United Status Office of EPA 520; 1-87-025
Environmental Protection Radiation Programs December 1987
Agency Washington. D.C. 20460
Radiation
£EPA Low-Level and NARM
Radioactive Wastes
Model Documentation
PRESTO-EPA-DEEP
Methodology and Users Manual
-------
40 CFR Part 193 EPA 520/1-87-025
Environmental Radiation Standards (RAE 8706/1-5)
for Management and Land Disposal
of Low-Level Radioactive Wastes
PRESTO-EPA-DEEP: A Lov/-Level Radioactive Waste Environmental
Transport and Risk Assessment Code
Volume 1
METHODOLOGY AND USERS MANUAL
Developed by
Vern Rogers
Cheng Hung
December 1987
Prepared for
U.S. Environmental Protection Agency
Office of Radiation Programs
Washington, DC 20460
Cheng Hung, Project Officer
-------
DISCLAIMER
This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, contractors, sub-
contractors, or their employees, makes any warranty, express or implied,
nor assumes any legal liability or responsibility for any third party's use
or the results of such use of any information, apparatus, product or process
disclosed in this report, nor represents that its use by such third party
would not infringe upon privately owned rights.
-------
PREFACE
Tnis PKESTO-EPA-DEEP model documentation provides background
information on the mathematical modeling used to generate the
basic data for the Environmental Impact Statement (EIS) which is
used to support EPA's rulemaking for generally applicable
environmental standards for the management and disposal of
low-level radioactive wastes (LLW). This mociel was used to
assess the cumulative population health effects (including fatal
cancer deaths and serious genetic effects) to the general
population residing in the downstream regional water basin as a
result' of the disposal of LLW using deep geological disposal
methods. The model is considered a member of the PRESTO-EPA
family of models. This model is modified from tne PRESTO-EPA-POP
model primarily in the area of radionuclide transport in the
geosphere. Since the mathematical formulations of the
radionuclide transport pathways in the biosphere are basically
identical to those used in the PRESTO-EPA-POP model and the_
mathematical formulation of organ dosimetries are also covered in
the PRESTO-EPA-POP model documentation, the detailed mathematical
formulation is discussed only in the area of geosphere
transport. Interested readers should also refer to the
PRESTO-EPA-POP model documentation report for further details.
Interested persons may apply this model, using appropriate
ana applicable input data, for assessing the cumulative
population health effects resulting from the disposal of LLW
using a deep geological disposal method.
-------
TABLE OF CONTENTS
Page
LIST OF FIGURES iv
LIST OF TABLES v
EXECUTIVE SUMMARY vi
1 INTRODUCTION 1-1
1.1 PRESTO-EPA-POP 1-3
1.2 Deep Disposal Option 1-7
1.2.1 Deep Well Injection 1-7
1.2.2 Hydrofracture 1-9
1.2.3 Deep Geological Disposal 1-14
1.3 Modifications to PRESTO-EPA-POP 1-16
1.4 Outline of Documentation and Users Manual 1-17
2 GROUNDWATER TRANSPORT MODEL FOR DEEP DISPOSAL 2-1
2.1 Basic Deep Disposal Model Formulation 2-1
2.2 Vertical Groundwater Flow 2-5
2.3 Leaching 2-7
2.4 Radionuclide Transport 2-9
3 CODE MODIFICATIONS 3-1
3.1 Modifications to COMMON Blocks 3-1
3.2 MAIN Program 3-2
3.3 Subroutine SOURCE 3-6
3.4 Subroutine LEACH 3-7
3.5 Subroutine OUT 3-8
4 INPUT TO PRESTO-EPA-DEEP 4-1
4.1 Site Specific and Radiological Data 4-1
4.2 DARTAB Data 4-16
4.3 Data for the Infiltration Subroutine (INFIL) .... 4-23
4.4 Dosimetric and Health Effects Data 4-26
IV
-------
TABLE OF CONTENTS
(Continued)
Page
5 OUTPUT OF PRESTO-EPA-DEEP 5-1
5.1 Replication of Input Data 5-1
5.2 Radionuclide Summary Tables 5-1
5.3 INFIL Input/Output 5-2
5.4 Unit Response Calculations 5-3
5.5 Annual Summaries for Intermediate Simulation Years . 5-3
5.6 Radionuclide Concentration Tables 5-3
5.7 Radionuclide Exposure Tables 5-3
5.8 DARTAB Control Information 5-4
5.9 DARTAB Dose Tables 5-4
5.10 DARTAB Fatal Cancer Risk Tables 5-4
5.11 Residual Radioactivity Released to the Basin and
Health Effects 5-5
6 SAMPLE PROBLEM 6-1
6.1 Problem Definition 6-1
6.2 Problem Results 6-8
REFERENCES R-l
APPENDIX A - PRESTO-EPA-DEEP LISTING A-l
APPENDIX B - SAMPLE PROBLEM OUTPUT B-l
-------
LIST OF FIGURES
Figure No. __P_ajLe_
1-1 PRESTO-EPA-DEEP Structure 1-5
1-2 Deep Well Injection Facility 1-10
1-3 Hydrofracture Well 1-13
1-4 Deep Geologic Disposal Facility 1-15
2-1 Groundwater Model for Deep Disposal Scenarios 2-3
2-2 Multi-Strata Configuration for Deep Disposal Options . . 2-6
4-1 PRESTO-DEEP Input Files 4-2
6-1 JCL for PRESTO-EPA-DEEP RUN 6-11
vx
-------
LIST OF TABLES
Table No. Page
1-1 PRESTO-EPA Code Family 1-2
4-1 Description of PRESTO-EPA-DEEP Environmental and Nuclides
Input 4-4
4-2 Description of Namelist Input for Subroutine DARTAB . . . 4-17
4-3 Input Data for Subroutine INFIL 4-24
6-1 Surface Soil Data 6-3
6-2 Atmospheric Data 6-4
6-3 Foodchain Parameters 6-5
6-4 Radionuclide Specific Foodchain Data 6-6
6-5 Radionuclide Specific Data 6-7
6-6 Radionuclide Specific Dose Parameters 6-9
6-7 Organ Weighting Factors 6-10
6-8 Summary of Maximum Annual Exposures 6-13
6-9 Organ Dose/Exposure Summary 6-14
6-10 Pathway Dose/Exposure Summary 6-15
6-11 Nuclide Dose/Exposure Summary 6-16
Vll
-------
EXECUTIVE SUMMARY
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the land disposal of
low-level radioactive waste (LLW). The standard will support the U.S.
Nuclear Regulatory Commission and the U.S. Department of Energy in
developing a national radioactive waste management system. Technical
support for the standard includes an estimation of the environmental
impacts from the disposal of LLW in a wide variety of facilities ranging
from a standard sanitary landfill to a deep geologic repository. This
report documents the PRESTO-EPA-DEEP computer code used by EPA for
evaluating deep disposal scenarios. The PRESTO-EPA-DEEP code was
modified by Rogers and Associates Engineering Corporation from the
PRESTO-EPA-POP code. The original PRESTO-EPA computer code was developed
under EPA direction to estimate cumulative population health effects from
low-level radioactive waste buried in shallow trenches. The PRESTO-EPA
code was expanded into a family of codes entitled PRESTO-EPA-POP,
PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC, and PATHRAE-EPA. The
family of codes was used by EPA to evaluate health impacts for the LLW
standard. The PRESTO-EPA-DEEP code considers LLW disposal by deep well
injection, hydrofracture, and deep geologic disposal, in addition to
shallow disposal alternatives. The code can be used up to 10,000 years
following the end of LLW disposal operations for both the local population
health impact assessment and for the regional basin population health
impact assessment.
Water, principally from deep aquifers, is the primary transport medi
for radioactivity from LLW disposed in deep facilities. Water movi
urn
moving
vin
-------
upward through the deep facility may ultimately enter a shallow aquifer.
Radionuclides that finally reach the aquifer will generally be transported
much more slowly than the characteristic flow velocity of water in the
aquifer because the radionuclides interact with solid materials in the
aquifer. Some of the radionuclides which enter the aquifer may eventually
reach irrigation or drinking wells or surface streams and be consumed.
Cancer risks are calculated for individuals or populations exposed to these
nuclides over the assessment period using a life table approach developed
by EPA.
The deep disposal scenarios implemented in the PRESTO-EPA-DEEP code
consider only the naturally occurring pathways such as natural groundwater
and surface water flows and atmospheric air transport. Intrusion scenarios
such as accidental drilling, geological faulting, and the failure of the
access shaft sealing, have a probabilistic nature and are not considered
here. However, a reinterpretation of certain PRESTO-EPA-DEEP variables
will permit a consideration of such stochastic events.
The major modifications found in PRESTO-EPA-DEEP include modification
of the groundwater transport submodel, and the bypassing of some submodels
which are not applicable. These bypasses include the infiltration model in
the case of all the deeper geological disposal alternatives and the air
transport submodels in the case of deep disposal in a mined cavity.
The PRESTO-EPA-DEEP groundwater transport modification considers the
vertical upward movement of groundwater from a lower confined aquifer
through the waste facility and surrounding strata to an upper aquifer.
Water in the upper aquifer moves horizontally to a receptor location where
the water and radioactive contaminants are introduced into the food chain.
IX
-------
Several factors tend to reduce the radionuclide concentrations at the
receptor location and hence the uptake. These factors, which include
dispersion, dilution in transit, sorption, and nuclear decay, are
considered in PRESTO-EPA-DEEP. The model also retains the capability for
performing shallow land burial analysis.
The Environmental Protection Agency wishes to warn potential users
that, like any complex computer code, the PRESTO-EPA codes can be misused.
Misuse could consist of using the code to examine a site where one or more
critical modeling assumptions are invalid, or where values for significant
input parameters are chosen that do not accurately reflect variables such
as radionuclide inventory, site meteorology, surface and subsurface
hydrology and geology, and future population demographics. Certain release
and transport scenarios, such as major changes in meteorology or mining of
the trench contents, are not considered in the PRESTO-EPA-DEEP model and
code. Significant changes to the existing code and the input data would be
required to consider such scenarios. The PRESTO-EPA codes were developed
to assess and compare alternative methods for managing and disposing of
LLW at generic sites for general scenarios. The codes were not developed
to analyze specific sites.
-------
1. INTRODUCTION
The U.S. Environmental Protection Agency (EPA) is responsible for
developing a generally applicable standard for the disposal of low-level
radioactive waste (LLW) to support the U.S. Nuclear Regulatory Commission
and the U.S. Department of Energy in developing a national radioactive
waste management system. Technical support for the standard includes an
estimation of the health impacts from the disposal of LLW in a wide variety
of facilities, ranging from a standard sanitary landfill to a deep geologic
repository.
As an aid in developing the standard, a family of computer codes
entitled PRESTO-EPA-POP, PRESTO-EPA-DEEP, PRESTO-EPA-CPG, PRESTO-EPA-BRC,
and PATHRAE-EPA was developed under EPA direction. Table 1-1 provides a
brief description of each of these EPA codes. The EPA uses the PRESTO-EPA
code family to estimate and compare the potential health impacts
(consisting of cumulative population health effects and maximum annual dose
to a critical population group) of a broad number of LLW disposal
alternatives for evaluation and support of its LLW standards.
These codes, and how the EPA uses them, have been described in detail
(Hu83, Ga84, Ro84). Information on obtaining complete documentation and
the user's manuals for the PRESTO-EPA family of codes (EPA87a through EPA87g,
Me81, Me84) is available from the EPA.
This report documents the PRESTO-EPA-DEEP code modified by Rogers
and Associates Engineering Corporation from the PRESTO-EPA-POP code, which
was the first code developed in the PRESTO-EPA family of codes. The
1-1
-------
TABLE 1-1
PRESTO-EPA CODE FAMILY
PRESTO-EPA Code
Purpose
PRESTO-EPA-POP
PRESTO-EPA-DEEP
PRESTO-EPA-CP6
PRESTO-EPA-BRC
PATHRAE-EPA
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by shallow methods; long-term analyses are modeled
(generally 10,000 years).
Estimates cumulative population health effects to local
and regional basin populations from land disposal of LLW
by deep methods.
Estimates maximum annual whole-body dose to a critical
population group from land disposal of LLW by shallow or
deep methods; dose in maximum year is determined.
Estimates cumulative population health effects to local
and regional basin populations from less restrictive
disposal of BRC wastes by sanitary landfill and
incineration methods.
Estimates annual whole-body doses to a critical
population group from less restrictive disposal of BRC
wastes by sanitary landfill and incineration methods.
1-2
-------
PRESTO-EPA-DEEP code extends the PRESTO-EPA-POP methodology to the following
deep disposal scenarios: deep well injection, hydrofracture, and deep
geological disposal in a mined cavity.
Because of the .modular nature of the PRESTO-EPA code family these
modifications did not entail major changes in the program structure. Less
than ten new input variables were required so existing PRESTO-EPA-POP data
sets can easily be modified for use with PRESTO-EPA-DEEP.
1.1 PRESTO-EPA-POP
The theory, models, methodology and usage of the PRESTO-EPA-POP code
have been previously documented (EPA87a). A brief review is useful as a
basis for discussing the PRESTO-EPA-DEEP modifications. The PRESTO-EPA-POP
code is modular and allows submodels or subroutines to be replaced as
necessary. Many of the submodels included in PRESTO-EPA-POP were developed
for other types of assessments and have been adapted for use in estimating
population health effects from shallow land disposal of LLW.
Some additional assumptions made in the PRESTO-EPA-POP model and code
include:
The radionuclide inventory is assumed to be the activity in
the facility at the end of disposal operations.
0 Waste materials in the facility are assumed to be a
homogeneous mixture of radionuclides and other waste
materials, in one of many forms, ranging from trash material
to solidified waste.
In-growth of radiological daughter products is not calculated
by the model, although it can be simulated.
The description of the chemical reactions is provided only
by the radionuclide dependent distribution coefficients, K^.
1-3
-------
Below the waste, the geologic medium can be saturated or
unsaturated; radionuclides are transported vertically from
the waste zone to an aquifer and then horizontally through
the aquifer.
Three types of submodels are used in the code: unit response,
bookkeeping, and scheduled event. The unit response submodels calculate
the annual response for a given process. For example, unit response models
calculate the annual infiltration through an intact trench cap, the annual
average atmospheric dispersion coefficient and annual average erosion of
the trench cap.
The bookkeeping submodels track the results of the unit response
submodels and user supplied control options. One submodel, for example,
maintains a water balance in the trench and calculates the maximum level of
standing water in the trench and the volumes of water leaving annually
either through the trench bottom or by overflow from the top of the trench.
Scheduled event submodels consider events such as cap failure, basement
construction, and initiation of scheduled mechanical suspension of contami-
nated dust, the timing of which is governed by user specified control
parameters. Submodel interactions and information flow between various
submodels of the PRESTO-EPA-DEEP code are illustrated in Figure 1-1. More-
detail about methods employed by the various submodels is given elsewhere
(EPA85a).
Average concentrations of each radionuclide in environmental media
such as well water or the atmosphere over the assessment period are used to
calculate radionuclide concentrations in foodstuffs. Foodstuff information,
human ingestion rates, and breathing rates are utilized to calculate the
1-4
-------
MAM
URL 4
NUCLIDE
LOOP
BOOT ,
1
i r 1
SOI '
&iXktt~:~\~ :-~ .v*
^w^mifK^S:
'Kmm9S£L
Ix XxWxXX-x-.fiiucLlOE
xixSHxxWx1: LOOP
:x::₯:';X:₯:X:;x;:J
IlllliS
eilw
tlilll1
*:::*:>3::':Xxx':jNUCUOE
gxgxxgg'ftfl LOOP
\mmmJi
III
"" " *** ^tMOCLlbi"
LOOP
1
.4UCLIDE
i LOOP
1
1
L
ISEAEWx^TwCLIDE
xXOORxSxxjxj LOOP
^SSJlx'xSx'SH-hiucu DE" ~
mWSxSSiJSixl LOOP
^ c
"
1OURCE
m-roii
QUANC 8
1
| * WUMn c.
1 » YLAQ
1 1 » OPLT
LJ FCN ^ i | 1
1 1 ' * YLAO
m~~:. ~'?<~~
^±>±_._
-;~:::-:
*
-^'ii'^'
LEACH
VERHOR
SURSOL
SUSPND
J ' » OA4KUN
^ ERORF
--;-.- TX::":^^::^^^;*-;^^
^::^^^:*^^j3*S-^?f^i
^:m^mm::tmmm^:\
-'W:'-<'^m<^^'h^^W:-K:f-M---,
:-xSS ::?:. v--x*l- *!: : .-SSHS! :*:S; ;xx>Wx:;;:W: 1
__jiiiBlM
FOOOA | " CVA x^xvilllllSixfij
IRRIQA
HUMEXA
^?:::; ''- ::'-': .':<-^''-:-:-x'jj:-:-:-'-:-x:::x:'':v:v:-^.-^:-.--.'>-:-:''':::::-i:''- :xl
-'^iVi I i<^i OUT ' PX:II:": ' ':-:i:------'-'-^''--'^-::";:'-''':':' "*:" 1
-,.^.^.^.^- ^.^,^,.^._.^..^..-^,-_..
> cv ,
_|
IRRIQ | » COV i
HUMEX
DARTAB
TRENCH
LEACH
SURSOL
SUSPNO
1
J
FS;M^:"*xSx":x71
RAE-102217
FIGURE 1-1. PRESTO-EPA-DEEP STRUCTURE.
1-5
-------
annual average radionuclide intake per individual in the population by
ingestion and inhalation. These intake data are used by the exposure and
risk submodels in the DARTAB subroutines to estimate the maximum annual
dose rate and cumulative population health effects.
The health effects estimation methodology assumes that each member of
the population is a member of a cohort that is exposed to constant,
averaged radionuclide concentration levels. For atmospheric transport
calculations, the total population is assumed to reside within the same
22.5-degree sector. User specified parameters give the fraction of the
year that the wind blows into that sector. A user option allows the
results of the atmospheric dispersion calculation in the code to be
replaced by an externally calculated concentration which considers several
population centers (Ro83). Each member of the population is assumed to eat
the same quantities of food (vegetables, beef, and milk). These foods are
assumed to be produced on the same fields and spray irrigated with
contaminated water. Contaminated water is assumed to be drunk by beef and
milk cattle.
The PRESTO-EPA-POP code also has the capability of performing a
regional basin health effects assessment, over a period of 10,000 years.
Regional basin health effects are calculated based on the residual
radioactivity being transported into a regional basin stream. The
atmospheric transport pathway is not considered. The radionuclides being
transported from the aquifer to the regional basin stream during the entire
simulation period are included in the calculations, as well as the
radionuclides being transported by the surface stream from the local area
to the regional basin stream. The annual amount of radionuclides reaching
1-6
-------
the regional basin is determined by considering additions of radionuclides
to the regional basin stream from the aquifer and from surface runoff. The
regional basin health effects are computed by multiplying the total
residual radioactivity released in 10,000 years by a conversion factor.
PRESTO-EPA-POP considers only one disposal scenario per computer run.
The scenario to be simulated may be structured by the user by changing
values of user-specified parameters such as population size and location,
distance to the well, percent trench cap failure, resuspension rate, etc.
1.2 DEEP DISPOSAL OPTION
The PRESTO-EPA model described above was written for application to
near-surface waste disposal, including disposal by sanitary landfill,
conventional shallow land disposal, improved shallow land disposal, and the
intermediate depth disposal methods. The modifications to the model
described in this document extend the applicability to deeper geological
disposal alternatives such as deep well injection (DWI), hydrofracture (HF),
and deep geological disposal (DGD) in a mined cavity.
1.2.1 Deep Hell Injection
Deep well injection (DWI) is a technique developed by the oil industry
for the disposal of oil field brines and is a disposal method used for
hazardous wastes distinctly different from other hazardous waste disposal
concepts. Whereas the basis of most disposal options is the immobilization
of the waste in a region well-isolated from the biosphere, the objective of
DWI is not to immobilize the waste per se, but to pump it into a porous
formation which is confined by impermeable layers. The waste remains in a
1-7
-------
liquid form and may eventually disperse within the formation. Obviously it
is important that the formation into which the waste is pumped, and its
contents, do not have future economic value. The fact that the waste is
not immobilized is not necessarily a deficiency of deep well injection. If
the impermeable layers between the waste formation and useful groundwater
remain intact, the only major pathway for the waste to move to the biosphere
will probably be intrusive events such as drilling into the waste.
For deep well injection to be practical the pores within the receiving
formation must remain open. Thus a major constraint is that the waste
needs to be a liquid containing only dissolved solids or fine undissolved
solids. In addition, the waste must be chemically compatible with the
formation and must not degrade its physical or chemical stability. The
initial form of most commercial low-level waste is not compatible with DWI
requirements. The waste is generated as a solid such as wipes, rags, and
other contaminated solid materials or in the form of filters, resins, and
sludges. There are few low-level waste sources which produce large volumes
of simple liquid waste.
As stated above deep well injection requries a porous formation
beneath an impermeable rock layer such as shale. The impermeable layer
should extend beyond the range of predictable horizontal waste movement and
should be free of fractures or other flaws. The formation needs to be
sufficiently deep to provide a low probability for intrusion. The porous
formation and its impermeable cover should not contain useable water or
other potential resources.
Syncline basins are considered favorable for deep well injection.
Such basins exist throughout much of the United States. A minimum depth
1-8
-------
for injection is about one thousand meters. Although extensive waste
movement from the point of injection may not significantly affect the
biosphere, waste movement should be restricted because of issues such as
land ownership and mineral rights. Thus, formations with high groundwater
flow velocities and low retardation for waste movement should be avoided.
Needless to say, the formation should also be tectonically stable.
Figure 1-2 shows a simple profile for DWI. The key features of the
design are an injection tube extending to the injection level, a 14 cm
diameter inner casing extending down to the injection level, a non-corrosive
fluid between the injection tube and the inner casing, a cement liner about
the inner casing, an outer casing which extends from the surface to beneath
any formation containing usable water, and a cement liner surrounding the
outer casing. Packers between the injection tubing and the inner casing
are used at the surface and injection levels. Impermeable layers of shale
above and below the injection level are also shown.
The surface facilities not shown include waste receiving facilities,
holding tanks, pumps, basic equipment maintenance facilities and facilities
for a small crew. Equipment failure will not normally lead to critical
surface hazards, so redundancy of surface facilities is not required for
the sake of safety. However, if redundancy is not included in the surface
facilities, it is likely that provision would be made to store waste received
during time periods when the injection assembly was not operational.
1.2.2 Hydrofracture
Like deep well injection, hydrofracture (HF) is a form of well injec-
tion. In the case of HF, however, the waste mixed with a grout is forced
1-9
-------
INJECTION TUBING
NONCORROSIVE FLUID
AFRESH WATER BEARING^
^SURFACE SOILS;^:^
14cm dla. CASING
i- _J t fi t * I »* n i i jT
-IMPERMEABLE SHAL
CONFINED AQUIFER
-ts?^-'s^-'^X^Z2£ZJZ-ZvZ-^^<^>^
IMPERMEABLE SHALE
RECEIVING FORMATION
PERMEABLE SALTWATER
^SANDSTONE AQUIFER
BORE HOLE
E IMPERMEABLE SHALEi
NOTE: NOT TO SCALE
RAE-IOO848
FIGURE 1-2. DEEP WELL INJECTION FACILITY.
1-10
-------
under pressure into a formation of shale which will readily crack in the
horizontal plane. The grout forms a thin sheet about one centimeter thick
in the horizontal plane and the sheets are vertically spaced approximately
every three meters. A typical radius for a sheet is 150 meters. Hydro-
fracture differs from deep well injection in several ways:
The waste is incorporated into a grout which, after injection,
solidifies and immobilizes the waste.
The grout is injected under such pressure that the receiving
formation fractures in the horizontal plane, thus there is
no need to consider initial pore space or maintenance of the
pore space.
t The waste may have a greater variety of physical and chemical
forms. It could initially be a solid which is pulverized and
mixed with grout. However, the waste needs to have a chemical
form which is compatible with the grout.
Suitable shale formations are identified by their tendency
to fracture in the horizontal plane without inducing vertical
fractures. The need for extensive impermeable formations
above and below the receiving formation is not a prime
consideration, provided the hydrogeology of the site is
otherwise favorable.
Grout injections are made over a short time period with
subsequent injections occurring at slightly different depth
levels.
t Because equipment failure during an injection will result in
the grout solidifying in the injection well, a greater degree
of equipment reliability is required.
Deep well injection can be used over a great range of depths.
Hydrofracture requires that the vertical stress in the
disposal formation be less than the horizontal stress. This
limits the hydrofracture depth typically to less than
1000 meters (in contrast to suitable depths for deep well
injection that must be in excess of 1000 m).
Compared to deep well injection, hydrofracturing is amenable to a
greater variety of waste and initial waste forms. The only limitations on
waste suitable for hydrofracture disposal which have been identified are
whether the waste is chemically compatible with the grout and whether it
1-11
-------
can be economically pulverized. The waste is diluted by grout at a ratio
slightly greater than unity.
The most basic design requirement for hydrofracturing is the location
of a suitable formation. The minimum geological requirements are:
The horizontal layer of shale must be level.
The vertical stress must be less than the horizontal stress.
The host formation, the formation immediately above the host
formation, and the formation immediately below should not
contain resources of foreseeable value.
t The disposal formation should not communicate hydraulically
with usable water supplies.
An injection begins by cutting a preslot in the casing and formation.
The preslot is further opened and checked for proper fracturing by an
initial injection of pure grout or water. If the formation is fracturing
as expected, the waste-bearing grout is then injected. After the waste has
been injected the fracture is sealed with pure grout and the grout
remaining in the well is flushed out.
Figure 1-3 illustrates a hydrofracture well. The design is similar to
that for DWI but there are some distinctions. With HF there is a need for
a precut slot in the geologic formation to start the fracture. The precut
is made by rotating a hydrojet which is suspended from the surface. As
subsequent injections are made, they occur at successively higher levels
within the host formation (approximately every three meters). If, after an
injection, grout is allowed to remain in the well, the grout will solidify
and cause the well to be plugged, preventing subsequent injections.
Therefore, a means to flush the well is required. In addition, there is
the possibility of system failure before injection is completed. After
1-12
-------
-FEED
^'DISPOSAL $
:&: FORMATION^
-ROTATING SWIVEL
RETURN
CONCRETE
-25cm dla. CASING
ROTATING HYDROJET
* AI-1008 41
NOTE'- NOT TO SCALE
FIGURE 1-3. HYDROFRACTURE HELL.
1-13
-------
such an occurrence the waste-bearing grout must be flushed to an emergency
waste storage area. To ensure that flushing is always possible, backup
surface facilities are required.
The surface facilities for HF are more complicated than those for DWI.
Besides the need for backup equipment, there is a need for tanks for the
water and sand to be used for cutting the preslot, tanks for accumulating
the waste until an injection takes place, tanks to hold the grout material,
facilities to mix the waste and grout, and a storage area to hold waste-
bearing grout in case an emergency flushing of the well is required.
1.2.3 Deep Geological Disposal
The deep geologic disposal (DGD) of radioactive waste is the primary
option being pursued for the disposal of high-level radioactive wastes (DOE79)
and it has been used for the disposal of transuranic wastes (TRU) in
Europe (NEA72). The option to use DGD for the disposal of commercial
low-level radioactive waste has been available ever since its use was
proposed for the disposal of high-level waste. There are several approaches
to developing a DGD facility for use with low-level waste. Abandoned mines
could be fitted for such use, current operating mines could be developed
with eventual use for deep geologic disposal in mind, low-level waste could
be used as backfill in high-level waste repositories or a deep geologic
disposal facility could be mined specifically for low-level waste.
The facility design will depend on the formation in which disposal
takes place. Figure 1-4 shows a simplified profile of a DGD facility.
Surface structures would include buildings for administrative offices, crew
facilities, waste receipt and inspection, waste package preparation, health
1-14
-------
SURFACE FACILITIES-
i
t>
en
^j^^^i'^3sjfe.rfv^^£
B^VENT^^^^Kf
fe. UAIM K-^5Q^Vit>«
IMPERMEABLE
LAYER
>^ REPOSITORY ROOMS
IMPERMEABLE LAYER
RAE-IOOB43
FIGURE 1-4. DEEP GEOLOGIC DISPOSAL FACILITY.
-------
physics facilities, lift rooms, air circulation and filtering facilities,
and equipment storage and maintenance facilities. The formation in which
disposal takes place is separated from upper and lower aquifers by
relatively impermeable layers of rock. The depth of disposal is on the
order of hundreds of meters. Representative dimensions of the disposal
rooms are 5 meters wide, 3 meters high and 100 meters long. Pillars
between the rooms ensure excavation stability.
1.3 MODIFICATIONS TO PRESTO-EPA-POP
The deep disposal scenarios implemented in PRESTO-EPA-DEEP consider
only the naturally occurring pathways such as natural groundwater and
surface water flows and atmospheric air transport. Intrusion scenarios
such as accidental drilling, geological faulting, and the failure of the
access shaft sealing, have a probabilistic nature and are not considered
here. However, a reinterpretation of the PRESTO-EPA-DEEP variable, FRACB,
does allow a consideration of such events.
The major modifications found in PRESTO-EPA-DEEP include modification
of the groundwater transport submodel, and the bypassing of some submodels
which are not applicable. These bypasses include the infiltration model in
the case of all the deeper geological disposal alternatives and the air
transport submodels in the case of deep disposal in a mined cavity.
The PRESTO-EPA-DEEP groundwater transport modification considers the
vertical movement of groundwater from a lower confined aquifer through the
waste facility and surrounding strata to an unconfined aquifer followed by
horizontal movement through that aquifer to a receptor location where the
1-16
-------
water and radioactive contaminants are introduced into the food chain.
Several effects tend to reduce the radionuclide concentrations at the
receptor location and hence the uptake. These effects include dispersion,
dilution in transit, sorption, and radioactive decay. These effects are
treated the same in PRESTO-EPA-DEEP as in PRESTO-EPA-POP.
In addition, PRESTO-EPA-DEEP has a maximum period of analysis for both
the local and regional basin population of 10,000 years. This accommodates
slower moving radionuclides with longer half-lives. Finally, it should be
noted that the PRESTO-EPA-DEEP modification retains completely the
capability for shallow land burial analysis.
1.4 OUTLINE OF DOCUMENTATION AND USERS MANUAL
In Chapter 1 the structure of PRESTO-EPA-POP is briefly discussed and
the PRESTO-EPA-DEEP modifications are introduced. Chapter 2 summarizes the
development of the PRESTO-EPA-DEEP groundwater model in terms of its major
components. Chapter 3 is a summary of those modifications to and changes
in the code as a result of the PRESTO-EPA-DEEP modifications. These
include major line changes and additions, new variables, changes in COMMON
blocks and the like. A description of the input requirements of PRESTO-EPA-
DEEP is given in Chapter 4. Finally, in Chapter 5 the sample problems are
discussed, input data sets are presented and the job control language (JCL)
statements for running the problems are given. The appendices include a
FORTRAN source listing of PRESTO-EPA-DEEP in Appendix A and a listing of
the output from the sample problem in Appendix B.
1-17
-------
2. GROUNDWATER TRANSPORT MODEL FOR DEEP DISPOSAL
This chapter considers the major conceptual aspects associated with
modifying the PRESTO-EPA-POP model to accommodate the deep disposal options
for low-level wastes. The modifications center around the groundwater
transport segment of the model. As noted in both the PRESTO-EPA-POP and
PRESTO-EPA-DEEP codes, the main program delivers an exposure via ingestion
array to the subroutine DARTAB. This array contains the annual radio-
nuclide uptake via ingestion. A major contributor in the ingestion pathway
is the uptake arising from contamination of the groundwater supply. The
groundwater transport mechanism is different for the cases of shallow and
deep disposal and it is precisely this difference which must be
accommodated in the PRESTO-EPA-DEEP code.
As the shallow disposal model is extensively documented (EPA83, EPA87a
through EPA87g) the approach taken here is to focus on the deep disposal
aspects assuming familiarity with the PRESTO-EPA documentation. Sections
in this chapter address the formulation of the groundwater flow model, the
radionuclide leaching, and the advective transport of the radionuclides from
the facility to the receptor location. These constitute the major components
requiring examination and/or modification in formulating the PRESTO-EPA-DEEP
model. Other technical changes in the code are described in the chapter on
code changes.
2.1 BASIC DEEP DISPOSAL MODEL FORMULATION
The transport of radionuclides from a deep geological LLW facility
through the groundwater pathway to human receptor locations depends on the
2-1
-------
hydrological and chemical properties of the aquifers above and below the
facility, the stratum in which the facility is constructed, and on the path
from the facility to the receptor location. In modeling such a complex
system a number of assumptions must be made in order to reduce the problem
to tractable proportions. The quality of the available data should be
consistent with the degree of model simplification employed. A number of
assumptions are used to develop the basic PRESTO-EPA-DEEP groundwater
transport model. They are as follows:
Aquifers lie above and beneath the host or waste-bearing
formation.
The waste is deposited in strata with very low hydraulic
conductivities or in strata which are isolated from the
upper and lower aquifers by formations with low hydraulic
conducti vities.
t The upper unconfined and lower confined aquifers exhibit
constant groundwater flow over the entire time of interest.
The potentiometric head in the lower aquifer is assumed to
be greater than the head in the upper aquifer, and there is
a constant flow of groundwater from the lower to the upper
aquifer. The hydraulic gradient between these aquifers
resulting from the potentiometric head difference is assumed
to be constant.
0 An effect of this upward flow of groundwater is the contin-
uous, advective, vertical transport of radionuclides into
the upper aquifer.
Based on these assumptions, radionuclides are released from the facility
into the groundwater, and the radionuclides will be transported upward to the
unconfined aquifer. The radionuclides are then transported horizontally
through this aquifer to a receptor location i.e., a well or surface water.
This scenario, illustrated in Figure 2-1, is modeled in PRESTO-EPA-DEEP via
a one-dimensional plug flow model which describes the sequential transport
through the facility stratum and the upper aquifer. The vertical transport
2-2
-------
ro
i
oo
GROUND SURFACE
WELL
SURFACE
STREAM
GROUNDWATER FLOW IN AQUIFER
AQUICLUDE
WASTE REPOSITORY
LOWER AQUIFER
RAE-100856
FIGURE'2-1. GROUNDWATER MODEL FOR DEEP DISPOSAL SCENARIOS.
-------
through the facility stratum depends on the area, hydraulic conductivity
and gradient of that stratum. The horizontal transport through the aquifer
depends on the properties of the aquifer. Each geological medium is
homogeneous with respect to its transport properties.
Additional, simplifying assumptions used to describe the one-dimensional
transport of a radionuclide through a homogeneous medium are as follows:
The flow in the medium is laminar and one-dimensional, and
for the permeabilities and flow velocities considered, the
groundwater flow may be adequately described by Darcy's Law.
The constant driving force which vertically transports the
groundwater and radionuclides through the host rock is the
hydraulic gradient which exists between the two aquifers.
A simple equilibrium condition between the sorbed and dis-
solved radionuclides within the groundwater system exists at
all times. That is, the rate of reaction for the sorption
process is much faster than that of the radionuclide migra-
tion and radionuclide decay. Further chemical reaction and
speciation are neglected and the sorption of any nuclide is
assumed to be independent of the sorption of the other
species present.
0 The hydrodynamic dispersivity remains constant and is
independent of the concentration gradient. The incorporation
of dispersion effects is discussed later.
In the following paragraphs the mathematical expressions for those
components unique to the PRESTO-EPA-DEEP groundwater transport model are
developed. These components are vertical groundwater flow, leaching, and
vertical radionuclide transport. This development is impacted by and
reflects the necessity of compatability with the PRESTO-EPA-POP code at
both the conceptual and program levels.
2-4
-------
2.2 VERTICAL GRQUNDWATER FLOW
The fundamental equation describing saturated flow of a fluid in a
porous, homogeneous medium is Darcy's equation:
Q = KA dH (2-1)
dz
where
Q = volumetric flow rate of the fluid (m3/yr)
K = hydraulic conductivity (m/yr) of the medium
A = cross-sectional area of the medium (m2)
H = hydraulic head of the fluid (m)
= hydraulic gradient through the medium (m/m)
dz
The interstitial vertical water velocity and the distance water travels in
a year is related to the volumetric flow rate as follows.
v = Q/Aeff = K 4H / P ff (m/yr) (2-2)
dz
where
= the effective porosity of the medium
= APpff = the effective flow cross sectional area of the
medium (nr)
In the multi-strata system likely to be encountered (Figure 2-2), K
would be the composite hydraulic conductivity of those strata which isolate
the waste from the upper aquifer, the waste bearing stratum, and those
strata which isolate the waste from the lower aquifer. Hence
2-5
-------
SURFACE
3£S5S$5S$3£Sg4=S2»8&s5£$5 IIODCD
UPPER
Az;
Az,
RAE-100857
FIGURE 2-2. MULTI-STRATA CONFIGURATION FOR
DEEP DISPOSAL OPTIONS.
2-6
-------
n
K = J§
zi
where n is the number of strata between the aquifers, z-j is the thickness
of the ith stratum and Kn- is its respective conductivity. PRESTO-EPA-DEEP
allows only for the input of this composite hydraulic conductivity.
The cross-sectional area, Awaste, is the total cross-sectional area of
the waste. If, for some reason, only a fraction, f, of the waste is
exposed to the flow, then fAwaste is the appropriate cross-sectional area.
Both Awaste and f are input parameters. The default value of f is 1.0.
The hydraulic gradient, dH/dz, between the aquifers, is a PRESTO-EPA-
DEEP input variable. Its default value is 1.0.
2.3 LEACHING
In PRESTO-EPA-DEEP the description of the leaching of the radionuclide
is dependent on the mode of disposal. For the hydrofracture and deep
geological disposal scenario a simple release fraction is utilized. For
the deep well injection scenario the leaching of radionuclides is assumed
to be controlled by sorption equilibria. Both of these leach models are
present in PRESTO-EPA-POP and are retained in PRESTO-EPA-DEEP along with
the solubility-controlled leach model.
The release fraction model assumes that a constant fraction of each
isotope remaining in the waste facility during a given year is released
into the groundwater that passes through the facility during that year,
i.e:
2-7
-------
curies of nuclide i *
released into the groundwater = qi = \L^ e-*i(L yr> (2-4)
during the year
Here, Aj_ is the release fraction, Q-j is the inventory of nuclide i at the
beginning of the year and the X-j is the decay constant for nuclide i. In
PRESTO-EPA-POP and also PRESTO-EPA-DEEP, XL is assumed to be the same for
all nuclides present in the waste.
If the vertical groundwater travel time through the facility is
greater than one year, then the fraction of waste leaving the facility is
less than the value given in Equation 2-4 and is given as follows.
qi released from facility = X^- e-^1 yr^ ( VB ) (2-5)
VB + YW
where V^ is the pore volume of the facility and Vg is the volume of water
leaving the facility annually.
A model for the sorption equilibrium-controlled release of a radio-
nuclide i arises naturally from the definition of the equilibrium sorption
constant as follows.
i/ _ curies remaining in waste/g of waste
Ndi ~ 1
curies leached/cm^ of leachate
'waste
Here Pw is the density of the waste in g/cm3, Vwaste is the waste volume
and VL is the volume of leachate. Manipulation of this expression readily
yields
cLi = 31 = Qie-^i(l yr) (2-6)
L VL + Pw Vwaste Kdi
where CLI js the concentration of nuclide i in the leachate.
2-8
-------
2.4 RADIONUCLIDE TRANSPORT
In both PRESTO-EPA-POP and PRESTO-EPA-DEEP, a one dimensional, nondis-
persive plug flow model is the basis for describing the transport of
leached radionuclides from the facility to the receptor location. The
vertical transport segment in which the radionuclides move from the
facility to the upper aquifer is characterized by the vertical nuclide
travel time, ty-.
tvi = *v di (2.7)
vv
Here xv is the vertical distance between the waste and the bottom of the
upper aquifer, P and P are the bulk density and porosity of the rock in
that region, K^ is the sorption equilibrium (or distribution) coefficient
for the itn nuclide in that rock, and vv is the linear vertical water
velocity. The horizontal transport time, t^-,- , is described in a similar
manner.
(2-8)
VH
where x^ is the horizontal travel distance, PS and PS are the density and
porosity of the soil, K^ the corresponding distribution coefficient and
VH is the aquifer velocity.
For first order kinetics such as radioactive decay the exit or receptor
location concentration Cr-j is related to the entrance or source con-
centration, Cs-j t by the simple relation:
ri = Csi e
- e-Xiti (2-9)
2-9
-------
For the case of sequential flow such as the vertical flow followed by
horizontal flow, the total travel time for radionuclide i is
ti = tV1 + tHi (2-10)
The source concentration is determined from the annual amount of nuclide i
leached and the annual flow rate of the water through the source.
After determining the concentration of a radionuclide at the receptor
location via the nondispersive plug flow model, PRESTO-EPA-POP and
PRESTO-EPA-DEEP apply a multiplicative correction factor to account for the
effects of dispersion (Hu80).
2-10
-------
3. CODE MODIFICATIONS
This chapter documents the changes in the FORTRAN code required in
implementing the PRESTO-EPA-POP to PRESTO-EPA-DEEP modifications. These
include changes in and additions to COMMON blocks and the changes in and
addition of statement lines in the source code. The new input variables
required are discussed in Chapter 2. A complete source listing of the
PRESTO-EPA-DEEP code is given in Appendix A.
3.1 MODIFICATIONS TO COMMON BLOCKS
Four labelled COMMON blocks have been modified in PRESTO-EPA-DEEP:
CNTRL, TRCH, WATER, and NUC. The CNTRL modification is the addition of the
variable IDISP to the block. This variable was added on to the end of the
block. In the labelled COMMON TRCH the variable FN has been replaced with
the new input variable SEEP. The variable FN is not utilized by either
PRESTO-EPA-POP or PRESTO-EPA-DEEP. The usage of the variable SEEP is
explained in the input description chapter of this document. Six new input
variables were added to the COMMON block of WATER. These are VWV, HGRAD,
FRACB, ALV, ALH, and BDENV. The usage of these variables is described in
the input section of this report. In the COMMON block NUC the dimensions
of the array AQAM have been changed from AQAM (40, 1000) to AQAM (40,
10000). This simple change along with those noted below allows the code to
directly model a 10,000 year local population analysis.
3-1
-------
3.2 MAIN PROGRAM
Because of a cumulative difference in line numbers in the past versions
of PRESTO-EPA-POP and PRESTO-EPA-DEEP references will not be made to line
numbers. However, segments of the code which have been modified will be
uniquely identified. Changes in FORMAT statements and additional FORMAT
statements will be noted but not reproduced. The reader is referred to the
source listing in Appendix A for details.
The DO 10 loop in the main program has been modified so that the loop
counted NN now runs from 1 to 10,000:
DO 10 NN = 1,10000
This change and the change in AQAM noted above permit 10,000 year
simulations for the local population.
The normalized atmospheric exposure and deposition sequence formerly
read:
EXPOS=CHIQ
IF(CHIQ .LE. 0.0)CALL AIRTRM(EXPOS,DEPO)
and now reads:
EXPOS=CHIQ
IF(IDISP.EQ.4)EXPOS=0.0
IF(CHIQ.LE.O.O.AND.IDISP.NE.4)CALL AIRTRM(EXPOS,DEPO)
This sequence results in no exposure resulting from the air pathway for the
mined deep geologic disposal scenario (IDISP=4).
The infiltration sequence formerly read:
CALL INFIL(TXl.TP)
XINFL=TXI
PPN=TP
3-2
-------
and now reads:
XINFL=SEEP*PPfi
IF(IDISP.EQ.LAND.SEEP.EQ.O.O)CALL INFIL(XINFL,PPN)
IF(IDISP.GT.1)XINFL=SINFL
The first statement determines the infiltration factor as a fraction of the
total precipitation. This is only utilized for parametric studies in the
case of shallow land burial. The second line determines the infiltration
via INFIL and is activated for the normal shallow land burial scenario.
The third line sets the site infiltration equal to the off site infiltration
for the deep disposal scenarios. This step is required for the overland
transport calculations.
A number of modifications have been incorporated into the vertical and
horizontal transport segment. Originally this section was written:
VWV=PERMV/PORV
XLSAT=DTRAQ
WRITE(LU2,6200)
DO 100 I=1,NONCLD
RETARV = 1. + (BDENS*XKD(3,1))/PORV
DBD=.3DO*VWV
DBD=.3DO*GWV
WRITE(LU2,6210)NUCLID(I),RETARV,VTIME,DDETA1,RETARH,HTIME,
DDETA2,DDETA(I),TEMP
IF(TEMP.GT.10000.)TEMP=10001.
ITIME(I)=INT(TEMP)
3-3
-------
It now reads:
IF (IDISP.EQ.l) GO TO 65
VOLO = 0.0
VOLB = VWV*TAREA*FRACB
GO TO 67
65 VWV=PERMV/PORV
RESAT=RESAT/PORV
XLSAT=DTRAQ
67 CONTINUE
WRITE(LU2,6200)
DO 100 I=1,NONCLD
RETARV=1. +(BDENV*XKD(3,I))/PORV
DBD=ALV*VWV
DBD=ALH*GWV
IF(TEMP.6T.10000.)TEMP=10001.
ITIME(I)=INT(TEMP)
WRITE(LU2,6210)NUCLID(I),RETARV,VTIME,DDETA1,RETARH,HTIME,
& DDETA2,DDETA(I),TEMP
The second and third lines in the modified sequence determine the overflow
volume (VOLO = 0.0) and annual leachate volume VOLB in the deep scenarios.
The WRITE statement at the end of this sequence has been placed after the
adjustment to TEMP in order to identify its adjusted value to the user.
The stratum between the waste and the upper aquifer is a different material
then that of the aquifer. The calculation of the vertical retardation
(RETARV) of each radionuclide in this stratum requires the use of its
properties -- specifically its density (BDENV), porosity (PORV) and the
appropriate Kd-s (XKD(3,I)). The porosity and the Kd's were already
3-4
-------
present in PRESTO-EPA-POP; however, in PRESTO-EPA-DEEP a new input variable
BDENV replaces the soil density, BDENS. In the expressions for DBD the
input vertical and horizontal dispersivities, ALV and ALH, respectively,
replace the constant 0.3DO.
The trench water balance sequence in the MAIN program has been modified
to accommodate the deep disposal options. This sequence appears in the
main year loop before the main nuclide loop and in PRESTO-EPA-POP read:
OVER=OVER-DOVER
IF(OVER.LT.O)OVER=0.
C
C CALCULATE TRENCH WATER BALANCE
C
CALL TRENCH(NYEAR,VOLB,VOLO,DMAX,PC)
IF(VOLB.LE.1*AQVOL.OR.ISW.GT.O)GO TO 450
In PRESTO-DEEP this section now appears:
OVER=OVER-DOVER
IF(OVER.LT.O.)OVER=0
IF (IDISP.EQ.2)DMAX=VOLB/(FRACB*TAREA*PORT)+TDEPTH
IF (IDISP.GT.2)DMAX=TDEPTH
IF (IDISP.GT.l) GO TO 1066
C
C CALCULATE TRENCH WATER BALANCE FOR SHALLOW BURIAL SCENARIO
C
CALL TRENCH(NYEAR,VOLB,VOLO,DMAX,PC,TINFL)
1066 IF(VOLB.LE..1*AQVOL.OR.ISW.GT.O)GO TO 450
These changes also appear in the regional basin simulation loop (DO 1001).
The only difference from the above modification is the statement GO TO 450
is now GO TO 455. The three conditional tests on IDISP which now appear
before the comment cards control the calculation of the maximum depth of
water that contacts the waste during a year (DMAX). The variable DMAX is
only used in the case of the shallow land burial (IDISP=1) or the deep well
3-5
-------
injection scenario (IDISP=2). The subroutine TRENCH is utilized only for
the shallow land burial calculations.
3.3 SUBROUTINE SOURCE
The subroutine SOURCE is an input subroutine which reads all site and
transport data except that climatological and trench cap data required in
the infiltration calculations (see Chapter 4). The largest part of the
changes to the subroutine center around the input of the new variables
required in the deep scenario calculations. For explanation of the new
variables the reader is referred to Chapter 4. Other changes in the code
represent modifications in parameter output control and formats.
The disposal option parameter, IDISP, has been added to the input
data. Once IDISP is specified, PRESTO-EPA-DEEP internally determines the
appropriate value of the leaching control parameter LEAOPT. For the
shallow burial disposal option (IDISP=1) LEAOPT retains that value read in
from Card 3. For the deep options of deep-well injection, hydrofracture,
and deep geological disposal, LEAOPT is overridden and set equal to 1, 5
and 5, respectively.
The input of the aquifer-related data has been altered by the addition
of six new input variables -- VWV, HGRAD, FRACB, ALV, ALH and BDENV. If a
zero or blank entry is input, the following default vaules are used:
HGRAD = 1, ALV = 0.3, and ALH = 0.3. If no value is supplied for VWV, one
is calculated using Darcy's Law. An input value of the infiltration, PPN,
is required for the deep scenarios since the infiltration subroutine is
bypassed.
3-6
-------
The remaining changes implemented in the SOURCE subroutine consist of
(1) modifications of existing FORMAT statements so that the terminology is
consistent with any shallow or deep scenario and (2) the addition of new
FORMAT statements required for printing out variables not found in
PRESTO-EPA-POP. These minor changes and additions do not impact the
program logic in any manner and will not be considered here. The reader is
referred to the listing in the appendices.
3.4 SUBROUTINE LEACH
One new statement has been added in the subroutine LEACH. No other
changes have been made. The new line, which is now the first executable
statement in the subroutine, transfers program control immediately to the
conditional test on LEAOPT while setting FWET equal to 1.0 and bypassing
the conditional tests on DMAX. The latter action is important since DMAX
is set equal to zero for the hydrofracture and deep geological disposal
cases. This section of code was originally written as:
DATA LU6/6/
IF(DMAX.LE.O.)CCWAT=0.
IF(DMAX.LE.O)GO TO 600
GO TO (200,100,400,300,500),LEAOPT
but is now
DATA LU6/6/
IF (IDISP.GT.l) GO TO 50
IF(DMAX.LE.O.)CCWAT=0.
IF(DMAX.LE.O.) GO TO 600
50 FWET=1.
TCON=1.
GO TO (200,100,400,300,500),LEAOPT
3-7
-------
3.5 SUBROUTINE OUT
The subroutine OUT prints out the annual summary. Thus, the modifica-
tions reflect the different output requirements for the shallow and deep
disposal scenarios.
For the deep scenarios the volume of overflow, VOLO, and the amount of
each radionuclide in the overflow, POLO(I), have no meaning and hence are
not printed. The variable VOLB, which is the volume of flow out the bottom
in the shallow case, and the volume of flow out the top in the deep
scenarios, is printed as is the corresponding array, POLB(I). The
variables PER and WDEPTH, which denote the percentage trench cap failure
and the maximum depth of standing water, respectively, have no meaning in
the deep scenario and are not printed for those scenarios.
3-8
-------
4. INPUT TO PRESTO-EPA-DEEP
There are four sets of input data for PRESTO-EPA-DEEP analysis. They
are: (1) site specific and radionuclide data used to calculate nuclide
concentrations by the environmental transport section of the code, (2)
namelist format of data for DARTAB calculations of tabular output, (3)
hydrogeologic and meteorologic data for subroutine INFIL, and (4) dosimetric
and health effects data used by the DARTAB submodel. Preparation of the
first three data sets will be explained in the following sections. The
fourth data set was created by the program RADRISK (Du80). This data file
contains reference dosimetric information and is not usually modified for a
specific run. This reference should be consulted for information on
changing the data in this file.
These four input data sets are grouped into three separate disk files,
each assigned a unique FORTRAN input unit number. The data sets are
organized as follows and illustrated in Figure 4-1:
t Data sets (1) and (2) form one file with input unit 5
Data set (3) is assigned input unit 4
Data set (4) is assigned to unit 25.
4.1 SITE SPECIFIC AND RADIONUCLIDE DATA
These data are used in the transport section of PRESTO-EPA-DEEP. The
data describe physical and hydrogeological characteristics of the facility
and site, meteorological data for atmospheric dispersion and deposition,
data for the biological pathways and the radionuclide characteristics and
4-1
-------
SITE/TRANSPORT:
LESS INFILTRATION
(SOURCE)
DARTAB
(DARTAB)
DATA SET
LOGICAL UNIT 5
DATA SET
SITE/TRANSPORT:
INFILTRATION DATA
(INFIL)
DATA SET
LOGICAL UNIT 4
RADRISK
DOSIMETRIC AND
HEALTH EFFECTS
DATA
(DARTAB)
DATA SET
LOGICAL UNIT 25
RAE-100855
FIGURE 4-1. PRESTO-EPA-DEEP INPUT FILES.
4-2
-------
inventories. This data set also contains disposal technology and exposure
scenario data, allowing for detailed site and exposure scenario
descriptions.
The site specific data set is read in standard FORTRAN formatted style
by subroutine SOURCE. Table 4-1 presents a description of the input
variables, format and card sequence for this data set.
4-3
-------
TABLE 4-1
DESCRIPTION OF PRESTO-EPA-DEEP ENVIRONMENTAL AND NUCLIDE INPUT
Card Variable (Input Format)
Description
CARD 1 Run Identification (20A4)
TITLE
- Identifies the run. Up to 80 characters
are allowed.
CARD 2 Location and Site Description (20A4)
LOCATE
- Location of the disposal site. Up to 80
characters are allowed.
CARD 3 Time. Nuclides. and Farming Control Parameters (1615)
MAXYR
NONCLD
LEAOPT
NYR1, NYR2
IOPVWV
IOPSAT
IPRT1, IPRT2,
IDELT
- The number of years for which the simula-
tion will run.
- The number of radionuclides which are used
in the simulation. Must be 40 or fewer.
- The leaching option. Radionuclides will be
removed from trench in different manners
depending on the value of LEAOPT. Must be
one of the following calculation methods.
(Option 1 through 5.)
Option Leach Calculation Method
1 Total contact, distribution coeffi-
cient
2 Immersed fracton, distribution co-
efficient
3 Total contact, solubility
4 Immersed fraction, solubility
5 Release fraction
- Beginning and ending years of trench cap
failure. Both values must be less than or
equal to MAXYR. NYR2 must be greater than
or equal to NYR1.
- Not used.
- Not used.
- Control parameters. An annual summary
table will be produced for each year that
is a multiple of IDELT and falls between
the range of IPRT1 and IPRT2.
4-4
-------
TABLE 4-1
(Continued)
Card Variable (Input Format)
Description
IRRES1, IRRES2
LIND
Beginning and ending year for the mechani-
cal suspension of contaminated soil into
atmosphere. Used in the farming scenario.
Option parameter passed to DARTAB to cal-
culate health effects. If LIND = 0 then
DARTAB computes concentrations and rates
for maximally exposed individuals. If
LIND = 1 then general population concen-
trations are computed.
IAVG1, IAVG2
- Beginning and ending years for
nuclide concentration values.
averaging
IDISP - Mode of disposal. IDISP - 1,2,3, and 4 for
shallow land burial, deep well injection,
hydrofracture and deep geological disposal ,
respectively.
CARD 4 External Exposures and Time Duration Parameters (815)
IVAP - Not used.
IBSMT
IAQSTF
IXTS
- The beginning year for the basement correc-
tion factor for surface gamma exposure
calculations made by DARTAB. If IBSMT > 0
correction factor is calculated beginning
in that year. If IBSMT = -1 then no
correction is calculated.
- Control parameter for aquifer to stream flow.
A blank field defaults to calculations under
the assumption that the flow takes place,
otherwise the field should contain a nonzero
integer.
- Control parameter to extend global assess-
ment for an additional 9000 years beyond
the local impact analysis period (MAXYR).
A blank field defaults to the extended
analysis. A nonzero integer stops the
global impact simulation at the end of the
local assessment period.
IRST
INTYR(I),
1-1.3
Number of years of
after site closure.
restricted site use
Years for intermediate tabulation of
and risk output.
dose
4-5
-------
TABLE 4-1
(Continued)
Card Variable (Input Format)
CARD 5 Water Infiltration and Use (8F10.0)
Description
PCT1, PCT2
WWATL
WWATA
WWATH
SWATL
SWATA
SWATH
- The fraction of the waste cap that is
assumed to fail between the years NYR1 and
NYR2. Failure of the cap constitutes total
removal of all cap, of OVER thickness, for
PCT1 of the trench area in NYR1 and for PCT2
of the trench area in NYR2. Between NYR1 and
NYR2 a linear interpolation between pairs
(NYR1, PCT1 and NYR2, PCT2) calculates the
amount of the trench area that is totally
bare. Even if PCT1 and PCT2 are set at
zero, the trench cap may ultimately fail
through erosion; see function CAP and
subroutine ERORF.
- Fraction of irrigation water supplied by
contaminated well water from well (1.0 if
all water comes from well, 0.0 if none).
- Fraction of animal drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
- Fraction of human drinking water supplied
by contaminated water from well (1.0 if all
water comes from well, 0.0 if none).
- Fraction of irrigation water supplied by
contaminated water from stream (1.0 if all
water comes from stream, 0.0 if none).
- Fraction of animal drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
- Fraction of human drinking water supplied
by contaminated water from stream (1.0 if
all water comes from stream, 0.0 if none).
CARDS
6-12
Comments and References (20A4)
- These cards are available for comments and
references pertaining to data set. Up to
80 characters allowed in each of six cards.
4-6
-------
TABLE 4-1
(Continued)
Card Variable (Input Format)
Description
CARD 13 LLW Site Characteristics (8F10.0)
TARE A
TDEPTH
- The total combined radioactive waste
surface area for the facility being
simulated (m2). Must be nonzero.
- Nominal depth (m) of operating trench in
the shallow disposal scenario. Includes
cover thickness. For deep options it is
the waste thickness.
OVER
PORT
DENCON
RELFAC
CPRJ
- Thickness of trench overburden (m).
must be equal to YGMAX of INFIL.
This
SINFL
- Porosity of material within trench. Must
be nonzero.
- Mean density of the waste materials in the
trench (g/cm^).
- The annual release fraction of the total
trench inventory of each radionuclide if
LEAOPT = 5 (see Card 3).
- Complement to one for the fraction of
underground water flowing to the stream
(0.0 means 100 percent to the regional
basin river).
- Annual infiltration rate for the noncap
portions of the site and for local farm-
land (m/yr). For deep options it is the
infiltration through the waste.
CARD 14 Groundwater Saturation (2F10.0)
SSAT - Fraction of water saturation in the ground
formation beneath the buried waste. If
SSAT = 0 or if left blank, the fraction of
saturation is calculated internally by the
code.
RESAT - Fraction of residual saturation.
CARD 15 Site Operations and Waste Containers (6F10.0)
PERMT - Trench permeability (m/yr}.
4-7
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
FACTIM - Number of years of active operation of the
waste site.
TMN - Number of years of active maintenance after
site closure. No nuclide migration is
initiated during the maintenance period,
although radioactive dacay takes place.
CFT1 - Number of years before waste containers
begin failing.
DCFT - Number of years after CFT1 that containers
fail completely. At time CFT1+DCFT all
containers have failed.
FGAM - Dimensionless factor characterizing the
intensity and duration of gamma exposure
from the basement scenario.
CARD 16 Transport Parameters (2F5.0, 7F10.0)
DTRAQ - The distance from the bottom of the trench
to the nominal depth of the aquifer. DTRAQ
+ TDEPTH should equal the aquifer depth
below the surface (m). For deep options it
is the distance from the waste to the upper
aquifer.
DWS - Distance between the well and stream for
basin effects calculations (m).
DWELL - Distance from the trench to the well used
for irrigation and drinking. Must be
nonzero (m).
Gwv - Velocity of the groundwater in the aquifer.
Must be nonzero (m/yr).
AQTHK - Thickness of the aquifer at the location of
the well (m). This is used to calculate
the volume of water in which the available
radionuclides are diluted. Must be nonzero.
AQDISP - Dispersion angle of the pollutant plume in
the aquifer (radians). Used with AQTHK to
calculate dilution volume. Must be in
radians.
4-8
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
PORA - Aquifer porosity.
PORV - Porosity of host formation.
PERMV - Permeability of host formation (m/yr).
CARD 17 Transport Parameters (6F10.0)
VWV - Vertical water velocity (m/yr). If a value
of 0.0 is input, VWV is calculated internally
by PRESTO-EPA-DEEP.
HGRAD - Hydraulic gradient (dimensionless). If a
value of 0.0 is input, HGRAD is assigned
the default value 1.0 by PRESTO-EPA-DEEP.
FRACB - Fraction of waste impacted (0.
-------
TABLE 4-1
(Continued)
Card
Variable (Input Format)
XG
Description
HLID
ROUGH
- Distance (m) from source (trench) to
population or individual of interest. If
XG is less than PD, the adjacent farming
option will be triggered.
- Height of the inversion layer or lid (m).
- Hosker's roughness parameter (m).
CARD 19 Atmospheric Parameters (7F10.0)
FTWIND
CHIQ
RE1, RE2, RES
RR
FTMECH
- Fraction of the time the wind blows toward
the population or individual of interest.
- User specified atmospheric transport para-
meter which may be calculated by an external
atmospheric dispersion code (s/m3). A non-
zero value will override any calculation of
atmospheric dispersion performed within code.
- Factors (including algebraic signs) used in
the resuspension rate equation.
- During the period between years IRRES1 and
IRRES2, the resuspension rate RR (sec'1)
will be included as a source term in sub-
routine AIRTRM. For on-site reclaimer, RR
is the dust loading of the inhaled air
(gm/m3).
- The rate of resuspension, RR, is modified
by this fraction, which has a value between
zero and unity.
CARD 20 Atmospheric Stability (215)
IT
IS
- Indicator variable for the type of atmos-
pheric stability class formation. Suggested
formation is Pasquill-Gifford, IT = 1.
- Stability category indicator. Values of
1 to 6 correspond to stability categories
of A-F. A single value represents the most
common stability category from nearest
meteorology station to site of interest.
CARD 21 Precipitation Parameters (6F10.0)
RAINF
- The rainfall factor (R/yr).
4-10
-------
TABLE 4-1
(Conti nued )
Card Variable (Input Format) _ Description _
ERODF - The soil -erodibil ity factor has units of
tons/acre-R, where R = RAINF given above.
STRING - The slope steepness-length factor.
COVER - The crop management factor.
CONTRL - The erosion control practices factor.
SEDELR - The sediment delivery ratio. This ratio is
intended to apply to fouling of waterways
from construction activity.
CARD 22 Soil and Surface Mater (5F10.0)
PORS - Porosity of the surface soil. Must be nonzero.
BDENS - Bulk density of the soil (g/cm3). Must be
nonzero.
STFLOW - Annual flow rate of the nearest stream
Must be nonzero.
EXTENT - The cross slope extent of the surface
region contaminated by operational spillage
(m). Must be nonzero.
ADEPTH - The active depth of soil in the surface-
contaminated region. Used for the calcula-
tion of radionuclide concentration in both
surface soil and surface water. Must be
nonzero.
CARD 23 Surface Uater Runoff (4F10.0)
PD - Distance from the trench to nearest stream
(m). Must be nonzero. If PD is greater
than XG, the adjacent farming option will
be triggered.
PPN - Total annual precipitation.
RUNOFF - Fraction of the annual precipitation that
runs off.
SEEP - Fraction of the total annual precipitation
(PPN) which ultimately becomes deep infiltra-
tion. This variable is zero unless one is
conducting parametric studies for the shal low
land burrial option.
4-11
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) _ Description _
CARD 24 Agricultural Data (7F10.0)
Yl, Y2 - Agricultural productivity for pasture grass
and other consumed vegetation respectively
(kg/m2).
PP - Surface density of soil (kg/m2). Assumes a
15 cm plow depth. For farming scenario,
this value should be in agreement with the
value of BDENS, CARD 20. Must be nonzero.
XAMBWE - The weathering removal decay constant for
atmospheric deposition onto foodcrops
(hr-1).
TA - Not used.
TE1, TE2 - Period of time that pasture grass or crops
and leafy vegetables, respectively, are
exposed to contaminated air during each
growing season (hr).
CARD 25 Agricultural Delay Times and Fractions (8F10.0)
TH1 - TH6 - These six variables represent the delay
time between harvest and consumption by
animal or man of pasture grass, stored
feed, leafy vegetables for maximum
individual doses, produce for maximum
individual doses; and leafy vegetables and.
produce for general population exposures,
respectively (hr).
FP - Fraction of each year that animals graze on
pasture grass.
- Fraction of an animal's daily feed that is
fresh grass for the period of time animals
are in pasture.
CARD 26 Animal Feed Data (7F10.0)
QFC - The amount of feed consumed daily by cattle
(kg).
- The amount of feed consumed daily by dairy
goats (kg).
4-12
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
TF1, TF2 - The transport time (hr) from animal feed
into milk and into the receptor human for
the maximum individual and the general
population exposures, respectively.
TS - Length of time between slaughter of animals
and human consumption of the resultant meat
(hr).
ABSH - The absolute humidity of the atmosphere
(g/m^). Used for specific activity food-
chain calculations for tritium concentra-
tions in foodstuffs. Must be nonzero.
P14 - The fractional equilibrium ratio for C-14.
CARD 27 Plant Root Parameters (2F10.0)
XRTM - Maximum root depth for on-site farming
scenario (m).
RTGR - Root growth rate constant (yr~l).
CARD 28 Irrigation Water Data (6F10.0)
TW - Not used.
FI - Fraction of the year that crops are irrigated.
WIRATE - Irrigation rate (L/m2-hr). Application time
is set equivalent to the number of frost-
free days for the area.
QCW, QGW, QBW - Values for the amount of water (L/day) con-
sumed by milk cows, milk goats, and beef
cattle, respectively.
CARD 29 Human Food Uptake (8F10.0)
ULEAFY - The human uptake of leafy vegetables (kg/yr).
UPROD - The human uptake of produce (kg/yr).
UCMILK - The human uptake of cow milk (L/yr).
UGMILK - The human uptake of goat milk (L/yr).
UMEAT - The human uptake of meat (kg/yr).
4-13
-------
TABLE 4-1
(Conti nued)
Card Variable (Input Format)
Description
UWAT
UAIR
POP
- The human uptake of drinking water (L/yr).
- The inhalation rate (m3/yr).
- Local population.
CARD SET Repeat this set of three cards for each nuclide.
30, 31, 32+
CARD 30 Nuclide Specific Data (A8, Tl, 8A1, 2X, 7F10.0)
NUCLID(I) - The name of the radionuclide used in the
code. Must be left justified and with no
embedded blanks and with a hyphen separat-
ing the alphameric for the element and the
numeric for the isotope. The names used
must agree with the conventions used in
RADRISK and DARTAB.
NUCL(I.K), K=l,8 - Do not enter data for these variables as
the data are read from NUCLID(I) - (see
format statement).
TRAM(I)
SOAM(I)
STAM(I)
ATAM(I)
DECAY(I)
SOL(I)
- The amount of each radionuclide found in the
trench at the beginning of the simulation
(Ci).
- The amount of spillage onto the surface
that exists at the beginning of the
simulation (fraction of initial inventory).
- The amount of radioactivity placed into the
stream nearest the site at the beginning of
the simulation (Ci).
- The amount of radioactivity of each radio-
nuclide placed into the air directly above
the trench at the beginning of the simula-
tion (Ci).
- The radiological decay constant (yr"1). The
constant is equal to 0.6931 divided by the
radiological half-life in years.
- The solubility of the radionuclide stored
in the trench (mg/1). SOL is used only if
LEAOPT = 5.
4-14
-------
TABLE 4-1
(Continued)
Card Variable (Input Format) Description
CON(I) - Conversion factor for global health effects
(health effects/Ci released).
CARD 31 Nuclide Transport Parameters (A8, 2X, 4F10.0)
NU - Radionuclide name (same as on Card 30).
XKD(l.I) - Surface Kd Of radionuclide I (ml/g).
XKD(2,I) - Waste Kd of radionuclide I (ml/g), used
when LEAOPT = 1, 2, 3, or 4.
XKD(3,I) - Vertical zone Kd of radionuclide I (ml/g).
XKD(4,I) - Aquifer Kd of radionuclide I (ml/g).
CARD 32 Agricultural Data for Nuclides (A8, 2X, 7F10.0)
NC - Radionuclide name (same as Card 30).
RA(I) - Radionuclide retention fraction for air.
RW(I) - Radionuclide retention fraction for
irrigation.
BV(I) - Radionuclide soil-to-plant uptake factor
for vegetative parts.
BR(I) - Radionuclide soil-to-plant uptake factor
for grain.
FMC(I) - Radionuclide forage-to-milk transfer factor
for cows.
FMG(I) - Radionuclide forage-to-milk transfer factor
for goats.
FF(I) - Radionuclide forage-to-beef transfer factor.
4-15
-------
4.2 DARTAB DATA
This data set provides the user options for processing the exposure
data, dosimetric data, and tabulations of output. This data set is read
from input unit 5 and must follow directly after the data set described in
Table 4-1.
The first card of the DARTAB data set is a title card, read in standard
formatted FORTRAN input syntax. The remaining data are read using the
FORTRAN namelist format. The end of a namelist grouped is designated by
&END. An example of this input is given in the sample problem data listed
in Appendix B. Table 4-2 describes the variables used in the DARTAB data
set.
4-16
-------
TABLE 4-2
DESCRIPTION OF NAMELIST INPUT FOR SUBROUTINE DARTAB
Name!1st
Group
INPUT
Variable
ILOC
JLOC
PLOC
AGEX
ILET
Description
Direction index of the exposure array
use for individual tables.
to
Distance index of the exposure array to use
for individual tables.
ILOC, JLOC. These are the directions of
the exposure array that is used to locate
an individual for which a dose or risk table
is printed. AIRDOS-EPA, the code for which
DARTAB was originally written, supplied a
two-dimensional exposure array to DARTAB.
PRESTO-EPA-DEEP, however, supplies only a
mean exposure value for each of air con-
centration, ground surface concentration,
collective inhalation rate and collective
ingestion rate, for only one location.
These values are the first entry of the
array; hence, both indices should be
specified as 1.
Percent of
location
individual
total risks to use
for the exposure
tables.
in choosing
array for
This variable is an indirect indicator of
the location. Because PRESTO-EPA-DEEP does
not provide a two-dimensional exposure
array to DARTAB, PLOC should be set to 100
or omitted.
Average human life expectancy
(Default value = 70.7565 years).
in years
Array dimensioned to 2. ILET = 1 indicates
combined high and low LET tables. ILET = 2
indicates separate tables. ILET(l) refers
to dose rate tables. ILET(2) refers to
health risk tables.
4-17
-------
TABLE 4-2
(Continued)
Namelist
Group
Variable
DTABLE
RTABLE
Description
For LLW disposal site simulations with a
mixture of nuclides set ILET=1,1 for a com-
bined LET table for both dose and risk
tables. For the intrusion scenario, where
external exposures are of greater impor-
tance the user may wish to set ILET=2,2.
These parameters indicate which tables are
to be output for dose rates, health risks,
and risk equivalents. Each is dimensioned
by 7 corresponding to table type shown
below.
FTABLE
Type
1-a
Column
Organs or
Cancers
Row
Nucl ides
Label
Individual
Pathways
2-b
3-c
5-e
6-f
7-g
Organs or
Cancers
Organs or
Cancers
Nuclides
External &
Internal
Nuclides All Pathways
4-d Nuclides
Organs or
Cancers
Nuclides
Organs or
Cancers
Pathways
Pathways
Pathways
Pathways
Organs or
Cancers
Nuclides
Summed over
Organs or
Cancers
Summed over
Nuclides
Table output control parameters
0 = no tables of this type
1 = table for selected individual
2 = table for mean individual
3 = table for collective group
4 = all three of the above
4-18
-------
TABLE 4-2
(Continued)
Name!1st
Group
Variable
OUTPUT
ORGAN
GSCFAC
NORGN
ORGN
TIME
QFACTOR HLET
LLET
CANCER
GENETIC
NCANC
CANC
RELABS
GENEFF
GEN
NGEN
GRFAC
Description
REPPER
Logical variable which indicates whether
dose factors are output. If .TRUE, then
one page output of dose factors for each
nuclide.
