-------
Slide 1-7
IF MOLES DON'T
CHANGE...
PV/ T = nR = constant
or
Slide 1-8
Density =
Weight/Unit Volume
Specific Volume =
Volume / Unit Weight = 1 / Density
For an ideal gas:
Density (p) =
(MW / 387) (530 / T) (P / 29.92)
A-4
-------
Slide 1-9
Specific Gravity = Pgas/Pdryair
For an ideal gas:
Specific Gravity = MW as/MWd ,r
Slide 1-10
GIBBS-DALTON RULE
OF PARTIAL PRESSURE
"total" Pdryalr"1" Pwater
A-5
-------
Slide 1-11
Relative Saturation =
"water' "water at saturation
Relative Humidity =
Relative Saturation x 100
Absolute Humidity =
Wei9htwater/Wei9htdryair
Slide 1-12
Dry Bulb Temperature
Wet Bulb Temperature
Dew Point Temperature
A-6
-------
Slide 1-13
ENTHALPY
The measure of the thermal
energy of a substance
Slide 1-14
= CP(t-tref)
h = enthalpy (Btu / Ib)
Cp = heat capacity at constant
pressure (Btu / lb-°F)
t = temperature of substance (°F)
tref = reference temperature (°F)
t^ for dry air usually equals 0 °F
t for water usually equals 32 °F
A-7
-------
Slide 1-15
— h a. 7i
" Vvater
water vapor
= latent heat of vaporization
(Btu/Ib)
Slide 1-16
FOR AN AIR-WATER
VAPOR MIXTURE:
h(Btu/lbdryair) = hdryalr + ^>(hwatervapor)
= absolute humidity (lbwater/lbdryair)
A-8
-------
Slide 1-17
USUALLY INTERESTED IN
ENTHALPY DIFFERENCE
A H = h2 - h,
(«. •*,)
Slide 1-18
PSYCHROMETRIC
CHART
A-9
-------
Slide 1-19
PRINCIPLES OF
FLUID FLOW
Slide 1-20
Area At
AreaA2
A-10
-------
Slide 1-21
IF NO ACCUMULATION
OR REMOVAL...
or
PlV! A1 = P2V2A1
or, if P, = P2 Vt A1 = V2A2
Slide 1-22
BERNOULLI'S
EQUATION
For an Incompressible, Invlscld fluid:
V2/2 + P/p+ gZ = constant
V = fluid velocity
P = fluid pressure
p = fluid density
g = acceleration of gravity
Z = elevation of fluid
A-ll
-------
Slide 1-23
REARRANGING GIVES..
V2 /2g + P/pg + Z = constant
V2 /2g = velocity head (ft)
P/pg = pressure head (ft)
Z = potential head (ft)
Slide 1-24
1 2
t
^ • +>&&A
I
I
~f
h
1
>k
>.
>.
A-12
-------
Slide 1-25
SUBSTITUTING GIVES
=P2/pg
V.,2 /2g= velocity pressure
P1 /pg = static pressure
P2 fog = total pressure
Slide 1-26
Discharge Side
Intake Side
3500 FPM =1
=
^
^
i
3500 FPM ?
Fan y
>- ^^
II
1
.
— 7
y
I
L
-1.0 + 0.6
SP + VP
-0.40
TP
5.0 + 0.6 = 1.1
SP + VP = TP
A-13
-------
Slide 1-27
VELOCITY CAN BE
DETERMINED FROM
VELOCITY PRESSURE
V= 1096.7 (Vp/p)05
V = velocity (ft/min)
Vp = velocity pressure (in.
p = density (Ib/ft3)
For Standard Air(p = 0.075 Ib/ft3)
V = 4005 (Vp)
A-14
-------
Slide 2-1
HOOD
SYSTEMS
Slide 2-2
The Goal of Good Hood
Design is High Capture
Efficiency
A-15
-------
Slide 2-3
PENETRATION =
1 - FRACTIONAL EFFICIENCY
' "*hood / ^
collector
Slide 2-4
TYPES OF HOODS
• Enclosures
• Receiving
• Exterior
• Push-Pull
A-16
-------
Slide 2-5
HOOD DESIGN
PRINCIPLES
• Enclose whenever possible
• If can't enclose, place hood close to source
• Locate duct take-offs in line with normal
contaminent flow
Slide 2-6
Air Handling
Duct
A-17
-------
Slide 2-7
Torpedo
Car
Ladel
Hood
Hot Metal
Ladle
Slide 2-8
Valve
Dust and
Displaced Air
Duct
Hood
A-18
-------
Slide 2-9
Grinding
Wheel
Dust
and Air
Housing
To Fan
Air
Handling
Duct
Slide 2-10
Hot Source
Hypothetical
Point Source
A-19
-------
Slide 2-11
HOOD DESIGN
PRINCIPLES
Enclose whenever possible
If can't enclose, place hood close to source
Locate duct take-offs in line with normal
contaminent flow
Slide 2-12
Ventilation Air
Ventilation Air
from Forced
Draft Fan
!
