Facsimile
    Report
  R
  produced by
 UN/TED
DEPARTMENT OF ENERGY
         STATES
 Office of Scientific and Technical Information
Post Office Box 62      Oak Ridge, Tennessee 37831

-------
on\l
ORNL-6320
OAK RIDGE
NATIONAL
LABORATORY
                        Instructions for Applying the
                         Microcomputer Version of
                           SWANFLOW-2D on an
                          IBM Personal Computer
                                J. LBedsoe
                                D. E. Fields
OPFRATfO BY
MARTIN MARlfTTA ENERGY SYSTEMS INC
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

-------
     Printed in the United States of America. Available from
             National Technical Information Service
                 U.S. Department of Commerce
        5285 Port Royal Road. Springfield, Virginia 22161
     NTIS price codes—Printed Copy: A06; Microfiche A01
This report was prepared as an account of wort sponsored by an agency of the
United StatesGovenunent NeithertheUrritedStatesGovenunentrorany agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility tor the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
repreaents that its use would not infringe privatty owned rights. Reference herein
to any specific commercial product process, or service by trade name, trademark.
manufacturer, or otherwise, does  not  necessarily constitute or imply  its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the UnitsdStatas Government or any agency

-------
                                       ORNL—6320

                                       DE87  012004
   HEALTH AND SAFETY RESEARCH DIVISION
      Instructions for Applying  the
   Microcomputer Version of SVANFLOV-2D
       on an IBM Personal Computer
              J.  L.  Bledsoe
               D. E. Fields
 Computing and Teleconunieations Division
     Date published:
             Prepared for die
   U.S. Environmental Protection Agency
under Interagency Agreement No.  40-1565-85
             Prepared by the
      Oak Ridge Rational Laboratory
       Oak Ridge, Tennessee  37831
               operated  by
   MARTIN MARIETTA ENERGY SYSTEMS, INC.
                 for the
        U.S.  DEPARTMENT  OF ENERGY
   under Contract No. DE-AC05-840R21400

-------
                                CONTENTS


ABSTRACT	iv

LIST OF FIGURES	v

1.  INTRODUCTION  	  1

2.  INSTALLATION  OF SWANFLOW-2D AND ASSOCIATED PROGRAMS	7

3.  SWANFLOW-2D	13

    3.1  USAGE	13
    3.2  CODE INFORMATION	33

4.  EXAMPLES OF STANDARD PROBLEMS	35

5.  SWANEDIT (PREPROCESSOR)	49

6.  SUANGRAF (POSTPROCESSOR)	59

    6.1  FDGRID	60
    6.2  CONTOUR	60
    6.3  GRAPH	62

References	63

Appendix A.  MESH GENERATION FOR ONE-DIMENSION EXAMPLE	65

Appendix B.  COMPLETE SUANGRAF EXECUTION TO GENERATE
             CONTOUR PLOT	71

Appendix C.  SUANGRAF TIME SERIES GENERATION EXAMPLE	83
                                   ill

-------
                            LIST OF FIGURES


Figure

   1      Schematic diagram  of the SUANFLOW system	    2

   2      SWANGRAF output device options	    9

   3      Data set IPNAF.SD2	15

   4      Monitor output for test run using data set IPNAF.SD2 ...   17

   5      Sasple output obtained using  input data set IPNAF.SD2  .  .   18

   6      Listing of SWAN.VAR input to  SWANEDIT	50

   7      SWANEDIT execution for error  checking sample data
          IPKAF.TST	54

   8      Saaple plot for IPNAF.SD2 mesh	61
                                 iv

-------
                                ABSTRACT








     SVANFLOV-2D (Simultaneous Water,  Air, and Nonaqueous Phase Flow)




(Faust and Rumbaugh, 1986) is a tvo- dimensional finite-difference code




that simulates the flow of water and an immiscible nonaqueous-phase




liquid (NAPL) within and below the vadose zone, that region in the earth




above pemanent groundwater level.  The microcomputer version of this




FORTRAN-77 code is for an IBM-PC or IBM-AT.  User flexibility in




building or editing datasecs is provided by SWANEDIT, the problem sets




are executed using SVANFL0V-2D, and postprocessing of results to yield a




graphical interpretation is done with StfANGRAF.






This report is intended to provide the new user of the SVANFLOV package




of codes (SWANEDIT. SUAKFLOW-2D, and SVABGRAF) with docunentation that




will assist bin In this task.

-------
                            1.  INTRODUCTION
     SVANFLOU-2D (Simultaneous Water. Air. and Nonaqueous Phase Flow)
 (Faust and Rumbaugh, 1986) is a two-dimensional,  finite-difference code
 for simulating the  flow of water and an immiscible nonaqueous-phase
 liquid (NAPL)  under conditions of saturation and no saturation in the
 vadose zone.   SVANFLOV-2D is based on a 3D version of the code developed
 for the U.S. Environmental Protection Agency (Faust and Rumbaugh, 1985).
 The SWANFLOU-2D set of programs (Fig. 1) can be used in scenarios
 involving

.  1.  analysis  of nonnixing flow, similar to that in migrating organic
     chemicals.

  2.  analysis  of effects resulting from the application of remedial
     techniques to  hazardous waste sites, and

  2.  evaluation of  the migration and removal of fuel spills and leaks.
     These scenarios are considered and the SVANFLOW-2D and -3D codes
 are benchmarked in  a separate report (Fields and Bledsoe, in review).
 Most modellers and  users of SVANFL00-2D should have backgrounds in
 physics and hydrogeology.  These prerequisites, coupled with an
 understanding  of the microcomputer system to be used, should permit
 smooth and efficient operation of the system.  The developers of
 SVANFLOW-2D. GeoTrans, Inc., have published a document (Faust and
 Rumbaugh, 1986) describing applications of this code.  They explain that
 three categories of modelling geometries are available for the user:

  1.  one-dimensional Cartesian coordinates,

  2.  two-dimensional Cartesian coordinates in a horizontal plane, and

-------
                                          ORNL-DWG 86-17585
                        \
  SWANEOIT
PREPROCESSOR
\
                            SWANFLOW2D
                             INPUT DATA
                            \SWANFLOW-2D \
                           MODEL EXECUTION \

1
OUTPUT
FILE FOR
PLOTTING
V J




r ' -1
OUTPUT
FILE FOR
RESTART
C J


<• ^v
OUTPUT
FILE
(GENERAL)
L. J
\SWANGRAF \
POSTPROCESSOR \








FDGRID \

CONTOUR \

GRAPH \
Fig.  1.  Schematic diagram of the SWANFLOW system (Faust and Rumbaugh,  1986)

-------
 3.  two-dimensional Cartesian coordinates in a vertical plane.
     Conservation equations for mass and momentum of water, gas  (air).
and an NAPL  are reduced to yield coupled nonlinear partial differential
equations.   This reduction of complexity is based on similar assumptions
in the Richards equation (i.e. ,  pressure gradients in the gas phase are
assumed neglible).  Gas pi assure is the same as atmospheric pressure and
is considered constant.  The space and time distributions of NAPL
pressure and water saturation are determined by this model.
     A mathematical description of each phase of fluid flow in a porous
medium is basically the conservation equations for mass and momentum:
                        ']
                        a(*P,sw)
(VPW - pwgv0)'  -   •
                                     3<"Bsn>
where the capillary pressure, pc  , is defined as Che difference between
                                ov
the pressures in the NAPL and water.
     Six additional relationships, which are necessary for completion of
the mathematical model, apply to Che density/viscosity assumption.

-------
These are:






        k   - f. (S )
         pw    1 v w'





        k   - f. (S .S )
         pn    2   w' a7





        pc   - f, (S )
        *nw    3   w





        S  - f. (p )
         a    4  *n





        ^ - f c (P )
             3   u




        s  + s  •+ s  - i
         n    w    a




Relative permeabilities are depicted in the equations  for k.  Capillary


pressure is related by the equation for pc   .  Linear compressibility
                                          0V

is 4.


     Further assumptions in the model include the  following.






 1.  Pressure in the gas phase is  constant and equal to atmospheric


     pressure.






 2.  Viscosities of water and NAPL are pressure independent.






 3.  Densities of water and NAPL are pressure independent.






 4.  Relative permeability of water is a function  of water saturation.






 5.  Relative permeability of HAPL is a function of air and water


     saturations.






 6.  Capillary pressure is a function of water saturation.






 7.  Air saturation is a function  of NAPL pressure.

-------
 8.  Porosity is & linear function of pressure.

 9.  Flow is in a porous medium.

10.  Darcy's equation for multiple-phase flow is valid.

11.  Intrinsic permeability is a  function of space.

12.  No transfer of nass between  phases occurs (e.g., NAPL cannot
     dissolve in water) .

13.  Flow is two-dinensional (i.e.,  gradients in Che third'dimension are
     negligible).

-------
         2.  INSTALLATION OF SWANFLOW-2D AND ASSOCIATED PROGRAMS
      After receiving a copy  of the  SUANFLOW system of programs,  the user
 should nake backup copies of all  diskettes.  A disk operating system
 (DOS) Bust be resident in the random access memory (RAM) .   If your
 IBM/PC system has two disk drives,  place  the program diskette in drive
 A.   Typically,  drive B should contain a blank, formatted diskette.
 Output from SUANFLOW-2D can  require much  storage space.
      If your microcomputer has a  hard disk,  all prograns and
 input/output files can be stored  conveniently  on this drive.   On the IBM
 PC/AT, SUANFLOV-2D requires  640K  of RAM.  and the 80287 Bath coprocessor
 chip Bust be installed.  Array sizes may  be reduced and Che code may be
 recompiled Co run in less than 640  K if necessary.  For an  IBM PC or
 PC/XT, an 8087  math coprocessor chip must be installed.
      The SVANEDIT disk contains two files.  SWANEDIT.EXE and SUAN.VAR.
 The  SWANGRAF package consists  of  Che files  INSTALL.EXE, SUANGRAF.EXE,
 CONTOUR.EXE.  GRAPH.EXE, and  FDGRID.EXE (see  Fig. 1).   The SWANFLOW-2D
 programs are scored on the diskette in Che  fora of Che source  code (in
 three segment files.  SVAN2-1.  SVAN2-2,  SWAN2-3) along with  SVAN2D.EXE,
 Che  executable version of the  corte.  Sanple  data sets are also included:
 IPNAF.SD1.  IPNAF.SD2.  IPNAF.SD4,  IPNAF.SAT.  and IPNAF.WRR.  These data
 sees represenC a  standard sec  of  scenarios for modelling with  SWANFLOU-
 20;  they should be  used to gain familiarity  with the  simulation  system.
 Code application  using these datasets is discussed in a separate report
 (Fields and Bledsoe,  in review).
      System installation occurs in  several stages.  Loading copies of
 Che  distribution  files onto Che hard disk or drive A  is Che first stage.
Next, job control files must be generated from some of Che *.EXE files.
      SVANEDIT run)  under PC-DOS 2.0 or  higher.   Boot  your system with
 Che  file CONFIG.SYS on the boot disk.  The CONFIG.SYS file should
contain a line vxCh DEVICE-ANSI.SYS and any other commands required for
 Che  host microcomputer.   SVANGRAF is installed by typing INSTALL
 and  responding to the subsequent prompts for choices  from a
menu of default graphics, output device,  and port options.   Choose a
line-printer  option from LPT1, LPT2, or LPT3.  COM1 and COM2 represent

-------
serial pores  where a plotter or  laser Jet printer is usually installed.
Figure 2 shows output device options for SUANGRAF execution.  In this
figure, user  responses are prefixed by colons.
     Next,  choose the serial port settings that correspond to COM1 or
COM2.  These  settings include baud rate, parity, number of data bits.
and nunber  of stop bits.  Baud rates for the setup range from 300 to
9600 vith odd,  even, or no parity options.  The number of data bits can
be 8 or 7,  and the stop bits moist be 1.  The manuals for individual
devices should contain information to answer any remaining questions
about the settings (see Fig. 2).
     Finally,  the INSTALL progran will prompt the user for the type of
device, printer,  or plotter.  To use the HP2686A Laser Jet printer,
choose the  plotter option.  When the program asks for the printer or
plotter to  be used,  choose Che device that will be used most often.  If
a secondary device is to be used, the INSTALL progran will have to be
run more than once.
     INSTALL will create a file name SVANGRAF.DEV.  If a two-drive
system or a default  drive is being used, this file Bust be placed on
drive A.  The SVANGRAF program FDGRID. CONTOUR, and GRAPH require the
settings for the  output device.   If more than one device is needed,
rename the  SVANGRAF.OEV file and rerun INSTALL.EXE.

-------
                   SWANGRAF
   INSTALLATION OF OUTPUT DEVICE PARAMETERS
              	Port Type	

              1 = LPT1 (Printer)
              2 = LPT2 (Printer)
              3 = LPT3 (Printer)
              4 = COH1 (Plotters)
              5 = COM2 (Plotters)

    Select Port For Output Device: 1

  Enter type of device:
 0 s Printer
 1 = Plotter or Laser Jet
 0
                    PRINTERS

  VALUE                   DEVICE
    0       Epson FX-80, single density (MX.RX)
    1       Epson FX-80, double density (MX.RX.Oki 92,IBM)
    2       Epson FX-80, double speed,dual density (MX,RX)
    3       Epson FX-80, quad density (MX.RX)
    4       Epson FX-80, CRT graphics I (RX)
    5       Epson FX-80, plotter graphics
    6       Epson FX-80, CRT graphics II (RX)
   10       Epson FX-100, single density
   11       FX-100, double density (LQ1500.MX-100.Oki 93)
   12       Epson FX-100, double speed, dual density
   13       Epson FX-100, quad density
   14       Epson FX-100, CRT graphics I
   15       Epson FX-100, plotter graphics
   16       Epson FX-100, CRT graphics II

Enter Appropriate Value: 0


           Fig. 2.  SWANGRAF output device options.

-------
10
•M S W A N 6 R A
INSTALLATION OF OUTPUT DEVICE
	 Port Type 	
1 = LPT1 (Printer)
2 = LPT2 (Printer)
3 = LPT3 (Printer)
4 = COM1 (Plotters)
5 = COM2 (Plotters)
Select Port For Output Device
F
PARAMETERS


: 4





'•I 	 SERIAL PORT CONFIGURATION 	
VALUE BAUD RATE PARITY DATA BITS
300 300 N
3O1 3OO 0
307 3OO E
1200 1200 N
J2O1 1200 0
1202 1200 E
4SOO 4800 N
48O1 4800 0
48O2 480O E
96OO 9600 N
9*0 J 960O 0
96O2 960O E
8
7
7
8
7
7
8
7
7
8
7
7
STOP BITS
1
1
1
1
1
1
1
1
1
1
1
1
Select Appropriate Value Above: 9666
'•"I Enter type o-f device:
O = Printer
1 =• Plotter or Laser Jet
i i
Fig. 2. (Continued)



-------
                         PLOTTERS

      VALUE                   DEVICE
       2O      HP 7470A
       30      HP 7475A
       ?1      HI DMP-51 MP  or  DMP-52 MP - O.OO1 step size
       52      HI DMP-51 MP  or  DMP-52 MP - O.OO5 step size

       60      HP2686A Laser Jet - 8.5 x 11 - 75 dpi
       61      HP2686A Laser Jet - 7.2 x 10.1 - 75 dpi
       62      HR2686A Laser Jet - 8.5 x 11 - ISO dpi
       63      HP2686A Laser Jet - 7.2 x 1O. 1 - 150 dpi
       64      HP2686A Laser Jet - 8.5 x 11 - 300 dpi
       65      HP2686A Laser Jet - 7.2 x 10.1 - 3OO dpi

       80      HF7580B,7585B,7586B - A/A4 to D/A1 paper
               HP7550A             - A/A4 to B/A3 paper

       R5      HP7585B,7586B       - £/AO paper

     Enter Appropriate Value: 60

7.1
Stop  - Frooram terminated.
                     Fig. 2.  (Continued)

-------
                                   13
                            3.   SWANFLOU-2D
 3.1  USAGE

     Once all  the  files are loaded  into the nicrocomputer, the user
 should test bis  ability on soae of  the included test data.  The "five-
 spof problem  (data set IPNAF.SD2.  listed in Fig. 3) is  suggested for
 initial testing.   To initiate the execution of SWAN2D, type swan2d
 .  Figure  4 shows the information that will appear on the
 nonitor screen and the contents of  the output file, OPNAF.GD2.  As shown
 in the staple  run  (see Fig. 5). the program will prompt  the user for the
 file names of  the  appropriate input, output, and plot files.  The input
 and output files are sequential ASCII files that the user can examine
 and edit.  The plot file that is generated as a result of program
 execution is a binary file.
     The setup of  the "five-spot' data example (see Fig. 3) indicates
 that plotting  is to occur (variable IPLOT-1) and that observation blocks
 are to be generated (IOBS-1).  This is necessary for generating the time
 series plots for any cell of the respective grid.  These time series -are
 generated for  the  potentials (pressures) and saturations of both water
 and NAPL.
     When tisw series plots are required,  the user must further alter
 the basic "five-spot* data to indicate the number of cells that will
plot data,  NOBS.   The column number of observation block I, KXOBS(I) .
and the layer number of observation block I, NZOBS(I),  must be repeated
 in pairs for each  of the observation blocks requested (cells). (See
sample output: data IPNAF.GD2.)
     The SVANFLOV-2D code was run on the IBH/PC-AT for "no plotting" and
"plotting"  modes.  The code usually took longer to perform a "plotting"
run.   Table 1 compares wall-clock times for the two types of executions.
In addition to the longer time requirements,  the "plotting" mode also
requires more space.   Output plot files require large chunks of memory
(i.e.,  files  of over 5 kilobytes).   The PLOTWORKS,  Inc.,  software that
is incorporated into SVANGRAF uses  scratch space.   If the execution of a
SWANFLOW run  is incomplete,  this scratch space  is  evidenced by the

-------
                                     14
         Execution Times for SUANFLOW-2D Code on IBM/PCAT Microcomputer
Dataset
Naae
IPHAT.SD1
IPNAF.GD1
IPNAF.SD2
IPNAF.GD2
IPNAF.SD4
IPNAF.GD4
IPNAF.SAT
IPNAF.GSA
IPNAF.VRR
IPNAF.GWR
Number
Problem Iterations
Buckley -Leverett 1-D Water Flood
Buckley -Leverett 1-D Water Flood (G)
Five -Spot Problem *2
Five -Spot Problea #2 (G)
AOL Three Layer
ADL Three Layer (G)
Saturn Benchaark
Saturn Benchmark (G)
Sat-Unsat 2-D vith BAPL
Sat-Unsat 2-D vith RAPL (G)
20
20
20
20
20
20
17
17
10
10
Wall Clock Time
(Duration in m:s
1:23
1:53
9:31
10:30
1:43
2:00
A. -41
7:27
3:23
4:09
      The label (G) denotes selection of the graphics option; i.e., a  data set
has been written for subsequent plotting.