Ground surface correction factor. Accounts
for roughness.
Number of human organs exposed.
Alphanumeric double precision names of
organs. There are NORGN entries.
Time associated with dose commitment (yr).
There are NORGN entries.
Relative biological effectiveness factor
to use for high-LET dose rates to convert
absorbed dose to dose equivalent (rem).
There are NORGN entries.
Same as HLET but for low-LET dose rates.
There are NORGN entries.
Number of cancers to be considered.
Alphanumeric double precision cancer names.
Flag denoting absolute (=1) or relative (=2)
risk model used for each cancer.
Logical variable indicates output of
genetic effects. If GENEFF = .TRUE, then
genetic effects are output. If GENEFF =
.FALSE, then genetic effects are not output.
Alphanumeric double precision names of the
organs to be considered for genetic effects.
Number of human organs exposed.
Risk conversion factors (genetic effects
per rad per million births). GRFAC(l) cor-
responds to low-LET doses. GRFAC(2) corre-
sponds to high-LET doses. There are NGEN
entries.
Replacement rate for the population.
4-19
-------
TABLE 4-2
(Continued)
Namelist
Group
Variable
GLLET
RNUCLD
GHLET
NONCLD
NUCLID
PSIZE
RESP
GIABS
Description
Relative biological effectiveness factor
used for low-LET genetic doses to convert
absorbed dose to dose equivalent (rem).
There are NGEN entries.
Same as GLLET but for high-LET. There are
NGEN entries.
Number of radionuclides.
This number must be equivalent to the same
variable used in transport portion of code,
Card 3, but always less than or equal to 40.
Alphanumeric double precision radionuclide
names.
Must be written without embedded blanks.
Must be listed here in same order as in
transport section of input, cards 26+.
Each name must be set within apostrophes.
Activity median aerodynamic diameter asso-
ciated with each radionuclide (10"" m).
There are NONCLD entries.
Respiratory clearance class associated with
each radionuclide. A respiratory clearance
class of either day ('D'), week ('W'), year
('Y'), gas ('*'), or not used (' ') must be
entered for each nuclide in the trench.
There are NONCLD entries. More extensive
lists are given in Sullivan, et al. (Su81),
and Eckerman, Ford, and Watson (Ec81).
GI absorption factors.
The absorption factor for each of the four
segments of the GI tract for each nuclide
must be entered. The DARTAB code expects
a value for each segment (stomach, small
intestine, upper large intestine and lower
large intestine). However, most metabolic
models assume that materials are absorbed
only in the small intestine (Su81, Ec81).
Therefore, input zero values for all GI
4-20
-------
TABLE 4-2
(Continued)
Namelist
Group
LOCTAB
Variable
NTLOC
RNLOC
OGLOC
PTLOC
FALOC
HLLOC
ORGANF
LIABLE
NORGB
ORGB
Description
segments except the small intestine.
are four entries for each nuclide.
There
Number of location tables to be output.
Since PRESTO-EPA-POP does not provide a
location array of environmental concentra-
tions to DARTAB, NTLOC must be set to zero.
Radionuclide used for table. SUM results
in the sum of all nuclides, WORKLEVL results
in working level calculations, WLSUM results
in total risk for all nuclides.
Organ or cancer to use for table. SUM
results in sum of all cancers.
Pathway used. This variable specifies the
pathway to use in printing the location
table. Values of 1 to 7 will result in
ingestion, inhalation, air immersion,
ground surface exposures, internal expo-
sures (sum of ingestion and inhalation),
external exposures (sum of air immersion
and ground surface exposures), and total,
respectively.
Factor to be printed
0 = both high- and low-LET
1 = only combined LET table
2 = all three tables.
Factor to be printed
= 0 both high- and low-LET
= 1 only combined LET table
= 2 all three tables.
Indicates selected individual (LTABLE=1),
mean individual (LTABLE=2), or collective
group (LTABLE=3).
Number of organ dose weights to use to
combine dose rates.
The organs to be used.
4-21
-------
TABLE 4-2
(Continued)
Name!i st
Group Variable Description
ORGDAT Organ dose weighting factors.
IPATH Exposure pathway affected (1 = ingestion;
2 = inhalation; 3 = air immersion;
4 = ground surface; 5 = all pathways).
The Internation Commission on Radiological
Protection has recently suggested the use
of a risk equivalent which provides a
stochastic weighting of radiosensitivity of
various organs in the body for exposure to
whole body radiation.
4-22
-------
4.3 DATA FOR THE INFILTRATION SUBMODEL (INFIL)
The input data to the infiltration subroutine (INFIL) are read from
input unit 4. The infiltration data are of four types: hydrologic and
trench description characteristics; maximum day length in hours by month;
daily mean temperatures by month; and hourly precipitation for nonzero
precipitation events. The last card in the data set must have "99" in the
first two columns. These data are not required or read in when the deep
disposal options are used. However, when the shallow disposal option of
PRESTO-EPA-DEEP is utilized (IDISP = 1), this data set is still required.
Table 4-3 gives a complete description of the data and card locations for
this data file.
4-23
-------
TABLE 4-3
INPUT DATA FOR SUBROUTINE INFIL
Card Variable (Input Format) Description
CARD 1 Trench Cap Characteristics (10F7.3)
TWT - The width of the trench cap (m).
SLOP - The average slope of trench tover (m/m).
EPSG - The component of porosity for gravity water
of trench cap (unitless).
EPSP - The component of porosity for pellicular
water of trench cap (unitless).
XKI - The permeability of trench cover (m/hr).
YGMAX - The thickness of the trench cap (m). This
must be equal to OVER.
XDE - The equivalent upward diffusivity (m^/hr).
XKE - The equivalent upward hydraulic conduc-
tivity (m/hr).
YPI - The initial pellicular water deficit of the
trench cap (m).
YGI - The initial gravity water deficit of the
trench cap (m).
CARD 2 Day Length Data (12F5.1)
DTH(IM) - The maximum day length for month IM (hr).
There are 12 values; one for each month
from January to December.
CARDS Temperature Data (2X, 12F6.2)
3-33
TMP(IM) - The mean daily temperatures (°C). Each
card has 12 values, one for each month.
There are 31 cards of this type, one for
each day of the month.
CARD Precipitation Data (12, IX, 12, IX, 24F3.0)
34+
MO - Month number.
- Day number of month MO.
4-24
-------
TABLE 4-3
(Continued)
Card Variable (Input Format)
Description
P(MO.IDA)
- Amount of precipitation that fell in this
hour (0.1 mm/hr). There are 24 values on
each card, one for each hour of the day.
Include only days with a nonzero amount of
precipitation, and the first day of each
month.
LAST CARD End of File (12)
IAMP
Must equal 99,
the data set.
which designates the end of
4-25
-------
4.4 DOSIMETRIC AND HEALTH EFFECTS DATA
This data set is read in an unformatted form from input unit 25. This
data file is on a magnetic tape which contains reference information for
many radionuclides and was created by the program RADRISK (Du80). This
data file should be sufficient for most users' needs. For a further
description see the DARTAB User's Guide (Be81) and other RADRISK
documentation.
4-26
-------
5. OUTPUT OF PRESTO-EPA-DEEP
The output of PRESTO-EPA-DEEP is designed to be self-explanatory and
contains descriptive comments, definitions, and intermediate and final
tabulations. It is assumed that the output may be analyzed by users
unfamiliar with PRESTO-EPA-DEEP structure.
The PRESTO-EPA-DEEP output is organized into eleven sections, each
described below. A complete PRESTO-EPA-DEEP output listing is given in
Appendix B in conjunction with the sample problem presented in Chapter 6.
5.1 REPLICATION OF INPUT DATA
The first section of the PRESTO-EPA-DEEP output is a replication of
the user supplied input data files (1) and (2) as read in. This provides
the user with a record of the input data set used for later result identi-
fication and analysis. PRESTO-EPA-DEEP also organizes this input data to
allow for easy interpretation. A summary of the input data files (1) and
(2) is printed according to data type and transport sub-system. These
descriptive summaries are output in sentence format to increase their ease
of review.
5.2 RADIQNUCLIDE SUMMARY TABLES
A set of four tables under the heading "Nuclide Information" summarizes
the radionuclide data used for the transport calculations. First, an
inventory table specifies the initial inventory in the trench, on the soil
5-1
-------
surface, in the stream, and in the air. Also included with this table are
the decay constants and the user-supplied solubility constants. The second
radionuclide table summarizes the chemical distribution coefficients for
the surface soil, the trench contents, the vertical soil column, and the
aquifer. The third radionuclide table summarizes seven radionuclide
specific food chain parameters used by the FOOD, IRRIG, HUMEX, CV, and COV
subroutines. The fourth table presents the atomic mass numbers used in the
calculations, as extracted from the user supplied radionuclide names.
These atomic mass numbers are output in tabular form as a convenience for
the user.
5.3 INFIL INPUT/OUTPUT
The third output section of PRESTO-EPA-DEEP consists of the input data
and results for the subroutine INFIL. The input to subroutine INFIL is
presented first and consists of infiltration control, monthly averages for
hours of sunshine, daily average temperatures, hourly rainfall amounts, and
specific trench characteristics (snowmelt coefficients, trench cover
thickness, width, cover slope, porosity, and permeability).
With these input data, subroutine INFIL calculates and outputs several
data items. The most important of these is the annual infiltration and
annual precipitation. Annual evaporation, runoff and cap infiltration are
also calculated and output.
5-2
-------
5.4 UNIT RESPONSE CALCULATIONS
This output section presents the results of the nuclide specific
annual transport calculations which will be used by the bookkeeping
submodels for each simulation year. They also include the amount of soil
lost and the atmospheric radionuclide concentration per unit release rate
ratio, as calculated at the waste site.
5.5 ANNUAL SUMMARIES FOR INTERMEDIATE SIMULATION YEARS
Input control parameters determine the years for which intermediate
results are printed. For these years, a number of hydrological transport
variables are output. Included are trench cap status, water depth in
trench, water loss by overflow and drainage from the trench, and trench
radionuclide inventories. Radionuclide concentrations and flux values are
also given for key pathways and regions of interest.
5.6 RADIONUCLIDE CONCENTRATION TABLES
The radionuclide concentration tables present, by radionuclide, the
average concentration over the entire assessment period, the year of
maximum concentration, and the level of the maximum concentration for the
atmosphere, for the well water, and for the stream water.
5.7 RADIONUCLIDE EXPOSURE TABLES
Annual population uptakes of radionuclides are next output. The
uptake factors quantify, on a radionuclide specific basis, the annual
5-3
-------
amount of nuclide uptake by the population group from all potential
sources. For inhalation, it is the quantity of nuclides inhaled in a year.
For ingestion it is the total annual nuclide uptake from all sources
(vegetation, meat, milk, seafood, and drinking water).
5.8 DARTAB CONTROL INFORMATION
DARTAB control information dealing with run identification data,
summaries of output table control information, lists of organs and cancers
to be considered in the run, dose equivalent factors for low and high LET
radiation, and radionuclide uptake and clearance data are next output.
5.9 DARTAB DOSE TABLES
DARTAB dose tables are next output. These present individual and
collective dose summary rates by low and high LET radiation and organ, by
low and high LET radiation and exposure pathway, and by low and high LET
radiation and radionuclide. Tables involving organ dose summaries also
include the user specified organ weighting factors.
5.10 DARTAB FATAL CANCER RISK TABLES
PRESTO-EPA-DEEP next presents DARTAB fatal cancer risk tables. These
tables include individual and collective fatal cancer risks, loss of life
by premature death, lifetime fatal cancer risk exposure equivalents, and
genetic risks. Values are summarized by low and high LET radiation and
organ and by low and high LET radiation and pathway. The specific tables
output are subject to the user specified DARTAB control data.
5-4
-------
5.11 RESIDUAL RADIOACTIVITY RELEASED TO THE BASIN AND HEALTH EFFECTS
This output section presents the total amount of radionuclides
released to the regional basin during each millenium in a 10,000 year
simulation. It also shows the aggregated total release of each
radionuclide, the health effects conversion factors and the regional basin
population health effects by radionuclide.
5-5
-------
6. SAMPLE PROBLEM
6.1 PROBLEM DEFINITION
For the sample problem the deep well injection (IDISP = 2) of absorbing
low-level waste is considered. The wastes are assumed to be pumped into a
formation 60 meters thick with 100 meters of shale from the top of the
formation to the bottom of the upper aquifer. The minimum contaminated
area exposed to the vertical flow of groundwater is 0.0167 m^, thus a unit
volume of waste/porous media is considered. Though the waste is expected
to spread through the porous formation via advection and diffusion, this
minimum is here assumed to be constant in time. A 10,000 year period is
simulated with annual summaries output every 1000 years. The general
population exposure option is used.
The physical properties of the porous stratum, the confining stratum,
and the aquifer are as follows. The porosity and density of the porous
material are 0.15 and 2.3 g/cc. For the confining stratum these values are
0.2 and 1.5 g/cc. The porosity and density of the aquifer formation are
0.39 and 1.60 g/cc. A vertical water velocity of 0.5 meters per year has
been assumed for water in the confining stratum. The dispersivity in the
confining stratum is 40.0 meters and the dispersivity in the aquifer is
0.3 meters (the default value). The aquifer velocity is 27.8 meters per
year and its thickness is 30.5 meters. The default aquifer dispersion
angle, 0.3 radians has also been assumed.
Livestock water is assumed to be 50 percent from well water. Human
usage is assumed to be entirely from well water. The percentage of aquifer
discharge to the surface water is 100 percent. The well is 457 meters
6-1
-------
downflow from the facility. The stream has an annual flow of 3.57E+5 m3
and is 460 meters downslope from the facility. Runoff is 29 percent of the
annual precipitation. The site infiltration rate is 43.0 cm/yr. The
surface soil data are summarized in Table 6-1. Though cover erosion and
cap failure are not concerns and the corresponding input arbitrary, the
overland transport of contamination resulting from spillage during the
operational phase still must be considered. The atmospheric data used in
the sample problem are given in Table 6-2.
Foodchain parameters have been summarized in Table 6-3. The human
consumption of leafy vegetation is 18 kg/yr; produce is 176 kg/yr; cow's
milk is 112 L/yr; goat's milk is 0 L/yr; and meat is 85 kg/yr. Each person
consumes 370 liters of water per year. The inhalation rate is 8000 m3/yr.
The exposed population is 25. Radionuclide specific foodchain data is
given in Table 6-4.
The radionuclide inventory consists of one curie of each radionuclide.
In addition, a surface spillage of l.OE-7 curies is assumed for each radio-
nuclide. Decay constants and sets of K^'s for each radionuclide are given
in Table 6-5. The infiltration data set is not required for this deep well
injection scenario.
For this sample problem, a ground surface correction factor of 0.5 is
used. Organs/tissues exposed include red marrow, endosteum, thyroid,
breast, pulmonary, stomach wall, intestinal wall, liver, pancreas, kidneys,
and others. Seventy year dose commitments are calculated. The high LET
and low LET RBE factors are 20 and 1, respectively.
6-2
-------
TABLE 6-1
SURFACE SOIL DATA
Rainfall Factor 250.0
Erodability Factor 0.23
Slope Factor 0.27
Cover Factor 0.30
Erosion Control Factor 0.30
Sediment Delivery Factor 1
Cross Slope Extent of Spillage 0.13 m
Active Depth For Contamination 0.1 m
6-3
-------
TABLE 6-2
ATMOSPHERIC DATA
Source Height
Gravitational Fall Velocity
Mean Wind Speed
Deposition Velocity
Source to Receptor Distance
Atmospheric Lid Height
Hosker Roughness Factor
Fraction of Time Wind Blows Toward Population
User Specific X/Q
First Coefficient in Resuspension Equation
Decay Factor in Resuspension Equation
Final Coefficient in Resuspension Equation
Resuspension Rate
Fraction of Year Mechanical Disturbance Occurs
Stability Class Formulation
Stability Class
1 m
0.01 m/s
2.01 m/s
0.1 m/s
480.0 m
300 m
0.01 m
0.08
1.2 x 10-3 s/m3
1 x lO-6
-0.15
1 x 10-10
0 sec"1
0
1 (Pasquill-Gifford)
4 (neutral)
6-4
-------
TABLE 6-3
FOODCHAIN PARAMETERS
Grass Production 0.67 kg/m2yr
Vegetation Production 0.65 kg/m2yr
Surface Density for Soil 240 kg/m2
Weathering Decay Constant 0.0021 hr-1
Period Pasture Exposed During Growing Season 720 hr
Period Crops Exposed During Growing Season 1440 hr
Period Between Harvest Pasture and Ingestion by Animal 0 hr
Period Between Stored Feed and Ingestion by Animal 2160 hr
Period Between Harvest Leafy Vegetation and Ingestion 24 hr
by Man
Period Between Harvest Produce and Ingestion by Man 1440 hr
Period Between Harvest Leafy Vegetables and Ingestion 336 hr
by Man for General Population Exposure
Period Between Harvest of Produce and Ingestion by Man 336 hr
for General Population Exposure
Fraction of Year Animal Graze on Pasture 1.0
Fraction of Daily Feed that is Fresh Grass While 0.83
Animals are on Pasture
Amount of Feed Consumed Daily by Cattle 50 kg
Amount of Feed Consumed Daily by Goats 6 kg
Transport Time Feed-Mi 11-Receptor for Maximum Individual 48 hr
Exposure
Transport Time Feed-Mill-Receptor For General Population 96 hr
Exposure
Time From Slaughter of Meat to Consumption 480 hr
Absolute Humidity of the Atmosphere 9.90 g/m3
Fractional Equilibrium Ratio for Carbon-14 1.0
Fraction of Year Crops are Irrigated 0.40
Irrigation Rate 0.015 L/m2hr
Amount of Water Consumed by Cows 60 L/d
Amount of Water Consumed by Goats 8 L/d
Amount of Water Consumed by Beef Cattle 50 L/d
6-5
-------
TABLE 6-4
RADIONUCLIDE SPECIFIC FOODCHAIN DATA
Nuclide
H-3
C-14
Mn-54
Fe-55
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
Ra-226
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Retention
Fraction
For Air
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
Retention
Fraction For
Irrigation
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
Soil-To-Plant
Uptake Factor
(Vegetables)
4.80E+00
5.50E+00
2.50E-01
4. OOE-03
6. OOE-02
2. OOE-02
6. OOE-02
2.50E+00
2. OOE-02
9.50E+00
7.50E-02
2.00E-01
l.OOE+00
8. OOE-02
8. OOE-02
8.00E-02
l.OOE-02
2.50E-03
1.50E-04
8.50E-03
8.50E-03
4.30E-03
8.50E-03
4.50E-04
4.50E-04
4.50E-04
5.50E-03
4.50E-04
5.50E-03
8.50E-04
8.50E-04
Soil-To-Plant
Uptake Factor
(Grain)
4.80E+00
5.50E+00
5.00E-02
l.OOE-03
6.00E-02
7.00E-03
6.00E-02
2.50E-01
5.00E-03
1.50E+00
2.00E-02
3.00E-02
l.OOE+00
3.00E-02
3.00E-02
3.00E-02
4.00E-03
2.50E-03
1.50E-03
4.00E-03
4.00E-03
4.30E-03
4.00E-03
4.50E-05
4.50E-05
4.50E-05
2.50E-04
4.50E-05
2.50E-04
1.50E-05
1.50E-05
Forage-To-Milk
Transfer Factor
(Cows)
l.OOE-02
1.20E-02
3.50E-04
2.50E-04
l.OOE-03
2.00E-03
l.OOE-03
1.50E-03
2.00E-02
l.OOE-02
6.00E-07
l.OOE-04
l.OOE-02
7.00E-03
7.00E-03
7.
2.
.OOE-03
.OOE-05
2.00E-05
4.50E-04
6.00E-04
6.00E-04
5.00E-06
6.00E-04
l.OOE-07
l.OOE-07
l.OOE-07
4.00E-07
l.OOE-07
4.00E-07
2.OOE-05
2.OOE-05
Forage-To-M1lk
Transfer Factor
(Goats)
1.70E-01
l.OOE-01
2.50E-04
1.30E-04
6.70E-03
l.OOE-03
6.70E-03
1.40E-02
2.50E-03
2.50E-02
1.30E-04
1.50E-03
3.00E-01
3.00E-01
3.00E-01
3.00E-01
5.00E-06
OOE-05
OOE-06
OOE-04
OOE-04
OOE-06
OOE-04
50E-06
50E-06
50E-06
O.OOE+00
1.50E-06
O.OOE+00
O.OOE+00
O.OOE+00
Forage-To-Beef
Transfer Factor
1.20E-02
3.10E-02
4.OOE-04
2.00E-02
6.OOE-03
2.00E-02
6.OOE-03
3.OOE-04
2.50E-01
8.50E-03
OOE-03
OOE-03
7.OOE-03
.OOE-02
.OOE-02
.OOE-02
.50E-04
4.80E-03
2.50E-04
.OOE-04
.OOE-04
.50E-05
.OOE-04
.OOE-07
.OOE-07
.OOE-07
3.50E-06
OOE-07
50E-06
50E-06
3.50E-06
-------
TABLE 6-5
RADIONUCLIDE SPECIFIC DATA
Nuclide
H-3
C-14
Mn-54
Fe-55
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
Ra-226
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
Decay
Constant
(yr-1)
5.64E-02
1.21E-04
8.09E-01
2.57E-01
8.66E-06
1.32E-01
7.53E-03
2.42E-02
3.47E-05
3.25E-06
6.89E-01
2.50E-01
4.08E-08
3.36E-01
2.30E-07
2.31E-02
8.90E-01
4.33E-02
4.34E-04
2.83E-06
9.85E-10
3.30E-07
1.55E-10
7.90E-03
2.87E-05
5.25E-02
1.51E-03
1.83E-06
9.40E-05
2.17E-02
3.94E-02
Surface
Kd
l.OOE-02
l.OOE-02
1.50E+02
6.00E+03
1.50E+02
5.50E+01
1.50E+02
1.50E+02
3.50E+02
5.00E-01
2.20E+02
4.50E+01
3.00E+00
l.OOE+03
l.OOE+03
l.OOE+03
1.10E+03
4.00E+03
2.20E+02
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
Waste
Kd
l.OOE-02
l.OOE-02
5.00E+01
5.00E+01
5.00E+01
5.00E+01
5.00E+01
3.00E+01
7.00E+01
5.00E-01
7.00E+01
5.00E+01
3.00E+00
2.00E+03
2.00E+03
2.00E+03
2.00E+03
2.00E+03
4.00E+02
3.00E+03
3.00E+03
5.00E+00
3.00E+03
7.00E+02
7.00E+02
7.00E+02
8.00E+01
7.00E+02
8.00E+01
7.00E+02
7.00E+02
Confining
Kd
l.OOE-02
l.OOE-02
1.50E+02
6.00E+03
1.50E+02
5.50E+01
1.50E+02
1.50E+02
3.50E+02
5.00E-01
2.20E+02
4.50E+01
3.00E+00
l.OOE+03
l.OOE+03
l.OOE+03
1.10E+03
4.00E+03
2.20E+02
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
Aquifer
Kd
l.OOE-02
l.OOE-02
1.50E+02
6.00E+03
1.50E+02
5.50E+01
1.50E+02
2.00E+01
3.50E+02
5.00E-01
2.20E+02
4.50E+01
5.00E-01
5.00E+02
5.00E+02
5.00E+02
1.10E+03
4.00E+03
2.20E+02
7.50E+02
7.50E+02
5.00E+00
7.50E+02
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
6-7
-------
The cancers considered include leukemia, bone, thyroid, breast, lung,
stomach, bowel, liver, pancreas, urinary, and other. Absolute risk models
are used in each case.
The organs considered for genetic effects are the testes, ovaries, and
their average. The high LET and low LET genetic risk conversion factors
and 5200 and 260 genetic effects per rad per million births, respectively.
The default population replacement rate of 0.014133 yr-1 is used. The low
LET genetic RBE factors are 1 and the high LET genetic RBE factors are 20.
The activity median aerodynamic diameter, respiratory clearance class
and gastrointestinal absorption factors for each radionuclide are given in
Table 6-6. For the latter parameter only the small intestine values are
shown. The factors for the other three segments are zero.
The output location tables include the following pathways: ingestion,
inhalation, air immersion, ground surface exposures, internal exposures,
external exposures and total.
The organ weighting factors for combined dose rates are given in
Table 6-7. The exposures are summed over all pathways. Finally, the
accounting model calculations are given, along with the complete sample.
problem output, in Appendix B. The IBM job control language (JCL) used to
execute the deep well injection run is shown in Figure 6-1.
6.2 PROBLEM RESULTS
The complete output for the sample problem described in Section 6.1 is
given in Appendix B. Chapter 5 of this report discusses each section of
the PRESTO-EPA-DEEP output in detail.
6-8
-------
TABLE 6-6
RADIONUCLIDE SPECIFIC DOSE PARAMETERS
Activity Respiratory Gastrointestinal
Median Aerodynamic Clearance Absorption Factor
Nuclide Diameter (10~6 m) Class (small intestine)
H-3 0.0 * (gas) 0.95
C-14 0.0 * (gas) 0.95
Mn-54 1.0 Week 0.10
Fe-55 1.0 Week 0.10
Ni-59 1.0 Week 0.05
Co-60 1.0 Year 0.05
Ni-63 1.0 Week 0.05
Sr-90 1.0 Day 0.01
Nb-94 1.0 Year 0.01
Tc-99 1.0 Week 0.80
Ru-106 1.0 Year 0.05
Sb-125 1.0 Week 0.20
1-129 1.0 Day 0.95
Cs-134 1.0 Day 0.95
Cs-135 1.0 Day 0.95
Cs-137 1.0 Day 0.95
Ce-144 1.0 Year 0.0003
Eu-154 1.0 Week 0.0001
Ra-226 1.0 Week 0.20
U-234 1.0 Year 0.002
U-235 1.0 Year 0.002
Np-237 1.0 Week 0.001
U-238 1.0 Year 0.002
Pu-238 1.0 Year 0.001
Pu-239 1.0 Year 0.0001
Pu-241 1.0 Year 0.001
Am-241 1.0 Week 0.001
Pu-242 1.0 Year 0.0001
Am-243 1.0 Week 0.001
Cm-243 1.0 Week 0.001
Cm-244 1.0 Week 0.001
6-9
-------
TABLE 6-7
ORGAN WEIGHTING FACTORS
Organ Factor
Red Marrow 0.1552
Endosteum 0.0035
Thyroid 0.0987
Breast 0.1299
Pulmonary 0.2075
Stomach Wall 0.0840
Intestinal Wall 0.0390
Liver 0.0853
Pancreas 0.0585
Kidneys 0.0248
Other 0.1136
6-10
-------
//GMW JOB (,),ROGERS,TIME = (10,0)
// EXEC FORTXCLG,GREGION=2700K
//FORT.SYSIN DD DSN=GMWLLWM.DEEP,DISP=SHR
//GO.FT25F001 DD DSN=CBNRACS.RADRISK.V4BD,DISP=SHR
//GO.FT04F001 DD DUMMY
//FT14F001 DD DSN=GMWLLWM.ACCMOD.TEST3,DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=12100),UNIT=DISK,
// SPACE=)TRK,(10,5),RLSE)
//GO.FT26F001 DD UNIT=SYSDA,DSN=&&DATA,DISP=(NEW,DELETE),
// SPACE=(TRK,(30,10),RLSE),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//GO.SYSIN DD DSN=GMWLLWM.KDW,DISP=SHR
FIGURE 6-1. JCL FOR PRESTO-EPA-DEEP RUN.
6-11
-------
The maximum annual exposures per nuclide are given in Table 6-8.
Summaries of the organ doses, pathway doses and nuclide doses are given in
Tables 6-9 through 6-11. The PRESTO-EPA-DEEP annual doses occur mainly
from contaminated groundwater and well water use via the ingestion pathway.
The relatively permeable soils and associated aquifer velocity allow for
relatively rapid transport of the more mobile radionuclides to the well.
Neptunium-237, iodine-129, technetium-99, and carbon-14 dominate the
contributions to the dose commitment.
Finally, it should be noted that the sample problem described in
Section 6.1 merely illustrates the application of PRESTO-EPA-DEEP and is
not intended as a basis for arriving at any general conclusion regarding
deep well injection.
6-12
-------
TABLE 6-8
SUMMARY OF MAXIMUM ANNUAL EXPOSURES
Nuclide
Ingestion
Rate
(person pCi/yr)
Year
Inhalation
Rate
(person pCi/yr)
Year
H-3
C-14
Mn-54
Fe-55
Ni-59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
Ra-226
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am-243
Cm-243
Cm-244
1.6320E+04
9.0389E+06
5.1056E-04
2.1369E-03
3.8487E-02
1.1429E-02
3.8171E-02
1.9517E-02
5.6330E-01
1.2844E+06
6.9380E-04
2.1809E-03
2.3881E+05
5.0481E-03
8.2228E-02
5.2946E-02
4.4680E-04
1.5700E-02
2.5727E-02
2.6285E-02
2.6285E-02
1.4423E+05
2.6285E-02
2.4191E-02
2.4399E-02
9.8891E-03
2.4387E-02
2.4400E-02
2.4424E-02
1.6142E-02
1.2029E-02
233
233
1
1
1
1
1
1
1
1001
1
1
4751
1
1
1
1
1
1
1
1
8054
1
1
1
1
1
1
1
1
1
1.4344E-07
3.7172E-07
2.2724E-06
9.3749E-06
1.0725E-04
1.8325E-05
1.0644E-04
6.7885E-05
1.0843E-04
1.5934E-05
2.8295E-06
9.0827E-06
5.5306E-05
6.8898E-06
1.0903E-04
7.0342E-05
2.0285E-06
5.0816E-05
1.0786E-04
1.0892E-04
1.0892E-04
6.8933E-05
1.0892E-04
1.0839E-04
1.0925E-04
4.4477E-05
1.0918E-04
1.0925E-04
1.0933E-04
7.2240E-05
5.3916E-05
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6-13
-------
TABLE 6-9
ORGAN DOSE/EXPOSURE SUMMARY
Organ
Low LET
(person rad/yr)
High LET
(person rad/yr)
Dose
Equivalent
(person rem/yr)
Red Marrow
Endosteum
Thyroid
Breast
Pulmonary
Stomach Wall
Intestinal Wall
Liver
Pancreas
Kidneys
Other
4.416E-04
3.663E-03
1.750E-01
8.165E-05
5.167E-05
3.047E-04
2.237E-04
5.524E-04
5.712E-05
5.533E-05
5.712E-05
5.673E-03
7.013E-02
8.714E-05
8.714E-05
8.714E-05
8.978E-05
1.689E-04
1.389E-02
8.714E-05
8.714E-05
8.714E-05
1.140E-01
1.410E-01
1.770E-01
1.824E-03
1.794E-03
2.100E-03
3.441E-03
2.780E-01
1.800E-03
1.798E-03
1.800E-03
Weight Sum
1.746E-02
2.386E-03
6.506E-02
6-14
-------
TABLE 6-10
PATHWAY DOSE/EXPOSURE SUMMARY
Pathway
Ingestion
Inhalation
Air Immersion
Ground Surface
Internal
External
Low LET
(person rad/yr)
1.746E-02
1.037E-13
2.888E-17
4.472E-10
1.746E-02
4.472E-10
High LET
(person rad/yr)
2.380E-03
2.896E-12
O.OOOE+00
O.OOOE+00
2.380E-03
O.OOOE+00
Dose
Equivalent
(person rem/yr)
6.506E-02
5.802E-11
2.888E-17
4.472E-10
6.506E-02
4.472E-10
TOTAL
1.746E-02
2.380E-03
6.506E-02
6-15
-------
TABLE 6-11
NUCLIDE DOSE/EXPOSURE SUMMARY
Nuclide
Low LET
(person rad/yr)
H-3
C-14
Mn-54
Fe-55
Ni -59
Co-60
Ni-63
Sr-90
Nb-94
Tc-99
Ru-106
Sb-125
1-129
Cs-134
Cs-135
Cs-137
Ce-144
Eu-154
Ra-226
U-234
U-235
Np-237
U-238
Pu-238
Pu-239
Pu-241
Am-241
Pu-242
Am- 243
Cm-243
Cm-244
1.430E-09
3.022E-05
3.189E-15
1.530E-16
2.612E-14
6.662E-13
5.243E-15
1.236E-13
2.314E-10
3.859E-05
1.343E-15
3.018E-14
1.727E-02
1.077E-13
2.807E-12
6.860E-13
5.807E-16
3.624E-12
6.373E-13
2.128E-13
5.360E-11
1.290E-04
1.933E-13
2.640E-14
4.027E-13
2.646E-16
5.193E-12
7.727E-13
1.511E-10
1.216E-12
2.709E-15
High LET
(person rad/yr)
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
1.754E-13
1.720E-13
1.589E-13
2.380E-03
1.517E-13
8.429E-13
4.345E-13
7.013E-15
1.139E-12
4.145E-13
2.287E-12
4.016E-13
2.272E-13
Dose
Equivalent
(person rem/yr)
1.430E-09
3.022E-05
3.189E-15
1.530E-10
2.612E-14
6.662E-13
5.243E-15
1.236E-13
2.314E-10
3.859E-05
1.343E-15
3.018E-14
1.727E-02
1.077E-13
2.807E-12
6.860E-13
5.807E-16
3.624E-12
4.145E-12
3.653E-12
5.618E-11
4.772E-02
3.228E-12
1.688E-11
9.093E-12
1.405E-13
2.797E-11
9.063E-12
1.968E-10
9.248E-12
4.547E-12
TOTAL
1.746E-02
2.380E-03
6.506E-02
6-16
-------
REFERENCES
Be81 Begovich, C. L., K. F. Eckerman, E. C. Schlatter, and S. Y. Ohr,
DARTAB: A Program to Combine Airborne Radionuclide Environmental
Exposure Data with Dosimetric and Health Effects Data to Generate
Tabulations of Predicted Impacts, ORNL-5692 (Oak Ridge National
Laboratory. Oak Ridge, Tennessee), 1981.
DOE79 "Management of Commercially Generated Radioactive Waste," U.S.
Department of Energy, DOE/EIS-0046-D, Vol. 1, April 1979.
Du80 Dunning, D. E., Jr., R. W. Leggett, and M. G. Yalcintas, A
Combined Methodology for Estimating Dose Rates and Health Effects
from Exposures to Radioactive Pollutants, ORNL/TM-7105 (Oak Ridge
National Laboratory, Oak Ridge, Tennessee), 1980.
Ec81 Eckerman, K. F., M. R. Ford, and S. B. Watson, Internal Dosimetry
Data and Methods of ICRP - Part 2, Vol. 1: Committed Dose
Equivalent and Secondary Limits, NUREG/CR-1962 Vol. 1, ORNL/NUREG/
TM-433/VI (Oak Ridge National Laboratory, Oak Ridge, Tennessee),
1981.
EPA83 U.S. Environmental Protection Agency, PRESTO-EPA: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment
Code - Methodology and User's Manual, Prepared under Contract No.
W-7405-eng-26, Interagency Agreement No. EPA-D89-F-000-60, U.S.
Environmental Protection Agency, Washington, D.C., April 1983.
EPA87a U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 1, Methodology Manual, EPA 520/1-87-024-1, Washington, DC,
December 1987.
EPA87b U.S. Environmental Protection Agency, PRESTO-EPA-POP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code -
Volume 2, User's Manual, EPA 520/1-87-024-2, Washington, DC, December
1987.
U.S. Environmental Protection Agency, PRESTO-EPA-DEEP: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-025, Washington, DC,
December 1987.
EPA87d U.S. Environmental Protection Agency, PRESTO-EPA-CPG: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-026, Washington, DC,
December 1987.
EPA87e U.S. Environmental Protection Agency, PRESTO-EPA-BRC: A Low-Level
Radioactive Waste Environmental Transport and Risk Assessment Code,
Documentation and User's Manual, EPA 520/1-87-027, Washington, DC,
December 1987.
EPA87C
R-l
-------
EPA87f
£PA87g
Ga84
Hu80
Hu83
Me81
Me84
NEA72
U.S. Environmental Protection Agency, PATHRAE-EPA: A Performance
Assessment Code for the Land Disposal of Radioactive Wastes,
Documentation and User's Manual, EPA 520/1-87-028, Washington, DC,
Uecenber 1987.
U.S. Environmental Protection Agency, Accounting Model for
PRESTO-EPA-POP, PRESTO-EPA-DEEP, and PRESTO-EPA-BRC Codes,
Documentation and User's Manual, EPA 520/1-87-029, Washington, DC,
December 1987.
L., and G. L. Meyer, Overview of EPA's Low-Level
Waste Standards Development Program, 1984:
of 6th Annual Participants' Information Meeting on
Waste Management Program, Denver, Colorado,
September 11-13, 1984, CONF-8409115, Idaho Falls, Idaho.
Gal pin, F.
Radioactive
Proceedings
DOE Low-Level
Hung, C. Y., "An Optimum Model to Predict Radionuclide Transport
in an Aquifer for the Application to Health Effects Evaluation,"
in Proceedings, Modeling and Low-Level Waste Management: An
Interagency Workshop held December 1-4, 1980, Denver, Colorado,
(C. A. Little and L. E. Stratton, Compilers), pp. 65-80. ORO-821
(Department of Energy, Oak Ridge Operations Office, Oak Ridge,
Tennessee), 1981.
Hung, C. Y., G. L. Meyer, and V. C. Rogers, Use of PRESTO-EPA
Model in Assessing Health Effects from Land Disposal of LLW to
Support EPA's Environmental Standards: U.S. Department of
Energy, Proceed-ings of 5th Annual Participants' Information
Meeting on DOE Low-Level Waste Management Program, Denver,
Colorado, August 30, 1983, CONF-8308106, Idaho Falls, Idaho.
Meyer, G. L., and C. Y. Hung, An Overview of EPA's Health Risk
Assessment Model for the Shallow Land Disposal of LLW,
Proceedings of an Interagency Workshop on Modeling and Low-Level
Waste Management, Denver, Colorado, December 1-4, 1980, ORD-821,
Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1981.
Meyer, G. L., Modifications and Improvements Made to PRESTO-EPA
Family of LLW Risk Assessment Codes Based on Recommendations of
Peer Review, February 1984, U.S. Environmental Protection Agency,
Letter dated July 13, 1984, to Members of PRESTO-EPA Peer Review,
February 7-8, Airlie, Virginia: Washington, D.C., 1984.
Disposal of Radioactive Waste. Proceedings of the NEA Information
Meeting in Paris, Paris, France: Organization for Economic
Cooperation and Development, """"'
1972.
R-2
-------
Ro83 Rogers, V. C. and G. B. Merrell, "Radioactive Atmospheric
Dispersion and Exposure - The RADE2 Air-Pathway Unit Response
Code and Analysis for the Barnwell, West Valley, and Beatty
Areas," RAE Technical Information Memorandum, TIM-47-4, November
1983.
Ro84 Rogers, V. C., "An Update on Status of EPA's PRESTO Methodology
for Estimating Risks from Disposal of LLW and BRC Wastes, U.S.
Department of Energy. Proceedings of 6th Annual Participants',
Information Meeting on DOE Low-Level Waste Management Program,
Denver, Colorado, September 11-13, 1984, CONF-8409115, Idaho
Falls, Idaho.
Su81 Sullivan, R. E., N. S. Nelson, W. H. Ellet, D. E. Dunning, Jr.,
R. W. Leggett, M. G. Yalcintas, and K. F. Eckerman, Estimates
of Health Risk from Exposure to Radioactive Pollutants.
ORNL/TM-7745. (Oak Ridge National Laboratory, Oak Ridge,
Tennessee) 1981.
R-3
-------
APPENDIX A
PRESTO-EPA-DEEP LISTING
-------
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAA PRESTO DEEP AAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CAAA
A CODE tOR PREDICTING THE MIGRATION OF RADIOACTIVE WASTE FROh
SHALLOU LAND BURIAL SITES AND THE HEALTH EFFECTS THAT RESULT
FROH THESE LOU LEVEL RADIOACTIVE WASTES.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
C
C
C
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
MODIFIED OCTOBER 1985 BY ROGERS X ASSOC. ENGiR. TO ALLOW DOSE
AND HEALTH EFFECT OUTPUT TO BE PRINTED FOR INTERMEDIATE YEARS
DURING THE SIMULATION PERIOD.
THE MAIN PROGRAM ACTS AS A SUPERVISOR FOR THE REST OF THE
CODE. MOST OF THE BOOKEEPING. INCLUDING MATERIAL BALANCE,
IS DONE HERE. THE FOLLOWING SUBROUTINES ARE CALLED:
SOURCE. AIRTRM, ERORE, TRENCH, LEACH, VERHOR, SURSOL,
SUSPND, OUT, FOOD, IRRIG, HUMEX, DARTAB, AND QUANC8.
GLOBAL VARIABLES
ADEPTH = AQUIFER DEPTH
AQDISP = AQUIFER DISPERSION ANGLE
AQ1HK = AQUIFER THICKNESS
AQVOL = AQUIFER DILUTION FACTOR
AQAM = AMOUNT UF NULL IDE Al WELL SITE
AQAVG = AVERAGE NUCLIDE CONCENTRATION AT WELL SITE
AQCON = NUCLIDE CONCENTRATION AT WELL SITE
ATAVG = AVERAGE NUCLIDE CONCENTRATION IN ATMOSPHERE
ATCON = NUCLIDE CONCENTRATION IN ATMOSPHERE DOWNWIND
ATMASS = NUCLIDE MASS NUMBER
ABSERR = ABSOLUTE ERROR IN DDEIA CALCULATION
BDENS = BULK DENSITY Of SOIL
CPL1 = NUCLiUE CONCENTRATION IN LEAFY VEGETABLES FOR
M.I.E. BY ATMOSPHERIC DEPOSITION
CFL2 = NUCLIDE CONCENTRATION IN PRODUCE FOR M.I.E.
BY ATMOSPHERIC DEPOSITION
CPL3 = NUCL1UH CONCENTRATION IN LEAFY VEGETABLES AND
PRODUCE FOR G.P.E. BY ATMOSPHERIC DEPOSITION
CS = CONCENTRATION IN SURFACE SOIL
CW = CONCENTRATION IN SURFACE WATER
CUA1 = NUCLHiE CONCENTRATION IN WATER
CCMI1 = NUCLIDE CONCENTRATION IN COW'S MILK FOR M.I.E.
BY ATMOSPHERIC DEPOSITION
CCMI2 = NUCLIDE CONCENTRATION IN COW'S MILK FUR G.P.E.
BY ATMOSPHERIC DEPOSITION
CGMI1 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M.I.E. BY ATMOSPHERIC DEPOSITION
CGMI2 = NUCLIDE CONCENTRATION IN GOAT'S MILK FOR
M
RADIANS
M
MAA3
C1/MAA3
CI/MAA3
CI/MAA3
CI/MAA3
CI/MAA3
G/CC
PCI/KG
PCI/KG
PCI/KG
Cl/KQ
CI/MAA3
PCI/L
PCI/L
PCI/L
A2
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
COPL1 =
COPL2 =
COPL3 =
CGMEAT =
COCMI1 =
COCMI2 =
COGMIi =
COGMI2 =
COMEAT =
DBA
DBB
DBD
DBR
DEAL
DBAV
DBLA
BECN
DBEIA =
DECAY =
DOVER =
BTRAQ =
DWELL =
BBETA1 =
DBETA2 =
DERATE =
EXPOS =
EXTENT =
ERREST =
FIW1ND =
FI
GUV
GNBCON =
HTIME =
IDELT =
INTYR =
IPRT1 =
IPRT2 =
ITIME =
IOPSAT =
IOPVWV =
LU2
MAXYR =
NOFUN =
NYEAR =
NONCLD =
NUCLIO =
G.P.E.bY ATMOSPHERIC DEPOSITION
NUCLIDE CONCENTRATION IN LEAFY VEGETABLES FOR
H.I.E. BY IRRIGATION
IN PRODUCE FOR M.I.E. BY
IN LEAFY VEGETABLES
IRRIGATION
IN Bi^L- MEAT BY
AND
IN COW MILK FOR G.P.E.
IN GOAT'S MILK FOR
IN GOAT'S MILK FOR
NUCLIDE CONCENTRATION
IRRIGATION
NUCLIDE CONCENTRATION
PRODUCE FOR G.P.E. BY
NUCLIDE CONCENTRATION
ATMOSPHERIC DEPOSITION
NUCLIDE CONCENTRATION IN COW'S HILK FUR M.I.E.
BY IRRIGATION
NUCLIDE CONCENTRATION
BY IRRIGATION
NUCLIDE CONCENTRATION
H.I.E. BY IRRIGATION
NUCLIDE CONCENTRATION
M.I.E. BY IRRIGATION
NUCLIDE CONC IN BEEF MEAT BY IRRIGATION
INTERMEDIATE VARIABLE IN DDETA CALC.
INTERMEDIATE VARIABLE IN DDETA CALC.
DISPERSION COEFF. IN DDETA CALC.
RETARDATION FACTOR IN DDETA CALC.
LENGTH OF FLOW IN DDETA CALC.
GROUNIiyATER VELOCITY IN DDETA CALC.
RADIOL. DECAY COEFF. IN DDETA CALC.
DECAY CORRECTION FACTOR
DECAY-DISPERSION CORRECTION FACTOR
RADIOACTIVE DECAY CONSTANT
ANNUAL THICKNESS OF TRENCH OVER BURDEN ERODED
DISTANCE FROM TRENCH TO AQUIFER
DISTANCE FROM TRENCH TO WELL
DDETA FOR VERTICAL TRANSPORT
DDETA FOR HORIZONTAL TRANSPORT
ATMOSPHERIC DEPOSITION RATE
NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
UNIT SOURCE RELEASE
CROSS SLOPE EXTENT OF SPILLAGE
PCI/L
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
1/Y
M
M
M
M
FRACTION OF TIME WIND BLOUS TOWARD POPULATION
FRACTION OF YEAR CROPS ARE IRRIGATED
GROUND WATER VELOCITY M/Y
INSOLUBLE SURFACE SPILLAGE GROUND CONCENTRATION
HORIZONTAL OR AQUIFER TRANSPORT TIME Y
INCREMENTAL YEAR FOR PRINTING ANNUAL SUMMARIES
INTERMEDIATE YEARS DURING THE SIMULATION FOR Y
WHICH DOSE & HEALTH EFFECT OUTPUT IS DESIRED
INITIAL YEAR FOR PRINTING ANNUAL SUMMARIES
FINAL YEAR FOR PRINTING ANNUAL SUMMARIES
TOTAL TRANSPORT TIME FROM TRENCH TO WELL Y
OPTION INDICATOR FOR CALCULATING LENGTH OF
SATURATED ZONE
OPTION ID1CA10R FOR CALCULATING VERTICAL WATER
VELOCITY
LOGICAL UNIT FUR OUTPUT
NUMBER OF YEARS IN SIMULATION
MAXIMUM NUMBER OF FUNCTION EVALUATIONS TO
BE USED BY QUANC8
CURRENT YEAR OF SIMULATION
NUMBER OF NUCLIDES IN SIMULATION
NUCLIDE NAMES
A3
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
OVER = TRENCH OVER BURDEN THICKNESS M
PC = FRACTION OF TRENCH CAP THAT HAS FAILED
PCON1 = A1K CONCENTRATION CI/MAA3
PCON2 = GROUND SURFACE CONCENTRATION CI/MAA2
PCON3 = COLLECTIVE INGESIION RATE PCI.PER
PCON4 = COLLECTIVE INHALATION PCI.PER
PD = DOWNSLUi'E DISTANCE TO STREAM M
POLE = AMOUNT OF NUCLIDE LEAVING BOTTOM Ot7 TRENCH CI
POLO = AMOUNT OF NUCLIDE OVERFLOWING TRENCH CI
POP = POPULATION
PORS = POSOS1TY OF SOIL
PORT = POROSITY OF TRENCH CONTENTS
PERMS = PERMEABILITY OF SOIL M/Y
QING = ANNUAL INTAKE OF RADIONUCLIDE BY INGESTION
OF CON1AH1NATED FOOD CONSIDERING ATMOSPHERIC
AND AQUATIC PATHWAYS PCI/Y
QINH = ANNUAL INTAKE Of NUCLIDE BY INHALATION PCI/Y
QFRAC = FRACTION OF INGESTION DUE TO WATER
RELERR = RELATIVE ERROR FOR DDEIA INTEGRATION
RESULT = FINAL FORM OF DDETA CORRECTION FACTOR
RESUL1 = FINAL FORM OF VERTICAL DDETA
RESUL2 = FINAL FORM OF HORIZONTAL DDETA
RETARH = HORIZONTAL RETARDATION FACTOR
RETARV = VERTICAL RETARDATION FACTOR
SOAM = AMOUNT OF SURFACE SPILLAGE CI
SAREA = AREA Of SPILLAGE MAA2
SDEEP = AMOUNT OF SOLUBLE SURFACE COMPONENT GOING TO
TRENCH CI
SIAVG = AVERAGE NUCLIDE CONCENTRATION IN STREAM CI/MAA3
STCON = NUCLIDE CONCENTRATION IN STREAM CI/MAA3
SOILOS = ANNUAL SOIL LOSS DUE TO EROSION
SSTREH = AMOUNT SURFACE COMPONENT GOING TO STREAM CI
STFLOU = STREAM FLOW RATE MAA3/Y
TRAM = AMOUNT OF NUCLIDE IN TRENCH CI
Vli = ATMOSPHERIC DEPOSITION VELOCITY M/S
VOLE = VOLUME OF WATER LEAVING TRENCH BOTTOM MAA3
VOLO = VOLUME Of WATER OVERFLOWING TRENCH MAA3
VOLUSD = HYPOTHETICAL VOLUME OF WATER USED FROM WELL MAA3
VTIME = VERTICAL TRANSPORT TIME Y
VWV = VERTICAL WATER VELOCITY (TRENCH TO AQUIFER) M/Y
UIRATE = IRRIGATION RATE L/MAA2-
XINFL = ANNUAL INFILTRATION RATE M
XKD = CHEMICAL EXCHANGE COEFFICIENT ML/G
XLSAT = LENGTH OF SATURATED ZONE M
YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE CI
--OTHER VARIABLES ARE DEFINED IN SUBROUTINES WHERE THEY
--ARE USED MOST FREQUENTLY.
DOUBLE PRECISION NUCLID.DBAV.DBAL.DBR.DBA.DBB.DBD.DBLA.
& FCN,RESULT,ABSERR,RELERRFERREST,FLAG
DOUBLE PRECISION RESUL1.RESUL2.PNUC
COMMON/STREAM/DUS ISINEU
COMMON/CNTRL/NONCLD.MAXYR.TITLE<20).LOCATE*12).NYR1.NYR2,
i PCT1.PCT2.LE.AOPT. IOPVUV.IOPSAT,IPKT1,IPRI2.IDELI.IxiS.
| IRRESl,IRfcES2,LIND,IAVG1,IAVG2.RR.FTMECH,INTYR(4$ , RAE1085
& UWATL.WWATA.WWATH.SWATL.SWATA.SWATH,IVAP.IBSMI.IDlsp
COMMON/EVAP/PPN.PHID,P,XIRRFS(12),T(l2),TD(12)(XINFLfSINFL,
$ SMASS,UMflSS,WDEEP
A4
-------
COhMON/TRCH/TAREA.TDEPTH,OVER,PORT,RELFAC,DENCON-OLDUAT,SEEP
COMMON/WAIER/DTRAa,DUELL.GUV,XLSAT,STFLOW.AQTHK.AGDISP,
S PORA.PORV.PERMV.lAQSTF,CPRJ,VUV,HGRAD,FRACB,ALV.ALHrBDENV
COMMON/NUC/NUCLID(40>,ATMASS<40).TRAM<40).SOArt(40).ATAh(40),
& AQAMUO,10000).STAM<40).POLO(40),POLB<40).CS(40),CU(40).
& SSTREM(40),SBEEP(40>.AIRCGN(40),YSO(40),SOAVG(40),CON(40).
& AQCON(40),STCON<40).ATCON<40).AGAVG(40).SIAVG<40),DETU(40}, ISINEUL
& ATAVG<40).FMC(40>.FMG<40).DECAY(40).XKD(4.40>,SGL(40).
& FF(40).RA(40).Ry(40).BV(40),BR(40).DERATE(40).CUAT(40)
COMMON/LAND/RAINF,ERODF.STPLNG.COVER,CONTRL.SEDELR.SO ILOS, '
S PORS,BDENS,DWETFEXTENT,ADEPTH,PDrRUNOFF,RESAT,
COMMON/AIR/H,yG.U.IT.IS,VD.XG.HLID.ROUGH,FTWIND,CHIQ,RE1,RE2,RE3
COMMON/DOUBLE/BBAO.DBALlDB^DBR^BLA
COMMON/ IRRFOO/Y1.Y2,IE1,IE2.TH1.IH2.IH3,TH4,TH5,TH6,FP,'FS,
& ULEAFY.UPRODiUCMILK.UGhlLKjUMEAT.UUAT.UAIR,
i QFC,QF6.TF1,TF2,TS.CL1(40),CL2(46),CP1(40),CP2(40),
& CC«Il(46),CChI2(40).CGHIl(40).CGMI2(40),
& ChEAI(40).COLl(40),COL2(40).COPl(40).COP2(40),
& COCMI1(40),COCMI2(40),COGMI1(40),COGHI2(40),
i COMEAI(40).QING(40).QINH(40).POPf
& CSP(40).CSPT(40),CSFOC40).CSPOT(40)
COMMON/FUNC/XAhBWE.TA.TW.FI.PP.yiRATE,
& QCW,QGU.QBW,ABSH.Pl4
CO«MON/PASS/PNUC(40),PCON1(46).PCON2(40),PCON3(40),
& PCON4(40),PPOP,LLIND,LDIST
COfiMON/PCV/SOCON(40)
COHMON/ACCfiOD/FICAN(40),CCNR(40),POPD(40),GNR(40),
I IFIC,TCCNR,TPOPD,TGNR
C
EXTERNAL FCN
DIMENblON I1IME(40).DDETA(40).DECN(40) ISIHOD
DIMENSION BBETA3(40),JTIM£(40).DEXUS(40),DEUS(40) ISINEWL
DIMENSION QLB(40.10),IRAP(40).QLBPTH(40),HE(40).QLBTTH(40)
DIMENSION NUCL(46.S),NUMBER(ll),IDIG(3>,BSMT<40),SAVE(40.21) RAE1085
DIMENSION AQMAX(40),STMAX(40),AlMAX(40).MXAQ(40).MXST(40),MXAT(40)
DIMENSION PC1(40),PC2(40)IPC3(40).PC4(40),NPC1(40),NPC2(40),
S NPC3(40),NPC4(40),BSnTA(40),CCNRS(40.4).FICANS(40,4), RAE1085
i GNRS(40,4),HEF(40.4),POPDS(40.4).POSS(46.4),POWS(40,4), RAE1085
8 QBASIN(40,4),RTAS(40,4),TCCNRS(4),IFICS(4),TGNRS(4), RAE1085
& IPOPDS(4) RAE1085
DIMENSION QDUSB(40).POU(40).POS(40),PLBT(40),OFT(40),RTA(40)
DIMENSION CIUT(40),CIN£UT(40)
DATA LU2/6/
DATA ISW/0/
DATA MINUS/'-'/
DATA NUMBE8/'l'.'2'.'3'f/4'»/5i','6','7/f'8'f/eJ'F/0',/ '/
CALL ERRSEI (200,256,-! , 1)
IBK=0
RESAT=0.
DO 11 K=l,10
DO 11 1=1.40
11 QLB(I,K)=0.0
DO 1-0 1=1.40
QDUSB(I)=0.
QLBP1H(I)=0.0
QLB11H(I)=0.0
POU(I)=0.
POS(1)=0.
PLBT(I)=0.
A5
-------
OFI(1)=0.
RTA(I)=0.
AQAV(j(I)=0.
STAVG(I)=0.
AIAVG(I)=0.
SOAVG(I)=0.
BSM1(I)=0.0
AQMAX(I>=0.0
STHAX(I)=0.0
ATMAX(I>=0.0
MXAG(I)=0
MXSI(I)=0
MXAKI)=0
PC1(I)=0.
PC2(1)=0.
PC3(I)=0.
PC4(1)=0.
NPC1(I)=0
NPC2(I)=0
NPC3(I)=0
NPC4(1)=0
CSP(I)=0.
CSP1(1)=0.
CSPO(I)=0.
CSP01(I)=0.
SDE£F(I)=0.
SSIREM(I) = 0.0
DO 10 NN = 1,10000
AQAM(1,NN)=0.
10 CONTINUE
DO 770 1=1,40
770 CIOT(I)=0.0
OLDUA1=0.
ABSERR=1.0D-5
C CIOT IS A VARIABLE TO BE USED IN SUB. LEACH
C INTRODUCED FOR OCT11 VERSION (HUNG)
RELERR=1.0D-5
C INITIALIZE VARIABLES AND INPUT CONTROL PARAMETER.
C PRINT OUT INITIAL CONDITIONS.
C
CALL SOURCE(NUCL,CFI1.DCFI.EGAH.IRST.PERhl.RIGR.SSAT,XRTM)
C PRJ=PERCENTAGE OF AQUIFER UATER FLOWING TO STREAM
PRJ=1.-CPRJ
C aiFLLL=S!REA« FLOW VALUE READ IN SOURCE.KEPI FOR FUTURE REF
STFLLL = STFLOU
C
C THE FOLLOWING EXTRACTS THE ATOMIC MASS FROM THE NUCLIDE
C NAME. THE NUCLIDE NAME MUST CONSIST OF ONE OR TUO LETTERS,
C A MINUS SIGN. AND ONE TO THREE DIGITS. NO IMBEDDED
C BLANKS ARE ALLOWED. THE NAME MUST BE LEFT JUSTIFIED.
C
C
URI1E(LU2,5000)
DO 50 I=1,NONCLD
NDASH=2
IF(NUCL(I,NDASH) .EQ. MINUS) GO TO 20
NDASH=3
20 NNUM=NDASH+1
DO 30 K=l,3
ICHAR=NUCL(1,NNUM+K-1)
A6
-------
DO 25 L=l,ll
IFdlHAR .LCI. NUMBER(D) GO TO 27
25 CONTINUE
27 IDIG(K)=L
IFdDIG(K) .LQ. 10) IDIG(K)=0
30 CONTINUE
NDIG=3
IEdDlQ(3) .EGl. 11) ND1G=2
IE(IDIG(2) .EQ. 11) NDIG=1
INUCN=0
DO 40 L=1.NDIG
INUCN=INUUN+IDIG(L)A10AA(NDIG-L)
40 CONTINUE
AIMASSd)=FLOATdNUCN)
URITE(6,5005)NUCLIDd),ATMASSd>
50 CONTINUE
C
C DETERMINE IF FARMING IS ONSITE
C
INS1TE=0
XIRR=0.0
IF(X(i .Gt. PD)GO 10 60
URII£(LU2f5006)
INSITE=1
XIR»=UI»AIEAFIA8760./1.0E3
EA8MGD=£XTENIAPD
PEOPLE=FAKMGLi/44cJ2.
IF(PEOPL£ .LI. POP) GO TO GO
POP=PEOPLE
WRITE(LU2,5007)POP
60 CONTINUE
C
C DETERMINE NORMALIZED ATMOSPHERIC EXPOSURE AND
C DEPOSITION.
p
EXPOS=LHIQ
IF<1D1SP.EQ.4)EXPOS = 0.0
IE(CH1Q.LE.O.O.AND.IDISP.NE.4)CALL AIRTRM(EXPOSfDEPO)
PPOP=POP RAE1085
LLIND=LIND RAE1085
LDIST=XG RAE1085
DO 62 I=1.NONCLD RAE1085
62 PNUC(I)=NUCLID(I) RAE1085
C
C DETERMINE ANNUAL INFILTRATION RATE THROUGH TRENCH CAP
C
XINFL = SEEPAPPN
IF (ID1SP.EQ.LAND.SEEP.EQ.0.0) CALL INEILCXINFL,PPN)
IE (IOISP.GT.1) XINt'L = SINEL
C
C DETERMINE VERTICAL WATER VELOCITY, RETARDATION FACTOR,
C VERTICAL TRANSIT TIME, HORIZONTAL TRANSIT TIME, AND
C TOTAL TRANSIT TIME.
C
IF (ID ISP.Eft.1) GO TO 65
VOLO = 0.0
VOLD = VUVATAREAAFRACB
GO TO 67
65 VWV=PERMV/PORV
RESAT=fi£SAT/PORV
A7
-------
IINlL=(PC12A(PPN+XlRR)-K2.-PCI2)AXINtL)A0.5
IF(SSAX .GT. 0.) GO TO 72
SSAI=RESAH-(1.-RESAI)A(TINFL/PERMV)AA0.25
IFfSSAT .GI. 1.) SSAT=1.
URI1E(LU2.1005) SSAT.RESAT
1005 FORMAT* ' DEGREE OF SATURATION = ',F6.3./,
S ' RESIDUAL SATURATION = y.F6.3)
IFtSSAI .GI. 0.0 .AND. SSAI .LI. I.) VUV=IINEL/
XLSA1-=LIRAQ
67 CONTINUE
WR lit
-------
BBAL=DWS ISINEW
BBD=.3DOAGUV
DBAV=(iUV ISINtU
BBR=ft£TARH ISINEW
DBA=WSTIME/10.0DO
BBB=WS11ME ISINEW
CALL QUANCBtFCN, DBA, DBB,ABSERR,R£LERR,RESULl,EI
WRITE(LU2f602)SOILOS, DOVER
IF (IBISP.EQ.l) URITE(LU2,603)XINFL
URITE(LU2,604)VUV
WRI1E(LU2,G05)EXPOS
300 CONTINUE
C
C CALCULATE AQUIFER VOLUME
AQVOL=GUVAPORAAAQTHKA(SORT(TAREA)+2.ATAN(AQBISP/2.)AHWELL)
P____
C COMPUTE HYPOTHETICAL RAIHONUCLIDE UITHBRAWL FROM WELL PER YEAR.
C
VOLUSW=(WIRA1EA44CJ2.AFIA&?60.AWWATL +
& UWATAWWAIH + 15000.AWWATA)APOPA1.OE-3
VOLUSS=(UIRATEA4492.AFIA8760.ASWATL +
I UUATASWATH + 15000.ASUATA)APOPA1.OE-3
C
C
C
C THE FOLLOWING LOOP WILL BE PROCESSED FOR EACH YEAR IN
C THE SIMULATION.
C
C DO LOOP 260 CALCULATES REMAINING RADIOACTIVITY
C IN TRENCH AFTER 10000 YEARS ASSUMING PERFECT
C TRENCH ISOLATION
DO 260 I=1.NONCLD
260 TRAP(I)=TRAM(I)AEXP(-DECAY(I)A10000.)
DO 999 I=1.NONCLD
DECN(I)=EXP(-DECAY(D)
DETU(I)=EXP(-DtCAY ISICH
DETWS(I)=EXP(-DECAY(I)A(rnM£(I)+JfIM£(I))) ISINEWL
999 DtWS(I)=EXP(-DECAY
-------
IF(DOVER .Gl. OVER)TRLS=DOVER-OVER
TD£PIH=ID£PIH-TRLS
OVER=UVER-DOVER
IF(pVE£ .LT. 0.)UVER=0.
IHNYEAR'.LT. IRSI .OR. INSITE .EQ. o) GO TO 1068
RSTR=FLOAI(NY£AR-IRST)
XRT~XRTM
IF(RiilRARTGR .GT. 9.0 .OR. RTGR .LE. 0.001) GO TO 1069
XRT=XRTMA(1.-£XP(-RTGRARSIR»
1069 IE(XRT .LE. OVER) GO TO 1068
D1R=OVER+TDEPIH
IF(XRT .LE. D1R) FONSIT=1.-OVER/XRT
IF(XRT .GT. D1R) FONSIT=IDEPTH/XRT
1068 CONTINUE
IF (1DISP.EQ.2) UMAX = VOLB/
-------
IS AVAILABLE IN
POINT TO STREAM
JTMP=NYEAR+I1IME< ID+JIIM£< II) ISINEWL
KIN=1NT(FLOAT(JIHP-1)/1000.) ISINEWL
IF(KIN.GT.IO) KIN=10 . ISINEWL
IF (KIN.EQ.10) GO TO 231 ISINtWL
QLB(II,KIN)=QLBABDEXA3(II) ISICH
241 CONTINUE
AQCON<1I)=AQAM(II,NYEAR)/AQVOL
AMT1=VOLUSWAAQCON(II)
IE(AMT1 .LE. AGAM(Il.NYEAR) .OR. AMT1 .EQ. 0.) GO TO 350
AQCON(II)=AQAM(II.NY£Afi)/(VOLUSW>
350 IE(N .6E. IAVG1 .AND. N .LE. IAVG2)AQAVG(II)=AQAVG(II)+AQCON
-------
370 CONTINUE
POSdl)=POSdI)+VOLUSSASTCONdI)
C UASIE LEAVING BASIN
IE(lAtlSlE.NE.O.AND.AQVOL.GI.VOLUSU)SSIREHGO TO 355 RAE1285
IF(N.EQ.1.AND.I.EQ.1)SIFLOU=STELOU+ RAE1285
& PRJA(AQVOL-yOLUSU) £A£,12?5
355 CONTINUE RAE1J35
IE(IAQSTE.NE.O.AND.AQVOL.GI.VOLUSU)SXCON(iI)=SSI*£M(II)/STELOW
C RESIDUAL R-ACIIVITY FROM STREAM 'DITCH1 AFTER COMMUNITY USE ISINEWL
C IS PASSED TO THE BASIN IN THE SAME YEAR. ISINEWL
IF(VOLUSS.LE.SIFLOW)QDUSB(II)=(STELOU-VOLUSS)ASICON(II)+QDMSB(II)
C
C
C CALCULATE ATMOSPHERIC CONCENTRATION AND AMOUNT
C ABOVE SPILLAGE AREA
C
C
GNBCON=CSdl)ABDENSAADEPTHA1.0E3
IFdNSITE .EQ. 0 .OR. IRRES1 .GE. NYEAfi) GO TO 381
D1R=TRAM(11)/(TAREAATDEPTHADENCONA1000.)
CALL SUSPND(NYEAK,IIf[ilR)
AICON(II)=YSO(II)
GO TO 382
381 CONTINUE
CALL SUSPNLKNYtAR.Il.GNDCON)
RTA(II)=RIA(II)+YSO(II)A3.1536E7
ATCON(II)=YSO(II)AEXPOSAFTUIND
IF(N .GE. IAVG1 ;AND. N .LE. IAVG2)ATAVG(I1)=AIAVG(II)+ATCON(II)
382 IF(AXCON(II) .LE. ATMAX(ID) GO TO 380
AIMAX(II)=A1CON(II)
MXAT(II)=N
380 CONTINUE
BSMTA(II)=0.
IFdBSMT .GT. 0 .AND. NYEAR .GE. IBSMT)BSMTdI)=BSMT( II)+TRAMdI)
IFdBSMT .GT. 0 .AND. NYEAR .GE. IBSM1 )BSMTA(H)=+IRAM( II)
IF
-------
IFdUPVWV .LI. 0) GO 10 384
IFdRSl .LI. N .ANLi. 1DEP1H .GT. 0.) LUR=FUNS11A1RAM< ID/
I (TAREAATDEPTH)
IFdUPVUV .EQ. 1) DlR = DlRABVdI)
384 CONTINUE
SOCONdI) = 1.0E12AADEPIHA
-------
c
c
c
990
SAVEd,4)=CP2d)
SAVE(If5)=CSP(I)
SAVEd,6)=CUAId)
SAV£(I,-;)=ChEAI(I)
SAVEd 3)=CCMI1(I)
SAVE(lj9)=CCHI2=CGMI2d)
SAVE(If12)=COLKI)
SAVEd,13>=COL2d)
SAVtd,14)=COPld)
SAV£d 15>=COP2d>
SAVEd 16)=COCMIld)
SAV£d 17>=i:OCMI2d>
SAVEd,18)=CGGMlld)
SAVEd,19)=COt3fiI2d)
SAVEd,20)=CGMEAld)
SAVEd'21)=C3POd)
AQAVG(I)=AQAVG(I)/NYEAR
ATAVG(I)=ATAVG(I)/NYEAR
SOAVGd)=SOAVG( D/NYEAR
STAVGd)=STAVG( D/NYEAR
C
C
C
992
PREPARE CONCENTRATION ARRAYS, PCON, FOR DARTAS
IAVG1=1
IAVG2=NYEAR
DO 992 I=1,NONCLD
11=1
DERATE(II)=AXAVG(II)AVOA3.6E15
CALL FOOO(II)
CWATdI) = )Al.E9
CALL IRRIGdl)
CUAT( II) = (UUAXHAAQAVi3(II)+SWAXHAGXAVG( II)
CALL HUhEX(II)
PREPARE ARRAYS XO PASS TO DARTAB
PCONldl)=ATAVGdI)APOP
PCON2dI) = (CSPdI>+CSPOdI))APOPAl.E-12
PCON3(II)=QINGdI)APOP
PCON4(II)=QINH(II)APOP
CONTINUE
RESTORE SAVED VALUES
DO CJ'J4 I=1.NONCLD
CL1(I)=SAVE(I,1)
CL2d)=SAVb'd,2)
CPld)=SAVEd,3)
CP2d)=SAVEd,4)
CSP(I)=SAV£d,5)
CUAld)=SAVE(l,6)
CM£ATd)=3AV£(I,7)
CCMlld)=SAVEd,8)
CCHI2(I)=SAy£(I.9>
CGHIld)=SAVEd,10)
.
COLld)=SAVEd,l2)
COL2(I)=SAVE(i;i3)
COP1(I)=SAVE(1,14)
COP2d)=SAV£d,15)
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1035
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAElOSb
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1D85
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE108&
RAE1085
RAE108S
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
A14
-------
994
C
c
C
c
c
c
996
1000
1100
C
C
C
C
C
C
COCMI1(1)=SAVE(
COCHI2(I)=SAVt(
COGHll(l)=SAVt(
COGHI2(I>=SAVE(
COHEAKI) = SAVE<
CSPO
POUS(lfJYR)=POU(I)
RTAS(I.JYR)=RJ:A(I)
QBASIN(I.JYR)=QDUSB(I)
HEF(I,JYR)=QDUS6( I)ACON(I)
EICANS(I,JYR)=FICAN(I)
POPDS(I,JYR)=POPD(I)
CCNRS(I,JYR)=CCNR(I)
GNRS(I.JYR)=GNS(I)
TF1CS(JYR)=TEIC
TPOPDS(JYR)=TPOPD
TCCNRS(JYR)=ICCNR
XGNaS(JYfi)=TGNR
JYR=JYR+1
CONTINUE
NEXYR=JAVG2-IAVG1-H
WRIIE(LU2,700)IAVG1,IAVG2
DO 1100 II=1.NONCLD
AQAVG( II) =AQAVG( ID/FLOAT(NEXYR)
STAVG(II)=STAVG(II)/FLOAT
-------
1200 CONTINUE
C
C"I CALCULATE RAB10NUCLIDE CONCENTRATIONS IN FOOD DUE TO
£ WATER IRRIGATION. ALSO CALCULATE ANNUAL RADIONUCLIDE
C INTAKE BY MAN.
