l Protection BW600/R-02/022
Agency PB2002-106289 .
Transect Study of the
Intrinsic Bioremediation
Test Plot
Dover Air Force Base
Dover, Delaware
-------
TRANSECT STUDY OF THE
INTRINSIC BIOREMEDIATION TEST PLOT
Dover Air Force Base
Dover, Delaware
February 13, 2002
Prepared by
The Remediation Technologies Development Forum
Bioremediation of Chlorinated Solvents Work Group
Dover Air Force Base
Dover, Delaware
T.A. Ei1, D. J. Barnes2, G.M. Klecka3, D.E. Ellis1, E.J. Lutz1, and M.W. Holmes2
E. I. Du Pont de Nemours and Company1
Engineering - Corporate Remediation Group
Wilmington, DE, USA 19880
ICI Technology2
Runcorn Cheshire, UK WAV 4QD
The Dow Chemical Company3
Health and Environmental Research Laboratories
Midland, MI, USA 48674
-------
March 7,2002
Pagei
CONTENTS
SECTION 1 INTRODUCTION 1
1.1 Background 1
1.2 Site Geology and Hydrogeology 1
1.3 Distribution of Chlorinated Organics 2
1.4 Field Transect Study Objectives 3
SECTION 2 METHODS 4
2J[ Study Design Method 4
2.2 Field Methods 6
2.2.1 Direct-Push Technology Description 6
2.2.2 Screen Development 6
2.2.3 Hydraulic Conductivity Testing 6
2.2.4 Groundwater Sampling 8
2J. Cost 9
SECTION 3 RESULTS 10
3.1 Hydraulic Conductivity Determinations 10
3.2 Analytical Results 11
3.2.1 Chlorinated VOCs 11
3.2.2 Chloride 13
3.2.3 Gases 14
3.2.4 Dissolved Oxygen and Redox 14
SECTION 4 FINDINGS 16
4.1 Monitoring Well Data Evaluation 17
4.1.1 Mass Balance of Chlorinated Ethenes and Chloride 17
4.1.2 Mass Flux Determined from Monitoring Well Data 18
4.1.3 Apparent Biodegradation Rates from Monitoring Well Data 19
4.2 Transect Data Evaluation 19
4.2.1 Mass Flux Determined by Summation of Transect Data 20
4.2.2 Biodegradation Rates from Transect Data 23
4.2.3 Mass Flux Determined by Statistical Analysis 23
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page ii
SECTION 5 DISCUSSION AND CONCLUSIONS 25
5.1 Discussion 25
5.1.1 Discussion of Data Set and Analysis Method Differences 25
5.1.2 Interpretation of Natural Attenuation from Transect Study Findings.... 26
5.2 Conclusions 27
SECTION 6 REFERENCES 29
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page iii
CONTENTS
(Continued)
FIGURES
Figure 1 Location of Dover Air Force Base
Figure 2 Management Units and Areas of Investigation
Figure 3 Structure Contour Map of the Top of Calvert Formation
Figure 4 Monitoring Well Location Map
Figure 5 Total Chloroethene Isoconcentration Map, July 1996, Deep Groundwater
Flow Zone
Figure 6 Tetrachloroethene Isoconcentration Map, July 1996, Deep Groundwater
Flow Zone
Figure 7 Trichloroethene Isoconcentration Map, July 1996, Deep Groundwater Flow
Zone
Figure 8 cis-l,2-dichloroethene Isoconcentration Map, July 1996, Deep
Groundwater Flow Zone
Figure 9 Vinyl Chloride Isoconcentration Map, July 1996, Deep Groundwater Flow
Zone
Figure 10 Surfer Generated Total Chlorinated Constituents of Interest
Isoconcentration Map, July 1996, Deep Groundwater Flow Zone
Figure 11 Surfer Generated Tetrachloroethene Isoconcentration Map, July 1996, Deep
Groundwater Flow Zone
Figure 12 Surfer Generated Trichloroethene Isoconcentration Map, July 1996, Deep
Groundwater Flow Zone
Figure 13 Surfer Generated cis-1, 2-dichloroethene Isoconcentration Map, July 1996,
Deep Groundwater Flow Zone
Figure 14 Surfer Generated Vinyl Chloride Isoconcentration Map, July 1996, Deep
Groundwater Flow Zone
Figure 15 Surfer Generated Chloride Isoconcentration Map, July 1996, Deep
Groundwater Flow Zone
Figure 16 Transect Location Map
Figure 17 Specific Capacity Schematic
Figure 18 Well IR-07D Drawdown Test
Figure 19 Hydraulic Conductivity, Transect A
Figure 20 Hydraulic Conductivity, Transect B
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page iv
CONTENTS
(Continued)
Figure 21 Hydraulic Conductivity, Transect C
Figure 22 Tetrachloroethene in Groundwater, Transect A
Figure 23 Tetrachloroethene in Groundwater, Transect B
Figure 24 Tetrachloroethene in Groundwater, Transect C
Figure 25 Trichloroethene in Groundwater, Transect A
Figure 26 Trichloroethene in Groundwater, Transect B
Figure 27 Trichloroethene in Groundwater, Transect C
Figure 28 cis-1,2-DCE in Groundwater, Transect A
Figure 29 cis-1,2-DCE in Groundwater, Transect B
Figure 30 cis-l,2-DCE in Groundwater, Transect C
Figure 31 Vinyl Chloride in Groundwater, Transect A
Figure 32 Vinyl Chloride in Groundwater, Transect B
Figure 33 Vinyl Chloride in Groundwater, Transect C
Figure 34 1,2-dichloroethane in Groundwater, Transect A
Figure 35 1,2-dichloroethane in Groundwater, Transect B
Figure 36 1,2-dichloroethane in Groundwater, Transect C
Figure 37 Chloride in Groundwater, Transect A
Figure 38 Chloride in Groundwater, Transect B
Figure 39 Chloride in Groundwater, Transect C
Figure 40 Ethene in Groundwater, Transect A
Figure 41 Ethene in Groundwater, Transect B
Figure 42 Ethene in Groundwater, Transect C
Figure 43 Methane in Groundwater, Transect A
Figure 44 Methane in Groundwater, Transect B
Figure 45 Methane in Groundwater, Transect C
Figure 46 Dissolved Oxygen and Redox Results, Transect A
Figure 47 Dissolved Oxygen and Redox Results, Transect B
Figure 48 Dissolved Oxygen and Redox Results, Transect C
Figure 49 Groundwater Contour Map, Deep Zone, March 1997
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page v
CONTENTS
(Continued)
Figure 50 Mass Flux Determined from Monitoring Well Data
Figure 51 Transect A Sample Point Cross Sectional Areas
Figure 52 Transect B Sample Point Cross Sectional Areas
Figure 53 Transect C Sample Point Cross Sectional Areas
Figure 54 Example of Hydraulic Conductivity Effect on Hydraulic Gradient
Figure 55 Mass Flux Determined from Transect Data using Summation Method
Figure 56 Comparison of Lognormal and Normal Distributions with Actual Data from
Transect A
Figure 57 Sample Points Used to Calculate Transect Areas for Statistical Analysis
Mass Flux Results
Figure 58 Mole Flux of Total Chloroethenes per Day Through Each Transect Using
Lognormal Parameters
TABLES
Table 1 July 1996 Groundwater Analytical Data from Monitoring Wells, Deep
Zone
Table 2 D'Agostino Test Results for Specific Capacity Distributions Normality and
Lognormality Checks
Table 3 Lognormal Distribution Parameters of Specific Capacity Using All 97
Strataprobe Test Results
Table 4 Transect Hydraulic Conductivities
Table 5 Transect Groundwater Sample Analytical Results, March/April 1997
Table 6 Transect Location TC-04 Additional Investigation Groundwater Sample
Analytical Results
Table 7 Summary of Chloride/Chloroethene Plume Mass Balance
Table 8 Summary of Monitoring Well Data Mass Flux and Apparent
Biodegradation Rates
Table 9 Groundwater Flow Rate Determined from Transect Data
Table 10 Mass Flux Calculated by Summation of Transect Data
Table 11 Summary of Mass Flux Calculated by Summation of Transect Data
Table 12 Apparent Biodegradation Rates Calculated from Transect Data Mass Flux
Table 13 Total Chloroethenes Molar Flow per Unit Area per Day
Table 14 Frequency Distribution of Total Chloroethenes Molar Flow
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page vi
CONTENTS
(Continued)
Table 15 Shapiro-Wilk's Test for Normal and Lognormal Distribution, Molar Flow
of Total Chloroethenes per Unit Area per Day
Table 16 Mean Molar Flows of Total Chloroethenes Through Unit Area per Day for
Each Transect
Table 17 Molar Flux of Total Chloroethenes per day through Each Transect
Table 18 Comparison of Molar Flux of Total Chloroethenes per Day through Each
Transect Derived from the Different Calculation Methods
Table 19 Comparison of First-Order Decay Rates Calculated from Transect and
Monitoring Well Data
APPENDIXES
Appendix A Field Measurements
Appendix B Calculated Hydraulic Conductivities
Appendix C Mass Flux Calculations from Monitoring Well Data
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page vii
EXECUTIVE SUMMARY
Under a joint research and development agreement, the Remediation Technology
Development Forum (RTDF), a consortium of government and industry representatives,
conducted a detailed characterization study of the chloroethene plume at Dover Air Force
Base (DAFB), Dover, Delaware. The study was conducted to determine the mass flux of
chlorinated ethenes, calculate apparent first-order decay rates, and compare these results
to mass flux and degradation estimates from conventional groundwater monitoring well
data. The study evaluated the distribution and mass flux of tetrachloroethene (PCE);
trichloroethene (TCE); cis-1,2-dichloroethene (cis-l,2-DCE); vinyl chloride; and
1,2-dichloroethane (DCA) in the unconsolidated, fluvial, Columbia Aquifer by collecting
samples and determining hydraulic conductivity at 103 discrete points along three
transects across the plume.
Mass flux was calculated across each transect by summing the product of each
chlorinated ethene concentration times groundwater flow rate for the area represented by
each sampling point. Apparent biodegradation rates were then determined from the
change in mass flux between upgradient and downgradient transects. For comparison
purposes, the mass flux of chlorinated ethenes were also determined at each transect
location using isoconcentration maps produced from groundwater monitoring well data
and average groundwater flow rates.
Chloroethene mass flux were also determined from statistical analysis of the transect data.
This analysis demonstrated a statistically significant difference in mass flux between the
upgradient and two downgradient transects. However, no statistical difference was found
between the two downgradient transects.
Comparison of mass flux from the transect study and monitoring well data resulted in
similar conclusions concerning the transect study of the intrinsic bioremediation test plot.
Although absolute values differed, both methods indicate natural attenuation is occurring.
Results from both methods also supported previous findings that anaerobic processes
degraded PCE; TCE; cis-l,2-DCE; and vinyl chloride in the upgradient portion of the
study area and that aerobic processes degraded cis-l,2-DCE and vinyl chloride in the
downgradient area. TCE in the aerobic portion of the study area persists beyond the study
area boundaries.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page viii
Comparison of the results support that detailed plume analysis by collecting point data is
not necessary to demonstrate natural attenuation at a site in which the vertical and lateral
morphology of a plume is defined by monitoring well data. The transect study provided
no significant information that had not previously been determined from existing
monitoring well data to justify the estimated $175,000 study cost. The mass flux for each
compound was generally consistent between the transect and monitoring well data.
Further analysis of the transect data indicates that mass flux is sensitive to the hydraulic
gradient in areas where large variations in hydraulic conductivities were observed.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 1
SECTION 1
INTRODUCTION
This report presents results of a detailed evaluation of the transect study of the intrinsic
bioremediation test plot conducted in 1997 at Dover Air Force Base (DAFB), Dover, Delaware
(see Figure 1). Specific objectives of detailed geochemical and hydrogeologic data collected
follow in Section 1.4. Subsequent sections present the investigation methods, results, findings,
discussion, and conclusions.
Drafts of this report were reviewed by the Environmental Protection Agency (EPA), whose
comments were incorporated into the text.
1.1 Background
Under a joint research and development agreement, the Remediation Technology Development
Forum (RTDF) reviewed several sites for bioremediation pilot studies. The RTDF, a consortium
of government and industry representatives that includes the United States Department of Energy
(DOE), the EPA, Beak International, Ciba-Geigy, The Dow Chemical Company, DuPont,
General Electric, ICI, Monsanto, and Zeneca, agreed to pool knowledge and resources to
demonstrate the bioremediation of chlorinated solvents. The DAFB in Dover, Delaware, was
selected to test two separate RTDF programs, an accelerated anaerobic biodegradation study and
an intrinsic bioremediation study.
The intrinsic bioremediation program is being conducted because of the existence of a
chloroethene plume in and downgradient of the highly industrialized West Management Unit
(West Unit) of the DAFB, in the region identified as Area 6 (see Figure 2). The program is
intended to demonstrate, through a combination of laboratory and field studies, the occurrence of
the natural biological attenuation of chlorinated solvents in groundwater and to gain an
understanding of the key parameters for predicting the rate and extent of reaction at other sites.
1.2 Site Geology and Hydrogeology
Complete geologic and hydrogeologic characterizations of the study area were conducted during
the spring of 1995. The results of the characterization as detailed in the Site Characterization of
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7,2002
Page 2
Area 6, Dover Air Force Base, In Support of Natural Attenuation and Enhanced Anaerobic
Bioremediation Projects [DuPont Environmental Remediation Services (DERS), 1997] is
summarized below.
DAFB is underlain by several geologic units, two of which are important in the intrinsic
bioremediation study area, the Columbia Formation and the Calvert Formation. In the Dover
area, the Pleistocene Columbia Formation is a fluvial deposit resulting from glacial outwash
during the glacial recession. Because of the sediment-rich system, the deposits were laid down in
a braided stream environment that scoured the underlying Miocene Calvert Formation. The
Columbia is approximately 50 feet thick in the study area and consists of fine to medium silty
sand; medium to coarse sand and gravel; and, in local areas, gravel and pebbles and possibly
cobbles. The sand and gravel sequence of the Columbia Formation is overlain by a relatively
continuous silt or clay ranging in thickness from approximately 2 to 5 feet. This clay is probably
recent in age. Fill or topsoil, which may be as much as 7 feet thick, overlies the natural deposits.
The Columbia Formation is underlain by the Calvert Formation, a Miocene deposit of stiff silts
and clays. The upper 12 to 18 inches of the Calvert Formation is brownish-red and deeper
portions are dark gray, indicating that the surface was oxidized at one time. The Calvert
Formation is continuous in the study area. Based on geologic studies to date, including soil
borings and cone penetrometer test holes, the depth to the Calvert Formation ranges from 35 to
50 feet and is structurally lower to the southeast of the study area (see Figure 3).
1.3 Distribution of Chlorinated Organics
A complete characterization of the groundwater geochemistry of the study area was conducted by
collecting and analyzing groundwater samples at triennial intervals. Figure 4 presents the
monitoring well locations. The results of this characterization as detailed in the report titled The
Groundwater Geochemistry of Area 6, Dover Air Force Base, Dover Delaware (RTDF, 1998) is
summarized below.
Chlorinated volatile organic compounds (VOCs) are present in the fluvial deposits of the
Columbia Formation in the intrinsic bioremediation program test plot. The Area 6 plumes are
characterized primarily by chlorinated solvents and, to a lesser extent, petroleum hydrocarbons.
The predominant constituents of concern (COCs) in this area are tetrachloroethene (PCE);
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
PageS
trichloroethene (TCE); cis-l,2-dichloroethene (cis-l,2-DCE); and vinyl chloride. The Columbia
Formation fluvial deposits comprise a single aquifer, however, because of varying permeability
in the stratified deposits, the alluvium generally can be divided into two flow zones, shallow and
deep. Flow direction is similar in both zones, with groundwater flowing from the northern
portion of the study area south and southwest toward the Saint Jones River. The highest VOC
concentrations are found in the deep zone.
The shallow aquifer zone is between the water table (9 to 13.5 feet below grade) and a depth of
approximately 25 feet. Elevated concentrations of chloroethene compounds (i.e., PCE; TCE; and
cis-l,2-DCE) in the shallow aquifer are limited in lateral extent and correspond with identified
source areas (DERS, 1997).
The deep aquifer is the zone between 25 feet and approximately 40 to 50 feet below grade, with
the bottom of the deep zone corresponding to the top of the Calvert Formation. A structural
contour map of the top of the Calvert Formation is included as Figure 3. The lateral extent of
contamination in the deep portion of the Columbia aquifer is considerably larger in extent than
what is observed in the shallow zone. Because slight downward vertical gradients exist,
dissolved contaminants originating in shallow zone source areas tend to migrate to deeper
portions of the aquifer, downgradient from the source areas. Isoconcentration maps of total [in
units of micrograms per liter (ng/L)] and individual chloroethenes (i.e., PCE; TCE; cis-l,2-DCE;
and vinyl chloride) within the deep zone from July 1996 are presented as Figures 5 through 9,
respectively.
1.4 Field Transect Study Objectives
The overall object of the field transect study was to evaluate, in detail, the distribution of
chloroethenes along cross sections of the plume downgradient of the source areas. The data were
used to determine if the majority of the mass of chloroethenes is limited to a small cross-
sectional area and if the remainder of the plume is diffuse. The study also was used to determine
if monitoring well data can represent plume mass distribution adequately. Finally, study results
were used to evaluate the natural attenuation of the plume further.
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7,2002
Page 4
SECTION 2
METHODS
To meet the objectives, detailed site characterization was necessary. The field transect study
collected detailed site characterization data from 103 points along three transects across the
chloroethene plume in the intrinsic bioremediation program area using Strataprobe® direct-push
field sampling techniques. This detailed site characterization data were compared to more
traditional site characterization data such as data from routinely sampled monitoring wells. The
differences in chloroethene distribution obtained by each method were evaluated. The
subsections below describe the methods used to design and implement the transect study.
2.1 Study Design Method
Transect locations were selected by analyzing existing monitoring well data using the Surfer®
(Version 6) computer program from Golden Software, Inc., Golden, Colorado. Surfer was used
to create regularly spaced (i.e., grid) data interpolated from irregularly spaced groundwater
concentration (i.e., X, Y, and Z) data (see Table 1). The grid data were contoured to depict the
distribution of COCs (i.e., Z values). Cross sections (i.e., transects) of the plumes were extracted
from the grid data using the Surfer slice function. These transects were imported into an
Microsoft Excel spreadsheet and analyzed to predict mass flux and natural attenuation rates (see
Section 4.1).
Figures 10 through 14 present isoconcentration maps of July 1996 groundwater analytical data
for total and individual chlorinated COCs (see Table 1). Figure 15 presents isoconcentration of
chloride in groundwater based on July 1996 monitoring well data. The grid values from the
i
monitoring well data were interpolated using the Surfer kriging algorithm. No variogram was
f 'created for the data. Instead, parameters for the kriging algorithm were developed using trial and
[ error until contoured grid data reasonably represented the observed COC distribution shown in
Figures 5 through 9. The following parameters were developed for the gridding algorithm:
Q Grid Spacing: 50 feet x 50 feet
Q Grid Method: Kriging
• Component 1: Linear
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 5
— A parameter: default
— C parameter: default
— Anisotropy = 5 @ 185° (general groundwater flow direction)
• Component 2: Gausian
— A parameter: Maximum Z value
— C parameter: default
— Anisotropy = 5 @ 185° (general groundwater flow direction)
Q Search: Quadrant
• Search Ellipse
— Radius 1 = default
— Radius 2 = 800 (maximum plume width from manually contoured data)
— Angle =185° (general groundwater flow direction)
Additionally, nondetected results were assigned zero values as were areas outside of the plume as
defined by historical data.
A comparison of Figures 10 through 14 to their corresponding manually contoured data
presented in Figures 5 through 9 shows that the computer-contoured data reasonably depict
observed conditions. Variations from the manually contoured data occur near source areas,
whereas computer-contoured data are represented by a more elliptical pattern and located along
the plume edge where data are more erratic. These variations are not expected to significantly
effect any subsequent analysis because mass flux analyses were performed downgradient of the
source areas, and the concentrations along the plume edge are significantly less than in the
central portion.
Figure 16 shows the three transect locations that were selected based on monitoring well data
analysis. Transect locations were selected to sample groundwater near but downgradient of the
source areas, midway downgradient, and at the leading edge of the plume. Transects were
located downgradient of suspected source areas to avoid addition of mass between transects.
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 6
2.2 Field Methods
Groundwater samples were collected using Strataprobe direct-push technology. Sampling began
at the outside locations of each transect to verify the lateral extent of the plume. Once the lateral
extent of the plume was verified, the sampling proceeded inward toward the center of the plume.
Samples were collected from 2-foot screen lengths at 5-foot depth intervals from the base of the
deep zone of the Columbia Formation to the base of the shallow zone.
2.2.1 Direct-Push Technology Description
Because of the advantages of minimal waste generation and rapid sample collection, the
Strataprobe was selected for this project. This unit uses a truck-mounted pneumatic hammer
with a hydraulic ram to advance 2-inch outer diameter steel rods through the ground subsurface
to the desired sample depth. The lead rod is equipped with a stainless-steel 0.006-inch slotted
screen that is exposed to the water-bearing zone when the operator retracts the rods. In this
investigation, the rods were pulled back to expose 2 feet of screen. A sacrificial steel drive point
was used at each hole to advance the screen to sample depth.
2.2.2 Screen Development
Before testing or sampling was performed, field personnel developed the screened section
according to the following procedure. Once the screen was exposed, the water level was allowed
to equilibrate, and the static water level was recorded. Field personnel then inserted polyethylene
tubing through the rods to the center of the screen section and began pumping the well with a
peristaltic pump to develop the screen. Development was determined from visual observation of
turbidity.
2.2.5 Hydraulic Conductivity Testing
To compute the mass flux of chloroethenes through the transect areas, hydraulic conductivity
data were needed at each sample point. Hydraulic conductivity at each sample point was
determined using an EPA-developed method that is described in a paper by Cho, et al. (2000).
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page?
Specific Capacity Tests
After development of the screen zone, the water level was allowed to return to the static
level. Field personnel raised the tubing until the intake was 1 foot below the recorded
static water level and began pumping until both air and water were pumped. Where
pumping rates were insufficient to cause 1 foot of drawdown, the tubing was raised until
both air and water were pumped. With the pumping water level static, the flow rate was
determined by collecting the purged water in a graduated cylinder and recording the
amount of time required to collect a specific volume. The flow rate and drawdown could
then be used to calculate the specific capacity for each sample point.
Well IR-07D Hydraulic Conductivity Calibration to Transect Specific Capacity
Initially, conversion of specific capacities obtained from the Strataprobe locations to
hydraulic conductivities was attempted by developing a calibration factor. This
calibration factor was obtained by conducting Strataprobe specific capacity tests adjacent
to a monitoring well in which a drawdown test was conducted. This method was later
abandoned for the method provided by Cho, et al. (2000) and described in Section 3. For
completeness purposes, a description of the side-by-side test is presented below.
The Strataprobe specific capacity tests were conducted adjacent to monitoring well
IR-07D and at depths correlating to the screened interval of the well. Monitoring well
IR-07D was selected for the calibration test because it is screened in the same formation
and zone in which the sampling and specific capacity testing were conducted.
First, the Strataprobe specific capacity tests were conducted adjacent to the well. The
field crew performed three separate tests: one each at the top, middle, and bottom depths
of the monitoring well screen section (see Figure 17). After the specific capacity tests
were completed, a drawdown test was performed on the monitoring well to determine the
hydraulic "conductivity. The well was initially pumped at 1 to 2 gallons per minute (gpm)
using a centrifugal pump with 1 3/4-inch black polyethylene drop tubing. The pumping
rate was increased twice until a steady drawdown was achieved (see Figure 18). Using a
pumping rate of 7.9 gpm and a drawdown of 1.2 feet, the hydraulic conductivity was
computed to be 31 feet/day (ft/day) [1.17 x 10"2 centimeters per sec (cm/sec)].
RTDFBioremediation of Chlorinated Solvents WorkGroup
-------
March 7,2002
PageS
2.2.4 Groundwater Sampling
After completing the specific capacity tests at each sample point, groundwater samples were
collected for both laboratory and field analysis. Samples were collected using the same
peristaltic pump and dedicated polyethylene tubing that was used in the specific capacity tests.
Prior to sampling, the water in the rods was purged by pumping from the screen zone until field
parameters became stable. First, the groundwater was pumped until the turbidity reduced to a
reasonable level. Then, the tubing was connected to an in-line flow cell, and parameters were
recorded for each well volume purged until pH, temperature, and specific conductance became
stable.
For this project, a QED Purge Saver flow cell was used. This flow cell is designed to provide
accurate measurements from a flow of groundwater with no aeration. Parameters measured
include temperature, pH, conductivity, redox, and dissolved oxygen (see Appendix A for field
measurements). To ensure proper flow cell operation, the instrument was calibrated daily before
sampling began. A calibration check was performed at midday to confirm instrument accuracy.
When field parameters measured by the flow cell stabilized, the polyethylene tube was
disconnected, and samples were collected. The flow rate was reduced to approximately 100
milliliters per minute (ml/min) or to the lowest rate at which an even flow of water could be
attained. Sample containers were filled with the discharge toward the sides of the wall to
minimize volatilization.
Samples were collected for the following parameters: priority pollutant VOCs, including trans-
and cis-l,2-DCE; total organic carbon; methane; ethane; ethene; propane; sulfide; sulfate; nitrate;
nitrite; chloride; and alkalinity. All samples were placed on ice in a cooler and shipped by
overnight courier to the ICI laboratory in Mississauga, Canada, for analysis.
hi addition to laboratory analytical data, field tests were conducted for total and dissolved iron,
o
manganese, and sulfide. These field tests were conducted using the ChemMetrics™ chlorimetric
test kits. Dissolved manganese samples were field-filtered using a 45-micron filter and
peristaltic pump.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 9
VOC headspace analysis was also performed on samples from each location by collecting sample
water in a mason jar and securing foil over the lid with the screw-on ring top. Approximately one
half an hour after the headspace sample was collected, the headspace was sampled with a flame
ionization detector by piercing the foil with the probe. Headspace readings ranged from 0 to
420 parts per million (ppm) (see Appendix A).
2.3 Cost
The total cost to conduct the study was approximately $175,000 as summarized below. This cost
is an order of magnitude greater the estimated cost of $15,000 to determine the mass flux using
existing monitoring well data as described in Section 4.1.
Strataprobe Contractor $64,800
Strataprobe Contractor
(remobilization for confirmation samples) $4,640
Surveying Contractor $5,000
ICI Sample Analysis
(estimated from commercial rates) $33,000
Field Oversight and Data Management (DERS) $48,000
Data Evaluation and Report Preparation
(estimated) $20,000
TRANSECT STUDY TOTAL $175,440
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 10
SECTION 3
RESULTS
The subsections below present the hydraulic conductivity and analytical results obtained during
the field investigation.
3.1 Hydraulic Conductivity Determinations
Hydraulic conductivities were determined through the method described by Cho, et al. (2000).
Using this method, the calculated hydraulic conductivities ranged from 0.3 ft/day
(1.07 x 10"4 cm/sec) to 339 ft/day (1.2 x 10'1 cm/sec) and averaged 18 ft/day (6.56 x 10'3 cm/sec).
Appendix B summarizes the calculated hydraulic conductivities. This average hydraulic
conductivity is significantly less than the sitewide average of 68 ft/day (2.4 x 10"2 cm/sec)
determined from more conventional pumping and falling head (i.e., slug) tests (DERS, 1997).
The hydraulic conductivity calculated using the method provided by Cho, et al. (2000) is too low
to reasonably account for the observed contaminant plume at the site. Using the calculated
average hydraulic conductivity (K) of 18 ft/day, a sitewide average hydraulic gradient (I) of
0.002, and an estimated porosity (n) of 0.35, the groundwater flow velocity (v) at the site is as
follows:
v=-ki/n =37ft/year (1)
The groundwater contaminant plume at DAFB is approximately 7,000 feet in length. Therefore,
using an average hydraulic conductivity of 18 ft/day, the contaminant plume age would be
approximately 190 years, clearly prior to establishment of the base. The sitewide hydraulic
conductivity of 68 ft/day results in a plume age of 50 years, which coincides with the expected
initial contaminant releases at the site.
As shown above, the calculated hydraulic conductivities did not reasonably describe the observed
plume conditions at DAFB and underestimated hydraulic conductivities as compared with
average sitewide values determined from pumping and falling head tests (DERS, 1997). As a
result, a calibration factor was subsequently determined from the sitewide hydraulic conductivity
and statistical analysis of specific capacity distribution.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 11
Statistical analysis of the specific capacity results from the Strataprobe tests showed that the
distribution of these data is lognormal (see Table 2). Further analysis presented in Table 3
showed that the mean value of specific capacity from this distribution is 0.114 ml/cm/sec. Thus,
the calibration factor required to make this mean value equivalent to the sitewide hydraulic
conductivity is 0.21. This calibration factor was used to determine the hydraulic conductivity at
each transect sample location (see Table 4).
Figures 19, 20, and 21 present the resulting hydraulic conductivities at each transect sample
location. The distribution of hydraulic conductivities appears to be random within and between
each transect as shown in these figures. The hydraulic conductivities were used in combination
with the field flow observations presented in Appendix A to better determine the depth of the
Calvert Formation, which marks the lower flow system boundary. It should be noted that a
number of these samples are believed to have intersected the Calvert Formation based on
substantially decreased or no recharge observed. As a result, the sampling device was, in some
instances, retracted until sufficient recharge was observed to indicate the presence of aquifer
material. The depth of the Calvert Formation was determined based on these observations,
which are detailed in the sampling logs presented in Appendix A.
The source of discrepancies between the hydraulic conductivity arrived by the method provided
(Cho, et al., 2000) and reported by others (DERS, 1997) may be related to skin effects caused by
the sampling method or possibly heterogeneity of the geologic material. Advancement of the
Strataprobe may have caused clay and silt to be smeared along the borehole wall, thereby causing
skin effects that could not be removed during development with the low volume (i.e., peristaltic)
equipment required by the investigation technique.
3.2 Analytical Results
3.2.1 Chlorinated VOCs
Groundwater analytical results from samples collected at each transect are presented in Table 5.
Figures 22 through 36 present COC concentrations [i.e., PCE; TCE; cis-l,2-DCE; vinyl chloride;
and 1,2-dichloroethane (DCA)] at each transect. As shown on Table 5, numerous other VOCs
were detected in groundwater samples collected during the study. The most notable of these
VOCs is carbon tetrachloride, along with degradation products chloroform and dichloromethane.
These compounds were detected primarily along the eastern portion of the study area;
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7,2002
Page 12
determining their lateral extent and subsequent mass flux and attenuation was beyond the scope
of this study.
As shown in Figures 22 through 24, PCE concentrations in groundwater in upgradient Transect A
are concentrated at location TA-03 in the western part of the transect. Elevated PCE
concentrations were detected in the shallow samples collected from eastern transect location
TA-09. However, PCE at this location appears to be unrelated to the study area plume and likely
marks the western edge of a more shallow PCE source east of the study area. As a result, this
transect location was not included in analyses. Downgradient of Transect A, PCE was not
observed at elevated concentrations (greater than 15 ng/L) or widely distributed in Transect B or
Transect C (see Figures 23 and 24).
TCE was detected over the widest study area portion (see Figures 25 through 27). At Transect A,
two areas of TCE separated by low concentrations at TA-04 and well nest IR-07 were detected
(see Figure 25). As with PCE, elevated TCE concentrations were detected in shallow samples
collected from eastern transect location TA-09. This occurrence appears to mark the western
boundary of a more shallow source east of the study area. Downgradient of Transect A at
Transect B, TCE concentrations were more broadly distributed across the central transect portion
(see Figure 26). At Transect C, TCE concentrations continued to be broadly distributed and
decreased with the exception of location TC-04 at 40 feet below grade (see Figure 27). The TCE
concentration (500 ng/L) at this location was similar to concentrations observed at upgradient
Transect B. To confirm this observation, additional transect locations were subsequently
installed 5 feet east and west of location TC-04 (i.e., TC-04A and TC-04B, respectively). TCE
concentrations at these locations were similar (i.e., 256 and 306 ug/L) to those observed at TC-04
(see Table 6).
cis-l,2-DCE, a degradation product of TCE, was detected at concentrations similar to TCE at
Transect A, but concentrations decreased rapidly downgradient toward Transect B (see
Figures 28 and 29). cis-l,2-DCE was not detected in Transect C (see Figure 30). As shown in
Figure 28, cis-l,2-DCE is concentrated along the western portion of Transect A and was present
at concentrations similar or higher than TCE (see Figure 25). However, in the central and eastern
portions of Transect A, cis-l,2-DCE concentrations were one to two orders of magnitude less
than TCE concentrations. This distribution indicates that the western portion of the plume is
degrading more actively than the eastern portion. At Transect B, cis-l,2-DCE was broadly
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 13
distributed and generally one to two orders of magnitude below TCE concentrations (see
Figures 29 and 26 for cis-l,2-DCE and TCE, respectively). An anomalous high concentration of
cis-l,2-DCE was observed in the shallow portion of eastern transect location TB-10 (see Figure
29). This high concentration may be related to degradation of TCE occurrences in the shallow
zone observed at upgradient location TA-09 (see Figure 25). cis-l,2-DCE was not observed in
Transect C, indicating complete degradation (see Figure 30).
As with cis-l,2-DCE, vinyl chloride distribution indicates that the western portion of the plume
is degrading more actively than the eastern portion. In Transect A, vinyl chloride was only
observed in the western portion of the plume (see Figure 31). Downgradient at Transect B vinyl
chloride was not detected, with the exception of an anomalous occurrence observed in the
shallow portion of location TB-10 (see Figure 32). This occurrence is coincident with and
attributed to the degradation of elevated cis-l,2-DCE concentrations observed at this location
(see Figure 29). Vinyl chloride was not observed in Transect C, indicating complete degradation
(see Figure 33).
The other primary chlorinated compound evaluated, 1,2-DCA, was observed along the western
portion of the study area at Transect A (see Figure 34). Downgradient at Transect B, 1,2-DCA
was observed at less concentration but was more broadly distributed (see Figure 35). Finally,
1,2-DCA was detected sporadically across Transect C and at concentrations only slightly above
detection limits (see Figure 36).
3.2.2 Chloride
Chloride generation provides a direct indication of chlorinated VOC dehalogenation at DAFB.
The chloride distributions observed at each transect are presented in Figures 37 through 39. In
Transect A, the highest chloride concentrations were observed west and east of elevated
chlorinated VOC concentrations (e.g., TCE and cis-l,2-DCE distributions as shown in Figures 25
and 28). As shown in Figure 38, at downgradient Transect B elevated chloride concentrations
were again observed proximal but not coincident to the highest chlorinated VOC concentrations
(see Figure 26). At Transect C, the highest chloride concentration was observed along the
eastern edge of the transect and may be related to a chloride source east of the study area (see
Figure 39).
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 14
3.2.3 Gases
Ethene and methane were also detected in groundwater samples (see Table 5). Figures 40
through 45 present these results along each transect.
Ethene distribution was not widespread across the site and concentrations were low (i.e., less
than 11 ug/L). Ethene was only detected at location TA-03 at Transect A (see Figure 40);
however, this detection is coincident with the highest vinyl chloride concentration detected along
the transect and provides evidence for complete dechlorination of the chloroethenes (see
Figure 31). Downgradient of Transect A, ethene was only detected at two locations: once within
the Calvert Formation clay along Transect B and once within the upper portion of the deep zone
in Transect C (see Figures 41 and 42).
Previous reports indicate that methanogensis is an important biotransformation process at DAFB
(RTDF, 1998). The distribution of methane detected during the transect study support these
conclusions. Methane distribution was coincident with the presence of chlorinated VOCs at
Transect A (see Figure 43). Downgradient of Transect A, methane was only detected
sporadically and at relatively low concentrations, indicating that methanogensis is not persistent
downgradient of Transect A (see Figures 44 and 45).
3.2.4 Dissolved Oxygen and Redox
Dissolved oxygen and redox measurements were collected in the field during the study to
identify zones of reducing and oxidizing conditions (see Appendix A). In general, a combination
of low (i.e., less than 1 ppm) dissolved oxygen and negative redox values were used to identify
reducing conditions. Where discrepancies between dissolved oxygen and redox existed,
information from field logs or other analytical data (e.g., dissolved iron) were used to identify
reducing conditions.
The measurements obtained support previous reports stating that reducing conditions promoting
dehalogenation operate upgradient at the site and that oxidative biotransformation occurs
downgradient (RTDF, 1998). As shown in Figure 46, a relatively broad cross section of
Transect A shows reducing conditions with relatively low oxygen concentrations and redox
levels. Downgradient of Transect A, reducing conditions were observed but were more localized
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 15
(see Figures 47 and 48). These observations also support the conceptual biodegradation model
for the site.
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 16
SECTION 4
FINDINGS
Mass flux and the subsequent biotransformation kinetics of total chloroethenes and individual
COCs were determined by two methods. Results from this analysis were compared to determine
if monitoring well data can adequately describe natural attenuation processes at DAFB. Mass
flux was first calculated by using plume maps generated from monitoring well data during field
study design. Then, mass flux was calculated from the transect data and compared to monitoring
well data analysis. Additionally, mass flux from the transect data was determined using two
methods to further evaluate natural attenuation at DAFB: direct calculation and statistical
analysis. The subsections below present the analysis methods and a discussion of findings.
In each analysis, the mass flux of individual chloroethenes; 1,2-DCA; and chloride ion was
determined by multiplying the relevant concentration, c, at each sample point by the groundwater
flow (Q) determined through Darcy's law.
M=Qc=KiAc (2)
where:
K = Hydraulic conductivity
i = Hydraulic Gradient
A = Cross-sectional area
Resulting mass flux were used to calculate apparent biodegradation rates between transects based
on the method presented by Wilson, et al. (1994) in which the apparent degradation rate, -k, is
given by the following:
-k = ln(Cj+i/Cj)/At (3)
where:
C = Mass flux or concentration at transect j
At = COC travel time between transects
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7, 2002
Page 17
The travel time for each COC was corrected for retardation by dividing the groundwater travel
time by the retardation factor (RJ) for each COC as given by the following:
Rf=l + (pb + n)(Kd) (4)
where:
pb = Bulk density
n = Porosity
K<| = (Koc)(foc), where^oc is the fraction of organic content and Koc is the partitioning coefficient
4.1 Monitoring Well Data Evaluation
COC isoconcentration maps generated from existing monitoring well data were used to evaluate
natural attenuation at DAFB. The mass balance of chloroethenes and chloride provide evidence
of natural attenuation. Biotransformation kinetics were determined by simulating transects
through the isoconcentration maps using Surfer. These simulation results were compared with
findings from the transect data.
4.1.1 Mass Balance of Chlorinated Ethenes and Chloride
The natural attenuation of chloroethenes is supported by the mass balance of chloroethene and
chloride ion above background in groundwater at DAFB. Comparing the mass of chloride ion in
groundwater versus the mass of chloride contained within the chloroethenes indicates that
significant degradation is occurring. As shown on Figure 15, chloride concentrations in
groundwater increase from upgradient background levels [5 to 10 milligrams per liter (mg/L)]
coincident with the chloroethene plumes (see Figure 10). Elevated chloride concentrations were
also present downgradient of known source areas (RTDF, 1998). The similar distributions
indicate that chloride ion is being generated from chloroethene reduction.
Background concentrations of chloride were determined from six episodes of sitewide
groundwater sampling conducted between June 1995 and March 1997 (RTDF, 1998). No other
significant source of chloride ion has been' identified at DAFB. Specifically, shallow
groundwater monitoring results do not indicate the presence of road salt or other sources of
chloride ion (RTDF, 1998).
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 18
Using the volume function in Surfer, the mass of chloride contained in the dissolved
chloroethenes can be calculated from data files used to create plume maps (Figures 10 through
14). This total mass can be compared with the chloride ion plume mass determined from Figure
15. The "volume" of each plume calculated by Surfer can be converted to the chloride mass, M,
within each plume using the following relationship:
M = (VSurfer) ft) (0) (mwcl) (5)
where:
Vsurfer = Volume calculated by Surfer (ft2 mg/L).