^
i
/ Pollutant
Laden Air
Process Tank
^^\^^^\^^^^^^^\J^^^CS^^^^
\
§
1
To Pollution
Control Device
and Induced
Draft Fan
A-20
-------
Slide 2-13
Exhaust
Side
To Suction Fan
and Hood
Sample Location
Slide 2-14
FACTORS AFFECTING
HOOD PERFORMANCE
• Thermal air currents
• Motion of machinery
• Material motion
• Movement of operator
• Room air currents
A-21
-------
Slide 2-15
CAPTURE VELOCITY
Air velocity in front of hood or at hood
face necessary to overcome air currents
and cause air to move into hood.
Slide 2-16
RANGE OF CAPTURE
VELOCITIES (ft/min)
Type of Material Release
With no velocity into quiet air
At low velocity Into moderately
still air
Active generation Into zone of
rapid air motion
With high velocity Into zone of
very rapid air motion
Capture Velocity
50-100
100-200
200-500
500-2000
A-22
-------
Slide 2-17
FOR COLD FLOW
INTO HOODS
Capture velocity decreases
with distance from hood face.
Slide 2-18
o so
% of Diameter
100
A-23
-------
Slide 2-19
0 50 100
% of Diameter
Slide 2 - 20a
Hoodiyp*
W
A-WL (sq. ft.)
Description
Slot
Ranged Slot
Plain Opening
Flanged Opening
Aspect Ratio
0.2 or Lass
0.2 or Less
0.2 or Greater
and Round
0.2 or Greater
and Round
Air Plow
O «= 3.7 LVX
Q « 2.6 LVX
Q«V(10X2+A)
= 0.75V (10X2+A)
A-24
-------
Slide 2 - 20b
HoodTyp*
Description
Booth
Canopy
Plain Multiple
Slot Opening
2 or More Slots
Ranged Multiple
Slot Opening
2 or More Slots
A*p*ct Ratio
To Suit Work
To Suit Work
0.2 or Greater
0.2 or Greater
Air Row
O . VA » VWH
O- 1.4PVD
See VS-903
P - Perimeter
D-Height Above Work)
O-V(10X2+A)
0-0.75V (10X2+A)
Slide 2-21
FOR HOT FLOW
INTO HOODS
• As plume rises it expands, cools and
slows down.
• Long rise distances make plume more
subject to movement by air currents.
• Because of distance between source and
hood, air volumes are usually large.
A-25
-------
Slide 2-22
Position 2
Slide 2-23
But there is no air motion
at point 1; therefore:
0 = SP2+ VP2
or
SP2 = -VP2
A-26
-------
Slide 2-24
Vena Contracta
Sph = -Sp2 = Vp2 + he
he = hood entry loss =
= hood entry loss factor
Slide 2-25
HOOD ENTRY
COEFFICIENT
C = (VP/SPh)os
A-27
-------
Slide 2-26
C AND F. ARE RELATED
e h
he = [(1 - Ce')/C e'] VP
therefore:
Slide 2-27
ESTIMATING HOOD VOLUME
Q = VA = 1096.7A(VP/p)°'5
= 1096.7ACe (SPh
Q = volumetric flow rate (ff /min)
V = hood face velocity (ft3 /min)
A = hood inlet area (ff
p = air density (Ib/fl3 )
A-28
-------
Slide 3-1
DUCT
SYSTEMS
Slide 3-2
Position 2
Position 1
-------
Slide 3-3
Because of friction and
non-ideal conversion
between SP and VP...
TP1=TP2
or
= SP2 + VP2+
Slide 3-4
If velocity is constant
between points 1 and 2..
