EPA -670/2-73-047a
August 1973
Environmental Protection Technology Series
Methods For Improvement Of Trickling
Filter Plant Performance - Part i Mechanical
And Biological Optima
Office of Research and Development
U.S. Environmental Protection Agency
Washington, D.C. 20460
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and
Monitoring, Environmental Protection Agency, have
been grouped into five series. These five broad
categories were established to facilitate further
development and application of environmental
technology. Elimination of traditional grouping
was consciously planned to foster technology
transfer and a maximum interface in related
fields. The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
<*. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL
PROTECTION TECHNOLOGY series. This series
describes research performed to develop and
demonstrate instrumentation, equipment and
methodology to repair or prevent environmental
degradation from point and non-point sources of
pollution. This work provides the new or improved
technology required for the control and treatment
of pollution sources to meet environmental quality
standards.
-------
EPA-670/2-73-047a
August 1973
METHODS FCR IMPROVEMENT OF
TRICKLING FILTER PLANT PERFORMANCE
PART I
MECHANICAL AND BIOLOGICAL OPTIMA
by
James C. Brown
Linda W. Little
Donald E. Francisco
James C. Lamb
University of North Carolina
Chapel Hill, North Carolina 27514
Contract #14.12.505
Project #11010 DGA
Program Element #1B2043
Project Officer
Robert L. Bunch
U. S. Environmental Protection Agency
National Environmental Research Center
Cincinnati, Ohio 45268
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D. C. 20460
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $2.30
-------
EPA Review Notice
This report has been reviewed by the Environmental
Protection Agency and approved for publication.
Approval does not signify that the contents necessarily
reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names or
commercial products constitute endorsement or recommenda-
tion for use.
ii
-------
ABSTRACT
The Chapel Hill high rate trickling filter plant which consists of two
parallel and equal lines of treatment units was operated in parallel as
two separate plants over a period of 26 months. Each side was operated
with various fractions of influent flow and recirculation flow rates.
Statistical analysis of operating results indicated that the common math-
ematical models are not reliable in predicting daily performance at the
Chapel Hill plant. They are, however, useful in predicting long term
average performance. Recirculation ratios as high as 3.0 proved benefi-
cial at total hydraulic loadings of less than 20 mgad. Operation above
this loading is not currently feasible at Chapel Hill.
The hydraulic surface loading of the final settling tanks was found to
have a significant effect on overall plant performance. A surface load-
ing of 500 gpd/ft is recommended for the design of final tanks in new
plants.
Pilot plant studies using 4-foot diameter rock filters indicate a signi-
ficant advantage for two-stage filtration even though the hydraulic load-
ing on each stage may be double that for single-stage operation.
Pilot plant studies of activated sludge treatment of trickling filter
effluent were conducted. The process proved effective in improving re-
moval of BOD, if effective final solids removal facilities are provided.
The process also proved effective in reducing nitrogenous oxygen demand.
This report was submitted in fulfillment of Project Number 11010 DGA,
Contract Number 14-12-505 between the University of North Carolina and
the U. S. Environmental Protection Agency.
iii
-------
CONTENTS
Section
I
II
III
IV
V
VI
VII
VIII
CONCLUSIONS
RECOMMENDATIONS
INTRODUCTION
CHAPEL HILL PLANT AND WASTEWATER RESEARCH CENTER
TRICKLING FILTER STUDIES
Obj ectives
Experimental Period
Sampling, Analyses and Data Handling
Equality of the Two Sides of the Plant
Pattern of Recirculation
Mathematical Models for Trickling Filter Plant
Performance
Pilot Plant Studies of Two-Stage Filtration
Analysis of Main Plant Settling Tank Performance
Conclusions Regarding Operation of Existing
Trickling Filter Plants
Conclusions Regarding Plant Upgrading with Minor
Additions
Conclusions as to the Design of Major Additions
or New Plants
ACTIVATED SLUDGE STUDIES
0.1 gpm Activated Sludge Pilot Plants
3.0 gpm Activated Sludge Pilot Plants
REFERENCES
GLOSSARY
Page
—— .w. —
1
4
5
7
18
18
18
19
20
21
22
44
53
58
59
60
64
64
99
110
236
iv
-------
CONTENTS (continued)
Section Page
VIII APPENDICES
A MAIN PLANT DATA 117
B ABSTRACTS OF PUBLICATIONS RESULTING FROM PROJECT 233
-------
FIGURES
Figure £*££
4-1 PARTIAL FLOW SHEET FOR CHAPEL HILL PLANT ll
4-2 AUTOMATIC SAMPLING SYSTEM 14
4-3 TRICKLING FILTER PILOT PLANTS 14
4-4 PILOT PLANT BUILDING - UNC WASTEWATER RESEARCH
CENTER 15
5-1 POSSIBLE PATTERNS OF RECIRCULATION AT THE
CHAPEL HILL PLANT 21
5-2 EFFECT OF RETARDANT MODEL 26
5-3 MIXTURE OF INFLUENT AND RECIRCULATION FLOWS 27
5-4 SCATTER DIAGRAM OF PREDICTIVE EQUATION 5-12
DERIVED FROM LINEAR REGRESSION ANALYSIS 30
5-5 SCATTER DIAGRAM OF PREDICTIVE EQUATION 5-13
IN A FORM SIMILAR TO ECKENFELDER's MODEL 31
5-6 SCATTER DIAGRAM OF PREDICTIVE EQUATION 5-14
IN THE GENERAL FORM OF THE NRC EQUATION 33
5-7 EFFECT OF ORGANIC LOADING ON FRACTION OF BOD
REMAINING 36
5-8 EFFECT OF TEMPERATURE ON FRACTION OF BOD
REMAINING 38
5-9 EFFECT OF TOTAL FLOW, Q, ON FRACTION OF BOD
REMAINING 41
5-10 EFFECT OF RECIRCULATION RATIO ON FRACTION
OF BOD REMAINING 43
5-11 FLOW DIAGRAM OF PILOT TRICKLING FILTER FOR
SINGLE-STAGE FILTRATION 45
5-12 FLOW DIAGRAM OF SINGLE-STAGE AND TWO-STAGE
UNITS
5-13 PLOT OF THE REGRESSION EQUATION FOR BOD IN
THE FINAL CLARIFIER 55
vi
-------
FIGURES (continued)
Figure
5-14 PLOT OF THE REGRESSION EQUATION FOR SUSPENDED
SOLIDS IN THE FINAL CLARIFIER 56
6-1 DIAGRAM OF AERATION UNIT AND SETTLING TANK OF
ACTIVATED SLUDGE PILOT PLANT 66
6-2 PHOTOGRAPH OF THE FIVE ACTIVATED SLUDGE PILOT
PLANTS 69
6-3 PER CENT REMOVAL OF BOD IN THE MAIN PLANT
(SHADED) AND ADDITIONAL REMOVAL IN THE
ACTIVATED SLUDGE PILOT PLANTS (OPEN) 77
6-4 PER CENT REMOVAL OF BOD IN THE MAIN PLANT
(SHADED) AND ADDITIONAL REMOVAL IN ACTIVATED
SLUDGE PILOT PLANTS FOLLOWED BY SOLIDS
REMOVAL (OPEN) 78
6-5 RELATIONSHIP OF BOD LOADING TO PER CENT BOD
REMOVAL IN ACTIVATED SLUDGE PILOT PLANTS 80
6-6 AMMONIA REMOVAL IN ACTIVATED SLUDGE PILOT
PLANTS DURING 8 PHASES OF OPERATION 84
6-7 AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE
WASTING AND NO BICARBONATE ADDITION 87
6-8 AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE
WASTING AND LOW INFLUENT BOD: EFFECT OF
BICARBONATE ADDITION 88
6-9 AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE
WASTING AND HIGH INFLUENT BOD: EFFECT OF
BICARBONATE ADDITION 89
6-10 AMMONIA REMOVAL DURING VARIOUS PATTERNS OF
SLUDGE WASTING 90
6-11 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS CONCENTRATION, UNIT 1 92
6-12 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS CONCENTRATION, UNIT 2 93
6-13 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS CONCENTRATION, UNIT 3 94
vii
-------
FIGURES (continued)
Figure Page
6-14 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS CONCENTRATION, UNIT 4 95
6-15 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS CONCENTRATION, UNIT 5 96
6-16 PHOTOGRAPH OF LARGE ACTIVATED SLUDGE PILOTS.
AERATOR TO RIGHT, SETTLING AT LEFT 101
6-17 AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR
SUSPENDED SOLIDS, UNIT 3 ASPP 104
6-18 AVERAGE PER CENT REMOVAL OF BOD5 AND ORGANIC
CARBON WITH AND WITHOUT SUBSEQUENT SOLIDS
REMOVAL FOR THE MA.IN PLANT (SHADED) AND THE
ADDITIONAL REMOVAL IN THE ACTIVATED SLUDGE
PILOTS (OPEN) 107
6-19 PER CENT REMOVAL OF ULTIMATE BOD* IN THE MAIN
PLANT AND MAIN PLANT WITH ACTIVATED SLUDGE
PILOT PLANTS 108
viii
-------
TABLES
No.
4-1 CHARACTERISTICS OF PLANT INFLUENT »
4-2 CHARACTERISTICS AND DESIGN PARAMETERS OF UNITS
IN CHAPEL HILL TREATMENT PLANT 9' 10
4-3 ANALYTICAL PROCEDURES 16» 17
5-1 MEAN OVERALL PERCENT REMOVAL OF BOD , SS AND
TOC DURING PERIODS OF EQUAL LOADING ON THE
TWO SIDES OF THE PLANT 21
5-2 OVERALL PERCENT REMOVAL OF BOD AND SS WITH
TWO PATTERNS OF RF.CIRCTJLATION 22
5-3 EFFECTS OF VARIATIONS IN LO ON FILTER-FINAL
SETTLING TANK PERFORMANCE 35
5-4 EFFECTS OF WASTEWATER TEMPERATURE ON FILTER-
FINAL SETTLING TANK PERFORMANCE 37
5-5 EFFECT OF HYDRAULIC LOADING ON FILTER-FINAL
SETTLING TANK PERFORMANCE 40
5-6 EFFECTS OF RECIRCULATION RATIO ON FILTER-
FINAL SETTLING TANK PERFORMANCE 42
5-7 DESIGN CONDITIONS FOR PILOT TRICKLING FILTER
UNITS 46
5-8 SUMMARY RESULTS OF SINGLE- VERSUS TWO-STAGE
TRICKLING FILTRATION 49
5-9 RELATIVE DETENTION TIME IN FILTER 52
5-10 CALCULATED VALUES OF FINAL EFFLUENT BOD OR
SUSPENDED SOLIDS 54
5-11 COSTS OF TRICKLING FILTRATION AND ACTIVATED
SLUDGE PLANTS ADJUSTED TO ENR CONSTRUCTION
COST INDEX OF 1600 60
6-1 DESIGN PARAMETERS 67
6-2 CHARACTERISTICS OF EXPERIMENTAL PERIOD 68
IX
-------
TABLES (continued)
6-3 AVERAGE SLUDGE VOLUME INDEX (SVI) AND MIXED
LIQUOR SUSPENDED SOLIDS (MLSS*) OF ACTIVATED
SLUDGE PILOT PLANTS RECEIVING TRICKLING
FILTER EFFLUENT 71
6-4 AVERAGE BOD AT VARIOUS POINTS IN TREATMENT
PROCESSES INVOLVING A PRIMARY TANK AND TRICKLING
FILTER IN A SERIES WITH EITHER A FINAL SETTLING
TANK (FST) OR ACTIVATED SLUDGE PILOT PLANT (ASPP) 72
6-5 AVERAGE BOD AT VARIOUS POINTS IN A TREATMENT
PROCESS INVOLVING A PRIMARY TANK AND TRICKLING
FILTER IN SERIES WITH AN ACTIVATED SLUDGE PILOT
PLANT AND SUBSEQUENT REMOVAL OF SOLIDS 73
6-6 AVERAGE PER CENT BOD REMOVAL IN ACTIVATED SLUDGE
PILOT UNITS BASED ON UNCENTRIFUGED SAMPLES** 75
6-7 AVERAGE PER CENT BOD REMOVAL BY ACTIVATED SLUDGE
PILOT PLANTS WITH SUBSEQUENT SOLIDS REMOVAL* 76
6-8 PARAMETERS DURING PERIODS OF MAXIMUM AND MININUM
AMMONIA REMOVAL 85
6-9 EFFECT OF BICARBONATE ADDITION ON AVERAGE PH AND
INORGANIC CARBON CONCENTRATIONS IN ACTIVATED
SLUDGE UNITS RECEIVING INFLUENT WITH LOW BOD
(35-36 mg/A) 85
6-10 EFFECT OF BICARBONATE ADDITION ON AVERAGE PH AND
INORGANIC CARBON CONCENTRATIONS IN ACTIVATED
SLUDGE UNITS RECEIVING INFLUENT WITH HIGH BOD
(60-68 mg/&) 86
6-11 CHANGE IN CONCENTRATION OF VARIOUS NITROGEN FORMS
DURING TREATMENT 97
6-12 CHANGE IN NITROGENOUS OXYGEN DEMAND (NOD) OF
WASTEWATER WITH DIFFERENT DEGREES OF TREATMENT 98
6-13 DESIGN DATA - 3 GPM ACTIVATED SLUDGE PILOT PLANTS 100
6-14 PERFORMANCE OF CHAPEL HILL TRICKLING FILTER PLANT
AND 3 GPM ACTIVATED SLUDGE PILOT PLANTS
-------
SECTION I
CONCLUSIONS
A. TRICKLING FILTER STUDIES
To improve the performance of existing trickling filter plants with
a minimum of modification the following procedures are recommended:
1. If two filters are available, and two-stage or parallel opera-
tion of the filters is possible, the two-stage method should be
used as it will provide significantly better performance.
2. Filter recirculation ratios of up to 3.0 will significantly
improve the performance of most high rate filters. If pumping
capacity permits this level of recirculation, it should be used.
3. If filter recirculation is drawn from a point downstream of the
final settling tanks the entire plant flow plus recirculation
flow must pass through the tank. The final settling tank will
be much more effective as a solids separation unit if recircu-
lation is withdrawn before the final tank. Therefore, overall
plant performance will be improved.
4. The quality of anaerobic digester supernatant and its method of
return to the plant flow units can have a significant effect on
plant performance. The intermittent, high rate, return of
supernatant from a mixed digester will have a deleterious effect.
The continuous return of supernatant from an unmixed secondary
digester during periods of low plant flow, e.g., during the
night, will have little effect on plant performance. Therefore,
when two or more digesters are available, one unit should be
operated as a secondary to provide conditions for the thicken-
ing of sludge and the separation of supernatant.
The performance of some trickling filter plants can be improved with
minor additions or revisions, e.g.:
1. Additional recirculation pumping capacity may be provided by
installing larger pump impellers with higher horsepower motors.
Plant performance will be improved.
2. If two filters exist at a plant but no provision has been made
for two-stage filtration, the necessary facilities, i.e., pumps,
control boxes, and flow control systems, can be added to permit
two-stage operation. Two-stage filtration will improve perfor-
mance .
-------
When new trickling filter plants are being designed or major addi-
tions are to be made to existing facilities, the following factors
should be carefully considered:
1. Trickling filter plant performance is not significantly affected
by the point of recirculation return, i.e., ahead of the primary
settling tank or directly to the filter. For this reason direct
recirculation is recommended, as a smaller primary tank will be
required to meet design standards. The money saved in this
manner should be invested in larger final settling tanks.
2. Final settling tank design should be based on a surface loading
of 500 gpd/ft2. At this loading the performance of the tank
will be enhanced during both single- and two-stage operation of
filters. Furthermore, the settling tank will be suitable for
the separation of chemical floe if phosphorus removal or en-
hanced overall performance is required at some future date. In
this regard, structures to facilitate the future addition of
chemicals should be incorporated into initial plant construct-
ion. This would include provision for the addition of rapid
mixing, flocculation, and space for chemical storage and feeding
equipment.
3. At least two trickling filters should be provided along with
facilities and controls to permit two-stage operation and inter-
change of the lead and secondary filters. When the proposed
facility is so small that two filters are not economical,
another treatment method should be considered.
4. Existing mathematical models and models developed during this
investigation are not reliable predictors of the daily perfor-
mance of the Chapel Hill high rate trickling filter plant. The
models developed during this study are, however, suitable for
the prediction of average performance over a period of several
weeks.
B. ACTIVATED SLUDGE PILOT PLANTS
1. An activated sludge process is readily maintained with trickling
filter effluent as feed. The process significantly, but not
spectacularly, improves overall removals of BOD , total organic
carbon, and suspended solids. Short (< 1 hr) aeration periods
suffice to increase overall BOD removals by 3-5%. BOD removals
generally increase with detention time.
2. Consistent performance of the tertiary activated sludge process
depends to a large extent on effective solids removal. With
effective solids removal substantial BOD removals can be
achieved even at 0.4 hr detention. With effective removal of
suspended solids, overall BOD removals greater than 90% can be
achieved.
-------
3. Extensive nitrification can be achieved in the tertiary acti-
vated sludge process. Significant reductions of organic and
ammonia nitrogen concentrations indicate that substantial re-
duction of the nitrogenous oxygen demand (NOD) can be accom-
plished. The amount of NOD reduction is largely a function of
aeration time and BOD loading. In the relatively soft Chapel
Hill water addition of bicarbonate alkalinity enhanced nitri-
fication.
NOD removals of greater than 80% were achieved under conditions
of low influent BOD concentration (35 mg/Z), bicarbonate addi-
tion, and 1-9 hr detention time. With an average influent BOD
of 72, more than 4 hr were required.
With low influent BOD levels, even at short aeration times (< 1
hr) NOD reductions of greater than 50% were observed.
Extensive nitrification (> 90%, based on removal of influent
ammonia) frequently occurred when the pH in the aerator averaged
less than 7.0, leading to the conclusion that the optimum pH
range for nitrification is not as narrow as indicated by pre-
vious investigators.
Based on these studies, if NOD reduction is required in upgrad-
ing an existing trickling filter plant, terminal activated sludge
treatment may provide an acceptable solution. If NOD reduction
is required in a new plant, trickling filter treatment followed
by activated sludge treatment may allow the activated sludge
system to operate more successfully due to the dampening effect
of the filter on changes in influent quality.
-------
SECTION II
RECOMMENDATIONS
A. TRICKLING FILTERS
1. New trickling filter treatment facilities should be designed for
two-stage operation with provision for interchange of the lead
filter.
2. The effectiveness of intermediate settling between filter stages
should be determined.
3. Studies of deep filters designed to operate at high hydraulic
loadings, with continuous rather than intermittent liquid appli-
cation, would help in the verification or modification of ra-
tional filter performance models as developed by Rowland,
Schulze, and Eckenfelder. With the proper experimental opera-
tion of such filters the effect of both liquid detention and
liquid turbulence might be determined. The systematic develop-
ment of deep filters or multi-stage filtration processes design-
ed to operate at high hydraulic loadings could result in signi-
cant economies while the traditional advantages of the trickling
filter process, i.e., simplicity of operation and resistance to
upset, could be retained.
4. Final settling tanks in new trickling filter plants should be
designed at an average surface loading of 500 gallons/day/ft .
Designers should provide for the future addition of chemical
treatment, i.e., provision should be made for the installation
of mixing and flocculation equipment prior to final settling.
B. ACTIVATED SLUDGE PILOT PLANTS
1. The effect of pH, alkalinity, and organic loading on nitrifica-
tion systems should be examined further. Whereas such factors
have been extensively investigated in laboratory studies with
defined media, further information is needed on their effect on
actual treatment systems. In addition, development of a good
method for determining the relative numbers of nitrifiers in a
given sample of sludge would be useful in formulating a valid
description of the relationship of mixed liquor suspended solids
concentration to nitrifying activity.
2. The effectiveness of the trickling filter - tertiary activated
sludge process should be verified at full-scale. In particular,
the following parameters need assessment: temperature varia-
tions, sludge production, control of effluent solids.
-------
SECTION III
INTRODUCTION
A great many secondary municipal wastewater treatment plants in the
United States use trickling filters as the biological units. Most of
these are "high-rate" installations, characterized by relatively heavy
rates of wastewater application with recirculation of treated effluent
to dilute influent before application to the filter. Typically, trickl-
ing filter plants attain 70-85% BOD removal through the entire facility ,
including removal of about one-third of the influent BOD by primary
sedimentation.
Modern technology of wastewater treatment and pressures for higher re-
movals of BOD, suspended solids, and other constituents have resulted
in trends toward installation of activated sludge instead of trickling
filters in new plants. Nevertheless, thousands of communities in the
U.S.A. still have trickling filter installations. Most perform at a
level which is, or soon will be, inadequate for meeting regulatory re-
quirements, leaving those municipalities in the situation of having to
enhance plant efficiency. That could be accomplished through merely en-
larging existing facilities, adding other types of treatment processes,
or replacing their trickling filters with other types of units.
Information currently available to design engineers and operating per-
sonnel is inadequate to permit accurate selection of optimum systems for
enhancing performance of trickling filter plants to levels that might
be required. The overall objective of this project was to develop infor-
mation which could help design engineers and operating personnel select
among practical alternatives available for improving performance of
trickling filter plants.
The general approach was based on experimental investigations at labora-
tory, pilot- and full-scale. They were conducted at the Mason Farm
Sewage Treatment Plant in Chapel Hill, North Carolina, operated for the
Town by personnel in the Department of Environmental Sciences and Engi-
neering at the University of North Carolina. The most recent plant
enlargement (1968) included modifications to provide unusual flexibility
in full-scale operation, as well as facilities for laboratory and pilot
studies. Among other unusual features, the new units were designed to
permit operating the plant as two separate identical trickling filter
installations, between which the influent flow could be divided in any
desired proportion with capability for independent control of recircula-
tion and other aspects of operation in each.
The experimental program was designed to develop practical information
which would be valuable to engineers engaged in modifying trickling
filter plants to improve performance and to evaluate techniques which
-------
could be applied by plant operators to assure optimum performance of
existing and proposed units. Activities were directed principally to-
wards evaluating the effects of various parameters on treatment effici-
ency and investigating the performance of an activated sludge system
based on installation of an aeration tank between the trickling filter
and final settling tank. Each investigation involved use of several
experimental facilities to study various aspects of operation, as will
be discussed in detail in appropriate sections of the report.
-------
SECTION IV
CHAPEL HILL PLANT AND WASTEWATER RESEARCH CENTER
A. Plant Design
The Wastewater Treatment Plant for Chapel Hill is a conventional high-
rate trickling filter installation treating predominantly domestic sew-
age. There is substantially no industrial or other unusual contribu-
tion, except for hospital and laboratories of the University of North
Carolina. Table 4-1 summarizes some of the more pertinent characteris-
tics of the influent for the period of this study, 9/69-1/72. Figure
4-1 is a partial flow sheet for the Plant and Table 4-2 summarizes
characteristics and design parameters of major units.
Incoming wastewater passes through a mechanically cleaned bar screen,
with a manual unit serving as a backup in case of failure. Subsequently,
the flow is metered and grit removed in a detritor. Design of the grit
removal effluent structure allows splitting of flow into any desired
proportions for diversion to the two identical treatment plant batteries.
Based on total plant influent of 3.0 mgd, equally divided between the
two batteries, and recycle ratio of 2:1 the 70-foot primary clarifiers
provide 1.8 hours detention and overflow rate of 1180 gals/ft^/day.
Each trickling filter is 120-feet in diameter with a stone depth of 4.25
feet, providing a "design" loading of about 35 Ibs. BOD/day/1000 cf
(assuming one-third removal in the primary) at hydraulic loading approxi-
mating 17 mgd/acre. Trickling filter effluent passes through a wet well
from which any or all of three pumps take recycle at rates up to 7.5
mgd in each battery. Net plant flow (no recycle) passes to 45-foot
final clarifiers, providing 1.9 hours detention at 1.5 mgd and 960
gals/ft^/day at 1.5 mgd through each battery.
B. Plant Operation
Normal plant operation is based on recycle to the primary clarifier
influent, but a connection has been provided to permit recycling directly
around each trickling filter, without settling. Series or stage opera-
tion of the filters is not possible. Typically, the plant operates with
the batteries in parallel, as shown in Figure 4-1, in effect providing
two separate treatment facilities. The influent sewage can be divided
between these as desired for operation at different loadings and recycle
in each adjusted independently.
Sludge from each final settling tank is pumped to influent of the pri-
mary clarifier, in which it settles again in combination with primary
sludge. Sludge and scum are pumped from primary clarifiers to a 75-
-------
TABLE 4-1
CHARACTERISTICS OF PLANT INFLUENT*
September, 1969 - February, 1972
(Monthly Averages)
9/69
10/69
11/69
i o / £ n
I// by
1/70
2/70
3/70
4/70
5/70
6/70
7/70
8/70
9/70
10/70
11/70
12/70
1/71
2/71
3/71
4/71
5/71
6/71
7/71
8/71
9/71
10/71
11/71
12/71
1/72
2/72
Ave
Max
Min
Cases
BOD5
mg/H
167
176
153
i ?n
1/U
193
182
159
165
142
117
126
176
141
136
143
150
128
134
134
136
159
156
136
134
188
140
170
183
170
161
154
193
126
30
SS
238
262
186
-------
TABLE 4-2
CHARACTERISTICS AND DESIGN PARAMETERS OF UNITS
IN CHAPEL HILL TREATMENT PLANT
CURRENT AVERAGE FLOW Approximately 3.0 mgd
SCREENS;
a) One automatic, mechanically-cleaned
b) One manually-cleaned (Standby)
GRIT REMOVAL
One mechanically-cleaned detritor
PRIMARY SETTLING (Two units)
a) Diameter = 70 feet
b) Water depth = 12 feet
c) Detention = 1.8 hours (2:1 Recycle)
d) Overflow rate = 1180 gals/ft2/day (@ 2:1 Recycle)
e) Mechanical sludge and scum removal
TRICKLING FILTERS (Two units)
a) Diameter = 120 feet
b) Stone depth =4.25 feet
c) Rotary distributors
d) BOD,j loading about 35 lbs/day/1000 c.f. (Assuming 1/3 removal
in primary)
e) Hydraulic loading = 17 mgd/acre (2:1 Recycle)
FINAL SETTLING (Two units)
a) Diameter = 45 feet
b) Water depth = 10 feet
c) Detention =1.9 hours
d) Overflow rate = 960 gals/ft2/day
e) Mechanical sludge removal
RECIRCULATION PUMPS
In each battery, one 1.5 mgd and two 3.0 mgd units.
DIGESTERS
a) One 75' diameter, mechanically mixed, heated, floating cover
b) One 50' diameter, mechanically mixed, heated, floating cover
c) One 50* diameter, no mixing, floating cover (not now in
operation)
d) Heat exchanger (Digester gas or propane) for units in operation
now, including pumps, control valves, interconnecting piping
-------
TABLE 4-2 (continued)
SLUDGE DEWATERING
a) 18 drying beds, 25' x 50', uncovered
b) One 18" bowl, 15-17 gpm, Bird centrifuge
10
-------
SEWAGE
r
SUPERNATANT
mri
Not in use
DIGESTERS
MANUAL AND MECH.
BAR SCREENS
>< PARSHALL FLUME
GRIT REMOVAL
FLOW SPLITTER
SLUDGEAND
[ CENTRIFUGE
CAKE TO
LANDFILL
SLUDGE
DRYING
BEDS
PRIMARY
SETTLING
TRICKLING
FILTER
WET
WELL
FINAL
SETTLING
EFFLUENT
FIGURE A-1 - PARTIAL FLOW SHEET FOR CHAPEL HILL PLANT
-------
foot diameter digester equipped with floating cover and mixer. A 50-
foot diameter digester, with infrequently used mechanical mixer, serves
as a second stage digester. Supernatant from the secondary digester is
decanted during periods of low plant flow at a low rate of flow to the
plant influent. Gas produced in the process is utilized for heating
the sludge digesters and the excess burned in a flare.
Digested sludge usually is dewatered on 18 uncovered sand drying beds.
When required by weather unfavorable for sludge drying, a centrifuge is
available for dewatering. This unit also may be used for dewatering
undigested sludge if unusual circumstances require reduction of loading
on the sludge digesters.
C. Sampling Procedures
Since the plant is only staffed by Chapel Hill for 8 hours each weekday
and not at all on weekends, it was necessary to construct an automatic
sampling system. Sampling points include influent, effluent from each
primary tank, effluent from each trickling filter, and effluent from
each final tank. The samples flow by gravity or are pumped continuously
to overflowing standpipes in the operations building. A timer-controlled
Blue pumpl pumps sample water to a solenoid flop valve^. The valve is
in a "waste" position for a sufficient time to purge all of the sample
lines (approximately 60 sec.). The valve is then switched to the
"sample" position for 2 sec during which time the sample flows into
sample containers stored in a 2-4°C refrigerator. Samples are collected
and composited at 30 minute intervals twenty-four hours per day, five
days per week.
Figure 4-2 is a photograph of the sampling system showing standpipes,
Blue pump, timer, solenoid valves, and sample refrigerator. The addi-
tional solenoid valves are used for an automatic sampling system of the
same design for the trickling filter pilot plants.
De Wastewater Research Center
1. Facilities
The Town of Chapel Hill and the UNC Department of Environmental Sciences
and Engineering have an agreement under which Departmental faculty have
assumed responsibility for supervising operation of the treatment plant.
Also, as part of that agreement, the Town has made available to the
Department laboratory space at the plant for experimentation relating
to plant operation and other research activities. The complex of full
scale, laboratory and pilot facilities at the plant is staffed by
1John Blue Manufacturing Company, Laurinburg, North Carolina
•^Sears, Roebuck and Company, Sud Saver Valve No. 99830
12
-------
Departmental professional and support personnel, comprising the "UNC
Wastewater Research Center."
Analytical and research laboratories at the Center occupy six rooms with
total area of 1300 square feet. Two rooms are equipped for close tempera-
ture control. One is used principally for BOD analyses and the other for
fish bioassay studies or biological treatability studies.
The routine analytical laboratories are equipped for a wide variety of
physical, chemical and biological work, including TOC, BOD, COD, various
types of solids, turbidity, pH, volatile acids, and microbiological
studies. An extensive array of Technicon Autoanalyzer equipment is avail-
able in Departmental laboratories on campus with units for determining
all forms of nitrogen, phosphorus and MBAS. Also, an atomic absorption
spectrometer is available in the Departmental laboratories, as well as
many other types of specialized equipment which are available as may be
desired.
About 500 square feet of additional space is available in the main build-
ing at the plant for bench-scale and small pilot equipment. Units avail-
able in this location include five 0.1 gpm activated sludge units which
were used extensively during early phases of these studies. Adjacent to
that building is an installation of four 4.0-foot diameter pilot trickling
filters in a separate enclosure of about 400 square feet. An outside
view of these units is shown in Figure 4-3.
A new prefabricated metal building at the Center encloses 1800 square
feet of offices and space suitable for constructing and operating larger
pilot plants. This building is shown in Figure 4-4.
2. Analytical Procedures
The procedures for the chemical analyses associated with this study were
standard procedures and are listed in Table 4-3.
13
-------
.
FIGURE 4-2 AUTOMATIC SAMPLING SYSTEM
FIGURE 4-3 TRICKLING FILTER PILOT PLANTS
14
-------
FIGURE 4-4 PILOT PLANT BUILDING, UNC WASTEWATER RESEARCH CENTER
-------
TABLE 4-3
ANALYTICAL PROCEDURES
PARAMETER
Alkalinity, Total (as CaC03)
Biochemical Oxygen Demand
(BOD, 5 (day, 20 C)
Carbon - Inorganic
Organic (TOC)
Chemical Oxygen Demand (COD)
Chloride (Cl~)
Dissolved Oxygen (DO)
Methylene Blue Active Substances
(MBAS)
Metals, Total
Dissolved
Nitrogen, Ammonia (NH,+-N)
Nitrogen, Kjeldahl, Total
(Kjeld-N)
Nitrogen, Nitrate (N03~-N)
Nitrogen, Nitrite (N02~-N)
PH
Total Phosphorus (TP)
Total Inorganic Phosphorus
(TIP)
METHOD
Electrometric Titration - pH 4.5
YSI DO Analyzer (probe method)
(modified blank depletion)
Dow-Beckman Carbonaceous Analyzer
Model No. 915 (Dual Channel)
Bichromate reflux - 0.25 N
Mercuric Nitrate Titration
Winkler-Azide or YSI DO Analyzer
(probe method)
Methylene Blue
Perkin-Elmer Model 303 Atosic
Absorption Unit
Filtration through 0.45 p
membrane filter
Technicon AutoAnalyzer -
Sodium Phenolate
Technicon AutoAnalyzer -
Digestion + Phenolate
Technicon AutoAnalyzer -
Hydrazine Reduction
Technicon AutoAnalyzer -
Diazotization
Electrometric
Persulfate Digestion + Technicon
AutoAnalyzer Automated Stannous
Chloride
Automated (single reagent)
Hydrazine Sulfate Reduction
Modification*
REFERENCE
1
2
2
1
16
-------
PARAMETER
Solids, Total (TS)
Solids, Total Volatile (TVS)
Solids, Suspended (SS)
Solids, Volatile Suspended
(VSS)
Solids, Settleable
Solids, Suspended (after
settling)
Solids, Volatile Suspended
(after settling)
Solids, Mixed Liquor
Suspended (MLSS)
Turbidity (JTU)
Volatile Acids
TABLE 4-3 (continued)
METHOD
Gravimetric, 103°C (Method 224 A)
Gravimetric, 550"C (Method 224 B)
Gooch Crucible Filtration, 103°C
(Method 224 C)
Gooch Crucible Filtration, 103°C
Gravimetric, 550°C (Method 224 D)
Volume (Method 224 F)
Method 224 C, on supernatant
prepared by Method 224 F
Method 224 D, on supernatant
prepared by Method 224 F
Known volume of sample is centri-
fuged and solids removed are dried
and weighed
Each Model 2100 Turbidimeter
Distillation Method (tentative)
REFERENCE
2
2
2
UNC Waste-
water Re-
search Center
method
Each manual
1969. FWPCA Methods for Chemiaal Analysis of Water and Wastes. U.S.
Department of Interior, Federal Water Pollution Control Administration.
Analytical Quality Control Laboratory, Cincinnati, Ohio.
2APHA, AWWA, WPCF. 1965. Standard Methods for the Examination of Water and
Wastewater, 12th edition. American Public Health Association, Inc. , New York,
New York.
Hth edition, 1960.
*Total Inorganic Phosphorus (Automated Method) :
The unfiltered sample is treated by mild acid hydrolysis (2.5 N l^SO^ at 90 °C) ,
followed by orthophosphate determination. Ammonium molybdate reacts with phos-
phorus in an acid medium to form a phospho-molybdate complex. This complex is
reduced to an intensely blue-colored complex by hydrazine sulfate. The color
is proportional to the phosphorus concentration. The result includes dissolved
and suspended orthophosphates and acid-hydrolyzable phosphates originally pre-
sent in the sample.
17
-------
SECTION V
TRICKLING FILTER STUDIES
A. OBJECTIVES
For years, prior to the advent of package aeration plants, the trickling
filter process predominated in small and medium sized wastewater treat-
ment plants. Filters have the advantage of being able to quickly re-
cover from shock loads and will provide good performance with a lower
level of skilled technical supervision (4). The initial costs of trick-
ling filter plants are comparable with those for activated sludge; how-
ever, operating costs are lower as power costs are substantially less
(5).
A number of mathematical models have been suggested for predicting the
performance of trickling filters [Velz (6), NRG (7), Rankin (8), Rowland
et al. (9, 10, 11, 12), Schulze (13, 14, 15), Stack (16), Eckenfelder
(17), Caller and Gotaas (18), Lamb (19)] but there are significant dif-
ferences in factors included in the models and in the performance pre-
dicted under similar conditions. Accordingly, one of the principal ob-
jectives of the experimental work described in this chapter was to deter-
mine if a reliable predictive model could be developed for the Chapel
Hill plant and to examine the effect of several variables on filter-final
tank performance.
Other objectives were 1) to study the effect of the pattern of recircula-
tion on plant performance, 2) to investigate the probable effect of con-
verting the Chapel Hill plant from single- to two-stage filtration and
3) to examine the effect of final settling tank loadings on plant per-
formance. Because it was impossible to operate the Chapel Hill plant in
two-stage filtration, this phase of the work was conducted with the use
of a pilot plant. Data for other phases of the study were drawn from
the operation of the full scale plant.
B. EXPERIMENTAL PROGRAM
During the period from November 18, 1969 through January 24, 1972, the
two sides of the full scale Chapel Hill plant were operated experimentally
to investigate the effect of a number of variables on plant performance.
The three factors which could be varied were
1) the fraction of influent flow which could be directed to
each side of the plant
2) the recirculation flow on each side of the plant
3) the pattern of recirculation.
18
-------
During the experimental program the fraction of influent flow to each
side of the plant was manipulated with the use of the division plate
downstream from the grit removal chamber. Flow divisions ranged from a
0-100 percent split to a 50-50 percent split. The various divisions
used during the experimental program were 50-50, 33-67, 20-80 and 0-100.
The 0-100 percent division experiment was conducted during a period when
one of the filters was out of service for an extended period to replace
filter distributor arms.
Recirculation flow was varied with the use of various combinations of the
three recirculation pumps available on each side of the plant. Minor
variations were obtained by throttling individual pump discharges. Dur-
ing the experimental program recirculation flow varied from 0.65 mgd to
4.20 mgd.
The ability to vary influent flow division to each side of the plant
and the recirculation flows allowed variation in other factors which
are normally included in mathematical models for predicting trickling
filter performance, i.e., hydraulic loading, organic loading and re-
circulation ratio. During the series of experiments the hydraulic load-
ing on the filters ranged from a low of 5.4 mgad to a high of 22.5 mgad;
organic loading, from 265 to 35 Ibs BOD/day/acre-feet (6.1-80.5 Ibs/day/
1000 ft^); and the recirculation ratio [(recirculation flow)/(influent
flow to a side)], from 0.27 to 6.94. Wastewater temperature was
recorded daily and ranged from a low of 11.0 °C to a high of 28.0 °C.
During the experimental work sufficient data were obtained with equal
influent flow division and equal recirculation flows on each side to
determine whether the two sides of the plant would produce equal results
under equal loading conditions.
The pattern of recirculation flow was also varied during one period. The
normal pattern of recirculation at the Chapel Hill plant is to return
filter effluent to the head end of the primary settling tank. An alter-
nate method permits recirculation directly around the filters.
C. SAMPLING, ANALYSES AND DATA HANDLING
During the experimental program with the full scale trickling filters
daily composite samples of wastewater were obtained from the following
points in the plant:
Influent, following screening and grit removal
Primary Settling Tank Effluent, from each of the two primary
settling tanks
Trickling Filter Effluent, from each of the two filters
Final (Secondary) Settling Tank Effluent, from each of the
two final settling tanks.
19
-------
Samples were collected with a heavy duty multitube type pump. During
the sampling cycle all sample pump discharge lines were flushed before
the sample was diverted to the accumulation containers. Sample contain1-
ers were stored in a cold chest held at approximately 4° C. All analyti-
cal and operating data collected during the main plant experimental pro-
gram are shown in Appendix A. Analytical procedures are described in
Section IV.
Several months after the initiation of data collection it was realized
that accurate analysis of the data being accumulated would require the
use of a computer. It was decided to store all of the main plant data
on a computer generated file from which specific data could be selected
for report printing or statistical analysis. In addition, it was felt
that the data collected during this study would be of use to other in-
vestigators and should be in a form that could be readily transferred.
Rather than develop our own file-handling system, we utilized the file
capabilities of a system known as the Statistical Package for the
Social Sciences (SPSS, National Opinion Research Center, University of
Chicago). This system allows calculations from raw data and storage of
new variables such as hydraulic loading. In addition, the statistical
section of SPSS allows ready statistical analysis of any or all data in
the master file. If SPSS is unsuitable for a particular report format
or statistical analysis, it allows the creation of an output file which
may then serve as an input file to any other statistical or report-
generating program.
The entire master file for the period November 19, 1969 to January 24,
1972 is permanently stored at the Computation Center of the University
of North Carolina on a magnetic tape, UT3500. Requests for copies of
this tape and the tape format may be addressed to the authors. The data
in this file is reproduced in Appendix A of this report.
D. EQUALITY OF THE TWO SIDES OF THE PLANT
One of the principal objectives of the experimental work with the main
plant was to determine the effect of the several variables, i.e., organic
loading, hydraulic loading, recirculation ratio and temperature, on plant
performance. The logical first step was to determine if the two sides
of the plant would produce comparable results under conditions of equal
loading and temperature on each side. Accordingly, during three separate
periods within the experimental program, the operating variables were
constant. The mean overall plant performance in terms of percent removal
of BOD5, SS and TOC is shown below:
20
-------
TABLE 5-1
MEAN OVERALL PERCENT REMOVAL OF BOD5, SS AND TOC DURING PERIODS OF
EQUAL LOADING ON THE TWO SIDES OF THE PLANT
11/18 - 12/15/69
BODC
SS
TOC
Side 1 75,2 79.6 62.2
Side 2 75.5 78.1 61.6
3/1 - 4/7/71
BOD5 SS
TOC
54.7 59.9 45.0
58.7 58.1 48.3
11/25 - 12/21/71
BODt
SS
TOC
73.6 80.2 71.1
73.6 75.5 67.9
Statistical analysis of the individual items of data which resulted in
the mean removals shown in Table 5-1 indicated that the two sides of the
plant could be considered equal in regard to performance when operated
under the same loading conditions. This is an important conclusion as
it allowed the data collected on Side 1 to be analyzed with the data
collected on Side 2 as if all observations had been made on one side only.
E. PATTERN OF RECIRCULATION
The effect of recirculation pattern on plant performance was studied by
recirculating filter effluent through the primary settling tank on one
side of the plant, while recirculating directly around the filter on the
other side, as shown in Figure 5-1.
Recirculation
Pattern No. I
(Normal)
Recirculation
Pattern No.2
FIGURE 5-1
POSSIBLE PATTERNS OF RECIRCULATION AT THE CHAPEL HILL PLANT
21
-------
This method of operation was maintained during the period from 7/16
through 8/24/72. The pattern of recirculation on the two sides was re
versed during the period 9/8 through 9/21/71. Influent flow ^as split
50-50 and the recirculation ratio was maintained the same on botn siaes
during each test period. During both experiments, the side in wnicn re-
circulation was through the primary tank yielded slightly better pertor-
mance. Average results in terms of overall removal of BOD and bb on tne
two sides are shown in Table 5-2.
TABLE 5-2
OVERALL PERCENT REMOVAL OF BOD AND SS WITH TWO PATTERNS OF RECIRCULATION
7/16 - 8/24/72 9/8 - 9/21/72
Pattern No. 1 Pattern No. 2 Pattern No. 2 Pattern No. 1
Side No. 1 Side No. 2 Side No. 1 Side No. 2
BOD 81.7 79.2 83.1 85.1
SS 76.6 78.0 88.1 89.1
One important effect of recirculation through the primary tanks in the
Chapel Hill plant is the reduction of odors. Filter effluent normally
has a dissolved oxygen concentration of 4 to 6 mg/1. The mixing of re-
circulated flow with raw sewage tends to keep the mixture reasonably
fresh as it passes through the primary settling tanks. Primary settling
tank detention time at the Chapel Hill plant, at an influent flow of 3.0
mgd and a recirculation ratio of 2.0, is 1.9 hours. When recirculation
is directly around the filter the detention time in the primary tanks
increases to 5.4 hours and serious odor problems result.
F. MATHEMATICAL MODELS FOR TRICKLING FILTER PLANT PERFORMANCE
As mentioned previously various mathematical models have been suggested
by different investigators. Although engineers have used these models
as a convenient design tool, none have been generally accepted as a
truly reliable predictive device. Any model which is generally valid
would be an aid to optimum filter design or to more efficient operation
of existing plants in cases where the designer has provided some degree
of operating flexibility.
Mathematical models for trickling filter performance can be divided into
two general types, i.e., regression models and rational or semi-rational
models. Existing models are all based on predicting removal of BOD.
Accordingly, the BOD data collected in the Chapel Hill plant were ana-
lyzed in comparison with several widely known models. In addition a new
regression equation was developed specific to the observed BOD removal
at Chapel Hill.
22
-------
It should be noted that all trickling filter models discussed here are
designed to predict removal of BOD through filters and final settling
tanks, where the final settling tank is considered to be an integral part
of the filter system. Little attention has been given to the effect of
final settling tank detention time or surface loading on combined per-
formance of the system.
1. Regression Models
Caller and Gotaas (18) developed a regression equation to fit 322 obser-
vations from various trickling filter treatment plants. Data included
observations relative to filter depth, hydraulic loading, organic load-
ing, recirculation ratio, and wastewater temperature. The equation
which they reported was
Lea = 0.31 Lo/'19 (l+D)-°'67 I'0'15 (Q/I)-0-72 q-0.06 (5_1}
in which Lea = final settling tank effluent BOD in Ibs/acre/day
Loa = BOD applied to filter in Ibs/acre/day
(primary settling tank effluent including recircu-
lation if any)
Q = filter hydraulic loading (mgad)
(influent flow and recirculation flow)
I = influent flow (mgad)
D = filter depth in feet
T = wastewater temperature, °C
Note: Q/I = 1 + Rr in which Rr is the recirculation ratio, i.e.,
(recirculation flow)/(influent flow).
Caller and Gotaas reported a multiple correlation coefficient of 0.97A
for Equation 5-1.
To test the validity of Equation 5-1 a total of 329 complete daily cases
in which there were no missing observations were selected from the total
data file. These data included results from both sides of the Chapel Hill
plant. A linear regression analysis was conducted with the aid of a com-
puter. The linear form of the equation was
£n Lea =60+6! in Loa + B2 in (Q/I) + B3 in I + B4 in Q
A term in filter depth was not included as depth was not a variable dur-
ing the Chapel Hill plant experiments. The resulting regression equation
in exponential form is
23
-------
Le = 20.16 Lo °'67 Q°'72 (Q/ir1'37 T'0'69 (5'2)
3. 3.
The multiple correlation coefficient for Equation 5-2 is 0.84.
In Equation 5-1 the exponent 1.19 on Loa indicates decreas ing
BOD efficiency with increasing BOD loading; in Equation 5-2 the
ent 0.67 indicates the opposite relationship. Caller and Gotaas con-
cluded that " ____ the hydraulic (loading) rate did not contribute any
significant effects to BOD removal efficiency." This conclusion was
based on the low value (close to zero) of the exponent on Q in Equation
5-1. On the other hand, the term qO.72 makes a statistically highly
significant contribution in Equation 5-2, based on the Chapel Hill
plant performance. The exponent on temperature derived from Chapel
Hill data implies that temperature is a more important factor in plant
performance than indicated by Equation 5-1. Lastly, Equation 5-2 indi-
cates that increased levels of recirculation are more significant in
improving plant performance than suggested in Equation 5-1.
Another regression analysis was conducted in which terms Lo and Le were
expressed in more conventional filter organic loading units, i.e., Ibs
of BOD/day/acre-foot of filter volume. In addition, the value of Lo was
based on settled raw sewage BOD (SRS-BOD) and not on the mixture of set-
tled raw and recirculated flow. The value of SRS-BOD was calculated on
the basis of the primary settling removal curve presented in Fair, Geyer
and Okun (20) as simulated by the following computer developed relation!
SRS-BOD = INF-BOD (1 - Primary Tank Removal)
and Primary Tank Removal = 3.77 (fp/10) - 18.1 (tp/10)2 + 54.7 (tp/10)3
- 99.2 (tp/10)4 + 103 (tp/10)5 - 55.8 (tp/10)6,
in which tp = detention time in primary tank in hours.
The values of Le and Lo used in the regression equation presented below
(5-3) and in the rational and semi-rational models described later were
calculated as follows.*
Le = 8.34 (Final Effluent BOD5) (Influent Flow)/ (Filter Volume).
Lo = 8.34 (SRS-BOD) (Influent Flow)/(Filter Volume).
The resulting regression equation, in exponential form is,
Le - 9.84 Lo°'86 T'0-95 (l+Rr)-°-8^ Q°'56. (5_3)
The multiple correlation coefficient for Equation 5-3 is 0.82. The ex-
ponents on the terms in Equation 5-3 are different from those of Equation
24
-------
5-2 due to the difference In the way Loa and Lo were computed in each
case.
2. Rational and Semi-Rational Models
a. Rational Models
One of the first rational models for predicting trickling filter perfor-
mance was that developed by Velz (6). After observing the removal of
BOD at various depths in filters, Velz postulated that the BOD removal
in each increment of filter depth was proportional to the BOD remaining,
as can be represented by the simple differential equation
dL/dD = -kxL
which integrates to
Le/Lo - e~klD
in which Le and Lo are settled filter effluent and settled raw wastewater
influent BOD, respectively, and may be expressed in any consistent and
convenient units.* D is the depth of the filter and k^ is the BOD re-
moval rate constant in units of (distance)~1. Most of Velz's observa-
tions were at reasonably constant hydraulic loadings, hence the time the
wastewater remained in the filter was directly proportional to filter
depth.
Rowland (9) recognized that liquid retention time in a filter was a func-
tion of both depth and hydraulic loading. Analyzing the flow of liquid
over spheres, he demonstrated that liquid retention time was functionally
related to hydraulic loading. For BOD removal he used the expression
Le/Lo = e~kt
in which k is a constant in units of (time)"-'-, and t, the time the waste-
water is in the filter, can be represented by
t = C • D/Qn
in which C = a constant related to the geometry of the filter media
n = a constant related to the type of flow over the media,
i.e., laminar, turbulent or mixed.
For laminar flow Rowland determined that n was equal to 2/3; for turbu-
lent conditions, 1/3. It can also be shown that these exponents are
appropriate for laminar and turbulent flow over inclined flat plates.
*In all rational models discussed in this report Lo refers to settled
raw wastewater BOD, calculated as previously described.
25
-------
Rowland (12) also suggested a temperature correction factor for the rate
constant k as follows:
k9
in which 9 = (1.035)
T-20
Rowland's model for removal of BOD in a trickling filter under laminar
flow conditions without recirculation can be expressed as
Le/Lo - exp (-kt*C'D/Q2/3).
(5-4)
Schulze (14) tested Rowland's model with a pilot trickling filter con-
structed of vertical screens and obtained reasonably good agreement.
Eckenf elder (17) modified Rowland's equation to account for a decreasing
amount of active slime surface with increased depth in a filter by in-
cluding an exponent less than one on the depth term. He further modified
the equation to account for a decrease in the ease of removal of the
various wastewater constituents remaining with increasing depths in the
filter, as shown below
Le/Lo = exp (-x) =
+ x + x2/2< + x3/3! + ---- ).
Eliminating all but the first two terms in the series expression, a so-
called retardant form is obtained, i.e.,
Le/Lo = 1/(1 + x). (5-5)
The general effect of the retardant form is shown in Figure 5-2.
Following statistical analysis of performance of stone-media filters,
Eckenf elder proposed the following model:
Le/Lo = l/(l+K-D2/3/Q1/2).
(5-6)
FIGURE 5-2 EFFECT OF RETARDANT MODEL
26
-------
The factor K combines the rate constant and factors related to the geo-
metry of the filter media. A value of 2.5 was suggested for stone-media
filters.
Eckenfelder suggested that recirculation be treated as a dilution of
filter influent. Assuming that filter effluent BOD is equal to Le when
it has passed through either a primary or secondary settling tank, as
illustrated in Figure 5-3, the following expression can be developed".
Lrn = (Lo + Rr Le)/(l + Rr)
(5-7)
in which Lm = BODr, mg/&, of the mixture of settled raw sewage and set-
tled recirculation flow leaving the primary settling tank.
Recirculation
Influent
Final Effluent
Primary Settling
Tank
Trickling Filter
Final Settling
Tank
FIGURE 5-3 MIXTURE OF INFLUENT AND RECIRCULATION FLOWS
Substitution of Equation 5-7 in Equation 5-5, yields Le/Lm = l/(l+x).
With some manipulation, the following relation may be obtained.'
Le/Lo - 1/[1 + x (1 + Rr)] (5-8)
in which x = K'Dm/Qn.
It is the writers' belief that models of the type represented by Equation
5-8 merit further development. The effect of specific surface area of
the filter media can easily be included. The effect of turbulence in
enhancing transfer of organics to the slime layers and the effect of
periodicity of wastewater dosage call for further investigation. Never-
theless, further development of the type of models suggested by Rowland
and Eckenfelder seems to offer the best possibility of increased under-
standing of trickling filter performance.
27
-------
An equation in the form of 5-8, in which a temperature correction factor
(Ta) was included, was fitted to the Chapel Hill data using a nonlinear
regression technique. The nonlinear method was selected, as all trans-
forms devised to express the equation in linear form yielded unsatis-
factory results.
The nonlinear program was developed in the Department of Biostatistics,
School of Public Health, the University of North Carolina at Chapel Hill.
Given the form of the function, with its parameters and variables, the
program gives the values of the parameters which minimize the sum of the
squares of the residuals (the residual is the difference between the
observed value of the dependent variable and the value of the dependent
variable predicted by the model of best fit) . The program uses an itera-
tion procedure similar to that described by Nelder and Mead (21). The
same technique was used in fitting Equation 5-11 described later (the
NRC formula).
The nonlinear regression analysis of the modified Eckenfelder model
(Equation 5-8) yielded the following equation of best fit:
Le = Lo/[l + 0.0055(1 + Rr) Q~0-38 T1-79]. (5-9)
Equation 5-9 is not as different from the original Eckenfelder model as ;
might appear at first inspection. If the actual value of T^-79 at 20° C
is included in the constant, the resulting expression is
Le - Lo/[l + 1.17 (1 + Rr) Q~°-38].
b. Semi-rational Models
A well known semi-rational model is the NRC formula developed from ex-
tensive data collected at military installations during World War II
(7). This model is as follows:
E - 1/[1 + 0.0085 (W/VF)1/2] (5-10)
in which E = the BOD removal efficiency of the filter and the final set-
tling tank as a decimal fraction
W = Ibs of settled raw wastewater BOD/day applied to the filter
V = the volume of the filter in acre-feet
F - the filter recirculation factor » (1 + Rr)/(l + Rr/10)2.
