Facsimile
Report
R
produced by
UN/TED
DEPARTMENT OF ENERGY
STATES
Office of Scientific and Technical Information
Post Office Box 62 Oak Ridge, Tennessee 37831
-------
on\l
ORNL-6320
OAK RIDGE
NATIONAL
LABORATORY
Instructions for Applying the
Microcomputer Version of
SWANFLOW-2D on an
IBM Personal Computer
J. LBedsoe
D. E. Fields
OPFRATfO BY
MARTIN MARlfTTA ENERGY SYSTEMS INC
FOR THE UNITED STATES
DEPARTMENT OF ENERGY
-------
Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road. Springfield, Virginia 22161
NTIS price codes—Printed Copy: A06; Microfiche A01
This report was prepared as an account of wort sponsored by an agency of the
United StatesGovenunent NeithertheUrritedStatesGovenunentrorany agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility tor the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
repreaents that its use would not infringe privatty owned rights. Reference herein
to any specific commercial product process, or service by trade name, trademark.
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the UnitsdStatas Government or any agency
-------
ORNL—6320
DE87 012004
HEALTH AND SAFETY RESEARCH DIVISION
Instructions for Applying the
Microcomputer Version of SVANFLOV-2D
on an IBM Personal Computer
J. L. Bledsoe
D. E. Fields
Computing and Teleconunieations Division
Date published:
Prepared for die
U.S. Environmental Protection Agency
under Interagency Agreement No. 40-1565-85
Prepared by the
Oak Ridge Rational Laboratory
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400
-------
CONTENTS
ABSTRACT iv
LIST OF FIGURES v
1. INTRODUCTION 1
2. INSTALLATION OF SWANFLOW-2D AND ASSOCIATED PROGRAMS 7
3. SWANFLOW-2D 13
3.1 USAGE 13
3.2 CODE INFORMATION 33
4. EXAMPLES OF STANDARD PROBLEMS 35
5. SWANEDIT (PREPROCESSOR) 49
6. SUANGRAF (POSTPROCESSOR) 59
6.1 FDGRID 60
6.2 CONTOUR 60
6.3 GRAPH 62
References 63
Appendix A. MESH GENERATION FOR ONE-DIMENSION EXAMPLE 65
Appendix B. COMPLETE SUANGRAF EXECUTION TO GENERATE
CONTOUR PLOT 71
Appendix C. SUANGRAF TIME SERIES GENERATION EXAMPLE 83
ill
-------
LIST OF FIGURES
Figure
1 Schematic diagram of the SUANFLOW system 2
2 SWANGRAF output device options 9
3 Data set IPNAF.SD2 15
4 Monitor output for test run using data set IPNAF.SD2 ... 17
5 Sasple output obtained using input data set IPNAF.SD2 . . 18
6 Listing of SWAN.VAR input to SWANEDIT 50
7 SWANEDIT execution for error checking sample data
IPKAF.TST 54
8 Saaple plot for IPNAF.SD2 mesh 61
iv
-------
ABSTRACT
SVANFLOV-2D (Simultaneous Water, Air, and Nonaqueous Phase Flow)
(Faust and Rumbaugh, 1986) is a tvo- dimensional finite-difference code
that simulates the flow of water and an immiscible nonaqueous-phase
liquid (NAPL) within and below the vadose zone, that region in the earth
above pemanent groundwater level. The microcomputer version of this
FORTRAN-77 code is for an IBM-PC or IBM-AT. User flexibility in
building or editing datasecs is provided by SWANEDIT, the problem sets
are executed using SVANFL0V-2D, and postprocessing of results to yield a
graphical interpretation is done with StfANGRAF.
This report is intended to provide the new user of the SVANFLOV package
of codes (SWANEDIT. SUAKFLOW-2D, and SVABGRAF) with docunentation that
will assist bin In this task.
-------
1. INTRODUCTION
SVANFLOU-2D (Simultaneous Water. Air. and Nonaqueous Phase Flow)
(Faust and Rumbaugh, 1986) is a two-dimensional, finite-difference code
for simulating the flow of water and an immiscible nonaqueous-phase
liquid (NAPL) under conditions of saturation and no saturation in the
vadose zone. SVANFLOV-2D is based on a 3D version of the code developed
for the U.S. Environmental Protection Agency (Faust and Rumbaugh, 1985).
The SWANFLOU-2D set of programs (Fig. 1) can be used in scenarios
involving
. 1. analysis of nonnixing flow, similar to that in migrating organic
chemicals.
2. analysis of effects resulting from the application of remedial
techniques to hazardous waste sites, and
2. evaluation of the migration and removal of fuel spills and leaks.
These scenarios are considered and the SVANFLOW-2D and -3D codes
are benchmarked in a separate report (Fields and Bledsoe, in review).
Most modellers and users of SVANFL00-2D should have backgrounds in
physics and hydrogeology. These prerequisites, coupled with an
understanding of the microcomputer system to be used, should permit
smooth and efficient operation of the system. The developers of
SVANFLOW-2D. GeoTrans, Inc., have published a document (Faust and
Rumbaugh, 1986) describing applications of this code. They explain that
three categories of modelling geometries are available for the user:
1. one-dimensional Cartesian coordinates,
2. two-dimensional Cartesian coordinates in a horizontal plane, and
-------
ORNL-DWG 86-17585
\
SWANEOIT
PREPROCESSOR
\
SWANFLOW2D
INPUT DATA
\SWANFLOW-2D \
MODEL EXECUTION \
1
OUTPUT
FILE FOR
PLOTTING
V J
r ' -1
OUTPUT
FILE FOR
RESTART
C J
<• ^v
OUTPUT
FILE
(GENERAL)
L. J
\SWANGRAF \
POSTPROCESSOR \
FDGRID \
CONTOUR \
GRAPH \
Fig. 1. Schematic diagram of the SWANFLOW system (Faust and Rumbaugh, 1986)
-------
3. two-dimensional Cartesian coordinates in a vertical plane.
Conservation equations for mass and momentum of water, gas (air).
and an NAPL are reduced to yield coupled nonlinear partial differential
equations. This reduction of complexity is based on similar assumptions
in the Richards equation (i.e. , pressure gradients in the gas phase are
assumed neglible). Gas pi assure is the same as atmospheric pressure and
is considered constant. The space and time distributions of NAPL
pressure and water saturation are determined by this model.
A mathematical description of each phase of fluid flow in a porous
medium is basically the conservation equations for mass and momentum:
']
a(*P,sw)
(VPW - pwgv0)' - •
3<"Bsn>
where the capillary pressure, pc , is defined as Che difference between
ov
the pressures in the NAPL and water.
Six additional relationships, which are necessary for completion of
the mathematical model, apply to Che density/viscosity assumption.
-------
These are:
k - f. (S )
pw 1 v w'
k - f. (S .S )
pn 2 w' a7
pc - f, (S )
*nw 3 w
S - f. (p )
a 4 *n
^ - f c (P )
3 u
s + s •+ s - i
n w a
Relative permeabilities are depicted in the equations for k. Capillary
pressure is related by the equation for pc . Linear compressibility
0V
is 4.
Further assumptions in the model include the following.
1. Pressure in the gas phase is constant and equal to atmospheric
pressure.
2. Viscosities of water and NAPL are pressure independent.
3. Densities of water and NAPL are pressure independent.
4. Relative permeability of water is a function of water saturation.
5. Relative permeability of HAPL is a function of air and water
saturations.
6. Capillary pressure is a function of water saturation.
7. Air saturation is a function of NAPL pressure.
-------
8. Porosity is & linear function of pressure.
9. Flow is in a porous medium.
10. Darcy's equation for multiple-phase flow is valid.
11. Intrinsic permeability is a function of space.
12. No transfer of nass between phases occurs (e.g., NAPL cannot
dissolve in water) .
13. Flow is two-dinensional (i.e., gradients in Che third'dimension are
negligible).
-------
2. INSTALLATION OF SWANFLOW-2D AND ASSOCIATED PROGRAMS
After receiving a copy of the SUANFLOW system of programs, the user
should nake backup copies of all diskettes. A disk operating system
(DOS) Bust be resident in the random access memory (RAM) . If your
IBM/PC system has two disk drives, place the program diskette in drive
A. Typically, drive B should contain a blank, formatted diskette.
Output from SUANFLOW-2D can require much storage space.
If your microcomputer has a hard disk, all prograns and
input/output files can be stored conveniently on this drive. On the IBM
PC/AT, SUANFLOV-2D requires 640K of RAM. and the 80287 Bath coprocessor
chip Bust be installed. Array sizes may be reduced and Che code may be
recompiled Co run in less than 640 K if necessary. For an IBM PC or
PC/XT, an 8087 math coprocessor chip must be installed.
The SVANEDIT disk contains two files. SWANEDIT.EXE and SUAN.VAR.
The SWANGRAF package consists of Che files INSTALL.EXE, SUANGRAF.EXE,
CONTOUR.EXE. GRAPH.EXE, and FDGRID.EXE (see Fig. 1). The SWANFLOW-2D
programs are scored on the diskette in Che fora of Che source code (in
three segment files. SVAN2-1. SVAN2-2, SWAN2-3) along with SVAN2D.EXE,
Che executable version of the corte. Sanple data sets are also included:
IPNAF.SD1. IPNAF.SD2. IPNAF.SD4, IPNAF.SAT. and IPNAF.WRR. These data
sees represenC a standard sec of scenarios for modelling with SWANFLOU-
20; they should be used to gain familiarity with the simulation system.
Code application using these datasets is discussed in a separate report
(Fields and Bledsoe, in review).
System installation occurs in several stages. Loading copies of
Che distribution files onto Che hard disk or drive A is Che first stage.
Next, job control files must be generated from some of Che *.EXE files.
SVANEDIT run) under PC-DOS 2.0 or higher. Boot your system with
Che file CONFIG.SYS on the boot disk. The CONFIG.SYS file should
contain a line vxCh DEVICE-ANSI.SYS and any other commands required for
Che host microcomputer. SVANGRAF is installed by typing INSTALL
and responding to the subsequent prompts for choices from a
menu of default graphics, output device, and port options. Choose a
line-printer option from LPT1, LPT2, or LPT3. COM1 and COM2 represent
-------
serial pores where a plotter or laser Jet printer is usually installed.
Figure 2 shows output device options for SUANGRAF execution. In this
figure, user responses are prefixed by colons.
Next, choose the serial port settings that correspond to COM1 or
COM2. These settings include baud rate, parity, number of data bits.
and nunber of stop bits. Baud rates for the setup range from 300 to
9600 vith odd, even, or no parity options. The number of data bits can
be 8 or 7, and the stop bits moist be 1. The manuals for individual
devices should contain information to answer any remaining questions
about the settings (see Fig. 2).
Finally, the INSTALL progran will prompt the user for the type of
device, printer, or plotter. To use the HP2686A Laser Jet printer,
choose the plotter option. When the program asks for the printer or
plotter to be used, choose Che device that will be used most often. If
a secondary device is to be used, the INSTALL progran will have to be
run more than once.
INSTALL will create a file name SVANGRAF.DEV. If a two-drive
system or a default drive is being used, this file Bust be placed on
drive A. The SVANGRAF program FDGRID. CONTOUR, and GRAPH require the
settings for the output device. If more than one device is needed,
rename the SVANGRAF.OEV file and rerun INSTALL.EXE.
-------
SWANGRAF
INSTALLATION OF OUTPUT DEVICE PARAMETERS
Port Type
1 = LPT1 (Printer)
2 = LPT2 (Printer)
3 = LPT3 (Printer)
4 = COH1 (Plotters)
5 = COM2 (Plotters)
Select Port For Output Device: 1
Enter type of device:
0 s Printer
1 = Plotter or Laser Jet
0
PRINTERS
VALUE DEVICE
0 Epson FX-80, single density (MX.RX)
1 Epson FX-80, double density (MX.RX.Oki 92,IBM)
2 Epson FX-80, double speed,dual density (MX,RX)
3 Epson FX-80, quad density (MX.RX)
4 Epson FX-80, CRT graphics I (RX)
5 Epson FX-80, plotter graphics
6 Epson FX-80, CRT graphics II (RX)
10 Epson FX-100, single density
11 FX-100, double density (LQ1500.MX-100.Oki 93)
12 Epson FX-100, double speed, dual density
13 Epson FX-100, quad density
14 Epson FX-100, CRT graphics I
15 Epson FX-100, plotter graphics
16 Epson FX-100, CRT graphics II
Enter Appropriate Value: 0
Fig. 2. SWANGRAF output device options.
-------
10
•M S W A N 6 R A
INSTALLATION OF OUTPUT DEVICE
Port Type
1 = LPT1 (Printer)
2 = LPT2 (Printer)
3 = LPT3 (Printer)
4 = COM1 (Plotters)
5 = COM2 (Plotters)
Select Port For Output Device
F
PARAMETERS
: 4
'•I SERIAL PORT CONFIGURATION
VALUE BAUD RATE PARITY DATA BITS
300 300 N
3O1 3OO 0
307 3OO E
1200 1200 N
J2O1 1200 0
1202 1200 E
4SOO 4800 N
48O1 4800 0
48O2 480O E
96OO 9600 N
9*0 J 960O 0
96O2 960O E
8
7
7
8
7
7
8
7
7
8
7
7
STOP BITS
1
1
1
1
1
1
1
1
1
1
1
1
Select Appropriate Value Above: 9666
'•"I Enter type o-f device:
O = Printer
1 =• Plotter or Laser Jet
i i
Fig. 2. (Continued)
-------
PLOTTERS
VALUE DEVICE
2O HP 7470A
30 HP 7475A
?1 HI DMP-51 MP or DMP-52 MP - O.OO1 step size
52 HI DMP-51 MP or DMP-52 MP - O.OO5 step size
60 HP2686A Laser Jet - 8.5 x 11 - 75 dpi
61 HP2686A Laser Jet - 7.2 x 10.1 - 75 dpi
62 HR2686A Laser Jet - 8.5 x 11 - ISO dpi
63 HP2686A Laser Jet - 7.2 x 1O. 1 - 150 dpi
64 HP2686A Laser Jet - 8.5 x 11 - 300 dpi
65 HP2686A Laser Jet - 7.2 x 10.1 - 3OO dpi
80 HF7580B,7585B,7586B - A/A4 to D/A1 paper
HP7550A - A/A4 to B/A3 paper
R5 HP7585B,7586B - £/AO paper
Enter Appropriate Value: 60
7.1
Stop - Frooram terminated.
Fig. 2. (Continued)
-------
13
3. SWANFLOU-2D
3.1 USAGE
Once all the files are loaded into the nicrocomputer, the user
should test bis ability on soae of the included test data. The "five-
spof problem (data set IPNAF.SD2. listed in Fig. 3) is suggested for
initial testing. To initiate the execution of SWAN2D, type swan2d
. Figure 4 shows the information that will appear on the
nonitor screen and the contents of the output file, OPNAF.GD2. As shown
in the staple run (see Fig. 5). the program will prompt the user for the
file names of the appropriate input, output, and plot files. The input
and output files are sequential ASCII files that the user can examine
and edit. The plot file that is generated as a result of program
execution is a binary file.
