-------
sorghum and soybean plots are presented in Figures G.15, G.16 and Figures
G.17, G.18, respectively. Generally, in each test plot K accumulated
within the upper meter of the soil profile. The baseline so.il samples
prior to treatment contained higher K levels in the upper 61 cm than meas-
ured in samples obtained from treated plots. Fluctuations of up to 1000
ppm (4000 kg/ha) were seen between cores and at different zones from the
same plot. These fluctuations could be due to several reasons:
1. A large portion of the potassium variations could be due to nat-
ural variation throughout the site
2. Leaching of K from the upper 61 cm may have also affected the K
concentration
3. Some of the change in K concentration between baseline samples
and fall samples can be explained by crop uptake
Approximately 50 to 160 kg K/ha were utilized by the grain sorghum. Soy-
beans consumed 28 to 45 kg K/ha.
The mass of chloride applied through irrigation to the test plots
ranged from an average of 1030 kg Cl/ha (30 cm/yr) to 4170 kg/ha (122
cm/yr). Soybeans consumed 5 to 104 kg Cl/ha with an average crop utiliza-
tion of 60 + 32 kg Cl/ha. Chloride concentration in soils -within the soy-
bean test plots varied from 10 to 170 mg/kg soil. Soil chloride concen-
trations increased with increasing depth to 122 cm into the profile. As
the hydraulic loading increased from 30 cm to 122 cm/yr, the concentration
of chlorides within the lower 91 cm of the profile increased (Figures G.19
to G.21). The interval between irrigation events appeared to affect the
soil chloride concentration in the lower 91 cm of the soybean plots irri-
gated with 30 cm once every four or eight weeks in 1982 (Figure G.19).
Longer periods between irrigation events in plots watered with 30 cm of
effluent per year produced higher chloride levels in soils at depths of
122, 152 and 183 cm than plots .irrigated more frequently. Long dry per-
iods between irrigation, may have caused capillary rise of water from below
the 183 cm depth and transported chlorides upward. Annual hydraulic load-
ing of 122 cm applied to soybean plots at frequencies of one irrigation
every two weeks and once every four weeks resulted in an increase in
chloride mass in the lower 91 cm of the soil profile (Figure G.21). Once
128
-------
the frequency of irrigation was reduced to one irrigation every eight
weeks, the large quantity of water applied per irrigation reduced chloride
levels throughout the entire profile.
Grain sorghum removed 217 to 391 kg of Cl/ha. As more chloride mass
was applied to the test plots and available in the soil solution, crop
consumption of chloride increased from an average of 256 kg/ha (30 cm/yr)
to 297 kg/ha (61 cm/yr) and finally 323 kg/ha (122 cm/yr). With a chlor-
ide mass loading of 4172 kg/ha.yr (122 cm of effluent/yr) the soil chlor-
ide concentration increased in the top 30 cm and the lower 61 cm of soil
(Figure G.22). Frequent irrigation of water (one per week) to sorghum
plots having 122 cm of effluent applied in 1982 created a chloride lens
(accumulation) at 61 cm in the soil profile. Conversely, with 30 cm of
annual irrigation, a chloride lens was produced at a depth of 152 cm whe.n
the interval between irrigation events was eight weeks (Figure G.23).
Hydraulic Loading and Application Frequency Summary
Yield data indicated soybean production was highest with more fre-
quent wastewater application (i.e., one irrigation/week and one irriga-
tion/2 weeks); whereas, grain sorghum yields were significantly higher
with longer periods between irrigation (1 irrigation/4 wee'ks and 1 irriga-
tion/8 weeks). Soil moisture within the profile corresponded to the type
of root system. Grain sorghum may have had a deeper, more fibrous root
system; therefore, removed more water to a greater depth. Sodium in-
creased in the plant at low irrigation rates. Leaching of Na resulted
within the plots when greater quantities of water were applied per irriga-
tion period. Consequently, less Na was available for the crop. Grain
sorghum, with a deeper more extensive root system, was not affected by
minor changes in loadings or frequencies of application, while a small
shift of either of these factors on the soybean crop changed the avail-
ability of Na.
An annual hydraulic loading of 30 cm/yr symbiotic nitrogen fixation
apparently provided inorganic nitrogen to the soybeans. Once the hydraul-
ic loading was increased to 61 cm/yr, sufficient nitrogen mass was applied
to soybeans to inhibit nitrogen fixation. In the soybean test plots inor-
129
-------
ganic nitrogen leached through the 183 cm soil profile when 122 cm of ef-
fluent/yr was applied at intervals between irrigation greater than once
per week. Similarly, nitrogen was leached from the 91 cm profile within
the grain sorghum test plot irrigated with 122 cm/yr.
The ability of the crop to adapt to water stress conditions |was a
factor which influenced Na accumulation within the soil profile. Due to
the shorter growing season in 1982, soybeans with possibly greater water
requirements than sorghum and a more shallow root system, utilized water
within the upper 61 cm of soil. Consequently, the greatest Na levels as a
percent of base saturation was observed in the upper 61 cm of the soil. In
addition, higher water application frequency appeared to increase ESP val-
ues in the upper soil profile.
Water utilized by grain sorghum caused an accumulation of.Na at
greater soil depths than soybeans. Upward migration of water due to cap-
illary action during water stress periods (increased time intervals be-
tween irrigation) may have caused an increase in Na in the upper profile.
130
-------
REFERENCES
1. A & L Agricultural Laboratories, Inc. A & L Laboratories Soil and
Plant Analysis Handbook. Memphis, Tennessee.
2. Alexander, M. Introduction to Soil Microbiology. John Wiley & Sons,
Inc. New York. 1967. 472 pp.
3. Bremner, 3. M. Nitrogenous Compounds. In: McLaren, A. D., and
Peterson, eds. Soil Biochemistry. Marcel Dekker, Inc., New York.
