furnace gas flow rate
(numbers 5, 6, and 7 furnaces) is equal to 362,000 CFM at 350°F.
4. Emissions equal:
[(4)(362,000 x 530/810)(60)(24)(365)/(7,000)(2,000)].01 = 355.7 tons/yr
B. Fairfield - Casthouse
1. See Appendix A-2.2 for source of emission factor.
2. No control equipment on cast houses.
3. Emissions equal:
(0.435)0,735,600)/(2,000) = 377.5 tons/yr
C. Fairfield - Stockhouse
1. Assume control per ton as efficient as for the new blast furnace -
See Appendix A-2.2.
2. Emissions equal:
(22.5 tons/yr)(1,735,600/1,803,000) = 21.7 tons/yr
D. Fairfield - Material Loading
1. See Appendix A-2.2 for source of emission factor.
2. No control equipment on material loading.
3. Emissions equal:
(0.17)0,735,600)/(2,000) = 147.5 tons/yr
E. Fairfield - Leaks and Kicks
1. See Appendix A-2.2 for emission factor.
2. Emissions equal:
(0.25)0,735,600)/(2,000) = 217.0 tons/yr
A-2.1-1
-------
F. Fairfield - Storage Piles
1. Assume U. S. Steel will insure storage piles have enough surface
moisture to minimize emissions (90% control).
2. Emission factor of 0.27 Ibs/ton obtained from AP 42.
3. Emissions equal: 36.5 tons/yr
G. Total for Fairfield
355.7 + 377.5 + 21.7 + 147.5 + 217.0 + 36.5 = 1,155.9 tons/yr
H. Ensley - Top Gas
1. Control equipment for 60% of top gas flow rate was a multi-cyclone
(83% efficient - per U. S. Steel 114 response). Control for re-
maining 40% of gas stream is a low energy wet scrubber and ESP in
series (98% efficient - per U. S. Steel 114 response).
2. From U. S. Steel permit for their new blast furnace, inlet grain
loading to control device is equal to 4 gr/SCF.
3. From U. S. Steel 114 response, total blast furnace gas flow rate
(numbers 1, 2, and 3 furnaces) is equal to 295,000 CFM at 350°F.
4. Emissions equal:
[(4)(295,000 x 530/810)(.6)(60)(24)(365)/(2,000)(7,000)].17 = 2,956.7 tons/yr
[(4)(295,000 x 530/810)(.4)(60)(24)(365)/(2,000)(7,000)].02 = 231.9 tons/yr
Total = 3,188.6 tons/yr
I. Ensley - Cast House
1. See Appendix A-2.2 for source of emission factor.
2. No control on cast houses.
3. Emissions equal:
(0.435)0,200,100)/(2,000) = 261.0 tons/yr
J. Ensley - Stackhouse
1. Assume control per ton as efficient as for the new blast furnace -
see Appendix A-2.2.
2. Emissions equal:
(22.5 tons/yr)(l,200,100/1,803,000) = 15.0 tons/yr
K. Ensley - Material Loading
1. See Appendix A-2.2 for source of emission factor.
2. No control equipment on material loading.
3. Emissions equal :
(0.17)(1,200,000)/(2,000) = 102.0 tonsA -
A-2.1-2
-------
L. Ensley - Leaks and Kicks
1. See Appendix A-2.2 for source of emission factor.
2. Emissions equal:
(0.25)(1,200,100)/(2,000) = 150.0 tons/yr
M. Ensley - Storage Piles
1. Assume U. S. Steel will insure storage piles have enough surface
moisture to minimize emissions (90% control).
2. Emission factor of 0.27 Ibs/ton obtained from AP 42.
3. Emissions equal:
25.2 tons/yr
N. Total for Ensley
3,188.6 + 261 .0 + 15.0 + 102.0 + 150.0 + 25.2 = 3.741.8 tons/yr
0. Total for Fairfield - Ensley Complex
1,155.9 + 3,741.8 = 4,897.7 tons/yr
II. Open Hearth Furnaces
A. Fairfield - Stack
1. No control equipment employed.
2. Emission factor of 23.8 Ibs/ton was obtained for October, 1975
source test of No. 9 open hearth furnace at Ensley.
3. Emissions equal:
(23.8)(2,700,000)/(2,000) = 32,130 tons/yr
B. Fairfield - Fugitive
1. No control equipment employed.
2. Emission factor of 4.76 Ibs/ton is an estimate by Region IV
based on October, 1975 observations during source test of
No. 9 open hearth furnace at Ensley [i.e., fugitive emissions
judged to be equal to about 20% of stack emissions or (23.8)
(.2) = 4.76 Ibs/ton .
3. Emissions equal:
(4.76)(2,700,000)/(2,000) = 6,426 tons/yr
C. Total for Fairfield
32,130 + 6,426 = 38,556 tons/yr
A-2.1-3
-------
D. Ensley - Stack
1. No control equipment employed.
2. Emission factor same as used for Fairfield.
3. Emissions equal:
(23.8)(800,000)/(2,000) = 9,520 tons/yr
E. Ensley - Fugitive
1. No control equipment employed.
2. Emissions factor same as used for Fairfield.
3. Emissions equal:
(4.76)(800,000)/(2,000) = 1,904 tons/yr
F. Total for Ensley
9,520 + 1,904 = 11,424 tons/yr
G. Total for Fairfield - Ensley Complex
38,556 + 11,424 = 49,980 tons/yr
III. Coke Plant - All Coke Produced at Fairfield
A. Coal Handling
1. Assume BACT employed for coal handling.
2. See Appendix A-2.2 for source of emission factor.
3. Yield taken from data provided by U. S. Steel (.6839).
4. Emissions equal:
(.085)(2,256,000/.6839)/(2,000) = 140.2 tons/yr
B. Charging
1. No control employed.
2. Emission factor of 1.5 Ibs/ton of coal was obtained from AP 42
3. Emissions equal:
(1.5)(2256,000/.6839)/(2,000) = 2,474.0 tons/yr
C. Coking (Door and Topside Leaks)
1. No control employed.
2. Emission factor of 0.22 Ibs/ton of coal was obtained from
Attachment 1 to Appendix A-2.
3. Emissions equal:
(0.22)(2,256,000/.6839)/(2,000) = 362.9 tons/yr
A-2.1-4
-------
D. Pushing
1. No control employed.
2. Emission factor of 2.25 Ibs/ton of coke was provided by DSSE.
The factor was an average of the emission measured for
moderately green coke from a variety of sources.
3. Emissions equal:
(2.25)(2,256,000/2,000) = 2.538 tons/yr
E. Quenching
1. No control employed.
2. Emission factor of 1.2 Ibs/ton of coal was based on EPA source
tests performed at the Loraine Works of U. S. Steel Corporation.
A controlled (clean water and baffles) emission factor of 1.2
Ibs of particulate/ton of coal charged was provided by DSSE.
3. Emissions equal:
(1.2)(2,256,000/.6839)/(2,000) = 1,979.2 tons/yr
F. Underfiring Stacks
1. No control equipment employed.
2. Emission factor of 0.39 Ibs/ton of coal was obtained from
Attachment 1 to Appendix A-2.
3. Emissions equal:
(0.39)(2,256,000/.6839)/(2,000) = 643.3 tons/yr
6. Coke Screening
1. Assume dry collector employed.
2. See EPA calculations for source of emission factor (Attachment I)
3. Emissions equal:
(0.00542)(2,256,000)(.6839)/(2,000) = 8.9 tons/yr
H. Coal Storage Piles
1. Assume U. S. Steel will insure storage piles have enough surface
moisture to minimize emissions (90% control).
2. Emission factor of 0.27 Ibs/ton obtained from AP 42.
3. Emissions equal:
(0.27)(.1)[%^£%(2,000) = 44.5 tons/yr
A-2.1-5
-------
I. Total Coking Emissions
140.2 + 2,474 + 362.9 + 2,538 + 1,979.2 + 643.3 + 8.9 + 44.5 = 8,191 tons/yr
IV. Total Emissions from Fairfield-Ensley Complex
4,897.7 + 49,980 + 8,191 = 63,068.7 tons/yr
A-2.1-6
-------
APPENDIX A-2.2
EMISSIONS FROM NEW FACILITIES
-------
EMISSIONS FROM NEW FACILITIES
I. Blast Furnace
A. Blast Furnace Top Gas
1. Control equipment consists of a dustcatcher followed by a
venturi scrubber (70" pressure drop). This is considered
to be best technology (BACT).
2. U. S. Steel (in their permit application to Jefferson County)
reported the raw furnace gas to contain 6 gr/SCFD. The dust-
catcher is reported to be 33 percent efficient and thus the
gas contains 4 gr/SCFD as it enters the venturi scrubber. The
venturi scrubber is reported to be 99.87 percent efficient
and the gas leaves the scrubber containing 0.005 gr/SCFD.
3. Emissions are then calculated to be:
(300,000)(.005)(60)(24)(365)/(7,000)(2,000) = 56.3 tons/yr
B. Blast Furnace Cast House
1. No control equipment has been proposed by U. S. Steel. BACT
would be building enclosure and venting the entire building
to a control device. It should be noted that this would
involve the treatment of tremendous gas volumes and would
consume considerable quantities of energy. RACT would be
well designed canopy hoods vented through a high efficiency
scrubber or ESP-
2. Bethlehem Steel Corporation performed test of casthouse
emissions on their "J" blast furnace at their Sparrows
Point, Maryland, facility. The results (0.435 Ibs/ton of
iron produced) were reported in an inter-office memorandum
from T. 6. Keller, Assistant Air Pollution Control Engineer
to R. M. McMullen, Senior Air Pollution Control Engineer
(October 24, 1974).
3. Emissions are then calculated to be:
(0.435)(1,803,OOP tons/yr*) = 392.2 tons/yr
2,000
*Per U. S. Steel permit application
A-2.2-1
-------
Stockhouse
1. Control equipment consists of enclosing screening stations
and conveyor transfer points and venting the emissions to a
baghouse. This is considered to be BACT.
2. U. S. Steel (in their permit application) reported the
vented gases to contain 5 gr/SCFD. The baghouse was reported
to be 99.9 percent efficient and the exit gas was reported
to contain 0.02 gr/SCFD.
3. Emissions are then calculated to be:
(30,000)(.02)(60)(24)(365)/(7,000)(2,000) = 22.5 tons/yr
Material Loading
1. Furnaces to be charged by skip car, no control equipment
proposed. BACT would be covered conveyor.
2. Emission factor of 0.17 Ibs/ton of iron produced was taken
from EPA memorandum—Air Quality Impact of an Integrated
Steel Mill--sent to Roger Strelow from B. J. Steigerwald
(September 19, 1975).
3. Emissions are then calculated to be:
(0.17)0,803,000)/(2,000) = 153.3 tons/yr
Leaks and Kicks
1. Control is achieved by maintaining good operating practices
to minimize the occurrence of leaks and kicks (considered
BACT).
2. Emission factor of 0.25 Ibs/ton of iron produced was taken
from EPA memorandum—Air Quality Impact of an Integrated Steel
Mill.
3. Emissions are then calculated to be:
(0.25)(1,803,000)/(2,000) = 225.4 tons/yr
Storage Piles
1. BACT would be water sprays on storage piles. U. S. Steel
has proposed no control for their storage piles.
2. Assume U. S. Steel will insure storage piles have enough
surface moisture to minimize emissions (90% control).
A-2.2-2
-------
3. Emission factor of 0.27 Ibs/ton obtained from AP 42.
4. Emissions are then calculated to be:
(0.27)(.l)[(1-803j^g^11)](3.46)/(2iOOO)= 38.4 tons/yr
G. Total Emissions from Blast Furnace:
56.3 + 392.2.+ 22.5 + 153I3 + 225.4 + 38.4 = 881.1 tons/yr
II. Q-BOP Furnace
A. Stack
1. A high energy wet scrubber (99.8% efficient) will be used to
control stack emissions. This is considered to be BACT.
2. U. S. Steel tested the existing Q-BOP stacks in November of
1974 and arrived at emission rate of 0.0081 Ibs/ton of
steel produced.
3. Emissions would then be calculated to be:
(.0081)(3,500,000/3)/(2,000) = 4.7 tons/yr
B. Fugitive (Charge/Tap, etc.)
1. BACT would be building enclosure and venting the entire building
to a control device. RACT would be well designed hooding with
emissions vented through a high efficiency scrubber or ESP. On
their existing Q-BOP's, U. S. Steel uses a type of local
enclosure and hoods to control fugitive emissions. Jefferson
County has not issued the two existing vessels an operating
permit because they have not been satisfied with the fugitive
control system. U. S. Steel has proposed to have a fugitive
control system on their new Q-BOP vessel which is identical to
those used on their existing vessels.
2. In February and March of 1975, U. S. Steel tested the roof
monitors of their Q-BOP shop. The results were that emissions
averaged 2,174.8 Ibs per day.
3. Emissions for the new Q-BOP vessel are then calculated to be:
2,174.8 x 3.196 (daily production for one vessel) x 365 = 234.6
5,407 (shop production during Feb & March, 1975) 2,000 tons
C Total Emissions from Q-BOP = 239.3 tons/.yr
A-2.2-3
-------
III. Coke Battery
A. Coal Handling
1. BACT would be to hood and duct to baghouse. It is assumed
that U.S. Steel will employ BACT.
2. Emission factor of 0.151 Ibs/ton coal was obtained from EPA
calculations on the new coke battery coal flow. (See
Attachment I)
3. Emissions would then be calculated to be:
(0.151)(1,316,000)7(2,000) = 99.4 tons/yr
B. Charging
1. BACT would be stage or pipeline charging. U.S. Steel has
indicated that they will employ stage charging or equivalent.
They use stage charging on existing batteries.
2. Emission factor of 0.075 Ibs/ton coal was obtained from EPA
calculations on the new coke battery coal flow (See
Attachment I)
3. Emissions would then be calculated to be:
(0.075)(1,316,000)7(2,000) = 49.4 tons/yr
C. Coking (Door and Topside Leaks)
1. BACT is to employ good operating and maintenance practices
to minimize such occurrences. U.S. Steel does an excellent
job of minimizing emissions on their existing batteries. It
is assumed that U.S. Steel will control these emissions in a
comparable fashion on their new battery. However, it should
be pointed out that tall oven doors (new battery) are much
harder to seal than the doors on the existing batteries.
2. Emission factor of 0.0482 Ibs/ton coal was obtained from EPA
calculations on the new coke battery coal flow. (See
Attachment I)
3. Emissions would then be calculated to be:
CO.0482)(1,316,000) ,/(2,000) = 31.7 tons/yr
D. Pushing
1. BACT would be use of shed, hood, enclosed car, or equivalent.
U.S. Steel has proposed to employ an enclosed car.
A-2.2-4
-------
2. Emission factor of 0.3675 Ibs/ton of coke was obtained from
EPA calculations at the new coke battery coal flow (see
Attachment I)
3. Emissions would then be calculated to be:
(.3675)(900,000)/(2,000) = 165.4 tons/yr
E. Quenching
1. BACT would be dry coke quenching which would result in an
emission reduction of approximately 97.5%. U. S. Steel has
proposed only to use baffles in the quenching tower.
2. Emission factor of 0.39 Ibs/ton of coal was obtained from
Attachment 1 to Appendix A-2.
3. Emissions are then calculated to be:
(1.2)(1,316,000)/(2,000) = 789.6 tons/yr
F. Underfiring Stacks
1. BACT is good operating and maintenance practices to minimize
improper combustion and oven wall leakage or control device
(ESP, etc.).
2. An emission factor of 0.119 Ibs/ton of coal was obtained
from EPA calculations on the new coke battery coal flow
(see Attachment I).
3. Emissions are then calculated to be:
(0.119)(1,316,000)/(2,000) = 78.3 tons/yr
G. Coal Storage Piles
1. BACT would be water sprays on storage piles.
2. No emissions because all coke for new battery stored in silos
rather than dumped on ground. Emission from silo included
in coal handling emission factor.
H. Coke Handling
1. Emissions from coke screening are accounted for in blast
furnace stockhouse calculations. Coke screening is done in
stockhouse.
2. U. S. Steel has proposed BACT (dry collector) at coke transfer
building.
3. See EPA calculations
A-2.2-5
-------
4. Emissions are calculated to be:
(0.00920)0,366,560)7(2,000) = 6.3 tons/yr
I. Total Emissions from Coke Battery:
99.4 + 49.4 + 31.7 + 165.4 + 789.6 + 78.3 + 6.3 =
1,220.1 tons/yr
IV- Total emissions from new construction are:
888.1 + 239.3 + 1,220.1 = 2.347.5 tons/yr
A-2.2-6
-------
APPENDIX A-2.3
EMISSIONS FROM NEW FACILITIES IF BACT APPLIED
-------
EMISSIONS FROM NEW FACILITIES IF BACT APPLIED
I. If BACT were applied to the following emissions points, the corres-
ponding emission reductions would result:
A. Blast Furnace Casthouse
1. BACT would result in the following emissions:
(0.25 lbs/ton)+0,803,000 TPY)/(2,000 Ib/ton) = 225.4 tons/yr
2. Emissions shown in Appendix A-2.2 = 392.2 tons/yr
3. Emission reduction = (392.2 - 225.4) = 166.8 tons/yr
B. Blast Furnace Material Loading
1. BACT would result in the following reduction in the emission
rates calculated in Appendix A-2.2
(0.99)*(153.3 tons/yr) = 151.8 tons/yr
C. Q-BOP Fugitive Emissions
1. BACT would result in the following reduction in the emission
rate calculated in Appendix A-2.2.
(0.99)*(234.6 tons/yr) = 232.3 tons/yr
D. Coke Battery Pushing
1. BACT would result in the following reduction in the emission
rate calculated in Appendix A-2.2.
(0.97)+(165.4 tons/yr) = 160.4 tons/yr
E. Coke Battery Quenching
1. BACT would result in the following emissions:
(l.2**lbs of emissions/ton of coal charged)(l - .975) = .03 Ibs/ton
(,03 lbs/ton)(l,316,000 tons of coal charged)/(2,000 Ibs/ton) =
19.7 tons/yr
2. Emissions shown in Appendix A-2.2 = 789.6 tons/yr
3. Emission reduction = (789.6 - 19.7) = 769.9 tons/yr
F. Coke Battery Underfiring Stacks
* Region emission reduction estimate
+ EPA memorandum - Air Quality Impact of an Integrated Steel Mill
** See Attachment I
A-2.3-1
-------
1. BACT would result in the following reduction in the emissions
calculated in Appendix A-2.2
(0.5)*(78.3 tons/yr) = 39.2 tons/yr
II. Total Emission Reduction = 1, 520.4tons/yr
III. Emissions from new facilities when all emissions points employ
BACT =
2,347.5 tons/yr (Appendix A-2.2) - 1,520.4 tons/yr (emissions reductions)
827.1 tons/yr
^Regional emission reduction estimate
A-2.3-2
-------
APPENDIX A-2.4
EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX
AT THE COMPLETION OF THE MODERNIZATION PROGRAM
-------
EMISSIONS FROM THE PRIMARY PRODUCTION
FACILITIES (COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY
COMPLEX AT THE COMPLETION OF THE MODERNIZATION PROGRAM
I. Blast Furnaces - All Iron Produced at Fairfield
A. Top Gas
1. For furnaces 5, 6, and 7 at Fairfield the control equipment
is the same as for the pre-1972 calculations.
2. Emissions for 5, 6, and 7 furnaces will be the same except
for changes in production.
3. Emissions for 5, 6, and 7 furnaces equal:
(355.7 tons/yr - pre-1972 emission)(1,697,000 tons/yr Production Post Mod.)
(1,735,600 tons/yr Production pre-1972)
= 347.8 tons/yr
4. Emissions for new furnace same as calculated in Appendix A-2.2
=56.3 tons/yr
5. Total = 347.8 + 56.3 = 404.1 tons/yr
B. Cast House
1. No control equipment employed.
2. See Appendix A-2.2 for source of emission factor.
3. Emissions equal:
(0.435)(3,500,000)/(2,000) = 761.3 tons/yr
C. Stockhouse
1. Emissions for 5, 6, and 7 furnaces the same as for pre-1972
except for production adjustment. Emissions equal:
(21.7 tons/yr) (];^000) = 21.2 tons/yr
2. Emissions for new furnace same as in Appendix A-2.2 = 22.5 tons/yr.
3. Total = 21.2 + 22.5 = 43.7 tons/yr
D Material Loading
1. Emission for 5, 6, and 7 furnaces the same as for pre-1972
except for production adjustment. Emissions equal:
(147.5 tons/yr)(]|697|000) = 144.2 tons/yr
2. Emissions for new furnace same as in Appendix A-2.2
= 153.3 tons/yr.
3. Total = 144.2 + 153.3 = 297.5 tons/yr
A-2.4-1
-------
E. Leaks and Kicks
1. Emissions for 5, 6, and 7 furnaces the same as for pre-1972
except for production adjustment. Emissions equal:
(217.0 tons/yr) [j^97,000j = 212.1 tons/yr
2. Emissions for new furnace same as in Appendix A-2.2
= 225.4 tons/yr
3. Total = 212.1 + 225.4 = 437.5 tons/yr
F. Storage Piles
1. See Appendix A-2.2 for source of emission factor
2. Emissions equal:
,-(411,000)(1,065)-. 7 7, , [-(551,000)0,065)-. 9 R7 ,
L 2,000 J ^'/b L 2,000 J ^'b/
.-(735,000)0,100)-. ? 7 , r(l,803,000)011)-. ^ ., _ , ~q~
L 2,000 J L 2,000 J 4 ~ b»jyj'lbb
(5,393,165)(.27)(.10/2,000) = 72.8 tons/yr
G. Total for Iron Production
404.1 + 761.3 + 43.7 + 297.5 + 437.5 + 72.8 = 2,016.9 tons/yr
II. Q-BOPs - All Steel Produced at Fairfield
A. Stack
1. See Appendix A-2.2 for source of emission factor
2. All Q-BOP's use high energy wet scrubbers
3. Emissions equal:
(0.0081)(3,500,000)/(2,000) = 14.2 tons/yr
B. Fugitive
1. Emissions for each vessel of the three vessel Q-BOP shop
are the same as calculated for the new Q-BOP vessel in
Appendix A-2.2 = 234.6 tons/yr
2. Emissions equal:
(234.6 tons/yr)(3) = 703.8 tons/yr
C. Total Emissions for Steel Production
14.2 + 703.8 = 718.0 tons/yr
A-2.4-2
-------
III. Coke Plant - All Coke Produced at Fairfield
A. Coal Handling
1. Assume BACT for coal handling on all batteries
2. See Appendix A-2.2 for source of emission factor
3. Yield taken from data provided by U. S. Steel (.6839)
4. Emissions equal:
(0.085)(1,098,0007.6839)/(2,000) = 68.2 + 99.4 =
167.6 tons/yr
B. Charging
1. Stage charging or equivalent employed on all batteries
Considered to be BACT
2. See Appendix A-2.2 for source of emission factor
3. Emissions equal:
(0.075)(1,098,OOO/.6839)/(2,000) = 60.2 + 49.4 =
109.6 tons/yr
C. Coking (Door and Topside Leaks)
1. BACT (good operating and maintenance practices) employed
on all batteries
2. See Appendix A-2.2 for source of emission factor. Emission
factor adjusted for SIP compliance requirements
3. Emissions equal:
(0.0757)0,098,0007.6839)7(2,000) = 60.8 + 31.7 =
92.5 tons/yr
D. Pushing
1. BACT not employed. However, credit is given for applying
RACT (operational techniques) for all batteries
2. See Appendix A-2.2 for source of emission factor
3. Emissions equal:
(2.25)(1,098,0007.6839)7(2,000) = 1,306.2 + 165.4 =
1.971.6 tons/yr
E. Quenching
1. BACT not employed. However, credit is given for using
baffles in all quench towers.
A-2.4-3
-------
2. See Appendix A-2.2 for source of emission factor
3. Emissions equal:
(1.2)(1,998,0007.6839)/(2,000) = 1,752.9 tons/yr
F. Underfiring Stacks
1. BACT not employed
2. See Appendix A-2.2 for source of emission factor
3. Emissions equal :
(0.119)(1,998,000/.6839)/(2,000) = 173.8 tons/yr
G. Storage Piles
1. Water sprays for surface moisture to minimize emissions
2. See Appendix A-2.2 for source of emission factor
3. Emissions equal:
(0.27)(0.1)(1,093,000/.6839)7(2,000) = 21.7 tons/yr
H. Coke Screening
1. See EPA calculations for emission factor (Attachment to
Appendix A-2)
2. Coke transfer building (new) 6.3 tons/yr
3. Emissions equal:
a. Coke screening old batteries
(.00542)(1,098,000/.6839)/(2,000) = 4.4 tons/yr
b. Total
4.4 + 6.3 = 10.7 tons/yr
I. Total Emissions From Coke Battery:
167.6 + 109.6 + 92.5 + 1,971.6 + 1,752.9 + 173.8 + 21.7 +
10.7 = 4,300.4 tons/yr
IV. Total Emissions from Fairfield-Ensley Complex
2,016.9 + 718.0 + 4,300.4 = 7,035.3 tons/yr
V. Reduction in Pre-1972 Emission Level
f63,068.7 - 7,035.3-. . _
L 63,068.7 J 10° " 88'8/°
A-2.4-4
-------
APPENDIX A-2.5
EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX
IF CONTROL DEVICES HAD BEEN EMPLOYED ON PRE-1971
OPERATIONS RATHER THAN MODERNIZING THE COMPLEX
-------
EMISSIONS FROM THE PRIMARY PRODUCTION FACILITIES
(COKE, IRON, STEEL) AT THE FAIRFIELD-ENSLEY COMPLEX IF
CONTROL DEVICES HAD BEEN EMPLOYED ON PRE-1971 OPERATIONS
RATHER THAN MODERNIZING THE COMPLEX
I. Blast Furnaces
A. Fairfield - Control equipment and production for Fairfield
furnaces would be exactly the same as used for pre-1972
emission calculations. Thus, emissions would be the same
as those calculated in Appendix A-2.1
1,155.9 tons/yr
B. Ensley
1. It is assumed that all blast furnace top gas would have
to be cleaned to the 98% efficiency at which the blast
furnace stove gas was cleaned in order for compliance to
be achieved.
2. Top gas emission would then be:
[(4)(295,000 x 530/810)(60)(24)(365)/(2,000)(7,000)] .02
579.7 tons/yr
3. The remaining emission points would be the same as those
calculated in Appendix A-2.1 (total = 553.2 tons/yr).
4. Total emissions would then be:
579.7 + 553.2 = 1,132.9 tons/yr
C. Total for Fairfield-Ensley Complex
1,155.9 tons/yr + 1,132.9 tons/yr = 2,288.8 tons/yr
II. Open Hearth Furnaces
A. Fairfield - Stack
1. Application of an ESP would result in an outlet grain loading
of .02 grains/SCF - per U.S. Steel.
2. Stack flor rates (114 response) for open hearth furnaces
were 40,000 CFM at 600°F.
3. Emissions equal:
(12)(40,000)(530/1,060)(60)(24)(365)(.02)7(7,000)(2,000)
180.2 tons/yr
A-2.5-1
-------
B. Fair-field - Fugitive
1. No logical control equipment which can be applied. There-
fore, emissions would be the same as those calculated in
Appendix A-2.1. = 6,426 tons/yr
C. Total for Fairfield = 180.2 + 6,426 = 6,606.2 tons/yr
D. Ensley - Stack
1. Application of an ESP would result in an outlet grain loading
of .02 grains/SCF - per U.S. Steel.
2. Stack flow rate (114 response) for open hearth furnaces were
41,200 CFM at 600°F.
3. Emissions equal:
(5)(41,200)(530/1,060)(60)(24)(365)(.02)/(7,000)(2,000)
= 77.3 tons/yr
E. Ensley-Fugitive
1. No logical control equipment which can be applied. Therefore
emissions would be the same as those calculated in Appendix A-2.1
1,904 tons/yr
F. Total for Ensley = 77.3 + 1,904 = 1,981.3 tons/yr
G. Total for Fairfield-Ensley Complex
6,606.2 + 1,981.3 = 8,587.5 tons/yr
III. Coke Plant - All Coke Produced at Fairfield
A. Coal Handling
1. Control equipment and production are the same as used for
pre-1972 emission calculations. Thus, emissions would be the
same as those calculated in Appendix A-2.1
140.2 tons/yr
B. Charging
1. Stage charging employed on all batteries
2. See Appedix A-2.2 for source of emission factor.
3. Yield taken from data supplied by U.S. Steel (.6839).
4. Emissions equal:
(0.075)(2,256,000)/.6839)/(2,000) = 123.7 tons/yr
C. Coking (Door and Topside Leaks)
1. BACT (good operating and maintenance practices) employed
on all batteries.
A-2.5-2
-------
2. See Appendix A-2.4 for source of emission factor.
3. Emissions equal:
(.0757)(2,256,000/.6839)/(2,000) = 124.9 tons/yr
D. Pushing
1. BACT not employed. However, credit is given for applying
RACT (operation techniques) for all batteries.
2. See Appendix A-2.1 for source of emission factor.
3. Emissions equal:
(2.25)(2,256,000)/(2,000) = 2,538.0 tons/yr
E. Quenching
1. BACT not employed. However, credit is given for using baffles
in all quench towers.
2. See Appendix A-2.1 for source of emission factor.
3. Emissions equal:
(1.2)(2,256.000)/.6839)/(2,000) = 1,979.2 tons/yr
F. Underfiring Stack
1. BACT employed.
2. See Appendix A-2.2 for source of emission factor.
3. Emissions equal:
(0.119)(2,256,OOO)/.6839)/(2,000) = 196.3 tons/yr
G. Coke Screening
1. Assume dry collector employed.
2. See Appendix A-2.1 for source of emission factor.
3. Emissions equal:
(.00542)(2,256,000)/(.6839)/(2,000) = 8.9 tons/yr
H. Coal Storage
1. Storage piles will have enough surface moisture to minimize
emissions (90% control).
2. See Appendix A-2.1 for source of emission factor.
3. Emissions equal:
(0.27)(.l)[(2>(^39))]/(2aOOO) = 44.5 tons/yr
I. Total Emissions from Coke Production:
140.2 + 123.7 + 124.9 + 2,538.0 + 1,979.2 + 196.3 + 8.9 + 44.5 =
5,155.7 tons/yr
A-2.5-3
-------
IV. Total Emissions from Fairfield-Ens ley Complex
2,238.8 + 8,587.5 + 5,155.7 = 16,032 tons/yr
V. Reduction in pre-1972 Emission Level
[63.068.7 - 16,032-. 1QO = 74 6%
L 63,068.7 J IUU ^M
A-2.5-4
-------
APPENDIX A-2.6
EMISSIONS ASSOCIATED WITH OPERATING ENSLEY BLAST FURNACES
AND OLD COKE BATTERIES AFTER COMPLETION OF MODERNIZATION
-------
Emissions Associated with Operating the
Ensley Blast Furnaces and the Old Coke Batteries
After Completion of the Modernization Program
I. Blast Furnaces
A. Emissions would be the same as those calculated for the Ensley
furnaces in Appendix A-2.5
= 1.132.9 tons/yr
II. Q-BOP Furnaces
A. Stack
1. See Appendix A-2.2 for source of emission factor.
2. Emissions equal:
(0.0081)0,242,500)/(2,000) = 5.Q tons/yr
B. Fugitive
1. In February and March of 1975, U. S. Steel tested the roof
monitors of their Q-BOP shop. The results were that
emissions averaged 2,174.8 Ibs per day.
2. Emissions equal:
,, ,7A R 3,404(daily production if old facilities operated) 365
^'l/4lb x 5,407(oven shop production during Feb & Mar 1975) 2,000
249.9 tons/yr
III. Coke Batteries
A. Emissions would be the same as those calculated in Appendix A-2.5
except that Appendix A-2.5 emissions would have to be reduced to
take into account only the emissions associated with the coke
needed to operate the Ensley blast furnaces.
B. Emissions equal:
,777,100 coke needed for Ensley blast furnace^
5,15b./ 4,256,000 Appendix A-2.5 coke production '
1.775.9 tons/yr
IV. Total Emissions
1,132.9+5.0+249.9+1,775.9 = 3.163.7 tons/yr
A-2.6-1
-------
APPENDIX A-3
AIR QUALITY DISPLAY MODEL SOURCES IDENTIFIED FOR CONDITIONS 1-5
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 1
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
5C6.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3708.0
3708.0
3708.0
3708.0
3708.0
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)*
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Ensley-Top Gas (Boiler)
Blast Furnace-Ensley-Top Gas (Stove)
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens! ey-Leaks & Kicks
Open Hearth Furnace-Fairfi eld-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Ens! ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Open Hearth Furnacs-Ensl ey-Stack
Open Hearth Furnace-Ensl ey-Stack
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Stockhouse
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
A-3-1
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 1
SOURCE LOCATION
SOURCE
NUMBER
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(KILOMETERS)
HORIZONTAL VERTICAL
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.1
508.6
506.7
506.8
506.8
506.8
506.8
506.8
506.7
506.5
507.4
506.1
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3704.8
3704.3
3708.0
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.0
3708.7
3704.3
EMISSION SOURCE
Blast Furnace-Ensley-Cast House
Blast Furnace-Ensley-Cast House
Blast Furnace-Ensley-Cast House
Blast Furnace-Ens! ey-Stockhouse
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Storage Piles
Blast Furnace-Fairfield-Storage Piles
Open Hearth Furnace-Fairfield-Fugitive
Open Hearth Furnace-Ensley-Fugitive
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Coke Screening
Coke Plant-Fairfield-Coal Storage Pile
Blast Furnace-Fairfield Slag Handling
Hot Metal Mixer-Ensley
Hot Metal Mixer-Fairfield
*
61 507.3 3708.7 Blast Furnace-Ensley-Slag Handling
It was assumed that the top gas for the blast furnace at the Fairfield Works would be
considered a combined point source since only 400 ft separated the boiler and the
stove. This is applicable to all five conditions.
A-3-2
-------
AQOM SOURCES IDENTIFIED FOR CONDITION 2
SOURCE LOCATION
SOURCE (KILOMETERS)
HORIZONTAL VERTICAL EMISSION SOURCE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3704.3
3708.0
3708.0
3708.0
3708.0
3708.0
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Ensley-Top Gas (Boiler)
Blast Furnace-Ensley-Top Gas (Stove)
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Fairfield-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Open Hearth Furnace-Ensley-Stack
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Bl ast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfi el d-Casthouse
Blast Furnace-Fai rf i el d-Casthouse
Bl ast Furnace-Fai rf i el d-Stockhouse
Blast Furnace-Fairfi eld-Material Loading
Blast Furnace-Fai rfield-Material Loading
Blast Furnace-Fai rfield-Material Loading
A-3-3
-------
AQDM SOURCES IDENTIFIED FOR CONDTION 2
SOURCE LOCATION
SOURCE (KILOMETERS)
NUMBER_ HORIZONTAL VERTICAL EMrSS_Ip_N_SpjJRCE.
40 507.4 3708.7 Blast Furnace-Ensley-Casthouse
41 507.3 3708.7 Blast Furnace-Ensley-Casthouse
42 507.4 3708.7 Blast Furnace-Ensley-Casthouse
43 507.3 3708.7 Blast Furnace-Ensley-Stockhouse
44 507.4 3708.7 Blast Furnace-Ensley-Material Loading
45 507.3 3708.7 Blast Fumace-Ensley-Material Loading
46 507.4 3708.7 Blast Furnace-Ensley-Material Loading
47 507.3 3708.7 Blast Furnace-Ens!ey-Storage Piles
48 506.5 3704.8 Blast Furnace-Fairfield-Storage Piles
49 506.1 3704.3 Open Hearth Furnace-Fairfield-Fugitive
50 508.6 3708.0 Open Hearth Furnace-Ensley-Fugitive
51 506.7 3705.2 Coke Plant-Fairfield-Coal Handling
52 506.8 3705.2 Coke Plant-Fairfield-Charging
53 506.8 3705.2 Coke Plant-Fairfield-Coking
54 506.8 3705.2 Coke Plant-Fairfield-Pushing
55 506.8 3705.2 Coke PIant-Fairfield-Quenching
56 506.8 3705.2 Coke Plant-Fairfield-Coke Screening
57 506.7 3705.1 Coke Plant-Fairfield-Coal Storage Pile
58 506.5 3705.0 Blast Furnace-Fairfield-Slag Handling
59 507.4 3708.7 Hot Metal Mixer-Ensley
60 506.1 3704.3 Hot Metal Mixer-Fairfield
61 507.3 3708.7 Blast Furnace-Ens!ey-Slag Handling
A-3-4
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 3
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
SOURCE LOCATION
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.8
506.8
506.7
506.7
506.8
506.8
506.1
506.5
506.5
506.5
506.5
506.5
506.5
506.5
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.7
506.8
506.8
506.8
3704.8
3704.8
3704.9
3705.0
3708.6
3708.7
3708.7
3708.7
3708.7
3705.6
3704.4
3705.2
3705.1
3705.2
3705.1
3704.3
3704.8
3704.9
3705.0
3704.9
3704.8
3704.9
3705.0
3708.7
3708.7
3708.7
3708.7
3708.7
3708. 7
3708.7
3708.7
3704.8
3705.2
3705.2
3705.2
3705.2
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Ens! ey-Top Gas (Boiler)
Blast Furnace-Ens! ey-Top Gas (Stove)
Blast Furnace-Ens! ey-Leaks & Kicks
Blast Furnace-Ens ley-Leaks & Kicks
Blast Furnace-Ensl ey-Leaks & Kicks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Coke Plant-Fairfield-Underfiring Stacks
Q-BOP-Fairfi eld-Stack
Blast Furnace-Fairfield-Casthouse
Bl ast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfi el d-Stockhouse
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensley-Casthouse
Blast Furnace-Ensl ey-Stockhouse
Blast Furnace-Ens! ey-Material Loading
Blast Furnace-Ensl ey-Material Loading
Blast Furnace-Ensl ey-Material Loading
Blast Furnace-Ens ley-Storage Piles
Blast Furnace-Fairfi eld Storage Piles
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
A-3-5
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 3
SOURCE LOCATION
SOURCE (KILOMETERS)
NUMBER_ HORIZONTAL _ VERTICAL EMISSION. SOURCE
37 506.8 3705.2 Coke Plant-Fairfield-Quenching
38 506.8 3705.2 Coke Plant-Fairfield-Coke Screening
39 506.7 3705.1 Coke Plant-Fairfield-Coal Storage Piles
40 506.1 3704.3 Q-BOP-Fairfield-Fugitive
41 506.5 3705.0 Blast Furnace-Fairfield-Slag Handling
42 506.1 3704.3 Hot Metal Mixer-Fairfield
43 507.3 3708.7 Blast Furnace-Ensley-Slag Handling
A-3-6
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 4
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
506.8
506.8
509.1
509.4
507.4
507.3
507.4
506.8
506.4
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3705.1
3708.6
3708.7
3708. 7
3708.7
3708.7
3705.2
3704.3
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
EMISSION SOURCE
Blast Furnace-Fairfield-Top Gas (Boiler and Stove)
Blast Furnace-Fairfield-Top Gas (New)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks (New)
Q-BOP-Fairfi eld-Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Blast Furnace-Ensley-Top Gas
Blast Furnace-Ensley-Top Gas
Blast Furnace-Ensley-Leaks & Kicks
Blast Furnace-Ensley-Leaks & Kicks
Blast Fumace-Ensley-Leaks & Kicks
Coke Plant-Fairfield-Preheater
Boilers-Fairfield
Blast Furnace-Fairfi el d-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fai rf i el d-Casthouse
Blast Furnace-Fairfield-Casthouse (New)
Blast Furnace-Fairfi el d-Stockhouse
Blast Furnace-Fairfield-Stockhouse (New)
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading (New)
Blast Furnace-Storage Piles
Blast Furnace-Storage Piles
Q-BOP-Fairf iel d-Fugi ti ve
Coke Plant-Fairfield-Coal Handling
£oke Plant-Fairfield-Charging
toke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
A-3-7
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 4
SOURCE LOCATION
SOURCE
NUMBER
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
(KILOMETERS)
HORIZONTAL VERTICAL
506.8
506.7
506.8
506.7
506.7
506.7
506.7
506.7
506.7
506.8
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.1
506.5
507.3
3705.2
3705.1
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3708.7
3704.3
3705.0
3708.7
EMISSION SOURCE
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Coke Plant-Fairfield-Coal Handling
Coke Plant-Fairfield-Charging
Coke Plant-Fairfield-Coking
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Blast Furnace-Ens! ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Casthouse
Blast Furnace-Ensl ey-Stockhouse
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensley-Material Loading
Blast Furnace-Ensl ey-Storage Piles
Blast Furnace-Fairfield-Slag Handling
Hot Metal Mixer-Fairfield
Blast Furnace-Ensl ey-Slag Handling
A-3-8
-------
AQDM SOURCES IDENTIFIED FOR CONDITION 5
SOURCE LOCATION
SOURCE
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
(KILOMETERS)
HORIZONTAL VERTICAL
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
506.8
506.4
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.8
506.7
506.8
506.5
506.1
507.3
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3704.8
3705.2
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.0
3704.3
3708.7
EMISSION SOURCE
Blast Furnace-Fairfi eld-Top Gas (Boiler and Stove)
Blast Furnace-Fairfield-Top Gas (New)
Blast Furnace-Fairfi eld-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks
Blast Furnace-Fairfield-Leaks & Kicks (New)
Q-BOP-Fairfi eld-Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Coke Plant-Fairfield-Underfiring Stack
Boilers (9 & 10)-Fairfield
Coke Plant-Fairfield-Preheater
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse
Blast Furnace-Fairfield-Casthouse (New)
Blast Furnace-Fairfield-Stockhouse
Blast Furnace-Fairfield-Stockhouse (New)
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading
Blast Furnace-Fairfield-Material Loading (New)
Blast Furnace-Storage Piles
Blast Furnace-Storage Piles
Q-BOP-Fai rf iel d-Fugi ti ve
Coke Plant-Fairfield-Coal Handling
Coke PI ant-Fa irfi eld-Charging
Coke PI ant- Fa irfi eld-Co king
Coke Plant-Fairfield-Pushing
Coke Plant-Fairfield-Quenching
Coke Plant-Fairfield-Storage Piles
Coke Plant-Fairfield-Coal Screening
Blast Furnace-Fairfi eld-Slag Handling
Hot Metal Mixer-Fairfield
Blast Furnace-Ensley-Slag Handling
A-3-9
-------
APPENDIX A-4
COMPUTER MODEL USING LARGE AND SMALL GRIDS
FOR CONDITIONS 1, 2, 3, 4, and 5
-------
APPENDIX A-4.1
COMPUTER MODEL USING SMALL GRID FOR CONDITION 1
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION NO. 1
SOURCE DATA
* *
* SOURCE * SOURCE LOCATION
* NUM8ER * (KILOMETERS)
* * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•
1
2
3
5
6
7
3
9
10
11
12
13
14
15
16
1 7
18
19
20
21
23
25
26
27
24
29
30
31
32
33
34
35
36
37
38
39
ao"
41
42
43
44
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ft
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
506.4
506.5
506.5
506.5
509.1
509.4
507.4
507.3
507.4
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
508.6
506.8
506.8
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
" 507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.5
506.1
508.6
506.7
506.8
506.8
506. P
506.8
506.8
506.7
506.5
507.4
506.1
507.3
A
A
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
*
A
3704.
3704.
3704.
3705.
3708.
370S.
3708.
3708.
3708.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3704.
3708.
3703.
3708.
3708.
3708.
3705.
3704.
3705.
3705.
3705.
3705.
3704.
3704.
3705.
3704.
3704.
3704.
3705.
3708.
3708.
3708.
3708.
3708.
370a.
3708.
3708,
3704.
3704.
3708.
3705.
3705.
3705.
3705.
3705.
3705.
3705.
3705.
3708.
3704.
3708.
8
8
9
0
6
7
7
7
7
3
3
3
3
3
3
3
3
3
3
3
3
0
0
0
0
0
6
4
2
1
2
1
3
9
0
9
a
9
0
7
7
7
7
7
7
7
7
8
3
0
2 •
2
2
2
2
2
1
0
7
3
7
A
* SOURCE AREA A
A SQUARE »
* KILOMETERS *
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ft
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00'
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.09
.01
.36
.36
.36
.36
.36
.06
.06
.30
.01
.01
.30
*
*
*
*
»
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.1
ANNUAL SOURCE
EMISSION HATE
(TONS/DAY)
502 PART
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
..000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-1
.975
.177
.177
.241
8.101
.635
.157
.143
.131
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
7.360
5.216
5.216
5.216
5.216
5.216
.206
.206
.317
.317
.590
.122
.307
.307
.420
.050
.120
.120
.164
.238
.249-
.228
.041
.093
.099
.089
,.069
'.100
17.605
5.216
.217
6.778
.994
6.953
5.422
.024
.122
.137
.132
.333
.107
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
HT
("0
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.6
49.6
61 .0
61.0
61.0
61 .0
61.0
61.0
61.0
61.0
61.0
61.0
61.0
61.0
54.1
54.1
54.1
54.1
54.1
68.6
69.6
63.0
68.0
76.0
76.0
23.0
23.0
23.0
.5
49.0
49.0
51.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
30.0
30.0
9.1
24.0
9.1
30.0
61.0
3.0
3.0
3.0
30.0
30.0
3.0
STACK DATA
DTAM VEL
CM) CM/SEC)
2.4
1 .2
1.2
1.1
4.1
5.3
1.2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.7
2.7
2.7
2.7
3.8
3.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
7.6
9.3
9.3
15.5
6.4
5.5
9.0
9.0
9.0
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
10.2
10.2
7.2
3.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
A
A
TEMP *
COEG.lO »
505. *
450. A
450. *
450. A
450. *
672. A
450. A
450. A
450. A
539. A
589. A
589. A
599. A
589. A
589. A
589. *
589. *
•589. A
589. A
589. A
589. A
866. *
866. *
866. A
866. *
866 . »
477. 'A
477. A
533. »
533. *
533. *
477. A
0. *
0. A
0. A
0. *
0. A
0. A
0. «
0. *
0. +
0. A
0. A
0. A
0. A
0. A
0. A
0. A
0. A
0. »
0. A
0. A
0. A
0. A
0. A
0. A
0. •
0. A
0. A
0. A
-------
U.S. STEEL FAIRF1ELO OPERATIONS COMDITKHM Mil. 1
KECEPTllP. DATA
LOCATIONS TO BE USED AS WFCEPTUPS IN AODfTIUru Tfl THt 1 i? 1 »EC TANPl.M. Af» RKIU UJCATIHM3
KECEPTOW K-CQOROINATE Y-COO»UINATE
(KILIIMETERS) (K ILO^F T EPS )
\2? 505.6 3702.1
123 5(16.1 3706.5
l^a 506.6 3703.0
i5 soa.a 370.o
1^6 507.fr 3705. H
127 504.6 3704.0
12B 504.0 3705.3
139 504.fl 3703.1
1 30 St)5.3 370fl.u
A-4.1-2
-------
U.S. STEFL
FAIPFIfcLL)
CONDI TlflU Mil. 1
MFTt'URfJLUGICAL INPUT DATA FOW THt ANNIIAl SEASflN
MIXING DEPTH = IbOO. METFHS
AMBIENT TEMPERATURE = 29fl. DFRF,fcEP , K U L V 1 N
AMBIENT PRESSURE = 1000.
STAHILITY CLASS 1
WIND DIRECTION
N
NNfc
ME
EME
E
ESt
SE
SSE
S
SSW
Sl»
WSW
ft
WNul
MM
NN*/
1
.000«
.POOb
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.oooa
.0002
.0001
. 0 0 0 b
.0003
.000?
.ooos
'I
. 0 0 (1 7
.0003
.OOOfl
.0003
.000-5
.0003
.0002
.ooos
.0003
.0003
.0002
.0003
.OOdft
.0003
.OOOb
.0005
wlNn.SPF.fci)
I
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
CLASS
a
.0000
.0000
.0000
.0000
. 0 0 (1 0
.0000
. I) 0 0 0
.0000
.0000
.0000
.0000
.0000
. I) 0 0 0
. 0 (1 0 0
.0000
. U 0 0 0
5
.0000
.000 1)
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 IJ 0 0
.0000
h
.0000
.OOPO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 (1 0
. 0 0 0 0
. 0 0 0 0
.0000
.0000
.000 0
A-4.1-3
-------
U.S. STEtL FA1RFIELO OPEP4TIOMS CUUOITION NU. 1
METEOROLOGICAL INPUT DATA FHR THE ANMUAl. SMSON
STABILITY CLASS 2
WIND DIRECTION
M
NNt
NE
ENE
E
ESE
SE
SSE
S
SSrt
SW
WSrt
|V
>VNW
NW
NNrt
1
.0016
.0020
.0013
.0015
.002U
.0016
.0015
.00?0
.0023
.0019
.001 1
.0010
.0021
.0014
.0017
.0013
2
.003h
.0033
.00?!
.0023
. 0 0 (t 3
.0023
.0027
.0027
.002°
.0021
.00 IP
.ooia
.0035
.002"
.0031
.0032
KlNOSPtFI)
i
.0021
.0010
.0012
.0007
.002S
.0012
.0007
. o u l a
.0010
.0010
.0005
.0007
.0020
.001 ?
.001 *
.001 1
CLASS
U
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
.0000
.0000
.0000
5
. (1000
. 0 () 0 ( I
.0000
.000 0
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
. n u o o
.0000
.0000
.0000
.0000
f,
.000 (I
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.000 0
A-4.1-4
-------
U.S. b T11 L
DPtRM ll.r-JS CJMDITIUN "J'.l. 1
MEIFURULUGJCAL IiM^tll l)*IA FOP THfc ANMJAL StASHM
STABILITY CLASS
WIND 0 INACTION
IM
NMfc'
ME
ENE
e
ESt
SE
sst
s
SSW
Srt
WSW
.11
V4NM
NM
NNw
1
.0013
.00?«*
.oosa
.OOl'a
.0021
.0014
.0009
.0080
.ooia
.0006
,000«
.0007
.0008
.0005
.0008
.0007
2
.001H
.0013
.0017
hlMOSPEFl)
3
.0050
.0034
.001 b
.0010
.0053
.0025
.00?9
.005S
.0034
.0030
.00?7
.0027
.003H
.003?
.003f
.0040
CLASS
4
.0007
.GOO'S
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.0008
.0006
.U002
.0005
.0001
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OOOU
.0001
.0001
. n o o o
.0000
.0001
.0000
. o n o o
.0000
b
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.1-5
-------
U.S. STEkL FATRFTELD UPERATTOMS CONDITION Mil. 1
METEO«'ILOGIC*L INPUT DATA KOR THt ANNUAL Sk'ASMN
STABILITY CLASS
CLASS
WIND DIRECTION
N
MNt
NE
EME
F.