The setup of the "five-spot' data example (see Fig. 3) indicates
that plotting is to occur (variable IPLOT-1) and that observation blocks
are to be generated (IOBS-1). This is necessary for generating the time
series plots for any cell of the respective grid. These time series -are
generated for the potentials (pressures) and saturations of both water
and NAPL.
When tisw series plots are required, the user must further alter
the basic "five-spot* data to indicate the number of cells that will
plot data, NOBS. The column number of observation block I, KXOBS(I) .
and the layer number of observation block I, NZOBS(I), must be repeated
in pairs for each of the observation blocks requested (cells). (See
sample output: data IPNAF.GD2.)
The SVANFLOV-2D code was run on the IBH/PC-AT for "no plotting" and
"plotting" modes. The code usually took longer to perform a "plotting"
run. Table 1 compares wall-clock times for the two types of executions.
In addition to the longer time requirements, the "plotting" mode also
requires more space. Output plot files require large chunks of memory
(i.e., files of over 5 kilobytes). The PLOTWORKS, Inc., software that
is incorporated into SVANGRAF uses scratch space. If the execution of a
SWANFLOW run is incomplete, this scratch space is evidenced by the
-------
14
Execution Times for SUANFLOW-2D Code on IBM/PCAT Microcomputer
Dataset
Naae
IPHAT.SD1
IPNAF.GD1
IPNAF.SD2
IPNAF.GD2
IPNAF.SD4
IPNAF.GD4
IPNAF.SAT
IPNAF.GSA
IPNAF.VRR
IPNAF.GWR
Number
Problem Iterations
Buckley -Leverett 1-D Water Flood
Buckley -Leverett 1-D Water Flood (G)
Five -Spot Problem *2
Five -Spot Problea #2 (G)
AOL Three Layer
ADL Three Layer (G)
Saturn Benchaark
Saturn Benchmark (G)
Sat-Unsat 2-D vith BAPL
Sat-Unsat 2-D vith RAPL (G)
20
20
20
20
20
20
17
17
10
10
Wall Clock Time
(Duration in m:s
1:23
1:53
9:31
10:30
1:43
2:00
A. -41
7:27
3:23
4:09
The label (G) denotes selection of the graphics option; i.e., a data set
has been written for subsequent plotting.
-------
15
PROBLEM ... TEST PROBLEM »2
A FFB 1984
SD2
1O tO 2
10 O 0
3.04BOOOE-OO1 2.000OOOE-001 .OOOOOOO
1OOO.OOOOOOO 1.OOOOOOE-O03 4.0OOOOOC-O03
.OOOOOOO
1
28
7170S.OOOOOOO -4.OOOOOOE-OO2
43
1
20
1
1OOO.OOOOOOO
.OOOOOOO
100
0
6B93O.OOOOOOO
66 192. OOOOOOO
63434. OOOOOOO
6O676. OOOOOOO
37*18. OOOOOOO
S316O. OOOOOOO
32402. OOOOOOO
49644. OOOOOOO
46886. OOOOOOO
44128. OOOOOOO
4137O. OOOOOOO
.12.0000000
».OOOOOOO
33O96. OOOOOOO
3O338. OOOOOOO
27S8O. OOOOOOO
24622. OOOOOOO
22O64. OOOOOOO
193O6. OOOOOOO
I6S48. OOOOOOO
1379O. OOOOOOO
11022. OOOOOOO
K274.OOOOOOO
S516.OOOOOOO
2738.0000000
.OOOOOOO
-2738. OOOOOOO
.OOOOOOO
4.OOOOOOE-O02 1.
8.000000E-002 6.
1.2OOOOOE-OO1 1.
1.600OOOE-O01 2.
2.000000E-001 4.
2.400OOOE-OO1 3.
2.8OOOOOE-OO1 7.
3.2000OOE-O01 1.
3.6OOOOOE-OO1 1.
4. OOOOOOE-OOl 1.
4.4OOOOOE-O01 1.
4.8OOOOOE-OO1 2.
3.200000E-001 2.
3.600000E-001 3.
«. OOOOOOE-OOl 3.
6.4OOOOOE-OO1 4.
6.8OOOOOE-OO1 4.
7.2000OOE-OO1 3.
7.6OOOOOE-OO1 3.
8.OOOOOOE-OOl 6.
8.400000E-001 7.
8. BOOOOOC-001 7.
9.2OOOOOE-OO1 8.
9.600000E-001 9.
1.0000000
1.04OOOOO
2 l.OOOOOOC-003
-2T38.OOOOOOO 1.OOOOOOO
.OOOOOOO .OOOOOOO
1
1.600000E-013 1.600000C-013
.OOOOOOO 1.OOOOOOO
.OOOOOOO 1.OOOOOOO
6OOOOOE-OO3 9.216OOOC-001
4OOOOOE-OO3 8.464OOOC-O01
440OOOC-OO2 7.744OOOE-O01
S60OOOE-OO2 7.O36OOOE-O01
OOOOOOC-OO2 6.4OOOOOC-O01
7AOOOOE-OC2 3. 776OOOE-OO1
840000E-O02 3.184OOOE-001
O24OOOE-OOI 4.624OOOE-O01
29*0006-001 4.096000E-001
60OOOOE-OO1 3.6OOOOOE-O01
936COOE-OO1 3.136OOOE-001
3O4OOOE-OO1 2.7O4OOOE-O01
7O4OOOC-OO1 2.3O4OOOE-O01
136OOOE-OO1 1.736OOOE-O01
6OOOOOE-OO1 1.4OOOOOE-O01
09AOOOC-OO1 1.296OOOC-001
624OOOE-OO1 1.024OOOE-OO1
184OOOE-OO1 7.B4OOOOE-O02
776000E-001 3.76OOOOC-002
400000C-OOr 4.0OOOOOE-002
036000E-001 2.S60000E-002
7440OOE-OO1 1.44OOOOE-O02
464OOCE-OO1 6.4OOOOOE-003
2t«OOOE-O01 1.6OOOOOE-003
1.0000000
1.OOOOOOO
.OOOOOOO
.OOOOOOO
.OOOOOOO
.OOOOOOO
.OOOOOOO
.OOOOOOO
Fig. 3. Data set IPNAF.SD2.
-------
16
I.1QOOOOC-OOI 1.0OOOOOE-OO7 IOOOOOO. OOOOOOO
30.48OOOOO 3O.4800000 SO.48OOOOO 30.48OOOOO
30.48OOOOO 3O.48OOOOO 30.480OOOO 30.48OOOOO
3O.48OOOOO 3O.48OOOOO
3O.48OOOOO 3O.480OOOO 30.48OOOOO 30.«8OOOOO
30.4800000 30.4800000 3O.48OOOOO 30.48OOOOO
3O.48OOOOO 3O.480OOOO
t
111
II
1.1. X. I. «. 1. 1O.1,4,4,3,3, 6.6, 9, 1,9,3, 9, 6.1O.1O
1 II 21 31 41 31
- Al 71 81 91
2 12 22 32 42 32
A2 72 82 92
3 13 23 33 43 33
*3 73 83 93
4 14 24 34 44 ' 34
*4 74 84 94
3 13 23 33 43 33
*3 73 83 93
A 16 26 36 46 36
** 76 86 96
7 17 27 37 47 37
*7 77 87 97
e 18 28 38 48 SB
«* 78 88 98
9 19 29 39 49 39
4*9 79 89 99
1O 2O SO 4O SO «O
7O 80 9O tOO
O
IOOOOOO.OOOOOOO I.OOOOOOE-003
34.VOOO.OOOOOOO 3436OOO.OOOOOOO 3. OOOOOOE-OO1 l.OOOOOOO
^.4S6000E«008 2 1
1 1 6.333OOOE-OO3 l.OOOOOOO
tO 10 -6.353OOOE-OO3 .OOOOOOO
.0000000 .OOOOOOO .OOOOOOO .OOOOOOO
.OOOOOOO 1 0
Fig. 3. (Continued)
-------
17
SWANFLOM-ZD
Simultaneous Uat«r and NAPL FUOH in TMO Dimension*
Version t.O
June 17, 19B6
G*oTr«nm, Inc.
HerrxJon, VA
Enter tN» inout file na»e: ipnal.QtCZ
Fn»«sr tn>« output 41 !• n«««t apnaf .
•«•*• FILE EXISTS, OVERWRITE IT? | y
the plot *il« na«wi plgd2
•»••• STARTING CALCULATIONS •••
BERIWING TIME STEP 1
(C6TNNIMB TIME STEP 2
BE6IM4IMB TIME STEP 3
BEGINNING TIME STEP 4
K6INNIN6 TIME STEP 3
BFGTNNIMG TIME STEP 6
FCB INNING TIME STEP 7
RESINNING TIME STEP 8
BEGINNING TIME STEP 9
BEGINNING TIME STEP 1O
BEGINNING TIME STEP 11
RESINNING TIME STEP 12
BEGINNING TIME STEP 13
RESINNING TIME STEP 14
BEGINNING TIME STEP IS
BEGINNING TIME STEP 16
BEGINNING TIME STEP 17
BEGINNING TIME STEP 18
BEGINNING TIME STEP 19
BEGINNING TIME STEP 2O
Stoo — Program terminated.
B:\>
Fig. 4. Monitor output for test run using data set IPNAF.SD2.
-------
18
•••••••••*•
SWANFLOW-2D
Si*ultan»ou« Water and NAPL FLOW in TMO Dim«n«ionc
Written byi
G«oTran«, Inc.
2O9 Eld*n St.
Suit* 3O1
Horndon, VA
••»»>»**»••«-»••-»»••»*•»«»»**••••*»»»»«•»•••«
FIVE-SPOT PROBLEM TEST PROBLEM »2
DATE A FES 1984
RUN NO 502
NUMBER Of BLOCKS IN THE X-DIRECTION (COLUMNS)
NUMBER OF BLOCKS IN THE Z-DIRECTION (LAYERS)
MAXIMUM OF MEWTON-RAPHSON ITERATIONS
MAXIMUM BANDWIDTH
MAXIMUM NUMBER OF TIME STEPS
NUMBER OF ACTIVE GRID BLOCKS
NUMBER OF TIME STEPS BETWEEN PRINTOUTS
PRINT NAPL AND WATER POTENTIALS? <«-YES)
PRINT DETAILED KR TABLES? (1-YES)
WRITE A PLOT FILE? <1»YES)
NUMBER OF OBSERVATION BLOCKS
WRITE A RESTART FILE? < 1-YES)
10
10
2
43
20
100
10
O
O
1
1
O
GRID BLOCK THICKNESS (DY>
MASS BALANCE TOLERANCE FOR NCWTON-RAPHSON IT.
INITIAL TIME VALUE
WATER DENSITY
NAPL DENSITY
WATER VISCOSITY
NAPL VISCOSITY
GRAVITATIONAL CONSTANT IN THE Z-DIRECT I ON
GRAVITATIONAL CONSTANT IN THE X-DIRECT I ON
.3O48O
.20000
.00000
1OOO.O
1OOO.O
. 100OOE-02
.4OOOOE-O2
.OOOOO
.OOOOO
Fig. 5. Sample output obtained using input data set IPNAF.SD2.
-------
19
1 Pc-Kr TABLES HILL BE READ
»»••**»*•» TABLE NUMBER
NAPL-WATER CAP.
PRESSURE
717OG.
60990.
66192.
63434.
6O676.
57918.
SS16O.
324O2.
49644.
46886.
44128.
41370.
38612.
33834.
33O96.
3O338.
27580.
24822.
22O64.
193O6.
16S48.
13790.
11032.
8274.
SS16.
2738.
-2738!
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
WATER
SATURATION
-.O4OOO
.ooooo
.040OO
.oeooo
.12000
.16OOO
.20000
.24000
.28OOO
.320OO
.36OOO
.4OOOO
.44OOO
.48OOO
.32000
.36OOO
.6OOOO
.64OOO
.68000
.72000
.760OO
.90000
.84OOO
.88000
.92OOO
.960OO
1.00000
1.O4OOO
RELATIVE PERM.
WATER
.OOOOO
.OOOOO
.0016O
.O064O
.O144O
.02S6O
.O4OOO
.O376O
.O784O
.10240
.12960
.16OOO
.1936O
.23040
.27O40
.3136O
.36OOO
.40960
.46240
.31B4O
.3776O
.64OOO
.70360
.7744O
.8464O
.9216O
1.OOOOO
1.OOOOO
RELATIVE PCRn.
NAPL
1.OOOOO
1.OOOOO
.92160
.84640
.77440
.70360
.64OOO
.37760
.3184O
.46240
.4096O
.36000
.31360
.27040
.23040
.19360
.16OOO
.12960
.10240
.07840
.03760
.04OOO
.02360
.01440
.0064O
.O0160
.00000
.OOOOO
AIR-MAPL SYSTEM — PC-KR TABLE NUMBER
NAPL KR AT RESIDUAL HATER SATURATION I
.OO1OO
AIR-NAPL CAP.
PRESSURE
-2738.OOOOO
.OOOOO
AIR
SATURATION
1.OOOOO
.OOOOO
RELATIVE PERM.
NAPL
.OOOOO
.00000
RELATIVE PERM.
AIR
.OOOOO
.OOOOO
Fig. 5. (Continued)
-------
20
I PERMEABILITY SETS HILL BE READ
SET NUMBER KX KZ
1 .16000E-12 . 16000E-1Z
1 POROSITY SETS MILL BE READ
SET NUMBER REF. POROSITY CC**>R£SSIBILITY ft£F. PRESSURE
1 .1OOOO .10OOOE-O6 . IOOOOE*O7
8RID BLOCK SPflCINBS IN THE X-DIRECT
ION
30.480 30.480 30.48O 30.480 3O.48O 30.480 3O.4
SO 30.4SO 3O.480 3O.48O
6RIO BLOCK SPAC INGS IN THE 2-DIRECT
ION
3O.48O 30.48O 30.48O 30.480 3O.48O 30.480 3O.4
8O 30.4BO 3O.480 3O. 48O
THERE ARC 1 PROPERTY COM8INATIO
N SETS
SET NUMBER PC-KR TABLE K CLASS POROSITY CLASS
lit 1
fit- 5. (Continued)
-------
21
GRID BLOCK NUMBERS
X-OIRECTIQN >
I AVER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
I AVER
LAYER
3
4
3
6
7
e
9
10
1
2
3
4
S
6
7
8
9
to
11
12
13
14
IS
16
17
IS
19
2O
21
22
23
24
23
26
27
28
29
30
31
32
33
34
35
36
37
3B
39
40
41
42
43
44
45
46
47
48
49
SO
SI
32
53
34
S3
36
37
38
39
6O
61 71 81
62 72 82
63 73 83
64 74 84
91
92
93
94
63 73 83 95
66 76 86 96
67 77 87 97
68 78 88 98
69 79 89 99
7O BO 90 tOO
ASS
ALL 6RID BLOCKS IN SAME PROPERTY d.