1967. 19 pp.
4. Campbell, C. A. Soil organic carbon, nitrogen and fertility. In:
Schnitzer, M., and Khan, S. U. Soil Organic Matter. Elsevier Scien-
tific Publ. Co., New York. 1978. pp. 173-271.
5. Christensen, M. H. and Harremoes, P. Nitrification and denitrifica-
tion in wastewater treatment. In: Water Pollution Microbiology.
Vol. 2. Wiley-Interscience, New York. 1978. pp. 391-414.
6. EPA. Process Design Manual for Land Treatment of Municipal Waste-
water. EPA 625/1-81-013, U.S. EPA Center for Environmental Research
Information Center, Cincinnati, Ohio. 1982.
7. Fenn, L. B., and Kessel, D. E. Ammonia volatilization from surface
applications of ammonium compounds on calcareous soils: II. Effects
of temperature and rate of NH^-N application. Soil Sci. Soc. Amer.
Proc. 39:606-610. 1973.
8. Fenn, L. B. Ammonia volatilization from surface applications of ammo-
nium compounds on calcareous soils: II. Effects of mixing low and
high loss ammonium compounds. Soil Sci. Soc. Amer. Proc. 39:366-368.
1975.
9. Ferrara, R. A. and Avci, C. B. Nitrogen dynamics in waste stabiliza-
tion ponds. 3. Water Pollution Control Federation. Vol. 54, No. 4.
1982. pp 361-369.
10. Ferrara, R. A. and Harleman, D.R.F.. "A Dynamic Nutrient Cycle Model
for Waste Stabilization Ponds." Tech. Report No. 237, R. M. Parsons
Laboratory for Water Resources and Hydrodynamics, Massachusetts Insti-
tute of Technology, Cambridge. 1978.
11. Gasser, 3. K. R. 'Some processes affecting nitrogen in the soil. In:
Ministry of Agriculture Fisheries and Food. Nitrogen and Soil Organic
Matter. Her Majesty's Stationary Office, London. 1969. pp. 15-29.
12. George, D. B., et al. Demonstration/Hydrology Study: Lubbock Land
Treatment System Research and Demonstration Project. Vol. 1. EPA
Grant CS80620401. U.S.E.P.A. Ada, Oklahoma. 1985.
131
-------
13. Hausenbuiller, R. L. Soil Science - Principles and Practices. Wm. C.
Brown Co. Publishers. Dubuque, Iowa. 1972. 504 pp.
14. Holford, I. C. R. and Mattingly, G. E. The high- and low-energy
phosphate adsorbing surfaces in calcareous soils. 3. Soil Sci. 1975.
26:407-417.
15. Loehr, R. C., Jewell, W. 3., Novak, 3. D., Clarkson, W. W-., Friedman,
G. S. Land Application of Wastes. Vols. 1 and 2. Van Nostrand Rein-
hold. New York. 1979.
16. Mehran, 3., Tanju, K. K., and Iskandar, I. K. Compartmental Modeling
for Prediction of Nitrate Leaching Losses. Modeling Wastewater Reno-
vation; Land Treatment. Edited by I. K. Iskandar. 3ohn Wiley & Sons,
Inc. New York. 1981. 444 pp.
17. Metcalf, L. and Eddy, H. P. Wastewater Engineering: Treatment Dis-
posal, Reuse. 2nd ed. George Tchabanoglous, ED. McGraw-Hill, New
York. 1979. p. 920.
18. Monson, D. Plant Analysis Interpretations. Inter-American Labora-
tories. Scientific Services for Agriculture. 1978.
19. Palazzo, A. 3. and 3enkins, T. F. Land Application of Wastewater:
Effect on Soil and Plant Potassi.um. In: 3. Enviorn. Qual. Vol. 8,
No. 3: 1979.
20. Pano, A. and Middletarooks, E. 3. Ammonia nitrogen removal in facula-
tive wastewater stabilization ponds. 3. Water Pollution Control Fed-
eration. Vol. 54, No. 4. 1982. pp. 344-351.
21. Pettygrove, G. S. and Asano, T. (ed.). Irrigation with Reclaimed
Municipal Wastewater - A Guidance Manual. Report No. 84-1 wr,
California State Water Resources Control Board. Sacramento. 1984.
22. Potash Institute of American. Plant food utilization. PIA, Atlanta,
Georgia. 1973.
23. Ramsey, R. H. and Sweazy, R. M. Percolate Investigation in the Root
Zone. Lubbock Land Treatment System Research and Demonstration
Project. Vol. II. EPA Grant CS80620401. U.S.E.P.A. Ada, Oklahoma.
1985.
23. Ruttner, E. Fundamentals of limnology. 3rd Ed. Univ. Press, Toronto.
1963. p. 295.
24. Ryden, 3. C. Gaseous Nitrogen Losses. In: Modeling Wastewater Reno-
vation; Land Treatment. Edited by I. K. Islandar. 3ohn Wiley & Sons,
Inc. New York. 1981. pp. 277-304.
132
-------
25. Shukla, S. S., Syers, 3. K., Williams, 3. D. H., Armstrong, D. E., and
Harris, R. F. Sorption of Inorganic Phosphate by Lake Sediments.
Soil Sci. Soc. Ameri. Proc. 35:2244-249. 1971.
26. Stone, R. W., et al., "Upgrading Lagoon Effluent for Best Practicable
Treatment." 3. Water Pollution Control Federation, Vol. 47, No. 8.
1975. p. 2019.
27. Stromberg, L. K. and Tisdale, S. L. "Treating Irrigated Arid-Land
Soils with Acid-Forming Sulphur Compounds". Tech. Report No. 24, The
Sulphur Institute, Washington, D. C. 1979.