(Chloride corrected for background concentration.)
t = Aquifer thickness (10 ft)
0 = Porosity (0.35)
ci = Molecular weight of chloride in each compound
Table 7 summarizes the results. Based on this analysis, chloroethene plumes at DAFB represent
only 0.5% to 2.4% of total chloride mass above the background levels of 5 and 10 mg/L,
\ respectively. These results demonstrate that more than 95% of the dissolved chloroethene plume
has been transformed to chloride.
U
4.1.2 Mass Flux Determined from Monitoring Well Data
Mass flux was determined from monitoring well data used to develop the transect study (see
Section 2.1). A more general approach than the subsequent transect study was employed to
determine mass flux because detailed aquifer characteristics collected during the transect study
would not normally be available for this type of analysis. Mass flux at each transect was
determined using contour maps of analytical data collected from monitoring wells and processing
functions of Surfer. Appendix C presents the calculations for each transect, as described below.
First, transect field sample locations were imported into the chloroethene Surfer grid files.
Figure 16 shows the transect locations that were electronically overlain on Figures 10 through
14). The Surfer slice function was used to cut a cross section across each plume where the
X axis represents distance to each grid line along the slice, and the Y axis represents the
concentration interpolated at each grid line location. Mass flux for each COC at each transect
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 19
was determined by multiplying the concentration interpolated along each transect by the
groundwater flow (see Equation 2).
The average hydraulic conductivity of 68 ft/day was used because specific values at each transect
would normally not be available. Cross-sectional area (A) was determined for each COC
concentration value by a cell defined by half of the distance to the next point or, for the first and
last value, the distance to the end of the slice. The thickness of the aquifer was uniformly set at
10 feet, which is average for the deep zone at DAFB.
The hydraulic gradient ft) was determined from the groundwater contour map of March 1997
monitoring well water level data (see Figure 49). The hydraulic gradient at each transect was
calculated individually to reflect the increasing gradient between Transect A and Transect C.
Table 8 summarizes and Figure 50 graphically presents the resulting mass flux for each COC.
As shown on Figure 50, chloroethene mass flux decreases by more than an order of magnitude
from in the downgradient direction while chloride mass flux remains relatively constant,
decreasing by less than an order of magnitude. Because chloride acts as a conservative tracer, the
decrease in chloride mass flux is attributed to dilution from infiltration. Infiltration into the deep
zone and dilution is further indicated by the divergent groundwater flow as depicted on Figure
49. Biodegradation of the chloroethene plume is indicated by the greater decrease in mass flux
than that attributed to dilution (as indicated by chloride).
4.1.3 Apparent Biodegradation Rates from Monitoring Well Data
Apparent biodegradation rates used from analyzing monitoring well data were calculated from
the mass flux determined above (see Equation 3). The results of the biodegradation rate
calculations are included in Table 8, along with mass flux determined above. Degradation half-
lives ranged from 1.5 to 12 years.
4.2 Transect Data Evaluation
Data collected during the transect study were used two ways to determine mass flux. The first
method determined the mass flux of individual and total chloroethenes by summing mass flux at
each data point in a manner similar to that used in the monitoring well data evaluation presented
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7,2002
Page 20
in Section 4.1. The second evaluation method used statistical techniques to analyze total mass
flux at each transect. The subsections below present the findings of both analytical techniques.
4.2.1 Mass Flux Determined by Summation of Transect Data
Analytical and hydraulic conductivity data collected at each transect sample point were used to
calculate mass flux in the area represented by the point using Equation 2.
Hydraulic conductivities were obtained from the specific capacity tests conducted at each sample
location (see Section 3.1 and Table 4). As discussed in Section 3.1, the calibration factor used to
estimate hydraulic conductivities from the specific capacity tests was corrected based on the
distribution of the specific capacity test results and the sitewide average hydraulic conductivity of
68 ft/day. The cross-sectional area (A) was determined for each sample point by a cell defined by
half of the distance to the nearest sampling point or the distance to the nearest boundary.
Figures 51, 52, and 53 show the area assigned to each sampling point in Transects A, B, and C,
respectively.
Unlike hydraulic conductivity and analytical results, the hydraulic gradient ft) could not be
collected at each sample location. Thus, the hydraulic gradient was determined using a sitewide
groundwater contour map of March 1997 monitoring well water level data (see Figure 49).
Gradients from sitewide data were corrected for the angle of incident between flow lines and
each transect because the divergent flow lines do not uniformly cross the transects at right angles.
The resulting component of flow normal to each transect was used in the calculations. To obtain
the perpendicular component of flow, the perpendicular component of gradient (in0rmai) was
determined by measuring the angle, 6, between the flow line and a line perpendicular to the
transect. Once the angle, 0, was measured, the perpendicular component of gradient was
computed as follows:
inormal = ft) (COS 0) (6)
Substituting in0rmai for i in the previous equation results in the perpendicular component of flow.
Flow calculation results are summarized in Table 9. As summarized below, by correcting for the
component of flow perpendicular to the transect, the total flow at each transect was reduced by
up to 19%. Specific flow decreases at each transect are as follows:
RTDF Bioremediation of Chlorinated Solvents WorkGroup
-------
March 7, 2002
Page 21
Q Transect A: 13.6% flow decrease
Q Transect B: 18.8% flow decrease
Q Transect C: 18.8% flow decrease
After the flow values were computed, mass flux was determined for each chloroethene;
1,2-DCA; and chloride at each location by dividing the analytical results for these compounds by
their molecular or atomic weights and multiplying by the flow. The results of these calculations
are listed in Table 10; the mass flux for each transect is summarized in Table 11.
As shown in Table 11, initial calculations indicated a slight (i.e., 2.4 times) increase of TCE mass
flux and, hence, total chloroethene mass flux from Transect B to Transect C. The increase in
mass flux between Transects B and C results from an elevated hydraulic conductivity measured
at location TC-04-40 (see Figure 21) and approximately equivalent TCE concentrations between
Transect B and Transect C (see Figures 26 and 27, respectively). Hydraulic conductivity at this
location was higher than the upper measurement limits and more than an order of magnitude
greater than the mean hydraulic conductivity for the site (2,000 versus 68 ft/day). This elevated
hydraulic conductivity, when combined with the TCE concentration at TC-04-40, resulted in an
apparent increase in mass flux. A similar elevated hydraulic conductivity effect at Transect B
location TB-05-51.5 was observed.
Because no TCE source is suspected between Transects B and C, the increase in mass flux is
attributed to data uncertainties. These uncertainties may be due to the variability in contaminant
distribution, measurement error, or the scale at which different variables used in determining
mass flux were measured. The transect study was designed to reduce uncertainty in contaminant
distribution to the extent practicable. Samples were collected vertically at 5-foot intervals and
horizontally at approximately 250 feet or less; the resulting concentrations supported the site
conceptual model. As presented in Section 4.2.3, the data indicate a lognormal distribution with
an acceptable level of confidence. As a result, the data appear to describe the contaminant
distribution at the site adequately. Sources of measurement error are discussed in more detail in
Section 3.1 and include skin effects associated with the sampling method. To confirm results at
TC-04-40, additional samples were collected from Strataprobe borings located 5 feet normal to
the direction of groundwater flow from TC-04-40. Sample results from these borings were
similar to the original sample.
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 22
Determination of concentration and hydraulic conductivity variables in calculating mass flux
were obtained at point locations through Strataprobe sampling. In contrast, hydraulic gradients
were determined from groundwater contour maps on a subregional scale. To demonstrate the
possible effects of these differing scales on mass flux determination, further sensitivity analysis
was conducted. Assuming conservation of mass, Darcy's law dictates that an increase in
hydraulic conductivity results in an equal decrease in hydraulic gradient or cross-sectional area.
This concept is shown empirically in Figure 54 and demonstrates that more than an order of
magnitude decrease in gradient can result from increased hydraulic conductivity observed at
TC-04-40.
To demonstrate the effect of hydraulic conductivity on hydraulic gradient (see Figure 54), the
United States Geological Survey (USGS) model MODFLOW was applied. A lens of high
hydraulic conductivity was modeled as a cross section along a flow path. The dimension of the
model was 500 by 10 feet and of unit depth. The 500-foot length was based on the resolution of
hydraulic gradient at DAFB from monitoring well data (see Figure 50). Model and lens vertical
dimensions were based on the results of the transect sampling in which sample point TC-04-40 is
5-feet thick and is bounded by sample TC-04-35 located 5 feet above. Finally, the lens length
was set at 1/10* the distance between Transects B and C to reflect the discontinuous nature of the
braided stream depositional environment
As this analysis demonstrates, the combination of sitewide hydraulic gradients with1 point
measurements of hydraulic conductivities can dramatically affect flow rates for large variations
of hydraulic conductivities. Based on this evaluation, the hydraulic gradient used to determine
mass flux at location TC-04-40 was decreased to demonstrate the possible effect that an increase
in hydraulic conductivity can have on the resulting mass flux calculation. The resulting mass
flux is presented with the unadjusted value in Table 11 and graphically as Figure 55. As shown
on Table 11 and Figure 55, the mass flux of chloroethenes decrease by more than an order of
magnitude between Transects A and C. This mass flux decrease is generally constant between
transects with the exception of TCE. TCE mass flux decreases by more than an order of
magnitude between Transects A and B. As discussed above, the mass flux of TCE between
Transects B and C did not change appreciably within the error of the study.
Chloride mass flux decreases at a constant rate and by less than an order of magnitude from
Transects A to C. Because chloride is a conservative tracer, this decrease is attributed to dilution
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 23
and because the decrease is less than decreases observed in chloroethene mass flux, chloroethene
plume biodegradation is generally indicated. However, even by correcting the mass flux for
hydraulic conductivity effects on gradient, the rate of decrease in TCE mass flux between
Transects B and C is similar to the rate of decrease in chloride mass flux between the two
transects. As a result, dilution appears to account for any TCE attenuation between Transects B
and C.
4.2.2 Biodegradation Rates from Transect Data
Apparent biodegradation rates from the analysis of transect data were calculated from the mass
flux determined above (see Equation 3). The results of the biodegradation rate calculations are
included in Table 12, along with the mass flux determined for each COC. Degradation half-lives
were generally consistent between 2.2 and 3.7 years, with the exception of TCE attenuation
between Transects B and C. Reduced TCE attenuation is noted between the two transects even
when using a reduced hydraulic gradient that results in a half-life of 9.6 years from Transects B
toC.
4.2.3 Mass Flux Determined by Statistical Analysis
An alternative approach to determining the mass flow of chloroethenes through each transect is
to use statistical techniques to estimate the mean mass flow per unit area, m, and then multiply
this value by the total area of the transect. From Equation 2, the mole flux/unit area/day, nip, at
the specified sampling point,/?, in each transect can be derived from the product of Kp, />, and c/>.
As in the summation method, only the component of flow perpendicular to the transect line is
considered. The values of mass flux of total chloroethenes per square meter per day for each
transect point are presented in Table 13.
Distribution
To calculate the mean mass flux value, m, and estimate the error involved, information is
required on the form of the distribution of mp values within each transect. The frequency
distribution of mp values for each transect is provided in Table 14, and a comparison with
typical lognormal and normal distributions is contained in Figure 56. The comparison
indicates that the distribution of mp values is qualitatively more like a lognormal than a
normal distribution.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 24
This tentative conclusion was tested more rigorously by performing the Shapiro-Wilk's
test (Shapiro and Wilk, 1965). This test establishes whether the set of empirical results
are drawn from a lognormal or a normal distribution. A W-statistic is calculated and its
value is compared with reference values derived for specific quantile levels. If the value
of Wset is greater than the Wreferencei the hypothesis that the underlying distribution is
lognormal or normal is accepted at the specified quantile level. The results of the
Shapiro-Wilk's test for the set of mp values from each transect are contained in Table 15.
These results confirm the original view that the distributions are lognormal and not
normal for the data sets from each of the three transects at the 0.01 quantile.
Calculation of the Mean Value of mp for Each Transect
Having established that the distribution of mp values for each transect is lognormal, the
mean value, m, and an estimate of the error for a 90% confidence interval can be
calculated using a standard formula (Finney, ). The results of these calculations are
provided in Table 16.
Calculation of the Mole Flux for Each Transect
The mole flux per day for the whole region of each transect can be calculated by
multiplying the mean mass flux per unit area value by the appropriate transect areas. The
mean values generated by this statistical analysis are only applicable to the regions
defined by the boundaries of the sample points as shown in Figure 57. The areas
calculated in this way are presented in Table 17. These values were subsequently used to
generate the plots in Figure 58 and estimate the mole flux per day of total chloroethenes
for each transect.
Statistical analysis determined that there is a statistically significant decrease in the mass
flux of total chloroethenes from Transects A to Transect B and C. Although the mean
value of mass flux at Transect C was less than Transect B, the values were not
statistically different because their upper and lower limits overlapped.
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 25
SECTION 5
DISCUSSION AND CONCLUSIONS
5.1 Discussion
Mass flux and subsequent natural attenuation rates were determined from contoured
monitoring well data and point data collected with a Strataprobe. The monitoring well
data used subregional (i.e., sitewide) parameters of hydraulic conductivity, hydraulic
gradient, and aquifer thickness in determining mass flux. Conversely, the Strataprobe
sampling attempted to determine the hydraulic conductivity and concentration parameters
at each localized point. Indication of natural attenuation from the transect study data was
also evaluated by summing mass flux at each point and statistical analysis.
5. /. 1 Discussion of Data Set and Analysis Method Differences
The absolute value of mass flux calculated from the separate data sets differ. The total
mass flux of chloroethenes at each transect summed over each sample point falls within
the range of total mass flux estimated statistically, as expected (see Table 18). However,
mass flux calculated from monitoring well data falls outside and above the range
estimated statistically. This difference is expected because of the difference in the data
source (i.e., Strataprobe versus monitoring well data).
Both data sets indicate that natural attenuation of the plume is occurring. Although
absolute values differ between mass flux determined from Strataprobe versus well data,
similar conclusions about COC natural attenuation can be made. Table 19 summarizes
the natural attenuation rates calculated from the transect and monitoring well data.
Natural attenuation rates calculated from monitoring well data were generally /
conservative relative to rates calculated from transect data. That is, with the exception of /
PCE and TCE from Transect B to Transect C, natural attenuation rates were lower when
calculated from monitoring well data than from Strataprobe data. •"""""
As presented in Section 4.2.1, mass flux calculated from both data sets contain
uncertainties. Monitoring well data use sitewide parameters and is not affected by
variations at a smaller scale. The Strataprobe sampling attempts to account for these
R TDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 26
variations by collecting concentration and hydraulic conductivity data at individual
points. However, sitewide hydraulic gradients, which must be used in mass flux
determination, result in significant uncertainty because of the different scale at which this
parameter is determined. That is, hydraulic gradients are determined sitewide versus
point determinations of hydraulic conductivities and analyte concentrations. In addition,
although 103 individual points were collected during the study, the cross-sectional area
assigned to each point ranged as high as 3,420 ft2. Applying point data (i.e., hydraulic
conductivity and chemical analysis) to such a large area also results in uncertainty.
Although analyzing both data sets resulted in similar conclusions (i.e., natural attenuation
of chlorinated VOCs is occurring), the cost of conducting this study was more than 10
times the cost of determining mass flux from existing monitoring well data. As a result,
conducting a detailed transect study is unwarranted at a site such as DAFB where the
existing monitoring well network data effectively describes the lateral and vertical plume
limits.
5.7.2 Interpretation of Natural Attenuation from Transect Study Findings
In addition to the primary study objective, which compares the two methods presented
above, a number of observations about the intrinsic bioremediation test plot can be made
from data collected during the study. These observations support previous study
conclusions that used monitoring well data (DERS, 1997). Both monitoring well and
Strataprobe data sets indicate that chlorinated VOC natural attenuation is occurring at the
site. In addition, chloride data collected during the transect study provide further
evidence for natural attenuation and can be used for mass balance analysis.
Chlorinated VOC natural attenuation is indicated by mass flux analysis of both
monitoring well data and Strataprobe point data. As shown in Figures 24, 27, 30, 33, and
36, complete degradation of cis-l,2-DCE and vinyl chloride and nearly complete
degradation of PCE and 1,2-DCA occur prior to Transect C. TCE was not completely
degraded and persists downgradient of the transect study area. This plume morphology
supports previous studies that indicate reductive dehalogenation (i.e.,
PCE—>TCE—»cis-l,2-DCE—>Vinyl Chloride—»Ethene) in the anaerobic area generally
RTDFBioremediation of Chlorinated Solvents Work Group
-------
March 7,2002
Page 27
upgradient of Transect B and that aerobic oxidation of cis-l,2-DCE; vinyl chloride; and
ethene in the downgradient direction (DERS, 1997).
Anaerobic dehalogenation in the area of Transect A with aerobic biotransformation
downgradient is also supported by biochemical indicators. Methane was detected
coincident with the chlorinated VOCs along Transect A, but was sporadic (only detected
at two locations) at downgradient Transects B and C (see Figures 43, 44, and 45).
Similarly, an extensive anaerobic zone as defined by low oxygen concentrations and
redox levels was observed at Transect A, but only was localized downgradient at
Transects B and C.
As shown in Table 7, the mass of chloride ion above background (i.e., 5 to 10 mg/L)
accounts for more than 95% of the total mass of chloride (i.e., organic and ionic)
observed in groundwater. This occurrence supports the theory that chlorinated VOC
biodegradation, resulting in chloride release, is occurring. No other significant source of
chloride is suspected at the site.
5.2 Conclusions
The following conclusions result from the intrinsic bioremediation plume transect study
at DAFB:
Q Chlorinated VOC natural attenuation is occurring in deep zone groundwater based
on the mass flux analysis of three transects constructed across the plume. Natural
attenuation was indicated by using both monitoring well data and point data
collected from 103 Strataprobe sample locations.
Q Complete degradation of cis-l,2-DCE and vinyl chloride and nearly complete
degradation of PCE and DCA occurred in the transect study area. Complete TCE
degradation was not observed within the transect study area.
Q Transect data support previous reports (DERS, 1997) evaluating monitoring well
data that demonstrate that both anaerobic dehalogenation and aerobic oxygenation
of chlorinated VOCs are occurring. Anaerobic processes are occurring in the
upgradient portion of the site and aerobic processes predominate in the
downgradient direction. These conditions result in the persistence of TCE
downgradient of the transect study area.
Q Uncertainties in conducting the mass flux analysis of point data include applying
point source data to large cross-sectional areas and accounting for the effects on
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
March 7, 2002
Page 28
hydraulic gradient of large hydraulic conductivity variations. These uncertainties
can affect calculations of mass flux values significantly.
Q The cost of detailed sampling for the transect study ($ 175,000) compared with the
cost of conducting a mass flux analysis using existing monitoring well data
($15,000) indicates that this type of study is unwarranted for groundwater plumes
whose limits are defined by existing monitoring well networks.
Q Statistical analysis determined that there is a statistically significant decrease in
the mass flux of total chloroethenes from Transect A to Transects B and C.
Although the mean value of mass flux at Transect C was less than Transect B, the
values were not statistically different because their upper and lower limits
overlapped.
RTDFBioremediation of Chlorinated Solvents WorkGroup
-------
March 7, 2002
Page 29
SECTION 6
REFERENCES
DERS. 1997. Site Characterization of Area 6, Dover Air Force Base, In Support of
Natural Attenuation and Enhanced Anaerobic Bioremediation Projects.
RTDF. August 1998. The Groundwater Geochemistry of Area 6, Dover Air Force Base,
Dover, Delaware.
Cho, J.S.; J.T. Wilson; P.P. Beck, Jr. 2000. "Measuring Vertical Profiles of Hydraulic
Conductivity with In Situ Direct-Push Methods." J. Environ. Eng., 126(8), 775-
777.
Wilson, et al. September 1994. Intrinsic Bioremediation ofTCE in Ground Water at an
NPL Site in St. Joseph, Michigan. Symposium on Natural Attenuation of Ground
Water. EPA/600/R-94/162.
D'Agostino, R.B. 1971. Biometrika, 58, 341-348.
Shapiro, S.S. andM.B. Wilk. 1965. Biometrika, 52, 591-611.
Finney, D.J. Journal of the Royal Statistical Society (suppl.), 7, 155-161.
DERS. March 11, 1997. Field Transect Study Work Plan of the Intrinsic Bioremediation
Test Plot.
RTDF Bioremediation of Chlorinated Solvents Work Group
-------
DOVER
AIR FORCE
BASE
Source: Dames and Moore
FIGURE 1
LOCATION OF
DOVER AIR FORCE BASE
-------
(OM1)
SCALE IN FEET
-------
N
DM321S
DM322S DM323S
Countour elevations (ft msl) based on Geoprobe and
Cone Penatrometer Investigation (DERS, 1997)
Scale in Feet
0 500 1000 1500 2000
-I , ,
Figure 3
Structure Contour Map of
Top of Calvert Formation
Dover Air Force Base
Dover, Delaware
-------
N
DM321D
DM322D DM323O
-------
Monitor well
in concentration in ug/l
Corporate tonnoUUoii
MM •* !»• r-e mmllli Ow
lAiiliUliii. OA^are IBBflr OM7
Total Chloroethene Isoconcentratlon Map
July 1996, Deep Groundwater Flow Zone
Dover Air Force Base. Delaware
T1Q
RBW
7124B006
-------
Monitor well
concentration in ug/l
<*nt> A
Cnperate RmwiMan Oreop
*.i««.i*Jr" """*
MU mi n. »-c £<__< »«,
jaaflawasi,
Tetrachloroethene Isoconcentratlon Map
July 1996, Deep Groundwaier Flow Zone
Dover Air Force Base, Delaware
•no
CHKtt
DATE:
2/2/99
APPft
REVlt
0
rt£ NUMBER:
7124B021
FWURE NO:
6
-------
LEGEND
•$• Monitor wall
aaK' concantrotlon In ug/l
Tdchloroethene Isoconcentratlon Map
July 1996, Deep Groundwater Flow Zone
Dover Air Force Base. Delaware
TAE
7124B014
[MURE NO:
12/17/97
-------
4; Monitor well
•i concentration in ug/l
9MJ> H
Cofponte A>BM'i'4itti froup
ie
cls~1 ,2— Dichloroethene Isoconcentration Map
July 1996, Deep Groundwater Flow Zone
Dover Air Force Base, Delaware
TAE
CHKB
DATB
12/17/97
r**t.
KffO:
RCV^
1
7124B015
nauxE HO.-.
8
-------
Monitor well
i° concentration in ug/l
Corporate IHnmirtkm Orevp
Vinyl Chloride (ug/l) Isoconcentrotlon Map
July 1996, Deep Groundwater Flow Zone
Dover Air Force Base. Delaware
TAE
DATE
12/17/97
7124B016
-------
N
Note: 1. Wells with No Data Were Not Sampled
2. Chlorinated Constituents are tetrachloroethene,
trichloroethene, cis-1,2-dichloroethene, and vinyl chloride
File:RCL_MW1.srf
Figure 10
Surfer Generated Total Chlorinated (uMolar)
Constituents of Interest Isoconcentration Map
Deep Groundwater Flow Zone - July 1996
Dower AFB, Delaware
-------
'otel : Wells with No Data Were Not Sampled
ote2: Concentration in ug/L
He: D796pce1 .srf
Scale in Feet
_L
500 1000 1500 2000
1 1
Figure 11
Surfer Generated Tetrachloroethene Isoconcentration Map
Deep Groundwater Flow Zone - July 1996
-I Dover AFB, Delaware
-------
Notel : Wells with No Data Were Not Sampled
Note2: Concentration in ug/L
File:D796tce1.srf
Scale in Feet
500 1000 1500, 2000.
Figure 12
Surfer Generated Trichloroethene Isoconcentration Map
Deep Groundwater Flow Zone - July 1996
Dover AFB, Delaware
i
-------
Notel : Wells with No Data Were Not Sampled
Note2: Concentration in ug/L
File: D796dce1.srf
Figure 13
Surfer Generated Cis-1,2-Dichloroethene Isoconcentratiori Map
Scale in Feet DeeP Groundwater Flow Zone - July 1996
I i Dover AFB, Dover Delaware
500 1000 1 500 2000
-------
Notel: Wells with No Data Were Not Sampled
Note2: Concentration in ug/L
Scale in Feet
Pita-
_L
Figure 14
Surfer Generated Vinyl Chloride Isoconcentration Map
Deep Groundwater Flow Zone - July 1996
Dover AFB, Dover DE
-------
Notel : Wells with No Data Were Not Sampled
Note2: Concentration in mg/L
File: D796cl1 .srf
Scale in Feet
±
500 1000 1500 2000
Figure 15
Surfer Generated Chloride Isoconcentration Map
Deep Groundwater Flow Zone - July 1996
Dover AFB, Delaware
-------
Note 1: Countours are Surfer Generated Total Chlorinated (uMolar) Constituents of Interest
(PCE, TCE, cis-1 ,2-DCE, and Vinyl Chloride), July 1996 in the
Deep Groundwater Flow Zone
Note 2: Wells with No Data Were Not Sampled
File: RCL_MW.srf
r 1 1 1 1
Scale in Feet
Figure 16
Transect Location Map
0 500 1000 1500 2000 Dover AFB, Delaware
-------
Figure 17
Specific Capacity Schematic
RTDF Transect Study, Dover AFB, Delaware
4/29/97
IR-07D
Strataprobe well
-------
Figure 18
Well IR-07D Drawdown Test
Dover Air Force Base, Delaware
-2
10
15
20
25
Time (minutes)
30
35
40
45
50
-------
TA
40 1 I
I
30-
20-
-
10-
~
0-
~
-10-
•
-20-
—
-
IR-07S
TA-04
T A- 0 1 TA-02 TA.o3
-Groundwott r— Surface
47
^^= 92 -^^.^
Calvert ~.
Clay
b^
5
140
18
Surface X.
\s,
30-1-
x
37
67
43
16
16*
46*
" — •
IF
5
12*
19
53
19 r
21
43 •
1-07D TA _,
p-^TA-05 TA-06 TA'°7
_^— -
^^
11
* ,
50
61
226
• • — — _
41
191
50
22
30
18 _-
TA-08
100
52
125
62
L i—
~-^^
TA-09
55
19
39
7Q4
16
20
131
4
=4 3*
TA'
I
.
-40
-30
-20
- 10
-0
- -10
- -20
-
•^n
0 125 250
Note: Hydraulic conductivity calculated from specific capacity tests. ^•••»^=^==J
* Estimated from average of surrounding data.
PuPonf and Th* W-C Diamond Croup ^^^^
Barley Mni Plozo. Bunding 27 ^^
Wilmington. Delowore 19880-0027
TITLE:
RTDF - Dover Air Force Base
Hydraulic Conductivity (ft/day)
OWN:
TAE
CHKD:
DATE:
2/24/98
FEET
DES.:
APPD:
REV.:
1
FILE NUMBER:
2006A019
FIGURE NO.:
19
-------
TB
40-
30-
20-
10-
0-
-10-
-20-
-30
TB'
H440
TB-03
TB-04
TB-05|R_
IR-06S
06D
TB-06
TB-07
TB-10
Cohort
day
Surfoc*
3 0
-20
-10
-0
--10
r-20
-30
Note: Hydraulic Conductivity calculated from specific capacity tests.
* Estimated from overoge of surrounding data.
IDDt>
/VvBtmte R
JK M
DuTtmt mti n
BorUy HI
Plata, Striding
M Oa
27
-0027
UP
A
TIUE:
RTDF - Dover Air Force Base
Hydraulic Conductivity (ft/day)
Transect B
DWN:
TAE
CHKO:
DATE:
2/24/98
APPD:
REV.:
1
2006A020
RGURE NO.:
20
-------
1C
30-i
TC-02
DM360S
TC-03 DM360D
20-
10
TC-01
0-
TC1
H30
-20
-10
-0
--10
--20
-30
Note: Hydraulic Conductivity calculated from specific capacity tests.
<4Q9t>
f*t M'jwM ai^ Rftm*Hteifnn f^mm
A>^HW.MM. ^
i>*nmi m* n* w-e «•»••« em* ^^
Bor(.y MB WOM. BuBdfng 27 ^^
TITLE:
RTDF — Dover Air Force Base
Hydraulic Conductivity (ft/day)
Transect C
TAE
CHKD:
DATE
2/24/98
APPD:
REV.:
1
2006A021
FIGURE NO.:
21
-------
TA
40-, I
30-
20-
10-
0-
-10-
-20-i
-30-
TA- 01 TA-02
0.5
TA 03
IR-07S
TA 04
IR-07D
TA--05 TA-06
TA-07
TA 08
TA 09
Cdlvert
Clay
Surfac*
TA'
I r-40
-30
-20
-10
--10
--20
:-30
Corpqrato RMMdtoHea Group
*f** mt f)W r-C Cttmwi Onvf ^^^
Bortey MM Plozo, BuKtna 27 "^
Mmhfton, IMowr* tflS8»-0027
TITLE
RTDF - Dover Afr Force Base
Tetrachloroethene in Groundwater (ug/L)
Transect A
OWN:
TAE
CHKO:
DATE:
2/17/98
DCS.:
APPO:
REV.:
0
FILE NUMBER:
7124a013
FIGURE NO.:
22
-------
TB-04 IR-06S
•TB-03 _ TB-05
150 300
Corporate nomodtotion Oroup
4 n* r-e Pi~
-------
TC
TC1
30
ao-
10-
o-
-ao-
30
TC-01
TC-02'
TC-03
DM360S
DM360D
Clay
Surface
TC-04
[£-05 TC-06
TC-07
-30
-20
-10
-o
—10
-30
Corporate Ronwdtotton Qroup
Puf** mttlttW-c Hmimi 9m* ^^k
***** Um Rom. Bukftw 27 "V
Wfcnlnaton. (Movor* 1«Sa&-OOZ7
TITLE:
RTDF - Dover Air Force Base
Tetrachloroethene in Groundwater (ug/L)
Transect C
OWN:
TAB
CHKO:
IDATE:
2/18/98
DES.:
Af*N):
REV.:
0
FILE NUMBER:
7124A023
R6URE NO.:
24
-------
TA
40-il
30-
TA-01 XA-02 TA_o3
IR-07S
TA 04
IR-07D
TA-07 TA- 08 TA_ 09
TA'
Ip 40
_30
-20
r 10
<*BT>
« __ „
CwpoHkte RMMdtaHon QtCMp
^L^
BoriwUI Mom. Btrt«ng27 ^*
1UE:
RTDF — Dover Air Force Base
Trichloroethene in Groundwater (ug/L)
Transect A
DEL
CHKD:
DATE:
2/17/98
APPD:
REV.:
0
2006A024
FIGURE NO.:
25
-------
40-
30-
20
mt>
Corporate RMiwdtaitoa Group
Bvft* •* r*. r-C Jtamn< A«v ^^k
Bartay U* Ptaza. BukJha 27 "^^
Wbnbiaton. Datawori 10880^0027
TITLE:
RTDF - Dover Air Force Base
Trlchlbroethene in Groundwater (ug/L)
Transect B
OWN:
TAE
CHKD:
DATE:
2/18/98
DES.:
APPO:
REV.:
0
FILE NUMBER
7124A018
FIGURE NO.:
26
-------
30
TC
1
TO no DM360S
TC-03 DM360D
20-
TC-04
-10-
TC-07
TC1
t-30
- 2 0
-10
—10
_-20
--30
-------
TA
40 -il
30-
20-
10-
o-
-10-
-20-
-30
TA-01 TA-02 TA_03
IR-07S
TA 04
IR-07D
TA-07
TA 08
TA-09
Calvart
Cky
Surface
TA'
I r-40
-30
-20
- 1 0
-0
--10
--20
-30
C«pOf*teJlMmdhrtlM Qravp
&fl** «K Ift> r-C ntmml »*i» £^
Bortay IM Plan. BuMng Z7 N^
OntujCuil. (Mown 18880-0027
TITLE
RTDF - Dover Air Force Base
ci«i 1 9 HPP" in firm inH\A/nt«r f\tn/\ ^
uio i ,^_ Lxv^t iii wi uuiiu wu iv7i ^uy/ L.y
Transect A
OWN:
TAE
CHKD:
DATE:
2/17/98
OES.:
APPD:
REV.:
0
RLE NUMBER:
2006A025
FIGURE NO.:
28
-------
Coiporato
4 f
Bartoy MB Plaza. BuMna 27
TITLE:
RTDF - Dover Air Force Base
cis—1,2—DCE in Groundwater (ug/L)
Transect B
OWN:
TAE
CHKD:
DATE:
2/18/98
Ubb.:
APPO:
REV^
FILE NUMBER:
7124A019
FIGURE NO.:
29
-------
30
TC
1
20-
10-
0
-10-
-20-
-30
TC-01
ic-oa
TC-03
DM360S
DM360D
dwat<
Calver~e>
day
Surface
'face
TC-04
TC-07
TC'
H30
-20
<5
-10
--10
--20
30
200
<49t>
cotpofMM RwiwdMuOi) Qroup
P*Pti>l •* m* F-C Ptmtmi 9m* ^^^
«»
Bort«y MB Ptazo. BuMng 27 ^^
Wlmkijton, IMown 198»-0027
HTU:
RTDF - Dover Air Force Base
ftif— .1 O — l"^r*F in flri-it \t-\r\\u <-i + r»r- ftit-t /\ \
cis i ,z U^/L. in vjrounawaTer ^ug/ 1_/
Transect C
OWN:
TAE
CHKO:
DATE:
2/18/98
DES:
APPO:
REV.:
0
FILE NUMBER:
7124A025
FIGURE NO.:
30
-------
TA
40-i I
30-
20-
10-
-10-
-20-
-30-
TA-01 TA-02 TA-03
IR-07S
TA-04
IR-07D
TA-07
TA-08
Colvvrt
day
Surface
s
5
5
id
__
-_
<0.5
«X3
<05
-------
TB
40-
30-
20-
10-
0-
-10-
-20-
-30'
TB-03
TB-04
TB-05.
IR-06S
IR-06D
TB-06
TB-07
TB-10
Colwt
Ctay
Swfoc*
TB'
I -40
-30
-80
-10
-0
--10
--20
-30
150 300
=fc=
FEET
^^fMM^4M*Afl^h ^fe^^^^^^^f^^|^^_ £^^^M^^
vWpulBW RWIMCHDOII WOMP
M rontttnnl^ bv4wMM ,^^k
AiftM* Ml fto r-C «•!•!< 9m» ^^
Borto* MM Pkao. BuUha 27 V
Mmhffon. (Mowon I988(f-0027
T1TIE:
RTDF - Dover Air Force Base
Vinyl Chloride in Groundwater (ug/L)
Transect B
OWN:
TAE
CHKO:
DATE:
2/18/98
OES.:
APPth
REV.:
0
FILE NUMBER:
7124A020
FIGURE NO.:
32
-------
TC
30 H
20-
10-
0-
-10-
-20-
TC-01.
-30
TC-OE
DM360S
TC-03 DM360D
Groundwa-ter S
Clay
Surface
jrface
TC-04
TC-07
TC'
1-30
-20
-10
-0
--10
--2Q
-30
QOnWlJ4rf .»--- .•-.. ^0»|
^^^ J ** "- »^^^?^^^^ 1^W«^P
Bortoy MB Ham. Buldtog 27 ^^
Wlhnhrrtiwt fMrMivw 1MWV-m7T
RTDF — Dover Air Force Base
Vinyl Chloride in Groundwater (U9/ L}
Transect C
OWN:
TAE
CHKD:
DATE:
2/18/98
DES.:
APPD:
REV.:
0
FILE NUMBER:
7124A026
33
-------
TA
40
30
20
10
0
TA-01 TA_ 02 TA- 03
IR-07S
TA 04
IR-07D
TA-07
TA-09
-IO-
TA1
Ir-40
-30
-20
-10
-30
0 125 250
•£=
FEET
Corporate RonMdMton Qrwp
A rtp*nt»fc^ 6t4iMn ^^k
J»M «< n. r-crtomTn* **«, ^^
Bortoy Ml Ptam. BuUhg 27 ^^
Wmlnflton, Movora 10880-0077
TITLE:
RTDF - Dover Air Force Base
,£. aicnioroeinane in orounawaTer ^ug/ u^
Transect A
OWN:
TAB
CHKD:
DATE:
2/18/98
DES.:
APPO:
REV.:
0
FILE NUMBER:
7124A022
FIGURE NO.:
34
-------
TB
\
40
30
2 0
10-
0-
-10-
-20-
- 3 a
TB-04
IR-06S
TB-10
TB'
I r 40
30
2 0
10
• 0
— 10
-2 0
30
4Kb
^^J^Mhd^BA^^ft ^K^aMA^d^MACfMK ^^MMMM
WIpQraiV IfWIWOHIMIII WOU|f
RTDF — Dover Air Force Base
,Z"~dichloroethane m brounawoTer ^ug/L^
Transect B
OWN:
TAE
CHKD:
DATE:
2/18/98
DBS.:
APPO:
REV.:
0
FILE NUMBER:
7124A021
FIGURE NO.:
35
-------
-10-
-3Q
-20
-10
—10
--20
-3Q
Corporate RMMdtaHon Group
A AvtMnA^ ttliMfK ^^
Dvft*t mntV*V-c nwmml A«* ^^k
Bort~ MB Pkm, BuKflna V >^
Mmhaten. OAmn 19880-0027
TITLE:
RTDF - Dover Air Force Base
,^ aicnioroeTnane in orounawaier ^ug/L^
Transect C
OWN:
TAE
CHKD:
DATE:
2/18/98
DES.:
APPD:
REV.:
0
FILE NUMBER:
7124A027
FIGURE NO.:
36
-------
40-
30-
20-
10-
-20-
-30-
TA-01 jA-02 TA-03
IR-07S
TA 04
TA-07
TA- 08 TA. og
TA'
-40
-30
Calvert
Clay
'Surface
9.77
-20
- 10
- -10
- -20
-30
-10-^ Isoconcentration Contour
NA Not Analyzed
250
Corporate RMntdhrtlon Qrot^i
DuPa* mx fft* r-c Ptcmunt Ome ^^^
Borl«y MB PKno. Buldktg 27 v
Wrntioton, Dolcnwira IMBfr-0017
HTLE:
RTDF - Dover Air Force Base
Chloride in Groundwater (mg/L)
Transect A
OWN:
TAB
CHKD:
DATE:
2/24/98
DES.:
W^o:
REV.:
1
FILE NUMBER
2006AO 10
FIGURE NO.:
37
-------
TB
40-
30-
20 J
10-
0-
-10-
-20-
-30
TB-03
TB-04
IR-06S
TB-05lR-06D
TB-06
TB-10
TB'
I h 4 0
3 0
-20
-10
-0
--10
--20
-30
—io^ Isoconcentration Contour
NA Not Analyzed
^Cwpowte RMWdWfcm few
JteftnC _^ Mkf W~C £^^MH^ CbWM ^^f^^L.
Bortcy MB Pton. BuMng 27 v
\OiitnjUin. CMoxn l«8a&-COZ7
•niLE:
RTDF - Dover Air Force Base
Chloride in Groundwater (mg/L)
Transect B
OWN:
TAE
CHKD:
DATE:
2/24/98
OES.:
APPtfc
REV^
1
RLE NUMBER:
2006A01 1
FIGURE NO.:
38
-------
TC
30 H
20-
10-
0-
-10-
-20-
-30-
TC-01
TC-02
DM360S
TC-03 DM360D
Calvart
Clay
Surface
—AO-~^ Isoconcentration
NA Not Analyzed
to
TC-04
TC-07
TC'
H30
^20
-10
-0
--10
--20
-30
n» f-C Ptmmmt Srrnf
Botav MB Plan BuMkig 27
tcn. OduKor. 19880-0027
TITU-
RTDF - Dover Air Force Base
Chloride in Groundwater (Mg/L)
Transect C
OWN:
TAE
CHKD:
DATE:
9/24./9H
DES.:
APPO:
REV.:
1
FILE NUMBER:
2006A012
FIGURE NO.:
39
-------
TA
40^
30-
20-
10-
0-
-10-
-20-
I
IR-07S
TA 0, TA~°4
TA-01 TA-02 TA_03 IR-Q7D .. „
<6
<6
Calwt ^*~<6^->-
Oqy ^,
<6
<6
<« /
I
Surface ^^v \
— ou —
s,
^^
i
<6
<8
" *\
-
/
^
H«__j
<6
<6
<6
<6
<6 :
•^w-f
^-^^05_TA-06 _Ji:T-
,
^^~~~
<6
<6
<6
<6 '
<6 '
<6
<6
<6
<6
<6
.^_ -. — -
<6
<6
<6
<6
TA-08
1 " —
'
<6
<6
<6
<0
N^M
^^•h
Jqjjfc
Coiporato Rcnwdtttoii Group
Bori*y IM fVmx BuMng 27 "^
Wmfaitofi. PiliiHiMB 1088O— tiOZ7
nTl£:
RTDF — Dover Air Force Base
Ethene in Groundwater (ug/L)
Transect A
OWN:
TAE
CHKD:
DATE:
2/24/98
TA-09
•^••— —
<6
<6
<6
<6
-------
TB ^
40-
30-
20-
1O
0-
-10-
-20-
-
I
TB-
TB-03 .
