U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
0, C, FISHER (SAN ANGELO) RESERVOIR
TOM GREEN COUNTY
TEXAS
EPA REGION VI
WORKING PAPER No, G56
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON
and
ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS NEVADA
-------
REPORT
ON
0, C, FISHER (SAN ANGELO) RESERVOIR
TOM GREN COUNTY
TEXAS
EPA REGION VI
WORKING PAPER No, 656
WITH THE COOPERATION OF THE
TEXAS WATER QUALITY BOARD
AND THE
TEXAS NATIONAL GUARD
MARCH/ 1977
-------
CONTENTS
Page
Foreward ii
List of Texas Study Reservoirs iv
Lake and Drainage Area Map vi
Sections
I. Conclusions 1
TI. Lake and Drainage Basin Characteristics 3
III. Lake Water Quality Summary 4
IV. Nutrient Loadings' 9
V. Literature Reviewed 13
VI. Appendices 14
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to freshwater lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [5303(c)], clean lakes [§314(a,b)],
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGEMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the Texas Water Quality Board
for professional involvement, to the Texas National Guard for
conducting the tributary sampling phase of the Survey, and to
those Texas wastewater treatment plant operators who voluntarily
provided effluent samples.
\
Hugh C.-Yantis, Jr., Executive Director of the Texas Water
Quality Board, and John B. Latchford, Jr., Director, and the staff
of the Field Operations Division provided invaluable lake documen-
tation and counsel during the Survey, reviewed the preliminary
reports, and provided critiques most useful in the preparation of
this Working Paper series.
Major General Thomas Bishop, the Adjutant General of Texas,
and Project Officer Colonel William L. Seals, who directed the
volunteer efforts of the Texas National Guardsmen, are also grate-
fully acknowledged for their assistance to the Survey.
-------
IV
' NATIONAL EUTROPHICATION SURVEY
STUDY RESERVOIRS
State of Texas
NAME
Amistad
Bastrop
Bel ton
Braunig
Brownwood
Buchanan
Caddo
•
Calaveras
Canyon
Colorado City
Corpus Christi
Diversion
Eagle Mountain
Fort Phantom Hill
Houston
Kemp
Lake O'The Pines
Lavon
Lewisville (Garza-Little Elm)
Livingston
COUNTY
Val Verde
Bastrop
Bell, Coryell
Bexar
Brown
Burnet, Llano
Harrison, Marion, TX;
Caddo Parish, LA
Bexar
Comal
Mitchell
Jim Wells, Live Oak, San
Patricio
Archer, Baylor
Tarrant, Wise
Jones
Harris
Baylor
Camp, Marion, Morris,
Upshur
Collin
Denton
Polk, San Jacinto, Trinity,
Walker
-------
Lyndon B. Johnson
Medina
Meredith
0. C. Fisher (San Angelo)
Palestine
Possum Kingdom
Sam Rayburn
Somerville
E-. V. Spence
Stamford
Stillhouse Hollow
Tawakoni ,
Texoma
Travis
Trinidad
Twin Buttes
White River
Whitney
Wright Patman (Texarkana)
Burnet, Llano
Bandera, Medina
Hutchinson, Moore,
Potter
Tom Green
Anderson, Cherokee,
Henderson, Smith
Palo Pinto, Stephens,
Young
Angelina, Jasper
Nacogdoches, Sabine, San
Augustine
Burleson, Lee, Washington
Coke
Haskell
Bell
Hunt, Rains, Van Zandt
Cooke, Grayson TX; Bryan,
Johnston, Love, Marshall, OK
Burnet, Travis
Henderson
Tom Green
«
Crosby
Bosque, Hill
Bowie, Cass
-------
..—-.1 SteHing City ..
O.C. FISHER RESERVOIR
Tributary Sampling Site
X Lake Sampling Site
^ Drainage Area Boundary
Land Subject to Inundation
O. C. FISHER
RESERVOIR
San Angelo
Map Location
-------
0. C. FISHER RESERVOIR
STORE! NO. 4826
I. CONCLUSIONS
A. Trophic Condition:
Survey data indicate that 0. C. Fisher Reservoir is eutrophic;
*
i.e., well supplied with nutrients and quite productive. Whether
nutrient enrichment is beneficial or deleterious depends on the
actual or potential effect on the uses of the reservoir. In this
regard, no nuisance conditions are known to personnel of the Texas
Water Quality Board and there is little or no impairment of the
designated beneficial uses of this water body.
0. C. Fisher Reservoir ranked thirty-second in overall trophic
quality when the 39 Texas reservoirs sampled in 1974 were compared
using a combination of six parameters*. Thirty-three of the reser-
voirs had less median total phosphorus, 20 had less and one had the
same median dissolved orthophosphorus, 21 had less median inorganic
nitrogen, all of the other reservoirs had less chlorophyll a^, and
35 had greater mean Secchi disc transparency.
Survey limnologists noted surface concentrations of algae in
August.
B. Rate-Limiting Nutrient:
The algal assay results indicate the reservoir was nitrogen
limited at the time the sample was taken (10/29/74). The reservoir
data indicate nitrogen limitation in March as well but phosphorus
limitation in May.