It should be noted that W/V is equivalent to Lo as previously described.
Lo in turn is a product of influent flow and settled raw sewage BOD con-
centration. Hence to a certain extent the NRC formula includes factors
related to organic loading, hydraulic loading and recirculation ratio.
The application of the NRC formula for typical domestic wastewater has
28
-------
been questioned as it was developed from data obtained from the treat-
ment of strong military-base sewage.
An expression in the form of Equation 5-10 was fitted to the Chapel Hill
plant data using the nonlinear regression technique previously described.
The resulting equation of best fit was
+ 14.62(Lo/F)°-44 -r1-85]. (5-11)
Another common semi-rational model was developed by Rankin and has been
adopted for use in the Ten State Standards (22) . For plants similar to
Chapel Hill's, Rankin "s method suggests that if the hydraulic loading on
the filter is between 10 and 30 mgad the filter-final settling tank.
efficiency is strictly a function of the recirculation ratio. Actual
hydraulic and organic loadings are not considered.
c . Comparison of the Models
A comparison of the regression Equation 5-3 and the modified forms of
the Eckenf elder model (Equation 5-9) and NRG formula (Equation 5-11) was
necessary to determine which relation provided the best fit to the
Chapel Hill data. Because Equations 5-9 and 5-11 were determined by non-
linear regression methods it was impossible to find a value for the
multiple correlation coefficient for these equations, so that a compari-
son of correlation coefficients was not possible. To make the desired
comparison the three equations were all reduced to the general form
Le/Lo = x by dividing both sides of the equation by Lo.
For Equation 5-3 the result is
Le/Lo = 9.84 Lo"0-14 T~^-^ (1 + Rr)~°'84 Q°'56. (5-12)
A plot of Le/Lo vs x, i.e., the entire right hand side of Equation 5-12,
is shown in Figure 5-4. The plotted observed values of Le/Lo show a
remarkable degree of scatter around the predictive line. The value of
Equation 5-12 as a reliable predictor of daily plant performance is,
therefore, quite dubious. When Equation 5-3 is analyzed, the sum of the
squares of the differences between observed and predicted values of Le
1.142 x 107.
For Equation 5-9, the modified version of the Eckenf elder model, the
Le/Lo = x form is
Le/Lo = 1/[1 + 0.0055(1 + Rr) Q~°'38 T1'79]. (5-13)
A plot of the predicted and observed values of Le/Lo is shown on Figure
5-5. There is no apparent improvement in regard to the reliability of
daily performance predictions based on this model. From the analysis of
Equation 5-9, the sum of the squares of the difference between observed
and predicted values of Le is 1.132 x 107.
29
-------
CO
o
1.00
0.90
0.80
O.70
0.60
0.50
0.40
0.30
0.20
0.10
0.0
o o
o
o
o o o oo
o o o
a o
o
o o
o
o
o o
00
o o
«— '.Q
LO
o o o
ooo o
o o
o o
o o o o o
o o oo o
O O O ff\ O
o oo o o
o oo oo o /o x ^2«9.34
oo o oo o
O OOO O Jf OO
o 9>oo oS o o
O O O./O OOO O OO
O 00
o ooo//' o ooo o
ooo o o afr o o oo
o oo o ^r 8 o o ooo
o oo ^r o o 80 o o
oo o Q/6 60 o o o o
o o o >O8oo o o o o
oo % ^% o 8
o oo O/boSoo o9o o
o 89 oo o o
o yo 0608 0069 o o
o> 000 g9 o oo
o jf o o 0080 o o o
o 00000 oooo o o
o 8S o o o
o oo oo
o oo oo
o oo o
o o
•Rr)
-ae»
I
1
00 0.10
0.2O
0.30 040
X . 9.84
0.50 0.60
0.70
0.80 0.90
1.00
Figure 5-4. Scatter Diagram of Predictive Equation 5-12 Derived From Linear Regression
Analysis.
-------
1.00
0.90
0.80
0.70
0.6O
0.50
0.4O
0.30
O.ZO
0.10
OO
»0.005456 (ltRr)T'79lO-a378
o 6 ooo
o
o 8 jX o o 9 o
o o oX oo oo o o o
ooo oo
06 oflX ooo o
o^Booo ooo o o
o oo o 08 o
o f 88 6> o oe» o o oo
9 0 oo oo ooo oo o
oo oo> 8° ° °
o ooooO o o oo o o
o 006 o o
o oo o o
o o oa
o o oo
o o
0.0
O.IO
O.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.005456 (l + Rrl T ' T" Q-°-ST»
Figure 5-5- Scatter Diagram of Predictive Equation 5-13 in a Form Similar to Eckenfelder's
Model.
-------
For Equation 5-11, the modified version of the NRC formula, toe Le/Lo =
x form is
Le/Lo - 1 - 1/[1 + 14.62 (Lo/F)°-44 I'1'85] (5-14)
A plot of the predicted and observed values of Le/Lo is shown in Figure
5-6. Again the scatter of observed values around the predictive line is
substantial. From the nonlinear regression analysis of Equation 5-11,
the sum of the squares of the differences between observed and predicted
values of Le is 1.230 x 107.
It is apparent that none of the filter performance models tested is very
reliable as a predictor of daily plant performance. Also, the sum of
the squared residuals is not sufficiently different for the three models
to indicate that one is superior. All the models are useful in predict-
ing average performance at the Chapel Hill plant over a long period of
time during which operating conditions, daily wastewater flow and tem-
perature are reasonably constant.
In the discussion of the effects of individual variables following, some
general ideas are presented on how the reliability of filter performance
might be enhanced in new designs.
3. Effect of Variables on Performance
Analysis of regression Equations 5-3, 5-9, and 5-11 as regards the effect
of variation in individual variables, i.e., organic loading (Lo), hydrau-
lic loading (Q), recirculation ratio (Rr), and temperature (T), provides
some insight into relative importance of the variables as related to
filter-final tank performance. Such an analysis was conducted using
Equations 5-12, 5-13, and 5-14, in the manner described below.
In each of the three equations the values of the several variables were
held constant at the mean value of the respective variable during the
329 cases in the experimental program. The variable under examination
was then changed incrementally and the effect on BOD remaining (Le/Lo)
was calculated.
Mean values of the 329 experimental cases are as follows
Lo = 850 Ibs BOD/day/acre-foot
T = 21.2° C
(1+Rr) = 3.53
Q =15.93 mgad (influent flow + recirculation flow)
I =4.43 mgad (influent flow).
1) j-fjgctL_°-f. Organic Loading, Lo
Using the values above for all variables except Lo, the several equa-
tions reduce to the following forms:
Equation 5-12, linear regression model —
32
-------
u>
1.00
0.90 -
080 -
0.70
0.60
4 0.50
0.40
0.30
0.2O
O.IO
0.0.
0.0
I » 14.62 ;
,, L(l«Rr)/(l*O.IRr)zJ
I
0.10 0.20
0.30
= \
0.40
050
I
0.60 070
0.80
0.90
1.0
I +14.62 ] — r]
l(l*Rr)/( l«0.l Rr)zJ
Figure 5-6. Scatter Diagram of Predictive Equation 5-14 in the General Form of the
NRC Formula.
-------
Le/Lo = 0.874 • LcT0'14.
Equation 5-13, nonlinear regression model of modified Eckenf elder-type
equation —
Le/Lo = 0.383, i.e., organic loading has no effect.
Equation 5-14, nonlinear regression model of modified NRC equation —
Le/Lo = 1 - 1/(1 + 0.0362 Lo0'44).
The calculated effects on Le/Lo resulting from variation in Lo are shown
in Table 5-3 and on Figure 5-7.
As can be seen the three models predict entirely different effects as a
result of variations in organic loading. The writers are inclined to
favor the results produced by Equations 5-12 or 5-13 over those of Equa-
tion 5-14. As Equation 5-12 was developed with unbiased linear regress-
ion techniques it may be closest to the truth. The lower removals at
low organic loadings predicted by Equation 5-12 may possibly indicate
that the slime layers in the lower section of the filter were receiving
too little organic material to maintain the same adsorptive capacity as
slime layers located higher in the filter.
2) Effect of Temperature
The three equations reduce to the following forms in terms of tempera-
ture, T, when all other variables are held constant at mean values:
Equation 5-12, linear regression model —
Le/Lo - 6.27 T~°'95.
Equation 5-13, nonlinear regression model of modified Eckenf elder-
type equation —
Le/Lo = 1/(1 + 0.0067 T1'79).
Equation 5-14, nonlinear regression model of modified NRC equation —
Le/Lo = 1 - 1/(1 + 195.6 I"1-85).
The calculated effects of Le/Lo resulting from variations in temperature
are shown in Table 5-4 and on Figure 5-8.
As can be seen in Figure 5-8, all three models show a similar and pro-
nounced effect on filter-final settling tank efficiency due to changes
in wastewater temperature. The effect may be partly due to a gradual
change in activity of filter biota with temperature. On the other hand,
it was observed that reasonably high efficiency was maintained even
34
-------
TABLE 5-3
EFFECTS OF VARIATIONS IN LO ON FILTER-FINAL SETTLING TANK PERFORMANCE
Lo Le/Lo
300
400
500
600
700
800
900
1000
1100
1200
1300
1500
1800
2000
2500
3000
4000
Eq. 5-12 Eq. 5-13
0.396 No effect
0.380
0.368
0.359
0.352
0.345
0.340
0.335
0.330
0.326
0.322
0.316
0.308
0.304
0.295
0.287
0.276
Eq. 5-14
0.304
0.332
0.354
0.372
0.388
0.402
0.414
0.426
0.436
0.445
0.454
0.469
0.489
0.501
0.525
0.545
0.576
35
-------
0.6
0.5
0.4
0.3
0.2
1
NRC-type equation, Eq. 5-14
Eckenfelder-type equation, Eq. 5-13
J_
WRC model, Eq. 5-12
1
1
0
500 1000
1500 2000
ORGANIC LOADING,
2500 3000 3500 4000
FIGURE 5-7. EFFECT OF ORGANIC LOADING ON FRACTION OF
BOD REMAINING.
-------
TABLE 5-4
EFFECTS OF WASTEWATER TEMPERATURE ON FILTER-FINAL SETTLING TANK
PERFORMANCE
14
15
16
17
18
19
20
21
22
23
24
25
26
Eq. 5-12
0.510
0.476
0.447
0.422
0.400
0.380
0.362
0.345
0.330
0.317
0.304
0.293
0.282
Le/Lo
Eq. 5-13
0.568
0.537
0.508
0.481
0.456
0.432
0.409
0.388
0.369
0.350
0.333
0.317
0.302
Eq. 5-14
0.598
0.567
0.537
0.509
0.483
0.458
0.435
0.413
0.392
0.372
0.354
0.337
0.321
37
-------
u;
OC
0.6
0.5
0.4
0.3
0.2
0
16
NRC-type equation, Eq.5-14
Eckenfelder-type equation, Eq. 5-13
WRC model, Eq. 5-12
J
\
18 20 22
TEMPERATURE,°C
24 26
FIGURE 5-8. EFFECT OF TEMPERATURE ON FRACTION
OF BOD REMAINING.
-------
after wastewater temperatures had declined in the fall. Furthermore,
lower efficiences typical of winter operation often persisted after
wastewater temperatures had significantly increased in the late spring.
Inspection of the filters revealed that lower efficiencies were coinci-
dental with the accumulation of inert humus-like material in the filter
media. This accumulation appeared to be related to the density of the
filter fly larvae populations in the filters (23) and was rapidly dis-
lodged with the reappearance of larvae in the late spring. The enhance-
ment of filter performance during periods of increased larval activity
has also been noted in Britain (24). Although all of the predictive
equations analyzed indicate a pronounced temperature effect, the fact
that changes in filter efficiency lag significantly behind the changes
in wastewater temperature is not accounted for. This effect partially
accounts for the high degree of scatter in observed and predicted values
of Le/Lo.
One might speculate that the predictability of filter performance, and
perhaps performance itself, could be enhanced with the use of filter
media designed to minimize the possibilities for the accumulation of
humus -like materials.
3) Effect of Hydraulic Loading
With all variables except hydraulic constant at mean experimental levels,
the three equations reduce to the following forms:
Equation 5-12, linear regression model —
Le/Lo - 0.073 Q°-56-
Equation 5-13, nonlinear regression model of modified Eckenfelder-
type equation —
Le/Lo - 1/(1 + 4.573 Q"°'38).
Equation 5-14, nonlinear regression model of modified NRC equation—
Le/Lo = 1 - 1/1 + 0.686, i.e., hydraulic loading has no effect.
The calculated effects on Le/Lo resulting from variations in hydraulic
loading are shown in Table 5-5 and on Figure 5-9.
39
-------
TABLE 5-5
EFFECT OF HYDRAULIC LOADING ON FILTER-FINAL SETTLING TANK PERFORMANCE
Q (mgad)
1) Le/Lo
Eq. 5-12
0.158
0.198
0.233
0.264
0.292
0.318
0.343
0.366
0.389
0.410
0.430
0.450
0.469
0.487
Eq. 5-13 Eq. 5-14
0.270 No effect
0.301
0.325
0.344
0.359
0.373
0.385
0.395
0.405
0.414
0.422
0.429
0.436
0.442
4
6
8
10
12
14
16
18
20
22
24
26
28
30
It is obvious that hydraulic loading has a significant effect on filter-
final settling tank performance. The apparent zero-effect in Equation
5-14 is simply an artifact of the model, i.e. , no Q term is directly
included in the model.
4) Effect of RecirculationRatio
An increase in recirculation ratio (Rr) also increases the hydraulic
loading (Q). Assuming a constant influent flow (I) the effect of changes
in the recirculation ratio may be analyzed by making a simple algebraic
transformation in the equations as outlined below:
Rr = recirculation flow (Rf)
influent flow (I)
or Rf = Rr I
Q = Rf + I = Rrl + I = 1(1 + Rr).
In Equations 5-12 and 5-13, the terms Rr and Q are in the form (1 + Rr)xQy
which is seen to be equivalent to (1 + Rr)x LY or (1 + Rr)**? IX. With all
variables with the exception of Rr held constant at the mean experimental
levels, the three equations reduce to the following forms:
40
-------
0.5
0.4
0.3
0.2
O.I
NRC-type equation, Eq. 5-14
Eckenfelder - type equation
Eq. 5-13 —^
WRC model, Eq. 5-12
0
I
JL
I
0
10 15 20
TOTAL FLOW, Q, mgad
25
30
FIGURE 5-9. EFFECT OF TOTAL FLOW 0, ON FRACTION OF
BOD REMAINING.
-------
Equation 5-12, linear regression model
Le/Lo = 0.483 (1 + Rr)"°'28.
Equation 5-13, nonlinear regression model of the modified Eckenf elder-
type equation —
Le/Lo » 1/[1 + 0.737 (1 + Rr)°°62].
Equation 5-14, nonlinear regression model of the modified NRG equation
Le/Lo = 1 - 1/{1 + 0.983 [(1 + Rr)/(l + 0.1 Rr)2]-°-*4}.
The calculated effects on Le/Lo resulting from variations in recircula-
tion ratio are shown in Table 5-6 and on Figure 5-10.
TABLE 5-6
EFFECTS OF RECIRCULATION RATIO ON FILTER-FINAL SETTLING
TANK PERFORMANCE
Rr
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Eq. 5-12
0.483
0.431
0.398
0.373
0.355
0.340
0.327
0.316
0.307
0.299
0.292
Le/Lo
Eq. 5-13
0.576
0.513
0.468
0.434
0.407
0.384
0.365
0.348
0.333
0.320
0.308
Eq. 5-14
0.496
0.462
0.441
0.427
0.416
0.409
0.403
0.398
0.395
0.392
0.390
42
-------
0.6
0.5
0.4
0.3
0.2
Eckenfelder-type equation, 5-13
WRC-type equation, Eq. 5-14
WRC model, Eq. 5-12
0
234
RECIRCULATION RATIO, Rr
FIGURE 5-10. EFFECT OF RECIRCULATION RATIO ON FRACTION
OF BOD REMAINING.
-------
The beneficial effect of recirculation is clearly apparent in the above
analysis. AH models tested yield an improved removal with increasing
recirculation ratios. Equation 5-13 produces the greatest increase in
efficiency with increased recirculation. Equation 5-14 is the least
sensitive. The unbiased linear regression model (Equation 5-12) more or
less parallels Equation 5-13. These results indicate that fairly high
recirculation ratios, i.e., at least equal to 3.0 and possibly higher,
provide significant improvements in filter-final tank removal efficiency.
This is true even though higher recirculation flows result in higher
hydraulic loading, which considered alone, with recirculation ratios
constant, tends to result in lower efficiencies.
G. PILOT PLANT STUDIES OF TWO-STAGE FILTRATION
1. De_s_cripjtion_ of Pilot Trickling Filters
Two pilot trickling filter plants were constructed during 1966 prior to
the initiation of the work reported here. Two additional trickling
filter pilot plants were constructed during the course of this study. The
plants were designed to treat raw Chapel Hill sewage which had passed
through the main plant bar rack, a degritting chamber, and a fine bar
rack to remove stringy solids which would tend to clog the small pumps
and pipes in the pilot plant. Influent to the pilot plant was delivered
through a 2-inch plastic pipe at a flow rate substantially in excess of
pilot plant requirements. Excess flow was wasted. The required amount
of pilot plant influent was delivered to the operating units by means of
a variable speed pump with B.C. motors regulated by silicon controlled
rectifiers. Flow to each of the pilot units was proportioned with the
use of an overhead rotating distributor discharging into a circular dis-
tribution box with four equal radial sectors. Flow was by gravity from
the distribution box to the primary settling tank of each pilot plant.
Each pilot plant unit consisted of a primary settling tank, a trickling
filter, and a final settling tank. Recirculation was provided around
the filters through the primary settling tank. A general flow diagram
of a single pilot plant unit for single-stage filtration operation is
shown in Figure 5-11.
The sizes of the settling tanks and filters were selected to provide de-
tention time and, in the case of the filters, a hydraulic loading about
the same as experienced in the main plant at a flow rate of 3 mgd. As
the pilot settling tanks were not as deep as the main plant units, the
surface overflow rate in the pilot units was substantially less than
those in the main plant. All settling tanks were equipped for hydro-
static sludge removal.
The filters were designed to operate under conditions similar to those
of the main plant filters. A filter diameter of four feet was selected,
this being considered reasonably safe for minimizing wall effects. Con-
ventional clay tile filter underdrains were used. Filter media depth
44
-------
Recycle
Plant Screening
and
Degritting
Fine Screen
Settled Sewage
and Recycle
Speed Control
Pilot
Plant
mp
To Waste
\
ent
t
, 1
-%^— *.->x"»— -v^
Trick
Filt(
Zfi
Rotary)
Distributor
Filter Effluent
Plant Effluent
Sludge
Sludge
FIGURE 5-1!. FLOW DIAGRAM OF PILOT TRICKLING
FILTER FOR SINGLE STAGE FILTRATION
-------
was fixed at 4'0". Inner and outer walls of the filters consisted of two
vertical concentric sections of Araco steel pipe, six feet long and 48
and 54 inches in diameter respectively. The annular space between the
inner and outer pipes provided insulation to reduce heat loss during cold
weather operation. Filter media was granite stone selected to meet the
specifications of the N. C. stream pollution control authorities requir-
ing that it pass a 3.5" screen with less than 75% passing a 2.5" screen.
Design conditions for the various plant units are given in Table 5-7
below:
TABLE 5-7
DESIGN CONDITIONS FOR PILOT TRICKLING FILTER UNITS
Primary Settling Tank
Filter
Final Settling Tank
Flow
(gpm)
3.6
3.6
1.2
Detention
Time
(hrs)
1.8
2.0
Overflow
Rate
(gpd/ft2)
470
436
Hydraulic Loading
(mgad)
18.0
On the basis of an influent BOD of 180 mg/£ and 35% removal in the pri-
mary settling tanks, the organic loading on the filters calculates to be
approximately 1500 Ibs BOD per acre-foot per day.
Early in the experimental work with the trickling filter pilot plants all
four pilot plant units were found to provide comparable performance under
identical loading conditions.
2. A Comparison of Single- and Two-Stage Operation with Pilot Trickling
Filters
Various authors and groups (4, 7, 8, 25, 26) have presented information
suggesting that it is economical to utilize two-stage trickling filtra-
tion. Two-stage or series operation has been indicated to provide a
higher degree of treatment than a single filter of equal volume. The
substantiation of these claims for a typical domestic waste such as
Chapel Hill's would have significant implication for the designer of any
treatment plant in which more than one filter was necessary because of
mechanical considerations or required by design or regulatory standards.
Because of the flow control problems in the Chapel Hill main plant, single-
versus two-stage experiments were conducted in the pilot trickling
filter units. The mode of operation was selected to be similar to that
which would occur in the main plant if all influent flow was treated
through one primary tank, then through one filter with recirculation
through the primary. Effluent from the first stage filter would be passed
through the secondary primary tank, which, in such case, would be acting
as an intermediate settling tank. Wastewater would then pass through
46
-------
the second stage filter with recirculation directly around the filter.
Second stage filter effluent would pass through the secondary clarifiers
prior to discharge.
Three of the pilot trickling filter units were operated as shown in the
flow diagram in Figure 5-12 during the period from May 16, 1972 through
July 13, 1972.
Recirculation
Final
Settling
Tank
Influent
1.2 GPM
Waste
Sludge
Waste
Sludge
Effluent
1.2 GPM
SINGLE-STAGE UNIT
Recirculation
Influent
2.4 GPM~
Primary 24 GPM
Settling Tank
Waste
Sludge
Recirculation
Waste
Sludge
Intermediate
Settling Tank
Waste
Sludge
Effluent
2.4 GPM
Final
Settling Tank
TWO-STAGE UNIT
FIGURE 5-12.
FLJDW DIAGRAM OF SINGLE-STAGE AND TWO STAGE
UNITS.
47
-------
During the single-stage versus two-stage filtration experiments, the in
fluent flow to the single-stage unit was held at 1.2 gpm and the recir-
culation flow was maintained at 2.4 gpm. Influent flow to the two-stage
unit was set at 2.4 gpm. This is double the flow to the single-stage
unit as the objective of the experiment was to estimate the effect of
converting the Chapel Hill plant to two-stage operation in which case the
entire plant influent would pass in sequence through the two filters
rather than being split into equal portions for single-stage treatment
through parallel units. Recirculation flow around each of the filters
in the two-stage unit was held at 2.4 gpm, the same as in the single-
stage unit. The decision to hold the recirculation flows to 2.4 gpm in
the two-stage pilot unit was based on the fact that recirculation pumping
capacity in the main plant is limited and if the main plant were convert-
ed to two-stage it seemed unlikely that the pumping capacity would be in-
creased. With the recirculation flow as described the recirculation
ratios were 2.0 in the single-stage pilot unit and 1.0 in the two-stage
unit.
Hydraulic loadings or detention times of the various process units are
tabulated below:
Single-Stage Unit
(influent flow 1.2 gpm)
Unit
Pri. Sett. Tank
Filter
Sec. Sett. Tank
Flow
(gpm)
3.6
3.6
1.2
Detention
Time or
Loading
1.8 hrs.
18.0 mgad
2.0 hrs.
Two-Stage Unit
(influent flow 2.4 g
Unit
Pri. Sett. Tank
Filter No. 1
Int. Sett. Tank
Filter No. 2
Sec. Sett. Tank
Flow
(gpm)
4.8
4.8
2.4
4.8
2.4
am)
Detention
Time or
Loading
1.4 hrs.
23.9 mgad
1.0 hrs.
23.9 mgad
2 . 7 hrs .
These loadings and detention times correspond to normal values in full
scale high rate trickling filter plants treating typical domestic sewage.
The organic loading on the filters was calculated on the basis of Ibs
of settled raw sewage BOD per day per acre-foot of filter volume. BOD
removal in the primary settling tank unit was estimated to be 35 percent
in the single-stage unit and 30 percent in the primary tank of the two-
stage unit. Estimated average organic loading on the filters during the
course of this experiment was as follows:
48
-------
Single-stage Filter 1500 Ibs BOD/day/acre-feet*
First Filter in Two-Stage Unit 3200 Ibs BOD/day/acre-feet*
Second Filter in Two-Stage Unit 1300 Ibs BOD/day/acre-feet**
*settled raw sewage BOD
**intermediate settling tank effluent BOD
The organic loadings on all filters, both single- and two-stage, were
within the range normally observed for high rate trickling filters treat-
ing domestic wastewater.
During the single- versus two-stage filtration investigation, samples
were taken each half hour with a multitube sampling pump controlled by
a timer. Samples were taken of influent and final effluent from the
single-stage unit. Samples of influent, first stage effluent (inter-
mediate settling tank effluent) and second stage effluent (final settling
tank effluent) were obtained from the two-stage unit. Daily composite
samples were obtained every Tuesday, Thursday, and Sunday during the
experimental period. The daily sampling started at 8 a.m. and termi-
nated at 8 a.m. the following morning at which time the accumulated sam-
ples were taken to the laboratory for analysis. During collection, the
samples were accumulated in plastic jerry cans and stored at a tempera-
ture of 4° C. All samples were analyzed for suspended solids, organic
carbon and BOD. A summary of the results of the investigation is shown
in Table 5-8.
TABLE 5-8
SUMMARY RESULTS OF SINGLE- VERSUS TWO-STAGE TRICKLING FILTRATION
Infl.
(ng/A)
Susp.
Solids
Org.
Carbon
BOD
247
156
179
Two-Stage Filtration
1st. Stage
Eff. (mg/£)
32
44
51
Final
Eff.
(mg/*)
18
26
23
%
Removal
92.7
83.4
87.2
Single-Stage Filtration
Final
Eff.
(mg/A)
36
41
36
%
Removal
85.3
73.7
79.8
These results indicate a clear advantage for two-stage filtration as
compared with the more conventional single-stage process. As indicated
in Table 5-9 in the following part of this section, the improved effi-
ciency cannot be accounted for by the greater detention time in the final
49
-------
settling tank in the two-stage unit. The economic advantage of two-stage
filtration may be illustrated by way of an example based on the experi-
mental results.
Using the mean BOD removals found for single-stage filtration and assum-
ing a 35 percent removal of BOD in the primary settling tank, an appro-
priate constant may be determined for the NRC formula.
From the formula for the overall efficiency of two processes in series
the required efficiency of the second stage process can be calculated if
the overall and first stage efficiencies are known. From
Ep + Ef (1 - Ep)
one obtains
Ef = Eoa - Fp/(l - Ep) (5-15)
in which
E0a = overall efficiency
Ep = primary settling tank efficiency
Ef = filter-final settling tank efficiency.
Substituting the assumed value for Ep and the observed overall single-
stage filtration efficiency for Eoa
Ef = 0.798 - 0.3507(1 - 0.350) = 0.69 (69%).
If 69% is accepted for filter-final settling tank efficiency under load-
ings as maintained in the single-stage filtration pilot plant, a new
constant term can be obtained for the NRC formula which will be in accord
with the calculated efficiency.
From
Ef =!/[!+ C1(W/VF)°-5]
with rearrangement one may obtain
Cl = (1 - Ef)/[Ef(W/VF)0-5].
The value of W/V from the single-stage experiments is 1500 Ibs settled
raw sewage BOD per day per acre-foot. The value of F for the recircu-
lation ratio of 2.0 is 2.08. Therefore the calculated value of C± re-
quired for NRC formula agreement with observed results is
G! - 1 - 0.69/0. 69(1500/2. 08)°'5 = 0.0167.
From the results of the experimental program it may be assumed that in
a plant with two equal sized filters operating in parallel at loadings
50
-------
equal to those in the pilot plant, overall BOD removal efficiency
might be increased from 79.8% to 87.2% by converting to series operation
without change in the size of the various units. On the other hand, if
the same increase in efficiency is to be obtained by the addition of
single-stage filters, the required increase in filter volume may be esti-
mated using the NRG formula. The single-stage filter-final settling
tank efficiency required for an overall efficiency of 87.2%, given that
the primary tank removal is 35%, may be calculated using Equation 5-15
as follows:
Ef = (0.872 - 0.350)/(1 - 0.650) - 0.80 (80%).
As the total Ibs of raw settled BOD (W) applied to the filters has not
changed, an estimate of the increased single-stage filter volume may be
obtained by calculating a value for W/V which will provide the required
removal and comparing this value with 1500 (the single-stage filter load-
ing that resulted in an overall removal of 79.8%). To calculate the
required value of W/V for 80% filter-final settling tank efficiency the
NRC formula may be rearranged as follows:
W/V2 - [(1 - Ef)(F)°-5/Ef • Cx
and solving for W/V2 for an 80% filter-final settling tank efficiency
W/V2 - [(1 - 0.80)(2.08)°'5/0.80 * 0.0167]2 - 445.
As W is a constant, i.e., the total Ibs of settled raw BOD applied to
the filter has not changed, it can be seen that for overall efficiency
of 87.2%, W = V2 x 445 = V x 1500. Therefore, V2 = V • 1500/445, i.e.,
the volume of single-stage filters required by the modified NRC formula
for the desired improvement in removal is over three times the original.
The lack of reliability of the NRC formula and other mathematical models
for predicting trickling filter performance has been demonstrated earlier.
The use of any formula in calculations such as those above may be ques-
tioned. Regardless of formula deficiencies, the significant improvement
which can be obtained in overall plant performance by operating trickling
filters in series has been demonstrated in the pilot plant investigation.
In most trickling filter treatment plants, at least two filters are pro-
vided. A design which provides for stage operation of the filters will
add slightly to the initial plant cost, but the cost of adding additional
single-stage filter volume to produce an equivalent efficiency will be
substantially greater.
3. Rationale for Improved Efficiency in Two-Stage Filtration
The improved removal of BOD in two-stage filtration may result from the
fact that as the hydraulic loading on a filter is increased the actual
detention time of the wastewater in the filter does not proportionately
decrease. If it is assumed that both laminar and turbulent flow condi-
tions exist in the flow over filter, media it is not unreasonable to
51
-------
assume that detention in the filter is roughly proportional to D/Q '
(as implied in Eckenfelder's modification of Rowland's equation). Table
5-9 was developed to illustrate the relative effect on filter detention
time of variations in D and Q.
TABLE 5-9
RELATIVE DETENTION TIME IN FILTER
Q
1
2
3
4
8
Q°'5
1.00
1.41
1.73
2.00
2.83
4
4.00
2.84
2.31
2.00
1.41
Relative
8
8.00
5.68
4.52
4.00
2.83
Depth
12
12.0
8.51
6.94
6.00
4.25
16
16.0
11.3
9.25
8.00
5.66
20
20.0
14.2
11.5
10.0
7.07
As Table 5-9 shows, doubling the hydraulic loading does not halve the
detention time. In the pilot plant experiments the hydraulic loading on
the single-stage unit was 3.6 gpm which included 1.2 gpm of influent
flow and 2.4 gpm of recirculation flow. Relative detention time in this
unit can be calculated as [4/(3.6)0-5](1 + Rr), where Rr - 2.0. The re-
sult is 6.31. The term (1 + Rr) must be included as the water actually
passes through the filter an average of (1 + Rr) times. In the two-stage
pilot plant the hydraulic loading on each stage was 4.8 gpm which in-
cluded 2.4 gpm of influent flow and 2.4 gpm of recirculation flow. The
total depth of filter media in this case was 8 feet. The total relative
detention time in the two-stage unit is [8/(4.8)°-5](1 + 1) or 7.29. If
the recirculation ratio has been maintained at 2.0, as in the single-
stage unit, the relative detention time in the two-stage unit would have
been 8.43.
Increasing the specific surface area of filter media affects the time
of liquid detention in a filter exactly the same as decreasing the hy-
draulic loading in the same proportion as the specific surface area is
increased. For example, doubling the specific surface area while the
areal hydraulic loading remains constant halves the actual liquid flow
over each unit of media surface. With detention time the proportional
to 1/Q°'5, detention time is increased by a factor of 1.41.
52
-------
It can be seen that two-stage filtration with two filters of equal depth
is comparable to filtration through one filter of twice the depth as the
stage filters, i.e., the liquid detention time in the filter is doubled.
In addition, increasing the specific surface area of the filter media is
analogous to decreasing the hydraulic loading as it affects detention
time. The overall effect on liquid detention time due to filter depth,
recirculation ratio, and specific surface area of filter media is illus-
trated in the following, rather extreme examples:
Case 1. Influent flow 1 mgd; filter area 0.25 acres; filter depth 4
feet; no recirculation; relative specific surface area of
filter media - 1. Q = 1/0.25 = 4 mgad.
Relative Detention Time = D/QO-5 = 4/4°-5 = 2.0.
Case 2. Influent flow 1 mgd; filter area 0.05 acres; filter depth 20
feet; recirculation flow 1.2 mgd; relative specific surface
area of filter media = 2^.
Q = (1 + 1.2)/0.5 = 44 mgad - this is the maximum hydraulic
loading listed for high rate filters in WPCF Manual of Practice
No. 8 (4).
Relative Detention Time = D/(Q/2)°'5(1 + Rr)
20/(44/2)°-5(l + 1.2) = 9.37.
Factors other than liquid detention time can have significant effects on
filter performance. Nevertheless, implications drawn from the two-stage
pilot filter results and the detention time calculations above indicate
the need to re-examine conventional design criteria which have led to
shallow filters operated at relatively low hydraulic loadings and re-
circulation ratios.
H. ANALYSIS OF MAIN PLANT FINAL SETTLING TANK PERFORMANCE
At the Chapel Hill plant filter effluent contains a large fraction of
suspended solids which are so finely divided that they do not settle
well at the overflow rates or detention times typical for the secondary
clarifier. In view of this, an analysis of secondary clarifier perfor-
mance was conducted using data collected during various divisions of
influent plant flow, i.e., from a 20-80% division to a 50-50% division.
Final settling tank daily average detention times varied from approxi-
mately 1.3 hours to 6 hours and overflow rates from approximately 300
gpd/ft2 to 1300 gpd/ft2.
A total of 295 observations of trickling filter effluent and final set-
tling tank effluent were analyzed and the following equations were ob-
tained by regression analysis techniques:
For BOD removal: ,,
Final effluent BOD = e°'84 (TF - BOD)U'6bb qO-521 (5_16)
53
-------
For suspended solids removal: ,, __.
Final effluent SS » 60-83 (TF-BOD)0'668 Q°'521
(5-16)
in which TF - BOD refers to filter effluent BOD; TF - SS, to filter
effluent suspended solids.
Equation 5-16 had a multiple correlation coefficient of 0.85; Equation
5-17, of 0.84.
Plots of Equation 5-16 and 5-17 are presented in Figures 5-13 and 5-14
respectively.
The similarity of the equations for final effluent BOD and suspended
solids implies that a single equation would be satisfactory for both
parameters. Such equations are given below, one in terms of tank over-
flow rate and one in terms of detention time:
Final eff. BOD or SS - 0.092(TF-BOD or SS)2/3 (Qo)1/2 (5-18)
in which Qo = overflow rate in gpd/ft2 and
Final Eff. BOD or SS = 3.9(TF-BOD or SS)2/3 (Dt)"1/2
in which Dt = final settling tank detention time in hours.
(5-19)
Table 5-10 below gives values of final effluent BOD and SS for various
values of overflow rate and detention time corresponding to typical
values of filter effluent BOD or suspended solids.
TABLE 5-10
CALCULATED VALUES OF FINAL EFFLUENT BOD
OR SUSPENDED SOLIDS
Dt
Detention
Time (hrs.)
6.0
4.5
3.6
3.0
2.6
2.25
2.0
1.8
1.5
1.4
1.3
Qo
Overflow Rate
(gpd/ft2)
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
Values of F-BOD or Suspended Solids in mg/A
50
22
25
28
31
33
35
37
40
43
45
47
60 '
24
28
31
34
37
40
42
44
49
51
53
70
27
31
35
38
41
44
47
49
54
56
58
80
29
34
38
42
45
48
51
54
59
61
64
90
32
37
41
45
49
52
55
58
64
66
69
100
34
39
44
48
52
56
59
62
86
71
74
110
36
42
47
52
56
60
63
67
73
76
79
120
39
45
50
55
59
63
67
71
77
80
83
54
-------
Ui
150
135
IZO
_.I0*
>v
9
E
o 90
= 75
o
o
CD
30
15
Y-2.3I9X
i o
oo oo o
oo o
oo o o
CD O <
o oo o o
o 00 oo o o o
oo oo o o
oo 06
I I I
8 12 16 2O 24 28 32
X « (F BOD)0"8 Oa«'
36
40
44
48
52
56
FIGURE 5-13. PLOT OF THE REGRESSION EQUATION FOR BOD IN THE FINAL CLARIFIER
-------
Ul
320«-
280
240
200
f 160
e
120
ut
>
i
80
40
2.303X
o o
o
o 8 d& o
o ooo o
00 o o o o o
o oft? oo#
o <5o oo 600
§60 o ooo
oo ,,ggUaS«> o
00080 oo oa_^6ero o o
o
-------
Using the results in Table 5-10 and cost information for various sized
settling tanks it is possible to make some interesting estimates. For
example, if, for a plant of 1 mgd and influent BOD of 200 mg/fc, the
filter effluent has a BOD of 70 rag/£, the predicted final effluent BOD
for a settling tank overflow rate of 1000 gpd/ft would be 49 mg/£.
Overall plant removal would be 75.5%. Based on cost information sup-
plied by Black & Veatch (5) the 1971 construction cost of a single final
settling tank would be about $42,000. If the surface area of the final
settling tank were doubled the overflow rate would be 500 gpd/ft2 and
the predicted final BOD would be 35 mg/& for an overall plant removal of
82.4%. The 1971 construction cost of the larger final settling tank,
again based on Black & Veatch, would be about $55,000. The incremental
cost of $13,000 is quite reasonable for the projected increase in effi-
ciency. The cost of achieving a similar improvement by adding to other
units in a trickling filter plant, i.e., the primary settling tank, the
filter, or the recirculation capacity, would be substantially greater.
57
-------
I. CONCLUSIONS REGARDING OPERATION OF EXISTING TRICKLING FILTER PLANTS
Often there is little that can be done to improve the operation of an
existing trickling filter plant unless the plant is not being operated
properly. Occasionally, however, plants are designed with sufficient
flexibility to allow modifications in operating procedures which can
improve treatment results.
Recirculation - Some plants may be provided with ample recirculation
capacity, but fail to utilize it. As indicated in Figure 5-10 recircu-
lation ratios up to 3.0 can add significantly to plant performance.
High recirculation ratio and consequent high hydraulic loadings also
help control the growth of psychoda flies during warm weather. On the
other hand, low recirculation ratios may impair operating efficiency and
result in conditions favorable to the prolific growth of psychoda flies
with attendant nuisance conditions.
At a few plants recirculation flow is drawn from a point downstream of
the final settling tanks. This means that both influent base flow and
recirculation flow passes through the final tank. In such cases the
tank must be designed to handle the higher resulting hydraulic loadings
and, consequently, may be quite large. If the point of recirculation
suction is changed to a location ahead of the final tank there will be
little or no effect on the performance of the trickling filter as a
unit, but the performance of the final tank will be significantly im-
proved at the lower hydraulic loading. For example, if the final tank
hydraulic loading was 800 gpd/ft^ with recirculation flow through the
tank at a recirculation ratio of 1.0, predicted final effluent BOD and
SS according to Table 5-10 would be 48 mg/£ if the filter effluent BOD
and SS were 80 mg/£. Taking recirculation flow ahead of final tank
would reduce the hydraulic loading to 400 gpd/ft^ and predicted final
effluent BOD or SS would be 34 mg/£ - a substantial improvement in per-
formance.
Experiments were conducted during this investigation as to the effect of
the point of recirculation return, i.e., ahead of the primary settling
tank or directly ahead of the filter. Recirculation through the primary
tank showed a very slight advantage. If the primary tank is overloaded,
e.g., a detention time of one hour or less with recirculation flow pass-
ing through the tank, there may be some advantage in direct recircula-
tion. However, the advantage of direct recirculation, under such con-
dition, has not been verified during this study. If prechlorination is
not possible, recirculation of filter effluent through the primary tank
freshens stale influent sewage and helps prevent odors.
Two-Stage Filtration - If a trickling filter plant has been designed to
permit either single- or two-stage operation of the filters, the two-
stage method should be used to the greatest extent possible. As has
been indicated in this investigation, two-stage operation will result in
58
-------
significant improvement in plant performance as compared with single-
stage filtration.
Supernatant Return - The quality of anaerobic digester supernatant and
its method of return to the plant flow units can have a significant ef-
fect on plant performance. Intermittent, high rate, return of superna-
tant from a mixed digester will have a very deleterious effect on plant
performance and on the appearance of the final effluent. On the other
hand, the continuous return of supernatant from an unmixed secondary
digester during periods of low plant flow, e.g., during the night, will
have little effect on plant performance. For these reasons, when two
or more digesters are available, one unit should be used as a secondary
to provide conditions for separation of sludge and supernatant. The
secondary unit should not be mixed or heated unless the heating system
does not contribute to tank turbulence. Supernatant should be returned
to the head end of the plant.
J. CONCLUSIONS REGARDING PLANT UPGRADING WITH MINOR ADDITIONS
Recirculation - If no provision for recirculation has been made in the
original design, its addition at a later date may be difficult. On the
other hand, the addition of a recirculation well with vertical shaft
pumps may be possible. As has been shown, recirculation will have a
beneficial effect on plant performance.
Frequently the recirculation capacity provided in original design does
not permit operation at recirculation ratios much above 1.0. In such
cases consideration should be given to increasing recirculation capa-
city. It is often possible to substantially increase recirculation flow
by increasing pump impeller diameter and motor horsepower.
In cases where recirculation is added or increased it will be necessary
to carefully check the hydraulic capacity of the various units which
will be affected. Particular attention should be given to the capacity
of the filter distributor and underdrainage system. Distributor capa-
city can often be increased by increasing the size of the distribution
orifices, provided the distribution arms can carry the extra flow with-
out too high a water level in the central column. The underdrainage
system must have sufficient capacity to carry the extra flow without
impairing filter ventilation.
Two-Stage Filtration - Often two or more filters exist at a plant but no
provision exists for two-stage operation. In such cases, two-stage
operation will result in improved performance provided the units have
hydraulic capacity to handle the flow. For example, conversion to two-
stage operation at Chapel Hill will result in a 33 percent increase in
flow through the filters provided the recirculation flow is not in-
creased. In all cases plant hydraulics must be carefully analyzed be-
fore attempting any modification to provide two-stage operation. If
hydraulic problems are encountered the expedient remedy may be to reduce
recirculation flow. When an existing plant is designed for single-stage
59
-------
operation only, it will be necessary to alter some structures, piping
and valving to channel the effluent from the first stage units to the
second stage units. A flow control system to equalize flow from first
to second stage units with plant influent flow must also be provided.
Final Settling Tanks - As indicated in Part H, additional final settling
tank capacity will significantly improve overall plant efficiency for
relatively minor capital costs.
K. CONCLUSIONS AS TO THE DESIGN OF MAJOR ADDITIONS OR NEW PLANTS
In the selection of a biological treatment process for a new facility
a number of cost and operating factors must be considered. If removal
of 80 or 85 percent of BOD and suspended solids, during summer months,
will meet requirements, the normal single-stage high rate trickling
filter process, designed at conventional loadings, is an attractive alter-
native. Operating costs are relatively low, the system recovers quickly
from shock loads and operation is fairly simple. On the other hand,
if 90 percent or more removal is required, the activated sludge process
is commonly selected. Although this process is more easily upset and
requires a higher level of operating skill, it will provide 90 percent
or greater efficiency when operating properly.
Smith (27) has reported the total annual cost of various types of treat-
ment plants. Some of these data, adjusted to an ENR Cost Index of 1600,
are tabulated below:
TABLE 5-11
COSTS OF TRICKLING FILTRATION AND ACTIVATED SLUDGE PLANTS ADJUSTED
TO ENR CONSTRUCTION COST INDEX OF 1600
Total Annual Cost - C/1000 Gallons
Capacity (mgd) Trickling Filtration Activated Sludge
1 22.8 28.9
5 15.2 19.8
10 12.6 16.8
20 10.6 14.0
100 8.5 9.7
Obviously, the trickling filter process has the economic advantage,
particularly for small and medium sized plants. If the efficiency of
the trickling filtration process could be upgraded to compare with that
of activated sludge, it would be a very attractive alternative in many
situations.
Frequently, the design engineer faces the problem of obtaining a plant
efficiency of 90 percent or more where a trickling filter plant is al-
60
-------
ready in existence. As illustrated in the following example, he might
consider the construction of additional plant units, similar to those in
existence.
Given: A high rate trickling filter plant with an influent flow
of 1 mgd and BOD of 166 mg/&, in which the primary tank
removes 35 percent of the BOD and the filters and the
final tank removes 69 percent of the remaining BOD for
an overall plant removal of 80 percent at a temperature
of 22° C. The filter has an area of 0.25 acres and a
depth of 4 feet. The recirculation ratio is 2.5.
(Filter efficiency is based on Equation 5-12).
Required: An overall plant removal of 90 percent.
Solution: Assume the settling tanks are not overloaded and that
required efficiency is to be obtained by providing
additional filters.
The required efficiency of the filters and final settl-
ing tanks must be 85% for an overall plant efficiency
of 90%.
[Eoa = 1 - (1-E1)(1-E2); 0.90 = 1 - (1-0.35)(1-0.85) =
0.90].
Equation 5-12 may be rearranged to solve for filter volume as follows:
Le/Lo = 9.84 (W/V)'0'14 T~°'95 (l+Rr)~°-28 (If/V/D)0'56
in which W = Ibs. settled raw BOD/day
V = filter volume (acre-feet)
If = settled sewage influent flow (mgd).
Solving for V
V = [(Lo/Le) 9.84 W0- 14T-°- 95(1+Rr)-0. 28If 0.5^0. 56] 2. 38.
Under the given conditions,
V = [ (Lo/Le) 0.309]2*38
and for a filter-final tank efficiency of 85% the required filter
volume is 5.59 acre-feet.
The cost of the original filter volume (1.0 acre-feet) estimated from
Black & Veatch data (5) adjusted to an EPA Wastewater Treatment Plant
Construction Cost Index of 173 is $160,000. For an additional filter
volume of 4.59 acre-feet, the added cost will be 4.59 x $160,000 or
61
-------
$734,000. Attendant recirculation facilities for the new filters will
add another say, $250,000, for a total additional initial cost of
$984,000. Ammortizing these costs over 25 years at 6% interest plus an
additional $20,000 per year for operation gives a total annual cost at-
tributable to the new filters of
$984,000 x 0.0782 + $20,000 = $97,000/year.
If a second filter of the same size of the original filter is added, as
a second stage unit and its relative efficiency, compared with the first
stage filter, is the same as found in the pilot plant experiments re-
ported previously (i.e., the second stage pilot filter was 93% as effi-
cient as the first stage unit in terms of BOD), the overall plant effi-
ciency would be,
En. - 1 - (1-0.35)(1-0.69)[1-(0.93)<0.69)] = 0.928, (92.8%).
"-oa
In this case the additional cost for one filter is $160,000 plus say,
$60,000 for recirculation and $5,000 per year for additional operating
costs. The total annual cost over 25 years at 6% interest would be,
$220,000 x 0.0782 + $5,000 = $22,000/year.
Obviously two-stage filtration provides a more economical alternative.
The estimated removal for the two-stage system may be optimistic, how-
ever, if additional final settling tank capacity were added it seems
safe to say that the reliable average BOD removal efficiency would be
at least 90 percent.
Chemical treatment of filter effluent at Chapel Hill described in another
report (*), indicates that over 90 percent of BOD, SS and phosphorus can
be removed with alum dosages of about 175 mg/£. Allowing $55 per ton for
alum, $100,000 for the initial cost of chemical storage, handling and
feeding equipment, $150,000 for sludge disposal facilities, $100,000 for
additional final settling tanks, and $10,000 per year for other additional
al operating costs, the total annual cost per mgd is estimated to be
$50,000.
The relations developed to predict final settling tank performance
(Equations 5-18 and 5-19) clearly indicate the benefits of designing for
lower surface loadings. Although these equations are only valid for
final tanks following single-stage filtration it is reasonable to sup-
pose that low surface loadings would provide similar improvements follow-
ing two-stage filtration. When chemical precipitation using aluminum
or iron salt for phosphorus removal is required, or likely to be re-
quired in the future, low surface loadings will significantly improve
overall results. Performance applying liquid alum to final settling
tank influent at Chapel Hill was greatly enhanced when final tank sur-
*EPA Report on Phosphorus Removal Studies at Chapel Hill Plant
62
-------
face loadings were reduced to values less than 600 gpd/ft^. Based on
the probability that many plants will be required to remove phosphorus,
coupled with the observed improvement in plant performance at low final
tank loading with or without chemical treatment, it is recommended that
design criteria for new or additional final settling tanks for trickl-
ing filter plants be based on a surface loading of 500 gpd/ft^. Since
chemical treatment will be required at many plants it is suggested that
structures be provided to facilitate the addition of rapid mixing and
flocculation. Flocculation might be provided in a separate structure
or as an integral part of the final settling tank.
In summary, new or enlarged trickling filter plants should be provided
with the following features:
1. Two-stage operation of filters with provision for interchanging
the lead and secondary filters.
2. Sufficient recirculation pumping capacity to provide a recircu-
lation ratio of 3.0 around both first and second stage filters.
3. Final settling tank surface loadings of 500 gpd/ft2.
4. Provision should be made for the possible future addition of
coagulants such as iron and aluminum salts. In this regard ,
structures designed to facilitate the addition of rapid mixing
and flocculation should be incorporated in the design.
Trickling filter plants designed to the general criteria suggested above
should provide a very acceptable alternative to activated sludge. Per-
formance will be comparable. Total annual cost will be lower while the
traditional advantage of the trickling filter process, i.e., simplicity
of operation and ability to withstand shock loads without long term pro-
cess upset, will be maintained.
The further development of rational theory for trickling filter perfor-
mance offers distinct possibilities for improvements in process effici-
ency and economy. In the section of this chapter describing two-stage
filtration with pilot filters it was implied that current theory, if
substantiated, could lead to the development of deep filters, packed
with a media of high specific surface area combined with non-clogging
properties, operated at high hydraulic loadings and high recirculation.
This type of development might lead to the continuous dosage of waste-
water to the surface of the filter with the elimination of costly rota-
ry distributors.
63
-------
SECTION VI
ACTIVATED SLUDGE STUDIES
The high-rate trickling filter wastewater treatment plant is generally
incapable of routinely meeting standards of 90% removal of BOD and sus-
pended solids. The filter effluent contains suspended solids which
resist settling and which are removed to only a slight extent in the
secondary clarifier. Since nitrification is rarely achieved in high-
rate filter plants, the effluent from such a plant is characterized by
a high ammonia content (25-35 mg/£ NH4+-N) which exerts an oxygen demand
in the receiving stream.
On the other hand, activated sludge treatment is generally capable of
90% removals of BOD and suspended solids. With appropriate control of
dissolved oxygen, loading, and detention time, activated sludge systems
can be modified to achieve high degrees of nitrification in relatively
short detention times.
Based on such considerations, it would appear that further treatment of
trickling filter effluent by short-term activated sludge treatment could
enhance the quality of the final effluent.
Hagerich (28), Vosloo and Finsen (29), Hansen et al. (30), and the City
of San Buenaventura (31) have reported that activated sludge units have
been used to treat trickling filter effluent. Hagerich (28) reported
overall 96.5% reductions in suspended solids and 96.6% reductions in
BOD. He did not report the detention time of the aeration units al-
though the indication is that it was relatively short. Hansen et al,
(30) report BOD removals of 82% and suspended solids removals of 76%.
These removals seemed to be adversely affected by solids carryover and
storm water infiltration and wash-out. None of the previous investiga-
tions systematically evaluated the most effective design parameters of
optimum activated sludge treatment of trickling filter effluent. The
purpose of the present investigation was to evaluate the utility, de-
sign, operation, and characteristics of activated sludge treatment of
trickling filter effluent.
A. 0.1 GPM ACTIVATED SLUDGE PILOT PLANTS
1. Design and Operation
Five tertiary activated sludge pilot plants (ASPP) each consisting of
an aeration tank and settling tank with air lift sludge return were con-
structed as shown in Figure 6-1. Design parameters are given in Table
6-1. The hydraulic detention time varied from 0.4 hr in Unit 1 to 9.2
hr in Unit 5, and the volume under aeration varied from 7 1 in Unit 1
to 165 1 in Unit 5. The influent to the ASPP was effluent from one of
the Chapel Hill trickling filters. This was channeled into a flow split-
64
-------
ter and fed at 300 mJt/min to each unit. The five settling tanks were of
identical design; thus, the overflow rates and detention times were
identical for each unit. Aeration was provided at such a rate as to
maintain the dissolved oxygen in the aerator above 1.5 mg/A. Sludge was
returned to the aeration unit at a rate of 1000 m&/min, and temperature
was controlled at 25° C in the aeration units.
Since the main plant trickling filters were also being manipulated experi-
mentally by altering the organic and hydraulic loading, the quality of
the influent to the ASPP varied not only with the traditional season and
raw sewage flow but also with the main plant experimental design. The
experimental program of the ASPP was designed to evaluate the effect of
detention time, sludge wasting, pH control, and influent loading on over-
all performance (Table 6-2). Sludge was wasted by withdrawing equal
portions of the mixed liquor three times a day. During periods of pH
control, NaHCO-j was metered into the influent stream in such quantities
that influent alkalinity was increased by about 40 mg/Jl as CaCO-j. This
program was initiated due to the sharp decrease of pH in units exhibit-
ing nitrification. This will be discussed in a subsequent section. It
was anticipated that the small settling tanks would not provide efficient
solids removal. To establish the performance of the units with complete
solids removal as well as evaluate the contribution of solids to the
various quality parameters, all samples were analyzed both uncentrifuged
and centrifuged (10 min @ 2200Xg, International Model UV Centrifuge).