•i i" •
^^^^^^
-------
TC
30 -t
20-
10-
-10-
-20-
-30
TC-01
Calvert
Clay
Surface
TC-02
Sur
^ DM360S
TC-03 DM360D
—6 *-» Isoconcentration Contour
TC 04
i-05 TC-06
TC-07
TC'
h 30
- 20
- 10
0
10
- -20
30
Corporate torMtfrtoa Group
out** •* ik* r-«ri 1 «••» ^%
Bortoy M* Ptara. BuMk>g 27 V
Mtaktfton. (Mown 19880-0027
TITUE:
RTDF - Dover Air Force Base
Ethene In Groundwater (ug/L)
Transect C
TAB
CHKD:
DATE:
2/24/98
DES.:
APPD:
REV.:
1
FILE NUMBER:
2006AO 18
FIGURE NO.:
42
-------
TA
TA'
40-i
30-
20-
10-
o-
-10-
-20-
-30-
TA-01 TA- 02 TA- 03
IR-07S
TA 04
IR-07D
TA-07 TA-08 TA_og
Cohort
day
Surface
r40
-30
-20
- 10
-0
- - 10
- -20
15
-30
—\*— Isoconcentration Contour
^L~ — •._
B*r**
-------
TB
40-
30-
20-
10-
0-
-10-
-20-
-30
TB-03
TB-04
IR-06S
—15-^ Isoconcentration Contour
TB-10
TB'
I h 4 0
- 30
-20
-10
-0
--10
--20
-30
•ortoy 101 Ptao, Bu
Wlmhgton, OikMrara
RTDF - Dover Air Force Base
Methane in Groundwater (ug/L)
Transect B
OWN:
TAE
CHKO:
DATE:
2/24/98
OES.:
APPO:
REV.:
FILE NUMBER:
2006A015
nGURE
44
-------
TC
30 H
20-
10-
0-
-10-
-20-
TCHH1
-30-
TC-O2
DM360S
TC-03 DM360D
Groundwcrtw Sur
Calvert
Clay
Surface
ace
TC-04
—&—• Isoconcentration Contour
TC-07
TC'
1-30
-20
-10
-0
--10
--20
-30
Covporato
n* r-c i
RUE:
RTDF — Dover Air Force Base
Methane In Groundwater (ug/L)
Transect C
OWN:
TAE
CHKD:
DATE:
2/24/98
OES.:
APPO:
REV.:
FILE NUMBER:
2006AO 17
FIGURE NO.:
45
-------
40-^
30
20
10-
0-
-10-
-20-
TA
1
IR-07S
-r* n, TA-°4
TA-01 T A - 0 2 TA_o3 IR=07D
— GrourxJwoti
day
Surfaca
9.7/52
B.3/-72
&0/126
5.4/97.6
6.4/107.8
6/90.2 ,
6/6^.8 /"-.'•
4.3/
6.5/232^^^-. . i
/O6/V163-
i.4A4es;. ;.'•;..'-;.
>W-V '••"'•:•••'•'
1.8/-438
OXIDIZING
^REDUCJNG-'
y--'/--y^i^
-05 TA-06 TA'07
7^/206
NC/174
• OX~^63". " • ".
• QTJ2 if -:70 *. " • "
• i
— ^—
5.8/178
2.7/129
0.4^-440
•aiy-447;.-.'-'.'-.--!
0/-428
TA-08
7.6/-4
-.1:2/75." ;."•.'•;.'•.'•'.•."•
-- 30^
9.7/52 Dissolved Oxygen (ppm)/Redox (mV)
NC Not Collected
*Colormetric Test
^•fe TITLE:
<^™p RTDF - Dover Air Force Base
Corporal* nMUJbtk.i Orwp Dissolved Oxygen and Redox Results
Ml** «Ml flto r-C Mmirrt «*M* ^^
.^^^2S-BX!2SJ;U Transect A
TA'
I
TA-09
7.9/43
5.7/37
-T>4C6/-50
'5t2;?2.b'.V>s.
DVM:
TAE
CHKD:
DATE:
2/24/98
2.4/121
1.8/111
0.5/92
0/-142
6.47=67
40
30
20
• 1 0
--10
- -20
in
0 125 250
FEET
DES.:
7PPR
FILE NUMBER:
2006A001
FIGURE NO.:
REV.:
1
46
-------
TB
40-
30-
20-
10-
0-
-10-
-20-
-30-
TB-03
TB-04
IR-06S
TB-f5IR-06D
TB-06
TB-07
Cohort
day
Swfoo.
10.5/198 Dissolved Oxygen (ppm)/Redox (mV)
NC Not Collected
TB-10
TB'
I 4 0
• 3 0
-20
-10
- 0
- 1 0
--20
-30
^Upb
Corporate RMnodtetton Qroup
Bortoy MO Plaza. BuMktg 27 "V
7ITUE:
RTDF - Dover Air Force Base
Dissolved Oxygen and Redox Results
Transect B
OWN:
TAE
CHKD:
DATE:
2/24/98
OES.:
APPO:
REV.:
1
FILE NUMBER:
2006A002
FIGURE NO.:
47
-------
30
TC
1
20-
10-
0-
-20-
-30
TC-01
TC-02
DM360S
TC-03 DM360D
Groundwoter Sur
Calvert
Clay
Surface
ace
.REDUCING
3.9/-70*
0 2.8/^37
TC-04
OXIDIZING
TC-07
3/151
4-.B/-33
TC'
H30
-20
-10
NC/16
6.3/-188
5.7/NC
--10
--20
-30
S.3/-9 Dissolved Oxygen (ppm)/Redox (mV)
NC Not Collected
Cwporato RMMdtaHon Qroup
M** m«n.T-C «•.•.« OPMV ^W
Bort^im Ptazo. BuMhg 27 ^^
WAiiliglui* Dflavoi* 1S88&-0027
TITLE:
RTDF - Dover Air Force Base
Dissolved Oxygen and Redox Results
Transect C
OWN:
TAE
CHKO:
DATE:
2/24/98
DES^
APPO:
REV^
1
FILE NUMBER:
2006A003
FIGURE NO.:
48
-------
Transect
<]> Sample Location
^V
^
Corporate flinmlillim (kow
*.,!« > ^
01AM «« flM r-C 0I^MB« »Mp
tol^r MM Haz^ lul*ig 27
KIL^I
Groundwater Contour Map — Deep Zone
March 17, 1997
DnvAr Air Force Base. Delaware
DWfc
no
CHKD:
DATE:
2/2/99
K&:
APPDs
REV^
0
7124B005
49
-------
Figure 50
Mass Flux Determined from Monitoring Well Data
Dover Air Force Base, Delaware
Transect A Transect B Transect C
1.00E+01
1.00E+00
1000
2000 3000 4000
Distance (ft)
5000
•Chloride
Total Chlorinated Ethenes
•PCE**
•cis-1,2-DCE
•Vinyl Chloride"
6000
" Vinyl Chloride was not detected at Transect C (1/2 detection limit used)
Data Source: July 1996 groundwater sampling
-------
35
25
15
Figure 51
Transect A Sample Point Cross Sectional Areas
Dover AFB, Delaware
I
§
•a
I -5
w D
-15
-25
-35
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Distance West - East (ft)
• Ground Surface Elevation
-Top of Calvert Formation
-•— Shallow Well Screen Bottom
A Strataprobe Sample Points
-------
Figure 52
Transect B Sample Point Cross Sectional Areas
Dover AFB, Delaware
TB-01 andTB-02
not sampled
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700
Distance West - East (ft)
-•— Shallow Well Screen Bottom
A Strataprobe Sample Points
• Top of Calvert Formation
- Ground Surface Elevation
-------
Figure 53
Transect C Sample Point Cross Sectional Areas
Dover AFB, Delaware
35.0
25.0 - -
15.0
a
I
-15.0
-25.0 -
-35.0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Distance West - East (ft)
- Ground Surface Elevation
• Shallow Well Screen Bottom
A Strataprobe Sample Points
-•—Top of Calvert Formation
-------
Figure 54
Example of Hydraulic Conductivity effect on Hydraulic Gradient
Dover Air Force Base, Delaware
/— CONSTANT
/ HEAD
i = 0.0036
subreglonal
i = 0.00031
local
i = 0.0047
CONSTANT
HEAD
NO FLOW
BOUNDARY
500'
GROUNDWATER FLOW DIRECTION
Mass Flux (i ) = 4O x 1O4 umole/day
TCE subreglonal
Mass Flux (i ) a 6 m -!O4 umole/day
TCE local
-------
Figure 55
Mass Flux Determined from Transect Data using Summation Method
Dover Air Force Base, Delaware
1 .OOE+09
1 .OOE+08
1.00E+07
1.00E+06-
**
o
-------
Figure 56
Comparison of Lognormal and Normal Distributions
with Actual Data from Transect A {Lin - Log Plot}
— Lognormal
... NorrtBl
Actual
0.1 1
Mai Flux/ area/ day Range - Log scale
-------
Figure 57
Sample Points Used To Calculate Transect Areas
for Statistical Analysis Mass Flux Results
10
•S -10 -
-20 -
-30
479500
[Transect A)
480000 480500 481000
Eastings
481500
482000
482500
[Transect B|
479500 480000 480500 481000
Eastings
481500
482000
482500
10
-10
[Transect Cj
-30
479500 480000 480500 481000
Eastings
481500
482000
482500
-------
Figure 58
Mole Flux of Total Chloroethenes per Day
Through Each Transect using Lognormal Parameters
100
10
X
0.1
0.01
B
Transect
-------
TABLES
-------
Table 1
July 1996 Groundwater Analytical Data from Monitoring Wells
Deep Zone
Dover Air Force Base, Delaware
Well Id:
Sample Date:
Analyte (units)
Volatile Organic Compounds
1, ,1,2-Tetrachloroethane(ug/l)
1, ,1-Trichloroethane (ug/l)
1, ,2,2-Tetrachloroethane (ug/l)
1 , ,2-Trichloroethane (ug/l)
1, -Dichloroethane (ug/l)
1, -Dichloroethene (ug/l)
1 ,2-Dichloroethane (ug/l)
Benzene (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dichloroethene (ug/l)
Ethylbenzene (ug/l)
Methylene chloride (ug/l)
o-Xylene (ug/l)
Tetrachloroethene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
Trichloroethene (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethylene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganic
Ammonia (as N) (mg/l)
Chloride (mg/l)
Nitrate (as N) (mg/l)
Phosphate (mg/l)
Sulfate (mg/l)
Total Carbon (mg/l)
Inorganic Carbon (mg/l)
Total organic carbon (mg/l)
AA-06D
8/12/1996
<5.
<5.
<5.
<5.
<5.
7.
130.
31.
<5.
6.
<5.
<5.
<5.
1200.
<5.
9.
<5.
32.
<5.
<5.
5700.
25.
AA-07D
8/12/1996
<5.
<5.
<5.
<5.
<5.
7.
140.
34.
<5.
6.
<5.
<5.
<5.
1100.
<5.
10.
<5.
26.
<5.
<5.
4600.
24.
AA-08D
8/13/1996
<5.
<5.
<5.
<5.
<5.
6.
93.
23.
<5.
6.
<5.
<5.
<5.
800.
<5.
5.
<5.
35.
<5.
<5.
3900.
21.
AA-09D
8/13/1996
<25.
<25.
<25.
<25.
<25.
<25.
140.
<25.
<25.
<25.
<25.
<25.
<25.
950.
<25.
<25.
<25.
35.
<25.
<25.
5500.
<25.
AA-10D
8/12/1996
<25.
<25.
<25.
<25.
<25.
<25.
140.
<25.
<25.
<25.
<25.
<25.
<25.
1700.
<25.
34.
<25.
31.
<25.
<25.
10000.
42.
AA-11D
8/13/1996
<5.
<5.
<5.
<5.
<5.
6.
100.
41.
<5.
<5.
<5.
<5.
<5.
990.
<5.
<5.
<5.
38.
<5.
<5.
4500.
18.
AA-14D
8/13/1996
<5.
<5.
<5.
<5.
<5.
9.
150.
19.
<5.
8.
<5.
5.
<5.
1600.
<5.
12.
<5.
40.
<5.
<5.
9800.
49.
AA-18D
8/12/1996
<5.
<5.
<5.
<5.
<5.
8.
160.
30.
<5.
5.
<5.
<5.
<5.
1200.
<5.
13.
<5.
31.
<5.
<5.
6100.
27.
AA3D
8/13/1996
<25.
<25.
<25.
<25.
<25.
<25.
120.
<25.
<25.
<25.
<25.
<25.
<25.
4700.
<25.
<25.
<25.
<25.
<25.
<25.
1700.
26.
DM31 2D
7/29/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
11.
<5.
<5.
<5.
33.
<5.
<5.
97.
<5.
<1.0
<1.0
<2.0
<1.0
<.10
10
1.1
< .1
< 1
18.9
17.9
0.9
DM314D
7/24/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
120.
<5.
<5.
190.
<5.
< 1.0
<1.0
160
<1.0
<.10
13
5.6
<.1
1
44.6
43.0
1.6
DM31 5D
7/25/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
8.
<5.
<5.
<5.
<5.
<5.
130.
<5.
<5.
<5.
<5.
<5.
<5.
1400.
8.
<1.0
< 1.0
44
< 1.0
<.10
13
0.5
<.1
62
34.2
32.9
1.3
DM316D
7/24/1996
<25.
<25.
<25.
<25.
<25.
<25.
71.
<25.
<25.
<25.
<25.
<25.
<25.
920.
<25.
<25.
<25.
46.
<25.
<25.
3700.
<25.
<1.0
1.8
28
<1.0
<.10
19
1.3
< .1
3
40.9
39.6
1.4
DM318D
7/26/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
1500.
<5.
<5.
<5.
<5.
<5.
36.
<5.
<5.
7.
<5.
7.
<5.
180.
<5.
2.4
3.1
1100
5.1
0.1
< 1
0.9
<.1
36
61.8
58.2
3.5
DM319D
7/23/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
13.
<5.
<5.
<5.
<5.
<5.
<5.
130.
<5.
<10
<10
350
<10
0.1
13
0.8
<.1
25
48.3
47.2
1.1
Page 1 of 3
-------
Table 1
July 1996 Groundwater Analytical Data from Monitoring Wells
Deep Zone
Dover Air Force Base, Delaware
Well Id:
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1,2-Tetrachloroethane (ug/l)
1,1,1-Trichloroethane (ug/l)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichloroethane (ug/l)
Benzene (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dichloroethene (ug/l)
Ethylbenzene (ug/l)
Methylene chloride (ug/l)
o-Xylene (ug/l)
Tetrachloroethene (ug/l)
Toluene (ug/l)
trans-1,2-Dichloroethene (ug/l)
Trichloroethene (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethylene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganic
Ammonia (as N) (mg/l)
Chloride (mg/l)
Nitrate (as N) (mg/l)
Phosphate (mg/l)
Sulfate (mg/l)
Total Carbon (mg/l)
Inorganic Carbon (mg/l)
Total organic carbon (mg/l)
DM320D
7/29/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
16.
<5.
<5.
<5.
<5.
<5.
<5.
51.
<5.
<1.0
<1.0
220
<1.0
<.10
13
1.5
<.1
5
51.5
50.5
1.0
DM323D
8/1/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
29.
<5.
<5.
<5.
55.
<5.
<5.
280.
<5.
< 1.0
<1.0
38
< 1.0
<.10
10
3.6
<.1
4
18.1
16.8
1.3
DM325D
7/26/1996
<10.
68.
<10.
<10.
<10.
24.
< 10.
<10.
<10.
<10.
<10.
<10.
<10.
50.
<10.
<10.
<10.
890.
<10.
<10.
1200.
<10.
< 1.0
< 1.0
<2.0
< 1.0
0.1
10
4.6
< .1
1
27.1
25.7
1.3
DM326D
7/25/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
12.
<5.
43.
<5.
<5.
<5.
650.
<5.
<5.
1300.
<5.
<1.0
<1.0
<2.0
<1.0
0.1
12
0.7
<.1
3
40.8
40.2
0.6
DM327D
8/5/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
59.
<5.
<5.
<5.
<5.
<5.
290.
<5.
<5.
<5.
130.
<5.
<5.
130.
64.
1.1
14
1100
1.8
<.10
9
1.6
< .1
4
51.2
49.8
1.4
DM329D
7/23/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
7.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
29.
<5.
<5.
8.
<5.
<1.0
<1.0
<2.0
<1.0
<.10
15
2.9
<.1
2
30.9
30.1
0.8
DM350D
7/25/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
< 1.0
<1.0
<2.0
<1.0
0.1
47
4.2
<.1
13
29.1
28.5
0.6
DM353D
7/25/1996
<5.
<5.
<5.
<5.
<5.
<5.
1900.
8.
<5.
<5.
<5.
<5.
<5.
3100.
<5.
2500.
14.
110.
<5.
<5.
3000.
28.
< 1.0
< 1.0
55
<1.0
0.1
26
2.7
<.1
1
45.0
43.1
1.9
DM354D
7/25/1996
<5.
<5.
<5.
<5.
<5.
38.
<5.
<5.
6.
<5.
<5.
<5.
<5.
71.
<5.
<5.
<5.
<5.
<5.
<5.
770.
<5.
< 1.0
<1.0
3.1
<1.0
<.10
21
1.7
<.1
1
30.9
30.2
0.7
DM355D
7/30/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
65.
8.
<5.
<5.
<5.
<5.
16.
<5.
<5.
<5.
<5.
<5.
<5.
210.
<5.
<1.0
<1.0
4.3
<1.0
<.10
36
3.4
<.1
< 1
38.3
37.4
0.8
DM356D
7/30/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<1.0
<1.0
<2.0
<1.0
0.1
16
4.9
<.1
14
18.3
17.3
1.0
DM360D
7/30/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
110.
<5.
< 1.0
< 1.0
<2.0
< 1.0
<.10
14
3.3
<.1
12
23.8
21.9
1.9
DM361 D
7/31/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
9.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
91.
<5.
<1.0
<1.0
<2.0
<1.0
0.1
14
4.2
<.1
4
26.0
25.3
0.8
EA2D
8/5/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
8.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
11.
<5.
< 1.0
< 1.0
<2.0
<1.0
<.10
28
5.1
<.1
32
25.2
L_ 24.5
0.7
IR-06D
8/5/1996
<5.
<5.
<5.
<5.
<5.
<5.
330.
<5.
<5.
<5.
<5.
<5.
<5.
56.
<5.
25.
<5.
6.
<5.
<5.
220.
<5.
< 1.0
< 1.0
670
<1.0
0.1
7
3.0
0.2
5
19.1
18.0
1.2
Page 2 of 3
-------
Table 1
July 1996 Groundwater Analytical Data from Monitoring Wells
Deep Zone
Dover Air Force Base, Delaware
Well Id:
Sample Date:
Analyte (units)
Volatile Organic Compounds
1, ,1,2-Tetrachloroethane(ug/l)
1, ,1-Trichloroethane (ug/l)
1, ,2,2-Tetrachloroethane (ug/l)
1, ,2-Trichloroethane (ug/l)
1, -Dichloroethane (ug/l)
1, -Dichloroethene (ug/l)
1,2-Dichloroethane (ug/l)
Benzene (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dichloroethene (ug/l)
Ethylbenzene (ug/l)
Methylene chloride (ug/l)
o-Xylene (ug/l)
Tetrachloroethene (ug/l)
Toluene (ug/l)
trans-1,2-Dichloroethene (ug/l)
Trichloroethene (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethylene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganic
Ammonia (as N) (mg/l)
Chloride (mg/l)
Nitrate (as N) (mg/l)
Phosphate (mg/l)
Sulfate (mg/l)
Total Carbon (mg/l)
Inorganic Carbon (mg/l)
Total organic carbon (mg/l)
IR-07D
7/30/1996
<5.
<5.
<5.
<5.
<5.
<5.
400.
<5.
<5.
<5.
<5.
<5.
<5.
1000.
<5.
39.
<5.
15.
<5.
<5.
860.
60.
< 1.0
< 1.0
1800
< 1.0
<.10
14
1.5
<.1
4
50.9
49.2
1.7
IR1D
7/29/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
29.
<5.
<5.
6.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
17.
<5.
<1.0
<1.0
<2.0
<1.0
<.10
20
4.9
<.1
2
24.2
22.4
1.8
IR2D
7/31/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
11.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
8.
<5.
<5.
65.
<5.
<1.0
<1.0
<2.0
< 1.0
0.1
15
4.0
<.1
5
19.3
18.9
0.4
MW208D
7/26/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<1.0
<1.0
6.6
<1.0
0.1
10
4.1
<.1
1
31.3
30.0
1.3
MW210D
7/23/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<1.0
<1.0
<2.0
<1.0
<.10
16
3.5
<.1
3
41.0
40.1
0.9
MW211D
7/26/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
71.
<5.
<5.
170.
<5.
<1.0
<1.0
<2.0
<1.0
0.1
11
3.0
<.1
2
28.2
27.3
0.9
MW212D
7/24/1996
<20.
370.
<20.
<20.
44.
180.
<20.
<20.
<20.
<20.
<20.
<20.
<20.
560.
<20.
<20.
<20.
680.
<20.
<20.
2400.
<20.
<1.0
<1.0
2.0
<1.0
<.10
16
4.6
<.1
<1
31.5
30.9
0.6
MW213D
7/24/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
29.
<5.
<5.
<5.
170.
<5.
<5.
66.
<5.
<1.0
<1.0
6.6
<1.0
<.10
12
4.4
<.1
9
30.3
29.4
0.8
MW220D
7/31/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
36.
<5.
<5.
6.
<5.
6.
<5.
<5.
<5.
65.
<5.
<5.
200.
<5.
<1.0
<1.0
<2.0
<1.0
<.10
22
3.0
< .1
3
20.2
19.7
0.5
MW222D
7/24/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
5.
<5.
<5.
10.
<5.
<5.
<5.
<5.
<5.
11.
<5.
<5.
46.
<5.
< 1.0
< 1.0
<2.1
< 1.1
<.9
37
<.2
<.1
1
27.9
27.4
0.4
MW224D
7/24/1996
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
<25.
160.
<25.
<25.
<25.
<25.
<25.
<25.
2200.
<25.
<1.0
<1.0
46
<1.2
<.9
11
0.2
<.o
74
44.7
43.4
1.2
MW235D
7/30/1996
<5.
<5.
<5.
<5.
<5.
<5.
41.
6.
<5.
<5.
<5.
<5.
<5.
120.
<5.
<5.
<5.
120.
<5.
<5.
1700.
<5.
<1.0
<1.0
7.1
<1.0
<.10
19
2.6
<.1
4
29.2
27.8
1.4
MW236D
7/30/1996
<25.
310.
<25.
<25.
100.
950.
84.
<25.
<25.
<25.
<25.
<25.
<25.
5500.
<25.
70.
27.
130.
<25.
27.
690.
400.
<1.0
19
400
<1.0
<.10
37
1.7
<.1
11
48.1
44.8
3.3
MW72D
8/1/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
22.
<5.
<5.
<5.
6.
<5.
<5.
140.
<5.
< 1.0
<1.0
<2.2
<1.2
0.0
40
2.1
<.o
22
30.6
28.5
2.1
MW73D
8/1/1996
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
<5.
20.
<5.
<5.
<5.
37.
<5.
<5.
26.
<5.
< 1.0
< 1.0
16
< 1.2
0.0
7
1.6
<.o
3
15.7
13.8
1.7
Page 3 of 3
-------
Table 2
D'Agostino Test Results for Specific Capacity Distributions
Normality and Lognormality Checks
Using 97 measured values of S from All 3 Transects
The null hypothesis of a normal/lognormal distribution is rejected at
the 0.05 significance level if:
Y is either less than -2.08
or greater than 1.11
Y - statistic
Normal Distribution of S -42.5
Lognormal Distribution of S -1.4
Therefore:
Reject Normality
Accept Lognormality
For further information see Ref 4
-------
Table 3
Lognormal Distribution Parameters of Specific Capacity
Using All 97 Strataprobe Tests Results
"Average" of Log (S) values = -2.709
"Variance" of Log (S) values = 1.088
Distribution Mean S value = 0.114
90% Upper Limit of Mean S value = 0.138
90% Lower Limit of Mean S value = 0.098
Site wide Hydraulic Conductivity value of 0.024 cm/sec
Calibration Factor = 0.024/[ Mean S ] =0.211
-------
Table 4
Transect Hydraulic Conductivities Estimated from Transect Specific Tests
Dover Air Force Base, Delaware
Sample
TA-01-32
TA-01-37
TA-01-42
TA-02-31.5
TA-02-36.5
TA-02-41.5
TA-02-46.5
TA-03-27.5
TA-03-32.5
TA-03-37.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-04-26
TA-04-31
TA-04-36
TA-04-41
TA-04-46
TA-04-51
TA-04-56
IR-07D
TA-05-24
TA-05-29
TA-05-34
TA-05-39
TA-05-44
TA-06-23
TA-06-28
TA-06-33
TA-06-38
TA-06-43
TA-06-48
TA-07-30
TA-07-35
TA-07-40
TA-07-45
TA-08-28
TA-08-33
TA-08-38
TA-08-43
TA-08-48
TA-09-28
TA-09-33
TA-09-38
TA-09-43
TA-09-48
TB-03-23.5
TB-03-28.5
TB-03-33.5
TB-03-37.5
TB-03-43.5
TB-04-27
TB-04-32
TB-04-37
TB-04-42
Flow Rate
Q (ml/sec)
4.65
2.40
4.71
3.17
0.22
7.13
0.93
1.87
3.40
2.19
0.83
NA
NA
0.24
NA
0.98
2.68
0.98
1.05
2.20
0.00
0.57
0.55
2.57
3.13
11.50
2.10
9.71
2.53
1.13
1.55
0.92
5.09
2.63
6.35
3.14
2.80
0.99
1.99
1.14
12.74
0.83
1.00
6.67
0.13
NA
3.12
6.10
3.65
2.03
1.10
3.42
10.53
7.20
2.37
Drawdown
s (cm)
30.48
30.48
30.48
30.48
26.52
30.48
30.48
30.48
30.48
30.48
30.48
NA
NA
30.48
NA
30.48
30.48
30.48
30.48
30.48
0.00
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
25.91
30.48
30.48
30.48
30.48
NA
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
Specific Capacity
S (ml/sec/cm)
0.15
0.08
0.15
0.10
0.01
0.23
0.03
0.06
0.11
0.07
0.03
NA
NA
0.01
NA
0.03
0.09
0.03
0.03
0.07
0.00
0.02
0.02
0.08
0.10
0.38
0.07
0.32
0.08
0.04
0.05
0.03
0.17
0.09
0.21
0.10
0.09
0.03
0.07
0.04
0.49
0.03
0.03
0.22
0.00
NA
0.10
0.20
0.12
0.07
0.04
0.11
0.35
0.24
0.08
Hydraulic Conductivity*
K (cm/sec)
3.22E-02
1.66E-02
3.26E-02
2.19E-02
1.71E-03
4.94E-02
6.46E-03
1.29E-02
2.35E-02
1.51E-02
5.77E-03
5.77E-03**
5.77E-03**
1.64E-03
4.21E-03**
6.78E-03
1.85E-02
6.75E-03
7.30E-03
1.52E-02
2.90E-02
3.92E-03
3.81E-03
1.78E-02
2.17E-02
7.96E-02
1.45E-02
6.72E-02
1.75E-02
7.85E-03
1.07E-02
6.35E-03
3.52E-02
1.82E-02
4.40E-02
2.18E-02
1.94E-02
6.82E-03
1.38E-02
7.89E-03
1.04E-01
5.77E-03
6.92E-03
4.62E-02
9.23E-04
9.23E-04**
2.16E-02
4.23E-02
2.52E-02
1.40E-02
7.59E-03
2.37E-02
7.29E-02
4.98E-02
1.64E-02
Hydraulic
Conductivity*
K (ft/day)
91
47
92
62
5
140
18
37
67
43
16
16**
16**
5
12**
19
53
19
21
43
82
11
11
50
61
226
41
191
50
22
30
18
100
52
125
62
55
19
39
22
294
16
20
131
3
3**
61
120
72
40
22
67
207
141
46
Hydraulic Conductivity estimated from Specific Capacity by K=S*0.21
* Hydraulic Conductivity estimated from average of surrounding data
Page 1 of 2
2/26/2002
-------
Table 4
Transect Hydraulic Conductivities Estimated from Transect Specific Tests
Dover Air Force Base, Delaware
Sample
TB-04-47
TB-05-31.5
TB-05-36.5
TB-05-41.5
TB-05-46.5
TB-05-51.5
IR-06D
TB-06-33
TB-06-38
TB-06-43
TB-06-48
TB-07-27
TB-07-32
TB-07-37
TB-07-42
TB-07-47
TB-08-25.5
TB-08-30.5
TB-08-35.5
TB-08-40.5
TB-08-45.5
TB-09-29
TB-09-34
TB-09-39
TB-09-44
TB- 10-28
TB-10-33
TB-10-38
TB- 10-43
TC-01-25
TC-01-30
TC-02-27
TC-02-32
TC-02-37
TC-02-42
TC-03-29
TC-03-34
TC-03-39
TC-03-44
DM-360D
TC-04-30
TC-04-35
TC-04-40
TC-05-27
TC-05-30
TC-06-26.5
TC-06-31
TC-06-35
TC-07-26.5
TC-07-31.5
TC-07-36.5
Flow Rate
Q (ml/sec)
1.97
4.33
1.97
1.00
3.13
11.47
NA
3.87
1.42
2.48
1.48
5.00
0.39
8.95
9.05
5.07
1.50
4.20
3.13
1.17
NA
5.21
2.40
0.38
0.58
0.85
5.67
0.17
0.43
3.42
7.33
0.70
0.92
1.83
9.70
2.93
1.78
1.83
0.68
NA
1.17
2.40
MAX
1.28
0.32
2.47
2.97
3.67
0.30
1.46
1.05
Drawdown
s(cra)
30.48
30.48
30.48
30.48
30.48
5.79
NA
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
NA
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
26.82
30.48
30.48
30.48
30.48
NA
30.48
30.48
0.00
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
Specific Capacity
S (ml/sec/cm)
0.06
0.14
0.06
0.03
0.10
1.98
NA
0.13
0.05
0.08
0.05
0.16
0.01
0.29
0.30
0.17
0.05
0.14
0.10
0.04
NA
0.17
0.08
0.01
0.02
0.03
0.19
0.01
0.01
0.11
0.24
0.02
0.03
0.06
0.36
0.10
0.06
0.06
0.02
NA
0.04
0.08
0.00
0.04
0.01
0.08
0.10
0.12
0.01
0.05
0.03
Hydraulic Conductivity*
K (cm/sec)
1.36E-02
3.00E-02
1.36E-02
6.92E-03
2.17E-02
4.18E-01
1.90E-03**
2.68E-02
9.81E-03
1.72E-02
1.03E-02
3.46E-02
2.71E-03
6.20E-02
6.26E-02
3.51E-02
1.04E-02
2.91E-02
2.17E-02
8.08E-03
8.08E-03**
3.61E-02
1.66E-02
2.65E-03
4.03E-03
5.88E-03
3.92E-02
1.15E-03
3.00E-03
2.37E-02
5.08E-02
4.85E-03
6.35E-03
1.27E-02
7.63E-02
2.03E-02
1.23E-02
1.27E-02
4.71E-03
2.68E-03**
8.08E-03
1.66E-02
4.18E-01
8.88E-03
2.19E-03
1.71E-02
2.05E-02
2.54E-02
2.10E-03
1.01E-02
7.29E-03
Hydraulic
Conductivity*
K (ft/day)
39
85
39
20
61
1184
5**
76
28
49
29
98
8
176
178
99
29 .