28. Wetzel, R. G. Primary productivity. In: B. A. Whitton (Ed.) River
Ecology. Univ. of Calif. Press, Berkeley, California. 1975.
133
-------
APPENDIX A
Supplemental Material for Section 4, Research Approach
134
-------
TABLE A-1. SOIL COMPOSITING PROTOCOL FOR 1982 AND 1983
Trial UOOO
1983 - 0.9 mm (3 ft) cores
Early spring and late fall sampling periods
9 Treatments
4 Reps/treatment composited
3 Cores/rep composited
Trials 15000 and 16000
1982 and 1983 -
1.8m (6 ft) cores
Early spring and late fall sampling periods
5 Treatments (crop and loading)
2 Reps/treatment composited
3 Cores/rep composited
Trial 17000
1982 - 0.91 (3 ft) cores
Early spring and late fall sampling periods
2 Crops
12 Treatments/crop
3 Reps/treatment composited
1 Core/rep
135
-------
TABLE A-2. CROP SAMPLING PROTOCOL
Trial 14000
1983 - Yield
9 Treatments (hydraulic loading rate)
4 Reps/treatment
1 Sample/rep individual
- Analysis
9 Treatments (hydraulic loading)
1 Sample/rep
4 Reps/treatment composited
Trial 15000
1982 and 1983 - Yield
5 Treatments (crop and loading)
2 Reps/treatment
2 Samples/rep individual
- Analysis
5 Treatments (crop and loading)
2 Samples/rep composited
2 Reps/treatment composited
Trial 16000
1982 and 1983 - Alfalfa
- Yield
10 Treatments (hydraulic loading rate and water source)
2 Reps/treatments
2 Samples/rep/cutting individual
1982 - 1 Cutting 1983 - 5 Cuttings
- Analysis
10 Treatments (loading and water source)
2 Samples/rep/cutting composited
2 reps/treatment composited
1982 - 1 Cutting 1983 - 5 Cuttings
(continued)
136
-------
TABLE A-2. continued
Bermuda
- Yield
7 Treatments (hydraulic loading rate and water source)
2 Reps/treatment
2 Samples/rep/cutting individual
1982 - 1 Cutting 1983 - 2 Cuttings
- Analysis
7 Treatments (loading and water source)
2 Samples/rep/cutting composited
2 Reps/treatment composited
1982 - 1 Cutting 1983 - 2 Cuttings
Trial 17000
1982 - Yield
2 Crops
12 Treatments/crop (hydraulic loading rate and frequency)
3 Reps/treatment
1 Sample/rep individual
- Analysis
1 Crops
12 Treatments/crop
1 Sample/rep
3 Reps/treatment composited
137
-------
TABLE A.6. PRECISION AND ACCURACY DATA
WATER SAMPLE ANALYSES
Parameter
TOC mg/1
COD mg/1
CL- mg/1
SO?- mg/1
Total N mg/1
N01/N07 mg/1
NH3 mg/1
Total P mg/1
Ortho P mg/1
Hydrolyzable P +
Ortho P mg/1
Conductivity mg/1
pH mg/1
Alkalinity mg/1
Range
0-20
0-100
0-1000
0-1000
0-300
0-5
0-50
0-1
0-5
0-2.5
0-1.00
0-1000
• 500-5000
7.00-9.00
100-800
Percent
Accuracy
93-105
90-122
98-104
90-110
67-97
76-123
81-100
90-104
93-108
90-100
86-99
Precision
i
± 0.52
± 3.19
± 1.25
± 3.16
± 0.288
± 0.26
± 0.01
± 0.019
± 0.013
± 0.48
± 0.038
± 10.83
± 0.071
± 3.60
Bacteria (colonies/100 ml)
Total Col i form - MF
Fecal Coliform - MF
Fecal Streptococci - MF
Benzene
Tr ichlorethylene
0-100
100-10,000
10,000-106
0-100
100-10,000
0-100
100-10,000
Volatile Organics
0-2
0-20
- PPB
71-103
70-104
± 1.5
± 4.0 x 102
± 2.2 x 102
± 2.88
± 3.47 x 102
± 1.75
± 2.10 x 102
± 0.10
± 0.55
(continued)
138
-------
Table A.6, continued
Parameter
Carbon tetrachloride
Chloroform
Chlorobenzene
Ethylbenzene
Tetrachloroethylene
Tolulene
Trichloroethane
Acenaphthylene
Anthracene
Atrazine
4-t-buthylphenol
4-chloroaniline
2-chlorophenol
1-chlorotetradecane
Dibutylphthalate
2,3-dichloroaniline
3,4-dichloroaniline
2,4-dichlorophenol
Diethylphthalate
Heptadecane
Methylhexadecanoate
Methylheptadecanoate
1 -methylnaphthalene
2-methylphenol
4-methylphenol
Range
0-10
0-20
0-20
0-20
0-20
0-20
0-20
Extractable
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
Percent
Accuracy
77-115
76-113
84-97
88-112
83-115
76-110
75-108
Organics - PPB
61-88
72-87
71-93
76-88
45-67
45-86
70-86
68-106
57-83
55-76
64-93
70-93
79-99
78-97
79-100
60-83
45-78
42-75 .