ESE
SE
SSE
S
ssw
sw
rtSh
rt
WMrt
NW
NNW
1
.0023
.0029
.0021
.0023
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.0011
.0018
.0010
.0017
.0016
2
.OOH5
.0066
.0054
.0043
.0116
.0040
.0056
.0075
.0069
.0049
.0028
.0038
.0073
.0035
.0055
.0045
3
.0162
. 0 0 '1 6
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.0096
.0097
4
.0114
.OOJ5
.0004
.0009
.0041
.0029
.007 1
.0093
.0122
.0115
.0076
.0045
.009fl
.00(54
.0
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION NO.
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCEPT
PARTICIPATES
.0
SLOPE
1 .0000
A-4.1-7
-------
u.s. STEEL
FAIPFIELD
COMUITTUN
*
*
RECEPTOR CONCErtTfcAT IU* DAT*
* *
* 9ECEPTJR *
* MUMBFrt *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTCR LOCATION
* (KILOMETERS)
* MOklZ VERT
1
2
1
a
5
6
7
a
9
10
11
12
13
14
15
Ib
1 7
16
19
20
21
22
?3
24
25
26
27
28
29
3o
31
32
33
34
35
36
37
36
39
40
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
503.0
503.0
503.0
503.0
303.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504 .0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
+
*
*
*
+
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
ft
3701
3702
370?
3704
?705
3706
3707
3708
370P
3710
371 1
3701
3702
3701
3704
37D5
3706
3707
3708
3709
3710
3711
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3701
3702
3703
37UU
37U5
3706
3707
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
ft
ft
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
•ft
ft
it
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
ft
ft
*
*
ft
ft
ft
ft
ft
ft
ft
*
ft
*
*
*
ft
EXPECTED ARITHMETIC r-'tAN *
*
(MCRQGKAMS/CU. i-'EUR) *
sna PAKTICULATER *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
K
*
A
*
*
*
*
*
*
*
*
A
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
1
-------
U.S. STEEL
FAIRFIELD OPERATIONS
COwl'ITUiN NCI. 1
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTUR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
K
*
*
*
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
frl
62
63
64
65
66
67
68
60
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
506.0
506.0
b 0 b . 0
506.0
507.0
5U7.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
508.0
508.0
bOh.O
508.0
506.0
508.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
50°.0
509.0
510.0
510.0
510.0
*
*
*
*
*
*
*
*
*
#
*
*
*
*
*
1C
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
lit
*
*
*
*
*
*
*
*
3708.0
3709.0
3710.0
3711.0
3701 .0
37o2.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3705.0
3703.0
*
*
*
*
*
*
*
*
*
*
*
IT
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
+
EXPECTED ARITHMETIC MF.AN *
*
C" ICROGRAN'S/CU. METF") *
SO? PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
A
*
*
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*
170.
ll)«.
75.
61 .
1 13.
152.
213.
417.
334.
?99.
224.
24P.
132.
t)4.
61 .
68 .
8°.
107.
160.
193.
Ib6.
?27.
292.
123.
77.
52.
47.
55.
71 .
89.
103.
91 .
99.
127.
bU.
53.
40.
37.
44.
46.
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
It
it
*
+
*
*
*
*
ft
*
*
*
*
*
A-4.1-9
-------
U.S. STEtL FAIRF1ELU OPERATIONS COMDITiONi NO. 1
*
* RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NU^riEU *
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ir
«
*
*
it
*
*
lit
*
*
*
if
it
*
*
*
*
•*
*
*
*
*
*
*
*
M
ft2
83
84
85
86
87
86
89
90
91
92
93
94
95
96
97
98
99
1 00
101
102
103
1 04
105
106
107
108
109
1 1 0
1 1 1
1 12
113
114
1 15
1 1ft
1 17
118
119
120
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
it
it
*
it
it
*
*
RECEPTOR LOCATION
(KILOMETERS)
riOh'IZ VERT
510.0
510.0
510.0
510.0
510.0
510.D
510.0
510.0
511.0
511.0
511.0
5H.O
511.0
511.0
511.0
511.0
511.0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
51?. 0
*
*
*
K
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
370U.O
3705.0
37U6.0
3707.0
3706.0
3709.0
3710.0
3711.0
37ul .0
3702.0
3703.0
37H4.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701 .0
3702.0
3703.0
3701.0
3705.0
3706.0
3707.0
370M.O
3709.0
37)0.0
*
*
*
*
*
*
nr
it
*
it
*
*
*
*
It
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*•
*
*
*
EXPECTED ARITHMETIC MEAN *
*
CMCRI
SCi2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
..GKAMS/CU. '-'STEP) *
PARTICULATES *
*
*
*
*
*
*
*
it
it
it
*
*
*
w
,
*
*
f
it
*
*
*
*
*
4
It
w
*
*
*
*
*
*
*
*
*
*
*
*
*
*
63.
68.
5S.
19.
61.
10.
33.
2«.
31.
3d.
36.
16 .
52.
42.
35.
37.
ib.
23.
*?.
23.
25.
32.
38.
41 .
31.
2B.
27.
22.
1».
17 .
20.
22.
27.
1,?.
34.
29.
el.
22.
19.
15.
it
*
*
*
*
*
*
*
it
it
it
*
*
*
*
*
*
it
*
*
*
*
•*
*
*
n
*
*
*
*
*
*
*
*
*
*
*
*
^
*
*
A-401-10
-------
U.S. STEEL
FATHFIF.LD OPERATIONS
CONDITION N'O. 1
RECEPTOR CONCENTRATION OATA
* *
* RECEPTOR *
* NUMbER *
RECEPTOR LOCATION
HXPECTtO
MEAN
(K UOMETERS)
VERT
(MICPOGRAMS/CII. MtTER)
SO? PAhTICULATES
121
*
513.0 *
S05.b *
•506.1 *
37H.O *
570?.l *
370^.5 *
13.
3?a.
31 1 .
506.6 *
50«.« *
507.6 *
3703.a
3702.0
370?.a
40 f>.
2H1 .
?0a.
127
128
129
130
504.6
50U.O
504.a
505.3
3704.0
3705.3
3703.1
3708.4
0.
0.
0.
0.
42?.
?32.
350.
1 3fl.
A-4.1-11
-------
U.S. STEEL FMRFIELO OPERATIONS CDiMDITlPIv 'MO. 1
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICIPATES
;-iICROG*A"S PER CUPIC
* SOURCE * *
* *
* 1 *
* *
* a *
* *
4 3 *
4 4
* 44
4 4
* 5
* *
4 6 *
4 4
474
* Ik
4 8 4
4 4
4 94
4 4
4 10 4
* *
* 11 *
* *
* 12 *
* *
4 13 4
* *
* 14 *
* *
* 15 *
* *
* 1 fe *
* *
* 17 *
* *
* 18 *
* *
4 19 .
4 4
* 20 4
4 4
* 21 4
4 4
IECEPTOR
37
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0345
.00 7,
.0014
.00 X
.0007
.00 X
.0008
.00 X
.0007
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 %
.0000
4 R
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
ErEr>TO*
38
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 *
.0293
.00 X
.0013
.00 X
.0005
.00 Z
.0005
.00 X
.0005
.00 X
.0000
.00 7.
.0000
.00 X
.0000
.00 7.
.OnOO
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
4 F
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
(ECEPTOR * (
26 *
. 0 0 X 4
.0015 *
.00 X 4
.0003 *
.00 X *
.0003 *
.00 X 4
.0004 +
.00 x 4
.0314 4
.00 % 4
.0015 *
.00 X 4
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
. 0 0 X *
.0031 *
.00 X 4
.0031 4
. 0 0 X 4
.0031 4
.00% 4
.0031 *
.00 X 4
.0031 «
.OCX 4
.0031 4
.00 X 4
.0040 4
.00% 4
.0040 4
.OCX 4
.0040 4
.00 X 4
.0040 4
.00 X 4
.0040 4
. 0 0 X 4
.0040 4
RECEPTOR * >
3fc *
.00 X. *
.0013 *
.00% 4
.000? *
.00 x *
.0002 *
.00 X 4
.0003 *
. 0 1 X *
. 0 J Q « 4
. 0 0 X *
.0018 4
.OCX *
.0008 4
.00% *
.000° *
.or, 7. 4
.0008 4
.00 x *
. 0 0 X 4
.009i 4
. 0 0 7. 4
.0093 *
. 0 0 X 4
.0093 *
.OdX t
.no 7. 4
.0093 *
.00 X 4
.0087 *
.0(1 X 4
.0087 4
. 0 0 X 4
.00% 4
.0087 4
.OCX *
.0087 4
. 0 fl '/. 4
.0087 4
RECEPTOR
.00 X
.00(4
.00 X
.0003
. 0 0 X
.0003
.00 X
. 0 0 u 4
.01 X
.0359
. 0 0 X
. 0 0 1 «
.00 %
.0008
.00 7.
.OOt'P
.00 X
.0007
.00 X
.012?
.00 %
.0122
.00 7,
.0122
. 0 0 X
.012?
» 'J U %
.0122
. 0 0 7.
.012?
.00 '/
.U127
.00 X
.0127
.00 X
.0127
.no x
.0127
.00 '/.
.0127
. U 0 X
.0127
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
4
*
*
*
*
*
*
*
*
*
*
*
*
If
*
*
*
*
*
*
A-4.1-12
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 1
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTTCULATES
4ICRGGRAMS PER CUBIC METER
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
ft
ft
ft
*
4
*
ft
ft
SOURCE
22
23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
36..
39
40
41
42
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
ft
*
*
ft
*
*
*
*
*
ft
*
*
*
*
ft
*
*
*
ft
RECEPTOR
37
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0066
.00 X
.0002
.00 X
.0000
.00 X
.0004
.00 X
.0004
.00 X
.0008
.00 X
.0002
1.60 X
14.9398
1.51 X
14.0899
1.73 X
16.1751
.37 X
3.4655
.24 X
2.2771
.24 X
2.2703
.31 X
2.8521
.10 X
.9291
.10 X
,953fl
.0° X
.8778
*
*
*
*
«
*
A
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0075
.00 X
.0001
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
1 .20 X
10.7045
1 .52 X
13.5336
7.44 X
30.6597
.56 X
5.1480
.09 X
.7744
.09 X
.7755
.13 X
1.1746
.14 X
1 .2627
.15 X
1.2971
.13 i
t .1663
*
w
*
*
«
*
*
*
*
«
ft
*
*
*
*
*
*
*
«
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
RECEPTOR *
£6 *
. 0 0 X *
.0074 *
.00 X »
.0074 ft
.00 X •
.0074 «
.00 X *
.0074 *
. Ol> X «
.0074 «
.00 X ft
.0004 *
.00 X *
.0002 *
.00 X *
.0004 *
.OCX *
.0004 *
.00 X •
.0007 *
.00 X *
.0002 *
.71 X *
4.5307 »
.73 X «
4.6567 «
1 .04 X *
6.6573 *
.15 X *
.9872 *
.19 X *
1.2290 »
.20 X *
1.2918 *
.28 X *
1.7909 *
.1^ X *
.9887 *
. 1 6 X »
1.0249 *
.15 X *
.9322 «
RECEPTOR
36
.00 X
.00*3
.00 X
.0063
.00 X
.0063
.00 X
.0063
.00 1.
.0063
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.000?
.00 X
.OOOu
.oc •*
.0001
.84 •/.
4.4892
.81 X
4.3341
1.00 '/.
5.3478
.17 X
.9097
.24 X
1 .2P96
.24 Z
1.2593
.29 X
1.5615
.13 X
.71Rfc
.14 X
.7381
.13 *
.6*17
*
*
*
*
*
*
*
*
*
4
ft
*
*
ft
*
ft
*
«
*
*
*
#
«
*
ft
*
ft
*
v
*
*
*
*
*
ft
*
*
*
«
*
t
ft
RECEPTOR
.00 X
.0071
.00 X
.0071
. 0 0 *
.0071
.00 V.
.0071
.00 X
.0071
.00 y.
.00 X
.0003
.00 X
.0005
.Of- X
.OOOS
.00 y.
.0009
.00 X
.000?
.77 X
-1.0546
.76 X
3.9725
.97 X
5.0976
.15 X
.SI 02
.25 X
1 .307*
.25 X
1 .2P79
.31 X
1 .6549
.16 X
.8151
.16 X
.8457
.15 X
.7689
*
*
*
w
*
*
*
*
A
*
*
*
*
V
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
A-4.1-13
-------
U.S. STEEL FUSFIELO OPERATIONS
SOURCE CONTRIBUTIONS TO FIVE VAX
AfJftlUAL P4R7ICUL&TES
MICROG«*MS B£S CU3IC M£T£R
CONDITION HO. 1
*
*
*
*
*
,
*
*
'
*
*
I
*
*
*
*
*
*
*
*
*
*
*
*
*
•#•
*
*
*
*
»
SOURCE
43
4U
45
46
47
48
-------
APPENDIX A-4.2
COMPUTER MODEL USING SMALL GRID FOR CONDITION 2
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NU. 2
SOURCE flATA
SOURCE • SOURCE LOCATION
NUMBER • (KILOMETERS)
» HORIZONTAL « VERTICAL
* SOURCE AREA •
• SSUAHE *
• KILOMETFHS «
ANNUAL SnuRCE
EMISSION PATF
(TONS/OAT)
30? PART
STACK DATA
HT DtAM VEL TEMP '
(M) (Ml (M/SEC) (DEG.K)'
*
*
•
*
*
*
*
*
*
„
*
ft
*
ft
•
*
*
*
*
*
ft
*
*
*
*
*
ft
*
•
*
*
ft
ft
*
*
*
4
ft
ft
1
2
3
a
5
6
7
8
9
10
11
12
13
U
15
16
17
14
19
20
21
22
23
2a
25
26
27
2ft
29
30
31
35
33
3u
35
3fe
37
3
.00 ft
.00 ft
.00 •
.00 •
.00 *
.00 •
.00 •
.00 •
.00 •
.00 ft
.00 •
.00 •
.00 •
.00 •
.00 •
.00 «
.00 «
.00 •
.00 •
.00 «
.00 •
.00 •
.00 «
.00 •
.00 •
.01 «
.01 «
.01 •
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.noo
.000
.000
.000
.000
.000
.000
.000
.DUO
.000
.975
.177
.177
.201
."•53
.(.35
.1.57
.103
.131
.011
.011
.011
.011
.001
.011
.011
.001
.011
.001
.001
.on
.012
.012
.012
.002
,ni?
.063
.063
.097
.097
.191
.057
.307
.307
.120
.059
.120
.120
. 1fi>7 .0
* 19 .b
ft 09.6
• 19.6
« 61 .0
• 61.0
• 61.0
• (>1.0
• 61.0
• 61.0
• 61.0
• 61.0
• 61.0
ft 61.0
• 61.0
• 61.0
• 51.1
• 51.1
• 51.1
• "50.1
• 5i. 1
« 68. h
• 68.6
• hH.l)
• h8.0
• 76.0
* 76.0
• 23.0
• 2<-0
• ?3.0
• .5
• "1.0
• 19.0
* 51.0
Z.I
1.2
1 .2
1 .1
o.l
5.3
1 .2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.
2.
2.
2.
2.
2.0
2.0
2.0
?..n
2.0
2.7
2.7
2.7
2.7
3.«
3.fl
.0
. 0
.0
.0
.0
. a
•"
7 .b
9.8
9.fl
15.5
0.1
5.5
9.0
9.0
9.0
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
6. i
6.3
6.3
6. f
6. i
6.3
6.3
10.2
10.2
7 .2
5.1
.0
.ri
.0
.0
. . •
866. «
H66. •
H66 . *
866. •
177. .
177. «
553. •
553. ft
533. .
177 . •
0. *
0 . •
0. ft
0. •
0. «
I). •
1 . •
A-4.2-1
-------
ft
ft
ft
,
ft
•
.
ft
•
ft
ft
•
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
00 •
4| ft
«2 •
• 1 .
• a *
•5 •
• 6 •
• 7 •
•a •
49 ft
SO •
51 •
52 •
53 •
54 •
55 •
56 •
57 ft
58 •
59 •
60 •
61 •
SU/.o
507.3
507.4
507.3
507.0
507.3
507.*
507.3
506.5
506.1
508.6
506.7
506. It
506.8
506.*
506.6
506.6
506.7
506.5
507.4
506.1
507.3
«
ft
•
.1/110.
3708.
3708.
/ •
7 «
7 •
• 3708.7 •
•
•
*
*
*
ft
•
*
•
*
•
.
*
•
•
*
*
•
3708.
3708.
3708.
3706.
3704.
370«.
3708.
3705.
370S.
3705.
3705.
3705.
3703.
3703.
3705.
3708.
3704.
3706.
7 •
7 •
7 •
7 •
6 •
3 •
0 •
2 •
1 •
2 •
2 •
2 •
2 •
1 •
0 •
7 «
3 •
7 ft
.tiw •
.00 •
.00 •
.00 •
.00 •
.00 *
.00 •
.01 •
.01 •
.09 ft
.01 •
.36 •
.36 •
.36 •
.36 •
.36 •
.06 •
.06 •
.30 •
.01 •
.01 •
.30 •
.uuu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.?}*
.249
.228
.0*1
.093
.097
.«89
.069
.100
17.605
3.216
.217
.339
.342
6.933
3.422
.024
.122
.137
.003
.241
.107
• ct.1l
• 23.A
• 21.0
• .3
• 23.0
• 23.0
• 23.0
• .0
• .0
• 30.0
• 30.0
• 9.1
• 24.0
• 9.1
• 30.0
• 61.0
• 3.0
• 1.0
• 3.0
• 3W.O
• 3.0
• 3.0
.11
.0
.0
.0
.0
.0
.0
.0
.«
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.11
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
II. ft
0. ft
0. ft
0. ft
n. •
0. *
. ft
. ft
. ft
. ft
. ft
. ft
0. •
0. •
0. ft
0. «
0. •
0. •
A . ft
0. •
0. *
0. •
A-4.2-2
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
RECEPTOR DATA
LOCATIONS TO BE USED AS RECEPTORS IN ADDITION TO THE 131 RECTANGULAR GRID LOCATIONS
RECEPTOR X-COORDINATE Y-COOROINATE
NUMBER (KILOMETERS) (KILOMETERS)
122 505.6 3702.1
123 506.1 3706.5
124 506.6 3703.4
125 504.4 3702.0
126 507.6 3705.4
127 504.6 3704.0
128 504.0 3705.3
129 504.4 3703.1
130 505.3 3708.4
A-4.2-3
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE = 29
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS 2
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
w
WNW
NW
NNW
1
.0016
.0020
.0013
.0015
.0024
.0016
.0015
.0020
.0022
.0019
.0011
.0010
.0021
.ooia
.0017
.0013
2
.0036
.0033
.0021
.0023
.0013
.0023
.0027
.0027
.0029
.0021
.0019
.0014
.0035
.0024
.0034
.0032
WINDSPEED
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.0005
.0007
.0020
.0013
.0016
.0011
CLASS
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.2-5
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS 3
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
w
WNW
NW
NNW
1
.0013
.0039
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.0005
.0008
.0007
2
.0018
.0019
.0012
.0016
.0045
.0016
.0016
.0030
.0029
.0017
.0014
.0018
.0030
.0019
.0023
.0017
WINDSPEEO
3
.0050
.0034
.0016
.0010
.0053
.0025
.0029
.0058
.0034
.0030
.0027
.0027
.0038
.0032
.0038
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.0008
.0006
.0002
.0005
.0003
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.2-6
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS a
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
WSW
w
WWW
NW
NNW
1
.0023
.0039
.0021
.0023
.00*17
.0012
.0012
.0033
.0023
.ooia
.0007
.0011
.0018
.0010
.0017
.0018
2
.0085
.0066
.0051
.ooas
.0116
.0049
.0056
.0075
.0069
.0049
.0028
.0038
.0073
.0035
.0055
.0045
W1NDSPEED
5
.0162
.0006
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
4
.0114
.0025
.0004
.0009
.0041
.0029
.0071
.0093
.0122
.0115
.0076
.0045
. .0098
.0064
.0065
.0088
5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0024
.0003
.0007
.0005
6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
A-4.2-7
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION NO. ?_
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS 5
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
W3w
w
WNW
NW
NNW
1
.0169
.0*136
.0507
.0236
.0297
.0079
.0066
.0131
.0071
.0038
.0020
.0022
.0061
.0032
.0037
.0051
2
.0132
.0173
.0138
.0096
.0162
.0015
.0077
.0129
.0080
.0043
.0023
.0029
.0069
.0033
.00a3
.0047
WINOSPEED
3
.0044
.0018
.0007
.0010
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.0014
.0033
.0016
.0017
.0017
CLAS3
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.2-8
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCEPT SLOPE
PARTICIPATES .0 1.0000
A-4.2-9
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
*
ft
RECEPTOR CONCENTRATION DATA
*
* RECEPTOR
* NUMBER
*
*
*
*
*
w
*
*
*
*
*
*
*
*
*
*
*
*
x
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
2
3
4
5
b
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
25
26
27
28
29
30
31
32
33
34
35
36__
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3103.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
56
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"76"
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
w
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
506.0
506.0
506.0
506.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
507.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
509.0
510.0
510.0
510.0
*
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0" "~
3711.0
3701.0
3702.0
3703.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
---
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
*
Ik
*
*
*
... . ^_.._
*
*
Ik
*
145.
92.
62.
51.
93.
126.
174.
326.
241.
218.
165.
222.
116.
72.
52.
56.
73.
89.
132.
150.
137.
211.
277.
112.
68.
45.
40.
46.
58.
75.
84.
76.
90.
120.
77.
47.
34.
31.
3fe.
39.
*
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
A-4.2-11
-------
U.S. STEEL FAIRFIElD OPERATIONS CONDITION NO. 2
*
*
*
*
*
*
*
*
*
*
*
•ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
it
*
*
*
A
*
*•
*
*
*
*
*
K
*
*
*
*
RECEPTOR CONCENTRATION DATA
*
RECEPTOR *
NUMBER «
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
__115.
116
117
118
119
120
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
.513.0 .
513.0
513.0
513.0
513.0
513.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
ik
*
*
*
it
*
*
*
*
*
*
*
*
3704.0
37U5.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0..
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
. 0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
53.
55.
46.
43.
59.
35.
29.
24.
25.
25.
30.
39.
43.
34.
29.
33.
22.
19.
18.
19.
21.
27.
32.
34.
28.
23.
23.
19.
15.
14.
16.
18.
22.
26.
88.
23.
20.
19.
Ife.
13.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.2-12
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
A
*
*
*
*
*
*
it
iei
123
123
124
125
126
127
128
129
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
513.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
A
*
*
*
*
*
*
*
*
*
3711
3702
3706
3703
3702
3705
3704
3705
3703
.0
.1
.5
.4
.0
.4
.0
.3
.1
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
A
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) *
S02 PARTICULATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
A
*
A
*
*
*
A
11.
274.
243.
340.
242.
152.
370.
188.
302.
A
*
A
A
A
A
A
A
*
A
130
505.3 * 3708.4
115.
A-4.2-13
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
MICROGRAMS PER CUBIC METER
* SOURCE
*
*
*
*
*
*
X
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
1
2
3
4
5
6
7
8
9
10
11
12
13
la
15
16
17
18
19
20
21
* RECEPTOR
* 37
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
.00 I
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0041
.00 X
.ooia
.00 Z
.0007
.00 X
.0008
.00 Z
.0007
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 X
.0000
* RECEPTOR
* 38
*
Ik
*
*
Ik
*
Ik
*
Ik
*
*
*
*
Ik
*
*
*
*
*
*
ft
*
*
t
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 X
.oosa
.00 Z
.0013
.00 X
.0005
.00 Z
.0005
.00 Z
.0005
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
* RECEPTOR
* 26
•ft
ft
ft
ft
*
*
ik
it
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
ft
ft
ft
ft
ft
*
*
*
*
*
*
ft
ft
.00 Z
.0015
.00 X
.0003
.00 X
.0003
.00 X
.0001
.00 X
.0037
.00 Z
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 X
.0000
.00 Z
.0000
.00 X
.0000
* RECEPTOR
* 36
*
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
it
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
.00 X
.0013
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 X
.0046
.00 X
.0018
.00 X
.0008
.00 X
.0009
.00 Z
.0008
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 2
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0000
.00 Z
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
* RECEPTOR
* 25
ft
ft
*
*
ft
*
ft
ft
ft
ft
«
ft
*
ft
ft
ft
ft
*
ft
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
fr
.00 Z
.0014
.00 X
.0003
.00 x
.0003
.00 X
.0004
.00 X
.0042
.00 X
.0018
.00 2
.0008
.00 X
.0008
.00 X
.0007
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
ft
ft
ft
ft
ft
Tk
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
A-4.2-14
-------
U.sl STEEL FAIRFIELD OPERATIONS CONDITION NO. S
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
MICROGRAMS PER CUBIC METER
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SOURCE
22
23
SH
25
26
27
28
29
30
31
32
33
34
35
36
37
. 38
39
40
41
42
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* •
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0000
.00 Z
.0001
.00 Z
.0001
.00 Z
.0002
.00 Z
.0001
1.73 Z
14.9398
1.64 Z
14.0899
1.88 Z
16.1751
.40 Z
3.4655
.26 Z
2.2771
.26 Z
2.2703
.33 Z
2.8521
.11 Z
.9291
.11 Z
.9538
.10 Z
.8778
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
.00 Z
.0000
1.57 Z
10.7045
1.98 Z
13.5336
4.48 Z
30.6597
.75 X
5.1480
.11 Z
.7744
.11 Z
.7755
.17 Z
1.1746
.18 Z
1.2627
.19 Z
1.2971
.17 Z
1.1863
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
.. *. .
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 Z
.0001
.00 Z
.0001
.00 Z
,0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0002
.00 Z
.0000
.78 Z
4.5307
.80 Z
4.6587
1.15 Z
6.6573
.17 Z
.9872
.21 Z
1.2290
.22 Z
1.2918
.31 Z
1.7909
.17 Z
.9887
.18 Z
1.0249
.16 Z
.9322
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0001
.00 X
.0001
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0000
.96 Z
4.4892
.92 Z
4.3341
1.14 Z
5.3478
.19 Z
.9097
.28 Z
1.2898
.27 Z
1.2593
.33 X
1.5615
.15 Z
.7188
.16 Z
.7381
.15 Z
.6817
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
25
.00 Z
.0001
.00 X
.0001
.00 Z
.0001
.00 Z
.0001
.00 Z
.0001
.00 2
.0001
.00 Z
.0001
.00 Z
.0001
.00 X
.0002
.00 Z
.0003
.00 Z
.0001
.87 Z
4.0546
.85 Z
3.9725
1.09 X
5.0976
.17 Z
.8102
.28 Z
1.3076
.28 Z
1.2879
.35 Z
1.6549
.17 Z
.8151
.18 Z
.8457
.16 Z
.7689
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
A-4.2-15
-------
u.s. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
MICROGRAMS PER CUBIC METER
r
*
*
*
*
it
*
*
•ft
*
+
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
SOURCE
•43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
BACK-
GROUND
TOTAL
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
It
*
*
*
*
It
*
*
*
It
X
*
RECEPTOR
37
.03 X
.1579
.04 X
.3639
.04 X
.3723
.04 X
.3434
.03 X
.2628
.76 X
6.5171
52.70 X
454.4827
2.87 X
24.7636
.63 X
5.4010
.85 X
7.3153
.98 X
8.4309
15.97 X
137.6528
5.98 X
51.4888
.08 X
.6768
.46 X
3.9722
.55 X
4.7215
.OQ X
.0192
11.10 X
95.6359
.04 X
.3789
.00 X
0.
100.0 X
861 .7952
*
*
•*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
K
*
*
*
*
*
*
X
*
RECEPTOR
38
.03 X
.2153
.07 X
.4953
.07 X
.5071
.07 X
.4648
.05 X
.3555
.96 X
6.5960
48.82 X
333.8609
4.39 X
29.9892
1.35 X
9.2031
1.41 X
9.6754
1.99 X
13.6227
23.47 X
160.4891
3.62 X
24.7719
.20 X
1.3384
1.09 X
7.4783
1.18 X
8.0943
.00 X
.0259
1.41 X
9.6673
.08 X
.5585
.00 X
0.
100.0 X
683.9500
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
26
.03 X
.1688
.07 X
.3858
.07 X
.3985
.06 X
.3634
.05 X
.2855
.27 X
1.5862
70.12 X
405.8816
3.76 X
21 .7666
.34 X
1.9593
.51 Z
2.9602
.52 X
3.0214
10.42 X
60.3285
7.76 X
44.8920
.05 X
.2639
.25 X
1.4522
.30 X
1 .7149
.00 X
.0207
1 .20 Z
6.9507
.08 X
.4433
.00 X
0.
100.0 X
578.9460
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
«
*
*
*
*
*
*
K
*
*
X
*
RECEPTOR
36
.03 X
.1220
.06 X
.2811
.06 X
.2877
.06 X
.2664
.04 I
.2042
.35 X
1 .6566
63.43 X
297.2751
4.30 X
20.1354
.42 X
1 .9791
.66 X
3.1027
.68 X
3.1684
13.49 X
63.2080
9.99 X
46.8344
.06 X
.2627
.31 X
1.4521
.27 X
1.2766
.00 X
.0150
1.19 X
5.5867
.06 X
.3025
.00 X
0.
100.0 X
468.7576
*
*
*
*
*
*
*
*
*
*
*
*
*
it
It
it
*
*
*
*
ft
*
ft
ft
it
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
25
.03 X
.1406
.07 X
.3211
.07 X
.3321
.06 X
.3026
.05 ^
.2293
.29 X
1.3680
67.13 %
314.2585
4.08 X
19.0805
.37 X
1 .7176
.57 X
2.6675
.58 X
2.7082
11.65 X
54.5382
8.85 X
41 .4464
.04 X
.1960
.23 X
1 .0598
.26 X
1 .2106
.00 %
.0166
1.20 X
5.6333
.08 X
.3771
.00 X
0.
100.0 X
466.2317
*
*
*
it
it
it
*
*
*
*
*
*
*
*
it
ft
it
*
*
ft
it
*
*
ft
*
it
*
ik
*
ft
*
*
*
*
*
*
ft
*
*
ft
*
*
*
*
A-4.2-16
-------
APPENDIX A-4.3
COMPUTER MODEL USING SMALL GRID FOR CONDITION 3
-------
U.S. STStL FAIRFIELD OPERATIONS CONDITION MO. 3
SOURCE DATA
* •
• SOURCE • SOURCE LOCATION
• NUMSER * CKILOMETERS)
*
.
•
•
*
*
*
,
*
•
.
*
*
*
•
*
*
*
*
*
•
*
.
*
»
*
•
*
*
•
*
*
»
*
»
*
*
*
•
*
*
*
•
*
1
2
3
4
3
6
7
a
9
10
11
12
13
10
15
16
17
18
19
20
21
22
23
24
25
26
27
29
29
30
31
32
33
34
35
36
37
33
39
40
41
02
03
• HORIZONTAL <
• 506.4 «
• 506.5 •
• 506.5 •
• 506.5 •
• 509.1 •
« 509.0 •
« 507.0 *
* 507.3 •
" 507.0 «
• 506.8 *
. 506.8 •
* 506.7 •
• 506.7
• 506.8 •
• 506.8 •
« 506.1 •
• 506.5 •
• 506.5 •
« 506.5 «
" 506.5 «
• 506.5 »
• 506.5 •
• 506.5 *
• 507.0 .
• 507.3 *
• 507.4 •
• 507.3 «
* 507.0 •
* 507.3 «
* 507.4 •
« 507.3 *
« 506.5 •
• 506.7 «
« 506.8 *
• 506.8 •
• 506.8 «
« 506.8 »
• 506.8 •
« 506.7 «
""• 506.1 «
• 506.5 •
• 506.1 *
* 507.3 *
*
. SOURCE »REA »
• SQUARE «
VERTICAL • KILOMETERS •
3700
3700
3704
3705
3706
3708
3708
3708
3708
3705
3700
3705
3705
3705
3705
3704
3704
3700
3705
3700
3700
3700
3705
3706
3708
3708
3708
3708
3708
3708
3708
3700
3705
3705
3705
3705
3705
3705
3705
3704
3705
3700
3708
.8 •
.8 •
.9 •
.0 •
.6 •
.7 •
.7 •
.7 •
.7 •
.6 •
.0 •
.2 •
.1 •
.2 •
.1 «
.3
.» •
.9 .
.0 •
.9 •
.8 •
.9 «
.0 •
.7 •
.7 •
.7 *
.7 «
.7 •
.7 «
.7 «
.7 •
.8 •
.2 •
.2 *
.2 •
.2 «
.2 •
.2 •
.1 «
.3 "•
.0 «
.3 •
.7 «
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1 .00
.01
.01
.01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.36
.36
.36
.36
.36
.06
.06
.02
.30
.01
.30
•
*
•
.
t
t
*
Ik
•
*
*
*
*
*
*
.
t
•
*
*
*
*
*
*
*
*
•
*
•
*
*
#
*
*
*
*
V
*
*
*
*
*
•
ANNUAL SOURCE *
EMISSION BATE •
CTONS/OAY) .
S02
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PART
.975
.177
.177
.201
8.101
.635
.137
.143
.131
.206
.206
.097
.097
.594
.037
.026
.307
.307
.420
.059
.120
.120
.164
.236
.249
.228
.001
.093
.097
.089
.069
.100
.384
.258
.342
6.953
5.422
.024
.122
1.285
.137
.356
.107
HT
STACK
OIAM
DATA
VEL
« CM) CM) (M/SEC)
.
•
«
*
•
•
*
*
*
*
*
*
*
•
*
,
*
•
*
*
*
*
•
'
,
*
*
*
*
*
*
*
*
.
*
«
*
*
*
.
*
*
*
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.6
49.6
68.6
66.6
69.0
68.0
76.0
76.0
46.*
23.0
23.0
23.0
.5
49.0
09.0
51.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
9.1
24.0
9.1
30.0
61.0
3.0
3.0
30. 0
3.0
30.0
3.0
2.4
1.2
1.2
I.I
4.1
5.3
1.2
1.2
1.2
2.7
2.7
2.7
2.7
3.8
3.8
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
7.6
9.8
9.9
IS. 5
b.4
5.5
9.0
9.0
9.0
6.3
0.3
10.2
10.2
7.2
3.u
32.0
.0
.1)
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
TEMP .
COEG.K)*
505. «
45U. •
450. •
450. «
050. •
672. *
450. «
«50. .
450. .
077. -
«77. •
533. «
533. •
533. •
477. •
850. •
0. «
0. «
0. •
0. •
fl . *
n . *
0. «
0. •
0. «
0. «
0. •
0. «
0 . •
0. •
0. •
0. •
0. •
0. «
0. •
0. •
0. »
0. •
0. «
0. •
n . »
0. «
0. •
A-403-l
-------
U.S. STEEL FAIRFIF-LD OPERATIONS CPNDITION Mil. 3
RECEPTOR DATA
LOCATIONS TO HE USED AS RECEPTORS IN ADDITION Tf> THE 1 e 1 RECTMGDL AR GUID LOCATIONS
RECEPTOR X-COOROINATE V-COOKI) I M TE
(KILOMETERS) (KILOMETERS)
133 505.6 3703.1
133 SOh.1 3706.5
12« 506.6 3703.4
t35 50a.q 3702.0
1?6 507.6 3?05.«
127 50«.6 37(>a.O
138 50«.0 3705.3
139 50'l.fl 3703.1
130 505.3 3708.«
A-4.3-2
-------
U.S. STEEL
FAIRFIELD C1PF_RATIOMS
CONDITION NH.
MFTEIJROLUGICAL INPUT DATA hO* THE ANNUAL SEASON
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE = 29
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
". 0 0 0 0
.0000
.0000
.0000
.0000
A-4.3-3
-------
U.S. STEEL FAIHFIELO OPERATIUHS CUNOiriUN N'l.
METEOROLOGICAL ItvPUT DATA FOR THE ANNUAL SFASMM
STABILITY CLASS 2
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
SSrt
S"V
wSW
w
(MNW
NW
NNrt
1
.0018
.0020
.0013
.0015
,ooa000
.0000
.000 0
.0000
f,
.0000
."000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.000 0
A-4.3-4
-------
U.S. STEEL
FAIWFItLO nPEKATlDNS
ClINDT
WH.
METEOROLOGICAL INPUT DATA FOR THE ANNUAL StASflM
STABILITY CLASS 3
KINO DIRECTION
N
NNE
NE
ENF.
E
ESE
SF
SSE
S
SSW
sw
wsw
IV
WNid
I>JW
NNH
1
.0013
.0029
.OOP4
.OOlb
.0021
.001«
.0009
.00?0
.0012
.0006
.000«
.0007
.0008
.OOOi
.0006
.0007
a
.0018
.0019
.001?
.UOlf.
.00«5
.OOtb
.0016
.0030
.0029
.0017
.0011
.OOlfl
.0030
.0019
.0023
.0017
wlNOSPEFD
3
.OOSO
.003a
.OOlb
.0010
.0053
.ooss
.00?9
.005fl
,003«
.0030
.00?7
.00??
.003^
.no
,003fl
.OOao
CLASS
'J
.0007
.ooos
.0000
.0001
.0003
.0003
.0001
.000?
.000f»
.0003
.0003
. 0 0 0 «
.0006
.0002
.ooos
.0003
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.000 0
.0000
.0000
b
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000i»
.0000
.0000
.0000
A-4.3-5
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION NO. 3
METEOROLOGICAL IMPUT DATA FOR THE AMMIIAL SEASUiJ
STABILITY CLASS
WIND DIRECTION
N
NNE
ME
tNE
E
ESE
SE
SSE
S
SSW
SH
wsw
w
rtNW
NW
NNW
1
.0023
.0039
.00?!
.002?
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.001 1
.0016
.0010
.0017
.0018
2
.0065
.0066
. 00 5 a
.0043
.01 Ih
.0049
.0056
.0075
.0069
.0049
.002*
.OOiR
.0073
.0035
.00b5
.0045
irjirjnsPtFu
3
.0162
.OOflf,
.0027
.0041
.0107
.0064
.0101
.0129
.016'!
.0151
.0093
.0057
.0107
.0077
.009f,
.0097
CLASS
4
.0114
.0025
.0004
.0009
.0041
.0029
.0071
.0093
.0122
.01 15
.0076
. 0 0 « 5
.0090
.0064
.0065
.OOHH
5
.0003
.0001
.0000
.000 0
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0024
.0003
.0007
.0005
6
.000 0
.0000
.0000
.0000
.000)
.00(10
.0000
.0001
.000 0
. 0 0 0 0
.0000
.0001
.0001
.0000
.0001
.000 0
A-4.3-6
-------
U.S. STEEL FAIRFItLD OPERAUUNS C'lNOITIUN Nil.
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SFASll'M
STABILITY CLASS
WIND DIRECTION
N
NNE
ME
ENE
E
ESE
SE
SSE
S
SS«
sw
WSW
W
1/vNri
NW
NNW
1
.016"
.0«3t>
.0507
.0236
.0397
.0079
.0086
.0131
.0071
.0038
.0020
.002?
.OOM
.0032
.0037
.0051
2
.0132
.0173
.0138
.0096
.0162
.0015
.0077
.0120
.0080
.0003
.0023
.0029
.0069
.0033
.0013
.0047
wTNDSPEEO
<
.004 a
.0018
.0007
. 0 1) 1 0
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.001 H
.0033
.001*5
.001 1
.001 7
CLASS
a
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
h
. oOOD
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000(1
. 0 0 0 0
A-4.3-7
-------
U.S. STEEL FAIRF1ELD OPERATIONS CONDITION NO. 3
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCEPT
PARTICULATES
.0
SLOPE
i .0000
A-4.3-8
-------
U.S. STEEL FAIRFJELD OPERATIONS CONDITIOU NO. 3
ft
ft
RECEPTOR CONCENTRATION DATA
ft ft
* RECEPTOR *
* NUMBER *
*
ft
,
*
*
ft
A
*
*
*
*
*
*
ft
A
*
*
*
*
ft
«
*
*
ft
«
*
*
*
*
«
*
*
*
*
*
ft
ft
*
*
*
*
*
*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
36
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATTON
(KILOMETERS)
HORIZ VERT
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
50U.O
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
»
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
ft
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
37U7.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
*
«
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
«
*
*
*
ft
ft
*
*
ft
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
EXPECTtD APITHMETIC *1E'
*
*
V^ *
*
(KICPOGRAMS/CU. METER) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
72.
73.
67.
71 .
75.
48.
32.
?5.
27.
22.
20.
79.
98.
101.
111.
103.
63.
35.
39.
33.
27.
24.
Ob.
111.
161 .
178.
164.
95.
67.
50.
46.
32.
25.
e5.
92.
175.
340.
346.
154.
IDS.
*
ft
*
*
*
*
ft
ft
*
*
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1c
*
*
A-4.3-9
-------
U.S. STEEL FAIRFIELO OPERATIONS COHPITIUN NO. 3
*
*
RECEPTOR COiMCE'^TSiATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
«
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
"1
42
U3
44
45
46
47
4*1
49
50
51
52
53
54
55
5b
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HOKIZ VERT
506
50fc
506
506
507
507
507
507
507
507
507
507
507
507
507
50fl
508
508
508
508
508
506
508
508
508
508
509
509
509
509
509
509
509
509
509
509
509
510
510
51 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
*
*
it
ft
*
ik
*
*
*
It
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
it
it
ft
Ik
*
*
it
ft
*
*
*
*
370P.O
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
370S.O
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
370U.O
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.1
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
it
it
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
Ik
*
*
*
Ik
*
*
*
*
*
*
*
*
*
*'
*
*
*
*
*
*
*
EXPECTED ARITHMETIC *FAM *
*
CMICROGRAMS/CU. METEP) *
562 PAkTICUl ATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
70.
52.
3?.
eb.
45.
61 .
fi"?.
154.
1 3?.
116.
d7.
1 16.
74.
38.
24.
27 .
35.
41 .
58.
75.
51 .
36.
41 .
34.
23.
1«.
17.
20.
27.
32.
41 .
31.
21 .
19.
19.
15.
14.
14.
17.
16.
*
if
it
ft
*
*
*
*
ft
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
A-4.3-10
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 3
* it
» RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
it
t
*
*
*
*
*
Ik
*
*
*
ft
*
ft
1k
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
ik
*
Ik
ft
Ik
*
*
^
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
96
99
100
101
102
103
104
105
106
107
100
109
110
111
112
113
114
115
116
117
116
119
120
*
*
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
510.0
510.0
510.0
510.0
510.0
510.0
510.0
•510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
511 .0
511.0
511.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513. u
513.0
513.0
513.0
513.0
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
Ik
*
*
1k
Ik
Ik
Ik
1k
*
*
ik
*
*
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
5711.0
370) .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
370°.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
*
*
*
*
*
*
*
1k
*
*
*
*
*
*
Ik
*
*
*
*
*
*
Ik
*
*
*
*
*
ik
*
Ik
Ik
*
*
*
*
*
*
*
*
*
*
ft
it
EXPECTED ARITHMETIC wFAM *
CMCROGfcAMS/CU. Mfelfc") *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
it
Ik
Ik
ik
ik
*
*
Ik
Ik
Ik
*
*
ft
*
*
*
*
*
ft
*
ft
*
Ik
*
ft
*
*
*
1k
*
*
Ik
Ik
•ft
*
*
*
*
*
*
*
24.
?«.
?A .
14.
13.
13.
I 1 .
4.
1?.
1?.
13.
17.
21 .
17.
13.
10.
9.
8.
8.
9.
9.
12.
14.
17.
14.
10.
e.
8.
7.
6.
8.
R.
10.
12.
14.
12.
Q _
7.
6.
6.
*
*
Ik
*
•*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
A-4.3-11
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION M). 3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NIJMHEK *
*
*
*
*
*
*
it
•
*
«
*
*
*
121
I??.
123
12"
125
126
127
128
129
130
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VF.RT
513
505
506
50b
504
507
504
500
504
505
.0
.6
.1
.6
.a
.6
.6
.0
.4
.3
*
*
*
*
*
*
*
*
*
*
*
3711
3702
3706
3703
3702
3705
370a
5705
3703
3708
.0
.1
.5
.0
.0
.4
.0
.3
.1
•«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
fcXPECTtO ARITHMETIC MEAN *
*
(MICRUGH4MS/CU. MFTtR) *
S02 PARTICULARS *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
* 5.
* 120.
* 130.
* 153.
* 100.
* 7R.
* 139.
* 1(10.
* 125.
* b" .
*
*
*
*
*
*
*
*
*
*
*
A-4.3-12
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION MO. 3
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
PER CUBIC METER
*
*
*
ft
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
it
t
ft
It
ft
%
It
It
ft
*
*
*
*
*
*
*
4
*
*
*
*
*
*
SOURCE
1
2
3
4
5
6
7
»
9
10
11
12
1?
la
15
16
17
IS
19
20
21
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
3«
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.01 x
.0293
.00 X
.0013
.00 X
.0005
.00 X
.0005
.00 X
.0005
.00 X
.0001
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 X
.0000
3.09 X
10.7045
3.91 X
13.5336
8.36 x
30.6597
.69 X
2.3881
.22 X
.77aa
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
RECEPTU9
37
.00 X
.0001
.00 X
.0001
.00 X
.0001
.00 X
.0001
.01 X
.0345
.00 X
.001*
.00 x
.0007
.00 X
.0008
.00 7.
.0007
.00 %
.0002
.00 X
.0000
.00 X
.0001
.00 X
.0001
.00 X
.0008
.00 X
.0001
.00 X
.0000
4.40 X
14.9398
a. 15 i
14.0t>99
4.76 X
16.1751
.40 X
1.3740
.67 «
2.2771
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 X
.0015
.00 X
.0003
.00 X
.0003
.00 X
.0004
.U2 X
.0314
.00 X
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0004
.00 x
.0002
.00 X
.0001
.00 X
.0001
.00 X
.0007
.00 X
.0000
.00 X
.0000
2.54 X
4.5307
2.62 X
4.6587
3.74 X
6.6573
.37 X
.6654
.69 X
1 .2290
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
it
ft
*
*
*
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
R6CEP10K
•*6
.00 X
.0013
.00 7.
.0002
.00 X
.0002
.00 'i
.0003
.02 X
.0394
.00 %
.0018
.00 X
.0008
.00 X
.0009
.00 X
.0008
.00 X
.0003
.00 X
.0003
.00 %
.0001
.no x
.0001
.00 X
.0004
.00 X
. 0 (i 0 0
.00 X
. 0 u 0 0
2.56 X
4.469?
2.47 X
4.3341
3.05 X
5.3478
.28 X
.4621
.74 X
1.299d
*
*
«
*
*
ft
*
ft
*
ft
ft
ft
*
ft
*
ft
ft
ft
*
*
*
ft
*
*
*
ft
>
*
ft
»
ft
ft
ft
it
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
RECEPTOR
27
.00 X
.0013
.00 X
.0003
.00 X
.OOU3
.00 X
.0004
.02 X
.0286
.00 X
.0013
.00 X
.0005
.00 X
.0006
.00 X
.0005
.00 X
.0002
.00 x
.0002
.00 X
.0001
.TO X
.0001
.00 X
. o n o 7
.00 x
.0001
. 0 0 X
.0000
2.99 X
4.HS56
3.15 X
5.1545
'4.94 X
ft. 0893
.43 X
.7073
.71 X
1.1626
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.3-13
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 3
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
MICROGRAMS PER CUBIC METER
*
*
*
*
*
*
It
It
*
*
*
*
*
*
it
*
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
«
4
*
*
*
*
*
*
*
*
SOURCE
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38__
39
ao
ai
42
IT
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
38
.22 X
.7755
.31 X
1.17U6
.36 X
1.2627
.37 X
1 .2971
.34 X
1 .1863
.06 X
.2153
.14 X
.4953
.15 X
.5071
.13 X
.4646
.10 X
.3555
1.89 X
6.5245
4.71 X
16.2856
2.13 X
7.3657
3.93 X
13.6147
46.38 X
160.4891
7.16 X
24.7719
.39 X
1 .3384
2.16 X
7.4783
7.60 X
26.2958
2.34 X
8.0943
2.15 X
7.4390
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
ft
*
*
*
*
*
ft
it
ft
(*
*
*
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
RECEPTOR
37
.67 X
2.2703
.84 X
2.6521
.27 X
.9291
.28 X
.9538
.26 X
.8778
.05 X
.1579
.11 X
.3639
.11 X
.3723
.10 X
.3434
,06 X
.2628
1.91 X
6.4863
2.81 X
9.5576
1 .64 X
5.5691
2.48 X
8.4260
40.50 X
137.6528
15.15 X
51.4888
.20 X
.6768
1.17 X
3.9722
11.78 X
40.0470
1.39 X
4.7215
3.73 X
12.6673
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
ft
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
RECEPTOR
26
.73 X
1 .2918
1.01 X
1.7909
.56 X
.9887
.58 X
1 .0249
.52 X
.9322
.09 X
.1688
.22 X
.3858
.22 X
.3985
.20 X
.3634
.16 X
.2855
.89 X
1.5833
1.95 X
3.4672
1.27 X
2.2536
1 .70 X
3.0196
33.87 X
60.3265
25.20 X
44.8920
.15 X
.2639
.82 X
1.4522
14.58 X
25.9683
.96 X
1.7149
4.13 X
7.3511
»
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.72 X
1.2593
.89 X
1.5615
.41 X
.7188
.42 X
.73S1
.39 X
.681 7
.07 X
.1220
. 16 X
.281 1
.16 X
.2877
.15 X
.2664
.12 X
.2042
.94 X
1.6541
2.00 X
3.5022
1.35 %
2.3620
1.81 X
3.1665
36.09 X
63.2080
26.74 X
46.8344
.15.X
.2627
.83 X
1.4521
12.99 X
22.7533
.73 X
1 .2766
3.58 X
6.2655
*
*
*
*
*
*
*
*
ft
*
*
«
ft
*
*
*
*
*
*
*
*
*
*
*
«
ft
*
*
*
ft
*
*
*
*
*
ft
ft
*
*
*
*
ft
*
«
RECEPTOR
27
.74 X
1.2161
1.15 X
1.8835
.76 X
1 .2511
.SO X
1 . 3040
.72 X
1.1757
.13 X
.2153
.30 X
.4888
.31 X
.5079
.28 X
.4589
.22 X
.3615
.96 X
1 .5781
2.38 %
3.9023
1.49 X
2.4352
2.05 X
3.3573
39.14 X
64.0495
25.80 X
42.2282
..20 X.
.3295
1.17 X
1 .9147
5.73 %
9.3824
1.46 X
2.3860
1 .63 X
2.6607
ft
*
*
*
*
ft
*
*
*
ft
*
ft
*
*
*
A
*
*
*
*
ft
*
*
ft
ft
*
*
*
*
*
ft
ft
*
*
_*
*
A
*
*
*
*
*
*
*
A-4.3-14
-------
U.S. STEEL FATRFIELD OPERATIONS CONIIJTION NO. 3
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PAKTICULATES
MICRIJGRAMS PER CUBIC METER
*
*
*
*
*
*
*
*
SOURCE
'13
BACK-
GROUND
TOTAL
*
*
*
*
*
*
X
*
RECEPTOR
38
.16 %
-S585
.00 X
0.
100.0 %
316.0813
*
*
»
*
*
*
X
*
RECEPTOR
37
.11 X
.3789
.00 X .