82
61
23
23**
102
47
8
11
17
111
3
9
67
144
14
18
36
216
58
35
36
13
8**
23
47
1184
25
6
48
58
72
6
29
21
Hydraulic Conductivity estimated from Specific Capacity by K=S*0.21
' Hydraulic Conductivity estimated from average of surrounding data
Page 2 of 2
2/26/2002
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-01
TA-01-32
32
4/3/1997
1.6
1.6
2.8
1.0
3.2
<0.3
1.6
2.9
2.1
1.9
1.7
1.7
1.3
<1.0
3.0
<0.3
<0.5
3.0
<0.5
<2.0
1.3
2.6
<2.0
1.8
<1.0
<1.0
2.9
<1.0
<2.0
1.3
2.8
2.9
<0.5
<5
<6
<15
<5
6.00
60.86
3.39
2.00
0.1
4.8
TA-01
TA-01-37
37
4/3/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
0.6
<0.5
<0.5
<5
<6
<15
<5
<0.1
TA-01
TA-01-42
42
4/3/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
0.5
0.5
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.8
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
0.6
<0.5
<0.5
<5
<6
<15
<5
TA-02
TA-02-31.5
31.5
4/14/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.8
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
1.8
<0.5
<0.5
<5
<6
<15
<5
12.73
59.3
3.21
61.39
<0.1
6
TA-02
TA-02-36.5
36.5
4/14/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.1
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
1.8
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
0.9
<0.5
<0.5
<5
<6
<15
<5
13.69
61.7
2.69
19.52
<0.1
8.2
TA-02
TA-02-41.5
41.5
4/14/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.0
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
1.7
<0.5
<0.5
<5
<6
<15
<5
11.20
68.7
2.26
2.01
<0.1
6
TA-02
TA-02-46.5
46.5
4/14/1997
1.1
1.0
.0
.0
0.8
.4
2.6
.1
.5
.2
.0
.0
< .0
< .0
.0
.2
.0
.2
.1
<2.0
0.9
0.8
<2.0
1.1
<1.0
<1.0
1.5
1.0
<2.0
0.9
2.4
<0.5
1.1
<5
<6
<15
<5
17.39
73.7
2.33
2.27
<0.1
6
TA-03
TA-03-27.5
27.5
4/10/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
14.4
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
10.8
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.2
<1.0
<2.0
<0.5
14.0
<0.5
<0.5
<5
<6
< 15
<5
5.11
62.7
9.74
25.55
<0.1
7
Page 1 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1, ,1-Trichloroethane (ug/l)
1, ,2,2-Tetrachloroethane (ug/l)
1, ,2-Trichloroethane (ug/l)
1 , -Dichloroethane (ug/l)
1 , -Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-03
TA-03-32.5
32.5
4/10/1997
16.18
23.9
2.67
17.91
<0.1
9.6
TA-03
TA-03-37.5
37.5
4/11/1997
8
<5.0
<5.0
18
110
1.0
515
<5.0
3.5
3.3
<3.0
<5.0
<10
<10
<5.0
<3.0
<5.0
<5.0
<5.0
2440
<5.0
<5.0
<20
<3.0
<10
<10
214
<10
<20
<5.0
497
<5.0
209
<5
11
379
<5
13.16
27.0
<0.5
5.11
0.1
13.4
TA-03
TA-03-42.5
42.5
4/11/1997
<5.0
<5.0
<5.0
<5.0
20
<3.0
916
<5.0
<3.0
<3.0
<3.0
<5.0
<10
<10
<5.0
<3.0
<5.0
<5.0
<5.0
1388
<5.0
<5.0
<20
<3.0
<10
<10
171
<10
<20
<5.0
635
<5.0
102
<5
10
240
<5
21.84
29.0
0.68
1.89
0.1
8.1
TA-03
TA-03-47.5
47.5
4/11/1997
3.4
2.7
2.8
2.0
5.1
1.1
1444
2.3
4.5
4.2
4.2
<5.0
1.8
<10
2.2
3.4
2.8
3.9
4.1
2032
2.7
1.7
24.2
3.0
<10
1.3
113
<10
3.3
2.6
1630
<5.0
31.5
<5
8
73
<5
40.73
35.9
0.47
2.63
0.2
8.1
TA-03
TA-03-51.5
51.5
4/11/1997
<5.0
<5.0
<5.0
<5.0
7.3
<3.0
2950
10.3
1.7
1.7
3.3
<5.0
<10
<10
<5.0
2.7
<5.0
4.7
<5.0
4087
<5.0
<5.0
113
<3.0
1.3
4.7
258
<10
9.0
<5.0
3232
<5.0
40
<5
<6
82
<5
27.17
43.2
<0.5
2.33
0.2
11.3
TA-04
TA-04-26
26
4/9/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
10.0
<0.5
<0.5
<5
<6
<15
<5
12.88
35.5
4.36
51.31
<0.1
5.6
TA-04
TA-04-31
31
4/9/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
13.0
<0.5
<0.5
<5
<6
<15
<5
42.26
37.6
4.63
51.98
<0.1
8.2
Page 2 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1,2,2-TetrachIoroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-04
TA-04-36
36
4/10/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
0.6
0.4
0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
13.2
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
' 3.0
<1.0
<2.0
<0.5
219
<0.5
<0.5
<5
<6
<15
<5
24.78
51.5
2.60
2.89
0.1
10.2
TA-04
TA-04-41
41
4/10/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.8
0.6
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
18.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
2.8
<1.0
<2.0
<0.5
229
<0.5
<0.5
<5
<6
<15
<5
29.63
8.8
2.51
3.66
<0.1
9.5
TA-04
TA-04-46
46
4/10/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
15.1
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
38.2
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
12.7
<1.0
<2.0
<0.5
153
<0.5
4.0
<5
6
<15
<5
<0.1
9.9
TA-04
TA-04-51
51
4/10/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
93.8
<0.5
<0.3
0.5
<0.3
<0.5
<1.0
<1.0
<0.5
0.5
<0.5
1.2
<0.5
75.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
17.4
<1.0
<2.0
<0.5
152
<0.5
11.5
<5
<6
<15
<5
28.59
22.0
3.37
1.66
<0.1
9.7
TA-04
TA-04-56
56
4/10/1997
<5.0
<5.0
<5.0
<5.0
<5.0
2.8
762
3.7
1.9
2.4
5.5
<5.0
<10
<10
<5.0
3.8
<5.0
2.3
<5.0
930
<5.0
<5.0
<20
<3.0
<10
3.6
18
25
<20
<5.0
1166
<5.0
74
<5
<6
140
<5
23.43
9.8
2.69
1.85
<0.1
13.1
TA-05
TA-05-24
24
4/22/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
13.7
<0.5
<0.5
<5
<6
<15
<5
5.92
48.7
5.53
57.88
<0.1
<3.00
TA-05
TA-05-29
29
4/22/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
2.2
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
1.5
<2.0
<0.5
19.6
<0.5
<0.5
<5
<6
< 15
<5
9.78
18.5
5.76
67.67
<0.1
5
TA-05
TA-05-34
34
4/22/1997
<5.0
<5.0
<5.0
<5.0
<5.0
<3.0
10.00
<5.0
<3.0
<3.0
9.9
<5.0
<10
<10
<5.0
<3.0
<5.0
1.5
<5.0
22.00
<5.0
<5.0
19.00
<3.0
<10
<10
<5.0
<10
<20
<5.0
594.00
<5.0
<5.0
<5
<6
68
<5
14.17
19.4
0.90
7.95
<0.1
12.8
Page 3 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-05
TA-05-39
39
4/22/1997
<5.0
<5.0
<5.0
<5.0
<5.0
<3.0
46.8
<5.0
<3.0
<3.0
15.6
<5.0
<10
< 10
<5.0
<3.0
<5.0
2.2
<5.0
55.00
<5.0
<5.0
<20
<3.0
<10
<10
<5.0
<10
<20
<5.0
1360.00
<5.0
<5.0
<5
<6
93
<5
15.57
19.5
0.59
2.20
<0.1
12.7
TA-05
TA-05-41
44
4/22/1997
<5.0
<5.0
<5.0
<5.0
0.9
7.8
64.2
1.6
1.2
2.3
7.4
<5.0
<10
<10
<5.0
1.2
<5.0
3.6
<5.0
62.3
<5.0
<5.0
<20
<3.0
<10
<10
52.1
<10
<20
<5.0
1720.00
<5.0
2.7
<5
<6
21
<5
9.99
15.5
2.35
1.93
<0.1
5.9
TA-06
TA-06-23
23
4/21/1997
<0.5
<0.5
<0.5
<0.5
0.6
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
4.9
<0.5
<0.5
<5
<6
<15
<5
2.95
20.1
5.47
34.23
<0.1
7.8
TA-06
TA-06-28
28
4/21/1997
<0.5
<0.5
<0.5
0.5
3.4
<0.3
0.5
<0.5
<0.3
1.1
<0.3
<0.5
<1.0
<1.0
<0.5
0.6
<0.5
1.9
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
28.00
<0.5
<0.5
<5
<6
<15
<5
<0.1
14.3
TA-06
TA-06-33
33
4/21/1997
1.0
<0.5
<0.5
9.4
15.4
0.6
4.6
<0.5
0.8
1.8
87.1
<0.5
<1.0
<1.0
0.7
3.8
<0.5
3.3
<0.5
59.6
<0.5
<0.5
<2.0
<0.3
< 1.0
< 1.0
0.6
<1.0
<2.0
<0.5
152.00
<0.5
0.6
<5
<6
86
<5
19.29
20.7
<0.5
10.53
<0.1
RBB
TA-06
TA-06-38
38
4/21/1997
1.4
<0.5
0.6
5.6
16.9
2.00
6.4
<0.5
0.6
1.1
25.7
<0.5
<1.0
1.1
2.6
1.2
<0.5
2.8
<0.5
68.7
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.3
<1.0
<2.0
<0.5
460.00
<0.5
4.00
<5
<6
53
<5
23.44
22.0
1.20
1.83
<0.1
17
TA-06
TA-06-43
43
4/22/1997
<5.0
<5.0
<5.0
<5.0
4.5
2.7
16.7
<5.0
0.8
1.9
119.00
<5.0
<10
<10
1.5
2.8
<5.0
1.2
<5.0
39.3
<5.0
<5.0
<20
<3.0
<10
<10
1.7
<10
<20
<5.0
634.00
<5.0
4.3
<5
<6
34
<5
18.60
20.2
1.04
1.73
<0.1
11.2
TA-06
TA-06-48
48
4/22/1997
0.8
<5.0
<5.0
1.7
5.9
5.8
96.3
7.9
2.7
1.7
16.1
<5.0
<10
<10
<5.0
0.7
<5.0
1.9
1.6
300.00
<5.0
<5.0
2.3
<3.0
<10
< 10
12.8
<10
<20
<5.0
2220.00
<5.0
7.2
<5
<6
68
<5
31.91
18.2
1.27
1.99
<0.1
11.8
Page 4 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1 ,1 ,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1 , 1 -Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-07
TA-07-30
30
4/8/1997
<0.5
<0.5
<0.5
<0.5
1.8
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
0.8
<0.3
<0.5
3.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.0
<1.0
<2.0
<0.5
132.00
<0.5
<0.5
<5
<6
<15
<5
11.23
5.0
2.85
3.24
<0.1
4.9
TA-07
TA-07-35
35
4/8/1997
<0.5
<0.5
<0.5
<0.5
0.9
<0.3
<0.5
0.6
<0.3
<0.3
<0.3
<0.5
<1.0
< 1.0
0.8
0.3
<0.5
2.2
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.6
<1.0
<2.0
<0.5
240.00
<0.5
<0.5
<5
<6
<15
<5
9.19
8.2
2.91
4.21
<0.1
5
TA-07
TA-07-40
40
4/8/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
0.9
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
0.9
<0.3
<0.5
1.0
<0.5
6.5
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
5.5
<1.0
<2.0
<0.5
410.00
<0.5
<0.5
<5
<6
<15
<5
11.88
10.8
2.51
3.68
<0.1
<3.00
TA-07
TA-07-45
45
4/9/1997
<5.0
<5.0
<5.0
<5.0
<5.0
0.7
1.9
3.9
6.8
5.9
<3.0
<5.0
<10
<10
<5.0
0.8
<5.0
<5.0
<5.0
21.2
<5.0
<5.0
4.8
<3.0
<10
<10
2.8
<10
<20
<5.0
1490.00
<5.0
<5.0
<5
<6
<15
<5
19.33
66.2
1.60
4.40
<0.1
5.7
TA-08
TA-08-28
28
4/1/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
12.00
12.1
7.00
79.31
<0.1
3.2
TA-08
TA-08-33
33
4/1/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
1.1
<0.3
<0.5
1.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
2.4
<0.5
<0.5
<5
<6
<15
<5
12.40
22.6
6.57
63.48
<0.1
4.1
TA-08
TA-08-38
38
4/2/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
«0.5
<0.5
0.3
0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
5.8
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.5
<1.0
<2.0
<0.5
8.3
<0.5
<0.5
<5
<6
<15
<5
23.30
34.6
4.63
29.84
<0.1
9.6
TA-08
TA-08-43
43
4/2/1997
<2.5
<2.5
<2.5
<2.5
<2.5
<1.5
<2.5
<2.5
<1.5
<1.5
0.8
<2.5
<5.0
<5.0
248.00
<1.5
<2.5
37.00
<2.5
<10
<2.5
<2.5
<10
<1.5
<5.0
<5.0
74.00
<5.0
<10
<2.5
438.00
<2.5
<2.5
<5
<6
<15
<5
14.50
52.0
2.82
< 1
<0.1
6.8
Page 5 of 14
-------
Table S
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
,1,1-Trichloroethane (ug/l)
,1,2,2-Tetrachloroethane (ug/l)
,1,2-Trichloroethane (ug/l)
,1-Dichloroethane (ug/l)
,1-Dichloroethene (ug/l)
,2-Dichlorobenzene (ug/l)
,2-Dichloroethane (ug/l)
,2-Dichloropropane (ug/l)
,3-Dichlorobenzene (ug/l)
,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichtoroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TA-08
TA-08-48
48
4/2/1997
<5.0
<5.0
<5.0
<5.0
<5.0
<3.0
<5.0
<5.0
310.00
320.00
200.00
<5.0
<10
<10
1040.00
<3.0
<5.0
<5.0
<5.0
<20
<5.0
<5.0
<20
<3.0
<10
<10
160.00
<10
<20
<5.0
690.00
201.00
<5.0
<5
<6
<15
<5
10.00
27.3
2.60
3.27
<0.1
4.8
TA-09
TA-09-28
28
4/28/1997
<0.5
<0.5
<0.5
0.6
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
0.7
3.6
<2.0
<0.5
133.00
<0.5
<0.5
<5
<6
< 15
<5
11.90
18.7
7.75
33.16
<0.1
9
TA-09
TA-09-33
33
4/28/1997
<5.0
<5.0
<5.0
<5.0
<5.0
1.2
<5.0
4.6
1.4
2.2
<3.0
<5.0
<10
<10
3.2
0.6
<5.0
2.4
2.2
14.00
<5.0
<5.0
<20
0.4
<10
<10
14.00
5.00
<20
<5.0
1580.00
<5.0
2.00
<5
<6
< 15
<5
11.35
18.0
5.38
2.09
<0.1
8.4
TA-09
TA-09-38
38
4/29/1997
<5.0
<5.0
<5.0
<5.0
<5.0
<3.0
<5.0
4.00
<3.0
<3.0
<3.0
<5.0
<10
<10
12.00
<3.0
<5.0
39.8
<5.0
<20
<5.0
<5.0
<20
0.6
1.4
<10
137.00
3.0
<20
<5.0
1340.00
<5.0
<5.0
<5
<6
<15
<5
8.90
13.2
2.67
40.88
<0.1
4.6
TA-09
TA-09-43
43
4/29/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
< 1.0
<2.0
<0.5
0.6
<0.5
<0.5
<5
<6
<15
<5
8.46
6.1
<0.5
5.37
<3.00
TA-09
TA-09-48
48
4/29/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.8
<1.0
<2.0
<0.5
7.9
<0.5
<0.5
<5
<6
<15
<5
10.07
5.8
<0.5
8.64
<3.00
TB-03
TB-03-23.5
23.5
4/3/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.6
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
4.70
4.4
2.08
34.88
<0.1
<3.00
TB-03
TB-03-28.5
28.5
4/3/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
5.30
9.2
3.59
42.66
<0.1
<3.00
Page 6 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1 ,1 ,1-Trichloroethane (ug/l)
1 ,1 ,2,2-Tetrachloroethane (ug/l)
1 ,1 ,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TB-03
TB-03-33.5
33.5
4/4/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
< 1.0
<0.5
<0.3
<0.5
0.9
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
8.80
8.4
5.22
53.72
<0.1
9.5
TB-03
TB-03-37.5
37.5
4/4/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.0
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
15.10
28.7
5.81
2.68
0.2
7.1
TB-03
TB-03-43.5
43.5
4/4/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
11.40
29.8
5.33
2.58
• <0.1
6.1
TB-04
TB-04-27
27
4/17/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
2.0
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
37.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
3.91
10.6
4.54
32.12
4
TB-04
TB-04-32
32
4/17/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
5.10
6.4
6.10
27.79
<0.1
4.6
TB-04
TB-04-37
37
4/17/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
5.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
1.0
<0.5
<0.5
<5
<6
<15
<5
9.99
17.3
7.00
4.51
<0.1
7.9
TB-04
TB-04-42
42
4/17/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
37.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
3.5
<0.5
<0.5
<5
<6
< 15
<5
12.92
42.3
7.39
1.56
<0.1
10
Page 7 of 14
-------
Table S
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TB-04
TB-04-47
47
4/17/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
60.2
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
0.5
<0.5
2.5
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
6.7
<0.5
<0.5
<5
<6
<15
<5
14.49
42.1
6.10
1.56
<0.1
11.1
TB-05
TB-05-31.5
31.5
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
< 1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
< 15
<5
4.73
41.5
4.63
5.44
<0.1
6.4
TB-05
TB-05-36.5
36.5
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
0.6
0.5
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
< 15
<5
9.37
36.8
4.20
3.17
0
TB-05
TB-05-41.5
41.5
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
12.75
42.7
4.65
3.00
<0.1
8.2
TB-05
TB-05-46.5
46.5
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
10.7
<0.5
0.6
0.5
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
1.8
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.5
<1.0
<2.0
<0.5
16.6
<0.5
<0.5
<5
<6
<15
<5
10.37
45.8
4.99
3.66
<0.1
7.1
TB-05
TB-05-51.5
51.5
4/16/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
19.1
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
0.9
<0.3
<0.5
0.6
<0.5
37.1
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.6
<1.0
<2.0
<0.5
125.00
<0.5
<0.5
<5
<6
<15
<5
13.72
5.7
2.39
2.05
<0.1
6.9
TB-06
TB-06-33
33
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
2.9
<0.5
<0.5
<5
<6
< 15
<5
7.16
37.9
3.95
1.80
<0.1
6.9
Page 8 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1 ,1 ,2,2-Tetrachloroethane (ug/l)
1 ,1 ,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TB-06
TB-06-38
38
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.8
<0.5
0.4
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
1.5
<0.5
2.4
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.4
<1.0
<2.0
<0.5
52.3
<0.5
<0.5
<5
<6
<15
<5
<0.1
5.8
TB-06
TB-06-43
43
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
2.4
<0.5
5.9
<0.5
<0.5
<2.0
<0.3
< 1.0
<1.0
1.2
<1.0
<2.0
<0.5
140.00
<0.5
<0.5
<5
<6
<15
<5
26.69
37.1
2.33
3.60
<0.1
11.2
TB-06
TB-06-48
48
4/15/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
4.4
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
1.5
<0.5
4.3
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
1.2
<1.0
<2.0
<0.5
172.00
<0.5
<0.5
8
<6
21
6
39.93
43.0
3.91
4.93
<0.1
10.5
TB-07
TB-07-27
27
4/16/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
8.7
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
25.01
26.5
6.96
28.89
<0.1
11.5
TB-07
TB-07-32
32
4/16/1997
<0.5
<0.5
<0.5
<0.5
1.0
<0.3
<0.5
<0.5
<0.3
<0.3
2.0
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.9
<0.5
1.6
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.7
<1.0
<2.0
<0.5
13.3
<0.5
<0.5
<5
<6
<15
<5
12.90
55.0
10.35
3.83
<0.1
0
TB-07
TB-07-37
37
4/16/1997
<0.5
<0.5
<0.5
2.0
3.3
<0.3
1.3
<0.5
0.5
0.5
1.4
<0.5
<1.0
<1.0
2.6
<0.3
<0.5
13.6
<0.5
9.5
<0.5
<0.5
28.9
<0.3
<1.0
<1.0
1.4
72.5
<2.0
<0.5
63.5
<0.5
<0.5
<5
<6
<15
<5
12.43
41.9
4.47
2.05
<0.1
13.8
TB-07
TB-07-42
42
4/16/1997
< 1.3
<1.3
<1.3
1.3
4.8
1.0
10.2
1.2
1.3
1.1
548.00
<1.3
<2.5
<2.5
18.2
2.1
< 1.3
9.8
<1.3
31.6
<1.3
<1.3
<5.0
<0.8
<2.5
2.2
1.0
<2.5
<5.0
<1.3
283.00
<1.3
1.2
<5
<6
<15
<5
12.98
16.3
1.47
2.31
<0.1
13.5
Page 9 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TB-07
TB-07-46
46
4/16/1997
<2.5
<2.5
<2.5
0.5
3.8
<1.5
7.4
1.1
0.6
0.4
494.00
<2.5
<5.0
<5.0
15.8
1.4
<2.5
8.0
<2.5
24.5
<2.5
<2.5
<10
<1.5
<5.0
1.0
0.7
<5.0
< 10
<2.5
336.00
<2.5
0.8
<5
<6
<15
<5
15.90
17.6
1.56
2.57
<0.1
12.4
TB-08
TB-08-25.5
25.5
4/18/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.0
<0.5
<0.3
<0.3
14.4
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
5.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
<15
<5
7.56
22.4
3.73
40.24
<0.1
10.1
TB-08
TB-08-30.5
30.5
4/18/1997
<0.5
<0.5
<0.5
<0.5
1.9
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
1.2
<0.3
<0.5
1.2
<0.5
<2.0
<0.5
<0.5
3.3
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
1.9
<0.5
<0.5
<5
<6
<15
<5
7.32
47.2
4.72
6.70
<0.1
13.2
TB-08
TB-08-35.5
35.5
4/18/1997
1.1
<5.0
<5.0
1.7
30.9
0.8
0.6
<5.0
0.8
0.7
<3.0
<5.0
<10
<10
23.2
0.3
<5.0
9.0
<5.0
<20
<5.0
<5.0
<20
<3.0
<10
< 10
1.3
<10
<20
<5.0
134.00
<5.0
<5.0
<5
<6
< 15
<5
9.05
24.2
4.81
2.14
<0.1
10.4
TB-08
TB-08-40.5
40.5
4/18/1997
1.0
<1.3
<1.3
<1.3
22.8
<0.8
0.8
1.7
<0.8
<0.8
<0.8
<1.3
<2.5
<2.5
5.6
0.4
<1.3
4.0
< 1.3
9.0
<1.3
<1.3
<5.0
<0.8
<2.5
<2.5
2.2
<2.5
<5.0
<1.3
746.00
<1.3
0.8
<5
<6
< 15
<5
19.51
17.0
2.58
1.99
<0.1
9.1
TB-08
TB-08-45.5
45.5
4/18/1997
<0.5
<0.5
<0.5
<0.5
0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.7
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
12.4
<0.5
<0.5
29
18
39
9
77.72
10.9
<0.5
13.75
5.5
TB-09
TB-09-29
29
4/7/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.8
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
6.0
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
< 15
<5
13.10
32.7
6.28
31.86
0.1
8.6
Page 10 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
,1,1-Trichloroethane (ug/l)
,1,2,2-Tetrachloroethane (ug/l)
,1,2-Trichloroethane (ug/l)
,1-Dichloroethane (ug/l)
,1-Dichloroethene (ug/l)
,2-Dichlorobenzene (ug/l)
,2-Dichloroethane (ug/l)
,2-Dichloropropane (ug/l)
,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TB-09
TB-09-34
34
4/8/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
0.7
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
1.0
1.0
<1.0
15.00
1.0
<2.0
<0.5
1.7
<0.5
<0.5
<5
<6
<15
<5
13.30
13.7
6.62
66.01
<0.1
5.7
TB-09
TB-09-39
39
4/8/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
3.5
<0.5
<1.0
<1.0
0.7
<0.3
<0.5
2.1
<0.5
<2.0
<0.5
<0.5
<2.0
4.7
6.1
2.7
7.4
4.7
<2.0
<0.5
4.0
<0.5
<0.5
<5
<6
<15
<5
18.55
7.0
6.23
37.90
<0.1
5.2
TB-09
TB-09-44
44
4/8/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
72.00
<0.3
<0.5
16.00
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
16.00
<1.0
<2.0
<0.5
139.00
<0.5
<0.5
<5
<6
<15
<5
27.58
11.2
4.90
6.54
<0.1
3.5
TB-10
TB-10-28
28
4/23/1997
<5.0
<5.0
9.3
6.2
<5.0
<3.0
7.0
<5.0
<3.0
<3.0
1810.00
<5.0
<10
<10
<5.0
<3.0
<5.0
<5.0
<5.0
956.00
<5.0
<5.0
82.00
1700.00
3650.00
2120.00
9.8
2400.00
<20
<5.0
<5.0
<5.0
11.9
<5
<6
93
<5
93.43
14.0
<0.5
0.05
0
TB-10
TB-10-33
33
4/25/1997
<0.5
<0.5
<0.5
0.7
<0.5
<0.3
1.5
0.5
<0.3
<0.3
654.00
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
7.9
<0.5
<0.5
<2.0
1.6
7.7
3.4
0.9
9.0
<2.0
<0.5
4.9
<0.5
<0.5
18.99
51.9
1.13
46.66
<0.1
14.8
TB-10
TB-10-38
38
4/28/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
82.8
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.8
<0.5
<2.0
<0.5
<0.5
<2.0
5.5
22.7
10.3
1.5
10.6
<2.0
<0.5
5.8
<0.5
<0.5
<5
<6
27
<5
27.41
46.1
6.91
2.97
<0.1
8.9
TB-10
TB-10-43
43
4/28/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
6.1
<0.5
<1.0
<1.0
50.8
<0.3
<0.5
14.7
<0.5
<2.0
<0.5
<0.5
<2.0
12.7
54.2
19.2
14.1
30.0
<2.0
<0.5
28.5
<0.5
<0.5
<5
<6
<15
<5
27.65
12.1
5.47
6.48
0.1
0
TC-01
TC-01-25
25
4/4/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
< 1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
1.9
<0.5
<0.5
<5
<6
<15
<5
10.30
13.7
4.68
5.34
<0.1
4.5
Page 11 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/1)
1,1,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1 ,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dich!oroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ucj/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TC-01
TC-01-30
30
4/4/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.7
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
5.2
<0.5
<0.5
<5
<6
<15
<5
8.70
14.5
5.04
2.38
0.2
5.3
TC-02
TC-02-27
27
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.9
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.6
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
60.2
<0.5
<0.5
<5
<6
<15
<5
15.61
12.3
4.02
1.56
<0.1
<3.00
TC-02
TC-02-32
32
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
2.4
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.6
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
70.4
<0.5
<0.5
<5
<6
<15
<5
11.28
9.4
4.09
1.56
<3.00
TC-02
TC-02-37
37
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.8
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
0.6
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
64.5
<0.5
<0.5
<5
<6
<15
<5
0.00
0.0
0.00
0.00
<0.1
<3.00
TC-02
TC-02-42
42
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.3
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
50.6
<0.5
<0.5
<5
<6
<15
<5
11.28
12.9
3.75
1.69
<0.1
<3.00
TC-03
TC-03-29
29
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
< 15
<5
6.19
10.5
3.03
27.49
<0.1
<3.00
TC-03
TC-03-34
34
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
<0.5
<0.5
<0.5
<5
<6
< 15
<5
8.02
6.6
3.30
20.93
<0.1
<3.00
TC-03
TC-03-39
39
4/24/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
1.1
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
39.3
<0.5
<0.5
<5
<6
<15
<5
15.70
7.5
4.25
1.56
<0.1
<3.00
Page 12 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/l)
1,1 ,2,2-Tetrachloroethane (ug/l)
1,1,2-Trichloroethane (ug/l)
1,1-Dichloroethane (ug/l)
1,1-Dichloroethene (ug/l)
1 ,2-Dichlorobenzene (ug/l)
1 ,2-Dichloroethane (ug/l)
1 ,2-Dichloropropane (ug/l)
1,3-Dichlorobenzene (ug/l)
1 ,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1 ,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TC-03
TC-03-44
44
4/24/1997
<0.8
<0.8
<0.8
<0.8
<0.8
<0.5
0.6
<0.8
<0.5
<0.5
4.4
<0.8
<1.7
<1.7
0.8
<0.5
<0.8
1.2
<0.8
<3.3
<0.8
<0.8
<3.3
<0.5
<1.7
<1.7
<0.8
<1.7
<3.3
<0.8
112.00
<0.8
<0.8
<5
<6
<15
<5
8.96
14.7
3.19
1.91
<0.1
3.9
TC-04
TC-04-30
30
4/23/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
50.9
<0.5
<0.5
<5
<6
<15
<5
5.43
17.4
2.33
10.02
<0.1
<3.00
TC-04
TC-04-35
35
4/23/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
18.2
<0.5
<0.5
<5
<6
<15
<5
5.94
25.0
2.01
5.39
<0.1
<3.00
TC-04
TC-04-40
40
4/23/1997
<1.3
<1.3
<1.3
<1.3
<1.3
<0.8
5.2
1.5
<0.8
<0.8
<0.8
<1.3
<2.5
<2.5
1.2
<0.8
<1.3
1.6
<1.3
3.6
<1.3
<1.3
<5.0
<0.8
<2.5
<2.5
<1.3
<2.5
<5.0
<1.3
566.00
<1.3
<1.3
<5
<6
<15
<5
8.47
16.1
2.60
4.74
<0.1
0
TC-05
TC-05-27
27
4/23/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
<1.0
<2.0
<0.5
3.6
<0.5
<0.5
<5
<6
<15
<5
10.30
17.0
3.37
18.98
<0.1
<3.00
TC-05
TC-05-30
30
4/23/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
<0.5
<0.3
<0.5
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
<0.5
< 1.0
<2.0
<0.5
7.3
<0.5
<0.5
<5
<6
<15
<5
17.33
15.2
3.57
20.69
3.6
TC-06
TC-06-26.5
26.5
4/25/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
1.1
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
4.6
<0.3
<0.5
3.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.8
< 1.0
<2.0
<0.5
21.6
<0.5
<0.5
<5
<6
<15
<5
8.05
57.5
5.58
11.96
<0.1
5.9
TC-06
TC-06-31
31
4/25/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
< 1.0
<1.0
4.6
<0.3
<0.5
3.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
19.3
<0.5
<0.5
<5
<6
<15
<5
10.52
21.8
6.08
1.69
<0.1
6.2
Page 13 of 14
-------
Table 5
Transect Groundwater Sample Analytical Results
March/April 1997
Dover Air Force Base, Delaware
Transect Sample Location:
Sample Id:
Sample Depth (feet below grade):
Sample Date:
Analyte (units)
Volatile Organic Compounds
,1,1-Trichtoroethane (ug/l)
,1,2,2-Tetrachloroethane (ug/l)
,1,2-Trichloroethane (ug/l)
,1-Dichloroethane (ug/l)
,1-Dichloroethene (ug/l)
,2-Dichtorobenzene (ug/l)
,2-Dichloroethane (ug/l)
,2-Dichloropropane (ug/l)
,3-Dichlorobenzene (ug/l)
,4-Dichlorobenzene (ug/l)
Benzene (ug/l)
Bromodichloromethane (ug/l)
Bromoform (ug/l)
Bromomethane (ug/l)
Carbon tetrachloride (ug/l)
Chlorobenzene (ug/l)
Chloroethane (ug/l)
Chloroform (ug/l)
Chloromethane (ug/l)
cis-1,2-Dichloroethene (ug/l)
cis-1 ,3-Dichloropropene (ug/l)
Dibromochloromethane (ug/l)
Dichloromethane (ug/l)
Ethylbenzene (ug/l)
m & p Xylenes (ug/l)
o-Xylene (ug/l)
Tetrachloroethylene (ug/l)
Toluene (ug/l)
trans-1 ,2-Dichloroethene (ug/l)
trans-1 ,3-Dichloropropene (ug/l)
Trichloroethylene (ug/l)
Trichloromonofluoromethane (ug/l)
Vinyl chloride (ug/l)
Gases
Ethane (ug/l)
Ethene (ug/l)
Methane (ug/l)
Propane (ug/l)
Inorganics
Alkalinity (mg/l)
Chloride (mg/l)
Nitrate plus Nitrite (as N) (mg/l)
Sulfate (mg/l)
Sulfide (mg/l)
Total Organic Carbon (mg/l)
TC-06
TC-06-35
35
4/23/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
1.1
<0.3
<0.5
1.1
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
13.4
<0.5
<0.5
<5
<6
<15
<5
13.85
17.6
4.56
1.64
<0.1
4.5
TC-07
TC-07-26.5
26.5
4/7/1997
<0.5
<0.5
<0.5
<0.5
<0.5
<0.3
<0.5
<0.5
0.3
0.3
<0.3
<0.5
<1.0
<1.0
1.0
<0.3
<0.5
0.8
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
<0.5
<1.0
<2.0
<0.5
0.8
<0.5
<0.5
8
8
19
<5
18.20
22.1
6.82
<1
0.1
7.9
TC-07
TC-07-31.5
31.5
4/7/1997
<0.5
<0.5
<0.5
<0.5
4.4
<0.3
<0.5
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
3.3
<0.3
<0.5
2.8
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
< 1.0
0.5
<1.0
<2.0
<0.5
8.2
<0.5
<0.5
<5
<6
<15
<5
16.90
55.3
6.64
<1
<0.1
9.6
TC-07
TC-07-36.5
36.5
4/7/1997
<0.5
<0.5
<0.5
<0.5
8.8
<0.3
0.6
<0.5
<0.3
<0.3
<0.3
<0.5
<1.0
<1.0
16.6
<0.3
<0.5
4.9
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<1.0
0.8
<1.0
<2.0
<0.5
12.1
<0.5
<0.5
<5
<6
<15
<5
23.90
24.2
6.46
< 1
0.1
9.6
Page 14 of 14
-------
Table 6
Transect Location TC-04 Additional Investigation Groundwater Sample Analytical Results
Dover Air Force Base, Delaware
SITE:
SAMPLE ID:
DATE:
Analyte (units)
Volatile Organic Compounds
1,1,1-Trichloroethane (ug/1)
1,1,2,2,-Tetrachloroethane (ug/1)
1,1,2-Trichloroethane (ug/1)
1 , 1 -Dichloroethane (ug/1)
1,1-Dichloroethene (ug/1)
1 ,2-Dichloroethane (ug/1)
1 ,2-Dichloropropane (ug/1)
Benzene (ug/1)
Bromodichloromethane (ug/1)
Bromoform (ug/1)
Carbon tetrachloride (ug/1)
Chlorobenzene (ug/1)
Chloroethane (ug/1)
Chloroform (ug/1)
cis-l,2-Dichloroethene (ug/1)
cis-l,3-Dichloropropene (ug/1)
Dibromochloromethane (ug/1)
trans- 1 ,2-Dichloroethene (ug/1)
Ethylbenzene (ug/1)
m &p Xylene (ug/1)
1 ,3-Dichlorobenzene (ug/1)
Bromomethane (ug/1)
Chloromethane (ug/1)
Dichloromethane (ug/1)
1,2-Dichlorobenzene (ug/1)
o-Xylene (ug/1)
1 ,4-Dichlorobenzene (ug/1)
Tetrachloroethylene (ug/1)
Toluene (ug/1)
trans- 1,3-Dichloropropene (ug/1)
Trichloroethylene (ug/1)
Trichloromonoflouromethane (ug/1)
Vinyl chloride (ug/1)
Gases
Ethane (ug/1)
Ethene (ug/1)
Methane (ug/1)
Propane (ug/1)
Inorganics
Alkalinity (mg/1)
Chloride (mg/1)
Nitrate plus Nitrite (as N) (mg/1)
Sulfate (mg/1)
Sulfide (mg/1)
Total Organic Carbon (mg/1)
TC-04
TC-04-40
4/23/97
<1.3
<1.3
<1.3
<1.3
<1.3
5.2
1.5
<0.8
<1.3
<2.5
<1.3
<0.8
<1.3
1.6
<5.0
<1.3
<1.3
<5.0
<0.8
<2.5
<0.8
<2.5
<1.3
<5.0
<0.8
<2.5
<0.8
<1.3
<2.5
<1.3
566
<1.3
<1.3
<5
<6
<15
<5
8.47
16.06
2.59
4.74
<0.1
ND
TC-04-A
TC-04-A-33
9/30/97
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<1.0
<0.5
<0.3
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<0.3
<1.0
<0.5
<0.5
<0.3
<1.0
<0.3
<0.5
<1.0
<0.5
<0.5
<0.5
<0.5
<5
<5
<15
<5
TC-04-A
TC-04-A-38
9/30/97
<0.5
<0.5
<0.5
<0.5
<0.5
2.3
<0.5
<0.5
<0.5
<1.0
0.7
<0.3
<0.5
<0.5
5.7
<0.5
<0.5
<2.0
<0.3
<1.0
<0.3
<1.0
<0.5
<0.5
<0.3
<1.0
<0.3
<0.5
<1.0
<0.5
256
<0.5
<0.5
<5
<5
<15
<5
TC-04-B
TC-04-B-33
9/30/97
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<1.0
<0.5
<0.3
<0.5
<0.5
<2.0
<0.5
<0.5
<2.0
<0.3
<1.0
<0.3
<1.0
<0.5
<0.5
0.3
<1.0
<0.3
<0.5
<1.0
<0.5
16.5
<0.5
<0.5
<5
<5
<15
<5
TC-04-B
TC-04-B-38
9/30/97
<0.5
<0.5
<0.5
<0.5
<0.5
3.2
<0.5
<0.5
<0.5
<1.0
0.8
<0.3
<0.5
<0.5
7.7
<0.5
<0.5
<2.0
<0.3
<1.0
<0.3
<1.0
<0.5
<0.5
<0.3
<1.0
<0.3
<0.5
<1.0
<0.5
306
<0.5
<0.5
<5
<5
<15
<5
1 Of1
2/26/2002
-------
Table 7
Summary of Chloride/Chloroethene Plume Mass Balance
Dover Air Force Base, Delaware
Constituent
Chloride (background = 5)*
Cloride (background = 10)*
Tetrachloroethene
Trichloroethene
cis-1 ,2-dichloroethene
Vinyl Chloride
Surfer Value
(mg*f2/L)
7.8E+08
1.6E+08
1.0E+06
7.0E+06
4.8E+06
2.1E+05
Mass
(mg)
7.7E+10
1.6E+10
1.0E+08
6.9E+08
4.8E+08
2.0E+07
Cl Molecular
weight
(g/mol)
35.45
35.45
165.83
131.39
96.94
62.50
Total Cl in Chlorocarbons
% Cl in Chlorocarbons/Chloride (background = 5)
% Cl in Chlorocarbons/Chloride (background = 10)
Mass
(mol)
2.2E+06
4.5E+05
6.0E+02
5.3E+03
4.9E+03
3.3E+02
1.1E+04
0.51%
2.45%
Aquifer Thickness (ft) 10
porosity 0.35
*Subtracted background value over all non zero data points
Page 1 of 1
-------
Table 8
Summary of Monitoring Well Data Mass Flux and Apparent Biodegradation Rates
Dover Air Force Base, Deleware
Tetrachloroethene
Transect
TA
TB
TC
Distance
between
Transects
(feet)
1200
1400
Travel Time
between Transects
(day)
4606
3151
Mass Flux
(umole/day)
1.6E+04
2.8E+03
4.6E+01
Attenuation
Rate
(/day)
-0.00039
-0.00130
Attenuation
half life
(year)
4.9
1.5
Trichloroethene
Transect
TA
TB
TC
Distance
between
Transects
(feet)
1200
1400
Travel Time
between Transects
(day)
4252
2908
Mass Flux
(umole/day)
4.7E+05
2.4E+05
4.1E+04
Attenuation
Rate
(/day)
-0.00016
-0.00061
Attenuation
half life
(year)
12.0
3.1
cis-1 ,2-Dichloroethene
Transect
TA
TB
TC*
Distance
between
Transects
(feet)
1200
1400
Travel Time
between Transects
(day)
3897
2666
Mass Flux
(umole/day)
5.4E+05
2.4E+05
3.1E+04
Attenuation
Rate
(/day)
-0.00021
-0.00077
Attenuation
half life
(year)
9.3
2.5
* Not Detected (1/2 detection limit used)
** Vinyl Chloride was Not Detected in Transect C or B so attenuation rate between Transects B and C not calculated
2/26/2002
1 of 2
-------
Table 8
Summary of Monitoring Well Data Mass Flux and Apparent Biodegradation Rates
Dover Air Force Base, Dele ware
Vinyl Chloride
Transect
TA
TB*
TC**
Distance
between
Transects
(feet)
1200
1400
Travel Time
between Transects
(day)
3543
2424
Mass Flux
(umole/day)
3.4E+04
3.9E+03
5.9E+02
Attenuation
Rate
(/day)
-0.00061
**
Attenuation
half life
(year)
3.1
**
1 ,2-Dichloroethane
Transect
TA
TB
TC
Distance
between
Transects
(feet)
1200
1400
Travel Time
between Transects
(day)
3602
2464
Mass Flux
(umole/day)
Attenuation
Rate
(/day)
NA
NA
Attenuation
half life
(year)
NA
NA
Note: The following variables were used in calculating travel times
Transect
TA-TB
TB-TC
Average Hydraulic
Conductivity (K)
(ft/day)
71.50
73.17
Average
hydraulic gradient (i)
0.0018
0.003
Groundwater
Flow velocity*
(ft/day)
0.34
0.58
'Porosity (n) = 0.38
•Calculated from V=Ki/n
Retardation Factor
(foe = 0.00025)
PCE
TCE
cis-1,2-DCE
Vinyl Chloride
1,2-DCA
1.3
1.2
1.1
1
1
* Not Detected (1/2 detection limit used)
** Vinyl Chloride was Not Detected in Transect C or B so attenuation rate between Transects B and C not calculated
2/26/2002
2 of 2
-------
Table 9
Groundwater Flow Rate Determined from Transect Data
Dover Air Force Base, Delaware
Sample
TA-01-32
TA-01-37
TA-01-42
TA-02-31.5
TA-02-36.5
TA-02-41.5
TA-02-46.5
TA-03-27.5
TA-03-32.5
TA-03-37.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-04-26
TA-04-31
TA-04-36
TA-04-41
TA-04-46
TA-04-51
TA-04-56
IR-07D
TA-05-24
TA-05-29
TA-05-34
TA-05-39
TA-05-44
TA-06-23
TA-06-28
TA-06-33
TA-06-38
TA-06-43
TA-06-48
TA-07-30
TA-07-35
TA-07-40
TA-07-45
TA-08-28
Hydraulic Conductivity
K (cm/sec)
3.22E-02
1.66E-02
3.26E-02
2.19E-02
1.71E-03
4.94E-02
6.46E-03
1.29E-02
2.35E-02
1.51E-02
5.77E-03
5.77E-03
5.77E-03
1.64E-03
4.21E-03
6.78E-03
1.85E-02
6.75E-03
7.30E-03
1.52E-02
2.90E-02
3.92E-03
3.81E-03
1.78E-02
2.17E-02
7.96E-02
1.45E-02
6.72E-02
1.75E-02
7.85E-03
1.07E-02
6.35E-03
3.52E-02
1.82E-02
4.40E-02
2.18E-02
1.94E-02
Cross Sectional
Cell Width (ft)
179
179
179
181
181
181
181
215
215
215
215
215
215
248
248
248
248
171
171
171
154
301
301
301
301
225
220
220
220
220
220
220
254
254
254
254
235
Cross Sectional
Cell Depth (ft)
9
5
6
9
5
5
7
6
5
5
5
5
5
3
5
5
5
5
5
5
15
5
5
5
5
11
3
5
5
5
5
7
8
5
5
10
6
Cross Sectional
Area (ft2)
1611
895
671
1610
905
905
724
1288
1073
1073
1073
1073
644
743
1239
1239
1239
855
855
684
2146
1507
1507
1507
1413
2471
660
1100
1100
1100
1100
1430
2032
1270
1270
2515
1409
Hydraulic
Gradient Along
Flowlines (i)
0.0029
0.0029
0.0029
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0025
0.0025
0.0025
0.0025
0.0025
0.0036
0.0036
0.0036
0.0036
0.0036
0.0036
0.0037
0.0037
0.0037
0.0037
0.0037
Angle btw Flowline
& Perpendicular to
Transect (6)
28
28
28
14
14
14
14
0
0
0
0
0
0
5
5
5
5
5
5
5
5
47
47
47
47
47
56
56
56
56
56
56
27
27
27
27
19
Hydraulic Gradient
Perpendicular to
Transect (ic)
0.0026
0.0026
0.0026
0.0021
0.0021
0.0021
0.0021
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0017
0.0017
0.0017
0.0017
0.0017
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020
0.0033
0.0033
0.0033
0.0033
0.0035
Flow Through Cross
Sectional Transect Cell
(I/day)
10663
3061
4500
6048
265
7654
801
2944
4460
2871
1093
1093
656
176
751
1210
3304
831
898
1500
8957
809
785
3664
4194
26920
1551
11953
3117
1395
1907
1466
18949
6115
14782
14481
7669
Note: ic = icos(6)
"Corrected for hydraulic conductivity effect on gradient (estimated at 1/11m of unconnected flow)
2/26/2002
1 of 3
-------
Table 9
Groundwater Flow Rate Determined from Transect Data
Dover Air Force Base, Delaware
Sample
TA-08-33
TA-08-38
TA-08-43
TA-08-48
TA-09-28
TA-09-33
TA-09-38
TA-09-43
TA-09-48
TB-03-23.5
TB-03-28.5
TB-03-33.5
TB-03-37.5
TB-03-43.5
TB-04-27
TB-04-32
TB-04-37
TB-04-42
TB-04-47
TB-05-31.5
TB-05-36.5
TB-05-41.5
TB-05-46.5
TB-05-51.5*
IR-06D
TB-06-33
TB-06-38
TB-06-43
TB-06-48
TB-07-27
TB-07-32
TB-07-37
TB-07-42
TB-07-47
TB-08-25.5
TB-08-30.5
TB-08-35.5
Hydraulic Conductivity
K (cm/sec)
6.82E-03
1.38E-02
7.89E-03
1.04E-01
5.77E-03
6.92E-03
4.62E-02
9.23E-04
9.23E-04
2.16E-02
4.23E-02
2.52E-02
1.40E-02
7.59E-03
2.37E-02
7.29E-02
4.98E-02
1.64E-02
1.36E-02
3.00E-02
1.36E-02
6.92E-03
2.17E-02
4.18E-01
1.90E-03
2.68E-02
9.81E-03
1.72E-02
1.03E-02
3.46E-02
2.71E-03
6.20E-02
6.26E-02
3.51E-02
1.04E-02
2.91E-02
2.17E-02
Cross Sectional
Cell Width (ft)
235
235
235
235
212
212
212
212
212
218
218
218
218
218
221
221
221
221
221
324
324
198
198
198
215
355
280
280
280
249
249
249
249
249
282
282
282
Cross Sectional
Cell Depth (ft)
5
5
5
5
8
5
5
5
3
4
5
5
5
6
4
9
5
5
8
8
5
5
5
4
13
10
5
5
4
5
5
5
5
3
5
5
5
Cross Sectional
Area (ft2)
1174
1174
1174
1174
1672
1058
1058
1058
635
850
1090
1090
1090
872
884
1625
1106
1106
1327
2104
1618
992
992
536
2688
2929
1400
1400
1092
1119
1243
1243
1243
796
1410
1410
1410
Hydraulic
Gradient Along
Flowlines (i)
0.0037
0.0037
0.0037
0.0037
0.005
0.005
0.005
0.005
0.005
0.0036
0.0036
0.0036
0.0036
0.0036
0.0031
0.0031
0.0031
0.0031
0.0031
0.0027
0.0027
0.0027
0.0027
0.0027
0.0027
0.0021
0.0021
0.0021
0.0021
0.0018
0.0018
0.0018
0.0018
0.0018
0.0022
0.0022
0.0022
Angle brw Flowline
& Perpendicular to
Transect (6)
19
19
19
19
60
60
60
60
60
52
52
52
52
52
49
49
49
49
49
39
39
39
39
39
39
0
0
0
0
21
21
21
21
21
10
10
10
Hydraulic Gradient
Perpendicular to
Transect (ij
0.0035
0.0035
0.0035
0.0035
0.0025
0.0025
0.0025
0.0025
0.0025
0.0022
0.0022
0.0022
0.0022
0.0022
0.0020
0.0020
0.0020
0.0020
0.0020
0.0021
0.0021
0.0021
0.0021
0.0002
0.0021
0.0021
0.0021
0.0021
0.0021
0.0017
0.0017
0.0017
0.0017
0.0017
0.0022
0.0022
0.0022
Flow Through Cross
Sectional Transect Cell
(I/day)
2248
4546
2602
34200
1935
1470
9799
196
118
3269
8195
4896
2719
1178
3415
19348
8996
2957
2949
10630
3710
1156
3623
3428*
862
13217
2315
4057
1890
5224
455
10391
10507
3765
2547
7130
5319
Note: ic = icos(6)
"Corrected for hydraulic conductivity effect on gradient (estimated at 1/11th of uncorrected flow)
2/26/2002
2 of 3
-------
Table 9
Groundwater Flow Rate Determined from Transect Data
Dover Air Force Base, Delaware
Sample
TB-08-40.5
TB-08-45.5
TB-09-29
TB-09-34
TB-09-39
TB-09-44
TB-10-28
TB-10-33
TB-10-38
TB- 10-43
TC-01-25
TC-01-30
TC-02-27
TC-02-32
TC-02-37
TC-02-42
TC-03-29
TC-03-34
TC-03-39
TC-03-44
DM-360D
TC-04-30
TC-04-35
TC-04-40*
TC-05-27
TC-05-30
TC-06-26.5
TC-06-31
TC-06-35
TC-07-26.5
TC-07-31.5
TC-07-36.5
Hydraulic Conductivity
K (cm/sec)
8.08E-03
8.08E-03
3.61E-02
1.66E-02
2.65E-03
4.03E-03
5.88E-03
3.92E-02
1.15E-03
3.00E-03
2.37E-02
5.08E-02
4.85E-03
6.35E-03
1.27E-02
7.63E-02
2.03E-02
1.23E-02
1.27E-02
4.71E-03
2.68E-03
8.08E-03
1.66E-02
4.18E-01
8.88E-03
2.19E-03
1.71E-02
2.05E-02
2.54E-02
2.10E-03
1.01E-02
7.29E-03
Cross Sectional
Cell Width (ft)
282
282
300
300
300
300
345
345
345
345
230
230
226
226
226
165
318
318
202
202
232
380
380
160
206
206
189
189
189
216
216
216
Cross Sectional
Cell Depth (ft)
5
2
10
5
5
6
6
5
5
10
8
8
7
5
5
6
7
5
5
7
14
9
5
6
10
5
10
5
2
11
6
2
Cross Sectional
Area (ft2)
1410
620
2641
1501
1501
1216
1604
1725
1725
2760
1844
864
1627
1130
1130
495
2064
1588
1008
1108
2723
3420
1700
480
2016
874
1925
849
377
2267
1295
432
Hydraulic
Gradient Along
Flowlines (i)
0.0022
0.0022
0.0024
0.0024
0.0024
0.0024
0.0028
0.0028
0.0028
0.0028
0.0048
0.0048
0.0048
0.0048
0.0048
0.0048
0.0042
0.0042
0.0042
0.0042
0.0042
0.0036
0.0036
0.0036
0.0031
0.0031
0.0031
0.0031
0.0031
0.0026
0.0026
0.0026
Angle btw Flowline
& Perpendicular to
Transect (9)
10
10
9
9
9
9
11
11
11
11
50
50
43
43
43
43
37
37
37
37
37
27
27
27
13
13
0
0
0
16
16
16
Hydraulic Gradient
Perpendicular to
Transect (ic)
0.0022
0.0022
0.0024
0.0024
0.0024
0.0024
0.0027
0.0027
0.0027
0.0027
0.0031
0.0031
0.0035
0.0035
0.0035
0.0035
0.0034
0.0034
0.0034
0.0034
0.0034
0.0032
0.0032
0.0003
0.0030
0.0030
0.0031
0.0031
0.0031
0.0025
0.0025
0.0025
Flow Through Cross
Sectional Transect Cell
(I/day)
1981
871
18120
4741
758
931
2083
14930
439
1827
10818
10868
2221
2020
4040
10644
11286
5278
3443
1405
1966
7112
7273
4694*
4342
465
8181
4341
2384
955
2620
632
Note: ic = icos(O)
"Corrected for hydraulic conductivity effect on gradient (estimated at 1/11th of unconnected flow)
2/26/2002
3 of 3
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TA-01-32
TA-01-37
TA-01-42
TA-02-31.5
TA-02-36.5
TA-02-41.5
TA-02-46.5
TA-03-27.5
TA-03-32.5
TA-03-37.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-04-26
TA-04-31
TA-04-36
TA-04-41
TA-04-46
TA-04-51
TA-04-56
IR-07D
TA-05-24
TA-05-29
TA-05-34
TA-05-39
TA-OS-44
TA-06-23
TA-06-28
TA-06-33
TA-06-38
TA-06-43
TA-06-48
TA-07-30
TA-07-35
TA-07-40
TA-07-45
TA-08-28
TA-08-33
TA-08-38
TA-08-43
TA-08^18
Flow Through Cross
Sectional Transect Cell
(I/day)
10663
3061
4500
6048
265
7654
801
2944
4460
2871
1093
1093
656
176
751
1210
3304
831
898
1500
8957
809
785
3664
4194
26920
1551
11953
3117
1395
1907
1466
18949
6115
14782
14481
7669
2248
4546
2602
34200
Tetrachloroethene
Concentration
(us/L)
value
2.9
0.25
0.25
0.25
0.25
0.25
1.5
1.2
11.6
214
171
113
258
0.25
0.25
3.0
2.8
12.7
17.4
18
13
0.25
0.25
2.5
2.5
52.1
0.25
0.25
0.6
1.3
1.7
12.8
1.0
1.6
5.5
2.8
0.25
0.25
0.5
74
160
PQL
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
5.0
5.0
0.5
0.5
0.5
0.5
Flag
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Trichloroethene
Concentration
(ug/L)
value
2.8
0.6
0.6
1.8
0.9
1.7
2.4
14.0
25.1
497
635
1630
3232
10.0
13.0
219
229
153
152
1166
720
13.7
19.6
594
1360
1720
4.9
28
152
460
634
2220
132
240
410
1490
0.25
2.4
8.3
438
690
PQL
0.5
Flap
<
cis-l^-dichloroethene
Concentration
(ue/L)
value
10.8
114
2440
1388
2032
4087
1
1
13.2
18.0
38.2
75.0
930
870
1
2.2
22
55
62.3
1
1
59.6
68.7
39.3
300
1
1
6.5
21.2
1
1
1
1
1
PQL
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
20
20
20
20
2.0
2.0
2.0
2.0
2.0
2.0
20
2.0
2.0
20
20
20
2.0
2.0
2.0
2.0
20
20
2.0
2.0
2.0
20
2.0
2.0
2.0
10
20
Flag
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Vinyl Chloride
Concentration
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TA-01-32
TA-01-37
TA-OM2
TA-02-31.5
TA-02-36.5
TA-02-41.5
TA-02-46.5
TA-03-27.5
TA-03-32.5
TA-03-37.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-04-26
TA-04-31
TA-04-36
TA-04-41
TA-04^t6
TA-04-51
TA-04-56
IR-07D
TA-05-24
TA-OS-29
TA-05-34
TA-05-39
TA-05-44
TA-06-23
TA-06-28
TA-06-33
TA-06-38
TA-06-43
TA-06-48
TA-07-30
TA-07-35
TA-07-40
TA-07^5
TA-08-28
TA-08-33
TA-08-38
TA-08-43
TA-08-48
Vinyl
Chloride
(uM)
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
1.76E-02
4.00E-03
7.52E-02
3.34E400
1.63E400
5.04E-01
6.40E-01
4.00E-03
4.00E-03
4.00E-03
4.00E-03
6.40E-02
1.84E-01
1.18E-KK)
1.10E+00
4.00E-03
4.00E-03
4.00E-02
4.00E-02
4.32E-02
4.00E-03
4.00E-03
9.60E-03
6.40E-02
6.88E-02
1.15E-01
4.00E-03
4.00E-03
4.00E-03
4.00E-02
4.00E-03
4.00E-03
4.00E-03
2.00E-02
4.00E-02
1,2-
dichloro
ethane
(uM)
1.62E-02
2.53E-03
2.53E-03
1.82E-02
1.11E-02
1.01E-02
2.63E-02
1.46E-01
7.66E-01
5.20E+00
9.26E+00
1.46E+01
2.98E+01
2.53E-03
2.53E-03
6.06E-03
1.82E-02
1.53E-01
9.48E-01
7.70E+00
2.93E+00
2.53E-03
6.06E-03
1.01E-01
4.73E-01
6.49E-01
2.53E-03
2.53E-03
4.65E-02
6.47E-02
1.69E-01
9.73E-01
2.53E-03
2.53E-03
2.53E-03
2.53E-02
2.53E-03
2.53E-03
2.53E-03
1.26E-02
2.53E-02
Total
Chlorinated
Ethenes
(uM)
5.31E-02
2.04E-02
2.04 E-02
2.95E-02
2.27E-02
2.88E-02
5.52E-02
2.29E-01
1.51E+00
3.36E-H)!