Precision
±4.90
±2.30
±1.60
±3.60
±1.20
±1.0
±0.7
±5.70
±2.70
±5.30
±5.20
±14.10
±11.90
±5.20
±6.00
±4.50
±8.90
±9.00
±3.20
±6.60
±7.00
±3.40
±7.70
±7.80
±6.50
(continued)
139
-------
Table A.6, continued
Parameter
Napthalene
Octadecane
Phenol
Propazene
a-terpineol
Dichlorobenzene-M
Dichlorobenzene-P
Dichlorobenzene-0
Arsenic
Barium
Calcium
Cadmium
Cobalt
Chromium
Iron
Lead
Manganese
Molybdenum
Nickel
Potassium
Silver
Sodium
Thallium
Zinc
Copper
Selenium
Magnesium
Range
0-100
0-100
0-100
0-100
0-100
0-100
0-100
0-100
Dissolved Metals
0-.10
0-.10
10-100
0-.10
0-.10
0-.10
0-10
0-.10
0-10
0-.10
0-.10
10-100
0-.10
100-1000
0-.10
0-1.0
0-.10
0-10
10-100
Percent
Accuracy
58-84
69-97
26-58
63-90
63-89
48-74
48-75
50-78
- mg/1
93-120
80-108
75-120
90-125
85-115
80-93
96-110
75-100
93-113
84-110
90-103
71-115
90-110
89-116
80-120
93-126
82-112
80-105
76-125
Precision
± 8.70
± 2.50
± 4.0
± 1.90
± 7.90
± 10.90
± 10.50
± 11.0
± 0.003
± 0.005
± 2.33
± 0.001
± 0.0004
±0.0008
± 0.007
± 0.0003
±0.003
±0.001
± 0.002
± 1.31
± 0.0001
±11.25
± 0.0007
± 0.005
± 0.005
± 0.003
± 6.73
140
-------
TABLE A.7. PRECISION AND ACCURACY DATA
SOIL SAMPLE ANALYSIS
Parameter
I
Chlorobenzene
Benzene
Trichloroethylene
Carbon tetrachloride
Chloroform
Ethylbenzene
Tetrachloroethylene
Toluene
Trichloroethane
Acenaphthylene
Anthracene
4-t-butylphenol
4-chloroaniline
2-chlorophenol
1-chlorotetradecane
Dibutylphthalate
2,3-dichloroaniline
3 ,4-dichloroanil ine
Range
Priority Organics
0-10
0-10
0-100
10-100
0-10
10-100
100-1000
0-10
10-100
0-10
10-100
0-10
0-10
0-10
0-10
0-10
0-10
10-100
0-10
0-10
0-10
0-1000
0-10
10-100
100-1000
0-10
0-10
Percent
Accuracy
(PPB)
±81-123
±97
±85
±96
±70-96
±60
±97
±109
±95
±104
±95 .
±46-99
±57-66
±89-124
±87
±25-46
±52-102
±60-114
±67-191
±74-141
±61-101
±48-108
±41-89
Precision
0.65
1.43
2.73
1.2
0.80
1 .0
0.72
4.2
1.64
17.93
1.8
0.54
63.35
44.40
74.3
27.94
44.78
79.37
205.
400.63
59.16
70.82
(continued)
141
-------
Table A.7, continued
Parameter
Diethylphthalate/hexadecane
l
Heptadecane
Methylhexadeconate
Methy Inept adecanoate
1 -methylnapthalene
2-methylphenol
4-methylphenol
Napthalene
Octadecane
Phenol
Propazine
a-terpineol
Dichlorobenzene M
Dichlorobenzene P
Dichlorobenzene 0
Oiisooctylphthalate
Range
0-10
10-100
100-1000
0-1000
0-10
10-100
0-10
0-10
100-1000
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
100-1000
0-1000
0-10,000
Bacteria (colonies/g
Total Coll form
Fecal Col i form
2400
5000
2400
5000
Percent
Accuracy
±56-194
±105-116
±35-194
±51-124
±87
±61-154
±62-152
±80
±83-119
±54-114
±54-113
±49-99
±57-94
±55-114
±26-68
±55-118
±17-87
±18-84
±20-99
±81-136
±48-93
dry wt)
Precision
92.73
60.15
165.47
72.86
102.67
101.67
55.66
89.41
99.32
100.73
47.89
54.50
20.00
121.28
66.27
242.15
78.91
100.41
215.98
110.31
0
6.86 x 10
0
1.24 x 10
continued;
142
-------
Table A.7,continued
Parameter
Fecal Streptococci
Fungi
Actinomycetes
Total Place Count
Nitrite + Nitrate Nitrogen
Organic C
Alkalinity
Organic P
Chloride
Total P
Available P
Inorganic P
Sul fates
NH3-N
N03-N
% Clay - Texture
?o Moisture - Lab
% Moisture - Field
Bulk Density g/cm
Particle Density
% Porosity
pH
Conductivity
Percent
Range Accuracy
2400
5000
0-10
0-10
<2400
>2400
Chemical mg/g
0-0.05 ±44-178
0-02000
1-10 ±85-107
0-0.50
0-2.00
0-0.20
0-2.00 ±95-125
0-0.25 ±36-118 .
