PB88-171483
INDUSTRIAL SOURCE COMPLES (ISC) DISPERSION
MODEL USER'S GUIDE. SECOND EDITION
VOLUME 2. APPENDICES (REVISED)
TRC Environmental Consultants, Incorporated
East Hartford, CT
Dec 87
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
-------
PB88-171483
SEPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-8S--002b
December 1987
Air
Industrial Source
Complex (ISC)
Dispersion Model
User's Guide —
Second Edition (Revised)
Volume II.
Appendices
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse be tore compl-
1. REPORT NO.
EPA450/4-88002b
2.
EPA/SW/MT-88/041C
PB88-171U83
4. TITLE AND SUBTITLE
Industrial Source Complex (ISC) Dispersion Model
User's Guide - Second Edition (Revised) — Volume II.
Appendices
5. REPORT DATE
December 1987
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Curtis P. Wagner
8. PERFORMING ORGANIZATION REPORT NO.
TRC Project
9. PERFORMING ORGANIZATION NAME AND ADDRESS
TRC Environmental Consultants, Inc.
800 Connecticut Boulevard
East Hartford, Connecticut 06108
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
Contract No. 68-02-3886
12. SPONSORING AGENCY NAME AND ADDRESS
Source Receptor Analysis Branch
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
For magnetic tape, see PB88-169487.
16. ABSTRACT
Second Edition (Revised) of the Industrial Source Complex Dispersion (ISC)
Model User's Guide provides a detailed technical discussion of the updated ISC Model.
The ISC Model was designed in response to the need for a comprehensive set of
dispersion model computer programs that could be used to evaluate the air quality
impact of emissions from large industrial source complexes. Air quality impact
analyses for industrial source complexes often require consideration of factors such as
fugitive emissions, aerodynamic building wake effects, time-dependent exponential decay
of pollutants, gravitational settling, and dry deposition. The ISC Model consists of
two computer programs that are designed to consider these and other factors so as to
meet the dispersion modeling needs of air pollution control agencies and others
responsible for performing dispersion modeling analyses. Major features in the revised
model code include: (1) a regulatory default option,which incorporates regulatory
guidance contained in the Guideline on Air Quality Models as revised in 1986; (2) a
calms processing procedure; (3) a new Urban Mode 3 which utilizes urban dispersion-
parameters published by Briggs based on observations of McElroy and Podler in St. Louis
and (4) revised sets of wind speed profile exponents for rural and urban scenarios.
The model code now contains additional feature for handling "flagpole" receptors and
a refined treatment of building wake effects including the use of building dimensions
as a function of wind direction.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lOENTIFIERS/OPEN ENDED TERMS C. COSATI Held'Group
Air pollution
Turbulent diffusion
Meteorology
Mathematical models
Computer model
Industrial Sources
Deposition
Downwash
Dispersion
18. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY.CLASS (This Report!
Unclassified
21. NO. OF PAGES
305
20. SECURITY CLASS /This page)
Unclassified
22. PRICE
EPA Form 2220-: >*• • • 4-77'
-------
EPA-450/4-88-002b
Industrial Source Complex
(ISC) Dispersion Model
User's Guide-Second Edition (Revised)
Volume II. Appendices
U.S. ENVIRONMENTAL PROTECTION' AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
December 1987
-------
DISCLAIMER
This report has been reviewed by the Office of Air Quality Planning and Standards, EPA, and approved for
publication. Mention of trade names or commercial products is not intended to constitute endorsement or
recommendation for use.
-------
ACKNOWLEDGEMENTS
The ISC Model User's Guide was originally written by J.F. Bowers, J.R.
Bjorklund, and C.S. Cheney of the H.E. Cramer Company, Inc., Salt Lake City,
Utah. That work was funded by the Environmental Protection Agency under
Contract No. 68-02-3323, with George Schewe as the Project Officer. This
second edition has been prepared by David .J. Wackter and John A. Foster, TRC
Environmental Consultants, Inc., East Hartford, Connecticut. It was funded by
the Environmental Protection Agency under Contract No. 68-02-3886 with Russell
F. Lee as Project Officer. Technical reviews and comments provided by Richard
Daye, Alan Cimorelli, James Dicke, Jerome Mersch and Joseph Tikvart are
gratefully acknowledged.
-111-
-------
APPENDICES
B
F
H
TABLE OF CONTENTS
VOLUME II
COMPLETE FORTRAN LISTING OF THE INDUSTRIAL SOURCE COMPLEX
SHORT TERM MODEL (ISCST) COMPUTER PROGRAM
COMPLETE FORTRAN LISTING OF THE INDUSTRIAL SOURCE COMPLEX
LONG TERM MODEL (ISCLT) COMPUTER PROGRAM
EXAMPLE EXECUTIONS OF THE ISC SHORT-TERM MODEL (ISCST)
COMPUTER PROGRAM
EXAMPLE EXECUTIONS OF THE ISC LONG-TERM MODEL {ISCLT)
COMPUTER PROGRAM
LOGIC FLOW DESCRIPTION OF THE ISC SHORT-TERM MODEL
{ISCST) COMPUTER PROGRAM
LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM MODEL (ISCLT)
COMPUTER PROGRAM
CODING FORMS FOR CARD INPUT TO THE ISC SHORT-TERM MODEL
(ISCST) COMPUTER PROGRAM
CODING FORMS FOR CARD INPUT TO THE ISC LONG-TERM MODEL
(ISCLT) COMPUTER PROGRAM
TABLE OF CONTENTS
VOLUME I
SECTION
1
2
3
MODEL OVERVIEW
TECHNICAL DESCRIPTION
USER'S INSTRUCTIONS FOR THE ISC SHORT-TERM (ISCST)
MODEL PROGRAM
USER'S INSTRUCTIONS FOR THE ISC LONG-TERM (ISCLT)
MODEL PROGRAM
REFERENCES
Preceding page blank
-V-
-------
LIST OF FIGURES
VOLUME II
FIGURE . PAGE
C-l Card Input Data Values for the Hypothetical Potash
Processing Plant Concentration Run C-2
C-2 Listing of the Input Data for the Hypothetical Potash
Processing Plant Concentration Run C-12
C-3 Listing of One Day of Hourly Meteorological Data Used for the
Hypothetical Potash Processing Plant Concentration Run . C-22
C-4 Listing of the Diagnostic Message Table Produced by the
Hypothetical Potash Processing Plant Concentration Run . C-23
C-5 Listing of the Table of 24-hour Average Concentration
Values Computed on Day 51 From Sources 12 to 15 by the
Hypothetical Potash Processing Plant Concentration Run . C-24
C-6 Listing of the Table of the 1-day Average Concentration
Values Computed From Sources 2 to 11 by the Hypothetical
Potash Processing Plant C-28
C-7 Listing of the Table of the Highest Average Concentration
Values Computed at Each Receptor From Source 1 by the
Hypothetical Potash Processing Plant Concentration Run . C-32
C-8 Listing of the Table of the Maximum 50 Average Concentration
Values Computed From Sources 12 to 15 by the Hypothetical
Potash Processing Plant Concentration Run C-37
C-9 Card Input Data Values for the Hypothetical Potash
Processing Plant Deposition Run C-39
C-10 Listing of the Table of the Maximum 50 Average Concentration
From Sources 1 to 11 by the Hypothetical Potash Processing
Plant Concentration Run C-43
D-l Card Input Data Values for the Hypothetical Potash Processing
Plant Concentration Run D-2
D-2 Annual Average Ground-Level Particulate Concentration Output
Listing D-8
D-3 Card Input Data Values for the Hypothetical Potash
Processing Plant Deposition Run D-46
D-4 Total Annual Particulate Deposition Output Listing D-51
E-l ISCST Structure and Subroutines E-2
F-l ISCLT Structure and Subroutines F-2
-vi-
-------
APPENDIX A
COMPLETE FORTRAN LISTING OF THE
INDUSTRIAL SOURCE COMPLEX
SHORT TERM MODEL (ISCST)
COMPUTER PROGRAM
-------
N>
00
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
•c
c
c
c
c
c
ISCST (DATED 07330) ISC00010
AN AIR QUALITY DISPERSION MODEL IN ISC00020
SECTION 1. GUIDELINE MODELS ISC00030
IN UMAMAP (VERSION 6) JAN. 88. ISC00040
SOURCE: FILE 6 ON UHAMAP MAGNETIC TAPE FROM NTIS. ISC00050
THIS VERSION OF ISCST MAS PREPARED IN 1987 ISC00060
BY TRC ENVIRONMENTAL CONSULTANTS INC. FROM THE ISC00070
VERSION CONTAINED IN UHAMAP VERSION 6. ISC00080
THE FOLLOWING FEATURES HAVE BEEN ADDED: ISC00090
OPTION FOR BRI6GS URBAN DISPERSION COEFFICIENTS ISC00100
ISW(20)=3. ISC00110
A PLUME RISE FORMULATION THAT IS ISC00120
CONSISTENT WITH THE MPTER MODEL. ISC00130
OPTION FOR BUOYANCY INDUCED DISPERSION. ISW(26). ISC00140
THE MINIMUM SOURCE-RECEPTOR DISTANCE HAS ISC00150
BEEN REDUCED FROM 100M TO 1M. ISC00160
OPTION FOR CALM MIND TREATMENT OF NWS ISC00170
METEOROLOGICAL DATA. ISW(27). ISC00180
REVISIONS THROUGH H.E. CRAMER CO.'S ISC00190
UPDATE PACKAGES HAVE BEEN INCLUDED. ISC00200
POLLUTANT INDICATOR OPTION, ISW(29). ISC00210
A TERRAIN TRUNCATION ALOGORITHM HAS BEEN ADDED. ISC00220
AN OPTION TO PRINT INPUT DATA AS SOON AS IT IS ISC00230
INPUT HAS BEEN ADDED,ISW(30). ISC00240
A "REGULATORY DEFAULT OPTION" SWITCH, ISM(28). ISC00250
DEFAULT HIND PROFILE COEFFICIENTS FOR ISC00260
RURAL AND URBAN OPTIONS, ISW21). ISC00270
DEFAULT VERTICAL POTENTIAL TEMPERATURE GRADIENTS ARE ISC00260
ASSIGNED IF DEFAULT OPTION CHOSEN. ISC00290
RECEPTORS BELOW PLANT GRADE ARE TREATED IN ISC00300
THE SAME MANNER AS RECEPTORS ABOVE . ISC00310
PLANT GRADE. ISC00320
CALCULATIONS FOR NEGATIVE DEPOSITION ISC00330
HAVE BEEN SET TO ZERO!S0307340-2). ISC00340
ABOVE GROUND (FLAGPOLE) RECEPTORS MAY NOW BE MODELLED. ISC00350
DIRECTION SPECIFIC BUILDING DOKNWASH WITH A LINEAR DECAY ISC00360
ADJUSTMENT TO PLUME HEIGHT AND AN ADJUSTMENT TO PLUME ISC00370
RISE ARE NOW PERFORMED FOR REGULATORY USE. ISC00380
THESE FEATURES ARE DESCRIBED IN MORE DETAIL ISC00390
UNDER "CARD GROUP 2" BELOW.
INDUSTRIAL SOURCE COMPLEX SHORT TERM MODEL
WRITTEN BY CRAIG S. CHENEY, H. E. CRAMER CO., INC.
ISC00400
*K«***ISC00410
ISC00420
ISC00430
THIS PROGRAM IS DESIGNED TO CALCULATE GROUND-LEVEL OR ELEVATEDISC00440
CONCENTRATIONS OR DEPOSITIONS FROM STACK, VOLUME OR AREA SOURCES. ISC00450
THE RECEPTORS AT WHICH THE CONCENTRATION OR DEPOSITION ARE ISC00460
CALCULATED MAY BE DEFINED ON A X,Y RIGHT-HANDED CARTESIAN ISC00470
COORDINATE SYSTEM GRID OR A POLAR COORDINATE SYSTEM GRID. THE ISC00480
POLAR COORDINATE SYSTEM DEFINES 360 DEGREES AS NORTH (POSITIVE ISC00490
Y-AXIS), 90 DEGREES AS EAST (POSITIVE X-AXIS), 180 DEGREES AS ISC00500
SOUTH AND 270 DEGREES AS WEST. WIII3 DIRECTIONS ARE ALSO DEFINED ISCOC510
IN THIS MANNER. DISCRETE OR ARBITRARILY PLACED RECEPTORS HAY DE ISC00520
-------
>
N>
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DEFINED USING EITHER COORDINATE SYSTEM. FINALLY, SOURCE IOCATIONSISC00530
MUST BE REFERENCED HITH THE CARTESIAN COORDINATE SYSTEM.
AVERAGE CONCENTRATION OR TOTAL DEPOSITION MAY BE CALCULATED
IN 1-, 2-, 3-, 4-. 6-, 8-, 12- AND/OR 24-HOUR TIME
PERIODS. AN 'N'-DAY AVERAGE CONCENTRATION COR TOTAL DEPOSITION)
OR AN AVERAGE CONCENTRATION I OR TOTAL DEPOSITION) OVER THE TOTAL
NUMBER OF HOURS HAY ALSO BE COMPUTED.
CONCENTRATIONS (DEPOSITIONS) MAY BE COMPUTED FOR ALL SOURCES OR
FOR ANY COMBINATION OF SOURCES THE USER DESIRES.
OTHER OPTIONS INCLUDE INPUT OF TERRAIN HEIGHTS FOR RECEPTORS.
TABLES OF HIGHEST ATO SECOND HIGHEST CONCENTRATIONS OR
DEPOSITIONS AT EACH RECEPTOR, TABLES OF THE FIFTY MAXIMUM VALUES
CALCULATED AND TAPE OUTPUT. PEFER TO SECTION 3 OF THE USER'S
MANUAL FOR A MORE DETAILED EXPLANATION OF THE ABOVE OPTIONS.
ISC0054J
ISCOOSSO
ISC00560
ISC00570
iscoosao
ISC00590
ISC00600
ISC00610
ISC00620
ISC00630
ISC00640
ISCOCiiO
ISC00670
ISC00660
ISC00690
ISC00700
ISC00710
ISC00720
ISC00730
ISC00740
ISC00750
ISC00760
ISC00770
ISC00780
ISC00790
iscooeoo
iscooaio
ISC00820
iscooaio
iscooeoo
ISC00850
ISC00860
ISC00870
iscooaao
ISC00890
ISC00900
ISC00910
ISC00920
ISC00930
ISC00940
ISC00950
ISC00960
THE AMOUNT OF TIME A PROBLEM RUN TAKES TO EXECUTE CAN BE DESCRIBEDISC00970
THIS PROGRAM IS WRITTEN IN FORTRAN 77 AND ASSUMES A WORD
LEIteTH OF 32 BITS OR MORE SINCE 4 ALPHANUMERIC CHARACTERS ARE
EXPECTED TO BE STORED INTO ONE WORD. THE BASIC PROGRAM REQUIRES
ABOUT 26500 WORDS OF STORAGE. THIS PROGRAM HAS CURRENTLY LIMITED
DATA STORAGE TO 43500 HORDS FOR A TOTAL OF 70000 WORDS.
THE MAIN ROUTINE OF THIS PROGRAM DYNAMICALLY ALLOCATES STORAGE
TO THE CALCULATING SUBROUTINE, MODEL. MAXIMUM LIMITS ARE NOT
LIMITED INDIVIDUALLY TO THE NUMBER OF SOURCESCNSOURC) OR THE
NUMBER OF RECEPTORS!NXPNTS»NYPNTS » HXWYPT = NPNT3) OR THE
NUMBER OF TIME PERIODS TO BE CALCULATED CNAVG) OR THE NUMBER OF
SOURCE GROUPS DESIRED INGROUP). INSTEAD THE MAXIMUM LIMIT IS A
FUNCTION OF ALL FOUR VARIABLES. THIS MAXIMUM LIMIT CAN BE
COMPUTED WITH THE FOLLOWING EQUATION.
LIMIT
NPNT3"f24NAV6«N6ROUP) * NXPNTS
* 287*NSOURC * A * B » C
» NYPNTS » 2«KHYPT
WHERE A = NPNTS«NGROUP IF I5MI15) = I', OTHERWISE A s
Bs4*NAV6»NPNTS»NGROUP IF ISHI 17» =1 OR
B?6»NAVG«NPNTS«NGROUP IF ZSMI17I =2: OTHERWISE
C s 201«NAV6«NGPOUP IF ISNU8) =
=2:
i; OTHERWISE
0 AND
B =0 AND
C = 0.
ALSO IF NGROUP - 0. ASSUME NGROUP - I FOR THE ABOVE EQUATION.
THIS LIMIT MUST NOT EXCEED THE VALUE BY WHICH THE
IS DIMENSIONED AND BY WHICH THE VARIABLE. 'LIMIT',
THE MAIN ROUTINE.
'QF* ARRAY
IS SET IN
BY THE FOLLOWING EQUATION.
• OF MINUTES = CONSTANT*INDAYS»1)>(1*NHDURS»I1»0.6>NSOURC
•I1»0.6*NPNTS«0.1«NGROUP«NAVG)I)
WHERE CONSTANT = 2.1«10»»-5. THIS VALUE IS DERIVED FROM RUNS
MADE ON A UNIVAC 1100 AND WILL VARY TOR OTHER
COMPUTERS.
NAVG = SUM OF PARAMETERS ISW(7I TO ISWI14) SET TO 1.
NPNTS = TOTAL NUMBER OF RECEPTOR POINTS.
ALL OTHER PARAMETERS ARE DEFINED IN INPUT DATA BELOM.
ISC00980
ISC00.90
ISC01000
ISC01010
ISC01020
ISCOI030
ISC01040
ISC01050
ISC01040
I5C01070
ISC01000
ISC01090
-------
C ISC01100
C»»»«»«»»»««»»I»»IH»IK »»••»•»•• INPUT DATA »»*»»»*«»«»»«iH<«»*"«»«»»»»"i««»*»ISC01110
C
C
C
r.
c
C
c
c
c
c
THE INCUT DATA IS PARTITIONED INTO SEVEN MAJOR CARD GROUPS WHERE
E«CH CARD GROUP CONTAINS COMMON INPUT PARAMETERS. FOR EXAMPLE,
CARD GROUP 6 CONTAINS ALL SOURCE DATA PARAMETERS. A CARD GROUP
MAT BE DIVIDED INTO 'CARDS'. A 'CARD* MAT ACTUALLY CONSIST CF
MORE THAN ONE CARD IMAGE. A 'CARD' OR COMPLETE CARD WO-JPS S'.AT
NOT BE PFAD BT THE PROGRAM DEPENDING DM TV: PROGRAM OPTIONS
CHOSEN BY THE USER.
ISC011ZO
ISC01130
ISC01140
ISC01150
I5C01160
ISC01170
ISCOllflO
ISC01190
ISC01200
ISC01Z10
ISC01ZZO
ISC01230
ISC01Z40
ISC01Z50
ISC01Z60
ISC01Z70
ISC01?CO
ISC01Z90
ISC01300
ISC01310
ISC01320
ISC01330
ISC01340
ISC01350
ISC01360
ISC01370
ISC01380
ISC01390
ISCO".00
oo
C»»««BCARD GROUP 1
C
CKCARD i FORMAT!i5A4i
c
C TITLE - A 60 CHARACTER INFORMATION HEADING WHICH MILL APPEAR AT
C THE TOP OF EACH PAGE OF OUTPUT.
C
C«««««CARD GROUP 2
C
C»CARO 1 FORMAT!4012)
C
C ISM(l) - si. CALCULATE CONCENTRATION,
C 32. CALCULATE DEPOSITION.
C IF 0 OR BLANK. 1 IS ASSUMED.
C ISH(Z) - -1, RECTANGULAR CARTESIAN COORDINATE RECEPTOR GRID
C SYSTEM IS ASSUMED.
C =2. POLAR COORDINATE RECEPTOR GRID SYSTEM IS ASSUMED.
C 83, GENERATE RECTANGULAR CARTESIAN COORDINATE GRID
C SYSTEM. GRIDXm IS THE STARTING POINT OF VHE X-AXIS
C AND 6RIDXI21 IS THE INCREMENTAL VALUE UfcO IN GENERATING I5C01 10
C THE X-AXIS. THE Y-AXIS IS GENERATED IS * LIKE MANN"* ISC014ZO
C USING GRIOYil) AND GRIOYIZI. ISC01430
C =4. GENERATE POLAR COORDINATE SYSTEM RADIALS. ISC01443
C GRIDVm IS THE STARTING RADIAL (IN INTEGER DEGREES I AND ISC01450
C GRIOYm IS THE INCREMENTAL INTEGER VALUE USED TO ISC01460
C GENERATE THE REMAINING RADIALS. THE VALUES GENERATED I3C01470
C MUST BE WITHIN THE RANGE OF 1 TO 360 DEGREES. ISC01460
C IF 0 OR BLANK, 1 IS ASSUMED. ISC01490
C ISHO) - =1, DISCRETE RECEPTOR POINTS ARE REFERENCED WITH THE ISC01500
C CARTESIAN COORDINATE SYSTEM. ISC01510
C =2. DISCRETE RECEPTOR POINTS ARE REFERENCED WITH THE ISC01520
C POLAR COORDINATE SYSTEM. ISC01530
C IF 0 OR BLANK, 1 IS ASSUMED. ISC01540
C ISM(4> - =0, NO RECEPTOR TERRAIN ELEVATIONS ARE READ. IMT01550
C =1, RECEPTOR TERRAIN ELEVATIONS ARE READ. IF = -1, THEN ISCO'^O
C ELEVATIONS ARE IN METERS RATHER THAN FEET. ISC01570
C ISMI5) - =0. 110 CttiCENTRATIOUS OR OEPOSITOHS ARE WRITTEN TO TAPE. ISC015SO
C -I, CONCENTRATIONS (DEPOSITIONS) ARE WRITTEN TO TAPE I3COI590
C WITH LOGICAL UNIT NUMBER ITAP. CONCENTRATIONS ISC01600
C (DEPOSITIONS! ARE WRITTEN TO TAPE IN THE TIME PERIODS ISC01610
C INDICATED BY ISNI71-ISWI141. ALSO, AN ANNUAL AVERAGE ISC016ZO
C CONCENTRATION OR TOTAL DEPOSITION IS WRITTEN TO TAPE IF ISC01630
C ISHI15I IS SET. TWO END OF FILE MARKS ARE WRITTEN AT ISC01640
C THE END OF THE TAPE. CONSULT SECTION 3.2.4 OF THE USER'SISC01650
C MANUAL FOR A DETAILED DISCUSSION OF THIS OPTION. . ISC01660
-------
C ISMI6I - =0, NO INPUT DATA ARE LISTED. ISC01670
C si, LIST ALL INPUT DATA. ISC01680
C 82, LIST ALL INPUT DATA PLUS METEOROLOGICAL DATA. ISC01690
C ISMC7I - si, CALCULATE 1-HOUR TIME PERIODS. ISC01700
C ISWIBI - =1. CALCULATE 2-HOUR TIME PERIODS. ISC01710
C ISH(9i - si, CALCULATE 3-HOUR TIME PERIODS. ISC01720
C ISMC10I - si. CALCULATE 4-HOUR TIME PERIODS. ISC01730
C ISHI11I - =1, CALCULATE 6-HOUR TIME PERIODS. ISC01740
C ISWI12I - si. CALCULATE 8-HOUR TIME PERIODS. ISC01750
C ISWI13) - si, CALCULATE 12-HOUR TIME PERIODS. ISCOI760
C I5WC14) - el, CALCULATE 24-HOUR TIME PERIODS. ISC01770
C ISHI 151 - si, PRINT AN 'N'-OAT AVERAGE CONCENTRATION OR TOTAL ISC01 30
C DEPOSITION TABLE FOR ALL RECEPTORS AND FOR EACH SOURCE ISC01790
C GROUP. ISC01800
C ISHI16) - si, PRINT DAILY TABLES WHOSE TIME PERIODS ARE ISC01810
C INDICATED BT ISMI7I-I3HI14I FOR EACH RECEPTOR FOR EACH ISC01820
C DAT OF METEOROLOGICAL DATA AND FOR EACH SOURCE GROUP. ISC01830
C I SMI 171 - si. PRINT TABLES OF HIGHEST AND SECOND HIGHEST ISC018
-------
00
C THROUGHOUT THE DATA CASE. SEE CARD GROUP 3. ISC02240
C =3. THE PROGRAM PEADS ALL VERTICAL POTENTIAL TEMPERATUREISC02250
C GRADIENTS ON AN HOUR-TO-HOUR BASIS IN CARD GROUP 7. ISC02Z60
C SEE CARD GROUP 7. NOTE THAT THIS OPTION IS ISCOZ270
C APPLICABLE ONLY IF HOURLY METEOROLOGICAL DATA IS ISC02200
C CARD INPUT IISM<191 EQUALS 21. ISCOZ290
C DEFAULT VALUE EQUALS 1. ISC02300
C ISHC23) - THIS PARAMETER ALLOWS THE SCALING OF SOURCE EMISSION ISC02310
C RATES AS A FUNCTION OF SEASON, MONTH, HOUR OF THE DAY ISC02320
C HIND SPEED AND STABILITY, OR A COMBINATION OF BOTH ISC02330
C SEASONAL AND HOUR OF THE DAY VARIANCE. IF THIS PARA- ISC02340
C METER IS GREATER THAN ZERO THEN THE SOURCE EMISSION ISCUiiaO
C RATES IQI FOR ALL SOURCES ARE ADJUSTED DEPENDING ON ISC02360
C MHICH OPTION IS CHnr.EN. ALSO, THE USE OF THIS PARAMETERISC02370
C OVERRIDES THE INPUT PARAMETER QFL6 (SEE CARD GROUP 6). ISC02380
C OTHERWISE IF ISHI23) EQUALS ZERO THEN THE SOURCE ISC02390
C EMISSION RATES FOR A GIVEN SOURCE MAY BE SCALED USING ISC02400
C THE CORRESPONDING QFLG PARAMETER FOR THAT SOURCE. SET ISC02410
C ISHI23) TO THE VALUE ACCORDING TO THE LIST OF OPTIONS ISCOZ420
C BELOW. THESE SAME OPTIONS ARE USED BY THE QFLG PARA- ISC02430
C METER FOR EACH SOURCE. THE SCALING FACTOR VALUES ARE ISC02440
C ENTERED IN CARD GROUP 6, CARD 5 AND IN A FORMAT ISC02450
C DEPENDING ON MHICH OPTION IS SELECTED FROM ISH(23) I OR ISC02460
C QFLG). ISC02470
C =0, NO SCALING OF THE SOURCE EMISSION RATES FOR ALL ISC02480
C SOURCES IS PERFORMED (EQUIVALENT TO MULTIPLYING ISC02490
C SOURCE STRENGTH, Q, BY 1.0). SCALING OF INDIVIDUAL ISC02500
C SOURCE EMISSION RATES OF SOURCES MAY STILL BE ISC02510
C EXERCISED BY THE INPUT PARAMETER QFLG (SEE CARD ISC02520
C GROUP 6). ISC02530
C «1, SCALE SOURCE EMISSION RATES ACCORDING TO SEASON. ISC02540
C INPUT FOUR SCALARS IN CARD GROUP 6, CARD 5 FOR THE ISC02550
C HINTER, SPRING, SUMMER AND AUTUMN SEASONS. A SEASOHISC02560
C IS DETERMINED FROM THE JULIAN DAY OF A 366-DAY YEAR.ISC02570
C HINTER INCLUDES JULIAN DAYS 336-60, SPRING 61-152. ISC02580
C SUMMER 153-244 AND AUTUMN 245-335. THESE JULIAN ISC02590
C DAYS, FOR EACH SEASON, CORRESPOND HITH THE 3 MONTHS ISC02600
C OF EACH METEOROLOGICAL SEASON. ISC02610
C =2, SCALE SOURCE EMISSION RATES ACCORDING TO MONTH. ISC02620
C INPUT TWELVE SCALARS IN CARD GROUP 6. CAPD 5 FOR ISC02630
C EACH MONTH OF THE YEAR BEGINNING HITH JANUARY'AND ISC02640
C PROCEEDING THROUGH THE YEAR TO DECEMBER. A MONTH ISISC02650
C DETERMINED FROM THE JULIAN DAY OF A 366-DAY YEAR. ISC02660
C =3, SCALE SOURCE EMISSION RATES BY HOUR OF THE DAY. ISC02670
C INPUT 24 SCALARS IN CARD GROUP 6, CARD 5 BEGINNING ISC02 00
C HITH HOUR 1 FOR EACH HOUR OF THE DAY. ISCOZ690
C =4, SCALE SOURCE EMISSION RATES DEPEKOING ON BOTH THE ISC02700
C Him SPEED AND STABILITY CATEGORY VALUES FOR A GIVENISC02710
C HOUR OF METEOROLOGICAL DATA. INPUT SIX SETS OF SIX ISC02720
C SCALARS FOR EACH OF THE SIX STABILITY CATEGORIES ISC02730
C (A-F) BEGINNING HITH STABILITY CATEGORY A<=1). FOR ISC02740
C EACH OF THE SIX SETS. SIX SCALARS ARE ENTERED FOR ISCOZ750
C EACH HIND SPEED CATEGORY BEGINNING HITH THE LOWEST ISC02760
C HIND SPEED CATEGORY. HENCE. A TOTAL OF 36 SCALARS ISC02770
C ARE ENTERED IN CARD GROUP 6. PMJO 5. ISC027BO
C =5, SCALE SOURCE EMISSION RATES DEPENDING ON BOTH SEASONISC02790
C AND HOUR OF THE DAY. INPUT FOUR SETS OF 24 SCALARS ISCOZBOO
-------
C FOR EACH OF THE FOUR SEASONS BEGINNING WITH HINTER I3C02810
C AND FOLLOWED BY SPRING. SUtDIER AfO AUTUMN. A TOTAL ISC02820
C OF 96 SCALARS ARE ENTERED IN CARD GROUP 6. CAPO 5. ISC02630
C ISWI24I - =1. PROGRAM USES FINAL PLUME RISE AT ALL RECEPTOR LOCA- ISC02840
C TIONS. RECEPTOR LOCATION IS HOT A FUNCHOH OF THE ISC02850
C PLUME RISE WITH Till3 OPTION. ISC028ftO
C =2. PROGRAM COMPUTES PLUME RISE At A FUNCTION OF THE ISC020/0
C DOHNHIND DISTANCE IRFCEPTOR LOCATION I. ISC02600
C DEFAULT VALUE £QUAL3 1. ISC02890
C ISMI25) - si, DO NOT MODIFY THE PHYSICAL STACK HEIGHT TO ACCOUNT I5C02900
C FOR OOVINHASH. ISC02910
C eg. MODIFY THE PHYSICAL STACK HEIGHT FOR ALL STACKS TO ISC02920
C ACCOUNT FOR STACK OOMNUASH ACCORDING TO ISC02930
C BRIGGS, 1973. ISC02940
C DEFAULT VALUE EQUALS 1. . ISC02950
C ISHI26) - =1, PROGRAM USES BUOYANCY INDUCED DIPERSION IN THE ISC02960
C SIGMA-V AND SI6MA-Z TERMS. ISC02970
C =2, PROGRAM DOES NOT INCLUDE BUOYANCY INDUCED DIS^tRSIONISCOi-WO
C ISMI27) - si, PROGRAM USES A SUBPROGRAM TO SET ISC02990
C CONCENTRATIONS FOR CALM PERIODS EQUAL TO ZERO. ISC03000
C IF CARD MET DATA!ISW(191=21 ISHC27I IS SET TO 2 ISC03010
C s2, PROGRAM DOES NOT USE A SUBPROGRAM TO SET ISC03020
C CONCENTRATIONS FOR CALM PERIODS EQUAL TO ISC0303C
C ZERO. ISC03040
C ISHC28I - =1, A REGULATORY DEFAULT MODE IS USED. NOTE, IF THIS ISC03050
C OPTION IS SELECTED METEOROLOGY MUST BE INPUT ISC03060
C VIA PRE-PROCESSED TAPE/FILE. IF THE USER ISC03070
C ATTEMPTS TO RUN THE MODEL WITH THE REGU'JkTORY ISC03080
C DEFAULT OPTION AND CARD METEOROLOGY, Ah ISC03090
C ABNORMAL TERMINATION HILL RESULT. ISCO-,',30
C IF CHOSEN, THIS OPTION HILL CAUSE VARIOUS MODEL ' ISC03110
C OPTIONS TO BE OVERRIOEN HITH EPA .1ECOMMENDED VALUES. ISC03120
C THE FOLLOWING OPTIONS ARE CHANGED: ISC03130
C -TAPE/FILE PRE-PROCESSED METEOROLOGY ASSUMED. ISC03140
C -FINAL PLUME RISE IS USED. ISC03150
C -BUOYANCY INDUCED DISPERSION IS USED. ISC03160
C -STACK TIP DOHNMASH IS USED. ISC03170
C -DEFAULT HIND PROFILE COEFFICIENTS FOR RURAL ISC03180
C MODE! .07,.07,.10,.15,.35,.551 AND URBAN ISC03190
C MODEC.15,.15,.20,.25,.30,.301 FOR STABILITY ISC03200
C CLASSES A-F ARE ASSIGNED. ISC03210
C -DEFAULT VERTICAL POTENTIAL TEK?ER*TURE GRADIENTS ISC03220
C (A 0.0, B 0.0, C 0.0, D 0.0, E .02, F .035 K/MI ISC03230
C -A DECAY HALF LIFE OF 4 HOURS IS ASSIGNED IF ISC03240
C S02 IS MODELLED AND THE URBAN MODE IS IS=33:50
C DESIRED. OTHERWISE THE DECAY HALF LIFE IS ISC03260
C SET TO INFIMTY ll» DECAY). ISC03270
C -DIRECTION SPECIFIC BUILDING OOHNHASH AND ADJUSTMENTSISC03280
C TO PLUME RISE AND PLUME HEIGHT ARE USED. WHEN THE ISC03290
C PHYSICAL STACK HT IS LESS THAN MB » 0.5L MHEHE HB ISISC03300
C THE BLOG HT AMD L IS THE LESSER OF THE BL06 HT OR ISC03310
C MIDTH. IHHEN THIS OCCURS. BUOYANCY INDUCED DISPER- ISC03320
C , SION IS NOT USED. I • ISC03130
C . =2, PROGRAM DOES NOT USE A REGULATORY DEFAULT MODE. ISC03340
•C ISMC29I - =1, IF S02 IS MODELLED. NOTE THAT IF THE RUN IS 1SC03350
C UPBAN ANO THE REG. DEFAULT OPTION IS CIIOSCN ISC03360
C A HALF LIFE OF t» HOURS IS ASSIGNED. ISC03170
-------
I
-vl
c
c
c
c
c
c
c
c
c
c
CHCARD 2
c
c
c
c
c
=2, IF POLLUTANT OTHER THAN 502 IS MODEtLED.
ISW(30) - =1, DEBUS MODE IS CALLED. ALL CARD INPUT IS
ECHOED AS SOON AS IT IS READ. THIS
OPTION IS USEFUL WHEN INPUT ERRORS ARE
DETECTED.
=2, DEBUG MODE NOT CALLED.
ISM(31I - =0, HO RECEPTOR HEIGHTS ABOVE GROUND ARE READ
=1, RECEPTOR HEIGHTS ABOVE GROUND IN METERS ARE READ
FOR BOTH GRID AND DISCRETE RECEPTORS.
FORMAT(6I6I
NXHtPT
NGROUP
NSOURC - NUMBER OF SOURCES
NXPNT3 - NUMBER OF X POINTS IN THE X-AXIS FOR A CARTESIAN
COORDINATE RECEPTOR GRID OR THE NUMCER OF RANGES (RINGSI
FOR A POUR COORDINATE RECEPTOR GRID.
NTPNTS - NUMBER OF Y POINTS IN THE Y-AXIS FOR A CARTESIAN
COORDINATE RECEPTOR GRID OR THE NUMBER OF DIRECTIONS
(RADIALSI FOR A POLAR COORDINATE GRID.
NUMBER OF DISCRETE OR ARBITRARILY PLACED RECEPTORS.
NUMBER OF SOURCE GROUPS. EACH SOURCE GROUP IS A
SELECTED NUMBER OF SOURCES SPECIFIED BY THE USER (SEE
DATA CARD GROUP 4) FROM THE NUItBER OF SOURCES
PROCESSED IN THE fROBLEM RUN. THE CONCENTRATION OR
DEPOSITION CONTRIBUTED COLLECTIVELY BY THE SOURCES
IN EACH SOURCE GROUP IS COMPUTED AND PRINTED DEPENDING
ON THE OPTIONS SELECTED IN DATA CARD CROUP 2. CARD 1.
IF LEFT BLANK OR ZERO. THE PROGRAM HILL SUM OVER ALL
SOURCES. MAXIMUM EQUALS 150 SOURCE GROUPS.
IPERO - THIS PARAMETER ALLOWS THE USER TO SPECIFY AN N-TH TIME
PERIOD FOR HHICH CONCENTRATIONS OR DEPOSITIONS ARE
PRINTED. THIS PARAMETER IS USED IN CONJUNCTION HITH THE
AST7) - I5HU4) OPTIONS. FOR EXAMPLE. IF ONE DESIRES TO
SEE THE FIFTH 3-HOUR PERIOD OF AVERAGE CONCENTRATION (OR
TOTAL DEPOSITION) THEN IPERD 13 SET TO 5 AND ISH(«I IS SETISC037ZO
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
t
c
c
c
c
c
c
c
c
C«»*»CARD GROUP 3
C CARDS 1-3 FOR GRID TYPE RECEPTORS
C
C
CUCARD i FORMAT(BFIO.OI THIS CARD is NOT RCAD IF NXWTS OR NYPNTS - c.
c
C GRIOX - IF ISM(2)=1. X-AXIS RECEPTOR ARRAY IN METERS.
C IF ISMI2) a Z OR 4. RECEPTOR RANGE(RING) ARRAY IN METERS.
C IF ISH(2)=3> GRIDXdl IS THE STARTING LOCATION FOR THE
C X-AXIS IN METERS AND GRIOXI21 IS THE INCREMENT AT HHICH
C THE X-AXIS IS GENERATED IN METERS.
ISC03300
ISC03390
ISC03400
ISC0341D
ISC034ZO
ISC03430
ISC03440
ISC03450
ISC03440
ISC03'70
ISC03480
ISC03490
ISC03500
ISC03510
ISC03520
ISC03530
ISC03540
ISC03550
ISC03560
ISC03570
ISC03580
ISC03590
ISC03600
ISC03610
ISC03620
ISC03630
ISC03640
ISC03650
ISC03660
ISC03670
ISC03680
ISC03690
ISC03700
ISC03710
TO 1. ALSO. ANY INVALID COMBINATIONS OF IPERD AND THE
TIME PERIOD ISM OPTIONS ARE IGNORED. EXAMPLES OF THESE
ARE A FIFTH 24-HOUR TIME PERIOD OR A FOURTH 0-HOUR TIME
PERIOD.
NOTE'
THE FOLLOWING 2 INPUT PARAMETERS ARE USED ONLY IF
METEOROLOGICAL DATA ARE CA30 INPUT (ISH(19)=2).
NHOURS - NUMBER OF HOURS PER DAY OF'METEOROLOGICAL DATA.
NDAYS - NUMBER OF DAYS OF METEOROLOGICAL DATA.
IF 0 OR BLANK. NDAYS IS SET TO 1.
ISC03730
ISC03740
ISC03750
ISC03760
ISC03770
ISC03780
ISC03790
ISC03800
ISC03610
ISC03020
ISC03830
ISC03840
ISC03B50
ISC03660
ISC03870
ISCC3S8C,
ISC03B90
ISC03900
ISC03910
ISC03920
ISC03930
ISC03940
-------
00
C
C«CARD 2 FORHAT(0Fio.o> THIS CARD is NOT READ IF NXPNTS OR NTPMTS = o.
c
C 6RIDY
C
C
C
c
c
c
c
c
c
c
c
c
c
COCARD
c
c
C GRIDZ - ARRAY OF TERRAIN ELEVATIONS FOR RECEPTORS IN FEET.
C FOR EACH Y POINT (OR RADIALS) AN X-AXIS (OR RANGE» ARRAY
C IS READ. FOR EACH X-AXIS ARRAY READ, A NEH CARD IMAGE IS
C STARTED.
C
CKTARO 3A FORHAT(8F10.0I THIS CARD IS READ ONLY IF ISMC31I = 1
C AND NXPNTS AND NYPNT3 ARE BOTH NON-ZERO.
C
RHT - ARRAY OF RECEPTOR HEIGHTS IN METERS ABOVE LOCAL TERRAIN.
FOR EACH Y POINT (OR RADIALS I AN X-AXIS (OR RANGE) ARRAY
IS READ. FOR EACH X-AXIS ARRAY READ, A NEH CARD IMAGE IS
STARTED.
IF ISW«2)=1. Y-AXIS RECEPTOR ARRAY IN METERS.
IS ISM! 2 1=2, RECEPTOR DIRECTION!RADIAL I ARRAY IN INTEGER
DEGREE VALUES WITHIN THE RAMGE OF 1 TO 360 DEGREES.
DEFAULT VALUE = 360 DEGREES.
IF ISH(2t=3t GRIOYUI IS THE STARTING LOCATION FOR THE
Y-AXIS IN METERS AND GRIOYI2) IS THE INCREMENT AT MUCH
THE Y-AXIS IS GENERATED IN METERS.
IF ISM(2>=4, GRIDV(l) IS THE STARTING DIRECTION! RADIAL I
IN INTEGER DEGREES AND 6P70TI2I IS THE INTEPFR INCREMENT
AT WHICH THE RADIALS ARE GENERATED IH DEGREES. THE
VALUES GENERATED MUST BE WITHIN THE RANGE OF 1 TO 360
DEGREES.
DEFAULT VALUE = 360 DEGREES.
FORHAT(BF10.fi) THIS CARD IS READ ONLY IF ISM!41 = 1
AND NXPNTS AND NYPNTS ARE BOTH NON-ZERO.
OR -1
oo
C
C
c
c
c
c
COCARD 4
c
c
c
c
c
c
c
c
c
c
c
C XDIS
c
c
c
c
C YDIS
C
C
C
C
C
FORMAT(4F10.0) FOR DISCRETE RECEPTORS.
THIS CARD REPLACES CARDS 3
AND 4 FPOM UNAMAP VERSION 5. THIS CARD
IS ONLY READ IF NXWYPT IS NON-ZERO. INPUT
XDIS, YDIS. 6RIDZ ON I CARD. THERE IS 1
CARD FOR EACH DISCRETE RECEPTOR.
IF TERRAIN ELEVATIONS ARE NOT CONSIDERED
LEAVE THE THIRD ENTRY ON EACH CARD BIANK.
IF ABOVE GROUND (FLAGPOLEI RECEPTORS ARE NOT USED
LEAVE THE LAST ENTRY ON EACH CARD BLANK.
NXWYPT CARDS MUST BE INPUT.
IF I5W<3»=1,
RECEPTORS.
IF ISHI 31=2,
RECEPTORS.
IF ISM!31=1,
RECEPTORS..
IT ISWI3I-2. DIRECTION! RADIAL I IN INTEGER
DEGREE VALUES FOR DISCRETE RECEPTORS. VALUES MUST BE
WITHIN 1 TO 360 DEGREES.
DEFAULT VALUE = 360 DEGREES.
X VALUE IN METERS FOR DISCRETE
RANGE IN METERS FOR DISCRETE
Y VALUE IN METERS FOR DISCRETE
ISC03950
ISC03960
ISC03970
ISC03900
ISC03990
ISC04000
ISC04010
ISC04020
ISC04030
ISC04060
ISC04070
ISC04000
ISC04090
ISCO'.IOO
ISC04UO
ISC04120
ISC04130
ISC04140
ISC04150
ISC04160
ISC04170
ISC04100
ISC04190
ISC04200
ISC04210
ISC04220
ISC04230
ISC04240
ISC04250
ISC04260
ISC04270
ISC04280
ISC04290
ISC04300
ISC04310
ISC04320
ISC04330
ISC04340
ISC043SO
ISC04360
ISC04VO
ISC04>80
ISC04390
ISC04400
ISC04410
ISC04420
ISC04430
ISC04440
ISC04450
ISCO
-------
c
c
c
c
c
c
c
c
c
BrfIOZ - TERRAIN ELEVATION FOR DISCRETE
RECEPTORS IN FEET. NOTE DULY 1 SKIOZ VALUE
IS READ FROM EACH DISCRETE RECEPTOR CARD.
RHT - DISCRETE RECEPTOR HEIGHT ABOVE LCCAL TERRAIN.
RECEPTOR HEIGHT IN METERS. HOTE OMIT 1 HEIGHT
IS READ FROM EACH DISCRETE RECEPTOR CARD.
2 FORMAT!13161
l
vo
00
C«*»«CARO GROUP
C
CKCARD i FORMATI20141
c
C NSOGRP
C
C
C
c
c
c
COCARD
c
C IOSOR
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ISC04520
ISC04530
ISC04540
ISC04550
ISC04560
ISC04570
ISC04580
ISC04590
ISC04600
ISC04610
ISC04620
ISC04630
ISC04640
AN ARRAY OF INTEGERS INDICATING HOH MANY SOURCE rAIMDERS ISC04650
ARE TO BE READ FOR EACH SOURCE GROUP. THE SOURCE NUMDERSISCO'«660
ARE READ IN THE ARRAY IDSOR. SEE CARD 2 DC LOW FOR /•! I?Cf">47C
EXAMPLE OF THIS PARAMETER'S USE AND FOR THE EXPLANATION ISC04680
OF THE PARAMETER IDSOR WHICH IS USED IN CONJUNCTION HITH ISC04690
THIS CARD GROUP IS NOT READ IF NGROUP = 0.
NSOGRP. A MAXIMUM OF ISO VALUES MAY BE INPUT.
ISC04700
ISC04710
ISC04720
ISC04730
ISC04740
ISC04750
ISC04760
ISC04770
ISC04780
AN INTEGER ARRAY CONTAINING THE SOURCE NUMBERS OR. THE
LOWER AND UPPER BOUND OF SOURCE NUMBERS TO BE SUMMED
TOGETHER. THIS PARAMETER IS USED IN CONJUNCTION HITH
THE ARRAY NSOGRP IN CARD I ABOVE. THE FOLLOWING EXAMPLE
SHOULD ILLUSTRATE THE USE OF THE PARAMETERS K'WOUP I SEE
DATA CAPO GROUP 2). NSOGRP AND IDSOR. LET US ASSUME THAT ISCO'790
ME HAVE 50 SOURCES WHOSE NUMBERS ARE 10,29,30,... ,490,500.ISCO^OO
FIRST. IF THE USER DESIRES TO SEE THE CTfCENTRATION -OR ISC04810
DEPOSITIONI FROM ALL SOURCES IN THE PROBLEM RUN, NAMELY, ISC04820
THE 50 MENTIONED ABOVE THEN SET NGROUP TO 0. THE ISC0483:!
PARAMETERS NSOGRP AND IDSOR MOULD NOT BE INPUT. INSTEAD ISC04040
LET US SUPPOSE THAT ME DESIRE TO SEE THE CONCENTRATION ISC04850
(OR DEPOSITION) INDIVIDUALLY FROM SOURCES 10. 100, ZOO, I5C04860
300, 400 AND 500. ME ALSO MISH TO SEE THE COMBINED ISC04870
CONTRIBUTION FROM SOURCES '10 THROUGH 100; 50 THROUGH 260; ISC04880
100 THROUGH 200 PLUS 400 THROUGH 500; AND FINALLY ALL ISC04090
SOURCES 10 THROUGH 500. HENCE, TIIE CONCENTRATION I OR ISC04900
(DEPOSITION) CONTRIBUTIONS FROM SIX INDIVIDUAL SOURCES ISC04910
ARE DESIRED PLUS THE CONTRIBUTION FROM FOUR SETS OF ISC04920
COMBINED SOURCES ARE DESIRED FOR A TOTAL OF TEN SOURCE ISC04930
GROUPS. THUS, ENTER THE VALUE 10 FOR NGROUP. FOR NSOGRP I«!C04940
ONE MOULD ENTER 1,1,1,1,1,1.2,2,4,2. FOR THE IOSOR ARRAY ISCC':?50
ONE MOULD ESTER 10,100.200,300,400.500,10,-100,50,-260, ISC04960
100,-200,400,-£.03,10.-500. THE FIRST SIX ENTRIES OF BOTH ISC04970
HSOGRP AND IOSOR ARE IN A ONE-TO-ONE CORRESPONDENCE; THE ISC04980
1 ENTERED IN NSOGRP IMPLIES THAT ONLY ONE SOURCE NUMBER ISC04990
NEED BE READ IN THE IDSOR ARRAY FOR A COMPLETE SOURCE ISC05000
GROUP CONTRIBUTION. THE SEVENTH ENTRY IN NSOGRP, A 2, ISC05010
INDICATES THAT THE SOURCE NUMBERS 10 AND -100 ARE TO BE ISC05020
CONSIDERED FOR A SOURCE GROUP WHILE THE MINUS SIGN ISC05030
INDICATES INCLUSIVE SUMMING FROM SOURCES 10 TO 100. ONE ISC05040
NEED NOT BE CONCERNED BY THE FACT THAT NO SOURCE NUMBER ISC05050
OF, SAY, '43' EXISTS. THE PROGRAM ONLY SUMS OVER THOSE ISC05060
SOURCES DEFINED. NAMELY IN THIS CASE 10,20,30 90.100. ISCOS070
LIKEWISE, ENTRY EIGHT IN NSOGRP, A 2, CALLS FOR A SOURCE I5C05080
-------
GROUP INCLUDING SOURCES 50 THROUGH 260. IF ONE DESIRES ISC05090
SOURCE CONTRIBUTIONS FROM SOURCES BUT NOT FROM SOURCES ISC05100
BETWEEN, THE NINTH ENTRY IN NSOGRP, A 4, ILLUSTRATES ISC05110
THIS PROCEDURE. THE FOUR IMPLIES THAT FOUR SOURCE riUMBERSISCOSIZO
NEED BE READ IN ORDER TO DEFINE A SOURCE GROUP. IN THIS ISC05130
CASE THE FOUR SOURCE WUMBER3 READ ARE 100,-200,400,-500 ISC05140
IHPLTinG THAT THE INCLUSIVE SUMMATION OVER SOURCES 100 ISC05150
TO 200 AND 400 TO SOP ARE DESIRED EXCLUDING SOURCE I3C05160
NUMBERS 210 THROUGH 390. FINALLY, IT IS STILL POSSIBLE ISC05.70
TO OBTAIN THE COMBINED CONTRIBUTION FROM ALL SOURCES IN ISC05180
THE PROBLEM RUN AS SHOWN IN THE LAST SOURCE GROUP. ISC05190
IN SUMMARY} II NGROUP IS A VALUE USED TO REPRESENT THE ISC05200
NUMBER OF SOURCE GROUPS DESIRED! 21 THE VALUES IN NSOGRP ISC05210
INDICATE THE NUMBER OF SOURCE NUMBERS TO BE READ IN IDSOR;ISC05220
AND 31 IDSOR CONTAINS THE SOURCE NUMBERS USED TO ISC05230
CONSTITUTE A SOURCE GROUP WHERE A MINUS SIGN IMPLIES ISC05240
INCLUSIVE SUMMING FROM THE PREVIOUS SOURCE NUMBER ENTERED ISC05250
>
o
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CMHiMCARD GROUP 5
C
C«CARDS 1-6 FORMATJ6F10.0)
C
C
C PDEF -
C '
C
C
c
c
c
TO THE SOURCE NUMBER WITH THE MINUS SIGN.
THE NUMBER OF VALUES CAN NOT EXCEED JOO IN THE IDSOR
ARRAT.
THESE CARDS ARE READ ONLY IF ISWI21I IN
CARD GROUP Z EQUALS 2 AND' ISHI28I NE 1
ISC05260
ISC05270
ISC05260
ISCOS290
ISC05300
ISC05310
ISC05320
ISC05330
ISC05340
ISC05350
ISC05360
ISC05370
ENTER HIND PROFILE EXPONENTS FOR SIX STABILITY CATEGORIES
(A-F) A'O SIX WIND SPEED CATEGORIES (ENTERED IN UCATS IN
CARD 13 BELOMI. FOR EACH STABILITY CATEGORY, BEGINNING
WITH STABILITY CATEGORY A, ENTER SIX HIND PROFILE EXPONENTSISC05380
.-OR EACH WIND SPEED CATEGORY ON ONE CARD. A TOTAL OF SIX ISC05390
CARDS A3E READ FOR A TOTAL OF 36 VALUES. ISC05400
ISC05410
ISC05420
ISC05430
ISCOS440
ISC05450
ISC05460
FORMATC6F10.0)
THESE CARDS ARE READ ONLY IF ISW(22)
CARD GROUP 2 EQUALS Z AND ISWIZBI NE
IN
1
ENTER VERTICAL POTENTIAL TEMPERATURE GRADIENTS (DEGREES
KELVIN/METER) FOR SIX STABILITY CATEGORIES IA-FI *r«1
SIX HIND SPEED CATEGORIES (ENTERFO Til UCATS IN DATA CARD ISC05470
13 BELOW). FOR EACH STfRUITV CATEGORY, BEGINNING WITH ISC05/.00
STABILITY CATEGORY A, ENTLR SIX GRADIENT VALUES OH ONE
CARD. A TOTAL OF SIX CARDS ARE READ FOR A TOTAL OF 36
VALUES.
00
COCAROS 7-1?
c
r
C DTHDEF
C
C
C
c
c
c
c
COCARD is FORHATIAFIO.O)
c
C B» - HEISHT AT WHICH THE WIND SPEED WAS MEASURED (METERS).
C DEFAULT ASSUMES 10.0 METERS.
C UCATS - INPUT THE UPPER BOUMD OF THE FIRST THRCUGH FIFTH WIND
C SPEED CATEGORIES IN METERS PER SECOND. DEFAULT VALUES
C EQUAL 1.54, 3.09, 5.14, 6.23, 10.60 RESPECTIVELY.
C
C«CARD 14 FORMATS.0,1F«.0,3A4,7A4,212)
C
C TK - SOURCE EMISSION RATE UNITS CONVERSION FACTOR. IF 0 OR BLANK
C TK IS SET TO 10»*6 FOR CONCENTRATION AND 1.0 FOR DEPOSITION.
ISC05490
ISC05500
ISC05510
ISC055ZO
ISC05510
ISC05540
ISC05550
ISC05560
ISC05570
I5C05560
ISC05590
ISC05600
ISC05610
ISC05620
ISC05630
ISC05640
DECAY - WASHOUT COEFFICIENT FOR PRECIPITATION SCAVENGING. IF 0 ISC05650
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
OR BLANK, NO SCAVENGING IS ASSUMED. THE VALUE ENTERED ISC05660
FOR THIS PARAMETER IS IGNORED BY THE PROGRAM IF CARD ISC05670
METEOROLOGICAL DATA ARE INPUT (ISH(19»=2I. ISC05680
NOTE THAT IF THE REG. DEFAULT OPTION IS CHOSEN ISC05690
AND S02 IS MODELLED IN AN URBAN MODE THE DECAY ISC05700
TERM IS SET = TO .0000481(4 HR HALF LlFEt. ISCOS710
IQUN - 12 CHARACTERS IDENTIFYING EMISSION RATE (Ql UNITS. IF ISC057PO
BLANK. EMISSION RATE IS ASSUMED IN (GRAM/SECI FOR ISC05730
CONCENTRATION AND (GRAMSI FOR DEPOSITION. IS-:P«-"«0
ICHIUN - 28 CHARACTERS IDENTIFYING 01ftPUT UNITS. IF BLANK, OUTPUTISC05750
FOR CONCENTRATION IS CMCPOCRAMS/CUBIC METER I AND FOR ISC05760
DEPOSITION IS (GRAMS/SQUARE METER I. ISC05770
IM*T - LOGICAL UNIT NUMBER OF METEOROLOGICAL DATA. DEFAULT'VALUE ISC05780
EQUALS 9 FOR PREPROCESSED DATA (ISH(191=11, AMD EQUALS 5
(CURRENT VALUE OF INTERNAL VARIABLE 'IN'I FOR CARD DATA
(ISH(19)=2I.
LOGICAL UNIT NUMBER OF TAPE OUTPUT OPTION. IF 0 OR BLANK,
ITAP IS SET TO 1.
ITAP -
FORHAT(aOIl)
ISC05790
ISC05000
iscosaio
ISC05820
ISCOS830
ISC05840
THESE CARDS ARE READ ONLY IF PRE-PROCESSED ISCOS850
METEOROLOGICAL DATA ARE USED (ISM(19I=1).
C«CAROS 15-19
C
c
C IDAY - ARRAY OF 366 INDICATING WHICH DAYS OF METEOROLOGY ARE TO
C BE USED BY THE PROGRAM. FOR EXAMPLE, IF DAV(140)=1 THEN
C DAY 140 HILL BE USED ALONG HITH ANY OTHER VALUES SET TO 1
C
20 FORMAT! 416 1
C
C
C
c
c
c
c
c
c
THIS CARD IS READ ONLY IF PRE-PROCESSED
METEOROLOGICAL DATA ARE USED (ISH(19)=1I.
ISS - SURFACE STATION NUMBER TO BE HATCHED HITH NUMBER READ FROM
METEOROLOGICAL DATA.
ISY - YEAR OF SURFACE DATA, A TWO DIGIT INTEGER.
IUS - UPPER AIR STATION NUMBER TO BE MATCHED HITH NUMBER READ
FROM METEOROLOGICAL DATA.
IUY - YEAR OF UPPER AIR DATA, A TWO DIGIT NUMBER.
THIS CARD IS REPEATED
•NSOURC' TIMES.
C»«*MCARD GROUP 6
c
C«CARO 1 FORMATII5,2I1,I2.I1.F8.0,2F7.0,8F6.0)
C
C
C N30 - SOURCE IDENTIFICATION NUMBER. MUST BE A POSITIVE NUMBER.
C ITYPE - =0, STACK TYPE SOURCE.
C =1, VOLUME TYPE SOURCE.
C =2, AREA TYPE SOURCE.
C HAKE - STACK HAKE EFFECTS OPTION FOR CHOOSING WHICH SIGMA Y
C EQUATION TO USE.
C =0, 'UPPER BOUND* CONCENTRATION IS CALCULATED.
C -\» 'LOWER BOUND' CONCENTRATION IS CALCULATED.
C DEFAULT ASSUMES 0.
C REFER TO SECTION 2.4.1.1.D OF THE USER'S GUIDE FOR A MORE
C COMPLETE DISCUSSION OF THIS OPTION.
C NV3 - NUMBER OF GRAVITATIONAL SETTLING CATEGORIES. MAXIMUM OF
C 20. IF > 0. CARDS 2-4 BELOW ARE READ IMMEDIATELY FOLLOWING ISC06190
C THIS SOURCE INPUT CARD. ISC06ZOO
C QFL6 - THIS PARAMETER ALLOWS THE SCALING OF THE SOURCE EMISSION ISC06210
C RATE FOR THIS SOURCE AS A FUNCTION OF SEASON, MONTH, HOUR ISC06220
ISC05060
ISC05870
ISC05880
ISC05890
ISCOS900
ISC05910
ISC05920
ISC05930
ISCOS940
ISC05950
ISC05760
ISCOS970
ISC05980
ISC05990
ISC06000
ISC06010
ISC06020
ISC06030
ISC06040
ISC06050
I5C06060
ISC06 70
ISC06000
ISC06090
ISC06100
ISC06110
ISC06I20
ISC06130
ISC06140
ISC06I50
ISC06160
ISC06170
ISC06180
-------
I
N)
OF THE DAY. HIND SPEED AND STABILITY, 00 A COMBINATION OF ISC06230
BOTH SEASONAL AND HOUR OF THE DAY VARIANCE. IF THE PARA- ISC06240
METER ISWC2II IN CARD GROUP 2 IS GREATER THAN 0 m» T»'T3 ISC06250
PARAMETER IS IGNORED. IF ISHI27' * "• 4FL6 HAY BE USED IN ISC06260
AN ANALOGOUS HAMMER TO ISV.3) EXCEPT ONLY THE SOURCE TOR ISC06270
WHICH QFLG > 0 IS AFFECTED. ALL VALID V.'LUES FOR ISW(23I ISC06260
APPLY FOR THIS PARAMETER JQFLGI. THE SOURCE EMISSION ISC06290
RATE SCALARS ARE ENTERED IN CARD 5 BELOW. ISC06100
- SOURCE EMISSION RATE. , ISC06310
FOR CONCENTRATION AND TYPE 0 • 1 SOURCES, ISC06320
UNITS ARE IN MASS PER UNIT TIME, TYPE 2 SOURCE UNITS ARE IN ISC06330
MASS PER UNIT TIME PER UNIT AREA. FOR DEPOSITION AND TYPE ISC06340
0*1 SOURCES. UNITS ARE IN MASS, TYPE 2 SOURCE UNITS ARE ISC06350
IN MASS PER UNIT AREA. ISC06760
X LOCATION OF SOURCE IN METERS. . ISC06370
Y LOCATION OF SOURCE IN METERS. ISC06360
ELEVATION OF SOURCE AT SOURCE BASE IN METERS. ISC06390
HEIGHT OF SOURCE ABOVE GROUND IN METERS. . ISC06400
FOR TYPE 0 SOURCES, STACK EXIT TEMPERATURE IN DEGREES KELVIN.ISC06410
FOR TYPE 1 SOURCES, INITIAL VERTICAL DIMENSION IN METERS. ISC06420
STACK EXIT VELOCITY IN METERS PER SECOND.ISC06430
INITIAL HORIZONTAL DIMENSION IN METERS. ISC06440
WIDTH OF SOURCE IN METERS. ISC06450
THE FOLLOWING FOUR INPUT PARAMETERS ARE FOR STACK-TYPE ISC06460
SOURCES ONLY. ISC06470
0 - STACK INNER DIAMETER IN METERS. ISCOA480
HB - HEIGHT OF BUILDING ADJACENT TO STACK IN NETFRS. ISC06 90
IF THE REGULATORY MODE IS SELECTED (ISWI2CI~T I AND HS IS ISC06500
LESS THAN OR EQUAL TO HB » ONE-HALF T1.1ES IHE LESSER OF HB ORISC06510
1.13«BW, THE PROGRAM EXPECTS TO READ AND USE 36 DIRECTION ISC06520
SPECIFIC BUILDING HEIGHTS AND WIDTHS FROM CARDS 4A AND 4B OF
THIS GROUP. IF INPUT AS A NEGATIVE VALUE AND THE HEIGHT
CRITERIA IS NOT MET, THE PROGRAM READS PAST THE SIX LIMES.
LENGTH OF BUILDING ADJACENT TO STACK IN METERS.
WIDTH OF BUILDING ADJACENT TO STACK IN METERS.
XS -
TS -
zs -
HS -
TS -
VS -
NOTE:
00
r
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C*CAROS Z-4
c
c
c
c
c
C PHI -
c
C VSN -
c
c
C GAMMA -
C
c
c
C"CARDS 4A-4B
C
C
c
c
c
FOR TYPE 0 SOURCES,
FOR TYPE 1 SOURCES,
FOR TYPE Z SOURCES.
HL
HM
FORMAT!OF10.0I THESE CARDS ARE READ ONLY IF THE PARAMETER
NVS IN CARD 1 ABOVE IS > 0 FOR A GIVEN
SOURCE. IF SO, THESE CARDS ARE READ
IMMEDIATELY FOLLOWING THE SOURCE CARD
(CARD II ON WHICH THE PARAMETER NVS > 0.
ARRAY CONTAINING THE MASS FRACTION OF PARTICULATES FOR ALL
SETTLING CATEGORIES. JMXIMUM OF 20 VALUES.
ARRAY CONTAINING THE GRAVITATIONAL SETTLING VELOCITY FOR
PARTICULATES FOR ALL SETTLING CATEGORIES. MAXIMUM OF 20
VALUES.
-ARRAY CONTAINING THE SURFACE REFLECTION COEFFICIENT FOR
PARTICULATES FOR ALL SETTLING CATEGORIES. MAXIMUM OF
20 VALUES.
FORMATU2F6.0)
THESE CARDS ARE READ ONLY IF THE VALUE
OF HB IS < 0 FOR A GIVEN SOURCE. IF
SO, THESE CARDS ARE READ AFTER CARDS
2-4 IF NVS > 0 OR AFTER HIE SOURCE CARD
(CARD II IF NVS = 0.
ISC06530
ISC06540
ISC06550
ISC06560
ISC04570
ISC06580
ISC06590
ISC06600
ISC06610
ISC06620
ISC06630
ISC'". 4<<0
ISC06650
I5C06660
ISC06670
ISC06680
ISC06690
ISC06700
ISC06710
ISC067JO
ISC06730
ISC06740
ISC06750
ISC06760
ISC06770
ISC067aO
ISC06790
-------
C BH - 36 DIRECTION SPECIFIC BUILDING HEIGHTS STARTING AT 10 ISC06800
C DEGREES AND RUNNING THROUGH 360 DEGREES HITH THE APPROPRIATE ISC06610
C DIRECTION SPECIFIC BUILDING HEIGHTS AND PROJECTED HIOTHS FOR ISC06020
C EACH DIRECTION. NEGATIVE VALUES OF BH ARE USED TO DENOTE ISC06830
C THE LOWER BOUND MAKE EFFECTS CALCULATIONS. (SEE HAKE ABOVE I ISC066'iO
C BM - 36 DIRECTION SPECIFIC BUILDING HIDTHS STARTING AT THE 10 ISC06850
. C ' DEGREE FLOW VECTOR AND RUNNING THROUGH 360 DEGREES. ISC06 60
C ISC06870
C«CARD 5 FORMAT!0F10.01 THIS CARD IS READ ONCE ONLI IF ISHI 231 IN DATAISC066QO
C CARD GROUP Z > 0. IF ISHI23) = 0, THIS CAPO ISC068'>0
C IS REPEATED FOR EACH SOURCE WHERE QFLG > 0 AS ISC06900
C INDICATED IN CARD 1 ABOVE. IF ISWI23) = 0 ANDISC06910
C QFLG n 0 FOR ALL SOURCES. THIS CARD IS NOT ISC06920
C READ. ISC06930
C ISC06940
C QTK - ENTER SOURCE EMISSION RATE SCAURS IN A FORMAT DEPENDING ISC06950
C ON THE VALUE OF ISWI23I (OR QFLG). TV* FORMAT IS THOROUGHLYISC06960
C DISCUSSED IN THE DESCRIPTION OF PARAMETER ISM(23) IN CARD ISC06970
C GROUP 2. THE FOLLOWING IS A SUMMARY OF THE AFOREMENTIONED ISC06980
C FORMAT. IF ISWC23) (OR QFLG) - 1. ENTER 4 SEASONAL SCAURS ISC06990
c ON ONE CARD; » 2. ENTER 12 MONTHLY SCAURS. TWO CARDS ARE iscorooo
c READ; =3, ENTER 2* HOURLY SCAURS. THREE CARDS ARE READ; iscoroio
C = 4, ENTER 6 SCAURS FOR EACH WIND SPEED CATEGORY PER CARD ISC07020
C FOR EACH OF THE SIX STABILITY CATEGORIES. SIX CARDS ARE ISC07030
*"• C READ FOR A TOTAL OF 36 SCALARS; = 5. ENTER FOUR SETS OF 24 ISC07040
— C HOURLY SCAU33. EACH SET REPRESENTS ONE SEASON OF SCALARS. ISC07050
w C A TOTAL OF 12 CARDS ARE READ FOR A TOTAL OF 96 VALUES. ISC070&0
C ISC07070
C»«««»CAHD GROUP 7 FORMAT(ie.5F«.0,I8.2F8.0) ISC07080
C THIS CARD GROUP IS READ ONLY IF CARD METEOROLOGICAL ISC07090
C DATA ARE ENTERED (ISM<19)=2). THIS CARD GROUP ISC07IOO
C CONSISTS OF 'NHOURS' CARDS. THIS CARD GROUP IS ISC07110
C REPEATED 'NDAYS1 TIMES. ISC07120
C ISC07130
C JDAY - JULIAN DAY OF METEOROLOGICAL DATA. THIS IS USED TO ISC07140
C COMPUTE SEASON OR MONTH FOR ANY SOURCES WHICH HAVE ISC07150
C VARIATIOIIAL EMISSION RATES. THE PROS9AM USES THE JDAY I3C07160
C VALUE READ FOR THE FIRST HOUR OF EACH DAY. THE SECOND ISC07170
C AND SUCCESSIVE HDJRS FOR EACH DAY ARE IGNORED. DEFAULT ISC07180
C VALUE = 1. ISC07190
C AFV - HIND FLOW VECTOR. DIRECTION IN DEGREES TO WHICH THE WHO ISC07200
C IS FLOWING. ISC07210
C AHS - MIND SPEED IN METERS PER SECOND AT REFERENCE HEIGHT 'ZR*. ISC07220
C HLH - HEIGHT OF SURFACE MIXING UYER IN METERS. ISC07230
C TEMP - AMBIENT AIR TEMPERATURE IN DEGREES KELVIN. ISC07240
C DTHDZ - VERTICAL POTENTIAL TEMPERATURE GRADIENT IN DEGREES KELVIN ISC07250
C PER MEIER. ISC07260
C THIS VALUE IS READ ONLY IF ISMI22) EQUALS 3. 1SCO/270
C THE VALUE OF OTHDZ IS NOT USED IF THE REG. DEFAULT ISC07280
to C OPTION. ISH(28>. IS CHOSEN. DEFAULTS ARE USED. ISC07290
*£ C 1ST - PASQUUL STABILITY CATEGORY. A=l, B=2, C=3, ETC. ISC07300
^ C P - MIND PROFILE EXPONENT. ISC07310
C THIS VALUE IS READ ONLY IF ISH(21) EQUALS 3. ISC07320
C THE VALUE OF P IS NOT USED IF THE REG. DEFAULT ISC07330
C OPTION, ISH128), IS CHOSEN. DEFAULTS ARE USED. ISC07340
C DECAY - DECAY COEFFICIENT. THE VALUE OF THIS PARAMETER OVERRIDES ISC07350
C THE PARAMETER DECAY IN CARD GROUP 5. ISC07360
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
NOTE THAT IF THE RE6. DEFAULT OPTION IS CHOSEN
AND 5OZ IS MODELLED IN AN URBAN MODE THE DECAY
TERN IS SET n TO .OO00481 SECONDS»»-1.
WHERE .0000481=.693/(3600«4) 4 HR 502 HALF LIFE.
ISC07370
ISC07380
ISC07310
ISCO7400
ISC07410
THIS IS THE MAIN PROGRAM OF THE EPA INDUSTRIAL SOfPCC COMPLEX
SHORT TERM MODEL. THIS ROUTINE'S PURPOSE IS TO CALCULATE THE
AMOIN1 OF STORAGE REQUIRED FOR T*BLES, RECEPTOR GRID AND SOURCE
INFORMATION. IN ORDER FOR THESE CALCULATIONS TO BE MADE THE 'ISM
«RRAY, THE VARIABLES WHICH OETERI!If!E THE NUMBER OF RECEPTORS AND
THE NUMBER OF SOURCES ARE READ.
CD
.-J
INTEGER TITLE
COMMON QF(43500)
DIMENSION IZERO(161),IQFm
COMMON XLOGIX/ ISM(40).NSOURC,NXPNTS,NYPNTS,NXMYPT,NGROUP,
1 NSOGRPI 150 ),IDSOR( 200 ),IPERD,NPNTS,NAVG,NHOURS,HDAYS,NrDAY,LINE,
2 IO,IN,TITLE(15),IQUNI3),ICHIUNC7),CONOEPI6),LIMIT,I13
EQUIVALENCE (ISU.IZEROMQF.IQF)
C SET MAXIMUM LIMIT FOR 'QF' ARRAY. MUST AGREE MITH VALUE USED TO
C DIMENSION 'QF'.
LIMIT = 43500
C CLEAR 'QF' ARRAY AND 'LOGIX' BLOCK.
DO 10 IB 1.LIMIT
10 QF(I) = 0.0
DO 20 I> 1.161
20 IZERO(I) s 0
C SET INPUT AND OUTPUT LOGICAL UNIT NUMBERS.
IN s 5
10 s 6
WRITE (6,12341
1234 FORMAT ('1°,21X,'ISCST (DATED 67330) •/
I 22X,'AN AIR QUALITY DISPERSION MODEL IN'/
2 22X,'SECTION 1. GUIDELINE MODELS'/
3 22X.'IN UNAMAP (VERSION 6) JULY 06.'/
4 22X.'SOURCE: UNAMAP FILE ON EPA"S UNIVAC AT RTP. NC. ')
C INPUT TITLE.
READ! IN, 9001) (TITLE! I ),!=!, 15)
C INPUT LOGIC OPTIONS.
READ(IN,9002) (ISMCI),1=1,40)
IF(ISH(30).EQ.l) THEN
HRITE(IO,9502) (ISHII),1=1,401
C
C
C
C
CHANGE PARAMETERS IF REGULATORY DEFAULT OPTION DESIRED
IFIISM(2B).NE.l) GO TO 27
ISHI 19 1=1
PRE-PROCtSSED METEOROLOGICAL TAPE/FILE ASSUMED.
ISH(21)=1
DEFAULT NINO PROFILE EXPONENTS (RURAL AND URBAN)
ISHI22)=1
DEFAULT VERTICAL POTENTIAL TEMPERATURE GRADIENTS.
ISMC24)=1
FINAL PLUME RISE
ISCu.-UO
ISC07440
ISC07450
ISC07460
ISC07470
ISC07480
ISC07490
ISC07500
ISC07510
ISC075ZO
ISC07530
ISC07540
ISC07550
ISC07560
ISC07570
ISC07580
1SC07590
ISC07600
ISC07610
ISC076ZO
ISC07630
ISC07640
ISC07650
ISC07660
ISC07670
ISC07680
ISC07690
ISC07700
ISC07710
ISC07720
ISC07730
ISC07740
ISC07750
ISC07-60
ISC07770
ISC07780
ISC07790
ISC07800
ISC07810
ISC07820
ISC07830
ISC07840
ISC07850
ISC07860
1SCO7870
ISC07fl«0
ISC07890
ISC07900
ISC079JO
ISC07920
ISC07930
-------
00
ISH(251=2 ISC07940
C STACK TIP DOHNHASH INCORPORATED ISC07950
ISM(?6)=1 ISC07940
C dUOYANCT TNO'JCeO OISPERS70N INCORPORATED ISC07970
ISHI27I-1 ISC07900
C CALM HIND PROCESSING ISC07990
27 CONTINUE ISCOOOOO
C RESET ISHC27», CALMS OPTION IF CARD MET ISCOB010
IFCISHI19I.EQ.2I ISH(27)=2 ISCOOOTO
C INPUT SOURCE * RECEPTOR SIZE VALUES. ISCOPOJO
READ!IN,9003) NSOURC.NXPNTS.NYPNTS.NXHYPT.NGROUP,IPERD,NHOURS. ISCOOO'iO
1 NDAYS ISC08050
IFUSU(30).EQ.l) THEN ISCCC06C
WRITEII0.9503) NSOURC.NXPNTS,NYPNTS,NXHYPT.NGROUP.IPERD.NHOURS, ISC08070
1 NDAYS ISC06000
CNDIF ISC06090
C DETERMINE NUMBER OF TINE PERIODS TO BE CALCULATED. ISC08100
NAV6 = 0 ISCOS110
DO 30 I> 7,14 ISC08120
IF (ISM(I) .LE. 0) GOTO 30 ISC08130
NAVG = NAV9 * 1 ISC00140
30 CONTINUE ISCOniSO
IFINAVG.NE.O) GO TO 3$ ISC031AO
IF(ISHIISI.EQ.O) GO TO 80 ISCOS170
ISM(16»=0 ISCO ! 10
ISH(17I=0 ISC08i90
ISH(16)=0 ISC08200
C CALCULATE TOTAL NUMBER OF RECEPTORS. ISCOB210
35 NPNTS s NXPNTS*NYPNTS « NXHYPT ISC082IO
NGROPS = N6ROUP ISC00230
IFIN6ROUP .LE. 0) NGROPS = 1 ISC08240
NN = NAVG»NPNTS»NGROPS ISC00250
C CALCULATE INDICES FOR STORAGE ALLOCATION. ISCOB260
II s NPNTS * NPNTS « 1 ISC08270
12 » ii » NN iscoereo
13 = 12 ISC08290
IFCISHIISI .EQ. 1) 13 a 12 * NPNTS"NGROPS ISC08300
14 = 13 ISC08310
15 = 13 ISC08320
IFCNXPNTS .EQ. 0 .OR. NYPNTS .EQ. 0) GOTO 40 ltr."f^0
14 s 13 « NXPNTS ISCObiiO
15 = 14 * NYPNTS ISC083r»0
40 16 = 15 ISC08360
17 = 15 ISC08370
TFINXHYPT .EQ. 01 GOTO 50 ISC08380
16 = 15 » NXHYPT ISC08390
17 = 16 * NXHYPT ISC08400
50 10 = 17 ISCOO-UO
IFIISHI4) .NE. 01 10 » 17 « NPNTS ISC08420
C INSERT ABOVE GROUND RECEPTORS HTS. INTO CALC. OF STORAGE ISC06430
IBA = 18 ISC06440
IF (ISH(31I .NE. 0) ISA = 18 » NPNTS ISC08<<50
19 = I8A ISC08460
110 = 4 ISC08470
IFIISHtl7l.6T.ll 110=6 ISC08
-------
Ill = 110 ISC06510
112 B HO ISC08520
IF(ISHIie) .U. 0) GOTO 60 ISC06530
110 = 19 » 150*NAVG«NGROPS ISCOB540
111 = 110 » 50»NAVG«NGROPS ISCOO^SO
HZ 8 111 «• NAVG*NGROP3 ISC08L-60
60 ID = 112 » 267«NSOURC - 1 ISC06570
C DETERMINE IF CALCULATED STORAGE ALLOCATION EXCEEDS LIMIT. ISC06500
IFII13 .LE. LIMIT) GOTO 70 ISC08590
WRITE!10,9004) 111,LIMIT ISC00600
GO TO 90 ISC06610
C CALL INPUT ROUTINE. ISC08620
-0 CALL INCHK(qFII3),qF(I4),QF(I5),QF(I6).QFII7>,qF(I8),qF» ISC06630
C ISC08640
C CALL MODEL ROUTINE. ISC08650
CALL MOP?l(qFm,qF(n>.qF(I2>.qF(I3).qFtI4),qFfI5>,qF(I6).qF(I7).ISC08660
I qFiia),qF.iQF(iii).qF 9004 FORMAT! 59HI MMERRORwHi CALCULATED STORAGE ALLOCATION LIMIT EQUISC08750
I 1ALS.I6./52H AND EXCEEDS THE MAXIMUM STORAGE ALLOCATION LIMIT OF.I6ISC08760
~ 2,/1*H RUN TERMINATED.) ISC08770
9005 FORMAT IC4HI M»ERRCR«M ISN(7) THROUGH ISHI15) ARE ZERO, SPECIFY ISC08700
10NE OR MORE OF THESE OPTIONS.I ISC08790
9501 FORMAT!IX.1SA4I ISC08800
9502 FORMAT!IX,4012) ISC08810
9501 FJH(1ATI1X,13I6) ISC08820
END ISC08830
C ISC08840
SUBROUTINE INCHKJ6RIBX,6RIOT,XOIS,YDI3,6RIOr,RHT,SO1)P-EI ISC08850
C SUBRO/TINE INCHK (VERSION 3733t;, PART OF ISCST. ISC08660
C ISC08870
C THIS ROUTINE READS THE REST OF THE INPUT VARIABLES AND PROVIDES ISC08880
C DEFAULT VALUES IF REQUIRED. ALSO TABLES LISTING THE INPUT VARI- ISC08890
C ABLES ARE CONTROLLED BT THIS ROUTINE. ' ISC08700
C ISC08910
LOGICAL DONE.TER.HGT ISC08920
INTEGER TITLE,MAKE,QFlG.qFLGS ISC08930
COMMON /LOGIX/ ISM(40),NSOURC,NXPNTS,NrPNTS,IIXHYPT,NGl70UP, ISC089')0
1 NSOGRPI150),IDSOR(200).IPERO.NPNTS.NAVG,MHOURS.NDATS,NTDAY,LINE, ISC08950
2 IO,IN.TITLE(15>.iqUN(3),ICHIUNI7>,CONO?P(6;,llMIMtIMlT T5CPP7C-C
COMMON /MET/ IOATI366>.IST«B(24>.AIIS<24).TEMP(24>,AFV(24). ISC06970
1 AFVRI24).HLHC24.2),P(24),OTHDZ(24),OECAVC24I,POEF(6.6), ISC08980
2 OTHDEF(6.6).ZR.DDECAr.IMET.ITAP,TK,UCATS(5) ISC08990
N) DIMENSION 6RIOX( 1),6RIOV( 1).XOISt 1).TOISI1).GRIDZI1),SOURCE! 287,1 HSC09000
^ 1.RHTI1I ISC09010
^j DIMENSION METER(2),SEASONI2.4),ATHRUF(6),UCTDEF(5),IHAKSH(36) ISC090ZO
C POEFU AIIO POEFR ARE URBAN AND RURAL DEFAULT HIND ISC09030
C PROFILE EXPONENTS ISC09040
DIMENSION PDEFR(6).POEFU(6) ISC09050
EQUIVALENCE (ISHI23),QFL6S) ISC09060
DAVA APIRUF / IHA,lHB,lHC,lHD,lHE,lHr / ISC09070
-------
I
-~J
DATA PDEFU/.15..15..20..25..30..30/ ISC09000
DATA PDEFR/.07,.07..10,.15,.35,.5S/ ISC09090
DATA UCTDEF / 1.5*.3.09,5.14,8.23.10.6 / ISC09100
DATA METER /4HIMET.4HERS)/ ISC09HO
DATA SEASON /4HHINT.4HER ,4HSPRI,4HNG ,
-------
• I
00
60 IF(6RIOYdl .IE. 0.0 .OR. GRIDVdl .PT. »f?.3l GRIDYdl = 360.0 ISC09650
61 IF(ISM4).EQ.OI 6O TO 66 ISC09660
C READ NON-DISCRETE RECEPTOR ELEVATIONS ISC09670
00 65 J=1,NYPNTS ISC096SO
II a (J-ll«NXPMTS ISC09690
IZ = II » NXPNTS ISC09700
II = II * 1 ISC09710
READdN, 90201 (6RIOZ(11.1=11.12) ISC09720
IFIISMI33l.EQ.il THEN ISC09730
WRITEdO.95201 (GRIOZ(X).X=I1.I2) ISC09740
ENDIF I5COV7FP
65 CONTINUE ISC09760
C READ IN NON-DISCRETE ABOVE GROUND (FLAGPOLE! RECEPTOR HEIGHTS. ISC09770
66 IF CISHI31I .EQ. 0) 60 TO 70 ISC09780
DO 67 J=1,NYPNTS ISC09790
I1=(J-1I«NXPNTS ISC09800
12=11 * NXPNTS ISC09B10
II = II * 1 ISC09620
REAO(IN,9020I (RHTtII.IsXl.I2l ISC09830
IF (ISHI30) .EQ. II THEN 15009640
WHITE110,95201 I RHTd 1,1=11,12) ISC09050
ENDIF ISC09040
67 CONTINUE ISCO"370
70 IF(NXWTPT .EQ. 01 GOTO 90 ISC09 60
C READ ALL DISCRETE RECEPTOR DATA ISC09890
C IF USER DOES NOT WANT TO CONSIDER RECEPTOR TERRAIN . DO NOT ISC09900
C INPUT THE 3RD VARIABLE IN THE FOLLOWING RECORDS. • ISC09910
C IF USER DOES NOT WANT TO CONSIDER ABOVE GROUMD RECEPTORS. DO ISC09920
C NOT INPUT THE LAST VARIABLE IN THE FOLLOWING RECORDS. ISC09930
DO 75 I=1,NXMYPT I5C09940
11=I»NXPNTS»NYPNTS ISC09950
C READ CORRECT DISCRETE VARIABLES INTO STORAGE DEPENDING UPON THE ISC09960
C VALUES OF ISW4I AND ISHI31I. ISC09970
TER = .FALSE. ISC09980
IF IISMC4I .HE. 01 TER » .TRUE. ISC09990
HGT = .FALSE. ISC10000
IF (ISH(31I .NE. 01 HGT a .TRUE. ISC10010
IF (TER .AND. HOTI THEN ISC10020
REAOdN,90201 XOIS(II.YDIS(II.GRIOZ(I1I,RHT(I1I IS'.'l«nio
IF IISm30».EQ.ll Hr?I1E(IO,9520l XDISIIl.TOISdl.GRIDZIIll.RHTdl USClOO'iO
ELSEIF (TERI "T1EH ISC10050
READdN. 50201 XDIS(II.YDIS(II.GRIDZ(Ill,OUn ISC10060
IF USHfSOI.EQ.il HR1TE(IO,9520I XDISdl.YOISdl.GRIOZdll ISC10070
CLSEIF (HGTI THEN ISC10080
READdN.90201 XOISdl.YDISdl.OUN.RHTdll ISC10090
IF (ISHOOI.EQ.il MRITE(IO,9520) XDISdl.rOISdl.RHTdl) ISC10100
ELSE ISC10110
IF (.NOT. TER .AND. .NOT. HGT) READdN.90201 XDISdl.TDISdl ISC10120
IF (ISMOOI.EQ.il MRITEdO.9520) XDIS( I I.TOISd I ISC10130
EI«IF ISC10140
75 CONTINUE ISC10150
IFdSMOl .NE. 21 GOTO 90 ISC10160
C SET DEFAULT DIRECTION VALUES. ISC10170
00 80 I = l.HXHYPT , ISC10160
60 IF(YDISd) .LE. 0.0 .OR. YDISdl .GT. 360.01 YDISdl = 360.0 ISC10190
90 IFdSMOl.LE.01 GO TO 125 ISC10200
C READ DISCRETE RECEPTOR ELEVATIONS. ISCloriO
-------
>
I
CO
-it
C CHANCE RECEPTOR ELEVATION UNITSIFT TO HI I5C10220
00 121 I=1,NPNTS ISC10230
121 GRIOZIII s GRIOZII) • .3046006 1SC10240
125 ISWI4) =IABS(ISH(4M ISC10 50
C READ SOURCE GROUP INFO ISC10260
IFINGROUP .EQ. 0) 60TO 140 ISC10270
READIIN.90231 THEN ISC10290
IIRITEII0.9523) INSOGRPII),I=1.NGROUPI ISC10300
EHDIF ISC10V.O
II = 0 ISC103JO
DO 130 I » l.NGROUP ISC10310
i30 II s II » NS06RPII) ISC103'tO
READIIN.9024) I IOSORm,I=l,Il> ISC10350
IFIISHI30).EQ.l) THEN ISC10360
MRITEII0.9524) (IDSORIIMn.il) ISC10370
ENDIF ISC10380
C DEFAULT OR READ HIND PROFILE EXPONENTS. VERTICAL POTENTIAL ISC10390
C TEMPERATURE GRADIENTS. ISC10400
140 IF(ISM(21).EQ.Z) THEN ISC10410
C CARD HIND PROFILE EXPONENTS ONLY READ IF THE ISC10420
C REGULATORY DEFAULT OPTION IS NOT CHOSEN. ISC10430
DO 150 J a 1(« ISC10440
RE*n(IM,9020) (POEF(I,J),I=1,6) ISC10450
IFIISMI30).E0.1) THEN ISC10460
HRIlkdO,95201 (PDEF(I.J), 1=1,6) ISC10470
ENDIF ISC10460
150 CONTINUE ISC10490
ELSE ISC10500
IMiSH(20).EQ.OI THEN ISC10510
C RURAL WIND PROFILE EXPONENTS ISC10520
DO 154 J=l,6 ISC10530
00 154 1=1.6 ISC10540
154 PDEF(I,J)=PDEFRIJ) ISC10550
ELSE ISC10560
C URDAN MIND PROFILE EXPONENTS ISC10570
DO 156 J=l,6 ISC10500
DO 156 1=1.6 ISC10590
156 PDEF(I.J)=POEFU(J) ISC10600
ENDIF ISC10610
ENOIF ISC10620
160 IF«ISM(2>) .NE. 21 GOTO IflO ISC10630
C CARD OTHOEF ONLY IF REG. DEFAULT OPTION NOT CHOSEN ISC10640
DO 170 J s 1.6 ISC1C650
REAOIIN.9020) (DTHDEF(ItJ)>I=1.6) ISC10660
IFIISHI30).Eq.ll THEN ISC10670
NRITE(I0.9520) IOTHOEF(I,J»,I=1,6> ISC10680
ENDIF ISC10690
170 CONTINUE ISC10700
C ENTER QFLG3 AND HIND SPEED CATEGORIES. ISC10710
160 READIIN.9020) ZR.(UCATS(I).I=1.5) ISC10720
IFUSH(30».EQ.1I THEN I5C10730
HRITEII0.9520) ZR.IUCATS(I).I=1,5> ISC10710
ENDIF ISC10750
DO 190 I = 1,5 ' ISC10760
IFIUCATS(I) .GT. 0.0) GOTO 190 ISC10770
UCATS(I) = UCTDEFII) ISC1U'dO
-------
190 CONTINUE
C READ GENERAL INPUT VARIABLES • SET DEFAULT VALUES.
ZOO READ! IN. 90211 TK.ODECAY.dQUNt 11.1=1,31,
1 dCHIUNm,I=l,7l,IHET.ITAP
IFUSHt30l.Eq.ll THFN
MRITEdO,95Z)> TK,mF.tAY,ITTI»ir F)-l=l>3>,
X (ICHIU»J(II.I=1,7I,IMET,ITAP
ENDT?
C SET HALF LIFE DEFAULT VALUE OF 4 HOURS (DEC At =
C .0000481) IF SO2 IS MODELLED IN AN URBAN MODE HITH
C THE REGULATORY DEFAULT OPTION.
IFdSH(28I.EQ.l.AND.ISMI29I.EQ.l.AND.ISM(20l.6T.O)
X DDECAYs. 0000481
IFITK .LE. 0.0 .AND. ISHI1) .EQ. II TK = 1.E6
IF(TK .LE. 0.0 .AND. ISH(l) .EQ. 2) TK = 1.0
IFdHET .LC. 0 .AND. I SHI 19 1 .EQ. 1) IHET = 9
IFIIMET .LE. 0 .AND. ISHC19I .EQ. Zl IMET = IN
IFIITAP .LE. 0) ITAP = 3
IF(ZR .LE. 0.01 ZR = 10.0
DO 210 I s 1,3
IFIIQUN(I) .NE. IBUNKI GOTO Z30
Z10 CONTINUE
.EQ. Zl GOTO 220
4H(GRA
= 4HMS/S
4HEC1
IFIISH(l)
IQUNI1I
IQUNIZ)
IQUNI3) =
GOTO 230
220 IQUNdl s
IGUNI2) s
IQUNI3! =
230 00 240 I
4H (6
4HRAMS
4H)
s 1,7
IFdCHIUNIII .HE. IBLANKt GOTO 260
240 CONTINUE
.Eq. 2) GOTO 250
CsJ
>v
CO
IFdSWd)
ICHIUNd)
ICHIUNI21
ICHIUNI3)
ICHIUNI 4)
ICHIUNI51
ICHIUNI 6)
ICHIUNI7)
GOTO 260
250 ICHIUHd)
ICHIUNI2)
ICHIUNI3)
ICHIUNI41
ICHIUNI5)
ICHIUNI 6)
ICHIUNI7)
READ 'DAY*
4HIHIC
4HROGR
4HAHS/
4HCUBI
4HC ME
4HTERI
s 4H(GRA
= 4HHS/S
a 4HQUAR
= 4HE HE
= 4HTER
= 4H
= 4H
ARRAY • MET IDENTIFICATION.
260 IFCISHI19) .NE. 1) GOTO 270
READ(IN,90Z2) IIDAYII1,1=1,3661
IFdSHI30).EQ.l) THEN
WRITE!10,95221 IIDAYII ),!=!,366)
EHDIF
REMHIN,9024) 133.1ST.IU3,IUY
IFII5H(33).EQ.l) THEN
ISC10790
ISC10800
ISC10810
ISOl'inilO
ISC10030
ISC10B40
iscioeso
ISClOOftO
ISCI0870
iscioeao
ISC10890
ISC10900
ISC109IO
ISC10920
ISC10930
ISC10940
ISC10950
ISC10960
ISC10970
ISC10980
ISC10990
ISC11000
ISC11010
ISC110ZO
ISC1I030
ISC11040
ISC11050
ISC11060
ISC11070
ISC11060
ISC11090
ISC11100
ISC11110
ISC11120
ISC11130
ISC11140
ISC11 50
ISC11160
ISC11170
isciiieo
ISC11190
ISC11200
ISC11210
ISC112SO
ISC11230
ISCI12'iO
ISC11250
I SCH 260
ISC11270
I3C11280
ISC11Z90
ISC11300
ISC113IO
ISC11320
ISC11330
15C11350
-------
c
c
270
280
KRITEtIO,?5Z4l ISS.ISY.lUS.Il/Y
ENDIF
NDAYS a 365
IF(MOO(ISY,4) .EQ. 0) NDAYS = 366
REAO(IMET) ISST.ISYI.IUSI.IUYI
IFdSS.Eq.ISSI.AND.ISV.EQ.ISYI.AND.IUS.Eq.IUSI.AMD.IUY.Eq.lUYII
1 60TO 280
WRITEC10,90251 ISS.ISSI.ISY.ISYI.IUS.IUSI.IUY.IUYI
STOP
FOR CARD MET DATA SET RURAL-URBAN SWIiCH TO RURAL
EXCEPT IF URBAN MODE 3 IS USED
IF CISHI20I .HE. 3) ISW(20>=0
IFINSOURC .6T. 0) GOTO 290
WRITEdO,90261
STOP
c»
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
READ SOURCE DATA.