SP, t= SP2 + hL
A-30
-------
Slide 3-5
TYPES OF LOSSES
• Frictional losses
• Fitting losses
• Acceleration losses
Slide 3-6
WAYS TO
ESTIMATE LOSSES
• Equivalent length
• Velocity pressure
• Total pressure
A-31
-------
Slide 3-7
FRICTIONAL LOSSES
hL1 = HfL (VP)
hu = frictional loss (in. H2O)
Hf = frictional loss factor (Vp /ft)
L = duct length (ft)
VP = velocity pressure (in. H2O)
Slide 3-8
FITTING LOSSES
hL2=F(VP)
h^, = fitting loss (in. H2O)
F = fitting loss factor (VP)
VP = velocity pressure (in. H2O)
A-32
-------
Slide 3-9
VELOCITY PRESSURE
CALCULATION METHOD
1. Determine duct velocity and VP.
2. Determine hood static pressure.
3. Multiply straight duct length by
friction loss factor.
Slide 3-10
VELOCITY PRESSURE
CALCULATION METHOD (cont'd)
4. Determine number and type of
fittings. Multiply fitting loss
factor by number of that type and
sum for all types.
5. Add results for steps 3 and 4 and
multiply by duct VP from step 1.
A-33
-------
Slide 3-11
VELOCITY PRESSURE
CALCULATION METHOD (cont'd)
6. Add result from step 5 to the hood
static pressure.
7. Add result from step 6 to any other
losses expressed in inches H2O.
Slide 3-12
This calculation gives the total
energy required, expressed as
static pressure, to move the gas
volume through the duct segment.
A-34
-------
Slide 3-13
TRANSPORT VELOCITY
That duct velocity required
to prevent build-up
Slide 3-14
RANGE OF DESIGN
VELOCITIES
Contamlnent
Design Velocity (ft/mln)
Vapors, gases
Fumes
Very fine, light dust
Dry dust and powders
Average industrial dust
Heavy dusts
Heavy or moist
Usually 1000-2000
1400-2000
2000-2500
25OO-35OO
3500 - 4000
4000 - 4500
4500 and up
A-35
-------
Slide 3-15
BUILD-UP CONCERNS
• Increase duct resistance
• Duct pluggage
• Vibration breakup
• Increased weight
Slide 3-16
DISTRIBUTION OF FLOW IN
BRANCHED DUCTWORK
All ducts entering a junction must have
equal static pressure requirements.
A-36
-------
Slide 3-17
SPh = -1.0 Inch H2O
SP = -2.0 Inches HoO
I *
- SP =-1.5 Inches H2O
Hoodl
t
Q2
- SPh = -1.0 Inch H2O
Hood 2
Slide 3-18
TECHNIQUES TO
OBTAIN BALANCE
• Through design
• With dampers
A-37
-------
Slide 3-19
CHARACTERISTICS OF
BALANCE THROUGH DESIGN
•Volume not easily changed
•Little flexibility
•No unusual erosion or build-up problems
•Rnal volume may be greater than design
•All branch losses Identified
•Must be Installed exactly as designed
Slide 3-20
CHARACTERISTICS OF
BALANCE WITH DAMPERS
•Volumes easily changed
•Great flexibility
•Dampers erode or cause build-up
•Balance achieved with design volume
•May miss branch of greatest resistance
•Moderate variation in installation allowed
A-38
-------
Slide 3-21
ktaktduct:
Plenum dMign b««t - •!» tor 2000 Ipm max.
or d»«ign *• in Section •
Roof
tl
•n
Roor
A-39
-------
Slide 4-1
GAS
COOLING
Slide 4-2
METHOD FOR
COOLING GASES
Dilution with cooler gases
Quenching with water
Natural convection and radiation
Forced convection
A-40
-------
Slide 4-3
Dilution with Cooler Gases
m2
T2 = ambient
•Damper
= hot
{
v_
T = mix
From Heat Balance:
m1hT1+m2hT2=m3hT3
mh = (Ib/min) (Btu/lb) = Btu/min
Slide 4-4
PROBLEMS WITH
DILUTION
• Large air volume
• Lack of temperature control
• Corrosion potential
A-41
-------
Slide 4-5
400
380
360
340
U. 320
~ 300
0 280
Q.
| 260
0 240
220
200
180
**
^^
*•
^
**
4*
*•«
+ '
x
^^
X
X
*
'
x'
X
X
*
X
X
v
'
).01 0.1 1.0 10 100
SO3 (H2SO4) In Flue Gas, ppm
1000
Slide 4-6
QUENCHING WITH WATER
Heat loss from gas stream is taken
up by evaporating water...
