'Jnitea States Of'ice of EPA 520/4-31-006
Environmental Protec;ion Radiation Programs April 1981
Agency Washington DC 20460
4>EPA Maxdose - EPA:
A Computerized Method
for Estimating
Individual Doses
from a High-Level
Radioactive
Waste Repository
-------
EPA 520/4-81-006
MAXDOSE-EPA:
A COMPUTERIZED METHOD FOR ESTIMATING INDIVIDUAL DOSES FROM A
HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY
Barry L. Serini
Bruce Smith
Office of Radiation Programs (A.NR-460)
Environmental Protection Agency
Washington, D.C. 20460
-------
ABSTRACT
Tne MAXDOSE-EPA computer code is a methodology developed by the
Office of Radiation Programs to estimate the potential radiation
aoses from accidental releases of radionuclides from a repository
for nigh-level radioactive wastes sited in deep geologic media. The
coae is intended to oe applicaole to a generic repository. The
model parameters describing the characteristics of the repository
ana its environment can oe varied to show the effects of different
cnaracteristics. This report describes the equations used to obtain
the radionuclide concentrations in the environment and to calculate
radiation doses to man via inhalation of air and ingestion of water,
milk, crops, oeef and fish. A listing of the code, an input guide,
and a sample proDlem are included.
Accidental or unexpected events at a geologic repository can
release radioactivity into the air above the repository site or into
tne aquifer overlying tne geologic media. A modified Gaussian plume
equation from AIRDOS-EPA was adapted for our use for the air
patnway. Releases into the aquifer are assumed to be dispersed in
tne aquifer in the norizontal direction only because we assume
material is released uniformly through the'aquifer thickness. The
cooe can estimate tne dispersion of up to 20 nuclides. Radionuclide
concentrations in meat, milk, fish, and fresh produce are obtained
oy coupling the air or aquifer concentrations with terrestrial food
cnain aata. Dose conversion factors are used to convert
radionuclide concentrations to individual dose equivalent commitment
rates.
A sample proolem illustrates use of the dose factors and the
computer code to calculate maximum doses to individuals. For
ingestion pathways, doses are calculated for any two organs. These
are determined oy the dose conversion factors. Inhalation doses are
also calculated for two organs, to be specified by the user.
As presently written, the output includes a listing of the
input data, a taole of calculated doses, and a table indicating
contaminated areas in square meters. The dose table lists, for each
time ana distance, the dose rate in rem/y, the nuclide making the
largest contribution to the dose, and its percentage of the total
uose. The 'code is written in FORTRAN, requires less than 200 K
storage, and runs in less than 30 seconds. The code calculates the
maximum aose and maKes many conservative assumptions that shorten
tne run time to under 30 seconds.
-------
CONTENTS
Page
Abstract iii
I. Introduction 1
II. Release Mecnanisms 3
III. Description of Functions in MAXDOSE-EPA 4
IV. Input Guide for MAXDOSE-EPA 13
V. References 28
VI. Glossary 30
Appendix A
Listing of MAXDOSE-EPA 35
Appendix 8
Sample Problem 65
-------
I. Introduction
The MAXDOSE-EPA computer code is a methodology developed by the
Office of Radiation Programs to estimate the potential radiation doses
from accidental releases of radionuclides from a repository for high-
level radioactive wastes sited in deep geologic media. The code is
intended to oe applicaole to a generic repository. The model
parameters describing tne cnaracteristics of the repository and its
environment can oe varied to snow the effects of different
cnaracteristics. This report describes the equations used to obtain
the radionuclide concentrations in the environment and to calculate
radiation doses to man via inhalation of air and ingestion of water,
milk, crops, beef and fish. A listing of the code, an input guide, and
a sample proolem are included.
The repository is sited deep below the surface and is placed in
either salt or nonsalt (granite, snale, basalt). It is filled with
nign-level waste packaged in canisters. In a salt repository the
canisters disintegrate in 100 years; in nonsalt, 500 years. The bedded
salt, snale, and basalt repositories have overlying and underlying
aquifers; tne granite repository nas only an overlying aquifer; the
dome salt has an overlying aquifer and an aquifer around the dome
(EPA79D). The events causing releases are drilling and fault
movements. Releases can occur by penetration (drilling) into waste or
from water in a region of contaminated backfill, "the tank" (EPA 79d).
Both drilling and faulting events either hit the waste directly or hit
a contaminated repository region where nuclides have leached after
canisters have failed.
It is assumed that radionuclides from the waste repository are
released to the aquifer overlying the repository, directly to the land
surface above the repository, or directly to surface water such as a
lake or river. Releases to land surfaces and ground waters are the
most important routes by which individual doses may be incurred.
A modified Gaussian plume equation from AIRDOS-EPA (EPA79a) was
adapted for our use for the air pathway. Releases into the aquifer are
assumed to oe dispersed in the aquifer in the horizontal direction only
uecause we assume material is released uniformly through the aquifer
tnickness.
Radionuclide concentrations in meat, milk, fish, and fresh produce
are obtained Dy coupling the air or aquifer concentrations with
-------
terrestrial food chain data. Dose conversion factors are used to
convert radionuclide concentrations to maximum individual doses.
The code can handle 8 types of events which can cause unexpected
releases, up to 13 time periods, up to 10 locations from the release
site, ana the dispersion of up to 20 radionuclides. The user has the
option of cnanging any of the input data (except the radionuclide data)
to cnecK the response of input data changes. For example, the user can
test option of waste containers failing immediately. .
The code will do one release case per run. After calculating the
concentration of the isotopes, each concentration of a radionuclide is
multiplied by the appropriate ingestion rate and dose conversion
factor. This gives us a 5-dimensional dose array: a) the nuclide, b)
tne time, c) the distance, d) the pathway, and e) the organ exposed to
the radionuclide. The nuclide contributing the highest dose, and its
percentage, are calculated and displayed. For drilling events which
release radioactive materials to the aquifers or to the land surface,
tne areas contaminated aoove preselected dose levels are calculated.
As presently written, the output includes a listing of the input
data, a table of calculated doses, and a table indicating contaminated
areas in square meters. The dose table lists, for each time and
distance, tne dose rate in rem/y, the nuclide making the largest
contribution to the dose, and its percentage of the total dose. The
code is written in FORTRAN requires less than 200 K storage, and runs
in less than 30 seconds. The code calculates the maximum dose and
makes many conservative assumptions that shortens the run time to under
^0 seconcis.
Section II of this report discusses the types of accidental
releases that can occur at a high-level repository. In Section III the
equations used to estimate the environmental concentrations from the
different types of releases are presented. Section IV discusses input
aata required to use the code.
Appendix A includes a.listing of the code; Appendix B includes a
sample input and a sample problem. The code can estimate the
dispersion of up to 20 nuclides. A sample problem illustrates use of
tne dose factors and the computer code to calculate maximum doses to
individuals. For ingestion pathways, doses are calculated for the bone
marrow and the organ receiving the highest dose from a given
radionuclide. For inhalation pathways, the organs considered are the
lungs and tne organ receiving the highest dose.
-------
II. Release Mechanisms
The extent to which geologic media can serve as barriers to
raaionuclide migration depends principally on the geologic properties
of tne media and tne possioility of catastrophic geologic events. The
iaeal site for a nign-level repository would be geologically stable and
isolated from aquifers and from tne oiosphere. However, an ideal site
uoes not exist; the code covers a selected range of possible
circumstances for transport of radionuclides away from the repository
site once the primary containment system has been breached (EPA 79b).
Most releases of radionuclides would occur from unintentional or
unplanned events, either natural or produced by people (e.g., faulting
movement; drilling for mineral resources)(GoSl).
Release to An Aquifer
• The release to an aquifer results from a permeable pathway being
created in tne rock between the repository and the aquifer. This
patnway may be created by a new faulting event, movement of an old
faulting event, or more likely, by a deep drilling event which
penetrates through the aquifer and the repository. The hole created by
a deep drilling through the aquifer is generally sealed; however, the
seal may degrade, leaving a small permeable pathway which connects the
aquifer to the repository. Radionuclides dissolved in water are
transported from the repository to the aquifer where it is assumed they
are dispersed norizontally by diffusion and aquifer flow. It is then
assumed that individuals drill a well into the aquifer and use the
water for residential use. The code calculates the maximum dose to
individuals using tne water.
For EPA's dose assessment, if the radionuclides are inhaled (via
resuspension into the air) doses were calculated for lungs and the
organ receiving the highest dose. If radioactive materials were
ingested, doses were calculated for bone marrow and the organ receiving
tne nighest dose. However, the user may calculate any organ dose by
cnanging intake rates and dose conversion factors.
Release to Surface Water
The release to surface water results from the assumption that
artesian conditions exist and a drilling or faulting event opens a
patnway to surface waters (although such a site would not be a likely
candidate for a repository) (EPA 79b). The pressure in the repository
is enough to force contamined water to the surface lake or river.
-------
Release to Land Surface
Two situations are considered where radioactive materials are
released from tne repository to the land surface. In the first case
cne ari'll nits a canister and carries a fraction of the contents to the
lana surface where it is deposited. In the second case the drill
penetrates tne repository backfill (the tank) containing contaminated
grounawater. In a salt repository some of the backfill is ejected to
cne surface from tne great pressure in the tank. The pressure is
from: a) weight of the overburden, and b) decay heat causing expansion
in gases. The oackfill in tne nonsalt repository is transported by the
drill to the surface.
After the nuclides are deposited on the land surface the air
concentration is calculated using equations from AIRDOS-EPA. The doses
received are a function of the concentration, breathing rate, and tne
dose conversion factor. In the case of a direct hit to a canister, the
nuclides are transported to the surface in an insoluble form (Class y-
ICRP No. 2), wnile in the tanK release they are in a soluble form
(Uass w-ICRP No. 2). The appropriate dose conversion factors must be
used for the soluble and insoluble forms of each nuclide.
III. Description of Functions of MAXDOSE-EPA
MAXDOSE-EPA is organized by functions and subroutines to calculate
radionuclide concentrations in the environment for the following types
of events and releases. For a more complete discussion of the
equations, see Goldin's report (Go81).
A. Drilling Release to tne Land Surface from a Direct Hit of the
Waste (Function AIR, K=i)
In tnis situation a drilling event into the repository results in
a fraction of waste being transported to the land surface. The
radioactivity deposited on the surface is resuspended and dispersed in
the air. The wastes are assumed to disperse radially from the point
source. As they spread they are removed by decay and infiltration into
the soil. The dose is calculated primarily for the lungs from inhaling
the contaminated air from the drilling event. The air concentration
near tne drilling site is described by the following equation. The
dispersion and deposition rate are modelled after AIRDOS-EPA.
f .. source term atmospheric deposition
concentration = x d1spe's1on x tQPground
radiological and
environmental depletion
-------
Wnere
C(X,t) = tne concentration in the air
f = fraction of repository released to land surface
Q0 a inventory of isotope at repository sealing (Ci)
\Q = radiological decay constant (yl)
te = the event time (y)
X = tne distance from the oorehole (m)
tKX/v
U(Ta-KX,v)= Q (f < (2)
tne dispersion and diffusion are also the same for both equations, i.e.,
i.O
Be V(4»DVX)
For tne leach-limited source term, the equation is:
-MW -MV
Q (t) = fxe a e a e 1 e (3)
-------
Thus, the leach-limited expression becomes:
C^X.t) . d •••••-. (4)
For tne soluoility-limited case, the source term is the (flow rate
of the aquifer) x (soluoility).
The solubility-limited source term equation is:
r -<*(VVKX/V)
Qs(X,t) = [Kl +K'(td- KX/v)][CVAe . +
-»(VV KX/V) 1
CVBe e a +CVC|AS1
Thus, the soluoi1ity-limited expression is:
I
Q (X,t) x (aecay in aquifer) x (diffusion and dispersion)
-x.KX/v
U (ta- KX/v ) Qs(X,t) e
Cs(X,t)= : (6)
wnere
\] = leach rate
A = cross-sectional area of the aquifer perpendicular to the
flow (m2)
Kl a the initial permeability (m/y)
K1 = the rate, of change of the permiability (m/y2)
S-j a solubility of the itn nuclide (Ci/nr)
CVA, CV8, CVC, o,e = constants modelling the changing hydrologic
gradient
6 = the aquifer thickness (m)
e = the porosity (the ratio of the volume occupied by pores to the
total volume of a geologic material)
v a the interstitial velocity of groundwater flow in aquifer (m/y)'
0 = the diffusion constant (m2/y)
X a the distance away from the drill hole (m)
K = the retardation factor
Q'(t) = source term (Ci/y)
-------
C. Release to Aquifer from a Faulting Event which Destroys a Line
of Canisters (Function FLTH, K=3]
Tms function (K=3) calculates the concentration of radionuclides in
me aquifer from a fault movement which destroys a number of canisters.
If trie rauionuclide is leacn limited, the equation for concentration is:
Ktd/v
ds (7)
e B L
1.0
If Kt(j/v > X, then X is the upper bound on the integral.
Fa = vWeB
This represents an aquifer-limited flow rate. It is a
conservative assumption, assuming the entire aquifer can flow through
tne path of the fault. FaS-j yields the total number of curies per
year dissolving into the aquifer. The nuclides are spread over the
effective cross-sectional area of the aquifer, i.e., eBL. Dispersion
and diffusion are the same as in equation 7. The nuclides decay in the
aquifer as they travel. For a solubility-limited radionuclide, the
equation becomes:
Fa S1 f ->d(Ks/v)
Cs(X,t)= ^^ / 5 __ ds (8)
wnere
L = tne length of the repository, parallel to the flow of the
aquifer
W a tne width of the repository perpendicular to the aquifer
s = a variable used to evaluate the integral,
representing the distance
Fa a aquifer-limited flow rate (rn^/y)
The upper bound of the integral indicates the distance the nuclide
nas traveled. The source term is a line source in this case, as opposed
to a point source in the previous cases. The integral is evaluated in
MAXDOSE-EPA using a routine called DCADRE(IMSL).
-------
0. Release to Surface Water from a Drilling or Faulting Event
(Function STREAM,
In tnis case there is no dependence of dose versus distance because
of tne velocity at wnich rivers flow and the small distances the
rachonuc lides travel. Thus, nuclides do not have time for
significant radioactive decay. The radionuclide concentrations in the
water are expressed oy the following equation:
d e x d I'd
C(t) = iLlJ: * (9)
s
Unere
F a volumetric flow rate of surface stream (
Tnere is no release to the aquifers in this case, and the dose
pathways are above-ground food sources.
E. Release to Land Surface Resulting from a Drilling Event which
Disturos the Repository (Function DKNHLS, K^SJ
Tnis release is similiar to the first (K=l) except for the
radionuclide source term. The source term is a volume of contaminated
repository water. In the case of a salt repository, the radioactive
wastes leach into a common volume, referred to as a brine pocket. For a
granite repository, a volume of contaminated backfill (the tank) is
transported to tne land surface by a drilling event. The equation for
calculating the concentration of a radionuclide in the air above the
drilling event is described below.
Concentration = (source term)x(atmospheric dispersion)x(deposition to ground)
x(radiological and environmental depletion)
The aoove equation has a leach-limited source term of:
fQ
1-e
'o
ana a solubility-limited source term of:
(10)
Qs(t) = S.Vt (11)
-------
Thus, for a leach-limited radionuclide
C1(X,t)=fQc
i-e
e u e(2.SE-17;
-1.43
x ;57} (-(VVW V/
} e Vd/Vt
The solubility-limited expression is:
Cs(X.t). SiVd (2.5E-17)
~
.57
(12)
(13)
(-
-------
10
Fur uie ieacn-1 imiiea yranite release:
H
Tv u e °
i-e i e
(15)
V e ti V4irUV
For tne so luui I ity-i ii.iiteu granite release:
-x. \X/v
F S e
a T
e b V'4irbv
(16)
The salt repository is more complex in its matnematics. The aifferential
equation useu to solve tne granite case no longer nas a closed analytic
solution aue to significant alterations. First a differential equation
oescrioiny tne uui luup in tne tank prior to release is developed with boundary
conditions. Tne tan* is a pocket of contaminated strata or a brine pocket.