0.
100.0 X
339.9226
*
*
*
*
*
*
X
*
RECEPTOR
26
.25 X
.«433
.00 *
0.
100.0 X
178.1183
it
*
*
*
*
*
X
*
RECtPTOR
36
.17 7.
.30?5
.00 Z
0.
100.0 %
175. ISO's
*
*
*
*
*
*
X
*
RECEPTOR
27
.33 Z
.•533«
.00 X
0.
i o o . n %
163.6510
*
*
*
*
*
+
*
*
A-4.3-15
-------
APPENDIX A-4.4
COMPUTER MODEL USING SMALL GRID FOR CONDITION 4
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. a
SOURCE DATA
ft *
* SOUSCE « SOURCE LOCATION
• NUMBER • (KILOMETERS)
* * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
2
3
a
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
00
41
12
13
la
15
16
47
48
49
50
51
52
53
51
55
56
57
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.3
506. 6
506.7
506.8
506.8
509.1
509. a
507.4
507.3
507.4
506.8
506.4
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.8
506.7
506.8
506.7
506.7
506.7
506.7
506.7
506.7
506.8
507.4
507.3
507.4
507.3
507.4
507.3
507.4
507.3
506.1
506.5
507.3
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3701.4
3705.1
3705.2
3705.1
3706.6
3708.7
3708.7
3708. 7
3708.7
3705.2
3704.8
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.6
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3708.7
3708.7
3708.7
3708.7
3708.7
3706.7
3706.7
3708.7
3704.3
3705.0
3708.7
*
* SOURCE AREA *
* SQUARE *
* KILOMETERS *
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.02
.36
.36
.36
.36
.36
.06
.06
.36
.36
.36
.36
.36
.06
.06
.00
.00
.00
.00
.00
.00
.00
.01
.01
.30
.30
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ANNUAL SOURCE
EMISSION RATE
(TONS/DAY)
S02 PART
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.000
.000
.000
.953
.154
.141
.189
.252
.618
.039
.215
.080
.091
.091
.083
8.101
.635
.137
.143
.131
.079
.532
.245
.328
.438
1.075
.058
.058
.096
.128
.171
.420
.094
.105
1.928
.25"
.300
.253
5.402
4.802
.059
.029
.065
.057
.056
1.171
.913
.021
.004
.236
.249
.228
.041
.093
.097
.089
.069
,246
.352
.107
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
«
*
*
«
*
*
«
*
*
ft
«
*
*
«
*
NT
CM)
50.0
64.8
53.0
53.0
74.0
74.0
46.9
6S.6
69.6
68.0
76. U
fed.b
65.0
67 .u
49.6
49. b
49. b
56. ft
163.2
23.0
23.0
23.0
30.0
.5
.5
49. U
49.0
51.0
3.0
3.0
3.0
30.0
9.1
24.0
9.1
30.0
61.0
3.U
1.0
9.1
24.0
9.1
30.0
61.0
3.0
1.0
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
30.0
3.0
3.U
STACK
DIAM
(M)
2.4
2.4
1.2
1.2
1 .1
1.1
2.0
2.7
2.7
3.8
3.8
3.6
4.1
5.7
1 .2
1 .2
1 .2
1 .3
3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
DATA
V£L
CM/SEC)
7.6
7.6
9.8
9.3
15.5
15.5
32.0
10.2
10.2
7.2
i.4
7.2
0.4
5.5
9.0
9.U
9.0
11.6
9.1
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
ft
ft
TEMP *
CDEG.K)*
505. •
5U5. «
"5(1. «
450. .
450. ft
450. *
850. .
477. «
533. «
533. «
U77. «
533. •
450 . »
672. .
U50. «
450. »
450. *
366. *
442. »
0. *
0. *
0. *
0. ft
0. *
0. *
0. *
0. *
n. *
0. *
0. .
0. •
0. «
0. ft
0. ft
0. •
0. «
0. ft
0. *
0. ft
0. *
0. ft
0. *
0. »
0. «
0. *
0. *
0. *
0. •
0. ft
0. ft
0. ft
0. ft
0. ft
0. .
0. »
0. *
0. *
A-4.4-1
-------
U.S. STEEL FATKFIELD OPERATIONS CONDITION NO. 1
RECEPTOR DATA
LOCATIONS TO BE USED AS RECEPTORS IN ADDITION TO THE 121 RECTAMGULAK GUI!) LOCATIONS
RECEPTOR X-COOROINATE Y -COORDINATE
(KILOMETEKS) (KILOMETERS)
505.h 3702.1
13 506.1 3706.5
121 506.6 3703.1
125 501.0 3702.0
126 507.6 3705.1
127 501.6 3701.0
12fl 501.0 3705.3
129 501.1 3703.1
130 505.3 370H.1
A-4,4-2
-------
U.S. STEEL
F-AIRFIKLD OPERATIONS CONDITION NO. a
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
MIXING DEPTH = 1500.
AMBIENT TEMPERATURE = 294. OEGRFfcS,KtLV IN
AMBIENT PRESSURE = 1000. MILLIBARS
STABILITY CLASS 1
WIND DIRECTION
N
NME
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
wsw
to
WNW
NW
NNH
1
.0004
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.000?
.000?
.0001
.0006
.0003
.000?
.OOOb
2
.0007
.0003
.0008
.0003
.0005
.0003
.000?
.0005
.0003
.0003
.000?
.0003
.OOOP
.0003
.0006
.0005
WJMJSPEFIJ
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.oono
.0000
.0000
.0000
.0000
.0000
CLASS
It
.0000
.0000
.1)000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 I) 0
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 (I
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
f>
.0000
.0000
.0000
.0000
. 0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.1)000
.0000
.0000
.0000
.0000
.000(1
A-4.4-3
-------
U.S. STtEL FAIPHIrLD OPERATIONS CU'JOIIION M).
METEOROLOGICAL INPUT OATA FOR THE ANNUAL SEASON
STABILITY CLASS
WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SF
SSE
S
SSW
SW
WS*
1*
WNrt
Ml*
NNW
1
. 0 0 1 H
.0020
.0013
.0015
.0024
.OOlb
.0015
.0020
.00^2
.0019
.0011
.0010
.0021
.0014
.0017
.001 3
a
.0036
.003?
.0021
.002?
.0003
.0023
.0027
.0027
.0029
.0021
.O
-------
U.S. STEEL FAIPFIELP UPFK A T HliMS CUNUIFIUN fJU. a
METEOROLOGICAL INPUT DATA FOR TH£ ANNUAL SEASON
STABILITY CLASS 3
•MIND DIRECTION
N
UNE
NE
ENE
E
ESE
SE
SSE
S
SSW
sw
WSrt
w
WNW
NW
NNW
1
.0013
.0029
,OU?'4
.0015
.0021
.0014
.0009
.0080
.ooia
.noob
.0004
.0007
.0008
.ooo'D
.OOOB
.0007
2
.0018
.0019
.0012
.OOlfc
.0045
.OOlf,
.0016
.0030
.00?9
.0017
.0014
.ooin
.0030
.0019
.0023
.0017
WlNDSPEED
?
.OOSO
.0034
. 0 0 1 f>
.001 (1
.0053
.002^,
.0029
.0058
.0034
.0030
.0027
.0027
. 0 0 3 H
.0032
.003H
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.ooos
.0003
.0003
. 0 0 0 fl
.OOOh
.0002
.0005
.0003
s
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OU01
.0001
.0000
. 0 U 0 (.1
.0001
.0000
.0000
.0000
h
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.4-5
-------
U.S. STEEL FAJRFItLU IIPfcPAT KINS CHI-JOT THIN IV). 0
METEOKULIIGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS
DIRECTION
N
NNE
NE
EME
E
ESE
SE
SSE
s
SSrt
sw
WSW
*
*N«
NW
NNnV
1
.0023
.OOP9
.0021
.0023
.0007
.0012
.0012
.0033
.0023
.0010
.0007
.001 1
.0018
.0010
.0017
.0018
2
.0065
.0066
.0050
.0003
.0116
.0009
.0056
.0075
.0069
.0009
.0028
.0038
.0073
.0035
.0055
.0005
WINHSPEFI)
3
.0162
.0006
.0027
.0001
.0107
.0060
.0101
.0129
.016'4
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
0
.0110
.0025
.0000
.0009
.0001
.0029
.0071
.0093
.0122
.0115
.0076
.0005
.0048
.0060
.0065
.OOS8
5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0020
.0003
.0007
. 0 U 0 5
6
.0000
.0000
.0000
.0000
.0001
.0000
.00011
.0001
.0000
. 0 000
.0000
.0001
.0001
. U 0 0 0
.0001
. 0 0 0 0
A-4.4-6
-------
U.S. STEEL FAIKFIELD OPERATIONS CUMOTFIUM NO. 4
METEUKOLOGICAL INPUT DATA HOR THE ANNUAL
STABILITY CLASS 5
iMNDSPEFD CLASS
WIND D1HECTION
N
NME
NE
ENE
E
ESE
SE
SSE
S
SSiAl
sw
wsw
W
WNW
NW
NN«
1
.0169
.()«36
.0507
.0?36
.0?o7
.0079
.0086
.0131
.0071
.003B
.00?«
.00??
.OOM
.003?
.0037
.0051
?
.013?
.0173
.0138
.0096
.016?
.ooas
.0077
,01?9
.0080
.0043
.0023
.00?9
.0069
.0033
. 0 0 u 3
. 0 o a 7
^
. o o a u
.0018
.0007
.0010
.0019
.0011
.001S
.0019
.00??
.00?!
.001?
.ooia
.0033
.0016
.001 7
.0017
"
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.OdOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
S
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OQOO
.0000
.0000
.0000
. 0 0 0 0
. 0 0 0 0
.0000
fe
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
A-4.4-7
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO.
-------
*
*
RECEPTOR CUNCE'XiTkATIOfc DATA
* *
* RECEPTfJrt *
* NUM8ES *
*
t
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
IT
*
*
*
*
*
*
*
*
*
it
*
*
*
1
2
3
4
5
6
7
8
9
10
1 1
12
13
la
15
Ib
17
18
19
20
21
22
23
24
25
?6
27
28
29
30
31
32
33
34
35
36.
37
38
39
au
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
3701.0
3702.0
3703.0
3704.0
3705.0
370ft. 0
3707.0
3708.0
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701.0
370?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
.37u3.0
3704.0
3705.0
3706.0
3707.0
*
*
*
*
»
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
EXKECTED ARITHMETIC MEAN *
*
CMICRfJGRAMS/CU. METER) *
S02 HARTICULATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
It
*
*
*
•»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
8?.
64.
76.
81 .
tth.
54.
35.
28.
30.
25.
23.
90.
11?.
117.
125.
122.
h9.
40.
«4.
37.
30.
27.
99.
127.
191.
217.
202.
108.
77.
57.
51.
36.
28.
73.
1 05.
20«.
435.
503.
166.
118.
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
it
*
*
*
#
*
*
*
*
*
A-4.4-9
-------
U.d. STEEL FAIRFIELD nHE«ATIu/SS CONDITION ISO. a
ft
ft
WECEPTQR CONCENTRATION DATA
ft *
* RECEPTOR *
* NUM8E9 *
»
*
«
*
ft
*
*
*
«
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
»
*
*
*•
*
*
*
«
*
«
*
*
*
ai
42
a3
44
45
46
47
'48
49
50
51
52
53
54
55
5o
57
5a
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
„
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
506.0
506.0
i06.0
506.0
507.0
507. o
507 .0
507.0
507.0
507.0
b07.0
507.0
507.0
507.0
507.0
500.0
508 .0
508.0
508.0
503.0
50fe.O
503.0
508.0
508.0
508.0
508.0
509.0
509.0
509.0
509.0
500.0
509.0
509.0
509.0
509. C
509.0
509.0
510.0
510.0
510.0
,
*
*
»
*
*
*
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
*
.
*
ft
.
*
*
*
*
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3700.0
3710.0
371 1 .0
3701 .0
3702.0
3703.0
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
ft
*
*
ft
*
ft
*
*
ft
ft
ft
ft
*
ft
ft
ft
ft
*
ft
*
ft
ft
ft
ft
ft
*
ft
*
ft
*
EXPECTED AKITHNETIC VI-AIV *
(MICRUGSAMS/CU. f-'tTER) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
*
ft
ft
*
ft
ft
*
*
it
it
it
*
*
*
*
*
*
*
,
*
76.
56.
35.
28 .
50.
o7.
1 00.
171 .
180.
127.
94.
121 .
77 .
40.
26.
2q .
38.
46.
65.
87.
56.
40 .
43.
36.
25.
20.
19.
22.
30.
35.
47 .
34.
23.
21 .
2) .
17.
1 S.
15.
19.
18.
*
*
n
*
*
*
*
*
it
*
*
*
*
*
*
ft
ft
ft
ft
ft
ft
*
ft
*
ft
ft
ft
*
ft
ft
ft
ft
•ft
a
ft
ft
ft
ft
ft
ft
ft
A-4.4-10
-------
U.S. STEEL FAIfcFIELD OPERATIONS CONDITION NO. 4
*
»
RECEPTOR CONCENTRATION DATA
* *
• RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
-*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
8t
32
83
84
85
86
87
88
89
90
91
93
93
9U
95
96
97
98
99
100
101
102
103
104
105
106
107
10«
109
110
111
112
113
114
.115.
116
117
118
119
iao
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
•510.0
510.0
510.0
510.0
5 1 0 . 0
510.0
510.0
510.0
511.0
511.0
511.0
511.0
511.0
511.0
511.0
51 1 .0
511.0
511.0
511 .0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
512.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
513.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.0
3705.0
3706.0
3707,0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
370«.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
370=1.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
»
*
*
*
*
*
*
*
it
*
*
EXPECTED ARITHMETIC »«EAr-l *
*
(i*ICROGi*AMS/CU. -IfcTfJ «
SU2 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
n
*
*
*
*
*
*
*
*
*
*
*
*
»
it
*
*
*
*
*
»
t
*
it
*
*
*
*
*
*
*
*
*
*
*
*
if
26.
32.
23.
16.
14.
14.
12.
1».
13.
13.
14.
19.
24.
18.
14.
1 1 .
10.
9.
9.
10.
1 1 .
13.
16.
19.
15.
1 1 .
9.
«.
7.
7.
9.
9.
11.
13.
16.
13.
10.
8.
7.
6.
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.4-11
-------
U.S. STFEL F4IRF1ELD OPERATIONS CONDITION MlJ. a
KECF.PTUR CUNCFNTH4TION DATA
* RECEPTOR *
* NUMDttV *
RECEPTOR LOCATION
EXPECTED AKITHMF.1IC MFAN
(KILOMETERS)
VFRT
{MlCHOGfcAMS/CU.
SU3 I'ART ICULATE.S
*
*
*
*
*
*
(r
*
*
*
*
131
133
133
I3a
135
136
137
138
139
130
*
* 513
* 505
* 506
* 506
* 3(1 '4
» 507
* 501
* 50a
* 50U
* 505
.0
.6
.1
.6
.4
.6
.6
.0
•"
.3
*
*
*
*
*
*
*
*
*
*
*
3711
3703
3706
3703
5703
3705
370a
370S
3703
570fl
.C
.1
.5
.4
.0
•"
.0
.3
. 1
.0
*
*
*
*
*
*
*
*
*
*
*
0.
0.
0.
n.
0.
0.
0.
0.
o.
0.
*
*
*
*
*
*
*
*
*
*
*
5.
137.
150.
175.
115.
«7.
164.
1 16.
146.
65.
*
*
*
*
A
*
*
*
*
*
*
A-4.4-12
-------
U.S. STEtL FAIriFIELU OPERATIONS CONDITION MLi. 4
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICIPATES
•IICRQGSAMS PER CUBIC METER
* SOJRCE
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
2
3
4
5
6
7
6
9
10
1 1
12
13
14
15
16
17
18
19
?0
21
*
*
*
*
*
*
*
*
*
*
*
*
-
*
*
*
*
it
*
*
*
ft
*
ik
*
*
it
it
*
*
*
*
*
*
*
*
*
RECEPTOR
33
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 x
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.00 X
.0000
.01 X
.0293
.1)0 X
.0013
.00 X
.0005
.00 X
.0005
.00 X
.0005
.00 X
.0001
.00 X
.0000
1.70 X
d.5427
2.87 X
14.4593
*
*
*
*
it
*
*
*
*
*
*
*
*
*
it
it
*
*
*
It
*
*
it
it
it
*
H
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 X
.0001
.00 I
.0001
.00 X
.0000
.00 X
.0001
.00 x
.0001
.00 X
.0004
.00 X
.0000
.00 X
.0003
.00 i
.0000
.00 X
.0001
.00 X
.0001
.00 x.
.0001
.01 X
.0345
.00 X
.0014
.00 X
.0007
.00 X
.oooe
.00 x.
.0007
.00 a
.0002
.00 X
.0000
2.74 X
11.9226
3.46 X
15.0538
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
it
it
*
it
*
*
*
*
*
RECEPTOR
26
.00 X
.0014
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 X
.0004
.00 X
.0011
.00 X
.0000
.00 X
.0003
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 X
.0001
.01 X
.0314
.00 X
.0015
.00 X
.0006
.00 X
.0007
.00 X
.0006
.00 X
.0002
.00 X
.0007
I.b7 X
3.6157
2.30 X
4.9774
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
H
*
*
*
*
*
lit
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR *
36 *
.00 X *
.0012 *
.00 X *
.0002 *
. 0 o X *
.00 X *
.0003 *
. 0 0 X *
.0003 *
. 0 0 X *
. 0 0 0 h *
.00 X *
.0000 «
.00 X *
.0002 *
. 0 1) 7. *
.0001 *
. 00 X *
.0001 *
.00 X *
.0001 *
. 0 0 X *
.0001 *
.02 Z *
.0394 *
. 0 (i "/. *
.0015 *
.no x *
.00 % *
.0009 *
.01.', *
.0008 »
.Ou "/. *
.0003 *
. 0 0 % *
.0006 *
1 .76 X *
3.5b26 *
~r> . 2 7 '/, «
4.6305 *
RECEPTOR
27
.00 X
.0013
.00 X
.0002
.00 X
.0002
.00 2
.OOU^
. ii 0 X
. ') 0 0 4
.00 X
.00 X
.0000
.00 X
.0003
. 0 0 X
.0001
.00 X
. 0 0 o I
.00 X
.0001
.00 •/.
.DOOl
. 0 1 '/.
. 0 0 X
.0013
.00 X
.0005
.00 •>.
.0006
.On '/.
. o o o s
.00 X
.0001
.00 X
.0007
1.93 X
3.39*9
3.5070
*
it
it
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
p
*
*
*
A
*
*
*
*
*
*
it
A-4.4-13
-------
U.S. STEEL FAIRFIELD OPERATION'S CONDITION1 "-0. 4
SOURCE CONTRIBUTIONS TO FI«/E MAXIMUM KECEPH1RS
ANNUAL PARTICULATES
PER CUBIC METER
* SOURCE * RECEPTOR *
« * 38 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
#
A
*
*
*
*
*
*
*
*
*
*
*
*
22 * 6.35 X *
* 31.9736 *
23 • 10.59 % *
* 53.2936 *
24 * 1.01 X *
* 5.0608 *
25 * 2.06 X *
* 10.3629 *
26 * .12 X *
* .6195 *
27 * . 1 6 X »
* .8272 *
26 * .24 X *
* 1.2247 *
29 * 13.70 X *
* 68.9787 *
30 * 1.22 X *
* b. 1330 *
31 * 1 .36 X *
* 6.6507 *
32 * 3.20 X *
* 41.2545 *
33 * 2 . 1 7 X «
* 10.9420 «
34 * 1 .70 X *
* 3.5648 *
35 * 2.00 X «
* 10.0717 *
36 * 24.77 X *
* 124. 6888 *
37 * 4.36 X *
* 21.9392 *
38 * .72 X *
* 3.641 1 *
39 * .33 X *
* 1.6424 *
40 * .55 X *
* 2.7567 *
41 * .34 X «
* 1.6950 *
42 » .49 X *
* 2.4598 *
RECEPTOR *
37 *
3.80 X *
16.8683 *
8.02 x. *
34.8789 *
.78 X *
3.4066 *
.61 X *
2.6372 *
.42 X *
1.8217 *
.56 X *
2.4216 *
. 6 6 X *
2.9739 *
4.54 X *
19.7722 *
1 .40 X *
6.097 1 *
1.57 i »
6.8106 *
16.88 X *
73.4557 *
6.4215 *
1 ,49 X *
6,4757 *
1 .43 X *
6.2333 *
24.56 X *
106.9466 *
10.46 X *
45,6010 *
. 4 4 X *
1.9340 *
.19 i »
.8280 *
.37 X *
1.6176 *
.29 X *
1.2405 *
.33 t *
1.4436 *
«EC£PTO *
26 *
3.21 * *
6.9426 »
7.37 X *
15.9563 *
.45 X *
.9704 *
.47 X *
1.0188 *
.45 X *
.9832 *
.64 X *
1.3779 ,
.86 X *
1.8673 *
3.38 X «
7.3156 *
.69 X *
1.4863 *
.77 X *
1.6624 *
17.99 2 «
38.955° *
1 .08 X *
2.3295 *
1 . 2 1 X *
2.6204 *
1 .03 X *
2.2338 *
21 .65 X *
46.8710 *
1 h . 3 6 X *
39.7567 «
.33 X *
.7071 *
.15 X .
.3224 »
.27 X *
.5869 *
.24 X *
.5091 *
.24 X *
.5237 *
RECfcPTOP *
36 *
2.73 X +
5 . c 7 ^ '- *
6.26 X +
12.771C *
.44 % *
.8945 *
.38 X *
.7655 *
.51 X *
1.0319 *
.66 X *
1.3432 *
. 3 0 '/, *
2 . 7 1 i *
5.5213 *
. 7 6 '/. *
1.5549 *
.85% *
1.7368 *
15.93 t, *
3?.497h *
1 . 1 5 X *
2.3530 *
! .35 X *
1 . 1 5 X *
24.07 X *
49.1081 *
20.33 % *
41.4789 *
.35 X *
.7070 *
. 1 6 '/. *
.29 X »
.5926 *
.25 X *
.5139 *
.267. *
KECEPTUH
a . 1 8 t
9.56 X
19.3160
.56 7.
1 . 1248
.66 X
1 .3415
.46 X
.9301
1.2972
.97 f.
4 . b 8 X
9.US07
.73 X
. •"*? X
1 .6570
7.08 •',
14.2929
1.30 X
2.621"
1.40 V.
i.23 y.
2.4336
24.64 X
44.7620
77 .7995
.46 X
.9323
.20 X
. 4028
.33 •>.
.6605
.27 X
.5553
.29 X
*
*
*
*
T
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
*
Hr
*
*
*
W
A-4.4-14
-------
u.s. STEEL PAIKFIELD OPERATIONS CONDITION NU. a
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
•IICRQGKAIS HER CUBIC METER
ft
ft
ft
*
ft
ft
*
ft
ft
ft
ft
*
*
it
ft
ft
ft
*
*
*
ft
ft
ft
*
ft
*
*
ft
ft
ft
ft
*
SOURCE
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
dACK-
GKUUND
TOTAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
ft
ft
ft
ft
ft
X
*
KECEPTuR
38
5.52 X
27.7810
.79 X
.26 X
1.2872
.04 X
.2242
.25 X
1.2627
.26 X
1.2971
.24 X
1 .1863
.04 X
.2153
.10 %
.4953
.10 X
.5071
.09 X
.4648
.07 X
.3555
1.02 X
5.1404
4.13 X
20.7968
.11 X
.5585
.00 X
0.
100.0 X
503.5723
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
X
#
RECEPTQK
37
5.37 X
23.3428
1 .99 X
8.6385
. 16 X
.6037
.03 Z
.1 130
.21 X
.9291
.22 X
.9538
.20 X
.8778
.04 X
.1579
.Oa X
.3639
.09 4
.3723
.08 X
.3434
.06 X
.2628
2.01 X
6.7533
2.79 X
12.1313
.09 X
.3789
.00 X
0.
100.0 X
435.2012
it
ft
ft
ft
*
*
it
ft
*
*
*
*
ft
*
ft
ft
ft
*
ft
ft
*
ft
ft
*
ft
*
ft
ft
ft
*
X
*
RECEPTOR
26
4.80 X
1G.3S84
3.57 X
7.7263
.12 X
.2500
.02 %
.0440
.46 X
.9887
.47 X
1 .0249
.43 X
.9322
.08 X
.1688
.18 X
.3858
.18 X
.3985
.17 X
.3634
.13 X
.2655
2.35 X
5.0797
2.04 x
4 .4061
.20 X
.4433
.00 X
0.
100.0 X
216.5201
*
*
1
*
*
*
*
ft
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR *
36 *
5 . 1 a X *
10.4816 "
3.80 X *
. 1 2 X *
.2500 *
. 0 2 X *
.0436 *
.35 X *
.7188 *
.36 X *
.7381 *
.33 X *
.6817 *
.Oh 2 ft
.1220 *
.14 X +
.2811 *
. 1 4 X *
.2677 ft
.li x *
.2664 *
.10 X *
2.12 X *
4.3295 *
1 . 6 1 X *
3.2601 *
. I b x *
.3P?5 *
. 0 1) X *
0. *
100.0 % X
2U4.0392 *
RECEPTOR
27
5.50 X
1 1 .1146
<.58 X
7.2383
,16 X
.3296
.03 X
.055"
.62 X
1.2511
.65 X
1 .?040
.58 X
1. 1757
.11 X
.?t5?
.24 X
.4888
.25 X
.5079
.23 V.
.45*9
.18 •/.
.3615
.91 X
1 .^386
3.0'4 •>.
6. 1304
.26 X
.5338
.00 %
(1 .
in 0.0 X
?01 .9836
ft
ft
ir
*
ft
*
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
*
A-4.4-15
-------
APPENDIX A-4.5
COMPUTER MODEL USING SMALL GRID FOR CONDITION 5
-------
i.3. STEtL FAtKFtELD IIPFRATI'INS CUNIMrTMM Nu. 5
SOURCE DAT*
ft ft *
« SUUWCE • SllllPCE LUCATIIIN • SOURCF AHFA •
• NuM'HR • (» ILO:4ETER3) • SUUAWF •
* • HDRUOMTAL • VERTICAL » KILfMFTERS •
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
,
2
'
•1
5
<•
7
jj
g
10
1 1
12
1 5
10
IS
16
i ;
is
19
20
21
22
23
20
25
26
27
215
29
30
31
32
35
3'l
35
.
ft
ft
ft
ft
ft
ft
ft
ft
.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
.
ft
ft
ft
ft
ft
,
ft
*
i
ft
506.4
506.5
5Uh.5
506. S
506.5
506.5
506.
506.
506.
S(16.
506.
SOh.O
506. fl
506. 5
506.5
SOb. 5
506.5
506.5
506.5
506.5
506. S
506.5
506.5
506.5
506.5
506.1
506.7
506. «
506. H
506. ft
50*. 6
506.7
SQ6.fl
506.5
506.1
*
*
«
ft
*
*
*
*
*
ft
*
*
*
ft
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
J700
3705
3700
3700
3705
3705
3700
3705
1700
370-1
3705
3700
3705
37na
3700
3705
3705
3700
3705
3700
3700
3705
3705
3700
37CO
1700
3705
3705
3705
1705
J/Ob
< 70^
3705
3705
3700
.8 *
.0 •
.8 »
.9 *
.0 •
.0 •
.3 *
.2 •
.0 *
• 1 *
.2 •
.1) «
.2 •
.R *
.9 •
.0 *
.0 •
.9 *
.0 •
.H *
.9 *
.U «
.0 *
.H •
.8 »
.3 •
.2 •
.2 *
.2 •
.2 »
.2 •
. 1 *
.2 «
.0 *
.3 •
.00 •
.00 •
.01) ft
.00 ft
. no «
.00 «
.00 «
.00 •
.00 *
.00 «
.00 •
.00 •
.no •
.00 «
.00 ft
.00 •
.00 •
.00 «
.00 •
.01 •
.01 •
.01 ft
.01 ft
.01 ft
.01 .
.02 »
.36 •
. 1b *
.113 •
.16 ft
.16 •
.06 *
.06 ft
. »0 *
.01 •
ANNUAL SIUIRCF
EMTSSTDN BATF
(TIINR/IJAY)
,SO? PAUT
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.noo
.000
.000
.000
.noo
.ouo
.1)00
.01)"
.001)
.uco
.OO'i
.951
.15"
.111
.139
.252
.6lt
.039
.21^
,l)|«>
.OH9
.083
.55?
.079
.2 '15
.12*
.038
1 .075
.05"
.058
. 096
.121
.171
.020
.090
.105
1 .92fl
.25"
.300
.351
S.H02
a. 0112
. 159
.H29
.1 57
.mo
*
*
ft HT
« (.1)
• SlJ.O
ft 60 .M
« "5.0
ft SI. II
* 70.0
• 7 '1 . 0
. „(,_,
• 6". 6
ft 68 .6
ft 6M.I)
* 76.1)
• 165.2
• 56. *
• 23.0
» 23.0
• 25.0
• 30.0
« .5
* . ^
> 09.0
ft O'l.O
• 51.0
• 3.0
• 1.0
» 3.H
» 3il.n
» 9.1
* 20.0
• J.I
• lil.O
• 61 .0
• * . O
* 1 .11
. ,_,,
. iv.v
ST'CK
(M)
2.0
2.1
1 .2
1 .2
1 .1
1 .1
2.0
2.7
2.7
2.7
1 .H
3.5
1.3
.0
.0
. f)
.n
.0
.0
.0
.0
.0
.0
.0
.0
.11
.0
.1)
. Il
.0
.0
.*'
. (i
.u
. o
LIATI
VKL
•VSEC)
7.'.
7.6
".1
.,.„
15.5
15.5
52.0
10.2
10.2
Hi. 2
5.0
9.1
11.1
.0
. 0
.0
. ll
.11
_(,
. 0
.0
.,-,
.1)
.0
.0
.
-------
U.S. STEEL FATRFIELD OPERATIONS COC401TION NO. 5
HECEPTijR DATA
LOCATIONS TO RF USED AS RECEPTORS IN ADDITION TO THE 121 RECTANGULAR (44 ID LOCATIONS
RECEPTOR X-COIJRDINATE Y-COORniNAFE
NUMHFH (KILOMETERS) (KILOMETERS)
505.6 370?.1
153 506.1 3706.5
124 506.6 570J.4
125 500.4 370^.0
126 507.6 370S.U
1?7 500.6 3704.0
128 50a.O 7705.3
129 504.a 3703.1
130 505.3 3708.a
A-4.5-2
-------
U.S. STEEL FAIRFJF.LD OPERATIONS CONDITION MI). 5
METEOROLOGICAL INPUT DATA FOk THE ANNUAL SEASON
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE = 29«. DEGREES,KELVIN
AMBIENT PRESSURE = 1000. MILLIBARS
STABILITY CLASS 1
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
ssw
SW
wsw
w
WNW
NW
NNW
1
.0004
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.ooo«
.000?
.0002
.0001
.0006
.0003
.0002
.0005
2
.0007
.0003
.uooe
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0008
.0003
.0006
.0005
WTNDSPEFD
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.nooo
.0000
.0000
CLASS
u
.0000
.0000
.0000
.0000
.0000
. 0 0 II 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
5
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
h
.0000
.0000
.0000
.01)00
.0000
.0000
.000 0
.0000
.0000
.000 0
.1)000
.0000
. 0 0 P 0
.0000
.0000
.0000
A-4.5-3
-------
U.S. STtEL FAltfFItLD UF6 H 4 T I UiMS ruNDiriON Mil.
'HF.TEDHULflMC *L INPUT I"H T A h OW THc ANNUM. SfcASOM
STABILITY CLASS
rtINO DIRECTION
N
NNE
NE
tNE
E
ES£
SE
SSE
S
SSN
SW
«s«
1M
rtNW
NW
NNA
1
.0016
,00?U
.0013
.0015
.ooa«
.0016
.0015
.00?0
.00?2
.001%1M)SPEHJ
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.000"S
.0007
.0020
.0013
.Oolb
.0011
CLASS
14
.IIOoO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.OoOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-405-4
-------
U.S. SlfFL MlHUtLD OPERATIONS
r II1N Nu. S
"IF TEUWOLtiGlCAL INPUT DATA FOR THE AM.MIIAL SEAtiON
STABILITY CLASS 3
WINO DIRECTION
N
NNE
WE
ENE
E
ESE
SE
SSE
S
SSW
sw
rtSrt
w
WWW
NW
NNH
1
.0013
.0029
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.OOOb
.0008
.0007
2
.001B
.0019
.0012
.0016
. 0045
.0016
.0016
.0030
.0029
.0017
.0014
.0018
.0030
.0019
.0023
.0017
hJNOSPEEl*
3
.0050
.0034
.0016
.0010
.0055
.0025
.0029
.0058
.0034
.0030
.0027
.0027
.0036
.0032
.003H
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.0003
.0003
.000«
.0006
.0002
.0005
.0003
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000
*
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.5-5
-------
U.S. STEEL FA1RFIELI) UPEH*TH).MS CONOITIO'1 NO. S
METEOROLOGICAL INPUT DATA KIW THE ANNUAL SEASON
STABILITY CLASS U
WIND DIRECTION
N
NNE
NE
EME
E
F.SE
5F_
SSE
S
ssw
sw
WSW
IV
WNH
NW
NNW
1
.002?
.00?9
.0021
.0023
.00*17
.0012
.0012
.003?
.00?3
.0014
.0007
.0011
.001P
.0010
.0017
. 0 01 H
2
.OOPS
.OOhfe
.0051
.00(43
. I) 1 1 fc
.00/49
.0056
.0075
.0069
. 0 0 U 9
.002R
.0038
.007?
.0035
.0055
.ooas
hi, \OSPEFU
?
.Olb2
. 0 0 1 >>
.0027
.0011
.0107
.00h«
.0101
.0129
.0161
.0151
.0093
.OOS7
.0107
.0077
.009b
.0097
CLASS
a
. 0 1 I 0 I
.0000
.0000
. 0 0 0 0
.0003
.0010
.0005
.0012
.0004
.0005
.0007
. 0 u ? '4
.0003
. 0 (1 0 7
.0005
b
.0000
.0000
.0000
.0000
.0001
.0000
.000 0
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
A-405-6
-------
U.S. STEEL (-'AIRFIELD OPERATIONS CONDITION NO. 5
METEOROLOGICAL INPUT PATA FOR THE ANNUAL StASO'l
STABILITY CLASS 5
WIND DIRECTION
N
NNE
NE
ENE
E
ESfc
SE
SSE
S
SSW
SIN
WSW
w
WNW
NW
NNW
1
.016°
.0436
.0507
.0356
.02°7
.0079
.0086
.0131
.0071
.0038
.0021
.0023
.0061
.0033
.0037
.0051
2
.0132
.0173
.01 i»
.0096
.0162
.0045
.0077
.0129
.OOBO
.0043
.0023
.0029
.006°
.0033
.0013
.0017
WIMDSPEF.O
3
.0044
.ooiq
.0007
.0010
.0019
.0011
.0015
.0019
.00??
.0021
.0012
.0014
.0033
.0016
.0017
.0017
CLASS
'4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
5
.000(1
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
ft
.0000
.0000
.0000
.0000
.0000
.OOOK
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.5-7
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 5
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCEPT SLOPE
PARTICULATES .0 1.0000
A-4,5-8
-------
U.S. STEEL F4IRFIELD OPERATIONS CONDITION NO. 5
ft
*
RECEPTOR CONCENTRATION DATA *
ft ft
* RECEPTOR *
* NUM8E3 *
*
*
*
ft
*
*
*
»
#
*
ft
*
*
*
*
*
»
»
*
*
*
»
*
ft
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
1
2
3
a
5
6
7
S
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
?6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ik
ft
ft
ft
*
ft
*
*
*
ft
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505. 0
50b.O
506.0
506.0
506.0
506.0
506.0
506.0
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711.0
3701.0
3702.0
,3703.0
3704.0
370S.O
3706.0
3707.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
(MICRUGRAMS/CU. METER) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
ft
ft
ft
ft
70.
70.
63.
67.
71 .
43.
2*5.
21.
22.
20.
19.
77.
95.
100.
106.
102.
54.
31.
33.
28.
25.
22.
84.
110.
168.
19(J.
172.
67.
59.
42.
36.
29.
22.
62.
90.
179.
3*8.
445.
155.
67.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
-it
*
*
*
*
*
ft
ft
*
ft
ft
*
ft
ft
*
A-4.5-9
-------
U.S. STEEL FAIriFIELD OPERATIONS CUNOITION NO. 5
*
*
rtECEPTU^ CONCENTRATION DATA
* *
* WECEPTQk *
* NlJMSEr? *
*
*
*
*
*
*
*
*
*
*
*
*
*
'
*
*
*
,
*
*
#
*
*
#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
41
43
43
4U
45
4fa
47
48
49
50
51
5d
53
Su
bi
5b
S7
5d
59
60
61
63
63
64
65
66
67
b8
h-i
70
71
73
73
74
75
76
77
78
79
80
*
*
*
ft
*
ft
w
ft
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
>
*
*
ft
*
*
*
*
RECEPTOR LOCATION
(KILO^ETEKS)
HORIZ VERT
506.0
506.0
506.0
506.0
507.0
507 .0
507.0
507.0
507 .0
507.0
507.0
507 .0
507.0
507.0
507.0
508.0
50rt.u
506.0
50B.O
508.0
50o.O
508.0
508.0
508.0
503.0
508.0
509.0
509.0
509.0
5.0 9 . 0
509.0
509.0
509.0
509.0
509.0
50«. 0
509.0
510.0
510.0
510.0
ft
ft
*
*
*
*
*
*
•*
*
*
*
,
*
*
*
+
*
*
*
*
it
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
3708.0
3709.0
3710.0
3711.0
3701.0
310?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701 .0
370?. 0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
3711 .0
3701 .0
3703.0
3703.0
3704.0
3705.0
3706.0
3707.0
3708.0
3709.0
3710.0
371 1 .0
3701.0
3703.0
3707.0
«
ft
*
*
*
*
ft
*
*
*
*
*
*
*
ft
*
*
«
ft
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MF.
*
»
& rvt *
*
(MIC«QGRAMS/CU. METER) *
SG2 PARTICIPATES »
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
4°.
33.
35.
30.
43.
57.
b5.
146.
156.
\(I2.
65.
40 .
38 .
22.
17.
34 .
33.
39.
55.
73.
44 .
30.
36.
30.
16.
14.
15.
Itt.
35.
30.
40.
37.
17.
15.
13.
I?..
1 1 .
13.
Ib .
15.
.
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
«
*
„
*
*
„
«
*
t
*
*
*
*
A-4.5-10
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION NO. 5
it
ft
RECEPTOR CONCENTRATION DATA
* *
* -JECEPT3R «
* M J NI H E R *
*
*
it
*
.
ft
*
«
«
*
,
*
»
,
*
*
*
*.
It
*
ft
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
«
»
*
*
ft
61
62
H3
84
*5
96
87
98
«9
°0
91
°2
95
ou
9b
9b
97
9«
99
100
101
102
103
1 na
105
106
107
10*
109
110
111
112
113
114
115
llo
117
118
119
120
*
*
*
*
ft
*
*
A
*
*
*
ir
*
*
*
*
*
*
*
,
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
510
510
510
510
510
510
510
510
51
51
51
51
51
511
511
511
511
51 1
51 1
512
512
512
512
512
512
512
512
512
512
512
513
513
513
513
513
513
513
513
513
513
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
ft
ft
*
ft
*
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
570U
370-5
370fe
3707
370?
S709
3710
3711
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3701
3702
570?
3704
3705
370ft
3707
3709
i709
3710
3711
3701
3702
?703
3704
370-5
3706
3707
3708
3709
3710
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
*
*
*
#
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
»
»
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC vEAN *
*
(MICRI
S02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TGRA^S/CU. f-'ETER) »
PARTICIPATES *
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
22.
27.
16.
12.
10.
10.
9.
a.
11.
n.
12.
16.
. 20.
15.
1 1 .
a.
7 .
7.
7.
«.
o _
1 1 .
13.
16 .
13.
9.
7.
6.
5.
5.
7.
7.
Q ^
11 .
13.
1 1 .
a.
6.
5.
5.
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
it
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
*
*
*
ft
*
A-4.5-11
-------
U.S. STEEL FAIRFIELI) OPERATIONS CONDITION NCI. 5
KECEPTOR CUMCENTHATIOM DATA
* RFCEPTQR *
* NUMBE-i *
RECEPTOR LOCATION
EXPECTED ARITHMETIC MtAM
(KTLCMF.TERS)
HOWIZ VERT
SU?
MEIER)
PAKT1CULATES
123
513.0
505.6
506. 1
371 1 .0
370?. 1
t.
lift.
1 1«.
•50U.il
507 .6
3703. a
370?.0
370S.a
109.
94.
71 .
127
12rt
129
130
504.6
505.3
370fl.O
3705.3
3703. 1
3708.0
111 .
96.
126.
A-4.5-12
-------
u.s. STFEL FAIKFIELO OPERATIONS criuoiTiPrv NCI. 5
3f)U"CE CONT»IBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICIPATES
PE1* CUBIC METER
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
ft
it
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
snuRCE
l
2
3
4
5
6
7
e
9
10
11
12
13
14
15
16
17
IP
19
an
21
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
36
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 %
.uooo
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 2
.0000
.00 X
.0000
.00 X
.0000
.00 %
.0001
1.9P *
8.5437
3.25 X
14.4593
7.18 2
31.973B
11.97 X
53.2936
1.14 X
5.0608
2.33 2
10.3629
.14 2
.6195
.19 2
.8272
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
37
.00 X
.0001
.00 %
.0001
.00 X
.0000
.Ou %
.0001
.00 X
.0001
.00 It
.0004
.00 X
.0000
.00 x
.0003
.00 X
.0000
.00 X
.0001
.Ou i
.0001
.00 X
.0000
.00 X
.0002
3.07 X
11 .9226
3.88 X
15.0536
4.35 X
16.8663
8.99 2
34.8789
.88 X
3.4U68
.68 X
2.6372
.47 X
1.8217
.62 X
?.4216
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
26
.00 X
.0014
.00 X
.0002
.00 X
.0002
.00 X
.0003
.00 2
.0004
.00 X
.0011
.UO 2
.0000
.00 2
.0003
.00 2
.0001
.00 2
.0001
.00 2
.0001
.00 X
.0007
.00 2
.0002
1.90 2
3.6157
2.62 X
4.9774
3.66 X
6.9426
6.40 X
15.9563
.51 2
.9704
.54 2
1.0168
.52 X
.9832
.7? 2
1.3779
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
K
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
ft
*
*
RECEPTOR
?6
.00 X
.0012
.00 X
.0002
.OU X
.0002
.00 X
.0003
.00 •/.
.0003
.00 X
.GOOrt
.OU X
. 0 0 0 0
.00 •/.
.0002
.00 Z
.0001
.00 X
.0001
.00 x
.0001
.Od X
.0006
.00 X
.000?
2.00 X
3.5826
2.58 X
4.6305
3.11 Z
5.5769
7.13 2
12.7710
.50 X
.8943
.44 2
.7*55
.56 X
1 .0319
.75 X
1.3432
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
«
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
27
.00 •/.
.0013
.00 X
.000?
.00 X
.0002
.00 X
.0003
.00 v.
.0004
.00 X
.0011
.00 2
.onoo
.00 X
.0003
.00 2
.0001
.00 2
.0001
.00 2
.0001
.00 2
.0007
.00 2
.0003
2.27 2
3.4939
i.21 2
5.5070
4.91 2
".4360
11.25 X
19.3160
.65 2
1 .1248
.78 2
1.3415
.54 2
.9301
.76 2
1.2972
*
*
*
«
*
*
*
*
#
*
*
*
*
*
«
*
«
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*>
*
*
*
*
«
*
*
«
*
«
A-4.5-13
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO.
5UU&CE CONTRIBUTIONS TO FIVE '^AVJMUV. RECEPTORS
ANNUAL PARTICULATES
:-iICROGR AMS PER C'JRIC METER
* SOURCE * RECEPTOR * RECEPTOR * RECEPTOR *
A A 36 * 37 * 26 *
A
A
A
A
A
*
A
A
A
A
A
A
A
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
22 *
* 1 .
23 * 15.
* 69.
24 * 1 .
« b.
2r> * 1 .
6.
26 * 9.
* 41 .
27 * 2.
* 10.
28 * 1 .
* 8.
29 « 2.
* 10.
30 * 23.
* 124.
31 * 4.
* 21.
32 *
* 3.
33 *
* \ f
34 * l.
* 8.
35 * 1.
* 6.
e« : 0;
TOTAL * 100
* 445.
26 X *
2247 *
49 X *
9787 *
38 X *
1330 «
54 X *
8507 *
26 X *
2545 *
46 X *
9420 ft
92 X ft
5648 *
26 X «
0717 *
00 X «
6888 «
03 x *
9392 *
8? X *
641 1 .
37 X *
82 X *
0943 *
41 X *
2688 *
00 X *
*
.0 X X
2.
5.
19.
1.
6.
1 .
6.
18.
73-.
1 .
6.
1 .
fc .
1 .
6.
27.
106.
11.
45.
1 »
.
1 .
4 .
2.
10.
0.
100
387.
77 j *
9739 *
10 X *
7722 *
57 I *
0971 *
76 X »
8106 *
94 X *
4557 *
66 X *
«2I5 *
67 Z *
4757 *
61 Z *
2333 *
57 Z *
9466 *
76 X *
6010 *
5 0 % *
Q340 *
21 Z *
8280 *
222 *
7215 *
75 X *
6747 *
00 X *
*
.OX X
9573 *
1 .
3.
7.
•
•
1 .
20.
38.
) .
2.
1 .
2.
1 .
2.
46.
20.
39.
•
•
•
1.
3.
6.
0.
100
189.
98 X *
8673 *
85 X *
3156 *
78 X *
B8 X *
6624 *
52 X *
9559 *
23 X *
3?95 *
38 X *
6204 *
18 X *
2338 *
68 X *
6710 *
94 X *
7587 *
37 X *
7071 *
17 X .
32?« *
90 X *
7149 *
26 X *
00 X *
*
.OX X
6895 *
5
RECEPTOR »
36 *
.
1 .
3.
5.
1 .
1 .
1«.
32.
1 .
2.
1 .
?.
1 .
2.
27.
"9.
23.
41 .
•
•
1.
2.
5.
0.
100
179.
91 X *
6281 «
08 % *
S213 *
67 X *
554V +
97 % *
7368 *
1<4 X *
4S76 *
31 Z *
3530 *
53 •/. *
7465 *
31 X *
3425 *
41 % *
1081 *
15 Z *
4789 ft
39 % *
7070 *
18 % *
3209 *
71 X *
2766 *
95 X *
2799 *
00 X *
*
.OX X
1726 *
PECE
27
1 .
1 .
5.
q .
1 .
i!
8.
1 4 .
2.
1 .
2.
1 .
2«.
49.
21.
37.
m
:
i .
2.
1 .
2.
0.
100
171.
°TUh
14 X
9639
51 X
r6 X
•4 M 3 4
96 %
32 X
2Q29
6218
65 X
3316
u5 X
97 t.
7620
77 X
3995
54 X
9323
23 f.
4028
39 X
3860
31 %
2422
00 r.
.0 X
7764
*
ft
*
ft
*
ft
*
*
ft
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.5-14
-------
APPENDIX A-4.6
COMPUTER MODEL USING LARGE GRID FOR CONDITION 1
-------
U.S. STEEL PMRFIELO '3PE»»TIONS CONDITION NO. 1
SOURCE 0»T»
SOURCE • SOURCE LOC»TIO»I • SOURCE ARE*
NUH9ER • (KILOMETERS) • SOU»RE
• HORIZO«T»L • VE5T1C4L * KILOMETERS
«fiNU»L SOURCE
ci-ISSION BITE
(TQNS/&4T)
502 P»RT
STACK DAT*
HT OIA» VEL TEMP .
CO CM) (M/SEC) (OES.K).
•
*
*
*
*
t
t
*
•
I
*
•
*
*
*
*
•
t
*
*
\
•
i
2
4
5
6
7
9
9
10
11
12
13
10
15
16
17
18
19
20
21
22
23
25
26
27
29
29
30
31
32
33
35
36
37
38
39
00
01
42
43
00
05
46
47
49
49
50
51
52
53
SO
55
56
57
58
59
60
*
*
«
*
\
m
*
*
*
•
j
*
*
*
*
*
*
*
*
f
j
'
*
*
*
*
*
*
S06.0
506. 5
506.5
506.5
509.1
509.0
507.4
507.3
507.0
506.1
506.1
506.1
506.1
506.1
506.1
506.2
506.2
506.2
506.2
506.2
506.2
508.6
508.6
508.6
508.6
506.8
506.3
506.7
506.7
506.8
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
507.4
507.3
507.0
507.3
507.4
507.3
507.4
507.3
506. 5
506.1
508.6
506.7
506.9
506.8
506.8
506. 8
506.8
506.7
506.5
507.4
506.1
. 3700.8 •
« 3700.9 «
• 3700.9 •
• 3705.0 •
• 3709.6 •
« 3708.7 .
« 3708.7 •
» 3708.7 «
• 3708.7 •
• 3700.3 .
• 3700.3 •
• 3700.3 «
• 3704.3 •
• 3700.3 •
• 3704.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3700.3 •
• 3708.0 •
* 3708.0 •
• 3708.0 •
• 3708.0 •
• 3705.6 •
• 3700.4 .
• 3705.2 «
• 3705.1 •
• 3705.2 •
• 3705.1 •
• 3700.8 •
• 3704.9 •
• 3705.0 •
• 3700.9 •
• 3704.8 •
• 3700.9 •
• 3705.0 •
• 3709.7 «
• 3708.7 •
• 3708.7 •
« 3708.7 •
• 3708. •
• 3708. •
• 3708. •
• 3708. •
« 3704. «
• 3700.3 •
* 3708.0 •
« 3705.2 •
• 3705.2 •
• 3705.2 •
• 3705.2 •
« 3705.2 •
• 3705.2 •
• 3705.1 •
« 3705.0 •
« 3708.7 «
• 3704.3 .
.00 «
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00
.00 •
.00 •
.00 •
.00 •
.00 >
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.01 •
.01 •
.01 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.01 •
.01
.09 «
.01
.36 •
.36 •
.36 •
.36 •
.36 •
.06 •
.06 •
.30 •
.01
.51 .
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. UO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOP
.000
.000
.000
.000
.oon
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.97;
.177
.177
.201
0.101
.635
.137
.143
.131
7.360
7.360
7.360
7.361
7^360
7.360
7.3oO
7.J60
7.360
7.3oO
7.360
5.216
5.216
5.216
5.216
.206
.206
.317
.317
.594
.122
.307
.307
.420
.059
.120
.120
.164
.23e
.249
.22'
.001
..193
.099
.08"
.069
.101
IT. 605
5.216
.217
.994
6.953
5.022
.020
.122
.137
.132
.333
B
*
*
*
*
f
f
*
*
•
*
*
*
*
m
'
•
\
\
.