MOST VARIABLES ARE READ DIRECTLY INTO THE 'SOURCE* ARRAY WHICH
HAS 215 STORAGE LOCATIONS ALIOCATED PER SOURCE. STORAGE
1 CONTAINS HAKE. QFLG. NVS t ITVPE PACKED INTO THE FIRST
ISC11360
ISC11370
ISCI1380
ISCU390
ISC11400
ISC11410
ISC11420
ISC11430
ISC11V.O
1SCU450
ISC11460
ISC11470
ISC11460
ISC11490
ISC11500
ISC11510
ISC115SO
ISC11530
LOCATION ISC11540
LOCATION.ISC11550
STORAGE LOCATIONS 2-13 CONTAIN: NSO, Q, X, Y. Z3, H!/ TS OR ISC11560
SIGZO, VS OR SIGYO OR XO, 0. HB, BUILDING LENGTH. AND BUILDING ISCU'70
WIDTH. RESPECTIVELY. STORAGE LOCATIONS 16-35 TO TAIN PHI, 36-55 ISC115SO
CONTAIN SETTLING VELOCITIES AND 56-75 CONTAIN E-»MfU. STORAGE ISC11590
LOCATIONS 76-61 CONTAIN STABILITY-DEPENDENT LATERAL VIRTUAL ISC11600
DISTANCES AND LOCATIONS 82-117 CONTAIN STABILITY AND XBAR- ISC11610
DEPENDENT VERTICAL VIRTUAL DISTANCES BOTH OF WHICH ARE COMPUTED ISC11620
IN SUBROUTINE MODEL. STORAGE LOCATIONS 120-215 CONTAIN Q I5C11630
ADJUSTMENT FACTORS AS A FUNCTION OF EITHER TIME OF DAY-SEASONAL ISC11640
OR STABILITY-MIND SPEED VARIATIONS. STORAGE LOCATIONS 216-251 ISC11650
CONTAIN DIRECTION SPECIFIC BUILDING HEIGHTS AND STORAGE LOCATIONS ISC11660
CD
-J
252-287 CONTAIN DIRECTION SPECIFIC BUILDING WIDTHS. ISC11670
STORAGE LOCATIONS 14 AND 15 ARE CURRENTLY NOT BEING USED. ISC11680
8/85 STORAGE LOCATIONS 118 AND 119 ARE NOW 3EIt!S USED TO ISC11690
ALLOW FOR CALCULATIONS WHEN SOURCE-RECEPTOR DISTANCES ISC11700
ARE LESS THAN 100N. ISC11710
ISCU720
290 II = 1 ISC11730
300 IFIII .6T. NSPUPO 60TO 3"0 ISC117AO
READ! IN.90271 NSO,ITYPE.WAKE.NVS,qFLG.(SOURCE(I.II).I=3,13) ISC11750
IF >iaW(30).Eq.ll WRITE(I0.9526) NSO,ITYPE,WAKE,NVS,QFL6. ISC11760
1 (SOURCE(I.III,I=3,13) ISC11770
IFINVS .LE. 0) GOTO 310 ISC11780
C INPUT VARIABLES RELATED TO PARTICULATE SOURCES. ISC11790
READ!IN,90201 (SOURCE!15*1.II1,1=1,NVSI ISC11600
IF IISW(30I.EQ.l) HRITEII0.9520) (SOURCE! 15*1.II1.1=1.NVSI ISCllfllO
REAOdH,90201 (SOURCEI35»I.IIM=1.NVS) ISC118ZO
IF USWC30l.EQ.il WRITE! 10.95201 I SOURCE! 35*1, II 1.1=1.NVS I ISC11830
REAOIIN.90201 ISOURCEC55*1,11»,I=1,HVS) ISC11840
IF (ISWI30l.EQ.il MRITEI10.95201 (SOURCE(55«I,III,I=1,NVS) ISC11650
310 CONTINUE ISC11060
C CALC EFFECT BLDG WIDTH TO DETERMINE IF DIRECT. SPEC. MILL BE USED ISC11870
C 2/SQRT(3.14159265) = 1.1283792 ISC11800
SOURCE(12.II) = 1.1283792«SQRT(SOURCE(12.II)»SOURCE(13,Iin ISC1I890
C READ DIRECTION SPECIFIC BUILDING DIMENSIONS ISC11900
RL = SOURCE(12,II) ISC11910
IF IABS(SOURCE(11,ID) .LT. SOURCE! 12,II) I RL = ABS! SOURCE! 11, II ))ISC119?0
-------
I
K)
IF I SOURCE!11,II) .EQ. 0.01 GOTO 315 ISC11930
IF IISHI28) .EQ. I .AND. SOURCEI11.III .GT. 0.01 GOTO 315 ISC11 40
IF (SnURCEI7.II) .GT. (ABSISOURCEUl.il) >»0.5«RL> > THEN ISC11950
C PRINT MARNING MESSAGE TO USER IF NOT USING OIR. SPEC. BLOG. DIN. ISC11960
IF (SOURCEIll.m .LT. 0.0) THEN ISC11970
URITEfIO,9063) NSO ISC11980
PEADIIN.9066) ISC11990
ENDIF ISC12000
SOURCE(11,II) 8 ABS!SOURCE!11.II» ISC1Z010
GOTO 315 ISC1ZOZO
ENDIF ISC12030
SCnmCE(ll.II) s -(AB3(SOURCEI11,II)I) ISC12040
IF I SOURCE!11,II) .LT. 0.) THEN ISC1Z050
READIIN,9525) I SOURCE!215*1,II 1,1=1,361 ISC1Z060
IF WRITE!10,9520) (SOURCEI215*I,II),I=1,36) ISC12070
READ(IN,9S25) ISOURCE!251*1,II),!=!.36) ISC12060
IF (ISHI30).EQ.l) WRITE!10,9520) (SOURCE!251*1.II).1=1,16) ISC12090
ENDIF ISC12100
C PACK SOURCE VARIABLES HAKE, QFLG, NVS t ITYPE INTO FIRST LOCATION.ISC12110
C ALSO STORE SOURCE NUMBER. ISC12120
315 SOURCE!1,II) > ITY"E » NVS»16 * QFLG«512 » HAKE«8192 ISC12130
SOURCE!2.II) s NSO ISC12140
II = II * 1 ISC12150
GOTO 300 ISC12160
C ENTER SQUNCS EMISSION RATE SCALAR3. ISC12170
320 II = 1 ISC12160
IFIQFIP3 .LT. 1 .OR. 9FL6S .GT. 5) GOTO 330 ISC12190
QrtK = .TRUE. ISC12200
QFLG > 9FL6S ISC12210
GOTO 350 ISC12220
330 DONE 8 .FALSE. . ISC12230
340 If! II .GT. NSOURC) GOTO 430 - ISC12240
ITYPC s SOURCE!1,111 ISC12250
QFLG = ITYPE/512 - IITYFE/fll92)«16 ISC12260
IFIQFLG .LT. 1 .OR. QFLG .GT. 5) GOTO 420 ISC12270
350 J " 1 ISC12260
I = * ISC12Z90
GOTO 1400.360,370,300,390), QFLG ISC12300
360 I 8 12 ISC12310
GOTO 400 ISC12320
370 I 8 24 ISC12330
GOTO 400 ISC12340
380 J = 6 lSCiZ35U
Is* ISC12360
GOTO 400 ISC1Z370
390 J = 4 ISC12330
I = 24 ISC12390
400 00 410 II • l.J ISC12400
IFR s II1-1MI » 120 ISC12410
ITO 8 IFR * I - 1 ISC12420
REAO(IH,9020) (SOURCE(I2.II),I2=IFR,ITO) ISC1Z430
410 CONTINUE ISC12440
IFIDONE) GOTO 430 ISC12450
420 II = II » 1 ISC124AO
GOTO 340 ISC1JA70'
C LIST ALL INPUT VARIABLES IF DESIRED. ISCU'.OO
430 IFIISHI6) .LE. 0) GOTO 620 ISC12490
-------
440
.NE. II GOTO 450
ARRAY.
I
NJ
U>
450
460
470
to
^
CO
480
490
500
510
5ZO
530
540
WRITEII0.9029) (TITIE(II.I=1,15I
WRITE! 10, 9030) IISHI I).I=1,U I
WRITE! 10. 9031 1 ( ISNI I), 1=15, 26)
WRITE! 10. 9061 1 « ISM(I) , 1-27.31 >
WRITE! 10. 903Z) HSOURC,NGROUP,IPERO.NXPNTS,NYPNTS,NXHYPT
IFIISKI19) .EQ. 21 HRITECI0.9033) HHOURS.NDAYS
MITE! 10. 9034) TK.ZR.IHET
IFIISWI19) .NE. 1) GOTO 440
WRITE! 10, 9035) DDECAT,ISS.ISY,TUS.IUY
CONTINUE
IFIISWI5) .GT. 01 WHITE! 10. 9036) ITAP
WRITE 1 10, 9056) LiniT.MIMIT
WRITE! 10, 90291 ITITLEI 11,1=1,15)
LINE = 6
IFIISHI19I
PRINT 'DAY'
LINE a 16
WRITE 1 10, 9037) I ID ATI I ), 1=1, 366)
IFINGROUP .EQ. 0) GOTO 470
PRINT SOURCE GROUP INFO.
LINE = LINE * It
WRITE(IO,°0.|57)
-------
iriISHI2) .EQ. 2 .OR. ISN12) .EQ. 4i HRITEII0.9039) I SCI 3070
HRITEIIO.90401 (GRIDXII».I=1,NXPNTSI ISCI3080
IFIISHI2) .EQ. 1 .OR. ISHI2) .EQ. 3) HRITEIIO,9041) ISC13090
IFIISHI2) ,E«J. 2 .OR. ISMI2 I .EQ. 41 HRITEI10.9042) ISC13100
HRITEIIO,90401 IGRIDYII ).I=1,NVPTITS> ISC13I10
550 IFINXNYPT .EQ. 0) GOTO 570 ISC13120
LINE = LINE » 5 » NXHTPT/5 ISC13130
IFILINE .LT. 57) GOTO 560 ISC1314C
LINE = 6 ISC13150
HRITEIIO,9029) TITLE ISCI3160
560 IFIISHI3) .EQ. 1) HRITEIIO,9049) ISC13170
IFIISHI3) .EQ. 2) HRITEIIO,9044) ISC13160
HRITEIIO,9045) CXDIS ISC13190
C PRINT TERRAIN HEIGHTS. ISC13200
570 IF(ISH(4I .NE. 1) GOTO 575 1SC13210
CONDEPI3) B 4HELEV ISC13220
CALL OYOUT(GRIDX,GRIOY,XDI3,VOI3.GRIDZ.99,IDY,IHR,1.0,0,0) ISC13230
C PRINT THE RECEPTOR HEIGHTS ABOVE GROUND I5C13240
575 IF IISHI31) .NE. 1) GOTO 580 ISC132SO
CONOEPI3) » 4HHGT . ISC1'..-M)
CALL DYOUTI6RIDX,GRIDY,XOIS.YDIS,RHT.99,IOY,IHR,-;I0,0.0) ISC 13..70
C PRINT OUT SOURCE INFO. ISC13ZOO
580 CONTINUE . 1SC13290
LINE = 100 ISCI330J
^ 13 = 0 ISC13310
I DO 600 I B l.NSOURC ISC13320
iy IF (LINE .LE. 56) GOTO 590 ISC13330
HRITEIIO,90291 ITITLEIJ),J=l,15) ISCI3340
HRITEIIO,9046) lliqUNIJ).J=I,3),I2=l,2).inETERIl).NETERI2I.J=l,10)ISC13350
LINE > 18 ISC13160
590 CONTINUE ISC13370
ITYPE = SOURCEI1.I) ISC13300
C 6ET HAKE OPTION, SOURCE NO., NVS • TYPE FROM FIRST HORO. ISCI3390
NSO = SOURCE(2,11 ISC13400
HAKE = ITYPE/8192 ICC13410
WIG = ITYPE/512 - (ITYPS/8192)«I6 ISCl^IO
NVS = ITYPE/16 - II1YPE/512)»32 ISC13430
ITYPE = ITYPE - »16 ISC13440
IFCNVH .GT. 0) 13 = 1 ISC134SO
C CCIWERT EFFECTIVE BUILDING HIOTH BACK TO LENGTH FOR ECHO OF INPUT ISC13460
SOURCE!12,11 = (SOURCEI12.I)/1.12A3792)«M2/SOURCEI13,I) ISCI3470
HRITEIIO,9047) NSO,ITVPE,NAKE,NVS.ISOURCEIJ.I),J=3,13) ISC13400
C RECALCULATE EFFECTIVE BUILDING HIDTH FOR ALL SOURCES I STORE IN ISC13490
C LOCATION 12 OF 'SOURCE* ARRAY. BUILDING LENGTH 1 HIDTH HILL NO ISC13500
C LONGER BE NEEDED. ISC13510
SOURCEI12,I) = 1.12fl3792»S
-------
ITYPE = SOURCE!I.II
NSO = SOURCE!2,I)
NVS = ITVPE/I6 - (mfPE/512)»32
IF!NVS .IE. 0) GOTO 620
WRITE!10.9050) NSO
12 = 15 * NVS
WRITE!10.9051) (SOURCE!J.II,J=16,I2 I
12 = 35 * NVS
WRITE!10.90521 (SOURCE!J.II,J=36,I2)
12 = 55 » NVS
WRITE!in,90531 ISOURCEIJ.II.J=56,22I
LINE = LINE + 14
620 CONTINUE
625 LINE=100
C WRITE OUT DIRECTION SPECIFIC BLD6. DIMENSIONS. IF PRESENT
DO 630 I=1.NSOURC
IF ISOURCE(ll.I) .LT. O.I THEN
I
K>
Ol
to
00
-J
ITYPE=ITYPE-(ITYPE/161*16
IF (ITYPE .E«J. 01 THEN
IF (LINE .6T. 441 THEN
C RSSET LINE AND START A NEW PAGE
LINE=0
WRITE!10,90291 TITLE
WRITE!10-"0641
ENDTF
C Scf SWITCH FOR TYPE OF BLOG. DOUNMASH MODIFICATIONS
DO 627 J=1.36
IWAKSMIJ)=0
IF I SOURCE!215*J.II .LT. O.I IWAKSHIJ)=1
627 CONTINUE
URITEII0.9062I I,«J.ADSISOURCEIZ^tJ.I)),SOURCE!251»J,I),
1 lUAKSMIJ),J=1,36>
LINE = LINE * 10
ENOIF
ENDIF
630 CONTINUE
C PRINT SOURCE EMISSION RATE SCAURS.
IFIQFLGS .LT. 1 .OR. QFLGS .6T. 5) GOTO 640
DONE s .TRUE.
QFLG = QFLGS
LINE = 100
GOTO 670
640 DONE = .FALSE.
J = 1
650 IF!J .6T. 5) GOTO 820
LINE * 100
660 IF!I .6T. H30URC) GOTO 810
ITYPE a SOURCE!I.II
OFL6 = ITYPE/512 - (ITYPE/8192)«16
IFIQFLG .NE. J) GOTO 000
NSO = SOURCE12,1)
670 GOTO (680.700.720.740,770), QFLG
600 IF!LINE .LT. 54) GOTO 690
WRITE!10.9029) TITLE
ISC13i.40
ISC13650
ISC13640
ISC13670
ISCI 3680
ISC13690
ISC13700
ISC13710
ISCI3720
ISCI 3730
ISC137'<0
ISCI 3750
ISC13760
ISCI3770
ISC13760
ISC13790
ISCI3600
ISC13010
ISCI3020
ISC13030
ISC13840
ISC13850
ISCI 3060
ISC13870
ISCI 3000
ISC13890
ISC13900
ISC13910
ISC139?0
ISCI 3930
ISC13940
ISC13950
ISC139&0
ISC13970
ISC13980
ISC13990
ISC14000
ISC14010
ISC14020
ISC14030
ISC140':C
ISC14050
ISC14060
ISC14070
ISC14080
ISC14090
ISC14100
ISC14110
ISC14120
ISC14I30
ISC141
-------
WRITE!10.9002)
IF(DONE I HRITECIO.90031
MRTTEII0.900':) USEASONIXI,12),11=2.Si,12=1.4)
LIHE = 14
690 IF!.NOT.DONE) WRITE!10,9005) NSO
WRITEIIO,9006) CSOURCE!II,I).11=120,123)
IF(OONE) GOTO 820
LINE * LINE + 3
GOTO SOO
700 IFUIME .LT. 541 GOTO 710
WRITE(10,9029) TITLE
NRITEII0.9007)
IFI DONE) WRITE(10,9003)
WRITE! 10,9008)
WRITE!10,90131
LINE « 14
710 IF!.NOT. DONE) WRITE!10,9009) NSO
WRITE!10.9010) (SOURCE!II,I),11=120.131)
IF!DONE) GOTO 820
LINE = LINE » 3
GOTO 800
720 IF!LINE .LT. 50) GOTO 730
HRITEII0.9029) TITLE
WRITE!10,9011)
IFIDONE) WRITE!10.9003)
WRITE!10,9012)
WRITE!10,9013)
LINE » 14
730 IF!.NOT.DONE) WRITE!10.9009) NSO
WRITE!10.9014) !II,SOURCE!119*11,I).11=1,24)
IFIDONE) GOTO 820
LINE = LINE » 7
GOTO 800
740 IFI LINE .LT. 49) GOTO 750
WRITE!10,9029) TITLE
WRITE!10,9015)
IF(DONE) WRITE!10.9003I
WRITE!10.9016) (11,11=1,6)
WRITE!10.9013)
LINE = 16
7M IF!.NOT.DONE) WRITE!10.9009) NSO
00 760 II = 1,6
IFR s (Il-l)»6 » 120
ITO = IFR » 5
760 WRITE! 10,9017) ATHRUF( ID,(SOURCE! I2.I),I2=IFR,ITO)
IF(DONE) GOTO 820
LINE = LINE + 8
GOTO 800
770 IF!LINE .LT. 37) GOTO 780
WRITE(IO,9029) TITLE
WRITE!10,9018)
IF(OONE) WRITE!10,9003)
WRITE!10,9012)
WRITE!10,9013)
LINE = 14
780 IF!.NOT.POME) WRITE!10,9009) NSO
00 790 II = 1,4
ISCIAJIO
ISC14220
ISC14230
ISC14240
ISC14250
ISC14Z60
ISC14270
ISC14200
ISC14I90
ISC14300
ISC14310
ISC14320
ISC14330
ISC14340
ISC14350
ISC14360
ISC14370
ISC14300
ISC14390
ISC14400
ISC14410
ISC14420
ISC14430
I5C14440
ISC14450
ISC14460
ISC14470
ISC14480
ISC14490
ISC14500
ISC14510
ISC14520
ISC14530
ISC14.40
ISC14550
ISC14560
ISC14570
ISCI4580
ISC145«>0
ISC14600
I3C14610
ISC14620
ISC14630
I5C14640
ISC14650
ISC14660
ISC14670
ISC14600
ISC14690
ISC14700
ISC14710
ISC14720
ISC14730
ISC147'iO
ISC14750
ISC14770
-------
>
N)
00
IFR s (Il-l)»24 » 119 ISC1*700
WRITE!10.90191 SEASON!1.11».SEASONe2.ilI ISC14790
790 WRITE!10*90141 <12.SOURCE!12»IFR,11,12=1,241 ISCl'tOOO
IFIDOHE) GOTO 020 ISCl'iOlO
LINE = LINE » 22 ISC140ZO
800 I = I « 1 ISCK630
GOTO 660 ISC14040
610 J = J * 1 ISC14850
GOTO 650 ISC140M)
020 CONTINUE ISC14070
ZR = l./ZR ISC146RO
C ALSO. RELOCATE AREA SOURCE COORDINATES FROM THE SOUTHWEST CORNER ISC14B90
C TO THE CENTER OF THE AREA SOURCE. ISC14900
DO 830 I = l.NSOURC ISC14910
ITYPE = SOURCE Cl, 11 ISC149ZO
IFIITYPE-mYPE/16l«16 .NE. 21 GOTO 830 ISC14930
Al = .5»SOURCE(9,I) ISCI0
SOURCE!5,11 = SOURCE(5,11 » Al ISClV oO
030 CONTINUE ISC14970
C SET HEADING. ISC149nO
IFIISH(l) .EQ. 1) GOTO 040 ISC14990
COHOEPI1I = 4H TO ISC15000
COtlDEP(2l & 4HTAL ISC15010
COtDEPCSI ^ 4HDEPO ISC15020
CONDEPI4) s 4HSITI ISC15030
CONDEPI5I = 4HON ISC1S040
COHOEPI6I = 4H ISC15050
GOTO 050 ISC15060
040 COMDEPI1I = 4HAVER ISC15070
CONDEPI2I = 4HAGE ISC15080
CONOEPI3I = 4HCOHC ISC15090
CO>OEPI4) = 4HENTR ISC15100
COtOEPISI = 4HATIO ISCiSuO
CONDEP(6» = 4HH ISC15120
050 CONTINUE ISCISUO
RETURN ISC15140
9001 FORMAf(/34X,64H»«« UPPER BOUND OF FIRST THROUGH FIFTH HIND SPEED CISC15150
1ATE60RIES ••*/60X.12HmETERS/SEC)//46X.5IF7.2.1H,n ISC15160
9002 FORMAT! 39X,54H» SOURCE EMISSION RATE SCAURS WHICH VARY SEASONALLYISC15170
1 •//> ISC15100
9003 FORMAT!56X,19H« FOR ALL SOURCES "//) ISC15190
9004 FORMATI40X.4f2A4,7X)/20X.40l2H- I/I ISC15200
9005 FORMATI/20X.1ZHSOURCE NO. =.161 ISC15210
9006 FORMAT!30X.4IE10.5,5X1) ISC15220
9007 FORMATI41X.51H* SOURCE EMISSION RATE SCALARS WHICH VARY MONTHLY • ISC15230
1 //I ISC152'.0
9000 FORMAT!7X.51HJANUARY FEBRUARY MARCH APRIL MAY , ISC152SO
1 50HJUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER . ISC15J60
2 OHDECEMBER/I ISC15270
9009 FORMATI/13H SOURCE NO. =.161 ISC152BO
9010 FORMATI5X.12E10.4) ISC15290
9011 FORMAT!32X.68H* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HI3C15300
10UR OF THE CAY »//) ISC15510
9012 FOKMATI5X.6U4HHOUR SCALAR.6X11 ISC15320
ISC15330
9013 FORMAT! IX,6512H- I/I
9014 FORMATI4I5X,6II3,3X,E10.5.4XI/II
ISC153
-------
I
K)
do
to
>»
00
9015 FORMAT!30X.73H* SOURCE EMISSION RATE SCAURS HMICH VART Hint STABIISC15350
1LITY AND HIND SPEED »//) ISC15360
9016 FORMAT!16X.9HSTABILITY.29X.19HHIND SPEED CATEGORY/16X.BHCATEGOBY, ISC15370
1 9X,frill.14X)) - ISC15300
9017 FORMAT! 19X.A1.5X.6I5X.E10.5M ISC15310
9019 FORMAT! 32X,68H» SOURCE EMISSION RATE SCALARS HHICH VARY SEASOMALLYISC15400
1 AND OIURNALLY •//) ISC15410
9019 FORMAT!59X,9HSEASON = ,2A4) ISC15420
7020 FORMAT!8F10.01 ISC15430
9021 FORMAT!E0.0.1F0.0.3A4.7A4.212) ISC15440
9022 FORMAT! 8011) ISC1S450
9023 FORMAT!20141 ISC15460
9024 FORMATI13I6I ISC15«i70
9025 FORMAT! 1H1,10X,63H*IHI ERROR «•» MET DATA REQUESTED DOES NOT MATCHISC15480
1 MET DATA READ./IOX,28H1REQUESTED/READ' VALUES AREV10X. ISC15490
2 21HSURFACE STATION NO. =,I6,1H/,I6.23H YEAR OF SURFACE DATA =,I6,ISC15500
3 1H/,I6/10X,23HUPPER AIR STATION NO. =,I6.1H/,I6, ISC15510
4 25H YEAR OF UPPER AIR DATA =,I6.1H/,I6/10X,15MRUN TERMINATED.) ISC15S20
9026 FORMAT!1H1,10X,73H»»« ERROR *»» NUMBER OF SOURCES TO BE READ EQUAISC15530
1LS ZERO. RUN TERMINATED.I ISC15540
9027 FOHIUTII5.2I1.I2.I1.E8.0.2F7.0.8F6.0) ISC15550
9028 FORMAT!9X,'L\,3*)0.Ill ISC15560
9029 FORMAT!lHl/32Xt4H««» .15A4.4H •«»/! ISC15570
9030 FORMAT!lbX.40HCALCUUTE ICONCENTRATION=1.DEPOSITION=2).29X, ISC15580
1 'H^Stlll) S.I4/18X.55HRECEPTOR GRID SYSTEM !RECTAN6ULAR:1 OR 3, POISC15590
2LAR-2 OR 41.14X.8HISMI2) =,!<«/ ISC15600
3 iaX,4BHDISCRETE RECEPTOR SYSTEH !RECTANGULAR=1,POUH=2I,21X, ISC15610
4 6HISMI3I S.I4/.1BX.40HTERRAIN ELEVATIONS ARE READ IYES=1,NO=P». ISC156ZO
5 29X,6HISM!4I =,I4/,ieX, ISC15630
6 45HCALCULATIONS ARE HRITTEM TO TAPE IYES=l.NO=0),24X.eHISHI5) =, ISC15640
7 I4/18X, ISC15650
8 48HLIST ALL INPUT DATA S.I4/20X. ISC1E730
6 19H8-HOUR IYES=1,NO=0»,47X,9HISH«12 I =.I4/20X, 1SC15740
7 20H12-HOUR IYES=1,NO=0),46X,9HISM(131 =,I«/20X, ISC15750
8 20H24-HOUR 1YES=1,NO=OI,46X,9HISH(141 =,I4» ISC15760
9031 FORMAT!18X.35HPRINT 'N'-DAY TABLE!31 IYES=1.NO=OI,33X, ISC15770
1 9HISHI15I e,i4//18X,58HPRINT THE FOLLOWING TYPES OF TABLES WHOSE ISC15780
2TIME PERIODS ARE/18X.36HSPECIFIEO BY ISHI7) THROUGH ISHI14C/20X, ISC15790
3 25HDAILV TABLES 1YES=1,NO=0I.41X.9HTSHI16) =,I4/20X, ISC15800
4 44HHIGHEST • SECOND HIGHEST TABLES I"ES=1.NO=0),22X>9HISHI17) =. ISC15010
5 I4/^OX,30HMAXIMUM 50 TABLES OI,19X,9HISH(23l =,I4/18X.53HPROGRAM CALCULATES FINAL PLUISC15900
3ME RISE ONLY I YES=1.NO=2),15X,9HISH(2<«) =.I4/18X. ISC15910
-------
4 59HPROGRAM AOA-STS ALL STACK HEIGHTS FOR DOKNHASH ,13X.>ISH(27) =',I4/18X, ISC15970
Z 'REG. DEFAULT OPTION CHOSEN IYES=1,NO=2)'.29X, ISCI5980
3 'ISM!28) ='.I4/18X. ISC15990
4 'TYPE OF POLLUTANT TO BE MODELLED 11=302,2=OTHER)', ISC16000
5 20X.'ISH!Z9) ='.I4/iaX. ISC16010
6 'DEBUG OPTION CHOSEN /1) ISC16320
7041 FORMAT!//42X,48H»« Y-COORD, )/)) ISC16410
9046 FORMAT!55X,19H»»» SOURCE DATA •••//21X.13HEMISSION RATE.3BX, ISC16420
1 5HTFMP.,4X,9HEXIT VEL./24X,8HTYPE=0,1,40X.2I6HTYPE=0,4X)/10X. ISC16430
2 3HT H,8X.3A4,38X.1BHIDEG.K); IM/SEC);.12X,3I5HBLDG. ,4X)/10X, ISC16'<40
3 ZOHT A NUMBER TYPE=2,25X.4HBASE,12X,53HVERT.OIM HORZ.OIM DIAMISC16450
4ETER HEIGHT LENGTH HIDTH/3X.19HSOURCE P K PART. .3A4.SX, 1SC16'.60
5 1HX.8X.43HY ELEV. HEIGHT TYPE=1 TYPE=1,2 ,4!6HTYPE=0,ISCI6',70
6 3X)/3X,jiHNUMBER E E CATS. "PER METER»»Z,2I511X,2A4),IX)/ I5C16'.00
-------
7 6312H ->/) ISC16490
9047 FORMAme,I3,I2,I5,3X,E11.5,2F10.1,F8.1,2F9.2,lX,5F9.2) ISC16SOO
9049 FORMAT1I8.I3,I2,I5,3X,2A4,A3,1X,2F9.1,3F9.2,1X.5F9.2I ISC16510
9049 FORMAT!SOX,31H»«« SOURCE PARTICULATE DATA •«•//) ISCH5ZO
9050 FORMAT!/10X,19H»»» SOURCE NUMBER =,I6,ISC16600
9055 FORMAT!/4X.A4.A2/2I/4X.4HHOUR,18,1H10/2X,8HSTREH6TH,12E10.4)1 ISC16610
9056 FORMAT! 18X,22HALLOCATED DATA STORAGE,40X.7HLIMIT =,I6,6H UOROS/ ISC16620
1 18X.42HREQUIRED DATA STORAGE FOR THIS PROBLEM RUN.28X, ISC16630
2 THMIMIT =,I6,6H WORDS» ISC16640
9057 FORMAT!1HO,33X,65H»»» NUMBER OF SOURCE NUMBERS REQUIRED TO DEFINE ISClo'50
1SOURCE CROUPS »»»/62X,flHINSOGRPI//3C15X,20(14,1H.!/)» ISC16660
9058 FORMAT! 1HO,43X,45H»»» SOURCE NUMBERS DEFINING £JUICE GROUPS »•»/ ISC16670
1 62X,7HIIDSOR»//8!15X,14(I6,lH,l/n ISC16680
9059 FORMAT!//SIX.30H"«» MIND PROFILE EXPONENTS «»•//» ISC16690
9060 FORMAT!//42X,48H»»» VERTICAL POTENTIAL TEMPERATURE GRADIENTS •»•/ ISC16700
1 53X.26HIDEGREES KELVIN PER METER I//1 ISC16710
9062 FORMAT!' SOURCE I.I3,/.6I> IFV BH BH IMAKE' ),/,6!6(I4.F6.1, ISC16720
lt,',F6.1,',1.I4l,/)./l ISC16730
> 9063 FORMAT!7X,'"«»HAPNIN6«»» BUILDING DIMENSIONS ON CARD 6.1 FOR SOURISC16740
Jj ICE NO. '.IS.' DO NOT MEET THE SCHULMAN-SCIRE CRITERIA. ',/.7X,' THISC16750
O 2EREFORE. DIRECTION SPECIFIC BUILDING DIMENSIONS MILL NOT BE INPUT ISC16760
3INTO THE MODEL. 'I ISC16770
9064 FORMAT!42X.46H*"" DIRECTION SPECIFIC BUILDING DIMENSIONS •»»//) ISC16780
9065 FORMAT!1H1,3X.'»»»ERROR»»» DIRECTION SPECIFIC HEIGHT OR HIDTH IS GISC16790
1REATER THAN 9999. FOR SOURCE NO: '.IS.'. RUN TERMINATED.') ISCItCOO
9066 FORMAT!SI/II ISC16810
9520 FORMATI1X.8E14.5) ISC16820
9521 FtmMAT!lX,2E14.5,3A4,7A4,2I2'> ISC16830
9522 FORM»TI1X.1X,80I1> ISC16840
9523 FORMAT!IX.2014) ISC16850
7524 FORMAT!IX,1316) ISC16B40
9525 FORMAT!12F6.0) ISC16870
9526 FORMAT! 115,412.ll(lPE10.3Ein ISC16800
END . ISC16890
C ISC16900
SUBROUTINE MODELICALC,CHIAV,CHIAN.6RIOX.GRIDY,XDIS.YDIS.GRIDZ.RHT.ISC16910
1 CMIMAX.CHISO.IPNT.ICOUtrr, SOURCE) ISC16920
C SUBROUTINE MODEL I VERSION 07338), PART OF ISCST. ISC16930
C THIS ROUTINE CONTAINS THE MODEL EQUATIONS FOR CALCULATING GROUND- ISC16940
C LEVEL AMD ABOVE GROUND RECEPTOR CONCENTRATION OR DEPOSITION IN- ISC16950
C CLUDING THE PLUME RISE EQUATIONS. THIS ROUTINE ALSO CONTROLS THE ISC16960
C CALCULATION AND OUTPUT OF ALL TABLES THE PROGRAM PRODUCES. ISC16970
£ C ISC16900
^ IMTEC
-------
>
u>
2 OTHDEFI6,6I,ZR,ODECAY,IMET,ITAP,TK,UCATS(5)
COMMON /CALM/ NCI24).OLDAFV,NCM6(4).NCM8( 3M'Cm2(2>.NCt124,
•NCMYR.IFLAGCI6l,NCM4l6t
DIMENSION ISTOPD(38)
DIMENSION CALCI11,CHIAVI 11,CHIAN(1).GRIDXI11.6RIDVI11,XDISC11,
i Yoism,6Riozm,CHiMAxm.cHi50fi5o,i>,iPNT<5o,i).icouiiTm,
Z SOURCE 1287, ll.RHTU)
C SIZE OF 3ASI6Z,SBSIGZ ARRAYS INCREASED FROM 36 TO 38 TO ALLOW FOR
C ADDITIONAL SIGMA COEFFICIENTS NECESSARY TO ALLOW FOR
C SOURCE-RECEPTOR DISTANCES LESS THAN 100N.
DIMENSION COSNUK 360 »,SINNUM( 451 > ,RLH( 40 > .SASIGZI 301 ,SBSIGZ( 361,
1 SP(6),Sq(6),SC(6>,SO(6),KAV6(6).MSTAB<24).IMOSIll),ISEASI12>
EQUIVALENCE CCOSNUtU 1),SIHHUM< 91 M,« ISW20,ISH(40 I >,< VS.SIGYO.XO),
1 (TS,SIGZO),»
00
THE FOLLOMIN6 CHANGES HERE DEVELOPED BY S PERKINS 2/82
THIS MODIFICATION CHOPS TERRAIN TO STACK TOP OH A
STACK TO STACK BASIS.
INITIALIZE OLOZ TO 0.
OLDZ RETAINS THE TERRAIN HT IF TERRAIN HT EXCEEDS STACK HT.
OLDZ=0.
ISW24 = ISW(24) .EQ. 1
C INITIALIZE COSNUM I 3INNUM ARRAYS WITH COSINE t SINE VALUES OF
C INTEGER MIND DIRECTIONS.
DO 10 I = 1,451
Al = I
10 SINNUMIII = SINCA1".0174532931
C IF MAX 50 TABLES ARE NOT COMPUTED. ICOUNT I IPNT DO NOT EXIST.
IF(ISW(16) .IE. 0) GOTO 30
C INITIALIZE POINTER ARRAY t COUNTER FOR MAXIMUM FIFTY TABLES.
II = NAVG
I SCI 7440
ISC17450
ISC 17460
ISC17470
ISC17480
ISC 174 90
ISC17500
ISC17510
ISC17520
ISC17530
ISC17540
ISC1 T50
ISC17960
1SC17570
ISC17500
ISC17590
ISC17600
ISC17610
ISC17620
-------
CO
-J
IFINCTOUP .6T. 01 II = I1«NGROUP ISC17630
no 20 I a ItII ISC17640
ICOUNTII) a 0 ISC176SO
DO 20 J a It50 ISC17660
tO IPNTIJtl) = J ISC17670
C CALCULATE VIRTUAL DISTANCES FOR ALL SOURCES AMD STABILITY ISC176BO
C CATEGORIES. ALSO CHECK SOURCE-RECEPTOR DISTANCES. ISC17690
30 LINE = 100 ISC17700
DO 310 I = l.NSOURC . ISC17710
ITYPE = SOURCE!1,1I ISC17720
IMAK a ITYPE/8192 ISC17730
ITTPE a ITTPE - (ITTPE/16 »«16 ISC17740
IFIITYPE-ll 40 ,110,140 ISC17750
40 HB = ABSISOURCEIll,!)) ISC17760
HM a SOURCEI12.il ISC17770
IFIHB .LE. 0.0 .AND. HH .LE. 0.0) GOTO 160 ISC177BO
H = HB ISC17790
IFIHH .LT. HB) H a HH ISCI7800
DO CO J a 1,38 ISC17810
C CHECK IF H.P. VS. P.6. COEFFICIENTS I3C17820
IF(ISM(20) .EQ. 3) GOTO 45 ISC17630
SOURCE 181* J, I) = fl.2«H/SASI6Z(J))»«(l./SBSIGZU)) - .01«H ISC17640
GOTO SO ISCI7850
45 K=ISTOROIJI ISC17860
XX=1.2»H ISC17870
SOURCE! BIO, I )=XVZCXX,K)-.01»H ISC17880
50 CONTIHUE ISCI7890
IFIHH .GE. HB) GOTO 79 ISCI7900
DO 60 J a 1,6 ISC17910
IFfISM(20) .EQ. 3) GOTO 55 ISC17°20
SOURCE(75*J,11 - l.85»HH«SP(Jn««8Q(JI - .OUHM ISC17v30
GOTO 60 ISC17940
55 XX=.B5«HM ISC17950
SOURCE! 75«J,I)=XVYfXX,J)-.01«HU ISC17960
60 CONTINUE ISC17970
GOTO 160 ISC17980
70 IF(HU .6T. 5.»HB) GOTO 90 ISC17990
00 80 J a 1,6 ISC18000
IFIISWI20) .EQ. 3) GOTO 75 ISC18010
SOURCE175*J,11 a 11.35«HH».5«HB)»SP(J) )»«SQ(J) - .01*HB ISC18020
GOTO 60 ISC1B030
75 XX=.35*HH«.§»HB ISC18040
SOURCE! 75»J.II=XVY(XX,J)-.01»HB ISC18050
BO CONTINUE ISC10060
GOTO 160 ISC18070
90 H = .B5«HB ISC10080
IFIIHAK .EQ. 1) H a 2.25«HB ISC18090
00 100 J a 1,6 ISC18100
IFIISHI20).EQ.3IGOTO 95 ISC18110
SOURCE!7*+J,II = (H*SP(J))HSQ(J) - .01»HB ISC18120
GOTO 100 ISC18130
95 SOUPrEI75»J,U=XVY«H,JI-.01"HB ISC18140
100 CONTINUE ISC18150
GOTO 160 ISC18160
110 SIGYO = "OURCEC9.I) ISC18170
31GZQ - SOURCE(8,11 ISC181RO
00 120 J = 1,6 ISC16190
-------
I
u>
LO
IFISIGYO .IE. O.I GOTO 120
IFIISHI20) .HE. 31 SOURCEI75O.il = «SI6VO»SPJJ)I««SQU)
IFIISH(ZO) .EQ. 31 SOURCE!75»J,II=XVY»S!GYO, J)
120 CONTINUE
DO 110 J = 1.38
IFISIGZO .IE. 0.0) GOTO 130
IF (ISMC20) .EQ. 31 GOTO 125
SOURCEieiO.il =
-------
CO
-J
IF IANG .6T. 360.0) ANG=AN6-360.0
IFV = INTIAN6«0.10 * 0.5)
IF (IFV .EQ. 0) IFV=36
BH a ABSISOURCE!215UFV.I))
BM = SOURCE!251»IFV.I)
H = BH
IF (BM .LT. BH) H = BM ,
Al = 3.0 " H '
IF (Al .LT. 0.99) Al^O.99
ENOIF
245 IFIA2 .6E. Al) GOTO 260
IF!LINE .LT. 57) GOTO 250
WRITE!10.9011)
WRITE!10,9005) TITLE
WRITE!10,90021 COItiEP
LINE = 16
250 WRITE!10.9003) NS0.6RIDX(K),6RIOYIJ),A2
LINE = i-TNE * 1
260 CONTINUE
270 IF1NXMYPT .EQ. 0) GOTO 310
POLAP - .FALSE.
I''ISM!3) .EQ. 2) POLAR = .TRUE.
00 310 J s l.NXWYPT
YR = YDISIJ)
XR = XDISIJ)
IF!.NOT.POLAR) GOTO 260
II = YR
YR = XR'COSNUHIII)
XR = XR-SINNUMII1)
280 YR = YR - YS
XR - XR - XS
A2 = SQRTIXR»XR » YR»YRI - XOP
GET BUILDING WHICH INFLUENCES THIS DISCRETE RECEPTOR
CHECK IF NOT A POINT SOURCE
IF (ITYPE .NE. 01 60 TO 265
IF (YR .EQ. 0. .AND. XR .EQ. 0.) 60 TO 285
IF (SOURCE(ll.I) .LT. 0.) THEN
DETERMINE FLOW VECTOR FOR BLD6. DIMENSIONS
ANG = ATAN2IXR.YR) « 57.29578
IF (ANG .GT. 360.0) ANG=ANG-360.0
IFV = INTIANG>0.10 * 0.5)
IF (IFV .EQ. 0) IFV=36
BH = ABS(SOURCE(215»IFV,I))
BM = SOURCE(251»IFV,I)
H = BH
IF (BM .LT. BH) H = BM
Al s 3.0 * H
IF (Al .LT. 0.99) Also.99
ENOIF
265 IFIA2 .6E. Al) GOTO 300
IFI LINE .LT. 57) GOTO 290
WRITE!10.9005) TITLE
WRITE!10,9002) CONDEP
LINE = 16
290 WRITE!10.9003) NSO.XDISIJI.YDIS!J),A2
LINE = LINE » 1
300 CONTINUE
ISC16770
ISC187UO
ISC18790
iscieeoo
ISC16B10
ISC188JO
ISC16830
ISC18840
ISC18050
ISC18860
ISC16B70
iscieeao
ISC18Q90
ISC16900
ISC16910
ISC18920
ISC18930
ISC18940
ISC18950
ISC18960
ISC18970
ISC16980
ISC18990
ISC19000
ISC19010
ISC190:0
ISC19030
ISCI9040
ISC19050
ISC19060
ISC19070
ISC19080
ISC19090
ISC19IOO
ISC19110
ISC19I?0
ISC19130
ISC19140
ISC19150
ISC19160
ISC19170
ISC191BO
ISC19190
ISC19200
ISC19Z10
ISC19220
ISC19230
ISC1«240
ISClV'bO
ISC19260
ISC19270
ISC19280
ISC19290
ISC19300
ISC19310
ISC19320
ISC19330
-------
I
U)
Ul
310 CONTINUE
C INITIALIZE NUMBER DAYS, HOURS ft HOURS PER DAY. SET MIXING HEIGHT
C INDEX.
NTOAY = 0
IFIISHI19) .6T. 1) GOTO 320
NHOURS = 24
320 IHM = 1
IFIISHI20) .ST. 0) IHM = 2
C
C»«« BEGIN LOOP OVER DAYS OF METEOROLOGICAL DATA.
C SET OLD HIND DIRECTION BEFORE CALLING SUBROUTINE
C FOR CALMPRO OPTION
OLDAFV=-1
C SET NO. OF CALMS PER YEAR COUNTER TO ZERO
NCMYR=0
C
00 1690 IDY » l.NDAYS
IFIISUI19I .EQ. 1) GOTO 380
C INPUT A DAY OF CARD MET DATA.
00 370 I = 1.NHOURS
READIIMET.9004) JDAY.AFVdl.AMSf D.HLHI I.IHHI.TEMPdl.DTHOZd),
1 ISTABdl,Pd),DECAYd>
C NOTE IF REG. DEFAULT OPTION IS CHOSEN AND S02 IS
C MODELLED IN AN URBAN MODE DECAY IS SET = .0000461. S»«-l(4 HR)
IFIISM<26).EQ.1.AND.ISN(29>.EQ.1.AND .ISH(20).6T.OI
1 DECAY!Il=.0000401
IFdSTABdl .ST. 61 1ST ABU I = 6
AFVRdl = AFVIII
IF(JOAY .LT. II JOAY = 1
IFd.EQ.l) JOY=JDAY
IFdSUtZll .EQ. 3 .AND. ISMI22) .EQ. 31 GOTO 350
C COMPUTE HIND SPEED CATEGORY IN ORDER TO LOAD DEFAULT VALUE FOR
C P OR DTHDZ.
1ST = ISTABdl
00 330 J = 1,5
ISP = J
IF(UCATSU) .6E. AHStll) GOTO 340
~>30 CONTIHUE
ISP = 6
340 IF!ISM!21I .NE. 3) PHI = PDEFdSP.ISTI
IFIISHI22) .NE. 31 DTHDZdl = DTHOEFdSP.ISTI
350 IFIISHI6I .NE. 21 GOTO 370
IFd .ST. II GOTO 360
WRITE!10.90011 JDAY
WRITE!10,90051 TITLE
HRITEdO, 90071 JDAY
WRITE!10,90061
360 HRITEdO,90061 T,AfVdl,AHS(II.HLHd,IHMI.TEMPdl.DTHDZdl.
1 IST>B(I),P(I>,OECAYdl
370 CONTINUE
LINE = 0
GOTO 480
C INPUT PRE-PROCESSED MET DATA.
380 IFIIDAYIIDV) .ST. 01 GOTO 410
I' - IDT * 1
IFdDAYdll .ST. 01 GOTO 390
REAOIIMETI ISTAB
ISC19340
ISC19350
ISC19370
ISC19390
1SC19390
ISC19400
ISC19<«10
ISC19'i20
ISC19'4lO
ISC19450
ISC19460
ISC19470
ISC194BO
ISC19490
ISC19500
ISC19510
ISC19520
ISC19530
ISC19540
ISC19550
ISC19560
ISC19570
ISC19580
ISC19590
ISC19600
ISC19610
ISC1V 20
ISC19630
ISC19640
ISC19650
ISC 19660
ISC19670
ISC19690
ISC19690
ISC19700
ISC19710
ISC19720
ISC19730
ISC19740
ISC19750
ISC19760
ISC19770
ISC19780
ISC19790
ISC19POO
ISC19810
ISC19BZO
ISC19830
ISC19640
1SC19850
ISC19660
ISC19870
I SCI 9080
ISC19090
I5C19900
-------
00
-J
GOTO 1690 ISC1?910
390 READ! MET) JYR.IMO.DAY.ISTAB ISC1V920
LSTAB = ISTAB(l) ISC19930
IFILSTAB .ST. 61 LSTAB = 6 . 1SC19940
DO 400 I 3 2.24 ISC19950
IF(ISTABII) .ST. 6) I3TABIII = 6 'ISC19960
KSTT = ISTABIII - LSTAB ISC19970
IFIKSTT .6T. 1) ISTABII) = LSTAB » 1 ISC19900
IFIKSTT .LT. -1) ISTABII I = LSTAB - 1 ISC19990
400 LSTAB = ISTABIII ISC20000
GOTO 1690 ISC200IO
410 REAOIIMET) JYR,IMO,DAY,ISTAB,AHS,TEMP,AFV.AFVR.HLH ISC200ZO
C REARRANGE MIXING HEIGHTS. ISC20030
00 420 I = 1.2 13C2c'.0
DO 420 J = 1.24 ISC20050
K = 124*11-1)) » J ISC20060
420 RLHIK) a HLHIJ.I) ISC20070
DO 430 I s 1.4B.2 ISC20080
J a .5»J » I ISC20090
430 HLHIJ.I) 3 RLHII) ISC20100
DO 440 I s 2.49.2 ISC20110
J s .5"! I5C20120
440 HLHIJ.2I B RLH(I) ISC20130
IFIIDT .EQ. 1) LSTAB « ISTABII) ISC20140
IF!LSTAB -GT. 6) LSTAB 3 6 ISC201SO
C DO NOT ALLOW STABILITY TO VARY RAPIDLY • ADJUST FOR URBAN MOTES. ISC20160
DO 460 I s 1,24 ISC20170
IF(ISTABIII .GT. 6) ISTABIII 3 ft ISC201BO
nSTABII) 3 ISTABII) I&CIC170
KSTT = ISTABIII - LSTAS ISC20200
IFIKSTT .GT. II ISTABII) * LSTAB * 1 ISC20210
IFIKSTT .LT. -1) ISTABII) = LSTAB - 1 ISC20220
IFIKUI20) .EQ. 0 .OR. ISHI20) .EQ. 3) GOTO 460 ISC20230
IFIISH«20I .EQ. 1) GOTO 450 ISC20240
IF!ISTABII) .EQ. 6) ISTABII) 3 ISTABII) - 1 ISC20250
GOTO 460 ISC20Z60
450 IF!1STABU I .GT. 4) ISTABIII s 4 ISC20270
460 LSTAB 3 ISTABII) ISC20260
IFIISMI6) .NE. 2) GOTO 480 1SC20290
WRITE!10,9001I IDY ISC20100
MRITE110.90051 TITLE ISC20310
HRITEII0.9007) IDV I5C20520
HRITEII0.9009) ISC20J30
00 470 I 3 1,24 ISC20340
470 HRITEII0.9010) I.AFVII).AFVRII).AHSII).HLH1I.IH)1).TEMPII), 1SC20350
1 MST ABU I, ISTABII) ISC20360
LINE = 0 ISC20370
460 CONTINUE ISC203BO
C DETERMINE CALM HOURS FOR EACH AVERAGING PERIOD IF CALM OPTION USEDISC20390
IFIISHI27) .EQ. II CALL NMCAU1IIOY) ISC20400
C SET JULIAN DAY. ISC20410
IFIISHI19I .EQ. 1) JOY s IDY ISC20420
C FETCH SEASON A MONTH. ISC20430
IFIISHI19) .EQ. II GOTO 500 ISC20440
DO 490 I = 1,11 ISC20450
IMO = I ISCZO'460
IFIIHOSII) .GT. JOY I GOTO 500 ISC20't70
-------
490 CONTINUE ISC20480
IMO = 1Z ISC20490
TOO COKTINUE ISC20500
ISEA = ISEAS(IMO) ISC20510
C ISC205nO
C«HW BEGIN LOOP OVER MET DATA FOR EACH HOUR. ISC20530
C ISC20540
C INITIALIZE CALM FLAGS FOR EACH AVERAGING TIKE ISC20550
00 505 K=1,B ISC20560
505 IFLAGC(K)=0 ISC20570
DO 1670 IHR a l.NHOURS ISC205BO
1ST = ISTAB(IHR) ISC20590
C IF URBAN MOTE 2. AQJUST STABILITY FOR CALCULATION OF SIGT ( SI6Z. ISC20600
ISTUM2 = 1ST ISC20610
IF(ISU(20I .EQ. 21 ISTUM2 = 1ST - 1 ISC206ZO
IFC5TUM2 .LT. II ISTUH2 * 1 JSC20630
UBAR = AfcSC'm ISC206<«0
FV = AFV(IHR) ISC20650
FVR = AFYRIIHRI ISC20660
C DETERMINE FLOW VECTOR TO THE NEAREST TEN DEGREES ISC20670
IFV = IHTCFVR»0.1 * 0.51 ISC20680
IF (IFV .EQ. 0) IFV = 36 ISC20690
HM = HLHIIHR.IHM) ISC20700
C SET MIXING HEIGHT TO 10000.0 SO THAT ONLY FIRST TliRH OF VERTICAL ISC20710
C EqUATION IS COMPUTED (RURAL POOE. E I F STABILITIES ONLY). ISC20720
IFIISHI20) .2Q. 0 .AND. 1ST .ST. 41 HN = 10000.0 ISC20730
IF IISHI20) .EQ. 3 .AMD. 1ST .GT. 41 HM=10000.0 ISC20740
TA = TEMP(IHR) ISC20750
IFIHM .GT. 0.01 HMI = l./HM ISC20760
C COMPUTE HIND SPEED CATEGORY FOR THIS HOUR. ISC20770
DO 510 I = 1,5 ISC20780
ISP = I ISC20790
IFIUCATSIII .GE. UBAR! GOTO 520 ISC20BOO
510 CONTINUE ISC20810
ISP = 6 ISCfcGSZO
520 IF(ISMI19) .EQ. 21 GOTO 530 ISC20B30
PP = PDEFCISP.IST) ISC208<»0
DTK s DTHOEF(ISP.IST) ISC20B50
DECAY!IHR) = DDECAY 1SC20B60
GOTO 540 ISC20B70
530 PP = PIIHRI ISC20880
OTH = DTHOZ(IHR) ISC20890
540 CONTINUE ISC20900
C CLEAR CALCULATION ARRAY FOR SOURCE SUMMATIONS. ISC20910
NP1ITS2 = NPNTS » NPNTS ISC20920
DO 550 I = 1.NPNTS2 ISC20930
550 CALCII) = 0.0 ISC2.--.0
C SET IFLA6 FOR DAILY TABLES IF HOUR/TIME PERIOD - INTEGER MULTIPLE.ISC20V50
00 560 I - 1.0 ISC20960
IF(ISH(I*6) .NE. II GOTO 560 ISC20970
IFLAG(I) = .FALSE. ISC20980
IFIMOOIIHR.KAVGIIII .Efl. 01 IFLAGdl = .TRUE. ISC20990
560 CONTINUE ISC21000
IF(HM .LE. 0.0) GOTO 1490 ISC21010
C SET CONCENTRATION TO ZERO FOR CALM OPTION ISC21020
IFIISHI27) .EQ. 1 .AND. UCIIHR) .EQ. 1) GO TO 1490 I5C21030
C COMPUTE X 1 Y SCALARS OF RANDOM FLOW VECTOR. 15C210'iO
-------
c
c»»*
c
570
oo
00
00
FVRCOS = (FVR4180.)».017453293
FVRSIH = SINIFVRCOSI
FVRCOS = COS!FVRCOS)
BEGIN LOOP OVER SOURCES.
00 1480 IS = l.NSOURC
CLEAR CALCULATION ARRAY FOR EACH SOURCE.
DO 570 I = l.NPNTS
CALC(I) = 0.0
HS = SOURCE!7.IS)
IFIHS .61. HM) GOTO 1460
ITYPE = SOURCE 11,151
XS = SOURCE(4,131
YS = SOURCEI5.IS)
ZS = SOURCE!6,ISI
VS = SOURCE!9.IS)
HB = ABSISOURCEI11.IS))
HH = SOURCE!12.IS)
D = SOURCE!10.IS)
TS = SOURCE(8,IS I
NSO = SOURCE(2,ISI
IMAK = ITYPE/8192
QFL6 = JTYPE/512 - IITYPE/8192)*16
MVS = ITYPE/16 - (ITYPE/512)»52
ITYPE = ITYPE - IITYPE/16>»16
XY = SOURCE!ISTUMZ»75,IS)
XHAX = 0.0
RETRIEVE SOURCE EMISSIONS RATE I IF ANY).
QTK = 1.0
IFIQFLG .LE. 0 .AND. QFL6S .LE. 0) GOTO 640
II = IS
IFIQFLG3 .LE. 0) GOTO 580
II a 1
QFLG = QFL6S
r80 12 = ISEA
GOTO 1630,590 .600 ,610 ,620 ) ,QFL6
590 12 = IMO
GOTO 630
600 12 = IHR
GOTO 630
610 12 = !IST-1)»6 » ISP
GOTO 630
620 12 = IISEA - 1)>24 « IHR
630 QTK = SOURCE! 12*119,ID
640 QTK = SOURCEI3,ISI»TK*QTK
CALCULATE EFFECTIVE HIND SPEED.
UBARS = UBAR
IFCP") 670,670,650
650 IFiHS) 67C.'>70.6«0
NOTE: ZR IS iN RECIPROCAL FORM.
660 Al = HS
IFIHS .LT. 10.0) Al s AMIN1I10.0.1./ZR)
UBARS = UBARM|A1»ZR)«»PP
670 UBARI = 1./UBARS
BEGIN PLUME RISE CALCULATIONS FOR STACK-TYPE SOURCES.
IFIITYPE-1) 660,860,880
ISC21050
ISC21060
ISC21070
1SCZ1080
ISCZ1090
ISCZ1100
ISCZ1110
ISC211JO
ISC2I130
1SC21140
ISC211SO
ISC21160
ISC21170
ISC21180
ISCZ1190
ISCZ1ZOO
ISC21210
ISCZ1220
ISCZ1Z30
ISCZ1Z40
ISC21Z50
ISCZ1Z60
ISCZ1Z70
ISC21280
ISC21290
ISC21300
ISCZl'10
ISC213ZO
ISC21330
ISC21340
ISC21350
ISC21360
ISCZ1370
ISC21380
ISC21390
ISC21400
ISCZ1410
ISCZ14ZO
ISCZ1430
ISC21440
ISC21450
ISC21460
ISCZ1470
ISCZ1480
ISCZ1490
ISCZ1500
ISC21510
ISCZ15ZO
ISCZ1530
ISCZ1540
ISCZ1550
ISCZ1560
ISCZ1570
isczisno
ISCZ1590
ISCZ1600
ISCZ1610
-------
OJ
VO
ro
CO
-j
660 HAKE = .FALSE. ISC21620
HAKAPIs.FALSE. I5C21630
C NO STACK TIP DOHMMASH IF OIRECTIOM SPECIFIC BLDG. DOWIWASH IS USEDISC21640
IF I SOURCE!11.IS I .LT. 0.0 .AMD. ISHC2SI .EQ. 2) GOTO 690 ISC216SO
C CHECK FOR DOMNUASH STACK HEIGHT ADJUSTMENT ISC21660
IF XBH2=DMAX ISC22050
OHA=3.«FMOXBH2«BETAJI«UBARI«UBARI ISC22060
DHA=DHA*n.33333333 ISC22070
GOTO 790 ISC22000
C STABLE CONDITIONS ISC22090
780 DMAX=3.1415926«UBARS"S3I ISC22100
IFIF.EQ.O.) DMAX=DMAX*.5 ISC22110
XBH2=IIB»HB ISC22120
IF(XBH2.GT.OHAX) XBH2=DMAX ISC22I30
OHA=AMAX1I1.E-10,3.«FM»BETAJI»UBARI»SSI»SIN(S3«XBH2»UBARI)) ISC22140
OHA-DHA»».33333333 ISC221SO
C DHA1 IS MAX MOMENTUM RISE I5CZ21hO
790 DHA1=3.«VSD*UB»RI ' ISC22I70
IFIDHA.GT.DHA1I DHA=DHA1 ISC22160
-------
*-
o
00
OHAMAK=SOURCE(7.I3)«DHA ISC22190
C SOURCEI7.ISI IS UNADJUSTED STACK HEIGHT ISC22200
c OETERMIM: THE DIRECTION SPECIFIC BUILDING DIMENSIONS TO USE isczzzio
IF I SOURCE!11,ISI .IT. 0) THEN ISC22Z20
BH = ABSISOURCE1215*IFV,IS)I ISC22230
BM = SOURCE(25l*IFV,IS) ISC22240
ZLB c AMINHBH.BH) ISC22250
ENDIF ISC2?260
C DETERMINE THE BUILDING DOMNMASH METHOD TO USE ISC22270
IFIDHAMAK.LT.2.5»HB .AND. OHAWAK.LT.HB»1.5»HM) MAKE = .TRUE. ISC22260
IF I SOURCE!11.IS I .LT. 0.) THEN ISC22290
IF (SOURrE(7.I3).LE.1.5»BH.OR.SOURCE<7.IS>.LE.(BH».5«BH)) ISC22300
1 HAKAPI a .TRUE. ISC22310
IF IPHAHAK .LT. 3.0»ZLB .AND. HAKAPI) THEN ISC22320
MAKE = .TPIK. ISC22330
ELSE ISC22340
MAKAPI s .FALSE. . ISC22350
ENP'F ISCZ2360
If (BH .EQ. 0.0 .OR. BM .EQ. 0.0) MAKE = .FALSE. ISC22370
ENDIF ISC22380
800 CONTINUE ISC22390
C DETERMINE XY BASED ON THE SHAPE OF THE BUILDING ISC22400
IF (MAKAPI) THEN ISC22410
C IMAK IS FLAG FOR LTPER 09 LOMER LOUND3 OF MAKE EFFECTS ISC22420
IHAK a 0 . ISC22430
IF( SOURCE(215»IFV,I3) .LT. 0.0 ) IMAK = 1 ISC22440
C COMPUTE HORIZONTAL VIRTUAL DISTANCE HERE ISC22450
C XY = F( KST, BH, BM I 5 BH, BM = F( MD ) ISC22460
C POINT SOURCE - CHECK FOR TYPE OF BUILDING ISC22470
795 IF IBM .6E. BH) GOTO 615 ISC224BO
C TALL BUILDING ISC22490
IFIISM(20) .EQ. 3) GOTO BOS ISC22500
XY = (.a5»BM»SP(ISTUn2))«*SQIISTUn2) - O.OI»DM ISC?2S10
GOTO 810 ISC22520
805 XX3.850BM ISC22S30
XT s XVY(XX,ISTUM2) - 0.01«BM ISC22540
810 CONTINUE ISC22550
GOVO 665 ISC22560
C SQUAT BUILDING ISC22570
815 IFIBM .GT. 5.«BH) GOTO 835 ISC22500
IFIISM(20) .EQ. 3) GOTO 620 ISC2Z590
XY = !(.35*BM».5»BHI»SP(ISTUM2))**SqfISTUM2> - .01«BH ISC22600
GOTO 630 ISC22610
620 XX=.35«BH».5«BH ISC22620
XY = XVY(XX,ISTUH2)-.01«BH ISC2-;630
630 CONTINUE ISC22o40
GOTO 665 ISC22650
C VERY SQUAT BUILDING ISC22660
835 H a ,B5»BH ' ISC22673
IFdMAK .EQ. 1) H 8 t.<5»BH ISC22680
IF(ISUI20).EQ.3) GOTO 640 ISC22690
XY = (HMSP(ISTUH2))««SQ(ISTUn2t - .01*BH ISC22700
GOTO 645 ISC22710
640 XY = XVY(H,ISTUM2) - .01«BH ISC22720
645 CONTINUE ISC22730
C VOLUME AND AREA SOURCE 3I6MA-Y'S ARE STORED IN THE SOURCE ARRAY I5C2Z740
865 IF( XV .LT. 0.0 ) XY = 0.0 ISC22750
-------
>
00
-J
C CHANGE DOUNMASH TO INCLUDE LINEAR DECAY FACTOR ISC22760
IFIOHAMAK .LE. BH) THEN ISC22770
C LINEAR DECAY FACTOR (A); PLUME BELOM TOP OF BUILDING ISC22780
A = 1.0 ISC22790
C PLUME BELOW H » 2L I5C22BOO
ELSE IFIDHAHAK .LE. BH*2.0»ZLB) THEN ISC2ZQ10
A = IBH - OHAMAK) / (2.0 * ZLB) » 1.0 ISCZ7P20
C PLUME ABOVE H * 2L ISCZ2O10
ELSE ISC22B 0. ISC22900
IF (A .6T. 0.0) THEN ISC22910
C 0.98995 » 0.7»SQBT«2) ISC22920
RO = 0.98995 • A • ZLB ISC22930
C CHK THAT NORMAL SIGttt-Z IS NOT GREATER THAN DOHNMASH SIGMA-Z ISC22940
C DO EITHER MCELROY-POOLER OR P-6 CURVES,RESPECTIVELY ISC22950
IF( ISMI20I .EQ. 3 I THEN ISC22960
A3 - 0.003 • ZLB ISC22970
CALL URBNYZC A3. ISTUM2, DUMKYt A2 ) ISC22980
C 1.41421 = SQRT(2) I5C22990
RO = AMAX1IRO.I1.41421»A»A2)) ISC23000
ELSE ISC23~10
A3 = 0.003 • ZLB ISC23020
C GET DISTANCE INDEX (IXDIST) AT 3*ZLB ISC23030
CALL SIGMAZ(A3,A2,BBAR,ISTUM2.IXDIST.4.SASIGZ.SBSIGZ.DUMMY) ISC23040
C GET SIGHAZ AT 3«ZLB ISC230SO
CALL SIGHAZ(A3.A2,BBAR.ISTUM2.IXDIST.l.SASIGZ.SBSIGZ.DUMHY) ISC23060
RO a AMAX1«RO,I1.41421«A«A2)I ISC230/0
ENDIF ISC23080
ENOIF ISC23090
C ENHANCE 3I6MA-Y ISC23100
IFI DHAWW .LE. 1.2»BH I THEN ISCZ3110
SYL = .35»ZLB-A2 ISC23120
SYL = AMAX1ISYL.O.) ISC23130
IF( BM .LE. 5.«BH I THEN ISC23140
C 2.5066 a SQRTI2PI) ISC23150
YL = 2.5066 • SYL ISC23160
ELSE IF IINAK .EQ. 1) THEN ISC23170
C EDGE EFFECTS OCCUR (SIGMA-Y = 1.75«SQRTI2PI)»BH) ISC23180
YL n 12.533 • SYL ISC23190
ELSE ISC23200
C SIGMA-Y = 0.35*SQRT(2PI)«BH ISC23210
YL = 2.5066 • SVL ISC232ZO
ENDIF ISC23230
C CHECK THAT SICMA-Y FROM CURVES IS NOT GREATER THAN ISC23Z40
C SIGIU-Y F?QH BUILDING ISC23250
IFI ISHI20I .EQ. 3 ) THEN ISC23260
Ai = 0.003 • ZLB ISC23270
CALL URBNVZ(A3.ISTUM2,A2,DUMMY) ISC23280
C 2.5066 c SQRTI2PI) ISC23Z90
YL = A»UX1IYL,(2.5066»A2)) ISC23100
ELSE ISC23MO
A3 = C.003"ZLB ISC23320
-------
CD
TH = 0.01745329*1 SCI ISTUM2)-50(13TUM2)iiALOGI A3)) ISC23330
A2 a 465.1162B»A3i>TANITH) ISC23340
TL = AMAX1IYL,(2.5066«A2)) ISC23350
ENDIF ISC23360
ENOIF ISC23370
C ADD BLP FINAL BUOYANT PLUME RISE IF OOVflMASH (HAKAPI = TRUE I ISC233BO
C 00 BLP OR MPTER RISE,RESPECTIVELY ISC23390
C FM IS PASSED A3 0.0 FOR BUOYANT RISE ONLY ISC23400
CALL BLP(RO,YL»IST.F.O.O,DMAX,UBARS,S,BETAJI,DHA) ISC23410
ELSE ISC2"*JO
C MPR1 IS A SUBROUTINE MUCH CALCULATES ISC23 30
C PLUME RISE CONSISTENT WITH MPTER. • ISC234'iO
CALL MPRUIST,T3,TA,F,0,VS,UBARS,DHA,DTH,D1STF» ISC23450
ENOIF ISC23463
C OHASAV IS FINAL PLUME RISE FOR EACH SOURCE. ISC23470
DHASAV=DHA I5C23480
680 CONTINUE I3C23410
C ISC23500
C"»» BE6IN LOOP OVER RECEPTOR POINTS. ISC23510
C ISC23520
IFINXPNTS .NE. 0 .AND. NYPNTS .NE. 01 GOTO 900 ISC23530
890 IFINXWYPT .EQ. 0) GOTO 1400 ISC2350
-------
XR = GRIDXtX) ISC23900
GOTO 990 ISC23910
970 I = I * 1 ISC23920
IFII .GT. NXMYPTI GOTO MOO ISC23930
YH = YDISII) ISC239«tO
IFI.NOT.POLAR I GOTO 980 ISC23950
ITR = tP ISC23940
VPS = SINNUmiYR) ISC23970
YRC - COSNUtldTRI ISC23980
980 U = NXPMTS»NYPMTS * I ISC23990
XR = XDI3II) ISC2'«000
990 CONTINUE ISC24010
IFIFUIA1) GOTO 1000 ISC24020
XH1 = XH -XS ISC24030
tRl = YR - YS ISC24040
GOTO 1C1U ISC24050
1000 XT! = XRftYRS - XS ISC24060
YR1 = XR»VHC - YS ISC2'«070
C CHECK IF TERRAIN ELEVATION IS LOWER THAN STACK HEIGHT. ISC240BO
1010 IFtISm4>.NE.1.0R.HS»ZS-GHIOZIIJ).GT.O.O.OR.ITYPE.EQ.2) GOTO 1020 ISC24090
C APPLY TERRAIN CHOPPING ISC24100
C ISC24110
C GRIDZIIJ1 TERRAIN HEIGHT GREATER THAN STACK HT SO RETAIN ISC24120
C TERRAIN HT IN OLOZ. ISC24130
C IF OLOZ DOES NOT EQ 0. THEN TERRAIN HT HAS BEEN RETAINED ISC24140
C AND GRIOZIIJ) IS SET TO THE STACK HEIGHT -.005 METERS. ISC24150
C TERRAIN IS NOW LESS THAN STACK HT AND HE GO TO 1020 ISC24160
OLDZ=GRIOZ(IJ> ISC24170
6RIDZIIJI=HS«ZS-.005 ' ISC241BO
GO TO 1020 ISC24190
C CALCULATE DOUNMIND DISTANCE, XBAR. ISC2'<200
1020 XBAR s -IXR1MFVRSIN « YR1«FVRCOSI ISC24210
C SET RHTAG FOR USE IN VERTICAL EQUATIONS HHEN ABOVE GROUND RECEP- ISC24220
C TORS ARE USED. ISC24230
RHTAG = 0.0 ISC24240
IF IISMI31) .EQ. 11 RHTAG = RHTtUI ISC24250
IFIXBAR .IE. 0.0) GOTO 920 ISC24260
IFIXHAX .LE. 0.0) GOTO 1030 ISC24270
IFIXBAR .GT. XMAX .AND. ISHI4) .EQ. 0) GOTO 920 ISC24280
C CALCULATE CROSSMIND DISTANCE. ISC24290
1030 YBAR = XR1MFVRCOS - YR1»FVRSIN ISC24300
XOP = 0.0 ISC24310
C l./SQRTI3.14159265) = .5641896 (CALCULATE EFFECTIVE PADIUS. I ISC24320
IFIITYPE .EQ. 2) XOP s .5641896»XO ISCZs^JO
IFIITYPE .EQ. II XOP = 2.15«SIGYO ISC24340
Al = 3."HB ISC24350
IFIHH .LT. HB) Al = 3.»HM ISC24360
IFIA1 .LT. 00.99) Al = 00.99 ISC24370
IFKXBAR-XOP) .LT. 0.0) GOTO 920 ISC2'i3QO
A2 - SQRTIXBAROXBAR » YBAR*YBAR) - XOP ISC2't390
IFIA2 .LT. Al) GOTO 920 I5C24400
YP - XBAR»1.19175359 ISC24410
IFIYBAR .GT. YP) GOTO 920 ISC24420
C ADJUST XBAR TO DOMNMIND EDGE OF AREA SOURCE. ISC24430
IFIITYPE .EQ. 21 XBAR = XDAR - XOP ISC24440
C RESUME PLUME RISE CALCULATIONS. ISC24450
H = H3 I5C2't'i60
-------
>
00
IFIITTPE .61. 0) GOTO 1095 ISCZ4470
C PLUME RISE IN VERSION 87938 HAS BEEN ISCZ4480
C CHANGED TO BE CONSISTENT HITH MPTER MODEL. ISC24490
C EFFECTIVE PLUME HEIGHT. ISC24500
C CHECK FOR 6RAOUAL PLUME RISE. I5C24510
DHA=DHASAV ISC245ZO
XKM=XBAR*.001 ISC24530
XBR1=XBAR ISC24540
C USE TRANSITIONAL RISE HITH BUILDING DOHMHASH ISC24550
IFIXKH.GE.DI3TF.AND..NOT.HAKE) GO TO 1085 I5CZ4560
*FIISU(£4).EQ.l.AND.ZSM XBR1=OMJO< ISC24720
OHA1=AMAXU1.E-10,3.»FM»BETAJI"UBARI«SSI»SIN(SS»XBR1«UBARI)» ISC24730
OHA1=OHA1««.33333333 ISCZ4740
C OHAZ IS MAX ISC MOMENTUM RISE ISC247SO
1084 OHA2=3.»VSO«UBARI ISC24740
IFIDHA1.GT.DHAZI DHA1=DHAZ ISC24770
IFIOHA.LT.OHAll DHA=DHA1 ISC24760
C USE GREATER OF UNAMAP 5 ISC MOMENTUM RISE AND ISCZ4790
C TRANSITIONAL RISE ISCZ4800
ELSE ISCZ4810
XSR = XBAR ISCZ4820
C LIMIT THE DISTANCE TO MAX RISE ISC24B30
IF I XSR .6T. DMAX) XSR = DMAX ISC246'iO
C COMPUTE TRANSITIONAL RISE (BLP NEUTRAL. BUOYANT RISE) ISC24850
CALL BLPRIZ(4,F,O.O.XSR.UBARS.S.BETAJI,DHA) ISCZ4860
C DISTANCE TO MAX NEUTRAL MOMENTUM RISE ISC24870
XPRN - 4.»0»UBARI/VS»«VS«3.»UntRS)««2 ISCZ48BO
C LIMIT DISTANCE OF 'INSTABLE/NEUTRAL MOMENTUM RISE ISCZ4890
IFIOTH -LE. 0.0) THEN ISCZ4900
XSR = AMINKXBAR.XPRN) ISCZ4910
CALL BLPRIZ(IST.O.O.FH.XSR,UBARS.S.BETAJI,DHA1) ISC24920
. ELSE ISC24930
C DISTANCE TO MAX STABLE MOMENTUM RISE ISC24940
C 1.5707963 = PI/Z ISCZ4950
XPRS = 1.5707963 » UBARS • SSI ISCZ4960
XSR - AMINK XBAR, XPRS I ISCZ4970
CALL BLPRIZCIST.O.O.FM,XSR,UBARS,S.BETAJI.OHA1I ISCZ4980
C COMPUTE MAX NEUTRAL MOMENTUM RISE ISCZ4990
CALL BLPRIZ<4,0.0,FM.XPRN.UBARS,S.BETAJI,DHAZ) ISCZSOOO
C FIND THE MINIMUM OF MOMENTUM RISE ISCJ5010
OHA1 s AMiriKDHAl.OHAZ) ISCZ50ZO
ENDIF I5C25030
-------
4>
01
C CHOOSE MAXIMUM OF TRANSITIONAL OR MOMENTUM PLUHE RISE ISC25040
DHA = AMAXKOHA.DHAl) ISC25050
ENDIF ISC25060
ENDIF ISC25070
H=HS«DHA ISC25080
C USE TRANSITIONAL RISE HITH BUILDING OOMNHASH ISC25090
IFI ISM(24).EQ.LAND..NOT.HAKE) GO TO 1065 ISC25100
60 TO 1090 ISC25110
1085 H=HS»DHASAV ISCJ..UO
1090 CONTINUE ISC25130
C ADJUST H DUE TO TERRAIN ISC251'.0
1095 HEFF=H ISC25150
IFIISHI4).NE.1.0R.mPE.EQ.2) GO TO 1100 ISC25160
Al = ZS - 6RIDZIIJ) ISC25170
H = H + Al ISC25180
1100 CONTINUE ISC2S190
C CHECK FOR PLUHE HEIGHT GREATER THAN MIXING HEIGHT I5C25200
C AT SOURCE. ISC25210
IFIHEFF.LE.HM) GO TO 1110 . ISCZS220
XMAX = XBAR ISC25230
C IF POLAR ft IIEXTR=2 ft NO TERRAIN. 3K*P RINGS FOR THIS RADIAL. ISC25240
IFI.NOT.POLAR .OR. NEXTR .NE. Z .OR. ISHI4I .NE. 0) GOTO 920 ISC25250
NEXTR = 1 ISC25260
GOTO 9zo isc::??o
1110 XBARK = .001"XBAR ISC2b280
XBARY = XBARK ISC25290
XBARZ = XBARK ISCZ5300
C CALL SIGHAZ TO COMPUTE EFFECTIVE OOMNHIND DISTANCE INDEX. IXDIST. ISC25310
II = 3 ISC25320
IFIITYPE .EQ. 0 .AND. .NOT.MAKE) II =* ISC25330
IF (MAKAPII THEN ISC25340
C SET FLAG TO ONLY GET IXDIST AND NOT TO CHECK X»XZ ISC25350
II = ZLB ISC25530
ENDIF • ISC25540
ENDIF ISC25550
C VOLUME AND AREA SOURCE SIGMA-Z'S ARE STORED IN THE SOURCE ARRAY ISC25560
1117 IFI XZ .LT. 0.0 ) XZ = 0.0 ISC25570
C CHECK TO SEE THAT IXDIST DOES NOT CHANGE WHEN XZ IS ADDED ISC25580
C TO THE SOURCE RECEPTOR DISTANCE - ISC25590
IFI ISHI20) .NE. 3 ) THEN ISCZS'OO
-------
00
-J
CALL SI6HAZ .NE. 31
•CALL SIGMAZIXBARK,SIGZ,BBAR,ISTUt12. IXOIST. 11, SASI6Z.SBSIGZ,
1 SOURCE! 82. IS) I
IF
ISC25610
ISC25620
ISC25630
ISCZ5640
ISC25650
ISC25660
ISC25670
I5C25600
ISC25690
ISC25700
ISC25710
ISC25720
ISC25730
ISC25740
ISC25750
ISC25760
ISC25770
ISC25700
ISC25790
ISC25800
ISC25B10
ISC25620
ISC25830
ISC25840
ISC25850
ISC25B60
ISC25S70
13025880
ISC25S90
ISCCDVOC
ISC2S910
ISC2S920
ISC25930
ISC25940
ISC25950
ISC25960
ISC2S970
ISC259QO
ISC25990
ISC26000
ISC26010
ISC2'>C?0
ISC26u30
ISC26040
ISC26050
ISC26060
ISC26070
ISC260BO
ISC26090
ISC26100
ISC26110
ISC26120
ISC26130
ISC26140
ISC26150
ISC26160
-------
N»
>v
00
GOTO 1200 I3C26180
1180 XBARY * XBARK * XT ISC26190
1190 IF IISHI20) .NE. 31 GOTO 1195 ISC26200
CALL URBNYZIXBARY,I3TUM2.SIGY,DUMSZ) ISC26210
GOTO 1200 ISC26220
1195 TH = .017453293«fSCIISTUM2)-SO(ISTUM2)«ALOGfXBARV)) ISC26230
SIGY = 465.116280XBARYHTANITH) ISC26240
1200 IFIISH(26I.EQ.2.0R.ITYPE.GT.O) GO TO 1205 ISC26250
C SKIP B.I.O. CALC. IF DIRECTION SPECIFIC BUILDING OOMIMA3H IS USED ISC26260
IF IHAKAPI) GOTO 1205 ISC26270
IF!ISM(26).EQ.2.0R.ITYPE.6T.O) 60 TO 1205 ISC26280
C ADJUST SIGY FOR BUOYANCY INDUCED DISPERSION ISC26290
DUM=DHA/3.5 ISC26300
DUM=OUM»DUn ISC26310
SIGY=SQRTISIGY*SIGY«OUni ISC26320
1205 SIGYI=1./SIGY ISC26330
IFIITVPE .EQ. 2) GOTO 1210 ISC26340
Al = .5»«YBAR«SI6YII««2 ISC263SO
IFIA1 .ST. 50.01 GOTO 920 ISC26360
1210 IFISGZDON) GOTO 1220 ISC26370
IFIISMI20) .NE. 31 GOTO 1215 ISC263BO
CALL URBNYZIXBARZ.ISTUM2.DUHSY,3IGZ> ISC2t*90
GOTO 1218 ISC26-IOO
1215 CONTINUE ISC26410
CALL SIGtU2(XBARZ.3I6Z,BBAR,ISTUM2.XXDIST.l,SASIGZ,SBSIGZ,DUMMY) ISC26420
1218 CONTINUE ISC26430
1220 IFIISH(26t.EQ.2.0R.rrYPE.GT.O> GO TO 1225 ISC26440
C SKIP B.I.D. CALC. IF DIRECTION SPECIFIC BUILDING DOMNMASH IS USED ISC26450
IF (HAKAPII GOTO 1225 ISC26460
IF(ISMI26).EQ.2.0R.ITYPE.GT.OI GO TO 1225 ISC26470
C ADJUST SI6Z FOR BUOYANCY INDUCED DISPERSION ISC26480
SIGZ=SQRT(SIGZ»SIGZ«DUm . ISC26490
1225 IFOIGZ.3T.5000..AND.NVS.E9.0) SIGZ=5000. ISC26500
SIGZI=1./SIGZ ISC26510
C CALCULATE DECAY TERM. ISC26520
XBARU = XBAR«UBARI ISC26530
DECAYT =1.0 ISC26540
IF(DECAYIIHR) .GT. 0.01 DECAYT = EXP(-DECAY!IHRIUXBARU) ISC26550
C CHECK CONCENTRATION-DEPOSITION SWITCH. ISC26560
IFIISU(l) .EQ. 21 GOTO 1320 ISC26570
C CONCENTRATION EQUATION. ISCI6580
C CHECK FOR PARTICULATES MITH SETTLING VELOCITIES. ISC26590
IFINVS .GT. 01 GOTO 1260 ISC26600
IF1RTGZ*HMI .IT. 1.6) GOTO 1240 ISC26610
C CALCULATE 'BOX-MODEL' CONCEIfTPATION ISC26620
IFIITYPE .EQ. 2) GOTO 1230 ISC26630
CHI = QTK»UBARI»SIGYI«HMI«"EXP(-AH»OECAYT». 39894228 ISC26640
GOTO 1390 ISC26650
1270 A3 = .70710678«SI6YI ISC26660
M = IXOP»YBAR)i>A3 ISC26670
AS = -.5»OECAYT ISC26700
oOTO 1390 ISC26710
C CALCULATE VERTICAL TERM FOR ALL SOURCE TYPES HA) PARTICLE ISC26720
C SETTLING VELOCITIES. ISC26730
1240 V & 0.0 ISC26740
-------
A2 = 0.0
1250 VL = V
A2 = A2 » 2.0
HMA2 = A2«HN
ISC26750
ISC26760
ISC26770
ISC267/10
ISC2o.MO
SUBTRACT ABOVE GROUND RECEPTOR NTS. OFF THE EXPANDED VERTICAL TERMI5C26790
IF IISUI31) .HE. 0 .AND. RHTA6 .GT. 0.00011 THEN ISC26800
CALL VRTRHT(HHA2.HiRHTAG.SI6ZI,A5,A6>
GO TO 1255
ENOIF
A3 = IHMA2-H)"3IGZI
A* = IHMA2»H)»SIGZI
A3 = -.5»A3«A3
A* r -.5»A4*A4
A5 = 0.0
IFIA3 .GT. -50.) AS » EXPCA3)
A6 = 0.0
IFIA4 .GT. -50.) A6 » EXPIA4)
V = V * AS » A6
1255 V = V * AS « A6
IF(ABSIV-VL) .GT. l.E-8) GOTO 1250
ISC26830
ISC268'<0
ISC2685J
ISC26860
ISC26670
ISC26600
ISC26690
ISC26900
ISC26910
ISC26920
ISC26930
ISC26940
SUBTRACT ABOVE GROUND RECEPTOR NTS. AND EXPAND VERTICAL TERN WHEN ISC26950
4>
OO
to
CD
-J
C ISMI31) IS GREATER THAN 0 OR RECEPTOR HTS. ARE GREATER THAN 0. I?C?A9*0
IF IISHI31) .Et. 0 .OR. SHTAG .IE. 0.0001) THEN ' ISC2C970
A2 = H»SIGZI. ISC269QO
V = EXPI-.SMA2M2) « V ISC26990
ELSE ISC27000
82 - (H*RHTA6)«SIGZI ISC27010
Bl = (H-RHTA6I»SI6ZI ISC27020
V = EXPC-.5»B1«B1) * EXPI-.5»B2«B2» * V ISC27030
V » .5»V ISC270'«0
ENDIF ISC27050
GOTO 1300 ISC27060
C CALCULATE VERTICAL TERN FOR ALL SOURCE TYPES WITH SETTLING ISC27070
C VELOCITIES. ISC27000
1260 V = 0.0 ISC27090
DO 1290 K=1,NV3 ISC27100
SUN = 0.0 ISC27110
SUM1 = 0.0 ISC27120
JP70 = K » 35 ISC27130
XBARUV a SOURCE!JP70.ISMXBARU ISC27140
JP70 = K » 55 ISC27150
GAMMA = SOURCE!JP70,IS) ISC27160
JP70 = K » 15 ISC27170
PHI = SOURCE(JP70.IS) ISC27180
A2 = 0.0 I5C27190
C EXPANDED VERTICAL TERN TO SUBTRACT ABOVE GROUND RECEPTOR HT. ISC27200
A3 = (-H»XBARUV-RHTAG)»SIGZI ISC27210
AS - -.5»A3»A3 ISC272CO
IFIA5 .GT. -50.) SUN = EXPIA5) ISC27310
IFIGAHMA .LE. 0.0) GOTO 1270 ISC272'<0
C EXPANDED VERTICAL TERN TO SUBTRACT ABOVE GROUND RECEPTOR HT. ISC27250
A* = (H - XBARUV - RHTA6)*SIGZI ISC27260
AS = -.5»A*»A* ISC27270
IFIA5 .GT. -50.) SUN = SUN * EXP(A5)*GATt1A ISC272AO
CALL VERHH.HM,XBARUV,SI6ZI.GAMMA,A2,SUM,BHTA6I ISC2779Q
1270 A2 = 2.0 ISC27JOO
C EXPANDED VERTICAL TERN TO SUBTRACT /POVE GROUND RECEPTOR HT. ISC27310
-------
I
.p-
vO
00
-4
RHTAG1 = -1. • RHTA6 ISC27320
A3 = «HM»HM-H»XBAPUV-RHTA61)»SIGZI ISC27330
AS = -.5>A3»A3 ISC27340
IF! AS .61. -50.1 SUM! = EXPIA5) ISC27350
IFIGAMMA .LE. 0.01 GOTO 1280 ISC27360
C EXPANDED VERTICAL TERM TO SUBTRACT ABOVE GROUND RECEPTOR HT. ISC27370
A* = «HM»HM4H-XBARUV-RHTAG1)«SIGZI ISC27380
AS = -.5"A4»ASI6ZmXP(-Al)WDECAYTK.31S30«B9 ISC27460
GOTO 1390 ISC27470
1310 A3 s .70710&78*SI6YI ISC27480
A4 a IXOP»YBAR)«A3 ISC27490
AS = -(XOP-YBARUA3 ISC27500
A3 a ERFXIA4.A5) ISC27510
CHI = QTK»XO«SI6ZI»UBARI»V»OECAYT«A3».39894228 ISC27520
GOTO 1390 ISC27530
C BEGIN DEPOSITION CALCULATIONS. ISC27540
1320 IFINVS .6T. 0) GOTO 1330 ISC27550
IF!LINE .EQ. 0) HRITEC10.9011) ISC27560
WRITE!10.9013) NSO ISC27570
STOP ISC27590
C CALL SIGHAZ TO COMPUTE AVERAGE EFFECTIVE DOl?NVIINT) DISTANCE. P5^. ISC?7590
1330 CONTINUE ISC27600
IFCISHI20) .NE. 3) CALL SIGt1AZIXBARZ,SIGZ.BBAR,ISTUH2. ISC27610
• IXDIST,2.3ASI6Z.SB3I6Z.OUmTI ISC27620
IFIISHI20) .EO. 3) CALL URBBAR(XBAPZ,BBAR,ISTUM2,IXDI3T,2,DUMMYI ISC27630
V = 0.0 ISC27640
DO 1370 K s l.NVS ISC27650
JP70 = K » 55 ISC27660
GAMMA = SOURCE(JP70.IS) ISC27670
JP70 = K * 15 ISC27680
PHI = SOURCE!JP70,IS) ISC27690
JP70 = K » 35 ISC27700
XBARUV = XBARU*SOURCEIJP70.IS) ISC2~710
AS - I1.-BBA9I«XBARUV ISC27.20
6AM1 = 1.0 ISC27730
GAH2 = GAMMA ISC27740
A2 = 0.0 ISC27753
SUH = 0.0 ISC27760
1340 SUHL = SUN ISC27770
A2 = A2 * 8. I3C27760
HMA2 = A2»HM ISC27790
A3 = IHHA2-H»XBARUVI«SI6ZI ISC27BQO
A6 = 0.0 ISC27610
A3 = -.5«A3«A3 ISC27B20
IFIA3 .GT. -50.) A6 = EXP(A3I«€AM1»(B8AR«JHMA2-H1-A5J ISC27B30
IFIGAftU .GT. 0.0) GOTO 1350 13027840
SUN = Aft ISC27850
GOTO 1360 ISC27860
1350 A4 = !HMA2«H-XBARUV)«SI6ZI ISC:^370
A7 = 0.0 ISC27880
-------
EXPIA4)«GAH2»IBBAR»IHMA2«H)»ASI
Ul
o
CO
-J
A4 s -.5>A4«A4
IFIA4 .GT. -50.) A7
SUM = SUN » Afc * A7
IFIABSISUn-SUHL) .LT. l.E-8) GOTO 1360
6AH1 = GAME
6AM2 s 6AM2»6Alt1A
GOTO 1340
1360 A3 - (H-XBARUV)«SIGZX
A7 = -.5»A3»AS
A3 - 0.6
IF(A7 .GT. -50.) A3 = IBBAR«H * A5)»EXP(A7)
C MODEL DOES NOT ALLOW FOR NEGATIVE DEPOSITION
VOUH=t 1. -GAMMA >»PHI"IA3»SUm
IFIVOUn.LT.O.) VDUM=0.
V=V«VDUM
1370 CONTINUE
C FINISH DEPOSITION CALCULATIONS.
IFIITYPE .EQ. 2) GOTO 1360
CHI s QTK»SI6YI»SI6ZI/XBAR»EXPt-AH«OECAYT»V». 15915494
GO TO 1390
1360 CHI = QTK*XO»SIGZI/XBAR»DECAYT«V»ERFXI"NAV6 » IAVG)
IAVG = IAVS * 1
DO 1430 J = 1. NPNTS
IP7 3 II » J
1430 CHIAVIIP7) = CHIAVIIP7) » CALCIJ)
1440 CONTINUE
IF(IbtUlS) .NE. 1) GOTO 1460
C LOAD SOURCE CHI FOR ANNUAL TABLE FOR THIS SOURCF GROUP.
12 = CIG-1)«NPNTS
DO 1450 J = l.NPHTS
IP7 = 12 » J
1450 CHIANIIP7I = CHIANIIP7) « CALCIJ)
ISC27890
ISC27900
JSC27910
1SC279PO
ISC27930
ISC27940
ISC27950
ISC27960
ISC27970
I5C27980
ISC27990
I5C28000
ISC2B010
ISC2B020
ISC26030
ISC2BO'iO
ISC28050
ISC2B060
ISC26070
ISC28080
ISC28.90
ISC28100
ISC2BMO
ISC28120
ISC28130
ISC281
-------
>
1460 NSUH = NSUH « 1
1470 COHTINUE
C GET NEXT SOURCE
1460 CONTINUE
1490 IFINGROUP .GT. 0) GOTO 1520
C LOAD ALL SOURCE CHI'S INTO APPROPRIATE CHIAV ARRAYS.
IAVS = 0
00 1510 I = 1,8
IFIISH(I»6) .NE. 1) GOTO 1510
IP6 = IAVG«NPNTS
IAV6 = IAVG » 1
DO 1500 J = l.NPNTS
12 = IP6 + J
IP7 = NPNTS * J
1500 CHIAVI 121 » CHIAVII2) * CALCIIP7I
1510 CONTINUE
C
C BEGIN LOOP OVER ALL SOURCE GROUPS.
C
1520 NSUH s 1
16 = 1
IFINGROUP .LE. 01 GOTO 1540
1530 NS = NSOGRPIIGI
ITO = NSUH » NS - 1
C
C BEGIN LOOP OVER ALL TIHE PERIODS FOR THIS HOUR.
C
ISC28460
ISC26470
ISC20400
ISC28490
1540 IAV6 a 0
DO 1640 I
= 1.8
: FOR DAILY TABLES COMPUTE AVERAGES, NRITE TO TAPE * PRINT.
IF(ISH(I«6) .NE. 1) GOTO 1640
IAVG = IAV6 » 1
IFI.NOT.IFLAGIIII GOTO 1640
: SET CAII1 FLAGS
IF! ISHI27l.EQ.il THEN
IFLAGCIII=0 .,
JCL-IHR-KAVGCII*!
DO 1545 JC=JCL.IHR
1545 IFINCIJCI.EQ.il IFLAGCdin
ENDIF
II - NPNTS"((IG-1IVNAV6 » IAVS - II
IFIKAVGII) .EQ. l.OR. ISMI11 .EQ. 21 GOTO 1560
Al = l./KAVGIII
C CALL SUBROUTINE TO DETERMINE Al IF CAU1 OPTION IS USED
IFIISHI27I .EQ. 1 .AND. I .GT. 31 CALL AVCALMd.IHR.Al I
00 1550 J = 1,NPNTS
IP7 = II * J
1550 CHIAVUP7I = CHIAV(IP7I»A1
1560 IFIISUI5I .EQ. II HRITEIITAPI IHR,JDY,I6,ICHIAVII1»JI,J=l,NPNTS)
IFIIPERO .GT. 0 .AND. IPERO .NE. IHR/KAVGIIM GOTO 1570
IF!ISMI16) .NE. II GOTO 1570
IP7 = II * 1
CALL DYOUTIGRIOX,GRIOY.XDIS,rDIS,CHIAVCIP7l,KAVG(I).JDY,IHR,l.
1 NSUH.ITO.IGI
C CALCULATE HIGHEST • SECOND HIGHEST TABLES IF DESIRED.
1570 IF!ISMI171 .EQ. 01 GOTO 1600
NPNT52 = NPNTS * NPHTS
ISC2G: 10
ISC28520
ISC26530
ISC28540
ISC28550
ISC28560
ISC2R570
ISC26500
ISC20590
ISC28600
ISC28610
ISC2B620
ISC28630
ISC28640
ISC286SO
ISC28670
ISC286BO
ISC28690
1SC28700
ISC28710
ISC28720
ISC28730
ISC28740
ISC28750
ISC28760
ISC28770
ISC28780
ISC28790
ISC28800
ISC28810
ISC28820
ISC20830
ISC20B40
ISC26050
ISC2B660
ISC28870
ISC28BBO
ISC28890
ISCZB900
ISC28910
ISC28920
ISC28930
ISC2B940
ISC28950
ISC2B960
ISC2B970
ISC28980
ISC26 90
ISC29000
ISC29010
ISC29020
-------
01
NJ
K>
>»
CO
NPNT33 = NPNTS2 » NPNTS ISC29030
IP4 a *"I1 I5C29040
IFIISUI17I.6T.il IP4-6»I1 ISC29050
C 512 = 2»»? SHIFT HOUR VALUE I STORE MITH DAY. 1SC290SO
IHRT5 = 512»IHR ISC29070
00 1590 J = 1,NPNTS ISC29000
JM a IP* * J ISC29C?0
JPS -• II » J ISC29100
JP2 = JP4 » NPNTS2 ISC29110
JPJ s JP« * NPKTS3 ISC29120
IFIISMU.I.LT.2I GO TO 1575 ISC29130
jr&-JP3»NPNTS ISC29140
JP7=JP6«NPNTS ISC29150
C FIRST MAXIMUM ISC29160
1575 IFICHIHAXUP4) .GE. CHI AVI JPS 11 GOTO 1560 ISC29170
JP1 = JP4 » NPNTS ISC29180
IFIICHI17).6T.l) CHIMAXI JP6»=CHIMAXIJP2» ISC29190
CHIMAXIJP2I > CHINAXIJP4) ISC29200
CHIMAXIJP4) « CHIAVUP5I ISC292IO
IF(ISH(17I .61.11 CHIMAX(JP7)=CHIf1AXIJP3l ISC29220
CHIMAXIJP3) = CHIMAXIJPII ISC29230
CHIHAXIJP1I - JOt « IHRT5 ISC29240
IFIIFLAGCdl.EQ.ll CHIMAXIJP1)=CHIMAX10
C CALCULATE 50 HIGHEST CONCENTRATIONSIDEPOSITIONS I. ISC29420
1600 IFIISHC18I .NE. 1) GOTO 1610 ISC29430
IP7 = IIG-DHNAVG ISCZM^O
IP6 s II * 1 ISC29450
IP7 s IP7 « IAV6 ISC29460
C FLAG CALM PERIODS ISC29470
IFIIFLAGCID.Eq.il JDY=JDY«1000000 ISC294BO
CALL MAX50ICHIAV(IP6I,CHI50I1,IP7I,IPNTI1,IP7I,ICOUNTIIP7I, ISC29490
1 IHR.JDYI ISC29500
C SET JDV BACK TO ACTUAL VALUE ISC29510
IFIIFLA6CID.EQ.il JOY=JDY-1000000 ISC295ZO
C CLEAR 'CHIAV ARRAY FOR THIS SOURCE GROUP « APPPOPRIATE TIME ISC29530
C PERIOD. ISC29540
1610 00 1620 J a 1.NPNTS ISC29550
1620 CHIAVI II*JI = 0.0 IbC:9SiO
1630 CONTINUE ISC29570
1640 CONTINUE ISC295BO
16 = 16 » 1 ISC29S90
-------
IFII6 .ST. N6ROUP) GOTO 1650
NSUtl = NSU1 * NS
GOTO 1530
C STORE ANNUAL AVERAGE.