* See Appendix A.
-------
C. Nutrient Controllability:
1. Point sources—No known municipal or industrial point
sources impacted 0. C. Fisher Reservoir during the sampling year.
There are no lakeshore septic tanks because construction of
shoreline dwellings if prohibited*.
Base*d on the reservoir morphometry at the conservation-pool
level, the present phosphorus loading of 0.06 g/m2/yr is about
equal to that proposed by Vollenweider (Vollenweider and Dillon,
1974) as an oligotrophic loading (see page 12). If Vollenweider's
oligotrophic level is applicable to Texas water bodies, non-point
phosphorus loadings to the reservoir in past years must have been
much greater than measured during the sampling year since Survey
data indicate 0. C. Fisher Reservoir is eutrophic.
2. Non-point sources—All of the phosphorus input to the
reservoir was contributed by non-point sources during the sampling
year. The North Concho River contributed 63.1% of the total load,
and the ungaged minor tributaries and immediate drainage added an
estimated 12.5%.
The phosphorus export rate of the North Concho River was less
than 1 kg/km2/yr) (see page 11). This rate compares favorably with
the rates of three tributaries of nearby Twin Buttes Reservoir***
(also less than 1 kg/km2/yr).
* Koederitze, 1976.
** Anonymous, 1976.
*** Working Paper No. 666.
-------
II. RESERVOIR AND DRAINAGE BASIN CHARACTERISTICS1
A. Morphometry (at conservation-pool level) :
1. Surface area: 21.85 kilometers2.
2. Mean depth: 6.5 meters.
3. Maximum depth: >8.5 meters.
4. Volume: 142.769 x 106 m3.
5. Mean hydraulic retention time: 11.0 years (based on outflow)
*
B. Tributary and Outlet:
(See Appendix C for flow data)
1. Tributaries -
Drainage Mean flow
Name area (km2)* (m3/sec)*
North Concho River 3,234.9 0.665
Minor tributaries &
immediate drainage - 599.5 0.131
Totals 3,834.4 0.796
2. Outlet -
San Angelo water supply** 0.0 0.200
North Concho River 3.853.9*** 0.210
Total 3,853.9*** 0.410
C. Precipitation****:
1. Year of sampling: 63.8 centimeters.
2. Mean annual: 44.5 centimeters.
t Table of metric conversions—Appendix B.
tt Barrows, 1977.
* For limits of accuracy, see Working Paper No. 175, "...Survey Methods,
1973-1976".
** Koederitze, 1976.
*** Includes area of reservoir.
**** See Working Paper No. 175.
-------
III. WATER QUALITY SUMMARY
0. C. Fisher Reservoir was sampled four times in 1974 by means of
a pontoon-equipped Huey helicopter. Each time, samples for physical
and chemical parameters were collected from a number of depths at one
station on the reservoir (see map, page vi). During each visit, a
single depth-integrated (4.6 m or near bottom to surface) sample was
collected for phytoplankton identification and enumeration; and a similar
sample was collected for chlorophyll a_ analysis. During the last visit,
a Dingle 18.9-liter depth-integrated sample was taken for algal assays.
The maximum depth sampled was 8.5 meters.
The sampling results are presented in full in Appendix D and are
summarized in the following table (the August nutrient Camples were not
preserved properly and were not analyzed).
-------
PARAMETER
TEMP
OISS OXY (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02»N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
-CHLRPYL A (UG/L)
SECCHI (METERS)
A. SUMMARY OF PHYSICAL AND
1ST SAMPLING ( 3/ 4/74)
1 SITES
CHEMICAL CHARACTERISTICS FOR SAN ANGELO RESERVOIR
STORET CODE 4826
2ND SAMPLING ( 5/15/74)
1 .SITES
RANGE
15.1 - 15.3
9.8 - 10.4
454. - 459.
8.3 - 8.3
167. - 168.
0.041 - 0.053
0.010 - 0.011
0.040 - 0.080
0.030 - 0.04C
0.600 - 1.000
0.070 - 0.110
0.880 - 1.060
13.1 - 13.1
0.6 - 0.6
3RD SAMPLING ( 8/ 5/74)
1 SITES
MEAN
15.2
10.1
456.
8.3
168.
0.047
0.011
0.060
0.033
0.900
0.093
0.960
13.1
0.6
MEDIAN
15.3
10.1
455.
8.3
168.
0.048
0.011
0.060
0.030
0.900
0.100
0.940
13.1
0.6
RANGE
25.6
7.8
607.
8.3
154.
0.108
0.006
0.050
0.050
1.000
0.100
1.050
24.7
0.3
- 25.8
8.0
- 607.
8.4
- 154.
- 0.117
- 0.007
- 0.080
- 0.070
- 1.200
- 0.150
- 1.270
- 24.7
0.3
MEAN
25.7
7.9
607.
8.3
154.
0.111
0.007
0.067
0.063
1.067
0. 130
1.133
24.7
0.3
MEDIAN
25.6
7.9
607.
8.3
154.