•
*
•
50.0
53.0
53.0
74.0
65.0
67.0
49.6
49.0
09.6
61.0
61 .0
61.0
61.0
61.0
61.0
61.0
61.0
51. 0
Sl.G
61.0
61.0
54.1
54.1
54.1
50.1
68.6
68.6
63.0
hi.O
76.0
7o.O
23.0
23.0
23.0
.5
49.0
49.0
51. u
23.0
23.0
23.0
.5
23.0
23.0
23.0
3.0
3.0
3C.O
30.0
9.1
24.0
9.1
;o.o
61.0
3.0
3.0
3.0
30.0
30.0
2.4
1.2
1.2
1.1
o.l
5.3
1.2
1.2
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.7
2.7
2.7
2.7
3.9
3.9
.0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.a
.0
.0
7.6
9.3
9.8
15.5
6.4
5.5
9.U
9.0
5.3
5.3
5.3
5.J
5.3
5.3
5.3
5.!
5.)
5.3
5.3
5.3
o.J
6.3
6.3
b.3
6.3
b.3
10.2
10.2
7.2
3.4
.0
.0
,f\
. U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
505.
450.
450.
450.
450.
672.
450.
450.
J50.
599.
539!
5a9!
59'.
599.
519.
539.
599.
5»9.
Woe.
36*!
477.
J77.
533.
533.
477.
n .
n .
0.
u .
n.
0.
0.
0.
J.
n .
0.
n .
0.
u.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
•
'•
f
i
•
B
•
•
•
B
•
'•
•
,
*
*
*
*
*
.
*
A-4.6-1
-------
'J.i. STEEL FAtKFIFLD QPfWATTUMS CPI"n I 1 I lllv NO. 1
DATA
LOCATIONS T(t HE dSF.D AS RKCFPTIJWS IN ADOJTIW. in Ihf- 7? PEC I « ''ifillL Al-1 r.klD LCCATfONS
X-CniJRI)I"IA IF Y
(KILi^'t TERb) IKfLUMFTEWS)
73 S 0 5 . h 3 7 I) ? . 1
7 'I 506.1 ? 7 0 6 . S
7S 50f>.f- 3703.0
7 h Sua.'l 3702.0
77 507. f, 37»b.«
7 H =! 0 « . f> 3 7 0 a . 0
7" 5 0 a . 0 3705.3
HO sou.« 57113. i
81 505.3 * 7 0 P.. a
A-4.6-2
-------
U.S. STEEL
FA1RFTELO OPERATIONS
rUNOITTON NO. 1
METEOROLOGICAL INPUT DATA FOtf THE ANNUAL SEASON
MIXING DEPTH z 1500. METEMS
AMBIENT TEMPEHATUHE = ?<>«. OERkFES,KtLV 1 N
AMBIENT PHESSIIWE = 1000. MILLIBARS
STABILITY CLASS 1
DIRECTION
N
NNE
ME
ENE
E
ESE
SE
SSE
S
SS'fll
sw
WSW
w
WNw
nlW
MMrt
1
.0004
.0008
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.0002
.0002
.0001
.0006
.0003
.0002
.0005
2
.0007
.0003
.0008
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0008
.0003
.000f>
.0005
MNOSPEEO
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
CLASS
u
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.»<» on
.1)000
. 0 0 0 0
.0000
. 0 0 0 0
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
b
.0000
.0000
.000 0
.0000
.0000
." 0 0 () 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.onoo
A-4.6-3
-------
U.S. STtFL FAIRFItLU HPF-.R A T T IMS C ONI; 1 T I ON N'J. 1
METEUkOLUGlCAL INPUT DATA FI.IW THE ANNUAL SEASON
STABILITY CLASS
DIRECTION
N
NNE
NF
EME
E
ESE
SE
SSE
S
SSw
sw
.s.
*
rtNW
NW
NN/J
1
.0018
.0020
.0013
.0015
. 0 0 2 a
.0016
.0015
.0020
.0022
.001 9
.001 1
.00)0
.0021
.001 U
.0017
.0013
2
.0036
.0033
.0021
.0023
.0003
.002^
.0027
.00^7
.0029
.0021
.0019
.0014
.0035
.002'!
.0034
.0032
*iivnsPEFn
3
.0021
.0010
.0012
.0007
.0025
.0012
.0007
.0014
.0014
.0010
.0005
.0007
.0020
.001 ?
.001 f>
.001 1
CLASS
't
.0000
.0000
.0000
.00(10
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
S
.0(100
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.000 0
"
. 0 0 0 0
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.6-4
-------
U.S. STEEL FAIPFIELD OPERATIONS CONDITION NO. 1
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS 3
WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SE
SSE
S
SSrt
sw
V»SW
fi
«NW
MM
NNM
1
.0013
.0029
.ooaa
.0015
.0021
.001 a
.0009
.0020
.0015
.OOOh
.0004
.0007
.OOOB
.0005
.ooos
.0007
?_
.0018
.0019
.001?
.0016
.0015
.0016
.0016
.0030
.0029
.0017
.001«
.0018
.0030
.0019
.0023
.0017
WlMOSPEEO
3
.0050
.003'4
.OOlb
.0010
.0053
.0025
.0029
.005S
.oo?a
.0030
.0027
.0037
.0038
.0032
.0038
,00«0
CLASS
a
.0007
.ooos
.0000
.0001
.0003
.0003
.0001
.0002
.000ft
.0003
.0003
.0008
.0006
.0002
.0005
.0003
5
.0000
.0000
.0000
.0000
.0000
.OuOO
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.OOOD
'.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.6-5
-------
U.S. STEEL
OPERATIONS
CtJMnilTOM NO. 1
METEOROLOGICAL INPUT DATA FOR THE ANMUAL SEASON
STABILITY CLASS
hlNDSPEFI)
WIND DIRECTION
N
NNE
ME
ENE
E
ESE
SF
SSE
S
SS"»
SW
wSvg
w
WNW
MW
MNw
1
.0023
.0039
.00?!
.0023
.00*47
.0015
.0012
.0033
.0033
.001*4
.0007
.001 1
.001P
.0010
.0017
.0018
2
.OCHS
.0066
.005«
. (' 0 a 3
.01 If*
.0009
.005f>
.0075
.0060
.004°
.00c>fl
.003P
.0073
. 0 0 3 S
.00b5
.00*15
*
.0162
.00«6
.0027
.oom
.0107
.006*1
.0101
.0129
.016«
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
4
. o 1 i a
.0025
.000*1
.0009
.0041
.0029
.0071
.0093
.0122
.0115
.0076
.00*45
.0098
.006/J
.0065
. 0 0 rt 8
S
.0(103
.0001
.0000
.0000
.0000
.0003
.001 0
.0005
.0012
.01)09
.0005
.0007
.002*4
.0005
.0007
.0005
6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
. 0 0 0 0
.0001
.0001
.0000
.0001
. II 00 1)
A-4.6-6
-------
U.S. STEFL FAJRFIFIO OPERATIONS CU^UITTiJN Nil. 1
MEIFURULOGICAL INPUT PATA FOR THE ANi\IIJAI SEASON
STABILITY CLASS
WIND DIRECTION
N
NME
NE
ENE
E
ESE
SE
sst
S
SSW
SW
WSW
W
WNi-J
NW
NNtV
1
.0169
,0
.0507
.0236
.0297
.0079
.0086
.0131
.0071
.0038
.002U
.0022
.0061
.0032
.0037
.0051
2
.013?
.017^
.0138
.0096
.016?
.(ion*
.0077
.0129
.OOHO
.ooa3
.0023
.0029
.0069
.0033
.0013
.0017
WINPSPEFU
5
. o (i a a
.0018
.0007
.0010
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.ouia
.0033
.0016
.0017
.0017
CLASS
a
.0000
.0000
.0000
.0000
. 0 0 IJ 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4o6-7
-------
U.S. STEEL FAIKFIFLO PPFKATIUNS CUuDJTlU'i .>lll. 1
INPUT DEGRESSION PARAMETERS ARE:
POLLUTANT Y-INTF.RCFPT SLQPt
PAWT1CULATES .0 1.0000
A-4.6-8
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO". 1
ft
ft
*
RECEPTOR CONCENTRATION DATA ft
ft ft
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
1
2
3
4
5
7
6
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
39
40
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
516.0
516.0
516.0
516.0
516.0
516.0
518.0
518.0
t
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3710.0
3714.0
3718.0
3722.0
*
*
*
*
*
*
*
ft
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
*
(MICROGRAMS/CU. METER) «
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0..
0.
0.
0.
0.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
78.
121.
95.
50.
36.
27.
20.
50.
87.
257.
39a.
75.
37.
23.
16.
23.
26.
U4.
55.
33.
21 .
16.
13.
13.
16.
20.
25.
13.
11.
10.
8.
10.
10.
Ifl.
J7. ,
10.
7.
6.
6.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
A-4.6-9
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 1
*
*
*
RECEPTOR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•
*
*
*
*
*
*
*
ft
*
*
01
42
43
44
45
4b
47
46
49
50
51
52
53
54
55
5b
57
58
59
60
bl
b2
63
64
65
bb
b7
66
b9
70
71
72
73
74
75
7b
77
76
79
60
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
«
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
522.0
522.0
522.0
522.0
522.0
522.0
522.0
522.0
526.0
52b.O
526.0
526.0
52b.O
526.0
52b.O
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505. fa
506.1
506.6
504.4
507.6
504.6
504.0
504.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•
3694
3698
3702
3706
3710
37 1«
3718
3722
3690
3698
3702
3706
3710
3710
3718
372?
3690
3698
3702
3706
3710
37 1«
3718
3722
3690
3696
3702
3706
3710
3710
3718
3722
3702
3706
3703
3702
3705
3700
3705
3703
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1
.5
.«
.0
.a
.0
.3
.1
*
*
ft
*
*
ft
«
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
4
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
•
EXPECTED ARITHMETIC MEAN »
*
(M1CROGRAMS/CU. METER) «
S02 PARTICIPATES «
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
4
ft
ft
ft
ft-
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
7.
7.
11.
13.
8.
6.
5.
4.
b.
6.
9.
10.
7.
a.
4.
4.
5.
6.
8.
8.
7.
4 .
3.
3.
4.
5.
7.
7.
6.
4.
3.
3.
322.
311 .
40b.
261 .
204.
422.
232.
350.
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
ft
ft
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
•
A-4.6-10
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 1
* *
* RECEPTOR CONCENTRATION DATA *
* * * *
* RECEPTOR « RECEPTOR LOCATION * EXPECTED ARITHMETIC MEAN *
* NUMBER * * *
* * (KILOMETERS) * (MICROGRAMS/CU. METER) *
* * HORIZ VERT * SOS PARTICULATES *
* * * * * *
* 81 * 505.3 * 3706.1 * 0. * 138. *
A-4o6-ll
-------
U.S. STEEL F4IRFIELD OPERATIONS COMDITION Ki. 1
SUURCF CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
4NMUAL PARTICULATES
PE° CUBIC METER
* SOURCE * F
* *
* 1 *
* *
« 2 *
* *
* 3 *
ft ft
* a *
* *
5 *
* *
* *> *
* *
* 7 *
* *
* 6 *
* *
+ $ *
« *
* 10 *
* ik
* 11 *
* ft
* ft
* 13 *
* *
* 1 q *
* *
* 15 *
* *
* 16 *
* *
* 17 *
* *
* 16 *
* *
* 19 *
* *
* 20 *
« *
21 *
* «
iECEPTOR * F
78 *
. 0 0 X *
.0009 *
.00 X *
.0002 »
.00 X *
.0002 «
.00 X *
.0003 *
. 0 1 X *
.0307 *
.00 X *
.0016 *
.00 X *
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
.00 X *
.0075 «
.OCX *
.0075 «
.OCX *
.0075 *
. 0 0 X *
.0075 *
. 0 0 X *
.0075 *
.00 X *
.0075 *
. 0 0 X *
.0077 *
. 0 0 X *
.0077 *
.00 X *
.0077 »
.00 X *
.0077 »
.00 X *
.0077 *
. 0 0 X »
.0077 *
JECEPTOR
75
.00 J.
. 0 0 1 b
.00 I
.0004
.00 %
.0004
.00 X
.0005
.01 X
.0382
.00 X
.0015
.00 %
.0009
.00 X
.0009
.00 X
.0006
.00 X
.0016
.00 X
.0016
.00 X
.OOlo
.00 X
.0016
.00 7.
.0016
.00 X
.OOlb
.00 X
.0012
.0(1 %
.0012
.00 X
.0012
.00 X
.0012
.00 X
.0012
.00 X
.0012
* [
*
*
*
*
*
it
*
it
»
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
1k
*
*
*
*
it
it
it
*
it
*
it
*
*
*
it
*
VECEPTOR
12
.00 X
.0011
.00 X
,00i'3
.00 X
.0003
.00 X
.0003
.01 X
.024?
.OP X
.0010
.00 X
.0003
.00 X
.000?
.00 X
.000?
.00 X
.0065
.00 %
.0065
.00 X
.0065
.00 X
.0065
.00 X
.0065
.00 X
.0065
.00 X
.006°
.00 X
.00^9
.00 X
.0069
.00 X
.0069
.00 X
.0069
.00 X
.0069
* I
*
ik
*
*
*
*
*
*
*
it
*
*
*
*
*
Ik
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
?ECtPTOF. * i
PU *
.00% *
.0016 *
. 0 u X *
. n 0 0 U *
. 0 0 X *
.oooa *
.00 % *
.0005 *
. 0 1 '/. *
.03?2 *
. 0 0 7, *
.0017 *
.00 X *
.0007 *
. 0 0 X *
.0007 *
. 0 0 X *
. 0 u 0 7 *
.00 X *
.0093 *
.00 X *
. 0 0 9 3 *
. 0 0 X *
. 0 0 9 j *
. 0 0 X *
.0093 *
. 0 (j X *
.0(/«3 *
. 0 0 X *
. 0 0 X *
. 0 0 X *
.0089 *
. 0 0 7. *
. 0 0 H 9 *
. 0 0 X «
.0089 ,
. 0 0 X *
. 0
-------
U.S. STEEL FATKFIELD OPERATIONS CON'OITIOi\ MO. 1
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
•1ICRUGRAMS PER CUBIC METER
4
*
4
4
4
*
*
4
4
*
4
4
4
4
4
4
*
4
4
ft
4
4
4
*
4
4
4
4
4
4
*
4
*
4
4
4
*
4
SOURCE
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
*
4
*
4
4
4
*
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
RECEPTOR
78
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0076
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.0003
.00 X
.0006
.00 X
.0001
.65 X
2.7213
.67 X
2.8393
1.01 X
4.2640
.14 X
.5752
.21 X
.9012
.22 X
.9149
.31 X
1.3152
.23 X
.9820
.24 X
1.0221
.22 X
.9263
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
RECEPTOR
75
.00 X
.0055
.00 X
.0055
.Ou X
.0055
.00 X
.0055
.00 X
.0055
.00 i.
.0003
.00 X
.0001
.00 X
.0005
.00 X
.0005
.00 X
.0009
.00 X
.0002
.96 X
3.8835
.92 X
3.7324
1.12 X
4.5566
.20 X
.P314
.22 X
.8863
.21 X
.8690
.26 X
1 .0683
.17 ^
.6947
.17 X
.7074
.16 %
.6607
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
t
4
4
4
4
4
RECEPTOR
12
.00 %
.0065
.00 X
.0065
.00 X
.0065
.00 7.
.0065
.00 X
.0065
.00 X
.0000
.00 X
.000?
.00 r.
.0001
.00 X
.0001
.00 X
.000?
.00 x
.0001
1.11 X
4.3835
1.17 X
4.5993
1.82 X
7.1454
.27 X
1.0493
.26 X
1 .015f
.£7 X
1 .0600
.35 X
1.3761
.49 X
1 .91S2
.50 X
1.9661
.44 X
1 .7451
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
RECtPTOk *
PC *
.00 X 4
.0073 *
.00 /t *
.0073 *
. 0 0 •/. *
.0073 *
. 0 0 X 4
.0(17? 4
.00 X *
.0073 *
.00 X 4
.0005 *
.00 X *
.000? 4
. 0 U X 4
.0006 *
.00% 4
.0005 *
.00 X *
.0010 *
.00 X 4
.000? 4
.79 7. 4
2.7733 *
. 7 9 X 4
2.760Q 4
1.06 X 4
3.7064 4
. 16 X *
.5562 *
.27 X 4
.27 X *
.9421 *
.36 X *
1.2720 4
.24 X 4
.827b «
.25 X 4
.8607 4
.22 X 4
.7626 4
RECEPTOR
73
.00 7.
.0060
.00 X
.00 X
.u06Q
. o n 7,
.006°
.00 •'.
.00 'I.
.0005
.00 7.
.000?
.00 •/.
.00 7.
. 0 004
.00 X
,0'KI7
.OU X
.000?
.77 •/.
2.4908
.75 X
2.4190
.94 X
3.0340
.15 X
.4851
.27 X
.8577
.26 X
.634?
.33 7.
1.16-35
.20 X
.6320
.20 X
.651?
.19 X
.6000
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
A-4.6-13
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION ivfl. 1
SUUKCE CONTRIBUTION'S TO FIVE MAXIMUM Hfe'CEPTOPP
ANNUAL PARTICULATES
PER CUBIC METER
* s
*
*
*
*
*
*
*
*
4
*
»
4
*
*
*
*
*
*
*
*
*
*
It
*
*
*
*
*
*
*
*
*
*
*
*
*
iOURCE * RECEPTOR *
4 7» *
43 * .04 X *
« .1685 *
un 4 .09 X *
* .3836 *
U5 « .10 X *
46 * .09 X *
* .3614 *
47 * .07 X *
* .2837 »
48 » .24 X *
* 1.0279 *
49 * 54.71 X *
4 230.7966 4
5U * 4. 82 7, *
* 20.3311 *
51 * .37 X *
* 1.5769 *
52 * 11 .47 X *
* 4H.3858 *
53 * 1 .70 X *
* 7.1620 *
54 * 1 1 .70 X *
« a9.3474 *
55 « 8.74 X *
* 36.8860 *
56 * .04 X *
* .1757 4
57 « .23 X *
* .9509 *
58 * .23 X *
* 1.1859 *
59 « .13 X «
* .5401 *
60 * 1 . 16 X *
* 4 .9088 *
61 * . 10 X *
* .4274 *
riACK- 4 .00 X *
TOTAL X 100.0 X X
* 421.9336 *
RECEPTOR
75
.03 %
.1 167
.07 7.
.2709
.07 %
.06 ^
.2575
.05 i
.1979
.37 X
1.5133
43.63 X
176.9657
5.46 X
22.1452
.51 X
2.0630
15.32 X
62. 1213
2.32 X
9.4213
15.3° X
62.4106
10.39 X
42. 1405
.Od X
.3431
.47 X
1 .9263
,4S Z
1 .9432
.10 X
.3858
.72 X
2.9025
.07 X
.3037
.00 '<
0.
100.0 X
405.6^02
*
4
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
1t
4
*
*
*
X
4
12
.08 X
.3330
.19 X
.7574
.20 X
.7900
. 16 X
.6891
.13 X
.5263
.40 X
1 .5912
33.25 X
130.8714
7.91 X
31 .1393
.82 X
3.2122
20.55 X
80.8760
3.68 X
14.4895
16.53 X
72.9391
5.23 X
20.593?
.10 X
.4008
.47 Z
I .6615
.52 X
2.0615
.25 '/
2.2897
.21 X
.8205
.00 X
0.
lOO.f! %
393.6401
*
*
*
*
4
*
*
*
4
4
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
4
*
4
*
*
4
*
*
4
*
RECEPTOR *
80 *
.04 1 4
. 1 4 1 6 *
.09 X *
.3232 *
.10 X *
.3419 *
. 0 9 X *
.3052 *
.07 X *
.2392 *
.25 X *
.8622 *
49.86 X *
174.3373 *
5. Itt % *
18.H>33 *
.42 X *
1 .4614 *
12.73 X *
44.510^ *
1 .8P X *
13.02 X *
45.5283 *
9.°3 X *
34.7340 *
. 0 4 X *
.1531 *
.7993 *
.29 X *
1.0286 *
. 1 3 X *
.4567 *
1.09 X *
3.8119 «
. 1 0 X *
.3652 *
.00 X *
0. *
1 0 0 . 0 X x
349.671S) »
73
.03 X
.1076
.06 X
.06 X
.07 X
.06 X
.1749
.25 X
.81 54
46.86 X
150.7455
5.31 X
17 .0675
.44 r.
1 .4177
1 3.8H X
4 U . 6 4 0 7
2.05 r
0.5*70
1 4 . 1 9 X
1 n . 74 x
34 .5208
.0? X
.25 X
.807*
.28 •/.
.8855
.11 X
.3474
1.07 X
3.4357
.Ofl X
.00 X
100.0 X
321 .5820
*
*
*
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
A-4.6-14
-------
APPENDIX A-4.7
COMPUTER MODEL USING LARGE GRID FOR CONDITION 2
-------
U.J. STEEL P4I9FIELO OPEB4TION3 CONDITION *1. 2
SOUHCE D»T»
•NNU1L bOUBCE
• SOURCE • SOUBCE LOCATION • SOUUCE AB£A «
• NUHAER • CXILOMETEHS) • SOUASE •
• • HORIZONTAL • VERTICAL • KILOMETERS •
1.
•
*
*
j
*
|
m
*
!..
B
*
•
'f
~-
*
\
1
2
0
5
o
7
9
10
11
12
13
14
19
16
17
11
19
20
21
22
23
24
26
27
23
29
30
31
32
33
14
35
36
37
38
39
40
41
02
0!
04
45
46
47
48
09
50
51
52
55
54
55
56
57
58
5*
60
• 506.4
• 506.5
• 506.5
• 506.5
• 509.1
• 509.0
• 507.0
• 507.3
• 507.4
• 506.1
« 506.1
• 506.1
1 506.1
• 506.1
• 506.1
• 506.1
• 506.3
• 506.3
> 506.3
• 506.2
' 108.6
. 508.6
• 508.6
• 508.6
• 508.6
• 506.8
« 506.8
• 506.7
« 506.7
• 506.3
• 506.8
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• 506.5
• ~ 507.0
• 507.3
• 507.0
• 507.3
• 507.4
507.3
• 507.4
• 507. 3
• 506.5
• 506.1
• 508.6
• 506.7
• 506.8
« 506.8
• 506. 9
• 506.8
• 506.8
• 506.7
• 506.5
• 507.4
• 506.1
• 3704.3 •
• 3704.8 •
• 3704.9 •
• 3705.0 •
• 3708.6 •
• 3703.7 •
« 3708.7 •
• 3708.7 .
• 3703.7 «
• 3704.3
• 3704.3 •
• 3704.3 •
• 3700.3 •
• 3704.3 «
• 3704.3 •
• 3704.1 «
• 3704.1 .
• 3704.} .
• 3704.1 .
• 3704.3 •
3708.0 •
• 3708.0 •
• 3708.0 «
. 3708.0 .
• 3708.0 •
• 3705.6 «
• 3704.0 •
• 1705. 3 •
• 3705.1 •
• 3705.2
« 3705.1 •
• 3704.8 •
• 3704.9 •
• 3705.0 •
• 3704.9 .
• 3709.8 •
• 3700.9 •
• 3705.0 «
• 3703.7 •
• 3708.7 •
• 3708.7 »
« 3708.7 •
« 3708.7 .
• 3708.7 •
• 3708.7 •
• 3708.7 •
« 3704.3 «
3704.3 •
• 3708.0 •
3705.3 •
• 3705.2 •
• 3705.3 «
• 3705.3 •
• 3705.2
• 3705.2 •
• 3705.1 .
• 3705.0 •
• 3708.7 •
• 3704.3
.00 *
.00 •
.00 •
.00 .
.00 •
.00 >
.00 •
.00 •
.00 •
.00 •
.00 *
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 «
.01 •
.01 «
.01 •
.00 •
.00 •
.00 •
.00
.00 •
.00 •
.00 •
.01 •
.01 •
.09 •
'.3k •
.36
.36 •
.36
.36 •
.06 •
.06 •
!oi
.01 •
EP'ISSIOfc SATE •
CTOH3/CAY) •
S32 PAST .
.000
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Don
.000
.000
.000
.000
.000
.000
.000
.000
.000
'.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00"
.000
.000
.00"
.000
.000
.000
.000
.000
.000
.000
.=75
.177
.177
.241
.953
.635
.137
.143
.131
.1141
.041
.041
.001
.041
.not
.nul
."41
.001
.001
.042
.04?
.042
.(<*'
.042
.063
.063
.097
.197
.141
.037
.?.)7
.307
.030
.059
.120
.130
.164
.23?
.249
.041
.003
.097
.100
17.605
5.216
.217
.339
.742
6.95!
5.493
.034
.122
.137
.005
*
*
*
•
\
•
•
^
'•
*
%
*
"
*
*
*
*
*
|
.
*
*
*
*
XT
50.0
51.0
53.0
70.0
65.11
67.0
09.6
09.6
40.6
61.0
M.O
61.3
61.0
M.O
61.0
61. J
M.O
M.u
M.u
ot. 0
54.1
50.1
5-.1
54.1
69.6
69.6
6.-.0
60.0
7o.O
7a.O
23.0
23.0
.5
09.0
44.0
51.0
23.0
23.0
23. 0
.5
21.0
23.0
23.0
.0
.0
30.0
30.0
9.1
24.0
4.1
30.0
61.0
1.0
3.0
3.0
30.3
3.0
["I
2.0
1.2
1.2
1.1
4.1
5.3
1 .?
1.2
1.2
2.1
2.1
2.1
2.1
3.1
2.1
2.1
2.1
2.1
2.1
2."
2.1
2.0
2.0-
5.7
2.7
3.6
3.9
.0
.0
.0
. n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0 C C
.0
.0
.0
.0
.0
.0
.0
.0
.0
VEL
(M/SEC)
7.6
9.3
9.*
15.5
0.4
5.5
9.0
9.0
5.3
5.1
5.3
5.3
5.1
5.2
5.3
i.J
5.5
5.3
0.1
6.1
6. J
o.;
o.3
0.1
13.2
7.2
1.4
,U
.3
.1
.3
.0
• 0
.0
.0
.0
.0
. u
.3
.0
.0
.0
.3
.0
.0
.0
.0
.0 '
.0
. 0
.0
.0
.0
.0
TEMP •
C3ES.II)-
505. •
050. •
050. .
450. •
»SO. •
673. •
450. *
450. «
539. .
599. .
J99. -
599. .
5»9. .
5S9. .
539. .
599. .
599. •
519. .
5)9. .
589. .
666. •
8 = 6. •
966. •
966. •
966. •
477. •
J77. .
511. .
5'3. .
533. •
077 . •
0. .
0. •
0. .
0. •
n . .
0. •
0. .
0. •
0. •
il . .
0. •
0. '
0. •
n . .
n . •
0. •
0. •
0. •
0. •
0. >
0. •
0. •
0. •
0. >
0. •
0. •
A-4.7-1
-------
U.S. STEEL FAIWF1ELO PPEPAItUIvS CllfvDl T IMN Nil. ?
DATA
LOCAIJIJNS HI HE UStD AS KPCtPTURS IN ADDITION Til THE 7? RFC F A.\J|,,IL AC
WECFPT.JR X-CUIJKIM'MA TE Y-CO'JRO I N A TE
NUMrtFH (KILOMETERS) (KILUMETE.HS)
7? SO-S.h 370?.1
7« 506.1 3706.5
75 506.6 ?7f!3.«
76 50y.y 370?.I)
77 SO7.6 3705. u
78 S01.6 3701.0
79 501.0 5705.3
«0 501.1 3703.1
^ I 505.3 3708.1
A-4.7-2
-------
U.S. STEEL FAlRFItLI) OPERATIONS CUNUTFTUN.NO. ?
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASOM
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE = 291. DEGREES,KELV1N
AMBIENT PRESSURE = 1000. MILLIBARS
STABILITY CLASS 1
WIND DIRECTION
N
NNE
NE
EME
E
ESE
SE
sst
S
SSW
SW
ws*i
w
ifllNW
Nto
NMrt
1
.0000
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.oooa
.0002
.0008
.0001
.0006
.0003
.000?
.0005
2
.0007
.0003
.0008
.0003
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.000t»
.0003
.0006
.0005
rtlNDSPEEO
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
CLASS
'4
.0000
.0000
.0000
.0000
.0000
.0000
.oouo
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
. I) 0 0 0
.0000
5
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
fa
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. n o 0 0
A-4.7-3
-------
U.S. S1EEL FAIRHIF.LO UPERA T [ONS CIJ'-H) I F U'N NO. ?
METEOROLOGICAL INPUT DATA FOR THE ANiMIIAL SEASOM
? T A B IL II Y CLASS 2
WIND DIRECTION
N
MNE
ME
ENE
E
ESE
SE
SSE
S
SSrt
SW
wsw
',V
WNrt
NW
NNw
1
.OOlh
.0020
.00) 3
.0015
.0020
.0016
.001S
.0020
.0022
.0019
.001 1
.0010
.00?!
.0010
.0017
.0013
2
.0036
.0033
.0021
.0023
.0043
.0023
.0027
.0087
.0029
.0021
.0019
.0014
.0035
.0024
.0034
.0032
wIMlSPEFD
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
.0014
.0014
.0010
.OOOS
.0007
.0020
.OOM
.0016
.0011
CLASS
4
.0000
.000 0
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.7-4
-------
U.S. STEEL
FAIRFIELO OPERATIONS
riJHOITIUN Ml. ->
METEOROLOGICAL INPUT OATA FOR THE ANNUAL SEASON
STABILITY CLASS
DIRECTION
N
NNE
NE
ENt
E
ESF.
SE
SSE
S
ssw
sw
wSi/v
in
WNW
Nw
NNW
1
.001 3
.0029
.0024
.0015
.0021
.0014
.0009
.0020
.0012
.0006
.0004
.0007
.0008
.0005
.0006
.0007
2
.0018
.0019
.0012
.0016
.0045
.0016
.0016
.0030
.0029
.0017
.0014
.OOlfl
.0030
.0019
.0023
.0017
WHViOSPEFU
3
.0050
.00 VJ
.0016
.0010
.0053
.002S
,00?9
.005«
.0034
.0030
.0027
.0027
.0038
.0012
.0038
.0040
CLASS
4
.0007
.0005
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.000 3
.0003
.ooon
.0006
.0002
.0005
.0003
5
.000 0
.noon
.oono
.0000
.000 0
.0000
.0000'
.0000
.0001
.0001
.0000
.0000
.0001
.000(1
.0000
.0000
*
. 0 0 o 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
. 0 0 0 0
.0000
.0000
A-4.7-5
-------
U.S. STtEL FAIRFIEIP OPERATIONS Cl.iWU f IiifJ rill.
TEUKOLUGICAL INPUT OATA FOB THE ANNUAL SfcASIliM
STABILITY CLASS
WIND DIRECTION
N
NNt
NE
ENE
E
ESE
SE
SSE
S
ssw
sw
«VSW
w
iVNW
NW
N^W
1
.0033
.0029
,00?1
.00??
.0017
.001?
.0012
.0033
,00?3
.0010
.0007
.001 1
.0018
.0010
.001 7
. o o i e
2
. 0 0 fl 5
.0066
.005"
.00«3
.0116
.00«Q
.OOS6
.0075
.0069
.0009
.00,58
.003fl
.0073
.0035
.(I05S
.OOas
imlNDSPEEU
?<
.0162
.OOUh
.00?7
.0001
.0107
.00*0
.0101
.01P.9
.0160
.01M
.no<>5
.0057
.0107
.0077
.0096
.0097
CLASS
a
.Olio
.00?^
. il 0 0 0
.0009
.0001
.0029
.0071
.0093
.012?
.0115
.0076
.0005
,009fl
. 0 0 h 0
.006S
. 0 0 « H
5
.0005
.0001
.0000
.oono
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0020
.0003
.0007
.0005
b
.0000
.0000
.000')
.0000
.0001
.1)000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.ODOO
.0001
. 0 0 0 0
A-4.7-6
-------
n.s. STttL KAJHUI-LD IJPE&AT IONS cowmiuN MM.
METEUWnLOGICAL INPUT DATA KOh THE AMNMAI SEASON
STAUILITY CLASS 5
W1NO OIUFCTION
N
NNE
NE
ENfc
E
tSE
SE
SSE
S
SSrt
sn
wSrt
w
(MIMrt
.0397
.0079
.0086
.0131
.(107J
.0038
.oo?a
.002?
.OOhl
.0033
.0037
.0051
£
.0133
.0173
.0138
.0096
.0162
.0005
.0077
.013"
.0080
.0043
.0023
.0029
.0069
.0033
.0003
.0047
WfNOSPF.En
3
. o o i> a
.001 M
.0007
.0011)
.0019
.001 1
.0015
.0019
.0022
.0021
.0012
.0011
.0053
.0016
.001 7
.001 /
CLASS
4
.OOOd
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
S
.0000
.000 0
.0000
.0000
.nooo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.1)000
.000 0
.0000
.0000
.0000
.0000
.0000
. (1 0 0 0
.0000
.0000
.000 0
. 0000
A-4.7-7
-------
U.S. STEEL FAIKFJELO tIPFKATIONS CONDITION NO. ?
INPUT RF.GKESSION PARAMETERS ARE:
POLLUTANT Y-INTF.RCEPT
PARTICULARS
.0
SLUPE
1 .0000
A-4.7-8
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 2
*
*
RECEPTOR CONCENTKATION DATA
* *
* RFCEPTUR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
a
3
4
5
6
7
%
9
10
11
12
13
la
15
16
17
18
19
20
21
22
23
24
25
2b
27
28
29
?0
31
32
33
34
35
36
37
38
39
40
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
50b.O
506.0
506.0
506.0
506.0
510.0
510.0
51U.O
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
518.0
518.0
51H.O
518.0
518.0
516.0
518.0
518.0
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
36
-------
u.s. STEEL CAIRFIELO OPEKATIUNS cJN>oninr* MJ. a
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* * * u M Q E R *
*
*
^
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*•
*
#
*
*
A
A
A
A
A
*
A
A
A
A
*
A
A
*
ai
«2
13
44
15
16
17
49
19
50
51
52
53
54
55
56
57
58
59
60
61
e>2
63
64
65
66
67
6e
69
70
71
72
73
74
75
7fa
77
78
79
80
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
*
*
*
*
*
*
*
A
A
RECEPTOS LOCATION
(KILOMET
Htmz
522.0
522.0
522.0
522.0
52?. 0
522.0
522.0
522.0
526.0
526. u
526.0
526.0
52b.O
526.0
526.0
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
531.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505.6
506.1
506.6
504.4
507.6
504. 6
504.0
504.4
A
A
*
A
A
A
A
A
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A
*
ERS)
VERT
3694.0
36=8.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369P.O
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3699.0
3702.0
3706.0
mo.o
3714.0
3718.0
3722.0
3694.0
36"8.0
3702.0
3706.0
3710.0
3714. 0
371R.O
3722.0
3702.1
3706.5
3703.1
3702.0
3705.4
370U.O
3705.3
3703. I
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
«
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
A
A
A
A
A
A
A
A
A
A
EXPECTED ARITHMETIC M£AN
(
MICRO
iG*AM!
S02
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
•
.
•
*
.
.
•
.
.
•
•
f
•
•
.
•
.
•
m
•
.
,
•
.
.
•
f
•
•
'
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
5/CU. MCTER)
PARTICIPATES
6.
b.
4.
10.
7 .
4 .
4 .
4 .
5.
5.
7 .
8.
6.
4 .
3.
3.
4 .
5.
6.
7 .
5>
3.
3.
3.
3.
4 .
5.
6.
5.
3.
2.
274
? 4 3
310.
212.
152.
370.
188.
302.
*
*
*
*
*
*
*
*
A
*
it
it
*
*
*
V
*
*
*
*
*
*
ir
*
*
*
*
*
*
A
A
*
*
*
*
*
*
*
*
*
*
^
*
*
*
*
A-4.7-10
-------
U.S. STEEL FAI'
-------
U.S. STEEL FAIKFIELD OPERATIONS CONDITION NO. 2
SOURCE CONTRIBUTION TO FIVE MAXIMU^ RECEPTORS
ANNUAL PARTICULATES
PER CUBIC MtTER
* SOURCE * R
» *
* 1 *
* *
* 2 *
it it
* 3 *
* *
* a *
* *
* 5 *
* *
* b *
* *
* 7 *
* *
* ti *
* *
* 9 *
* *
* 10 *
* *
* 11 *
* *
» 12 *
. 13 *
* *
* 14 *
* *
* 15
* *
* 16 *
* 17 *
* *
* 13 «
* *
* 1 V *
t *
* 20 *
* *
* 21 *
* «
ECEPTOR « H
78 •
.00 X *
.0009 *
. 0 0 X *
.0002 *
.00 X *
.0002 *
.00 X *
.0003 »
.00 X *
.0036 *
.00 X *
.0016 *
.00 X *
.0006 *
.00 X *
.0007 *
.00 X *
.0006 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 *
.00 X *
.0000 «
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 *
.00 X *
.0000 «
.00 X *
.0000 *
.00 X *
.0000 *
!£C£PTOrt * K
75 *
. 0 0 2. *
.0016 *
. 00 * *
.0004 *
.00 X «
,ooo« *
.002 *
.0005 •
.00 X *
. 0 0 X *
.0015 *
. 0 0 X *
.0009 *
.00 X *
.0009 *
.002 *
.ooo» *
.00 X »
.0000 *
. 00 i *
.0000 *
.00 X *
.0000 *
.002 *
.0000 *
.00 2 *
.0000 *
.00 2 *
.0000 *
.002 *
.0000 *
.00 X «
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 *
.00 X *
.0000 »
.00 2 *
.0000 *
RECEPTOR * I
12 *
. 0 0 X *
.0011 *
.00 X *
.0003 *
.00 X *
.0003 *
.00 X *
.000? *
.00 X *
.0028 *
.00 x *
.0010 *
.00 X *
.0003 *
.00 X *
.0003 *
. 0 0 X *
.000? *
.00 X *
.0000 *
.00 X *
.0000 *
. 0 0 X *
.0000 «
.00 X *
.0000 *
. 0 0 X *
.0000 *
. 0 0 X *
.0000 *
.OCX *
.0000 *
.OCX *
.0000 *
. 00 X *
.0000 *
.00 X «
. t n o o *
. 0 0 X *
.0000 *
.00 X *
.0000 »
'fc.CE.PTO* * •
.00% *
. 0 0 7, *
. 0 0 X *
. o o 0 a *
. 0 0 X *
.0005 *
.00 X *
.0036 *
. 0 0 X *
.0017 *
.00 X *
.0007 *
. o o •/. *
.0007 *
. 0 0 X *
.0007 «
.00 % *
.0(i01 *
. 0 0 X »
.0001 *
. 0 0 X *
.000) *
. 0 0 X *
.0001 *
. 0 0 X *
.000] *
.00 X *
.0001 *
.002 *
.0001 *
.00% *
. 0 0 0 o *
. 0 0 '/- *
.0000 *
.00 '/. *
.OOiiO «
. 0 0 X *
. 0 0 0 0 *
. 0 0 x *
.0000 «
7?
.00 •/.
.0015
.00 X
. (' 003
. n o •/.
. 00 OU
.00 7.
.0005
.00 x
.OOUH
. (1 0 X
.00 %
.0<)0<<
. 0 0 '/.
.0009
.00 X
.0008
.00 X
.0000
.00 1,
.0000
.Of X
.0000
.00 X
.0000
.00 X
.0000
. 0 0 X
.0000
.00 X
.0000
.00 X
.0000
.00 •/.
.0000
.00 T
. J 0 0 0
.00 X
.0000
.0000
w
*
*
*
*
*
*
*
*
*
*
*
*
It
*
*
*
It
w
*
*
*
*
A
It
*
*
*
*
*
*
*
A-4.7-12
-------
SOUKCE CONTRIPJTinNS TO FIVE MAXIMUM
ANNUAL HArtTICULATES
MICRUGHAMS P£P CUBIC METER
* SOURCE
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
78
.00 Z
.0001
.00 X
.0001
.00 %
.0001
.00 X
.0001
.00 X
.0001
.00 2
.0001
.UO X
.0001
.00 X
.0001
.00 2
.0001
.00 2
.0002
.00 2
.0000
.74 X
2.7213
.77 X
2.S393
1.15 2
4.2640
.16 Z
.5752
.24 Z
.9012
.25 Z
.9149
.36 X
1.3152
.27 Z
.9820
.26 Z
1 .0221
.25 2
.9263
* RECEPTOR
* 75
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.00 X
.0000
.00 X
.0000
.00 2
.0000
.00 Z
.0000
.00 x
.0000
.00 Z
.0001
.00 Z
.0000
.00 X
.0001
.00 2
.0002
.00 *
.0003
.00 X
.0001
1.14 Z
3.8935
1.10 Z
3.7324
1 .34 X
a. 5566
.24 2
.8314
.26 2
.8863
.26 X
.8690
.31 2
1.0683
.20 X
.6947
.21 X
.7074
.192
.6607
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
RECEPTOR *
12 *
.00 Z *
.0001 *
.00 2 *
.0001 *
.00 2 *
.0001 *
.002 *
.0001 «
.00 2 *
.0001 *
.002 *
.0000 •
.00 X «
.0001 *
.00 X *
.0000 *
.00 2 *
.0000 »
.00 2 *
.0001 *
.00 2 *
.0000 *
1.43 2 *
4.3835 *
1.50 2 *
4.5993 *
2.34 2 *
7.1454 *
.34 2 *
1.0493 *
.33 X *
1.0158 *
.35 2 *
1.0600 *
.45 Z *
1.3761 *
.63 X *
1.9182 *
.64 X «
1.^681 *
.57 2 *
1.7451 *
RtCtPTIIR
80
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 2
.0001
.00 X
.0001
. 0 11 '/.
.0002
.00 X
.0001
.00 2
.0002
.0002
.00 2
. 0 U 0 3
.00 X
.0001
.92 2
2.7733
.92 2
2.7fc09
1.23 '/
3.70*9
.18 2
.55b2
.31 7.
.31 2
.42 1.
1.2720
.27 X
.2S Z
.P607
.26 2
.74)26
A
A
A
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
KECEPTO*
73
.00 X
.0001
.00 2
.uOol
.00 %
.0001
.00 Z
.0001
.no z
.0001
.00 X
. !) 0 0 1
. UO '/.
.0001
. 0 (I 2
.0001
.on 7.
.0001
.00 z
.0002
.00 z
.0001
.^1 2
.88 2
1.11 X
i.03'4(l
.13 2
.31 2
.8577
..31 •/.
.39 2
1 .0655
.23 1
.6320
.
-------
U.S. STEEL FAIRFIELD OPEKAlIOfoa CONDITION NO. 2
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICIPATES
PER CUBIC METER
*
ft
*
*
ft
*
*
*
*
*
*
*
ft
*
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
*
ft
ft
ft
ft
ft
SOURCE
43
44
45
46
47
46
49
50
51
52
53
54
55
56
57
58
5?
60
61
6ACK-
GSOUMO
TOTAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR *
78 *
.05 X *
.1685 *
.10 X *
.3836 *
.1 1 X *
.3979 *
. 10 X *
.3614 *
.08 X *
.2837 *
.28 X *
1.0292 *
62.37 X *
230.7=66 *
5.49 X *
20.3311 *
.43 X *
1.5769 *
.65 X *
2.4193 *
.67 X *
2.4656 *
13.34 X «
49.3474 *
9.97 Z *
3 6 . S 8 6 0 *
.05 % *
.1757 «
.26 X *
.9509 *
.32 X »
1.1859 .
.01 % »
.0205 *
1 .20 X *
a. 0261 *
. 12 X *
.4274 *
.00 X *
0 . *
100.0 X X
370.1040 «
RECEPTOR
75
.03 i
.1167
.OS X
.2709
.Oft %
.2749
.08 X
.2575
.06 X
. 1979
.05 *
1.5172
52.02 X
176.9657
6.51 X
22.1452
.61 X
2.0630
.91 I
3.1 061
.95 X
3.2436
19.35 X
62.4106
12.39 X
42.1405
.10 X
.3431
.57 -i
1 .9263
.57 X
1 .9432
.00 X
.0146
.90 X
3.0781
.09 X
.3037
.00 X
0.
100.0 X
340.2207
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
it
*
it
it
it
it
*
*
X
*
RECEPTOR
12
.11 X
.3330
.25 X
.7574
.25 X
.7741
.23 X
.6691
.17 X
.5264
.5? *
1.5952
42.79 X
130.6714
10.18 X
31.1393
1.05 X
3.2122
1.32 X
4.0439
1 .63 %
4.9682
23.85 X
72.9391
6.73 X
20.5933
. 13 X
.400?
.61 X
1.6615
.67 X
2.0615
.01 X
.0377
.65 Z
1 .9798
.27 '/.
.6205
.00 X
0.
100.0 X
305.P916
*
*
*
ir
it
t
it
it
*
*
*
*
*
*
it
it
*
*
*
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
X
ft
RECEPTOR *
80 *
.05 X *
.1418 *
. 1 1 X *
.3232 *
. 1 1 X *
.3350 *
.10 1- *
.30^2 *
. 0 b X *
.2392 *
.29 X *
.8626 *
57. 7 F i *
174.3*7? *
6.00 X *
18.1033 *
.46% *
1.4614 *
. 7 4 •/, *
2.2255 *
.75 X *
2.2574 t
15.09 X *
45.5283 *
1 1 . 5 1 X *
34.7340 *
.05 X *
.1531 *
.26 '/ *
.7903 *
.34?. *
1 .0286 *
. 0 1 •/. *
.0173 *
1.03 '/, *
3.1153 *
. 1 2 X *
.3652 *
. 0 0 X *
0. *
100.0 X X
301.7700 *
RECEPTOR
7?
.04 X
.1076
. 3Q %
.247?
.09 %
.253°
.09 X
.07 i
.1799
.30 X
.PI b7
55.1)0 %
150.7455
I 7 .0675
.52 X
1.4177
.62 r
2.2320
.8? X
2.2677
1 6 . b 7 X
45.6148
12.61 X
3 a . 5 ? 0 8
.06 X
. 1556
.30 X
.8076
.32 X
.00 X
.01 32
1.01 X
2.7750
.10 •/.
.2670
.00 X
0.
100.0 X
273.6936
*
*
*
*
ft
ft
ft
ft
*
*
ft
ft
ft
*
ft
*
*
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
w
ft
ft
ft
ft
ft
A-4.7-14
-------
APPENDIX A-4.8
COMPUTER MODEL USING LARGE GRID FOR CONDITION 3
-------
U.S. STEEL FAtfcrlELP uPE&aT[f:\S C'jNMTnnN My. i
bOUHCt 04TA
* *
* SOURCE *
* f
#
^
*
*
w
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
4
*
*
•JIJM.-tEi
1
a
3
'4
-j
T
7
^
•*
10
11
12
1 ?
14
13
1 S
17
U
1 1
20
21
?_j
p f
2''
2i
26
27
21
d-t
VI
31
33
«
34
tj
:
.!>2»' 4 'Ih.-I P.O
.307 4 Pj.,, .u
.307 4 £<.j .n
.420 4 P3.ii .u
."39 . . =; .0
.ian 4 u*.u .0
.120 4 4M . ,1 . '1
.164 4 qi.i, . o
.238 4 2i.u .0
.24Q 4 23. u .0
.P(JM 4 2<.'J ."
.041 * .5 .n
.093 . 25.1, .f.
.047 4 2$.'l .0
.OKQ . PJ.o .1)
.O^o 4 5.0 .0
.100 4 5 . u .0
.384 4 1.1 .11
.25" 4 24. u .0
.34P 4 -,.1 .1)
6.°53 4 Vi.y .r,
5.422 4 6L.ii
.'124 4 J.il . y
.l->? 4 <.!, .'.I
1.23= 4 j'i.u . u
.137 4 J.,i ,ii
. 33** 4 3 •'! . -1 . 0
.1'J7 4 3.u .n
OA ra
VtL
fN/5?C)
7 .^
'-> .0
9.1
lb.5
b. 4
i.3
0.,,
9 . H
?.o
6. 5
-, . <
10.2
M. 2
7.3
3.4
3i.O
.,)
••'
.T
. J
. o
>PJ
.0
.0
• j
.•i
•••»
.u
. o
• '•
.,,
.0
. J
. 0
. ••)
. H
.0
. 'i
•^
.;;
. 1
• •J
. 1
4
TE-1P 4
(,Ttu.
-------
U.S. 3TEEL FATRFIELD OPFKATIONS CPtvDITiriN NO. 3
RECEPTOR DATA
LOCAT1UNS TO BE USED AS RECEPTI.iWb IN AUOJTION Td THF 7? REC T A. IRlll. AP l-UID LHCAirnM3
RECF.PTOR X-COURIJINATE Y-COOIVO t NATE
NUMBER (KILOMETERS) (
73 50S.6 37()?.l
7« =50^.1 3706.5
75 S06.6 3703.1
76 5')«. 3701.0
7<> 501.0 3705.3
»f> 500.u 3703.1
«1 505.3 3708.1
A-4.8-2
-------
U.S. STEEL FAIHFIHD DPtPA T TIMS ClINDITTUN NO. .5
METEOROLOGICAL INPUT DATA FIIH THE 4NPJIJAI StASI.IN
MIXING DEPTH = 1500. ME1FKS
AMBIENT TEMPERATURE = 294. DEGHEES , K F.LV 1
AMBIENT PRESSURE = 1000. M1LLIHAHS
STABILITY CLASS 1
MNDSPtED CLASS
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSw
S*
wsw
.;
«N»
NW
NNW
1
.oooa
.0006
.0003
.0001
.0007
.0001
.0003
.OOOb
.oooa
.0002
.0002
.0001
.0006
.0003
.0002
.0005
2
.0007
.0003
.0008
.000?
.0005
.0003
.0002
.0005
.0003
.0003
.0002
.0003
.0006
.0003
.000f>
.0005
3
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.000 o
.0000
.0000
"
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
fl
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
A-4.8-3
-------
U.S. STfcEL FAt&FIfcin DPK.fi 4T ID'i.S
) r r TUN no.
'IFTFURliLHGlCAL INPUT DATA FQW THt At>\|UAL
STABILITY CLASS 2
CLASS
IJIRF.CTION
N
NME
NE
EME
E
E?E
SE
SSE
S
SSW
Sfc
HSrt
w
WNlN
NIK
NNwi
1
.0018
.0020
.001?
.OOlb
.002"
.0016
.0015
.0020
.0022
.0019
.001 1
.0010
.0021
.0111 a
.0017
.0013
2
.003*
.0033
.0021
.0023
.0013
.0023
.1)027
.0027
.0029
.0021
.0019
.0011
.0035
-002«
.003U
.003?