0-0.5 ±55-110
0-0.50 ±45-120
0-0.005 ±96-113
0-0.05 ±44-178
Physical
19.4-56.0
1.0-5.6
10.2-20.8
1.29-1.50
2.55-2.70
42.0-51.3
7.01-8.58
90-1410
Precision
0
2.18 x 10
5.05 x 10
3.78 x 10
0
3.8 x 10
0.00047
0.00136
0.65
0.03
0.005
4.35
0.01
0.00018
0.005
0.006
0.00006
0.00047
0.78
0.17
0.15
0.007
0.03
0.54
0.04
18.4
(continued)
143
-------
Table A.7, continued
Parameter
limhos/cm
TDS mg/g
% Sand - Texture
% Silt - Texture
Sodium
Potassium
Magnesium
Calcium
Sodium
Potassium
Magnesium
Calcium
Aluminum
Arsenic
Barium
Calcium
Cadmium
Iron
Magnesium
Manganese
Potassium
Silver
Sodium
Thallium
Zinc
Range
0.14-0.93
21.8-67.8
9.6-32.6
Metals mg/kg
100-300
500-5000
3000-5000
10,000-178,000
Extractable
100-200
50-4000
200-7000
5000-104,000
Total
6350-28,190
10.95-17.88
84-340
1930-13,800
0-10
530-17,160
1620-4110
160-276
3020-8780
3.05-0.66
178-648
<0. 005-2. 2
17-63
Percent
Accuracy
±54-103
±24-118
±50-120
±44-120
±16-111
±62-119
±71-114
±57-130
*
±36-146
±27-96
±40-116
±84-170
±18-140
±40-140
±54-116
±30-144
±58-136
± 8-60
±90-110
±64-118
±62-137
Precision
0.02
0.69
0.80
18.6
160.0
118.7
1219.2
14.0
245.1
95.1
8579.0
1124.5
1.03
29.4
626.4
0.03
178.5
328.8
21.4
208.5
0.276
28.7
0.495
3.7
(continued)
144
-------
Table. A.7, continued
Percent
Parameter Range Accuracy Precision
Cobalt 0-10 ±36-120 0.2055
Copper 0-100 ±40-110 0.7305
Molybdnum 0-10 ±48-112 0.1320
Nickel 0-100 ±44-103 0.6025
Chromium 8.0-26.58 ±60-122 2.95
Lead 0.71-6.94 ± 4-113 2.95
Selenium 0.005 ± 5-140 0.0471
145
-------
TABLE A.8. ACCEPTABLE LIMITS FOR PRECISION, ACCURACY AND COMPLETENESS
CROP SAMPLE ANALYSIS
Parameter
Cl~ mg/g
Sulfur mg/g
TKN mg/g
Total P mg/g
Oil mg/g
Aluminum
Arsenic
Barium
Boron
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
Lead
Magnesium
Manganese
Molybdenum
Nickel
Potassium
Selenium
Silver
Sodium
Thallium
Zinc
Range
0.00-1.00
0.00-50.00
0.00-50.00
0.00-5.00
0.00-0.25
78-1334
<0. 5-1.0
<1. 0-26.0
93-189
1730-17,000
<0. 05-0. 30
<0. 5-1.0
<0. 5-1.0
2.0-10.0
10-300
<0. 5-2.0
700-30,000
3.0-30.0
<0. 3-5.0
<0. 5-5.0
600-12,000
<0. 5-1.0
<0. 1-1.0
100-2,000
<0. 5-2.0
10-100
Percent
Accuracy
93-104
87-106
88-104
93-107
Total Metals
84-110
86-102
77-120
87-120
120-130
94-120
74-110
87-106
60-90
100-130
60-90
80-110
75-110
80-105
80-110
90-105
75-95
40-60
80-105
85-105
85-105
Precision
±0.05
± 1 .22
±3.33
±0.09
±0.1
(mg/g)
±85.
±0.
±0.8
±3.1
±91.
±0.3
±0.1
' ±1'.2
±0.9
±21 .
±0.6
±965.
±0.8
± 0.1
±1.3
± 349.
±0.
±0.
± 310.
± 0.5
±3.6
Percent
Completeness
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
(cont inued)
146
-------
Table A.8, continued
Parameter
Range
Percent
Accuracy
Precision
Percent
Completeness
Total
Coliforms-MPN 100-10
Fecal
Coliforms-MPN 100-10
Fecal Strepto-
cocci-MPN 100-10
Bacteria (cfu/g)
±179.
±87.
±1000.
95
95
95
147
-------
TABLE A.9. RESULTS U.S.E.P.A. PERFORMANCE EVALUATION STUDIES
(EPA UNKNOWNS)
Element
WP 581 ,
Minerals
Nutrients
Organics
Metals
Priority Organics
Minerals
Nutrients
Organics
Metals
Priority Organics
•
Minerals
Nutrients
Organics
Metals
Priority Organics
Minerals
Nutrients
Organics
Metals
Priority Organics
Percent Results
Acceptable
475, 580, 879, 1278, 478, 618 -
95
.70
100
73
91
WP 006, 007 - August 1982
89
60
100
96
100
WP 009 - December 1982
95
90
100
93
100
WP 10 - June 1983
100 (84)*
90 (70)*
100 (86)*
80 (82)*
100 (80)*
Percent Results
Not Acceptable
3une 1982
5
30
0
27
9
11
40
0
4
0
5
10
0
7
0
0 (16)*
10 (30)*
0 (4)*
20 (8)*
0 (20)*
(continued)
148
-------
Table A.9, continued
Element
Minerals
Nutrients
Organics
Metals
Priority Organics
Minerals
Nutrients
Organics
Metals
Priority Organics
Percent Results
Acceptable
WP 11 -
95.
100
100
97
88
WP 12
100
100
100
67
100
December 1983
- May 1984
(84)*
(72)*
(87)*
(86)*
(86)*
Percent Results
Not Acceptable
5
0
0
3
12
0 (16)*
0 (28)*
0 (13)*
23 (14)*
0 (14)*
Average acceptable and non-acceptable results
for three year study period
by element and overall average For study period
Minerals 96 4
Nutrients 85 15
Organics 100 0
Metals 84 16
Priority Organics 96_ __4
Average 92 8
* Average results from non-EPA and non-State laboratories participating in
U.S.E.P.A. Performance Evaluation Studies.