INITIAL CONDITION DATA
UNIFORM INITIAL CONTITIONS
PN » . 1OOOOE+07
SW E . 1000OE-O2
RECURRENT DATA SET
Fig. 5. (Continued)
-------
22
INITIAL TIME STEP SIZE =
MINIMUM TIME STEP SIZE « .3456OE+O7
MAXIMUM WATER SATURATION CHANGE - .SOOOO
TIME STEP MULTIPLIER = l.OOOO
TIME TO READ NEW RECURRENT DATA » .34360E+09
NUMBER OF SOURCE/SINK BLOCKS = 2
CODE FOR CHANGING FUUX RATES = 1
COLUMN NUMBER LAVER NUMBER TOTAL MASS FLUX HATER FRACTION
1
10
i
10
. 63330E-02
-.63330E-02
1.0000
.00000
.34560E*O7
STEP NUMBER -
TIME VALUE
CONSTANT PRCS
SOURCE/SINKS
STORAGE
PER CENT ERROR
MATER BALANCE
.OOOOO
226SO.
-24024.
-6.0661
NAPL BALANCE
.00000
-2269O.
24024.
-4.O661
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
HATER BALANCE
.OOOOO
2265O.
-22&5O.
-.68381E-03
NAPL BALANCE
.OOOOO
-22650.
226SO.
-.6838 IE-OS
07
03
STEP NUMBER 1 COMPLETED
SIMULATION TIME IN SECONDS .3*6E»
IN MINUTES .376C*
IN HOURS 96O.
IN DAYS 40.O
IN YEARS .110
Fig. 5. (Continued)
-------
23
TIME STEP NUMBER »
TIME VALUE •
.6912OE+O7
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERRG3
MATER BALANCE
.OOOOO
226SO.
-230*8.
-1.7S6B
NAPL BALANCE
.00000
-22630.
23048.
-1.7568
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
UATER BALANCE
.OOOOO
22650.
-22663.
NAPL BALANCE
.OOOOO
-22630.
22663.
-.63393E-01
STEP NUMBER 2 COMPLETED
07
06
O4
SIMULATION TIME IN SECONDS .691E*
IN MINUTES .USE*
IN HOURS .192E*
IN DAYS 8O.O
IN YEARS .219
TIME STEP NUMBER -
.1O368E'K>8
TIME VALUE -
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
WATER BALANCE
.OOOOO
22630.
-22733.
-.43321
NAPL BALANCE
.OOOOO
-22630.
22733.
-.43321
Fig. 5. (Continued)
-------
24
CONSTANT FRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
HATER BALANCE
.OOOOO
22650.
NAPL BALANCE
.OOOOO
-2265O.
22632.
-.6A536C-02
08
06
04
STEP NUMBER
COMPLETED
SIMULATION TIME IN SECONDS . JO4E*
IN MINUTES .173E+
IN HOURS .288E*
IN DAYS 12O.
IN YEARS .329
.13824E+O8
TIME STEP NUMBER -
TIME VALUE •
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
WATER BALANCE
.OOOOO
22630.
-22488.
-. 16780
NAPL
.OOOOO
-2263O.
22688.
-.16780
STEP NUMBER 4 COMPLETED
OB
06
04
SIMULATION TIME IN SECONDS .136E+
IN MINUTES .23OE+
IN HOURS .584E*
IN DAYS 160.
IN YEARS .436
TIME STEP NUMBER -
.1728OE+O8
TIME VALUE -
Fig. 5. (Continued)
-------
25
CONSTftHT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
MATEK BALANCE
.OCOOO
r;650.
""**"* ^^»"^
-.5*717E-O1
MAPI. BALANCE
.OOOOO
=663.
-.34717E-01
STEP NUMBER 3 COTLETED
OB
06
O4
•»••••#*••-•••
SIMULATION TIME IN SECONDS . 173E*
IN MINUTES .288E+
IN HOURS .480C*
IN DAYS 20O.
IN YEARS .346
TIME STEP NUMBER
,2073AE*Oe
TIME VALUE -
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
MATEK BALANCE
.OOOOO
=2650.
-22634.
-. 1S777E-O1
MAPI. BALANCE
.00000
-2263O.
22634.
-. 18777E-01
STEP NUMBER 6 COMPLETED
06
O4
SIMULATION TIME IN SECONDS .2O7E*
IN MINUTES .346E*
IN HOURS -376E*
IN DAYS 240.
IN YEARS .637
Fig. 5. (Continued)
-------
26
TIME STEP NUMBER -
VALUE
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
HATER BALANCE
.00000
22650.
-22630.
NAF>L BALANCE
.OOOOO
-22650.
22630.
-.97288E-O3
STEP NUMBER 7 COMPLETED
oe
06
O4
SIMULATION TIME IN SECONDS .:.42E»
IN MINUTES .403E»
IN HOURS .672E*
IN DAYS 260.
IN YEARS .767
.27648E*08
TIME STEP NUMBER -
TIME VALUE •
CONSTANT PRES
SOURCE/SINKS
STORAGE
PER CENT ERROR
WATER BALANCE
.00000
22650.
-22630.
. 10136E-02
MAPI. BALANCE
.00000
-22630.
22630.
.10136E-02
STEP NUMBER 8 COMPLETED
08
O6
04
SIMULATION TIME IN SECONDS .276E*
IN MINUTES .461E*
IN HOURS .768E*
IN DAYS 320.
IN YEARS .676
Fig. 5. (Continued)
-------
27
.3UO4E-K>8
TIME STEP NUMBER =
TIME VALUE »
CONSTANT FRES
SOURCE /SII«CS
STORAGE
PER CENT ERROR
WATER BALANCE
.OOOOO
-22649-
.41279E-02
STEP NUMBER 9 CONPLErrED
oe
06
O4
NAPL BALANCE
.OOOOO
-22650.
22649.
.41279E-O2
SIMULATION TIME IN SECONDS . 3UE*
IN niNUTES .318E*
IN HOURS . B64E+
IN DAYS 36O.
IN YEARS .986
TIME STEP NUMBER -
1O
TINE VALUE «
WATER BALANCE
.OOOOO
22650.
-22&30.
oe
O6
O4
CONSTANT PRES
SOURCE /SINKS
STORAGE
PER CCNT ERROR
STEP NUMBER 10 COHPLETED
• ••*»••••••••••••»••••-•-••
NAPL BALANCE
.OOOOO
-22630.
22630.
.2I439E-O2
SIMULATION TIME IN SECONDS .346E*
IN MINUTES .576E*
IN HOURS .960E*
IN DAYS 400.
IN YEARS t.10
Fig. 5. (Continued)
-------
28
NAPU PRESSURES
LAYER 1
. 133A4E*O7 . 14531E*O7 . 137O9E*O7 . I2893E»O7
43E*O7 . 1O383E*07 . 1O146E+07 . 1OO26E+07
LAYER T
. 14Sr:iE-K>7 . 14046£-K>7 . J3373E*O7 . 12623E+O7
I9C*07 . 10264E+O7 . 1OO27E*07 . V9CX!>8E*O6
LAYER 3
.I3709E*07 .13373E*07 .12819E*O7 . 12126E+O7
74E*O7 . IOO28E«O7 .9790OE*O6 .«?6682E*06
LAYER 4
.128«»3E*O7 ,12623E-»O7 . 12126E-K>7 .11493E*O7
29C*O7 .9684t£«O6 .94376E*O6 ,V3O82E*O6
LAYER S
7 .1O937E*07
.88193E«O6
LAYER t>
.»ir87E«O7 . JHO4E-H57 . 10819E+O7 . 1O453E-H57
37E»06 .S7O90C*06 .B3747E*O6 .8l8l7E*O6
LAYER 7
. I0743E»O7 . 10619E-07 . 10374€*O7 . 10029E*O7
98€*06 .80940E«06 . 764O2E*O6 .73S1SE«O6
LAYER 8
.1038S£»07 .10264E*07 . 100r8E*O7 .96841E*O6
40C*06 -74174E*O6 .674O9E*O6 .62328E4O6
LAYER 9
. 10146E»O7 . :7 .9790OC-KM> .94376E«O6
O2E*O& .A74O9E*06 .S673SE«O6 .««O«»3E«O6
LAYER 1O
-I0026E*07 .99068E-X>6 .96682EXM .73O82E*OA
13C*OA -623T8E+06 . 46O63E«O6 . 19129E*O6
12O78E«O7 . 11287E*O7 .107
. 11B2OE«07 . 111O4C*O7 .106
.11366E«O7 . 10819E*O7 .103
1O737E»O7
. 1OO
.10483E*O7 . 1OO30E*O7 .960
. 1OO30€*O7 ,9S778E*O6 .912
.96O66C*X>6 .9l237E*O6 .860
.92419E*O6 .87O90C*O6 .809
.83747E*OA .764
-81817E*O6 .733
MATER SATURATIONS
Fig. 5. (Continued)
-------
29
LAYER 1
.83S1C .65633 .521 IS .39192 .23831 .3984*E-O1 .234
73E-O2 . 1O153E-02 . 99885E-O3 .99976E-O3
LAYER 2
.65633 .54488 .43353 .31O63 .14144 .1411OC-O1 .121
77E-02 .10003E-Or .99968E-O3 .10OO7E-02
LAYER 3
.32113 .43533 .33216 .19117 .33119E-01 .17733E-O2 .100
98E-O2 .99964E-03 .1OO16E-O2 . IOO27E-02
LAYER 4
.39192 .31063 .19117 .46423E-O1 .23646E-O2 .1O267E-O2 .999
83E-O3 .1O52TE-02 . 1OO44E-O2 .10O3AE-O2
LAYER 3
.23831 .14144 .33119E-O1 .23646E-O2 . 1O3AOE-02 . 10OO1E-O2 .100
27E-02 . IO<538E-02 . 1OO82E-OS . IOO96E-02
LAYER &
.39844E-01 .14110E-O1 . 17733E-O2 . 1O267E-O2 . 1OOO1E-O2 . 1OO29E-O2 . 1OO
A7E-«2 -10102E-OT . 1O13OE-O2 .10147E-O2
LAYER 7
-23473E-02 .12177E-O2 . 1OO98C-O2 .99983E-O3 . 1OO27E-02 . 1OO67E-O2 .101
O9E-rt2 -10151E-O2 . 1O189E-O2 .10213E-02
LAYER 8
. 10133E-02 .1OOO3E-O2 .999A4E-O3 .1OO23E-O2 . 1OO38E-O2 . 1OJO2E-O2 . lOl
*\F.-C»2 -10203E-O2 . 1O238E-O2 •- . 10298E-02
I AVER 9
.99885E-03 .9996BE-O3 . 1OO16E-O2 . 1OO44E-O2 . 1OO82E-O2 . 1O13OE-O2 .101
89E-O2 .10238E-02 . I0333E-O2 .10*01E-02
LAYER 1O
.9997AE-03 .100O7E-O2 . 1OO27E-O2 .1OO36E-O2 . 1OO96C-02 .10147E-O2 .102
13F-0? .tO298E-0? . 104O1E-O2 .10317E-02
NAPL SATURATIONS
Fig. 5. (Continued)
-------
30
LAYFR ;
. !&•»&•'
65 °9B93
' *V?*4>.7
78 .99900
.47883
99 .999OO
LAYER *
. 6oeoe
OO .99900
1 AV£P ?5
761*9
O** - °9899
I AVfrf) ^
.9401*
99 .«?9899
1 AVER ~
- 9976?:
9« .«*9998
1 AYFR O
.99P9P
9^ . *M*ti^i
1 AYER °
.999OTI
98 . °^897
LAYER 1ft
.9990^
9*. .OQQ9?
.3801«.»oa
cnMSTArn
SOIJKCE/S
sroKmx.
PER COJT
.34^,7
. 999
.43312
.999OO
.56447
.999OO
.68937
.99900
.83836
.99899
.98389
.99899
.99878
.99898
.99900
.99897
.999OO
.99897
.999OO
.99896
W
PRES
INKS
tnROR
.•JraSj .60808 .76149
. 979OO
.56^-ST .68937 .83856
.99900
.06784 . .80883 .96488
.999OO
.80803 .95338 .99764
.99899
.96486 .99764 .99896
.•79899
.99822 .99897 .999OO
.^9899
.99899 .99900 .9990O
.V9898
. T99OO . 999OO . 99899
.V9397
.979OO .999OO .99899
,*9896
.9990O .99899 .99899
.9-9893
TIME STEP NUMBER - 11
ATER BALANCE «AP>_ BALANCE
.coooo .00000
22650. -22650.
-22650. 22650.
.11Z17E-O2 .11217E-02
Fig. 5. (Continued)
.94016 .997
. 98589 . 998
. 99822 . 998
.99897 .999
.9990O .999
.999OO .998
.99899 .998
.99899 .998
.99899 .998
.99899 .998
TIME VALUE •
-------
31
STEP NUMBER 11
OP
ft*
SIMULATION TIME IN SECONDS .38OE*
IN MINUTES .634E*
IN HOURS .1O6E*
IN DAYS 440.
IN YEARS 1.20
TIME STEP NUMBER
TIME VALUE -
SOJRCC/SJNKS
STORAGE
PFR CENT ERROR
MATEn BALANCE
-OOOOO
2Z630.
-22ASO.
.11C87E-O2
NAPL BALANCE
.OOOOO
-22630.
22650.
. U089E-O2
OS
OA
STEP NUMBER 12 COMF'LETED
r« >* < •»**«**«•**«-•**•»»*
SIMULATION TIME IN SECONDS .415E+
IN MINUTES .691E*
IN HOURS .USE*
IN DAYS ' 480.
IN YEARS 1.31
TIME STEP NUMBER -
13
TIME VALUE
Fig. 5. (Continued)
-------
32
CONSTANT PRES
SOURCE/SINKS
STORAGE
CENT ERROR
BALANCE
.OOOOO
NAPL BALANCE
.OOOOO
-22630.
27650.
.17501E-02
08
OA
OS
STKP NUMBER 13 OOftPLETED
SIHULATION TIME IN SECONDS .449E*
IN MINUTES .749E*
IN HOURS .123E+
IN DAYS 32O.
IN YEARS 1.42
TIME STEP NUMBER - 14
TIME VALUE -
CTWSTANT r>ncs
SOURCE/SINKS
STORAGE
FfTR CENT ERROR
UATE37 BALANCE
.OOOOO
.eejoic-03
NAPL BALANCE
.OOOOO
-22ASO.
22650.
.88101E-O3
STEP NUMBER
CONSTANT PRES
SOIIRCE/SINKS
STnRAGE
PER CENT ERROR
14 COMPLETED
.OOOOO
STJ.SO.
-22&SO.
.OOOOO
-22650.
22630.
.32247E-O3
06
OA
03
STEP NUMBER 15 COMPLETED
SIMULATION TIKE IN SECONDS .318E*
IN MINUTES -864E*
IN HOURS • .144E+
IN DAYS
5. (Continued)
-------
33
appearance of temporary files.
3.2 CODE INFORMATION
SWANFLOW-2D is written in FORTRAN 77. The SUAN2D.EXE file included
on the distribution diskette was made using the Microsoft FORTRAN
compiler. The preprocessing program, SVANEDIT. the postprocessing
system, SWANGRAF. and others (CONTOUR. GRAPH, and FDGRID) are included
on the diskettes as "exe" files. PLOTWORKS, Inc.. wrote the software,
which cannot be altered by the user. Only menu options can be used.
The modelling code's source, SVANFLOW-2D, is distributed along with
the executables available. A MAIN program and 10 subprograms comprise
the code. These routines and their chief functions are:
1. MAIN controls time-stepping and accesses auxiliary routines to
perform necessary tasks.