3
.0021
.0010
.0012
.0007
.0023
.0012
.0007
. o o i a
.0014
.0010
.0005
.0007
.0020
.0015
.001<,
.0011
a
.oouo
.0000
.0000
.0000
.0000
.0000
.0000
.ooon
.0000
.000 0
. 0 0 0 0
.0000
.000 0
.0000
.0000
. oooo
5
.0000
.0000
.000 0
.0000
.0000
.0000
.01)00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.000 (i
*>
.000 0
.0000
.0000
.1)000
.01100
.0000
.0000
.0000
.000 0
.000 0
.0000
. 0000
.0000
.000 o
. 0000
. 1)000
A-4.8-4
-------
U.S. STEirL FAIKFItLO OPERATIONS COMfMlION N.
MFlFORtlLOGICAL INPUT dAlA FDR THE &NNIJM. S
S T A rt IL I T Y CLASS 3
VvINn DIRECTION
N
NNE
NF
ENf
E
Ese
SE
5SE
S
SSw
SW
kvSW
w
*N*
N*
MM ill
1
.001 3
.0029
.0020
.0015
.0021
.001 a
.0009
.0020
.0012
.0006
.0000
.0007
.0008
.0005
.0008
.0007
?
. 0 0 1 8
.0019
.0012
.0016
.oou5
.00)6
.0016
.0030
.0029
.0017
. o o i a
.0018
.0030
.0019
.0023
.0017
'
.00 s.i
.0034
.0016
.0010
.0053
.0025
.0029
.0058
.0034
.003(1
.0027
.0027
.0033
.0032
.0038
. 0 0 a 0
a
.0007
.00 OS
.0000
.0001
.0003
.0003
.0001
.0002
.0006
.000 3
.0003
.0008
.0006
.0002
.OOOS
.OOOT
1=1
.on oo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
. 0 0 0 (1
.000 0
.0000
->
. oooo
.000 0
.000 0
.0000
.000 0
. 0000
.0000
.000 0
. 0 0 0 0
.0000
.0000
.000 o
.0000
.000 o
.0000
.0000
A-4.8-5
-------
U.S. STfcEL FAIRFIf:LU OPERATIONS CONOITTON Nil.
METEOROLOGICAL INPUT DATA FOR THE. AMiMIIAL SEASON
STABILITY CLASS
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SF
SSE
S
SS.v
3W
IV SW
W
rtNW
MW
NMW
1
.00?3
.0029
.00?!
.00?3
.0017
.001?
.001?
.0033
.0023
.0011
.0007
.0011
.0016
.001 0
.0017
. 0 0 1 «
2
.0085
.0066
.0051
.0013
.0116
.0019
.0056
.0075
. .0069
.0019
.00?H
.0038
.0073
.0035
.0055
.0015
WIMPSPEED
5
.016?
. 0 0 1 b
.00?7
.0011
.0107
.006'!
.0101
.0129
.0161
.0151
.0093
.0057
.0107
.0077
.0096
.0097
CLASS
1
.01 11
.0025
.0001
.0009
.0011
.00?9
.0071
.0093
.012?
.0115
.0076
.0015
.009P
.0061
.0065
.OOrtfl
5
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.0005
.0012
.0009
.0005
.0007
.0021
.0003
.0007
.0005
6
.0000
.0000
.0000
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
A-4.8-6
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION MO.
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SEASON
STABILITY CLASS 5
WlNDSPtFO
WIND UIRECTION
N
NNE
NF.
ENE
E
ESE
SE
SSE
S
SSd
sw
wsw
w
WNW
MW
NNW
1
.0169
.0136
.0507
.0336
.Oa<»7
.0079
.0086
.0131
.0071
.003«
.0021
.no??
.0061
.003?
.0037
.0051
2
.0132
.0173
.0138
.0096
.0162
.0005
.0077
.015"
.0060
.0003
.0023
.0029
.0069
.0033
.0013
.0017
3
.00'4'4
.OOIH
.0007
.0010
.0019
.001 1
.0015
.0019
.00?2
.0021
.0012
.001«
.0033
.noif.
.0017
.0017
CLASS
a
.0000
.ooon
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.001)0
.0000
.0000
S
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
. n o o o
.0000
A-4.8-7
-------
U.S. STEEL FAIRFIKLU OPERAIIUNS CONOITIIllM Nil. 3
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCFPT
PARTICULARS
.0
SLOPE
1 .0000
A-4.8-8
-------
U.S. STEEL FAlkFIELD OPERATION'S CONDITION NO. 3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBE* *
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
*
*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16
19
20
?1
22
23
24
25
26
27
2B
29
30
31
32
33
34
35
36_.
37
33
39
uu
*
*
*
*
*
*
4r
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HOrtIZ VERT
502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
511.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
516.0
518.0
518.0
518.0
516.0
518.0
51S.O
518.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
#
*
+
.5694.0
3698.0
370?. 0
371)6.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3699.0
3702.0
3706.0
3710.0
3714.0
3718. n
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718. 0
372?. 0
*
*
4
*
it
*
*
*
*
*
*
*
it
*
* .
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
EXPECTED ARITHMETIC M£
*
*
*
AN *
*
(MlCRtlGftAMS/CU. MEItR) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
fi.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
30.
46.
55.
41 .
19.
1 4.
1 1 .
8.
?0.
34.
9?.
154.
32.
1 4.
u
6.
9.
10.
17.
21.
1 1 .
8.
b.
5.
5.
6.
7.
10.
=>.
4.
4.
3.
4.
4.
5.
7..
3.
3.
?.
2.
*
*
*
*
*
*
it
it
JT
+
it
*
4
*
*
*
*
*
*
*
it
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
it
it
*
A-4.8-9
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 3
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
* NUMBER *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
41
42
43
04
45
46
47
46
49
50
51
53
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
66
69
70
71
72
73
74
75
76
77
78
79
60
*
*
•
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VERT
522.0
522.0
522.0
522.0
522.0
522.0
522.0
522.0
526.0
526.0
526.0
526.0
526.0
526.0
526.0
526.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
530.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
534.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3696.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3702.1
3706.5
3703.4
370270
3705.4
3704.0
3705.3
3703.1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC MEAN *
ft
(MICROGRAMS/CU. METER) *
S02 PARTICULATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
ft
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3.
3.
4.
5.
3.
2.
2.
2.
2.
2.
3.
4.
3.
2.
2.
1.
2.
2.
3.
3.
2.
2.
1.
1.
1.
2.
2.
3.
2.
2.
1.
1.
120.
130.
153.
100.
76.
13S.
100.
125.
*
*
*
*
*
*
*
A
*
*
*
ft
w
*
ft
*
ft
*
ft
*
*
ft
ft
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
*
ft
*
A-4.8-10
-------
U.S. STEEL FAIKFIfLO OPF.KA 1 IONS COND 1 T I TIN Mj. -,
* *
* RECEPTOR rilNCENTKA riOlM OAFA
* * * *
* KF.CFPTiJH * KfcCtPTOW LUCATTUN * EXPECTED AkTTHMFIU. N F A M *
* * *
* * (KILOMETEHS) * (MJCKUKkAi-'S/rU. MI-1EP) *
* * HUWIZ VERT * SUP F'APT JCIIl
* * * # *
* Rl * 505.3 * 37()fl.y * 0. * SH.
A-4.8-11
-------
U.S. STEEL FAHFIELO OPERATIONS CONDITION MD. 3
SOURCE CONTRIBUTIONS Tu FIVE MAX {MUM RECEPTORS
AlMiMUAL P4RTTCULATES
4ICROGRAMS P£R CUBIC
K
*
*
*
*
*
*
*
*
*
g
*
*
W
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
snuRCE
i
2
3
4
5
6
7
8
9
10
1 1
12
1 3
1 '4
15
1 6
17
16
19
20
21
*
*
*
*
it
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
wECEPTOR *
12 *
. 00 X *
.0011 *
.00 X *
.0003 *
.00 X *
.0003 *
.00 X *
.0003 *
.02 X *
.0242 *
. 0 0 X *
.0010 *
.00 X *
.0003 *
.00 % •.
.0003 *
.00 X *
.00 X *
.0000 *
.00 X *
.0003 *
.00 X *
.0000 *
. 0 0 X «
.0000 *
.00 X *
.0002 *
.00% *
.0000 *
. 0 0 X *
.0000 *
2.34 X *
2.98 X *
4.5993 »
4.63 Z *
7.1 454 *
.35 X *
.54P7 «
.66 X *
1.0158 «
RECEPTOR *
75 »
.00 X *
.OOlb *
.00 X *
.0004 »
.00 X *
.0004 *
.00 X *
.0005 *
.03 X *
.0382 »
.00 * *
.0015 *
.00 X *
.0009 *
.00 X *
.0009 *
. 0 0 '. *
.0008 *
.00 X «
.0003 *
.00 X *
.0001 «
.00 x *
.0001 *
.00 X *
.0002 *
.00 X *
.0009 *
. 0 0 X *
.0001 *
. 0 (1 % *
.0000 *
3.8835 *
3.7324 *
4.5566 *
. 4 7 X *
.7119 *
.53 X »
.8863 *
RECEPTOR *
76 *
.00 X *
.0009 *
.00 X *
.0002 «
.00 X *
.0002 *
.00 X *
.0003 *
.02 X *
.0307 *
.00 X *
.0016 »
.OCX *
.0006 *
.00 X «
.0007 *
.00 X *
.0006 «
. 0 0 X *
.0003 »
. 0 0 X *
.000? *
. o 0 X »
.0001 *
.00 X *
.0001 *
.00 X *
.0006 *
.00 Z *
.0000 *
. 0 0 X *
.0000 *
1.96 X *
2.7213 *
? .OH % *
2.8393 *
3.07 X *
.36 X *
.4933 *
.65 X *
.9012 »
RECEPTDK *
74 *
.00 X *
.0011 *
. 0 0 % *
.0003 *
.0(1 7, *
.0003 *
.002 *
.0004 »
.02 Z *
.0202 *
.00 2 *
,000C *
.00 Z *
.0002 *
.00% *
.0002 >
. 0 0 X *
.0002 *
.00 X *
.0001 *
.00 X *
.0003 *
. 0 0 X *
.0001 *
. 0 0 X »
.0001 *
.00 X *
.0007 *
. o o •/. *
.0001 *
.00% *
.0000 *
2.01 % *
2.6177 *
2.06 % *
2.7158 *
3.20 Z *
4.1722 *
.24 Z *
.3110 *
.55 Z *
.7201 *
-•F.CFPTOR
60
.00 7.
.0016
.00 2
. 0004
.00 2
.0004
.00 Z
. 0 0 0 S
.03 X
.0322
.00 2
. 0 0 1 7
.00 X
.0007
.00 X
.0007
.01 X
.0007
.0<> X
.0005
.00 X
.0002
.00 X
. I) 0 0 ?
.00 Z
.0002
.00 t
. o n i o
.00 X
.0001
.00 X
.0000
2 . 2 P X
2.7733
2.21 X
2.7609
2.96 X
3.706Q
.35 X
.4351
.75 Z
.9428
*
*
*
ft
*
*
*
*
*
*
ft
r
*
*
*
*
*
#
*
*
*
*
if
*
k
*
#
*
*
*
*
*
A-4.8-12
-------
PEP CUBIC METER
*
*
*
*
*
*
*
*
*
ft
*
*
*
it
ft
*
*
*
*
ft
*
*
ft
*
*
*
*
*
ft
ft
*
*
*
*
ft
it
*
*
*
*
SOURCE
22
23
24
25
26
27
26
29
30
31
32
33
34
35
36
37
^
39
40
41
42
it
*
*
Mr
It
*
*
II
*
*
*
*
*
*
*
lit
*
*
it
it
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR
12
.69 X
1 .0600
.89 X
1 .3761
1.24 Z
1.9182
1.28 Z
1.9681
1.13 Z
1.7451
.22 X
.3330
.49 X
.7S74
.50 Z
.7741
.45 X
.6891
.34 Z
.5263
1.03 X
1.5912
3.69 Z
5.6842
2.00 Z
3.0786
3.23 X
4.9853
47.30 X
72.9391
13.35 X
20.5933
.26 X
.4008
1 .21 Z
l.«615
5.77 Z
8.8905
1.34 Z
2.0615
1.59 Z
2.4(179
ft
*
*
*
*
*
it
it
it
ft
*
*
*
*
*
it
ft
*
*
*
*
*
*
ft
*
it
it
ft
*
*
*
*
*
*
*
*
•*
RECEPTOR
75
.57 Z
.8690
.70 r.
1.0683
.46 Z
.6947
.46 X
.7074
.43 Z
.6607
.08 '/.
.1 167
.la z
.2709
.18 X
.2749
.17 Z
.2575
.1 3 Z
.1979
.99 X
1 .5133
2.39 '/.
3.6507
1.55 X
2.3646
2.12 X
3.2ul7
40.88 X
62.4106
27.60 Z
42.1405
.22 Z
.3431
1 .26 X
1 ."263
7.07 X
10.7944
1.27 X
1.9432
2.03 Z
3.: 030
*
*
*
*
*
it
*
it
*
*
*
*
I
*
*
*
*
*
*
*
*
*
*
it
it
it
ft
•ft
*
*
*
it
ft
*
*
ft
*
*
•ft
*
RECEPTOR
78
.66 X
.0149
.95 X
1.3152
.71 X
.9820
.74 X
1.0221
.67 X
.9263
.12 X
.1685
.28 X
.3836
.29 X
.3979
.26 X
.3614
.20 X
.2837
.74 X
1 .0279
2.01 Z
2.7905
1.33 X
1 .8418
1.77 Z
2.4642
35.52 X
49.3474
26.55 X
36.8860
.13 Z
.1757
.68 X
.9509
13.38 X
18.5885
.85 X
1.1859
3.78 X
5.2478
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
It
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
RECEPTCJO *
74 *
.56 % *
.7372 *
. 7 7 X *
1.009* *
2.06 X »
2.6923 *
2.13 7. *
2.7787 .
1.87 % ft
2.4446 *
.37 Z *
.4609 *
.SIX *
1.0580 ft
.83 X *
1.0873 *
.74 X »
.9607 *
.59 X *
.770? *
. 6 ft X *
.8931 *
3 . 1 5 Z *
4.1088 *
1 . B 4 X *
2.3965 *
2.76 X *
3.6015 *
45.61 X *
5". 5172 »
18.02 X *
23.5207 *
. 2 1 X *
.2761 *
1.13 X *
1.4690 *
4.69 X *
6.1225 *
1.09 X *
1.4180 *
1.25 X *
1.6375 +
-iFCEPTOR
10
.9421
1.02 Z
1 .2720
.66 Z
.5278
.69 X
.8607
.63 X
.11 X
.26 X
.3?32
.27 X
.3350
.24 X
.3052
.19 X
.239?
.69 •/.
.8622
2.07 V.
2.5861
1 . 3 S X
1 .6943
1.80 X
2.2561
"5.5283
27.75 X
34 .734(1
. 12 X
.1531
.•34 X
.7^93
11.5? X
14.4154
.82 X
I .02H6
3.26 X
4.0752
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
A-4.8-13
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 3
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
MICROGRAMS PER CUBIC METER
*
*
*
*
*
It
*
*
SOURCE
03
BACK-
GROUND
TOTAL
*
*
*
*
*
*
X
*
RECEPTOR
12
.53 X
.8205
.00 X
0.
100.0 X
150.2169
*
*
*
*
*
ft
X
*
RECEPTOR
75
.20 X
.3037
.00 X
0.
100.0 X
152.6707
*
*
*
*
*
*
X
*
RECEPTOR
76
.31 X
.0270
.00 X
0.
100.0 X
138.9057
*
*
*
*
*
*
X
*
RECEPTOR *
70 *
.73 X *
.9566 «
.00 X *
0. *
100.0 X X
130.0998 *
RECEPTOR
80
.2*? X
.3fii
. o o i
0.
100.0 1
i 25. 187 4.
t
i.
1
*
*
A
4
A-4.8-14
-------
APPENDIX A-4.9
COMPUTER MODEL USING LARGE GRID FOR CONDITION 4
-------
U.S. STEEL FAIPFJtLL' nPE«aTini\iS
l T Z
VI. a
SOURCE DATA
ft »
* SOURCE * SUJ^Ct LuCATlUM
* NUW^*:N * (KTLO>vt£TE*S)
* * HtmiHiMTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
«
*
*
*
«
*
*
*
*
*
*
*
*
ft
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
«
*
*
*
*
*
*
i
2
3
4
5
7
H
to
1 1
12
1 5
14
1 1
1 7
21
i!
25
29
30
32
55
3-1
35
37
40
41
42
4 5
44
47
4 i
50
52
SJ
55
56
57
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
*
*
ft
*
*
X
ft
* '
ft
ft
ft
ft
ft
*
ft
*
*
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
506. u
506.5
506.5
506.5
506.5
506.1
506.8
506.8
506.7
5 0 6 . H
506.8
S 0 7 . a
507. *
507. U
506.4
506.5
506.5
5U6.5
5 .) 6 . 5
5 J6.5
506.5
506.5
S06.S
506.5
506.1
5o6.7
506.4
506. fl
506. 9
5 ') 6 . *
516.7
506.7
506.7
506.7
S o 6 . 7
5 '16. 7
506.0
507.4
S07.3
507.4
507. 3
507. a
507. 3
507. U
507.3
506.5
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704. I5.
45u.
450.
450.
450.
*50.
477.
533.
533.
477.
553.
450.
6/2.
450 .
450.
450.
366.
442 .
0.
0.
0.
0 .
0.
n .
0.
o.
0 .
0.
0 .
0.
o .
0 .
0 .
o.
0 .
I".
0.
1.
0.
o.
••I.
I) .
II .
0.
0 .
o.
0.
0.
'1.
0.
0.
II.
*
*
*
>*
*
*
*
«
*
*
ft
*
*
*
*
«
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
A
*
*
*
*
«
*
*
*
*
ft
A-4.9-1
-------
U.S. STEEL FA1RFIELO OPERATIONS L0t>l[> I T IDN NO. a
RECEPTOR DATA
LOCATIONS TO BE USED AS RECEPTORS IN ADDITION TO THE 7? F< EC TANRUL A R Rrtli) LUCATIUNS
RECFPTUR X-COORDINATE Y-COURDI MATE
NUMBER (KILOMETERS) (KI LOMETeWS)
3702.1
7U 506.1 3706.5
75 506.6 370?. a
77 507.6 3705.1
7fl 50 a. 6 3700.0
/9 504.0 3705.3
«0 504. a 3703.1
81 505.3 3708.4
A-4.9-2
-------
U.S. STEEL
FAIRFIELD UPEHATIOMP
THIN Ml). '4
METEOROLOGICAL INPUT DATA FDR THE ANNUAL SEASON
MIXING DEPTH = 1500. DETERS
AMBIENT TEMPERATIJKf r 2C»«. OEGR EE S, KEL V] N
AMB1FNT PHFSSUPE = 1000. MILLIRAWS
STABILITY CLASS 1
WIND DIRECTION
M
NNF.
ME
ENE
E
ESE
se
SSF.
S
ssw
sw
WSvV
W
*IIMW
NW
NMW
1
.000«
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.0004
.0002
.000?
.0001
.OOOb
.0003
.oooa
.0005
2
.0007
.0003
.OOOtt
.0003
.0005
.0003
.000?
.0005
.0003
.0003
.0002
.0003
. 0 0 0 fl
.0003
.0006
.0005
wlNDSPEFl)
3
.0000
.0000
.0000
.000 0
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. n o n o
.000 0
CLASS
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.00(1 0
.0000
.0000
. 1) 0 0 0
.0000
5
.0000
.0000
.0000
.0000
. I) 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
6
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.9-3
-------
U.S. STtEL FAIRI-IEIO OPEWATJfJNS
i i r i OM MU. a
METEOROLOGICAL IfoPUT DATA FI1W FHF. AN'MUAL
STABILITY CLASS 2
WIND DIRECTION
N
NNE
NE
ENt
E
ESE
SE
SSE
S
SSrt
Sw
wSW
W
WNrt
NW
NN'/i
1
.001b
.0020
.0013
.0015
.002"
.0016
.0015
.0020
.0022
.0019
.001 1
.0010
.0021
.001"
.0017
.0013
2
.0036
.0033
.0021
.002?
.004?
.0023
.0027
.0027
.002^
.0021
.001Q
. 0 0 1 a
.0035
.oopa
. 0 0 3 0
.0032
rt IfMl>S°F.Fr>
•*
.0021
.0010
.0012
.0007
.0023
.0(J1?
.0007
. 0 0 1 '4
. 0 0 1 »
. 0 0 10
.0005
.0007
.OOPO
.0013
.0016
.001 1
CL ASS
'4
. 000(1
.0000
.0000
. 0 0 0 0
.000 0
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.000 0
.0000
•5
.0001)
.0000
.0000
.0000
.0000
.ouoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
h
. 0000
. 0 0 0 0
.0000
.00(10
.0000
. 0000
.0000
.000 0
.000 0
.000 0
.0000
.0000
.0000
.000 o
.0000
.0000
A-4.9-4
-------
U.S. STFF.L FAIRFIfcLU OPfc"» A T IflilS
Ci)iJl)I r TMi'J
N'ETEnRULl'GJCAL INPUT PATA FD& [HE AMivlllAL SEASM.M
SFAtflLITY CLASS 3
WINU UTKECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
rtSW
vd
WWW
NM
NNW
1
.0013
.00?9
.oosa
.0015
.0021
.ooia
.0009
.ooao
.ooia
.0006
.0004
.OOU7
.ooon
.0005
. 0 0 0 B
.0007
a
.0018
.0019
.001?
.001*,
.ooa5
.0016
.0016
.0030
.0059
-U017
.ooia
.OOtfl
.0030
.0019
.0023
.0017
cJThnSPfiEl)
^
.0050
.0034
.001 h
.0010
.0053
.OOP'S
.00?9
.0058
.00^4
.00^0
.0027
.0027
.0036
.0032
.00?8
. o o /a o
CLASS
4
.0007
. 0 0 0 5
.0000
.0001
.000*
.0003
.0001
.0002
.OOOfc
.000 3
.0003
. 0 0 0 H
.0006
.0002
.OOOS
.0003
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0000
.0001
.0000
.0000
. 0 u 0 0
6
.0000
.0000
.000 0
.ooon
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.9-5
-------
U.S. SltEL FAJPMtLO OPERATIONS CU'-l'i I U'm MU. '4
METEOROLOGICAL INPUT liATA FDR THE AM \IIIAL
STABILITY CLASS
DIRECTION
N
MNt
NE
ENE
E
ESE
SF
SSE
S
SSrt
SW
rtSW
w
WN«
NW
MNlV
1
.0023
.0029
.0021
.0023
.0047
.0012
.0012
.0033
.0023
.0014
.0007
.001 1
.0018
.0010
.0017
.ooie
*
.0085
.0066
.0054
.0043
.0116
.0049
.0056
.0075
.0069
.0049
.002*
.003H
.0073
.0035
.0055
.0045
MNOSPEEI)
3
.016?
.0046
.0027
.0041
.0107
.0064
.0101
.0129
.0164
.0151
.0093
.0057
.0107
.0077
.00°6
.0097
CLASS
4
.0114
.0025
. 0 0 0 '1
.0009
.00/41
.0029
.0071
.0093
.0122
.01 15
.0076
.0045
.0098
.006U
.0065
.OOflft
<•
.0003
.0001
.0000
.0000
.0000
.0003
.0010
.ooos
.0012
.0009
.0005
.0007
.00? 4
.0003
.0007
.0005
b
.0000
.0000
.001)0
.0000
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
A-4.9-6
-------
U.S. STEEL
KAIHFItLI) IIPErfATlflMS
CONOITIIIN MlJ.
METF.UHOLOGICAL IhPUT DATA f 00 THr ANNUAL .SMSnr,|
STABILITY CLASS 5
WIND DIRECTION
N
NNE
NF
ENE
E
ESF.
SE
SSE
s
SSrt
SIN
WSW
rt
WMW
NW
MNW
1
.0169
.0076
.Ob07
.0236
.0297
.0079
.0086
.0131
.0071
.0038
.00?«
.00??
.0061
.0032
.0037
.0051
i!
.0132
.0173
.0138
.0096
.0162
.000S
.0077
.0129
.OflHO
.0043
.0023
.002"
.0069
.0033
,00«3
.00-17
WINDSPEFI)
3
. 0 0 1 U
.ooin
.0007
.0010
.0(119
.001 1
.0015
.0019
.0022
.0021
.0012
.0014
.0035
.0016
.0017
.001 7
CLASS
a
.0000
.001)0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0 0 IJ (1
.0000
s
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
b
.0000
.0000
.0000
.0000
.0000
. 0 0 1.1 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
A-4.9-7
-------
U.S. STEEL FAIRF1ELD MPERATIDNS CONniTllJiM l-Jl!. u
INPUT REGRESSION PARAMETERS ARE:
POLLUTANT Y-INTERCEPT
PAKTICULATES
SLOPE
1 .0000
A-4.9-8
-------
U.S. STEEL
FAIKFIELD OPERATIONS
" NO. 4
*
RECEPTOR CONCENTRATION OATA
* *
* RECEPTOR *
*
*
*
#
*
*
*
*
*
*
A
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
ft
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
* (KILOMETERS)
1
2
3
4
5
6
7
6
9
10
11
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
?6
27
2d
29
30
M
32
33
34
35
36
37
38
39
4U
*
^
,
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
HORIZ
502.0
502.0
502.0
502.0
502.0
502.0
502. U
502.0
50b .0
506.0
506.0
506.0
506.0
50b.O
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
5 1 4 . 0
5ta.O
518.0
5 1 » . 0
518.0
510.0
516.0
518.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
VERT
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
37U.O
3722.0
3694.0
369S.O
3702.0
3706.0
3710.0
3714.0
3716.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369P.O
3702.0
3706.0
3710.0
3714.0
371-}. 0
3722.0
*
*
*
*
*
*
#
*
+
*
*
»
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
»
*
*
*
*
*
*
EXPECTED ARITHMETIC MFAM
(MlCRGGRAi..S/CU. METER)
S02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
*
it
it
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
it
*
it
it
*
*
*
*
*
»
*
*
*
PARTICIPATES
34.
52.
o2.
46.
21 .
16.
12.
9.
22.
38.
10S.
186.
35.
16.
10.
7.
10.
11 .
19.
23.
12.
9.
7 .
5.
5.
7.
8 .
1 1 .
6.
5.
4.
3.
4.
4 .
6.
7 .
4 .
3.
3.
*
*
*
*
*
*
»
*
*
*
*
*
*
A
*
*
*
*
#
*
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
^
*
*
*
^
*
*
4
'
*
A-4.9-9
-------
U.S. STEtL
OPESiiTIONS
*
*
RECEPTOR CONCENTRATION DATS
* *
* RECEPTOR *
* NUMBER »
*
*
ft
*
*
jr
*
*
if
fr
*
*
4
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-*
*
*
a •
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION Ml. 1
* *
* RECEPTOR CONCENTRATION OATA *
* * * *
* RECEPTUR * RECEPTOR LOCATION * frXHECTfcP ARITHMETIC MEAN *
* NUMBER * * *
* * (KILOMETERS) * (MCRUGHAMS/CII. MRIhR) *
* * HORIZ VERT * SO? PAPTICIIl ATF.S *
* * * * * *
* 81 * 505.3 * 3708.1 * 0. * frS. *
A-4.9-11
-------
-IS Pt* C'JoIC ••'C.Tcr?
* SOURCE *
* *
* 1 «
* *
* 2 *
* *
* 3 *
* *
x 4 *
g *
• 5 *
« n *
* it
« 7 '
* *
* "I *
* *
* 3 *
* •»
* i 0 *
* *
* u *
X A
' 12
* *
1 3 *
« 1-4 *
» #
» 15 *
+ *
* 1 fe *
< *
. 1 7 ' «
* *
» H *
* *
» 14 *
« *
' 21 *
* *
12
. 0 0 '/.
.0011
.00 X
.0001
. 0 0 X
.0002
.00 X
.0003
.00 X
.0003
.00 X
.0007
.00 %
.0000
.00 7.
.0001
.00 X
.0001
.00 7.
.0000
.00 X
. y 0 o 0
.00 7,
. o ooo
.01 X
.0242
. u 0 X
.0010
.00 X
. o 0 u 3
.00 7.
.0003
.00 X
.0003
.00 X
.0001
.00 X
. (i007
1 . M H x
3.4442
2.64 X
a .) 0 0 7
.00 *
. u 0 o 4
.00 Z
.fjOOM
1.51 X
2.2132
2.02 *
*
*•
•
•t
*
ft
*
a
*
•
*
*
*
*
*
*
•*•
*
>
A
*
*
*
*
*
it
*
*
*
A-4.9-12
-------
U.S. STEEL FAIhiFIELD OPERATIONS CO.NiD I T ION MO. 4
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM KECEPTOP3
AM'MUAL PAP.TICUUATES
•IICRGGRA'MS PER CUBIC McT£R
» SOURCE * RECEPTOR *
* * 12 *
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
it
*
*
*
*
X
*
*
*
*
*
*
+
*
22 * 4.00 X *
* 7.4516 *
23 * *.76 X *
* 16.3255 *
24 * .55 X *
* 1.0315 *
25 * .66 X *
* 1.2342 *
26 * .44 X »
* .8126 *
27 « .61 X *
* 1.1307 *
2ri * .77 X *
* 1.4349 *
29 * 4.74X *
* 0.8279 *
30 * .80 X *
* 1.4957 *
31 * .90 X *
* 1 . o 7 u 7 *
32 * 7.45 X *
* 13.8899 *
33 * 2.05 X *
* $.8191 *
34 * 1.92 X *
* 3.5797 *
35 * 1.98 X *
* 3.6879 *
3o * 30.41 X *
* 56.0687 «
37 * 9.79 X *
* 18.2385 *
36 * .49 X *
"~* .9063 *
39 * .26 X *
* .4907 *
40 * .52 X *
* .9622 *
41 * .37 % *
* .6870 *
«2 * .46 X *
* .8S86 *
RECEPTOR *
75 *
2.712 *
4.7519 *
6.02 % *
10.535o *
.47 X *
.8173 *
. 4 0 Z *
.7037 *
.40 % *
.7090 *
.53 X *
.927U *
.64 1. *
I .1 139 *
2.75 Z *
4.8233 *
.81 X *
1.4225 *
.91 X *
1.5890 *
S.86 X *
15.5209 *
1 .40 X *
P.4523 *
1 .57 X *
2.7495 *
1.37 X *
2.39«1 *
27.69 X *
48.4887 »
21.32 X *
37.3217 *
.54 X *
.9379 *
.24 X *
.4194 *
.35 X *
.6180 *
. 3 0 X *
.5233 *
.31 X *
.5514 *
RECEPTUR *
78 *
2.72 X *
4.4468 *
o.42 X *
10.5052 *
.35 X »
.39 X *
.6346 *
.44 X *
.7210 *
.60 X »
.9759 *
.84 X *
1.3713 *
2.85 X *
4.6622 '
.59 X *
.9663 *
.66 X *
1.0793 *
16.59 ~4 *
27.1380 •
1.15 X *
1.8749 *
1.31 X *
2.1416 *
1.11 X »
1.8229 *
23.44 X *
38.3394 +
19.97 % *
32.0681 i
.28 X *
.4630 *
.13 X *
.2146 *
.29 X *
.4724 *
.25 X *
.4104 *
.26 X *
.4215 *
RECEPTOR *
74 *
2.91 X *
4.3511 *
6.70 X *
10.0264 *
.38 % *
.5699 *
. 4 5 X *
.6672 *
.38 X *
.5761 *
.53 X *
.7864 *
.70 X *
1.0529 *
3.14 % «
4.7023 *
.56 X *
.8396 *
.63 X *
.9378 »
6.36 X *
9.5174 *
1 ,B4 X *
2.76d6 *
1.86 X *
1.78 X *
2.6643 *
30.69 7. *
46.2406 *
13.92 X *
20.8312 *
.4fc X *
.7153 *
.23 X *
.3377 *
.46 X »
.6955 *
.36 X *
.537:5 .
.41 X »
.6206 *
30
2.o4 X
3.3658
6.35 2
°.2869
.37 X
.5468
.36 X
.5326
.52 %
.75'ia
.69 X
1 .0049
.91 X
1.3263
2.40 X
3.5177
.55 X
.8104
.62 X
.9053
14.80 X
21.6574
1.19 7.
1 .7375
1 .35 X
1 .9701
1.14 X
1 .6690
? 4 . 1 8 X
35. 5723
21.03 X
*0. 7<=22
.27 X
.3891
.13 X
.1869
.30 2
.4378
.26 X
.3821
.27 X
.3906
*
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
*
*
*
*
*
*
*
A-4.9-13
-------
u.b. STEEL FAIKFIELP OPERATIONS CLKOI TIPI,' ;.u.
SOURCE CONTRIBUTIUWS Tu rlvE MAXIMUM RECEPTORS
ANNUAL PARTICULATES
vlICRJGKAviS PER CUBIC METER
* SOURCE
*
« 43
*
* 44
A
A 1] "fj
A
* 4fe
A
* 47
It
* 4 H
A
A u 9
* 50
A
51
A
* 52
*
53
*
* 54
A
* S 5
A
* 56
A
* 57
*
» dACK-
* GROUND
* TOTAL_
*
*
*
*
*
*
*
*
*
*
*
*
ir
*
*
*
it
ic
«
w
*
*
*
*
*•
*
*
*
*
*
*
it
*
*
X
RECEPTOR
12
6.64 X
12.3667
1.63 2
3.4162
.17 2
.3204
.04 2
.0670
1.03 2
1.9182
1.06 2
1 .9661
.94 X
1.7451
.182
.3330
.41 X
.7574
.42 2
.7741
.37 X
.6891
.28 2
.5263
.91 2
1 .6915
2.84 2
5.2968
.8205
.00 X
0.
100.0 2
186.3361
*
*
*
*
A
A
*
A
*
A
A
*
*
A
A
*
A
A
A:
A
*
A"
A
A
*
A
A
*
A"
X
*
RECEPTOR
75
6.
10.
4.
7.
m
•
m
f
f
•
B
•
•
•
•
i .
2.
?.
a .
m
0.
100
1 75.
01 2
5211
Oi X
0599
19 X
3316
03 X
0573
00 Z
6947
40 X
7074
38 %
6607
07 X
1 167
15 X
2709
16 X
2749
15 X
2575
1 1 X
1979
22 X
1442
85 X
9927
17 X
3037
00 X
.0 2
1016
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
it
t
it
*
*
X
*
RECEPTUR
76
5.12 X
8.3810
3.83 2
6.2617
.10 2
.1637
.02 2
.0293
.t>0 X
.9820
.62 2
1 .0221
.57 X
.92c3
.10 X
.1685
.23 X
.3836
.24 X
,3°79
.22 %
.3614
.17 X
.2837
2.22 2
3.6263
1.86 2
3.0469
.26 2
.4270
.00 2
0.
100.0 X
163.5993
A
A
A
A
A
*
A
A
*
A
A
*
A
A
A
Ik
A
*
*
*
*
*
A
*
A
*
*
A
A
A
A
X
*
RECEPin^ *
7 4 *
6.79 % *
10.1639 *
? . 6 7 2 *
3.9903 *
. 1 7 2 *
.03 2 *
.046] *
1.80 X *
2.6923 *
l.flt 2 *
2.77B7 *
1 . 6 3 X *
.32 X *
.0609 *
.712 *
1 . 0 56 u *
.73 2 *
1 . 067* *
.64 % +
.9607 *
.51 X *
.7702 *
.76 2 *
1 .1316 *
2.03 •/. *
3.6433 «
.602 *
.9566 *
.002 *
0. *
1 0 u . 0 X x
RECEPTOR
eo
5.35 2
7.6272
^9691
. 0 9 2
.1376
.02 2
.57 X
.•<607
.53 %
.7626
.10 %
.1418
.2? 2
.323?
.23 X
.3350
.21 2
.30^2
.16 2
.239?
1.3? 2
2 . « 1 6 0
1.41 2
.25 2
. 5652
. 0 0 2
0 .
100.0 '/-
10(5.3104
*
A
*
*
A
A
A
*
*
*
A
*
'
A
*
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
END Or FILE ENCOUNTERED -- TERMINATE RUN.
*S1 Ot-* 0
A-4.9-14
-------
APPENDIX A-4.10
COMPUTER MODEL USING LARGE GRID FOR CONDITION 5
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION NO. 5
SOURCE DATA
* *
* SOURCE * SOURCE LOCATION
* NUMBER * (KILOMETERS)
• * HORIZONTAL * VERTICAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
,
*
*
*
*
*
*
*
i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
*
*
*
*
*
ft
*
ft
*
*
ft
*
ft
ft
ft
ft
*
"
ft
ft
*
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
*
506.4
506.5
506.5
506.5
506.5
506.5
506.1
506.6
506.8
506.7
506.8
506. a
506.8
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.5
506.1
506.7
506.8
506.8
506.8
506.6
506,7
506.8
506.5
506.1
*
*
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3704.8
3705.0
3704.8
3704.9
3705.0
3705.0
3704.3
3705.2
3704.4
3705.1
3705.2
3704.8
3705.2
3704.8
3704.9
3705.0
3705.0
3704.9
3705.0
3704.8
3704.9
3705.0
3705.0
3704.8
3704.8
3704.3
3705.2
3705.2
3705.2
3705.2
3705.2
3705.1
3705.2
3705.0
3704.3
*
* SOURCE AREA *
ft SQUARE *
* KILOMETERS *
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
*
*
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
ft
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.02
.36
.36
.36
.36
.36
.06
.06
.30
.01
*
*
*
.
*
*
*
*
*
*
*
*
*
*
«
ft
ft
ft
ft
*
ft
ft
ft
*
*
*
*
*
*
*
*
*
*
*
*
ANNUAL SOURCE >
EMISSION rtATE *
(TONS/DAY) •
S02 PART «
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.953
.154
.141
.189
.252
.618
.039
.215
.089
.089
.083
.532
.079
.245
.328
.438
1.075
.058
.058
.096
.128
.171
.420
.094
.105
1 .928
.258
.300
.253
5.402
4.80?
.059
.029
.137
.300
*
ft
*
.
•
«
.
•
*
*
*
*
ft
ft
ft
ft
ft
ft
ft
ft
*
.
*
*
*
•
*
*
*
*
.
»
*
*
*
HT
(M)
50.0
64. A
53.0
53.0
74.0
74.0
46.9
64.6
68.6
68.0
76.0
163.2
56.8
23.0
23.0
23.0
30.0
.5
.5
49.0
49.0
51.0
3.0
3.0
3.0
30.0
9.1
24.0
9.1
30.0
61.0
3.0
1.0
3.0
30.0
STACK DATA
DIAM VEL
CM) (M/SEC)
2.4
2.4
1.2
1.2
1.1
1.1
2.0
2.7
2.7
2.7
3.8
3.5
1.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
7.<>
7.b
9.8
9.S
15.5
15.5
32.0
10.2
10.2
10.2
3.4
9.1
11. b
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
ft
ft
TEMP •
(DEG.K)ft
505.
505.
450.
450.
450.
450.
850.
533.
477.
533.
477.
442.
366.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
fl.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
A-4.10-1
-------
U.S. STPEL FAIWFIELD OPERATIONS CONDITION NO. 5
RECEPTOR DATA
LOCATIONS TO BE USED AS RECEPTORS IN AIJUITIOM TO THE 7? REC TAMMIL Ak GRID I.()C AT IIINS
RECEPTOR X-cnOROTNATE Y-COOROINATE
(KILOMETERS) (K ILdt-ETfc HS)
73 505.6 ?70i>.I
7« 506.1 3704,.5
75 5U6.fr 3703.«
76 501. a 3702.0
77 507.h 3705.1
78 504.6 3704.0
79 504.0 3705.3
ttO 504.4 3703.)
HI 505.3 370?.4
A-4.10-2
-------
U.S. STEEL FAIRf-TtLU UPtR A T F IMS CMMOITIUM Nil. S
METEOROLOGICAL INPUT DATA I-CIR THE AN-JIIAL SF.ASlW
MIXING DEPTH = 1500. METERS
AMBIENT TEMPERATURE = ?.°n. DtGREES,KRLV IN
4MRIENT PRESSURE = 1000. MILLIBARS
STABILITY CLASS 1
WIND DIRECTION
IM
NME
NE
ENE
E
ESE
SE
SSE
S
SSW
sw
wsw
w
wNrt
NW
NNW
1
.ooou
.0006
.0003
.0001
.0007
.0001
.0003
.0005
.000«
.oooa
.0002
.0001
.0006
.0003
.0002
. (i (I 0 b
?
.0007
.0003
.0006
.0003
.(1005
.000?
.000?
.0005
.(1003
.0003
.0002
.0003
.000ft
.0003
.0006
.0005
UvINOSPEEO
3
.0000
.0000
.nooo
.0000
.oono
.0000
.oono
.0000
.0000
.0000
.nooo
.0000
.0000
.0000
.oono
.000 II
CLASS
a
.000 0
.ooon
.0000
.0000
.0000
.000 0
.0000
.0000
.ooon
.0000
.0000
.0000
.onoo
.0000
.0000
. II 0(1 (I
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000(1
.0000
.0000
.0000
.OOOi)
h •
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.11000
A-4.10-3
-------
U.S. STEEL FAIRFIELO IJPF.K A T IONS COMOTTIHM NO. S
METEOROLOGICAL INPUT DATA FOR THE ANWIIAL SEASON
STABILITY CL»SS
WIND DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
WSW
w
HNW
NW
NNfc
1
.00)8
.oo?n
.0013
.0015
.0024
.0016
.0015
.0080
.0022
.0019
.001 1
.0010
.00?!
.0014
.0017
.0013
2
,00?f,
.0033
.0021
.0023
. 0 0 « 3
.00?3
.00??
.0027
.00?P
.OOil
.00'19
.ooia
.0035
.0024
.0031
.U03?
lnINOSPtF.1)
3
.0021
.0010
.0012
.0007
.0023
.0012
.000?
.0011
.001 '1
.0010
. 0 0 0 ri
.0007
.0020
.001 J
.OOlf.
.0011
CLASS
u
.0000
.0000
.000 n
.0000
.001)0
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
5
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
«,
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
A-4.10-4
-------
M.S. SieFL
F-AIKFTHLD (1OFV M IflUS
CilHD I T I ')(•'
lEUkflLMG JCAL INPUT P>ATA H'lh THE ANMII4L StASOH
STABILITY CLASS
W I NIKS
CLAS i
WIND OTRKCTiriN
N
NNE
NF
EN'E
E
USE
SE
SSE
S
SSrt
sw
wsw
w
WNW
IW
MNW
1
.0013
.0029
.oo?a
.OOlb
.00?!
.0010
.0009
.0020
.0012
,000f>
.0004
.0007
.0008
.0005
.OOOfl
.0007
2
.00 IP
.0014
.001?
.OOlf,
.0045
.0016
.0016
.0030
.0029
.0017
.001«
.oom
.0030
.0019
.0023
.0017
*
.0050
. o o 3 a
.OOK,
.0010
.005?
.002b
.0029
.oosa
.oo?a
.0030
.0027
.0027
.003H
.0032
.003H
.0040
M
.000 7
.OOOS
.0000
.0001
.0003
.0003
.0001
.000?
.OOOh
.0003
.0003
.0008
.OOOh
.000?
.OOOS
.0003
s
.'M,00
. nooo
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.000)
.0000
.0000
.0001
.0000
.0000
.OUOO
*
.0000
.0000
.100(1
. 0 0(1 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000 1)
. 0 0 0 0
.0000
.000 0
.0000
A-4.10-5
-------
U.S. STtEL FAIRFTKLD OPFRATIUUS CONDI I ION Ml). 5
METEOROLOGICAL INPUT PATA FOR THE ANMIUL SfcASlM
STABILITY CLASS
WIND SPEED
WIND DIRECTION
N
NNE
NF
ENE
E
ESE
SE
SSE
S
SSH
sw
*sw
w
WNw
NW
NNW
1
.0023
.0029
.0021
.00??
. 0 0 1 7
.001?
.0012
.0033
.0023
. 0 0 1 U
.0007
.0011
.0018
.0010
.0017
.0018
2
.0085
.006f>
.005U
.ooa3
.OMh
.0000
.005h
.0075
.00*9
. 0049
.002R
.003R
.0073
.0035
.00^,5
.0005
?
.01^)2
.00'4fe
.00?7
.00^1
.0107
.OOf.4
.0101
.oi?q
. 0 1 f, a
.0151
.009?
.0057
.0107
.0077
.009f,
.0097
Cl ASS
U
.0111
.0025
.000/4
.0009
.0041
.002"
.0071
.009?
.0122
.01 15
.0076
.0045
.009H
.OOM
.t)0f>5
. 0 0 fl 8
5
.000?
.0001
.0000
.0000
.00(10
.0003
. n o 1 o
.0005
.001?
.0009
.0005
.0007
.0024
.0003
.0007
.0005
ft
. 0 0 0 0
.0000
.0000
.000 <;
.0001
.0000
.0000
.0001
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
A-4.10-6
-------
U.S. STEEL
FAIRFTELI) OPERATIONS
CMNOTTTON Nl). 5
METEOROLOGICAL INPUT DATA FOR THE ANNUAL SE»8UN
STABILITY CLASS
tMTNDSPtEO
WIMP DIRECTION
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSrt
sw
wsw
w
WNW
NW
NNW
1
.016
-------
U.S. STFEL FAIRFIFLI) OPFKA1TONS CHMiirTKlN NM. S
INPUT HEGRESSION PARAMETERS ARE:
POLLUTANT Y-INTtRCEPT
PARTICULATES
.0
SLOPE
1 .0000
A-4.10-8
-------
U.S. STEEL FAIWFIEi,!} OPERATIONS CHNOTTION l"0.
*
4ECEPTUR CONCENTRATION DATA *
* *
* RECEPTOR *
* NUM9EH *
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
'
*
*
ft
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
«
ft
*
*
*
*
*
1
2
3
4
5
6
7
8
9
10
11
12
I j
14
15
16
1 7
Id
19
20
21
22
23
24
25
26
27
2«
29
30
31
32
33
34
35
36
37
38
39
00
ft
*
*
*
*
*
*
#
*
*
*
*
*
*
*
*
ir
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
RECEPTOR LOCATION
(KILOMETERS)
HURIZ VERT
502.0
502.0
502.0
502.0
502.0
502.0
502.0
502.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
506.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
518.0
518.0
518.0
518.0
518.0
518.0
518.0
518.0
*
it
it
Ir
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
369S.O
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
370fr .0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
EXPECTED ARITHMETIC YEAN *
*
(MlCRDGwAMS/CU. METEP) *
S02 PARTICIPATES *
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
*
*
*
*
*
*
*
ik
*
*
*
*
*
*
*
*
*
*
*
ft
*
*
*
ft
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ft
29.
44.
52.
37.
17.
13.
in.
7.
18.
31.
90.
155.
25.
12.
a.
5.
8.
9.
16.
18.
q-
7.
5.
4.
4.
6.
7-
0.
4.
4-
3.
3.
3.
4.
5.
6.
3.
?.
2.
2.
*
*
*
*
*
*
*
*
*
*
ft
ft
ft
k
•ft
ft
*
*
»
*
*
ft
ft
ft
*
•ft
ft
ft
ft
ft
ft
*
ft
ft
ft
*
ft
ft
ft
*
ft
A-4.10-9
-------
U.S. STEEL FAIRFIELO OPERATIONS CONDITION Ml. 5
*
*
RECEPTOR CONCENTRATION DATA
* *
* RECEPTOR *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
41
42
43
44
45
46
47
4«
49
50
51
52
53
54
55
56
57
sa
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
au
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
»
*
k
*
*
RECEPTOR LOCATION
(KILOMETERS)
HORIZ VEST
522
522
522
522
522
522
522
522
526
52b
526
526
526
526
526
526
5?0
530
530
530
530
530
530
530
534
534
534
534
534
534
534
534
505
50b
506
504
507
504
504
504
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.6
.1
.6
.4
.6
.6
.0
.4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3694 .0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
3694.0
3698.0
3702.0
3706.0
3710.0
3714.0
3718.0
3722.0
369« .0
3698.0
370?. 0
3706.0
3710.0
3714.0
3718.0
3722.0
3702.1
37U6.5
3703.4
3702.0
3705.4
3704.0
3705.3
3703. 1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
•*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
EXPECTtD ARITHMETIC MFAN *
*
(MICRl
302
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
!GrVAMS/CU. METE") *
PAPTICIIl ATES *
*
* 2
* 2
* 4
» 4
* 3
* ?
* 2
* 1
* 2
* 2
* 3
* u
« 2
* 1
* 1
* 1
* 2
« 2
* 3
* 3
« 2
* 1
* 1
• 1
* 1
* 2
* p
* 2
* 2
* 1
* 1
* 1
* 1 Ifl
* 1 18
* IUQ
* 99
* 71
* 141
* 06
* 126
.
•
m
,
•
.
.
•
.
.
•
.
•
»
.
•
•
•
•
•
9
•
m
'
m
'
^
•
•
•
•
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
*
*
*
*
A-4.10-10
-------
U.S..STEEL FAIKF1ELO OPERATIONS CONDITION Mfi.
* RECF.PTIJR CONCENTRATION DATA *
* * * *
* HECEPTOR * HECfPTOK LOCATION * EXPECTED ARITHMETIC MF.AM *
* NUMBER * * *
* * (KILOMETERS) * (MICRIIGK'AMS/CII. HfclER) *
* * HUM 17 VERT * SO? PART I Clll ATES *
* * * * * *
* ai * 505.3 * 370R.4 * 0. * IS. *
A-4.10-11
-------
U.S. STEEL FAIRFIELO OPFR&T IONS CHNOITICN NO. 5
SOURCE CONTRIBUTIONS TO FIVE MAXIMUM RECEPTORS
ANNUAL PARTICULARS
PER CUBIC METER
ft
ft
ft
ft
*
*
ft
*
ft
ft
*
ft
ft
ft
ft
ft
ft
*
ft
ft
ft
ft
ft
ft
ft
ft
•ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
SOUSCF
1
2
3
u
5
6
7
d
9
10
1 1
12
13
14
15
16
17
IS
19
20
21
* RECEPTOR
* 12
* .00 X
* .0011
* .00%
» .0001
* .00 X
* .0002
* .00 X
* .0003
* .00 X
* .0003
* .00 X
* .U007
* .00 X
* .0000
» . 0 0 X
* .0001
* .00 X
* .0001
* .00 X
* .0000
* . 0 0 X
* .0000
« .00 X
* .0007
* .OCX
• .0001
« 2.25 X
* 3.4962
* 3.17 I
* 4.9140
* 4 . S 0 X
* 7.4516
> 10.52 X
* 16.3255
* .66 X
* 1.0315
* . s 0 \
* 1.2342
* .52 X
* .73 X
» 1 . 1307
« RECEPTHH
75
* .00 X
* .0016
* .00 X
* .0003
* .00 X
* .0003
* . 0 0 X
* .0004
* . 0 0 X
* .0005
* .00 I
* .0012
* .00 %
* .0000
* .00%
* .0003
* . 0 U X
* .0000
* . 0 0 t
* .0001
* .00 X
* .0001
• .00 %
* ,0009
* .00 X
* .0003
* ?.0d X
* 3.0992
* 2.67 4
* ?.9S77
* 3 . 1 8 X
* 4.7519
* 7.06 X
• 10.5356
* .55 X
* .3173
* . 4 7 X
.7037
* ,U7 X
* .7090
* .62 2
* .9270
* hECEPTGR
* 78
* . 0 0 X
* .0009
* . 0 0 X
* .0002
* . 0 0 X
* .0001
* .00 X
* .0002
* .00 X
* .0003
* .00 X
* .0007
* .00 X
* .0000
* ,uO X
* .0002
* .00 X
* .0001
* .00 %
* .0001
* .CO X
* .0001
* .00 X
» .0004
* . 0 0 X
* .0003
* 1 .54 X
* 2.1717
* 2 . 1 5 X
* 3.0335
« 3 . 1 4 X
* u.y468
* 7.43 X
* 10.5052
* . 4 0 X
* .5654
* .45 X
* .6346
* .51 X
* .7210
* .69 X
* .9759
ft
ft
I
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
80 *
. 0 0 X *
.0016 *
. 0 0 X *
.0003 *
.00 X *
.0003 *
. 0 0 X *
.0004 »
.00 '4 *
.0005 *
. 0 0 X *
.0013 *
.OCX »
.0000 *
.00% *
.0004 *
. 0 0 X *
.0001 *
. 0 0 X *
.0002 *
. 0 0 X *
.0002 *
. 0 0 X +
.0008 *
. 0 U X *
.0004 *
1 . 7 6 X *
2.213? +
2.34 X *
2 . 9U98 *
3.07% *
7.36 % *
9.2869 +
. 4 3 X +
.546? *
.42% *
. 6 (' X *
. ft 0 X »
1.004° *
74
.00 X
.0011
!ooo2
.00 X
.000?