0.108
0.007
0.070
0.070
1.000
0. 140
1.080
24.7
0.3
RANGE MEAN MEDIAN
- 25.4 - 25.6 25.5 25.5
4.8 - 5.0 4.9 4.8
641. - 642. 642. 642.
7.9 - 8.0 8.0 8.0
...... .......................
* ...».*.. ...»
.
...... .......................
...... -a.........*...*.......
.»«»«. _««.«.«..««««««.« >««»««
42.6 - 42. b 42.6 42.6
0.3 - 0.3 0.3 0.3
-------
A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERIrTICS FOR SAN ANGELO RESERVOIR
STOHET CUOE <*a26
4TH SAMPLING < 10/29/74)
PARAMETER
TEMP (C)
DISS OXY (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
ORTHO P (MG/L)
N02*N03 (MG/L)
AMMONIA (MG/L)
KJEL N (MG/L)
INORG N (MG/L)
TOTAL N (MG/L)
CHLRPYL A (UG/L)
SECCHI (METERS)
1 SITES
RANGE MEAN
18.1
5.6
217.
7.9
112.
0.090
0.044
0.120
0.020
O.SOO
0.140
0.640
18.3
0.6
- 18.5
5.6
- 231.
8.3
- 113.
- 0.134
- 0.054
- 0.240
- 0.040
- 1.400
- 0.280
- 1.520
- 18.3
0.8
18.4
5.6
224.
8.0
112.
0.105
0.050
0.157
0.032
0.800
0.190
0.957
18.3
0.8
MEDIAN
18.4
5.6
224.
8.0
112.
0.098
0.050
0.135
0.035
0.650
0.170
0.835
18.3
0.8
-------
B. Biological characteristics:
1. Phytoplankton -
Sampling
Date
03/04/74
05/15/74
08/05/74
10/29/74
Dominant
Genera
1. Nitzschia sp.
2. AnkistroHesmus sp.
3. Chroomonas sp.
4. Dactylococcopsis sp.
5. Kirchneriella sp.
Other genera
Total
1. Nitzschia sp.
2. CyclotelTa s£.
Raphidiops'is sp.
Scenedesmus sp.
Stephanodiscus sp.
Other genera
Total
1. Oscillatoria sp.
2. Raphidiopsis sp.
3. Dactylococcopsis sp.
4. Pennate diatoms
5. Merismopedia S£.
Other genera
Total
1. Chlamydomonas sp.
2. Cyclotella sp.
3. Cryptdmonas sp.
4. Chroomonas sp.
5. Nitzschia sp.
Other genera
Algal Units
per ml
9,005
4,407
2,810
2,363
2,299
9,265
30,149
15,771
25,208
10,905
8,355
5,381
3,044
19,332
72,225
3,512
1,115
725
502
502
2,005
Total
8,361
-------
8
2. Chlorophyll a_ -
Sampling
Date
Station
Number
1
03/04/74
05/15/74 1
08/05/74 1
10/29/74 1
C. Limiting Nutrient Study:
1. Autoclaved, filtered, and nutrient spiked -
Ortho P
Cone, (mg/1)
Inorganic N
Cone, (mg/1)
Chlorophyll a
(yg/D
13.1
24.7
42.6
18.3
Maximum yield
(mg/1-dry wt.)
0.035
0.085
0.085
0.035
0.109
0.109
1.109
1 . 109
5.2
4.9
23.8
15.4
Spike (mg/1)
Control
0.050 P
0.050 P + 1.0
1.0 N
2. Discussion -
The control yield of the assay alga, Selenastrum capri-
cornutum, indicates that the potential primary productivity
of 0. C. Fisher Reservoir was high at the time the sample was
collected (10/29/74). The increased yield with the addition
of nitrogen and the lack of response to phosphorus added alone
indicate the reservoir was nitrogen limited at that time.
The reservoir data indicate nitrogen limitation in March
also (the mean inorganic nitrogen/orthophosphorus ratio was 8/1)
but phosphorus limitation in May (the mean N/P ratio was 19/1).
-------
IV. NUTRIENT LOADINGS
(See Appendix E for data)
For the determination of nutrient loadings, the Texas National
Guard collected monthly near-surface grab samples from the tributary
site indicated on the map (page vi), except for the high runoff months
of April and May when two samples were collected. Sampling was begun
in September, 1974, and was completed in August, 1975.
Through an interagency agreement, stream flow estimates for the
year of sampling and a "normalized" or average year were provided by
tne Texas District Office of the U.S. Geological Survey for the
tributary sites nearest the reservoir.
In this report, nutrient loads for the sampled tributary were
calculated using mean annual concentrations and mean annual flows.
Nutrient loads for the outlet (A-l) and the San Angelo water supply
withdrawal were estimated using the mean reservoir concentrations
at station 1 and the mean annual flows. Nutrient loads for unsampled
"minor tributaries and immediate drainage" ("ZZ" of U.S.G.S.) were
estimated using the mean concentrations in Concho River at station
A-2 and the mean annual ZZ flow.
No known wastewater treatment plants impacted 0. C. Fisher Reservoir
during the sampling year.