C
C
URIIE(LU2,6010)
WRIfE(LU2,6005)
DO 1300 I=1,NONCLD
CWAINUCL1D.COL2.COGMI2(II>,COMEAT(II)
CUAKII) = (WWATHAAGlAVG(imSUATHASTAVG(II))A1.0E9
CALL HUMEX(II)
1300 CONTINUE
URI1E(LU2,6020)
IE(LIND .EG. 0)URITE(LU2,6024)
IE(LIND .NE. 0)URIIE(LU2,602G)
WRIIE(LU2,6030)
DO 1310 I=1.NONCLD
WRITE(LU2,6040)NUCLID(I),GING(I),GINH(I)
1310 CONTINUE
C TABLE Of CUMULATIVE (AGGREGATED) VALUES OF RADIOACTIVITY
C PRODUCED HERE
WRITE
-------
URITE(LU2,6300)
DO 1340 I=1.NONCLD
URIIE(LU2,6310)NUCLID(I),PC1(I),NPC1(I),PC2(I),NPC2(I)I
& PC3(I),NPC3(I),PC4(i),NPC4(I>
1340 CONTINUE
IFUYR .EQ. 1) CALL DARTAB(O) RAE1085
CALL DARXAB(4> RAE1085
C
C SAVE DATA FOR ACCOUNTING MODEL TABLE
DO 1350 I=1,NONCLD RAE1085
POSS(IFJYft)=POS(I> RAE1085
POUS(1,JYR)=POU(1) RAE1085
RIAS(I.JYfi)=RXA
-------
URITE(LU2,615)NYEAR
455 CONTINUE
c IHE FOLLOWING LOOP IS EXECUTED FOR EACH NUCLIDE.
DO 505 1=1,NONCLD
11=1
XDECN=DECN(II>
TRAM(II)=IRAM(II)AXDECN
CS<11)=CS(II)AXDECN
Cy(II)=CW(II)AXDECN
C
C CALCULATE THE AMOUNT Of LEACHING.
C
CALL LEACH=PLBX(II)+POLB
IF(KIND.GI.IO) KIND=10
C POLE AND SHEEP ARE AMOUNTS OF RADIOACTIVITY
C RELEASED TO THE BASIN IN MILLENIUM KINB+1
IF(KIND.EQ.10)GO TO 199
C NUCLIDE ARRIVES AT STREAM AFTER YEAR 1000 BUT BEFORE YEAR 10001 ISINEWL
QLB(II.KIND)=QLB(II.KIND)+DEXUS(II)A ISIMOD
8 SDEEP(II))ADDETA(II)ADDETA3(II) ISIMOD
GO TO 210
199 GLB(II.10)=QLB<11.10)+EXP(-BECAY(II)A(10000.-FLOAT +
J SDEEP(n))ABD£XA(II)A£iDEXA3(II) ISIMOD
210 CONTINUE
C
C CALCULATE TRANSPORT OF SOLUBLE SURFACE COMPONENT
C
CALL SURSOL<1I,NYEAR,VOLO)
KIND=INT
-------
C ----- MATERIAL BALANCE
C -----
C
C ----- 3.1536E7 IJj THE NUMBER OF SECONDS IN A YEAR
CS(II)=CS(II> + (A3.153&E7)/
1 ( EXIENIAPBAADEPTH ) ) Al . OE-3/BDENS
TRAMdI)=TRAMdI)A(1.0-IRLS/(TBEPIH + TRLS))
IF(LEAOPI.EQ.5 .AND. DMAX.GT.O. )TRAMdI) = TRAMdI) Ad-RELFAC) ISIhOD
IFUEAOPT.NE.5) TRAM dI)=TRAMdI)-POLBdI> -POLO dl)
IF(IRAMdl) .LI. 0.)TRAHdI)=0.
CU(II)=CU(im(POLO(II>/
i (EXTENTAPBAADEPTHAPORS))
IF(CUdl) .LI. 0.) CWdI)=0.
IF(CSdl) .LT. 0.)CS(11)=0.
C ----- COMPUTE SOIL CONCENTRATION
p___ _
B1R=0.
IFdUPVWV .LI. 0) GO 10 388
IFdRST .LT. N .AND. TDF.PIH .Gl. 0.) BlR=FGNSlTATRAMdI)/
I CfAREAATDEPTH)
IFdGPVWV .EQ. 1) DlR=DlRABVdI)
388 CONTINUE
SOCONdl) = 1.0E12AADEPTHA(CUdI)APORS+1000.ACSdI)ABDENS)
IF(N .GE. IAVG1 .AND. N .LE. IAVG2)SOAVG< II)=SOAVG< II)+SOCON( II)
C
505 CONTINUE
UD-DMAX
IF(UD .GT. IDEPIH)UD=IDEPIH
C IF(MOD(NYEAR.1000).EQ.O .OR. NYEAR.EQ.1001 )
C & CALL THSUH(
1001 CONTINUE
C QLBPTH IS THE AMOUNT OF RADIOACTIVITY LEAVING
C THE BASIN WITH THE STREAM WATER BETWEEN YEARS
C 1001 AND 10000
1111 DO 506 II=1,NONCLD
IF (MAXYR.GI. 10000) GO TO 1112
DO 250 L=l,9
250 QLBPTH dI)=GLBPIHd I) +GLBdI.L)
C FIRST MILLENNIUM RELEASE INCLUDED t'OR HEALTH EFFECTS CALC.
1112 ClLBTIHdl)=QLBPTHdI)+QDWSB(II)
506 CONTINUE
C HE IS THE HEALTH EFFECT CALCULATED USING CONVERSION FACTOR CON
DO 270 L=1.NONCLD
270 HE(L)=QLBTIH(L)ACON(L)
C
C OUTPUT FOR THE EXTENDED SIMULATION PERIOD IS PRODUCED
C IN DO LOOP 1004. DO LOOPS 1007 AND 1010 REPORT THE HEALTH
C EFFECTS FROM THE RESIDUAL RELEASE DOWNSTREAM THE BASIN
C
URITE<6.1002) MAXYR RAE1085
1002 EORMAriX!*!!!!*!:, RAE1085
.1 ii IY A 1 1 /j.AAfii^i
DO 1004 1=1.NONCLD
1004 URIIE(6,1003) NUCLIDd) ,QDWSB(1) , (QLB(I,K) ,K=1,9)
URIX£(6.2002)
2002 FORMAT(;1',10X, 'RESIDUAL RADIOACTIVITY IN' , 10X, 'REMAINING IN',
A19
-------
t 11X, 'RELEASED TO THE' ./. 10X, 'TRANSIT iN YEAR 10000',
I 16X 'TRENCH' 20X ,'AIMOSf HERE',/)
DO 2004 I=1,NDNCLD
2004 WkIIE<6.2003) NUCLID< I) ,QLB< I, 10) , TRAM( I) .RTA( I)
2003 FORMAT<5 ' A8.6X,PE11 .4,20X,PEll .4, 16X,PEll .4)
DO 1420 J=1.JYR
URIIE(6,1400) INTYR(J)
1400 FORMAI(J///,32X 'HEALTH EFFECTS RESULTING FROh RESIDUAL',/,
I 32X, 'RADIOACTIVITY RELEASED iN '.15 ' YEARS'.// ,30X,
! 'NUdLKit ',5X,' RESIDUAL' t3X 'CONVERSION', 3X, 'HEALTH' |/,42X,
'' '' ''
'ACTIVITY. 5X. 'FACTOR', bX, 'EFFECTS', /)
DO 1410 I=I.NONCLD
1410 URITE(&,1008) NUCLID( I) ,QBASIN( I,J) ,CON( I) ,HEf ( I, J)
1420 CONTINUE
URIIE(6,1006)
1006 FGRrlAI(////,32X 'HEALTH EFFECTS RESULTING FROM RESIDUAL-',/,
t 32X. 'RADIOACTIVITY RELEASED IN 10000 YEARS' //.30X.
i 'NUCLIDE' 5X. 'RESIDUAL 't3X' CONVERSION ',3X, 'HEALTH 7,/,42X,
S ' ACTIVITY J,5X 'FACTOR', 5x,? EFFECTS',/)
DO 1007 I=1.NONCLD
1007 Ukm(6,1008) NUCLID(1).QLBTTH(I),CON(I),HE(I)
^1008 FORHAT(30X,A8,lX,3(2X,lf£10.4))
: WRITE ACCOUNTING MODEL TABLE FOR INTERMEDIATE & FINAL YEARS
^
'1814 DO 1020 J=1,JYR
LASTYR=10000-INTYS(J)
WR11E(6.1009) (INIYR(J).1=1.5).LASIYR
URITE(14.1009) (INIYR(a),I=1.5).LASIYR
FORMAT('1'///.30X 'TABLE FOR ACCOUNTI
1009
('I'///.30X 'TABLE FOR ACCOUNTING MODEL YEAR ',15,
& /, COLUMN 1: INDIVIDUAL CANCER RISK (UNIILESS)',
& /, COLUMN 2: POPULATION DOSE (PERSON-REM/YEAR)'
& /, COLUMN 3: COLLECTIVE CANCER RISK (DEATHS/YEAR)',
& /, COLUMN 4: GENETIC RISK (EFFECTS/YEAR)'
& /, COLUMN 5: R-ACTIVITY PUMPED OUT THE WELL 1ST ',15,
i ' YEARS (CD',
& /,' COLUMN 61. R-ACTIVITY PUMPED OUT THE STREAM 1ST ',15,
' YEARS (CD '
k-rtCliVITY RELEASED 10 ATMOSPHERE 1ST ',15,
/,' COLUMN '/:
' YEARS (CD',
/,' COLUMN b: R-ACTIV11Y RELEASED DOWNSTREAM 1ST '15,
'YEARS (CD',
/,' COLUMN 9: K-AC11V11Y RELEASED DOWNSTREAM LAST ',15,
' YEARS (CD'
/.' COLUMN 10: R-AC11V1TY IN TRENCH AFTER 10000 YEARS '
'ASSUMING PERFECT CONTAINMENT (CD',/) '
DO 1010 I=1.NONCLD
QLAST=QDWSB(I)-QBASIN(I,J)
QLASI=QLAST+ULBPTH(D
URHE(6,1011) NUCLID(I).FICANS(I,J).POPDS(1,J),CCNRS(I,J),
S GNRS(I.J),POUS(I,J),POSS(I,J),RIAS(I,J),QBASIN(I,J),LILASI,
URITE(14,1011) NUCLID(I),FICANS(I,J).POPDS(I.J).CCNRS(I,J),
J GNRS(I.J),POWS(I,J),POSS(I,J),RIAS(I,J),QBAsiN(I,J),Q£ASf,
& TR'AP(I)
1010 CONTINUE
UR1TE(6.1012) IFlCS(J).TPOPDS(J)fTCCNRS(J),TGNRS(J)
WRIIE(14.1012) IFICS(J),TPOPDS(J),TCCNRS(J),TGNRS(J)
1011 FORMAT(1X,A8.1X.1P10E11.4)
1012 FORMAT(IX,'TOTALS:',2X,1P4£11.4)
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
RAE1085
A20
-------
1020 CONTINUE RAE1085
1003 FORMATC ',A8,2X,12(P£I0.4, IX)>
STOP
6200 FURMAK'l' blX,< INITIAL CALCULATIONS'.
X //' J,2X 'NUCLIDE',4X 'VERTICAL',5X.'VERTICAL',
X 5X,'VERTICAL'.4X 'HORIZONTAL',3X.'HORIZONTAL',
X 3X,'HORIZONTAL'.SX'DDETA'.SX,'BREAK THRU'
X /' ' llX.'RETARtiATION',5X,JTIME Y'.7X ' DDETA' 5X,
X 'RETARDATION' 4X.'TIME Y',8X,'DDETA',21X,'TIME Y')
6210 EORMAIC ' ,A8,3X,9<1PE11.4,2X))
6215 FORMATC ' A3.3X,3(2<1PE11.4,2X>.OPI4.5X))
6220 FORMAK/' J,5X,'RADIONUCLIDE BREAKTHROUGH TIME IS ONLY SLIGHTLY',
X ' GREATER THAN SIMULATION TIME AND LEADING EDGE OF PULSE'
X ' MAY BE MISSED')
602 FORMAK//' '10X,'ANNUAL SOIL LOSS IS ' 1PE11.4,' KILOGRAMS PER',
X ' SQUARE METER' /' ' 20X,'UR 'Ell.4,
X ' METERS IS, REMOVED FROM THE SURFACE'')
603 FORMATC ' ,10X.'ANNUAL INFILTRATION INTO TRENCH IS ',
X F8.4,' METERS')
604 EORMATC ' 10X 'VERTICAL WATER VELOCITY IS ',F8.4,' MEIERS',
X ' PER YEAR')
605 FORMATC ' 10X 'NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE'
X ' PER UNIT SOURCE RELEASE IS '.Ell.4.' CI/MAA3 PER CI/SEC')
615 FORMAK//' '5X.'WATER OUTFLOW FROM THE WASTE IS APPROACHING',
X ' DILUTION VOLUME IN AQUIFER FOR YEAR ',14)
700 FORMATCr ,35Xt'AVERAGE_CONCENTRATIONS OVER THE YEARS ',13,
/ *j\s A i in A AI IUM niYnuriLi L*UIIL/£I|'IXIMI.L.LUIIIJ
X ///' 'IX,'NUCLIDE'.SX 'ATMOSPHERE DOWNWIND',
X 24X,^IN UELL',2GX^IN_STREAM'
X
5000 FORMAK * .JAA, *,
X 10X,'MASS'.//)
5005 FORMATC ',51X.A8.8X.F5.0)
5006 FORMATC ',5X,'lHE POPULATION RESIDES ONSITE')
5007 EORMATC ',5X,'POPULATION RESET TO '.F10.0,' FOR ONSITE FARM')
6000 FORMAK'l',30X,'RADIONUCLIDE CONCENTRATION IN FOODS DUE TO'.
X ' ATMOSPHERIC DEPOSITION'./' ' 55X,'PICO CURIES PER KILOGRAM')
6005 FORMAK//' ', IX,'NUCLIDE' 4X,'LEAFY VEG'.&X, 'PRODUCE' 5X.
X 'LEAFY VEG',6X.'PRODUCE' 4X 'COW'S MILK' 3X, 'COW 5 S MILK'
X 3X,'GOAT"S MILK',2X,'GOA1''S MILK' 3X.'BEEF MEAT',
X /' '.14X.'M.I.E.',7X,'M.I.E.',7X.2('G.P.E.'I7X),'M.I.E.',
X 7X,'G.P.L','/X 'M.I. E ' r/X, 'G.P.E.')
6010 FORMAK////' ' 35X. 'RADIONUCLIDE CONCENTRATION IN FQUUG DUE TO',
x ' IRRIGATION' /' '.SSX.'PICO CURIES PER KILOGRAM')
6020 FORMAK///' ',5X 'NOTE: G.P.E. - GENERAL POPULATION'
X ' EXPOSURE' /' 5,11X,'M.I.E. - MAXIMUM INDIVIDUAL',
X ' EXPOSURE')
6024 FORMATCO' IIX.'M. I.E. WILL BE ULED TO CALCULATE',
X ' HEALTH EFFECTS')
6026 FORMATCO',11X.'G.P.E. WILL BE USED TO CALCULATE',
X ' HEALTH EFFECTS')
6030 FORMATC1',IX,'NUCLIDE',10X 'ANNUAL INTAKE',10X,
X 'ANNUAL INTAKE'/' ' 18X/BY INGESTION',11X, ' BY INHALATION',
X /' ' 20X 'PCI/Y' 18X,-'PCI/Y')
6040 FORMATC f,1X.A8.9X.1PE11,4,12X,1PE11.4)
6050 FORMATC ',50X,A8.aX,F6.4>
6045 FORMATCl',50X.'FRACTION OF INGESTION DUE TO WATER',
X //' ',SOX,'NUCLIDE',10X,'FRACTION')
\ -1 fwwAf n Y i* 1\ n *J Ij wwlT^lj|XJLl\r1XJLL/liw U Y J-» ix A I ILj
' TO '.14,' OF THE SIMULATION'
/' ',50X.'MAXIMUM ANNUAL CONCENTRATIONS'
///' 'IX,'NUCLIDE'.SX 'ATMOSPHERE DOWNW
24X,'IN UELL',2GX 'IN STREAM'
//' ',7X,3(6X.'AVERAGE',6X,'MAXIMUM',4X,'YEAR',IX),
/' ' 7X,3(2<6X 'CI/MAA3J),gX))
'!'.SIX,'INITIAL CALCULATIONS',//' ',50X,'NUCLIDE',
A21
-------
Q j U y tUAIIflAV X ^ *J /\ f tin/^*itw »!.«.. «..._ _ _ _ -. ^ _
& ///,2X,'NUCLlHE'.12X,'AIR',tfX.'YEAR',&X.
8 ' SUREA£E',6Xf'YE/ifi'.7X,'INGEST ION',5X,'YEAR',6X,
X 'INHALATION',5X,'YEAR'
8 /' 'f15X,2('£oNCENTRATION',12X),5X,
8 2('RATE',i^X),
8 /' 'I18Xf'CI/ftAA3/.iaX,'CI/MAA2'f
END
C
c
c
SUBROUTINE AIRIRM(EXPOS,DEPQ)
C
C
C
C
C
C D.E. FIELDS, 2/81
C COMPUTES ATMOSPHERIC EXPOSURE VALUES AT POINTS DOWNWIND FROM
C RELEASE SITE t'Ofi 22.5 BEG. SECTOR
C RECEPTOR ASSUMED AT GROUND LEVEL
C
C
C
C DEPO =DEPOSIT1UN RATE PER UNIT SOURCE STRENGTH
C EXPN =NORMALIZ£B EXPOSURE = EU/U, S/MAA2,
C EXPOS EXPOSURE PER SOURCE STRENGTH NORhALIZED TO
C WIND VELOCITY
C H =SUURCE HGT, M
C HLID =LID HEIGHT
C IPLU =1 IMPLIES TRANSVERSE PLUME CALCULATION REQUIRED
C ISEC =1 IMPLIES SECTOR AVERAGE REQUIRED
C IS =SIABIL1TY CLASS
C IT =IYPE OF STABILITY FORMULATION,
C =1 FOR PG
C =2 FOR BfilGGS-SHITH
C ROUGH =HOSKER ROUGHNESS PARAMETER, M, ABOUT
C .01APHYSICAL ROUGHNESS
C U =VELOCI1Y, MIND, M/S
C VD =VELOCIIY DEPOSITION, M/S
C MG =VELUC1IY, GRAVITATIONAL FALL. M/S
C XG =GAUGE DISTANCE FROM SOURCE BASE, M
COMMON/AIR/H,VG,U,IT,IS, VD,XG,HLID,ROUGH,FTWIND,CHIQ,RE1,RE2,RE3
C TEST FOR INVALID COMBINATIONS OF IS AND IT:
36 IE(IS.LT.1.OR.IS.GT.6)WRITE(6,38)IT,IS
IF<1I.EQ.5.AND.(1S.EQ.1.0R.IS.EQ.5))«RIIE(6,38)IT,IS
IF(IT.EQ.6.AND.(IS.EQ.i.OR.IS.EQ.b))WRITE(6 38)IT,IS
38 FORMAK2X 'INVALID COMBINATION OF 11=', 12,' AND IS=',I2)
C INITIALIZE PARAMETERS
PI=3.141593
IF(HLID.EU.O.)HL1D=12000.
XG = XG + EXTENT/0.3978247
LID=HL1D
IXG=XG
C ACCOUNT FOR PLUME TILT
HH=H-VGAXG/U
IF(HH.LT.O.)HH=0.0
A22
-------
C COMPUTE PLUME WIDTH FACTORS AT DISTANCE XG
CALL S1GMAZ(XQ,1T,IS,ROUGH,SIGZ, IKFM.HLIB.VG,U,HH)
C RESTRICT HLID TO IROPOPAUSE IE INPUT SPEC. =0.0
C COMPUTE CORRECTION EACIOR FOR PLUME DEPLETION
C
COR=1.
IF(VG.EG.O..AND.VD.EQ.O.)GOT045
CALL DPLT(PI,HH,VD,UfIT,IS,XG,ROUGH,HLID,COR,VG,H)
C
C IEAXGAAQZ(IS,J)
99 SIGCAL=2.A(HL1D-HHA.5)/2.15 8/16
IF(SIGZ.LI.SIGCAL) GO TO 1000
SIGZ=S1GCAL
1000 RETURN
END
C
C
C
C
SUBROUTINE SIMPUN(XX,FX,NX,I,AX)
C PROGRAM AUTHOR J. BARISH,
C COMPUTING TECHNOLOGY CENTER, UNION CARBIDE CORP., NUCLEAR DIV.,
C OAK RIDGE, TENN. '
A24
-------
DIMENSION XX(2).FX(2),AX(2)
IF (I.LX.O) GO TO 30
AX(1)=0.0
DO 10 IX=2,NX,2
D1=XX(1X)-XX(1X-1)
AX(1X)=AX(IX-1)+D1/2.0A+FX(IX-1»
IF (NX.tU.IX) GO TO 20
D2=XX(1X+1)-XX(1X-1)
D3=D2/D1
A2=D3/6.0AD2AA2/(XX(1X+1)-XX
D3=D2/(XX(IC)-XX(IC-D)
A2=Li3/6.0AD2AA2/ni
A3=02/2.0-A2/D3
40 AX(IC-1)=AX(1C+1)+(D2-A2-A3)AFX(IC-1)+A2AFX(IC)+ A3AFX(IC+1)
RETURN
END
C
C
FUNCTION YLAG
-------
c
c
50 INL=lND-(N+l)/2
IE (INL.6I.O) GO TO 60
INL=1
60 INU=INL+N-1
IF (INU.LE.1MAX) GO TO 80
70 INL=IMAX-N+1
INU=IHAX
80 S=0.
P=l.
DO 110 J=INL,INU
P=PA(XI-X(J»
D=l.
DO 100 1=INL,INU
IF (I.NE.J) GO TO 90
XD=XI
GO TO 100
90 XD=X(J)
100 D=DA(XD-X,A2<6),B1(6),B2(6),
* B3(6),PY<6,5),P2(6,;5>,aY(6,5),GZ<6,5>,XM(50>
FOR BR1GGS
DATA BY/. 22.. 16.. 11 ..08,. 06,. 047,
& BZ1/.2,.12,.68..0G..03,.016/,
g BZ2/0.,0.,. 0002,. 0015,. 0003,. 0003/,
& BZ3/1..1..-. 5, -.5, -!.,-!./
FOR PG
DATA Al/-. 0234, -.0147, -.011 7, -.0059,-. 0059, -.0029/,
X A2/.35,.248..r;5..108..0B8,.054/,
S Bl/. 88, -.985, -1.186, -1.35, -2. 88. -3. 8/,
& B2/-.152,.82..85..793,1.255,1.419/,
& B3/. 1475, .0168,. 0045. .0022, -. 042, -.055/
FOR KLUG, ET. AL. TYPES OF DISPERSION...
DATA PY/. 469,. 306.. 23.. 219,. 237,. 273,0.,. 4,. 36,. 32,. 0, .31,
| .0.1. 7.1. 44,. §1,1. 62,. 6.. ,66,. 66,. 63,. §3,. 41, 7. 56,
& . J4, .37. .40, .43. .4b, / ,56/
DATA (JY/. 903,. 885. .855. .764, .691, .594,0. , .91, .86, .78, .0, .71,
X 0... 717.. 71.. 729,. 648,. 6,. 83,. 83,. 80,. HO,. 87,. 52,
& 1.00.. 94, .88, .82' 76 '527
DATA PZ/. 017,. 072,. 076,. 14,. 217,. 262,. 0.. 411,. 326,. 223, .0,
X .062,. 0,. 079.. 131,. 91, 1.93,. 0,. 14,. 14,. 21,. 2(i,. 13,. 56,
I .037,.076..i6,.32,.66!l.37/
DATA QZ/1. 38, 1.021.. 879.. 727,. 61.. 5,. 0,. 907,. 859,. 776,. 0,. 709,
* .0.1. 2, 1.046,. 702,. 465,. 6, 1.09, 1.09,. 98,. 89,. 03,. 55 ,1.28,
S 1.12..%,.88,.63,.47/
DATA XM/
S 1.000t+00,2.000E+00,3.000E+00,4.000E+00,5.000E-i-00,
X 1.000E+01,1.500E+01,2.000E+01,2.500E+01 3.000E+01,
i 3.500E+01,4.000E+01,4.500E+01,5.000E+01,1.500E+02,
& 2.000E+02,3.000E+02,4.000E+02,5.000E+02,6.000E+02,
A26
-------
& 7.000E+02,8.000E+02.9.000E+02,1.000E+03,1.100E+03,
& 1.200E-K)3,1.300E+03,1.400E-K)3,1.600E+03,1.800E+03,
& 2.000E-K)3,2.500E-t-03.3.000E-K)3,3.500E+03,4.000E-t-03,
& 4.500E+03,5.000E+03.b.OOOE-i-03,7.000E+03,8.000E+03,
* 1.000E+04,1.500E+04,2.000E+04,3.000E+04,4.000E+04,
& 5.000E+04,6.000E+04,7.000E+04,8.000E+04,1.000E+05/
END
C
C
C
FUNCTION CAP(NYEAR)
C
C
CAAA
CAAA
CAAA THIS FUNCTION CALCULATES AND RETURNS THE FRACTION OF THE TRENCH
CAAA CAP THAT HAS FAILED. FAILURE CAN BE CAUSED BY EROSION AS
CAAA DETERMINED FROM THE UNIVERSAL SOIL LOSS EQUATION OR BY USER
CAAA INPUTS. CAP=1 INDICATES TOTAL CAP FAILURE. THIS FUNCTION
CAAA IS CALLED BY TRENCH.
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C
INPUT VARIABLES
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
NYEAR = CURRENT YEAR OF SIMULATION
NYR1 = FIRST YEAR OF FAILURE
NYR2 = LAST YEAR OF FAILURE
PCI1 = PER CENT FAILURE IN NYR1
PC12 = PER CENT FAILURE IN NYR2
OVER = THICKNESS OF TRENCH CAP
OUTPUT VARIABLE
CAP = FRACTION OF CAP THAT HAS FAILED
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR.TITLE(20).LOCATE(12).NYR1.NYR2,
& PCI1.PCT2.LEAOPT,IOPVWV. IOPSAT,IPRT1.IPRT2.IDELT.IXTS,
I IRRESI,IRRES2.LIND,IAVG1.IAVG2.RR,FIMECH,INTYR<4),
& UWATL,WWATA,WUATH,SUATL,SUAIA,SUAIH.IVAP.I6SMI.IDISP
COMMON/IRCH/TAREA.IDEPIH,OVER,PORTFRELFAC,DENCON,OLDWAT,SEEP
CAP=0.0
IF(OVER .61. l.E-2) GO 10 20
CAP=1.0
RETURN
20 1ECNYEAR .LI. NYR1 .OR. NYR1 .GE. NYR2) RETURN
CAP=«PCT2-PCIl)/(NYR2-NYRl))A(NYEAR-NYRmPCTl
IF(NYEAR .GT. NYR2) CAP=PCT2
RETURN-
END
RAE1085
A27
-------
SUBROUTINE ERORF
C
C DETERMINES SEDIMENT LOADING FOR RAIN DRIVEN SURFACE
C EROSION. AVERAGE ANNUAL SOIL LOSS IN TONS PER ACRE
C IS CALCULATED USING THE UNIVERSAL SOIL LOSS EQUATION.
C
C
C
C
C
C
C
C
CAAAAAAAAAAAAAAA VARIABLES FOR UNIVERSAL SOIL LOSS EQUATION AAAAAAAAAAAA
C
C RAINF=RAINFALL FACTOR
C ERODF=ERODIBILin FACTOR
C STPLNG=SLOPE-SIEEPNESS AND SLOPE LENGTH FACTOR
C COVER=COVEK FACTOR
C CON1-RL=EROSION CONTROL PRACTICE FACTOR
C SEDELR=SEDIMENT DELIVERY RATIO
C
C
C
C
COMMON/LAND/RAINF,ERODF.STPLNG. COVER,CONTRL.SEDELR.SOILOS,
& PORS,BBENS,DWET,EXTENT,ADEPTH,PD,RUNOFF.RESAT.
& INSITE
SOILOS = RAINF A ERODF A STPLNG A COVER A CONTRL A SEDELR
RETURN
END
C
C
C
C
SUBROUTINE EOOD(NN)
C
C
C
CAAAAA CALCULATION OF RADIONUCL1DE CONCENTRATION IN VEGETABLES, MILK AND
C MEAT CONSUMED BY MAN RESULTING FROM ATMOSPHERIC DEPOSITION
C CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C NN NULL IDE NUMBER
C DECAY = RADIOACTIVE DECAY CONSTANT 1/Y
C XAMBUE'= WEATHER DECAY CONSTANTE 1/H
C AIRBORNE MATERIAL
C TA PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
C CONTAMINATED AIRBORNE MATERIAL H
C PP SURFACE DENSITY FOR SOIL KG/MAA2
C RA = RETENTION FRACTION
A28
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
BV = CONCENTRATION FRACTION FOR UPTAKE OF fiADIONUCLIDE
FROM SOIL BY VEGtl'AllVE PARTS OF CROPS
BR = CONCENTRATION FRACTION FOR UPTAKE OF RAOIONUCLIDE
FROH SOIL BY REPRODUCTIVE PARTS OF CROPS
DERATE= RADIONUCLIDE DEPOSITION RATH
IOPT = OPTIONS FOR SPECIALS RADIONUCLIDES H-3 AND C-14
H-3 AND C-14 IS NOT INCLUDED IN THIS
ONLY H-3 IS INCLUDED
ONLY C-14 IS INCLUDED
BOTH ARE INCLUDED
FOR GRASS CONSUMED BY ANIMALS
FOR VEGETATION CONSUMED BY MAN
Yl
Y2
TE1
TE2
IH1
IOPT = 1 IF
10PT = 2 IF
IOPT = 3 IF
lUPt = 4 If
AG PRODUCTIVITY
AG PRODUCTIVITY
IH2
TH3
TH4
TH5
TH6
FP
FS
t'MC
FMG
QFC
QFG
IF1
IF2
FF
IS
ABSH
P14
TIME PASTURE GRASS EXPOSED DURING GROWING SEASON
TIME CROP/VEG EXPOSED DURING GROWING SEASON
PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGESTION BY ANIMALS
PERIOD DELAY BETWEEN HARVEST OF STORED FEED AND
ANIMAL
BETWEEN HARVEST
MAN FOR MAXIMUM
BETWEEN HARVEST
MAN FOR MAXIMUM
PCI/MAA
RUN
KG/MAA2
KG/MAA2
H
H
INGESTION BY
PERIOD DELAY
INGESTION BY
PERIOD DELAY
INGESTION BY
H
H
H
H
H
H
OF LEAFY VEG AND
INDIVIDUAL EXPOSURE
OF PRODUCE AND
INDIVIDUAL EXPOSURE
TIME DELAY BETWEEN HARVEST LEAFY VEG AND
INGES1ION BY MAN FOR GENERAL POPULATION EXPOSURE
TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGEST1UN BY MAN FOR GENERAL POPULATION EXPOSURE
FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FRACTION QE THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
AMOUNT OF FEED CONSUMED BY CATTLE KG/D
AMOUNT OF FEED CONSUMED BY GOATS KG/D
TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTUK FOR M.I.E. H
TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FUR G.P.E. H
FRACTION Of THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
CPAST = NUCLIDE CONC IN PASTURE GRASS CONSUMED BY ANIMALS
CSTO = NUCLIDE CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1 = RALUGNUCLlLiE CONC IN LEAFY VEG CONSUMED BY MAN
FUR M.I.E. PCI/KG
CL2 = RAD1UNUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR G.P.E. PCI/KG
CP1 = RAD10NUCL1DF, CONC IN PRODUCE CONSUMED BY MAN
FUR M.I.E. PCI/KG
CP2 = RADIONLILL1DE CONC IN PRODUCE CONSUMED BY MAN
A29
-------
C
C
C
C
C
C
C
C
C
CCM11
CCMI2
CGM11
CGhI2
IMtAl
FUfl G.P.E.
RADlONULLlDt CONG IN COW'S MILK fcUR M.l.E.
RADIONUCLIDE CONC IN COWS MILK irUS G.P.E.
IN GOAT'S MILK EOS M.l.E.
LN bUrtl'S MILK fuS G.f.L.
kADIONUCLiDh CONC
RADIONUCLIDE CONC
= RAIiluNUCLIDt CONC IN BEEF CATTLE'S HEAT
PCI/KU
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLID.H3.C14
,ATAM(40)
..
COMMON/NUC7NUCLID(40) ,AIMASS(40) ,TRAM(40) .SOAM(40) ,A .
AGAM(40f10000),STAM(40).POLO(40>.POLB(40>.CS(40>.CWf40).
SSIREM<40).SDEEP<40).AIRCON<40>,YSO(40)fSOAVG(40)rCON<40).
AQCON(40),STCON(40).ATCON(40).AQAVG(40).STAVG(40).DETti(40)f ISINEWL
AIAVG(40).FMC(40)fFhG(40).DECAY(40),XKD(4.40),SOL(40).
FF(40)fRA(40).RU(40),BV(40),BR(40),DERATE(40),CWAT(40)
COMMON/IRRFOO/Y1.Y2,TE1,TE2.TH1.TH2.TH3,TH4,IH5,IH6,FP',FS,
i ULEAFY,UpfiOD!uCMiLK,UGMlLK,UHEAT'uUAT.UAIRf
S QFC.QFG.TF1.TF2,TS.CL1(40),CL2(40),CP1(40),CP2(40)(
I CCMIl(40),CCMI2(40).CGIiIl(40).CGMI2(40).
S CMEAI(40).COL1(40).COL2(40).COP1(40).COP2(40),
& COCMIl(405.COCIiI2(40),COGMIl(40),CuGMl2(40),
S COHEAT(40),aiNG(40).QINH(40),POP,
& CSP(40),CSPT(40),CSPO(40),CSPOT(40)
COMMON/FUNC/XAHBUE.TA.IB.FI.PP.ylRAIE,
& QCW,QG{J,QBW,ABSH.P14
DATA H3/8HH-3 /,C14/8HC-14 /
DECA=DECAY(NN)/8760.
IF(NUCLIIKNN) .EQ. H3) GO TO 200
IF(NUCLID(NN) .EQ. C14) GO TO 300
C CALCULATION OE CPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
100 B=BV(NN) RAE0186
CPAST=CV(NN,Y1.T£1.XH1,B.1.)
C CALCULATION OF CSTO = RADIONUCLIDE CONCENTRATION IN STORED FEED
C CONSUMED BY ANIMALS
B=0.68A(0.378ABR
CAAA 2. FOR GENERAL POPULATION
CP2(NN)=CV(NN,Y2,TE2,IH6,Bf0.1)
CAAA CALCULATION Ot CCM1X = RADIONUCLIDE CONCENTRATION IN COW'S MILK
A30
-------
CAAA 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CCMllACFEEDAQECAEXP<-DECAATF2)
C
CAAA CALCULATION OE CGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
C 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CGM11
-------
c
c
DOUBLE PRECISION NUCLID
COMMUN/NUC/NUCLlD<40)fATMASS(40),IRAM<40),SOAM(40),ATAM(40),
& AQAH<40.10000>.STAM<40).POLO(40>.POLB<40).CS<40).CW(40).
i SSTREM(40).SDEEP<40).AIRCON<40),YSO(40>,SOAVG(4Q)fCON(40).
S AQCON(40>.STCON(40)lATCON(40).AQAVG(40).SIAVG(40).DEIU(40)f ISINEWL
8 ATAVG<40),FMC(40),FMG(40).DECAY<40),XKD(4,40),SOLl40).
8 FE(40)IRA(40),RW(40).BV(40),BR(40),DERATE(40),CUAT(40)
COHMON/LAND/RAINF,ERODE,STPLNG.COVER,CONTRL.SEBELR.SOILOS,
8 PORS.BDENS,DUET,EXTENT,ADEPTH,PB,RUNOFF,RESAT,
8 INS ifE
COMMON/IRRFOO/Yl.Y2,TEl.TE2.IHl.IH2.TH3,TH4.IH5.TH6fEPfFSf
X ULEAEY,UpftOD'UCMILK,UGMILK,UPiEAX,UUAT.UAIR,
S QEC,QEG.IFl,TF2lTS.CLl(40)fCL2(40)tCPI(40)fCP2(40>f
& CCMI1(46),CCMI2(40).CGMI1(40).CGMI2(40).
i CMEAI(40)fCOLl(40)lCOL2(40).COPl(40).COP2(40),
8 COCMI1(40),COCMI2(40).COGMI1(40),COGHI2(40),
t COMEA1(40),G(INQ(40),QINH(40),POP,
8 CSP(40),CSPT(40).CSPO(40),CSPOT(40)
COMMON/EUNC/XAMBUE.IA.lM.EI.PP.yiRAIE.
& QCU,QGW,QBU,ABSH.P14
COHMON/EVAP/PPN.PHID,P,XIRR,S(12),T(12),TD(12),XINFL,SINFL,
* SMASS.UhASS.UDEEP
COMHON/CN1RL/NONCLD.HAXYR.IITLE(20). LOCATE(12).NYR1.NYR2.
8 PCT1.PCT2.LEAOPT.IOPVUV.IOPSAT,IPRT1.IPRT2,IDELT.iXTS.
& IRRESl.IRRES2.LIND,IAVGl.IAVG2,RR,FIMECHfINIYR(4), RAE1085
J UUAIL.WUATA.WWATH,SUATLfSUATA,SyATHfIVAP,JBSMT,IDISP
NEXYR=IAVG2-IAVG1+1
DECA=DECAY(I)/8760.
XAHBEF=DECA+XAMBUE
IERH1=DERATE(I)*RA(I)ATVA(1.0-EXP(-XAMBEFAIE))/(YAXAMBEF)
CSP(I)=CSPT(I)/ELOAT(NEXYR)
IF
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AIRBORNE MATERIAL
TA = PERIOD OF TIME FOR WHICH SOIL IS EXPOSED TO THE
CONTAMINATED AIRBORNE MATERIAL H
PP = SURFACE DENSITY FOR SOIL KQ/MAA2
RA = RETENTION FRACTION
BV = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY VEGETATIVE PARTS OF CROPS
BR = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
DERATE = RADIONUCLIDE DEPOSITION RATE PCI/MAA
IOPT = OPTIONS FOR SPECIALS RADIONUCLIDES H-3 AND C-14
IOPT = 1 IF H-3 AND C-14 IS NOT INCLUDED IN THIS RUN
IOPT = 2 It' ONLY H-3 IS INCLUDED
IOPT = 3 IF ONLY C-14 IS INCLUDED
IUPT = 4 It BOTH ARE INCLUDED
Yl = AQ PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS KG/MAA2
Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN KG/MAA2
TE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON H
TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON H
TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGESTION BY ANIMALS H
TH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED AND
1NGESTION BY ANIMAL H
TH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG AND
INGESTION BY MAN FOR MAXIMUM INDIVIDUAL EXPOSURE H
TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FOR MAXIMUM INDIVIDUAL EXPOSURE H
TH5 = TIME DELAY BETWEEN HARVEST LEAFY VEG AND
INGESTION BY MAN tOR GENERAL POPULATION EXPOSURE H
TH6 = TIME DELAY BETWEEN HARVEST OF PRODUCE AND
INGESTION BY MAN FOR GENERAL POPULATION EXPOSURE H
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
ES = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FMC = FRACTION OF THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER UF MILK D/L
EMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH LITER OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED BY CATTLE KG/D
QEG = AMOUNT OF FEED CONSUMED BY GOATS KG/D
1E1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEEO-MILK-RECEPTUR FUR M.I.E. H
TE2 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-MILK-RECEPTOR FOR G.P.E. H
ft' = FRACTION OF THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
IS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION h
ABSH = ABSOLUTE HUMIDITY OF THE ATMOSPHERE G/MAA3
P14 = FRACTIONAL EQUILIBRIUM RATIO FOR C-14
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
CPAST = NUCLIDE CONC IN PASTURE GRASS CONSUMED BY ANIMALS
CSTO = NUCLIDE CONC IN STORED FEED CONSUMED BY ANIMALS
CFEED. = RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
OUTPUT VARIABLES
CL1 = RADIONUCLIDE CONC IN LEAFY VEG CONSUMED BY MAN
FOR M.I.E.
PCI/KG
A33
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CL2 = RADIONUCLIDE
EUft G.P.E.
CP1 = RADIONUCLIDE
JtUft H.I.E.
CP2 = RADIONUCLIDE
FOR G.P.E.
CCM11 = RAD10NUCLIUE
CCHI2 = RADIONUCLIOE
CGM11 = RADIONUCLIDE
CGMI2 = RAD10NUCLIDE
CHEAT = RADIONUCL1DE
CGNC IN LEAFY VEG CONSUMED BY MAN
CQNC IN PRODUCE CONSUMED BY MAN
CONC IN PRODUCE CONSUMED BY MAN
CONC IN COW'S MILK FOR M.I.E.
CONC IN COU'S MILK FUR Q.P.fi.
CONC IN GOAT'S MILK FOR tt.I.E.
CONC IN GOAT'S MILK FUfi G.P.E.
CONC IN BEEF CATTLE'S MEAT
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
&
C
C
C
C
C
CAAA
C
DOUBLE PRECISION NUCLID.H3.C14
COMMON/NUC/NUCLID(40),ATMASS<40).TRAM(40).SOAM(40),ATAM(40),
AQAM(40.10000)!STAM(40).POLO(40>,PGLB(40),CS(40).CU<40).
* SSTREM(4o)1SDEEP(40).AlKCON(40).!fSO(40)lSUAVG(40)rCON(40)l
& AQCON<40)f§TCON(40).ATCON(40)fAQAVG(40)lSTAVG(40).D£TU(40)f ISINEUL
S ATAVG(40) FMC(40).FMG(40).DECAY(40),XKD(4,40),SOL(40).
& FF(40).RA(40),RU(40),BV(40).BR(40).DERAIE(40),CUAT(40)
COMMON/IRRFOOhl,Y2,TEl,IE2!THl.TH2.TH3fTH4.IH5.TH6fFPlFSf
& ULEAFY,UPROD,UCMILK,UGMILK,UM£AT.UWAT.UAIR,
& QFC,QFG.IF1,TF2.TS.CL1(40),CL2(40),CP1(40),CP2(40)F
X CCMI1(46)ICCMI2UO).CGMI1(40),CGMI2(40),
& CMEAK40) COL1(40)FCOL2(40).COP1(40)FCOP2(40)F
& COCMI1(40), COCM12(40),CQGH11(40>,COGH12(40 ),
S COMEAT(40),QING(40),QINH(40),POPF
& CSP(40).CSPT(40),CSPO(40),CSPOT(40)
COMMON/LAND/RAINFFERODFFSTPLNG.COVER,CONTRL.SEDELR,SOILOSF
& PORS.BDENS, DUET,EXTENT,ADEPIH,PDfRUNOFF, RESAT,
i INSlfE
COMMON/EVAP/PPN.PHID.P,XIRRrS(12),T(12)FTD(12),XINFLfSINFL,
I SMASS.UMASS,yDEEP
COMMON/FUNC/XAMBWE.TA.TW.FI.PPFWIRATE,
I QCU.QGU,UP.U,ABSH,Pl4
COMMON/PCV/SOCON(405
DATA H3.C14/8HH-3 Fl3HC-14 /
IF(NUCLIIKNN) .EQ. H3) GO TO 200
IF(NUCLID(NN) .£Q. C14) GO TO 300
DECA=DECAY(NN)/8760.
DECSL=i;lNFL/(0.15A(l.+BDENS7PORSAXKD(lfNN)))/8760.
CSP(NN) = (CSP(NN)-(-DERATE(NN)A87GO.) AEXP(-(DECA+D£CSL) A8760.)
IFdNSIIE .EQ. 1) CSP(NN)=SOCON(NN)
CALCULATION OF CPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
CONSUMED BY ANIMALS
B=0.243A6V(NN) SAE0186
TERM2=CSP(NN)AB/PP RAE0186
CPAST=CVA(NNFY1FT£1,TH1,TERM2.1.)
CALCULATION OF CSTO = RADIONUCLIDE CONCENTRATION IN STORED FEED C
BY ANIMALS
622ABV(NN»
B=0.6bA<0.378ABR(NN)+0.
TERM2=CSP(NN)AB/PP
CSIO=CVA(NN.Y1,TE1,TH2.
CALCULATION OF CFEED
CFEED=FPAFSACPAST+(1.0-FPAFS)ACSTO
TERM2.0.1)
RADIONUCLIDE CONCENTRATION
RAE018G
RAE0186
IN ANIMAL'S FEE
CALCULATION OF CLX =
B=0.066ABV(NN)
RADIONUCLIDE
BY MAN
CONC IN LEAFY VEG CONSUMED
RAE0186
A34
-------
TERM2=CSPO(NN)AB/PP RAE0186
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
CLHNN)=CVA(NN,Y2,TE2,TH3,T£RM2,1.)
C
CAAA 2. FOR GENERAL POPULATION
CL2(NN>=CVA(NN,Y2,TE2,TH5,IERM2,1.)
CAAA CALCULATION OF CPX = RADIONUCLIDE CONC IN PRODUCE
C CONSUMED BY MAN
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
B=0.187ABR(NN) RAE0186
TERM2=CSP(NN)AB/PP RAE0186
CPl(NN)=CVA(NNfY2,TE2,TH4,TERM2,0.1)
CAAA 2. FOR GENERAL POPULATION
CP2(NN)=CVA(NN,Y2,IE2rIH&,I£RM2,0.1>
C
CAAA CALCULATION OF CCMIX = RADIONUCLIDE CONCENTRATION IN COWS MILK
CAAA 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CCM1I
C
CAAA 2 FOR GENERAL POPULATION
CCMI2(NN)=FMC(NN)AC£E££iAQFCAEXP(-D£CAATF2)
C
CAAA CALCULATION OF CGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
C 1 FOR MAXIMUM INDIVIDUAL EXPOSURE
CGMll
-------
c
c
c
c
CAAA
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CP1(NN)=CV14
CP2(NN)=CVi4
CCriIl(NN)=tMC,CS(40).CW<40).
S SSTREM(40),SDEEP(40).AIRCON<40),YSO(40)FSOAVG<40),CON<40).
& AQCON(40),SICON(40)fAICON(40).AQAVG(40).STAVG(40).DETU(40),
i ATAVG(40),FMC(40).FHG(40),DECAY(40),XKD(4,40)fSOL(40).
& FF(40).RA(40).RW(40),B'vl(40).BR(40),DERATE(40),CWAT(40)
COMHON/FUNC/XAMBUE.TA,TU.FI,PP,UI8ATE,
i QCU,QGU,QBW,ABSfifP14
DECA=DECAY(I)/8760.
XAHBEF=DECA+XAHBUE
IERM1=DERAIE(I)A8A(I)AIVA(1.0-EXP(-XAMBEFAIE))/
-------
c
c
c
CAAAA
C
C
100
C
CAAAA
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
GINH = ANNUAL IN1AKE Of RAHIONUCL1DE BY INHALATION(PCI/Y)
DOUBLE PRECISION NUCLIDfPNUC
COMMON/1RRFOO/Y1,Y2,TE1.IL2,TH1.IH2.TH3,TH4,TH5,TH6,FP,FS,
S ULEAFY,UPROD,UCMILK.UGMILK,UM£AI.UUAT.UAIR,
I QFC.QFG.TF1.TF2,TS,CL1(40),CL2(46),CP1(40),CP2(40),
& CCMI1(46)ICCMI2(40).C6MI1(40).CGMI2(40),
& CHEAI(40),COL1(40),COL2(40).COP1<40),COP2<40),
& COCMI1(40),COCMI2(40),COGMI1(40>,COGMI2(40),
& COMEAI(40).GING(40).GINH(40).POP,
& CSP(40).CSP1(40).CSPO(40),CSPOT(40)
COMMON/NUC/NUCLID(40),ATMASS<40):TRAM(40).SOAM(40).ATAM(40),
& AQAM(40.10000),STAM(40).POLO(40)rPOLB(40),CS(40),CW(40).
& SSTREM(40).SDEEP(40).AIRCON(40).YSO(40),SOAVG(40),CON(40).
I AQCON(40)fSTCON(40).AICON(40).AQAVG(40).STAVG(40)lDEIU(40),
S ATAVG(40)jFMC(40)fFHG(40).[iECAY(40).XKD(4,40)fSOL(40).
& EE(40).RA(40),RW(40).B«J(40),BR(40),fiERATE(40),CWAT(40)
COMMON/PASS/PNUC(40),PCON1(40),PCON2(40),PCON3(40),
i PCON4(40),PPOP,LLiND,LDIST
CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION OF VEGETATION,
MILK, MEAT AND DRINKING WATER
IE(LLINU .EQ. 0) GO TO 100
QVEG=(CL2(NN)+COL2(NN))AULEAFY+(CP2(NN)+COP2(NN))AUPROD
QMILK=(CCMI2(NN)+COCMI2(NN))AUCMILK+(CGMI2(NN)+COGMI2(NN))AUGMILK
GO TO 200
QVEG=(CL1(NN)+COL1(NN))AULEAFY+(CP1(NN)+COP1(NN))AUPROD
QMILK=(CCMI1(NN)+COCMI1(NN))AUCMILK+(CGMI1(NN)+COGMI1(NN))AUGMILK
QMEAT=(CMEAT(NN)+COMEAT(NN))AUMEAT
QUAI=CUAT(NN)AUUAT
QING(NN)=QVEG+QMILK+QMEAT+QUAT
CALCULATION OF RADIONUCLIDE INTAKE BY INHALATION
COA1R=A1AVG(NN)A1.0E12
QINH(NN)=COAIRAUAIR
RETURN
END
SUBROUTINE HUMEXA(NN)
CALCULATION OF ANNUAL RADIONUCLIDE INTAKE BY MAN. CALLED BY MAIN
ISINEUL
INPUT VARIABLES
NN = RADIONUCLIDE NUMBER
ULEAiY = ANNUAL INTAKE Ot LEAFY VEGETABLES (KG/Y)
UPROD = ANNUAL INTAKE OF PRODUCE (KG/Y)
UCM1LK = ANNUAL INTAKE Ot COW'S MILKU/Y)
UGMILK = ANNUAL INTAKE OF GOAT'S HILKU/Y)
UMEAT = ANNUAL INTAKE Ot BEEF CATTLE'S MEAT(KG/Y)
A37
-------
C UUAT = ANNUAL INTAKE Of DRINKING WATER(L/Y)
C UA1R = ANNUAL INHALATION RATE OF AIR(M3/Y)
C
C OUTPUT VARIABLES
C Q1NG = ANNUAL INTAKE OF RADIONUCLIDE BY INGESTION OF CONTAMINED
C FOOD CONSIDERING ATMOSPHERIC AND AOUATIC PATHWAYS(PCI/Y)
C QINH = ANNUAL INTAKE OF RADIONUCLIDE BY INHALATION(PCI/Y)
C
DOUBLE PRECISION NUCLID,PNUC
COMMON/IRRFOO/Y1,Y2,IE1,TE2.TH1.TH2.TH3,TH4,TH5,TH6,FP,FS,
x ULEAFY.UPROD!UCMILK,UGMILK,UMEAT.UWAT.UAIR,
X QFC,dt6.TFl,fF2.TS.CLl(40),CL2(40),CPl(40),CP2(40),
X CCMIl(46),CCMI2(40).CGMri(40),CGMI2(40),
X CHEAT(40) CUL1(40),COL2(40).COP1(40).COP2(40),
X COCMIK40),COCMI2(40),COGMll(40),COGMI2(40),
X COMEAT(40).GING(40).QINH(40).POP,
X CSP(40).CSPT(40),CSPO(40)fCSPOT(40)
COMMON/NUC/NUCLID(40),ATMASS(40),TRAM(40),SOAM(40),ATAM(40),
X AQAM(40.IOOOO),STAM(40),POLO(40),POLB(40),CS(40).CU(40).
& SSTREM(40),SDEEP(40).AIRCON(40),YSO(40),SOAVG<405,CON(46).
X AQCON(40),STCON(40),ATCON(40).AQAVG(40)ISTAVG(40).DETU(40), ISINEWL
X ATAVG(40) FMC(40).FMG(40),DECAY(40).XKD(4.40),SOL(40).
X FF(40).RA(40)fRW(40)fBV(40).BR(40).DERATEUO),CWAT(40)
COMMON/PASS/PNUC(40),PCON1(40),PCON2(40),PCON3(40),
X PCON4(40),PPOP,LLIND,LDIST
CAAAA CALCULATION OF RADIONUCLIDE INTAKE BY CONSUMPTION OF VEGETATION,
C MILK, MEAT AND DRINKING WATER
C
IF
-------
2EPSG.YIGPG.YGMAX.XDE.XKE
DIMENSION MODAY(12>,TMP(12.31),DTH<12)
DATA IAMP/99/.nO[iAY/3i,28,31,30,31,30,31,31,30f31,30,31/
WRIIE(6.3010)
C READ CONTROL PARAMETERS
READ(4.1010)IUI,SLOP.XKI,EPSG.EPSP.YGMAX.XDE,XKE,YPI,YGI
URITE(6r9010)IWT.SLOP.XKIfEPSG,EPSPfYGMAX.XDE.XKE.YPI,YGI
9010 FORMAK//,' INPUT DATA AS READ IN',//,5X,6F7.3,2El0.3,2F7.3)
YP(1)=YPI
YG(1)=YGI
YPMAX=YGMAX
VPMAX=0.0
VGMAX=XKI
C CREATE A 3-DIMENSIONAL ZERO-RATE RAINFALL MATRIX
DO 100 IH=1.12
NODAY=MODAY(lM)
DO 100 ID=1,NODAY
DO 100 1H=2,25
P(IM.ID,IH)=0.
100 CONTINUE
C READ MONTHLY MAXIMUM DAY LENGTH
READU.1020) (DIH i. I I \ 111/ il I" A A ^ J
WRITE (6,3020) (DTH
-------
WRITE(6,3051) XKCMMD.YGMAX,TWI,SLOP,XKI
WRITE(G,3052)EPSP,EPSG,XIiE,XKEfDELT
C STEADY STATE INFILTRATION LOOP
C
TX1L=0.0
DO 80 IY=1,10
TP=0.0
TEP=0.0
TRO=0.0
TXI=0.0
C
C MONTHLY LOOPAAAAAAAAAAAAAAAAAAAAAAAA
DO 70 IM=1,12
NODAY=MODAY(IM)
DT=DTH(IM)/12.
C DAILY LOOPAAAAAAAAAAAAAAAAAAAAAAAAAA
DO 60 ID=1.NODAY
IC=TMP(IM,ID)
IE (1C .LT. -20.8) XI = 0.
IFCIC .LI. -20.8) GO TO 5
BB=(IC+20.8)/31.98
XT=6fiAA0.861
5 PT=10.AAXT
EP(1)=C£PADTADTAPT
HR=1.0
C HOURLY LOOPAAAAAAAAAAAAAAAAAAAAAAAAAA
DO 50 IH=2,25
I=IH
EP(1)=EP(1)
C CONVERT BACK 10 FAHRENHEIT TEMP (IF)
TF=(1.8ATC)+32.
IF(IF.GE.32.) GO TO 10
HSNU = HSNW + P(IM,ID,I)
R(I) = 0.
GO TO 40
10 SM=XKCMAUF-24.)
IF(SM -LI. HSNW) GO TO 30
SM=HSNW
30 HSNU=HSNW-SM
R(I)=SM+P(1M,1D,I)
40 CONTINUE
CALL ROUT
IEP=IEP+
-------
URIIE(6,3060) TF.TEP,T"RO,TXI
URIIE<6,3061) YP125)./f4X,3(lP£11.2)/)
PERIXI=lXl-TXIL
URITE<6,82) PERIXI
PER=0.02AIXIL
IF(PERTXl.LE.PER.AND.IY.NE.l) RETURN
TXIL=TXI
80 CONTINUE
82 FURMAH//.' CHANGE Of TOTAL ANNUAL INFILTRATION='
C .1PE11.2.////)
C FORMAT STATEMtNTSAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1010 FORMAmOF7.3>
1020 FORMAK12B5.1)
1030 FORMAT(2X,12F6.2)
1040 FORMAI(I2,1X.I2.1X,24(F3.0).2X)
3010 FORMAT(IX,'OUTPUT FROM SUBROUTINE INFIL'/.2tf<'A').//)
3020 FORMATdX,'DAILY SUNSHINE BY MONTH (HOURS) '/.3X,12F8.1//)
3030 FORMATdX,'DAILY TEMPERATURES (DEGREES CELSIUS):'//,
1 2X,'MONTH= JAN FEB MAR APR MAY JUN JUL AUG
2 SEP OCX NOV Dt-C'/,3X,'DAY'/)
3031 EOkMAT(3X,12,3X.12(F6.2,lX)./)
3040 FORMAK//, IX,'MONTH.DAY, J RAINFALL AS READ IN (0.1MM/HR): '/)
3041 FORMATdX.2(12.IX).24F4.0)
3050 FORMAT(/,IX 'TRENCH CHARACTERISTICS: '/)
3051 FORMATdSX/SNOUMELT COEFFICIENT ='. F10.2, 'MM/DEG-DAY'/,
115X,'THICKNESS OF TRENCH COVER =',F10.2,' M'/.
215X,'TOTAL WIDTH OF TRENCH COVER =',F10.2,' MV,
315X.'AVERAGE SLOPE OF TRENCH COVER =',F10.2,' M/M'/,
415X.'PERMEABLITY OF TRENCH CAP =' E12.3,'M/HR')
3052 FORMATdSX 'POROSITY FOR PELLIC WATER =', F10.2,' (UNIILESS) '/,
115X,'POROSITY FOR GRAVITY WATER =',F10.2,'(UNITLESS)'/,
215X, EQUIVALENT UPWARD DIFFUSIVITY =',E12.2,' MAA2/HR',/,
315X,'EQUIVALENT UPWARD HYDRAULIC CONDUCTIVITY =',E12.2,' M/HR',/
415X/TIME STEP FUR MODEL ='. F10.2.' HOURS'/)
3060 FORMAT(///,1X.12('A').'CUMULATIVE ANNUAL VALUES (M)' 12('A')//
1 8X/PRECIP'. 6X 'EVAP?,6X, 'RUNOFF' ,6X, ' INFIL',/,!5X,50( '-')/,
2 4X.4(1PE11.2>/)
RETURN
END
C
C
C
C
SUBROUTINE ROUT
COMMON /BLOCKl/R(25),EP(2b),H(25),QL(25),YP(25).YG(25),EIO(25)f
1 ETS(25).VP(25).VG(25),YTP(25>,YT6(25),XI(25),P(12,31,25)
COMMON /BLOCK2/HI(4),YPT(4).YGI(4)
COMMON /BLOCK3/RT,EPT.YPTE,XKL,ETOT.QLT,XL,VGT,VPT.DELT.E-J:ST,EPSP,
1YTGPP.HUPMAX.VPMAX.HUGMAX,VGMAX,YPMAX,XNS,UYMAX,XKI,I,XIT,
2EPSG.YTGPG,YGMAX,XDE,XKE
RT=R(I)
EPT=EP(I)
CALL SOIL
IF(EIOI .EQ. 0.0) GO TO 300
Hid) = H(I-l)
DO 200 J=1.4
QLT=XKLAHT(J)AAl.b&7
HT(J)=(RT-tTOT-ETST-QLI/XL-VPT-VGT)ADELI + H(I-l)
A41
-------
IF(HKJ) .LI. 0.0) HT(J)=0.
IF(J .(it. 3) GO 10 100
HT(J+1)=(HI(J) + H(i-l))A0.5
GO TO 200
100 IF (3 .EG. 3) HHJ + 1) = H1',YTP( 25), YIG(25)fXI(25),P( 12,31,25)
COMMON /BLOCK2/HT(4),YPT(4).YGT(4)
COMMON /BLOCK3/RT.EPI.YPIE,XKL.ETOT.QLI.XL.VGI.VPT.DELT.£ISIfEPSPf
lYTGPP.HUPMAX.ypMAx.HUGMAX, OGMAX,YPMAX, XNS,aYMAx,XKif
2EPSG,YTGPG.YGMAX.XDE.XKE
TSWE=
-------
IF(EISTW.GE.ETSTV) ETST=ETSTW
VGT=0.
150 lt
-------
L
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TH6 = PERIOD DHLAY BETWEEN HARVEST Ot PRODUCE
FP = FRACTION OF YEAR THAT ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAT IS FRESH GRASS WHEN
ANIMALS GRAZE UN PASTURE
FMC = FRACTION Ot THE COW'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK
EMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK
CltC = AMOUNT Of FEED CONSUMED BY CATTLE
QFG = AMOUNT OF FEED CONSUMED BY GOATS
TF1 = TRANSPORT TIME OF RADIONUCLIDE FROM
FEED-M ILK-RECEPTOR FUR M.I.E.
Tt'2 = TRANSPORT TIME Ot RADIONUCLIDE FROM
FEEO-MILK-RECEPTOS FOR G.P.E.
FF = FRACTION Of THE ANIMAL'S DAILY INTAKE OF
RADIONUCLIDE UHICH APPEARS IN EACH KG Ol- FLESH
IS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION
QCW = AMOUNT OF UATER CONSUMED BY COW
QGW = AMOUNT Of WATER CONSUMED BY GOAT
QBW = AMOUNT OF WATER CONSUMED BY BEE1- CATTLE
INTERMEDIATE VARIABLES
D/L
D/L
K6/D
KG/D
H
H
D/KG
H
L/D
L/D
L/D
XAMBEF= EFFECTIVE DECAY CONSTANT
COPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS CONSUMED BY A
COPAST= RADIONUCLIDE CONCENTRATION IN STORED FEED CONSUMED BY ANI
COFEED= RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PCI/L
PCI/L
PCI/L
PCI/L
PCI/KG
DOUBLE PRECISION NUCLIB,H3,C14
COMMON/CNTRL/NONCLD.MAXYR.TITLEC20).LOCATE(12).NYR1.NYR2.
PCT1.PCI2.LEAOPI,IOPVWV.IOPSAI,IPRI1, IPRT2,IDELT.IXTS.
IRRESl,IRRES2,LIND,IAVGl,IAVG2,RR,FTMECHfINTYR(4), RAE1085
WUATL,UWATA.WWAIH,SUATL.SUATA.SWATH,IVAP.IBSMT.ID ISP
COMMON/NUC/NUCLID(40),AIMASS(40),TRAM(40).SOAM(40).ATAM(40),
AQAM(40.10000).3IAM(40),POLO(40),POLB(40).CS(40).CW(40).
SSTREn(40),SDEEP(40).AIRCON(40),YSO(40).SOAVG(40).CON(46).
AQCON(40)rSTCON(40),ATCON(40).AQAVG(40)l3TAVG(40).HETW(40)f ISINEUL
ATAUR(4Q).FMC(40),FMG(40),DECAY(40),XKD(4,40),SOL(40).
),RAUO),RW(40),BV(40),BR(40),DERATE(40)'CWAT(405
***kuO/Yl.Y2fTEl,TE2.THllIH2.TH3,TH4,TH5,TH6.EP.ESf
ULEAFY,UP^OD,UCMILK.UGMlLK,uAEAT UWAI.UAIR.
QFC,QFG.TF1,TF2,TS.CL1(40) CL2(40),CP1(40),CP2(40) ,
CCMIl(40),CCMI2UO).CGnIl(40),CUMI2(40).
CMEAT(40).COL1(40).COL2(40).CO?1(40).COP2(40),
COCMI1(40)FCOCMI2(40),COGMI1(40),COGHI2(40),
OUTPUT VARIABLES
COL1 =
COL2 =
COP1 =
COP2 =
COCMI1=
COCMI2=
COGMI1=
COGMI2=
COMEAI=
RADIONUCLIDE
FUR M.I.E.
RADIONUCL1HE
FOR G.P.E.
RADIONUCLIDE
FOR M.I.E.
RADIONUCLIDE
FOR G.P.E.
RADIONUCLIDE
RAIHONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
IN
IN
IN
IN
IN
IN
IN
IN
IN
LEAFY VEG CONSUMED
LEAFY VEG CONSUMED
PROCUCE CONSUMED BY
PRODUCE CONSUMED BY
COW'S MILK FOR M.I.
COW'S MILK FOR G.P.
GOAT'S MILK FOR M.I
GOAT'S MILK FUR G.P
BEEF CATTLE'S MEAT
BY MAN
BY MAN
HAN
MAN
E.
£.
.E.
. E .
ATAVG(40
FF<40
COMMON/IRRFOO/Yl
A44
-------
I COMEAI(40).&ING(40).QINH(40).POPF
& CSP(40),CSPT(40),CSPO(40>.CSPOT(40)
COMMON/FUNC/XAMBUE.TA.TU.FI.PP.WIRAIE,
I QCU,QGU,QBU,A&SH.P14
DATA H3.C14/8HH-3 .8HC-14 /
DECA=DECAY(NN)/8760.
C
IF(NUCLllKNN) .EQ. H3)GO 10 200
IF(NUCLID(NN) .£Q. C14) GO TO 300
C CALCULATION OF CUPASI=RADIONUCLIDE CONCENTRATION IN PASTURE GRASS
C CONSUMED BY ANIMALS
B=0.243ABV(NN) RAE018G
COPAST=COV(NN.Y1.I£1,IH1.B.1.)
C CALCULATION OF COSIO = RADIONUCLIDE CONCENTRATION IN STORED FEED
C CONSUMED BY ANIMALS
B=O.G8A(0.378ABR(NN)+O.G22ABV(NN)) RAE01&6
COSIO=COV=FMC(NN)A(COFEEDAQFC+CUAI(NN>AnCU)AEXP(-H£CAATFl)
C
CAAA 2. FOR GENERAL POPULATION
COCMI2(NN)=fMC(NN)A(COFEEDAQFC+CUAI(NN)AQCU)AEXP(-DECAATF2)
C
CAAA CALCULATION Of COGMIX = RADIONUCLIDE CONCENTRATION IN GOAT'S MILK
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COGM11(NN)=FMG(NN)A(COEEHDAQFG+CWAT(NN)AQGU)AEXP(-DECAATF1)
C
CAAA 2. FOR GENERAL POPULATION
COGM12(NN)=P.MG(NN)A(COtEEDAQFG+CUAI(NN)AQGW)AEXP(-DECAATF2)
C
CAAA CALCULATION Of COMEAT = RADIONUCLIDE CONCENTRATION IN BEEF CATTLE
COMEAT(NN)=FF(NN)A(COFEEDAQEC+CyAT(NN)AQBU)AEXP(-DECAATS)
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
CAAA TRITIUM CONC. IN VEGETATION = TRITIUM CONC. IN ANIMAL FEED =
CAAA TRITIUM CONC. IN WATER = CwAT(l)
A45
-------
CAAA CALCULATION OF H-3 CONCENTRATION IN V£G£IAIION, MILK,
CAAA AND MEAT CONSUMED BY MAN
200 COL1(NN)=CUAT(NN)
COL2(NN)=C(JA1(NN)
COP1(NN)=CWAT(NN)
COP2
COCMI2(NN)=COCMI1(NN)
COGMI1(NN)=FMG(NN)ACUAI(NN)A(QFG+QGU)
COGMI2(NN)=COGMI1(NN)
COMEAT(NN)=FF(NN)ACUAT(NN)A(QFC+QCU)
RETURN
300 C014=0.
COL1(NN)=C014
COL2(NN)=C014
COP1(NN)=C014
COP2(NN)=C014
CWAT
-------
COMMON/EVAP/PPN.PHlD,P,XIRR,3(12),T(12>fTD(12),XINFL,SINFLf
* SMASS,UMASS.WBEEP
COMMON/CNIRL/NONCLD.MAXYR.TITLE(20).LOCATE(12).NYR1. N Y R2.
i PCIl,PCI2.LEAOPI.IOPVWV.IOPSAT,IPRIlfIPRI2,IDELT.IXIS.
& IRRES1,IRRES2.LIND,IAVG1,IAVG2,RR,FTMECH.INTYR(4). RAE1085
I UWATL,WWATA.WWATH,SWATLfSWATA,SWATH,IVAP.IBSMT.IBISP
NEXYR=IAVG2-IAVGl+i
DECA=DECAY(I)/8760.
XAHBEF=DECA+XAMBWE
TERMl=WlRAIEACUAT(I)ATVARW(I)A<1.0-EXP(-XAMBEFATE))/(Y*XAnBEF)
CSPO(I)=CSPOI(I>/FLOA.i:
IFdNSITE .EQ. 1)CSPO(I)=SOAVG(I)
TERM2=CSPO(I)AB/PP
COV=(IERM1+IERM2)AEXP(-DECAATH)
RETURN
END
c
c
c
c
c
c
SUBROUTINE IRRIGA(NN)
CAAAAA CALCULATION OF RADIONUCLIDE CONCENTRATION IN VEGETABLE. MILK AND
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CONSUMED BY MAN RESULTING FROM WATER IRRIGATION. CALLED
INPUT VARIABLES
M = NUCL1DE NUMBER
DECAY = RADIOACTIVE DECAY CONSTANTS
XAMBWE = WEATHER DECAY CUNSXANTE
T« = PERIOD Of TIME FOR WHICH SOIL IS EXPOSED TO THE
CONTAMINATED WATER
PP = SURFACE DENSITY FOR SOIL
RU = RETENTION FRACTION
BV = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY VEGETATIVE PASTS OF CROPS
BR = CONCENTRATION FRACTION FOR UPTAKE OF RADIONUCLIDE
FROM SOIL BY REPRODUCTIVE PARTS OF CROPS
FI =FRACTION OF THE YEAR CROPS ARE IRRIGATED
UIRATE= IRRIGATION RATE
CUAT = RADIONUCLIDE CONCENTRATION IN WATER
IOPT = OPTIONS FOR SPECIAL RADIUNUCLIDE H-3
10PT = 1 IF H-3 1C NOT INCLUDED IN THIS RUN
IOPT = 2 IF H-3 IS INCLUDED
Yi = A(i PRODUCTIVITY FOR GRASS CONSUMED BY ANIMALS
Y2 = AG PRODUCTIVITY FOR VEGETATION CONSUMED BY MAN
IE1 = TIME PASTURE GRASS EXPOSED DURING GROWING SEASON
TE2 = TIME CROP/VEG EXPOSED DURING GROWING SEASON
TH1 = PERIOD DELAY BETWEEN HARVEST OF PASTURE GRASS
AND INGESTION BY ANIMALS
TH2 = PERIOD DELAY BETWEEN HARVEST OF STORED FEED
AND INGEST ION BY ANIMAL
TH3 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEGETABLE
AND INGESTION BY MAN FOR M.I.£.
TH4 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE AND
BY MAIN.