-------
                                     15
          PROBLEM ... TEST PROBLEM »2
A FFB 1984
SD2
            1O           tO            2
            10            O            0
   3.04BOOOE-OO1  2.000OOOE-001          .OOOOOOO
       1OOO.OOOOOOO  1.OOOOOOE-O03  4.0OOOOOC-O03
           .OOOOOOO
             1
            28
      7170S.OOOOOOO -4.OOOOOOE-OO2
                                                 43
                                                  1
                          20
                           1
                  1OOO.OOOOOOO
                      .OOOOOOO
            100
              0
      6B93O.OOOOOOO
      66 192. OOOOOOO
      63434. OOOOOOO
      6O676. OOOOOOO
      37*18. OOOOOOO
      S316O. OOOOOOO
      32402. OOOOOOO
      49644. OOOOOOO
      46886. OOOOOOO
      44128. OOOOOOO
      4137O. OOOOOOO
        .12.0000000
          ».OOOOOOO
      33O96. OOOOOOO
      3O338. OOOOOOO
      27S8O. OOOOOOO
      24622. OOOOOOO
      22O64. OOOOOOO
      193O6. OOOOOOO
      I6S48. OOOOOOO
      1379O. OOOOOOO
      11022. OOOOOOO
      K274.OOOOOOO
      S516.OOOOOOO
      2738.0000000
           .OOOOOOO
      -2738. OOOOOOO
                           .OOOOOOO
                  4.OOOOOOE-O02  1.
                  8.000000E-002  6.
                  1.2OOOOOE-OO1  1.
                  1.600OOOE-O01  2.
                  2.000000E-001  4.
                  2.400OOOE-OO1  3.
                  2.8OOOOOE-OO1  7.
                  3.2000OOE-O01  1.
                  3.6OOOOOE-OO1  1.
                  4. OOOOOOE-OOl  1.
                  4.4OOOOOE-O01  1.
                  4.8OOOOOE-OO1  2.
                  3.200000E-001  2.
                  3.600000E-001  3.
                  «. OOOOOOE-OOl  3.
                  6.4OOOOOE-OO1  4.
                  6.8OOOOOE-OO1  4.
                  7.2000OOE-OO1  3.
                  7.6OOOOOE-OO1  3.
                  8.OOOOOOE-OOl  6.
                  8.400000E-001  7.
                  8. BOOOOOC-001  7.
                  9.2OOOOOE-OO1  8.
                  9.600000E-001  9.
                          1.0000000
                          1.04OOOOO
          2  l.OOOOOOC-003
   -2T38.OOOOOOO          1.OOOOOOO
        .OOOOOOO          .OOOOOOO
          1
1.600000E-013  1.600000C-013
      .OOOOOOO         1.OOOOOOO
          .OOOOOOO         1.OOOOOOO
6OOOOOE-OO3  9.216OOOC-001
4OOOOOE-OO3  8.464OOOC-O01
440OOOC-OO2  7.744OOOE-O01
S60OOOE-OO2  7.O36OOOE-O01
OOOOOOC-OO2  6.4OOOOOC-O01
7AOOOOE-OC2  3. 776OOOE-OO1
840000E-O02  3.184OOOE-001
O24OOOE-OOI   4.624OOOE-O01
29*0006-001   4.096000E-001
60OOOOE-OO1   3.6OOOOOE-O01
936COOE-OO1   3.136OOOE-001
3O4OOOE-OO1   2.7O4OOOE-O01
7O4OOOC-OO1   2.3O4OOOE-O01
136OOOE-OO1   1.736OOOE-O01
6OOOOOE-OO1   1.4OOOOOE-O01
09AOOOC-OO1   1.296OOOC-001
624OOOE-OO1   1.024OOOE-OO1
184OOOE-OO1   7.B4OOOOE-O02
776000E-001   3.76OOOOC-002
400000C-OOr  4.0OOOOOE-002
036000E-001   2.S60000E-002
7440OOE-OO1   1.44OOOOE-O02
464OOCE-OO1   6.4OOOOOE-003
2t«OOOE-O01   1.6OOOOOE-003
        1.0000000
        1.OOOOOOO

         .OOOOOOO
         .OOOOOOO
.OOOOOOO
.OOOOOOO

.OOOOOOO
.OOOOOOO
                       Fig.  3.   Data  set IPNAF.SD2.

-------
                                     16
  I.1QOOOOC-OOI  1.0OOOOOE-OO7   IOOOOOO. OOOOOOO
       30.48OOOOO        3O.4800000        SO.48OOOOO        30.48OOOOO
       30.48OOOOO        3O.48OOOOO        30.480OOOO        30.48OOOOO
       3O.48OOOOO        3O.48OOOOO
       3O.48OOOOO        3O.480OOOO        30.48OOOOO        30.«8OOOOO
       30.4800000        30.4800000        3O.48OOOOO        30.48OOOOO
       3O.48OOOOO        3O.480OOOO
            t
            111
    II
1.1. X. I. «. 1. 1O.1,4,4,3,3, 6.6, 9, 1,9,3, 9, 6.1O.1O
            1           II           21           31           41           31
-          Al           71           81           91
            2           12           22           32           42           32
          A2           72           82           92
            3           13           23           33           43           33
          *3           73           83           93
            4           14           24           34           44         '  34
          *4           74           84           94
            3           13           23           33           43           33
          *3           73           83           93
            A           16           26           36           46           36
          **           76           86           96
            7           17           27           37           47           37
          *7           77           87           97
            e           18           28           38           48           SB
          «*           78           88           98
            9           19           29           39           49           39
          4*9           79           89           99
          1O           2O           SO           4O           SO           «O
          7O           80           9O          tOO
            O
   IOOOOOO.OOOOOOO  I.OOOOOOE-003
   34.VOOO.OOOOOOO  3436OOO.OOOOOOO  3. OOOOOOE-OO1         l.OOOOOOO
  ^.4S6000E«008           2            1
            1            1   6.333OOOE-OO3         l.OOOOOOO
          tO           10 -6.353OOOE-OO3          .OOOOOOO
         .0000000          .OOOOOOO          .OOOOOOO          .OOOOOOO
         .OOOOOOO            1            0
                           Fig.  3.   (Continued)

-------
                                     17
                              SWANFLOM-ZD

                Simultaneous Uat«r and  NAPL FUOH  in  TMO Dimension*

                                   Version t.O
                                  June  17, 19B6

                                  G*oTr«nm, Inc.
                                   HerrxJon, VA
Enter tN» inout file na»e: ipnal.QtCZ
Fn»«sr tn>« output 41 !• n«««t apnaf .
                    •«•*• FILE EXISTS,  OVERWRITE  IT?  |  y
      the plot *il« na«wi plgd2
•»••• STARTING CALCULATIONS •••

BERIWING TIME STEP   1
(C6TNNIMB TIME STEP   2
BE6IM4IMB TIME STEP   3
BEGINNING TIME STEP   4
K6INNIN6 TIME STEP   3
BFGTNNIMG TIME STEP   6
FCB INNING TIME STEP   7
RESINNING TIME STEP   8
BEGINNING TIME STEP   9
BEGINNING TIME STEP  1O
BEGINNING TIME STEP  11
RESINNING TIME STEP  12
BEGINNING TIME STEP  13
RESINNING TIME STEP  14
BEGINNING TIME STEP  IS
BEGINNING TIME STEP  16
BEGINNING TIME STEP  17
BEGINNING TIME STEP  18
BEGINNING TIME STEP  19
BEGINNING TIME STEP  2O
Stoo — Program terminated.

B:\>
     Fig.  4.  Monitor output for test  run using  data  set IPNAF.SD2.

-------
                                      18
                                                                      •••••••••*•
                               SWANFLOW-2D

                 Si*ultan»ou« Water and  NAPL FLOW in  TMO Dim«n«ionc

                                    Written byi

                                  G«oTran«, Inc.
                                   2O9 Eld*n St.
                                     Suit* 3O1
                                    Horndon, VA

                                     ••»»>»**»••«-»••-»»••»*•»«»»**••••*»»»»«•»•••«
FIVE-SPOT PROBLEM	TEST PROBLEM »2
          DATE	A FES 1984
RUN NO	502
     NUMBER Of BLOCKS IN THE X-DIRECTION (COLUMNS)
     NUMBER OF BLOCKS IN THE Z-DIRECTION (LAYERS)
     MAXIMUM OF MEWTON-RAPHSON ITERATIONS
     MAXIMUM BANDWIDTH
     MAXIMUM NUMBER OF TIME STEPS
     NUMBER OF ACTIVE GRID BLOCKS
     NUMBER OF TIME STEPS BETWEEN PRINTOUTS
     PRINT NAPL AND WATER POTENTIALS?  <«-YES)
     PRINT DETAILED KR TABLES?         (1-YES)
     WRITE A PLOT FILE?                <1»YES)
     NUMBER OF OBSERVATION BLOCKS
     WRITE A RESTART FILE?             < 1-YES)
      10
      10
      2
      43
      20
     100
      10
      O
      O
      1
      1
      O
     GRID BLOCK THICKNESS  (DY>
     MASS BALANCE TOLERANCE FOR NCWTON-RAPHSON  IT.
     INITIAL TIME VALUE
     WATER DENSITY
     NAPL DENSITY
     WATER VISCOSITY
     NAPL VISCOSITY
     GRAVITATIONAL CONSTANT IN THE Z-DIRECT I ON
     GRAVITATIONAL CONSTANT IN THE X-DIRECT I ON
     .3O48O
     .20000
     .00000
     1OOO.O
     1OOO.O
     . 100OOE-02
     .4OOOOE-O2
     .OOOOO
     .OOOOO
     Fig.  5.  Sample  output obtained  using input data set IPNAF.SD2.

-------
                                19
                                           1  Pc-Kr  TABLES HILL BE  READ
          »»••**»*•»  TABLE  NUMBER
NAPL-WATER CAP.
   PRESSURE
717OG.
60990.
66192.
63434.
6O676.
57918.
SS16O.
324O2.
49644.
46886.
44128.
41370.
38612.
33834.
33O96.
3O338.
27580.
24822.
22O64.
193O6.
16S48.
13790.
11032.
 8274.
 SS16.
 2738.

-2738!
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
  WATER
SATURATION

   -.O4OOO
    .ooooo
    .040OO
    .oeooo
    .12000
    .16OOO
    .20000
    .24000
    .28OOO
    .320OO
    .36OOO
    .4OOOO
    .44OOO
    .48OOO
    .32000
    .36OOO
    .6OOOO
    .64OOO
    .68000
    .72000
    .760OO
    .90000
    .84OOO
    .88000
    .92OOO
    .960OO
   1.00000
   1.O4OOO
RELATIVE PERM.
    WATER

      .OOOOO
      .OOOOO
      .0016O
      .O064O
      .O144O
      .02S6O
      .O4OOO
      .O376O
      .O784O
      .10240
      .12960
      .16OOO
      .1936O
      .23040
      .27O40
      .3136O
      .36OOO
      .40960
      .46240
      .31B4O
      .3776O
      .64OOO
      .70360
      .7744O
      .8464O
      .9216O
     1.OOOOO
     1.OOOOO
RELATIVE PCRn.
     NAPL

     1.OOOOO
     1.OOOOO
      .92160
      .84640
      .77440
      .70360
      .64OOO
      .37760
      .3184O
      .46240
      .4096O
      .36000
      .31360
      .27040
      .23040
      .19360
      .16OOO
      .12960
      .10240
      .07840
      .03760
      .04OOO
      .02360
      .01440
      .0064O
      .O0160
      .00000
      .OOOOO
AIR-MAPL SYSTEM — PC-KR TABLE NUMBER
NAPL KR AT RESIDUAL HATER SATURATION I
                                    .OO1OO
 AIR-NAPL CAP.
   PRESSURE

-2738.OOOOO
     .OOOOO
                AIR
            SATURATION

               1.OOOOO
                .OOOOO
               RELATIVE PERM.
                   NAPL

                     .OOOOO
                     .00000
                 RELATIVE PERM.
                      AIR

                       .OOOOO
                       .OOOOO
                       Fig.  5.   (Continued)

-------
                                      20
                                                I PERMEABILITY SETS HILL BE READ
 SET NUMBER     KX        KZ

        1  .16000E-12   . 16000E-1Z
                                                1 POROSITY SETS MILL BE READ
 SET NUMBER     REF. POROSITY  CC**>R£SSIBILITY  ft£F. PRESSURE

        1       .1OOOO           .10OOOE-O6       . IOOOOE*O7
                                             8RID BLOCK SPflCINBS IN THE X-DIRECT
ION
    30.480      30.480      30.48O       30.480      3O.48O       30.480      3O.4
SO      30.4SO      3O.480      3O.48O
                                             6RIO BLOCK SPAC INGS IN THE 2-DIRECT
ION
    3O.48O      30.48O      30.48O      30.480      3O.48O       30.480      3O.4
8O      30.4BO      3O.480      3O. 48O
                                              THERE ARC     1  PROPERTY COM8INATIO
N SETS
     SET NUMBER     PC-KR TABLE   K CLASS   POROSITY CLASS

               lit             1
                            fit-  5.   (Continued)

-------
                                     21
                                             GRID BLOCK NUMBERS
                         X-OIRECTIQN  	>
  I AVER
  LAYER
  LAYER
  LAYER
  LAYER
  LAYER
  LAYER
  LAYER
  I AVER
  LAYER
 3
 4
 3
 6
 7
 e
 9
10
1
2
3
4
S
6
7
8
9
to
11
12
13
14
IS
16
17
IS
19
2O
21
22
23
24
23
26
27
28
29
30
31
32
33
34
35
36
37
3B
39
40
41
42
43
44
45
46
47
48
49
SO
SI
32
53
34
S3
36
37
38
39
6O
61  71  81
62  72  82
63  73  83
64  74  84
91
92
93
94
63  73  83  95
66  76  86  96
67  77  87  97
68  78  88  98
69  79  89  99
7O  BO  90 tOO
ASS
                                             ALL 6RID BLOCKS IN SAME PROPERTY d.
                                                  INITIAL CONDITION DATA
          UNIFORM INITIAL CONTITIONS
          PN »   . 1OOOOE+07
          SW E   . 1000OE-O2
                                                   RECURRENT DATA SET
                           Fig.  5.   (Continued)

-------
                                      22
     INITIAL TIME  STEP SIZE =
     MINIMUM TIME  STEP SIZE «   .3456OE+O7
     MAXIMUM WATER SATURATION CHANGE -    .SOOOO
     TIME STEP MULTIPLIER =     l.OOOO
     TIME TO READ  NEW RECURRENT DATA »    .34360E+09
     NUMBER OF SOURCE/SINK BLOCKS =      2
     CODE FOR CHANGING FUUX RATES =      1
     COLUMN NUMBER  LAVER NUMBER   TOTAL MASS FLUX   HATER FRACTION
             1
            10
    i
   10
 . 63330E-02
-.63330E-02
1.0000
.00000
   .34560E*O7
                                        STEP NUMBER -
                                                                    TIME VALUE
       CONSTANT PRCS
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
MATER BALANCE

  .OOOOO
  226SO.
 -24024.
 -6.0661
         NAPL BALANCE

           .00000
          -2269O.
           24024.
          -4.O661
       CONSTANT PRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
HATER BALANCE

  .OOOOO
  2265O.
 -22&5O.
 -.68381E-03
         NAPL BALANCE

           .OOOOO
          -22650.
           226SO.
          -.6838 IE-OS
07

03
           STEP NUMBER   1 COMPLETED
                     SIMULATION TIME IN SECONDS  .3*6E»

                                     IN MINUTES  .376C*

                                     IN HOURS    96O.