-------
10
A. Waste Sources:
1. Known municipal - None
2. Known industrial - None
B. Annual Total Phosphorus Loading - Average Year:
1. Inputs -
kg P/ % of
Source y_r total
a. Tributaries (non-point load) -
North Concho River 880 63.1
b. Minor tributaries & immediate
drainage (non-point load) - 173 12.5
c. Known municipal STP's - None
d. Septic tanks - None*
e. Known industrial - None
f. Direct precipitation** - 340 24.4
Total 1,395 100.0
2. Outputs -
Lake outlet - San Angelo water supply 565
North Concho River 595
Total 1,160
3. Net annual P accumulation - 235 kg.
* Koederitze, 1976.
** See Working Paper No. 175.
-------
11
C. Annual Total Nitrogen Loading - Average Year:
1. Inputs -
kg N/ % of
Source yr total
a. Tributaries (non-point load) -
North Concho River 40,850 58.4
b. Minor tributaries & immediate
drainage (non-point load) - 8,050 11.5
c. Known municipal STP's - None
d. Septic tanks - None*
e. Known industrial - None
f. Direct precipitation** - 21.010 30.1
Total 69,910 100.0
2. Outputs -
Lake outlet ->San Angelo water
supply 6,375
North Concho River 6,695
Total 13,070
3. Net annual N accumulation - 56,840 kg.
D. Non-point Nutrient Export by Subdrainage Area:
Tributary . kg P/km2/yr kg N/km2/yr
North Concho River <1 13
* Koederitze, 1976.
** See Working Paper No. 175.
-------
12
E. Yearly Loads:
In the following table, the existing phosphorus loadings
are compared to those proposed by Vollenweider (Vollenweider
and Dillon, 1974). Essentially, his "dangerous" loading is
one at which the receiving water would become eutrophic or
remain eutrophic; his "permissible" loading is that which
would result in the receiving water remaining oligotrophic
or becoming oligotrophic if morphometry permitted. A meso-
trophic loading would be considered one between "dangerous"
and "permissible".
Note that Vollenweider's model may not be applicable to
water bodies with short hydraulic retention times.
Total Phosphorus Total Nitrogen
Total Accumulated Total Accumulated
grams/m2/yr ' 0.06 0.01 3.2 2.6
Vollenweider phosphorus loadings
(g/m2/yr) based on mean depth and mean
hydraulic retention time of 0. C. Fisher Reservoir at conservation-
pool level:
"Dangerous" (eutrophic loading) 0.16
"Permissible" (oligotrophic loading) 0.08
-------
13
V. LITERATURE REVIEWED
Barrows, David, 1977. Personal communication (reservoir morphometry
and hydraulic retention time). Canyon Proj. Off., Fort Worth
Distr., Corps of Engrs., New Braunfels, TX.
Koederitze, Thomas (Supt.), 1976. Personal communication (municipal
water withdrawal from 0. C. Fisher Reservoir and description of
lakeshore development). Water Department, San Angelo.
Vollenweider, R. A., and P. J. Dillon, 1974. The application of the
phosphorus loading concept to eutrophication research. Natl.