Two-day composite samples were collected automatically three times per
week by pumping equal volumes from the influent line and the overflow
from each settling tank every 30 min into sample containers stored at
3-5° C. They were analyzed for uncentrifuged and centrifuged suspended
solids, volatile solids, total organic carbon, chemical oxygen demand
(COD), biochemical oxygen demand (BOD), methylene blue active substances
(MBAS), and all forms of nitrogen and phosphorus. Mixed liquor grab
samples were analyzed for mixed liquor suspended solids (MLSS) and mixed
liquor volatile suspended solids (MLVSS). Grab samples of the influent
and effluents from the units were analyzed daily for turbidity and pH.
Dissolved oxygen, influent flow rate, temperature, return flow rate,
and settleable mixed liquor solids were determined daily.
Figure 6-2 is a photograph of the units in operation.
2. BOD Removal
As mentioned earlier, it was anticipated that the small settling tanks
would not provide optimum solids removal. Heavy blankets of sludge did
develop but channeling problems prevented return of this heavy sludge
with the air lift sludge return. While sludge was returned, the concen-
tration was not as great as that which remained in the settling tanks.
Thus, large quantities of solids remained in the settling tanks. This
accumulation was greatest in the settling tank of Unit 1 and least in
Unit 5. During periods of active nitrification in the aeration units
65
-------
SETTLING TANK
EFFLUENT
AERATION UNIT
FIGURE 6-1. DIAGRAM OF AERATION UNIT AND SETTLING
TANK OF ACTIVATED SLUDGE PILOT PLANT.
-------
TABLE 6-1
DESIGN PARAMETERS
Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Influent Flow (m£/min)
300
300
300
300
300
Aerator Volume (liters)
7.0
17.1
30.0
73.3
165.0
Detention Time (hours)
0.39
0.95
1.67
4.07
9.17
Return Sludge (mA/min)
1000
1000
1000
1000
1000
Temperature °C
25
25
25
25
25
-------
oo
TABLE 6-2
CHARACTERISTICS OF EXPERIMENTAL PERIODS
Exp. Period
I
II
III
IV
V
VI
VII
VIII
*
Dates
2/16-3/12/70
3/13-4/14/70
5/1-6/2/70
6/15-7/24/70
8/3-9/3/70
9/9-10/25/70
11/3-12/1/70
12/2/70-1/10/71
mg/A
PH
Control
No
Yes
Yes
Yes
Yes
Yes
No
No
Avg.
Inf
BOD5*
60
60
72
31
20
35
36
68
Sludge Wasting (I/day)
Unit 1
0
0
0.35
1.4
3
0
0
0
Unit 2
0
0
1.1
4.4
9
0
0
0
Unit 3
0
0
2.2
8.8
18
0
0
0
Unit 4
0
0
2.2
8.8
18
0
0
0
Unit 5
0
0
2.2
8.8
18
0
0
0
-------
FIGURE 6-2 PHOTOGRAPH OF THE FIVE ACTIVATED
SLUDGE PILOT PLANTS
-------
and active denitrification with consequent release of nitrogen gas in
the settling tanks, sludge floated to the surface and was carried into
the effluent stream. Thus, the effluent often had a high solids concen-
tration.
Practical activated sludge treatment, of course, requires that the sludge
be readily settleable for return to the aeration unit or wasting. Table
6-3 shows the average sludge volume index (SVI) and mixed liquor suspend-
ed solids (MLSS) in the five ASPP during the eight experimental periods.
Note that, except for period VIII when the system was full of solids due
to the long period of no wasting, the SVI was within the acceptable
limits of a "good" activated sludge (50-100). This suggests that, with
settling tanks more hydrodynamically similar to full scale installation,
substantial solids removal by sedimentation might occur.
Mixed liquor suspended solids, in general, decreased with increased de-
tention time, but the total mass of solids increased with detention
time due to the size of the units. Since all units were fed at the same
rate, loading was highest at the lower detention times. MLSS was gener-
ally highest during periods of highest BOD loading and decreased with
wasting during periods III, IV, and V. The values increased markedly
during period VI following the period of high wasting. During period
VIII, high BOD loading and very heavy solids accumulation in the settl-
ing tank changed the character of the sludge with resultant bulking and
lower than expected MLSS.
The above data regarding SVI and MLSS indicate that an activated sludge
process can be maintained with trickling filter effluent as feed. Hav-
ing established that such a unit will operate, it remains to establish
the treatment capability and size of such a unit process.
Table 6-4 presents the average BOD at various points in the full scale
trickling filter treatment process and of the effluents from the ASPP.
Since the samples included solids, high average BOD values were recorded
in the effluents of the ASPP when there was substantial solids carry
over. The BOD values of the main plant final settling tank effluent are
little different from those of the ASPP influent (trickling filter
effluent); therefore, the main plant final settling tank provided little
BOD removal. Effluent BOD's from the ASPP generally decreased with in-
creased detention time and were substantially lower than influent in all
units for all periods except for Unit 1 in period II. Thus, even with
far from optimum sedimentation, sludge return, and sludge wasting, the
effluent BOD from these tertiary activated sludge units was substantially
lower than normal effluent BOD from the trickling filter plant.
Since it was felt that a full scale activated sludge process would have
substantially lower effluent solids, centrifuged as well as uncentri-
fuged samples were analyzed. Table 6-5 lists the uncentrifuged raw in-
fluent BOD, uncentrifuged and centrifuged values of trickling filter
effluent BOD, and the centrifuged BOD of the ASPP effluents. Having
70
-------
TABLE 6-3
AVERAGE SLUDGE VOLUME INDEX (SVI) AND MIXED LIQUOR SUSPENDED SOLIDS (MLSS*)
OF ACTIVATED SLUDGE PILOT PLANTS RECEIVING TRICKLING FILTER EFFLUENT
Exp. Period
I
II
III
IV
V
VI
VII
VIII
Unit
SVI
80
76
89
96
89
65
60
103
1
MLSS
xlO3
11.6
12.6
10.8
4.3
0.20
6.5
4.5
8.2
Unit
SVI
118
63
93
71
32
61
70
153
2
MLSS
xlO3
5.9
3.2
2.6
1.5
0.30
6.7
3.5
4.1
Unit
SVI
45
62
56
68
32
66
45
178
3
MLSS
xlO3
2.0
1.8
1.9
1.1
0.07
4.3
2.8
1.8
Unit
SVI
38
57
64
38
32
64
43
231
4
MLSS
xlO3
2.0
2.0
2.3
0.26
0.13
2.4
1.5
1.2
Unit
SVI
33
38
46
55
20
61
21
52
5
MLSS
xlO3
2.0
2.2
1.8
0.92
0.26
1.6
1.8
0.9
mg/A
-------
TABLE 6-4
AVERAGE BOD AT VARIOUS POINTS IN TREATMENT PROCESSES INVOLVING A PRIMARY TANK AND TRICKLING
FILTER IN SERIES WITH EITHER A FINAL SETTLING TANK (FST) OR ACTIVATED SLUDGE PILOT PLANT (ASPP)
Exp. Period
I
II
III
IV
V
VI
VII
VIII
Raw
Influent
BOD 5**
176
165
147
144
172
133
150
132
FST
Effluent
BOD 5**
56
53
50
26
25
42
54
65
ASPP
Inf
BOD 5**
60
60
72
31
20
35
36
68
ASPP Effluent BODs
Unit 1
41*
57*
49*
19
14
20
21
18*
Unit 2
29
36
49*
21
13
17
12
41*
Unit 3
27
25
44
12
10
12
12
29*
Unit 4
20
14
33
12
12
8
9
31*
Unit 5
22
14
8
7
9
7
7
8
*Very high solids in effluent
-------
TABLE 6-5
AVERAGE BOD AT VARIOUS POINTS IN A TREATMENT PROCESS INVOLVING A PRIMARY TANK AND TRICKLING
FILTER IN SERIES WITH AN ACTIVATED SLUDGE PILOT PLANT AND SUBSEQUENT REMOVAL OF SOLIDS
Exp. Period
I
II
III
IV
V
VI
VII
VIII
Raw
Influent
BODS*
176
165
147
144
172
133
150
132
Filter Effluent BOD5*
Uncentri-
fuged
60
60
72
31
20
35
36
68
Centri-
fuged
33
21
14
13
8
17
12
34
ASPP
Unit 1
8
7
10
5
11
5
5
9
Effluent
Unit 2
8
8
9
3
6
4
4
7
BOD 5*^
Unit
9
5
5
4
7
4
3
5
Centrifuged
3 Unit 4
4
3
3
5
6
3
2
3
Unit 5
4
3
3
3
5
2
2
2
-------
already established that the final tank accomplishes very little BOD
removal, the uncentrifuged and centrifuged values of filter effluent BOD
give an approximation of the effect of complete solids removal on the
quality of the final main plant effluent. Complete solids removal by
filtration, coagulation, or some other process would indeed improve ef-
fluent BOD markedly. However, passing trickling filter effluent through
the ASPP and removing solids from the effluent decreased BOD to very low
levels. Notice that even with less than 2 hrs. detention (Units 1, 2,
and 3) the effluent BOD was within quite acceptable limits. Longer de-
tention time resulted in effluent BOD values which are similar to those
of natural fresh water in the Piedmont area of North Carolina. While
there was substantial variation in values from unit to unit and period
to period with uncentrifuged samples, there was much less variation with
centrifuged samples. This, of course, indicates that consistent perfor-
mance depends in large part on effective solids removal.
Table 6-6 presents the average per cent removal of BOD from trickling
filter effluent within the ASPP. Removal generally increased with de-
tention time and generally decreased during the period of high wasting.
Since these removals are based on uncentrifuged samples, they are gener-
ally lower during periods when the effluent was high in solids. Also,
since the values in this table are from uncentrifuged samples, these
probably indicate the lowest performance expected by activated sludge
treatment of trickling filter effluent. All are, of course, better than
the removal provided by the conventional final settling tank in the main
plant.
Table 6-7 presents the average removal of BOD within the various ASPP
units with subsequent centrifugation of the effluents to remove solids.
Removals were much greater with centrifugation, as shown in the previous
table. These results, then, represent the highest performance to be
expected within the activated sludge units of various detention times
treating trickling filter effluent. The variation in performance at
various detention times with complete solids removal was much less than
without solids removal. This would again indicate that effective solids
management would allow substantial BOD removal even at the 0.4 hr. de-
tention time.
One of the implicit purposes of any addition to the treatment flow sheet
of the trickling filter process is to increase overall BOD removals to
greater than 90%. Figure 6-3 shows the BOD removal by the main plant
during the eight experimental periods and the additional removal by
activated sludge treatment of trickling filter effluent. These values
are calculated on the basis of uncentrifuged samples. With this lowest
performance measurement, there is generally substantial improvement even
with the short detention time units while the higher detention units
generally provided approximately 90% overall BOD removal.
Figure 6-4 shows the overall BOD removal in the main plant and the addi-
tional removal by the activated sludge units followed by solids removal.
74
-------
TABLE 6-6
AVERAGE PER CENT BOD REMOVAL IN ACTIVATED SLUDGE PILOT UNITS
BASED ON UNCENTRIFUGED SAMPLES
Exp. Period
I
II
III
IV
V
VI
VII
VIII
Avg . Inf .
BOD, mg/i
60
60
72
31
20
35
36
68
' Unit 1
32**
5**
32**
39
26
48
43
76**
/» DU
Unit 2
52
40
32**
33
32
53
67
40**
'LI nemovaj.
Unit 3
55
59
39
62
47
67
67
57**
sv
Unit 4
67
77
54
62
42
77
74
54**
Unit 5
63
77
89
78
55
79
80
88
*% BOD Removal = [1 - (Effluent BOD, Uncentrifuged}} x 1QQ
Influent BOD, Uncentrifuged
**Very high solids in effluent
75
-------
TABLE 6-7
AVERAGE PER CENT BOD REMOVAL BY ACTIVATED SLUDGE PILOT PLANTS
WITH SUBSEQUENT SOLIDS REMOVAL
Exp. Period
I
II
III
IV
V
VI
VII
VIII
*%
Avg . Inf .
BOD, mg/£
60
60
72
31
20
35
36
68
BOD Removal =
% BOD Removal
Unit
87
88
86
84
46
86
85
87
n -
1 Unit
87
87
87
90
69
90
99
89
..Effluent
2 Unit 3
85
92
93
87
63
87
91
93
Unit 4
93
95
95
84
68
92
95
96
Unit 5
93
95
95
90
72
95
95
97
BOD, Centrifuged „ __ , rtrt
Influent BOD, Uncentrifuged'
76
-------
100-
90-
80-
70-
§ 60H
CD
50 H
UJ
ui
Q.
40-
30-
20-
Figure 6-3. - Percent Removal of BOD
in the Main Plant (shaded) and
Additional Removal in the Activated
Sludge Pilot Plants (open)
2/16-3/12/70 3/13-4/14/70 5/1-6/2/70
6/15-7/24/70
IV
8/3-9/3/70
V
9/9-10/25/70
VI
II/3-I2/I/70
VII
12/2/70-1/10/71
VIII
EXPERIMENTAL PERIOD
-------
00
100
90
| 80
o
I 70
o
o
m
o
Q_
60
50
40
30
20
10
@
2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 IT 18 19 20 21
LOADING (gm BOD /day/gm MLVSS)XIO"'
FIGURE 6-5 RELATIONSHIP OF BOD LOADING TO PER CENT BOD REMOVAL
IN ACTIVATED SLUDGE PILOT PLANTS.
-------
All BOD removals are in excess of 93%. Thus, with optimum solids manage-
ment even 0.4 hr. detention consistently may result in greater than 90%
removal.
It has already been shown that the final settling tank in the present
trickling filter plant improves overall removals by only 1-10%. Since
this tank allows approximately 2 hrs. detention, it may be possible to
economically convert it to contain an aeration and settling chamber as
previously reported by Hansen et al. (30). Thus, performance could be
substantially improved at low capital cost.
Figure 6-5 shows the relationship of BOD removal to BOD loading in the
ASPP- These results are based on uncentrifuged samples, but the same
type of relationship holds for centrifuged samples. As expected, BOD
removal increased as loading decreased. This suggests improved trick-
ling filter performance with greater BOD removal would allow better fur-
ther removal in activated sludge units treating trickling filter effluent.
Removals of COD and organic were very similar to removal of BOD in
the ASPP. MBAS reduction in the ASPP averaged 50-75% from trickling
filter effluent with final effluent values of 0.2-0.8 mg/Jl. Phosphorus
removal was nil through the ASPP, but the addition of activated sludge
treatment to trickling filter plants may provide a convenient point for
addition of chemicals for precipitation of phosphorus.
The results of this investigation established that activated sludge
treatment of trickling filter effluent substantially increased overall
BOD, COD, organic carbon, and MBAS removals. Furthermore, very short
detention times were sufficient for substantial improvement. The amount
of the increase was dependent upon the ability to remove solids from the
effluent and carefully control returned sludge and wasting rates. It is
realized that the magnitude of some of the results reported here may be
due to the 25° temperature of the aeration units. Since the main inter-
est of this investigation was to evaluate the effect of detention time
and since the variation in size of the units would cause large variations
in temperature, it was necessary to hold temperature constant. Experi-
ence with samples from short periods when the temperature controllers
were out of order indicates that th<* temperature effect is not as great
as one would might suppose.
3. Nitrification
Most of the nitrogen in the effluent of a typical high-rate trickling
filter plant is in the form of ammonia. Ammonia released into receiving
waters exerts an oxygen demand and serves as an algal nutrient. Incor-
poration of nitrification processes into waste treatment would insure
oxidation of ammonia to nitrate, thus reducing oxygen demand of the ef-
fluent. In addition, oxidized nitrogen in nitrified effluents is amen-
able to removal by denitrification (32).
79
-------
co
o
100
90
o 80
I 70
a
o
CD
c
0)
o
k_
a>
a.
60
50
40
30
20
10
2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21
LOADING (gm BOD /day/grr MLVSSJXIO"1
FIGURE 6-5
RELATIONSHIP OF BOD LOADING TO PER CENT BOD REMOVAL
IN ACTIVATED SLUDGE PILOT PLANTS.
-------
Nitrification is a biological process. The most important genera of
bacteria involved in nitrification are Nitvosomonas3 which oxidizes am-
monia to nitrite, and Nitrobaoter, which oxidizes nitrite to nitrate (see
reviews by Painter, 32; Alexander, 33; and Thimann, 34). These organisms
are obligate autotrophs, requiring inorganic carbon in the form of carbon
dioxide or bicarbonate. During nitrification, acidic products are formed
from oxidation of ammonia and alkalinity is decreased due to consumption
of inorganic carbon; thus, in poorly buffered systems the pH decreases.
The nitrifying organisms are obligate aerobes, requiring an oxygen con-
centration of at least 0.5-0.6 mg/£ (35, 36), with the possible exception
of some marine species reported to operate at much lower oxygen concen-
trations (37). While oxygen concentrations of 1-7 mg/£ are generally
recommended for nitrification (35) it has been observed that nitrifying
activated sludge can become acclimated to semiaerobic conditions (38).
Intimately related to the effect of oxygen concentration is the effect
of loading. Wuhrmann (39) noted in his investigations that considerable
nitrification took place at low (1 mg/£) oxygen concentrations provided
that a low plant load was combined with high sludge concentrations; on
the other hand, no nitrification took place even at 7 mg/£ with high
loading rates. Other investigators (40, 41) have also noted significant
decrease in nitrification with increased loading.
There are a number of ways in which high loading may affect nitrifica-
tion. High loading may result in higher concentrations of inhibitory
compounds in the nitrification unit. Many organic compounds inhibit
nitrification, among them gelatin, some amines, alkaloids, and amino
acids (34). Higher loading could conceivably increase ammonia concen-
tration in the aerator to a level intolerable to nitrifiers. Both Nitro-
somonas and Nitrobacter are inhibited by high levels of ammonia; the
latter, more sensitive, does not develop in many cases until the ammonia
level has been reduced by Nitrosomonas (34). High loading also increases
the concentration of carbonaceous materials which are readily assimilable
by heterotrophic bacteria. It is the opinion of several investigators
that the inhibitory effect of most organic materials on nitrification is
due to their stimulation of rapid-growing heterotrophs which assimilate
the majority of the inorganic nitrogen, making it unavailable to the
slower growing nitrifiers (33, 42). In addition, if high loading neces-
sitates sludge wasting from an activated sludge unit, the removal of the
slow-growing nitrifiers can prevent development of a population large
enough to accomplish nitrification.
Since the nitrifying bacteria are obligately autotrophic, inorganic car-
bon is an essential nutrient for their growth. Thus, nitrifiers may be
limited by availability of inorganic carbon in the same manner as are
algae (43, 44, 45). Little information is available on the effect of
inorganic carbon concentration on the efficiency of nitrification pro-
cesses. In addition, it is difficult to distinguish the relative impor-
tance of inorganic carbon availability because of the common practice,
both in basic and applied investigations, of adding bicarbonate or car-
bonate alkalinity to the feed to control pH (29, 34, 42, 46, 47).
81
-------
The optimum pH for nitrification is currently a controversial topic.
It has been variously reported from pH 6.0 (47) to pH 8.8 (34). Meek
and Lipmann (48) reported the isolation of organisms capable of nitri-
fication at pH 4.1. Wild, Sawyer, and McMahon (49) report that the opti-
mum pH for nitrification by activated sludge is 8.4 with 50% of the maxi-
mum rate occurring at pH's of 7.0 and 9.8. Rimer and Woodward (50), on
the other hand, were unable to maintain nitrification in their activated
sludge system at pH lower than 8.3-8.5. Recent reviews of the effect of
pH on nitrification in soil (33, 51) described instances in which nitrifica-
tion occurred at pH's as low as 4.0-4.5; both reviews indicate the pos-
sibility that there are little known species of nitrifiers adapted to
low pH. Alexander (33) cites studies indicating that some isolates from
alkaline soils have an optimum of 7.8.
Changes in pH may affect nitrification in several ways. pH may affect
essential biochemical reactions, or alter the toxicity of metals or cya-
nide (36, 46). A low pH is also an indication that the alkalinity has
been depleted.
The optimum temperature for nitrification is 30-35 C (34) although nit-
rification can occur over the range 5-40 C (33).
While a number of investigations have been performed on nitrification
processes in wastewater, few studies have been performed on the applica-
tion of the activated sludge process for upgrading trickling filter ef-
fluent. Two previous studies in this category are those of Wild, Sawyer,
and McMahon (49) and Vosloo and Finsen (29).
Vosloo and Finsen (29) investigated application of the activated sludge
process to improvement of a low-rate filter effluent in both batch and
continuous studies over a one-month period. In a continuous feed unit
operated with 17-30 mg/i influent NH3-N, a 2.9 hr aeration period, and a
MLSS concentration of 8000 mg/Jl, an average of 85% of the ammonia was
removed. Further studies performed with an excess of alkalinity in the
form of powdered calcium carbonate showed that oxidation of 1 gm/£ of
nitrogen caused a decrease in alkalinity of 7.15 mg/£. Vosloo and Finsen
found that appropriate batch addition of powdered calcium carbonate main-
tained the pH above 6, allowed nitrification to proceed to completion,
and greatly improved settleability of the sludge.
Wild, Sawyer, and McMahon (49) investigated nitrification in a pilot
activated sludge unit receiving settled high-rate trickling filter ef-
fluent and in laboratory batch studies. Effect of pH, MLVSS concentra-
tion, ammonia concentration, and BOD on nitrification were studied in
batch studies. pH was controlled by addition of sodium hydroxide. From
short-term (3 hr) experiments, the following conclusions were drawn:
1. ammonia concentration does not inhibit nitrification at concen-
trations less than 60 mg/£
2. pH sharply affects rate of nitrification; optimum pH is 8.4
82
-------
3. increases in temperature increase rate of nitrification, in
the range of 5-30 C
4. for a given sludge, with MLVSS concentrations in the range
800-6000 mg/Jl, the time to completely nitrify a given amount
of ammonia per gram of MLVSS is constant under the same
environmental conditions
5. instantaneous increases in BOD concentration over the range
5-110 mg/Jl do not affect rate of of nitrification.
During pilot-plant activated sludge studies at Chapel Hill nitrification
was consistently noted in several of the units, leading to further in-
vestigations on the factors affecting nitrification.
In the following discussion of results from these studies, performance
of the units under the various modes of operation is presented in terms
of ammonia removal, though it must be understood that the ammonia nitro-
gen is not removed but rather converted to oxidized forms — nitrite and
nitrate — during nitrification. The observation that some denitrifi-
cation was occurring in the final settling tanks made it desirable to
express the results in terms of ammonia disappearance rather than in
terms of nitrate increase.
As shown in Figure 6-6, some ammonia removal occurred during all phases
of operation. In general, units with the longer detention times removed
a higher percentage of the ammonia. Of a total of 40 cases (5 units,
8 operational phases) there were 10 cases in which 90% or more of the
ammonia was removed and 6 cases in which 45% or less was removed. A sum-
mary of the average values of several operating parameters, contrasting
these values in cases of high and low removal, is presented in Table 6-8.
From Table 6-8, it is apparent that maximum removals are usually, but not
exclusively, correlated with low influent BOD, long detention time, low
loading, low MLSS, and adequate bicarbonate alkalinity. A cursory exam-
ination of pH would seem to indicate that low pH is also associated with
maximum removal, but the lower pH levels are probably simply an effect
of extensive nitrification.
In order to simplify interpretation of the results obtained under dif-
ferent operating conditions, the amount of ammonia removed as a function
of detention time is presented in Figures 6-7-6-10.
Figure 6-7 shows ammonia removal under conditions of no sludge wasting
and no alkalinity addition. Note that while the influent ammonia concen-
trations are similar, average influent BOD varied from 35-68 mg/&. In
general, ammonia removal was greatest during the phase when influent BOD
was lowest; poorer, during the phases when influent BOD was 60-63.
The effect of alkalinity addition (bicarbonate) on ammonia removal is
shown in Figures 6-8 and 6-9. Under these conditions of no sludge wast-
ing and low (35-36) BOD in the influent (Figure 6-8) alkalinity addition
had little effect at the shorter detention times, but at longer detent-
83
-------
oo
JS
I-
UJ
u
o:
UJ
a.
LJ
or
o
100
90
80
70
60
50
40
30
20
10
0
-
' 1
2
3
«H
4
5
1
^m
2
3
4
5
MM
1
2
3
•i
4
M.
5
1
f^™
2
— •
3
4
B
5
^H
1
Ml
2
3
•m
4
f
5
Vofnini
l-(
2-(
3-
4-'
5-<
1
ll (
)>
5.<
.7
4
»
_j
2
tot
1
»
r
H=
3
ant
ea
4
ion
^
5
time
1
in
•^
2
un
=
3
tt
••
4
(hr
5
.)
1
2
mm
3
^H
4
pal
5
I II III IV V VI VII
PHASE
FIGURE 6-6 — AMMONIA REMOVAL IN ACTIVATED SLUDGE PILOT PLANTS DURING 8 PHASES OF OPERATION.
VII
-------
TABLE 6-8
PARAMETERS DURING PERIODS OF MAXIMUM AND MINIMUM AMMONIA REMOVAL
Parameter
pH
Influent BOD (mg/A)
Influent NH3-N (mg/£)
Hydraulic Detention Time (hr)
Loading lb BQD/day
Ib MLSS under aeration
Maximum Removal
_(9^%_or_ more)
Range* Avg.**
6.3-7.3 6.8
20-72 40
13.0-24.0 19.8
0.95-9.5 4.5
0.06-0.52 0.19
Minimum Removal
(45% or less)
>-* Avg.**
7.2
63
22.5
0.61
7.0-7.5
60-72
19.4-26.8
0.39-1.05
0.26-0.51 0.38
MLSS Concentration (mg/Jl) 260-6670 2155 3240-12630 8060
Dissolved Oxygen (ing/A) 4.2-7.1 6.0 3.3-5.8 4.9
Bicarbonate addition 10 of 10 cases 3 of 6 cases
*Range of mean values obtained for units during operational phases.
Daily values varied over a wider range.
**Average of mean values obtained for units during operational phases.
TABLE 6-9
EFFECT OF BICARBONATE ADDITION ON AVERAGE pH AND INORGANIC CARBON CONCEN-
TRATIONS IN ACTIVATED SLUDGE UNITS RECEIVING INFLUENT WITH LOW BOD
(35-36 mg/£)
NO BICARBONATE Phase 7
UNIT pH Inorg. C (mg/Jl)
BICARBONATE Phase 6
Inorg. C (mg/&)
1
2
3
4
5
5.7
5.7
5.6
5.4
5.1
10.5
1.0
0.2*
0.3*
0*
7.3
6.7
6.8
6.7
6.7
27.4
8.2
11.1
7.3
3.5*
*Inorg. C concentration 0 at times.
85
-------
TABLE 6-10
EFFECT OF BICARBONATE ADDITION ON AVERAGE pH AND INORGANIC CARBON CON-
CENTRATIONS IN ACTIVATED SLUDGE UNITS RECEIVING INFLUENT WITH HIGH BOD
(60-68 mg/Jl)
NO BICARBONATE BICARBONATE
(Phase 1) __ (Phase 8) ____ (Phase 2) _
UNIT pH Inorg. C pH Inorg. C pH Inorg. C. (mg/A)
1 7.3 24.1 7.2 23.5 7.4 29.7
2 7.0 15.1 7.0 19.3 7.3 25.0
3 6.5 6.4 6.9 13.5* 7.1 16.5
4 5.3 4.3 6.6 8.7* 6.8 10.4
5 4.7 3.5 6.1 0.6* 6.1 4.2
*Inorganic C concentration 0 at times.
86
-------
X PhOMl-lnfl. BOD =60; NH3-N-23mg/l
O Phase 8-lnfl. BOD = 68; NH3-N = 27mg/l
• Phase7-lnfl.BOD= 35; NH3-N = 26mg/l
00
8
10
I 234567
DETENTION TIME.HR.
FIGURE 6-7 ~ AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE WASTING AND NO BICARBONATE ADDITION
-------
00
oo
Influent BOD - 35-36 mg/1
o Phase 6 - Bicarbonate added
• Phase 7- No Bicarbonate added
4567
DETENTION TIME.HR.
10
FIGURE 6-8 —
AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE WASTING AND LOW INFLUENT BOD: EFFECT OF BICARBONATE
-------
CO
vO
Influent BOD =60-68 mg/l
x Pho»« I - No Bicarbonate added
• Phase 8 - No Bicarbonate added
O Phase 2 - Bicarbonate added
4567
DETENTION TIME , HR.
FIGURE 6-9 — AMMONIA REMOVAL UNDER CONDITIONS OF NO SLUDGE WASTING
AND HIGH INFLUENT BOD: EFFECT OF BICARBONATE ADDITION.
-------
X Phase 6. No wasting.InfI. BOD = 35, NH3-N= 21
9 Phase 4. Mod. wasting.Infl. BOD = 3I,NH3-N =
O Phase 5. Heavy wasting.Infl. BOD=20,NH3-N = 13
Bicarbonate addition : all phases
5 6
DETENTION TIME, HR.
FIGURE 6-10. AMMONIA REMOVAL DURING VARIOUS PATTERNS OF
SLUDGE WASTING.
-------
ion times, the extent of ammonia removal was less when alkalinity was
not added. Since bicarbonate addition serves both to provide inorganic
carbon and to control pH, distinguishing between pH and inorganic carbon
concentration effects is not possible under the conditions of these ex-
periments. During phase 7, without alkalinity addition, inorganic car-
bon concentration in the units was low, as shown in Table 6-9.
Under conditions of high influent BOD (Figure 6-7) effect of alkalinity
addition was not as clear. However, the depression of ammonia removal
under conditions of long detention time and no alkalinity addition was
noted in one case. A comparison of pH and inorganic carbon concentra-
tions is shown in Table 6-10. The drastic drop in pH to 4.7 in Unit 5,
phase 1, may account for the poor performance as compared to the same
unit during phase 8 (Figure 6-9). The pH in the unit remained above pH
6 during phase 8, despite low inorganic carbon concentrations; the reason
for this phenomenon is not known.
The effect of sludge wasting on the units is shown in Figure 6-10. On
the whole, moderate sludge wasting did not affect nitrification perfor-
mance, but high rates of wasting hindered nitrification at the interme-
diate detention times.
The relationship of ammonia removal to mixed liquor suspended solids con-
centration is presented in Figures 6-11 — 6-15.
Variations in MLSS concentration in the same unit during different phases
of operation are shown. In cases in which influent BOD was less than 40
mg/£, the amount of ammonia removed was roughly proportional to the MLSS
concentration, up to some optimal concentration for the unit. Compari-
mg NHo-N removed
sons of the different units on the basis of we consider
mg MLSS
to be invalid. Biological examination of the sludge in the five units
revealed significant differences in the flora and fauna. A six-week
study of the protozoa in the units indicated marked differences in both
numbers of protozoa and in species present (James and Little, 52). While
large numbers of protozoa, especially stalked ciliates, were present at
the shorter detention times, very few protozoa were present at the longer
detention times. In order to make a valid assessment of the relationship
of MLSS concentration to ammonia removal, it will be necessary to find
some way to measure the relative weight of nitrifying bacteria in each
sludge.
The possible enhancement of nitrification by activated sludge treatment
following high-rate trickling filtration is indicated in Tables 6-11 and
6-12. Change in concentration of various nitrogen forms during treat-
ment, from the plant influent, filter effluent, and plant effluent to
the effluents from the activated sludge pilot units, is shown in Table
6-11. Note that during cold seasons little nitrogen removal occurred in
the main plant; in warm seasons some nitrogen removal occurred, and a
91
-------
VO
NJ
22
20
18
16
o l4
UJ
§ 12
1
4
10
8
6
4
2
0
\
\
\
• High influent BOO
O Low influent BOD
\
\
20OO
4000 60OO
80OO IOOOO I200O
MLSS.mg/l
I4OOO
FIGURE 6-11 — AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR SUSPENDED
SOLIDS CONCENTRATION, UNIT 1.
-------
24
22
20
_ 18
\
o>
E 16
•»
Q
u 14
O
| 12
\ '°
z
O
8
/
/
_o
• High influent BOD
O Low influent BOD
0 2000 4000 6000 8000 10000 12000
MLSS, mg/l
FIGURE 6-12. AMMONIA REMOVAL AS A FUNCTION
MIXED LIQUOR SUSPENDED SOLIDS
CONCENTRATION, UNIT 2.
93
-------
^
o»
vo E
*• o
UJ
s
UJ
ac
z
<
^p
o
^
*
<
24
22
20
18
16
14
12
10
8
6
4
2
0
(
« High influent BOD
O Low influont BOO
„
/ "^ ^- ^,
•^ ~-^
•^'
S
s* •
S"
»'
'
'
/
/ *
/
' ,
o
-
-
i * i i i i i i i
3 500 1000 1500 2000 25OO 3000 3500 4000 4500
MLSS.mg/l
FIGURE 6-13 ~ AMMONIA REMOVAL AS A FUNCTION OF MIXED LIQUOR SUSPENDED
SOLIDS CONCENTRATION, UNIT 3.
-------
24
20
_ 18
16
o>
E
Q
> 14
UJ °
o
< 10
o
S 8
• High influent BOD
O Low influent BOD
/
/ «
/
0 500 1000 1500 2000 2500
MLSS, mg/|
FIGURE 6-14. AMMONIA REMOVAL AS A FUNCTION
MIXED LIQUOR SUSPENDED SOLIDS
CONCENTRATION, UNIT 4.
95
-------
24
22
20
X
_ 18
1 16
Q
LU
£ .2
z
< 10
O
I 8
<
6
• High influent BOD
O Low influent BOD
• •
x°
X
O
0 500 1000 1500 2000 2500
MLSS ,mg/l
FIGURE 6-15. AMMONIA REMOVAL AS A FUNCTION
MIXED LIQUOR SUSPENDED SOLIDS
CONCENTRATION, UNITS.
-------
TABLE 6-11. CHANGES IN CONCENTRATION OF VARIOUS NITROGEN FORMS DURING TREATMENT
Phase
Form
N-Concentration
Plant
Filter
Plant
Activated Sludge Pilot Plants
Influent Effluent* Effluent A-l
I
II
III
IV
V
VI
VII
VIII
Kjeld
NH3
N02-
NO,-
Total
Kjeld
NH3
N02-
N03-
Total
Kjeld
NH3
NO ~
NO -
To2al
Kjeld
NH3
N02~
N03~
Total
Kjeld
NH.
N02-
NO -
Total
Kjeld
NH3
N02-
N03~
Total
Kjeld
NH3
N02~
NO--
Total
Kjeld
35
20
37
22
33
22
35
22
31
22
31
23
36
23
.7
.0
.6
.2
.0
.5
.5
.0
.4
.1
.7
.5
.9
.9
32.9
NH? 22.6
N02-
N03~
Total
38.3
22.8
0.10
0.43
38.8
34.7
19.4
0.04
0.64
35.38
30.0
24.0
0.02
0.35
30.4
24.9
17.4
0.04
0.39
25.3
16.9
13.0
0.17
0.39
17.7
26.1
21.3
0.03
0.46
26.6
29.4
26.3
0.04
0.33
29.8
31.6
26.8
0.03
0.28
31.9
31.
21.
33.
22.
30.
24.
22.
17.
17.
13.
26.
22.
30.
24.
31.
22.
8
0
5
5
0
0
3
6
5
2
4
4
1
5
9
5
59.0
22.4
0.15
0.35
59.5
62.4
16.3
0.26
0.36
63.0
29.5
18.3
0.26
1.19
31.0
10.2
3.0
0.5
9.2
19.9
8.0
4.6
0.44
6.04
14.5
15.1
8.6
0.57
4.1
19.8
13.9
8.2
0.75
7.2
21.8
26.6
18.6
0.11
0.97
27.7
A-2
23.2
12.6
1.72
1.60
26.5
27.1
13.0
2.16
1.06
30.3
17.1
11.5
1.11
5.2
23.4
9.3
1.6
0.7
12.0
22.0
9.8
4.7
0.34
5.6
15.7
4.9
1.1
0.13
10.3
15.3
6,7
3.1
0.23
10.1
17.0
33.5
14.1
0.30
3.10
36.9
A- 3
12.3
6.6
0.76
12.12
25.2
14.6
8.8
1.17
4.94
20.7
7.1
3.3
0.82
12.8
20.7
6.2
0.9
0.37
13.4
20.0
10.7
6.2
0.30
4.3
15.3
3.8
0.9
0.08
11.5
15.4
7.0
2.8
0.07
11.8
18.9
27.3
11.7
0.19
5.60
33.1
A-4
10.7
6.0
0.45
15.40
26.6
6.5
3.3
0.20
11.68
18.4
9.0
1.1
0.05
15.6
24,6
11.2
4.7
0.93
8.8
20.9
5.1
1.6
0.49
8.3
13.9
3.2
0.6
0.05
12.6
15.8
7.7
3.5
0.04
11.2
18.9
19,2
7.8
0.10
7.50
26.8
A-5
11.0
7.6
0.60
16.40
28.0
6.1
2.8
0.15
13.96
20.2
3.9
1.2
0.05
16.3
20.2
5.2
0.5
0.14
15.1
20.4
3.6
0.52
0.07
11.0
14.7
4.1
0.6
0.05
12.6
17.0
8.2
4.7
0.02
11.8
20.0
8.9
4.2
0.12
10.5
19.5
Mnfluent to activated sludge units
97
-------
TABLE 6-12. CHANGE IN NITROGENOUS OXYGEN DEMAND (NOD) OF WASTEWATER WITH
DIFFERENT DEGREES OF TREATMENT
NOD
Phase
I
II
III
IV
V
VI
VII
VIII
Sample
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Uncent.
Cent.
Plant
Influent
154
163
143
154
136
137
160
142
Filter
Effluent
167
132
150
119
130
108
108
85
73
64
113
97
127
117
137
130
Plant
Effluent
138
145
130
96
76
114
130
138
Activated Sludge
A-l
255
110
270
87
128
90
44
30
35
28
65
42
60
47
115
80
A-2
100
68
117
73
74
63
40
17
42
31
21
12
29
20
145
68
A-3
53
40
63
44
31
26
27
15
46
39
16
10
30
20
118
54
Pilot
A-4
46
29
28
21
39
9
48
31
22
16
14
8
33
21
83
44
Plants
A-5
48
34
27
16
17
9
22
12
16
10
18
7
36
24
38
25
*Influent to activated sludge units
98
-------
higher percentage of the influent nitrogen was converted to ammonia.
At no time did nitrate concentration in the filter effluent average more
than about 0.7 mg/£. Effluents from the activated sludge pilot units,
operated year-round at 25 C, always contained significant amounts of
nitrate except under conditions of high loading and short detention time.
Table 6-12 shows the changes in nitrogenous oxygen demand which can be
achieved with tertiary activated sludge treatment.
Nitrogenous oxygen demand (NOD) was calculated assuming that all the
Kjeldahl nitrogen would ultimately be converted to ammonia nitrogen. The
oxygen demand of each milligram of ammonia-nitrogen was estimated at 4.33
mg 02 (53). In addition, Table 6-12 indicates the improved NOD removals
which could be achieved with improved solids removal, based on kjeldahl
nitrogen concentration before and after centrifugation. As pointed out
previously, the pilot settling basins did not achieve effective solids
removal.
From these investigations, the following conclusions seem warranted:
1. the tertiary activated sludge process is capable of considerable
reduction of the NOD in trickling filter effluent
2. the amount of NOD reduction is largely a function of detention
time and BOD loading
3. in continuously operated units allowed to operate at pH levels
below 7 the effect of pH on extent of nitrification does not
appear to be as important as indicated by previous investiga-
tors
4. the effects of pH and alkalinity require further study so that
the relative importance of each factor can be determined
5. to formulate a valid description of the relationship of MLSS
concentration to nitrifying activity, a method of determining
the relative number of nitrifiers in a given sample of sludge
must be devised.
Further development and refinement of models such as those proposed by
Downing and Knowles (54) and by Lijklema (55) would be facilitated if
the numbers of nitrifiers in sludge could be accurately determined.
B. 3.0 GPM ACTIVATED SLUDGE PILOT PLANTS
1. Design
Because the results of the experiments with the 0.1 gpm activated sludge
pilot plants were encouraging, three activated sludge pilot plants were
constructed to permit operation on a reasonably large scale (3 gpm) to
investigate further the effects of aerator detention and other parameters
on performance. Each plant consisted of an aeration tank, final settling
tank, sludge return pump, air compressor, automatic sampling system and
all necessary control facilities.
99
-------
TABLE 6-13
Design Data - 3 GPM Activated Sludge Pilot Plants
Parameter
Return Sludge Flow (GPM)
Diameter
Height of Conical Section
Height of Water in
Cylindrical Section
Free Board
Total Heights of Tank
Total Volume (ft3)
Total Volume (Gal)
Influent Flow (GPM)
Detention Time (Hrs.)
Aerator
1
24"
36"
60"
20"
116"
18.8
141
3.0
0.8
Aerator
2
32"
48"
48"
20"
116"
29.8
224
3.0
1.25
Aerator
3
48"
72"
24"
20"
116"
50.3
376
3.0
2.1
Settling
Tanks
2.25
48"
72"
21"
23"
116"
47.2
353
1.96
100
-------
FIGURE 6-16.
PHOTOGRAPH OF LARGE ACTIVATED
SLUDGE PILOTS. AERATORS TO RIGHT
SETTLING TANKS AT LEFT.
101
-------
To prevent accumulation of solids in the totally mixed aeration tanks,
the tanks were constructed with conical bottoms, with air introduced at
the bottom tip of the cone. Because it was desired to avoid mechanical
sludge removal equipment, the final settling tanks also were constructed
with conical bottoms, having side slopes of 3:1 (vertical to horizontal)
to insure satisfactory movement of sludge to an outlet located at the
tip of the cone.
At this scale of operation, it is impossible to produce identical hydro-
dynamic effects in final settling tanks of different sizes. Because the
variables of prime interest included aerator detention times and various
loading parameters, not final settling, it was decided that the three
plants would be operated at the same hydraulic flow, using identical
final settling tanks to -avoid the hydrodynamics problem. Different de-
tention times and loadings were obtained by using three different size
aeration tanks. These did represent valid hydrodynamic equivalents be-
cause they were totally mixed, making size and shape relatively unimport-
ant. Design characteristics of all tanks in the pilot plants are sum-
marized in Table 6-13 and the plants are shown in Figure 6-16.
The total influent flow for all three plants was pumped from the effluent
of a Chapel Hill trickling filter, using a variable-speed rubber impeller
pump. This flow was divided continuously into three identical portions
by using a specially-designed rotating flow-splitter. Each plant was
equipped with a rotameter for measuring air flow. Additions of air were
regulated to maintain dissolved oxygen in the aeration tank at all times
equal to or greater than 1.0 mg/£. Return sludge was pumped continuously
from the final settling tanks to aeration tanks by means of variable-
speed rubber impeller pumps.
2. Plant Operation
The influent to these plants consisted of effluent from a trickling fil-
ter in the Chapel Hill Treatment Plant. Because the full-scale plant
was operated throughout this project on an experimental basis, with
periodic changes in recirculation ratio and rate of flow application,
influent quality to the activated sludge pilot plants varied in response
to changes in the main plant operation as well as the usual seasonal and
other variations in the process.
Unlike the smaller activated sludge studies reported earlier, there was
no effort to control temperature in the 3 gpm activated sludge plants.
Accordingly, temperature in the aerators varied with changes in tempera-
ture of the trickling filter effluent. Of course, because these units
were located in a heated building, there was little or no further change
after introduction into the aeration tanks, as might have been expected
if the plants had been operated outside in an exposed location.
Dissolved oxygen in the aeration tank was maintained in the range of
1.0-4.0 mg/& at all times. Sludge was wasted three times a day from the
system.
102
-------
Samples of influent to the units and overflow from each settling tank
were collected for one day three times per week. Each composite was
collected automatically by pumping equal volumes, at 30-minute intervals,
into refrigerated containers. The sampling system was designed to purge
the sample lines automatically before diverting a portion of flow into
the sample container.
Analyses were conducted for BOD5, total organic carbon (TOC), suspended
solids (SS), volatile suspended solids (VSS), Kjeldahl nitrogen (Kjeld-
N), ammonia nitrogen (NH3-N), oxidized nitrogen (N02 - N + NOo-N), total
phosphorus (TP), total inorganic phosphorus (TIP), turbidity (JTU),
and pH. Grab samples of mixed liquor and return sludge were analyzed for
suspended solids (MLSS and RSSS) and volatile suspended solids (MLSS and
RSVSS). Daily measurements were made of dissolved oxygen (oxygen probe
method), temperature, influent flow rate, return sludge flow rate, and
settleable mixed liquor solids.
Because results obtained from the smaller activated sludge units had
indicated the importance of solids carryover from the final tanks, com-
posite samples from the larger plants were analyzed "as is" and centri-
fuged (2200 g, International Model UV Centrifuge) for BOD, TOC and
Kjeld-N.
3. Results and Discussion
The original intent was to conduct studies at various BOD/solids load-
ings by adjusting the rate of sludge wasting. It was determined that
wasting MLSS on a predetermined pattern would not control the solids
adequately because MLSS varied markedly even during extended periods in
which daily wasting was maintained at a constant rate. Daily calcula-
tion of the proper amount of sludge to waste to maintain a specified
MLSS was impractical because a very large, but unknown, proportion of all
solids in the system at any given time was in the settling tank, which
was larger than the aerator.
Statistical analyses of preliminary data indicated no significant corre-
lation between BOD, solids loading and performance. The only clear
correlation established was between detention time in the aerator and
performance. An exception was that the degree of nitrification (ammonia
removal during treatment), increased with aeration time and concentra-
tion of MLSS, when influent BOD was less than 40 mg/£ (Figure 6-17).
This also had been observed in data from the 0.1 gpm activated sludge
units, described earlier.
Because of the difficulty in maintaining constant MLSS, variation in
solids during any given experimental period was found to be about as
great as that bejtween successive experimental periods. Examination of
data for the'different chronological periods of experimentation indica-
ted that the most reasonable approach appeared to be to combine results
for the entire period from July 1, 1971 through January 27, 1972.
103 BEHC LIBRARY U.S. EPA
-------
20
E 15
•o
0)
o
Q>
10
c
o
I
V - Unit I
A - Unit 2
O - Unit 3
O
O
High Influent
BOD
J 2.
1000 2000 3000
MLSS, mg/l
4000
5000
FIGURE 6-17. AMMONIA REMOVAL AS A FUNCTION
MIXED LIQUOR SUSPENDED SOLIDS.
104
-------
Mixed liquor suspended solids tended to decrease with increasing deten-
tion time in the aeration system. The sludge volume index for all units
was within a range generally considered to be acceptable (56), but as
pointed out by Dick and Vesilind (57) this really is not a very good
performance criterion. Aerator loadings (g BOD/gMLSS/day) fell within
ranges generally representative of many plants in practice (58).
Table 6-14 summarizes characteristics of untreated sewage, trickling fil-
ter effluent, and effluent from each of the three activated sludge pilot
units. Based on data for BOD and TOC in Table 6-14 and Figure 6-18,
the activated sludge units gave significant but not radical improvement
in plant performance beyond the trickling filters. BOD removal increas-
ed by 3-8% and TOC removal increased by 5-7%. Suspended solids removal
were not improved by addition of activated sludge to the main plant,
although turbidity was significantly better. Effluent suspended solids
reflect the same poor quality of settling observed earlier with the
smaller activated sludge pilot units.
Figures for soluble BOD and soluble TOC show the type of performance
which could be anticipated with removal of fine solids from the plant
effluent. Removal of suspended material, perhaps by filtration, from
the trickling filter effluent would increase overall performance from
78% to 88% BOD removal, approximately 50% removal of BOD in the current
plant effluent. Addition of activated sludge unit including removal of
solids, would give substantial further improvement to produce overall
performance of 93-94% BOD removal. Although TOC removals are somewhat
lower, as expected, they show the same types of trends observed for the
BOD data.
The most striking change in performance attending addition of the acti-
vated sludge system is reflected in large decreases in Kjeld-N. This
can be attributed to more complete nitrification in the activated sludge
units. The nitrogenous oxygen demand (NOD) of effluent from the main
plant averaged 121 mg/£, a figure which was reduced in the activated
sludge effluents to 66, 54, and 41 mg/£, with increasing detention times.
This produces a very significant improvement in removal of oxygen demand,
when considering both carbonaceous and nitrogenous materials (Figure
6-19).
Further, it may be noted that addition of the activated sludge units re-
sulted in substantial decrease in total nitrogen content of the effluents,
presumably because of denitrification in the final settling tanks. Gas
formation was observed in those tanks frequently and this could have con-
tributed to relatively poor solids removal by those units.
The data suggest that addition of this activated sludge modification,
with detention periods of 0.9-2.3 hrs, could improve BOD removal by a
trickling filter plant, but only slightly unless additional steps are
taken to remove suspended materials from the effluent. Without solids
removals it appears that addition of the activated sludge would not be
105
-------
TABLE 6-14
PERTOBMANCE OF CHAPEL HILL TRICKLING FILTER PLANT
AND
3 GPM ACTIVATED SLUDGE PILOT PLANTS*
Chapel Hill Plant
Parameter
BOB5
Soluble BODj
Ultimate BOD (BODj + NOD)**
TOC
Soluble TOC
Suspended Solids
Turtidity
HH3-U
KJeld-M
«02 * K03-N
Soluble Kjeld-H
pH
Total P
Total laergaaie P
Influent
159 ± 35
302
137 ± 36
157 ± 38
71 ± 10
22 t 4.2
33 ± 8.5
0.9± 3.2
7.1± 0.2
10. 2± 1.8
9.1± 1.4
Effluent
35 ± 20
19 ± 11
156
41 ± 24
33 ± 7
32 ± 18
28 ± 9
21 ± 5.2
28 ± 7.7
1.2± 3.2
14.3+4.7
7.1± 0.2
9.0± 1.4
8.1± 1.4
Activated Sludge Pilot Plants
Effluent #1
25 ± 14
12 ± 11
91
33 ± 10
23 ± 5
34 ± 23
14 ± 5
12.3 ± 5
15.2 ± 5
4.3± 2
13.8 ± 4.0
7.0 ± 0.2
8.8 ± 1.3
7.6 ± 1.0
Effluent 92
30 t 17
10 ± 13
84
35 ± 11
23 i 6
36 ± 19
16 ± 6
10.0 ± 6
12.6 ± 5
6.7 ± 3
12.1 ± 4.0
6.8 ± 0.3
8.8 ± 1.6
7.6 ± 1.0
Effluent #3
22
8
63
32
18
37
15
6.
9.
11.
8.
6.
8.
7.
± 14
± 11
± 12
± 5
± 26
± 8
7 ± 5
5 ± 4
6 ± 4
2 ± 3.8
5 ± 0.4
6 ± 1.5
6 ± 1.0
*A11 vpalues in mg/£ except pH aad turbidity
**Calculated as 4.33 (Kjeld-N) after Uezernak and Gannon (53).
106
-------
100
90
80
- 70
o
o:
c 50
0)
£. 40
30
20
10
0
Without Solids
Removal
ro
With Solids
Removal
r (M -
c — Z>
=> '£
BOD.
TOC
BOD,
TOC
FIGURE 6-18 .
AVERAGE PER CENT BOD REMOVAL OF BOD5 AND
ORGANIC CARBON WITH AND WITHOUT SUBSEQUENT
SOLIDS REMOVAL FOR THE MAIN PLANT (SHADED)
AND THE ADDITIONAL REMOVAL IN THE ACTIVATED
SLUDGE PILOTS (OPEN).
107
-------
Main
Plant
Main
Plant
Unit I Unit 2 Unit 3
FIGURE 6-19. PERCENT REMOVAL OF ULTIMATE BOD*
IN THE MAIN PLANT AND MAIN PLANT
WITH ACTIVATED SLUDGE PILOT PLANTS
"CALCULATED AS BOD5 + 4.33 (KJELD-N)
AFTER WEZERNAK AND GANNON (53).
108
-------
advantageous unless the Increase in nitrification would provide suffi-
cient justification, which would be unlikely in most instances.
Combination of the activated sludge modification with filtration or other
treatment appropriate for removing suspended material would produce sub-
stantially improved performance, with BOD removals exceeding 90%. One
appropriate means for suspended solids removal would be in conjunction
with chemical precipitation-flocculation for phosphorus removal. In this
instance, effluent quality should be excellent, with potential for very
low BOD, substantial nitrification and removal of most phosphorus.
109
-------
Section VII
REFERENCES
110
-------
Section VII
REFERENCES
1. Federal Water Pollution Control Administration, FWPCA Methods for
Chemical Analysis of Water and Wastes. U.S. Department of Interior,
FWPCA Analytical Quality Control Laboratory, Cincinnati, Ohio (1969).
2. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and
Wastewater. 12th edition. American Public Health Association, Inc.,
New York, N. Y. (1965).
3. Ibid., llth edition (1960).
4. Water Pollution Control Federation, "Sewage Treatment Plant Design,"
Manual of Practice No. 8, Washington, D. C. (1967).
5. Patterson, W. L., and R. F. Banker, "Estimating Costs and Manpower
Requirements for Conventional Wastewater Treatment Plants," Envi-
ronmental Protection Agency Project #17090. U.S. Government Print-
ing Office (October, 1971).
6. Velz, C. J., A Basic Law for the Performance of Biological Beds,"
Sewage Works Journal, 20, 4, p. 607 (July, 1948).
7. Committee Report, National Research Council "Sewage Treatment of
Military Installations," Sewage Works Journal, 18, 5, p. 791 (Sept-
ember, 1946).
8. Rankin, R. S., "Evaluation of the Performance of Biofiltration
Plants," Transactions, ASCE, 220, p. 823 (1955).
9. Rowland, W. E., "Flow Over Porous Media as in a Trickling Filter,"
Proc., 12th Ind. Waste Conference, Purdue Univ., Extension Service
94, p. 435 (1957).
10. Bloodgood, D. E., G. H. Teletyke, and F. G. Pohland, "Fundamental
Hydraulic Principles of Trickling Filters," Sewage and Industrial
Wastes, 2,1, 3, p. 243 (March, 1959).