8C(*'t)
= x
,r-qc(t)-xaVC(X,t)
(17)
X t -X.(t-Cl)
u e
(18)
V = tne porosity volume, i.e., the amount of available water
HX,t) = tne concentration in V (Ci/m^)
gc(t) = tne activity in tne affected canisters (Ci)
el = tne canister life (y)
Tnis equation is a ualance of tne change of activity in tne
porusity volume witn aaoitions and removals of activity from the
porusity volume. Tne porosity volume is tne total volume multiplied by
tne porosity (e). Tne solution to the preceding aifferential equation
is:
-X
:i9)
-------
11
This concentration is the boundary condition at the time the
release to the aquifer or land surface begins.
After the release has begun to occur, a similar differential
equation describes the change in the activity in the tank.
(2) (3) (4)
. xdVC(X,t) - V(t)C(X,t) (2Q)
V(t) is the volumetric flow rate of the radionuclide to the aquifer.
Term 1 is the rate of change of activity in the tank. Term 2 is the input
into tne tank from the leaching canisters. Term 3 is the radioactive decay
in tne tank and Term 4 is the annual removal of activity from the repository
to the aquifer. Notice that the terms, except the last, are the same as the
preceding differential equation. Rearranging and substituting the
expression for Qc(t) we obtain:
-xdt -x^t-cl)
p(y) = V v(t)/v (22)
q(t) --y-ie u e ' (23)
u(t) = eJ P y Qy (24)
Using u(t) as the integrating factor, the general solution is:
-L \
u(t) J
C(X,t )w(t )
u(s)q(s)ds + -T|T 2- (25)
Where
t = tne time the release began (event time)
C
C(X,t~) = tne concentration of the nuclide immediately before
tne release at a point X.
-------
12
Since the brine pocket is blown to the surface at t , C(X,t ) =
0 ana tne last term in the general solution drops out.
The function u(s) is calculated in the function DRTGRL. MAXDOSE
calls tne routine DCADRE (IMSL) to solve the integral in the expression
for concentration in this run.
The release rate into the aquifer is the product of the flow rate
Fa and appropriate concentration in the repository. Radionuclides
releasea into the aquifer are then dispersed similarly to releases in
tne direct release to aquifers (K=2).
G. Release to an Aquifer from a Faulting Event which Disturbs the
Repository (Functions FLTNHL and FLTNHS, K=7,8)
The last two releases (K=7,8) are similar to the third release
type (K=3). A faulting event disturbs the contaminated repository
water and releases isotopes to the aquifer system. The only difference
oetween functions 7 and 8 is that 7 is for leach-limited releases while
8 is for solubility-limited releases. For release type 8 the
differential equation describing the concentration in the repository
water is:
- VAQC(X,t) (26)
Where:
VAQ = aquifer limited volumetric flow
The metnod of solution is the same as the previous case. The last
term is similar to the fourth term in the previous case; however, the
volumetric flow rate in tnis case is not a function of time (VAQ). The
concentration entering the aquifer is:
Qo e
-ti(xrVAQ/V) -te (xrVAQ/V)
C(X,t )u (t )
e e (27)
-------
13
- xd *e
C(X,te) =
(t) = e
1-e ' fe
(X. * VAQ/V)t
(28)
Ks
Note -sis the variable
of integration.
(29)
The concentration in the aquifer is equal to:
KX /v
CAQ(X,t) =
C(X,s)ds
i.O
(30)
IV. Input Guide for MAXDOSE-EPA Code
The input for Maxdose consists of a job control card, a variable
numoer of title caras, and a variable number of cards in a standard
format to enter the data needed to solve the specific problems. In
general tne standard input deck can be in any order; exceptions will be
cited later. Table 1 gives precise data on tne input format and table
2 defines input parameters.
In running MAXOOSE, the user arbitrarily selects distances, event
times, dose times, and type of repository. From a range of values, the
user selects waste characteristics (leach rate, solubility, canister
life, inventory), event characteristics (borehole permeability, fault
releases, event probabilities), ana environmental .data (groundwater
permeability, porosity, thermal buoyancy gradient, interconnecting
gradient, ground water velocity, dispersivity, retardation factors).
However, it is possible for the user to design the repository to
nis own specifications or change any of the input data (except the
radionuclide data) to check the response of the input data changes—a
sensitivity analysis.
The output consists of a summary of the input data, dose tables,
and a listing of areas contaminated (for nonfault events only).
Joo Control Card (Format IX,5110)
The user selects the type of release and event, the number of body
organs, the number of title cards, the pathways, and repository type.
-------
14
The job control card will assume default values (except for K) if there
are no input values.
Type of release (K=l ,2.3,4,5,6,7,8)
There is no default value for K. The user must select one of the
fol lowing:
i. Drilling release to land surface by direct hit of waste
2. Drilling release to an aquifer by direct hit of waste
3. Release to aquifers by a fault line breaking a row of canisters
4. Drilling or faulting release to surface waters
5. Drilling into a granite tank or brine pocket, debris ejected
to land surface
6. Drilling into a granite tank or brine pocket, release to the
aquifers
7. Faulting hits a brine pocket (the source term is leach limited)
8. Faulting hits a brine pocket (the source term is solubility
1imited)
NORGAN
Select the number of organs for which the dose will be calculated
(1 or 2). The default value is 1. Organs are selected on card type 31.
NCARDS
Select the number of title cards following the job control card.
The default value is 3.
NPATH
Select the pathway to be calculated, usually water or air (the
default value is 1). In land surface releases (K=l or 5), the program
will automatically set value to 1. For a surface water release, NPATH
must be greater than or equal to 2 (no water doses). (Note that for
inhalation calculations NPATH defaults to 1 for breathing and overrides
the input.) The pathways are:
Water or air, depending on release NPATH = 1
Water and Milk NPATH = 2
Water, Milk, and'Crops NPATH = 3
Water, Milk, Crops, and Beef NPATH = 4
Water, Milk, Crops, Beef, Fish NPATH = 5
-------
15
NREP
The repository types are:
Nonsalt = 1
Bedded Salt = 2
Default = 2
"Nonsalt" repositories include granite, basalt, shale, and dome
salt. Repositories are most likely to be sited in granite or bedded
salt.
Title Cards (Format 2QA4)
As many as NCARDS may be used to enter title, date, data-set name,
etc.
Standard Format Cards (Format 12, 7E8.2, 2X, A3, 3A4)
Use these cards to enter the remaining data for the problem. The
first entry is a two-digit integer, which.indicates the "type" of card
being read in. Thus, a card with a "40" in columns 1 and 2 is a "type
40" card. The fields of this card are designated as Nl, F(l through
7), ANUC, and A(l through 3).
Type 10 card (Distances Nl=10)
The distance from the accident site is entered in meters. The
code can handle up to 10 distances and can run on any number less than
10. A zero value terminates the list. Seven values for distances can
oe entered on a type 10 card; three more can be entered on a type 11
card.
Type 11 card (Distances Nl=ll)
This card is optional and is used only if a more than 7 distances
are oeing used. Enter up to three distance in meters on this card.
Type 20 card (Dose Rate Limits Nla20)
This is an optional card used for aquifer and land surface
releases. Enter the minimum dose rate limits in rem/y for calculation
of areas contaminated by the release. Areas are given in square meters
in the output. No zeros can be entered for the array if results are
desired. If no areas are desired, leave the type 20 card out of the
input deck.
-------
16
Type 30 card (Radionuclide Data-I Nl-30)
There snoulti be only one type 30 card per nuclide per problem.
wnen doing a stacked run however, it may be necessary to input new
type 30 caras in the new problem. For more information, see the
description of the type 98 card.
Type 30 card must be followed by type 31 and type 32 cards. Data
for the same radionuclide must oe kept together.
Type 31 card (Raaionuclide Data-II Nl=:31)
All dose factors on this card are input as rem/Ci. The type 31
card is an exception to the general rule that standardized format
cards may appear in any order. For every nuclide, the type 31 card
must follow a type 30 and precede a type 32 card. The user may use any
organ dose conversion factors for organs 1 and 2.
Type 32 caro (Radionuclide Data-III Nl=32)
Environmental transfer rates obtained from NUREG 1.109 were used.
The type 32 card must follow the type 31 for the same nuclide.
This is an exception to the general rule that the standardized format
cards may appear in any order.
Type 40 card (Miscellaneous Data-I Nl=4Q)
Repository characteristics and data on canisters were taken from
Smitn (SmSl) and Task 0 report (EPA79b).
Type 41 card (Miscellaneous Data-II Nl=41)
All ingestion and breathing rates are on this card (NUREG 1.109).
It is unlikely that a repository would be sited near a surface stream.
The value for the average flow rate of a river is not used unless a
type 4 event is indicated.
Type 50 card (Aquifer Data Nl=50)
This is an optional card, depending on type of release. The
porosity of the aquifer and the repository and the initial permeability
of the aquifer form the basis for the aquifer velocity.
Type 60 card (Aquifer Gradient Data Nl=60)
The first four parameters describe a two-part exponential fit of
the hydro logic gradient due to the thermal buoyancy effects of the
-------
17
repository's heat generation (assuming this to be a spent fuel
repository). The fifth parameter is the interconnecting gradient. The
numoers oelow are currently used in EPA's model.
F(l) = ALPHA 1.6E-3
F(2) = BETA 3.1E-4
F(3) = CVA .132
F(4) = CVB .103
F(5) = CVC .100 (Bedded salt, shale, basalt)
0 (Granite, dome salt)
Gradient = CVA*e~ALPHA*t+CVB*e~BETA*t-H3VC
Type 70 card (Event Data Nl=70)
Required card. The fraction of the total repository affected
by the event is entered. A description of the event is entered in
columns 61 through 80.
Type 80 card (Event and Dose Time Periods Nl=80)
The time the event occurs after the repository is sealed
(years). Up to 5 dose time periods can be entered on this card. Up
to 13 dose time periods can be entered using types 80 and 81 cards.
Type 81 card (Continuation of Dose times Nl=81)
This is an optional card. Up to 7 dose time periods can be
entered on this card.
Type 97, 98, 99 cards (Data Separator Cards)
Nl=97
Indicates to the program that a new run with non-nuclide data
changes will follow. It will keep nuclide data and replace any
other card type read in after the 97 card. Following the 97 card,
the input is the same as the beginning of the dataset, with only the
appropriate data changes. The 97 card does not remove nuclide data.
-------
18
Nl=98
Indicates to the program that a new run with different nuclide
aata will oe run. A'll values on the new cards must be entered even if
all are not being changed (Doth 97 and 98 cards). The 98 card will clear
all nuclide data in storage ana new data can be read in (new nuclides
or new aata for the old nuclides).
Nl=99
Required card. Inaicates ena of run and that no new problem will
fo11ow.
-------
19
Table 1. Input Parameters to MAXDOSE-EPA
Title
Job Control Cara
Format:lX,5I10
Title Card
Format: 20A4
Standard Format
Format: I2.7E8.2
Column
11
21
31
41
51
1-80
Card
,2X,A8,3A4
1-2
3-10
11-18
19-26
27-34
35-42
43-50
51-58
61-68
69-72
73-76
77-80
Description
Type of Release
Number of Organs
Number of Title Cards
Number of Pathways
Type of Repository
Description of problem
(Supplied by user)
Card Type (INTEGER)
FIELD 1 (REAL)
FIELD 2 (REAL)
FIELD 3 (REAL)
FIELD 4 (REAL)
FIELD 5 (REAL)
FIELD 6 (REAL)
FIELD 7 (REAL)
FIELD 8 (CHAR)
FIELD 9 (CHAR)
FIELD 10 (CHAR)
FIELD 11 (CHAR)
Variable
K=l,2,3,4,5
Reference
fi 7 8
Default=None
NORGAN=1,2
Default=l
NCARDS=Any
Def ault=3
NPATH=1,2,3
DefaulUl
NREP=1,2
Default=2
Nl
F(D
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
ANUC
A(l)
A(2)
A(3)
number
,4,5
Note: Fields are left blank if unused, or if default value is desired.
-------
20
Table 1. Input Parameters to MAXOOSE-EPA—continued
Title
Description
Variable
Reference
Type 10 card
(Nl-10)
Type 11 card
(Nl.ll)
Type tQ card
(Nl.20)
Type 30 card
(Nl-30)
Required. Distances.
Up to 7 distances (m) can
be entered (Use a type 11 card for
additional distances.
Optional. Distances (continued)
Up to 3 additional distances
can be entered.
Optional. Dose limits.
Up to 5 dose levels in
increasing order. Associated
areas of contamination will be
calculated.
Required. Radionuclide data.
Type 31 and 32 cards MUST follow a
type 30 card. 1 card per nuclide
(20 nuclides)
Half life (y)
Inventory of repository at the
time it is sealed (Ci)
Type 31 card
Nl-31
Soil sink factor
Resuspension factor (y-1)
Retardation factors
Solubility of nuclide (Ci/m^)
Name of nuclide
Required. Dose conversion
factors (DCF). MUST follow
type 30 card.
DIST(I)=F(I)
DIST(7+I)=F(I)
DIST(I)
DLIM(5)
RNLD=F(1)
RNQO=F(2)
LAMS=F(3)
RELAMS=F(4)
RET=F(5)
SOL=F(6)
RNID1=ANUC
GoSl
Sm80
Sm80
SmSl
SmSl
SmSO
Du79
Ki78
-------
21
Table 1. Input Parameters to MAXDOSE-EPA—continued
Title
Description
Variable
Reference
OCF for innaling nuclides in
soluble form (Class w) to organ 1
8RSOL=F(i;
Same as above—for organ 2.
BRSOL=F(2)
Type 32 card
(Nl=32)
Dose conversion factor for in-
haling nuclide in an insoluble BRINSL=F(3)
form (Class y) to organ 1.
Same as above—for organ 2. 8RINSL=F(4)
DCF for ingesting nuclide to DOSING=F(5)
organ YT
DCF for ingesting nuclide to DOSING=F(6)
to organ 2.
Name of nuclide RNID1=ANUC
Required. Environmental transfer
rate (ETR). MUST follow type 31
card for same nuclide.
ETR from aquifer to crops to MILK=F(1)
dairy cattle to milk
ETR from aquifer to crops CROPS=F(2)
ETR from aquifer to crops to 8EEF=F(3)
beef cattle
ETR from surface waters to fish FISH=F(4)
Name of nuclide RNID1=ANUC
SmSO
SmSO
SmSO
Sm80
-------
22
Table 1. Input Parameters to MAXDOSE-EPA—continued
Title Description
Type 40 card Miscellaneous Data — Card I.
(Nl=40)
Length of repository (m)
Width of repository (m)
Height of repository (m)
Area of borehole (m^)
Leach rate of waste (y~*)
Canister life (y)
Volume of granite tank or brine
pocket (m3)
Type 41 card Required. Miscellaneous Data —
(Nl=41) Card II.