                                     IN DAYS     40.O

                                     IN YEARS    .110
                            Fig. 5.   (Continued)

-------
                                      23
                                   TIME STEP NUMBER  »
                                                                     TIME VALUE •
   .6912OE+O7
       CONSTANT  PRES
       SOURCE/SINKS
       STORAGE
       PER CENT  ERRG3
MATER  BALANCE

   .OOOOO
   226SO.
 -230*8.
 -1.7S6B
NAPL BALANCE

  .00000
 -22630.
  23048.
 -1.7568
       CONSTANT PRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
UATER BALANCE

  .OOOOO
  22650.
 -22663.
NAPL BALANCE

  .OOOOO
 -22630.
  22663.
 -.63393E-01
           STEP NUMBER   2 COMPLETED
07

06

O4
                     SIMULATION  TIME IN  SECONDS  .691E*

                                      IN  MINUTES  .USE*

                                      IN  HOURS    .192E*

                                      IN  DAYS     8O.O

                                      IN  YEARS    .219
                                   TIME STEP NUMBER -
   .1O368E'K>8
                                                                     TIME VALUE -
       CONSTANT PRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
WATER BALANCE

  .OOOOO
  22630.
 -22733.
 -.43321
NAPL BALANCE

  .OOOOO
 -22630.
  22733.
 -.43321
                           Fig.  5.  (Continued)

-------
                                      24
       CONSTANT FRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
HATER BALANCE

   .OOOOO
   22650.
NAPL BALANCE

  .OOOOO
 -2265O.
  22632.
 -.6A536C-02
08

06

04
           STEP NUMBER
                           COMPLETED
                     SIMULATION  TIME  IN SECONDS  . JO4E*

                                      IN MINUTES  .173E+

                                      IN HOURS    .288E*

                                      IN DAYS      12O.

                                      IN YEARS    .329
   .13824E+O8
                                   TIME STEP NUMBER -
                                           TIME VALUE •
       CONSTANT PRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
WATER BALANCE

  .OOOOO
  22630.
 -22488.
 -. 16780
                                                 NAPL
  .OOOOO
 -2263O.
  22688.
 -.16780
           STEP NUMBER   4 COMPLETED
OB

06

04
                     SIMULATION TIME IN SECONDS  .136E+

                                     IN MINUTES  .23OE+

                                     IN HOURS    .584E*

                                     IN DAYS     160.

                                     IN YEARS    .436
                                   TIME STEP NUMBER -
   .1728OE+O8
                                                                    TIME VALUE -
                            Fig. 5.  (Continued)

-------
                                        25
        CONSTftHT PRES
        SOURCE/SINKS
        STORAGE
        PER CENT ERROR
              MATEK BALANCE

                 .OCOOO
                 r;650.
               ""**"* ^^»"^
               -.5*717E-O1
                                                   MAPI. BALANCE

                                                      .OOOOO
      =663.
    -.34717E-01
            STEP NUMBER   3 COTLETED
OB

06

O4
•»••••#*••-•••
SIMULATION TIME IN SECONDS   . 173E*

                 IN MINUTES   .288E+

                 IN HOURS     .480C*

                 IN DAYS      20O.

                 IN YEARS     .346
                                     TIME STEP NUMBER
    ,2073AE*Oe
                                                                       TIME VALUE -
        CONSTANT PRES
        SOURCE/SINKS
        STORAGE
        PER CENT ERROR
              MATEK BALANCE

                .OOOOO
                =2650.
               -22634.
               -. 1S777E-O1
   MAPI.  BALANCE

     .00000
    -2263O.
     22634.
    -. 18777E-01
            STEP NUMBER   6 COMPLETED
06

O4
                                   SIMULATION TIME IN SECONDS  .2O7E*

                                                    IN MINUTES  .346E*

                                                    IN HOURS     -376E*

                                                    IN DAYS      240.

                                                    IN YEARS     .637
                             Fig. 5.   (Continued)

-------
                                       26
                                     TIME STEP NUMBER -
                                                                           VALUE
        CONSTANT PRES
        SOURCE/SINKS
        STORAGE
        PER CENT ERROR
HATER BALANCE

  .00000
  22650.
 -22630.
NAF>L BALANCE

   .OOOOO
 -22650.
   22630.
 -.97288E-O3
            STEP NUMBER   7 COMPLETED
oe

06

O4
                     SIMULATION TIME IN SECONDS   .:.42E»

                                      IN MINUTES   .403E»

                                      IN HOURS     .672E*

                                      IN DAYS      260.

                                      IN YEARS     .767
   .27648E*08
                                    TIME STEP NUMBER  -
                                                                      TIME VALUE •
       CONSTANT PRES
       SOURCE/SINKS
       STORAGE
       PER CENT ERROR
WATER BALANCE

  .00000
  22650.
 -22630.
  . 10136E-02
MAPI.  BALANCE

  .00000
 -22630.
  22630.
  .10136E-02
           STEP NUMBER    8 COMPLETED
08

O6

04
                     SIMULATION TIME IN SECONDS  .276E*

                                      IN MINUTES  .461E*

                                      IN HOURS    .768E*

                                      IN DAYS     320.

                                      IN YEARS    .676
                            Fig.  5.   (Continued)

-------
                                       27
    .3UO4E-K>8
                                     TIME STEP NUMBER  =
                                                                       TIME VALUE »
        CONSTANT FRES
        SOURCE /SII«CS
        STORAGE
        PER CENT ERROR
                          WATER BALANCE

                             .OOOOO
               -22649-
                 .41279E-02
            STEP NUMBER   9 CONPLErrED
oe

06

O4
    NAPL BALANCE

      .OOOOO
     -22650.
      22649.
      .41279E-O2
                                    SIMULATION  TIME  IN  SECONDS  . 3UE*

                                                     IN  niNUTES  .318E*

                                                     IN  HOURS    . B64E+

                                                     IN  DAYS     36O.

                                                     IN  YEARS    .986
                                     TIME STEP NUMBER -
                                                           1O
                                                           TINE VALUE «
              WATER BALANCE

                .OOOOO
                22650.
               -22&30.
oe

O6

O4
        CONSTANT PRES
        SOURCE /SINKS
        STORAGE
        PER CCNT ERROR
STEP NUMBER  10 COHPLETED

• ••*»••••••••••••»••••-•-••
   NAPL BALANCE

      .OOOOO
    -22630.
      22630.
      .2I439E-O2
SIMULATION TIME IN SECONDS   .346E*

                 IN MINUTES   .576E*

                 IN HOURS     .960E*

                 IN DAYS      400.

                 IN YEARS     t.10
                             Fig.  5.   (Continued)

-------
            28
                          NAPU PRESSURES
 LAYER   1
     . 133A4E*O7  . 14531E*O7  . 137O9E*O7   . I2893E»O7
43E*O7  . 1O383E*07  . 1O146E+07  . 1OO26E+07
 LAYER   T
     . 14Sr:iE-K>7  . 14046£-K>7  . J3373E*O7   . 12623E+O7
I9C*07  . 10264E+O7  . 1OO27E*07  . V9CX!>8E*O6
 LAYER   3
     .I3709E*07  .13373E*07  .12819E*O7   . 12126E+O7
74E*O7  . IOO28E«O7  .9790OE*O6  .«?6682E*06
 LAYER   4
     .128«»3E*O7  ,12623E-»O7  . 12126E-K>7   .11493E*O7
29C*O7  .9684t£«O6  .94376E*O6  ,V3O82E*O6
 LAYER   S
                                      7   .1O937E*07
                                 .88193E«O6
 LAYER   t>
     .»ir87E«O7  . JHO4E-H57  . 10819E+O7   . 1O453E-H57
37E»06  .S7O90C*06  .B3747E*O6  .8l8l7E*O6
 LAYER   7
     . I0743E»O7  . 10619E-07  . 10374€*O7   . 10029E*O7
98€*06  .80940E«06  . 764O2E*O6  .73S1SE«O6
 LAYER   8
     .1038S£»07  .10264E*07  . 100r8E*O7   .96841E*O6
40C*06  -74174E*O6  .674O9E*O6  .62328E4O6
 LAYER   9
     . 10146E»O7  . :7  .9790OC-KM>   .94376E«O6
O2E*O&  .A74O9E*06  .S673SE«O6  .««O«»3E«O6
 LAYER  1O
     -I0026E*07  .99068E-X>6  .96682EXM   .73O82E*OA
13C*OA  -623T8E+06  . 46O63E«O6  . 19129E*O6
                           12O78E«O7  . 11287E*O7  .107
                          . 11B2OE«07  . 111O4C*O7  .106
                          .11366E«O7  . 10819E*O7   .103
                           1O737E»O7
                                                   . 1OO
                          .10483E*O7  . 1OO30E*O7   .960


                          . 1OO30€*O7  ,9S778E*O6   .912


                          .96O66C*X>6  .9l237E*O6   .860


                          .92419E*O6  .87O90C*O6   .809


                                      .83747E*OA   .764


                                      -81817E*O6   .733
                         MATER SATURATIONS
Fig. 5.   (Continued)

-------
                                      29
 LAYER    1
     .83S1C       .65633      .521 IS      .39192      .23831      .3984*E-O1  .234
73E-O2   . 1O153E-02   . 99885E-O3  .99976E-O3
 LAYER    2
     .65633       .54488      .43353      .31O63      .14144      .1411OC-O1  .121
77E-02   .10003E-Or   .99968E-O3  .10OO7E-02
 LAYER    3
     .32113       .43533      .33216      .19117      .33119E-01   .17733E-O2  .100
98E-O2   .99964E-03   .1OO16E-O2  . IOO27E-02
 LAYER    4
     .39192       .31063      .19117      .46423E-O1  .23646E-O2   .1O267E-O2  .999
83E-O3   .1O52TE-02   . 1OO44E-O2  .10O3AE-O2
 LAYER    3
     .23831       .14144      .33119E-O1   .23646E-O2  . 1O3AOE-02   . 10OO1E-O2  .100
27E-02   . IO<538E-02   . 1OO82E-OS  . IOO96E-02
 LAYER    &
     .39844E-01   .14110E-O1   . 17733E-O2   . 1O267E-O2  . 1OOO1E-O2   . 1OO29E-O2  . 1OO
A7E-«2   -10102E-OT   . 1O13OE-O2  .10147E-O2
 LAYER    7
     -23473E-02   .12177E-O2   . 1OO98C-O2   .99983E-O3  . 1OO27E-02   . 1OO67E-O2  .101
O9E-rt2   -10151E-O2   . 1O189E-O2  .10213E-02
 LAYER    8
     . 10133E-02   .1OOO3E-O2   .999A4E-O3   .1OO23E-O2  . 1OO38E-O2   . 1OJO2E-O2  . lOl
*\F.-C»2   -10203E-O2   . 1O238E-O2 •- . 10298E-02
 I AVER    9
     .99885E-03   .9996BE-O3   . 1OO16E-O2   . 1OO44E-O2  . 1OO82E-O2   . 1O13OE-O2  .101
89E-O2   .10238E-02   . I0333E-O2  .10*01E-02
 LAYER   1O
     .9997AE-03   .100O7E-O2   . 1OO27E-O2   .1OO36E-O2  . 1OO96C-02   .10147E-O2  .102
13F-0?   .tO298E-0?   . 104O1E-O2  .10317E-02
                                                     NAPL SATURATIONS
                           Fig. 5.   (Continued)

-------
30
LAYFR ;
. !&•»&•'
65 °9B93
' *V?*4>.7
78 .99900
.47883
99 .999OO
LAYER *
. 6oeoe
OO .99900
1 AV£P ?5
761*9
O** - °9899
I AVfrf) ^
.9401*
99 .«?9899
1 AVER ~
- 9976?:
9« .«*9998
1 AYFR O
.99P9P
9^ . *M*ti^i
1 AYER °
.999OTI
98 . °^897
LAYER 1ft
.9990^
9*. .OQQ9?

.3801«.»oa


cnMSTArn
SOIJKCE/S
sroKmx.
PER COJT


.34^,7
. 999
.43312
.999OO
.56447
.999OO

.68937
.99900

.83836
.99899

.98389
.99899

.99878
.99898

.99900
.99897

.999OO
.99897

.999OO
.99896



W
PRES
INKS

tnROR


.•JraSj .60808 .76149
. 979OO
.56^-ST .68937 .83856
.99900
.06784 . .80883 .96488
.999OO

.80803 .95338 .99764
.99899

.96486 .99764 .99896
.•79899

.99822 .99897 .999OO
.^9899

.99899 .99900 .9990O
.V9898

. T99OO . 999OO . 99899
.V9397

.979OO .999OO .99899
,*9896

.9990O .99899 .99899
.9-9893

TIME STEP NUMBER - 11

ATER BALANCE «AP>_ BALANCE
.coooo .00000
22650. -22650.
-22650. 22650.
.11Z17E-O2 .11217E-02
Fig. 5. (Continued)

.94016 .997

. 98589 . 998

. 99822 . 998


.99897 .999


.9990O .999


.999OO .998


.99899 .998


.99899 .998


.99899 .998


.99899 .998


TIME VALUE •








-------
                                      31
            STEP NUMBER   11
OP
ft*
                                   SIMULATION TIME IN SECONDS   .38OE*

                                                   IN MINUTES   .634E*

                                                   IN HOURS     .1O6E*

                                                   IN DAYS      440.

                                                   IN YEARS     1.20
                                    TIME STEP NUMBER
                                                                    TIME VALUE -
        SOJRCC/SJNKS
        STORAGE
        PFR  CENT ERROR
              MATEn BALANCE

                -OOOOO
                2Z630.
               -22ASO.
                .11C87E-O2
   NAPL BALANCE

      .OOOOO
    -22630.
      22650.
      . U089E-O2
OS

OA
STEP NUMBER  12 COMF'LETED

r« >* < •»**«**«•**«-•**•»»*
SIMULATION TIME  IN SECONDS  .415E+

                 IN MINUTES  .691E*

                 IN HOURS    .USE*

                 IN DAYS   '   480.

                 IN YEARS    1.31
                                    TIME STEP NUMBER  -
                                                         13
                                                                    TIME VALUE
                           Fig.  5.   (Continued)

-------
                                      32
        CONSTANT PRES
        SOURCE/SINKS
        STORAGE
            CENT ERROR
                                BALANCE

                            .OOOOO
                          NAPL BALANCE

                            .OOOOO
                           -22630.
                            27650.
                            .17501E-02
08

OA

OS
            STKP NUMBER  13 OOftPLETED
                      SIHULATION TIME IN  SECONDS  .449E*

                                       IN  MINUTES  .749E*

                                       IN  HOURS    .123E+

                                       IN  DAYS     32O.

                                       IN  YEARS    1.42
                                    TIME STEP NUMBER -    14
                                             TIME VALUE -
        CTWSTANT r>ncs
        SOURCE/SINKS
        STORAGE
        FfTR CENT ERROR
                          UATE37 BALANCE

                            .OOOOO
                            .eejoic-03
                         NAPL BALANCE

                            .OOOOO
                          -22ASO.
                            22650.
                            .88101E-O3
            STEP NUMBER
        CONSTANT PRES
        SOIIRCE/SINKS
        STnRAGE
        PER CENT ERROR
14 COMPLETED
   .OOOOO
   STJ.SO.
  -22&SO.
 .OOOOO
-22650.
 22630.
 .32247E-O3
06

OA

03
            STEP NUMBER  15 COMPLETED
                      SIMULATION TIKE  IN SECONDS  .318E*

                                       IN MINUTES  -864E*

                                       IN HOURS    • .144E+
                                                               IN DAYS
                                  5.   (Continued)

-------
                                  33
appearance of temporary files.

3.2  CODE INFORMATION

     SWANFLOW-2D is written in FORTRAN 77.   The SUAN2D.EXE file included
on the distribution diskette was made using the Microsoft FORTRAN
compiler.  The preprocessing program, SVANEDIT. the postprocessing
system, SWANGRAF. and others (CONTOUR. GRAPH,  and FDGRID) are included
on the diskettes as "exe" files.  PLOTWORKS,  Inc.. wrote the software,
which cannot be altered by the user.  Only menu options can be used.
     The modelling code's source, SVANFLOW-2D,  is distributed along with
the executables available.  A MAIN program and 10 subprograms comprise
the code.  These routines and their chief functions are:

 1.  MAIN controls time-stepping and accesses auxiliary routines to
     perform necessary tasks.

 2.  GDATA inputs and outputs general problem specification data.

 3.  ICOND inputs and outputs Initial conditions.

 4.  GDTR  handles the input/output of data received from input units,
     which may be altered while simulation is in progress.

 5.  TCALC computes transaissibility terms between blocks.

 6.  BALNCE computes mass balances for water and NAPL and uses these
     values to control closure on Newton-Raphson iterations.