mgas ("gas In ' "gas out) = mwater("
water vapor water
A-42
-------
Slide 4-7
PROBLEMS WITH
QUENCHING
Water carryover
Temperature control
Corrosion
Slide 4-8
NATURAL CONVECTION
AND RADIATION
Heat lost from gas stream Is
taken up by atmosphere
gas - h gas) = U A A T m
In out
A-43
-------
Slide 4-9
Slide 4-10
PROBLEMS WITH
CONVECTION AND
RADIATION COOLING
• Large size
• Dust settling
• Lack of temperature control
• Corrosion potential
A-44
-------
Slide 5-1
FAN
SYSTEMS
Slide 5-2
Forced Draft Fan
(Dirty)
Pollutant
Source
Control Device
{under
pressure):
Fan
Forced Draft Fan
(Clean)
Stack
Pollutant
Source
Control Device
(under
• ssuctfon)
Fan Stack
A-45
-------
Slide 5-3
TYPES OF FANS
• Axial
• Centrifugal
• Special
Slide 5-4
AXIAL FANS
• Propeller
• Tubeaxial
• Vaneaxial
A-46
-------
Slide 5-5
Inlet
Inlet Cone
Inlet Bell
Inlet Flare
Inlet Nozzle
Venturi
Scroll Side
Scroll Piece
Side Sheet
Side Plate
Backplate
Hub Disk
Hubplate
Webplate
Blades
Fins
Floats
Housing
Scroll Housing
Volute
Casing
Blast Area
Outlet
Discharge
Outlet Area
Inlet Collar
Inlet Sleeve
Inlet Band
Rim
Shroud
Wheel Ring
Wheel Cone
Retaining Ring
Inlet Rim
Wheel Rim
Inlet Plate
Cut-Off
Scroll
Band
Scroll Sheet
Wrapper
Wrap Sheet
Scroll Back
Slide 5-6
CENTRIFUGAL
• Forward curved
• Radial
• Backward inclined
- standard blade
- airfoil blade
A-47
-------
Slide 5-7
Forward Curved
Has 24-64 shallow blades
Efficiency less than backward inclined
Smallest of all centrifugal fans
Operates at lowest speed
Slide 5-8
Fan Wheel
Fan Housing
Forward Curved
Fan Blades
.0
LU
Gas Flow, SCF/min.
A-48
-------
Slide 5-9
Radial
• Has 6-10 blades
• Least efficient
• Narrowest of all centrifugal fans
• Operates at medium speed
Slide 5-10
I
"o
CO
3
CO
v>
2
Q.
o
Fan Wheel
Fan Housing
Radial
Fan Blades
J L
i i I I L
t"
Q. - -
X
Ui
O - .
01
Gas Flow, SCF/min.
A-49
-------
Slide 5-11
Backward Inclined
Airfoil Blade
Has 9-16 blades
Most efficient
Operates at highest speed
Slide 5-12
o
I
"o
tn
*t
a> I
W
V)
V
re
Fan Wheel
Fan Housing
Backward Curved
Fan Blades
v - - .
«
\
*
Gas Flow. SCF/min.
t"
Q.
i_~
0>
I
-------
Slide 5-13
Fan Wheel
Bearing*
Fan Shaft
Support
ARR. 1 SWSI for bett drive or direct
connection. ImpeUer overhung.
Two bearirige on beae.
Slide 5-14
FAN LAWS
Q, = Q2 (size2 /size,)3 (rpm2 /rpm,)
P2 = P, (size2/size1)2 (rpm2/rpmj 2(p2p,)
bhp2 = bhpn (size2 /size,)5
A-51
-------
Slide 5-15
160
a 140
120
a 80
60
§ 40
I
20
Higher Resistance
144%
Design Resistance
Lower Resistance
Calculated Gas Flow Rate.
Arrangement A
20 40 60 80 100 120 140 160 180 200 220
Percent of Calculated System Gas Flow Rate (SCFM)-
Slide 5-16
15
Percent of Fan Wide Open Gas Row Rate (SCFM)
30 45 60 75 90 105 120 135 150 165
Fan Characteristic
Curve at RPM 'x'
wi
I
96 9.