Flow rate of surface stream
(m3/y)
Mining fraction in a nonsalt
repository
Breathing rate (m^/y)
Ingestion rate of water, or milk,
or beef, or crops (m^/y)
Ingestion rate of fish (m^/y)
Volume of material carried
4
Variable
LENGTH=F(1)
WIDTH=F(2)
HEIGHT=F(3)
AREA=F(4)
XLEACH=F(5)
C1=F(6)
VTANK=F(7)
FLOW=F(1)
MINEFR=F(2)
BRTHRT=F(3)
U=F(4)
UFISH=F(5)
VDRILL=F(6)
Reference
SmSl
SmSl
SmSl
SmSl
SmSl
EPA79b
SmSl
EPA79b •
SmSl
EPA79b
EPA79b
ICRP
Std man
NUREG
1.109
NUREG
1.109
on drill to surface (m3)
-------
23
Table 1. Input Parameters to MAXDOSE-EPA—continued
Title
Type 70 card
(Nl-70)
Description
Variable
Gradient between aquifers over CVC=F(5)
and under the repository. CVC=0
if there is no underlying aquifer
—as in granite.
Required. Event Data Card.
Fraction of total repository FRAC=F(1)
affected by the event
Event description in columns 61- RND2=A(1)
80. For example: Land Surface RND3=A(2)
Release RND4=A(3)
Reference
Type 50 card
^NI-SO)
Type 60 card
(Nl-60)
Optional. Aquifer Data Card.
Aquifer thickness (m)
Diffusion constant in aqui-
fer (m2/y)
Aquifer velocity (m/y)
Porosity of the aquifer
Porosity of the repository
Initial permeability of
the aquifer (m/y)
Rate of change of the
permeability (m/y2)
Required. Aquifer Gradient Data
The first 4 parameters describe a two-
part exponential fit of the hydrologic
gradient due to the thermal buoyancy
effects of the repository's heat gen-
eration (if a spent fuel repository).
_B=F(1)
D»F(2)
MU=F(3)
EPSAQ=F(4)
EPSRP=F(5)
K1=F(6)
KPRIME=F(7)
ALPHA=F(1)
BETA=F(2)
CVA=F(3)
CVB-F(4)
EPA79b
Go81
(*)
EPA79b
EPA79b
EPA79b
EPA79b
GoSl
EPA79b
EPA79b
EPA79b
EPA79b
EPA79b
EPA79b
EPA79b
Sm81
EPA79b
EPA79b
EPA79b
*Aquifer velocity is based on the porosity of the aquifer, the porosity of the
repository, and the initial permeability of the aquifer.
-------
24
Table 1. Input Parameters to MAXDOSE-EPA—continued
Title
Description
Variable
Reference
Type 80 card
(Nl=30)
Type 31 card
(Ml=81)
Type 97 card
(Nl=97)
Type 98 card
(Nl-98)
Type 99 card
(NU99)
Required.
and dose.
Time periods—event
Time of event. The number of
years after the repository is
sealed (y).
Time of dose. The number of
years after the event. (Up to
6 dose times can be entered.
Use type 81 card for additional 7
entries).
Optional. Time of dose.
(Continuation of type 80 card.)
TEVENT=F(1)
TDOSE(I)=F(I+1)
TDOSE(6+I)=F(I)
Optional. Data Separator Card.
Indicates to the program that a
new run will follow with changes to
the nonnuclide data. This allows
data changes without recompiling.
Following the 97 card, the input is the
same as the beginning of the dataset, with
only the appropriate data changes.
Optional. Data Separator Card.
Indicates to the program that a new
run will follow with different nuclide
data. The 98 card will clear all
nuclide data in storage and new data
can be read in (new nuclides or new data
for the old nuclides).
Required. End of Run. No problem
will follow.
-------
25
Table 2. Definitions and Units of Input Parameters to MAXDOSE-EPA
Name
ALPHA
AREA
B
BETA
D
BEEF
BKSUL
8RINSL
BRTHRT
Cl .
CROPS
CVA
CV8
cvc
0
DLIM
Definition
Hyarologic gradient data
Area of oorehole
Aquifer thickness
Hydrologic gradient data
Diffusion constant in the aquifer
Environmental transfer rates
from aquifer to crops to beef cattle
Dose conversion factor for inhaling
radionuclide in soluble form
(Class w)
Dose conversion factor for inhaling
radionuclide in an insoluble form
(Class y)
Breathing rate
Canister life
Environmental transfer rates from
aquifer to crops
Hydrologic Gradient Data
Hydrologic Gradient Data
Gradient oetween aquifers over and
under the repository. CVC=0, if no
underlying aquifer.
Diffusion constant in the aquifer
Dose limits
Units
1.6E-3
(m2)
(m)
3.1E-4
(m2/y)
(rem/Ci)
(rem/Ci)
(m3/y)
(y)
.132
.103
.1
(«n2/y)
(rem/y)
-------
26
Table 2. Definitions and Units of Input Parameters to MAXDOSE-EPA
—continued
Name
01 ST
DOSING
EPSAQ
EPSRP
FISH
FLOW
FRAC
K
Kl
KPRIME
HEIGHT
LAMS
LENGTH
MILK
MINEFR
MU
MORGAN
Definition
Distance from the release site
Dose conversion factor for ingesting
radionuclide
Porosity of the aquifer
Porosity of the repository
Environmental transfer rates from
surface waters to fish
Flow rate of surface stream
Fraction of total repository inventory
released by event
Type of release
Initial permeability of the
aquifer
Rate of change of the permeability
Height of repository
Soil sink factor
Length of repository
Environmental transfer rate
from aquifer to crops to
dairy cattle to milk
Mining fraction in a nonsalt
repository
Aquifer velocity
Number of body organs
Units
(m)
(rem/Ci)
(m3/y)
(m/y)
(m/y2)
(m)
(y-1)
(m)
.25
(m/y)
-------
27
Table 2. Definitions and Units of Input Parameters to MAXOOSE-EPA
—continued
Name
NPATH
NREP
RELAMS
RET
RNID1
RNLD
RNQO
SOL
TDOSE
TEVENT
U
UFISH
V DRILL
VTANK
WIDTH
XLEACH
Definition
Pathway
Type of repository
Resuspension factor
Retardation factor
Name of radionuclide
Radionuclide half life
Inventory of repository at
time it is sealed
Solubility of nuclide
Length of time after
the event occurs
Length of time after the
repository is sealed
Ingestion rate of water, milk, beef
or crops
Ingestion rate of fish
Volume of material carried on
drill to surface
Volume of granite tank or brine
pocket
Width of repository
Leach rate of canisters
Units
(y-1)
(y)
' (Ci)
(Ci/m3)
(y)
(y)
(m3/y)
(m3/y)
- (n»3)
(m3)
(m)
(y-1)
-------
28
V. REFERENCES
Ou79 Dunning, O.E. Jr., S.R. Bernard, P.O. Walsh, G.6. Killough,
J.C. Pleasant, 1979, Estimates of Internal Dose Equivalent to 22
Target Organs for Radionuclides Occurring in Routine Releases from
Nuclear Fuel-Cycle Facilities, NUREG/CR-0150, Vol. 2, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830.
EPA79a Environmental Protection Agency, 1979, AIROOS-EPA: A Com-
puterized Methodology for.Estimating Environmental Concentrations
and Dose to Man from Airborne Releases of Radionuclides, EPA 520/
1-79-009, Environmental Protection Agency, Washington, D.C. 20460.
EPA79b Environmental Protection Agency, 1979, Technical Support
of Standards for High-level Radioactive Waste Management: Vol. A
Source Term Characterization; Vol. 8, Engineering Controls, Vol. C,
Migration Pathways; Vol. D, Release Mechanisms, EPA 520/4-79-007A,
B, and C, Environmental Protection Agency, Washington, D.C. 20460.
Go81 Goldin, A.S., B. Serini, R. K. Struckmeyer, C-Y. Hung, C.B.
Smith, 1981, Potential Individual Doses from Disposal of High-level
Radioactive Wastes in Geologic Repositories, Environmental Protec-
tion Agency, Washington, O.C. 20460, (to be published).
IMSl DCADRE Function, International Mathematics and Statistics
Library, Sixth Floor, GNB Building, 7500 Bellaire Boulevard,
Houston, Texas 77036.
Ki78 Killough, G.G., D.E. Dunning, Jr., S.R. Bernard and J.C.
Pleasant, 1978, Estimates of Internal Dose Equivalent to 22 Target
Organs for Radionuclides Occurring in Routine Releases from Nuclear
Fuel-Cycle Facilities, NUREG/CR-0150, Vol. 1, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830.
NRC76 Nuclear Regular Commission, 1976, "Calculation of Annual Doses
to Man from Routine Releases of Reactor Effluents for the Purpose
of Evaluating Compliance with 10 CFR 50, Appendix I", Regulatory
Guide 1.109, U. S. Regulatory Commission, Washington, D.C. 20555.
-------
29
Sm80 Smith, J.M., T.W. Fowler and A.S. Goldin, 1980, Environmental
Pathway Models for Estimating Population Risks from Disposal of
Hign-Level Radioactive Waste in Geologic Repositories, EPA 520/5-
80-002, U. S. Environmental Protection Agency, Washington, D.C.
20460.
Sm81 Smitn, C. 3., D.J. Egan, W.A. Williams, 8. Serini, 1981,
Population RisKs from Disposal of High-level Radioactive Wastes in
Geologic Repositories, Environmental Protection Agency, Washing-
ton, D.C. 20460 (to be published in 1981).
-------
30
VI. GLOSSARY
Aquifer
ROCK or soil strata containing water that reaches the ground
surface in any natural or man-made manner.
Basalt
A nard, dense, dark fine-grained igneous rock.
Bedded salt
Salt occurring in strata, commonly interspersed with layers of
shale or 1imestone.
Biosphere
Zone at and adjacent to the earth's surface where all life exists.
Canister
A ceramic container for waste.
Dispersion
The spreading or distribution of a substance from a fixed source
through a porous matrix.
Distribution Coefficient
The equilibrium ratio of the quantity of a chemical species
adsorbed to a porous media to that in the surrounding solution.
Fault
A break in the continuity of a rock formation caused by a
shifting or dislodging of the earth's crust in which adjacent surfaces
are differentially displaced parallel to the plane of fracture.
Geosphere
The solid earth, including rocks, soil, and water in the ground,
but excluding oceans (hydrosphere) and air (atmosphere).
Half-Life
The time required for one half of an initially radioactive
material to undergo nuclear transformation; half-life is a measure of
the persistence of radioactivity and is unique to each radionuclide.
-------
31
High-level waste:
The highly radioactive waste resulting from the reprocessing of
spent fuel to separate uranium and plutonium from the fission
products. The term includes the high-level liquid wastes (HLLW)
produced directly in reprocessing, and the solid high-level wastes
(Hlw) wnich can be made therefrom.
hydrologic gradient
Tne rate of change of the pressure of groundwater with respect to
distance. The pressure drop per unit length of distance traveled.
Interstitial velocity
The velocity of groundwater flow through the pores and openings
and around individual grains of geologic media.
Leaching
Extracting material from a solid by contacting it with water or
with a solution. .
PermeaDility
The ability of a fluid to move through a medium under a hydro-
logic gradient.
Porosity
The ratio of the volume of interstices of a material to its total
volume.
Radionuclide
A general term that applied to all atomic forms of the elements.
"Isotopes" are the various forms of a single element; hence a family
of nuclides comprises all the isotopic forms of all the elements.
Rem
A dose unit which takes into account the relative biological
effectiveness (RBE) of the radiation. The rem is defined as the dose
of a particular type of radiation required to produce the same
biological effect as one roentgen of (0.25Mev) gamma radiation. A
i-rad dose of alpha particles is approximately equivalent in its
biological effects to 10 rads of gamma radiation, and hence may be
expressed as 10 rems. A mi Hirem (mrem) is one thousandth of a rem.
Retardation factor
Ratio of the water velocity to the nuclide migration velocity.
Salt dome
A geologic salt formation in which a plug of salt has been thrust
up through rock at some depth, leading to a subterranean "cylinder" of
salt which may De a mile or more in diameter and several miles deep.
-------
32
Source term
The amounts of specific radioactive nuclides issuing from a
process or from a process step.
TanK
The region of contaminated backfill in the repository.
-------
APPENDIX A
LISTING OF MAXDOSE
CODE
-------
Listing of MAXDOSE-EPA Code
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
c
c
c
SLOCK DATA
COMMON /BLOCK!/ DOSERT(21,13,10,5,2)
COMMON /BLOCK2/ REM( 13,10,5,2), PCT(13,10,5,2), NAME(13,10,5,2),
1 DIST(IO)
COMMON /BLOCK3/ A2,A3,T,V
COMMON /SLOCK4/ Kl,KPRIME,CVA,CV8,CVC,ALPHA,BETA,AREA
COMMON /BLOCKS/ RET(2!),XLEACH,B,MU,EPSAQ,WIDTH,HEIGHT,LENGTH,
1 MINEFR,CL,K,TDOSE(13),EPSRP
COMMON /BLOCK6/ TEVENT,RNLO(21),SOL(21)
COMMON /BLOCK7/ NNUC,NTIME,FRAC
COMMON /BLOCKS/ DLIM(5),D,RNQO(21)
REAL *8 NAME
REAL MU.MINEFR,LENGTH,K1,KPRIME
END
IDLIM DEFAULTS TO 1
COMMON /BLOCK!/ DOSERT(2!,13,10,5,2)
COMMON /BLOCK2/ REM( 13,10,5,2), PCT( 13,10,5,2), NAME(13,10,5,2),
1 DIST(IO)
COMMON /BLOCK4/ K1,KPRIME,CVA,CV8,CVC,ALPHA,BETA,AREA
COMMON /BLOCKS/ RET(21),XLEACH,8,MU,EPSAQ,WIDTH,HEIGHT.LENGTH,
1 MINEFR,CL,K,TDOSE(!3),EPSRP
COMMON /BLOCK6/ TEVENT,RNLD(2!),SOL(21)
COMMON /BLOCK7/ NNUC,NTIME,FRAC
COMMON /BLOCKS/ DLIM(5),D,RNQO(21)
DIMENSION LAMS(21), RELAMS(21), RNID1(21),
! RNID2(21), RNID3(21), RNID4(21)
2 A(3), TITLE(20), BRSOL(2,21)
3 OOSING(2,21), CROPS(21), 8EEF(21)
4 FISH(21), F(10),
5 MAXNUC(13,10,5,2)
REAL *4 RNID2,RNID3,RNID4,TITLE,A,RND2,RND3,RN04
REAL *8 RNID1,ANUC,RND!,NAME,NONE
REAL K1,KPRIME,MINEFR,LENGTH,MU,LAMS,MILK
DATA NONE/8HNONE /,NRN30/0/,NRN31/0/,NRN32/0/
BRINSL(2,21),
MILK(21),
CONC(21,!3,!0),
JOB CONTROL CARDS
#
#
#
-------
36
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
50 REAO(5,99) K,NORGAN,NCARDS,NPATH,NREP
IF(K .GT. 8) WRITE(6,1200)
IF(K .GT. 8) GO TO 9999
IF(NREP .EQ. 0) NREP = 2
IF (MORGAN .GT. 2) NORGAN = 2
IF(NPATH .GT. 5) NPATH = 5
IF (NPATH .EQ. 0) NPATH = 1
IF(K .EQ. 4 .AND. NPATH .EQ. 1) NPATH = 2
IF(K .EQ. 1 .OR. K .EQ. 5) NPATH = 1
IF (NORGAN .EQ. 0) NORGAN = 1
IF(NCARDS .EQ. 0) NCARDS = 3
WRITE(6,100) K, NORGAN, NCARDS, NPATH, NREP
99 FORMAT(1X,5I10)
100 FORMAT(1H1,1X,5I10)
C##f###########f#ff#########ff######f############### #####################
c# #
C# TITLE CARDS ' #
C# #
00 200 I = 1, NCARDS
READ(5,300) (TITLE(KKK) ,KKK=1,20)
WRITE (6, 301) (TITLE (KKK),KKK» 1,20)
200 CONTINUE
300 FORMAT (20A4)
301 FORMAT (1X,20A4)
350 READ(5,400) Nl,(F(I),I
WRITE(6,500) N1,(F(I),I
1 , 7) ,ANUC,(A(I ) ,1
1,7) ,ANUC,(A(I) ,1
400 FORMAT(I2,7E8.2,2X,A8,3A4)
500 FORMAT(1H , I2,4X,7(2X, 1PE10.2) ,2X,A8,3A4
1,3)
1,3)
C#
TYPE 10 AND 11 CARDS ENTER DISTANCES OF DOSE CALCULATIONS
#
#
549
550
599
IF(N1 .NE. 10)
DO 549 I = 1,7
IF(F(I) .NE. 0.