1650 IFIISMI15) .NE. 1 .OR. NGROUP .ST. 0) GOTO 1670
DO 1660 I = l.NPMTS
IP6 = I » NPKTS
1660 CHIAMII1 = CHIAN(I) » CALCIIP6)
C END HOURLY LOOP.
1670 CONTINUE
IFINAVG.LE.O) GO TO 1685
C CLEAR DAILY AVERAGES ARRAY BEFORE GOING TO NEXT DAY.
NPNTS2 a NAV6»NPNTS
IFINGROUP .6T. 0) NPNTS2 = NPNTS2»NGROUP
DO 16BO I = 1.NPNTS2
1680 CHIAVI 11 » 0.0
1685 NTDAY = NTDAY * 1
1690 CONTINUE
C END OF MET DATA.
NDAYS = NTDAY
NSUT1 = I
16 = 1
IFINGROUP .LE. 0) GOTO 1710
1700 NS = NSOGRPdGI
ITO = NSUN » NS - 1
C PRINT 'N'-OAY TABLE
1710 IFUSH(IS) .NE. 1) GOTO 1730
NHTOT = NTOAVNZ4
IFIISHI19) .NE. 1) NHTOT <* NDAYS«MHOURS
C ADJUST tlHTOT IF USING CALM OPTION
IFIISMI27) .EQ. 1) NHTOT=NHTOT-NCHYR
HTOT = 1./FLOAT(NHTOTI
IF(ISHIl) .EQ. 2) HTOT * 1.0
II = lIG-lloNPNTS » 1
12 = II » NPNTS - 1
DO 1720 I = 11.12
1720 CHIANII) - CHIAN(I)»HTOT
CALL DYOUT<6RIDX.6QIDV,XDI3.YDIS.CHIAN(Il).75.IDY,IHR,l,NSUn,ITO.
1 16)
IFIISM(S) .EQ. 1) URITEIITAP) NHOUig,NTDAY.NGROUP.ICHIAN(I).
1 1=11.12)
ISCZ9600
1SCZ9610
ISC29620
I5C29630
ISC29640
ISC29650
ISC29660
ISC29670
BEGIN LOOP OVER TINE PERIODS.
1730 IAVG = 0
DO 17iO I 8 1,8
IF(ISUII»6) .NE. 1) GOTO 1750
IAVG = IAVG + 1
PRINT HIGHEST t SECOND HIGHEST CONCENTRATION! DEPOSITION) TABLES.
IFIISHI17) .EQ. 0) GOTO 1740
00
-4
IF(ISH(17t.GT.l) 101*1=6
IP6 a IOUH*NPNTS»((I6-1)>NAV6 « IAVG - 1) * 1
CALL DYOUTI6RIDX.GRIDY.XDIS,TDIS.CHirUX(IP6),KAVG(I).IDY.IHR,2.
1 NSUH.ITO.IG)
IP6 = IP6 « NPNTS * NPNTS
CALL DYOUT(6RIDX.GRIOY,XDIS.YDIS>.CHII1AX(IP6).KAVG(I).IOY,IHR.3.
1 NSUn.ITO.IG)
ISC29690
ISCZ9700
ISCZ9710
ISC29720
ISC29730
ISC29740
ISC29750
ISC29760
ISC29770
ISC29-80
ISCZ9790
ISCZ9800
ISCJ9810
ISCZ98ZO
ISCZ9830
ISCZ9840
ISCZ9850
ISC29860
ISCZ9870
ISC29880
ISC29890
ISC29900
ISC29910
ISCZ99ZO
ISC 2 9930
ISC Z 9940
ISCZ9950
ISCZ9960
ISC29970
ISCZ9980
ISC29990
ISC30000
ISC30010
ISC30020
ISC30030
ISC30040
ISC30050
ISC30040
ISC30070
ISC30080
ISC30090
ISC30100
ISC30110
ISC30120
ISC30130
ISC30140
ISC301SO
I5C30H.O
-------
>
Cn
to
^
CO
IFII3HI17I.LT.2) GO TO 1740 ISC30170
IP6=IP6*HPHT3»NPMTS ISC30180
CALL OYOUTIGRIDX.GRIDY.XDIS.YDIS,CHIMAXIIP6).KAV6II)- DY.IHR.4, ISC30190
1 NSUM.ITO.IG) ISC3.. 10
C PRINT MAXIMUM 50 I5C30i:10
1740 IFIISHI1B) .NE. 1) GOTO 1750 ISC30220
1P6 = 1IG-1)*NAVG * IAV6 ISC30230
CALL MAXOTICHI50ll.IP6>,6RIOX,6RIOY,XDIS.YDIS,IPNTIl,IP6), ISC30240
1 ICOUNT(IP6ltKAV6II).NSUn,ITO,IGI ISC30250
1750 CONTINUE ISC30260
16 = 16 * 1 ISC30270
IFIIG .61. NGROUPI GOTO 1760 ISC302BO
NSIM = NSUH * NS ISC30290
GOTO 1700 ISC30300
1760 IFdSM(S) .NE. II GOTO 1770 ISC30310
ENDFILE ITAP ISC30320
CNOFILE ITAP I5C30330
1770 RETURN ISC30340
9001 FORMAT!1H1.121X.9HMET. DATA/12eX,3HDAY,I4) ISt'C^O
9002 FORMAT!31Xi69H* SOURCE-RECEPTOR COMBINATIONS LESS THAN 001 METERS ISC30560
10R THREE BUIIDIW/54X.25HHEIGHT9 IN DISTANCE, in ,«»<>. ISC30370
2 16H IS CALCULATED «///46X.25ri RECEPTOR LOCATION - -/SIX, ISC30380
3 1HX.CX.10HY IMETERS>,10X.8HDISTANCE/31X.6HSOURCE,11X, I5C30390
4 23HOR RANGE OR DIRECTION,9X,7HBETHEEN/31X,6HHUMBER.nX, ISC30400
5 21HIMETERS I IDE6REES).11X.8HIMETERS)/30X,30(2H- )/) ISC30410
9003 FORMATI31X,I5,8X,2F13.1,7X,F10.2» ISC30420
9004 FORMAT! 18,5F«.O.ie,2F8.01 ISC30'«30
9005 FORMAT!32X,4H««« ,15A4,4H wm//| ISC30440
9006 FORMAT!//66X.10HPOT. TEMP./29X.4HFLOM.7X.15HMIND MIXING,13X, ISC30450
1 eilGRAOIENTtl7X.16HMIND OECAV/28X.16HVECTOR SPEED, 5X, ISC30460
264HHEIGHT TEMP. IDEG. K STABILITY PROFILE COEFFICIENISC30470
3T/20X.92HHOUR IDEGREESI IMPS) 1METERS) IDEG. K) PER METERISC30480
4) CATEGORY EXPONENT IPER SECI/19X.47I2H -)/) ISC30490
9007 rORMATI49X,29H» METEOROLOGICAL DATA FOR DAY.I4.2H •) ISC30500
9008 FORMATI2IX.I2.Fll.l.F10.t.Fll.l.F9.1.F12.4.I9,F13.4.E15.6) ISC30510
9009 FORMATI//47X.6NRANDOM/38X,2!4HFLOH,6X).16H MHO MIXING.15X, ISC30520
1 19HINPUT ADJUSTEO/37X.2I6HVECTOR.4X).27H SPEED HEIGHT I5C30530
2 TEMP.,2I3X.9HSTABILITY)/29X,6HHOUR .2I10H I DEGREES) 1,3X, ISC305'iO
3 30HIMPSI IMETERS) IDEG. K) ,2I8HCATEGORY,4X)/27X,40I2H -I/IISC30550
9010 FORMATI30X,I2.F11.1.F10.1.F10.2.F11.1.F9.1.I9,I12) ISC305',0
9011 FORMAT!1H11 ISC30570
9013 FORHATI10X,25H»»»ERROR»»« SOURCE NUMBER,16.41H HAS NO 6RAVITATIONAISC30500
1L SETTLING CATEGORIES,/10X.52HHITH WHICH TO CALCULATE DEPOSITION. ISC30590
2 RUN TERMINATED.) ISC30600
END . ISC30610
C ISC30620
SUBROUTINE DYOUTIGRIDX.GRIOY.XOIS,YDIS.CON,IAV6,IDY,IHR,IFUG, ISC30630
1 IFR.ITO.IG) ISC30640
SUBROUTINE DYOUT IVERSION 87338). PART OF ISCST. ISC30650
THIS ROUTINE PRINTS THE DAILY CONCENTRATION I DEPOSITION) FOR A ISC30660
GIVEN TIME PERIOD FOR A GIVEN DAY. THIS ROUTINE ALSO PRINTS S04ISC30670
C
C
C
C
C
C
C
C
C
THE HIGHEST OR SECOND HIGHEST TABLES OF CONCENTRATION IDEPOSITION)ISC30<-80
FOR A GIVEN AVERAGING TIME. FINALLY. THIS ROUTINE PRINTS THE ISC30c90
•N'-DAV TABLE OR PRINTS ELEVATION HEIGHTS FOR ALL RECEPTOR POINTS ISC30700
OR RECEPTOR HEIGHTS ABOVE LOCAL TERRAIN FOR ALL RECEPTORS. ISC30710
IF IAVG = 99, PRINT ELEVATION HEIGHTS. ISC30720
IF IAVG = 75. PRINT 'N'-DAY TABLE. ISC30730
-------
•,CONDEPI6),LIMIT,HIMIT 15030840
CHARACTER"! CFLAGI5) ISC30850
CHARACTER*! CALM ISC30860
CHARACTER"! NCALM ISC30870
C DEFINE CALM PRINTING CHARACTERS ISC30880
3ATA CALM/'CV.NCAUV' •/ ISC30890
C SET HOUR AVERAGE LABEL. ISC30900
HOUR a 4HHOUR ISC30910
IFIIAV6 .6T. II HOUR = 4HPER. ISC30920
10 IFINXPNTS .EQ. 0 .OR. NY PUTS .EQ. Ot GOTO 190 ISC30930
C INITIALIZE SUBSCRIPTS ( SUBSCRIPT INCREMENTS. ISC30940
C MAXIMUM OF 38 LINES OF T-AXIS DUE TO HEADING. ISC30950
C MAXIMUM OF 9 VALUES ACROSS FOR X-AXIS FOR DAILY • ANNUAL TABLES! ISC30960
C 5 VALUES ACROSS FOR HIGHEST t SECOND HIGHEST TABLES. ISC30970
IXIHC = 9 IEC7P96C
IF!IFLAG .GT. II IXINC = 5 ISC30990
IX = 1 ISC31000
JX = IXINC ISC310IO
IT = NYPNTS - 38 I5C31020
JY = NYPNTS ISC31030
C FIND MAXIMUM VALUE FOR RECEPTOR GRID ONLY. ISC31040
IFIIAV6 .EQ. 991 GOTO 30 ISC31050
NN = NXPNTS'NYPNTS ISC31060
CONMAX - 0.0 ISC31070
DO 20 J a l.NTPNTS ISC31080
L = IJ-1I«NXPNTS ISC31090
DO 20 I = liNXPNTS ISC3MOO
K s L « I ISC3K10
IFICONIKI .LT. CONMAX) GOTO 20 ISC31120
CONMAX s CONIKI ISC31130
IXP = I ISC3114J
IYP = J ISC31150
20 CONTINUE ISC31160
GOTO 40 ISC31170
30 IFdAVG .NE. 991 GOTO 40 ISC31180
WRITE!10.90011 ISC31190
WRITE*10,90101 TITLE ISC31200
C PRINT EITHER ELEVATION OR RECEPTOR HEIGHT HEADER. ISC31210
IF (IFLAG .EQ. -II THEN ISC31220
WRITE<10,90351 ISC31230
ELSE ISC31240
WRITE!10,9011) I5CT1250
END IF ISC3IC&0
WRITE!10.90091 ISC31270
GOTO 100 ISC31280
40 IFIIAVG .NE. 75) GOTO 50 ISC31290
WRITE!10,9002) NTDAY ISC31300
-------
Cn
0.
N)
00
-J
HRITEUO,90051 16 ISC31310
WIYEI10.90101 TITLE ISC31320
WRITE!10.9012) NTDAY.CONDEP.ICHIUN ISC313SO
GOTO 90 ISC313<«0
50 IFIIFLA6.Eq.4l GO TO 85 I5C31350
IFIIFLA6-2) 60 ,70 .80 ISC313'>0
60 II - IHR/IAVG ISC31370
WRITE!10,9004) IOY.IAV6.il ISC31300
WRITE!10,9003) 16 ISC31390
WRITE!10.9010) TITLE ISC31400
WRITE!10.9013) IAVG.CONDEP.ICHIUN.IHR.IDY ISC3WO
GOTO 90 ISC31420
70 WRITE!10.90051 IAV6 ISC31430
WRITE!10,9003) 16 ISC31440
WRITE!10,9010) TITLE ISC314SO
WRITE!IO,9014) IAVG.CONDEP.ICHIUN ISC31460
GOTO 90 ISC31470
80 WRITE!10,90061 IAV6 ISC31«00
WRITE!10,9003) 16 ISC31490
WRITE!10,9010) TITLE ISC31SOO
WRITE!10.9015) IAV6.CONDEP.ICHIUN ISC31510
GO TO 90 ISC31520
85 WRITE !10.9033) IAV6 ISC31530
WRITE! 10,9003) 16 ISC31540
WRITE!10,9010) TITLE ISC31550
WRITE 110.9034) IAV6,CONDEP,ICNIUN ISC31560
90 IFIN6ROUP .EQ. 0) WRITE!10,9007) ISC31570
IFINGROU" .6T. 0) WRITE! 10,9008) (IOSORIIM-IFR.ITOI ISC31580
WRITE!10,9009) ISC31590
WRITE!10,9016) CONnAX,6RIDXIIXP),6RIOY(IYP) ISC31600
C LABEL AXES DEPENDING ON 6RIO SYSTEM. ISC31610
100 IF1ISHI2) .EQ. Z .OR. ISHI2) .EQ. 4) GOTO 110 ISC316ZO
WRITE!10,9017) ISC31630
GOTO 120 ISC31640
. 110 WRITE110,9018) ISC316SO
C CHECK NUMBER ACROSS • DOWN THE PAGE. ISC31660
120 IFiNXPNTS .LE. JX) JX = NXPNTS ISC31670
IFIIY .LT. 0) IV a 0 ISC316BO
C PRINT CONCENTRATIONS!DEPOSITIONS) DEPENDING ON TYPE OF TABLE. ISC31690
IFIIFU6 GT. 1) GOTO 140 ISC31700
IFIISMI2) .EQ. 1 .OR. ISWI2) .EQ. 3) WRITE!10,9019) IGRIOXII), ISC31710
1 I=IX,JX> ISC317.-0
IF!ISM2) .EQ,. 2 .OR. ISWI2) .E9. 4) WRITE! 10,9020) IGRIDX!!), ISC31710
1 J=IX,JXI ISC31740
WRITE!10,9021) ISC31750
LINE = JY ISC31760
130 L s ILINE-1)«NXPNTS ISC31770
WRITE!10,9022) GRIDYILINE), (CON(L+U,I-IX.JX) ISCSI780
LINE - LIME - 1 ISC31790
IF!LINE .LE. IY) GOTO 170 ISC31BOO
GOTO 130 ISC31B10
140 IFIISMI2) .EQ. 1 .OR. ISWI2) .EQ. 3) WRITE!10.9023) IGRIDXII), ISC31820
1 I=IX,JXI ISC31B30
IFIISWI2) .EQ. 2 .OR. ISWI2) .EQ. 4) WRITE! 10,9024) IGRIDXII). ISC31040
1 I=IX,JXI ISC31650
WRITE!10.9021) ISC31060
II = JX-IX»1 ISC31870
-------
00
LINE = JY
150 L = ILINE-1MNXPNT3
DO 160 J - 1,11
12 = L * NFNTS * IX * J - 1
ICON = CONI121
SET CALM FUG FOR TABLES
CFIAG!J)=NCALH
IF!ICON.6T.1000000.I THEN
ICON-ICON-1000000.
CFLAG(J)=CALM
ENOIF
IOAVIJ) « ICON - (ICON/512>0512
37000 OCTAL = 15872 DECIMAL AND MASKS IN HOUR.
160 IHOURU) * ICON/I512»IAV6)
WRITE!10.90251 6RIDYILINEI.ICONI L»IX4l-l J.CFLAGI II,
1 IOAY!I),IHOUR!I).I=1,I1)
LINE = LINE - 1
IFI LINE .6T. ITI GOTO 150
CHECK FOR MULTIPLE PAGE TABLES.
170 IF!IT .LE. 01 GOTO 160
IY s IY - 38
JY = JY - 38
GOTO 30
180 IFINXPNTS .LE. JX) GOTO 190
IX = IX * IXINC
JX = JX # IXINC
IT = NYPNTS - 36
JY = NYPNTS
GOTO 30
190 IFINXMYPT .EQ. 01 GOTO 330
PRINT TABLES FOR DISCRETE POINTS.
NN = NXPNTS'NYPNTS
SET SUBSCRIPT VALUES ft SUBSCRIPT INCREMENTS.
IXINC = 114
IFIIFLA6 .6T. II IXINC = 76
IX = 1
JX = IXINC
ONE = .FALSE.
200 IFINXHYPT .GT. JX) GOTO 210
JX = NXHYPT
IF«JX/2)»2 .NE. JX) ONE = 4TRUE.
210 IFIIAVG .NE. 99) GOTO 220
WRITE!10,90011
MRITE(IO,9010) TITLE
PRINT EITHER ELEVATION OR RECEPTOR HEIGHT HEADER.
IF (IFLAG .EQ. -1) THEN
WRITE!10,9035)
ELSE
WRITE! 10,9011)
END IF
GOTO 280
220 IFIIAVG .NE. 75) GOTO 230
HRITEII0.9002) NTDAY
MRITEII0.9003) 16
WRITE!10,90101 TITLE
WRITE!10,90121 NTDAY,CONOEP.ICHIUN
GOTO 270
isc3ieao
ISC3'«90
ISC31.00
ISC31910
ISC31920
ISC31930
1SC319'.0
ISC31950
ISC31960
ISC31970
ISC31960
ISC31990
ISC3ZOOO
ISC3Z010
ISC3ZOZO
ISC3Z030
ISC3Z040
ISC'2050
ISC3Z060
ISC3Z070
ISC3Z060
ISC32090
ISC3Z100
ISC32110
ISC3Z1ZO
ISC3Z130
ISC3Z140
ISC3Z150
ISC32160
ISC32170
ISC321BO
ISC3Z190
ISC32ZOO
ISC3ZZ10
ISC3ZZZO
ISC3ZZ30
ISC32Z40
ISC3ZZ50
ISC3ZZ60
ISC3ZZ70
ISC3ZZ80
ISC3ZZ90
ISC3Z300
ISC3Z310
ISC3Z3ZO
ISC3Z330
ISC3Z340
ISC3Z350
ISC3Z360
ISC3Z370
ISC3Z.60
ISC3Z390
ISC3Z400
ISC32<»10
ISC3Z4ZO
ISC3Z
-------
I
01
oo
to
>v
CO
230 IFIIFLA6.EQ.4) GO TO 165
IFIIFLAG-2) 240.250.260
240 II 3 IHR/IAV6
MRITEI 10. 9004) IDY.IAVG.il
MRireilO 9003) 16
MRITEI I0.901d I TITLE
MRITEI 10. 9013) IAV6,CONDEP.ICHIUN,IHR.IDT
60 TO 270
250 HMTEII0.9005) IAV6
HRITEII0.9003) 16
MRITEII0.9010I TITLE
MRITEI 10. 9014) IAV6.CONDEP.ICHIUN
GOTO 270 *
260 NRITEII0.9006) IAV6
MRITEI 10, V003) 16
WRITE! 10, 9010 1 TITLE
WRITE! 10, 9015 1 IAV6.CONDEP.ICHIUN
GO TO 270
265 MRITEI 10, 9033) IAV6
MRITEI 10, 90031 16
HRITEII3.9010) TITLE -
MRITEI 10. 9034 1 IAV6,CONOEP.ICHIUN
270 IFINGROUP .EQ. 0) MRITEI 10, 9007)
IFINGROUP .GT. 0) MRITEI 10, 9008) I IOSORII),I=IFR,ITO)
280 MRITEI 10, 9026)
IFIIFU6 .GT. 1) GOTO 290
IFIISHI3) .EQ. 1 .OR. ISMI3) .EQ. 5) MRITEI 10, 9027) ICOTOEPI3).
1 1=1,3)
IFIISHI3) .EQ. 2 .OR. ISMI3I .EQ. 4) MRITEI 10, 9028) ICONOEPI3),
1 1=1,3)
MRITEI 10. 9029) IXDI3II),YOISIII,CON(I«»
-------
Ul
VO
II s J » 1 ISC33020
WRITE!10,90321 XOISCJ),YDIS( JI,CON(NN*JI,CFLA6(1I,IDAY(1I,IHOUR(1IISC33030
1 ,XDIS(Il>,YOIS(Ill,CONINmil).CFLAGI2I.IDAVI2I.IHOURI2l ISC3JO'.0
GOTO 310 ISC33050
300 WRITE!10,90321 XDISI JI.YDISU),CON(NN»JI,CFLAG! 1 J.IDAYI 1 »,IHOUR<1IISC330M)
310 CONTINUE ISC33070
C CHECK FOR MULTIPLE PAGE OUTPUT. ISC33090
320 IFINXMVPT .LE. JX) GOTO 330 ISC33090
IX = JX » 1 ISCJJ100
JX 3 JX » IXINC ISC33110
60TO 200 ISC33120
330 LINE = 0 ISC33130
RETURN ISC33140
9001 FORMAT!1H1//1 ISC33150
9002 FORMAT!1H1.121X,7H'N'-OAY/122X,13,5H DAYSI ISC33160
9003 rORHATC122X,7HSGROUPt.I3l ISC33 70
9004 FORMAT!1H1.121X.7HDAILYI ,I3/122X,I2,6H-HR/PD,I2I ISC33180
9005 FORMAT(lHl,121X,4HHIGH/lt2X.I2.3H-HR» ISC33190
9006 FORMAT!1H1,121X,6H2ND HI6H/122X.I2,3H-HR) ISC33200
9007 FORMAT!56X.20H* FROM ALL SOURCES •) ISC33210
9008 rORMATI50X,18H» FROM SOURCES: ,5116.1H, MH»/5t50X.10II6.1H, I/IIISC33Z20
9009 FORMAT!53X.25H* FOR THE RECEPTOR GRID «/l ISC33230
9010 FORMAT 132X,<4H»»» .15A4.4H •»»//> ISC33240
9011 FORMAT!/50X,31H» ELEVATION HEIGHTS IN METERS •) ISC332SO
9ult FORMAT!35X.2H" ,I3,5H-OAY ,5A4,A2,7A4,2H •/) ISC33260
9013 FORMAT!32X,7H» DAILY,13,6H-HOUR .5A4.A2.7A4.2H */49X. ISC33270
1 IftH" ENDING MITH HOUR,13, 6H FOR DAY.I4.2H •» ISC332SO
9014 FORMAT!3IX.9H" HIGHEST,13,6H-HOUR ,5A4,A2,7A4,2H »l ISC33290
9015 FORMAT!27X.16H* SECOND HIGHEST.13.6H-HOUR ,5A«,A2,7A4,2H ») ISC33300
9016 FORMAT!28X,22H» MAXIMUM VALUE EQUALS.F13.5,16H AND OCCURRED AT I. ISC33310
1 F10.1.1H,.F10.1,3HI «/l
9017 FORMAT!13H Y-AXIS /.52X.15HX-AXIS (METERSI)
9018 FORMAT!13H DIRECTION /.52X.14HRANGE (METERSII
9019 FORMATI13H (METERSI /.9F13.1I
9020 FORMAT!13H (DEGREES) /.9F1J.11
9021 FORMAT!64(2H -I/1
9022 FORMAT(F11.1.2H /.9F13.5I
9023 FORMAT!13H (METERSI /.6X.5IF13.1,9X11
9024 FORMAT!13H (C?G9EES) /,6X,5(F13.1,9X11
9025 FORMAT!F11.1.2H /,5(F13.5,A1,1H(,I3,1H,,I2,1H)II
9026 FORMAT!4bX.36H» FOR THE DISCRETE RECEPTOR POINTS •/!
9027 FORI1AT!2X,3(16H - X -
9028 FORMAT!2X,3120H - RN6 -
9029 FORMAT!3I2F11.1.F14.5,6X1)
9030 FORMAT!13X,2119H - X -
1 11XI/64(2H -I/1
9031 FORMAT!13X,»'3X.19H- RN6 -
1 1H 1.1 OX 1/641 cH -I/I
9032 FORMAT(12X,2I2F11.1,F13.5,A1.2H (.I3.1H,.I2.2HI
9033 FORMAT!1H1.121X.8H3RD HIGH/122X, I2.3H-HRI
9034 FORMAT!28X,15H» THIRD HIGHEST,13,6H-HOUR .5A4.A2.7A4.2H •)
ISC33320
ISC33330
ISC33340
ISC33350
ISC33360
ISC33370
ISC33300
ISC33390
ISC33400
ISC33410
ISC33420
ISC33430
- Y -,9X,A3.1H.,11XI/64(2H -I/I
- DIR -,5X,A3,1H.,13X1/6412H -I/I
ISC33450
(,4HDAY.,A4.1H1.ISC33<<60
ISC 33^ 70
(.4HDAY..A4, ISC33400
ISC33490
ISC33500
ISC33510
ISC33520
- Y - ,7X,A3,7H.
- DTR -.5X.A3.7H.
,10X11
9035 FORMAT!/44X,43H* ABOVE GROUND RECEPTOR HEIGHTS IN METERS ») ISC33530
END ISC33540
SUBROUTINE VRTRHT(HMA2,H,RHTAG,SIGZI.B7,B8I ISC33550
C SUBROUTINE VRTRHT (VERSION 873381, PART OF ISCST. ISC33560
C THIS ROUTINE CALCULATES THE EXPONEIHIAL VALUES OF THE VERTICAL ISC37570
C TERM WHEN ABOVE GROUND (FLAGPOLE) RECtPTORS ARE USED. ISC33500
-------
c
c
c
o\
O
C
c
CD
C
c
(HMA2 - H - RHTAG)«3IGZI
UIMA2 * H - RHTA6)"SIGZI
(HMA2 - H * RHTAG)*SIGZI
RHTA6)*SIGZI
BS
B4
B5
B6 = (NMA2 » H
B3 = -.5«B3»B3
.OR. B4 .ST. -25.1 B7 s EXPIB3I »
.OR. B6 .ST. -Z5.I B8 = EXPIB5) *
ISC3J.' 40
ISC33600
ISC33610
ISC3362Q
ISC33630
ISC33640
ISC33650
ISC33660
ISC33670
ISC336QO
EXPIB4I ISC33690
EXPIB6I ISC33700
ISC33710
ISC33720
ISC33730
SUBROUTINE HAXOT(CON,6RIDX,GRIOY.XOIS.YDIS,IPNT.N.IAV6,IFR.rrO.IG)ISC3:>7-rt
SUBROUTINE tIAXOT (VERSION 87330). PART OF ISCST. ISC33750
THIS ROUTINE LISTS THE HIGHEST 50 CONCENTRATIONS (DEPOSITIONS) ISC33760
FOR A GIVEN TIME PERIOD. ISC33770
INTFGER TITLE ISC33760
DirtENSION CONIl),6RIDX(l),6RIOY(l),XDISm.YDI3(l),IPNTIl),N(l) ISC33790
DIMENSION IHR(2).IDY(2>.X(2).Y(2>.IRI2),CHI(2) ISC33600
COMMON /LOGIX/ 1SM(40).NSOURC.NXPNTS.NYPNTS,NXHYPT.NGROUP. ISC33B10
1 NSOGRP( ISO).IDSOR( 200).IPERD.NPNTS.NAVG.NHOURS.NDAYS.NTDAY,LINE. ISC338JO
B5 s -.5«B5«B5
B6 * -.5»B6»B6
B7 * 0.0
BS e o.O
IF IB3 .6T. -25.
IF (B5 -6T. -25.
RETURN
END
2 IO.IN,TITLE(15).iqUN(S),ICHIUN(7).CONDEP(6),LIMIT»MIMIT
CHARACTER*! CFLAG(2)
CHARACTER*! CALM
CHARACTER*! NCALN
SET CALM PRINT CHARACTERS
DATA CALH/'CV.NCALM/1 •/
WRITE!10.9001) IAVG.IG
WRITE(10,900*I TITLE
MRITEII0.9005) IAVG.CONDEP . ICHIUN
IFINGROUP .EQ. 0) HRITEI 10,9002)
IF(NGROUP .6T. 0) HRITE(10,9003) IIDSOR(I),I=IFR,ITO)
HOUR = 4HPER.
IFIIAVG .EQ. It HOUR a WHOM
NRITE(IO,9006) (CONDEP(3).HOUR.I=1>2)
Nl 8 1
Nl 8 N(Nl)
12 s «Nl*l)/2
NH s NXPNTS*NYPNTS
D.O 30 I = 1,12
DO 20 J = 1.2
II = I * I2XJ-1)
IFII1 .GT. Nl) GOTO 40
IP s IPNTII1)
IJJU. s II
Chl(J) = CON! IP)
OBTAIN HOUR « DAY.
IDY(J) 8 CONCIPtlOO)
SET CALM FLAG FOR TABLE
CFLAGCJI-MCAIM
IF(IDV(J).GT.10000001 THEN
IDY(J)=IDT(J)-1000000
CFLAGI J»-CAU1
ISC33030
ISC33040
ISC33050
1SC33060
ISC33070
ISC33BOO
ISC33090
ISC33900
ISC33910
ISC339ZO
ISC33930
ISC33940
ISC33950
ISC33960
ISC33970
ISC33980
ISC33990
ISC34000
I5C34010
ISC 34020
ISC34030
ISC 34040
ISC34C60
ISC34-70
ISC340BO
ISC34090
ISC34100
ISC34110
ISC 34120
ISC34130
ISC 34140
ISC34150
-------
>
0>
ENDIF I5C34160
IHR(J) - IDY(J)/(512»IAV6) ISC34170
IOTI.M » IDY(J) - (IDY(J)/512)»512 ISC34180
K=CON(IP«50> ISC34190
C 6E1 X.Y LOCATION OF RECEPTOR. ISC34200
IFIK .GT. NNI GOTO 10 I5C34210
IT - IK-1)/NXPNTS»1 ISC34220
IX - K - (IY-1)«NXPNTS ISC34230
X(J) = GRIOXdX) ISC34240
TIJI = 6RIDTIIT) ISC342DO
GOTO 20 ISC34260
10 K - r - NN ISC34270
X(J) = XOIS(K) ISC34280
Y(J) = VDIS(K) ISC34290
20 CONTINUE ISC34300
30 NRITEI10.90071 (IR(J).CHII JI.CFU6C JI.IHRI Jl. ISC34310
X IDY(J),X(J),T(J),J=1,2I ISC34320
RETURN ISC34330
40 NRITEI 10,90071 IRCD.CHKlI.CFLAGdl.IHRI 1 ),IOT(1),X(1 ).T(1 > ISC34340
RETURN ISC34350
9001 FORMATI1H1.121X.6HT1AX 50/122X.I2.3H-HR/122X,7HSGROUPf .131 ISC34360
9002 FORMAT! 56X,20H» FROM ALL SOURCES »l ISC^lVt
9003 FORt1AT(50X.16H» FROM SOURCES: .5116.1H. ).1H»/5150X.10(I6,1H, I/I1ISC34380
9004 FORMAT!32X,4H«»* .15A4.4H ••*//! ISC34390
9005 FORMAT!28X,12H» 50 MAXIMUM.13.6H-HOUR ,5A4.A2.7A4.2H "//> ISC34400
9006 FORHATI//2l44X.lHX.6X.9HVIMETERSM/2(44X.2HOR.aX,2HOR.4XI/ ISC344IO
3 2143X.17HRANGE DIRECTION}/ ISC34420
1 2I10X,4HRANK.6X.A3,1H.,6X.A4.26H OAT (METERS) (DEGREES11/ ISC34430
2 5X.60I2H- )/) ISC34440
9007 FORMATI2«10X,I3,F15.5,A1,I4,I5,2FH.1M ISC34450
END ISC34460
C ISC34470
SUBROUTINE HAX50ICON.CON50.IPNT.ICOUNT.IHR.IDT) ISC34460
C SUBROUTINE NAX50 (VERSION 873381. PART OF ISCST. ISC3VO
C THIS ROUTINE HOLDS THE HIGHEST 50 CONCENTRATIONS I DEPOSITIONS I. ISC34bOO
C FOR A GIVEN TIME PERIOD. ISC34510
INTEGER TITLE ISC34520
DIMENSION CON(1).CON50(1).IPNT(1).ICOUNT(1I ISC34530
COMMON /LOGIX/ ISN(40).NSOURC,NXPNTS.NTPNTS,NXHTPT.NGROUP. ISC34540
1 NSOGRPI150).IDSOR(200I.IPERD.NPNTS.NAVG.NHOURS.NOATS.NTOAT,LINE. ISC34550
CD
2 IO.IN,TITLE(15),IQUN(3),ICHIUNI7).COIIDEP(6).LIHIT,MIMIT
SET MAXIMUM NUMBER OF ENTRIES IN TABLE. "
MAX = 50
LL = 1
00 90 KB l.NPNTS
IF(ICOUNT(LLI -LT. MAX) GOTO 10
CHECK IF VALUE IS LESS THAN LOWEST IN MAXIMUM 50 TABLE.
IP = IPNT(HAX)
IF(CONIK) .LE. CON50IIP)) GOTO 90
GOTO 20
10 IFdCOUNT(LL) .ME. 0) GOTO 20
IICNT = 1
GOTO CO
20 I - 1
30 IP = IPNTdl
IF(CONIK) .GE. CON50IIPI) GOTO 40
1 = 1*1
ISC34560
ISC34570
ISC34500
ISC34590
ISC34600
ISC34610
ISC34620
ISC34630
I-TIAf'»0
ISC3>ib50
ISC34660
ISC34670
ISC34680
ISC34690
ISC34700
ISC34710
ISC34720
-------
I
o»
ro
CO
-J
IF 11 -IE. ICOUNTILLI) GOTO 30 . ISC34730
C VALUE IS LESS THAN AIL VALUES IN MAXIMUM 50 TABLE. ISC34740
C COUNTER. ICOUNT, IS ALWAYS LESS THAN 50 HERE. ISC34750
IICNT = ICOUNT(LL) « 1 ISC34760
GOTO 80 ISC34770
40 IICNT = ICOUNTILL! * 1 ISC34700
IFIICOUNTILLI .NE. HAXI GOTO 50 ISC34790
IP = IPHTinAXI ISC34600
IICNT = MAX ISC34010
50 ISTOP =1*1 ISC34820
IF(ISTOP .GT. IICNTI GOTO 70 ISC34830
C SHIFT POINTERS. . ISC34840
II = IICNT ISC34B50
60 IPNTIIII s IPNTIII-1) ISC3*"60
II = II - 1 ISC34070
IFCII .6E. ISTOPI GOTO 60 ISC34060
70 IF(ICOUNTILL) .EQ. MAX! IICNT = IP ISC34090
IPNTd) s IICNT ISC34900
C STORE NEM VALUES INTO MAXIMUM 50 TABLE. ISC34910
80 CON501 IICNTI « CONIKI ISC349ZO
CON50(IICNT«MAX) = K ISC34930
C 2"«9 s Sit I SHIFTS HOUR 9 BITS. ISC34940
II - IDV » 512»IHR ISC34950
CON50(IICNT«HAX*HAX) a II ISC34960
IFIICOUHTILL) .LT. MAX) ICOUNTILLI s ICOUNTILL) * 1 ISC34970
90 CONTINUE ISC34980
RETURN ISC34990
END ISC35000
C ISC35010
SUBROUTINE VERTIH.HM.XB.SI6ZI,SAM,Al,RESULT,RHT» ISC35020
C SUBROUTINE VERT I VERSION 8733B). PART OF ISCST. ISC35030
C THIS ROUTINE COMPILES THE SUMMATION TERM IN THE VERTICAL TERM FOR ISC35040
C GRAVITATIONAL SETTLING CATEGORIES. ISC35050
C ISC35060
SUN s o.O • ISC35070
GAM1. = CAN ISC35080
6AM2 a GtlW,\H ISC 35090
10 AS a 0.0 ISC35100
A6 s 0.0 ISC35110
A? = A2 » 2. ISC35KO
SUHL = SUN ISC35130
HMA2 = HM»A2 ISC35140
A3 = (HMA2 - H » XB - RHTMSI6ZI ISC35150
A3 = -.5»A3»A3 ISC35160
IFIA3 .GT. -50.1 A5 = EXPCA3»»6AM1 ISC35170
A4 = IHMAZ » H - XB - RHT)»SI6ZI ISC35180
A* = -.5»A4»A4 ISC35190
IFIA4 .GT. -50.1 A6 = EXP(A4l«6At12 ISC35200
SUM 3 SUM « AS # A6 ISC35210
IFIABSISUM-SUMLI .LT. 1.E-8I GOTO 20 ISC35220
6AM1 = 6AM2 ISC35230
GAMZ s GAM2«6AH ISC35240
bMO 10 ISC35250
20 RESULT a RESULT « S»« ISC35Z60
IFIRESULT.LT.0.0) RESULTED.0 ISCir^TC
RETURN ISClSrOO
END . ISC35290
-------
c
c
c
c
c
c
c
c
c
c
c
I
o
U)
C
c
c
c
SUBROUTINE SIGMAZ(XB.SZ.BB,1ST.IXDIST,IFLAG,A.B.XZI
SUBROUTINE SIGMAZ (VERSION 87338It PART OF ISCST.
THIS ROUTINE CALCULATES THE VERTICAL SIGMA GIVEN THE EFFECTIVE
OOWIMIND DISTANCE XB IN KILOMETERS AND STABILITY CATEGORY 1ST.
IF IFLA6 a 1. CALCULATE SIGMA Z.
IF IFLAG a Z, CALCULATE AVERAGE 'B1 ONLY.
IF IFLAG « 3, CALCULATE EFFECTIVE OOMTMINO DISTANCE INDEX IXDIST
AS A FUNCTION OF XB. XZ At ID STABILITY.
DIMENSION Am,B(l),XZm.Xl(10.6l,INDSGZ(6>
ADJUST INDSGZ VALUES TO ALLOW FOR SOURCE-RECEPTOR
DISTANCES OF LESS THAN 100M.
DATA INDSGZ /0.9.12,13,19,28/
DATA XI /.l,.15,.e..25..3..4,.5.3.11.1.E20,0.. .2..4,1.E20.7«0.,
1 l.E20,9»0., .3,l.,3..io..30.,l.E20,4i>0.. .1. .3,1. .2. .4. .10..
Z 20..40..1.E20.0.. .2..7.1.,2.,3..7.,15.,30..60..1.E20/
GOTO (80.90.10,101 . IFLAG
NOTE THAT STABILITY CATEGORY C HAS ONLY 1 DISTANCE CATEGORY.
10 IFdST .NE. 3) GOTO 20
IXDIST = 13
RETURN
20 X s XB
I r 1
II * 0
30 IFCX-XUI.IST) .LE. 0.01 GOTO 40
I = I » I
GOTO 30
40 IF(I-III 50.60.70
50 IXDIST a IXDIST - 1
60 RETURN
70 II = I
IXDIST = INDSGZ(IST) • I
IFIIFLAG .6T. 3) RETURN
X = XB » XZIIXDISTI
. GOTO 30
CALCULATE VERTICAL SIGMA.
ao sz = AI IXDIST IOXBHBI IXDIST i
RETURN
CALCULATE AVERAGE 'B*.
90 BB = 0.0
I = IXDIST - INDSGZdSTI
DO 100 J » 1,1
II » INOSGZIISTI * J
100 BB » BB * BillI
BB = BB/FLOATt11
RETURN
END
FUNCTION ERFXIA.BI
FUNCTION ERFX (VERSION 873361, PART OF ISCST.
CALCULATE ERF(A) - ERFIBI.
HPL - LOWER LIMIT - HPU = UPPER LIMIT.
ISC35300
ISC35310
ISC35320
ISC35330
ISC353'«0
ISC35350
ISC35360
ISC35370
ISC3S3QO
ISC35390
ISC35400
ISC35410
ISC35'i20
ISC35450
ISC35460
ISC35470
ISC354BO
ISC35490
ISC35SOO
ISC35510
ISC3S520
ISC35530
ISC35540
ISC3S550
ISC35S60
ISC35570
ISC35S80
ISC3S590
ISC35600
ISC35610
ISC35620
ISC3S630
ISC35640
ISC35650
ISC35660
ISC35670
ISC35680
ISC35690
ISC35700
ISC35710
ISC3S720
ISC35730
ISC 35 740
ISC3B750
ISC35760
ISC35.70
ISC35780
ISC35790
ISC35BOO
ISC35010
ISC3S820
ISC35850
ISCSBO^O
ISC35850
ISC 30060
-------
00
LORICAL DONE
DATA HPL.HPli /l.E-10.10./
ERFCXI s l«X»l.705230784E-l*X«l.422820123E-l«X»t.92705272E-2#
1 X»(.1520143E-3«X»( .2765672E-3»X».43063BE-41)111
3JHE a .FALSE.
C s A
10 C s ABSIC)
IFIC .6T. HPLI GOTO 20
F = 1.
GOTO «0
20 IFIC .IT. HPU) GOTO 30
F a o.O
GOTO 40
30 F = ERFICI
F s U./FIM16
40 IF(DONEI GOTO 50
C = B
6 » F
OWE a .TRUE.
C"TO 10
50 CONTINUE
IFIA .6E. 0.0) GOTO 70
IFIB .LT. 0.01 GOTO 60
ERFX = F * 6 - 2.0
RETURN
60 ERFX = G - F
RETURN
70 IFIB .LT. 0.0) GOTO 60
ERFX = F - G
RETURN
80 ERFX s e.O - IF * 6)
RETURN
END
BLOCK DATA
BLOCK DATA IVERSION 873381, PART OF ISCST.
SET DEFAULT VALUES.
INTEGER TITLE
COItlON XLOGIXX ISM{40).NSOURC.NXPNTS.NYPNTS.NXMYPT.NGROUP,
1 NSOGRPI150)»IDSORI200)tIPERO,NPNTS.NAVG,NHOURS,NDAYS.NTDAY,LINE,
2 IO,lN,TITLEU5l.iqUN(3),ICHIUNt7).CONDEPI6),LIHIT,mriIT
COfflON /MET/ IDAY(366).ISTAB(24).AUSI24).TEnPI24).AFVI24),
1 AFVRI24),HLHI24,2),PI24),DTHDZ(24),DECAY(24).PDEFI6,6I.
2 DTHDEFI6.6).ZR,DOECAV,inET.ITAP>TK,UCATS(5)
INITIALIZE MIND PROFILE EXPONENTS AND VERTICAL POTENTIAL
TEMPERATURE GRADIENTS.
DEFAULT VALUES FOR PDEF IN SUBROUTINE IMCHK
DATA OTHDEF /24*0.0.6«.02i6».035/
END
SUBROUTINE URBNYZ IX.KST.SY.SZ)
CM SUBROUTINE URBNYZ I VERSION 87338) PART OF ISCST
C
C
C
C
C
C
C
ISC35870
ISC35000
ISC35090
ISC35900
ISC35910
ISC35920
ISC35930
ISC359'»0
ISC35950
ISC3S960
ISC35970
ISC35980
ISC35990
ISC36000
ISC36010
ISC36020
ISC36030
ISC36040
ISC36050
ISC?f<)£0
ISC36070
I3C36080
ISC36090
ISC36100
ISC36110
ISC36120
ISC36130
ISC36140
ISC36150
ISC36160
ISC36170
ISC3M80
ISC36.90
ISC36200
ISC36210
ISC36220
ISC36230
ISC36240
ISC36250
ISC36260
ISC36270
ISC36280
ISC36290
ISC36300
ISC36310
ISC36320
ISC36330
ISC3t3'iO
ISC36350
ISC36360
ISC36370
ISC36380
ISC36390
ISC36400
ISC36410
ISC36420
ISC36410
-------
to
>v
CO
C BRIG6S URBAN PARAMETERS SI6MA-Y.SI6MA-Z
C SIGMA-Y.Z UN METERS I FROM PASQUILL STABILITY CUSS (KSTI
C AND DISTANCE FROM SOURCE, XM. IN METERS.
XM=X»1000.
60 TO 120.20,30.40.50,501, KST
20 SY=0.32«XH/SQRm.«0.0004oXM>
3Z=0.24»XM»SQRTIl.*0.001»Xt1»
GO TO 60
30 SY=0.22«XH/SqRm.«0.000*«XM)
SZ=0.2«Xrl
60 TO 60
40 SV=0.16«XN/SQRT(1.*0.0004*XM>
SZ=O.WXM/SqRT(l.«0.0003«XM)
60 TO 60
50 SY=0.11»XM/3QRm.*0.000<»«XM)
3Z=0.08«XM/SQRTU.*0.0015«XM)
60 IFISZ .6T. 5000.1 SZ=5000.
RETURN
END
C
FUNCTION XVY ISYO.KSTI
CM FUNCTION XVY (VERSION 873381 PART OF ISCST
C XVY CALCULATES THE VIRTUAL DISTANCE NECES3ARY TO*
C ACCOUNT FOR THE INITIAL CROS5MIND DISPERSION.
C BASED ON BRI66S URBAN DISPERSION COEFFCIENTS. '
DIMENSION AI6)
DATA A/.32,.32,.22..16..11..ll/
DATA B/.0004/
C«« DIRECT SOLUTION FOR URBAN DISPERSION
70 XVY=(B»SVO»«2*SQRT( B»»2»SYO»»4*4. «A( KST )»«2«3YO»«2 11/
»(2.»AIK3TI«»2)
C CONVERT TO KILOMETERS
XVY=XVY/1000.
RETURN
END
C
FUNCTION XVZ (SZO.KST)
C»» FUNCTION XVZ (VERSION 87338) PART OF ISCST
C XVZ CALCULATES THE VIRTUAL DISTANCE NECESSARY
T TO ACCOUNT FOR THE INITIAL VERTICAL DISPERSION.
C BASED ON BRI66S URBAN DISPERSION COEFFCIENTS
DIMENSION C(6I.0(61
DATA C /1.E06.1.E06..20..14..08..08/
DATA C /l.E09.1.E09,0...0003..00'.5..001S/
C DIRECT SOLUTION FOR URBAN DISPERSION
170 GO TO (160.180.190,200.200,200). KST
C SOLUTION TO THE CUBIC EQUATION
C FROM CRC MATHEMATICAL TABLES
C STABILITY A»B (180)
180 A=-C(KST)/3.
B=(2./27.-(SZO/240.)M2)MO(KST)
S=B«»2/4.»A»»3/27.
IF(S .LT. 0.) GO TO 185
3=SQRT(S)
E=l./3.
BA=(-B/2.*3)<»E
BB=(-B/2.-SI*«E
ISC36440
ISC36450
ISC36460
ISC36470
ISC36480
I5C360-JO
ISC36500
ISC36510
ISC36520
ISCJ6530
ISC36540
ISC36550
ISC36.SO
ISC36570
ISC36580
ISC36590
ISC36600
ISC36610
ISC36620
ISC36630
ISC36640
ISC36650
ISC36660
ISC36670
ISC36680
ISC36690
ISC36700
ISC36710
ISC36720
ISC36730
ISC36740
ISC36750
ISC36760
ISC36770
ISC36780
ISC36790
ISC36800
ISC36010
ISC36820
ISC36830
ISC 36840
ISC 36850
ISC 36860
ISC36870
ISC36680
ISC36890
ISC 36 900
ISC36910
ISC36920
ISC36930
ISC36940
ISC36950
ISC36960
ISC36970
ISC36900
ISC36990
ISC37000
-------
182
165
C
190
C
200
CM
C
C
C
c
c
CM
C""
C
Y=BA«BB
XVZ=V-1000./3.
XVZ=XVZ/1000.
RETURN
CS=(SZO/240.l"»2"27./2.-l.
TH=ACOS(CSI/3.
T=2./3."C03(THI"1.E03
60 TO 162
STABILITY CU90I
XVZ=SZO/C(KST)
XVZ=XVZ/1000.
RETURN
STABILITY O.E.IF 1200)
XVZ=«0«K3T)»3ZO*«2*SQRT«DIK3TI**2*SZO*»4»4.*C
SUBROUTINE URBBAR IVERSION 67336) PART OF ISCST
IF IFLA6 = 1. NOTHING IS DONE
IF IFLA6 • t. CALCULATE AVERAGE 'B* 2NLY.
IF I FLAG > 3, CALCULATE EFFECTIVE DOM.MIND DISTANCE INDEX IXDIST
AS A FUNCTION OF XB, Xi ilKD STABILITY.
SUBROUTINE IS CALLED TWICE. FIRST TO CALCULATE DOWNWIND
INDEX, THEN TO CALCULATE BBAR BASED ON BRIGGS URBAN DISP COEFFS.
ISC37013
ISC37020
ISC37030
I5C37040
ISC37050
ISC37060
ISC37070
ISC370no
ISC37090
ISC37100
ISC37UO
ISC37120
DIMENSION
BI3a>.Xm0.6).INDSGZ(6>.XZ<38>
DATA INDS6Z /0.9,12,13,19,28/
DATA XI /.I.
1 .15,.2,.25,.3,.4,.5,3.11.1.£20,1*0., .2..4,1.£20.7*0.,
1 1.£20,9*0., .3,1..3..10..30..1.E20,4*0.. .1,.3,1.,2..4.,10.,20.
2 40.,1.£20,1*0., .2,.7,1.,2..3.,7.,15.,30.,60.,1.E20/
VALUES OF A AND B FOR URBAN SIGMAS CALCULATED USING
LEAST SQUARES FIT OF t=A*X»»B TO TWO KNOWN SIGMA VALUES
DATA B/l.05461.1.05461.1.07397,1.09147,1.10755,1.12680,1.15459,
• 1.27573,1.39840, 1.06277.1.11120.1.19463. 1.0,
« .97423,.92663,.82729,.69004,.58296..54401,
* .69450..69450..77376,.66096,.59632,.54890,.52290,.51173,
• .50737, .91156,.61821,.72180,.66096,.60730,.56473.
• .53115..51551..50786,.50452/
GOTO 160,90,10,10) , IFLAG
NOTE THAT STABILITY CATEGORY C HAS ONLY 1 DISTANCE CATEGORY.
10 IF(1ST .NE. 3) GOTO 20
IXDIST a 13
RETURN
20 X = XB
1 = 1
II = 0
30 IF(X-X1II,IST) .LE. 0.0) GOTO 40
1 = 1*1
GOTO 30
ISC37140
ISC37150
ISC37160
ISC37170
ISC37180
ISC37190
ISC37200
ISC37210
ISC37220
ISC37230
ISC37240
ISC37250
ISC37260
ISC37270
ISC37260
ISC37290
ISC37300
ISC37310
ISC37320
ISC37330
ISC37340
.ISC373SO
ISC37360
ISC37370
ISC37300
ISC37390
ISC37400
ISC37410
ISC37420
ISC37430
ISC37440
I5C37450
ISC37 %0
ISC37470
ISC374BO
ISC37490
ISC37500
ISC37510
ISC37520
ISC37530
ISC375'tO
ISC37550
ISC37560
ISC37570
-------
40
50
60
70
90
100
C
C
C
C
C
C
C
C
C
C
C
100
C
C
C
CD
-J
zoo
C
IF(I-II) 50,60.70
IXDIST = IXDIST - 1
HETUPN
II = I
IXDIST = INDSGZdST) * I
IF IIFU6 .61. 3) RETURN
X=XB«XZ(IXDISTI
GOTO 30
CALCULATE AVERAGE 'B1.
BB = 0.0
I = IXDIST - INDSGZdST)
DO 100 J = I.I
II = INDSGZdSTI » J
BB s BB » Bill I
BB = BB/FLOATCII
RETURN
END
SUBROUTINE NMCALHdOY)
SUBROUTINE NMCALM (VERSION 87338) PART OF ISCST
SUBROUTINE TO DETERMINE THE NUMBER OF CALM HOURS
FOR EACH AVERAGING PERIOD PER DAT. A CALM HOUR IS
DIAGNOSED AS AN HOUR HAVING A HIND SPEED OF 1.0 M/SEC
AND THE SAME HIND DIRECTION AS THE HOUR BEFORE.
USED IF ISMI 271 s 1
CREATED BT TRC ENVIRONMENTAL CONSULTANTS
JULY 1985
INTEGER TITLE
COMMON /LOGIX/ ISMI40).NSOURC.NXPNTS.NVPNTS.NXMYPT.NCnOUP,
1 NSO6RPd50).IOSOR( 200 ).IPERD.NPNTS.NAV6.NHOURS,NnAYS.NTOAY.LINE,
2 IO.IN,TITLE(15).IQUN(3).ICHIUN(7).CONOEP(6).LIMIT,MIMIT
COMMON /MET/ IDAY(366).ISTAB(24),AN3(24),TLMP(£4).AFV(24),
1 AFVR(24I.HLHI24.2).PI24),DTHDZI24),DECAV(24),PDEF(6.6).
2 DTHDEF(6,6I,ZR,ODECAT,IMET.ITAP,TK,UCATS(5I
COMMON /CALM/ NC(24),OLOAFV,NCM6(4),NCM8(3),NCM12(2),NCM24,
•NCMYR.IFLA6C(a).NCM4(6)
SET CALM ARRAT TO ZERO FOR THE DAY
DO 100 1=1.24
NC
-------
cr
oo
K>
OO
-J
IFIIPRIKT .EQ. 1) MRITEII0.1000) IDY.INCf 11.1=1.24)
1000 FORMAT!IX.25H* CAW HOURS 1=1) FOR OAY.I4.2H •,2413)
C
C NOW HAVE CALM HOURS DETERMINED
C SET COUNTERS FOR EACH AVERAGING PERIOD
C AT MAXIMUM VALUE AND DETERMINE NUMBER OF
C NON CALM HOURS FOR SPECIFIED AVERAGING PERIODS.
C THE ONLY ONES THAT VARY ARE 4, 6. 8. 12, AMD 24 HOUR
C AVERAGES. SET COUNTERS TO MAXIMUM PERMISSIBLE VALUES.
C
00 300 1=1.S
IFIISHII+9) .NE. 1) 60 TO 300
GO TO (205.110.220.230,240).I
C 4-HR AVERAGE
205 DO 206 J=l,6
206 NCM4IJ)=4
DO 207 K=4.24.4
N=K-3
DO 208 L=N.K
KK-K/4
208 IFINCIL).EQ.l) NCm(KK)=NCmiKK)-l
IFINCM4IKKI.LT.3) NCM4IKK)s3
207 CONTINUE
GO TO 300
C 6-HOUR AVERAGE
210 DO 211 J=l,4
NCM6IJ)=6
211 CONTINUE
DO 215 M6.24.6
N=K-5
DO 213 L=N,K
KK=K/6
IFINCIL) .EQ. II NCM6fKK)=NCM6IKK)-l
213 CONTINUE
IFINCM6IKK) .LT. 5) NCM6(KK)=5
215 CONTINUE
GO TO 300
C 8-HOUR AVERAGE
220 00 221 J=l,3
NCM8IJ)=8
221 CONTINUE
00 225 K=8,24.8
N=K-7
DO 223 L=N,K
KK-K/a
IFINCIL) .E9. 1) NCM8(KK)=NCMB(KK)-1
223 CONTINUE
IFINCMaiKK) .LT. 6) NCM8IKIO=6
225 CONTINUE
GO TO 300
C 12-HOUR AVERAGE
230 DO 231 J=l,2
NCM12IJ)=12
231 CONTINUE
DO 235 K=12.24.12
N=K-11
DO 233 L=N,K
ISC38150
ISC38160
ISC38170
ISC38180
ISC38190
ISC38ZOO
ISC38210
ISC382ZO
ISC38230
ISC3B240
ISC38.750
ISC38260
ISC38Z70
ISC38280
ISC38290
ISC38300
ISC38310
ISC38320
ISC36330
ISC38340
ISC383SO
ISC38360
ISC38370
ISC38380
ISC38390
ISC38400
ISC38410
ISC38420
ISC3B430
ISC38440
ISC38450
ISC38460
ISC38470
ISC38480
ISC38490
ISC38500
ISC38510
ISC38520
ISC38530
I5C38540
ISC38550
ISC38560
ISC38570
ISC38580
ISC38590
ISC38600
ISC38610
ISC38620
ISC38630
ISC38640
ISC3P650
15C30660
I5C38670
ISC386no
ISC38690
ISC38700
ISC 38710
-------
CTv
VO
K>
CO
-J
233
ess
c
240
245
300
C
C
c
c
c
c
c
c
c
c
c
10
c
20
c
30
C
40
C
50
C
c
KK=K/12
IF(NC(L> .E9. II NCf112(KK)=NCf112fKK)-l
CONTINUE
3FINCH12IKKI .IT. 91 NCt112(KK)=9
CONTIHUE
60 TO 300
24-HOUR AVERAGE
NCH24=24
00 245 K=1.24
IFINCIKI .EQ. II NCM24mCM24-l
CONTINUE
IFINCM24 .LT. 161 NCM24=16
CONTINUE
ALL COUNTERS ARE NOW SET
RETURN TO MAIN PROGRAM
RETURN
END
SUBROUTINE AVCALH(I.IHR.Al)
SUBROUTINE AVCAUt {VERSION 673361 PART OF ISCST
SUBROUTINE TO DETERMINE THE MULTIPLIER II/SUM) FOR
EACH AVERAGING PERIOD
ONLY NEED TO CHANGE MULTIPLIER FOR 4. 6. 6, 12. AND 24
HOUR AVERAGES IF CALM OPTION IS SELECTED.
DIMENSION N4(24),N6(24),N8<24),N12(24>
COMMON /CALM/ NC<24I.OLDAFV.NCM6(4I.NCMB(3>.NCM12(2),NCM24.
«NCNrR,IFLA6C(8I.NCM4f61
DATA N6/6»1,«"2,6«3,6»<*/,N8/6»I,8»2,8»3/,N12/12»1,12»2/
DATA N4/4»1.4*2.4*3.4»4,4»5,4«6/
J=I-3
GO TO I10,CO.30.40.501.J
4-HR AVERAGE
L=W( IHRI
A1=1./NCM4(L)
RETURN
6-HOUR AVERAGE
L=N6(IHR)
A1=1./NCM6(L>
RETURN
6-HOUR AVERAGE
L=N8IIHR)
Al=l./NCM6(Lt
RETURN
12-HOUR AVERAGE
L=N12IIHRI
Al=l./NCMltlLI
RETURN
24-HOUR AVERAGE
A1=1./NCM24
RETURN
END
SUBROUTINE MPRKKST.TS.TEMP.F.D.VS.UPL.DCLH.DTHDZ.DISTFI
SUBROUTINE MPR1 (VERSION 673381 PART OF ISCST
ISC3B720
ISC38730
ISC38740
ISC38750
ISC38760
ISC38770
ISC38780
ISC38790
ISC38800
ISC38810
ISC3B9JO
ISC38B30
ISC38840
ISC38850
ISC38860
ISC38870
ISC38B80
ISC38890
ISC38900
ISC 38910
ISC3B920
ISC38930
ISC38940
ISC38950
ISC38960
ISC38970
ISC38980
ISC38990
ISC39000
ISC39010
ISC39020
ISC39030
ISC39040
ISC39050
ISC390&0
ISC39070
ISC39080
ISC39090
ISC39100
ISC39110
ISC39120
ISC39130
ISC39140
ISC39I50
ISC39160
ISC39170
ISC39180
ISC39190
ISC39200
ISC39210
ISC39220
ISC392 JO
ISC39Z40
ISC39Z50
ISC39C60
ISC39270
isc39rno
-------
I
^1
o
to
00
-J
C
C
C
C
C
C
C
C
C
C
C
C
60
C
C
C
70
C
C
C
C
C
C
C
C
C
C
00
C
90
C
HAJOR PORTIONS OF THIS CODE CAME FROM THE
MPTF3 MODEL.
PLUME RISE CALCULATION
DELT=TS-TEMP
IF (KST.GT.4) GO TO 70
PLUME RISE FOR UNSTABLE CONDITIONS
(TS.LT.TEMPI GO TO 60
IF
ISC39290
ISC39300
ISCJ9310
ISC39320
ISC39330
ISC393'i6
ISC39350
IF (F.6E.55.) GO TO 60 ISC393&0
DETERMINE DELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER!F<55I ISC39370
FOUND BY EQUATING BRIGGS(1969) EQ 5.2. P.59 MITH COMBINATION OFISC39380
BRIGGSI1971) EQUATIONS 6 AND 7, PAGE 1031 FOR F<55. ISC39390
OTMB=0.0297»T3»VS»»0.33333/D»»0.66667 ISC39400
IF (DELT.LT.OTMB) 60 TO 80 ISC39410
DISTANCE OF FINAL BUOYANT RISEt0.049 IS 14*3.5/10001 ISC39420
BRIGG3I1971) EON. 7,F<55, AND DIST TO FINAL RISE IS 3.5 XSTAR ISC39430
OISTF IN KILOMETERS ISC39440
DISTF=0.049HF«*0.6Z5 ISC394SO
COMBINATION OF BRI6GSU971) EONS. 6 AND 7, PAGE 1031 FOR F<55. ISC39460
OELH:21.425«Fi»0.75/UPL ISC39470
GO TO 100 ISC39480
DETERMINE DELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER!F>55I ISC39490
FOUND BY EQUATING BRI6GSI1969I EQ 5.2, P.59 MITH COMBINATION OFISC39500
BRIGGSI1971I EQUATIONS 6 AND 7. PAGE 1031 FOR F>55. ISC39510
DTMB=0.00575«TS*VS««0.66667/D»»0.33333 ISC39520
IF (OELT.LT.DTMBI GO TO 80 ISC39530
DISTANCE OF FINAL BUOYANT RISE (0.119 IS 34*3.5/10001 ISC39540
BRIGGSU971) EON. 7. F>55. AND DIST TO FINAL RISE IS 3.5 XSTAR.ISC39550
DISTF IN KILOMETERS ISC39560
DISTF=0.119«F»»0.4 ISC3n570
COMBINATION OF BRIG6SI1971) EONS. 6 AND 7, PAGE 1031 FOR F>55. ISC391BO
DELH=38.71*F*«0.6/UPL ISC39590
60 TO 100 ISC39600
PLUME RISE FOR STABLE CONDITIONS. ISC39619
S=9.80616»DTHDZ/TEMP ISC39620
IF ITS.LT.TEMPI GO TO 90 ISC39630
DETERMINE OELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER!STABLE) ISC39640
FOUND BY EQUATING BRIGGSI1975) EQ 59. P. 96 FOR STABLE BUOYANCYISC39650
RISE MITH 8RIGGSU969) EQ 4.28, P. 59 FOR STABLE MOMENTUM RISE.ISC39660
DTMB=0.0195S2»TEMPnVS»SQRT(S) ISC39670
IF IOELT.LT.OTMB) GO TO 90 ISC39680
STABLE BUOYANT RISE FOR MIND CONDITIONS.(HIND NOT ALLOWED LOW ISC39690
ENOUGH TO REQUIRE STABLE RISE IN CALM CONDITIONS.» ISC39700
BRIGGSU975I EQ 59, PAGE 96. ISC39710
OELH=2.6««F/(UPL»3I)»«0.333333 ISC39720
COMBINATION OF BRI6GS(1975I EQ 48 AND EQ 59. NOTE DISTF IN KM. ISC39730
DISTF=0.0020715«UPL/SQRT(S) ISC39740
GO TO 100 ISC39750
UNSTABLE-NEUTRAL MOMENTUM RISE ISC39760
DRIGGS(1969I EON. 5.2, PAGE 59 NOTE: MOST ACCURATE WHEN VS/U>4;iSC39770
TENDS TO OVERESTIMATE RISE MHEN VS/IK4 (SEE BRIGGS(1975) P. 78,ISC39780
FIGURE 4.1 ISC39790
DELH=3.«VS"D/UPL ISC39800
OISTF=0. ISC39010
GO TO 100 ISC39820
STABLE MOMENTUM RISE ISC39830
OHA=3.»VS»0/UPL ISC39B'iO
BRIGGSI19691 EQUATION 4.28, PAGE 59 ISC39A50
-------
>
OELH=1.5»(V3«VS«D«D»TEMP/(*.«T3«UPLM»»0.333333/S»»0.166667
IF (OHA.LT.DELHI OELH=OHA
OISTF=0.
C STORE OFF PLUME HEIGHT (ETC.) FOR THIS SOURCE FOR USE MT.TH
C OTHER RECEPTORS.
100 RETURN
END
C
SUBROUTINE BLP (RO.YL.K3T.F.FM,X.U,3.BETAJ,RISEI
C SUBROUTINE BLP (VERSION 671381 PART OF ISCST
C
C CALCULATES PLUME RISE AS IN THE BLP MODEL.
C SUBROUTINE IS CALLED ONCE TO SET COEF1 AND COEFZ Am ENTERED
C SEVERAL TIMES LATER AT POINT BLPRIZ TO DETERMINE COEFO.
REAL RO,YL,F.FM,X,U,S,BETAJ,RISE
INTEGER KST
SAVE COEF1,COEFZ
DATA PII /0.31831/, PI2I /0.63662/
C 5.0 = 3/BETA (BETA=0.6)
COEFZ = 5.0 • (YL « PII » RO)
C 8.33333 a 3/BETA»»2 (BETA=0.6>
COEF1 = 8.33333 • RO » (YL » PI2I * ROI
ENTRY BLPRIZ(KST,F.FNtX.U.S,BETAJ,RISE)
IF (KST .LE. *l THEN
C 0.72 = 2«BETA*«2
COEFO = »3.0»X/«U»U)I • (F«C/(0.72«UI « FM»BETAJI
ELSE
COEFO = 16.6667«F/(U«3) « 3.0»FM/(BETAJ«U*S
RETURN
END
C
SUBROUTINE CUBIC(A,B.C.Z)
SUBROUTINE CUBIC (VERSION 873381 PART OF ISCST
r
c
c
c
c
c
to
>*
CD
SOLVES FOR ONE ROOT OF THE CUBIC EQUATION:
Z»»3 * A«Z»«2 * B»Z + C = 0
IMPLICIT REAL'S (A-H.O-Z)
REAL A.B.C.Z
DATA ONE /l.O/
A3=A/3.
AP-8-A»A3
BP=2.•A3«»3-A3«B*C '
AP3=AP/3.
BP2=BP/2.
TFOOT=BP2"BP2»AP3»AP3»AP3
IFITROOT.LE.O.OIGO TO 50
TR= SQRT(TROOT)
APP=(-BP2«TRl««0.333333
BSV=-BP2-TR
IF(BSV.EQ.O.OI60 TO 45
S6N= SIGN(ONE.BSV)
ISC39860
ISC39870
ISC398SO
ISC39B90
ISC39900
ISC39910
ISC39920
ISC39930
ISC399'.0
ISC39 50
ISC39960
ISC39970
ISC39900
ISC39990
ISC40000
ISC40010
ISC40020
ISC40030
ISC40040
ISC40050
ISC40060
ISC40070
ISCA0080
ISC40090
ISCA0100
ISC40110
ISC40120
ISM0130
ISC40140
ISC40150
ISC401AO
ISC40170
ISC40180
ISC40190
ISC40200
ISC40210
ISC40220
ISC40230
ISC40240
ISC40250
I3C40260
ISC40270
ISC402RO
ISC40290
ISC40100
ISC40310
ISC40320
ISC40330
ISC40340
ISC4C350
ISC40360
ISC40370
ISC403BO
ISC40390
ISC40400
ISC40
-------
BPP=SGNi?0
RETURN ISC
-------
APPENDIX B
COMPLETE FORTRAN LISTING OF THE
INDUSTRIAL SOURCE COMPLEX
LONG TERM MODEL (ISCLT)
COMPUTER PROGRAM
-------
C ISCLT (DATED 67352)
C AN AIR QUALITY DISPERSION MODEL IN
C SECTION1. GUIDELINE MODELS
C IN UMAMAP (VERSION 6) JAN. 68.
c SOURCE: FILE 7 ON UNAMAP MAGNETIC TAPE FROM NTIS.
c
CWHHHM INDUSTRIAL SOURCE COMPLEX LONG TERM MODEL
c SOURCE: FILE 7 ON UNAMAP MAGNETIC TAPE FROM NTIS.
C THIS VERSION OF ISCLT MAS PREPARED IN 1987
C BY TRC ENVIRONMENTAL CONSULTANTS INC. FROM THE
C VERSION CONTAINED IN UNAMAP VERSION 6.
C THE FOLLOWING FEATURES HAVE BEEN ADDED:
C OPTION FOR BRI6GS URBAN DISPERSION COEFFICIENTS.
C A PLUME RISE FORMULATION THAT IS
C CONSISTENT WITH THE MPTER MODEL.
C OPTION FOR BUOYANCY INDUCED DISPERSION, ISW(21).
C THE MINIMUM SOURCE-RECEPTOR DISTANCE HAS
C BEEN REDUCED FROM 100M TO 1M.
C REVISIONS THROUGH H.E. CRAMER CO.'S
C UPDATE PACKAGE HAVE BEEN INCLUDED.
C POLLUTANT INDICATOR OPTION, ISW(23).
C A " REGULATORY DEFAULT OPTION" SWITCH, ISHI22).
C DEFAULT MIND PROFILE COEFFICIENTS FOR
C RURAL AND URBAN OPTIONS.
C RECEPTORS BELOW PLANT GRADE ARE TREATED IN
C THE SAME MANNER AS RECEPTORS ABOVE
C PLANT GRADE.
C A TERRIN TRUNCATION ALGORITHM FOR RECEPTORS ABOVE
C STACK HEIGHT.
C AN INPUT DEBUG OPTION (ISWI24)) HAS BEEN ADDED.
C ABOVE GROUND (FLAGPOLE) RECEPTORS MAY NOW BE MODELLED.
C DIRECTION SPECIFIC BUILDING DOUNWASH WITH A LINEAR DECAY AD-
C JUSTMENT TO PLUME HEIGHT AND AN ADJUSTMENT TO PLUME RISE ARE
C NOW PERFORMED FOR REGULATORY USE.
C
COMMON CORE(40000)
t-0
00
ISC00010
ISC00020
ISC00030
ISC00040
ISC00050
ISC00060
ISC00070
ISC00080
ISC00090
ISC00100
ISC00110
ISC00120
ISC00130
ISC00140
ISC00150
ISC00160
ISC00170
ISC00180
ISC00190
ISC00200
ISC00210
ISC00220
ISC00230
ISC00240
ISC00250
ISC00260
ISC00270
ISC00280
ISC00290
ISC00300
ISC00310
ISC00320
ISC00330
ISC00340
ISC00350
ISC00360
ISC00370
ISC00380
ISC00390
ISC00400
ISC00410
ISC00420
C
c
COMMON /DIM/ NSOURC,NXPNrS,NYPNTS,NXWYPT,NSEASN,NSPEED,NSTBLE,
1NSCTOR,ISW(25),UNITS(20),TITLE(20).NOFILE
COMMON /MET/ FREQ(6,16,24) ,TA(6,4) ,HI1(6,6,4),DPDZ(6,6),UBAR(6 •,
1P(6,6),PHI(16),ROTATE,G,ZR,DECAY,TK
COMMON /REST/ IUNT,JUNT,NXXYY,NXXYYP,ISTBLE(6),IFLG3,LINE,NLINES,
lICARD,NXPSS,NYPSS,MUNT,NlArr,ICONT(3,2).ITSAVE(572),NTl,NT2,NT3.NT4ISC00430
2,MSG7(4,3),MSG8(2),MSG9(2,2),MSG10(4,3),NGROUP,NOCO!1B(20>,IDSORC(2ISC00440
300),IEND,XSEA,ISAVSO(300),NG,NGT,NXWY,IWAKSW(16) ISC00450
DIMENSION JSW(25),MSOR(72),NSOR(72),ITEHP(200) ISC00460
EQUIVALENCE (ITEMP(1).FREQ(1,1,1)),(ITEMP(1),JSU(1)),(ITEMP(26),MSISC00470
10R(1)),(NSOURC,NSOR(1)) ISC00480
INTEGER TITLE,UNITS ISC00490
DATA NOCOHB/20*0/,J5/4H / ISC00500
ISC00510
ISC00520
-------
w
K)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
I3C00530
ncoos'io
THIS COMPUTER PROGRAM IS DESIGNED TO CALCULATE THE AVEPAGE ITC00550
SEASONAL AH!)/Cn At&fJAL GROUHD LEVEL OR ELEVATED CONCENTRATION OR ISCOOV.O
TOTAL DEPOSITION FROM MULTIPLE CONTINUOUS POINT,VOLUME AND/OR AREAI5C00570
SOURCES. THE CALCULATION GRID SYSTEM CAN BE A CARTESIAN COORDINATEITCOODnO
SYSTEM WITH 0 DEGREES NORTH AS THE POSITIVE V AXIS AND 90 DEGREES I3C00590
EAST AS THE POSITIVE X AXIS OR A POLAR COORDINATE SYSTEM MITH X
AS THE AXIS OF RADIAL ARCS Aim Y AS THE AXIS OF AZII1UTH BEARINGS
WITH 0 DEGREES AS NORTH INCREASING POSITIVELY IN A CLOCKWISE
DIRECTION. ALSO, PROVISION IS MADE FOR SPECIAL DISCRETE
X.Y RECEPTOR POINTS THAT MAY COrjRESFOt.T) TO SAMPLER SITES, POINTS
OF MAXIMA OR SPECIAL POINTS OF INTEREST. SOURCES CAN BE
POSITIONED ANYWHERE RELATIVE TO THE GRID SYSTEM.
THIS COMPUTER PROGRAM IS MRIITEN IN STANDARD FORTRAN 77 AND IS
DESIGNED FOR USE ON MOST MEDIUM SIZED COMPUTERS (IBM 360,370 -
CDC 6000 SERIES, UNIVAC 1100 SERIES, ETC). ALL ALPHANUMERIC
(HOLLERITH) INFORMATION IS STORED 4 CHARACTERS (BYTES) TO AN
INTEGER WORD. ALSO, THE VALUES OF SOME VARIABLES IN THE PROGRAM
ASSUME AT LEAST A 3Z BIT WORD. THE FUNCTION ACOS IS REFERENCED
IN THIS PROGRAM IN SUBROUTINE DISTR AND MUST BE CHANGED TO ARCOS
FOR IBM FORTRAN COMPILERS.
ISC00600
ISC00610
ISC00620
ISC006JO
ISC006'iO
ISCOOf,50
ISC00660
ISC00670
ISC006BO
ISCOO'90
ISC00700
ISC00710
ISC00720
ISC00730
ISC00740
ISCOO760
BLANK COMMON IS USED TO STORE THE GRID SYSTEM AND ALL CALCULATION ISC00770
RECEPTOR POINTS AND THE CONCENTRATION (DEPOSITION) ARRAYS.
THE AMOUNT OF CORE IN BLANK COMMON USED BY
EACH VAkiABLE IS DETERMINED AT EXECUTION TIME AMD THE EQUATION
OF CORE USED IN BLANK COMMON IS
CORE
ISC007PO
ISC00790
ISCOOOOO
ISC00010
iscooero
INXPNTS»NYPNTS*2«NXHYPT1»H2«NSEA5N»I)IHNXPNTS«NYPNTS»ISC00030
NXHYPTM
WHERE I
0 IF TERRAIN ELEVATIONS ARE NOT USED
HSM4)=0)
I = 1 IF TERRAIN ELEVATIONS OR ABOVE
GROUND RECEPTORS ARE USED
IISU<4)=1 OR -II PR (ISHI25)=1)
I = 2 IF BOTH TERRAIN ELEVATIONS AND
ABOVE GROUND RECEPTORS ARE USED
(ISW(4)=1 OR -1) AND (ISHI25)=1)
ISCOOC'iO
iscooaso
ISCOOGSO
ISC00070
ISCOOCOO
ISCOOQ90
ISC00900
ISC00910
ISC00920
ISC00930
ISC00940
ISC00950
ISC00960
ISCOOT70
ISCOO?'JO
ISC00990
Si TCHi EXCEPTIONS TO THIS EQUATION OCCUR UNDER TWO PROGRAM
OPTIONS. THEY ARE NGROUP AND ISVK11) AND MAY SUPERCEOE THE ABOVE
EQUATION IF REQUIREMENT C OF EITHER OPTION IS UStD.
THE VALUE OF CORE MUST BE LESS THAN OR EOUAL TO THE TOTAL SIZE
OF THE ARRAY CORE IN BLANK COMMON AT THE BFRINi'IHG OF (HIS
PROGRAM. ALSO, TH£ VARIABI.F IEND FOLLOWING IHE INPUT DATA COMMENT ISC01000
CARDS MUST K SET tTUAL TO TH1- TOIAL SIZE OF THE ARRAY CORE IN ISC01010
BLANK COMMON. ISCOlOrO
I3COI030
ISCOlO'iO
ISC010SO
ISC01060
C««*««»«li«liii»lHi»«LONG TERM ISC MODEL PPOGRAM INPUTS •«
-------
c
c
c
c
c
EXPERIENCED USER. PLEASE READ THE MAIN PROGRAM DOCUMF'TATION
CAREFULLY BEFORE USINS THIS PROGRAM AS A SINGLE EPROR CAN HAKE
THE ENTIRE RESULTS ERRONEOUS.
ISC01100
w
i
C-CARO GROUP 1 I20A4 FORMATI
C TITLE - UP TO 80 CHARACTERS OF CASE TITLING INFORMATION
C (CARD COL. 1-60)
C
C-CARD GROUP 2 (2512 FORMATI
C ISM - ARRAY CONTAINING PROGRAM OPTIONS
C NOTE - IF USING AN INPUT TAPE OPTIONS ISH(l), (21. (31, AND
C 14) ARE SET BY THE INPUT TAPE AND THE PROGRAM IGNORES
C ANY CARD VALUE.
C ISWI1J - (CARD COL. 21
C ' IF = 0 OR 1 CONCENTRATION IS CALCULATED.
C IF s 2 TOTAL DEPOSITION IS CALCULATED.
C THIS OPTION IS IGNORED IF USING AN INPUT TAPE.
C ISWm - (CARD COL. 4)
C IF = 0 OR 1 THE GRID SYSTEM X AND Y AXES ARE ASSUMEDISC01290
C TO DEFINE A CARTESIAN COORDINATE SYSTEM HITH ISC01300
C NEGATIVE X AS NEST (270 DE6V, POSITIVE X ISC01J10
C AS EAST (90 DEC I. NEG. Y AS SOUTH (180 DEGI ISC01320
C AND POS. Y AS NORTH (0 DEGI. ISC01330
C IF = 2 THE GRID SYSTEM X AND Y AXES ARE ASSUMED TO ISCOlVtO
C DEFINE A POLAR COORDINATE SYSTEM WHERE THE X ISC01350
C AXIS DEFINES THE POLAR RADIALS AND THE Y AXIS ISC01360
C DEFINES THE ANGULAR COORDINATES (AZIMUTH ISC01370
C BEARING). Y IS MEASURE IN A CLOCKWISE ISC01300
C DIRECTION STARTING AT 0 DEGREES NORTH. ISC01390
C THIS OPTION IS IGNORED IF USING AN INPUT TAPE. ISC01400
ISC01120
1SC01130
ISC01140
ISC01150
ISC01160
ISC01170
ISC011QO
ISC01190
ISC01200
ISC01210
iscoi22o
ISC012.'0
ISC01240
ISC01250
iscc;cto
I SCO 12/0
ISC01200
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ISW« 3) - (CARD COL. 6) ISC01410
IF = 0 OR I THE PROGRAM ASSUMES THE SPECIAL DISCRETEISCOl'iCO
X.Y CALCULATION RECEPTOR POINTS ARE
IN CARTESIAN COORDINATES.
IF = 2 THE PROGRAM ASSUMES THE X,Y SPECIAL DISCRETE
CALCULATION RECEPTOR POINTS ARE IN
POLAR COORDINATES.
THIS OPTION IS IGNORED IF USING AN INPUT TAPE.
ISH(4) - (CARD COL. 81
IF = 0 NO TERRAIN ELEVATION DATA IS READ BY THE
PROGRAM
IF = 1 TERRAIN ELEVATION DATA IS READ. IF = -1,
ELEVATIONS ARE IN METERS RATHER THAN FEET.
THIS OPTION IS IGNORED BY THE PROGRAM IF USING AN
INPUT TAPE OR FILE.
ISWC5) - (CARD COL. 10)
IF = 0 NO MASTER SAVE TAPE (SCRATCH TAPE) INPUT OR
OUTPUT IS ASSUMED.
IF = 1 ALL PROGRAM INPUT DATA. SOURCE DATA AND
CALCULATIONS ARE WRITTEN TO MASTER SAVE TAPE ISCOK 00
ON FORTRAN LOGICAL UNIT I«H(15). TWO FILE ISC01610
MARKS ARE WRITTEN AFTER THE LAST RECORD ON ISC01620
TAPE. THE TAPE IS BINARY AND THE LAST RECORD ISC01630
WRITTEN ON TAPE HAS AN IffTEGER 999999 IN WORD ISC016'iO
1 TO INDICATE END OF DATA. ISC01650
ISC01660
ISC01430
ISCOlViO
ISC01450
ISC01460
ISC01
-------
C - TAPE RECORD - - CONTENTS - ISC01670
C I COMMON BLOCK /DIM/, 72 HORDSISC01600
C 2 - X AXIS AND X SPECIAL POINTS,ISCOH.90
C NXPHTS»NXWYPT WORDS ISC01700
C 3 - Y AXIS AMD V SPECIAL POINTS,ISC01710
C NYPNTS»NXWYPT WORDS 15001720
C 4 TERRAIN ELEVATIONS Z. ONLY ISC01730
C IF ISWI4) IS GPEATER THAN O.ISC01740
C 4A ADOVE GROUND RECEPTOR HEIGIITS15C01750
C (RHTIt ONLY IF ISMC25) IS ISC017M)
C GREATER THAN 0. ISC01770
C 5 COMMON BLOCH /TIT/, tb/1 ISC01700
C HG«DS ISC01790
C 6 COMMON BLOCK /SORC/. 251 ISC01800
C WORDS. SObRCE RECORD ISC01010
C 7 - CONCENTRATION (DEPOSITION) ISC01620
C FOR SEASON 1, NXPNTS»NYPNTS ISC01630
C 4NXMYPT WORDS. ISCOIO'.O
C 8 CONCENTRATION (DEPOSITION) ISC01P50
C FOR SEASON 2 I IF PRESENT) I5C01060
C 9 CONCENTRATION (DEPOSITION) ISC01070
W C FOR SEASON 3 I IF PRESENT) ISC01GOO
jL C 10 CONCENTRATION (DEPOSITION) ISCCIQtO
C FOR SEASON 4 (IF PRESENT) ISC01900
C RECORDS 6 THROUGH 10 ARE REPEATED FOR EACH ISC01910
C SOURCE INPUT. ISC01920
C IF s 2 PROGRAM INPUT DAI.*, SOURCE DATA. AND PREVIOUS ISC01930
C CALCULATIONS ARE READ FROM MASTER SAVE TAPE ISC01940
C ON FORTRAN LOGICAL UNIT ISMI14) FOR UPDATE ANDISC01950
C /OR DISPLAY. ISC01960
C IF s S MASTER SAVE TAPES ARE BOTH READ AND WRITTEN ISC01970
C I5W(6) - (CARD COL. 12) ISC01900
C IF = 0 DO NOT PRINT INPUT DATA. THIS INCLUDES SOURCEISC01990
C DATA. ISC02000
C IF = 1 PRINT ALL INPUT DATA EXCEPT SOURCE DATA. 1SCO:310
C IF = Z PRINT SOURCE INPUT DATA ONI*. ISC02L20
C . IF = 3 PRINT ALL INPUT DATA. ISC02030
C ISWC7) - (CARD COL. 14) ISCOZ040
C IF * I PRINT SEASONAL CONCENTRATION(DEPOSITION) ONLY ISC0205U
C IF = 2 PRINT ANNUAL CONCENTRATION (DEPOSITION! ONLY. ISC02060
C (USED PRIMARILY WHEN INPUT DATA IS ANNUAL ISC02070
C ONLY) ISC020QO
C IF s 0 OR 3 BOTH SEASONAL AND ANNUAL CONCENTRATION ISC02090
C (DEPOSITION) ARE PRINTED. ISC02100
C ISWCft) - (CARD COL. 16) ISC02110
C IF =1 PRINT ONLY THE CONCENTRATION (DEPOSITION) ISC02120
C FROM SELECTED INDIVIDUAL SOURCES. (SEE HOCOMBISC02)30
C AND IOSORC BELOMI. ISC02140
C IF = Z PRINT ONLY THE COMBINED CONCENTRATION ISC021SO
£ C (DEPOSITION) SUMMED OVCR THE SPECIFIED ICC07160
^ C SOURCES. ISCOC170
» C IF s 0 OR 3 PRINT BOTH SELECTED INDIVIDUAL SOURCES ISC02180
C AM) THE COMBINED SUM OVER HIE SPECIFIED ISC02190
C SOURCES. ISC02IOO
C ISHI9) - (CARD COL. 18) 1SC02210
C USED TO DEFIHE THE STABILITY MODE USED IN THE ISC02220
C CALCULATIONS OF THE STANDARD DEVIATIONS OF THE ISC02?30
-------
C LATERAL AND VERTICAL CONCEMTRATION I DEPOSITION I ISC02240
C DISTRIBUTIONS AND THE VIRTUAL DISTANCES. ISC02.-50
C THIS PARAMETER MUST BE SET CORRECTLY IF INPUT DATA I5CP.?:v.O
C CAPO SOURCES ARE BEING PROCESSED. I3C02270
C IF = 1 THE PROGRAM ASSUMES URBAN MODE 1 AND 0, E AND IJCOZ2r.O
C F CATEGORIES ARE REDEFINED AS D. ISC02290
C IF s 2 THE PROGRAM ASSUMES UPDAH MODE 2 AND STABILITYISC02100
C CATEGORIES 1 AND Z ARE A, 3 IS B. 4 IS C AND ISC02310
C 5 AND 6 ARE D. ISCOC320
C IF = 0, 3 OR BLANK THE PROGRAM ASSUMES RURAL MODE ISC02330
C 1 AND DEFINES STABILITY CATEGORIES 1 TO 6 TO ISC023'«0
C BE A THROUGH F. ISC02350
C . 1F=4 THE PROGRAM ASSUMES URBAN MODE 3 AND DEFINES ISCOZ3?>0
C STABILITY CATEGORIES 1 TO 6 TO BE A THROUGH ISC02370
C F. BRIGGS URBAN DISPERSION COEFFICIENTS ISC023QO
C ARE USED. ISC02^?0
C ISH(IO) - (CARD COL. 201 ISCOZ'iOO
C ISMIlOli ISH(ll) AND ISHI12) ARE USED TO SPECIFY HOHISCOZtlO
C THE PROGRAM IS TO CALCULATE AND DISPLAY MAXIMUM VALUES. ISC024ZO
C IF ISHI10) IS LEFT BLANK OR ZERO IS PUNCHED THE MAXIMUM ISCOZ430
C 10 VALUES OF CONCENTRATION OR DEPOSITION ARE NOT ISC02-. .0
W C CALCULATED AND THE CONCENTRATION OR DEPOSITION AT ALL ISCOZ4bO
i}, C INPUT GRID SYSTEM AND SPECIAL DISCRETE RECEPTOR POINTS ISC02460
C IS PRINTED. ISCOZ470
C IF ISU(IO) EQUALS I THE MAXIMUM 10 VALUES ARE CALCULATEDISC02460
C ACCORDING TO ISMI 111 AND ISWt12 I A1O ONLY THESt MAXIMUM ISC02490
C VALUES ARE PRINTED. ISCOZ500
C IF ISM(IO) EQUALS 2 THE MAXIMUM 10 VALUES ARE CALCUIATEDISCOZ510
C ACCORDING TO ISM(ll) AMD ISMC12) AND PRINTED, AS HELL ISC025ZO
C AS, THE CONCENTRATION OR DEPOSITION AT ALL OTHER INPUT ISC02530
C RECEPTOR POINTS. ISC02540
C ISUdll - (CARD COL. 22) ISCOZ550
C IF SET NON-ZERO THE PROGRAM DETERMINES THE MAX. 10 ISC02560
C VALUES OF COtiCENTRATION OR DEPOSITION FROM THE SET OF ISC02570
C INPUT GRID SYSTEM AND ARBITRARILY SPACED RECEPTOR ISC02580
C POINTS. (IF NON-ZERO THEN ISHI12) MUST BE ZERO) ISC02S90
C IF SET EQUAL TO 1 THE MAXIMUM 10 VALUES OF EACH ISCOZ600
C INDIVIDUAL SOURCE AND COMBINED SOURCES ARE CALCULATED ISC026IO
C ANJ FR/NTEO INDEPENDENTLY OF EACH OTHER. ISC02620
C IF SET EQUAL TO 2 THE MAXIMUM 10 VALUES OF THE COMBINED ISC02630
C SOURCES DETERMINES WHICH 10 POINTS OF EACH CONTRIBUTING ISC02A40
C SOURCE TO PRINT. ISC026r>0
C *«« HARNING - THIS OPTION REQUIRES AT LEAST ONE OF THE ISCOZMbO
C FOLLOWING - ISC02670
C A - THE PROGRAM USES AN OUTPUT TAPF. ISC02600
C B - THE PROGRAM USES AN I!IPU." TAPE AND NO INPUT ISC02690
C CARD SOURCES. ISCOZ700
C C - THE TOTAL NUMBER OF SOURCES USED TO FORM EACH ISCOZ710
C COMBINATION OF SOURCES FOR MAXIMUM CALCULATIOMSISCOZ7.-0
i- C IS LESS THAN OR EQUAL TO THE MINIMUM OF I AMD ISCOZ730
^ C J BELOW. COUNT EACH SOURCE ONLY OMCE. I.E. ISCOZ7',0
oo C IF A SOURCE IS IN MORE THAN ONE COMBINATION ISC02750
""* C ONLY COUNT IT OUCE FOR THIS CHECK. ISCOZ760
C I AND J ARE - ISC02770
C I = (IEND-tNXPNTS4NYPNTS»2»NXHYPT)-K-L)/ ISC02700
C CNSEASN»INXPNTS»NYPNTS»HXNYPTM ISCOZ770
c ir.cozpoo
-------
CD
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IEND = SIZE OF BLANK COmN I DESIGN SIZE ISCOZtlO
IS 40000)
K = NSEASN»(NXPMTS'NYPNTS«NXUYPT)
t = NXPNTS»NYPNTS«NXWYPT
IF ISWCU-0
= 0
IF ISHI4) IS NON-ZERO
J = 300
ISHC12) - ICARD COL. 24)
IF SET NON-ZERO THE PROGRAM ASSUMES THE USER IS
SPECIFYING THE SET(S) OF 10 RECEPTOR POINTS USED TO
CALCULATE MAXIMUMS. THE PROGRAM ASSUMES THE USER HAS
INPUT THESE RECEPTOR POINTS INTO THE ARRAYS FOR
SPECIAL DISCRETE POINTS. IF THIS OPTION IS USED
AND TAPE INPUT IS ALSO USED, CARD GROUPS 6A AND 7A
BELCH ARE READ BY THE PROGRAM AND REPLACE ALL
RECCTTOn POINTS ON THE INPUT TAPE. IF 1HE INPUT
TAPE CONTAINS TERRAIN ELEVATIONS CARD GROUP 6A IS
READ AFTER 7A. ALSO. IF THE INPUT TAPE CONTAINS
ABOVE GROUND RECEPTORS CARD GROUP 8B IS READ AFTER
EITHER 7A OR 6A. HAKE SURE NXHVPT SPECIFIES THE
TOTAL NUMBER OF POINTS. IF THE USER INPUTS ONLY 10
POINTS SEASONAL AND ANNUAL CALCULATIONS ARE PERFORMED
ON THESE 10 POINTS. IF THE USER INPUTS MORE THAN 10
ISC020JO
ISC020JO
isco2o
I5C02870
I5COC030
isco2n90
ISC02900
1SC02910
ISCOZ920
ISC02930
ISC029'iO
ISC02950
ISC2:"?<.0
ISC02970
ISC02900
ISC02990
ISC03000
ISC03010
ISC03020
ISCOJO50
ISC03040
ISC03050
POINTS THE PROGRAM ASSUMES THE FIRST 10 ARE FOR SEASON 1ISC03060
. THE SECOND 10 ARE FOR SEASON 2. AND THE LAST 10 ARE ISC03070
FOR ANNUAL CALCULATIONS. F03 EXAMPLE IF HE HAVE FOUR ISC03000
SEASONS OF MET DATA TO INPUT AND SEASONAL Aim ANNUAL ISC03090
CALCULATIONS ARE PERFORMED ON SEPARATE SETS OF POINTS ISC03100
THEN 50 POINTS MUST BE INPUT. IF ONLY SEASONAL CALCS ISC03110
HERE PERFORMED ONLY 40 POINTS MOULD BE REQUIRED. ISC03120
IF THE LAST OF THE 10 POINTS IN ANY SET HAVE BOTH X ISC03130
AND V ZERO THEY ARE IGNORED AND LESS THAN 10 ARE ISC03140
ACTUALLY PROCESSED. THE VARIABLE NXHYPT SPECIFIES THE 1^03150
TOTAL NUMBER OF POINTS THE USER HAS F-ROVIOED. isco3i'>o
ISUI13) - (CARD COL. 25-26) ISC03170
OPTIONAL PRINT OUTPUT UNIT. IF LEFT BLANK OR ZERO ISISC03180
PUNCHED ALL PRINT OUTPUT GOES TO UNIT 6. IF PUNCHED ISC03190
NON-ZERO ALL PRINT OUTPUT GOES TO THE SPECIFIED UNIT. ISC03200
TWO END OF FILE MARKS ARE WRITTEN AT THE END OF THE ISC03210
ALTERNATE PRINT FILE IF A POSITIVE VALUE IS PUNCHED. ISC03220
IF A NEGATIVE VALUE IS PUNCHED THE END OF FILE MARKS ISC03230
ARE NOT WRITTEN. CAUTION - SOME FORTRAN COMPILERS ISC03240
SPECIFY AN AUTOMATIC WRITE END OF FILE AMD REMIND ISC03250
(CLOSE FILES) ON OUTPUT FILES AT THE END OF A PROGRAM ISC03260
RUN. ISC03270
ISHU4) - (CARD COL. 27-28) ISC032QO
OPTIONAL TAPE INPUT UNIT NUMBER. IF BLANK OR 0 HIE ISC03.70
PROGRAM USES LOGICAL UNIT 2. IF YOU ARE USING A MASSISC03300
STORAGE FILE FOR INPUT. YOU MUST PUNCH A NEGATIVE ISC033IO
VALUE FOR ISNU4). A POSITIVE VALUE SPECIFIES TAPE. ISC03320
ISW(IS) - (CARD COL. 29-30) ISC03330
OPTIONAL TAPE OUTPUT UNIT NUMBER. IF BLANK OR 0 THE ISCOSS'iO
PROGRAM USES LOGICAL UNIT 3. IF YOU ARE USING A MASSISC03350
STORAGE FILE FOR OUTPUT YOU MUST PUNCH A NEGATIVE ISC031GO
VALUE FOR ISU(IS). A POSITIVE VALUE SPECIFIES TAPE ISC03370
-------
Cd
CO
C ISMI 16) - (CARD COL. 321 ISC03300
C IF LEFT BUNK OR ZERO IS PUNCHED THE PROGRAM STARTS I5C03590
C EACH NEM TABLE OF CONCENTRATION OR DEPOSITION ON ISCOV.no
C A NEH PAGE. ALSO, SOME CONTINUATIONS OF TtlE SAME ISC03-UO
C TABLE ARE STARTED ON A HEM PAGE. ISCOJ'.ZO
C IF PUNCHED NON-ZERO THE PROGRAM ATTEMPTS TO SAVE ISC03'i30
C OUTPUT PAPER Bt COMPRESSING THE OUTPUT AND ISCOM'iO
C MINIMIZING PAGE EJECTION. ISCCmSO
C ISHI17) - tCARD COL. 33-3<») ISC03460
C OPTIONAL NUMBER OF PRINT LINES PER PAGE. THIS VALI.T ISC03'i70
C IS INITIALIZED TO 57 LI'IFS P'P ."'AGE. IF YOUR ISC03460
C INSTALLATION t>RINT!T IS SET DIFFERENTLY PUNCH THE ISC03490
C CORRECT NUMBER OF LINES PER PAGE. ISC03500
C ISMI1S) - (CARD COL 35-361 ISC03510
C IF LEFT BLANK OR ZERO THE PROf.RAM DOES NOT READ ISC03520
C CARD GROUP 9. (SEE CARD GROUP 9 - FMT) ISC03530
C IF PUNCHED NON-ZERO CARD GROUP 9 IS READ BY THE' ISC03540
C PROGRAM ONLY IF THERE IS NO TAPE INPUT. ISC03H50
C ISM(19) - OPTION TO CALCULATE PLUME RISE AS A FUNCTION OF ISC03360
C DOWNWIND DISTANCE FOR STACK SOURCES ISC03570
C IF = 0 THE PROGRAM CALCULATE? FIKAL JMLTE RISE ISC03.-P')
C INDEPENDENTLY OK DOUNUIND DISTANCE. ISC03590
C IF = 1 THE PLUME RISE CALCULATION IS A FUNCTION I5C03600
C OF OOMNHIND DISTANCE. ISC03610
C ISH(20) - OPTION TO ADD THE BRIGCS (1973) DOMNMASH CORRECTION ISC03620
C FOR STACK SOURCES ISC03630
C IF = 0 NO OOUNHASH CORRECTION IS MADE ISC03640
C IF = 1 THE BRIGGS (1973) DOMNHASH CORRECTION IS ISC03650
C APPLIED TO ALL STACK SOURCES ISC03660
C ISW(Zl) - OPTION TO INCLUDE BUOYANCY INDUCED DISPERSION ISC03670
C FOR STACK SOURCES. ISC03660
C IF=0 BUOYANCY INDUCED DISPERSION IS INCLINED. ISC03690
C IF=1 BUOYANCY INDUCED DISPERSION IS NOT INCLUDED. ISCO^OO
C ISMI22) -REGULATORY DEFAULT OPTION SWITCH ISC03T10
C WITH THIS FEATURE VARIOUS MODEL OP". 0
C IF=0 THE REGULATORY OPTION IS USED. ISC03870
C IF=.1 THE REG. CtFA'JlT OPTION IS NOT USED. ISC03MO
C -DIRECTION SPECIFIC BUILDING DOIIIIMASH AND ADJUST- I5C030TO
C HENTS TO PLUME RISE AND PLUME HEIGHT ARE USED ISC03900
C NHEN THE PHYSICAL STACK HEIGHT IS LESS THAN ISC03910
C HB»0.5L WHERE HB IS THE BUILDING HEIGHT AIID L IS ISC03'>ZO
C THE LESSER OF THE BUILDING HEIGHT OR MAXIMUM HID HI. ISC03930
C IF = 0 MODEL USES A REGULATORY OITAULT MODE ISC03?'iO
-------
CO
00
CD
c
c
c
c
c
c
c
c
c
c
c
c
c
IF=1 MODEL DOES NOT USE A REGULATORY DEFAULT MODE
ISWI23) - POLLUTANT INDICATOR SWITCH.