80 *
"I
48 -g
32 ,«
o
" I
2
20 40 60 80 100 120 140 160 180 200 220
Percent of Calculated System Gas Row Rate (SCFM) >•
A-52
-------
Slide 5-17
15
Percent of Fan Wide Open Gas Flow Rate (SCFM)
30 45 60 75 90 105 120 135 150
165
Fan Characteristic
Curve at RPM "x"
20 40 60 80 100 120 140 160 180 200 220
Percent of Calculated System Gas Flow Rate (SCFM) >•
Slide 5-18
120
§ 100
II
<£c 80
3-2
OTZ eo
o 5
ii
40
20
0
Fan Pressure Curve
@ 0.075 b/tt3
Fan Pressure Curve
0.0375
Duct System Curve A
<@> 0.075 to/tt3 Density
at Fan Inlet
- Duct System Curve A
<3> 0.0375 to/ft3 Density
at Fan Inlet
20 40 60 80 100 120 140 160 180 200
Percent of Duct System volume Flow (CFM)
A-53
-------
Slide 5-19
r
§
10
to
E
a.
Actual Duct /
System Curve,
System Effect /
at Actual Flow/
Volume ,
Design Volume
Calculated Duct System
Curve with No Allowance
for System Effect
System Effect
Loss at Design
Volume
Fan Catalog
Pressure-Volume
Curve
Slide 5-20
FAN SELECTION
1. Determine volume required at actual
conditions
2. Calculate fan static pressure (FSP) at
actual conditions- FSP = SP - S P, - VP.
out in In
3. Correct FSP to equivalent value for
standard air-
= FSP. (0.075/p )
A •
A-54
-------
Slide 5-21
FAN SELECTION
4. Enter ratings table at actual volume
and equivalent FSP
5. Determine rpm and bhp
6. Correct bhp to actual conditions
bhp, = bhpe(pa/0.075)
A-55
-------
Slide 6-1
MEASUREMENT OF
VENTILATION SYSTEM
PARAMETERS
Slide 6-2
MEASUREMENT PORTS
FOR PORTABLE
INSPECTION EQUIPMENT
A-56
-------
Slide 6-3
Slide 6-4
A-57
-------
Slide 6-5
Slide 6-6
:*
A-58
-------
Slide 6-7
Slide 6-8
A-59
-------
Slide 6-9
MEASUREMENT OF
PRESSURE
• Manometer
• Differential pressure gauge
Slide 6-10
A-60
-------
Slide 6-11
Slide 6-12
A-61
-------
Slide 6-13
Slide 6-14
TECHNIQUES FOR THE
MEASUREMENT OF
TEMPERATURE
1. Mercury thermometer
2. Dial-type thermometer
3. Thermister
4. Thermocouple (battery powered)
A-62
-------
Slide 6-15
THERMOCOUPLES
1. Calibrate probe and meter against
an NIST traceable thermocouple.
2. Check ice point and boiling point
values prior to each day.
Slide 6-16
TEMPERATURE
MEASUREMENT ERRORS
1. Unrepresentative measurement
location
2. Cooling of the probe due to air
infiltration through the port
3. Impaction of water droplets
A-63
-------
Slide 6-17
Slide 6-18
Bundling DUc
A-64
-------
Slide 6-19
Droptot
p*n
125*
On
ip*ral
^4O•
't
rto, o
t
v
t
Dl»c
y r
Slide 6-20
MEASUREMENT OF
GAS FLOW RATE
A-65
-------
Slide 6-21
40CFR60 APPENDIX A
METHODS 1 - 4
Slide 6-22
SIHo
A-66
-------
Slide 6-23
Slide 6-24
(AorB) = E|(Cp). - (Cp )-vfl (A or B)
must be ^ 0.01
).vg (A) - (cp)avg (B) | - must be * 0.01
A-67
-------
Slide 6-25
Duct Diameters Upstream from Flow Disturbance (Distance A)
-,0.5 1.0 1
OU
M
c ._
o 40
Q.
0>
J2
o>
230
<5
"§20
Z
•p 10
0
I I I
.5 2.0
1
3Higher Number is for Rectangular Stacks or Ducts
—
—
16
—
v~
rrn
A
y.