DIST(I) = F(I)
CONTINUE
GO TO 350
IF(N1 .NE. 11)
GO TO 550
0) LDIST = I
GO TO 600
DO 599 I = 1,3
IF(F(I) .NE. 0,
DIST(I + 7) = F(I)
CONTINUE
GO TO 350
0) LDIST = LDIST + 1
-------
37
00038
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
C#
TYPE 20 CARDS ENTER DOSE LIMITS FOR CONTAMINATED AREAS
#
#
#
600 IF (Ml .NE. 20) GO TO 650
00 649 I = 1,5
DLIM(I) = F(I)
H = H + DLIM(I)
649 CONTINUE
IF(H .GT. 0.0) IDLIM = 0
GO TO 350
C#
C#
Cf
TYPE 30 CARDS ENTER NUCLIOE DATA
#
#
#
.NE,
650 IF(N1 .NE.
DO 659 I =
IF(RNLD(I)
IF(RNLD(I)
RNLD(I)
RNQO(I) =
LAMS(I) =
RELAMS(I) =
RET(I)
SOL(I)
RNIOI(I) =
RNID2(I) =
RNID3(I) =
RNID4(I) =
659 CONTINUE
GO TO 350
660 NRN30 = NRN30
RNLD(NRN30)
RNQO(NRN30)
LAMS(NRN30)
RELAMS(NRN30)
RET(NRN30)
SOL(NRN30)
RNID1(NRN30)
RN1D2(NRN30)
RNID3(NRN30)
RNID4(NRN30)
GO TO 350
30) GO TO 700
1,20
.EQ. 0.0) GO TO
. .693/F(l))
,693/F(l)
F(2)
F(3)
F(4)
F(5)
F(6)
ANUC
A(2)
A(3)
660
GO TO
659
+ 1
.693/F(l)
F(2)
F(3)
F(5)
F(6)
ANUC
A(l)
A(2)
A(3)
-------
38
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
C#*#f##fff##ff#f#fff#############ff##ffi
C#
C# TYPE 31 CARDS ENTER DOSE CON\
C?
Lff7TTF7?fF fFffff Tfff W Tf^fw W Tf w wTfffTr w ft ff ff TTTTfT www w TT ff ff ff T
700 IF(N1 .NE. 31) GO TO 750
NRN31 = NRN31 + 1
8RSOL(1,NRN31) = F(l)
8RSOL(2,NRN31) = F(2)
BRINSL(1,NRN31) = F(3)
8RINSL(2,NRN31) = F(4)
OOSING(1,NRN31) = F(5)
OOSING(2,NRN31) = F(6)
RNID1(NRN31) = ANUC
RNID2(NRN31) = A(l)
RNID3(NRN31) = A(2)
RNID4(NRN31) = A(3)
GO TO 350
LtfitTfWlfWvWWwififTfirirJrwifTfitwifwwifWWTfifVTfTflfifwwi
C#
Cff TYPE 32 CARDS ENTER ENVIROf
C#
750 IF (Ml .NE. 32) GO TO 800
NRN32 = NRN32 + 1
MILK(NRN32) = F(l)
CROPS(NRN32) = F(2)
8EEF(NRN32) = F(3)
FISH(NRN32) = F(4)
RNID1(NRN32) = ANUC
GO TO 350
C#
Cff TYPE 40 CARDS ENTER MISC. DA'
C#
i*^ J* «X ^* «^ 4^ Ja ^ JX ^ ^ J^ J£ *i «X J^ 4^ ^X J^ «£ JXt^ ^ ^L ^ ^ JX UL J£ JX ^^ ^L ^L JX ^^ ^^ «^
' 800 IF(N1 .NE. 40) GO TO 825
LENGTH = F(l)
WIDTH = F(2)
HEIGHT = F(3)
AREA = F(4)
XLEACH = F(5)
CL = F(6)
VTANK = F(7)
GO TO 350
#
#
#
#
#
#
#
#
-------
39
00178
00179
00180
00181
00182
00133
00134
00135
00186
00137
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
Ifrffrfffi
C#
C#
Of
LffTTTrTrT]
325
CJ
c#
c#
ffffffffff
F#?7T###
IF(N1.
FLOW
MINEFR
8RTHRT
U
UFISH
VDRILL
GO TO
W#####
fff
#ff#
NE
=
=
=
=
=
s
350
###
ff#ff#f######M####f#Mf####f##f###f####ff#ffff####f##f####
#
TYPE 41 CARDS ENTER MORE MISC. DATA #
#
#########iif####################iSfiSf###iSf#f #########i?#########
. 41) GO TO 850
F(D
F(2)
F(3)
F(4)
F(5)
F(6)
#
TYPE 50 CARDS ENTER AQUIFER DATA #
#
im##nnmwm*mmmmmmmmmmmmmmm$#mn%
850
("" it 3tdt&~
C#
C#
C#
IF(N1
B
0
MU
EPSAQ
EPSRP
Kl
KPRIME
GO TO
r W n W it if it
.NE
=
s
~
-
350
###
. 50) GO TO 900
F(D
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
##############MM#M####################################
#
TYPE 60 CARDS ENTER HYDRAULIC GRADIENT DATA #
#
C##M######################################################M#####M####
900
IF(N1
ALPHA
BETA
CVA
CVB
CVC
GO TO
.NE
=
=
=
=
s
350
. 60) GO TO 950
F(D
F(2)
F(3)
F(4)
F(5)
-------
40
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
CJFJrf##jrifiT7?ir###JTff ###
C#
Cff TYPE
Of
C jxitics jtjtji 2 di :£:£?& ££«&£» 3tJ&*&*&
\*WinrfririnnrtritirwiririnrifirTf
950 IF (Ml .ME. 70)
FRAC = F ( 1 )
RN01 = ANUC
RN02 = A(l)
RND3 = A(2)
RND4 = A(3)
GO TO 350
Cff
C# TYPES 80
CnF
C######f ######!#####
1000 IF(N1 .NE. 80)
TEVENT = F(l
DO 1049 1=1,
IF(F(I + 1) .NE.
TDOSE(I) = F
1049 CONTINUE
GO TO 350
1050 IF(N1 .NE. 81)
DO 1100 I = 1,
IF(F(I) .NE. 0
TDOSE(I + 6)
1100 CONTINUE
GO TO 350
1101 IF(N1 ,EQ. 97)
NRN30 = NRN30
NRN31 - NRN31
NRN32 = NRN32
RNLD(NRN30)
RNQO(NRN30)
LAMS(NRN30)
RELAMS(NRN30)
R£T(NRN30)
SOL(NRN30)
RNID1(NRN30)
8RSOL(1,NRN31)
8RSOL(2,NRN31)
8RINSL(1,NRN31
BRINSL(2,NRN31
DOSING(1,NRN31
DOSING(2,NRN31
MILK(NRN32)
CROPS(NRN32)
8EEF(NRN32)
##!?## WWif ########$# Wif #3 #Trif#$###########::r#######T,
70 CARDS ENTER EVENT DATA
f#######M#############f##i^###f####M#########i!
GO TO 1000
AND 81 CARDS ENTER EVENT TIME AND DOSE TIMES
#######1HHtMW##W#####W##WW###W#W#1tf#WM
GO TO 1050
)
6
0.0) LTIME = I
(I + 1)
GO TO 1101
7
.0) LTIME = LTIME + 1
= F(I)
GO TO 1110
+ 1
+ 1
+ 1
1.0
0.0
0.0
0.0
1.0
0.0
NONE
0.0
0.0
) = 0.0
) = 0.0
) = 0.0
) = 0.0
0.0
0.0
0.0
a
IT
#
#
#
-------
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
1110
1200
1300
Cjfffff
C?
c#
c#
CSF
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
FISH(NRN32) = 0.0
IF(N1 .EQ. 97 .OR. Nl .EQ. 98 .OR. N1 .EQ. 99) GO TO 1300
WRITE (6, 1200)
FORMAT(1H1,'***PROBLEM TERMINATED DUE TO INPUT ERRORS, CHECK THE1,
T VALUE OF THE FIRST ENTRY ON THE JOB CONTROL CARD, MAKE SURE THE1,
2 'INPUT IS IN THE CORRECT FORMAT***1)
GO TO 9999
CONTINUE
IF(VORILL .EQ. 0.0) VORILL = VTANK
9#M##9$###M###9##W##W##W#####W#WW###W##W##i#WW#W###i#
#
START LOOPS AROUND NUCLIDES(NNUC) , DOSE #
TIMES(NTIME), AND DISTANCES(NOIST) #
#
FUNCTION. 1)AIR:MODELS A SLUG RELEASE TO THE LAND SURFACE BY THE
DRILL BIT.
2) DRILLH : MODELS A DIRECT HIT OF A WASTE CANISTER
3) FLTH : MODELS A DIRECT HIT OF A LINE OF CANISTERS BY
A FAULT LINE.
4) STREAM : MODELS A RELEASE TO SURFACE WATER STREAMS
5) DRNHLS:MOOELS A DRILLING RELEASE TO THE LAND SURFACE
BY WAY OF A BRINE POCKET(SALT) OR GRANITE.
6) DRNHAQ : MODELS A DRILLING RELEASE TO THE AQUIFERS.
BY WAY OF A BRINE POCKET(SALT) OR GRANITE.
7) FLTNHL : MODELS FAULTING, NOT A DIRECT HIT, THE SOURCE
TERM IS LEACH LIMITED.
8) FLTNHS : SAME AS PREVIOUS FUNCTION EXCEPT THAT THE
SOURCE IS SOLUBILITY LIMITED.
-------
42
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
I ORGAN = MORGAN
IPATH = NPATH
MORGAN = 1
NPATH = 1
DO 2000 NNUC = 1,NRN30
00 2000 NTIME = 1.LTIME
DO 2000 NDIST = 1,LDIST
IF(K .EQ. 1) CONC(NNUC,NTIME,NDIST) = AIR(RNQO(NNUC) ,
1 TDOSE(NTIME),DIST(NDIST),RNLD(NNUC),LAMS(NNUC),
2 RELAMS(NNUC),TEVENT,FRAC)
IF(K .EQ. 2) CONC(NNUC,NTIME,NDIST) = ORILLH (RNQO(NNUC),
1 TDOSE(NTIME),DIST(NOIST).RNLD(NNUC),R£T(NNUC),MU.TEVENT,
2 XLEACH,D,8,EPSAQ,FRAC,SOL(NNUC),AREA,Kl,KPRIME,CVA.CVB,CVC,
3 ALPHA,BETA)
IF(K .EQ. 3) CONC(NNUC,NTIME,NDIST) = FLTH(RNQO(NNUC),
1 TDOSE(NTIME),RNLD(NNUC),DIST(NOIST),RET(NNUC),MU,TEVENT,
2 XLEACH,D,B,EPSAQ,FRAC,SOL(NNUC) ,CL,LENGTH,WIDTH,HEIGHT,
3 MINEFR)
IF(K .EQ. 4) CONC(NNUC,NTIME,NDIST) = STREAM(RNQO(NNUC),
TOOSE(NTIME).RNLO(NNUC),TEVENT,XLEACH.FRAC,SOL(NNUC),K1,
KPRIME,AREA,CVC,FLOW)
IF(K .EQ. 5) CONC(NNUC,NTIME,NDIST) = DRNHLS(RNQO(NNUC),
1 TDOSE(NTIME),OIST(NDIST),RNLD(NNUC),TEVENT,XLEACH,FRAC,
2 SOL(NNUC),VTANK,VDRILL,LAMS(NNUC),RELAMS(NNUC),CL)
IF(K .EQ. 6) CONC(NNUC,NTIME,NDIST) = DRNHAQ(RNQO(NNUC),
1 TDOSE(NTIME),NREP .DIST(NDIST),RNLD(NNUC),RET(NNUC),MU,
2 TEVENT,XLEACH,D,B,EPSAQ,SOL(NNUC),CL,AREA,Kl,KPRIME,CVA,CVB,
3 CVC,ALPHA,BETA,LENGTH,WIDTH,HEIGHT,MINEFR,VTANK,FRAC,
4 EPSRP)
IF(K .EQ. 7) CONC(NNUC,NTIME,NDIST) = FLTNHL(TEVENT,
1 TDOSE(NTIME),RNQO(NNUC),MU,R£T(NNUC),DIST(NDIST),
2 CL,XLEACH,FRAC,LENGTH,B,EPSAQ,D,WIDTH,SOL(NNUC),HEIGHT,
3 MINEFR)
-------
43
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
C
1
2
3
C
C
1
2
3
4
C
C
2000
C
c
C»fiW#
c#
c#
c#
c#
c?
c#####
c
c
1
c
1
2
3000
C
CONTINUE
########
DO 3000
00 3000
DO 300
DO 30
00 3
CONTINUE
IF(K .EQ. 8) CONC(NNUC,NTIME,NDIST) = FLTNHS(TEVENT,
TDOSE(NTIME),RNQO(NNUC),MU,RET(NNUC),OIST(NDIST),
CL,XL£ACH,FRAC,LENGTH,B,EPSAQ,D,WIDTH,SOL(NNUC),HEIGHT,
MINEFR)
DO 2000 NPATH = 1,1 PATH
00 2000 NORGAN = 1,1 ORGAN
DOSERT(NNUC,NTIME,NDIST,NPATH,NORGAN) =
DOSE(CONC(NNUC,NTIME,NDIST),DOSING(NORGAN,NNUC),
BRINSL(NORGAN,NNUC),BRSOL(NORGAN,NNUC),
MILK(NNUC) .CROPS(NNUC),BEEF(NNUC).FISH(NNUC),
NPATH,U,BRTHRT,UFISH)
LOOPS WILL FIND THE MAXIMUM CONTRIBUTOR
TO A GIVEN ORGAN ALONG A GIVEN DOSE PATH
AT A GIVEN DISTANCE AND TIME.
#
#
#
#
C###f#f#################f#####f#################f##f########!###########
1.LTIME
' l.LDIST
= l.IPATH
DO 3000 NORGAN = 1,1 ORGAN
MAXNUC(NTIME,NDIST,NPATH,NORGAN)=
MAXI(DOSERT(1,NTIME,NOIST,NPATH,NORGAN),NRN30)
IMAX = MAXNUC(NTIME,NOIST,NPATH,NORGAN)
NAME(NTIME,NOIST,NPATH,NORGAN) = RNIDl(lMAX)
00 3000 NNUC = 1,NRN30
REM(NTIME,NDIST,NPATH,NORGAN)
REM(NTIME,NDIST,NPATH,NORGAN)
OOSERT(NNUC,NTIME,NDIST,
NPATH,NORGAN)
-------
44
00405
00406
00407
00408
00409
00410
00411
00412
00413
0'0414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
C
Or
C#
C#
C?
Cffif JFipT?