11. Rowland, W. E., F. G. Pohland, and D. E. Bloodgood, "Kinetics in
Trickling Filters," 3rd Conference on Biological Treatment, Manhat-
tan College, New York (1960).
12. Rowland, W. E., "Effects of Temperature on Sewage Treatment Proces-
ses," Sewage and Industrial Wastes, 25, 2, p. 161 (February, 1953).
Ill
-------
13. Schulze, K. L., "Load and Efficiency of Trickling Filters," Jour.
Water Poll. Control Fed. 32., 3, p. 245 (March, 1960).
14. Schulze, K. L., "Experimental Vertical Screen Trickling Filter,"
Sewage and Industrial Wastes, 29, 4, p. 458 (April, 1957).
15. Schulze, K. L., "Trickling Filter Theory," Water and Sewage Works,
1073 3, p. 100 (March, 1960).
16. Stack, V. T., "Theoretical Performance of the Trickling Filter Pro-
cess," Sewage and Industrial Wastes, 29., 9, p. 987 (September,
1957).
17. Eckenfelder, W. W., Jr., "Trickling Filter Design and Performance,"
Transactions, ASCE, 128, Part III, p. 371 (1963).
18. Caller, W. S., and H. B. Gotaas, "Analysis of Biological Filter
Variables," Jour, of San. Engr. Div., ASCE, 90, SA6, p. 59 (Decem-
ber, 1964).
19. Lamb, R., and Sandra G. H. Owen, "A Suggested Formula for the Pro-
cess of Biological Filtration," Water Pollution Control (Great
Britain), Paper No. 1, p. 209 (1970).
20. Fair, G. M., J. N. Geyer, and D. A. Okun, "Water and Wastewater
Engineering," 2, pp. 22-25, John Wiley and Sons, Inc., New York
(1968).
21. Nelder, J. A., and R. Mead, "A Simplex Method for Function Minimi-
zation," The Computer Journal, 7, p. 308 (1965).
22. Great Lakes - Upper Mississippi River Board of State Sanitary Engi-
neers, "Recommended Standards for Sewage Works," (Ten State Stand-
ards) (1960).
23. Ross, Janet, "Investigations into the Ecology of Psychoda Flies at
Chapel Hill (Interim Report - 1972 - Unpublished).
24. Williams, N. V., and H. M. Taylor, "The Effects of Psyohoda Alternata
(Say.)(Diptera) and Lumbricillus Rivalis (Levinson)(Enchytraeidae)
on the Efficiency of Sewage Treatment in Percolating Filter," Water
Research, (Great Britain) 2, p. 139, Pergamon Press (1968).
25. Knowles, C. L., "Multistage Biological Oxidation Columns for Chemi-
cal Wastes," Chem. Engr. Progr. Symp. Series, 67, p. 445 (1971).
26. Chipperfield, N. V., et al ., "Multiple-Stage Plastic-Media Treatment
Plants," Jour. Water Poll. Control Fed., 44, p. 10 (October, 1972).
112
-------
27. Smith, Robert, ''Cost of Conventional and Advanced Treatment of
Wastewater," Jour. Water Poll. Control Fed., 40, 9, p, 1546 (Sept-
ember, 1968).
28. Hagerich, J. N., "Roughing Filter Relieves Overloaded Activated
Sludge Plant," Sewage and Industrial Wastes., 26, 5, pp. 685-687
(1954).
29. Vosloo, P. B. B., and P. 0. Finsen, "Application of Activated Sludge
Process to Further Purification of Biological Filter Effluent,"
Water & Waste Treatment Jour.., 6, 8, pp. 348-352 (1957).
30. Hansen, S. P., G. L. Gulp, and J. R. Stuckenberg, "Practical Appli-
cations of Idealized Sedimentation Theory in Wastewater Treatment,"
Jour. Water Poll. Control Fed.J 41, 8, pp. 1421-1444 (1969).
31. City of San Buenaventura, "Integrated Activated Sludge Biological
Filter Process, " Water Pollution Control Research Series (17050 EE
00 3/71)(March, 1971).
32. Painter, H. A., "A Review of Literature on Inorganic Nitrogen Meta-
bolism in Microorganisms," Water Research, 4, pp. 393-450 (1970).
33. Alexander, M., "Introduction to Soil Microbiology, John Wiley &
Sons, Inc., New York (1961).
34. Thimann, K. V., "The Life of Bacteria," The MacMillan Company, New
York (1963).
35. Johnson, W. K., and Schroepfer, G. J., "Nitrogen Removal by Nitri-
fication and Denitrification," Jour. Water Poll. Control Fed., 36,
p. 1015 (1964).
36. Tomlinson, T. G., and D. H. M. Snaddon, "Biological Oxidation of
Sewage by Films of Microorganisms," Int. Jour. Air & Water Poll.
Great Britain, 10, p. 865 (1966).
37. Carlucci, A. F., and P. M. McNally, "Nitrification by Marine Bacte-
ria in Low Concentrations of Substrate and Oxygen," Lirmol.
Oceanogr., 14, p. 736 (1969).
38. Ludzack, F. J., and M. B. Ettinger, "Controlling Operation to Mini-
mize Activated Sludge Effluent Nitrogen," Jour. Water Poll. Control
Fed., 24, p. 920 (1962).
39. Wuhrmann, K., "Effect of Oxygen Tension on Biochemical Reactions in
Sewage Purification Plants," J-n "Advances in Biological Waste Treat-
ment," Pergamon Press, London, Eng. (1963).
113
-------
40. Okun, D. A. "A System of Bio-Precipitation of Organic Matter from
Sewage," Doctoral Thesis, Harvard Univ., 290 pp. (1948).
41. Balakrishnan, S., and W. W. Eckenfelder, Jr., "Nitrogen Relation-
ships in Biological Treatment Process—I. Nitrification in the
Activated Sludge Process," Water Research, 3, p. 73 (1969).
42. DeMarco, J. , J. Kurbiel, J. M. Symons, and G. Robeck, "Influence of
Environmental Factors on the Nitrogen Cycle in Water," Jour. Amer.
Water Works Assn.J 59, p. 580 (1967).
43. Kuentzel, L. E. , "Bacteria, Carbon Dioxide and Algal Blooms," Jour.
Water Poll. Control Fed., 41, p. 1737 (1969).
44. Kerr, P. C., D. F. Paris, and D. L. Brockway, "The Interrelation of
Carbon and Phosphorus in Regulating Heterotrophic and Autotrophic
Populations in an Aquatic System," Southeast Water Laboratory,
FWQA, U.S. Department of the Interior, Athens, Ga. (1970).
45. King, D. L., "The Role of Carbon in Eutrophication," Jour. Water
Poll. Control Fed., 42, p. 2035 (1970).
46. Loveless, J. E. , and H. A. Painter, "The Influence of Metal Ion Con-
centrations and pH Value on the Growth of a Nitrosomonas Strain
Isolated from Activated Sludge," Jour. Gen. Microbiol. 52, 1 (1968).
47. Speece, R. E., and R. G. Montgomery, "Nitrogen Removal from Natural
Waters," Tech. Report 48, New Mexico State University, Las Cruces
(1968).
48. Meek, C. S., and C. B. Lipmann, "The Relation of the Reaction and
of Salt Content of the Medium on Nitrifying Bacteria," Jour. Gen.
Physiol., 5, p. 195 (1922).
49. Wild, H. E., C. N. Sawyer, and T. C. McMahon, "Factors Affecting
Nitrification Kinetics," Paper presented at the 43rd Annual Confer-
ence of the Water Pollution Control Federation, Boston, Mass.
October 4-9 (1970).
50. Rimer, A. E., and R. L. Woodward, "Two Stage Activated Sludge Pilot
Plant Operations — Fitchburg, Massachusetts," Presented at the
43rd Annual Conference of the Water Pollution Control Federation,
Boston, Mass., October 4-9 (1970).
51. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S.
Pierce, "Effects of Forest Cutting and Herbicide Treatment on Nu-
trient Budgets in the Hubbard Brook Watershed-Ecosystem," Ecologi-
cal Monographs, 40, (Winter), p. 23 (1970).
114
-------
52. James, W. C., and L. W. Little, "Observations on Protozoa in Activated
voted Sludge Pilot Plants Fed with Effluent from a High-Rate Trickl-
ing Filter}" (Unpublished)(1970).
53. Wezernak, C. T., and J. J. Gannon, "Oxygen-Nitrogen Relationships in
Autotrophic Nitrification," Appl. Miorobiol., IS, p. 1211 (1967).
54. Downing, A. L., and G. Knowles, "Nitrification in Treatment Plants
and Natural Waters: Some Implications of Theoretical Models,"
Presented at the 5th International Water Pollution Research Confer-
ence, July-August (1970).
55. Lijklema, L., A Model for Nitrification in the Activated Sludge Pro-
cess, ESE Publication No. 303, Department of Environmental Sciences
and Engineering, Univ. of North Carolina, Chapel Hill (June, 1972)
(Submitted for publication).
56. Pipes, W. 0., "Types of Activated Sludge Which Separate Poorly,"
Jour. Water Poll. Control Fed., 41, pp. 714-724 (1969).
57. Dick, R. I., and P. A. Vesilind, "The Sludge Volume Index - What Is
It?" Jour. Water Poll. Control Fed., 41, p. 1285 (1969).
58. Metcalf £ Eddy, Inc., Wastewater Engineering, McGraw-Hill Book Com-
pany, New York, N. Y., p. 498 (1972).
115
-------
APPENDIX A
DATA LISTING FOR MAIN PLANT NOVEMBER, 1969 TO JANUARY, 1970
116
-------
CONTENTS
Page
Description of Data Listing Format 118
Variable Definitions and Units 118
Code Definitions for Sample Type Variable 119
Contents of Data Files 119
Data Files 121
117
-------
Description of Data Listing Format
All of the routine data collected on the Chapel Hill Main Plant from
November 19, 1969 to January 24, 1972 are listed in this appendix. The
data list is in seven sections. Each section lists a different group of
variables for the entire period of data collection. The date, day of
week, and sample types are repeated in each section. Blanks in the
tables indicate that the particular parameter was not determined on that
date with the given sample type.
As discussed in Section V, the main plant consists of two parallel units,
Side 1 and Side 2. The numbers in the variable labels refer to the side
of the plant. Samples were routinely collected at seven points of flow.
These were influent (labelled INF), primary tank effluent (labelled P-l
or P-2), trickling filter effluent (labelled F-l or F-2), and final set-
tling tank effluent (labelled S-l or S-2).
The variable "Samp Type" refers to the type of sample (composite, grab,
etc.) on which the analyses in a given line of data were made. The
description of the code is in the next section. On many dates two dif-
ferent types of samples were collected. These dates are listed twice
with the values of each variable appearing on the line with the appro-
priate sample type. Hydraulic data is listed for each line in the file.
Thus, if the date appears twice, the hydraulic data will also appear
twice.
Variable Definitions and Units
1. Samp Type = Sample cype (see next section for code)
2. Total Flow = Flow in mgd into the head end of the plant
3. Max. Flow = Maximum total plant flow in mgd during the day
4. Min. Flow = Minimum total plant flow in mgd during the day
5. FRCT = Fraction of total flow passed to indicated side
6. Flow = Flow in mgd to indicated side (FRCT x Total Flow)
7. RCRC = Recirculation flow (mgd) on indicated side
8. RCRC Ratio = Recirculation ratio on indicated side (RCRC /Flow)
9. Temp. = Influent temperature (°C)
10. HYP Load = Hydraulic load (mgad) on trickling filter on indicated
side (Flow + RCRC/Filter area)
11. BOD Load = BOD load (lbs/1000 ft3/day) on trickling filter on
indicated side
(Flow x Inf BOD x 8.34/volume in ft3 x 10~3)
12. Org C Load = Organic carbon load (lbs/1000 ft3/day) on trickling
filter on indicated side
(Flow x Inf Org C x 8.34/volume in ft3 x 10~3)
13. BOD EFF = BOD removal efficiency (%) on indicated side
inn /•Inf BOD ~ s
*•
Inf BOD
118
-------
14. SS EFF = Suspended solids removal efficiency (%) on indicated side
Inf ss - s ss
Inf SS
15. Org C EFF = Organic carbon removal efficiency (%) on indicated side
100 ( -
UU <• '
100 (Inf °rg C - S Org C.
k Inf Org C ;
16. BOD = Five day 20° C biochemical oxygen demand (mg/£) at indicated
point
17. SS = Suspended solids (mg/£) at indicated point
18. Org C = Total organic carbon (mg C/&) at indicated point
19. N02 = Nitrite (mgN/fc) at indicated point
20. NO 3 = Nitrate (mgN/Jl) at indicated point
21. NH3 = Ammonia (mgN/A) at indicated point
22. KJELD N = Total Kjeldahl nitrogen (mgN/A) at indicated point
23- Totl In P = Total inorganic phosphorus (mgP/fc) at indicated point
24. Totl P = Total phosphorus (mgP/A) at indicated point
25. Turb = Turbidity (JTU) at indicated point
26. _pJl = pH at indicated point
Code Definitions for Sample Type Variable
Code Definition
missing or 99 = No chemistry sample taken
04 = 2-day time proportional composite
06 = 1-day time proportional composite
07 = 3-day time proportional composite
10 = 2-part composite of 1-day time proportional
composites
11 = 12-hour time proportional composite
12 = 3-part composite of 1-day time - proportional
composites
13 = 1-day time proportional composite with BODg
15 = 1-day flow proportional composite
Contents of Data Files
Data Listing of Total Flow, Maximum Flow, Minimum Flow, Fraction to
Side 1, Fraction to Side 2, Flow Side 1, Flow Side 2, Recircu-
lation Flow Side 1, Recirculation Flow Side 2, Recirculation
Ratio Side 1, Recirculation Ratio Side 2, Influent Temperature,
Hydraulic Load Side 1, Hydraulic Load Side 2, and BOD Load
Side 1
Data Listing of BOD Load Side 2, Organic Carbon Load Side 1, Organic
Carbon Load Side 2, BOD Removal Side 1, BOD Removal Side 2,
Suspended Solids Removal Side 1, Suspended Solids Removal Side
2, Organic Carbon Removal Side 1, Organic Carbon Removal Side
2, Influent BOD, P-l BOD, F-l BOD, S-l BOD, P-2 BOD, F-2 BOD,
S-2 BOD
119
-------
Data Listing of Influent Suspended Solids, P-l Suspended Solids, F-l
Suspended Solids, S-l Suspended Solids, P-2 Suspended Solids,
F-2 Suspended Solids, S-2 Suspended Solids, Influent Organic
Carbon, P-l Organic Carbon, F-l Organic Carbon, S-l Organic
Carbon, P-2 Organic Carbon, F-2 Organic Carbon, S-2 Organic
Carbon, Influent Nitrite, P-l Nitrite, and F-l Nitrite
Data Listing of S-l Nitrite, P-2 Nitrite, F-2 Nitrite, S~2 Nitrite,
Influent Nitrate, P-l Nitrate, F-l Nitrate, S-l Nitrate,
P-2 Nitrate, F-2 Nitrate, S-2 Nitrate, Influent Ammonia, P-l
Ammonia, F-l Ammonia, S-l Ammonia
Data Listing of P-2 Ammonia, S-2 Ammonia, Influent Kjeldahl, P-l
Kjeldahl, F-l Kjeldahl, S-l Kjeldahl, P-2 Kjeldahl, F-2
Kjeldahl, S-2 Kjeldahl, Influent Total Inorganic Phosphorus,
P-l Total Inorganic Phosphorus, F-l Total Inorganic Phosphorus
S-l Total Inorganic Phosphorus and P-2 Total Inorganic Phos-
phorus
Data Listing of F-2 Total Inorganic Phosphorus, S-2 Total Inorganic
Phosphorus, Influent Total Phosphorus, P-l Total Phosphorus,
F-l Total Phosphorus, S-l Total Phosphorus, P-2 Total Phos-
phorus, F-2 Total Phosphorus, S-2 Total Phosphorus, Influent
Turbidity, P-l Turbidity, F-l Turbidity, S-l Turbidity, P-2
Turbidity, F-2 Turbidity, and S-2 Turbidity
Data Listing of Influent pH, P-l pH, F-l pH, S-l pH, P-2 pH, F-l
pH, and S-2 pH
120
-------
to
Pat 9
of
Obsv
Ni V 19 69
NOV 19 69
HOV 20 69
VOV 20 69
NOV 21 69
NOV 21 69
N'OV 22 69
NOV 22 69
NCV 23 69
"CV 23 69
NOV 21 69
HOV 21 69
NOV 25 69
NOV 25 69
10V 26 69
N<~V 27 69
NOV 28 69
«CV 29 69
NOV 30 69
PEC 1 69
DEC 1 69
DEC 2 69
DEC 2 69
PEC 3 69
DEC 3 69
DEC 14 69
DSC U 69
DEC 5 69
DEC 5 69
DEC 5 69
DEC 6 69
DEC 7 69
DEC 7 69
DFC 8 69
DEC 8 69
DEC 9 69
DEC 9 69
DEC 10 69
DEC 10 69
DEC 11 69
DEC 11 69
DEC 12 69
DEC 12 69
DEC 13 69
DEC 13 69
DEC 11 69
DEC 1U 69
DEC 15 69
DEC 15 69
DFC 16 69
PEC 16 69
DEC 17 69
DEC 17 69
Day
of
Je-<=k;
HED
WED
THU
THO
FET
FRI
SAT
SAT
sni
SUM
MON
HON
TUE
TUB
HED
THU
FBI
SAT
SON
MON
MOD
TOE
TDE
WED
BED
THO
THU
FEI
FEI
SAT
SAT
SON
SUN
DOS
HON
TDE
TOE
WED
WED
THU
THU
FHI
FPI
SAT
SAT
SUN
SUN
101
MON
T U ^
TUE
HED
WED
Samp
Type
6
4
6
U
6
7
4
7
U
7
6
4
6
4
4
4
6
a
6
li
6
14
6
a
6
7
it
7
H
7
6
14
6
14
6
4
6
14
7
6
7
«
7
U
a
6
6
14
6
(4
T0t.il
Flow
2. 370
2. 370
2.330
2. 33C
2. 310
2. 310
1 . 950
1. 950
1 . 870
1. 870
2. 270
2. 270
2. 100
2. 160
1. 790
1. 26C
1. 370
1. 320
1. 570
2. 200
2. 200
2.250
2. 250
2. 260
2. 260
2. 270
2. 270
2. 190
2.19"
1. 880
1. 880
2.014C
2 . 0 '4 0
2.090
2. 090
2. 28C
2. 280
2. 890
2. R90
2. 5 10
2. 510
2. 360
2. 360
2.070
2. 070
2.150
2. 150
2. 3 30
2. 330
2. 230
2. 230
2. 150
2. 15C
Max
Flow
3. 6
3. 6
3.5
3 . 5
3. 5
3.5
3. 7
3. 7
3.1
3. 1
3. 5
3. 5
3.5
3. 5
3. 3
2. 1
2. 5
2. 2
2.6
3.14
3.4
3.5
3.5
3.5
3. 5
3.5
3. 5
3. 5
3.5
3. 3
3. 3
3. 3
3. 3
3. 5
3.5
3. 5
3. 5
4. 1
U. 1
3. 7
3. 7
3.6
3. 6
3. 5
3. 5
3. 1
3. 1
3. 7
3.7
3.6
3. 6
1.6
3.6
win
Flo*
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.7
0. 7
0.7
0. 7
0. 6
0.6
0.6
0. 6
0. 6
0. 6
0. 6
C. 6
0. 6
0. 6
0.6
0.7
0.7
0. 6
0. 6
0. 5
0.5
C. 6
0.6
0.6
0.6
0.6
0. 6
0.7
0.7
0.6
0.6
0.6
0. 6
0.7
0. 7
0.6
0. 6
C. 6
C. 6
0.6
0. 6
0.6
C.6
FPCT
Side
1
0.50
0.50
0. 50
0. 50
0.50
0.50
0. 50
0.50
0. 50
0. 50
0.50
0.50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0. 50
P. 50
0.50
P. 50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
P. 50
0.50
0.50
0.50
C. 50
0.50
0. 50
0.50
FRCT
Side
2
0.5C
0. 50
0. 5P
0.5P
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0. 50
0. 50
0. 50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0. 50
0. 50
0. 50
0.50
0. 5C
0.50
0. 50
0. 50
0. 50
0.50
0. 50
0. 50
0.50
0.50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0. 5C
0. 50
0.5P
0. 50
0. 50
Flow
Sid»
1
1 . 185
1. 185
1 . 165
1 . 165
1. 155
1. 155
0.975
0.975
0. 935
0. 935
1. 135
1. 135
1 .090
1 .090
0.895
0.630
0.685
0.660
0.765
1 . 100
1 . 100
1. 125
1 . 125
1. 130
1 . 130
1 . 135
1. 135
1.P95
1 .P95
0. 940
0.940
1 .020
1.020
1 .045
1 .045
1.140
1 . 140
1 . 445
1.445
1.255
1. 255
i . ieo
1 . 180
1.035
1.035
1 .P75
1 .075
1 . 165
1.165
1.115
1.115
1 .075
1 .075
Flow
Side
2
1. 185
1. 185
1 . 165
1. 165
1. 155
1. 155
0.975
C.975
0. 93b
0.935
1. 135
1. 135
1.090
1 .090
0. 895
0.630
C.685
0. 660
0.785
1 . 100
1. 100
1. 125
1 . 125
1. 1 30
1. 1 30
1. 135
1 . 1 35
1. 095
1.095
0. 940
0. 940
1 .020
1.020
1.045
1. 045
1 . 140
1 . 140
1. 445
1.445
1 .255
1. 255
1. 180
1. 180
1. 035
1. 035
1.075
1.075
1. 165
1 . 1 65
1.115
1.115
1.075
1. 075
BCEC
Side
1
3.20
3. 20
3. 20
3. 20
3.20
J.20
3.20
3. 20
3.20
3.20
3.20
3.20
3. 20
3. 20
3.20
3.20
3. 20
3.20
3. 20
3.20
3.20
3.20
3. 20
3. 20
3. 20
J. 20
3.20
3.20
3. 20
3. 20
J.20
3. 20
3.20
3.20
3. 20
3. 20
3.20
3.20
3. 20
3.50
3.50
3. 40
3. 40
3.40
3. 40
3.40
3. 40
3.40
3. 40
1.50
1.50
1 . 40
1 .40
HCBC
Side
2
3.20
3.20
3.20
3. 20
3.20
3.20
3.20
3.20
3.20
3. 20
1.00
1 .00
3. 20
3. 20
3.20
3.20
3.20
3.20
3.20
3.20
3. 20
3.20
3.20
3.20
3.20
3.20
3. 20
3.20
3.20
3.20
3.20
3. 20
3. 20
3.20
3.20
3. 20
3. 20
3.20
3. 20
3. 20
3.20
3. 20
3.20
3.20
3.20
3.20
3.20
3.20
3. 20
1. 50
1.50
1.50
1.50
RCPC
Fatio
1
2.70
2.70
2.75
2.75
2.77
2.77
3.28
3.28
3.42
3.42
2.82
2.82
2.94
2.94
3.58
5,08
4.67
4.85
4.08
2.91
2.91
2.84
2. 84
2. 83
2.83
2. 82
2. 82
2.92
2. 92
3.40
3.40
3.14
3. 14
3.05
3.06
2. 81
2. 81
2.21
2.21
2.79
2.79
2.88
2.88
3.29
3.29
3. 16
3. 16
2.92
2.92
1. 35
1 .35
1 .30
1 . 30
FCPC
Ratio
2
2.7C
2.70
2. 75
2.75
2.77
2.77
3.28
3. 28
3. 42
3.42
1.00
1.00
2.94
2.94
3.58
5.08
4.67
4. 85
4.08
2.91
2.91
2.84
2.84
2.83
2.83
2.82
2.82
2.92
2.92
3.40
3. 4C
3. 14
3. 14
3.06
3.06
2.81
2.81
2. 21
2. ?1
2.55
2. 55
2.71
2.71
3.09
3. 09
2.98
2.98
2. 75
2.75
1. 35
1. 35
1. 40
1. 40
Ti^rnp
20. 3
20. 3
18.0
18.0
19.5
19.5
18.5
18.5
1 9.8
1 9. 8
19. 3
19. 3
19. 9
17. H
18.0
13.0
18. 5
18. 5
18.8
18. 8
18.6
18.6
18. 0
18.0
17.0
17. 0
17. 9
1 7. 9
18.1
IB. 1
17. 5
17. 5
17.5
17.5
17. 7
17.7
15. 1
15.1
17. 1
17. 1
17.0
17.0
17. 1
17. 1
HYD
Load
1
17.0
17.0
16.9
16.9
16.9
16.9
16.2
16. 2
16.0
16.0
16.8
16.8
16.6
16.6
15.9
14.8
15. 1
15.0
15.4
16.7
16.7
16.8
16.8
16. 8
16.8
16.8
16.8
16.6
16.6
16.0
16. 0
16.4
16.4
16.5
16.5
16. 8
16. 8
18.0
18. 0
18. 4
18.4
17.8
17.8
17.2
17.2
17. 3
17.3
17.7
17.7
10. 1
10. 1
9.6
9.6
HYU
Load
2
17.0
17.0
16. 9
16. 9
16. 9
16.9
16. 2
16. 2
16.0
16.0
16.6
16.6
15.9
14. H
15. 1
15.0
15.4
16.7
16. 7
16.8
16.8
16. 8
16.8
16. B
16.8
16.6
16.6
16.0
16.0
16.4
16. 4
16. 5
16.5
16. 8
16. 8
18.0
18.0
17. 3
17. 3
17.0
17. 0
16. 4
16.4
16. 6
16. 6
16.9
16.9
10. 1
10. 1
10.0
10.0
BOP
Load
1
36.8
38. 1
25. 5
21.5
20.6
34.0
32.6
14.6
17. 3
26. u
26.6
26.7
26. 8
40. 2
43.9
41.0
35. 6
28. 5
25. 0
26. 0
39. 8
38. 0
-------
of
Obsv
DEC 18
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 24
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 29
DEC 30
DEC 30
JAN 1
JAN 2
JAN 5
JAN 6
JAN 7
JAN 8
JAN 9
JAN 10
JAN 11
JAN 12
JAN 13
JAN 14
JAN 15
JAN 16
JAN 17
JAN 18
JAN 19
JAN 20
JAN 2 1
JftK 22
JftN 23
JAN 24
JAN 25
JAN 26
JAN 27
JAN 28
JAN 29
JA'I 30
JAN 31
FEB 1
FEB 2
FBB 3
FEB 4
FEB 5
FEB 6
FEB 7
FEB 8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7P
70
70
70
70
Day
of
Wetk
THU
THO
F"T
SiT
SUN
BON
TOE
WED
THO
FRI
SAT
SUN
not
BON
•CUE
TUB
THO
FHI
not
TUB
WED
THU
FSI
3A?
SUN
BOS
TUB
WED
THO
FSI
SiT
SUN
BON
TUB
WED
THU
FET
SiT
SUN
MON
TUP.
WED
THD
FHI
SAT
SUN
BON
THE
WED
TRO
FKI
SAT
SON
ci «p
6
4
6
4
6
4
4
4
4
4
4
4
7
7
7
4
4
4
4
7
7
7
4
4
4
4
4
4
lotal
Flow
1.
1.
1.
1.
1.
1.
1 .
1 .
1 .
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
1.
2.
2.
1 .
2.
1.
1.
1.
3.
3.
2.
2.
2.
2.
2.
870
870
600
380
550
920
510
320
480
930
460
320
58C
580
570
570
890
450
210
410
420
177
272
038
229
389
343
251
217
201
079
055
374
302
276
290
161
951
807
155
044
901
078
957
740
770
172
101
689
583
347
160
014
flu
3.4
3. 4
3.0
2.2
2.4
3. 4
2.7
2. 5
2.5
2.9
2. 5
2.0
2. 8
2. 8
2.6
2.6
2.2
7.5
3.3
3. 4
3.5
3.6
3.3
3. 5
3.4
3.6
3. 6
3.3
3.1
3.5
3. 5
3.3
3. 4
3.4
3. 3
3. 4
3. 1
3. 1
2.9
3.4
3.2
3. 1
3.0
3. 1
2.6
1.0
1.0
4.0
3. 9
3. 7
3.6
3.5
3. 1
Min
Flow
0. 6
0. 6
0.6
0. 5
1. 1
0.6
0.6
0.4
0. 5
0. 4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.9
0. 7
0.7
0. 7
C. 5
0.7
0.7
0.6
0.6
0.6
0.6
0.7
0.8
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.7
0.7
1.0
0.6
0.6
1.0
1.0
0.5
0.5
0. 5
0. 7
0.8
0.8
PFCT
Side
1
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.33
0.33
0.33
0.33
0. 33
0.33
FRCT
Side
2
0. 50
0. 50
0.50
0.50
0. 50
0.50
0. 50
0.50
0. 50
0.50
0.50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
0, 50
0.50
0.50
0.50
0. 50
0.50
0. 50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0. 50
0.50
0.67
0.67
0.67
0.67
0.67
0.67
Sidq
1
0.935
0.935
0.800
0.690
0.775
0.960
0.755
0.660
0.740
0.965
0.730
0.660
0. 790
0.790
0.785
0.785
0.945
0.725
1 . 105
1. 205
1. 210
1 .083
1 . 136
1.019
1.114
1. 194
1. 174
1. 125
1 . 108
1. 100
1.039
1.027
1 . 187
1.151
1 . 1 38
1 . 145
1.0 BO
0.975
0.903
1.077
1.022
0.950
1.039
0. 978
0.870
0.885
1. 586
1.023
0. 887
0.852
0.775
0.713
0.665
Flow
Side
2
0.935
0.935
0. 800
0.690
0.775
0.960
0.755
0.660
0.740
0.965
0.730
0.660
0.790
0. 790
0.785
0.785
0. 945
0.725
1. 105
1. 205
1. 210
1 .088
1. 136
1.019
1. 1 14
1. 194
1. 174
1. 125
1. 108
1. 100
1. 039
1.027
1. 187
1.151
1. 138
1 . 145
1.080
0. 975
0.903
1.077
1.022
C.950
1.039
0. 978
0.870
0.885
1 .586
2. 078
1 .802
1.731
1.572
1. 447
1. 349
RCRC
Side
1
1. 40
1. 40
1 .10
1.40
1. 40
1.40
1. 40
1.10
1. 1C
1.40
1.10
1.10
1.40
1.40
1. 40
1.40
1. 40
1.10
1. 10
1.10
1.40
1. 10
1.10
1.40
1.40
1.40
1.40
1. 40
1.40
1.40
1.40
1. 40
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
1.40
1. 40
1.40
1. 40
1.40
1.40
BCBC
Side
2
1.50
1. 50
1.50
1. 50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1. 50
1. 50
1.50
1. 50
1. 50
1.50
1.50
1. 50
1.50
1.50
1.50
1.50
1.00
1.00
1.50
1.50
1. 50
1. 50
1.00
1.00
1.00
3.00
1.00
4. 50
4. 50
4.50
4.50
4. 50
4.50
3.00
3.00
4.50
3.00
3.00
3.00
3.00
3.00
3.00
3.00
2. 80
2. 80
2.80
RCBC
Ratio
1
1. 50
1.50
1.75
2.03
1.81
1.46
1.85
2.12
1.89
1 .45
1.92
2. 12
1.77
1.77
1.78
1.78
1 .48
1.93
1.27
1. 16
1. 16
1.29
1.23
1.37
1.26
1.17
1. 19
1.24
1.26
1.27
1.35
1.36
2.53
2.61
2.64
2.62
2.78
3.08
3.32
2.78
2.94
3.16
2.89
3.07
3.45
3.39
1.89
1.37
1.58
1 .64
1.81
1.96
2. 11
PCHC
Ratio
1 .60 16.2
1.60 16.2
1.88 15.5
2. 17
1.94
1. 56
1.99
2. 27
2.03
1.55
2.05
2.27
1.90
1. 90
1.91
1.91
1.59
2.07
1.36
1.24
1.24
1.38
1.32
1.00
1.00
1.26
1.2B
1. 33
1.35
1.00
1.00
1.00
2.53
1.00
3.95
3.93
4. 16
4.61
4.98
4. 18
2.94 14.0
3.16 14.0
4.33 14.0
3.07
3.45
3.39
1.89
1.44 14. 0
1.67
1.73
1.78
1.93
2.08
HYD
Lo ad
1
9. 1
9. 1
8.5
B. 1
8.4
9. 1
8.4
8.0
8. 3
9.2
8.3
8.0
8.5
8.5
8.5
8.5
9. 1
8.2
9.7
10. 1
10.1
9.6
9.8
9.4
9.7
10. 1
10.0
9.8
9.7
9.7
9.5
9.4
16.2
16. 1
16.0
16. 1
15.8
15.4
15. 1
15.8
15.6
15.3
15.7
15.4
15.0
15. 1
17.8
9.4
8.9
8.7
8.4
8. 2
8.0
HYD
Load
2
9.4
9. 4
8.9
8.5
8. 8
9. 5
8.7
8.4
8.7
9. 6
8.6
8.4
8.9
8.9
8.9
8.9
9.5
8.6
10. 1
10.5
10.5
10.0
10. 2
10.1
10.1
10.2
10. 1
16. 2
21.9
21. 9
21.6
21.2
20.9
21.6
15.6
15.3
21.5
15.4
15.0
15. 1
17.8
19.7
18. 6
18.3
16.9
16.5
16. 1
BCD
Load
1
30.4
3C.2
33.3
32.9
38. C
36. 9
49.8
50. 1
31.2
28. 2
26. 1
36.6
23.6
29.5
28.3
22. 1
20.6
-------
Date
of
nbsv
PEB 9
P?B 10
FFB 1 1
PEB 12
FEB 1 3
FEB 11
FEB 15
FEB 16
PEB 17
PEB 18
FFB 19
FFB 20
PEB 21
FEB 22
FFB 23
FEB 21
PEB 25
FEB 26
FEB 27
FEB 28
HAP 1
*AP 2
1AR 3
»AR 1
1AR 5
CAS 6
PAH 7
TAR B
BAB 9
»AE 10
TAP 11
MAE 12
"A? 13
BAS 1M
1"AP 15
BAS 16
BAR 17
BAH 18
BA° 19
MAS 20
KA" 21
CAR 22
BAR 23
»AR 21
BAR 25
BAR 26
BAR 27
BAP 28
BA" 29
BAH 30
» A -•< 31
APF 1
APR 2
Bay
of Samp
Week ^ v pe
70
7C
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
7C
70
7C
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
HON
TP5
WED
THU
FFI
SAT
sus
BON
i as
WED
THU
PFT
SAT
SUN
HON
TOP
WED
THU
F"I
SAT
SUN
BON
TUB
WED
Tii'J
FFT
SAT
SUV
HfiN
1UE
BED
THO
PPI
SAT
SUN
ION
TIJE
WED
THU
Fill
SA'
SUN
BON
TUE
WED
THU
FFI
SA"
SUN
B"N
TUF
WED
TH"
14
i
4
1
7
7
7
1
14
11
U
7
7
7
U
1
i
14
14
14
(4
14
7
7
7
"4
1
14
14
14
14
14
14
14
U
U
u
14
U
U
14
lotal
Flow
2.
2.
2.
2.
2.
2.
0.
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
3.
3.
2.
2.
2.
2.
2.
2.
2.
1.
2.
2.
2.
2.
2.
2.
2.
3.
3.
j.
2.
2.
2.
1.
1.
1.
2.
3.
3.
3.
530
1460
1406
140U
215
020
909
563
392
0<46
829
577
290
C62
1466
14 37
6142
63C
550
230
071
U7 1
1460
131
311
909
385
338
623
582
531
729
737
258
010
5U7
1453
710
690
913
226
362
336
957
6H9
259
9 11
592
5UH
10U
132
599
595
na x
Plow
3. 6
3. 9
3.6
3.6
3. 6
3.3
3.0
U. 9
14. 9
3.8
3. 8
3. 7
3. 6
3. 2
3. 6
3. 6
3.5
3. 7
3. 6
3.5
3. 1
3. 1
3.6
1.7
14. 1
1. 1
3. 6
3. 1
3.7
3. 8
3. 8
3. 6
2. 7
3. 6
3. 1
1 . 9
3. 6
3. 9
3. 8
14. 0
3. U
14. 1
14. 5
U. 1
14 .0
3. 9
3. 1
2. 6
2 . 3
3. 2
3. 9
14. 3
14. 6
Bin
Flow
0. 8
0. 7
0.7
0.7
0.7
0.6
0.6
3. 3
1. 5
1. 2
1.0
0. 8
0. 8
0. 7
0. 7
0. 7
0. 9
0. 8
0. 9
0. 8
0. 8
0. 7
0. 7
2. 8
1. 2
0. 7
1. 0
0. 9
0. 8
0. 8
0. 8
1. 8
0. 8
o. a
0. 8
0. 8
0. 7
0. 9
1. 1
1. 1
2. 7
1.6
1. "4
1. 1
1.0
0. 9
0. 8
0. 9
0. 8
1. 14
1. 14
2. 14
1. 8
FRCT
Side
1
0. 33
0. 33
0. 33
0.33
0.33
0. 33
0. 33
0.33
0.33
0.33
0.33
0.33
0. 33
0.33
0.33
0. 33
0. 33
0.33
0.33
0.33
0.33
0.33
0. 33
0.33
0. 33
0. 33
0.33
0.33
0. 33
0. 33
0.33
0. 33
0. 20
0.20
0.20
0. 20
0. 20
0.20
0. 20
0.20
0.20
0.20
0. 20
0.20
0. 20
0. 20
0.20
0.20
0. 20
0.20
0.20
0. 20
0. 20
PRCT
Side
2
0.67
0.57
C. 67
0. 67
0.67
0.67
0.67
0.67
0.67
0. 67
0. 67
0.67
0.67
0.67
0.67
0.67
0. 67
0. 67
0.67
0.67
0. 67
0.67
0.67
0.67
0. 67
0.67
0.67
0.67
0. 67
0. 67
0.67
0. 67
0. 80
0.80
0.80
0. 80
0. 80
0. 80
0. 80
0.80
0.80
0. 80
0. 80
0.80
0. 80
0. 80
0.80
0.80
0.80
0.80
0.80
0. dO
0. 80
Flow
Side
1
0. 335
0.812
0. 7914
0.793
0.757
0.667
0. 300
1 . 176
1.119
1.005
0.93U
0.850
0. 756
0.680
0. 8114
0 . 8014
0.872
0. 868
0. 814 1
0.736
0.683
0.815
0.812
1.033
1.093
0.960
0 . 787
0.772
0. 866
0. 852
0.835
0. 901
0 . )<47
0.1452
0. 408
0.509
0. "49 1
0 . 5142
0.538
0. 587
0. 6U5
0.672
0. 607
0. 59 1
0.538
0. 152
0. 382
1. 318
0. 309
0.1421
9.^26
0. 720
0. 71=1
Plow
Side
2
1. 695
1. 618
1.612
1.611
1. 538
1. 353
0.609
2. 387
2. 273
2. Oil
1 . 895
1. 727
1. 53U
1. 382
1. 652
1. 6 33
1.770
1 . 762
1. 70B
1 . 14914
1. 388
1. 656
1. 6U8
2.098
2. 218
1 . 9149
1.598
1. 566
1.757
1 . 730
1. 696
1. 828
1. 390
1 . 806
1. 632
2.038
1. 962
2. 168
2. 152
2. 3146
2. 581
2. 690
2.669
2. 366
2. 151
1.806
1. 529
1. 2714
1. 235
1. 683
2. 506
2.879
2.876
RCRC
Side
1
1 . 140
1 . 140
1 . 140
1. 140
1 . HO
1 .10
1. 10
1. "40
1 . tO
1.140
1 . 10
1. 10
1. 140
1. 140
l."40
1.140
1. "40
1.140
1.UO
1 . 140
1. 10
1. 140
1 .140
1 . 140
1. HO
1 . 10
1.140
1 .MO
1. 10
1. 140
1 .140
1 . 140
1.00
1.00
1 .00
1.00
1.00
1 . 50
1. 50
1.50
1.50
1.50
1.50
0. 85
0. 85
0.85
0.85
0.85
0.85
0. 85
0.85
0.86
J. 814
RCRC
Side
2
2. 80
2.80
2.80
2.80
2.80
2.80
2.80
2.80
2.80
2. 80
2.80
2.80
2. 80
2. 80
2. 80
2.80
2. 90
2. 80
2.80
2. 80
2. 80
2.80
2.80
2.80
2. 80
2. 80
2.80
2.80
2. 80
2. 80
2.80
2. 80
2. 10
1.00
1 .00
1. 00
1.00
3.50
3. 50
3. 50
3.50
3. 50
3. 50
3. 50
3 .50
3. 50
3. 50
3.50
3. 50
3. 50
3.50
3. 50
3.00
RCRC
Ratio
1
1.68
1 .72
1 .76
1 .76
1 .85
2. 10
14.67
1.19
1.25
1.39
1. 50
1.65
1 .85
2.06
1. 72
1.714
1.61
1.61
1.66
1.90
2.05
1 .72
1. 72
1. 35
1.28
1 .146
1.78
1.81
1 .62
1 .614
1.68
1.55
2. 88
2.21
2.145
1.96
2.014
2.77
2.79
2. 56
2. 32
2. 23
2. 25
1 . I4U
1.58
1 . 88
2.22
2.67
2.75
2.02
1 . 36
1 . 19
1.17
RCRC
Patio
1.65
1.70
1.714
1.7U
1.82
2.07
II. bP
1.17
1. 23
1. !7
1. U8
1.62
1.82
2.0 J
1.69
1.71
1. 58
1.59
1.61
1. 87
2.02
1.69
1. 70
1. 33
1. 26
1 .U14
1.75
1. 79
1.59
1.62
1.65
1. 5 i
1.51
1.00
1.00
1.00
1 .00
1.6 1
1.63
1 . 19
1. 36
1. 30
1.31
1. 148
1.61
1 . 9H
2.29
2. 75
2.83
2.08
1. 140
1. 22
1 . 0>4
T^mp
15.0
16.0
15.0
1 H . 0
1 1. 0
15. 0
15.0
16.0
15.0
15.0
11.0
114. 0
11.0
114.0
114.0
16. 0
15.0
15.0
15.0
15.0
1 14. 0
114. 0
1 14. 0
1 5. 0
15. 0
15.0
15.0
15.0
15.0
15.0
15.0
16. 0
15.0
HV D
Load
1
8. 7
8.6
8.5
8. 5
8.14
8.0
6.6
10.0
9.8
9.3
9.0
8.7
8.14
8. 1
8.6
8.5
8.8
8. 8
8.7
8. 3
8. 1
8.6
8.6
9.14
9.7
9. 1
8.5
8. 14
8.8
8.7
8.7
8. 9
5.2
5.6
5.5
5. 9
5.8
7.9
7.9
8. 1
8. 3
8.1
8.H
5.6
5.1
5.0
1 . 8
14.5
14. 5
1. 9
5.7
6. 1
6.0
HYU
Load
2
17. 14
17.2
17. 1
17. 1
16. 8
16. 1
13.2
20. 1
19.7
18. 8
18. 2
17. 5
16. 8
16. 2
17. 3
17.2
17. 7
17. 7
17. 5
16.6
16. 2
17. 3
17. 2
19.0
19. 5
18. 1
17.0
16. 9
17.7
17.6
17. 14
17. 9
13. 5
22.1
21.9
22.7
23.6
21.0
23. 9
22. 7
21.9
20. 6
19. 5
IB. 5
18.1
20. 1
23.3
21.7
22.8
BCD
Load
1
28.5
27.7
30.6
30.5
25. 1
22.1
10.1
33.3
31.7
27. 14
25.5
26. 3
23. 1
21.1
25.6
25. 3
32. 5
32.1
38. 5
38. 1
3C.1
32. 1
23. 7
1 9. 1
19.0
21. 5
21. 2
21.5
23.2
8. 9
11.6
18. 2
17.5
7. 1
7. 1
9. 3
13.8
-------
Date
of
ObST
APP ~3
APP 4
APR 5
APR 6
APR 7
APP 8
APR 9
APR 10
APP 11
APR 12
APR 13
APR 14
APP. 15
APR 16
APP 17
APR 18
APR 19
APR 20
APR 21
APR 22
APP 23
APR 24
APR 25
APn 26
APR 27
APS 28
APR 29
APR 30
MAY 1
BAY 2
BAY 3
BAY 4
MAY 5
BAY 6
HAY 7
BAY 8
BAY 9
BAY 10
MAY 11
BAY 12
BAT 13
HAY 14
MAY 15
BAY 16
BAY 17
BAY 18
BAY 19
BAY 20
MAY 21
MAY 22
BAY 23
MAY 24
BAY 25
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
Day
Ueek
FBI
SAT
SON
son
TtlE
HED
THO
FBI
SAT
sun
BO1
TOE
HED
THD
FBI
SAT
SC1R
BON
TOE
HED
THO
FRI
SAT
SUN
BOH
TOE
HED
THtJ
FSI
SAT
SDH
SON
TUB
HED
THO
FRI
SAT
SOS
BOM
TOE
HED
THO
PEI
SAT
SON
BON
TOE
HED
THO
FRI
SAT
SON
BON
Type
^
7
7
4
4
4
4
7
7
7
4
4
7
7
7
7
7
7
4
4
4
4
7
7
7
4
4
6
6
6
6
6
6
Floil
3. 229
2.631
2.371
2. 746
2.660
2.567
2.554
2.397
2. 101
1.962
2.532
2.S32
2. 575
2. 404
2. 137
1.886
1. 795
2.096
2.047
2.029
2.465
2. 330
2. CIS
1. 897
2. 450
2. 523
2.461
2. 467
2. 381
2. 152
2. 189
3.055
2.696
2.502
2. 491
2. 332
1. 869
1. 837
2. 348
2.392
2.402
2. 373
2.244
2.046
1.920
2. 334
2.265
2. 207
2. 222
2. 155
1. 794
1. 705
2. 134
Flow
4.5
3.9
3.6
4.2
3.8
3.8
3.7
3.7
3.3
2.9
4. 1
4. 1
3.7
3.6
3.4
3.0
2.8
3.2
3.2
3.0
3.7
3.6
3.2
2.8
3.3
3. 5
3.5
3.5
3.6
3.6
3.5
4. 3
4.0
3.7
3.6
3.7
3. 1
2.6
3.6
3.7
3.6
3. 7
3.5
3.3
2.9
3.7
3.5
3.4
3.3
3.4
2.9
2.5
3.3
Flon
1. 3
1. 1
1.0
0.8
0.8
0.8
0.7
0.8
0.7
0.7
1. 3
1. 3
1.0
0.9
0.8
0.8
0.7
0.6
0.7
0.6
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.9
0.8
0.9
1. 0
0.9
0.7
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0. 8
0. 8
0.8
0.7
0.7
0.8
0.7
0.7
0.9
FECT
Sid.©
1
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.00
0.00
1.00
0.00
1.00
1.00
1.00
0.00
0.00
o.oo
0.00
0.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.00
0.00
1.00
1.00
0.00
o.oo
1.00
0.00
0.00
0.00
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
FBCT
2
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.oo
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Flow
Sids
i
0.646
0.526
0.474
0.549
0.532
0.513
0.511
0.1479
0.420
0. 392
0.000
0.000
1.000
o.oco
i.oco
1.000
i.ooo
0.000
0.000
0.000
o.ooo
0.000
1.000
1.000
i.ooo
i.ooo
1.000
i.ooo
1 .000
1 .000
i.ooo
0.000
0.000
1.000
1.000
0.000
O.OPO
1.000
0.000
0.000
o.ooo
1. 186
1. 122
1.023
0.960
1 . 167
1. 132
1. 103
1.111
1.077
0.897
0.852
1.067
Flow
Side
2
2.5"8l
2. 105
1.897
2. 197
2. 128
2.054
2.043
1.918
1.681
1. 570
2.532
2.532
2.575
2.404
2. 137
1.886
1. 795
2.096
2.047
2.029
2.465
2. 330
2.018
1.897
2.450
2.523
2.461
2.467
2.381
2. 152
2.189
3.055
2.696
2.502
2.491
2.332
1.869
1. 837
2. 348
2.392
2.402
1. 186
1. 122
1.023
0.960
1. 167
1. 132
1. 103
1.111
1.077
0.897
0.852
1.067
ECBC
1
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.00
0.00
1.00
0.00
0.00
1.00
1.00
a. oo
0.00
0.00
0.00
0.00
1.00
1.00
.00
.00
.00
.00
.00
1.00
1.00
0.00
0.00
i.oo
1.00
0.00
0.00
1.00
2.27
0.00
i.oo
3.40
3.40
3.40
3.40
3.40
3. 40
3.40
3.40
3.40
3. 40
3.40
3. 40
BCHC
2
3\37
3.37
3.37
3.37
3.37
3.37
3.37
3.37
3.37
3. 37
0.00
0.00
1.00
0.00
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
3.13
0.65
1.00
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
BCBC
1
1.30
1.60
1.77
1.53
1.58
1.64
1.64
1.75
2.00
2.14
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.oo
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
2.87
3.03
3.32
3.54
2.91
3.00
3.08
3.06
3.16
3.79
3.99
3.19
8CSC
Pat io
2
73o
.60
.78
.53
.58
.64
.65
1.76
2. OP
2. 15
0.00
0.00
1.00
0.00
0.30
0.34
0. 36
0.31
0.32
0.32
0.26
0.28
0.32
0.34
0.27
0.26
0.26
0.26
0.27
0.30
0.30
0.21
0. 24
0.26
0.26
0.28
0.35
0.35
1.33
0.27
1.00
2.11
2.23
2.44
2.60
2. 14
2.21
2.27
2. 25
2.32
2.79
2.93
2. 34
Teap
T7.0
17.0
16.0
17.0
17.0
17.0
19.0
17.0
18.0
17.0
17.0
20.0
19.0
21.0
20.0
21.0
21.0
21.0
19.5
20.5
21.0
20.0
23.0
22.0
23.0
22.0
23.0
23.0
22.0
24.0
22.0
22.0
HTD
Load
~5ls
5.3
5. 1
5.4
5.3
5.2
5.2
5.1
4.9
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8.8
0.0
17.8
17.5
17. 1
16.9
17.7
17.6
17.5
17.5
17.4
16.7
16.5
17.3
HTD
2
23.1
21.2
20.4
21.6
21.3
21.0
21.0
20.5
19.6
19. 1
9.8
9.8
9.3
10.8
9.8
9.5
10.6
10.5
10.4
12. 1
11.6
10.3
9.9
12.0
12.3
12.1
12. 1
11.7
10.9
11.0
14.4
13.0
12.2
12.2
11.6
9.8
9.6
21.2
11.8
14.3
14.0
13.7
13.4
14.2
14.1
14.0
14.0
13.9
13.2
13.0
13.8
BOD
Load
24.1
19.6
17.7
16.4
15.9
15. 1
15.0
15.4
13.5
12.6
0.0
0.0
0.0
12. 1
22.0
33.8
10.7
-------
Ni
Ln
Date
of
Obsv
HAY 26
HAT 27
NAY 28
BAY 29
MAY 30
NAY 31
JDK 1
JON 2
JDN 3
JUS a
JOB 5
JON 6
JDN 7
JDN 8
JDN 9
JDS 10
JDN 1 1
JON 12
JON 13
JON 14
JON 15
JDN 16
JDN 17
JON 18
JDN 19
JDN 20
JDN 21
JDN 22
JDN 23
JON 2«
JT]N 25
JDN 26
JON 27
JDN 28
JON 29
JDN 30
JD1 1
JD1 2
JOL 3
JOL 4
JDL 5
JDL 6
JUL 7
JUL 8
JDL 9
JDL 10
JDL 11
JUL 12
JOL 13
Jl'L It
JOL 15
Jl'L 16
JUL 17
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
7C
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
Day
of !