.00 X
.0003
.00 X
.0004
.00 X
.0009
.00 X
.0000
.00 X
.0003
.00 X
.0001
.00 X
.0001
.00 x
.0001
.00 X
.Oi'Ub
.00 X
.000?
1.77 X
2!9016
a:5?u
I U . i) ? 6 4
.48 X
.56 %
.o87?
.49 X
.5761
. 7864
*
*.
*
ft
ft
*
*
*
*
*
*
*
*
•*
*
*
ft
*
*
*
ft
*
ft
*
*
ft
*
*
*
*
*
*
A-4.10-12
-------
U.S. STEEL FAIRFIELD OPERATIONS CONDITION (-.0. 5
SOURCE CONTRIBUTIONS TO FIvF MAXIMUM RECEPTORS
ANNUAL PARTICULATES
PER CUBIC METER
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
t
*
*
*
*
*
*
,
*
*
*
SOUPCE
22
23
24
25
26
27
26
29
30
31
32
33
34
35
HACK-
GROUND
TOTAL
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
X
1t
SECFPTOR
12
.92 X
1 .4349
5.69 X
8.8279
.96 X
1.4957
1.08 X
1.6707
8.95 X
13.8899
2.46 7,
J.8191
2.31 X
3.5797
2.38 X
3.6879
36.51 X
56.6687
11.75 X
18.2365
.58 X
.9063
.32 X
.4907
1.33 X
2.0615
1.33 X
2.0628
.00 X
0.
100.0 X
155.2364
it
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X
*
RECEPTOR
75
.75 %
1 .1139
3.23 %
4.8233
.95 %
1.422b
1 .06 %
1.5690
10.39 X
15.5209
1 .64 X
2.4528
1.61 X
2.7195
1 .61 %
2.3981
32.47 %
48.4867
24.99 X
37.3217
.63 X
.0379
.28 <
.4191
1.30 %
1.9432
1 .75 X
2.6149
.00 X
0.
100.0 X
149.3332
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
k
*
*
*
*
*
*
*
*
*
it.
ir
ir
ir
X
*
RECEPTOR *
78 *
.97 X *
1.3713 *
3.30 X *
4.6622 *
.68 X *
.9663 *
.76 X *
1.0793 *
19.19 X *
27.1380 «
1.33 X *
1.8749 *
1.51 X *
2.1416 »
1.29 X *
1.8229 *
27.11 X *
38.3394 *
23.10 X *
32.66CT *
.33 X *
.4630 *
.15 X *
.2146 *
.84 X *
1.1859 *
3.13 X *
4.4223 *
.00 X *
0. *
100.0 X X
141.4072 *
RECEPTOR * 3ECFPTOW
80
1 .
1 .
2.
3.
.
•
.
•
17.
21.
1 .
1 .
1.
1.
1.
!•
28.
35.
21.
30.
•
•
-
.
1 .
2.
3.
.
0.
100
125.
*
Obi *
3263 *
79 '/ *
5177 *
64 ';. *
6104 *
7? X *
"053 *
20 •/. *
657u *
36 y, *
7375 *
56 X *
97IM *
33 7. *
fe°9° *
09 % *
3723 *
13 X *
76?2 *
31 X *
3891 *
15 X *
1869 *
62 X *
0286 *
73 X *
4341 *
00 X *
*
.ox y
°277 *
74
. *9 7.
1 .'1524
3.9H X
a.7023
. n x
.hi**
.7° X
.9378
8.06 X
^.5174
2 . * " %
2. 7606
2.36 X
2.7866
2.26 X
.r,643
39.14 7.
4*5.2406
17.63 %
20. S3 12
.61 '>,
.7153
.29 X
.3377
1.20 '/.
1 .4160
1.17 X
1.3799
.00 7.
n.
100.0 X
1 16. te-62
4-
*
ir
*
*
*
*
*
,
*
*
*
»
'
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ir
it
*
*
END OF FILE EiMCUUNTE&ED -- TERMINATE RUN.
*STOH* 0
A-4.10-13
-------
APPENDIX A-4.11
PERCENT REDUCTION OF THE EXPECTED ARITHMETIC MEAN
OF PARTICULATES FOR CONDITIONS 1-5 USING THE SMALL GRID
-------
II. S. SUM SMALL l"ll> btSHM
KEtEI'TlIM
NUUIIEM
|
2
3
4
b
6
7
B
9
10
II
| ^
13
14
15
16
17
18
|9
20
21
22
21
24
25
26
i/
in
29
10
31
32
33
34
35
36
37
in
39
40
41
42
41
44
45
46
47
on
.14
50
HFCFP1UM I.UCAIUm
(K ILUMt IfHS)
HUM 12
503.0
503.0
503.0
501.0
503.0
503.0
503.0
503.0
503.0
503.0
503.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
504.0
S04.0
504.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
505.0
506.0
506.0
506.0
506.0
506.0
506.0
S06.0
506.0
506.0
506.0
506.0
507.0
507.0
507.0
507.0
507.0
507.0
VEMI
1701.0
3702.0
3701.0
3704.0
3705.0
3706.0
3707.0
370H.O
3709.0
3710.0
3711.0
3701.0
3702.0
3701.0
3704.0
3705.0
3706.0
3707.0
170H.O
3709.0
3710.0
3711.0
3701.0
3702.0
3701.0
3704.0
3705.0
3706.0
1707.0
37fl'I.O
3709.0
3710.0
3711.0
370) .0
1702.0
3701.0
3704.0
370S.O
3/06.0
3707.0
3708.0
3709.0
3710.0
3711.0
7701.0
3702.0
3704.0
3704.0
1/05.0
3700.0
1
) CIJNI)
1
(x rnAnr.t- )
802
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.oofl
.000
.000
.000
..Olio
.000
.000
.000
.000
.floO
.000
PARI
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Don
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001,
.000
.000
.000
.000
.000
.000
.000
CIlMHTHUl
2
U Cll
Ml 12
.000
.000
.000
.000
.odo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.001)
.000
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.OdO
.000
.0(1(1
.000
.000
.000
r.mhi
HUM
r.rmi
HIM
4
ANKf ) (I CHAM.E) (X CIIAtJKF 1
PAR!
-14.497
-14 .954
-14.614
-I4.3HU
-17.401)
-19.551
-16.000
-12.703
-I4.H46
-IS. 661
-III. SOS
-14.621
-14.370
-14.517
-I4.cl0
-16.862
-19.107
-12.9311
-14.447
-14.631
-16.667
-17.119
-16.266
-13.719
-10.404
-9.74"
-17.290
-16.70)
-15.011
-14.241
-16.526
-IH.U26
-17.214
-15.464
-14.069
-12.31 1
-7.691
-23. 406
-22 .307
-19.039
-14. It If
-I5.l'42
-16. IK. 7
-16.557
- 1 7 . 47f
-1 7.4HII
-111.565
-2| . 43r'
-27 .H«;
-21.. 41,)
Sll?
.000
.ouo
.000
.0(11)
.000
.1)110
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.olio
.000
.OHO
.000
.000
.000
.0110
.(MX,
.OoO
.000
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.1)00
.!>«(•
. 000
.000
.Ouo
.000
. (1 (I 0
. OI'O
>*«HT
-(•2.D6I1
-62.539
-61.704
-64.74.1
-57. HOI
-54.610
-61.697
-66. OKI
-62.045
-6 | .44h
-60.971
-61.4H9
-61.945
-62.675
-64.117
-Si). 491
-55.446
-65. ftSn
-61.415
-61.751
-59.910
-S'). !?,»
-60.9|«
-64.751
-69.2flf>
-72.211
-5H.403
-60.S06
-61 .OKI
-62.144
-56.6^0
-57.237
-5H.775
-62.737
-64.43.1
-I.7.240
-64.51I4
-61 .194
-6il.Ht.H62
-58.797
-51 .417
-49.671
-57.697
-6 1 ,49£
-5/.H43
-56.454
-55.728
-58.214
-58.700
-56.741
-59.1H4
-50.827
-51 .271
-61.089
-59.191
-5i,. 912
-54.505
-51.1198
-55.971
-59.541
-61.616
-6i.24b
-48.640
-55.125
-56.551
-57.271
-SI .9^5
-52.16H
-54.8011
-57.907
-S9.264
-61 .031
-51. J40
-41.551
-S2.H68
-48.601
-55.209
-4D.718
-52.610
-51.770
-55.6(15
-5S.BH4
-51. 105
-SH ,4hS
- 4 h . 1 4 0
-5/. 120
cnr.ni
it rn
SU2
.000
.000
.000
.000
.000
.000
.000
.omi
.000
.poo
.000
.000
.POO
.000
.000
. II 0 0
.000
.000
.000
.0111)
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.01)0
.000
.000
.000
.OUO
.000
.000
.boo
.000
r 10.4
5
A >4!it~1
HARt
-64.201
-fc 1.1121
-65.851
-65.712
-59.131
-59.869
-66.515
-71.757
-68.627
-65.404
-1.1. SH'(
-64.415
-6'l./58
-64.154
-65.'l40
-58.7/4
-61 .669
-69.144
-6H.949
-67.472
-61.061
-6^.712
-62. (.11
-65.145
-67.971
-70. 491
-S6.!|i4
-61. XI, 2
-66. 407
-6H.44)
-65.415
-6«>. 468
-61.576
-64. 105
-6S.02I
-66.471
-5)1.447
- 5 il . 0 5 li
-60.569
-62.052
-71 .ill
-64.547
-6i.c!65
-67.0'!')
-6^.754
-6r» .854
-60. ,-91
-65.051
-54.441
-65.762
• •• I = ICIINUIIIIIN M - NIAIIIIAHII CIHiU I I I Ml, I / S I A till kid' C Hull I I ] nil • (on.
-( CHIUIKt IS WKMlCIIIlN Alill «* I.IIANI-I IS IM:'«»M
-------
• I. S. SIUI SK»I.L PUIfi S»SII H
HFCf HIUH
HIIHHHI
51
S?
53
51
55
5b
57
56
59
60
hi
h?
hj
61
hS
bb
67
ha
69
70
71
72.
73
71
7s
76
77
7U
1<>
Ho
B 1
B2
BJ
B1
B5
Bh
B7
Bd
ft 9
90
0|
92
93
91
95
96
97
9b
19
1011
UECHPIOR UJCAIIIIN
(Klll)HE ItHS)
HIIRI/
507.1)
507. U
501.0
507.0
50 7.0
50H.O
5011.0
50P .0
50ft. 0
50B.O
SOB.O
SOn.O
sort.o
50H.O
50fl. 0
soa.o
500.0
509.0
509.0
SOO.O
500.0
500.0
509.0
509.0
509.0
509.0
500.0
510.0
510.0
510.0
SIO.O
510.0
510.0
510.0
510.0
510.0
SIO.O
SIO.O
51 1 .0
51 1 .0
51 1 .0
SI 1 .0
511.0
51 1.0
511.0
511.0
511.0
511.0
51 1 .0
512. l>
VIBT
3707.0
3/ON.O
3709.0
3710.0
3711.0
3701 .0
3702.0
3703.0
3700.0
3705.0
3706.0
3707.0
J70B.O
3709.0
3710.0
3711 .0
3701.0
3702.0
3703.0
3701.0
3705.0
3706.0
3707.0
370a.ll
3709.0
i 1 1 o . o
3711.0
5701 .0
3702.0
3703.0
3 7 0 '1 . 0
3705.0
3706.0
3707.0
370,1.0
3/09.0
3710.0
3711.0
3701 .0
3702.0
3705.0
3701.0
3705.0
3706.0
3707.0
37IH.O
3/09.0
1 o.tl
3111.0
3 7 II 1 . 0
SIANIIAKII ClIMIJ
1
U cHAwr.f )
Sll?
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOP
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. OnO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
' . 0 (1 0
.000
.01 (1
.0' 0
.01 0
.01 0
.0' (1
.01 0
. ni n
CADI
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.1)00
.000
. 00 II
.000
.000
.000
.000
.000
.000
.000
.000
.000
. (Mill
.000
CdMII 1 KIN
(> CIIAMl.t 1
SU2
.000
. 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0(10
.000
.000
.000
.000
.000
.000
.000
.000
.IMKI
.ouo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.0(10
.000
.1 00
.1 .0
.( 10
.( Ill
.1 Ml
.1 '0
. 1 Ml
. ' Ml
. < lO
.(Ml
. ( Ml
. ( '0
.( 'II
I'AHf
-1 7.2IH
-10.13"
- 1 ? . 205
-11.115
-in.h7f>
-17.123
-17.793
-16.916
-I7.6B7
-22.107
-1 7.72C
-7.001
-S.o'll
-9.113
-1 1 .O"?
-1 J.3H1
-15.171
-15.751
-17. sin
- 1 5. (125
-IH. JOS
-I6.no/
-9.017
-6.127
-B. II III
-1 1 .HB7
-11.536
-16.172
-I7.5BO
-15.652
-16.562
-III. / 1,1
-16.967
-12.55)
-H. 'II 1
-12.591
-1 3.595
- 1 1 .6''5
-I7.|i57
-17.^71,
-15.9?,'
-15.61-6
- t- . II 7 /
- 7.rM
- 6.715
- (y . °h 5
- 1.50.1
- 1 5 . / ,' II
-15.,' 7 I
-17.il/
tlllini I III',
3
(v ni
SH2
.000
.000
.0011
.000
.000
.000
.000
.000
.1)00
.000
.000
.000
.0110
.000
.000
.000
.000
. 000
.000
.000
.1100
.000
.11110
.OnO
.000
.000
.010
.010
.0 '0
.0 10
.010
.0)0
.0 ID
.0 10
.000
.000
.000
.000
.nun
. ouo
. lino
. OIHI
.null
. ODD
.0110
.0110
. il III1
. (HH
.HIM'
.Oilli
Alll.l- )
HAHI
-hi .1 36
-5 5.O* 5
-"'1.295
-Sl.90'1
-Ml. '196
-60.761
-/ 0 . 5fl(»
-h 1 . 6 1 II
-h (.'175
-60.H92
-69 .OSO
-H 3.972
-116 .1*77
-7^.251
-69.512
-65.77'!
-61.530
-65.553
-hi ,BI>1
-61.022
-59.92 5
-66.009
-711.926
-II1.H-39
-77.512
-71 . 521
-65.661
-6 5.312
-61 .116
- h 1 . 5 1 «
-62.776
- 5 " . 1 6 «
-62 . rt I I,
-7n .9'* rt
-79.131
-67 .25.1
-67.476
-hb . 5011
- 6 1 . 0 VI
- 6 1 . '1 6 2
-(- i . ^61,
-6 1.61 /
-S'l . '12 i
-h'l . „? 1
- 6 2 . ', 2 '1
- / t . / 9 /
-'. -I . hd '1
-h'l . 1 12
-6'l. 55'2
-n . /i'2
riiiiiniiihi
SII2
.1100
.ouo
.000
.000
.000
.000
.000
.11011
.000
.DUO
.0110
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. (Mill
.000
.000
.000
. 000
.000
.000
. 0 0 0
.O'l I
.Oil I
.00 1
.00 >
.00 1
.001
.no i
.lilt 1
. on i
.00 1
.00 i
.0.1 1
.Oil i
.001
. 'J'l'l
. ouo
. Il ',('
I'AUI
-57. -Mb
-51.311)
-11 .H75
-51 .911
-57. 190
-56. BOH
-56.M69
-56 .929
-59. SOU
-S1.B21
-66.166
- B 2 . 1 3 1
-1(5.151
-III. 5H2
-hh.»7l
-62 .521
-59 . fl29
-5«. 79|
-'il.Kirt
-611 . 31*2
-5-1.21 1
-63. I5B
-77.001
-43.125
- 7 5 . 1 7 H
-64.191
-62.106
-5H . 760
-57.071
-60 . 0011
-5/1.51 7
-St. 01 -I
-Sf.H'lt,
-67 .901
-77.570
-61.252
-61.655
-62. 561,
-56.195
-56.1171
-59.77 7
-5K.606
-5U.OJH
-5
-B3.901
-7H.6II5
-71.163
-71 .105
-60.7 1 1
-hl.41 '1
-65.951
- h 5 . tl 1 2
-62. 005
-7 5.13H
-06.966
-91.019
-H5.727
-7 1.151
-7 5.B01
-67.091
-hi.| 1 7
.65.115
-hh .19 |
-61 .17 1
-70.395
-H2. 77n
-01 .2 I /
-H '1.569
-76.792
-71 .679
-66.0311
-61 . 5 H'l
-6rj. 7 39
-65. 102
-60.M25
-66 . 7H 7
-75.105
-H 5.101
-75.567
- 7 2 . rt 1 .1
-70.609
-64.91,1
-61.120
-61, . 71. (1
-65. 359
-61 . / M
-61.2011
- h M . U 1 1
-/«.>!/ 7
-7 2 . M 9
-69.152
- 6 M . 1 H |
-h'l.hHI
- S I ftNliftRU (; )U,I' 1 1 I 11.1 ) /
-------
II. S. SlfEI. SMALI r-H|l< SYSIEK
KECEHTUR
NUHbEH
101
1 0?
1 0 J
104
105
Iflb
107
lOb
109
110
III
II?
Ill
114
115
111.
117
lid
119
l?0
1 ? 1
1 ??
1 ?1
1 ?4
l?5
l?b
I?/
1 ?B
l?9
llu
HECEPIIIH LUrUIClN
(K1LIJME1F.MS)
, IIQHII
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
51?. 0
512.0
51?. 0
51?. 0
513.0
51 1.0
513.0
513.0
511.0
513.0
513.0
511.0
513.0
513.0
513.0
505.6
506.1
506.6
504.4
507.6
504.6
504.0
504.4
SOS. 3
WK11
170?. 0
3701.0
3704.0
3705.0
3706.0
1707.0
3708.0
3709.0
1710.0
1711.0
3701 .0
370?. 0
3701.0
3704.0
1705.0
3706.0
370.7.0
370H.O
3709.0
1710.0
371 1 .0
170?. 1
370b.5
3701.4
370?. 0
3705.'!
1704.0
3705.1
3703.1
370*. 4
STANDARD rilMI)
1
(t dlANGL)
Sll?
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
('AMI
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.Ooo
.000
.000
.000
.000
.000
.000
.000
.000
.ono
.000
.000
.000
.000
.000
CMNIII 1 It'll
(I CHAM.t )
Sll?
.ono
.0110
.000
.000
.000
.OHO
.000
.000
.000
.1)00
.0110
.000
.nuo
.000
.000
.000
.0110
.000
.1100
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.OdO
.000
(•API
-17.063
-16. B??
-16.110?
-Id. 157
-11.076
-17.455
-l?.406
-14.35?
-16.3B4
-16. (16 7
-I7.5BB
-16.590
- 1 6 . 4 1 d
-16.667
-IB.4?I
- 1 H .467
-16. B7?
-14.73.;
-I4.5«5
-16.667
-17.037
-I4.B6B
-?l .96(1
- 1 6. 1 ?4
- 1 4 . 0 2 h
-?'>.5B7
- 1?. 101
-IB. 696
-1 1.70|
-16.061
CONDI HUM
i
(> CH
Sll?
.ono
.ono
.000
.0110
.0110
.000
.0110
.000
.inn)
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.ODO
.000
.000
.000
.0110
.0110
.000
.(100
.00(1
.0110
.0110
.000
Alilit')
CAM
-6d. JO?
-6?.9?B
-6 1.?? 7
-S9.4?0
-60.05B
-6? . in?
-6-1. 9?S
-65 ,?7B
-6? .71?
-61.?51
-6I.H09
-6S.S94
-61.1106
-fr?.H9 3
-59.649
-59.SH?
-6?. 140
-66.964
-6'|.405
-6?.b67
-6?. 961
-63.611
-SH.O?5
-6?. 15?
-64 ,?5B
-61 ,1140
-67.U77
-56.641)
-64. IBB
-57.S5B
ClIMlll 1 HIM
(t 1
Sll?
.nun
.000
.0110
.ono
.000
.000
.000
.01)0
.111)0
.Oill)
.0110
.ono
.000
.0011
.000
.01)0
.000
.000
.0110
.0011
.01111
.000
.000
.000
.OilO
.nno
.DUO
.000
.OHO
.Oill)
4
IUMIJE)
PAH I
-57.9.16
-511.567
-SB. 466
-VI. 14H
-55.394
-Srt.545
-6S.9I7
-61 .574
-59.1??
-59.036
-S7.?flb
-59.447
-59.J?«
-57. (16?
-54.3H6
-54.704
-5B.436
-61.B39
-61 .6??
-SB. ODD
-S9.?59
-57.4BI
-SI. 819
-•>h.B?9
-5.1. BB?
-57.63?
-61 ..«?0
-66.i)'5
-6-1. 7BO
-6 | .9B4
-6?. 718
-6f>. t>6 7
-7?. 761
-7I.S9?
-6H.667
-6H. I4B
-6«.?97
-6?. ill 4
-6 J . 1 yt)
-64.79?
- 6 'j . 4 1 1
-6b.4B'j
-5H.679
-61.9H7
-67.44?
• ** X : (CUNUIIIlIN N - SIANOAHD ClINII I I 11 IN) / S1ANDAIVU CIIKiD I I I (llu • 100.
-X CMANHE 13 HEUllCIIIIN AND »S CHANGE IS INCHEASE
• SI IM'« II
-------
APPENDIX A-4.12
PERCENT REDUCTION OF THE EXPECTED ARITHMETIC MEAN
OF PARTICULATES FOR CONDITIONS 1-5 USING THE LARGE GRID
-------
... !>. ill I I I Al'l t I 'Ml'
ro
i
ktLf HlUll
NUMuEH
1
^
4
4
5
b
7
b
1
10
11
12
13
14
Ib
Ib
17
IB
14
20
21
?2
23
24
2b
2b
27
2o
24
30
11
32
33
34
3b
36
37
3B
31
40
41
42
41
44
45
46
47
4o
49
SO
Uf Cf HI IH LIICAIION
(KILUHtlKHS)
H.JHIZ
502.0
502.0
502.0
S02.0
502.0
502.0
502.0
S02.0
SUb.O
SOh.O
SOh.O
SOh.O
506.0
SOh.O
S 116.0
SOb. ft
510.0
510.0
510.0
510.0
510.0
510.0
510. 0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
SIH.O
SIH.O
SIH.O
SIH.O
SIH.O
5IA.O
SIH.O
SIH.O
522.0
522.0
522.0
522.0
522.0
S22.0
522.0
522. 0
S2b.O
526.0
Vml
169.1.0
369ii.O
3702.0
370o.ll
3/IU.O
1/14.0
1714.0
3722.0
1694.0
3h9rt.O
3702.0
3706.0
3710.0
3/14.0
1/IB.U
3722.0
16911.0
369H.O
3702.0
1/06.0
3710.0
3714.0
37IB.O
3722.0
3k94.0
1690.0
1/02.0
1706.0
3710.0
3714.0
3/IU.O
3/22.0
Ib94.0
3b4B.O
3702.0
3/06.0
3/10.0
l/l'I.O
37IH.O
3722.0
3614.0
3h1rt.O
3702.0
3706.0
371 0.0
3/14.0
3/111.0
3/22.0
1614.0
3h'»H.O
MAMIUITl riilll)
1
tl CIIAM.E)
SH2
.000
.000
.000
.0011
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00(1
.000
.000
.000
.000
.000
.000
.1100
.000
.000
.000
.000
.000
.ouo
.000
.OuO
.000
.000
.000
.000
.000
.000
.OuO
.000
.ouo
.000
.000
. 0 II (I
.000
.nun
.0110
HAKI
.OOu
.000
.000
.oou
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOu
.000
.000
.000
.000
.00(1
.(100
.000
.00(1
.000
.uno
.000
.OOU
.000
CdMil i HIM
2
(* CIIA.K.t )
5112
.000
.060
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.000
.000
.000
.0011
.000
.000
.OuO
.000
.000
.OOU
.OuO
.ouo
.000
.OUII
.0110
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
,0(>0
PAH1
-I6.2«2
-15. M2
-15.305
-It .546
-lb.737
-17.127
-17.407
-I/. 127
-17.2'lh
-16.724
-14 .dhl
-22.307
-Ih.Uh/
-16.354
-I6.4S6
-I7.6H1
-IH.34I
-16.041.
-I7.5HO
-16.167
-1 3.515
-16.432
-17. SOU
- 1 H.2S4
-III. 605
-IH.H6II
-17 .bHH
-1 6 . /?S
-17.037
-17.593
-17.147
-10.072
-IH.14/
-10.447
-I7.b0t
-10.713
-Ib.h42
- 1 H . 1 1 0
-I9.04H
-I1.04H
- ? II . S 4 B
-I1.I7H
-I4.U11
-Itl./Su
-19.2/7
-20. uno
-Ib./Sfl
-20.4SS
-19.2911
-IB.V5U
di.'jiii HUM
3
(» CHAM.I-)
SII2
.0011
.000
.0110
.OilO
.000
.00(1
.01111
.ouo
.000
.000
.01,0
.000
.0(10
.OuO
.000
.000
.000
.000
.OuO
.000
.00(1
.ouo
.11110
.000
.000
.000
.ouo
.ouo
.000
.000
.000
.OJO
.000
.ouo
.000
.ouo
.ouo
.000
.OuO
.ouo
. ouo
. 0 0 II
.000
.11110
.001
.000
.000
.000
. 0 II 0
.000
t'AKT
-hi . |S4
-62.294
-62.1 11
-S7.2IH
-61 .7b3
-(•1 .050
-60.741
-6I.1H6
-6 1.241
-61. 197
-64.41b
-60.H23
- S h . a 9 4
-61.194
-61.739
-62.195
-60.699
-6J.44I
-hi .416
-62. 1Mb
-6/.47>>
-63. 1HO
-62.-jOll
-62.64H
-62. 791
-61.635
-61.819
-60.151
-h2.1h3
-62.U37
-(•2.245
-hj.bbl
-62.105
-62.136
-6i; MO
-61 .404
-61.I5H
-63. 3RD
-61.905
-63.492
-61.014
-6J.OI4
-62.727
-hi . Ill
-h2.n5l
-hi ,4|H
-h2.500
-hi .164
-1.1. ISH
-61 .06^
criNnmn.j
4
(t CHAM.tt
Si 12
.000
.OOu
.000
.000
.01)0
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.0110
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0011
.000
.0011
.000
.000
.ouo
.000
.000
.000
.OuO
.OOu
.ouo
.ouo
.000
.000
.000
.000
.OOU
.ouo
.ouo
.000
.000
.0110
.OOU
.000
HAH1
-S6.IS4
-S/.26I
-S6.7H7
-52. OSS
-S7.17I
-56.1177
-55.926
-Sb.UI
-Sb.nhO
-56.HI6
-S9.2b9
-S2.bbB
-S2.hlO
-57.371
-S7.S26
-57.927
-Sb.7b1
-51.140
-SI.07H
-51.H4S
-b4.b51
-51.fa24
-5B.I25
-57.116
-58.140
-57.211
-S9. 719
-S4.4BO
-Sit. 519
-51.331
-5«.lb3
-5/.<4U
-57.H9S
-S7.2H2
-5H.4SI
-56.725
-6.1.000
-S9.ISS
-S/.I4 J
-Sa.Mu
-57.544
-57.514
-S7.271
-S7.U 41
-57.H31
-SH. |H2
-5rt. 531
-S9.U9I
-57.1115
-S9. 4/5
LI'IIOII I'l.)
(t ClIANKe)
bli2
.OUII
.000
.000
. 0 0 II
.000
.OHO
.1100
.1100
.11 Oil
.0110
.(III II
.000
.000
.000
.000
.ouo
.1100
.000
.000
.Ouo
.000
.000
.000
.ouo
.000
.000
.000
.ouo
.000
.000
.000
.ouo
.ouo
.ouo
.000
.000
.000
.000
.000
.000
. 0 0 .'I
.000
. 0 0 II
.000
.01,0
.000
.olio
. 0 0 II
.000
.000
Htkl
-h J.4h2
-64. 109
-64.127
-61.222
-hi>.912
-64.bl2
-h4.HIS
-65.142
-64.215
-64.032
-fcb.OJM
-60.564
-66.265
-67.D21
-hh.9S|
-66.46}
-hb.065
-6b.6b7
-64.1H4
-66. /U/
-72.1IU
-60.^45
-66. HIS
-66. hh/
-hb.l 16
-64./HU
-hh.lt*4
-b2. >)q/i
-hH.flH9
-hh.667
-66. 42/
-hh.2bS
-6S.261
-65.049
-65.494
-64. 12/
-61.474
-66.il/
-66. 6h/
-hn.6h/
-6b.751
-6S.751
-64.14'j
-64.«44
-67.470
-67.27 i
-6I..U6/
-6'5.9(l'l
-6h.6h7
-6 /.111/
i 3 (ciiNiiinim N - SUNIIAMII CIINIH nnwi / SMMIUKU LIIHUI i nif. • 100.
-I r.iiAuiii- is ill ii'iri 11 IN Ann «z i n«Mi,t is ninvtA.s^
-------
,. '.. M>tl I Alll.t I.
ro
Kflf I-IUH
NUMUFU
51
52
51
54
55
5b
5/
5B
59
bO
bl
b2
bl
b4
b5
bb
b(
ha
b9
70
71
/£
71
74
75
7b
7/
70
79
HO
ai
UtCFfUIH LUC U IDJI
(HIL JHtltkM
111)1' I 2
52b.O
52b.l)
52b.O
5?b.O
52b.O
52b.O
510.0
510.0
510.0
510.0
510.0
510.0
510.0
510.0
514.0
514.0
514.0
514.0
514.0
514.0
514.0
Sin.O
505. b
50h. I
5ub.b
504.4
50 7. b
504. b
504.0
504.4
505.3
Vt'HI
i/o,;.'i
1/Oh.U
in o.o
171 'l.o
3/IH.O
3/22.0
3 1. 9/1.0
ll>9rt.O
3702.0
1 / (I h . 0
3 / 1 II . 0
1714.0
3/ltl.O
Mfi.O
3b94 . 0
1 o 9 rt . 0
3/02.0
5/06.0
1710.0
3)14.0
3 7 1 a . (I
3722.0
3702. 1
I/Oh. 5
1/01.4
3/02.0
3705.4
3704.0
1/05. J
3 Ml 1 . 1
3/0:1.4
1
(t (HA,'
SII2
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.DUO
.000
.000
.000
.000
.000
.000
.000
.ouo
.1)00
.000
.000
.000
.000
.000
.000
COM)
f Ahl
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ofto
.00(1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.ooo
.000
.000
.000
.000
.000
.000
.HOC
Llililil Illli,
^
11 CrUHGr)
SM2
.0(111
.OOP
.ouo
.000
.000
.000
.000
.000
.(100
.000
.0(10
.1,00
.000
.000
.000
.000
.(mo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
CAM!
-IS. HUH
- 1 9 . h 0 H
- 1 M . '11 4
-20.000
-14.51?
-14.444
-20.000
-IB.Sbh
-I9.4HI
-19.04(1
-I9.b47
-21,951
-?0.5»h
-IB./ 50
-?0 .511
-20.755
-19.401
-19.444
-SO. 139
-19.512
-20 .690
-21 . 429
-1 4 .HbB
-21 ,9hB
-Ib. 124
- 1 4 . 0 ? h
-25.517
-12.101
-IB. 1.91,
-1 l./ul
- 1 b . 06 1
LCI. lit 1
it rn
bllr*
.0011
.0110
.III) II
.Ouo
.OuO
.000
.000
.000
.000
. o o o
.000
.000
. 0 0 (I
.000
.000
.000
.000
.000
.000
.000
.000
.01)0
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
1 1 n 4
i
PAP I
-b^.d?2
-I. I.7h5
-h2. Ihr"
-b2.?22
-hi. 415
•hl.HH9
-hP.^22
-h2.nb4
-hi. 138
-hi. 405
-b2. 1 21
-hi. 415
-hl.7h5
-02.500
-61. 101
-h2 .?b4
-b2.bf>7
-h? , 500
-h2 . 7 1 2
-h3.4lb
-hi. Ob"
-b4.2Hb
-h2.bll
-5B.025
-h2 . 152
-h4.2SH
-bl .B40
-h/.077
-5ti.l,44
-bl . 1 Bll
-5/.55H
CD nil MI in
4
U CHAi'lC.t )
S(I2
.000
.000
. 0 U 0
.000
.000
.000
.000
. 00 II
.000
.006
.000
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.ODO
.000
.000
.000
.000
.ouo
.000
.000
.000
HAKl
-5/.77b
-57.H41
-54.101)
-5/.//H
-5H.517
-5U.111
-57.771
-5«.b2l
-5U.442
-57.I4J
-57.5/b
-5H.51/
-5K.hV4
-54. 175
-5rt . '* / 4
-5S.44I
-5B.204
-5B. 411
-5/.b?/
-5tl.537
-5.i.b21
-57.141
-5».4fl|
-51 .849
-Sfa.«29
-5H .RH2
-S/.bl?
-hi. 221
-50.000
-5d.l52
-5i. 125
CIIMH 1 Ill'i
5
(X CHA'll.t )
Sli?
.OUO
. 000
.000
.000
.ouo
.ouo
.000
.000
.000
.000
.000
.000
.ouo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
FAh t
- b '1 . 4 4 4
-h5.hAh
-b7.5h»
- h .1 . a H 4
-h5. B54
-hh.hb7
-bo.bh/
-b5.5l /
-h4.435
-h1.47b
-hh.hh/
-h/1.291
-b/.bl/
-b'i.b23
-hb.bh?
-bu.Oln
-b5.b?2
-h-i.dll
-hi .101
-till. 291
-b'». 5 1 /
-fa7 . 157
-h 1, 247
-b2.0l i
-hi. |')0
-b4 . 79?
-h'j.Ut |
-bh.4B5
-5n.b7 J
-hl.'Jh/
-h7.44^
t = (CIIM)ITIOIJ N - S(»,J|)AHI) HIMfi II I(IN) / SIAfJOAM) CdMI I 1 I (III > 1011.
-I CHAIIl.t IS KtDllCTIIIN AND H LIIANbt Ib INCUtASF
• (I
-------
APPENDIX A-5
PARTICULATE AND SO2 EMISSIONS FOR 1973 AND 1978 (PROJECTED)
FROM COAL STORAGE, HANDLING, AND COKING OPERATIONS
AT THE FAIRFIELD WORKS PROVIDED BY THE U. S. STEEL CORPORATION
-------
PARTICULATE EMISSION FACTORS
Charging
Pushing
Quenching
Coking
Underfiring
Preheaters
(1973)
Batt #3=9
1.5 Ib/Ton Coal3
.6a
.9a
.la
.39C
—
(1973)
Batt £5, 6, 9
.075 Ib/Ton Coalb
.3b
.135b
.02b
.218d
—
(1978)
Batt n
.0075 Ib/Ton Coalc
.05d
.135°
.003°
.131d
.034d
(1977)
Batt #3, 4, 7, 8
.075 Ib/Ton Coalb
.3b
.135b
.02b
.39C
—
aEPA emission factors for uncontrolled sources.
EPA emission factors above, adjusted by Jeff. Co. percentages.
CA recent study by EPA of Fairfield Works Modernization.
Permit application for Batt No. 2.
FUGITIVE DUST EMISSION FACTORS
From PEDCO study for EPA - "Control Program Guidelines for Industrial Process
Fugitive Particulate Emissions" dated December 10, 1976: (All uncontrolled).
Coal Unloading: .04 Ib/ton coal
2
Coal Storage: .33 '- (|g|) = .23 Ib/ton coal
Coal Crushi'ng: Pedco EF = .16 Ib/ton coal for secondary crushing
and screening. Fairfield presenty using primary
crushing only - no screening.
Use .16/2 = .08 Ib/ton coal
Coke Transfer & Conveying: .023 to .13 Ib/ton
•°23 * J3 = .077 Ib/ton coke
A-5-1
-------
COKE CONVEYING EMISSION FACTORS
EPA Publication - "Industrial Process Fugitive Particulated Emissions"
Material Extraction and Benification:
Transferring & conveying coal (open mines)
Emission factor = 0.2 Ibs/ton (Uncontrolled)
Coke Making:
Conveying & transferring coal (<1,000 ft conveyor, average system)
Emission factor = .04 to .96 Ib/ton (Uncontrolled)
Enclosed Conveyors:
Enclosing conveyors results in "excellent" dust control.
Fairfield Works System
1. Typical Size (Total existing system 1,047' effective length)
2. Moist Coal
3. Relatively light winds
4. All rubber belts (No bucket, chain, screw conveyors, etc.)
5. Most discharges in chutes
6. No high speed belts
Assume emission factor should be in lower quarter of range
(.04 to .96 Ib/ton). Lower Quarter = .04 to .27 Ib/ton.
Extraction & benefication emission factor above = .20 Ib/ton.
Use .2 Ib/ton Emission Factor for Uncontrolled Conveying.
Assume "excellent" control for covered conveyors is 95% control,
and (.05) (.2) = .01 Ib/ton.
Use .01 Ib/ton Emission Factor for Covered Conveyors.
Since transfer points generate majority of emissions; for covered
belts with control devices at transfer points assume 98« control,
and (.02)(.2) = .004 Ib/ton
Use .004 Ib/ton Emission Factor for Covered Conveyors With Control
Control Devices @ Transfer Points.
Use .11 Ib/ton Emission Factor for Open Conveyors with Half of
Transfer Points.
A-5-2
-------
COKE CONVEYING EMISSION FACTORS
EPA Publication - "Industrial Process Fugitive Particulate Emission"
Coke Making:
Transferring and conveying coke (<1 ,000 ft conveyor average systems)
Emission factor = .023 - .13 Ib/ton (.077 Avg.)
Enclosed Conveyors:
Enclosing conveyors results in "excellent" dust control.
Fairfield Works System
1. Typical Size
2. Relatively light winds
3. All rubber belts (no bucket, chain, screw conveyors, etc.)
4. Most discharges in chutes
5. No high speed belts
Assume "excellent" control for covered conveyors is 95% control,
and (.05)(.077) = .0039 Ib/ton coke.
Use .0039 lb/ ton Coke for Covered Conveyors
Since Transfer Points generate majority of emissions; for covered
belts with control devices at transfer points assume 98% control,
and (.077)(.02) = .0012 Ib/ton.
Use .0012 Ib/ton Coke for Covered Conveyors with Control Devices
@ Transfer Points
COKE STOPPAGE EMISSION FACTOR
Coke Handling _ .077 _ -, lh/tnn
Coal Handling " .25 " "*' ID/ton
Coke Storage Emission Factor = (.31) (Coal Storage E.F.)
= .072 Ib/ton coke
A-5-3
-------
PARTICULATE EMISSIONS - 1973
Batt Mo.
3
4
5
6
7
8
9
Total
Charging Pushing
and Coking3
408
414
562
571
441
377
429
3,202
Quenching
167
169
230
234
180
154
176
1,310
Underfiringc
72
73
100
101
78
67
76
567
a(Charging + Pushing + Coking) (T. Coal Charged)/2,000 = T. Emissions/Year
(1.5 Ib/T Coal + 0.6 + 0.1).
b(.9 Ib/T. Coal)(T. Coal charged)/2,000 = T. Emissions/Yr.
c(.39 lb/T.Coal)(T. Coal charged)/2,000 = T. Emissions/Yr.
1973 Coal:
Batt Coal(Tons)
3 371,087
4 376,035
5 510,499
6 519,522
7 401,065
3 342,273
9 390,005
A-5-4
-------
1973 (1974 EPA Survey)
Batt #
3
4
5
6
7
8
9
Production
273,000
277,000
376,000
383,000
295,000
252,000
287,000
2,143,000
Tower
3
4
5
6
7, 8, 9
Quenching
404,000
366,000
169,000
508,000
695,000
2,142,000
(99.95%)
% Total
19%
17%
8%
24%
32%
100%
1978
Assume
Batt No. 2
Batt No. 5, 6
Batt No. 9
100 % @ No. 2 Tower
100 % @ No. 5 & 6
100 % @ No. 9
A-5-5
-------
PARTICULATE EMISSIONS 1978
Batt No.
2
5
6
9
Charging, Coking
and Pushing2
43
101
103
77
Quenching
97
34
35
26
Underfiringc Preheaterd
94 24
56
57
43
(Charging
(.075 + .
(.0075 +
+ Coking + Pushing) (T
02 + .3) = (.395) for
.003 + .05) = (.0605)
. coal charged)/2
5, 6, 9
for 2
,000 = T. Emissions/Year
D(.135 Ib/T. Coal)(T. Coal charged)/25000 = T. Emissions/Year for 2, 5, 6, 9
c(.218 Ib/T. Coal)(T. Coal charged)/2,000 = T. Emissions/Year for 5. 6. 9
(.131 Ib/T. Coal)(T. Coal charged)/2,000 = T. Emissions/Year for 2
d(.034 Ib/T. Coal)(T. Coal charged)/2,000 = T. Emissions/Year for 2
1978 Coal:
Batt Coal(Tons)
2 1.434 x 106
5 510,499
6 519,522
9 390,005
2.854 x 10C
A-5-6
-------
QUENCHING EMISSIONS
1973
T. Emissions/Year = (Total)(% For Tower)
Tower
3
4
5
6
7, 8, 9
Total (Emissions)
l,310T/yr
% For Tower
19
17
8
24
32
Emissions
249
223
105
314
419
1978
Tower
2
5
6
9
Emissions
97
34
35
26
ESTIMATE FUGITIVE EMISSIONS 1973
1973 Coke Production 2.143.000 _ , ?n7
1976 Coke Production " 1,775,600 ~ '^u/
Coal Unloading:
(0.4 Ib/Ton Coal)(2,610,083 T°n?Q7°a )(
Coal Storage:
(.23 Ib/Ton
Coal Crushing:
(.08
Coke Storage:
(.072 Ib/Ton
1976 2 000 Ib
•)0.
Coal
1976
)(
Ton
Tons
2 000
Ton
r)(l.
,000
Tons Coke Estimated
Ton
630 Ton/Year
336 Ton/Year
33 Ton/Year
6 Ton/Year
QQQ
A-5-7
-------
ESTIMATE FUGITIVE EMISSIONS - 1978
1976 Coke Production _ 1.775,000 _ n nor,
Projected 1978 Coke Production ~ 1,997,000 u'000
78888 = 1J25
Coal Unloading:
(0.4 Ib/Ton Coal )(2, 610, 083 )(1 -^X ) = 587 Ton/Year
Coal Storage:
(.23 Ib/Ton Coal )(2, 415, 574 (l J25)(iQQ0 ]b) = 157 Ton/Year
Only half of coal will go to ground storage, other half
will go to new coal silos.
Coal Crushing:
(.08 Ib/Ton Coal )(671, 847 T°"9^a1 )0 >125)(2>0TQ°0n ]b) = 30 Ton/Year
Coal Storage:
/ H7i ik/r^» r~i,~wion nnn Ton Coke Estimated\/ Ton \ /, T«^/v«-,«
(.072 Ib/Ton Coke)(120,000 tQ stQrage in 1978)(2aOOQ 1b) - 4 Ton/Year
ESTIMATE PROPORTION OF COAL ON
DIFFERENT TYPE OF CONVEYORS
1973:
Say each battery uses 1/7 of total coal.
Stocking Conveyors:
#3 Station
500' Open Conveyor - 60% of coal
100' Underground Tunnel - 60% of coal
£4 Station
130' Open Conveyor - 40% of coal
Reclaiming Conveyors:
100' Open Conveyor - 100% of coal
Distribution Conveyors:
600' Enclosed Conveyor - 2/7 of Coal
375' Enclosed Conveyor - 2/7 of Coal
600' Enclosed Conveyor - 3/7 of Coal
Open Conveyors
?Sn- X n'!J = 322H 452' of °Pen conveyor carrying 100%
00' x 10 - TOO') of coal 'used
100 x 1.0 - 100 ; (Use emission factor = ,2 Ibs/ton)
A-5-8
-------
Enclosed Conveyors
100' x 0.6 = 60'
600' x 2/7 = 17V
375' x 2/7 = 107'
600' x 3/7 = 257'
595' of enclosed conveyor carrying 100%
of coal used
(Use emission factor = 0.1 Ib/ton)
ESTIMATE PROPORTION OF COKE ON
DIFFERENT TYPES OF CONVEYORS
1978:
Say #2 uses 50% of coal and other batteries use 1/6 of coal each.
#2 Batt. coal will not go to ground storage.
Stocking Conveyors:
#3 Unload Station
1,320' Open Conveyor - 50% of coal (#2 Batt.)
500' Open Conveyor - (60%)(Batt. 5, 6, 9) = 30% of coal
100' Underground Conveyor - 50% of coal (#2 Batt.)
100' Underground Conveyor - 30% of coal (#5, 6, 9 hi vol)
#4 Unload Station
200' Open Conveyor - (40% (Hivol) )(50% (Batt. 5, 6, 9) = 20% Coal
Reclaiming Conveyors:
990' Open Conveyor - 50% of Coal (Batt. 5, 6, 9)
Distribution Conveyors:
2,075' Enclosed Conveyors with Control Devices - 50% of Coal (Batt. #2)
600' Enclosed Conveyors with Control Devices - 50% of Coal (Batt.
#5, 6, 9)
300' Enclosed Conveyors - 2/6 of coal (Batt. #5 & 6)
500' Enclosed Conveyors - 3/6 of coal (Batt. #9)
*Half of transfer points enclosed
Open Conveyors: j
lnn'< v 'I - ^n-l 190' (Use Emission Factor = .2 Ib/T)
cUU X •t ~ fu )
Open Conv. w/50% Enclosed Ends
^ooni v 'f - AQS'! T'155' (Use Emission Factor = .11 lb/T)
yyu x • o "~ fyo i
Enclosed Conveyors .
x 2/6 = TOOJ 350. (Use Emission Factor = .01 Ib/T)
X O/ D *"
A-5-9
-------
Enclosed Conveyors with Control Devices
2,075' x .5 = 1,038'
600' x .5 = 300'
100' x .5 = 50'
100' x .3 = 30'
1,418' (Use Emission Factor = .004 Ib/Ton)
ESTIMATE EMISSIONS FROM COAL CONVEYING
1973 (T-sr!!){.2) = .086
^ .006
.092 Ib/Toh
.092 x 2,910,500/2,000 = 134 Ton/Year
1978 190' + 1,155' + 350' + 1,418' = 3,113'
.003
.165 Ib/Ton
(liili;)(.004) = .005
.165 x 2,854,000/2,000 = 235 Ton/Year
The breakdown of the estimated emissions from coal conveying for
1973 (235 T/yr) is shown on page A-5-12 in the section entitled,
"Total Plant Fugitive Dust After Modernization."
ESTIMATE EMISSIONS FROM COKE CONVEYING
1973:
All Conveyors Enclosed
°n
(.0039 Ib/ton coke)(2,143,000 Ton Coke)(2 Q ]b) =
1978:
Half of conveyors with control devices at transfer
points and covers over belts. Other half with
covers only.
(.0039 Ib/ton Coke)(l ,997,000 Tons Coke)(.5)(2
4 ion/Year
(.0015 Ib/ton Coke)(l,997,000 Tons Coke) (-5)(2iQQQ 1b)
A-5-10
= 1.947
= .749
3 Ton/Year
-------
PARTICIPATE EMISSIONS REDUCTION
COKE BATTERY NO. 2 REPLACING BATTERIES NO. 3, 4, 7, 8
(At 1978 Projected Production)
Batteries #3, 4, 7 & 8
Battery #2
Reduction
Fugitive Emissions (Total Plant)
Before Batt. No. 2
After Batt. No. 2
Reduction
Total Before Batt. No. 2
Total After Batt. No. 2
Reduction
639 Ton/Year
320 Ton/Year
319 Ton/Year (50%)
1,065 Ton/Year
1.016 Ton/Year
49 Ton/Year (5%)
1,704 Ton/Year
1,336 Ton/Year
368 Ton/Year
(22%}
Particulate Emissions - Batt. §2 Vs. #3. 4, 7, 8
Batt No. 2
Stack (underfiring)
Preheaters
Changing, Coking & Pushing
Quenching
Total:
94 Ton/Year
24
43
97
320 Ton/Year
Total Plant Fugitive Dust After Modernization
Coal Piles
Coal Unloading
Coke Pile
Pulverizing - Outdoor
157 Ton/Year
587
4
30
A-5-11
-------
Total Plant Fugiti
10,000 T. Silos
Primary Pulverizer
Mixer
100T. Transfer Bin
ve Oust After
Secondary Pulverizer
Conveyors #26A & B
Premetering Bins
Coal Conveying
Coke Conveying
Total :
Stacks
#3 (.39)(371,
#4 (.39)(376,
%1 (.39)(401,
?8 (.39)(342,
Pushing
#3 (.30)(371,
#4 (.30)(376,
#7 (.30)(401,
#8 (.075)(342
Charging
#3 (,075)(371
#4 (.075)076
#7 (.075)(401
#8 (.075)(342
Coking
#3 (.02)(371,
n (.02)(376,
#7 (.02)(401,
#8 (.02)042,
Quenching
#3 (.135)071
#4 (.135)076
#7 (.135)(401
#8 (.135)042
(&9
087)72,000 =
035)72,000 =
065)72,000 =
273)72,000 =
087)72,000 =
035)72,000 =
065)72,000 =
,273)72,000 =
,087)72,000 =
,035)72,000 =
,065)72,000 =
,273)72,000 =
087)72,000 =
035)72,000 =
065)72,000 =
273)72,000 =
,087)72,000 =
,035)72,000 =
,065)72,000 =
,273)72,000 =
Modernization (Cont'd)
13
12
3
3 46
10
4
1
189
3_
1,016
73 Production^ /1,997,000>,
1977 E.F. ;x 12,143,000; @
Emissions
72
73
78
67
56
56
60
51
14
14
15
13
4
4
4
3
25
25
27
23
^
'235
s
1978 Production
Rate
67
68
73
62
52
53
56
48
13
13
14
12
3
4
4
3
23
24
25
22
Total : 639
A-5-12
-------
Total Plant Fugitive Dust Before Modernization
@ 1973 Production
1973 x (1.997,000/2.143.000) = _ Rate
Coal Piles 336 313
Coke Pile 6 6
Pulverizing 33 31
Coal Conveying 134 124
Coke Conveying 4 4
Coal Unloading 630 587
Total : 1 ,065
SQ2 EMISSIONS - COKE BATTERY 12
Battery Underfiring:
880 BTU/lb Hot Coal (from Gary Works Batt. #2)
Preheater Firing:
(from design data)
* <°
=313 BTU/lb Hot Coal*
(313 BTU/lb Hot Coal) (.92) = 288 BTU/lb Wet Coal** (@ 8% HgO)
Product Flow:
(from design data)
(34.1 Ton Hot Coal/oven) (106 Ovens/day) = 3,614.6 Tons Hot Coal*
Charged Per Day
lien* « Ton Hot Coa1w,gc Daysx _ , -iq In6 Tons Hot Coal*
(3614.6 - 5ip - )(365 ^) - 1.319 x 10 charged Per Year
n ?IQ v in6 Ton Hot Coal ) • f 92} - i 43 x in6 Tons Wet Coa1**
(1.319 x 10 Yi^ ) - (.92) - 1.43 x 10 Heate(j per Ygar
(@ 8% H20)
Coke Production = 900,000 Ton/ Year
*"Hot Coal" = Product of Preheaters = Feed to coke ovens.