C
C
3100
1
2
C
C
4000
C
C
C
C
C
C
Of
Of
c#
c#
C
C
1
C
C
C
C
9999
MM###MM########WW###########W###WWW###WW######W####\
THE iNEXT LOOPS WILL CALCULATE THE % OF
THE MA.XIMUM CONTRIBUTOR TO THE DOSE
if$iffffi?#3§i?#W33ft3ififfi9##T?Tf:!f$if$i?Tr##$i?#if####if:$##iifif$Tt##:it#$#ir3Tr#iFif$Tr#i
00 4000 NTIME = 1,LTIM£
DO 4000 NDIST = l.LDIST
DO 4000 NPATH = 1,1 PATH
DO 4000 NORGAN = 1,1 ORGAN
IMAX = MAXNUC(NTIME, NDIST, NPATH, NORGAN)
IF(REM(NTIME,NOIST, NPATH, NORGAN) .NE. 0) GO TO 3100
PCT(NTIME, NDIST, NPATH, NORGAN) = 0.0
GO TO 4000
PCT(NTIME, NDIST, NPATH, NORGAN) = 100 *
DOSERT( IMAX, NTIME, NDIST, NPATH, NORGAN) /
REM(NTIME , NDIST , NPATH , NORGAN)
CONTINUE
OUTPUT WILL PRINT THE OOSERATE, MAXIMUM CONTRIBUTOR
TO THE DOSE, AND THE % CONTRIBUTION.
CALL OUTPUT (IPATH,IORGAN,TEVENT,RND1 ,RND2,RN03,RND4,MU,
LTIME,LDIST,IDLIM)
IF(N1 .EQ. 99) GO TO 9999
IF(N1 .EQ. 97 .OR .Nl .EQ. 98) CALL INIT(NRN30,IPATH,IORGAN)
IF (Ml .EQ. 97) GO TO 50
NRN30 = 0
NRN31 = 0
NRN32 = 0
GO TO 50
STOP
END
#
#
*#
#
#
#
#
£#
-------
45
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
FUNCTI ON AI R( RNQO, TDOSE ,DI ST ,RNLD,XLAMS , RELAMS , TEVENT , FRAC )
Cl = FRAC * RNQO * EEXP(-RNLO * TEVENT)
C2 = 2.5E-17 * ((DIST/1000)**(-1.43))
C3 = EEXP(-(DIST / 9595) ** (.57))
C4 = -TDOSE * (RNLD + XLAMS + RELAMS)
C5 = EEXP(C4)
AIR = Cl * C2 * C3 * C5
RETURN
END
FUNCTION DRILLH (RNQO, TDOSE, DIST, RNLD, RET, MU, TEVENT, XLEACH, D, 8,
1 EPSAQ, FRAC, SOL, AREA, Kl ,KPRIME,CVA,CVB,CVC , ALPHA, BETA)
REAL MU,K1,KPRIME
Cl = DIST * RET / MU
C2 = TEVENT + TDOSE
IF (TDOSE - Cl) 100,200,200
100 DRILLH = 0.0
GO TO 300
200 C3 = -RNLD * C2
C4 = -XLEACH * (TDOSE - Cl)
C5 = 1.0 / (SQRT(12.56 * D * MU * DIST) * 8 * EPSAQ)
C6 = FRAC * XLEACH * RNQO * EEXP(C3 + C4)
C7 = SOL * EEXP(-RNLD * Cl)
C8 = AREA * (Kl + KPRIME * (TDOSE - Cl)) *
1 (CVA * EEXP( -ALPHA * (C2 - Cl)) +
2 CV8 * EEXP( - BETA * (C2 - Cl)) + CVC)
C9 = C7 * C8
01 = C6
IF(SOL .NE. 0) 01 = AMIN1(C6,C9)
DRILLH = 01 * C5
300 CONTINUE
RETURN
END
-------
46
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
FUNCTION FLTH(RNQO,TDOSE,RNLO,DIST,RET,MU,TEVENT,XLEACH,D,B,
1 EPSAQ.FRAC,SOL,CL,LENGTH,WIDTH,HEIGHT,MINEFR)
•REAL MU.LENGTH,MINEFR,DCAORE.FLTGRL,AERR,RERR,ERROR
INTEGER IER
EXTERNAL FLTGRL
AERR = 0.0
RERR = 0.095
IF(TEVENT . LT. CL) TEVENT = CL
Cl = TOOSE * MU / RET
IF(C1 .GT. OIST) Cl = OIST
IF(C1 .LT. 1.0) FLTH = 0.0
IF(C1 .LT. 1.0) GO TO 200
C2 = OCAORE(FLTGRL,1.0,C1,AERR,RERR,ERROR,IER)
FLTH = C2 '
200 CONTINUE
RETURN
END
FUNCTION STREAM(RNQO,TOOSE,RNLD,TEVENT,XLEACH,FRAC,SOL,Kl,
1 KPRIME,AREA,CVC,FLOW)
REAL Kl,KPRIME
Cl = XLEACH * RNQO * FRAC
C2 = -RNLD * TEVENT
C3 = -(RNLD + XLEACH) * TDOSE
C4 = (Kl + KPRIME * TDOSE) * SOL * AREA * CVC
C5 = C3
IF(SOL .NE. 0) C5 = AMIN1(C3,C4)
STREAM = Cl * EEXP(C2 + C3) / FLOW
RETURN
END
-------
47
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
C
c
C
c
c
c
c
c
c
100
200
FUNCTION DRNHLS(RNQO,TDOSE,DIST,RNLD,TEVENT,XLEACH,FRAC,SOL,
1 VTANK,VORILL,XLAMS,RELAMS,Cl)
IF(TEVENT .LT. CL) C6 = 0.0 .
IF(TEVENT .LT. CL) GO TO 200
Cl = TEVENT - CL
C2 = -Cl * XLEACH
C3 = 1 - EEXP(C2)
C4 = -RNLD * TEVENT
C5 = FRAC '* RNQO * C3 * EEXP(C4)
C6 = C5 * VDRILL / VTANK
SOLCI = SOL * VDRILL
IF(SOL .NE. 0) GO TO 100
GO TO 200
C6 = AMIN1(C6,SOLCI)
C7 = (2.5E-17) * ((DIST/1000)**(-1.43))
C8 = EEXP(-(DIST/9595)**(.57))
C9 = EEXP(-(RNLD + XLAMS + RELAMS) * TDOSE)
DRNHLS = C6 * C7 * C8 * C9
RETURN
END
FUNCTION DRNHAQ(RNQO,TDOSE,NREP,DIST,RNLD,RET,MU,TEVENT,XLEACH,
1 0,8,EPSAQ,SOL,CL,AREA,K1,KPRIME,CVA,CV8,CVC,ALPHA,BETA,
2 LENGTH,WIDTH,HEIGHT,MINEFR,VTANK,FRAC,EPSRP)
REAL MU,K1,KPRIME,LENGTH,MINEFR,DCAORE,DRTGRL,AERR,RERR,ERROR
COMMON /BLOCK3/ A2,A3,T,V
INTEGER IER
EXTERNAL DRTGRL
T = TEVENT + TDOSE - DIST * RET / MU
Tl = T - TEVENT
IF(T1 .LT. 0.0 .OR. RNQO .EQ,
IF(T1 .LT. 0.0 .OR. RNQO .EQ,
IF(TEVENT .LT. CL) ORNHAQ = 0.0
IF(TEVENT .LT. CL) GO TO 300
GO TO (100,200),NREP
100 V = LENGTH * WIDTH * HEIGHT * EPSRP
CO = TEVENT + TDOSE
Cl = OIST * RET / MU
C2 = 1.0 / (SQRT(12.56 * 0 * MU * DIST) * B * EPSAQ)
C3 = SOL * EEXP( -RNLD * Cl)
C4 = AREA * (Kl + KPRIME * Tl)
0.0) DRNHAQ = 0.0
0.0) GO TO 300
MINEFR
-------
48
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
C5
C5
C7
C3
C9
01
02
03
04
(CO -
(CO -
CVA * E£XP( -ALPHA *
CV8 * EEXP( - BETA *
C4 * (C5 + C6 H- CVC)
C3 * C7
C7 * RNQO / V
1 - EEXP((CL + Cl - CO)
£EXP( -RNLD * (CO - Cl))
C9 * 01 * 02
03 * FRAC
Cl))
Cl))
XLEACH)
0) 04 = AMIN1(04,C8
IF(SOL .NE
DRNHAQ = 04 * C2 * EEXP(-RNLD * Cl)
GO TO 300
200 V = VTANK
Al = XLEACH * FRAC * RNQO * EEXP(XLEACH * CL) / V
A2 = ALOG(Al)
A3 = - XLEACH
RERR = .095
AERR =0.0
A4 = DCADRE(DRTGRL
A5 = K1 + KPRIME *
A6 = CVA * EEXP( -ALPHA
A7 = CV8 * EEXP( - BETA
AS = AREA / (SQRT(12.56
A9 = A5 * (A6 + A7) * A8
DRNHAQ = A4
IF(SOL .NE.
DRNHAQ = A9
TEVENT,T,AERR,RERR,ERROR,IER)
Tl
T)
T) + CVC
0 * MU * 01 ST) * B * EPSAQ)
300
CONTINUE
RETURN
END
0) ORNHAQ = AMIN1( SOL , ORNHAQ)
* ORNHAQ * EEXP( -RNLD * 01 ST
RET / MU)
C
c
-------
49
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
C
c
C
c
c
c
c
c
c
c
c
c
FUNCTION FLTNHL(TEVENT,TDOSE,RNQO,MU,RET,DIST.CL,
1 XLEACH,FRAC,LENGTH,8,EPSAQ,D,WIDTH,SOL,HEIGHT,MINEFR)
REAL MU,LENGTH,MINEFR
EXTERNAL FLTGRL
AERR = 0.0
RERR = 0.095
Cl = TDOSE * MU / RET
IF(C1 .GT. OIST) Cl = OIST
IF(TEVENT .LT. CL) TEVENT = CL
IF(C1 .LT. 1.0) FLTNHL = 0.0
IF(C1 .LT. 1) GO TO 100
C2 = RNQO * FRAC
C3 = 1.0 / SQRT(12.56 * 0 * MU)
C4 = DCADRE(FLTGRL,1.0,C1,AERR, RERR,ERROR,IER)
FLTNHL = C2 * C3 * C4
100 CONTINUE
RETURN
END
FUNCTION FLTNHS(TEVENT,TDOSE,RNQO,MU,RET,DIST.CL,
1 XLEACH.FRAC,LENGTH,B,EPSAQ,D,WIDTH,SOL,HEIGHT,MINEFR)
REAL MU,LENGTH,MINEFR
EXTERNAL FLTGRL
AERR =0.0
RERR = 0.095
Cl = TOOSE * MU / RET
IF(C1 .GT. DIST) Cl = DIST
IF(C1 .LT. 1.0) FLTNHS = 0.0
IF(TEVENT .LT. CL) TEVENT = CL
IF(C1 .LT. 1.0) GO TO 100
C2 = RNQO * FRAC
C3 = SOL * MU * WIDTH * 8 * EPSAQ / LENGTH
C4 = C2
IF(SOL .NE. 0) C4 = AMIN1(C2,C3)
C5 = 1.0 /SQRT(12.56 * 0 * MU)
C6 = DCADRE(FLTGRL,1.0,C1,AERR,RERR,ERROR,IER)
FLTNHS = C4 * C5 * C6
100 CONTINUE
RETURN
END
-------
50
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
0069-9
00700
00701
00702
00703
00704
00705
00706
00707 ,
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723
C
c
C
c
c
c
c
FUNCTION EEXP(X)
IF(X .GT. -100.0) GO TO 100
EEXP = 0.0
RETURN
100 IF(X .LT. 174.08) GO TO 200
EEXP = 4.0E75
RETURN
200 EEXP = EXP(X)
RETURN
END
FUNCTION DOSE (CON,DCF1 ,DCF2,OCF3,MILK,CROPS,BEEF ,FISH,NP-ATH,
1 U,BRTHRT,UFISH)
REAL MILK
COMMON /BLOCK!/ OOSERT(21,13,10,5,2)
COMMON /BLOCKS/ RET(21),XLEACH,B,MU,EPSAQ,WIDTH,HEIGHT,LENGTH,
1 MINEFR,CL,K,TDOSE(13),EPSRP
DIMENSION X(5)
IF(K .EQ. 1 .OR. K .EQ. 5) U = BRTHRT
OCF = DCF1
IF(K .EQ. 1) DCF = DCF2
IF(K .EQ. 5) OCF = DCF3
X(l) = 1.00
X(2) = MILK
X(3) = CROPS
X(4) = BEEF
X(5) = FISH
IF(NPATH .EQ. 5) U = UFISH
DOSE = 0.0
DOSE = U * DCF * CON * X(NPATH)
RETURN
END
-------
51
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
C
c#
c#
C#f#ffJ
C
C
100
1
C
C
C
C
^f######M##M####*#M###############M#M#################M#####
MAX I WILL FIND THE INDEX OF THE MAXIMUM CONTRIBUTOR #
#
t####w###ii#M##MMM###MMWMM####M#M#W#W###M##M#M#####
FUNCTION MAXI(A,J)
DIMENSION A(l)
T = 0.0
DO 100 1=1, J
IF(A(I) .LT. T) GO TO 100
T » A(I)
IMAX = I
CONTINUE
MAX I = IMAX
RETURN
END
-------
52
00747
00748
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775
00776
00777
00778
00779
00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
C
c
C
c
c
c
c
FUNCTION ORTGRL(S)
REAL K1.K2,KPRIME
COMMON /8LOCK3/ A2,A3,T,V
COMMON /BLOCK4/ Kl,KPRIME,CVA,CVB,CVC,ALPHA,BETA,AREA
COMMON /3LOCK6/ TEVENT,RNLD(21),SOL(21)
COMMON /BLOCK7/ NNUC,NTIME ,FRAC
K2 = Kl - KPRIME * TEVENT
81 = - RNLD(NNUC) * T
B2 = CVA * K2 * (EEXP( -ALPHA *
83 = CVA * KPRIME / ALPHA *
1 ( S - !)•* EEXP( -ALPHA *
84 = CV8 * K2 * (EEXP( - BETA *
B5 = CV8 * KPRIME / BETA *
1 ( S - 1) * EEXP( - BETA
- EEXP( -ALPHA * S))/ ALPHA
86 = CVC * (S *
ARGMU = 81 + (B2
X3 » A2 + A3 * S
X4 = X3 + ARGMU
DRTGRL = EEXP(X4)
RETURN
END
FUNCTION FLTGRL(S)
T)
((T - 1) * EEXP(-ALPHA * T) -
S))
T)
((T -
* S))
(K2 + KPRIME * S / 2)
+ 83 + 84 + B5 + 86)
- EEXP( - BETA * S))/ BETA
1) * EEXP(- BETA * T) -
T *(K2 H
AREA / V
KPRIME * T/2))
COMMON /BLOCKS/ RET(21),XLEACH,B,MU,EPSAQ,WIDTH,HEIGHT,LENGTH,
1 MINEFR,CL,K,TDOSE(13),EPSRP
TEVENT,RNLD(21),SOL(21)
NNUC,NTIM£,FRAC
DLIM(5),D,RNQO(21)
COMMON
COMMON
COMMON
REAL
/BLOCK6/
/BLOCK7/
/BLOCKS/
LENGTH,MU,MINEFR
IF( K .EQ. 3)
IF(K .EQ. 8
Cl = B
MU
GO TO
.AND.