Res. Council of Canada Publ. No. 13690, Canada Centre for Inland
Waters, Burlington, Ontario.
Yost, I. D., 1976. Personal communication (estimate of evaporation
from central Texas lakes). U.S. Geol. Surv., Austin.
-------
VI. APPENDICES
APPENDIX A
LAKE RANKINGS
-------
SACKED HY INDEX. NOS.
RANK LAKE CODE LAKE NAME INDEX NO
i 4809 CANYON RESERVOIR 445
2 4823 LAKE MEREDITH 441
3 4813 EAGLE MOUNTAIN LAKE 430
4 4816 KEMP LAKE 423
'5 4801 AMISTAO LAKE 402
6 4805 BRO*NWOOD LAKE 394
7 4802 BASTRUP LAKE 393
8 4838 WHITE RIVER RESERVOIR 390
9 4825 POSSUM KINGDOM RESERVOIR 387
10 4835 TRAVIS LAKE 384
11 4803 BELTON RESERVOIR '384
12 4831 STILLHOUSE HOLLOW RESERV 372
13 4812 DIVERSION LAKE 372
14 4808 CALAVERAS LAKE 362
15 4839 WHITNEY LAKE 357
16 4822 MEDINA LAKE 342
17 4827 SAM RAYBURN RESERVOIR 322
18 4828 E V SPENCE RESERVOIR 321
19 4837 TWIU 6UTTES RESERVOIR 311
20 4810 LAKE COLORADO CITY 310
21 4824 PALESTINE LAKE 302
22 4818 LAKE OF THE PINES 298
23 4807 CAOOO LAKE 297
24 4814 FT PHANTOM HILL LAKE 296
25 4806 LAKE BUCHANAN 261
26 4830 STAMFORD LAKE 259
27 4819 LAVON RESERVOIR 258
28 4832 TAWAKONI LAKE 253
-------
LAKES RANKED BY INDEX
RANK LAKE CODE LAKE NAME INDEX NO
29 4B21 LYNDON B JOHNSON LAKE 238
30 4834 TEXOMA LAKE 217
31 4829 SOMERVILLE LAKE 208
32 4826 SAN ANGELO HESERVOIR 200
33 4833 TEXARKANA LAKE 176
34 4815 GARZA LITTLE ELM RESERVO 173
35 4836 TRINIDAD 169
36 4804 BRAUNIG LAKE 159
37 4811 CORPUS CRISTI LAKE 155
38 4817 HOUSTON LAKE 139
39 4820 LIVINGSTON LAKE 91
-------
LAKE
CODE LAKE NAME
<4801 AMISTAO LAKE
4802 8ASTROP LAKE
4803 8ELTON RESERVOIR
4804 BRAUNIG LAKE
4805 BROrfNWOOD LAKE
4806 LAKE BUCHANAN
4807 CAOOO LAKE
4808 CALAVERAS LAKE
4809 CANYON RESERVOIR
4810 LAKE COLORADO CITY
4811 CORPUS CRISTI LAKE
4812 DIVERSION LAKE
4813 EAGLE MOUNTAIN LAKE
4814 FT PHANTOM HILL LAKE
4815 GARZA LITTLE ELM RESERVO
4816 KEMP LAKE
4817 HOUSTON LAKE
4818 LAKE OF THE PINES
4819 LAVON RESERVOIR
4820 LIVINGSTON LAKE
4821 LYNDON B JOHNSON LAKE
4822 MEDINA LAKE
4823 LAKE MEREDITH
4824 PALESTINE LAKE
4825 POSSUM KINGDOM RESERVOIR
4826 SAN ANGELO RESERVOIR
4827 SAM RAYBURN RESERVOIR
•4828 «E V SPENCE RESERVOIR
MEDIAN
TOTAL P
95 (
79 (
92 <
5 (
66 (
47 (
26 <
45 1
99 1
39 (
8 1
68 1
71 1
24 l
34 1
76 i
16 i
54 i
21 i
3 i
39 i
99 i
82 <
54
74
13
59
50 <
36)
30)
35)
2)
25)
: ia)
10)
1 17)
1 37)
1 14)
1 3)
1 26)
I 27)
I 9)
1 13)
! 29)
1 6)
1 20)
1 8)
1 1)
1 14)
1 37)
I 3D
( 20)
( 28)
( 5)
I 22)
( 19)
MEDIAN
INQSG N
5 (
76 1
26 (
42 1
70 1
21 l
91 i
100 '
8
76 <
47 <
83 '
91
66
13
61
16
76
29
3
11
0
91
32
91
45
39
83
: 2)
: 28)
: 10)
[ 16)
1 26)
i 7)
1 33)
I 38)
! 3)
I 28)
( 18)
i 31)
1 33)
( 25)
( 5)
( 22)
( 6)
( 28)
( ID
( 1)
( 4)
( 0)
( 33)
( 12)
( 33)
( 17)
( 15)
( 31)
500-
MEAN SEC
100 (
82 (
97 (
50 (
29 (
74 1
42 1
47 1
95 l
26 1
18 1
32 (
34 1
21 i
16 i
55 '
0 i
66 i
3 i