2. GDATA inputs and outputs general problem specification data.
3. ICOND inputs and outputs Initial conditions.
4. GDTR handles the input/output of data received from input units,
which may be altered while simulation is in progress.
5. TCALC computes transaissibility terms between blocks.
6. BALNCE computes mass balances for water and NAPL and uses these
values to control closure on Newton-Raphson iterations.
7. PRPTY computes saturation-dependent properties and rates of
production for each fluid.
8. UPSTRE computes interblock weighting factor based on upstream
pressure.
-------
9. FORMEQ produces coefficients of matrix in nonsymmetric and banded
form.
10. SOLVE solves matrix equations using the Gauss-Doolittle method.
For triangular matrices, the code performs back substitutions.
11. PDATA outputs (to the printer unit) fluid pressures and saturatiors
as indicated by user-specified time-step increments.
-------
35
4. EXAMPLES OF STANDARD PROBLEMS
Problems are identified in the first two lines of the output.
These are discussed in the two reports by GeoTrans (1985. 1986) and in
the report by Fields and Bledsos (1987, in review).
-------
36
HRXLEY-LEVERETT 1-D WER FIQCJ
3 FEB 1994
SD1
40 1
10 0
3.04BOOM
1000.0000000
.0000000
I
26
AW. 5000000
661.9200000
634.3400000
606.7600000
57?.1800000
551.6000000
524.0200000
4%. 4400000
468.8600000
441.2800000
413.7000000
384.1200000
358.5400000
330.9600000
303.3BOOOOO
275.8000000
248.2200000
220.6400000
193. OAooooo
165.4800000
137.9000000
110.3200000
tZ.7400000
53.1600000
27.5800000
2.000000E-001
l.OOOOOOE-003
2 7
0 0
.0000000
l.OOOOOOE-003
20
0
1000.0000000
.0000000
39
0
.0000080
4.000000E-402
8.000000E-002
1.200000E-401
1.600000E-001
2.000000E-001
2.400000E-001
2.800000E-001
3.200000E-001
3.600000E-001
4.000000E-001
4.400000E-001
4.800000E-OM
5.200000E-001
5.600000E-001
6.000000E-001
6.400000E-001
6.800000C-001
7.200000EHM1
7.600000E-401
8.000000E-001
3.400000E-001
8.800000E-001
f.200000E-001
9.600000E-M1
1.0000000
2 4.800000E-001
-9800.0000000 l.OOOOOOt
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
3.900000E-M3
1.S60000E-092
S.S20000E-002
&.250000E-M2
f.770000E-4«2
1.406000E-OM
1.914000E-001
2.500000E-OI1
3.1&4000E-M1
3.90MOOE-001
4.727000EHM1
S.&23000E-OI1
4.402000E-OJ1
7.65&OOOE-001
•.789000EHM1
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
l.MOOOM
1.0000000
I.0000000
1.0000000
1.0000000
1.0000000
8.789000C-001
7.6S&OOOE-001
6.602000E-001
5.625000E-001
4.727000E-001
3,f06000E-001
3.164000E-001
2.500000HM1
1.914000C-001
1.40MOOE-M1
f.770000€-0«
*.2SOOOOE-002
3.S20000E*402
1.560000E-002
3.900000E-003
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
I
2.960000C-013 2.960000E-013
1
2.000000E-001 l.OOOOOOE-007 1*000.0000000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
304.8000000
1
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.1200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
-------
37
1
1
7
13
19
1
2
B
14
20
1
3
. f
IS
21
4
10
16
22
5
11
17
23
6
12
IB
24
23 24 27 29 » 30
31 32 13 34 35 3*
37 38 39 -1
•
10MO.OOOOOM l.MOOOK-001
1*4000.0000000 B640M.MOOOOO S.OOOOOOE-00!
<3200000. 0000000 i 1
I I 1.3390ME-M1 l.OOOMM
I 0
-------
38
1.750000E-001
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0060000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0006000
.0060000
JUkJI^^MkJUh
.OOMOOO
.0008000
.0000000
f W^WWWW
.0060000
Jfc ft ft A ^ A a
.0000000
.0000000
.0000000
JUkJ^^^^^kA
.0000000
JUUW^^AA
QDQQBDD
uDQDHOD
•i wW^^^^^^f
i. 0000000
1.0000000
* i. 0000000
1.0000000
1.0000000
1* *fc *• -* -* ^ «fc
.0000000
Iftjyjfcjfcjtjyjfc
.0000000
1.000000*
1.0000000
L 0000060
IA^^^^^j^^^K
.0000006
L 0000066
• ^^^^^^^^^^A
1.0000006
1.0000066
10000.0000000 10000. 0000*00 l.OOOWOE-OOl
l.OOOOOOE+008 i I
! J.17D600E-003
2 . 4.470MOHW5
3 4.340000E-003
4 I.t71600£-003
S 1.269600H)04
4 1.774000E-004
.0000000 .0000000
.0000000 0
l.MCOOOE-001
i^^^^^b&^^k
•0000000
UMMOOO
1AAAAAAA
• ^^^^^^pW^^v
1* * * ^ A A ^
BDBOOOO
• ^^^W^^^MF^F
IOMMOOfl
• ^^^n^n^v
.0000006
1
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1A4UU^AJ^A
.0000006
1.0000000
1.0000000
1.0000000
!. 0000000
1.5000000
.0000000
-------
39
103
109
-1
1
-14700.0000000
-14700.0000000
•12250.0000000
-12250.0000000
-9800.0000000
-9800.0000000
-7350.0000000
-7350.0000000
-4900.0000000
-4900.0000000
-2450.0000000
-2450.0000000
.0000000
.0000000
2450.0000000
2450.0000000
4900.0000000
4900.0000000
7350.0000000
7350.0000000
9800.0000000
9800.0000000
12230.0000000
12250.0000000
14700.0000000
14700.0000000
17150.0000000
17150.0000000
19600.0000000
19600.0000000
22050.0000000
22050.0000000
243*0.0000000
24500.0000000
26950.0000000
26950.0000000
29400.0000000
29400.0000000
31850.0000000
31850.0000000
8.500000E-001 8.
8.500000E-001
8.750000E-1M1
8.750000E-001
9.000000E-001
9.000000E-001
9.230000E-001
9.250000E-OOI
9.500000E-001
f.SOOOOOE-001
I.750000E-001
104
110
-1
105
111
-1
106
112
107
113
-1
-14700.0000000
114
-1
-14700.0000000 -14700.9000000
-14700.0000000
-12230.0000000 -12250.0000000 -12250.0000000
-12250.0000000
-9800.1000000
-9800.0000000
-9800.0000000
-7330.0000000
-7350.0000000
-4900.0000000
-4900.0000000
-2450.0000000
-2450.0000000
0000000
2450.9900001
2450.0000000
4900.90)0001
4900.0000*0*
7350.1000000
7330.0000000
9800.0000000
9800.0000000
12250.0000001
12250.0000000
14700.0000000
14700.0000001
17150.0000001
17150.0000000
19600.0000001
19600.0900000
22050.0000000
22050.0000000
24500.0900001 24500.9000000
24500.0900000
26950.9000001 2695U9000M
26950.0000001
29400.0000006 29400.9000000
29400.0900000
31850.0000001 31850.9000000
31830.0000000
-7330.WOOOOO
-4900.4000000
-24SO.MOOOOO
.9000000
2430.4000000
4900.9000000
7350.9000800
9800.90MOM
12250.1000000
14700.9900000
17150.WOOOM
19600.9000900
22050.9000000
-9800.0000000
-7350.0000000
-4900.0000000
-2450.0000000
2450.9000000
4900.9000000
7350.0000000
9800.9000000
12250.9000000
14700.0000000
17150.0000000
19600.0000000
22050.0000000
24500.9000000
26950.0000000
29400.0000000
8.
9.
9.
9.
9.
31850.0000000
300000E-001 B.SOOOOOE-001 L500000E-001 B.500000E-001
7SOOOOE-001 8.750000E-OOI L750000E-001 8.730000E-001
OOOOOOE-001 9.0COOOOE-001 9.000000E-001 9.000000E-OOI
230000E-001 9.250000E-001 9.250000E-001 9.250000E-001
300000E-001 9.500000E-001 I. SOOOOOE-001 9.300000E-001
730000E-001 9.750000E-001 9.750000E-OOI 9.730000E-001
-------
40
S4THHSAT 2-0 IfflLTfjUICK KITH MR.
3 JAN 1784
MR
4 20
3 1
1.0000000 2.000000E-002
1200.0000000 l.OOOOOOE-003
.0000000
I
13
103425.0000000 -l.OeoOOOE-OOl
3 0
0 0
.0000000
l.OOOOOOE-003
10
0
1000.0000000
-9.8000000
114
0
103425.0000000 .0000000
103425.0000000 i.OOOOOOE-401
103425.0000000 2.000000HXH
27580.0000000 3.000MOE-401
10343.0000000 4.00MOOE-401
735.0000000 3.000000C-601
7447.0000000 6.000000E-001
7309.0000000 7.000MOE-401
7171.0000000 LOOOOOOEHMl
7033.0000000 9.04QOOOE-401
6895.0000000 1.0*00000 1.0000000
4895.0000000 1.1000000 1.0000000
2 6.BOOOOOE-M1
•98000.0000000 1.0000000 -3.200000C-001
.0000000 .0000000 6.8000MC-001
1
0000000 1.0000000
.0000000 1.0000000
.0000000 8.200000E-001
.0000000 6.800000C-001
4.MOOOOE-002 3.500000E-001
4.36000K-M1
3.100000E-001
2.000000E-001
1.200000E-001
S.OOOOOOE-002
.0000000
l.WOCOOE-001
l.JOOOOOI-Wl
3.00000QEHM1
4.400000E-001
4.WOOOOC-001
i.*OOOOOE-001
.0000000
1.0000000
.0000000
i.OOOOOOE-012 l.OOOOOOC-012
1
3.000000E-001 .0000000 .(MOOOOO
1.0000000 1.4100000 2.0000000
2.BOOOOO
4.0000000 5.6*00000
2.300000C-001
2.500000C-001
L500000E-001
2.SOOOOOE-001
1
1
1
7
13
If
23
31
37
43
49
33
il
47
73
79
e
91
97
2.SOOOOQE-001
2.300000C-001
3.S)0000£H)01
2.500000E-001
J
2
•
14
21
2*
12
a
44
SO
34
a
w
74
M
fii
n
91
2.500400E-001
2.50HOOE-001
2.500WOE-001
2.30MOOE-001
1
I
9
B
21
27
33
39
45
Si
57
13
*9
73
11
17
93
99
2.SOOOOOE-001
2.SOOOOOE-001
2.50000K-OOI
2.500000C-M1
4
10
16
22
28
34
40
M
32
3B
64
70
76
82
88
94
100
2.500000E-001
2.300000E-001
2.300000E-401
2.300000E-001
3 6
11 12
17 IB
23 24
29 30
33 36
41 42
47 48
33 54
39 M
63 66
71 72
77 71
83 84
89 90
95 96
101 102
-------
-6920.0000000
-49.0000000
-6820.0000000
-6920.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-8620.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6620.0000000
-6820.0000000
9.7M700E-001 4,
4.000000E-001
4.000000E-001
4.000000E-001
9.B46700E-001
4.000000E-001
4.000000E-001
4.000000E-001
9.966700E-OOI
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-OOI
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.0000COE-001
4.000000E-001
4.000000E-OOI
4.000000E-09I
4.000000E-OOI
844.0000000
8.640000E*009
.0000000
.0000000
-8820.0000000
-8820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-3820.0000000
-8820.0000000
-6820.0000000
4.000000€H>01
4.000000E-001
4.000000E-001
4.000000E-4*!
4.000000E-M1
4.000000E-M1
4.000000EHM1
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-M1
4.000000E-OOI
4.000000E-001
4.000000E-Ofl
4.000000E-001
4.000000E-001
4.000000E-OI1
4.00000K-001
4.00000JE-OOI
4.00000C-001
-6820.0000000
-6820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-8820.0000000
-8520.0000000
-8820.0000000
-6820.0000000
-9820.0000000
-8820.0000000
-8820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
4.000000E-00!
4.000000E-M1
4.000000E-001
-6820.0000000
-8820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-8£C. 0000000
-6820.0000000
-6820.0000000
-8820.0000000
-8920.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
4.000000E-001
4.000000E-001
4.000000E-001
4.000004C-001
4.00000CE-001
4.000M(C-001
4.00000K-001
4.00000JE-001
4.00000K-001
4.00000X-001
4.00000CE-001
4.00000K-001
4.00000K-001
4.00000K-OOI
4.00000K-OC1
4.00000CE-001
4.00000S-001
4.0000ME-001
4.000000£-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000€H)01
4.000000E-001
4.000000E-001
4.000000E-M1
4.000000E-001
4.000000E-001
4.000000E-001
844.0000000
0
.0000000
0
7.IOOOOOE-001
I
.0000000
0
4.000000E-OOI
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-00!