**"Wet Coal" = Feed to preheaters.
A-5-13
-------
o
Emissions - Coke Battery #2 (Cont'd)
Calculate SCL Emissions:
(Battery No. 2)
Coke oven gas contains 0.5% H2S
H2S = .09109 Ib/cu ft
One mole H2S yields one mole S02
Molecular Weight: S02 = 64.06 and H2$ = 34.08
To convert cubic feet coke oven gas burned to
Ib S02 Emissions:
(.005)(.09109)(£W
= 856.107 x 10
"6
1b S0
cu ft C.O. gas
Total gas fired:
880 + 313 = 1,193 BTU/lb Hot Coal
n 193 BTU U1 , .6 Tons Hot CoaK,,, om Ib
U'193 Ib Hot CoalKlt319 x 10 Year n2'000
Ton
= 3.147 x 1012 BTU/Year
,12 BTU wcu ft coke oven
Y in
X IU
^ 500 BTU
In9 cu ft coke oven gas
A 1 \J \/
4.643 x 10 cu ft @ Battery
Q
1.651 x 10 cu ft @ Preheaters
S02 Emissions:
x 1
x l
ft C.O.
-6
1b SQ
Ton
= 1987 Ton S02
Year
= 454 Ibs/hr (From Battery Stack)
j Gas2)000
(1.651 x 10
ftyC.O. Gas
)(856JQ7 x 1Q
-6
Ton
= 707
Ton
Ton
2,000
Year
Preheater scrubbers are 40% S02 efficient
(707 Ton S02)(.6Q) = 424 Ton S02
Year Year
= 98.6
From Preheater
A-5-14
-------
S00 EMISSIONS - COKE BATTERIES NO. 3 THRU 9
Batt. No.
Total
Total
Total
*so2
3
4
7
8
3, 4, 7
5
6
9
5, 6, 9
3 thru
_ ,cu ft
\
64.06
t
Production
Ton/Year
273,000
277,000
295,000
252,000
, 8 1,097,000
376,000
383,000
287,000
1,046,000
9 2,143,000
coke oven gasx nric
Year V
= M.W. SO, Tnn
2\/ ion
1973 Data
Coke Oven Gas
Burned-109 cu ft/Yr
1.888
1.913
2.041[
1.74U
7.583
2.597
2.643
1.984
7.224
14.807
cu ft H2S (.09109
cu ft C.O. Gas'
^
S0? Emitted
Ton/Year*
808
819
i cin /Combined\
1>619 ( Stack ]
3,246
1,112
1,131
849
3,092
6,338
Ib
cu ft H2SJ
SO,
k34.08 = M.W. H2SM2,000 Ib
. (cu ft coke oven gas)(428jQ54 x 1Q-9
Ton
"2 ~ vYear /v^ " " '" cu ft C.O. Gas'
Batt. No. 3, 4, 7, 8 Adjusted to Same Production as Batt No. 2
(1>Q9°;^g)(3.246) = 2,663 Ton S02/Year
Figures 1 and 2 summarize the particulate and S02 emissions for 1973
and 1978 (projected) from coal storage, handling, and coking operations at
the Fairfield works. Because of the proposed action, a reduction in S02
and particulates will occur. Thus, no mathematical modeling was done to
access the impact of S02 on ambient air quality.
A-5-15
-------
i
en
i
CTt
T V \
/^ \\ c
OF
[
r^
•& c
7
n
o| J |
QCD
CD
Ml R 1 L II
so2
POINT LOCATION TON/YEAR
A STACK 808
B STACK 819
C STACK 1.112
D STACK 1,131
E STACK 1,619
F STACK 849
G DAT NO. 3
H BAT NO. 4
1 BAT NO. 5
J BAT NO. 6
K BAT NO. 7
L BAT NO. 8
~ \
— _ i~A\J
i* ~.f
!
1 I IOC I I 01 II
QP
°E 00
ii K | ao i HUM G
EMISSIONS -1973
PARTICIPATE S02 PARTICIPATE
TON/YEAR POINT LOCATION TON/YEAR TON/YEAR
72 M BAT NO. 9 429
73 N QUENCH TOWER 249
100 O QUENCH TOWER 223
101 P QUENCH TOWER 105
145 Q QUENCH TOWER 314
76 R QUENCH TOWER 419
408 S COAL UNLOADING 630
414 T COAL STORAGE 336
562 U COKE STORAGE 6
571 V CONVEYOR 33
441 COAL
377 CONVEYING 134
COKE
CONVEYING 4
6,338 6,222
m o
ON
Z3OA
FIG. 1 S02 AND PARTICULATE EMISSIONS-1973
-------
I
en
i
A
B
C
0
E
F
G
II
I
I
K
L
M
SO,
EMISSIONS - 1978 (Proj.)
PARTICULATE
SO,
POINT LOCATION TON/YEAR TON/YEAR POINT LOCATION TON/YEAR
PARTICIPATE
TON/YEAR
STACK
PREHEATER
STACK
STACK
STACK
DAT NO. 2
BAT NO. 5
BAT NO. 6
BAT NO. 9
QUENCIITOWER
QUENCH TOWER
QUENCIITOWER
QUENCH TOWER
1,987
424
1,112
1,t31
849
94
24
56
57
43
43
101
103
77
97
34
35
26
N
O
P
Q
R
S
T
U
V
w
X
COAL
CONVEYING
COKE
CONVEYING
COAL STORAGE
COAL UNLOADING
COKE STORAGE
PULVERIZER
SILOS
PULVERIZER
MIXER
TRANSFER BIN
PULVERIZER
CONVEYOR
BAT NO. 2
5.503
157
587
4
30
13
12
3
10
4
1
189
1,868
FIG. 2 S02 AND PARTICIPATE EMISSIONS- 1978(PROJECTED)
-------
APPENDIX A-6
EXISTING AND IDENTIFIABLE AIR POLLUTION CONTROL
DEVICES AND RESIDUE DISPOSAL METHODS
-------
EXISTING AND IDENTIFIABLE
AIR POLLUTION CONTROL DEVICES
AND RESIDUE DISPOSAL METHODS
FAIRFIELD WORKS
1. Blast Furnace and Sintering Plant
Blast Furnace Nos. 5,6 & 7 - Gas Cleaning System - Each blast
furnace has uptake, downcomers, dustcatchers, venturi scrubbers,
gas cooler with a complete water circulating system consisting
of a hydro-thickener and cooling tower.
Blast Furnace Nos. 1, 2 & 3 - Gas Cleaning System - Each blast
furnace has an uptake, downcomer, horizontal dustcatcher, splits
into two streams for boiler and stove use. Boiler has addition-
al two multicolnen and dust legs. Stove gas system cleaning
systems consist of hurdle type gas washer and wet electrostatic
gas precipitator.
Sinter Machine No. 1 Discharge - Alterations - Eliminate three
emission points by blocking off three stacks and covered the
discharge in allowing pull back into the main center bed.
Sinter Machine No. 2 Discharge - Alterations - Eliminate three
emission points by blocking off three stacks and covered the
discharge in allowing pull back into the main center bed.
Sinter Machine No. 3 Discharge - Alterations - Eliminate three
emission points by blocking off three stacks and covered the
discharge in allowing pull back into the main center bed.
Sinter Machine No. 4 - Breaker, Screens, and Mixer Building -
Picked up by the multicolnen and put back on the center bed.
Center bed altered with additional hoods pull through main
windbox.
Sinter Machine No. 1 - Windbox end (Precipitator End)
Sinter Machine No. 2 - Windbox end (Precipitator End)
Sinter Machine No. 3 - Windbox end (Precipitator End)
Sinter Machine No. 4 - Windbox end (Precipitator End)
Sinter Cooler Stacks - Alterations - Increase amount of water
sprays.
A-6-1
-------
Sinter Cooler Discharge - Alterations - Cut out hood in two
places, installed short stacks and put on protective sides
thus reducing the capture velocity.
Sinter Load-out Bin No. 4 - Alterations - Add more water
sprays.
Sinter Plant - Landfill Disposal Operation - Dumped on the
ground and recycled.
2. Coke and Coal Chemicals
No. 3 Battery - Quenching Tower - All coke is quenched in
quenching tower large enough to accomodate one quench car.
Tower equiped with water circulating system with baffles
mounted in tower to remove particulates in stream.
No. 4 Battery - Quenching Tower - All coke is quenched in
quenching tower large enough to accomodate one quench car.
Tower equiped with water circulating system with baffles
mounted in tower to remove particulates in stream.
No. 5 Battery - Quenching Tower - All coke is quenched in
quenching tower large enough to accomodate one quench car.
Tower equiped with water circulating system with baffles
mounted in tower to remove particulates in stream.
No. 6 Battery - Quenching Tower - All coke is quenched in
quenching tower large enough to accomodate one quench car.
Tower equiped with water circulating system with baffles
mounted in tower to remove particulates in stream.
Nos. 7, 8 & 9 Battery - Quenching Tower - All coke is quenched
in quenching tower large enough to accomodate one quench car.
Tower equiped with water circulating system with baffles
mounted in tower to remove particulates in stream.
No. 3 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
No. 4 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
A-6-2
-------
No. 5 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
No. 6 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
No. 7 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
No. 8 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
No. 9 Battery - Maintenance Plan* - Steel work bent and warped
and allowed brick work to crack and leak and stacks to smoke.
As a result, the maintenance plan was an effort to perform those
things to minimize leaks to tops, doors and stacks through
straightening and tightening the battery. Quench station in-
stalled baffles to eliminate particles from quenching before
they enter the atmosphere.
3. Wire Mill
Cement Coater and Degreaser - Vapor Recovery Units Hauling
Debris to Approved In-Plant Dump
4. Sheet Mill
Galvanizing Line No. 4 - Acid System - Scrubber System
Galvanizing Line No. 4 - Alkali System - Scrubber System
Galvanizing Line No. 4 - Zinc Dross Collector Pot - Fume System
Hauling Debris to Approved In-Plant Dump
A-6-3
-------
5. Tin Mill
Pickle Line No. 3 - Fume Scrubber System
Pickle Line No. 4 - Fume Scrubber System
Electrolytic Tinning Line No. 1 - Fume Scrubber System
Electrolytic Tinning Line No. 3 - Fume Scrubber System
Electrolytic Tinning Line No. 4 - Fume Scrubber System
C. A. Line - Furnace & Cleaning Sect. - Scrubber System
Shot Blasting - Dust Collector
Carpenter Shop Cyclone Collector
Landfill Disposal Operation
6. Electrical & Utilities
Electrical Repair Shop Degreaser - Vapor Recovery Unit
Fairfield Blast Furnace Steam Plant - Oil Burning Facilities
Steam Line to Coke Works from Blast Furnace Steam Plant
(Include Coke Oven Gas Line to BF Steam Plant and Water
Treatment at BF Steam Plant)
Steam Line to Shops Steam Plant from Blast Furnace Steam
Plant (Proposed)
7- Shops & Construction
Ensley Carpenter Shop Cyclone Collector
Landfill Disposal Operation
8. Transportation & Material Handling
Trucks and Other Equipment Used for Dust Control Landfill
Disposal Operations
* See Table 3-1- in the Environmental Impact Statement - Existing
Coke Batteries Maintenance Plan - For the Coke Oven Emission Control
Equipment see page A-6-5.
A-6-4
-------
SUCTION
MAIN
AUTOMATIC
PRESSURE
CONTROL
BY-PASS PIPE
0^
TRAVELING COAL HOPPERS (LARRY CAR)
V 1 /
^. 1 J
Z
k )
^
HOPPER
GATES
COLLECTOR,
MAIN
COMBUSTION
CONTROL""3
STEAM,
ASPIRATOR
OVEN_
DOOR"
FUEL AND
1 AIR IN?
*
COMBUSTION AND
REGENERATOR
CHAMBERS
COKE OVEN EMISSION CONTROL EQUIPMENT
Larry Boots - sleeves which provide a seal to prevent leakage of gas
and dust between the larry hoppers and oven charging
openings.
Hopper Gates - shut-off valves which prevent escape of dust and gas
through the hoppers.
Self-Sealing Doors - door jamb castings are machined to provide a
flat seat for door seals.
Steam Aspirator - Increased steam injected into the gas line prevents
leakage by drawing gas out of the oven during charging
By-Pass Pipe - allows the aspirator to draw gas from the far end of
the oven in case of a blockage in the oven.
Automatic Pressure Controller - controls pressure in oven and prevents
over-pressure which would force gas
out to the atmosphere.
Stage Charging - coal is charged sequentially.
Combustion Control of the oven heating system maintains proper air-fuel
ratio to prevent stack from smoking.
Wet Seal Stanpipe Lids, Charging Hole Lids
All items of maintenance are submitted in quarterly reports.
A-6-5
-------
APPENDIX B
BIOLOGY
-------
APPENDIX B-1
PERIPHYTON DIVERSITY INDICES
-------
4(«J SIC>5J.;(»J) hCl'llUSM SHANNON
-------
STAFIuN : HE-IKSS.-M <4
dUMBEH 1
INDICES
blf-lHSOuCA) SIMPSGNCH) MClNTOSH SHANNON M
1.4144<» .704172 3.3rt034 .'455965 2.33rtbb .186956
MCINTU8H PlELdU SHELDON riEIP
.780531
I,\IUtX A-gn NUMdER OF IMPORTANCE VALUES (SPECIES)
lAi-iCE WJMbER UF IMPORTANCE
VALUES(SPECIESJ
13
PKObkAM CALUULATE6 SIX OIVtKSiTY INDICES.
Vt^.JF.SS INDICES,
Out UJMiiMANCE !
-------
CALCULATES SIX DIVERSITY INDICES.
FUUk fcVtN^F-'SS INDICES,
AMD ONE DOMINANCE
STATIuM : VALLEY '<
QUAbKAT/SAMPLE .NIHBER 1
DIVERSITY i<\iDicfcs
SlMHSilftU) SIMPSUNU) MCINTUbH SHANNON
1.64354 .669171 7.64357 .62917 3.0046*7 . / i
EVENMtSo
MCINfUSH PiELOU SHELUUN nEIP
.395041 , .594636
AND NuMdtM OF iMHUMIAlMCb VALUtS (SHtc US)
B-l-3
-------
PKObKAM CALCULATES SIX DIVERSITY INDICES.
FuUk tVtfciiESS I.'jOICtS,
MtO Oi'.E DOMINANCE IiJUtX.
SIAlluN : VALLtr 7
ONLY LINE VALUE(SPECIE3) iftl SAMPLE (QUAQRATJ NUM6EK 1
CALCULAff-IS SIX DIVERSITY INDICES.
FUUK tVh^'JtSS li\IJlCtS,
AND OivF :';JMIN4I\ICE I;MDEX.
StAIIuN : VALLfcY H
QUAORAT/SAMPLE NU
OlVtRSIFY INDICES
SIMPSUN(A) SIMHSUN16) MCIN1USH SHANNON
4.70651 .536166 g
B-l-4
-------
MCiNTusH . PIELOU SHELDON neiP
.468477 .7S366 1.2667 1.28575
DOMINANCE IrtOEX AiMD NUMbEK OF IMPORTANCE VALUES CSPECIES)
NUMUEK OF
IS
CALCULATtS SIX OIVEKSITY INDICES.
EVtNi>i£SS INDICES,
AM) O^t OUMINAMCE
STATION : VALLEY «»
RUAOftAT/SAMPLS MUMfltR 1
OIVt»aItY I:\iUICES
MAM£AlEV SlMPSUiM(A) SIMPSUN(S) MCINTOSH SHANNON MgNHINICK
1.47«77 .681657 3.14127 .435734 2.09?94 .123811
EVEi\NtSS IMUICES
PIELUU SHELDON
.579193 .546824
DOMINANCE i^ocx AND Nui«dE* OF IMPORTANCE VALOESISHECIES)
NOMaEK OF IMPORTANCE
VALl>E&(bPECl£S)
.31639S 14
PKObftAM CALCULATES SIX UlVERSITY
FOUM cVtN^tJJS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VALLEY 10
QUAuRAT/SAMfLt
DIVERSITY INDICES
MARi>ALE SIMPSUN(A) SIMPSU^(B) MCINTOSH SHANNON
l.A9«92 ,b«*b5o7 2.«47
-------
PItUiJU SHcLoUiJ H
.444?97 .3ttdu62
DOMINANCE InOtX A.MO NuMtiErt UF IMPORTANCE VALUESCSPECIES)
UUttlNAiMCt NUMbEK UF IMPORTANCE
VALUES(5PtCIfcS-3
14
CALCULATES SIX DIVERSITY INDICES.
FUUK tVti'li^EiS INDICES,
AND UN£ OUMINANCt ItM
STATION : VALL&Y 11
INOICES
MARbALEv SIMPSO.MlA) S Ih^SUlM IB J MCINfOSH ShAt\jNUN MtNHlNICK
l.^OebS* .79<43bl 4.86029 .54b3b3 g.b4313 .137862
EVENMtSS IiMOICES
HiELOU SHELUUU
.454048 .611562 .7U2854 .6S7214
DOMINANCE IwDEX AND NUMbErt UF IMPUNTANCE. VALUES(SPECIES)
uO>I.JAivCE NUMbEk UF IHPUHTANCE
20
CALCULATES six DIVERSITY INDICES.
FUUK tVhMriESS l.\DICcS,
AND UNE DOMINANCE
STATION : VILLAGE
INOICES
MAKbAt_Ev SIMPSON (A) SIMPSUN(O) MC1NTOSH SHANNON MENHIMCK
.7614Ub 4.1V124 .507411 ?.4747 .656392
INDICES
B-l-6
-------
DOMINANCE INDEX A4l> NUMiiEK UF IMPORTANCE VALUESISPtCIES)
NUMbEtf OF IMPORTANCE
.242643 9
RKObRAM C4LCULAIES SIX DlVEHSITY INDICES.
FOUK bVENNEbS I4DIC£S,
AMI OuE DOMINANCE li\)Ot:X.
STATION : y/llL*f.E 3
UUAUWAl/SAMPLE
3I.'lPttON(A) SIMHSOW(B) MCINTOSH SHANNON MEMHIMCK
.B6619« /.58634 .630*36
INDICES
MC IN TUSH PIELO'J • SHELDON HE IP
.A4bi69 1.79343 1.85446
OuMlMA.MCE i;a»EX AND NlJMiiEK OF I,-lPu« T A.MCE VALUES (SPECIES)
uOMl^Ai\iCE M
-------
DUril *A.\lCt
VALUES (SPECIES)
NUNaEK OF I.MPuRIAMCE
10
PKfJGHAM C^CULATES 6IX DIVERSITY INDICES,
FUUK LVhN'MtSS I'MUICtS,
AIM I) G.\6 OuMlNANCE INDEX.
STATIUM : VILLAGE f>
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FUUK EVtiNMESS INDICES,
AUO Ol-iE DOMINANCE I.«DtX.
STA1IUN : VILLAGE
UUM^RAT/SAMPLE NU
DlVtRSIlY IixOICES
SINiPSCnMlA) SIMPSUN(B) MCINTOSH SHANNON MENHlMCK
a.25571 .334137 1 .5066 8,bl09l£-2
EVENN'tSi
PIELUU
SHELDON
.bb4036
HEIP
.501755
OUMI\A'.'CE I.^DEX AM) NUMBEW IjF ,-IMPUH 1 ANCE VALUES (SPEC 1ES )
VALUESCbPECIES)
NUNdEW UF IMPORTANCE
6
PRflbKAM CALCULAIES BIX UlVERSITY INDICES.
FUUk tVtNNESS IN
AND QME UUMtNANCE
STATION ; VILLAGE 7
QUAuWAT/SAMPLE NU.-icJER
DIVtRoIlY INDICES
1.45351 .7149o3
EVENNESS UUICES.
,,.-j th ) ,-ICilM IHbh
5.50830 .46577
i\iti>lll ti>:IC.K
2/27450 .272798
PIELDU
.6i4466
SHELDON
.610264
HEIP
.793037
.5372tl3
DOMINANCE IiMUEX A .Ml) NUMriEri OF iMPORTANCt VALUES ( SPEC I ES)
VALuEb(SPSCItS)
UF IMPCJKTANCE
B-l-8 12
-------
APPENDIX B-2
MACRO-INVERTEBRATE DIVERSITY INDICES
-------
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUK EVEMNESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : OPOSSUM CREEK 1
ONLY ONE VALUE(SPECIES) IN SAMPLE(QUADRAT) NUMBER 1
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUK EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
: OPOSSUM CREEK 2
OUAURAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSOM(A) SIMPSONCB) MCIMTOSH SHANNON MENHINICK
.779141 .20074 1.25116 .103601 .634755 .53346
F.VENNtSS INDICES
PIELOU SHELDON HEIP
.9S6776 .317378 .47164 .29552
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.80353 «
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS IIJOICES,
A.\0 ONE DOMINANCE INDEX.
STATION : OPOSSUM CREEK 3
QUADRAT/SAMPLE'NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENMINICK
1.01887 .508772 2.03571 .280274 1.295 .917663
MCIMTOSH PIELOU SHELDON HEIP
.849711 .647499 .912746 .88366?
DOMINANCE INDEX AND NUMBES OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.518004 4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX. B 2 1
-------
STATION : OPOSSUM CHEEK 4
QUADRAT/SAMPLE NUMBER' 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
.613656 .48 1.93308 .366201 1.14012 .568348
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.793573 .719334 1.04238 1.06357
DOMINANCE I^I)EX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE.
VALUES(SPECIES)
,538«M 3
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVEN.MESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VILLAGE CSEEK 1
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
.52566 5.22923E-2 1.05518 2.6408E-2 .211451 .230556
EVENNESS INDICES
PIEL'JU SHELDON HEIR
.963377 .105725 .308P67 7.84897E-2
DOMINANCE INDEX AMD NU^UER OF IMPORTANCE VALUES (SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.947879 4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VILLAGE CREEK 2
ONLY UME VALUE(SPECIES) IN SAMPLE(QUADRAT) NUMBER 1
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-2
-------
STATION : VILLAGE CHEEK 3
QUADRAT/SAMPLE NUMBER i
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHlNICK
1.33/73 .3054S1* 1.4398 ,16?257 1.0007
EVENNESS INDICES
HCINTUSH PIELOU SHELDON HEIP
.3tt«673 .455163 .34623
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES (SPEC IES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.701A13 6
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND OivE DOMINANCE INDEX.
B-2-3
-------
STATION : VILLAGE CREEK
QUADRAT/SAMPLE NUMBER \
Y I un ICES
MARbALEV SIMPSON(A) SIMPSON(B) MCINTHSH SHANNON MENHINICK
.686586 7.49757E-2 1.08105 3.77249E-2 .293118 .450035
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
1 .146559 .33515 .113534
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.925971 4
PROGRAM CALCULATES six DIVERSITY INDICES.
FOUR EVENNESS INDICES,
ANn Or;E DOMINANCE INDEX.
STATION : VJLLAGE CREEK 4
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV S IMPSniM(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
1.33773 .305459 1.4398 .162257 1.0047 .92583
INDICES
MCINTOSH PIELOU SHELDON HEIP
.949221 .388673 .^55183 .34622
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUE5CSPECIES)
.70181? 6
CALCULATES six DIVERSITY INDICES.
NMEss INDICES,
AND OME DOMINANCE INDEX.
B-2-4
-------
ST*iiUN : VILL-GE ..KfctiK 5
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSONCB) MCINTOSH SHANNON MENHINICK
.hBf»S86 7.49757E-2 1,03105 3.77249E-2 .29311« .450035
EVENNtSS INDICES
MCINTOSH PIELOU SHELDON HEIP
1 .146559 .33S15 .113534
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
NUMBER OF IMPORTANCE
VALUES(SPECIES)
.925971 4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUH EVENNESS INDICES,
ANO ONE DOMINANCE INDEX.
STATION : VILLAGE CREEK 6
OUADRAT/SAMPLE NUMBER i
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSONC8) MCINTOSH SHANNON MENHINICK
.810699 .131547 1.15147 6.79438E-2 .458666 .274721
EVENNESS INDICES
MCINTUSH PIELLU SHELDON HEIP
.941919 .177436 .26366 .116393
DOMINANCE INDEX AND NUM3ER OF IMPORTANCE VAUJES(SPECIES)
DOMIMANCE NUMBER UF IMPORTANCE
VALUES(SPECIES)
.864729 6
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-5
-------
STATION : VILLAGE CREEK 7
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
'A-.j-L-V oi .rSi'-.(«J M'• !' i JH li. J .Cli. i UiH OJtAi'.'.vJi" L.MI
.70853d .491049 1.96082 .281621 1.2220
EVENNESS INDICES
MCINTDSH PIELOU SHELDON HEIP
.750770 .611201 .308633 .798000
DOMINANCE INDEX AND NUMoER OF IMPORTANCE VALUES (SPEC IES)
DOMINANCE NUMSER OF IMPORTANCE
VALUES(SPECIES)
.516068 0
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND OME DOMINANCE INDEX.
STATION : VALLEY CREEK 1
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSOiM(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
.70010B .30031 1.51586 .186818 .870867 .300207
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.526089 .376785 .079711 .309639
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOiwIMANCE NUM8ER OF IMPORTANCE
VALUES(SPECIES)
.661260 5
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUK EVENNESS INDICES,
ONE ^''INANCE INDEX.
STATION : VALLEY CREEK 2
ONLY ONE VALUECSPECIES) IN SAMPLECQUAORAT) NUMBER i
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-6
-------
STATION : VALLEY CREEK 3
QUADRAT/SAMPLE NUMBER i
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSQN(B) MC1NTOSH SHANNON MENHINICK
.843799 .347899 1.53351 .186341 .951695 .676123
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.888639 .475848 .647524 .530032
DOMINANCE INOEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECtES)
.662041 4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND DIME DOMINANCE INDEX.
STATION ! VALLEY CREEK 4
QUADRAT/SAMPLE NUMBER i
DIVERSITY JUOICES
MARGALFV SIMPSON(A) SIMPSQM(B) MCINTOSH SHANNON MENHINICK
.360674 5.35846E-2 1.05662 2.70535E-2 .19707 .1875
EVENNESS INDICES
PIELOU SHELDON HEIP
.96U593 .124337 .405943 .108914
DOMINANCE INDEX AMD NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUEb(SPECIES)
.946624 3
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AMD ONE DOMINANCE INOEX.
B-2-7
-------
STATION : VALLEY CREEK 5
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSOIM(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
1.07679 .356741 1.55458 .197834 .850459 .219251
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.805992 .26829 .26008 .16759
DOMINANCE INDEX AND NUM6ER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.643469 9
PROGRAM CALCULATES SIX DIVERSITY INDICES,
FOUR EVENNESS INDICES,
AND O.Mf. DOMINANCE INDEX.
STATION : VALLEY CREEK 6
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(R) MCINTOSH SHANNON MENHTNICK
.920992 .331755 1.49646 .182237 .987451 .26943
EVENNESS INDICES
MCIMinSH PIELOU SHELDON HEIP
.825092 .351737 .383483 .280731
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.668736 7
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-8
-------
STATION : VALLEY CREEK 7
OUAURAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
.516784 .130128 1.14959 6.71205E-2 .398776 .219529
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.941373 .199388 .3725 .163333
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.87026 4
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES/
Af40 ONE DOMINANCE INDEX.
STATION : VALLEY CREEK 8
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSON(A) SIMPSON(R) MCINTOSH SHANNON MENHINICK
2.05612 .512169 2.04989 .301146 1.71493 .498617
EVENNESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.709829 .43H95 .370018 .3P5448
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES (SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUF.S(SPECIES)
.488396 15
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUk EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-9
-------
STATION : VALLEY CREEK 9
QUADRAT/SAMPLE .NUMBER l
DIVERSITY INDICES
MARGALEV SIMPSONU) SIMPSON(B) MCINTOSH SHANNON MENHIMCK
1.0052 .4624U2 1.86013 .266679 1.17424 .16829
EVFN.NESS INDICES
MCINTOSH PIELOU SHELDON HEIP
.735378 .370432 .359521 .279161
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUEStSPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.537759 9
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
STATION : VALLEY CREEK
ONLY ONE VALUE(SPECIES) IN SAMPLE(OUADRAT) NUMBER 1
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR tVENNESS INDICES,
AND DNE DOMINANCE INDEX.
STATION : VALLEY CREEK 10
QUADRAT/SAMPLE NUMBER i
DIVERSITY INDICES
MARGALF.V SIMPSON(A) SIMPSONC8) MCINTOSH SHANNON MENHINICK
1.U2557 .606991 2.54447 .372571 1.67642 .263609
EVENNESS INDICES
hCINTOSH PIELOU SHELDON HEIP
.632232 .558806 .668296 .62091
DOMINANCE INDEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
Ln - ' I i •' l_i_ '.''I' .tS I.I- 1 .
VALUESfSPECIES)
.393667
PROGRAM CALCULATES SIX DIVERSITY INDICES.
FOUR EVENNESS INDICES,
AND ONE DOMINANCE INDEX.
B-2-10
-------
STATION : VALLEY CREEK 11
QUADRAT/SAMPLE NUMBER 1
DIVERSITY INDICES
MARGALEV SIMPSHN(A) SIMPSON(B) MCINTOSH SHANNON MENHINICK
1.35653 .226482 1.29313 .120576 .801507 .208138
EVENNESS VOICES
MCINTOSH PIELOU SHELDON HEIP
.992344 .223586 .185749 .11172*
DOMINANCE INOEX AND NUMBER OF IMPORTANCE VALUES(SPECIES)
DOMINANCE NUMBER OF IMPORTANCE
VALUES(SPECIES)
.77338ft 12
B-2-11
-------
APPENDIX B-3
BIRDS OF THE BLACK WARRIOR RIVER BASIN
-------
TABLE B-l
BIRDS OF THE BLACK WARRIOR RIVER BASIN
IDENTIFIED BY AWARE PERSONNEL DURING FIELD INVESTIGATIONS
Category
Name
Status
Rare or Endangered
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Heron, Green
Heron, Black-crowned Night
Duck, Mallard
Duck, Wood
Duck, Common Goldeneye
Merganser, Hooded
Vulture, Turkey
Hawk, Red-shouldered
Hawk, Broad-winged
Hawk, Sparrow
Bobwhite
Turkey
Coot, American
Kill deer
Snipe, Common
Dove, Mourning
Cuckoo, Yellow-billed
Nighthawk, Common
Hummingbird, Ruby-throated
Flicker, Yellow-shafted
Woodpecker, Pileated
Woodpecker, Red-headed
Woodpecker, Downy
Phoebe, Eastern
Swallow, Cliff
Jay, Blue
Crow, Common
Wren, House
Mockingbird
Catbird
Robin
Shrike, Loggerhead
Vireo, Red-eyed
Meadow!ark, Eastern
Blackbird, Red-winged
Grackle, Common
Cardinal
Bunting, Indigo
Goldfinch, American
C-Current
A-Accidental
E-Exti rpated
X-Extinct
I-Introduced
H-Hypothetical
B-3-1
-------
TABLE B-l (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
IDENTIFIED BY AWARE PERSONNEL DURING FIELD INVESTIGATIONS
Status
Category Name Rare or Endangered
C Sparrow, Field
C Sparrow, Song
B-3-2
-------
TABLE B-2
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category Name
C Loon, Common
C Loon, Red-throated
A, H Grebe, Red-necked
C Grebe, Horned
C Grebe, Eared
C Grebe, Pied-billed
A Shearwater, Greater
E Shearwater, Sooty
A, H Petrel, Wilson's
A, H Tropicbird, White-tailed
C Pelican, White
C Pelican, Brown
H Booby, Brown
C Gannet
C Cormorant, Double-crested
C Anhinga
C Frigatebird, Magnificent
C Heron, Great White
C Heron, Great Blue
C Heron, Green
C Heron, Little Blue
C Egret, Cattle
C Egret, Reddish
C Egret, Common
C Egret, Snowy
C Heron, Louisiana
C Heron, Black-crowned Night
C Heron, Yellow-crowned Night
C Bittern, Least
C Bittern, American
C Ibis, Wood
C Ibis, Glossy
C Ibis, White-faced
C Ibis, White
A Ibis, Scarlet
A Spoonbill, Roseate
E Flamingo, American
I Swan, Mute
B-3-3
-------
TABLE B-2 (cont'd:)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
Name
c
c
A
A, H
C
C
C
C
C
C
C
C
C
A
C
C
A
A, H
C
C
C
C
C
C
C
C
C
C
C
A, H
A, H
C
C
C
C
C
C
C
Swan,
Goose,
Brant
Goose,
Goose,
Goose,
Goose,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Duck,
Eider,
Scoter
Scoter
Scoter
Duck,
Whistling
Canada
Barnacle
White-fronted
Snow
Blue
Fulvous Tree
Mallard
Black
Mottled
Gadwall
Pintail
Bahama
Green-winged Teal
Blue-winged Teal
Cinnamon Teal
European Widgeon
Widgeon, American
Shoveler
Wood
Redhead
Ring-necked
Canvasback
Greater Scaup
Lesser Scaup
Common Goldeneye
Bufflehead
Oldsquaw
Harlequin
King
, White-winged
, Surf
, Common
Ruddy
Merganser, Hooded
Merganser, Common
Merganser, Red-breasted
B-3-4
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
C
C
A, H
C
C
C
C
C
C
C
C
C
A, H
C
C
C
C
C
C
C
C
C
C
I
C
E
C
C
C
C
C
C
A
C
C
C
C
Name
Vulture, Turkey
Vulture, Black
Kite, White-tailed
Kite, Swallow-tailed
Kite, Mississippi
Hawk, Sharp-shinned
Hawk, Cooper's
Hawk, Red -tailed
Hawk, Harlan's
Hawk, Red-shouldered
Hawk, Broad-winged
Hawk, Swainson's
Hawk, Short-tailed
Hawk, Rough-legged
Eagle, Golden
Eagle, Bald
Hawk, Marsh
Osprey
Falcon, Peregrine
Hawk, Pigeon
Hawk, Sparrow
Grouse, Ruffed
Bobwhite
Pheasant, Ring-necked
Turkey
Crane, Whooping
Crane, Sandhill
Rail, King
Rail , Clapper
Rail , Virginia
Sora
Rail , Yellow
Rail , Black
Gallinule, Purple
Gallinule, Common
Coot, American
Oystercatcher, American
B-3-5
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category Name
C Plover, Semi palmated
C Plover, Piping
C Plover, Snowy
C Plover, Wilson's
C Kill deer
C Plover, American Golden
C Plover, Black-bellied
C Turnstone, Ruddy
E Woodcock, European
C Woodcock, American
C Snipe, Common
C Curlew, Long-billed
C Whimbrel
C Plover, Upland
C Sandpiper, Spotted
C Sandpiper, Solitary
C Willet
C Yell owlegs, Greater
C Yellowlegs, Lesser
C Knot
C Sandpiper, Pectoral
C Sandpiper, White-rumped
C Sandpiper, Baird's
C Sandpiper, Least
C Dunlin
C Dowitcher, Short-billed
C Dowitcher, Long-billed
C Sandpiper, Stilt
C Sandpiper, Semipalmated
C Sandpiper, Western
C Sandpiper, Buff-breasted
C Godwit, Marbler
C Sander!ing
C Avocet, American
C Stilt, Black-necked
C Phalarope, Red
B-3-6
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
C
C
A, H
H
H
C
C
C
A, H
C
A, H
C
C
C
H
C
A
C
C
C
C
C
C
I
C
C
X
C
X
C
C
A, H
C
C
C
A, H
C
C
Name
Phalarope, Wilson's
Phalarope, Northern
Jaeger, Pomarine
Jaeger, Parasitic
Gull, Great Black-backed
Gull , Herring
Gull, Ring-billed
Gull , Laughing
Gull , Franklin's
Gull , Bonaparte's
Gull , Sabine's
Tern, Gull -billed
Tern, Forster's
Tern, Common
Tern, Roseate
Tern, Sooty
Tern, Bridled
Tern, Least
Tern, Royal
Tern, Sandwich
Tern, Caspian
Tern, Black
Skimmer, Black
Dove, Rock
Dove, White-winged
Dove, Mourning
Pigeon, Passenger
Dove, Ground
Parakeet, Carolina
Cuckoo, Yellow-billed
Cuckoo, Black-billed
Ani, Smooth-billed
Owl , Barn
Owl , Screech
Owl , Great Horned
Owl , Snowy
Owl , Burrowing
Owl , Barred
B-3-7
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category Name
C Owl, Long-eared
C Owl, Short-eared
A Owl, Saw-whet
A Chuck-will's-widow
C Whip-poor-will
C Nighthawk, Common
C Swift, Chimney
C Hummingbird, Ruby-throated
A, H Hummingbird, Rufous
C Kingfisher, Belted
C Flicker, Yellow-shafted
C Woodpecker, Pileated
C Woodpecker, Red-bellied
C Woodpecker, Red-headed
C Sapsucker, Yellow-bellied
C Woodpecker, Hairy
C Woodpecker, Downy
C Woodpecker, Red-cockaded
X Woodpecker, Ivory-billed
C Kingbird, Eastern
C Kingbird, Gray
A, H Kingbird, Tropical
C Kingbird, Western
C Flycatcher, Scissor-tailed
C Flycatcher, Great Crested
C Flycatcher, Ash-throated
A Flycatcher, Stolid
C Phoebe, Eastern
A Phoebe, Say's
C Flycatcher, Yellow-bellied
C Flycatcher, Acadian
C Flycatcher, Traill's
C Flycatcher, Least
C Pewee, Eastern Wood
C Flycatcher, Olive-sided
C Flycatcher, Vermilion
C Lark, Horned
C Swallow, Tree
B-3-8
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category Name
C Swallow, Bank
C Swallow, Rough-winged
C Swallow, Barn
C Swallow, Cliff
C Martin, Purple
C Jay, Blue
X Raven, Common
C Crow, Common
C Grow, Fish
C Chickadee, Carolina
C Titmouse, Tufted
C Nuthatch, White-breasted
C Nuthatch, Red-breasted
C Nuthatch, Brown-headed
C Creeper, Brown
C Wren, House
C Wren, Winter
C Wren, Bewick's
C Wren, Carolina
C Wren, Long-billed Marsh
C Wren, Short-billed Marsh
A, H Wren, Rock
C Mockingbird
C Catbird
C Thrasher, Brown
A Thrasher, Sage
C Robin
C Thrush, Wood
C Thrush, Hermit
C Thrush, Swainson's
C Thrush, Gray-cheeked
C Veery
C Bluebird, Eastern
C Gnatcatcher, Blue-gray
C Kinglet, Golden-crowned
C Kinglet, Ruby-crowned
C Pipit, Water
B-3-9
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
C
C
C
I
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Name
Pipit, Sprague's
Waxwing, Cedar
Shrike, Loggerhead
Starling
Vireo, White-eyed
Vireo, Bell 's
Vireo, Yellow-throated
Vireo, Solitary
Vireo, Black-whiskered
Vireo, Red-eyed
Vireo, Philadelphia
Vireo, Warblin
Warbler, Black and white
Warbler, Prothonotary
Warbler, Swainson's
Warbler, Worm-eating
Warbler, Golden-winged
Warbler, Lawrence's
Warbler, Brewster's
Warbler, Blue-winged
Warbler, Bachman's
Warbler, Tennessee
Warbler, Orange-crowned
Warbler, Nashville
Warbler, Parula
Warbler, Yellow
Warbler, Magnolia
Warbler, Cape May
Warbler, Black-throated
Warbler, Myrtle
Warbler, Audubon's
Warbler, Black-throated
Warbler, Black-throated
Warbler, Cerulean
Warbler, Blackburnian
Warbler, Yellow-throated
Warbler, Chestnut-sided
Blue
Gray
Green
B-3-10
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
Name
C
C
C
H
C
C
C
C
C
C
C
C
C
C
C
C
C
C
I
C
C
C
H
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Warbler, Bay-breasted
Warbler, Blackpoll
Warbler, Pine
Warbler, Kirtland's
Warbler, Prairie
Warbler, Palm
Ovenbird
Waterthrush, Northern
Waterthrush, Louisiana
Warber, Kentucky
Warbler, Connecticut
Warbler, Mourning
Yellowthroat
Chat, Yellow-breasted
Warbler, Hooded
Warbler, Wilson's
Warbler, Canada
Redstart, American
Sparrow, House
Bobolink
Meadow!ark, Eastern
Meadowlark, Western
Blackbird, Yellow-headed
Blackbird, Red-winged
Oriole, Orchard
Oriole, Baltimore
Oriole, Bullock's
Blackbird, Rusty
Blackbird, Brewer's
Grackle, Boat-tailed
Grackle, Common
Cowbird, Brown-headed
Tanager, Western
Tanager, Scarlet
Tanager, Summer
Cardinal
Grosbeak, Rose-breasted
B-3-11
-------
TABLE B-2 (cont'd)
BIRDS OF THE BLACK WARRIOR RIVER BASIN
Category
C
C
C
C
C
C
C
H
C
C
C
A, H
C
A
C
C
C
C
C
C
C
C
C
C
A, H
A, H
C
C
C
H
C
C
C
C
C
C
C
C
Name
Grosbeak, Black-headed
Grosbeak, Blue
Bunting, Indigo
Bunting, Painted
Dickcissel
Grosbeak, Evening
Finch, Purple
Redpol 1 , Common
Siskin, Pine
Goldfinch, American
Crossbill , Red
Towhee, Green-tailed
Towhee, Rufous-sided
Bunting, Lark
Sparrow, Savannah
Sparrow, Grasshopper
Sparrow, Le Conte's
Sparrow, Henslow's
Sparrow, Sharp-tailed
Sparrow, Seaside
Sparrow, Vesper
Sparrow, Lark
Sparrow, Bachman's
Junco, Slate-colored
Junco, Oregon
Sparrow, Tree
Sparrow, Chipping
Sparrow, Clay-colored
Sparrow, Field
Sparrow, Harris1
Sparrow, White-crowned
Sparrow, White-throated
Sparrow, Fox
Sparrow, Lincoln's
Sparrow, Swamp
Sparrow, Song
Longspur, Lapland
Longspur, Smith's
Source: Department of Conservation, State of Alabama.
B-3-12
-------
APPENDIX B-4
MAMMAL ABUNDANCE INDICATORS
-------
Optimum Carrying 10
Capacity-Population
9
CO
I
Relative Abundance °
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential —•—
1 -
6.5 4.9 3.1 0.141.538.9 37.7
32.4
27
19.4
1.00
FIG. B-1 BEAVER (CASTOR CAMADENSIS)
-------
Optimum Carrying
Capacity-Population
DO
Relative Abundance
River Miles
i i i i i
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential —•—
OPPOSSUM
i _ ii
III
i i
VALLEY
I
6.5 4.9 3.1 0.1 41.5 38.9 37.7
32.4
27
19.4
9.7
1.00
TIG B-2 RACCOON (PROCYON LOTOR)
-------
Optimum Carrying 10
Capacity-Population
9
8
oo
i
6
5
4
3
Relative Abundance °
River Miles
Scale 1 inch « 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential ——•
OPPOSSUM
VALLEY
t
6.5 4.9 3.1 0.141.538.937.7 32.4 27 19.4
FIG B-3 GRAY SQUIRREL (SCIURUS CAROLINENSIS)
9.7
1.00
-------
Optimum Carrying
Capacity-Population
CO
Relative Abundance
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance •
Range Potential ——
OPPOSSUM
i i i
I I I
VALLEY
I
6.5 4.9 3.1 0.141.538.937.7 32.4 27 19.4
FIG B-4 OPOSSUM (DIDELPHIS MARSUPIALIS)
9.7
1.00
-------
Optimum Carrying 10
Capacity-Population
9
8
CO
i
en
Relative Abundance
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential — —-
OPPOSSUM
I j I
VALLEY
I
6.5 4.9 3.1 0.1 41.538.9 37.7
32.4
27
19.4
9.7
1.00
FIG B-5 STRIPED SKUNK (MEPHITIS MEPHITIS)
-------
Optimum Carrying
Capacity-Population
CD
I
CT>
1
Relative Abundance "
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential
OPPOSSUM
I I
VALLEY
_ i
6.5 4.9 3.1 0.141.538.937.7 32.4 27 19.4
FIG. B-6 EASTERN COTTONTAIL (SYLVILAGUS FLORIDANUS)
9.7
1.00
-------
Optimum Carrying 10
Capacity-Population
9
8
CD
Relative Abundance
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance ——
Range Potential — -
OPPOSSUM
I _J I L
VALLEY
I
6.5 4.9 3.1 0.141.538.937.7 32.4 27 19.4
FIG. B-7 WHITETAIL DEER (ODOCOILEUS VIRG1NIANUS)
9.7
1.00
-------
Optimum Carrying
Capacity-Population
oo
i
CO
7 -
Relative Abundance
River Miles
I I I I I I
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential
OPPOSSUM
i i i I
I i i
VALLEY
i
6.5 4.9 3.1 0.1 41.538.9 37.7
32.4
27
19.4
9.7
1.00
FIG. B-8 MUSKRAT (ONDATRA ZIBETHICUS)
-------
Optimum Carrying 10
Capacity-Population
9
8
CD
I
vo
Relative Abundance °
River Miles
Scale 1 inch = 6 River Miles
Valley Creek
Opossum Creek
Relative Abundance
Range Potential
9
OPPOSSUM
I i
VALLEY
l i i
6.5 4.9 3.1 0.141.538.937.7 32.4 27 19.4
FIG. B-9 MINK(MUSTELA VISON)
9.7
1.00
-------
APPENDIX B-5
SPECIES OF ALABAMA IDENTIFIED AS RARE AND ENDANGERED
-------
CD
I
U1
I
TABLE B-3
RARE AND ENDANGERED AVIFAUNA OF ALABAMA
Occurance
Common Name Common Uncommon
Golden Eagle
Brown Pelican
Bald Eagle
Osprey
Peregrin Falcon
Snowy Plover
Red-Cockaded Woodpecker
Ivory-billed Woodpecker
Bachaman's Warbler
Black Rail
Reddish Egret
Mottled Duck
Little Blue Heron
Black-crowned Night Heron
Wood Stork
Swallow- tailed Kite
Sharp-shinned Hawk
Cooper's Hawk
Red Shouldered Hawk
Merlin
Sandhill Crane
American Oystercatcher
Bewick's Wren
Swainson's Warbler
Bachman's Sparrow
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Status
Rare or Endangered
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Residence
Permanent Winter Spring Summer Fall
X
X
X
X X
X
X
x (probably extinct)
XXX
XXX
X X
X
X
X
X X
X
X
X
X
X X
X
X
X
X
X
-------
TABLE B-4
ENDANGERED AND THREATENED AMPHIBIANS & REPTILES IN ALABAMA
Class
Common Name
Scientific Name
Status
Order Caudata-
Salamanders
CO
i
Ol
ro
REPTILIA
Order Squamate-
Lizards & Snakes
Flatwood salamander
Red Hills salamander
Hellbender
Seepage salamander
Mountain dusky salamander
Brown-backed salamander
Tennessee cave salamander
Georgia red-backed salamander
West Sipsy Fork waterdog
Greater siren
Eastern indigo snake
Black pine snake
Florida pine snake
Eastern milk snake
Red milk snake
Pine woods snake
Florida green water
North Florida black
snake
Eastern diamondback
snake
snake
swamp
Ambystoma cingulatum
PhaeognaThus hubrichii
GVyptobranchus alleganien-
sis alleqaniensis
De"SMTgnathus aenmjs
Desmognathus ochrophaeus
Eurycea aquatica
Gyrinophilus palleucus
Plethodon cinereus
polycentratus
Necturus sp.
Siren lacertina
Drymarchon Corais couperi
Pituophis melanoleucus
lodingi
Pituophis melanoleucus
mugitus
Lampropeltis triangulatum
triangulatum
Lampropeltis triangulatum
syspila
Rhadinaea flavilata
Natrix cyclopion floridana
Seminatrix pygaea pygaea
rattle- Crotalus adamanteus
Endangered
Endangered
Threatened
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Endangered
Endangered
Endangered
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
-------
TABLE B-4 (cont'd)
ENDANGERED AND THREATENED AMPHIBIANS & REPTILES IN ALABAMA
Class
Common Name
Scientific Name
Status
Order Testudinidata
00
en
CO
AMPHIBIA
Order Anura-
Frogs & Toads
Atlantic loggerhead
Green turtle
Atlantic hawksbill
Atlantic ridley
Atlantic leatherback
Alabama red-bellied turtle
Flattened musk turtle
Gopher tortoise
Barbour's map turtle
Florida softshell
Eastern spiny softshell
Dusky gopher frog
Little grass frog
River frog
Wood frog
Caretta caretta caretta
Chelom'a mydas
Eretmochelys imbricata
imbricata
Lepidochelys kempi
Dermqchelys coriacea
Pseudemys alabamensis
Sternotherus minor
_JP
Compherus
Graptemys
depressus_
poiyi:
barbourT
)olyphemus
Trionyx ferox
Trionyx spiniferus
spinferus
Rana areolata sevosa
Limnaoedus ocularis
Rana heckscheri
Rana sylvatica~
Endangered
Endangered
Endangered
Endangered
Threatened
Threatened
Threatened
Threatened
Special Concern
Special Concern
Special Concern
Threatened
Special Concern
Special Concern
Special Concern
-------
TABLE B-5
ENDANGERED AND THREATENED FISH SPECIES IN ALABAMA
Class
CO
I
en
Common Name
Scientific Name
Status
Pisces (Fishes) American brook lamprey
Alabama shovel nose sturgeon
Cahaba shiner
Frecklebelly madtom
Alabama cavefish
Spring Pigmy Sunfish
Watercress darter
Goldline darter
Pygmy sculpin
Blue Sucker
Atlantic sturgeon
Crystal darter
Slackwater darter
Coldwater darter
Tuscumbia darter
Warrior mascadine darter
Freckled darter
Lake sturgeon
Southern redbelly dace
Flame chub
Streamline chub
Blotched chub
Spotfin chub
Popeye shiner
Bigeye shiner
Blue shiner
Bluestripe shiner
Warpaint shiner
Lampetra lamotteni
Scaphirhynchus sp.