39 i
53 '
89 '
71
63
64
8
68
45
38)
31)
37)
19)
11)
: 28)
: 16)
: 18)
1 36)
[ 10)
I 7)
1 12)
! 13)
i at
! 6)
( 21)
1 0)
( 25)
! 1)
1 15)
( 20)
I 34)
( 27)
( 2<»)
( 3?)
( 3)
( 26)
( 17),
MEAN
CrtLOKA
100 (
47 (
68 (
8 (
87 (
63 (
32 (
11 (
97 (
42 t
13 (
29 (
"79 (
74 (
34 (
55 <
24 (
39 (
84 (
26 (
66 (
37 (
95 (
53 (
53 (
0 (
76 (
50 (
3d)
18)
26)
3)
33)
24)
12)
4)
37)
16)
5)
11)
30)
28)
13)
21)
9)
15)
32)
10)
25)
14)
36)
20)
22)
0)
29)
19)
15-
MIN DO
39
17
17
49
58
17
76
67
49
38
61
97
79
95
55
84
72
17
100
17
39
17
39
49
17
88
17
17
( 14)
( 0)
( 0)
( 17)
( 22)
< 0)
( 29)
( 25)
< 17)
( 33)
( 23)
( 37)
( 30)
( 36)
( 21)
< 32)
( 27)
( 0)
( 38)
( 0)
( 14)
( 0)
( 14)
( 17)
( 0)
( 33)
( 0)
( 0)
MEDIAN
OISS UHTriG P
63
92
84
5
84
39
30
92
97
39
8
63
76
16
21
92
11
46
21
3
30
100
63
51
63
46
63
76
( 21)
( 34)
( 31)
( 2)
( 31)
( 14)
( 10)
( 34)
( 37)
( 14)
( 3)
( 21)
( 28)
( 6)
( 7)
( 34)
( 4)
( 17)
( 7)
( 1)
( 10)
< 38)
( 21)
( 19)
( 21)
< 17)
( 21)
< 28)
INDEX
NO
40i
393
384
159
394
261
297
362
445
310
155
372
430
296
173
423
139
298
258
91
238
342
441
302
387
200
322
321
-------
PERCENT or LAKES WITH HIGHER VALUES <*JUMBER OF LAKES *ITH HIGHER VWLUES><
LAKE
CODE. LAKE NAME
4329 SOMERVILLE LAKE
4830 STAMFORD LAKE
4831 STILLHOUSE HOLLOW RESEKV
4833 TAWAKONI LAKE
4833 TEAARKANA LAKE
4834 TEXOMA LAKE
4835 TRAVIS LAKE
4836 TRINIDAD
4837 TWIN 8UTTES RESEKVOIR
4838 WHITE RIVER RESERVOIR
4839 WHITNEY LAKE
MEDIAN
TOTAL P
29
18
88
32
11
39
88
0
59
84
63
( 11)
; 7)
( 33)
( 12)
( 4)
( 14)
< 33)
( 0)
( 22)
( 32)
( 24)
MEDIAN
INORG N
55
S*7
37
70
51
34
21
61
21
61
51
( 21)
( 37)
( 14)
( 26)
( 19)
( 13)
( 7)
( 22)
( 7)
( 22)
( 19)
500-
MEAN sec
24
5
87
37
13
61
92
11
58
76
79
( 9)
< 2)
< 33)
( 14)
( 5)
( 23)
( 35)
( 4)
( 22)
( 29)
( 30)
MEAN
CHLORA
3
18
93
21
16
45
82
5
61
89
71
( 1)
( 7)
( 35)
( 8)
( 6)
( 17)
( 3D
( 2)
( 23)
( 34)
( 27)
15-
MIN DO
67
82
17
63
72
17
17
92
49
17
17
( 25)
( 31)
( 0)
( 24)
( 27)
( 0)
( 0)
( 35)
( 17)
( 0)
( 0)
MEDIAN
DISS O^TriO P
30 (
39 (
51 (
30 (
13 (
21 (
34 (
0 (
63 (
63 (
76 (
10)
14)
19)
10)
5)
7)
31)
0)
21)
21)
28)
INOEX
NO
208
259
372
253
176
217
J84
169
311
390
357
-------
LAKE
CODE LAKE NAME
4801 AMISTAD LAKE
4802 BASTROP LAKE
4803 8ELTON RESERVOIR
4804 8RAUNIG LAKE
4805 BROWNWOOD LAKE
4806 LAKE BUCHANAN
4807 CADDO LAKE
4808 CALAVERAS LAKE
4809 CANYON RESERVOIR
4810 LAKE COLORADO CITY
4811 CORPUS CRIST I LAKE
4812 DIVERSION LAKE
4813 EAGLE MOUNTAIN LAKE
4814 FT PHANTOM HILL LAKE
4815 GARZA LITTLE ELM RESERVO
4816 KEMP LAKE
4817 HOUSTON LAKE
4818 LAKE OF THE PINES
4819 LAVON RESERVOIR
4820 LIVINGSTON LAKE
4821 LYNDON 8 JOHNSON LAKE
4822 MEDINA LAKE
4823 LAKE MEREDITH
4824 PALESTINE LAKE
4825 POSSUM KINGDOM RESERVOIR
4826- SAN ANGELO RESERVOIR
4827 SAM RAYBURN RESERVOIR
.4828 *E V SPENCE RESERVOIR
MEDIAN
TOTAL P
0.013
0.02?