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-OOI
4.000000E-401
1.2000000
.0000000
-------
42
SATURN IBOKAM PROBLEM
5 JAN 19E3
SAT
16
10
1.0000000
100C.0000000
."0000000
I
4
.0000000
.0000000
.0000000
.0000000
2
•14700.0000000
.0000000
I
l.ieiOOOE-014
1
4.SOOOOOE-OOI
3.000000E-003
l.OOOOOOE-003
l.OOOOOOE-003
3.000000E-003
l.OOOOOOE-003
2.000000E-402
1
I
-I
34
70
-I
33
71
-1
34
72
1
37
73
2
38
74
3
37
75
I
-343.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-196.0000000
-8820.0000000
-8820.0000000
6
1
2.000000E-092
l.OOOOOOE-003
3
0
i.WOOOOE-003
l.OOOOOOE-003
20
0
:ooo.ooooooo
-9.8000000
87
0
.oooeooo .ooooooo
3.333332-001 .OOOOOOO
6.6S6667E-00! S.OOOOOOE-001
1.0000000
.OOOOOOO
1.0006000
.ooooooo
1.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
1.181000E-014
l.OOOOOOE-003
l.OOOWOE-003
l.OOOOOOE-003
.OOMOOE-003 1,OOOOOOE-«03
.OOOMOE-003 l.OOOOOOE-OW
.OOONQE-003 l.OOOOOOE-003
l.OOOOOOE-003
l.OOOOOOE-003
l.OOOOOOE-003
2.000000E-002 l.OOOMOE-003 2.000000E-M2 2.000000E-002
1
4
40
76
3
41
77
6
42
78
7
43
79
8
44
80
9
45
81
-8820.0000000
-8820.0000000
-8820. OOOOOOO
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
1
10
44
C
11
(7
83
12
41
*
13
49
e
14
5»
U
19
SI
87
U
52
-1
17
S3
-1
18
54
-1
a
35
-1
20
56
-1
21
37
-1
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
22
58
23
39
24
M
23
61
26
62
27
63
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
28
64
29
63
30
66
31
67
32
33
69
-------
43
108300.0000000
111100.0000000
113000.0000000
118800.0000000
123000.0000000
127100.0000000
131100.0000000
134900.0000000
138500.0000000
141900.0000000
144900.0000000
147400.0000000
U9UO.OOOOOOO
15300.0000000
155300.0000000
138200.0000000
111100.0000000
U4000.00000M
16*900.0000000
UT700.000MOO
172700.0000000
231900.0000000
1UOM.OOOOOOO
171000.0000000
1.0000000
1.0000000
7.328000EHM1
S.317000E-M1
4.787000E-001
4.60JOOO€-OOI
4.32MOOE-001
4.559000E-001
4.689000C-001
4.B94MOE-OOI
I.083000E-001
I.169000E-M1
f.848000CHMl
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
"l. 0000000
1.0000000
1.0000000
1.0000000
8640.0000000
8.640000E+008
.0000000
.0000000
8440.0000000
0
.0000000
0
B.OOOOOOE-002
0
.0000000
0
1.3000000
.0000000
-------
3.048000E-001
3.048000E-OOI
3
1
2
1
-1
1
2
3
4
3
ft
7
8
3.048000E-001
3.048000E-001
1
2
3
3.048000E-001
3.048000E-001
1
2
3
3.048000E-WI
3.048000E-D01
~
3.048000E-001
10
11
12
13
14
IS
1ft
17
18
19
20
21
22
-------
ML THREE-LATER PfiOBLEH
5 JAN 1984
S94
1 24
10 0
1.0000000 l.OOOOOOE-003
1500.0000000 l.OOOOOOE-003
.0000000
2
13
103400.0000000 -l.OOOOOOE-001
103400.0000000 .OOOOCOO
103400.0000000 t.OOOOOOE-001
103400.0000000 2. OOOOOOE-001
27380.0000000 3. OOOOOOE-001
10340.0000000 4.000000E-001
7583.0000000 S.OOOOOOE-001
7447.0000000 4.00000CE-001
7309.0000000 7.OOOOOOE-001
7171.0000000 B.OOOOOOE-001
7033.0000000 9.000000E-001
4895.0000000 1.0000000
4893.0000000 1.1000000
2 4.800000E-001
-9BOO.MOOOOO 1.0000000
.0000000 .0000000
13
204850.0000000 -l.OOOOOOE-001
204850.0000000 .0000000
204850.0000000 l.OOOOOOE-001
204850.0000000 2.000000E-001
145480.0000000 3.000000E-OOI
134453.0000000 4.000000E-001
110320.0000000 3.MOOOOE-001
93082.0000000 6.000000E-001
12740.0000000 7.000000E-001
75843.0000000 8.000000E-001
72398.0000000 9.000000E-001
48950.0000000 1.0000000
48950.0000000 1.1000000
2 4.800000E-001
-9800.0009000 1.0000000
.0000000 .0000000
3
1.020000E-014
1.020000E-016
1.020000E-012
3
0
7
0
.0000000
l.OOOOOOE-003
20
0
1000.0000000
-9.8000000
22
0
.0000000 1.0000000
.0000000 1.0000000
.0000000 B.200000E-001
.0000000 4.800000E-001
OOOOOOE-002 5.500000E-001
4.300000E-001
3.100000E-001
2.000000E-OOI
1.200000E-001
5.000000C-002
OOOOOOE-001
800000E-001
3.OOOOOOE-001
.400000E-001
.OOOOOOE-001
B.OOOOOOE-001
1.0000000
1.
.0000000
.0000000
.0000000
.1000000
.0000000 1.0000000
.0000000 1.0000000
.0000000 I.200000E-001
.0000000 4.8000006-001
4. OOOOOOE-002 5.500000E-M1
l.OOOOOOE-001 4.300000E-001
l.BOOOOOE-001 3.100000E-M1
3. OOOOOOE-001 2.0000006-001
4.400000E-001 1.200000E-001
4. OOOOOOE-001 3. OOOOOOE-002
8.OOOOOOE-001
1.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
1.020000E-014
1.020000k-01i
1.020000E-012
3
2.000000E-001
2.OOOOOOE-001
2.000000E-001
l.OOOOOOE-007
l.OOOOOOE-007
l.OOOOOOE-007
1.0000000
3.04BOOOE-OOI 3.048000E-001
3.048000E-001 3.04BOOOE-001
3.04BOOOE-001 3.04BOOOE-001
100000.0000000
100000.0000000
100000.0000000
3.048000E-001
3.043000E-001
3.048000E-001
3.0480GOE-001
3.048000E-001
3.04BOOOE-001
3.048000E-001
3.046000E-001
3.043000E-001
-------
2
62
3
63
4
44
S
43
4
46
7
47
8
68
9
49
10
70
0
1000000.0000000
3456000.0000000
3.436000E*OOf
1
10
.0000000
.0000000
12 22
72 82
13 23
73 «
1: : =
;« ?i
.« £
7J 1,
:* ?»
.ri 36
17 n
77 57
11 28
71 H
l» 29
7? 19
2* 30
80 90
l.OOOOtOE-403
32
92
33
93
34
94
35
95
36
S.
37
97
38
98
39
99
40
100
34560*). 0000000 5.000000E-001
2 1
1 6.53SOOOE-003
10 -4.S35000E-M3
.0000000
1 0
1.0000000
.0000000
.0000000
42 52
43 53
44 54
45 55
46 54
47 57
48 SB
4f 59
SO M
1.0000000
.0000000
-------
FIVE-SUT PMBLEJ! ... TEST PRQBIBI 12
6 FEE 1984
92
10 10 2
10 0 0
3.048000E-001 2.000000E-001 .0000000
1000.0000000 1.000000E-OJ53 4.000000E-003
.0000000
1
28
71708.0000000 -4.000000E-002
43
0
20
0
1000.0000000
.0000000
100
0
68930.0000000
66192.0000000
63434.0000000
60676. 0000000
97918.0000000
HIM. 0000000
32402. 0000000
45644.0000000
46886. 0000000
44126.0000000
41370.0000000
38612.0000000
33834.0000000
33096.0000000
30338.0000000
27280.0000000
24822.0000000
22064.0000000
19306.0000000
16548.0000000
13790.0000000
11032.0000000
8274.0000000
5316.0000000
2738.0000000
.0000001
•2738.0000000
.0000000 1.0000000
.0000000 .0000000 1.0000000
4.000000E-002 1.600000E-003 9.216000E-001
8.000000E-002 6.400000E-005 8.464000E-001
1.200000E-001 1.440000E-002 7.744000E-001
1.600000E-001 2.360000E-002 7.056000E-001
2.000000E-001 4.000MOE-002 6.400000E-001
2.400000E-001 3.760000E-002 3.776000E-001
2.800000E-001 7.840000E-002 3.184000E-001
3.200000E-001 1.024000E-001 4.624000E-M1
3.600000E-001 1.296MOE-M1 4.096000E-001
4.000000EHM1 1.600©OOE-001 3.400000E-001
4.400000E-001 1.936000E-001 3.136000E-901
4.800000E-001 2.3040ME-001 2.704000EHM1
3.200000EHW1 2.704MOE-401 2.304000f-^t
3.600000E-001 3.1UtOOE-Ml I.936000E-001
6.000000E-001 3.600900E-M1 t.WOOOOE-OOl
6.400000EHM1 4.096600E-M1 1.296000E-M1
4.800000E-001 4.624900E-001 1.024000E-001
7.200000E-001 3.1B4400E-001 7.IWOOOE-W2
7.600000E-M1 3.776*001401 3.760000E-002
8.000000E-001 6.404000E-001 4.000000E-002
8.400000E-001 7.036400E401 2.SMOOOE-002
B.800000E-001 7.7444WOC401 1.440000E-002
9.200000E-001 8.464tOOE-«01 6.400000E-003
9.600000E-001 9.216MOEHW1 I.WOOOOE-003
1.0000000 1.0000000
1.0400000 1.0000000
2 l.tOOOOOE-003
-2738.0000006 1.0000000 .0000000
.0000000 .0000000 .0000000
1
1.600000E-013 I.600000E-013
1
l.OOOOOOE-001 l.OOOOOOE-007 1000000.0000000
.0000000
.0000000
.0000000
.0000000
30.4800000
30.4800000
30.4800000
30.4800000
30.4800000
30.4800000
1
1
1
61
1
11
7i
30.4800000
30.4800000
30.4800000
30.4800000
:0.4800000
30.4800000
I
21
81
30.4800000
30.4800000
30.4800000
30.4800000
31
91
30.4800000
30.4800000
30.4800000
30.4800000
41
31
-------
49
5. SWANEDIT
-------
50
i i
CARD 1
TITLE
2 t
CARD 2
RUN DATE
3 1
CARD 3
RUN ID
4 7
SIMULATION OPTIONS
NUMBER OF TIME STEPS BETWEEN PRINTED OUTPUT (IPRT>
PRINTED OUTPUT REFERS TO NAPL AND WATER PRESSURES, POTENTIALS, AMD SATURATIONS.
THE MASS BALANCE IS PRINTED FOR EACH TIME STEP REGARDLESS OF THE VALUE Of IPRT.
PRINT POTENTIALS (t-YES O-NO) (IPOT)
NORMALCY ONLY NAPL AND WATER PRESSURES ARE PRINTED| HOWEVER, WITH THIS OPTION.
THE POTENTIALS HAY ALSO BE PRINTED.
PRINT DETAILED Pc-Kr TABS-ES (1-YES O-NO) < I LOOK)
THE Pc-Kr TABLES CONTAINED IN THE INPUT DATA FILE ARE ALWAYS PRINTED) HOWEVER,
THESE MAY BE EXPANDED AND PRINTED IN MORE DETAIL.
PRINT PLOT FILE (1-YES O-NO) CI PLOT)
THE PLOT FILE CONTAINS SAID, TIME STEP, AMD NAPL/WATER PRESSURES, POTENTIALS,
AND SATURATION USED BY 8HANGRAF FOR PLOTTING.
USE OBSERVATION BLOCKS (1-YES O-NO> (IOBS)
VALUES OF POTENTIAL AND SATURATION ARE RECORDED AT EACH OBSERVATION BLOCK FOR
EACH TIME STEP.
INITIAL CONDITIONS ARE NONUNIFORfl (O-NO 1-YEE 2-REBTART)
IF INITIAL CONDITIONS ARC NONUNIFORH. WATER SATURATION AND NAPL PRESSURE MUST
BC ENTERED FOR EACH BLOCK. IF KOD-2. THIS DATA IS READ FROM RESTART FILE.
WRITE PREB./SAT. DATA AT FINAL TIME STEP TO RESTART FILE (IREST)
IF THE RUN IS TO BE CONTINUED AFTER THE END OF THE CURRENT RUN, WRITE THE
PRESSURE/SATURATION DATA TO A FILE. IN THE NEXT RUN, MAKE KOD-2 TO READ BACK.
3 12
C»3 — SYSTEM DATA
NUMBER OF COLUMNS ALONS THE X-DIRECTION (NX)
THIS IS THE MAXIMUM NUMBER OF BRIO BLOCKS ALONG THE X-DIRECTION.
NUMBER OF LAYERS ALONG THE I-DIRECT I ON (NZ)
THIS IS THE MAXIMUM NUMBER OF GRID BLACKS ALONG THE Z-DIRECTION.
Fig. 6. Listing of SWAN.VAR input to SWANEDIT.
-------
51
MAXIMUM BANDWIDTH OF THE PROBLEM (MBW)
THE BANDWIDTH IS CALCULATED AS <4»MAX » 3) WHERE MAX IS THE MAXIMUM NUMBER OF
BLOCKS ALONS EITHER THE X OR 2 DIRECTONS. ENTER O FOR THE PROGRAM TO CALCULATE.
NUMBER OF ACTIVE BLOCKS
ACTIVE BLOCKS ARE ANY BLOCKS WITHIN THE PROBLEM DOMAIN, NOT INCLUDING CONSTANT
PRESSURE/SATURATION BLOCKS. THIS IS A TOTAL FOR THE ENTIRE GRID.
MAXIMUM NUMBER OF TIME STEPS (XT)
THIS SETS A LIMIT ON THE NUMBER OF TIME STEPS THAT SMANFLOW-PC WILL CALCULATE.
FEWER TIME STEPS MAY BE USED. HOWEVER, DEPENDING ON THE RECURRENT DATA SETS
NUMBER OF Pc-Xr TABLES (NPC)
MORE THAN ONE TABLE OF CAPILLARY PRESSURE AND RELATIVE PERMEABILITY VALUES CAN
BE USED. EACH BLOCK MUST THEN BE ASSIGNED THE APPROPRIATE TABLE TO USE.
NUMBER OF PERMEABILITY SETS (NKXY)
UP TO 2O SEPARATE PERMEABILITY SETS CAN BE USED. EACH BLOCK MUST BE ASSIGNED
THE APPROPRIATE SET.
NUMBER OF POROSITY SETS (NPOR)
UP TO 2O SEPARATE POROSITY SETS CAN BE USED. EACH BLOCK MUST BE ASSIGNED
THE APPROPRIATE SET.
NUMBER OF PROPERTY COMB I NATION SETS (NIP)
EACH PROPERTY COMBINATION SET CONSISTS OF A PcHCr TABLE, PERMEABILITY SET.
AND POROSITY SET.
NUMBER OF OBSERVATION BLOCKS (NOBS)
THIS NUMBER MUST BE GREATER THAN O IF IOBB IN CARD 4 IS SET EQUAL TO 1.
NUMBER OF RECURRENT DATA SETS
THIS 18 NOT A VARIABLE READ BY SWANFLOM-PC. IT 18 USED XN THIS PREPROCESSOR
ONLY. THERE MUST BE AT LEAST TWO RECURRENT DATA BETS. THE LAST CONTAINS OS.
_HAlINjri NUMBER OF_NEWTONHWPHSON ITERATIONS....
DENSITY OF THE NONAQUEOUS PHASE IS IN MASS PER UNIT VOLUME, E.6. . K6/M3 IN
METRIC UNITS.
VISCOSITY OF MATER CVISCW)
USUALLY A VALUE OF O.O01 IS USED IN METRIC UNITS
Fig. 6. (Continued)
-------
52
VISCOSITY OF NONAOUEOUS PHASE... CVISCN)
2 COMPONENT OF GRAVITATIONAL ACCELERATION
IF THE LAYERS OF THE PROBLEM ARE HORIZONTAL AND IT 18 A CROSS-SECTIONAL PROBLEM
USE -9.8 •/*?. USE A VALUE OF O.O «/»2 FOR AREAL PROBLEMS.
X COMPONENT OF GRAVITATIONAL ACCELERATION
IF THE LAYERS OF THE PROBLEM DIP AT SOME ANGLE, THIS EQUALS THE SINE OF THE
ANGLE OF DIP. USE A VALUE OF O.O FOR MOST PROBLEMS.
DEFAULT INITIAL NAPL PRESSURE '. (PNN)
THIS VALUE NEED NOT BE ENTERED FOR PROBLEMS MMCRE THE INITIAL CONDITIONS ARE
MONUNIFORn.
DEFAULT INITIAL WATER SATURATION.
THIS VALUE NEED MOT BE ENTERED FOR PROBLEMS MMERE THE INITIAL CONDITIONS ARE
MONUNIFORn.