 7.  PRPTY computes saturation-dependent properties and rates of
     production for each fluid.

 8.   UPSTRE computes interblock weighting factor based on upstream
     pressure.

-------
 9.  FORMEQ produces coefficients of matrix in nonsymmetric and banded
     form.

10.  SOLVE solves matrix equations using the Gauss-Doolittle method.
     For triangular matrices,  the code performs back substitutions.

11.  PDATA outputs (to the printer unit) fluid pressures and saturatiors
     as indicated by user-specified time-step increments.

-------
                                35
                   4.  EXAMPLES OF STANDARD PROBLEMS
     Problems are identified in the first two lines of the output.
These are discussed in the two reports by GeoTrans (1985. 1986) and in
the report by Fields and Bledsos (1987, in review).

-------
                                     36
HRXLEY-LEVERETT  1-D WER FIQCJ
3 FEB 1994
SD1
            40            1
            10            0
          3.04BOOM
       1000.0000000
           .0000000
             I
            26
        AW. 5000000
        661.9200000
        634.3400000
        606.7600000
        57?.1800000
        551.6000000
        524.0200000
        4%. 4400000
        468.8600000
        441.2800000
        413.7000000
        384.1200000
        358.5400000
        330.9600000
        303.3BOOOOO
        275.8000000
        248.2200000
        220.6400000
        193. OAooooo
        165.4800000
        137.9000000
        110.3200000
         tZ.7400000
         53.1600000
         27.5800000
               2.000000E-001
               l.OOOOOOE-003
    2            7
    0            0
        .0000000
l.OOOOOOE-003
             20
              0
       1000.0000000
        .0000000
                                                                      39
                                                                       0
                       .0000080
                4.000000E-402
                8.000000E-002
                1.200000E-401
                1.600000E-001
                2.000000E-001
                2.400000E-001
                2.800000E-001
                3.200000E-001
                3.600000E-001
                4.000000E-001
                4.400000E-001
                4.800000E-OM
                5.200000E-001
                5.600000E-001
                6.000000E-001
                6.400000E-001
                6.800000C-001
                7.200000EHM1
                7.600000E-401
                8.000000E-001
                3.400000E-001
                8.800000E-001
                f.200000E-001
                9.600000E-M1
                      1.0000000
       2  4.800000E-001
-9800.0000000         l.OOOOOOt
                       .0000000
           .0000000
        .0000000
        .0000000
        .0000000
        .0000000
3.900000E-M3
1.S60000E-092
S.S20000E-002
&.250000E-M2
f.770000E-4«2
1.406000E-OM
1.914000E-001
2.500000E-OI1
3.1&4000E-M1
3.90MOOE-001
4.727000EHM1
S.&23000E-OI1
4.402000E-OJ1
7.65&OOOE-001
•.789000EHM1
       1.0000000
       1.0000000
       1.0000000
       1.0000000
       1.0000000
          l.MOOOM
              1.0000000
           I.0000000
           1.0000000
           1.0000000
           1.0000000
8.789000C-001
7.6S&OOOE-001
6.602000E-001
5.625000E-001
4.727000E-001
3,f06000E-001
3.164000E-001
2.500000HM1
1.914000C-001
1.40MOOE-M1
f.770000€-0«
*.2SOOOOE-002
3.S20000E*402
1.560000E-002
3.900000E-003
           .0000000
           .0000000
           .0000000
           .0000000
           .0000000
              .0000000
                                              .0000000
                                              .0000000
                             .0000000
                             .0000000
             I
2.960000C-013 2.960000E-013
1
2.000000E-001 l.OOOOOOE-007 1*000.0000000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
304.8000000
1
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000


7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.1200000
7.6200000
7.6200000
7.6200000
7.6200000


7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000
7.6200000



-------
                                    37
1
1
7
13
19
1
2
B
14
20
1
3
. f
IS
21

4
10
16
22

5
11
17
23

6
12
IB
24
        23          24         27         29          »         30
        31          32         13         34          35         3*
        37          38         39         -1
         •
   10MO.OOOOOM  l.MOOOK-001
  1*4000.0000000   B640M.MOOOOO  S.OOOOOOE-00!
<3200000. 0000000          i           1
         I           I  1.3390ME-M1        l.OOOMM

                         I           0

-------
38
1.750000E-001




























.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0060000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0006000
.0060000
JUkJI^^MkJUh
.OOMOOO
.0008000
.0000000
f W^WWWW
.0060000
Jfc ft ft A ^ A a
.0000000
.0000000
.0000000
JUkJ^^^^^kA
.0000000
JUUW^^AA
QDQQBDD
uDQDHOD
•i wW^^^^^^f

i. 0000000

1.0000000

* i. 0000000

1.0000000

1.0000000

1* *fc *• -* -* ^ «fc
.0000000

Iftjyjfcjfcjtjyjfc
.0000000

1.000000*

1.0000000

L 0000060

IA^^^^^j^^^K
.0000006

L 0000066

• ^^^^^^^^^^A
1.0000006

1.0000066

10000.0000000 10000. 0000*00 l.OOOWOE-OOl
l.OOOOOOE+008 i I
! J.17D600E-003
2 . 4.470MOHW5
3 4.340000E-003
4 I.t71600£-003
S 1.269600H)04
4 1.774000E-004
.0000000 .0000000
.0000000 0

l.MCOOOE-001
i^^^^^b&^^k
•0000000
UMMOOO
1AAAAAAA
• ^^^^^^pW^^v
1* * * ^ A A ^
BDBOOOO
• ^^^W^^^MF^F
IOMMOOfl
• ^^^n^n^v
.0000006
1

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

1A4UU^AJ^A
.0000006

1.0000000

1.0000000

1.0000000

!. 0000000

1.5000000







.0000000


-------
                        39
        103
        109
         -1
          1
  -14700.0000000
  -14700.0000000
  •12250.0000000
  -12250.0000000
   -9800.0000000
   -9800.0000000
   -7350.0000000
   -7350.0000000
   -4900.0000000
   -4900.0000000
   -2450.0000000
   -2450.0000000
        .0000000
        .0000000
    2450.0000000
    2450.0000000
    4900.0000000
    4900.0000000
    7350.0000000
    7350.0000000
    9800.0000000
    9800.0000000
   12230.0000000
   12250.0000000
   14700.0000000
   14700.0000000
   17150.0000000
   17150.0000000
   19600.0000000
   19600.0000000
   22050.0000000
   22050.0000000
   243*0.0000000
   24500.0000000
   26950.0000000
   26950.0000000
   29400.0000000
   29400.0000000
   31850.0000000
   31850.0000000
8.500000E-001  8.
8.500000E-001
8.750000E-1M1
8.750000E-001
9.000000E-001
9.000000E-001
9.230000E-001
9.250000E-OOI
9.500000E-001
f.SOOOOOE-001
I.750000E-001
      104
      110
       -1
             105
             111
              -1
                             106
                             112
    107
    113
     -1

-14700.0000000
114
 -1
     -14700.0000000    -14700.9000000
     -14700.0000000
     -12230.0000000    -12250.0000000    -12250.0000000
     -12250.0000000
                        -9800.1000000
-9800.0000000
-9800.0000000
-7330.0000000
-7350.0000000
-4900.0000000
-4900.0000000
-2450.0000000
-2450.0000000
      0000000
 2450.9900001
 2450.0000000
 4900.90)0001
 4900.0000*0*
 7350.1000000
 7330.0000000
 9800.0000000
 9800.0000000
12250.0000001
12250.0000000
14700.0000000
14700.0000001
17150.0000001
17150.0000000
19600.0000001
19600.0900000
22050.0000000
22050.0000000
24500.0900001     24500.9000000
24500.0900000
26950.9000001     2695U9000M
26950.0000001
29400.0000006     29400.9000000
29400.0900000
31850.0000001     31850.9000000
31830.0000000
                        -7330.WOOOOO

                        -4900.4000000

                        -24SO.MOOOOO

                            .9000000

                         2430.4000000

                         4900.9000000

                         7350.9000800

                         9800.90MOM

                        12250.1000000

                        14700.9900000

                        17150.WOOOM

                        19600.9000900

                        22050.9000000
                                       -9800.0000000

                                       -7350.0000000

                                       -4900.0000000

                                       -2450.0000000



                                        2450.9000000

                                        4900.9000000

                                        7350.0000000

                                        9800.9000000

                                       12250.9000000

                                       14700.0000000

                                       17150.0000000

                                       19600.0000000

                                       22050.0000000

                                       24500.9000000

                                       26950.0000000

                                       29400.0000000
8.
9.
9.
9.
9.
                                       31850.0000000

300000E-001  B.SOOOOOE-001  L500000E-001  B.500000E-001

7SOOOOE-001  8.750000E-OOI  L750000E-001  8.730000E-001

OOOOOOE-001  9.0COOOOE-001  9.000000E-001  9.000000E-OOI

230000E-001  9.250000E-001  9.250000E-001  9.250000E-001

300000E-001  9.500000E-001  I. SOOOOOE-001  9.300000E-001

730000E-001  9.750000E-001  9.750000E-OOI  9.730000E-001

-------
                                  40
S4THHSAT 2-0  IfflLTfjUICK KITH MR.
3 JAN 1784
MR
            4           20
            3            1
          1.0000000  2.000000E-002
       1200.0000000  l.OOOOOOE-003
           .0000000
            I
            13
     103425.0000000 -l.OeoOOOE-OOl
  3            0
  0            0
       .0000000
l.OOOOOOE-003
                          10
                           0
                     1000.0000000
                    -9.8000000
114
  0
     103425.0000000          .0000000
     103425.0000000  i.OOOOOOE-401
     103425.0000000  2.000000HXH
      27580.0000000  3.000MOE-401
      10343.0000000  4.00MOOE-401
       735.0000000  3.000000C-601
       7447.0000000  6.000000E-001
       7309.0000000  7.000MOE-401
       7171.0000000  LOOOOOOEHMl
       7033.0000000  9.04QOOOE-401
       6895.0000000         1.0*00000         1.0000000
       4895.0000000         1.1000000         1.0000000
            2  6.BOOOOOE-M1
     •98000.0000000         1.0000000 -3.200000C-001
           .0000000          .0000000  6.8000MC-001
            1
        0000000         1.0000000
          .0000000        1.0000000
       .0000000  8.200000E-001
       .0000000  6.800000C-001
4.MOOOOE-002  3.500000E-001
              4.36000K-M1
              3.100000E-001
              2.000000E-001
              1.200000E-001
              S.OOOOOOE-002
                      .0000000
l.WOCOOE-001
l.JOOOOOI-Wl
3.00000QEHM1
4.400000E-001
4.WOOOOC-001
i.*OOOOOE-001
                           .0000000

                        1.0000000
                         .0000000
i.OOOOOOE-012 l.OOOOOOC-012
1
3.000000E-001 .0000000 .(MOOOOO
1.0000000 1.4100000 2.0000000
2.BOOOOO
4.0000000 5.6*00000
2.300000C-001
2.500000C-001
L500000E-001
2.SOOOOOE-001
1
1
1
7
13
If
23
31
37
43
49
33
il
47
73
79
e
91
97
2.SOOOOQE-001
2.300000C-001
3.S)0000£H)01
2.500000E-001

J
2
•
14
21
2*
12
a
44
SO
34
a
w
74
M
fii
n
91
2.500400E-001
2.50HOOE-001
2.500WOE-001
2.30MOOE-001

1
I
9
B
21
27
33
39
45
Si
57
13
*9
73
11
17
93
99
2.SOOOOOE-001
2.SOOOOOE-001
2.50000K-OOI
2.500000C-M1


4
10
16
22
28
34
40
M
32
3B
64
70
76
82
88
94
100
2.500000E-001
2.300000E-001
2.300000E-401
2.300000E-001


3 6
11 12
17 IB
23 24
29 30
33 36
41 42
47 48
33 54
39 M
63 66
71 72
77 71
83 84
89 90
95 96
101 102

-------
    -6920.0000000
      -49.0000000
    -6820.0000000
    -6920.0000000
    -6820.0000000
    -6820.0000000
    -6820.0000000
    -6820.0000000
    -6820.0000000
    -8620.0000000
    -6820.0000000
    -8820.0000000
    -6820.0000000
    -6820.0000000
    -6820.0000000
    -6620.0000000
    -6820.0000000
9.7M700E-001  4,
4.000000E-001
4.000000E-001
4.000000E-001
9.B46700E-001
4.000000E-001
4.000000E-001
4.000000E-001
9.966700E-OOI
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-OOI
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.000000E-001
4.0000COE-001
4.000000E-001
4.000000E-OOI
4.000000E-09I
4.000000E-OOI
     844.0000000
8.640000E*009
        .0000000
        .0000000
-8820.0000000
-8820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-6820.0000000
-8820.0000000
-6820.0000000
-6820.0000000
-3820.0000000
-8820.0000000
-6820.0000000
4.000000€H>01
4.000000E-001

4.000000E-001
4.000000E-4*!
4.000000E-M1

4.000000E-M1
4.000000EHM1
4.000000E-001

4.000000E-001
4.000000E-001
4.000000E-M1

4.000000E-OOI
4.000000E-001
4.000000E-Ofl

4.000000E-001
4.000000E-001
4.000000E-OI1
         4.00000K-001
         4.00000JE-OOI
         4.00000C-001
                -6820.0000000
                -6820.0000000
                -6820.0000000
                -8820.0000000
                -6820.0000000
                -8820.0000000
                -8520.0000000
                -8820.0000000
                -6820.0000000
                -9820.0000000
                -8820.0000000
                -8820.0000000
                -6820.0000000
                -8820.0000000
                -6820.0000000
                -6820.0000000
                -6820.0000000
                      4.000000E-00!
                      4.000000E-M1
                      4.000000E-001
                     -6820.0000000
                     -8820.0000000
                     -8820.0000000
                     -6820.0000000
                     -6820.0000000
                     -8£C. 0000000
                     -6820.0000000
                     -6820.0000000
                     -8820.0000000
                     -8920.0000000
                     -6820.0000000
                     -6820.0000000
                     -6820.0000000
                     -6820.0000000
                     -6820.0000000
                     -6820.0000000
                     -6820.0000000
                        4.000000E-001
                        4.000000E-001
                        4.000000E-001
       4.000004C-001
       4.00000CE-001
       4.000M(C-001

       4.00000K-001
       4.00000JE-001
       4.00000K-001

       4.00000X-001
       4.00000CE-001
       4.00000K-001

       4.00000K-001
       4.00000K-OOI
       4.00000K-OC1

       4.00000CE-001
       4.00000S-001
       4.0000ME-001
         4.000000£-001
         4.000000E-001
         4.000000E-001

         4.000000E-001
         4.000000E-001
         4.000000E-001

         4.000000E-001
         4.000000E-001
         4.000000€H)01

         4.000000E-001
         4.000000E-001
         4.000000E-M1

         4.000000E-001
         4.000000E-001
         4.000000E-001
844.0000000
  0
   .0000000
     0
7.IOOOOOE-001
  I
        .0000000
    0
                                      4.000000E-OOI
                                      4.000000E-001
                                      4.000000E-001

                                      4.000000E-001
                                      4.000000E-001
                                      4.000000E-001

                                      4.000000E-00!
                                      4.000000E-001
                                      4.000000E-001

                                      4.000000E-001
                                      4.000000E-001
                                      4.000000E-001

                                      4.000000E-001
                                      4.000000E-OOI
                                      4.000000E-401

                                    1.2000000

                                        .0000000

-------
                                     42
SATURN IBOKAM PROBLEM
5 JAN 19E3
SAT
            16
            10
          1.0000000
       100C.0000000
           ."0000000
             I
             4
           .0000000
           .0000000
           .0000000
           .0000000
             2
     •14700.0000000
           .0000000
             I
   l.ieiOOOE-014
             1
   4.SOOOOOE-OOI
   3.000000E-003
   l.OOOOOOE-003
   l.OOOOOOE-003
   3.000000E-003
   l.OOOOOOE-003
   2.000000E-402
             1
             I
            -I
            34
            70
            -I
            33
            71
            -1
            34
            72
             1
            37
            73
             2
            38
            74
             3
            37
            75
             I
       -343.0000000
      -8820.0000000
      -8820.0000000
      -8820.0000000
       -196.0000000
      -8820.0000000
      -8820.0000000
        6
        1
   2.000000E-092
   l.OOOOOOE-003
    3
    0
  i.WOOOOE-003
  l.OOOOOOE-003
                      20
                       0
             :ooo.ooooooo
               -9.8000000
            87
             0
           .oooeooo         .ooooooo
   3.333332-001          .OOOOOOO
   6.6S6667E-00!   S.OOOOOOE-001
          1.0000000
      .OOOOOOO
          1.0006000
           .ooooooo
           1.0000000