1/Y
1/H
H
KG/MAA2
L/MAA2-
PCI/L
KQ/MAA2
KG/MAA2
H
H
H
H
H
A47
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
INGEST ION BY MAN EOS M.I.^. H
TK5 = PERIOD DELAY BETWEEN HARVEST Of LEAFY VEG
AND INGEST ION BY MAN FOR G.P.E. H
1H6 = PERIOD DELAY BETWEEN HARVEST OF PRODUCE
TH5 = PERIOD DELAY BETWEEN HARVEST OF LEAFY VEG
FP = FRACTION Oh YEAR THAI ANIMAL GRAZE ON PASTURE
FS = FRACTION OF DAILY FEED THAI IS FRESH GRASS WHEN
ANIMALS GRAZE ON PASTURE
FMC = FRACTION Of THE COW'S DAILY INTAKE OF
RAD10NUCL1DE WHICH APPEARS IN EACH L OF MILK D/L
FMG = FRACTION OF THE GOAT'S DAILY INTAKE OF
RADIONUCLIDE WHICH APPEARS IN EACH L OF MILK D/L
QFC = AMOUNT OF FEED CONSUMED 3Y CATTLE KG/D
GlF(a = AMOUNT OF FEED CONSUMED BY GOATS KG/D
TF1 = TRANSPORT TIME Of RADIONUCLIOE FROM
EikiED-M ILK-RECEPTOR FOR M.I.E. H
TE2 = TRANSPORT TIME OF RADIONUCLIOE FROM
EEED-MILK-KECEPIOK FOR G.P.E. H
FF = FRACTION OF THE ANIMAL'S DAILY CNTAKE OF
RAD10NUCLIDE WHICH APPEARS IN EACH KG OF FLESH D/KG
TS = TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION H
CICW = AMOUNT OF WATER CONSUMED BY COW L/D
QGW = AMOUNT OF WAXES CONSUMED 3Y GOAT L/D
QBW = AMOUNT Of WATER CONSUMED BY BEEF CATTLE L/D
INTERMEDIATE VARIABLES
XAMBEF= EFFECTIVE DECAY CONSTANT
COPAST= RADIONUCLIDE CONCENTRATION IN PASTURE GRASS CONSUMED BY A
COPAST= RADIONUCLIDE CONCENTRATION IN STORED FEED CONSUMED BY ANI
COFEED= RADIONUCLIDE CONCENTRATION IN ANIMALS'S FEED
PCI/KG
PCI/KG
PCI/KG
PCI/KG
PC1/L
PCI/L
PCI/L
PCI/L
PCI/KG
OUTPUT VARIABLES
COL1 =
COL2 =
COP1 =
COP2 =
C(JCMI1 =
COCMI2=
COGMI1=
COGMI2=
COMEAT=
RADIONUCLIDE
FUR M.I.E.
RADIONUCLIDE
FOR G.P.E.
RADIUNUCL1DE
FOR M.I.E.
RADIONUCLIDE
FOR G.P.E.
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
RADIONUCLIDE
CONC
CONG
CONC
CONC
CONC
CONC
CONC
CONC
CONC
IN
IN
IN
IN
IN
IN
IN
IN
IN
LEAFY VEG CONSUMED
LEAFY VEG CONSUMED
PROCUCE CONSUMED BY
PRODUCE CONSUMED BY
COWS MILK FOR M.I.
COW'S MILK FUK G.P.
GOAT'S MILK FOR M.I
GOAT'S MILK FOR G.P
BEEF CATTLE'S MEAT
BY MAN
BY MAN
MAN
MAN
E.
E.
.E.
.E.
DOUBLE PRECISION NUCLIO.H3.C14
COMMON/CNTRL/NONCLD.MAXYR, TITLE (20). LOCATE ( 12 ) .NYR1 .NYR2.
S PCT1 .PCT2.LEAOPT, IOPVWV. IOPSAT, IPRT1 , IPRT2.IDELT.iXTS.
X IRRESl,IRRES2.LIND,IAVGl.IAVG2,RR.FTMECH,INTYR<4).
& UWATL,WWATA.WWATH,SUATL.SWATAf SWATH. IVAP. ISSMT. IDISP
COMMON/NUC/NUCLID(40)fATMASS(40),TRAM(40),SOAM<40),ATAM<40).
I AQAM(40,10000),STAri(40).POLO(40),POLB(40).CS(40).CU(40).
X SSTREM(40).SDEEP(40).AIRCON(40),YSO(40)fs6AVG(40).CON<40).
i AQCON(40),STCON(40),ATCON(40).AQAVG(40).STAVG(40) DETWUO).
AIAVG(40).FMC(40),FMG(40).DECAY(40).XKD(4.40).SOL(40).
EF(40),RAUO),RW(40),BV(40),BR(40)fDERATE'40)'CWAT(40)
COMMON/ IRRFOO/Yl.Y2,IEl,IE2.IHl.IH2.TH3fIH4.TH5.TH6.FP.FS.
& ULEAFY,UPkOD,UCMILK,UGMlLK,UMEAIfUUAT,UAh,
RAE1085
ISINEUL
&
A48
-------
i CltC.Gltrj Ttl.'l-t2.TG.CLl<40).CL2(40),CPl(40)fCP2(40) ,
I CCMIl(46),CCHI2(40).Ci3MIl(40>.CLiMI2(40).
i CMEAI<40).COLl(40>fCOL2<40).COPl<40).COP2(40),
& COCMIl(40).COCMI2(40).COGMIl(40),COijMI2<40>,
S COMEAT<40).QING<40).QINH<40).POP,
I CSP(40),CSPT(40),CSPO(40).CSPOT(40)
coMHON/LANn/RAiNF,ERODF!sTPLNG.covER,coNiRL,SEDELR.soiLos,
& PORS.BDENS,DUET,EXTENT,ADEPTH,PD,RUNOFF,RESAT,
COM«UN/EVAP/PPN.PHID,P,XIRR,S(12),T(12),TDU2)fXINFL,SINFL,
2 SMASS.WMA3SfUDEEP
COMMON/FUNC/XAMBUE.TA.TW.FI.PP.WIRATE,
& QCU.QGU,QBU,AeSHfPl4
COMMON/PCV/SOCON(40)
DATA H3,C14/8HH-3 ,8HC-14 /
IF(NUCLID(NN) .EQ. H3)GO TO 200
IE(HUCLID(NN> .EQ. C14) GO TO 300
DECA=DECAYACOSIO
C
CAAA CALCULATION OF COPLX = RADIONUCLIDE CONCENTRATION IN LEAFY
C VEGETABLE CONSUMED BY MAN
B=0.066ABV(NN) RAE0186
IERM2=CSPO(NN)AB/PP KAE0186
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
COLHNN)=COVA=COVA(NN,Y2,TE2,TH5FTERM2,1.)
CAAA CALCULATION OF COPX = RADIONUCLIDE CONC IN PRODUCE CONSUMED
C BY MAN
CAAA 1. FOR MAXIMUM INDIVIDUAL EXPOSURE
B=0.1fc7ABR(NN) RAE0186
IERM2=CSPO(NN)AB/PP RAE0186
COP1(NN)=COVA
-------
c
CAAA 2. FOR GENERAL POPULATION
COCr112(NN)=fcrtC
RETURN
C
CAAA CALCULATION FOR SPECIAL RADIONUCLIDE: TRITIUM
CAAA TRITIUM CONC. IN VEGETATION = TRITIUM CONC. IN ANIMAL FEED =
CAAA TRITIUM CONC. IN WATER = CUATU)
CAAA CALCULATION OF H-3 CONCENTRATION IN VEGETATION, MILK,
CAAA AND MEAT CONSUMED BY MAN
200 COL1(NN)=CUAT(NN)
COL2(NN)=CUAT(NN)
COP1(NN)=CUAT(NN)
COP2(NN)=CUAT(NN)
CUAKNN) = WWA1AAAGCON(NN)+SUAIAASICON(NN)
COCMI1(NN)=EMC
-------
* FF(40>.RA<40).RU<40>,BV(40).BR(40)fD£fiATE(40)fCUAT<40)
COMMON/FUNC/XAMBWE,TA.TW,FI,PP.WIRATE,
* QCU,QGU,CIBW,ABSH,P14
BECA=DECAY(I)/8760.
XAMB£F=OECA+XAMBWE
IERMl=UIRAIEACWAT(I)AIVARW(I)A<1.0-EXP<-XAMBEFATE))/(YAXArtBEF)
COVA=(TERM1+IERM2)AEXP(-D£CAATH)
RETURN
END
C
C
C
SUBROUTINE LEACH(NN,NYEAR,VQLB,VOLO,UMAX,CIOT,CFF,XBECN,TINFL,
8 PERhl)
C
C
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA THIS SUBROUTINE CALCULATES THE AMOUNT OF EACH RADIONUCLIDE
CAAA THAT LEAVES FROM THE BOTTOM OF THE TRENCH TO THE AQUIFER
CAAA AND THE AMOUNT THAT LEAVES AS A RESULT OF WATER OVERFLOWING THE
CAAA TRENCH. THIS SUBROUTINE IS CALLED BY MAIN.
CAAA
CAAA THERE ARE FIVE METHODS THAT MAY BE USED TO CALCULATE THESE
CAAA AMOUNTS. THEY ARE GIVEN BY THE FOLLOWING VALUES OF
CAAA LEAOPT:
CAAA 1 TOTAL CONTACI.CHEMICAL EXCHANGE
CAAA 2 IMMERSED FRACTION, CHEMICAL EXCHANGE
CAAA 3 TOTAL CONTACT, CHEMICAL SOLUBILITY
CAAA 4 IMMERSED FRACTION, CHEMICAL SOLUBILITY
CAAA 5 RELEASE FACTOR
CAAA
C
C INPUT VARIABLES
C
C NN NUCL1DE NUMBER
C NYEAR = CURRENT YEAR OF SIMULATION
C TAREA = AREA Ot TRENCH
C TDEPTH = DEPTH OF TRENCH
C PORT = POROSITY OF TRENCH MATERIAL
C RELFAC = RELEASE FACTOR
C LEAOPT = LEACHING OPTION
C SOL = SOLUBILITY OF RADIONUCLIDE IN TRENCH
C DENCON = DENSITY OF WASTE
C VOLO = VOLUME OF WATER OVERFLOWING TRENCH
C VOLB = VOLUME OF WATER LEAVING BOTTOM OF TRENCH
C NONCLD = NUMBER OF NUCLIDES
C TRAM = AMOUNT OF NUCL1HE IN TRENCH
C OLDWAT = AMOUNT OF WATER IN TRENCH
C LULFAC = DILUTION FACTOR
C DMAX = MAXIMUM WATER DEPTH IN TRENCH
C XKD' = CHEMICAL EXCHANGE COEFFICIENT
C
C OUTPUT VARIABLES
C
C POLB = AMOUNT OF EACH NUCL1DE LEAVING BOTTOM OF TRENCH
C POLO = AMOUNT OF EACH NUCLIDE OVERFLOWING TRENCH
A51
-------
c
C IN1ERHEDIA1E VARIABLES
C CCUAT = CONCENTRATION OF NUCLIDE IN WATER
C EUET = WETTED OR IMMERSED FRACTION
C PGLOU1 = TOTAL AMOUNT OF NUCLIDE LEAVING TRENCH
C
C
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR, TITLE (20). LOCATE ( 12 ).NYR1.NYR2,
& PCT1.PCT2.LEAOPT, IOPVWV. IOPSAT, IPRT1 . IPRT2, IDELI, IXTS,
S IRRE§1 . IR&ES2.LIND, lAVGl, IAVG2.RR.FIHECH,
& WUATL.WWAIA.WUATH.SUATL.SWATA.SUAIH. IVAP. IBShT. IDISP
COMMON/EVAP/?PN.PHlD,P,xlRR,S,SOAM(40>,ATAM(40>.
8 AQAM(40.10000)!STAM(40),P(3LO(40),POLB(40).CS(40).CW(40).
& SSTREM(40),SDEEP(40).AIRCON(40).YSO(40),30AVG(405fCON(40).
S AQCON(40).SICON(40).ATCON(40).AQAVG(40).STAyG(40),DETU(40)r ISINEUL
& ATAVGUO) FMC(40)IFMG(40).DECAY(40).XKD(4,40)FSOL(40).
I FF(40).RA(40).RU(40),BV(46),BR(40},DERATE{40),CWAr(40)
DIMENSION CIOT(40),CINEWT(40>
DATA LU6/6/
IF (1LHSP.GT.1) GO TO 50
IE(DHAX .LE. 0.)CCUAT=0.
IF
-------
C FOR OPTIONS 3 AND 4 USE CHEMICAL SOLUBILITY.
C
400 CCWA1'=IRAM (NN) AFWL-T/ (DMAXATAREAAPGRT )
TEHP=5.163E11ASOL(NN)ADECAY(NN)/ATMASS(NN)
IE(CCUAT .GT. TEMP) CCWAT=TEMP
CCWAT=CCWATACFF
GO TO 600
C
C FOR OPTION 5 USE RELEASE FACTOR.
C
C 500 POLOUT=RELFACATRAM(NN)
C GO TO 610
500 1F(DMAX.EQ.O.O .AND. 1DISP.LE.2) GO TO bl5
CINEWT(NN)=CIOT(NN)+TRAM(NN)ARELFACACFF
IFOLB+VOLO)
GO TO 525
515 CINEUT(NN)=CIOT(NN)
CCUAT=0.
525 CIOT(NN)=CCUATADMAXAPORTAIAREAAXDECN
600 PQLOUI=(VQLB+VOLO)ACCUAT
C
C DISTRIBUTE RADIONUCLIDE OUTPUT BETWEEN OVERFLOW AND SEEPAGE
C
610 VOLS=VOLB+VOLO
IE(VOLS .NE. 0.) GO TO 620
POLB
-------
DATA LUG/6/
URIT£(LU6.6000)NYEAR
IF UDISP.GT.1) WRITE(LU6,6016) VOLB
IF (IOISP.GT.1) UfiIIE(LU6,6023)
IF ( IDISP. GT.l) GO TO 7
PER=100.APC
WRIIE(LU6,6005)PER
WRITE(LU6,6010)UDEPTH
URITE(LUG,6015)VOLB,VOLO
WRITE(LU6,6020)
7 CONTINUE
DO 10 I=1,NONCLD
IF (IDISP EQ.l) URIIE,YSO(I),ATCON(I),AUCON(I)
20 CONTINUE
RETURN
6000 FOKMAK'1'.20X, 'ANNUAL SUMMARY FOR YEAR ',15,' OF THE ',
* 'SIMULATION')
6005 tORMAK///' ',10X 'THE TRENCH CAP HAS HAD ',F6.2,
J ' PER CENT FAILURE')
6010 FORNAK' ', lOX.'IHE MAXIMUM POSSIBLE WATER DEPTH IN TRENCH ',
X 'DURING THE YEAR IS ' F6.2.' METERS')
6015 FORMAT (' ' .10X. 1PE11.4. ' CUBIC METERS Ot WATER LEFT BOTTOM',
& ' OF TRENCH'./' J ,10X. 1PE11 .4, ' CUBIC METERS OF WATER5,
i ' OVERFLOUED TRENCH" )
6016 FORMAT(llX,lPEli.4.' CUBIC METERS OF WATER FLOWED THROUGH',
& ' THE FACILITY LURING THIS YEAR')
6020 FORMAK/////' ' 51X. 'NUCLIDE TRANSPORT INFORMATION' ,
& ///' /.2X.'NUCL1DE/,3X. 'AMOUNT IN', 5X, 'FACILITY'
J 5X.'FACILITY'f5X, 'AMOUNT AT',/' '. 12X. 'FACILITY' ,6X,
& 'OVERFLOW. 4X ' DRAINAGE ' ,5X, 'WELL' ,
& /' ',16X,4('CI',11X))
6023 FORMAK/////' ' 51X, 'NUCLIDE TRANSPORT INFORMATION',
8 ///' ',2X, 'NUCLIDE', 3X^ 'AMOUNT IN' ,5X, ' FACILITY' ,
& 5X, 'AMOUNT AT'./' ' 12X 'FACILITY'
I 4X,' OUTFLOW 5,5X,'WELL',
S /' ' 16X,3('C1' 11X))
6025 FORMATC ' ,A8.3X.L3( IPEll .4, 2X) )
6030 FORMAK////' ' ,2X, 'NUCLIDE; .5X, 'SURFACE' ,5X, ' SURFACE' .
& 4X, 'SOLUBLE TO' ,3X, ' SOLUBLE TO' ,3X, 'ATMOSPHERE'
* 3X, 'ATMOSPHERE', 3X, 'WELL WATER'!
S /' ' 13X/SOIL CONG', 3X 'WATER CONC' ,4X, 'STREAM', 4X.
X ' DEEP LAYERS ' , 2X , ' At SP ILLA6E ' , 3X , ' DOWN W IND ' , 6X , ' CONC ' .
X / ' . ' , 15X . ' C I/KG ' , 6X . ' C i/M A A3 ' , LJX , ' C I' , 1 IX .
& 'Cr,3X,3(5X,'Cl/MAA3'))
END
C
C
SUBROUTINE SOURCE ( NUCL, CFT1 , DCFT,FGAM, IRST, PERM!, RTGR ,SSAT,XRTM)
CAAA THIS SUBROUTINE PERFORMS THE NECESSARY INPUTS TO INITIALIZE
A54
-------
CAAA PARAMETERS AND VARIABLES. SOURCE IS CALLED FROM MAIN.
CAAA
CAAA
CAAA
CAAA
DOUBLE PRECISION NUCLID,NU,NC,DATE,DTIME
COMhON/SIR£AH/DUS ISINEU
COHHON/CNIRL/NONCLD.HAXYR,TITLE(20),LOCATE<12>.NYR1.NYR2,
i PCIl.PCT2,LEAOPTlIOPVUV.IOPSATfIPRI1.IPRI2.IDELI.IXISf
& IRRESlfIRRES2.LINDtIAVGl,IAVG2.RR,ETfiECHfINTYR(4). RAE1085
& UUATL.WUAIA.WUAIH.SUATL.SWATA.SUATH.IVAP.I6SMT,IDISP
COMHON/EVAP/PPN.PHID.P,XIRR,S<12),T(12),ID(12),XINFL,SINEL.
$ SMASS UMASS UDEEP
COHHON/IRCH/fAREA.fDEPTH,OVER.PORT,RELFAC,DENCON.OLDUAI,SEEP
COHHON/UATER/DIRAQ.DWELL.GUV,XLSAT,STFLOU.AQTriK.AQDISP,
& PORA.PORV,PERMV.IAQSTF,'CP8j:VUyfHGRAD.FRACB,ALV.ALHfBDENV
COHMON/NUC/NUCLID(40),ATMASS(40).IRAM(40).SOAM<40).AIAM(40)f
I AQAM(40.10000),STA(1(40).POLO(40).POLB(40).CS(40).CU(40).
& SSTREM(40),SDEEP(40)IAIRCON(40).YSO(40),SOAVG(40),CON(40).
S AQCON(40),§TCON(40).ATCON(40).AQAVG(40),STAyG(40),HETy(40)f ISINEWL
I ATAVG(40).FhC(40).FMG(40).DECAY(40).XKD(4.40),SOL(40).
i FF(40).RA(40).RU(40).BV(46),BR(40).DERATE(40),CUAT(40)
COMMON/LAND/RAINF,ERODE,STPLNG.COVER,CONTRL.SEDELR.SOILOS,
i PORS.BDENS,DUET,EXTENT,ADEPIH,PD,RUNOFF,RESAI,
COMMON/AIR/H.VG.U.IT,IS,VD,XG,HLID,ROUGH,FIUIND,CHIQ,RE1,RE2,RE3
COMHON/IRRE06/Y1.Y2,TE1,TE2,TH1.TH2.TH3,TH4,IH5.IH6,EP,ES,
S ULEAFY.UPKOD.UCMILK.OQHILKjUHEAT.UUAI.UAIR,
& QFC,QFG.TF1,TF2.TS,CL1(40).CL2(40).CP1(40),CP2(40),
& CCMI1(40),CCHI2(40;,CGHI1(40),CG«I2(40),
& CMEAI(40).COL1(40).COL2(40).COP1(40),COP2(40),
g COCriIl(40),COCMI2(40),COGMIl(40),COGfiI2(40)f
& COMEAI(40).QING(40).QINH(40).POP.
& CSP(40),CSPI(40),CSfO(40).CS?OI(40)
COMMON/FUNC/XAMBUE,TA,TUfFI.PP.UIRATE,
S GCU.QCiU,QBU,ABSH.P14
DIHENSION MONTH(12).DAT(20),NUCL(40,8)
DATA LU5/5/,LU6/6/.LU26/26/
C DA1A MONIH/'JAN',JEEBX,'MAR','APR','HAY','JUN','JUL','AUG',
C & 'SEP'/UCX'j'NOV'/DEC'/
URI1E(LU6,2010)
5 READ(LU5.3000.£ND=7)OAT
URITE(LU26.3000)DAT
URIIE(LU6,2005)DAI
GO TO 5
7 REWIND LU26
C
C CONTROL INFORMATION.
C
READ(LU26,3000)11TLE
READ(LU26F3000)LOCAIE
READ(LU26,3010)MAXYR,NONCLD,LEAOPI,NYRltNYR2.IOPVUV.IOPSAI,
& IPRI1.IPRT2.IDELI.IRRES1.IRRES2,LIND,IAVG1.IACQ2,IDISP
READ(LU26.3filO) IVAP, IBSftl, lAQSf F, IXIS,' IRSlJ (INIYft( I), 1=1,3) RAE1085
IE (IDISP.GT.l) IBSMT = 0
READCLU2G,3005>PCIl,PCT2,WUAIL,UUAIAfUUAIH,SUAIL,SUATAfSWATH
IFdAVGl .LE. 0)IAVG1 = 1
IF(1AVG2 .61. HAXYR)1AVG2=MAXYR
IFdAVGl .GT. IAVG2)IAVG1 = 1
IFdAVGl .61. IAVG2)lAVG2=hAXYR
A55
-------
C SORT IN1YR ARRAY IN. ASCENDING ORDER
C DO TO 1=1 3 RAE10B5
J-INTYRd) RAE1085
IFU.LE.O .OR. J.tU.MAXYR) INTYRd)=MAXYR + l
20 CONTINUE
DO 30 K=l,2
J1=J+1 RAE1085
DO 25 I=J1.3 RAE1085
IFdNTYRdJ .LT. INIYR(J)) J=l
25 CONTINUE
IF(J .EG. K) GO TO 30
I=INTYR(K)
INTYR(K)=1N1YR(J) RAE1085
INTY8(J)=I Mn
30 CONTINUE RAE1085
p_____
WRI1E'(LU6.GOOO)
C ---- I11ME IS PART Of THE SYSTEM LIBRARY. IT RETURNS THE CURRENT
C ---- WALL TIME, ELAPSED HHE, AND DATE.
C CALL IIIMEdCLOCK.IDIFF. DATE, IDA!)
C CLOCK=FLOAT(ICLOCK)/360000.
C U»1IE(LU6,6002)CLOCK,DAIE
C CALL CTIME(DATl;fDTIME)
C WRITH(LU6.6002) DTIME,DATE
WRITE(LU6,6005)TITLE
WRITL(LU6;6008)
WRITE(LU6.6010)LOCATE
GO TO (10,11,12,13), IDISP
10 URITE(LU6,5001)
GO TO 19
11 URITE(LU&.5002)
LEAOP1 = I
GO TO 19
12 HR1TE(LU6,5003)
LEAQPT = 5
GO TO 19
13 WRIIii(LU6.5004)
LEAOP1 = 5
IE(NONCLD .GE. 1 .AND. NONCLD .LE. 40) GO TO 19
URITE(LU6,6015)
STOP
19 CONTINUE
WRITE (LU6, 6020 )MAXYR, NONCLD
URIIE(LU6.6025)LEAOP1
IF(NYR1 .LI. NYR2)WRITE(LU6.6030)NYR1.PCT1.PCT2,NYR2
IFdOPVUV .EQ. LAND. IDISP. EQ.DURIXEILU6, 6035)
IFUOPVUV .EQ. 0. AND. IDISP. EQ.1)URIIE(LU6. 6040)
IFdOPSAT .EQ. LAND. IDISP. EQ. 1 )URITE(LU6, 6045)
IFdOPSAT .EQ. 0. AND. IDISP. EQ.1)URITE(LU6,6050)
URIIECLU6,6060)LIND
IE(L1ND .EQ. 0)URITE(LU6,6064)
IE(LIND .NE. 0)URHE(LU6,6066)
WR lit (LU6, 6072 )UUATL,UUATA, WUATH
URITE(LU6, 6074 )SUATL,SUATA. SWATH
IFdBSHI .GI. 0)URITE(LU6,6088)IBSMT
A56
-------
C COMMENTS
C
READ(LU26,3000)
REAB(LU26,3000)
REAB(LU26.3000)
REAB(LU2b,3000)
READ(LU26,3000)
REAB(LU26,3000)
REAB(LU2fa,3000)
C
C
C TRENCH INFORMATION
READ(LU26,300&)1AREA,IDEPIH,OVER,PORT,DENCON,RELFAC,
i CPRJ.SINFL
READ(LU2fa,3005) SSAT,RESAI
«RII£(LU6,6200)
URITE(LU6,6205)IAREA,TDEPTH
URITE(LU6,G210)PORI
WRIIE(LU6,6215)SINFL
READ(LU26,300b) PERM!,FACTIM,TMN,CFT1,DCFT,FGAM
C
C AQUIFER INFORMATION
C
READ(LU26,3006>DTRAQ,BUS,DWELL,GUV,AQTHK.AQDISP,PORA,PORV,PERMV ISICHG
READCLU26,3005)VUV.HGRAD;FRACB.ALV,ALH,BDENV
IF (HGRAB.EQ.0.0) HGRAO = 1.6
IF (FRACB.EQ.0.0) FRACB = 1.0
IF (ALy.EQ.0.0) ALV = 0.3
IF (ALH.lid.0.0) ALH = 0.3
IF (VUV.EQ.0.0) VUv> = PERNVAHGRAD/PORV
URIIE(LU6,6300)
URItE(LU6,6305)GUV
URIIE(LU6,6310)D1RAQ
WRITE(LU6,6315)DUELL
URItE(LU6,6316) DUS ISINEU
WRII£(LU6,6320)AQIHK.AQD ISP
IF (IDISP.EQ.l) URITE(LU6,b325) PORA,PORy,PERMV
IF (IDISP.NE.l) WRITE(LUb,6326) PORA,PORV,PERMV
URITE(LU6,6330) ALH
IF (IDlSPiGl.l) URIT£
-------
IFCCH1Q .LI. 0.0)WR11E(LU6,6470>
IE(CHIQ .G£. 1.0E-10)URITE(LU6,&4&0)CHIQ
URIU(LUG,6480)Rfcl,RE2,RE3
WRITE(LUG,6055) IRRES1,IRRES2,RR,FIMECH
C----- SURFACE INFORMATION
° READ(LU26,3005)RAINF,EROBF,STPLNG,COVER,CONTRL,SEDELR
READ(LU26 3005)PORS.BDENS.STELOW.EXTENT,ADEPTH
READ(LU26.3005)PD,PPN,RUNOFF,SEEP
IF (BDENV.EQ.0.0) BBENV = BDENS
C
URI1E(LU6,6500)
WRITE(LU6 6505)RAINF. ERODE,STPLNG,COVER,CONTRL,SEDELR
UR HE PORS, BDENS
URITE(LU6.6515)RUNOFF
IF (SEEP.NE.0.0) URI1E(LU6,G525) SEEP,PPN
WRITE(LU6,6520)STFLOU,EXTENT,ADEPTH,PD
r»-
C AIR-tOODCHAIN INFORMATION
C
URI1E(LU6,7800)
READ(LU26,3005)Y1.Y2.PP.XAMBUE,IA,TE1,TE2
READ(LU26,3005)TH1,TH2,TH3ITH4,TH5.TH6,FP.FS
READ(LU26,3005)QFC[QFG.IF1,TF2,IS,ABSH,P14
READ(LU26 3005) XRTM,RTGR
URITE(LU6,7805)Y1.Y2.PP,XAMBWE,TE1,TE2
URITE(LU6,7815)THl,TH2,TH3,TH4,TH5,TH6,FP,FSlQFC
WRITE(LU6,7825)QFG,IFl,TF2fIS,ABSH,P14
C WAIER-fOOHCHAIN INtORMAllON
C
URIIE(LU6,7900)
READ(LU26,3005)1U,FI.UIRATE.QCW,QGW,QBU
WRITE(LU6,7905)FI,UIRATE,aCW,QGU,QBU
C
C HUHAN INGESTION AND INHALATION INFORMATION
C
READ(LU26,3005)ULEAFY,UPROD,UCMILK,UGMILK,UMEAT,UUAT,UAIR,POP
WRITE(LU6,6905)
_URirE(LU6,6910)ULEAFY,UPROD,UCMILK,UGMILK,UMEAT,UUAT,UAIR,POP
C NUCLIDE INFORMATION
C
WRITL(LU6,7000)
SMASS=1000.ABDENSAEXIENTAPDAADEPTH
UMASS=1000.APORSAEXTENTAPDAADEPTH
WDEEP=SINFLAEX1ENTAPD
DO 40 I=1,NONCLD
READ(LU26,3012)NUCLID(I),(NUCL(I.K),K=1.8).TRAM(I),
J SOAM(I).STAM(I),ATAM(I),DECAY(I),SOL(I),CON(I)
READ(LU26,3015)NU,(XKD
-------
CS(I)=CW(I)AXKU(I,mi.OE-3
URITE & b t ui\ r i\ t,
MIGRATION OF RADIOACTIVE WASTES
/' ',40X.'FROM LOW-LEVEL RADIOACTlOE
PREDICTING THE'
6005
6008
6010
6015
6020
6025
6030
FORMATCO
FORMAK///
FORMAK
FORMAT
FORMAK
2(/
THIS RUN WAS
?OX,20A4))
SX.'AAA
'THE
\/// |JA
CO'F10X,'THE BURIAL
CO'I'AA* ERROR :AAA
CONTROL
S
MADE AT ',A8F'
INt'ORMAHON AAA')
TE IS LOCATED AT '.12A4)
NVALID NUMBER OF Nfld IDES'
WASTE DISPOSAL SITES')
ON ',A8>
FORMAK
FORMAK
,10X 'THE SIMULATION WILL RUN FOR',15,' YEARS AND'
WILL INCLUDE', 13.' NUCLIDES')
',10X,'LEACHING OPTION NUMBER',12,' WILL BE USED')
___ _. 'JlOXl'IN YEAR' 14,' ' F4.2,' OF THE CAP WILL BE',
1 ' ASbUMElJ TO FAIL*./ ' ,15Xf'1H1S WILL CONTINUE',
& ' UNTIL ' F4.2.' HAS FAILED IN YEAR '14,
* /' ' iOX.'CAP HAY ALSO FAIL BY SURFACE EROSION')
6035 EORMATC '.10X,'VERTICAL WATER VELOCITY WILL BE CALCULATED',
i ' USING INFILTRATION AND POROSITY')
6040 FORMAK
I
6045 FORMAK
S
6050 FORMAK
6055 FORMAK
*
J
,10X 'PERMEABILITY WILL BE USED FOR MINIMUM',
VERTICAL WATER VELOCITY')
' 10X 'LENGTH OF VERTICAL SATURATED ZONE WILL BE',
CALCULATED USING INFILTRATION AND POROSITY')
'10X,'LENGTH OF VERTICAL SATURATED ZONE WILL BE',
SET TO THE TRENCH TO AQUIFER DISTANCE')
,10X,
, FROM YEAR ',14,' TO YEAR ',14.
THE RESUSPENSION RATE DUE TO MECHANICAL DISTURBANCES',
' WILL BE ' 1PE11.4,/' ',15X,'THIS WILL OCCUR DURING ',
S F5.2.' OF EACH YEAR')
6060 FORMATC ' ,10X ,'POPULAT ION INDICATOR IS '.12)
6064 FORMATC- ' 15X 'MAXIMUM INDIVIDUAL EXPOSURE WILL BE USED',
J ' TO CALCULATE HEALTH EFFECTS')
6066 FORMATC '15X.'GENERAL POPULATION EXPOSURE WILL BE USED',
J ' Tu CALCULATE HEALTH EEFECTS')
6070 FORMAK' ' 10X 'THE POPULATION WILL BE EXPOSED TO CONTAMINATED
& 'MATERIALS FROM YEAR ',13,' TO ',14)
A59
-------
b072 FURMAK
g
& /
&
s /
&
'.10X.E6.3,' Of IRRIGATION WATER U1LL BE GOTTEN FROM
'WELL',
MOX.FG.3.' Ot DRINKING WATER FOR ANIMALS WILL BE',
' GOTTEN FROM WELL'.
' 10X.E6.3.' Ot DRINKING k'ATfcR FOR HUMANS WILL',
GOflEN t'ROM WELL')
6074 EORHAIC ',10X,F6.3,' OF IRRIGATION WATLR UILL BE GOTTEN FROM
o ' 'CTDCAM'
6088 FORMAK
&
STREAM'.
' '.10X.F6.3.' Ot1 DRINKING WATER FOR ANIMALS WILL BE
GOTTEN ERUM STREAM',
1 '10Xft6.3.' Ot DRINKING WATER FOR HUMANS WILL',
' BE GOTTEN FROM STREAM'3
' ' 10X 'BEGINNING IN YEAR ',14,', PEOPLE WILL LIVE '
'IN THE BASEMENT')
'AAA FACILITY INFORMATION AAA')
6200 FURMATC1',5X,'AAA FACILITY INFORMATION AAA')
6205 EORMAK//' ',10X,'THE FACILITY HAS AN AREA OF ',
I El 1.4,' SQUARE METERS AND A DEPTH OF ',
& £11.4 ' METERS')
6210 EORMAIC ',l6X,'WASTE/BACKFILL POROSITY IS ',F8.2)
6215 FORMATC '.10X,'ANNUAL INFILTRATION FOR THE WATERSHED IS',
o F7d ' rtP'TFR^^^
6300 FORMAK//' ',5X.'AAA AQUIFER INFORMATION AAA')
6305 FORMAK//' ',10X,'THE GROUND WATER HAS A VELOCITY OF ',F10.3,
J ' METERS PER YEAR')
6310 FORMATC ' ,10X,'WASTE-TO-AQUIFER DISTANCE IS '.F6.1 ' METERS')
6315 EORMATC ',10X 'DISTANCE TO WELL IS ' F8.2,' METERS')
6316 FORMATC ' 10X 'WELL TO STREAM DISTANCE IS' F8.2,'METERS')
6320 FORMATC ',10X,'THE AQUIFER THICKNESS IS '.E8.2,' METERS'
« " ,10X, 1HE AQUIFER DISPERSION ANGLE IS ',F8.4,' RADIANS')
,10X, 'POROSITY OF THE AQUIFER REGION lU ',F8.5,
',10X,'POROSITY BENEATH THE TRENCH IS '.F8.5,
',10X,'PERMEABILITY BENbATH THE TRENCH IS ',F8.3,
' METERS/YEAR')
',10X,'POROSITY OF AQUIFER REGION IS ' FS.5.
",10X,'POROSITY OF CONFINING STRATUM IS ',F9.5,
',10X,'PERMEABILITY OF CONFINING STRATUM IS ',1PE8.2,
' METERU/YfcAR')
',10X,'AQUIFER DISPERSIVITY IS '.F7.J ' METERS')
',10X,'WATER VELOCITY IN CONFINING STRATUM IS ',
F10.3,' METERS/YEAR'
',10X,'HYDRAULIC GRADIENT IS '.F6.2,
',10X,'FRACTION OF WASTE IMPACTED IS ' .F6.2,
VOX,'D1SPERS1VI1Y IN CONFINING STRATUM IS ',
F7.3,' METERS')
',10X,''THE DISPERSIVITY IN THE CONFINING STRATUM IS ',
F7.3 ' METERS')
vox,' THE 'DENSITY OF THE CONFINING STRATUM is '
F7.3,' G/CC')
/;
6325 FORMATC
I /'
I /'
I
6326 FORMATC
I /'
S /'
I
6330 FORMATC
6340 FORMATC
I
i /'
S /'
S /'
6342 FORMATC
6343 FORMATC
ISINEU
6400
6405
6410
« L U m it m HlJlLilVtJ/U&LrUJTl.1 I
25 FURMATC ',10X,'GAUGE DISTANCE FROM SOURCE IS ',F8.2.' METERS')
20 FORMA.TC ', 10X,'DEPOSITION VELOCITY IS ' ,F6.2 ' METEJlS/SECOND')
VOX,'WIND VELOCITY IS ',F6.2.' METERS/SECOND' )
VOX,'LID HEIGHT IS '.F8.2 ' METERS')
',10X,'HOSKER ROUGHNESS FACTOR IS ',F6.2)
VOX,'TYPE OF STABILITY FORMULATION IS ',12,
' 10X 'STABILITY CLASS IS ' I"-*)
'|10X|'FRACTION OF TIME WIN& BLOWS TOWARD POPULATION IS',
6425
6420
6415 FORMAK
6435 EORMAK
6440 FORMAK
6445 FORMAK
S /
6450 FORMAK
A60
-------
» E10.6)
6460 FURMAK' ', 10X 'NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER
I 'UNIT SOURCE AREA-IS ' 1PE11.4,' CI/MAA3 PER CI/SEC')
6470 EORMAK' ' 10X,'NORMALIZED DOWN WIND AlrtOSPHERIC EXPOSURE PER
& 'UNIT SOURCE AREA WILL BE CALCULATED INTERNALLY')
6480 FORMAT*'
6500 EORMAT(//
6505 FORMAT*//
& /'
t /'
& /'
t /'
I /'
t /'
6510 FORMAT*'
I /'
6515 FORMAT('
6520 FORMAT*/
',10X.'RESUSPENSION
',5X.'AAA SURFACE
',10X 'PARAMETERS
,15X, 'RAINFALL
,ltiX,'FRODIblLllY
f!5Xf 'STEEPNESS-SLOPE
,15X, 'COVER
,15X, 'EROSION CONTROL
, 'DELIVERY RATIO
FACTOR PARAMETERS '
INFORMATION AAA')
FOR UNIVERSAL LOSS
,3(5X,E11.4>
EQUATION',
,F8.;
JF8".i
',10Xf'SOIL POROSITY IS''F8.5.
'JlOXj'CUlL BULK DENSITY Is ' EB.i,' G/CC
' ' '
10X
/'
/
/'
.10X. 'RUNOFF
*10X,
.
FRACTION IS ',F8.5)
, .,
.'STREAM FLOW RATE IS ',1
J,10X 'CROSS SLOPE EXTENT
' ' '
1PE11.4,' CUBIC METERS
OF SPILLAGE IS
PER
6525 FORMAT*'
& /'
7800 FORMAT*'1
7805 FORMAT*/'
g ' KG/MAA2'
g /'
&
& /'
& /'
I /'
I
g /'
g
7815 FORMAT*' '
g
.V/\| UI\UiJu/ tJlrfUlLi JL» A 4 1* IT J. UJL uJ 1 X JU L* n ' J JU ib .Orbu«uV
,10X,'ACTIVE SOIL DEPTH IS '.E8.2.' METERS',
,10X,'AVERAGE DOWN SLOPE DISTANCE TO STREAM IS
' METERS')
,10X,'IHE DEEP INFILTRATION FRACTION IS ',E8.5.
,10X.'THE INPUT ANNUAL PRECIPITATION IS '.F8.5)
,5X.'AAA AIR-FOODCHAIN INFORMATION AAA')
',10X,'AGRICULTURAL PRODUCTIVITY FOR GRASS',F10.
YEAR'
METERS'
,F8.2,
7825
g
g
g
g
g
g
g
g
g
g
g
g
g
&
g
g
ION BY',
FORMAT*'
1 r
'AGRICULTURAL PRODUCTIVITY FOR VEGETATION',
'F1012.' KG/MAA2'
',10X,'SURFACE DENSITY FOR SOIL '.F10.2.' KG/MAA2',
',10X,'WEATHER DECAY CONSTANT',F10.2,' I/HOURS'.
',10X,'PERIOD PASTURE GRASS EXPOSURE GROWING SEASON',
£10.2.' HOURS'
',10X,'PERIOD CROP/VEGETATION EXPOSURE GROWING SEASON
F10.2 ' HOURS')
f10X1'P£R10D BETWEEN HARVEST PASTURE GRASS AND',
' 1NGESTION BY ANIMAL' E10.2 ' HOURS'
',10X,'PERIOD BETWEEN STORED FEED AND INGEST ION',
' BY ANIMAL'.F10.2 ' HOURS',
'10X,'PERIOD BETWEEN HARVEST LEAFY VEGETABLES AND',
f INGEST ION BY MAN(M.I.£.)',F10.2 ' HOURS'
',10X.'PERIOD BETWEEN HARVEST PRODUCE AND INGEST
' MAN(M.I.E.)' F10.2,' HOURS'
',10X 'PERIOD BETWEEN HARVEST LEAFY VEG '
'AND DIGESTION BY MAN(G.P.E.)' F10.2,' HOURS',
',10X 'PERIOD BETWEEN HARVEST PRODUCE'
' AND INGESIION BY MAN03.P.E.)'.F10.2,' HOURS'.
'10X,'FRACTION OF YEAR ANIMALS GRAZE ON PASTUREJ,F10.2
.10X,'FRACTION OF DAILY FEED THAT IS FRESH GRASS',F10.2,
,10X,'AMOUNT OF FEED CONSUMED BY CATTLE',F10.2,' KG')
,10X,'AMOUNT OF FEED CONSUMED DY GOATS'f£10.2,' KG',
.10X.'TRANSPORT TIME FEED-MILL-RECEPTOR FOR rl.I.E.',
£10 '* 'HOURS'
' SlOX/'iRAN^PORT HM£ FEED-MILL-RECEPTOR FOR G.P.E.',
£10.2,' HOURS',
' '.10X,'TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION',F10.2,
HOURS',
' '.10X,'ABSOLUTE HUMIDITY OF THE ATMOSPHERE',F10.2,
G/MAA3',
A61
-------
S /' ,10X 'FRACTIONAL EQUILIBRIUM RATIO FOR C-14',E10.2)
7900 FORMAK'l .5X/AAA UATER-FOODCHAIN INFORMATION AAA')
7905 FORMAT(///J '. 10X 'FRACTION OF YEAR CROPS ARE IRRIGATED',F10.2,
r KRHI £ 'IRRIGATION RATE ', F10.3,' L/(MAA2-H)'
g /' 10X 'AriUUHT OF WATER CONSUMED BY COWS ' F10.2.' L/D'
i /' 10X 'AMOUNT OF WATER CONSUMED BY QUATS f,1:10.2,' L/DJ,
S /' 10X,'AMOUNT OF WATER CONSUMED BY BEEF CATTLE ',F10.2,
& ' L/D')
6905 EORMAK///' '.SX.'AAA HUMAN INGESTION AND INHALATION RATE',
J ' INFORMATION AAA')
6910 EORMAK/' ' ,10X,'ANNUAL INTAKE OF LEAFY VEG ',F8.2,
I ' KILOGRAMS PER YEAR',
i /' '.10X,'ANNUAL INTAKE OF PRODUCE ',F8.2,
& ' KILOGRAMS PER YEAR',
& /' '10X,'ANNUAL INTAKE OF COW'S MILK ',F8.2,
i ' LITERS PER YEAR',
I /' '10X.'ANNUAL INTAKE OF GOAT"S MILK',F8.2,
& ' LITERS PER YEAR',
I /' ',10X,'ANNUAL INTAKE OF MEAT ',F8.2f' KILOGRAMS PER YEAR'
& /' '10X,'ANNUAL INTAKE OF DRINKING UATEft',F8.2,
I ' LITERS PER YEAR'
i /' ',10X.'ANNUAL INHALATION RATE OF AIR ' E8.2.
X ' CUBIC METERS PER YEAR',/' ',10X,'A POPULATION OF ',
S F10.0.' WILL BE CONSIDERED')
7005 EORMAK' ', A8,3X.9( 1PE11.4,2X))
7000 EORMAK'l' 5X 'AAA NUCLIDE INFORMATION AAA'
& //' ',SOX 'INFORMATION ON INDIVIDUAL NUCLIDES'
& //' ''NUCLIDE' 3X. 'AMI IN WASTE ' ,3X 'SPILLAGE',4Xf
S 'STREAM AMI '.2X.'AIR CONCEN' 2X.'DECAY CONST'
& 2X 'SOLUBILITY CONST' 2X.'DECAY CORRECTION FACTOR',
* /' ' 3X,3(12X,'Cr),8X.'CI/MAA3',7X,'1/Y',11X,'G/ML')
7010 EORMAK////' ' ,25X.'DISlRlBUllON COEFFICIENTS ML/6'.
& //' ','NUCLIDE',6X,'SURFACE',6X,'WASTE ',6X.'VERTICAL'.
I SX.'AfluiEER'/)
7807 FORMATC ' A8,IX,9(1PE11,2,2X))
7806 FORMAT(///f ','NUCLIDE' 4X 'RETENTION'.4X,'RETENTION',
| 4X,5('TRANS COEFF5,2X)./' ',12X.' IN AIR'bX.'IN MATER'.
J 5X,''SOIL-V CROP' 2X ,'S(3lL-R'CRO? ' ,2X. ' VE(J-C(JW MILK', '
& 2X,'VEG-GOAT MILK' 2X,'VEG-MEAT',/' !,40X,2('D/KQ',9X),
X 2('D/L ',9X)f'D/K&')
END
C
C
C
SUBROUTINE SURSOL(II,NYEAR,VOLO)
w
C
C CALCULATES THE AMOUNT OF SOLUBLE SURFACE CONTAMINANT THAT
C ENTERS THE STREAM AND TRENCH ANNUALLY.
C SURSOL IS CALLED BY MAIN.
C
C
C
C
C
C
C
C INPUT VARIABLES
C
C ADEPTH = SOIL DEPTH OF ACTIVE EXCHANGE
A62
-------
C XINFL = AVERAGE ANNUAL INFILTRATION
C RUNCltt = tRACIION OF NET INPUT GOING TO STREAM
C PB = DOUNSLOPE DISTANCE 10 STREAM
C BDENS = BULK DENS 11Y Of SOIL
C EXTENT = CROSS SLOPE EXTENT OF SPILLAGE
C SOAM = AMOUNT OF SPILLAGE
C XKD = CHEMICAL EXCHANGE COEFFICIENT
C
C
C IN1ERMEDIA1E VARIABLES
C
C SMASS = SOIL MASS
C UMASS = WATER MASS
C
C
C OUIPUI VARIABLES
C
C SSTREM = AMOUNT OF NUCLIDE GOING TO STREAM
C SDEEP = AMOUNT OF NUCLIDE GOING TO TRENCH
C CW NUCLIDE CONCENTRATION IN WATER
C CS NUCLIDE CONCENTRATION IN SURFACE SOIL
C
C
DOUBLE PRECISION NUCLID
COMMON/EVAP/PPN.PHID,P,XIRR,S<12>,TU2),TD<12),XINFL,SINFL,
* SMASS.UMASS.WDEEP
COMHON/NUC/NUCLIB(40),ATMASS<40).TRAM<40),SOAM<40).ATAM(40).
& AQAM(40.10000)!SIAM(40).POLO(40)JPOLB(40)1CS(40).CU(40).
S SSIREM<40>.SDEEP(40).AlRCON(40).YSO(40>,SOAVG(40J,CON(4<5)f
& AQCON(40>,STCON(40),ATCON<40>.AQAVG(40> SIAVG(40) DETkiUO), ISINEWL
I ATAVG(40),FMC(40),FMG<40>.DECAY<40),XKD<4,40),SOL(40).
& FF(40).RA(40),RW(40).BV(40),BR(40),DERATE(40).CWAT(40)
COMMON/LAND/RAINF,ERODF,STPLNG. COVER,CONTRL.SEDELR.SOILOS,
& PORS,BDENS,BWET,EXTENT,ADEPTH,PD,RUNOFF,RESAT,
& INSIIE
C
C
ySTREM=RUNOFFA(PPNAEXIENTAPD-t-VOLO)
SUAM=CS(II)ASMASS+CW(II)AWMASS/1.0E3
WMASS2=1000.A(PORSAEXTENTAPDAADEPTH+WDEEP+WSTREM)
C
C COMPUTE NUCLIDE CONCENTRATION PER CUBIC METER OF WATER
C
CU(1I)=1000.ASUAM/(XKD(1,1I)ASMASS+WMASS2)
C
C COMPUTE NUCLIDE CONCENTRATION PER KG OF SOIL
p
CS(Il)=CU(ll)AXKD(l.ll)A1.0E-3
SSTREM(II)=WSTftEMACU(II)
SDEEP(1I)=UDEEPACW(II)
RETURN
END
C
C
C
SUBROUTINE SUSPNLK IYR,II,GNDCON)
C
C
CAAA COMPUTES AIR CONCENTRATION AND ATMOSPHERIC SOURCE TERM
CAAA AT SPILLAGE AREA. CALLED ANNUALLY BY MAIN.
A63
-------
CAAA
CAAA
CAAA
C
C
C
C INPUT VARIABLES
C IYR = CURRENT YKAR OE SIMULATION
C II CURRENT NUCLIDE
C SAREA = AREA COVERED BY SPILLAGE
C GNDCON= GROUND CONCENTRATION
C 1RRES1= FIRST YEAR OE RESUSPENSION RATE
C IRRES2= LAST YEAR OE RESUSPENSION RATE
C RR RESUSPENSION RATE
C FTMECH=FRACIION OF YEAR FOR MECHANICAL DISTURBANCE
C U WIND VELOCITY
C
C
C
C INTERMEDIATE VARIABLES
C
C RE RESUSPENSION FACTOR
C YS01 = NORMAL CONTRIBUTION TO ATMOSPHERIC SOURCE
C YS02 = CONTRIBUTION TO ATMOSPHERIC SOURCE FROM MECHANICAL
C DISTURBANCE
C
C
C OUTPUT VARIABLES
C
C AIRCON= AIR CONCENTRATION AT SPILLAGE AREA
C YSO = ATMOSPHERIC SOURCE AMOUNT AT SPILLAGE AREA
C
C
C
C ASSUME ALL RADIONUCLIDES DEPOSITED ON SOIL SURFACE AT
C TIME ZERO.
C
C
DOUBLE PRECISION NUCLID
COMMON/CNTRL/NONCLD.MAXYR,TITLE(20).LOCATE*12),NYR1,NYR2,
I PCTl.PCT2,LEAOPT,IOPVUV.IOPSAI,IPRTl,iPRI2,IDELT.IXTS,
* IRRESl.IRRES2.LIND,IAVGl.IAVG2.RRrFTMECHfINTYR(4), RAE1085
S WUAIL.UUATA.UUATH,SUATL.SUATA,SWATH,IVAP.I6SMT.IDISP
COMMON/NUC/NUCLID<40),ATMASS<40),TRAM(40).SOAM(40).ATAM(40>.
J AQAM(40.10000)'STAM(40).POLO(40),POLB(40),CS(40).CU(40).
S SSIREM(40).SDEEP(40).AIRCON(40).YSO(40),SOAVG(40).CON(46).
* AQCON(40),STCON(40),AICON(40).AQAVG(40).STAVG(40).DETW(40), ISINEWL
S ATAVG(40),FMC(40),FMG(40),DECAY(40),XKD(4.40),SOL(40).
i FF(40).RA(40).RU(40),BV(40),BR(40).DERAI£UO);CUAT(40)
COMMON/LAND/RAINF,ERODF.STPLNG.COVER.CONTRL.SEDELR.SOILOS.
8 PORS,BDENSfDUET,EXTENT,ADEPTH,PD,RUNOFF,RESAT ,
COMMON/AIR/H.VG.U,II,IS,VD,XG,HLID,ROUGH, ETUIND,CHIQ,RE1.RE2.RE3
T=FLOAT(IYR)i365.
r>
IFdNSlTE .EQ. 1 .AND. IRRES1 .LI. IYR) GO TO 11
C RESUSPENSION FACTOR BY ANSPAUGH ET AL
C
A64
-------
RE=RElAEXP(RE2AS&RT
-------
c
C WDEPTH = DEPTH OF UATER' IN TRENCH
C NEWUAT = VOLUME OF UATER ENTERING TRENCH
C PC FRACTION OF TRENCH CAP THAT HAS FAILED
C
C
C
C
REAL NEUUAT
COMMON/EVAP/PPN.PHID.P,XIRR,S(12),T(12),TD<12),XINFL,SINFL,
* SMASS.WMASS.WDEEP
COHMON/IRCH/IAREA.TDEPTH, OVER. PORT, RELFAC,BENCON.OLDUAT, SEEP
COMMON/WAIER/DTRAQ, DWELL. GWV,XLSAT,STFLOW,AQTHK. AGO ISP,
& PORA,PORV,PERMV.IAQSTF.CPRJ,VUV.HGRAD.FRACB,ALV.ALH,BDENV
COMMON/LANB/RA INF, ERODF.STPLNG. COVER, CONIRL.SEBELR.SOILOS,
& PORS.BBENS, DUET, EXTENT, ADEPTh,PD, RUNOFF, RESAT,
X INSIIE
VOLBI=0.
VOLOT=0.
PC=CAP(NYEAR)
DELI=0.1
DO 30 1=1.10
NEWUA1-=TAREAA(PCA(PPN+XIRR) + <1.~PC)AXINFL)AOELT
TINFL=NEUWAT/TAREA
OLDUAT=OLDUAT+NEUUAT
UDEPTH=OLDUAT/(PORI*IA8EA)
DMAX=WDEPIH ISICH
IF(UDEPIH .GT. TDEPIH)WDEPIH=TDEP1H+(WDEPIH-X£|£P11H)APORT
VOLO=0.
IF
-------
CAAA
CAAA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
INPUT VARIBALES
II = NUCL1DE NUMBER
NYEAR = CURRENT YEAR OF 3IHULATION
ITIME = TRANSIT TIME FROH TRENCH TO WELL
VOLB = VOLUME OF WATER LEAVING TRENCH
POLE = AMOUNT Of NUCLIDfc LEAVING BOTTOM OF TRENCH
DECAY = RADIOACTIVE DECAY CONSTANT
OU1PU1 VARIABLES
AQAM = AMOUNT OF NUCL1DE AT WELL SITE
DOUBLE PRECISION NUCLID
COMMON/CNIRL/NONCLD.MAXYR, TITLE(20).LOCATE<12>,NYR1.NYR2,
I PCT1.PCT2.LEAOPT, IOPVWV.IOPSAT,IPRT1.IPRT2.IDELT,IXTS,
& IRRESl.IRRES2.LIND,IAVGl.IAVG2.RR,FTMECH,INTYR(4), RAE1085
& WWATL.WWATA.WWATH.SWATL.SWAIA,SWATH.IVAP.IBSMT.IDISP
COMMON/NUC/NUCLID<40),ATMASS<40),TRAM(40),SOAM(40),ATAM<40),
& AQAM(40.10000),STAM(40).POLO(40).POLB(40),CS(40),CW<40).
I SSIREM<40),SDEEF<40).AIRCON(40),YSO(40),SIJAVG<40),CON<40).
& AQCON(40>,STCON(40),ATCON(40).AQAVG(40).STAVG(40).BETW(40>, ISINEWL
& ATAVG(40).FMC(40).FMG(40).BECAY(40).XKD(4,40),SOL(40).
8 EF(40).RAUO).RW(40).BV(40)fBR(40),DERATE(40),CWAT(40)
DIMENSION IIIME<40)fDDEIA<40)
C
C CALCULATE CORRECT POSITION IN ARRAY AND DECAY THE MATERIAL
C FOR THE PERIOD OF TIME MATERIAL IS IN TRANSIT FROM TRENCH
C TO WELL.
C
ITMP=11IME(II)
IF«NYEAR+11MP> .61. (MAXYR) .OR. ITMP .LT. 0) GO TO 10
AQAM(II,NYEAR+ITIME(n»=D£TU(Il)A(PULS(II) + ISIMOD
& SDEEP(II))ADDEIA(II)
10 CONTINUE
RETURN
END
SUBROUTINE QUANC8(FUN,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)
REAL FUN ,A.B,ABSERR,RELERR,RESULT,ERREST,FLAG
INTEGER N&FUN
ESTIMATE THE INTEGRAL OF FUN(X) FROM A TO B
TO A USER PROVIDED TOLERANCE.
AN AUTOMATIC ADAPTIVE ROUTINE BASED ON
THE 8-PANEL NEWTON-COTES RULE.
INPUT
FUN 1HE NAME OF THE INTEGRAND FUNCTION SUBPROGRAM FUN(X)
THE LOWER LIMIT OF INTEGRATION
B THE UPPER LIMIT OF INTEGRATIONS MAY BE LESS THAN A)
RELERR A RELATIVE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)
ABSERR AN ABSOLUTE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)
A67
-------
c
c
c
c
c
c
c
c
c
c
OUTPUT
RESULT AN APPROXIMATION TO THE INTEGRAL HOPEFULLY SATISFYING THE
LEAST STRINGENT OF THE TWO ERROR TOLERANCES.
ERREST AN ESTIMATE OF THE MAGNITUDE OF THE ACTUAL ERROR.
NOFUN THE NUMBER OF FUNCTION VALUES USED IN CALCULATION OF RESULT.
FLAG A RELIABILITY INDICATTOR IF FLAG IS ZERO, THEN RESULTPROBABLY
SATISFIES THE ERROR TOLERANCE. If FLAG IS
XXX.YYY. THHEN XXX = THE NUMBER OF INTERVALS UHICH HAVE
NOT CONVERGED AND O.YYY = THE FRACTION OF THE INTERVAL LEFT
TO DO WHEN THE LIMIT NOFUN WAS APPROACHED.
REAL MO,W1,W2,U3,W4,AREA.XO,FO,STONE.STEP,COR11,TEMP
REAL QPREV.QNOW.QDIFF,QLEFTfESTERS.TOLERR
REAL QRIGHT(31).F<16),X(16),FSAVE(3.30).XSAVE(8.30>
INTEGER LEVMIN,LEVMAX,LEVOUI,NOMAX,NOFINfLEV,NIM,I,J
AAA STAGE 1 AAA GENERAL INITIALIZATION
SET CONSTANTS
LEVMIN = 1
LEVMAX = 30
LEVClUT = G
NOMAX = 5000
NOF1N = NOMAX - 8A(LEVMAX-LEVOUT+2AA(LEVOUT-H))
TROUBLE WHEN NOFUN EQUALS NOFIN
WO = 3956.0/14175.0
Ul = 23552.0/14175.0
W2 = -3712.0 / 14175.0
U3 = 41984.0/14175.0
U4 = -18160.0 / 14175.0
INITIALIZE RUNING SUMS TO ZERO
FLAG = 0.0
RESULT = 0.0
COR11 = 0.0
ERREST = 0.0
AREA = 0.0
NOFUN = 0
IF(A .EG. B ) RETURN
C
C AAAAA STAGE 2 AAAA INITIALIZATION FOR FIRST INTERVAL
C
LEV = 0
NIM = 1
XO = A
X(16) = B
QPREV = 0.0
FO = FUN(XO)
STONE = (B-AJ/16.0
X(8) = XXO + X(16))/ 2.0
X(4) = (XO + X(8))/2.0
X(12) = (X(8) + X(16))/ 2.0
X(2) = (XO + X(4» / 2.0
X(6) = (X(4> + X(8)> / 2.0
X(10) = (X(8) < X(12)) / 2.0
A68
-------
X(14) = (X(12) + X(16))/ 2.0
C
DO 25 J=2.16.2
F(J) = EUN(X(J))
25 CONTINUE
C
NOEUN = 9
C
C AAAAA STAGE 3 AAA CtNlERAL CALCULATION
C REQUIRES QPREV,X10,X2,X4. .X16,EO,E4. E16
C CALCULATIES X1.X3,X5...X15, El,E3,...,E15rGLEEIrQRIGHT
C QNOUfGDIEE,AREA.
C
30 X(l) = (XO < X(2)) / 2.0
Ed) = EUN(X(1))
DO 35 3 = 3, 15, 2
X(J) = (XU1!) + X < U2A
-------
C ASSEMBLE Lttl HAND ELEMENTS FOR IMMEDIATE USE
C
QPREV = QLEFT
DO 55 I = 1,8
J = -I
F(2AJ+18) = EU-t-9)
X(2*J+18) = X(J+9)
55 CONTINUE
GO TO 30
C
C AAAA STAGE 6 AAA TROUBLE SECTION
C NUMBER OF FUNCTION VALUES IS ABOUT TO EXCEED LIMIT
C
60 NOFIN = 2ANOFIN
LEVMAX = LEVOUT
C IEMP1=B-A
FLAG = FLAG+(b-XO)/(B-A)
GO TO 70
C
C CURRENT LEVEL IS LEVMAX.
C
62 FLAG = FLAG + 1.0
C
C
C AAAASTAGE 7 AAA INTERVAL CONVERGED
C ADD CONTRIBUTIONS INTO RUNNING SUliS
C
C
70 RESULT = RESULT + ClNOU
ERREST = ERREST + ESIERR
COR11 = CORli + QDIFF / 1023.0
C
C LOCATE NEXT INTERVAL
C
72 It (NIM .EQ. 2A(Nl«/2)) GO TO 75
NIM = NIM/2
LEV = LEV-1
GO TO 72
75 NIM = HIM + 1
IE (LEV .LE. 0 ) GO TO 80
C
C ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL
C
QPREV = QRIGHT(LEV)
XO = X(16)
FO = f(16)
DO 78 I = 1.8
FC2AI) = FSAVE(1,LEV)
X(2AI) = XSAVEdJLEV)
78 CONTINUE
GO TO 30
C
C AAA STAGE 8 AAA FINALIZE AND RETURN
C
80 RESULT = RESULT + COR11
C
C
C AAA MAKE SURE ERREST NOT LESS THEN ROUNDOFF LEVEL
A70
-------
IF(ERREST .EG. 0.0) RETURN
82 TEMP = ABS(RESULT) + ERREST
IFd'EMP .NE. ABS(RESULI)) RETURN
ERREST = 2.0AERREST
GO TO 82
END
C
C
C
C
DOUBLE PRECISION FUNCTION FCN(T)
C
C FCN DETERMINES FUNCTIONAL EVALUATIONS OF
C THE INTEGRAND OF THE GROUNDUATER TRANSPORT MODEL.
C FCN IS CALLED BY QUANC8.
C
IMPLICIT REALA8 NRL.NRU,IOISI(20>.ILOC.JLOC
COMMON/COMOR/ORGN(20).NORGN,TIME(20),DOSE(20,40,4,2), DIABLE(7)
COMMON/LEIFAC/HLET(20),LLET(20)
COMMON/COMCA/CANC(20),NCANC,RELABS(20),RISK(20,40,4,2), RTABLE(7),
A71
-------
> AGEX,YRLL(20.40.4.2)
COMHON/COMRF/REF(20,40.4).FTABLE(7)
COHHON/COMNU/NUCLIDUO),NONCLD,PSIZE(40>,RESP(40>.GIA8S (4.40).
> INDPOP
COtt«ON/COi1LOC/RNLOC(10).OGLOCnO),PTLOC(10).FALOC<10),
> HLLOC(10).LTABL£(10)fNTLOC
COHMGN/lOHGtN/GEN(3) .NGLN. GDOSEO, 40,4.2),GRISK<3.40,4,2) .
> GENEFF,GRFAC(2),REPPER.GLLET<3).GHLET(3).bK£n3,40.4)
COMMON/COMRN/OREP(20),RREP(20).CREP(20),ULRN(20,20).
A BRISK.RREF(2).RYRLL.NOREPfNfift£PfNCREP
COHMCWCOHUS/ARRAY(2200)
C
C TRANSFER 10 33 IF DOSE CALCULATION; ELSE CONTINUE WITH INPUT
C
IF (lt'LAG.GI.0) GO TO 33
C
CAAA SET DEFAULT VALUES.
OUIPUT=.IRUE.
ILOC=0
JLOC=0
PLOC=100.
AG£X=70.7565
REPPER=1.41330E-2
GSCFAC=.5
NORGN=0
NCANC=1
CANC(1)=TOTBOD
ILEI(1)=0
ILE1(2)=2
DO 10 J=l,7
DIABLE(J)=0
RTABLE(J)=0
FTABLE(J)=0
10 CONTINUE
RTABLE(6)=4
ILET(1)=1
ILE1(2)=1
HO 20 J=1.20
TIME(a>=70.
HLE1(J)=20.
LLET(J)=1.
RELABS(J)=1.
20 CONTINUE
NGEN=0
NOREP=4
NCREP=1
NRREP=0
RREFS(1)=P0218
RREPS(2)=PB214
RREPS(3)=BI214
RR£PS(4)=P0214
CREP(1)=PULMO
OREP(1)=LUNGS
OREP<2)=NDP
OR£P(3)=TDP
OREF(4)=PUL
REAEK26,11700) TITLE
URITt(6,10000) TITLE
REAIK26. INPUT)
IF (PLOC.NE.O) URI1E(6,10100)PLOC
A72
-------
US Itli(6,10200)
URITE(G,10300)
,O.OR.IL£T(1).EQ.2)
,1.0R.ILET(1).EQ.2)
,O.OR.ILET(2).EQ.2) WR ITE (6', 10400 )
, 1.0R.ILET(2).EQ.2) UR HE(6,10500)
DTABLE.RTABLE.EIABLE
CAAA
40
CAAA
50
CAAA
11800
11850
NORGN
.^u.ivuw, (ORGN( I). TIME (I ),!=!, NORGN)
(ILET(l).GI.O) READ<26,QFACIR)
(ILET(l).GT.O) WRIIE(6,10900) (ORGN(I),LLE1(I),HLET(I) , 1=1,
,I=1,NCANC)
CAAA
CAAA
25
27
30
55
11305
11310
CAAA
IF (ILET(l).EQ.
IF (ILEIU).EQ.
IF (ILET(2).EQ,
IF (ILET(2).EQ,
URIIE(6.10600) L^m..^. «.
WRITE(6,11900) GSCFAC
READ IN ORGAN PARAMETERS
READ<26FORGAN)
URIIE(6,10700)
URITE(6,10800)
IF
IF
NORGN)
READ IN CANCER PARAMETERS
READC2G,CANCER)
URIIE(6,11000) NCANC
WRITE(6.11100) (CANC(I).RELABS(I)
READ IN GENETIC PARAMETERS
READ(2G.GENTIC)
IF(GENEFt) UR1IE(6,11800) (GEN( I), 1=1 ,NGEN)
IF(GENEFF) URITE(G>. 11850) GRFAC.REPPER
FORMATCOGENETIC DOSES ARE PRINTED FOR '
3(1X,A8))
FORMATC THE RISK FACTOR (PER RAD/MILLION BIRTHS)',
' FOR GENETIC DOSE ARE :'/
G15.8 ' FOR LOU LET, AND'/
G15.8 ' FOR HIGH LET,'/
' AND THE REPLACEMENT RATE FOR THE POPULATION IS :'/
1X.Q10.S.' YEAR-1')
CONVERT 10 /MRAD/BIRIHS
GRFAC(l)=GRFAC(l)Al.E-9
GRFAC(2)=GRFAC(2)Al.E-9
READ IN RADIONUCLIDE PARAMETERS
READ(26,RNUCLD)
WRIIE(6,11200) NONCLD
URITE(6,11300)(NUCLID(I),PSIZE(I),RESP(I), (G IABS(J, I),J=l,4),1=1,
NONCLD)
DO 30 1=1.NONCLD
DO 25 K=1.4
IF(NUL'L1D(1).EQ.RREPS(K)) GO TO 27
CONTINUE
GO TO 30
NRREP=NRREP+1
RREP(NRREP)=RREPS(K)
CONTINUE
NTLOC=0
READ(26.LOCIBL)
lE(NTLOC.EO.O) GO TO 55
WR ITE (6', 11310) (RNLOC( I) ,OGLOC( I) ,PTLOC( I) ,FALOC (I) ,HLLOC( I),
I=1,NTLOC)
CONTINUE
FORMATCO',12, ' LOCATION TABLES ARE TO BE OUTPUT FOR:'/
' NUCL.IDE ORGAN PATHWAY QUANTITY LET'/
OR CANCER'/)
rnUMAT/TY AQ 1Y A Q AY T'"* 7Y i''"* 7Y T9^
L U I\ n H 1 \ lAyHOy lA«riOj"A« J. M / A -L ^ f 'A* 1*J /
READ IN DOSE RATES AND HEALTH RISKS
CALL RDSTOR(OUTPUT)
IF(NORGN.NE.O) CALL RDORGF
A73
-------
C END OF DARTAB INPUT; RETURN
C
RETURN
C
C
C BEGIN DOSE CALCULATIONS
C
C
CAAA CHOOSE LOCATION AND FIND EXPOSURES
C
33 CALL CHLOC(PLOC,CONC.GSCtAC,IFLAG)
IF ( IFLAG .NE. 1 ) CALL SUMMRY(TITLE,GSCFAC,IFLAG)
C RETURN IE ANNUAL SUMMARY OR MAXIMUM DOSE CALCULATION
C
IF ( IFLAG .EQ. 2 ) RETURN
IE ( IFLAG .lifl. 3 ) RETURN
C
IF (NURGN.LE.O) GO TO 70
CAAA DECIDE IF LOW AND HIGH LET ARE TO BE SEPARATE TABLES
CAAA AND THEN OUTPUT TABLES
IDO=0
DO 60 J=l,7
IF (DTABLECn.NE.O) 1DO=1
TABL£(J)=DTABLE(J)
60 CONTINUE
IE(N1LOC.EQ.O .OR. 1DO.EQ.1) GO TO 67
DO 65 J=1.NTLOC
IF(FALOC(J).EG!.1)1DO=1
65 CONTINUE
67 CONTINUE
CAAA ILET = 0 MEANS ONLY TABLES FOR LOU AND HIGH LET SEPARATELY
CAAA ILET = 1 MEANS ONLY A TABLE FOR LOU AND HIGH LET COMBINED
CAAA ILET = 2 MEANS BOTH SETS Of TABLES
IF (IDO.EQ.l) CALL PREPDR(TABLErILEK1),TITLE,GSCFAC, IFLAG)
C RETURN IF PATHUAY DOSE CONVERSION FACTOR CALCULATION
IF ( IfLAG .EQ. 1 ) RETURN
C
C
70 IDO=0
DO 80 J=1.7
IF (FTABLE(J).NE.O) IDO=1
80 TABLE(J)=FTABLE(J)
IF(NTLOC.EQ.O .OR. IDO.EQ.l) GO TO 87
DO U5 J=1.NTLOC
IF(EALOC(J).LQ.3) IDO=1
85 CONTINUE
87 CONTINUE
IF (IDO.EQ.l) CALL PREPRt(TABLE,!ITLE.GSCFAC. IELAG)
CAAA OUTPUT RISK TABLES
IDO=0
DO 90 3=1.7
IF (RTABLE(J).NE.O) 1UO=1
90 TABLE(J)=RTABLE(J)
IF(NTLOC.EQ.O .OR. IDU.hQ.l) GO 10 97
DO 95 J=1,NTLOC
IF(FALOC(J).EQ.2)IDO=1
95 CONTINUE
A74
-------
97 CONTINUE
IF (IDG.ta.l) CALL PREPHR' THE LOCATION HAVING' F8.2 ' X OF THE HIGHEST TOTAL RISK.'/)
10200 FORMATC DOSE RATE TABLES FOR LOW AND HIGH LET WILL BE ',
> 'PRINTED SEPARATELY.')
10300 FORMATC DOSE RATE TABLES COMBINING LOW AND HIGH LET ',
> 'UILL B£ PRINTED.')
10400 FGRMATC HEALTH RISK TABLES FOR LOW AND HIGH LET WILL BE ",
!> 'PRINTED SEPARATELY ')
10500 FORMATC HEALTH RISK'TABLES' COMBINING LOW AND HIGH LET ',
> 'WILL BE PRINTED.')
10600 FORMATCOO INDICATES THE TABLE WILL NOT BE PRINTED'/
A' 1 INDICATES INDIVIDUAL VALUES WILL BE PRINTED'/
B' 2 INDICATES MEAN INDIVIDUAL VALUES WILL BE PRINTED'/
C' 3 INDICATES COLLECTIVE VALUES WILL BE PRINTED'/
D' 4 INDICATES ALL OF THE ABOVE WILL BE PRINTED'//
QUANTITY TABLE NO. 1 2 3 4 5 6 7V
ITDOSITKfiTED T77T127IX77
2.HEALTH RISKS ',7(12,1X)/
3.RISK EQUIVALENT FACTOR ',7(12,IX))
10700 FORMATCOTHERE ARE ',14' ORGANS TO BE OUTPUT. THEY ARE:'/)
10800 FORMATdX.'GRGAN' ,4X'TIME', 4X,'ORGAN',4X,'TIME', 4X,
l'ORGAN',4X,'IIME'/'
> (3(1X. A8,2X.F4.0,2X»)
10900 FGRMATCO ORGAN DOSE EQUIVALENT FACTORS '/
A ' LUW LET HIGH LET'/
A (2X.A8.E15.5.1X.E15.4))
11000 FORMATCOIHERE ARE
> ' A 1 ,..__.