7 1
MATER-NAPL TABLES
8 1
AIR-MAPL TABLES
9 1
PERMEABILITY DATA
1O 1
POROSITY DATA
11 I
PROPERTY COMB. SETS
12 1
X BCOCK THICKNESS
IS 1
Z BLOCK THICKNESS
14 1
SEQ. t COMBINATION
Fig. 6. (Continued)
-------
53
is i
OBSERVATION BLOCKS
I* I
INITIAL CONDITIONS
17 7
RECURRENT DATA
INITIAL TIME STEP SIZE CDELT)
FOR EACH RECURRENT DATA BET. THIS 13 THE VnUUE OF THE FIRST TINE STEP SIZE.
MINIMUM TIME STEP SIZE CDTMIN)
IF THE HATER SATURATION CHANGES TOO HUGH AS SPECIFIED BELOW. THE TIME STEP
SIZE IS DECREASED. THIS PUTS A LOMER LIMIT ON THE TIME STEP SIZE.
MAXIMUM CHANSE IN MATER SATURATION - <6UNAX>
THIS SPECIFICS THE MAXIMUM CHANGE IN HATER SATURATION FOR EACH TINE STEP. IF
EXCEEDED, THE TINE STEP SIZE IS REDUCED, BUT NOT BELOM THE MINIMUM TIME STEP.
TINE STEP MULTIPLIER CCFAC>
EACH SUBSEQUENT TINE STEP IS INCREASED BV THIS FACTOR UNTIL THE TIME TO READ
THE NEW RECURRENT DATA SET IS EXCEEDED.
TINE TO READ NEW RECURRENT DATA SET
ENTER THE NUMBER OF SOURCE/SINK BUCKS WHERE MEW RATES ARE TO BE READ.
CHANOE SOURCE/SINK RATES U-YES 0-ND)....
IF RATES ARE TO BE CHANGED. EMTEft A 1. THE PROSRAtf MILL THEM EXPECT TO READ
MATE DATA FOR MS BLOCKS.
IB 1
RECURRENT DATA - C*3
VARIABLE
HELP t
HELP 2
Fig. 6. (Continued)
-------
2J
SMANEO I T
V«r»ion 1.1
July 10, 1986
INPUT FILE SCREEN EDITOR FOR THE HOOCL
SMANFLOM-2D
UrittOT toy
Gootrtttm, Inc.
Copyright 6*oTr«n«, Inc. 1986 \\HIHHHHHHHHHHHH
fMtfmMMUMMr
|8(H« ll|8O«f 12|l
1«»3|Iff6|lft7|!
2O|8(H<21|4«CrMt« • rnm «il«? (V/M)i 22|4«Ent«r n«M of fll* to b* «dit*di Ipn*
*.t«t
Z3|4^Cnt«r nj»* o* n«rw input d*t« «4.t*t
ZS|4«| y
2J
• •••• Kv^ding Input Fil» - P!*«M Wait
CV/NI 2J
R*«dlr>g C*r4 0«t« - Pl*««« Matt +~~++2JltH lHKHHHItHHHHHHHMHHHHHHHHHHHH
1 1 * i « / 2| * i * 1 3| 6 1* • 2| i « 1 3| i * « 4| t tmumnmiiHfiMtMHHuiui HHH HHHHHHH HHIHHUHUHHIHHII HHHHHHH
4l61f<2|20f8 M A N C O I T3|22ttt A I M H E N U3| If
OPTION LIST
Fig. 7. SUANEDIT execution for error checking sample data
IPNAF.TST.
-------
55
Error chock — p*f»or« *wror checking on data *»t.
Quit — Writ* n«« or cor-r»ctad «il» *nd exit to DOS
Goto — Oo to cvd nijabar | ••cond k»y ctrotc* »• th«
c«rd nuabcrt
1-Titl* 2-O»t« 3««un 10
4«Siaviation Option* 3«Sy*tMi D*t« A-Con*tant*
7-»*at»r-NAPL Pc-Kr B-Air-NAPI. Pc-Kt- *«*>^-«»abi lity
I0-^aro«lty 9^.« U^>COIT Error O«w:kino8tl«
•»• ERROR OCCKINB COnPtXTE (ANY ERRORS LISTED ABOVE) •*•
HIT «NY KEY TO CONTINUE ___ 2J1| \*!Mlt*im*HIHaHUHtlHHHHHHm*ltll*IHHUIHHIIIIHHH>
Quit — Mrit* n«w or co*t-«ct*d «ll« and watt to 008
Goto — Go to card nu«c»r-| **cond k«y •Irak* is th*
I -Title 2^tet* 3-*«i ID
4-«iaul«tian Option* S-Sr»t«« D«ta fr-Constant*
7-M*t*r-NAPL Pc-Kr e^Ur-NAPC Pc-Kr 9^>waMtbl 1 i ty
l
-------
56
Do you want to chang* it? (y/n) 2J7«l|lf
2|lf SIMUL-
ATION OPTIONS 3|»«
0«4|lf VARIAB
UE DESCRIPTION VALUE
61 if NUMBER OF Tire STEPS BETWEEN PRIWED OUTPUT ...................
IO7| if PR I NT POTENTIALS (1-YES O-W) ................................. (IPOT)
O6| if PRINT DETAILED Pe-Kr TABLES Cl-VES O-NO) ..................... (I LOOK
> O9| If PRINT PLOT FILE U-VES O-MO> ................................. Ol2«tfMITE PRES. /SAT. DATA AT FINAL TIME STEP TO RESTA
RT FILE ...... (I REST) O24| If 7* CSCi M-N*Kt P-Or»viOu» H-M»lp D-D«I«
t« I'lrtMrt UHlndo M^Uin M«nu OM|8Of 2J1| H IHHHHHHHHmHIIHIHIHHIIIIIIHIHItHHHHIIIIItll
MHHMHftHHMHNH
4|61fr2|20«8 M A N E D I T3|23fn A IN H C N U3| If
OPTION LIST
7m
Error chock — porfora error checking on «t«ntm
7«*totor-MAPL Pe-Kr 8-Air--*«APL PcHCr 9-Por»^bility
10-^oro«ity S«t» tt>4>rap*rty Co*. I2«« 8p«cing«
J3-I Spacing* 14-S*pu*nc*/Caoft. 19^X>*«rv. Block*
l*»rniti«l Condition* i7-R*curr*nt Data
o«23|SfEnter your Mloctloni ZI
YOU SUV YOU MAMT TO OUIT7 (V/N)
PLEASE IftMT WHILE NEW FILE IS UMITTEM
Stop - rVograa toralnatod.
Fig. 7. (Continued)
-------
57
1. ALT H: two lines of description are displayed at the bottom of the
•onitor screen beyond the line vbere the cursor is located;
2. ALT N: move to the next card image;
3. ALT P: move to the previous card;
A. ALT U: undo any modifications Co the current card iaage;
5. ALT I: insert a number of lines after the cursor;
6. ALT M: main menu; end
7. ALT (ENTER): duplicate the colv
-------
59
6. SVANGRAF (POSTPROCESSOR)
The postprocessing phase of SHANFLOV-2D entails the execution of
SVANGRAF (a level 1 postprocessing Module) and, later, execution of
FDGRID, CONTOUR, and GRAPH (level 2 postprocessing nodules). By simply
placing the diskette in Che drive or loading SVANGRAF.EXE onto the hard
disk, SVANGRAF is installed. (The INSTALL progran oust have been run
prior to the execution of SVANGRAF. as described in Sect. 3.2.)
To begin execution of SVANG8AF. type:
SVANGRAF
The program vlll begin to prompt, asking for the naae of the plot
output fro» SVANFLOV-2D and giving •enu choices. (See the example of
the SVANGRAF run for data set IPSAF.GD2 in Fig. 5). The menu choices
for expanding the Z-axis were never used on any of the test data. To
generate a »esh diagram, the user Most give SVANGRAF the name of the
output file to be used by the program FDGRID. Defaults are used
whenever a parameter is not particularly Important, such as in the case
of Che plot border and character sizes.
Data are read from che binary plot output file (in this case,
plgd2) for water saturation. RAPL saturation, water potential
(pressure), and NAPL potential. This is don* for tine steps specified
by the user (In this case, time steps 10 and 20). The choices were made
for contouring this data. No scaling was performed on any of the
saturation or potential data. SBANC8AF also prompts for a name of the
contour data file and thm time series Just as it does for the mesh grid.
If an already existing data file namw is given, the program will give
the user che choice of overwriting chis file.
Time series plots indicated in Che SVANFLOV-2D input data cause the
code to output observation point daca within the plot output file.
During SVANGRAF execution, the user will be prompted for plotting any
data for these observation points (cells). A naae for the time series
plot file will also be requested. Scaling for saturations and
potentials is another choice froa tbe menu. If the user decides to plot
a predetermined point (a cell in die mesh), the code will ask for a 35-
character title, X-axis label, and T-axis label (actually the Y-axis is
-------
60
the vertical axis) for the resultant plot. This process of pronpting
for each predetermined cell of interest will be repeated until all such
cells are exhausted.
6.1 FDGRID
Level 2 postprocessing can begin with the mesh, contouring, or tine
series graphs. Most users would probably construct the grid from the
plot output file before proceeding to the contours or time series. The
mesh file can be constructed from the plot output file even if no time
series or contours are requested or if the input data to SWANFLOU-2D are
not «et up for contours or time series plots (with IPLOT - 1 only). To
execute mesh plotting, type FDGRID after the SWANGRAF program
has terminated. The user will be prompted for the name of the mesh data
file generated during SUANGEAF execution. (See Fig. 8 for a sample mesh
plot.)
Next, the user muse choose among graphic output options.. Sending
the mesh directly to the printer (in the case of these runs) took less
time than displaying it on the video terminal and later directing it to
the default device. Using the EPSON printer did not present any special
probleas, but perhaps the quality of lettering on the axes could be
improved. Overprinting in foots greater than Duplex did not seen to be
worthwhile in terms of quality on a dot-matrix printer. (See the
example of FDGRID execution results in Appendix A.)
6.2 CONTOUR
The SVAHCRAF code reads a portion of the plot file generated by
SVANFLOV-2D and displays the type of data that is being read. The first
portion of the potential data is the vater saturation file. If these
data are to be contoured, the program will prompt for the name of the
contour plot file. As far as the plotting region is concerned, the
default is the entire grid. An exception to this would be plotting a
partial region.
-------
61
£ mesh II
ID
§
g
t
•*
W
_9
"i
o
—
5
9
8
i
• 2
5
4
- s
*
7
8
t
10
11
12
U
14
U
1C
17
18
18
20
21
2Z
23
24
25
2ft
27
28
28
30
,
31
2
a
u
a
-
sr
a
38
. 40
i
41 Si
43
43
44
43
48
47
48
S3
94
95
S8
97
98
at
i
83
U
84
89
88
87
88
I
S8
1
90
80
88
70
71
7Z
73
74
75
78
77
78
7»
80
81
K
85
84
•9
88
87
88
88
80
i
i
31
ar
j«
34
as
18
87
M
at
100
3.00 45.54 »7.0S I50.C3 174.17 217.7! 281.28 M4M
Fig. 8. Sample plot for IPNAF.SD2 mesh.
-------
62
If partial region plotting Is desired, the user Is prompted for the
minimum and maxlnua coordinates in the x and y directions. The origin
of any grid is considered to be the lover left corner, or x - 0, y - 0.
The user will also be prompted for the nuaber of interpolated lines.
The contouring routine requires a regular grid; SO grid lines is
considered sufficient by the writers of SUANGRAF, but a maximum of 100
lines is available. Scaling in the prompting scheme is self*
explanatory. However, most users may never need to do scaling.
Labelling for titles, border, and character selection are options for
which the user is prompted.
The contour curves themselves may be labelled at specified levels.
Contours plotted on the EPSON printer have a thicker line to denote
three levels. On the plotter, a different pen would be used. Some
increased thickness of lines can tx. achieved by using a font other than
SIMPLEX, which is a single-line font. To place line segments on the
contour plot, coordinates of a specific boundary My be entered as a
response (see the example of contour plots). Also, symbols may be
plotted on a contour plot to indicate locations of wells or monitoring
equipment.
6.3 GRAPH
The time series plots fro» SUANGRAF are generated by the GRAPH
program. Installation of GRAPH is described in Sect. 2. Executing the
program requires the user to type:
GRAPH
The program will operate on the observation block data read in for
water or NAPL potential and saturation in previously specified cells of
the plotting grid.
As is required throughout SVANGRAF, the user will have to respond
to queries concerning axis labels, titles, and symbol choices. Also, as
in other prograos in the SUANGRAF system, the default selections are
very often sufficient for most users (see examples of time series
plots).
-------
63/6-4
REFERENCES
Faust, C. R, and J. O. Ruabaugh. 1985, SWANFLOW: Simultaneous Water,
Atr. and Nonaqueous Phase Flow. GeoTrans, Inc., 209 Elden Street,
Heradon. Virginia 22070.
Faust, C. R. and J. O. Ruabaugh, 1986, SWANFLOW-2D: Simultaneous
Water. Air, and Nonaqueous Phase Flov Model In Two Dimensions.
GeoTrans, Inc., 209 Elden Street, Hemdon, Virginia 22070.
Fields, D. E. and J. L. Bledsoe, in review. Transportabi 1 ity.
Robustness, and Execution Parameterization of the SWANFLOW codes.
Oak Ridge National Laboratory Report ORNL-6319. Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831.
-------
65
Appendix A
MESH GENERATION FOR ONE-DIMENSION EXAMPLE
-------
66
At \>cw*ngraf
2J7«U|1«
2» If GEOTRAMS SOFTWARE
3|lf
3|lfl SWANFLOU-20 POST -PROCESS ING PHASE I
I
6| 1« I _______________________________________
8|lf Ent*r- th» input file naa* (Plot *»!• from SUANFUM-2D) i pln*w.gd4
2|1« 6EOTRAWS SOFTWARE
3|lf : S»MNFLOW-20 POST-PROCESS I NO P1HVSC I
I
B| 1* Th» input fil« pln«w.g,d4 *ucc»»«fully op*n«d.
Nu«b*f o* block* in M-dic.. » i
Nu«b«r of block* in i-tlir. - 24
NLuabcr of ti«« *t«p* - 2O
Saturations «nd pr»**t«-»* plotted *v*ry 1O ti«* *t«p*
Expand Z-axi*7 i n
PLOT OPTIONS
Enter th* mmmh plot fil» naawi •«*hd4
- •«•*• FILE EXISTS, OVERWRITE IT? l y
-------
67
2J7e.l|lf
2| 1* GEO TRANS SOFTWARE
3|lf
CXM; If!
3|lf ! SWANFLOM-20 POST-fTOCESS 1 NG PHASE I
t>t If 1 _________________________________
8| If Enter • title for tne mmm* diagraai **«h d«
Enter width of plot -border (inchcm)
or • -l.O to UMT defaults chavactcr (izrst -l.O
Enter « 33 character X-«»is label i x ea«ter~«>
Enter • 33 character V-»»lm l«l»eli z (Mter-«)
•>.*« WRITING MESH DATA TO FIUE - PLEASE WAIT •••••
2; 1* 6EOTRANS SOFTWARE
3|lf
Sflfl SMANFUOM-20 POST-PROCESS I NB PHASE I
t
o| »« I ________________
8| if Dat« Mill be re«d for ti«« «t«p 10
Tiw value - .97917E«O6 ••corid»
Mater saturation data being re; ad...
One-dlneoaional probleam canmot be contoured.
NAPL saturation data being re«atd...
One-di*en«ional probleas cannot be contoured.