Week '
TOE
WED
IHD
FPI
SAT
SON
BOS
TOE
WED
THU
FBI
SAT
SON
KON
TUB
WED
THU
PHI
SAT
SON
DON
TOE
WED
THD
FBI
SAT
SUN
BON
IDE
WED
THO
FHT
SAT
SUN
BOS
TDE
WED
THD
FBI
SAT
SON
BON
TDE
WED
THO
FRI
SAT
SUN
NON
TDE
BED
THU
FPI
5a mp
I'ypa
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Total
Flow
2. 1 16
1. 887
1. 766
1.713
1. 550
1. «92
1.882
1.765
2. 7145
1.780
1. 886
1. 676
1. 497
1. 956
1.952
2. 032
1. 988
1. 892
1. 607
1. 196
1.968
1 . 993
1.989
1. 949
1. 880
1. 658
1. 507
1.973
1. 951
1.931
2.405
2. 052
1. 651
1. 471
1. 940
1. 977
2. 002
1.918
1. 829
1. 563
1.472
1 . 808
1.925
1. 905
1.919
2. 175
1. 743
1. 589
1 . 973
1.901
1. 8714
1. 777
1.615
lax
Flow
3.3
3.2
2.9
2.8
2.4
2. 2
3.1
2.8
2.9
2. 7
2.9
2. 6
2.4
3. 1
3. 1
3. 1
3. 4
3.0
2.6
2. 3
3.2
3. 1
3. 1
3. 1
3.2
2.6
2. 2
3.0
3. 2
3. 1
U.3
3. 2
2. 7
2. 2
3. 2
3. 1
3. 1
2.9
3.2
2.4
2. 1
2.8
3. 1
2. 9
2.9
3.9
2.7
2. 3
3. 1
2.9
2. 7
2.7
2.7
Bin
Flow
0.8
0.7
0.6
0.6
0.6
0.7
0.7
0.6
0.7
0.7
0.8
0.7
0.7
0.6
0. 7
0. 8
0. 7
0.6
0.7
0.6
0.7
0.7
0. 8
0.7
0. 7
0.7
0. 7
0. 7
0. 7
0. 7
1. 1
0.8
0.7
0.6
0.7
0. 7
0.7
0. 7
0.7
0. 7
0.6
0.7
0.7
0. 7
0. 7
0. 9
0. 8
0.7
0.8
0.7
o. a
0.6
0.7
FHCT
Side
1
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
FBCT
Side
2
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0. 50
0. 50
0.50
0. 50
0. 50
Flou
Side
1
1 .058
0.9143
0.883
0.856
0.775
0.746
0. 941
0. 882
1. 372
0.890
0.943
0.838
0.748
0. 978
0.976
1.016
0.994
0.946
0.803
0.748
0.984
0.996
0.994
0.974
0.940
0.829
0.753
0.986
0.975
0.965
1.202
1.026
0.825
0.735
0. 970
0.988
1.001
0.959
0.914
0.781
0.736
0.904
0.962
0.952
0.959
1.087
0.871
0.794
0. 986
0.950
0.937
0.888
0. 807
Flow
Side
2
V.058
0.943
0. 883
0.856
0. 775
0. 746
0. 941
0. 882
1. 372
0.890
0.943
0.838
0. 748
0. 978
0.976
1.016
0. 994
0.946
0. 803
0.748
0. 984
0.996
0.994
0. 974
0.940
0.829
0. 753
0. 966
0.975
0.965
1.202
1.026
0. 825
0.735
0. 970
0.988
1. 001
0. 959
0.914
0. 781
0. 736
0. 904
0.962
0.952
0. 959
1.087
0. 871
0.794
0.986
0.950
0.937
0. 888
0. 807
RCEC
Side
1
3.10
3. 40
3.10
3.140
3.40
3.40
3.140
3. 40
3.40
3.40
3.40
3.40
3.40
3. 40
3.40
3.140
3.40
3. tO
3.40
3.40
3.40
3.40
3. 40
3.40
3.40
3.40
3.40
3. 140
3.40
3.40
3. 40
3.40
3.40
3.80
3.80
3.80
3.80
3.80
3. 80
3. 80
3.80
3.80
3.80
3.80
3.80
3.80
3. 80
3.80
3. 80
3.80
3.80
3.80
3.40
BCBC
Side
2
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3.50
3. 50
3.50
3.50
2.90
BCBC
Batio
1
3.21
3.60
3.85
3.97
4.39
4.56
3.61
3.85
2.48
3.82
3.61
4.06
4.54
3.48
3.48
3.35
3.42
3.59
4.23
4.55
3.46
3.41
3.42
3.49
3.62
4.10
4.51
3.45
3.49
3.52
2.83
3.31
4.12
5.17
3.92
3.84
3. 80
3.96
4.16
4. 86
5. 16
4.20
3.95
3.99
3.96
3.49
4.36
4.78
3.85
4.00
4.06
4.28
4.21
HCEC
Satio
2
2.36
2.65
2.83
2.92
3.23
3. 35
2.66
2.83
1.82
2.81
2.65
2.98
3.34
2.56
2.56
2.46
2.52
2.64
3.11
3.34
2.54
2.51
2.51
2.57
2.66
3.02
3.32
2. 53
2.56
2. 59
2.08
2.44
3.03
4.76
3.61
3. 54
3.50
3.65
3.83
4.48
4.76
3.87
3.64
3.67
.3.65
3.22
4.02
4. 41
3.55
3.68
3.74
3.94
3.59
Tesp
23.5
23.0
23.0
23.0
23.0
23.0
23.0
24.0
23.0
24.0
24.0
24.0
25.0
24.0
24.0
25.0
25.0
25.0
26.0
26.0
26. 0
25.0
25.5
25.0
25.0
26.0
25.0
26.0
26.0
26.0
26.0
25.0
26.0
26.0
26.0
27.0
27.0
27. C
27.0
HYD
Load
1
17.3
16.8
16.6
16.5
16.2
16. 1
16.8
16.6
18.5
16.6
16.8
16.4
16. 1
17.0
17.0
17. 1
17.0
16. 8
16.3
16.1
17.0
17.0
17.0
17.0
16.8
16.4
16. 1
17.0
17.0
16.9
17.8
17.2
16.4
17.6
18.5
18.6
18.6
18. 4
18.3
17.8
17.6
18.2
18.5
18.4
18.4
18.9
18. 1
17.8
18.6
18.4
18. 4
18.2
16. 3
HYD
Load
2
13.8
13. 3
13. 1
13.0
12.7
12. 6
13.3
13. 1
15.0
13. 1
13.3
12.9
12.6
13.5
13. 5
13.6
13.5
13.4
12. 8
12.6
13.5
13.6
13. 5
13.5
13.3
12.9
12.6
13.5
13. 5
13.4
14. 4
13.7
12.9
16.4
17. 3
17.4
17.4
17. 3
17. 1
16.6
16.4
17. 1
17. 3
17. 3
17.3
17.8
16. 9
16. 6
17.4
17. 3
17.2
17.0
14. 4
BOD
Load
1
7.0
18.5
23.4
6.3
6. 1
17.7
8.6
23.5
24. 6
22.2
22.5
30.3
15.8
25. 9
19.6
15. 1
25. 2
20. 9
-------
Date
of
Obs»
JUL 18
JUL 19
JDL 20
JOL 21
JOL 22
JOL 23
JDL 24
JUL 25
JOL 26
JOL 27
JUL 28
JDL 29
JOL 30
JOL 31
ADG 1
AfG 2
ADG 3
AUG I*
AUG 5
AOG 6
AOG 7
ADG 8
AOG 9
AOG 10
AOG 11
AOG 12
ADG 13
ADG 1«
AOG 16
AOG 17
AOG 18
ADG 19
ADG 20
AOG 21
ADG 23
ADG 2U
ADG 25
AOG 26
AOG 27
ADG 28
ADG 29
ADG 30
ADG 31
SEP 1
SEP 2
SEP 3
SEP 6
SEP 7
SEP 8
SEP 8
SEP 9
SEP 10
SEP 10
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
7C
70
70
"70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
Week
SAT
SUN
MON
NON
TOE
THtl
THU
FPT
SDK
MON
TDE
WED
THD
f
-------
Ni
-vl
Date
of
Obs»
SEP 11
SEP 12
SEP 13
SFP 13
SEP 1U
SEP IS
SEP 15
SEP 16
SEP 17
SEP 17
SEP 18
SEP 19
SEP 20
SEP 20
SEP 21
SEP 22
SEP 22
SEP 23
SEP 21
SEP 21
SEP 25
SEP 26
SEP 27
SEP 27
SEP 28
SEP 29
SEP 29
SEP 30
CCT 1
OCT 1
OCT 2
OCT 3
OCT 1
OCT U
OCT 5
OCT 6
OCT fi
OCT 8
OCT 7
CCT 9
OCT 10
CCT 1 1
OCT 12
OCT 13
OC" 11
OCT 15
OCT 16
OC1" 17
CCT 18
OCT 18
OCT 19
OCT 20
OCT 20
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7n
70
70
70
70
70
70
70
7C
Day
of
Week
FRT
SAT
SON
SUH
BOH
TOE
THE
UED
THD
THO
F<
-------
S3
00
Date
of
Obsv
OCT 21
OCT 22
OCT 22
OCT 23
OCT 24
OCT 25
OC^ 25
OCT 26
OCT 27
OCT 27
OCT 28
OCT 29
OCT 29
OCT 30
OCT 31
NOV 1
DOT 1
HOV 2
NOV 3
SOT It
NOV 5
NOV 5
NOV 6
80V 7
NOV 8
NOV 8
NOV 9
NOV 10
NOV 10
NOV 1 1
NOV 12
NOV 13
NOV 1i|
NOV 15
NOV 16
NOV 17
NOV 18
NOV 19
NOV 20
NOV 21
NOV 22
NOV 23
NOV 2U
NOV 25
NOV 26
NOV 27
NOV 28
HOT 29
NOV 30
DEC 1
DEC 1
DEC 2
DEC 3
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
Day
of
Ueet
HED
THn
THU
F«I
SftT
SON
SUN
HON
1UE
TOE
BED
THD
THU
FBI
S&T
SON
SDK
BON
TUB
WED
THO
THO
FPI
SAT
SUN
SUN
HON
TUE
TUB
WED
THO
FHI
SiT
SON
HON
THE
WED
THU
FRI
S&T
SUN
SON
TUE
THU
THU
FEI
S&T
SUN
HON
IDE
TOE
WED
THU
Samp
Type
6
6
12
13
12
6
6
12
6
6
12
6
10
6
6
10
6
10
6
6
10
6
6
6
6
6
12
6
6
Total
Plow
2.
2.
1.
2.
1.
1.
1.
2.
2.
1.
2.
2.
1.
3.
3.
2.
1.
2.
2.
2.
2.
1.
2.
2.
2.
1.
2.
2.
1.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
2.
2.
1.
2.
2.
845
484
000
350
937
995
000
It (11
132
000
370
401
000
558
076
7142
000
827
706
588
363
000
296
163
042
000
391
867
000
995
531
370
252
281
1131
190
365
519
528
330
126
150
21<(
796
310
172
386
593
445
am
000
421
500
lax
FlOK
11.2
3.6
1.0
3.5
3.3
2. 9
1.0
1. 2
3. 7
1.0
3.6
3.6
1.0
U. 6
5.0
1.2
1.0
11.2
1.0
3.6
3.6
1.0
3.11
M. 1
3. 1
1.0
3.6
3.7
1.0
11.2
3. 6
3.5
3.0
3. 1
3.1*
3. 3
3.3
3. 5
3.5
3.9
3. 2
3.5
3.3
3.2
2. it
2.5
2.3
2.5
3.2
3. 3
1.0
3.4
3.U
Bin
Flo»
0. 8
0.8
1. 0
0. 8
0. 7
0. 7
1.0
0. 7
0. 7
1.0
0.7
0. 8
1.0
2. 2
1. 7
1.0
1.0
1.0
0.9
0.8
0.7
1.0
0.8
0. 7
0.7
1.0
0.7
1. 1
1.0
1.0
0. 8
0.9
1. 1
0.9
0.7
0.7
0.7
0. 8
0.7
0. 8
0.7
0.7
0.8
0.6
0.7
0.7
0.7
0.7
0.7
0. 8
1. 0
0.8
0. 8
PRCT
Side
1
0. 33
0.33
1.00
0. 33
0.33
0.33
1.00
0.33
0.33
1.00
0.33
0.33
1.00
0. 33
0.33
0.33
1.00
0.33
0.33
0.33
0.33
1 .00
0.33
0.33
0.33
1.00
0. 33
0.33
1.00
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0. 33
0.33
0.33
0.33
0.33
0.33
0.33
0. 33
0.33
1 .00
0.33
0.33
FRCT
Side
2
0.67
0.67
1.00
0.67
0.67
0.67
1.00
0.67
0.67
1.00
0.67
0.67
1.00
0.67
0.67
0.67
1.00
0.67
0.67
0.67
0.67
1.00
0.67
0.67
0.67
1.00
0.67
0.67
1.00
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0. 67
0.67
0.67
0.67
0. 67
0.67
0.67
1.00
0.67
0.67
Flow
Side
1
0. 939
0.820
1.000
0.775
0.656
0.658
1 .000
0. 806
0.803
1.000
0.782
0.792
1.000
1. 1711
1.015
0.905
1.000
0.933
0. 893
0.854
0.780
1.000
0.758
0.714
0.67U
1.000
0.789
0.9H6
1.000
0. 988
0.835
0.782
0.713
0.753
0. 802
0.723
0.780
0.811
0.834
0.769
0.702
0.808
0.731
0.593
0.132
0.486
0. 457
0.526
0.807
0.806
1.000
0.799
0.825
Flow
Side
2
1.906
1. 661
1.000
1.574
1. 331
1. 337
1 .000
1.635
1. 629
1.000
1.588
1.609
1.000
2. 384
2.061
1. 837
1.000
1. 894
1. 813
1. 73U
1. 583
1. 000
1.538
1 .449
1.368
1.000
1.602
1.921
1.000
2.007
1. 696
1. 588
1.509
1.528
1.629
1.467
1.585
1. 708
1.694
1. 561
1.424
1. 641
1.483
1. 203
0. 878
0. 986
0.929
1.067
1.638
1. 635
1.000
1.622
1.675
RCBC
Side
1
3.80
3.80
1.00
3.80
3.80
3.80
1.00
3.80
3. 80
1.00
3.80
3. 80
1.00
3.80
3. 80
3.80
1.00
3.80
3.80
3.80
3. 80
1.00
3.80
3.80
3.80
1.00
3.80
3. 80
1.00
3.80
3.80
3. 80
3. 80
3.80
3.80
3.80
3.80
3. 80
3. 80
3.80
3.80
3. 80
3.80
3. 80
3.80
3.80
3.80
3. 80
3.80
3.80
1.00
3.80
3.80
SCBC
Side
2
2.90
2.90
1.00
2.90
2.90
2.90
1.00
2.90
2.90
1.00
2.90
2.90
1.00
2.90
2.90
2.90
1.00
2.90
2.90
2.90
2.90
1.00
2.90
2.90
2.90
1.00
2.90
2.90
1.00
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2. 90
2.90
2.90
2.90
2.90
2.90
2.90
2.93
1.00
2.93
2.93
RCPC
Eatio
1
4.05
4.64
1.00
4.90
5. 80
5.77
1 .00
4.72
4.73
1.00
4.86
4.80
1.00
3.24
3.74
4.20
1.00
4.07
4.26
4.45
4.87
1.00
5.02
5.32
5.64
1.00
4.82
4.02
1.00
3.84
4.55
4,86
5.11
5.05
4.74
5.26
4.87
4.52
4.56
4.94
5.42
4.70
5.20
6.U1
8.79
7.82
8.31
7.23
4.71
4.72
1.00
4.76
4.61
ECRC
Ratio
2
1.52
1.74
1.00
1. 84
2.18
2. 17
1.00
1.77
1.78
i.on
1.83
1.80
1.00
1.22
1. 41
1.58
1.00
1.53
1,60
1.67
1.83
1.00
1.89
2.00
2. 12
1.00
1.81
1. 51
1.00
1.45
1.71
1.83
1.92
1.90
1.78
1.98
1.83
1.70
1.71
1. 86
2.04
1.77
1.95
2.41
3.30
2.94
3. 12
2.72
1.77
1.79
1.00
1.81
1.75
Teosp
24.0
23.0
21.0
25.0
23.0
23.0
21.0
21.0
21.0
22.0
21.0
21.0
21.5
23. 0
22.0
22.0
21.5
22.0
21.0
21.0
22. C
21.5
21.0
21.0
20.5
21.0
20.0
20.0
20.0
20.0
20.5
20.0
19.0
18.0
18. 0
17.0
18.0
18.5
19.0
19.0
19.0
19.5
HYD
load
1
18.4
17.9
17.7
17. 3
17.3
17.9
17.8
17.8
17.8
19.3
18.7
18.2
18.3
18.2
18.0
17.8
17.7
17.5
17.3
17.8
18.4
18.6
18.0
17.8
17.6
17.6
17.8
17.5
17.8
18.0
18.0
17.7
17.4
17.9
17.6
17.0
16.4
16.6
16.5
16.8
17.9
17.9
17.8
17.9
HYD
Load
2
18.6
17. 7
17.3
16.4
16.4
17.6
17.6
17. 4
17. 5
20.5
19.2
18.4
18.6
18.3
18.0
17.4
17.2
16.9
16.5
17.4
18.7
19.0
17.8
17.4
17. 1
17.2
17.6
16.9
17.4
17.9
17.8
17.3
16. 8
17.6
17.0
15. 9
14. 6
15. 1
14.8
15.4
17.6
17.7
17.6
17.8
BOD
Load
1
1 8. 9
14.5
21.1
25.8
18.5
20.9
19. 5
21.4
14.1
20.7
19. 1
-------
NJ
MO
Date
of
Obsy
DEC 3
DEC 4
DEC 5
DEC 6
DEC 6
DEC 7
DEC 8
DEC 8
DEC 9
DEC 10
DEC 10
DEC 11
DEC 12
DEC 13
DEC 14
DEC 15
DEC 16
DEC 17
DEC 20
DEC 21
DEC 22
DEC 23
DEC 24
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 30
DEC 31
JAN 1
JAN 2
JAN 3
JAN 4
JAN 5
JAN 6
JAN 7
JAN 8
JAN 9
JAN 10
JAN 1 1
JAN 12
JAN 13
JAN 14
JAN 15
JAN 16
JAN 17
JAN 18
JAN 19
JAN 20
JAN 21
JAN 22
JAN 23
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Week
THO
FBI
SAT
SUN
SUN
HOH
TUB
TOE
WED
THU
THU
FRI
SAT
SDN
HON
TUB
WED
THO
SUN
HON
TDE
WED
THD
FRI
SAT
SDN
NON
TOE
WED
THU
FRI
SAT
SUN
HON
TUB
WED
THD
FRI
SAT
SUN
HON
TOE
WED
THU
FHI
SAT
SUN
BON
TDE
WED
THD
FRI
SAT
Samp
Type
12
99
99
6
12
99
6
12
6
6
12
99
99
6
6
6
11
6
6
6
99
99
99
99
99
6
6
6
6
99
99
99
6
6
6 -
6
6
99
99
6
6
6
6
6
99
99
6
6
f>
6
6
99
99
Total
Flow
1. 000
2.405
2. 113
2.038
1.000
2.386
2.434
1.000
2.448
2. 446
1. 000
2.414
2. 164
1.994
2. 453
2.437
3. 266
2.740
1.550
1. 994
1. 828
2.348
2.066
1. 155
1. 404
1. 387
1.669
1.640
1.588
1. 961
1. 728
1. 826
1.922
2. 680
2.493
1. 752
1.927
1. 827
2. 765
2. 348
2.757
2.803
2.678
2. 653
2. 588
2.333
2. 168
2. 559
2. 456
2. 415
2. 422
2.407
2. 289
Ha I
Flo*
1.0
3.5
3.2
3. 1
1.0
3.2
3.4
1.0
3.3
3. 9
1.0
3.5
3. 3
3.0
3.5
3.5
4.4
3.6
2.3
3. 1
3.0
3.3
2.9
2.0
2.1
2.0
2.6
2.5
2.3
2.4
3.0
2.5
2.5
5.5
4.5
4.2
4.0
4.0
4.0
4.0
4.2
4.4
4.0
3. 8
4.0
3.8
3. 4
3.7
3.6
3.6
3.8
3.6
3. 5
Bin
Flo*
1.0
0.8
0.8
0.8
1.0
0.8
0. 8
1.0
0.8
0.8
1.0
0.9
0.8
0.8
0.9
0.8
1.2
1.0
0.9
0.9
0.9
1. 2
1.0
0.9
1.0
0.9
0.9
0. 9
0.9
1.0
1. 1
1.0
1. 1
1. 2
0.8
0.8
0.7
1. 8
0.8
1.2
1.0
0.9
0. 8
1. 0
0. 9
0. 9
1. 0
1.0
1. 0
1.0
1.0
1.0
1.0
FBCT
Side
1
1.00
0.20
0.20
0.20
1.00
0.20
0.20
1.00
0.20
0.20
1.00
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.67
0. 33
0.33
0. 33
0.33
0.33
FBCT
Side
2
1.00
0.80
0.80
0.80
1.00
0.80
0.80
1.00
0.80
0.80
1.00
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0. 80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0. 80
0.80
0.80
0.33
0. 67
0.67
0. 67
0.67
0.67
1
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Flow
Side
1
.000
.481
.423
.408
.OCO
.477
.487
.000
.490
.489
.000
.483
.433
.399
.491
.487
.653
.548
.310
. 399
.366
.470
.413
.231
.281
.277
.334
. 328
.318
.392
.346
.365
.384
.536
.499
.350
.385
.365
.553
.470
.551
.561
.536
.531
.518
.467
.434
.715
.810
.797
.799
.794
.755
Flow
Side
2
1.000
1.924
1.690
1.630
1.000
1.909
1.947
1.000
1.958
1.957
1.000
1.931
1.731
1. 595
1.962
1.950
2.613
2. 192
1.240
1.595
1 . 462
1.878
1.653
0.924
1.123
. 110
. 335
.312
.270
.569
.382
.461
.538
2. 144
1. 994
1.402
1. 542
1.462
2.212
1.878
2.206
2.242
2.142
2. 122
2.070
1.866
1.734
0.844
1.646
1.618
1.623
1.613
1. 534
BCBC
Side
1
1.00
2.25
2.25
2.25
1.00
2.25
2.25
1.00
2.25
2.25
1.00
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2. 25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
4. 00
0.70
0.70
0. 70
0.70
0.70
ECBC
Side
2
1.00
0.00
1.85
1.85
1.00
0.00
0.00
1.00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.75
2.75
2.75
2.75
2.75
2.75
2.75
2.75
2. 75
2. 75
1.30
1. 30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
2.55
2.55
2.55
2.55
1.30
3. 60
3.60
1.30
2. 25
2.25
BCBC
Batio
1
1.00
4.68
5.32
5.52
1.00
«.72
4.62
1.00
4.60
4.60
1.00
4.66
5.20
5.64
4.59
4.62
3.44
4.11
7.26
5.64
6. 15
4.79
5.45
9.74
8.01
8. 11
6.74
6.86
7.08
5.74
6.51
6. 16
5.85
4.20
4.51
6.42
5.84
6. 16
4.07
4.79
4.08
4.01
4.20
4.24
4.35
4.82
5. 19
2.33
0.86
0.88
0.88
0.88
0.93
BCSC
Ratio
2
1.00
0.00
1.09
1. 13
1.00
0.00
0.00
1.00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.88
1.46
1.66
2.98
2.45
2.48
2.06
2. 10
2.16
1.75
0.94
0.89
0.85
0.61
0.65
0.93
0.84
0.89
0.59
0.69
0.59
0.58
0.61
1.20
1.23
1.37
1. 47
1.54
2. 19
2.22
0.80
1.40
1.47
Temp
20.0
19.0
19.5
18.0
18.0
18.0
18.0
17.0
19.0
18.5
18.0
18.0
18.0
18.0
17.0
16.0
17.0
17.5
16.0
16.0
15.0
15.0
14.5
14.5
14.5
13.5
13.5
14.0
14.0
15.5
15.0
15.0
16.0
15.0
15.0
15.0
14.0
15.0
15.0
15.0
16.0
14.0
15.0
15.0
15.0
14.0
13.5
15.0
15.5
HYD
Load
1
10.6
10.4
10.3
10.6
10.6
10.6
10.6
10.6
10.4
10.3
10.6
10.6
11.3
10.8
9.9
10.3
10. 1
10.5
10.3
9.6
9.8
9.8
10.0
10.0
10.0
10.2
10. 1
10.1
10.2
10.8
10.7
10. 1
10.2
10. 1
10.9
10.5
10.9
10.9
10.8
10.8
10.7
10.5
10.4
22.1
5.9
5.8
5.8
5.8
5.6
HYD
Load
2
7.5
13.7
13.5
7.4
7.5
7.6
7.6
7.5
6.7
6.2
7.6
7.6
10. 1
8.5
4.8
6.2
16.3
17.9
17. 1
14.2
15.0
15.0
15.8
15.7
15.6
16.7
10. 4
10.7
11.0
13.3
12.8
10.5
11.0
10.7
13.6
12.3
13.6
13.7
13. 3
18. 1
17.9
17. 1
16.6
8.3
20.3
20.2
11.3
15.0
14.7
BOD
Load
1
10.9
14. 1
14.9
9.4
13. 1
8. 1
8. j
6.0
6.9
8.6
10.3
13.6
10.9
20.4
26.0
-------
U)
o
Date
of
Obsv
JAN 2~4
JAN 25
JAB 26
JAN 27
JAB 28
JAH 29
JAN 30
JAB 31
FED 1
FEB 2
FEB 3
FEB 4
FEB 5
FEB 6
FEB 7
FEB 8
FEB 9
FEB 10
FEB 11
FEB 12
FEB 13
FEB 14
FEB 15
PEB 16
FEB 17
FEB 18
FEB 19
FEB 20
FEB 21
FEB 22
FEB 23
FEB 24
FEB 25
FEB 26
FEB 27
FEB 28
HAR 1
HAR 2
HAR 3
HAR 4
BAR 5
HAE 6
HAR 7
HAB 8
HAR 9
HAR 10
HAS 1 1
CAB 12
HAE 13
HA? 14
HAR 15
HAR 16
1AR 17
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7i
71
71
71
71
71
Day
of
Beek
SUN
BON
TUB
BED
THD
FBI
SAT
SON
BON
TOE
BED
THD
FBI
SAT
SON
HON
TOE
BED
THD
FRI
SAT
SDN
HON
TOE
BED
THO
FRI
SAT
SOB
BON
TOE
HED
THD
FBI
SAT
SDN
HON
TUB
BED
THO
FHT
SA"?
SDN
HON
TDE
BED
THD
FBI-
SAT
SUN
HON
TUB
BED
Saip
Type
~6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
Total
Plow
2. 271
2. 561
2. 381
2. 182
2.077
1. 997
1.895
2.010
1.987
3. 735
1. 815
2. 187
2. 495
2. 052
2. 407
2. 746
2. 449
2. 279
2. 102
2. 002
2. 272
2.079
2.202
2. 124
2.060
2.000
2.027
1. 682
1.572
2.229
2.007
1.911
1. 970
1. 823
1. 615
1. 546
1.732
2. 382
2.084
2.617
2. 979
2. 675
2.461
2. 876
2.825
2.773
2. 833
2. 584
2. 271
2. 150
2.817
2.286
3. 091
Hax
Plow
3.3
3. 8
3.4
3.5
3. 5
3.4
2.9
2. 8
3. 5
2.8
2.7
3. 3
3.3
3.0
3. 3
3.5
3.4
3. 3
3.2
3.0
3. 2
2.9
3.0
3.0
3.0
3.0
3. 2
2.9
2.5
3.2
3. 5
2. 8
3. 1
3.0
2.9
2.6
3.0
3. 5
3.7
3.8
4. 5
3.9
3.6
4. 1
4.0
4.0
4.2
4. 1
3.6
3. 1
3.9
4.0
4.0
Hin
Flo»
1. 1
1. 1
1. 0
1.0
1.0
0. 9
0. 9
0.9
0. 8
0. 9
0.9
.0
. 2
.0
.6
. U
. 1
. 1
. 1
.2
. 4
1. 1
1.2
1.2
1. 1
1. 1
1. 1
0.6
0.6
0.9
0.7
0.6
0.6
0.7
0.5
0.6
0.6
1. 5
2.3
1. 1
1.2
1.0
0.9
0. 9
0.9
0.9
0.7
0.7
0.7
0.8
1.0
0.7
0.8
FRCT
Side
1
0. 33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0. 33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0. 33
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
FRCT
Side
2
0. 67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0.67
0. 67
0.67
0.67
0.67
0.67
0.50
0.50
0.50
0.50
0.50
0.50
0,50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Plow
Side
1
.749
. 845
. 786
.720
.685
.659
.625
.663
.656
.233
.599
.722
.823
.677
.794
.906
.808
.752
.694
.661
.750
.686
.727
.062
.030
.000
.013
.841
.786
. 114
.003
.955
.985
.911
. 807
.773
.866
. 191
.042
.308
.489
.337
.230
. 438
.412
.386
.416
.292
. 135
.075
.408
. 143
.545
Flow
Side
2
1.522
1. 716
1.595
1. 462
1. 392
1. 338
1.270
1.347
1. 331
2.502
1.216
1. 465
1.672
1.375
1.613
1.840
1. 641
1. 527
1. 408
1 .341
1. 522
1.393
1.475
1.062
1.030
1.000
1.013
0. 841
0. 786
1. 1 14
1.003
0. 955
0.985
0. 911
0. 807
0. 773
0. 866
1,191
1.042
1.308
1.489
1. 337
1. 230
1 .438
1. 412
1. 386
1.4 16
1.292
1. 135
1.075
1.408
1. 143
1.545
BCRC
Side
1
0.70
0.70
0.70
0.70
0. 70
0.70
0.70
0.70
0. 70
0.70
0.70
0.70
3.82
3.82
3. 82
0. 70
0.70
0. 70
0.70
0.70
0.70
0.70
0. 70
2.85
2.85
2.85
3.90
3.90
3.90
3.90
3.90
3.90
3.90
3.90
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2. 85
1. 49
2.85
2.85
2. 85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
RCRC
Side
2
2. 25
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3. 60
3. 60
1.30
1.30
1.30
1 .30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
2. 85
2.85
2. 85
2. 85
2.85
2. 85
2.85
2. 85
2. 85
2. 85
2.85
2.85
2.85
2.85
2.85
2.85
2. 85
2. 85
2.85
2. 85
2. 85
2.85
2.85
2. 85
2.85
2.85
2.85
2.85
2. 85
2. 85
RCRC
Ratio
1
0.93
0.83
0.99
0.97
1.02
1.06
1.12
1.06
1.07
0.57
1.17
0.97
4.64
5.64
4.81
0.77
0.87
0.93
1.01
1.06
0.93
1.02
0.96
2.68
2.77
2.85
3.85
4.64
4.96
3.50
3.89
4.08
3.96
4.28
3.53
3.69
3.29
2.39
2.7H
2. 18
1.91
2. 13
1.21
1.93
2.02
2.06
2.01
2.21
2.51
2.65
2.02
2.49
1 .84
RCRC
Ratio
2
1 .48
1.75
1.88
2.05
2. 16
2. 24
2.36
2.23
2.25
1. 44
2.96
0.89
0.78
0.95
0.81
0.71
0.79
0.85
0.92
0.97
0.85
0.93
0.88
2.68
2.77
2.85
2.81
3.39
3.63
2.56
2.84
2.98
2.89
3.13
3.53
3.69
3.29
2.39
2.74
2. 18
1.91
2. 13
2.32
1. 98
2.02
2.06
2.01
2. 21
2.51
2.65
2.02
2. U9
1 . 84
Tenp
15.0
15.0
15.0
14.0
13.0
13.0
14.0
14.0
13.5
13.0
13.0
13.0
12.0
11.0
11.0
10.0
11.0
11.0
14.0
11.0
12.0
13.0
1 3.0
13.5
14.0
15.0
15.0
16.0
16.0
15.0
15.0
15.0
16.0
15.0
16.0
16.5
16.0
13.0
13.0
14.0
15.0
14.5
14.5
15.0
15.0
15.0
16.0
16.0
17,0
17.0
17.0
HYD
Load
1
5.6
6.0
5.8
5.5
5.4
5.3
5. 1
5. 3
5.3
7.5
5.0
5.5
18.0
17. 4
17.9
6.2
5. 8
5.6
5.4
5.3
5.6
5.4
5.5
15.2
15.0
1 4 • 9
19.0
18.4
18.2
19. 4
19.0
18.8
18.9
18.6
14.2
14.0
14.11
15.7
15. 1
16. 1
16. 8
16.2
10.5
16.6
16.5
16.4
16.5
16. 1
15.4
15.2
16.5
15.5
17.0
HID
Load
2
14.6
16.3
17.8
17.3
17.0
16.8
16.5
16. 8
16.8
23.7
18.7
10.7
11.5
10.4
11.3
12.2
11.4
11.0
10.5
10.2
10. 9
10.4
10.8
15. 2
15.0
14.9
15. 0
14.3
14. 1
15.4
14.9
14.7
14.9
14.6
14.2
14.0
14.4
15.7
15. 1
16. 1
16.8
16.2
15.8
16.6
16.5
16.4
16.5
16. 1
15.4
15. 2
16. 5
15.5
17.0
BCD
Load
1
21.6
15. 3
15.5
29.8
14. 4
17. 5
11.9
19. 3
17.6
29.0
25.2
19.0
20.0
2U. 8
20. 3
23. 1
20.6
17.4
28. 9
40.9
22.0
25.2
-------
Date
of
ObST
SAB
RAB
HAS
HAB
HA 8
HAB
HAB
RAB
HAB
HAB
HAB
RAB
HAB
HAB
APR
APB
APB
APR
APR
APR
APR
APB
APR
> APR
-L APR
00 APB
APR
APB
APP
APB
APB
APR
APR
APR
APR
APS
APE
APB
APB
APR
APB
APR
APE
APB
HAY
HAY
HAY
HAY
PAY
BAY
•r.T
MAY
BAY
18 71
19 71
20 71
21 71
22 71
23 71
24 71
25 71
26 71
27 71
28 71
29 7 1
30 71
31 71
1 71
2 71
3 71
4 71
5 71
6 71
7 71
8 71
9 71
10 71
11 71
12 71
13 71
14 71
15 71
16 71
17 71
18 71
19 71
20 71
21 71
22 71
23 71
21 71
25 71
26 71
27 71
28 71
29 71
30 71
1 71
2 71
3 71
4 71
5 71
6 71
7 71
8 71
9 71
Day
of
leek
THO
FBI
SAT
SOS
BOH
TOE
(ED
THO
FBI
SAT
SOB
RON
TOE
HED
THU
FBI
SAT
SDH
RON
TOE
8 ED
THO
FBI
SAT
SON
ROD
TOE
HED
THO
FBI
SAT
SDH
RON
TOE
HED
THO
FBI
SAT
SON
HON
TOE
HED
THO
FPI
S»T
SDH
RON
TDE
HED
THD
FBT
SAT
SUN
Saip
Type
~5
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
9<
9S
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
99
6
99
99
6
Total
Flow
2.700
2. 750
2.445
2.217
2. 694
2. 638
2.593
2. 628
2.334
2. 168
1.926
2. 817
2. 458
2. 216
2.117
2. 147
1.921
2.015
2.920
3.539
3.383
3.082
2. 701
2. 156
2.060
2. 594
2. 770
2.668
2.683
2.628
2.212
2.074
2.522
2.573
2. 653
2.654
2.498
2.096
1. 985
2.492
2.614
2. 830
2.690
2. 583
2. 321
2.054
2.5R8
2. 510
2. 499
2.578
2. 439
1.990
1.933
Hal
Flow
4.0
4.0
3.6
3. 3
3.9
1.0
3. 8
3.9
3.5
3.0
3. 8
3.8
3.5
3. 1
3. 1
3. 1
9.7
2.8
3. 9
4. 4
4.4
». 2
4.0
3.2
3.0
3. 7
3.9
3.9
3.9
4. 1
3.4
3.0
3. 7
3.9
3. 8
4. 0
3.8
3. 1
2.9
3.5
3.5
3.5
3. 6
3.6
3.4
3. 2
3.6
3. 6
3. 5
3.6
3.6
3. 0
2.6
Hin
Flow
0.8
0.8
0.7
0.8
0.8
0.7
0.7
0. 8
0.7
1.1
0.8
1.4
0.8
0.8
0.9
0.7
0.8
0.8
1.8
1. 6
1. 2
1. 1
0.7
0.7
0. 8
0.9
0. 9
0.9
0. 8
0.8
0.7
0.7
0. 8
0.8
0. 8
0.7
0.7
0.7
0.6
0.7
1. 2
0. 8
0. 8
0.7
0.7
0.7
0.8
0. 8
0.8
0. 7
0.8
0. 7
0.6
FRCT
Side
1
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0. 50
0.50
0.50
FBCT
Side
2
0. 5~0
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0. 50
0. 50
0.50
0.50
Flow
Side
1
"i.
1.
1.
1.
1.
1 .
1.
1.
1 .
1.
0.
1.
1.
1 .
1 .
1.
0.
1 .
1.
1.
1.
1.
1 .
1.
1.
1.
1.
1.
1.
.
.
.
.
.
.
1.
1 .
0.
.
.
.
.
.
.
1.
1.
1 .
1.
1 .
1.
0.
0.
350
375
222
108
347
319
296
314
167
084
963
408
229
108
058
073
960
007
460
769
691
541
350
078
030
297
385
334
341
314
106
037
261
286
326
327
249
048
992
246
307
415
345
291
160
027
294
255
249
289
219
995
966
Flow
Side
2
1. 350
1. 375
1. 222
1. 108
1.347
1.319
1.296
1. 314
1. 167
1.084
0.963
1.408
1.229
1. 108
1.058
1.073
0.960
1.007
1. 460
1.769
1.691
1. 541
1. 350
1.078
1.030
1. 297
1. 385
1.334
1.341
1. 314
1. 106
1.037
1. 261
1.286
1. 326
1.327
1.249
1.048
0. 992
1. 246
1 .307
1.415
1. 345
1. 291
1. 160
1. 027
1.294
1.255
1. 249
1. 289
1. 219
0.995
0. 966
BCBC
Side
1
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
2.85
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3. 80
3.80
3.80
3.80
3.80
3.80
2.54
2.54
2.54
2.54
2.54
2.54
2.54
2.54
2.54
BCBC
Side
2
2. 85
2.85
2.85
2.85
2. 85
2.85
2.85
2.85
2.85
2.85
2.85
2. 85
2.85
2.85
2.85
2.85
2.85
2. 85
2.85
2.85
2.85
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0. 65
0. 65
0.65
0.65
0. 65
0.65
0.65
0. 65
0.65
0.65
0. 65
0. 65
0.65
0.65
1. 25
1.25
1.25
1. 25
1.25
1.25
1. 25
1.25
1.25
RCBC
Batio
1
2.11
2.07
2.33
2.57
2.12
2. 16
2.20
2. 17
2.4U
2.63
2.96
2.02
2.32
2.57
2.69
2.65
2.97
2.83
1.95
1.61
1.68
2.47
2.81
3.53
3.69
2.93
2.74
2.85
2.83
2.89
3.44
3.66
3.01
2.95
2.86
2.86
3. OH
3.63
3.83
3.05
2.91
2.69
2.83
2.94
2. 19
2.47
1.96
2.02
2.03
1.97
2.08
2.55
2.63
BCBC
Batio
2
2. 1 1
2.07
2. 33
2.57
2.12
2.16
2.20
2. 17
2.44
2.63
2.96
2.02
2.32
2.57
2.69
2.65
2.97
2.83
1.95
1.61
1.68
0.42
0.48
0.60
0.63
0.50
0.47
0.49
0.48
0.49
0.59
0.63
0.52
0.51
0.49
0.49
0.52
0.62
0.65
0.52
0.50
0.46
0.48
0.50
1.08
1.22
0.97
1.00
1.00
0.97
1.03
1.26
1.29
Teap
16.0
16.0
16.0
16.0
16.0
16.0
16.0
15.0
15.5
15.0
14.0
14.5
14.0
14.0
14.5
15.0
14.5
15.0
15.0
15.0
14.0
15.0
15.0
16.0
16.0
17.0
17.5
18.0
18.0
18.0
18.0
18.5
19.0
19.0
20.0
20.0
19.5
19.0
19.0
19.5
20.0
19.0
20.0
20.0
19.5
19.5
20.0
20.0
20.0
20.0
20.0
21.0
21.0
HYD
Load
1
16.3
16.4
15.8
15.3
16.3
16.2
16.1
16. 1
15.6
15.2
14.8
16.5
15.8
15.3
15.1
15.2
14.8
15.0
16.7
17.9
17.6
20.7
20.0
18.9
18.7
19.8
20.1
19.9
19.9
19. 8
19.0
18.7
19.6
19.7
19.9
19.9
19.6
18.8
18.6
19.6
19.8
20. 2
19.9
19.7
14.3
13.8
14.9
1« .7
14.7
14.8
14.6
13.7
13.6
HYD
Load
2
16.3
16.4
15. 8
15.1
16. 3
16.2
16. 1
16. 1
15.6
15. 2
14.8
16.5
15. 8
15.3
15. 1
15.2
14.8
15. 0
16.7
17.9
17.6
8.5
7.8
6.7
6.5
7.5
7.9
7.7
7.7
7.6
6.8
6.5
7.4
7.5
7. 7
7.7
7.4
6.6
6. 4
7.3
7.6
8.0
7.7
7.5
9.3
8.8
9.9
9.7
9.7
9.8
9.6
8.7
8.6
BOD
Load
1
38.3
33.2
41.5
42.8
20.6
22.2
30.7
32.4
37. 1
35. 9
29. 4
29.0
31.4
25.5
32. 9
32.5
23.7
34.3
37.9
31.0
-------
D-ltO
Of
Obsv
HAY To
HAY 11
HAT 12
HAY 13
HAY 11
HAY 15
HAY 16
HAY 17
HAY 18
HAY 19
BAY 20
HAY 21
HAT 22
HAY 23
HAY 21
HAT 25
KAY 26
nay 27
H4T 28
HAY 29
BAY 30
HAY 31
JON 1
JON 2
JON 3
JON 1
JOS 5
JON 6
JOS 7
JON 8
JOH 9
JON 10
JON 11
JOS 12
JDS 13
JON 11
JON 15
JDS 16
JOV 17
JDS 18
JDS 19
JON 20
JON 21
JON 22
JON 23
JON 21
JDK 25
JON 2fi
JON 27
JON 28
JON 29
JDS 30
JOL 1
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Week
MOB
TOE
WED
THO
PHI
SAT
SON
BOS
TOE
WED
THO
FBI
SAT
SON
HON
TOE
UED
THO
FBI
SAT
SOS
HON
TUB
HED
THO
FRI
SAT
SON
HON
TOE
BED
THO
FRI
S4T
SDK
RON
TOE
WED
THO
FRI
SAT
SOS
HOS
TDE
BED
THO
FRI
SAT
SON
HON
TDE
WED
THD
Saip
Type
99
99
99
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
S
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
Total
Plow
2.
2.
2.
2.
2.
2.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
3.
2.
1.
2.
2.
2.
2.
2.
1.
1.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
0.
1.
1.
2.
2.
2.
1.
1.
1.
2.
2.
2.
511
521
655
827
189
896
250
21<4
867
799
747
536
139
017
168
351
080
021
097
6714
883
336
139
056
039
021
789
770
212
206
189
163
107
805
805
503
152
033
1453
320
067
759
632
599
157
120
063
792
328
367
027
196
290
Hai
Plow
3.5
3. 5
3.5
1.0
3.7
3.8
3.7
i. i
3.8
3.9
3. 7
3. 5
3.2
3. 1
3.6
3.5
3.3
3. 1
3.6
3. 1
2.9
3.3
3. 1
2.9
3. 0
3.0
2. 7
2.6
3.3
3.1)
3. 2
3. 1
3. 1
2.7
2.0
2.5
2. 3
2. 0
2. it
2. 2
2.0
1.9
2. 3
2. 1
3.0
3.2
3. 1
2. 8
3.7
2.5
2.0
3.2
3.2
Bin
Flow
0.7
0. 8
0. 9
0. 8
0. 8
0.9
1.5
1. 3
1. 0
1.0
0. 9
0. 9
0. 8
0. 8
0. 8
0.7
0.8
0.8
2.7
1. 3
1. 0
1.0
0. 8
0. 8
0.7
0.8
0. 9
0. 9
0.8
0.7
0. 7
0.7
0.7
0. 7
0.5
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.6
0.6
0.7
0.7
0.7
0.7
0.7
0. 5
0.5
0. 7
0. 8
PHCT
Side
1
0.00
1.00
0.00
0.50
0.50
0. 50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.00
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
FRCT
SHe
2
1.00
0.00
0.00
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0.50
0.'50
0.50
0.50
0. 50
0.50
0.50
0.50
0. 50
0. 50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0. 50
0.50
0.50
0. 50
0. 50
0.50
0.50
1.00
0.50
0.50
0. 50
0.50
0.50
0. 50
0.50
0.50
0.50
0.50
Flow
Side
1
0
2
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
.000
.521
.fl&O
. 413
. 211
.HUB
.625
.S22
. U33
. 399
. 373
. 268
.069
.OOfl
.23U
.175
.OHO
.0 10
.51*8
.337
. 111
. 168
.069
.028
. 019
.010
.89U
.885
. 121
.103
.09H
.081
.053
.902
.902
.751
.726
.516
.726
.660
.533
.379
.000
.799
.078
.060
.031
.896
.6614
.683
.013
.098
. 115
PlOD
Side
2
2.5U
0.000
0.000
1 .14 13
1. 21414
1. 1148
1.625
1. 622
1. U33
1. 399
1. 373
1. 268
1. 069
1.008
1. 2314
1. 175
1.010
1.010
1. 518
1.337
2.191
1. 168
1.069
1. 028
1.019
1.010
0.891
0.885
1. 121
1 . 1 03
1.09U
1. 081
1.053
0.902
0.902
0.751
0.726
0. 516
0.726
0.660
0. 533
0. 379
1.632
0. 799
1.078
1.060
1. 031
0. 896
0. 661
0. 683
1.013
1.098
1. 115
BCBC
Side
1
0.00
0.00
0. 00
2.58
2.58
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2. 51
2.5U
2.51
2.51
2.5U
2.51
2.5D
2.514
2.51
2.5"
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.511
2.5H
2.51
2.51
2. 51
2.51
2.51
2. 51
0.00
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
2.51
RCRC
Sids
2
1. 25
0.00
0.00
2. 23
2.23
1.25
1. 25
1.25
1.25
1. 25
1.25
1.25
1. 25
1. 25
1 .25
.25
. 25
.25
.25
. 25
. 25
. 25
j. 10
3. «0
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
1. 10
1. 10
1. 10
a. 10
«. 10
1. 10
1. 10
1. 10
1. 10
BCRC
Ratio
1
1.00
0.00
1.00
1.83
2.07
1.75
1.56
1.57
1 .77
1 . 81
1 .85
2.00
2.37
2.52
2.06
2. 16
2.01
2.5 1
1.614
1.90
1.01
2.17
2.37
2.17
2.19
2.51
2.81
2.87
2.27
2.30
2.32
2.35
2.11
2. 81
2.81
3.38
3.50
1.92
3.50
3. 85
M.76
6.69
1.00
3.18
2.36
2.140
2.16
2.83
3. 83
3.72
2.51
2.31
2.22
BCRC
Ratio
2
0. 50
1.00
1.00
1.58
1. 79
0. 86
0.77
0.77
0.87
0.89
0.91
0.99
1. 17
1.21
1.01
1.06
1.20
1. 21
0.8 1
0.93
0.51
1.07
3. 18
3.31
2.9(4
2.97
3.35
3. 39
2.68
2.72
2.714
2.77
2.85
3.32
3.32
3.99
1. 13
5.81
1. 13
U.55
5.62
7.9 1
1.81
3.75
3.80
3.87
3.97
1. 58
6.17
6. 00
1.05
3.73
3.58
Teap
21.0
21.5
21.0
21.0
22.0
21.5
21.5
20.0
21.0
21.0
22.0
22.5
22.0
22.0
22.0
22.5
22.5
22.5
22.5
20.0
20.0
21.0
21.0
21.0
22.0
22.5
22.0
23.0
23.5
214.0
22.0
22. 5
23.0
214.0
21.0
21.0
21.5
21.5
21.5
21.5
24.0
214.0
21.0
25.0
25.0
25.0
25.0
25. 5
25.5
25.5
25.5
25.5
25.5
HVD
Load
1
0.0
9.8
0.0
15. 5
lit. 8
15.5
16. 1
16. 1
15.1
15. 3
15.2
11. 8
11.0
13.8
1U.6
11 .1
13.9
13.8
'5.8
15.0
19.3
114.
-------
Date
of
Obsv
JOL 2
JOL 3
JOL
-------
Date
of
ObST
AOG 24
HOG 25
AOG 26
ADG 27
AOG 28
ADG 29
ADG 30
ADG 31
SEP 1
SEP 2
SEP 3
SEP U
SEP 5
SEP 6
SEP 7
SEP 8
SEP 9
SEP 10
SEP 11
SEP 12
SEP 13
SEP 14
SEP 15
SEP 16
SEP 17
SEP 18
SEP 19
SEP 20
SEP 21
SEP 22
SEP 23
SEP 21
SEP 25
SEP 26
SEP 27
SEP 28
SEP 29
SEP 30
OCT 1
OCT 2
OCT 3
OCT 1
OCT 5
OCT 6
OCT 7
OCT 8
OCT 9
OCT 10
OCT 11
OCT 12
OCT 13
OCT 11
OCT 15
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Heek
TOE
BED
THD
FBI
SAT
SON
BON
TOE
HED
THD
FBI
SAT
SDH
BOM
TOE
HED
THU
FRI
SAT
SDH
HOD
TOE
RED
THD
FEI
SAT
SON
MOW
IDE
HED
THD
FBI
SAT
SON
BOS
TDE
HED
TBD
FRI
SAT
SDH
BON
TDE
HED
THD
FBI
SAT
SDN
BOH
TDE
HBD
THO
F8I
Sa»p
Type
6
6
6
99
6
99
6
6
6
6
99
99
99
99
6
6
6
99
6
99
6
99
6
6
99
6
99
6
6
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
Total
Flow
2.378
0. 662
1.089
0.409
0. 193
o. 144
1.620
0.980
2. 105
3.063
2.799
2. 553
2. 198
2. 864
2. 981
3.059
3.061
3. 235
3. 181
1.221
3.757
3. 150
3.262
3.169
3.068
2.631
2.539
3. 121
3.959
3.592
3.155
3. 290
2.953
2.710
3. 156
3. 117
3.007
3.392
1. 822
3. 816
3. 170
3.186
3.962
1. 351
3.613
3. 359
3.610
1.222
3. 827
3.621
3.155
3.100
3.061
Hax
Flow
3. 1
1.0
3. 1
1.0
1.0
1.0
3.9
1.0
1.0
1.1
1.0
1. 1
3.6
1.0
1. 8
1. 1
1.7
5. 0
1.5
6.5
5. 1
5.7
1. 1
1.5
P. 5
1. 1
3.6
1.5
5.9
1.9
1.9
1.5
5.3
3.9
1.8
4.9
1.6
1.8
5.6
5.6
5.0
5.0
5.0
5.3
5.0
1.9
5. 1
5.0
1.8
1.2
1.0
4.7
1.7
Bin
Flow
0.7
1. 0
1.0
1. 0
1.0
1.0
0.6
1.0
1.0
0.9
1.0
0.9
0.9
1.0
0.9
1.0
0. 9
0. 9
0.9
2.0
1.6
1. 1
1. 2
1.2
1. 1
1.0
1.0
1.0
2.0
1. 1
1.2
1.0
1.0
1.0
1.0
1.0
0.9
.0
.2
. 1
. 1
.0
3.3
1. 9
1. 3
1.0
2.1
2.4
1.3
1.1
1.0
1. 1
1.0
FECT
Side
1
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
FBCT
Side
2
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Plow
Side
1
1 . 189
0. 331
0. 51«
0.201
0.096
0.072
0.810
0.190
1.052
1.531
1. 399
1.276
1. 219
1 .132
1.192
1.529
1.532
1 .617
1.592
2.112
1.878
1.725
1.631
1.581
1.534
1.315
1.269
1.560
T.979
1.796
1.727
.615
.476
.372
.578
.573
.503
.696
2.111
1.923
1.585
1.743
1.981
2. 175
1.821
1.679
1.805
2.111
1.913
1.810
1.727
1.700
1.530
Flow
Side
2
1.
0.
0.
0.
0.
0.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
1.
1.
1.
1.
2.
1.
1.
1.
2.
1.
1.
1.
1.
1.
189
331
544
204
096
072
810
490
052
531
399
276
249
432
492
529
532
617
592
112
878
725
631
584
534
315
269
560
979
796
727
645
476
372
578
573
503
696
411
923
585
743
981
175
821
679
805
1 11
913
810
727
700
530
BCBC
Side
1
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
3.40
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.90
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
BCFC
Side
2
3.00
3.00
3.40
3.30
3.30
3.30
3.30
3.30
3.25
3.25
3.25
2.40
2.10
2.40
2.40
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2. 93
2.93
2.93
2. 93
2.93
2.93
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
BCBC
Ratio
1
2.86
0.27
6.24
6.63
5.23
7.22
4.20
6.91
3.23
2.22
2.13
2.66
2.72
2.37
2.28
1.92
1.91
1.81
1.81
1.39
1.56
1.70
1.80
1.85
1.91
2.23
2.31
1.88
1.18
1.63
1.70
1.78
1.98
2.11
1.86
1.86
1.95
1.73
1.22
1.52
1.85
1.66
1.48
1.35
1.61
1.74
1.62
1.39
1.53
1.62
1.70
1.72
1.91
BCRC
Ratio
2
2.52
9.06
6. 24
6. 14
1.20
5.83
1.07
"6.73
3.09
2. 12
2.32
1.88
1.92
1.68
1.61
1.92
1.91
1.81
1.84
1.39
1.56
1.70
1.80
1.85
1.91
2.23
2.31
1. 88
1.18
1. 13
1. 18
1.23
1. 37
1.48
1.29
1.29
1.35
1.20
0.83
1.04
1.26
1.15
1.01
0.92
1.10
1.19
1. 11
0.95
1.05
1. 10
1. 16
1. 18
1.31
Teap
25.0
26.0
26.5
26.5
26.0
26.5
26.0
26.5
26.5
26.5
27.0
27.0
26'. 0
26.5
26.5
27.0
27.0
27.0
27.0
25.0
25.0
25.0
25.0
26.5
26.5
26.0
26.0
26.0
27.0
24.5
25.0
25.0
25.0
25.0
25.0
25.0
27.0
25.0
24.0
26.0
26.0
25.0
26.0
24.0
25.0
23.0
23.0
22.0
23.0
22.0
22.0
23.0
22.5
HYD
Load
1
17.8
14.5
15.3
14.0
13.6
13.5
16.3
15. 1
17.3
19.1
18.6
18. 1
18.0
18.7
19.0
17.3
17.3
17.6
17.5
19.5
18.6
18.0
17.7
17.5
17.3
16.5
16.3
17.4
19.0
18.3
18. 1
17.7
17.1
16.7
17.5
17.5
17.2
17.9
20.7
18.8
17.5
18.0
19.0
19.8
18.4
17.9
18.4
19.5
18.8
18.1
18.1
17.9
17.3
HYD
Load
2
16.2
12.9
15.3
13.6
13.2
13. 1
15.9
14.7
16.7
18.5
18.0
11.2
11.1
11.9
15. 1
17.3
17.3
17.6
17.5
19.5
18.6
18.0
17.7
17.5
17.3
16.5
16.3
17. 1
19.0
11.8
11.6
14.2
13.6
13. 2
14.0
14.0
13.7
14.4
17. 1
15.2
13.9
11.5
15.4
16.2
14.8
14.3
14.7
15.9
15.2
14.8
14.1
14.3
13.7
BOD
Load
1
25.0
14.6
2.2
13.6
80.1
52.5
51.5
10.1
47.4
30.4
54.0
55.3
60.5
49.0
53.5
55. 1
26.6
55. 1
53.5
-------
OJ
Ul
Date
of
ObST
OCT 16 71
OCT 17 71
OCT 18 71
OCT 19 71
OC* 20 71
OCT 21 71
OCT 22 71
OCT 23 71
OCT 2
-------
ON
Date
of
Obsv
DEC 8
DEC 9
DEC 10
DEC 1 1
DEC 12
DEC 13
DEC It
DEC 15
DEC 17
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 21
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 30
DEC 31
JAS 1
JAN 2
JAN 3
JAN It
JAN 5
JAN 6
JAN 7
J4N B
JAN 9
JAN 10
JAN 11
JAS 12
JAN 13
JAN 1«
JftS 15
JAM 16
JAN 17
JAN 18
JAN 19
JAN 20
JAN 21
JAN 22
JAN 23
JAN 21
71
7 1
71
71
71
71
71
71
71
71
7 1
71
71
71
7 1
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
UeeK
HED
THO
FBI
SAT
SUN
HON
TOE
MED
FRI
SAT
SON
SON
TOE
HED
THO
FRI
SAT
SOS
HON
TOE
HED
THO
FRI
SAT
SON
HON
TOE
WED
THO
FHI
SAT
sus
BON
TOE
HED
THO
FRI
SAT
SDN
HON
TOE
HED
THU
FBI
SAT
SDN
SON
Sanp
Type
15
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15
15
99
99
15
99
15
15
15
15
99
15
99
15
Total
Flow
3. 227
2.962
2. 867
2. 1406
2. 155
2.878
2.812
2.750
2. 791
2. 308
3. 129
2.783
2. 1181
2. 1 13
1.856
1.818
1.002
1.1(59
1.613
1.6U7
1. 700
1. 763
1. 801
1.