IF=0 MODEL ASSUMES 502 IS BEING MODELLED.
IF=1 MODEL ASSUMES OTHER POLLUTANT IS BEING MODELLED.
ISWI24) - DEBUG OPTION SWITCH
IF=0 MODEL ECHOES CARD INPUT LINE BY LINE. THIS
OPTION IS USEFUL FOR INPUT ERROR DEBUGGING.
IF=1 DEBUG OPTION IS HOT USED.
ISWI25) - RECEPTOR HEIGHT ABOVE GROUIID SWITCH
IF-0 NO RECEPTOR HEIGHTS ABOVE GRO'JJID ARE READ
IF=1 RECEPTOR HEIGHTS ACOVE GROUND IN METERS ARE
READ FOR BOTH GRID AND DISCRETE POINTS.
1
C-CARD GROUP 3 (1014)
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
NSOURC - (CARD COL. 1-4)
NUMBER OF CARD INPUT SOURCES (UNLIMITED)
IF SET EQUAL TO A NEGATIVE NUMBER THE PROGRAM WILL
CONTINUE TO READ SOURCES UNTIL A NEGATIVE SOURCE
IDENTIFICATION NUMBER IS READ.
NGROUP - (CARD COL. 5-6)
NUMBER OF DIFFERENT SOURCE COMBINATIONS (SUM OF SOURCES)
TO OUTPUT. IF NGROUP IS LEFT BLANK OR PUNCHED ZERO THEN
ALL INPUT SOURCES ARE USED TO FORM ANY COMBINED (SUMMED)
SOURCE OUTPUT AND ANY OUTPUT OF INDIVIDUAL SOURCES. IF
NGROUP IS PUNCHED NON-ZERO IT GIVES THE NUMBER OF
DIFFERENT SOURCE COMBINATIONS AND THE DETAILS OF THE
SOURCE COMBINATIONS ARE READ IN CARD GROUP 4 BELOW.
(MAXIMUM = 20)
M WARNING - NGROUP CANNOT BE SET TO A NON-ZERO VALUE UNLESS
ONE OR MORE OF THE FOLLOWING CONDITIONS IS MET -
A - THE PROGRAM IS USING AN OUTPUT TAPE.
B - THE PROGRAM IS USING AN INPUT TAPE WITH NO
CARD SOURCES, NSOURC = 0.
C - THE TOTAL NUMBER OF INDIVIDUAL SOURCES USED TO
FORM ALL COMBINATIONS DESIRED (COUNT EACH SOURCE
ONLY ONCE) IS LESS THAN OR EQUAL TO THE MINIMUM
OF I AND J -
WHERE -
»» I = (IEND-(NXPNTS*NYPNTS*2«NXWYPT)-K-L)/
( NSEASNKl NXPNTS*NYPHTS»NXWYPT ) )
IEND = SIZE OF BLANK COMMON (DESIGN SIZE
= 40000)
K = NSEASN«(NXPNTS»MY«>MT3«NXWYPT)
ir iswtel is NOT i OR iswtm = 2
= 0
IF ISM(8)=1 AND ISW(ll) IS NOT 2
L = NXPNTS»NYPNTS»NXHYPT
IF ISW(7)=1 AND NSEASN>1
«* J = 300
NXPNTS - (CARD COL. 9-12)
NUMBER OF RECEPTOR POINTS IN THE X AXIS OF THE
CALCULATION 6RIO SYSTEM. THIS PARAMETER IS 1C! -OREO IF
TAPE IMPUT IS BEING USED.
ISC03950
ISC03960
ISC03970
ISC03T10
ISC03990
ISC04000
IUC04010
ISC04020
ISC04030
ISC04040
ISC04050
ISC04060
ISC04070
I SCO* 30
ISC04090
ISC04100
ISC04I10
ISC04I20
ISC04130
ISC04140
ISC04150
ISC04160
I SCO* 170
ISC04180
ISC04190
ISC04200
ISC04210
ISC04220
ISC04230
ISC04240
ISC04250
ISC04260
ISC04270
ISC04280
ISC04290
ISC04300
ISC043IO
ISC04320
ISC04330
ISC04340
ISC04350
ISC04360
ISC04370
ISC04330
ISC04390
ISC04400
ISCOVUO
ISC04'iZO
ISC04430
ISC04440
ISC04450
ISC04460
ISC04470
ISCOViflO
I5CO*'«90
IF NXPMTS IS GREATER THAN 2 AMD ONLY TWO VALUES OF X AREISC04500
INPUT IN CARD GROUP 6, THE PROGRAM ASSUMES XII) IS THE
ISC04510
-------
00
I
VO
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C-CARD GROUP 4 12014) AND (1316) (THIS CARD GROUP IS NOT READ IF NGROUP
C ABOVE IS ZERO OR BLANK. CARD GROUP 4 IS ACTUALLY 2 CARD GROUPS.
C THE FIRST IS THE ARRAY NOCOMB AND THE SECOND IS THE ARRAY IDSORC.
C NOCOMB - (CARD COL. 1-4,5-8. ,77-80) (1 OR MORE CARDS)
C ARRAY USED TO SPECIFY THE NUMDER OF SOURCE ID NUMBERS
C USED TO DEFINE A SOUPCE COMBINATION. THE FIRST VALUE
C PUNCHED OH THIS CARD GIVES THE NUMBER OF VALUES (SOURCE
ISC04520
ISCO'i530
ISCO'iD'tO
ISC04550
FIRST POINT AND USES X(2) AS AN 1 ICRE.1ENT TO 6ENER»TE
POINTS XI21 THROUGH X(NXPNTS).
NYPNTS - (CARD COL. 13-16)
NUMBER OF RECEPTOR POINTS IN THE Y AXIS OF THE
CALCULATION GRID SYSTEM. THIS PARAMETER IS IGNORED IF
TAPE INPUT IS BEING USED. ISCO'«570
IF NYHnS IS GREATER THAN 2 AND ONLY TWO VALUES OF Y AREISCO'iEOO
INPUT IN CARD GROUP 7. THE PROGRAM ASSUMES Yl 1) IS THE ISCO 0)
NUMBER OF SPECIAL DISCRETE RECEPTOR CALCULATION
POINTS. THESE ARE ADDITIONAL CALCULATION POINTS OR IN
LIEU OF THE REGULAR GRID SYSTEM POINTS. ALSO, THIS VALUE
SPECIFIES THE NUMBER OF POINTS DESIRED FOR MAXIMUMS UNDERISC04660
ISHC12I. SEE ISHI12>. ISC04670
NSEASN - ICARD COL. 21-24) ISC04680
NUMDER OF SEASONS IN INPUT METEOROLOGICAL DATA (FREQ, TA,ISCO'»690
ISC04600
ISCO'i610
ISC04620
ISC04630
ISC04640
HM, ETC.) (MAX = 4). IF YOU HAVE ANNUAL DATA ONLY SET ISC04700
NSEASN EQUAL TO ONE. (DEFAULT =1). THIS VALUE IS ISC04710
IGNORED IF YOU ARE USING TAPE INPUT. ISC04720
NSPEED - (CARD COL. 25-281 ISC04730
NUMBER OF MIND SPEED CATEGORIES IN THE INPUT ISC047'iO
METEOROLOGICAL DATA. (MAX. = 6 AND DEFAULT =61. THIS ISC04750
PARAMETER IS IGNORED IF YOU ARE USING TAPE INPUT. ISC04760
NSTBLE - (CARD COL. 29-32) ISC04770
NUMBER OF PASQUILL STABILITY CATEGORIES IN THE INPUT ISC04780
METEOROLOGICAL DATA (FREQ. TA, HM, DPOZ, P).( DEFAULT=6) ISC04790
(MAX. = 6). STABILITY CATEGORIES 1 THROUGH 6 FOR THE ISC04800
METEOROLOGICAL DATA CORRESPONDING TO PASQUILL CATEGORIES ISC04810
A THROUGH F. ON INPUT IF THERE ARE LESS THAN 6 STABILITY I5C04820
CATEGORIES THE PROGRAM ASSUMES THE MISSING CATEGORIES ISC04030
HAVE BEEN COMBINED INTO THE LAST CATEGORY INPUT. ISCO
-------
w
o
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ID NUMBERS) PUNCHED IN THE FIRST PART OF THE ARRAY IDSORCISC05090
B2S.'J.-' FOR THE FIRST SOURCE COMBINATION. (MAX = 20 VALUESUSC05100
IOSORC - (C'hO COL. 1-6.7-12.—,73-78) (1 OR MORE CARDS) ISC05110
ARRAY USED TO SPECIFY THE SOURCE ID NUMBERS TO USE IN ISC051.70
FORMING THE COMBINED SOURCE OUTPUT AND INDIVIDUAL SOURCE ISC05130
OUTPUT. IF A POSITIVE VALUE IS PUNCHED THAT SOURCE IS ISC05140
INCLUDED. IF A NEGATIVE VALUE IS PUNCHED THAI SOURCE IS ISC05150
INCLUDED, AS HELL AS, ALL SOURCES LESS IN ABSOLUTE VALUE ISC05160
UP TO AND INCLUDING THE PREVIOUS POSITIVE SOU*CE PUNCHED ISC05170
IF THERE IS ONE Af!3 IF TT IS PART OF THE SAME GROUP.
FOR EXAMPLE ASSJME H3ROUP EQUALS 3. ALSO. ASSUME THE
VALUES PUNCHED INTO NOCOI1B ARE 1, 4, 3 AND THE VALUES
PUNCHED INTO IOSORC ARE -32, 7.10.-22.25, -15. 17. 18.
THE PROGRAM HILL PRODUCE 3 COMPLETE SETS OF OUTPUT. THE
FIRST HILL INCLUDE ALL SOURCES 1 THROUGH 32. THE SECOND
HILL INCLUDE SOURCE 7, 10 THROUGH 22 AND 25. THE THIRD
OR LAST SET OF OUTPUT HILL INCLUDE SOURCES 1 THROUGH 15
AND SOURCES 17 AND 18. NOTE THAT THE SOURCE ID NUMBERS
IN EACH GROUP MUST BE IN ASCENDING ABSOLUTE VALUE IN
THEIR RESPECTIVE GROUP. ALSO. THESE VALUES ARE THE
SOURCE ID NUMBERS YOU HAVE ASSIGNED AND NOT NECESSARILY
THE RELATIVE INDEX NUMBER UNLESS ALL SOURCE ID NUMBERS
ARE BEING OR HAVE BEEN DEFAULTED. (MAX. NO. OF VALUES
IS 200)
ISC05100
ISC05190
ISC05CPO
ISC05J10
iscos?no
ISC05230
ISC05240
iscosrso
t
C ww NOTE - IF YOU ARE USING TAPE INPUT ONLY CARD GROUPS 6A.7A.8A.eB
ISC05270
ISCObZOO
ISC05290
ISC05300
ISC05310
ISC05320
ISC05330
ISC05340
AND 17 THROUGH 17D CAN BE INPUT AND 6A.7A ARE READ ONLY IF ISC05350
ISM 12) = 1 AND NXHTPT IS NON-ZERO,8A IS READ ONLY IF ISC05360
ISHU2) = 1, NXHYPT IS NON-ZERO AND ISHI4) = 1 OR THE INPUTI5COS370
TAPE CONTAINS TERRAIN ELEVATIONS AND 88 IS READ ONLY IF
ISHI12) = 1, NXNVPT IS NON-ZERO AND ISH(25) = 1 OR THE
INPUT TAPE CONTAINS ABOVE GROUND RECEPTORS.
C
C
c
c
c
c
c
C-CARD GROUP 5 (10A4.10A4 FORMAT) (NOT READ IF TAPE I.IPUT)
C UNITS - (CARD COL. 1-40 AND 41-00)
C THE FIRST 40 CHARACTERS OF UNITS GIVES THE CONCENTRATION
C (DEPOSITION) OUTPUT UNITS LEFT JUSTIFIED. THE SECOND 40
C CHARACTERS STARTING IN COL. 41 GIVES THE SOURCE INPUT
C UNITS. IF THE SOURCE IS AN AREA SOURCE THE PROGRAM
C AUTOMATICALLY APPENDS '/SQUARE METER1 OH THE END OF THE
C SOURCE INPUT UNITS. THIS CARD IS AUTOMATICALLY FILLED IF
C THE PARAMETER TK (CARD GROUP 13) BELOU IS DEFAULTED AND
C CAN BE LEFT BLANK.
C
C CARD GROUPS 6,7, AND 0 FOR GRID-TYPE RECEPTORS.
C-CARD GROUP 6 (BF10.0 FORMAT) (NOT READ IF TAPE INPUT OR NXPNTS = 0)
X - ARRAY OF NXPNTS POINTS IN ASCENDING ORDER (MINUS TO P03.)
DEFINING THE X AXI3 OF THE CALCULATION RECEPTOR GRID SYSTEM
(METERS). IF ONLY THC FIRST ? X VALUES ARE NON-ZERO AID NXPNTSISC05570
C
C
c
c
c
c
c
c
C t . .
C-CARO GROUP 7 (8F10.0 FORMAT) (NOT READ IF TAPE INPUT OR NYPNTS = 0)
C Y - ARRAY OF NTPNTS POINTS IN ASCENDING ORDER (MINUS TO POS.I
ISC053QO
ISC05390
XSCOa'-OO
ISC05410
ISC05420
ISC05430
ISC05440
ISC05450
ISC05460
ISC05470
ISC05460
ISC05490
I5C05500
ISC05510
ISC05520
ISC05530
ISCOSS'iO
ISC05550
ISC05560
IS GREATER THAN Z THEN THE PROGRAM ASSUMES THE FIRST POINT
IS THE START OF THE AXIS, THE SECOND POINT IS ACTUALLY AN
INCREMENT TO GENERATE THE REMAINING POINTS AND THE PROGRAM
THEN GENERATES THE X AXIS INTERNALLY. (CARD COL. 1-10.11-20,
21-30. ,71-80 ON EACH CARD)
ISC05580
ISC05590
ISCQ5600
ISC05610
ISC056CO
ISL05630
ISC05640
I5COB650
-------
DEFINING THE Y AXIS OF THE CALCULATION RECEPTOR GRID SYSTEM I3C05660
(METERS OR DEGREES IF POLAR SYSTEM I. IF ONLY THE FIRST 2 V ISC05670
VALUES ARE PUNCHED (NON-ZERO) AND NYPNTS IS GREATER THAN Z ISC05600
THEN THE PROGRAM ASSUMES THE FIRST POINT IS THE START OF THE I5C05i90
AXIS AND THE SECOND IS ACTUALLY AM INCREMENT USED TO GENERATE nC05/CO
THE REMAINING POINTS FOR THE AXIS INTERNALLY. (CARD COL. 1-10.ISC05710
C
c
C
c
c
c
C 11-20, .71-80 ON EACH CARD).
C
C-CARD GROUP 8-1 C8F10.0 FORMAT) (READ ONLY IF ISM(4I = 1)
Z - ARRAY OF TERRAIN ELEVATIONS FOR THE CALCULATION GRID SYSTEM
I FEET). THE Z VALUES FOR EACH POINT ON THE X AXIS ARE READ
FOR EACH VALUE ON THE V AXIS. START A NEW GROUP OF X AXIS DATAISC05 70
CARDS FOR EACH Y POINT 1 TO NYPNTS.
(CARD COL. 1-10,11-20, ,71-80 ON EACH CA50)
C
c
c
c
c
c
C-CARO GROUP B-e I8F10.0 FORMAT) (READ ONLY IF ISMI25) - 1)
C RHT - ARRAY OF RECEPTOR HEIGHTS ABOVE LOCAL TERRAIN ELEVATIONS
C FOR THE CALCULATION GRID SYSTEM (METERS). THE Z VALUES
C FOR EACH POINT ON THE X AXIS ARE READ FOR EACH VALUE ON
C THE Y AXIS. START A NEW GROUP OF X AXIS DATA CARDS FOR
C EACH Y POINT 1 TO NYPNTS.
C (CARD COL. 1-10,11-20, ,71-80 ON EACH TARD)
C
C-CARD GROUPS 6A,7A,8A, AND 8B FOR DISCRETE RECEPTORS.
ISCOS'.-O
ISC05730
ISC05740
ISC05750
ISC05760
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
C-CARD GROUP t (20A* FORMAT ) (NOT READ IF TAPE INPUT OR ISM(18)=0)
C FMT - FORTRAN FORMAT OF THE FREQUENCY OF OCCURRENCE OF SPEED »ND
C DIRECTION 'FREQ1. IF ISHI 181 = 6 THE PROWr DEFAULTS THE
C FORMAT TO (6F10.0) AND CARP GROUP 9 IS NOT READ. IF
C ISU|(18) IS NCM-ZERO THE PRO'JRAM READS THE FORMAT ON THIS
FORMAT(4F10.0)
THESE CARDS ARE ONLY READ IF NXMYPT IS NON-ZERO.
1 CARD IS REQUIRED FOR EACH DISCRETE RECEPTOR.
NXMYPT CARDS MUST BE INPUT.
FOR EACH DISCRETE RECEPTOH(EACH CARD) INPUT
x.t.z WHERE:
X- DISCRETE RECEPTOR X-AXIS LOCATION (METERS)
Y- DISCRETE RECEPTOR Y-AXIS LOCATION (METERS)
Z- DISCRETE RECEPTOR ELEVATION (FEET)
T.HT- DISCRETE RECEPTOR HEIGHT ABOVE GROUND (METERS)
IF TERRAIN ELEVATIONS ARE NOT TO BE CONSIDERED
LEAVE THE THIRD ENTRY ON EACH CARD BLANK. IF ABOVE GROUND
RECTORS ARE NOT TO BE CONSIDERED LEAVE THE LAST ENTRY
OH EACH CARD BLANK.
ISC057QO
ISC05790
ISC05800
ISC05810
ISC05020
ISC05830
ISCOSS'oO
ISC05050
ISC05860
ISC05870
iscoseso
ISC05090
ISC05900
ISC05910
ISC05920
ISC05930
ISC059'iO
I5C05950
ISC05960
ISC05970
ISC05930
ISC05990
ISC06000
ISC06010
ISC060-0
ISC06030
ISC06040
ISC06050
ISC06060
ISC06070
ISC06080
ISC06090
C DATA CARD INCLUDING LEADING AND ENDING PARENTHESIS AND USES ISC06100
C THE INPUT FORMAT READ TO READ CARD GROUP 9A. I5C06110
C-CARD GROUP 9A (FORMAT FMT USED) (THIS CAPD GROUP IS NOT READ IF AN ISC06120
C INPUT TAPE IS BEING USED) ISC06130
C FREQ - ARRAY OF FREQUENCY OF OCCURRENCES OF HIND SPEED. HIND ISC061'iO
C DIRECTION, STABILITY AMD SEASON EXPRESSED AS A PERCENTAGE ISC06150
C OR A FRACTION. THE SUM OF ALL VALUES OF FREQ OVER A SINGLE ISC06]60
C SEASON MUST BE APPROXIMATELY EQUAL TO 100.0 OR 1.0. THESE ISC06170
C VALUES ARE READ HITH N5PEEO VALUES PER C#RO. NSCTOR CAPnS ISC06100
C PER STABILITY AND NSTBLE GROUPS OF THESE CARDS PER SEASON ISC06190
C 1 TO NSEASN. ISC06TOO
C NSPEEO«NSCTORHNSTBLE«NSEASN VALUES ARE READ. ISC06210
C
-------
I
N>
C-CARO GROUP 10 (6F10.0 FORMATI (NOT READ IF INPUT TAPE I ISC06230
C TA - ARRAY OF AMBIENT AIR TEMPERATURES (DEC Kl. THERE ARE NSTBLE ISC06240
C VALUES READ PER CARD AMD NSEASN CARDS READ. IF ANY OF THE ISC06350
C SECOND THROUGH NSTBLE VALUES ON A CARD ARE ZERO THE PROGRAM ISC06J60
C SETS IT EQUAL TO THE LAST NON-ZERO VALUE ENCOUNTERED AS IT ISC06Z70
C SCANS THE DATA CARD FROM LEFT TO RIGHT. ISC06200
C (CARD COL. 1-10.11-20. .51-60 ON EACH CARD1 ISC06290
C ISC06300
C-CARD GROUP 11 I6F10.0 FORMAT! (NOT READ IF INPUT TAPE) ISC06310
C HM - ARRAY OF MIXING LAYER HEIGHTS I METERS I. THERE ARE NSPEED ISC06320
C VALUES READ PER CARD. AND NSTBLE CARDS READ PER SEASON 1 TO ISC06330
C NSEASN. IF ANY OF THE SECOND THROUGH NSPEEO VALUES ON A CARD ISCOo^O
C ARE ZERO. THE PR03RAM SETS IT EQUAL TO THE LAST NON-ZERO ISC06350
C VALUE ENCOUNTERED AS IT SCAt.-S TIT DATA CARD FR'JK LEFT TO ISC06360
C RIGHT. ISC06370
C (CARD COL. 1-10,11-20. .51-60 ON EACH CARD) ISC063CO
C ISC06390
C-CARD GROUP 12 (6F10.0 FORMAT) (NOT READ IF INPUT TAPE) ISC06400
C DPDZ - ARRAY OF VERTICAL GRADIENTS OF POTENTIAL TEMP. (OE6/METER).ISC06410
C THERE ARE NSPEED VALUES READ PER CARD AMD NSTBLE CARDS ISC064ZO
C READ. IF ANY VALUE IS INPUT GREATER THAN ZERO THE STABLE ISC06430
C PLUME RISE IS USED.- IF ANY VALUE IS INPUT LESS THAN ZERO ISC06V.O
THE ADIABATIC TO UNSTABLE PLUME RISE IS USED. IF A VALUE ISC06450
OF ZERO IS INPUT OR THE VALUE IS LEFT BUNK. THE PROGRAM ISC06460
USES A DEFAULT VALUE. IF THE DEFAULT IS FOR THE FIRST VALUEISC06470
ON THE CARD THE DEFAULT VALUE DEPENDS ON STABILITY. IF THE ISC06480
STABILITY IS A.B.C OR 0 A VALUE OF ZERO IS USED. IF THE
STABILITY IS E THEN OPOZ = .02, IF F THEN OPDZ = .055. IF
THE SECOND THROUGH SIXTH VALUE ON A CARD IS ZERO OR NOT
PUNCHED THE PROGRAM SUBSTITUTES THE PREVIOUS VALUE READ
FROM THE CARD.
IF THE REG DEFAULT OPTION IS SELECTED!ISHI22»=0I
ANY USER-INPUT VALUES HILL BE REPLACED HITH
DEFAULT VALUES.
(CARD COL. 1-10,11-20. .51-60 ON EACH CARD)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-CARD GROUP 13 (5F10.0 FORMAT)
C ROTATE - (CARD COL. 1-10)
(NOT READ IF INPUT TAPE)
K>
\
CO
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ISC06490
ISC06500
I5C06510
ISC065ZO
ISC06530
ISC06540
I5C06550
ISC06560
ISC06570
ISC06580
ISC06590
ISC06600
ISC06610
ISC066ZO
ISC06630
ISC066'.0
ISC06C50
ISC066M)
THIS PARAMETER IS USED TO CORRECT FOR ANY DIFFERENCE IN
NORTH AS DEFINED BY THE X.V GRID SYSTEM AND NORTH AS
DEFINED BY THE HEATHER STATION AT WHICH THE HIND
DIRECTION DATA HAS RECORDED. THE VALUE OF ROTATE IS
SUBTRACTED FROM EACH HIND DIRECTION CATEGORY. ROTATE IS
POSITIVE IF THE POSITIVE Y AXIS POINTS TO THE RIGHT OF
NORTH AS DEFINED BY THE HEATHER STATION AND NEGATIVE HHENISC06 70
THE POSITIVE Y AXIS POINTS TO THE LEFT. ISC06600
THE PROGRAM ASSUMES THAT THE METEGROLOGICAL DATA ISC066VO
(HIND DIRECTION) RECORDED AT THE HEATHER STATION IS ISC06700
APPLICABLE AT THE SOURCE LOCATION. MOST HEATHER STATIONS ISC06710
RECORD DIRECTION RELATIVE TO TRUE NG3TH At ID MOST GRID ISC06720
SYSTEMS ARE RELATIVE TO TRUE NORTH. HOWEVER, SOME HEATNERISC067JO
STATIONS RECORD DIRECTION RELATIVE TO MAGNETIC NORTH. ISC06740
ALSO. UTM (UNIVERSAL TRANSVERSE HERCATOR) COORDINATES ISC06750
ARE ORIENTED RELATIVE TO TRUE NORTH AT THE CENTER OF THE ISC067M)
UTM ZONE, BUT HAS AN INCREASING POS OR NE6. DECLINATION ISC06770
AS YOU APPROACH THE ENDS OF THE UTM ZONE. A ONE DEGREE ISC06700
ERROR AT 20 KILOMETERS DOWUUIND RESULTS IN AN ERROR OF ISCOt.790
-------
349 METERS IN THE LATERAL LOCATION OF THE MAXIMUM. ISC06800
(CAM COL. 11-20) ISC06010
1100EL UNITS CONVERSION FACTOR USED TO PRODUCE THE DESIRED ISC06B20
OUTPUT CONCENTRATION (DEPOSITION) UNITS. THE DEFAULT FOR . ISC06K30
CONCENTRATION IS 101*6 MICROGRAMS/GRAM ASSUIUfJG OUTPUT IN ISC06f"<0
MICROGRAMS PER CUBIC METER AND SOURCE UNITS OF GRAMS/SEC. THEISC06P50
DEFAULT FOR DEPOSITION IS 1.0 ASSUMING OUTPUT IN GRAMS PER ISC06R'jO
SQUARE METER AND SOUPdES UNITS OF TOTAL GRAMS. IF THERE ARE ISC06070
ANY VARIATION* FROM THE ABOVE TH£N TK MUST BE INPUT. ALSO. IFISC06MO
IS
ZR -
W
I
TK IS DEFAULTED THEN THE PARAMETER UNITS ABOVE
AUTOMATICALLY FILLED AND CAN BE LEFT BLANK.
(CAHD COL. 21-30)
HEIGHT ABOVE GROUND AT AIRPORT OR HEATHER STATION AT WHICH
THE HIND SPEED HAS MEASURED (METERS) (DEFAULT =10.0)
G - (CARD COL. 31-40) <
ACCELERATION OF GRAVITY (M/SEC«»2) (DEFAULT = 9.8)
DECAY - (CARD COL. 41-50)
= THE HASHOUT COEFFICIENT (PE£ SEC) FOIJ PRECIPITATION
SCAVENGING.
OR
= 0.693/T HHERE T IS THE POLLUTANT HALF LIFE FOR PHYSICAL ISC07000
OR CHEMICAL REMOVAL(SEC). ISC07010
OR
= 0 FOR NO DEPLETION.
NOTE THAT IF THE RE6. DEFAULT OPTION IS CHOSEN AND SO2
IS MODELLED IN AN URBAN ENVIRONMENT A DECAY COEFFICIENT
OF .0000481 (=.693/3600 SEC) IS ASSIGNED
ISC068"0
ISC06900
ISCO&910
ISC06920
ISC06930
ISC06940
ISC06950
ISC06960
I3CCt970
ISC06960
ISC06990
c
C TK -
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C OR ISC07020
C = 0 FOR NO DEPLETION. ISC07030
C NOTE THAT IF THE RE6. DEFAULT OPTION IS CHOSEN AND SO2 ISC07(K.O
C IS MODELLED IN AN URBAN ENVIRONMENT A DECAY COEFFICIENT ISC07050
C OF .0000481 (=.693/3600 SEC) IS ASSIGNED ISC07060
C ISC07070
C-CARD GROUP 14 (6F10.0 FORMAT) (NOT READ IF TAPE INPUT) ISCO7080
C UBAR - ARRAY CONTAINING THE MEDIAN VALUE OF EACH HIND SPEED ISCO. "M>
C CATEGORY (M/SECI. IF ANY VALUE ON THIS CAru IS ZERO THE ISC07100
C PROGRAM HILL DEFAULT THE VALUE 1.5, 2.5 -4.3, 6.8. 9 5. ISC07110
C 12.5 M/SEC DEPENDING ON THE RELATIVE POSITION ON THE CARD. ISC07120
C (CARD COL. 1-10,11-20, ,51-60) ISC07130
C ISC07140
C-CARD GROUP 15 (8F10.0 FORMAT) (NOT READ IF TAPE INPUT) ISC07150
C THETAP - ARRAY OF HIND DIRECTION SECTOR CATEGORY ANGLES (DEGREES).ISC07160
C (PHI) IF THE FIRST THO VALUES OF THIS ARRAY ARE ZERO THE PROGRAM ISCO7170
C DEFAULTS TO THE SET OF VALUES 0.0,22.5,45.0 337.5 DEC. I5C07100
C (CARD COL. 1-10,11-20, .71-80 ON EACH CARD I ISC07190
C (THIS VALUE IS THE DIRECTION FROM WHICH THE HIND IS COMING. ISC07200
C ALSO, THIS ARRAY IS REFEREO TO AS PHI TN THE REMAINDER OF ISC07210
C THE PROGRAM) ISC072ZO
C ISC07230
C-CARD CROUP 16 (6F10.0 FORMAT) (NOT READ IF TAPE INPUT) ISrC72';0
C P - ARRAY OF HIHD SPEEO POWER LAN EXPONENTS. THERE ARE NSPEEO ISCO/^iO
C VALUES READ PER C/RD AND NSTBIE CAPD5 READ. ISC07260
C IF THE FIRST VALUE OF ANY CARD IS ZERO DEFAULT EXPONENTS ISC07270
C ARE USEU. FOR THE URBAN MODE : A .15. B .15, C .20, ISC07200
C P .25. E .30, F .30 . FOR THE RURAL MODE : A .07,B .07 ISC07290
C C .10, D .15, E .35, F .55 . ISC07300
C ALSO. IF ANY OF THE SECOND THROUGH NSPEEO VALUES ON ANYISC07310
C CARD ARE ZERO THE PROGRAM SETS IT EQUAL TO THE LAST NON-ZERO ISC073.?0
C VALUE ENCOUNTERED AS IT SCANS THE CARD FROM LEFT TO RIGHT. ISC07330
C IF A NEGATIVE VALUE IS INPUT, THE PROGRAM HILL SUBSTITUTE . ISC07340
C ZERO IN THE CALCULATIONS. ISC073r.O
C IF THE REG. DEFAULT OPTION IS SELECTED!ISW<22)=0» 1SC073<.0
-------
ANY USER-INPUT VALUES MILL BE REPLACED WITH
DEFAULT VALUES.
(CARD COL. 1-10,11-20, ,51-60 O1 EACH CARDI
NOTE THAT IF CARD GROUPS 17 THROUGH 170 ARE TO BE INPUT THEN
INCLUDE CARD 6ROUPS 17 THROUGH 17D FOR SOURCE 1, FOLLOHED BT
CROUPS 17 THROUGH 170 FOR SOURCE 2, ETC.
C-CARO GROUP 17 (15.311,2F10.0.7F7.0.11,12 I INITIAL CARD FOR EACH
C SOURCE INPUT VIA DATA CARDS. CARD GROUPS 17 THROUGH 170 ARE
C ALL INPUT SOURCE RELATED.
C HUMS - (CARD COL. 1-51
C SOURCE IDENTIFICATION NUMBER. INPUT ALL SOURCES IN
C ASCENDING ORDER OF THE IDENTIFICATION NUMBER.
C (DEFAULT = ORDER OF INPUT STARTING AT 1. DO NOT USE OEFAULTISC075CO
C IF TAPE INPUT) (NUMERIC ONLY). ISC07S10
C IF A NEGATIVE VALUE IS INPUT IT INDICATES THE END OF THE
C SOURCE INPUT DATA.
C DISP - (CARD COL. 6) - SOURCE DISPOSITION.
ISC07370
ISC073QO
ISC07390
ISC07400
ISC07410
ISC07't20
ISC07430
ISC07440
ISC07*»riO
I5C07'-60
ISC07WO
1SCO7400
15007490
Cd
C IF = 0 THE PROGRAM ASSUMES THIS IS A NEK SOURCE TO BE
C MERGED INTO THE OLD TAPE SOURCES IF PRESENT OR THIS
C SOURCE IS TO REPLACE THE OLD TAME SOURCE HAVING THE
C SAME SOURCE IDENTIFICATION NUMBER.
C IF s 1 THE PROGRAM ASSUMES THE OLD TAPE SOURCE HAVING THE
C SAME SOURCE IDENTIFICATION NUMBER IS TO BE DELETED.
C THE REMAINING PARAMETERS ON THIS CARD ARE NOT USED
C NOR ARE CARDS 17A THROUGH 170 READ.
C IF a t THE PROGRAM ASSUMES THE SOURCE STRENGTHS FOR THIS
C SOURCE ARE USED TO RESCALE THE CONCENTRATION
C (DEPOSITION) CALCULATIONS OF THE OLD TAPE SOURCE
C HAVING THE SAME SOURCE IDENTIFICATION NUMBER. THE
C REMAINING PARAMETERS ON THIS CARD ARE NOT USED AND
C THE PROGRAM READS ONLY CARD GROUP 17D. THIS OPTION
C CAN ONLY BE USED IF QFLG IN THE OLD SOURCE DATA
C IS ZERO FOR THIS SOURCE. THIS OPTION CAN BE USED
C TO CONVERT THE CONCENTRATION (DEP) CALCULATIONS
C FROM ONE POLLUTANT TYPE TO ANOTHER WITHOUT HAVING
C TO TOTALLY RECALCULATE.
1 TYPE - (CARD COL. 7)
C SOURCE TYPE WHERE IF 0 A STACK IS ASSUMED, IF = 1 A VOLUME
C SOURCE IS ASSUMED OR IF = 2 AN AREA SOURCE IS ASS'JKCG.
C QFLG - (CARD COL. 8)
C SPECIAL FLAG TO INDICATE KGU THE SOURCE STRENGTH VARIES.
C IF e 0 THEN SOURCE STRENGTH VARIES WITH SEASON ONLY AflO
C NSEASN VALUES ARE INPUT ON ONE DATA CARD UNDER
C CARD GROUP 17D BELOW.
C IF = 1 THEN SOURCE STRENGTH VARIES WITH SEASON AND
C STABILITY. THERE ARE NSTBIE VALUES READ PER CARD
C AIID NSEASN CARDS READ UNDER CARD GROUP 170 BELOW.
C If « 2 THEN SOURCE STRENGTH VARIES WITH SPEED AMD
C SEASON. THERE ARE NSPEED VALUES READ PER CARD
C AIID NSEASN CARDS READ UNDER CARD GROUP 170 BELC'!.
C IF 8 3 THEN SOURCE STRENGTH VARIES WITH SEASON, STABILITY
C AND SPEED. THERE ARE NSPEEO VALUES READ PER CARD
C AND NSTBLE CARDS READ FOR EACH SEASON 1 TO NSEASN
C UIIDER CARD GROUP 170 BEtOM.
C OX - X COORDINATE OF THE SOURCE (METERS) (CARTESIAN COORDINATES
C ONLY) (CARD COL. 9-18). IF THE SOURCE IS AN AREA SOURCE
ISC07520
ISC07530
ISC07540
ISC07550
15007560
ISC07570
ISC07S30
ISC07590
ISC07600
ISC07610
ISC07620
ISC07630
ISC07640
ISC07650
ISC07660
ISC07670
ISC07600
ISC07690
ISC07700
ISC07710
ISC07720
ISC07730
ISC07740
I5C07760
ISC07770
ISC07700
ISC07790
ISC070PO
ISC07610
ISC07020
ISC07630
ISC07640
ISC07050
ISC07060
1SCC7070
I SCO 7000
ISC07890
ISC07900
ISC07910
ISC079ZO
ISC079JO
-------
w
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ENTER THE X COORDINATE OF THE SOUTH-WEST CORNER ISC07940
DY - Y COORDINATE OF THE SOURCE I METERS I (CARTESIAN COORDINATES ISC07950
ONLY I I CARD COL. 19-26). IF THE SOURCE IS AN AREA SOURCE ISC07960
ENTER THE Y COORDINATE OF THE SOUTH-NEST COPHER ISC07970
H - HEIGHT ABOVE GROUND OF THE EMISSION (METERS) (CARD COL. 29-35)ISC079nO
CIF THIS IS A VOLUME SOURCE H IS THE HEIGHT TO THE CENTER OF ISC07970
THF. SOURCE). ISC08000
ZS - ELEVATION OF GROUND AT SOURCE SITE (METERS) (CARD COL. 36-42)ISC00010
(NOT USED IF ISW(4) = 0) ISCOOOTO
- TYPE 0 SOURCES - ircnnmo
TS - STACK GAS EXIT TEMP. (DEG K). IF TS IS LESS THAN OR EQUAL TO ISCCCC'iO
ZERO THE ABSOLUTE VALUE IS ADDED TO THE AMBTENt AIR TEMP. TO ISC00050
FORM THE STACK GAS EXIT TEMP. 4CARD COL. 43-49) ISCOOOSO
VEL - STACK GAS EXIT VELOCITY (M/SEC) (CARD COL. 50-561 ISC08070
D - INTERNAL STACK DIAMETER (METERS) (CARD COL. 57-63) ISC080BO
HB - HEIGHT ABOVE GROUND (METERS) OF THE TALLEST BUILDING WITHIN ISC00090
2«HB OF THE STACK. IF THE REGULATORY MODE IS SELECTED ISC00100
CISWC22)='01I AND H IS LESS THAN OR EQUAL TO HB * ONE-HALF ISCOOMO
THE LESSER OF HB OR BH, THE PROGRAM EXPECTS TO READ AND USE ISC061JO
UPTO 16 DIRECTION SPECIFIC BUILDING HEIGHTS AND WIDTHS ISC08130
FROM CARDS 17CA AND 17CB OF THIS GROUP. IF INPUT AS A ISC08140
NEGATIVE VALUE AND THE HEIGHT CRITERIA ABOVE IS NOT MET. ISC08150
THE PROGRAM READS PAST THE FOUR LIMES. (CARD COL. 64-70) ISC08160
BH - WIDTH (METERS) OF THE TALLEST BUILDING WITHIN 2«HB OF THE ISC08170
STACK. IF THE BUILDING IS NOT SQUARE INPUT THE WIDTH OF A ISC08180
SQUARE BUILDING OF EQUAL AREA. (CARD COL. 71-77) ISCOB190
HAKE - WAKE EFFECTS FLAG. IF THE EFFECTIVE BUILDING WIDTH TO ISC08200
HEIGHT RATIO IS GREATER THAN 5 AND WAKE IS 0 OR BLANK ISC00210
THE PROGRAM USES THE EQUATION OF LATERAL VIRTUAL DISTANCE ISC082ZO
THAT WILL PRODUCE THE UPPER BOUND OF THE CONCENTRATION ISC08Z30
(DEPOSITION) FOR THIS SOURCE. IF THE RATIO IS GREATER THAN ISC08Z40
5 AND WAKE IS SET EQUAL TO 1 THE PROGRAM USES THE EQUATION ISC06250
OF LATERAL VIRTUAL DISTANCE THAT WILL PRODUCE THE LOWER
BOUND OF THE CONCENTRATION (DEPOSITION) FOR THIS SOURCE.
(CARD COL. 78)
- TYPE 1 SOURCES -
SI6YO - STANDARD DEVIATION OF THE CROSSWIND VOLUME SOURCE
DISTRIBUTION (METERS). (CARD COL. 43-49)
SI6ZO - STANDARD DEVIATION OF THE VERTICAL VOLUME SOURCE
DISTRIBUTION (METERS). (CARD COL. 50-56)
- TYPE 2 SOURCES -
XO - WIDTH OF THE AREA SOURCE (METERS) (CARD COL. 43-49)
- ALL SOURCE TYPES -
NVS - NUMBER OF PARTICLE SIZE CATEGORIES FOR GRAVITATIONAL
DEPOSITION OR CONCENTRATION WITH DEPLETION DUE TO
GRAVITATIONAL DEPOSITION (MAX =20).
(CARD COL. 79-80)
NJ
^
CO
C-CARD GROUP 17A (8F10.0 FORMAT) (NOT READ IF NVS ON CARD GROUP 17 IS
C ZERO.
C VS - ARRAY OF SETTLING VELOCITIES FOR THE PARTICLE SIZE CATORIES
C (M/SEC) (CARD COL. 1-10,11-20. .71-80 ON EACH CM70)
C
C-CARD GROUP 17B (8F10.0 FORMAT) (NOT READ IF NVS ON CARD GROUP 17 IS
C ZERO
C FRQ - ARRAY OF MASS FRACTION OF PARTICULATES FOR THE PARTICLE SIZEISCOB'-VO
C CATEGORIES (TRACTION). • I5C00500
ISC08260
ISC08270
ISC08280
ISC08290
ISC08300
ISC08310
ISC08320
ISC08330
ISC08340
I5C06550
ISC08360
ISCOB.,70
ISC083QO
ISCOB790
iscoa'ioo
iscoa<4io
ISC08420
ISCOOViO
iscoe'.'.o
I5C08'»50
ISC08460
ISC08470
ISCOB'iOO
-------
C (CARD COL. 1-10.11-20. ,71-60 ON EACH CARD) ISC08510
C ISC085ZO
C-:ARD GROUP ire ISFIO.O FORMAT» (NOT READ IF NVS ON CMW GROUP 17 is iscoosso
C ZERO ISCOOB'.O
C SAMtU - ARRAY OF SURFACE REFLECTION COEFFICIENTS FO* Til? PARTICLE I5C00550
C SIZE CATEGORIES. A VALUE OF t IS rC TEKLECTION UP TO 1 AS ISC00560
COMPLETE PFFLCCTIUN. (FRACTION 0 TO 1)
(CARD COL. 1-10,11-20, .71-80 ON EACH CARDI
w
I
C
C
C
C-CARO GROUP 17CA (6F10.0 FORMATI (THESE CARDS ARE READ ONLY IF THE
C VALUE OF HB IS < 0 FOR A GIVEN SOURCE OR ISMC22) - "0". IF
C SO THIS CARD IS READ AFTER CARDS 17A-17C IF NVS > 0 OR AFTER
C THE SOURCE CARD IF NVS = 0. I
C
C DSBH - DIRECTION SPECIFIC BUILOINS HEIGHTS. THE MODEL EXPECTS TO
C READ UP TO 16 VALUES DEPENDING ON THETAP OF C\PC GROUP )?.
C ASSUMING THE DEFAULT OF 16 SECTORS. THE FIRST SECTOR IS
C CENTERED AT NORTH COVERING A THETAP DEGREE RANGE AND CON-
C TINUES CLOCKWISE AT THETAP INCREMENTS TO NORTH-NORrHHEST.
C FOR A NORTH SECTOR MIND, INPUT THE BUILDING HEIGHT FROM THE
C APPROPRIATE SECTOR (I.E. EITHER A NORTH OR SOUTH SECTOR).
C NEGATIVE VALUES OF OSBH ARE USED TO DENOTE THE LOUER BOUND
C HAKE EFFECTS CALCULATIONS. (SEE MAKE ABOVE)
C
C-CARO GROUP 17CB (6F10.0 FORMAT) (THESE CARDS ARE READ ONLY IF THE
C VALUE OF HB IS < 0 FOR A GIVEN SOURCE OR ISHI22) = "0". IF
C SO, THIS CARD IS READ AFTER CARD 17CA.)
C
C DSBH - DIRECTION SPECIFIC BUILDING MIDTHS. THE MOC1L EXPECTS TO
C READ UP TO 16 VALUES DEPENDING 0)1 THETAP C: CARD GROUP :S.
C ASSUMING THE DEFAULT OF 16 SECTORS. THE FIRST SECTOR IS
C CENTERED AT NORTH COVERING A THETAP DEGREE RANGE AMD CON-
C TINUES CLOCKMISE AT THETAP INCREMENTS TO HORTH-NORTHHEST.
C FOR A NORTH SECTOR HIND. INPUT THE BUILDING HEIGHT FROM THE
C APPROPRIATE SECTOR (I.E. EITHER A NORTH OR SOUTH SECTOR).
C
C-CARO GROUP 170 (6F10.0 FORMAT)
oo
-4
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Q - (CARD COL. 1-10.11-20. .51-60 OR AS MANY AS ARE READ PER
DATA CARD)
APRAY OF SOURCE EMISSION STRENGTHS. SEE QFLG ABOVE FOR THE
INPUT ORDER. NO DEFAULT VALUES OR LOGIC IS PROVIDED FOR
SOURCE STREIIGTHS BECAUSE ZERO IS » VALID SOURCE STRENGTH.
THE UNITS OF Q ARE...
SOURCE TYPE
STACK OR VOLUME
AREA
- CALCULATING -
CONCENTRATION
MASS PER LR.'IT TIME
MASS PER UNIT TIME PER
UNIT AREA
DEPOSITION
TOIAL MASS
TOTAL MASS PER
UIIIT AREA
IF TK ABOVE IS DEFAULTED THEN THE PROGRAMS Q IS IN GRAMS/SEC
FOR CONCENTRATION AND GRAMS FOR TOTAL DEPOSITION.
ISC00570
ISCOQ580
ISC08590
ISC08600
I5COBMO
ISC086ZO
ISC08630
ISC00640
ISC00650
ISCOfiiO
ISC08670
ISC08600
ISCOB690
ISC08700
ISC08710
ISC087ZO
ISC08730
ISC08740
ISC08750
ISC08760
ISC08770
ISCO"780
ISC00.90
iscoeaoo
ISC08810
ISC088Z3
ISC086JO
ISC08840
iscoenso
ISCOO!">0
ISCOC070
iscocr.ao
ISC08090
ISC08900
ISC00910
ISC08920
ISC08930
ISCCCMO
ISC08950
ISC08960
ISC08970
ISC08980
ISC08990
ISC09000
ISC09010
ISC090ZO
I5C09030
C C090''40
WRITE (6,1234) 15C09050
1234 FORMAT ('!',21X,'ISCLT (DATED 67338) •/ ISC09(K>0
1 ZZX.'AM AIR QUALITY DISPERSION MODEL IN'/ ISC09U/0
-------
c
c
c
c***
2 22X.'SECTION 1. GUIDELINE MODELS1/
3 22X.*IN UNAMAP (VERSION 61 JULY 86.V
4 22X.'SOURCE: UNAMAP FILE ON EPA''3 UNIVAC AT RTP, NC.
CARD READER IS IUNT. PRINTER IS JUNT
IUNT = 5
JUNT = 6
INPUT TAPE IS UNIT HUNT, OUTPUT IS NUNT
HUNT = 2
NUNT = 3
IEND IS TOTAL AMOUNT OF STORAGE IN ARRAY CORE
IEND = 40000
READ RUN TITLE
CARD GROUP 1
READ IIUNT,90011 TITLE
READ PROGRAM OPTIONS
CARD GROUP 2
READ IIUNT,90061 JSH
IF(JSU(24).EQ.O) THEN
WRITE(JUNT.9506) JSH
ENDIF
IF (JSHI14) .NE. 0) HUNT = IABSIJSM(14)I
IF (JSHI15) .NE. 0) NUNT = IABSIJSHI15))
10 IF (JSHI5) .LE. 1) GO TO 70
READ (MUNT,EHD=10) (HSOR(I),I=1,7Z)
00 20 1=2.52
20 HSOR(I) = MSOR(I)
Jl = ISHI9)
00 30 1=5.24
30 ISH(I) = JSH(I)
SET KEGJLATORY OPTION FOR TAPE INPUT
IF(ISM(22I.N£.0) 60 TO 35
ISH(19)=0
.EQ. 0) ISH(IO) = 1
.EQ. 0) ISHUOi = 1
CD
-4
55 CONTINUE
IF (ISHI9) .EQ. 0) ISH(9) = Jl
IF (ISN(ll) .6T. O.AND.ISH(IO)
IF (ISHI1Z) .GT. O.AND.ISH(IO)
10 40 1=1,10
IF (TITLE!I) .NE. J5) GO TO 60
40 CONTINUE
DO 50 1=53.72
50 NSOR(I) = IISOR(I)
60 CONTINUE
C READ 110. OF CARD INPUT SOURCES MITH TAPE INPUT
C»«* CARD CROUP 3 (MITH TAPE INPUT)
READ IIUNT.9004) NSOURC.NGROUP.NXMY.NOFILE
IF(ISH(24).EQ.O) THEN
WRITE!JUNT,9504) NSOURC.NGROUP.NXMY.NOFILE
ENDIF
60 TO 90
70 CONTINUE
DO 60 1=1,25
80 ISH(I) = JSHI11
C SET REGULATORY OPTION
IF(TSH(ZZ).NE.O) 60 TO 65
ISC090BO
ISC09090
I5C09JOO
ISC09110
ir.C09120
I5C09130
I5C09K.O
ISC091SO
ISC09.JO
ISC09170
ISC09100
ISC09190
ISC09COO
ISC09Z10
ISC092i;0
ISC09P30
ISC09Z40
ISC09Z50
ISC09Z60
ISC09Z70
ISC09200
ISC09290
ISC09300
ISC09310
1SC09320
ISC09330
ISC09340
ISC09350
ISC09360
ISC09370
ISC09300
ISC09390
ISC09400
I5C09410
ISC09420
ISC09430
ISC09<«'iO
ISC09'«50
ISC09460
ISC09470
ISC09't30
I3C09<«90
I5C09DOO
ISC09510
ISC09520
ISC09530
ISC095<<0
ISC09f.50
ISC09."itO
ISC09570
ISC09180
ISC09590
ISC09600
ISC09610
ISC09620
ISC09630
I SCO 96 .0
-------
w
00
ISHI19»=0 I5C09650
ISU(20)=1 ISC09MO
ISUI21)=0 ISC09470
6S CONTINUE ISC09600
C READ DATA SIZE PARAMETERS - NO TAPE INPUT ISC09690
C>«» CARD GROUP 3 (NO TAPE INPUT) ISC09700
READ HUNT,90021 NSOURC,NGROUP,NXPNTS,NYPNTS,NXHYPT,NSEASN,NSPEED,ISC09710
1NSTBLE,NSCTOR.NOFILE . TSC09720
IF(ISU(24).EQ.O) THEM 1SC5?7^0
HRITEIJUNT.9502) NSCURC.NGROUP.NXPNTS.NYPNTS.NXMYPT.NSEASN, I SCO 97'. 0
1 NSPEEO,HSTBLE.KSCTOS.HO: XL: ISC09750
ENDIF ISC09760
90 CO'fTINUE ISC09770
IF (NOFILE .LE. 0) HOFILE = 1 ISC09700
LINE = 0 ISC09790
IF (ISMI13) .LT. 0) LINE = 1 ISC09000
ISHI13) = IABS(ISU(13I) ISC09B10
C DEFAULT SIZE PARAMETERS ISC09820
IF INSEASN .LE. 0) NSEASN = 1 15009630
IF IMSPEED .LE. 0) NSPEED = 6 ISC09840
IF (NSCTOR .LE. 0) NSCTOR = 16 ISC09050
00 100 1=1,6 ISC09060
100 ISTBLE(I) s I ISC09S70
IF IISUI9) .EQ. 0) ISHC9) = 3 ISC09000
IFIISHI9) .EQ. 3 .OR. ISH19I .EQ. 4) GOTO 120 ISC09090
IF IISMI9) .EQ. 2) 60 TO 110 ISC099CO
C URBAN MODE 1 ISC09910
ISTBLEI5) s 4 ISC09920
ISTBLEC6) = * ISC099JO
60 TO 130 ISC09940
110 CONTItlUE ISC09950
C URBAN MODE 2 ISC099',0
ISTBLEIZ) a I ISC09970
ISTBLEI3) * t I3C09980
ISTBLEI4) s 3 I5C09990
ISTBLEI5I s 4 ISC10000
ISTBLEI6) = 4 ISC10010
60 TO 130 . ISC100ZO
C RURAL MODE 1 AND URBAN MODE 3 ISC10030
120 CONTINUE ISC10040
130 IF (NSTBLE .LE. 01 NSTBLE = 6 ISC10050
C»»» CARD 6ROUP 4 ISC10 iO
IF (NGROUP .LE. 0) 6O TO ISO ISC10070
READ HUNT.9002) (NOCOMBII),!=!,NGROUP) I5C10080
IFUSMI24).EQ.O) THEN ISC10090
HRITE(JUNT»9502) (NOCOMBII),!=!,NGROUP) ISC10100
ENDIF ISC10110
J = 0 I5C10120
00 140 I-l.NGRCUP ISC10130
140 J = J- NOCOMBI I) ISClOl'tO
REAU (IUMT.9005) IIDSORCCII,I=1,J) ISC101DO
IF(ISVII?4).EQ.OI THEN ISC101AO
WRITE!JUNT.9505) (ID3ORCCI),!=!,J) ISC10170
EHDIF ISC10180
150 CONTINUE ISC10190
IF (ISVK5) .6E. 2) 60 TO 160 ISC10?00
" READ CONCENTRATION (DEPOSITION) OUTPUT UNITS AND SOURCE STRENGTH ISC10?10
-------
CD
VO
CD
-J
C INPUT UNITS ISC102ZO
C«*» CARD GROUP 5 (NOT READ IF TAPE INPUT) ISCIOT^O
READ HUNT,90011 UNITS ISC10240
IF(ISH(24).EQ.O) THEN ISC10Z50
NRITE(JUNT.9501) UNITS ISC10Z60
ENOIF I5C10270
160 CONTINUE ISC10Z80
C REG. DEFAULT OPTION SWITCHES ISC10290
IF 1ISMI7I .LE. 0) ISHI7I = 3 ISC10300
IF (ISMia) .LE. 0) ISWI8) = 3 ISC10310
00 170 1=1,3 ISCI03eO
IF (ISH(J) .LE. 0) ISMII) = 1 ISC10330
170 CONTINUE ISC10340
IF IISWI13) .6T. 0) JUNT = ISUU3) ISCIOJT-O
NLINES = 57 ISCIOI^O
IF IISHC17) .6T. 0) NLINES = ISMC 17) ISC103/0
LINE = 100 ISC10380
C CALCULATE STARTING LOCATION OF EACH ARRAY IN BLANK COMMON ISC10390
C ISC10400
C STARTING LOCATION OF X AXIS INCLUDING ANY SPECIAL CALCULATION ISC10410
C RECEPTOR POINTS ISC10420
Jl = 1 15C10
-------
9504 FORMAmX»2I4.8X,X4.16X,I4> I5C10790
9505 FORMAT!IX.13161 ISC10000
9506 FORMAT!IX.25X21 ISC10610
END iscioar-o
C ISC10830
SUBROUTINE MOOELIX.Y.Z.RHT.CONI ISClO.ViO
C SUBROUTINE MODEL I VERSION 673381, PART OF ISCLT. ISC10 10
COMMON /DIM/ NSOURC.NXPNTS.NYPNTS.NXMYPT.NSEASN.NSPEEO.NSTBLE, ISC10B60
1HSCTOB,ISWC25».UNITS* 20>,TITLE( 20 »,HOFUE ISC10070
COMttON /MET/ FREqi6,16.24),TAI6,4),HMI6,6,4).OPDZI6.6),UBAR(6), ISC100BO
IP!6.& I,PHI!16),ROTATE,6,ZR,DECAY.TK I5C10890
C FORMALLY THE ARRAY FREQ IN COMMON /MET/ MOULD BE DIMENSIONED 6,6, ISC10900
C 6,4. HOWEVER, SOME FORTRAN COMPILERS LIMIT THE MAXIMUM NUMBER OF ISC10910
C DIMENSIONS TO 3, SO THERE ARE ACTUALLY 2 DIMENSIONS IN THE THIRD ISC10920
C SET TO 24. ISC10930
COMMON /REST/ IUNT.JUNT,NXXYY,NXXYYP,ISTBLEI6»,IFLG3.1INE,NLINES, ISC10940
lICARn.NXPSS,NYPSS.MUNT.NUtlT,ICONTI3,2).ITSAV'l572l>NTl.NT2,NT3.HT4ISC10950
2.MSG7I4,3>.MSGBI2>.MSG9I2,2I.MSG10I4,3),NGROUP.MOCOMBI20).IDSORC!2ISC10960
C ADD DIRECTION SPECIFIC SWITCH FOR NAKE TREATMENT BOUNDS ISC10970
300),IEND,XSEA.ISAVSOI300I.NG,NGT.NXHY,IMAKSM(16) ISC10900
COMMON /DIST/ XB,YB.XVP.TNN.TR,TRI,ARG,RP,RPI ISC10990
COMMON /VERT/ SIGZI.SIGZ.HMP.HP.V.VSROU.BBAR ISC11000
C DATA CARD SOURCE INPUT DATA ISC11010
COMMON /SORC1/ NUMS1,TYPE1.DXI,DY1.H1.ZS1,TS1.VEL1,DI.HB1.BH1.BLI.ISC11020
lNVSl,VSll20).FRqil20),6AMMAll20),DSBHlll6),DSBUH16),qil6,6.4), ISC11030
2qFLGl.MAKEl.OISP . ISC11040
C TAPE SOURCE INPUT DATA ISC11050
COMMON /SORC2/ NUMS2,TYPE2.DX2.DY2,H2,ZS2,TS2,VEL2,D2,HB2.BH2,BL2.ISC11060
!NVS2,VS::i20>,FRq2l20I.GAMMA2l20).DSBH2ll6),DSBH2ll6>,q2l6,6,4l, ISC11070
2QFL62,UAKE2 ISC11080
C SOURCE FOP M1ICH CONCENTRATION I DEPOSITION) IS CURRENTLY BEING ISC11090
C CALCUHTtO. ISC11100
CC.TMOH /SORC/ HUMS,TYPE,OX,OY,H,Z3,TS.VEL,0,HB,BH,BL,NV3,VSf201,FRISC11110
iqi20I.GAMMAI20).DSBHI16).DSBH(16>,qi6,6.4>.()FLG,HAKE ISC11120
C ARRAYS FOR STORAGE OF CONSTANTS USED TO CALCULATE SIGY. SIGZ. XV. ISCI1130
C XZ ISC11140
COMMON /FUNCS/ ASI38).BSI3a),PSI6),qSI6),CS(A:,OSI6).ASII3B),BSII3ISC11150
lfl).IAI7).JAI6).DST!33l,IDP ISC11I60
DIMENSION XI1).YI1).ZI1).RHT!1).CONI1).NSOR1I1),NSOR2I1).>ISORI1). ISCI1170
C OELH IS NOW FOUR DIMENSIONS TO INCORPORATE DIRECTION SPECIFIC ISC11100
C BUILDING DIMENSION DATA ISC11190
C ADD VARIABLES FOR DIRECTION SPECIFIC BUILDING DIMENSIONS ISCI1200
1M5G1I3.4),UBRS(6),UNITI20I.UNISI20).STBLE(2),OEIH<6,6,16,16), ISC11210
2XV(6,16).FFq!l),UBHII6.6>.PHS!16»,PHCI16),MSG2C6.2).DSHP!16). ISC1I220
3DSHMI16 I.DSHB21161.DSHB12116) .DSHMINI16 ) ,FMTI201.HBRIGI 6.61 ISC11230
DIMENSION PPRI6).PPU(6) ISC11240
C THE FIRST DIMENSION OF THE ARRAY CON ABOVE CONTAINS NyPMTS"HYPHTS»ISCll?50
C NXHYPT POINTS. THE VARIABLE IS SET UP THIS HAY TO ACCOI1MOUATE AMY ISC11260
C COMBINATION OF GRID SYSTEM POINTS AND SPECIAL DISCRETE POINTS. ISC11270
EQUIVALENCE INSOR1! D.NUMS1 MNSOR2! 11.HUMS21.1NSOR! 11.NUMSI ISC11200
l.!FFqil).FREqil,l,ll),(SIGYO.TS).ISIGZO,VEL).ITSl.XOPI ISC11290
2.ISIGY01,TSl),IFMTIl),6AMHAIin ISC11300
INTEGER TYPE1.TYPE2.TYPE.TITLE,UNIT?,DISP.QFLG,UNIT,UNI3 ISC11310
l.QFLGl.qFLG2,qFLGS,HAKE,FMT,MAKEl,M4^E2 ISC11320
C tlhENSION SWITCHES FOR DIRECTION SPECIFIC BUILDING DIMENSIONS 1SCI1330
INTEGER DSN5M1116 ) ,OSHSH2( 16 1,05JTYPI16 I .OSROCKI16 ) ,DSUBCK( 161 ISC113'iO
DATA MSG1/4HUROA.4HN M0.4HDE 1.4HURBA,4HN M0.4HOE 2.4HRURA,''illL MO.ISC11350
-------
W
N>
14HOE .4HURBA.4HN H0.4HOE 3/ ISC11360
DEFAULT HIND SPEEDS I5C11370
DATA UBRS/ 1.5,2.5,4.3.6.8,9.5.12.5/ ISC113QO
DEFAULT UNITS ISC11370
DATA UNIT/4H MIC,4HROGR,4HAMS .4HPER ,4HCUBI,4HC HE.4HTER ,3»1H . ISC11400
14H GRA.4HH3 P,4HER S.4HEC ,6»1H / ISCll'.lO
DATA UNIS/4H GRA,4HHS P.4HER S,4HQUAR,4HE ME.4IITER ,4»1H . ISt.U••;:(>
14H GRA.4HHS ,C»1H / ISC11430
DEFAULT VERTICAL POTE^TIA'. TTHPrf^TI.TE eRADIEIITS ISCll'«
-------
HYPS = NYPNTS«NXHYPT
HMET IS THE LENGTH OF COMMON /MET/
MMETS2S71
NSO IS THE LENGTH OF COHiION /30RC/
NSO s 251
COUNTERS FOR HARMING MESSAGES
IPR1 = 0
NT* = I
INPUT CALCULATION POINTS AND MET DATA
ISC11930
ISC11T.O
ISC11-J50
I5C11?60
ISC11970
ISC11-JOO
ISC11990
I3C12000
ISC12010
ISC12020
C««HK •«»»»»»»»»»»» »«»» »m»»«>mi»im»i« »mi»»» »»»»»«»»»« «»»»»»»»» an ••«•»« »»»»«I5C1 SO 30
IF (ISM(5) .GE. 2) GO TO 210
C INPUT X FOR GRID RECEPTORS.
IF (NXPNTS .LE. 0) GO TO 60
C»*» CARD GROUP 6 (NOT READ IF TAPE INPUT)
X(3) = 0.0
X(4) = 0.0
j s a
IF (J .GT. NXPNTS) J = NXFNTS
READ (IUNT.9002) (XII),1=1,J)
IF(ISH(24).EQ.O) THEN
WRITE«JUNT,9502) (X(I).I=1,J)
tNDIF
IF (ABS(X(3))»AOS(X(4») 50,30,50
30 IF (NXFNTS .LT. 3) GO TO 60
Al s x(2)
DO 40 1=2,NXPNTS
40 X(I> = X(I-1)»A1
GO TO 60
50 IF (NXPNTS .LE. A) GO TO 60
Cww CARD GROUP 6 (CONTINUED)
READ (IUNT.9002) (X(I),1=9,NXPNTS)
IF(ISU(24).EQ.O) THEN
WRITE! JUNT, 9502) (X( H,1=9,NXPNTS I
ENDIF
60 CONTINUE
C INPUT Y FOR GRID RECEPTORS
IF (NYPNTS .LE. 0) GO TO 110
C«»« CARD GROUP 7 (HOT READ IF TAPE INPUT)
Y(3) = 0.0
Y(4) = 0.0
j r 0
IF (J .GT. NYPNTS) J = NYPNTS
READ (IUNT.9002) (Yd), 1=1,Jl
IHISW(24).EQ.O) THEN
WRITE!JUNT,9502 I (Y(II,I=1,J)
ENDIF
IF (ABS(Y(3))»ABS(Y(4))) 100.80.100
00 IF (NYPNTS .LT. 3) GO TO 110
Al s Y(2)
DO 90 1=2,NYPNTS
90 Yd) = Y(I-1)»A1
GO TO 110
100 IF (NYPNTS .LE. A) GO TO 110
C«»« CARD GROUP 7 (CONTINUED)
READ (IUNT.90021 (Y« 11,1=9, NYPNTS)
IF(ISU(24).EQ.O) THEN ISC12'i90
ISC12030
ISC12060
ISC12070
ISC12080
ISC12090
ISC12100
ISC12UO
ISC121ZO
ISC12130
ISC12140
ISC12I50
ISC12160
ISClc'/O
isci2ino
ISC12190
ISC12300
ISC12210
ISC12220
ISC12230
ISC12240
ISC12250
ISC12260
ISC12270
ISC12260
ISC12290
ISC12300
ISC12310
iscii3;o
ISC12330
ISC123'«0
I5C12350
ISC12360
ISC12370
ISC12300
ISC12390
ISC12400
I5C1Z410
ISC12'i20
ISC12430
ISC12450
ISC12'i60
ISC12'i70
-------
CO
—1
MRITE(JUNT,9502) (Y(I),I=9,NYPHTS) ISC12500
ENDIF ISC12510
110 COUTIHUE ISC12520
C INPUT ELEVATIONS FOR GRID RECEPTORS ISC12530
IF (ISHI4) .EQ. 0) GO TO 132 ISC12~'iO
IF (NXXYY .IE. 01 GO TO 140 ISC12550
00 130 jn.NYPNTS ISC125'.0
K s (J-l)«NXPMTS ISC12570
C*M CARD GROUP 8 (NOT READ IF TAPE INPUT) ISC125UO
PEAD (IUNT,9002) (Z(I*K 1,1=1.NXPHTS) ISC12590
IF(ISU(24).EQ.O) THEN . ISC126no
WRITE(JUNT,9502) tZI I«K 1,1=1,NXPNTS) ISC12610
EUDIF ISC12620
IZO CONTINUE ISC12A30
C INPUT HEIGHTS FOR FLAGPOLE GRID RECEPTORS ISC12640
132 IF (ISMU5) .EQ. 0) 60 TO 140 ISC12650
DO 135 J=1,NYPHTS ISC12660
L = (J-1)»NXPNTS ISC12670
C»«« CARD CROUP 6-2 (NOT READ IF TAPE INPUT) ISC12600
READ (IUNT.9002) (RHT(I«L),I=1,NXPMTS) ISC1C690
IF (ISW(2<*) .EQ. 0) THEN ISC12700
WRITE(JUNT,9502) (RHT(I»L),I=1,NXPMTSI ISC12710
EUDIF ISC127ZO
135 CONTINUE ISC12730
C READ r*RD GROUPS 6A,7A,6A. AND 6B ISC127'<0
C INPUT X.Y.Z, AND RHT FOR EACH DISCRETE RECEPTOR. I5C12750
C READ 1 CARD FOR EACH DISCRETE RECEPTOR. ISC12760
140 IFCNXWPT.I.E 0. I CS TO 150 ISC12770
DO 145 I=1,NXWYPT ISC12700
IF (ISVK4I .NE. 0 .AND. ISHC25! .NE. 0) THEN ISC12790
RFAC(xUNT.9002) X(X«NXPNTS).Y(I*NYPNTS),Z(I«NXXYY).RHT(I4NXXYY) ISC12000
IF(ISH(24).EQ.O) HPITE(JUNT.9502) X(I«NXPNTS).Y(l4NYPNTS), ISC12010
1Z(I4NXXYY)>RHTII«NXXYY) ISC120cO
ELSEIF (ISHI4I .NE. 0) THEN ISC12D30
REAOCIUNT.9002) X(I«NXPNTS).Y(I*NYPNTS),Z(I«NXyYY).DUM ISC12040
IF(irMI£:4).Eq.O) MRITEIJUMT,9502) X(I*NXPNTS),Y(I*NYPNTS), ISC12050
1Z(I«NXXYY) ISC1Z060
ELSEIF (ISHI25) .NE. 0) THEN ISC12O70
READ! lUtlT.9002) X( I«NXPNTS).Y( I4NYPNTS),DUM.RHT( I«NXXYY) ISC120PO
IF(ISH(2<»).EQ.O> WRITE I JUNT, 9502) X( I»NXPNTS),Y(I«NYPHTS), ISC12090
1RHT(I«NXXYY) ISC12900
ELSE ISC12910
IF (ISWI4) .EQ. 0 .AND. ISHI25) .EQ. 0) ISC12920
1READ(IDNT>9002> X(I+NXPNTS),Y(I«NYPNTS) ISC12930
IF(ISH(24).EQ.O) HRITE( JUMT,9502 ) X( I«HXPNTS),Y( I«NYPNTS) ISC129',0
EUDIF I SCI £.950
145 CONTINUE ISC12960
C CHANGE RECEPTOR ELEVATION UNITS FROM FT TO METERS. I5C12970
150 IF(ISM(4).LE.O) GO TO 155 ISC12930
00 151 I=1,NXXVYP ISC12990
151 Z(I)=Z(I)».3Q48006 ISC13000
155 ISH(4)=IABS(ISH(4)I ISC13010
C READ FREQUENCY OF OCCURRENCE OF Him SPEED VERSUS DIRECTION ISC13020
C*** CARD GROUP 9 (NOT READ IF TAPE INPUT OR ISM(18)=0) ISC13050
IF (1514(18) .NE. 0) READ (IUNT.9001) (FHTd ),I=1>20) ISC13040
IF(ISH(18).NE.O.AI1D.ISM(24).EQ.O) THEN ISC11050
WRITE!JUNT,9501) (FHT(I),I=1>20) ISC13COO
-------
160
C
C
c«»*
170
ENDIF
00 160 L=1,NSEASN
00 160 K=1.NSTBLE
M = 4»(K-1)*L
DO 160 J=1,NSCTOR
CARD GROUP 9A (NOT REAO IF TAPE INPUT I
READ (IUNT.FMT) (FPEQI I,J,W) ,I=1,MSPE EO)
IF(ISU(24).EQ.O> THEN
WRITE( JUMT.9599I (FREQI I, J.M). 1=1, NSPEED)
«:NOIF
CONTIHUE
READ AMBIENT AIR TEMP IN DEGREES KELVIN
DO 170 J=1,N3EASN
CARD GROUP 10 (NOT READ IF TAPE INPUT)
READ (IUNT.9002) (TA(I,J),I=1,NSTBLE)
IF(ISU(24).EQ.O) THEN
WHITE) JUNT, 9502 1 (TA(I.J),I=1,NSTBLE)
EHDIF
CONTINUE
c***
C
c
READ MIXING LAYER HEIGHTS IN METERS
DO 180 K=1,NSEASN
DO 180 J=1,NSTBLE
CARD GROUP 11 (NOT READ IF TAPE INPUT),
READ HUNT,9002) (HM( I,J,K),I=1,NSPEECI
IFtISH(24>.EQ.O) THEN
HRITE(JUNT,9502) (HMII,J,K),I=1,NSPEEO)
ENDIF
180 CONTINUE
c***
READ VERTICAL GRADIENT OF POTENTIAL TEMP. IN DEGREES K/METER
DO 190 J=1,NSTBLE
CARD GROUP 12 (NOT READ IF TAPE INPUT)
READ (IUNT.9002) (OPDZ(I,J),!=!,NSPEEDI
IF(ISMI24).EQ.O) THEN
MRITE(JUNT,9502) (OPDZ(I.J1,1-1,NSPEED)
190 CONTINUE
C
c
195
C
C
READ MISC. PARAMETERS
CARD GROUP 13 (NOT READ IF TAPE INPUT)
READ (IUNT,9002) ROTATE, TK.ZR.G, DECAY
IF(ISM(24).EQ.O) THEN
HRITEI JUMT, 9502) ROTATE, TK,ZR, 6, DECAY
ENDIF
SET DECAY IF REG. DEFAULT OPTION CHOSEN
IF(ISH(22).NE.O) 60 TO 195
IF«ISW(J3I.NE.O> GO TO 195
IF(ISHI9).EQ.O.OR.ISM(9).EQ.3) GO TO 195
OECAY=. 0000481
CONTINUE
READ HIND SPEED IN MPS
CARD GROUP 14 (NOT READ IF TAPE INPUT)
READ (IUMT.9002) ( UBAR( I ),!=!, NSPEED )
IF(ISU(24).EQ.O) THEN
ISC13070
ISC130CO
ISC13090
ISC1J100
I5C1J130
ISC13H.O
ISC13150
ISC13160
ISC13170
ISC13100
ISC13190
ISC13200
ISC13210
ISC13220
ISC13230
ISC13240
ISC13250
ISC13260
ISC13270
ISC13280
ISC13Z90
ISC13300
ISC13310
ISC133ZO
ISC13330
ISC133'40
ISC133r>0
ISC133'-0
ISC13370
ISC13300
ISC13390
ISC13400
ISC13410
ISC13'i20
ISC13'.30
ISCll'-'iO
ISC13-I50
ISCI3460
I SCI 3^.70
ISC13'«60
ISC1 3^.90
I SCI 3500
ISC13510
ISC13520
ISC13530
ISC135'iO
ISC13550
ISC13560
ISC13570
ISC13580
ISC13590
ISC13f,00
ISC13610
ISC13/.30
-------
c
c
c
c
c***
WRITFI JUtrT,9502) lUBARm.m.NSPEEC >
ENDIF
READ MIND DIRECTION SECTOR ANGLES (DEGREES)
CARD GROUP 15 (NOT READ IF TAPE INPUT)
READ HUNT,9002) (PHKI),!=!,NSCTOR)
IFIISMI24).EQ.O) THEN
WRITE!JUNT.950Z) ( PHK I ),!=!,NSCTOR)
EUDIF
READ HIND SPEED POWER LAM EXPONENTS
DO 200 J=1,NSTBLE
CARD GROUP 16 (NOT READ IF TAPE INPUT)
READ HUNT,9002) (P(I.J),I=1.NSPEEO)
THEN
,J),I=1,NSPEEO)
IFIISH(24).EQ.O)
MRITE(JUNT.9502) (PI I,
ENDIF
200 CONTINUE
GO TO 230
* TAPE INPUT SECTION »
C
C
C
210 READ (HUNT) (XI I »,!=!, NXPS)
READ triUNT) (VII). 1=1, NYPS)
IF (ISHI4) -NE. 0) READ (HUNT) (Zl I ),!=!, NXXTYP <
IF (ISMI25) .NE. 0) READ (HUNT) IRHTI 1 1. 1=1, NXXYYP)
IF (ISMI12) .LE. O.OR.NXMY -LE. 0) GO TO 220
NXMYPT = NXMT
C»»« CARD GROUP 6A,7A,aA. AND «B FOR HAXItlUtlS MITH TAPE INPUT
C READ 1 CARD FOR EACH DISCRETE RECEPTOR
C IF ELEVATIONS ARE NOT DESIRED. LEAVE THE THIRD VALUE ON EACH CARD
C BLANK. IF RECEPTOR HEIGHTS ABOVE GROUND ARE NOT DCSIREO, LEAVE
C THE LAST ENTRY ON EACH CARD BLANK.
DO 215 1=1 .NXMYPT
215 HEADHUNT, 9002) X(I),Y( I),Z(II,RHTIII
NXPS = NXMYPT
NYPS = NXMYPT
NXXYY = 0
NXXYYP = NXMYPT
NXPNTS = 0
NYPNTS = 0
220 CONTIJAJE
READ (HUNT) ( FFQI I ),!=!, NMET)
230 IF IISHI5) .EQ. O.OR.ISMI5) .EQ. 2) GO TO 240
C
C
ISC13640
ISC13650
1SC13<'0
1SC13AVO
ISC13660
ISC13690
ISCI 3700
ISC13710
ISC13720
ISC13730
ISC13750
ISC13760
ISC13770
ISC13760
ISC13790
ISC13000
ISC13010
ISC13B20
ISC13B30
I5C13Q40
ISC13850
iscr rso
ISC131-70
ISC13000
ISC13070
ISC13900
ISC13910
ISC13920
ISC13930
ISCI3940
ISC13950
ISC13960
ISC13970
ISC13900
ISC13990
ISC14000
MRITE OUTPUT TAPE
MRITE (NUNT) (XII1,1=1,NXPS)
WRITE (NUNT) (YtI),1=1,NYPS)
IF (ISMI4) .NE. 0) WRITE (NUNT) (Z(I),1=1,NXXYYP)
IF (ISHI25) .NE. 0) WRITE INUNT) IRHTII).1=1,NXXYYP)
WRITE (NUNT) (FFQII).I=1,NMET)
240 CONTINUE
C
C DEFAULT INPUT DATA
C***»f *»»*»»»*•»****** •*»*»** •»»«»•* «HHIIHHtffK**»»«*lt«*ll»«*««««IHIK«HltlHHI«lfISC 14100
C MIND SPEED ISC14190
DO 250 I=1,NSPEED 1SC14200
ISC14030
ISC14040
ISC14050
ISC140&0
ISC14070
ISC14000
ISC14090
ISC14100
ISC14110
ISC14120
ISC14130
ISC14140
ISC141SO
ISC14160
ISC14170
-------
I
ho
250 IF (UBARCI) .LE. 0.0) UBAR(I) = UBRS(I)
C HIND PROFILE POVIER LAM EXPONENT
00 Z80 Jn.NSTBLE
IF(Pll.J) .NE. O.O.AND.ISM(ZZ).NE.O) GO TO 260
I = ISTBLEU)
IF (ISHI9) .EQ. Z.ANO.J .6T. 111 = 1*1
C SET URBAN OR RURAL DEFAULT HItID PROFILE EXPONENTS
IF(ISM<9>.EQ.O.OR.1SH(9).EQ.3> THEN
PI1.J>=PPR(I)
ELSE
P(1.JI=PPU(I)
ENOIF
260 C7 = P(l.J)
IFCC7 .LT. 0.0) PU.J) = 0.0
00 Z70 I=2.NSPEED
IF(P(I.J).EQ.O.O.OR.ISH(22).EQ.O) PII,J)=C7
C7 = P(I.J)
IF (PU.J) .LT. 0.0) PII.J) = 0.0
270 CONTINUE
Z60 CONTINUE
C TK AND UNITS
IF (TK .6T. 0.0) 60 TO 320
TK = 1.0E6
IF (ISH(l) .EQ. 2) GO TO 300
DO ?90 1=1.20
290 UNITS!I) = I!NIT(I)
GO TO 3ZO
300 TK = 1.0
00 J11 1=1.20
310 J.«TSm B UNIS(I)
320 CONTINUE
IF (6 .LE. 0.0) 6 = 9.8
IF (ZR .LE. 0.0) ZR = 10.0
ZRMIN = ZR
IF (ZRHIN .6T. 10.9) ZRWIN = 10.C
C HIND OIHECTION
IF (PHI(l) .6T. O.O.OR.PHK2) .6T. 0.0) GO TO 340
DO 330 I s l.NSCTOR
330 PHIII) = 22.5 * FLOAT(I-l)
C VERTICAL GRADIENT OF POTENTIAL TEMP.
340 DO 370 J=1,NSTBLE
IF (DPDZ(l.J) .NE. 0.0) 60 TO 350
I = ISTBLEU)
IF (ISHI9) .EQ. 2.AND.J .6T. 111 = 1 + 1
IF (I .LT. 5) GO TO 350
DPDZI1.J) = STBLEII-41
350 C7 = OPDZ(l.J)
IF(C7 .LT. 0.0) DPDZ(l.J) a 0.0
DO 360 I=2,NSPEED
IF IDPDZ(I.J) .EQ. 0.0) DPDZ(I.J) = C7
C7 = OPDZ(I.J)
IF (DPDZ(I.J) .LT. 0.0) DPDZ(I.J) = 0.0
360 CONTINUE
370 CONTINUE
C IF REG. DEFAULT OPTION CHOSEN. FORCE DEFAULT
C VALUE OF DPOZ.
IF(ISHI22).EQ.O) THEN
ISC14210
ISC14Z20
ISCW30
ISC1<4?50
15Cl'i270
ISC14280
I5CWC70
ISC14TOO
isc i
-------
w
fO
DO 378 J=1,NSTBLE
IS=ISTBLEU)
IFdS.LT.5l THEN
DO 375 I-l.NSPEEO
375 OPOZ(I,J)=0.
ELSE
DO 37' X=1.NSPEED
377 Drozci,JI=STBLE(IS-4)
ENDIF
378 COIITINUE
EUDIF
C TEMPERATURE
00 360 J=1,NSEASN
C7 = TA(l.J)
DO 360 I=2iNSTBLE
IF ITAII.JI .6T. 0.0) C7 = TA(I.J)
IF (TA(I.J) .IE. 0.0) TA(I,J) = C7
380 CONTINUE
C I1IXIHG LAYER HEIGHT
C8 = 0.0
DO 390 K=1,NSEASN
DO 390 J=1,NSTBLE
IF IISH(9) .EQ. 3.ANO.ISTBLEIJ) .GE. 5) HH(l.J.K) = 1.0E4
IF (ISM(9) .EQ. 4 .AKD. ISTBLEfJ) .GE. 5) HM( 1,J.K)=1.0E4
0.0) HMC1.J.K) = CB
ISC14780
ISC14790
0.0) C7 s HH(ItJ.K)
0.0) HMII.J.K) = C7
.EQ. 3.AND.ISTBLEIJ) .GE. 5) Htl(I.J.K) = 1.0E4
.EQ. 4 .AND. ISTBLEU! .GE. 5) Ht1< I.J,K)=1.0E4
Nl
\
CD
IF CHMIl.J.K) .LE.
C7 = Hnil.J.K)
C8 a C7
DO 390 I-2,NSPEED
IF (HHd.J.K) .GT.
IF «••*»«> II »««ISC15300
IF (ISHI6) .EQ. O.OR.ISHI6) .EQ. 2) GO TO 630 ISC15310
CALL TITUH8.2.2) ISC15320
WRITE «JUNT,90041 NSOURC.NXPNTS,NYPNTS,NXWYPT,NSEASN,N5PEED, ISC15330
IMSTBLE.NSCTOR.NOFILE ISC15340
ISCl«.olO
ISC140?0
ISC14830
ISC14B40
ISC14050
ISC14060
ISC14B70
isci4aao
ISC14R90
ISC14900
ISC14910
ISC14920
ISC14930
ISC14940
ISC149DO
ISC 14 960
ISC14970
ISC147SO
ISC14990
I5C150PO
ISC150IO
ISC15020
ISC15010
ISC15040
ISC15050
ISC15060
I3C15070
ISC15000
ISC15090
ISC15100
ISC15110
ISC15120
ISC15'30
ISC15i-iO
ISC15150
ISC15100
ISC1S170
ISC151QO
JSC15190
ISC15200
ISC15210
ISC15220
ISC15230
ISC15240
1SC15250
ISC1S260
ISC15270
I3C15280
ISC15290
-------
W
IsJ
CD
IF (I3HI9I .EQ. 01 GO TO 440 ISC15150
J = ISMJ9) ISC153f>0
CALL TITLRI1.2.0I ISC15370
WRITE CJUNT,90051 (KSGKI.J),I=1,3) ISC153CO
440 CALL TITLR(8.2,0) I5C15390
WRITE (JUNT,9007) TK.6,ZR,ROTATE.DECAY ISClS'iOO
WRITE (JUNT.90081 ISM ISClVilO
IF (NGROUP .LE. 01 GO TO 480 ISClS'iZO
LINE = 23 ISCI^OJO
KK = 0 ISC15'i<«0
DO 470 J=l,NGROUP ISC15'i50
K = NOCOMBU) ISC15
-------
CO
I
C
C
IF (ISVH2) .E4. 2) L = 3
J = 1
IF (ISM(2I .EQ. 21 J = 2
I = I NYRIT3-6 1/10*1
CALL TITUMI.2.0)
KPITE (JUNT, 9009) « t1SG7( 1,L», 1=1,41 .MSG8I 2 ).(HSG2(I,1) ,1=1.6 I.
l'nSG9(I.J).I=1.2),(Y(I),I=l,NYPNTS)
530 IF (NXMYPT .LE. 01 GO TO 540
L = 1
IF (ISHI3) .EQ. 2) L = 3
J = 1
IF (I5M(*I .EQ. 21 J = 2
I = (NXMYPT-6 1/10*1
CALL TITLR(I.2.0)
WRITE (JUNT, 9009) IMS67(I,L»,I=1.«>.MSG8( 2),«MSGZ(I,2»,I=1,6),
linSG9(I.J),I=l,2MY(I»NTPNTS),I=l.NXHYPT>
540 CONTINUE -
NT4 = 1 '
IF (ISM(ZS) .HE. 0) CALL OUTPT(3,K.X,Y,RHT,3)
CALL TITLR(5«NSEASN.2,OI
WRITE (JUNT. 90101 (1,1=1.6)
DO 550 K=1,NSEASN
550 WRITE I JUNT, 90111 K,«TA(I,K),I=1,N3TBLE)
560 CALL TIILIM3«NSEASN»(3»NSTBLE),2.0>
WRITE (JUNT,90IE>
DO 570 K=l,NSEASN
WRIT^ 'JUNT, 9013) K, (I. 1=1, 61
30 570 I=1,NSTBLE
J70 WRITE (JUNT, 9014) I, (NIK J.I.K), J=1,NSPEED)
DO 600 K=1,NSEASN
DO 600 I=1.NSTBLE
It = 9«N5CTOR
IF IK .EQ. LAND. I .EQ. 1) M = H<2
CALL TITLRin.2.0)
IF (LINE .LE. M«4) GO TO 580
IF IK .NE. l.OR.I .NE. 1) GO TO 590
580 CONTINUE
WRITE (JUNT, 9015)
590 WRITE (JUHT,9016) K
WRITE (JUNT, 9017) I,( J,J=1,6 ),(UBAR( J), J=l,6 )
L = 4»II-1)«K'
DO 600 M=1,NSCTOR
600 WRITE (JUNT, 9016) PHI(N),(FREQ( J.H.L) , J=1,NSPEED )
CALL TITLR(5«NSTBLE,2,0)
WRITE I JUNT, 9019)
WRITE (JUNT. 9020) ( J.J=1,NSPEED)
DO 610 I=1,N5TBLE
610 WRITE (JUNT, 9021) I,(OPOZ( J,I).J=1.NSPEEO)
CALL TITLR(5«NSTBLE,2,0»
WRITE (JUNT, 9022)
WRITE (JUNT. 9020) ( J,J=1.NSPEED)
DO 620 I=1,NSTBLE
620 WRITE (JUNT, 9021) I,(P( J.I).J=1,NSPEED)
630 CONTINUE
CALCULATE INTERNAL MODEL CONSTANTS
ISC15TO
ISCIS'JO
ISC15?'.0
ISC15950
ISC15960
ISC15970
ISC15900
ISC159VO
ISC16000
ISC16010
ISC160:0
ISC16030
ISC160'«0
ISC16050
ISC16060
ISC16070
ISC16000
ISC16090
ISC16100
ISC16110
ISC16120
ISC16130
ISC16140
ISC16150
ISC16160
ISC16170
ISC16190
ISC16190
ISC16200
ISC16210
ISC162ZO
ISC16230
ISC16240
ISC16250
ISC16260
ISC16270
15016260
ISC16290
ISC16300
ISC16310
ISC16320
ISC141IO
ISC16340
I5C16350
ISC16360
ISC16370
ISC163BO
ISC16390
ISC16'iOO
ISC16410
ISC16'i20
ISC16430
ISC16440
ISCK'iOO
15C16-;f-0
ISCl^'tTO
-------
00 640 N=1,N3CTOR
Al = (PHKNI-ROTATE WADIAN
PHCINI = COSI All
640 PHS(N) = SINlAi:
C6 = AnSiPHim-PHIll))
IF ;C8 .LE. 0.0) C8 = 22.5
TO = C8»RADIAN
TRI = 1.0/TR
TUN = TAN(TR)
TUNI = 1.0/TAN(0.5»TRI
ZRI = 1.0/ZR
MXPSS = NXPNTS-NXXYY
NTPSS = NYPNTS-NXXTV
PP1 = TK».3909<»2281i»T1»I
IF CISH(l) .LE. 1) PP1 = PP1«2.0
XVPU = 2.15»TNNI
XSEA = 1.0/FLOATINSEASNI
C
CHUB START SECTION THAT LOOPS OVER SOURCE COMBINATIONS.
TSC16490
ISCICIO
ISC16510
ISC16520
ISC16530
ISC16!i'iO
ISC16550
ISC16560
ISCI6570
ISC16580
ISC16590
ISC16600
ISC16610
ISC16620
ISCI6630
ISC16640
ISC16650
ISC16660
ISC16670
W
I
C
C
C
C
C
C
ISC16690
ISC16700
ISC16710
ISC16720
ISC16730
ISC16740
ISC167SO
ISC16760
ISW8 = ISU<8) ISC16770
NOTAP = 0 ISC16700
NOTAP = 0 HEANS ALL TAPE DATA, NOT ENOUGH CORE TO HOLD ALL SOURCESISC16790
SAVE SPECIAL OPTIONS FOR MAXIMA
IF (ISM(IO) .HE. 0) 60 TO 650
ISH(U> » 0
= 0
isumi
ISH(12)
650 ISH11 s
ISHI2 a ISHI12)
ISH10 = ISH(IO)
NOTAP > 0 MEANS ALL SOURCES IN COMBINED REPORTS SAVED IN CORE.