            .ooooooo
            .ooooooo
                       .ooooooo
                    .ooooooo
                 .ooooooo
                       .ooooooo
                       .ooooooo
                       .ooooooo
1.181000E-014
l.OOOOOOE-003
l.OOOWOE-003
l.OOOOOOE-003
.OOMOOE-003  1,OOOOOOE-«03
.OOOMOE-003  l.OOOOOOE-OW
.OOONQE-003  l.OOOOOOE-003
                     l.OOOOOOE-003
                     l.OOOOOOE-003
                     l.OOOOOOE-003
2.000000E-002   l.OOOMOE-003  2.000000E-M2  2.000000E-002
        1
        4
       40
       76
        3
       41
       77
        6
       42
       78
        7
       43
       79
        8
       44
       80
        9
       45
       81

      -8820.0000000
      -8820.0000000
      -8820. OOOOOOO
      -8820.0000000
      -8820.0000000
      -8820.0000000
      -8820.0000000
    1
    10
    44
    C
    11
    (7
    83
    12
    41
    *
    13
    49
    e
    14
    5»
    U
    19
    SI
    87
         U
         52
         -1
         17
         S3
         -1
         18
         54
         -1
         a
         35
         -1
         20
         56
         -1
         21
         37
         -1

-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
-8820.0000000
22
58

23
39

24
M

23
61

26
62

27
63
                         -8820.0000000
                         -8820.0000000
                         -8820.0000000
                         -8820.0000000
                         -8820.0000000
                         -8820.0000000
                         -8820.0000000
28
64

29
63

30
66

31
67

32
33
69

-------
                                  43
  108300.0000000
  111100.0000000
  113000.0000000
  118800.0000000
  123000.0000000
  127100.0000000
  131100.0000000
  134900.0000000
  138500.0000000
  141900.0000000
  144900.0000000
  147400.0000000
  U9UO.OOOOOOO
  15300.0000000
  155300.0000000
  138200.0000000
  111100.0000000
  U4000.00000M
  16*900.0000000
  UT700.000MOO
  172700.0000000
  231900.0000000
  1UOM.OOOOOOO
  171000.0000000
       1.0000000
       1.0000000
7.328000EHM1
S.317000E-M1
4.787000E-001
4.60JOOO€-OOI
4.32MOOE-001
4.559000E-001
4.689000C-001
4.B94MOE-OOI
I.083000E-001
I.169000E-M1
f.848000CHMl
       1.0000000
       1.0000000
       1.0000000
       1.0000000
       1.0000000
       1.0000000
       1.0000000
       "l. 0000000
       1.0000000
       1.0000000
       1.0000000
    8640.0000000
8.640000E+008
        .0000000
        .0000000
8440.0000000
   0
    .0000000
      0
B.OOOOOOE-002
  0
        .0000000
     0
1.3000000

    .0000000

-------
3.048000E-001
3.048000E-OOI
3
1
2
1
-1
1
2
3
4
3
ft
7
8
3.048000E-001
3.048000E-001

1
2
3









3.048000E-001
3.048000E-001

1
2
3









3.048000E-WI
3.048000E-D01



~









                                                  3.048000E-001
10
11
12
13
14
IS
1ft
17
18
19
20
21
22

-------
ML THREE-LATER PfiOBLEH
5 JAN 1984
S94
             1           24
            10            0
          1.0000000   l.OOOOOOE-003
       1500.0000000   l.OOOOOOE-003
           .0000000
             2
            13
     103400.0000000  -l.OOOOOOE-001
     103400.0000000           .OOOOCOO
     103400.0000000   t.OOOOOOE-001
     103400.0000000   2. OOOOOOE-001
      27380.0000000   3. OOOOOOE-001
      10340.0000000   4.000000E-001
       7583.0000000   S.OOOOOOE-001
       7447.0000000   4.00000CE-001
       7309.0000000   7.OOOOOOE-001
       7171.0000000   B.OOOOOOE-001
       7033.0000000   9.000000E-001
       4895.0000000          1.0000000
       4893.0000000          1.1000000
             2  4.800000E-001
      -9BOO.MOOOOO          1.0000000
           .0000000           .0000000
            13
     204850.0000000  -l.OOOOOOE-001
     204850.0000000           .0000000
     204850.0000000   l.OOOOOOE-001
     204850.0000000   2.000000E-001
     145480.0000000   3.000000E-OOI
     134453.0000000   4.000000E-001
     110320.0000000   3.MOOOOE-001
      93082.0000000   6.000000E-001
      12740.0000000   7.000000E-001
      75843.0000000   8.000000E-001
      72398.0000000   9.000000E-001
      48950.0000000          1.0000000
      48950.0000000          1.1000000
             2  4.800000E-001
      -9800.0009000          1.0000000
           .0000000           .0000000
             3
                  1.020000E-014
                  1.020000E-016
                  1.020000E-012
3
0

7
0
.0000000
l.OOOOOOE-003
20
0
1000.0000000
-9.8000000
22
0


                                         .0000000          1.0000000
                                            .0000000          1.0000000
                                         .0000000  B.200000E-001
                                         .0000000  4.800000E-001
                                  OOOOOOE-002  5.500000E-001
                                               4.300000E-001
                                               3.100000E-001
                                               2.000000E-OOI
                                               1.200000E-001
                                               5.000000C-002
                                  OOOOOOE-001
                                  800000E-001
                                3.OOOOOOE-001
                                 .400000E-001
                                 .OOOOOOE-001
                                B.OOOOOOE-001
                                           1.0000000
                                           1.
                                            .0000000
                                                              .0000000
                                                              .0000000

                                                              .1000000
                                         .0000000         1.0000000
                                            .0000000         1.0000000
                                         .0000000 I.200000E-001
                                         .0000000 4.8000006-001
                                4. OOOOOOE-002   5.500000E-M1
                                l.OOOOOOE-001   4.300000E-001
                                l.BOOOOOE-001   3.100000E-M1
                                3. OOOOOOE-001   2.0000006-001
                                4.400000E-001   1.200000E-001
                                4. OOOOOOE-001   3. OOOOOOE-002
                                8.OOOOOOE-001
                                           1.0000000
                                            .0000000
                                            .0000000
                                                              .0000000

                                                              .0000000
                                                              .0000000
1.020000E-014
1.020000k-01i
1.020000E-012
          3
2.000000E-001
2.OOOOOOE-001
2.000000E-001
               l.OOOOOOE-007
               l.OOOOOOE-007
               l.OOOOOOE-007
       1.0000000
3.04BOOOE-OOI   3.048000E-001
3.048000E-001   3.04BOOOE-001
3.04BOOOE-001   3.04BOOOE-001
                                   100000.0000000
                                   100000.0000000
                                   100000.0000000
                              3.048000E-001
                              3.043000E-001
                              3.048000E-001
                                                3.0480GOE-001
                                                3.048000E-001
                                                3.04BOOOE-001
3.048000E-001
3.046000E-001
3.043000E-001

-------
2
62
3
63
4
44
S
43
4
46
7
47
8
68
9
49
10
70
0
1000000.0000000
3456000.0000000
3.436000E*OOf
1
10
.0000000
.0000000
12 22
72 82
13 23
73 «
1: : =
;« ?i
.« £
7J 1,
:* ?»
.ri 36
17 n
77 57
11 28
71 H
l» 29
7? 19
2* 30
80 90

l.OOOOtOE-403
32
92
33
93
34
94
35
95
36
S.
37
97
38
98
39
99
40
100


34560*). 0000000 5.000000E-001
2 1
1 6.53SOOOE-003
10 -4.S35000E-M3
.0000000
1 0

1.0000000
.0000000
.0000000

    42          52




    43          53




    44          54




    45           55




   46           54




   47           57




   48           SB




   4f           59




   SO           M









1.0000000









    .0000000

-------
FIVE-SUT PMBLEJ! ... TEST PRQBIBI 12
6 FEE 1984
92
            10          10           2
            10           0           0
   3.048000E-001  2.000000E-001          .0000000
       1000.0000000  1.000000E-OJ53 4.000000E-003
           .0000000
             1
            28
      71708.0000000  -4.000000E-002
                             43
                              0
                                                          20
                                                            0
                                                 1000.0000000
                                                     .0000000
100
  0
      68930.0000000
      66192.0000000
      63434.0000000
      60676. 0000000
      97918.0000000
      HIM. 0000000
      32402. 0000000
      45644.0000000
      46886. 0000000
      44126.0000000
      41370.0000000
      38612.0000000
      33834.0000000
      33096.0000000
      30338.0000000
      27280.0000000
      24822.0000000
      22064.0000000
      19306.0000000
      16548.0000000
      13790.0000000
      11032.0000000
       8274.0000000
       5316.0000000
       2738.0000000
           .0000001
      •2738.0000000
                      .0000000        1.0000000
        .0000000          .0000000          1.0000000
4.000000E-002  1.600000E-003  9.216000E-001
                 8.000000E-002 6.400000E-005  8.464000E-001
                 1.200000E-001 1.440000E-002  7.744000E-001
                 1.600000E-001 2.360000E-002  7.056000E-001
                 2.000000E-001 4.000MOE-002  6.400000E-001
                 2.400000E-001 3.760000E-002  3.776000E-001
                 2.800000E-001 7.840000E-002  3.184000E-001
                 3.200000E-001 1.024000E-001  4.624000E-M1
                 3.600000E-001 1.296MOE-M1  4.096000E-001
                 4.000000EHM1 1.600©OOE-001  3.400000E-001
                 4.400000E-001 1.936000E-001  3.136000E-901
                 4.800000E-001 2.3040ME-001  2.704000EHM1
                 3.200000EHW1 2.704MOE-401  2.304000f-^t
                 3.600000E-001 3.1UtOOE-Ml  I.936000E-001
                 6.000000E-001 3.600900E-M1  t.WOOOOE-OOl
                 6.400000EHM1 4.096600E-M1  1.296000E-M1
                 4.800000E-001 4.624900E-001  1.024000E-001
                 7.200000E-001 3.1B4400E-001  7.IWOOOE-W2
                 7.600000E-M1 3.776*001401  3.760000E-002
                 8.000000E-001 6.404000E-001  4.000000E-002
                 8.400000E-001 7.036400E401  2.SMOOOE-002
                 B.800000E-001 7.7444WOC401  1.440000E-002
                 9.200000E-001 8.464tOOE-«01  6.400000E-003
                 9.600000E-001 9.216MOEHW1  I.WOOOOE-003
                        1.0000000         1.0000000
                        1.0400000         1.0000000
          2  l.tOOOOOE-003
   -2738.0000006         1.0000000          .0000000
        .0000000          .0000000          .0000000
          1
1.600000E-013  I.600000E-013
          1
l.OOOOOOE-001  l.OOOOOOE-007   1000000.0000000
                                           .0000000
                                           .0000000

                                           .0000000
                                           .0000000
30.4800000
30.4800000
30.4800000
30.4800000
30.4800000
30.4800000
1
1
1
61







1
11
7i
                          30.4800000
                          30.4800000
                          30.4800000
                          30.4800000
                          :0.4800000
                          30.4800000
                                      I
                                    21
                                    81
                       30.4800000
                       30.4800000

                       30.4800000
                       30.4800000
                             31
                             91
                                                          30.4800000
                                                          30.4800000

                                                          30.4800000
                                                          30.4800000
                                                           41
 31

-------
                                  49
                      5.  SWANEDIT 
-------
                                      50
    i    i
CARD 1
TITLE


    2    t
CARD 2
RUN DATE


    3    1
CARD 3
RUN ID


    4    7
 SIMULATION OPTIONS
NUMBER OF TIME STEPS BETWEEN PRINTED OUTPUT	(IPRT>
PRINTED OUTPUT REFERS TO NAPL AND WATER PRESSURES, POTENTIALS, AMD SATURATIONS.
THE MASS BALANCE IS PRINTED FOR EACH TIME  STEP REGARDLESS OF THE VALUE Of  IPRT.
PRINT POTENTIALS (t-YES  O-NO)	(IPOT)
NORMALCY ONLY NAPL AND WATER PRESSURES ARE PRINTED| HOWEVER, WITH THIS OPTION.
THE POTENTIALS HAY ALSO BE PRINTED.
PRINT DETAILED Pc-Kr TABS-ES (1-YES  O-NO)	< I LOOK)
THE Pc-Kr TABLES CONTAINED IN THE INPUT DATA FILE ARE ALWAYS PRINTED) HOWEVER,
THESE MAY BE EXPANDED AND PRINTED IN MORE  DETAIL.
PRINT PLOT FILE (1-YES  O-NO)	CI PLOT)
THE PLOT FILE CONTAINS SAID, TIME STEP, AMD NAPL/WATER PRESSURES, POTENTIALS,
AND SATURATION USED BY 8HANGRAF FOR PLOTTING.
USE OBSERVATION BLOCKS (1-YES  O-NO>	(IOBS)
VALUES OF POTENTIAL AND SATURATION ARE RECORDED AT EACH OBSERVATION BLOCK  FOR
EACH TIME STEP.
INITIAL CONDITIONS ARE NONUNIFORfl (O-NO 1-YEE 2-REBTART)	
IF INITIAL CONDITIONS ARC NONUNIFORH. WATER SATURATION AND NAPL PRESSURE MUST
BC ENTERED FOR EACH BLOCK. IF KOD-2. THIS  DATA IS READ FROM RESTART FILE.
WRITE PREB./SAT. DATA AT FINAL TIME STEP TO RESTART FILE	(IREST)
IF THE RUN IS TO BE CONTINUED AFTER THE END OF THE CURRENT RUN, WRITE THE
PRESSURE/SATURATION DATA TO A FILE. IN THE NEXT RUN,  MAKE KOD-2 TO READ BACK.
    3    12
C»3 — SYSTEM DATA
NUMBER OF COLUMNS ALONS THE X-DIRECTION	(NX)
THIS IS THE MAXIMUM NUMBER OF BRIO BLOCKS  ALONG THE X-DIRECTION.

NUMBER OF LAYERS ALONG THE I-DIRECT I ON	(NZ)
THIS IS THE MAXIMUM NUMBER OF GRID BLACKS  ALONG THE Z-DIRECTION.
              Fig.  6.  Listing of SWAN.VAR input  to SWANEDIT.

-------
                                       51
 MAXIMUM BANDWIDTH OF THE PROBLEM	(MBW)
 THE BANDWIDTH IS CALCULATED AS  <4»MAX » 3) WHERE MAX  IS THE MAXIMUM NUMBER OF
 BLOCKS ALONS EITHER THE X OR 2  DIRECTONS. ENTER O FOR THE PROGRAM TO CALCULATE.
 NUMBER OF  ACTIVE BLOCKS	
 ACTIVE BLOCKS ARE ANY BLOCKS WITHIN  THE PROBLEM DOMAIN,  NOT INCLUDING CONSTANT
 PRESSURE/SATURATION BLOCKS. THIS IS  A TOTAL FOR THE ENTIRE GRID.
 MAXIMUM NUMBER OF TIME STEPS	(XT)
 THIS SETS  A LIMIT ON THE NUMBER OF TIME STEPS THAT SMANFLOW-PC WILL CALCULATE.
 FEWER TIME STEPS MAY BE USED. HOWEVER, DEPENDING ON THE RECURRENT  DATA SETS
 NUMBER OF  Pc-Xr TABLES	(NPC)
 MORE THAN  ONE TABLE OF CAPILLARY PRESSURE AND RELATIVE PERMEABILITY VALUES CAN
 BE USED.   EACH BLOCK MUST THEN  BE ASSIGNED THE APPROPRIATE TABLE TO USE.
 NUMBER OF  PERMEABILITY SETS		(NKXY)
 UP TO 2O SEPARATE PERMEABILITY  SETS  CAN BE USED.  EACH BLOCK MUST  BE ASSIGNED
 THE APPROPRIATE SET.
 NUMBER OF  POROSITY SETS	(NPOR)
 UP TO 2O SEPARATE POROSITY SETS CAN  BE USED.  EACH BLOCK MUST BE ASSIGNED
 THE APPROPRIATE SET.
 NUMBER OF  PROPERTY COMB I NATION  SETS	(NIP)
 EACH PROPERTY COMBINATION SET CONSISTS OF A PcHCr TABLE,  PERMEABILITY  SET.
 AND POROSITY SET.
 NUMBER OF  OBSERVATION BLOCKS	(NOBS)
 THIS NUMBER MUST BE GREATER THAN O IF IOBB IN CARD 4  IS SET EQUAL  TO 1.