149
-------
TABLE A.10. REPRODUCIBILITY IN SEPARATE LABORATORIES OF BACTERIAL
INDICATOR DENSITIES IN WASTEWATER DURING BASELINE PERIOD
(Camann et al, 1985)
Sample
Date
Total Coliform
(cfu/1200 ml)
LCCIWR
UTSA
Fecal Coliform
(cfu/100 ml)
LCCIWR
UTSA
06/04/80
07/29/80
11/04/80
01/20/81
02/17/81
03/10/81
03/24/81
04/21/81
05/05/81
4.3 x 107
5.0 x 107
3.2 x 107
1.0 x 107
1.5 x 107
2.7 x 107
1.8 x 107
4.0 x 107
2.9 x 107
3.5 x 107
3.8 x 107
1 .4 x 107
6.0 x 10s
1 .1 x 107
1.2 x 107
1.6 x 107
5.2 x 107
Not done
Not Done
2.5 x 107
1.5 x 107
2.0 x 106
4.6 x 106
4.5 x 106
4.0 x 106
5.3 x 106
5.9 x 10G
8.7 x 106
7.2 x 106
8.8 x 10s
1.5 x 106
3.4 x 106
1 .6 x 10s
8.3 x 10s
5.9 x 106
8.6 x 106
150
-------
TABLE A.11. REPRODUCIBILITY IN SEPARATE LABORATORIES OF
FECAL COLIFORM DENSITIES IN WASTEWATER DURING 1982 AND 1983
(Camann et al 1985)
Sampling Date
02/15,16/82
02/15,16/82b
03/01 ,02/82
03/08,09/82
03/15,16/82
03/22,23/82
03/29,30/82
04/05,06/82
04/19,20/82
04/26,27/82
06/14,15/82
06/29,30/82
07/26,27/82
08/09,10/82
08/09,10/82
09/13,14/82
11/01,02/82
12/13,14/82
02/16,17/82
03/07,08/83
03/21,22/83
04/04,05/83
04/18,19/83
Fecal Coliforms (colonies/ml)
Hancock Reservoir Pipeline Effluent
UTSAa LCCIWR UTSAa LCCIWR
39
11,000
5,600
75,000
79,000
81,000
55,000
84,000
110,000
9,100
520 940 (600)° 66,000
60 200 68,000
190 58,000
390 370 35,000
10 2 (1.7) 200
350 700 (490) 65,000
UTA UTA
3.5 2.8 49,000
730 180 31,000
15 10 59,000
4 1.7 23,000
150 : 90 6,100
100 44 20,000
440 200 18,000
30
97,000
30,000
100,000
180,000
50,000
52,000
16,000
55,000
60,000
20,000
(30,000)
41
34,000
90,000
40,000
4,000
18,000
20,000
14,000
10,000
Wilson Imhoff
influent
UTA LCCIWR
UTA
130,000d 90,000
110,000 100,000
14,000 40,000
150,000 180,000
76,000 45,000
(60,000)
150,000 51,000
130,000 90,000
(continued)
151
-------
Table A.11, continued
Sampling Date
Hancock Reservoir
UTSA LCCIWR
Pipeline Effluent
UTSA LCCIWR
Wilson Imhoff
influent
UTA LCCIWR
05/16,17/83
06/27,28/83
07/11,12/83
07/25,26/83
08/08,09/83
08/22,23/83
300
150
3
110
30
160
5.5
1
50
1.7
59,000
53,000
48,000
120,000
90,000
39,000
27,000
40,000
40,000
20
350,000
260,000
370,000
240,000
310,000
230,000
60,000
54,000
180,000
13,000
90,000
20,000
a mean of triplicate assays
b trickling filter plant effluent
c parenthetical value, when given, is the result of a duplicate analysis
d samples taken as Imhoff tank effluent
152
-------
TABLE A.12. REPRODUCIBILITY IN SEPARATE LABORATORIES OF FECAL
STREPTOCOCCI DENSITIES IN WASTEWATER DURING 1982 and 1983
(Camann et al 1985)
Sampling Date
02/15,16/82
03/01,02/82 '
03/08,09/82
03/15,16/82
03/22,23/82
03/29,30/82
04/05,06/82
04/19,20/82
04/26,27/82
06/14,15/82
06/29,30/82
07/26,27/82
08/09,10/82
08/30,31/82
09/13,14/82
Fecal Streptococci (colonies/ml)
Hancock Reservoir Pipeline
UTSAa LCCIWRb UTSAa
120
1,000
5,900
3,500
7,900
5,000
2,800
4,800
1,800
20. 12.8 1,000
3. 10. 4,200
3. 2,300
6.6 6.0 2,500
0.3 1.1 30
10. 100. (20) 3,500
Effluent
LCCIWRb
40
400
5,000
4,000
2,200
2,600
1,400
1,890
(1500)
1,800
1,000
(2,000)
61
5,100
a Mean of triplicate assays
b Parenthetical value, when given, is the result of a duplicate analysis
153
-------
Plot Location Map Tor Trial 14000*
407
406
J01
218
101
417
314
J11
217
20$
111
103
409
315
216
209
204
115
104
415
410
403
316
309
215
210
116
109
105
308
108
413
412
318
306
201
Plot Size = 4.1 m x 13.7 m (13.3 ft x 45 ft)
•Code - 1st digit is replicate number
Last two digits are plot number
Treatment Codes for Trial 14000 Plots
Trial Plot Nuntoera
14000 01 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
Rep 1
Rep 2
Rep 3
Rep 4
6
4
8
2
18
10
10
18
18
2
6
16
B
10
16
12
14
12
6
2
12
IB
4
10
4
4
16
16
14
14
2
6
14
8
8
12
Treatments for Trial 14000 Treatment Codes
Treatment
Code
2
4
6
8
10
12
14
16
18
Hydraulic
Lending
00 cm/yr
20 cw/yr
41 cm/yr
51 cm/yr
61 cm/yr
69 cm/yr
86 cm/yr
102 cm/yr
122 cm/yr
( 0 in/yr)
( 8 in/yr)
(16 in/yr)
(20 in/yr)
(24 in/yr)
(27 in/yr)
(34 in/yr)
(40 In/yr)
(48 in/yr)
Figure A.1. Plot Map and Treatment Explanation for Trial 14000
154
-------
Plot Location Map for Trial 150UO and 16UUU