11100 FORhAIC CANCER CANCER CANCER CANCER'/ (1X,4(AB,
> 1X.E2.0.1X)))
11200 FORrtATCOTHERE ARE '.14,' RAD IONUCL IDES TO BE OUTPUT.')
11300 FORMATC NUCLIDE PARTICLE SIZE CLEARANCE CLASS '
> 20X.'G.1./ABSORPIIGN FRACTION V4CJX, 'STOriACH' 8X. 'Si', 13X, 'ULI',
11700'FGkMAf(20A4) ' ' ' '"*' ' ' ' '
11900 FORMATCOl'HE GROUND SURFACE CORRECTION FACTOR IS ',F5.2/)
END
C
C
C
C
SUBROUTINE RDSTOR(OUTPUT)
CAAA THIS SUBROUTINE READS AND STORES DOSE RATES
CAAA AND HEALTH RISKS FOR ORGANS AND CANCERS
REALA8 NUC.NUCLID,ORGN,CANC,0,C,OG,GEN,OREP,CREPfRREP
LOGICAL GENEFF.OUTPUT
COMMON/COMOR/ORGN(20).NORGN.TIME(20).DOSE(20.40,4,2). DTABLE(7)
COMMON/COMRN/OREP(26).RREP(20),CREP(20),WLRN(20,20),
A RRISK,RREF<2),RYRLL,NOREP,NRREP.NCREP
COMMON/COMCA/CANC(20).NCANC,RELABS(20),RISK(20,40f4,2), RIABLE(7),
> AGEX,YRLL(20,40.4,2)
COMMON/COMRF/REF(20,40.4).FTABLE(7)
COMMON/COMNU/NUCLID(40)rNONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMGN/COMUS/C(40),0(40),D(2,40),R(2,40),RF(40),YLL(2,40),
..,..
TC'OTHERS ARE '.14,' CANCERS TO BE OUTPUT.'/
INDICATES ABSOLUTE RISK; A 2 IS RELATIVE RISK.')
CANCER CANCER CANCER CANCER'/ (1X,
A75
-------
'> G (2,3), OG< 3), DCHK ( 20, 40) , RCHK ( 20.40), GCHK (3.40)
COMMON/(JOMGEN/GEN(3),NGEN.GDOSE(3.40,4,2).GRISK(3.4
> GENEFF,GRFAC(2)FREPPERFGLLET(3)rGHLET(3),GS£f(3,40,
DATA TRU/.TRUE./.FAL/.'FALSE'./
40.4,2),
4)
DATA TRU/. . .
CAAA ZERO OU1 ALL ARRAYS
NDO=NORGN+1
DO 35 N=l,2
DO 30 J=i,4
DO 30 K=1,NONCLD
DO 10 L=1,NDO
DOSE(L,K,J.N)=0.0
IF(L.GT.NGEN) GO TO 10
GDOSE=0.0
20 CONTINUE
30 CONTINUE
35 CONTINUE
DO 38 L=l,40
DO 37 K=l,20
DCHK(K,L)=TRU
RCHK(K.L)=TRU
37 CONTINUE
DO 39 K=l,3
GCHK(K,L)=TRU
39 CONTINUE
38 CONTINUE
CAAA READ FIRST RECORD
41 READ(25,END=180) NUC,SI2EIN,RESPIN,GI1N,TIHIN, IND
IFIND=0
CAAA CHECK TO SEE If THE RADIONUCLIDE IS IN OUTPUT LIST
DO 50 K=1.NONCLD
IF (NUC.EQ.NUCLID(K)) GO TO 60
40 CONTINUE
50 CONTINUE
IFdEIND.EQ.OGO 10 125
GO TO 41
CAAA FIND OUT WHAT TYPE OF RECORD FOLLOWS
60 IRA=IND/10
IFURA.GT.2) GO 10 401
ICHOS=IND-IRAA10
IF (ICHOS.NE.2) GO TO 75
DO 70 L=l,4
IF (ABS(GIlN(L)-GIABS(L,K)).GT.l.E-6) GO TO 40
70 CONTINUE
75 If (ICH03.NE.3) GO TO 80
IF (ABS(SIZEIN-PSIZE(K)).i3X.l.E-6) GO TO 40
IF (RESPIN.NE.RESP(K)) GO TO 40
80 If UND.LE.5) GO TO 130
CAAA THE NEXT TWO RECORDS CONTAIN CANCERS AND RISKS
IF(IFIND.NE.O) GO TO 81
A76
-------
READ(25) NC.1LEI.(C(I),I=1,NC)
READ(25) ((fe(L.I).L=l,ILCT),I=l,NC)
READ(25) «YLL(L,I),L=1,ILEI),I = 1,NC)
READ(25)(RF(I),1=1,NC),TRF
81 IEIND=1
REF(NCANC+1,K,ICHOS-1)=IRF+REF(NCANC+1,K.ICHOS-1)
CAAA CHECK 10 SEE IF THE CANCER IS IN OUTPUT LIST
DO 110 1=1.NC
DO yO J=1.NCANC
IF (C(I).EGI.CANL(J)) GO I'D 100
90 CONTINUE
GO TO 110
CAAA THE CANCER NAMES MATCH, NOW DO WE HAVE RELATIVE OR ABS RISK
100 IF (RELABSm.NE.lKA) GO TO 110
CAAA A MATCH. WORE THE RISK
RCHK(J,K)=FAL
RISK(J.K,1CHOS-1,1)=R(1.I)
YRLL(J,K,J:CHOS-1.1)=YLL(1,I)
IF (ILET.LE.l) GO TO 105
RISK(J,K,ICHOS-1,2)=R(2.I)
YRLLGO TO 110
DO 106 L=1,NRREP
IF(NUCLID(K).EQ.RREP(L)) GO TO 107
106 CONTINUE
GO TO 110
107 DO 108 L=lfNCREP
IF(C(1).EQ.CREP(D) GO 10 109
108 CONTINUE
GO TO 110
109 RISK(J,K,2,2>=0.0
YRLLd,K,2,2)=0.0
110 CONTINUE
CAAA THE RISKS HAVE BEEN STORED OR SKIPPED, GO TO NEXT RECORD
GO TO 40
CAAA SKIP THE RECORDS
125 READ(25,END=180) DUM
READ(25.END=180) DUM
IEdND.LE.5 .OR. IND.G1.90) GO TO 41
REAO(25r£NJ)=180) DUM
READ(25,END=180) DUM
GO TO 41
CAAA THE NEXT TWO RECORDS CONTAIN ORGANS AND DOSE RATES
130 IF(IFIND.NE.O) GO TO 131
READ(25) NO.ILET.(0(1),1=1,NO)
READ(25) ((D(L,I),L=1,IL£T),I=1,NO)
131 UIND=1
CAAA FOR INTERNAL DOSES, ALSO CHECK OTHER NUCLIDE PARAMETERS
CAAA CHECK TO SEE IF THE ORGANS ARE ON OUTPUT LIST
140 DO 170 1=1,NO
DO 150 J=1,NORGN
IF (O(I).EQ.ORGN(J)) GO TO 160
150 CONTINUE
GO TO L70
CAAA A MATCH SO STORE THE DOSE
160 IF(INO.GI.3> GO TO 159
IF(AKS(TIMIN-TIME
-------
DCHK(J,K)=FAL
IF(1ND.NE.3) GO 10 170
BO 162 L=lfNRREP
IE(NUCL1D(K).EG.RREP(L)) GO TO 163
162 CONTINUE
GO TO 170
163 DO 165 L=1,NOREP
IF(ORGN(J).EQ.OREP(L)) GO TO 167
165 CONTINUE
GO TO 170
167 BOSE(J,K,2,2)=0.0
170 CONTINUE
IE<1ND.LI.4) GO TO 40
HO 172 1=1,NO
BO 152 J=1,NGEN
IF(0(I).£fl.GEN(J)) iJO TO 161
152 CONTINUE
GO TO 172
161 GDOSEC1,K.IND-1,1)=D<1,1)A30.
IF(ILET.GT . i)GBuSE (J, K,IND-1f 2>=D< 2f I> A30.
172 CONTINUE
GO TO 40
CAAA BOSES HAVE BEEN SKIPPED Ok STORED, GO TO NEXT RECORB
180 CONTINUE
IU=TRU
BO 200 K=1,NONCLD
DO 200 J=1,NORGN
IF(.NOT.DCHK(J,K)) GO TO 200
IF(IU) Um£(6.900)
URITE(6,901) 0&GN< J),NUCLID < K)
IW=FAL
200 CONTINUE
900 FORMAT CO THE FOLLOWING NUCLIDES AND ',
< 'ORGAN DOSE FACTORS UES£ NOT FOUND',
> ' IN THE INPUT DATA SETS:'/
> ' ORGAN NUCLIDE'/)
901 fORMAT(lX,A8,lX,A8)
IW^TRU
DO 300 K=1,NONCLB
DO 300 J=1,NCANC
IF(.NUT.RCHK(J,K)) GO TO 300
IE(IW) WRITE(6,902)
IU=tAL
902 FORMATCOIHE FOLLOWING NUCLIDES AND ',
< 'CANCER RISK FACTORS WERE NOT FOUND',
> ' IN THE INPUT DATA SETS:'/
> ' CANCER NUCLIDE'/)
URITE(6,901) CANC(J),NUCLIB ' FOUND IN THE INPUT BATA SETS:7/
> ' GEN.BOSE NUCLIBE')
A78
-------
WRITE<6,901) GEN(J).NUCLID(K)
400 CONTINUE
DO 625 J=lfNONCLD
DO 625 K=3,4
NGN=N(iEN-l
AVG=O.O
DO 600 1=1.NGN
AVG=AVG+GDOSE(I,J,K,1)
600 CONTINUE
GDOSE(NGEN,J,K,1)=AVG/FLOAT(NGN)
625 CONTINUE
DO 700 L=l,2
DO 700 1=1,4
DO 700 K=1,NUNCLD
GRISK(1,K,I,L)=GDOSE(3,K,I,L)AGRFAC(L)
700 CONTINUE
DO 705 1=1,4
DO 705 K=1.NONCLD
GREFd.K, l) = (GRlt;K ICHOS=2
IF(ICHOS.EQ.O) GO TO 125
IF(.NOI.GENEFF) GO TO 125
IF(1CHUS.NE.2)GO TO 507
DO 505 L=l,4
505 IF (ABS(GIIN(L)-GIABS(LfK)).GI.l.E-6) GO TO 40
507 IF(ICHOS.NE.3)GO TO 510
IF GO TO 40
510 IEdEIND.NE.0) GO TO 511
READ(25) NG,L£T,(OG(I).I=1,NG)
READ(25) ((G(L,i),L=l,LET),1=1,NG)
511 IFIND=1
520 DO 530 1=1,NG
DO 525 J=1,NGEN
IF(OG(I).EQ.GEN(J)) GO TO 540
525 CONTINUE
GO 10 530
540 GlJOSE(J,K,ICHOS-l,l)=G(l,I)
IF(LEI.GT.l) GDOSE(J,K,ICHOS-l,2)=G(2fI)
GCHK(J,K)=EAL
530 CONTINUE
GO TO 40
800 lf(lND.NE.33) GO TO 125
READ(25) NC,IL£I.(C(I).I=1.NC)
READ(25) ((R(L.1),L=1,1LE1),1=1,NC)
READ(25) ((YLL(L,I),L=1,ILET),I=1,NC)
READ(25) (RF(1),I=1,NC),1RF
IFIND=1-
CREP(1)=C(1)
NCREP=NC
RRISK=R(1,1)
RYRLL=YLLU.l)
RREF(1)=RF(I)
RREF(2)=TRF
A79
-------
c
c
c
c
10000
10100
10200
10300
100
10175
GO TO 40
END
SUBROUTINE FACOUT
REALAfc NUCLID.ORGN.CANC,OG,GEN,OREP.CREP,RREP,RN222,UBODY
DATA RN222/8HRN-222 /,WBODY/5W BODY '/
LOGICAL GENEFF
COMMON/COMOR/ORGN(20),NORGN.riME(20).DOSE(20.40,4.2),DTABLE(7)
COMHON/COMRN/OREP(20):RREP(20).CREP(20),WLRN(20,20),
A RRISK.RREF(2).RYRLL.NOREP.NRREP,NCREP
COMMON/COMCA/CANC<20).NCANC,RELABS<20),RISK<20,40,4,2),
A RTABLE(7).AGEX,YRLL(2d,40,4,2)
COMMON/COMRF/REF(20.40.4>,FTABLE(7>
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS(4,40),
A INDPOP
COMrtON/COMGEN/GEN(3),NGEN.GDOSE(3.40,4,2),GRISK(3,40.4,2),
A GENEFFlGRFAC(2)1REPPERIGLLET(3)lGHLET(3),6RliF(3,40f4)
DO 1000 K=1.NONCLD
URITE(6,10000) NUCLID(K)
URITE<6.10100)
FORMAK'IFOR NUCLIDE : '.AS//)
FORMAIC DOSE RATE CONVERSION FACTORS'/
n IX,'ORGAN',11X.'INGEST ION',10X,'INHALATION',
A 9X.'AIR',5X,'GROUND'/
B 12X.'LOW LET',3X,'HIGH LET' 2X,'LOW LET'
B sx 'HIGH LET' 2x!'iMMERsioNJ,ix,'SURFACE')
WRITE(6,10200) (ORGN(I),((DOSE(I,K,J,N),N=1,2),J=l,2),
A (DOSE(I,K.J.l).J=3,4),I=1,NORGN)
FORMAT((IX, AI3,1X,6(1PG10.3)))
IF(.NOT.GENEFF) GO TO 100
USII£(6,10300)
WRITE(6,10200) (GEN(I),((GDOSE(I,K,J,N),N=1,2),J=l,2),
A (GDOSE(I,K.J.1),J=3,4),I=1.NGEN)
tORMATC GENETIC EFFECT DOSE RATE CONVERSION FACTORS')
CONTINUE
WRITE(6.10175)
tORMAKJ0'.28X,'RISK CONVERSION FACTORS' 35X,
'YEARS OF LIFE LOST FACTORS'/
10250
10400
200
10190
B
B
A
B
A IX, ' CANCER', 10X 'INGEST ION' 10X,' INHALATION'
A 9X, 'AIR', 5X, 'GROUND', 9X, ' INGESIION' , 10X, ' INHALATION',
A 7X. 'AIR', 5X, 'GROUND'/
B 12X ,'LOU LET', 3X, 'HIGH LET'. 2X, 'LOU LET'
B SX.'HIGH LET'!2X''lflMElkS10N'. IX, 'SURFACE' 3X,
'LOU LEX' J ' ' '
. , ,
U LEX'.3X. JHIGH LEI' .2X, 'LOW LET'.
'HIGH LET%2X,'1HMERSION' IX 'SURFACE')
TE (6, 10250) (CANC( I) . ( (RISK( I,K, J,N) ,N=1 ,2) , J=l , 2) ,
SK(I,K,J,1),J=3,4),((YRLL(I,K|J NJ,N=1,2J,J=1,2J,
JX 11 1UI
WRITECG.
ill iqi(( T
^AAOI\\ 1,I\,U,A/ m *J ~ \J m ~I / m \ \ Al\ljij\ ^yl\i
(YRLL(I.K.J.l).J=3,4),I=1,NCANC)
tORMAT((lX.A8,lX,12(lPG10.3)))
lE(.NOI.GENEfF) GO TO 200
MRIIE(6,10400)
tORMATC GENETIC EFFECT RISK CONVERSION FACTORS')
WRITE(6.10200) GEN(3),((GRISK(1,K,J,N),N=1,2),J=l,2),
A
-------
A
B
10275
10600
300
1000
400
450
10700
A
B
C
D
C
C
C
C
CAAA
IX,'CANCER'.3X.'INGEST ION'.IX,'INHALATION',
4X. 'AIR' 4X ' GROUND'/31X,'IMHERSION',2X,'SURFACE')
NALL=NCANC+i
CANC(NALL)=UBODY,
WRITE(6.10275) (CANC(1).[,J=l,4),1=1,NALL>
FORMAT((IX.AS,IX.4(IfG10.3)))
IF(.NUl-.GfcNLFE) GO TO 300
URII£(6, 10600)
t'ORMAK' GENETIC EFFECT RISK EQ. CONVERSION FACTOR')
WRITE(6,10275) GEN(3),(GREF(1,K,I),1=1,4)
CONTINUE
CONTINUE
DO 400 1=1,NONCLD
IF(NUCLIB(I).EQ.RN222) GO TO 450
CONTINUE
RETURN
UfclTE(6.10700) RRISK.RYRLL.RREF
FORMATTIFOR RN-222 UORKING LEVEL CALCULATIONS:'/
' RISK CONVERSION FACTOR = ',1PG10.3/
' YEARS OF LIFE LOST FACTOR = ',1PG10.3/
' RISK EQ. CONVERSION FACTOR (PULhNARY) = ',1PG10.3/
' RISK EQ. CONVERSION t'AC'IUR (U BODY ) = ' 1PG10.3)
RETURN
END
SUBROUTINE PREPllRdABLE, 1LET,TITLE,GSCFAC, IFLAG)
THIS ROUTINE PREPARES DOSE RATES TO BE OUTPUT.
REALA8 ORGN,NUCLin,RNLOC,OGLOCfORC,ORG,LAST,GEN,OREP,RREP,CREP,
A GON
COMMON/HEAIi/ORC
COMfiON/COMRN/OREP(20).RREP(20).CREP(20),ULRN(20l20),
A 8RISK.8REE(2)fRYRLL,NOSEPfN**£PfNCKEP
COMMON/COMUOR/FACO(20.4)
COMMON/COMGEN/GEN(3),NGEN,GDOSE(3.40,4,2).GRISK(3,40.4,2),
> GENEEE.GREAC(2)fREPPE8.GLLET(3)fQHLEl(3),GRl;E(3,40,4)
DATA ORG/8H ORGAN /.LAST/SHUT. SUM /.GON/SH GONAD /
COMHON/C01iLOC/RNLOC(10).OGLOC(10),PTLOC(10),FALOC(10)r
> HLLOC(10),LTABLE(10),NILOC
REAL LLET
INTEGER TABLE.FALOC.HLLOC.PTLOC
DIMENSION IABLE(1),IIILE(1).TI1LA(10.3), FACD(4.3) . ILEK2, 3) ,
> TIIL2(2).IIAB(7).IIILB(10.3),IIILGA(10.3).TIILGB(lO,3)f
> FACG(4.3)1NOTE(20).NOT2(20)'OFAC(20,26),NUN(8,3)
DIMENSION SLiOSE(20.40,4,2),SGOSE(3.40,4.2)
DATA NUN/4H(WOR,4HKING.4H LEV,4HiEL) ,4A4H .4H(UOR,
> 4HKING,4H LEV,4HEL) F4A4H ,4H(PER,4HSON ,4HWORK,
> 4HING '4HLEVE 4HL) ,2A4H /
DATA NOTE/4HRAD0.4HN DA,4HUGHT,4HER E,4HXPOS,4HURE:,
> 14A4H /.NOT2/20A4H /
LOGICAL IDO.GENEFE
DATA IITLA/4HINDI,4HVIDU,4HAL D,4HOSE .4HRATE,4H (MR. 4HAD/Y,
> 4HEAR).4H .4H ,4HMEAN,4H IND,4HiVID,4HUAL , 4HDOSE,4H RAT,
> 4HE (M 4HRAD/ 4HYEAR,4H) f4HCOLL,4HECII, 4HVE D,4HOSE ,4HRATE,
> 4H (PE.4HRSON.4H RAD.4H /YE.4HAR) /
DATA TITLB/4HINDI,4HVIDU.4HAL D,4HOSE .4HEQ. f4HRATE,4H(hRE,
> 4HM/YE,4HAR) ,4H ,4HMEAN,4H IND,4HIVID,4HUAL , 4HDOSE,4H EQ.,
> 4H RAI,4HE (M 4HREM/,4HYR) ,4HCOLL,4HECII, 4HVE D,4HOSE ,4HEQ. ,
A81
]
-------
> 4H (PE,4HRSON,4H R£H,4H /YE.4HAR) /
DATA llTLGA/4HINDI,4HVIDUf4HAL G,4HENET,4HIC D,4HOSE ,
< 4H(HRA,4HD) ,4H ,4H .
> 4HMEAN,4H IND,4H1V1D,4HUAL ,4HGtNE,4HIIC ,4HDOSE,4H (MR,
> 4HCOLL.r4HECIi;4HVE G, 4HENET, 4HIC DF4HOSE ,4H< PE,4HRSON,
> 4H RAD.4H) /
DATA mLGB/4HlNDI,4HVIl'U,4HAL G, 4HENET, 4HIC B,4HOSE ,
> 4HEQ. .4H(MRE,4HH) ,4H ,
> 4HMEAN.4H IND 4HIU ID,4HUAL ,4HGENE,4HTIC ,4HDOSEf4H EQ.f
> 4H (MR,4HEH) .
> 4HLOLL.4HECllf4HVE G,4HENE1,4HIC D,4HOSE ,4HEQ. ,4H(PER,
< 4HSON '4HREM)/
DATA 1LE1/4HLOU .4HLET .4HHIGH.4H LEI.4H ,4H /
COHMON/COhOR/ORGN(20).NORGN.TIME(20>,DOSE(20,40f4,2)
COMMON/LEIFAC/HLET(20).LLET(20)
COMMON/COMNU/NUCLID(40),NONCLDfPSIZE(40)fRESP(40)fGIABS (4,40),
> INDPOP
DATA EACD/1 . . 1 . . 1 . . 1 00 . . 1 . . 1 . . 1 . . 100 . . . 001 . . 001 . . 001 . . I/
DATA EACG/ 1 . , I . , I . , 100 . , 1 . , I . , I . , 100 . , . OOl , . OOl , . 001 , . I/
DATA 1KP/0/
CAAAAA?????????
CAAA MULTIPLY DOSES BY EXPOSURES
CAAA PREPARE TABLE FOR HIGH AND LOU LET SEPARATELY
IF (1KP.EQ.1) GO TO 6
IKP = 1
DO b J=1.3
FACD(4,J)=FACD(4,J)AGSCFAC
FACG(4.J)=FACG(4,J)AGSCFAC
5 CONTINUE
6 DO 50 L=l,2
10 DO 20 K=1.2
20 TI1L2(K)=TLET(K,L)
DO 40 11=1,3
DO 42 J=1,NOREP
DO 42 K=lfl
OFAC(J.K)=1.
42 CONTINUE
IDO=. FALSE.
IF(ILEI.EQ.l) GO TO 35
DO 30 K=l,7
ITAB(K)=0
IF (TAHLE(K).NE.IT.AND.TABLE(K).NE.4) GO TO 30
ITAB(K)=1
IDO=.1SUE.
30 CONTINUE
35 CONTINUE
IF (Il'Ab(6).NE.O) 1TAB(&)=0
ORC=ORG
IF (IDO) CALL MULKIT.FACDd, IT). DOSEd.l . 1 ,L) .NORGN.ORGN, TITLE.
> TITLA(l,IT),ITAB,TITL2,NOIEfNUN(l,IT)lOFAC,OREP,NOREP,20,IFLAG)
ORC=GON
IF(IDO.AND.GENEFF) CALL HULK 1T.FACG( 1 , IT) ,GDOSE( 1 . 1 , 1 ,L) .NGEN,
jTIILGA(lII),ITAB,TITf.2,NOT2;NOT2,0.f0.f6,3,iFLAG)
IF(NTLOC.EQ.O) GO TO 38
DO 45 LL=1.NILOC
IF(FALOC(LL).NE.l) GO TO 45
IF(HLLOC(LL).EQ.l) GO 10 45
IF(LTABLE(LL).NE.IT .AND. LTABLE(LL) .Nfi.4) GO TO 45
A82
-------
CALL LUC1AB.IITL2,ORGN.NORGN.20.1)
IFCGENEFF) CALL LOCTAEK IT,RNLOC(LL).PTLOC(LL).OGLOC(LL) .
< EACGd,II),GDOSEd,l,l,L),TIILEtIIlLGAdfII),TITL2,GEN,fiGEN,
45 C6NTINUE
38 CONTINUE
IF (INDPOP.NE.l) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA COMBINE HIGH AND LOU LET USING INPUT QUALITY FACTORS
DO 70 K = 1.2
TITL2(K)=1LET(K,3>
70 CONTINUE
DO 80 1=1,4
DO 80 J=1.NONCLD
DOSE,OEAC,OREPfNOSEP,20fIELAG)
C RETURN IF PATHWAY DOSE CONVERSION FACTOR CALCULATION
C
IF ( ItLAG .EQ. 1 ) GO 10 105
C
ORC=GON
IF(IDO.AND.GENEFF) CALL HULK II.EACGd , II) ,GDOSE,NGEN,GEN,
< IIILE.IIILGB(l,II).IIAB,IIIL2fNOI2,NOI2,0.,0.fO,3,IFLAG)
IF(IT.EQ.2) GO TO 138
IF(NTLOC.EQ.O) GO TO 138
DO 135 LL=1.NTLOC
IF(FALOC(LL5.N£.l) GO TO 135
IF DOSE.TITLE,TITLBd, IT).TITL2.0RGN.NORGN,20.1)
IF FACG(l.II)lGDOSEflIILE,IITLGB(l,II),IIIL2,GEN,NGEN,3,l)
135 CONTIN6E
138 CONTINUE
IF (INDPOP.NE.l) GO TO 105
A83
-------
100 CONTINUE
105 DO 180 I = 1,4
DO 180 J = 1,NONCLD
DO ISO K = 1,NURGN
GDOSE,
A RRISK.RREE(2>.RYRLL,NOREP,NMEP.NCREP
DATA L'AN/SH CANCER /,LASI/8HTOIAL /,
A GON/8H GONAD /
INTEGER TABLE,FALOC,HLLOC,PTLOC
LOGICAL IDO,GENEFF
COMMON/COflLOC/RNLOC<10).OGLOC<10),PTLQC(10),FALOC(10)f
> HLLOC(10),LTA6LE(10)fNlLOC
COMMON/COMGEN/GEN<3) .NGEN.GDOSE(3,40,4.2) ,GRISK<3,40,4,2) ,
> GENEFF,GRFAC(2).REPPER.GLLET<3).GHL£T(3>.GR£F(3.40.4)
DIMENSION TABLE(l),TITLE(l),TITLA(10,3). ILEK2.3) .TlTL2(2) ,
> FACD(4,3),ITAB(7).TITLG(10.3).FACG(4,3).NOTE(26),NOT2(20)
> , NUN ( 8 . 3 ) 'HR ISK ( 2 ) . SR ISK ( 20 , 40 . 4 , 2 ) , SG ISK ( 3 , 40 . 4 , 2 )
DATA NOTE/4HRAHO,4HN DA,4HUGHT,4HER E, 4HXPOS,4HURE ,4HRISK,
> 4H: ,12A4H /,NOT2/20A4H /
DATA NUN/16A4H ,4H(D£Af 4HIH/Y,4Hfi) ,5A4H /
DATA TIILA/4HINDI,4HV'IDU,4HAL L,4HIFET, 4HIHE .4HRISK. 4H (HE,
^ 4HATHS,4H) ,4H ,4HHEAN,4H IND, 4HIVID, 4HOAL , 4HLIFE, 4HTIME,
> 4H 8ISJ4HK (D,4HEATH,4HS) 4HFATA 4HL CA 4HNCER 4H RAT,
> 4HE (D.4H£AIH.4H/YR).3A4H /
DATA 11TLG/4HINDI,4HMIDU,4HAL G,4HENET,4HIC E,4HFFEC,4HTS P.
< 4HER B,4H1RIH,4H ,
< 4HHEAN,4H IND, 4H1VID,4HUAL ,4HGENE,4HTIC ,4HEFFE,4HCTS ,
< 4H/BIR.4HTH ,
< 4HCOLL,4HECllf4HVE G,4HENET,4HIC E,4HFFEC,4HT(EF,4HFECT,
< 4HS/YR'4H) / » i t F i r
DATA EACD/2A1.E-5, 10.. 1000. ,2Al.E-5. 10., 1000., 4*0.7
DATA FACG/1 . , 1 . , 1 . , 100. , 1 . , 1 . , 1 . , 100. , . 001 , . 001 , . 001 , . 17
CAAAAA??????? ' ' '
DATA IKP/07
DATA 1LEI/4HLOU .4HLEI .4HHIGH.4H LET,4HCOMB.4H.LET7
COMMON/COMCA/CANC(20),NCANC,RELABS(20)fRISK(20,40,4l2),RTABLE(7),
) AGEX YRLLf'-'O 40 4^)
.COrtMON/COMNU/NUCLID(40),NONCLD,P3IZE(40),RESP(40),GIABS (4,40),
CAAA MULTIPLY RISKS BY EXPOSURES
CAAA PREPARE HIGH AND LOU LET SEPARATELY
IF (IKP.EQ.l) GO TO 6
IKP = 1
DO 2 J=1.3
EACD(4, J) = GSCEAC*EACD<4, J)
A84
-------
EACG<4,J)=GSCEACAfACG<4,J)
CONTINUE
DO 5 J = l,4
FACGU.3) = FACG(J.2)AREPPER
5 FACD(J.3)=EACD IIILA(1.IT),ITAB,TITL2,NOTE,NUNU,II),DRISK,CREP,NCREP,20,IFLAG)
ORG=GON '
IFdDO.AND. 6ENEFF) CALL HULK II.FACGU , ID .GRISKd.l, 1,L> .
> l.GEN(3)f TITLE, TITLGd, IT), ITAB,TITL2 ,NOT2,NOT2, 0. ,0. ,0,3, IFLAG)
IF(IT.EQ!2) GO TO 38
IF(NTLOC.EQ.O) GO TO 38
DO 45 LL=1.NTLOC
IF(FALOC(LL).NE.2) GO TO 45
IF(HLLOC(LL).EQ.l) GO TO 45
IF(LTABLE(LL).NE.IT .AND. LTABLE(LL).NE.4) GO TO 45
CALL LOCTAB(IT.RNLOC(LL).PTLOC(LL),OGLOC(LL),FACIK1,IT).
> RISK(1.1.1,L).TITLE,TITLA(1,IT).TITL2,CANC.NCANC,20.3)
IF(GENEFF) CALL LOCTAB(IT,RNLOC(LL).PTLOC(LL).OGLOC(LL),
< FACG(1,IT),GRISK(1,1,1,L) TITLE,TITLG(1,IT),TITL2,
< GEN(3).1,3,3)
45 CONTINUE
38 CONTINUE
IF (1NDPOP.NE.1) GO TO 50
40 CONTINUE
50 CONTINUE
CAAA COMBINE HIGH AND LOU LtT USING INPUT QUALITY FACTORS
DO 70 1=1.4
DO 70 J=1.NONCLD
RISK(NCANC+l.JfI,l)=0.0
DO 70 K=1,NCANC
SRISKCK J.I,1) = R1SK(K.J,I,1)
RISK(K,J.I.l)=RISK(K.J.I.l)+RI3K(KfJf1,2)
RISKlNfiAk+l,J,l,lJ={liK(NCANC + lfJ,I,l)
IF(K.GI.l) GO TO 70
SGISK(K,J,I,1) = GRISK(K,J,I.l)
GRISK(K,J,Irl)=GRISK(K,J,I,l)+GRISK(K,J,I,2)
70 CONTINUE
A85
-------
CANC(NCANC+1)=LAST
DO 80 K = l,2
TIIL2
ORG=CAN
IE (1DO) CALL HULK II.FACDU, IT).RISK.NCANC+1,CANC,TITLE. TITLAC1,
> IT). ITAB.TITL2,NOTE,NUN (1, II), DRISK,CREF,NCSE?, 20, IFLAG)
ORG=GON
lE(IDO.AND.GENEEE) CALL HULKIT,FACG(1,IT) .GRISK,1,GEN(3),
> TITLE,TITLG 8ISK.TITLEfIIILA(l,II).IIIL2.CANC.NCANC.20,3)
IF(GENEFF) CALL LOCTAB(IT.RNLOC(LL).PTLOC(LL).OGLOC(LL),
> FACG(l,IT),GRISK,TITLE.TITLG(l,II),TITL2rGEN(3),l,3,3)
135 CONTINUE
138 CONTINUE
IF (INDPOP.NE.l) GO TO 105
100 CONTINUE
105 DO 170 I = 1,4
DO 170 J = 1,NONCLD
DO 170 K = 1,NCANC
RISK(K,J.I,1) = SftISK(K,J,I.l>
IF ( K .EG. 1 ) GRISK(K,a,i;i) = SGISKtK,J,1,1)
170 CONTINUE
RETURN
END
C
C
C
C
SUBROUTINE PREPRE(TABLE.TITLE,GSCFAC.IFLAG)
CAAA PREPARE HEALTH EQUIVALENT FACTORS TO BE OUTPUT.
REALA8 CANC,NUCLID,TOTAL,RNLOC,OGLOC,ORC,CAN,GEN,OREP,RREP,CREP,
> GON
COMMON/COMRN/OREP(20).RREP(20).CREP(20),ULRN(20,20),
A RRISK.RREF(2),RYRLL,NOR£P,NRREP,NCSEP
LOGICAL GENEFE
COMMON/HEAD/ORC
DATA CAN/8H CANCER /,GON/8H GONAD /
DATA TOTAL/8HU. BODY /
INTEGER TABLE,FALOC,HLLOC,PILOC
A86
-------
LOGICAL IDO
COMMON/COMLOC/RNLOC(10),OGLOCUO),PTLOC(10),FALOC(10),
> HLLOC(10).LIABLE(10),NTLOC
COMMON/LOrlGEN/GEN(3),NGEN.GnOSE(3.40,4,2).GRISK<3,40.4,2) ,
> GENEFF.GRFAC(2),REPPER,GLLET(3).GHLET<3),Gi<;:i:(3,40.4>
DIMENSION TABLE(1),TITLE(1),TITLA(10,3), IIIL2(2).EACB<4,3).
> ITAB(7),NOTE<20).TITLG(10,3),FACG(4.3),NOTA(20).DREF(2),NUN(8,3>
DATA NUN/4H(MRE,4HM/YR,4H) ,5A4H ,4H(MRE.
> 4HM/YR,4H> ,5A4ri ,4H(PER,4HSON ,4HREM/,4HYR) ,
> 4A4H /
DATA NU1E/4HRAD0.4HN DA.4HUGHI.4HER E, 4HXPOS.4HURE ,
> 4HRISK.4H EQU.4HIVAL,4HENT:,10*4H /,NOIA/20A4H /
DATA FACD/1.,I.,1.E6,1.E8,1.,1.,1.EG,1.LB, .001,
A .001,1.£3,1.fe5/
DATA t'ACG/1., !.,!., 100., !.,!., 1., 100.,. 001,. 001,. 001 r. I/
DATA IKP/0/ ' ' ' ' ' ' ' ' ' '
DATA 1IILA/4HINDI,4HVIDU.4HAL R,4HISK ,4HEQ. .4HRATE, 4H (MR.
> 4HEM/Yr4HEAR),4H ,4HHEAN,4H IND,4Hiy ID,4HLIAL , 4HRISK, 4H EQ.,
> 4H RAI,4HE(MR,4HEM/Y,4HEAR),4HCOLL 4HECTI 4HVE R,4HISK 4HEQ R
> 4HATE(,4HPERS.4HON R,4HEM/Y ,4HEAR)/
DATA IITLG/4HINDI,4HVIDU.4HAL G,4HENEI,4HIC R,4HISK ,
A 4HEQ. .4H(MRE.4HM/YE,4HAR) ,
A4HMEAN,4H IND,4HIVID,4HUAL ,4HGENE.4HTIC .4HRISK,
A4H EQ.,4H(MRE,4HM/Y),
A4HCOLL,4H. GE,4HNEII,4HC RI,4HSK E,4HQ. (,4HPERS,
A4HON R.4HEM/Y.4HEAR)/
DATA TITL2/4H ,4H /
COMHON/COMCA/CANC(20).NCANC,RELABS(20),RISK(20,40,4,2)
COMMON/COMRF/REF(20.46.4).i7TABLE(7)
COMMON/COMNU/NUCLIDl40)fNONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
NCANR=NCANC+1
CANC(NCANR)=TOTAL
CREP(NCREP+1)=TOTAL
IF (IKP.EQ.l) GO TO fa
IKP = 1
DO 5 J=1.3
EACD(4,a)=FACD(4,J)AGSCEAC
EACG(4.J)=EACG(4,J)*GSCEAC
5 CONTINUE
6 DO 20 11=1,3
IDO=.FALSE.
DO 10 K=l,7
ITAB(K)=0
IF (IABLE(K).NE.II.AND.IABLE(K).NE.4) GO TO 10
ITAB(K)=1
IDO=.1RUE.
10 CONTINUE
NCRR=NLREP+1
IF(NCREP.£Q.O) NCRR=0
ORC=CAN
FAC=1.
IF(I1.ECI.3)EAC=.001
DO 12 J=1.NCRR
I1-1 DREF( J) =KREF (J) AEAC
IF (IDO) CALL HULT ,IIAB.TITL2,NOTE,NUN(l,Il),DR£E,CR£P,NCRa,20, IELAG)
ORC=GON
IF(IHO.ANH.GENEFF) CALL MULKIT,EACG(1,IT).GREE,1,GEN<3),
> IITLE,TITLG(1,IT),ITAB,IITL2,NOTA,MOfA,0.,0.,0,3, IFLAG)
A87
-------
IF(11.EQ.2) GO TO 38
IF(NTLOC.£Q.O) GO TO 38
DO 36 LL=1,NTLOC
IF(FALOC(LL).N£.3) GO TO 35
IF(LTABLE(LL).NE.II .AND. LIABLE(LL).NE.4) GO TO 35
CALL LOCTAB( II.RNLOC(LL>.PILOC(LL).OGLOC(LL) ,EACD<1, IT),
A REF1IITLE.IITLA(1.IT),TIIL2.CANC.NCANR.20.2)
IF(GENEFF) CALL LOCTAtKIT.RNLOC DTABLE(l).TITLl(iO).NOTE(20),CREP(l),ULSUM(4),RFAC(NCREP),NUN(8)
DATA PATH/4HINGE,4HSTIO,4HN ,4H ,4HINHA.4HLATI,4HON ,
> 4H ,4HAIR ,4HIMIiE,4HRSIO,4HN ,4HGROU,4HND S, 4HURFA,4HCE ,
> 4HINTE,4HRNAL 4H ,4H , 4HEXTE,4HRNAL,4H ,4H
> 4H ,4H ,4H ,4H /
DATA SUM/SHTOTAL /
COMMON/COMNU/NUCLID(40),NONCLD,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMON/COrtUS/SUP)X(40,7),SUMY(40,3),PERX(40),PERY(40),TVAL(40),
> FACO(20,4) '
CAAA SUM OyER ALL NUCLIDES FOR EACH ORGAN AND PATHWAY
CAAA PATHUAY 5 IS INTERNAL, 6 IS EXTERNAL, AND 7 IS ALL PATHWAYS
DO 10 1=1,7
DO 10 K=1,NORGN
10 SUMX(K.1)=0.0
DO 30 1=1,4
DO 20 K=1,NORGN
DO 20 J=1,NONCLD
SUMX(K.I)=SUMX(K.I)+ARRAY(K.J. I)
IF (I.LE.2) SUMX(K,5)=SUMX(K,5)+ARRAY(K,J,I)
IF (I.GE.3) SUMX(K,6)=SUMX(K.6)+ARRAY(K,J,I)
SUMX(K.7)=SUhX(Kf-;J+AfiRAY(KfJfI)
20 CONTINUE
30 CONTINUE
C
C IF DOSE FACTOR CALCULATION TRANSFER TO STATEMENT 350
C
IF (IBLAQ.EQ.l) GO TO 350
C
CAAA TABLE 1
A88
-------
IF (DIABLE(l).EQ.O)' GO TO 80
DO 70 1=1.4
WRITE<6,10000) TITLE, TITL1. TULA
URIIE(6,10200) (PA'IH(NfI),N=lf4)
WRIIE<6,10300) ORC,(ORGN(K),K=1,NORGN)
URII£(6,10400)
DO 60 a=l,NONCLH
DO 40 K=l,NORGN
PERX(K)=0.0
40 It (SUHX(K.l).NE.O.O) PERX(K)=ARRAY(K,J.I)/SUMX(K,DA100.
URITE(6,10500) NUCLIIK J),(ARRAYiK,J,I).K=l.NORGN)
URITE(6,10600) (PATH(N,I),N=1,4),(PERX(K),K=1,NORGN)
DO 50 K=l,NORGN
11=5
IF (I.GI.2) 11=6
P£RX(K)=0.0
IF (SUHX(K.II).NE.O.O) PERX(K)=ARRAY(K,J,I)/SUMX(K,IDA100,
PERY(K)=0.0
50 It (SUhX(K.7).NE.O.O) PERY(K)=ARRAY(K.J.I)/SUMX(K,7)A100.
URITE(6,10600) (PATH(N,II).N=l,4),(PERX(K),K=1,NORGN)
URITE(6 10700) (PERY(K),K=1,NORGN)
URIT£(6'l0100)
60 CONTINUE
URI1E(6.11000) (SUMX(K,I),K=1,NO»GN)
IE(I.NE.2) GO TO 70
DO 75 J=1,NONCLD
IF(NUCL1D(J).NE.RADON) GO TO 75
URIX£(6.20100) NOTE
IF(RPAC(1).EG.O.O) GO TO 75
URITE(6,10300)ORC, (CR£P(JJ),JJ=1,NCREP)
WRITE(6,20400)NUN,(RFAC(JJ),JJ=1,NCREP)
75 CONTINUE
70 CONTINUE
CAAA TABLE 2
80 IE (DTABLE(2).EQ.O) GO TO 120
DO 110 1=1.2
WRITE(6,10000) TITLE,11TL1,TULA
11=1*4
WRITE(6,10200) (PAIH(N,11),N=1.4)
WRITE(6,10300) ORC,(ORbN(K),K=1,NORGN)
WRITE(6,10400)
DO 100 J=1,NONCLD
DO 90 K=l,NORGN
L=l
IF (1.EQ.2) L=3
IVAL(K)=ARRAY
-------
IF(RFACd).LG.O.O) GO TO 115
URITE(6,10300)ORC,(CR£P(JJ),JJ=1,NCREP)
URITE<6,20400)NUN,(RFAC(JJ),JJ=1,NCREP)
115 CONTINUE
110 CONTINUE
CAAA TABLE 3
120 IF (DTABLE(3).tQ.O) GO TO 170
WRITE(6,10000) TITLE,TIILIJITLA
URITE(6', 10300) ORC, (ORGN(K) ,K=1,NORGN)
WRIT£(6,10400)
DO 160 J=1,NONCLD
DO 130 K=l.NORGN
130 TVAL(K)=0.0
DO 150 K=l,NORGN
DO 140 1=1.4
IVAL(K)=ARRAY(KfJ,I)+TVAL(K)
140 CONTINUE
PERX(K)=0.0
IF (SUHX(K.7).NE.O.O) PERX(K)=IVAL(K)/SUMX(K,7)A100.
150 CONTINUE
URI1E(6,10500) NUCLID(J),(IVAL(K).K=l,NORGN)
WRITE(6,10700) (PERX(K),K=1,NORGN)
WRITE(6,10100)
160 CONTINUE
WRHE(6,11000) (SUHX(K,7),K=1,NORGN)
DO 165 J=1,NONCLD
IE(NUCLID(J).NE.RADON) GO TO 165
URI1E(6.20100) NOTE
IF(REACll).EQ.O.O) GO 10 165
WRITE(6,10300)ORC, (CREP(K),K=1,NCREP)
WRITE(6,20400)NUN,
165 CONTINUE
CAAA TABLE 4
170 IF (DIABLE(4).EQ.O) GO TO 260
DO 250 K=l.NORGN
WRITE(6,10000) TITLE.IIIL1,TULA
WRI1£<6,11100) l)aC.ORGN(K)
WRITE(6,11200) (NUCLID(J),J=lfNONCLD)fSUM
URIT£(6,11300)
DO l&O 1=1,3
DO 180 J=I'NONCLD
180 SUMY(J,I)=0.0
DO 200 1=1,4
DO 190 J=1.NGNCLD
IF (1.LE.2) SUHY(J,l)=SUHY(Jfl)+ARRAY(K,J,I)
IF (I.GE.3) SUMY(J.2)=SUMY(J,2)+ARRAY(K.J.I)
SUHY(J.3)=SUMY(J,3)+ARRAY(K,J,I)
190 CONTINUE
200 CONTINUE
DO 220 1=1,4
URIIE(6,11400) (PAIH(N,I),N=1,4),(ARRAY(K,J.I),J=1,NONCLD),
> SUMX(K.I) ' ' '
DO 210 J=lfNONCLD
11=1
IF (I.61.2) 11=2
PERX(J)=0.0
IF (SUflY(J.Il).NE.O.O) PERX(J)=ARRAY(K,J, I)/SUMY(J, IDA100.
IF (SUMY(J,3).NE.O.O) PERY(3)=AR»AY(K,J,I)/SUNY(J,3)A100.
A90
-------
210 CONTINUE
WPP=0.0
IF ,N=1.4>,(PERX(J),J=1,NONCLD),UPP
URITE(6,11600) 4+1)
DO 230 J=1,NONCLD
PERX(J)=0.0
230 IE (SUMY(J,3).NE.O.O) PtRX(J)=SUMY
-------
URIT£(6f11600) (PERY(K),K = l
WRIIE(6.10100)
300 CONTINUE
DO 320 1=1.2
WRHE(6,11400) (PAIH(N,I+4),N=l,4),(SUrtY
-------
URITE(6,10000) TIILEfTITLl,TITLA
URITEU.12100) ORC
WRITE(6,11200)
-------
URri£(6.12200)
WRITE (6,10300) ORC , (ORGN(K), K=l ,NORGN)
WRIT£(&,11300)
U8ITE(6,li4oO)
11=5
IE(I.GE.3) 11=6
DO 560 J=1.NORGN
ppgy( ~M=0 0
IE(SUMX
-------
11900 FORMAT(1XFA8,23X,10(2X.A8)/(33X.10(2X.A8)))
12000 FORMATdlH X OF TOTAL.21XF 1P10G10.3/(33XF 1P10G10.3))
12100 £ORMAT('OAAASUMHi;£i UVKR ALL' A8)
12200 FGRMAK'OAAASUMMED OVER ALL NUCLIDES')
20100 £GRhAT('0'/////iOX.20A4)
20400 FORMAI(1XF3A4F1P10G10.3>
END
C
C
C
C
SUBROUTINE CHLOC(PLOC,CONC,GSCFAC,IFLAG)
REALA8 CANC.NUC.NUCLID.RADON.OREP,CREP,RREPFPNUC
DIMENSION CONC<4),FAC(4).IOR(4)
DATA FAC/2A1.E-5,10.,1000./
DATA IKP/0/
DATA BRTHRT/.83E6/
DATA RADON/8HRN-222 /
DATA IOR/3,4,1,2/
COMMON/COMEX/EXPP(20.20F40.4)FPOP(20F20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU.ID 131(20).ILOC.JLOC
COMhON/COMCA/CANC(20>,NCANC,RELABS<20),RISK(20,40,4,2), RIABLE(7),
> AGEX,YRLL<20,40,4.2)
COMMON/COMRF/REF'20.40.4).FTABLE(7)
COMMON/COMNU/NUCLID(40)fNONCLD.PSIZE(40).SESP(40),GIABS (4,40),IND
COMMON/COMRN/OREP(20)'RREP(20),CREP(20),ULRN<20,20)
A .RRISK.RREF(2),RYRLL,NOREP.NRREPfNCREP
COHMON/COMUS/TRISK(20.20).IOUOO)
COMMON/PASS/PNUC(40).PCONl(40).PCON2(40),PCON3(40),
& PCON4(40).PPOf.LLIND.LDIST
DIMENSION SRISK(400).ANGLE(16)
DATA ANGLE/4HN .4HNNE ,4HNE .4HENE .4HE ,
A 4HESE ,4hSE ,4HSSE ,4HS ,4HSSW ,4HSti ,4HWSU ,
B 4HU .4HWNU '4HNU ,4HNNU 7
EQUIVALENCE(TRI3K(i.1),SRISK(1))
IF (IKP.EQ.O) FAC(4)=FAC(4)AGSCFAC
IKP = 1
NOP=JLOC+(ILOC-1)A20
DO 2 K=1F20
DO 2 L=l,20
POP(LjK)=1.0
ULRN(L.K)=0.0
IRISK(L,K)=0.0
2 CONTINUE
DO 10 K=l,40
DO 10 J=1.20
DO b 1=1,4
DO 5 L=1F20
5 EXPP(L.J,K,I)=0.0
10 CONTINUE
NOL=1
NOU=1
NRL=1
NRU=1
DO 90 1I=1.NONCLD
IDIST(1)=LDIST
IND=LLIND
NUC=PNUC(II)
CONC(1)=PCON1(II)
CONC(2)=PCON2(II)
A95
-------
CONC<3)=PCON3(1I)
CONC(4)=FCON4(II)
DO 30 J=1,NONCLD
IF (NUC.EQ.NUCLIDU)) GO TO 40
30 CONTINUE
GO TO 90
40 CONTINUE
IF (NUl.EQ.RADON) GO TO 160
DO 70 ILO=NOL,NOU
DO 70 JLO=NRL.NRU
DO 50 NC=1.NCANC
DO 50 L=l,4
DO 50 N=1F2
TRISK(JLO;iLO)=IRISK(JLOfILO)+RISK(NCfJ,IOR(L),N)A
A CONC
Expp(jLo;iLo;j;i)=o.o
EXPP(JLO,ILO,J,4)=0.0
DO 180 N=l,2
DO 180 K=1.4
DO 180 NC=1.NCANC
TRISK(JLO,ILO)=TRISK(JLO,ILO)+RISK(NC,J,K,N)AEXPP(JLO,ILOIJ,K)A
180 CONTINUE
WLRN(JLO,ILO)=ULEVEL
TRISK(JLO,ILO)=1RISK ' OR INGESTION RATE EXPOSURES FOR RN-222.')
90 CONTINUE
110 IE (ILOC.NE.O.AND.JLOC.NE.O) GO TO 130
LENO=NOU-NOL+1
LENR=NRU-NRL+1
NLOC=LENOALENR
J=0
DO 120 ILO=NOL,NOU
DO 120 JLO=NRL,NRU
IFdND.EQ.l .AND. POP< 1LO. JLO) .NE.O.O)IRISK( JLO. ILO) =
< TRISKtJLO,ILO)/POP(ILO,JLO)
SRISK(J)=TRISK(JLO.ILO)
IO(J)=J
120 CONTINUE
CALL VSORTP(SRISK,NLOC,IO)
NOP=NLOCAPLOCA.01+.5
IF (NOP.GE.NLOC) NOP=NLOC
A96
-------
IF (NUP.LE.1) NOP=1
LOC=10(NOP)
ILOC=(LGC-1)/LENR+1
JLOC=LOC-(ILOC-1)ALENR
IF (JLOC.EQ.O) JLOC=NRU
ILOC=ILOC+NOL-1
JLOC=JLOC+NRL-1
130 POPtAC=l.
TOIFAC=1.
IF (IND.NE.l) GO TO 150
IF (PGPdLGC, JLOC). NE. 0.0) POPFAC=1./POP< ILOC, JLOC)
TOTPOP=0.0
DO 140 K1=NRL,NRU
DO 140 K2=NOL,NOU
140 TOTPGP=IOTPOP+POP(K2,K1)
TOIFAC=1./TOTPOP
150 ANG=ANGLE(MOD(17-ILOC.16)+1)
IF (IFLAG.GT.3) URITE(6,10000) IDISKJLOC),ANG,3SISK(NOP)
RETURN
10000 FORMATC1IHE LOCATION USED FOR THE SELECTED INDIVIDUAL',
> ' EXPOSURE IS '.17 ' METERS '.A4,'FROM THE SOURCE.'/
> ' THE FATAL CANCER RISK AT THAT LOCATION IS ',G10.3)
END
C
C
C
C
SUBROUTINE VSORTP
-------
C
C
C
C
C
C
C
C
C
A(J)=T
T=A(IJ)
IR(1J)=IR(J>
II-IR(U)
IF (A(l).LE.I) GO TO 70
A(IJ)=A(I)
A(I)=T
T=A(IJ)
IR(I)=IT
IT=1R(1J)
GO TO 70
60 n=A(L)
A(L)=A(K)
A(K)=IT
IIT=IR(L)
IR(L)=1R(K)
IR ( K) ~~ ITT
70 L=L-1
IF (A(L).GT.T) GO TO 70
80 K=K+1
IF (A(K).LI.T) GO TO 80
IF (K.LE.L) GO TO 60
IF (L-l.LE.J-K) GO TO 90
IL(M)=I
IU(M)=L
I=K
M=M+1
GO TO 110
90 IL(M)=K
IU(M)=J
J=L
M=M+1
GO TO 110
THAN I, INTERCHANGE WITH T
GREATER
FIND AN ELEMENT IN THE SECOND HALF OF
THE ARRAY WHICH IS SMALLER THAN T
FIND AN ELEMENT IN THE FIRST HALF OF
THE ARRAY UHICH IS GREATER THAN T
INTERCHANGE THESE ELEMENTS
SAVE UPPER ANH LOWER SUBSCRIPTS OF
THE ARRAY YET TO 8£ SORTED
100 M=M-1
IF (M.EGI.O) RETURN
I=IL(M)
J=IU(M)
110 IF (M.GT.21) WRITE(6f10000)M
IF (J-I.GE.l) GO TO 40
IF (I.EQ.l) GO 10 10
1=1-1
120 1=1+1 .
IF (l.EQ.J) GO TO 100
T=A(I+1)
BEGIN AGAIN ON ANOTHER PORTION OF
THE UNSORI£D ARRAY
IF (A(l).Lfc.l) GO TO 120
K=I
A98
-------
130 A(K+1)=A(K)
IR(K+1)=IR(K>
K=K-1
IF (T.LT.A(K)) GO 10 130
A(K+1)=T
GO TO 120
C
10000 FORMAK' IN VSOR1P, M='.I3)
END
C
C
C
C
SUBROUTINE HULK IM.CONFAC. ARRAY I, NOC.NAHNOC. TITLE, I ITL1, TABLE,
> IIIL2.NQIE.NUN,REACI,CR£P,NCR£P,Nfllfi,IFLAG)
INTEGER TABLE
REALA8 NUCLID.NAMNOC,CREP.OREP.RREP,FREP,PUL,TBEQ
COMMON/COMRN/OREP(20).RREP(20>,FREP(20),
A WLRN<20.20).RRISK,RREF<2).RYRLL,NOREP.NRREP,NFREP
COMMON/COMNU/NUCLIDUO>,NQNCLD,PSIZE<40),RESP(40>,GIABS(4,40),
> INDPOP
COMMON/COMEX/EXPP<20.20,40,4),POP(20,20),POPFAC,IOTFAC, NOL,NOU,
> NRL.NRUfIDJSI(20),ILOC.JLOC
DIMENSION ARRAYI(NDIM.40.4).ARRAYO<20f40.4).CONFAC(4).IirLE(l).
> IITLl(l).TITL2(l),NA«NOC(l).IABLE(l).NOTE(l),CREP(20),RFACI(20)f
> RFACO(20).NUN(1)
GO TO (10,30, 50), IM
10 DO 20 1=1,4
DO 20 J=1,NONCLD
DO 20 K=1,NOC
ARRAYO(K, J,I)=ARRAYI(K,J,I)AEXPP(3LOC,ILOCf J, I)ACONFAC( I) APOPFAC
20 CONTINUE
RFACO(1)=0.0
IF(NCRHP.EQ.O) GO TO 80
DO 25 J=1.NCREP
25 REACO(1)=RFACI( I) AWLRN( JLOC, ILOC) APOPFAC
GO TO 80
30 DO 40 1=1,4
DO 40 J=1,NONCLD
DO 40 K=1,NOC
ARRAYO(K,J.J)=O.ODO
DO 40 1I=NOL,NOU
DO 40 JJ=NRL,NRU
ARRAYO(K.J.I)=ARRAYO(K,Jf I)+ARRAYI(K,J, I) AEXPP(JJ, II, J, I) A
> CONFAi:(I)ATOTFAC
40 CONTINUE
RFACO(1)=0.0
RFACO(2)=0.0
IF(NCKfcP.EQ.O) GO TO 80
DO 45 I=1,NCREP
DO 45 I1=NOL,NOU
DO 45 JJ=NRL,NRU
RFACO(I)=RFAC1(1)AULRN(JJ,II)ATOTFAC+RFACO(I)
45 CONTINUE
GO TO 30
50 DO 70 1=1,4
DO '/O J=1,NONCLD
TEXPP=0.0
DO 60 I1=NOL,NOU
A99
-------
DO 60 JJ=NRL.NRU
TEXPP=IEXPP+EXPP(JJ,II,J,I)
60 CONTINUE
DO 70 K=1.NOC
ARRAYU
COMMON/COMOR/ORGN(20),NORGN,TIME(20),DGSE<20,40,4,2)
NAMELIST/ ORGANF/NORGBfORGBfORGDAT,IPAIH
READ(26,ORGANF)
WRIIE(6,10000)
DO 10 J=1.NORGB
WRITE(6.10100) ORGB(J).ORGDAKJ)
IF (IPATH(J).NE.S) WRITE(6,10200) IPATH(J)
10 IF (IPATH(J).EQ.S) URITE(6,10300)
DO 80 K=1,NORGN
DO 30 1=1,4
30 fACO(K.I)=0.0
DO 40 J=1,NORGB
IF (OR(iN(K).EG.ORGB(J)) GO TO 50
40 CONTINUE
GO lu 80
50 It (1PATH(J).EGI.5) GO TO 60
FACO(K.IPAIH(J))=ORGDAT(J)
GO TO 80
60 DO 70 1=1,4
FACO(K.1)=ORGDAT(J)
70 CONTINUE
80 CONTINUE
RETURN
10000 FORHAT.COORGAN DOSE WEIGHTING FACTORS'//
A ' ORGAN FACTORS PATHWAYS'/)
10100 FORMAT (IX,A8.1X.F8.5)
10200 FORMAT('+' 19X.I2)
10300 FORMAIC + 'jigx.' 1234')
END
C
C
C
A100
-------
10000
10
12
14
50
10500
(
70
75
80
150
10600
#
170
SUBROUTINE LOC1AB (II, RN, PI, OG,EACD, ARRAY, TITLE, IIIL1, TULA,
< ORGN.NORGN,NDIM,NO$ .
REALA8 RNfOG,SUi1.NUCLIB,ORGN,ULOPT(2),OREP,RREP,CREPfPUL,
A TBEO
COMMON/COMRN/OREP(20),RREP(20),CREP(20),WLRN(20,20),RRISK,
A RREF(2).RYRLL.NOREP,NRR£P,NCREP
COHMON/COMCA/DUh(6468),AGEX
INTEGER PI
DIMENSION TITLE(20),TITLA(2),IITL1(10),ARRAY(NDIM,40,4),
< ORGN(l).FACD(l>,TPAIH(4,-;),IDIR(lb)
COMMON/COMUS/OUTPUK40.40) ,HOLDC(40),HOLDR(40)
DATA IDIR/1.16,15,14.13.12,11,10,9,8,7,6,5.4.3,2/
DATA IPATH/4HINGE.4HSII0.4HN ,4H .4HINHA.4HLATI.4HON ,
> 4H ,4HAIR ,4HIHME,4HRSIO,4HN .4HGROU.4HND S, 4HURFA,4HCE
> 4HINTE,4HRNAL,4H ,4H , 4HEXTE,4HRNAL,4H ,4H ,
> 4HALL .4H .4H ,4H /
DATA SUrt/8HSUM 7,ULOPI/8HUORKLEVL,8HULSUM /,
A PUL/8HPULMNARY/,TBEQ/liHBODY EQ./
COMMON/COhNU/NUCLID(40),NONCLD,PSIZE(40)lRESP(40),GIABS (4,40),
> INDPOP
COMMON/COMEX/EXPP(20.20,40,4),POP(20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU,IDI3I(20).ILOC,JLOC
COfiMON/CO«UOR/UT(20,4)
FORMAT(1H1.20X,20A4/21X,10A4/21X,2A4)
DO 10 K=1.40
HOLDR(K)=0.0
HOLDC(K)=0.0
DO 10 L=l,40
OUIPUl(L,lJ)=0.0
TSUM=0.0
DO 12 J=l,2
IF(RN.tQ.ttLOPT(J)) GO TO 1000
CONTINUE
CONTINUE
IF(RN.EQ.SUM) GO TO 75
IF(RN.£Q.ULOPX(2)) GO TO 75
DO 50 J=1.NONCLD
IF(RN.EQ.NUCLID(J)) GO TO 70
CONTINUE
URITE(6.10500) RN
FORMATS RADIONUCLIDE ',A8.
' IS NOT IN L1S1. TABLE WILL BE SKIPPED.')
RETURN
INE=J
GO TO 80
INB=1
INE=NONCLD
CONTINUE
IF(OG.EQ.SUh) GO TO 175
DO 150 J=1,NORGN
IF(OG.EG.ORGN
-------
175 IOB=1
IOE=NOkGN
IF(IT.EQ.3) GO TO 180
IFdl.EQ.i) GO TO 185
IOB=NUkGN
IOE=NORGN
GO TO 180
185 CONTINUE
GO TO 195
180 00 190 1=1,4
DO ISO K=IOBrlClE
WI(K,I)=1.
190 CONTINUE
195 CONTINUE
IPT=PT
IPB=1PT
IPE=IPT
IE(1P1.LE.4) GO TO 184
177 CONTINUE
IPI=lPT-4
GO TO (181,182,183),IP!
181 IPB=1
IPE=2
GO TO 184
182 IPB=3
IPE=4
GO TO 184
183 IPB=1
IPE=4
184 CONTINUE
BO 300 IPI=IPB,IPE
DO 300 IN=INB,INE
DO 300 IO=10B,10E
DO 300 II=NOL;NOU
DO 300 JJ=NRL,NRU
OUIPUl(aj.II)=OUlPUl EXPP(JJ.II,IN, IPT)
300 CONTINUE
305 IFdI.EQ.3) GO TO 500
DO 400 11=NOL,NOU
DO 400 JJ=NRL,NRU
IF(POP(II,JJ).EQ.O.O) GO TO 375
OUTPUT(J J, 11)=OUTFUT(JJ,11)/POP(11,JJ)
GO TO 400
375 OUTPUT(JJ,II)=0.0
400 CONTINUE
WRITE(6,10000) II1LE,TITL1,IIILA
WRITE(6,10100) RN,OG,(TPAIH(K,PI).K=1.4)
DO 600 JJ=NRL.NRU
WRITE(6,10200) IDIST
-------
HOLDR(JJ)=OUTPUT(JJ,II)+HOLDR(JJ)
680 TSUM=OU1-PU1(JJ, ID+TSUM
URIlE<6,10100)RN,OG,(TPAIH(KfPX)fK=l,4)
DO 700 JJ=NRL.NRU
700 WRITE (6,10200) IDISI(JJ).(OUIPUI(JJ. ID IR( ID) ,11 = 1,8)
WRITER,10250)(HOLDC(IDIR(ID),II=lf8)
URITE<6,10175)
DO 710 JJ=NRL.NRU
710 WRITE* 6,10205) IDISK JJ) .(OUTPUKJJ, IDIRt ID), 11=9,16) ,HOLDR( JJ)
URIIE(6,10250>(HOLDC(IDIR(II))fII=9fi&),ISUM
RETURN
1000 1E(ND1H.NE.20) RETURN
IF(OG.EQ.SUM) GO TO 1001
IF(OG.EG.PUL) GO TO 1001
IF(OG.EQ.T8£Q) GO TO 1001
lE(J.EQ.l) GO TO 305
GO TO 14
1001 CONTINUE
IF(NO.NE.l) GO 10 1200
1100 DO 1150 II=NOL,NOU
DO 1150 JJ=NRL.NRU
OUTPUT(JJ,II)=WLRN GO TO 1300
EAC=1.
IF(I1.EQ.3) FAC=1./AGEX
DO 1250 II=NOL,NOU
DO 1250 JJ=NRL.NRU
OUTPUKJJ, II) =KR1SKAULRN ' AND ORGAN/CANCER :',A8/
> ' AND PA1HUAY : ',4A4/
> ' DIRECTIONS:'.3X,'N'12X.'NNE'10X,'NE'11X,
> 'ENE'.IOX. 'E',l2X I'ESE'.l^X.'SE1,11X,'SSEV
> ' DISTANCE'/' (M£I£RS):V)
10125 tORHAI(////15X,'S',12Xf'&SW',10Xr'SW/,llX,'USU',10X,'W'
A103
-------
> -12X,'UNU'f10Xf'NM'.llX.'NNU'/' DISTANCE'/' (METERS):')
10175 FORMAT (////15X,'S',l2X,fSSiJ/riOX,/SU/.llX,'USU' 10X,'W
> .12X.'UNU' 10X,'Ntr.llXp'NNU'jlOXj'SUH'/' DISTANCE'/
> J (METERS):')
10200 FORHATi 110,1P8G13.3)
10205 tORMAT(I10,lP%13.3)
10250 FORMAI('OSUM',6X,1P9G13.3)
END
C
C
C
C
SUBROUTINE SUMHRYdlTLE,GSCFAC, IELAG)
REALA8 NUCLID.ORGN.CANC,TOIBODRNLOC,OGLOC,GEN,TOTAL,WTSUM,
A OREP.RREP,CREP,RN222
LOGICAL GENEFF,RNWR
REAL LLEI
C
COMMON/COMEX/EXPP(20.20,40,4),POP(20,20),POPFAC,TOTFAC, NOL,NOU,
> NRL,NRU.IDIST(20).ILOC.JLOC
COMMON/COMOR/ORGN(20).NORGN.IIME(20).DOSE(20.40.4f2). DIABLE<7)
COMMON/COMRN/OREP(26),RREP(20),CREP(20),WLRN(20,20),
A RRISK.RREF(2).RYRLL,NOREP,NRREP,NCREP
COMMON/LETFAC/HLET(20).LLET(20)
COMMON/COMNU/NUCLID(40),NONCLn,PSIZE(40),RESP(40),GIABS (4,40),
> INDPOP
COMMON/COMGEN/GEN(3),NGEN.GDOSE(3.40,4,2),GRISK(3,40.4,2),
> GENEEFfG8FAC(2).REPPERpGLLEI(3>fGHLET(3).GREE(3,40f4)
COMMON/COMUS/SILOW(40),STHIG(40),SICOM(46),SIGLO(40),
A STGHI(40),STGCO(40)
DIMENSION DOSFAC(4),GENFAC(4),TITLE(20)
DATA RN222/SHKN-222 /
DATA DOSFAC/1.,!..!.,100./.
< GENfAC/l.,l.,l..lOO./,l-01AL/SHT01AL /.UISUH/SHUT.SUM /
DATA IKP/0/
COMMON/COHWOR/DFAC(20.4)
IF (IKP.EQ.O) DOSFAC(4)=GSClrACA.CiOSFAC(4)
IF (IKP.EQ.O) GENFAC(4)=GSCFACAGENFAC(4)
IKP = 1
RNUR=.FALSE.
DO 5 J=1.NONCLD
IF(NUCLID(J).EQ.RN222) RNUR=.IRUE.