 NUMBER OF  RECURRENT DATA SETS	
 THIS 18 NOT A VARIABLE READ BY  SWANFLOM-PC.   IT 18 USED XN THIS PREPROCESSOR
 ONLY.   THERE MUST BE AT LEAST TWO RECURRENT DATA BETS.  THE LAST CONTAINS  OS.
_HAlINjri NUMBER OF_NEWTONHWPHSON ITERATIONS....	
 DENSITY OF THE NONAQUEOUS PHASE  IS IN MASS PER UNIT VOLUME, E.6. .  K6/M3 IN
 METRIC UNITS.
 VISCOSITY  OF MATER	CVISCW)
 USUALLY A  VALUE  OF O.O01  IS USED  IN METRIC UNITS
                             Fig.  6.   (Continued)

-------
                                       52
 VISCOSITY OF NONAOUEOUS PHASE...	CVISCN)


 2 COMPONENT  OF  GRAVITATIONAL ACCELERATION	
 IF THE LAYERS OF THE PROBLEM ARE  HORIZONTAL  AND  IT  18 A CROSS-SECTIONAL PROBLEM
 USE -9.8 •/*?.   USE A VALUE OF O.O «/»2 FOR  AREAL PROBLEMS.
 X COMPONENT  OF  GRAVITATIONAL ACCELERATION	
 IF THE LAYERS OF THE PROBLEM DIP  AT SOME ANGLE,  THIS EQUALS THE SINE OF THE
 ANGLE OF DIP.   USE  A VALUE  OF O.O FOR MOST PROBLEMS.
 DEFAULT INITIAL NAPL PRESSURE	'. (PNN)
 THIS VALUE NEED NOT BE ENTERED FOR PROBLEMS  MMCRE THE INITIAL CONDITIONS ARE
 MONUNIFORn.
 DEFAULT INITIAL WATER SATURATION.	
 THIS VALUE NEED MOT BE ENTERED FOR PROBLEMS  MMERE THE INITIAL CONDITIONS ARE
 MONUNIFORn.
     7    1
 MATER-NAPL TABLES
     8    1
AIR-MAPL TABLES
     9    1
PERMEABILITY DATA
     1O    1
    POROSITY DATA
     11    I
PROPERTY COMB. SETS
    12    1
X BCOCK THICKNESS
    IS    1
Z BLOCK THICKNESS
   14    1
SEQ.  t COMBINATION
                            Fig. 6.   (Continued)

-------
                                    53
    is    i
OBSERVATION BLOCKS
    I*     I
 INITIAL CONDITIONS
   17   7
   RECURRENT DATA
INITIAL TIME STEP SIZE	CDELT)
FOR EACH RECURRENT DATA  BET.  THIS  13 THE VnUUE OF THE FIRST  TINE STEP SIZE.

MINIMUM TIME STEP SIZE	CDTMIN)
IF THE HATER SATURATION  CHANGES TOO HUGH AS  SPECIFIED BELOW.  THE TIME STEP
SIZE IS DECREASED.  THIS PUTS A LOMER LIMIT  ON THE TIME STEP SIZE.
MAXIMUM CHANSE IN MATER  SATURATION	-	<6UNAX>
THIS SPECIFICS THE MAXIMUM CHANGE  IN HATER SATURATION FOR EACH  TINE STEP.  IF
EXCEEDED, THE TINE STEP  SIZE  IS REDUCED, BUT NOT BELOM THE MINIMUM TIME STEP.
TINE STEP MULTIPLIER	CCFAC>
EACH SUBSEQUENT TINE STEP IS  INCREASED BV THIS FACTOR UNTIL  THE TIME TO READ
THE NEW RECURRENT DATA SET IS EXCEEDED.
TINE TO READ NEW RECURRENT DATA SET	
ENTER THE NUMBER OF SOURCE/SINK BUCKS WHERE MEW RATES ARE TO BE READ.

CHANOE SOURCE/SINK RATES U-YES 0-ND)....	
IF RATES ARE TO BE CHANGED. EMTEft  A 1.  THE  PROSRAtf MILL THEM EXPECT TO READ
MATE DATA FOR  MS  BLOCKS.
   IB    1
RECURRENT DATA - C*3
      VARIABLE
      HELP t
      HELP 2
                            Fig. 6.  (Continued)

-------
2J
                                SMANEO  I  T

                                  V«r»ion 1.1
                                 July 10, 1986
                    INPUT FILE SCREEN EDITOR  FOR THE HOOCL
                             SMANFLOM-2D
                                   UrittOT toy
                                 Gootrtttm, Inc.

                         Copyright 6*oTr«n«,  Inc. 1986       \\HIHHHHHHHHHHHH
                                                         fMtfmMMUMMr
                                                         |8(H« ll|8O«f 12|l
                                                         1«»3|Iff6|lft7|!
2O|8(H<21|4«CrMt«  •  rnm «il«?  (V/M)i 22|4«Ent«r n«M of  fll* to b* «dit*di Ipn*
*.t«t
Z3|4^Cnt«r nj»* o* n«rw input d*t« «4.t*t

ZS|4«| y

2J

    • •••• Kv^ding Input Fil» - P!*«M Wait
                                          CV/NI  2J
          R*«dlr>g C*r4 0«t« - Pl*««« Matt +~~++2JltH lHKHHHItHHHHHHHMHHHHHHHHHHHH
1 1 * i « / 2| * i * 1 3| 6 1* • 2| i « 1 3| i * « 4| t tmumnmiiHfiMtMHHuiui HHH HHHHHHH HHIHHUHUHHIHHII HHHHHHH
4l61f<2|20f8  M  A  N  C  O  I  T3|22ttt A I M    H E N U3| If
                       OPTION LIST
        Fig. 7.   SUANEDIT  execution for  error checking sample data
        IPNAF.TST.

-------
                                       55
 Error  chock  — p*f»or« *wror checking  on data *»t.
 Quit   —  Writ* n«« or cor-r»ctad «il» *nd exit to DOS
 Goto   —  Oo to cvd nijabar |  ••cond  k»y ctrotc* »• th«
            c«rd nuabcrt
  1-Titl*               2-O»t«             3««un  10
  4«Siaviation Option*  3«Sy*tMi D*t«      A-Con*tant*
  7-»*at»r-NAPL Pc-Kr    B-Air-NAPI. Pc-Kt-   *«*>^-«»abi lity
 I0-^aro«lty 9^.«      U^>COIT Error O«w:kino8tl«

•»• ERROR OCCKINB COnPtXTE (ANY ERRORS LISTED ABOVE)  •*•

  HIT «NY KEY TO CONTINUE ___ 2J1| \*!Mlt*im*HIHaHUHtlHHHHHHm*ltll*IHHUIHHIIIIHHH>
 Quit  —  Mrit* n«w or co*t-«ct*d «ll« and watt to 008
 Goto  —  Go to card nu«c»r-|  **cond k«y  •Irak* is th*
  I -Title               2^tet*             3-*«i ID
  4-«iaul«tian Option*  S-Sr»t«« D«ta       fr-Constant*
  7-M*t*r-NAPL Pc-Kr    e^Ur-NAPC Pc-Kr    9^>waMtbl 1 i ty
 l
-------
                                       56
 Do you want to chang*  it?  (y/n)  2J7«l|lf
                                         2|lf                                SIMUL-
 ATION OPTIONS                                3|»«
                                                  0«4|lf                     VARIAB
 UE DESCRIPTION                                  VALUE
 61 if NUMBER OF Tire STEPS BETWEEN PRIWED OUTPUT  ................... 
   IO7| if PR I NT POTENTIALS (1-YES  O-W) ................................. (IPOT)
        O6| if PRINT DETAILED Pe-Kr TABLES  Cl-VES   O-NO) ..................... (I LOOK
 >           O9| If PRINT PLOT FILE U-VES   O-MO> .................................           Ol2«tfMITE PRES. /SAT.  DATA AT FINAL  TIME STEP TO RESTA
 RT FILE ...... (I REST)           O24| If 7* CSCi   M-N*Kt  P-Or»viOu»  H-M»lp  D-D«I«
 t« I'lrtMrt  UHlndo  M^Uin M«nu  OM|8Of 2J1| H IHHHHHHHHmHIIHIHIHHIIIIIIHIHItHHHHIIIIItll
MHHMHftHHMHNH
4|61fr2|20«8  M  A  N  E  D   I  T3|23fn A IN   H C N U3| If
                        OPTION LIST
7m

 Error chock  — porfora error checking on «t«ntm
  7«*totor-MAPL Pe-Kr    8-Air--*«APL PcHCr    9-Por»^bility
 10-^oro«ity S«t»      tt>4>rap*rty Co*.   I2«« 8p«cing«
 J3-I Spacing*         14-S*pu*nc*/Caoft.   19^X>*«rv. Block*
 l*»rniti«l  Condition* i7-R*curr*nt Data

o«23|SfEnter your Mloctloni ZI

    YOU SUV YOU MAMT TO OUIT7 (V/N)
      PLEASE IftMT WHILE NEW FILE  IS  UMITTEM
Stop - rVograa toralnatod.
                            Fig. 7.   (Continued)

-------
                                 57

1.  ALT H:  two lines of description are displayed at the bottom of the
    •onitor screen beyond  the line  vbere the cursor is located;

2.  ALT N:  move to the next card image;

3.  ALT P:  move to the previous card;

A.  ALT U:  undo any modifications  Co the current card iaage;

5.  ALT I:  insert a number of lines after the cursor;

6.  ALT M:  main menu; end

7.  ALT (ENTER):  duplicate the colv

-------
                                 59
                      6.   SVANGRAF (POSTPROCESSOR)
     The  postprocessing phase of SHANFLOV-2D entails the execution of
SVANGRAF  (a level 1 postprocessing Module) and, later, execution of
FDGRID, CONTOUR, and GRAPH (level 2 postprocessing nodules).  By simply
placing the diskette in Che drive or loading SVANGRAF.EXE onto the hard
disk,  SVANGRAF  is installed.  (The INSTALL progran oust have been run
prior  to  the execution of SVANGRAF. as described in Sect. 3.2.)
     To begin execution of SVANG8AF. type:
     SVANGRAF 
     The  program vlll begin to prompt, asking for the naae of the plot
output fro» SVANFLOV-2D and giving •enu choices.  (See the example of
the SVANGRAF run for data set IPSAF.GD2 in Fig. 5).  The menu choices
for expanding the Z-axis  were never used on any of the test data.  To
generate  a »esh diagram,  the user Most give SVANGRAF the name of the
output file to  be used by the program FDGRID.  Defaults are used
whenever  a parameter is not particularly Important, such as in the case
of Che plot border and character sizes.
     Data are read from che binary plot output file (in this case,
plgd2) for water saturation. RAPL saturation, water potential
(pressure),  and NAPL potential.  This is don* for tine steps specified
by the user (In this case, time steps 10 and 20).  The choices were made
for contouring  this data.  No scaling was performed on any of the
saturation or potential data.  SBANC8AF also prompts for a name of the
contour data file and thm  time series Just as it does for the mesh grid.
If an  already existing data file namw is given, the program will give
the user  che  choice of overwriting chis file.
     Time  series plots indicated in Che SVANFLOV-2D input data cause the
code to output observation point daca within the plot output file.
During SVANGRAF execution, the user will be prompted for plotting any
data for  these observation points (cells).   A naae for the time series
plot file will also be requested.  Scaling for saturations and
potentials  is another choice froa tbe menu.   If the user decides to plot
a predetermined point (a cell in die mesh),  the code will ask for a 35-
character  title, X-axis label,  and T-axis label (actually the Y-axis is

-------
                                 60
 the vertical  axis)  for  the resultant plot.  This process of pronpting
 for each predetermined  cell of interest will be repeated until all such
 cells  are exhausted.

 6.1 FDGRID

     Level 2  postprocessing can begin with the mesh, contouring, or tine
 series graphs.  Most users would probably construct the grid from the
 plot output file before proceeding to the contours or time series.  The
 mesh file can be constructed from the plot output file even if no time
 series or contours  are  requested or if the input data to SWANFLOU-2D are
 not «et up for  contours or time series plots (with IPLOT - 1 only).  To
 execute mesh  plotting,  type FDGRID  after the SWANGRAF program
 has terminated.  The user  will be prompted for the name of the mesh data
 file generated  during SUANGEAF execution.  (See Fig. 8 for a sample mesh
 plot.)
     Next, the  user muse choose among graphic output options.. Sending
 the mesh directly to the printer (in the case of these runs) took less
 time than displaying it on the video terminal and later directing it to
 the default device.  Using the EPSON printer did not present any special
 probleas,  but perhaps the  quality of lettering on the axes could be
 improved.   Overprinting in foots greater than Duplex did not seen to be
 worthwhile in terms of  quality on a dot-matrix printer.  (See the
 example of FDGRID execution results in Appendix A.)

 6.2  CONTOUR

     The  SVAHCRAF code  reads a portion of the plot file generated by
 SVANFLOV-2D and displays the type of data that is being read.   The first
 portion of the potential data is the vater saturation file.   If these
 data are  to be contoured,  the program will prompt for the name of the
 contour plot  file.  As far as the plotting region is concerned,  the
default is the entire grid.  An exception to this would be plotting a
partial region.

-------
61
£ mesh II

ID
§
g

t
•*
W
_9
"i
o


—
5
9




8

i
• 2
5
4

- s

*
7
8



t



10


11
12
U
14

U

1C
17
18



18



20


21
2Z
23
24

25

2ft
27
28



28



30
,

31
2
a
u

a

-
sr
a



38



. 40

i
41 Si
43
43
44

43

48
47
48





S3
94

95

S8
97
98

at
i
83
U
84

89

88
87
88

I

S8

1

90


80


88



70


71
7Z
73
74

75

78
77
78



7»



80
81
K
85
84

•9

88
87
88



88



80
i
i
31
ar
j«
34

as

18
87
M



at



100




















3.00 45.54 »7.0S I50.C3 174.17 217.7! 281.28 M4M

Fig. 8. Sample plot for IPNAF.SD2 mesh.

-------
                                  62
      If partial  region  plotting Is desired, the user Is prompted for the
minimum and maxlnua coordinates in the x and y directions.  The origin
of any grid is considered to be the lover left corner, or x - 0, y - 0.
The user will also be prompted for the nuaber of interpolated lines.
The contouring routine  requires a regular grid; SO grid lines is
considered sufficient by  the writers of SUANGRAF, but a maximum of 100
lines  is available.  Scaling in the prompting scheme is self*
explanatory.  However,  most users may never need to do scaling.
Labelling for titles, border, and character selection are options for
which  the user is prompted.
     The contour curves themselves may be labelled at specified levels.
Contours plotted on the EPSON printer have a thicker line to denote
three  levels. On the plotter, a different pen would be used.  Some
increased thickness of  lines can tx. achieved by using a font other than
SIMPLEX,  which is a single-line font.  To place line segments on the
contour plot, coordinates  of a specific boundary My be entered as a
response (see the example  of contour plots).  Also, symbols may be
plotted on a contour plot  to indicate locations of wells or monitoring
equipment.

6.3  GRAPH

     The time series plots fro» SUANGRAF are generated by the GRAPH
program.   Installation  of  GRAPH is described in Sect. 2.  Executing the
program requires the user  to type:
     GRAPH 
     The program will operate on the observation block data read in for
water or NAPL potential and saturation in previously specified cells of
the plotting  grid.
     As  is  required throughout SVANGRAF, the user will have to respond
to queries  concerning axis labels, titles,  and symbol choices.  Also,  as
in other prograos in the SUANGRAF system, the default selections are
very often  sufficient for most users (see examples of time series
plots).

-------
                               63/6-4
                               REFERENCES
Faust, C. R, and J. O. Ruabaugh.  1985,  SWANFLOW:   Simultaneous Water,
   Atr. and Nonaqueous Phase Flow.   GeoTrans, Inc.,  209  Elden Street,
   Heradon. Virginia  22070.

Faust, C. R. and J. O. Ruabaugh,  1986,  SWANFLOW-2D:   Simultaneous
   Water. Air, and Nonaqueous Phase Flov Model In Two Dimensions.
   GeoTrans, Inc., 209 Elden Street,  Hemdon, Virginia  22070.

Fields, D. E. and J. L. Bledsoe,  in review.  Transportabi 1 ity.
   Robustness, and Execution Parameterization of  the SWANFLOW codes.
   Oak Ridge National Laboratory Report ORNL-6319. Oak Ridge National
   Laboratory, Oak Ridge, Tennessee  37831.

-------
                   65
                Appendix A




MESH GENERATION FOR ONE-DIMENSION EXAMPLE

-------
                                      66
At \>cw*ngraf

2J7«U|1«

2» If                        GEOTRAMS   SOFTWARE

3|lf
3|lfl                      SWANFLOU-20 POST -PROCESS ING PHASE I
   I
6| 1« I _______________________________________
8|lf    Ent*r- th» input file naa*  (Plot *»!• from SUANFUM-2D) i pln*w.gd4
2|1«                        6EOTRAWS   SOFTWARE
3|lf :                      S»MNFLOW-20 POST-PROCESS I NO P1HVSC I
	I
B| 1*    Th» input  fil« pln«w.g,d4    *ucc»»«fully op*n«d.
              Nu«b*f o* block* in M-dic.. »     i
              Nu«b«r of block* in i-tlir. -    24
              NLuabcr of ti«« *t«p*       -    2O
              Saturations «nd pr»**t«-»* plotted *v*ry  1O ti«* *t«p*

   Expand Z-axi*7   i n

   	PLOT OPTIONS	



   Enter th* mmmh  plot fil» naawi •«*hd4
  -        •«•*• FILE EXISTS, OVERWRITE IT? l y

-------
                                        67
2J7e.l|lf

2| 1*                         GEO TRANS  SOFTWARE

3|lf
    CXM; If!