Notropis sp.
Noturus munitus
Speoplatyrhinus poulsoni
Elassoma sp.
Etheostoma nuchale
Percina aurolineata
Cottus pygmaeus
Cycleptus elongatus
Acipenser oxyrhynchus
Ammocrypta asprella
Etheostoma boschungi
Etheostoma ditrema
Etheostoma tuscumbia
Percina sp.
Percina lenticula
Acipenser fulvescens
Chrosomus erythrogaster
Hemitremia flammea
Hybopsis dissimilis
Hybopsis ins ignis
Hybopsis monacha
Notropis ariommus
Notropis boops
Notropis caeruleus
Notropis callitaenia
No t ro p i s co c co gen is
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Threatened
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
-------
TABLE B-5 (cont'd)
ENDANGERED AND THREATENED FISH SPECIES IN ALABAMA
Class
Common Name
Scientific Name
Status
00
in
tn
Dusky shiner
Broadstripe shiner
Sawfin shiner
Sand shiner
Stargazing minnow
Harelip sucker
Elegant madtom
Stonecat
Brindled madtom
Southern cavefish
Whiteline topminnow
Banded topminnow
Pygmy killifish
Bluefin killifish
Shoal bass
Blenny darter
Ashy darter
Unnamed snubnose darter
Trispot darter
Northern banded darter
Blotchside logperch
Mottled sculpin
Notropis cummingsae Special Concern
Notropis euryzonus Special Concern
Notropis sp. Special Concern
Notropis stramineus Special Concern
Phenacobius uranops Special Concern
Lagochila lacera Special Concern
Noturus elegans Special Concern
Noturus flavus Special Concern
Noturus miurus Special Concern
Typhlichthys subterraneus Special Concern
Fundulus albolineatus Special Concern
Fundulus cingulatus Special Concern
Leptolucania ommata Special Concern
Lucania goodei Special Concern
Micropterus sp. Special Concern
Etheostoma blennius Special Concern
Etheostoma cinereum Special Concern
Etheostoma sp. Special Concern
Etheostoma trisella Special Concern
Etheostoma z_. zonale Special Concern
Percina burtoni Special Concern
Special Concern
Cottus bairdi
-------
TABLE B-6
RARE AND ENDANGERED MAMMALS IN ALABAMA
Class
Common Name
Scientific Name
Status
Mammalia
00
en
I
01
Gray Myotis
Indiana Myotis
Alabama Gulf Beach Mouse
Perdido Bay Beach Mouse
Northern Black Bear
Florida Black Bear
Florida Panther
Southeastern Shrew
Southeastern Myotis
Little Brown Bat
Keen's Myotis
Rafinesque's Big-eared Bat
Florida Yellow Bat
Marsh Rabbit
New England Cottontail
Bayou Gray Squirrel
Prairie Vole
Meadow Jumping Mouse
Myotis grisescens
Myotis soda!is
Peromyscus polionotus
ammobates
Peromyscus polionotus
trissyllepsis
Ursus americanus americanus
Ursus americanus floridanus
Felis concolor coryi
Sorex longirostris
longirostris
Myotis austroriparius
austroriparius
Myotis lugofugus lucifugas
Myotis keenii septen-
trional is
Plecotus rafinesquii
Lasiurus floridanus
Sylvilaqus palustris
palustris
Sylvilagus transitional is
Sciurus carolinensis
fuliginosus
Microtus ochrogaster
ochrogaster
Zapus hudsonius
americanus
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Endangered
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
Special Concern
-------
APPENDIX B-6
TERRESTRIAL VEGETATION OF THE BALCK WARRIOR RIVER BASIN
-------
TABLE B-7
DOMINANT PLANT SPECIES
OCCURRING IN MIXED RIPARION HABITATS
Forest Type
Common Name
Generic Name
Rich Deciduous Woods
(Mixed Hardwood Forest)
Swamp Forest
(Low Woods)
Beech
Sugar Maple
Yellow Poplar
Basswood
Red Mulberry
Leather wood
Buckthorn
Hydrangea
May Apple
Blood Root
Solomon's seal
Giant chickenweed
Indian Pink
Ironweed
Sweet gum
Black gum
Water Oak
Willow Oak
Swamp Chestnut Oak
Overcup Oak
Red Maple
Green ashe
American elm
Hawthorn
Deciduous Holly
Swamp dogwood
Cane
Cross Vine
Rattan Vine
Trumpet Vine
Fagus grandifolia
Acer saccharum
Liriodendron tulipifera
Tilia heterophylla
rubra
palustris
Rhamnus caroliniana
Hydrangea sp.
Podophyllum peltatum
Sanguinaria canadesis
Polygonatum biflorum
Holy
Stel
laria pubera
Spigelia marilandica
Carpiinus caroliniana
Liquidambar styraciflua
Nyssa sylvatica
Quercus nigra
Quercus phellos
Quercus michauxii
Quercus lyrata
Acer rubrum
Fraxinus pennsylvam'ca
Ulmus americana
Crataegus viridis
Ilex decidua
Cornus stricta
Arundinaria gigantea
Bignonia capreolata
Berehernia scandens
Campsis radicans
B-6-1
-------
TABLE B-7(cont'd)
DOMINANT PLANT SPECIES
OCCURRING IN MIXED RIPARIAN HABITATS
Forest Type
Common Name
Generic Name
Upland Pine-Oak Woods
Short-leaf Pine
Loblolly Pine
S. Red Oak
Laurel Oak
Mockernut Hickory
Persimmon
Winged elm
Winged Sumac
Sparkleberry
Dogwood
Sassafras
Hawthorn
Rattlebox
Spurge-nettle
Mi 1kweed
Coral beads
Phlox
Disturbed "Pine Plantation" Loblolly pine
Short leaf pine
Sweet gum
Black gum
Black Cherry
Persimmon
Ironwood
Dogwood
Chickasaw plum
Wax Myrtle
Blackberry
Chinese privet
Trumpet vine
Japanese honeysuckle
Pepper vine
Poison Ivy
Pinus echinata
Pinus taeda
Quercus falcata
Quercus hemispherica
Carya tomentosa
Diospyros virginiana
Ulmus alata
Rhus copallina
Vaccinium arboreum
Cornus fTorida
Sassafras albidum
Crateagus uniflora
Crotalaria angulata
OnidoscoTus stimulosus
Asclepias variegata
Cocculus carolinus
Phlox sp~.
Pinus elliottii
Pinus echinata
Liquidambar styraciflua
Nyssa sylvatica
Prunus serotina
Diospyros virginiana
Carpinus caroliniana
Cornus florida
Prunus angustifolia
Myrica cerifera
Rubus betulifolius
sinense
Campsis radicans
Lonicera japonica
Ampelopsis arborea
Rhus radicans
B-6-2
-------
TABLE B-8
TREES AND WOODY SHRUBS OBSERVED OR
EXPECTED TO OCCUR IN THE BLACK WARRIOR RIVER BASIN
Common Name
Generic Name
boxelder
red maple
silver maple
shining sumac
smooth sumac
poison ivey
poison sumac
small flower pawpaw
American holly
river birch
American hornbeam
eastern hophornbeam
southern catalpa
flowering dogwood
eastern redcedar
persimmon
sourwood
Allegheny chinkapin
American beech
white oak
scarlet oak
southern red oak
turkey oak
laurel oak
overcup oak
blackjack oak
swamp chestnut oak
water oak
willow oak
northern red oak
post oak
black oak
witch-hazel
sweetgum
Acer negundo
Acer rubrum
Acer saccharinum
Rhus Copallina
Rhus glabra
Toxicodendron radicans
Toxicodendron vernix
Asimina parviflora
Ilex opaca
Betula ni'gra
Carpinus caroliniana
Ostrya virgim'ana
Catalpa bignonioides
Cornus florida
Juniperus virgim'ana
Diospyros virgim'ana
Oxydendrum arboreum
Castanea pumila
Fagus grandifolia
Quercus alba
Quercus Coccinea
Quercus falcata
Quercus laevis
Quercus laurifolia
Quercus
Quercus
lyrata
marilandica
Quercus michauxii
Quercus
Quercus
mgra
phellos
Quercus rubra
Quercus stellata
Quercus velutina
Hamamelis virgim'ana
Liquidambar styraciflua
B-6-3
-------
TABLE B-8(cont'd)
TREES AND WOODY SHRUBS OBSERVED OR
EXPECTED TO OCCUR IN THE BLACK WARRIOR RIVER BASIN
Common Name
Generic Name
bitternut hickory
pecan
mockernut hickory
black walnut
sassafras
redbud
honeylocust
black locust
yellow-poplar
cucumbertree
southern magnolia
sweetbay
red mulberry
southern bayberry
black tupelo
white ash
green ash
shortleaf pine
slash pine
longleaf pine
loblolly pine
American sycamore
downy serviceberry
hawthorn
plum
eastern cottonwood
black willow
sugarberry
hackberry
Georgia hackberry
winged elm
American elm
slippery elm
Garya cordiformis
Garya illinoensis
Carya tomentosa
Juglans nigra
Sassafras albidum
Cereis canadensis
Gleditsia triacanthos
Robinia pseudoacacia
Liriodendron tulipifera
Magnolia acuminate
Magnolia grandiflora
Magnolia virginiana
Morus rubra
Myrica Cerifera
Nyssa sylvatica
Fraxinus americana
Fraxinus pennsylvanica
Pinus echinata
Pinus elliottii
Pinus palustris
Pinus taeda
Platanus occidental is
Amelanchier arborea
Crataegus spp.
Prunus spp.
Populus deltoides
Salix nigra
Celtis laevigata
Celtis occidental is
Celtis tenuifolia^
Ulmus alata
Ulmus americana
Ulmus rubra
B-6-4
-------
APPENDIX C
CULTURAL
-------
SPECIFIC HISTORICAL SITES IN JEFFERSON COUNTY
AGE-HERALD BUILDING - 2109 Fifth Avenue North, Birmingham; 1910;
concrete, brick and stone structure housed newspapers Iron
Age_ and the Herald after their merger. Art-Architecture,
Georgian and Renaissance; Technology, Communication.
ALABAMA (CRYSTAL) CAVERNS - Near Clay, 18 miles northeast of
Birmingham; 1940; limestone and quartz cave was a commercial
venture, source of saltpeter during the Civil War, and a
recreation site in the 1920s. Military Affairs, Participation
in Wars; Technology, Commerce.
ALABAMA POWER COMPANY - 600 18th Street North, Birmingham; c. 1937;
twelve-story brick, stone and terra cotta structure is topped
with a gold-leaf statue and was called the handsomest public
utility building of its time. Technology, Commerce.
ALABAMA THEATER - 1811 3rd Avenue North, Birmingham; 19]7; seven-
story brick structure is the largest and most elaborate in the
state and one of the largest remaining movie "palaces" in the
country. Art-Architecture, Spanish Renaissance; Art, Drama of
State and Screen.
ARLINGTON HIGH SCHOOL - Bessemer; 1906; four-story brick structure
designed by W. E. Benns is the oldest school in Bessemer. Art
Architecture, Victorian; Education, Institution.
ARLINGTON (MUDD-DEBARDELEBEN-MUNGER HOUSE) - 331 Cotton Avenue Southwest,
Birmingham; 1828-42; two-story frame home served as military
headquarters for Union General James B. Wilson during Civil War
and is the city's only ante bell urn mansion. Art-Architecture,
Greek Revival; Military Affairs, Participation in Wars.
BANK PAWN SHOP - 2023 Second Avenue, Bessemer; 1888; one-story brick
and concrete structure is one of the first buildings in Bessener.
Technology, Commerce.
BANKHEAD HOTEL - Corner of Fifth Avenue and 23rd Street, Birmingham;
c. 1921; fourteen-story brick and sandstone building was an
early skyscraper in Birmingham. Technology, Commerce.
BEAUMONT HOUSE - 4151 Montevallo Road, Birmingham; c. 1850; one-room
log cabin which is now part of a ranch-style home, was once a
commissary for Irondale Furnace. Art-Architecture, Log Cabin;
Technology, Commerce.
C-l
-------
BERNEY BANK - 1901 Second Avenue, Bessemer; 1888; two-story brick
building was designed by G. M. Torgenson, who worked on several
buildings for the 1887 Chicago Exposition. Technology, Commerce.
BESSEMER APOTHECARY - 224 19th Street North; c. 1900; two-story brick
structure is trimmed with white stone. Science, Medicine.
BESSEMER BUGGY WORKS - 20th Street at Third Avenue North, Bessemer;
c. 1900; two-story brick structure has good brick detailing at
cornice. Technology, Commerce.
BESSEMER PUBLIC LIBRARY - 400 19th Street North, Bessemer; early 20th
Century; one-story masonry and stone structure was the oldest
post office before becoming the library and hall of history.
Art-Architecture, Renaissance Revival; Education, Library and
Museum.
BESSEMER SITE - Bessemer; 1100 A.D.; three mounds of the pre-Mature
Mississippian culture excavated in this area in 1934-35, have
been almost totally obliterated by urban development. Aboriginal
Americans, Historic.
BETHLEHEM METHODIST CHURCH - Rutledge Springs-Dolomite; c. 1900; one-
story frame building was constructed around the congregations
first log church built in 1819. Art-Architecture, Gothic
Revival; Society, Religion.
BIRMINGHAM ICE AND COLD STORAGE - Fifth Avenue and 22nd Street,
Birmingham; four-story brick commercial building was enlarged
to seven stories in 1918. Technology, Commerce.
BIRMINGHAM REALTY - 2118 First Avenue North; Birmingham; 1910; two-
story yellow and brown brick building with terra cotta decoration
was built by this firm that succeeded the Slyton Land Company,
developers of Birmingham. Art-Architecture, Renaissance
Revival; Technology, Commerce.
BIRMINGHAM SOUTHERN COLLEGE - Birmingham; 1919; formerly located in
Greensboro, the school is now on the original site of Birmingham
College and is a mixture of old and new structures. Educational,
Institutions.
BLACK MASONIC TEMPLE - 1630 Fourth Avenue North, Birmingham; early 20th
Century; seven-story stone, brick and steel structure is a
principal center of the black community. Art-Architecture, Neo-
classical Revival; Society, Black History.
BLACK (W. H.) RESIDENCE - 1108 North Seventh Avenue, Birmingham; early
20th Century; one and a half-story structure built and lived in
by Blacks. Art-Architecture, Bungalow; Society, Black History.
C-2
-------
BLESSED SACRAMENT CHURCH, SCHOOL AND RECTORY - 1525 Cotton Avenue,
Birmingham; 1910; three brick buildings with Italian influence,
the most imposing being the church with exquisite stained glass
windows throughout. Education, Institution; Society, Religion.
BLOUNT HOME - 322 Sixth Avenue North, Birmingham; c. 1906; handsome
two-story frame structure was built by blacks. Art-Architecture,
Neo-Classical Revival; Society, Black History.
BRADSHAW-RAMSEY HOUSE - 2154 Highland Avenue, Birmingham; 1892; two-
story brick structure in the Chateauesque style was also the
residence of well-known engineer and inventor, Erskine Ramsay.
Art-Architecture, Chateauesque; Technology, Industry and Invention.
BRAKE-CALVERT HOME - 302 Blake Street, Warrior; 1887; two-story frame
house is an excellent example of Victorian architecture. Art-
Architecture, Victorian.
BROCK'S GAP - Alabama 150, Shades Mountain; c. 1870; railroad cut
through 70 feet of solid limestone is now partially filled.
Technology, Engineering.
BROWN (A. E.) HOME - 526 Fifth Street North, Birmingham; 1906; two-
story press concrete home was built by black attorney A. E. Brown,
a prominent black citizen. Society, Black History.
BROWN (DR. A. M.) HOUSE - 319 North Fourth Terrace, Birmingham; c. 1908;
one and a half-story structure was originally owned by this
prominent black physician. Black History; Science, Medicine.
BROWN-MARX BUILDING - 2000 First Avenue North, Birmingham; 1906;
sixteen-story granite structure is one of the earliest steel-frame
buildings in the city. Art-Architecture, Commercial; Technology,
Commerce.
BUCKSVILLE CEMETERY - Bucksville; 1816; old pioneer cemetery has grave
markers of stack stone, cast iron and marble. Society.
CAHABA METHODIST CHURCH - Birmingham; 1896; one-story structure is
frame. Society, Religion.
CAHABA PUMPING STATION - Pumphouse Road and Cahaba River; 1890; series
of handsome brick buildings includes two cylindrical pumphouses
called pits. Technology, Commerce.
CANE CREEK BAPTIST CHURCH - Jefferson County 140, Warrior; 1971; two-
story brick building serves a congregation and school organized
in 1815. Society, Religion.
C-3
-------
CANAAN BAPTIST CHURCH - 2543 Morgan Road, Bessemer; 1943; brick
structure is the third to house this congregation which was
organized in 1818 and is the "mother church" of all Baptist
churches in Jefferson County. Society, Religion.
CANON HOUSE - Birmingham; early 1900s; two-story stone structure has
gable roof. Art-Architecture, Victorian.
CARDIFF LOG CABIN - Cardiff Road, Cardiff; 1800s; small, one-room
structure is made of hand hewn interlocking logs. Art-
Architecture, Log Cabin.
CARNEGIE LIBRARY BUILDING - 327 18th Street North, Bessemer; 1907;
one-story brick building with terra cotta trim was the first
library in this city and now houses the Chamber of Commerce.
Education, Library; Technology, Commerce.
CARRIAGE HOUSE ANTIQUES - 1310 19th Way South, Birmingham; c. 1900;
two-room brick stable is a good example of adaptive restoration
and use. Technology, Commerce.
CENTRAL FAIRFIELD DISTRICT - Fairfield; early 1900s; brick and terra cotta
commercial structures and bungalow-style frame residences comprise
this area which was developed as a cotton field by Fairfield
Land Company. Technology, Commerce.
CHARLESTON BLOCK - 19th Street North and Second Avenue, Bessemer; late
19th Century: three- and four-story brick commercial structures
were named for the real estate company that developed Bessemer.
Technology, Commerce.
CHESTNUT HILL HISTORIC DISTRICT - Lakeview Crescent and Highland
Avenue, Birmingham; early 1900s; in-town residential neighborhood
of approximately 100 structures in early 20th Century styles has
fought successfully for 30 years to retain the single-family
dwelling zoning. Art-Architecture, Varied 19th and 20th Century
Styles.
COLLARD ROW - Alabama Avenue, Bessemer; c. 1887; five one-story, one-
room frame structures were built by the railroad for its workers.
Technology, Transportation.
"THE COTTAGE" - Near McCalla; late 19th Century; brick and .cedar siding
comprise this rustic structure which is on the Sadler plantation.
Art-Architecture, Rustic.
COMER BUILDING - 2030 Second Avenue North, Birmingham; 1912; twenty-five
story skyscraper is faced with granite and now houses City Federal
Savings. Art-Architecture, Neo-Classical Revival.
C-4
-------
COMMERCIAL BUILDING - 1901-03 Second Avenue North, Birmingham; early
1900s; three-story brick structure has distinctive cornice and
hood moldings. Art-Architecture, Commercial.
GRAIN HOUSE - Dolomite; 1883, one and a half-story frame structure has
gable roof and dormers. Art-Architecture, Victorian.
CRUMELY'S CHAPEL METHODIST CHURCH - Crumely's Chapel; 1924; one-story
structure is brick and frame. Art-Architecture, Colonial
Revival; Society, Religion.
CRUMELY LOG CABIN - 356 Crumely Chapel Road, Crumely Chapel; c. 1860;
one-story log structure was built in loom holds. Art-Architecture,
Log Cabin.
DANIEL BUILDING - 15 South 20th Street, Birmingham; 1970; twenty-story
steel reinforced concrete and glass structure is the best example
of International style in the State. Art-Architecture,
International.
DEBARDELEBEN COMMISSARY - Overton Road, Overton; 1921; one-story brick
structure built by the coal company as a service to the miners,
is now an adaptive restoration. Technology, Commerce and
Industry.
EDWARDS HOUSE - Route 5, Trussville; ante bell urn; two-story frame
structure has several outbuildings. Art-Architecture, Plantation
Style.
ELYTON CEMETERY - 425 Second Avenue North, Birmingham; 1856; deeded
to city of Elyton in 1856, graves in this restored cemetery date
from 1834. Society.
EMPIRE BUILDING - 1928 First Avenue North, Birmingham; 1909; sixteen-
story concrete, granite, marble and terra cotta structure stands
on one of the first lots of land sold in Birmingham. Art-
Architecture, Neo-Classical.
ENON BAPTIST CHURCH - Majestic Road, Morris; 1949; two-story brick
structure is the third for the congregation organized in 1872.
Society, Religion.
ENSLEY APOTHECARY - 1925 Avenue E, Ensley; 1928; one-story brick
commercial structure has an eight-sided Spanish-style tower.
Technology, Commerce.
ENSLEY MILL - U. S. Steel, Fairfield Works, Birmingham; 1899;
Tennessee Coal and Iron built nine open hearth furnaces and six
blast furnaces here and became the largest producer of pig iron,
coal and coke in the South. Technology, Industry.
C-5
-------
EXCHANGE SECURITY BANK (FIRST ALABAMA BANK) - 330 19th Street North,
Bessemer; c. 1889; two-story masonry structure was designed
with severe Neo-Classical influence. Technology, Transportation.
EPISCOPAL CHURCH OF THE ADVENT - 2109 Sixth Avenue North, Birmingham;
1893; two and a half-story sandstone structure with steeple was
the first Episcopal Church founded in Birmingham. Art-Architecture,
Gothic Revival; Society, Religion.
FARLEY BUILDING - 1829 Third Avenue North, Birmingham; 1909; nine-story
brick and steel-frame structure is a simplified combination of
Sullivanesque and Commercial-style architecture. Art-Architecture,
Commercial; Technology, Commerce.
FEDERAL BUILDING AND COURTHOUSE - 18th and 19th Streets, at Fifth Avenue
North, Birmingham; 1921; three-story limestone and brick structure
of simple Neo-Classical design was originally the Post Office
Building. Art-Architecture, Neo-Classical; Political Affairs,
Establishment and Administration of Government.
FIRST BAPTIST CHURCH - 317 22nd Street North, Birmingham; 1903; massive
rock faced structure has a square tower polygonal turret and
projecting bay. Art-Architecture, Richardsonian Romanesque;
Society, Religion.
FIRST CHRISTIAN CHURCH - 2100 Seventh Avenue North, Birmingham; c. 1924;
this congregation, located in a brick structure with steeple and
illuminated cross, organized the first classes for retarded
children in the city. Society, Religion and Social and
Humanitarian Movements.
FIRST CHURCH OF CHRIST SCIENTIST - 2031 llth Avenue South, Birmingham;
concrete and brick structure was built for the first congregation
of this denomination in Birmingham. Art-Architecture, Neo-
Classical Revival; Society, Religion.
FIRST METHODIST CHURCH - Sixth Avenue, Birmingham; 1891; outstanding
example of Richardsonian Romanesque was recently refurbished.
Art-Architecture, Richardsonian Romanesque; Society, Religion.
FIRST PRESBYTERIAN CHURCH - 2100 Fourth Avenue North, Birmingham; c.
1890; located on the oldest church site in the city, this brick
structure with exquisite stained glass windows replaced the
original church built in 1873. Art-Architecture, Gothic
Revival; Society, Religion.
FIRST PRESBYTERIAN CHURCH - U. S. 11, Trussville; 1899; one-story
white frame structure originally built for $185 has recently been
altered. Society, Religion.
C-6
-------
FIRST UNITED METHODIST CHURCH - 1829 Arlington Avenue, Bessemer;
1929; two-story stone building with raised entrances in the
fourth structure for this congregation organized in 1887. Art-
Architecture, Neo-Classical Revival; Society, Religion.
FIVE MILE CREEK BRIDGE - Near McCalla and Bessemer; 1915; one of the
earliest concrete bridges built in Alabama is owned by the state.
Technology, Transportation.
FIVE MILE PRESBYTERIAN CHURCH - 1137 Five Mile Road, Birmingham; 1958;
red brick structure with wooden bell tower and steeple is the
fourth for this congregation which has retained its 1880
sanctuary. Society, Religion.
FIVE POINTS RETAIL BLOCKS - llth and Highland Avenues, Birmingham;
1920s; these two lavishly decorated buildings are excellent
interpretations of the Mediterranean styles popular in this
period. Art-Architecture, Spanish and Moorish; Technology,
Commerce.
"FLORENTINE" BUILDING - 2101 First Avenue, Birmingham; c. 1920; two-
story structure with lavish glazed terra cotta ornamentation was
originally built as an exclusive club. Art-Architecture,
Mediterranean.
FOREST PARK HISTORIC DISTRICT - Birmingham; 1906-1930s; one of
Birmingham's oldest and finest residential areas, the neighbor-
hood includes over 250 homes in a variety of styles, many of
which were and are residences of city leaders. Included in the
district:
BARRET-CAMPBELL HOUSE - Cliff Road; c. 1910; three-story
fieldstone with ten columns supporting porch.
BOUTWELL (ALBERT) - 4461 Clairmont; c. 1930; Jacobethan
Revival-style home is the residence of former Birmingham mayor
and Lieutenant Governor.
COMER (DONALD) HOME - Two-story brick home is 1,000 feet above
sea level.
DIMMICK (F. D.) HOUSE - Cliff Road; c. 1909; Tudor-style house.
DIXON HOUSE - 4219 Crescent Road, Birmingham; late 1930s; two-
story brick structure was formerly the home of Governor Franklin
Murray Dixon.
FERGUSON (HILL) HOUSE - 4243 Altamont; 1912; leader in real
estate business resided here.
C-7
-------
GASTON (C. G.) HOUSE - 41st Street and Cliff Road; 1918;
Italian Villa-style residence.
HARRISON (DR. W. G.) - 4142 Cliff Road; 1909; one of city's
leading physicians resided here until the 1940s.
JEMISON (ROBERT, JR.) - 4301 Altamont; 1920s; two-story brick
house painted white was the second residence of this Forest
Park developer.
JEMISON-WELLS HOUSE - 4124 Crescent Road; c. 1907; two-story
frame and fieldstone house, Shingle style.
MERRILL-PRATT HOUSE - 4166 Cliff Road; c. 1920; two-story brick
with limestone corners in the Colonial Revival style.
WOODWARD HOUSE - 4101 Altamont Road; 1919; two-story brick mansion
in the Italian Villa style also has servants quarters and guest
houses.
Art-Architecture, Varied 20th Century Styles; Art, Landscape
Architecture, Town and Urban Planning.
FOX BUILDING - 1828-30 Fourth Avenue North, Birmingham; c. 1890;
three-story brick commercial building has been altered at street
level. Technology, Commerce.
GARAGES - 10th Terrace South, Birmingham; 1929; thirty garages have
been appropriately assembled and restored as curio shops and
gift stores. Technology, Commerce.
GARRY'S GAP - Old Montevallo Road; 1869-71; huge piles of rock neatly
line this gateway to the Birmingham cut. Technology, Transportation
GOODALL-BROWN BUILDING - 200 First Avenue North, Birmingham; early
1900s; five-story brick structure has white stone trim.
Technology, Commerce.
GOODWILL STORE - 1715 Avenue F, Ensley; early 1900s; three-story brick
building has an unusual red tile roof and corner finials. Art-
Architecture, Commercial.
GRAND HOTEL - 200 19th Street, Bessemer; 1887-88; three-story brick
structure was one of the first erected in this town. Technology,
Commerce.
GREEN SPRINGS BAPTIST CHURCH - Green Springs Highway, Birmingham; c.
1850; one-story frame church was restored and converted to an
antique shop. Society, Religion; Technology, Commerce.
C-8
-------
HADNOT HOUSE (DAVENPORT-HARRIS FUNERAL HOME) - 1100 North Seventh
Avenue, Birmingham; early 1900s; two-story frame house built
by blacks has been altered with a front addition. Black
History.
HAND BUILDING - 17 20th Street North, Birmingham; 1912; twenty-one
story building in granite and marble reflects the popular
Neo-Classical style of the period. Technology, Commerce.
HAWKINS-GREEN HOME - Bessemer; 1888; one-story frame structure has
gabled roof. Art-Architecture, Italianate.
HICKMAN HOUSE - Chalkville Road, Trussville; 1855; two-story frame
house has been greatly altered. Art-Architecture, Greek
Revival.
HIGHLAND AVENUE HISTORIC DISTRICT - 2700-2848 Highland Avenue,
Birmingham; 1880-1926; three-block section around Rhodes Park
is the last concentrated grouping of elegant homes on the city's
first planned upper class boulevard. These include:
ALTAMONT APARTMENTS - 2831 Highland; 1926; seven-story brick
U-shaped building has Neo-Classical entrance
BURNETT-MORROW HOUSE - 2800 Highland; 1910; two-story Bungaloid
with red brick, terra cotta tile trim was designed to be fire
proof.
DONNELLY HOUSE - 2838 Highland Avenue; 1908; three-story red brick
Neo-Colonial home was recently restored.
ENSLEN HOUSE - 2737 Highland Avenue; 1910; two-story brick with
two-inch marble facing has paired Doric columns and full-length
balcony.
HARRIS-GREEN HOUSE - 2731 Highland Avenue; 1907; two-story
rusticated stone with Neo-Classical porch now divided into
apartments.
JORDAN (MORTIMER) - 2834 Highland Avenue; 1910; two-story frame
with square portico supported by paired Ionic columns is being
restored.
RHODES PARK - 2800 block Highland Avenue; 1905; 3.25 acres,
located in a valley with stairs, entryways lined with fieldstone
walls set with ceramic tiles, Mission Style influence.
RHODES PARK MANOR - 2807 Highland Avenue; c. 1925; two-story
Tudor-style apartment building in fieldstone and stucco.
C-9
-------
SHOOK-WICKSTROM HOUSE - 1120 28th Place South; 1910; two-story
Tudor style in fieldstone and stucco with deep gables and
seven foot fieldstone wall with iron gates.
WARNER-GREEN HOUSE - 2733 Highland Avenue; two-story rusticated
stone block house with some classical detailing, almost identical
to the Harris-Green home next door.
WOOD-SAUNDERS HOUSE - 2809 Highland Avenue; 1909; two-story
Bungaloid style in rusticated stone block has leaded and stained
glass windows.
Art-Architecture, Varied 20th Century Styles; Art, Landscape
Architecture.
HIGHLANDS METHODIST CHURCH - 1105 20th Street South, Birmingham; 1909;
terra cotta and brick structure with red tile roof has a Baroque
facade. Art-Architecture, Byzantine; Society, Religion.
HILLMAN HOSPITAL - Sixth Avenue South at 20th Street, Birmingham; 1902;
four-story brick structure is now used as offices by the
University of Alabama Medical Center. Science, Medicine.
HOLY ROSARY CATHOLIC CHURCH - 7406 Georgia Road, Birmingham; 1889;
charming one-story frame building is the oldest Roman Catholic
Church in Birmingham on its original site. Art-Architecture,
Carpenter Gothic, Society, Religion.
INDEPENDENT PRESBYTERIAN CHURCH - 3100 Highland Avenue, Birmingham;
1926; large stone structure with exquisite stained glass windows
has had several additions. Art-Architecture, Gothic; Society,
Religion.
IRONDALE FURNACE SITE - Mountain Brook; 1864; built to supply iron
to the Confederate Arsenal, this furnace was constructed of
masonry, iron-banded brick and wood, but was partially destroyed
by Union raiders in 1865. Military Affairs, Defense; Technology,
Industry.
ITALIANATE BUILDING - 2015-17 First Avenue North, Birmingham; 1880s;
four-story brick building is one of the oldest commercial
structures in central Birmingham. Art-Architecture, Italianate.
JACKSON BUILDING - 213 21st Street North, Birmingham; 1925; ten-story
reinforced concrete structure covered with brown brick, when
constructed it was the most up-to-date office building in town.
JACKSON HOME - 500 Eighth Avenue North, Birmingham; early 20th Century;
two-story frame structure was built by prosperous blacks. Black
History.
C-10
-------
JEFFERSON COUNTY COURTHOUSE - 716 North 21st Street, Birmingham; 1932;
nine-story limestone and granite structure with terra cotta trim
is a typical 1930s government building. Political Affairs,
Establishment and Administration of Government.
JEFFERSON (THOMAS) HOTEL - 1631 Second Avenue North, Birmingham; 1929;
twenty-story structure is noted for its terra cotta exterior.
Technology, Commerce.
JEMISON REALTY COMPANY - 2105 Third Avenue North, Birmingham; 1928;
two-story masonry structure has a flat roof. Art-Architecture,
Neo-Classical Revival.
JOHNSON HOUSE - 1006 19th Street, Birmingham; c. 1900; two-story frame
structure with turrent and gabled roof has a classical porch.
Art-Architecture, Queen Anne.
KINCEY RAIL MUSEAUM - Powell Avenue; contains approximately 24 pieces
of rolling stock and many other objects related to railroad
engineering. Education, Museum.
LAKEVIEW SCHOOL - 2800 Clairmont Avenue, Birmingham; 1901; two-story
brick building is the second oldest school in Birmingham.
Education, Institutions.
LATHROP HOUSE - 1923 14th Avenue South, Birmingham; 1905; two-story
stone structure with classical porch has been converted to a
medical clinic. Science, Medicine.
LEEDS PRESBYTERIAN CHURCH - Fifth Street, Leeds; 1913; clapboard
structure has several gables and a bell tower. Society, Religion.
LONG LEWIS BUILDING - 2000 Second Avenue, Bessemer; early 20th Century;
two-story brick.building is divided into three sections by
differing facades. Technology, Commerce.
LYRIC THEATER - 319 18th Street, Birmingham; four-story brick building
no longer has a marquis and is in need of major repairs.
Recreation.
MASON HOUSE - 1525 Avenue North, Birmingham; early 20th Century; two-
story permastone structure with red tile roof was built for
Dr. U. G. Mason, a prominent black physician. Black History;
Science, Medicine.
MASSEY BUILDING - Third Avenue North and 21st.Street, Birmingham;
1920; ten-story commercial building has an elaborate roof
line with arches and finials. Art-Architecture, Commercial.
C-ll
-------
MCADORY BUILDING - 2013 First Avenue North, Birmingham; 1882; three-
story red brick commercial building in the Italianate style
bears its original name and date along the parapet. Art-
Architecture, Italianate.
MCADORY (THOMAS) HOUSE - Bessemer; 1841; two-room frame dogtrot with
several additions was the birthplace of Thomas McAdory Owen,
founder of the Alabama Department of Archives and History, and
Robert McAdory, first mayor of Bessemer. Political Affairs,
Leaders.
MCCALLA CAVE - Near Five Mile Creek, south of Bessemer; 200-500 A.D.:
burials and artifacts of the Middle Woodland Period were uncovered
at this site. Aboriginal Americans, Prehistoric.
MCDANIEL HOME - 1100 Saulter Road, Homewood; 1870; two-story frame
structure has a central gable. Art-Architecture, Plantation
Style.
MCLELIAN'S BUILDING - 1904 Second Avenue, Bessemer; late 19th Century;
two-story brick structure has tile spandrels below the cornice.
Art-Architecture, Commercial.
MILLSAP HOME - Bessemer; 1924; two-story brick structure has a gable
roof. Art-Architecture, Tudor Revival.
MORRIS AVENUE HISTORIC DISTRICT - 2000-2400 blocks, Birmingham; c.
1885-1905; the city's only major concentration of late 19th
Century brick and cast-iron architecture which includes 27
structures of interest is now being developed as an entertainment
center. Art-Architecture, Commercial; Technology, Commerce.
MOUNT CALVARY PRESBYTERIAN CHURCH - McHicks Road and Tekawitha, Clay;
c. 1930; unusual one-story fieldstone structure serves the
oldest Presbyterian congregation (1806) in the country. Society,
Religion.
MOUNTAIN BROOK CLUB - Beechwood Road, Mountain Brook; 1930; two-story
white-washed brick and stone structure has portico with four
columns and gable roof. Art-Architecture, Colonial Revival;
Recreation.
MOUNTAIN BROOK VILLAGE HISTORICAL DISTRICT - Mountain Brook; 1928; one
of the handsomest shopping centers in the southeast, the first
buildings are Tudor style. Technology, Commerce.
MUD CREEK BAPTIST CHURCH - Route 1, Adger; 1906; two-story frame structure
serves congregation organized in 1837. Society, Religion.
C-12
-------
MUNGER MILL - Mary Munger Road, Trussville; c. 1870; frame board
and batten mill house still has its water wheel and dam.
Technology, Commerce.
MURDOCK HOUSE - 2832 Balmoral Road, Birmingham; 1930; two and a half-
story stone structure has a gable roof. Art-Architecture,
Jacobethan Revival.
MUSCADORA MINE HOUSES - Avenues J, I, Bessemer; c. 1900; one- and
two-story frame company houses were built in a variety of styles
for workers and managers. Technology, Industry.
MT. PINSON PRESBYTERIAN CHURCH - East Lake Road, Mt. Pinson; 1891;
one-story frame structure with two-story belfry has original
hand-hewn pews. Society, Religion.
NABERS HOUSE - 2033 13th Avenue South, Birmingham; c. 1891; large
two-story brick structure is now used as a Masonic Lodge. Art-
Architecture, Victorian; Society, Fraternal Organization.
NELSON (FRANK) BUILDING - 204 20th Street North, Birmingham; 1903;
ten-story brick and steel framed building was remodeled in
1940. Art-Architecture, Commercial.
NELSON HOUSE - 1401 South 29th Street, Birmingham; 1910; two-story
fieldstone and brick structure now houses administrative
offices of Southeastern Bible College. Art-Architecture,
Richardsonian Romanesque.
NIXON BUILDING - 1728 20th Street, Ensley; 1922; located at the trolley
crossing, the two-story brick building's second floor dance hall
was the main social hub of the Birmingham Negro community before
World War II and was immortalized by Erskine Hawkins in his song
"Tuxedo Junction." Art, Music; Black History.
NORWOOD BOULEVARD - Birmingham; c. 1900; Birmingham Realty's first
planned development on the north side features a beautiful
boulevard and park surrounded by approximately 200 single family
bungaloid homes in brick and wood. Art, Landscape Architecture
and Town and Urban Planning.
OAK HILL CEMETERY - 1120 19th Street North, Birmingham; 1872; the
city's first cemetery contains graves of the 1873 cholera
victims, early city leaders, and a Memorial Chapel built in
1928. Art-Architecture, Jacobethan Revival; Society, Religion.
OFFICE BUILDING - 2107 Second Avenue North, Birmingham; c. 1890;
three-story brick structure has a heavy pressed metal cornice.
Art-Architecture, Commercial; Technology, Commerce.
C-13
-------
OFFICE BUILDING - 2117 Second Avenue North, Birmingham; c. 1870;
three-story masonry building has a cast iron facade on the
upper floors. Art-Architecture, Neo-Classical Revival;
Technology, Commerce.
OFFICE BUILDING - 209-211 22nd Street North, Birmingham; c. 1891;
three-story brick structure is accented by a large overhanging
metal cornice. Art-Architecture, Commercial; Technology,
Commerce.
OWENS HOUSE - Bessemer; 1883-38; originally a two-room structure
with main portion added in 1838, the two-story enclosed dogtrot
house is being restored to depict plantation life in the early
19th Century. Art-Architecture, Plantation Style.
OXMOOR GENERAL STORE (GOODWIN MERCANTILE COMPANY) - Route 1, Oxmoor;
1911; one-story frame structure was one of the first sources for
ice delivery in the county. Technology, Commerce.
PARKER (A. H.) HOME - 522 First Street North, Birmingham; 1920s;
handmade pressed concrete block house was built by and for blacks.
Art-Architecture, Bungaloid; Black History.
PERSONS (JOHN C.) ARMORY - Graymont Avenue; c. 1939; two-story
brick building is located on the grounds of Legion Field. Art-
Architecture, Commercial.
PETTI FORD HOUSE - 612 16th Street North, Birmingham; early 20th
Century; two-story clapboard house, originally part of Sixteenth
Street Baptist Church, was built by blacks. Black History.
PHARROW HOME - 309 North Fourth Terrace, Birmingham; early 20th
Century; two-story frame structure was built by and for blacks.
Black History.
PHYTHIAN TEMPLE - 310 18th Street North, Birmingham; c. 1910; six-
story brick and steel-frame structure has been the center for
much important social and educational endeavors in the black
community. Black History; Society, Fraternal Organization.
PINSON CAVE - Near Pinson; c. 1000 A.D.; burial cave revealed
evidence of the Late Woodland Period when excavated in 1970
by the University of Alabama. Aboriginal Americans, Historic.
PINSON GRIST MILL - Turkey Creek, Pinson; mid-19th Century; nothing
remains but grist wheel and component parts of the mill which
operated until 1966. Technology, Agriculture.
C-14
-------
PLEASANT HILL METHODIST CHURCH - McCalla; 1835; original portion of
the one-story structure is now brick veneered and has 1941 interior
additions. Society, Religion.
PORTER HOUSE - 1627 Clarendon Avenue, Bessemer; c. 1905; two-story
frame structure has a columned portico. Art-Architecture, Neo-
classical Revival.
POWELL SCHOOL - 2331 Sixth Avenue North, Birmingham; 1888; although
the second building for Powell, this three-story brick structure
is the oldest school in the city and is on the site of the
first Powell School. Education, Institution.
PRAYTOR HOUSE - 119 Dexter Avenue, Mountain Brook; c. 1854; originally
a two-room dogtrot, this is the oldest house in Mountain Brook.
Art-Architecture, Log Cabin.
PROTECTIVE LIFE BUILDING - 2027 First Avenue North, Birmingham; 1928;
fourteen-story structure of granite and terra cotta is steel
framed. Technology, Commerce.
RAYFIELD HOUSE - First Avenue South, Birmingham; 1920s; one and a half-
story frame home was the residence of Negro architect W. A.
Rayfield. Art-Architecture, Bungaloid; Black History.
RED MOUNTAIN MUSEUM - Red Mountain Expressway, Birmingham; 1973-76;
planned after a highway cut in 1973 revealed all of Alabama's
geological history, will include exhibits and ramps to various
levels when it opens soon. Education, Museum; Science,
Geology; Technology, Transportation.
ROSEDALE PUMPING STATION - Lynn Boulevard, Homewood; 1910; one-story
brick pumphouse has handsome fanlited windows. Technology,
Engineering.
RUHAMA BAPTIST CHURCH - 7901 Second Avenue South, Birmingham; 1926;
two-story brick building serves congregation founded by Baptist
historian Hosea Holcome in 1819. Art-Architecture, Neo-Classical
Revival; Society, Religion.
SADLER HOUSE - Near McCalla; 1828-38; two-story frame house is being
restored by the West Jefferson County Historical Society. Art-
Architecture, Plantation Style.
SALEM BAPTIST CHURCH - Spring Street, Mount Pinson; 1941; brick
building with wooden gable roof was built by congregation
organized in 1818. Society, Religion.
C-15
-------
SAMFORD UNIVERSITY - 800 Lakeshore Drive, Birmingham; 1841-1965;
chartered as Howard College in Marion, Alabama, in 1841, moved
to Birmingham in 1887, then to the present site in 1957; the
Baptist school took its present name in 1965. Art-Architecture,
Modern; Education, Institution.
ST. MARY'S-ON-THE-HIGHLANDS EPISCOPAL CHURCH - 1900 12th Avenue,
Birmingham; 1891; sandstone structure with bell tower is
Romanesque in style. Art-Architecture, Romanesque; Society,
Religion.
ST. NICHOLAS RUSSIAN ORTHODOX CHURCH - Cardiff Road, Brookside; 1916;
one-story brick structure with wooden onion dome cupola was the
only congregation of this denomination in the South when organized
in 1894 to serve Slavic miners. Society, Religion.
SCOTT-WHISENANENT HOUSE - Bessemer; 1906; two-story frame structure
has gable roof. Art-Architecture, Victorian and Greek Revival.
SELLERS HOME - Bethel Community; c. 1896; two-story frame house has
brick columns. Art-Architecture, Victorian.
SIXTEENTH STREET BAPTIST CHURCH - 1530 Sixth Avenue North, Birmingham;
1911; sandstone and brick structure was designed by black archi-
tect, W. A. Rayfield. Art-Architecture, Romanesque and
Byzantine; Society, Religion.
SLOSS FURNACE - First Avenue and 32nd Street, Birmingham; 1882-83;
early iron and steel facility with the city's oldest blast
furnace is scheduled for demolition. Technology, Industry.
SOUTH HIGHLAND PRESBYTERIAN CHURCH - 2035 Highland Avenue South,
Birmingham; c. 1895; one-story limestone structure with a two-
story bell tower is noted for its stained glass windows. Art-
Architecture, Gothic Revival; Society, Religion.
SOUTHERN RAILROAD INBOUND FREIGHT - 9 20th Street South, Birmingham;
1906; three-story brick office building is attached to a long,
one-story freight warehouse which was erected in 1890.
Technology, Transportation.
SOUTHERN RAILWAY TERMINAL STATION - Bessemer; 1916; two-story brick
structure has leaded glass windows and hand carved woodwork.
Technology, Transportation.
SOUTHSIDE BAPTIST CHURCH - 1016 19th Street South, Birmingham; 1911;
brick and Georgia marble structure is this congregation's fourth
structure. Art-Architecture, Neo-Classical Revival; Society,
Religion.
C-16
-------
STALLINGS BUILDING - 1829 First Avenue North, Birmingham; c. 1915;
seven-story brick office towers in the city. Technology,
Commerce.
STEINER BANK BUILDING - 2101 First Avenue North, Birmingham; 1890;
four-story brick structure was one of the best commercial uses
of Richardsonian Romanesque in the city and featured the first
elevator in Alabama. Art-Architecture, Richardsonian Romanesque;
Technology, Commerce.
STERN HOUSE - 2437 Tyler Road, Hoover; 1840s; two-story log and
weatherboard dogtrot structure was moved from Pinson to Hoover in
the 1920s. Art-Architecture, Rustic.
STRATON BUILDING - 425 19th Street, Ensley; early 20th Century; two-
story granite faced structure has a balustraded parapet. Art-
Architecture, Neo-Classical; Technology, Commerce.
SWANN (THEODORE) HOUSE - 3536 Redmont Road, Birmingham; 1929; five-
story sandstone English manor-style house was designed to
duplicate details and styles of specific homes in England.
Art-Architecture, Tudor Revival.
SWEET HOUSE - 1830 Arlington Avenue, Bessemer; 1906; two-story frame
structure is an unusual combination of Victorian and Neo-
classical styles. Art-Architecture, Victorian.
TEMPLE BETH-EL - 2179 Highland Avenue, Birmingham; 1926; brick and
terra cotta building with many stained glass windows has elements
of the Romanesque style. Society, Religion.
TEMPLE EMANUEL - Highland Avenue and 21st Street South, Birmingham;
1912; two-story brick structure with dome is noted for exceptional
acoustics. Art-Architecture, Greek Revival and Byzantine;
Society, Religion.
TEMPLE OF SYBIL - U. S. 31 and Shades Crest Road, Vestavia Hills; 1924;
marble and concrete circular temple was moved from a church to
this city park site. Art-Architecture, Neo-Classical.
THIRD PRESBYTERIAN CHURCH - 617 22nd Street, Birmingham; 1902; brick
and stone structure is noted for beautiful stained and leaded
glass windows. Society, Religion.
TITLE GUARANTY BUILDING - 2030 Third Avenue North, Birmingham; 1903;
nine-story brick building was the second steel frame office
building in Birmingham. Art-Architecture, Richardsonian
Romanesque; Technology, Commerce.
C-17
-------
TOADVINE BRIDGE - Over Valley Creek on the Toadvine-Oak Grove Road;
1908: four span erector-set style bridge was built on concrete
piers. Technology, Engineering and Transportation.
TURKEY CREEK SITE - On Turkey Creek near Trussville; 18th Century;
an upper creek town was located on this site. Aboriginal
Americans, Historic.
TYNES HOME - 2917 Fairway Drive, Birmingham; 1928; two-story home was
designed after Mount Vernon. Art-Architecture, Colonial Revival.
VALLEY VIEW MINE - Mountain Brook; 1875; one of the most modern mines
in the South during this period, it is now obscured by over-
growth. Technology, Industry.
VENETIAN VILLAGE BUILDING - 1200 llth Avenue South, Birmingham: 1925;
terra cotta commercial block of ornate and charming detail has
been partially obscured by metal "slipcovers." Technology,
Commerce.
VULCAN (STATUE OF) - U. S. 31, Red Mountain; 1903; the largest cast
iron statue in the world is 55 feet tall and the focal point
of a park. Art, Sculpture; Recreation.
WALKER MEMORIAL METHODIST CHURCH - Tuscaloosa Avenue and Third Street;
1921; two-story brick structure has an especially handsome
portico with stone columns. Art-Architecture, Neo-Classical
Revival; Society, Religion.
WATTS BUILDING - 303 20th Street North, Birmingham; c. 1920; seventeen'
story structure is a good example of the Modernistic style.
Technology, Commerce.
WEBER HOUSE - 2132 Tyler Lane, Vestavia Hills; c. 1890; part of this
two-story shingled house may have been a resort pavilion in the
1830s. Art-Architecture, Victorian.
WESTERN HEALTH CENTER - 722 17th Street, Ensley; early 20th Century;
two-story brick structure of Neo-Classical Revival design has
elaborate Corinthian pilasters. Technology, Commerce.
WILSON CHAPEL METHODIST CHURCH ("BROWN CHURCH IN THE WILDWOOD") - 408
Cumberland Drive, Birmingham; 1916; brick structure is built in
the form of a cross. Society, Religion.
WOODLAWN CITY HALL - 5525 First Avenue North; Birmingham; three-story
brick and stone structure is now used by retailers since Woodlawn
became part of Birmingham. Political Affairs, Establishment and
Administration of Government; Technology.
C-18
-------
WOODLAWN METHODIST CHURCH - 5400 First Avenue North, Birmingham; 1912;
two-story building is limestone over brownstone. Art-Architecture,
Romanesque; Society, Religion.
WOODWARD BUILDING - 1927 First Avenue North, Birmingham; 1902; ten-story
brick structure was the first steel framed building in Birmingham.
Technology, Commerce.
YOUNG AND VAN SUPPLY COMPANY - 1725-1731 First Avenue North, Birmingham;
three-story brick structure has attached two-story warehouse which
is one of the city's better examples of commercial Romanesque style.
Art-Architecture, Romanesque; Technology, Commerce.
C-19
------- | |