0.016
0.134
0.027
0.036
0.055
0.038
0.010
0.042
0.113
0.025
0.024
0.060
0.045
0.023
0.097
0.031
0.063
0.196
0.042
0.010
0.021
0.031
0.023
0.098
0.029
0.036
MEDIAN
INO^O N
0.500
0.090
0.185
0.150
0.100
0.250
0.070
0.060
0.450
0.090
0.130
0.080
0.070
0.105
0.380
0.110
0.260
0.090
0.180
0.555
0.420
0.600
0.070
0.180
0.070
0.140
0.150
0.080
500-
MEAN 5EC
371.474
419.917
378.312
461.625
470.375
437.625
463.333
461.667
384.812
473.625
475.187
470.111
469.625
474.909
475.782
455.000
486.187
440.000
485.333
465.469
456.500
403.562
439.312
442.625
419.045
481.000
439.458
462.^83
MEAN
CHLO*A
2.~'»2
12.392
8.025
22.762
4.887
8.606
14.808
22.500
2.500
12.675
19.756
15.867
5.662
6.317
14.156
10.217
16.650
12.919
5.400
16.112
8.100
12.944
3.037
10.619
9.495
24.675
6.267
e 11.775
15-
MIN DO
14.900
15.000
15.000
14.800
14.400
15.000
11.400
13.000
14.800
10.200
14.000
9.000
11.000
9.UOO
14.600
10.400
12.400
15.000
8.800
15.000
14.900
15.000
14.^00
14.800
15.000
10.200
15.000
15.000
MEDIAN
DISS OUTHO P
0.009
0.007
0.007
0.062
0.007
0.012
0.013
0.007
0.006
0.012
0.050
0.009
0.008
0.022
0.018
0.007
0.036
0.011
0.018
0.128
0.013
0.004
0.009
0.010
0.009
0.011
0.009
0.008
-------
•LAKE D^TA TO BE USED IN RANKINGS
LAKE
CODE LAKE NAME
SOMERVILLE LAKE
4830 STAMFORD LAKE
4831 STILLHOUSE HOLLOA RESEKV
4832 TAWAKONI LAKE
4833 TEXARKANA LAKE
4834 TEXOHA LAKE
4835 TRAVIS LAKE
4836 TRINIDAD
4837 TWIN 8UTTES RESERVOIR
4838 WHITE RIVER RESERVOIR
4839 WHITNEY LAKE
MEDIAN
TOTAL P
0.053
0.073
O.Olb
0.046
0.106
0.042
0.018
0.389
0.029
0.020
0.028
MEDIAN
INORG N
0.115
O.C60
0.160
0.100
0.120
0.160
0.250
0.110
0.250
0.110
0.120
500-
MEAN SEC
473.833
482.714
406.250
466.417
47S.500
451.321
389.913
479.500
454.917
434.500
430.500
CHLORA
24. '.91
18.457
3.917
18.246
19.119
12.493 ,
5.595
24.300
8.708
4.333
6.912
15-
MIN DO
13.000
10.600
15.000
13.200
12.400
15.000
15.000
10.000
14.800
15.000
15.000
MEDIAN
OISS G^TrlO
0.01 3
0.012
0.010
0.013
0.030
0.018
0.007
0.240
0.009
0.009
0.008
-------
APPENDIX B
CONVERSION FACTORS
-------
CONVERSION FACTORS
Hectares x 2.471 = acres
Kilometers x 0.6214 = miles
Meters x 3.281 = feet
-4
Cubic meters x 8.107 x 10 = acre/feet
Square kilometers x 0.3861 = square miles
Cubic meters/sec x 35.315 = cubic feet/sec
Centimeters x 0.3937 = inches
t
Kilograms x 2.205 = pounds
Kilograms/square kilometer x 5.711 - Ibs/square mile
-------
APPENDIX C
TRIBUTARY FLOW DATA
-------
TRIBUTARY
INFORMATION FOR TEXAS
07/02/7&
LAKE CODE 48?6
0. C. FISrlER
TOTAL DRAINAGE AREA OF LAKEtSQ KM) 3853.9
FEU
SUB-DRAINAGE
TRIBUTARY AREAtSQ KM)
JAN FE4 MAR APR
4826A1 3853.9 0.057 0.028 0.028 0.085
4826A2 3234.9 0.011 0.065 0.093 0.708
4826ZZ 619.0 0.065 0.011 0.017 0.136
TOTAL DRAINAGE AREA OF LAKE =
SUM OF SUB-DRAINAGE AREAS =
MOTE «*« SAME AS SAN ANGELO LAKE.
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR MEAN FLOW DAY
MAY
0.142
1.784
0.340
NORMALIZED FLOWS(CMS)
-JUN JUL AUO>
0.198
0.481
0.093
0.255
0.425
0.079
0.255
0.396
0.076
SEP
0.142
1.557
0.283
OCT
1.133
2.350
0.453
NOV
0.113
0.025
0.006
OEC
MEAN
0.057 0.210
0.023 0.665
0.006 0.131
4826A1
4826A2
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
I
2
3
4
5
6
7
8
74
74
74
74
75
75
75
75
75
75
75
75
74
74
74
74
75
75
75
75
75
75
75
75
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
22.512
1.897
0.340
0.198
0.142
0.142
0.08S
0.085
0.736
0.003
0.003
0.014
7
5
2
8
5
1
2
6
4
7
20
3
7
5
2
8
5
1
2
6
4
22
20
3
SUMMARY
3853.9
3853.9