L91 = -1
IF CISHI6) .NE. 1.0R.ISHC11I .EQ. 2) L91 = NSEASN-1
L91 MAKES ROOM FOR SUM OF COMBINED SOURCES IN ARRAY CON
L92 IF=1 MAKES ROOM FOR ANNUAL SUM
NXYSEA = NXXYYPKNSEASN
L92 = 2
O.AND.ISHIUI .EQ. 2) 60 TO 660
.6T.
IF (ISM(4I
L92 = 0
IF (ISI«7»\EQ.
IF OIGROUP .EQ.
LV2 = 1
',60 CONTINUE
IF (NGROIIP .EQ.
l.OR.NSEASN .EQ.
0) 60 TO 660
II GO TO 660
01
ro
^
CO
O.AND.ISMI11) .NE. 2) 60 TO 690
SEE IF CAN DO ALL COMBINATIONS III CORE (NOTAP >
I = NXPS«NYPS
IF (ISVK4I .NE. 01 I = ItNXXYYP
IF IIT,W(25) .NE. 0) I = I4NXXYYP
IF (L92 .EQ. 111= I«NXXYYP
IF IL91 .NE. -II I * HNXYSEA
NOTAP = I
.EQ. l.OR.ISHIS) .EQ. 3.0R.NSOURC .EQ. 0) 60 TO 690
.IT. 0) 60 TO 665
IF IISHI5I
IF INSOURC
J = IEHO-I
IF INSOURC
.LE.
IF iNSO'JPC .6T.
J/NXYSEA.AMD.NSOURC .LE.
3001 60 TO 600
300) 60 TO 690
ISC16000
ISC16810
ISC16820
ISC16..30
ISC16840
ISC16650
ISC16860
ISC16870
ISC16830
ISC16890
ISC16900
ISC16910
ISC16920
ISC16930
ISC16940
ISC16950
ISC169GO
ISC169/0
ISC16980
ISC16990
ISC17000
ISC17010
ISC170HO
ISC17030
ISC17040
I5C17050
-------
I = I«NSOURC«NSEASN«NXXYYP ISC17060
C ERROR HILL EXCEED CORE ISC17070
670 WRITE UUNT,9034) IEND.I ISC17000
GO TO 2490 ISC17090
630 WRITE (JUMT.9035I I5C17100
60 TO 2490 ISC17110
685 WRITE (JUNT.9045) ISC17UO
690 CONTINUE ISC17130
IF IL92 .EQ. l.ANO.NOTAP .EQ. 0) L92 = 0 I5C171'.0
IF IL92 .EQ. II L91 = L91*I ISCI7150
IF (NGROUP .EQ. 01 NGROUP = 1 ISC17160
C START ACTUAL COMBINATIONS LOOP JSC17170
NGT = 0 ISC17190
NG = 0 ISC17190
700 NG s NG»1 ISC17rOO
IF ING .GT. NGROUP) 60 TO 2500 ISC17210
IF (ISMI16) .EQ. O.OR.NG .EQ. 1) LINE s NLINES ISC17220
IF (NG .GT. 1) NGT - N6T*NOCOMD(NG-1 ) ISC17230
C EACH COMBINATION MAY BE 1 OR 2 PASSES. IF ISH(11)=2 INITIALLY THENISC1-"!40
C EACH COMBINATION TAKES TWO PASSES, ONE FOR DETERMINATION OF THE I5C17. 50
C MAXIMA AND THE SECOND FOR DISPLAY. ISC17260
OB C ISC17C70
1 C START FIRST PASS FOR COMBINATION NG ISC17COO
_ ISM(IO) = ISHIO I5C17290
ISMI 11) a ISH11 ISC17300
I SHI 12) s ISH12 I3C17310
IF (ISM(ll) .EQ. 21 ISW(IO) s 1 I3C17320
ISM(B) = ISH8 ISC17330
IF IISHI8).6E.2.AND.NOCOnB(NG).EQ.l.AND.IDSORC(NGT*l).GT.O) ISM(81ISC173'iO
1= 1 ISC17350
GO TO 720 ISC17300
C START SECOND PASS HERE ISC17370
710 CONTINUE ISC17330
1 SHI 1H s o ISC173TO
ISW112I = -1 IS'Jl'^00
ISH(IO) s ISHIO ISC17'ilO
720 IF (NG .EQ. I.AM).ISI-H 12» .IK. -II GO TO 760 I5C174ZO
IF (NOTAP .NE. 01 GO TO 760 ISC17430
C REHIilD AND POSITION INPUT TAPE FOR ADDITIONAL PASSES 15C17ViO
HEHIK-D HUNT If,C17'i50
IF (ISH(14) .LT. 0) GO TO 750 ISC17460
K = 0 ISC17470
730 K = K«l ISC174nO
IF (K .BE. NOFILE) GO TO 750 ISC17490
740 READ (MUNT.END=730) (CON!11,1=1.5) ISC175CO
GO TO 740 ISC17510
750 CONTINUE ISCI7520
READ I HUNT) ICOMCI),I=1,72) ISC17530
READ inUNT)
-------
fa
i
00 770 K=1,NSEASN
LI = IK-1)*NXXYVP
IF (L92 .EQ. II LI s L1«NXXYYP
DO 770 I=1,NXXYYP
770 COlll 11411 s o.O
700 CONTINUE
C
C»»-HI START LOOP OVER CARD AND/OR TAPE INPUT SOURCE DATA
C
C
C
C
C
C
C
C
C
790
IF ING .GT. 1.0R.ISMI12I .EQ. -II GO TO 790
Ml - COUNTER FOR CARD SOURCES
Ml a o
Nl - COUNTER FOR TAPE SOURCES
Nl - 0
Kl - COUNTER FOR TOTAL SOURCES
Kl
NT
NT
= 0
600
610
620
630
ro
•^
CD
C
C
COUNTER FOR SOURCE TO OUTPUT TAPE SUMMARY TABLE
0
NTT - HAX. NO. SOURCES IN OUTPUT TAPE SUMMARY BUFFER
NTT = 572
IFLG1 - FLAG FOR END OF CARDS
IFLG1 = 0
IFLG2 - FLAG FOR END OF TAPE
IFLG2 - 0
Ir'.b3 - FLAG FOR READ CARD ONLY =2. READ TAPE ONLY = 3, BOTH
IFLG3 =1
IF fISH(5l .LE. II IFLG2 = 1
IF (NSOURC .EQ. 01 IFLG1 = 1
CONTINUE
IF (M? .EQ. l.ANO.ISHd?) .ME. -* > 50 TO 630
IF (NOTAP .E<1. 01 GO TO 300
ALL SAVED IN CORE
IF (KSO»1 .GT. NSOURC I GO TO 2410
HUMS = ISAVSOIKSO*!)
GO TO 2260
NOT SAVED IN CORE REREAD TAPE
READ (MUNT,END=2410) (NSORCI»,I=1,NSOI
IF (NSORI1) .HE. 9999991 GO TO 610
IF (ISH(14I .6E. 01 GO TO 000
GO TO 2410
CONTINUE I
DO 620 K=1.NSEASN
LI = (K*L91)»NXXYYP»L9
READ (HUNT,EHO=2410) (CON(L1«I1.I=1,N.'XYYP)
tOUTIHUE
GO TO 2260
CONTINUE
INITIAL CALCULATION PASS
IPR4 = 0
IF (IFLG3 .EQ. 31 60 TO 1130
HAS END OF CARD DATA OCCURRED
IF (IFLG1 .EQ. II GO TO 1130
Ml - Ml»l
IF(NSOURC .GT. 0.AND.Ml .GT. NSOURC> GO TO 1120
READ DATA CARD SOURCE DATA
= 1
ISC17630
isci76
-------
U)
CO
READ HUNT,9023,END=11ZO) NUnsi.OISP.TYPEl,QFLGl,DXl,OYl,Hl,ZSl
ll,VEU.01,HBl,iy'll.WKEl,KV5!.
IF IISMI24) .EQ. 01 THEN
Wnm»JUNT,95031 NUnSl,OISP,TYPEl.QFLGl,DX1.0Yl,Hl.ZSl.TSl,VELl
l.HBl.BHl.HAKEl.NVSl
EHDIF
IF (MUHS1 .LT. 01 GO TO 1120
IF INUMS1 .EQ. 0) NUnSl = Ml
IF (NUMS1 .61. NUHSL) GO TO 640
WRITE (JUNT.9041I NUMSl.NUMSL
60 TO 2490
640 NUNSL = NUnSl
IF IOISP .LT. 3) 60 TO 650
WRITE (JUNT,9042) NUHS1
CO TO 2490
850 IF (TYPE1 .LT. 3) 60 TO 660
WRITE (JUNT.9043) NUHS1
60 TO 2490
660 IF (QFLG1 .LT. 4) 60 TO 670
WRITE UUNT,9044) NUMS1
6O TO 2490
670 CONTINUE
IF (OISP .KE. 0) 60 TO 990
IF (TYPE1 .6T. 0) GO TO 910
IF (VEL1I 860*680,890
880 WRITE (JUNT.9036) NUMS1
VEL1 = l.OE-5
LINE = LINE+1
690 IF 101) 900.900,970
900 WRITE (JUNT.9037) NUMS1
60 TO 2490
910 IF ITYPE1 .6T. 1) 60 TO 950
IF (SIGY01) 920,920,930
920 WRITE (JUKI,9038J NU1S1
60 TO 2490
930 IF (VELD 940,940,970
940 WRITE IJUNT.9039) NUMS1
CO TO 2490
950 IF (XOP) 960.960.970
96C WRITE (JUNT.9040) NUttSl
60 TO 2490
«:70 COHTINUE
IF ITYPE1 .EQ. 0) 60 TO 990
IF (TYPtl .EQ. 2) 60 TO 980
VOLUME
BM1 = 4.3«SIGY01
60 TO 990
AREA
980 BM1 = XOP
XOP = 0.0
990 COMTINUE
IF IDISP
.TSISC18200
isciono
iscierzo
,01ISC16230
EQ. II GO TO 1130
IF (nifP .EQ. 2) 60 TO 1010
IF (NVS1 .6T. 01 60 TO 1000
IF (I?H(1) .IE. 1) GO TO 1005
WRITE CJUHT.9003) riUIISl
60 TO 2490
ISC18750
iscior'.o
ISC18270
iscier.no
ISC18790
ISC10100
ISC10310
ISC183ZO
ISC18330
ISC18340
ISC16350
ISC10360
ISC10370
ISC10380
ISC1B390
ISC10400
I3C18410
ISC16420
ISC16430
ISC10440
ISC18450
ISC18460
ISC18470-
ISClB'iOO
ISC18'i90
ISC18500
ISC18510
ISC1B. ?0
ISC18530
.ISC18540
ISC10550
ISC18!?f.O
ISC18570
isciesno
ISC18590
ISC18600
ISC18610
ISC18630
ISC106'<0
ISC18650
ISC10660
ISC18670
ISC18680
ISC18690
ISC18700
ISC18710
ISC18720
ISC18730
ISC18740
ISC18750
ISC18760
-------
w
U)
00
1000 CONTINUE ISC]8770
C READ PARAMETERS FOR GRAVITATIONAL DEPOSITION I5C10760
READ IIUNT,900Z) (VS1CI1,1=1,NVS1) ISC1B790
IF (ISUC24).EQ.O) WRITE CJUHT, 95021 (VS1(I),I=1.NVS1 I ISC10BOO
READ HUNT, 90021 CFRQ1CI),I=1,NV51) 1SC18310
IF CISHC24I.EQ.OI HRITEC JUMT.9502 I CfaqiC11,1=1,NV51I ISC1602Q
READ (IUNTi9002l (GAI1MA1CI),I=1.NVS1 I ISC188JO
IF CISHC24).EQ.O) HRITEC JUMT,9502 I (GAMMA! I >.I=1.NVS1) ISC188.EQ.O) HRITECJUHT,9502) CDSBH1CN),N=1,NSCTOR) ISC19030
READCIUNT.9002) (DSBM1IN).N=1.NSCTOR) ISC19040
IFIISM(Z4).EQ.O) WRITEUUNT.9502) IDSBH1(N),N=1,NSCTOR) ISC19050
ENDIF ISC19060
IER = 0 ISC19070
DO 1007 N=1,NSCTOR , ISC19080
IF CADSCDSBH1CNM .GT. 9999. .OR. ABSIOSBW1IN)) .GT. 9999.) IER=1 ISC17;?0
1007 CONTINUE ISC191UO
IF (IER .EQ. 1) THEN ISC19110
C WRITE ERROR MESSAGE FOR DIRECTION SPECIFIC SEQUENCE OF CARDS ISC19120
MRm(JUNT,9049) NUMS1 ISC19130
IER=0 ISC191'iO
GOTO 2490 ' ISC19150
ENDIF ISC19160
1010 QFLGS s QFLG1»1 ISC19170
IF (OISP .NE. 2.0R.QFLGS .LE. 1) GO TO 1020 ISC19180
WRITE (JUNT.9027) NUMS1 ISC19190
GO TO 2490 ISC19200
1020 CONTINUE ISC19210
60 TO (1030,1040,1060.1080),QFLGS ISC19220
C SOURCE STRENGTH VARIES WITH SEASON ONLY ISC19230
1030 READ (IUNT.9002) (Ql(1.1,K),K=1,NSEASN) ISC19Z40
LI = 1 ISC19250
12 s 1 ISC19260
GO TO 1100 ISC19Z70
1040 DO 1050 K=1,NSEASN ISC19280
C SOURCE STRENGTH VARIES WITH SEASON AND STABILITY OR SPEED ISC19290
1050 READ CIUNT.9002I CqiCl,J,KI,J=1,NSTBLE I ISC19300
LI = 1 ISC19110
12 = 0 1SC19520
GO TO 1100 ISC19330
-------
C
C
00
-J
1060 DO 1070 K=1,N3EASN
1070 READ HUNT.90021 (QlLG3 .EQ. 21 60 TO 1160
C HAS END OF TAPE DATA OCCURRED
IF (IFLG2 .EQ. 1) 60 TO 1160
READ TAPE SOURCE DATA
READ (HUNT,END=1130) (NSOR?fII,I=1,NSOI
IF INSOR2I1) .NE. 999999* 60 TO 1160
IF (ISMI14) .6E. 0) 60 TO 1140
1150 IFL62 = 1
1160 IF (IFLG1 .EQ. LAND.IF162 .EQ. 1) GO TO 1350
IF (IFLG1 .EQ. II GO TO 1300
IF IIFL62 .EQ. II 60 TO 1270
C CARD AND TAPE INPUT. COMPARE SOURCE NUMBERS
IF (NUMS1 .LT. NUMS2I 60 TO 1330
IF (NUMS2 .LT. NUMS1) 60 TO 1300
C SAME SOURCE. IF DISP = 1 THEN DELETION ONLY
C IF DISP = 2 RESCALE CON (DEPI
IFL63 = 1
L3 = 1
1170 CONTINUE
IF INOTAP .EQ. 0) 6O TO 1200
IF I L9»NOTAP«NXYSEA .LE. IENO) 60 TO 1200
IF IISMISI .EQ. 1.OR.ISM«5I .EQ. 31 60 TO 1190
IF «ISWI51 .EQ. 2.AND.NSOURC .EQ. 0) 60 TO 1190
1180 CONTINUE
I = L9«NOTAP«NXYSEA
60 TO 670
1190 NOTAP = 0
L9 = 0
1200 CONTINUE
DO 1210 K=1.NSEASN
LI = CK»L91I*NXXYYP»L9
READ IHUNT.END=1150) ICONCL1»I),I=1.NXXYYPI
1210 CONTINUE
ISC19340
ISC19350
ISC19360
ISC19370
ISC19330
ISC19390
ISC19'iOO
I SCI 9'. 10
isci9<-iro
ISC19430
ISC19'.SO
ISC19460
ISC19470
ISC19400
ISC19490
ISC19500
ISC19510
ISC19SZO
ISC19530
ISC195'»0
ISC19550
ISC19560
ISC19570
ISC19580
ISC19590
ISC19600
ISC19610
ISC196ZO
ISC19630
ISC19640
ISC19650
1SC19660
ISC19670
ISC196QO
ISC19670
ISC19700
ISC19710
ISCiV/20
ISC19730
ISC19740
ISC19750
ISC19760
ISC19770
ISC19700
ISC19790
ISC19800
ISC19010
ISC190HO
' ISC19830
ISC19850
ISC19C60
ISC19870
I5C19030
ISC19890
ISC19900
-------
W
I
U)
K>
^
CO
60 TO (1220.1370 I.L3
1220 CONTTIIUE
If (DISP .EQ. II 60 TO 790
IF (DISP .NE. 2) GO TO 1250
C RESCALE
DO 1240 K=1,NSEASN
LI = (K»L91)«NXXYYP*L9
C8 = Q1(1.1.K)/Q2(1.1.K)
DO 1230 J=1,NSTBLE
DO 1230 I=1.NSPEEO
1230 Q2(I,J.K) = QH1.1.K)
DO 1240 I=l.NXXtrP
CON(L1*II = COWL1«I)«C8
1240 CONTINUE
GO TO 1310 I
1250 CONTINUE
C REPLACE TAPE SOURCE MITH CARD SOURCE
1260 IF (DISP .LE. 0) GO TO 1260
WRITE (JUNT.9028) HW1S1
GO TO 2490
1270 IF (OISP .LE. 01 GO TO 1340
WRITE IJUNT,90281 NUMS1
GO TO 2490
1280 Kl = Kl»l
ICARD = 1
DO 1290 1=1.NSO
1290 NSOR(I) = NSORKII
GO TO 1370
C STORE TAPE SOURCE. HOLD CARD SOURCE
1300 IFLG3 - 3
1310 CONTINUE
ICARO = 0
Kl = Kl*l
DO 1320 1=1,NSO
1320 NSOR(I) = NSOR2(II
IF (IFLG3 .NE. 31 GO TO 1370
L3 = 2
GO TO 1170
C STORE CARD SOURCE. HOLD TAPE SOURCE
1730 IF (OISP .IE. 0) GO TO 1340
WRITE (JUNT.9029) NUMS1
GO TO 24 VO
1340 IFLG3 =2
GO TO 1260
C SAVE NO. OF SOURCES USED. FOR CORE SAVED RUN
1350 NSOURC = KSO
IF (ISM(5I .EQ. O.OR.ISWC5I .EQ. 2) GO TO 2410
C WRITE END OF TAPE RECORD
NSOR(l) = 999999
WRITE (HUNT) (NSORfII,I=1,NSO)
IF (ISH(TS) .LT. 01 GO TO 1360
ENOFILE NUNT
ENDr.'LE NUNT
BACKSPACE NIOT
C THIS BACKSPACE ASSUMES THE TAPE BACKSPACES OVER THE
c FILE mm:.
1360
I SCI 9910
ISC199JO
ISC19930
ISC199''iO
ISC19950
ISC19'''jO
ISC19970
ISC19'?nO
ISC19990
ISC20000
ISC20010
ISC20020
ISC2C030
1SC20040
ISC20050
ISC20060
ISC20070
ISC20080
ISC20990
ISC20100
ISC20110
ISC20170
ISC20130
ISC20140
ISC20150
ISC20I60
ISCZ0170
ISC20160
ISC20190
ISC20200
ISC20-10
ISC20220
ISC20230
ISC20Z40
ISC202DO
ISC20260
ISC20270
ISC20200
ISC20290
ISC20300
ISC20310
ISC20370
• ISC20330
ISC203'.0
ISC20?60
ISC20370
ISC20300
ISC20390
ISC20'.00
ISC20410
ISC20420
ISC20430
ISC20'i'40
SECOK1 END OF ISC20'.50
ISC20460
ISC20470
-------
1370
1380
1390
1400
1410
1420
1430
1440
C
C
SMITCH OUTPUT UNIT TO INPUT UNIT FOR ADDITIONAL PASSES
KUNT = HUNT
ISH(14) = ISM(IS)
ISMI5I = 2
60 TO 2410
CONTIIIUE
IF (NOTAP .EQ. 0) 60 TO 1400
IF (KSO»1 .LE. 3001 60 TO 1390
IF (ISHI5I .EQ. 1.0R.ISUI5) .EQ. 3) 60 TO 1380
IF (ISU(5> .EQ. 2.AND.NSOURC .EQ. 01 60 TO 1360
60 TO 680
NOTAP = 0
60 TO 1400
ISAVSOIKSOtl) = HUMS
CONTINUE
PRINT SOURCE DATA
IF (ISHI6I .LE. II 60 TO 1410
CALL OUTPT(4,K,X,Y.CON,1» '
CONTINUE
IF (ISMI5I .6E. 2.AND.ISU(12) .EQ. II 60 TO 1420
IF IIFL63 .EQ. l.AND.OISP .EQ. 21 GO TO 2230
IF (IFL63 .EQ. 3) 60 TO 2230
CONTINUE
IF (NOTAP .EQ. 01 60 TO 1440
IF ( L9«NOTAP*NXYSEA .LE. IENDI 60 TO 1440
IF (ISMISI .EQ. 1.0R.ISHI5I .EQ. 31 60 TO 1430
IF (ISMISI .EQ. 2.AND.NSOURC .EQ. 0) 60 TO 1430
60 TO 1180
NOTAP = 0
L9 = 0
CONTINUE
START PLUME PISE SECTION FOP STACKS, P1ANCH FOB VOLUME AND AREAS.
ISCZOino •
ISC20490
ISC20500
I5CiG510
ISC205CO
ISC205JO
ISC205'iO
ISC20550
ISC205'jC
ISC20570
JSC20500
I5C20590
ISC20600
ISC20610
ISC20620
ISCZ-^IO
ISC20640
ISCZ0650
ISC20660
ISC20670
ISC20680
ISC20690
ISC20700
ISC20710
ISC207CO
ISC20730
ISC20740
ISC20750
ISC20760
ISC20770
IS-.:C?30
ISC2U/90
ISC20000
IF (ISMI4I .EQ. 01 ZS = 0.0
KGHl = 0 .
NSH2 = 0
DXP = DX '
OtP = DT
IF (TYPE -6T. 01 GO TO 1720
C CALCULATE CONSTANTS AND PARAMETERS FOR STACKS
R - 0.5*0
RO = 0
XO = 0
SI6ZOP = 0.0
00 1450 L=1,NSCTOR
DO 1450 I=1,NSTBLE
1450 XY(I.L) = 0.0
C DETERMINE IF HAKE EFFECTS USED, JTYPE = 0 NO MAKE EFFECTS.
C JTYPE = 1 SQUAT BUILDING. JTYPE = 2 TALL BUILDING
JTYPE = 0
C SET SWITCH TO ALLOW USE OF DIRECTION SPECIFIC BUILDING DIMENSIONS
KTYPE = 0
IF (HB .LT. O.I THEN
KTYPE = 1
HB = ABS(HB)
EUDIF
ISC20820
ISC20030
ISC20840
ISC20850
ISC208ftO
ISC20870
ISC20880
ISC20090
ISC20900
I5C20910
ISC20920
ISC20930
I5C209',0
ISC20950
I5C20960
ISC20970
1SC20900
ISC20990
ISC21000
ISC21010
ISC210CO
ISC21CHO
I->C210'iO
-------
IF 1KB .EQ. 0.0) 60 TO 1480 ISCZ1050
DETERMINE ORIGINAL BUILDING HAKE EFFECTS SWITCHES ISC21060
KM = Z.O»SQRT«BW"BH».31830988) ISCZ1070
ci - Z.S«HB isczioao
CZ = HU«1.5*HB ISCZ1090
HHIN = AMINICCI.CZI ISCZ1100
IF (HM .SE. KB) GO TO 1460 ISCZ1110
JTYPE = 2 ISCZ11.70
GO TO 1470 ISCZ1130
1460 JTYPE = 1 ISCZll'iO
1470 CONTINUE • ISCZ1150
HBZ = Z.O«HB ISCZ1I60
HB1Z = l.Z«HB " ISCZ1170
IF (KTYPE .Ed. 1) THEN ISCZ1100
KN s 0 ISCZ1190
C DETERMINE BUILDING HAKE EFFECTS SWITCHES BASED ON HIND SECTORS ISCZ1ZOO
DO 1470 L-l.NSCTOR ISCZ1Z10
DSJT»P(L) a o ISCZ1Z20
DSNSHKLJ = 0. ISCZ1Z30
DSNSWZIL) = C. ISCZ1Z40
IF s DSBHIL) ISCZ1Z60
03HMIMIL) a AMIN1(DSBH( D.DSHHI L)) ISCZ1Z70
IF IDSIIW(L) .6E. DSBH(D) 60 TO 1472 ISCZ1Z80
OSJTYP(L) a 2 ISCZ1Z90
GO TO 1475 ISCZ1300
1472 DSJTYP(L) = 1 ISCZ1310
1<.75 CONTINUE ISCZ13CO
DSHB2IL) a 2.0*DSBHILI ISCZ1330
DSHB1Z(LI a l.Z«OSBH(L) ISCZ1340
HMOHB = DSHHID/OSBHIL) ISCZ1350
C CHECK DIRECT. SPEC. CONDITIONS FOR UPPER BOUNDS HAKE SWITCH ISCZ1360
IF IHMOHB .6T. 5 .AND. IUAKSHIL) .NE. 1) THEN ISCZ1370
KN a KN * 1 ISCZ1380
DSUBCK(KN) = L ISCZ1390
ENDIF ISCZ1400
1478 CONTINUE ISCtl'.lO
EHDIF ISCZ14ZO
C PIUHE RISE EQUATION PARTS ISCZ1430
1480 Cl s VEL«R*R ISCZ1440
CZ = C1*VEL ISCZ1450
Cl a C1»G ISCZ1460
HP = H ISCZ1470
IF (HP .LT. ZRMIN) HP a ZRMIN ISCZ1400
C3 c HP»ZRI ISCZ1490
C13 = 6.0»VEL«R ISCZ1SOO
VELI = 1.0/VEL ISCZ1510
C4 a 8.0«R»VELI ISCZ1S20
C CALC PARAMETERS FOR PLUME RISE ISCZ '^0
VELZO = Z.O«D«VEL ISCZ1S40
D3 a 3.0«D ISCZ1550
DO 1610 I sl.NSTBLE ISCZ1560
DO 1610 J=1,NSPEEO ISCZ1570
C UBAR AT H ISCZ1500
UBH = UBAR(J)«C3««P(J.I) ISCZ1590
UBHKJ.I) = 1.0/UBH ISCZ1600
HBRIG(J.I) = H ISCZlfclO
-------
N>
\
oo
C NO STACK TIP OOUNHASH IF DIRECTION SPECIFIC BLOG. DOHNHASH IS .USEDISC21620
IF CKTYPE .EQ. 1 .AND. ISHI20) .EQ. 1) GOTO 1550 ISCZ1630
IF (ISHI20) .EQ. l.AND.VEL -LT. 1.5«UDH) IIBRIG(J.I) = H»VEL2D*UDHII5CZ16 ISCZ1660
DO 1610 K=1,NSEASH ISC21*90
T = TS ISC21700
IF (T .LE. 0.0) T = ABSITI«TA(I,K) ISC21710
Cll = TAII,K)/T - ISC2I720
C BUOTANCY TERN ISC21730
F = C1M1.0-C111 ISCZ17'iO
IFIF.LT.O.OI F=0.0 I3C21750
C MOMENTUM TERM ISC21760
FM=C2»C11 I3C21770
BETAJ=1./3.*UBH*VELI ISC21700
BETAJ=BETAJ»BETAJ ISC21790
BETAJI=1./BETAJ ISC21600
H = 4«(K-1) ISC21810
IF CKTYPE .EQ. 0) THEN ISC21820
C DO ORIGINAL SINGLE BUILDING OOHNHASH HAKE EFFECTS CALCULATIONS ISC21070
C HPR1LT IS A SUBROUTINE THAT CALCULATES FINAL PLUME RISE ' ISCZIO'.O
C IN A MANNER CONSISTENT WITH THE MPTER MODEL. ISC21850
C DELHIJ.I,L,H»1) IS FINAL PLUME RISE. ISC21660
C DELHIJ,I,L,M»2I IS DISTANCE TO FINAL RISE. ISC21870
C DELH(J,I,L,M»3) AND DELHI J.I,L.M»4) ARE FLAGS FOR ISC21800
C BUILDING HAKE EFFECTS CALCULATIONS. ISC21890
CALL MPRlLT(I>T,TAfI,K),F,D.VEL.UBH,DELH(J,I,l,M»n, ISC21nOO
1 DPOZ(J,I»,DELHIJ.I,1,M»2)I ISCZlvlO
DELHIJ.I,1.M»3)=1. . ISC219CO
OELHIJ,I,1,M»4)=1. . ISC21930
C IF NO BUILDING THEN SKIP BUILDING OOHNHASH CALCULATIONS ISC21940
IF IJTYPE .EQ. 01 GO TO 1610 ISC219f.O
C CALC. PLUME RISE DUE TO MOMENTUM FOR HAKE EFFECTS CALCULATIONS ISC21960
C USING UNAMAP 5 ISC MOMENTUM RISE ISC21970
XB = HB2 ISC21900
IFIC9.GT.O.O) 60 TO 1570 ISC21990
C UNSTABLE CONDITIONS ISC22000
C CALCULATE MAX OOMNHIND DISTANCE ISCZ2010
IF(F.LE.O.) THEN I5C220CO
OMAX=4.«D«VELI»UDHI(J,I)«(VEL«3.»UBH)i»2 ISC22030
ELSE ISC22040
XSTAR=3*.»F"».4 ISC220SO
IFIF.LE.55.) XSTAR=14.»FM.625 ISC22060
DMAX=3.5»XSTAR ISC22070
ENDIF ISC22000
IFIXB.GT.DMAX) XB-OMAX ISC220VO
HP=3.«FM»XB«BETAJI«UBHIIJ,I»UBHI(J,I) ISC22100
IIP-HP»». 33333333 ISC22110
GO TO 1560 ISC22120
C STABLE CCMOmONS ISC22130
1570 S=C9/TAII,K) . ISC22140
SSQ=SQRT(SI ISC22150
SSQT.-l./SSQ ISC22160
0.1AX=3.1415926*UBH«SSQI I5C22170
IFIF.LF.O.I DMAX=DMAX«.5 ISC2Z100
-------
IF(XB.GT.DMAX) XB-OHAX ISCZZI90
HP=AMAXl(l.E-10,3.<^M»BETAJI»UBHI(J,I>««SQI*SirK3Sq«XBMJDHr«. .'.i; Ml5C2?r.-)3
HP=HP*».33333333 ISC22210
C HP1 IS MAX ISC MOMENTUM RISE ISC22220
1560 HP1=3.«VEL«D«UBHKJ,I) ISC22230
IFIHP.GT.HP1I HP=IIP1 ISC22Z40
HP=HP«H ISC22250
IF (HP .GT. HMIH> CO TO 1590 ISC22260
NSM1 = 1 ISC22Z70
C SET FLAG TO MODIFY SI6Z ISC22200
DELHIJ,I,1,M»3) * -DELH(J.I.1,M»3> ISCZ2290
IF (HP .GT. HB12I 60 TO 1600 ISC22300
C SET FLAG TO MODIFY XT ISC22310
DELHI .M,l,n«4> = -OELHU,I,1»M»4) ISC2'3'>0
GO TO 1600 ISC22~30
1590 NSH2 = 1 • ISC22340
1600 CONTINUE ISC22350
ELSE ISC22360
C DO DIRECTION SPECIFIC BUILDING DOHNHASH MAKE EFFECTS ISCZ2370
DO 1608 L=1,NSCTOR ISCZZ380
C SET BLDG HAKE EFFECTS FLAGS FOR DEFAULT TO ORIGINAL CALC. ISCZ2390
DELH(J,I,L.M+3) = 1. ISC22400
OELHIJ,I,LiM»4> s \. ISC22410
IF (DSJTYPILI .EQ. 0) GOTO. 1608 ISC2Z420
C CALC. PLUME RISE DUE TO MOMENTUM FOR HAKE EFFECTS CALCULATIONS ISCZ2430
C USING UNAMAP 5 ISC22440
IFIC9.GT.O.O) GO TO 1602 ISC22450
C UNSTABLE CONOITIOtIS ISC22460
C CALCULATE MAX OOWJIHIND DISTANCE I5C22470
IFIF.LE.O.I THEN I5CCC';30
DMAX=^.HD»VELI«UBHI!J,II»IVEL*3.«UBH)«Htz ISC22490
ELSE ISC22500
XSTAR=V».«F»«.A ISC22510
IF(r.LE.S5.) XSTAR=14.«FM.6Z5 ISCZZ520
OMAX=3.5»XSTAH ISCZZ530
ENDIF ISCZZS'iO
IF(DSHB2(L).GT.DMAXI DSHB2(LI=DMAX ISC22S50
OSHPIL)=3.«FH>DSHB2(LI«BETAJIKUBHIIJ,I)«UBHI(J,I) ISCZZ560
OSHP(L)=OSHPIL)»». 33333333 ISC22570
GO TO 1604 ISC22SOO
C STABLE COfOITIONS ISC2Z5<>0
1602 S=C9/TA(I.KI ISC22600
SSq=SQRT(SI ISC22610
SSQI=1./SSQ ISC226?0
OMAX=3.14159Z6«UBH»SSqi ISC22630
IFIF.LE.O.I DMAX=OMAX«.5 I5C22600
IF(DSHBZCL).GT.DMAX) DSHB2I L»=DMAX ISC226EO
DSHP(L)=AMAX1(1.E-10,3.»FM»BETAJI"UBHIIJ,I)»SSQI»5I»:(S5Q»DSH02(LI»ISC226^0
1UBHKJ.IMI 1>C22670
DSHP«L)=OSHP(L)»».33333333 . ISC22600
C HP1 IS MAX ISC MOMENTUM RISE ISC22690
1604 HP1=3.«VEL«D»UBHUJ,II I3C227CO
IFCOSHP(LI.GT.HPl) DSHP(L)=HP1 ISC22710
DSHP(LI-DSHP(LI»H ISC2Z7ZO
IF IDSHP(LI.GE.3.«OSBHCL).OR. DSHPCL).GE.3.*DSHMIL)) GOTO 1606 ISC22730
DSNSMKL) = 1 ISC227'40
C SET FLAGS TO MODIFY SIGZ AND XT 1GC22/DO
-------
w
OELH(J,I.L.H»3) - -OEIHU,I,L,H»3)
IF (DSIIPIL1 .GT. DSHB12ILM GOTO 1600
DELHU.ItL,n»4) = -DELH0
ISC23Z50
ISC23260
ISC23Z70
ISC23280
ISC23290
ISC23300
ISC23310
ISC233JO
-------
1710
C
C»«)Hi
C
C
1720
IF (ISWm .EO. 4) XY(I.1)=XVY(C5«2.15.ISTBLE(IM-C7
IF (XYII.1I .LT. 0.0) XY(I.l) = 0.0
COMTIIIUE
HB10 = C7
GO TO 1770
VOLUI1E OR AREA EMISSIONS
ISC23330
ISC23340
ISC23350
ISC233(.0
ISC23370
ISC233SO
»»ii«»" »»»»»»«•• »»»•« »»»»*»•»•»»•« «»«»»*••»*»« i»»»»*»»-»»«»"»»*»«» »»»«ISC233'70
CALCULATE CONSTANTS AND PARAMETERS FOR VOLUME AND AREA SOURCES. ISC23400
CALCULATE INVERSE UBAR AT H
CONTINUE
HP s H
IF (HP .LT. ZRMINJ HP = ZRMIN
C3 = HP»ZRI
DO 1730 I=1,NSTBLE
DO 1730 J=liNSPEED
1730 UBHIU.I) = 1.0/(UBARIJ)«C3»«P(J.m
C CALC EFFECTIVE AREA
XO = BM«BM
C CALC EFFECTIVE RADIUS
RO = SQRTIXOK. 31630988 I
IF (TYPE -EH. 2) GO TO 1750
C VOLUME SOURCES (VIRTUAL DISTANCES)
XMX = 001.0»2.15*SIGTO
SIGZOP = SI6ZO
C XZ = VIRTZ(SIGZOP>ISTBLE(I),XQ) , XB = DISTANCE
DO 1740 I=liNSTBLE
IF(ISM(9) .HE. 4) XY(I.1)=VIRTY(SI6YO.ISTBLE(I))
IF(ISHI9) .EQ. 4) XY(I,ll=XVYtSIGYO,ISTBLE(U»
1740 CONTINUE
60 TO 1770
C AREA SOURCES (VIRTUAL DISTANCES)
1750 C9 - ROKTNNI
DXP = DXP»0.5"BM
DYP = OYP»0.5"BU
XMX a 001.0«0.5*BM
C XZ = BH, WIDTH OF AREA SOURCE
00 1760 I=1,NSTBLE
XYd.lt = C9
1760 CONTINUE
C
C ALL SOURCE TYPES MERGE HERE
1770 Cl = 1.0
C MINIMUM CALCULATION DISTANCE
XMX = AMAXKXMX.Cl)
IF (IPR4 .EQ. 0) 60 TO 1780
JJ * 3
IF fIS:J(6) .6E. 2» JJ = 1
CALL TITLR(3.JJ.O)
MRIlt (.H>NT, 9030 1 NUMS
1780 COmiNUE
IF (KTYPE .EQ. 1 .AND. KN .6T. 0) THEN
C WRITE EARNING MESSAGE ABOUT USE OF UPPER BOUNDS EQ.
f.-S
IF (ISWI6) .GE. 2) LL=1
CALL TITLR(3iLL.O) •
WRITE! JUT IT, 90481 NUMSi(DSUBCK(N),N=l.KH)
ISC23410
ISC23'iTO
ISC23'«IO
ISC234'iO
ISC230
FOR OIR. SPEC.ISC23850
ISC23060
ISC23B70
ISC23POO
ir.C230<)0
-------
C
C
HRITE(JUHT,9050I
EMOIF
IF (ISM(4) .EQ. 01 ZS = 0.0
IOP = 0
IF (NVS .6T. O.OR.ISH(l) .EQ. 2) IDP = 1
Cl = PP1
IF I TYPE .EQ. 2> CI = C1«XO
IF (NVS .6T. O.AND.ISM(l) .It. 11 Cl = 0.5»C1
LOOP OVER Y GRID COORDINATES
IF (NYPNTS .LE. 01 GO TO 1850
IKSM = 1
JJ = 0 >
1790 JJ = JJ»1
IF (JJ .GT. NYPNTSI 60 TO 1850
JJJ = (JJ-1)«NXPNTS
IF (ISHC2) .GT. 1) GO TO 1800
YP = Y«JJ)-DYP
GO TO 1810
1800 YC = V(JJ)«RADIAN
YS = SINIYCI
YC = COSCYC)
1810 CONTINUE
C
C
LOOP OVER X GRID COORDINATES
II = 0
1820 II - 11*1
IF in .GT. NVPtrr^j eo TTJ 1771
IF (ISH<2) .GT. II GO TO 1830
XP ~ XIIII-OXP
bO TO 1840
1830 YP = X(III»YC-DVP
XP = X(II)«YS-DXP
1840 IJ - JJJ«II
60 TO 1900
C
C
LOOP OVER SPECIAL CALCULATION POINTS (RECEPTORS)
1850 IKSM = 2
IF (NXUYPT .LE. 0) 60 TO 2230
IJ = NXXYY
1860 IJ = IJ»1
IF (IJ .GT. NXXYYP) 60 TO 2230
JJ = IJ4NYPSS
II = IJ»NXPS3
IF (ISH(12) .NE. 1 I GO TO 1880
IF (XI III 1 1880.1870.1880
1870 IF (Y(JJ)I 1880.1860.1880
1880 CONTINUE
IF IlSWm .GT. 1) GO TO 1890
YP = Y(JJI-OYP
XP = Xdll-DXP
GO TO 1900
1890 YC = Y(JJI»RAOIAN
YS = SIN(YC)
ISC23900
ISC23910
ISC23920
ISC23930
ISC23TiO
ISC23950
ISC23960
ISC23970
15023^00
ISC23990
ISC2*010
ISC2V tQ
I5C24030
ISC24040
ISC24050
ISC24060
ISC24070
I5C21030
ISC2'«090
ISC24100
ISC2«»110
ISC241TO
I5C2<«130
ISC241'iO
ISC24150
ISf?*«VO
ISC24100
isc2
-------
DO
YC = COSC TCI
VP s X(III«YC-DYP
XP = X
GO TO 2220
1922 CONTINUE
JN = 0
ISC24470
ISC24480
ISC24490
ISC24500
1SC24510
ISC245ZO
ISC24530
ISC2'«5910
NSH2 = OSNSHZINI ISCZs'\JO
XMX - 0.0 ISC24930
IF (OSJTYP(NI .EQ. 01 60 TO 1944 ISC24940
C HAKE EFFECTS COEFFICIENTS TO CALC SIGZ AND XT ISC24950
C FOR DISTANCES LESS THAN 10HB (SQUATI OR 10HH (TALL) ISC24960
HWOHB = DSHWCNI/DSBHCNI ISC24970
C6 s OSHH(NI ISC24980
IF (OSJTYP(N) .EQ. II C6 = DSBH(N) ISC24990
C DETERMINE MINIMUM CALCULATION DISTANCE FOR DIRECTION SPECIFIC ISC25000
XMX = 3.0»C6 ISC250IO
POIX = AMAX1IXHX.1.) ISC250CO
IF (RD .LT. XMXI THEN ISCZ5030
-------
SET FLAG AND COUNTER TO MRITE SOURCE-RECEPTOR DISTANCE MESSAGE
JN = JN » 1
DSRDCMJN) - N
GOTO 2210
ENDIF
3I6Z = B14B2»X )
ISC25040
ISC25050
ISC25060
ISC25070
iscer-nao
ISC25090
ISC25100
ISC25110
ISC25120
ISC25130
ISC25140
ISC25150
ISC25160
ISC25170
ISC25100
ISC25190
ISC25200
ISC25210
IHC25220
ISC25230
CO
-J
C COEFFICIENTS FOR SIGZ
81 = 0.499«C6
C COEFFICIENTS FOR XT I XT » 2.15»SI6YO/COTJ.5»DELTA THETAI )
C (WHERE SIGYO = B3«B2»X I
IF (DSJTYPINI .EQ. 2) GO TO 1930
IF (HMOHB .6T. 51 GO TO 1924
B3 = 0.35»DSHH(N»-0.201«OSBH(NI
GO TO 1932
1924 IF (IHAKSM(N) .EQ. 1) 60 TO 1926
B3 » 0.49»OSBH(N)
60 TO 1932
1928 B3 s 1.549«DSBH(N)
GO TO 1932
1930 B3 = 0.149«OSHH(N)
1932 CONTINUE
C FOR DISTANCES GREATER THAN OR EQUAL TO 10HB 1 SQUAT I OR 10HH (TALUISC252'tO
SIGZOP = 1.2»C6 ISC25250
C7 = 10.0«C6 ISC25260
HB10 = C7 ISC25270
DO 1942 I=1,NSTBLE ISC252BO
C XZ IS DEPENDENT ON DISTANCE AND IS CALCULATED BELOW IN MAIN MODEL ISC25 90
C CALCULATIONS ISC2S300
C CALC XY FOR DIRECTION SPECIFIC BUILDING DIMENSIONS ISC25310
IF (DSJTYPtN) .EQ. 21 60 TO 1938 ISC25320
IF (HWOHB .6T. 5.01 GO TO 1934 ISC25330
C5 = 0.35»DSHW(N>*0.5»DSBHIN) ISC25340
60 TO 1940 ISC253FO
19V. IF IIHAKSUCNI .EQ. 11 60 TO 1936 ISC25360
C5 = 0.eS*OSBHINI ISC25370
60 TO 1940 ISC25300
1936 C5 - 2.25«OSBH(N) ISC25390
60 TO 1V40 ISC25400
193B C5 = O.B5«DSHHIN) ISC25410
1940 CONTINUE ISC25420
IFIISM(9I .NE. 4) XYCI,N)=VIRTYIC5»2.15,ISTBlEmi-C7 ISC25430
IF IISHI9I .EQ. 41 XYII.NI=XVY(C5»2.15.ISTBLE(I)I-C7 ISC256'iO
IF (XY(I,N) .LT. 0.0) XYd.NI = 0.0 ISC254SO
1942 CONTTMUE ISC25''i60
C FIND MIN OF DIRECTION SPECIFIC HEIGHT AND NIDTH FOR THIS SECTOR ISCZ5WO
ZLB=AMIN1IDSBH(NI.DSHN(NI) ISC254BO
C CHANGE DCWKHASH TO INCLUDE LINEAR DECAY TERM ISC25490
IF (DSHPINI .LE. DSBH(NI) THEN ISC25500
C LINtU? DECAY FACTOR (A); PLUME BELOW TOP OF BUILDING ISC25S10
A = 1.0 ISC25520
C PLUME BELOW H * 2L ISC25530
ELSE I* IOSHPIN) .LE. DSBH(N)+2.»ZLBI THEN ISC25540
4 = (DSBHfNI-DSHP(N)l/C2.*ZLB)»1.0 ISC25550
C PLUME ABOVE H + 2L ' ISC25560
ELSE ISC25570
A = 0.0 ISC25560
ENDIF ISC25590
C SET JTYPE FOR USE IN REST OF MIND DIRECTION LOOP I5C25M>0
-------
CD
1944 IF (KTYPE .EQ. 1) JTYPE=OSJTYP(N)
C CALC DOWNWIND AHD CROSSHIND DISTANCES FROM SOURCE TO RECEPTOR
XB - -XP»PHS(N)-YP«PHC(N)
YB •« XP»PHC(N>-YPHPHS(N)
C If POINT UPWIND OF SOURCE NO CALC
IF (XB .LE. 0.0) 60 TO 2210
IF (TYPE .EQ. 1) 60 TO 1950
IF (TYPE .EQ. 2) 60 TO 1946
C STACK EMISSIONS
IF (JTYPE .EQ. 0) 60 TO 1946
C PRECALC MAKE EFFECTS IF XB < HB10
IF (XB .GE. HB10) GO TO 1950
SIGZ1 = B1»XB«B2
XYP1 = XYPU»CB3»XB»B2)
SIGIP1 = 1.0/SIGZ1
SIGZI1 = -0.5»SIGIP1«SIGIP1
60 TO 1950
C AREA SOURCES AND STACKS WITHOUT MAKE EFFECTS
1946 C2 = Cl
XYP = XY(ltl)
C CALC OIST AMD SMOOTHING TERN FOR AREA SOURCES AND STACKS WITH
C NO WAKE EFFECTS
CALL OISTR
IF (*RG .LT. 0.01 GO TO 2210
C3 = C2»AR6
IF (ISW(l) .EQ. 2) C3 = C3«RPI
1950 CONTINUE
C
C
BEGIN LOOP OVER STABILITY FOR flAIN MODEL CALCULATIONS
ISC25610
ISC25620
ISC25630
ISC25*40
ISC25&DO
ISC25«60
ISCZS670
I5C256BO
ISC25690
ISC25700
ISC2S>-*0
ISC25720
ISC25730
ISC25740
ISC25750
ISC25760
ISC25770
ISC25760
ISC25790
ISC25BOO
ISC25B10
ISC25820
ISC25n30
ISC25Q40
ISC25S50
ISC*j>o60
ISC25070
ISC25080
ISC25890
CO 2200 I=1,MSTBLE ISC25910
IF (KTTPE .EQ. 1) THEN ISC25920
C COMPUTE RO. YL TO BE USED IN BLP PLUME RISE EQUATIONS ISC25930
RO = 0.0 ISC25940
YL = 0.0 ISC25950
C DOWNWASH IF A > 0. ISC2S960
IF (A .ST. 0.0) THEN ISC25770
RO = 0.98995 « A * ZLB ISC2S980
C CHECK THAT NORMAL SIGMA-Z IS NOT GREATER THAN DOHNMASH SIGMA-Z ISC25990
A3 = 3.*ZLB ISC26000
IF tISW(9) .EQ. 41 THEN ISC26010
CALL URBNYZ(A3.ISTBLE(I),DUMMY,A2) ISC26020
C 1.41421 = SQRT(2) I5C26030
RO =AttAXHRO,(l. 41421" A»A2)) I5C26040
ELSE ISC26050
C GET SIGMA-Z AT 3MZLB ISC26060
A2 = SIGMAZ(A3iISTBLE(D) ISC26070
RO sAMAXl(RO,(1.41421»A"A2>) I5C260BO
EUDIF ISC26090
ENDIF ' ISC26100
C ENHANCE SI6MA-Y ISC26110
IF (DSHP(L) .LE. DSHB12(D) THEN IHC26120
SYL = .3S»ZLB-A2 ISC26130
SYL = AMAXKSYL.0.0) ISC261'iO
IF (HMOHB .LE. 5.0) THEN ISC261BO
C 2.5066 = SQ9H2PH ISC2M60
YL = 2.5066 • SYL ISC26170
-------
C0
ELSE IF (IHAKSHILI .EQ. 1) THEN
C EDGE EFFECTS OCCUR (SIGMA-Y = 1.75»S«JRT(2PII«DSBHCLII
TL = 12.533 • SYL
ELSE
C SIGMA-Y = 0.35»SQRT(2PI)»OSBH(Lj
YL = 2.5066 « SYL
EIJDIF
C CHECK THAT SIGMA-Y FROM CURVES IS NOT GREATER THAN SIGMA-Y
C FROM BUILDING
TR2 = A3 « TANI0.5*TRI * 2.0
YL = «.rtA:U(YL,TR2)
ENDIF
EKbil
KK = 4*11-1)
IF (TYPE .NE. 1) GO TO 1960
XYP a YfU.L)
C C/".C DIST AND SMOOTHING TERM FOR VOLUME SOURCES
CALL OISTR
IF (ARG .LT. 0.01 GO TO 2200
C3 = CloARG
IF (ISIII1) .EQ. 2» C3 = C3«RPI
1960 CONTINUE
C CALC SIPZ fm VOLUME, ARZA AND STACKS WITHOUT HAKE EFFECTS
IF (TYPE .NE. O.OR.JTYPE.EQ. O.OR.XB .GE. HB10) 60 TO 1970
XZ = 0.0
GO TO 1990
1970 CONTINUE
IF (NSM2 .LT. 01 GO TO 2000
XZ = 0.0
IF I TYPE
IF (TYPE
IF(ISH(9)
IFIISWC9I .EQ.
GO TO 1990
1980 XZ = BH
1990 CONTINUE
IF(ISW(9I .NE. 4) SI6Z=SIGMAZ(XB»XZ,ISTBLE(IM
IFIISHI9) .EQ. 4) CALL UHBNYZ(XB»XZ,ISTBLEIII.OUMSY.SIGZ)
SIGZIP = 1.0/SIGZ
SIGZI = -0.5»SIGZIP»SIGZIP
IF (TYPE .GT. O.OR.JTYPE .EQ. 0) 60 TO 2010
SI6Z2 = SIGZ
SIGIP2 = SIGZIP
SIGZI2 - SIGZI
2000 IF (XB .LT. HB10) GO TO 2010
C HAKE EFFECTS MODIFICATIONS FOR DIST. GREATE1 TH.JH OR EQUAL TC
IFIISMI9I .NE. 4) GOTO 2005
XZ=XVZ(SIGZOP,ISTBLE(I)I
CALL URBNYZ(XB«XZ.ISTBLE(I),DUMSY.SIGZ1)
GOTO 2007
2005 XZ=VIRTZ(SIGZOP,ISTBLE( I).XB.HB101
SIGZI = SI6MAZ(XB»XZ,ISTBLE(I))
2007 CONTINUE
XYP1 = XY(I.L)
SIGIP1 = 1.0/SIGZ1
SIGZI1 = -0.5«SIGIP1*SIGIP1
2010 CONTItlUE
.EQ. 01 60 TO 1990
.EQ. 21 60 TO I960
NE. 4) XZ=VIRTZ«SIGZOP.ISTBLE(I),XB,0.0)
4) XZ=XVZ(SIGZOP,ISTBLE(II)
ISC26160
ISC2M90
ISC26ZOO
ISC26210
ISC26220
ISC26230
ISC26250
ISC26260
ISC26270
ISC26200
ISC26?90
ISC26300
I5C26310
ISC26320
ISC26330
ISC26340
ISC26350
ISC26360
ISC26370
ISC26300
ISC26390
ISC26400
ISC26410
ISC26420
ISC26430
ISC26440
ISC26450
ISC26460
ISC26470
ISC26'<60
ISC26')90
ISC26500
ISC26510
ISC26520
ISC26530
ISC26540
I5C26550
ISC26560
ISC26570
ISC265BO
ISC26590
ISC26600
ISC26620
10HBISC26630
ISC266'.0
ISC26650
ISC26660
ISC26670
ISC26600
ISC26690
ISC26700
ISC26710
ISC26720
ISC26730
I5C26/'»0
-------
C
C
IF (ISUI1I .EQ. 21 BBAR=FUNCT(XB.ISTBLEm.ISH(9))
DEFINE OLD SIGZ FOR BIO CALCULATION
IFITYPE.EQ.O) SZOLO=SI6Z
BEGIN LOOP OVER SEASONS FOR MAIN MODEL CALCULATIONS
ISC26750
ISC26760
ISC26770
ISC26710
ISC26790
C
C
DO 2190 K=1.NSEASN
M =• 4»(K-1>
KM = KK»K
LI = IK«L91)*NXXYYP«L9
BEGIN LOOP OVER HIND SPEED FOR MAIN MODEL CALCULATIONS
ISC2*C10
ISC26020
I3C26C10
ISC26040
ISC26050
ISC260SO
w
00
C**IHt****MNHH»«*««M*M»IHt*»«IHI IHI ***»«»••« «•«•»**** ««»««*•«•***•••• M«l*ft**ISC26B70
00 2160 J=1,NSPEEO ISC26800
C4 s 0.0 ISC26890
C ADD BLP FINAL BUOYANT PLU1E RISE IF SCHULHAN-SCIRE DOWNHASH ISC26900
C FM IS PASSED AS 0.0 FOR BUOYANT RISE ONLY I3C26910
IF IKTYPE .EQ. 1) THEN ISC26920
CALL BLPLTIRO,YL,I,F,0.0,OMAX,UBH,S,BETAJI,OELHU.I,L,H»1M ISC26930
EIIDIF ISC26940
IF (FREO'J.N.KN) .LE. 0.0) 60 TO 2160 ISC26950
HP s H ISC26960
IF (TYPE .GT. 0) 60 TO 2090 ISC26970
C SET SIGZ s ou) SIGZ FOR BID CALCULATION ISC26")0
SIGZ=SZOLO ISC26<590
IF IJTYPE .EQ. 0) 60 TO 2060 ISC27000
C STACK EMISSIONS NITH HAKE EFFECTS ISC27010
IF
-------
C
C
C
C
C7A=XB
XKM=C7».001
HSAV IS MPTER FINAL PLUME RISE
HSAV=DELH(J.I.L,M*1)
IF IKTYPE .EQ. 0) THEN
IF(XKM.GT.DELH(J,I.L.M*2>.AND.OELHU,I.L.M«3).GT.O..AND.
X DELHI J,I,L,M»<»).GT.O. I 60 TO 2070
IF(ISMU9).EQ.O.AND.ISHf21).NE.O.AND.OELH(J.I,L.M*3).< T.O.
X .AtlD.OELH(J,I.L,M«4).GT.O.) GO TO 2070
ENDIF
F=G«VEL»0«D».25»(l.-TAtI.K)/T)
IFIF.LT.0.0) F=0.0
CALCULATE MPTER TRANSITIONAL PLUME RISE
HP= 160 . »F«» . 333333«XKM»» . 666667«UDHI I J , 1 1
IF(HP.GT.HSAV) HP=HSAV
HSAV=HP
C9A=GMOPDZ(J.I)
UBHA=1./UBHI(J,I)
BETAJ=1 ./3.+UBHA»VELI
BETAJ=BETAJ»BETAJ
BETAJI-l./BETAJ
FM-TA(I,K)/T»VEL«VEL»D»0».25
IF BUILDING HAKE EFFECTS USED. CALCULATE UNAHAP 5
ISC DISTANCE DEPENDENT mtlENTJI RISE
IFIDELHI J,I>L>M»3).LE.')..OR.DELH(J,I,L,M»4).LE.O.) THEN
IF IKTYPE .EQ. 0) THEN
IFIC9A.GT.O.O) GO TO 2062
UNSTABLE CONDITIOtIS
CALCULATE MAX DOWNWIND DISTANCE
IFIF.LE.O.) THEN
DMAX=I)
HP=HP»». 33333333
60 TO 2064
STABLE CONDITIONS
2062 S=C9A/TA(I,K>
SSQ=SQRT(S)
CD
-J
C CALCULATE MAX DOHNMIND DISTANCE
OMAX=3.1415926»UBHA«SSOI
IFIF.EQ.O.) DM*X-DMAX».5
IF(C7A.6T.DMAX) C7A=DMAX
HP=AMAXia.E-10,3.»FM«BETAJI»UBHI(J,II«SSqi»SIN(SSq«C7A
t •UBHKJ.I)))
HP=HPo«. 33333333
C HP1 IS MAX ISC MOMENTUM RISE
2064 HP1=3.«VEL»0*UBHI(J.I)
IFtHP.6T.HPl) HP=HP1
C USE LARGER OF ISC MOMENTUM RISE OR MPTER
C TRANSITIONAL RISE
IF! HSAV. LT. HP) H5AV-HP
ISC27320
ISC27330
,ISC273<«0
ISC27J50
ISC27360
ISC27370
ISC277!)0
ISC27390
ISC2. :0
ISC27'ilO
ISC27470
ISC27430
ISC27440
ISC27450
ISC27460
ISC27470
ISC27<*QO
ISC27490
ISCZ7500
ISC27510
ISC27S20
ISC27530
ISC2VSbO
ISC27570
ISC275BO
ISC27590
ISC27600
ISC27MO
ISC27620
ISC27630
ISC27640
ISC27650
ISC27660
ISC27670
ISC276BO
ISC27690
ISC27700
ISC27710
ISC27720
I5C27730
ISC277
-------
u
V/l
o
CO
—I
ELSE
C LIMIT DISTANCE TO MAX RISE
XSR = XB
IF (XSR .ST. OMAX) XSR a DMAX
C COMPUTE TRANSITIONAL RISE (BLP NEUTRAL, BUOYANT RISE)
CALL BLPRIZ(4.F,O.O.XSR,UBH.S.BETAJI,HP)
C DISTANCE TO MAX NEUTRAL MOMENTUM RISE
XPRN = 4.«0«UBHIU.I)/VEL*(VEL»3.«UBII)»»2
C LIMIT DISTANCE TO UNSTABLE/NEUTRAL MOMENTUM RISE
IF IC9A .LE. 0.0) THEN
XEP - AMINHXB.XPRNI
CALL BLffill'1,0.0,Fit,XSR.UBH,S,BETAJI,HP1)
ELSE
C DISTANCE TO MAX STABLE MOMENTUM RISE
C 1.:;707963 3 PI/2
3-C9A/TAII.K)
SSq=SQRT(S)
ssqi=l./ssq
XPRS = 1.5707963 • UBH • SSqi
XSR = AMINUXB.XPKS)
CALL BLPRIZ«T,O.Q,rt1,XPR»l,UBH,S,BLfAJI,HPl)
C CCMFUrE THE MAX NEUTRAL MOMENTUM RISE
CALL BLPRIZO.O.O.FM,XPRN,UBH,S.BETAJI.HPZ)
C FIND THE MINIMUM OF MOMENTUM RISE
HP1 = AMINKHP1.HP2) <
ENDIF
C CHOOSE MAXIMUM OF TRANSITIONAL OR MOMENTUM PLUME RISE
HP = AMAXKHP.HP1)
ENDIF
ENDIF
IF (KTYPE .Eq. 1) GOTO 2090
IF(ISM(19).Eq.O.ANO.OELH(J,I.L,n»3).6T.O.
X .AND.OELH(J.I,L,M»4).6T.O.) GO TO 2070
HP=HSAV«HBRIGIJ.I)
GO TO 2090
2070 HP-DELHIJ,I,L,M»1)«HBRIG(J,I)
2090 CONTINUE
IF(TYPE.GT.O) 60 TO 2095
C SKIP B.I.O. CALC. IF DIRECTION SPECIFIC BUILDING DOHNHASH
IFCISWIZD.NE.O .OR. KTYPE .Eq. 1) GO TO 2095
DUM=HSAV/3.5
DUM=OUM»DUN
SIGZ=SQRT(SIGZMSIGZ+OUM)
SIGZIP=1/SI5Z
SIGZI=-.5»SI6ZIP«SIGZIP
2095 CONTINUE
C ADJUST PLUME FOR ELEVATION
HP = HP«ZSMZP
C IF PLUME OUT OF MIXING LAYER NO CALC.
C CHECK FOR PLUME HEIGHT GREATER THAN MIXING HEIGHT
C AT SOURCE.
IF(;HP-ZSMZP).GT.HH(J.X,K» 60 TO ZUt
HHP = HM!J,I.K>
C4 = C3«q(J,I,K)»FREq(J,N,KN)»SIGZIP
IF (ISM(l) .LE. 1) C4 = C4HUBHKJ.I)
C DEPLETION DUE TO TIME DEPENDENT DECAY
IF (DECAY .LE. 0.0) GO TO 2100
ISC27B90
ISC27900
ISC27910
ISC279CO
ISC27930
ISC27940
ISC27950
ISC27970
ISC27930
ISC27990
ISC20000
ISCZ0010
ISC26020
ISC26030
ISC28040
ISC28050
ISC28060
ISC2B070
ISCZ0080
ISC2B090
ISC28100
ISC28110
ISC28120
ISC28130
ISC2B140
ISC28150
ISC28160
ISCZ8170
ISCCPiOO
ISC28190
ISC28JOO
ISC28Z10
ISC282ZO
ISC28230
ISCZ8240
ISCZ0250
ISCZB260
IS USED ISCZ8Z70
ISCZ8Z80
ISCZ8390
ISC2. ?10
ISC28jlO
ISCZ8320
ISCZ8330
ISCZ834U
iscza^o
ISC28360
ISCZ8370
ISCZ8300
ISC28390
iscze'ioo
ISCZ8410
ISCZO'iZO
ISCZ8440
-------
C7 = RP
IF (TYPE .EQ. 21 C7 = RP-RO
C4 = C4»EXP(-DECAY«C7«UBHI(J,I))
2100 CONTINUE
C RHTAG IS RECEPTOR HEIGHT ABOVE GROUND (FLAGPOLE RECEPTOR)
IF (ISU(25) .EQ. 1) THEN
RHTAG = RHTdJI
ENDIF
C CALC VERTICAL TERN
IF (ISH(l) .EQ. 2) GO TO 2140
IF (NVS .6T. 0) GO TO 2110
C CONCENTRATION ONLY
IF IISH(25) .EQ. 0 .OR. RHTAG .LT. 0.00001) THEN
CALL VERTC1
ELSE
CALL VRTC1RCRHTAG)
ENDIF
GO TO 2160
2110 CONTINUE
C7 = RP«UBHI(J,I)
W = 0.0
IF (I5MI25) .EQ. 1) THEN
RHTAG = RHTdJI
ELSE
RHTAG =0.0
ENDIF
00 2120 IL=1,NVS
VSROU = C7»VS(IL)
C CONCENTRATION WITH DEPLETION DUE TO GRAVITATIONAL DEPOSITION
CALL VERTC2(GAnHA(ID.RHTAG)
W = W«V«FRQ(IL)
7.120 CONTINUE
2130 V = VV
GO TO 2160
2140 CONTINUE
W = 0.0
C7 = RP»UBHI(J.I)
DO 2150 IL=1,NV3
VSROU = C7«VS(IL)
C GRAVITATIONAL DEPOSITION
CALL VERTC3(GAmiA(ID)
W = W»fl.O-GAtU1A(IL))»FRQ(IL)»V
2.153 CONTINUE
GO TO 2130
2160 CONTINUE
C4 = C4»V
C
C ACDT-'LATE CONCENTRATION OR DEPOSITION
CJIi(Ll*IJ) = CON(L1*IJ)*C4
l~* C
" C END LOOP OVER HIND SPEED
» 2170 coririrnjE
2180 CONTINUE
ISC26460
ISC2B470
ISC2fi<30
ISC28690
ISC26700
ISC28710
ISC28720
ISC28730
ISC2B740
ISC28750
ISC28760
ISC2B770
ISC28780
ISC28790
ISC28800
ISC28810
ISC28820
ISC26B30
ISC2BOr<0
ISC200DO
ISC2B060
ISC2B870
ISC28380
ISC28890
ISC20900
ISC20910
ISC28920
ISC28930
ISC28940
ISC28950
ISC28960
ISC28970
ISC28980
C
C END LOOP OVER SEASONS
2190 CONTINUE
ISC29000
ISC29010
ISC29020
-------
C*»«»»*««»«»«« »»»»«»»»»« WMHHHMHI1HHHI*»»»**»»»»«I»»»»«IHHI»I»»*«»»»IH»»»»III»»I»I5C29030
C ISC290'«0
C END LOOP OVER STABILITY ISCZ9050
2200 CONTINUE ISC29060
C I5C290.10
C END LOOP OVER HIND DIRECTION SECTORS ISC2'190
2210 CONTINUE ISC29.00
IF (KTYPE .EQ. 1 .AHO. JN .GT. 0) THEN ISC29120
C WRITE ERROR MESSAGE ABOUT SOURCE - RECEPTOR DISTANCE ISC2913G
LL=3 ISC29140
IF (ISWI6I .6E. 2) LL=1 ISC29150
CALL TITLRI2.LL.O) ISC29H.O
MRITE(JUNT,9047) MJMS.X(II).Y( JJ).(DSRDCK(N).N=1.JN) ISC29170
ENOIF ISC29ino
C ISC29190
C END LOOP OVER X.Y AXIS POINTS AND SPECIAL RECEPTOR POINTS ISC29200
2220 CONTINUE ISC29210
GO TO (1820.1860).IKSH ISC29220
W 2230 CONTINUE I«C?<>2<«0
u, C ISC2<:CSO
fo C START SECTION TO OUTPUT INDIVIDUAL SOURCES AND ACCUMULATE FOR THE ISC29260
C TOTAL SUM OF SOURCES. ISC29270
C ISC29260
C IS TAPE OUTPUT DESIRED ISC29290
2240 IF (ISWI5) .EQ. O.OR.ISM(S) .EQ. 2) GO.TO 2260 ISC29300
C OUTPUT SOURCE RECORD ISC29310
WRITE IHUNT) (NSOR(I),I=1.NSO) ISC29320
NT = NT+1 ISC29330
ITSAVE(NT) s NUMS*10»TYPE ISC29340
IF (NT -GE. NTT) CALL OUTPT(-4.NT,X,Y,Z,NTT) ISC29350
C OUTPUT CONCENTRATION (DEPOSITION) RECORD(S) ISC29I60
DO 2250 K=I,NSEASM ISC29370
LI = (K»L91)»NXXYYP»L9 ISC29300
WRITE (NUNT) CCONIL1*I).I=1,NXXYYP) ISC29390
2250 CONTINUE ISC29400
2260 CONTINUE ISC29410
C IF SOURCE PART OF THIS COMBINED SOURCE GROUP USE IT ISC29420
IF (NOCOMB(NG) .EQ. 0) GO TO 2270 ISC29030
CALL CHECKRCO.J) ISC29'.
-------
w
I
Ul
U)
2280 IF (ISMI8) .EQ. 1.AND.ISH11 .NE. 2) 60 TO 2300 ISC29600
C ACCUMUUTE FOR SUM OF SOURCES ISC29610
2290 L2 = IK-1J»NXXYYP ISC29620
IF (L92 .EQ. 1) 12 = L2»NXXYYP ISC29630
CALL SUMMERICON{L2»1),CONIL1*1I,K»1I ISC29640
IF (ISHI11I .EQ. 21 GO TO 2320 ISC29650
2300 CONTINUE ISC29660
IF (ISMI8) .EQ. 2.OR.ISHI7) .EQ. 1) 60 TO 2320 ISC29670
IF (L92 .EQ. 21 60 TO 2310 ISC29600
L2 = 0 ISC29690
IF (L92 .EQ. 0) 12 = C1*L91I«NXXYYP*L9 ISC29700
IF IL2 .HE. O.AND.K .EQ. 1) 60 TO 2320 ISC29710
CALL ^jmiER(COH(L2»ll.CON ISC29090
60 10 2360 ISC29700
2350 CALL OUTPTIKK,K,X,Y,Z,I) ISC29910
2360 CONTINUE ISC29920
C INCREMENT SOURCE SAVE NUMBERS FOR INTERNAL STORAGE OF SOURCES ISC29910
IF IHOTAP .EQ. 0) 60 TO 2400 ISC29940
2370 KSO = KSO»1 ISC29950
L9 = KSOONXYSEA ISC29960
GO TO 2400 ISC29970
2380 IF ING .EQ. 1.AND.ISMU2) .GE. 0) 60 TO 2390 ISC29980
J = NOCOMB1NG) ISC2"'>90
IF INUMS .6T. IABS(IDSORCU»NGT)I) GO TO 2410 ISC30100
2390 IF INOTAP .EQ. 01 GO TO 2400 ISC30010
IF ING .GT. 1.0R.ISHI12I .EQ. -II GO TO 2370 ISC30020
CALL CHECKRINGROUP.JI ISC30030
IF IJ .NE. 01 GO TO 2370 ISC30040
2400 CONTIIIUE ISC30050
GO TO 790 I3C3C060
C ISC30070
C END LOOP OVER SOURCES, RETURN FOR NEXT SOURCE ISC30000
ro
>>
m
C
C BEGIN OUTPUT FOR COMBINED SOURCES
2410 IF lISMiei .EQ. 1.ANO.ISHI11) .NE. 2) GO TO 2480
NT4 = 1
KK = 1
DO 2440 K-l.NSEASN
LI = IK-ll»NXXtYP
ISC30100
ISC30110
ISC301ZO
ISC30130
TSC30140
ISCTr:r.O
ISCJOlfcO
-------
IF U92 .EQ. II H = L1*NXXYYP ISC30170
IF IISHC7) .EQ. 21 60 TO 2420 ISC30180
C PRINT SW1 OF SOURCES - SEASONAL I5C30190
CALL OUTPTfKK,K,X.Y.CONILl»l).2l ISC30JOO
2420 IF (ISUI7I .LE. 1) 60 TO 2440 ISC30210
IF IL92 .EQ. 2) GO TO 2430 ISC30220
CALL SUMMER! CON, CONCL1*! I, K» I<5C30230
GO TO 2440 ISC30240
2430 CALL SUMMER! Z.CONI Ll«l ).KI ISC30r50
2440 CONTiriUE I3C30260
IF IISH(7I .LE. II GO TO 2480 ISC30270
IF IISHI1I .EQ. 2) 60 TO 2460 ISC30200
IF (L92 .EQ. 21 GO TO 2450 ISC30290
CALL SUmERICON.CON.-ll ISC30300
GO TO 2460 ISC30310
2450 CALL SUMMERIZ.CON.-ll ISC30320
2460 CONTINUE ISC30330
KK = 2 ISC303'.0
C PRINT SUM OF SOURCES - ANNUAL ISC30350
IF IL92 .EQ. 21 GO TO 2470 ISC30360
03 CALL OUTPT(KK.K,X,Y.CON,2) ISC30~70
' GO TO 2480 ISC30300
** 2470 CALL OUTPT ISC30790
24ao
C ISC30410
C tNO OF COHBINEO SOURCES. IF ISM(ll) ~ 2 GO DO SECOND PASS FOR ISC304CO
C DISPLAY OF MAXIMA. OTHERWISE GO TO NEXT GROUP OF COMBINED SOURCES ISC3(K. 0
ISMI6) = 0 ISC30V.O
IF CISMCllI .EQ. 21 GO TO 710 ISC30450
GO TO 700 ISC30460
C ISC30470
C END OF COMBINED SOURCES LOOP ISC30430
C »»»»»»»*»»»H»»»«»»»»»«»»«»*»»»»*»«lHHHH»»»»»»«M»H»»»»»»»»«»«»»»»»*ISC30''t90
C ISC30500
C ERRORS COME TO HERE ISC30510
2490 IF IISHI5I .LE. O.OR.ISUISI .EQ. 21 GO TO 2500 ISC30520
IF IIFLG2 .HE. 01 GO TO 2500 ISC30530
IF ING .GT. 1.0R.ISMI12) .EQ. -1) GO TO 2500 ISC30540
C WRITE END OF TAPE RECORD ISC30550
NSORI1) s 999999 ISC30560
IfftlTE INUNT) «NSOR(I».I=1,NSO» ISC30570
IF IISHI15) .LT. 0) GO TO 2500 ISC30500
ENDFILE »TJNT ISC30590
ENDFILE NUNT ISC30600
C ISC30610
C END n« PROG. CLOSE ACTIVE FILES ISC30620
C »t»IM««««»M»«M*»ltM»ftWM»«I^KM«HIM»*IH»MM»«ltK»IHHHt**«»«KK»»ft»KISC306?0
2300 IF INT .GT. 01 CALL OUTPTI-4.NT,X,Y,7,NTT» ISC30640
WRITE IJUNT, 90241 Kl ISC30650
IF IJUNT .EQ. 6.0R.INDFL .EQ. II GO TO 2510 ISC30660
ENDFILE JUNT ISC30670
ENDFILE JUNT ISC306BO
2510 CONTINUE ISC30690
STOP ISC30700
9001 FORMAT I20A4I ISC30710
9002 FORMAT (8F10.01 ISC30720
9003 FORMAT I/54H •««> ERROR - NUMBER OF SETTLING VELOCITIES FOR SOURCEISC30730
-------
1.I7.49H IS ZERO, MUST INPUT FOB GRAVITATIONAL DEPOSITION) ISC30740
9004 FORMAT (10X.19HNUMBER OF SOURCES = ,I4/ ISC30750
210X.37HNUMBER OF X AXIS GRID SYSTEM POINTS =,I5/ ISC30760
310X,37HCUMBER OF Y AXIS GRID STSTCM POINTS = ,I5/ ISC30770
410X.26HHUMBER OF SPECIAL POINTS =.I5/ ISC3"7flO
510X.19HNUMBER OF SEASONS = ,I4/ ISC30.90
61 OX.301II,-UMBER OF HIHD SPEED CLASSES = .I4/ I5C30000
710X.29HHUHBER OF STABILITY CLASSES =,Ifi/ ISC30010
810X,3 5 FOR SOURCE ,I5,89H PROG. USES LATEISC31..70
IRAL VIRTUAL OIST. FOR UPPER BOUND OF CONCENTRATION (DEPOSITION). IISC3I200
2F LOWER/60H BOUND IS DESIRED SET HAKE EFFECTS FLAG (HAKE) = 1 At ID ISC31290
3RERUN) ISC31300
-------
9031 FORMAT I10X.40HSOURCES USED TO FORM SOURCE COMBINATION .12.6H ARE ISC31310
1-.10II6.1H.)) ISC311.?0
9032 FORHAT 11 OX, 17116,1H. M ISC31330
9033 FORHAT I10X.48HALL SOURCES ARE USCO TO FORM SOURCE COMBINATION ,I2ISC3M'iO
1) . ISC31350
9034 FORMAT <30HO»»» ERROR - AVAIUBLE CORE = .I6.19H. PROBLEM RCQUIRESISC31360
1 ,I6,lflH OR MORE LOCATIONS/) ISC31370
9035 FORMAT , 71HO«« ERROR - MAX NO. OF SOURCES EXCEEDED FOR NCROUP OR ISC31310
usuiii>=2 oi'iiot:/) . iscM3«>o
9036 FORMAT I4«« ••• HARMING - EXIT VELOCITY IS <= 0 FOR SOURCE ,IS.35HISC31'<00
i man SETS TO I.OE-S AND CONTINUESi iscsi^io
9037 *MHAT I44H ««" ERROR - STACK DIAMETER <= 0 FOR SOURCE ,151 ISC31420
?)id FORMAT 13511 »»» ERROR - SIGVO <= 0 FOR SOURCE ,ISI ISC31430
9039 FORMAT I35H ••• ERROR - SIGZO <= 0 FOR SOURCE .15) ISC3144P
9040 FORMAT I32H •»» ERROR - XO <= 0 FOR SOURCE .151 ISC31450
9041 FORMAT I20H ••» ERROR - SOURCE .I5.32H USr "I VALUE THAN LAST SOUISC314&0
19CE .I5.6HREAD.) . ISC31470
9042 FORHAT (34H •»» ERROR - DISP CODE FOR SOURCE .IF.17H IS OUT OF RANISC31400
1GE.I ISC31490
9043 FORHAT I34H MM ERROR - TYPE CODE FOR SOURCE ,I5,17M IS OUT OF RANISC31500
1GE.I ISC31510
1GE.I ISC31530
<* 9045 FORMAT 1125HOHARNING - UNABLE TO DETERMINE IF ALL SOURCES HILL FITISC315'tO
1 IN CORE 1SC31600
9047 FORMAT 135H WARNING - DISTANCE BETWEEN SOURCE .I6.15H AND POINT X.ISC31f>10
lY=,m.2,lH,,FU.2,23H IS LESS THAN PERMITTED.15H FOR SECTORISC .ISC3IA20
2/.5X.16II5,'.')) ISC31630
904S FORHATI32HOHARNIMG - MH/HB > 5 FOR SOURCE .I5.93H PROG. USES LATERISC3U40
1AL VIRTUAL DIST. FOR UPPER BOUND OF CONCENTRATION (DEPOSITION! IN ISC31650
2SECTORISi:/,5X,lSII5.>.<)»I5,l.>) ISC31660
9049 FORHATI/91HO»» ERROR - DIRECTION SPECIFIC BUILDING H'lGHT OR WIDTISC31670
1H GREATER THAN 9999. FOR SOURCE NO: ,151 ISCV.BO
9050 FORMATIIX.'IF LOMER BOUND IS DESIRED SET THE OIRErTION SPECIFIC BUISC31. 40
HIDING HEIGHT TO < 0 (HAKE EFFECTS FLAG) AND RE'U'I.') ISC31700
9051 FORHATI3I/)) ISC31710
9501 FORMATI1X.20A4) ISC317ZC
9502 FORHATIIX,8E14.5) 1SCJ1750
9503 FORHATI115,312.911PE10.3E1).213) ISC31740
9504 FORMATIlX.aE14.5) ISC31750
9599 FORHATIIX.6F10.8) ISC31760
END ISC31770
C " ISC31700
.. C 1SC31790
M SUBROUTINE OUTPTIKK.K.X.Y.Z.JSS) ISC31600
^ C SUBROUTINE OUTPT (VERSION 87338). PA*T OF ISCLT. ISC31B10
™ C THIS SUBROUTINE PRINTS THE INPUT SOURCE DATA AND ALL COHCENTRATIONISC3JO.-0
C (DEPOSITION! CALCULATIONS ISC31P10
CCKHON /DIM/ NSOURC,NXRfTS.NYPNTS.NXHYPT,N3EASH,NSPEED.N3TBlE, ISC!?"'iO
1NSCTOR.ISH(25).UIITSI20),TITLEI2«).NOFIIE ISCJin'.O
COMHOII /»EST/ IiniT,JUNT.IIXXVY.IIXXYIP,ISTULEI6).lFL61.LINE.NLIHES. ISC3ir'.0
HCARD,»IX?SS.NYPSS.MUIIT.HUNT,ICONTI3.2),ITSAVEI572),Hll,HT2.NT3,IIT4ir.C3in/0
-------
Cd
I
2,HSG7l4,3),t1SG8IZ).nS69(t,Z),t1SG10l4,3),NGROUP,NOCOriBI20>.IDSOnC(2ISC3inno
300I,IEND,XSEA,ISAVSO«300I,NG,NGT,IIXHY,IWAKSW<16» ISC31090
COMMON /SORC/ HUMS, TYPE, DX,DY,H.ZS.TS,VEL,D.HB,MI,BL,NVS.VSI20I, I5C319QO
1FRQI 20 1 ,GAMMA« 20 1 .DSBHI 16 ) .OSBHI 16 1 .Ql 6 ,6.4 I .QFL6.HAKE ISC31910
COMMON /IIEAO/ MSG3l4>.MSG4ia),IS,N3,I3,M3,UM.LSTUN I3C31920
DIMENSION Xll).Ym,Zm.HSGl(6),HSG2(6).IXSUl),IYSIll>,Zt1XllO) 1SC319JO
l,nSG5l4).nSG6llO),IX10<50I.IV10<50) ISC3WO
EQUIVALENCE ISIGYO,TS),ISIGZO,VEL).IBU.XOI I3C31950
INTEGER TITLE, UNITS, TYPE, QFLG, HAKE ISC319r,0
DATA IX10,IY10/100»0/ ISC31970
DATA MSG1/4H STA,2HCK,4HVOLU.2HME,4H ARE.1HA/ ISC31910
DATA IBLNK.IX/1H ,1HX/ . I5C31910
DATA IAST/1H"/ ISC32000
DATA MSG2/4H3TAB.4HItIT,lHY,lH .4HSPEE.1HO/ ISC32010
DATA nSG3/4HSEAS.4HONAl.4H AN.4HIIUAL/ ISC32020
DATA MSG'«/4HCONC.4HENTR,4HATI0.1HN.4H OEP.4HOSIT.3HION.1H / ISC32030
DATA HSG5/4HPER ,4HSqUA,<4HRE H.4HETER/ ISC32040
DATA nSG10/4HDIST>4HANCE>2»lH .4HRANG.4HE ,2»1H ,<.HAZIM,4HUTH , ISC32050
14HBEAR.3HING/ ISC 32 JO
IF IKK .EQ. -41 GO TO BOO ISC32070
IS = JSS ISC320DO
IF IKK .NE. 41 GO TO 240 ISC32090
PRINT SOURCE DATA ISC32100
ILN = 0
NUN s 1
IF (TYPE .EQ. 21 GO TO 20
IF I TYPE .EQ. 1) GO TO 10
MUM a 3
GO TO 20
10 NUN s 2
20 CONTINUE
Ml = 0
IF IISHII6I .NE. 0) GO TO 60
IF IISHI11) .NE. 2.AND.ISUIBI .NE. 21 GO TO 60
IF OIVS .EQ. 01 GO TO 30
ZHXIlt = FLOATINVSI/7.0
MI = znxui
IF IZMXU) .6T. FLOATIMIIJ HI « Ml«l
Ml = 3»m«2
30 IF lurur, .ST. o> GO TO 40
MI = m»3
GO TO 60
40 IF lor-.r; .EQ. 3) GO TO so
J - NSTBLE
IF IQFLG .EQ. 2) J = NSPEED
Ml = m«2*J
GO TO 60
50 HI = H14NSEASN»I3«NSPEEOI«1
60 CONTINUE
00 70 1-1,10
70 MSG6III = UNITS!10+1)
IF ITYPE .NE. 21 GO TO 90
J = 0
DO 00 1=1,10
IF IHSG6II) .NE. IBLNKI GO TO 80
J = J»l
ISC32KO
ISC32130
ISC321AO
ISC321SO
ISC32160
ISC32170
ISC 32 100
ISC32190
ISC32200
ISC32210
ISC32220
ISC32230
ISC3J?'.0
ISC32T50
ISC322AO
ISC32270
ISC32200
ISC32290
ISC32300
ISC32310
ISC323.70
ISC323«0
ISC323'iO
ISC32150
ISC 32 3^,0
ISC32370
ISC32330
ISC32390
ISC32'iOO
ISC32'ilO
I5C32'i20
ISC32'i30
ISC324'.0
-------
IF IJ .GT. 4) GO TO 90
HSG6III = HSG5UI
60 CONTINUE
90 CONTINUE
II - IOINK
12 a IBLNK
IF IICARD .NE. 0) GO TO 100
12 = IX
60 TO 110
100 II = IX
110 NLN = 1
= 0
ISC32450
ISC32460
Cd
Ln
00
IF (LSTILN .EQ. ILN) NLN
CALL TITLRINUM«M1.1,NLW
LINE = LINE-MI
120 IS = 2»TVPE»1
IF (TYPE .EQ. II GO TO 130
IF (TYPE .EQ. 2) GO TO 140
OUTPUT STACK INFORMATION
MRITE (JUNT.9002I I1,U.NUI1S,I1SG1(I3),MS61(I3«1).OX.DY,H.ZS,TS.VELISC326<«0
ISC320SO
ISC32660
ISC3L"dO
ISC3M90
ISC32500
ISC3251"
ISC32D20
I5C32530
ISC32!;nSSllI3l.nSGllI3*lI,OX,DT.H.Z3.XO ISC32700
150 CONTINUE ISC32710
OUTPUT PARTICUUTE INFORMATION XF PRESENT ISC32720
IF INVS .LE. 0) GO TO 170 ISC32730
CALL TITLR(l.l.O) ISC32740
KRITE (JUNT.9016) ISC32750
II = -6 ISC32760
160 II = 11*7 ISC32770
IF til .GT. NVSI GO TO 170 ISC32780
JJ = 11*6 ISC32790
IF (JJ .GT. NVSI JJ s NV3 ISC32800
CALL TITLRI4»1.0) ISC32610
IIRITE IJUNT. 90191 (I.I=II,JJ) ISC32020
MRITE UUNT, 90201 I VSI 11.1=11. JJ) ISC323JO
WRITE (JUMT, 90211 IFRqiI),I=II. JJI ISC32800
WRITE IJUNT. 90221 IfiAltlACI M=II,JJ) ISC32650
60 TO If 0 ISC3Z060
170 CONTINUE ' ISC32S70
OUTPUT DIRECTION SPECIFIC BUILDING DIMENSIONS. ISC32060
IF (TYPE .GT. 01 GOTO 178 I5C32090
IF (IIB .LT. 0.01 THEN , ISC32900
CALL TITLRI7.1.0I ISC32910
MRITE IJUNT. 9033 1 ISC32920
SET SWITCH FOR TYPE OF BUILDING DOMNUASH MODIFICATION ISC32930
DO 175 J=1,NSCTOR ISC329'iO
IHAKSM(J)sO ISC32950
IF (OSDHIJ) .LT. 0.01 IMAK5H(J>=1 ISC32 SO
DSBHIJ) s ABSIDSBHIJI) ISC32970
175 CONTINUE ISC32960
MRITEIJUNT,9034) ( J.OSBHI J),OSBH( JI.IHAKSHI J),J=1.NSCTOR) ISC32990
ENDIF ISC33DOO
178 CONTINUE I5C33010
-------
OUTPUT SOURCE STRENGTHS
IF IQFLG .EQ. 31 GO TO 210
IF iqFLG .NE. 0» S3 TO 160
VARIES BY SEASON ONLY
CALL TITLAI 3.1.0)
WRX1L I MJNT.9008) MSG<>
WRITE (JUh,V,>)"5> ( L.L=1,4),(Q(1,1.L),L=1,NSEASN)
GO TO 230
160 J - NS"ELD
\' iQrLG .EQ. II J = NSTBLE
II = 3«QFLG-2
CALL TITLRCZ.1,01
HRITEIJUNT. 90081 MSG&
MRITEIJUNT.9006) HSGZI Il).nSGZ(im),rtSGZm.+?r ,( I.Ii-l.NSEASN)
DO ZCO L " 1,J
CALL TITLRIl.ifOI
12 s I
13 = L
IFIQFL6. .EQ. 1) GO TO 190
12 = L
13 « 1
190 HRITEIJUNT, 90071 L,iq(I2,I3.I),I=l.NSEASN)
£00 CONTINUE
GO TO 230
210 CALL TITLRI 1,1.0)
WRITE IJUNT.9000I MS66
DO 2ZO L=1,N3EASN
CALL TITLR«3,1,OI
WRITE UUNT.9009I L, (1. 1=1. NSTBLE )
00 ZZO J=1.NSPEEO
CALL TITLR« 1,1,01
WRITE IJUNT.9010) J,iqU,I.L),I=l.HSTBLE)
220 CONTINUE
230 CONTINUE
GO TO 070
C
C PRINT CALCULATIONS ON GRID SYSTEM
240 N3 = 1
IF (KK .EQ. 21 NX s 3
IF (KK .NE. 3.AND.ISMI10I .EQ. 1) GO TO 440
M3 = 0
IF IISH(l)
Ml = 1
IF IISH(2I
MZ = 1
IF (ISMI2)
M4 = 1
IF (ISHI2I
IF IIS .EQ.
.EQ. 2) M3 = 4
.EQ. Z» Ml = 2
.EQ. 21 MZ = 3
.EQ. 21 M4 - 2
2) 60 TO 260
OO
-J
IF IIIG. LE. l.OU.KK .EQ. 31 GO TO 260
IF INOCOMB(NG-1I .EQ. 011 GO TO 250
CALL CHECKRING-l.Il)
IF (II .EQ. 0) GO 10 260
250 CONTINUE
IF IHOCOMBCNGI .EQ. l.ANO.IDSORC(NGT»l) .GE. 0) GO TO 260
IF CISW(ll) .EQ. 1) GO TO 870
ISC330ZO
ISC33030
ISC33040
ISC33050
ISC33060
ISC3JO/0
ISC330.-0
ISC3.1Qr>0
ISC3MOO
ISC33UO
ISC331ZO
ISC33130
ISC33140
ISC33150
ISC33160
ISC33170
ISC331QO
ISC33190
ISC33200
ISC33Z10
ISC33Z20
ISC33Z30
ISC33Z70
isc 3 -.'.no
-------
IF (ISUI12) .EQ. II 60 TO 870 ISC33590
GO TO 440 ISC33600
260 CONTINUE ' ISC33610
IF INXPHTS .EQ. 01 GO TO 360 ISC336ZO
I IN = 1 ISC33630
. NM = 2 ISC336'iO
IF (ISH(16).EQ.O.OR.KK.EQ.3.0R.LINE«10.GT.NLINES1 Ml = 1 I3C336SO
C ISC33660
LSTILN = ILN ISC33670
LX - 1 ISC33600
I* = 0 ISC33690
270 II = I2«l ISC33700
IF (II .GT. NXPHTSI GO TO 360 ISC33710
12 - Il*« ISC33720
IF (12 .ST. NXPHTSI 12 = HXPNfS ISC33730
J4 s 1 ISC33700
J3 = NYPNT9U ISC33-50
260 J3 •= J3-1 ISC33760
IF (J3 .EQ. 01 60 TO 270 ISC33770
IF (J4 .HE. 01 60 TO 340 ISC33780
CALL TITLRd.3,01 ISC33790
» IF (LINE .6T. 31 60 TO 330 ISC33000
^ 290 WRITE (JUNT.9001I ISC33810
O tINE = LINE*! ISC339.-0
IF (JSS .EQ. 3) THEN ISC33030
CALL HEAONGIKK,-!! ISC330'iO
ELSE ISC330SO
CALL HEAUNGIKK.K) ISC33660
ENDIF ISC33070
300 CONTIHUE I5C33000
WRITE (JUNT.9011I (HS610(I,mi,I=l,2).IX(IM=Il.I2l ISC33390
IF IKK .EQ. 31 GO TO 310 ISC33900
MRITE (JUNT,9012I I:1.4I.IHSG9(I.t14l,I=1.2l ISC33980
ENDIF ISC33990
320 LINE s Lr>IE»6 ISC34000
330 J4 - >J3-1I«NXPNTS ISC34010
WHITE (JUNT,90141 Y(J3l.tZ(J4«II,1=11,121 ISC34020
J4 = 0 ISC34030
LX = 0 ISC34040
60 TO 260 ISC34050
340 IF (IX .EQ. 01 GO TO 350 ISC3
-------
C ISC34160
C PRINT CALCULATIONS AT SPECIAL DISCRETE POINTS ISCS.'^O
C»ltK*H>ll«*«><'l>«lt*M*l'V«
-------
16-9
L = 0
14 = 0
IF MIXHTPT .E9. 0) GO TO 490
IF IHXPNiS 19. 0* GO TO 500
HAVE BOTH TYPES OF RECEPTORS
IF lISMIfJ .EQ. ISHC3M 60 TO 490
IF 'NXXVY .ST. NXHTPTI GO TO 480
USE ISMI3I AS PRIMARY UNITS DISPLAY
L = ISWf31
L4 s 2
60 TO 510
USE ISMI2I AS PRI.1ARY UNITS OtSPUY
ACO L = ISM(2I
L4 s 1
GO TO 510
490 L = ISHI2I
L4 » 0
60 TO 510
500 L = ISMC 31
L4 = 0
510 COKTINUE
Ml = 1
M2 » S
M4 = 4
M5 = 2
M6 = 3
M7 = 4
na = 2
IF (L -LT. 2) 60 TO 520
Ml =
M2 =
M4 t
M5 =
M6 «
M7 s 2
M8 a 3
520 CONTINUE
IF IISMU1) .ME. II 60 TO 540
CALL MXIMUmiXS.IYS.ZIIX.Zt
L2 '- 0
00 530 1=1,10
IF (IXSIII .EQ. O.OR.IYSIII .EQ. 0) 60 TO 530
IF (ZHXIII .6T. 0.01 L2 » I
530 CONTINUE
60 TO 620
540 IF IISH(12I .EQ. -II GO TO 570
IF (ISHI12J .HE. II 60 TO 870
MAXIMUM POINTS HAVE BEEN INPUT BY THE USER
L = 0
IF INSEASN .EQ. l.OR.NXHYPT -LE. 10) GO TO 550
L =
-------
w-
<£
UJ
ZMXdl = Z(NXXYY*I*l)
IF (IXSIII .EQ. O.OR.ITS(I) .EQ. 01 GO TO 560
IF IZI1XIII .61. 0.01 L2 = I
560 comiriUE
60 TO 620
570 CONTINUE
L = (K-ll»10
IF IKK .EQ. 21 L = NSEASN«10
580 L2 = 0
00 610 1=1,10
IXSIII s IX10(I«U
IYSI11 = IT10(I«L)
IF (IXSIII .6T. NXPNTS1 GO TO 590
JJ = IIYS(II-1I«NXPNTS«IXSIII
GO TO 600
590 JJ = NXXYWXSm-NXPNTS
600 ZMXIII = ZIJJI
IF I IXSIII .EQ. O.OR.XYSdl .EQ. 01 GO TO 610
IF IZMXIII .GT. 0.01 LZ a I
610 CONTINUE
620 CONTINUE
1 = 1
IF (ISM(12).EQ.O.OR.Z3.EQ.2.0fl.NOCOnB(NGI.EQ.O) GO TO 640
J » 2
630 I = 1*1
J = J*l
IF IJ .GT. NOCOMBINGII 60 TO 640
J = J»12
60 TO 630
640 LI » l-l
MM = 2
IF USTILN .EQ. l.OR.LSTILN .EQ. 21 GO TO 660
IF (ISHI16I .EQ. 01 NN = 1
660 CONTINUE
UN = J
L2 - L2«l
IF 112 -IE. II GO TO 860
L5 = IBUJf.