EPSAQ
+ Cl
C2 = RNLD(NNUC)
C3 = Cl - XLEACH
C4 = TOOSE(NTIME)
Al = Cl / (WIDTH
Rl = ALOG(Al)
Rl = Rl - RNLD(NNUC) *
R2 = EEXP(XLEACH * CL)
R2 = ALOG(R2)
300
SOL(NNUC)
/ (HEIGHT *
EPSRP)
.NE. 0)
LENGTH '
GO TO 300
' MINEFR *
FRAC
TEVENT -
SQRT(S))
RET(NNUC) / MU
* RET(NNUC)
XLEACH / C3
/ MU
-------
53
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810
00811
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
C
C
C
C
C
C
C
C
C
300
R3 = Rl
R4 = Rl
01 = R3
02 = R3
03 = R4
04 = R4
FLTGRL
GO TO 500
CONTINUE
IF(RNQO(NNUC)
IF(RNQO(NNUC)
R2 - C2 * C4
C2 * (TEVENT - C4)
C3 * C4
C3 * TEVENT
RNLD(NNUC) *
TEVENT
(XLEACH + RNLD(NNUC)) * TEVENT
EEXP(Ol) - EEXP(D2) + EEXP(D3) -
.EQ. 0) FLTGRL =0.0
.EQ. 0) GO TO 500
H XLEACH *
EEXP(04)
CL
LEACH LIMITED CALCULATION
AA = FRAC * XLEACH * RNQO(NNUC)
A2 = ALOG(AA)
A3 = LENGTH * EPSAQ * 8
A4 = -ALOG(A3)
A5 = 12.56 * 0 * MU * S
A6 = -0.5 * ALOG(A5)
A7 = -RNLO(NNUC) * (TEVENT +
A8 = -XLEACH * (TDOSE(NTIME)
A9 = A2 + A4 + A6 + A7 + A8
TDOSE(NTIME))
+ RET(NNUC) *
S / MU)
400
500
SOLUBILITY LIMITED CALCULATION
IF(SOL(NNUC) .EQ. 0) GO TO 400
81 = MU * EPSAQ * WIDTH * SOL(NNUC)
82 = ALOG(81)
83 = -RNLO(NNUC) * RET(NNUC) * S / MU
84 = 82 + 83 + A4 + A6
A9 = AMIN1(A9,84)
FLTGRL = EEXP(A9)
CONTINUE
RETURN
END
-------
54
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843
00844
00845
00846
00847
00348
00849
00850
00851
00852
00853
00854
C
C
SUBROUTINE
COMMON
1
COMMON
OUTPUT (NPATH
/3LOCK2/
/BLOCKS/
R£M(
01 ST
13,
(
R£T(2
,J,T,R1,R2,R3,R4,XMU,LT,LD,ID)
10,5,2), PCT(13,10,5,2), NAM£( 13, 10,5,2
),
10)
1)
1 MINEFR,
^
u
C
c###
c#
c#
Cff
c#
C
C
REAL *8
REAL *4
CTIME
####ffff#fff
Rl
R2
###
.NAME,
,R3,R4
4^i± 4£4^4& jfc
DATE
WILL RETURN
###
CALL CTIME
C
C
#####f
(DATE,
Tr TT it TT
»
#
,XLEACH,B,MU,EPSAQ, WIDTH, HEIGHT, LENGTH,
CL,K,TDOS£(13),£PSRP
TIMES, NONE
##
THE
#
TIMES
IS
)
•
DATE AND THE TIME OF DAY THE JOB
RUN.
##################!######################=
M It
$
#
#
#
-------
55
00855
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891
00892
00893
00894
00895
008'96
00897
00898
00899
00900
00901
00902
C
c
C
c
c
c
c
c
00 3000 NORGAN=1,J
IF(K .EQ. 4) GO TO 750
IF(K .EQ. 1 .OR. K .EQ. 5) GO TO 2000
WRITE(6,100) DATE,TIMES,Rl,R2,R3,R4,T,MORGAN
WRITE(6,200)
WRITE(6,300) (OIST(NN),NN=1,LD)
DO 700 JJ=1,LT
WRITE(5,400) (REM(JJ,11,1,MORGAN),!I = 1,LD)
WRiTE(6,500) TDOSE(JJ),(NAME(JJ,11,1.MORGAN),11 = 1,LD]
WRITE(6,600) (PCT(JJ,II,1,NORGAN),II=1,LD)
700 CONTINUE
NP = 1
IF(K.EQ.2 .AND. IO.NE.1 .OR. K.EQ.6 .AND. ID.NE.l) CALL
1ARECLC(DATE.TIMES,NORGAN,R1,R2,R3,R4,T,XMU,NP.NTIME)
750 CONTINUE
IF(NPATH .GT. 1) GO TO 800
GO TO 3000
800 CONTINUE
WRITE(6,900) DATE,TIMES,Rl,R2,R3,R4,T,MORGAN
WRITE(6,200)
WRITE(6,300) (OIST(NN),NN=1,LD)
DO 1000 JJ=1,LT
WRITE(6,400) (REM(JJ,II,2,NORGAN),II=1,LD)
WRITE(6,500) TDOSE(JJ),(NAME(JJ,11,2,NORGAN),11« 1 ,LD)
WRITE(6,600) (PCT(JJ,II,2,NORGAN),II=1,LD)
1000 CONTINUE .
NP = 2
IF(K.EQ.2 .AND. ID.NE.l .OR. K.EQ.6 .AND. ID.NE.l) CALL
1ARECLC(DATE,TIMES,NORGAN,R1,R2,R3,R4,T,XMU,NP,NTIME)
IF(NPATH .GT. 2) GO TO 1050
GO TO 3000
1050 CONTINUE
WRITE(6,1100) DATE,TIMES,R1,R2,R3,R4,T.MORGAN
WRITE(6,200)
WRITE(6,300) (DIST(NN),NN=1,LD)
DO 1200 JJ=1,LT
WRITE(6,400) (REM(JJ,II,3,NORGAN),II=1,LO)
WRITE(6,500) TDOSE(JJ),(NAME(JJ,II,3,NORGAN),II=1,LD)
WRITE(6,600) (PCT(JJ,II,3,NORGAN),II=1,LD)
1200 CONTINUE
-------
56
00903
00904
00905
00906
00907
00908
00909
00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00920
00921
00922
00923
00924
00925
00926
00927
00928
00929
00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940
00941
00942
00943
00944
00945
00946
00947
C
C
c
c
c
c
c
c
NP = 3
IF(K.EQ.2 .AND. ID.NE.l .OR. K.EQ.6 .AND. ID.NE.l) CALL
1ARECLC(DATE,TIMES,NORGAN,R1,R2,R3,R4,T,XMU,NP,NTIME)
IF(NPATH .GT. 3) GO TO 1400
GO TO 3000
1400 CONTINUE
WRITE(6,1300) DATE,TIMES,R1,R2,R3,R4,T,NORGAN
WRITE(6,200)
WRITE(6,300) (DIST(NN),NN=1,LD)
DO 1450 JJ=1,LT
WRITE(6,400) (REM(vJJ,II,4,NORGAN),II = l,LO)
WRITE(6,500) TDOSE(JJ),(NAME(JJ,II,4,NORGAN),II=1,LD;
WRITE(6,600) (PCT(JJ,II,4,NORGAN),!1=1,LD)
1450 CONTINUE
NP = 4
IF(K.EQ.2 .AND. ID.NE.l .OR. K.EQ.6 .AND. ID.NE.l) CALL
1ARECLC(DATE,TIMES,NORGAN,R1,R2,R3,R4,T,XMU,NP,NTIME)
IF(NPATH .EQ. 5) GO TO 1475
GO TO 3000
1475 IF(K .NE. 4) GO TO 3000
WRITE(6,1500) DATE,TIMES,R1,R2,R3,R4,T,NORGAN
WRITE(6,200)
WRITE(6,300) (DIST(NN),NN=1,LD)
DO 1600 JJ=1,LT
WRITE(6,400) (REM(JJ,II,5,NORGAN),II=1,LD)
WRITE(6,500) TDOSE(JJ),(NAME(JJ,II,5,NORGAN),II=1,LD)
WRITE(6,600) (PCT(JJ,II,5,NORGAN),II=1,LD)
1600 CONTINUE
2000 CONTINUE
WRITE(6,1700) DATE,TIMES,R1,R2,R3,R4,T,NORGAN
WRITE(6,200)
WRITE(6,300) (DIST(NN),NN=1,LO)
DO 2100 JJ=1,LT
WRITE(6,400) (REM(JJ,II,1,NORGAN),II=1,LD)
WRITE(6,500) TOOSE(JJ),(NAME(JJ,11,1,NORGAN),II=1,LD)
WRITE(6,600) (PCT(JJ,11,1,NORGAN),II=1,LD)
2100 CONTINUE
-------
57
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960
00961
00962
00963
00964
00965
00966
00967
00968
00969
00970
00971
00972
00973
00974
00975
00976
C
C
c
3000
200
300
400
500
600
100
IF(K.EQ.l .AND. ID.NE.l .OR. K.EQ.5 .AND. ID.
1 (DATE, TIMES, NORGAN,R1,R2,R3,
CONTINUE
FORMAT (1 HO, 58X,1 01 STANCE (METERS)')
FORMAT(1HO,'TIME(YRS)' ,3X, 10(4X ,F7.2, IX) )
FORMAT(1HO,12X,10(3X,1PE9.2))
FORMAT(1X,1PE8.2,8X,A8,9(4X,A8))
FORMAT(
FORMAT (
1H ,13X
1H1.A8,
1M/YR) AQUIFERS
900
1100
1300
1500
1700
FORMAT(
1M/YR)
FORMAT(
1M/YR)
FORMAT(
1M/YR)
FORMAT(
1M/YR)
FORMAT(
1H1,A8,
MILK
1H1.A8,
CROPS
1H1.A8,
BEEF
1H1,A8,
FISH
1H1.A8,
,F7 . 1 ,
4X.A8,
1 4x '
, 3A ,
4X,A8,
1 4x '
,3A,
4X,A8,
',5X,'
4X,A8,
" qv i
, JA,
4X,A8,
',5X,'
4X,A8,
1M/YR) INHALATION',3X
C
C
C
RETURN
END
'%' ,9(
87X,A8
EVENT
87X,A8
EVENT
87X.A8
EVENT
87X.A8
EVENT
87X,A8
EVENT
87X,A8
^r ^\ y •
,3A4
TIME
,3A4
TIME
,3A4
TIME
,3A4
TIME
,3A4
TIME
,3A4
7.1,'%')
,//,30X,
:',F6.1,
,//,30X,
:',F6.1,
,//,30X,
:',F6.1,
,//,30X,
:',F6.1,
,//,30X,
:',F6.1,
,//,30X,
, 'EVENT TIME:',F6.
)
'MAXIMUM
' YEARS',
'MAXIMUM
' YEARS',
'MAXIMUM
1 YEARS',
'MAXIMUM
1 YEARS',
'MAXIMUM
1 YEARS',
'MAXIMUM
NE.l) CALL LSAREA
R4.T.NTIME)
INOIVI
25X,'(
DUAL
Ml
INDIVIDUAL
25X,'(
INDIVI
25X,'(
INOIVI
25X,'(
INDIVI
25X,'(
INDIVI
1,' YEARS', 25X,
Ml
DUAL
Ml
DUAL
Ml
DUAL
Ml
DUAL
'(',
DOSES(RE
, ' ) ' )
OOSES(RE
» ' ) ' )
DOSES (RE
• ') ')
DOSES(RE
, ' ) ' )
DOSES(RE
, ' ) ' )
DOSES(RE
II,1)1)
-------
58
00977 C
00978 C
00979 SUBROUTINE INIT(NRN30,IPATH,IOR6AN)
00980 COMMON /BLOCK!/ DOSERT(21,13,10,5,2)
00981 COMMON /BLOCK2/ REM(13,10,5,2), PCT(13,10,5,2), NAME(13,10,5,2]
00982 1 OIST(IO)
00983 00 100 M=1,1 ORGAN
00984 REAL *8 NAME
00985 00 100 L=1,IPATH
00986 00 100 K=l,10
00987 00 100 J»l,13
00988 REM(J,K,L,M) = 0.0
00989 PCT(J,K,L,M) = 0.0
00990 DO 100 I=1,NRN30
00991 DOSERT(I,J,K,L,M) = 0.0
00992 100 CONTINUE
00993 RETURN
00994 END
00995 C
00996 C
00997 C
00998 C
00999 SUBROUTINE UERTST(IER,X)
01000 IF (IER .GT. 66) WRITE(6,100) IER
01001 100 FORMAT(1H ,'IER = ',13,'(ANSWERS MAY NOT BE WITHIN THE SPECIFIED
01002 TERROR RANGE DUE TO AN ILL BEHAVED FUNCTION)1)
01003 RETURN
01004 END
01005 C
01006 C
-------
59
01007
01008
01009
01010
01011
01012
01013
01014
01015
01016
01017
01013
01019
01020
01021
01022
01023
01024
01025
01026
01027
01028
01029
01030
01031
01032
01033
01034
01035
01036
01037
01038
01039
01040
01041
01042
01043
01044
01045
01046
01047
01048
01049
01050
01051
01052
01053
01054
01055
C
1000
C
Q****
C
C
£****
C
1501
C
c****
C
C
c****
C
C
£****
C
C
SUBROUTINE ARECLC( DATE, TIMES, L ,R1 ,R2 ,R3 ,R4,T,XMU,NP ,NT)
COMMON /8LOCK2/ REM( 13, 10,5,2) , PCT( 13, 10,5,2) , NAME( 13, 10,5,2) ,
1 DIST(IO)
COMMON /BLOCKS/ RET(21 ) ,XLEACH,B,MU ,EPSAQ, WIDTH, HEIGHT, LENGTH,
1 MINEFR,CL,K,TOOSE(13),EPSRP
COMMON /BLOCKS/ OLIM(5) ,D,RNQO(21 )
REAL *4 R2,R3,R4
REAL *8 Rl, DATE, TIMES, NAME
DIMENSION HT(10),AREADO(5)
IF(DLIM(1) .EQ. 0.0) GO TO 1600
WRITE (6, 1000) DATE, TIMES, R1,R2,R3,R4,T,L,DLIM(1),DLIM(2),DLIM(2),
1 DLIM(3),DLIM(3),DLIM(4),DLIM(4),DLIM(5),(DLIM(JJ),JJ=1,5)
FORMAT(1H1,A8,2X,A8,75X,A8,3A4,//,32X, 'EXTENT OF CONTAMINATION',
110X, 'EVENT TIME :' ,F7. 1 , 10X, 'ORGAN: ', 11 ,// ,53X, 'AREA (SQUARE METE
IRS) ', /,3X, 'TIME ',24X,' INCREMENTAL AREAS ' ,45X, 'CUMULATIVE
1AREAS1,/,2X,1(YEARS)',T14,G9.4,T19,'-',G9.4,T27,G9.4,T32,'-1,G9.4,
1T40,G9.4,T45,'-',G9.4,T53,G9.4,T58,'-',G9.4,T74,G9.4,T80,'+',T36,
1G9.4,T92,'+' ,T98,G9.4,T104,'+' ,T1 10,G9.4,T116, '+' ,T122,G9.4,T127,
1 ' + ' j )
N TIME LOOP
00 1600 N=1,NT
INITIALIZE AREADO ARRAY
DO 1501 1=1,5
AREADO(I)=0.0
I FIVE AREAS LOOP
00 1500 1=1,5
J DISTANCE LOOP
DO 1400 J=l,10
IF(REM(N,J,NP,L) .EQ. 0) AR = 0.0
IF(REM(N,J,NP,L) .EQ. 0) GO TO 1400
FRACT = OLIM(I) / REM(N,J ,NP ,L )
IF (REM(N,J,NP,L) .LT. OLIM(I)) FRACT=1.0
CALCULATE THE EXTENT OF THE DOSE AWAY FROM THE CENTER LINE
AA=ALOG( FRACT)
ARG = -4.0 * 0 / XMU * OIST(J) * AA
HT(J)=SQRT(ARG)
IF (J.GT.l) GO TO 300
-------
60
01056 C**** COMPUTE THE AREA UNDER THE PARABOLA FROM ORIGON TO FIRST POINT
01057 C
01058 C1=-ALOG(FRACT)
01059 IF (Cl .LT. 0.0) GO TO 250
01060 ' AR-6.53*SQRT(C1)*OIST(J)**1.5
01061 GO TO 1400
01062 250 AR=0.0
01063 GO TO 1400
01064 300 YA8S=A8S(HT(J-1)-HT(J))
01065 HITMIN=AMIN1(HT(J-1),HT(J))
01066 C
01067 C**** COMPUTES AREAS BETWEEN SUBSEQUENT POINTS USING TRAPOZOIDS
01068 C
01069 AR=2.0*(DIST(0)-OIST(J-1))*(HITMIN+.5*YABS)
01070 C
01071 C**** COMPUTE THE TOTAL AREA FROM CENTERLINE TO OLIM(I)
01072 C
01073 1400 AREADO(I)=AR+AREAOO(I)
01074 1500 CONTINUE
01075 C
01076 C**** COMPUTE AREAS BETWEEN THE VARIOUS DLIM(I)
01077 C
01078 AAREA=AREADO(1)-AREADO(2)
01079 8AREA=AREADO(2)-AREADO(3)
01080 CAR£A=AREAOO(3)-AREAOO(4)
01081 DAREA=AREAOO(4)-AREAOO(5)
01082 WRITE(6,1550) TOOSE(N),AAREA,8AREA,CAREA,DAREA,
01083 1 (AREADO(I),I=1,5)
01084 1550 FORMAT(1H , 1PE9.2,4X,4( 1PE9.2.4X) ,6X,5(1PE9.2.3X))
01085 1600 CONTINUE
01086 RETURN
01087 END
01088 C
01089 C
01090 SUBROUTINE LSAREA(DATE,TIMES,L ,R1 ,R2,R3,R4,T,NT)
01091 COMMON /8LOCK2/ REM(13,10,5,2), PCT(13,10,5,2), NAME(13,10,5,2),
01092 1 OIST(IO)
01093 COMMON /BLOCKS/ RET(21),XLEACH,B,MU,EPSAQ,WIDTH,HEIGHT,LENGTH,
01094 1 MINEFR,CL,K,TDOSE(13),EPSRP
01095 COMMON /BLOCKS/ DLIM(5),D,RNQO(21)
01096 REAL *4 R2,R3,R4
01097 REAL *8 Rl,DATE,TIMES,NAME
01098 DIMENSION AREALS(5)
-------
61
01099
01100
01101
01102
01103
01104
01105
01106
01107
01108
01109
OHIO
01111
01112
01113
01114
01115
01116
01117
01118
01119
01120
01121
01122
01123
01124
01125
01126
01127
01128
01129
01130
01131
01132
01133
01134
01135
01136
01137
01138
01139
01140
01141
01142
01143
01144
01145
01146
01147
C
c
C
c
c
c
c
c
C'
c
c
c
c
C:
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF(OLIM(1) .£Q. 0.0) GO TO 2000
WRITE(6,1000) DATE,TIMES,R1,R2,R3,R4,T,L,DLIM(1),DLIM(2),DLIM(2),
1 DLIM(3),DLIM(3),DLIM(4),DLIM(4),DLIM(5),(DLIM(JJ),JJ=1,5)
THIS SUBROUTINE CALCULATES CONTAMINATED AREAS OF LAND SURFACE
DUE TO A DRILLING RELEASE TO THE SURFACE. SIMPLE INTERPOLATION
IS USED TO OETERMIND THE MAXIMUM EXTENT ( DISTANCE FROM THE
SOURCE ) OF CONTAMINATION ABOVE A GIVEN LEVEL (DLIM)
*****!I ME LOOP
00 500 N = l.NT
IF(REM(N,1,1,L) .LT. DLIM(1) .AND. N .GT. 1) WRITE(6,1001)
1 DLIM(1),TDOSE(N-1)
IF(REM(N,1,1,L) .LT. OLIM(1) .AND. N .EQ. 1) WRITE(6,1001)