2.18E+01
3.46E-HM
6.90E401
9.19E-02
1.15E-01
1.83E+00
1.95E+00
1.70E+00
2.22E+00
1.98E+01
1.56E-KJ1
1.20E-01
1.77E-01
4.80E+00
1.10E-K)1
1.41E+01
5.31 E-02
2.29E-01
1.78E+00
4.28E+00
5.31E+00
2.02E-HM
1.02E+00
1.85E-M)0
3.22E+00
1.16E-H)1
1.77E-02
3.41 E-02
8.05E-02
3.81E-HX)
6.27E+OO
Chloride
(uM)
1.72E+03
1.69E+03
1.69E-KJ3
1.67E+03
1.74E+03
1.94E+03
2.08E+03
1.77E+03
6.73E+02
7.61E+02
8.19E+02
1.01E+03
1.22E+03
l.OOE+03
1.06E+03
1.45E+03
2.48E+02
4.34E-H>2
6.20E+02
2.76E+02
3.95E+02
1.37E+03
5.23E+02
5.47E+02
5.51E-H)2
4.38E-KJ2
5.66E+02
5.75E+02
5.84E+02
6.21E402
5.69E-H>2
5.13E402
1.42E+02
2.32E+02
3.05E+02
1.87E+03
3.42E+02
6.37E+02
9.77E+02
1.47E+03
7.71E+02
Tetrachloroethene
Mass Flux
(umoles/day)
1.86E+02
4.61E+00
6.78E+00
9.12E-HX)
4.00E-01
1.15E+01
7.2SE-KX)
2.13E+01
3.12E+02
3.70E+03
1.13E+03
7.45E+02
1.02E+03
2.65E-01
1.13E+00
2.19E+01
5.58E+01
6.36E+01
9.42E-KJ1
1.63E+02
7.02E-KJ2
1.22E-KX)
1.18E+00
5.52E+01
6.32E-KJ1
8.46E+03
2.34E-KX)
1.80E+O1
1.13E+01
1.09E+01
1.96E+01
1.13E402
1.14E4O2
5.90E+01
4.90E+O2
2.45E+O2
1.16E+01
3.39E+00
1.37E+01
1.16E-H)3
3.30E+04
Trichloroethene
Mass Flux
(umoles/day)
2.27E+02
1.40E+01
2.05E+01
8.29E-KM
1.82E+00
9.90E+01
1.46E+01
3.14E+02
8.52E+02
1.09E+04
5.28E+03
1.36E+04
1.61E+04
1.34E+01
7.43E-KJ1
2.02E+03
5.76E-KJ3
9.67E-M)2
1.04E+03
1.33E+04
4.91E+04
8.44E+O1
1.17E+02
1.66E+04
4.34E+04
3.52E+05
5.78E+01
2.55E+03
3.61E4O3
4.88E+O3
9.20E+03
2.48E+04
1.90E-MM
1.12E+04
4.61E-HM
1.64E-HJ5
1.46E+01
4.11E-MJ1
2.87E+02
8.67E-KJ3
1.80E+05
cis-1,2-
dichloroethene
Mass Flux
(umoles/day)
1.10E+02
3.16E+01
4.64E+01
6.24E+01
2.74E+00
7.90E+01
8.26E+00
3.28E+02
5.25E+03
7.23E+04
1.57E+04
2.29E+04
2.77E+04
1.81E+00
7.75E+00
1.65E+02
6.14E+02
3.27E+02
6.95E+02
1.44E+04
8.04E+04
8.35E+00
1.78E+01
8.32E-H)2
2.38E403
1.73E-KM
1.60E401
1.23E+02
1.92E+03
9.88E-H)2
7.73E402
4.54E-H)3
1.95E+02
6.31E-M)!
9.91E+02
3.17E+03
7.91E+01
2.32E+01
4.69E-K)!
2.68E+01
3.53E-KJ2
Vinyl Chloride
Mass Flux
(umoles/day)
4.27E+01
1.22E401
1.80E+01
2.42E-H)!
1.06E+OO
3.06E-H)!
1.41E-KH
1.18E+01
3.35E+02
9.60E+03
1.78E+03
5.51E+02
4.20E-H)2
7.02E-01
3.00E-KM)
4.84E+00
1.32E-KJ1
5.32E401
1.65E-K12
1.78E-K13
9.89E+03
3.24E4OO
3.14E-HJO
1.47E+02
1.68E+02
1.16E+03
6.20E+OO
4.78E+01
2.99E4O1
8.93E+O1
1.31E+02
1.69E+02
7.58E+01
2.45E401
5.91E401
5.79E-M)2
3.07E+01
8.99E+00
1.82E-K)!
5.20E-K)!
1.37E+03
1.2-
dichloroethane
Mass Flux
(umoles/day)
1.72E+02
7.73E+00
1.14E+01
1.10E+02
2.95E+00
7.73E+01
2.10E401
4.28E-HJ2
3.42E-HJ3
1.49E+04
1.01E+04
1.60E+04
1.96E+04
4.43E-01
1.90E+00
7.33E-KJO
6.01 E+01
1.27E+02
8.51E-H)2
1.15E-HM
2.62E+04
2.04E+00
4.76E+00
3.70E+02
1.98E403
1.75E+04
3.92E-KJO
3.02E+01
1.45E+02
9.02E+01
3.22E-M)2
1.43E403
4.79E-K)!
1.54E+01
3.73E+01
3.66E+02
1.94E+01
5.68E+00
1.15E+01
3.29E+01
8.64E+02
Chloride
Mass Flux
(umoles/day)
1.83E-HJ7
5.19E+06
7.62E+06
1.01E+07
4.61E+05
1.48E+07
1.67E+06
5.21E+06
3.00E+06
2.18E+06
8.95E+05
1.11E-H)6
8.00E405
1.76E+05
7.97E-HJ5
1.76E406
8.18E405
3.60E-M)5
5.57E+05
4.13E+05
3.54E-KJ6
1.11E406
4.10E-KJ5
2.00E-HJ6
2.31E-MJ6
1.18E+07
8.78E-H)5
6.88E+06
1.82E+06
8.66E-K)5
1.08E+06
7.53E+05
2.69E+06
1.42E-KJ6
4.51E4O6
2.70E+07
2.62E+06
1.43E+06
4.44E+06
3.82E+06
2.64E-KJ7
Total
Chlorinated
Ethenes
Mass Flux
(umoles/day)
5.66E+02
6.24E-KJ1
9.18E-KJ1
1.79E+02
6.01E+00
2.20E+02
4.42E+01
6.75E402
6.74E+03
9.64E+04
2.38E-MM
3.78E+04
4.52E+04
1.61E+01
8.62E+01
2.21E+03
6.44E403
1.41E+03
1.99E+03
2.96E+04
1.40E+05
9.72E-M)!
1.39E-M)2
1.76E-HM
4.60E+04
3.79E405
8.24E-K)!
2.74E403
5.56E403
5.97E+03
1.01E-HM
2.96E404
1.94E-KJ4
1.13E-KJ4
4.77E+04
1.68E-KJ5
1.36E-KJ2
7.66E-MJ1
3.66E402
9.91E+03
2.14E405
'Corrected for hydraulic conductivity effect on gradient (estimated at 1/11th of regional gradient)
** Estimated from average of surrounding data
*** From 1996 groundwater monitoring data
2/26/2002
2 of 6
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TA-09-28
TA-09-33
TA-09-38
TA-09-43
TA-09-48
TB-03-23.5
TB-03-28.5
TB-03-33.5
TB-03-37.5
TB-03-43.5
TB-04-27
TB-04-32
TB-04-37
TB-04-42
TB-04-47
TB-05-31.5
TB-05-36.5
TB-05-41.5
TB-05^6.5
TB-05-51.5
TB-05-51.5*
IR-06D
TB-06-33
TB-06-38
TB-06-43
TB-06-48
TB-07-27
TB-07-32
TB-07-37
TB-07-42
TB-07-47
TB-08-25.5
TB-08-30.5
TB-08-35.5
TB-08-40.5
TB-08-45.5
TB-09-29
TB-09-34
TB-09-39
TB-09-44
TB- 10-28
TB-10-33
Flow Through Cross
Sectional Transect Cell
(I/day)
1935
1470
9799
196
118
3269
8195
4896
2719
1178
3415
19348
8996
2957
2949
10630
3710
1156
3623
37710
3428*
862
13217
2315
4057
1890
5224
455
10391
10507
3765
2547
7130
5319
1981
871
18120
4741
758
931
2083
14930
Tetrachloroethene
Concentration
(ug/L)
0.7
14
137
0.25
0.8
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
1.6
1.6
2.5
0.25
1.4
1.2
1.2
0.25
0.7
1.4
1.0
0.7
0.25
0.25
1.3
2.2
0.25
6.0
15
7.4
16
9.8
0.9
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
5.0
0.5
0.5
0.5
0.5
0.5
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Trichloroethene
Concentration
(ug/L)
133
1580
1340
0.6
7.9
0.25
0.25
0.25
0.25
0.25
0.25
0.25
1.0
3.5
6.7
0.25
0.25
0.25
16.6
125
125
260
2.9
52.3
140
172
0.25
13.3
63.5
283
336
0.25
1.9
134
746
12.4
0.25
1.7
4.0
139
2.5
4.9
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
5.0
<
<
<
<
<
<
<
<
<
<
<
<
<
<
cis-l,2-dichloroethene
Concentration
(us/L)
1
14
2.
1.8
37.
37.
80
1
2.4
5.9
4.3
1
1.6
9.5
31.6
24.5
9.0
956
7.9
2.0
20
20
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
5.0
10
2.0
2.0
20
5.0
2.0
2.0
2.0
2.0
2.0
20
2.0
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Vinyl Chloride
Concentration
(ug/L)
0.25
2.00
2.50
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
2.50
0.25
0.25
0.25
0.25
0.25
0.25
0.25
1.20
0.80
0.25
0.25
2.50
0.80
0.25
0.25
0.25
0.25
0.25
11.90
0.25
0.5
5.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
5.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
5.0
0.5
0.5
0.5
0.5
0.5
0.5
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
1,2-dichloroethane
Concentration
(ug/L)
0.25
2.5
2.5
0.25
0.25
0.25
0.25
0.25
0.5
0.25
0.25
0.6
5.6
37.6
60.2
0.25
0.25
0.25
10.7
19.1
19.1
380
0.25
0.8
1.5
4.4
0.25
0.25
1.3
10.2
7.4
1
0.25
2.5
0.65
0.25
0.25
0.25
0.25
0.25
7
1.5
0.50
5.00
5.00
0.50
0.50
0.50
0.50
0.50
1.00
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
5.00
1.30
0.50
0.50
0.50
0.50
0.50
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Chloride
Concentration
(mg/L)
18.74
17.97
13.16
6.12
5.77
4.35
9.15
8.42
28.68
29.81
10.59
6.43
17.34
42.34
42.09
41.50
36.84
42.67
45.79
5.66
6
7.00***
37.95
37.52
37.10
43.00
26.49
54.98
41.92
16.33
17.59
22.39
47.19
24.19
17.02
10.86
32.70
13.75
7.05
11.21
13.96
51.86
Tetrachloro
ethene
(uM)
4.22E-03
8.44E-02
8.26E-01
1.51E-03
4.82E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
1.51E-03
3.02E-03
9.65E-03
9.65E-03
1.51E-02
1.51E-03
8.44E-03
7.24E-03
7.24E-03
1.51E-03
4.22E-03
8.44E-03
6.03E-03
4.22E-03
1.51E-03
1.51E-03
7.84E-03
1.33E-02
1.51E-03
3.62E-02
9.05E-02
4.46E-02
9.65E-02
5.91E-02
5.43E-03
Trichloro
ethene
(uM)
1.01E+00
1.20E+01
1.02E401
4.57E-03
6.01 E-02
.90E-03
.90E-03
.90E-03
.90E-03
.90E-03
1.90E-03
1.90E-03
7.61 E-03
2.66E-02
5.10E-02
1.90E-03
1.90E-03
1.90E-03
1.26E-01
9.51E-01
9.51E-01
1.98E+00
2.21 E-02
3.98E-01
1.07E+00
1.31E+00
1.90E-03
1.01E-01
4.83E-01
2.15E-MX)
2.56E400
1.90E-03
1.45E-02
1.02E+00
5.68E4OO
9.44E-02
1.90E-03
1.29E-02
3.04E-02
1.06E+00
1.90E-02
3.73E-02
cis-1,2-
dichloroe
thene
(uM)
1.03E-02
1.44E-01
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
2.58E-02
1.03E-02
1.03E-02
1.03E-02
1.86E-02
3.83E-01
3.83E-01
8.25E-01
1.03E-02
2.48E-02
6.09E-02
4.44E-02
1.03E-02
1.65E-02
9.80E-02
3.26E-01
2.53E-01
.03E-02
.03E-02
.03E-02
9.28E-02
.03E-02
.03E-02
.03E-02
.03E-02
.03E-02
9.86E+00
8.15E-02
'Corrected for hydraulic conductivity effect on gradient (estimated at 1/1181 of regional gradient)
" Estimated from average of surrounding data
*** From 1996 groundwater monitoring data
2/26/2002
3of6
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TA-09-28
TA-09-33
TA-09-38
TA-09-43
TA-09-48
TB-03-23.5
TB-03-28.5
TB-03-33.5
TB-03-37.5
TB-03-43.5
TB-04-27
TB-04-32
TB-04-37
TB-04-42
TB-04-47
TB-05-31.5
TB-05-36.5
TB-05-41.5
TB-05^t6.5
TB-05-51.5
TB-05-51.5'
IR-06D
TB-06-33
TB-06-38
TB-06-43
TB-06-48
TB-07-27
TB-07-32
TB-07-37
TB-07-42
TB-07-47
TB-08-25.5
TB-08-30.5
TB-08-35.5
TB-08-40.5
TB-08-45.5
TB-09-29
TB-09-34
TB-09-39
TB-09-44
TB-10-28
TB-10-33
Vinyl
Chloride
(uM)
4.00E-03
3.20E-02
4.00E-02
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-02
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
1.92E-02
1.28E-02
4.00E-03
4.00E-03
4.00E-02
1.28E-02
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
1.90E-01
4.00E-03
1,2-
dichloro
ethane
(uM)
2.53E-03
2.53E-02
2.53E-02
2.53E-03
2.53E-03
2.53E-03
2.53E-03
2.53E-03
5.05E-03
2.53E-03
2.53E-03
6.06E-03
5.66E-02
3.80E-01
6.08E-01
2.53E-03
2.53E-03
2.53E-03
1.08E-01
1.93E-01
1.93E-01
3.84E+00
2.53E-03
8.08E-03
1.52E-02
4.45E-02
2.53E-03
2.53E-03
1.31E-02
1.03E-01
7.48E-02
1.01E-02
2.53E-03
2.53E-02
6.57E-03
2.53E-03
2.53E-03
2.53E-03
2.53E-03
2.53E-03
7.07E-02
1.52E-02
Total
Chlorinated
Ethenes
(uM)
1.03E+00
1.23E+01
1.11E+01
2.04E-02
7.93E-02
1.77E-02
1.77E-02
1.77E-02
1.77E-02
1.77E-02
1.77E-02
1.77E-02
2.34E-02
4.25E-02
8.23E-02
1.77E-02
1.77E-02
1.77E-02
1.52E-01
1.35E4OO
1.35E4OO
2.86E+00
3.79E-02
4.35E-01
1.14E-KX)
1.36E4OO
1.77E-02
1.26E-01
5.94E-01
2.51E+00
2.83E400
1.77E-02
3.03E-02
1.08E+00
5.80E+00
1.10E-01
5.24E-02
1.18E-01
8.94E-02
1.17E-K)0
1.01E+01
1.28E-01
Chloride
(uM)
5.29E+02
5.07E+02
3.71E+02
1.73E+02
1.63E+02
1.23E+02
2.58E+02
2.37E+02
8.09E+02
8.41E+02
2.99E-KJ2
1.81E+02
4.89E+02
1.19E+03
1.19E+03
1.17E+03
1.04E+03
1.20E+03
1.29E+03
1.60E+02
1.60E+02
1.97E+02
1.07E+03
1.06E+03
1.05E-HW
1.21E403
7.47E+02
1.55E-KJ3
1.18E+03
4.61E402
4.96E402
6.31E402
1.33E403
6.82E+02
4.80E+02
3.06E+02
9.22E+02
3.88E+02
1.99E+02
3.16E+02
3.94E+02
1.46E+03
Tetrachloroethene
Mass Flux
(umoles/day)
8.17E+00
1.24E+02
8.10E+03
2.95E-01
5.67E-01
4.93E-HX)
1.24E+01
7.38E+00
4.10E-KX3
1.78E-HX)
5.15E-HX)
. 2.92E-HH
1.36E+01
4.46E+00
4.45E+00
1.60E+01
5.59E-HX)
1.74E+00
1.09E401
3.64E402
3.31E+01*
1.30E-KH
1.99E+01
1.95E+01
2.94E+01
1.37E-H)!
7.88E+00
1.92E-HX)
8.77E+01
6.34E+01
1.59E+01
3.84E+00
1.07E-KM
4.17E+01
2.63E+01
1.31E+00
6.56E-K>2
4.29E4O2
3.38E4O1
8.99E401
1.23E402
8.10E-M)!
Trichloroethene
Mass Flux
(umoles/day)
1.96E+03
1.77E+04
9.99E+04
8.95E-01
7.07E+00
6.22E+00
1.56E+01
9.32E+00
5.17E+00
2.24E+00
6.50E-KJO
3.68E+01
6.85E+01
7.88E+01
1.50E+02
2.02E+01
7.06E+00
2.20E+00
4.58E+02
3.59E+04
3.26E+03*
1.71E+03
2.92E+02
9.21E+02
4.32E+03
2.47E+03
9.94E-KX)
4.60E-HJ1
5.02E+03
2.26E+04
9.63E+03
4.85E+00
1.03E+02
5.43E403
1.12E-KM
8.22E+01
3.45E+01
6.13E+01
2.31E+01
9.85E+02
3.96E+01
5.57E+02
cis-1,2-
dichloroethene
Mass Flux
(umoles/day)
2.00E-KJ1
2.12E+02
1.01E402
2.02E-K)0
1.21E+00
3.37E+01
8.45E+01
5.05E-K)!
2.80E+01
1.22E+01
3.52E+01
2.00E+02
9.28E+01
3.05E+01
7.61E+01
1.10E+02
3.83E+01
1.19E+01
6.73E+01
1.44E+04
1.31E403*
7.12E+02
1.36E402
5.73E401
2.47E4O2
8.38E-K)!
5.39E+01
7.51E-HH)
1.02E+03
3.42E+03
9.51E-K)2
2.63E+01
7.36E+01
5.49E+01
1.84E+02
8.99E400
1.87E+02
4.89E+01
7.82E-HK)
9.61E+00
2.05E+04
1.22E+03
Vinyl Chloride
Mass Flux
(umoles/day)
7.74E+00
4.70E401
3.92E+02
7.84E-01
4.70E-01
1.31E-HJ1
3.28E+01
1.96E-KJ1
1.09E-KJ1
4.71E-KJO
1.37E401
7.74E+01
3.60E+01
1.18E-K)!
1.18E401
4.25E+01
1.48E+01
4.62E400
1.45E+01
1.51E+02
1.37E+01*
3.45E-MJ1
5.29E401
9.26E400
1.62E4O1
7.56E-HJO
2.09E-KJ1
1.82E+00
4.16E+01
2.02E-M)2
4.82E-K)!
1.02E401
2.85E+01
2.13E+02
2.54E+01
3.49E+00
7.25E+01
1.90E+01
3.03E+00
3.73E400
3.97E+02
5.97E+01
1,2-
dichloroethane
Mass Flux
(umoles/day) '
4.89E+00
3.71E+01
2.48E-KJ2
4.95E-01
2.97E-01
8.26E+00
2.07E-K)!
1.24E+01
1.37E+01
2.98E+00
8.63E400
1.17E-K12
5.09E-H)2
1.12E+03
1.79E+03
2.69E+01
9.37E+00
2.92E+00
3.92E+02
7.28E4O3
6.62E+02*
3.31E-KJ3
3.34E+O1
1.87E4O1
6.15E+01
8.40EHO1
1.32E+01
1.15E-KX)
1.36E402
1.08E+03
2.82E+02
2.57E+01
1.80E401
1.34E-H)2
1.30E+01
2.20E+00
4.58E+01
1.20E+01
1.91E-H)0
2.35E+OO
1.47E+02
2.26E+02
Chloride
Mass Flux
(umoles/day)
1.02E+06
7.45E-KJ5
3.64E+06
3.38E+04
1.91E+04
4.01E-H05
2.11E+06
1.16E+06
2.20E+06
9.90E+05
1.02E+06
3.51E+06
4.40E+06
3.53E+06
3.50E+06
1.24E+07
3.86E+06
1.39E+06
4.68E+06
6.02E+06
5.47E-KJ5*
1.70E+05
1.41E+07
2.45E+06
4.25E+06
2.29E+06
3.90E+06
7.05E+05
1.23E-KJ7
4.84E4O6
1.87E406
1.61E-HJ6
9.49E+06
3.63E-MJ6
9.51E-H35
2.67E+05
1.67E-HJ7
1.84E406
1.51E-MJ5
2.94E+05
8.20E+05
2.18E+07
Total
Chlorinated
Ethenes
Mass Flux
(umoles/day)
1.99E+03
1.81E+04
1.09E+05
4.00E-H)0
9.32E+00
5.79E+01
1.45E+02
8.68E+01
4.82E+01
2.09E+01
6.05E+01
3.43E+02
2.11E+02
1.26E-H)2
2.43E+02
1.88E+02
6.58E-M)!
2.05E401
5.50E402
5.08E+04
4.62E+03*
2.47E-H)3
5.01E-M)2
1.01E-H)3
4.62E403
2.58E+03
9.26E+01
5.73E401
6.17E+03
2.63E-HM
1.06E+04
4.51E-K)!
2.16E+02
5.73E403
1.15E-HM
9.60E+01
9.49E+02
5.58E402
6.77E+01
1.09E-H)3
2.11E+04
1.91E+03
'Corrected for hydraulic conductivity effect on gradient (estimated at 1/1181 of regional gradient)
** Estimated from average of surrounding data
*** From 1996 groundwater monitoring data
2/26/2002
4 of 6
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TB- 10-38
TB-10-43
TC-01-25
TC-01-30
TC-02-27
TC-02-32
TC-02-37
TC-02-42
TC-03-29
TC-03-34
TC-03-39
TC-03-44
DM-360D
TC-04-30
TC-04-35
TC-04-40
TC-OMO*
TC-05-27
TC-05-30
TC-06-26.5
TC-06-31
TC-06-35
TC-07-26.5
TC-07-31.5
TC-07-36.5
Flow Through Cross
Sectional Transect Cell
(I/day)
439
1827
10818
10868
2221
2020
4040
10644
11286
5278
3443
1405
1966
7112
7273
51637
4694*
4342
465
8181
4341
2384
955
. 2620
632
Tetrachloroethene
Concentration
(ug/L)
1.5
14.1
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.4
2.5
0.25
0.25
0.65
0.65
0.25
0.25
0.8
0.25
0.25
0.25
0.5
0.8
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.8
5.0
0.5
0.5
1.3
1.3
0.5
0.5
0.5
0.5
0.5
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Trichloroethene
Concentration
(ug/L)
5.8
28.5
1.9
5.2
60.2
70.4
64.5
50.6
0.25
0.25
39.3
112
89
50.9
18.2
566
566
3.6
7.3
21.6
19.3
13.4
0.8
8.2
12.1
0.5
0.5
<
<
cis-l,2-dicnloroethene
Concentration
(ug/L)
1
1
1
1.65
2.5
1
1
3.6
3.6
1
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.3
5.0
2.0
2.0
5.0
5.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
Vinyl Chloride
Concentration
(ug/L)
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.40
2.50
0.25
0.25
0.65
0.65
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.8
5.0
0.5
0.5
1.3
1.3
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
1,2-dichloroethane
Concentration
(ug/L)
0.25
0.25
0.25
0.7
1.9
24
1.8
1.3
0.25
0.25
0.25
0.4
2.5
0.6
0.25
5.2
5.2
0.25
0.25
1.1
0.6
0.6
0.25
0.25
0.6
0.50
0.50
0.50
0.50
0.50
0.50
0.80
5.00
0.50
0.50
0.50
0.50
0.50
<
<
<
<
<
<
<
<
<
<
<
<
<
Chloride
Concentration
(mg/L)
46.05
12.06
13.68
14.48
12.25
9.40
11.15
12.90
10.54
6.60
7.49
14.65
14.00*"
17.44
25.05
16.07
16.07
17.04
15.16
57.52
21.80
17.62
22.14
55.34
24.17
Tetrachloro
ethene
(uM)
9.05E-03
8.50E-02
1.51E-03
.51E-03
.51E-03
.51E-03
.51E-03
.51E-03
.51E-03
.51E-03
1.51E-03
2.41 E-03
1.51E-02
1.51E-03
1.51E-03
3.92E-03
0.003919677
1.51 E-03
1.51 E-03
4.82E-03
1.51E-03
1.51 E-03
1.51 E-03
3.02E-03
4.82E-03
Trichloro
ethene
(uM)
4.41E-02
2.17E-01
1.45E-02
3.96E-02
4.58E-01
5.36E-01
4.91E-01
3.85E-01
1.90E-03
1.90E-03
2.99E-01
8.52E-01
6.77E-01
3.87E-01
1.39E-01
4.31E-KJO
4.307786
2.74E-02
5.56E-02
1.64E-01
1.47E-01
1.02E-01
6.09E-03
6.24E-02
9.21E-02
cis-1,2-
dichloroe
thene
(uM)
1.03E-02
1.03E-02
1.03E-02
.03E-02
.03E-02
.03E-02
.03E-02
.03E-02
.03E-02
1.03E-02
1.03E-02
1.70E-02
2.58E-02
1.03E-02
1.03E-02
3.71E-02
0.0371364
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
1.03E-02
'Corrected for hydraulic conductivity effect on gradient (estimated at 1/11th of regional gradient)
** Estimated from average of surrounding data
*** From 1996 groundwater monitoring data
2/26/2002
5 of 6
-------
Table 10
Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Sample
TB-10-38
TB-10-43
TC-01-25
TC-01-30
TC-02-27
TC-02-32
TC-02-37
TC-02-42
TC-03-29
TC-03-34
TC-03-39
TC-03-44
DM-360D
TC-04-30
TC-04-35
TC-04-40
TC-04-40*
TC-05-27
TC-05-30
TC-06-26.5
TC-06-31
TC-06-35
TC-07-26.5
TC-07-31.5
TC-07-36.5
Vinyl
Chloride
(uM)
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
6.40E-03
4.00E-02
4.00E-03
4.00E-03
1.04E-02
0.0104
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
4.00E-03
1,2-
dichloro
ethane
(uM)
2.53E-03
2.53E-03
2.53E-03
7.07E-03
1.92E-02
2.43E-01
1.82E-02
1.31E-02
2.53E-03
2.53E-03
2.53E-03
4.04E-03
2.53E-02
6.06E-03
2.53E-03
5.25E-02
0.052546
2.53E-03
2.53E-03
1.11E-02
6.06E-03
6.06E-03
2.53E-03
2.53E-03
6.06E-03
Total
Chlorinated
Ethenes
(uM)
6.75E-02
3.16E-01
3.03E-02
5.54E-02
4.74E-01
5.52E-01
5.07E-01
4.01E-01
1.77E-02
1.77E-02
3.15E-01
8.78E-01
7.58E-01
4.03E-01
1.54E-01
4.36E-HJO
4.35924203
4.32E-02
7.14E-02
1.84E-01
1.63E-01
1.18E-01
2.19E-02
7.97E-02
1.11E-01
Chloride
(uM)
1.30E+03
3.40E-HJ2
3.86E+02
4.08E+02
3.46E-KI2
2.65E+02
3.14E+02
3.64E+02
2.97E+02
1.86E+02
2.11E+02
4.13E+02
3.95E+02
4.92E+02
7.06E+02
4.53E+02
453.23104
4.81E+02
4.28E+02
1.62E+03
6.15E+02
4.97E+02
6.24E+02
1.56E+03
6.82E+02
Tetrachloroethene
Mass Flux
(umoles/day)
3.97E-KX)
1.55E+02
1.63E+01
1.64E+01
3.35E-KX)
3.05E+00
6.09E+00
1.60E+01
1.70E+01
7.96E+00
5.19E+00
3.39E-KX)
2.96E+01
1.07E+01
1.10E+01
2.02E+02
1.84E+01*
6.55E-KX)
7.01E-01
3.95E+01
6.54E+00
3.59E+00
1.44E+00
7.90E-KX)
3.05E+00
Trichloroethene
Mass Flux
(umoles/day)
1.94E+01
3.96E+02
1.56E+02
4.30E+02
1.02E+03
1.08E+03
1.98E+03
4.10E+03
2.15E-KM
l.OOE+01
1.03E+O3
1.20E+O3
1.33E4O3
2.76E+03
1.01E+03
2.22E+O5
2.02E-HM*
1.19E+02
2.58E+01
1.34E+03
6.38E-H)2
2.43E+02
5.82E+00
1.63E+02
5.82E-M)!
cis-1,2-
dichloroethene
Mass Flux
(umoles/day)
4.53E+00
1.88E+01
1.12E402
1.12E+02
2.29E+01
2.08E+01
4.17E-K)!
1.10E+02
1.16E+02
5.44E+01
3.55E+01
2.39E+01
5.07E+01
7.34 E+01
7.50E-HH
1.92E-K)3
1.74E-H)2*
4.48E-K)!
4.79E+00
8.44E+01
4.48E+01
2.46E+01
9.85E+00
2.70E+01
6.52E400
Vinyl Chloride
Mass Flux
(umoles/day)
1.76E+00
7.31E+00
4.33E+01
4.35E401
8.89E+00
8.08E+00
1.62E+01
4.26E+01
4.51E+01
2.11E+01
1.38E-K)!