13 = 0
00 850 J-'i,L2
IF (J .EQ. L2I GO TO 680
11 = IXSIJI
12 a IYSIJI
IF (II .EQ. O.OR.I2 .EQ. 01 GO TO 850
IF I LI .NE. 01 GO TO 680
L3 = 1
i. = 11
IF ILSTILN .EQ. 3.ANO.NN .EQ. 21 L = L«L2/2
L = l*Ll
CALL TITLRIL.3.NN)
LINE = LIHE-L
IF (LINE .GT. 2.AND.LSTILN .EQ. 31 GO TO 670
IF (LINE .GT. 2.ANO.LSTILN .NE. 01 60 TO 690
670 WRITE (6,90301
LINE = LINE*I
CALL HEADNG(KK.K)
CO TO 690
ISC35300
ISC35310
ISCJ5320
ISC35310
ISC353'iO
ISC35350
ISC3S360
ir>C35370
I5035380
ISC35J90
ISC35'iOO
ISC3S410
ISC35420
ISC35430
ISC35A40
ISC35<<50
ISC35460
ISC35470
ISC354BO
ISC35490
ISC35500
ISC35510
ISC35520
ISC35530
ISC35540
ISC35550
ISC3556D
ISC35570
iscssr.oo
ISC35590
ISC35600
ISC35610
ISC35620
ISC35630
ISC35640
ISC35650
ISC35640
ISC35670
ISC35600
ISC35690
ISC35700
ISC35710
ISC35720
ISC35730
ISC3570
-------
CD
I
0>
00
660 CALL TITLRU.3.01 ISC35B70
IF (LINE .IE. 31 60 TO 670 ISC35800
60 TO 800 ISC35090
690 IF (ISMI12) .NE. 01 60 TO 710 ISC35900
700 WRITE (JUNT.90231 ~ ISC3VUO
LINE s LINE«3 ISC35920
GO TO 790 ISC35930
710 IF (ISMI12I .6T. 0) 60 TO 740 ISC35?'.0
IF (IS .EQ. 2) GO TO 700 ISC359SO
C INDIVIDUAL SOURCE CONTRIBUTION TO COMBINED MAXIMUM 10 ISC35-?60
IF (NOCOMBING) .EQ. 01 60 TO 730 I5C35970
Jl = I ISC351?™
J2 s Z ISC35990
IF (J2 .6T. NOCOMBIN6M M • NOCOHBfUGt ISC36000
WRITE (JUNT.9024) (IOSORC(NGT*I),I=J1.J2> ICrS^'O
LINE s LINE«2 ISCJbuZO
720 Jl s J2 . ISC36030
Jl s Jl*l ISC36040
IF (Jl ,6T. NOCOMBINBII CO TO 760 150360*0
J2 = Jl+11 ISC36060
IF (J2 .GT. NOCOMBCNSII J2 a NOCOMB(NG) ISC36070
LINE = LINE«1 ISC36030
WRITE (JUNT.90251 (IDSORCINGT*II,I=J1,J2) ISC36090
LINE 3 LINE»1 ISC36100
60 TO 720 ISC36110
730 WRITE (JUNT.90261 ISC36120
LINE = LINE*3 . ISC36130
GO TO 790 ISC36140
740 IF (NS .EQ. II GO TO 760 ISC36150
750 WRITE (JUNT.90271 ISC36160
LINE a LINE*! ISC36170
GO TO 790 ISC36100
760 IF (ISMia) .EQ. II 60 TO 750 I5C36190
IF (NOCOnB(NSI .Efl. 01 60 TO 770 ISC36200
Jl c 1 I3C36210
J2 s 2 ISC36220
IF (J2 .6T. NOCOMB(N6II J2 = NOCOMB(NGI ISC36230
WRITE (JUNT,9026) (IOSORC(NGT«I),I=J1,J2) ISC36240
LIIIE = LINE*2 ISC362SO
GO TO 720 ISC36Z60
770 WRITE (JUNT.9029I ISC36270
LINE 3 LINE*! ISC36280
60 TO 790 ISC36290
780 WRITE (JUNT.90301 ISC36300
Llt'fi = LINE»1 ISC36310
790 LONTINUE ISC36320
LINE = LINE»6 1SC36330
WRITE (JUNT.90161 (H364(n3«II.X3l.4),|MSG10(I.2I.I±M2.mMMSG10(IISC36"iO
l.n5).I:M6,M7l,(MS610(I.H8M=3,4).(MSG9II.l).I=1.2).IMSG9II.Ml).l3lSC36j50
21.2) ISC36360
800 IF (J .EQ. L2» GO TO 630 ISC36370
L5 s IBLNK ISC36300
IF (L4 .EQ. 01 60 TO 820 ISC36390
IF (L4 .EQ. 2) GO TO 810 ISC36'iOO
C .LABEL FROM 6RID SYSTEM USED. DETERMINE IF THIS RECEPTOR IS AN ISC36'<10
C ARBITRARILY SPACED RECEPTOR WITH DIFFERENT UMITS ISCW.TO
IF (II .GT. HXPHT3I L5 s 1AST I5C36'i30
-------
00
I
GO TO 820
C LABFI. FROM ARBITRARILY SPACED POINTS USED, DETERMINE IF THIS
C RECEPTON IS FROM G»IO SYSTEM HITH DIFFERENT UNITS
810 IF (II .LE. NX>NTS> L5 = IAST
820 CONTINUE
WRITC ;JUNT,9017) L5.XII1),YII2),ZMX( Jl
It «L5 .NE. IBLNK) L6 = 1
60 TO 850
830 IF IL4 .19. 01 60 TO 850
IF IL6 .EQ. 0) GO TO 850
IF 114 .CQ. 2) GO TO MO
J.6 = 1
IF IISHI3) .GE. 2) 16 = 2
WRITE IJUNT. 90311 I MSG91 14,1.6 1,1.4=1,2 1
GO TO 850
840 L6 * 1
IF (ISM(2I .GE. 21 L6 = 2
WHITE IJUNT, 90511 (HS69IL4.L6I, 14-1,2)
050 CONTINUE
860 CONTINUE
IF IISUI16) .EQ. 0) LINE « NLINES
870 CONTINUE
GO TO 920
8BO CONTINUE
LINE = NLINES
ILN =4 '
II = -10
890 II = 11*11
IF III .ST. K) GO TO 910
12 = 11*10
IF 112 .GT. Kl 12 a K
DO 990 J=I1,I2
I = 1*1
IXS(I) s XTSAVE(J)/10
900 ITS! 1 1 s ITSAVEUI-IXSIIIBIO
CALL TITLRI 1,4.0)
WRITE IJUNT, 9001) (IXSI J).IT3( J). J=1,I )
GO TO 890 -
910 K = 0
LINE = NLINES
920 CONTINUE
LSTILN = ILN
RETURN
9001 FORMAT UK IX, 16. 3X, II, IX) )
9002 FORtlAT I1X.A1.1X.A1,I7,1X.A4.A2.2F12.2.F7.2.F8.2.23H GAS EXIT TEMPISC36090
1 IDEG K)=.F7.2.24H, GAS EXIT VEL. IM/SECI=,F6.2,1H,/58X,19HSTACK DISC36900
2IAHETER IM)=,F6.3.28H. HEIGHT CF ASSO. BLOG. IM)=,F7.2.10H, WIDTH IZr"00
ISC36510
ISC365CO
ISC36530
ISC36540
ISC365r,0
ISC36S60
ISC36570
ISC36580
ISC36590
ISC36600
ISC36610
ISC36620
ISC36630
15C:!6'<0
ISC36650
ISC36660
ISC36670
ISC36680
ISC36690
ISC36700
ISC36710
ISC36720
ISC36730
ISC 36 740
ISC36750
ISC3 7SO
ISC36.70
ISC 36 700
ISC36790
ISC36600
ISC36B10
ISC36020
JSC36030
ISC360<.0
ISC36050
ISC36660
ISC36B70
ISC36080
-------
W
O>
K>
CO
-4
9008 FORMAT (64X.20H- SOURCE STRENGTHS (.10A4.3HI -I ISC37010
9009 FORMAT I92X.8H- SEASON.12,2H -/39X.14HSPEED CATEGORY.31X.24H- STABISC37020
1ILITY CATEGORIES -/49X.6I10X.1HI.I1.1HIII 1SC37030
9010 FORMAT I46X.I2.5X.6I1PEU.5M ISC370'<0
9011 FORMAT (53X.25H- GRID SYSTEM RECEPTORS -/51X.10H- X AXIS I.2A4.11HI5C37050
1, METERSI -/14X.9F13.3I ISC37060
9012 FORMAT (1X.8HY AXIS I.3A4.A3.2H, ,2A4.1HI,25X,3H- .3A4.A1.3H -/1ISC37070
14X.29I4H I/I ISC37000
9013 FORMAT I1X.8HY AXIS (.3A4.A3.2H. .2A4.1HI.24X.14H- ELEVATIONS -/14ISC37010
1X.29I4H I/I ISC37IOO
9014 FORMAT «1X,F13.3,1X,9F13.6) ISC37110
9015 FORMAT (3UX.F9.1.F11.1.F14.6,5X11 ISC371TO
9016 FORMAT (51X.lHX,12X.lHY.8X,4/.4/47X.23HCOORDINATE COOROINATE/49X.ISC37MO
lA4.Al.aX,A4,A3/62X,A4.A3/48X,lH<»A4.A2,lH>.5X.lH(,A4,A3.1HI/47X,39ISC37j40
2I1H-II ISC37150
9017 FORMAT I44X,A1.1X,F11.2.2X,F11.2.2X,F14.6) ISC37U>0
9018 FORMAT I82X.26H- PARTICULATE CATEGORIES -I ISC37170
9019 FORMAT I78X.7(5X.I2II ISC37100
9020 FORMAT (58X.22HFALL VELOCITY IMPS) .7F7.4I ISC37190
9021 FORMAT I58X.13HMASS FRACTION.9X.7F7.4) ISC37200
90*2 FORMAT (58X.22HREFLECTION COEFFICIENT.7F7.41 ISC37210
9023 FORMAT I1H0.45X.40H- PROGRAM DETERMINED MAXIMUM 10 VALUES -/I ISC372SO
-------
IF (NT4 .EQ. 1) 1C = IBUfC I5C37500
IF (KK .NE. 3) GO TO 30 ISC3759J
IF (ILN .NE. 1) GO TO 10 ISC37fcOO
IF IK .LT. 0) THEN ISC37610
WRITE IJUNT.90131 (ICONT(I.NT4).I=1.3> ISC376ZO
ELSE ISC37610
WHITE (JUNT.90011 (ICONTII.NT4I,I=1.3) ISC37/.'iO
EUDIF ISC37'-50
LINE = LINE*2 ISC37fciO
60 TO 200 ISC37670
10 IF (ILN .NE. tI GO TO 200 ISC37600
C ISC37690
Ml a 1 ISC37700
M2 = 1 ISCZ7710
IF (ISMS) .LE. II GO TO 20 1SC37720
Ml » 2 ISC37730
M2 = 3 ISC37740
20 CP»niNUE ISC37750
IF IK .LT. 01 THEN ISC37760
WRITE IJUNT.90141 (ICONT(I.NT4).I=1.3> ISC37770
ELSE ISC37780
WRITE IJUNT.90071 ,150378:0
llinSG10II.n2).I=3,4).J=1.3M(rtSG9(I,Nl),I=1.2>,J=l,3> • ISC37030
LINE = LINEtS ISC370<'<0
GO TO 200 ' ISC37050
30 IF IILN .NE. 2) GO TO 40 ISC37f60
IF (LINE .6T. 4.AND.LSTILN .EQ. 1) GO TO 160 ISC37070
40 IF IISHI1I .EQ. 2) GO TO 100 . ISC370QO
IF IIS .EQ. 2) 60 TO 60 ISC37A90
J2 = NUMS I3C37900
50 WRITE IJUNT,90021 HS63(N3).nSG3(N3»l).(UNITSII).I=1.10).J2 ISC37910
l.IC.ICONT(2.NT4) ISC37920
LINE = LIHE+1 I3C37930
60 TO 160 ISC379<«0
60 IF (NOCOI1BINGI .GT. 0) 60 TO 70 ISC37950
WRITE (JUNT.90031 nSG3(N3I.HSG3(N3»l),IUNITS(I).I=l,10I.IC. ISC37960
1ICONT(2.NT4) ISC37970
LINE - LINEtl ISC379RO
60 TO 160 ISC37990
70 Jl = 2 ISC3POOO
IF Ul .GT. NOCOMBOKn Jl = NOCOHB(NG) ISC30010
IF Ul .GT. 1) GO TO 80 I5C300CO
IF IIDSORCIJ1«KGT) .LT. 01 GO TO 80 I5C3C010
J2 = IDSORC(J1«HGT) ISC30.«0
GO TO 50 . ISC38050
80 WRITE IJUNT.90101 MSG3«N3I,MSG3(N3*1),(UNITS(II,I=1,10I,IC,ICOMT(ZI5C30060
M l.NT4).(IOSORC(I«NGT).I=l.Jll ISC38070
^ LINE = LINE*1 ISC380nO
-j 90 Jl = Jl«l ISC3C070
IF (Jl .GTt NOCOnB(NG)) GO TO 160 ISC381UO
J2 = Jl«16 ISC3S110
IF (J2 .GT. NOCOMBINGI) J2 = NOCOHB(NG) ISC38KO
WRITE (JUirr.9011) (IOSORC(I»HGT»,I-J1,J2) ISC30MO
LINE = LINE«1
-------
oo
i
00
00
Jl e JZ I5C3B150
60 TO 90 ISC3B160
100 IF (is .rq. t) GO TO 120 iscseiyo
JZ • >C.'!13 ISC3B160
110 :-T.ITE (JUNT.9004) MSS3(N3I,MS63(N3«1),«UHITSII 1,1=1,10I.J2 ISC38190
1,IC,ICONT(2.NT4> ISC3BrOD
LINE - LINE«1 ISC30310
GO TO 160 isc3or;o
120 IF CNOCOIOIN6I .6T. 0) GO TO 130 ISC3PTJO
SRITE UUNT.90051 HSGJtNS>,rtSG3«:-T.ll,«UNITSm,I=l.IOMC. ISC3Pn'»0
1ICONTI2.N14) ISC3B250
LIME = LINE«1 . ISC3B260
60 TO 160 ISC30770
130 Jl = t ISC38Z80
IF (Jl .6T. NOCOMBIN6I) Jl a NOCOMB(NG) ISC3B290
IF (Jl .ST. II 60 TO 140 ISC3B300
IF (IOSOnC(Jl«N6T) .LT. 01 60 TO 140 ISC3B310
• JZ s IDSOflCUUNGT) ISC3B3JO
6O TO 110 ISC36f74
140 WRITE UUHT.9012) ftS63(H3l.nSGS(N3*ll,(UNITS(I),I=l,10)iIC>ICO»IT(2ISC3B3450
WRITE (JUNT.9006) K ISC30 60
LINE a LINE*1 ISC38470
170 CONTINUE ISC38480
IF (ILN .NE. 21 GO TO 200 ISC3849Q
100 CONTINUE ISC38500
Ml s I ISC38510
M2 = 1 ISC3B520
IF (ISM(3) .LE. 11 GO TO 190 ISC30530
Ml = 2 ISC38540
M2 = 3 ISC3B5SO
190 WRITE (JUNT.9009) ((HS64(J*M3).J=1,4),I=1,3) ISC3B560
WRITE UUNT,90081 ((HSGlOd.ni I,I=1,2I,«HSGIOI I,M2>,I=1,2»,J=1,3I,ISC38570
l((HSG10(I,n2).I=3.4),J=l,3),MnSG9II,Hl),I=l,2),J=1.3) ISC38580
LINE - LINE»6 ISC38590
200 CONTINUE ISC38600
NT4 = 2 ISC3«»MO
RETURN ISC38620
9001 FORMAT (34X.S1H- GRID STSTCM RECEPTOR TERRAItl ELCVATION3 (HETERS) ISC38630
1,3A4/I ISC30600
9002 FORMAT C9X,3H»» ,2A4,29H GROUND LEVEl CONCENTRATION (,10A4,16HI OUISC386SO
IE TO SOURCE .I6.1X.2A4.3H «»l ISC38660
9009 FORMAT (6X,3H»» .2A4.29H GROUND LEVEL CONCENTRATION (.10A4.28IO FRISC38670
ION ALL SOURCES COMBINED ,2A4,3H »•) ISC386BO
.9004 FORMAT (9X,3H»» ,2A4,26H GROUND LEVEL DEPOSITION (.10A4.16H) DUE TISC38690
10 SOURCE ,I6,1X.2A4,3H ••! ISC38700
9005 FORMAT (8X,3H«» .2A4.26H GROUND LEVEL DEPOSITION (,10A4,28H) FROM ISC38710
-------
1ALL SOURCES COMBINED .2A4.3H ««) ISC38720
9006 FORMAT (60X.7HSEASON ,121 ISC3B730
9007 FORMAT (35X.48H- DISCRETE RECEPTOR TERRAIN ELEVATIONS IMETERSI ,3AISC387'.0
14//1X.3(4X.1HX,9X.1HV,7X.9HELEVATION.9X)I I3C38750
9008 FORMAT 11X,3(1X,2A4.1X,2A4,22X)/1X,3( 10X,2A4.22X)/1X,3( 1IH (METER5I5C30760
II (.A4.A3.1HI.21X)/14X.58(2H--I/I ISC38770
9009 FORMAT (1H0.54X.22H- DISCRETE RECEPTORS -/lX,3(4X.lHX,9X,lHY,6X.3AI5C387no
14.A1.6XM ISC3B790
9010 FORMAT I3X,3H«" ,2A4,29H GROUND LEVEL CONCENTRATION (.10A4.2H) .ZAISC3BQOO
14.22HFROM COMBINED SOURCES .2II6,1H,» I5C30010
9011 FORMAT I3X.3H»» ,17(I6.1H.II ISC30020
9012 FORMAT «3X,3H*» .2A4.26H GROUND LEVEL DEPOSITION (.10A4.2H) .2A4.2ISC3B. 10
12HFROM COMBINED SOURCES .2II6.1H.II ISC3B8
-------
9002 FORMAT I/50X.20H- SOURCE INPUT DATA .3A4//23H C T SOURCE SOURCE ISC39290
1 .1HX.11X.1HY.6X.16HEMI3SION BASE //5QH A A NUMBER TYPE COORDIISC19300
2NATE COORDINATE HEIGHT ELEV- /.18X.36H- SOURCE DETAILS DEPEMDINISC39JIO
36 ON TYPE -/4H R P,18X.3H»M).9X,3H(MI,8X,3H(MI,3X,7»IATION //4H 0 EISC39320
4,4aX.6HIM) //1X,64(2H--H ISC39330
9003 FORMAT (40X.19H- ISCLT INPUT DATA ,3A4/) ISC393'iO
9004 FORMAT I40X.36H- SUMMARY OF SOURCES OUTPUT TO TAPE .3A4//11I12H NUISC39350
1MBER/TVPEM ISC39360
END ISC39370
C ISC393BO
C ISC39390
SUBROUTINE SUMMER!AR1.AR2.11) ISCjv«uO
C SUBROUTINE SUMMER fVERSION 873381. PART OF ISCLT. ISC39410
COMMON /REST/ IUNT.JUKT.NXXyY.NXXVYP.T?TBLE(6I.IFLG3.LIIIE.NLINES. ISC39420
lICARD,tlXPSS.NYPSS.riUNT,NUIT,ICONT(3,2),ITSAVEI572).NTl.NT2.»IT3.NT4ISC39'<30
tiMS<:7!4.3),HSGB(2).HSG9t2,2>.MSG10(4.3>.NGROUP.NOCOM8l20),IDSORC(2ISC39'i'«0
300).IENn.XSEA.ISAVSOI300).NG.NGT.NXMY.IHAKSMI16) ISC39450
OIMEHSION AR1(1),AR2(1) ISC39460
ir I LI .LT. 0) 60 TO 40 ISC39470
IK I LI .EQ. II GO TO 20 ISC39480
00 10 m.NXXYYP ISC39490
10 AR1II) > ARllI)*AR2fI) ISC39500
60 TO 60 ISC39510
20 DO 30 I=1,NXXYYP ISC39SEO
30 ARK 11 » AR21Z) ISC39530
60 TO 60 • ISC395'iO
40 00 50 I=1,NXXYYP ISC39550
50 AR1III s AR1IIIBXSEA ISC39560
60 RETURN ISC39570
END ISC39580
C ISC39590
C ISC39600
SUBROUTINE HXIMUMIIXS,IYS.ZKX,Z) ISC39610
C SUBROUTINE MXIMUtl (VERSION 67338). PART OF ISCLT. ISC39620
COMMON /DIM/ NSOURC.NXPNTS.NYPNTS.NXMYPT.NSEASN.NSPEED.NSTBLE. ISC39&30
1NSCTOR.ISMI25).UNITS!20).TITLE!201 .HOFILE ISC39640
COMMON /REST/ IUNT.JUIT.NXXYV,NXXYYP,ISTBLE(6),IF163.LINE.NLINES. ISC39650
IICARD.NXPSS.NYPSS.MUNT.NUIIT,ICONIC 3,21 .ITSAVE! 572) ,NT1 ,NT2 ,NT3.NT4I3C3?660
2.MSG7(4,S),MS6B(2).MS69l2.2).nS610!4.3).NGROUP.NOCOMBI20).IDSORCI2ISC39670
300).IENO.XSEA,ISAVSOI300),N6.NGT.NXMV,IHAKSI4(16) ISC39680
DIMENSION IXS(1).IVS(1),ZMXI1),ZI1) ISC39&90
DO 10 1=1.10 ISC39700
IXSII) a 0 ISC39710
IVSII) = 0 ISC39720
10 ZMXII) = 0.0 ISC39 10
N = 10 * ISC39740
J* = 1 ISC39750
JJ = 0 ISC39760
20 JJ » JJ*I ISC39770
IF (JJ .GT. NYPHTSI CO TV 40 ISC39780
JJJ = (JJ-1)«NXPNTS ISC397"0
I' * • . . ISC39800
JO II > 11*1 ISC39810
IF (II .GT. NXPNTS) CO TO 20 ISC39820
I-1 = JJJ»II ISC39830
GO TO 60 15C39P'iO
40 IF IMXMYPT .LE. 0) GO TO 110 15039050
-------
to
J4 s 8
IJ = MXXVV
50 f - IJ«1
IF IIJ .6T. NXXTYP) 60 TO 110
JJ s IJ»NYP3S
II = IJ4NXPSS
60 COMTIHUE
IF UdJI .11. ZltXINII GO TO 100
L = 0
70 L 3 L«l
IF (L .6T. N> 60 TO 100
IF IZIIJ) .LE. ZMXIU) GO TO 70
H s N»l
80 M 3 M-l
IF in .If. i» 60 TO 90
IX3IMl s IXS(tt-l)
IVSINI s IVS(N-l)
ZnXIM) s ZMXIM-1)
60 TO 80
90 ZHXCLI s ZIXJI
IXSILI 3 H
USILI 3 JJ
100 60 TO (30.50I.J4
110 CONTINUE
RETURN
END .
C
c
ISC39660
ISC59n70
iscsinio
ISC39090
ISC39900
ISC39910
ISC39920
ISC39930
ISC39940
ISC39950
ISC399&0
ISC39970
ISC39930
ISC39990
ISC40000
ISC40010
ISC40020
ISC40030
ISC40040
ISC40050
ISC40060
ISC40070
ISC400BO
ISC40090
ISC40100
ISC40110
ISC40120
ISC40130
ISC40140
ISC'iO'JO
SUBROUTINE CHECKRINN.NOI
SUBROUTINE CHECKR (VERSION 873381. PART OF ISLLT.
COMMON /REST/ IUNT.JUNT.NXXYT.NXXYTP.ISTBLE(6I>1 :L53.tINE.NLTNES, ISC40160
lICARD.NXPSS.NYPSS.nUNT.NUNT.ICONTI3.ZI.ITS«VE(5/2),NTl.NT2.N:3.NT4ISC40170
2,nS67l4.3),nSG6(2).nS69(2>2),HSG10(4,3l>NGROUP,NOCOt1B(20).IDSORCI2ISC40ian
300I.IENO.XSEA.ISAVSOI300I.NG.N6T.NXMY.IHAKSMI16I ISC40190
COtfftON /SORC/ NUMS,TirPE.OX.OT,H.ZS,TS,VEL,0,HB,BH.BL,NVS,VS(20l, ISC40200
lFRqi20).6AmA(20).DSBHI16l,OSBHI16KQC6,6,4l.qFLG.MAKE ISC40210
IF (NN .6T. 0) 60 TO 10 1SC40220
JJ 3 NOCOHBING) ISC40230
II 3 HOT ISC40Z40
60 TO 30 ISC40250
10 II 3 o ISC40260
I 3 0 ISC40Z70
20 I s 1*1 ISC402BO
IF (I .6T. NN) 60 TO 60 ISC40790
JJ - NOCOflBII) ISCsUvJO
30 IF IJJ .EQ. 0) 6O TO 70 ISC40110
00 50 J=1.JJ • ISC40320
IF (IOSOTCIJ4III .6E. 0) GO TO 40 ISC40330
IF CiUfIS .6T. lABSIIOSORCtJtllin 6O TO 50 ISC403'<0
IF IJ .EQ. 1) 60 TO 70 ISC40350
IF UOSORCf J»II-1) .6E. 0.AND.MUMS .LT. IDSORCIJ»II-11) GO TO 50 ISC40360
60 TO 70 ISC40370
40 IF (HUMS .EQ. IOSORCIJ«II)) GO TO 70 ISC403»0
50 CONTINUE ISC40390
II s II»JJ ISC40'iOO
IF (HM .6T. 0) 60 TO 20 ISC
-------
GO TO 00
70 CONTINUE
NO = 1
80 RETURN
END
w
I
c
c
c
c
c
oo
ISC40430
ISC40'i40
ISC40'0
ISC40'i60
ISC'iCr.70
ISC40'iBO
ISC40'i90
ISC40SOO
ISC40510
SUBROUTINE OISTR
SUBROUTINE OISTR (VERSION 67338). PART OF ISCLT.
CALC DISTANCE BETWEEN SOURCE AND RECEPTOR. DETERMINES IF RECEPTOR ISC40 70
IS IN THE CALCULATION SECTOR OR NOT AMD CALCULATES THE SMOOTHING ISC40D30
TERN
COMMON /DIST/ XB,YB,XYP.T»M.TR,TRI.ARG.RP,RPI
AR6 = -1.0
XF a XB*XTP
F « XF»TNN
DETERMINE IF INSIDE CALC SECTOR. IF NOT THEN NO CALC
IF IABSITB) .6E. F) GO TO 10
CALC RADIAL DISTANCE BETWEEN SOURCE AND RECEPTOR
RP a SqRTIXF«XF«YB»VBI
RPI » 1.0/RP
CALC SMOOTHING TERM
F = XF«RPI
IF IF -GT. I.01 F = 1.0
F * ABSITR-ACOSIFH'TRI
AR6 = F«RPI
10 RETURN
END
isc4or-'io
ISC4D550
ISC40560
ISC40570
ISC40F60
ISC40590
ISC40600
ISC40610
ISC40620
ISC40630
ISC40640
ISC40650
ISC40660
ISC40670
ISC40600
ISC40690
ISC40700
ISC40710
ISC40720
ISC40730
ISC40740
ISC40750
FUNCTION FUMCTIX.IST.ISW9I
FUNCTION FUNCT fVERSION 873381. PART OF ISCLT.
CALCULATES AVERAGE B FOR VERTICAL TERM OF DEPOSITION EQUATION
MODIFIED TO OPTIONALLY USE BRIG6S URBAN/MCELROY-POOLER 'B* VALUES ISC40760
DIMENSION BUI 361 ISC40770
Cr*C.ON XFUNCS/ ASI36I.BSI36),PSI6),QS(6).CSI6).OSI6).ASII36),BSTI3ISC40730
i6).IAI7l,JAI6I.OSTI33),IOP ISC40790
DATA BU/ 1.05481. ISC40000
1 1.05481.1.07397.1.09147.1.10755.1.12680.1.15459, ISC40810
• 1.27573.1.39640. 1.06Z77.1.11120.1.19*^3, 1.0. ISC40020
• .974Z3..92663..«Z729,.f)C04,.50296,.54401, ISC40B30
• .89450..69450,.77376..6609S..59632..54890,.52290..51173. ISC40040
• .50737, .91156,.61621,.72180,.66096..60730,.56473, ISC40050
• .53115,.51551..50768,.50452/ ISC40060
XO = Xtt.OOl ISC40870
M B lAIISTItl ISC40POO
L = IAIIST»1I ISC40090
IF 11ST .EQ. 11 L « L-l ISC40900
I 3 JAIISTI ISC40910
IF IISU9 .NE. 41 AVsBSIII ISC4020
IF IISM9 .EQ. 4) AV=BUUI ISC4b930
00 10 K=M,L ISC409'iO
IF IXD .IE. DSTIK-in 60 TO 20 ISC40950
I « I»l t ISC409AO
IF IISH9 .HE. 4) AV » AV » BSIII ISC40970
IF IISH9 .EQ. 41 AV = AV * BUI11 ISC409SO
10 CONTINUE ISC40990
-------
20 FUHCT =
RETURN
END
AV/FLOATII-JAt1ST1*1I
C
c
C
c
U>
Nl
v.
CD
SUBROUTINE VERTCl /
SUBROUTINE VERTCl (VERSION 87338). P'-HT OF ISCLT.
CALCULATES THE VERTICAL TERM FOR THE CONCENTRATION EQUATION
COMMON /VERT/SI6ZI,SI6Z,HM,H.V,VSI?OU.BA
DATA SQ2P02/1.2S3314137/
V = 0.0
IF ISIGZI .6E. 0.0) GO TO in
A = SIGZ/HM
IF (A -6E. 1.6) GO TO 20
C s H»H*SI6ZI
IF IB .LT. -30.0) GO TO 30
V s EXP(B)
B s 0.0
10 B 8 3»2.o
IF (B -6T. 6.0) GO TO 20
TR - B»HM
TS 8 (TR-H)M2»SIGZI
IF (TS .LT. -10.0) GO TO 30
TR e (TR«H)»«2»SIGZI
V 8 V*EXP0
ISC411QO
ISC41110
ISC41120
ISC41130
ISC41140
ISC41150
ISC41160
ISC41170
ISC41100
ISC41190
ISC41200
ISC41210
ISC41220
ISC41230
ISC41240
ISC41Z50
I5C41260
ISC41270
ISC41760
ISC41290
ISC41330
ISC41320
ISC41330
ISC41340
ISC413SO
ISC41360
ISC41370
ISC41360
ISC41 390
ISC41490
ISC41410
ISC41'20
ISC41430
ISC41440
ISC^l'i'iO
ISC41060
ISC41470
ISC41'i10
ISC41'.90
ISC41500
ISC41510
ISC41520
ISC4)r>30
ISC41540
ISC41550
ISC41S60
-------
w
I
C
C
6T TO 10
7-1 V - SQ2P02«A
30 CONTINUE
V = V-O.S
RETURN
END
SUBROUTINE VERTC2C6AMMA.RHTI
SUBROUTINE VERTC2 t VERSION 87338). PART OF ISCLT.
COMMON /VERT/ SIGZI.SIGZ.HM.H.V.VSROU.BA
CALCULATES THE VERTICAL TERM IN THE CONCENTRATION EQUATION WHEN
DEPOSITION IS OCCURRING
« = 0.0
ir ISIGZ2 .GE. 0.0) GO TO 60
HI =-H»VSROU-RHT
HZ = H-VSROU-RHT
A = H2«H2»SIGZI
IF IA .LT. -40.0) GO TO 60
B » H1«H1»SI6ZI
IF IB .LT. -40.0) GO TO 10
V = EXPIB)
10 IF (GAMMA .LE. 0.0) GO TO 20
V s V«EXP(AI*6AMMA
20 A a 1.0
B B GAMMA
C B B"B
D B o.O
30 0 > 0«2.0
TR 8 0»HM
TS s (TR-H2)"2»SI6ZI
IF 10 .LE. 2.0. AND. TS .6T. -40.0) GO TO 40
IF ITS .LT. -10.0) GO TO 60
40 VL i A'EXPITS)
IF IGAMMA .LE. 0.0) GO TO 50
TT a CTR*H1)»»2»SI6ZI
TQ c ITR-H1)M2»SIGZI
TR * ITR«H2)M2*SI6ZI
VL B VL«B»(EXP(TT)«EXP(TQ)I«C«EXP
V»1.0E-6) GO TO 50
IF IVL .LE.
V = V»VL
ABB
BBC
C B C*GAMNA
GO TO 30
50 V B v*VL
60 CONTINUE
RETURII
CNO
SUBROUTINE VEHTC3CGAMMA)
SUBROUTINE VERTC3 (VERSION 87338), PART OF ISCLT.
COMMON /VERT/ SIGZI,SI6Z.HM,H.V.VSROU,BA
V = 0.0
IF ISIGZI .GE. 0.0) GO TO 40
HI = H-VSROU
A = H1*H1«SI6ZI
ISC41570
ISC41SOO
I3C41590
ISC41600
ISC41610
ISC41620
ISC41630
ISC4U40
ISC41650
ISC416'>0
ISC41670
ISC41690
ISC41690
ISC41700
ISC41710
I5C41720
ISC41730
ISC41740
ISC41750
I5C41760
ISC41770
ISC417BO
ISC41790
ISC41800
ISC41B10
ISC41020
ISC41830
ISC4*'- ;0
ISC41850
ISC41860
ISC41870
1SC41000
ISC41890
ISC41900
ISC41910
ISC41920
ISC4I910
ISC41940
ISC41950
ISC41960
ISC41970
ISC41900
IbC;i"?0
ISC "42000
ISC42010
ISC42020
ISC42030
ISC42040
ISC420SO
ISC420&0
ISC42070
ISC42080
ISC42090
ISC42100
ISC42110
ISC42I20
ISC'iJUO
-------
Cd
c
c
c
IF (A .LT. -40.01 A » -40.0 ISC42140
V - V*(BA»H1»VSROUI«EXP(AI ISC42150
A = 1.0 ISC42160
B = GAMHA ISC42170
C = 0.0 ISC42100
10 C s C»2.0 ISC42190
TH B C«HM ISC42.700
TS a ITR-H1I ISC42'10
711 a (TR«H1> ISC42c20
TT s TS»TS»SI6ZI ISC42230
TQ B TRiTRHSIGZI ISC42240
IF 1C .LE. 2.01 GO TO 20 ISC42250
IF ITT .LT. -10.0.AND.TQ .LT. -10.01 GO TO 40 ISC42260
20 IF ITT .LT. -40.01 TT B .40.0 . ISC42270
IF ITQ .LT. -40.01 TQ » -40.0 ISC42280
VL B A»IBA»TS-VSROU»»EXPJTTHB»(BA»TR»VSROU»«EXP(TQ» ISC42290
IF (GAMMA .LE. 0.01 GO TO 30 ISC42300
IF IVL .LE. V»1.0E-6) GO TO 30 ISC42310
V B V»VL ISC42320
ABB ISC42330
B B B»GAmA ISC42340
GO TO 10 ISC423SO
30 V B V»VL ISC423'>0
40 IFIV.LT.0.0) V=0.0 ISC42370
RETURN ISC42300
END ISC42390
ISC42400
FUNCTION SIGHAZIXP.ISTI ISC42410
FUNCTION 3I6HAZ (VERSION 67338). PART OF ISCLT. ISC42'<20
CALHILATES THE STANDARD DEVIATION OF THE VERTICAL CONCENTRATION ISC42430
DISTRIBUTION ISC42440
COIIMON /FUNCS/ ASI3a).BSI38l»PSI6l,QS(6I.CS(6)>DS(6).ASII38I.BSII3ISC42450
CO
C
C
18 MAI 71, JA( 6 ) .DSTI33 ). IDP
XD s XPa.OOl
K B 13
IF (1ST .EQ. B) GO TO 30
H B IAIIST)
L B IA(IST»1)-1
IF (1ST .FQ. LAND.TOP .SE. 0) L = t-1
DO 10 K=n»L
IF IXD .LE. DSTIKM GO TO 20
10 CONTINUE
K B L«l
20 K B K-H»JA(ISTI
30 SIGMAZ B AS(K»»XD»«BS(KI
IF (1ST .6T. 3.0R.IOP .NE.O) GO TO 40
IF
-------
C ISC42710
XO = X».001 ISC42720
XE = HBIO'.OOI ISC42730
K 3 1J ISC42740
IF (1ST .E9. 31 GO TO 30 ISC42750
M » IAIIST) ISC42760
L * IA«IST«1I-1 1SC4C770
IF (1ST .EH. 1) L o L-l ISC':r?ao
. oo 10 K=n,L isc<«i;9o
IF IXD .LE. DST(KI) GO TO 20 ISC42COO
10 CONTINUE ISC42810
K = Ul ISM2020
20 KK " K ISC42830
K = K-mJA(IST) ISC«0.B3(38>,PS(6t.qS<6),C3(6>,OS(6).ASI(M).BSI(3ISC42970
18),IA(7).JAI6I,DSTI33).IOP ISC42?80
VIRTY = CSI6tO«PS«ISTH»»QS(IST)»1.0E3 ISC42990
RETURN ISC43000
END ISC43010
C ISC43020
SUBROUTINE URBNYZ (X.KST.SY.SZ) ISC43030
CM SUBROUTINE URBNYZ (VERSION 873381 PART OF ISCLT ISC43040
C BRIGGS URBAN PARAMETERS SIGMA-Y,SI6HA-Z ISC43050
C SI6MA-Y.Z (IN METERSI FROM PASQUILL STABILITY CUSS IKST) ISC43060
C AND DISTANCE FROM SOURCE, XM. IN METERS. ISC43070
XM=X ISC43080
60 TO (20,20,30,40.50,50), KST ISC43090
20 3Vs0.32»XH/SQRT(l.«0.0004»Xm ISC43100
SZ=0.24nXMBSQRT(l.«O.OOUXM) ISC43MO
GO TO 60 ISC43120
30 Sr=0.22«XM/SqRT-• 3Z=O.Ofl«XM/SdRTIl.«O.OOI5»Xt1» ISC43700
\ 6C IFISZ .6T. 5000.) SZ=5000. ISC43210
» RETURN ISC432ZO
END ISC43230
FUNCTION XVY (SYO.KST) ISC43;'<0
C»» FUNCTION XVY (VERSION 67336) PART OF ISCLT ISC43C50
C XVY CALCULATES THE VIRTUAL DISTANCE NECESSARY TO ISC43?60
C ACCOUNT FOR THE INITIAL CROSSPIND DISPERSION. ISC43270
-------
CO
I
CD
C BASED ON BRI6GS URBAN DISPERSION COEFFICIENTS ISC43280
C VALUE RETURNED IS IN METERS. . ISC43Z90
DIMENSION A(6) ISC43300
DATA A/.32..32,.22,.16,.11..ll/ ISC43310
DATA B/.0004/ ISC43320
C»» DIRECT SOLUTION FOR URBAN DISPERSION ISC43330
70 XVY=(B«SYO»"2*SQRT(B»»2»SYO««4»«.»A(KST)»»2»SYO»«2))/ ISC433'tO
»«2.«AIKST)"2I ISM3350
RETURN ISC43360
END ISC43370
FUNCTION XVZ (3ZO.KST) ISC43330.
C»» FUNCTION XVZ (VERSION 67336) PART OF ISCLT ISC43310
C . XVZ CALCULATES THE VIRTUAL DISTANCE NECESSART ISC43400
C TO ACCOUNT FOR THE INITIAL VERTICAL DISPERSION. ISC43410
C BASED ON BRI66S URBAN DISPERSION COEFFICIENTS ISC43420
C VALUE RETURNED IS IN METERS. ISC43430
DIMENSION Cl61,0161 ISC434'iO
DATA C /l.E06.1.E06..20..14..08,.Oa/ ISC43450
DATA D /1.E09,1.E09,0...0003..0015,.0015/ ISC43460
C DIRECT SOLUTION FOR URBAN DISPERSION ISC43470
170 60 TO (160,100,190,200.200,200). KST ISC434GO
C SOLUTION TO THE CUBIC EQUATION ISC43490
C FROM CRC MATHEMATICAL TABLES ISC43500
C STABILITY A»B I100) ISC43S10
180 A=-CIKST)/J. ISC*3520
BM2./27.-ISZO/240. )M2)«D(KST) ISM'tilO
S=B»»2/*.»A»"3/27. ISC43140
IFIS .LT. 0.) 60 TO 165 ISC43550
S=SQRTIS) ISC43560
E=l./3. ISC<»3570
BA=(-B/2.«SI»«E ISC43540
BB=l-B/2.-SI»«E ISC43590
Y=BA*BB ISC43600
162 XVZ=Y-1000./3. ISC43610
RETURN ISC43620
165 CS=0
C STABILITY D.E.tF (200) ISC43700
200 XVZs|0(KST)»SZO*n2»SqRT(D(KST)M2«SZO»«4*4.«C(KS1)M2 ISC43710
«H»SZO»»?)I/I2."CIKST»"«2I ISC43720
RETURN ISC43730
END ISC43740
C ISC43750
SUBROUTINE HPR1LT(KST.TS.TEMP,F,D.VS.UPL,DELH.DTHDZ,DISTF) ISC43760
C SUBROUTINE HPR1 (VERSION 67336) PART OF ISCLT ISC43770
C MAJOR PORTIONS OF THIS CODE CAME FROM THE ISC43780
C MPTER MODEL. ISC43*790
C PLUME RISE CALCULATION ISC43000
OELT=TS-TEMP ISC43niO
IF (KST.6T.4) GO TO 70 ISC43020
C PLUME RISE FOR UNSTABLE CONDITIONS ISC43010
IF (TS.LT.TEHP) 60 TO 60 ISC43P--iO
-------
w
I
oo
00
IF (F.6E.S5.) GO TO 60 ISM3850
C OETERHINC DELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER!F<551 ISC43060
C FOUtO BY EQUATING BRI6GSI1969) EQ 5.2. P.59 WITH COMDINATION OFISC43Q70
C BRIGGSI1971I EQUATIONS 6 AMD 7, PAGE 1031 FOR F<55. ISC430SO
OTMB=0.0297»TS«VS»»0.33333/D»«0.4J667 ISC43H90
IF (DELT.LT.DTMB) GO TO 80 ISC43900
C DISTANCE OF FINAL BUOYANT RISEtO.049 IS l0.75/UPL ISM 3 960
GO TO 100 ISC* 3970
C DETERMINE OELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER(F>55I ISC43900
C FOUND BY EQUATING BRI6GSU969) EQ 5.2. P.59 WITH COMBINATION OFISC43990
C BRIGG3I1971I EQUATIONS 6 AND 7. PAGE 1031 FOR F>55. ISM'iOOO
6U OTMB=0.00575»TS»VS»»0.66667/D»»0.33333 ISC44010
IF IOELT.LT.OTMBI 60 TO BO ISC44020
C DISTANCE OF FINAL BUOYANT RISE (0.119 IS 34*3.5/1000) ISC44030
C BRIGGS(1971) EON. 7. F>55. AND DIST TO FINAL RISE IS 3.5 XSTAR.ISC44040
C DISTF IN KILOMETERS ISC44050
DISTF=O.U9«F»»0.4 ISC44060
C COMBINATION OF BRIGGSI1971) EONS. 6 AND 7. PAGE 1031 FOR F>55. ISC44070
DELHS3B.71KFM0.6/UPL ISC440BO
GO TO 100 ISC44090
C PLUME RISE FO3 STABLE CONDITIONS. ISM'.IOO
70 9=9.80bl6«OTHDZ/TEMP ISC44110
IF ITS.LT.TEMP) GO TO 90 ISC44120
C UtTtnMINE OELTA-T FOR BUOYANCY-MOMENTUM CROSSOVER!STABLE) ISC44I10
C FOUND BY EQUATING BRI6GS(1975) EQ 59. P. 96 FOR STABLE BUOYANCVISC44140
C RISE HITH BRIGGSI1969) EQ *.2fl, P. 59 FOR STABLE MOMENTUM RISE.ISC44I50
OTMB=0.0195a2»TEMP«V3«SQRTJS) ISC44160
If IDELT.LT.DTHB) 60 TO 90 ISC44170
C STABLE BUOYANT RISE FOR HIND CONDITIONS.IHIND NOT ALLOWED LOW ISC44160
C ENOUGH TO REQUIRE STABLE RISE IN CALM CONDITIONS.I ISC44190
C BRIGGSU975) EQ 59. PAGE 96. ISC44700
DELH=2.6«(F/«UPL»S))»i"0.333333 ISC44210
C COMBINATION OF BRIF6S(1975> E" 48 AND EQ 59. NOTE DISTF IN KM. ISC44220
OISTF=9.0020/15»UPL/SW»T4S) ISC44230
60 TO 100 ISC44240
C UNSTABLE-NEUTRAL MOMENTUM RISE ISC44250
C BRIGGSI1969) EON. 5.2. PAGE 59 NOTE: MOST ACCURATE WHEN VS/U>4;ISC44260
C TENDS TO OVERESTIMATE RISE MHEN VS/IK4 (SEE BRIGGSC19/5) P. 7B.ISC44270
C FIGURE 4.I ISC442BO
80 DELH=3.«VS»D/UPL ISC44290
OISTF-0. ISC44300
GO TO 100 ISCA'.llO
C STABLE MOMENTUM RISE ISC44320
90 DHA=3."VS«D/UPL ISC44330
C BRIGGSI1969) EQUATION 4.28, PAGE 59 ISC44340
DELH=1.5» ( VS«VS*D«D*TEMP/( 4. «TS"UPL) )«0.333333/S«»0.166667 ISC44350
IF (OHA.LT.OELH) DELH=DHA ISC44360
DISTF-0. ISC44370
C STORE OFF PLUME HEIGHT!ETC. I FOR THIS SOURCE FOR USE HITH ISC44390
C OTHER RECEPTORS. ISC44390
100 RETURN ISC4't'iOO
END ISC4'i'ilO
-------
ISC44420
c
c
c
c
c
c
c
vO
C
C
c
c
c
N)
•V
CD
45
50
SUBROUTINE BLPLT (RO.VL.KST.F.FII.X.U.S.BETAJ.RISE)
SUBROUTINE BLPLT (VERSION 87336). PART OF ISCLT
CALCULATES PLUME RISE AS IN THE BLP MODEL.
SUBROUTINE IS CALLED ONCE TO SET COEF1 AIID COEF2 AND ENTERED
SEVERAL TIMES LATER AT POINT BLPRIZ TO DETERMINE COEFO.
REAL RO.YL.F.FM.X.U.S.aETAJ.RISE
INTEGER KST
SAVE COEF1,COEF2
OAT* HII /0.31831/. PI2I /0.63662/
5.0 = 3/BETA (BETA=0.6)
COEF2 a 5.0 • (YL » PII * RO)
8.35333 > 3/BETA«2 (BETA=0.6)
COEF1 = 8.33333 • RO • IYL » PI2I » RO)
ENTRY BLPRIZIKST.F.FII.X.U.S.BETAJ.RISE)
IF (KST .IE. 4) THEN
0.72 = t«BETA»2
COEFO = (3.0«X/«U»UI) * 0. 333333
BSV3-BP2-TR
IF(BSV.EQ.O.O)6O TO 45
SGN=SIGNIONE.BSV)
BPP=SGN» ( ABSI BSV ) )»«0 . 333333
Z=APP«BPP-A3
RETURN
CONTINUE
BSV It BPP) s 0.0
Z=APP-A3
RETURN
CH=2.«SQRT(-AP3>
ISC44450
ISC4'<4'>0
ISC1
-------
AlPHA=ACOTeBP/UPJ«Cmi/J. ISC4'.990
Z=CHKCOS(ALPHAI-A3 ISC450QO
RETURN ISC45010
END ISC450ZO
08
I
00
O
00
-------
APPENDIX C
EXAMPLE EXECUTIONS OF THE ISC SHORT-TERM
MODEL (ISCST) COMPUTER PROGRAM
C.I INTRODUCTION
The following examples are problem runs using the ISC short-term (ISCST)
program to model the hypothetical potash processing, plant described in Section
2.6. The examples consist- of two executions of the ISCST program over one
"worst-case" day of meteorological data. The first run calculates average
concentration and the second run calculates total deposition. The topics
covered in this appendix are: the procedure for setting up the required input
data; and examples of the program output.
In this section, it is assumed that the reader is familiar with Section
2.6, which discusses the hypothetical potash processing plant and provides the
reader with figures and tables of specific input data information. Also, the
reader should be familiar with Table 3-4 presented in Section 3.2.3.a, which
provides the user with the format and description of all card input data
parameters.
C.2 EXAMPLE CONCENTRATION RUN
C.2.1 Input Data Set-Up Procedure
Figure C-l shows the 135 lines of card input data values required to
compute the desired average concentrations for the hypothetical potash
processing plant.
Note that some lines are blank and are to be included in the input data
deck as blank lines. This is because a zero value, which is equivalent to a
blank space, is the proper value of an input data parameter or because it is
convenient to exercise the program's default capabilities for certain input
parameters.
C-l
-------
li
23
l
2
3
oS
ce as
1
2
3
4
7
6
9
10
11
12
13
14
15
16
17
18
19'
20
»^
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
»0
41
<•£
43
44
45
46
47
46
49
CARD COLUMN
112233445566778
5050505050505050
— HYPOTHETICAL POTASH PROCtSSZNB PLANT - CONCENTRATION —
16 19 19 64 5
-3000 -2000 -1500 -1250 -1000 -800 -600 -400
-200 0 200 ' 400 600 600 1000 1250
1500 2000 3000
-3000 -2000 -1500 -1250 -1000 -600 -600 • 400
-200 0 200 400 600 600 1000 USO
1500 2000 3000
555.
620.
685.
735.
800.
860.
900.
920.
940.
940.
935.
910.
950.
1015.
1055.
1075.
1075.
1045.
995.
910.
855.
755.
620.
525.
460.
355.
355.
355.
355.
350.
345.
335.
325.
380.
420.
450.
460.
505.
535.
575.
317.
318.
320.
322.
326.
331.
336.
341.
346.
351.
356.
1.
6.
11.
16.
21.
26.
31.
36.
41.
43.
45.
47.
49.
51.
56.
66.
76.
86.
96.
106.
116.
126.
136.
141.
146.
151.
156.
161.
166.
t
i l 1 1 1 1 1 1 l i 1 1 1 i i i
Figure C-l. Card input data values for the hypothetical potash processing
plant concentration run.
12/37
C-2
-------
a:
a. o uj
g 3 CC 03
5 a ° =
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
4 74
75
5 76
77
78
79
80
81
82
83
6 84
85
86
87
88
89
90
91
92
93
94-
95
96
97
98
1
5 0
i i
620.0
665.0
705.0
730.0
745.0
755.0
755.0
745.0
730.0
705.0
690.0
690.0
690.0
680.0
665.0
645.0
615.0
575. 0
530.0
475.0
410.0
365.0
365.0
410.0
122
1 Z
14913 64
12 63
.1
.001
1.0
21 60
.1
.001
1.0
31 60
.1
.001
1.0
41 60
.1
.001
i 1
1 2 2
5 0 5
i i i
171.0
176.0
181.0
186.0
191.0
196.0
201.0
2C6.0
211.0
216.0
221.0
226.0
231.0
236.0
241.0
246.0
£51.0
256.0
261.0
266.0
271.0
276.0
286.0
296.0
• 1 2
•11 12
14918 64
.1 -13.3
.4 "
.007
.82
.13 20
.4
.007
.82
.13 30
.4
.007
.82
.13 40
.4
.007
1 1 1
3
0
1
-15
-13.
.28
.019
.72
.28
.019
.72
.28
.019
.72
.28
.019
1
CARD COLUMN
344
505
i i i
16 1
%
3 0 10. 0
.12
.037
.65
0 0 .9
.12
.037
.65
0 0 2.6
.12
.037
.65
0 0 4.3
.12
.037
1 1 1
5566778
0505050
i i i i i i i
16
1
26.6
.06 .04
.061 .099
.59 .5
1 4.7
.06 .04
.061 .099
.59 .5
1 4.7
.06 .04
.061 .099
.59 .5
1 4.7
.06 .04
.061 .099
1 1 1 1 l l i
Figure C-l. (Continued)
c-3
-------
o9; OUJ
gO §g
3g 2|
99
100
101
102
103
10*
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
5
\
51
9
61
•
71
.
81
.
91
•
101
.
Ill
.
121
131
141
151
1600
\
I
0
1
1.0
60
.1
001
1.0
60
.1
001
1.0
60
.1
001
1.0
60
.1
001
1.0
60
.1
001
1.0
60
.1
001
1.0
60
.1
001
1.0
00
00
00
00
00
1
5
1
1
1 2
5 0
i i
.82
.13
.4
.007
.82
.13
.4
.007
.82
.13
.4
.007
.82
.13
.4
.007
.82
.13
.4
.007
.82
.13
.4
.007
.82
.13
.4
.007
.82
2.63
2.63
2.63
2.63
5.0
1
5
1
1 I
2
5
49
59
69
79
89
99
109
121
144
167
190
201
1
3
0
l
.72
.28
.019
.72
.28
.019
.72
.28
.019
.72
.28
.019
.72
.28
.019
.72
.28
.019
.72
.28
.019
-.72
1
5
1
|
CARD COLUMN
3445
5050
0
0
0
0
0
0
0
0
0
0
0
0
1 1
.65 •
0 6.
.12
.037
.65
0 7.
.12
.037
.65
0 9.
.12
.037
.65
0 11.
.12
^037
.65
0 13.
.12
.037
.65
0 14.
.12
.037
.65
0 16.
.12
.037
.65
0 22.
0 22.
0 22.
0 22.
0 50.
1
5
1
i I
1
8
6
3
0
8
5
5
5
5
5
0
|
l
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.Oil
.59
1
.06
.061
.59
11.6
11.6
11.6
11.6
340
1
5
1
l
5 6
5 0
i i
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
10.8
10.8
10.8
10.8
3 1
1
5
1
1 |
6778
5050
i i« i i
25 90 50
1 5
5 1
1 1
1 1 1 1
Figure C-l. (Continued)
C-4
-------
The best procedure for setting up the input data for a problem run is to
consider all of the ISCST program's input data parameters covered in Table.
3-4. As each input data parameter in Table 3-4 is examined. Section'2.6 is
consulted, when necessary, in order to obtain the applicable information for
that parameter.
a. Card Group 1. The first input data parameter discussed in Table 3-4
is TITLE whose alphanumeric heading data occupies the first 60 characters of
the first line as shown in Figure C-l.
b. Card Group 2. The second line consists of the ISW array where each
entry is entered in 2-column integer fields. Because it is desired to
calculate concentration values, a "1" is entered in . column 2 according to
ISW{1) in Table 3-4. Figure 2-3 is an illustration of the Cartesian receptor
grid at which average concentration values are calculated. A "1" is entered
in column 4 for ISW(2) to indicate that the receptor grid locations are
referenced by the Cartesian coordinate system. Note that a "3" could not be
entered in column 4 to indicate that a receptor grid will be generated by the
program because the receptor grid used does not have equally spaced grid
.points. Although no mention of discrete receptor points is made in Section
2.6, this problem run includes 64 discrete receptor points which are oriented
with respect to the receptor grid origin* by distance and direction. Hence, a
"2" is entered in column 6 for ISW(3) to indicate to the program that the
discrete receptor points are referenced as polar coordinates. ISW(4)
indicates whether or not receptor terrain elevations are input. According to
*The origin for this example problem run has been (arbitrarily) defined at the
center of the ore storage pile (Source 1).
C-5
-------
Section 2.6, the terrain is relatively flat; hence, a "0" is entered in column
8 for ISW(4). Column 10 for ISW(5) is set to "0" since no input tape is
desired. Column 12 for ISW(6) is set to "2" in order to obtain a listing of
all input data. ISW(7) through ZSW(14) indicate which time periods are
considered by the program for the average concentration calculations.
According to Section 2.6, only 24-hour average concentration values are
desired. The descriptions of ISW(7) through ISW(14) in Table 3-4 state that
only ISW(14) should be set to "1." Hence, columns 13 to 26 for ISW(7) to
ISW(13) are blank (equivalent to "0") and column 28 for ISW(14) is set to
"1." ISW(15) through ISW(18> indicate to the program which type of output
tables are produced. For the purpose of illustration, all types of output
tables are produced. A "1" is entered in columns 30, 32 34, and 36 for
ISW(15) through ISW(18) for "N"-day, daily, highest and second highest, and
maximum 50 tables, respectively. The hourly meteorological data reside on a
file in a format generated by the preprocessor program; hence a "1" is entered
in column 38 for ISW{19) to indicate to the program the format of the hourly
meteorological data. According to Section 2.6, a rural mode is desired;
hence, a "0" is entered in column 40 for ISW(20). The descriptions of ISW(21)
and ISW(22) indicate whether or not the user should. provide wind-profile
exponents and vertical potential temperature gradients. Because no site-
specific wind-profile exponents and vertical potential temperature gradients
are given in Section 2.6, column 41 for ISW{21) and column 42 for ISW(22) are
set to "1" in order to use the program default values. ISW(23) indicates
whether or not scalars are input to vary the average emission rates for all
sources. According to Section 2.6, only one source (the ore pile) has a
variational emission rate. A "0" is then entered in column 46 of ISW(23) to
indicate that this option is not desired for all sources. Because wake
effects are to be considered, the distance-dependent plume rise should be
C-6
-------
used. This is indicated by setting ISW(24) to "2". The physical stack
heights of all sources (in this example, only Source 16 is considered) are not
modified due to stack-tip downwash, which is indicated by setting ISW(25) to
"1". ISW(26), ISW(27), ISW(28), ISW(29) and ISW(30) were all set to "2"
indicating that buoyancy induced dispersion was not considered, processing of
calm winds was not performed, the regulatory mode was not chosen, a pollutant
other than SO 2 was modeled and an input debug mode was not chosen,
. respectively. ISW(31) was left blank (equivalent to "0") indicating that no
»
receptors were located above ground level.
The second line of Card Group 2 (the third card image) completes this Card
Group as shown in Figure C-l. A "16" is entered for the number of sources
(NSOURC) in columns 1-6. This value is obtained from Table 2-15 which lists
all sources required to model the hypothetical potash processing plant. The
next three parameters discussed in this Card Group pertain to the size of the
receptor grid and number of discrete receptor points. By counting the number
of X- and Y-axis grid points in Figure 2-3, a "19" value is entered in both
columns 7-12 and 13-18 for parameters NXPNTS and NYPNTS. For the purpose of
illustration, 64 discrete receptor points are used in this example run.
NGROUP specifies the number of source group combinations desired. According
to Section 2.6, it is of interest to see the contributions from the ore pile
(Source 1), the conveyor belt (Sources 2-11), the roof monitor (Sources
12-15), the stack (Source 16), and the plant as a whole (Sources 1-16).
Hence, a "5" is entered in column 30 for the number of source groups. Columns
31-36 for IPERD are left blank because all 24-hour time periods per day are to
be printed. IPERD is intended for use only for time periods less than 24
hours. The following two parameters, NHOURS and NDAYS, are not applicable for
this example run because these parameters apply only when hourly
meteorological data are in a card image format (ISW(19) = "2"); the program
then ignores any data contained in columns 37 through 48.
C-7 12/87
-------
c. Card Group 3. This Card Group contains the locations of the receptor
grid points and discrete receptor points. For this example problem run, this
Card Group consists of lines (card images) 4 through 73 as shown in Figure
C-l. According to Table 3-4, the X-axis grid locations are entered first in
GRIDX with 8 values per line in ten-column fields continuing onto other lines
.(card images) as needed. Similarly, the Y-axis locations are then entered in
GRIDY beginning a new line (card image) in the same fashion as the X-axis
locations. Because the receptor terrain is relatively flat, no receptor
terrain elevations are entered for GRIOZ. Since no receptors are located
above ground level, no receptor heights above ground are entered for RHT. It
is assumed that the receptor grid values represented in Figure 2-3 are in
meters which are the units required by the program. Beginning with the
seventh line (card image) of this Card Group, 64(NXWYPT) discrete receptor
cards are entered. Each card consists of XDIS, YDIS, GRIOZ, and RHT for 1
receptor. Since receptor elevations and receptor heights are not considered,
the third and last entries in each card, (GRIOZ) and (RHT) respectively, are
left blank.
d. Card Group 4. Because source group combinations are desired in this
example problem run (NGROUP>"0"), it is necessary to specify which sources
constitute each source group. The first line of this Card Group consists of
the values entered for parameter NSOGRP. According to Section 2.6, the source
numbers which define each source group are 1, 2-11, 12-15, 16, .and 1-16.
Values of "1", "2", "2", "1", and "2" are entered in columns 4, 8, 12, 16, and
20, respectively, for NSOGRP because each value is the number of source
numbers which must be read from the IDSOR array in order to define a source
group. The ne*ct line (parameter IDSOR) consists or the source numbers which
define each source group. Note that the minus sign preceding a source number
C-3 12/87
-------
implies inclusive summing from the previous source number entered to the
source number with the minus sign.
e. Card Group 5. Because no special wind-profile exponents and vertical
potential temperature gradients are considered, parameters ISW(21) and ISW(22)
described in Card Group 2 are set to "1," directing the program not to read
the first two parameters, PDEF and DTHDEF, of this Card Group. Hence, the
first line of this Card Group consists of parameters ZR and UCATS. This line
is completely blank because it is assumed that the wind speed reference height
is the default value (10 meters) and because no special consideration is
mentioned in Section 2.6 regarding wind speed categories. Similarly, the next
line is blank because all parameters contained on the line may default to
program-provided values. That is, the default values for TK, IQUN, and ICHIUN
may be used since the emission rate units of all sources given in Table 2-15
are the same as the program's default units and it is assumed that the desired
units of the average concentration values are the same as the program's
default units. Also, no mention is made in Section 2.6 regarding chemical
depletion (DECAY). Furthermore, it is assumed that the hourly meteorological
data file is associated with FORTRAN logical unit number 9 (the program's
default value for IMET). The next five lines of this Card Group (the third
through seventh line of this Card Group), consist of the IDAY array and are
read by the program since ISW(19) equals "1." In this array, the Julian Day
of the "worst-case" day of meteorological data (not discussed in Section 2.6)
is specified. For this case, Julian Day 51 was chosen. The last line of this
Card Group contains input data parameters which also pertain to the hourly
meteorological data file and must be entered since ISW(19) equals "1." The
surface and upper air station numbers and the years of the data are entered
according to the formats of parameters ISS, ISY, IUS, and IUY described in
Table 3-4.
C-9 12/87
-------
f. Card Group 6. This Card Group consists of all source data whose
values are provided by Tables 2-14, 2-15, and 2-16 in Section 2.6. For each
of the 16 sources, one main card of values contains most, if not all, of the
data required for a source. This card consists of parameters NSO through HW
described in Table 3-4. According to Section 2.6, the ore pile (Source 1) and
the conveyor belt (Sources 2-11) have significant particulate emissions which
requires 6 gravitational particulate categories of data as shown in Table
2-14. Hence, a "6" is entered in column 9 for NVS for Sources 1-11 which
directs the program to read the gravitational particulate data for PHI, VSN,
and GAMMA immediately following the main source card for which the particulate
data are applicable. Because particulate emissions from sources 12-16 do not
have significant settling velocities, column 9 for NVS is "0" and no
particulate data are read by the program for these sources. Since the
building height has not been entered as a negative value for source 16 and the
regulatory default mode are not chosen (ISW(28)=2), no direction specific
building dimensions are read. Because the emission rate for the ore pile
(Source 1) varies depending on the hour of the day (see Table 2-16), a "3" is
entered in column 10 for QFLG for Source 1. The "3" value, which is the value
required by the program in order to vary emission rates for each hour of the
day, directs the program to read one set of 24 source emission rate scalars in
QTK. Note that QTK is read after all other source input data are entered and
consists of the last three lines (card images) of this Card Group. According
to Table 2-16, the emission rate for Source 1 equals 0.1 grams per second per
square meter for hours 01-07 and 16-24, and equals 0.5 for hours 08-15. A
i
value of 0.1 is entered in columns 11-18 for the emission rate Q for Source
1. Then, scalar values of 1.0 are entered for the first seven values (hours
. 01-07) and for the last nine values (hours 16-24) in QTK since no scaling is
needed for the emission rate of Source 1 for those hours. The eighth through
fifteenth scalar values (hours 08-15) equal 5.0 since it is desired to scale
C-10 12/87
-------
the source emission rate from 0.1 to 0.5 for those hours. The values in QTK
are entered in 8 ten-column fields and continue onto other lines (card images)
t
as needed, in this case, QTK consists of three lines.
The card deck described above completes the required card input data for
computing the desired average concentration values for the hypothetical potash
processing plant. Because the hourly meteorological data are read from an
external file (because ISW(19) = "1"), Card Group 7 is not read by the
program. The external hourly meteorological file must be assigned and
associated to FORTRAN logical unit 9 before execution of the program.
C.2.2 Output Format
Figures C-2 through C-8 illustrate the content and format of the print
output produced by this example run. Figures C-2 and C-3 are generated since
ISW(6) equals "2" in this problem run. Figure C-3 is a listing of the one day
of hourly meteorological data. Because the program found distances between
sources and receptors less than 1 meter, a diagnostic table is printed, as
shown in Figure C-4, which lists all source-receptor combinations found and
the distance computed between each combination. Note that a negative distance
implies that the receptor lies within the boundaries of the source.
Figure C-5 shows one table produced by this example run for the ISW(16)
option. Note that the heading of the table identifies the day, averaging
period and source group that represents the average concentration values
printed for all receptors. Also, note that the average concentration values
printed for the receptor grid provide ease of interpretation of the impact of
the pollutant over the receptor grid domain. That is, the table format allows
one to obtain a "visual" picture of the pollutant's pattern or trend. This
features occurs only with Cartesian receptor grids because the receptor grid
locations are entered in ascending order as shown in Figure C-l. An
illustration of an "N"-day table generated by the ISW(15) option is shown in
C-ll 12/87
-------
— HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — *»•
n
i
K)
^
00
CALCULATE «CONCEHTRATION=1,OEPOSITION=2I
RECEPTOR GRID SYSTEM (RECTANGULAR=1 OR 3, rOL»R=2 OR 41
DISCRETE RECEPTOR SYSTEM (RECTANGULAR J.POLAR=2I
TERRAIN ELEVATIONS ARE READ IYES-l,Nj=OI
CALCULATIONS ARE WRITTEN TO TAPE CYES=1,NO=0)
LIST ALL INPUT DATA (NO=OiVES=l.MET DATA ALSO=2)
COMPUTE AVERA6E CONCENTRATION (OR TOTAL DEPOSITION!
WITH THE FOLLOWING TINE PERIODS:
HOURLY (VESsl,NO=0)
2-HOUR IYESn,NO=0!
3-HOUR IYES=1,NO=0)
4-HOUR (YES=1,NO=OI
6-HOUR
24-HOUR JYE3=1,NO=0»
PRINT 'N'-D.U TABLEIS! IYES=1,NO=OI
PRINT THE FOLLOWING TYPES OF TABLES WHOSE TIME PERIODS ARE
SPECIFIED BY ISWI7I THROUGH ISH(14I>
DAILY TABLES «YES=1,NO=OI
HIGHEST I SECOND HIGHEST TABLES IYES=1,NO=OI
MAXIMUM 50 TABLES «YES=1,NO=OI
METEOROLOGICAL DATA INPUT METHOD (PRE-PROCESSEO=1,CABD=2I
RURAL-URBAN OPTION IRU.=0 U<». MODE 1=1,UR. MODE 2=2,UR. MODE 3=3)
MIND PROFILE EXPONENT VALUES IDEFAULTS=1,USER ENTERS=2»3I
VERTICAL POT. TEMP. GRADIENT VALUES I DEFAULTS':!.USER ENTERS=2.3>
SCALE EMISSION RATES FOR ALL SOURCES (NO=O.YES>0)
PROGRAM CALCULATES FINAL PLUME RISE OIILY fVES=l.NO=2)
PROGRAM ADJUSTS ALL STACK HEIGHTS FOR OOMMWASH
REG. DEFAULT OPTION CHOSEN IYES=1,NO=2)
TYPE OF POLLUTANT TO BE" MODELLED 11=502, BOTHER I
DEBUG OPTION CHOSEN (VES-1,NO=2)
ABOVE GROUND I FLAGPOLE I RECEPTORS USED IYES=1.ND=0)
NUMBER OF INPUT SOURCES
NUMBER OF SOURCE GROUPS (=0,ALL SOURCES)
TIME PERIOD INTERVAL TO BE PRINTED (=0,ALL INTERVALS!
NUMBER OF X (RANGE! GRID VALUES
NUMBER OF Y (THETA! GRID VALUES
NUMBER OF DISCRETE RECEPTORS
SOURCE EMISSION RATE UNITS CONVERSION FACTOR
HEIGHT ABOVE GROUND AT WHICH WIND SPEED HAS MEASURED
LOGICAL UNIT NUMBER OF METEOROLOGICAL DATA
DECAY COEFFICIENT FOR PHYSICAL OR CHEMICAL DEPLETION
SURFACE STATION NO.
YEAR OF SURFACE DATA
UPPER AIR STATION NO.
YEAR OF UPPER AIR DATA
ALLOCATED DATA STORAGE
REQUIRED DATA STORAGE FOR THIS PROBLEM RUN
ISI'lll =
IS -121 =
i 5.1(31 =
ISHI4I =
ISUI5I =
ISMI6) =
i sum =
1SIII8) =
ISVM9I =
ISIII10I =
ISWI11I =
ISMI12I =
ISHI13I =
ISU(l't) =
ISWI15) =
ISHC1A! =
ISMI17) =
I SHI IB I =
I SHI 191 =
ISMI20I =
ISMI21I =
ISHI22I =
ISMI23) =
ISMI24I =
I SHI 25 1 =
ISUI26) =
ISUIZ7) =
ISIK28I a
IUHI29I =
I SHI 301 =
ISHI31I =
MSOUPC =
IIGPOUP =
IPEPO =
NXrilTS =
Ntrrns =
NXHYPT =
TK =
ZR =
IMET =
DfCAY =
1SS =
ISY =
HIS =
IUY =
LIMIT =
M1MIT =
1
1
2
0
3
2
0
0
0
0
0
0
0
1
1
1
1
0
2
1
2
2
2
2
2
0
16
5
0
19
19
64
.10000)
10. OC
9
.OOOOC
14913
64
14918
64
43500
19Jh3
007
I METERS
10
WORDS
WORDS
-------
C-13
-------
FIGURE C-2. (continued)
«•« — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — **»
on* METEOROLOGICAL DAYS TO BE PROCESSED «»M
(IF=1»
0000000000 0000000000 0000000000 0000000000 0000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
oooooooooo
0000000000
000000
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooooooo oooooooooo oooooooooo
*** NUMBER OF SOURCE NUMBERS REQUIRED TO DEFINE SOURCE GROUPS **»
(NSOGRP)
o
Is
««* SOURCE NUMBERS DEFINING SOURCE GROUPS «««
(IDSOR)
-11.
IZ, -15.
16.
16.
««« UPPER BOUND OF FIRST THROUGH FIFTH HIND SPEED CATEGORIES «»«
(METERS/SEC)
1.54, 3.09, 5.14, 8.23, 10.80,
•*« HIND PROFILE EXPONENTS ««»
STABILITY
CATEGORY
A
B
C
D
E
F
HIND SPEED CATEGORY
1
.70000-001
.70000-001
.10000*000
.15000*000
.35000*000
.55000*000
2
.70000-001
.70000-001
.10000*000
.15000*000
.35000*000
.55000*000
3
.70000-001
.70000-001
.10000*000
.15000*000
.35300*000
.55000*000
4 ,
.70000-001
.70000-001
.10000*000
.15000*000
.35000*000
.55000*000 .
5
.70000-001
.70000-001
.10000*000
.15000*000
.35000*000
.55000*000
6
.70000-001
.70000-001
.10000*000
.15000*000
.35000*000
.55000*000
-------
FIGURE C-2. (continued)
««* — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ***
««» VERTICAL POTENTIAL TEMPERATURE GRADIENTS **»
(DEGREES KELVIN PER METER I
I
Ul
STABILITY
CATEGORY
A
B
C
D
E
F
.
1
.00000
.00000
.00000
.00000
.20000-001
.35000-001
MIND SPEED CATEGORY
2
.00000
.00000
.00000
.00000
3 4
.00000 .00000
.00000 .00000
.00000 . .00000
.00000 .00000
.20000-001 .20000-001 .20000-001
.35000-001 .35000-001 .35000-001
5
.00000
.00000
.00000
.00000
.20000-001
.35000-001
6
.00000
.00000
.00000
.00000
.20000-001
.35000-001
«N* X-COORDINATES OF RECTANGULAR GRID SYSTEM **»
-3000.0,
200.0,
-2000
400
.0, -1500.0,
-0,
600.0,
(METERS)
-1250.0, -1000.0, -600.0, -600.0, -400
600.0, 1000.0. 1250.0, 1500.0, 2000
.0,
.0,
-200.0,
.0,
3000.0,
»*« Y-COORDINATES OF RECTANGULAR GRID SYSTEM «*»
-3000.0,
200.0,
-2000
.0, -1500.0,
400.0,
600.0,
(METERS)
-1250.0, -1000.0, -600.0, -600.0, -400
600.0, 1000.0, 1250.0, 1500.0, 2000
««« RANGE, THETA
555.0, 317
660.0
935.0
1075.0
655.0
355.6
345.0
450.0
620.0
755.0
690.0
645.0
410.0
, 331
, 356
21
43
56
, 106
, 146
171
. 196
221
, 246
271
.01,
.0),
• 0),
.0),
.0),
.0),
• 0),
.0),
.0),
.01,
.0),
.0),
.0),
620
900
910
1075
755
355
335
460
665
755
690
615
365
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
, 316.01,
, 336 . 0 ) ,
. 1.0),
, 26.0),
, 45.0),
, 66.0),
. 116.0),
, 151.0),
176.0),
, 201.0),
, 226.0),
, 251.0),
, 276.0),
.0,
.0,
-200.0,
.0,
3000.0,
COORDINATES OF DISCRETE RECEPTORS «*»
(METERS. DEGREES).
665.0, 320.0), 735.0,
920.0, 341.0), 940.0,
950.0, 6.0), 1015.0,
1045.0, 31.0), 995.0,
620.0, 47.0), 525.0,
355.0. 76'. 0), 355.0.
325.0. 126.0), 360.0,
505.0, 156.0), 535.0.
705.0. 181.0). 730.0,
745.0, 206.0), 730.0,
690.0, 231.0), 660.0,
575.0, 256.0), 530.0,
365.0, 266.0), 410.0,
322
346
11
36
49
66
13S
161
166
211
236
261
296
.0),
.0),
.0),
.0),
.0),
.0),
.0).
.0),
.0),
.0),
• 0),
.0),
.0),
600.
940.
1055.
910.
460.
350.
420.
575.
745.
705.
665.
475.
0.
0,
o.
0,
0.
0.
0.
0.
0,
0,
0.
0,
326.0),
351.0).
16.0),
41.0),
51.0).
96.0),
141.0).
166.0).
191.0),
216.0),
241.0),
266.0).
-------
n
9-
FIGURE C-2. (Continued)
«»• — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««*
««« SOURCE DATA «««
•SOURCE
NUMBER
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
EMISSION RATE
TYPE=0,1
T U (GRAMS/SEC)
Y A NUMBER TYPE=2
P K PART. (GRAMS/SEC)
E E CATS. "PER METER **Z
2 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
.10000*000
.13000*000
.13000*000
.13000*000
.13000*000
.13000*000
.13000*000
.13000*000'
.13000*000
.13000*000
10 6 .130004000
10 0 .26300+001
10 0 .26300*001
10 0 .26300*001
10 0 .26300*001
00 0 .50000*001
X
BASE
Y ELEV.
(METERS) (METERS) (METERS)
-13.3
20.0
30.0
40.0
49.0
59.0
69.0
79.0
89.0
99.0
109.0
121.0
144.0
167.0
190.0
201.0
-13.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HEIGHT
(METERS)
10.00
.90
2.60
4.30
6.10
7.60
9.60
11.30
13.00
14.60
16.50
22.50
22.50
22.50
22.50
50.00
TEMP.
TYPE=0
(DEG.K);
VERT. DIM
TYPE=1
(METERS)
.00
.00
.00
.00
.00
.00
.00
1.00
1.00
1.00
1.00
11.60
11.60
11.60
11.60
340.00
EXIT VEL.
TYPE=0
(M/SEC);
HORZ.DIM DIAMETER
TYPE=1,2 TYPE=0
(METERS) (METERS)
26.60
4.70
4.70
4.70
4.70
4.70
4.70
4.70
4.70
4.70
4.70
10.60
10.60
10.60
10.80
8.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1.00
BLDG.
HEIGHT
TYPE=0
(METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
25.00
BL06.
LENGTH
TYPE=0
(METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
90.00
BLDG.
WIDTH
TYPE=0
(METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
50.00
-------
FIGURE C-2. (continued)
«*« — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««»
««« SOURCE PARTICIPATE DATA ««»
««» SOURCE NUMBER = 1 ««*
MASS FRACTION =
.10000, .40000, .28000, .12000, .06000, .04000,
SETTLING VELOCITY!METERS/SEC) =
.0010. .0070, .0190, .0370, .0610, .0990,
<
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, .65000, .59000, .50000,
*«» SOURCE NUMBER = 2 «««
MASS FRACTION =
.10000, .40000. .28000, .12000. .06000, .04000,
SETTLING VELOCITY!METERS/SEC) =
.0010, .0070, .0190, .0370, .0610, .0990,
— SURFACE REFLECTION COEFFICIENT =
-4 1.00000, .82000. .72000. .65000, .59000, .50000,
«** SOURCE NUMBER = 3 «*»
MASS FRACTION =
.10000, .40000, .28000, .12000, .06000, .04000,
SETTLING VELOCITY(METERS/SECJ =
.0010. .0070. .0190. .0370, .0610. .0990.
SURFACE REFLECTION COEFFICIENT =
l.OQOOO, '.82000. .72000. .65000. .59000. .50000,
-------
FIGURE C-2. (continued)
««* — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — «««
««« SOURCE PARTICULATE DATA «««
*«M SOURCE NUMBER = 4 «««
MASS FRACTION =
.10000, .40000, .26000. .12000. .06000, .04000,
SETTLING VELOCITY(METERS/SEC) = <
.0010. .0070, .0190, .0370. .0610, .0990,
SURFACE REFLECTION COEFFICIENT =
1.00000, .62000, .72000, .65000, .59000, .50000,
««» SOURCE NUMBER = 5 ««•
MASS FRACTION =
.10000. .40000, .26000, .12000, .06000. .04000,
SETTLING VELOCITY!METERS/SEC) =
n .0010, .0070. .0190, .0370. .0610. .099n,
- SURFACE REFLECTION COEFFICIENT =
1.00000, .62000, .72000, .65000. .59000, .50000,
*** SOURCE NUMBER = 6 **»
MASS FRACTION =
.10000. .40000, .28000, .12000, .06000, .04000,
SETTLING VELOCITY!METERS/SEC) =
.0010, .0070. .0190, .0370, .0610, .0990,
SURFACE REFLECTION COEFFICIENT =
1.00000, .62000, .72000, .65000. .59000, .50000,
-------
FIGURE C-2. (continued)
*«« -. HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — «*«
*** SOURCE PARTICULATE DATA «««
«»« SOURCE NUMBER = 7 «««
MASS FRACTION =
.10000, .40000, .28000. .12000. .06000, .04000, .
SETTLING VELOCITY!METERS/SEC) =
.0010, .0070, .0190, .0370, .0610, .0990,
SURFACE REFLECTION COEFFICIENT -
1.00000. .82000, .72000, .65000, .59000. .50000,
»»» SOURCE NUMBER = 8 «««
MASS FRACTION =
.10000, .40000. .28000, .12000. .06000, .04000,
SETTLING VELOCITY!HETERS/SEC) =
.0010, .0070, .0190, .0370, .0610, '.0990,
o
— SURFACE REFLECTION COEFFICIENT =
^ 1.00000, .82000, .72000, .65000. .59000, .50000,
««« SOURCE NUMBER = 9 «»»
MASS FRACTION =
.10000. .40000, .28000. .12000, .06000, .04000,
SETTLING VELOCITYCMETERS/SECI =
.0010, .0070. .0190, .0370, .0610, .0990.
SURFACE REFLECTION COEFFICIENT =
1.00000. .82000, .72000, .65000. .59000, .50000,
-------
FIGURE C-2. Uontinued)
««« .- HYPOTHETICAL POTASH PROCESSING PUNT - CONCENTRATION r- ««»
««« SOURCE PARTICUUTE DATA ««»
**» SOURCE NUMBER = 10 «««
MASS FRACTION =
.10000, .40000, .28000, .12000, .06000, .04000,
SETTLING VELOCITY!METERS/SEC) =
.00?0, .0070. .0190. .0370. .0610. .0990,
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, .65000, .59000, .50000.
««« SOURCE NUMBER = 11 «»»
MASS FRACTION =
.10000, .40000, .28000, .12000, .06000, .04000,
SETTLING VELOCITY(METERS/SEC» =
.0010, .0070, .0190, .0370, .0610, .0990,
n
K> SURFACE REFLECTION COEFFICIENT =
0 1.00000, .82000, .72000, .65000, .59000, .50000,
-------
FIGURE C-2. (continued)
«** — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — **»
« SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY »
HOUR SCALAR HOUR SCALAR HOUR SCAUR HOUR SCALAR HOUR SCALAR HOUR SCALAR
SOURCE NC
1
7
13
19
1. = 1
.10000*001
.10000*001
.50000*001
.10000*001
2
a
14
20
.10000*001
.50000*001
.50000*001
.10000*001
3
9
15
21
.10000*001
.50000*001
.50000*001
.10000*001
4
10
16
22
.10000*001
.50000*001
.10000*001
.10000*001
5
11
17
23
.10000*001
.50000*001
.10000*001
.10000*001
6
12
ia
24
.10000*001
.50000*001
.10000*001
.10000*001
n
to
-------
n
processing plant concentration run.
*** — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ***
* METEOROLOGICAL DATA FOR DAY 51 *
MET. DATA
DAY 51
HOUR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2?
2<*
FLOW
VECTOR
( DEGREES 1
160.0
160.0
150.0
150.0
150.0
140.0
150.0
150.0
160.0
160.0
170.0
160.0
150.0
160.0
150.0
150.0
160.0
160.0
160.0
160.0
160.0
160.0
150.0
160.0
RANDOM
FLOW
VECTOR
(DEGREES)
158.0
163.0
154.0
151.0
148.0
143.0
152.0
155.0
162.0
157.0
173.0
162.0
148.0
160.0
154.0
146.0
158.0
157.0
165.0
161.0
165.0
156.0
146.0
160.0
WIND
SPEED
(MRS)
5.14
3.60
3.60
4.63
5.66
6.17
6.17
5.66
4.63
5.14
5.14
6.17
4.63
6.69
6.17
6.69
6.17
4.12
3.60
4.63
5.14
3.60
4.12
5.66
MIXING
HEIGHT
(METERS)
761.2
764.2
767.2
770.2
773.1
776.1
779.1
782.1
765.1
768.1
791.0
794.0
797.0
600.0
600.0
800.0
800.0
802.9
609.5
816.1
622.7
829.3
635.9
642.5
TEMP.
(DEG. K)
261.5
260.4
259.8
258.7
258.1
257.6
257.0
257.0
256.5
253.7
260.9
262.6
263.7
264.8
264.8
265.4
264.8
263.1
262.0
260.9
259.8
259.3
258.7
258.1
INPUT
STABILITY
CATEGORY
4
5
5
5
4
4
4
4
3
4
4
4
3
4
4
4
4
5
5
5
5
5
5
4
ADJUSTED
STABILITY
CATEGORY
4
5
5
5
4
4
4
4
3
4
4
4
3
4
4
4
4
5
5
5
5
5
5
4
-------
FIGURE C-4. Listing of the diagnostic message table produced by.the hypothetical potash processing
plant concentration run.
««* ~ HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««»
« SOURCE-RECEPTOR COMBINATIONS LESS THAN 001 METERS OR THREE BUILDING
HEIGHTS IN DISTANCE. NO AVERAGE CONCENTRATION IS CALCULATED *
- - RECEPTOR LOCATION - -
X Y (METERS) DISTANCE
SOURCE OR RANGE OR DIRECTION BETWEEN
NUMBER (METERS) (DEGREES) (METERS)
1 .0 .0 -15.01
15 200.0 .0 ' -13.22
16 200.0 .0 1.00
o
NJ
U)
-------
Sources 12 to 15 by the hypothetical potash processing plant concentration run.
««« — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ***
DAILY: si
24-HR/PO 1
SGROUPt 3
« DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)
* ENDING WITH HOUR 24 FOR DAY 51 *
» FROM SOURCES: 12. -15.
* FOR THE RECEPTOR GRID »
* MAXIMUM VALUE EQUALS 211.57320 AND OCCURRED AT 1
200.0.
-200.0) «
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
eoo.o /
600.0 /
400.0 /
200.0 /
.0 /
9 -200.0 /
N) -400.0 /
*" -600.0 /
-aoo.o /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
-3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
X-AXIS
-1250.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
(METERS)
•1000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-800.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-600.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-400.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00001
-200.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00017
.00144
-------
FIGURE C-5. (continued)
DAILY: si
24-HR/PD 1
SGROUPt 3
««« — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — «**
* DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)
« ENDING WITH HOUR 24 FOR DAY 51 *
» FROM SOURCES: 12, -15,
* FOR THE RECEPTOR GRID *
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
600.0 /.
600.0 /
400.0 /
200.0 /
.0 /
7 -200.0 /
to -400.0 /
01 -600.0 /
-800.0 /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00017
.00225
.00779
.01547
.02530
.03343
.04291
.04476
« MAXIMUM VALUE
200.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
211.57320
40.91343
13.26752
7.13839
4.54630
2.68374
1.96899
1.06206
.44064
EQUALS
400.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
5.08344
129.94168
146.76246
90.19569
46.60481
18.57100
8.47299
3.54489
1.45567
211.57320 AND OCCURRED AT I
X-AXIS (METERS)
600.0 600.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00009
2.01566
40.94308
73.74287
63.06282
61.05610
41.08075
13.79556
2.24696
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00189
1.11987
16.77151
36.20046
50.14821
50.99602
30.84629
6.53760
200.0,
1000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00598
.71139
7.91083
23.30838
30.24997
34.87407
15.22239
-200.0) ft
1250.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00348
.21393
3.69604
13.27117
21.82375
18.41441
1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00002
.00218
.16608
2.00615
12.41379
19.59296
2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00007
.00469
.79199
8.39733
-------
FIGURE C-5. (continued)
DAILY: si
24-HR/PO 1
SGROUPt 3
*«« — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««•
O
« DAILY 24-HOUR AVERAGE CONCENTRATION IMICROGRAMS/CUBIC METER)
« ENDING WITH HOUR 24 FOR DAY 51 *
« FROM SOURCES: 12, -15,
* FOR THE RECEPTOR GRID «
« MAXIMUM VALUE EQUALS
211.57320 AND OCCURRED AT (
200.0,
-200.0) «
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
600. 0 /
600.0 /
400.0 /
200.0 /
.0 /
-200.0 /
-400.0 /
-600.0 /
-eoo.o /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
X-AXIS (METERS)
3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00003
.23269
-------
FIGURE C-5. (continued)
«*» — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««*
DAILY: si
24-HR/PD 1
SGROUPtt 3
« DAILY 24-HOUR AVERAGE CONCENTRATION CHICROG9AMS/CUBIC METER)
* ENDING WITH HOUR 24 FOR DAY 51 «
» FROM SOURCES: 12, -15.
* FOR THE DISCRETE RECEPTOR POINTS «
- RUG -
- DIR -
CON.
- RUG -
- DIR -
CON.
- RUG -
- DIR -
CON.
555.0
735.0
900.0
940.0
950.0
1075.0
995.0
755.0
460.0
355.0
345.0
360.0
460.0
<~> 575.0
ho 705.0
"-1 755.0
730.0
690.0
665.0
575.0
410.0
410.0
317.0
322.0
336.0
351.0
6.0
21.0
36.0
45.0
51.0
76.0
106.0
136.0
151.0
166.0
161.0
196.0
211.0
226.0
241.0
256.0
271.0
296.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.60927
268.55373
76.51623
3.61649
.00201
.00000
.00000
.00000
.00000
.00000
.00000
.00000
620.0
800.0
920.0
935.0
1015.0
1075.0
910.0
620.0
355.0
355.0
335.0
420.0
505.0
620.0
730.0
755.0
705.0
690.0
645.0
530.0
365.0
318.0
326.0
341.0
356.0
11.0
26.0
41.0
47.0
56.0
66.0
116.0
141.0
156.0
171.0-
186.0
201.0
216.0
231.0
246.0
261.0
276.0
.00000
.00000
.00000
.00000
.00000
.00000
.000.00
.00000
.00000
.00000
64.76668
220.755C6
30.86540
.77240
.00002
.00000
.00000
.00000
.00000
.00000
.00000
685.0
860.0
940.0
910.0
1055.0
1045.0
855.0
525.0
355.0
350.0
325.0
450.0
535.0
665.0
745.0
745.0
690.0
660.0
615.0
475.0
365.0
320.0
331.0
346.0
1.0
16.0
31.0
43.0
49.0
66.0
96.0
126.0
146.0
161.0
176.0
191.0
206.0
221.0
236.0
251.0
266.0
266.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00007
279.46573
149.28621
11.31163
.06775
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-------
to I 1 by the hypothetical potash processing plant.
•N'-DAY
1 DAYS
SGROUPH 2
*«• — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — «•«
1-DAY AVERAGE CONCENTRATION IMICROGRAMS/CUBIC METER)
* FROM SOURCES: Z, -II,
» FOR THE RECEPTOR GRID »
-400.0) «
n
NJ
00
Y-AXIS /
(METERS! /
3000.0 /
2000.0 /
1500. 0 /
K50.0 /
1000.0 /
600.0 /
600.0 /
400.0 /
200.0 /
.0 /
-200.0 /
-400.0 /
-600.0 /
-600.0 /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
-3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.03000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
X-AXIS (METERS)
-1250.0 ^1000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-600.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-600.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-400.0
.00000
,00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00001
-200.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00002
.00006
.00027
.00064
-------
FIGURE C-6. (continued)
•N'-DAY
1 DAYS
SGROUPtt 2
«*» — HYPOTHETICAL POTASH PROCESSING PUNT - CONCENTRATION —
o
N)
vo
1-DAY AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER I
» FROM SOURCES: Z, -II,
» FOR THE RECEPTOR GRID *
» MAXIMUM VALUE EQUALS
59.65531 AND OCCURRED AT C
200.0.
-400.01
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
800.0 /
600.0 /
400.0 /
200.0 /
.0 /
-200.0 /
-400.0 /
-600.0 /
-800.0 /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.16369
.12443
.09501
.07510
.06125
.05019
.04175
.03003
.01744
200.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
49.39331
59.65531
19.22733
5.41674
2.01118
.98807
.62678
.31275
.11117
400.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00175
6.81886
22.29162
22.40206
14.87403
8.23682
3.74932
.81057
.24047
X-AXIS
600.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00738
1.71592
7.92875
10.93714 3
11.21170 5
8.00290 7
3.90889 5
.45082 1
(METERS)
800.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.01037
.65617
.70798
.63243
.26216
.05595
.60626
1000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00003
.01115
.32736
2.32460
3.53813
5.03393
2.51844
1250.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00004
.00411
.16850
1.10361
2.50033
2.71308
1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00003
.00438
.09992
1.41317
2.54611
2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00012
.04512
1.05850
-------
f LOU iVi_»
•N'-DAY
1 DAYS
SGROUP8 2
««» — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««»
O
U)
O
1-DAY AVERAGE CONCENTRATION IMICROGRAMS/CUBIC METER)
* FROM SOURCES: Z, -11,
* FOR THE RECEPTOR GRID «
» MAXIMUM VALUE EQUALS
59.65531 AND OCCURRED AT I
200.0,
-400.0) *
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
800.0 /
600.0 /
400.0 /
200.0V
.0 /
-200.0 /
-400.0 /
-600.0 /
-aoo.o /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
X-AXIS (METERS)
3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.01552
-------
FIGURE C-6. (continued)
««» .- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — «*«
•M'-DAY
1 DAYS
SGROUP8 2
- RUG -
n
l
U)
1-DAY AVERAGE CONCENTRATION
-------
from Source I by the hypothetical potash processing plant concentration run.
«•» — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««»
HIGH
24-HR
SGROUPt 1
» HIGHEST 24-HOUR AVERAGE CONCENTRATION (HICROGRAHS/CUBIC METER)
* FROM SOURCES: 1,
« FOR THE RECEPTOR GRID «
n
i
Y-AXIS / X-AXIS (METERS)
(METERS) / -3000.0 -2000.0 -1500.0 -1250.0 -1000.0
3000.0 / .00000
2000.0 / .00000
1500.0 / .00000
1250.0 / .00000
1000.0 / .00000
800.0 / .00000
600.0 / .00000
400.0 / .00000
200.0 / .00000
.0 / .00000
-200.0 / .00000
-400.0 / .00000
-600.0 / .00000
-aoo.o / .00000
-1000.0 / .00000
-1250.0 / .00000
-1500.0 / .00000
-2000.0 / .00000
-3000.0 / .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0> 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) < .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 01 .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
51, 1) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0,0) .00000
0, 0) .00000
0. 0)« .00000
0, 0) .00000
0, 0) .00000
51, 1) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0. 0) .00000
0. 0) .00000
51. 1) .00000
51, 1) .00000
0. 0)
0. 0)
0, 0)
0, 0)
0. 0)
0, 0)
0. 0)
0, 0)
0. 0)
0, 0)
0. 0)
0, 0)
0, 0)
0. 0)
0. 0)
0. 0)
51. 1)
51. 1)
51. 1)
-------
FIGURE C-7. (continued)
M«» — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — •«»
HIGH
24-HR
SGROUPt 1
n
OJ
CO
« HIGHEST 24-HOUR AVERAGE CONCENTRATION 0) .00000
0. 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
51, 1) .00000
51, 1) .00000
51, 1) . .00000
51, 1) .00004
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
51, 1) .00000
51, 1) .00000
51, 1) .00000
51, 1) .00000
51, 1) .00023
51, 1) .00939
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
51, 1) .00000
51, 1) .00015
51, 1) .00312
51, 1) .02560
51, 1) .08423
51, 1) .27959
51, 1) .60741
0, 0) .00000
0, 0) .00000
0, 0) .OOOffO
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) 1312.08510
51, 1) 445.53158
51, 1) 213.74151
51, 1) 123.78426
51, 1) 80.22895
51. 1) 53.40435
51, 1) 38.13016
51, 1) 22.23024
51, 1) 10.21603
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0. 0)
. 0, 0)
0, 0)
51, 1)
51, 1)
51. 1)
51, 1)
51, 1)
51. 1)
51. 1)
51, 1)
51. 1)
-------
VCUIIL iiiueu y
««* — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««*
HIGH
24-HR
SGROUPH
o
« HIGHEST 24-HOUR AVERAGE CONCENTRATION (HICROGRAMS/CUBIC METER) «
» FROM SOURCES: 1.