5 CONTINUE
WLC=0.0
DO 10 II=NOL.NOU
DO 10 JJ=NRL,NRU
WLC=WLC+ULRN(JJ,II)
10 CONTINUE
WLE=WLLATOTFAC
CAAAA DOSE RATES BY ORGAN
DO 50 J=l,40
STHIG(J)=0.0
SILOU(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
STGHI(J)=0.0
STGCO(J)=0.0
50 CONTINUE
SUHL=0.0
SUHH=0.0
A104
-------
SUMC=0.0
DO 100 L=1,NGRGN
DO 100 K=1.4
FACNEU=POPFACADOStAC(K>
FACNE2=POPFACAGENFAC(K)
DO 100 J=1,NONCLH
STHIG(L)=SIHlG(L)+DOSE(L,J,K,2)AEACNEUAEXPP(JLOC.ILOC.JfK;
SUMH=SUHH+DOSE(L.J.K.2)AEACNEUAEXPP(JLOCIILOC.J.K)ADEAC(L.K)
STLOU(L)=SILOW(L)+DOSE(L,J,K,1)AEACNEUAEXPP(JLOC.ILOC,J.KJ
SUML=SUHL+DOSE(L.J,K.l)AEACNEUAEXPP(JLOCfILOC.J.K)ADEAC(L.K)
SICOM(L)=SICOM(L)+DOSE(LfJfKfl)AEACNEUAEXPP(JLOC.ILOC,J.K)
< ALLEI(L)+DOSEAFACNE2AEXPP(JLOC ILOC J K)
SIGCO+GBOSE(L,J,K,2)AFACNE2AEXPP(JLOC,ILOC,J,K)AGHLEI(L)
100 CONTINUE
WLI=WLRN( JLOC, ILOOAPOPFAC
C IF MAXIMUM DOSE ORGAN BY NUCLIDE SUMMARY GO TO 11000
C
IF ( IFLAG .EQ. 3 ) GO 10 11000
C
C WRIIE(6,10100) TITLE.(ORGN(L).1=1.NORGN),UTSUM
C URIIE(6,10205) (STLOU(L),L=1,NORGN) ,SUML
C URITE(6 10210) (SIHIG(L),L=1JNORGN),SUMH
C URITE(6.10215) (STCOM(L).1=1,NORGN),SUMC
C IF(RNUk)WRITE(6.20216) WLI
20216 EORMATCORADON DAUGHTER EXPOSURE:'/
A ' (UORKING LEVEL)',9X.1PG10.3)
C WRITE(6,10290) (GEN(L).1=1,NGEN)
C URITE(6,10220) (STGLO(L)fL=l,NGEN)
C URITE(6,10225) (STGHI(L),L = 1,NGEN)
C URITE(6f10230) (STGCO(L),L = l. NGEN)
10100 FORMAT('1'20A4/30X.'ORGAN DOSE/EXPOSURE SUMMARY'//
A 'OAAA SELECTED INDIVIDUAL AAAV
B 'ODOSE RATES:'/
> 17X.' ORGANS:',10(2X.A8)/(26X,10(2X.A8)))
10205 EORMATC LOU LET (MRAD/Y)',8X,1P10G10.3/
A <26X.1P10G10.3))
10206 FORMATC LOW LEI (PERSON RAD/Y) ',IX,1P10G10.3/
A (26X.1P10G10.3))
10210 tORMATC HIGH LEI (MRAD/Y) ' //X, 1P10G10.3/
A (26X.1P10G10.3))
10211 tORMAlC HIGH LEI (PERSON RAD/Y)',1P10G10.3/
A (26X.1P10G10.3))
10215 FORMATC DOSE EQU1VALEN1 (MRtM/Y)',1P10G10.3/
A (26X.1P10G10.3))
10216 FORMATC DOSL EQ. (PERSON REM/Y)',1P10G10.3/
A (26X.1P10G10.3))
10290 FORMA1COGUNADAL LOSES:'/
> 1/X.' GONADS:'.10(2X.A8))
10220 fc'URMATC LOW Ltl (MRA1D ' , 10X, 1P10G10.3/
A (26X.1P10G10.3))
10221 FORMAIC LOW LEI (PERSON RAD)',4X,1P10G10.3/
A (26XF1P10G10.3))
A105
-------
10226
t
10230
10231
(
C
C
C
C
C
150
200
C
10400
C
C
C
C
C
10590
EORMAK' HIGH LEI (MRALD ' ,9X, 1P10G10 .37
(26X.1P10G10.3M
FORMAH' HIGH LEI (PERSON RAD) ' ,3X,1P10G10.3/
(26X.1P10G10.3))
tORM&IC DOSE EQUIVALENT (MREM) ',2X , 1P10G10.3/
(26X.1P10G10.3))
EORMAK ' DOSE EQ. (PERSON REM)',3X,1P10G10.3/
(26X,1P10G10.3»
IE ANNUAL SUMMARY DOSE CALCULATION RETURN
IF ( 1FLAG .EG. 2 ) RETURN
IF(INDPOP.NE.l) GO TO 1000
DO 150 J=l,40
SIH1G(J)=0.0
STLOU(J)=0.0
STCOMU)=0.0
STGHI(J)=0.0
STGLO(J)=0.0
STGCO(J)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
DO 200 L=l,NORGN
DO 200 K = l,4
FACNEW=TOIFACADOSFAC(K)
EACNE2=TOTFACAGENFAC(K)
DO 200 J=1.NONCLD
DO 200 II=NOL,NOU
DO 200 JJ=NRL.NRU
SIH1G(L)=STHIQ(L)+DOSE(L,J.K,2)AEXPP(JJ.II,J,K)AEACNEW
SUMH=SUMH+DOSE(L.J,K,2)AEXPP(JJ.II,J.K)AFACNEWADFAC(L,K)
SILOW(L)=STLOW(LJ+DOSE(L,J.K.1)AEXPP(JJIII.J,K)AEACNEW
SUML=SUML+DOSE(L. J.K.I )AEXPPUJ. II. J,K)AEACNEUADEAC(L,K)
STCOM(L)=SICOM(L)+DOSE
-------
c
c
WRIIE<6,10225)
(STGHI(L),L=1,NGEN)
(SIGCCKL)?L=lrNGEN)
350
403
400
10700
20416
10790
CAAAA
1000
URITE(6.10230)
DO 350 K=1.40
STLUU(K)=0.0
SXHIG(K)=0.0
STCOM(K)=0.0
IF(K.Gl.NGEN) GO TO 350
STGLO(K)=0.0
SIGH1(K)=0.0
STGCO(K)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUHC=0.0
DO 400 K=l,4
DO 400 J=1,NONCLD
TEXPP=0.0
DO 403 II=NOL,NOU
DO 403 JJ=NRL,NRU
TEXPP=TEXPP+EXPP(JJ,II,J,K)
CONTINUE
IEXPP=1EXPPA.001
DO 400 L=l,NORGN
S1LOU(L)=SILOU(L)+DOSE(L,J.K,1)ATEXPPADOSFAC(K)
SUhL=SUML+DOSE(L.J.K.l)ATEXPPADOSFAC(K)ADFAC(L.K)
SIHIG(L)=SIHIG DOSE(L.J.K.2)ATEXPPADOSEAC(K)AHLEI(L)
SUMC=SQHC+DOSE(LfJ.K.I)AIEXPPADOSFAC(K)ALLEI(L)ADFAC(L,K)+
> DOSE(L,J.K,2)ATEXPPADOSEAC(K)AHL£X(L)AIifAC(L,K)
lE(L.GT.NGEN) GO TO 400
SIGLO(L)=SIGLO(L)+GDOSE(LfJ,K,l)AIEXPPAGENFAC(K)
SlGHI(L)=STGHI(L)+GDOSE(Lfj;Kf2)ATEXPPAGENEAC(K)
SIGCO GDOSE(L,J,Kf2)AIEXPPAGENFAC(K)A6HLET(L)
CONTINUE
WRITE(6.10700) 11ILL, 17X ' ORGANS:'f10(2X,A8)/(26XJ10(2X,A8)))
URIIE(6,10206)
-------
1050
1100
1101
1102
1199
C
11100
A
B
C
C
C
C
C
11290
C
C
C
SIGCO(J)=0.0
CONTINUE
DO 11CJ9 K=l,4
DO 1100 L=1.NORGN
FACNEW=POPFACADOSFAC(K)ADFAC(L, K)
FACNE2=PO?t'ACAGENFAC (K)
DO 1100 J=1.NONCLD
SIHIG
SICOM(K)=SICOh(K)+DOSE.LL«UUfUy(AS
AGLLET(L)+GDOSE(L,J,K,2)AFACNE2AEXPP(JLOC,ILOCIJ,K)AGHLET(L)
CONTINUE
IF(K.GT.2) GO TO 1101
SIHIG(5)=SIHIG(5)+SIHIG(K)
STLOW(5)=STLOW(5)+STLOW(K)
STCOM(5)=STCOM(5)+STCOM(K)
S1GHI(5)=SIGHI(5)+STGHI(K)
SIGLO(5)=SIGLO(5)+SIGLO(K)
STGCO(5)=STGCO(5)+SIGCO(K)
IF(K.LT.3)GO TO 1102
STHIG(6)=STHIG(6)+STHIG(K)
STLOU(6)=SILOU(6)+SILOU(K)
SICO«(6)=STCOM(6)+STCOM(K)
SIGHI(6)=STGHI(6)+STGHI(K)
STGLO<6)=STGLO(6)+STGLO(K)
STGCO(6)=STGCO(6)+STGCO(K)
STHIG(7)=STHIG(7)+STHIG(K)
STLOU(7)=STLOW(7)+STLOU(K)
STCOH(7)=SICOH(7)+STCOM(K)
STGHI(7)=STGHI(7)+STGHI(K)
SIGLO(7)=STGLO(7)+STGLO(K)
STGCO(7)=STGCO(7)+STGCO(K)
CONTINUE
WklTE(6.11100) TITLE
tUKMAK'l',20A4/30X. ' PATHWAY DOSE/EXPOSURE SUMHASY'/
'OAAA SELECTED INDIVIDUAL AAAV
'ODOSE RATES:'/
' WEIGHTED SUMS Of ORGAN DOSE RATES'/
PATHWAYS: INGESTION '.
'INHALATION AIR GROUND'.
INTERNAL EXTERNAL TOTAL'/
45X ' IMMERSION SURFACE')
URITE(b,10205) (STLOW(L),L=1,7)
URITE<6,10210) (SIHIG
-------
IF(INDPOP.NH.l) GO TO 11000
DO 1150 J=1.40
STHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STGHI(J)=0.0
STGLO(J)=0.0
STGCO(J)=0.0
1150 CONTINUE
DO 1299 K=1.4
FACNE2=TOTFACAGENFAC(K)
DO 1200 L=1.NORGN
FACNEW=TOIFACADOSFAC(K)ADFAC ALLETtD-t-DOSEd.J.K^JAEXPHJJ.IIjJjKJAFACNEWAHLEKL)
IF(L.NE.NGEN) GO TO 1200
STGHI(K)=SlGHl(K)+GDOSE GO TO 1201
STHIG(5)=STH1G(5)+STHIG(K)
STLOU(5)=SILOU(5)+STLOU(K)
STCOM(5)=STCOM(5)+STCOH(K)
STGHI(5)=STGHI(5)+STGHI(K)
STGLO(5)=STGLO(5)+STGLO(K)
STGCO(5)=STGCO(5)+STGCO(K)
1201 IF(K.LT.3) GO TO 1202
STHIG(G)=STHIG(G)+STHIG(K)
STLOU(6)=SILOU(6)+STLOW(K)
STCOM(6)=STCOM(6)+SICOM(K)
SIGHI(6)=STGHI(6)+SIGHI(K)
STGLO(6)=SIGLO(6)+STGLO(K)
SIGCO<6)=SIGCO(6)+STGCO(K)
1202 STHIG(7)=STHIG(7)+STHIG(K)
STLOU(7)=SILOU(7)+STLOW(K)
STCOM(7)=STCOM(7)+STCOM(K)
STGHI(7)=STGHI(7)+STGHI(K)
STGLO(7)=STGLO(7)+STGLO(K)
SIGCO(7)=STGCO(7)+STGCO(K)
1299 CONTINUE
C WkITE(6,11400)
11400 FORMAH/'OAAA MEAN INDIVIDUAL AAAV
A 'ODOSE RATES:'/
< ' WEIGHTED SUMS OF ORGAN DOSE RATES'/
< ' PATHUAYS: INGEST ION ',
< 'INHALATION AIR GROUND'
< ' INTERNAL EXTERNAL TOTAL'/
< 45X.' IHrttRSION SURFACE')
C WRITE<6,10205) (STLOW(L),L=1,7)
C URITE(6,10210) (SIHIG(L)fL=l,7)
C URIX£(6!l0215) (SICOM(L) ,L=1,7)
C lE(KNUk!ukllE(b,20216) ULE
C URIXE(6,11590)
A109
-------
11590 FORrtAK'OAVERAGE GONADAL DOSES:'/
< ' PATHWAYS: INGESIION ',
< 'INHALATION AIR GhOUND'.
< ' INTERNAL EXTERNAL TOTAL'/
< 45X.' IrtiitRSlON SURFACE')
C URliE(Gt10220) 0:iGLO(L),L=l,7)
C wmE(Gf10225) (blGHI(L),L=l,7)
C URIIE, 10230) (Sl'uCGd) ,L = 1,7)
DO 1350 K=1.40
STLOU(K)=0.6
STH1G(K)=0.0
STCOH(K)=0.0
SIGLO(K)=0.0
STGHI(K)=0.0
STGCO(K)=0.0
1350 CONTINUE
DO 1499 K=l,4
DO 1400 J=1,NONCLD
IEXPP=0.0
DO 1404 II=NOL,NOU
DO 1404 JJ=NRL,NRU
TEXPP=ItXPP+hXPP(JJ,11,J,K)
1404 CONTINUE
TEXPP=1EXPPA.001
DO 1400 L=1.NORGN
STLOU(K)=STLOl.J(K)+DOSE(L,J,K,l)AIEXPPADOSFAC(K)^DFAC(L,K)
SIHI6(K)=STHIG(K)+DOSE(LfJrKf2)ATEXPPADOSFAC(K)ADEAC(L.K)
SICOM(K)=SICOM(K)+DOSE(L,J.K.1)ATEXPPADOSEAC(K)ALLEI(L)A
> DFAC(L.K)+DOSE(LfJ.K.2)ATEXPPADOSFAC(K)AHLET(L)ADEAC(LfK)
IF(L.NE.NGEN) GO 10 1400
SIGLO(K)=STGLO(K)+GDOSE(L,J,K,l)AIEXPPAGENtAC(K)
STGHI(K)=STGHI(K)+GDOSE(L,J,K,2)ATEXPPAGENFAC(K)
SIGCO(K)=SIGCO(K)+GDOSE(L.J,K.2)ATEXPPAGENFAC(K)AGHLEI(L)+
A GDOSE(L,JfKfl)ATEXPPAGENEAClK)AGLLET(L>
1400 CONTINUE
1403 IF(K.GT.2) GO TO 1401
STLOU(b)=STLDW(5)+STLtJW(K)
SIHIG(5)=STHIG(5)+STHIG(K)
SICOH(5)=STCOh(5)+SrCOH
-------
<
11790
<
<
<
CAAAA
11000
2050
2100
2109
C
12100
A
A
A
A
'INHALATION AIR GROUND'.
INTERNAL EXTERNAL TOTAL'/
45X ' IrtrtLRSION SURFACE')
URITE<6,11700) TITLE
URITE(6,10206) (SILOU(L),L=1,7)
URIIE(6,10211) (SXHIG(L),L=1,7)
WRITE(6.10216) (SICOM(L).L=l,7)
IF(RNWR)URIT£(6,20416) WLC
WRITE<6.11790)
EOBMAIrOAVERAGE GONADAL DOSES:'/
PA'IHUAYS: INGEST ION ',
'INHALATION AIR GROUND'
INTERNAL EXTERNAL TOTAL'/
45X' IMMERSION SURFACE')
URIIL<6,10221) (SIGLO(L),L=1,7)
URIT£(6,10226) (-SIGHKL) ,L=1,7)
URIIE(6,10231) (STGCO(L),L=l,7)
DOSE RATES DY NUCLIDE
DO 2050 J=l,40
SIHIG(J)=0.0
STLOU(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
SIGHI(J)=0.0
STGCO(J)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
SUMGL=0.0
SUMGH=0.0
SUMGC=0.0
DO 2109 J=1,NONCLD
DO 2100 K=1.4
FACNE2=POPtACAGENFAC(K)
DO 2100 L=1.NORGN
FACNEW=POPFACADOSFAC(K)ADFAC(L.K)
STHIG(J)=STHIG(J)+DOSE(L,J,K,2)AFACN£UA£XPP(JLOC,ILOC,J,K)
(J)+DOSE(LfJ,K,l)AEACNEUAEXPP
CONTINUE
URITEC6.12100) TITLE.(NUCLID(L),L=1.NONCLD).TOTAL
FORHAT('l'.20A4/30X.5NUCLIDE DOSE/EXPOSURE SUMMARY'//
'OAAA SELECTED INDIVIDUAL AAA'/
'ODOSE RATES:'/
' WEIGHTED SUMS OF ORGAN DOSE RATES'/
15X,' NUCLIDES:'f10(2X,AB)/(26X,10<2X,A8)))
Alll
-------
c
c
c
c
c
12290
C
C
C
C
C
C
C
C
UK HE (6, 10205) (STLOU(L),L=1,NONCLD),SUML
WRITE (6. 10210) ULI .
WRIIE<6.12290) (NUCL ID (L) ,L=1 .NONCLD) , TOTAL
FORMATt'OAVERAGE GONAOAL DOSES:'/
A 15X,' NUCL10£S:',10(2X.A8)/(2&X.10(2X.A8)))
, ,...
URIIE (6,10220) (STGLO(L)rL = l,NOkLD),SUHGL
WRITE (6. 10225) (STGril (L) ,L=1 ,NONCLD) ,SUrtGH
WRITER', 10230) (STGCO(L) , L=l ^NONCLD) \ SUMGC
IF MAXIHUM DOSE ORGAN BY NUCLIDE SUMMARY RETURN
IF ( It'LAG .EQ. 3 ) RETURN
2150
2200
2209
C
12400
A
A
IF(INDPOP.NE.l)
DO 2150 J=1.40
STHIG(J)=0.0
STLOW(J)=0
STCOM(J)=0
S1QLO(J)=0
SIGH1(J)=0
STGCO(J)=0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
5UMGL=0.0
GO TO 21000
.0
.0
.0
.0
.0
SUMGH=0
SUMGC=0
DO 2209
DO 2200
J=1,NONCLD
i.'U u u V V K = 1 4
FACNE2=TOTFACAGENFAC (K)
DO 2200 L=1.NORGN
FACNEW=TOTtACADOSFAC(K)ADEAC(L,K)
DO 2200 II=NOL,NOU
DO 2200 J3=NRL,NRU
STH1G(J)=STHIG(J)+DOSE(L,J,K,2)AEXFP(JJ,II,J,K)AFACNEU
STLOU(J)=STLOW(J)+DOSE(L,J,K,1)AEXPP(JJFII,J,K)AFACNEW
STCOM(J)=STCOM(J)+DOSE(L.J.K,1)AEXPP(JJ,II.J.K)AFACNEU
ALLEKD+DOSEtL.J.K^JAEXPPCJJ, IIPJ,K)AFACNEWAHLET(L)
IF(L.NE.NGEN) GO TO 2200
STGLO(J)=STGLO(J)+GDOSE(L,J.K.1)AEXPP(JJ,I1,J,K)AFACNE2
STGHI(J)=STGHI(J)+GDOSE(L,J.Kf2)AEXPP(JJ,IIfJ,K)AFACNE2
STGCO (J) =STGCO (J) -f GDOSE (L. J K. 1) AEXPP (J J . 11, J. K) AFACNE2A
GLLET(L)+GDOSE(L,J,K,2)AEXPP(JJfII,J,K)AFACNE2AGHLET(L)
CONTINUE
SUML=SUHL+STLOU(J)
SUMH=SUMH+STHIG(J)
SUMC=SUMC+STCOM(J)
SUMGL=SUMGL+STGLO(J)
SUMGH=SUMGH+STGHI(J)
SUMGC=SUMGC+STGCO(J)
CONTINUE
URITE(6,12400) (NUCLID(L).1=1.NONCLD),TOTAL
FORMAT(/'OAAA MEAN INDIVIDUAL AAA'/
'ODOSE RATES:'/
' WEIGHTED SUMS OF ORGAN DOSE RATES'/
15X,' NUCLIDES:1',10(2X,A8)/(26X,10(2X , A8)))
A112
-------
c
c
c
c
c
12590
C
C
C
2350
2403
2400
WRITE(6,10205) (SILOW(L),L=1,NONCLD),SUML
WRITE(6,10210) (STHIG 15X ' NUCLIDES:',10(2X.A8)/(26X.10(2X,A8)))
WRITE(&,10206) (STLOU(L),L=1,NONCLD),SUML
WRITE(6,10211) (STHIG(L),L=1,NONCLD),SUMH
WRITE(6,10216) (SICOM(L) !L = 1 NONCLD),SUMC
IF(RNWR)WRITE(6.20416) WLC
URITE(6,12790) (NUCL ID(L),L = 1,NONCLD),TOTAL
A113
-------
12790 t'DRMATCOAVERAGE GONADAL DOSES:'/
> 15X ' NUCLIDES:' 10(2X.A8)/(26X,10(2X.A8)»
WRITE(6,10221) (STGLO NRL,NRU,IDISI(20),ILOC,JLOC
CORMON/COHRN/OREP(20),RREP(20),Cr AGEX.YRLL(20.40f4.2)
COMMON/COMRF/REF(20,40.4).FIABLE(7)
COMMON/COMNU/NUCLID(40)fNONCLDfPSIZE(40),8ESP(40),GIABS (4,40),
> INDPOP
COMMON/CO«GEN/GEN(3),NGEN.GDOSE(3.40,4,2).GRISK(3.40.4,2),
> GENEFF,GRFAC(2).REPPER,GLLET(3).GHLET(3).GREf(3.40.4)
COMMON/COMUS/STLOU(40),STHIG(40).SICOH(40).STREQ(40),
A ST6LO(40),STGHI(40)fSTGCO(40),STLLL(40),SlHLL(40),STCLL(40),
B STGRCK40)
COHMGN/ACCMOD/FICAN(40),CCNR(40),POPD(40),GNR(40),
lEIC.TCCNS.IPOPD.TGNR
GENFAC(4),TITLE(20)
A 1, Xw* X U u IT i\ X i \J 1 '9 X*J
DIHENSION RISFAC(4),REQFAC(4),G
DATA RISfAC/2Al.E-i,10.,1000.7,
REQEAC/1.,!.,!.EG. l.LB/,
GENEAC/1..1.,1.,100./,XOTAL/8HIOTAL /
. DATA IKP/6/
CAAAA RISK RATES BY CANCER
IF (IKl'.EQ.O) R1SFAC(4) = RISFAC(4)AGSCFAC
IF (IKP.EQ.O) REQEAC(4)=REQFAC(4)*GSCEAC
IF (IKP.EQ.O) GENFAC(4)=GENFAC(4)AGSCFAC
IKP = 1
LP = 1
DO 2b K=1.NCANC
IE(CANC(K).£Q.PUL)LP=K
25 CONTINUE
DO 50 J=1.40
SIHIG(J)=0.0
STLOy(J)=0.0
STCOHCJ)=0.0
STGLO(J)=0.0
SIGHI(J)=0.0
STGCO(J)=0.0
STREQ(J)=0.0
SIGRQ(J)=0.0
SILLL(J)=0.0
STHLL(J)=0.0
A114
-------
STCLL(J)=0.0
50 CONTINUE
SUhL=0.0
SUhH=0.0
SUhC=0.0
SUhLLL=0.0
SU(lriLL=0.0
SUhCLL=0.0
TBEQ=0.0
RLL=0.0
YRP-RYRLLAULRNCJLOC,ILOC)APOPFAC
RR=RRISKAWLRN(JLOC,ILOC)APOPFAC
IF(ULRN(JLOC, ILOC).NE.0.6)RLL=RYRLL/RRISK
RP=RR
DO 101J L=1,NCANC
DO 100 K = l,4
FACNEW=POPFACARISFACAEACNEUAEXPP(JLl)C, ILOC.J.K)
SIREQ1H.NE.O.O)SUHHLL=SUMHLL/SUMH
IF(SUHC.NE.O.O) YRT=(RYRLLAWLRN(JLOC,ILOC)APOPFAC+SUMCLL)/
A (SUMC+RRISKAPOPFACAULRK(JLOC,ILOC))
IF(SUMC.NE.O.O)SUMCLL=SUHCLL/SUMC
YRP=STCPH+YRP
RP=RP+STCCH
IF(RP.NE.O.O) YRP=YRP/RP
C URITE(6,10100) TITLE
C WRITE(6,10102)(CANC(L),L=1,NCANC),T01AL
A115
-------
10100
10102
C
C
C
C
20216
f
C
20217
t
10205
10210
10215
C
30100
C
C
C
C
C
20218
A
C
20219
A
C
20220
A
10250
10255
10260
C
30200
C
C
C
10220
10221
C
C
C
C
20221
t
20321
{
20222
{
20322
t
20223
EORMAT('1',20A4/30X 'RISK/RISK EQUIVALENT SUMMARY'//
'OAAA SELECTED INDIVIDUAL AAA'/
'OLIFETIME FATAL CANCER RISK:'/)
FORHATdGX ' CANCERS: '. 10<2X,A3)/<2&X, 10<2X,A8) )>
WRIIE(G.10$05> (STLOU(L ,L = 1 , NCANC ) ,SUML
U8IIE(6 10210) (STHIG(L) L=l ,'NCANC) ,'SUMH
WRITE (6 10215) ( STCOMt L) ,L=1 , NCANC) ,SUMC
1F(RNUR)WRITE<6, 20216) RR
IT=SUMC+RR
FORMA1COLUNG CANCER RISK FROM RADON DAUGHTER EXPOSURE ',
8X.1PG10.3)
IF(RNUJ<)WR1TE(6, 20217) IT
FORMAT; ' TOTAL FATAL CANCER RISK FROM ALL EXPOSURES',
12X.1PG10.3)
tORHAIC LOU LET ' , 16X, 1P10G10.3/(26X, 1P10Q10. 3) )
FORrtATC HIGH LET ' 16X , !P10G10.3/(26Xj 1P10G10.3) )
FORMAT C TOTAL', ifiX, 1P10G10.3/(26X, If 10G10.3))
LIFE LOSS PER PREMATURE DEATH:')
.
>. 10102) (CANC(L).L=1.NCANC).TOTAL
>; 10250) (STLLL(L),L=1,NCANCJ,SUMLLL
> 10255) (STHLL(L)jL=l,NCANC) SUMHLL
URITE(6. 30100)
FORMAK'
URITE(6,
URITE(6
URIIE(6
WRITE(6 10260) (STCLL( L) ,L?1 , NCANC) ,SUHCLL
IF(RNUR)URIT£(6, 20218) RLL
FORMAICOAVG LIFE LOSS FROM RADON DAUGHTER EXPOSURE ',
'FOR LUNG' JX.1PG10.3)
1F(RNUR)UR1TE(6,20219)YRP
FORMATC AVG LIFE LOSS FROM ALL EXPOSURES FOR LUNG'
13X.1PG10.3)
IF(RNUR)URITE(6, 20220) YRT
FORMATC AVG LIFE LOSS FROM ALL EXPOSURES (TOTAL) '
12X.1PG10.3)
EORMAIC LOU LEI ( YR) ' . 12X. 1?10G10.3/(26X. 1P10G10.3) )
FORMATC HIGH LET ( YR) ' , 11X, 1P10G10.3/(26X, 1P10G10.3) )
FORMA1C COMBINED ( YR) ' ,HX,lP10G10.3/(26Xf 1P10G10.3) )
URIIE(6. 30200)
tORMAI(;OFATAL CANCER RISK EQUIVALENT:')
WRITE (6, 10102) (CANC(L).L=1. NCANC), TOTAL
URITE(6,10220) (STREQ(L) ,L=1, NCANC ) ,TBEQ
URir£(6. 10221) TBEQ
tORMAIC (MREM/YR)/,15X.1P10G10.3/(26X.1P10G10.3))
FORMATCOUHOLE BODY FATAL CANCER RISK EQ(MREM/YR) ' ,
24X.1PG10.3)
RQ=RREF(1)AULRN(JLOC,ILOC)APOPFAC
RT=RREF(2)AULRN(JLOC,ILOC)APOPFAC
TTP=RQ+STREQ(LP)
TTQ=RT+TBEQ
IF(RNUR)URITE(6, 20221) RQ
IF(RNUR)WRIIE(6. 20222) RT
IF(RNUR)URITE(6,20224) IIP
IF(RNUR)URIIE(6, 20223) TTQ
FORMATC LUNG RISK EQUIVALENT (MREM/YR) FROM RADON '.
'DAUGHTER EXPOSURE ' 4X.1PG10.3)
FURMATC LUNG RISK EG. (PERSON REM/YR) FROM RADON ',
'DAUGHTER EXPOSURE' 6X.1PG10. 3)
FORMATC WHOLE BODY RISK EQ (MREM/YR) FROM RADON '.
'DAUGHTER EXPOSURE ' GX.1PG10.3)
FORMA1C WHOLE BODY RISK EQ (PERSON REM/YR) FROM RADON '.
'DAUGHTER EXPOSURE' IX, 1PG10.3)
FORMATC WHOLE BODY RISK EQ (MREM/YR) FROM ALL EXPOSURES'
A116
-------
A17X,1PG10.3)
20224 EURMATC PULMNARY RISK EQ (MREM/YR) FOR ALL EXPOSURES',
A 20X,1PG10.3)
20323 FORMAT<' UHOLE BODY RISK EQ (PtRSON REH/YR) FROM ALL EXPOSURES'
A11X.1PG10.3)
(PERSON RErt/YR) FOK ALL EXPOSURES',
20324
A
C
10190
C
10225
X
s
C
10230
C
10235
N
C
30300
EQ
150
20&
A i r ' j i v
tORMATC PULMNARY RISK
14X.1PG10.3)
WRIIE<6.10190)
FORMAK JOG£NE1IC RISKS:') .
UR1TE<6,10225) Sl'GLO(l)
FORMAK' LOU LEI (EFFECTS/BIRTH)-,rx,iPioGio.3/
(26X.1P10G10.3))
URITE(6.10230) STGHK1)
tORMAIC' HIGH LEI (EttECTS/BIRlH)'.1P10G10.3/
(26X.1P10G10.3))
URITE(6.10235) SlGCO(l)
FORMAK' COMBINED (EFEECTS/BIRTHJ^IPIOGIO.S/
(26X.1P10G10.3))
URITE(6.30300) STGRQ(l)
tORMAK'OGENETIC RISK EQUIVALENT:'/
' (MREM/YR)',15X.1P10G10.3/(26X.1P10G10.3))
IF(INDPOP.NE.l) GO TO 1000
DO 150 J=l,40
SIH1GU)=0.0
STLOW(J)=0.0
STCOM(J)=0.0
STGLO(J)=0.0
STGH1(J)=0.0
STGCO(J)=0.0
STREQ(J)=0.0
STLLL(J)=0.0
STHLL(J)=0.0
SICLL(J)=0.0
STGRQ(J)=0.0
CONTINUE
TBEQ=0.0
SUML=0.0
SUMH=0.0
SUMC=0.0
SUMLLL=0.0
SUMHLL=0.0
SUMCLL=0.0
RRM=0.0
RLL=0.0
RQM=0.0
RIM=0.0
YRP=0.0
DO 206 II=NOL,NOU
DO 206 JJ=NRL,NRU
RQM=RQM+RREF<1)AULRN(JJ,II)ATOTFAC
RTM=RTM+RREF(2)AULRN(JJ.II)ATOTFAC
RRM=RRISKAULRN(JJ.II)ATOTFAC+RRM
YRP=RYRLLAULRN(JJ,II)ATOTFAC+YRP
CONTINUE
IF(RRM.NE.O.O)RLL=YRP/RRM
RP=YRP
DO 209 L=1,NCANC
DO 200 K = K4
FACNEU=TOIFACARISFAC(K)
FACNE2=TOIFACAGENFAC(K)
A117
-------
DO 200 J=1.NONCLB
DO 200 II=NOL,NOU
DO 200 JJ=NRL.NRU
SIhIGAEACNEU
STCLL(LJ=$TClL(L)+YRLL(L,J,K.l)AEXPP(JJ,II,J,K)AFACNEU
+ YRLL(L.JfK.2>AEXPP«JJ,II,J.K)AFACNEliJ
SIREQ(L)=SIREG(L)+REF(L,J,K)AEXPP(JJ,II,J,K)ATOTEAC
.Nt.l) GO 10 2W
= ma+REE(NCANC-H,J.K)AEXPP
IF(L.EQ.LP) STCPH=STCLL(LP)
IF(L.EQ.LP) STCCH=STCOrt(LP)
IF(SrLOW(L).NE.O.O)STLLL(L)=5ILLL(L)/SILOW(L)
IE(STHIG(LJ.NE.O.O)STHLL(L)=STHLL(L)/5IHIG(L)
IF(SICOH(L).NE.O.O)SICLL(L)=STCLL(L)/STCOM(L)
209 CONTINUE
IF(SUHL.NE.O.O)SUMLLL=SUHLLL/SUML
IF(SUHH.NE.O.O)SUMHLL=5UMHLL/SU«H
IF(SUHC.NE.O.O) YRT=(YRP+SUMCLL)/(RRM+SUHC)
YRP=SICPH+YRP
RP=RRM+STCCH
IF(RP.NE.O.O)YRP=YRP/RP
IE(SUMC.NE.O.O)SUHCLL=SUMCLL/SUMC
C WRITE(6. 10400) TITLE
C WR ITE ( 6. 10402 ) (CANC(L) ,L=1 .NCANC) , TOTAL
10400 FORMAT(Jl',20A4/30X.'RISK/iRISK EQUIVALENT SUMMARY'//
A 'OAAA MEAN INDIVIDUAL AAA'/
B 'OLIFEIIML FA1AL CANCER RISK:'/)
10402 FORMATdbX,' CANCERS: ', 10(2X,A8)/( 26X, 10 (2X.A8) ))
C WRITE(6, 10205) (STLOU(L) ,L=1 , NCANC) ,S^ML
C WRIIE(6,10210) (STHIG(L),L=1 NCANC), SUMH
c uRiiE(b, 10215)
-------
C URIIE(6,30200)
C MIIE(6,10102) (5TREQ(L),L=I,NCANC)FTBEQ
C URITE(6.10221) TBEQ
C IF(RNUR)URITE(6.20221) ROM
C lE(RNUR)WkITE<&;20222> RTH
TIP=RQM+SIREQ(LP)
C 1F(RNUR)URITE(6.20224) TIP
TTQM=RTM-HBEQ
C 1F(RNUR)URITE(6,20223) ITQM
C UK HE (6.10590)
10590 FORMAT*;OGENEIIC RISKS:'/)
C URIIE(6,10225> STGLO(l)
C URITE<6 10230) SIGH 1(1)
C URITE(6,10235) STGCO(l)
C HRITE(6.30300) STGRQ(l)
DO 350 K=l,40
SILOU(K)=0.0
S1HIG(K)=0.0
STCOM(K)=0.0
STGLO(K)=0.0
STGH1(K)=0.0
STGCO(K)=0.0
STREQ(K)=0.0
STLLL(K)=0.0
STHLL(K)=0.0
STCLL(K)=0.0
SIGRQ(K)=0.0
350 CONTINUE
SUML=0.0
TBEQ=0.0
SU«H=0.0
SUMC=0.0
SUMLLL=0.0
SUMHLL=0.0
SU«CLL=0.0
WLT=0.0
BO 401 II=NOL,NOU
DO 401 JJ=NRL,NRU
WLT=WLr+ULRN(JJ,II)
401 CONTINUE
REC=RRISKAWLT/ArjEX
RQC=RREF(1)AULTA.001
RIC=RREF(2)AULTA.001
DO 400 K=l,4
DO 400 J=1,NGNCLD
TEXPP=0.0
DO 403 II=NOL.NOU
DO 403 JJ=NRL,NRU
TEXPP=TEXPP+E^PP(JJ,II,J,K>
403 CONTINUE
DO 400 L=1,NCANC
*3UriL.ijti-aUi I jLi*LiT 1I\L»U^I'|U f\ A / A A JU AI i AKJ.\Ji.nu\i\// nuun
STHIG(L)=STHIG(L)+RISK(L,J,K,2)ATEXPPARISFAC(K)/AGEX
STHLL(L)=STHLL(L)+YRLL(L;j',K!2)ATEXPPARISFAC(K)/AGEX
SU«H=SUMH+RISK(L,J.Kf2)ATEXPPARISFAC(K)/AGEX
SUMHLL=SUMHLL+YRLL(L,J,Kf2)ATEXPPARISEAC(K)/AGEX
A119
-------
SICOM(L)=STCOM(L)+RlSK(L.J,K.l)ATtXPPARISFAC(K)/AGEX+
RISK(L,J,K,2)AT£XPPARiSFAC/AGEX +
RlSK(L,J,K,2)ATEXPPARIStAC(K)/AGEX
SUMCLL=SUMCLL+YRLL(L,J,K,1)ATEXPPARISFAC(K)/AGEX+
YRLL10G10.3))
WRHE(&,10710) ' EXPOSURE',8X,1PG10.3)
20317 FORMAIC TOTAL FATAL CANCER RISK(DEATHS/YR) FROM ALL',
> ' EXPOSURE'.12X.1PG10.3)
CURITE(6,10750) (SILLL(L),L=1,NCANC),SUMLLL
CURITE(6,10755) (STHLL(L),L=1,NCANC),SUMHLL
CURITE(6,10760) (STCLL(L),L=1.NCANC).SUMCLL
10750 FORMATC LOST LOU LETJ,12X,1P10G10.3/(26X,1P10G10.3))
10755 FORMATC LIFE LOST HIGH LET',6X,1P10G10.3/(26X,1P10G10.3))
10760 EORMATC LIFE LOST COMBINED',6X,1P10G10.3/C26X,1P10G10.3))
10715 EORMA1C TOTAL (DEAIHS/YR)' 6X.1P10G10.3/
A (26X.1P10G10.3))
URITE(6,30200)
URITE(6,10102) (CANC(L).L=1.NCANC),TOTAL
WRITE(6.10719) (STREQ(L),L=1,NCANC).TBEQ
10719 FORMATS (PERSON REM/YR)7,9X,1P10G10.3/(26X,1P10G10.3))
URIIE(6.10321) TBEQ
10321 tORMAT(JOUHOLE BODY FATAL CANCER RISK ElKPERSON REM/YR)',
1 18X.1PG10.3)
IF(RNUR)URITE(6,20321) RQC
IF(RNulR)URIIE(6,20322) RTC
ITPC=RQC+SIREQ(LP)
IF(RNUR)URITE(6,20324) TTPC
TTGC=RTC+TBEQ
IF(RNUR)UR11'E(6,20323) TTQC
10720 FORMATCOGENEIIC RISK EQUIVALENT:'/
1 ' (PERSON RLM/YR)',9X,1P10G10.3/
A120
-------
10790
10725
10730
v
10735
CAAAA
1000
1050
1100
1103
1101
,5X,iP10G10.3/
f4X,lP10G10.3/
(26X.1P10G10.3))
URITE(G.10790)
FORrtAI(5OG£NETIC RISKS:')
URIIE<6.10725) SlGLO(l)
FORHAK5 LOU LET(E£F£CfS/fR)'
(26X.1P10G10.3))
URITEvG.10730) STGHK1)
FORMAK5 HIGH LET(EFFECTS/YR)
(26X,1P10G10.3)>
URIlh(SF10735) STGCO(l)
FORMAI(f COrtBiNED(£FE£CTS/YR)',4X,ii110G10.3/
(2GX.1P10G10.3))
URITE(G.10720) STGRQ(l)
RISK RAILS BY PA1HUAY
DO 1050 J=1.40
STHIG(3)=0.6
STLOW(J)=0.0
STCOM(3)=0.0
STREQ(J)=0.0
STGRQ(J)=0.0
STGLO(J)=0.0
STGH1(J)=0.0
STGCO(J)=0.0
CONTINUE
DO 1199 K=l,4
DO 1100 L=1.NCANC
FACNEU=POPFACARISFAC(K)
FACNE2=POPEACAG£NFAC(K)
DO 1100 J=1,NONCLD
STHIG(K)=SlfilG
-------
1102
1199
C
11100
A
A
11102
C
C
C
C
C
C
C
C
C
20422
V
^
C
C
C
10290
C
C
C
C
1150
SIGCO(G)=STGCC<6)+STGCO(K)
STHIG(7)=STHIG(7)+STHIG(K)
STLOW(7)=STLOU(7)+5TLOU(K)
STCOM(7)=SICOM(7)+STCOM(K)
SIGRQ(7)=STGRQ<7)+SIGRQ
SIREQ(7)=STREQ(7)+SIREQ
-------
+RISK(L.J.K.2)AEXPP(JJ. 1 1. J ,K> AEACNEU
IFd.GlIlJ fio 10 1200
1200
1203
1201
1202
1299
C
C
11400
A
B
C
C
C
C
C
C
C
C
C
C
C
C
11590
C
C
C
f J,K)AiXPP(JJ.II.J.K)A
IOT£ACAREGFAC(K)
STGRG(KJ=STGfcQ
-------
C URITECG,30300) (SIGKlHL),L=1,7)
DO 13bO K=l,40
5TLOU(K)=0.0
SIHIG(K)=0.0
SICOrt(K)=0.0
STGLO(K)=0.0
STGHI(K)=0.0
STGCQ(K)=0.0
SIR£Q(K)=0.0
STGRQ(K)=0.0
1350 CONTINUE
DO 1499 K = l,4
DO 1400 J=1,NONCLD
IEXPP=0.0
DO 1404 I1=NOL,NOU
DO 1404 JJ=NRL,NRU
TEXPP=TEXPP+EXPP(JJ,II,J,K)
1404 CONTINUE
DO 1400 L=1,NCANC
ISFAC(K)/AGEX
,2)ATEXPPARISEAC(K)/AGEX
3FAC(K)/AGEX+
Lrf U IT J. ^ IT VJ 14
DO 1400 L=1.NCANC
SILOW(K)=SILOU(K)+RISK
-------
11700 EORMAl('l/.////Vf20A4
&
A
B
2052:
11790
CAAAA
11000
2050
REM/YR) FROh RADON
iini \ j. F/////.j,wt11,/.J\/Af
PATHWAY RISK/RISK EQUIVALENT SUMMARY
'OAAA COLLECTIVE POPULATION AAA'/
'©COLLECTIVE FATAL CANCER RISK:'/)
WRIIE(6,10705) (STLOW(L)fL=l,7)
URITE(b.10710) (STHIG(L).L=1.7)
URITE<6.10715) (STCOPI(L).L = 1.7)
IF(RNUR)UR1I£C6.20316) RRC
IF(RNUR)URITE(6,20317) TIC
WRIT£(6F30200)
WRI1E(GF11102)
URITE<6.10719) (SIREQ(L) ,L=1,7i
IF(SNUR)W«n£(6.20522) RIC
FORMATCOUHOLE BODY RISK ECHPERSON
'DAUGHTER EXPOSURE',2X.1PG10.3)
WRITE(6,20323) 1TQC
URIT£(&F11790)
URITE(6.11102)
tUSHAK'OGENETlC RISKS (PERSON RErl/YR):'/)
URITE(6f10725) (SXGLO(L) FL = 1,7)
WRITE(6,10730) (SIGHI(L),L=1,7)
WRITE(6,10735) (STGCO(L),L = l,7)
WRITE(6,10720) (STGRQ(L)FL=1,7)
RISK RATES BY NUCLIDE
DO 2050 J=l,40
STHIG(J)=0.0
STLOUU)=Q.O
STCOM(J)=0.0
STGLO(J)=0.0
STGHI(J)=0.0
STGCO(J)=0.0
STR£Q(J)=0.0
STGRQ(J)=0.0
CONTINUE
SUML=0.0
SUMH=0.0
SUMC=0.0
SUMGL=0.0
5UHGH=0.0
SUMGC=0.0
SUMRQ=0.0
SUMGQ=0.0
DO 2109 J=1.NONCLD
DO 2100 K=1.4
FACNEW=POPEACARISFAC(K)
FACNE2=POPFACAG£NFAC(K)
DO 2100 L=1.NCANC
STHIG(J)=STHIG(J)+RISK(L,JFKF2)AFACNEWAEXPP(JLOCFILOCFJ,K)
STLOW(J)=STLOU(J)+RISK(LFJFKI1)AFACNEUAEXPP(JLOCFILOC,J,K)
STCOM(J)=STCOM(J)+RISK(L,J.K.l)AFACNEUAEXPP(JLOCfILOC,J,K)
+RISK(L,JIK,2)AFACNEWAEXPP(JLOCFILOCFJ,K)
IF
-------
SIGHl(a)=STGHI(J)+GRI3K
STGLO(J)=STGLO(J)+GRIS
SK(L,J,K,2)AEX?P(JLOC,ILOC,J.K)AFACNE2
SK(L,J,K,1)AEXPP(JLOC,ILOC,J K)AFACNE2
SK(L,J.K,1)AEXPP(JLOC,ILOC JK)AFACNE2+
M,.u,u,j.//^Ai1\jiJui.
A GRISK(L,J,K,2)AEXPP(JLOC,ILOC, J,K)AFACNE2
2100 CONTINUE
SUML=bUrtL+SlLOU(J)
SUhH=SUMH+STHIG(J)
SUMC=SUMC+S1COM(J)
SUMGL=SUMGL+STGLO(J)
SUMGH=SUMGH+STGhI(J)
SUMGC=SUMGC+STGCO(J)
2109 CONTINUE
DO 305 L=1,NONCLD
305 FICAN(L)=SICOM(L)
TFIC=SUMC
C WRIIE(6, 12100) TITLE
C WRIIE<6.12102)(NUCLID(L).L=1.NONCLD),TOTAL
12100 FORHAT(J1'20A4/30X ,'NUCLIDE RISK/RISK EQUI^AL^NT SUMMARY'/
1 /'OAAA SELEC1ED INDIVIDUAL AAAV
A 'OLIFETIME FATAL CANCER RISK:')
12102 FORMAT(15X,' NUCLIDES: ' ,10(2X. A8)/(26X. 10(2X, A8) ) )
C WRITE<6, 10205)
-------
2200
2209
C
12400
>
A
B
A
C
C
C
C
C
C
C
C
C
C
C
12590
t
C
C
C
C
FACNEW=TOTFACARISFAC(K>
FACNE2=IOIFACAGENFAC(K)
DO 2200 II=NOL,NOU
DO 2200 JJ=NRL,NRU
SIHlG(J>=STHlGU)+RISK(L,J,Kf2)AEXPPAEXPPAFACNE2
STGCO(J)=STGCO(J)+GRI3K(L,J,K,2)AEXPP(JJ,II,J,K)AFACNE2+
GRISK(L,J,K,i)A£XPP(JJ,n,J,K'AFACNE2
CONTINUE
SUML=SUHL+STLOU(J)
SUHH=SUMH+STHIG(J)
SUMC=SUMC+STCOM(J)
SUMGL=SUMGL + STGLOU)
SUMGH=SUMGH+STGHI(J)
SUMGC=SUMGC+STGCO(J)
CONTINUE
WRITE(6,12400)TITLE, (NUCLID(L),L=1,NONCLD>,TOTAL
FORMAT('1',20A4/
30X.'NUCLlfiE RISK/RISK EQUIVALENT SUHHARY'//
'OAAA MEAN INDIVIDUAL AAA'/
'OLIFETIME FATAL CANCER RISK:'/
15X.' NUCLIDES:',10(2X.A8)/(26X,10(2X,A3)))
WRITE(6,10205) (STLOW(L),L=1,HONCLD),SUML
WRITE(6,10210) (STHIG(L),L=1,NONCLD),SUMH
WRITE(6 10215) (SICOM(L),L=1,NONCLD),SUHC
IF(RNWR)WRI1E(6,20216) RRM
lt
-------
STGRQ(K)=0.0
2350 CONTINUE
SUML=0.0
SUHH=0.0
SU«C=0.0
SUHGL=0.0
SUHGH=0.0
SU«GC=0.0
SUMRQ=0.0
SUHGQ=0.0
DO 2409 J=l,NONCLD
DO 2400 K = 1.4
TEXPP=0.0
DO 2403 II=NOL.NOU
DO 2403 JJ=NRL,NRU
TEXPP=1LXPP+EXPP(JJ,II,J,K)
2403 CONTINUE
DO 2400 L=1,NCANC
tj -I Ir U I I \ U I ~ iJ J. l_r U I 1 \ J I V \ Li a J ffl^f * /AAljAl 1 A 1\ ± 1_> i. n U \ K / / H tl t A """
> RISK(L.J.Kf2)ATEXPPARISFACIK)/AGEX
IF(L.Gl.l) GO 10 2400
STRhQ(J)=STRLQ(J)+REF(NCANC+l,J.K)ATEXPPAREQFAC(K)A.001
SU«SQ=SUMSQ+REE(NCANC+1.J.K)ATEXPPAREQFAC(K)A.001
SIGRQ(J)=SIGRQ(J)+GREF(L,J,K)AIEXPPAGENFAC(K)A.001
SUMGQ=SUMGQ+GREF(L,J,K)AIEXPPAGENEAC(K)A.001
STGLO(J)=SrGLO(J)+GRISK
-------
WRITEtb.10735) (STGCOCL),L=1,NGNCLp),SUMGC
WRITE(G.10720) (SIGRQ(L) ,L=1,N'ONCLD) ,SurfGG
DO 307 L=1,NONCLD
CCNR(L)=STCOrt(L)
POPD(L)=STREQ(L)
307 GNk(L)=SlGCO(L)
ICCNR=SUMC
TPOPD=SUhRQ
TGNR=SUHGC
21000 RETURN
END
A129
-------
APPENDIX B
SAMPLE PROBLEM OUTPUT
-------
AA INPUT DATA AS READ IN AA
SITE AREA
10000 31 1
-1
0.0
C
C
C Silt AREA.
C DEEP WELL
A* tdi uni
0
i
0.0
0 -1
100
0.0
PRODUCTION RUN
fULftt
010000
0.5
RUNCODE
1000
1.0
0 0
0.0
1 110000
0.0
2
0.0
INJECTION, ABSORBING UASTE
C MAY 20, 1987
C
C
0.01&7
0.0
2.2
100457.0
0.5
1.0
0.080 1
1 4
250
0.39
460
00 °'67
7 0
ro 50
0.0
18
H-3
H-3
H-3
C-14
C-14
C-14
MN-54
hN-54
MN-54
FE-55
FE-55
FE-55
NI-59
NI-59
NI-59
CO-60
CO-60
CO-60
NI-63
NI-63
NI-63
SR-90
SR-90
SR-90
NB-94
NB-94
NB-94
TC-99
TC-99
TC-99
60.0
0.1
40
457.0
1.0
0.01
.2L-4
0.23
1.6
0.0
0.65
2160
&
0.0
0.40
176
1
0.01
0.20
1
0.01
0.20
1
150
0.20
1
6000
0.20
1
150
0.20
1
55
0.20
1
150
0.20
1
150
0.20
1
350
0.20
1
0.5
0.20
900
0.0
27.8
1.0
2.01
l.OE-6
0.27
3.57E+5
0.29
240
24
48
0.015
112
l.OE-7
0.01
0.25
l.OE-7
0.01
0.25
l.OE-7
50
0.25
l.OE-7
50
0.25
l.OE-7
SO
0.25
l.OE-7
50
0.25
l.OE-7
50
0.25
l.OE-7
30
0.25
l.OE-7
70
0.25
l.OE-7
0.5
0.25
0.15
0
30.5
40
0.1
2.3
0
0.3
0.3
480
-0.15 l.OE-11
0.30
0.129
0.0
0.0021
1440
96
60
0
0
0.01
4.8E-0 4
0
0.01
5.5E-0 5
0
150
2.5K-1 5
0
6000
4. OE-3 1
0
150
6.0K-2 6
0
55
2.0E-2 7
0
150
6. OE-2 6
0
150
2.5E+0 2
0
350
2.01-2 5
0
0.5
9.5E+0 1
0.30
0.1
336
480
e.o
85
0
0.01
.8E-0
0
0.01
.5E-0
0
150
.OE-2
0
6000
.OE-3
0
150
.OE-2
0
55
.OE-3
0
150
.OE-2
0
20
.5E-1
0
350
.Ot-3
0
0.5
.5E+0
0.005
0.0
0.39
1.5
300
0
1.0
720
336
9.9
50
370
5.64B-2
l.OE-2
1.21E-4
1.2E-2
8.09E-1
3.5E-4
2.57E-1
2.5L-4
8.66E-6
1.01-3
1.32E-1
2. OE-3
7.53E-3
l.OE-3
2.42E-2
1.5E-3
3.47E-5
2. OE-2
3.25E-6
l.OE-2
0.20
0.01
0
1440
1.0
1.0
8000
0
1.7E-1
0
l.OE-1
0
2.5E-4
0
1.3E-4
0
6.7E-3
100
l.OE-3
0
6.7E-3
0
1.4E-2
0
2.5E-3
0
2.5E-2
0.43
2.2
0.83
25
.0008
1.2E-2
.046
3.1E-2
.0005
4.0E-4
000002
2.0E-4
.00068
6. OE-3
.003
2. OE-2
000065
6. OE-3
.12
3.0E-4
.002
2.5E-1
.00029
8.5E-3
-------
RU-106
RU-106
RU-106
SB-125
SB-125
SB-125
1-129
1-129
1-129
CS-134
CS-134
CS-134
CS-135
CS-135
CS-135
CS-137
CS-137
CS-137
CE-144
CE-144
CE-144
EU-154
EU-154
EU-154
RA-226
RA-226
RA-226
U-234
U-234
U-234
U-235
U-235
U-235
NP-237
NP-237
NP-237
U-238
U-238
U-238
PU-238
PU-23B
PU-238
PU-239
PU-239
PU-239
PU-241
PU-241
PU-241
AM-241
AM-241
AM-241
PU-242
PU-242
PU-242
AM-243
AM-243
AM-243
CM-243
CM-243
CM-243
CM-244
CH-244
CM-244
SITE AREA,
1
220
0.20
1
45
0.20
1
3
0.20
1
1000
0.20
1
1000
0.2
1000
0.20
1
1100
0.20
1
4000
0.20
1
220
0.20
1
750
0.20
1
750
0.20
1
5
0.20
750
0.20
1
3500
0.20
1
3500
0.20
]
3500
0.20
1
80000
0.20
1
3500
0.20
1
8.0E+4
0.20
1
3300
0.20
1
3300
0.20
PRODUCTION
l.OB-7
70
0.25
l.OE-7
50
0.25
l.OE-7
3
0.25
l.OE-7
2000
0.25
l.OE-7
2000
0.25
l.Ot-7
2000
0.25
l.OE-7
2000
0.25
l.OE-7
2000
0.25
l.OE-7
400
0.25
l.OE-7
3000
0.25
l.OE-7
3000
0.25
l.OE-7
5
0.25
l.OE-7
3000
0.25
l.OE-7
700
0.25
l.OE-7
700
0.25
l.OE-7
700
0.25
l.OE-7
80
0.25
l.OE-7
700
0.25
l.OE-7
80
0.25
l.OE-7
700
0.25
l.OE-7
700
0.25
0
220
7.5E-2
0
45
2.0E-1
0
3
l.OE+0
0
1000
8.0E-2
0
1000
8.0E-2
1000
8.0E-2
0
1100
l.OE-2
0
4000
2.5E-3
0
220
1.5E-4
0
750
8.5E-3
0
750
8.5E-3
0
5
4.3E-3
0
750
8.5H-3
0
3500
4.5E-4
0
3500
4.5E-4
0
3500
4.5E-4
0
80000
5.5E-3
0
3500
4.5E-4
0
8.0E+4
5.5E-3
0
3300
8.5E-4
0
3300
8.5E-4
0
220
2.0E-2
0
45
3.0E-2
0
0.5
l.OE+0
0
500
3.0E-2
0
500
3.0E-2
500
3.0E-2
0
1100
4.0E-3
0
4000
2.5E-3
0
220
1.5E-3
0
750
4.0E-3
0
750
4.0E-3
0
5
4.3E-3
0
750
4.0E-3
0
3500
4.5E-5
0
3500
4.5E-5
0
3500
4.5E-5
0
80000
2.5E-4
0
3500
4.5E-5
0
8.0E+4
2.5E-4
0
3300
1.5E-5
0
3300
1.5E-5
6.89E-1
6.0E-7
2.50E-1
l.OE-4
4.06E-8
l.OE-2
3.36E-1
7.0E-3
2.3E-7
7.0E-3
2.31E-2
7.0E-3
8.90E-1
2.0E-5
4.33E-2
2.0E-5
4.34E-4
4.5E-4
2.83E-6
6.0E-4
9.85E-10
6.0E-4
3.3E-7
5.0E-6
1.55E-10
6.0E-4
7.90E-3
1.0t:-7
2.87E-5
l.OE-7
5.25E-2
l.OE-7
1.51E-3
4.0E-7
1.83E-6
l.Ot-7
9.4E-5
4.0E-7
2.17E-2
2.0E-5
3.94E-2
2.0E-5
0
1.3E-4
0
1.5E-3
0
3.0E-1
300
3.0E-1
0
3.0E-1
300
3.0E-1
0
5.0E-6
0
2.0E-5
0
5.0E-6
0
5.0E-4
0
5.0E-4
0
5.0E-6
5.0E-4
0
1.5E-6
0
1.5E-6
0
2.5E-6
0
0
0
1.5E-6
0
0
0
0
0
0
RUN RUNCODE
.0033
2.0E-3
.00075
l.OE-3
.011
7.0E-3
.0001
2.0E-2
.0038
2.0E-2
.02
2.0E-2
.0004
7.5E-4
.0003
4.8E-3
3.2
2.5E-4
1.3
2.0E-4
3.3
2.0E-4
.6
5.5E-5
3.3
2.0E-4
.023
5.0E-7
.069
5.0E-7
.0022
5.0E 7
.72
3.5E-6
.068
5.0E-7
2.7
3.5E-6
.022
3.5E-6
.02
3.5E-6
-------
tINPUT lLOC*l,JLOC=l,lLtI*l,l.DIABLE=0,0,0,0,0,3,3,RTABLE=0,0,0,0,0,3r3,
OUIPUI=.FALSE.,GSCFAC-0.5,iEND
tORGAN NORGN=ll,ORGN='R MAR ','ENDOSI '.'THYROID '.'BREAST ','APULA ',
'S WALL ','INI WALL' 'LIVER ','PANCREAS1,'KIDNEYS ','OTHER ',
IIHt=20A70 SEND
IQFACtR HLET=20A20.LLET=20A1 JEND
tCANCER NCANC=11,CANC='LEUKEHIA','BONE '.'THYROID '.'BREAST ' 'LUNG ',
'STOMACH '.'BOWEL '.'LIVER '.'PANCREAS'.'URINARY '.'OTHER '.
RELAHS=20*I SEND
IGENTIC GENEtF=.TRUE..NGEN=3,GEN='TESTES '.'OVARIES '.'AVERAGE ',
GRFAC=260,5200rGLLEI=l.l,l.GHLEI=20.20.20,lEND
IRNUCLD NONCLD=31.NUCLlD='H-3'.'C-14',;HN:S4','FE-55'.'NI-59'.'CO-60',
'NI-63' 'SR-90' 'NB-94' 'TC-991,'RU-106' 'SB-125',
'1-129','CS-1345 'CS-135'.'CS-137'.'CE-144'.'EU-154'.'RA-226',
'U-234'.'U-23b' 'NP-237'.'U-238' 'PU-238' 'PU-239'f
'PU-2411 'AM-24i','PU-242' 'AM-243' 'CM-243' 'CH-244'.
PSIZt=0,6,1.0,1.0 1.0,1.0.1.0,1.0.1.0.1.0,1.0.1.0.1.0.1.0.1.0,1.0.
1.0.1.0 1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.
RESP='A' '*' 'H'.'W'.'W1,'Y1.'«' 'D' 'Y' 'W'f'Y'.'W' 'D'.'li'.'D',
'''Y'rV,Vf'YVY'.'WVY'IY''Y','Y''WVYVWVHVW',
=o!o,9l5E-I.0.6.0.&f ''''''»'»'
0.0,9.bE-1,0.0,6.0,
0.0,1.0E-1,0.0,0.0,
0.0,1.0E-1,0.0,0.0,
0.0,5.OE-2 0.0,0.0
0.0,b.OE-2,0.0,0.0,
0.0,5.OE-2,0.0,0.0,
0.0,1.OE-2 0.0,0.0,
o.o i.OE-2 o.o o.o;
0.0,8.OE-1 0.0,0.0,
0.0,5.OE-2 0.0,0.0,
0.0,2.OE-1,0.0,0.0,
0.0,9.5E-1,0.0,0.0,
0.0,9.SE-1.0.0,0.0,
0.0,0.95,0.0,0.0,
0.0,9.5E-1,0.0,0.0,
0.0 3.0E-4 0.0,'0.0,'
0.0,1.0E-4,0.0,0.0,
0.0,2.OE-1,0.0,0.0,
0.0,2.0E-3,0.0,0.0,
0.0;2.0E-3,0.0,0.0,
0.0,1.0E-3,0.0,0.0,
0.0,2.0E-3,0.0,0.0,
0.0,1.0E-3,0.0,0.0,
0.0,1.OE-4,0.0,0.0;
0.0,1.0E-3,0.0,0.0,
0.0,1.0E-3,0.0,0.0,
0.0,1.OE-4,0.0,0.0,
0.0 l.OE-3,0.0,0.0,
0.0,1.0E-3,0.0,0.0,
O.O.l.OE-3,0.0.0.0,SEND
tLOCIBL NTLOC=0 RNLOC='SUM ',OGLOC='SUM ',
PILOC»7,FALOC=1,HLLOC=1.LIABLE=3,SEND
JORGANF NORGB=11.0RGB='6 MAR ','ENDOST ',THYROID ','BREAST ','APULA ',
'S WALL ','INT WALL'.'LIVER '!'PANCREAS','KIDNEYS ','OTHER ',
ORGDAT=.1552,.0035,.0987,.1299,.2075,.0840,.0390,.0853,
.0585,.0248..1136,
IPAIH=20A5,tEND
1 PRESTO - A MODLL FOR PREDICTING THE MIGRATION OF RADIOACTIVE WASTES
FROM LOW-LEVEL RADIOACTIVE WASTE DISPOSAL SITES
0
SITE AREA DEEP SAMPLE KUNCODE
-------
AAA CONTROL INFORMATION AAA
THE BURIAL SHE IS LOCATED AT SITE AREA
THE HODE OF DISPOSAL IS HELP UELL INJECTION
THE SIMULATION WILL RUN FOR10000 YEARS AND MILL INCLUDE 31 NUCL1DES
LEACHING OPTION NUMBER 1 MILL BE USED
POPULATION INDICATOR IS 1
GENERAL POPULATION EXPOSURE WILL BE USED TO CALCULATE HEALTH EFFECTS
0.000 Ot IRRIGATION WATER UILL BE GOTTEN FROM UELL
0.500 OF DRINKING UATER FOR ANIHALS UILL BE GOTTEN FROM UELL
I.000 OF DRINKING UATER FOR HUMANS UILL BE GOTTEN FROM UELL
0.000 OF IRRIGATION UATLR UILL BE GOTTEN FROM STREAM
0.000 OF DRINKING UATER FOR ANIMALS UILL BE GOTTEN FROM STREAM
0.000 OF DRINKING UATER FOR HUMANS UILL BE GOTTEN FROM STREAM
AAA FACILITY INFORMATION AAA
THE FACILITY HAS AN AREA Of 0.1670E-01 SQUARE METERS AND A DEPTH OF 0.6000E+02 METERS
UASIE/BACKFILL POROSITY IS 0.15
ANNUAL INFILTRATION FOR THE WATERSHED IS 0.4300 METERS
AAA AQUIFER INFORMATION AAA
THE GROUND WATER HAS A VELOCITY Ot 27.800 METERS PER YEAR
UASIE-TO-AQUIFER DISTANCE IS 100.0 METERS
DISTANCE TO UELL IS 457.00 METERS
UELL TO STREAM DISTANCE IS 457.00METERS
THE AQUIFER THICKNESS IS 30.50 METERS
THE AQUIFER DISPERSION ANGLE IS 0.3000 RADIANS
POROSITY Of AQUIFER REGION IS 0.39000
POROSITY OF CONFINING STRATUM IS 0.20000
PERMEABILITY OF CONFINING STRATUM IS 2.20E+00 METERS/YfcAR
AQUIFER DISPERSIVITY IS 0.300 METERS
UATER VELOCITY IN CONFINING STRATUM IS 0.500 METERS/YEAR
HYDRAULIC GRADIENT IS 1.00
FRACTION OF HASTE IMPACTED IS 1.00
D1SPERSIV1IY IN CONI'INING STRATUM IS 40.000 METERS
THE DENSITY OF THE CONFINING STRATUM IS 1.500 G/CC
AAA ATMOSPHERIC INFORMATION AAA
SOURCE HEIGHT IS 1.0 METERS
VELOCITY OF GRAVITATIONAL FALL IS 0.01 METERS/SECOND
WIND VELOCITY IS 2.01 METERS/SECOND
DEPOSITION VELOCITY IS 0.10 METERS/SECOND
GAUGE DISTANCE FROM SOURCE IS 480.00 METERS
LID HEIGHT IS 300.00 METERS
HOSKER ROUGHNESS FACTOR IS 0.01
TYPE OF STABILITY FORMULATION IS 1
STABILITY CLASS IS 4
FRACTION OF TIME WIND BLOWS TOWARD POPULATION IS 0.080000
NORMALIZED DOUN WIND ATMOSPHERIC EXPOSURE PER UNIT SOURCE AREA IS 1.2000E-04 CI/MAA3 PER CI/SEC
RESUSPENSION FACTOR PARAMETERS 0.1000E-05 -0.1500E+00 0.1000E-10
FROM YEAR 0 TO YEAR 0 THE RESUSPENSION RATE DUE TO MECHANICAL DISTURBANCES "UILL BE O.OOOOE+00
THIS UILL OCCUR DURING 0.00 OF EACH YEAR
SURFACE INFORMATION
-------
PARAMETERS FOR UNIVERSAL LOSS EQUATION
RAINFALL 250.00
ERODIB1L1IY 0.23
SItEPNESS-SLOPE 0.27
COVER 0.30
EROSION CONTROL 0.30
DELIVERY RATIO 1.00
SOIL POROSItY IS 0.39000
SOIL BULK DENSITY IS 1.60000 Q/CC
RUNOFF FRACTION IS 0.29000
STREAM FLOW RATE IS 3.5700E-I05 CUBIC MEIERS PER YEAR
CROSS SLOPE EXtENI OF SPILLAGE IS 0.13 METERS
ACTIVE SOIL DEPTH IS 0.10 MEIERS
AVERAGE DOWN SLOPE DISTANCE TO STREAM IS 460.00 ME1EKS
AAA AIR-FOODCHAIN INFORMATION AAA
AGRICULTURAL PRODUCTIVITY FOR GRASS 0.67 KG/MAA2
AGRICULTURAL PRODUCTIVITY FOR VEGETATION 0.65 KG/MAA2
SURFACE DENSITY FOR SOIL 240.00 KG/MAA2
WEATHER DECAY CONSTANT 0.00 I/HOURS
PERIOD PASTURE GRASS EXPOSURE GROWING SEASON 720.00 HOURS
PERIOD CROP/VEGETATION EXPOSURE GROWING SEASON 1440.00 HOURS n iinimf,
PERIOD BETWEEN HARVEST PASTURE GRASS AND INGESIION BY ANIMAL 0.00 HOURS
PERIOD BETWEEN STORED FEED AND INGESTION BY ANIMAL 2160.00 HOURS
PERIOD BETWEEN HARVEST LEAFY VEGETABLES AND INGESIION BY MAN
0.83
PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY MAN(M.I.E.)
PERIOD BETWEEN HARVEST LEAFY VEG AND INGESTION BY MAN(G.P.E
PERIOD BETWEEN HARVEST PRODUCE AND INGESTION BY HANtG.P.E.)
FRACTION OF YEAR ANIMALS GRA'lE ON PASTURE 1.00
FRACTION OF DAILY FEED THAI IS FRESH GRASS
AMOUNT OF FEED CONSUMED BY CATTLE 50.00 KG
AMOUNT OF FEED CONSUMED BY GOATS 6.00 KG
TRANSPORT TIME FEED-MILL-RECEPTOR FOR M.I.E.
TRANSPORT TIME FEED-M1LL-RECEPIOR FOR G.P.E.
TIME FROM SLAUGHTER OF MEAT TO CONSUMPTION
ABSOLUTE HUMIDITY OF THE ATMOSPHERE
FRACTIONAL EQUILIBRIUM RATIO FOR C-14
AAA WAIEK-IOODCHAIN INFORMATION AAA
1440.00 HOURS
) 336.00 HOURS
336.00 HOURS
48.00 HOURS
96.00 HOURS
480.00 HOURS
9.90 G/MAA3
1.00
FRACTION OF YEAR CROPS ARE IRRIGATED 0.40
IRRIGATION RATE 0.015 L/(MAA2-H)
AMOUNT OF WATER CONSUMED BY COWS 60.00 L/D
AMOUNT OF WATER CONSUMED BY GOATS 8.00 L/D
AMOUNT OF WATER CONSUMED BY BEEF CATTLE 50.00 L/D
AAA HUMAN INGESTION AND INHALATION RATE INFORMATION AAA
ANNUAL INTAKE OF LEAFY VEG 18.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF PRODUCE 176.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF COH'S MILK 112.00 LITERS PER YEAR
ANNUAL INTAKE OF GOAT'S MILK 0.00 LITERS PER YEAR
ANNUAL INTAKE OF MEAT 85.00 KILOGRAMS PER YEAR
ANNUAL INTAKE OF DRINKING WATER 370.00 LITERS PLR YEAR
ANNUAL INHALATION RATE OF AIR 8000.00 CUBIC MEIERS PER YEAR
A POPULATION OF 25. WILL BE CONSIDERED
AAA NUCLIDE INFORMATION AAA
INFORMATION ON INDIVIDUAL MJCLIDES
-------
CD
NUCLIDE
H-3
C-14
HN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
Ah-243
CM-243
CH-244
AMI IN HASTE
Cl
4.0822E-01
1 .OOOQE+00
4.7582E-02
1.1092L-01
l.OOOOE+00
2.0143E-01
l.OOOOE+00
6.4847E-01
l.OOOOE+00
l.OOOOE+00
5.2227E-02
1.1360E-01
l.OOOOE+00
8.8430E-02
l.OOOOE+00
6.6027E-01
4.b295E-02
4.8566E-01
l.OOOOE+00
1.0000£«-00
1. OOOOt+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE^O
l.OOOOE+00
4.2904E-01
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
6.7576E-01
5.1335E-01
SPILLAGE
CI
4.0822E-OI3
l.OOOOE-0'/
4.75G2E-09
1.1092L-08
l.OOOOE-07
2.0143E-08
l.OOOOE-07
6.4847E-06
l.OOOOE-07
l.OOOOE-07
5.2227E-09
1.1360E-08
J.OOOOE-07
8.8430E-09
l.OOOOE-07
6.6027E-06
4.5295E-09
4.8566E-08
l.OOOOE-07
l.OOOOE-07
l.OOOOE-07
l.OOOOL-07
l.OOOOE-07
l.OOOOE-07
l.OOOOE-07
4.2904E-08
l.OOOOE-07
l.OOOOE-07
l.OOOOE-07
6.7576E-08
5.1335E-08
STREAM AMI
CI
O.OOOOE^O
O.OOOOE^O
O.OOOOE*00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfcHOO
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
0.0000^00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
0. OOOOt+00
O.OOOOE^O
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-tOO
AIR CONCEN
CI/MAA3
O.OOOOE+00
O.OOOOE+00
o.ooooe«-oo
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEfOO
O.OOOOE+00
O.OOOOEt-00
O.OOOOE+00
O.OOOOEvOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOF+00
O.OOOOEi-00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE-iOO
O.OOOOEHOO
DECAY CONST
1/Y
5.6400E-02
1.2100t-04
0.0900E-01
2.5700K-01
8.6600E-06
1.3200E-01
7.5300E-03
2.4200H-02
3.4700E-05
3.2500E-06
6.8900E-01
2.5000E-01
4.0800t-08
3.3600E-01
2.3000E-07
2.3100E-02
8.9000E-01
4.3300E-02
4.3400E-04
2.8300E-06
cJ.8bOOE-10
3.3000E-07
1.5500E-10
7.9000E-03
2.8700E-05
5.2500L-02
1.5100E-03
1.8300E-06
9.4000E-05
2.1700E-02
3.9400E-02
SOI
0.
0,
0.
0,
0,
1,
0.
0,
0,
0.
0,
0,
0,
3.
0,
3,
0,
0,
0,
0,
0
0
0
0
0
0
0
0
0
0
0
SOLUBILITY CONST
6/ML
OOOOE+00 4.
OOOOE+00 1.
OOOOE+00 4.
OOOOE+00 1.
_ OOOOt+00 1.
l.OOOOE+02 2.
OOOOE+00 1.
OOOOt-iOO 6.
OOOOE+00 1.
OOOOE+00 1.
OOOOE+00 5.
OOOOE+00 1.
..OOOOE+00 1.
3.0000E+02 8.
O.OOOOE+00 1.
OOOOE+02 6.
OOOOE+00 4.
OOOOE*00 4.
OOOOE+00 1.
OOOOE+00 1.
O.OOOOE+00 1.
O.OOOOE+00 1.
OOOOE+00 1.
OOOOt+00 1.
-.OOOOE+00 1.
O.OOOOE+00 4.
OOOOE+00 1.
OOOOE+00 1.
OOOOEi-00 1.
OOOOE+00 6.
O.OOOOE+00 5.