3|lf !                      SWANFLOM-20 POST-fTOCESS 1 NG PHASE I

t>t If 1 _________________________________

8| If    Enter • title for tne mmm* diagraai  **«h d«
    Enter  width of plot -border  (inchcm)
    or  • -l.O to UMT defaults chavactcr (izrst  -l.O
    Enter  « 33 character X-«»is  label i x ea«ter~«>
    Enter  • 33 character V-»»lm  l«l»eli z (Mter-«)

    •>.*«  WRITING MESH DATA  TO FIUE - PLEASE  WAIT •••••
2; 1*                        6EOTRANS  SOFTWARE

3|lf
Sflfl                      SMANFUOM-20 POST-PROCESS I NB PHASE  I
    t
o| »« I ________________

8| if   Dat«  Mill be re«d for ti«« «t«p  10
    Tiw value -   .97917E«O6 ••corid»

    Mater saturation data being re; ad...

    One-dlneoaional probleam canmot be contoured.

    NAPL saturation data being re«atd...

    One-di*en«ional probleas cannot be contoured.

    NAPL potential  data being read...
                                                                               7f~7.

-------
                                         68
   One— dte«nwtonal  prool*** canno*. b« contoured.

   Water potential  data being read...

   One>-dla*nelonal  proDle** cannot b« contoured.
2J7e,l|lf

2tl«                         6EOTRAN6  SOFTWARE
S|lf :                       SMANfn.O»*-2D POST-PROCESSING PHASE I
    I
6| If !

B| !•»    Data will b«r  r*«d for tia* •mtmtt  20
    Tiaw valu* •    . 15223E«O8
   M«t«r- ««tur*tion  d«ta being

   &x> iil»«ii«loo»l pvobl«*« cannot b« contoured.

   MAPI, maturation data being read...

   On*-d lawn* tonal problea* cannot toe contoured.

   MAPI, potential data  being read ---

   Or»«— dtaens tonal protolea* cannot toe contoured.

   Mate*- potential data being read...

   On*— dtawn«ional proble** cannot toe contoured.
Stop - rVogra» terainatatd.
2J7a)l|S«

2| 1*                         eCOTWANSSO^TMAME

3|lf
    Oa>4| If!
          I
9|lf I              8WAMFUOW-20 *OST-«>*tOCZS8IN6 PimCC  II  - 6RID OIASRAM
   I
6| 1« I
_ I
B|l«      Enter the naaw of  tne tnpwt data filet *t«e.e


•~n~  INPUT FILE DOES NOT EXIST •»•*•

    Enter- the na*e of the input data ftl«i  Die*.*


•*•••  INPUT FILE DOES NOT EXIST «••••

    Enter the na*e of the input data fiUi  ae*hd«
    - GRAPHICS OuTPUT  OPTIONS -

       1 •  Display on CRT only
       2 •  Display on CRT then on Oarfault Device
       Z •  Display on Default  Device directly

-------
      Cnt«r !»><
          2-Oupl»«
          3-Trlpl«x
     I  I
2|1«                        6EOTRANS6OFTWARE
3|1«:              SMANFLOM-2D POST-PROCESSING PHASE  II - GRID DIAGRAM
    I
AI >« : _______
_ i
8|1«     Dttt* for tn» •»•»» di*gr«« new b««n
    Do you want to tfTM» th« ••mTt?  y
2|t«                        6EOTMANS  SOFTWARE
       »|t«t
          I
3|l«l              SUAMFLOM-20 POST-PROCESSING PMAK  XI  - GRID DIAGRAM
    t
6|l«l	
	t
•H«     ••««« HESM OIASRAfl BEING GENERATED. PLEASE WAIT ••••*
PUOTSe ERROR »4     7 UMPLOTTABLJE VECTORS
PLOT8G tHKUW 93     I CLIPPED VECTORS
READY TO DISPLAY DRAWING.
Strike •nykwy to continoa. PLOTBe ERROR M     1 UNPCOTTABLE VECTORS
PLOT8G ERROR *3     I CLIPPED VECTORS

-------
                        71
                    Appendix B




COKPLETE StfANGRAF EXECUTION TO GENERATE CONTOUR PLOT

-------
                                       72
A,\X»,»«ano,raf       •      8COT«.A»S  SOFT  MARE

2J7al|if
     O*4|lfl
          I
3l 14 :                      SMM*XOW-2D PQ6T-*>flOCESSIN6 PHASE I
    I
 _
8|1«     Enter the input file naae (Plot file fro* SMAMFUM-2D) i pl«d2

2J7al»lf

2| If                        SCOTRAMS  SOFTWARE

3|lf                                                             '
3|lf I                      SMA*e*UJM-2D POST-PROCESS I MS PHASE I
    I
*t if :
_ i
•t I*     Th« input «»!• plgtf?        «ucc**«fully op«o«J.
               Nu^»r o* block* in »-tl»r. -    1O
               Nuabvr o4 block* an z-dir. •    1O
               l*Mb«r of tta* «t.*p«       -    2O
               S«tur«tton« wid prM»urw ylottx] *v«ry   10 tia* «t
   Expand Z-««i»?  t n

   - PUJT QPTKMS
    Iw  • m*m* dtAorMi to b« g«n«r«t«oT?  « n

2J7«l|t«

2|1«                        6EOTRANS  SOFTWARE
3|l«t                      SMANFUOW-20 POST -P*JOCESS INS PHASE t
    I
       O«t« will b« r««d for ti«* step  10
   Ti*»  v«lu* -   .343AOC+O8 ••conds

   M«t«r saturation data being r-«ad...

   O«ta  Hav* b««n r«ad. do yju want to contour tnl« dataT t y
   Seal* Mturatlon/potantial data? i n
   Enter contour plot 411* niaai conoid?
   !• tn« entire doaain to be contoured?  i y
   Enter nuafeer of interpolated arid lineti SO
   Enter width of plot border finche*>
   or a  — l.O to u«e default* ctvaractar tlznt  -l.O-
2J7al|lf

2| «*                        6EOTRANSSOFTHARE

3|lf
    Oa4|lfI

-------
                                      73
 3|lf»   '                   SWANFLOW-2B POST-PROCESSING PHASE I
     I
 6|If J	
 	I
 8|lf    Enter a 33 character- titlei contour  plot for five spot
    Enter a 33 character  X-axis label i «  , e*ter*
    Enter a 33 character  V-ajti* label i z  , enters

    *»•  CALCULATIONS  IN  PROGRESS.  PLEASE WAIT ••*
 2J7«l|lf

 2| If                       6EOTRAMS   SOFTWARE

 3|lf
     o»4|if:

 3| If !                     SMAMFLOW-20 POST-PROCESS ING PHASE I
   ' I

 	I
 8|lf    Potential/saturation range* fro*   .999E-O3  to   .8O3E«OO
    Enter the nueber of contour  level* (O-calculated) i  O
    Contours labeled every N  lines* 3
    Enter the contour interva.li  .3
    Enter the) nueber of decaatal place* for the contour  labels <-l-calculated> i -1

 2J7el|lf

 2| If                       6EOTMAMS  SOFTWARE
 3|t«l                      S»aftNFUO*-2D POST-WtOCESSINB PHASE  I
    I
 6|l«l	
 	I
 8| If     Enter nueber of line> ••gaent* to oe drexn on
    the eap C-l to uee previou* *et of *e9*ent*> i O
2J7el|lf

2| If                        eeOTRANSSOFTHAME

3|If
    0»4|tfI
          :
3i if t                      SMAMxow-29 Porr-pmcEssiNB ptioec i
    i
eilfl	
	J
8ilf    Enter  the nueber of  key point* to  plot
   on the Map  (-1 to u*« th* previous *et»  *  O

   NAPX •aturation data being read...

   Data have been read, do you oant to contour this data? » y
   Scale saturation/potenti*! data? >  n
   Is the entire dooain to o» contoured?  i y
   Enter nueoer of interpolated grid line«i SO
   Enter width of plot border- (inched
   or a -l.O to u**  d»f«ults cncractv *ize*i  — l.O

2J7.H if

tl I«                       GEUIK(.N^  SOFTWARE

-------
                                        74
    O»4| HI
          I
3|lf !                      SMn>e~lO*-2P POST-PROCESS ING PHASE  J
6| If I
_ I
6|lf    E>iter a 33 character titlei  contour  plot for five mpot
   Enter  a 33 character X-a*i* label i  *  , ••t«r«
   Enter  a S3 character Y-a»i» labels  z  , ••term

   »••  CALCULATIONS IN PROGRESS, PLEASE WAZT »»«
2J7el|lf

2| If                        GEOTRAKS   SOFTWARE
S|l<:                      SUAMFI.OW-2D POST -*>S(OCESS ING PHASE  I
61 1« : _____________
_ i
8|1«    Potential /maturation r-«ng*m «roa   . 1V7E»OO to   .99VE*OO
   Enter  the nu<«b«r of contour-  level* «0-calculated> I O
   Contoure labeled every N tine*i  3
   Enter  the contour interval i  .3
   Enter  the nuefeer of dec i Ml  place* for tltei contour labels  <-l-calculated) « -1

2J7et|lf

2| If                        GEOTRABS  SOFTWARE

5|lf
    Oe4|lf 1
          I
3|lfl                      8UAMFU1M-2D POST-P*ttlCESSINB PHASE I
    I
•lift ___

8|lf    Enter number of line •eg««ntm to be «to-*Mn on
   the «ep  (-1 to u«e previoue  eet  of t»o««nt.m)i  O

2J7el|lf

2| If                        6EOTRAMS  SOFTWARE
    Oe4|l«I
          I
3|lf I                      SMAMF1.0M-2D P05T-P»»OC£S8IK8 PHASE I
_ I
8|lf    Enter the nuet>er of key  points to plot
   on the  atap (-1 to ume the prwviou* met I i O
   MAPL potential datr being r«

   Data have been read, do you went  to contour-  thim data? i  n

   Mater potential data being rered...

   Data have been read, do you —ant  to contour-  thie data? i  n

-------
                                         75
2|1«                        SCOTRANS   SOFTWARE
    O»4|lf I

3|1«»                      SMA»*n.OM-2D POST-PROCESSING PHASE 1
    I
6| 1« I
__ I
8|l«    Data Mill be read tor HM  step  2O
   Tta* value -   . 69J2O€««e ••conOm

   Uat*r saturation data beino. read...

   Data have> b««n r»ad, do you want to contour trits data? > y
   Scat* uturat ion/potential oata? i n
   !•  Uw •ntir* doniin to b* contouratf?  t  y
   Entvr nu«o«r o4 intvrpolataM) grid lin«*« 3O
   Ent«r width o« plot bordw «inctw«)
   or  • -l.O to UM default* cKaractw *!!••>  -I.O
2|1<                        eCOTRAMSSOFTMARE
          I
3|t«l                      SHAtMFUW-20 fQST-*mOCESSlMS PHASE I
    I
6|1«1 __
_ «
•|1«    Enter • 33 character tatlvi contour plot  *or  M*t*r  •aturation,ti*a»2O
   Ent*r  •  S3 character I-ajti* labvlt * , awt*r*
   Ent*r  a  33 character Y-ajii* label t * ,«••£•*••

   »»•  CACCXILATIONS IN PROGRCSS, PLEASE WAIT  •*•
2J7*1|1«

2|l«                        6EOTRAH6  SOFTWARE
    0*4|tf I
          I
3ii«i                      SMftjan.QM-20 POST-PROCESSING PHASE  i

   1*1
	i
0|lf    Potent!al/Mturation rawoe* fro*   . IOOC-02 to   .B57E*OO
   Enter  the) nueoer of contour levels (O^calculated) i  0
   Contour*  labeled every N liMewi 3
   Enter  the) contour interval i .4
   Enter  the> nwaoer of decimal place* for tn« contour label* (-1-calcul ated> I  -1

2J7*l|lf

2| Jf                        GEpTRAHS  SOFTWARE
          I
3|l«t                  '    8MA**FUM-20 POST-PROCESSING PHASE  I

-------
                                      76
___ i
8|l*    Enter nuaber  of  line *eo,o*nt* to be dr«xn on
   the «ap  (-1  to u»e previou* *et o* «eq*enti> I O

2J7»1|1*

2|1«                        GEOTRANS  SOFTWARE
3|1«!                      SWAKFLO»-2D POST-PROCESSING PHASE  I
   :
6 1 >•» : _________________________
B|lf    Enter  th« nuab«r  of k»y pcnntm to plot
   on th« map  (-1 to urn*  t»>« prwioo* **t) < 0

   MAPI. ««turation d«t* ttming r»*d...

   Date n*v« b*«n r»«d, do you ««nt to contour thi« data? | n

   MAPI, potential data being read...

   Data Kave been read, do you want to contour this data? i n

   Water potential data being read...

   Data have been read, do you want to contour this data? « n
2|1«                        BEOT^AMS  SOFTWARE


3|l*
    Oe4|I«:
          •
          •
S|lf :                      SMAI>rLOW-a> POST-PTtOCESSINB PHASE I
        Data read  for   It  observation point*
   Do you want  to plot  orapfie for any point*? i n
Stop - Program  terminated.

Ai\>dir con*

 Voluew in drive  A Ha*  no  label
 Directory of   Ai \

CONTOUR  EXE    136660  9-13-86   StOlp
CONSD2          2V893  9-Z3-B6   2iZ3p
        2 File(*>     24576 byte* free

Ai\>contour
2|lf                        eeOTHANS  SOFTWARE
S|l«:               SWANFLOW-2D POST-PROCESS I NB PHASE II - CONTOURING
   I
A. l«  I

-------
                                      77
Arontour

7.17.I; »«

?ti4                        6COTRANS  SOFTWARE
•<•»«:               SWflNFLOM-2D POST-PROCESS ING PHASE II - CONTOURING

#.:'«•                                  __ _________ . _

Rt ««
     rn»v  »*• n*M o4 th« input data film conod2
     - CONTOUR MAP OUTPUT OPTIONS -

       1 *  ni«pi«v  an CRT  *ir«t
       2 "  Otmplay  an O*««ult 0*vlc«
     F.^»»--  <4«»ir«d  opt ion i  1
7|««                        8COTRAN88OFTHARC
        t « :
         •

^•"'              5WANR.OW-2D POST-^MXXSaiNB PHASE II - CONTOUR I MB
   *

6?"'                   .   ____   ._    _
    »•• AATA  BC INS READ. PLEASE WAIT  •*•
    Oat* *or contour *ap   1  h*« b*«n  r«*d.
    Do you M«nt  to procvvd witn contouring?  f

    8r»«t»r accuracy can b«  obtained  by further
    r->»»i1 vidtng  th* Or id evil*.
    Do you want  to do thirn?   y

    F"t»r the nuabar of •utxli visions  p*r grid c«ll
    (•uvt b« 2,  4, 6. or !•)
                    factor  
-------
                                        78
                    SMANFUOM-2O POST-PROCESSING PHASE II - CONTOURING
    »»•»•» •»! rrmtourc C«O be dTAOT with  thick  line*
    or Mith a second plotter peo| voter your  choice
         i  » Thick line
         2  * Second Pen
    8 !
                            6EOTRANSSOFTWARE


         14 :

*•'«'               SHANFXOW-2O POST -PROCESS ING PHASE II - CONTOURING
    •«»«-*  rrMTOUR HAP BEING GENERATED, PLEASE WAIT •«•»»•
PIOT88 ERROR *4    11 UNPLOTTABUE VECTORS
Pi rrrwa r«M>QR «3     2 CXIPPED VECTORS
READY TO DISPLAY DRAWING.
ft*ri*m *ny hev to continue.2J7«l|lf

•?; t*                        OEOTRANS  SOFTWARE
                    SHANFUOW-2O POST -PROCESSING PHASE IS - CONTOURING
           mn on default device? i y

    The default K«le •  39.19     unitm/lnch.
    Pn y»ou x*nt tO Ctl«T>o» it? t y
    Entev ne«> scalei SO.
                            6EOTRAN8  SOFTWARE
                    SMANFUOW-2D POST-PROCESSING PHASE II - CONTOURING
      •*« rnNTOUR HAP BEING 6ENERATED, PLEASE WAIT •*

-------
                                        79
                            6EOTRAMB  SOFTWARE
                    SUAKFLOW-ZD POST-PROCESS I N6 PHASE IT -  CONTOURING
p. *
    ... fw»ra APING READ, PLEASE WAIT
         for contour eap  2 ha« been r«*d.
    rv, v~.  -— .» »n nroc»«d with contouring?  y

    6r«*t«r »CTur»cy can b« obtained bv further
    n>»M4i virling th« arid C«ll».
    Ho you  want to do tni«7  y

    Pntw »h- 'v+bmr of •ubdivislan* par grid c*U
    («u*t b* 2. 4. 8. or 16)
     s «                               .   :
                     factor  (l>non« in ainli  IO

    Fnl-.er font »tyl«
    t t
•>•'*                        SCOTRAM6  8OFTWAMC
                    SMAMFUM-2D PO8T-PROCES8INS PllftgC II - CONTOUR I NO
p.f*
    t ,»».i«<  r«n«- our* can b« drawn with tHiCk  ltn««
    or with  a Mcond plotter p*n| •nt«r-  your  choic*
         '. - -Thick lin*
         2 • Second Pen
    t  I
                            BEOTRAMS  SOFTWARE