NAPL potential data being read...
7f~7.
-------
68
One— dte«nwtonal prool*** canno*. b« contoured.
Water potential data being read...
One>-dla*nelonal proDle** cannot b« contoured.
2J7e,l|lf
2tl« 6EOTRAN6 SOFTWARE
S|lf : SMANfn.O»*-2D POST-PROCESSING PHASE I
I
6| If !
B| !•» Data will b«r r*«d for tia* •mtmtt 20
Tiaw valu* • . 15223E«O8
M«t«r- ««tur*tion d«ta being
&x> iil»«ii«loo»l pvobl«*« cannot b« contoured.
MAPI, maturation data being read...
On*-d lawn* tonal problea* cannot toe contoured.
MAPI, potential data being read ---
Or»«— dtaens tonal protolea* cannot toe contoured.
Mate*- potential data being read...
On*— dtawn«ional proble** cannot toe contoured.
Stop - rVogra» terainatatd.
2J7a)l|S«
2| 1* eCOTWANSSO^TMAME
3|lf
Oa>4| If!
I
9|lf I 8WAMFUOW-20 *OST-«>*tOCZS8IN6 PimCC II - 6RID OIASRAM
I
6| 1« I
_ I
B|l« Enter the naaw of tne tnpwt data filet *t«e.e
•~n~ INPUT FILE DOES NOT EXIST •»•*•
Enter- the na*e of the input data ftl«i Die*.*
•*••• INPUT FILE DOES NOT EXIST «••••
Enter the na*e of the input data fiUi ae*hd«
- GRAPHICS OuTPUT OPTIONS -
1 • Display on CRT only
2 • Display on CRT then on Oarfault Device
Z • Display on Default Device directly
-------
Cnt«r !»><
2-Oupl»«
3-Trlpl«x
I I
2|1« 6EOTRANS6OFTWARE
3|1«: SMANFLOM-2D POST-PROCESSING PHASE II - GRID DIAGRAM
I
AI >« : _______
_ i
8|1« Dttt* for tn» •»•»» di*gr«« new b««n
Do you want to tfTM» th« ••mTt? y
2|t« 6EOTMANS SOFTWARE
»|t«t
I
3|l«l SUAMFLOM-20 POST-PROCESSING PMAK XI - GRID DIAGRAM
t
6|l«l
t
•H« ••««« HESM OIASRAfl BEING GENERATED. PLEASE WAIT ••••*
PUOTSe ERROR »4 7 UMPLOTTABLJE VECTORS
PLOT8G tHKUW 93 I CLIPPED VECTORS
READY TO DISPLAY DRAWING.
Strike •nykwy to continoa. PLOTBe ERROR M 1 UNPCOTTABLE VECTORS
PLOT8G ERROR *3 I CLIPPED VECTORS
-------
71
Appendix B
COKPLETE StfANGRAF EXECUTION TO GENERATE CONTOUR PLOT
-------
72
A,\X»,»«ano,raf • 8COT«.A»S SOFT MARE
2J7al|if
O*4|lfl
I
3l 14 : SMM*XOW-2D PQ6T-*>flOCESSIN6 PHASE I
I
_
8|1« Enter the input file naae (Plot file fro* SMAMFUM-2D) i pl«d2
2J7al»lf
2| If SCOTRAMS SOFTWARE
3|lf '
3|lf I SMA*e*UJM-2D POST-PROCESS I MS PHASE I
I
*t if :
_ i
•t I* Th« input «»!• plgtf? «ucc**«fully op«o«J.
Nu^»r o* block* in »-tl»r. - 1O
Nuabvr o4 block* an z-dir. • 1O
l*Mb«r of tta* «t.*p« - 2O
S«tur«tton« wid prM»urw ylottx] *v«ry 10 tia* «t
Expand Z-««i»? t n
- PUJT QPTKMS
Iw • m*m* dtAorMi to b« g«n«r«t«oT? « n
2J7«l|t«
2|1« 6EOTRANS SOFTWARE
3|l«t SMANFUOW-20 POST -P*JOCESS INS PHASE t
I
O«t« will b« r««d for ti«* step 10
Ti*» v«lu* - .343AOC+O8 ••conds
M«t«r saturation data being r-«ad...
O«ta Hav* b««n r«ad. do yju want to contour tnl« dataT t y
Seal* Mturatlon/potantial data? i n
Enter contour plot 411* niaai conoid?
!• tn« entire doaain to be contoured? i y
Enter nuafeer of interpolated arid lineti SO
Enter width of plot border finche*>
or a — l.O to u«e default* ctvaractar tlznt -l.O-
2J7al|lf
2| «* 6EOTRANSSOFTHARE
3|lf
Oa4|lfI
-------
73
3|lf» ' SWANFLOW-2B POST-PROCESSING PHASE I
I
6|If J
I
8|lf Enter a 33 character- titlei contour plot for five spot
Enter a 33 character X-axis label i « , e*ter*
Enter a 33 character V-ajti* label i z , enters
*»• CALCULATIONS IN PROGRESS. PLEASE WAIT ••*
2J7«l|lf
2| If 6EOTRAMS SOFTWARE
3|lf
o»4|if:
3| If ! SMAMFLOW-20 POST-PROCESS ING PHASE I
' I
I
8|lf Potential/saturation range* fro* .999E-O3 to .8O3E«OO
Enter the nueber of contour level* (O-calculated) i O
Contours labeled every N lines* 3
Enter the contour interva.li .3
Enter the) nueber of decaatal place* for the contour labels <-l-calculated> i -1
2J7el|lf
2| If 6EOTMAMS SOFTWARE
3|t«l S»aftNFUO*-2D POST-WtOCESSINB PHASE I
I
6|l«l
I
8| If Enter nueber of line> ••gaent* to oe drexn on
the eap C-l to uee previou* *et of *e9*ent*> i O
2J7el|lf
2| If eeOTRANSSOFTHAME
3|If
0»4|tfI
:
3i if t SMAMxow-29 Porr-pmcEssiNB ptioec i
i
eilfl
J
8ilf Enter the nueber of key point* to plot
on the Map (-1 to u*« th* previous *et» * O
NAPX •aturation data being read...
Data have been read, do you oant to contour this data? » y
Scale saturation/potenti*! data? > n
Is the entire dooain to o» contoured? i y
Enter nueoer of interpolated grid line«i SO
Enter width of plot border- (inched
or a -l.O to u** d»f«ults cncractv *ize*i — l.O
2J7.H if
tl I« GEUIK(.N^ SOFTWARE
-------
74
O»4| HI
I
3|lf ! SMn>e~lO*-2P POST-PROCESS ING PHASE J
6| If I
_ I
6|lf E>iter a 33 character titlei contour plot for five mpot
Enter a 33 character X-a*i* label i * , ••t«r«
Enter a S3 character Y-a»i» labels z , ••term
»•• CALCULATIONS IN PROGRESS, PLEASE WAZT »»«
2J7el|lf
2| If GEOTRAKS SOFTWARE
S|l<: SUAMFI.OW-2D POST -*>S(OCESS ING PHASE I
61 1« : _____________
_ i
8|1« Potential /maturation r-«ng*m «roa . 1V7E»OO to .99VE*OO
Enter the nu<«b«r of contour- level* «0-calculated> I O
Contoure labeled every N tine*i 3
Enter the contour interval i .3
Enter the nuefeer of dec i Ml place* for tltei contour labels <-l-calculated) « -1
2J7et|lf
2| If GEOTRABS SOFTWARE
5|lf
Oe4|lf 1
I
3|lfl 8UAMFU1M-2D POST-P*ttlCESSINB PHASE I
I
•lift ___
8|lf Enter number of line •eg««ntm to be «to-*Mn on
the «ep (-1 to u«e previoue eet of t»o««nt.m)i O
2J7el|lf
2| If 6EOTRAMS SOFTWARE
Oe4|l«I
I
3|lf I SMAMF1.0M-2D P05T-P»»OC£S8IK8 PHASE I
_ I
8|lf Enter the nuet>er of key points to plot
on the atap (-1 to ume the prwviou* met I i O
MAPL potential datr being r«
Data have been read, do you went to contour- thim data? i n
Mater potential data being rered...
Data have been read, do you —ant to contour- thie data? i n
-------
75
2|1« SCOTRANS SOFTWARE
O»4|lf I
3|1«» SMA»*n.OM-2D POST-PROCESSING PHASE 1
I
6| 1« I
__ I
8|l« Data Mill be read tor HM step 2O
Tta* value - . 69J2O€««e ••conOm
Uat*r saturation data beino. read...
Data have> b««n r»ad, do you want to contour trits data? > y
Scat* uturat ion/potential oata? i n
!• Uw •ntir* doniin to b* contouratf? t y
Entvr nu«o«r o4 intvrpolataM) grid lin«*« 3O
Ent«r width o« plot bordw «inctw«)
or • -l.O to UM default* cKaractw *!!••> -I.O
2|1< eCOTRAMSSOFTMARE
I
3|t«l SHAtMFUW-20 fQST-*mOCESSlMS PHASE I
I
6|1«1 __
_ «
•|1« Enter • 33 character tatlvi contour plot *or M*t*r •aturation,ti*a»2O
Ent*r • S3 character I-ajti* labvlt * , awt*r*
Ent*r a 33 character Y-ajii* label t * ,«••£•*••
»»• CACCXILATIONS IN PROGRCSS, PLEASE WAIT •*•
2J7*1|1«
2|l« 6EOTRAH6 SOFTWARE
0*4|tf I
I
3ii«i SMftjan.QM-20 POST-PROCESSING PHASE i
1*1
i
0|lf Potent!al/Mturation rawoe* fro* . IOOC-02 to .B57E*OO
Enter the) nueoer of contour levels (O^calculated) i 0
Contour* labeled every N liMewi 3
Enter the) contour interval i .4
Enter the> nwaoer of decimal place* for tn« contour label* (-1-calcul ated> I -1
2J7*l|lf
2| Jf GEpTRAHS SOFTWARE
I
3|l«t ' 8MA**FUM-20 POST-PROCESSING PHASE I
-------
76
___ i
8|l* Enter nuaber of line *eo,o*nt* to be dr«xn on
the «ap (-1 to u»e previou* *et o* «eq*enti> I O
2J7»1|1*
2|1« GEOTRANS SOFTWARE
3|1«! SWAKFLO»-2D POST-PROCESSING PHASE I
:
6 1 >•» : _________________________
B|lf Enter th« nuab«r of k»y pcnntm to plot
on th« map (-1 to urn* t»>« prwioo* **t) < 0
MAPI. ««turation d«t* ttming r»*d...
Date n*v« b*«n r»«d, do you ««nt to contour thi« data? | n
MAPI, potential data being read...
Data Kave been read, do you want to contour this data? i n
Water potential data being read...
Data have been read, do you want to contour this data? « n
2|1« BEOT^AMS SOFTWARE
3|l*
Oe4|I«:
•
•
S|lf : SMAI>rLOW-a> POST-PTtOCESSINB PHASE I
Data read for It observation point*
Do you want to plot orapfie for any point*? i n
Stop - Program terminated.
Ai\>dir con*
Voluew in drive A Ha* no label
Directory of Ai \
CONTOUR EXE 136660 9-13-86 StOlp
CONSD2 2V893 9-Z3-B6 2iZ3p
2 File(*> 24576 byte* free
Ai\>contour
2|lf eeOTHANS SOFTWARE
S|l«: SWANFLOW-2D POST-PROCESS I NB PHASE II - CONTOURING
I
A. l« I
-------
77
Arontour
7.17.I; »«
?ti4 6COTRANS SOFTWARE
•<•»«: SWflNFLOM-2D POST-PROCESS ING PHASE II - CONTOURING
#.:'«• __ _________ . _
Rt ««
rn»v »*• n*M o4 th« input data film conod2
- CONTOUR MAP OUTPUT OPTIONS -
1 * ni«pi«v an CRT *ir«t
2 " Otmplay an O*««ult 0*vlc«
F.^»»-- <4«»ir«d opt ion i 1
7|«« 8COTRAN88OFTHARC
t « :
•
^•"' 5WANR.OW-2D POST-^MXXSaiNB PHASE II - CONTOUR I MB
*
6?"' . ____ ._ _
»•• AATA BC INS READ. PLEASE WAIT •*•
Oat* *or contour *ap 1 h*« b*«n r«*d.
Do you M«nt to procvvd witn contouring? f
8r»«t»r accuracy can b« obtained by further
r->»»i1 vidtng th* Or id evil*.
Do you want to do thirn? y
F"t»r the nuabar of •utxli visions p*r grid c«ll
(•uvt b« 2, 4, 6. or !•)
factor
-------
78
SMANFUOM-2O POST-PROCESSING PHASE II - CONTOURING
»»•»•» •»! rrmtourc C«O be dTAOT with thick line*
or Mith a second plotter peo| voter your choice
i » Thick line
2 * Second Pen
8 !
6EOTRANSSOFTWARE
14 :
*•'«' SHANFXOW-2O POST -PROCESS ING PHASE II - CONTOURING
•«»«-* rrMTOUR HAP BEING GENERATED, PLEASE WAIT •«•»»•
PIOT88 ERROR *4 11 UNPLOTTABUE VECTORS
Pi rrrwa r«M>QR «3 2 CXIPPED VECTORS
READY TO DISPLAY DRAWING.
ft*ri*m *ny hev to continue.2J7«l|lf
•?; t* OEOTRANS SOFTWARE
SHANFUOW-2O POST -PROCESSING PHASE IS - CONTOURING
mn on default device? i y
The default K«le • 39.19 unitm/lnch.
Pn y»ou x*nt tO Ctl«T>o» it? t y
Entev ne«> scalei SO.
6EOTRAN8 SOFTWARE
SMANFUOW-2D POST-PROCESSING PHASE II - CONTOURING
•*« rnNTOUR HAP BEING 6ENERATED, PLEASE WAIT •*
-------
79
6EOTRAMB SOFTWARE
SUAKFLOW-ZD POST-PROCESS I N6 PHASE IT - CONTOURING
p. *
... fw»ra APING READ, PLEASE WAIT
for contour eap 2 ha« been r«*d.
rv, v~. -— .» »n nroc»«d with contouring? y
6r«*t«r »CTur»cy can b« obtained bv further
n>»M4i virling th« arid C«ll».
Ho you want to do tni«7 y
Pntw »h- 'v+bmr of •ubdivislan* par grid c*U
(«u*t b* 2. 4. 8. or 16)
s « . :
factor (l>non« in ainli IO
Fnl-.er font »tyl«
t t
•>•'* SCOTRAM6 8OFTWAMC
SMAMFUM-2D PO8T-PROCES8INS PllftgC II - CONTOUR I NO
p.f*
t ,»».i«< r«n«- our* can b« drawn with tHiCk ltn««
or with a Mcond plotter p*n| •nt«r- your choic*
'. - -Thick lin*
2 • Second Pen
t I
BEOTRAMS SOFTWARE
-------
80
B- «x
••»•• CONTOUR HAP BEING GENERATED. PI-EASE WAIT •••»•
PLOT86 ERROR «M 37 UNPUJTTABLE VECTORS
READY TO DISPLAY DRAW INS.