I
B
L
t
I
5
2.5
I
^Disturbance
Measurement
"" Site
^Disturbance
MM
—
Stack Diameter .0.61 m (24 in.) — v
12 /
8 or 9a -
Stack Diameter - 0.30 to 0.61 m
1 1 1
I I
2345678
(12-24 in.) -J
I
9 10
Duct Diameters Downstream from Flow Disturbance (Distance B)
Slide 6-26
A-68
-------
Slide 6-27
LOCATION OF TRAVERSE POIHTS IN CIRCULAR STACKS
11
It
11
14
II
11
17
II
It
a
M
17 44 U
>U 14J 1|J
7U MJ 1«4
MJ 714 BJ
M4 17.7
M.* MJ
IJt
U
nj
MJ
LI
1.7
11J
17.7
BJ
MJ
7IJ
MJ
MJ
t7J
N.1
U
v»
ItJ
1«J
7J
10J
MJ MJ ZU
71.1
7U
MJ
71.7
7IJ
M.I
«7J
»1J
M.I
714
nj
1J
1.1
17
1IJ
1«J
M4
MJ
MJ
MJ
CIJ
M4
7IJ
7IJ
MJ
•7.1
MJ
MJ
M.I
M.7
1.1
LI
U
17
11J
14J
1M
MJ
MJ
M.7
MJ
71J
7U
MJ
MJ
MJ
1.1
LJ
U
7.»
UJ
11J
in
114
ju
17J
JJJ
ILt
MJ
• 7.7
nj
77J
UJ
n.i
Slide 6-28
Checking for Cyclonic Flow
?r__JL t
t
PLAN VIEW
(Gu flow upwwd
out of duct)
-------
Slide 6-29
MEASUREMENT OF
FAN SPEED
1. Manual tachometer
2. Phototachometer
3. Strobetachometer
4. Sheeve ratio calculation
Slide 6-30
A-70
-------
Slide 6-31
RPM = MS(MD/FD)
Slide 6-32
V)
.
Horsepower
A-71
-------
Slide 6-33
bhp . 3 "^ (Vote) (Ampt) (Powv Factor) (Effictency) / 74«
Volt IteMr
Slide 6-34
A-72
-------
Slide 7-1
VENTILATION SYSTEM
INSPECTION
Slide 7-2
LEVEL 2
A-73
-------
Slide 7-3
HOODS
Capture efficiency
Condition
Fit of "swing-away" joints
Hood position/cross drafts
Slide 7-4
DUCTS
• Condition
• Position of emergency dampers
• Position of balancing dampers
• Conduction of balancing dampers
A-74
-------
Slide 7-5
COOLERS
Condition
Outlet temperature
Spray pattern / nozzle condition
Water flowrate
Slide 7-6
FANS
Condition
Vibration
Belt squeal
Fan wheel build-up/corrosion
Condition of isolation sleeves
Rotation direction
A-75
-------
Slide 7-7
Slide 7-8
LEVEL 3
HOODS
Estimated volume using SPh, p and
configuration
• Estimated volume using VPavg and p
A-76
-------
Slide 7-9
DUCTS
Change in gas temperature
Change in static pressure
Actual volume using VPav and p
Slide 7-10
COOLERS
Inlet and outlet temperatures
Estimated water requirement using
temperature and enthalpy relationships
Estimated air flow using temperatures
and enthalpy relationships
Water turbidity
A-77
-------
Slide 7-11
FANS
•Estimated volume using known performance (Q, rpm
and p) and new rpm
•Estimated volume using rpm, FSP, temperature and
ratings tables
•Estimated volume using FSP, bhp, temperature and
ratings tables
- Estimate bhp from voltage and amperage
measurements
— Estimate bhp from amperage measurement and
name plate full-load ratings
A-78
-------
350
340
330
320
u_
o
£
3 310
<5
Q.
E
i5> 300
^ 290
""
280
270
260
*
10
9
8
7
<3?
°c 6
0)
O)
0 5
CO
O
0)
— 4
3
2
1
^
IIM Temperature
-
-
-
-
Oxygen
~
-
-
| J Temperature decrease due to air
* y Infiltration across mechanical collector
~**""»»«,^^^ '
• I Temperature decrease
I due to air infiltration
Y across fabric filter
Oo rise due to air
infiltration across fan
; t
A O2 rise due to air "~"~"1 I Temperature decrease
T Infiltration across \ I due to air infiltration
I fabric filter 1 T across fan
A Oo rise duo to air
T Infiltration across
1 mechanical collector
I J
! Mechanical Fabric
— •• . ..,
"^
Stack
4000 Collector Filter Fan Discharge
Equivalent Linear Feet
CO
M
H-
a
IP
•J
i
H
to
-------
en
\->
p-
a
(D
-vj
i
-10 -
Mechanical Fabric Filter
Collector
Fan
Equivalent Linear Feet
-------
Slide 7-14
'Patgt
A-80
-------