-------
Date
of
ObST
HOV 19 69
HOV 19 69
HOV 20 69
HOV 20 69
HOV 21 69
HOT 21 69
HOV 22 69
HOV 22 69
HOV 23 69
HOV 23 69
HOV 24 69
WOV 24 69
HOV 25 69
HOV 25 69
HOV 26 69
HOV 27 69
HOV 28 69
HOV 29 69
HOV 30 69
DEC 1 69
DEC 1 69
DEC 2 69
DEC 2 69
DEC 3 69
DEC 3 69
DEC 4 69
DEC 4 69
DEC 5 69
DEC 5 69
DEC 6 69
DEC 6 69
DEC 7 69
DEC 7 69
DEC 8 69
DEC 8 69
DEC 9 69
DEC 9 69
DEC 10 69
DEC 10 69
DEC 11 69
DEC 11 69
DEC 12 69
DEC 12 69
DEC 13 69
DEC 13 69
DEC 14 69
DEC 14 69
DEC 15 69
DEC 15 69
DEC 16 69
DEC 16 69
DEC 17 69
DEC 17 69
Day
of :
HeeK '
HED
HED
THU
THU
FBI
FHI
SAT
SAT
SON
SON
HOH
HON
TOE
TOE
HED
THO
FRI
SAT
SON
BOH
MOH
TUB
TUB
HED
HED
THO
THO
FBI
FRI
SAT
SAT
SOH
SON
HON
BON
TOE
TOE
HED
HED
THU
THO
FSI
FBI
SAT
SAT
SDN
SUN
BON
BOH
TOE
TOE
BED
HED
>a»p
Cype
6
4
6
4
6
7
4
7
4
7
6
4
6
4
4
4
6
4
6
4
6
4
6
4
6
7
4
7
4
7
6
4
6
4
6
4
6
4
7
6
7
4
7
4
4
6
6
4
6
4
Boa
Load
2
38. 8
38. 1
25. 5
21.5
20.6
34. 0
32.6
14.6
17. 3
26. 0
26. 6
26. 7
26. 8
40. 2
43. 9
41. 0
35. 6
28. 5
25.0
26. 0
39. 8
38. 0
Ocq C
Load
1
26. 1
25.7
21.2
17.9
17.2
25.2
24.2
1 1.8
14. 0
21.9
22.4
20. 2
20.3
18. 8
16. 1
17. 5
21.0
22.9
27. 1
23.5
22. 5
19.7
20.5
Orq C
Load
2
26. 1
25.7
21.2
17. 9
17.2
25.2
24.2
11. 8
14. 0
21. 9
22.4
20. 2
20. 3
18.8
16. 1
17.5
21.0
22.9
27. 1
23.5
22. 5
19. 7
20.5
Bod
EFF
1
80.7
80.7
70.6
70.6
70.6
78.4
78.4
76.2
76.2
71.9
71.9
77.0
77.0
75.5
75.5
71.0
71.0
75.4
75.4
75.4
74. 4
74. 4
Bod
EFF
2
81.3
81.3
65. 1
65. 1
65. 1
77.8
77.8
81.0
81.0
72.6
72.6
74. 8
74.8
73.6
73.6
73.5
73.5
79.7
79.7
79.7
78.5
78.5
SS
EFF
1
85.0
71.0
74. 3
74.3
69.4
92.5
75.0
75.0
77.8
74. B
89.4
78.4
85.4
67. 5
67.5
79.4
79.0
83.0
93.5
87.5
81.0
81.0
81.1
68.5
78. 1
SS
EFF
2
80. 1
68.2
66. 1
66. 1
68.9
93.2
81.7
81.7
78.3
69.7
85.6
78.4
80. 1
75.4
75.4
54.1
79.0
85.2
93.5
81.0
83.2
83. 2
89.6
78. 7
76.3
Org C
EFF
1
69.8
69.8
55.2
55.2
55.2
71.7
71.7
56.9
56.9
58.8
58.8
62.7
62.7
64.3
64.3
64.3
51.3
51.3
65.4
65. 4
60.6
60.6
60.6
Orq C
EFF
2
66.7
66.7
48.6
48.6
48.6
65.4
65.4
63.7
63.7
57.0
57.0
52.9
52.9
66.3
66.3
66.3
58.3
58.3
68. 2
68. 2
69.7
69.7
69.7
Inf
Bod
187
187
126
126
126
171
171
126
126
135
135
135
135
220
220
162
162
138
138
138
195
195
P-1
Bod
72
72
54
54
54
71
71
42
42
35
35
64
64
69
69
72
72
6 1
61
61
82
82
F-1
Bod
38
38
40
40
40
36
36
22
22
36
36
25
25
4 1
41
36
36
26
26
26
49
49
S-1
Bod
36
36
37
37
37
37
37
30
30
38
38
31
31
54
54
47
47
34
34
34
50
50
P-2
Bod
74
74
66
66
66
71
71
47
47
62
62
40
40
87
87
62
62
72
72
72
78
78
F-2
Bod
38
38
37
37
37
31
31
19
19
48
46
38
38
56
56
52
52
34
34
34
56
56
S-2
Bod
35
35
44
44
44
38
38
24
24
37
37
34
34
58
58
43
43
28
28
26
42
42
-------
CO
Date
of
Obsv
DEC
EEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JAB
J&N
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
J1H
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
PEB
FEB
PEB
PEB
PEB
FEB
FEE
FEB
18
1R
19
20
21
22
23
24
25
26
27
28
29
29
30
30
1
2
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Heek
THO
THD
FRI
SAT
SUN
HCN
TOE
BED
THO
FRI
SAT
SOU
(ION
HON
IDE
TOE
THO
FRI
(ION
TOP,
HED
THD
FEI
SAT
SON
HOS
TDE
RED
THO
FSI
SAT
SUB
BON
TOE
NED
THD
FRI
SAT
SON
NON
TDE
BED
THD
FBI
SAT
SON
RON
TOE
WED
THU
FBI
SAT
SON
Sarap
Type
6
it
6
H
6
4
a
u
It
It
It
It
7
7
7
it
It
It
4
7
7
7
4
4
4
4
4
4
Bod
Load
2
30.4
30.2
33. 3
32.9
38.0
36.9
49.8
50. 1
31. 2
28.2
26. 1
36.6
48. 0
59. 9
57.5
44. 8
41.8
Orq C
Load
1
29. 3
28. 4
28.5
28. 7
26. 3
23.7
22.0
25. 5
24. 1
25.6
28.0
20.7
18.4
18. 7
32.2
20. 8
13. 5
13.0
13.0
12. 1
Orq C
Load
2
29. 3
28.4
28. 5
28.7
26.3
23. 7
22.0
25.5
24. 1
25.6
28.0
20.7
18.4
18.7
32. 2
42.2
27.4
26. 3
26.3
24.6
Bod
Err
1
77.7
77. 7
80.3
80. 3
81.4
81. «
85.6
85.6
79.4
79. 4
79.4
87. 1
87. 1
74.2
74.2
73.4
73.4
Bod
EFF
2
77.
77.
76.
76.
76.
76.
78.
78.
74.
74.
74.
68.
68.
71.
71.
68.
68.
3
3
0
0
5
5
8
8
5
5
5
9
9
6
6
9
9
SS
EFF
1
77.8
88. 1
42.9
84.8
84.8
84.1
84. 1
84.7
84.7
71.2
71.2
71.2
92.0
92.0
78.2
78.2
86.5
86.5
86.5
52. 8
52.8
82. 4
82.4
SS
EFF
2
87.
87.
44.
80.
80.
84.
84.
77.
77.
71.
71.
71.
87.
87.
88.
88.
75.
75.
75.
64.
64.
77.
77.
6
4
9
8
8
1
1
1
1
2
2
2
9
9
3
3
7
7
7
2
2
6
6
Org C
EFF
1
68. 1
68. 1
67. 1
67. 1
69.8
69. 8
69.8
74.8
74.8
70. 1
70.1
74.4
74.4
74.4
78. 4
78.4
42.5
42.5
58.7
58.7
Orq C
EFF
2
66.0
66.0
65.7
65.7
66.9
66.9
66.9
69.6
69.6
72. 1
72.1
62.8
62.8
62.8
69.0
69.0
46.0
46.0
49.0
49.0
Inf
Bod
220
220
183
183
183
183
250
250
165
165
165
132
132
190
190
177
177
P-1
Bod
93
93
84
84
65
65
76
76
67
67
67
56
56
83
83
62
62
F-1
Bod
58
58
46
46
42
42
34
34
34
29
29
42
42
59
59
S-1
Bod
49
49
36
36
34
34
36
36
34
34
34
17
17
49
49
47
47
P-2
Bod
90
90
72
72
82
82
83
83
46
46
46
72
72
1 14
1 14
68
68
F-2
Bod
53
53
46
46
56
56
58
58
65
65
65
37
37
58
58
70
70
S-2
Bod
50
50
44
44
43
43
53
53
42
42
42
41
41
54
54
55
55
-------
LO
VO
Date
of
ObST
FEB 9 70
FEB 10 70
FEB 11 70
FEB 12 70
FEB 13 70
FEB 11 70
FEB 15 70
FEB 16 70
FEB 17 70
FEB 18 70
FEB 19 70
FEB 20 70
FEB 21 70
FFB 22 70
FEB 23 70
FEB 21 70
FEB 25 70
FEB 26 70
FEB 27 70
FEB 28 70
HAR 1 70
HAR 2 70
HAB 3 70
HAR 1 70
HAB 5 70
HAB 6 70
HAB 7 70
HAR 8 70
HAR 9 70
PAR 10 70
HAH 11 70
FAB 12 70
HAB 13 70
HAR 14 70
BAR 15 70
HAB 16 70
HAB 17 70
HAH 18 70
BAR 19 70
HAB 20 70
HAB 21 70
HAB 22 70
HAR 23 7C
NAB 21 70
HAB 25 70
HAR 26 7C
HAB 27 7C
HAR 28 70
HAR 29 70
MAR 30 70
HAE 31 70
APR 1 70
APB 2 70
Day
of !
Seek
BOH
TOE
RED
THD
FBI
SAT
SDH
DOR
TUB
BED
THO
FBI
SAT
SON
HOH
TDE
WED
THD
FBI
SAT
SON
RON
TOE
BED
THO
FBI
SAT
SUN
MON
TDE
BED
THO
FBI
SAT
SDK
HOH
TDE
HED
THO
FRI
SAT
SDH
HON
TDE
BED
THU
FRI
SAT
SDN
(ION
TDE
BED
THU
3a«p
fTpe
14
U
4
4
7
7
7
It
14
4
4
7
7
7
4
14
14
4
4
14
4
4
7
7
7
4
4
4
14
4
4
4
4
4
4
4
4
4
4
4
4
Bo 4
Load
2
57.8
56. 2
62. 1
62.0
51. 7
45.5
20. 5
67.7
64. 14
55.7
51. 7
53. 5
47.5
42. 8
52.0
51.4
66.0
65.7
78. 2
77.9
61.7
65.2
48. 1
39. 4
39. 7
49. 8
49. 0
143.6
47.0
35. 7
46.5
72.7
70. 1
28.5
2R. 2
37. 1
55.2
Orq C
Load
1
16.8
16. 3
19.3
19.3
15.8
13.9
6.2
25.9
2<4.7
21. 1
19.6
20.4
18. 1
16.3
21.5
21.3
22.3
22.2
25. 5
25.4
19.5
20.7
is. a
15.4
15. 1
19. 4
19. 1
13.2
14.2
6.6
8.5
12.5
12.0
11.2
11.1
12.7
11. 3
8.6
7.2
7.3
10.9
Orq C
Load
2
34. 1
33. 2
39.2
39.2
32.0
28. 2
12.7
52.6
50. 1
•12. 9
39.8
41.4
36. 8
33. 1
93.7
43. 1
45. 2
45. 0
51.9
51.6
39.6
41.9
38. 2
31.3
30.7
39. 4
38.8
26. 7
28. 8
26. 3
34. 1
49.9
48. 1
44. 8
44. 4
50.9
45. 1
34. 3
28. 8
29.2
43. 4
Bod
EFF
1
73. 3
73.3
80.9
80.9
86.5
86.5
86.5
71.6
71.6
70. 5
70. 5
89.8
89.8
89.8
86.7
86.7
85.0
85.0
77.0
77.0
73.8
73. 8
78.7
78.7
78.7
72.8
72.8
71. 4
71. 4
91.8
91.8
89.2
89.2
82.7
82.7
89.7
89.7
Bod
EFF
2
72. 8
72.8
61.1
61. 4
77.6
77.6
77.6
65. U
65.4
61. 5
61.5
76.8
76.8
76. 8
77.2
77.2
70.0
70.0
69. 3
69.3
70.8
70.8
66.7
66.7
66.7
56.8
56.8
55. 1
55. 1
76. 9
76.9
73.0
73.0
18.7
18.7
72.2
72.2
SS
EFF
1
77.6
77.6
79. 3
79. 3
81.5
81.5
81.5
71.9
71.9
80.6
80.6
80.9
80.9
80.9
77.0
77.0
91.9
91.9
80.0
80.0
71.7
71.7
82. 1
82. 1
82. 1
80. 8
80.8
81.8
81. 8
79.8
79.8
84. 5
814.5
66.5
66. 5
47.9
47.9
58.6
58.6
SS
EFF
2
69.4
69. 4
55. 2
55.2
64. 3
64. 3
64.3
67.7
67. 7
66. 1
66. 1
75. 3
75. 3
75.3
66.0
66. 0
77.3
77. 3
68.7
68.7
59.6
59.6
80.5
80. 5
SO. 5
67. 3
67. 3
75.0
75.0
67.5
67.5
66.5
66. 5
44.9
44.9
12.4
12.14
55.5
55.5
54. 3
54.3
Orq C
EFF
1
64. 3
64. 3
64.7
64.7
67.2
67.2
67.2
65.9
65.9
60. 8
60.8
72. 3
72.3
72.3
66. 2
66.2
74.7
74.7
69. 3
69.3
63.0
63.0
89.3
89.3
89. 3
68.0
68.0
52.2
52.2
70.4
70.4
72. 1
72. 1
61.0
61.0
63.3
63.3
62.6
62.6
50.5
50.5
Orq C
EFF
2
54.8
54.8
50.4
50.4
51. 3
51. 3
51. 3
60.3
60.3
61.7
61.7
64.2
64.2
64.2
55.6
55. 6
63.0
63.0
60.9
60.9
58.3
58. 3
63.4
63.4
63.4
51.6
51.6
42.2
42.2
63.0
63.0
58.6
58.6
51.7
51.7
22.0
22.0
29.7
29.7
40.4
40. 4
Inf
Bod
T95
195
220
220
192
192
192
162
162
156
156
177
177
177
180
180
213
213
270
270
168
168
141
191
141
162
162
147
147
147
147
204
204
75
75
126
126
P-1
Bod
83
83
85
85
83
83
83
65
65
72
72
74
74
74
78
78
72
72
1 1 1
1 1 1
67
67
66
66
66
65
65
59
59
40
40
54
54
6 1
61
60
60
F-1
Bod
99
49
65
65
28
28
28
47
47
56
56
24
24
24
25
25
47
47
67
67
60
60
35
35
35
38
38
41
41
19
19
13
43
34
34
69
69
S-1
Bod
52
52
42
42
26
26
26
46
46
46
46
18
18
18
24
24
32
32
62
62
144
44
30
30
30
49
44
42
42
12
12
22
22
13
13
13
13
P-2
Bod
79
79
132
132
71
71
71
84
84
114
114
65
65
65
68
68
93
93
126
126
90
90
89
89
89
74
74
78
78
71
71
83
83
17
17
80
80
F-2
Eod
43
43
84
84
36
36
36
65
65
67
67
71
71
71
43
43
68
68
111
111
62
62
26
26
26
74
74
67
67
37
37
73
73
77
77
20
20
S-2
Bod
53
53
85
85
43
43
43
56
56
60
60
41
41
41
41
41
64
64
83
83
49
49
47
47
47
70
70
66
66
34
34
55
55
61
61
35
35
-------
Date
of
ObST
APR ~3
APE a
APB 5
APR 6
APB 7
APR 8
APR 9
APB 10
APR 11
APR 12
APB 13
APB 14
APB 15
APR 16
APP 17
APB 18
APB 19
APR 20
APB 21
APB 22
APR 23
APB 24
APB 25
APB 26
APB 27
APB 28
APB 29
APB 30
HAT 1
HAT 2
BAT 3
BAT 4
HAT 5
BAT 6
HAT 7
BAT 8
BAT 9
BAT 10
HAT 11
HAT 12
HAT 13
HAT 1<(
HAT 15
HAT 16
HAT 17
HAT 18
HAT 19
HAT 20
HAT 21
HAT 22
•AT 23
HAT 21
HAT 25
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
Day
of
Week
FBI
SAT
SDH
HOS
TUB
HED
THU
FHT
SAT
SON
BOS
IDE
WED
THO
PHI
SAT
SON
SON
TOE
HED
THO
FBI
SAT
SDH
BOS
TOE
BED
THD
FBI
SAT
SON
HON
TOE
BED
THO
FBI
SAT
SOH
HOD
TOE
BED
THO
FBI
SAT
SOH
BOH
TOE
MED
THD
FBI
SAT
SOH
BON
Sa np
Type
~7
7
7
It
U
a
It
7
7
7
4
1
7
7
7
7
7
7
It
it
H
It
7
7
7
4
4
6
6
6
6
6
6
Bod
Load
2
96.3
78. 5
70.7
65.7
63. 7
60. U
60. 1
61. »
53.8
50. 3
10. 1
37.4
66. 2
58. 4
55.6
53. 0
45. 9
43. 2
67.5
61.0
62. 1
83.2
82.8
54. 7
75.3
12. 1
22.0
33.8
10.7
Orq C Orq C
Load Load
1 2
11.9 47.5
9.7 38.7
8.7 34.9
10.3 41.1
10.0 39.8
10.2 41.0
10.2 40.8
50.5
0.0 47.1
33. 3
29.4
28.0
0.0 52.2
45. 2
42.5
45.8
41.4
42. 1
32.1
32. 3
31.5
0.0 49.0
10.9 10.9
19.1 19.1
22.4 22.4
13.7 13.7
Bod
EPF
1
89. 2
89.2
89.2
84. 8
84.8
86.9
86.9
85.8
85.8
85.8
58.3
23.7
65.5
97.2
Bod
EFF
2
74.2
74.2
74.2
59. 1
59. 1
61.9
61. 9
71.6
71.6
71.6
0.0
0.0
72.3
72.3
72.3
46.9
46.9
46.9
63.0
63.0
63.0
68.4
68.4
61.2
53.3
72.2
57.9
64.4
80.6
SS S
EFF EF
1
74.0 46.
74.0 46,
74. C 46.
80.7 62.
80.7 62.
77.9 41.
77.9 41.
40.
40.
37.
37.
37.
64.
64.
64.
73.
73.
73.
92.
92.
57.
70.
96.9 92.
46.3 76.
61.2 87.
88.5 88.
S Orq C
F EFF
2 1
0 69.5
0 69.5
0 69. 5
8 60.7
8 60.7
0 59.6
0 59.6
9
9
7
7
7
3
3
3
1
1
1
5
5
5
6
9 50.8
9 59.6
9 67.8
5 70.7
Orq C
EFF
2
43.8
43.8
43.8
42. 1
42. 1
42. 1
42. 1
40.2
40.2
22.5
22.5
22.5
56.3
56.3
56.3
53.6
53.6
53.6
10.8
10.8
46.9
46.2
52.3
59.6
68.7
47.8
Inf P-1 F-1
Bod Bod Bod
213 58 47
213 58 47
213 58 47
171 70 55
171 70 55
168 73 26
168 73 26
183 65 35
183 65 35
183 65 35
89
89
177
177
177
130
130
130
162
162
162
190
190
170
180
72 50 28
114 62 96
174 102 52
72 23
S-1 P-2
Bod Bod
23 83
23 83
23 83
26 88
26 88
22 108
22 108
26 92
26 92
26 92
86
86
61
61
61
108
108
108
108
108
108
102
102
90
96
30 52
141 102
60 102
2 54
F-2
Bod
76
76
76
83
83
77
77
80
80
80
84
84
68
68
68
105
105
105
78
78
78
60
60
159
156
42
141
246
14
S-2
Bod
55
55
55
70
70
64
64
52
52
52
89
89
49
49
49
69
69
69
60
60
60
60
60
66
84
20
48
62
14
-------
Date
of
ObST
RAT 26 70
HAT 27 70
HAT 28 70
HAT 29 70
HAY 30 70
HAT 31 70
JDH 1 70
JOH 2 70
JDH 3 7C
JDK 1 70
JON 5 70
JOM 6 70
JOH 7 70
JDH 8 70
JOH 9 70
JDK 10 70
JOH 11 70
JDH 12 70
JOH 13 70
JOH 11 70
JOH 15 70
JOI 16 70
JDH 17 70
JUH 18 70
JTJH 19 70
JCH 20 70
JDH 21 70
JDH 22 70
JDH 23 70
JT5H 21 7C
JOH 25 70
JDH 26 70
JDH 27 70
JDH 28 70
JDH 29 70
JOB 30 70
JDL 1 70
JOL 2 70
JDL 3 70
JDL a 70
JTL 5 70
JDL 6 70
JDL 7 70
JtJL 8 70
JDL 9 70
JDL 10 70
JDL 11 70
JDL 12 70
JDL 13 70
JDL 11 70
JDL 15 70
JOL 16 70
JDL 17 70
DAT
of '.
Veek '.
TOE
WED
THU
PRI
SAT
SON
BON
TUB
11 ED
THD
FBI
SAT
SDH
HOD
IDE
HED
THO
FHI
SAT
SDH
BOH
IDE
RED
THD
FBI
SAT
SON
MOH
TOE
If ED
THO
PET
SAT
SDH
BOH
TOE
IED
THO
PBI
SAT
SDH
DON
TOE
HED
THD
FHI
SAT
SDH
DOR
IDE
HED
THO
FEI
iamp
type
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Bod
Load
2
7.0
18.5
23.il
6.3
6. 1
17.7
8.6
23. 5
24.6
22. 2
22. 5
30. 3
15. 8
25.9
19.6
15. 1
25. 2
20. 9
Orq C
Load
1
16. 1
21.9
19.2
17.5
20. 1
11.lt
13. 3
20. 3
24.7
17.3
17.0
22.0
23.0
17.7
13. 8
18.0
20.7
22. 6
37. 7
12.9
18.0
23. 5
21.0
11.0
17.0
22.0
16.0
17. 1
Orq C
Load
2
16. 1
21.9
1U. 2
17. 5
20. 1
11. it
13.3
20. 3
21.7
17. 3
17.0
22.0
23.0
17. 7
13. 8
18. 0
20. 7
22.6
37. 7
12.9
18.0
23.5
21.0
1U.O
17. 0
22.0
16.0
17. 1
Bod
EPF
1
90.7
85.0
88.7
87. 5
86. 1
89. 2
86. 4
85.9
89.6
83.9
82.6
92.4
69. 1
81.7
85.5
82.7
89. 3
Bod
EFF
2
63.0
92.5
8U.O
83. 3
72.2
80. »
86. U
74.8
85.11
83.9
87. 1
87.5
68.3
87.3
70.9
91.5
78.7
81.3
SS
EFF
1
70.7
45.2
78.8
79.5
87. 1
79.9
87.3
86.6
95.3
88. 1
79.6
75. 2
90. 3
83.8
87.9
73.9
85.7
8<4. 1
81.5
73.9
88.3
88.5
93.0
89.7
88.5
91.7
92.9
SS
EFF
2
62. 1
Uit.U
81.7
an. 1
91.3
90.6
81.9
83.6
89.5
82.5
68.9
65. 5
83. 3
714.0
87.1
76.5
82. 1
78.3
72.2
68.3
81 .6
83. 2
73.0
89.8
74.3
79. 9
86. H
814.5
Orq C
EFF
1
59.8
71.8
72.5
714. 3
73.6
63.2
50.0
59.6
80. 3
75.8
66.7
66. 7
72.0
67.3
62.9
62.5
67.8
70.9
79.3
57.0
66.3
75.11
72.5
70.6
74.8
75. 7
714.7
Orq C
EFP
2
5H. 0
72.5
65. 1
69.9
64.3
59.8
48.7
57.9
72.5
67. «
53.5
51.6
69.7
53.8
58. 1
51.9
59.5
64.9
72. 1
52.0
60.6
67.2
69.6
73. 4
58.8
65.6
70.4
64. 6
Inf
Bod
54
120
150
48
36
102
66
135
144
168
132
144
123
150
1 17
117
150
150
P-1
Bod
14
15
30
12
1 1
20
17
32
39
42
38
30
45
31
36
28
31
32
F-1
Bod
9
14
17
8
3
14
14
27
35
39
27
17
21
23
57
16
28
29
S-1
Bod
5
18
17
6
5
11
9
19
15
27
23
11
38
23
17
26
16
P-2
Bod
21
33
42
21
18
47
23
50
54
66
145
68
56
66
54
44
61
47
F-2
Bod
18
26
28
15
12
17
31
29
53
29
53
45
29
32
19
30
71
S-2
Bod
20
9
24
8
10
20
9
31
21
27
17
18
39
19
34
10
32
28
-------
4>
l-o
Date
of
Obsv
JOL 18
JDL 19
JDL 20
JDL 21
JDL 22
JOL 23
JDL 24
JOL 25
JOL 26
JOL 27
JDL 28
JOL 29
JDL 30
JOL 31
AOG 1
AOG 2
HOG 3
AOG 4
AOG 5
ADG 6
AOG 7
AOG 8
ADG 9
AOG 10
ADG 1 1
AOG 12
HOG 13
ADG 14
AOG 16
AOG 17
AOG 18
AOG 19
ADG 20
ADG 21
AOG 23
ADG 24
AOG 25
ADG 26
AOG 27
AOG 28
ADG 29
AOG 30
AOG 31
SEP 1
SEP 2
SEP 3
SEP 6
SEP 7
SEP 8
SEP 8
SEP 9
SEP 10
SEP 10
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Seek
SAT
SDH
SON
BON
TOE
TH0
THD
PHI
SON
BOS
TOE
HEO
IHO
PHI
SAT
SON
SOS
TOE
BED
THO
FBI
SAT
SOU
DON
TOE
HED
THD
PR I
SON
RON
TOE
WED
THD
FRI
SON
BOS
TOE
HED
TRD
FSI
SAT
SON
RON
TDE
HEO
THD
SDH
HOH
TDE
TOE
HED
THO
THO
Bod
Sanp Load
Type 2
6
6
6
6 8.3
6
6
6
6 20. 5
6 31.6
6
6
6 15. 1
6
6
11 24.3
6 21.6
6
6 10.0
6
6 11. 2
6 15.5
6
6 20. 1
6
6 26.9
6
6 20.0
10
6 22. 8
10
Orq C
Load
1
32.6
16.5
31.6
18.6
24.5
31.7
20. 3
30.0
25. 1
26.3
32.6
26.8
20. 1
19.5
28.5
19.3
12.0
18.8
15. 1
13.2
14.4
23.9
14. 3
20.2
Orq C
Load
2
16. 1
8. 1
17. 1
9.2
12. 1
17. 1
12.0
14.8
12.4
12.9
16. 1
13.2
9.9
9.6
14.0
9.5
5.9
9. 2
15. 1
13.2
14.4
23.9
14.3
20. 2
Bo
EF
72.
78.
94.
81.
84.
89.
86.
89.
69.
80.
75.
84.
83.
79.
d
F
1
6
3
1
2
4
2
7
6
3
2
8
2
3
9
Bod
EFF
2
78.9
90.0
86.3
87.0
75.0
88.3
89.4
93.8
90.4
80.2
83.3
83. 1
83.3
80.6
SS
EFP
1
85.6
89. 1
88.2
73. 1
81.1
87.8
89. 2
90.7
91.7
89.0
89.1
95.7
90.9
90. 1
91.0
91.7
95. 1
80.2
88. 1
99.7
94.9
87.3
90.6
94.5
93.9
92.7
S
EF
77.
82.
87.
63.
82.
89.
87.
90.
93.
90.
89.
96.
85.
93.
92.
91.
93.
90.
91.
96.
94.
90.
84.
94.
90.
92.
S
F
2
8
2
5
9
2
1
6
7
3
2
8
9
8
1
5
7
6
5
7
7
9
4
3
0
1
2
Org C
EFF
1
64.7
60.2
72.3
25.0
63.7
60.0
60.3
63.5
61.5
66.1
67.5
73.9
79.2
65.2
64.4
70.7
72.3
62.9
53.4
63.3
70.7
56.8
61.1
84.6
68. 1
71.9
Orq C
EFF
2
69.8
64.5
79.1
38.3
65.5
67.0
67.2
61.5
65.1
70.3
75.0
30.1
75.5
71.3
66.7
70.7
75.9
73.2
58.9
68.9
71.7
56.8
6!. 1
85.1
60.6
74.2
Inf
Bod
95
120
306
138
192
240
188
96
114
192
132
177
132
144
P-1 P-1
Bod Bod
36 41
50 31
23
49 32
HO 23
59 32
51 36
30 32
47 20
54 34
42 20
62 62
54 30
99 35
S-1 P-2 F-2 S-2
Bort Bod Bod Bod
26 28 25 20
26 44 18 12
18 30 42
26 12 18
30 48 48
26 42 36 28
25 39 22 20
10 36 50 6
35 30 58 11
38 36 38
32 51 20 22
28 74 28 30
22 60 40 22
29 65 29 28
-------
-C-
U)
Date
of
ObST
SEP Ti 70
SEP 12 7C
SEP 13 70
SEP 13 70
SEP 14 70
SB? 15 70
SEP 15 70
SEP 16 70
SEP 17 70
SEP 17 70
SEP 18 70
SEP 19 70
SEP 20 70
SEP 20 70
SEP 21 70
SEP 22 70
SEP 22 70
SEP 23 70
SEP 21 70
SEP 24 70
SEP 25 70
SEP 26 70
SEP 27 70
SEP 27 70
SEP 28 70
SEP 29 70
SEP 29 70
SEP 30 70
OCT 1 70
OCT 1 70
OCT 2 70
OCT 3 70
OCT 4 70
OCT 4 70
OCT 5 70
OCT 6 70
OC1* 6 70
OCT 8 70
OCT 7 7C
OCT 9 70
OCT 10 70
OCT 11 70
OCT 12 70
OCT 13 70
OCT It 70
OCT 15 70
OCT 16 70
OCT 17 70
OCT 18 70
OCT 18 70
OCT 19 70
OCT 20 7 C
OCT 20 70
Day
of
Week
FBI
SAT
SDH
SON
HOH
TUB
TOE
WED
TBD
THO
FBI
SIT
SON
sra
HON
TDE
TOE
HED
THD
THO
FRT
SAT
SDH
SOH
not
TDE
TOE
RED
THO
THU
PET
SAT
SOH
SDH
NOS
TOE
TOE
THD
HED
FRI
SAT
SDH
HON
TDE
MED
THfJ
FBI
SAT
SON
SON
HON
TOE
TUB
Saiip
Type
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
4
13
6
6
it
6
12
6
12
6
Bod
Load
2
18.5
27.it
38.7
20.5
31.9
27. 2
26. 1
30.9
10.2
30.0
38. 1
25.9
37. 2
Orq C
Load
1
15.7
15. 8
20. 9
19.0
33.0
21.0
23. 1
34.6
28.0
23. 9
19. 1
25.8
26. 1
23.9
16.6
9.8
12.2
0.0
11.7
Orq C Bod
Load EFF
2 1
15.7 «9.5
15. 8
20.9 85.2
19.0
33,0 81.2
21.0 82.9
23. 1
31.6 87,2
28.0
23.9 86.2
19.1 85.8
25.8
26.1 82.6
23. 9
33.8 77.5
20.0 85.3
24.7
40. 6
23.8 80.8
76.7
Bod
EFF E
2
55.9 81
86
95
91
80.6
76.6 89
94
80.1 93
92
75.6 90
69.5 90
85
71.5 88
88
71.0 88
78.7 92
88
26.7
50.8 87
92
68.2 67
SS
FF
1
.3
. 4
.2
.7
.3
.3
.7
. 1
.2
. 4
.6
.0
.7
.0
.5
.7
.3
.U
. U
S3
EFF
2
89.6
77.3
89.9
88.9
86.4
88. 5
90.5
69.3
79.0
88.8
82.0
78.9
82.7
83. 1
87.4
84.0
59.3
67. 1
81.7
70.3
Orq C
EFF
1
64.9
62.5
72.8
68. 1
73.5
71. 1
72.1
74.5
76.0
63.9
66.0
39.8
69.9
67.9
63.8
67.0
36.7
66.4
Orq C
EFF Inf P-1 F-1 S-1 P-2
2 Bod Bod Bod Bod Bod
63.8 111 55 23 56 63
51.3
135 61 20 20 69
62.6
71.5 177 73 29 28 75
61.4 111 60 74 19 68
60.6
69.3 141 56 20 18 59
70. «
60.2 123 63 26 17 80
58.3 141 59 56 20 65
56.8
62.6 1»4 71 36 25 72
62.5
56.0 138 79 35 31 81
57.0 150 37 46 22 71
18.9
21.9 90 92
42.7 120 32 58 23 59
129 46 29 30 78
F-2 S-2
Eod Bod
43 49
32
42 34
49 26
"11 28
38 30
30 43
46 41
43 40
44 32
81 66
78 59
1)7 41
-------
Date
of
Obsv
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
HOT
HOT
ROT
HOT
HOT
HOT
HOT
HOT
f" HOT
y. HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
NOT
HOT
HOT
HOT
HOT
HOT
HOV
HOT
DEC
DEC
DEC
DEC
21 70
22 70
22 70
23 70
211 70
25 7C
25 7C
26 70
27 70
27 70
28 70
29 70
29 70
30 70
31 70
1 70
1 70
2 70
3 70
14 70
5 70
5 7C
6 70
7 70
8 70
8 70
9 70
10 70
10 70
11 70
12 70'
13 70
114 70
15 70
16 70
17 70
18 70
19 7C
20 70
21 70
22 70
23 70
214 70
25 70
26 70
27 70
28 70
29 70
30 70
1 70
1 70
2 70
3 70
Day
of
Heek
BED
THO
THO
PRI
SAT
SON
SDH
BON
TOE
TOE
BED
THO
THO
PHI
SAT
SOH
SOH
BOH
TOE
WED
THD
THO
FEZ
SAT
SDH
SOU
HOH
TOE
TOE
MED
THO
PSI
SAT
SON
MOH
TOE
HED
THO
FRT
SAT
SCH
HOH
TOE
THO
THD
FUI
SAT
SON
BON
TOE
TOE
VED
THO
Bod
Sanp Load
Type 2
6
6 38. 1
12
13 29.5
12
6
6 12. 8
12
6
6 52.1
12
6 37.6
10
6
6 142. 11
10
6 39.5
10
6
6 113.11
10
6
6
6 28.6
6
6 142. 1
12
6
6 38.7
Orq C
Load
1
13. 6
12.6
17.8
17.8
15. 1
18.0
15.11
19.9
16.0
15. 2
111.9
1U.O
16.2
12. 1
18.2
17.9
18.6
16.7
Orq C
Load
2
27. 7
25. 5
36. 1
36. 2
30.6
36.6
31.2
140.5
32. 6
30.8
30.3
28.14
33.0
21.5
37.0
36.3
37.8
314.0
Bod Bod SS
EFF EFF EFF
1 2 1
86.
81.1 59.8 76.
86.5 57.9 89.
90.
814.7 76.0 85.
92.
514.8 15.7 10.
85.5 65.8 90.
79.7 61.14 90.
77.0 72.1 91.
87.
81.1 69.0 73.
87.
78.
85.0 73.9 91.
83.
86.1 71.14 90.
81.
80.3 56.1 614.
3
8
1
3
3
8
2
1
3
5
7
1
6
6
1
7
0
1
9
SS
EFF
2
81.1
71.1
79. 8
77.0
82.14
76. 3
-U8
80. 3
63.4
85. 3
78. 3
67. 5
69.0
66.2
73.2
76.7
73. 5
70.7
50. 7
Orq C
EFF
1
57. 9
17.7
66.7
60.6
67. 3
18. 5
72.2
65.8
65.U
51.5
75.6
66.7
66. 1
69.5
61.3
72.1
63.9
60.3
Orq C
EFP Inf
2 Bod
10.0 132
76. 1 126
51.8
18.8 150
18.2
-5.1 186
61.9 117
145.9 153
56.6 165
53.6
60.0 129
53.1
16.5
57.3 153
18. 1
60.6 117
18. 1
37.9 132
P-1 F-1 S-1 P-2 F-2 S-2
Bod Bod Bod Borl Buu Bod
11 24 25 68 11 53
13 28 17 67 32 53
10 26 23 70 10 36
83 99 81 85 85 101
26 23 17 16 31 10
71 147 31 72 59
83 51 38 61 52 16
36 36 21 6<4 37 10
30 31 23 66 65 10
36 28 20 86 18 12
28 31 26 81 61 58
-------
Ln
Date
of
ObST
DEC ~3 70
EEC 1 70
DEC 5 70
DEC 6 70
DEC 6 7C
DEC 7 70
DEC 8 70
DEC 8 70
DEC 9 70
DEC 10 70
DEC 10 70
DEC 11 70
DEC 12 70
DEC 13 70
DEC 11 70
DEC 15 70
DEC 16 70
DEC 17 70
DEC 20 70
DEC 21 70
DEC 22 7C
DEC 23 70
DEC 21 70
DEC 25 70
DEC 26 70
DEC 27 70
DEC 28 70
DEC 29 70
DEC 30 70
DEC 31 70
JAN 1 71
JAN 2 71
JAN 3 71
JAN 4 71
JAM 5 71
JAN 6 71
JAN 7 71
JAN 8 71
JAN 9 71
JAN 10 71
JAH 1171
JAN 12 71
JAN 13 71
JAN 11 71
JAN 15 71
JAN 16 71
JAN 17 71
JAN 18 71
JAN 19 71
JAN 20 71
JAN 21 71
JAN 22 71
JAN 23 71
Day
of
Reek
THH
FHI
SAT
SOS
SON
BOH
TOE
TOE
WED
THU
THO
FEI
SA*
SON
BON
TDE
RED
THO
SON
BON
TDE
IED
THO
PET
SAT
SON
HON
TUE
RED
THO
FBI
SAT
SUN
BON
TUE
RED
THB
FBI
SAT
SON
HON
TOE
RED
THU
FST
SAT
SON
BON
TOE
RED
THB
FRI
SAT
Bod
Saap Load
Type 2
12
99
99
6 43.7
12
99
6 56. 2
12
6
6 59.6
12
99
99
6 37. 7
6
6 52.2
1 1
6
6
6
99
99
99
99
99
6
6
6 32. U
6
99
99
99
6 33. 1
6
6 24. 1
6
6 27. 5
99
99
6 3M. 5
6
6 11.2
6
6 54.6
99
99
6 43.7
6
6 HI. 5
6
6 52. 8
99
99
Orq C
Load
1
7.8
11.2
11. 7
13. 1
8.0
12. 3
10.6
24. 9
11. 3
5.9
7.5
4.5
8.5
7.6
6. 7
6.7
11. 3
7.2
6.4
5. 7
8.2
7.4
10. 1
8. 4
13.0
9.4
41.4
19.0
14. 1
17.9
Orq C
Load
2
31. 1
45.0
47. 0
52.4
31.8
49. 1
42.3
99.7
45.3
23.7
29.9
17.9
34. 1
30.5
26. 9
26. 6
45.0
28.6
25. 5
22.7
32. 9
29.7
40. 4
33.7
52.0
37.6
20.4
38.6
28.6
36. 3
Bod Bod
EFF EFF
1 2
88.2 69.3
83.0 45.5
50.0
85.2 51.1
92.8 55.6
91.5 74.5
95.9 68.3
89.9 65.2
92.2 38.2
84.8 70.5
79.0 54.3
89. 1 47.6
86. 1 47.9
74.3 52.1
78.5 61.8
SS
EFF
1
90.6
79.2
77.6
94.0
93.4
91.7
92.0
97.6
97.9
94.7
95.5
91.1
87.7
93.5
89. 5
89.3
91.1
89.2
91.5
85.8
82.9
91.4
90.6
88. 8
80. C
75. 3
81.3
89.5
SS
EFF
2
73. 2
50.0
57.2
56. 5
71.4
67. 1
56. 6
52. 2
62. 1
69.0
74. 8
76.4
76. 7
76.8
68. 1
62.6
40.0
57. 7
52. 7
31.7
64.8
65.0
42.5
66.0
55,6
54. 4
52.8
56.5
Orq C
EFF
1
76.1
70.5
64.9
79.0
79.8
81.2
78.8
70.6
79.4
76. 1
82.9
81.2
75.2
78. 8
80.0
75.6
78.8
72.6
65.0
68.8
62. 1
70.0
77.9
81.5
81.9
70. 1
62.4
65.6
Orq
E
57
34
81
52
40
47
46
46
29
86
63
63
60
53
54
57
53
42
28
22
32
46
36
83
50
60
48
37
39
C
FF Inf
2 Bod
.8 153
.8 165
.0
.3 174
.4 135
.6
.0 153
.6
.4
.0
.0
.7
.2 141
.7
.5 123
.5
.7 69
.3
.6 102
.0 105
.5
.6 105
.7
.6 147
.8 144
. 1
.5 144
.6
. 1 186
P-1 F-1 S-1 P-2 P-2 S-2
Bod Bod Bod Bod Bod Bod
30 26 18 83 56 47
43 34 28 90
56 31 87
29 19 20 98 86 66
26 13 11 104 100 68
23 13 12 52 38 36
19 6 5 62 45 39
13 44 7 41 17 24
24 16 8 78 81 63
24 18 16 24 19 31
32 25 22 24 48
41 17 16 86 77 77
44 22 20 66 56 75
72 38 37 108 71 69
92 41 40 117 92 71
-------
Date
of
Obsv
JAN 24
JAN 25
JAN 26
JAN 27
JAN 28
JAN 29
JAN 30
JAN 31
FEB 1
FEB 2
FEB 3
FEB 4
FEB 5
FEB 6
FEB 7
FEB 8
FEB 9
FEB 10
FEB 11
FEB 12
FEB 13
FEB 14
FEB 15
FEB 16
FEB 17
FEB 18
FEB 19
FEB 20
FEB 21
FEB 22
FEB 23
FEB 21
FEB 25
FEB 26
FEB 27
FEB 28
NAB 1
HAR 2
BAB 3
HAH 4
HAP 5
HAB 6
PIAt 7
NA8 8
HAS 9
HAB 10
BAR 11
HAS 12
BAB 13
HAH 1«
HAR 15
HAR 16
BAR 17
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Seek
SON
BON
IDE
BED
THD
FRI
SAT
SON
H0»
TOE
HED
THU
FBI
SAT
SDN
HON
TUB
RED
THU
FBI
SAT
SDN
HON
TOE
HED
THD
FBI
SAT
SDN
RON
IDE
RED
THD
FRI
SAT
SON
HON
TOE
WED
THO
FBI
SAT
SDN
HON
TUB
HED
THO
FST
SAT
SDN
(1OH
TOE
HED
Sanp
Type
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
Bod
Load
2
43.
31.
31.
60.
29.
35.
21.
39.
35.
29.
25.
19.
20.
24.
20.
23.
20.
17.
28.
40.
22.
25.
9
0
4
4
2
6
1
2
8
0
2
0
0
8
3
1
6
i)
9
9
0
2
Or
-------
Date
of
ObST
BAR 18
BAR 19
fAB 20
HAS 21
BAR 22
HAH 23
BAB 21
BAR 25
BAB 26
HAP 27
BAB 29
BAR 29
BAR 30
BAB 31
APE 1
APE 2
APF 3
APE 4
APR 5
APR 6
APR 7
APR 8
APE 9
APE 10
APR 11
APR 12
APB 13
APE 14
APR 15
APR 16
APB 17
APR 18
APB 19
APE 20
APR 21
APR 22
APB 23
APR 24
APB 25
APB 26
APR 27
APR 28
APR 29
APR 30
BAT 1
BAT 2
BAY 3
HAY 4
BAY 5
BAY 6
BAY 7
BAY 8
BAY 9
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
leek
THO
PHI
SAT
SUN
BON
IDE
NED
THD
PRI
SAT
SON
BOH
TOE
RED
THO
PRI
SAT
SON
(ION
TDE
HED
THD
FBI
SAT
SON
ION
TOE
BED
THO
FRI
SAT
SON
HOD
TOE
RED
THO
FRI
SAT
SDH
HON
TOE
HED
THO
FBI
SAT
SDH
WON
TOE
HED
THO
FRI
SAT
SON
Samp
Type
~6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
99
6
99
99
6
Bod
Load
2
38.3
33. 2
41. 5
42. 8
20. 6
22. 2
30.7
32. 4
37. 1
35.9
29. 4
29. 0
31.4
25.5
32. 9
32.5
23.7
34. 3
37.9
31. 0
Org C
Load
1
22.4
25.6
37. 7
32.5
15.2
23.7
20.6
18.6
17.6
17. 1
25.8
34.4
27.8
31.3
26. 8
37.8
30.6
31.2
27.0
32.4
28. 1
28.8
28. 1
24. 3
21. 2
39.8
27.3
19. fl
29.0
30.5
28.9
29. 1
Orq C
Load
2
22. 4
25.6
37.7
32.5
15.2
23.7
20.6
18.6
17.6
17. 1
25.8
34.4
27. 8
31.3
26.8
37.8
30.6
31.2
27.0
32.4
28. 1
28. 8
28. 1
24.3
21.2
39.8
27. 3
19. 8
29.0
30.5
28. 9
29. 1
Bod
EFF
1
54. 3
66.7
45.6
66.7
59.4
45.8
69.7
75.0
74.5
72.5
78.4
74.4
73. 3
74. 1
62. 5
61.6
55.3
75.6
52.4
79. 2
BOd
EFF
2
66.7
72.5
63.9
69.9
40.6
33.3
67.7
55.0
47.7
53.6
37.2
55.6
47.6
69.4
54.3
39.4
57.7
67.9
59.0
SS
EFF
1
63.8
68.7
50.0
64.7
49.7
19. 1
55. B
45. 1
68.5
62. 4
63.2
72.6
44.7
69.0
67.6
61.3
79. 1
85.2
72.7
90. 2
89.7
67. 1
79.8
57.5
56. 1
49.7
59.5
57.7
73.9
S
EF
58.
53.
40.
64.
48.
36.
39.
68.
78.
64.
67.
59.
64.
56.
53.
64.
64.
80.
63.
75.
87.
57.
75.
60.
68.
60.
65.
53.
54.
S
F
2
3
8
8
1
3
9
7
a
i
7
3
5
6
0
6
4
6
1
9
1
6
6
1
2
8
6
2
6
3
Orq C
EFF
1
25.3
50.8
77.5
34.8
33.3
43.8
40.6
41.7
23.2
52.6
49.5
55.9
62.8
52.6
50.0
59.0
58.0
49.6
60.4
68.7
60.0
65.3
64.5
70.7
50.5
67.8
56.9
31.8
59.4
56. 1
51.6
71.5
Orq C
EFF
2
45.3
52.3
66.3
34.0
40.0
44.8
22.9
55.2
17.9
61.9
52.5
57.7
54.3
44.8
39.8
53.8
48.9
40.6
49.7
55.8
53.6
58.9
48.8
60.0
40.2
62.6
45.7
61.8
58.6
63.3
64. 1
59.3
Inf
Bod
Tel
171
180
186
96
120
99
120
153
153
162
129
135
147
144
138
132
156
168
183
P-1
Bod
79
89
93
77
45
48
47
51
44
63
63
62
47
75
56
95
60
62
80
65
77
F-1
Bod
65
94
86
90
56
54
45
36
38
48
42
47
42
36
«2
66
57
165
153
48
150
S-1
Bod
74
57
98
62
39
65
62
30
30
39
42
35
33
36
38
54
53
59
38
80
38
P-2
Bod
71
87
69
102
56
59
59
56
75
89
87
84
72
87
74
72
88
81
75
88
F-2
Eod
69
78
78
96
53
56
57
45
76
83
78
75
47
80
53
62
78
86
56
72
83
S-2
Bod
54
47
65
56
57
80
62
32
54
80
71
81
60
77
44
63
80
66
54
75
-------
oo
Date
of
ObsT
HAY 10
HAY 11
HAY 12
HAY 13
HAY 14
HAY 15
HAY 16
HAY 17
HAY 18
HAY 19
HAY 20
HAY 21
HAY 22
HAY 23
HAY 24
HAY 25
HAY 26
HAY 27
BAY 28
HAY 29
HAY 30
HAY 31
JOH 1
JON 2
JDH 3
JOH 4
JOH 5
JDH 6
JOH 7
JDH 8
JDH 9
JDH 10
JOH 11
JOH 12
JDH 13
JDH 14
JOH 15
JON 16
JDN 17
JOH 18
JDH 19
JOH 20
JOH 21
JON 22
JOH 23
JOH 24
JOH 25
JDH 26
JDN 27
JDH 28
JOH 29
JON 30
JDL 1
7 1
71
71
7 1
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Bee*
HOH
TOE
BED
THO
PRI
SAT
SOH
HOH
TOE
BED
THO
FRI
SAT
SOH
HOH
TOE
BED
THD
FBI
SAT
SON
HOH
TOE
RED
THD
FBI
SAT
SDH
HON
TOE
BED
THD
FPI
SAT
SOH
HON
TOE
BED
THO
FBI
SAT
SDH
HON
TDE
BED
THO
FSI
SAT
SDH
HON
TDE
»ED
THO
Sanp
Typa
99
99
99
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
Bod
Load
2
44.
21.
35.
43.
27.
23.
23.
35.
29.
25.
25.
20.
37.
16.
25.
4
1
3
4
6
0
6
9
5
6
2
1
8
9
5
Orq C
Load
1
38.
41.
52.
32.
29.
38.
33.
31.
27.
17.
32.
34.
31.
20.
25.
20.
24.
26.
16.
20.
17.
13.
18.
21.
22.
4
2
9
9
6
7
3
1
1
6
4
5
6
1
7
1
1
9
8
2
6
9
a
7
8
Orq
Loa
38.
41.
52.
32.
29.
38.
33.
31.
27.
17.
32.
34.
31.
20.
25.
20.
24.
26.
16.
20.
17.
13.
18.
21.
22.
C
d
2
4
2
9
9
6
7
3
1
1
6
4
5
6
1
7
1
1
9
8
2
6
9
8
7
8
Bod
EFF
1
77.
50.
77.
85.
67.
95.
91.
61.
78.
80.
84.
68.
75.
75.
75.