DECAY CORRECTION FACTOR
0822E-01
OOOOE-lOO
7582E-02
1092E-01
OOOOE+00
0143B-01
OOOOE+00
4847E-01
OOOOE+00
OOOOE+00
2227E-02
1360E-01
OOOOE-lOO
8430E-02
OOOOE+00
6027E-01
b295E-02
8566E-01
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
2904E-01
OOOOE+00
OOOOE+00
OOOOE+00
7576E-01
1335B-01
DISTRIBUTION COEFFICIENTS HL/G
NUCLlDfe
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-lb4
RA-226
U-234
U-235
NP-237
SURFACE
WASTE
VERTICAL
AOUItER
l.OOE-02
l.OOE-02
1.50E+02
6.00E+03
1.50E+02
5.50E+01
1.50E+02
1.50E102
3.50E+02
b.OOt-01
2.20EV02
4.50E+01
3.00E+00
1.00Ef03
1.00E*03
l.OOE+03
1.10E+03
4.00E+03
2.20E+02
7.tiOE+02
7.50t+02
5.00E+00
l.OOE-02
l.OOE-02
5.00B+01
5.00E-I01
5.00E+01
b.OOE+01
S.OOE^l
3.00E+01
7.00E+01
5.00E-01
7.00E+01
5.00E+01
3.00E+00
2.00E+03
2.00E+03
2.00E+03
2.00EI-03
2.00E+03
4.00E+02
3.00t+03
3.00E+03
5.00E+00
l.OOE-02
l.OOE-02
l.SOEi-02
G.OOt+03
1.50E+02
5.50E+01
1.50EV02
1.50E+02
3.50E+02
5.00E-01
2.20E»02
4.50t+01
3.00E+00
l.OOE+03
1.00E-I03
l.OOE+03
1.10E+03
4.00E-I03
2.20E+02
7.50E+02
7.50E+02
5>OOEK>0
l.OOB-02
l.OOE-02
1.50E+02
6.00E+03
1.50E+02
5.50E-I01
1.50E+02
2.00E+01
3.50E+02
5.00E-01
2.20E+02
4.50t-»01
5.00E-01
5.00E+02
b.OOE+02
5.00E+02
1.10E+03
4.00E+03
2.20E+02
7.50E+02
7.50E+02
5.00E+00
-------
CO
I
CO
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-24J
CM-243
CM-244
NUCLIDE
H-3
C-14
MN-b4
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
7.50E+02
3.50E+03
3.50E+03
3.50E+03
8.00E+04
3.50E+03
8.00E+04
3.30E+03
3.30E+03
RETENTION
IN AIR
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.006-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-01
2.00E-0)
2.00E-01
3.00E+03
7.00E+02
7.00E+02
7.00E+02
8.00E+01
7.00E+02
8.00E+01
7.00E<02
V.OOE+02
RETENTION
IN HATER
2.50E-01
2.50E-01
2.bOE-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50L-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.50E-01
2.bOE-01
2.50E-01
2.50E-01
2.50E-01
2i50E-01
2.50E-01
2.50E-01
2.50E-01
2 . bOE~01
2.50E-01
2.50E-01
2.50E-01
2.50L-01
3.50E+03
3.50E+03
8.00E+04
8'.OOE+04
3.30E+03
3.30E+03
TRANS CC1LFF
SOIL-M CROP
D/KQ
4.80E+00
5 . bOE^ 00
2.50E-OJ
4.00E-03
6.00E-02
2.00E-02
6.00E-02
2.50E+00
2.00E-02
9.50E+00
7.50E-02
2.00E-01
l.OOE+00
8.00E-02
8.00E-02
8.00E-02
l.OOE-02
2.50E-03
1.50E-04
8.50E-03
8.50E-03
4.30E-03
8.50E-03
4.50E-04
4.50E-04
4.50E-04
5.50E-03
4.50E-04
5.50E-03
8.50E-04
8.50E-04
7.50E+02
3!50E+03
3.50E+03
8.00E+04
3.50L+03
8.00E+04
3.30E+03
3.30E+03
TRANS COEFF
SOIL-R CROP
D/KG
4.80EI-00
5.50E+00
5.00E-02
l.OOE-03
G.OOE-02
7.00E-03
6.00E-02
2.50E-01
5.00E-03
1.50E+00
2.00E-02
3.00E-02
l.OOE+00
3.00L-02
3.00E-02
3.00E-02
4.00E-03
2.50L-03
1.50E-03
4.00E-03
4.00E-03
4.30E-03
4.00E-03
4.50E-05
4.50E-05
4.50E-05
2.SOE-04
4.50E-05
2.50E-04
1.50E-05
1.50E-05
TRANS CCIfcFF
VEG-COH MILK
D/L
l.OOE-02
1.20E-02
2!50E-04
l.OOE-03
2.00E-03
l.OOE-03
l.bOE-03
2.00E-02
l.OOE-02
6.00E-07
l.OOE-04
l.OOE-02
7.00E-03
/.OOE-03
7.00E-03
2.00E-05
2.00E-05
4.50E-04
6.00E-04
6.00E-04
5.00E-06
6.00E-04
l.OOE-07
l.OOE-07
l.OOE-07
4.00E-07
l.OOE-07
4.00E-OV
2.00E-05
2.00E-05
TRANS COEFF
TRANS COEFF
VEG-GOAI MILK VEG-MEAT
D/L
l.yOE-01
l.OOE-01
2.SOL-04
1.30E-04
6.70E-03
l.OOE-03
6.70E-03
1.40E-02
2.bOE-03
2.50E-02
1.30E-04
1.50E-03
3.00E-01
3.00E-01
3.00E-01
3.00E-01
5.00E-06
2-OOE-Ob
5.00E-06
5.00L-04
5.00E-04
5.00E-06
5.00E-04
1.50E-06
1.50E-06
2.50E-06
O.OOE+00
1.50E-06
O.OOE+00
O.OOE+00
O.OOE+00
N/KG
1.20E-02
3.10E-02
4.00E-04
2.00E-04
6. OOE-03
2.00E-02
6. OOE-03
3.00E-04
2.50E-01
8.50E-03
2. OOE-03
l.OOE-03
7. OOE-03
2.00E-02
2.00E-02
2.00E-02
7.50E-04
4.80E-03
2.50E-04
2.00E-04
2.00E-04
S.bOE-05
2.00E-04
5.00E-07
b.OOE-07
5.00E-07
3.50E-06
5.00E-07
3.50E-06
3.50E-06
3.50E-06
INITIAL CALCULATIONS
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
MASS
3.
14.
51.
55.
59.
60.
63.
90.
94.
99.
106.
12b.
129.
-------
DO
1
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
134.
135.
137.
144.
154.
226.
234.
237
238.
238.
239.
241.
241.
242.
243.
243.
244.
INITIAL CALCULATIONS
VERTICAL
RETARDATION
1.0'/50E-<00
K07bOE + QO
1.1260E+03
4.5001E+04
1.12GOE+03
4.13SOE+02
1.12GOE+03
1.1260E+03
2.6260EN03
4.7500E+00
l.GblOE+03
3.3850E+02
2.3500E+01
7.b010E+03
7.b010E+03
7.5010E+03
8.2blOE-i03
3.0001H04
1.6510EV03
5.6260E+03
5.6260E+03
3.8500E+01
5.6260E^3
2.6251E+04
2.6251E+04
i!.(.251E+04
G.OOOOE+05
2.G251E+04
b.0000£+05
2.4751E+04
2.4751E+04
VERTICAL
TIME Y
2.1500EH02
2.1500E+02
2.2520E+05
9.0002E+06
2.252QB+05
8.2700K^4
2.2b20E+05
2.2520E+05
5.2520E405
9.5000E+02
3.3020fc+0b
6.7700G+04
4.7000E-»03
1.5002E+06
1.5002E+OG
1.5002E+06
1.6502E+06
6.0002E+06
3.3020E>05
].12J»2Ei06
1.1252E^6
7.7000E+03
1.1252E*06
5.2502E+06
5.2502EK>6
b. 25021+06
1.2000E^OO
5.2502E^06
1.2000E+08
4.9502IMQ6
4.9502E+06
VERTICAL
DDETA
2.1895E+03
l.OOOOE+00
l.OOOOE+00
l.OOOOEH-00
l.OOOOE+00
l.OOOOE+00
l.OOOOEiOO
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOEHOO
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOEi-00
l.OOOOE+00
l.OOOOE^O
l.OOOOE+00
l.OOOOE+00
l.OOOOHOO
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOQUOO
l.OOOOE+00
HORIZONTAL
RETARDATION
1.0410E+00
1.0410E+00
6.1638E^2
2.4616E+04
6.1638E+02
2.2664Et02
6.1638E+02
8.3051E»01
1.4369E+03
3.0513E+00
9.0356E+02
1.8562E+02
3.0513E+00
2.0523E+03
2.0523E+03
2.0523E+03
4.5138EH03
1.6411EH04
9.0356E>02
3.0779F+03
3.0779E+03
2.1513E+01
3.0779E+03
1.4360E+04
1.4360E+04
1.4360E+04
3.2821E+05
1.4360E+04
3.2821E+05
1.3539H04
1.3539E+04
HORIZONTAL
TtME Y
1.7113EH01
1.7113E+01
1.0133E+04
4.046GE+05
1.0133E-<04
3.V257E+03
1.0133E+04
1.3653E+03
2.3621E+04
5.0160E+01
1.4854E+04
3.0513E+03
5.0160EH01
3.3737E+04
3.3737E+04
3.3737E+04
7.4202E+04
2.6978EH05
1.4854E+04
5.0598E+04
5.0598E+04
3.5365E+02
r5.0598E + 04
2.3606E+05
2.3606E+05
2.3606E+05
5.3953E+OG
2.3606EH05
5.3953E+06
2.2257E+05
2.2257E+05
HORIZONTAL
ODETA
1.0006E+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOt+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOt+00
l.OOOOE+00
1.0000EK>0
l.OOOOEHOO
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
DDETA
2.1909E+03
l.OOOOE+00
l.OOOOK+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
i.ooooe+oo
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
l.OOOOE+00
BREAK THRU
TIME Y
2.3211E+02
2.3211E-I02
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0002L+03
1.0001E+04
1.0001E+04
4.7502E+03
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
8.0536E+03
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
1.0001E+04
l.OOOlt+04
1.0001E+04
ANNUAL SOIL LOSS IS 3.1315E-01 KILOGRAMS PER SQUARE METER
OR K9572E-04 MFIERS IS REMOVED FROM THE SURFACE
VERTICAL HATER VELOCITY IS 0.5000 METERS PER YEAR
NORMALIZED DOWN WIND ATMOSPHERIC EXPOSURE PER UNIT SOURCE RELEASE IS
ANNUAL SUMMARY FOR YEAR 1 OF THE SIMULATION
8.3500E-03 CUBIC METERS OF WATER FLOWED THROUGH THE FACILITY DURING THIS YEAR
0.1200E-03 CI/MAA3 PER CI/SEC
-------
NUCLIDE TRANSPORT INFORMATION
DO
1»
O
NUCLIDE
H-3
C-14
HN-54
FE-5b
NI-59
CO-60
NI-63
SR-90
NB-94
IC-99
RU-106
SB-12b
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-23b
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
CM-243
CM-244
NUCLIDE
H-3
C-14
HN-54
FE-bb
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
AHOUNT IN
FACILITY
CI
3.6811E-01
9.S393E-01
2.1187E-02
8.b772E-02
9.9992E-01
1.7651E-01
9.9243E-01
6.3289E-01
9.9991E-01
9.9363E-01
2.6220E-02
8.8469E-02
9.9882E-01
6.3194E-02
l.OOOOE+00
6.4519E-01
1.8601E-02
4.6507E-01
9.99b6E-01
l.OOOOE+00
l.OOOOE+00
9.1J928E-01
l.OOOOE+00
9.9213E-01
9.991J7E-01
4.0710E-01
9.984bE-01
!:33Kt«
6.6125E-01
4.9352E-01
SURFACE
SOIL CONG
CI/KG
1.3b69E-14
3.5162E-14
2.1496E-13
8.86tf]E-)3
1.0145E-11
1.7334E-12
1.00&9E-U
6.4215E-12
1.0257E-11
l.M)72L-12
2.&76&G-13
8.5917E-13
5.231GE-12
6.5173E-13
J.0313E-11
6.6539E-12
1.918QL-13
4.8069E-12
FACILITY
OUTFLOW
CI
1.7732E-02
4.b9bOE-02
1.5333E-06
6.2073E-06
7.2364E-05
1.2774E-Ob
7.1821E-05
7.6270E-Ob
5.1707L'-05
6.3694E-03
1.3559E-06
6.402bt-06
1.1806E-03
1.1448E-07
1.811bE-06
1.1688E-06
3.3696E-OU
8.4250E-07
9.0b2bE-06
1.2077E-06
1.2077E-06
7.1460E-04
1.2077E-06
5.1348E-06
5.1753E-06
2.1069E-06
4.5183t-0b
J:15»I:8S
3.4223E-06
2.5b42E-06
SURFACE
MATER CONC
CI/HAA3
1.3817E-09
3.5805G-09
1.4b93L-]2
1.5050E-13
6.8870E-H
3.2094E-11
6.83b4E-ll
4.3b93L-U
2.9842E-11
3.0696E-09
1.2389E-12
1.9442E-11
1.7758E-09
6.636b'L-13
1.0b02E-ll
6.7756E-12
1.7763E-13
1.2237E-12
AHOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOLHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
S1REAH
CI
O.OOOOEiOO
O.OOOOE+00
O.OOOOL+00
O.OOOOfc+00
o.ooooe+oo
O.OOOOEHOO
O.OOOOF+00
O.OOOOE+00
o.ooooe+oo
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOEt-00
O.OOOOL+00
O.OOOOE+00
SOLUBLE TO
DEEP LAYERS
CI
3.525SE-08
9.1362E-08
3.723bE-ll
3.B403E-12
1.7573E-09
8.1891E-10
1.7441E-09
1.1123L-09
7.6145E-10
7.8324E-08
3.1611E-11
4.9608E-10
4.5311E-08
1.6934L-11
2.6796E-10
1.7289E-10
4.5324E-12
3.1224E-11
ATMOSPHERE
AT SriLLAGE
CI/MAA3
7.4709E-20
1.9360E-19
1.1836E-18
4.8820E-18
5.5859E-17
9.b444E-18
5.5440E-17
3.b357E-17
S.647GE-17
8.2988E-18
1.4737E-18
4.7306E-10
2.8CO&E-17
3.58B4E-18
5.6784E-17
3.6637E-17
1.0bG5E-18
2.6467E-17
ATMOSPHERE
DOWN HIND
CI/MAA3
7.1720E-25
r.0586E-24
1.1362E-23
4.6874E-23
5.3624E-22
9.1626E-23
5.3222L-22
3.3943E-22
5.4216E-22
7.9668E-23
1.4148E-23
4.5413E-23
2.76b3E-22
3.4449E-23
b.4513E-22
3.51V1E-22
1.0142E-23
2.5408E-22
HELL HATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOB+00
-------
1
1
]
6
1
1
1
4
1
)
1
6
5
.0203t-ll
.0303E-11
.0303E-H
.b206E-12
.0303E-11
.0253E-11
.0334E-U
.2072E-12
.0327E-11
.0335E-11
.0342E-11
.8335E-12
.1001E-12
4.
1.
1.
1.
1.
2.
3.
]
1."
3.
1.
0
i!
ANNUAL
t.
3500E-03
7225E-11
3989E-11
3989t-ll
3280E-09
3989E-11
9831E-12
0067E-12
2241E-12
3145E-13
0068E-12
31G4E-13
1086E-12
5738E-12
SUMMARY
CUBIC METERS
0
0
0
0
0
0
0
0
0
0
0
0
0
FOR
.OOOOE+00
.OOOOE^O
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE-iOO
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
YEAR 1000
1
3
3
3
3
7
7
3
3
7
3
5
OF
OF HATER FLOHED T
2050E-09
56946-10
b694K-10
3885E-08
3.5694E-10
611.8E-11
7.6719E-11
1233E-J1
3542E-12
6721E-11
3589E-12
3B04E-11
0156E-11
OF 1HE SIMULATION
THROUGH THE FACILITY
5.6177E-17
5.6729E-17
5.6729E-17
3.5903E-17
5.6729E-17
5.G455E-17
5.6901E-17
2.3165E-17
5.6863E-17
5.6903E-17
5.6943E-17
3.7625E-17
2.8081E-17
b.3930E-22
5.4460E-22
b.4460£-22
3.4467E-22
5.4460E-22
5.4197E-22
5.4625E-22
2.2238E-22
5.4588E-22
b.4627E-22
5.4665E-22
3.6120E-22
2.6958E-22
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
DURING THIS YEAR
oo
i
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-13b
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
AMOUNT IN
FACILITY
CI
4.8419E-46
3.2793E-21
0. OOOOE+00
O.OOOOE+00
9.2213E-01
8.tt246E-J>9
4.9913E-04
1.7763E-11
9.1717E-01
1.G727E-03
0. OOOOE+00
0. OOOOE+00
3.0682E-01
0. OOOOE+00
9.9791E-01
6.1178E-11
0. OOOOE+00
7.5939E-20
6.4202E-01
9.9595E-01
9.9875E-01
4.8098E-01
9.CJ875E-01
3.6872E-04
'J.6666E-01
6.7556E-24
2.1111E-01
9.9297E-01
8.6996E-01
2.5306E-10
3.9523E-18
FACILITY
OUTFLOH
CI
2.3323E-47
1.5796E-22
0. OOOOE+00
0. OOOOE+00
6.6734E-05
6.3863E-63
3.6122E-08
2.1406E-lb
4.7429E-OS
I.0723E-05
O.OOOOE^O
0. OOOOE+00
3.6267E-04
0. OOOOE+00
1.8078E-06
1.1083E-16
0. OOOOE+00
1.3757E-25
5.8144E-06
1.2028E-06
1.2062E-06
3.4977E-04
1.2062E-06
1.9083E-09
5.0030E-06
3.4964E-29
9.b535E-06
5.1391E-06
3.9368E-05
I.3097E-15
2.0455E-23
AMOUNT AT
HELL
CI
2.8091E-39
8.6837E-18
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOE^O
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOE-iOO
0. OOOOE+00
O.OOOOE-iOO
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOfc+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
NUCL1DK TRANSPORT INFORHATION
NUCL1DH
SURFACE
SOIL CONC
Cl/KG
SURFACE
HATER CONC
CI/HAA3
SOLUBLE I'D
STREAM
n
SOLUBLE TO
DEEP LAYERS
HI
ATMOSPHERE
AT SPILLAGE
ATMOSPHERE
DOWN HIND
WELL HATER
CONC
PJ/H4A3
-------
CO
I
ro
H-3 O.OOOOEHOO O.OOOOE+00
C-14 O.OOOOE+00 O.OOOOt+00
MN-54 O.OOOOE+00 O.OOOOE+00
FE-55 O.OOOOEiOO O.OOOOt-iOO
NI-59 2.0J60E-19 1.3440t-18
CO-60 O.OOOOE+00 O.OOOOE+00
NI-63 KOfJlbE-22 7.2766E-22
SR-90 4.0'/I>9E-30 2.7173E-29
NB-94 4.7146E-15 1.3470E-14
IC-99 O.OOOOt+00 O.OOOOEKOO
RU-106 O.OOOOE+00 O.OOOOE+00
SB-125 O.OOOOtnOO O.OOOOE-iOO
1-129 O.OOOOE+00 O.OOOOE+00
CS-134 O.OOOOE+00 O.OOOOE+00
CS-135 6.9642E-13 6.9643E-13
CS-131/ 4.2708E-23 4.2708E-23
CE-144 O.OOOOt+00 O.OOOOt+00
EU-154 3.9652E-31 9.9130E-32
RA-226 3.5670E-17 1.G214E-16
U-234 2.8458E-13 3.7944E-13
U-235 2.8541E-13 3.8055E-13
NP-237 O.OOOOE+00 O.OOOOE+00
U-238 2.8541E-13 3.8055E-13
PU-238 l.Vb52E-lb S.OlbOE-16
PU-239 4.6005E-12 1.3144E-12
PU-241 3.2J60E-35 9.1B65E-36
AM-241 2.1789E-12 2.7237E-14
PU-242 4//255E-12 1.3502E-12
AM-243 0.9774E-12 1.1222E-13
CM-243 1.1500E-21 3.4B48E-22
CM-244 1.7960E-29 5.4424E-30
1 ANNUAL SUMMARY
8.3500E-03 CUBIC MEIERS
2.7970E-39
8.6463E-18
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOL+00
O.OOOOliHOO
O.OOOOE+00
FOR YEAR 2000
OF WATER FLOWED
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOEHOO
3.4294L--17
O.OOOOE+00
1.85G7E-20
6.9334E-28
3.4371E-13
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
1.7770E-11
1.0897E-21
o.oooot+oo
2.5294E-30
4.1371E-lb
9.6818E-12
9.7103E-12
o.oooot+oo
9.7103E-12
K279GE- 14
3.3540E-11
2.3446E--34
6.949BE-13
3.4451E-11
2.8G34E-12
8.8918E-21
1.3B87E-28
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.9141E-28
O.OOOOE+00
1.0363E-31
3.869HE-39
4.4'/62E-24
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.6121E-22
4.0549E-32
O.OOOOE+00
3.7647E-40
3.3867E-26
2.7019E-22
2.70cJcJE-22
O.OOOOE+00
2//099E-22
1.666bt-24
4.3G79E-21
3.0534t-44
2.0G88E-21
4.4866E-21
8.5235E-2]
1.0918E-30
1.7052E-38
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
1.837bE-33
O.OOOOE+00
9.9486E-37
3.7150E-44
4.29V2E-29
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
6.3477E-27
3.8927E-37
O.OOOOE+00
3.6141E-45
3.2512E-31
2.5938E-27
2.G01bE-27
O.OOOOE+00
2.6015E-27
1.5cJ98E-29
4.1932E-26
2.9312E-49
1.9860E-26
4.3072E-26
8.1826E-26
1.0402E-35
1.6370E-43
6.1437E-44
1.8992E-22
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
OF THE SIMULATION
THROUGH THE FACILITY DURING THIS YEAR
NUCL1HE tRANSPORT INFORMATION
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
AMOUNT IN
FACILITY
CI
O.OOOOE+00
K0754E-41
O.OOOOE+00
O.OOOOE+00
8.5032E-01
O.OOOOE+00
2.4913E-07
4.8656E-22
8.4120E-01
2.7980E-06
O.OOOOE+00
o.oooot-:+oo
9.4103E-02
O.OOOOE+00
9.9b83E-01
5.6684E-21
O.OOOOE+00
1.1874E-38
4.1217E-01
9.9189E-01
FACILITY
OUTFLOW
CI
O.OOOOE+00
5.1800E-43
O.OOOOE+00
O.OOOOE+00
6.1537E-05
O.OOOOE+00
1.8029E-11
5.8636E-26
4.3500E-05
1.V936E-08
O.OOOOE+00
O.OOOOE+00
1.1123E-04
O.OOOOE+00
1.8040E-06
1.0269E-26
O.OOOOE+00
2.1510E-44
3.7328E-06
1.1979E-06
AMOUNT AT
WELL
CI
O.OOOOE+00
2.8476E-38
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.0688E-05
O.OOOOE+00
OiOOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
DO
CO
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCL1DE
H-3
C-14
MN-^4
FE-5b
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-12b
1-129
CS-134
CS-13b
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-23R
PU-239
PU-241
Att-241
PU-242
AM-243
CM-243
CM-244
1
9.9750E-01
2.3908E-01
9.97bOt~01
1.3596E-07
9.3444E-01
1.0637E-46
4.4557E-02
9.8598E-OL
7.'j6B2E-01
9.4765E-20
3.0429E-35
SUKfACE
SOIL CONC
CI/KG
O.OOOOtKOO
O.OOOOE+OO
O.OOOOE+00
O.OOOOE+00
3.9750E-27
O.OOOOtiOO
1.1651E-33
2.bObbE-48
2.1719t-1.8
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.7370t-14
2.6980E-34
o.oooot+oo
3.1G15E-50
1.2438E-22
7.9103E-15
7.9b71E-15
O.OOOOE+00
7.9S71E-lb
3.008bE-19
2.0671E-12
2.3b40E-b8
4,6352E-13
2.1H10E-12
7.8700E-12
1.91JOE-31
6.1360E-47
1.2047E-06
1.7102E-04
1.2047E-06
7.0364E-13
4.8362E-06
5.5053E-52
2.0163E-06
5.1029E-06
3.4248E-Ob
4.9046E-25
1.5748E-40
SURFACE
WATER CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.6500E-2G
O.OOOOE+00
7.7677E-33
1.6703E-47
6.20b3E-]8
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEi-00
O.OOOOE-tOO
4.7370E-14
2.6980E-34
O.OOOOE-tOO
7.9037E-51
b.6b3bE-22
1.0547C-14
1.0609E-14
O.OOOOE+00
] .060CJK-14
8.59bOE-20
5.9060E-1J
6.72b7E-b9
5.7940E-15
6.2333E-13
9.0375E-14
5.7909E-32
1.8594E-47
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfc+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE 10
S'ffiEAH
Cl
O.OOOOEHOO
2.8354E-38
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
0,OOOOE+00
O.OOOOE+00
O.OOOOEnOO
1.0642E-05
O.OOOOE+00
O.OOOOE+00
O.OOOOK+OO
O.OOOOtHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOEnOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE 10
DEEP LAYERS
Cl
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOL+00
6.7618E-25
O.OOOOE+00
1.9820E-31
4.2621E-46
1.5834EH6
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.2087E-12
6.8843E-33
O.OOOOE+00
2.0167E-49
1.4426E-20
2.6912E-13
2.7071E-J3
O.OOOOE+00
2.7071E-13
2.1933E-18
1.5070E-11
1.7161E-57
1.4784E-13
l.b900E-ll
2.5102E-12
1.4776E-30
4.7445E-4G
ATMOSPHERE
AT SPILLAGE
C1/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
3.7740E-36
O.OOOOE+00
1.1062E-42
2.3788E-57
2.0621E-27
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEfOO
O.OOOOE+00
4.4975E-23
2.561GE-43
O.OOOOE+00
3.0016E-59
1.1C09E-31
7.5104E-24
7.5548E-24
0-OOOOE+OO
7.b548E-24
2.8564E-28
1.9626E-21
2.23bOE-67
4.4009E-22
2.0707E-21
7.4721E-21
1.8144E-40
5.8258E-56
ATMOSPHERE
DONN MIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.6230E-41
O.OOOOE+00
1.0G20E-47
2.2837E-62
1.979GE-32
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
4.3176E-28
2.4S91E-48
O.OOOOE+00
2.8816E-64
1.1336E-36
7.2100E-29
7.2526E-29
O.OOOOE+00
7.2526E-29
2.7422E-33
1.8841E-26
2.14b6E-72
4.2248E-27
1.9879E-26
7.1732E-26
1.7418E-4b
5.5928E-61
HELL WATER
CONC
C1/MAA3
O.OOOOE+00
6.2281E-43
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.3376E-10
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
ANNUAL SUMMARY
8.3500E-03 CUBIC METERS
FOR YEAR 3000 OF THE SIMULATION
OF WATER FLOWED THROUGH THE FACILITY DURING THIS YEAR
NUCLIDE TRANSPORT INFORMATION
NUCLIOE
H-3
C-14
AMOUNT IN
FACILITY
Cl
O.OOOOE-iOO
3.52G5E-62
FACILITY
OUTFLOW
Cl
O.OOOOE+00
1.6987E-G3
AMOUNT AT
WELL
Cl
O.OOOOE+00
9.33H2E-59
-------
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-13b
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
Ah-243
CM-243
CM-244
NUCL1DE
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-13S
CS-137
CE-144
EU-154
RA-22G
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
O.OOOOE+00
O.OOOOE+00
7.B410E-01
O.OOOOE+00
1.2434E-10
1.3328E-32
7.7152E-01
4.6801E-09
O.OOOOE+00
O.OOOOE+00
2.8864E-02
O.OOOOE+00
9.9374E-01
5.2521E-31
O.OOOOE+00
U85&7E-57
2.64&9E-01
9.8787E-01
9.9624E-01
1.1688E-01
9.9624E-01
5.0129E-11
9.0329E-01
1.6749E-69
9.4060E-03
9.7901E-01
6.5838E-01
3.5487E-29
2.3427E-52
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
7.I3375E-35
O.OOOOE+00
1.2438E-44
l.b402E-6&
1.0005E-21
O.OOOOE+00
O.OOOOfi+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.2220E-15
1.7044E-45
O.OOOOE+00
2.5206E-69
4.33G8E-28
;M98bE-16
2.21I31E-16
O.OOOOE+00
2.2181E-1&
b'.lb&GE-23
9.2844E-13
O.OOOOE+00
9.8622E-14
1.0063E-12
O.OOOOE+00
O.OOOOE+00
5.G745E-05
O.OOOOE+00
8.9984E-lb
1.6061E-3G
3.989GE-05
3.0001E-11
O.OOOOE+00
O.OOOOE+00
3.4118E-Ob
O.OOOOE+00
1.8002E-OG
9.5143E-37
O.OOOOE+00
3.3635E-G3
2.39G3E-06
1.1931E-06
1.2032E-OG
8.3606E-05
1.2032E-06
2.5944E-1G
4.&750E-0&
8.6685E-V5
4.2b&5E-07
5.06&9E-06
2.9794E-05
1.8366E-34
1.2124E-57
SURFACE
HATER CONC
C1/MAA3
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.2250E-34
O.OOOOE+00
8.2917E-44
1.02G8E~6j
2.8585E-21
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.2220E-1S
1.7044E-45
O.OOOOE+-00
6.30156-70
1.9713E-27
2.9313E-]6
2.9575E-16
O.OOOOE+00
2.9575E-16
1.4733E-23
2.6527E-13
O.OOOOE+00
1.2328E-1S
2.8751E-13
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7878E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE 10
STREAM
Cl
O.OOOOE+00
9.2980E-59
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7801E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
SOLUBLE TO
DEEP LAYERS
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfi+00
1.3332E-32
O.OOOOE+00
2.1157E-42
2.G199E-64
7.2938E-20
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
Q.2214E-14
4.34916-44
O.OOOOE+00
1.6079E-G8
5.0300E-26
7.4796E-]b
7.5465E-15
O.OOOOE+00
7.54G3E-15
3.7594E-22
G.7686E-12
O.OOOOE+00
3.145&E-14
7.33G2E-12
A1MOSPHEKE
AT SPILLAGE
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.4413E-44
O.OOOOE+00
1.1809E-53
1.4G23E-75
9.49896-31
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
3.0591E-24
1.G103E-54
O.OOOOE+00
2.3932E-78
4.1176E-37
2.0873E-25
2.10GOE-25
O.OOOOE+00
2.1060E-25
4.8959E-32
8.8150E-22
O.OOOOE+00
9.3636E-23
0.&541E-33
ATMOSPHERE
DOWN HIND
O.OOOOE+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.H36E-49
O.OOOOE+00
1.1336E-58
O.OOOOE+00
9.1190E-36
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.93G8E-29
1.5535E-59
O.OOOOE+00
O.OOOOE+00
3.9529E-42
2.0038E-30
2.0218E-30
O.OOOOE+00
2.0218E-30
4.7001E-37
8.4624E-27
O.OOOOE+00
8.£J890E-28
9.m9B~37
WELL HATER
CONC
C1/MAA3
O.OOOOE+00
2.0424E-63
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.9102E-13
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOR+00
-------
AH-243 6.8953E-12 8.6191E-14 O.OOOOE+00 2.1993E-12 6.546VE-21 6.284GE-26 O.OOOOE+00
CM-243 3.1757E-41 9.G234E-42 O.OOOOE+00 2.4555K-40 3.0152E-50 2.8945E-55 O.OOOOE+00
CM-244 2.0964E-64 6.3526E-65 O.OOOOE+00 l.G209t-G3 1.9904E-73 1.9108E-78 O.OOOOf+00
1 ANNUAL SUMMARY FOR YEAR 4000 OF 1HE SIMULA!ION
8.3bOOE-03 CUBIC MEIERS OF WATER FLOWED THROUGH THE FACILITY DURING THIS YEAR
NUCLIDE TRANSPORT INFORMATION
oo
i
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-24]
AH-241
PU-242
AM-243
CM-243
CM-244
AMOUNT IN
FACILITY
CI
O.OOOOE+00
1.2943E-75
O.OOOOE+00
O.OOOOE+00
7.2303E-01
O.OOOOE+00
G.2059E-14
3.6507E-43
7.0760E-01
7.8285E-12
O.OOOOE+00
O.OOOOE+00
8.8b42E-03
O.OOOOE+00
9.91G6E-01
4.8GG4E-41
O.OOOOE+00
2.9048E-76
1.6984E-01
9.838BE-01
9.9499E-01
5.7121E-02
9.9499E-01
1.8483E-14
8.7317E-01
O.OOOOE<00
1.9853G-03
9.7210E-01
5.7275E-01
1.3289E-38
1.8036E-69
FACILITY
OUTFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
b.2325E-05
O.OOOOE+00
4.4912E-38
4.3995E-47
3.6b91E-Ob
5.0183E-14
O.OOOOE+00
O.OOOOE+00
1.0466E-05
O.OOOOEvOO
1.7964E-Ofe
B.Blb7E-4?
O.OOOOE+00
O.OOOOE+00
1.5381E-06
1.1882E-06
1.2017E-06
4.0859E-05
1.201VE-06
9.5661E-20
4.5191E-06
O.OOOOE+00
8.9839E-08
5.0313E-06
2.5918E-05
6.8779L-44
9.3346E-75
AMOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
2.9904E-11
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
NUCLJDE
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-G3
SR-90
NB-94
IC-99
SURFACE
SOIL CONC
Cl/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.S454E-42
O.OOOOEiOO
1.3277E-55
O.OOOOE+00
4.6089E-25
O.OOOOE+00
SUKfACE
WATER CONC
CJ/MAA3
O.OOOOEt-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.0302E-41
o.oooonoo
8.8512E-55
O.OOOOE+00
1.3168E-24
O.OOOOE+00
SOLUBLE 10
STREAM
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEnOO
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOQOE-iOO
O.OOOOE+00
2.9775E-11
SOLUBLE 10
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
2.G288E-40
o.oooot+oo
2.2S85E-53
O.OOOOE+00
3.3600E-23
o.oooot+oo
ATMOSPHERE
AT SPILLAGE
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4672E-S1
O.OOOOE+00
1.2605E-64
O.OOOOE+00
4.3759E-34
O.OOOOK+00
ATMOSPHERE
DOWN WIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4085E-56
O.OOOOE+00
1.2101E-69
o.oooot+oo
4.2008E-39
O.OOOOE+00
WELL WATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.5403E-16
-------
RU-106
1-129
CS-134
CS-135
CS-137
CE-144
EU-lb4
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
0.
0.
0.
0.
2.
1 .
0.
0.
I.
6.
6.
0.
6.
8.
4.
0.
2.
4.
6.
b.
0.
OOOOE+00
OOOOE+00
OOOOE+OO
OOOOE+00
1915E-16
0768F.-t>6
OOOOE+00
oooot+oo
5122E-33
1108E-18
1837E-18
OOOOt+00
1837E-16
8386E-27
1714E-13
OOOOE+00
0979E-14
6430E-13
0433E-12
2775E-51
OOOOE+00
0.
0.
0.
0.
2.
].
0.
0.
6.
8.
8.
0.
8.
2.
1.
0.
2.
1.
7.
].
0.
ANNUAL
I.3500E-03
OOOOE^O
OOOOE+00
OOOOE+00
OOOOE+00
1916E-16
0768E-56
OOOOE+00
OOOOK+00
8735G-33
1478E-1&
2449E-18
oooot+oo
2449E-18
5253E-27
1910E-13
OOOOE+00
G224L-16
326BE-13
5542E-14
5992E-51
OOOOE+00
SUMMARY
CUBIC MEIERS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FOR
.OOOOE+00
.oooot+oo
.OOOOE+00
.OOOOE+00
.OOOOE+00
.oooot+oo
.OOOOE+00
.oooot+oo
.OOOOE+00
.oooot+oo
.OOOOE+00
.OOOOE+00
.oooot+oo
.OOOOE+00
.oooot+oo
.OOOOE+00
.OOOOE+00
.oooot+oo
.OOOOB+00
.OOOOE+00
.OOOOE+00
YtAR bOOO
Of WATER FLOWED
O.OOOOEvOO
0. OOOOt+00
0. OOOOE+00
0. OOOOE+00
5.5920E-15
2.7475E-55
0. OOOOE+00
0. OOOOt+00
1.7538G-31
2.0790E-16
2.1038E-1&
0. OOOOt+00
2.103BE-1G
&.4437E-26
3.0411E- 12
0. OOOOE+00
&.6914E--lb
3.385SE-1?.
1.9275E-12
4.0806E-bO
0. OOOOE+00
0. OOOOE+00
O.OOOOEHOO
0. OOOOE+00
0. OOOOt+00
2.08076-25
1.0223E-&5
0. OOOOE+00
0. OOOOE+00
1.4357E-42
b.8019t~27
5.8710E-27
O.OOOOt-lOO
5.8710E-27
8.3917E-36
3.9605E-22
0. OOOOE+00
1.9919E-23
4.4090E-22
5.7378E-21
5.0106E-60
0. OOOOE+00
0.
0.
0.
0.
1.
9.
0.
0.
1.
b.
5.
0.
5.
8.
3.
0.
1.
4.
5.
4.
0.
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
9975E-30
8144E-71
OOOOE+00
OOOOt+00
3783E-47
5698E-32
6362E-32
OOOOE+00
6362E-32
0561E-41
8021 t- 27
OOOOE+00
9122E-28
2326E-27
5083E-26
8102E-6S
OOOOE+00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOt+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.oooot+oo
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
OF THE SIMULATION
THROUGH THE
FACILITY DURING
THIS YEAR
DO
I>
CP>
NUCLIDE TRANSPORT INFORMATION
NUCL1DE
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-13b
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
AMOUNT IN
FACILITY
CI
0. OOOOE+00
J.1467E-75
0. OOOOt+00
0. OOOOE+00
6.6672E-01
0. OOOOE+00
3.0976E-17
9.9997E-54
6.489BE-01
1.3095E-14
0. OOOOE+00
0. OOOOE+00
2.71S3E-03
0. OOOOE+00
9.8957E-01
4.5090E-51
0. OOOOE+00
0. OOOOE+00
1.0900E-01
9.7989E-01
9.9374E-01
2.7931E-02
9.9374E-01
6.8150E-18
8.4406E-01
0. OOOOE+00
4.1906E-04
9.6523E-01
4.9824E-01
4.9766E-48
FACILITY
OUTFLOU
Cl
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
4.8250E-05
0. OOOOE+00
2.2417E-21
1.2051E-57
3.3t»60E-05
8.3942E-17
0. OOOOE+00
0. OOOOE+00
3.2095E-06
0. OOOOE+00
1.7926E-06
8.1682E-57
0. OOOOE+00
0. OOOOE+00
9.8717E-OV
1.1834E-06
1.2001E-06
1.9979E-05
3.200JE-06
3.b271E-23
4.3684E-06
0. OOOOE+00
1.8964E-08
4.9955E-06
2.2547E-05
2.5756E-53
AMOUNT AT
WELL
CI
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOt+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
5.0020E-14
0. OOOOE+00
0. OOOOE+00
8.7958E-04
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
0. OOOOE+00
O.OOOOE+00
0. OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
CM-244
O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
TO
I
NUCL1DE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
IC-99
RU-106
SB-125
1-129
CS-134
CS-13S
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOEfOO
O.OOOOE+OO
3.0470E-50
O.OOOOE+00
1.4173E-66
O.OOOOtnOO
2.1232E-28
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4908E-r/
G.8024E-68
O.OOOOE+00
O.OOOOE+00
5.2726E-39
1.698GE-19
1.7240E-19
O.OOOOE+00
1.7240E-19
l.blbOE-30
1.0741E-13
O.OOOOE+00
4.4G37E-15
2.1430E-13
^.2986E-12
8.7702E-61
O.OOOOE+00
SURFACE
MATER CONC
CI/MAA3
o.ooooe+oo
O.OOOOE+00
o.ooooe+oo
O.OOOOL+00
2.0313E-49
o.oooot+oo
9.4486£-66
O.OOOOE+00
6.0662E-28
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEfOO
1.4908E-17
6.8024E-68
O.OOOOE+00
O.OOOOE+00
2.39G6E-38
2.264cJE-lrJ
2.2987E-19
O.OOOOE+00
2.2987E-19
4.328bE-31
5.3547E-14
O.OOOOE+00
5.579GE-17
6.1227E-14
6.6232E-14
2.G576E-61
O.OOOOt+00
SOLUHLE 10
STREAM
CI
O.OOOOE+00
O.OOOOfc+00
O.OOOOC+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.980bE-14
O.OOOOE+00
O.OOOOE+00
8.7580E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE 10
DEEP LAYERS
Cl
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
S.1831E-48
O.OOOOE+00
2.4109E-64
O.OOOOE+00
1.5479E-26
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.8039E-16
1.7357E-66
O.OOOOE+00
O.OOOOE+00
6.1153E-37
5.7791E-18
5.8653E-18
O.OOOOE+00
5.8653E-18
1.1045E-29
1.36G3E-12
O.OOOOE+00
1.4237E-15
1.5623E-12
1.G900E-12
6.7813E-60
O.OOOOE+00
ATMOSPHERE
AT SPILLAGE
C I /HA A3
O.OOOOfi+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.89296-59
O.OOOOE+00
1.3456E-75
O.OOOOE+00
2.0158E-37
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOC+00
1.4154E-26
G.458SE-77
O.OOOOE+00
O.OOOOh+00
5.0060E-40
1.G128E-28
1.6368E-28
O.OOOOE+00
1.G368E-28
1.4384E-39
1.7794E-22
O.OOOOE+00
4.2380E-24
2.0346E-22
5.0307E-2]
8.326BE-70
O.OOOOE+00
ATMOSPHERE
DOWN HIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.7772E-G4
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.9352E-42
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
1.3588E-31
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.8058E-53
l.b483E-33
1.5713E-33
O.OOOOE+00
1.5713E-33
1.3808E-44
1.7082E-27
O.OOOOE+00
4.06B5E-29
1.95321- -27
4.8295E-26
7.9937E-75
O.OOOOE+00
HELL HATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
1.0940E-18
O.OOOOE+00
O.OOOOE+00
1.9238E-08
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
ANNUAL
8.3500E-03 CUBIC METERS
FOR YEAR 6000 OF 1HE SIMULATION
OF WATER FLOWED THROUGH THE FACILITY DURING THIS YEAR
NUCL1DL TRANSPORT INFORMATION
NUCDUE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
AMOUNT IN
FACILITY
CI
O.OOOOE+00
1.0160E-75
O.OOOOE+00
O.OOOOE+00
6..1478E-01
O.OOOOE+00
l.b461E-20
2.7391E-64
b.9521E-01
2.1904E-17
O.OOOOE+00
O.OOOOE+00
FACILITY
OUTFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.4491E-05
O.OOOOE+00
1.1189E-24
3.3009E-68
3.0779E-05
1.4041E-19
O.OOOOE+00
O.OOOOE+00
AMOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
8.3671E-17
O.OOOOE<00
O.OOOOE+00
-------
DO
I
00
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCL1DE
H-3
C-14
MN-54
FE-55
NI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
SB-12S
1-129
CS-134
C8-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
8.3303E-04
O.OOOOEHOO
9.8753E-01
4.1778E-61
O.OOOOE+00
O.OOOOE+00
G.9941L-02
9.7594E-01
9.9249L-01
1.3656E-02
9.9249E-01
2.5128E-21
8.1591E-01
O.OOOOE+00
8.84b5E-Ob
9.5843E-Q1
4.3342E-01
1.8636E-57
O.OOOOE+00
SURFACE
SOIL CONC
Cl/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.0077E-SO
O.OOOOE+00
1.5164E-77
O.OOOOE^OO
9.7809E-32
O.OOOOE+00
O.OOOOE+04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.0140E-18
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.Q384E-44
4.7214E-21
4.0061E-21
O.OOOOE+00
4.0061E-21
2.5967E-34
8.4i!OOE-14
O.OOOOE+00
9.4960H- 16
9.B901E-14
4.6449E-12
1.4577E-70
O.OOOOE+00
9.8467E-07
O.OOOOE+00
1.7889E-06
7.5682E-67
O.OOOOfc+00
O.OOOOE+00
6.3342E-07
1.1786E-06
1.1986E-06
9.76B3E-06
1.1986E-06
1.3005E-26
4.2228E-06
O.OOOOE+00
4.0029E-09
4.9604E-06
1.9614E-05
9.64b2E-G3
O.OOOOE+00
SURFACE
HAltR CONC
C1/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.0052E-57
O.OOOOE+00
1.0109E-76
o.oooot+oo
2.7946E-31
8"OOOOE+0
O.OOOOE+00
2.5795E-75
O.OOOOE+00
7.1307E-30
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.5875E-17
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
2.1323E-42
1.6063E-19
1.63S1E-19
O.OOOOE+00
1.6351E-19
1.8931E-33
6.1385E-13
O.OOOOE+00
3.0288E-16
7.2102E-13
1.4815B-12
1.1273E-69
O.OOOOE+00
ATMOSPHERE
AT SPILLAGE
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.7040E-67
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.2864E-41
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.6278E-28
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7455E-b3
4.4827E-30
4.5&31E-30
O.OOOOE+00
4.5631E-30
2.4654E-43
7.9943E-23
O.OOOOE+00
CJ.0159K-2B
9.3900E-23
4.410112-21
O.OOOOE+00
O.OOOOE+00
ATMOSPHERE
DOWN HIND
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.4758E-72
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
8.9150E-46
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.2426E-33
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.67b7E-b8
4.3034E-35
4.3806E-35
O.OOOOE+00
4.3806E-35
2.3663E-48
7.G745E-28
O.OOOOE+00
8.6553E-30
9.0144E-28
4.2337E-26
O.OOOOE+00
O.OOOOE+00
WELL WATER
CONC
C1/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
1.8300E-21
O.OOOOE+00
O.OOOOfc+00
5.9021E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
ANNUAL SUMMARY
8.3500E-03 CUBIC MEIERS
FOR YEAR 7000 OF THE SIMULATION
OF WATER FLOWED THROUGH THE FACILITY DURING THIS YEAR
-------
NUCLIDE TRANSPORT INFORMATION
NUCLIDE
H-:3
C-14
MN-54
FE-5S.
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-22G
U-234
AHOUNT IN
FACILITY
CI
O.OOOOE+00
9.0013E-76
O.OOOOE+00
O.OOOOE+00
5.6689E-01
O.OOOOE+00
7.7165E-24
V.6636E-75
5.4589E-01
3.G638E-20
O.OOOOE+00
O.OOOOE+00
2.5543E-04
O.OOOOE+00
9.8550E-01
3.8710E-71
O.OOOOE+00
O.OOOOE+00
4.4895E-02
9.7200E-01
9.9J24E-01
6.6761E-03
9.9124E-01
9.2650E-25
7.8871E-01
O.OOOOE+00
1.8670E-OS
9.51G8E-01
3.7703E-01
6.9789E-67
O.OOOOE+00
SURFACE
SOIL CONC
CI/K6
O.OOOOE+00
O.OOOOtiOO
O.OOOOE+00
O.OOOOE+00
].]fl4bE-63
O.OOOOE+00
O.OOOOE-lOO
O.OOOOE+00
4.5057E-3J)
O.OOOOEHOO
Q.QOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.8977E-20
O.OOOOE+00
O.OOOOE-lOO
O.OOOOE+00
6.4104E-bO
1.3123E-22
FACILITY
OUTFLOW
CI
O.OOOOE+00
O.OOOOEfOO
O.OOOOE+00
O.OOOOE*00
4.1025E-OS
O.OOOOE+00
5.5844E-20
O.OOOOE+00
2.8229E-05
2.3486E-22
O.OOOOE+00
O.OOOOE+00
3.0193E-07
O.OOOOE+00
1.7853E-06
7.0124E-77
O.OOOOE+00
O.OOOOE+00
4.0659E-07
1.1739E-06
l.l'J'/lE-OG
4.7754E-06
1.1971E-06
4.7951E-30
4.0820E-06
O.OOOOE+00
8.4486E-10
4.9254E-06
1.7062E-05
3.6120E-72
O.OOOOE+00
SURFACE
HATER CONC
CI/MAA3
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
7.8970E-6b
O.OOOOEfOO
O.OOOOE+00
O.OOOOE«-00
1.2873E-34
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.8978£-20
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.9138E-49
1.749VE-22
AMOUNT AT
UELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.3995E-19
O.OOOOE+00
O.OOOOE+00
8.2752E-05
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE<00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-IOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
STREAM
CI
O.OOOOE+00
O.OOOOfciOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.3935E-19
O.OOOOE+00
O.OOOOE+00
8.2395E-05
O.OOOOE+00
0.00000*00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.0150E-63
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
3.2848E-33
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7600E-18
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.43SOE-48
4.4646E-21
ATMOSPHERE
AT SPILLAGE
CI/HAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.1247K-74
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.2779E-44
O.OOOOE+00
O.OOOOE+00
O.OOOOE-lOO
O.OOOOE+00
O.OOOOE+00
G.5490E-29
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.0863E-bcJ
1.2459E-31
ATMOSPHERE
DOUN HIND
CI/MAA3
O.OOOOE+00
O.OOOOE-lOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.1068E-49
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
6.2870E-34
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.8429E-64
1.1961E-36
UELL HATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.0610E-24
O.OOOOE+00
O.OOOOE+00
1.8099E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0. 00001+00
-------
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CH-244
1
1.3398E-22
O.OOOOE+00
1.3398E-22
4.4S06E-38
3.702bE-14
O.OOOOEHOO
2.0203E-16
4.b633E-)4
4.0727E-12
O.OOOOE+00
O.OOOOE+00
1.
0.
1.
1.
1.
0.
2.
1.
5.
0.
0.
ANNUAL
i.3bOOE-03
7864E-22
OOOOL+00
7864E-22
2716E-3B
0807E-14
OOOOtHOO
5253E-10
303KE-14
OcJO£Jt-14
OOOOK+00
OOOOE+00
SUMMARY
CUBIC METERS
0
0
0
0
0
0
0
0
0
0
0
FOR
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOE+00
.OOOOli+00
.OOOOEiOO
.OOOOE+00
.OOOOE+00
.OOOOE+00
YEAR 8000
Of HATER FLOWED
4.
0.
4.
3.
2.
0.
6.
3.
1.
0.
0.
Of
5582G-21
OOOOE+00
55I32E-21
2447E-37
7576E-13
OOOOE+00
44376-17
3260E-13
2990E-12
OOOOE+00
OOOOE+00
1.2720U-31
O.OOOOE+00
1.2720E-31
4.2256E-47
3.S913E-23
O.OOOOE+00
1.9181E-25
4.3326E-23
3.8G68E-21
O.OOOOL+00
O.OOOOE+00
1.
0.
I.
4.
3,
0.
1.
4.
3.
0.
0.
2212E-36
OOOOE+00
2212E-3G
Q5G6E-52
4476E-28
OOOOE+00
8414E-30
1593E-28
7121E-26
OOOOE+00
OOOOE+00
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
OOOOE+00
OOOOE+00
OOOOE+00
QQOOE+OQ
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
THE SIMULATION
THROUGH THE
FACILITY UURING
THIS YEAR
NUCLIDE TRANSPORT INFORMATION
CO
ro
o
NUCD1JE
H-3
C-14
MN-54
FE-5b
NI-59
CO-60
NI-63
SR-90
NB-94
IC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
NUCI.inE
H-3
C-14
AMOUNT IN
FACILITY
CI
O.OOOOE+00
7.'./748E-76
O.OOOOE+00
O.OOOOE+00
5.2272E-01
O.OOOOE<00
3.8514E-27
O.OOOOK+00
5.0065E-01
6.J28&E-23
O.OOOOE+00
O.OOOOE+00
7.8368E-05
O.OOOOE+00
9.834BE-01
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
2.88?2t-02
9.6807E-01
9.8999E-01
3.2628E-03
9.8999E-01
3.4162t-28
7.6240E-01
O.OOOOE+00
3.9412E-06
9.4495E-01
3.2797E-01
2.6204E-76
O.OOOOEHOO
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE+00
FACILITY
OUTFLOW
(:]
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.7829E-05
O.OOOOE+00
2.7872E-31
O.OOOOE+00
2.5889E-05
3.9285E-25
O.OOOOE+00
O.OOOOE+00
9.2634E-08
O.OOOOEiOO
J.7816E-06
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.6103E-OV
1.1691E-06
1.1956E-06
2.3339E-06
1.1956E-06
1.7681E-33
3.cMb8E-0&
O.OOOOE+00
1.7835E-10
4.8906E-06
1.4841K-Ob
O.OOOOE+00
O.OOOOE+00
SURFACE
HATER CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
AMOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
2.3410E-22
O.OOOOE+00
O.OOOOE+00
2.5387E-05
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO SOLUBLE TO ATMOSPHERE
STREAM DEEP LAYERS AT SPILLAGE
CI CI CI/MAA3
O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
O.OOOObtOO O.OOOOt + 00 O.OOOOUOO
ATMOSPHERE WELL MATER
DOWN HIND CONC
CI/MAA3 CI/HAA3
O.OOOOE+00 O.OOOOE+00
O.OOOOE+00 O.OOOOEiOO
-------
CO
MN-54
FE-5b
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-230
PU-238
PU-239
PU-24]
AM-241
PU-242
AM-243
CM-243
CH-244
O.OOOOE+00
O.OOOOE+OO
2.3390E-73
O.OOOOEiOO
O.OOOOE+00
O.OOOOE+00
2.0756E-38
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOfc+00
4.6919E-21
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.2352E-55
3.6477K-24
3.7351E-24
O.OOOOE+00
3.7351E-24
7.620'JE-42
1.G993E-14
O.OOOOE+00
4.2985G-17
2.1056E-14
3.t>712E-12
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.5593E-72
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.9302E-38
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.6920E-21
O.OOOOE+00
O.OOOOE+00
O.OOOOf+00
1.0160E-54
4.8G36E-24
4.9802E-24
O.OOOOE+QO
4.9002E-24
2.1796E-42
4.8551E-15
O.OOOOL+00
5.3732E-19
6.01G7L- 15
4.4641E-14
O.OOOOE+00
O.OOOOE+00
0.
0.
0.
0.
0.
0.
0.
2.
0,
0.
2,
0,
0,
0,
0.
0,
0,
0,
0,
0,
0
0
0
0
0
0
0
0
0
ANNUAL SUMMARY
8.3500E-03 CUBIC METERS
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
3309E-22
OOOOE+00
OOOOE+00
5278E-05
OOOOE+00
OOOOE^O
O.OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOE+00
OOOOL+00
OOOOE+00
OOOOE+00
ooooe+oo
O.OOOOE+00
OOOOE+00
O.OOOOE+00
O.OOOOK+00
FOR YEAR 9000
OF WATER FLOWED
O.OOOOE+00
O.OOOOE+00
3.9788E-71
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
1.5132E-36
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1 .1972E-19
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.5925E-53
1.2410E-22
1.2708E-22
O.OOOOE+00
1.2708E-22
S.5GlbE-41
1.2388E-13
O.OOOOL'+OO
1.3710E-17
1.5352E-13
1.1391K-12
O.OOOOL+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
1.9706E-47
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.4547E-30
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.1222E-64
3.4633E-33
3.5463E-33
O.OOOOE+00
3.5463E-33
7.2428E-51
1.G134E-23
O.OOOOE+00
4.0812E-2G
1.9994E-23
3.3907F-2I
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.8918E-52
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.2765E-35
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.0373E-69
3.3247E-38
3.4044E-38
O.OOOOE+00
3.4044E-38
6.9531E-56
1.5488E-28
O.OOOOE+00
3.9179E-31
1 9194E-?8
3.2550E-26
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
5.1200E-27
O.OOOOE+00
O.OOOOE+00
5.5525E-10
8 .OOOOE+00
.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
OF THE SIMULATION
THROUGH THE FACILITY DURING THIS YEAR
NUCLIDE TRANSPORT INFORMATION
NUCLIDE
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
CS-13S
CS-137
CE-144
EU-154
RA-22G
U-234
U-235
NP-237
AMOUNT IN
FACILITY
CI
O.OOOOfHOO
7.0G53E-76
O.OOOOE+00
O.OOOOE+00
4.8199E-01
O.OOOOEiOO
1.9223E-30
O.OOOOE+00
4.5915E-01
I.02S1E-25
O.OOOOE+00
O.OOOOE+00
2.4037E-Ob
O.OOOOEtOO
0.b)4bE-01
O.OOOOE+00
O.OOOOF.HOO
O.OOOOE+00
1.I.IS03E-02
9.G413E-01
9.8880E-01
l.b'Jb4E-03
FACILITY
OUTFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.4881E-05
O.OOOOE+00
1.39UE-34
O.OOOOE+00
2.3744E-05
G.5712E-28
O.OOOOE+00
O.OOOOE+00
2.0412E-00
O.OOOOE+00
1.7779E-06
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.6757K-07
1.1644E-06
1.L942E--06
1.1412E-06
AMOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.9158E-25
O.OOOOE+00
O.OOOOE+00
7.7EJ68t~06
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.6233E-04
-------
D3
I
ro
U-238
PU-23&
PU-239
PU-241
AM-241
PU-24;!
AM-243
CM-243
CM-244
NUCLIDE
H-3
C-14
HN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
1-129
CS-1,34
CS-13b
CS--137
CE-144
EU-154
RA-22G
U-234
U-235
NP-237
U-238
PU-230
PU-23'J
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
1
9.8880E-01
1.2596E-31
7.3698E-01
O.OOOOE+00
H.3177E-07
y.M!J27E-01
2.0528E-01
O.OOOOE+00
O.OOOOE+00
SURFACE
SOIL CONC
CI/KG
O.OOOOE+00
O.OOOOE+00
O.OOOOK+OO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
9.5615E-42
O.OOOOE+00
O.OOOOEfOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.1015E-22
O.OOOOE+00
O.OOOOt^O
O.OOOOE+00
7.7938E-G1
1.0139E-25
J.0413E-25
O.OOOOE+00
] .0413E-25
1.3075E-45
7.63bOE-15
O.OOOOE+00
J.1447E-18
g.vi'joe-is
3.1322E-J2
O.OOOOE^O
O.OOOOE+00
1.1942E-06
G.bl92E-37
3.8142E-OG
O.OOOOE+00
3.7G40E-11
4.8bGOE-OG
1.2910E-05
O.OOOOE+00
O.OOOOE+00
SURtACE
HATER CONC
CI/MAA:!
O.OOOOE+00
O.OOOOR+00
O.OOOOh+00
O.OOOOL+00
O.OOOOL+00
O.OOOOfc+00
O.OOOOG+00
O.OOOOFI+00
2.7319E-41
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOU+00
3.1fJlbE-22
O.OOOOl^KOO
O.OOOOE^O
O.OOOOE+00
3.5427E-60
1.3519E-25
1.38H4L-25
O.OOOOE+00
1.3B84E-2J)
3.7358E-46
2.1814L-15
O.OOOOE+00
1 .1431E-19
2.V769E-15
3.91S2E-14
O.OOOOE+00
O.OOOOE+00
ANNUAL SUhhARY
.3500E-03 CUBIC MEIERS
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TO
SOLUBLE TO
STREAM DEEP LAYERS
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
3.HrJcJOE-25
O.OOOOG+00
O.OOOOEHOO
7.7b33E-06
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-i-00
3.6077E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
FOR YEAR 10000
OF WATER FLOWED
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
6.9707E-40
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
8.1436E-21
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
9.03%E-59
3.4496E-24
3_'J428E-24
o.ooooe+oo
3.5428E-24
9.5324E-45
5.56G2E-14
O.OOOOE+00
2.91G7E-1B
7.0855E-14
9.9902E-13
O.OOOOE+00
O.OOOOE+00
ATMOSPHERE
AT SPILLAGE
CI/HAA3
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOGi-00
O.OOOOE+00
9.0781E-51
O.OOOOE+00
o.oooot-;+oo
O.OOOOE-tOO
O.OOOOE+00
o.ooooe+oo
3.0302E-3]
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
7.399&E-70
9.G2&7E-35
9.886CE--)b
O.OOOOE+00
9.B06GE-35
1.2414G-54
7.2490E-24
O.OOOOE+00
8.6024E-27
9.2276E-24
2.9738E-21
O.OOOOE+00
O.OOOOE+00
OF THE SIMULATION
ATMOSPHERE
DOWN HIND
CI/HAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
8.7149E-56
O.OOOOEnOO
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
2.9090E-36
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.1038E-75
9.2416E-40
9.4913E-40
O.OOOOE+00
9.4913E-40
1.1918E-59
6.9590E-29
O.OOOOK+00
B.33blE-32
0.8585E-29
2.8549E-2G
O.OOOOE+00
O.OOOOE+00
HELL UATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
8.5644E-30
O.OOOOE+00
O.OOOOE+00
1.7031E-10
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOfc+00
7.9247E-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
THROUGH THE FACILITY DURING THIS YEAR
NUCLIDE TRANSPORT INFORMATION
NUCLIOE
H-3
C-14
HN-54
FE-55
AMOUNT IN
FACILITY
CI
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
FACILITY
OUTFLOW
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
AMOUNT AT
WELL
CI
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
MI-59
CO-60
NI-63
SR-90
NB-94
TC-99
RU-106
03
I
ro
oo
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AM-241
PU-242
AM-243
CH-243
CM-244
NUCLIHE
H-3
C-14
MN-54
TE-Sb
NI--59
CO-60
NI-63
SR-90
NB-94
IC-99
RU-106
SB-125
1-129
CS-134
CS-13ID
CS-13/
CE-144
EU-l^i4
RA-226
U-234
U-23S
NP-237
U-2JO
PU-238
PU-239
PU-24J
AM-241
PU-242
AM-243
CM-243
4.4443E-01
O.OOOOE+00
9.59486-34
O.OOOOE+00
4.2109E-01
1.7147E-28
O.OOOOE+00
O.OOOOE+00
7.3723E-06
O.OOOOt+00
9.7942E-01
O.OOOOE+00
O.OOOOfc+00
O.OOOOE+00
1.1877E-02
9.6020E-01
9. 876 IE- 01
7.8002E-04
9.8761E-01
4.6444K-35
7.1240E-01
O.OOOOE+00
1.7560E-07
9.3165E-01
2.4814E-0]
O.OOOOE+00
O.OOOOE+00
'--URt'ACK
SOIL CUNC
CI/KI3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.40476-45
O.OOOOE+00
O.OOOOt+00
O.OOOOE^O
O.OOOOE+00
0. 00006+00
2.1709E-23
O.OOOOE+00
O.OOOOt+00
O.OOOOt+00
2.7176E-66
2.01DOK-27
2.90286-27
O.OOOOE+00
2.90286-27
2.2412E-49
3.42926-15
O.OOOOE+00
1.94576-18
4.4848E-lb
2.7467E-12
O.OOOOt+00
3.2163E-05
O.OOOOE+00
6.94376-38
O.OOOOE+00
2.J776t-Ob
1.0991E-30
O.OOOOE+00
O.OOOOE+00
8.71436-09
O.OOOOE+00
1.7743E-06
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
1.0756E-07
1.1596E-06
1.1927E-06
5.5796E-07
1.1927E-06
2.4037E-40
3.6870E-06
O.OOOOE+00
7.9462E-J2
4.8218E-06
O!OOOOE+OO
O.OOOOE+00
SURFACE
HATER CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOEhOO
O.OOOOE+00
O.OOOOGi-00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
1.25856-44
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOt+00
0.00006+00
2.1709E-23
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
1.2353E-G5
3.7573K-2'/
3.8705E-27
O.OOOOt+00
3.0705E-27
6.4034E-50
9.7978E-16
O.OOOOt+00
2.43216-20
1.2814E-15
3.4334E-14
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.'OOOOE+OO
O.OOOOE+00
2.3883E-06
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.7716E-04
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
SOLUBLE TO
STRtAM
C(
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OQOOK+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
6.5210t~28
O.OOOOE+00
0.00006+00
2.3780F-06
O.OOOOEt-00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOL+00
O.OOOOE+00
1.7640E-04
0.00006+00
O.OOOOt+00
0.00006+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
SOLUBLE TCI
DEEP LAYERS
CI
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOt+00
O.OOOOEi-00
O.OOOOE+00
0.00006+00
o.oooot+oo
3.2U3E-43
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
5.5393E-22
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
3.15196-64
9.5873t-26
9.8760E-26
O.OOOOt+00
9.87606-26
1.6339E-48
2.5000E-14
O.OOOOE+00
6.20596-19
3.2696E-14
8.76076-13
O.OOOOE+00
ATMOSPHERE
AT SPILLAGE
CI/hAA'-)
O.OOOOE+00
O.OOOOt+00
0.00006+00
O.OOOOE+00
O.OOOOli + 00
O.OOOOE+00
0.00006+00
O.OOOOE+00
4.10206-54
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
0.00006+00
2.0611E-32
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
2.5802E-75
2.6755E-36
2.7561E-36
O.OOOOt+00
2.75616-36
2.1279E-58
3.2558E-24
O.OOOOE+00
1.8473E-27
4.2580E-24
2.60786-21
O.OOOOE+00
ATMOSPHERE
DOMN WIND
CI/MAA3
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
O.OOOOE+00
4.01486-59
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00006+00
1.9787t-37
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
2.5685E-4]
2.6458E-41
O.OOOOt+00
2.64586-41
2.0428E-63
3.1236E-29
O.OOOOE+00
1.7734E-32
4.0077E-29
2.5035E-26
O.OOOOE+00
HELL WATER
CONC
CI/MAA3
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
1.4326E-32
O.OOOOE+00
O.OOOOE+00
b.2234t-ll
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
3.8747t-09
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
CM-244 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
1 AVERAGE CONCENTRATIONS OVER THE YEARS 1 TO AAAA OF THE SIMULATION
HAXIhUh ANNUAL CONCENTRATIONS
ro
NUCLUiE
H-3
C-14
MN-54
FE-55
NI-5CJ
CO-GO
NI-63
SR-90
NB-94
TC--99
RU-lOfc
SB-125
1-129
CS-134
ATMOSPHERE DOWNWIND
IN WELL
IN STREAM
CS-137
CE-144
EU-lb4
RA-226
U-234
U-235
NP-237
U-238
PU-23G
PU-239
PU-241
AM-241
PU-242
AH-243
CM-243
CM-244
1
NUCLIDfc
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
PU-10G
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
AVERAGE
CI/HAA3
7.35G5E-2CJ
J.'J093E-2ti
].3)82E~i!y
6.3149E-27
H.216GE-2G
1.2767E-26
O.OW8E-26
5.1021E-2G
H.4312E-26
0,5J80l-:-27
l.f.7'J<:iE-27
6. 00166-27
J.3M40E-26
4.5024E-27
8.y:-"JlE-2G
b.3502E-2G
l.J64n:-27
3.8139E-26
U.3131E-2G
0.6298E-26
8.6300E-26
4.3%GE-26
8.6300E-2G
8.4Q89E-2G
9.5G97E-2G
3.317GE-26
9.0011E-2G
9.G101E-26
1.3G01E-25
b.b007E-26
4.0S69E-26
MAXIMUM
CI/MAA3
7.T/20E-25
1.0506E-24
1.13&2E-23
4.6874K-23
5.3624K-22
9.1G'.iGK-23
b. 322211-22
3.3943E-22
5.4216E-22
7.9G68e-23
1.414t:E-23
4.5413E-23
2.7653E-22
3.44491--23
5.4I513E-22
3.5171E-22
1.0142E-23
2.5408E-22
b'.3930K-22
5.44GOE-22
5.4460U-22
3.4467E-22
5.4460E-22
5.4197E-22
b.4G25li-22
2.2238E-22
5.4588E-22
5.4627E-22
5.4665H -22
3.G120E-22
2.69b8E-22
YEAR AVERAGE MAXIMUM YEAR AVERAGE MAXIMUM YEAR
CI/MAA3 CI/MAA3 CI/HAA3 CI/MAA3
1 1.79S3E-12 1.7G43E-09 233 2.030SE-13 1.995bL-]0 233
1 2.1200E--09 9.7717K-07 233 2.398r/E-)0 1.1052E-07 233
1 O.OOOOH-00 O.OOOOE+00 0 O.OOOOEtOO O.OOOOH'OO 0
1 0.0000li>00 O.OOOOtM-00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOEiOO O.OOOOE+00 0 O.OOOOEnOO O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOEHOO 0 O.OOOOH+00 O.OOOOG+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOL+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 2.1778E-09 1.388GE-07 1001 2.4G35E-10 1.5705E--08 1001
1 O.OOOOt+00 O.OOOOE+00 0 O.OOOOK+00 O.OOOOt+00 0
1 O.OOOOfc+00 O.OOOOH+00 0 O.OOOOE+00 O.OOOOE+00 0
1 2.1787E-09 2.S017E-08 47bl 2.46b4E-10 2.9199E-09 4751
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOH+00 O.OOOOIM-OO 0 O.OOOOH+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOt+00 0
1 O.OOOOE+00 O.OOOOK+00 0 O.OOOOE+00 O.OOOOE+00 0
i o.ooood+oo O.OOOOK+OO o o.ooooe+oo O.OOOOE+OO o
1 O.OOOOL+00 O.OOOOK+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 ].63b3E-09 1.5592E-08 80b4 1.8520E-10 1.763bE-09 8054
1 O.OOOOEHOO 0.00006+00 0 O.OOOOE^O O.OOOOK+00 0
1 O.OOOOEHOO O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOE+00 O.OOOOl-MOO 0 O.OOOOli+00 O.OOOOE+00 0
] O.OOOOK+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
1 O.OOOOK+00 0.00001^00 0 0.00000+00 O.OOOOE+OO 0
1 O.OOOOE+00 O.OOOOt+00 0 O.OOOOL+00 O.OOOOE+00 0
i o.ooooe+oo o.ooooii+oo o o.ooooii+oo O.OOOOE+OO o
1 O.OOOOK+00 O.OOOOE+00 0 O.OOOOL+00 O.OOOOK+00 0
1 O.OOOOK+00 O.OOOOE+00 0 O.OOOOE+00 O.OOOOE+00 0
RADIONUCLIDE CONCENTRATION IN t'OODS DUE TO ATHOSPHERIC DtPOGITION
LEAFY VEQ
h.I.E.
2.7H66E-lb
1.312GE-13
6.3CS3E-]]
3.1305E-10
5.03t)7t-0'J
G.3800E-10
4.407]};-09
6.33G3E-09
4.<./497E-09
4. 73596-10
a.]657K'-]l
3.009/C-10
1.0042E-09
2.2308E-10
1.30^6E-08
2.b360E-09
5.59I33E-11
l.'J]18E-Qy
PRODUCE
H.I.E.
2.7866E-11J
1.312GE-13
b.G95t»t-12
3. 0075i;- 11
3.00bOE-0'J
6<3695li-li
1.37C9h-09
1.3'2L3li-09
9.321bE-10
6.3036G-11
7.3G92E-12
2.9973G-11
5.1J17E-10
2.U339E-11
9.6240E-09
4.3031H-10
4.8544E-12
1.94G9K-10
PICO CURIES PER KILOGRAM
LEAIY VEG PRODUCE COW'S MILK COW'S MILK GOAV'S MILK GOAT'S MILK
G.P.E. O.P.E. M.I.E. G.P.E. M.I.G. G.P.E.