2 DLIM(1),TDOSE(1)
IF( REM(N,1,1,L) .LT. OLIM(1)) GO TO 2000
**** THE PRECEEDING STATEMENT ALLOWS US TO JUMP OUT OF THE SUBROUTINE
IF THERE ARE NO AREAS TO CALCULATE. IT IS CORRECT SINCE THE DOSES
*****ALWAYS DECREASE WITH TIME AND DISTANCE FOR A LAND SURFACE RELEASE.
C*****INITIALIZE AREA ARRAY
00 400 1=1,5
400 AREALS(I) =0.0
*****FIVE AREAS LOOP
DO 300 1=1,5
C*****OISTANCE LOOP
IF(REM(N,1,1,L) .LT. OLIM(I)) GO TO 350
DO 200 KK»1,10
IF(KK .EQ. 10) GO TO 100
IF (REM(N,KK,1,L) .GE. OLIM(I)) GO TO 200
THE PRECEEDING STATEMENT FINDS THE DISTANCE AT WHICH THE DOSE
FALLS BELOW OLIM. UNTIL THAT POINT IT SKIPS THE CALCULATION
OF AREA BY JUMPING TO THE END OF THE LOOP
THE GO TO 100 STATEMENT CALCULATES AREAS EVEN IF THE FINAL
DISTANCE IS REACHED WITHOUT DROPPING BELOW DLIM(1)
-------
62
01148
01149
01150
01151
01152
01153
01154
01155
01156
01157
01158
01159
01160
01161
01162
01163
01164
01165
01166
01167
01168
01169
01170
01171
01172
01173
01174
01175
01175
01177
01178
01179
01180
01181
C
C
100
200
300
C
C
C
350
C
C
C
500
800
1000
1001
2000
Al = REM(N,KK-1,1,L) - OLIM(I)
A2 = OIST(KK) - OIST(KK-l)
A3 = REM(N,KK-1,1,L) - REM(N,KK,1,L)
AREALS(I) = 3.14159 * (OIST(KK-l) + (Al * A2) / A3) ** 2
GO TO 300
CONTINUE
CONTINUE
COMPUTE THE AREAS BETWEEN THE VARIOUS DLIM(I)
AAREA » AREALS(l) - AREALS(2)
8AREA = AREALS(2) - AREALS(3)
CAREA = AREALS(3) - AREALS(4)
DAREA = AREALS(4) - AREALS(5)
WRITE(6,800) TDOSE(N), AAREA, BAREA, CAREA, DAREA,
1 (AREALS(J),J=1,5)
CONTINUE
FORMAT(1H , 1PE9.2,4X,4( 1PE9.2.4X) ,6X,5( 1PE9.2.3X) )
FORMAT(1H1, AS, 2X,A8,75X,A8,3A4,//,32X, 'EXTENT OF CONTAMINATION1,
110X, 'EVENT TIME :' ,F7 . 1 , 10X, 'ORGAN: ' ,11 ,// ,53X, 'AREA (SQUARE METE
IRS) ', /,3X,' TIME '.24X,1 INCREMENTAL AREAS' ,45X, 'CUMULATIVE
1AREAS',/,2X,'(YEARS)1,T14,G9.4,T19,1-1,G9.4,T27,G9.4,T32,1-1,G9.4,
1T40,G9.4,T45,1-',G9.4,T53,G9.4,T58,'-',G9.4,T74,G9.4,T80,'+',T86,
1001 FORMAT(1H ,15X, 'THERE WERE NO CONTAMINATED AREAS FOR DOSES ABOVE1,
1F4.1,'REM AFTER 'JPE8.2,1 YEARS')
RETURN
END
-------
APPENDIX B
SAMPLE PROBLEM
-------
Appendix B
Sample Problem
Our sample problem is a hypothetical drilling event occurring
1000 years after the repository is sealed. Fifteen percent of one
canister in an insoluble form is assumed to be transported to the land
surface by the drill bit. The nuclides are assumed to be dispersed in
tne atmospnere. The dose has been calculated primarily for the lungs
from innaling the contaminated air near the drilling event.
Taole 6-1 is the sample input deck as it is read by the
computer. Table B-2 is an echo check of the dataset.
Taole B-3 is the dose table. The distances from the drilling
site are indicated in the column headings across the top of the page
ana tne number of years after tne event are listed down the side of
tne page. The first entry in the table reads:
20.00
1.12E+01
l.OOE+01 AM-241
54.2%
The dose to an individual occurs 10 years after the event and 20
meters from the land surface release point. An individual remaining
tnere for a year receives a dose of 11.2 rem. The major lung dose
contributor is Americium-241 wnich contributes 54.2 percent of the
11.2 rem dose. Individuals remaining there for a fraction of year
receive a linearly dependent dose. For example, a person receiving a
1-month exposure receives approximately one-twelfth of the total dose
or .93 rem.
Table 8-4 indicates the areas contaminated by the event in square
meters. The areas were calculated by assuming that the contaminated
area isodose boundaries are parabolic for aquifers and circular for
air. Cumulative areas are also calculated. For example, from Table
8-4 we discover for our sample problem that about 10^ square meters
are contaminated above .5 rem for about 100 years.
Cumulative areas are expressed as (b,»), (c,*), (d,»)
Incremental areas are expressed as (b, c), (c, d), (d, e)...
-------
66
Taole 3-1. Sample Proolem. Input Deck, MAXDOSE-cPA
i
THIS OATA3" VtLL '.UN' A RELEASE TO THE '.AN'D SL'RFAC-
RESULTtN'C rROM DRILLING CNTO THE .VASTE. THERE WILL
3E 2 TABLES OF OUTPUT }ME "OR OOSES TO THE LUNGS
AND THE SECOND,LAND SURFACE AREAS CONTAMINATED. PGM •
BARRY 1. 5ERINI 03/U/3L 3ATASET-MAXDOSE. OATA1
IMSL.MAXDOSE
JCL-IMSL.CO
3.
9.
:o.
n.
i •>
'.3.
15.
17.
13.
19.
20.
23.
21.
25.
25.
27.
23.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
10.
41.
•o.
-6.
-7.
-8.
-9.
50.
51.
52.
53.
54.
55.
56.
57 .
53.
59.
•SO.
61.
62.
63.
64.
10
It
20
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
n
32
30
31
32
10
it
50
60
70
30
})_
20.
1.5E3
.5
458.
3.2E7
l.OE-3
3.79E5
2.9E7
.001
6760.0
3.1E+7
.001
2.39E4
3. £7
.001
39.
3.2E+7
.001
2. 14E6
3. £7
.001
23.3
4.92E4
.295
7650.
3.1E7
.001
5730.
6.18
9.
9.5E5
3.08E4
.0020
2.1E5
5.22E4
9.
1 . 7E+7
788.
3.6
3. £+6
640.
2.08
30.
L.62Z1
2.08
1 .OE-t-5
1.27E5
5. 66
-.JE3
1.73E7
)0.
1.6E-3
i.29E-6
1 000 .
1000.
50.
2. £3
5.
4.02E3
2.35E9
1 . 2
1.74E5
2.17E9
1 . 2
4.39E7
2.28E9
1.2
3.31E7
2.28E9
1.2
2.19E8
2.03E9
1.2
1.21E5
2 . 4E+9
1.2
6. £9
3. £5
1 .2
1.72E5
3.38E9
1.2
5.52E4
24.20
1.2
1.87E5
6.98E3
1.15
1.43E6
9.46E3
L.2
3.77E3
5.E-W)
1.2
2.23E4
7480.
1.2
3.64E9
5.23E1
1 .2
5.6E4
1.58E5
1.43
2.0E3
.25
12.6
3.1E-4
10.
2000.
too.
4. £3
:0.'
5.0E-4
3.13E3
.014
5.1-4
2.3E8
.004
5. £-04
2.95E3
.004
5 . £-04
2.94E3
.004
5.0E-4
3.Q9E3
' .004
5. £-2
2.9E+3
.014
2.3E-3
A. 54£6
.04
5.E-4
3.03E8
.012
. 5
6.18
15.
5.0E-4
5.85E4
.3540
2.6
5.22E4
.070
.12
738.
2.33
5. £-3
640.0
.25
5. £-03
1.62E4
.26
1.5E-3
U27E6
.399
5.0
.3.0E3
2.1
.132
20.
5000.
200.
500.
5.0E-6
9.13E8
25.0
5. £-6
3.69E8
3.5
5.0E-6
9.13E8
3.5
5. £-6
9.12E8
3. 5
5.0E-6
7.91E3
3.5
5. £-4
9.04E4
10.
5.0E-4
9.31E5
30.
5. £-6
1.56E9
25.
.005
24.2
1600.
5.0E-6
7.16E3
3.3
.026
9.46E3
15.0
.00120
5.0E-HJ
15.
5. £-5
7480.0
2000.
5 . £—1
5.23E1
2000.
1.5E-5
L.53E5
3000.
. '„
.603
.15
.103
50.
l.£4
500.
5.0E3
too.
6.1E6
too.
1.80E5
100.
t.9E-»-5
100.0
1 . 9E+5
too.
U7E5
too.
6.2E6
t .
1.3E5
100.
6.1E5
[.
3400.
100.
300.
1.
320.0
t.
•940.
i^ .
t. 1E4
1.
7.1£4
10.
•J.57E4
l.OE-4
.021
.20
.1
100.
2. £4
750.
160.
3.5E6
4.0E-6
2.4E5
2.2E-4
2.5E-I-5
6.0E-5
2.5E+5
2.2E+5
7.2E-7
3.2E-rt
7.3E4
10.
3.5E5
1500.
2.0E-6
1.3E-K.
2.0E-5
I. IE-Hi
7.3E-H}
'..IE4
7.9E4
3.0E-2
1.13E5
100.
31.5
200.
5. £4
.12
0.0
500.
1.E5
AM-211
.\M-24l
.V-l-211
?U-242
?U-242
?U-242
?U-240
?'J-240
?U-240
?U-239
?U-239
?'J-239
?U-238
?'J-238
PU-238
MP-237
:.'P-237
MP-237
SR -90
SR -90
SR -90
AM-213
.VM-243
.VM-243
C - 14
C - L4
C - 14
:R -93
ZR -93
ZR -93
TC -99
TC -99
TC -99
: -129
I -129
: -129
CS-135
2S-135
•:S-!35
CS-137
CS-137
CS-137
SN-126
SS-126
SN-125
LAND SURFACE RELEASE
?9
-------
67
Taole 3-2. Sample Proolem. Echo Check of the Oataset, MAXDOSE-EPA
THIS OATASET .'ILL RUN A RELEASE TO THE LAND SURFACE
3E3i.'LTTN'C ."ROM 3RILUSG EMTO THE JASTE. THERE -ILL
3E : TABLES OF OUTP'.T )ME rOR DOSES TO THE '.'.'N'OS
ACT THE .SECOND, LAXD SURFACE AREAS CONTAMINATED. PCM " IMSL.MAXDOSE
3ARRY !.. :i 03/11/31 3ATASET-MAXDOSE.DATA! JCL-IMSL.GO
1 J
;_ !_
'n
« rf
30
31
32
30
3 1
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30
31
32
30 '
31
32
30
31
32
30
31
32
40
41
50
60
70
30
31
39
:. OOE+OI
U50E+03
5.00E-01
4.58E+02
3.20E+07
l.OOE-03
3.79E+05
2.90E+07
l.OOE-03
5.75E+03
3.10E+07
l.OOE-03
2.39E+04
3.00E+07
l.OOE-03
3.90E+01
3.20E+07
L.OOE-03
2.14E+06
3.00E+07
l.OOE-03
2.38E+01
4.92E+04
2.95E-01
7.63E+03
3.10E+07
I . OOE-03
5.73E+03
5.18E+00
9. OOE+00
9.50E+05
3.08E+04
2 . OOE-03
2.LOE+05
5. 222+04
9. OOE+00
1.70E+07
7.38E+02
3.50E+00
3. OOE+06
S.40E+02
2.08E+00
3. OOE+01
U52E+04
2.08E+00
l.OOE+05
L.27E+06
5.66E+00
4.00E+03
1.73E+07
3. OOE+01
1 .60E-03
4.29E-16
L.OOE+03
l.OOE+03
3.0
5. OOE+01
2.00E+03
5 . OOE+00
4.02E+08
2.35E+09
1 . 20E+00
1. 742405
^ ' TT^}^
* • ' O^^OO
4.39E+07
2.23E+09
1 . 20E+00
3.31E+07
2.2SE+09
U20E+00
2.19E+08
2.03E+09
1.20E+00
1.212405
2.40E+09
1.20E+00
6.00E+09
3 . OOE+06
1.20E+00
'. . 72E+06
3.38E+09
I . 20E+00
5.62E+04
2.42E+01
I . 20E+00
1.37E+05
6.98E+03
1.15E+00
1.43E+06
9.46E+03
I . 20E+00
3.77E+03
5. OOE+06
1 . 20E+00
2.23E+04
7.43E+03
I . 20E+00
3.64E+09
5.23E+04
1.20E+00
5.30E+04
1.58E+05
1.43E+00
2.00E+03
2.50E-01
1.26E+01
3.LOE-04.