* FOR THE RECEPTOR GRID »
200.0. -400.0) *
Y-AXIS /
(METERS) / 1
30C-..0 / .00000
2JOO.O / .00000
1500.0 / .00000
1250.0 / .00000
1000.0 / .00000
eoo.o / .00000
600.0 / .00000
400.0 / .00000
200.0 / .00000
.0 / .00000
-200.0 / 307.17259
-400.0 / 7299.68060
-600.0 / 4195.57324
-600.0 / 1543.19011
-1000.0 / 602.26014
-1250.0 / 327.54645
-1500.0 / 236.40061
-2000.0 / 134.51301
-3000.0 / 49.74825
200.0 '
0, 0) 00000
0. 0) .00000
0. 0) .00000
Oi 0) .00000
0. 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
51, 1) .00019
51, 1) 75.55939
51, 1) 1210.95787
51, 1) 2395.10941
51, 1) 2078.45731
51, 1) 1196.73634
51, 1) 638.11221
51, 1) 178.64470
51, 1) 77.55591
X-AXIS
tOO.O <
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
51, 1) .00000
51, 1) .03632
51. 1) 31.97048
51, 1) 399.74551
51, 1) 773.98994
51, 1) 1293.01962
51, 1) 10S4. 91165
51. 1) 507.92512
51, 1) 86.98523
(METERS)
>00.0 (
0, 0) .00000 1
0, 0) .00000 1
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
51, 11 .00000
51, 1) .00001
51, 1) .15902
51, 1) 17.24761
51, 1) 162.50559
51, 1) 406.83203
51. 1) 675.81922
51, 1) 680.26542
51, 1) 202.83957
iOO.O 11
0. 0) ..00000
1 — O._0.)_ .00000
0, 0) .00000
0, 0) .00000
0. 0) .00000
0. 0) .00000
0, 0) .00000
0. 0) .00000
0, 0) .00000
0, 0) .00000
51, 1) .00000
51, 1) .00000
51, 1) .00053
51, 1) .28272
51, 1) 10.69934
51, 1) 109.67670
51, 1) 256.72968
51, 1) • 539.92424
51, 1) 300.43374
)00.0
0. 0)
0. 0)
0, 0)
0. 0)
0, 0)
0. 0)
0, 0)
0, 0)
0. 0)
0, 0)
51, 1)
51. 1)
51, 1)
51. 1)
51. 1)
51, 1)
51, 1)
51, 1)
51. 1)
-------
FIGURE C-7. (continued)
«M* — HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION — ««*
HIGH
24-HR
SGROUP8 1
r>
* HIGHEST 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)
« FROM SOURCES: 1,
* FOR THE RECEPTOR GRID *
« MAXIMUM VALUE EQUALS 7299.68060 AND OCCURRED AT (
Y-AXIS /
(METERS) /
3000.0 /
2000.0 /
1500.0 /
1250.0 /
1000.0 /
600.0 /
600.0 /
400.0 /
200.0 /
.0 /
-200.0 /
-400.0 /
-600.0 /
-aoo.o /
-1000.0 /
-1250.0 /
-1500.0 /
-2000.0 /
-3000.0 /
1250.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00112
. 14874
6.59717
52.19542
199.56811
359.34361
0.
0,
0,
0,
0,
0,
0,
0,
0,
0.
51,
51,
51.
51,
51.
51,
51.
51.
51.
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00155
.19390
4.42344
84.66451
279.02789
0.
0,
0.
0,
0,
0.
0.
0.
0.
0.
0,
51.
51,
51.
51,
51,
51,
51,
51.
X-AXIS (METERS)
2000.0
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
1)
1)
1)
1)
1)
1)
1)
1)
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.oooco
.00000
.00000
.00000
.00000
.00010
.00607
2.33336
80.32959
0.
0.
0,
0.
0.
0.
0,
0.
0,
0.
0.
51.
51,
51.
51.
51.
51,
51.
51.
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
1)
1)
1)
1)
1)
1)
1)
1)
3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00010
.93460
0, 0)
0, 0)
0, 0)
0. 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0. 0)
0, 0)
51, 1)
51, 1)
51. 1)
51. 1)
51, 1)
51. 1)
51. 1)
-------
««« _. HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION ~
HIGH
24-HR
SGROUP* 1
« HIGHEST 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)
« FROM SOURCES: 1,
« FOR THE DISCRETE RECEPTOR POINTS *
- RNG -
- DIR -
CON.
(DAY.PER.)
- RNG -
- DIR -
CON.
IDAY.PER.)
n
OJ
555.0
685.0
600.0
900.0
940.0
935.0
950.0
1055.0
1075.0
995.0
855.0
620.0
460.0
355.0
355.0
345.0
325.0
420.0
480.0
535.0
620.0
705.0
745.0
755.0
730.0
690.0
690.0
665.0
615.0
530.0
410.0
365.0
317.0
320.0
326.0
336.0
346.0
356.0
6.0
16.0
26.0
36.0
43.0
47.0
51.0
66.0
86.0
106.0
126.0
141.0
151.0
161.0
171.0
181.0
191.0
201.0
211.0
221.0
231.0
241.0
251.0
261.0
271.0
286.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
2.18693
1051.16232
4777.69031
5699.72913
1114.90518
98.12818
.01474
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.oooco
.00000
0. 0)
0. 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0. 0)
0, 0)
0. 0)
0. 0)
0, 0)
0. 0)
0. 0)
0, 0)
51. 1)
51. 1)
51, 1)
51. 1)
51. 1)
51. 1)
51. 1)
51. 1)
51, 1)
51, 1)
0. 0)
0. 0)
0. 0)
0, 0)
0, 0)
0, 0)
0, 0)
620.0
735.0
860.0
920.0
940.0
910.0
1015.0
1075.0
1045.0
910.0
755.0
525.0
355.0
355.0
350.0
335.0
380.0
450.0
505.0
575.0
665.0
730.0
755.0
745.0
705.0
690.0
680.0
645.0
575.0
475.0
365.0
410.0
318.0
322.0
331.0
341.0
351.0
1.0
11.0
21.0
31.0
41.0
45.0
49.0
56.0
76.0
96.0
116.0
136.0
146.0
156.0
166.0
176.0
186.0
196.0
206.0
216.0
226.0
236.0
246.0
25S.O
266.0
276.0
296.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00033
252.87015
2513.70938
7180.53308
2793.85541
617.94398
3.03500
.00001
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0. 0)
0, 0)
0, 0)
0. 0)
0, 0)
0. 0) '
0, 0)
0, 0)
51, 1)
51, 1)
51. 1)
51, 1)
51, 1)
51, 1)
51. 1)
51. 1)
51. 1)
51. 1)
51, 1)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
0, 0)
-------
FIGURE C-8. Listing of the table of the maximum 50 average concentration values computed from
Sources 12 to 15 by the hypothetical potash processing plant concentration run. MAX 50
24-HR
SGROUPt 3
•«* — HYPOTHETICAL POTASH PROCESSING PUNT - CONCENTRATION — «»»
* 50 MAXIMUM 24-HOUR AVERAGE CONCENTRATION (HICROGRAHS/CUBIC METER)
* FROM SOURCES:
12,
-15.
n
i
U)
RANK
CON.
X Y(METERS)
CR OR
RANGE DIRECTION
PER. DAY (METERS) (DEGREES)
RANK
CON.
X Y(METERS)
OR OS
RANGE DIRECTION
PER. DAY (METERS) (DEGREES)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
279.48573 1
268.55373 3
220.75506
211.57320
149.28621
146.76246
129.94168
90.19569
83.06262
78.51823
73.74287
64.76668
61.05610
50.99602
50.14821
46.60481 :
41.08075 ]
40.94308 J
40.91343 :
36.20046 ]
34.87407 ]
30.88540 ]
30.84629 ]
30.24997 ]
23.30838 ]
L 51
L 51
51
51
51
51
51
51
51
51
51
51
51
51
51
L 51
L 51
L 51
L 51
L 51
I 51
L 51
L 51
L 51
L 51
325.0
330.0
420.0
200.0
450.0
400.0
400.0
400.0
600.0
400.0
600.0
335.0
600.0
800.0
800.0
400.0
600.0
600.0
200.0
800.0
1000.0
505.0
eoo.o
1000.0
1000.0
126.0
136.0
141.0
-200.0
146.0
-600.0
-400.0
-800.0
-1000.0
151.0
-800.0
116.0
-1250.0
-1500.0
-1250.0
-1000.0
-1500.0
-600.0
-400.0
-1000.0
-2000.0
156.0
-2000.0
-1500.0
-1250.0
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4,4
45
46
47
48
49
50
21.82375
19.59296
18.57100
18.41441
16.77151
15.22239
13.79556
13.27117
13.26752
12.41379
11.31163
8.47299
8.39733
7.91033
7.13839
6.53760
5.0S344
4.54630
3.81649
3.69604
3.54439
2.88374
2.24696
2.01566
2.00615
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
1250.0
1500.0
400.0
1250.0
800.0
1000.0
600.0
1250.0
200.0
1500.0
535.0
400.0
2000.0
1000.0
200.0
800.0
400.0
200.0
575.0
1250.0
400.0
200.0
600.0
600.0
1500.0
-2000.0
-3000.0
-1250.0
-3000.0
-eoo.o
-3000.0
-2000.0
-1500.0
-600.0
-2000.0
161.0
-1500.0
-3000.0
-1000.0
-eoo.o
-3000.0
-200.0
-1000.0
166.0
-1250.0
-2000.0 •
-1250.0
-3000.0
-400.0
-1500.0
-------
Figure C-6. The format of this table is similar to the tables produced by the
ISW(16) option mentioned above. Figure C-7 shows the content and format of a
highest concentration table produced by the ISW(17) option. The content
includes the highest average concentration values calculated for all receptors
as well as the day and time period when each value occurred. In this case,
only one averaging period is possible per day and a "1" is printed for the
averaging period. The second-highest table (not shown) is identical in format
to the highest concentration table. Option ISW(18) generates the maximum 50
tables, an example of which is shown in Figure C-8.
C.3 Example Dry Deposition Run
Because the preparation of a total deposition run is very similar to the
preparation of the average concentration run discussed in the preceding
section, only the differences between the two runs are discussed in this
section. The primary difference between the two runs is that the deposition
model requires all sources to have gravitational settling categories
(parameter NVS > 0). If the program detects any sources which do not have any
gravitational settling categories, the program prints the error message shown
in Figure 3-2(d) and terminates the run. As mentioned in Section 2.6, it is
desired to obtain an estimate of the dry deposition of fugitive emissions from
the ore pile (Source 1) and the conveyor belt (Sources 2-11). Hence, this
example run excludes the roof monitor (Sources 12-15) and the stack (Source
16) which were modeled for concentration in the preceding section.
Figure C-9 shows the 130 lines of card input data values required to
compute the desired total deposition values for the hypothetical potash
processing plant. Three differences between this deposition run and the
concentration run are noted in Card Group 2, which consists of the second and
the third lines of Figure C-9 according to Table 3-4. One difference is that
C-38
-------
o =
go
3g
i
3
OS
O UJ
Q£ 02
< z
(_) 3
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
10
19
23
21
22
23
;••;
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4*
45
46
47
40
49
• 1
5 0
1 1 —
CARD COLUMN
12233445566'7
505050505050
~I 1 1 1 1 1 1 I 1 1 I I
7 8
5 0
— HYPOTHETICAL POTASH PROCESSING PLAWT -
11 19
-3000
-200
1500
-3000
-200 .
1500
555.0
620.0
6S5.0
735.0
eoo.o
960. 0
900.0
920.0
940.0
940.0
935.0
910.0
950.0
1015.0
1055.0
1075.0
1075.0
1045.0
995.0
910.0
«55.0
755.0
620.0
525.0
460.0
355.0
355.0
355.0
355.0
350.0
345.0
335.0
325.0
380.0
420.0
450.0
400.0
505.0
535.0
575.0
| |
19 64 3
-2000 -1500 -1250 -1000 -600 -600
0 200 400 600 800 1000
2030 3000
-2000 -1500 -1250 -1000 -800 -600
0 200 400 600 800 1080
2000 3300
317.0
318.0
320.0
322.0
326.0
331.0
33ii.O
341.0
346.0
351.0
356.0
1.0
6.0
11.0
16.0
21.0
26.0
31.0
36.
41.
43.
45.
47.
49.
51.
56.
66.
76.
86.
96.
106.
116.
126.
136.
141.
146.
151.0
156.0
161.0
166.0
i i i i i t i i i t i i
-400
1250
•400
1250
•
Figure C-9. Card Input data values for the hypothetical potash processing
plant deposition run.
12/87
C-39
-------
o %'
< °
4
5
6
o:
O UJ
O£. CO
-------
_ Q_ Q UJ
S3 Q£ OQ
|§ 2i
<-> 03 2
99
100
101
102
103
104
105
106
1C7
103
109
110J
nr
112J
115
114
. us:
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
1
5 0
1 1
1.0
51 60
.1
.001
1.0
61' 60
.1
.001
1.0
71 60
.1
.001
1.0
81 60
.1
.001
1.0
91 60
.1
.001
1.0
101 60
.1
.001
1.0
111 60
.1
.001
1.0
1
5
1
1 l
1 2
5 9
i i
.82
468.
.4
.007
.82
468.
.4
.007
.82
468.
.4
.007
.82
468.
.4
.007
.82
468.
.4
.007
.82
468.
.4
.007
.82
468.
.4
.007
.82
1
5
1
1 l
2 3
5 0
i i
.72
49
.28
.019
.72
59
.28
.019
.72
69
.28
.019
.72
79
.28
.019
.72
89
.23
.019
.72
99
.28
.019
.72
109
.28
.019
.72
1
5
1
1 i
CARD COLUMN
344
5 0 5
i i i
.65
0 0 6.1
.12
.037
.65
0 0 7.8
.12
.037
.65
0 0 9.6
.12
.037
.65
0 0 11.3
.12
.037
.65
0 0 13.0
.12
.037
.65
0 0 14.8
.12
.037
.65
0 0 16.5
.12
.037
.65
1
5
1
1 l i
5
0
i
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
.06
.061
.59
1
5
1
I
5667
5 05 0
i i i i
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
4.7
.04
.099
.5
1 1
5 5
1 1
i l 1 i
7 8.
5 0
i i
5
1
1
1 i
Figure C-9. (Continued)
c-4
-------
ISW(l) equals "2" to indicate to the program to compute deposition. The
second difference is that NSOURC equals "11" since the roof monitor (Sources
12-15) and the stack (Source 16) are not modeled for deposition. Third,
because of the fewer number of sources, there are fewer source groups; hence,
NGROUP equals "3." Furthermore, Card Group 4 is different because of fewer
source groups. As indicated by the values contained in Card Group 4 shown in
Figure C-9, it is desired, to see the total deposition contributions from the
ore pile (Source 1), the conveyor belt (Sources 2-11) and both the ore pile
and conveyor belt. A preliminary estimate of the magnitude of the total
deposition values indicated that the desired output units be in grams per
square meter, the program's default units for deposition calculations.
Because there are only 11 sources in this example. Card Group 6 contains
source data values for 11 sources instead of the 16 sources used in the
example concentration run. Note that the total hourly emissions in grams for
the eleven sources are a factor of 3600 times larger than the average emission
rates in grams per second used to compute average concentration (refer to
Section 2.4.3 for an explanation of emission rates for deposition
calculations).
Only the "50 maximum" table (Figure C-10) of the print output produced by
this deposition example run is shown because the format of the output tables
are the same as those, of the concentration example run discussed in the
preceding section. The only exceptions are in the heading where the words
"AVERAGE CONCENTRATION" are replaced by "TOTAL DEPOSITION" and the output
units are (GRAMS/SQUARE METER) instead of (MICROGRAMS/CUBIC METER).
C-42
-------
FIGURE C-10.
Listing of the table of the maximum 50 average concentration values computed from
Sources I to I 1 by the hypothetical potash processing plant concentration run.
«»• .- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION ~ **«
MAX 50
24-HR
SGROUPt 3
« 50 MAXIMUM 24-HOUR TOTAL DEPOSITION
(GRAMS/SQUARE METER
« FROM SOURCES:
-11.
RANK
DEP.
PER. DAY
X Y(METEHS)
OR OR
RANGE DIRECTION
(METERS) (DEGREES)
RANK
DEP.
PER. DAY
X Y(METERS)
OR OR
RANGE DIRECTION
(METERS) (DEGREES)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
18.44659
16.09612
12.20186
11.30931
7.88501
7.56966
6.33068
5.29350
3.03669
2.93984
2.19844
2.03710
1.98672
1.89310
1.43739
1.25203
1.07066
1.04983
1.03835
.83924
.80653
.75775
.63566
.47381
.46416
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
200.0
505.0
535.0
480.0
.0
200.0
450.0
575.0
400.0
420.0
400.0
200.0
620.0
400.0
200.0
.0
600.0
400.0
665.0
360.0
600.0
600.0
200.0
800.0
400.0
-400.0
156.0
161.0
151.0
-200.0
-600.0
146.0
166.0
-600.0
141.0
-1000.0
-800.0
171.0
-600.0
-200.0
-400.0
-1250.0
-1250.0
176.0
136.0
-1500.0
-1000.0
-1000.0
-1500.0
-1500.0
26
27
28
29
30
31
32
33
34
35
36
37
33
39
40
41
42
43
44
45
46
47
48
49
50
.45011
.40013
.39935
.31662
.30122
.29673
.29087
.18140
.17501
.16670
.16698
.15712
.15549
.14997
.13255
.11608
.10678
.10375
.08902
.08503
.08327
.08205
.04869
.04645
.04327
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
600/0
800.0
.0
800.0
1000.0
600.0
200.0
200.0
.0
1000.0
400.0
705.0
1250.0
800.0
1000.0
1500.0
1250.0
400.0
.0
800.0
1000.0
200.0
.0
600.0
1500.0
-800.0
-2000.0
-600.0
-1250.0
-2000.0
-2000.0
-1250.0
-1500.0
-800.0
-1500.0
-400.0
181.0
-3000.0
-1000.0
-3000.0
-3000.0
-2000.0
-2000.0
-1000.0
-3000.0
-1250.0
-2000.0
-1250.0
-600.0
-2000.0*
-------
APPENDIX D
EXAMPLE EXECUTIONS OF THE ISC LONG-TERM
MODEL (ISCLT) COMPUTER PROGRAM
D.I Introduction
The following examples are problem runs using the ISC long-term (ISCLT)
program to model the hypothetical potash processing plant described in Section
2.6. The examples consist of two executions of the ISCLT program. The first
problem is to calculate annual average particulate concentrations and the
second problem is to calculate total annual ground-level deposition. This
appendix assumes the user is familiar with the example hypothetical processing
plant discussed in Section 2.6 of the main body of the text.
D.2 Example Concentration Run
This program example run calculates the annual average particulate
concentrations produced by emissions from the hypothetical potash processing
plant described in Section 2.6 and shown in Figure 2-11. The hypothetical
plant is modeled as 16 sources: one stack source, fourteen volume sources
(roof monitor and conveyor belt) and one area source (ore pile). These
sources are placed at the approximate center of the receptor grid system.
Because we are only interested in the annual average particulate
concentrations produced by these sources, annual meteorological data are
used. The annual meteorological inputs as well as required program control
data are explained in Section D.2.1 and D.2.2.
D.2.1 Input Data Set-Up Procedure
This example run requires the input data shown in the example runstrearn in
Figure D-l. An explanation of each card group in Figure D-l is given in
Sections D.2.1.a. through D.2.1.m. below.
D-l 12/87
-------
o%
<1
og
I
2
3
4
4«
S
6
7
64 7t
«
la .
Q£
Q LU
Q£ CC
< £
<_) 3
1
2
3
4
5
6
7
a
9
10
i:
iz
13
1^
15
15
17
IS
19
20
• 1
fa A
«*
;j
:<•
:s
26
27
£3
29
30
31
32
33
34
35
36
37
38
39
40
41
41
• 5
-4
45
<>6
47
43
49
50
1 1 2
5050
i i
l i
CARD COLUMN
233445
505050
' l
HYPOTHETICAL
121
16 5
1
•3030
•200
1530
-s::o
-200
is:o
2183.0
. «C?1£ "3
.oc:::s3
.•30:39:3
.0031076
.8333119
.0033611
.0503245
rt t* " Jk £ S T
. UC«O »3 J
.0006747
*-"CST y
. w w m3 y»&
.0301441
.c::::s3
.0002399
.0833339
.0300602
.0002320
.0007353
.3513433
.0004444
.0009629
.0015775
.0016492
.0019770
.0026238
.0045918
.0026274
.0014567
.0016527
.3324999
.:013i25
.:co9isi
.0007325
.9004645
.:OC694Q
.3002668
.0005317
.0006482
i i
32332
19 19 1
2 -11
-2000
0
2030
-2CCO
0
2000
14.0
.3C5CJ5i
.03319?-3
.3331993
.OOC:569
.C33S?«
.0035139
.8003426
rt <^i^ia*T
• 0 WV * T T J
.3003564
" r*c^,*^
. * U w« **f*
.3002569
.oc:::ss
.0302569
.0301713
.0033256
.0002284
.0007708
.0010648
.0006851
.0014845
.0027977
.0027977
.0031688
.0039967
.0042251
.0030832
.0010848
.0021125
.30211:5
.3311990
.3C36851
.0007422
.0009421
.C00790J
.9307422
.0014559
.0027977
1 i
2
12 -15
-1500
200
3030
-1503
233
3000
.3000033
.00003C3
.3000000
.0003000
.0033300
.OCGCCC3
.0000000
rtft<* •? rt "i
• UUvWUwU
.0000000
.3038300
.03:::33
.0000000
.0000000
.0000000
.0000000
.0005710
.0004153
.0001998
.0008564
.0016843
.0027691
.0034257
.0042536
.3028548
.0010563
.0006291
.0007137
.3011134
.3037783
.3054568
.0003711
.0012561
.0015130
.3059421
.0315701
-.0058523
i i
l l
1 l
5 6
5 0
i i
6778
5050
i i i *
POTASH PROCESSING PUKT
1 1
16 -16
-1250
400
-1250
400
.08803:3 .
. 3033030 .
.3833330 .
.3330330 .
.0000830 .
.0000090 .
M rt^ flf* * 1
•UUwwwwJ •
.3000030 .
.3000030 .
.csccscs .
.0000000 .
.0000090 .
.0000300 .
.0000000 .
.0000030 .
.83308:3 .
.0000000 .
.0000000 .
.0000000 .
.0000000 .
.0000000 .
.3000000 .
.0000000 .
.0000000 .
.3000000 .
.0000000 .
.3000000 .
.3000009 .
.3000000 .
.9000000 .
.0001427 .
..3004853 .
.3004232 .
.0004£32 .
.0007137 .
1 i
1110
-1000
600
-1080
600
.^t. « * «3
33363:3
3CS3333
0030033
0083083
0300000
0833000
f)» • A A A A
uw * U ^ w J
3030083
3330030
c::::c3
0000030
0000000
OOCCC33
0000000
0000000
0303333
0000000
0000330
0000000
0000900
0000000
OOC0033
0000000
OOOC9C9
0000300
0030000
30C3030
3CC3530
0000000
0000000
3083235
3001427
OOC0285
0000571
0000856
1 i
-800
333
-800
300
. * v • • w w w
.33::::o
.0833000
.9083033
.oe8c::o
.0800080
.3083300
.3303000
.0000030
.053:333
.0030300
.0000000
.0000080
.0000000
.0000009
.0303330
.0000300
.0090000
.0000000
.0000000
.0000000
.0000900
.0000000
.0000000
.0900000
.0000000
. 3000330
.3000009
.0000330
.OOOOC09
.0088030
.joco:3s
.0000000
.0000090
.0000000
1 1'
-600 -400
1083 1253
-6C3 -483
1838 1250
III 1
Figure D-l. Card Input data values for the hypothetical potash processing
plant concentration run.
12/87
D-2
-------
H§S
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
62
83
84
85
66
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
1
5 0
i i
.0006961
.0005842
.0006033
.0011771
.0007716
.0036050
.0003245
.0014135
.0033536
.0003SC3
.0006561
.0039550
.0006397
.0033984
.0003483
.0019323
.0013335
.OC07174
.0009S47
. .0010097
.0005797
.0004920
.0005598
.0012231
.OOC6990
.0005335
.0007400
.0000003
.OOOOOOO
.0000003
.0030000
.OOOCOOO
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.oooocoo
.ooooooo
.oooocoo
.0003300
.0000000
.ooococo
.0030003
.0066412
.0037307
.0024779
.0023384
.0047532
.0030647
.0032344
.0035623
.0047073
.0048615
.0029674
.0059074
.0117078
.0074283
1 1
1 2
5 0
i i
.0037683
.0030546
.0042536
.0040823
.0035399
.0016272
.0036539
.0043964
.0021125
.0010563
.0010563
.0025978
.OC27406
.0016543
.0040323
.0061949
.0053334
.0035399
.0034257
.0037633
.0029119
.0013703
.0017935
.0045962
.C32CC69
.0013642
.0021696
.0052528
.0032544
.0017700
.00336E6
.0049673
.0027406
.0017700
.0023695
.0024551
.0018271
.0016558
.0034257
.0066802
.0049959
.0035685
.0052242
.0097348
.0055954
.0043107
.0049388
.0077364
.0049102
.0023262
.0023695
.0031663
.0041680
.0034257
.0094493
.0205544
.0120472
1 1
2 3
5 0
i i
.0069657
.0075652
.0081076
.0051101
.0024551
.0020269
.0028833
.0059665
.0033972
.C013417
.0009421
.0079077
.0083784
.0065945
.0036214
.0149319
.0166143
.00937C2
.OC65945
.0046818
.0021411
.0022553
.0050530
.0091353
.0374224
.0051101
.0065374
.0095C64
.0076794
.0057096
.0075937
.0097062
.0056239
.0027406
.0018271
.0015701
.0013132
.0019933
.0055363
.0111622
.0070228
.0063091
.0089925
.OOOOOCO
.OOOOOOO
.OOOOOOO
.OOOOOOO
.ooooooo
.ooooooo
.ooooooo
.0000300
.ooooooo
.ooooooo
.oooocoo
.ooooooo
.ooooooo
.ooooooo
1 1
CARD COLUMN
3445
5050
i i
.0021125
.0031688
.0025978
.0006281
.0002569
.OOC4568
.0005139
.0011134
.0005139
.0001713
.0031142
.0136744
.0134745
.OC532S3
.0061663
.0124754
.0184133
.0119344
.0373223
.0045105
.003-VC57
.0034543
.0058303
.0146443
.01-'tl597
.0075937
.0055954
.0000030
.OOOOOOO
.0000030
.OOCOOOO
.oooocoo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ocooooo
.oooocoo
.oooocoo
.OOCOOOO
.ooooooo
.ocooooo
.0030000
.0030300
.OOCOOOO
.ooooooo
.ooooooo
.occoooo
.ooooooo
.ocooooo
.ocooooo
.ooooooo
.oooooco
.0003000
.oooocoo
.oooooco
.ooooooo
1 1
1 1
.0001427
.0031713
.0001993
.0001142
.0001142
.0030356
.0001713
.OOCCS55
.0002369
.0000371
.OC3C571
.0112764
.0030790
.0010554
.0011419
.C019412
.0032259
.0017129
.0011990
.0012561
.0313132
.0019933
.oo:es-vo
.0079377
.0100193
.0029404
.OC26264
.0303300
.ooooooo
.OOOOOOO
.OOCOOOO
.ooococo
.ocooooo
.ooooooo
.ooooooo
.oooooco
.0000030
.ooooooo
.OOCOOOO
.ooooooo
.ooooooo
.OOOCOOO
.0000003
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0030003
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
1 1
566778
505050
1 1 1 1 I 1
.ooooooo
.0000003
.ooooooo
.0000285
.0000856
.0001427
.0003426
.0003426
.0002264
.OC3C2S5
.OCOC3CO
.0132772
.0050530
.COC5424
.0001993
. 0002284
.CCC4S33
.0001993
.0002569
.0006281
.0334233
.0012561
.OC2CS40
.0057667
.CC639-.5
.0019412
.0015957
.0003300
.OOCOOOO
.OOOOCOO
.0033000
.OOOOCOO
.OOOOC33
.OOOOOOO
.0000003
.ooooooo
.oooocoo
.ooooooo
.ooooooo
.oooooco
.oooocoo
.ocooooo
.0000030
.oooooco
.ooooooo
.ooooooo
.OOCOOOO
.0003000
.ooooooo
.ocooooo
.OOOCOOO-
.ooooooo
.OOCOOOO
.ooooooo
.ooooooo
.ooooooo
.ooooooo
1 1 1 1 1 1
Figure D-l. (Continued)
D-3
-------
oS;
§1
10
11
12
13
14
15
16
17
QC
°£
gi
"i
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
T51
152
153
154
155
156
157
153
159
160
161
162
163
164
1
5 0
i i
.0062942
.0076137
287.2
1730
1730
960
320
1 23
.001
.10
1.0
.40
.30
.20
.10
.05
2 13
.001
.10
1.0
.13
.10
.08
.04
.02
3 13
.001
.10
1.0
.13
.10
.03
.04
.02
4 13
.001
1 1
1 2
5 0
i i
.0098204
.0128180
237.2
1730
1730
IOCS
500
-13.3
.007
.40
.82
.50
.40
.30
.25
.:o
.10
20
.007
.40
.82
.16
.13
.12
.10
.08
.05
30
.007
.40
.82
.16
.13
.12
.10
.08
.05
40
.007
1 i
2 3
5 0
i i
.0000000
.0000000
283.2
1730
1235
840
-13.3
.019
.28
.72
.50
.40
.50
.25
0
.019
.28
.72
.16
.14
.13
.10
0
.019
.28
.72
.16
.14
.13
.10
0
.019
i i
CARD COLUMN
3445
5050
i i
.0000000
.oooocoo
280.8
1295
840
10
.037
.12
.65
.50
.50
.9
• .037
.12
.65
.16
.16
2.6
.037
.12
.65
.16
.16
4.3
.037
1 i
1 |
.0000000
.000000
279.1
1295
840
26.6
.061
.06
.59
.70
.70
4.7
.061
.06
.59
.19
.19
4.7
.061
.06
.59
.19
.19
4.7
.061
5 6
5 0
i i
.0000000
.0000350
279.1
1295
840
.099
.04
.50
1.0
1.0
1.0
.099
.04
.50
.22
.22
1.0
.099
.04
.50
.22
.22
1.0
.099
6778
5050
i i i i
6
6
6
6
1 i i 1
Figure D-l. (Continued)
D-4
-------
a. a uj
o :5 a: co
ae o «* 2:
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
130
161
132
1S3
164
185
166
187
133
189
190
191
192
193
194
195
196
197
193
199
200
201
202
203
204
205
206
207
2C3
209
210
211
212
213
214
215
216
217
218
219
. 220
221
1
5 0
i i
.10
1.0
.13
.10
.08
.04
.02
5 13
.001
.10
1.0
.13
.10
.08
.04
.02
6 13
.001
.10 .
1.0
.13
.10
.03
.04
.02
7 13
.001
.10
1.0
.13
.10
.08
.04
.02
8 13
.001
.10
1.0
.13
.10
.08
.04
.02
9 13
.001
.10
1.0
.13
.10
.08
.04
1 1
1 2
5 0
i i
.40
.32
.16
.13
.12
.10
.08
.05
49
.007
.40
.82
.16
.13
.12
.10
.03
.05
59
.007
.40
.82
.16
.13
.12
.10
.03
.05
69
.007
.40
.82
.16
.13
.12
.10
.08
.05
79
.007
.40
.82
.16
.13
.12
.10
.08
.05
89
.007
.40
.82
.16
.13
.12
.10
.08
1 I
CARD COLUMN
2334
5 0 5 Q
1 I i
.28
.72
.16
.14
.13
.10
0 6.1
.019
.28
.72
.16
.14
.13
.10
0 7.8
.019
.26
.72
.16
.14
.13
.10
0 9.6
.019
.28
.72
.16
.14
.13
..10
0 11.3
.019
.28
.72
.16
.14
.13
.10
0 13.0
.019
.28
.72
.16
.14
.13
.10
1 1 1
1
.12
.65
.16
.16
.037
.12
.65
.16
.16
.037
.12
.65
.16
.16
.037
.12
.65
.16
.16
.037
.12
.65
.16
.16
.037
.12
.65
.16
.16
I
4 5
5 0
i i
.06
.59
.19
.19
4.7
.061
.Oi
.59
.19
.19
4.7
.061
.06
.59
.19
.19
4.7
.061
.06
.59
.19
.W
4.7
.061
.06
.59
.19
.19
4.7
.061
.06
.59
.19
.19
1 1
566778
505050
II i i i i
.04
.50
.22
.22
1.0 6
.099
.04
.50
.C2
.ZZ
1.0 6
.099
.04
.50
.22
.ZZ
1.0 6
.099
.04
.50
.22
.22
1.0 6
.099
.04
.50
.22
.22
1.0 6
.099
.04
.50
.22
.22
1 " 1 1 l II
Figure D-l. (Continued)
• D-5
-------
0£
_ Q- Q UJ
g => 52 OQ
2° «=E
Sg "I
223
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
233
239
240
241
242
243
244
245
246
247
248
249
250
251
252
1
5 0
i i
.02
10 13
.001
.10
1.0
.13
.10
.08
.04
.02
11 13
.001
.10
1.0
.13
.10
.08
.04
.02
12 10
2.63
' 13 10
2.63
14 10
2.63
15 10
2.63
16 00
5
1 1
1 2
5 0
i i
.05
99
.007
.40
.82
.16
.13
.12
.10
.03
.05
109
.007
.40
.62
.16
.13
.12
.10
.03
.05
121
144
167
190
201
1 1
CARD COLUMN
2334
5.0 50
i i l
0 14.8
.019
.28
.72
.16
.14
.13
.10
0 16.5
.019
.28
.72
.16
.14
.13
.10
0 22.5
0 22.5
0 22.5
0 22.5
30 50.0
l I i
1
.037
.12
.65
.16
.16
.037
.12
.65
.16
.16
1
4 5
5 0
i i
4.7
.061
.06
.59
.19
.19
4.7
.061
.06
.59
.19
.19
10.8
10.8
10.8
10.8
340
i 1
566778
5Q5050
i i i i i i
1.0 6
.099
.04
.50
.22
.22
1.0 6
.099
.04
.50
.22
.22
11.6
11.6
11.6
11.6
8.0 1.0 25 67
1 1 1 1 1 1
Figure D-l. (Continued)
D-6
-------
a. Card Group 1. Card Group 1 gives the user selected title for the
program run. This title is printed at the top of each output page as shown in
Figure D-2.
b. Card Group 2. Card Group 2 selects the program control options
desired. This card group shows: ISW(l) equal to "1" for concentration,
ISW(3) equal to "2" for discrete receptors in polar coordinates, ISW(5) equal
to "1" for an output magnetic tape, ISW(6) equal to "3" for a full printout of
the input data, ISW(7) equal to "2" for annual output only, ISW(8) equal to
"3" for printing individual as well as combined sources results, ISW(9) equal
to "3" for the Rural Mode, ISW(IO) equal to "2" for a printout of
concentration at all receptors as well as the maximum 10 values, and ISW(ll)
equal to "2" directing the program to determine the maximum 10 from the
combined sources. The receptor grid system used is in Cartesian coordinates;
hence, ISW(2) is left blank. Also, ISW(4) is left blank because flat terrain
is assumed for the area in the vicinity of the hypothetical potash plant. The
parameter ISW(12) is left blank because we are -using ISW(ll) for the maximum
10 values and the parameters ISW(13) through ISW(18) are left blank because we
are using the program default values for these parameters. ISW(13) directs
the print output to logical unit 6, ISW(14) is blank because we are not using
an input tape and ISW(15) directs the tape output to the magnetic tape on
logical unit 3. The default value for ISW(16) directs the program to use the
standard print output format rather than compress pages, ISW(17) directs the
program to use 57 lines per page, and ISW(18) tells the program that Card
Group 9 is not read in this run. ISW(19) directs the program to calculate
plume rise as a function of downwind distance because the building wake
effects option is to be used for the stack. ISW.(21), ISW(22), ISW(23) and
ISW(24) were all set to "1" indicating buoyancy induced dispersion was not
D-7
-------
•••* ISCLT ••••»•«*«••«• HYPOTHETICAL POTASH PROCESSING PUHT
- ISCLT INPUT DATA -
••••»••• PAGE
19
19
.10000000*007
o
00
NUMBER OF SOURCES • 1*
NUMBER OF X AXIS GRID SYSTEM POINTS *
NUMBER OF Y AXIS GRID SYSTEM POINTS =
NUMBER OF SPECIAL POINTS a I
NUMBER OF SEASONS • 1
NUMOER OF MIND SPEED CLASSES = 6
NUMBER OF STABILITY CLASSES • 6
NUMBER OF HIND DIRECTION CLASSES = 16
FILE NUMBER OF DATA FILE USED FOR REPORTS = 1
Ti!E PROGRAM IS RUN IN RURAL MODE
CONCENTRATION I DEPOSITIONI UNITS CONVERSION FACTOR
ACCELERATION OF GRAVITY (METERS/SEC»»2» s 9.000
HEIGHT OF MEASUREMENT OF HIND SPEED IMETERSI - 10.000
CORRECTION ANGLE FOR GRID SYSTEM VERSUS DIRECTION DATA NORTH (DEGREESI =
DECAY COEFFICIENT » .00000000
PROGRAM OPTION SWITCHES = 1, It 2, 0. I,
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
DISTANCE X AXIS GRID SYSTEM POINTS (METERS
-600.00. -400.00. -200.00.
1500.00. 2000.00. 3000.00.
. RANGE X SPECIAL DISCRETE POINTS (METERS
DISTANCE Y AXIS GRID SYSTEM POINTS (METERS
-600.00, -400.00. -200.00.
1500.00, 2000.00, 3000.00.
AZIMUTH BEARING Y SPECIAL DISCRETE POINTS (DEGREES1=
.000
1 ARE -
2 ARE -
3 ARE -
4 ARE -
5 ARE -
1,
2.
12,
16,
-16,
-11,
-15,
1, 1, 0,
1= -3000.00, -2000.00. -1SOO.OO. -1250.00. -1000.00. -800.00,
.00, • 200.00, 400.00. 600.00, 800.00. 1000.00, 1250.00.
J= 2108.00,
|= -3000.00, -2000.00, -1500.00. -1250.00. -1000.00, -800.00,
.00, 200.00. 400.00, 600.00, 600.00, 1000.00, 1250.00.
SEASON
14.00,
•• AMBIENT AIR TEMPERATURE (DEGREES KELVIN I -
STABILITY STABILITY STABILITY STABILITY STABILITY STABILITY
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
1 287.2000 £87.2000 283.2000 280.8000 279.1000 279.1000
- MIXING LAYER HEIGHT (METERSI -
CD
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
CATEGORY-
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
1
Z
3
4
5
6
HIND SPEED
CATEGORY 1
.173000*004
.173000*004
.960000*003
.320000*003
.100000*005
.100000*005
HIND SPEED
CATEGORY 2
.173000*004
.173000*004
.102500*004
.500000*003
.100000*005
.100000*005
SEASON 1
HIND SPEED
CATEGORY 3
.173000*004
.173000*004
.123500*004
.840000*003
.100000*005
.100000*005
HIND SPEED
CATEGORY 4
.173000*004
.173000*004
.129500*004
.840000*003
.100000*005
.100000*00?
HIND SPEED
CATEGORY 5
.173000*004
.173000*004
.129500*004
.O'i0000*00)
.100000*006
.100000*005
MIND SPEED
CATEGORY 6
.171000*004
.171000<004
.129000*004
. 040000*003
.100000*005
.100000*005
-------
Figure D-2. (Continued).
«*«« ISCLT «***««***«»**
HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.> -
«ttK«*K«it PAGE
2 *«*•
V
VO
- FREQUENCY OF OCCURRENCE OF HIND SPEED. DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 1
MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
(DEGREES)
.000
32.500
45.000
67.500
90.000
112.500
135.000
157.500
160.000
202.500
225.000
247.500
270.000
292.500
315.000
337.500
( 1.5000MPSX
.00016950
.00012830
.00009160
.00010760
.00031190
.00036110
.00033650
.00069530
.00067470
.00055120
.00014410.
.00011550
.00028990
.00008390
.00006020
.00028200
2.5000MPSM
.00006560
.00019980
.00019980
.00025690
.00059950
.00051390
.00034260
.00079930
.00085640
.00054240
.00025690
.00026550
.00025690
.00017130
.00006560
.00022640
4.3000MPSM
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.03000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
6.6000MPSH
.00000000
.00000000
.00000000
.00300000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
9.5000MPSH12
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.oooocooo
.00000000
.5000MPS
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
SEASON 1
STABILITY CATEGORY 2
MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
(DEGREES)
.000
22.500
45.000
67.500
90.000
112.500
135.000
157.500
180.000
202.500
225.000
247.500
270.000
292.500
315.000
337.500
( 1.5000MPSM
.00073530
.00104880
.00044440
.00096290
.00187750
.00168920
.00197700
.00262330
.00459161
.00262740
.00145670
.00165270
.00249990
.00134250
.00091510
.00073250
2.5000MPSU
.00077080
.00108480
.00068510
.00148450
.00279770
.00279770
.00316880
.00399670
.00422511
.00308320
.00108480
.00211250
.00211250
.00119900
.00066510
.00074220
4.3000HPSU
.00057100
.OC048530
.00019980
.00065640
.00168430
.00276910
.00342570
.00425361
.00265460
.00105630
.00062810
.00071370
.00111340
.00077080
.00045680
.00037110
6.6000MPSH
.00000000
.00300000
.00300000
.00300000
.00000000
.00000000
.ocoooooo
.00000000
.ocoooooo
.ocoooooo
.00000000
.oocooooo
.00300000
.00000000
.00000000
.00000000
9.5000nPSU12
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.5000MPS
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
ooocoooo
00000000
ooooocoo
00000000
00000000
00000000
-------
««** ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA ICONT.J -
MKttftftMMM PAGE
I
o
- FREQUENCY OF OCCURRENCE OF MIND SPEED. DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 3
MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED MIND SPEED
CATEGORY I CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
(DEGREES)
.000
22.500
45.000
67.500
90.000
112.500
135.000
157.500
ISO. 000
202.500
225.000
247.500
270.000
292.500
315.000
337.500
( 1.5000MPSM
.00046450
.00069900
.00026680
.00053170
.00068820
.00069610
.00058420
.00060830
.00117710
.00077160
.00060500
.00082450
.00141350
.00085360
.00035030
.00065610
2.5000MPSH
.00094210
.00079930
.00074220
.00145590
.00279770
.00376830
.00305460
.00425361
.00408231
.00353990
.00162720
.00385390
.00439641
.00211250
.00105630
.00105630
4.3000MPSH
.00125610
.00151300
.00094210
.00157010
.00585231
.00696571
.00756521
.00810761
.00511011
.00245510
.00202690
.00288330
.00596651
.00339720
.00134170
.00094210
6.8000MPSH
.00014270
.00048530
.00042820
.00042820
.00071370
.00211250
.00316880
.00259780
.00062810
.00025690
.00045680
.00051390
.00111340
.00051390
.00017130
.00011420
9.5000MPSK12
.00002850
.00014270
.00002850
.00005710
.00008560
.00014270
.00017130
.00019980
.00011420
.00011420
.00003560
.00017130
.00028550
.00025690
.00005710
.00005710
.5000MPS
00000000
00002850
00000000
00000000
00000000
00000000
00000000
00000000
00002850
00006560
00014270
00034260
00034260
00022840
00002350
00000000
SEASON 1
STABILITY CATEGORY 4
MIND SPEED MIND SPEED HIND SPEED MIND SPEED MIND SPEED MIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
(DEGREES)
.000
22.500
45.000
67.500
90.030
112.500
135.000
157.500
180.000
202.500
225.000
.247.500
270.000
292.500
315.000
337.500
( 1.5000MPSM
.00095500
.00068970
.00039840
.00084830
.00198280
.00133850
.00071740
.00098470
.00100970
.00057970
.00049800
.00055930
.00122310
.OOC69900
.00053550
.00074000
2.5000MPSH
.00259780
.00274060
.00166430
.00408231
.00619491
.00533841
.00353990
.00342570
.00376830
.00291190
.00137030
.00179850
.00-.59621
.00202690
.00186420
.00216960
4.3000MPSU
.00790771
.OOQ87641
.00659451
.00862141
.01490192
.01661482
.00907821
.00659451
.00468181
.00214110
. 00225510
.00505331
.00913531
.00742241
.00511011
.00653741
6.8000MPSM
.01367442
.01347452
.00553331
.00616631
.01247542
.01841332
.01190441
.00702281
.00451051
.003-12570
.O03'i5430
.00568081
.01404482
.01415972
.00759371
.00559541
9.5000MPSM12
.01127641
.00607901
.00205540
.00114190
.00194120
.00322590
.00171290
.00119900
.00125610
.00131320
.00199330
.002S5430
.00790771
.01061981
.00294040
.00262640
.5000MPS
01027721
00505301
00054240
00019980
00022640
00046530
00019960
00025690
00062810
00040530
00125610
00206400
00576671
00659451
00194120
00159870
-------
Ki;>ure 0-2. (Continued).
K««* ISCLT «NM»*K**«II*«»
HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA ICONT.I -
««MMHN*« PAGE
- FREQUENCY OF OCCURRENCE OF MIND SPEED, DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 5
•
HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED MIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
I DEGREES 1
.000
22.500
45.000
67.500
90.000
112.500
135.000
157.500
100.000
202.500
225.000
247.500
270.000
292.500
315.000
337.500
( l.SOOOtlPSH
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
2.5000MPSH
.00525261
.00325440
.00177000
.00336860
.00496731
.00274060
.00177000
.00236950
.00245510
.00162710
.00165580
.00342570
.00666021
.00499591
.00356650
.00522421
4.3000MPSM
.00950641
.00767941
.00570961
.00759371
.00970621
.00562391
.00274060
.00162710
.00157010
.00131320
.00199830
.00553631
.01116221
.00702281
.00630911
.00899251
6.8000MPSM
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
9.5000MPSU12.5000MPS
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
SEASON 1
STABILITY CATEGORY 6
HIND SPEED HIND SPEED HIND SPEED HIND SPEED MIND SPEED MIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
(DEGREES 1
.000
22.500
45.000
67.500
90.000
112.500
135.000
157.500
180.000
202.500
225.000
247.500
270.000
292.500
315.000
337.500
( 1.5000HPSU
.00664121
.00373070
.00247790
.00283640
.00475321
.00306470
.00320440
.00356230
.00470731
.00486151
.00296740
.00590741
.01170781
.00742681
.00629421
.00761371
2.5000MPSM
.00973461
.00559541
.00431071
.00493881
.00773641
.00491021
.00282620
.00236950
.00316680
.00416801
.00342570
.00944931
.02055443
.01204721
.00982041
.01281802
4.3000MPSH
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
6.6000MPSH
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
9.5000MPSU12
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.5000HPS
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
-------
*«*« ISCLT **»»**»**»***
HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (COtlT.) - •
- VERTICAL POTENTIAL TEMPERATURE GRADIENT (DEGREES KELVIN/METER I -
*««*«**« PAGE
5 «««»
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
1
2
3
4
5
6
1
2
3
4
5
6
MIND SPEED
CATEGORY 1
.000000
.000000
.000000
.000000
.200000-001
.350000-001
MIND SPEED
CATEGORY 1
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
HIND SPEED
CATEGORY 2
.000000
.000000
.000000
.000000
.200000-001
.350000-001
- MIND
MIND SPEED
CATEGORY 2
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
MIND SPEED
CATEGORY 3
.000000
.000000
.000000
.000000
.200000-001
.350000-001
MIND SPEED
CATEGORY 4
.000000
.000000
.000000
.000000
.200000-001
.350000-001
MIND SPEED
CATEGORY 5
.000000
.000000
.000000
.000000
.200000-001
.350000-001
MIND SPEED
CATEGORY 6
.000000
.000000
.000000
.000000
.200000-001
.350000-001
PROFILE POWER LAM EXPONENTS -
MIND SPEED
CATEGORY 3
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
MIK3 SPEED
CATEGORY 4
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
MIND SPEED
CATEGORY 5
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
MIND SPEED
CATEGORY 6
.700000-001
.700000-001
.100000*000
.150000*000
.350000*000
.550000*000
o
-------
Figure D-2. (Continued).
«««* ISCLT **»M««H«tt«M«*
HYPOTHETICAL POTASH PROCESSING PLANT
««MM««N* PAGE
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P (h)
0 E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
(HI (HI ATION /
(HI /
- SOURCE DETAILS DEPENDING ON TYPE -
1 AREA
-13.30
a
i
WARNING - DISTANCE BETWEEN SOURCE
X 2 VOLUME 20.00
-13.30 10.00 .00 WIDTH OF AREA (M) = 26.60
- PARTICULATE CATEGORIES -
123456
FALL VELOCITY (HPSI .0010 .0070 .0190 .0370 .0610 .0990
HASS FRACTION .1000 .4000 .2800 .1200 .0600 .0400
REFLECTION COEFFICIENT 1.0000 .8200 .7200 .6500 .5900 .5000
- SOURCE STRENGTHS ( GRAMS PER SEC PER SQUARE HETER ) -
- SEASON 1 -
SPEED CATEGORY - STABILITY CATEGORIES -
1
2
- 3
5
6
1 AND POINT X.Y=
.00 .90 .00 STANDARD DEVIATION OF THE CROSSHIND SOURCE DISTRIBUTION (Hl= 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (Ml= 1.00
- PARTICULATE CATEGORIES -
123456
FALL VELOCITY (HPSI .0010 .0070 .0190 .0370 .0610 .0990
HASS FRACTION .1000 .4000 .2600 .1200 .0600 .0400
REFLECTION COEFFICIENT 1.0000 .6200 .7200 .6500 .5900 .5000
- SOURCE STRENGTHS ( GRAMS PER SEC )
- SEASON 1 -
SPEED CATEGORY - STABILITY CATEGORIES -
1
2
3
4
5
6
(11 (21 (3) (41
4.00000-001 3.00000-001 2.00000-001 1.00000-001
5.00000-001 4.00000-001 3.00000-001 2.50000-001
.00000 5.00000-001 4.00000-001 5.00000-001
.00000 .00000 5.00000-001 5.00000-001
.00000 .00000 7.00000-001 7.00000-001
.00000 .00000 1.00000+000 1.00000+000
'= .00, .00 IS LESS THAN PERMITTED
(51
.00000
2.00000-001
2.50000-001
.00000
.00000 .
.00000
(61
5.00000-002
1.00000-001
.00000
.00000.
.00000
.00000
(11
1.30000-001
1.60000-001
.00000
.00000
.00000
.00000
(21
1.00000-001
1.30000-001
1.60000-001
.00000
.00000
.00000
(3)
6.00000-002
1.20000-001
1.40000-001
1.60000-001
1.90000-001
2.20000-001
(41
4.00000-002
1.00000-001
1.30000-001
1.60000-001
1.90000-001
2.20000-001
(51
.00000
8.00000-002
1.00000-001
.00000
.00000
.00000
(61
2.00000-002
5.00000-002
.00000
.00000
.00000
.00000
-------
«M»» ISCLT **»*»*»*»**»»
HYPOTHETICAL POTASH PROCESSING PLANT
««»***»* PAGE
7 «XK«
- SOURCE INPUT DATA -
a
C T SOURCE SOURCE X V EMISSION BASE /
A A NUMBER TYPE COORDINATE COORDINATE HEIGHT ELEV- / - SOURCE DETAILS DEPENDING ON TYPE -
R P (HI CM) CM) ATION /
D E (Ml /
X 3 VOLUME 30.00 .00 2.60
-
SPEED CATEGORY
1
2
3
4
5
6
X 4 VOLUME 40.00 .00 4.30
SPEED CATEGORY
1
2
3
4
5
6
.00 STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION (M)= 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M>= 1.00
- PARTICULATE CATEGORIES -
123456
FALL VELOCITY (MPSI .0010 .0070 .0190 .0370 .0610 .0990
MASS FRACTION .1000 .4000 .2800 .1200 .0600 .0400
REFLECTION COEFFICIENT 1.0000 .8200 .7200 .6500 .5900 .5000
- SOURCE STRENGTHS ( GRAMS PER SEC ) -
- SEASON 1 -
- STABILITY CATEGORIES -
(1) 12) 13) (4) (5) (6)
1.30000-001 1.00000-001 8.00000-002 4.00000-002 .00000 2.00000-002
1.60000-001 1.30000-001 1.20000-001 1.00000-001 8.00000-002 5.00000-002
.00000 1.60000-001 1.40030-001 1.30000-001 1.00000-001 .00000.
.00000 .00000 1.60000-001 1.60000-001 .00000 .00000
.00000 .00000 1.90000-001 1.90000-001 .00000 .00000
.00000 .00000 2.20000-001 2.20000-001 .00000 .00000
.00 STANDARD DEVIATION OF THE CROSSUIND SOURCE DISTRIBUTION (M)= 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)= 1.00
- PARTICULATE CATEGORIES -
1 2 3 4 56
FALL VELOCITY (MPS) .0010 .0070 .0190 .0370 .0610 .0990
MASS FRACTION .1000 .4000 .2800 .1300 .0600 .0400
REFLECTION COEFFICIENT 1.0000 .8200 .7200 .6500 .5900 .5000
- SOURCE STRENGTHS ( GRAMS PER SEC ) -
- SEASON 1 -
- STABILITY CATEGORIES -
(1) (2) 13) (4) (5) (6)
1.30000-001 1.00000-001 8.00000-002 4.00000-002 .00000 2.00000-002
1.60000-001 1.30000-001 1.20000-001 1.00000-001 8.00000-002 5.00000-002
.00000 1.60000-001 1.40000-001 1.30000-001 1.00000-001 .00000
.00000 .00000 1.60000-001 1.60000-001 .00000 .00000
.00000 .00000 1.90000-001 1.90000-001 .00000 .00000
.00000 .00000 2.20000-001 2.20000-001 .00000 .00000
-------
Figure D-2. (Continued).
««*M ISCLT *************
HYPOTHETICAL POTASH PROCESSING PLANT
«*«**«*» PAGE
0 «MMtt
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P (M)
0 E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
IH) (M) ATION /
- SOURCE DETAILS DEPENDING ON TYPE -
o
(Jl
5 VOLUME
49.00
.00 6.10
6 VOLUME
59.00
SPEED CATEGORY
1
2
3
4
5
6
.00 7.60
SPEED CATEGORY
1
2
3
4
5
6
.00
STANDARD DEVIATION OF
STANDARD DEVIATION OF
THE CROSSUIND SOURCE DISTRIBUTION (M)= 4.70
THE VERTICAL SOURCE DISTRIBUTION
-------
*«** ISCLT »*»»*mun»»i«»H»
HYPOTHETICAL POTASH PROCESSING PLANT
«««««*«« PAGE
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P CM)
D E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
-------
Figure D-2. (Continued).
*««« ISCLT «*M«««M««MMM*
HYPOTHETICAL POTASH PROCESSING PLANT
*«MM»MK« PAGE
10
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P (HI
0 E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
(M) (M) ATION /
(M) /
- SOURCE DETAILS DEPENDING ON TYPE -
9 VOLUME
69.00
.00 13.00
10 VOLUME
99.00
SPEED CATEGORY
1
2
3
4
5
6
.00 14.80
SPEED CATEGORY
1
2
3
4
5
6
.00 STANDARD DEVIATION OF THE CROSSMIND SOURCE DISTRIBUTION (Ml= 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)= 1.00
- PARTICULATE CATEGORIES -
FALL VELOCITY IMPS I
MASS FRACTION
REFLECTION COEFFICIENT 1
- SOURCE STRENGTHS
1
.0010
1000
.0000
2
.0070
.4000
.6200
3
.0190
.2600
.7200
4
.0370
.1200
.6500
5
.0610
.0600
.5900
6
.0990
.0400
.5000
( GRAMS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES
(II
.30000-001
.60000-001
.00000
.00000
.00000
.00000
(2)
.00000-001
.30000-001
.60000-001
.00000
.00000
.00000
(3)
6.00000-002
1.20000-001
1.40000-001
1.60000-001
1.90000-001
2.20000-001
(4)
.00000-002
.00000-001
,30000-001
.60000-001
.90000-001
.20000-001
(5)
.00000
6.00000-002
1.00000-001
.00000 .
.00000
.00000
.00 STANDARD DEVIATION OF THE CROSSUIMO SOURCE DISTRIBUTION IM)=
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)=
- PARTICULATE CATEGORIES -
(6)
a.00000-002
5.00000-002
.00000
.00000
.00000
.00000
4.70
1.00
FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT 1
- SOURCE STRENGTHS
1
.0010
.1000
.0000
2
.0070
.4000
.6200
3
.0190
.2600
.7200
4
.0370
.1200
.6500
5
.0610
.0600
.5900
6
.0990
.0400
.5000
< GRAMS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES
(1)
1.30000-001
1.60000-001
.00000
.00000
.00000
.00000
(21
1.00000-001
1.30000-001
1.60000-001
.00000
.00000
.00000
(3)
6.00000-002
1.20000-001
1.40000-001
1.60000-001
1.90000-001
2.20000-001
(4)
4.00000-002
1.00000-001
1.30000-001
1.60000-001
1.90000-001
2.20000-001
(5)
.00000
8.00000-002
1.00000-001
.00000
.00000
.00000
(6)
2.00000-002
5.00000-002
.00000
.00000
.00000
.00000
-------
ISCLT
HYPOTHETICAL POTASH PROCESSING PUNT
*«**«*«« PAGE
11 ««»«
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P (Ml
D E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
(M) (Ml ATION /
IM) /
- SOURCE DETAILS DEPENDING ON TYPE -
O
oo
X 11 VOLUME 109.00 .00 16.50
SPEED CATEGORY
1
2
3
4
5
6
X 12 VOLUME 121.00 .00 22.50
.00 STANDARD DEVIATION OF THE CROSSUIND SOURCE DISTRIBUTION (Ml= 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)= 1.00
- PARTICULATE CATEGORIES -
123456
FALL VELOCITY (MPS) .0010 .0070 .0190 .0370 .0610 .0990
MASS FRACTION .1000 .4000 .2800 .1200 .0600 .0400
REFLECTION COEFFICIENT 1.0000 .8200 .7200 .6500 .5900 .5000
- SOURCE STRENGTHS ( GRAMS PER SEC ) -
- SEASON 1 -
- STABILITY CATEGORIES -
(1) (2) (3) (4) (5) (6)
1.30000-001 1.00000-001 8.00000-002 4.00000-002 .00000 2.00000-002
1.60000-001 1.30000-001 1.20000-001 1.00000-001 8.00000-002 5.00000-002
.00000 1.60000-001 1.40000-001 1.30000-001 1.00000-001 .00000
.00000 .00000 . 1.60000-001 1.60000-001 .00000 - .00000
.00000 .00000 1.90000-001 1.90000-001 .00000 .00000
.00000 .00000 2.20000-001 2.20000-001 .00000 .00000
.00 STANDARD DEVIATION OF THE CROSStlIND SOURCE DISTRIBUTION (M>= 10.60
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)= 11.60
- SOURCE STRENGTHS ( GRAMS PER SEC )
SEASON 2
SEASON 3
SEASON 4
X 13 VOLUriE 144.00
X 14 VOLUME 167.00
X 15 ''OLUME 190.00
.00 22.50
.00 22.50
.00 £2 50
MARKING - DISTANCE BETWEEN
X 16 STACK 201,
SOURCE
00
MARNING - DISTANCE BETWEEN SOURCE
15 AND POINT X,Y=
30.00 50.00
16 AMD POINT X,Y=
SEASON 1
2.63000*000
00 STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION (M)=
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)=
- SOURCE STRENGTHS ( GRAMS PER SEC
SEASON 1 SEASON 2 SEASON 3 SEASON 4
2.63000*000
00 STANDARD DEVIATION OF THE CROSSUIND SOURCE DISTRIBUTION (MI-
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)=
- SOURCE STRENGTHS I GRAMS PER SEC
SEASON 1 SEASON 2 SEASON 3 SEASON 4
2.63000*000
STANDARD DEVIATION OF THE CROSS'.IIND SOURCE DISTRIBUTION (Ml =
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M)=
- SOURCE STRENGTHS ( GRAMS PER SEC 1 -
SEASON 1 SEASON 2 SEASON 3 SEASON 4
2.63000+000
200.00, .00 IS LESS THAN PERMITTED
.00 GAS EXIT TEMP (DEG K>= 340.00, GAS EXIT VEL. (M/SECI= 8.00.
STACK DIAMETER (Ml- 1.000, HEIGHT OF ASSO. BLDG. CM)= 25.00. WIDTH OF
ASSO. BLDG. (Ml= 67.00, WAKE EFFECTS FLAG = 0
- SOURCE STRENGTHS ( CRAMS PER SEC 1 -
SEASON 1 SEASON 2 SEASON 3 SEASON 4
5.00000*000
200.00, .00 IS LESS THAN PERMITTED
.00
10.80
11.60
10.80
11.60
I
10.80
11.60
-------
Figure D-2. (Continued).
ISCLT *«*K«*tttt****»
HYPOTHETICAL POTASH PROCESSING PLANT
»M«M*«M« PAGE 12 *«**
Y AXIS (DISTANCE
«* ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE* METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
. METERS ) - CONCENTRATION -
) DUE TO SOURCE
-800.000 -600.000 -400.000 -200.000
a
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-eoo.ooo
1000.000
1250.000
1500.000
2000.000
3000.000
14.694939
24.302441
30.762213
34.686642
36.612810
37.995659
39.116838
39.927816
40.370279
40.979696
37.459093
34.633294
. 31.627005
26.523260
25.391930
21.765865
19.315297
15.833026
10.623216
17.740330
29.603470
42.673197
51.239652
60.818020
69.478446
73.918410
77.430562
79.510048
61.543497
71.090247
62.453043
53.339277
44.301801
37.937536
32.752200
28.003097
21.135674
19.209295
19.059936
33.920876
49.010515
61.515057
78.605643
94.423663
113.613680
122.082540
128.140215
133.067314
110.522025
91.546115
72.689496
58.956098
50.253506
40.629251
34.664792
32.512862
25.329159
19.739814
36.464540
52.611596
67.539449
66.323235
111.070321
137.162146
160.672080
172.451950 '
161.099644
144.552137
113.612117
84.629873
70.323149
57.552294
47.535768
45.215777
40.346825
29.415417
20.038156
38.507621
58.563042
73.669224
100.093095
129.053152
170.321285
226.415386
245.976141
263.298332
197.574209
145.644056
106.401945
63.278643
70.039513
65.105455
60.561036
49.406232
32.301473
20.465120
39.502174
62.666197
81.491526
107.929635
148.213663
201.519106
281.609787
353.472965
388.629272
269.205169
172.242220
127.545597
103.011294
94.192499
85.567405
75.301590
58.718658
34.640580
20.717094
41.067560
65.989616
67.788735
122.231598
163.112896
248.836727
372.539982
550.332375
635.748596
383.435799
229.666870
171.558754
147.471733
131.262175
110.063417
95.319164
65.627118
36.633163
20.771536
42.036382
68.551908
92.463557
136.200083
189.263662
286.228844
518.138876
882.257034
1217.754547
520.787308
352.263115
274.716499
220.209049
187.594975
139.812263
109.306763
72.084106
38.619043
20.603538
42.088817
69.821260
95.893963
140.463664
206.542271
331.787094
622.779861
1613.678723
2954.066681
1037.923401
656.313255
464.680809
312.341709
223.842525
161.129984
121.976810
77.578905
40.524932
Y AXIS (DISTANCE
.000 200.000
. METERS )
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
400.000 600.000 800.000
- CONCENTRATION -
1000.000
1250.000
1500.000
2000.000
3000.000
2000.000
1500.000
1250.000
1000.000
800.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
20.561385
42.181269
70.489342
97.570199
145.075630
218.223764
367.055534
739.120125
2026.026093
.000000
2567.034790
1156.649185
622.747154
386.130802
263.989559
163.219260
135.501400
63.780705
42.601424
19.250212
33.117813
61.410636
62.454264
116.853097
164.957937
246.075336
378.098328
821.064690
3254.023773
1310.713470
630.950935
430.117666
296.093339
214.879730
155.665009
118.559653
75.847097
39.839943
16.314191
34.966705
54.019938
69.735025
95.211921
119.099553
164.264231
268.016754
5C6. 550797
1471.954681
619.536018
471.329025
295.133231
215.436956
174.356894
130.691008
103.336452
69.013344
37.671403
17.246256
31.403325
46.191466
56.485029
73.368764
90.876937
128.449055
216.096466
443.259235
796.166214
582.062675
353.692437
234.G68133
168.535764
136.553247
105.972672
87.639623
61.419669
35.215941
16.082750
27.648318
39.150154
48.009252
58.870375
76.180o47
114.40S483
175.459341
323.394745
495.569996
396.051602
276.767231
193.668336
141.785255
111.420404
91.096764
74.677591
53.6122S6
32.596690
14.654356
24.590035
34.056457
40.177439
51.196520
71.799335
102.645301
160.757568
242.842098
339.537441
285.591663
233.460^59
167.731993
125.051361
96.690296
77.034763
65.439378
47.712314
29.831367
13.454515
21.666514
28.236364
34.371873
49.112298
66.079905
66.692265
131.895990
160.4161SO
235.025063
205.671CC3
174.975306
137.502249
109.922016
66.336271
65.716376
54.717316
42.283S91
26.791735
12.206061
18.937526
24.856001
33.637501
46.231785
53.49E349
79.523463
103.979997
139.292295
173.307035
155.523102
137.264694
117.769375
94.690763
78.033554
60.309857
47.958244
37.092239
24.304262
'10.331922
14.971287
24.231983
30.631876
38.110562
46.136665
62.061473
76.461813
90.609410
106.566267
98.546650
90.641037
81.621239
72.173792
61.539259
51.423201
42.502358
29.271064
20.608344
-------
M»«* ISCLT «M»l«iMMM««M«»
HYPOTHETICAL POTASH PROCESSING PLANT
«X*MN*MM PAGE
MM ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
( - GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
3000.000
Y AXIS (DISTANCE , METERS I - CONCENTRATION -
) DUE TO SOURCE
1 (CONT.J «*
o
NJ
O
3000.000
2000.000
1500. COO
125?. 000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-aoo.ooo
1000.000
1250.000
1500.000
2000.000
3000.000
7.401333
14.275576
19.257679
22.905709
28.727403
33.639297
38.617332
43.557491
46.334592
53.794253
51.171764
46.732267
45.957129
42.944610
39.774530
35.972745
31.402745
24.565611
14.706533
X Y
RANGE AZIMUTH
F.EARING
(METERS? (DEGREES)
- DISCRETE RECEPTORS -
CONCENTRATION X Y CONCENTRATION
RANGE AZIMUTH
BEARIIS3
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
CONCENTRATION
2106.0 14.0 31.991203
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COI13INED SOURCES
X
COORDINATE
(METERS)
200.00
-200.00
.00
.00
-200.00
400.00
200.00
-400.00
.00
Y
COORDINATE
(METERS )
.00
.00
-200.00
200.00
200.00
.CO
-200.00
.00
-400.00
CONCENTRATION
3254.023773
2954.066661
2567.034793
2026.026093
1613.873723
1471. 954661
1310.713470
1217.754547
1158.6-mes
-------
Figure D-2. (Continued).
*«»* ISCLT *IHHHHimil«»»*
HYPOTHETICAL POTASH PROCESSING PLANT
ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER ) DUE TO SOURCE
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES 1,
KMtfNMKMtt PAGE
1 (COHT.l
14
CONCENTRATION
COORDINATE COORDINATE
(METERS)
-200.00
(METERS )
-200.00
1037.923401
O
N>
-------
ISCLT H«IHHHHIII»««IHI
HYPOTHETICAL POTASH PROCESSING PLANT
«NM«K«K« PAGE
15 ««M*
*» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
Y AXIS (DISTANCE , METERS ) - CONCENTRATION -
I DUE TO SOURCE
-aoo.ooo -600.000 -400.000
-200.000
o
3000.000
2000.000
1500.000
1250.000
1000.000
aoo.ooo
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-600.000
1000.000
1250.000
1500.000
2000.000
3000.000
.006730
.011159
.014066
.016004
.016662
.017600
.016226
.016715
.019042
.019439
.017632
.016556
.015145
.013607
.012215
.010559
.009310
.007592
.004953
.006287
.013540
.019696
.023593
.027942
.031668
.034228
.036141
.037418
.03C650
.034029
.029969
.025676
.021410
.016332
.015769
.013438
.009801
.008622
.006983
.015841
.022361
.023543
.036365
.043568
.052058
.056896
.060319
.063157
.053160
.044165
.035059
.028571
.024259
.019519
.016001
.014992
.011562
.009236
.017132
.024558
.030820
.041114
.051573
.063537
.075008
.061332
.066190
.069904
.055183
.041273
.03.130
.027797
.021681
.020918
.013525
.013169
.009545
.016225
.027572
.034551
.045676
.060465
.079605
.103902
.116533
.125947
.096466
.070553
.052141
.040539
.032161
.030135
.027892
. .022613
.014744
.009789
.019126
.029734
.038565
.050903
.067723
.095262
.132076
.167675
.166468
.132400
.065232
.062934
.047335
.043764
.039518
.034614
.027147
.015843
.009952
.019700
.032241
.042003
.056405
.077737
.113624
.178210
.264930
.310734
.193262
.115604
.076634
.068876
.061018
.050820
.044455
.030124
.016881
.010022
.020300
.033154
.044792
.066454
.091801
.139222
.240611
.454026
.634153
.291274
.164732
.130459
.103216
.087536
.064948
.050584
.033216
.017628
.009989
.020469
.034101
.047036
.069386
.102619
.166535
.325497
.646305
2.025066
.571056
.337402
.226576
.149225
.106018
.075518
.056800
.035662
.018652
Y AXIS (DISTANCE
.000 200.000
, METERS I
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS I -
400.000 600.000 600.000
- CONCENTRATION -
1000.000
1250.000
1500.000
2000.000
3000.000
2000.030
150C.OOO
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-600.000
1000.000
1250.000
1500.000
2000.000
3000.000
.009896
.020291
.033946
.047095
.070351
.106446
.182287
.389659
1.371331
68.687690
1.988977
.615843
.302196
.181917
.123067
.084647
.062266
.036346
.019466
.009483
.016933
.030956
.042018
.060605
.087339
.136710
.244207
.541728
3.572526
.95^.055
.437242
.241580
.156406
.109972
.077644
.056067
.036431
.018329
.009064
.017544
.027470
.035921
.046870
.063774
.090265
.140069
.330957
.905294
.504038
.259200
.166713
.117301
.090794
.067226
.051942
.033790
.016006
.003575
.015358
.023485
.029260
.033343
.047642
.064006
.117195
.251855
.462595
.324066
.109648
.121216
.o|30758
.072570
.055574
.044931
.030701
.017057
.008037
.014036
.020054
.024661
.030365
.037400
.059206
.093645
.176255
.272363
.211560
.143494
.099646
.071940
.056702
.047518
.038695
.027359
• .016015
.007463
.012499
.017313
.020437
. 024928
.036394
.053234
.004673
.120960
.160683
.149007
.119928
.O043'i6
.0631G2
.04S492
.039943
.033762
.024486
.014907
.006785
.010945
.014215
.016655
.024611
.033506
.044635
.068332
.094171
.122769
.105770
.088109
.066322
.054669
.043059
.0327CO
.026071
.021616
.013632
.006154
.009490
.012020
.016699
.023256
.029710
.040713
.055930
.071792
.089306
.079122
.066726
.056360
.046548
.036472
.029087
.023796
.016888
.012361
.005157
.007228
.012022
.015319
.019199
.024371
.031392
.038757
.046014
.054064
.049526
.045054
.040066
.035202
.029050
.025057
.020823
.014481
.010424
-------
Figure D-2. (Continued).
**»» ISCLT »iHnnni»mHiiH»»
HYPOTHETICAL POTASH PROCESSING PLANT
*«*«*««* PAGE 16 »**»
*» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, HETERS) -
3000.000
Y AXIS (DISTANCE . HETERS > - CONCENTRATION -
) DUE TO SOURCE
2 (CONT.I «*
3000.000
2000.000
1500.000
1250.000
1000.000
800.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
.003569
.007069
.009616
.011349
.014373
.016843
.019349
.021841
.024248
.026969
.025480
.024099
.022556
.020914
.019206
.017073
.015060
.011893
.007260
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
- DISCRETE RECEPTORS
CONCENTRATION X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
CONCENTRATION
2108.0 14.0 .016086
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES
< X Y CONCENTRATION
COORDINATE COORDINATE
-Hi
(METERS)
(METERS )
.00
200.00
-200.00
.00
.00
400.00
200.00
-200.00
-400.00
.00
.00
.00
-200.00
200.00
.00
-200.00
200.00
.00
88.687690
3.572526
2.025068
1.968977
1.371331
.905294
.954055
.846305
.634153
-------
«»*» ISCLT *MMMMMK»MM**«
HYPOTHETICAL POTASH PROCESSING PLANT
«» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER ) DUE TO SOURCE
- 10 CONTRIBUTING VALUE? TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES 2,
X Y CONCENTRATION
COORDINATE COORDINATE
««HMM*tt« RAGE
2 (CONT.) «»
-11.
17 «««*
(METERS)
.00
(METERS )
-400.00
.615843
O
I
-------
Figure D-2. (Continued).
««*M ISCLT ««**«*«*««**»
HYPOTHETICAL POTASH PROCESSING PLANT
«*«****« PAGE 45 »»»»
*» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
V AXIS (DISTANCE . METERS ) - CONCENTRATION -
FROM COMBINED SOURCES
2, -11.
-aoo.ooo -600.000 -400.000 -200.000
o
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-600.000
1000.000
1250.000
1500.000
2000.000
3000.000
.066996
.110422
.136662
.155726
.165035
.172153
.178195
.162913
.166101
.190023
.175039
.162303
.146759
.134735
.120555
.103752
.091914
.075314
.049045
.082302
.133630
.193662
.230660
.271644
.307500
.329555
.347367
.359272
.371001
.327610
.269603
.249354
.206930
.176504
.154339
.132189
.095668
.066223
.089468
.155720
.219558
.279313
.352334
.419001
.493693
.538136
.568823
.594840
.503266
.421361
.336638
.274612
.234836
.190664
.154622
.143958
.113009
.091964
.166740
.238672
.300293
.396465
.494259
.602513
.701149
.756162
.799366
.653179
.521513
.391097
.326450
.268591
.209211
.197260
.177899
.126224
.095036
.160063
.268724
.333371
.440305
.576877
.749190
.952784
1.061057
1.140937
.684266
.655235
.488908
.3C6144
.302841
.279984
.262936
.217283
.144859
.097676
. 167880
.290774
.372975
.464755
.643423
.892299
1.205605
1.482022
1.632269
1.160988
.775440
.585195
.436266
.397535
.367164
.326594
.255461
.155987
.099548
.194744
.309875
.408348
.557971
.726308
1.048724
1.594364
2.250297
2.583666
1.664641
1.022605
.696650
.606539
.554191
.472771
.404542
.291687
.166558
.100516
.201627
.325304
.436466
.623462
.863472
1.260705
2.092759
3.813609
4.772127
2.475178
1.351135
1.090471
.909271
.760360
.612299
.483097
.323153
.176277
.100472
.204402
.337366
.461221
.670176
.970124
1.575295
2.756620
6.158075
11.960189
3:777470
2.535072
1.902211
1.339877
.962285
.715085
.546184
.350616
.164839
Y AXIS (DISTANCE
.000 200.000
, METERS )
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 600.000 600.000
- CONCENTRATION - ,
1000.000
1250.000
1500.000
2000.000
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
.099395
.202590
.336537
.463789
.684976
1.020374
1.694922
3.379304
9.628193
151.781187
11.318276
4.687866
2.572001
1.632346
1.136 942
. 799s-'i4
.596412
.373C69
.192147
.096162
.192563
.313978
.425952
.613427
.633270
1.379131
2.453755
4.536105
23.636500
6.828987
3.968169
2.319116
1.533023
1.0C2379
.775192
.5C2264
.366837
.1S01G7
.092208
.179016
.261425
.369234
.502984
.674599
.919989
1.331565
2.940626
9.060389
4.451818
2.363297
1.630996
1.215313
.912852
.660S59
.526372
'.2-i2393
.1024C3
.087502
.162798
.242599
.306430
.394243
.495000
.630846
1.119356
2.442560
4.619&04
3.228387
1.622004
1.178826
.919102
.733760
.576310
.459209
.313199
.173464
.082254
.144930
.206121
.254314
.314666
.372634
.577669
.932453
1.764919
2.790668
2.138862
1.433528
.982389
.714301
.600670
.465256
.394605
.2G0941
.163439
.076602
.126293
.176597
.211646
.249920
.357824
.531359
.818713
1.314065
1.670465
1.526862
1. 163601
.651100
.626391
.-'(16776
.<;1C615
.2-16216
.250226
.152655
.069333
.112633
.147060
.167635
.244422
.337206
.452348
.691666
.966140
1.271050
1.086396
.899585
.693609
.552084 '
.432174
.33Co09
.269236
.221618
.130365
.063096
.097621
.121195
.166410
.234200
.301364
.407216
.571243
.739486
.925674
.616511
.705437
.592635
.473330
.3C9568
.301051
.241126
.194360
.126664
.052966
.073052
.121109
.155225
.195557
.246916
.320555
.393253
.474760
.559778
.511463
.463903
.411006
.360614
.304337
.25-1781
.211147
.147249
.107125
-------
«*«* ISCLT «»HI»«»IIIHHHHHI
HYPOTHETICAL POTASH PROCESSING PLANT
«*Mft«*ttM PAGE
46 *»**
ANNUAL GROUND LEVEL CONCENTRATION (
MICROGRAHS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS I
) (CONT.I FROM COMBINED SOURCES
-Hi
ho
Os
IS (DISTANCE
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
3000.000
, METERS 1 - CONCENTRATION -
.036146
.071751
.098095
.114272
.146666
.172449
.192655
.224678
.249824
.278227
.262574
.248029
.231792
.214433
.196466
.172508
.153591
.121069
.074004
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
- DISCRETE RECEPTORS -
CONCENTRATION X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
CONCENTRATION
2108.0
14.0
.164647
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X
COORDINATE
(METERS)
.00
200.00
-200.00
.00
.00
400.00
200.00
-200.00
-400.00
Y
COORDINATE
(METERS )
.00
.00
.00
-200.00
200.00
.00
-200.00
200.00
.00
CONCENTRATION
151.781187
23.636500
11.960189
11.316276
9.828193"
9.060309
6.62807
6.15C075
4.772127
-------
Figure D-2. (Continued)
««M* ISCLT «*)»««««»*»««» HYPOTHETICAL POTASH PROCESSING PLANT «*»»«»»« PAGE 47 *"•»*
«<* ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER ) (CONT.) FROM COMBINED SOURCES 2, -11,
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS) (METERS I
.00 -400.00 4.687666
O
to
-------
«**» ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
**«MH»«tt PAGE 60
»* ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
Y AXIS (DISTANCE , METERS ) - CONCENTRATION -
FROM COMBINED SOURCES 12, -15.
-600.-000 -600.000 -400.000 -200.000
o
oo
3000.000
2000.000
1500.000
1250.000
1000.000
aoo.ooo
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
.761770
1.141667
1.375643
1.555207
1.654695
1.740491
1.818775
1.887473
1.944687
2.055302
1.860339
1.738141
1.609048
1.475689
1.340627
1.188876
1.022552
.862947
.600805
.913400
1.372372
1.830413
2.102560
2.402559
2.726411
2.919727
3.098363
3.240901
3.490970
3.023258
2.719346
2.399424
2.087705
1.741852
1.536371
1.352147
1.041933
.914465
1.004414
1.529028
2.064339
2.482244
2.966479
3.397590
3.986387
4.304455
4.571430
5.002758
4.157481
3.596813
3.039190
2.412698
2.120893
1.797190
1.520410
1.365583'
1.145431
1.043227
1.653487
2.177970
2.666630
3.292783
3.865848
4.859529
5.221580
5.618594
6.215974
5.003488
4.192921
3.501342
2.712348
2.334636
1.924582
1.761718
1.620936
1.273804
1.097318
1.778443
2.394345
2.846071
3.614225
4.404581
5.316925
6.571609
7.151659
8.031231
6.193239
4.995240
3.652524
3.046663
2.53S354
2.282126
2.163176
1.906946
1.487444
1.134168
1.870379
2.597194
3.102237
3.969446
4.856160
6.099163
8.422382
8.947613
10.214259
7.484593
5.992803
4.117614
3.322135
3.053135
2.752904
2.576321
2.171283
1.602494
1.173254
1.991252
2.766233
3.411735
4.247049
5.460620
6.969049
9.216727
11.662705
13.585494
9.251507
6.086271
4.604605
4.129167
3.683962
3.375925
3.050430
2.618086
1.723289
1.205097
2.066716
3.024596
3.870709
4.768987
5.952523
8.140697
10.958037
16.670878
19.270468
12.169548
6.915211
5.998393
5.183474
4.716145
4.451518
3.866363
2.876451
1.636733
1.228379
2.147994
3.150433
3.960807
5.390952
7.247478
9.136564
13.881349
22.077493
30.924355
13.538237
9.795648
8.047790
7.809959
6.551013
5.187535
4.307250
3.145808
1.946112
Y AXIS (DISTANCE
.000 200.000
. METERS )
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 600.000 800.000
- CONCENTRATION -
1000.000
1250.000
1500.000
2000.000
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.0<>0
-600.000
-600.000
1000.000
1250.000
1500.000
2000.000
3000.000
1.242015
2.192536
3.258063
4.172939
5.605846
7.453122
10.599771
18.082357
32.628638
63.526520
22.113643
17.536629
12.042532
9.254277
7.407627
5.833904
4.746083
3.382595
2.042810
1.270693
2.246C54
3.337S6S
4.27C554
5.732957
7.617677
10.763703
17.125082
34.847267
97.718373
36.232011
20.530434
14. 269958
10.816631
8.521041
6.603003
5.30<>£-'iO
3.716567
2.194115
1.213124
2.065558
3.006055
3> 749706
4.833446
6.169492
8.299770
9.950397
17.032127
50.817300
24.109043
14. 783746
12.692368
9.460651
7.573466
6.042333
4.946031
3.533194
2.131130
1.174963
1.960164
2.725089
3.350022
4.159414
4.5S3254
5.403757
6.015761
16.251079
30.163562
20.742026
12.719958
9.034563
7.709350
7.117639
5.701192
4.647631
3.407620
2.094876
1.129759
1.814670
2.493014
2.725899
3.174491
3.591886
4.969934
6.864670
13.173162
20.663201
15.562060
10.089924
6.365317
6.419793
5.652683
4.865727
4.493111
3.239375
2.045759
1.078897
1.710877
2.054230
2.315758
2.606588
3.443437
4.492734
6.922053
10.613725
15.774613
12.254298
9.432625
6.952721
6.026965
4.043473
4.278133
3.792025
3.179415
1. 985528
1.009908
1.428658
1.729366
1.893275
2.477219
3.183569
4.130747
6.624712
8.716227
11.796674
9.646070
8.268621
6.066908
5.056894
4.351653
3.639933
3.300273
2.710214
1.896738
.924725
1.255966
1.455465
1.836393
2.414626
3.016919
4.155256
5.705509
7.180328
9.253553
7.816186
6.740923
5.691529
4.545649
3.911429
3.325712
2.861965
2.437233
1.764493
.773610
.961216
1.426758
1.783701
2.199683
2.860217
3.644918
4.425239
5.195702
6.294835
5.540433
4.995657
4.412014
3.902256
3.252149
2.628982
2.449S53
1.946652
1.533490
-------
Figure D-2. (Continued).
»»»» ISCLT «*««M««*««««*
HYPOTHETICAL POTASH PROCESSING PLANT
«*KNKHM» PAGE 61
** ANNUAL GROUND LEVEL CONCENTRATION (
MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS)
) (CONT.) FROM COMBINED SOURCES 12. -15.
o
VO
S (DISTANCE
3000.000
2000.000
1500.000
1250.000
1000.000
aoo.ooo
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-soo.ooo
1000.000
1250.000
1500.000
2000.000
3000.000
3000.000
, METERS ) - CONCENTRATION -
.534587
.965940
1.289420
1.530933
1.952140
2.259036
2.570432
2.879373
3.160338
3.621281
3.319609
3.113453
2.893544
2.663029
2.426285
2.12E353
1.896608
1.576643
1.117217
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
- DISCRETE RECEPTORS -
CONCENTRATION X Y CONCENTRATION
RANGE AZIMUTH
BEARIKG
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
CONCENTRATION
2106.0
14.0
1.963157
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS)
(METERS I
200.00
.00
400.00
200.00
200.00
.00
-200.00
600.00
400.00
.00
.00
.00
-200.00
200.00
200.00
.00
.00
-200.00
97.718073
63.526520
50.817300
36.232011
34.847267
32.82£!?3a
30.9CH355
30.163562
C4.189Cs3
-------
«*»» ISCLT »****»**»***» HYPOTHETICAL POTASH PROCESSING PUNT »*»»»»»» PAGE 62 «»»*
«M ANNUAL GROUND LEVEL CONCENTRATION ( HICROGRAMS PER CUBIC HETER ) (CONT.) FROM COMBINED SOURCES IZ, -15,
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS) (METERS )
.00 -200.00 22.113643
O
U)
o
-------
• *«« ISCLT ttMKN««7671
.660480
.590468
.462939
.316532
.250599
.428300
.621596
.781430
.017212
.284981
.612940
.743761
.731186
.000000
.648424
.458144
.184695
.995926
.853177
.719658
.619735
.461129
.325584
.236267
.393528
.549990
.669346
.827679
.978195
1.104953
1.058787
.626559
1.733320
1.110660
.975513
.686131
.603378
.721016
.631379
.557461
.446515
.311389
.224672
.354720
.470492
.547059
.629927
.706647
.740714
.727997
1.257913
2.202352
1.339593
.810881
.728193
.650122
.590647
.540664
.492203
.409629
.2^6176
.210196
.314131
.390469
.443103
.495344
.519964
.540227
.828626
1.328210
1.902989
1.356484
.907010
.630610
.575231
.525060
.470210
.429022
.372378
.200391
.195198
.273719
.334718
.366138
.387347
.406508
.576071
.804594
1.229415
1.599053
1.245492
.925603
.671910
.5060S5
.470768
.429528
.392937
.336189
.264355
.176232
.238035
.275036
.287495
.323934
.429769
.562408
.757682
1.063197
1.294904
1.079834
.668320
.663353
.533387
.417113
.361510
.355017
.306451
.244410
.158904
.206579
.225604
.250401
.336264
.421428
.520705
.704419
.916288
1.073248
.932596
.787926
.653276
.536760
.439542
. .343402
.319663
.284526
.226224
.133239
.154824
.210273
.260877
.320399
.373868
.474070
.587385
.702750
.787341
.715675
.639593
.563375
.491873
.428223
.358744
.300667
.239362
.200277
-------
«**« ISCLT «»MKK*tt*ftft*K*
HYPOTHETICAL POTASH PROCESSING PLANT
««*««**« PAGE
«» ANNUAL GROUND LEVEL CONCENTRATION ( HICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCEi METERS I -
3000.000
Y AXIS (DISTANCE . METERS ) - CONCENTRATION -
I DUE TO SOURCE
16 (CONT.)
NJ
3000.000
2000.000
1500.000
1250.000
1000.000
800.000
600.000
400.000
£00.000
.000
-200.000
-400.000
-600.000
-600.000
-1000.000
-1250.000
-1500.000
-2000.000
-3000.000
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
.091826
.152286
.200150
.227351
.275918
.322264
.370191
.416676
.466584
.501958
.473665
.443613
.412442
.380919
.349740
.313713
.261734
.226120
.156546
- DISCRETE RECEPTORS -
CONCENTRATION X Y CONCENTRATION X Y CONCENTRATION
RANGE AZIMUTH RANGE AZIMUTH
BEARING BEARING
(METERS) (DEGREES) (METERS) (DEGREES)
2108.0 14.0 .363230
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES
16*
X
COORDINATE
(METERS)
-200.00
600.00
.00
800.00
.00
-200.00
-400.00
200.00
400.00
Y
COORDINATE
(METERS )
200.00
.00
200.00
.00
400.00
.00
200.00
400.00
.00
CONCENTRATION
2.227071
2.202352
1.916690
1.902969
1.895364
1.630698
1.606140
1.743761
1.733320
-------
Figure D-2. (Continued).
«««» ISCLT «ttK«»*H«««tt*« HYPOTHETICAL POTASH PROCESSING PLANT «*«»»««* PAGE 65 «««*
»* ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER ) DUE TO SOURCE 16 (CONT.) ««
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 Of COMBINED SOURCES 16,
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS) (METERS I
-ZOO.00 400.00 1.698725
O
u>
U)
-------
ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
«*««««»» PAGE
67 *«»«•
M« ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER ) DUE TO SOURCE
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES -16.
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS)
(METERS )
200.00
-200.00
.00
.00
-ZOO. 00
400.00
200.00
-400.00
.00
-200.00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
-400.00
-200.00
3.572526
2.025063
1.988977
1.371331
.646305
.905294
.954055
.634153
.615643
.571056
a
CO
-------
Figure D-2. (Cintinued).
»»»» ISCLT ««H«K*lt««MNM*
HYPOTHETICAL POTASH PROCESSING PLANT
«»*«**M» PAGE 82
no ANNUAL GROUND LEVEL CONCENTRATION (
-3000.000
-2000.000
Y AXIC (DISTANCE
METERS )
MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-1500.000 -1250.000 -1000.000
- CONCENTRATION -
FROM COMBINED SOURCES -16.
-600.000 -600.000 -400.000 -200.000
3000.000
2000.000
1500.000
1250.000
1000.000
800.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
-1000.000
-1250.000
-1500.000
3 -2000.000
Jj -3000.000
15.701092
25.617565
32.591661
36 . 934844
38.761167
40.264640
41.476315
42.365130
42.670509
43.592019
39.635276
36.648078
33.672222
30.394194
27.087202
23.260803
20.612502
16.924355
11.379469
18.942432
31.414241
45.095850
54.020829
63.997718
73.043536
77.713091
61.431193
63.669175
65.954903
74.932621
65.893711
56.360411
46.913946
40.134636
34.666741
29.705405
22.437645
20.370844
20.378169
35.934766
51.721999
64.762055
62.517870
98.909375
118.604207
127.651506
134.012341
139.377890
115.795543
96.075214
76.478976
61.993407
52.916087
42.676585
36.559303
34.231462
26.793392
21.106735
38.644588
55.469636
71.037457
92.654721
116.168270
143.453426
167.646616
179.685417
188.945707
150.905167
116.878694
68.954096
73.732863
60.472929
49.930770
47.410013
42.399636
31.048478
21.468597
40.841623
61.732574
77.402421
104.832087
134.847670
177.337866
234.961256
255.219542
273.457655
205.434942
151.680154
111.008204
67.099301
73.201359
67.950522
63.267587
51.831677
34.189552
21.940981
41.953043
66.077491
85.574866
113.097446
154.581869
209.558378
292.443138
365.120029
401.628742
278.733051
179.613321
132.732833
107.157834
97.970929
89.044236
76.568563
61.492023
36.666157
22.236572
43.660832
69.644453
92.272807
127.827990
170.220734
258.001373
384.760208
565.713493
653.284927
395.262951
237.417061
177.348738
152.607111
135.935869
114.379989
99.212747
68.927876
39.005111
22.326986
44.726065
72.491918
97.488152
142.474731
197.120735
296.664479
532.770309
904.547623
1243.427567
536.374367
361.177841
282.305092
226.663289
193.646418
145.433096
114.173650
75.700367
41.126579
22.165686
44.871413
73.924355
101.097733
147.493542
215.942266
343.927803
641.116722
1644.341263
2998.831696
1056.221741
671.299797
475.403450
322.274128
232.107430
167.666132
127.385117
81.516409
42.961977
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
200.000
Y AXIS (DISTANCE , METERS )
3000.000
2000.000
1500.000
1250.000
1000.000
800.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
-1000.000
-1250.000
-1500.000
-2000.000
-3000.000
22.155703
45.009141
74.710657
102.992134
152.382677
227.974852
380.971508
762.477081
2073.599854
216.616867
2601.409058
1182.062714
638.428368
397.935459
273.331772
190.533096
141.434347
87.999302
45.152909
20.667685
40.985526
65.664319
37.934212
124.216666
174.743849
261.631093
399.420902
661.179192
3375.378967
1355.422791
656.907669
447.691403
309.444393
225.342815
163.967646
125.071483
60.411623
42.599794
400.000
19.857788
37.646802
57.857405
74.573303
101.376021
126.921836
. 174.568928
280.357494
547.402039
1533.565567
849.287483
469.456551
310.392696
226.936281
163.569214
138.245621
109.416309
73.340938
40.296408
600.000 800.000
- CONCENTRATION -
18.733391
33.661024
49.629642
60.663537
76.552341
96.666631
135.224356
225.959570
463.210762
833.151871
607.372620
369.245255
245.009705
177.814844
144.995283
112.791331
93.288658
65.550113
37.780454
17.504958
29.922047
42.239754
51.432569
62.654875
80.665323
120.496555
184.085079
339.661007
521.127014
415.109077
289.197670
203.647141
149.494568
118.199018
96.917948
79.999403
57.505476
35.088275
1000.000
16.205052
26.702922
36.623999
43.070980
54.440372
76.007097
103.447457
169.302917
256.199287
358.761544
300.618282
245.058674
176.207712
132.213593
102.496265
82.153031
69.970551
51.478241
32.283963
1250.000
14.709987
23.466038
30.389843
36.720276
52.157870
70.030441
91.837861
139.970036
191.161726
249.389673
217.486170
185.011816
144.946302
116.066372
91.539205
70.070422
58.662344
45.524371
29.073747
1500.000
13.354785
20.497890
26.660464
35.692703
49.217071
62.235558
64.606634
115.961161
148.128387
184.559494
165.090382
145.498962
124.706807
100.246495
82.774085
64.280018
51.381015
40.008355
26.441663
2000.000
11.291737
16.160378
25.990121
32.631677
40.626198
51.617662
66.501011
61.672684
96.962635
114.208215
105.316413
96.740164
87.007627
76.928730
65.524164
54.665705
45.464022
31.604344
22.449233
-------
«•«» ISCLT »it it it *»«*»*»«»
HYPOTHETICAL POTASH PROCESSING PLANT
*««««««* PAGE
«» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCEi METERS I -
3000.000
Y AXIS (DISTANCE , METERS ) - CONCENTRATION -
I (CONT.) FROM COMBINED SOURCES
-16.
o
u>
3000.000
2000.000
1500.000
1250.000
1000.000
600.000
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-aoo.ooo
-1000.000
-1250.000
-1500.000
-2000.000
-3000.000
8.063892
15.465553
20. £45341
24.778264
31.102125
36.393093
41.756608
47.080215
52.231333
58.195716
55.227629
52.537358
49.494904
46.202988
42.749019
38.584816
33.734876
26.509442
16.056299
X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
- DISCRETE RECEPTORS -
X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
2108.0
14.9
34.462232
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
COORDINATE COORDINATE
CONCENTRATION
(METERS)
(METERS )
200.00
-200.00
.00
.00 .