8.99E+00
7.86E+01
2.84E+01
2.91E+01
5.37E+02
4.88E+01*
1.74E+01
1.86E+00
3.27E+01
1.74E4O1
9.54E-KH)
3.82E-KJO
1.05E+01
2.53E+00
1,2-
dichloroethane
Mass Flux
(umoles/day)
l.HE-KJO
4.61E+00
2.73E+01
7.69E+01
4.27E-HJ1
4.90E-HJ2
7.35E+01
1.40E+02
2.85E+01
1.33E+01
8.70E4OO
5.68E+00
4.97E+01
4.31E+O1
1.84E+01
2.71E+03
2.47E-HJ2'
1.10E4O1
1.17E+00
9.09E+01
2.63E+01
1.45E+01
2.41E+00
6.62E+00
3.83E+00
Chloride
Mass Flux
(umoles/day)
5.70E+05
6.21E-KJ5
4.17E+06
4.44E+06
7.68E+05
5.36E+05
1.27E+06
3.87E+06
3.36E+06
9.83E+05
7.27E+05
5.81E+05
7.76E+05
3.50E+06
5.14E+06
2.34E+07
2.13E406*
2.09E+06
1.99E+05
1.33E+07
2.67E+06
1.19E+06
5.96E+05
4.09E+06
4.31E+05
Total
Chlorinated
Ethenes
Mass Flux
(umoles/day)
2.96E+01
5.78E+02
3.28E+02
6.02E4O2
1.05E+03
1.11E+03
2.05E-KJ3
4.27E+03
2.00E-H)2
9.36E-H31
1.08E+03
1.23E+03
1.49E-K)3
2.87E-KJ3
1.12E+03
2.25E-K)5
2.05E+04*
1.88E4O2
3.32E+01
1.50E+03
7.06E4O2
2.81E-K)2
2.09E-K)!
2.09E-H)2
7.03E-K)!
'Corrected for hydraulic conductivity effect on gradient (estimated at 1/11*1 of regional gradient)
" Estimated from average of surrounding data
*** From 1996 groundwater monitoring data
2/26/2002
6 of 6
-------
Table 11
Summary of Mass Flux Calculated by Summation of Transect Data
Dover Air Force Base, Delaware
Transect
TA
TB
TC
Tetrachloroethene
Mass Flux
(umole/day)
5.2E+04
2.0E+03
4.2E+02
Trichloroethene
Mass Flux
(umole/day)
1.0E+06
1.02E+05
6.9E+04***
2.41 E+05
3.9E+04***
cis-1 ,2-Dichloroethene
Mass Flux
(umole/day)
2.7E+05
9.5E+03
1.3E+03*
Vinyl Chloride
Mass Flux
(umole/day)
2.9E+04
1.3E+03*
**
1 ,2-Dichloroethane
Mass Flux
(umole/day)
1.3E+05
1.7E+04
3.9E+03
Chloride
Mass Flux
(umole/day)
1.84E+08
1.33E+08
7.81 E+07
* Not detected (1/2 detection limit used)
** Not calculated because compound not detected in Transect B or C
*** Corrected to demonstrate possible Hydraulic Conductivity effects on gradient
-------
Table 12
Apparent Biodegradation Rates Calculated from Transect Data Mass Flux
Dover Air Force Base, Deleware
Tetrachloroethene
Transect
TA
TB
TC
Mass Flux
(umole/day)
5.2E+04
2.0E+03
4.2E+02
Distance
between Transects
(feet)
1200
1400
Travel Time
between
Transects
(day)
4606
3150.706231
Attenuation
Rate
(/day)
-0.00070
-0.00050
Attenuation
half life
(year)
2.7
3.8
Trichloroethene
Transect
TA
TB
TB***
TC
TC***
Mass Flux
(umole/day)
1 .OE+06
1.0E+05
6.9E+04
2.4E+05
3.9E+04
Distance
between Transects
(feet)
1200
1400
Travel Time
between
Transects
(day)
4252
2908
Attenuation
Rate
(/day)
-0.00054
-0.00063
NC****
-0.0002
Attenuation
half life
(year)
3.5
3.0
NC****
9.6
cis-1 ,2-Dichloroethene
Transect
TA
TB
TB***
TC
TC***
Mass Flux
(umole/day)
2.7E+05
2.3E+04
9.5E+03
3.0E+03*
1 .3E+03*
Distance
between Transects
(feet)
1200
1400
Travel Time
between
Transects
(day)
3897
2666
Attenuation
Rate
(/day)
-0.00064
-0.00086
-0.00043
-0.00075
Attenuation
half life
(year)
3.0
2.2
4.4
2.5
* Not Detected (1/2 limit used)
** Not calculated - compound not detected in Transect B or C
*** Corrected to demonstrate possible Hydraulic Conductivity effects on gradient
**** Not calculated due to increase in mass flux
-------
Table 12
Apparent Biodegradation Rates Calculated from Transect Data Mass Flux
Dover Air Force Base, Deleware
Vinyl Chloride
Transect
TA
TB
TC
Mass Flux
(umole/day)
2.9E+04
1.3E+03*
Distance
between Transects
(feet)
1200
1400
Travel Time
between
Transects
(day)
3543
2424
Attenuation
Rate
(/day)
-0.00088
**
Attenuation
half life
(year)
2.2
**
1 ,2-Dichloroethane
Transect
TA
TB
TC
Mass Flux
(umole/day)
1.3E+05
1.7E+04
3.9E+03
Distance
between Transects
(feet)
1200
1400
Travel Time
between
Transects
(day)
3602
2464
Attenuation
Rate
(/day)
-0.00056
-0.00059
Attenuation
half life
(year)
3.4
3.2
Note: The following variables were used in calculating travel times
Transect
TA-TB
TB-TC
Average Hydraulic
Conductivity (K)
(ft/day)
71.50
73.17
Average
hydraulic gradient (i)
0.0018
0.003
Groundwater
Flow velocity1
(ft/day)
0.34
0.58
0.38
(1) Calculated from V=Ki/n where porosity (n) = 0.38
Retardation Factor
(foe = 0.00025)
PCE
TCE
cis-1,2-DCE
Vinyl Chloride
1,2-DCA
1.3
1.2
1.1
1
1
* Not Detected (1/2 limit used)
** Not calculated - compound not detected in Transect B or C
*** Corrected to demonstrate possible Hydraulic Conductivity effects on gradient
**** Not calculated due to increase in mass flux
-------
Table 13
Total Chloroethenes Molar Flow per Unit Area per Day
Dover Air Force Base, Delaware
Sample
TA-01-32
TA-01-37
TA-01-42
TA-02-31.5
TA-02-36.5
TA-02-41.5
TA-02-46.5
TA-03-27.5
TA-03-32.5
TA-03-37.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-04-26
TA-04-31
TA-04-36
TA-04-41
TA-04-46
TA-04-51
TA-04-56
IR-07D
TA-05-24
TA-05-29
TA-05-34
TA-05-39
TA-05-44
TA-06-23
TA-06-28
TA-06-33
TA-06-38
TA-06-43
TA-06-48
TA-07-30
TA-07-35
TA-07-40
TA-07-45
TA-08-28
TA-08-33
TA-08-38
TA-08-43
TA-08-48
TA-09-28
TA-09-33
TA-09-38
TA-09-43
TA-09-48
Total molar flow
per unit area per day
[umoles/sq.m./day ]
4
1
1
1
0
3
1
6
67
962
238
636
1270
0
0
19
56
18
25
464
416
1
1
125
349
1645
1
27
54
58
99
222
102
95
402
717
1
1
3
90
1956
13
183
1099
0
0
Sample
TB-03-23.5
TB-03-28.5
TB-03-33.5
TB-03-37.5
TB-03-43.5
TB-04-27
TB-04-32
TB-04-37
TB-04-42
TB-04-47
TB-05-31.5
TB-05-36.5
TB-05-41.5
TB-05-46.5
TB-05-51.5
IR-06D
TB-06-33
TB-06-38
TB-06-43
TB-06-48
TB-07-27
TB-07-32
TB-07-37
TB-07-42
TB-07-47
TB-08-25.5
TB-08-30.5
TB-08-35.5
TB-08-40.5
TB-08-45.5
TB-09-29
TB-09-34
TB-09-39
TB-09-44
TB- 10-28
TB-10-33
TB-10-38
TB-10-43
Total molar flow
per unit area per day
[umoles/sq.m./day ]
1
1
1
0
0
1
2
2
1
2
1
0
0
6
92
3
2
8
35
25
1
0
53
227
143
0
2
44
87
2
4
4
0
10
141
12
0
2
Sample
TC-01-25
TC-01-30
TC-02-27
TC-02-32
TC-02-37
TC-02-42
TC-03-29
TC-03-34
TC-03-39
TC-03-44
DM-360D
TC-04-30
TC-04-35
TC-04-40
TC-05-27
TC-05-30
TC-06-26.5
TC-06-31
TC-06-35
TC-07-26.5
TC-07-31.5
TC-07-36.5
Total molar flow
per unit area per day
[Umoles/sq.m./day ]
2
7
7
11
19
92
1
1
12
12
3
9
7
5024
1
0
8
9
8
0
2
2
-------
Table 14
Frequency Distribution of Total Chloroethenes Molar Flow
Dover Air Force Base, Delaware
Range of Molar Flow
[ Moles/sq.m/day|
0 - 10
10 - 20
20 - 30
30 - 40
40 - 50
50 - 60
60 - 70
70 - 80
80 - 90
90 - 100
100 - 200
200 - 300
300 - 400
400 - 500
500 - 600
600 - 700
700 - 800
800 - 900
900 - 1000
1000 - 2000
2000 - 3000
3000 - 4000
4000 - 5000
5000 - 6000
Transect A
No. in Range
18
3
2
0
0
3
1
0
0
3
3
2
1
3
0
1
1
0
1
4
0
0
0
0
Transect B
No. in Range
28
1
1
1
1
1
0
0
1
1
2
1
0
0
0
0
0
0
0
0
0
0
0
0
Transect C
No. in Range
15
4
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
-------
Table 15
Shapiro-Wilk's Test for Normal and Lognormal Distribution
Molar Flow of Total Chloroethenes per Unit Area per Day
TRANSECT A
Using 46 values
W - reference value for the 0.01 quantile
W - value for Lognormal Distribution
W - value for Normal Distribution
0.927
0.937
0.618
TRANSECT B
Using 38 values
W - reference value for the 0.01 quantile
W - value for Lognormal Distribution
W - value for Normal Distribution
0.916
0.919
0.552
TRANSECT C
Using 22 values
W - reference value for the 0.01 quantile
W - value for Lognormal Distribution
W - value for Normal Distribution
0.878
0.885
0.317
-------
Table 16
Mean Molar Flows of Total Chloroethenes
Through unit Area per Day for Each Transect
Dover Air Force Base, Delaware
Number of Samples
Mean Value
Property
90% Lower Limit of Mean
[|0,moles/sq.m/day ]
90% Upper Limit of Mean
[Hmoles/sq.m/day ]
TRANSECT A
46
1457
771
14843
TRANSECT B
38
32
20
104
TRANSECT C
22
40
23
215
-------
Table 17
Molar Flux of Total Chloroethenes per Day through Each Transect
Dover Air Force Base, Delaware
{Transect areas calculated from extremities of probe locations}
Transect A
Transect B
Transect C
Area
[ sq. m ]
3517
3295
1341
Mole Flux per Day [ Moles/day ]
Lower 90% Limit
2.71
0.06
0.03
Mean Value
5.12
0.11
0.05
Upper 90%Limit
52.2
0.34
0.29
-------
Table 18
Comparison of Molar Flux of Total Chloroethenes per Day through Each Transect
Derived from the Different Calculation Methods
Dover Air Force Base, Delaware
Transect A
Transect B
Transect C
Mass Flux of Total Chloroethenes [ Moles/day ]
Lower 90%
Limit
2.71
0.06
0.03
Mean Value
5.12
0.11
0.05
Upper 90%Limit
52.20
0.34
0.29
By Summation
1.4
0.08
0.04
Well Data
1.06
0.49
0.07
N.B. Mass Flux Values in Both Datasets were calculated using a factor of 0.211
-------
Table 19
Comparison of First Order Decay Rates calculated from Transect and Monitoirng Well Data
Dover Air Force Base, Deleware
Transect
TA to TB
TB To TC
Tetrachloroethene
(/year)
Transect
Data
2.7
3.8
Well Data
4.5
2.3
Trichloroethene
(/year)
Transect
Data
3.5
3.0***
*
9.6***
Well Data
11.1
4.9
cis-1 ,2-Dichloroethene
(/year)
Transect
Data
3.0
2.2*"
2.5
2.5***
Well Data
8.5
3.8
Vinyl Chloride
(/year)
Transect
Data
2.2
*#
Well Data
2.9
3.8
1 ,2-Dichloroethane
(/year)
Transect
Data
3.4
3.2
Well Data
NC
NC
kU
/
NC Not Calculated
* Not calculated due to increase in mass flux
** Vinyl Chloride was Not Detected in Transect C or B
*** Corrected to demonstrate possible Hydraulic Conductivity effects on gradient
2/26/2002
-------
APPENDIX A
FIELD MEASUREMENTS
-------
Sample Data Sheet
Hydraulic Conductivity Pumping Test
Monitoring well IR-07D
Well screened 47 - 57 feet BGS.
Pump Tube inlet set @ - 47' BGS.
Prior to start of pump, water level @ 16.81' below TOC.
Start Pump @ 16:30.
Time Flow Rate
16:30
16:40
16:4-1
16:50
17:oo
17:01
17:10
2gpm
2gpm
5.5 gpm
5.6 gpm
5.6 gpm
7.9 gpm
7.9 gpm
Drawdown
17.16 (.35)
17.73 (.92)
17.73 (.92)
18.07(1.26)
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Hydraulic Conductivity Calibration Test
Lcoation Number: IR-07-49
Date: 4/29/97
SAMPLE DEPTH
Time: 14:00
Total Depth Drilled: 49 ft
Pull Back: 2 ft
Screen Extended: 2 ft
Pipe Stick Up Above Surface: 1.13 ft
Static Water Level (TOP): 18.25 ft
Static Water Level (BGS): 17.12 ft
HYDRAULIC CONDUCTIVITY
Time: 14:14
Drawdown: 1 ft
Flow Rate 103.4 mlimin
OBSERVATIONS / COMMENTS:
Water level in well IR-07D - 17.2' BGS.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Hydraulic Conductivity Calibration Test
Lcoation Number: IR-07-53
Date: 4/29/97
SAMPLE DEPTH
Time: 14:32
Total Depth Drilled: 53 ft
Pull Back: 2 ft
Screen Extended: 2 ft
Pipe Stick Up Above Surface: 1.16 ft
Static Water Level (TOP): 18.38 ft
Static Water Level (BGS): 17.22 ft
HYDRAULIC CONDUCTIVITY
Time: 15:00
Drawdown: 0.12 ft
Flow Rate 1630.8 mlimin
OBSERVATIONS / COMMENTS:
Could not pump water down 1'. Used both peristaltic pumps at the same time.
Drawdown: 18.38 - 18.5'
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Hydraulic Conductivity Calibration Test
Lcoation Number: I R-07-59
Date: 4/29/97
SAMPLE DEPTH
Time: 15:40
Total Depth Drilled: 59 ft
Pull Back: 4 ft
Screen Extended: 3 ft
Pipe Stick Up Above Surface: 1.6 ft
Static Water Level (TOP): 18.87 ft
Static Water Level (BGS): 17.27 ft
HYDRAULIC CONDUCTIVITY
Time: 15:47
Drawdown: 1 ft
Flow Rate 681.8 mlimin
OBSERVATIONS / COMMENTS:
Initially pulled back 2' - no water. Fulled back an additional 1', no water.
Pulled back 1 more foot - water imediatly charged to 18'.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:16 FAX 4109920347
TARGET ENVIRO
®015
SAMPLE DATA SHEET
Location Number:
Da IB:
"TV fcf-32.
SAMPLE DEPTH
Time:
Total Depth Driiiwj;
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface;
Siatiu Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
Time:
pH;
red/ox:
Dissolved Oxyyun.
Conductivity
Temperature:
Sample Collection.
Time
1 Liler Amber jars
40 ml VGA
aw
M
COLORMETRIC TESTS
Time:
Water Claiity
Soluble Iron (0-6ppm/un-filtered):_
Totai iron (0-6ppm/un-fiiiuiuu):
A
ppm
Soluble Iron (0-12ppm/un-filtered^
Total iron (CM2ppmwn-filtereo'): __
Soluble Iron (0-6ppm/filtered): _
Toiai iron (0~8pprn/'fiiieieu): _
Soluble Iron (0-12ppm/fiRered): _
Tvtai iron (0-12ppm/nltered}; _
i ft Sulfide (un-filtered): _
A » 9 <*" * .-» . /-..
_UJ_ a J Siimufe (fnwivu):
_ml/min Dissolved Oxygen:
own
.ppm
.ppm
.ppm
_pprn
.ppm
PplH
GRQUNDWATER HEADSPACE TEST
Time:
RDHeadspace:
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:16 FAX 4109920347
TARGET ENVIRO
@014
SAMPLE DATA SHEET
Lcoatian Number:
Date:
SAMPLE DEPTH
*/-a-.
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Levet (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
Time:
PH:
rod/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
IO'H3
37-
3-
j2_
, ft
ft
Time: \\ < H«
Water Clarity Cuwwt
Soluble Iron (0-6ppm/un-filtered^ "7 ^jp
Total Iron (0-6ppm/un-filtered): "7 C?
Soluble h-on (0-12ppm/un-filtered): f,^
Total Iron (0-12ppm/un-fil1ered): *?•• O
Soluble Iron (f>€ppnVfiltered): 3.35~
Total Iron (0-8ppm/filtered): ^/.^y
Soluble Iran (&-12ppm/fiHered): — =— »
Total Iron (0-1 2ppm/filtered): •«**—
Sulfide (on-filtered): , Q,2>
Sulfide (filtered}: <£
m
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
muTf.el Dissolved Oxygen: PPf^n2'ft
Manganese (filtered): p ®
8.1
6,9-J
GRQUNDWATER HEADSPACE TEST
Time:
-------
04/12/97 SAT 20:15 FAX 4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Location Number
Date:
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Driited;
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP);
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flaw Rate
FLOW CELL READINGS
Time:
p'ri:
red/ox:
Dissolved Oxygen;
Conductivity
A.
Sample Collection
Time
1 Liter Arnber Jars
40 ml VOA
Time:
Water Clarity
Soluble Iron (0-6ppm/un-filtered):
Total iivu (0-oppni/un-fiitered):
•?
ppm
*7 ^Q
Soluble Iron (O-^ppm/urt-filtered^
_ft Total Iron (0-12ppiii/uri-fiiteiieu'): _
ft Soluble Iron (0-6ppm/filtered):
Toiai iron (0-6pprn/fiiiered): _
Soluble Iron (0-1 Zppm/filtered): _
Total hun (0'12pprTi/filteieu):
_ft Sulfide (urvfiltered):
Suifnle (filieieg):
^ml/min Dissolved Oxygen: _
(fiiiereu):
3 .
3 '
.ppm
Bppm
^ppm
.pprn
.ppm
A
ppm
PP»|
> ppm
0 ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
.ppm
°F
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-02-31.5
4/14/97
9:35
31.5 ft
2 ft
2 ft
Surface: 2.61 ft
OP): 19.4 ft
GS): 16.79 ft
ICTIVITY
10:22
1 ft
190 ml/min
4GS
10:39
4.94
97.6 mV
5.4 ppm
uS/mS
11.1 °C
10:41
3
A
COLORMETRIC TESTS
Time: 10:50
Water Clarity SEMI-CLEAR
Clear Sample
Zero Zero
Soluble Iron (6ppm): 4.35 ppm 0.8
Total Iron (6ppm): 5 ppm 1.45
Soluble tron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.37 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
FID flame out - no reading.
Sample zero - 25% clear / 75% sample water,
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-0236.5
4/14/97
12:25
36.5 ft
2 ft
2 ft
Surface: 2.06 ft
'OP): 18.57 ft
JGS): 16.51 ft
JCTIVITY
1230
0.8787 ft
12.9 ml/min
NGS
12:42
4.76
107.8 mV
6.4 ppm
uS/mS
15.6 °C
12:44
3
4
COLORMETRIC TESTS
Time: 13:oo
Water Clarity Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1.7 ppm 0.55
Total Iron (6ppm): 2 ppm 0.85
Soluble Iron (12ppm): • ppm
Total Iron (12ppm): - ppm
Sulfide: 0.09 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0.3 ppm
GROUNDWATER HEADSPACE TEST
Time: 13:30
FID Headspace: 0 ppm
OBSERVATIONS I COMMENTS:
Drawdown: 19.45' - 18.57' = .88
Sample zero - 25% clear / 75% sample water,
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Pre-purge
Time: 11:42
Drawdown: 1
Flow Rate 296
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-02-41.5
4/14/97
11:41
41.5 ft
2 ft
2 ft
0.65 ft
17.05 ft
16.4 ft
Post-purge
11:57
1 ft
428 ml/min
12:08
5.09
90.2 mV
6 ppm
uS/mS
15.9 "c
12:10
3
4
COLORMETRIC TESTS
Time: 12:18
Water Clarity Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 4.15 ppm 2.2
Total Iron (6ppm): 5.05 ppm 3.05
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.25 ppm 0
Dissolved Oxygen: 2.05 ppm 1.49
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
FID flame out - no reading.
Sample zero - 25% clear / 75% sample water.
ppm
ppm
ppm
ppm
ppm
_ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-02-46.5
4/14/97
14:59
46.5 ft
2 ft
2 ft
Surface: 2.57 ft
OP): 19.83 ft
GS): 17.16 ft
ICTIVITY
15:04
1 ft
56 ml/min
6 ppm
>6 ppm
>12 ppm
>12 ppm
1.13 ppm
>2 ppm
: 0 ppm
Sample
Zero
>6 ppm
>6 ppm
13 ppm
>12 ppm
0.65 ppm
>2 ppm
PPm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
16:29
0 ppm
OBSERVATIONS! COMMENTS:
Sample zero - 75% clear / 25% sample water.
Water did not reach static level, very slow recharge.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 S A T 20:07 FAX 4109920347
TARGET ENVIRO
®007
SAMPLEDATA SHEET
Location Number:
Dale:
SAMPLE DEPTH
Time:
Total Depth Drilled;
Pull Back:
Screen Mended:
Pipe Stick. Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDONDUCTIV1TY
Time;.
Drawdown:
Flow Rate / tf^+J ,QO$
FLOW CELL READINGS
Time:
pi-l:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liler Amber Jars
40 ml VOA
_ft
^ft
_ft
_ft
_ft
ft
time:
Water Clarity
Soluble Iron
Total Iron (Qppm):
Clear
Zero
.Ppm
ppm
Soluble Iron (12ppm): •
Total Iran (12ppm):
Sulfide: O PPM
Dissolved Oxygen:
Manganese (filtered):
Sample
Zero
_ ,
-------
04/12/97 SAT 20:07 FAX 4109920347
TARGET ENVIRO
Location Number:
Date:
SAMPLE DATA SHEET
- 3*.*-'
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface: :
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time;
Drawdown:
flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox-
Dissolved Oxygen:
Conductivity
Temperature:
/ST
- ZOf
_ft
_ft
_ft
ft
_mV
.ppm
_uS/mS
°F
CQLORMETRfC TESTS
Time:
Water Clarity
Clear' Sample
Zero Zero
Soluble Iron (6ppm): M-/Q ppm t*fO ppm
Total Iron (6ppm): H^ 5"^" ppm /. 1$" Ppm
Soluble Iron (12ppm): r"~ ppm """ ppm
Total li on (12ppm):
Sulfide:
.ppm
Ppm
0
ppm
ppm
Dissolved Oxygen: I. 3£ ppm \'"^^^. PPm
Manganese (filtered): ^) ppm °-,Tu/'r"' ppm
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Keadspace:
PPm
OBSERVATIONS / COMMENTS:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:07 FAX 5109920347
TARGETENVIRO
@1005
SAMPLE DATA SHEET
Location Number
Dale:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL I
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
t
_ft
_ft
_ft
ft
ft
«
COLORMETRIC TESTS
Time:
Water Clarity
(l-tj
Clear
Zero
Soluble Iron (6ppm):
Total iron (dppm):
Soluble Iron (12ppm):_
Total Iron (12ppftti0jg>-/
Sulfide:
Dissolved Oxygen:
.Ppm
.ppm
.ppm
/.
ppm
Sample
Zero
Manganese (filtered): pprr^
131*3 mi/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
"•••'1
f*ft ppm
OBSERVATOS / COMMENTS:
!-(# Ppm
us/ms
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:06 FAX 4109920347
TARGET ENVIRO
@] 004
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
pipe stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate i£0n.<-/ig& s
ELOW.CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
om
*},r
3-*
S*~
3,(**-
ft.vr
/*~,rt
/0.2.Z
/
&>
ft
ft
ft
ft
ft
ft
ft
ml/min
Time:
Water Clarity
/0-'i
r>
Clear
Zero
Soluble Iron (8ppm): >(*•
Total Iron (8ppm):
70
*
!ta
-_>
ppm
ppm
Soluble Iron (1Zppm)ppfn 5
Total Iron (12ppm):
Sutfide:
Dissolved Oxygen:
Manganese (filtered):
Sample
Zero
V-ys-p
"Tea
0t?m 5 ffS/tnfi'
t
-------
04/12/97 S A T 20:08 FAS 4109920347
TARGET ENVIRO
@003
SAMPLE DATA SHEET
Lcoation Number:
Date:
V- //-
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP'):
Static Water Level (BOS):
HYDRAULIC CONDUCTIVITY
Time: w *^ st 1&*
.jfff^
Drawdown: t$J*"
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox-
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
'- *^ft
_ft
_ft
_ft
_n
ft
COLORMETRIC
Time:
Water Clarity
rf
7
I'f-O/
Clear (Sample
Zero Zero
Soluble Iron (6ppm): *7 (j> ppm >Cg> Ppm
Total Iron (opprn): 1p(f? P m 'fom
Soluble Iron (I 2ppm): 7 < 2- ppm *7 C^- ppm
Total Iron (12ppm): p? ( 3p m f2~'*— ppm
Sulfide:
Time:
FID Headspace:
H
OBSERVATIONS / COMMENTS:
_mV
.ppm
uS/mS
n
TARGET ENVIRONMENTAL SERVICES, INC.
- t>7«
Dissolved Oxygen: "72- PPm ^^|lp
Manganese (tiitcredjpprrp^ J;liii!lfS
ml/mill GRQUNDWATER HEADSPACE TEST
ppm
*****
-------
04/12/97 SAT 20:06 FAX 4109020347
TARGET ENVIRO
©002
SAMPLE DATA SHEET
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Samolee c t i o n
Time
1 Liter Amber Jars
40 ml VOA
. r
,3
/
*
It-l-/
_fl
_ft
_ft
.ft
_ft
ft
COLORMETRIC TESTS
Time:
Water Clarity
^^
Clear Sample
Zero Zero
Soluble Iron (6ppm):pp?llg ppm -7 V
Total Iron (6ppm): "70?
PPm
Soluble Iron (12ppm)ppn\1 ppm 7
PP^i
Total iron (12p?Pm: ~iV2~' PpmJV
Sulfide: _^
Dissolved Oxygen: _^
Manganese (filtered):
IJ
ppm
ppm
.
ppm ^SfSiJii^ ppm
*
ml/min GRQUNDWATER HEADSPACE TEST
Time:
FID Headspace:
ppm
OBSERVATIONS / COMMENTS:
_mV
_pprn
_uS/mS
°F
TARGET ENVIRONMENTAL SERVICES, INC
-------
04/12/97 SAT 20:09 FAX 1109920347
TARGET ENVIRO
(2)014
SAMPLE DATA SWEET
Location Number:
Date:
7l-0y^/
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC .CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
DissoivedOxygen:
Conductivity
Temper ature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
/a -co
60.
_ft
_ft
_ft
_ft
_ft
ft
ft
_mV
.Ppm
uS/mS
COLORMETRIC TESTS
Time:
Water Clarity
<<<-
Clear.
Zero
Soluble Iron (6ppm): p_
Total Iron (6ppm): ^ jj
Soluble Iron (12ppm): ^
Total Iron (12ppm): ~"
Sulfide: PPBl//
Dissolved Oxygen:
Manganese
Sample
Zero
ppmp %,5"" m
ppm 3 .y ppm
ppm •"" ppm
_ppm «•— ppm
<$ ppm
ppm •"—••"•••••••-•"•
_ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
t2-
ppm
OBSERVATIONS / COMMENTS:
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:09 FAX 4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Location Number:
Dale: ¥"?"%»
BMrpJJE.
Time: /£? ' 3^
Total Depth Drilled: J!/
Pull Back: ^
Screen Extended: ,2,
Pipe Stick Up Above Surface: 36 V
Static Water Levei (TOP); —
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time: \ f
Drawdown: \/
Flow Rate /^
QSHLCELL_BEAQIMGS
Time: /?$"**'
PH: ry
red/ox -Ik 3
Dissolved Oxygen: . (^
Conductivity 2.2>^'
Temperature: JJ"?, /
Sample Collection
Time /5Z>O
1 Liter Amber Jars 3
40 ml VOA V
COLORMETRIC TESTS
Time: /3;^f
ft Water Clarity «S«v ^
ft Clear
ft Zero
ft Soluble Iron (6ppm): 2 k
ft fatal Iron (6ppm): "7 6»
ft Soluble Iron (12ppm): tf&
Total Iron (12ppm): 9 X>
Sulfide: i^.^
Dissolved Oxygen: ~7A*o
Manganese (fillered): $
ft
mi/min GROUNDWATER HEADSPACE
Time:
FID Headspace:
OBSERVATIONS / COMMENTS
mV
~~ U"*<^ir^' 12i> ti0r V*:r*
ppm
uS/mS VtHTt^- 5^cx^ fi^0'^
op
it j\ *%tj fl-r*1
l\ k r<^.^jrf rV^lji^- **~&*W*
*r\ /v flj£AQt?* Or *• ri*™* i^
/
/
ua*+~
Sample
Zero
ppm 7 6» ppm
pprn ~7 6? pprn
ppm V.T ppm
ppm */. 3 PPm
ppm ® ppm
pprn flpiillppm
ppm SS^j$P^£ppm
TEST
/*23
,3 ppm
C nc, Cii^
^#t*r^?*
?u'/rj 'fri*^
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:08 FAX 4109920347
TARGET ENVIRO
@I012
SAMPLE DATA SHEET
Lcoafjon Number
Date:
SAMPLE DEPTH
COLORMETR1C TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rale fJlrnJ (Si*
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
.ft
_ft
_ft
_ft
_ft
ft
_ft
ml/min
.ppm
uS/mS
Time:
Water Clarity
Cu&iH^
Clear
Zero
Soluble Iron (6ppm):
Total Iron (6ppm):
ppm
Soluble Iron (12ppm)^
Total Iron (12ppm): J
Sulfide:
_Ppm
ppm
Sample
Zero
"> a ppm
.ppm
Ppm
> O
-i^
Dissolved Oxygen: Z.-0
Manganese (filtered);
.ppm
ppm
ppm
ppm iSjiSjippm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
/O-
ppm
OBSERVATIONS / COMMENTS:
Sample1 Collection
Time
1 Liter Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:08 FAX 4109920347
TARGET ENVIRO
ilOll
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Bade:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate ifa
FLOW CELL READINGS
Time:
pH:
red/ox-
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 titer Amber Jars
40 mlVOA
^-/o- 71-
COLORMETRIC TESTS
3SMS- Time: $:&
^^*
»
ejl ft Water Clarity J&W' O^**l
2» ft Clear
1-* ft Zero
Surface: /, JS" ft Soluble Iron (6ppm): ^(^>
OP): /£,£ ft Total Iron (6ppm): *?ls
1GS): fJ->6*~~ ft Soluble Iron (I2ppm): ^O
Total Iron (12ppm): Js A
ACTIVITY Sulfide: , &*
Dissolved Oxygen: ft 5"
09 2^ Manflanese (filtered): p
/ ft
^,« /(£>O.Sl» ml/mill GROUNDWATER HEADSPACE
NGS Time:
FID Keadspace:
5"'° OBSERVATIONS / COMMENTS
-*5 ^ 7 mV
<2 • f ppm ^^
/^O us/ms p^/^^^^iM- To £
<£«l-f °F
5
«/
Sample
Zero
ppm ~?(0 ppm
ppm "^^ ppm
ppm .^ ppm
ppm "b -^ ppm
ppm P ppm
ppm lliillppm
ppm Ssfeg^pKi ppm
TEST
«M1
3-^f Ppm
4-1-1?" . ^*^
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:08 FAX 4109920347
TARGET ENVIRO
®010
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BOS):
Time:
Drawdown:
Flow Rale
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 mfVOA.
VWo-fc,
COLORMETRIC TESTS
/O'-vT" Time: // :£*>
^> ft Water Claiity Se^^c^^
.2s. ft Clear
Z ft Zero
Surface: 2*.*2&~ ft Soluble Iron (6ppm): >(p ppm
OP): fykf ft Total Iron (8ppm): "763 ppm
GS): ItiSt ft Soluble Iron (12ppm): 'J-f ppm
Total Iron (12ppm): //-/ ppm
CTIYITY Suifide: /** ppm
Dissolved Oxygen: / < / ppm
//•'P2- Manganese (filtered): $ ppm
/ ft
±r*^U»} 5^-^" ml/min GROLJNDWATER HEADSPACE TEST
IGS Time: \\
FID Headspace: /,(
//-' Z5
S^ciO OBSERVATIOMS / COMMENTS:
•^•ElO mV -—>«-, T
/. ^ ppm
yo-.> us/ms ^ >,_- ,_ o^>^
^^ *!? / ^c
5
*/
Sample
Zero
*~}(0 ppm
"7 " pprn
2.A ppm
*/• */ PP'"
•• 3 ( ppm
;,'•$" ppm
• .'.'', Ppm
7 ppm
(^{j&fA (J/V
S *"* ???£& ^
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:09 FAX 4109920347
TARGET ENVIRO
i015
SAMPLE DATA SHEET
Location Number:
Dale:
SAMPLE DEPTH
COLORMETR1C TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
5* n
£
ft
1_ ft
to1'
ft
^1* ft
A
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
Time:
Water Clarity
SOlUP
Total Iron
Soluble Iron
Total Iron
Sulfide:
Dissajy&l Oxygen:
Marigancse (nitercd):
ft
\ ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
I:
ppm
OBSERVATIONS / COMMENTS;
.
1******* •
\
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 S A T 20:08 FAX 4109920347
TARGET ENVIRO
i009
SAMPLE DATA SHEET
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled;
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH;
red/ox
Dissolved Oxygen:
Conductivity
Temperature:
A*.-
57"
i
it
_ft
ft
_ft
_ft
ft
COLORMETRIC TESTS
Time: _ It -
Water Clarity
CcQu&U^
Clear
Zero
Soluble Iron (6ppm): >C^>
Total lion (6ppm): ^6g
Soluble Iron (12ppm)g.-'fl,
Total Iron (12ppm): /I-
Sulfide:
Dissolved Oxygen:
Manganese (filtered):
Ur!"'-'' .t, PPm
(03,2$"""'ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
*t\
ppm
OBSERVATIONS / COMMENTS:
/•
_mV
ppm
/Si 3 uS/mS
Samblee c t i o n
Time
1 Liter Amber Jars
40 ml VOA
V
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20: 07 FAI 4109920347
TARGET ENVIRO
©008
SAMPLE DATA SHEET
Lcoatinn Number:
Date.
SAMPLE DEPTH
Time:
Total Depth Diiiied:
Pull Back;
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP);
Static Water Level (BGS);
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pn:
red/ox-
Dissolved Gxyyen:
Conductivity
Temperature:
13 r I
1 *0
COLORMETRICTESTS
/at '•^r
ST* '
SL
(~3~
JL.I*-
^fO.2,^
IZ.i
I
ft
ft
ft
ft
fl
n
Time:
Walei Clarity
Soluble Iron
Totai iron (6p
Soluble
Clear
Zero
U £ m
ppm
Sample
Zero
ppm
ppm
.ppm
Totai iron (12ppm): (0> * ppm_
Sulfide: _M^j ppm
Dissolved Oxygen: 7.1?*? ppm '?
Manganese (ftllsred): 0 ppm
pprn
PP!T!
nii/Vfiin GROUNPWATER HEAD5PACE TEST
Time:
FiD Headspace:
pprn
OBSERVATIONS / COMMENTS:
mV
uS/mS
Sample Collection
Time
1 LJtei Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-05-24
4/22/97
10:40
24
2
2
Surface: 2.17
OP): 15.93
GS): 13.76
ICTIVITY
10:45
1
34
JGS
10:59
4.91
206
7.2*
373
62.5
11:02
A
4
COLORMETRIC TESTS
Time: 11:08
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 4.4 ppm 2.25
ft Total Iron (6ppm): 4.4 ppm 2.3
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.24 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
ml/mm GROUNDWATER HEADSPACE TEST
Time: 12:23
FID Headspace: 0 ppm
OBSERVATIONS / COMMENTS:
mV Slow recharge, water not at static level.
ppm Pumped probe dry during sampling.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
uS/mS * - D.O. reading taken after pumping probe dry. Air
°F in sample line.
Water has a whitish color.
Sample zero 100% sample water.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
TA-05-29
4/22/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
11:18
29
2
2
1.21
15.69
14.48
11:21
1
33
11:30
5.58
174
9.8*
295
63.9
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
°F
Time: 11:35
Water Clarity Semi-clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 3.55 ppm 2.1
Total Iron (6ppm): 4.1 ppm 2.75
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.14 ppm 0
Dissolved Oxygen: * ppm *
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 12:25
FID Headspace: 0.2 ppm
OBSERVATIONS / COMMENTS:
Slow recharge, water not at static level.
Pumped probe dry during sampling.
* - D.O. reading taken after pumping probe dry.
in sample line.
Sample zero 100% sample water.
ppm
ppm
ppm
ppm
Ppm
ppm
ppm
Air
Time
1 Liter Amber Jars
40 ml VOA
11:32
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
fed/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-05-34
4/22/97
13:36
34
2
2
Surface: 0.29
OP): 13.48
GS): 13.19
JCTIVITY
13:40
1
154
JGS
13:54
4.39
•96
5.6
122
66.5
13:56
3
4
COLORMETRIC TESTS
Time: 14:01
ft Water Clarity Cloudy
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 4.6 ppm 1.25
ft Total Iron (6ppm): 4.85 ppm 1.5
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: . 0.37 ppm 0
Dissolved Oxygen: 1.26 ppm 0.38
Manganese (filtered): 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 14:43
FID Headspace: 0.2 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero 100% sample water.
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TA-05-39
4/22/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
13:42
39 ft
2 ft
2 ft
0.31 ft
13.67 ft
13.36 ft
13:48
1 ft
188 ml/min
14:08
4.63
-263 mV
cl ppm
117 uS/mS
66.3 °F
Time:
Water Clarity
Soluble Iron (6ppm)
Total Iron (6ppm):
14:20
Cloudy
Clear Sample
Zero Zero
: 4.1 ppm 1.2
4.55 ppm 1.6
Soluble Iron (12ppm): - ppm
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
ppm
0.36 ppm 0
1.73 ppm 0.87
Manganese (filtered): 0 ppm
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
OBSERVATIONS /
Sample zero 100%
14:45
0.8 ppm
COMMENTS:
sample water,
14:10
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
TA-05-44
4/22/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
15:12
44
2
2
2.25
16
13.75
15.16
1
690
15:24
4.37
-70
0.2
96.8
67.1
ft
ft
ft
ft
ft
ft
Time:
Water Clarity
15:33
Semi-clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1.85 ppm 0.7
Total Iron (6ppm):
2.1 ppm 0.85
Soluble Iron (12ppm): • ppm
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
ppm
cl.12 ppm 0
0.77 ppm 0.42
Manganese (filtered): 0 ppm
ft
mlimin
mV
ppm
uS/mS
°F
GROUNDWATER
Time:
FID Headspace:
OBSERVATIONS /
Sample zero 100%
HEADSPACE TEST
16:45
0 ppm
COMMENTS:
sample water.