Cotton
Long Season lirain
Sorynurn (Milo)
15000
16000
203
101
212
112
101
21)5
?11
202
111
102
210
203
110
103
207
104
209
204
109
104
20B
10H
105
208
205
209
107
207
206
107
106
204
203
212
201
202
202
111
206
2U1
103
203
103
109
104
109
104
105
205
105
107
207
201
107
106
Alfalfa Bermuda
Plot Size = 12.1m (40 ft) x 1U.3m (60 ft)
•1st digit of plot code is rep number
2nd two digits of plot code are treatment code
Trial
Plot Number
15000 01 02 03 04 05 06 07 OS 09
Rep 1
Rep 2
Rep 1
Rep 2
3
1
2
2
5
3
1
4
4
2
3
3
5
5
4
1
4
5
1
2
Cotton
Cotton
Milo
Milo
Randomized treatment assignment to plots
Trial Plot Number
16000 01 02 03 04 05 06 07 08 09 10 11 12
Rep 1
Rep 2
Rep 1
Rep 2
5
2
1
1
3
7
7
7
6
6
1
12
4
4
11
1
6
6
10
5
3
4
8
4
3
5
1
12
2
2
11
7
2
10
5
Randomized treatment assignment to plots
Key:
Trial 15000
Treatment Loading
1 = 122. cm/yr Effluent Loading
2 = 103. cn/yr Effluent Loading
3 = 229. cm/yr Effluent Loading
4 = 297. cm/yr Effluent Loading
'j - 000. cm/yr Effluent Loading
Bermuda
Bermuda
Alfnlfn
Alfalfa
Treatment
Trial 16000
Loading Treatment I Loading
1 = 137. cm/yr Effluent Loading
2 : 19n. rm/yr Effluent Londinr)
1 = 2V). rm/yr rffluent Lo.-idincj
4 : 5()li. cm/yr Effluent Loading
5 = 365. cm/yr Effluent Loading
(> = 434. cm/yr Effluent Londing
7 = 000. cm/yr
10 = 365. cm/yr Well Wnter Loading
11 r 305. cm/yr Well Water Loading
12 = 259. cm/yr Well Water Loading
Figure A.2. Designed Treatment for Trials 15000 and 16000
155
-------
Trial 17000 Plot Map*
Rep 1
Rep 2
102 ) (103 J (104
106 1 (107 ) I 108
303 302 I 301
307 ] I 306 t 305
201 I 202
205) (206
209 ( 210
204-J ( 203
208) { 207
212 211
ooo
ooo
O _Q O
O O"O
ooo
ooo
OiOO
oloo
ooo
olo o
OiOO
OiOO
Ml LO
SOYBEANS
Plot size is 4.57m (15 ft) Diameter with buffer spaces between application
areas to minimize cross contamination from drift.
12 Treatments x 3 Reps x 2 Crops = 72 plots x 176.7 ftVplot = 0.29 Acres
For ease of application treatments were not randomized.
*Plot Code: 1st digit is rep number
Last two digits are treatment number
Figure A.3. Plot Hap for Trail 1700U
156
-------
FIELD SAMPLING CODE
FOR
LCCIWR LUBBOCK LAND TREATMENT RESEARCH AND DEMONSTRATION PROJECT
Symbols
Sample Date
Mo/Day/Year
Site
Location
Identity Number
Sample Type
Sampling Method
C - Gray
H - Hancock
L - Lubbock
W.- Wilson
L - Laguon
W-Well
R - Research
P- Pivot
D - Demonstration
T - Trickling
A - Activated Sludge
S-Seep
U - University
I - Institute
F - Force Main
M- ImHof f
Lagoon Number
Well Number
Research Plot No.
Pivot Number
Demo Number
El - Extraction
Tray Lys. No.
N = North
5 = South
W = West
EzEast
M : Middle
1 = Influent
2 = Effluent
W- Water G-
S-Soil C-
C - Crop M -
A-
C-
H-
H-
0-
B -
S-
F -
Grab
Composite
Mixed
Alfalfa
Cotton
Milo
Wheat
Oats
Bermuda
Soybeans
Sunflowers
LCCIWR
Lab Sample No.
(6 digits)
Soil and Water
Sample Depth
Replication Number
O's-Surface Sample
NO - Not Obtainable
NO = (999)
000 - Surface Samples
001 Roots
002 Stalks, Stems,
Leaves, Petioles,
Burs
003 Seeds, Grain Only
004 Lint
005 Whole Head
006 Whole Plant ex-
cept Roots
Example:
Note:
Note:
Note:
Well 16880 was sampled on the Gray Farm April 24, 1980. The depth to water was recorded as 51 ft and the water sample
was given a lab number of 231, when it was brought into the lab for analysis.
SAMPLE CODE would be: 0424806W0688QW6051000231
All "Sample Identity Numbers", "Depths", and "Lab Numbers" not having 5, 3 or 6 digits respectively, need to be pre-
ceeded in O's until the complete field of digits ia represented.
Ex: Cray Hell 6880 = 06880
Sample Depth 2 ft = 002
Lab Number 231 = 000231
FOR SOILS: Cores composited over several feet depth would be listed with minimum and maximum depth.'
Ex: Soil core composited from 4 ft to 6 ft depths = 046
FOR SOILS AND CROPS: The first four digits of the sample identity mumber is derived by placing a 24x18 or 18x24
division grid over Gray and Hancock farm maps respectively with 0,0 being in the left lower
corner. The 5th digit of the identity number represents the quadrant of that grid from which
the sample was taken.