-200.00
400.00
200.00
-400.00
.00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
-400.00
3375.378967
2998.831696
2601.409058
2070.599854
1644.341263
1533.565567
1355.422791
1243.427567
1182.062714
-------
Figure D-2. ^
«««• ISCLT «»»••»««»«»«»
HYPOTHETICAL POTASH PROCESSING PLANT
«««*«»*« PAGE 64 ««•»»
«» ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRAMS PER CUBIC METER
) (CONT.) FROM COMBINED SOURCES -16.
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
CONCENTRATION
COORDINATE COORDINATE
(METERS) (METERS )
-200.00 -200.00 1056.221741
o
u>
-------
««»» ISCLT «»«HHHHHH«IHHI HYPOTHETICAL POTASH PROCESSING PLAKT «»«««««« PAGE 65 ««*»
- SUMMARY OF SOURCES OUTPUT TO TAPE -
NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE NUMBER/TYPE
12 21 31 41 51 61 71 81 91 10 1 11 I
12 1 13 1 14 1 IS 1 16 0-
O
U)
oo
-------
considered, the default option was not incorporated, a pollutant other than
SOz was modeled and an input debug mode was not used, respectively. ISW(25)
was left blank indicating that no receptors were located above ground level.
c. Card Group 3. Card Group 3 specifies the number of categories of
meteorological data and the number of sources and receptors in the grid
system. The parameter NSOURC is set equal to "16" for the 16 sources used to
model the hypothetical potash plant. The parameter NGROUP equals "5" because
we wish to print the output for five different source groupings. The
parameters NXPNTS and NYPNTS are both set equal to "19" for the 19-X by 19-Y
receptor grid system shown in Figure 2-1. The parameter NXWYPT is set to "1"
and specifies one discrete point that is used in this example to represent an
air quality monitor location. The parameters NSEASN through NSCTOR are all
left blank so that they assume their respective default values of 1 season, 6
wind-speed categories, 6 stability categories and 16 wind-direction
categories. The parameter NOFILE is set to equal to "1," because the tape
output file will be the first file on tape.
d. Card Groups 4 and 4a. Card Groups 4 and 4a define the source
combinations for which concentration or deposition output is to be produced.
The parameter NGROUP on Card Group 3 specifies 5 source combinations. Card
Group 4 (NOCOMB) gives the number of source ID-numbers the program is to use
to define each source combination. The first output combination has one
defining source, the second and third use two defining sources and the fourth
and fifth use only one. Card Group 4a shows the actual source ID-numbers the
program is to use in each source combination. The program is to output annual
concentrations for Source 1, Sources 2 through 11 combined. Sources 12 through
15 combined. Sources 16, and all sources (1-16) combined.
D-39 12/87
-------
e. Card Group 5. Card Group 5 specifies the output concentration units
and input source emission units. Because we wish to use the program default
units, this card is left blank. However, this card is still included in the
input data deck. The output units are defaulted to "micrograms per cubic
meter" and input source emission units are defaulted to "gram per sec" for the
stack and volume sources and to "grams per sec per square meter" for the area
source as shown in Figure D-2.
f . Card Groups 6, 6a, 7, and 7a. Card Groups 6, 6a, 7, and 7a define the
locations of the receptors of the regular (non-discrete) grid system and the
discrete point. The regular grid system (Card Groups 6 and 7) is in Cartesian
coordinates and the discrete .receptor (Card Groups 6a and 7a) is in polar
coordinates.
g. Card Groups 8, 8a. 8b, and 8c. Card Groups 8 and 8a are not shown in
Figure D-l because we are assuming flat terrain (ISW(4) equal to "0"). Card
Groups 8b and 8c are not shown in Figure D-l because no receptor heights were
located above ground level (ISW(25) equal to "0").
h. Card Group 9. Card 'Group 9 is used to specify an optional format the
program uses to read Card Group 9a. Because ISW(18) is left blank (zero),
this card group is not used by the program and is omitted from the input
deck. The program will use the default FORTRAN format of (6F10.0) to read the
data shown in Card Group 9a. This default format requires the user to punch
the frequency of occurrence data in Card Group 9a using 10 columns per value
including the decimal point (period) . NSPEED values are read per data card in
Card Group 9a.
D-40
-------
i. Card Group 9a. Card Group 9a gives the joint frequency of occurrence
of wind speed and direction by stability category and season. As the example
run is using annual data, only one season (annual) is punched. Within this
one season, there are six stability categories (A through F) and within each
stability category there are sixteen cards, one for each wind direction
category clockwise from north to north-northwest. Each data card contains the
frequency of occurrence for the six wind-speed categories. Values that are
zero have been left blank because the ISCLT program interprets blanks as
zeroes. If we were using seasonal data in the example problem, the program
would require NSEASN decks to be input.
j. Card Group 10. Card Group 10 gives the annual ambient air
temperatures in degrees Kelvin for stability categories A.through F.
k. Card Group 11. Card Group 11 gives the annual mixing heights in
meters by stability and wind-speed. The mixing heights are punched, six
values per card, for wind-speed categories 1 through 6, and there are six
cards for stability categories A through F. If we were using seasonal data in
this example run, the program would require NSEASN groups of these data
cards. For the purpose of this example, it is assumed that the median mixing
heights shown in Figure D-l have been developed as a function of wind-speed
and stability using on-site acoustic radar data. Some values have been left
blank in this card group for stability categories A through D because the
joint frequency of occurrence of these wind-speed and stability categories is
zero (and no calculations will take place). The values for stability
categories E and F have been left blank because the case is being run in the
Rural Mode and the program automatically uses 10,000 meters. Note also that
D-41
-------
the decimal point is not punched. The decimal point can be eliminated in real
•
variables only when the value is a whole number and right justified in the
respective punch columns.
1. Card Groups 12 through 16. Card Groups 12 through 16 provide the
remaining meteorological and model data. These card groups are all blank, but
must be included in the input data deck. The program provides default values
for all of these data items and their respective values are shown in
Figure D-2 under the "ISCLT INPUT DATA" heading.
m. Card Group 17. Card Group 17 provides all of the information
concerning sources 1 through 16. The parameter DISP is blank (zero) for each
source as this run is the initial entry of these sources and there is no input
tape. The parameter TYPE identifies the type of source ("0" = stack "1" =
volume, "2" = area) and QFLG specifies how the source emissions vary. The
emissions from Sources 1 through 11 vary with wind-speed category and
stability category, while the emissions from Sources 12 through 16 are assumed
constant. Card Group 17 also gives the location, height, exit temperature,
and exit velocity or dimensions (depending on the source type), inner diameter
of the stack, and the height and width of the building for the cons.i deration
of wake effects for stack emissions. As we are calculating particulate
concentrations, the parameter NVS has been set to the number (6) of
particulate size categories used to define the particulate distributions of
Sources 1 through 11. However, the particulate emissions from Sources 12
through 16 are assumed to have negligible gravitational settling velocities
and are treated as gaseous emissions. Therefore, for Sources 1 through 11,
the particulate settling velocity (VS), mass fraction of the distribution
(FRQ) and the surface reflection coefficient for each of the six particulate
D-42
-------
size categories must be input. Since the building height has not been entered
as a negative value for source 16 and the regulatory default mode was not
selected (ISW{22) = "1"), no direction specific building dimensions are read
for the 16 sectors (NSCTOR). The next six cards for each source, if
necessary, specify the emissions of a particular source. There is one card
for each stability category with six values across the card for the wind-speed
categories. If we were using seasonal data in this example, the program would
require NSEASN groups of these cards for Source 1 because QFLG.for this source
is set to "3." In some cases, the source emissions are blank because the
frequency of occurrence of wind-speed and wind-direction is zero.
D.2.2 Example Print Output
Figure D-2 illustrates the printed concentration output for the example
hypothetical potash plant. The listing begins by printing the input data
under the heading "ISCLT INPUT DATA." This part of the output listing
includes all punched data and default values, except source data. Next, the
source data are listed under the heading "SOURCE INPUT DATA." Note that the
source input data listing also contains warning messages indicating a source
is too close to a receptor. Concentrations are not calculated for those
source-receptor combinations. The remainder of the output listing in
Figure D-2 shows the annual particulate concentrations due to selected
sources, but does not show the complete output listing. The page number of
each table in the output listing is shown in the upper right hand corner. For
example, pages 12, 13, and 14 (upper right hand corner) show the complete
output for Source 1. The heading given is "ANNUAL CONCENTRATION (MICROGRAMS
PER CUBIC METER) DUE TO SOURCE 1." The particulate concentrations calculated
for the receptor grid system follow the page heading on page 12 and end at the-
middle of page 13. The concentrations at the discrete receptors are then
printed, followed by the maximum 10 values. The maximum 10 values listed here
D-43 . . • 12/87
-------
were derived from Source 1 alone as there were no other sources, in this
particular source combination. The next concentration tables illustrated are
from pages 15 through 17 of the output listing. These pages give the
individual concentrations produced by Source 2 that contribute to the combined
Sources 2 through 11. The individual source output is printed because ISW(8)
was input as "3." Note that the maximum 10 values for Source 2 on page 16 are
actually those 10 receptors from Source 2 that contribute to the maximum 10
values of the combined Sources 2 through 11. Although not shown in
Figure D-2, the output listing continues printing tables for Sources 3 through
11 with the same form and content as shown for Source 2 on page 15 through
17. The next concentration tables illustrated are from pages 45 through 47 of
the output listing. These pages show the combined particulate concentrations
for Sources 2 through 11 with the maximum 10 values and receptors for the
combined Sources 2 through 11. Figure D-2. continues with output pages 60
through 62 showing the combined source output for Sources 12 through 15. The
output for Source 16 is shown on pages 63 through 65. The ISCLT program then
continues to print the 10 values from each of Sources 1 through 16 that
contribute to the maximum 10 of all 16 sources combined (only Source 2 is
shown). The program only displays the 10 values that contribute to the
maximum 10 because the calculations for all receptor points for each source
have been displayed earlier in the output listing. The output listing for
this example is terminated on output page 85 with a summary of the source
ID-number and source type of each source output to tape with the respective
calculated concentrations.
D.3 Example Dry Deposition Run
This ISCLT program example run calculates the total annual ground-level
dry deposition from the same hypothetical potash processing plant described in
Section D.2. This particular example is modeled using 11 out of the original
D-44 12/87
-------
16 sources. Only the first 11 sources are used here because Sources 12
through 16 are assumed to be emitting only submicron particulates that are
assumed to be completely reflected at the ground surface and thus do not
contribute to the ground-level deposition.
D.3.1 Input Data Set-Up Procedures
The input-card data set-up procedure for this example is the same as that
used in Section D.2 for the example concentration run and is shown in
Figure D-3. However, there are differences between this runstream and the
runstream used in the concentration example. The parameters ISW(l) and ISW(5)
on Card Group 2 are changed to the values "2" and "1", respectively,
indicating deposition is to be calculated and no output tape is used. Card
Groups 3 through 4a show the number of input sources (NSOURC), which is
reduced to 11, and the number of output source combinations (NGROUP), which is
reduced to 3. Also, Card Group 17 shows the new emission rates for Sources 1
through 11 for deposition calculations. The only other change in the input
deck is the removal of Card Group 17 for Sources 12 through 16.
D.3.2 Example Print Output
Figure D-4 illustrates a table of printed deposition output for the
example hypothetical potash plant. The table shows the annual ground-level
\f-
deposition in grams per square meter due to Sources 1 through 11 combined and
can be used to verify if the model is working correctly.
D-45
-------
0 S;
as 5
1
2
3
4
4a
5
6
7
6* 7a
9*
r
an
O UJ
0£ S3
1
2
3
4
5
6
7
8
9
1C
11
12
13
14
15
16
^7
13
19
23
21
22
23
*^
25
26
27
23
29
30
31
32
33
34
35
36
37
36
3 '
4o
-1
42
43
»i
45
-e
*7
-3
49
50
1
5 0
i i
1 2
5 0
i i
CARD
2 3
5 0
i i
COLUMN
3 4
5 0
i 1
4 5
5 0
i i
5667 78
505050
i i i i i i
HYPOTHETICAL POTASH PROCESSING PLANT
22 3
11 3 19
121
1 2
-3300
-200
1530
-3533
-288
1530
2103.
.0001695 .
.3531223
.655:918 .
.3551576 .
.0003119 .
.0533611 .
.06332iS .
.3306953 .
.0006747 .
.0035512 .
.5631441
.0351155 .
.8032399 .
.0000339 .
.0003602 .
.0002320 .
.0007353 .
.0010438 .
.0054444 .
.0009629 .
.0018775 .
.0316392 .
.0019770 .
.0026238 .
.0045918 .
.0026274 .
.0014567 .
.3016527 .
.0024999 .
.0013425 .
.J559151 .
.3007325 .
.3634645* .
.3036990 .
.3002666 .
.0355317 .
.0006882 .
2332
19 1
-11
-2000
0
2000
-2060
0
2000
14.
0000356
0001993
0301«?3
3552569
0333995
0535139
5583426
0037993
0006544
0005424
3302569
3C02S55
0002569
0001713
0086256
0002284
0007708
0010846
0554£51
0014345
0027977
0027977
0031688
0039967
0042251
0030632
0010846
0021125
0021125
5011993
J6S4351
0007422
3039421
0007993
3307422
3014559
0027977
2
•11
-1500
200
3000
-1550
200
3000
.0003300
.8055533
.0555553
.3506533
.0060030
.0080088
.0033553
.0500000
.0060503
.0000000
.3000000
.0003330
.0555380
.0050030
.0000000
.0060300
.0005710
.0004853
.03319?3
.0003564
.0016643
.0027691
.0034257
.0042536
.0028548
.0010563
.0006281
.0607137
.0011134
.0637703
.0004563
.0003711
.3012561
.3515133
.0009421
.3015701
.0058523
l
-1253
400
-1253
400
.0000000
.0006553
.0555353
.5055830
.0000360
.3335360
.6530553
.0003003
.0000680
.0000000
.3306353
.0000033
.0005000
.3000300
.0030000
.0330680
.0000000
.0000000
.0636650
.0030300
.0000050
.0000003
.0000000
.0000000
.0000050
.0000000
.0000330
.0500003
.0030000
.0005333
.JOSOCCO
.0080300
.3001427
.90G4S53
.500422:
.0004232
.0007137
11110
-1000
600
-1063
680
.0000380
.0050555
.0:55553
.3363:::
.0006353
.85SC530
.0086563
.3083008
.3653553
.0000600
.3036560
.6030:53
.0000563
.0000353
.0055550
.0000000
.0000000
.38:5555
.0000000
.0000000
.0000030
.0003553
.0000000
.0880053
.0000800
.0000000
.3053603
.0000000
.3335653
.0065553
.3000638
.5808:25
.33314C7
.:3o*:3S
.3555571
.0533356
-650 -600 • -460
800 1000 1250
-833 -660 -453
358 1688 1253
.0005650
.3303553
.0635553
.355:555
.0000600
.3550553
.350:5:3
.3860863
.0505033
.0065583
*f« M MM* A
.363:333
.8::::::
.0055000
.0000300
.0065330
.0000330
.0000000
.6303553
.8653000
.0006800
.0000000
.0000000
.0000000
.3058330
.0000600
.0003533
.3003553
.0003053
.0:3:503
. ::::::3
.3005553
.3035353
.OCCC2S5 :
.3030353
. 365:^53 i
.0000000
Figure 0-3. Card input data values for the hypothetical potash processing
plant deposition run.
D-46
12/87
-------
O£
O- O UJ
li Si£
5g "i
51
52
53
5*
55
56
57
53
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
7*
75
76
77
78
79
80
81
62
83
84
85
86
37
83
89
90
91
92
93
9*
95
96
97
98
99
100
101
102
103
104
105
106
107
1
5 0
i I
.0006=61
.0005542
.0006033
.0011771
.0007716
.0006050
.0008245
.0014135
.0003536
.0003533
.0006561
.0009550
.0006897
.0033934
.00084SS
.0019328
.00133S5
.0007174
.0009347
.0010097
.0005797
.0004980
.0005393
.0012231
.0006990
.0005355
.OCC7433
.0000300
.0000000
.0000000
.0000030
.0000000
.000(030
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.000:0:0
.0065412
.0037307
.0024779
.0028384
.0047532
.0030647
.0032044
.0035623
.0047073
.0043615
.0029674
.0059074
.0117078
.0074288
i i
1 2
5 Q
i 1
.0037633
.0030546
.0042536
.0040823
.OC33399
.0016272
.0038539
.0043=64
.0021125
.0010563
.0010563
.0025978
.0027406
.001i£43
.0040323
.0061949
.0053334
.0035399
.0034E57
.0037633
.0029119
.0013703
.0017965
.0045962
.0020269
.001S842
.0021696
.0052528
.0032544
.0017700
.0033636
.0049673
.0027406
.0017700
.0023695
.0024551
.0016271
.0016553
.0034257
.0066802
.0049959
.0035685
.0052242
.0097348
.0055954
.0043107
.0049338
.0077364
.0049102
.0023262
.0023695
.0031668
.0041630
.0034257
.0094493
.0205544
.0120472
1 1
CARD
2 3
5 0
1 I
.0069657
.0075652
.0081076
.0051101
.0024551
.0020269
.0028333
.OC39665
.0033972
.0013417
.0009421
.0079077
.0083784
.0065945
.OC66214
.0149019
.0166143
.0590732
.0065945
.0046313
.0021411
.0022553
.0053530
.0091353
.0074224
.0051101
.0065374
.0095064
.0076794
.0057096
.0075937
.0097062
.0056239
.0027406
.0018271
.0015701
.0013132
.0019933
.0055333
.0111622
.0070223
.0063091
.0039925
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
1 1
COLUMN
3 4
5 0
1 1
.0021125
.0031683
.0025978
.0006281
.0332569
.0004568
.0005139
.0011134
.0005139
.OC01713
.0001142
.0136744
.0134745
.OCE5333
.0061663
.0124754
.01S4133
.0119044
.0070228
.0545105
.0034257
.0034543
.005E553
.0148443
.0141597
.0075937
.0055T34
.0300000
.0000000
.0000000
.0000030
.0000030
.0033000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.00030CO
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0030000
.0000300
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
i 1
4 5
5 0
1 1
.0001427
.0001713
.0001998
.0001142
.0001142
.0000356
.0001713
.OC02S55
.0302569
.OCOC571
.0000571
.0112764
.0030790
.0020554
.0011419
.0019412
.OC3CC59
.0317129
.0011990
.0012561
.0013132
.0019983
.0023343
.0079377
. 0106193
.0029404
.0026264
.0000000
.0000000
.0000000
.0000000
.0000000
.ococcoo
.0000000
.0000000
.0000000
.0000300
.0000000
.0000030
.0000030
.oooocco
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.OCC0333
.0000000
.0000000
.0000000
1 i
5 6
5 0
1 1
.0000000
.0000000
.0000000
.0000285
.OCCOS56
.0001427
.0003426
.0031426
.0032284
.OGC3I33
.0300033
.0152772
.0050530
.0003424
.0001998
.OC32264
.OOC4J53
.0001993
.0002569
.0006231
.0004353
.0012561
.0020340
.0057667
.0065945
.0019412
.0015937
.0000000
.0000000
.OCOOSOO
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000003
.0000000
.0000000
.0000000
.0003000
.0000000
.0000000
.0000000
.0000000
.0003000
.0000000
.0000000
.0000000
.0000000
.0000003
.0000000
.0000000
1 1
6778
5050
1 1 1 1
— »*^"
1 1 1 1
Figure D-3. (Continued)
D-47
-------
o =
2? o
3g
10
11
12
13
14
IS
16
17
O UJ
O£ CO
<: s
-------
Q£
Q_ Q UJ
g n> OS CO
< S
-------
Qi
CL O UJ
2 =3 ce co
9r 0 «C Z
Sg "I
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
233
239
240
.241
242
1
5 0
|
6.31E5
10 13
.001
.10
1.0
4.10E6
3.15E6
2.S2E6
1.26E6
6.31E5
11 13
.001
.10
1.0
4.10E6
3.15E6
2.5£E6
1.26E6
6.31E5
1 2
5 0
| |
1.58E6
99
.007
.40
.82
5.05E6
4.10E6
3.78E6
3.15E6
2.52E6
1.53E6
109
.007
.40
.82
5.05E6
4.10E6
3.7CE6
3.15E6
2.52E6
1.5SE6
CARD COLUMN
2334
5050
i i
0
.019
.28
.72
5.05E6
4.42E6
4.10E6
3.15E6
0
.019
.28
.72
5.05E6
4.42E6
4.10E6
3.15E6
1 l
1 1
14.8
.037
.12
. .65
5.05E6
5.05E6
16.5
.037
.12
.65
5.05E6
5.05E6
l 1
4 5
5 0
i , i
4.7
.061
.06
.59
5.99E6
5.99E6
4.7
.061
.06
.59
5.99E6
5.99E6
1 -1
566
505
| | |
1.0
.099
.04
.50
6.94E6
6.94E6
1.0
.099
.04
.50
6.94E6
6.94E6
1 1 1
778
050
i i i
6
6
1 1 1
Figure D-3. (Continued)
D-50
-------
Figure D-4. Total Annual Particulate Deposition Output Listing.
*»»» ISCLT *»»»»»****»*» HYPOTHETICAL POTASH PROCESSING PLANT
**M«ttK*» PAGE 59 ****
«» ANNUAL GROUND LEVEL DEPOSITION ( GRAMS PER SQUARE METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
Y AXIS (DISTANCE , METERS ) - DEPOSITION
) FROM COMBINED SOURCES -11.
-800.000 -600.000 -400.000 -200.000
o
Ul
3000.000
2000.000
1500.000
1250.000
1000.000
eoo.ooo
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-600.000
1000.000
1250.000
1500.000
2000.000
3000.000
1.134221
1.937597
2.515016
2.685484
3.015925
3.118665
3.198263
3.231824
3.260319
3.295774
3.021260
2.747118
2.474773
2.167730
1.904801
1.585251
1.392180
1.118999
.727015
1.639463
2.567110
3.659255
4.750210
5.790971
6.723281
7.139009
7.452122
7.604123
7.728414
6.663365
5.751460
4'. 792650
3.631306
3.277030
2.782912
2.339124
1.719941
1.463316
1.937078
3.221557
4.757793
6.158155
8.198109
10.227020
12.711740
13.763296
14.439153
14.785757
12.083995
9.745962
7.463009
5.917305
4.930394
3.831238
3.275669
2.996093
2.078208
2.107609
3.601634
5.265565
7.051591
9.624675
13.116776
17.176039
20.772664
22.416664
23.163982
16.131350
13.716080
9.789230
7.648523
6.160081
4.961629
4.703534
3.945747
2.481909
2.143732
3.945059
6.016244
6.005323
12.049610
17.001598
24.366861
34.653696
38.549571
40.974732
29.459642
20.545333
14.324012
10.615602
8.567480
7.796925
6.920204
5.113114
2.763994
2.184174
4.133436
6.548946
9.200049
13.635477
21.330920
33.110780
51.383995
67.598528
73.345537
48.706669
29.059140
20.115365
15.115999
13.443414
11.327117
9.234411
6.347174
2.990905
2.211250
4.222740
6.933612
10.259617
16.617570
25.851764
46.369599
81.345732
133.722347
154.204071
86.935412
47.648253
32.932199
'26.844012
21.293683
15.941791
12.513065
7.279683
3.204907
2.214312
4.266389
7.159320
10.953939
19.191376
32.192329
59.624344
136.762327
291.315071
419.569622
160.660039
97.087451
68.051999
46.936771
34.190131
21.639235
15.002647
6.167460
3.388955
2.215422
4.241170
7.245927
11.403341
20.017103
35.950378
73.339372
191.922672
770.843649
1645.326690
538.679026
255.922682
140.046497
75.144969
44.343476
26.311772
17.276957
8.924505
3.557447
Y AXIS (DISTANCE
.000 200.000
, METERS )
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 600.000 £00.000
DEPOSITION
1000.000
1250.000
1500.000
2000.000
3000.000
2000.030
1500.000
1250.000
1000. COO
600.000
600.000
400. OCO
200.000
.000
-200.000
-400.000
-600.000
-300.000
1000.000
1250.000
1500.000
2000.000
3000.000
2.211638
4.239700
7.166654
11.362197
20.446176
37.232875
60.245540
227.641615
1099.698090
66.446947
2150.378540
526.946770
199.108976
96.021443
54.079618
30.300152
19.362919
9.675628
3.739484
2.047760
3.769505
6.142247
9.374614
15.652335
26.919234
50.712444
108.5S5S46
396.199959
2332.215515
691.020302
197.174313
108.566233
62.342319
38.520713
23.453363
15.693401
8.323359
3.416272
1.926208
3.426651
5.276752
7.6C8634
12.209504
18.646606
32.594069
70.870919
168.505270
562.934990
312.472935
128.624983
60.900404
35.959193
£5.256704
17.121252
12.317631
7.133207
3.135168
1.805635
3.060564
4.428219
6.045893
9.346117
13.9CSS05
23.934010
45.832468
106.649947
211.264319
161.415503
65.196325
44.144599
26.243457
18.C;>1436
12.005635
9.066348
5.894278
2.851264
1.676092
2.724039
3.827579
5.129163
7.350253
10.931743
18.343005
30.395835
62.263439
101.501403
84.747926
57.083517
34.173925
'20.353160
13.943326
9.963S30
7.326366
4.709229
2.550074
1.546493
2.427032
3.370878
4.268091
6.192192
9.264294
14.069438
23.410457
33.227509
57.044015
49.291997
40.271049
26.272262
17.269755
11.551S53
8.0C6S05
6.250738
4.013550
2.251947
1.401436
2.118193
2.819301
3.629981
5.349532
7.477946
10.215762
16.581266
23.676318
32.068347
29.021493
25.078926
19.202941
14.025793
9.969604
6.614571
5.024605
3.459508
1.914329
1.236462
1.817195
2.468155
3.317267
4.620741
5.971407
8.380687
12.101673
16.029036
20.421163
16.872555
16.940746
14.666068
11.155712
8.535183
5.967364
4.272190
2.932443
1.669826
.980173
1.355867
2.121625
2.684304
3.364506
4.293681
5.695859
7.181598
8.652645
10.279062
9.701679
9.064738
8.252060
7.359030
6.043626
4.732408
3.646432
2.156350
1.357427
-------
»»** ISCLT *»»«»»«»*««H«*
HYPOTHETICAL POTASH PROCESSING PLANT
«»*M«»«» PAGE
60 *»*»
** ANNUAL GROUND LEVEL DEPOSITION C GRAMS PER SQUARE METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
3000.000
Y AXIS (DISTANCE . METERS I - DEPOSITION
) (CONT.) FROM COMBINED SOURCES
-lit
O
Ul
N>
3000.000
2000.000
1500.000
1250.000
1000.000
aoo.ooo
600.000
400.000
200.000
.000
-200.000
-400.000
-600.000
-800.000
1000.000
1250.000
1500.000
2000.000
3000.000
.597871
1.065438
1.420439
1.684143
2.126221
2.510407 '
2.904970
3.291805
3.676092
4.070621
3.910680
3.751918
3.571520
3.356034
3.123007
2.833049
2.389337
1.725906
.865388
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
DEPOSITION
- DISCRETE RECEPTORS -
X Y DEPOSITION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
DEPOSITION
2108.0
14.0
3.144266
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y DEPOSITION
COORDINATE COORDINATE'
(METERS)
(METERS )
200
-200
-200
200
400
-200
.00
.00
.00
.00
.00
.00
.00
.00
.00
-200
200
200
-200
-200
-400
.00
.00
.00
.00
.00
.00
.00
.00
.00
2332.
2150.
1845.
1099.
770.
691.
562.
533.
526.
215515
373540
32C690
69J090
643S49
020302
934S90
879028
946770
-------
Figure D-4. (Continued).
«»*» ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
*****««» PAGE 61 *•»*
«» ANNUAL GROUND LEVEL DEPOSITION ( GRAMS PER SQUARE METER ) ICOMT.) FROM COMBINED SOURCES
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y DEPOSITION
COORDINATE COORDINATE
(METERS) (METERS )
-400.00 .00 419.569622
-11.
o
Ul
-------
APPENDIX E
LOGIC FLOW DESCRIPTION OF THE ISC SHORT-TERM MODEL
(ISCST) COMPUTER PROGRAM .
The ISCST program is composed of a main program (ISCST), eighteen
subroutines (INCHK, MODEL, DYOUT, MAXOT, MAX50, VERT, VRTRHT, SIGMAZ, URBNYZ,
XVY, XVZ, URBBAR, NMCALM, AVCALM, MPR1, BLP, CUBIC, AND ERFX) and a BLOCK DATA
subprogram (BLOCK). The source codes for all of these routines are listed in
•Appendix A and Figure E-l shows the subroutine calling sequence.
The main routine (ISCST) of the program is responsible for clearing
(setting all values to zero) all data storage, reading the necessary input
parameters in order to compute the required data storage* for a problem run
and printing an error message if the computed data storage exceeds the
allocated data storage. Assuming that no error is found in computing the
required data storage, this routine calls subroutine INCHK which reads the
remaining input parameters (except for the hourly meteorological data),
provides program default values when necessary and prints all input parameters
when desired by the user. Finally, the' main routine, upon a return from
subroutine INCHK, calls subroutine MODEL which reads the hourly meteorological
data, performs all concentration or deposition calculations and controls all
output. A successful return from subroutine MODEL allows the main program to
normally terminate the run.
Subroutine INCHK reads receptor location data, source group data,
meteorological-related constants data, identification labels, model constants,
and source data. Default values are provided by the program for all input
parameters when necessary. This subroutine will print error messages and
•Consult Section 3.2.3.a for a discussion of required data storage
computations.
E-l 12/87
-------
ISCST-
OAY LOOP
HOUR LOOP
SOURCE LOOP
RECEPTOR LOOP
• INCHK
MODEL
•DYOUT
—xvz
-XVY
SIGMAZ
•URBBAR'
XVZ
URBNYZ
•ERFX
•VRTRHT
•VERT
—AVCALM
-DYOUT
MAX50
OYOUT
—MAXOT
CUBIC
STOP
Figure E-l. ISCST Structure and Subroutines
E-2
-------
terminate the run when the number of sources to be processed equals' zero and
when either the values of the surface or upper air station number and years
specified by the'user do not match the corresponding information read from the
hourly meteorological data tape. This subroutine will then print all input
data parameters if desired by the user. The INCHK subroutine then returns to
the calling routine (ISCST) provided no errors were detected.
Subroutine MODEL is the principal section of the ISCST program. Its main
functions are reading the hourly meteorological data, performing all
concentration or deposition calculations and controlling the output related to
calculated concentration or deposition values. First, if Urban Mode 3 is
selected, subroutines XVY and XVZ are called to compute lateral (Xy) and
vertical (Xz) virtual distances, respectively for all source, stability
category, and downwind distance combinations. If Urban Mode 3 is not selected
•Xy and Xz are computed later in subroutine MODEL. Next, the subroutine
searches for all. source-receptor distances less than one meter or the greater
of three building heights or three building widths. A diagnostic table
identifying the aforementioned source-receptor combinations is printed. The
subroutine then begins a loop over all days of meteorological data and reads a
day of data from either tape or card. A second loop is begun over the hours
of meteorological data followed by a third loop over all sources. For
stack-type sources, subroutine MPR1 is called to calculate plume rise
independent of source-receptor orientation when the original ISC downwash
treatment method is selected. If the Schulman-Scire downwash treatment method
is selected and all the criteria are met, subroutine BLP is called to
determine plume rise and later entered at BLPRIZ to solve for a cubic equation
by calling subroutine CUBIC. Next, a loop over all receptors is begun. In
this portion of the subroutine, all information has been collected in order to
calculate the terms used to make a concentration or deposition computation at
a given receptor from a given source for an hour of meteorological data. The
E-3 12/87
-------
program first computes the downwind (x) and crosswind (y) distances. For
stack-type sources, the subroutine then completes the remaining plume rise
calculations if they are dependent on source-receptor orientation. Next, if
Urban Mode 3 is selected, subroutine URBBAR is called to calculate the
downwind distance index and b (if deposition is considered). Then subroutine
URBNYZ is called to calculate 'the lateral (Oy) and vertical (az) dispersion
coefficients as a function of downwind distance and stability category. If
•
Urban Mode 3 is not selected, subroutine SIGMAZ is called to compute the
downwind distance index, crz, and b (if deposition is considered), and Oy is
computed in the subroutine MODEL. Finally, concentration or deposition is
calculated for this source-receptor combination for a given hour of
meteorological data. Subroutine ERFX is called to compute the error function
values for area-type sources. Subroutine VERT aids in calculating the
Vertical Term for calculations of concentration or deposition requiring a
Vertical Term value for receptors located at ground level. If concentration
calculations of receptors located above ground are desired, subroutine VRTHT
is used. As the subroutine loops over all receptors, the calculated
concentration or deposition values are stored into an array (CALC). After all
receptors are processed for this source and hour, the array of values (CALC)
are stored or summed into portions of another array (CHIAV) defending on
source group combinations desired by the user. After all sources are
processed for a given hour, portions of the CHIAV array are stored or
summed into other arrays depending on the source group combination. For
each hour and appropriate combination of user-defined time intervals, the
subroutine calculates averages (for concentration) or sum totals (for
deposition) of values in portions of the CHIAV array. Portions of array CHIAV
are then used by the subroutine DYOUT to print tables, write to the output
tape, store for "N"-day summations, search for highest and second-highest
E-4 12/87
-------
values at each receptor and search for the maximum 50 calculated values.
After looping over all hours and days of meteorological data, MODEL calls
subroutine DYOUT to optionally print tables or write to tape "N"-day average
concentration or total deposition values and tables of the highest and
second-highest average concentration or total deposition. Subroutine MAXOT is
called to optionally print tables of the maximum 50 average concentration or
total deposition values. Upon normal processing of MODEL, a return is made to
the .ISCST routine.
Subroutine DYOUT prints out different types of tables related to all
receptor points. Depending on a flag variable, subroutine DYOUT prints the
terrain elevations or receptor heights for all receptors, the average
concentration or total deposition values for all receptors for a given time
interval and source group combination for a given day, and the highest or
second-highest average concentration or total deposition values for all
receptors for a given time interval and source group combination.
The remaining subroutines which make up the ISCST program have the
following functions. Subroutine MAXOT lists the maximum 50 average
concentration or total deposition values calculated for the problem.
Subroutine MAX50 searches for and stores the maximum 50 average concentration
or total deposition values for -a given time interval and source group
combination. Subroutine VERT aids in computing the Vertical Term when
required in calculating concentration or deposition at ground level.
Subroutine VRTRHT aids in computing the Vertical Term when required in
calculating concentrations at receptors above ground level. Subroutine SIO4AZ
is called only if Urban Mode 3 is not selected, and has three functions.
Depending on a flag variable, this subroutine computes a downwind distance
index used for accessing arrays containing virtual distances or arrays of
constants related to calculating the vertical (Ot) and horizontal (cy)
dispersion coefficients. The second function is to calculate a». The
E-5 12/87
-------
last function is to compute the average exponent (b), for the interval between
the source and the downwind distance (x), which is used for deposition
calculations. Subroutine URBNYZ uses the (Briggs, 1974) curves of urban
dispersion coefficients derived from the (McElroy-Pooler, 1968} dispersion
rates to compute the lateral (ay) and vertical (oz) virtual distances as a
function of downwind distance and stability category. This subroutine is only
called when Urban Mode 3 is selected. Subroutines XVY and XVZ compute lateral
(Xy) and vertical (Xz) virtual distances, respectively/ for all source,
stability category, and downwind distance categories. Similarly, these
functions are only called if Urban Mode 3 is selected. Subroutine URBBAR is
also called only when Urban Mode 3 is selected. Depending on a flag variable
this routine calculates either the downwind distance index used in the oz and
Oy computations, or the average exponent (b) used for deposition
calculations. Subroutine NMCALM determines the number of calm hours for each
averaging period per day. This subroutine is called only if the user desires
calm wind processing. Subroutine AVCALM is used in conjunction with
subroutine NMCALM to determine the divisor used for averaging concentration or
deposition results for averaging periods which had calm hours. Subroutine
MPR1 calculates plume rise independent of source-receptor orientation, in a
manner consistent wiMi the MPTER model when the original ISC downwash
treatment method is selected or when the Schulman-Scire downwash criteria are
V'
not met. Subroutine BLP calculates plume rise as in the BLP model.
Subroutine CUBIC is called from BLPRIZ (an entry of BLP) to solve for one root
of the cubic equation. These two subroutines are used only when the
Schulman-Scire downwash treatment method is selected and all the criteria is
met. (See Section 2.4.1.Id of Volume I). Function ERFX computes the value of
the enor function terms for area-type sources.
E-6 12/87
-------
APPENDIX F
LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM
MODEL (ISCLT) COMPUTER PROGRAM
The ISCLT computer program consists of a main program (ISCLT) and 22
subroutines (MODEL, OUTPT, HEADNG, MXIMUM, CHECKR, SUMMER, TITLR, DISTR, .
FUNCT, VERTC1, VRTC1R, VERTC2, VERTC3, SIGMAZ, VIRTZ, VIRTY, URBNYZ, XVY, XVZ,
MPR1LT, BLPLT, AND CUBIC.) The FORTRAN source code of these routines is given
in Appendix B and the subroutine calling sequence is shown in Figure F-l.
The main routine (ISCLT) of the program is responsible for initializing
the program and starting the input data read sequence. This routine reads the
problem run title, the program options data and those variables that specify
the- size (number of values) of required data parameter arrays. The primary
function of this routine is to calculate the amount of storage required by the
input receptor arrays, elevation array, receptor height array and the
concentration or deposition calculation arrays. The program has been designed
to store these data in 40,000 words in BLANK COMMON. The program calculates
the starting location of each array and passes, this information to the main
calculation routine (MODEL). The program may use all or part of BLANK COMMON
depending on the program options selected. The amount of BLANK COMMON
required for a given problem run is calculated by Equation (3-1) in
Section 3.2.3.
Subroutine MODEL is the principal processing routine of the ISCLT
program. This routine reads the receptor elevation, receptor height and
meteorological data from input card images or from magnetic tape. The program
provides default data values for some variables and begins a loop over all
input sources. If a source is a new source from data card, concentration or
deposition is calculated using the long-term model equations. If a source is
a previous source from an input tape, its concentration or deposition arrays
F-l 12/87
-------
ISCLT
•MODEL
SOURCE LOOP
RECEPTOR LOOP
WIND DIRECTION LOOP
STABILITY LOOP
SEASON LOOP
WIND SPEED LOOP
STOP
-VIRTZ
-XVZ
-SIGMAZ
-URBNYZ
I—FUNCT
•TITLR
•OUTPT
•TITLR
HEADNG
•CHECKR
•MAXIMUM
•MPR1LT
•VIRTY
•XVY
•DISTR
•BLPLT
-MPR1LT
•DISTR
•BLPRIZ
-VERTC1
-VERTC1R
-VERTC2
—VERTC3
—CHECKR
—SUMMER
'—OUTPT
Figure F-l. ISCLT Structure and Subroutines
F-2
•CUBIC
-------
are read from tape. New and/or previous sources and their respective
concentration or deposition arrays are merged into a source/concentration
(deposition) inventory of one or more sources for which seasonal and/or annual
concentration or deposition values for the individual as well as the combined
sources can be output. This routine will also, on option, output all of the
program input data including options, receptor arrays, meteorological data,
source data and the calculated seasonal concentration or deposition values to
tape to be held as a historical file which may be used at a later date to
update or to retrieve information not printed when the tape was generated.
Subroutine OUTPT controls the printing of the input source data if this
option is chosen. This subroutine also controls the printing of the results
of all concentration or deposition calculations and controls the calculations
of the maximum 10 concentration or deposition values.
Subroutine HEADNG prints the :table headings for the concentration or
deposition tables. The • headings identify whether seasonal or annual
calculations are being printed, whether they are for individual or combined
sources and, if combined, which sources are used in the combination. All
program output tables are labeled either seasonal or annual. If the user is
using monthly data, he/she must remember that season one is actually month
one, etc. and an annual label would actually be average monthly or seasonal. .
Subroutine TITLR controls the starting of a new output page and writes the
problem run title information and page number as the first line of each output
page. Also, this subroutine writes the main heading of the input data tables.
Subroutine SUMMER is called by MODEL to sum arrays of concentration or
deposition to provide annual (averaged or total) output and to provide
combined source output.
Subroutine CHECKR is called by MODEL to determine if a source is part of
the current combined sources being summed or if the source is part of any
F-3 12/87
-------
source combination so the program can decide whether to save it oc not when
all source calculations are being saved in storage.
Subroutine MXIMUM is called by OUTPT and determines the maximum 10
concentration or deposition values and their respective receptor coordinates
for a source or source combination and returns them to subroutine OUTPT.
Function VIRTZ is called by MODEL when the Rural Mode or Urban Mode 1 or 2
is selected.- The routine calculates and returns the vertical virtual distance
Xx using the Pasguill-Gifford dispersion curves (Turner, 1970).
Function VIRTY is called by MODEL when the Rural Mode or Urban Mode 1 or 2
is selected. The routine calculates the lateral virtual distance Xy using
the Pasquill-Gifford dispersion curves (Turner, 1970).
Function XVZ is called by MODEL when Urban Mode 3 is selected and
calculates the vertical virtual distance Xz using the (Briggs, 1974) urban
dispersion coefficients.
Function XVY is called by MODEL when Urban Mode 3 is selected and
calculates the lateral virtual distance Xy using the (Briggs, 1974) urban
dispersion coefficients.
Function SIGMAZ is called by MODEL when the Rural Mode or Urban Mode 1 or
2 is selected and calculates the standard deviation of the vertical
concentration distribution at. The routine uses the Pasquill-Gifford
dispersion curves (Turner, 1970).
Subroutine URBNYZ is called by MODEL when Urban Mode 3 is selected and
calculates and returns the standard deviation of the vertical concentration
distribution a,. This routine uses the (Briggs, 1974) coefficients
determined from the (McElroy-Pooler, 1968) rates.
Subroutine MPR1LT is called by MODEL for stack sources when the original
ISC downwash treatment method is selected or when the Schulman-scire downwash
F-4 12/87
-------
criteria is not met and calculates the plume rise independent of
source-receptor orientation. The algorithm is consistent with the MPTER model.
Subroutine BLPLT is called by MODEL for stack sources when the
Schulman-Scire downwash treatment method is selected and all criteria are
met. (See Section 2.4.1.1.d of Volume I).
Subroutine VERTC1 is called by MODEL and calculates and returns the
Vertical Term of the concentration equation for receptors located at ground
level.
Subroutine VRTC1R is called by MODEL and calculates and returns the
Vertical Term of the concentration equation for receptors located above ground
level.
Subroutine VERTC2 is called by MODEL and calculates and returns the
Vertical Term for each particulate size category in the calculation of
concentration with deposition occurring.
Subroutine VERTC3 is called by MODEL and calculates and returns the
Vertical Term for each particulate size category used in the deposition
equation.
Function FUNCT is called by MODEL and calculates and returns the average
value b of the coefficient b which is the exponent used in the az equation.
This value is used in the deposition calculations.
Subroutine DISTR is called by MODEL and calculates and returns the
distance between the source and receptor if the receptor is ^within the
required calculation sector and calculates the smoothing term S{6} of the
concentration or deposition equation. Subroutine DISTR returns S{6}rA6 or
returns a "-1" if the receptor point is outside of the calculation sector
downwind of the source.
F-5 12/87
-------
APPENDIX G
CODING FORMS FOR CARD INPUT TO THE ISC SHORT-TERM
MODEL (ISCST) COMPUTER PROGRAM
This appendix contains blank coding forms used for entering input card
data for the ISC short-term (ISCST) program. The card group numbers and input
data parameter names correspond to those used in Section 3.2.3.a. The solid
vertical lines on the coding forms define the column fields for a particular
input parameter and the "x"ed areas indicate where data are ignored by the
program. The coding forms are presented in the same order as the program
expects the input data except for the source data coding forms. The program
expects card numbers 2 through 4 to immediately follow card number 1 of Card
Group 6 when applicable (NVS is greater than zero). However, it is much
easier to enter the source data as presented here.
G-l
-------
ISCST INPUT DATA CODING FORM
PROJECT
I
NAME
DATE
SHEET OF
CARD GROUP.
CARD NUMBER
DATA CAKD COLUMN
CONTROL DATA PARAMETER AND VALUE (X mentis do not punch)
- TITLE -
1 -
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I | | ! |
- ISW -
CO
MMMMI/)l/>CAIA(OI/>C/)(/)(/)tftl/>V>l/)l/)(/)
MMM MMMMMMMM M M M H MM MM
MM M MI-I»-I-IMMM»-II-I
2,1 -
I
en.
Sn£
%
U) O
I ,,.!,, i i ix r>^ r -~"
I i i i i i I i i » i i I • i i i i I i i i i i L>-fljo i i L-r i j_a_i_ L i i .1.
-------
o
CO
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
CARD GROUP,
CARD NUMBER
3,1 -
3,2 -
1
2
»
4
3
«
r
9
»lio rill
'
fflflifflifffp
ENAME
DATE
SHEET OF
DATA CARD COLUMN
MJifJH
2900
Jl|jil»J|J4 3
s MBrba
RECEPTOR DATA
i i
'
i
I
1
I
i
i i i i i i i i i
i
i
!
1
i
i
1
I
I
i
- GR
i i i i i i i i i
i I I i i i i I i
I
i
t
i
3^0|4,|,t|«J|44J45(.e|47J.^9|afl|91
U
MM
K>l4"i49H"M
PARAMETER AND VALUE
IDX (axis of grid system, c
i i i i i i i i i i i i i i i i i i
i i i i i i i i i
i i i i
i i i i i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i I I I i i I i i
iii i
.1
I
1
1
I
i
i
i
i
1
i
1
, ,
i i
1
1
i i i i i i i i i
i i i i i i i i i
i i i i
i i i i
i i
i i
1
I
i i i i i i i i i
- GRIDY (axis
i i i i i i i i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i
i i i i
i i i i
i i i i
i i
i i
i i
i i
i i
i i
of
1
1
1
1
1
1
1
_L J 1_L -1.-LJ...LO...
1 1 1 1
1 1 1 1
i I i
i 1 I
i
i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
I 1 1
i i I
i
i
1 1 1 1 1 1 1 1 1
1 I i
i
grid system,
i i i i i i i i i
i i i i
i i i i
i i i
i i I
i
i
i i i i i i i i i
i i i i
i i i i
i i i i
i i i
i i i
i i i
i
i
>mit if NXPNTS OR NYPNTS =
i i i i i i i i i i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
•
1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
omit if NXPNTS
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i ' i > i '
.!_!.. l-i 1 -I—I- 1 .1
or NYPNTS =
i i i i i i i i
-^
±
1
1
L 1
1 1 1 1 1
1 1 1 1 1
| i_( I 1 1 1 1
i
:.. 1-
I
i i i i i
i _L.J II 1 .1. I
0) -
i i
g 1MOi»UTlttM9JTO
TI 72 nlr4|TslT«lr7|7*lr»|aa
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
(
i i i i i i i i i
0) -
§ ,
1 I
1 1
1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1.
1 1
1 1 1 1 1 1
1 1 1 1 1 1
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i I i i I i i i I
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i
• ill
i i i i i i i i i
l i i | i i i i i
. : l .i. I .1 I...1 .I..J-.
-------
PROJECT
ISCST INPUT DATA CODING FORM (Continued)
NAME
DATE
SHEET OF
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
i i M15 « r
115 lelirliB liBcjji zi|z324J23 'trrltiz
t» S4 if MJ99|
-------
o
PROJECT
CARD GROUP.
CARD NUMBER
3.4 -
ISCST INPUT DATA CODINC FORM (Continued)
NAME
HATE
SHEET OF
DATA CARj) COLUMN
ffifffflH^^
RECEPTOR DATA PARAMETER AND VALUE
- XDIS, YDIS, GRIDZ, RHT (discrete receptors, omit if NXWYPTS = 0) -
i i
i « ' i I
i i i i i i i
i I i i.,i.
-i i i
i i '
i i i i i i i i
li i i i i i
hO
CO
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP,
CARD NAME
DATA CARD COLUMN
lOlllllZ IMI4 IS 116
tTMU»aji
(41 «
-------
O>
ISCST INPUT DATA CODING FORM
PROJECT
CARD GROUP,
CARD NUMBER
5,1-6 -
5,7-12 -
5,13 -
(Continued)
NAME
DATE
SHEET OF
DATA CARD COLUMN
1
4
J
"
1
i»
T
it
19 pal II p*» JMRABIUT tallMMJli
TTTTTTT
METEOROLOGICAL CONSTANTS DATA
i i
i i i i i i i i •
j
i i
i i
i i
i i
i i i
i i
i i i
i i i
i
-
PDEI
i i
' (array, omit
1 1 1 1 1 1 1 1 1
I i i i i i i i i
_i
'
i
1
i i i i i i i i i
i i i i i i i i i
i ^ i i
LJ
1
i i i i i i i i i
i i i
ZR
i i i
1
i p i i
i
i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
.0|.,|4Z|«
• 4
45 «
+•
48
.^ij*
TTTT.TT
1 J LJ 1 L 1 Ja nl l-mlnl \i \ \ -1—1-
*'| TTTT I*T' °|T'|TIjn|T'ys|T*(TI n^fc
PARAMETER AND VALUE (X means do not punch)
if ISW(21) #
i i i
i i i
i i i
i i i
i i i
DTHDEF (array, omit if
1
1 1
1 1
jiii
1
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i
i i i
• i i
i i i
i i i i
i i i i
i i i i
iiii
i i i i
i_
2 or
i i i
i i
i i
ISW(28)
iii i
i
i
I
1
i i i i i i i i i
i i
! 1 1
ISW(22)
i i i i i
iiii
i i i i
iiii
iiii
iiii
- UCATS (array) -
i i i i i i i i i 1 i i i i i i i i
f 2
i i
i i
i i
i i
i
i i
1 , ,
|_j
i
i
1
= 1) -
i i i i i i i i i
i
I
i
i
or ISW(28)
i i i i i i i
i
i
i
i
i
I
|
|
|
i
1 1 1 1 1 1 1 1
I
1
1
1
L_l
i
i
i
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
-.1) -
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
i i i i i i i i i
i
.1 -Lt..
1 1 1 1 1 1 1
><"
./ \
/'^-,
/
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
DATA CARD COLUMN
CARD GROUP,
CARD NUMBER
jiUuUjclr a|9|io|iilit|i*|i4|i3 t«lir|ie|i>bo|?i|2z|2>|2<|2
J
METEOROLOGICAL CONSTANTS AND IDENTIFICATION LABEL DATA PARAMETER AND VALUE (X means do not punch)
TK BETA1 BETA2 DECAY IQUN ICHIUN H ^
5,14 - I
o
5,15-19 -
5,20 -
i i i i i i i i i i i i i i i i i i i . i i i i i i i i i i i i i i i
- IDAY (array, omit if ISW(19) = 2) -
- (omit if ISW(19) = 2) -
ISS
I I I I I
ISY
IUS
<-' i.'
IUY
.1 i i
III
X
k
7}
[X
X
X
x
x
y
x
X
x
A
V
X
x
x
x
X
k
k
A
X
x
x
X
x
x
x|
x
x
X
kx
-------
o
CO
ISCST INPUT DATA CODING FORM
PROJECT
CARD GROUP,
CARD NUMBER
6,1 -
1
(Continued)
NAME
DATE
S'tEET OF
DATA CARD COLUMN
'
1
I
ID
II
12
"1"
,L|,7
ia
.4J2CJ2.|22|2>|24
»H"H"H*I*MH"
HSTH>'H4'hl'5M
-------
o
vo
ISCST INPUT DATA CODING FORM (Continued)
PROJECT NAME
DATE SHEET OF
CARD GROUP,
CARD NUMBER
6,2 -
DATA CARD COLUMN
i t i «|s t rla • 10
II Illll 14 ISJM 17 18 I»|zo|2ltz|23|z4|2st« IT tj29|ja|ll|u|»ll4|j9|M|5r|u|9t 40J4I ItUlUJ*: 4« 47(48 49 BO
-H» 4+f4ff-H+H4 fHH-"H+H-H-
SOURCE DATA PARAMETER AND VALUE
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiiiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i ii|
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11)111111
1 1 1 1 1 1 1 1 1
1 1 | 1 1 1 1 1 1
1 | | 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
- PHI (array
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1)1111111
i i i i i i i i i
i i i i i i i i i
1)11)1111
11111)111
-i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1)1111111
t i ) i i i i i i
i i i i i i i i i
iifiiiiii
i i i i i i i i i
, omit if NVS
i i i i i i i i i
i i i i i i i i i
iifiiiiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
) i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i t i i i i i i
iiiiiiiii
= 0 for all t
111111111
111111111
111111111
iiiiiiiii
111111111
111111111
iiiiiiiii
111111111
111111111
111111111
111111111
i i i t ) i i i i
111111111
i i i i iii
111111111
111111111
111111111
111111111
111111111
111111111
111111111
iources) -
111111111
111111111
111111111
111111111
111111111
111111111
111111111
L 1 L LLI 1 l_l
IIIIIIIII
IIIIIIIII
IIIIIIIII
lllll||ll
IIIIIIIII
J 1 1 1 1 1 1 1 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
1111)1111
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
) ) 1 1 1 *l 1 1 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
11)111111
IIIIIIIII
IIIIIIIII
1)1111111
IIIIIIIII
1 1 1 1 '1 1 1 1 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
1 1 1 1 1 1 1 1 |
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
1 1 I I 1 1 | 1 )
IIIIIIIII
IIIIIIIII
llllll|ll
IIIIIIIII
|llllllll
Illlll'll
-------
I
o
iSCb'i INfUl UAIA COi'lNl, l-UKrt ^connnue •)
PROJECT 1 1 NAME
1 | DATK SHEET OF
CARD GROUP,
CARD NUMBER
6,3 -
DATA CARD COLUMN
i II 1 4 »|« 7 • * 10
ii 12 u i«|i- |i«l. f ia ujzojzi 22)21 i^xfk* IT ?e|?»U5i|ir|3j|j«|«|5«|jTJM|j4«oj«iLi2|43 ««j«5J«6 4rLieU Jsejsi S2 u^k&lMtrJM soLol'i •J«5J»4J43l««|«T|»J«9|To|nlrJrs 74J7;Jn|rr|7«|niLa
SOURCE DATA PARAMETER AND VALUE
i i i i i i i i i
i i i i i i ii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i .1 i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i I i 1 I I I i
i i i i i i i i i
i I I I I 1 i i i
i i I i i i i i i
i I i i i i i i i
i i i i i i i I i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
,,,,,,,,,
i I i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
11 i i i i i i i
- VSN (array
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
,,,,,,,,,
i i i i i i i i i
i i i i i i i i i
ii i i i i i i
i i i i i i i i i
1 1 1 1 L_1_J_I_1_
, omit if NVS
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
, , , ,
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i f i j i
i i i i i | | i i
i i i i i i i i i
= 0 for all sources) -
1
t i i i i i i i • i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i t i i
i i i i i i i i i
i i i i i i i i i
iiiiiiiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i ' i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
> i i i i i i i i
, , , ,
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i t i i i i i i i
i i i i i i i i i
i i i i i i i i i
,,,,,,,,,
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i .1 i i i i
i i i i i i t i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i j i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iii
_i .1.1 i i i i i i
-------
a
ISCST INPUT DATA CODING FORM (Continued)
PROJECT 1 NAME
1 DATE SHEET OF
CARD GROUP,
CARD NUMBER
6,4 -
DATA CARD COLUMN
Tl"
ii it is|i« 15 lie ir jm itbojzikz » z4Jzs tt erltJztpa
31 U 53 J4|J3 Mpr xlislio
4lUzUj|«« 45 4< «7Ue «9 30
silsz U|M »|MBT|M 89 so|«i tzUjlM H MJarJM mo
1 1^1 1 1 __)
SOURCE DATA PARAMETER AND VALUE
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i f i i i i
i i i i i i i i i
i i i i i i i. i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
ii i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i 1 f i 1
i i i i i i i i i
i i i i i i i i i
i i 1 i 1 I I I i
i i i i i i i I i
i J l I 1 1 l l i
i i i i I i i i i
i i i i i i i i i
i i i i i i i l i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
l i i i i i i i i
i i i i i i i i i
111111(11
i i i i i i i i i
i l l l l i i l l
i l i i i i i i •
i i i i i i i i i
i i i i i i i i i
1 1 1 1 1 1 1 1 .1 .
- GAMMA (arr
i t i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i \ i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i ) i i
ay, omit if N\
i i i i -i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiii|iit
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i f i i i i i
i i i i i i i i i
iifiiiiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i t i
i i i i i i i i i
/S = 0 for all
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iii i iii
i i i i i i i i i
i i i i i i i i i
iii iii i
i i i i i i i i i
i i i i i i i i i
i i i i i iii
1111111)1
i i i i i i i i i
sources) -
i i i i i i i i i
iiifiiiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiifii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i t i i i i i i i
_LJ__ I i_l_J_J._i A
1 1 1 1 1 1 1 1 1
1 1 1 1 l 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 l 1 1 1 1 1 1
1 | 1 1 1 1 1 1 1
1)1111111
1 1 l 1 1 1 1 l 1
1 1 1 1 1 1 1 l 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 | 1 l l f | l 1
111111)11
1 1 i 1 1 1 i l l
l 1 1 1 1 1 i i 1
11111)111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 l 1 1 1
l 1 1 1 1 l i l i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 l 1
l 1 1 l l l l l 1
1 1 1 1 1 1 1 1 )
111111^11
1 1 1 1 1 1 1 1 1
l 1 l l 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Illllll)!
Illiill)!
1 i 1 1 l 1 1 l 1
1 1 1 1 1 1 1 I 1
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATF.
SHEET
OF
CARD CROUP.
CAW) NUMBER
DATA CARD COLUMN
•NtH'l
1HHH*ti+I^H4ffl^
SOURCE DATA PARAMETER AND VALUE
- BH (if ISW(28) = 1 or HB<0,
and if HS < HB + 0.5 * MIN(HB,I.I3 * SQRT(HW*HL) )) -
6, 4a -
cp
~.i
-------
*~
*-
o-
t-J
00
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
CARD CROUP.
CARD NUMBER
6.4b-
DATA
TNT
'ITnT
"MtH-
"M*'rTT r r*rTTtrnl'MuHHH
CARD CO
WFH
SOURCE DATA PARAMF.T
i i i f i
i i i i i
i i i i i
i i i i 'i
i i i i i
i i i i i
i i i i i
i i i i i
11111
11111
11111
iii.i
i . . . ,
NAMF.
DATF. SHEET OF
I.UMN
itiffl
F,R AND V
rtttffl
M.UE
HH+H+H-H+f
- BW (if ISW(28) = 1 or HB
11111
1 1 1 1 1
.1 -i_i i -t
.1 i...i. j .1 .
i i i i 1
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
i i i i i
' • * » _i_
11111
i i i i f
1 1 1 1 1
' ' ' 1 1
11111
11111
i i i i .
11111
11111
i 1 1 l i
1 1 1 ' 1
> -
. . i i .
• • 1 * i
i.i.i
11111
11111
11111
11111
i i i i i
11111
i i i i i
» i « » .1-
•mttttmttt
,,
''tit
, , , , ,
-— ]
\ ' /
-------
LSCST iNFUi UA1A CUUiNCi tUKM tContinufid> |
PROJECT NAME '
DATE SHEET OF
CARD GROUP,
CARD NUMBER
6,5 -
DATA CARD COLUMN
±IllXll!T
II 11
it zdzs 24J2S M fr|iiJ2»JyJji|u|sj|j4|«|M|jT|j«js9l.o|4i 4z ijUtiLcUrU .JxJuilu u|54Jia|M|9r|Be|sJMJei|u|es|M i^MUM|«JTo|7i|r2|n|7j7jT«|rT[n|r9Lc
SOURCE DATA PARAMETER AND VALUE
i i i i i i i i i
i i i i i i i i I
i i i i i i i i i
i i i i i i i i i
i : i i i i i i l
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiifiii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i • i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
- QTK
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 1 1 1 1 T 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
..'... f ...
I 1 1 1 1 1 1 1 1
(array, omit j
i i . . i i . i i
111(11111
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
• i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i t i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
If ISW(23) = 0
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
,,,,,,.,,
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i l i
i l i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
and QFLG = 0
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i | i
i i i i i i i i i
i i i i i i i i i
i i i i i i i 1 i
i i i i i i i i i
i i i l i l i t i
i i i i i i i i i
i i i i i i i i
1 1 1 1 1 1 1 l l
for all sour i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i t i i i i
i i i i i i i i i
t i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i t i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
:es) -
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
ii ii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
f i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i 'i i i
i i i i i i i i i
i i i i * * i t t
_i i i i i i i i i
-------
PROJECT
ISCST INPUT DATA CODING FORM (Continued)
NAME
DATE
SHEET OF
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
HOURLY METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- (omit if ISW(19) = 1) -
I
u>
7,1 -
JDAY AFV
AUS
HLH
TEMP
DTHDZ
H
CO
i i i i
i i i i i i
I I I I I I
i i i i i i i
i i i i i i
I I I I I
I I I I I I
I I I I I I I
I I I I I I I
I I I I I
I I I I i
I I
I I I I I I I
I I I I I I I
I I I I I I
I I I i I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I
I I I I I
I i I I i
I I I I 1
I I I I I I I
I I I I I
I I I I I I I
I i II I
i T-i^
4~C-
^t~^ I I T—4.
.-*"! 1 IT- t.
i i i i i i i
I I I I I I
I I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
DECAY
I I I I I I
I I I I I I I
i i i i i i i
I I I I I I
i I I i.
-------
APPENDIX H
CODING FORMS FOR CARD INPUT TO THE ISC LONG-TERM
MODEL (ISCLT) COMPUTER PROGRAM
The coding forms shown in this appendix are used to prepare the input data
for the ISCLT program for card punching. If any input card has all zero
values, it may be left blank because the program interprets blanks as zero.
The coding forms are presented in the same order as the program expects the
input data except for the source input coding forms. The source input coding
forms show a form for Card Groups 17, 17a, 17b, 17c and 17d individually.
This is done to make the key punching of the source data easier and to
minimize the number of coding forms that must be filled out. When the source
card data have been punched, the user must reorder the source input cards in
sets from Card Groups 17 through 17d. one set for each successive source.
H-l
-------
( ISCLT INPUT DATA CODING FORM
PROJECT
NAME
DATE SHEET OF
CARD GROUP • DATA CARD COLUMN
J J«Jiif J*J«J 1 LIXI LIJ^J 1JXJ 1
1 TTTT Ti r*P1P iPT 1 i TiTTTTi1
CONTROL DATA PARAMETER AND VALUK (X means do not punch)
- TITLR -
HfcJ.JrJnlnlrJiJnlrJrrlrJnL
TTTTTrTHTTT
- ISW -
2 i/i/iyi/Mi/iyi/i/iyf/iy i i N \ \ hM/r/ix
z - I\IA.1A. iNIA.IA.LNlAilAil'jIAil^ . 1 i 1 • lA, I • 1 • l\ r>. l\ l\
oO-wJto^jrQujoCtj
gSbbSwwJOj
5oz!sc
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
C
CARD GROUP
NUMBER
6 -
DATA CARD
TlMTl*
u
1
,j,..j
i ii i i j i '
.C|I. tl|»|>. »f»|"|»|»j>4
it »S5|s4|s
>M|"H"H"
NAME
DATE SHEET OF
COLUMN
•f
RECEPTOR DATA PARAMETER AND
1 1 1 1 1
III!
1 1 1 1 )
i i i i i i i i i
i i i i i > i i i
i i i i i
i i i i i i
i i i i ^ i
f 1 i i i i
i i i i i
i i i i i i
i i i i r i
i i i i l f
i
i i
i i
i i
i i
i i
i i
i i i i
f i i
i i
i i
i i
j
>
t i i
i i
C (axis of grid .
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
• i i i i i i t i
i i i i i i i i i
iiiiiiiii
i i i i ' i i i i i
iiiiiiiii
system, omit i
iiiiiiiii
iiiiiiiii
111111111
111111111
111111111
i t i i
i i i i
i i i i
i i t i
1 1 1 1 1
1 1 1 1 1
1 1 l 1 1
1 t 1 1 1
111111111
111!
1 1 1 1
1 1 1 1
1 l l 1 1
1 1 1 1 1
1 l l i 1
43
• 4149 •
• .r|4^^MJ,.|»|»|M a|»|« « S^CJ^IMJ..^.^^^.^^!.^ n^T^r^c
VALUE (X means do not punch)
' NXPNTS = 0 c
IIIIIIIII
_J
1 1 1 1
IIIIIIIII
1 1
( (
l ,
1 1
1- 1
(
1 1
1 1 1 1
1 1 1 1
III!
1 1 1 1
1 f 1 1
1 1 1 1
1 1 l 1
1 1 1 1
1 1 1 1
>r ISW(5) o 2 01
1 1 l 1 1 1 1 1 |
IIIIIIIII
IIIIIIIII
IIIIIIIII
1 t 1 1 1 1 1 1 1
IIIIIIIII
IIIIIIIII
1 | | l 1 1 1 1 1
1 1 1 1 1 1 1 1 |
IIIIIIIII
l l 1 1 1 'l 1 1 1
IIIIIIIII
lllllllll
•3) -
IIIIIIIII
IIIIIIIII
IIIIIIIII
1
IIIIIIIII
IIIIIIIII
IIIIIIIII
| | 1 1 1 1 f 1 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
1 1 1 1 1 1 1 II
1 1 1 1 1 1 f II
IIIIIIIII
IIIIIIIII
1 1 1 1- 1 1 1 II
IIIIIIIII
IIIIIIIII
IIIIIIIII
lllllllll
IIIIIIIII
lllllllll
lllllllll
lllllllll
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
I i 14* • T • •'
RECEPTOR DATA PARAMETER AND VALUE (X means do not punch)
- Y (axis of grid system, omit if NYPNTS - 0 or BW(5) . 2 or 3) -
7 -
:c
i i .I. 1. t i i
i i i i i i i i i
i i I i I
A II I I
• I I I I I I
I I I I I
I I I I I I I I I
i 1 I I I I
I I I I I I I
I I I I I
I- I I I I
i I i i i i
ililliiil
iiii
I I i t I
i I I i i
I i - i t i i
I I I I I
i i i i
. i i_ i.. i i
I I I I • I I I I
I I I I I I I I
ill ill
i I i j i i j
i i i i
iiii
i i i i i i i i i
-------
33
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT NAME
DATE SHEET OF
CARD GROUP
NUMBER
8 -
DATA CARD COLUMN
2lk»|2s|»^j»]».»J»|»
li«UlM»M|ir».K.O
4lM2|4U44|49 4C 47J4Q 49 90
91 «|M »« » 9* i' MJ59JM
"ITMT TP ro
rilrzlTOT4|ral7wrT|r«rt an
RECEPTOR DATA PARAMETER AND VALUE (X means do not punch)
i 1 • I 1 1 i I I
- Z ferld -system
1 1 1 ! 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 • 1 1
1 1 1 1 t 1 1 1 1
lllllllli
IIIIIIIII
IIIIIIIII
i i i t i i i i i
111111111
! 1 1 1 1 1 1 I 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IIIIIIIII
lllllllli
lllllllli
1 * ' ' ' 1_ J L. i
IIIIIIIII
IIIIIIIII
lllllllli
lllllllli
lllllllli litlliiti
i i l l i l i l i 1 l l l l l l 1 i l
lllllllli
i i 1 i l i l l |
lllllllli
lllllllli
iiiiiiiii
lllllllli
lllllllli
i i f l l l l l |
lllllllli
IIIIIIIII
1 1 1 1 1111
IIIIIIIII
lllllllli
1 | 1 1 1 1 1 1 |
1 1 1 1 I 1 1 1 1
f | 1 1 1 1 1 1 1
IIIIIIIII
IIIIIIIII
IIIIIIIII
elevations, orr
iii
111111111
111111111
lit if ISW(-l) = 0
lllllli)!
1 1 1 1 j l 1 l 1
IIIIIIIII
1 1 1 1 1 1 1 1
| | | 1 1 1 | 1 1 | 1 1 1 1 1 1 1 1 1 IIIIIIIII
IIIIIIIII
IIIIIIIII
(Illlllll
((Illllll
(
i i i i i i i i t
111111111
111111111
11
111111)11 IIIIIIIII
| | | 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1
Illlllllf lllll'lll
IIIIIIIII
, , , ,
II
IIIIIIIII
1 1 ' ' 1 ' 1 1 1
1 1 ' 1 i 1 1 1 |
1 f 1 1 1 1 1 | 1
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 f l 1
i 1 1 l | 1 1 1 1
1 | 1 1. | 1 1 ( 1
lllllllli
IIIIIIIII
or ISW(5) = 2
1 i i i i i 4 I 1
iiiiiiiii
iiiiiiiii
lllllllli
i | i i i i | | i
11111111
iiiiiiiii
iiiiiiiii
i i i f i i i i t
iiiiiiiii
tllllllll i i l | i 1 l l l
1 1 i I i : 1 l 1 i : i : : I I I 1 1
i i i i : i i i i i i i i i i 1 i i 1 i i i i i i i i i
1 1 f 1 1 1 1 1 !
lllllllli
Illlllll
1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1
lllllllli
IIIIIIIII
111(11111
lllllllli
lllllllli
lllllllli
i
i i i i i i r i i
lllllllli
1(1111111
1 1 1 1 1 III
; i i l l 1 1 1 1
i I i i l i i 1 i
lllllllli
iiiiiiiii
.
1 : i i i i i i i
i » I i i i j i i
lllllllli
lllllllli
111111111
iiiiiiiii
i i i i i iii
or 3 or NXPNT
111111111
111111111
i i i i i i f i i
111111111
111111111
111111111
111111111
111111111
111111111
111111111
IIIIIIIII
lllllllli
1 1 l 1 t 1 1 1 1
1 1 1 1 1 ( l 1 f
lllllllli
IIIIIIIII
IIIIIIIII
IIIIIIIII
lllllllli
IIIIIIIII
Iiiiiiiii
1 ' f ' ' t \ 1 1
So 0) -
IIIIIIIII
lllllllli
1 1 f 1 1 1 1 1 1
lllllllli
lllllllli
1 f 1 1 1 1 1 1 1
1 \ \ 1 1 1 1 ! 1
lllllllli
IIIIIIIII
1
I 1 1 1 1 1 i f 1
IIIIIIIII
1 | 1 1 1 1 ! | 1
1 1 1 1 1 1 1 f 1
IIIIIIIII
lllllllli
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
lllllllli
IIIIIIIII
1 1 1 1 1 I f | 1
-------
X
in
ISrLT INPUT DATA CODING FORM (rnntlnuecty
PROJECT 1 INAME
] (DATE SHEET OF
CARD GROUP
NUMBER
8b-
DATA CARD COLUMN
•tH'^thn«H't1H-tfW'HlttttfH'H''H«H»hl''l4f
1.,I.J.lLJ.Jirl,lJi,
TTtTl'TTtT'
rilnH'l'tiMp
-------
*
KJ
CD
ISCLT INPUT DATA (DOING FORM (Continued)
PROJECT
NAME
DATE
SHEET OF
CARD GROUP
NUMBER
RECEPTOR DATA PARAMETER AND VALUE (X means do not punch]
ffi
- X, Y, Z, RHT (arbitrarily spaced receptors, omit if NXWYPT = 0, ISW(5) - 2 or 3 and ISW(I2) » 0 -
6a.7a.8a.8c
''*«''•••
''''*'•••
I I I I I I I I I
I 1 I l I I l l l
i-L-i-l I I I I J
i i I i I i I i i
i i i i t 1.1 i i
> I I.
H-1-L.J
-1 J_l_l I I I 1.1
' I I ' I
' I
lilt
J-J I I I
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
|,|,|«|»|.|f|.|.|«|M|.«|.,|..|«|.|.f|.^^
METEORLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
kr|wLi ralrilnln tt rJrJjr n rtLa
9 -
- FMT (omit if ISW(5) - 2 or 3 or ISW(18) = 0) -
I I | | _|_| j I I II t ...L_l J ..!_ I 111 II I i^ I 1 I I I I I I I I I I II III iJ I LI lltll lllllillllLlli
9a -
- FREQ (omit if ISW(5) = 2 or 3 -
-------
00
ISCLT
PROJECT
CARD GROUF
NUMBER
9a -
(Cont.)
INPUT DATA CODING FORM (Continued)
NAME
DATE
SHEET OF
DATA CARD COLUMN
l
-1
|
'
1
1
1
1
1
I
1
I
1
I
1
I
1
1
1
1
I
T
i
i
i
i
i
i
L i
I i
1
1 1
L 1
'
,
'
1 '1
L
T
TM
'*i"r°
ti
»|>3
14
'"
rmi
r
>l U Jjlxlu W IT W JMoUlUt 41M4J49 <
4f-
«HT
•++•
HsTM99H"H*3i" SHHHHH?'lnMH"h "hH*
METEOROLOGICAL DATA PARAMETER AND VALUE (V means do not punch)
i i 1 1 i i i 1 1
i i i i i i i : i
i
i
i i i
i i
i i i i i i i i i
i
I
1 I I 1 1 1 1 1 1
1
(
{
t
1
1
1
1
.
/
i
i
f
1
1
1
1
i i i
iii
i i i
i i i
i i i
iii
i i
i i
i i
i i
i i
i i i i i i i i i
i i i i i i i i i
r
1
1
1
1
1 I
1
f
1
1
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i : i
• i
• i
i i
i i
i i
i i
i i
i i
i i
1
1 1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
i
i
i
i
i
1
l
i
i
l
i
i
i
t
i
i
i
i
t
l
i
_u.
i
1
1
1
,
1
1
1
1
1
1
1
1
i
l
i
i
i
i
i
l
f
§
1
1
(
t
i
i
i
- FREQ (C
i i i I i i i i i
1 ( { t i i i i i
i i l l i i i i i
l l 1 1 i 1 1 i l
i i l i i i i i i
i t i 1 i l 1 1 i
l 1 l 1 i i l l i
i i I i I i 1 i I
| | f I I i 1 I i
i I i I i I i I i
I I 1 i i i I 1 1
i | I i | i i i i
1 ' ' ' 1 ' ' ! !
f i i i i i i i
i i l l i i i i i
l l l l l 1 ( l
l i 1 l l i i f |
t i i i f i i i i
l l I i i i 1 i
i i l i i i i i i
1 1 1 1 1 1 t l 1
Continued) -
i i i i i i i i i
i i i i i i i i
I |
i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 i 1 1 I I 1 1 1
1 l 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
l | 1 1 I
l 1 1 l 1
(
l_l
i i
f l
1 l
l i
l l
l i
t
i
i
(
(
i
( 1 1 1 1 1 * t 1
11)111111
l 1 l | ( < l l l
1 t l 1
i i
i l l I i 1 I 1
i i i i i i i i i
f
i
i
i
i
i
1 1
1 1
1 1
1 1
1 1
1 1
• 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
i i i i i i r i i
!
• i
1111
1 1 1 1
i i i i i i i i i
1
1
1 1
(.(
i i
i i
1 1 1 1
i i : i
i i i i
1 ! 1 1 1 1 1 1 1
1
1
l
l
1
i i
f i
i i
i i
_i_LJ
i i i i
i i i i
iiii
i i i i
ly
I / \
\ •
!/ \
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
ac
10 -
11 -
- TA (omit if ISW(5) = 2 or 3) -
1 1 1 1 1 1 1 1 1
11111:111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
, , , ,
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
» 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
- HM (omit If ISW(5) => 2 or 3) -
1111 i
I I I I t
l l i l l l l
I I I I I i I I
I I I I I j
I I I I I I I I l
i i i i I i
1 ' 1 I I I I I I
I I I I I I
I I I I I
i I I I i i l l
i i i i i i i
I 1 l I I l
I I I 1 I
I I I I I.
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME.
F
[p.
DATE
SHEET OF
CARD GROUP
NUMBER
11 -
(Cont.)
12 -
13 -
14 -
DATA CARD COLUMN
|»R»
" »»R»
uMjs MHTJM i4>cJ4i » 4i >4 4 J« tLrf.iJa JxJs.U?!^ 94 is MJ37 vJss icUiUi i] t4|u|u|irJtiL
-------
PROJECT
CARD GROUP
NUMBER
15 -
16 -
ISCLT INPUT DATA CODING FORM (Continued)
NAME
DATE SHEET OF
DATA CARD COLUMN
i ill UNI* rjeltlioln it is 14 19 w if ia i« lolti n\n MJ2)t«|j7 tJs*jja|ii|u|»|M|39JM jrk«|jj4o|«il4i «) «« tJjft 4rUaLt9 9o|n a u «|"|>« «|»«U» w|«Ui|«>|iJ«d«4|»T|«J««|TOJTi|7SJrj T« r9|n|r7|n|njn
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- PHI (omit if ISW(5) - 2 or 3) -
I 1 I I 1 I 1 I I I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I I 1 1 I 1 1 1 1 t I 1 1 1 1 1 1 I I 1 1 1 I I 1 I 1 1 1 1 I 1 1 1 I 1 f 1 llilll^ll
- P (omit if ISW(5) = 2 or 3) -
1 1 I 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _L_.| I _|_ ^N. sS
1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I 1 1 1 t 1 1 1 1 1 1 1 1 | 1 ^V ^^
IIIIII||1 | 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 j | | J. ^Xsj"k"'X^
lllllllll fllllllll 1 | I I I 1 1 I I Illlltlil Illllllli 1 I I I I j_ i i | ^r ^\
i^lilllll fllllllll lllllllll lllllllll lllllllll Ilill^ | i j iJ^ ^*^
-------
ISCLT INPUT DATA
PROJECT
CARD GROUP
NUMBER
17 -
|*| 1 1
"
NUMS
1 f 1 1
IIII
IIII
i
i
i
iiii
iiii
iiii
1111
iiii
iiii
iiii
iiii
• ' i f
i i i f
,111
WC5
3HO-
i
«
1
DX
i
i
i
i
L 1
1
1
1
1
1
l
1
l
1
l
l
i
i
i
i
l
1 1 1 i i i 1 1 i
l
1 1 1 i 1 1 1 1 1
1 1 1 i i i 1 1 1
L
LJ
i
i i i
i
i
LJ
l
l
i
1
1 1
1
1
1
1
1
(
|
1
f
1
21
22
+
DY
i
i
§
1
1
t
1
1
1
f
2)
rcur
IH2WK
DATA
JlljZ SsUJsUM
CODING FORM (Continued)
NAME
DATE
SHEET
OF
CARD COLUMN
17
w
39
• OJ4I
'* rTv* ** *Tfl H30)31!32
U
*
SOURCE DATA PARAMETER AND VALUE
i i
l
l
i
i
i
i
i
i
1 1 1 1 1 1 1 1
1
1
1
1
(
(
, 1 1
'
(
1
1
1
i
(
(
i
i
i
i
i
H
1 | 1 1 1 1
1
1 J
1
J
IIII
IIII
IIII
IIII
1 1 1 ! 1 1
I
1
1
I
IIII
1 i 1 1
l 1 l 1
IIII
1 1 1 1 1 1
i i i I i I
i
l
IIII
IIII
i i l i i 1
i | i 1 t l
l
i
,
IIII
iill
IIII
illl
till
zs
1 1 !
I
1
1
t_
TS or
SIGYO
or XO
L 1 l 1 1 l l
III 111
1
1
1
1
1
,,,.,,
j
1
1
1
•
,. J
I 1 1 1
.
1 1
1
i i i i i i
i i i i i i
i i i i i i
(
"H-
VEL
or
SIGZO
i i i i i i
i i
i i
1
1
i i i i i i
i i i i i i
i
1 1 1 1 1 1 1 !
till!)
1 1 | 1 | (
1 !
1 1
1 1 1 1 1 1 II
1 1 1 1 1 I
1 1
1 1 1 1 l ! 1 !
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
t ] | 1 | |
III I
II II
l i i i i i i
_LI^J_
1 |
1 1
I
1
1
1 1
1
1
,
1
I
1
st^"lir'T>
-------
*
U>
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT 1 INAME
| IDATE SHEET OF
CARD GROUP
NUMBER
17a -
DATA CARD COLUMN
ITT"|' "°
I
Ik S 9 |*
iittilaaK* 29B«»r M twuiilu «|j«m MUTM IsvUoLiUzUiL* «a|4i «r «a »i K
situ M|MIM MBrlu »8KQ
FilrJnL rJTJrrlrJrtU
TITTTTTT
SOURCE PARAMETER AND VALUE
1 1 1 1 I 1 1 f 1
Illllllll
lllll^llljlllllllll
| 1 1 1 1 1 1 1 1
I 1 I t 1 1 1 1 1
1 1 I 1 I 1 I 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Illllllll
1 1 1 1 1 1 1 1 1
Illllllll
Illllllll
i i i i I i 4 i i
Illllllll
Illllllll
t 1 1 i 1 1 1 1 1
Illllllll
Illllllll
Illllllll
Illllllll
•
Illllllll
! 1 1 1 1 1 1 I 1
i
111111111 111111111
111111111
111111111
Illllllll
111111111
111111111
III.IMI.
111111111
Illllllll
Illllllll
Illllllll
Illllllll
Illllllll
111111111
111111111
111111111
i i t i i i i t i
i i i i i i i i i
iiiiiiiii
i i i i i i t i i
I i f i i i i i i
111111111
111111111
111111111
111111111
111111111
iiiiiiiii
iiiiiiiii
i i i i i i i i i
i i i i t i i i i
111111111
i i i i i i 4 i i
111111111
111111111
- VS (omit
Illllllll
1 1 1 1 1 1 i 1 i
1 1 1 1 1 1 1 1 1
Illllllll
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Illllllll
1 1 1 1 1 1 1 1 1
Illllllll
IIIIIIIII
i 1 i 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
i- 1 1 i 1 i 4 i i
1 1 ! 1 1 1 1 1 1
1 1 1 | | | 1 1 1
1 1 1 1 1 1 1 1 1
Illllllll
Illllllll
i i i i , i i , i
1 1 1 1 1 1 1 1 1
if NVS o 0) -
i i i i i i i i i
1 i f i i i i i i
Illllllll
111111111
t I i i i i i i i
iiiiiiiii
iiiiiiiii
11^111111
iiiiiiiii
111111111
i i i i i i 'i i i
iiiiiiiii
111111111
iiiiiiiii
111111111
i i i i i i i i t
iiiiiiiii
1,111,11,
iiiiiiiii
111111111
111111111
iiiiiiiii
! 1 f 1 1 1 1 t 1
Illllllll
Illllllll
Illllllll
Illllllll
1 1 1 1 1 t 1 1 1
1 1 1 1 t 1 1 1 t
1 1 1 1 1 f 1 | I
| 1 1 1 1 1 1 1 1
Illllllll
1 1 1 1 1 | | | 1
1 1 1 1 1 1 1 1 I
1 1 1 1 1 1 1 f \
1 1 1 1 1 1 1 | I
Illllllll
Illllllll
Illllllll
1111111)1
Illllllll
Illllllll
Illllllll
Illllllll
4||llllll
Illllllll
Illllllll
1 1 ' 1 1 1 1 1 1 1
f I 1 1 1 1 1 | 1
Illllllll
| 1 1 1 1 1 | | 1
Illllllll
Illllllll
Illllllll
| 1 1 I 1 1 1 1 1
Illllllll
111 1 1 1 1 1
1 III
IIIIIIIII
1 1 \ 1 1 I* 1 II
Illllllll
Illllllll
Illllllll
Illllllll
Illllllll
Illllllll
IIIIIIIII
Illllllll
Illllllll
1 1 1 1 1 1 1 11
Illllllll
Illllllll
Illllllll
1 1 1 1 1 1 1 1 1
-------
ISCLT INPUT DATA CODING FORM
PROJECT
CARD GROUP1
NUMBER
17b-
•
1
(Continued)
1 NAME
| DATE
DATA
*
1
'
1 1 1
1 1 1 1 1
_J
1
1
T
1 1
1 1
IIIIIIIII
IIIIIIIII
,,,,,,,/,
J
1
(
IIIIIIIII
-
1
1
1 1 1
1
1
I
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
I
1
I
1
_1
t ' '
L_
zojzipz
1 1
till t
1 1 1
1
1 I 1 1 1 1 1 1
(
(
1
1
1
(
1
1
1 1
1
(
(
1
I
1
1
1
1
1
1
1 1 1 1 1 1 1 1 1
"
i
i
"IT
i i
i i
i i
i i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
HT
2»
K
91
M»>.
f
SHEET OF
CARD COLUMN
srbe|»
•0
41 KJ4.1
u,
•tM'UaU?
90
»,,|»l«f4.,,|M|M|M
«
•t
«»««
SOURCE DATA PARAMETER AND VALUE
I |
1 1
1 1
1 1
( |
1 1
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
LJ
|
- FRQ (omi
J
1 1 1
i
i i
iiiiiiiii
1 1 1
i l i
l i
i i
111111111
.J
L_
1 i i
i i i
i i i
i i i
l i l
l i l
i i i
l l l
iii
i l i
l i 1
1 1 1
i l l
i i i
i l i
l l i
1
1
1
1
1
1
1
1
1
1
(
1
1
1
i i
t i
i i
I )
t (
I |
I |
I |
1 i
I |
1 1
1 1
1 1
1 1
t If NVS = 0)
1 1 f 1 1 1 l l
1 1
1 1
! 1
1
1 1
1 1
1 1
1 • 1
1 l
1 1
I 1
_i i i
1 ' '
1 i
i i
i i
l l
i i
i i
t 1
L.l_. 1 ! I J
i i i i i i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
iiii
l l l
l l l
l l l
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
till
i i i
i i l
l i i
i i i
i i l
i i i
L_I L..LJ
|
111111111
111111111
111111111.
111111111
111111111
111111111
111111111
111111111
111111111
111111111
4fH"
TilrJnlM rslrJrT r«U sc
111111111
111111111
111111111
iiiiiiiii
111111111
111111111
111111111
iiiii.ii,
111111111
i i i i i i i i i j
• ,
llll
111111111 i i i r i i i i i
i
IIIIIIIII
i
j , , ,
111111111
iiiiiiiii
iiii 1111
111111111
111111111
: 1 1 II III:
•
i i i • i i i i i
iii
,,,,,,,,,
,,,,,,,,,
, , , i
_i i i i i i i i i
t
i i i
i_i j
i i i
-
llll
i l l i i f i i i
111111111
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiiiiii
r i l i i i i i i
iiiiiiiii
iiiiiiiii
i 4 i i i i i i i
i i i i i i i i l
iiiiiiiii
Iiiiiiiii
111111111
iiiiiiiii
iiiiiiiii
111111111
i i i i i i i 1-1
iiiiiiiii
-------
3C
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT NAME
DATE SHEET OF
CARD GROUP
NUMBER
17c -
DATA CARD COLUMN
Jlkl|l>|j«|2st«|lTJH ttka
L I I I L J 1 J J JjrLnL
i\ 1 1 T i 1 \ i TTT
«f»»»4T'TT
Ui i
TT"I
M^nlT^^mj^
SOURCE DATA PARAMETER AND VALUE
i i i i I f : I i
11111:111
1 1 i i | i I i i
IIIIIIIII
I I I I i I t 1 I
I 1 1 ^ f f 1 1 I
iiiiiiiii
IIIIIIIII
Iiiiiiiii
iiiiiiiii
i i i i f i i I i
IIIIIIIII
iiiiiiiii
i i i I t i i 1 i
11(111111
111111111
i i i i i i i i i
111111111
111111111
111111111
111111111
111111111
i 1 1 i i i_i_i_
i i i f i i i i i
iiiiiiiii
111111111
iiiiiiiii
i i i t i i i i i
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
:
, ,,,,ii,
,111,11,1
I 1 1 1 1 I I 1 1
1,1111111
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
1 1 1 1 1 1 | f |
IIIIIIIIJ
IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII
, , , ,
IIIIIIIII
1 1 1 1 '1 1 1 1 1
IIIIIIIII
IIIIIIIII
1 1 I 1 1 1 1 , .
- GAMMA (on
iiiiiiiii
iiiiiiiii
i i i i i i i i ^
111111111
iiiiiiiii
t § (
111111111
iiiiiiiii
( i i i i i i i i
iiiiiiiii
iiiiiiiii
iiiiiiiii
i i i i i i i i i
i t i i i t \ f i
111111111
iiiiiiiii
iiiiiiiii
i i i i i i i i i
iiiiiiiii
iiiiiiiii
• i , i i , • • •
tit if NVS « 0)
111111111
111111111
111111111
111111111
111111111
111111111
, , , ,
iiiiiiiii
111111111
iii
1 1 1 1 1 1 1 1 1
, i , 1 1 1 1
111111111
i 1 1 1 1 , i
-
, , , , i i , , ,
iiiiiiii.
111111111
111111111
111111111
111111111
iiiiiiiii
111111111
111111111
111111111
,,,,,,,,,
i i i i i i i i
ii,,,!,,,
i , , , , , i , ,
i i i i i i i > i
i i i i i , , , ,
111111111
111111111
111111111
, , , ,
111111111
• i , i i • i , ,
Iiiiiiiii
IIIIIIIII
IIIIIIIII
IIIIIIIII
l i i l 1 1 l f |
IIIIIIIII
IIIIIIIII
ill
IIIIIIIII
,
111111111
ii.iiiiii
1 1 1 1 1 1 1 II
IIIIIIIII
| 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 1 1
f 1 1 1 1 1 I 1 1
11111 f 1 1 1
IIIIIIIII
1 1 1 1 1 1 1 1 ^
llllllll|
1 1 1 1 1 1 1 1 |
,,,,,,,,,
f 1 1 1 1 1 1 1 I
|llllllll
1 1 1 1 1 1 1 _I_L
-------
Nl
co
ISHLT INPUT DATA CODING FORM (Continue^
PROJECT 1 1 NAME
| JO ATE SHEET OP
CARD GROUP
NUMBER
17ca -
DATA CARD COLUMN
•hHH^+HrWt+mtHt^^
SOURCE PARAMETER AND VALUE
1
i
,
i i i i i i • i i
• i i i i i • • i
• i i i i i • . i
< i i i i i i i i
i i i • i i i i i
^LI 1 1 1 1 1 1
,
111111111
111111111
iiiiiiiii
iiiiiiiii
iiiiiiiii
- DSI
and if H <_
•iiiiiiii
i i i i i i i i f
iiiiiiiii
i i i i i i i i i
iiiiiiiii
i i i i i i i i i
)H (if ISW(22
HB + 0.5 * 1
iififiiii
111111111
111111111
iiiiiiiii
) - 0 or HB<
IN(HB, 1. 13*1
i i i i i i i i i
o,
w)) -
If^llllll
i i 1 i i i D i i
iiiiiiiii
iiiiiiiii
• 1 1 1 ri 1 1 1
111111111
111111111
111111111
iiiiiiiii
i i i i i i.i i i
.
.
111111111
iiiiiiiii
111111111
111111111
f 1 1 1 • 1 1 1 1
111111111
-------
O)
o-
K)
00
ISri.T INPUT DATA rODING FORM (mntlnueri)
PROJECT 1 INAME
| [DATE SHEET OF
CARD CROUP
NUMBER
17cb -
DATA CARD COLUMN
•IWHWH+W*--++H^T^^
SOURCE PARAMETER AND VALUE
1
.
......... | ........ .
. . . i • . . i .
illllllll
i
> i .......
.11.11111
- DSB1
and if H £
Illllllll
1 1 1 I 1 1 1 1 1
Illllllll
V (If TSW(22)
HB + 0.5 *
Illllllll
Illllllll
Illlfilll
= 0 or IIB
-------
EC
ISCLT INPUT DATA
PROJECT
CARD GROUP
NUMBER
17d -
1
CODING FORM (Continued)
DATA
'
1
J
k
1
.lllll:il
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
T
T
j i i i '
r i 1 i F
TT
i
|
i
NAME
DATE
SHEET OF
CARD COLUMN
"
"r°"rr
' «L
TT
i"i«HH"l"h
'"
+
SOURCE DATA PARAMETER AND VALUI'J (/ means do
I
i
i
1
f 1 1 1 1 1 1 1 1
|
i
i
i i i i i
i
i
| 1 1 1
1 1 1 1 1
i
i
i
i
i
i
i i
i i
IIIIIIIII
—} * '
i
i
i i
i
j
i
i
i
i
i
i
i
i
1 I 1
i i i i i
_i
1 1 1
i i i i i
_j
1 1
1 1 1 1
i i i i i
1 1 t
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i i i i i
• i i i i
i i i i t i
111111111
i i i i i
i i i i i
i i i i i
i i i i i'
i i i i i
1
1
,
-
1
1
1
!
i i i i i i i i i
'
1
i j
i
i_l
!
i
i
i :
i
I
|
1
i
i
i
t
i
(
i
1
i
i
i
Q -
1 1
lit!
1
1 1
I
: i l
i
i
i
i
i
i
i
i
1 1 1 1 1
1
t
(
111111111 111111111
1 1 1 1 1
•
i
111111111
i
......i,.
111111111
t
t
1
i
I
1 1
1 1
' 1
1 1
1 1
1 1
1 1
, .
: i
t
i j i i
i
i i i
i
i i
i i
i i
I 1
1 1
1 i
I I
I I
I i
i i
i i
(
i i
i t
t i
| (
(
i i
i i
i i i i
1 i
, i
i i i i
i i * i
i i i i
iiii
i i i i
i i i i
iiii
iiii
i i i i
i : i i
i i i I
i i : i
i i i i
iiii
''11
J (
t
1
1
IV
111 II I 1 I J_J l_ _J__
T TT n ill \\ i i* K
not punch)
i f
i i
1 1 1 1 t' 1 II
||fl
1 I
! 1
,
1 1
1 1
I i
| I
l 1
( (
i i
l 1
l 1
i : | | il
1 i i i
1 |
1
1
l
l
t
1
l
1
1
(
I
1
1
i i
IIII
1
1
1
1
(
1
1
i
i
i
i
i i
i i
i i
i i
i i
i i
i i
i i
-L_i_
1 I
I i
( (
i i
i
_} i i i i i i i i iiiiiiiii 111111111
i
i
iiii
^_
i 1
.,_,_
i i
i i
i .1.
1 i I i
11: i
l l
1
1 1 J
i
i i
1 1 1 1 I !
\
\
\/
A
/ \
/ \
'/ \
------- |