Strlk* wiy b«y to continue. 2J7«l; I*
2|1« 6EOTRAMS SOFTWARE
*
O»4|l*l
:
3|l»l SMANFLO»*-20 POST-PROCESSINQ PHASE II - CONTOURING
I
*i i« : __
_ t
Plot »op on o»«ault dv/tca? i y
Th« 9« it? t 9
Ent«r nmm «c«I«i 30.
BEOTRAMS SOFTWARE
3|lf I SUANTLOW-2D POST-PROCESSING PHASE II - CONTOUR I NB
J
6| I* : _ ; __
_ I
•|H
***** CONTOUR HAP KINS GENERATED, PLEASE WAIT •***•
PUOT68 ERROR »4 3G UNPCOTTABLE VECTORS
PU3T88 ERROR «3 2 CLIPPED VECTORS
-------
81
2J7«1|If
2| If 6EOTRANS SOFTWARE
3|lf
9|tf: SUANFX.OM-20 POST-PROCESSING PHASE II - CONTOURING
61 if:
8|7«
•»• DATA BEING READ. PLEASE 4AIT •-••
Data for contour «ap 3 has B«»o r-«ad.
Do you want to proceed with contof ing? y
Sreatet- accuracy can b« obtained by further
subdividing the grid c*lls.
Do you want to do this? y
Enter the nuaber of subdivision* pew grid cell
(oust be 2, 4, 8, or 16)
I 4
Enter smoothing factor i tO
Enter font style
l 1
2| If QEOTRANS SOFTWARE
:
t
9|lf : SMMfLOM-2D POST-PROCESS I N6 PHASE II - CONTOURINB
I
•i i* : ____
_ I
8|lf
Label axi contour* can b« drawn Mitt* thick line*
or Mich a second plotter pen} entaw your choice
1 • Thick line
2 • Second Pen
t 1
2J7e,l|lf
2| If 6EOTRANS SOFTWARE
*
0«4|lf I
I
-------
82
B|lf
»••*• CONTOUR HAP BEING GOCRATED, PLEASE W»IT •••••
PUOT88 ERROR 4M 64 UNPLOTTABUE VECTORS
READY TO DISPLAY DRAWING.
Strike any k«y to continue. 2J7«1| If
2; 14 6EOTRANS SOFTWARE
O»4;lf I
:
S|l«: SUANFLOW-2D POST -PROCESS 1MB PHftSE II - CONTOURING
t * :
i
Plot *ap on default d«vic«? i y
Th« default seal* • 39.19 unitm/ioch.
Do you want to ctvmg* it? i n
2J7«l|lf
2|lf 8EOTRANS SOFTWARE
S|lf
S|lf! SWANFLOW-2D POST-PROCESSING PHASE II - COKTOURIN6
6| If!
iTTf
•*••• CONTOUR HAP BEING 6E>«RATED, PLEASE MAIT
PLOT88 ERROR »4 11 UNPLOTTABUE VECTORS
PLOT88 ERROR «S 2 CLIPPED VECTORS
-------
83
Appendix C
SVANG8AF TIME SERIES GENERATION EXAMPLE
-------
84
2J7.l|l*
2| 14 GEOTRANS SOFTWARE
sn«: s»«ANR_OM-2D POST-PROCESS INS PHASE i
6;l«:
9« 1* Enter th» input *il« HM* (Plot file from SMAMFUOW-2O) J
2|1« 6EOTRANS SOFTWARE
S;l«: SMftMn-OM 20 POST-PROCESSING PHASE I
Bjl* Th* input «il» btpln«f.9tf2 «ucc»«m«ully
of blacks in «-dtr. . 10
of blacks in x-dir. - 1O
of ti«» *t«fm - 2O
S*t«*-*t»an« «nd pr«»«ur>« plotted «v«ry 10 tl«* «t«p»
Z-«Jti«? i n
PUOT OPTIONS —
!• « ••«^ di«or«« to b* e«n*r«t«d? i
2| H 6EOTRANS SOFTWARE
i
9| 1« : OMOJrLOM 20 POST -PROCESS I
-------
85
?f Data will b* read «or ti»e «t«t> IO
Tie* value - . 3456Oe»Oe Mcond*
Mater »atuvation data being re**d...
Data have been read, do you »a*>t to contour this data" ^"Y/N". : n
MMPL saturation data bei»»g, read ---
Data hav« b««o read, do >'Ou oant to contour th»» data? Y.'N : n
MAM. potential data being read...
Data hav« been read, do you want to contour this data" « n
Mater potential data "being rea«3...
Data have bean read, do rou M«nt to contour this data? : n
;14
GEOTR*WS SOFTWARE
S|I«: SMOtn.OM-20 POST-PfMX£SSIM6 PMASC I
6; l« : __________________________
8| 1* Data «i 1 1 be read «or- t>Mr - . ep 2O
Ti«e value « .691206*06 >econd«
Hater »«turation data bvinq reaid. ..
Data have been read, do you want to contour this data? < n
MAPI. «atur«tion data being read ---
Data have been read, do you want to contour thi« data? | n
NAPL potential data being read...
Data have; been read, do you want to contour this data? | n
Mater potential data being rea«3...
Oat* have been read, do you war»t to contour thtm data? > n
-------
86
6COTRANS SOFTWARE
Data read for 11 .ob-sarvation point*
SMONFLOM-ZO POST-PROCESSING PHASE i
Do you want to plot graph-m for any point*"1 : y
Enter timr serte* plot file nanes tiaesoT.neM
Seal* NAPl. and water potentials'? : n
Scale tie* data? i n
Enter width of plot border- (incn**>
or a -l.O to urn* default* Character sicvst -1.
Do you want a graph for block ( 1 1) ? y
Braph water potential? s y
Enter a SS character- title* for *hi« graph: Water Potential
Enter a 39 character X-axis labs'! i tia* , second*
Enter a 33 character Y-ax»s Iab4»l: Potential
Enter a syofeol tiuabsn for «r*« in thi« graph i I
Graph MAPI, potential? i y
Enter a 33 character title) for tni« grapht MAPI Potential Cl,l>
Enter a 33 character X-axis labaili Ti»e • second*
Enter a 33 character Y-axis labe>li Potential
Enter a syafeol nuaoer for w«e in thi» graph i 2
Sraph water saturation? < y
Enter a 33 character title? for ttii* graph* Mater Saturation
Enter a 33 character X-axie. lab«li Tie» . «econO'»
Enter a 33 character y-anim lab«l< Saturateon
Enter a syabol nuefter for uce in thic graph: I
Graph MAPI, saturation'f j y
Enter a 33 character titlor for this graph t MAPI Potential
Enter a 33 character X-axie. lab«ii Ti*e , socondm
Enter a 35 character V-a«i« labvlt Maturation
Enter a myatool ouaher for wee in thi« graphs 2
Do you want a graph for block ( 3 I) ? n
Do you want a graph for block ( 6 1) ? n
Do you want a graph for block < 1O 1) ? n
Do you want a graph for block I 4 4» ? y
Graph water potential? i y
Enter-
Enter
Enter
Enter
Enter
Enter
Enter
Enter
33 character title for this graphs Mater Potential «4«4>
33 character X-axis label i Ti«e , seconds
33 Character Y-axis labels Potential
syetool nuabsr for MS* in this graph i t
Cnter
Enter
Enter
Enter
Graph water saturation? i y
33 character title for this grapht MAPI. Potential <4,4>
33 character X-avis label * Ti«e , seconds
33 character Y-axis label: Potential
syoool nueber for «c»e in t.hi« grapht 2
33 character title for this graphf Mater Saturation (4,4)
33 character l-axis label i Tiae , «acor>ds
33 character Y-axis label • Saturation
«y«bol nuflber for usa in thi« grapht 1
Graph NAPL saturation? t y
33 Character title for this graphs NAPL Saturation (4,4)
39 character X-axis label; Tiae , seconds
33 character Y-axis label t Saturation
• /•tool nuflber for USMP in this graphs 2
-------
87
2jl« 66O7fi»NS SOFTWARE
3:1*
3;lf : SMANFLOW-rO POST -PROCESS ING
&i if :
•(!< Do you want a graph for block ( 3 3»
Do you »iar«t a graph tor block
Do you want a graph for block
Do you uant a graph for block
Do you want a graph for block
Do you want a graph for block
» 6> •? n
• 1) ? n
» 3> •> n
» 6> ? n
10 1O» ? y
water potential? <.r/n>i y
Enter a 35 character title for this graphs Water Potential : y
Enter a 35 character title for this graph i NAPL. Potential <1O,1O)
Enter a 35 character X-axa* labeli Tiae , seconds
Enter a 35 character Y-axas label: Potential
Enter a •yabol nuaber for- use in Utis graph: 2
Graph water saturation"* i y
Enter a 35 character title for this grapht Water Saturation (10, IO)
Enter a 35 character X-axis labeli Ti*e , seconds
Enter a 35 character Y-axis labels Saturation
Enter a syebol nuaber for* use in this graph! I
Graph NAPL. saturation? < y
Enter a 35 character title for this graph i NAPL Saturation (10,10)
Enter a 35 character x-ajras labelt Tiae , seconds
Enter a 35 character V-*xas labelt Saturation
Enter a eyebol nuabar for- use in ttiis graphi 2
Stop - Program terminated.
-------
88
2» If SEOTRANS SOFTWARE
3; If
3; If": SWANTUOW-50 PCST-FfW5CESSIN6 PHASE II - TIME SEMES
6; If : ______________________ ; __________________ __________________
8; If Enter- the naae of the input d*ta 4ile: ti«esdr.rt*«>
---- GRAPHICS OUTPUT OPTIONS ---
I " Oimpl*y on CRT only
'Z m Display on CRT th»o on Default Device
3 « O>«pl«y on O*f«ult Dwice directly
Enter- de-aired option: 2
Enter font «tyle
3»Triple*
: 1
2. If 6EOTRANS SOFTWARE
3,1*
3Slf : SMANFUM-SO POST-PROCESS I >e3 PHASE II - TIME SERIES
6t if :
8j If Axe« can Oe «c«le0 by utef or progreja
2 • program
t 2
0«t« H«ve be«n read for block I, 1
Do you want to complete the plot? ' y/H> y
FVOTB8 ERROR •« I UNPUOTTABCE VECTORS
PUJT88 ERROR «3 3 CXIPf^D VECTORS
REAOr TO OISPt-AV DRAWING.
Strike any key to continue. PLOT88 ERROR M 1 UNFxOT TABLE VECTORS
PUOT88 ERROR «3 2 CLIPPED VECTORS
-------
I
8
1
*•
8
8
8
8
8
Water Potential (1,1)
0.00 80.00 16O.OO J4OOO J2O.OO 40O.OO 4IO.OO
1lm« , ftcondi «10*
sao.oo
A4O.OO 720.00
80000
-------
90
2J7.1|14
2;1« 6EOTRANS SOFTWARE
3ll«
O»4; 14 :
*
3jl«: SWAI«a-OM-3O POST -PROCESS I NO PHASE II - TIfC SERIES
6» 14 : __________________
b««n r«*tt 4 or block 1. 1
Oe> you ~*ot to co<*pl«te tH« plot? -'V/N- y
ae ER«OR «M i UMPUOTTABLE VECTORS
pcoree ERROR «s 2 CLIPPED VECTORS
READY TO DISPLAY ORAUIMB.
Strik» any k*y to continu*. PLOT8C ERROR «4 1 UNPUOTTA8UE VECTORS
PLOT8S ERROR «3 2 O.IPPCD VECTORS
-------
8
S
8
as
8
8
f
8
8
NAPL Potential (1,1)
it
18OOO 24OOO
0.00
80.00
iTOOO 400.00 4SOOO
Tim* . seconds *10*
MO.OO 640.00 770.00 AOO.OO
-------
92
2; If 6EOTRANS SOFTWARE
3:i«
«>••» ; 1 * I
3;1«: S»*A»*T-OW-3CO POST-*>ROCESSING PHASE II - TIME SERIES
65 »« : ________________________________________
O«t« h*v» b»^i !-•««» «or block 1. 1
Do you w*nt to coapl*t« tN« plof y
READY TO DISPLAY DRAMllC.
Strik* *ny kvy to continue.
-------
Water Saturation (1,1)
o-
o-
s
s
o
o-
0.00 80.00
160.00 24O.OO J7OOO 400.00 460.00 900.00 f^O.OO 77O.OO BOO. 00
Time . Mcondi »10*
-------
94
2J7«1( If
2|14 6EOTRANS SOFTWARE
3»1«! SWANFLOU-3D *=OST -PROCESS INC PHASE II - TIME SERIES
6; »« :
D*t* K«v* b»«m r**d for block I, t
Do you want to coaplvt* t»*« plot" y
REAOV TO DISPLAY DRAMINS.
St»-»k» «ny k*y to continue.
-------
95
2J7«U|lf
2|t« OEOTRAHS SOFTWARE
3»l«i SWANFLOM-3D POST-fWJCESS I NG PHASE II - TIME SERIES
6) 1*1 _______________________________
D«ta h*v« b««n r»«d for bloc^ 4, 4
Do ytXl M*nt to coopl^tw th» plot? y
REAOY TO OISPVAr ORAHINB.
Strik* any k»y to continue.
-------
0.00
Water Saturation (4,4)
80.00 taaoo 24000 320.00 *oooo 4».oo
Urn* . Mcondt »\
-------
97
2J7mltU
2, H GEOTRANS SOFTWARE
0*4: 1« :
S;lf! SWANFLOW-3D POST-PROCESSING PHASE II - TIME SERIES
6s if : ________________________________________________________
D«ta ha^c been read for block 4, 4
Do you Mnt to complete the plot? y
READY TO DISPLAY ORAWIN8.
Strike any key to continue.
-------
8
0-
8
d-
NAPL Saturation (4,4)
A A A-
0.00
80.00 160.00 240.00
i»00 400.00 480.00 MOOO MO 00 72O.OO 80O.OO
Urn* . Mcond* »10*
-------
99
ORNL-6320
INTERNAL DISTRIBUTION
1. C. F. Baes III 12. C. C. Travis
2. B. A. Berven 13. Ebrihin Uslu
3. I. J. Bledsoe 14. P. J. Walsh
4. R. 0. Chester IS. M. G. Yalclntas
5. N. Cutshall 16. ORNL Central Research Library
6. D. B. Fields 17. Y-12 Technical Library
7. F. 0. Hoffaan 18. ORNL Patent Section
8. J. T. Boldeaan 19-20. Laboratory Records Department
9. C. A. Little 21. Laboratory Records, ORNL-RC
10. B. D. Murphy 22. RSIC Library
11. J. B. Nyquist
EXTERNAL DISTRIBUTION
23-24. Annette Hold. TS-798, US-EPA, Washington, DC 20460
25-26. Rus« Kinnerson. TS-798, US-EPA. Washington. DC 20460
27. Dr. Lee M. Hively. ER-S41, CTN. U.S. Dept. of Energy,
Washington. DC 20545
28. Office of Assistant Manager, Energy Research and Development.
DOE-ORO. Oak Ridge. TN 37831
29. Jaaes 0. Ruabaugh. CEO-TRANS. Inc., 209 Elder Street, Suite 301,
Berndon, VA 22070
30-31. U.S. Department of Energy. Technical Inforaation Center. Office
of Inforaation Services. P.O. Box 62. Oak Ridge, TN 37831
------- |