TOTAL FLOW IN
TOTAL FLOW OUT
9.49
2.49
FLOW DAY
FLOW DAY
FLOW
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.198
0.623
0.198
0.170
0.142
0.113
0.170
0.085
0.003
0.003
0.0
20
25
20
25
0.0
0.0
0.057
0.311
-------
APPENDIX D
PHYSICAL and CHEMICAL DATA
-------
482601
31 2v 03.0 100 39 01.0
SAN ftNGE,_J
48451 TEXAS
DATE TIME DEPTH
FROM OF
TO DAY FEET
74/03/0* 15
15
15
74/05/15 16
16
16
74/08/05 1
i:
i:
74/10/39
oo oooo
00 0005
00 0010
10 0000
!0 0005
10 0010
50 0000
50 0004
50 0008
25 0000
25 0005
25 0015
25 0028
0001U
WATER
TEMP
CENT
15.3
15.3
15.1
25.8
25.6
25.6
25.6
25.5
25.4
18.5
18.4
18.4
18.1
llt?ALES
00300
DO
MG/L
9.8
10.4
8.0
7.8
5.0
4.8
4.8
5.6
5.6
5.6
00077
TRANSP
SECCHl
INCHES
22
12
12
30
00094
CNDUCTVY
FIELD
MICrfOMHO
<«54
455
459
607
607
607
642
642
641
217
224
223
231
3
00400
PH
SU
8. JO
8.30
8.30
8.40
8.35
8.30
8.05
8.00
7.90
8.25
8.00
8.00
7.90
00410
T ALK
CAC03
MG/L
168
167
168
154
154
154
112
112
112
113
211
0015
00610
NH3-N
TOTAL
MG/L
0.040
0.030
0.030
0.070
0.050
0.070
0.020
0.030
0.040
0.040
1202
FEET DEPTH
00625
TOT KJEL
N
MG/L
1.000
0.900
0.800
1.200
1.000
1.000
1.400
0.800
0.500
0.500
00630
N02&M03
N-TOTAL
MG/L
0.060
0.040
0.080
0.070
0.050
0.080
0.120
0.130
0.140
0.240
00671
PHOS-DIS
ORTHO
MG/L P
0.010
0.011
0.011
0.007
0.006
0.007
0.043
0.054
0.053
0.044
DATE
FROM
TO
74/03/04
74/05/15
74/08/05
74/10/29
00665 32217 00031
TIME DEPTH PHOS-TOT CMLRPHYL INCOT UT
OF A KEMNING
DAY FEET MG/L P UG/L PERCENT
15
15
15
16
16
16
16
11
11
11
11
11
11
11
00
00
00
10
10
10
10
50
25
25
?5
25
25
?5
0000
0005
0010
0000
0003
0005
0010
0000
0000
0003
0005
0006
0015
0028
0
0
0
0
0
0
0
0
0
0
.041 13.1
.04d
.053
.106 24.7
.ioe
.117
42.6
.13;- 18.3
.101
.096
.OvO
i.o
5.0
1.0
-------
LA^E CODE 48?6 0. C.
MEAN MONTHLY FLOWS AND DAILY FLOWS(CMS)
TRIBUTARY MONTH YEAR • MEAN FLOW DAY KLO* DAY FLOW DAY FLOW
4826ZZ 9 74 4.248
10 74 0.283
11 74 0.057
12 74 0.028
1 75 0.028
? 75 0.028
3 75 0.028
4 75 0.028
5 75 0.142
6 75 0.006
7 75 0.0
8 75 0.0
-------
APPENDIX E
TRIBUTARY DATA
-------
STOfttl RETRIEVAL OATE 76/UJ/iO
31 29 00 A 100 26 <*5.0 4
!M CONOO KlvE^f
^8363 7.5 SAN ANGELO S
0/SAN ANGELU LA.^t
AT BOTTOM OF SAN ANGELO uAM SPILLWAY
11EPALES 211120^.
0000 FEET DEPTH CLASS 00
OATE
FKOM
TO
,/09/0'
TIME DEPTH
OF
DAY FEET
1 14 30
00630
^02&N03
N-TOTAL
MG/L
0.016
00625
TOT KJEL
N
MG/L
2.100
00610
NH3-N
TOTAL
MG/L
0.010
00671
PHOS-OIS
ORTHO
MG/L P
0.025
00665
PHOS-TOT
MG/L P
0.130
-------
STORET HETRItVAL DATE 7«,/03/IO
I9> i f
31 35 35.0 100 38 15.0 4
N CONCHO HIVE*
<*8 Ib CAriLSbAD
T/SAN ANGELO LAKE
•2NDRY RD oRDG 0.5 MI SW JCT HrtY 87
11EPALES 2111204
0000 FEET UEPTM CLASS 00
DATE
FROM
TO '
74/10/05
74/11/02
74/12/08
75/01/05
75/02/01
75/03/02
75/04/06
75/04/20
75/05/04
75/05/25
75/06/22
75/07/20
75/08/03
TIME 1
OF
OAY 1
15 45
14 20
11 30
10 00
16 00
10 30
12 30
11 25
11 15
13 45
11 30
12 00
11 45
FEET
00630
N02&N03
N-TOTAL
MG/L
4.900
1.160
3.210
2.760
2.040
C.810
0.185
0.090
0.052
0.075
0.010
0.005
0.025
00625
TOT KJEL
N
MG/L
0.725
0.700
0.900
1.600
0.500
0.600
0.900
O.SOO
0.650
0.625
1.050
0.500
0.450
00610
NH3-N
TOTAL
MG/L
0.005
• 0.025
0.032
0.040
0.024
•3.015
0.045
0.045
0.025
0.015
0.020
0.025
0.035
00671
PHOS-OIS
URTHO
MG/L P
0.010
0.050
0.008
0.005K
0.016
0.005
0.010
0.005
0.010
0.005
0.015
0.010
0.010
00665
PHOS-TOT
MG/L P
0.04U
0.110
0.030
0.030
0.040
0.020
0.010
0.010
0.010
0.070
0.070
0.050
0.060
K VALUE KNOWN TO BE
LESS THAN INDICATED
------- |