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
15:26
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-05-49
4/22/97
COLORMETRIC TESTS
16:30 Time:
49 ft Water Clarity
3 ft Clear Sample
3 ft Zero Zero
ft Soluble Iron (6ppm): ppm
ft Total Iron (6ppm): ppm
ft Soluble Iron (12ppm): ppm s
Total Iron (12ppm): ppm
Sulfide: ppm
Dissolved Oxygen: ppm
Manganese (filtered): ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
mV Next to no recharge. Pulled back an extra 1 foot.
ppm Waited 1.5 hours - water recharged to only 27 feet.
uS/mS Attempted to collect samples - pumped water down
°F level beyond pumps capability after collecting only
50 - 100 ml.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
to
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-06-23
4/21/97
11 10
23
2
2
Surface: 3.18
OP): 15.67
GS): 12.49
ICTIVITY
11:15
1
126
JGS
11:24
4.62
178
5.8
228
62.2
11:26
3
4
COLORHETRIC TESTS
Time:
11:40
ft Water Clarity Crystal Clear
ft
ft
ft Soluble Iron (6ppm):
ft Total Iron (6ppm):
ft Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered)
ft
Clear Sample
Zero Zero
0.65 ppm 0.05
0.65 ppm 0.05
ppm
ppm
0 ppm 0
>2 ppm >2
: 0 ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
mlimin GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
13:03
0 ppm
OBSERVATIONS /COMMENTS:
mV On first attempt - broke p
ppm 1 point holder in ground.
uS/mS retrieve.
°F Sample zero 100% samp
tipe, left 3 rods, 1 screen,
, Three failed attempts to
le water,
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Lcoation Number:
Date:
Sample Data Sheet
TA-06-28
4/21/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
12:05
28
2
2
2.1
14.55
12.45
12:12
1
582.
12:25
4.72
129
2.7
264
64.3
ft
ft
ft
ft
ft
ft
ft
8 ml/min
mV
ppm
uS/mS
°F
Time: 12:33
Water Clarity Semi-Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1.85 ppm 0.15
Total Iron (6ppm): 2 ppm 0.4
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.11 ppm 0
Dissolved Oxygen: >2 ppm 2.02
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 13:05
FID Headspace: 0.2 ppm
OBSERVATIONS / COMMENTS:
Sample zero 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
12:23
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-06-33
4/21/97
14:27
33
2
2
Surface: 1.17
OP): 13.59
GS): 12.42
ICTIVITY
14:35
1
152
JGS
14:48
5.1
-440
0.4
70.9
64.4
14:50
3
4
COLORMETRIC TESTS
Time: 14:58
ft Water Clarity Semi-Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.85 ppm 0.55
ft Total Iron (6ppm): 3.55 ppm 1.25
fl Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.22 ppm 0
Dissolved Oxygen: 1.88 ppm 1.1
Manganese (filtered): 0 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time: 16:00
FID Headspace: 22 ppm
OBSERVATIONS /COMMENTS:
mV Sample zero 100% sample water.
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-06-38
4/21/97
14:20
38
2
2
Surface: 2.37
OP): 14.76
iGS): 12.39
ICTIVITY
14:52
1
68
COLORMETRIC TESTS
Time: 15:32
ft Water Clarity Semi-Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): >6 ppm 4.35 ppm
ft Total Iron (6ppm): >6 ppm 4.7 ppm
ft Soluble Iron (12ppm): 7 PP™ 0 ppm
Total Iron (12ppm): 7.5 com 0.6 PPm
Sulfide: g,?1 ppm 0 ppm
Dissolved Oxvaen: 0.68 PP™ 0 ppm
Manganese (filtered): 0 PPm ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
YGS Time: 16:01
15:24
5.2
•312
0
157
64.3
FID Headspace: 10 ppm
OBSERVATIONS/COMMENTS:
mV Sample zero 100% sample water.
ppm
uS/mS
°F
15:26
3
4
TARGET ENVIRONMENTAL SERVICES, INC
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 mlVOA
TA-06-43
4/22/97
7:45
43
2
2
Surface: 3.17
OP): 15. 67
GS): 12. 5
ICTIVITY
7:47
1
93
JGS
8:24
4.91
-447
2.5
153
64.6
8:26
4
COLORMETRIC TESTS
Time: 8:45
ft Water Clarity Crystal Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.1 ppm 1.6
ft Total Iron (6ppm): 2. 05 ppm 1. 7
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0 ppm 0
Dissolved Oxygen: 0.22 ppm 0.1
Manganese (filtered): 0 ppm
ft
mlimin GROUNDWATER HEAOSPACE TEST
Time: 9:12
FID Headspace: 14 ppm
OBSERVATIONS / COMMENTS:
ppm
ppm
ppm
ppm
ppm
ppm
ppm
mV Installed probe on 4-21-97. Left overnight to recharge.
ppm Sample zero - 100% sample water.
uS/mS
°F
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Data sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-06-48
4/22/97
7:40
48
2
2
Surface: 2.23
'OP): 14.95
GS): 12.72
JCTIVITY
7:54
1
55
COLORMETRIC TESTS
Time: 8:21
ft Water Clarity Cloudy
ft Clear
ft Zero
ft Soluble Iron (6ppm): >6
ft Total Iron (6ppm): 36
ft Soluble Iron (12ppm): >12
Total Iron (12ppm): >12
Sulfide: 0.46
Dissolved Oxygen: 1.56
Manganese (filtered): 0
ft
ml/min GROUNDWATER HEADSPACE
Sample
Zero
ppm >6 ppm
ppm >6 ppm
ppm 6.1 ppm
ppm 7.1 ppm
ppm 0 ppm
ppm 0.37 ppm
ppm ppm
TEST
NGS Time: 9:11
8:08
5.06
•428
0
151
64.3
8:10
3
4
FID Headspace: 16
OBSERVATIONS 1 COMMENTS
mV Installed probe on 4-21-97. Left
ppm
overnight to redcharge.
ppm Sample zero. 25% clear water, 75% sample water.
uS/mS
°F
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:10 FAX 4109920347
TARGET ENVIRO
©019
SAMPLE DATA SHEET
Location Number:
Date:
SAMPL J DEPTH
Time:
Total Dapth Drilled:
Pull Back:
screen Extended:
Pipe Stick Up Above Surface:
Static 'Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
/V to
30
ft
i- ft
2.
,2T-
ft
ft
/^.O f ft
\4-3b
n
COLORMETRIC TESTS
Time:
Water Clarity
Clear
Zero
Soluble Iron (6ppm): ^^_ ppm
Total Iron (6ppm): £*<&& ppm
Soluble Iron (12ppm): • ppm
Total Iron (1Zppm): "~~ ppm
Soluble Iron (6ppm): ""—' ppm
Totallron (6ppm): . —-" .ppm
Soluble Iron (12pprn): -—• ppm
Total Iron (12ppm): «— ppm
ml/min Sulfide: ppmffi
Dissolved Oxygen: "7 2.^ PPm
Manganese (filtered): $ ppm
GROUNDWATER HEADSPACE TEST
[ mV Time:
0 ppm FID Headspace:
uS/mS
5 °F
V
ppm
OBSERVATIONS / COMMENTS:
Sarnolon
Time
1 Liter Amber Jars
40 m! VGA
TARGET ENVIRONMENTAL SERVICES. INC.
-------
04/12/97 SAT 20:10 FAX 4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Lcoation Number.
Dale:
SAMPLE
Time:
Total Depth Drilled:
Pull Back:
Screw Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rfrte
FLOW CELL READINGS.
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature;
14-53
I
COLORMETRIC TESTS
/y-oi^
33-
3
-2.
J.n
l-^-.Cr.
1^.41
ft
ft
ft
ft
ft
ft
"time:
Water Clarity
Soluble Iron i
'Total Iron (6p
Soluble Iran ('
1 ^ 53
C<-<£*fc4U.
.atf.P-
3m): _
Total Iron (12ppm):
Soluble Iron (6ppm):
Total Iron (6ppm): ~-~
Soluble Iron (12ppm):
Total Iron (12ppm):
', ?- ml/min Sulfide:
Dissolved Oxygen:
Manganese (filtered):
-------
04/12/97 SAT 20:10 FAX 4109920347
TARGET ENVIRO
i!017
SAMPLE DATA SHEET
Lcoatioo Number
Date:
SAMPLE DEPTH
COLORMETRICTESTS
Time:
Total Depth Drilled;
Pull Bade:
Screen Extended:
Pipe Stick UP Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flaw Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
/Ctfj-oo
7
ppm U**
ppm
ppm - •*
ppm '
ppm ~~*
ppm -
ppm —
ppm Too fttiHtf
ppm •
—
.Ppm
5^ ppm
ppm
ppm
ppm
pprri
ppm
ppm
' Ppm
_ppm
'ppm
GROUNDWATER HEAPSPACE TEgl
Time:
ppm FID Headspace:
/fr'-/0
//A
ppttl
IQ Q uS/mS
^> °F OBSERVATIONS / COMMENTS:
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:09 FAX 4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level [TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Row Rate
|tf*V
/MO
«/r
3. L3
/*&-<«
_ft
ft
_ft
_ft
ft
.ft
ml/min
Time:
Water Clarity
'%&**
ppm
Clear
Zero
Soluble Iran (6ppm): S'-ip
Total Iron (6ppm): 3&>C>5~f) pprn
Soluble Iron (12ppm): ~* ppm
Total Iron (12ppm): "~~ ppm
Sulfide:
Dissolved Oxygen:
Manganese (filtered): PM 0 p m
GRQUNDWATER HEADSPACE TEST
Sample
Zero
ppm
m
_ppm
ppm
> 20 p p m
_ppm
, ?
f|l$tlipp1n
FLOW CELL READINGS
Time:
pH.
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
0--01
/• 0
' ^'
_mV
.PPm
uS/mS
Time:
FID Headspace:
If- 3 Q
4.6
ppm
OBSERVATIONS / COMMENTS:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:17 FAX 4109320347
TARGET ENVIRO
@020
SAMPLE! DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
COLQRIvlETRIC TESTS
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate it^i
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
///oo
I*
2. .31
Time:
Water Clarity
_ft Soluble Iron (Q-6ppm/un-filtered): ,
_ft Total Iron (0-Qppm/un-filtered): ,
_ft Soluble Iron (0-12ppnVun-fittered):
_ft Total Iron (0-12ppm/un-filtered):
_ft Soluble Iron (0-6ppm/filtered):
_ft Total Iron (0-6ppm/filtered):
Soluble Iron (Q-12ppm/filtered):
Total Iron (0-12pprn/flttered):
Sulfide (un-filtered):
.ft Sulfide (filtered):
Dissolved Oxygen:
m
ppm
.ppm
.Ppm
.Ppm
.ppm
ppm
—- PPm
ppm
ppm
ml/\(ff\8u\ a n g anese (filtered):
• D p p m
ppm
0
GROUNDWAT6R HEADSPACE TEST
Time:
FID Headspace:
/V'4?
-J-
PPm
•*.
-------
04/12/97 SAT 20:17 FAX 4109920347
TARGET ENVIRO
(1)019
SAMPLE DATA SHEET
Lcoation Number:
Date:
\A~0f-
4-1-
SAMPLE DEPTH
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate /&8rv-jl3Qs.
FLOW CELL READINGS
/Too
ft
_ft
_ft
_ft
Jl
^ft
ft
ft
/S";
COLORMETRIC TESTS
Time:
Water Clarity
Soluble Iron (D~6ppm/un-filtered):p efl. (j>
Total Iron (0-6ppm/urvfiltered}:
-------
04/12/97 SAT 20:18 FAX 4109920347
TARGET ENVIRO
©018
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
CQLORMETRIC TESTS
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS);
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate Jg)»,^ no$
^-2,-T?- Time: IO--15
0SHO
38
_.a
*L
.31
rf.33
H. t:
rt9"-/o
ml///i9.^
ft
ft
ft
ft
ft
s- ft
ft
"nga
Water Clarity £e/n/^£uE
Soluble Iron (0-6ppm/un-filtered): 3-45"
Total Iron (0-6ppm/un-frltered): •? (^
Soluble Iron (0-1 2ppm/un-filtered):
Total Iron (0«12ppm/un-filtered): — —
Soluble Iron (0-8ppm/filtered): —
Total Iron (0-6ppm/fittered): —
Soluole Iron (0-1 2ppm/filtered): — ""
Total Iron (0-1 2ppm/fittered): ——
Sulfide (un-filtered): . |(jj
Sulfide (filtered): -— »
Dissolved Oxygen: . ^~1~
nese (filtered): PPmjd
Mft.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
FLOW CELL READINGS
GROUNDWATER HEADSPACE TEST
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
/•(o
,25k
Time:
FID Headspace:
/O .'
0
Ppm
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
IO: /O
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:16 FAI 4109920347
TARGET ENVIRO
i017
SAMPLE DATA SHEET
Location Number
Date:
SAMPLE DEPTH
COLQRMETRIC TESTS
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface;
Static Water Level (TOP):
Static Water Level (B<3S):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
43
3.M
'-SO
to* A
Time:
Water Clarity
Soluble Iron (0-6ppm/un-fittered):_
Total Iron (0-6ppm/un-filtered):
ppm
a -43 • p p m
Soluble Iron (0-12ppm/un-fiftered): - > ppm
Total Iron (0-1 2ppm/un-filtered): - — ppm
Soluble Iron (0-6ppm/filtered): - ppm
Total Iron (0-eppm/filtered): """* ppm
Soluble Iron (0-12ppm/fittered): — ppm
Total Iron (0-1 2ppm/filtered): *^" ppm
Sulfide (un-filtered): ,Q\ _ ppm
ft Sulfide (filtered): .""" ppm
Dissolved Oxygen: _jffi ppm
ml/min Manganese (filtered): ppm 0
GROUNDWATER HEADSPACE TEST
Time:
pH:
red/ax:
Dissolved Oxygen:
Conductivity
Temperature:
Time:
FID Headspace:
.ppm
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:18 FAX 4109920347
TARGET ENVIRO
®016
SAMPLE DATA SHEET
Lcoatlon Number
Date:
M-:
SAMPLE DEPTH
Time:
Tote! Depiri Dn'lied:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static; Water Level (TOFj:
Static water Level (BGS):
HYDRAULIC. CONDUCTIVITY
Drawdown:
Time;
Flaw Rate
FLOW CELL READINGS
Time:
red/ox:
Dissolved Oxygen:
Conductivfty
Tempeiaiure:
Sample Collection
Time
i Liter Amber Jars
40 ml VOA
t- IT
_it
_A
_ft
It
\Z-38 ft
ft
1.
CQLQRMETRIC TESTS
Time:
Water Clarity (LwCfe»-
Soluble Iron (0-6ppm/un-filtered):_
Total iron (G-oppni/'un-fiitereii): ^
Soluble Iron (0-12ppm/un-filtered^_
Total Iron (0-12pprTi/un-f)iteieti): _
Soluble Iron (O-Sppm/filtered): __
Total lion (G-oppm/fiilereu); _
Soluble Iron (0-12ppm/fiftered): _
Total Iron (0-12ppni/fiiiereu): _
Sulfide (un-filtered): _
Suifiue (filtered):
ppm
, erf
, 1- ml/min Dissolved Oxygen:
Manganese (filtered):
/ .
_ppm
_pprn
.ppm
_ppm
.Ppm
.ppm
.Ppm
_ppm
_ppm
ppm
GROUNDWATER HEADSPACE TEST
13
Time:
FID Headspace1.
. /'O
/,
Ppm
J-3
(08. i
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 mlVOA
T- A- 09- 28
4/28/97
15:21
28
2
2
Surface: 2.1
OP): 16. 3
IGS): 14. 2
ICTIVITY
15:24
1
50
JGS
15:37
5.17
921
2.4
243
65
15:39
3
4
COLORMETRIC TESTS
Time: 15:48
ft Water Clarity Crystal Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 0.65 ppm 0.25
ft Total Iron (6ppm): 1.1 ppm 0.7
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0 ppm 0
Dissolved Oxygen: 1.18 ppm 1.06
Manganese (filtered): 0.3 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time: 16:30
Fl D Headspace: 1.1 ppm
OBSERVATIONS! COMMENTS:
mV Pumped dry during purging.
ppm Sample zero - 100% sample water.
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Lcoation Number:
Date:
Sample Data Sheet
TA-09-33
4/28/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
15:30
33
2
2
1.23
14.66
13.43
15:35
1
60
15:58
4.93
111
1.8
153
64.4
ft
ft
ft
ft
ft
ft
Time:
Water Clarity
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm)
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
16:09
Crystal Clear
Clear
Zero
0.4
0.4
•
.
0
0.77
Manganese (filtered): 0
ft
ml/min
mV
ppm
uS/mS
°F
GROUNDWATER HEADSPACE
Time:
FID Headspace:
16:33
6.2
Sample
Zero
ppm 0.1
ppm 0.2
ppm
ppm
ppm 0
ppm 0.71
ppm
TEST
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
OBSERVATIONS / COMMENTS:
Sample zero - 100%
sample water,
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
16:00
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-09-38
4/29/97
8:22
38
2
2
Surface: 0.31
OP): 13.14
GS): 12.83
ICTIVITY
a:22
1
400
4GS
8:40
4.9
92
0.5
33.2
63.7
8:42
3
4
COLORMETRIC TESTS
Time: 8:50
ft Water Clarity Crystal Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 0.5 ppm 0.7
ft Total Iron (6ppm): 1.65 ppm 1.75
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.11 ppm 0
Dissolved Oxygen: 0.94 ppm 0.7
Manganese (filtered): 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 10:25
FID Headspace: 3.9 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water,
ppm Installed on 4-28-97.
uSImS
°F
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-09-43
4/29/97
0.495833
43
2
2
Surface: 3.21
OP): 15.14
IGS): 11.93
ICTIVITY
9:22
1
8
4GS
9:44
5.57
•142
0
20.7
62.8
9:46
3
4
COLORMETRIC TESTS
Time: 9:52
ft Water Clarity Cloudy
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 4.05 ppm 1.55
ft Total Iron {6ppm): 4.45 ppm 1.9
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.26 ppm 0
Dissolved Oxygen: 0.99 ppm 0.27
Manganese (filtered): 0 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time: 10:27
FID Headspace: 0.3 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water,
ppm Installed on 4-28-97.
uS/mS Very slow recharge.
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-09-48
4/29/97
10:12
48
3
3
3.125
22.1 '
10:34
5.94
-67
0.4
29.5
63.5
10:36
3
4
COLORMETRIC TESTS
Time: 10:51
ft Water Clarity Cloudy
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): >6 ppm >6
ft Total Iron (6ppm): >6 ppm >6
ft Soluble Iron (12ppm): 9.7 ppm 3.2
Total Iron (12ppm): 14.4 ppm 7.7
Sulfide: 0.86 ppm 0.38
Dissolved Oxygen: - ppm
Manganese (filtered): 0 ppm
ft
mi/min GROUNDWATER HEADSPACE TEST
Time: 11:20
FID Headspace: 0.2 ppm
OBSERVATIONS /COMMENTS:
mV Pulled back an additional 1' - very slow recharge.
ppm * - waited 1 hour, water @ 22.1 ', did not perform
tS/mS hydraulic conductivity test.
°F Pumped probe dry during flow cell readings, air in
sample line - no D.O. reading.
Sample zero - 25% sample / 75% clear water
Collected equipment blank #5, ELQBLK-5, after
collection of TA-09-48.
ppm
ppm
Ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:15 FAX 4109920347
TARGET ENVIRO
fi 012
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Rack:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
*/-3-W-
COLORMETRIC TESTS
/r/C* Time: /3 •&*
£3 . S" ft water Clarity &jc=S*-,
.2- ft Clear
/. 2.5"" n Zero
Surface: o2 . S3 A Soluble Iron (6ppm): t£f ppm
OP): oZJ. , (f ft Total Iron (6ppm): .0 3" ppm
GS): 2£>. CO- ft Soluble Iron (12ppm): — *> ppm
Total Iron (12ppm): •"•""" ppm
CTIVITY Soluble Iron (6ppm): — ppm
Total Iron (6ppm): — — ppm
/ ^ '"*° Soluble Iron (12ppm): • • ppm
/ ft Total Iron (12ppm): — " ppm
/fa, 3 ml/min Sulfide: (& ppm
Dissolved Oxygen: ^2.-^ m
IGS Manganese (filtered): ff> ppm
/S^ ^0 GROUNDWATER HEADSPACE TEST
S~."
n$ mV Time: /^'/
/£>-3 ppm FID Headspaw. i
//-3 uS/mS
-------
04/12/97 SAT 20:15 FAX 4109920347
TARGET ENVIRO
ion
SAMPLE DATA SHEET
Lcnation Number;
Dale:
SAMPLE DEPTH
-rk~9&~ £?.
COLORMETRIC TESTS
Time1
Total Depth Drilled:
Pui! Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Waler Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature;
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
/S JO
.2^-r
i-
Z.
/,^
vZt.'tf
Z0.02-
tCo'- I 5-
/
tt
ft
ft
ft
tt
ft
F—«
ft
3C/to» Z-ml/min
Time: . Wo SC
Water Claritv Cv^"
Clear
Zero
Soluble Iron (6ppm): /.Q
Total Iron (opprn): /.ft»
Soluble Iron (12ppm):
Total Iron (12pprn):
Soluble Iron (6ppm): — "
Total Iron (6ppm): -~~
Soluble Iron (12ppm): ~^"
Total Iron (12ppm): — "
Sulfide: ,Q$
Dissolved Oxygen: ~?2- -6
Manganese (filtered?: M
>
rX-
Sample
Zero
ppm • /
Ppm \ /
ppm \/
ppmY
ppm A
ppm I 1
ppm 1 I
ppm I \
1 \
ppm j \
ppm J \
ppm 1 \
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
GROUNDWATER HEADSPACE TEST
_mV Time:
_pprn FID Headspace:
uS/mS
ppm
OBSERVATIONS i COMMENTS:
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGETENVIRO
@ 010
SAMPLE DATA SHEET
Location Number:
Dale:
-775-03- 33.
SAMEL.E DEPTH
COLORMETRIC TESTS
Time:
Tula! Depth Drilled:
Pun Back:
Sci een Extended;
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flaw Rate
FlOW CELL READINGS
Tire:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
33. r- ft
2- ft
Z. .ft
_ft
ft
&Q.O% ft
_ft
ml/mln
09-^3
Time:
Water Clarity
Soluble Iron (6ppm):
Total iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (I2ppm);
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered):
GROUNDWATER HEADSPACE TEST
__mV Time: ^_
_ppm FID Headspace:
uS/mS
(g^.C. °F OBSERVATIONS / COMMENTS:
/O '
(n
ppm
Sample Collection
Time
1 Liier Amber Jars
40 m! VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:14 FAX 4109920347
TARGET ENVIRO
©009
SAMPLE DATA SHEET
Lcoation Number:
Dale:
SAMPLE DEPTH
Time:
Tola! Depth Drilled:
Pull Back:
Semen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
ELPJflLCELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Tenipeiature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-C3-
01
473-b
10 * 2 PP"'
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
.rtlV Time:
_ppm FID Headspace:
-------
04/12/97 SAT 20:14 FAX 4109920347
TARGET ENVIRO
©008
SAMPLE DATA SHEET
Lcoatlon Number;
Dale:
SAMPLE
Time:
Total Depth Drilled:
Pull Back:
Sci een Extended;
Pipe Stick UP Above Surface:
Static Water Level (TOP):
SWJC water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
ELQWCELLREAPIJvlGS
Time:
pH:
r e d / o x :
Dissolved Oxygen:
Conductivity
Temperature:
IA-/8
/
_ft
_ft
_ft
_ft
ft
_ft
ml/min
6 •
COLORMETRIC TESTS
Time:
Water Clarity
Clear
Zero
Soluble Iron (6ppm): 3..% ST ppm
Total iron (6ppm): *?*{£~ ppm
Soluble Iron (12ppm): ppm
Total I ron (12ppm): —" ppm
Soluble Iron (6ppm): —' ppm
Total Iron (opprrt): "" ppm
Soluble Iron (12ppm): ——' ppm
Total Iron (12ppm): —<~ ppm
Sulfide: «OJ ppm
Dissolved Oxygen:
Manganese (filtered):
ppm
GROUNDWATER
_mV Time:
_ppm FID Headspace:
uS/mS
g TEST
4
.ppm
OBSERVATIONS / COMMENTS:
Sample Collection
1 Liter Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level {TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-04-27
4/17/97
8:44
27
2
2
Surface: 3.06
OP): 25.15
!GS): 22.09
ICTIVITY
9:01
1
205
YGS
9:17
5.48
151
8.4
193
61.4
9:19
3
4
COLORMETRIC TESTS
Time: 9:30
ft Water Clarity Crystal Clear
ft Clear
ft Zero
ft Soluble Iron (6ppm): 0.45 ppm
ft Total Iron (6ppm): 0.4 ppm
ft Soluble Iron (12pprn): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.01 ppm
Dissolved Oxygen: >2 ppm
Manganese (filtered); 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 10:50
FID Headspace: 0.2 ppm
OBSERVATIONS / COMMENTS:
mV Installed probe on 4-16-97, left overnight
ppm Sample zero • 100% sample water.
uS/mS
°F
Sample
Zero
0.05 ppm
0 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
to recharge.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-04-32
4/17/97
8:44
32
2
2
Surface: 2.25
OP): 24.3
GS): 22.05
ICTIVITY
9:09
1
632
«IGS
9:36
5.95
106
8.3
92.1
62.3
9:38
3
4
COLORMETRIC TESTS
Time: 9:45
ft Water Clarity Clear
ft Clear
ft Zero
ft Soluble Iron (6ppm): 1.55 ppm
ft Total Iron (6ppm): 1.4 ppm
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.04 ppm
Dissolved Oxygen: >2 ppm
Manganese (filtered): 0 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time: 10:53
FID Headspace: 0.3 ppm
OBSERVATIONS / COMMENTS:
mV Installed probe on 4-16-97, left overnight
ppm Sample zero • 100% sample water.
uS/mS
°F
Sample
Zero
0.75 ppm
0.6 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
to recharge.
TARGET ENVIRONMENTAL SERVICES. INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-04-37
4/17/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
10:30
37
2
2
1.15
23.47
2232
10:35
1
432
10:43
4.71
231
6.3
83.6
62.3
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°F
Time: 11:00
Water Clarity Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 0.8 ppm 0
Total Iron (6ppm): 0.95 ppm 0.05
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.04 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 12: oo
FID Headspace: 0 ppm
OBSERVATIONS /COMMENTS:
Sample zero - 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
10:45
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-04-42
4/17/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
10:44
42
2
2
2.25
24.4
22.15
1055
1
142
11:18
5
74
3.3
244
62
ft
ft
ft
ft
ft
ft
ft
ml/min
mv
ppm
uS/mS
°F
Time:
11:33
Water Clarity Semi-Clear
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered)
Clear Sample
Zero Zero
5.2 ppm 0.95
6.65 ppm 2.5
ppm
ppm
0.47 ppm 0
>2 ppm >2
: 0 ppm
ppm
ppm
ppm
ppm
Ppm
ppm
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
12-.01
0.2 ppm
OBSERVATIONS / COMMENTS:
Sample zero-100% sample water.
11:20
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
TB-04-47
4/17/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox: -,
Dissolved Oxygen:
Conductivity
Temperature:
12:25
47
2
2
0.3
26.15
25.85
12:27
1
118
12:38
4.39
•340
5.3
234
62
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
°F
Time:
Water Clarity
Soluble iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filte
GROUNDWATER H
Time:
FID Headspace:
OBSERVATIONS /
Sample zero - 50%
12:54
Cloudy
Clear
Zero
>6
>6
): 8.4
8.5
0.69
>2
red): 0
IEADSPACE
14:oo
1.1
Sample
Zero
ppm 4.8
ppm 5.75
ppm 1.5
ppm 1.6
ppm 0.11
ppm >2
ppm
TEST
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
COMMENTS:
clear I 50%
sample water,
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
12:40
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
\
SAMPLE DEPTH
TB-05-31.5
4/15/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
13:30
31.5
2
2
2,67
22.05
19.38
13:41
1
260
13:49
4.85
103.5
15.8
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
°C
Time: 14:05
Water Clarity CLEAR
Clear Sample
Zero Zero
Soluble Iron (6 ppm): 0.55 ppm 0
Total Iron (6ppm): 0.65 ppm 0
Soluble Iron (12ppm): • ppm
Total Iron (12ppm): • ppm
Sulfide: 0.04 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 14:55
FID Headspace: 0 ppm
OBSERVATIONS/COMMENTS:
Sample zero - 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
13:51
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-05-36.5
4/15/97
13:45
36.5
2
2
Surface: 1.81
OP): 21.21
GS): 19.4
ICTIVITY
13:53
1
118
*JGS
14:05
5.02
93.6
16.5
14:07
3
4
COLORMETRIC TESTS
Time: 14:20
ft Water Clarity Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.65 ppm 1-2
ft Total Iran (6ppm): 2.4 PPm 1
ft Soluble Iron (12ppm): - Ppm
Total Iron (12ppm1: - PPm
Sulfide: 0,1 6. Ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mi/min GROUNDWATER HEADSPACE TEST
Time: 14:57
FID Headspace: 0 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water.
ppm
uS/mS
°C
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Lcoation Number:
Date:
Sample Data Sheet
TB-05-41.5
4/15/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
15:15
41.5
2
1.5
0.63
20.19
19.56
15:21
1
60
15:33
5.17
86
16
ft
ft
ft
ft
ft
ft
Time:
Water Clarity
Soluble Iron (6ppm):
Total Iron (6ppm):
15:52
Cloudy
Clear Sample
Zero Zero
>6 ppm >6
>6 ppm >6
Soluble Iron (12ppm): 8.4 ppm 0.1
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
12.1 ppm 3.1
0.97 ppm 0.18
>2 ppm ?L
Manganese (filtered): 0 ppm
ft
mlimin
mV
ppm
uS/mS
"c
ppm
ppm
ppm
ppm
ppm
_ppm
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
OBSERVATIONS /
Sample zero - 50%
16:33
0.2 ppm
COMMENTS:
clear / 50% sample water,
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
15:35
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-05-46.5
4/15/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Rack:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
15:27
46.5
2
2
3.65
23.6
19.95
15:36
1
188
15:40
494
93.6
.
15.8
ft
ft
ft
ft
ft
ft
Time:
Water Clarity
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sutfide:
Dissolved Oxygen:
16:05
Semi-clear
Clear
Zero
2.8 ppm
3.2 ppm
ppm
ppm
0.2 ppm
>2 ppm
Manganese (filtered): 0 ppm
ft
ml/min
mV
ppm
uS/mS
°C
Sample
Zero
0.9 ppm
1 .2 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
16:35
0.3 ppm
OBSERVATIONS / COMMENTS:
Sample zero - 100%
sample water.
15:42
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-05-51.5
4/18/B7
8:30
51.5 ft
2 ft
2 ft
Surface: 2.6 ft
OP): 22.03 ft
GS): 19.43 ft
ICTIVITY
8:43
0.19 ft
688 ml/min
YGS
8:54
5.65
-125 mV
1.5 ppm
28.1 uS/mS
63 °F
8:56
3
4
COLORMETRIC TESTS
Time: 9:14
Water Clarity Semi-Clear
Clear
Zero
Soluble Iron (6ppm): 3.2 ppm
Total Iron (6ppm): 3.45 ppm
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.18 ppm
Dissolved Oxygen: 2.11 ppm
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:18
FID Headspace: 1.2 ppm
OBSERVATIONS / COMMENTS:
Sample
Zero
1.25 ppm
1.45 ppm
ppm
ppm
ppm
1.61 ppm
ppm
Drove probe on 4-15-97, left overnight to recharge.
Sample zero - 25% clear / 75% sample water.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TA-06-33
4/15/97
8:34
33 ft
2 ft
2 ft
Surface: 1.25 ft
OP): 17.4 ft
IGS): 16.15 ft
ICTIVITY
8:45
I ft
232 mlirnin
gcs
9:10
4.78
106.2 mV
ppm
uS/mS
15 °C
9:11
3
4
COLORMETRIC TESTS
Time: 9:23
Water Clarity Crystal Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1 ppm 0.45
Total Iron (6ppm): 1.2 ppm 0.65
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.02 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:09
FID Headspace: 0 ppm
OBSERVATIONS / COMMENTS:
Installed probe in 4-14-97.
Sample zero • 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-06-38
4/15/97
8:36
38
2
2
2.22
18.39
16.17
8:50
1
85
9:27
5.05
90.5
COLORMETRIC TESTS
Time: 9:41
ft Water Clarity Clear
ft Clear
ft Zero
ft Soluble Iron (6ppm): 4.5 ppm
ft Total Iron (6ppm): 4.65 ppm
ft Soluble Iron (12ppm): - ppm
Total iron (12ppm): - ppm
Sulfide: 0.1 ppm
Dissolved Oxygen: >2 ppm
Manganese (filtered}: 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 10:10
FID Headspace: 0.8 ppm
OBSERVATIONS/COMMENTS:
mV Installed probe on 4-14-97, left overnight
Sample
Zero
3.25 ppm
3.4 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
to recharge.
ppm Sample zero-75% clear / 25% sample water,
14.8
9:30
3
4
uS/mS
°C
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-06-43
4/15/97
10:25
43
2
1
Surface: 3.24
OP): 19.9
GS): 16.66
ICTIVITY
10:32
1
149
YGS
10:46
4.6
120
15.8
10:48
3
4
COLORMETRIC TESTS
Time: 10:58
ft Water Clarity CLOUDY
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): >6 ppm 6 ppm >6
ft Soluble Iron (12ppm): 10.1 ppm 4.6
Total Iron (12ppm): 11.6 ppm 6.2
Sulfide: 0.79 ppm 0.34
Dissolved Oxygen: 2.29 ppm 1.19
Manganese (filtered): 0 ppm
ft
ml/tnin GROUNDWATER HEADSPACE TEST
Time: 12: oo
FID Headspace: 1.4 ppm
OBSERVATIONS I COMMENTS:
mV Sample zero - 75% clear/25% sample water.
ppm Purged well prior to cond. test.
uS/mS
°C
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-46-48
4/15/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
11:12
48
2
I
2.25
19.55
17.3
11:17
1
89
11:25
5.39
81.1
15.4
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°C
Time: 11:47
Water Clarity Very Cloudy
Clear Sample
Zero Zero
Soluble Iron (6ppm): >6 ppm >6
Total Iron (6ppm): >6 ppm >6
Soluble Iron (12ppm): >12 ppm 10.2
Total Iron (12ppm): >12 ppm >12
Sulfide: 0.96 ppm 0.38
Dissolved Oxygen: 42 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 12:01
FID Headspace: 4.2 ppm
OBSERVATIONS /COMMENTS:
Sample zero - 75% clear / 25% sample water.
Purged well prior to conductivity test.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
11:27
TARGET ENVIRONMENTAL SERVICES, INC
-------
Lcoation Number:
Date:
Sample Data Sheet
TB-07-27
4/16/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
10:15
27
2
2
1.21
15.92
14.71
10:26
1
300
10:45
4.78
65
3.6
269
63.6
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
Op
Time:
11:02
Water Clarity CLOUDY
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered)
Clear
Zero
6.35
>6
.
8.1
0.96
>2
: 0
GROUNDWATER HEADSPACE
Time:
FID Headspace:
12:45
1
Sample
Zero
ppm 3.1
ppm 5.35
ppm
ppm 1.5
ppm 0.46
ppm >2
ppm
TEST
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
OBSERVATIONS /COMMENTS:
Sample zero-75% clear /
25% sample water.
10:47
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Lcoation Number:
Date:
Sample Data Sheet
TB-07-32
4/16/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
10:15
32
2
2
2.17
16.6
14.43
10:36
1
23.5
12;47
4.4
•93
0.8
295
64.7
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°F
Time: 13:01
Water Clarity Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1 ppm 0.05
Total Iron (6ppm): 1.15 ppm 0.1
Soluble Iron (12ppm): - ppm
total Iron (12ppm): - ppm
Sulfide: 0.09 ppm 0
Dissolved Oxygen: 0.6 ppm 0.32
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 14:25
FID Headspace: 0 ppm
OBSERVATIONS/COMMENTS:
Sample zero - 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Time
1 Liter Amber Jars
40 ml VOA
12:49
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TA-07-37
4/1 6197
COLORMETRIC TESTS
12:33 Time: 13:33
37 ft Water Clarity Cloudy
2 ft Clear Sample
2 ft Zero Zero
1.17 ft Soluble Iron (6ppm): 5.05 ppm 1.45
15.69 ft Total Iron (6ppm): 6.05 ppm 2.45
14.52 ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.48 ppm 0
Dissolved Oxygen: >2 ppm 1.47
12:47 Manganese (filtered): 0 ppm
1 ft
537 ml/min GROUNDWATER HEADSPACE TEST
Time: 14:26
FID Headspace: 0.4 ppm
13:22
5.21 OBSERVATIONS / COMMENTS:
-19 mV Sample zero - 25% clear / 75% sample water.
1.4 ppm
194 uS/mS
65 °F
13:24
3
4
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-07-42
4/16/97
COLORMETRIC TESTS
13:40 Time: 14:32
42 ft Water Clarity Clear
2 ft Clear
2 ft Zero
Surface: 2.26 ft Soluble Iron (6ppm): 1 .75 ppm
OP): 16.97 ft Total Iron (6ppm): 2 ppm
IGS): 14.71 ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
ICTIVITY Sulfide: 0.16 ppm
Dissolved Oxygen: 1.11 ppm
14:11 Manganese (filtered): 0 ppm
1 ft
543 ml/min GROUNDWATER HEADSPACE TEST
JGS Time: 15:48
FID Headspace: 21 ppm
14:21
5.1 OBSERVATIONS / COMMENTS:
•387 mV Sample zero - 100% sample water.
0.8 ppm
47.7 uS/mS
66.1 °F
14:23
3
4
Sample
Zero
0 ppm
0.05 ppm
ppm
ppm
0 ppm
0.71 ppm
ppm
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-07-47
4/16/97
COLORMETRIC TESTS
15:01 Time:
15:25
47 ft Water Clarity CLOUDY
3 ft
2 ft
Surface: 0.46 ft Soluble Iron (6ppm):
OP): 15.35 ft Total Iron (6ppm):
GS): 14.89 ft Soluble Iron (12ppm):
Total Iron (12ppm):
ICTIVITY Sulfide:
Dissolved Oxygen:
15:03 Manganese (filtered)
1 ft
Clear Sample
Zero Zero
>6 ppm 3.2
>6 ppm 4.25
5.5 ppm
7.5 ppm 0.1
0.49 ppm 0
>2 ppm 1.42
; 0 ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
304 ml/min GROUNDWATER HEADSPACE TEST
VGS Time:
FID Headspace:
15:12
15:50
26 ppm
4.46 . OBSERVATIONS / COMMENTS:
- 3 2 4 mV Sample zero - 25% clear
0.4 ppm Very slow recharge w/ 2'
54.5 uS/mS 1' - good recharge.
64.8 °F
15:14
4
/ 75% sample water,
pull back. Pulled back
extra
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled;
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-08-25,5
4/18/97
9:00
25.5 ft
2 ft
2 ft
Surface: 0.6 ft
OP): 12.34 ft
IGS): 11.74 ft
ICTIVITY
9:09
1 ft
90 ml/min
gcs
9:33
5.06
73 mV
7.1 ppm
269 uS/mS
594 °F
9:35
3
4
COLORMETRIC TESTS
Time: 9:49
Water Clarity Crystal Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 0.4 ppm 0.1 ppm
Total Iron (6ppm): 0.5 ppm
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0 ppm
Dissolved Oxygen: >2 ppm
Manganese (filtered): 0.3 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:37
FID Headspace: 0.9 ppm
OBSERVATIONS I COMMENTS:
Installed probe on 4-17-97. Left overnight
Sample zero - 100% sample water.
0.1 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
to recharge.
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Lcoation Number:
Date:
Sample Data Sheet
TB-08-30.5
4/18/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
9:10
30.5
2
2
3.46
15.13
11.67
9:24
1
252
10:01
5.1
•11
3
273
68.6
ft
ft
ft
ft
ft
ft
ft
mlirnin
mV
ppm
uS/mS
°F
Time: 10:19
Water Clarity Crystal Clear
Clear Sample
Zero Zero
Soluble Iron (6ppm): 0.75 ppm 0.35 ppm
Total Iron (6ppm): 0.85 ppm
Soluble iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: cl ppm
Dissolved Oxygen: >2 ppm
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:39
FID Headspace: 0.3 ppm
OBSERVATIONS / COMMENTS:
Installed probe on 4-17-97. Left overnight
Sample zero - 100% sample water.
0.45 ppm
ppm
ppm
0 ppm
>2 ppm
ppm
to recharge.