6
0
6
8
9
1
7
3
8
2
8
8
0
0
0
Bod
EFF
2
60.3
42.9
41.5
66.3
76.9
88.6
91.7
85.3
85.2
81.8
62.5
89.7
55.6
87.5
SS
EFF
1
65. 1
89. 8
86.5
92.0
88.6
94.0
89.7
85.6
86. 2
93.4
88.7
91.0
81.4
83.5
90.4
92.9
85.7
91.9
75.3
87.8
88.9
83.5
SS
EFF
2
52.7
84.7
87.6
P1. 1
86. 2
93. 3
89.7
74.2
81.6
92.8
90.9
68.7
81.4
87. 1
87.4
92.9
82.7
92.5
80.6
90.9
90.9
87. 6
Orq C
EFF
1
59. 3
62.8
64.9
55. 5
64.9
59.8
61.7
67. 3
68.0
64.0
76. 3
68.8
72.9
71.5
66.4
59.6
65. 1
68.3
45.0
59.6
67.9
65.5
51.9
63.7
54.4
Orq C
EFF
2
58.5
66.9
67.3
55.5
65.5
59.2
58.0
63.2
57.5
57.0
69.9
66.1
69.5
72.3
65.6
54.8
67.5
61. 3
69.2
67.9
71.4
74.1
67.9
69.0
59.6
Inf
Bod
156
84
147
246
156
123
132
186
156
162
198
144
204
108
144
P-1
Bod
62
70
92
112
68
29
41
70
60
47
58
77
76
47
53
P- 1
Bod
47
35
53
48
32
17
20
53
50
36
39
57
41
41
71
S-1
Bod
35
42
33
35
50
6
11
72
33
32
30
45
51
27
36
P-2
Bod
77
52
72
130
57
39
3
66
57
42
74
50
84
27
39
F-2
Bod
69
82
74
75
38
32
0
69
38
42
59
26
35
47
27
S-2
Bod
62
48
86
83
36
14
1 1
23
24
36
54
21
48
18
-------
Data
of
ObST
JOL
JDL
JDL
JDL
JOL
JD1
JDL
JOL
JOL
JOL
JOL
JDL
JDL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JOL
JTJL
JOL
JOL
JOL
JDL
AOG
AOG
AOG
AOG
AOG
AOG
AOG
ADG
ADG
AOG
IDG
ADG
AOG
AOG
AOG
AOG
ADG
AOG
AOG
AHG
ADG
AOG
AOG
2 71
3 71
4 71
5 71
6 71
7 71
8 71
9 71
10 71
11 71
12 71
13 71
14 71
15 71
16 7 1
17 71
18 7 1
19 71
20 71
2171
22 71
23 71
21 71
25 71
26 71
27 71
28 71
29 71
30 71
31 71
1 71
2 71
3 71
1 71
5 71
6 71
7 71
8 71
9 71
10 71
11 71
12 71
13 71
lit 71
15 71
16 71
17 71
18 71
19 71
20 71
2171
22 71
23 71
Day
of
Reek
FBI
SAT
SOH
BOM
TOE
BED
THO
PHI
SAT
SOD
BOD
TOE
BED
TBD
FBI
SAT
SDH
BOH
TOE
IED
THO
FBI
SAT
SOI
BOH
TOE
RED
THO
FBI
SAT
SON
SOU
TOE
RED
THO
FBI
SAT
SDH
BOM
TOE
BED
THO
FBI
SAT
SON
BON
TOE
MED
THO
FBI
SAT
SON
NO*
Sa«p
Type
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
99
99
6
6
6
6
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
Bod
Load
2
22.5
21.9
20.it
35.3
25. 2
21. 3
27. 2
12.0
20.0
32.8
23. 4
19. 1
21.3
30.9
15.0
35. 5
27.3
Orq C
Load
1
19.il
20. <4
25.0
23.4
17.4
12.0
21. 1
21.0
22.5
18.3
25.6
22. 1
20.3
19.11
22.2
26.3
2H. 6
23. 4
22.2
20.8
23.11
19.0
20.9
30. 2
20.5
24.9
25.9
15.6
22.9
20.9
20.6
20. 1
14. 6
28. 1
Orq C
Load
2
19.it
20.14
25.0
23. U
17.4
12.0
21. 1
21.0
22.5
18. 3
25.6
22. 1
20. 3
19.11
22. 2
26. 3
24.6
23. «
22.2
20.8
23.4
19.0
20. 9
30.2
20.5
24. 9
25.9
15.6
22,9
20. 9
20.6
20. 1
14.6
28. 1
Bod
BFF
1
86.8
81.6
82.6
85.4
82. 1
90.0
94. 1
92.6
73.7
88.3
73.7
88.5
36.4
81.5
88.5
59.0
75.0
Bod
EFF
2
92. 1
54.4
53.0
80.3
91. 1
75.0
68.6
80.2
90. 4
84.8
88.6
93.8
87.8
88. 1
76. 0
87.5
86.8
SS
EFF
1
86.3
86.0
73.9
87.3
92. 1
82.9
93.3
89.5
89.9
94.0
90.8
94.7
92.6
94.0
91. 6
77.2
94.5
76.0
88.9
94.3
88.5
86.4
92.4
91.9
79. 2
74.3
91.3
89.5
84 .9
92. 5
89.8
SS
EFF
2
90.9
76. 2
75.4
92. 1
90. 4
73.3
94.8
94.4
90.6
94.0
93.5
94.7
92.0
89.0
91.0
83.7
94.7
92.5
91.4
89. 9
77.9
93. 5
93.5
91.9
86.7
70.6
89.6
90.9
90. 4
79.6
Orq C
EFF
1
71.4
71.8
73.7
64.8
68. 1
48.5
72.6
72, 9
72.2
69.7
79.7
75.2
80.7
74.3
76.7
73.4
66.4
66.2
58.6
38.4
68.4
74.2
63.8
74.7
75.7
64.6
74.5
67.0
79.4
70.6
57.6
75.5
77.0
80.5
Orq C
EFF
2
75.6
65.0
64.7
66.4
69.9
50.0
69.2
75.4
77.8
77.0
81.8
76.0
77.2
75.2
75.3
75.5
77.9
75.2
79.3
75.8
76.3
83.1
69.5
81.8
76.3
71.5
79.4
70.0
77.1
68.2
69.6
70.8
73.8
In£
Bod
114
114
132
198
168
120
153
81
114
171
114
96
147
168
96
144
144
P-1
Bod
63
32
63
100
81
48
92
59
63
102
77
78
55
95
62
77
74
F-1
Bod
26
20
29
50
51
15
18
15
74
33
21
8
13
53
30
21
71
S-1
Bod
15
21
23
29
30
12
9
6
30
20
30
11
20
31
11
59
36
P-2
Bod
21
29
35
44
38
20
50
32
39
27
54
24
30
42
20
74
72
F-2
Bod
18
56
32
32
45
11
8
14
32
15
51
35
27
50
32
32
S-2
Bed
9
52
62
39
15
30
48
16
11
26
13
6
18
20
23
18
19
-------
Ol
o
Date
of
Obsv
ADG
AOG
AUG
AUG
AOG
AOG
AOG
AOG
SEP
SEP
SEP
SEP
SEP
^EP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
7 1
71
71
71
71
71
71
71
71
71
7 1
71
71
71
7 1
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
Day
of
ueek
TDE
HED
THO
FRI
SAT
SUH
HON
TOE
BED
THO
FRT
SAT
SOB
BON
TOE
HED
THO
FRI
SAT
SOH
HOB
TOE
HED
THO
FBI
SAT
SOH
HOH
TDE
HED
THO
FBI
SAT
SON
BON
TOE
HED
THO
FRI
SAT
SDH
MOR
TDE
HED
THO
FBI
SAT
SOH
SOH
TOE
HED
THO
FRI
Samp
Type
6
6
6
99
6
99
6
6
6
6
99
99
99
99
6
6
6
99
6
99
6
99
6
6
99
6
99
6
6
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
Load
2
25.
14.
2.
13.
BO.
52.
51.
40.
47.
30.
54.
55.
60.
49.
53.
55.
26.
55.
53.
0
6
2
6
it
5
5
1
4
4
0
3
5
0
5
1
6
1
5
Orq C
Load
1
28.9
7. 1
13.3
3.0
23.7
13.4
36. 1
37.8
34. 2
41.0
57.9
41.5
45.7
43.7
36.0
28. 8
54.3
40.2
30.8
32.3
29.7
32.9
35.9
28.6
38.7
46. 1
31.6
26.6
46. 5
32.0
38.7
35. 1
Orq C
Load
2
28. 9
7. 1
13. 8
3. 0
23.7
13.4
36. 1
37.8
34.2
41.0
57. 9
41. 5
45.7
43.7
36.0
28. a
54. 3
40.2
30.8
32.3
29.7
32.9
35.9
28.6
38.7
46. 1
31.6
26.6
46.5
32.0
38.7
35.1
Bod
EFF
1
90.
85.
87.
81.
64.
81.
84.
81.
79.
85.
85.
75.
89.
82.
-1.
56.
55.
0
0
1
a
0
1
,
3
5
2
9
8
9
4
4
3
6
Bod
EFF
2
88. 3
88. 9
93.2
87. H
64.7
82. 1
82.8
63.2
84.2
86.4
79.5
70.5
83.3
85.5
88. 1
60.4
75.0
75.9
88.3
SS
EFF
1
94.0
9 1. 3
79. 1
83.6
51.3
83.5
79.4
87.2
82.2
48. 1
60.7
82. 1
89. 5
84. 1
79. 1
84.8
88.6
88.8
66.3
78.5
66.4
81.5
72.4
71. 3
15.6
85.3
48.6
SS
EFF
2
94.0
87. 7
92.7
87. 1
80. B
BO, 9
63. 6
71.6
71.2
82. 1
72.6
83.4
83.6
81.9
77.4
75.9
80.4
77. 6
82. 1
71.0
80.0
82. 1
87.9
69.7
79.2
79.7
69.4
Orq C
EFF
1
71.2
77.9
77.2
81.6
77.2
76. 3
85.7
66.0
71.8
74.5
77.8
70. 5
51. 1
64. 1
63. 1
72.0
76.9
68. 1
72.4
71.0
74,8
66.9
72.9
74.8
75.9
56.6
38.9
74.1
40.6
72.7
49.2
Orq C
EFF
2
69.8
76. 2
75.9
78. 2
75.4
77.6
81.1
61.0
58.0
64.7
78.7
52.3
74.1
68.0
60.8
67.2
76.4
63.8
66.3
6J.6
70.4
75.2
69.4
81.9
76.7
67.5
56.9
82.7
70.3
70.3
67.8
Inf
Bod
120
153
132
159
300
201
192
144
171
132
156
183
234
165
159
159
72
174
180
P-1
Bod
57
89
78
90
1 14
74
72
56
100
75
48
54
63
59
44
77
32
44
83
F-1 S-l P-2
Bod Bod Bod
23 12 26
35 23 81
27 17 27
36 29 83
92 108 120
51 38 100
35 30 96
53 27 83
102
29 27 33
14 63
42 27 128
27 33 74
20 40 92
16 50
47 28 126
18 73 50
33 76 75
42 80 92
F-2
Eod
42
57
59
29
104
42
92
38
59
57
59
16
84
60
71
62
S-2
Bod
14
17
9
20
106
36
33
53
27
18
32
54
39
24
19
63
18
42
21
-------
t-n
Date
of
Obsv
CCT 16
OCT 17
OCt 18
OCT 19
OCT 20
OCT 21
OCT 22
OCT 23
OC" 24
OCT 25
OCT 26
OCT 27
OCT 28
OCT 29
OCT 30
OCT 31
H0¥ 1
NO? 2
HOV 3
ROT 4
HOV 5
HOV 6
HOT 7
HOT 8
HOV 9
HOV 10
HOV 11
SOV 12
HOV 13
NOV 1M
HOV 15
HOV 16
HOV 17
HOV 18
HOV 19
HOV 20
HOV 21
HOV 22
HOV 23
HOV 24
HOV 25
SOV 26
10V 27
HOV 28
HOV 29
HOV 30
DEC 1
DEC 2
DEC 3
DEC 4
DEC 5
DEC 6
DEC 7
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
Day
of
Reek
SAT
SDH
BOH
TOE
RED
THD
FSI
SAT
SDH
BOH
TDE
RED
THD
FFT
SAT
SDH
BOH
TOE
8 ED
THD
PRI
SAT
SDH
BOH
TOE
BED
THO
FEI
SAT
SDH
noH
TUB
RED
THD
FBI
SAT
SDH
HOH
TDE
RED
THD
FBI
SAT
SUH
HOH
TDE
HED
THO
FBI
SAT
SDH
BON
TOE
Bod
Saap Load
Type 2
6 21. 9
99
6
6
6
6 46 . '4
99
6 39.4
99
99
99
99
99
99
99
99
6
6 U5.2
6
99
99
99
99
99
99
6
6 44.9
99
6 MO. 3
99
6
6 147.0
6
6 44. 0
99
6
99
6
6
99
99
99
6 39. 2
99
6
15
15
15 U8.3
99
15 45.7
99
15
15 »«. 4
Orq C
Load
1
26. 3
39. 7
38.9
38. 8
39.9
20.7
143.U
<42.0
58. <4
51.8
39.2
314. 14
50. 6
149. 3
57.6
38. 7
29. 8
36.3
30. 2
114.6
U2. 8
140. 1
38. 0
36.7
36.9
149. 0
38. 9
Orq C Bod Bod
load BFF EFF
2 1 2
26.3 14.3 145.2
39.7
38. 9
38.8
39.9 81.11 86.14
20.7 71.14 88.6
143. 14
42.0 73.2 72.5
58. U
51. 8
39.2 70.9 65.5
34.4 66.7 85.5
50.6
49.3 65.0 76.3
57.6
38.7 76.4 76.14
29.8
36. 3
30. 2
114. 6 67. 8 81.6
42.8
40. 1
38.0
36.7 76.7 78.9
36.9 71.8 73.4
49.0
38. 9 77. 1 70.6
SS
EFP
1
86.3
67.2
68. 3
60.4
76. 1
79.6
83.5
78.0
71. 4
69.6
80.2
84.0
85.0
79.4
82.B
85. 1
81.6
84. 2
83. 6
75.7
90. 2
B6.5
86.4
SS
EFF
2
81.
77.
74.
75.
84.
73.
75.
78.
76.
60.
83.
68.
82.
77.
90.
72.
83.
71.
75.
77.
72.
69.
84.
71 .
77.
4
6
2
0
3
5
0
0
6
2
1
9
1
4
2
3
7
5
6
4
7
6
7
8
7
Orq C
BFF
1
69.6
61.5
65.7
64.7
69. 1
21.8
61.0
61.3
64.5
64.7
54. 2
72. 3
61.3
64.0
71.0
63.4
76.7
64.3
74.0
7S.5
70.7
70.8
73.4
77.5
73. 1
Orq C
EFF Inf
2 Bod
71
67
70
72
.4 93
.8
. 1
. 1
75.0 177
50
61
56
64
62
61
68
58
68
74
62
70
69
66
60
68
72
70
70
67
71
70
.9 105
.6
.3 153
.5
.2
. 1 165
.6 186
. 1
.3 177
.7
. 1 165
.5
.3
.9
.0 174
.7
.9
.7
.8 180
.1 177
.3
.9 153
P-1 F-1 S-1 P-2 F-2 S-2
Bod Bod Bod Bod Bod Bod
48 45 89 77 56 51
56 29 33 69 65 24
32 30 30 53 12 12
72 69 41 72 45 42
72 53 48 90 42 57
96 53 62 83 39 27
56 47 62 81 47 142
62 54 39 84 1)4 39
66 5U 56 75 36 32
81 32 42 86 48 3B
71 59 50 R1 47
74 60 35 87 75 45
-------
Date
of
Obsv
DEC 8
DEC 9
DEC 10
DEC 11
DEC 12
DEC 13
DEC 14
DEC 15
DEC 17
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 24
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 30
DEC 31
JAN 1
JAN 2
JAR 3
JAN 4
JAN 5
JAN 6
JAB 7
JAN 8
JAN 9
JAN 10
JAN 11
JAN 12
JAS 13
JAN 14
JAN 15
JAN 16
JAN 17
JAN 18
JAN 19
JAN 20
JAN 21
JAH 22
J4N 23
JAN 21
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
Meek
WED
THB
FBI
SAT
SON
HON
TOE
HED
FPI
SAT
SUN
HOS
TDK
HED
THO
FBI
SAT
SO*
HON
TUB
BED
THO
FRI
SAT
S0N
MON
TOE
WED
THU
FRT
SAT
SON
MON
TDE
WED
THO
FRI
SAT
SON
MOM
TDE
WED
THU
FRI
SAT
SOS
BOH
SaBp
pvpe
15
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15
15
99
99
15
99
15
15
15
15
99
15
99
15
Bod Orq C Orq C
Load Load Load
2 1 2
19.
51.3 39.
11. 1 30.
49.
314.
50.5 38.
30.
27.
21.6 18.
13.
31.5 28.
29.
32.4 24.
15.
34.2 27.
12.
41.
27.7 22.
37.
32.6 23.
32.
43.4 38.
40.
49. 1 53.
41.3 27.
41.
1
9
7
9
9
0
5
0
9
8
7
4
0
2
1
3
1
2
9
2
1
0
3 .
7
2
8
49. 1
39.9
30. 7
49.9
34. 9
38.0
30. 5
27.0
18.9
13. 8
28. 7
29.4
24.0
15.2
27. 1
12.3
41. 1
22.2
37.9
23. 2
32. 1
38.0
40. 3
53.7
27.2
41.8
Bod Bod SS
EFF EFF EPF
1 2 1
78.
79.3 69.7 82.
65.1 80.
70.
76.
71.4 67.6 7 1.
76.
78.
84.0 76.0 82.
65.
84.3 79.9 85.
89.
83.1 84.7 88.
87.
67.7 80.2 44.
36.
75.0 72.9 58.
-9.
54.3 58.7 37.
57.
78.5 64.4 86.
91.
67.2 58.7 40.
74.6 62.4 85.
57.
4
6
3
8
3
7
7
8
8
6
1
9
9
4
0
8
1
3
2
a
5
8
1
0
2
SS
EPF
2
79.
74.
76.
72.
71.
82.
67.
68.
79.
68.
71.
88.
85.
81.
48.
79.
47.
-1.
68.
62.
90.
64.
71.
75.
7
9
8
6
3
7
2
2
0
2
9
4
7
8
3
7
0
8
6
9
0
1
7
4
Orq C
EFF
1
77.0
72.7
62.3
68. 2
66.2
67.7
68.9
62. 2
71.0
45.2
78.0
75.9
65.0
47. 7
51. 3
66. 2
57. 1
66.9
5J. 1
52.2
74.2
65.8
72.0
69.7
46. 3
Orq C
EFF Inf P-1 F- 1
2 Bod Bod Bod
75.
66.
75.
57.
66.
66.
58.
64.
48.
73.
64.
69.
50.
65.
68.
53.
63.
45.
53.
55.
57.
65.
55.
73.
9
2 198 89 87
195 87 80
3
0
5 210 86 93
2
6
9 150 47 30
4
7 204 71 35
7
3 189 54 42
0
1 192 69 38
3
2 96 51
3
9 138 75 89
7
2 177 78 74
8
2 189 102 98
5 181 84 72
8
S-l P-2 F-2 S-2
Bod Bod Bod Bod
41 99 86 60
68 81 74
60 106 56 68
24 53 47 36
32 74 50 41
32 71 35 29
62 71 32 36
24 41 26 26
63 86 14 57
38 78 75 63
62 130 108 78
46 94 92 68
-------
Date Day
of of Sa»p
Obsv Ueek Type
HOY
HOY
ROY
ROY
ROY
ROY
ROY
ROY
HOY
ROY
ROY
HOY
HOY
ROY
HOY
ROY
ROY
ROY
ROY
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
19 69
19 69
20 69
20 69
21 69
21 69
22 69
22 69
23 69
23 69
24 69
24 69
25 69
25 69
26 69
27 69
28 69
29 69
30 69
1 69
1 69
2 69
2 69
3 69
3 69
4 69
4 69
5 69
5 69
6 69
6 69
7 69
7 69
8 69
8 69
9 69
9 69
10 69
10 69
11 69
1 1 69
12 69
12 69
13 69
13 69
14 69
14 69
15 69
15 69
16 69
16 69
17 69
17 69
HED
HED
THD
THU
FRI
FRI
SAT
SAT
SDN
SON
BOH
BOH
TDE
TOE
HED
THU
FRI
SAT
SDH
BOH
BON
TDE
TOE
HED
HED
THU
THU
FBI
FRI
SAT
SAT
SDH
SDH
BOH
HOH
TOE
TOE
HED
HED
THD
THU
FRI
FRI
SAT
SAT
SDH
SDH
BOH
HOH
TOE
TOE
HED
HED
6
4
6
4
6
7
4
7
4
7
6
4
6
4
4
4
6
4
6
4
6
4
6
4
6
7
4
7
4
7
6
4
6
4
6
4
6
4
7
6
7
4
7
4
4
6
6
4
6
4
Inf
SS
246
176
171
171
209
133
180
180
207
155
132
199
171
126
126
209
186
176
139
168
137
137
222
178
169
P-1
SS
93
73
79
74
74
83
1 1
52
52
88
58
36
48
53
75
75
77
62
80
22
45
46
46
62
88
73
P-1
SS
~55
47
46
73
73
50
8
23
23
49
37
14
28
24
53
53
51
36
8
1
31
20
20
36
56
43
S-1
SS
~48
37
51
44
44
64
10
45
45
46
39
10
43
25
41
41
43
39
30
9
21
26
26
42
56
37
P-2
SS
Toi
88
102
98
98
135
87
87
87
119
96
74
86
82
47
47
135
88
90
19
67
64
64
101
72
67
F-2
SS
83
55
51
57
57
107
42
42
42
73
57
29
47
47
27
27
100
51
38
11
42
38
38
51
53
58
S-2
SS
40
49
56
58
58
65
9
33
33
45
47
19
43
34
31
31
96
39
26
9
32
23
23
23
38
40
Inf
Orq
C
126
126
105
105
105
127
127
102
102
114
1 14
102
102
98
98
98
115
115
107
107
109
109
109
P-1
Orq
C
58
58
57
57
57
60
60
31
31
62
62
49
49
47
47
47
59
59
53
53
47
47
47
F-1
Orq
C
33
33
58
58
58
44
44
35
35
42
42
32
32
38
38
38
44
44
32
32
44
44
44
S-1
Orq
C
38
38
47
47
47
36
36
44
44
47
47
38
38
35
35
35
56
56
37
37
43
43
43
P-2
Orq
C
65
65
58
58
58
103
103
41
41
81
81
49
49
57
57
57
75
75
53
53
55
55
55
F-2
Orq
C
43
43
68
68
68
48
48
45
45
57
57
37
37
40
40
40
47
47
41
41
45
45
45
S-2
Orq
C
42
42
54
54
54
44
44
37
37
49
49
48
48
33
33
33
48
48
34
34
33
33
33
Inf
NO 2
0.05
0.05
0.05
O.C5
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
P-1
HO 2
0.05
0.05
0.05
0.05
0.05
0.18
0. 18
0.06
0.06
0.05
0.05
0.05
0.05
C.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
F-1
N02
0.05
0.05
0.05
0. 10
0. 10
0.26
C. 26
0. 12
0. 12
0. 10
0. 10
0.09
0.09
0.09
0. 10
0. 1C
0.09
0.09
0.05
0.05
0. 05
-------
Oi
-p-
Date
of
Obs»
DEC 18
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 2<4
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 29
DEC 30
DEC 30
JAN 1
JAN 2
JAH 5
JAH 6
JAN 7
JAN 8
JAH 9
JAH 10
JAH 11
JAS 12
JAH 13
JAS 11
JAR 15
JAH 16
JAH 17
JAH 18
JAH 19
JAH 20
JAH 21
JAH 22
JAH 23
JAH 24
JAH 25
JAH 26
JAH 27
JSN 28
JAH 29
JAH 30
JAH 31
FEB 1
PEB 2
FEB 3
PEB tt
FEB 5
FEB 6
FEB 7
FEB 8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
Day
of :
Week '
THO
THU
FPI
SAT
SUN
HON
TOE
BED
THO
PET
SAT
SDH
MON
SON
TOE
TUB
THO
FSI
NOD
TUB
MED
THO
FSI
SAT
SON
HOH
TOE
WED
THU
FSI
SAT
SON
WOH
TOE
BED
THO
FBI
SAT
SDH
HON
TOE
MED
THO
FBI
SST
SON
HON
TOE
WED
THU
FEI
SAT
SUN
Samp
rype
6
4
6
t
6
U
It
4
4
4
4
4
7
7
7
4
4
4
4
7
7
7
4
4
4
4
4
4
Tnf
SS
153
143
49
198
198
189
1fl9
157
157
104
104
104
224
224
257
257
111
111
111
106
106
210
210
P-1
SS
51
30
59
85
85
61
61
51
51
39
39
39
53
53
64
64
40
40
40
52
52
73
73
P-1
SS
53
74
74
57
57
33
33
50
50
50
69
69
162
162
38
38
38
31
31
53
53
3-1
S3
34
17
28
30
30
30
30
24
24
30
30
30
18
18
56
56
15
15
15
50
50
37
37
P-2
S3
43
68
87
84
84
67
67
59
59
42
42
42
91
91
61
61
43
43
43
107
107
108
108
F-2
S3
46
20
40
53
53
47
47
40
40
56
56
56
71
71
69
69
51
51
51
49
49
69
69
S-2
SS
19
18
27
38
38
30
30
36
36
30
30
30
27
27
30
30
27
27
27
38
38
47
47
Tnf
Orq
C
141
141
143
143
139
139
139
135
135
154
154
121
121
121
116
116
87
87
104
104
P-1
Orq
C
65
65
62
62
39
39
39
61
61
66
66
51
51
51
40
40
56
56
56
56
P-1
Orq
C
53
53
45
45
52
52
52
57
57
91
91
40
40
40
30
30
37
37
49
49
S-1
Orq
C
45
45
47
47
42
42
42
34
34
46
46
31
31
31
25
25
50
50
43
43
P-2
Orq
C
76
76
82
82
50
50
50
72
72
59
59
58
58
58
58
58
80
80
75
75
F-2
Orq
C
59
59
52
52
54
54
54
51
51
60
60
54
54
54
39
39
48
48
59
59
3-2
Orq
C
48
48
49
49
46
46
46
41
41
43
43
45
45
45
36
36
47
47
53
53
Inf
NO
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
i2
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
P-
N
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
0
0
0
0
0
1
02
.30
.30
.30
.30
.30
.30
.30
.30
.30
.30
. 30
.30
.30
. 30
.30
.30
.30
.30
.30
. 30
P-1
N02
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.3C
0.30
0.30
0.3C
0.30
0. 30
0.30
0.30
0.30
0.30
0.3C
0. 30
0.30
-------
Ln
Date
of
Obsv I
FEB 9 70
FEB 10 70
FEB 11 70
FEB 12 70
FEB 13 70
FEB 11 70
FEB 15 7C
FEB 16 70
FEB 17 70
FEB 18 70
FEB 19 7C
FFB 20 70
FEB 21 70
FEB 22 70
FEB 23 70
FEB 24 70
FEB 25 70
FEB 26 70
PEB 27 70
FEB 28 70
BAB 1 70
BAB 2 70
BAB 3 70
BAB 4 70
BAB 5 70
BAB 6 70
BAB 7 70
MAE 8 70
BAB 9 70
HAS 10 70
BAB 11 70
NAB 12 70
NAB 13 70
BAB 14 70
BAB 15 70
BAB 16 70
BAB 17 70
BAB 18 70
FAB 19 70
KAB 20 70
BAB 21 70
BAB 22 70
BAB 23 70
BAB 2« 70
MAE 25 70
BAB 26 70
HAB 27 70
BAB 28 70
BAB 29 70
BAB 30 70
HAB 31 70
APB 1 7C
APS 2 70
Day
of £
leek "
BON
TUB
BED
THO
FP,I
SAT
SON
BOH
THE
NED
THO
FBI
SAT
SUN
BON
TOE
MED
THD
FBI
SAT
SDH
BON
TUB
MED
THO
FBI
SAT
SON
BON
TDK
BED
THO
FPT
SAT
SUN
DON
TOE
MED
THD
FBI
SAT
SUN
BON
TOE
BED
THU
FBI
SAT
SON
BON
1'UE
WED
THU
jalp
rype
a
4
14
4
7
7
7
14
14
14
14
7
7
7
14
4
14
14
14
4
14
4
7
7
7
14
14
14
14
14
a
u
14
4
14
14
14
14
14
14
14
Inf
SS
1«7
1147
232
232
168
168
168
192
192
165
165
215
215
215
191
191
2147
247
310
310
99
99
123
123
123
156
156
1148
1148
1 114
1114
1914
1914
176
176
121
121
220
220
1<40
H40
P-1
SS
36
36
72
72
39
39
39
84
814
79
79
148
148
148
75
75
40
140
66
66
148
148
142
142
142
59
59
55
55
36
36
66
66
70
70
79
79
129
129
75
75
F-1
SS
64
614
72
72
85
85
85
66
66
60
60
23
23
23
58
58
37
37
71
71
69
69
33
33
33
a 14
1414
42
42
36
36
60
60
102
102
75
75
236
236
145
«5
S-1
SS
33
33
48
48
31
31
31
514
514
32
32
141
141
141
414
<414
20
20
62
62
28
28
22
22
22
30
30
27
27
23
23
30
30
59
59
63
63
62<4
624
58
58
P-2
SS
90
90
127
127
100
100
100
120
120
111
111
77
77
77
1 11
111
67
67
129
129
87
87
71
71
71
83
83
90
90
90
90
91
91
1 38
138
137
137
160
160
108
108
F-2
SS
63
63
92
92
89
89
89
68
68
62
62
58
58
58
115
115
514
514
129
129
142
142
62
62
62
98
98
71
71
57
57
90
90
119
119
201
201
1148
1«8
71
71
S-2
SS
U5
145
1014
1014
60
60
60
62
62
56
56
53
53
53
65
65
56
56
97
97
140
140
214
214
24
51
51
37
37
37
37
65
65
97
97
136
136
98
98
614
614
Inf
Orq
C
115
115
139
139
119
119
119
126
126
120
120
137
137
137
151
151
146
1U6
179
179
108
108
112
112
112
128
128
90
90
108
108
140
140
118
118
109
109
91
91
99
99
P-1
Orq
C
~5~T
51
65
65
57
57
57
60
60
58
58
55
55
55
65
65
55
55
69
69
51
51
48
48
48
59
59
56
56
43
43
60
60
52
52
61
61
65
65
54
54
F-1
Orq
C
51
51
57
57
58
58
58
47
47
47
47
38
38
38
56
56
49
49
60
60
55
55
39
39
39
49
49
48
48
37
37
55
55
58
58
52
52
91
9 1
48
48
S-1
Orq
C
41
41
49
49
39
39
39
43
43
47
47
38
38
38
51
51
37
37
55
55
40
40
12
12
12
41
41
43
43
32
32
39
39
46
46
40
40
34
34
49
49
P-2
Orq
C
75
75
85
85
68
68
68
65
65
72
72
65
65
65
81
81
66
66
94
94
67
67
69
69
69
58
58
67
67
67
67
106
106
73
73
115
115
84
84
78
78
F-2
Crq
C
60
60
66
66
63
63
63
56
56
51
51
55
55
55
83
83
66
66
71
71
53
53
50
50
50
66
66
59
59
56
56
70
70
74
74
113
113
72
72
71
71
S-2
Orq
C
52
52
69
69
58
58
58
50
50
46
46
49
49
49
67
67
54
54
70
70
45
45
41
41
41
62
62
52
52
40
40
58
58
57
57
85
85
64
64
59
59
Inf
N02
0.30
C.3C
0.30
0.30
0.30
0.30
0.3C
0.3C
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.05
0.05
0.30
0.30
P-1
N02
0.30
0.30
0.30
0.30
0. 30
0.30
0. 30
0. 30
0.30
0.30
0.30
0.30
0.30
P. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.05
0.05
0.30
0.30
F-1
N02
0.30
0. 3C
0.30
C.3C
0.3&
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0. 30
0.30
0.05
0.05
0.30
0.30
-------
Ul
Date
of
Ohsv
APR
APR
APR
APR
APR
APR
APS
APR
»PR
APR
APR
*PR
APH
APR
APR
APR
APR
APR
APR
APS
APS
APS
APH
APR
APR
APS
APR
APR
RAY
HAY
KAY
CAY
CAY
HAY
NAY
HAY
HAY
MAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
"AY
3
u
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
111
15
16
17
18
19
20
21
22
23
2U
25
70
7C
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Week
FHI
SAT
SUN
MON
TUB
WED
THD
FRI
SAT
SUN
HON
IDE
BED
THD
FBI
SAT
SDN
HOI
TDK
WED
THD
FRI
SAT
SDN
HON
TOE
WED
TH'J
FRI
SAT
SDN
MOO
TOE
WED
THD
FRI
SAT
SOU
HON
TOE
WED
THD
FRI
SAT
SOB
MOB
TOE
WED
THU
FRI
SAT
SDN
HOI
Samp
Type
7
7
7
14
4
4
4
7
7
7
4
4
7
7
7
7
7
7
14
4
l»
(t
7
7
7
14
H
6
6
6
6
6
6
Tnf
SS
100
100
100
1145
1145
122
122
176
176
1146
146
1146
207
207
207
186
186
186
401
1401
193
218
98
160
116
78
P-1 F-1 S-1 P-2
S3 SS SS SS
148 H7 26 814
H8 H7 26 814
148 147 26 814
1414 159 28 105
14U 159 28 105
68 51 27 121
68 51 27 121
125
125
92
92
92
89
89
89
64
64
64
93
93
72
109
21 25 3 46
77 42 86 61
13 34 45 48
12 20 9 55
F-2
SS
104
104
104
84
84
86
86
72
72
177
177
177
101
101
101
95
95
95
84
84
309
93
30
63
40
24
S-2
SS
~?4
54
54
54
54
72
72
104
104
91
91
91
74
74
74
50
50
50
30
30
82
64
7
37
14
9
Inf P-1 F-1 S-1
Orq Orq Orq Org
c c c c
105 60 45 32
105 60 45 32
105 60 45 32
107 62 72 42
107 62 72 42
114 65 43 46
114 65 43 46
112
112
89
89
89
128
128
128
110
110
110
74
74
98
117
65 54 45 32
99 44 39 40
115 48 35 37
92 36 31 27
P-2
Orq
C
73
73
73
73
73
86
86
84
84
61
61
61
78
78
78
78
78
78
74
74
64
72
46
56
58
52
F-2
Orq
C
77
77
77
70
70
76
76
85
85
81
81
81
74
74
7<4
67
67
67
68
68
106
68
35
44
51
42
S-?
Orq
C
59
59
59
62
62
66
66
67
67
69
69
69
56
56
56
51
51
51
66
66
52
63
31
40
36
48
Inf
NO 2
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.3C
0.3C
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
P-1 F-1
NO2 N02
0.30 0.30
0.30 0.30
0.30 0.30
0.30 C.30
0.30 0.30
0.30 0.30
0.30 C.30
0.30 0.30
0.30 0.25
-------
Ui
Data
of
ObST
BAY
HAY
HAY
HAY
BUY
BAY
JON
JON
JUH
JDK
JOH
JON
JUH
JOB
JON
JDN
JDH
JON
JUH
JOH
JDH
JON
JDH
JDH
JOH
JDH
Jt'N
JDH
JDH
JOH
JDH
JDH
JOH
JDH
JDH
JDR
JD1
JOL
JDL
JOL
JOL
JDL
JO I,
JOL
JDL
JOL
JPL
JTJL
JOL
JDL
JOL
JDL
JUL
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
11*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of Saap
Reek Type
TOE
BED
THO
FBI
SAT
SDH
NOH
IDE
RED
THO
FBI
SAT
SOH
BOS
TOE
RED
THO
FBI
SAT
SOH
HON
TOE
RED
THO
FRI
SAT
SDH
NOH
TOE
MED
THO
FHI
SAT
SDH
HON
TOE
RED
THU
FBI
SAT
SOH
BOH
TOE
WED
THO
FBI
SAT
SDH
HON
TOE
WED
THO
FBI
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
t>
6
6
6
6
6
6
6
6
6
6
6
6
6
Inf
SS
198
124
104
88
286
139
166
201
171
160
103
165
269
154
124
153
224
157
162
161
163
131
126
126
136
(39
132
1r.r>
P-1
SS
57
66
31
12
48
21
64
64
36
30
32
39
52
44
38
43
46
48
52
49
23
19
28
25
25
24
18
22
F-1
S3
67
66
30
32
42
25
38
12
31
39
65
30
61
31
41
43
54
40
52
28
23
45
11
24
29
23
17
S-1
SS
58
180
22
18
37
28
21
27
8
19
21
41
26
25
15
40
32
25
30
42
19
15
9
14
16
11
11
P-2
SS
37
89
45
40
97
47
61
63
77
50
99
85
60
67
47
61
68
63
76
88
70
62
64
46
65
55
65
F-2
SS
132
92
35
41
37
189
44
57
56
40
51
61
48
43
131
76
39
46
48
28
57
35
38
39
S-2
SS
75
69
19
14
25
13
30
33
18
28
32
57
45
40
16
36
40
34
45
51
30
22
34
13
35
28
18
24
Inf
Orq
C
87
142
109
113
129
87
78
114
142
132
99
126
132
104
105
104
121
134
179
100
104
134
125
109
102
131
1 15
99
P-1
Orq
C
42
45
39
36
52
40
57
57
48
49
49
61
51
54
50
47
10
69
70
50
43
45
41
40
42
45
30
34
F-1
Orq
C
44
43
37
32
36
34
30
37
34
42
39
58
38
44
48
48
50
49
44
39
40
34
49
29
33
38
26
26
S-1
Orq
C
35
40
30
29
34
32
39
46
28
32
33
42
37
34
39
39
39
39
37
43
35
33
30
30
33
28
25
P-2
Orq
C
55
58
54
52
66
51
52
68
63
65
78
70
61
66
59
52
71
78
72
67
70
65
57
54
62
47
52
F-2
Orq
C
53
43
42
46
57
55
46
54
61
42
46
67
52
53
97
66
51
69
44
35
46
47
43
42
S-2
Orq
C
40
39
38
34
46
35
40
48
39
43
46
61
40
48
44
50
49
47
50
48
41
44
38
29
42
45
34
35
Inf
N02
0.02
0.01
0.01
0.01
0.01
0.01
0.10
0. 10
0.10
0. 10
0.01
0.30
0.05
0.05
0.05
0.05
0.05
0.01
0.01
0.01
P-1
NO 2
0.25
0. 46
0.87
0.02
0.08
0.24
0.50
0.10
0.33
0. 10
0.01
0.31
0.05
0.05
0.75
0.30
0.05
0.27
0.07
0. 18
F-1
N02
0.24
0.48
C. 81
0.72
0.70
0.98
0. 70
0.50
0.68
0.27
0.23
0.03
0. 30
0.35
0. 90
0.55
0.50
0.75
0. 19
0.27
-------
00
Date
of
Obs»
JOL
JOL
JO I
OUL
JOL
JOL
JDt
JDL
JIJL
JOL
JOL
JDL
JOL
JOL
AOG
HOG
APG
AOG
AOG
SDG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
ADG
ADG
AOG
AUG
AOG
ADG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
18
19
20
21
22
23
21
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
38
37
34
32
14
46
24
45
39
37
29
33
57
46
37
23
42
55
39
39
36
F-1
SS
43
60
40
45
43
19
26
37
46
22
22
27
16
19
10
31
29
24
13
24
37
29
10
24
21
S-1
SS
31
19
18
32
35
19
20
24
21
19
14
14
21
13
12
9
17
25
13
8
12
21
12
11
R
14
P-2
SS
49
46
44
53
54
41
36
50
40
47
23
43
35
28
29
27
43
39
14
38
52
56
65
33
34
P-2
SS
60
41
37
99
48
19
46
23
22
11
15
26
13
24
142
21
a
29
29
13
9
31
21
S-2
SS
48
31
19
43
33
17
23
24
17
17
13
10
33
9
10
9
22
12
9
5
12
16
20
12
13
15
Inf
Or q
c
139
93
14S
80
113
100
116
96
109
118
120
161
159
115
87
92
141
97
73
90
99
88
95
188
94
128
P-1
Orq
C
63
46
58
72
54
52
52
39
62
59
50
63
60
62
45
47
66
49
50
47
47
64
46
60
53
47
r- i
Orq
c
55
50
53
65
46
39
38
47
49
45
44
46
4 1
35
31
43
38
37
38
34
44
54
31
38
37
"-1
Orq
C
49
37
41
60
41
40
46
35
42
40
39
42
33
40
31
27
39
36
34
33
29
38
37
29
30
36
P-2
Orq
C
49
44
42
72
48
45
48
43
52
50
40
48
51
50
43
37
49
44
43
48
62
62
55
54
55
F-2
Orq
c
47
35
39
88
46
35
40
38
37
32
33
33
24
30
68
32
27
32
37
33
29
45
35
s-r
Orq
c
42
33
31
49
39
33
38
37
38
35
30
32
39
33
29
27
34
26
30
28
28
38
37
28
37
33
Inf
N02
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.01
.01
.01
.05
.05
.01
.01
.01
.01
.01
.01
.02
.01
.02
.01
.01
P-1
N02
0.01
0.01
0.01
0.05
0.05
0.01
0.01
0.01
0.03
0.05
0.08
0.20
0.05
0.01
0.01
0.01
F-1
NG2
C. 13
0.42
0. 82
0. 15
0. 33
0.29
0.32
0.20
C.21
0. 1C
0.20
(i. 13
0.01
0.15
0. 15
-------
Ul
VO
Data
of
Obsr
"sit IT TO
SEP 12 70
SBP 13 70
SIP 13 70
SBP 14 70
SBP 15 70
SEP 15 70
SEP 16 70
SBP 17 70
SBP 17 70
SEP 18 70
SBP 19 70
SEP 20 70
SBP 20 70
SBP 21 70
SBP 22 70
SBP 22 70
SEP 23 70
SBP 2* 70
SBP 2* 70
SBP 25 70
SEP 26 70
SBP 27 70
SEP 27 70
SBP 28 70
SBP 29 70
SBP 29 70
SEP 30 70
OCI 1 70
OCt 1 70
OCT 2 70
OCI 3 70
OCT 4 70
OCT 4 70
OCT 5 70
OCT 6 70
OCT 6 70
OCT 8 70
OCT 7 70
OCT 9 70
OCT 10 70
OCT 11 70
OCT 12 70
OCT 13 70
OCT 14 70
OCT 15 70
OCT 16 70
OCT 17 70
OCT 18 70
OCT 18 70
OCt 19 70
OCT 20 70
OCT 20 70
D*T
of
•Mk
FBI
SAT
SOI
SOI
•01
TOE
TUB
IED
THO
THO
FBI
SAT
SOI
sn«
HOI
TOE
TOE
• BD
THO
THO
FBI
SAT
3D*
SO*
B0«
TOE
TOE
BED
mo
THO
FBI
SAT
SOI
SO*
HOI
TOE
TOE
THO
BED
FBI
SAT
SOI
BOH
TOE
BED
THO
FSI
SA?
SDK
SOI
BO*
TOE
TDK
Sa«p
TTIM
* Tt^*
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
4
13
6
6
4
6
12
6
12
6
Inf
SS
96
88
166
168
144
103
157
190
189
143
187
167
142
150
183
159
238
113
213
278
172
P-1
SS
36
40
39
SO
38
35
*2
52
49
56
HO
72
71
54
15
36
36
Kin? Mf~7
•U f. II VX PVA
__•__ _. • -. _„ _••__
0.01 0.01 0.12
0.01 0.01 0.12
0.01 0.01 0.12
0.01 0.01 0.11
0.01 0.01 0.11
0.01 0.01 0.11
0.01 0.01 0.16
0.01 0.01 0.16
0.01 0.01 0.16
0.01 0.70 0.25
0.01 0.70 0.25
0.01 0.32 0.32
0.01 0.32 0.32
-------
Date
of
obsv
OCT
OCT
CCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
HOT
HOT
NOT
NOT
10 T
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
NOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOV
HOT
HOT
NOT
HOT
DEC
DEC
DEC
DEC
21
22
22
23
21
25
25
26
27
27
28
29
29
30
31
1
1
2
3
4
5
5
6
7
8
a
9
10
10
11
12
13
1lt
15
16
17
IB
19
20
21
22
23
21
25
26
27
28
29
30
1
1
2
3
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Week
UED
THU
THU
FBI
SAT
SOS
SOS
(ION
TOE
THE
BED
THO
THU
FBI
SAT
SOU
SOH
MOD
TOE
BED
THU
THD
FHI
S»T
SDH
SON
BON
TOE
TOE
UED
THU
FEI
SAT
SUH
BON
TOE
SED
THO
FBI
SAT
SON
BOH
TUB
THD
THU
FEI
SAT
SDH
BON
IDE
TUB
HED
THU
Saa p
Type
6
6
12
13
12
6
6
12
6
6
12
6
10
6
6
10
5
10
6
6
10
6
6
6
6
6
12
6
6
Tnf
S3
227
142
188
196
170
207
283
1U2
331
221
203
154
129
151
190
227
200
16U
131
P-1
ss
1)5
67
55
U8
39
37
313
29
173
131
46
53
3d
38
U3
68
U2
101
25
F-1
SS
30
18
27
2H
28
29
362
31
67
55
38
60
119
50
15
U3
32
112
35
S-1
SS
31
33
20
19
25
15
25H
111
32
19
25
41
16
33
17
37
20
26
U7
P-2
S3
82
71
65
79
80
79
169
76
60
86
130
74
91
72
88
95
76
76
F-2
SS
54
84
58
50
50
50
441
66
146
55
58
61
54
62
73
84
72
59
87
S-2
SS
43
41
38
45
30
49
288
28
121
33
44
50
40
52
51
53
53
48
66
Tnf
Orq
C
95
109
126
127
1 10
130
97
146
136
110
90
81
127
131
129
127
133
116
P-1
Orq
C
51
66
60
62
47
135
35
95
90
61
34
36
48
47
61
48
74
44
F-1
Orq
C
36
59
47
57
39
131
32
65
61
53
34
31
47
51
50
38
50
51
5-1
Orq
C
40
57
42
50
36
106
27
50
47
50
22
27
43
40
46
35
48
46
P-2
Orq
C
67
43
83
91
71
206
52
71
68
5")
44
81
73
79
70
75
87
F-2
On
C
72
33
68
SB
57
166
45
94
62
56
39
34
64
73
75
54
67
79
S-2
Orq
C
57
26
57
65
57
137
37
79
59
51
36
38
68
56
67
50
69
72
Inf r-1 F-1
N02 N02 NC2
0.01 0.32 0.32
0.01 0.19 0.36
0.01 0.19 0. 36
0.01 0.19 0.36
0.01 0.38 0.41
0.01 0.38 0.41
0.02 0.35 0.40
0.02 0.35 0.40
0.01 0.40 0.33
0.01 0.49 0.27
-------
Date
of
Obsr
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JAN
JAN
JAN
JAN
JAN
JAM
JAH
JAN
JAN
JAN
JAN
JA»
JAN
JAN
JAN
JAH
JAN
JAN
JAN
JAf
JAH
JAS
JAN
J
4
5
6
6
7
8
8
9
10
10
11
12
13
in
15
16
17
20
21
22
23
21
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
in
15
16
17
18
19
20
21
22
23
VO
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
71
71
71
71
71
71
71
71
71
71
7 1
71
71
7 1
71
71
71
7 1
7 1
7 1
71
71
7 1
Day
of
Week
THO
FBI
SAT
SON
SDR
BON
TDE
TOE
»ED
THU
THD
FBI
SAT
SON
BOH
TDE
SBD
THD
?ON
HON
TOE
SED
THO
FRT
SAT
SON
HON
TOE
SED
THO
FRI
SAT
SON
(ION
TOE
RED
THO
FRT
SAT
SUN
HON
TOB
WED
THO
FBI
SAT
SON
HON
TOE
KED
THO
FRI
SAT
Saap
Type
12
99
99
6
12
99
6
12
6
6
12
99
99
6
6
6
11
6
6
6
99
99
99
99
99
6
6
6
6
99
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
Inf
SS
213
212
173
170
126
167
122
361
113
12U
1115
131
222
203
163
168
229
131
135
130
165
120
105
140
160
188
180
158
111
200
P-1
SS
35
78
60
59
22
26
3b
5«
22
8
11
24
3H
50
29
36
38
28
34
48
24
61
22
27
37
37
67
60
27
70
F-1
SS
36
60
28
22
12
21
13
27
14
8
20
11
18
18
19
44
29
76
15
16
14
15
23
12
14
12
38
32
31
34
S-1
SS
20
44
28
10
8
30
9
3
3
7
10
18
20
11
24
14
12
14
14
17
18
12
15
21
36
39
27
21
P-2
SS
92
115
101
67
46
63
19
108
65
57
78
44
61
88
98
59
105
72
79
82
65
105
67
92
94
99
106
102
F-2
SS
81
149
91
48
28
46
29
66
52
41
37
23
79
55
48
50
115
19
73
116
45
120
30
78
69
82
153
89
74
101
S-2
SS
57
106
74
74
36
55
53
54
47
45
33
48
38
39
73
49
81
55
78
82
37
49
92
64
80
72
68
87
Inf
Orq
C
109
132
137
153
114
143
124
218
118
109
107
92
146
133
121
99
120
82
104
84
100
77
103
90
140
124
138
134
101
128
P-1
Orq
C
37
52
55
61
40
41
26
55
30
34
26
30
37
42
42
32
30
27
28
39
37
38
57
35
49
33
37
66
60
78
F-1
Orq
C
32
44
44
39
35
34
28
39
26
25
28
23
23
25
32
20
24
46
22
27
33
21
36
21
33
24
27
47
40
43
S-1
Orq
C
26
39
40
30
25
41
25
32
22
22
25
25
30
21
24
20
22
23
35
24
39
27
31
23
25
40
38
44
P-2
Orq
C
62
107
37
99
81
97
83
109
83
84
25
39
54
74
84
48
60
45
57
72
75
79
22
68
74
100
75
87
F-2
Orq
C
56
100
30
79
71
88
73
93
69
71
19
36
58
62
68
47
64
21
51
80
61
59
47
69
28
56
61
69
70
101
S-2
Orcj
C
46
86
26
73
68
75
67
63
77
15
34
53
53
56
45
51
38
60
60
78
52
55
57
23
61
55
69
63
78
Inf
NO 2
0.01
0.02
0.02
0.02
0.02
0.06
0.05
0.02
0.04
0. 10
0.02
0.03
0.03
0.02
0.01
0.01
0.01
0.01
0.01
P-1
N02
0.49
0.62
0.62
0.62
0.59
0.68
0.10
0.51
0.63
0. 76
0.75
0.22
0. 59
0.55
0.04
0.04
0. 10
0.01
0.02
F-1
NC2
0.27
0.45
0.45
0.45
0.41
0.49
C.40
0.31
0.31
0.40
0.35
0.04
0. 29
0. 27
0.05
0.06
0. 12
0. 03
0.03
-------
Date
of
Obsv
JAN 21
JAH 25
JAN "26
JAW 27
JRK 28
JSN 29
JAN 30
JAN 31
FEE 1
FEB 2
FEB 3
FEE 1)
PEB 5
FEB 6
PEB 7
FEB 8
FEB 9
FEB 10
FEB 11
FEB 12
FEB 13
FEB Hi
FEB 15
FEB 16
FEB 17
FEB 18
FEB 19
FEB 20
FEB 21
FEB 22
FEB 23
FEB 2U
FEB 25
FEB 26
FEB 27
FEB 28
H»8 1
HIE 2
BAR 3
BAR 14
HAS 5
PUB 6
BAB 7
HAS 8
BAR 9
H»R 10
BAR 11
MAR 12
MAE 13
BAR 114
BAR 15
BAB 16
BAP. 17
71
71
7 1
7 1
71
7 1
71
7 1
71
71
71
71
71
71
7 1
71
71
71
71
7 1
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
Da v
of
Week
SON
BON
TOP,
UED
THU
FRI
SAT
SON
no*
TDE
WED
THD
FEI
SAT
sen
MON
TOE
HED
THD
FRT
SAT
SON
BON
TDE
RED
TBD
FBI
SAT
SON
BOH
TOE
BED
THD
PHI
SAT
SON
RON
TUB
BED
THU
FRI
SAT
SDS
HON
TOE
HED
THU
FBI
SAT
SON
BON
TDE
WED
Samp
Type
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
Tnf
S?
180
161
160
132
139
211
192
158
12B
130
117
123
195
129
163
176
138
98
169
188
196
1514
128
157
165
186
170
160
125
186
166
179
103
2 HO
153
169
P- 1
S3
1)2
59
61
52
50
55
56
BO
55
59
89
88
101
86
155
135
87
119
78
115
86
7i»
79
93
98
77
101*
86
98
93
9U
81
71*
162
92
86
F-1
SS
26
23
314
19
20
21
33
77
50
12
16
141
66
88
71
106
83
71
86
103
79
1 86
77
90
107
83
67
68
814
138
73
79
65
116
85
148
S-1
SS
11
20
2U
16
15
33
149
143
33
22
514
147
70
68
52
90
83
73
69
111
77
68
58
714
7B
55
62
59
71
92
H7
55
41
87
53
146
P-2
SS
88
133
13U
10M
137
180
11(7
122
80
81
71
85
101
72
127
96
177
91
105
12«
95
91
85
100
109
108
73
86
100
181
1C6
82
97
168
120
86
P-2
SS
72
95
85
72
83
98
100
90
71
67
714
50
116
105
112
162
93
97
100
1143
13U
99
96
97
11 1
80
87
72
108
220
91
63
82
155
83
90
S-2
SS
3S
63
70
58
146
99
58
67
61
35
3U
78
70
55
92
914
90
108
88
113
131
51
5<4
70
58
50
714
144
51
1149
68
>, U
147
106
53
142
Tnf
orq
c
123
135
1014
1014
12U
1714
132
123
105
96
77
99
119
150
107
118
122
1114
15U
157
129
115
91
123
95
120
101
85
78
96
103
12U
105
121
135
127
P-1
Orq
C
61
60
57
714
60
71
67
81
66
53
62
71
81
89
83
93
76
70
78
111
86
80
80
79
65
68
71
56
69
72
62
78
71
87
77
82
F-1
Orq
C
39
142
314
36
50
51
147
66
69
33
IJ2
HM
6 1
80
148
81
77
62
69
914
91
101
77
75
66
79
68
148
58
72
58
72
69
74
69
714
S-1
Orq
C
35
37
28
35
37
52
53
66
146
37
M6
51*
62
75
149
67
70
58
71)
77
78
76
68
70
62
63
66
38
59
70
52
614
50
69
56
67
P-2
Orq
C
88
80
75
67
73
96
1 12
100
714
61
63
78
81!