-------
                                       80
B- «x
    ••»•• CONTOUR HAP BEING GENERATED. PI-EASE WAIT •••»•
PLOT86 ERROR  «M    37 UNPUJTTABLE VECTORS
READY TO DISPLAY DRAW INS.
Strlk* wiy  b«y to continue. 2J7«l; I*

2|1«                        6EOTRAMS SOFTWARE

   *
    O»4|l*l
         :
3|l»l               SMANFLO»*-20 POST-PROCESSINQ PHASE II - CONTOURING
   I
*i i« : __
_ t
    Plot »op on o»«ault  dv/tca? i  y
    Th« 9« it? t  9

    Ent«r nmm  «c«I«i  30.
                            BEOTRAMS  SOFTWARE
3|lf I               SUANTLOW-2D POST-PROCESSING PHASE II - CONTOUR I NB
   J
6| I* : _ ; __
_ I
•|H
    ***** CONTOUR HAP KINS GENERATED,  PLEASE WAIT •***•
PUOT68 ERROR »4     3G UNPCOTTABLE VECTORS
PU3T88 ERROR «3      2 CLIPPED VECTORS

-------
                                        81
2J7«1|If

2| If                        6EOTRANS   SOFTWARE

3|lf
9|tf:               SUANFX.OM-20 POST-PROCESSING PHASE II - CONTOURING

61 if:	

8|7«
     •»• DATA BEING READ. PLEASE 4AIT •-••


     Data  for contour «ap  3 has B«»o r-«ad.
     Do you  want to proceed with contof ing?    y

     Sreatet- accuracy can b« obtained by further
     subdividing the grid c*lls.
     Do you  want to do this?  y

     Enter the nuaber of subdivision* pew grid cell
     (oust be 2, 4, 8, or 16)
     I 4

     Enter smoothing factor i  tO

     Enter font style
    l 1
2| If                        QEOTRANS  SOFTWARE
           :
          t
9|lf :               SMMfLOM-2D POST-PROCESS I N6 PHASE II - CONTOURINB
   I
•i i* : ____
_ I
8|lf
    Label axi contour* can b« drawn Mitt* thick  line*
    or Mich a  second plotter pen} entaw your  choice
         1 • Thick line
         2 • Second Pen
    t 1

2J7e,l|lf

2| If                        6EOTRANS  SOFTWARE

   *
    0«4|lf I
          I

-------
                                      82
B|lf
    »••*• CONTOUR HAP BEING GOCRATED,  PLEASE  W»IT •••••
PUOT88 ERROR  4M     64 UNPLOTTABUE VECTORS
READY  TO DISPLAY DRAWING.
Strike any  k«y to continue. 2J7«1| If

2; 14                        6EOTRANS SOFTWARE
     O»4;lf I
          :
S|l«:               SUANFLOW-2D POST -PROCESS 1MB  PHftSE II  - CONTOURING
   t * :
    i
    Plot *ap on  default  d«vic«? i  y

    Th« default  seal* •   39.19     unitm/ioch.
    Do you want  to ctvmg* it? i n

2J7«l|lf

2|lf                        8EOTRANS  SOFTWARE

S|lf
S|lf!               SWANFLOW-2D POST-PROCESSING PHASE II  - COKTOURIN6

6| If!	

iTTf
    •*••• CONTOUR  HAP BEING 6E>«RATED,  PLEASE MAIT
PLOT88 ERROR »4     11 UNPLOTTABUE VECTORS
PLOT88 ERROR «S      2 CLIPPED VECTORS

-------
                83
               Appendix C




SVANG8AF TIME SERIES  GENERATION EXAMPLE

-------
                                      84
 2J7.l|l*

 2| 14                       GEOTRANS  SOFTWARE
sn«:                      s»«ANR_OM-2D POST-PROCESS INS PHASE i

6;l«:	

9« 1*     Enter  th» input  *il« HM*  (Plot file from SMAMFUOW-2O) J
2|1«                        6EOTRANS  SOFTWARE
S;l«:                     SMftMn-OM 20 POST-PROCESSING PHASE I
Bjl*     Th* input  «il» btpln«f.9tf2  «ucc»«m«ully
                      of blacks in «-dtr. .    10
                      of blacks in x-dir. -    1O
                      of ti«» *t«fm       -    2O
              S*t«*-*t»an« «nd pr«»«ur>« plotted «v«ry  10 tl«* «t«p»
           Z-«Jti«?  i n

   	 PUOT OPTIONS —

   !• « ••«^ di«or«« to b* e«n*r«t«d?  i
2| H                       6EOTRANS  SOFTWARE
          i
9| 1« :                     OMOJrLOM 20 POST -PROCESS I

-------
                                         85
  ?f   Data will  b* read «or  ti»e «t«t>  IO
   Tie* value  -   . 3456Oe»Oe  Mcond*

   Mater »atuvation data being re**d...

   Data have been read, do you »a*>t to contour this data"  ^"Y/N". :  n

   MMPL saturation data bei»»g, read ---

   Data hav« b««o read, do >'Ou oant to contour th»» data?   Y.'N :  n

   MAM. potential data being  read...

   Data hav« been read, do you want to contour this data"  «  n

   Mater potential data "being rea«3...

   Data have bean read, do rou M«nt to contour this data?  :  n

     ;14

                            GEOTR*WS  SOFTWARE
S|I«:                      SMOtn.OM-20 POST-PfMX£SSIM6 PMASC I

6; l« : __________________________

8| 1*   Data «i 1 1  be read «or- t>Mr - . ep  2O
   Ti«e value  «   .691206*06 >econd«

   Hater »«turation data bvinq reaid. ..

   Data have been read,  do you want to contour this data?  <  n

   MAPI. «atur«tion data  being read ---

   Data have been read,  do you want to contour thi« data?  |  n

   NAPL potential  data being read...

   Data have; been read,  do you want to contour this data?  |  n

   Mater potential  data  being rea«3...

   Oat* have been read,  do you war»t to contour thtm data?  >  n

-------
                                    86
                         6COTRANS  SOFTWARE
     Data  read for   11 .ob-sarvation point*
                        SMONFLOM-ZO POST-PROCESSING PHASE i
Do you want  to plot  graph-m for any point*"1 : y
Enter timr serte* plot  file nanes tiaesoT.neM

Seal* NAPl. and water potentials'? :  n

Scale tie* data? i  n
Enter width  of plot  border- (incn**>
or a -l.O  to urn* default* Character sicvst -1.
Do you want  a graph  for  block (   1  1) ? y
Braph water  potential?  s y
Enter a SS character- title* for *hi« graph: Water Potential  
Enter a 39 character X-axis labs'! i tia*  , second*
Enter a 33 character Y-ax»s Iab4»l: Potential
Enter a syofeol tiuabsn for «r*« in thi« graph i I
Graph MAPI, potential? i y
Enter a 33 character title) for tni« grapht MAPI Potential  Cl,l>
Enter a 33 character X-axis labaili Ti»e  • second*
Enter a 33 character Y-axis labe>li Potential
Enter a syafeol nuaoer for w«e in thi» graph i 2
Sraph water  saturation?  < y
Enter a 33 character title? for ttii* graph* Mater Saturation  
Enter a 33 character X-axie. lab«li Tie»  . «econO'»
Enter a 33 character y-anim lab«l< Saturateon
Enter a syabol nuefter for uce in thic graph: I
Graph MAPI, saturation'f j y
Enter a 33 character titlor for this graph t MAPI Potential  
Enter a 33 character X-axie. lab«ii Ti*e  , socondm
Enter a 35 character V-a«i« labvlt Maturation
Enter a myatool ouaher for wee in thi« graphs 2
Do you want  a graph  for  block (   3  I) ? n
Do you want  a graph  for  block (   6  1) ? n
Do you want  a graph  for  block <  1O  1) ? n
Do you want  a graph  for  block I   4  4» ? y
Graph water  potential? i y
Enter-
Enter
Enter
Enter
Enter
Enter
Enter
Enter
33 character title for this graphs Mater Potential «4«4>
33 character X-axis label i Ti«e , seconds
33 Character Y-axis labels Potential
syetool nuabsr for  MS* in this graph i  t
Cnter
Enter
Enter
Enter
Graph water saturation? i y
33 character title for this grapht MAPI. Potential  <4,4>
33 character X-avis label * Ti«e ,  seconds
33 character Y-axis label: Potential
syoool nueber for  «c»e in t.hi« grapht  2
33 character title for this graphf Mater  Saturation (4,4)
33 character l-axis label i Tiae , «acor>ds
33 character Y-axis label • Saturation
«y«bol nuflber for  usa in thi« grapht  1
Graph NAPL saturation?  t y
33 Character title  for this graphs NAPL Saturation (4,4)
39 character X-axis label; Tiae , seconds
33 character Y-axis label t Saturation
• /•tool nuflber for USMP in this graphs 2

-------
                                        87
2jl«                        66O7fi»NS   SOFTWARE

3:1*
3;lf :                      SMANFLOW-rO POST -PROCESS ING

&i if :
•(!<    Do you want  a graph for  block  (  3   3»
   Do you »iar«t  a graph tor block
   Do you want  a graph for block
   Do you uant  a graph for block
   Do you want  a graph for block
   Do you want  a graph for block
                                      »  6>  •? n
                                      •  1)  ? n
                                      »  3>  •> n
                                      »  6>  ? n
                                     10 1O»  ? y
         water potential? <.r/n>i  y
   Enter a 35 character title for this graphs Water Potential  : y
   Enter a 35 character title for this graph i NAPL. Potential  <1O,1O)
   Enter a 35 character X-axa* labeli Tiae , seconds
   Enter a 35 character Y-axas label: Potential
   Enter a •yabol  nuaber for-  use  in Utis graph: 2
   Graph water saturation"* i y
   Enter a 35 character title for this grapht Water Saturation  (10, IO)
   Enter a 35 character X-axis labeli Ti*e , seconds
   Enter a 35 character Y-axis labels Saturation
   Enter a syebol  nuaber for*  use  in this graph! I
   Graph NAPL. saturation? <  y
   Enter a 35 character title for this graph i NAPL Saturation  (10,10)
   Enter a 35 character x-ajras labelt Tiae , seconds
   Enter a 35 character V-*xas labelt Saturation
   Enter a eyebol  nuabar for-  use  in ttiis graphi 2
Stop - Program terminated.

-------
                                        88
2» If                        SEOTRANS  SOFTWARE

3; If
3; If":              SWANTUOW-50 PCST-FfW5CESSIN6 PHASE  II  -  TIME SEMES

6; If : ______________________ ; __________________  __________________

8; If     Enter- the naae of the input d*ta 4ile: ti«esdr.rt*«>
     ---- GRAPHICS OUTPUT OPTIONS ---

        I "  Oimpl*y on CRT only
        'Z m  Display on CRT th»o on Default Device
        3 «  O>«pl«y on O*f«ult  Dwice directly

     Enter-  de-aired option: 2

    Enter font «tyle
         3»Triple*

     :  1
2. If                        6EOTRANS  SOFTWARE

3,1*
3Slf :              SMANFUM-SO POST-PROCESS I >e3 PHASE  II - TIME SERIES

6t if :
8j If    Axe« can Oe «c«le0 by utef or progreja
       2 • program
    t 2

    0«t« H«ve  be«n read for block    I,  1
    Do you want to complete the plot? ' y/H> y
FVOTB8 ERROR •«     I UNPUOTTABCE  VECTORS
PUJT88 ERROR «3     3 CXIPf^D VECTORS
REAOr TO OISPt-AV DRAWING.
Strike any key to continue. PLOT88 ERROR M     1 UNFxOT TABLE VECTORS
PUOT88 ERROR «3     2 CLIPPED VECTORS

-------
I
8
1
*•


8
8
8
8
8

Water  Potential   (1,1)
 0.00      80.00     16O.OO     J4OOO    J2O.OO     40O.OO     4IO.OO
                                     1lm« ,  ftcondi   «10*
                                     sao.oo
                                              A4O.OO    720.00
                                                               80000

-------
                                        90
2J7.1|14

2;1«                        6EOTRANS  SOFTWARE

3ll«
    O»4; 14 :
          *

3jl«:              SWAI«a-OM-3O POST -PROCESS I NO PHASE II  -  TIfC SERIES

6» 14 : __________________
               b««n r«*tt 4 or block   1.  1
    Oe> you ~*ot to co<*pl«te tH« plot? -'V/N- y
    ae ER«OR «M     i UMPUOTTABLE VECTORS
pcoree ERROR «s     2 CLIPPED VECTORS
READY  TO DISPLAY ORAUIMB.
Strik» any k*y to continu*. PLOT8C ERROR «4     1 UNPUOTTA8UE VECTORS
PLOT8S ERROR «3     2 O.IPPCD VECTORS

-------
  8
  S
  8
as
  8
  8


  f
  8

  8
                          NAPL  Potential   (1,1)
it
18OOO    24OOO
0.00
80.00
                                   iTOOO    400.00    4SOOO

                                    Tim* . seconds  *10*
MO.OO    640.00    770.00    AOO.OO

-------
                                          92
2; If                         6EOTRANS  SOFTWARE

3:i«
    «>••» ; 1 * I

3;1«:              S»*A»*T-OW-3CO POST-*>ROCESSING PHASE II - TIME SERIES

65 »« : ________________________________________
     O«t« h*v» b»^i !-•««» «or block    1.  1
     Do you w*nt to coapl*t« tN« plof  y
READY TO DISPLAY DRAMllC.
Strik* *ny kvy to continue.

-------
                         Water   Saturation   (1,1)
 o-
 o-
s
s
 o
 o-
   0.00      80.00
160.00    24O.OO    J7OOO    400.00     460.00    900.00    f^O.OO    77O.OO    BOO. 00

                  Time . Mcondi  »10*

-------
                                          94
2J7«1( If

2|14                         6EOTRANS  SOFTWARE
3»1«!               SWANFLOU-3D *=OST -PROCESS INC PHASE  II  - TIME SERIES

6; »« :
     D*t* K«v* b»«m r**d for block    I,  t
     Do you want  to coaplvt* t»*« plot"  y
REAOV TO DISPLAY DRAMINS.
St»-»k» «ny k*y to continue.

-------
                                        95
2J7«U|lf

2|t«                        OEOTRAHS  SOFTWARE
3»l«i              SWANFLOM-3D POST-fWJCESS I NG PHASE II -  TIME SERIES

6) 1*1 _______________________________
    D«ta h*v«  b««n r»«d for bloc^   4,   4
    Do ytXl M*nt to coopl^tw th» plot?  y
REAOY TO OISPVAr ORAHINB.
Strik* any k»y to continue.

-------
0.00
                     Water  Saturation   (4,4)
80.00     taaoo    24000    320.00    *oooo    4».oo
                         Urn* . Mcondt »\
-------
                                     97
2J7mltU

2, H                        GEOTRANS  SOFTWARE
    0*4: 1« :

S;lf!             SWANFLOW-3D POST-PROCESSING PHASE  II  - TIME SERIES

6s if : ________________________________________________________
    D«ta ha^c been read for block   4,   4
    Do you Mnt to complete the plot?  y
READY TO DISPLAY ORAWIN8.
Strike any key to continue.

-------
8
0-
8
d-
                       NAPL  Saturation  (4,4)
        A	A	A-
0.00
         80.00     160.00    240.00
i»00    400.00    480.00    MOOO    MO 00    72O.OO    80O.OO

 Urn* . Mcond* »10*

-------
                                  99
                                                        ORNL-6320
                         INTERNAL DISTRIBUTION
   1.   C.  F.  Baes III                    12.  C. C. Travis
   2.   B.  A.  Berven                      13.  Ebrihin Uslu
   3.   I.  J.  Bledsoe                     14.  P. J. Walsh
   4.   R.  0.  Chester                     IS.  M. G. Yalclntas
   5.   N.  Cutshall                       16.  ORNL Central Research Library
   6.   D.  B.  Fields                      17.  Y-12 Technical Library
   7.   F.  0.  Hoffaan                     18.  ORNL Patent Section
   8.   J.  T.  Boldeaan                  19-20.  Laboratory Records Department
   9.   C.  A.  Little                      21.  Laboratory Records, ORNL-RC
  10.   B.  D.  Murphy                      22.  RSIC Library
  11.   J.  B.  Nyquist
                         EXTERNAL DISTRIBUTION

23-24.  Annette Hold. TS-798, US-EPA,  Washington,  DC  20460

25-26.  Rus« Kinnerson. TS-798, US-EPA. Washington. DC   20460

   27.  Dr. Lee M. Hively. ER-S41, CTN. U.S. Dept. of Energy,
        Washington. DC  20545

   28.  Office of Assistant Manager, Energy Research  and Development.
        DOE-ORO. Oak Ridge. TN  37831

   29.  Jaaes 0. Ruabaugh. CEO-TRANS.  Inc., 209 Elder Street, Suite  301,
        Berndon, VA  22070

30-31.  U.S. Department of Energy. Technical Inforaation Center. Office
        of Inforaation Services. P.O.  Box 62. Oak  Ridge,  TN  37831

-------