Figure A. 4. Field Sampling Code
-------
Sample
Analysis
Worksheets
Section Heads
reject
Yes
I
Quality Control:
Spikes, Duplicates
Inhouae Unknowns,
Standard Curves
Data Entry
on
Sample
Summary Sheets
beet ion Heads
1
Data Entry
into
Computer Files
Debbie Adams
Computer Programs
1) Statistics - Means
Confidence Limits
2) Species Balance
Total > Parts
5) Ion Balance
No
Yes
Figure A.5. Data Flow Diagram
Computer
Stnrnqi* nnd
Output
Tables, Graphs)
158
-------
APPENDIX B
Irrigation Water Quality
159
-------
Table B.1 Water Quality Characteristics of Water Applied to Research Plots
ARITHMETIC HEARS
AND
STARDARD DEVIATIONS
SOURCE
ALKALIIITT COP DUCT IT ITT TOS PB Cl SO* TOTAL I
BG CAC03/L BG/l BG/t BG/L BG t/L
• •••••••••••*•»•**•*••••••••••••••*•*•••*•*•*•*•••••••••••**•••*•••»•*»»•**••••»••»***•••••••***•»•*»••
Southeast Water AT* 337. 2216. 1695. 7.54 «68. 315. 38.59
Heclasatlon Plant SO ( 34.) ( 240.) ( S37.) (0.21) ( 55.) ( 43.) (1S.23)
Effluent S * <-0.07> < 0.18> < 3.00> <-1.05> <-1.62> <-0.17> < 1.W>
BD * 342. 2130. 1635. 7.57 470. 311. 3S.42
Effluent Entering AT 342.
Hancock Tarn from 3D ( 54.)
force Main S < 1.19>
BD 343.
ON
O
FrevtMter Well
Effluent fr
Reservoir
AT 27*.
SD ( 12.)
S <-1.12>
BD 281.
AT 299.
SD ( 30.)
S <-0.09>
HO 303.
1969.
( 160.)
<-1.45>
1975.
920.
( 56.|
<-0.32>
930.
2093.
( 3«1.)
< 2.53>
2085.
1190. 7.76
( 107.) (0.36)
< 0.76> < 1.43>
1180. 7.70
716.
( 271.)
< 1.«8>
611.
1241.
( 56.)
<-0.64>
1246.
7.76
(0.38)
O.OS>
7.76
8.30
(0.52)
<-0.01>
8.30
339.
< 71.)
< 1.83>
328.
76.
( 23.)
-1.14>
87.
360.
( 18.)
< 0.10>
359.
208.
( 46.)
<-o.os>
208.
98.
( 38.)
< 1.10>
82.
200.
( 52.)
<-2.66>
215.
41.70
(19.99)
< 0.75>
33.49
0.27
( 0.34)
< 1. 15>
11.74
( 8.20)
< 0.70>
12.38
102/103 HH3
BG H/L HG I/I
••••••**»»***»«***«**ee*
0.29 25.95
I 0.30) ( 6.69)
< 1.03> < 0.«2>
0.16 25.142
0.71
( 1.66)
< 3.57>
0.07
3.39
( 4.30)
< 1.10>
1.58
0.66
( 1.27)
< 2.95>
0.27
25.80
(10.70)
< 0. 80>
25.59
0.16
( 0.29)
< 1.46>
0.04
8.24
( 6.41)
<-0. 04>
8.38
SOURCE TOTAL P 01THO P DIG. P COD TOC
BG P/L HG P/t BG P/L HO/L BG/L
•••••• e««»«»»«»»»»»»»»»•••«•••••••••••••«•••••»••*«••••••••»•••«••«••••••••••»•««» ••**•*• to*************************************
SouthMMt Keter AT 14.43 fl.36 5.15 302.4 117.7
Reelection PUnt 3D (4.27) (2.03) (4.20) (135.6) (45.1)
Effluent S < 1.47> < 0.60> < 0.56> < 0.32> < 0.69>
BD 14.16 8.32 4.73 284.0 114.3
Effluent EnUring AT 11.82
Hancock ran from SD ( 3.63)
Force Main S < 0.63>
BD 11.13
FreehMter Hell
Effluent rro>
Reeervoir
AT 0.08
SB ( 0.10)
S < 0.89>
•• 0.02
AT 6.31
SD ( 2.32)
S < 0.41>
BD 5.92
8.43
( '.71)
< 0.23>
8.29
0.0*
( 0.06)
< 1.43>
<0.01
4.85
( 2.20)
<-0.17>
5.17
1.60
( 2.20)
< 1.58>
0.49
<0.01
( 0.001
< 1.15>
<0.01
0.61
(
325.6
(290.2)
< 1.84>
237.5
2.»7>
0.19
6.0
4.3)
0.68>
5.0
75.1
29.0)
0.09>
68.3
64.1
(37.3)
< 0.88>
51.9
1.5
( 0.7)
<-0.58>
1.7
20.8
( 6.»l
<-0.32>
20.8
-------
Table B.1, continued
SOURCE TOTAL COLIFOBIIS FECAL COLIFOBRS FECAL STBEP.
•••*•»•••••••••••••••***••••••••*••••••••*••**••••**••••*•••••**•••*••*••»**••••*••••••••***•••
Southeast Mater ** 27326016. 8852272. 281659.
Reclamation Plant SO
CffJuent 3
no
Cffluent Entering
Hancock Fan froo
Force Main
Fre»h«ater Mil
Effluent fr
Reservoir
A»
SO
•0
if
3D
3
ID
A*
SO
S
BD
16447465.)
0.4S>
27000000.
22639168.
13669506.)
1.38>
23000000.
934.
1S79.)
1.35>
ISO.
1054713.
3457580.)
4.12>
200000.
S933719.)
6600000.
3576744.
3632328.)
2.24>
3000000.
>703.
1124.)
0.70>
100.
109211.
433929.)
4.23>
5000.
592418.)
3. 78>
125500.
243003.
208804.)
1.15>
210000.
34.
30.)
-0.*4>
43.
151788.
670406.)
4. 13>
1000.