10:03
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TB-08-35.5
4/18/97
9:30
35.5
2
2
Surface: 2.6
OP)r 14.21
IGS): 11.61
ICTIVITY
10:42
1
188
COLORMETRIC TESTS
Time: 11:32
ft Water Clarity Clear
ft Clear
ft Zero
ft Soluble Iron (6ppm): 1.1
ft Total Iron (6ppm): 1.4
ft Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide: 0.03
Dissolved Oxygen: 0.62
Manganese (filtered): 0.3
ft
mlimin GROUNDWATER HEADSPACE
Sample
Zero
ppm 0.4 ppm
ppm 0.7 ppm
ppm - ppm
ppm - ppm
ppm 0 ppm
ppm 0.45 ppm
ppm ppm
TEST
IGS Time: 14:10
11:06
5.2
•299
0.7
181
60.8
11:08
3
4
FID Headspace: 1
OBSERVATIONS /COMMENTS
mV Installed probe on 4-17-97. Left
ppm
overnight to recharge.
ppm Sample zero - 100% sample water.
uS/mS
°F
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-08-40.5
4/1 at97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
11:40
40.5
2
1.5
1.6
13.75
12.15
11:53
1
70
1215
5.6
•485
1.8
62
61.3
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
°F
Time:
12:33
Water Clarity Cloudy
Soluble Iron (6ppmj:
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered)
Clear Sample
Zero Zero
6.45 ppm 3.35
>6 ppm 4.25
ppm
7.9 ppm 0.7
0.4 ppm 0
1.81 ppm 0.99
: 0 ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
14:10
3 ppm
OBSERVATIONS /COMMENTS:
Sample zero 100% sample water.
12:17
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TB-08-45.5
4/18/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
13:45
45.5
3
3
.
ft
ft
ft
ft
ft
ft
ft
ml/min
mV
ppm
uS/mS
°F
Time: 14:30
Water Clarity Cloudy
Clear Sample
Zero Zero
Soluble Iron (6ppm): >6 ppm >6
Total Iron (6ppm): >6 ppm >6
Soluble Iron (12ppm): 13.9 ppm 7.1
Total Iron (12ppm): 14.3 ppm 10.3
Sulfide: 0.27 ppm 0
Dissolved Oxygen: - ppm
Manganese (filtered}: 2 ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Very slow recharge. Pulled back additional 1 foot, no
additional flow. Water was very turbid would not clear.
Very slow pumping rate, no conductivity test, flow cell
or headspace test.
Conducted colormetric test by allowing sample to
settle.
14:02
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGET-ENVIRO.
©002
SAMPLE DATA SHEET
Location Number:
Date:
SAMPLE DEPTH
COLORIWETRIC TESTS
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):...
Static Water Level (BGS):s "'
HYDRAULICCONDUCTMTY
Drawdown:
Time:
Flow Rate i3A*u
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature: <
tf-T—lb Time: &>-£.<*
2-
Manganese (filtered):
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Location Number.
Date:
SAMPLE DEPTH
CQLORMETRIC TESTS
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULICCONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature;
Sample Collection
Time
1 Liter Amber Jars
40 mf VGA
J^-3
JK
ft
Time:
water Clarity £<&*£
Soluble Iron (O-gppm/tin-filterecf): /.VS"
Total Iron (0-6ppm/un-filtered): pf. J3"-p m
Soluble Iron (0-12ppm/un-filtered): —— ppm
Of ob
ft Total Iron (0-12ppm/un-filtered):
ft Soluble Iron (0-eppm/filtered):
ft Total Iron ((Wppm/fittered):
Soluble Iron (0-12ppm/filtered):
Total Iron (0-12ppm/filtered):
Sulfide(un-fiitered):
ft Sulfide {filtered):
Dissolved Oxygen:
ml/mln Manganese (filtered):
QRQij|\irjvyATFp Mfs^p^p/y^Ej
Time:
FID Headspace:
_ppm
_ppm
_ppm
_ppm
_ppm
ppm
•"^^ ppffl
">£.Q ppm
(& ppm
*0*
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:10 FAX4109920347
TARGET ENVIRO
SAMPLE DATA SHEET
Location Number:
Date:
SAMELEDEPIH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended;
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate d » ^
FLOW CELL READINGS
Time"
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Tinr:!
1 Liier Amber Jars
40 ml VOA
-#~31
31 ft
2- ft
t.sr «
3M2>
13-Zi
ft
ft
/O'tQ ft
23
_ft
ml/min
COLORMETRIC TESTS
Time:
Water Clarity
/f-O'U
Clear Sample
Zero Zero
Soluble Iron (8ppm): 2.35' ppm
Total Iron (6ppm): ^.P^ ppm
Soluble Iron (12ppm):
Total Iron (IZpprn):
Soluble Iron (6ppm):
Total Iran (Qppm):
Soluble Iron (12ppm):
Total lion (12ppm):
Sulfide:
Dissolved Oxygen: v?.O ppm
Manganese (filtered): -3.' ppm
GRQUNDWATER HEADSPACE TEST
ppm
_mV Time:
ppm FID Headspace:
uS/mS
.30
OBSERVATIONS / COMMENTS:
n
TARGETENVIRONMENTALSERVICES.INC.
-------
04/12/97 SAT 20:10 FAX 4109920347
TARGET ENYIRO
i020
SAMPLE RATA SHEET
Location Number:
Date:
COLORMETRIQ
Time:
Total D«pth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water1 Level (TOP):
static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
/(7.- Time: )( '• ^~£>
V^
2.
l.f
Z.oS
SA3*
tQ.&i
(.
1
3V.?
ft
ft
ft
ft
ft
« (
<>
)j ptutEtt
ft
ml/min
Water Clarity d-oopt-i
Clear
Zeio
[Soluble Iron (6ppm): "> C?
\
) Total Iron (6ppm): "7 2~O
Manganese (filtered): 0
ppm
ppm
_ppm
ppm
ppm
ppm
ppm
ppm
ppm
> ppm
ppm
Sample
Zero
\ 1 ppm
\ / ppm
\ "
\ ,' ppm
Y PP'»
/\ Ppm
/ \ PPm
/ \ ppm
1 I PPf»
/ i PPm
1
/ 1 PPm
I \ Ppm
GROUNDWATER H6ADSPACETEST
L mV Time:
(*.(* ppm FID Headspace:
—""" uS/mS
/ $"• / V^- OBSERVATIONS / COMMENTS:
/2.-.3O
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB- 1 0-28
4/25/97
14:16
28
2
2
Surface: 2.17
OP): 13.11
GS): 10.94
ICTIVITY
14:23
1
51
JGS
14:36
4.69
19
8.6
464
65.5
14:38
3
4
COLORMETRIC TESTS
Time: 14:45
ft Water Clarity
ft
ft
ft Soluble Iron (6ppm):
ft Total Iron (6ppm):
ft Soluble iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Crystal clear
Clear Sample
Zero Zero
>6 ppm >6
26 ppm >6
>12 ppm >12
>12 ppm >12
0.05 ppm 0
0.92 ppm 0.77
Manganese (filtered): 0 ppm
ft
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
15:37
420 ppm
OBSERVATIONS / COMMENTS:
mV Strange odor coming
from sample.
ppm With pump at max flow, pumped probe dry
uS/mS Sample zero - 1 00%
°F
sample water.
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
TB-1 0-33
4/25/97
14:25
33
2
2
Surface: 1.13
OP): 12.03
IGS): 10.9
ICTIVITY
14:28
1
340
^GS
14:49
4.62
-95
0.3
443
66
14:51
3
4
COLORMETRIC TESTS
Time: 15:00
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.35 ppm 0.6
ft Total Iron (6ppm): 2.45 ppm 0.7
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.15 ppm 0
Dissolved Oxygen: 1 ppm 0.53
.;
Manganese (filtered): >2 ppm . .
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 15:39
FID Headspace: 90 ppm
OBSERVATIONS /COMMENTS:
mV Sample zero - 100% sample water.
ppm Collected equipment blank #4, ELQBLK-4 @ 15:13
uS/mS just after collecting TB-1 0-33.
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Location Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-1 0-38
4/28/97
9:02
38
2
2
Surface: 3.56
OP): 14.5
GS): 10.94
ICTIVITY
9:15
1
10
MGS
9:39
5.41
•326
8.8
335
65.8
9:41
3
A
COLORMETRIC TESTS
Time: 10:03
ft Water Clarity
ft
ft
ft Soluble Iron (6ppm):
ft Total Iron (6ppm):
ft Soluble Iron (12ppm)
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered):
ft
Cloudy
Clear Sample
Zero Zero
>6 ppm 4.95
>6 ppm 5.5
: 8.1 ppm
9.3 ppm
0.48 ppm 0
>2 ppm 1.47
0.8 ppm
ppm
ppm
Ppm
ppm
ppm
Ppm
ppm
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
11:45
80 ppm
OBSERVATIONS / COMMENTS:
mV Installed on 4/25/97.
ppm Pumped probe dry during purging and flow cell
uS/mS readings.
°F Sample zero - 100%
sample water.
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-1 0-43
4/28/97
9:04
43
2
2
Surface: 4.08
OP): 14.85
GS): 10.77
ICTIVITY
10:25
1
26
YGS
10:37
5.95
•377
0
184
66
10:39
i
4
COLORMETRIC TESTS
Time:
ft Water Clarity
ft
ft
ft Soluble Iron (6ppm):
ft Total Iron (6ppm):
ft Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered)
ft
10:57
Cloudy
Clear Sample
Zero Zero
>6 ppm >6
>6 ppm >6
11.3 ppm 3.7
13.6 ppm 5.7
0.69 ppm 0.11
>2 ppm i .48
: 0.6 ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
mlimin GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
11:47
60 ppm
OBSERVATIONS /COMMENTS:
mV Sample zero - 50% sample / 50% clear water.
ppm Installed on 4/25/97.
uS/mS Bubbles in sample line during purge and flow cell
°F readings.
Refusal @ 43'.
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TB-1 0-48
4/25/97
COLORMETRIC TESTS
Time:
ft Water Clarity
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): ppm ppm
ft Total Iron (6ppm): ppm ppm
ft Soluble Iron (12ppm): ppm ppm
Total Iron (12ppm): ppm ppm
Sulfide: ppm ppm
Dissolved Oxygen: ppm ppm
Manganese (filtered): ppm ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS /COMMENTS:
mV Probe refusal @ 43'. No sample / data collected.
ppm
uS/mS
°F
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:14 FAX 4109920347
TARGET ENVIRO
i007
SAMPLEDATA SHEET
Location Number:
Dale:
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled;
Pull Back:
Scieen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
AS '.30
JL-
/.V8
£57-
_ft
ft
ft /.r. 9
Time:
Water Clarity
Clear
Zero
- &
ft Soluble Iron (6ppm):
Total Iron (6ppm): 5 -C>
_ft Soluble Iron (I2ppm):
Total Iron (12ppm):
Soluble Iron (6ppm):
Total iron (6ppm):
Soluble Iron (12ppm};
ft Total Iran (12ppm):
_ml/min Sulfide:
Dissolved Oxygen:
Manganese (filtered):
GROUNDWATER HEADSPACE TEST
Sample
Zero
V
-1 mV Time:
8.3 ppm FIDHeadspace:
"$2 > 2- uS/mS
.Kit
ppm
OBSERVATIONS/COMMENTS:
Sample Collection
Time
1 Liter Amber Jars
40ml VOA
TARGETENVIRONMENTALSERVfceS.INC.
-------
04/12/97 SAT 20:14 FAX 4109920347
TARGET ENVIRO
B006
SAMPLE DATA SHEET
Lcoation Number;
Gate:
DEPTHE.
Time:
Total Depth Drilled;
Pu!! Back:
Screen Extended:
Pipe Stick Up Above Surface:
Stalic Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC/ITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time.:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature;
Sample Collection
Timf?
1 liter Amber Jars
40 ml VGA
". f
COLQRMETRIC
XCs
.2.
1.5-
,.39-
/s-'
f4,M
ft
n
ft
ft
ft
ft
Time:
Water Clarity
Soluble Iron
Total Iron (6p|
Soluble Iran (
Clear
Zero
3 S
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Total Iron (12ppm): -—•
Soluble Iron (6ppm): —
Total Iron (Sppm): —-
Soluble Iron (12ppm); —
/ ft Total Iron (12ppm): ~* ppm
ml/min Sulfide: , C)"?- ppm
Dissolved Oxygen: r>!2.ft m
Manganese (filtered)? <#P rn
_mV
ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
.PPm
Ofl.G
- O uS/mS
°F
OBSERVATIONS / COMMENTS:
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-02-27
4/24/97
14:15
27
2
1
3.88
20.03
16.15
14:24
1
42
14:32
5.66
-204
2.9
120
61.3
14:34
3
4
COLORMETRIC TESTS
Time: 14:45
ft Water Clarity ' Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 4.4 ppm 3.9
ft Total Iron (6ppm): 4.35 ppm 3.9
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): • ppm
Sulfide: 0.03 ppm 0
Dissolved Oxygen: 2.04 ppm 1.9
Manganese (filtered): 0 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time: 15:35
FID Headspace: 4 ppm
OBSERVATIONS /COMMENTS:
mV Pumped probe dry while taking flow cell readings,
ppm reduced flow rate.
uS/mS Sample zero - 100% sample water.
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES. INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-02-32
4/24/97
14:20
32
2
1.5
Surface: 2.2
OP): 18.35
IGS): 16.15
ICTIVITY
14:27
1
55
*IGS
14:45
5.29
•99
1.6
74.4
62
14:47
3
A
COLORMETRIC TESTS
Time: 15:02
ft Water Clarity Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 1.75 ppm 1.2
ft Total Iron (6ppm): 2.05 ppm 1.6
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.01 ppm 0
Dissolved Oxygen: 1.99 ppm 1.89
Manganese (filtered): 0.3 ppm
ft
mlitnin GROUNDWATER HEADSPACE TEST
Time: 15:37
FID Headspace: 1.8 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water.
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TC-02-37
4/24/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Rack:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
15:54
37
2
I
1.98
18.1
16.12
15:58
1
110
16:10
4.53
-73
2
72.8
64.1
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°F
Time:
Water Clarity
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered):
16:16
Cloudy
Clear
Zero
5.5
7.1
.
.
0.44
>2
0.3
GROUNDWATER HEADSPACE
Time:
FID Headspace:
Sample
Zero
ppm 1.65
ppm 3.05
ppm
ppm
ppm 0
ppm >2
ppm
TEST
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
OBSERVATIONS I COMMENTS:
No FID reading.
Sample zero - 100%
sample water.
16:12
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Lcoation Number:
Date:
Sample Data Sheet
TC-02-42
4/24/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
16:59
42
2
2
1.25
17.7
ft
ft
ft
ft
ft
16. 45 ft
17:04
Time:
Water Clarity
17:28
Semi-clear
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm):
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
Manganese (filtered): 0
Clear
Zero
2.35
3
.
.
0.21
>2
id): 0
ppm
ppm
ppm
ppm
ppm
Ppm
ppm
Sample
Zero
0.45
1.05
_
.
0
>2
ppm
ppm
ppm
ppm
ppm
ppm
ppm
0.88 ft
mlimin GROUNDWATER HEADSPACE TEST
582
FLOW CELL READINGS
Time:
PH:
fed/ox:
Dissolved Oxygen:
Conductivity
Temperature:
17:14
4.84
-70 mV
Time:
FID Headspace:
ppm
OBSERVATIONS /COMMENTS:
Drawdown: 17.7' to 18.58' BGS
3.9 ppm No FID reading,
69.2 uS/mS Sample zero - 100% sample water.
62. 7 °F
Sample Collection
Time
1 Liter Amber Jars
40 mlVOA
17:16
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-03-29
4/24/97
8:40
29
2
1.29
Surface: 15.5
OP): 18.33
IGS): 17.04
ICTIVITY
8:57
1
176
4GS
9:12
5.38
•104
8.4
104
61
9:14
3
4
COLORMETRIC TESTS
Time: 9:20
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 1.35 ppm 0.45
ft Total Iron (6ppm): 1.5 ppm 0.5
ft Soluble Iron (12ppm): • ppm
Total Iron (12ppm): - ppm
Sulfide: 0.07 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 10:52
FID Headspace: 0.4 ppm
OBSERVATIONS / COMMENTS:
mV Installed on 4/23/97.
ppm Sample zero - 100% sample water.
uS/mS
°F
ppm
Ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-03-34
4/24/97
8:45
3+
2
2
Surface: 2.37
OP): 19.46
IGS): 17.09
JCTIVITY
9:06
1
107
NGS
9:28
5.38
-25
6.6
93.1
60.8
9:30
3
4
COLORMETRIC TESTS
Time: 9:40
ft Water Clarity Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 1.1 ppm 0.55
ft Total Iron (6ppm): 1.2 ppm 0.65
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.01 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time: 10:54
FID Headspace: 0.8 ppm
OBSERVATIONS / COMMENTS:
mV Installed on 4/23/97
ppm Sample zero - 100% sample water.
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-03-34
4/24/97
11 :oo
39
2
I
Surface: 3.23
OP): 20.7
IGS): 17.47
ICTIVITY
11:02
1
110
JGS
11:13
5.46
-57
4.1
88.2
62.6
11:15
3
4
COLORMETRIC TESTS
Time: 11:23
ft Water Clarity Cloudy
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): >6 ppm 6.6
ft Total Iron (6ppm): >6 ppm >6
ft Soluble Iron (12ppm): 7.8 ppm 2.1
Total Iron (12ppm): 12 ppm 6.1
Sulfide: 0.74 ppm 0.28
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): >2 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time: 12:31
FID Headspace: 0.6 ppm
OBSERVATIONS I COMMENTS:
mV Sample zero - 50% clear / 50% sample water,
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
Ppm
ppm
Ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TC-03-44
4/24/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
11:41
44
3
3
3.4
22.09
18.69
11:46
1
40.8
11:56
5.09
•37
28
77.7
62.4
ft
ft
ft
ft
ft
ft
Time:
Water Clarity
Soluble Iron (6ppm):
Total Iron (6ppm):
Soluble Iron (12ppm)
Total Iron (12ppm):
Sulfide:
Dissolved Oxygen:
12:065
Semi-clear
Clear
Zero
2.85
3.5
;
_
0.19
>2
Manganese (filtered): 0
ft
ml/min
mV
ppm
uS/mS
°F
GROUNDWATER HEADSPACE
Time:
FID Headspace:
OBSERVATIONS I
12:32
0.7
COMMENTS:
Sample
Zero
ppm 0.75
ppm 1.4
ppm
ppm
ppm 0
ppm 2.2
ppm
TEST
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Pulled back 2' - no recharge
Pulled back additional 1' - goad recharge.
Sample zero - 100% sample water.
11:58
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
TC-04-30
4/23/97
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level [TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
9:30
30
2
2
0.25
14.17
13.92
9:35
1
70
9:46
5
142
6.1
135
63.3
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°F
Time: 9:58
Water Clarity Cloudy
Clear Sample
Zero Zero
Soluble Iron (6ppm): 1.1 ppm 0.25
Total Iron (6ppm): 1.05 ppm 0.3
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.04 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:30
FID Headspace: 0 ppm
OBSERVATIONS/COMMENTS:
Sample zero - 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
9:48
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
I Liter Amber Jars
40 ml VOA
TC-04-35
4/23/97
10:10
35
2
2
Surface: 3.3
OP): 17.2
GS): 13.9
JCTIVITY
10:14
1
144
SIGS
10:32
5.13
2
8.8
16-i
62.8
10:34
3
4
COLORMETRIC TESTS
Time: 10:39
ft Water Clarity Crystal Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 0.65 ppm 0.3
ft Total Iron (6ppm): 0.9 ppm 0.5
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.01 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0.3 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time: 10:35
FID Headspace: 0 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water.
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-04-40
4/23/97
10:50
40
3
3
Surface: 3.55
OP): 17.5
GS): 13.95
ICTIVITY
4GS
11:15
5.11
179
5.5
100
63.3
11:17
3
A
COLORMETRIC TESTS
Time: 11:22
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 1.05 ppm 0
ft Total Iron (6ppm): 1.2 ppm 0
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.1 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time: 12:36
FID Headspace: 0 ppm
OBSERVATIONS/COMMENTS:
mV Little recharge w/ 2' of pull back. Pulled back
ppm additional 1' • good recharge.
uS/mS Attempted drawdown test: pumped at max flow but
°F produced no drawdown
Sample zero - 100% sample water.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-05-27
4/23/97
14:05
27
2
2
Surface: 3.33
OP): 13.29
IGS): 9.96
ICTIVITY
14:10
1
77
UGS
14:19
5.45
163
6.3
170
61.7
14:21
3
4
COLORMETRIC TESTS
Time: 14:30
ft Water Clarity Clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.9 pprrl 1.5
ft Total Iron (6ppm): 3.2 ppm 1.8
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): • ppm
Sulfide: 0.11 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
mV Flame out on FID - no reading.
ppm Sample zero - 100% sample water.
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-05-30
4/23/97
14:07
30
2
2
Surface: 0.23
OP): 10.18
IGS): 9.95
JCTIVITY
14:18
1
19
YGS
14:30
5.73
-215
3.5
187
62
14:32
3
4
COLORMETRIC TESTS
Time: 14:50
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6pptn): 4.75 ppm 3.5
ft Total Iron (6ppm): 5.5 ppm 4.2
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.09 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
mV Very hard probing. Refusal @ 30 feet BGS.
ppm FID Flame out - no reading.
uS/mS Sample zero - 100% sample water.
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
PH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-05-37
4/23/97
COLORMETRIC TESTS
Time:
ft Water Clarity
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): ppm
ft Total Iron (6ppm): ppm
ft Soluble Iron (12ppm): ppm
Total Iron (12ppm): ppm
Sulfide: ppm
Dissolved Oxygen: ppm
Manganese (filtered): ppm
ft
ml/min GROUNDWATER HEADSPACE TEST
Time:
FID Headspace: ppm
OBSERVATIONS / COMMENTS:
mV Probe refusal . 30 feet BGS. No sample / data
ppm
uS/mS
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
collects
TARGET ENVIRONMENTAL SERVICES, INC
-------
Lcoation Number:
Date:
Sample Data Sheet
TC-06-26.5
4/25/97
SAMPLE DEPTH
COLORMETRIC TESTS
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
redtox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
9:42
2
2
3.65
13.24
9.62
9:45
1
148
9:57
4.56
151
3
167
62.6
ft
ft
ft
ft
ft
ft
ft
mlimin
mV
ppm
uS/mS
°F
Time: 10:10
Water Clarity Semi-clear
Clear Sample
Zero Zero
Soluble Iron (Spptn): 1.8 ppm 0.1
Total Iron (6ppm): 2 ppm 0.25
Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.15 ppm 0
Dissolved Oxygen: 32 ppm >2
Manganese (filtered): 0 ppm
GROUNDWATER HEADSPACE TEST
Time: 10:56
FID Headspace: 5 ppm
OBSERVATIONS /COMMENTS:
Sample zero - 100% sample zero.
ppm
ppm
ppm
ppm
ppm
ppm
ppm
9:59
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abov
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-06-3 1
4/25/97
9:50
31
2
1
Surface: 3.9
OP): 13.32
!GS): 9.42
ICTIVITY
9:54
1
178
4GS
10:11
4.55
-35
4.4
176
62.7
10:13
3
4
COLORMETRIC TESTS
Time: 10:27
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 2.6 ppm 1.55
ft Total Iron (6ppm): 2.7 ppm 1.7
ft Soluble Iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.06 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mlimin GROUNDWATER HEADSPACE TEST
Time: 10:55
FID Headspace: 2.1 ppm
OBSERVATIONS / COMMENTS:
mV Sample zero - 100% sample water.
Ppm
uS/mS
CF
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
Sample Data Sheet
Lcoation Number:
Date:
SAMPLE DEPTH
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Abo\
Static Water Level (TOP):
Static Water Level (BGS):
Time:
Drawdown:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VOA
TC-06-35
4/25/97
11:18
35
2
2
Surface: 3.35
OP): 13.15
IGS): 9.8
ICTIVITY
11:21
1
220
YGS
11:30
5.2
•33
4.8
75
65
11:32
3
4
COLORMETRIC TESTS
Time: 11:38
ft Water Clarity Semi-clear
ft Clear Sample
ft Zero Zero
ft Soluble Iron (6ppm): 5.45 ppm 2.6
ft Total Iron (6ppm): 6.45 ppm 3.65
ft Soluble iron (12ppm): - ppm
Total Iron (12ppm): - ppm
Sulfide: 0.33 ppm 0
Dissolved Oxygen: >2 ppm >2
Manganese (filtered): 0 ppm
ft
mlirnin GROUNDWATER HEADSPACE TEST
Time: 13:00
FID Headspace: 4.5 ppm
OBSERVATIONS / COMMENTS:
mV Refusal @ 35"
ppm Initially only pulled back I', very slow recharge.
uS/mS Pulled back an additional V - good recharge.
°F
ppm
ppm
ppm
ppm
ppm
ppm
ppm
TARGET ENVIRONMENTAL SERVICES, INC
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGET ENVIRO
@1005
SAMPLEDATA SHEET
Location Number:
Date:
SAMPLE DEPTH
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stick Up Above Surface:
Static Water Level (TOP):
Static Water Level (BGS):
HYDRA! 1LIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
Time:
pH:
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
Time
1 Liter Amber Jars
40 ml VGA
^?*-9^
2&3T ft
2.'
t'
3.<«
ft
ft
"ft
1*,*.
jO-40
COLORMETRIC TESTS
Time:
Water Clarity
Soluble Iron (0-6ppm/un-fittered):
Total Iron (0-6ppm/un-filtered):
ppm
Soluble Iron (0-12ppm/un-filten=sD: >Cp
Total lron(0-12ppm/un-filtered):
Soluble Iron (0-6ppm/filtered):
ft Total Iron (0-6ppm/filtered):
Soluble Iron (0-1 appro/filtered):
Total lran(0-12ppm/Rltered):
Sulfide(un-flttered):
ft Sulfide (filtered):
Dissolved Oxygen:
ml/min Manganese (filtered):
j)pm
m
_ppn
.Ppm
,ppm
_ppm
_ppm
-J-PPfl1.
ppm
.^ ppm
O ppm
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
_ppm
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGET ENVIRO
Q1004
SAMPLE RATA SHEET
Location Number:
Date;
SAMPLE DEPTH
Date:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:
Pipe Stiefe-Up Above Surface:
Static Water Level (TOP): -
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate ifl1*-
31-
a'
JA3
COLORMETRIC TESTS
Time: /S : J?
_ Water Clarity
_ft Soluble Iron (0-8ppnVun-filtered^
_ft Total Iron (0-6ppm/un-fiitered): __
_ft Soluble Iron (0-12ppmAin-filtered):
__R Total Iron (0-12ppm/un-filtered)i_
-_ft Soluble Iron (D-6ppm/filtered): __
ft Total Icon (0-eppm/filteretj): _
Soluble Iron (0-12ppmyfiKered): _
Total Iron (0-12ppm/filtererf): _
Sulfide(un-filtered):
_J ft Sulfide (filtered): _
(SoS" Dissolved Oxygen: _
ppm
r ppm
ppm
ppm
.ppm
.ppm
_Bpm
_ppm
_ppm
ppm
ml/min Manganese (filtered):
.ppm
.ppm
FLOW CELL READINGS
Time:
pH.
red/ox:
Dissolved Oxygen:
Conductivity
Temperature:
Sample Collection
GROUNDWATER HEADSPACE TEST
Time:
FID Headspace:
(/
^ ppm
2S?
U
- P»pe"
Time
1 tier Amber Jars
40 ml VOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
04/12/97 SAT 20:13 FAX 4109920347
TARGET ENVIRO.
@003
SAMPLE DATA SHEET
Location Number
Date:
SAMPLE DEPTH
4 --
COLORMETRIC TESTS
Pate:
Time:
Total Depth Drilled:
Pull Back:
Screen Extended:\
Pipe Stick Up Above Surface:
Static Water Level (TOft):
Static Water Level (BGS):
HYDRAULIC CONDUCTIVITY
Drawdown:
Time:
Flow Rate
FLOW CELL READINGS
/O.JI
Time: /3 •
Water Clarity
Soluble Iron (0-6ppm/un*filteredt>pff»(.'.
Total Iron (0-6ppm/un-filtered):P'? 6. P
Soluble Iron (0-12ppni/un-filtered)j_2jje__
m
Total Iron (0-1 2ppm/un-fittered); /O
Soluble Iran (0-6ppm/filtered): (,.
Total Iron (0-6ppm/filtered):
Soluble Iran (0-12ppm/filterecl):
Total Iron <0-l2ppm/firtered}:
Sulfide (un-filtered):
ft Sulfide (filtered):
Dissolved Oxygen:
ml/min Manganese (filtered):
ppm
.ppm
_ppm
0-
.Ppm
.ppm
_ppm
.ppm
.PP"1
GROUNDWATER HEADSPACE TEST
Time:
PH:
red/ox:
Dissolved Oxygen;
Conductivity
Temperature:
Sample Collection
Time:
FID Headspace:
_ppm
Time
1 Liter Amber Jars
40mlVOA
TARGET ENVIRONMENTAL SERVICES, INC.
-------
APPENDIX B
CALCULATED HYDRAULIC CONDUCTIVITIES
-------
Transect Hydraulic Conductivities Determined by Method of Cho, et al, 2000
Dover Air Force Base, Delaware
Sample
TC-07-31.5
TC-07-26.5
TC-02-27
TA-09-43
TA-09-48
TB- 10-38
TA-04-26
TA-02-36.5
TB-06-48
TC-05-30
TB-09-39
TC-02-37
TC-03-39
TB-07-32
TB- 10-43
TB-06-43
TB-09-44
TC-06-31
TA-05-29
TA-05-24
TA-04-31
TC-03-44
TC-07-36.5
TC-02-32
TB-05-41.5
TA-03-42.5
TA-03-47.5
TA-03-51.5
TA-09-28
TA-01-42
TB- 10-28
TA-06-48
TA-02-46.5
TA-08-43
1R-06D
TB-08-40.5
TB-08-45.5
TA-04-46
TA-04-36
TA-08-33
TA-09-33
TA-04-5I
TB-03-43.5
TA-06-38
TC-04-30
TC-05-27
DM-360D
TB-06-38
TB-08-25.5
TA-06-43
TC-03-34
TC-03-29
TA-04-56
TA-03-27.5
TB-03-23.5
Flow Rate
Q (ml/sec)
1.46
0.30
0.70
0.13
NA
0.17
0.24
0.22
1.48
0.32
0.38
1.83
1.83
0.39
0.43
2.48
0.58
2.97
0.55
0.57
NA
0.68
1.05
0.92
1.00
0.83
NA
NA
0.83
4.71
0.85
0.92
0.93
1.14
0.00
1.17
NA
0.98
0.98
0.99
.00
.05
.10
.13
.17
.28
0.00
1.42
1.50
1.55
1.78
2.93
2.20
1.87
3.12
Drawdown
s(cm)
30.48
30.48
30.48
30.48
NA
30.48
30.48
26.52
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
NA
30.48
30.48
30.48
30.48
30.48
NA
NA
30.48
30.48
30.48
30.48
30.48
30.48
0.00
30.48
NA
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
0.00
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
Specific Capacity
S (ml/sec/cm)
0.05
0.01
0.02
0.00
NA
0.01
0.01
0.01
0.05
0.01
0.01
0.06
0.06
0.01
0.01
0.08
0.02
0.10
0.02
0.02
NA
0.02
0.03
0.03
0.03
0.03
NA
NA
0.03
0.15
0.03
0.03
0.03
0.04
0.00
0.04
NA
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.04
0.04
0.00
0.05
0.05
0.05
0.06
0.10
0.07
0.06
0.10
Hydraulic Conductivity*
K (cm/sec)
Not Calculated
1.07E-04
2.48E-04
2.65E-04
2.65E-04
3.31E-04
4.71E-04
4.91E-04
5.25E-04
6.29E-04
6.32E-04
6.49E-04**
6.49E-04**
7.78E-04
8.61E-04**
8.80E-04
9.58E-04
1.05E-03
1.09E-03
1.13E-03
1.24E-03
1.35E-03
1.40E-03
.51E-03
.65E-03
.66E-03
.66E-03
.66E-03
.66E-03
.67E-03
.69E-03
.82E-03
.85E-03
.88E-03
.90E-03
.92E-03
.92E-03
.94E-03
.95E-03
.96E-03
.99E-03
2.09E-03
2.18E-03
2.25E-03
2.32E-03
2.55E-03**
2.68E-03
2.81E-03
2.98E-03
3.08E-03
3.54E-03
3.57E-03
3.62E-03
3.72E-03
3.79E-03
Hydraulic
Conductivity*
K (ft/day)
Not Calculated
0
2
2
2**
2**
2
2**
2
3
3
3
3
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
7
7**
8
8
8
9
10
10
10
11
11
Hydraulic Conductivity estimated from Specific Capacity by K=S*0.21
* Hydraulic Conductivity estimated from average of surrounding data
Page 1 of 2
2/26/2002
-------
Transect Hydraulic Conductivities Determined by Method of Cho, et al, 2000
Dover Air Force Base, Delaware
Sample
TB-04-47
TB-05-36.5
TA-08-38
TB-03-37.5
TA-06-23
TA-03-37.5
TB-04-42
TB-09-34
TC-04-35
TA-01-37
TC-06-26.5
TA-06-33
TA-05-34
TA-07-35
TA-04-41
TA-08-28
TC-01-25
TA-05-39
TB-05-46.5
TB-08-35.5
TA-07-45
TA-02-31.5
TA-03-32.5
TB-04-27
TB-03-33.5
TC-06-35
TB-06-33
TB-08-30.5
TB-05-31.5
TA-01-32
TB-07-27
TB-07-47
TA-07-30
TB-09-29
TB- 10-33
TC-01-30
TB-03-28.5
TA-07-40
TA-09-38
TA-02-41.5
TB-04-37
TB-07-37
TB-07-42
TA-06-28
TB-04-32
TC-02-42
TA-05-44
IR-07D
TA-08-48
TB-05-51.5
TC-04-40
Flow Rate
Q (ml/sec)
1.97
1.97
1.99
2.03
2.10
2.19
NA
2.40
2.40
2.40
2.47
2.53
2.57
2.63
2.68
2.80
3.42
3.13
3.13
3.13
3.14
3.17
3.40
3.42
3.65
3.67
3.87
4.20
4.33
4.65
5.00
5.07
5.09
5.21
5.67
7.33
6.10
6.35
6.67
NA
7.20
8.95
9.05
9.71
10.53
9.70
11.50
0.00
12.74
11.47
MAX
Drawdown
s (cm)
30.48
30.48
30.48
30.48
30.48
30.48
NA
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
30.48
NA
30.48
30.48
30.48
30.48
30.48
26.82
30.48
0.00
25.91
5.79
0.00
Specific Capacity
S (ml/sec/cm)
0.06
0.06
0.07
0.07
0.07
0.07
NA
0.08
0.08
0.08
0.08
0.08
0.08
0.09
0.09
0.09
0.11
0.10
0.10
0.10
0.10
0.10
0.11
0.11
0.12
0.12
0.13
0.14
0.14
0.15
0.16 .
0.17
0.17
0.17
0.19
0.24
0.20
0.21
0.22
NA
0.24
0.29
0.30
0.32
0.35
0.36
0.38
0.00
0.49
1.98
0.00
Hydraulic Conductivity*
K (cm/sec)
3.91E-03
3.91E-03
3.96E-03
4.02E-03
4.17E-03
4.35E-03
4.70E-03**
4.76E-03
4.77E-03
4.77E-03
4.90E-03
5.03E-03
5.10E-03
5.22E-03
5.32E-03
5.56E-03
5.64E-03
6.23E-03
6.23E-03
6.23E-03
6.25E-03**
6.29E-03
6.76E-03
6.79E-03
7.25E-03
7.28E-03
7.68E-03
8.34E-03
8.61E-03
9.24E-03
9.93E-03
1.01E-02
1.01E-02
1.03E-02
1.13E-02
1.21E-02
1.21E-02
1.26E-02
1.32E-02
1.42E-02**
1.43E-02
1.78E-02
1.80E-02
1.93E-02
2.09E-02
2.19E-02
2.28E-02
2.90E-02
2.98E-02
1.20E-01
5.22E-03
Hydraulic
Conductivity*
K (ft/day)
11
11
11
11
12
12
13**
14
14
14
14
14
14
15
15
16
16
18
18
18
18**
18
19
19
21
21
22
24
24
26
28
29
29
29
32
34
34
36
38
40**
41
50
51
55
59
62
65
82
84
340
15
Hydraulic Conductivity estimated from Specific Capacity by K=S*0.21
* Hydraulic Conductivity estimated from average of surrounding data
Page 2 of 2
2/26/2002
-------
APPENDIX C
MASS FLUX CALCULATIONS FROM MONITORING WELL DATA
-------
Tetrachloroethylene
Concentration Distanc btw R1 Travel Time R2 Travel Time R1 Biodegradation R2 Biodegradation
(forCj+1/Cj) Transects btw Transects btw Transects Rate Half Life Rate Half Life
Transect (umole/day) (feet) (year) (year) /(day) (years) /(day) (years)
A
B
C
O.OOE+00
O.OOE+00
O.OOE+00
1200
1400
11.6
13.5
18.7
21.8
#DIV/OI
#DIV/OI
#DIV/OI
#DIV/0!
A-C 25.1 40.5 #DIV/0! I #DIV/OI
#DIV/OI
#DIV/OI
#DIV/OI
#DIV/0!
#DIV/OI
#DIV/OI
Trlchloroethylene
Concentration Distanc btw R1 Travel Time R2 Travel Time R1 Biodegradation R2 Biodegradation
(forCj+1/Cj) Transects btw Transects btw Transects Rate Half Life Rate Half Life
Transect (umole/day) (feet) (year) (year) /(day) (years) /(day) (years)
A
B
C
2.60E+05
4.20E+04
4.35E+04
1200
1400
10.7
12.5
16.9
19.7
-0.0005
0.0000
4.1
-251.0
-0.0003
0.0000
6.4
-397.4
A-C 23.2 36.7 -0.0002| 9.0| -0.0001 1 14.2
cis-1,2-Dlchloroethylene
Transect
A
B
C
Concentration
(forCj+1/Cj)
(umole/day)
3.07E+05
3.17E+03
8.61E+02
Distanc btw
Transects
(feet)
1200
1400
R1 Travel Time
btw Transects
(year)
9.8
11.4
R2 Travel Time
btw Transects
(year)
12.5
14.5
R1 Biodegradation
Rate
/(day)
-0.0013
-0.0003
Half Life
(years)
1.5
6.1
R2 Biodegradation
Rate | Half Life
/(day) (years)
-0.0010
-0.0002
1.9
7.7
A-C 21.2 27.0 -O.OOOSl 2.5\ -0.0006| 3.2
Vinyl Chloride
Concentration Distanc btw R1 Travel Time R2 Travel Time R1 Biodegradation R2 Biodegradation
(forCj+1/Cj) Transects btw Transects btw Transects Rate Half Life Rate Half Life
Transect (umole/day) (feet) (year) (year) /(day) (years) /(day) (years)
A
B
C
1.45E+04
1.45E+03
O.OOE+00
1200
1400
8.9
10.4
8.9
10.4
-0.0007
#VALUE!
A-C 19.3 19.3 #NUMI
2.7
#VALUE!
#NUMI
-0.0007
#VALUEI
#NUM!
2.7
#VALUEI
#NUM!
Total Chlorocarbons
Transect
A
B
C
Concentration
(for 1/(Cj+1/Cj))'
(umole/day)
5.82E+05
4.66E+04
4.43E+04
Distanc btw
Transects
(feet)
1200
1400
R1 Travel Time
btw Transects
(year)
8.9
10.4
R2 Travel Time
btw Transects
(year)
8.9
10.4
R1 Biodegradation
Rate
/(day)
-0.0008
0.0000
Half Life
(years)
2.4
143.1
R2 Biodegradation
Rate
/(day)
-0.0008
0.0000
Half Life
(years)
2.4
143.1
A-C 19.3 19.3 -0.0004| 5.2| -0.0004| 5.2
SITE WIDE
K (ft/day)=
porosity
i (ref: D&M 5/93)
Velocity
68
0.35
0.0019
0.37
Retardation Factor
R1 (foc=0.00025) R2(foc=0.001)
PCE
TCE
cis-1,2-DCE
Vinyl Chloride
1.3 2.1
1.2 1.9
1.1 1.4
1 1
* Vinyl chloride was not detected at Transect C, biodegradation rate calculation
is based on detection limit (0.5 ug/L) and represents a minimum rate.
-------
|