0.0
I. OOE+0 I
2.JOE+03
0.0
l.OOE*O2
i. OOE+0 3
5 . OOE+0 I
5.00E-04
3.13E+08
I . 40E-02
5.00E-04
2.30E+08
4. OOE-03
5.00E-04
:.95E+08
4. OOE-03
5.00E-04
2.94E+08
4. OOE-03
5.-OOE-04
3 . 09E+08
4. OOE-03
5.00E-02
2.90E+08
1.40E-02
2.30E-03
3.34E+06
4.00E-02
5.00E-04
3.03E+08
1.20E-02
3.00E-01
6.L3E+00
1.50E+01
5.00E-04
5.35E+04
3.54E-01
2.50E+00
5.22E+04
7.00E-02
L . 20E-01
7.38E+02
2.33E+00
5. OOE-03
4.40E+02
2.60E-01
3. OOE-03
L.62E+04
2.50E-01
4.50E-03
1.27E+06
3.99E-01
5. OOE+00
3. OOE+0 3
2.LOE+00
1.32E-01
0.0
I. OOE+01
5.00E+03
0.0
2. OOE+02
D.O
5. OOE+02
5. OOE-06
9.43E+08
2.50E+01
3 . OOE-06
3.69E+08
3. JOE +00
5. OOE-06
9.13E+08
3.30E+00
5. OOE-06
9.12E+08
3.50E+00
5. OOE-06
7.91E+08
3.30E+00
5.00E-04
9.04E+04
I. OOE+01
5.00E-04
9.31E+05
3. OOE+01
5. DOE -06
L.56E+09
2.50E+01
5. OOE-03
2.42E+01
4.60E+03
5. OOE-06
7.16E+03
3.30E+00
2.60E-02
9.46E+03
L.50E+01
L . 20E-03
5 . OOE+06
1.30E+01
5 . OOE-05
7 . 48E+03
2.00E+03
5.00E-04
5.23E+04
2.00E+03
4.50E-05
I . 58E+05
3.00E+03
l.OOE-31
5.03E-}!
1.50E-01
1.03E-01
0.0
5. OOE+0 I
'. . OOE-i04
0.0
5. OOE+02
0.0
5.00E+03
L.OOE+02
5.40E+06
0.0
l.OOE+02
L.30E+05
0.0
L.OOE+02
1.90E+05
0.0
L.OOE+02
1.90E+05
0.0
I . OOE+02
1.70E+05
0.0
l.OOE+02
6 . 20E+06
0.0
l.OOE+00
4.30E+05
0.0
L.OOE-"):
6.40E+06
0.0
l.OOE+00
3.40E+03
0.0
l.OOE+02
3. OOE+02
0.0
1 . OOE+00
3.20E+02
0.0
I . OOE+00
9.40E+02
0.0
L . OOE+00
I . IOE+04
0.0
I . OOE+00
7 . 40C+04
0.0
I. OOE+0 I
3.57E+04
0.0
l.OOE-04
2.10E-02
2.00E-DI
l.OOE-Ol
0.0
l.OOE+02
1 . OOE+04
0.0
7.50E+02
0.0
0.0
1.60E+02
3.50E+06
0.0
4. OOE-06
2.40E+05
0.0
2.20E-04
:.50E+05
0.0
6. OOE-05
2.30E+05
0.0
0.0
2.20E+05
0.0
7.20E-07
3.20E+06
0.0
0.0
7 . 30E+04
0.0
I. OOE+01
3.50E+06
0.0
0.0
1.50E+03
0.0
2. OOE-06
1.30E+04
0.0
2. OOE-05
1.40E+04
0.0
0.0
7.30E+06
0.0
0.0
l.LOE+04
o.o-
0.0
7 . 90E+04
0.0
3.00E-02
L.18E+05
0.0
L.OOE+02
0.0
3.L5E+01
0.0
0.0
2. OOE+02
5 . OOE+04
0.0
L.OOE+03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.20E-01
0.0
0.0
0.0
0.0
5. OOE+02
L.OOE+05
0.0
AM-241
.AM-241
.AM-241
PU-242
PU-242
PU-242
PU-240
PU-240
PU-240
PU-239
P'J-239
PU-239
PU-238
P'J-238
PU-238
:rp-237
MP-237
OT-237
5R -90
SR -90
SR -90
AM-243
.AM-243
AM-243
C - 14
C - 14
C - 14
ZR -93
ZR -93
ZR -93
TC -99
TC -99
TC -99
I -129
I -129
I -129
CS-135
CS-135
CS-135
CS-137
CS-137
CS-137 '
SN-125
SN-12S
SN-126
LAND SURFACE RELEASE
-------
04/ou/Bi
TIIII;
i .0111:101
> .OOEIOI
5.OOE»0|
I .0011+02
2 .OUi; 102
5 . OOE H)2
I .Ol)i:403
2.00E+03
5 . OOE H) 1
07:V»:30
2.UIIC-UK
.DHL 104
I .01)1:110
Table B-3. Sample Problem. Maximum Individual Doses
MAXIMUM INDIVIDUAL DOSKSCKEM/YK) INHALATION EVENT TIME:IOOO.O YEAKS
DISTANCE (METEKS)
50.00 100.00 200.00 500.00 750.00 1000.00 1500.00
LAND SllliKAO-: KEI.EASK
(I )
2OOO.OO
400O.OO
I.I2E+OI
AM-24 1
54.22
1. IIE+OI
AH-241
53.92 .
1 .OfaEMM
AH-241
52.82
9.94Etoo
AM-241
51.02
8.74E+00
AH-241
47.42
6. I2EHJO
AM-241
36 . 92
3. 72EIOO
PU-240
42.72
l.74E«00
PU-240
49.82
2.93E-OI
PU-239
50.02
1.72E-02
PU-239
59.02
6.53E-05
eu-23'J
74.62
5.68E-I2
PU-239
94.62
I.47L-23
I'II-23'J
92 . 7Z
2 . 96K K)0
AM-241
54.22
2.92E+00
AM-241
53.92
2.8IE+00
AM-24I
52.82
2.63E+00
AM-241
51.02
2.31E100
AM-241
47.42
1 .62E100
AM-241
36.92
9.83E-OI
PO-240
42.72
4.60E-OI
PO-240
49.82
7.74E-02
PU-239
50.02
4.55E-03
PO-239
59.02
I.72E-05
PU-239
74.62
I.50E-I2
PU-239
94.62
3.H9E-24
PU-239
92.72
1 .07EtOO
AM-241
54.22
I.06E+00
AM-241
53.92
1.02EiOO
AM-241
52.82
9.51E-OI
AM-241
51.02
8.36E-OI
AM-241
47.42
5.86E-OI
AM-241
36.92
3.56E-01
PU-240
42.72
1.66E-0!
PU-240
49.82
2.81E-02
PU-239
50.02
1.65E-03
PU-239
59.02
6.25E-06
PU-239
74.62
5.44E-13
PU-239
94.62
I.4IE-24
PU-239
92.72
3.84li-OI
AM-241
54.22
3.79E-01
AM-241
53.92
3.64E-01
AH-241
52.82
3.41E-OI
AM-241
51.02
2.99E-01
AM-241
47.42
2. 10E-01
AM-241
36.92
1.28E-01
PU-240
42.72
5.96E-02
PU-240
.49.82
t.OOii-02
PU-239
50.02
5.90E-04
PU-239
59.02
2.24E-06
PU-239
74.62
1.95E-I3
PU-239
94.62
5.04E-25
PU-239
92.72
9.6IE-02
AM-241
54.22
9. 4 BE -02
AM-241
53.92
9.IOE-02
AM-241
52.82
8.52E-02
AM-241
51.02
7.49E-02
AM-241
47.42
5:25E-02
AM-241
36.92
3.I9E-02
PU-240
42.72
1.49E-02
PU-240
49.82
2.5IE-03
PU-239
50.02
I.47E-04
PU-239
59.02
5.60E-07
PU-239
74.62
4.87E-14
PU-239
94.62
I.26E-25
PU-239
92.72
5. I3E-02
AM-241
54.22
5.06E-02
AM-241
53.92
4.B6E-02
AM-241
52.82
4.55E-02
AM-241
51.02
4.00E-02
AM-241
47.42
2.80E-02
Atl-241
36.92
1.70E-02
PlJ-240
42.72
7.96E-03
PU-240
49.82
I.34E-03
PU-239
50.02
7.87E-05
PU-239
59.02
2.99E-07
PU-239
74.62
2.60E-I4
PU-239
94.62
6.73E-26
PU-239
92.72
3.26E-02
AM-241
54.22
3.22E-02
AM-241
51.92
3.09E-02
AM-241
52.82
2.89E-02
AM-241
51.02
2.54E-02
AM-241
47.42
I.78E-02
AM-241
36.92
I.OBE-02
PU-240
42.72
5.06E-03
PU-240
49.82
8.52E-04
PU-239
50.02
5.00E-05
PU-239
59.02
I .90E-07
PU-239
74. 6Z
I.65E-I4
PU-239
94.62
4.28E-26
PU-239
92.72
I.70E-02
AM-241
54.22
I.68E-02
AM-241
53.92
1 .6IE-02
AM-241
52.82
I.5IE-02
AM-241
51.02
1 .32E-02
AM-241
47.42
9.28E-03
AH-241
36.92
5.64E-03
PU-240
42.72
2.64E-03
PU-240
49.82
4.44E-04
PU-239
50.02
2.6IE-05
PU-239
59.02.
9.89i;-oa
PU-239
74.62
M.6IE-15
PU-239 '
94 . 6%
2.23E-26
PU-239
92.72
1 . D6i-:-il2
AH-241
54. 22
I .o4i-:-oL'
AM-241
51.9;:
1 .001: -02
AH-241
5^. HZ
9.3m:-oi
AM-241
5 1 . 07.
8.25i:-OI
AII-241
47.42
5. 7 Mi; -03
AM-241
3h . n
).sn:-o i
PU-240
4L'.?/.
1 . 64K-03
PU-240
49.82
2.77l-:-04
PU-239
SO. 02
I.62E-05
PU-239
59.02
6. IbE-OH
PII-2 3'J
74.62
5.30K-I5
PO-239
94.62
1 . 39i; -2<>
l'U-2 )•)
'J2.7X
1.22IC-O3
AM-241
54.22
3. IBK-U3
AM-241
SI. 92
i.o')i;-o3
AH-241
•)i.B2
2.ttlii;-03
AH-241
5 1 . 02 '
2.51K-U3
AM-241
4?. 42
1 . 70E-O3
AM-241
)(>.9Z
1 .O7K-O3
PII-24O
42.72
5.OOK-O4
l'll-240
49.82
B.42E-05
PU-239
•>0.02
4.95E-06
PU-239
59.02
1 .B8E-OB
PU-239
74.62
1 .63E-I5
PU-239
94 . 62
4.23E-27
PII-2 39
92.72
Cr>
CO
-------
Table B-4. Sample Problem. Extent of Contamination
4/08/81 07:55:30
EXTENT OF CONTAMINATION
EVENT TIME : I000.0
LAND SURFACE RELEASE
ORGAN:I
AREA (SQUARE METERS)
TIME
(YEARS)
1 . OOE H) I
2 . OOE K) I
5. OOE HO I
l.OOE+02
2 . OOE +02
5.00E+02
l.OOE+03
2.00E+03
INCREMENTAL AREAS
.5000-5.000
9.98E+04
9.87E+04
9.54E+04
8.99E+04
7.87E+04
4.51E+04
2.46E+04
7.56E+03
5.000-50.00
5.701C+03
5.63E+03
5.43E+03
5.09E+03
4.40E+03
2.37E+03
0.0
0.0
50.00-500.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
500.0-5000.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.5000 +
1.05E+05
1.04E+05
1.01E+05
9 . 50E+04
8.31E+04
4.75E+04
2.46E+04
7.56E+03
CUMULATIVE AREAS
5.000 +
5.70E+03
5.63E+03
5.43E+03
5.09E+03
4.40E+03
2.37E+03
0.0
0.0
50.00 +
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
500.0 +
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5000
0.0
0 . 0
0.0
0.0
0.0
0.0
0.0
0.0
THERE WERE NO CONTAMINATED AREAS FOR DOSES ABOVE 0.5REM AFTER 2.00E+03 YEARS
-------
TECHNICAL REPORT DATA
/Please read Instructions on the reverse before completing)
REPORT NO.
EPA 520/4-81-006
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
MAXDOSE-EPA: A Computerized Method for Estimating
Individual Doses from a High-Level Waste Repository
5. REPORT DATE
May/ 1 Qftl
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Barry L. Serini
Bruce Smith
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Office of Radiation Programs (AMR-460)
Environmental Protection Agency
Washington, D.C. 20460
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Same
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The MAXDOSE-EPA computer code is a methodology developed by the Office of
Radiation Programs to estimate the potential radiation doses from accidental re-
leases of radionuclides from a repository for high-level radioactive wastes sited
in deep geologic media. The code is intended to be applicable to a generic reposi-
tory. The model parameters describing the characteristics of the repository
and its environment can be varied to show the effects of different characteristics.
This report describes the equations used to obtain the radionuclide concentrations
in the environment and to calculate radiation doses to man via inhalation of air
and ingestion of water, milk, crops, beef and fish. A listing of the code, an
input guide, and a sample problem are included.
As presently written, the output includes a listing of the input data, a table
of calculated doses, and a table indicating contaminated areas in square meters.
The dose table lists, for each time and distance, the dose rate in rem/y, the
nuclide making the largest contribution to the dose, and its percentage of the total
dose. The code is written in FORTRAN, requires less than 200 K storage, and runs in
less than 30 seconds. The code calculates the maximum dose and makes many conserva-
tive assumptions that shorten the run time to under 30 seconds.
17.
KEY WORDS AND DOCUMENT ANALYSIS
a.
DESCRIPTORS
b.lOENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
wastes
high-level radioactive
radionuclides
high-level waste repository
computer code
18. DISTRIBUTION STATEMENT
UNLIMITED
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
70 '
20. SECURITY CLASS (This page/
22. PRICE
SPA Form 2220-1 (R«». 4-77] PREVIOUS EDITION is OBSOLETE
------- |