2.706GE-15 ?.78G6f-lb 1.3'J33E-lb ).3933t-lb 2.6423E-lb 2.8423E-15
1.3126E-13 1.312GE-13 7.8757E-14 7.87576-14 7.8757E-14 7.8757E-14
6.203rJE-ll 6.30G9E-12 0.07G7E--13 0.0430E-13 6.924GE-14 6.8940E-14
J.10'.20E--10 3.10G5E-11 2.6517E-12 2.G480E-12 1.6547E-13 1.G523K-13
5.038'/E-09 3.00b8E-09 7.0452E-10 7.9452E-10 6.3880E-10 6.3880E-10
G.3501G-10 6.47G3E-11 4.4B70t-ll 4.4B38E-11 2.6922E-12 2.6903E-12
4.4060E-09 1.3802E-09 3.8306F:-10 3.t)305E-]0 3.0798E-10 3.0797E-10
G.3J08C-09 L.3253E-09 4.0187E-09 4.01U1E-09 4.5009E-09 4.5003E-09
4.9497E-0'J SI.321BK-10 1.2788E-06 1 .2708E-08 1.9182E-10 1.9182E-10
4.7359C-10 G.303Gli-ll 4.5494E-10 4.5494E-10 1.3648E-10 1.3648E-10
7.9G78E-11 8.0377E-12 1.7000E-15 1.6936E-lb 4.4199E-14 4.4033E-14
2.9U30IJ--10 3.0932E-11 1.2376E-12 1.2359E-12 2.227GE-12 2.2246E-12
1.8042t-0
-------
RA-226
U-234
U-23S
NP-237
U-23G
PU-23CI
PU-239
PU-241
AM-241
PU-242
AH-243
Ch-243
CM-244
4.1747E-09
5.0102E-09
5.01256-09
2.2075E- 09
5.0125E-01J
4.221<3E-0'J
4.94&SE-09
l.GO>09E-OrJ
4.7CJ[I8E-0':;
4.9830E--09
2.7639E-09
2.0U27K-09
5.0193E-10
1.339Jt-000
o.oooot+oo
3.2770E-14
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOk+00
O.OOOOE+00
BEEF MEAT
1.1049E-12
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
4.6270E- 10
O.OOOOE+00
O.OOOOE+00
3.8127E-10
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE<00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.2529E-12
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.oooot+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
G.P.E. - GENERAL POPULATION EXPOSURE
M.I.E. - MAXIMUM INDIVIDUAL EXPOSURE
G.P.t. UILL
BE USED TO CALCULATE HEALTH
EFFECTS
ANNUAL INTAKE
BY 1NGESTION
PCI/Y
6.G426E-01
ANNUAL INTAKE
BY INHALATION
PCI/Y
-------
en
i
C-14 7.8470E+02 1.5274E-12
FE-55 l!l526E-08 b'.0519E-ll
NI-5'J 1.1J39E--06 6.5733E-10
CO-60 6.5742E-00 1.0213E-10
NI-63 5.d042E-07 6.4799E-10
SR-90 0.6547E-07 4.0817E-10
NB-94 l.b273E-05 6.7449E-10
TC-99 8.0578E+02 6.8304E-11
RU-106 3.3146E-09 1.3439E-11
SB-125 1.1991E-00 4.8012E-11
1-129 8.06HL+02 2.G832E-10
CS-134 2.7711E-08 3.G019E-11
CS-135 1.7235E-05 6.9833E-10
CS-137 G.]f.9GE-07 4.2802E-10
CE-144 2.0523E-09 9.3132E-12
EU-154 9.5721E-OU 3.0511E-10
RA-226 1.7377E-07 6.6bObE-10
U-234 3.70136-07 6.903BE-10
U-235 3.7879E-07 G.9040E-10
NP-237 6.0624E+02 3.5172E-10
U-238 3.7879E-07 6.9040E-10
PU-238 1.5041E-07 6.7271E-10
PU-239 1.8089E-07 7.G557E-10
PU-241 5.9027E-08 2.G541E-10
AM-241 1.723KE-07 7.2008E-10
PU-242 1.8258E-07 7.6881E-10
Ah-243 3.8U96E-07 1.0SB1E-09
CM-243 9.8541E-08 4.4078E-10
CM-244 7.i'433E-08 3.245GE-10
1 AGGREGATED VALUES OF RADIOACTIVITY:
NUCL1HE PUMPED OUT PUMPED OU1 LEFT DUI10M
H-3
C-14
MN-54
NI-5'J
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-106
S B - 1 7- S
1-129'
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-23H
PU-239
PU-241
AM-24]
PU-242
AH-243
CM-243
CM-244
THE WELL
3.5322E-OG
4,17.2GE-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
4.28451-03
O.OOOOE+00
O.OOOOE+00
4.28G5E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
3.2240E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
THli STREAM
O.OOOOE+00
O.OOOOK+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
0.00001;+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
OF TRENCH
1.G042E-0]
9.973GE-01
2.7640E-OG
2.7382E-05
4.9552E-01
1.032SE-04
9.4802E-03
3.1742E-03
3.4587E-01
9.994JE-01
2.7230E-OG
2.893GE-05
9.9949E-01
4.011bE-07
1.7913E-02
5.1175E-Ob
5.7175E-08
1.9879E-Ob
2.0168G-02
1.1S22E-02
1.1988E-02
9.9828E-01
1.1988E-02
6.5193E--04
4.3875E-02
4.1189E-05
2.9058E-02
4.9949E-02
2.4388E-01
1.5938E-04
G.GlOlE-Ob
GVEKFLOUED
RELEASED TO
TRENCH THE ATMOSPHERE
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOEW
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.416GE-12
G 771 9 6 !'*
4.3302E-]!
2.0744E-10
2.6992E-09
4.1939E-10
2.6609E-09
1. 6761 E 09
2.7699E-09
2.8047E-10
5.51836-11
1.9715E-10
1.10.18K-09
1.4790E-10
2.86816-09
1.7b76E-09
3.8242E-11
1.2529E-09
2.7310E-09
2.8353E-09
2.8354E-09
K4443E-09
2.8354E-09
2.7625E-09
3.1457E-09
1.0899E-09
2.9579E-09
3.1591E-09
4.4G03E-09
1.8100E-09
1.3327E-09
RELEASED 10
BASIN
8.1731E-04
9.G558E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.9189E-01
O.OOOOE+00
O.OOOOE+00
9.9313E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
7.4b99E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
-------
FRACTION Of INGE3IION DUE TO HATER
en
i
ro
NUCL1HK
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-134
C5-13b
CS-137
CE-144
EU-154
RA-22G
U-234
U-235
NP-237
U-238
PU-2'Jtf
PU-:-!39
PU-241
AM-241
PU-242
AM-243
CM-243
CM-244
MAXIMUM
FRACTION
1.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
ANNUAL EXPOSURE
NUCLIDE
H-3
C-14
MN-M
FE-55
NI-59
CO-GO
NI-G3
SR-90
NB-94
TC-99
RU-10G
SB-125
1-129
CS-H4
CS-135
C3-137
CE-144
EU-154
PA-21'6
U-234
U-235
NP-237
U-238
AIR
CONCENTRATION
CI/MAA3
1
7.1720E-25
1.8586E-24
1362E-23
4.GB74E-23
5.3f.i!4K-22
9.1G26E-23
5.3222E-22
3.3943L-22
5.421GE-22
7.9668E-2:J
1.414HE-23
4.5413E-23
2.7Gb3L-22
J.4449E-23
'J.4513E-22
3.517U-22
1 .0142E-23
-J.5408C-22
5.39HOL-22
5.4460E-22
5.4460E-22
:J.44G7E-22
YEAR SURFACE YEAR
CONCENTRATION
CI/MAA2
1 O.OOOOE+00 0
1 O.OOOOE+00 0
1 1.5882E-17 I
1 1.14COE-16 2
1 2.4812t-)'j 7
1 2.79011I-1G 2
1 2.3581E-15 5
1 1.398bE-)5 4
1 2.5704K-15 9
1 9.8191E-17 1
1 2.2330E-17 ]
1 1.0983E-IG 1
1 7.0307E-16 1
1 7.7581E- 17 1
1 2.6242E-1& 11
1 1.48656-15 4
1 1.3127E-17 1
I 9.98331--IG 3
1 2.S202E-15 7
1 2.G137E-15 ]0
1 2.613Gt-]b 10
1 1.0214E-15 2
1 2.G130E-15 10
1NGEST10N
RATE
PERSON. t'CI/Y
1.G320G+04
9.0389E+06
5.105GS-04
2.1369E-03
3.8407E-02
1.1429E-02
3.0171E-02
1.9517E-02
b.G330E-01
1.2844G>OG
6.9380E-04
2.1809E-03
2.3H81E-i-Ob
5-0481G-03
0.2228E-02
5.294GE-02
4.4G80E-04
1.5700E-OM
2.5727E-02
2.G285E-02
2.6285E-02
1.4423K+OS
2.G285E-02
YEAR
233
233
1
1
1
1
]
1
1001
1
1
4751
1
1
1
1
1
1
1
1
8054
1
INHALATION
RATE
PERSON.PCI/Y
1.4344G-07
3.7172E-07
2.2724E-OG
9.3749E-OG
1.0725E-04
1.8325E-05
1.0644E-04
G.7085E-05
1.0843E-04
1.5934E-05
2.8295E-06
9.0827E-OG
5.530GE-05
G.8898E-OG
1.0903E-04
7.0342E-05
Jj.OtUGG-O'J
1.0786E-04
].089?E-04
1.0892E-04
G.8933E-05
1.0892E-04
YEAR
-------
PU-23B 5.4197E-22 1
PU-239 5.4&25E-22 ]
PU-241 2.2238E-22 1
AM-241 5.4588E-22 1
PU-242 J5.4G27K-22 1
AM-243 b.466bE-22 1
Ch-243 3.6120E-22 1
CM-244 2.G958E-22 1
1SITE AREA, PRODUCTION RUN RUNCODE
2.4726E-15
8I4991E--16
2.609bE-15
-.J.6492G-15
2.6625E-3b
1.5391E-lb
1.0715G-15
6
Ib
9
16
bbO
4
3
2.4L91E-02
2.4399E-02
9.839ie--0:J
.4387E-02
.4400E-02
.4424E-02
.614:-!E-02
.2029E-02
0839E-04
0925E-04
4477E-05
0918E-04
0925E-04
0933E-04
2240E-05
3916E-05
j A A u n r. L. n inuuuL.iiun nun nunL,uu£«
TABLtti FOR THE SELECTED INDIVIDUAL WILL BE DONE FOR THE LOCATION HAVING 100.00 X OF THE HIGHEST TOTAL RISK.
DOSE RATE TABLES COMBINING LOW AND HIGH LET HILL BE PRINTED.
HEALTH RISK TABLES COMBINING LOU AND HIGH LET WILL BE PRINTED.
00 INDICATES THE TABLE WILL NOT BE PRINTED
1 INDICATES INDIVIDUAL VALUES WILL BE PRINTED
2 INDICATES HEAN INDIVIDUAL VALUES HILL BE PRINTED
3 INDICATES COLLECTIVE VALUES WILL BE PRINTED
4 INDICATES ALL OF THE ABOVE WILL BE PRINTED
QUANTITY
TABLE NO. 1234567
2. HEALTH RISKS 0000033
3. RISK EQUIVALENT FACTOR 0000000
OTHE GROUND SURFACE CORRECTION FACTOR IS 0.50
OTHERE ARE 11 ORGANS TO BE OUTPUT. THEY ARE:
T3 ORGAN TIME ORGAN TIME ORGAN TIME
ro R MAR "/O. ENDOST 70. THYROID 70.
°° BREAST 70. APULA
INT WALL 70. LIVER
KIDNEYS 70. OTHER
0 ORGAN DOCiE EQUIVALENT
LOU LEI
R MAR
ENDOST
THYROID
BREAST
APULA
S UALL
INT UALL
LIVER
PANCREAS
KIDNEYS I
OTHER
L. 00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
I. 00000
OTHERE ARE 11 CANCERS 10 BE
70. G
WALL 70.
70. PANCREAS 70.
70.
FACTORS
HHi
20.
5o.
'/Q.
20.
20.
20.
20.
20.
20.
20.
20.
OUTPUT.
H LET
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
A 1 INDICATES ABSOLUTE RISK;
CANCER CANCER
LEUKEMIA 1. BONE 1,
LUNG 1. STOMACH 1.
PANCREAS 1. URINARY 1.
IS RELATIVE RISK.
CANCER
BRLAST 1.
LIVER 1.
1.
1.
1.
ji\ n JM
CANCER
THYROID
BOWEL
OTHER
OGENETIC DOSES ARE PRINTED FOR TESTES OVARIES AVERAGE
THE RISK FACTOR (PER RAD/MILLION BIRTHS) FOR GENETIC DOSE ARE
260.00000 FOR LOW LET, AND
5200.0000 FOR HIGH LET.
AND THE REPLACEMENT RATE FOft THE POPULATION IS :
.14133E-01 YEAR-1
OTHERE ARE 31 RADIONUCLIDES TO BE OUTPUT.
NUCLJDK PARTICLE SIZE CLEARANCE CLASS
STOMACH
H-3 0.00000 A 0.00000
C-14 0.00000 A 0.00000
MN-54 1.00000 W 0.00000
(i.l. ABSORPTION FRACTION
SI ULI LLI
0.9bOOO 0.00000 0.00000
0.95000 0.00000 0.00000
0.10000 0.00000 0.00000
-------
FE-55
NI-59
CO-GO
NI-63
SR-90
NB-94
TC-99
RU-IOG
SB-125
1-129
CS-134
CS-135
C5-137
CE-144
EU-154
RA-226
U-234
U-235
NP-237
U-238
PU-23!!
PU-239
PU-241
AM-241
PU-242
AM-243
CM-24J
CM-244
OT OORGAN DOSE
i
£ ORGAN
P MAR
+
ENDOST
4-
THYROtD
t
BREAST
+
APULA
+
S WALL
+
INT WALL
+
LIVER
+
PANCREAS
+
KIDNEYS
+
OTHER
f
1.00000
1.00000
I. 00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
I. 00000
1.00000
1.00000
1.00000
1.00000
1.00000
I. 00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
). 00000
WEIGHTING
FACTORS
0.15520
0.00350
0.09870
0.12990
0.20750
0.08400
0.03900
0.08530
0.05850
0.02480
0.11360
FACTORS
PATHWAYS
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
Y
u
D
Y
U
Y
W
0
II
li
n
Y
u
u
Y
Y
W
Y
Y
Y
Y
U
Y
U
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.10000
O.Ob'OOO
0.05000
0.05000
0.01000
0.01000
O.bOOOO
0.05000
0.20000
0.95000
0.95000
0.95000
0.95000
0.00030
0.00010
0.20000
0.00200
0.00200
0.00100
0.00200
0.00100
0.00010
0.00100
0.00100
0.00010
0.00100
0.00100
0.00100
0.
0.
0.
0.00000
0.00000
0.00000
.00000
.00000
.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
O.OOOOQ
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
1THE LOCATION USED FOR THE SELECTED INDIVIDUAL EXPOSURE IS
THE FATAL CANCER RISK AT THAT LOCATION IS 0.235E-03
1
480 METERS N FROM THE SOURCE.
SITE AREA, PRODUCTION RUN RUNCODE
ORGAN DOSE/EXPOSURE SUMMARY
-------
THYROID tlkEAST
APULA S WALL )MT WALL LIVER PANCREAS KIDNEYS
, .
Si.lG7E-0& 3.047E-04 2.237E-04 5.524E-04 5.712E-05 5.533L--05
OMA COLLECTIVE POPULATION AAA
ODQSF RATE:
ORGANS: P MAR ENDOST
OTHCR MT.SUM
LOU LET (PERSON RAH/Y) 4.416E-04 3.6631-03 0.175
HIGH LLT (PERSON RAD/Y) 5.673E-03 7.013E-02 8.714E-05 8.714E-05 8.7I4E-05 8.978E-05 1.609E-04 1.389E-02 8.714E-05 8.714E-05
DOSE EH. (PERSON RLM/Y) 0.114 b V^l8 0.177 1.824E-03 1.794E-03 2.100E-03 3.441E-03 0.278 1.800E-03 1.798E-03
l.QOOE-03 6.506E-02
OGONAOAL HOSES:
GONADS: TESTES OVARIES AVERAGE
LOW LHT (PERSON RAD) 1.262fc-03 1.3CJ4E-03 1.328E-03
HIGH I.KT (PERSON RAD) 6.179E-03 6.]ftlE-03 6.170E-03
DOSE EQ. (PERSON RGM) 0.125 0.12^ 0.125
1
SITE AREA. PRODUCTION RUN RUNCODE
PATHWAY
OAAA COLLECTIVE POPULATION A-AA
ODOSE RATES:
WEIdHTLli SUMS HE ORGAN DOSE RATES
PATHWAYS: INGEST ION
00
DOSE/EXPOSURE SUMMARY
INTERNAL EXTERNAL TOTAL
LOW LET (PERSON RAD/Y) 1.746K--02 1.
HIGH Il.T (PERL.UN RAD/Y) 2.3UOE-03 2.
DOSE EQ. (PERSON REM/Y) 6.50GE-02 5.
OAVERAGE GONADAL DOSES:
PATHWAYS: INGEST ION
LOU LET (PERSON RAD) 1.328E-03 1
HIGH LET (PERSON RAD) 6.170E-03 4
DOSE El). (PtiMSON REM) 0.125 9
INHALATION AIR GROUND
IMMERSION SURFACE
037E-13 2.808E-17 4.472K-10 1.746E-02 4.472E-10 1.746E-02
C%E-12 O.OOOEiOO O.OOOE+00 2.300E-03 O.OOOE+00 2.380E-03
802E-11 2.888E-17 4.472G-10 0.506G-0.i 4.472G-10 G.506E-02
INHALATION AIR GROUND INTERNAL EXTERNAL TOTAL
IMMERSION SURFACE
.765E-13 9.5B4E-16 1.480E-00 1.328G-03 1.480G-08 1.328E-03
.6&5E-12 O.OOOE+00 O.OOOE+00 6.170E-03 O.OOOE+00 6.170E-03
.347E-11 9.584E-16 1.4006-08 0.125 1.4UOE--08 0.125
SITE ARl;A, PRODUCTION RUN RUNCODE
NUCLlDt DOSE/EXPOSURE SUMMARY
OA-AA COLLECTIVE POPULATION AAA
ODOSE RATES:
WEIGHTED SUMS OF ORGAN DOSE RATES
NUCL1DLS: H-3
RU-106
U-23b
LOW LET (PERSON RAD/Y)
HIGH LET (PERSON RAD/Y)
DOSE EW. (PERSON REM/Y)
1
0
1
CM-244
.430E-09 3
1.343E-15
5.300E-11
2.70-5E--15
.OOOE+00 0
O.OOOE+00
l.MV.iE-13
2.272H-13
.430E-09 3
1.343E-15
5.GUIE-11
4.5471;- 12
C-14
SB- 125
NP-237
TOTAL
.022E-05 3.
3.018E-14
1.290E-04
1.746E-02
.OOOE+00 0.
O.OOOE+00
2.3UOE-03
2.380E-03
.022E-Ob 3.
3.018E-14
4.772K-02
G.506E-02
MN-54
I-12'J
U-23U
189E-15 1.
1.727E-02
1.933E-13
OOOt+00 0.
O.OOOE+00
1.517E-13
189E-15 1.
1.727E-02
3.2213E-12
FE-55
CS--134
PU-^38
530E-16 2
1.077E-13
2.640E-14
OOOE+00 0
O.OOOE+00
8.42CJE-13
530E-16 2
1.077E-13
1.600E-11
NI-59 CO-60 NI-63 SR-90 NB-94 1C-99
CS--135 CS--137 CE-144 EU-154 RA-226 U-234
PU-239 FU-241 AM-241 PU-242 AM-243 CM-243
612E-14 6.662E-13 5.243E-15 1.236E-13 2.314E-10 3.859E-05
2.807E-12 6.860E-13 5.807E-16 3.624E-12 6.373E-13 2.128E-13
4.027E-13 2.646E-16 5.193E-12 7.727E-13 1.511E-10 1.216E-12
O O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE + 00 O.OOOEfOO O.OOOI- + 00 O.OOOEi-00 1.754E-13 1.720E-13
4.345E-13 7.013E-lb 1.139E-12 4.14bE-13 2.287E-12 4.016E-13
.612E-14 6.662E-13 5.243E-15 1.236E-13 2.314E-10 3.B59E-05
2.B07E-12 6.8&OE-13 5.807E-16 3.624E-12 4.145E-12 3.G53E-12
9.093E-12 1.405E-13 2.79'/E-ll 0.063E-12 1.9GOE-10 9.248E-12
OAVERAGE GONADAL DOSES:
-------
NUCLIDES: H-3 C-14 «N-b4 FE-bb Nl-59 CO-GO N1-G3 SR-90 Nfc-94 tC-99
RU-106 SB-125 t-1'29 CS-134 CS-13S CS-137 CI--144 tU-154 RA--22G U-234
U-235 NP-237 U-238 PU-i>-:f; PU-239 PU-241 AM-241 PU-242 AM-243 CM-243
CM-244 TOTAL
LOU LET (PERSON RAD) 4.133E-08 4.293fc-04 1.069E-13 3.2G7E-15 3.346E-13 2.204E-11 1.163E-13 1.11QE-13 7.73GE-09 1.396E-04
1.42GE-14 1.001E-12 2.933E-04 3.302E-12 S.794E-11 2.000E-11 2.0676-15 1.200E-10 1.866E-11 4.473E-12
1.G67E-09 4.6bbE-04 3.455E-12 b.086E-13 8.994E-12 5.G84E-1G 1.750E-10 1.605E-11 5.033E-09 3.82GE-11
5.220E-14 1.328E-03
HIGH LET (PERSON RAD) O.OOOHOO O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 1.964E-12 5.196E-15
4.949E-15 G.170E-03 S.049E-lb 1.900E-12 5.123E-13 9.439E-15 2.985E-12 4.888E-13 5.837E-12 1.491E-12
9.732G-13 G.170E-03
DOSE tfK (PERSON REM) 4.13:-)E-08 4.293E-04 1.069E-13 3.267E-15 3.346E-13 2.204E-11 1.163E-13 1.118E-13 7.736E-09 1.396E-04
1.426E-14 1.001E-12 2.933E-04 3.302E-12 0.794E-11 2.000E-11 2.067E-15 1.200E-10 5.795E-11 4.577E-12
1.6G7E-09 0.124 3.5bGE~12 3.050E-11 1.924E-1] 1.893E-13 2.347E-10 2.583E-11 5.1bOE-09 6.808E-11
1.952VJ-11 0.125
SITE ARFA, PRODUCTION RUN RUNCODE
RISK/RISK EQUJVALENl SUHMARY
OV*A COLLECTIVE POPULATION
OCOLLECIIVE FATAL CANCER RISK:
CANCERS: LEUKEMIA BONE THYROID BREAST LUNG STOMACH BOWEL LIVER PANCREAS URINARY
OTHER TOTAL
co LOW LEKDEATHS/YR) 1.159E-08 1.755E-09 4.857E-07 2.621E-09 2.379E-09 7.014E-09 2.369E-09 6.017E-09 7.271E-10 2.999E-10
1.4116-09 5.219E-07
£ HIGH I.fJ'UJtATHG/YR> 9.973E-07 G.420E-07 8.781E-09 8.97GE-09 1.528E-08 6.353E-09 9.179E-09 1.100E-OG 3.898E-09 1.714E-09
7.874E-09 2.801E-06
TOTAL (DEATH5/YR) 1.00fJh'-06 6.438E-07 4.944E-07 1.160L-08 1.76GE-00 1.337E-00 J.lbbE-08 1.106E-06 4.62bt-09 2.014E-09
9.285E-09 3.323E-06
OFATAL CANCER RISK EQUIVALENT:
CANCLRS: LEUKEMIA HONE THYROID BREAST LUNG STOMACH HOHEL LIVER PANCREAS URINARY
OTHER TOTAL
(PERSON REM/YR) 2.317E-02 O-GGT; 1.7UbE-02 3.183E-04 3.035E-04 5.G72E-04 1.054E-03 4.621E-02 2.817E-04 2.893E-04
2.915E-04 1.185E-02
DWHOLE HODY FATAL CANCER RISK EQ(PERSON REM/YR) 1.185E-02
OG6NEC [C RISKS:
LOW LET(EFIECT?/YR) 4.879E-09
HIGH LEKUFFECTS/YR) 4.534E-07
COMB1NLD(E!:FECIS/YI<) 4.503E-07
OGENEIIC RISK EUIJIVALENI:
(PERSON kEM/YR) 4.158E-03
1
SITE AREA. PRODUCTION RUN RUNCODE
' PATHWAY RISK/RISK EQUIVALENT SUMMARY
COLLECTIVE POPULATION AAA
OCOLLECIIVE FATAL CANCER RISK:
PATHWAYS: INGESTION INHALATION AIR GROUND INTERNAL EXTERNAL TOTAL
IMMERSION SURFACE
LOU LCr(OEAIH:../Yf) 5.2196-07 1.911E-17 0.1056-21 1.255G-13 5.2196-07 1.255E-l:J 5.219E-07
HIGH LL1(D!A1H!:./YR) 2.001!;- 06 4.bb2fc--15 O.OOOLHOO O.OOOE+00 2.801E-OG O.OOOE+00 2.801E-06
TOTAL
-------
IMMERSION SURFACE
(PERSON RLM/YH) l.lbbt-02 1.G30E-11 2.B89E-17 4.474E-10 1.1G5E-02 4.474E-10 1.185E-02
IJHOLE BODY RISK EQ (PERSON REM/YR) FROM ALL EXPOSURES 1.1B5E-02
OGENETIC PISKS(PERSON REM/YR):
PATHWAYS: INGtSlION INHALATION
AIR
GROUND
INTERNAL EXTERNAL TOTAL
LOU LE'J (LFFECTS/YR)
HIGH LET(EFFECTS/YR>
COMBlNED(tFFECTS/YR)
OGENEriC RISK EQUIVALENT:
(PERSON REM/YR)
1
IMMERSION SURFACE
4.079E-09 G.484E-19 3.522E-21 5.438E-14 4.879E-09 5.438E-14 4.879E-09
4.534E-07 3.428E-1G O.OOOE+00 O.OOOE+00 4.534E-07 O.OOOEtOO 4.534E-07
4.583E-07 3.435E-16 3.522E-21 5.438E-14 4.583E-07 5.438E-14 4.583E-07
4.1S8E-03 3.11GE-12 3.19bE-17 4.933E-10 4.158E-03 4.933E-10 4.158E-03
5 ME AREA. PRODUCTION RUN RUNCODE
NUCL1DH RISK/RISK EQUIVALENT SUMMARY
OAAA COLLECTIVE POPULATION AAA
(COLLECTIVE FATAL CANCER RISK:
NUCLIDES: H-3
RU-106
U-23b
CM-244
LOW imiiEATHS/YR)
CO
i
CO
IN3
HIGH LEKDEATHS/YR)
TOTAL (ULATHS/YR)
TOTAL FATAL CANCER RISK FROM ALL EXPOSURES
OFATAL CANCER RISK.EQUIVALENT;
C-14 MN-54 F.E~b5 NI-b9 CO-60 Nl-63 SR-90 NH-94 Tt:-99
SK-125 1-129 CS--134 CS-135 CS-IW CE--144 KU-154 RA-2^G U-234
NP-237 U-238 Pll-23« PU-23'J PU-241 AM-241 PU-242 AM-1'43 CM- 243
TOTAL
4.014E-13 8.4'/7E-09 8.950E-19 4.040E-20 7.206E-18 1.869E-16 1.336E-18 3.191E-17 6.494E-14 1.083E-08
3.72yE-19 8.469E-18 4.0&1E-07 3.018E-17 7.836E-16 1.915E-16 1.619E-19 1.017E-15 ].745E-16 b.969E-17
1.487E-14 1.740E-08 5.361E-17 7.197E-18 1.129H-16 5.191E-20 1.456E-15 2.1G7E-1G 4.238E-14 3.399E-16
7.233E-19 5.219E-07
O.OOOE+00 O.OOOE+00 O.OOOEnOO O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE<00
O.OOOEHOO O.OOOE+00 O.OOOEHOO O.OOOEHOO O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 3.666E-16 3.658E-16
3.379E-16 2.801E-06 3.22&E-16 1.225E-15 6.843E-16 6.284E-18 1.385E-15 6.526E-16 2.724E-IS G.llbE-16
3.812E-16 2.801E-06
4.014E-13 8.477H-09 B.9&OE-19 4.040E-20 7.206E-18 1.869E-16 1.336E-18 3.191E-17 6.494E-14 1.083E-08
3.723E-19 8.4G9E-18 4.851E-07 3.018E-17 7.836E-1G 1.915E-1G 1.G19G-19 1.017E-15 5.41H--1G 4.'.-i55E-lb
1.523E-14 2.019E-06 3.762E-1G 1.232E-lb 7.972E-16 6.33GE-18 2.84IE-15 8.693E-16 4.510E-14 9.514E-16
3.820E-1G 3.323E-OG
NUCI.1 LIES':
fPERfiUN REM/YR)
H-3
RU-10G
U-23S
CM-244
C-14
SO-125
NP-237
TOTAL
MN-S4
1-129
U-2-18
3.323E-OG
Ff-bS
CS--L:34
Nl-b'j
CS--13S
PU-239
CO-GO
c'j-rjy
PU-241
Ni-63
CE-144
AM-243
SR-90
EU--154
PU-242
Nll-94
RA -'UG
AM-243
1C-99
U-234
CM-243
1.431E-09 3.022E-05 3.190E-15 1.440E-16 2.5G9E-14 G.GG2E-13 4.762E-15 1.137E-13 2.315E-10 3.859E-05
1.327E-1S 3.019E-14 1.729E-03 1.076E-13 2.793E-12 6.827E-33 5.771E-16 3.625E-12 1.929E-12 1.517E-12
.341E-12 4.391E-12 2.842E-12 2.25BE-14 1.013E-11 3.099E-12 1.608E-10 3.391E-12
OGENET 1C RISKS:
5.423E-11 1.005E-02
1.362E-12 1.105E-02
1
NUCLHIES:
LOU LL'KEHLCIS/YR)
HIGH I.KKEFFECIS/YR)
COMB1NEIKEFFECTS/YR)
H-3
RU-106,
U-231!
CM-244
C-J4
&H-125
NP-237
TOTAL
1-129
U-23D
tK-55
C'J-134
PIJ-238
NI-59
CS-13b
PU -239
CO-60
CS-137
PU--.-MI
Nl-63
CE-144
AM-241
SR-90
EU-154
PU-242
NB-94
RA-226
AM-243
TC-99
U-234
CM-243
l.bl9E-13 1.57CE-09 3.927E-19 1.201E-20 1.230E-18 8.100E-17 4.275E-19 4.100E-19 2.043E-14 5.128E-10
5.240E-20 3.677E-18 1.078E-09 1.213E-17 3.231E-16 7.348E-17 7.596E-21 4.410E-IG G.059E-17 1.643E-17
6.126.E-15-].711E-09 1.2G9E-17 1.869E-J8 3.30bE-17 2.089E-21 6.431E-16 5.897E-17 1.850E-14 1.406E-16
1.918E-19 4.879E-09
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOEHOO O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOl.-iOO O.OOOEHOO O.OOOE+00 O.OOOE+00 O.OOOE-iOO O.OOOE+00 O.OOOE+00 O.OOOE+00 1.444E-1G 3.B19E-19
3.637E-19 4.b34h-07 3.711E-19 1.3%E-1G 3.7G5E-17 6.937E-19 2.194E-16 3.592E-17 4.290E-1G 1.09GE-16
7.152G-17 4.534E-07
l.b!9E-13 1.578E-09 3.927E-19 1.201E-20 1.230E-18 8.100E-17 4.275E-19 4.108E-19 2.843E-14 5.128E-10
5.240L-20 3.G77E-18 1.078E-09 1.213E-17 3.231E-1G 7.348E-17 7.59GE-21 4.410E-16 2.130E-16 1.G82E-17
6.12GE-15 4.bb2E-07 1.307E-17 1.415E-1G 7.0G9E-17 G.957E-19 8.624E-1G 9.490E-17 1.892E-14 2.b02E-16
-------
OGENETIC RISK EQUIVALENT:
'PERSON REM/YK)
7.171E-17 4.583E-07
1.377L-09 ].43]t-05 3.562E-15 1.Q89E-16 1.115E-14 7.347E-13 3.078E-15 3.726E-15 2.579E-10 4.652E-06
4.753E-16 3.336E-14 9.778E-06 1.101E-13 2.931E-12 6.6660-13 6.G91E-17 4.000E-12 1.932E-12 1.526E-13
5.557E-11 4.129E-03 1.185E-13 1.283E-12 6.413E-13 6.311E-15 7.823E-12 8.608E-13 1.717t-10 2.269E-12
6.505E-13 4.158E-03
SITE AREA. PRODUCTION RUN RUNCCIDE
COLLECTIVE DOSE EQ. (PERSON REM /YEAR)
CO
i
CO
0*AASUHMED OVER ALL ORGAN
NUCLIPLS
INGES] HiN
I OF INTERNAL
X OF ALL PATHWAYS
INHH'.A'I JUN
I OF INTERNAL
'/. OF ALL PATHWAYS
AIR IriMLKSION
I OF EXTERNAL
">. OF ALL PATHWAYS
GROUND SURFACE.
% OF EXTERNAL
i. OF Al.l. PATHWAYS
H-3
RU-10G
U-23b
CM-244
1.430E-09
9.296E-16
8.143E-14
2.326E-12
100.
69.2
2.55
62. "i
100.
69.2
0.145
62.2
MN-54
i-129
U-238
FE- 55
C8-U4
PU-23B
Nl-59
CS--133
F'U-239
CO-60
C3--137
PU-24]
Nl-63
CE-144
AM-241
SR-90
KU--154
PU-24:-!
C-14
SD-125
NP-237
TOTAL
3.022E-05 9.577E-17 1.363E-16 4.161E-15 9.493E-15 5.172E-15 1.216E-13 1
O.OOOE+00 1.727E-02 4.579E-14 2.807E-12 6.857E-13 3.007E-16 O.OOOE+00
4.772E-02 7.485E-14 1.085E-11 1.553L-12 1.115E-13 1.486E-11 1.488E-12
G.506E-02
100. 96.9 9(1.3 99.3
O.OOOU+00 100. 99.9 100.
17.9
100.
100.
100.
0.0001-1 00
100.
TOO.
2.45
3.00
100.
2.32
E
1.509E
5.299K-11 3.07CE-14 1.688E-13 2.442E-14 4.019E-13 O.OOOE+00 5.182E-12 7.717E-13
2.258E-15 4.472E-10
100. 100. O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 100. 100.
O.OOOE+00 ]00.
O.OOOK+00 O.OOOE+00
O.OOOE+00 100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
O.OOOK + 00 O.OOOF:+00
O.OOOE+00 99.9
94.3 G.450L-J1
96.9
4.515G-11
9.33
57.5
0. jiii
84.0 98.4 O.OOOt+00 O.OOOE+00
O.OOQE+00 O.OOOE+00 9.65 99.9
10.5 O.M
100.
100.
]00.
99.5
14.1
10 1.084E-:
-13 2.116E-
-10 1.202E-
100.
100.
100.
2.80'Ji:-
5.79
-------
4.9G5E-02 6.874E-07
INTERNAL
X OF AD, PATHWAYS
EXTERNAL
1.430E-09 3.022E-05 9.88BE-17 1.387E-16 4.189E-15 1.051L-14 5.243E-15 1.236E-13 1.049E-12 3.859E-<
1.343E-15 3.334E-17 1.727E-02 4.583E-14 2.007E-12 6.060E-13 5.247E-16 2.566E--1S 3.560E-12 -1.442E
3.193K-12 4.772E-02 3.059E-12 1.686E-11 8.&91E-12 1.405E-13 2.279E-11 8.291L-12 4.589E-11 8.045E-
4.545E-12 6.50GE-02
100. ]00. 3.10 90.'/ 16.0 1.58 100. 100. 0.453 100.
100. 0.110 100. 42.5 100. 100. 90.3 V.081E-02 85.9 94.2
90.9 95.6 100. 81.5 91.5 23.3 87.0
5.60
100.
100.
94.8
O.OOOE+00 O.OOOE+00 3.090E-15 1.427E-17 2.193E-14 6.557E-13 O.OOOE+00 O.OOOE-iOO 2.303E-10 1.084E-:
O.OOOE+00 3.014E-14 7.795E-15 G.190E-14 O.OOOE+00 O.OOOE+00 5.607E-17 3.6211--12 5.852E-13 2.116E
.5.299E-11 3.078E-14 l.GHHt-lS 2.442E-14 4.019E-13 O.OOOE+00 5.182E-12 7.717E-13 1.509E-10 1.202E-
2.25I3E-15 4.472E-10
r. OF Al.l. PA1HUAYG
IOTA!. OVER ALL PATHWAYS
X OF TOTAL
oo 1 SITE AREA.
i COLLECTIVE
co
^ OAAASUMMEO OVER ALL GONAD
NUCL1DES
INGEST ION
X OF INTERNAL
X OF ALL PATHWAYS
INHALATION
X OF INTERNAL
X OF ALL PATHWAYS
O.OOOFJ+00 O.OOOE+00 96.9 9.33 84.0 98.4 O.OOOEnOO O.OOOE+00 99.5 2.810E-
O.OOOL-iOO 99.9 4.515E-11 57.5 O.OOOE+00 O.OOOE+00 9.65 99.9 )4.) 5.79
94.3 6.450E-U 5.23 0.145 4.42 O.OOOEi-00 18.5 8.51 76.7 13.0
4.965E-02
1.430E-09 3.022K-05 3. 1091-15 1.530E-16 2.612E-14 6.G62E-13 5.243E-15 1.236E-13 2.314E-10 3.859E-(
1.343E-15 3.018E-14 1.727E-02 1.077E-13 2.807E-12 G.860E-13 5.807E-16 3.624E-12 4.145G-12 3.653E-
5.G10E-11 4.772E-02 3.228E-12 1.688E-11 9.093E-12 1.405E-13 2.797E-11 9.063E-12 1.968E-10 9.248L-
4.547E-12 6.506E-02
2.198K-QG 4.644E-02 4.901E-12 2.351E-13 4.014E-11 1.024E-09 8.059E-12 1.900E-10 3.556E-07 5.932E-<
2.064E-12 4.638E-11 26.5 1.656E-10 4.315E-09 1.054E-09 8.926E-13 5.570E-09 6.371G-09 5.G15E
8.635F;-Ofl 73.4 4.962E-09 2.595E-08 1.398E-08 2.160E-10 4.299E-08 1.393E-08 3.025E-07 1.421E-
6.989E-09
PRODUCTION RUN RUNCODE
GENETIC DOSE EQ. (PERSON REM)
H-3 C-14 MN-54 FE-55 NI-59 CO-GO Nl-63 LR-90 NB-94 TC-99
RU-106 SB-J25 1-129 CS-134 CS-135 CS-137 TE-144 EU-154 RA- 226 U-234
U-2'J!5 NP--231/ U-238 PU-238 PU-239 PU-241 AM-241 PU-243 AM-243 Ch-24i
CH-944 TOTAL
4.133E-08 4.293E-04 3.767E-15 3.090E-15 9.G33E-14 3.61GE-13 1.160E-13 1.091E-13 4.874E-11 1.396E-I
1.421E-14 O.OOOE+00 2.933E-04 1.236E-12 8.793E-11 1.999E-11 2.268E-1G O.OOOE+00 3.920E-11 1.014E-
2.301K-13 0.124 l.OOGE-13 3.258E-11 3.975E-12 1.585E-13 3.973E-11 3.805L-12 8.767E-11 1.944E-
1.265E-11 0.125
300. 100. 99.6 99.3 99.8 99.8 99.7 97.6 100. 100.
99.7 O.OOOG+00 100. 99. '3 100. 100. 97.6 O.OOOH+00 99. :3 96.3
98.2 100. 96.4 85.0 38. H U3.7 66.5 38.9 74.8 65.0
65.0 100.
100. 100. 'J.53 94.6 28.8 1.64 99.7 97.6 0.630 100.
99.7 O.OOOE+00 100. 37.4 100. 100. 11.0 O.OOOE+00 67.6 2.21
1.3UOli-02 100. 2.IM 84.6 20.7 83.7 16.'} 14.7 1.70 28.6
64.8 100.
5.495E-20 G.134K-21 1.396E-17 2.279E-17 1.636E-16 8.153E-16 3.918E-16 2.732E-15 5.284E-15 7.904E-.
4.545E-17 3.032E-17 6.416E-17 1.065E-15 2.367E-15 9.202E-15 5.479E-18 5.928E-15 2.844E-13 3.933E-
4.314H-15 8.659E-12 3.741E-15 5.414E-12 6.271E-12 3.080E-14 2.000E-11 5.973E-12 2.953E-11 1.045E-
6. 014U-12 9.347E-11
1.330E-10 1.429E-15 0.369 0.732 0.170 0.225 0.337 2.44 1.084E-02 5.664E-
0.319 100. 2.187E-11 8.60BE-02 2.692E-03 4.6026-02 2.36 100. 0.720 3.74
1.04 6.990E-09 3.59 14.2 61.2 16.3 33.5 61.1 25.2 35.0
35.0 7.494E-08
1.330E-10 1.429E-15 1.306E-02 0.698 4.8&9E-02 3.699E-03 0.337 2.44 6.031E-05 5.664E-
0.319 3.030E-03 2.187E-11 3.226E-02 2.692E-03 4.602G-02 0.265 4.940E-03 0.491 B.594E-
2.580E-04 6.990E-09 0.105 14.1 32.6 16.3 8.52 23.1 0.573 15.3
34.9 7.494E-08
AIR IMMERSION
O.OOOK+00 O.OOOE+00 4.260E-18 1.496E-22 3.269E-21 1.220E-16 O.OOOE+00 O.OOOE+00 5.112E-16 1.49'lE-',
O.OOOE-iOO ' '
-------
oo
en
7. OE LXThfcNAL
V. OF All PAIUHAYS
GPQUNH SURFACE
X OF KXThRNAL
/. OF ALL PATHWAYS
INTERNAL
OF ALL PATHWAYS
EXTERNAL
'<. OF ALL PATHWAYS
TOTAL UVLR ALL PATHWAYS
'(. OF TOTAL
4.454E-17 3.319E-18 2.318E-20 1.575E-20 2.212E-20 0.0006+00 5.595E-18 1.549E-20 2.283E--17 1.370E-
7.1f.ifiK-2I 9.584E-16
O.OOOE+00 O.OOOE-iOO 4.132E-03 9.6bbE~05 1.373E-06 b.G30E-04 O.OOOE+00 O.OOOE+00 6.650E-06 4.190E-'
O.OOOE+00 9.320E-04 2.894E-04 1.286E-03 O.OOOE+00 O.OOOE+00 3.029E--03 1.517E-04 1.035E-05 8.087E'
2.G72E-OG 3.396E-04 6.717E-07 3.125E-06 2.460E-07 O.OOOE+00 3.198E-06 9.6bbE-08 4.537E-07 6.205E
1.430E-05 6.477E-06
O.OOOL^QO O.OOOE+00 3.986E-03 4.578E-06 9.768E-07 5.537E-04 O.OOOE+00 O.OOOE+00 6.608E-06 1.069E-
O.OOOE+00 9.319E-04 3.141E-13 8.041E-04 0.000£t-00 O.OOOE+00 3.399E-03 1.517E-04 3,298E-06 7.901E-
2.6'/;:K-06 2.679t-lb 6.520E-07 4.091E-08 l.lbOE-07 O.OOOE+00 2.384E-06 6.000E-08 4.434E-07 3.481E-
3.683E-08 7.684E-13
O.OOOE+00 O.OOOt+00 1.031E-13 1.549E-16 2.381E-13 2.168t-ll O.OOOE+00 O.OOOE+00
O.OOOE+00 1.001E-12 3.1G4E-13 2.064E-12 O.OOOE+00 O.OOOE+00 1.835E-15 1.200E-10
l.b67K-09 9.771E-13 3.4blE-12 5.040E-13 0.993E-12 O.OOOE+00 1.750E-10 1.6051-11
5.028E-14 1.480E-08
O.OOOfc+00 O.OOOE+00 100.
O.OOOE+00 100. 100.
100. ]QO. 100.
100. 100.
O.OOOE+00 O.OOOE+00 96.b
O.OOOE+00 100. 1.08SG-07
100. 7.80HP.-10 97.1
0.25« 1.186E-05
100.
100.
100.
4.74
62.5
1.31
100. 100. O.OOOE^O O.OOOE+00
O.OOOKfOO 0.000£+00 100. 100.
100. O.OOOEHOO 100. 100.
71.2 98.4 O.OOOE+00 0,
O.OOOE+00 O.OOOE+00 88.8
46.7
O.OOOE+00 74.:
OOOE^O
100.
62.]
7.687E-
1.847E
5.033E
100.
100.
100.
99.4
31.9
09 3.559E-
-11 4.471E-
-09 3.019E
100.
100.
)00.
2.550E-
97.7
56.1
4.133L-Oil 4.293E-04 3.781E-lb 3.113E-lb 9.649E-14 3.624E-13 1.163E-13 1.118E-13 4.874E-11 ).3cJ6F.-<
1.4Sf.i:-14 3.032E-17 2.933E-04 1.237E-12 (.1.794E-11 2.000E-11 2.323E-16 5.926E-15 3.948E-11 1.0&3E-
1.043E-13 3.800E-11 1.025E-11 1.893E-13 5.973E-11 9.770E--12 1.172E-10 ,i.989E
2.344E-13 0.124
1.947E-11 0.125
100. 100.
100.
1.406E-02
99.7
3.54
J.030E-03 100.
100.
2.93
.-'0.8 1.64 )00. 100. 0.630 100.
100. 100. 11.2 4.940K-03 68.1 2.30
53.3 100. iib.b 37.9 2.2ii 43.9
O.OOOE+00 1.031L--K-) 1.549E-16 2.381E-13 2.168E-11 O.OOOL^OO O.OOOE+00 7.687E-09 3.559E-
O.OOOE+00 1.001E-12 3.184E-13 2.064E-12 O.OOOE+00 O.OOOE+00 1.835E-15 1.200E-10 1.847E-11 4.4/1E
1.667E-09 9.771E-13 3.451E-12 5.040E-13 8.993E-12 O.OOOE+00 1.750E-10 1.605E-11 5.033E-09 3.819E
5.028E-14 1.480E-08
O.OOOE+00 O.OOOE+00 96.5 4.74 71.2 98.4 O.OOOE<00 O.OOOE+00
O.OOOE+00 O.OOOE + 00 (38.8 100.
46.7
O.OOOE+00 100.
100. 7.U88E-10
0.258
4.74
1.085E-07 G2.5
97.1 1.31
O.OOOt+00 74.b
62.]
99.4
31.9
97.7
2.bbOt-
97.7
bt.l
O.^AACUhhED OVER ALL CANCER
NIJCLIHL'1.
INGE&lHiN
X OF INTERNAL
4.133E-08 4.293E-04 1.069E-
1.42hK-14 1.001E-J2 2.933E
1.66'/L-09 0.124 3.5b6E
1.952E-11 0.125
3.3]3L-Ob 0.344 8.560E
1.143E-11 8.023E-10 0.235
1.337L-06 99.3 2.851K
1.565E-08
SITE AREA. PRODUCTION RUN RUNCODE
FATAL CANCER RATE (HEATH/YR)
COMB.LET
13 3.267E-lb 3.346E-13 2.204E-11 1.163E-13 1.118E-13 7.736E-09 1.396E-*
-0,4 3.302E-12 8.794E-11 2.000E-11 :^067E-)b' 1.200E-10 b.79bE-ll 4.577K-
-12 3.8bOf-ll 1.924E-11 1.893E-13 2.347E-10 2.583E-11 5.1bOt-09 6.800E
11 2.620E-12 2.683E-10 1.767L-08 9.328E-11 8.962E-11 6.202L-06 0.112
2.647E-09 7.050E-08 1.603E-00 1.657E-12 9.621E-00 4.646K-08 J.069E
09 3.087E-00 1.542E-00 I.bl8t-10 1.B82E-07 2.070E-08 4.129E-06 5.459E-
Nl-63
CE-144
AM-241
H-3 C-14 MN-54 FE-'jlj Nl-59 10-60
RU-106 SB--125 [-129 CS--134 CS-135 CS-137
U-23b NP-237 U-i!3fi Hl-238 PU-239 PU-241
Ch-244 TOTAL
4.014K-13 8.477P.-09 2.6EI8E-
2.585E-19 O.OOOE+00 4.D51E
1.0;.!3L-17 2.039E-06 8.864E
2.339E-16 J.323E-06
100. 100. 96.9 98.2 (J'J.:i 90.4 90.b
69.4 O.OOOEhOO 100. 99.9 100. 100. 57.7
SR-90
EU-154
PU-242
Nb-94
RA-226
AM-243
lf-99
U-234
CM-24!
20 3.b74E-20 1.047E-18 2.573E-18 1.316E-18 3.141E-17 2.90U-16 1.083E-'
-0; 1.280E-17 V.836E-16 1.914E-16 8.430E-20 O.OOOE+00 3.381E-16 8.869E
-18 6.979E-16 9.239E-17 4.960E-18 8.916E-16 8.859E-17 2.002E-15 3.802E-
98.5 99.)
O.OOOE+00 89.7
100.
2.42
-------
CO
CTl
X OF M.\. PATHWAYS
INHALATION
/. OE INTERNAL
X OF ALL PATHWAYS
AIR 1HMERSION
\ OF KXHKNAL
X OF ALL PATHWAYS
GROUND SUKFACF
OF UTEkNAL
OF ALL PATHWAYS
INTERNAL
i. OF ALL PATHWAYS
EXTERNAL
X OF ALL PATHWAYS
2.99
61. J
100.
100.
100.
100.
69.4 O.OOOK-lOO
6.7261--02 100.
61.2 100.
2.70
3.00
100.
2.36
57.0
88. b
42.4
56.7
13. 1J
14.5
100.
11.6
70 . 3
1.38
100.
78.3
64.3
90. b
3K4
13.6
73.0
0.447
90.5
O.OOOE+00
10.2 4.44
61.9
100.
K.08
40.0
5. J 35E--25
1.130K--19
3.317E-1G
1.474E-1G
1.279L- 10
30.0
97.0
38.7
1.279L~]0
30.6
2.10
38.6
1.166E-25 B.721E-22 6.494E-22 7.824E-21 2.731E-19 1.046E-20 4.932E-19 2.506E-18 1
- -.87bL-17
.419E-16
9.352E
2.167E
4.b71t
1.375E-
100.
7.6(J(JE
1.376E
1.375K-
0.110
7.608F
1.376K
-21
-16
-15
15
1.077E-19 1.124E-20 2.210E-20 9.080E-20 6.18BL-20 6.265E-19 3.
3.200E-16 5.2716-16 3.921E-16 1.37GE-10 4.949E-1G 5.G42G-16 7.
0.
-O'j
-07
15
09
-07
3.14 1.78 0.741 9.60 1.46 l.bb
2.220E-11 0.776E-02 2.8216-03 4.7416-02 4.2.:3 100.
97.3 43.0 (.16.5 21.7 35.7 06.4
9.745E-02 1.61 0.109 0.146 1.46 1.55 3
2.220E-11 3.725G-02 2,821E-03 4.741^-02 3H.2 G.HilG-02
flb.l 4S.U 74.'J 21.7 17.4 64.9
056
10.3
27.0
.059L-03
7.16
.045E-.
3.572L-
,2.338E-
I.6L.3L-
97.6
38.1
).653E-
84.0
24.6
O.OOOE+00 0
O.OOOK+00
3.9bt.it-22
8.2996-26
O.OOOt+00 0
O.OOOE+00
2.6b'.U;-06
1.310E-05
O.OOOFMOO 0
O.OOOE+00
2.600L-06
2.173E-08
.OOOFHOO 3
7.085L-23
2.837E-23
U.105E-21
.OOOE^O 4
9.320E-04
3.2CI4E-04
6.457E-06
.OOOE+00 4
9.310E-04
1.007E-15
2.439E-13
.5D3E-23 3.865E-27 8.421E-26 1.036E-21 O.OOOE+00 O.OOOE+00 4
6.349E-24 2.239E-22 O.OOOE+00 O.OOOE+00 6.094E-25 1.541E-21
2.340E-25 1.850E-25 2.167E-25 O.OOOE+00 4.487E-23 1.769E-25
.132E-03 9.655E-05 1.369E-06 5.631E-04 O.OOOE+00 O.OOOE+00 6
2.903E-04 1.289E-03 O.OOOE+00 O.OOOEnOO 3.G73E-03 1.516E-04
4.940E-07 2.701E-06 1.922E-07 O.OOOE+00 3.086E-06 8.170E-08
.004E-03 9.568F.-06 ].169fc:-06 5.545E-04 O.OOOE+00 O.OOOE + 00 6
1.309E-15 7.417E-04 O.OOOE+00 O.OOOE+00 3.764E-04 1.5166-04
G.220E-00 1.502L-08 2.718E-OE1 O.OOOE+00 1.580E-06 2.035E-08
.297E-21 1.275L-:
1.701E-23 3.519E-
1.901E-22 2.081E-
.647E-06 4.190E-'
1.035E-05 ^,.926E-
4.489E-07 6.168E-
.617E-06 1.178L-.
3.143E-OG I3.270E-
4.216E-07 2.187E-
-18 1.128E-16 O.OOOE+00 1.454E-15 2.1G5E-16
100.
100.
100.
3.000F+00
9'J.9
3.065H-10
3.777E-06
100.
100.
O.OOOE+00 O.OOOE+00
100. O.OOOE+00
O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 8.672E-19 4.003E-21 6.151E-18 1.840E-16 O.OOOE+00 O.OOOE+00 6
O.OOOE+00 8.4GOE-UI 2.1EI7E-18 1.737E-17 O.OOOE+00 O.OOOE+00 1.573E-20 1.016E-15
1.487E-1
6.334E-1
O.OOOL-lOO
O.OOOE+00
100.
100.
O.OOOL+00
O.OOOh'+OO
97.0
0.166
S39E-18 4.737E-17 6.850E
255E-13
O.OOOE+00 100.
100.
100.
]QO.
100.
100.
96.9
4.509E-
12.6
10
9.9).
57.6
0.556
05.4
'.18.5
O.OOOlMOO O.OOOE+00
14.1 O.OOOE+00
100.
100.
O.OOOfc'+OO
9.72
51.2
100.
100.
.OOOE+00
99.9
24.9
.465E-
1.642E
4.2366
100.
100.
100.
99.5
30.4
93.9
14 3.043E-:
-16 5.93SE-
-14 3.374E-
100.
100.
100.
14.0
35.5
4.014K-13 8.477E-09 2.775E-20 3.639E-20 1.055E-18 2.846E-18 1.336E-18 3.191E-17 2.926E-16 1.083E-<
3.723E-19 9.352E-21 4.851E-0; 1.281E-17 7.836E-16 1.915E-16 1.4G2E-19 6.265E-19 3.7G8E-IG 3.GG1E-
3.419&-16 2.019E-06 3.289L-16 1.225E-lb 6.845E-16 6.336E-18 1.386E-15 6.528E-16 2.744E-15 6.140E-
3.813E-16 3.323E-06
100. ]00. 3.10
100. 0.1 JO JOO.
99.8
100.
87.4
90.1
4X4
99.4
M.6
100.
100.
100.
100.
90.3
48.8
100. 0.45]
6.16]H-02 69.6
75.1 6.08
100.
06.0
64.5
O.OOOE+00 O.OOOt-iOO O.G72E-19 4.003E-21 6.151L-18 1.840E-1G O.OOOE+00 O.OOOE+00 6.465E-14 3.043E-:
O.OOOE+00 8.460E-13 2.187E-18 1.737E-17 O.OOOE+00 O.OOOE^O 1.573E-20 1.016E-15 1.642E-1G 5.938E-
1.4H7E-14 0.639E-10 4.737E-17 6.050E-10 1.128E-16 O.OOOE+00 1.454E-15 2.165E-16 4.236E-14 3.374E-
6.334E-19 1.255E-13
O.OOOL'+OO O.OOOE+00 96.9 9.91 05.4 98.5 O.OOOE+00 O.OOOE+00 99.5 2.81H-;
O.OOOE+00 99.9 4.509E-10 57.6 O.OOOt'+OO O.OOOE+00 9.72 99.9
97.0
0.166
3.065E-30 12.6
0.556
14.1
O.OOOE+00 51.2
24.9
30.4
93.9
14.0
35.5
-------
lOTnL OVER M.I PATHWAYS
OF TU'JAL
OA*ASUMM£D OVER ALL GONAD
NUCLIHES
INGEST1GN
OF INTERNAL
Z OF ALL PATHWAYS
INHALATION
'(. OF 'IMHF.NAL
'/. Of ALL PATHWAYS
AIR IhrtHRSlON
X OF EXTERNAL
''. OF ALL PATHWAYS
GROUNH SURFACE
'i. OF KXURNAL
\ OF ALL PATHWAYS
4.014E-13 8.477E-09 8.950E-
3.723E-19 B.469E-18 4.851E
1.521E-14 2.819E-06 3.762E
3.020E-16 3.323E-06
1.208E-05 0.255 2.693E-
1.120E-11 2.549E-10 14.6
4.570E-07 84.8 1.132F
1.149E-08
SITE AREA. PRODUCTION RUN RUNCODE
COLLECTIVE GENETIC EFFECKEFEECTS/YR)
COMB.LET
19 4.040E-20 7.206E-18 1.869E-16 1.336E-18 3.191E-17 6.494E-14 1.083E-'
-07 3.018E-17 7.836E-1G 1.915E-1G 1.G19E-19 1.017E--15 5.411E-16 4.255E-
-1G 1.232E-15 7.972E-16 6.336E-18 2.841E-15 8.693E-16 4.510E-14 9.514E-
11 1.216E-12 2.169E-10 5.624E-09 4.020E-11 9.602E-10 1.954E-06 0.326
9.083E-10 2.358E-00 5.763E-09 4.872E-12 3.060E-08 1.628E-08 1.280E-
-08 3.707K-08 2.3'J9E-OC 1.907L-10 8.549E-08 2.616E-08 1.357E-06 2.&63E-
H-3 C--14 MN-54
RU-106 SB-125 1-129
U-235 NP--237 U-238
Crt-244 TOTAL
l.5)9L'-13 1.578E-09 1.384E-
5.223E--20 O.OOOE+00 1.078E
8.455E-19 4.552E-07 3.695E
4.649E-17 4.583E-07
100. 100.
99.7 0,000l;+00
98.2 100.
65.0 100.
100. 100.
99.7 O.OOOE+00
1.3UOE-02 100.
64.a 100.
FE--bb
(JS-134
PU-238
C5-13t;
PU--239
CO-GO
CS-J37
PU-241
Nl-63
CE-144
AM-241
SR-90
EU-154
PU-242
K'A-
AM
'.243
TC-99
IJ-234
CM-24:
20 1.13SE-20 3.540E-19 1.329E-18 4.261E-19 4.007E-19 1.791E-16 5.128E-
-09 4.543E-18 3.231L-16 7.345E-17 8.335E-22 O.OOOE<00 1.440E-16 3.725E-
-19 1.197E-16 1.460E-17 5.826E-19 1.460E-IG 1.398E-17 3.2.UE-16 7.144E
97.6 100. 100.
O.OOOCKH) 99.3 96.3
30.9 74.8 65.0
97.6 0.630 100.
o ,0001-: i oo 6;.r, 2.21
14.7 1.70 20.6
99.6
100.
96.4
3.53
100.
2.33
99. 3
99.9
85.0
94.6
37,4
04.6
99 . H
100.
28.8
100.
20.7
99.0
100.
83.7
1. 64
100.
03.7
90.7
97.6
66.5
99.7
H.O
] 6 . 9
^b 2
1.670E-22
2.504E
].330L-
0.319
1.84
35.0
1.330K-
0.319
2.500K
34.9
-17
]0 )
10 1
-04
.254E-26 5
1.114E-22
3.182E-17
3.435E-16
.4^9E-15 0
100.
6.990E-09
7.494E-08
.429E-15 1
3.030E-03
6.990E-09
7.494E-08
.1201;--23 G.37GE-23 6.011E-22 2.996E-21 1.440E-21 1.004E-20 1.942E-20 2
2.358E-22 3.913E-21 0.698E-21 3.382E-20 2.013E-23 2.170E-20 1.0456-18
1.375E-20 1.989E-17 2.305E-17 1.132E-19 7.349E-17 2.195E-17 1.085E-16
.369 0.732 0.170 0.225 0.337
2.1B7E-11 8.608E-02 2.692E-03 4.602E--02 2.36
3.59 14.2 61.2 16.3 33.5
.306E-02 0.698 4.889E-02 3.699E-03 0.337
2.187E-11 3.226E-02 2.692E-03 4.602U-02 0.265
0.105 14.1 32.6 16.3 8.52
2.44
100.
61.1
1.084E-02 5
0.720
25.2
2.44 6.831E-05 5
4.940E-03 0.491
23.] 0.573
.905E-:
1.445E-
3.840L-
.664H-
3.74
35.0
.664E-
H.594E-
15.3
O.OOOE-i-00
O.OOOE+00
1.&37L-22
2.641E-26
O.OOOL-i-00
O.OOOE+00
2.672K-06
1.4:30E-05
O.OOOE+00
O.OOOL-iOO
2.672E-06
3.683H-08
O.OOOE+00
3.427E-23
1.219E-23
3.522E-21
O.OOOE+00
9.320E-04
3.396E-04
6.477E-06
O.OOOE+00
9.319E-04
2.679E-15
7.684F.-13
1.565E-23 5.497E-28 1.201F.-2G 4.485E-22 O.OOOE + 00 O.OOOE+00 1..878E-21 5.480E-:
3.386E-24 9.756E-23 O.OOOE+00 O.OOOE+00 2.582E-25 6.689E-22 7.0231--24 1.329E
8.518E-26 5.788E-26 8.129E-26 O.OOOE+00 2.056E-23 5.693E-26 8.391E-23 8.708E-
4.132E-03 9.655E-05 1.373E-06 5.630E-04 O.OOOE+00 O.OOOEnOO 6.650E-06 4.190EH
2.894E-04 1.286E-03 O.OOOE+00 O.OOOE+00 3.829E-03 1.517E-04 1.035E-05 H.087E-
6.717E-07 3.125E-06 2.460E-07 O.OOOE+00 3.198E-06 9.655E-08 4.537E-07 6.205E-
3.98&E-03 4.578E-06 9.768E-07 5.537E-04 O.OOOE+00 O.OOOE+00 6.608E-06 1.069E-
3.141E-13 8.041E-04 O.OOOE+00 O.OOOE+00 3.399E-03 1.517E-04 3.298E-06 7.901E-
6.520E-07 4.091E-08 1.150E-07 O.OOOE+00 2.384E-06 ii.OOOE-03 4.434E-07 3.401E-
O.OOOK+00 O.OOOE+00 3.788E-19 5.693E-22 8.750E-19 7.966E-17 O.OOOE+00 O.OOOE+00 2
O.OOOE+00 3.677E-18 1.170E-18 7.586E-18 O.OOOE+00 O.OOOE+00 6.742E-21 4.409E-16
6.126E-15 3.590E-18 1.268E-17 1.852E-18 3.304E-17 O.OOOE+00 6.429E-16 5.897E-17
1.848E-19 5.438E-14
O.OOOE+00 O.OOOE+00 100. 100. 100. 100. O.OOOE+00 O.OOOE+00
100. 100. 100. ' -' - -'
100. 100. 100.
100.
O.OOOE+00
100.
100.
O.OOOJ-JOO O.OOOE+00
O.OOOE+00 O.OOOE+00
100. O.OOOE+00
100.
100.
100.
100.
.025E-14 1
6.788E-17
1.849E-14
100.
100.
100.
.308E-:
1.643E-
1.403E-
100.
100.
100.
96.5
4.74
71.2
90.4
O.OOOE+00 O.OOOE+00 99.4
-------
O.OOOG+00 O.OOOH+00 813.0
46.'/ O.OOOE+00 74.5
100.
62.)
31. S
CJ7.7
97.7
56.1
INTERNAL
I OF ALL PATHWAYS
EXTERNAL
1! OF ALL PATHWAYS
TOTAL OVER ALL PATHWAYS
7. OF TOTAL
O.OOOK+00 100. 1.085);--07 62.5
100. 7.888F-10 97.1 J.31
0.258 1.18GE-05
1.510K-13 1.S78E-09 1.38CJE-20 1.144E-20 3.546E-19 1.332E-18 4.275E-19 4.108E-19 1.791E-16 5.128E-
5.240E-20 1.114E-22 1.078E-09 4.547E-18 3.231E-16 7.348E-17 8.536E-22 2.17BE-20 1.451E-1G J.869E-
8.614K-19 4.552E-07 3.833E-19 1.396E-16 3.765E-17 6.957E-19 2.195E-16 3.593E-17 4.307E-16 1.098E-
7.153E-17 4.583E-07
100. 100. 3.54 '.'5.3 28.8
100.
53.3
100.
a. 93
<)5.3
37.5
1.64
100.
100.
]00.
11.2
25.5
]00. 0.630
4.940E-03 60.1
37.9 2.28
100.
2.30
43.9
100. 3.030K--03
1.406H-02 100.
99.7
O.QQOL'-iOO O.OOOE + 00 3. 7CHIE-19 5.693E-22 &.750E-19 7.9G6E-17 O.OOOE-lOO O.OOOE + 00 2.825E-14 1.308E-
O.OOOE+00 3.G77E-18 1.170E-18 7.586E-18 O.OOOE+00 O.OOOE^O 6.742E-21 4.409E-1G G.788E-17 1.643E
6.126L-15 3.590E-18 1.268E-17 1.8S2E-18 3.304E-17 O.OOOE+00 6.429E-16 5.897E-17 1.849E-14 1.403E
1.848E-1-J 5.438E-14
0.0001M-00 O.OOOEHOO 96.5 4.74
O.OOOE+00 100. 1.085K--07 62.b
1.31 46.7
1.08tiK--07
7.U&OE-10 97.1
71.2 98.4 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 88.8 100.
O.OOOE+00 74.5 62.1
99.4
31.9
97.7
2.550E-
97.7
56.1
100.
0.258
1.519E-13 1.578E-09 3.927E-19 1.201E-20 1.230E-]B 8.100E-17 4.275E-19 4.108E-19 2.843E-14 5.128E-
5.240L-20 3.677E-18 1.078E-09 1.213E-17 3.231E-J6 7.348E-17 7.596E-21 4.410E-16 2.130E-16 1.682E-
6.126E-15 4.552E-0; 1.307E-17 1.41SG-16 7.069E-17 6.957E-19 0.624E--1G 9.490E-17 1.892E-14 2.502E-
7.1V1E-17 4.583E-07
3.3)3K-Oti 0.344 8.56UE-]]. 2.620E-12 2.&83E-10 1.7G7E-08 9.328E-11 8.962E-11 6.202E-06 0.112
1.143E-11 8.023E-10 0.235 2.647E-09 7.050E-08 1.G03E-08 1.657E-12 9.G21E-08 4.646E-08 3.669E-
1.337K-06 99.3 2.051E-09 3.087E-08 1.542E-08 1.518E-10 1.882E-07 2.070E-08 4.129E-06 5.459E-
1.565E-08
00 1
00 J
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
TAULt FOR ACCOUNTING MODEL YEAR 10000
l: INDIVIDUAL CANCER RISK (UNITLESS)
2: POPULATION DOSE (PERSUN-REM/YEAR)
3: COLLECTIVE CANCER RISK (DEATHS/YEAR)
4: GENETIC RISK (EFFECTS/YEAR)
5: R-ACTIMITY PUMPED OUT THE WELL 1ST 10000 YEARS (CD
6: R-ACIIMITY PUMPED OUT THE STREAM 1ST 10000 YEARS (CD
7: R-ACTIVITY RELEASED TO ATMOSPHERE 1ST 10000 YEARS (CD
8: R-ACTIVITY RELEASED DOWNSTREAM 1ST 10000 YEARS (CD
9: R-ACTIMITY RELEASED DOWNSTREAM LAST 0 YEARS (CD
COLUMN JO:
H-3
C-14
MN-54
FE-55
NI-59
CO-GO
NI-iS3
SR-^O
N&-94
TC-99
RU-106
SB-125
1-129
CS-134
CS-135
CS-137
CE-144
EU-154
RA-226
1
2
2
1
2
5
3
q
i
3
1
?
1
0
)
5
4
ii
1
R-ACIIVITY IN TRENCH
.13GOE-12
.3991K-08
.5330E-18
.1433E-19
.0396E-17
.2892E-16
.';liO()i:- l!i
.OH02E-1?
.8379E-1T
.Ob39t-08
.053bL-10
.3970E-17
.37M1E-06
.54^4F-1?
.2179E-15
.4:-!02E-16
.5824E-19
.07BJE-15
.5314E-15
1.4307E-09
3.0216F--05
3.1901E-15
J.4399E-16
2.5688E-14
6.6G15E-13
4.7619F.-J5
1.1 373k:-] 3
2.3148E-10
3.0588E-05
1.3270K-15
3.0190E-14
J.7:.!fJ4f-;-03
1.07S9E-13
2.7934E-12
6.0266E-13
5.7713E-1G
3.6249E-12
1.9288E-12
AFTER 10000 YEARS ASSUMING PERFECT CONTAINMENT (CD
4.0138E-13
8.4768E-09
8.9496E-19
4.039bE-20
7.2064E-18
1.8G88E-16
1.3359E-19
3.3906E-17
6.4939E-14
1.0025E-08
3.7226E-19
8.4693E-18
4.8515E-07
3.0102L-17
7.8364E-16
1.91&1E-16
1.6191E-19
1.0]69E-15
5.4109E-16
1.5185E-13
1.5776E-09
3.9270E-19
1.2007E-20
1.2295E-18
8.0996E-17
4.2751E-19
4.1077E-19
2.8426E-14
5.1285E-10
5.2396E-20
3.6773E-18
1.0779E-09
1.2133E-17
3.2313E-16
7.3483E-17
7.5961E-21
4.4096E-16
2.1295E-16
3.5322E-OG
4.1726E-03
O.OOOOEtOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
4.2845E-03
O.OOOOE+00
O.OOOOE+00
4.2865E-03
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
o.oooomoo
O.OOOOEi-00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.41G6E-12
G.2719E-12
4.3302E-11
2.0744E-10
2.6992E-09
4.1939E-10
2.6609E-09
1.6761E-09
2.7699E-09
2.8047E-10
5.5183E-11
1.9715E-10
1.1018E-09
1.4790E-10
2.8G81E-09
1.7576E-09
3.8242E-11
1.2529E-09
2.7310E-09
8.1731E-04
9.6558E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
9.9189E-01
O.OOOOE+00
O.OOOOE+00
9.9313E-01
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE^O
O.OOOOE+00
O.OOOOE+00
O.OOOOEfOO
O.OOOOE+00
O.OOOOE-iOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
o.oooou+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.9820E-01
O.OOOOE+00
O.OOOOE+00
9.1704E-01
O.OOOOE+00
1.9844E-33
O.OOOOE+00
7.0G81E-01
9.6802E-01
O.OOOOE+00
O.OOOOE+00
9.9959E-01
O.OOOOE+00
'J.9770E-01
O.OOOOE+00
0,OOOOE+00
O.OOOOE+00
1.3037E-02
-------
U-234
U-235
NP-237
U-238
PU-238
PU-239
PU-241
AH-241
PU-242
AM-243
Ch-243
CM-244
TOTALS:
0 MESSAGE
0
? ***
1.2042E--15
4.3055E-14
7.9V72E-06
1.0649E-15
3.4B64H-15
2.2564E-15
1.7932E-17
S.O'J^bt-li
2.4£>04E-15
1.27G5E-13
2.6g28E-15
1.0811E-15
9.404CJE-06
1.5167E--12
5.4226E-11
1.0047E-02
1.3411E-12
4.3910E-12
2.8418E-12
2.2584E-14
1.0126E-11
3.0987f-]2
1.6077E-10
3.3915E-12
1.3615E-12
1.1845E-02
4
1
2
3
1
;
6
o
M
8
4
9
3
3
SUMHARY: MESSAGE NUMBER
208
.2549E-16
.5213E-14
.8185E-06
.7624E-16
.2318E-lb
.9723E-16
.3358E-1S
.8407E-15
.6931E-16
.5102E-14
.5144E-16
.8196E-16
.3230E-06
- COUNT
bll OR
1.6817E-17
6.1264E-15
4.5516E-07
1.3066E-17
1.4147E-16
7.0694E-17
6.9575E-19
8.6243E-16
9.4897E-17
1.8924E-14
2.5018E-16
7.1711E-17
4.5833E-07
OVER
O.OOOOE+00
O.OOOOE+00
3.2240E-03
O.OOOOE+00
O.OOOOE400
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOt-tOO
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
2.8353E-09
2.8354E-09
1.4443E-09
2.8354E-0-?
2.7625E-09
3.1457E-09
1.0899E-09
2.%79E-0CJ
3.1591E-09
4.4603E-09
1.8100E-09
1.332;b'-09
O.OOOOE+00
O.OOOOE+00
7.4599E-01
0.0000^00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEHOO
O.OOOOE+00
O.OOOOE+00
0.0000£+00
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEi-00
O.OOOOE+00
o.ooooe+oo
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
O.OOOOEtOO
O.OOOOEnCO
o.oooot+oo
9. 72 ICE 01
g.-l'-T-T-lE-Ol
9.9671E-01
l.OOOOE + 'X'
4.9062E-35
7.J-JOME-01
O.OOOOE+00
2.7b79t'-07
9.81S7E-01
3.yOb3E-01
O.OOOot+00
0.00('"E + 00
ARE YOU 'olILL 1HERE?
en
i
CO
------- |