82
70
73
87
6K
75
96
97
814
69
71
79
73
75
58
66
92
76
81
76
88
78
78
F-2
Orq
C
83
68
64
56
70
95
78
82
57
US
148
59
77
97
61
76
85
64
70
91
91
75
62
69
67
58
63
35
61
109
61
68
75
814
66
79
S-2
Orq
C
55
55
5U
148
58
79
65
62
55
1)0
37
14U
63
78
55
63
61
65
65
71
82
66
52
58
55
50
112
30
140
82
56
63
53
62
149
61
Ii
1
0.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
if
(02
.02
.01
.01
.02
.01
. 10
. 10
.10
.01
.01
.01
.01
.01
.01
.02
.02
.01
.02
.02
F-1
N02
0.03
0.03
0.014
0.03
0.01
0. 10
0.10
0. 10
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.02
0.01
F-1
N02
0. 05
0. 03
0. 03
0. 02
0.01
0. 10
0. 1C
0. 10
O.C3
0.01
0.01
0.01
0.01
0. 01
0.01
0.02
0.01
0.03
0.01
-------
ON
Date
of
Obsr
NAB
MAB
RAR
HAB
HAB
HAB
HAB
HAR
HAS
HAB
HAR
HAB
HAH
BAB
APB
APP
APB
APB
APB
APB
APB
APB
APB
APB
APB
APB
APB
APB
APB
APB
APR
APB
APE
APB
APB
APB
APB
APR
APB
APR
APB
APB
APB
APB
HAY
HAT
HAY
HAY
PAY
HAY
HAY
KAY
HAY
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
u
5
6
7
8
9
10
11
12
13
11
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
U
5
6
7
8
9
Day
of
Week
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
THD
FBI
SAT
SON
HON
TOE
WED
TBO
FBI
SAT
SON
WON
TOE
WED
THO
FBI
SAT
SON
HON
TOE
WED
THO
FBI
SAT
SON
HOS
TOE
WED
THU
FBI
SAT
SON
HON
TOE
WED
THO
FBI
SAT
SON
HON
TOE
WED
THO
FBI
SAT
SON
HON
TOE
WED
THO
FBI
SAT
SON
Samp
Type
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
99
6
99
99
6
Tnf
SS
163
195
152
170
143
141
156
144
178
170
171
190
161
216
222
163
158
196
216
193
233
158
213
181
205
165
158
222
276
P-1
SS
73
94
139
78
89
131
65
70
66
164
115
72
71
112
113
81
55
54
59
50
36
95
63
65
86
60
94
56
92
F-1
SS
66
88
122
122
132
177
107
122
1 11
115
92
91
80
105
71
42
62
53
84
38
50
111
59
79
350
55
65
73
64
S-1
SS
59
61
76
60
72
114
69
79
56
64
63
52
89
67
72
63
33
29
59
19
24
52
43
77
90
83
64
94
72
P-2
SS
91
122
94
142
111
144
92
90
99
133
109
121
95
128
102
87
86
85
98
58
78
121
86
85
90
72
94
96
F-2
SS
107
154
82
152
174
168
96
91
122
130
78
110
154
175
128
107
125
89
74
54
107
126
83
98
159
83
83
104
72
S-2
SS
68
90
90
61
74
89
94
45
39
60
56
77
57
95
103
58
56
39
78
48
29
67
53
72
64
65
55
103
126
Inf
Orq
C
95
132
160
141
90
96
96
96
95
97
10 1
11 1
94
116
118
156
131
133
149
147
125
124
121
140
97
174
116
110
128
139
128
172
P-1
Orq
C
~72
70
61
110
64
67
64
60
64
53
59
79
39
69
73
80
66
77
76
67
59
51
56
51
56
77
64
64
68
63
53
73
F-1
Orq
C
68
66
60
105
73
72
84
62
67
58
53
56
46
70
68
66
68
67
79
56
59
42
47
51
60
61
57
147
50
55
44
49
S-1
Orq
C
71
65
36
92
60
54
57
56
73
46
51
49
35
55
59
64
55
67
59
46
50
43
43
41
48
56
50
75
52
61
62
49
P-2
Orq
C
78
78
80
1 14
73
73
77
68
61
65
63
81
61
79
96
89
92
92
89
79
79
63
80
74
71
90
73
77
69
69
56
F-2
Orq
C
72
82
76
112
76
69
87
59
63
62
61
62
52
116
108
93
79
94
98
83
55
59
81
79
76
85
71
76
58
64
63
52
S-2
Orq Inf
C N02
52
63
54
93 0.01
54
53
74
43
78
37
48
47 0.01
43
64
71
72
67
79
75
65
58
51
62 0.02
56
58
65
63
42
53
51 0.01
46
70
P-1 F-1
N02 ND2
0.01 0.01
0.01 0.05
0.01 0.01
0.01 0.01
-------
Date
of
Obsv
HUT
HAT
BAT
BAT
HAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT
HAT
HAT
HAT
BAT
BAT
JOS
JOB
JON
JOS
JOS
JOB
JOB
JOB
JOS
JOH
JOS
JOB
JOH
JOli
JOS
JOH
JOS
JUN
JON
JON
JON
JOS
JOS
JOH
JOS
JON
JON
'ON
/!-S
JOS
JDL
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2-1
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
Day
of
Ueek
BOM
TOE
iED
THU
FRI
SAT
SOS
BON
TOE
BED
THO
FBI
SAT
SOS
BON
TOE
iED
THO
FFI
SAT
SUS
HOB
TOE
BED
THO
PHI
SAT
SOS
HOB
TOE
RED
THO
FBI
SiT
SOB
HOB
TOE
BED
THO
FRI
SAT
SOS
HOB
TOE
BED
THO
FSI
SAT
SON
SON
TOE
BED
THD
Sanp
Type
99
99
99
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
Tnf
SS
146
216
170
175
167
149
145
132
87
181
231
166
221
194
198
183
196
173
247
164
208
170
P-1
SS
61
35
34
37
36
27
7
26
26
50
50
30
52
57
42
51
57
35
68
30
41
55
F-1
SS
43
26
21
34
37
16
33
16
9
37
23
14
98
79
37
34
29
1(2
79
20
64
44
S-1
SS
51
22
23
14
19
9
15
19
12
12
26
15
41
32
19
13
28
14
61
20
23
28
P-2
SS
97
54
14
38
35
37
34
30
42
61
57
14
79
60
38
61
92
35
63
36
52
57
F-2
SS
66
64
64
72
64
21
22
21
20
27
44
22
71
39
42
27
43
25
40
23
41
47
5-2
SS
69
33
21
33
23
10
15
34
16
13
21
52
41
25
25
13
34
13
48
15
19
21
Inf
Ore?
c
135
145
21 1
137
168
179
162
171
153
86
173
192
177
130
131
104
126
142
120
109
112
116
106
113
114
P-1
Orq
C
63
65
91
77
74
99
88
84
68
51
96
85
71
45
63
59
59
78
67
50
49
57
56
60
71
F-1
Orq
C
60
50
74
76
65
70
67
73
56
31
66
62
50
65
69
47
51
62
68
40
33
55
56
52
61
S-1
Orq
c
55
54
74
61
59
72
62
56
49
31
41
60
48
37
44
42
44
45
66
44
36
40
51
41
52
P-2
Orq
C
87
74
97
79
74
112
102
87
77
66
94
94
73
65
65
51
60
71
59
60
48
43
52
49
64
P-2
Orq
C
64
64
89
81
69
78
78
71
68
41
68
77
63
65
7«
46
48
58
43
39
37
52
36
47
43
S-2
Orq Inf P-1 F-1
C N02 SO2 NO2
56
48
69
61
58
73
68
63
65
37
52
65
54
36
45
47
41
55
37
35
32
30
34
35
46
-------
M
ON
Date
of
Ohsv
Jilt
JUL
J1L
JCL
JDL
JDL
JDL
JDL
JUL
JDL
JDL
JOL
JDL
JOl
JOL
JOL
JOL
JDL
JOL
JDL
JDL
JUL
JU1
JDL
JOl
JDL
JOL
JOL
JDL
JOL
AOG
AUG
AOG
AOG
AUG
ADG
AOG
AOG
AUG
AOG
AOG
AOG
ADG
ADG
AOG
AUG
AOG
AOG
AOG
AOG
AOG
AOG
AOG
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
7.1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
Day
of
Beek
PHI
SA"
SOU
FIOH
TOE
HED
THO
FBI
SAT
SON
HOD
TOE
BED
THO
FBI
SAT
SOX
HON
TOE
BED
THO
FFI
SAT
SDK
BOH
TOE
HED
THO
FBI
SAT
SON
HOK
TOE
HED
THO
FBI
SAT
SON
(ION
TOE
9ED
THU
FBI
SAT
SON
RON
TOE
HED
THO
FBI
SAT
SUN
(ION
Saip
Type
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
99
99
6
6
6
6
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
Inf
SS
219
172
142
126
114
146
194
143
139
151
184
171
163
100
178
123
398
200
162
159
122
184
170
136
120
109
173
143
146
107
108
P-1
SS
47
86
36
41
35
47
58
43
46
52
45
48
47
37
47
55
35
62
43
46
30
75
42
73
46
61
39
46
29
30
44
F-1
SS
45
36
35
17
28
39
59
41
43
26
24
15
17
9
71
94
120
47
27
1
26
33
29
35
26
62
26
21
15
9
33
S-1
SS
30
24
37
16
9
25
13
15
14
9
17
9
12
6
15
28
22
48
18
9
14
25
13
11
25
28
15
15
22
8
11
P-2
SS
69
36
59
40
47
53
70
29
50
35
28
43
33
26
53
37
34
40
38
44
37
51
37
39
40
62
59
23
37
69
31
F-2
SS
74
27
51
22
51
37
24
33
29
65
16
10
19
30
30
46
36
74
42
26
23
41
15
31
63
45
38
46
34
S-2
SS
20
41
35
10
11
39
10
8
13
9
12
9
13
11
16
20
21
15
14
16
27
12
1 1
1 1
16
32
18
13
14
22
Inf
Orq
C
119
103
133
122
113
66
1 17
118
126
122
143
125
114
109
150
143
140
133
116
99
114
89
105
170
169
130
141
100
131
85
92
106
152
149
P-1
Orq
C
50
67
51
69
75
46
76
79
86
100
79
74
60
68
85
85
79
80
74
69
65
61
67
92
90
94
59
59
67
55
85
62
57
77
F-1
Orq
C
40
40
43
47
38
44
39
53
58
50
40
43
24
23
35
59
78
74
43
43
37
28
42
45
45
51
34
56
27
27
35
32
33
15
S-1
Orq
C
34
29
35
43
36
34
32
32
35
37
29
31
22
28
35
38
47
45
48
61
36
23
38
43
41
46
36
33
27
25
39
26
35
29
P-2
Orq
C
49
42
64
45
48
52
55
56
45
57
43
46
38
38
52
51
45
50
38
32
38
30
43
57
55
59
49
40
38
39
44
41
53
41
F-2
Org
C
43
32
44
37
54
33
33
39
34
54
35
53
29
40
42
32
44
2B
31
67
17
43
47
54
47
43
43
35
38
38
45
39
S-2
Orq Inf
C NO2
29
36
47
41 0.01
34
33
36
29
28 0.01
28
26
30
26
27 0.01
37
35
31
33
24
24
27
15
32 0.04
31
40
37
29 0.03
30
30
27 0.02
28
31 0.02
39
P-1 F-1
S02 N02
0.02 0.11
0.01 0.14
0.03 0.15
0.03 0.23
0.07 0.15
0.03 0.20
0.08 0.07
-------
Da te
of
Obsv
JUG
10G
HOG
HOG
iDG
»OG
IDG
AOG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SBP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SBP
SEP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
13
19
20
21
22
23
2H
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
lit
15
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Week
TUE
HED
THU
PSI
SAT
SDH
HO II
TOE
VED
THD
FBI
SiT
SOS
BOH
TDE
1ED
THD
PEI
SiT
StTN
HON
TDE
RED
THD
FBI
SiT
SDK
HON
TDE
BED
THD
FBI
SiT
SOB
HON
TDE
IED
THD
FBI
SiT
SDH
HOB
TDE
RED
THD
FP.I
SiT
SON
HOM
TDE
RED
THU
FBI
Sasp
Type
6
6
6
99
6
99
6
6
6
6
99
99
99
99
6
6
6
99
6
99
6
99
6
6
99
6
99
6
6
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6"
99
99
99
6
6
6
6
6
99
Tnf
SS
200
138
177
140
78
115
107
141
146
156
117
145
171
182
115
145
158
116
132
95
93
125
151
116
122
96
177
72
P-1
SS
43
37
83
69
27
43
50
37
55
75
47
40
28
57
57
57
31
22
56
37
53
44
20
43
30
44
41
F-1
SS
~32
14
23
48
44
40
32
25
73
90
77
41
23
72
34
29
60
16
52
31
26
44
88
S-1
SS
12
12
37
23
38
19
22
18
26
81
46
26
18
29
24
22
18
13
32
20
42
28
32
35
81
26
37
P-2
S3
23
30
24
92
26
48
34
40
45
61
45
33
39
67
49
58
72
61
81
33
42
54
87
57
49
63
63
P-2
SS
33
57
140
30
27
37
35
30
90
65
53
14
81
52
41
44
59
21
26
37
36
53
5-2
SS
12
17
13
18
15
22
39
40
42
28
32
24
28
33
26
35
31
26
17
27
25
27
14
37
20
36
22
Tnf
Orq
c
139
122
145
179
167
156
196
141
131
153
216
149
139
153
130
125
199
116
98
107
115
119
121
85
127
133
83
72
139
101
128
118
P-1
Orq
C
91
62
81
25
113
89
70
92
50
66
71
60
69
64
76
55
70
63
42
37
42
49
34
55
43
40
40
46
39
42
79
F-1
Orq
C
53
23
31
40
53
33
32
46
40
36
55
63
73
62
58
38
60
44
30
46
28
37
33
37
33
29
37
36
47
42
S-1
Orq
C
40
27
33
33
38
37
28
48
37
39
48
44
68
55
48
35
46
37
27
31
29
40
23
32
32
36
44
36
60
35
60
P-2
Orq
C
~5~T
37
52
60
68
57
50
71
74
93
109
75
113
101
50
84
111
83
47
59
82
55
50
51
79
62
45
41
47
66
87
F-2
Orq
C
~50
37
56
297
41
46
40
54
25
107
88
67
64
46
72
52
63
35
46
29
34
65
34
96
29
37
40
69
S-2
Orq
C
42
29
35
39
41
35
37
55
55
54
46
71
36
49
51
41
47
42
33
39
34
30
26
23
31
27
31
24
30
38
38
Inf P-1 F-1
NO2 N02 N02
0.02 0.02 0.23
0.02 0.02 0.18
0. 1C 0.03 0. 21
0.03 0.09 0.21
0.08 0.18 0.42
0.01 0.05 0. 17
0.01 0.03 0.13
0.02 0.03 0.23
0.02 0.16 0.06
-------
Data
of
ObsT
OCT
OCI
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
no?
WOT
ROT
ROT
HOT
WOT
HOT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
WOT
ROT
ROT
WOT
WOV
ROT
WOV
WOT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
16
17
18
19
20
21
22
23
20
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
1
2
3
4
5
6
7
7l
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
Day
of
Keek
SiT
SDR
DOR
TOE
• ED
THO
FBI
SiT
SDH
HOR
TOE
(ED
THO
FBI
SIT
SDR
DOR
TOE
• ED
THO
FBI
Bit
SDR
HOW
TOE
WED
THD
FBI
SIT
SOW
BO I
TOE
BED
THO
FPI
SAT
SOW
HOW
TOE
MED
THD
FRI
SiT
SOW
HOW
TOE
MED
THO
FRI
SiT
SOW
HOW
TOE
Samp
Type
~6
99
6
6
6
6
99
6
99
99
99
99
99
99
99
99
6
6
6
99
99
99
99
99
99
6
6
99
6
99
6
6
6
6
99
6
99
6
6
99
99
99
6
99
6
15
15
15
99
15
99
15
15
Inf
SS
Tel
116
120
96
131
98
176
177
154
171
172
212
246
155
204
188
98
123
90
177
165
115
215
170
184
P-1
SS
~38
48
45
53
33
25
56
50
47
65
31
83
52
55
33
41
26
39
29
48
39
16
39
54
53
F-1
SS
~25
30
35
23
61
72
57
76
54
35
55
30
16
26
49
46
40
23
34
30
67
S-1
SS
~2~2
38
38
38
32
20
29
39
44
52
34
34
37
32
35
28
18
322
28
27
28
21
23
25
P-2
SS
~93
80
76
61
49
57
77
75
86
79
78
107
107
117
79
79
68
81
57
33
91
84
80
79
97
F-2
SS
~40
51
206
21
73
105
53
103
66
56
50
55
34
68
93
52
45
32
57
79
S-2
SS
~lo
26
31
24
21
26
44
39
36
68
29
66
44
35
20
52
16
35
22
40
45
35
33
48
n \
Inf
Orq
c
7l2
143
134
136
152
55
146
142
183
201
144
159
186
186
217
145
129
140
121
65
150
144
110
137
143
178
134
P-1
Orq
C
41
62
71
66
55
31
81
89
79
86
81
64
103
80
91
82
42
62
62
36
67
66
60
63
64
79
68
F-1
Orq
C
~32
46
44
41
42
22
63
91
75
84
65
45
76
73
70
75
28
50
43
35
43
34
39
35
4 1
42
53
S-1
Orq
C
~34
55
46
48
47
43
57
55
65
71
66
4«
72
67
63
53
30
50
146
39
31
41
40
38
40
36
P-2
Orq
C
~48
89
61
66
67
35
92
70
90
89
88
61
108
90
122
87
49
79
70
35
76
85
76
79
78
79
80
F-2
Orq
C
41
52
51
1*0
67
24
51
68
72
99
48
52
89
76
75
64
43
48
73
46
61
39
53
44
61
67
S-2
Orq Inf P-1 F-1
C R02 R02 002
___ • •
46
40
38
38
27
56
62
65
76
56
50
78
59
55
55
38
43
40
26
47
39
41
40
47
51
39
-------
CO
Date
of
OtST
DEC ~8 Tl
DEC 9 71
DEC 10 71
DEC 11 71
DZC 12 71
DEC 13 71
DEC 14 71
DEC 15 71
DEC 17 71
DEC 18 71
DEC 19 71
DEC 20 71
DEC 21 71
DEC 22 71
DEC 23 71
DEC 21 71
DEC 25 71
DEC 26 71
DEC 27 71
DEC 28 71
DEC 29 71
DEC 30 71
DEC 31 71
JAS 1 72
JAH 2 72
JAR 3 72
JAH 4 72
JAS 5 72
JAH 6 72
JAR 7 72
JAR 8 72
JAR 9 72
JAN 10 72
JAS 11 72
JAR 12 72
JAR 13 72
JAN 11 72
JAR 15 72
JAM 16 72
JAS 17 72
JAR 18 72
JAS 19 72
JAS 20 72
JAR 21 72
JAR 22 72
JAS 23 72
JAH 24 72
Day
of
Week
BED
THD
FRI
SAT
SOU
NON
TOE
WED
FBI
SAT
SDK
BOH
IDE
WED
THU
FPI
SAT
SOS
DOR
TOE
RED
THD
PPI
SAT
SUR
RON
IDE
BED
THO
FBI
SAT
SON
(ION
TOE
BED
THO
FBI
SAT
SOR
BON
TOE
WED
THU
F8I
SAT
SOS
HON
Samp
Type
Ts
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15
15
99
99
15
99
15
15
15
15
99
15
99
15
Inf
S3
23!
195
211
233
219
272
150
137
157
157
151
217
199
175
225
76
87
714
215
113
185
178
512
142
120
236
P-1
ss
"36
95
78
88
614
197
51
17
514
37
149
68
1414
45
59
142
62
31
102
65
82
55
66
<4>4
«6
102
F-1
SS
~S4
117
60
95
111
88
53
12
143
33
28
29
45
31
29
146
72
377
90
556
93
62
18
1 10
S-1
SS
~50
31
12
68
52
77
35
29
27
51
23
22
22
22
126
55
31
235
71
78
21
142
85
18
101
P-2
SS
•109
98
152
1214
129
158
106
93
71
57
82
57
52
62
85
11
95
32
369
97
303
58
57
75
55
83
F-2
SS
"ao
10U
101
112
87
101
51
73
70
38
55
80
27
25
10
73
29
1314
30
13
77
92
91
108
S-2
SS
~U7
149
5«
60
78
26
45
50
33
149
61
23
25
11
15
15
1 11
115
58
66
51
51
31
58
Inf
Orq
C
"J7U
15U
116
198
1142
158
151
11 1
131
93
186
187
110
86
152
82
112
77
139
98
136
155
161
207
119
160
P-1
Orq
C
~70
76
81
80
71
1 10
68
53
51
51
75
79
68
56
66
16
61
19
86
63
92
72
76
75
63
97
F- 1
Orq
C
~47
82
68
78
83
72
52
17
10
16
15
57
51
17
53
68
56
55
67
78
51
76
83
52
80
S-1
Orq
C
~10
12
55
63
18
51
17
12
38
51
11
15
49
115
71
18
33
16
16
65
"40
55
58
36
86
P-2
Orq
C
~71
89
122
109
88
97
82
90
57
62
78
73
76
53
85
68
75
19
73
62
83
72
76
97
63
81
P-2
Orq
C
~58
HI
79
79
71
76
58
55
57
52
52
81
11
11
50
56
18
52
35
80
76
83
89
69
82
S-2
Ori] Inf
C N02
-~2
52
19
61
53
51
16
46
48
49
66
43
43
53
45
36 0.01
51
53
63
51 0.02
68
72 0.01
53
42
P-1 P-1
N02 N02
0.05
0.03 0.12
0.01 C. 1C
-------
Date
of
Obsv 1
HOT 19 69
HOT 19 69
HOT 20 69
HOT 20 69
HOT 21 69
HOT 21 69
HOT 22 69
HOT 22 69
HOT 23 69
HOT 23 69
HOT 24 69
HOT 21 69
HOT 25 69
HOT 25 69
HOT 26 69
HOT 27 69
HOT 28 69
HOT 29 69
HOT 30 69
DEC 1 69
DEC 1 69
DEC 2 69
DEC 2 69
DEC 3 69
DEC 3 69
DEC K 69
DEC 4 69
DEC 5 69
DEC 5 69
DEC 6 69
DEC 6 69
DEC 7 69
DEC 7 69
DEC 8 69
DEC 8 69
DEC 9 69
DEC 9 69
DEC 10 69
DEC 10 69
DEC 11 69
DEC 11 69
DEC 12 69
DEC 12 69
DEC 13 69
DEC 13 69
DEC 14 69
DEC 14 69
DEC 15 69
DEC 15 69
DEC 16 69
DEC 16 69
DEC 17 69
DEC 17 69
Day
of
leek
BED
IED
THO
THO
FBI
FBI
SAT
SIT
SOH
SOH
HOH
HOH
IDE
TOE
g ED
THH
FBI
SAT
SOH
HOH
HOH
TOE
TOE
RED
MED
THO
THO
FBI
FBI
SAT
SAT
SON
SUH
HOH
HOH
TOE
TOE
NED
RED
THO
THO
FBI
FBI
SAT
SAT
SOH
SOH
HOH
MOH
TOE
TOE
WED
RED
Saip
Type
6
4
6
4
6
7
4
7
4
7
6
4
6
4
4
4
6
4
6
4
6
4
6
4
6
7
4
7
4
7
6
4
6
4
6
4
6
4
7
6
7
4
7
4
4
6
6
4
6
4
S-1
N02
0. 05
0.05
0.05
0. 07
0.07
0. 14
0. 14
0. 11
0. 11
0. 14
0. 14
0. 06
0.06
0.06
0. 15
0. 15
0. 18
0. 18
o. oa
0. 08
0. 08
P-2
HO 2
0.05
0.05
0.05
0.05
0.05
0.20
0.20
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0. 05
0.05
0.05
0.05
0.05
0.05
0.05
F-2
N02
0.05
0.05
0.05
0.05
0.05
0.20
0. 20
0.08
0.08
0.07
0.07
0.05
0.05
0.05
0.08
0.08
0.06
0.06
0.05
0. 05
0.05
S-2
H02
0.05
0.05
0.05
0.05
0.05
0. 15
0. 15
0. 10
0. 10
0. 10
0. 10
0.09
0.09
0.09
0. 11
0. 11
0.06
0.06
0.05
0.05
0.05
Inf
H03
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
P-1
NO 3
0.05
0.05
0.05
0.05
0.05
0. 17
0.17
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
F-1
N03
0. 15
0. 15
0. 15
0. 15
0. 15
0.99
0. 99
0.33
0. 33
0.30
0. 30
0.21
0.21
0. 21
0. 40
0.40
0.21
0. 21
0.05
0.05
P. 05
S-1
H03
0.05
0.05
0.05
0.03
0.03
0.21
0.21
0. 19
0. 19
0. 16
0. 16
0.04
0.04
0.04
0.60
0.60
0.57
0.57
0.22
0.22
0.22
P-2
HO 3
0.05
0.05
0.05
0.05
0.05
0.10
0. 10
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
F-2
H03
0. 10
0. 10
0. 10
0. 10
0. 10
0.80
0.80
0. 17
0. 17
0.08
0.08
0.05
0.05
0.05
0.27
0.27
0. 19
0. 19
0. 10
0. 10
0. 10
S-2
HO 3
0.05
0.05
0.05
0.05
0.05
0.25
0.25
0.05
0.05
0.05
0.05
0.01
0.01
0.01
0.29
0.29
0. 19
0. 19
0.05
0.05
0.05
Inf
NH3
28.3
28.3
28.3
28.2
28.2
26.6
26.6
33.6
33.6
32.2
32. 2
26.2
26.2
26. 2
25.2
25.2
20. 2
20. 2
27.0
27.0
27.0
P-1
NH3
27.3
27.3
27. 3
26. 2
26.2
23.0
23.0
30.0
30.0
31.6
31.6
26. 2
26.2
26.2
24.8
24.8
23.0
23.0
25.2
25.2
25. 2
F-1
NH3
27.0
27.0
27.0
25.6
25.6
22.9
22.9
30.0
30.0
30.2
30.2
26.2
26.2
26.2
20.7
20.7
22.6
22.6
25.6
25.6
25.6
S-1
NH3
28. 1
28. 1
28. 1
25.2
25.2
23.2
23.2
29.8
29.8
30. 9
30.9
25.9
25.9
25.9
24. 8
24. 8
22.2
22.3
27.0
27.0
27.0
-------
I-1
«vj
o
Date
of
Obsv
DEC 18
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 21
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 29
DEC 30
DEC 30
JAN 1
JAN 2
JAN 5
JAN 6
JAN 7
JAN 8
JAR 9
JAN 10
JAN 11
JAN 12
JAN 13
JAN 11
JAN 15
JAN 16
JAN 17
JAN 18
JAR 19
JAN 20
JAN 21
JAH 22
JAN 23
JAN 21
JAN 25
JAN 26
JAN 27
JAN 28
JAN 29
JAN 30
JAN 31
FEB 1
FEB 2
FEB 3
FEB 1
FEB 5
FEB 6
FEB 7
FFB 8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
Day
of
Week
THU
THU
FST
SA'i
SON
BON
TDE
BED
THO
FEI
SAT
SDK
BON
BON
TOE
TDE
THIT
FRT
BON
TDE
WED
THU
PRI
SAT
SON
BON
TDE
HEB
THO
FPI
SAT
SON
BON
TOE
BED
THO
FPI
SAT
SON
BON
TUE
WED
THO
FPT
SAT
SON
MON
TOE
WED
THU
FBI
SAT
SUN
Sanp
Vvpe
6
a
6
U
6
U
4
it
1
It
1
It
7
7
7
1
It
1
It
1
7
7
H
1
11
1
It
1
s-
•J
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
1
02
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
P-2
N02
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0.30
0. 30
0.30
0. 30
F-2
N02
0. 30
0. 30
0.30
0. 30
0. 30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0. 30
0. 30
0.30
0.30
0. 30
0.30
0. 30
0. 30
S-
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2
02
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
In
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
f
03
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
P-1
NO3
0.3P
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0. 10
0.30
0.3C
0. 30
0.30
0.30
0. 30
0.30
0. 30
0.30
0. 30
0. 30
F-
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
1
03
30
30
30
30
30
30
30
3C
30
30
30
30
30
30
30
30
30
30
30
30
S-1
N03
0. 30
0. 30
0.30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0. 30
0.30
0.30
P-2
N03
0. 30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
F-2
N03
0. 30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
S-2
N03
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
Inf
NH
22.
22.
18.
18.
11.
11.
11.
21.
21.
20.
20.
18.
18.
18.
15.
15.
23.
23.
22.
22.
3
6
6
1
1
8
8
8
2
2
8
8
1
U
1
1
1
0
0
0
0
P-1
NH3
22.6
22.6
22.0
22.0
21.1
2 I.It
21.1
30.0
30. 0
21. 1
21.1!
1 9. 1
19.1
19. 1
16.0
16. 0
23.0
23.0
23. 1
23.1
P-1
NH3
23.6
23.6
26.1
26. 1
21.1
21.1
21.1
25.2
25.2
26.1
26.1
20.0
20.0
20.0
17.1
17.1
21.8
21.8
21.2
21.2
S-1
IH3
22. 8
22.8
21.8
21. 8
21. 1
21.1
21.1
21. 1
21.1
26.2
26. 2
20. 8
20.8
20.8
17.1
17.1
21. 8
21.8
23.2
23.2
-------
Date Day
of of
Obsr BeeK
FEB
FEB
PEB
FEB
FEB
FEB
PEP
FEB
PEB
PEB
PEB
FEB
FEB
PEB
res
PEB
FEB
FEB
PEB
FEB
BAR
BAR
BAR
BAR
PAR
BAR
PAR
BAR
BAR
BAR
BAH
BAB
MAP
PAB
PAR
BAR
BAP
BAR
BAR
BAR
PAR
BAR
PAH
BAR
PAR
BAR
BAR
"AH
PAR
BAR
f.AR
APR
APR
9 70
10 70
1 1 70
12 70
13 70
11 7C
15 70
16 70
17 70
18 70
19 70
20 70
21 7C
22 70
23 70
21 7C
25 70
26 70
27 7C
28 7C
1 70
2 7C
3 70
1 70
5 70
6 70
7 70
8 70
9 70
10 70
1 1 70
12 70
13 70
11 70
15 70
16 7C
17 70
18 70
19 70
20 70
21 70
22 70
23 70
21 70
25 7f
26 70
27 70
28 70
29 70
30 70
31 70
1 70
2 70
flOH
TOE
*EP
THU
PHI
SAT
SUN
NON
TUE
BED
TRU
PEI
SAT
SON
BON
TOE
UED
TRU
PPI
SAT
SON
BON
TUP,
HED
THU
PET
SAT
SON
HON
TOE
BED
TBO
FRI
SAT
SUN
BON
TOE
8ED
IHO
FRI
SAT
SUN
BON
IDE
WED
THO
FRI
SAT
SUN
BON
TUE
UBD
THU
Sa»p
Type
1
1
1
1
7
7
7
1
«
1
1
7
7
7
1
1
1
1
1
14
1
11
7
7
7
1
1
1
1
I!
1
14
1
n
1
1
1
1
14
1
14
S-1
NO 2
0.
0.
0.
0.
0.
0.
0.
0.
0.
n .
0.
0.
p.
n.
0.
0.
0.
0.
c.
0.
0.
p.
0.
0.
0.
0.
0.
0.
p.
0.
0.
c.
p.
p.
0.
0.
0.
0.
0.
u.
0.
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
3"
30
30
30
30
30
30
30
, 02
, 02
, 30
. 30
P-2
N02
0. 30
0.30
P. 30
0. 30
0.30
0. 30
0. 30
0. 3P
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 05
P. 05
0. 30
0. 30
F-2
N02
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
P. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.05
0. 05
0. 30
0. 30
S-2
N02
0.30
0. 30
0. 30
P. 30
P. 30
0, 30
0.30
0. 30
0. 30
0.30
0.30
C. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
P. 30
0,30
0. 30
0. 30
0. 30
P. 30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.05
0.05
0. 30
0.30
Inf
N03
0.30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0.30
0.30
0.30
0.30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.05
0.05
0. 30
0. 30
P- 1
NO 3
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
F- 1
N03
C.
0.
0.
0.
0.
0.
0.
0.
0.
p.
0.
p.
0.
0.
c.
0.
0.
0.
0.
0.
A ^
0.
c.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
c.
p.
c.
0.
3P
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
3P
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
3P
5- 1
N03
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0.30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
U.30
0. 30
0. 30
0. 30
0.03
0.03
0. 30
0. 30
P-2
NO 3
0.30
0.30
0. 30
0. 30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0.30
0.30
0.30
0. 30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.05
O.P5
0. 30
0.30
F-2
tJ03
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0.30
0.30
0. 30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0.10
0.10
0. 30
0.30
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0.30
0.30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
0. 30
S-2
N03
0. 30
0.30
0.30
0.30
0.30
P. 30
0.30
0. 30
0. 30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
P.3C
0. 30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0. 30
0.30
0.30
0.3P
0. 30
0. 30
0. 30
P. 3C
0.30
0. 30
Inf
NH3
21.2
214, 2
21.1
21. 1
21,8
21,8
21.8
15.6
15.6
16.2
16.2
18, 1
18.1
18. 1
21.6
21.6
18.2
18. 2
18. 8
18. 8
20. 2
20. 2
25.0
25. 0
25. 0
21.8
21.8
22. 0
22.0
21.0
21.0
27.0
27. P
27, 0
27. 0
1 9. 0
1 9. 0
16.1
16.1
18.6
18. 6
F-l
NH3
21. 1
21. 1
25. 2
25. 2
23. 1
23.1
23. 1
17. 8
17. 8
17. 1
17.1
20.6
20. 6
20.6
18.1
18. 1
19.1
1 9. "
22. 2
22. 2
19. 1
19. 1
23. 1
23.1
23. 1
21. 2
21. 2
29, 0
29. P
22.0
22. 0
27. 0
27. 0
29. 0
29. 0
21.0
21.0
ia. r>
18. 0
20.6
20.6
F-1
NH3
25.8
25.8
26.1
26.1
25.1
25.1
25.1
19.1
19.1
19. 2
19.2
22. C
22.0
22. P
21. G
21.0
21.1
21.1
21. 1
21. 1
21.2
21.2
28. 2
28.2
28.2
21.1
21.1
30.0
30.0
22.6
22.6
27.0
27.0
30.6
30.6
20.6
20.6
19.6
19.6
19.1
19.1
£-1
v H 3
25.0
25.0
25.0
25.0
23.8
23, H
23. U
18.6
18.6
18. 1
18. 1
21.1
21 .1
21.1
21. 2
21. 2
21.0
21.0
21. 0
21. P
20.6
20.6
26.0
26.0
26.0
25.0
25.0
30. C
30. C
22. t
22.6
26. 6
26.6
3P.O
30.C
20. 0
20. P
22.6
22. 6
1 9. 1
19. 1
-------
Dnte
of
OhST
APB 3
APR 1
API 5
APR 6
APR 7
»PP 8
APP 9
APR 10
APR 11
APR 12
APR 13
APR 11
APP 15
APE 16
APR 17
APR 18
APS 19
APE 20
APB 21
APP 22
APR 23
APR 21
APR 25
APB 26
APR 27
APH 28
APR 29
APS 30
HAT 1
NAT 2
BAY 3
BAY 1
HAY 5
BAY 6
BAY 7
BAY 8
CAY 9
BAY 10
RAY 11
BAY 12
BAY 13
BAY 11
BAY 15
PAY 16
BAY 17
BAY 18
BAY 19
BAY 20
BAY 21
BAY 22
BAY 23
"AY 21
HAY 25
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
Day
of
ueek
FBI
SBT
SUN
HON
TUE
BED
THU
FP.I
SAT
SUN
BON
TOE
WED
THU
FRI
SAT
SUN
BON
TOE
BED
THD
PPT
SAT
SOS
BON
TOE
BED
THD
FRI
SAT
SON
BON
TOE
»ED
THD
FSI
SAT
SUN
BOM
IDE
IED
THU
FRI
SAT
SON
BON
TOE
BED
THU
fftS.
SAT
SON
HON
Camp
Type
7
7
7
14
1
U
l|
7
7
7
14
U
7
7
7
7
7
7
1
1
1
It
7
7
7
1
1
6
6
6
6
6
6
S- 1 P-
S02 B
0. 30 0.
0. 30 0.
0. 31 0.
0. 30 0.
0.30 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.30 0.
0. 30 0.
0.30 0.
0.22 0.
2
02
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
F-2
N02
0. 30
0. 30
0. 30
0.30
0. 30
0. 30
0. 30
0. 30
0. 30
0.30
0.30
0.30
0.30
0. 30
0.30
0.30
0. 30
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
S-
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2
02
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
In
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
f
03
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
P-1 F- 1 S-) P-2
NC3 N03 N03 N03
0, 30 0. 30 0.30 0.30
0. 30 0. 30 0. 30 0. 30
0.30 ".30 0.30 0.30
0.30 0.30 0.30 0.30
0. 30 0.30 0. 30 0. 30
0.30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30 0.30 0.30 0.30
0.30 0.30 0.30 0.30
0.30 0.30 0.30 0.30
0.30 0.30 0.20 0.30
F-2
N03
0.30
0. 30
0.30
0.30
0. 30
0. 30
0.30
0.30
0. 30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0. 30
0.30
0. 30
0.30
0. 30
S-2
N03
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
Tnf
NH
22.
22.
22.
21.
21.
22.
22.
22.
22.
22.
28.
28.
28.
27.
27.
27.
27.
27.
27.
25.
22.
22.
12.
17.
P-1
3 HH3
0 20.0
0 20. 0
0 20. 0
0 25.0
0 25.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 21.0
0 21.0
0 19.0
0 20.0
F-1 S-1
NH3 NH3
20.0 19. C
20.0 19.0
20.0 19.0
27.0 27.1
27.0 27.1
25.0 25.0
21.0 21.0
22.0 19.0
20.0 20.0
-------
Date
of
Obsv
HAT 26
HAT 27
HAT 28
RAT 29
HAT 30
HAT 31
JON 1
JDH 2
JDN 3
JON 1
JON 5
JON 6
JON 7
JDH 8
JDH 9
JON 10
JDN 11
JDN 12
JDN 13
JUH 11
JDN 15
JON 16
JD H 17
(_i *• JfN 18
-J g JOR 19
U> JDH 20
JDN 21
JDN 22
JOH 23
JOH 21
JON 25
JDN 26
JDN 27
JD1 28
JDN 29
JON 30
JDL 1
JDL 2
JDL 3
JOL 1
JDL 5
JOL 6
JDL 7
JDL 8
JOL 9
JOL 10
JOL 11
JDL 12
JOL 13
JOL 11
JOL 15
JDL 16
JOL 17
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
7C
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
7C
Day
of
Bee*
TOE
BED
TRO
FHT
SAT
SON
HON
TOE
BED
THD
FBI
SAT
SON
DON
TUE
BED
THO
rpi
SAT
SOH
HON
TOE
BED
THD
FFI
SAI
srtN
HON
TOE
BED
THD
FRI
SAT
SUN
HON
THE
BED
THD
FRT
SAT
SON
HON
TOE
WED
THO
FST
SAT
EON
HON
TOE
BED
THD
FT
Sanp
Type
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
S-1
N02
0.01
0.01
0.05
0.85
0.79
1 . 03
0. 90
0.60
1.01
0.55
0.53
0.01
0.65
0.60
1. 10
1 . CO
0.67
0.2.)
0. 26
P-2
N02
0.09
0.01
0. 01
0.06
0.03
0.07
0. 10
0. 10
0. 10
0. 10
0.02
0.02
0.05
0.05
0. 10
0.05
0.05
0. 18
0.01
0. 06
F-2
H02
0.06
0. 09
0.26
0. 18
0. 17
0. 28
0.20
0. 31
0. 12
0. 13
0. 77
0. 15
0. 10
0.30
0. 20
0. 10
0. 38
0.03
0.09
S-2
N02
0.01
0. 01
0.21
0. 11
0. 11
0.39
0.20
0. 10
0.22
0. 10
0. 15
0. 28
0.25
0. 15
0.30
0. 15
0. 15
0. 12
0.05
0. 10
In
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
f
03
10
10
10
05
05
05
30
20
30
10
20
10
20
50
20
20
20
60
10
P-
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6.
1
03
30
50
90
03
05
20
10
10
30
10
10
10
10
90
10
10
23
90
00
F-
N
0.
0.
0.
1.
1.
2.
1 .
1 .
2.
1 .
1.
3.
2.
1.
1.
1.
0.
1.
6.
12.
1
03
10
30
50
20
30
00
70
10
10
3C
90
10
00
90
10
10
60
85
00
10
S-1
B03
0. 10
0. 10
0.60
0.80
1.60
1. 10
0.80
1.50
0.50
1.00
2.80
1.30
1.60
3. 20
1.00
0. 73
5. 30
10. 60
P-2
N03
1 .20
0. 10
0. 10
0.05
0.05
0.05
0. 10
0.10
0.30
0. 10
1.00
0. 10
0. 10
0. 10
0. 30
0.10
0. 10
0. 12
0.10
1.00
F-2
N03
0. 10
0. 10
0.60
0.60
1.00
0. 70
1.60
0.80
0.10
1. 10
0. 90
1. 10
0.50
0.20
1.92
0. 90
3.60
S-2
N03
0. 10
0.10
0.10
0.20
0.20
1. 30
0.10
0. 10
0.90
0.20
0.05
1. 30
0.10
0.20
1.10
0.60
0. 10
1.78
1.20
3.80
Inf
NH3
20. 5
19.5
21.5
15.0
20.5
16. 0
23.5
23.5
26.5
25.5
18.0
17.0
23.5
21.0
28.5
23.0
16. 5
19. 5
22.5
15.0
P-1
NH3
22.0
21.0
21.0
16.5
19.5
11.0
18.0
16. 0
18.0
21.0
17.5
12.0
18. 0
15.0
15. 5
11.0
12.0
11.5
12.0
9. 0
F-1
NH3
21.0
25.0
21.5
15.0
17.5
11.0
17.0
15.0
18.0
21.0
16.5
10.5
15.5
11.0
13.5
9.0
12.5
13.5
10.0
7.0
S-1
NH3
21. C
25.5
22.0
16.0
17.5
11.0
16.5
15. C
18. C
21. C
17.5
11.0
15. C
11. 0
13. 5
9.0
11.5
10.0
7.5
-------
D.It 9
of
Obsi
JOL
JUL
JOL
JUL
JOL
JOL
JdL
JUL
JOL
JDL
JOL
JOL
JUL
JOL
ADG
AOG
ADG
AIJG
ADG
AOG
ADG
ADG
ADG
j. ADG
m ADG
— AUG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
i>
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
1
2
3
6
7
8
8
9
10
10
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7P
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
7C
70
7C
Day
cf
Week
SAT
SDN
HON
HON
TOE
THO
THD
FRI
sns
HON
TDE
BED
THD
PEI
SAT
SDN
BON
TDE
WED
THD
FRI
SAT
SDK
HON
TOE
HED
THD
FRI
SON
BON
TDE
WED
1RO
F8I
SOB
HON
TDE
WED
THD
FRI
SAT
SDN
HON
TDE
WED
THU
SDN
HON
TDE
TDE
BED
THD
THD
SdBP
Type
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1 1
6
6
6
6
6
6
6
6
6
6
6
6
10
6
10
S-1 P-2
N02 N02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
OB 0. 17
6U 0.75
04 0.01
25 0.05
25 0.05
39 0.01
49 0.03
34 0.01
40 0.03
32 0.05
27 0.11
41
40 0.06
06 0.01
23 0.18
23 0.18
P-2 S-2
K02 NO2
0.32 0.
0.62 0.
0.01 0.
0. 15 0.
0.
0.
0.
0.23 0.
0.27 0.
0.42 0.
0.33 0.
0.90 0.
0.40 0.
0.13 0.
0.04 0.
0.04 0.
12
67
05
25
45
29
38
60
44
46
40
81
54
21
07
07
Inf
S03
0. 20
0.20
0. 10
0. 10
0. 10
0.09
0.09
0.09
0.20
0.20
0,30
0.30
0.40
0. 10
0. 10
0. 10
P-1
NO 3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
10
10
1C
10
10
09
C9
09
20
10
30
70
10
10
10
10
P-1
N03
0. 20
1. 30
0.40
0.90
0. 47
1.81
0.68
1.60
2.40
1.90
3.30
2. 40
0.10
0.40
0.40
S-1 P-2 F-2
U03 S03 HOB
C.
0.
0.
0.
0.
0.
1.
1.
1.
2.
1.
3.
2 ,
0.
0.
0.
10 0.20 1.20
70 1. 10 4. 10
10 0.10 0.10
40 0.10 1.90
80 0.10
11 0.09
31 0.07
16 0.09 0.97
30 0.20 1.70
10 0.10 3.60
70 0.30 1.20
00 3.90
20 0.10 2.20
10 0.10 0.40
30 0.20 0.20
30 0.20 0.20
S-2
(JO 3
1.00
4.20
0. 10
1.60
2.50
1.21
3.02
0.40
1.70
2.30
2.50
3.70
2.30
0.40
0.10
0.10
Inf
NH3
26.5
19.0
36.5
25.0
23.0
19.5
18.5
27.5
23.5
23.5
22.5
17.0
21.0
22.5
22.0
22.0
P-1
NH3
21.5
14. 0
25.0
21.0
20.0
19.5
17.0
19.0
18.5
15.0
17.5
15.0
15.5
20.0
19.5
19.5
F-1
NH3
21.0
13.5
22.5
19.5
17.5
15.0
16.0
17.5
14.0
17. C
15.0
14.5
22.0
17.5
17.5
S-1
NH3
20.5
13.5
22.5
20.0
19.5
18.0
16.5
12.5
17.5
13. C
17.0
15.0
14.0
18.0
15.0
15.0
-------
Date
of
Obsy
SEP 11
SEP 12
SEP 13
SEP 13
SEP 1<4
SEP 15
SEP 15
SEP 16
SEP 17
SFP 17
SFP 18
SEP 19
SEP 20
SEP 20
SEP 21
*EP 22
SEP 22
SEP 23
SEP 21
SEP 2<4
SEP 25
SEP 26
SEP 27
SEP 27
SEP 28
SEP 29
SEP 29
SEP 30
OCT 1
OCT 1
OCT 2
OCT 3
OCT «
OCT 14
OCT 5
OCT 6
OCT 6
OCT 8
OCT 7
OCT 9
OCT 10
OCT 11
OCT 12
OCT 13
OCT 114
OCT 15
OCT 16
OCT 17
OCT 18
OCT 18
OCT 19
OC1" 20
OCT 20
70
70
7r
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
7C
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
Day
of
Heek
FBI
SAT
SDN
SDN
HON
IDE
TOE
HED
THO
THU
FPI
SAT
SOS
SON
BON
TOE
TOE
HED
THO
TBO
FBI
SAT
SDN
SON
HON
TDE
TOE
HED
THD
THD
FBI
SAT
SON
SDN
HON
TOE
TDE
THD
HED
FSI
SAT
SDN
HON
TOE
HED
TRD
FBI
SAT
SDN
SDN
HON
TDE
TDE
Sanp S-1 P-2 F-2 S-2 Inf
Type V02 NO2 NO2 NO2 N03
6
12 0.25 0.01 0.09 0.10 0.10
6
6
12 0.25 0.01 0.09 0.10
6
12 0.25 0.01 0.09 0.10 0.10
6
6
12 0.07 0.01 0.01 0.02 0.10
6
6
12 0.07 0.01 0.014 0.02 0.10
6
12 0.07 0.01 0.0« 0.02 0.10
6
6
12 0.17 0.03 0.07 0.06 0.10
6
6
12 0.17 0.03 0.07 0.06 0.10
6
12 0.17 0.03 0.07 0.06 0.10
6
14 0.37 0.05 0.05 0.06 O.<40
13
6
6
14 0.37 0.05 0.05 0.06 O.<40
b'
12 0.148 0.40 0.25 0.16 0.20
6
12 0.148 0.140 0.25 0.16 0.20
6
P-1 P-1 S-1 P-2 F-2 S-2 Inf P-1 F-1 S-1
SC3 NO3 N03 N03 NO3 N03 NH3 NH3 VH3 KH3
0.10 0.60 O.UO 0.10 0.30 0.20 22.0 21.0 18.0 17.5
0.10 0.60 O.itO 0.10 0.30 22.0 21.0 18.0 17.5
0.10 0.60 O.UO 0.10 0.30 0.20 22.0 21.0 18.0 17.5
0.10 0.30 0.10 0.10 0.10 0.10 23.5 22.0 22.5 22.0
0.10 0.30 0.10 0.10 0.10 0.10 23.5 22.0 22.5 22.0
0.10 0.3C 0.10 0.10 0.10 0.10 23.5 22.0 22.5 22.0
0.10 0.50 0.20 0.10 0.30 0.10 22.0 21.5 19.5 19.5
0.1C 0.50 0.20 0.10 0.30 0.10 22.0 21.5 19.5 19.5
0.10 0.50 0.20 0.10 0.30 0.10 22.0 21.5 19.5 19.5
O.UO 1.20 0.60 0.10 0.10 0.10 29.0 21.0 21.5 21.0
O.UO 1.20 0.60 0.10 0.10 0.10 29.0 21.0 21.5 21.0
0.90 2.50 2.140 0.60 O.UO 25.5 19.0 19.0 la. 5
0.90 2.50 2.140 0.60 O.<40 25.5 11.0 19.0 18.5
-------
of
ObST
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
HOT
HOT
HOT
SOT
SOT
SOT
HOT
HOT
HOT
HOT
HOT
SOT
SOT
HOT
SOT
HOT
HOT
HOT
SOT
HOT
HOT
HOT
SOT
HOT
SOT
HOT
SOT
NOT
NOT
HOT
HOT
HOT
HOT
HOT
DEC
DEC
DEC
DEC
21
22
22
23
2»
25
25
26
27
27
28
29
29
30
31
1
1
2
3
14
5
5
6
7
8
8
9
10
10
11
12
13
114
15
16
17
18
19
20
21
22
23
214
25
26
27
28
29
30
1
1
2
3
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
of
Heek
BED
THD
THD
FPI
SAT
SDH
SOS
(ION
TOE
TOE
UED
THD
THO
PHI
SAT
SDH
SDH
BOS
TDE
RED
THD
THU
FBI
SAT
SDH
SDH
BON
TDE
TDE
UED
THU
FBI
SAT
SDH
HOH
TDE
RED
THD
FPI
SAT
SON
BON
TDE
THD
THD
FRI
SAT
SON
(ION
TOE
TOE
UED
THD
Sa»p
Type
6
6
12
13
12
6
6
12
6
6
12
6
10
6
6
10
6
10
6
6
10
6
6
6
6
6
12
6
6
S-1 P-2 P-2 S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2 Inf t'-1 F- 1 S-1
N02 H02 802 N02 S03 N03 NO3 N03 B03 H03 N03 N H 3 KB3 NH3 «H'-
0.148 0.140 0.25 0.16 0.20 0.90 2.50 2.140 0.60 O.UO 25.5 19.0 19.0 18.5
O.«1 0.014 0.12 0.17 0.10 0.20 2.30 1.90 0.10 0.30 0.10 28.5 22.0 20.5 20.5
0.11 0.014 0.12 0.17 0.10 0.20 2.30 1.90 0.10 0.30 0.10 28.5 22.0 20.5 20.5
0.11 O.OM 0.12 0.17 0.10 0.20 2.30 1.90 0.10 0.30 0.10 28.5 22.0 20.5 20.5
0.149 0.114 0.18 0. 21 0.10 0.60 2.60 2.70 0.30 0.140 0.50 22.5 16.5 15.5 16. C
0.149 0.114 0.18 0.2M 0.10 0.60 2.60 2.70 0.30 O.MO 0.50 22.5 16.5 15.5 16. C
0.48 0.15 0.16 0.15 0.30 0.60 2.50 2.30 0.20 O.<40 0.20 23.0 18.5 16.5 17.0
0.148 0.15 0.16 0.15 0.30 0.60 2.50 2.30 0.20 0.140 0.20 23.0 18.5 16.5 17.0
0.31 0.05 0.11 0.09 0.10 1.70 3.10 2.70 0.20 0.30 1.20 28.0 19.0 18.5 18.0
0.36 0.08 0.08 0.09 0.10 1.UO 2.20 3.00 0.90 0.30 0.20 27.0 19.0 20.5 18.0
-------
Date Day
of of
Otsv Wee*
DEC
DEC
DEC
DEC
DEC
PEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DFC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JA N
JAN
3 70
11 70
5 70
6 70
6 70
7 70
8 70
8 70
9 70
10 70
10 70
11 70
12 70
13 70
1U 70
15 70
16 70
17 70
20 70
21 70
22 70
23 70
20 70
25 70
26 70
27 70
28 70
29 70
30 70
31 70
1 71
2 71
3 71
14 71
5 71
6 71
7 71
8 71
9 7 1
10 71
11 71
12 71
13 71
114 71
15 71
16 71
17 71
18 71
19 7 1
20 71
21 71
22 7 1
23 71
THU
FBI
SAT
SUN
SUN
HON
TUE
TUE
MED
THU
THU
FBI
SAT
SUN
MON
TDE
BED
THU
SON
MON
TDE
BED
THU
PHI
SAT
SUN
HON
TUE
WED
THU
PRI
SAT
SUN
HON
TUE
MED
THO
FBI
SAT
SUN
HON
TDE
»ED
THD
FPI
SAT
snu
HON
TDE
BED
THU
FBI
SAT
Saap
Type
12
99
99
6
12
99
6
12
6
6
12
99
99
6
6
6
1 1
6
6
6
99
99
99
99
99
6
6
6
6
99
99
99
6
6
6
6
6
99
99
b
6
6
6
6
99
99
6
6
6
6
6
99
99
S- 1 P-2
102 NO2
C. 36 0. 08
0. 59 0. 10
0. 59 0. 10
0. 10
f . 5 7 0 . 0 »
0.50 O.OU
0. 146 0.06
0.39 0.07
0.314 0.06
0.37 0.08
0.38 0.06
0.19 0. 014
0.31 0. 06
0. 2fl 0.10
0. 07
0. OB 0.08
0.13 0.06
0. 03 0.01
1. 02 0.01
F-2
N02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
08
08
08
08
02
02
02
03
1 1
014
1«
19
03
06
02
02
03
02
07
S-2
N02
0.09
0.09
0.09
0.09
0.03
0.02
0.03
0.014
0. 26
0.02
0. 11
O.OU
0.03
0.06
0.02
0. 03
0.03
0. 01
0. 02
Inf
M03
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
10
30
30
30
10
10
05
03
01
70
30
20
10
20
10
10
10
10
P- 1
NOT
1 .
1.
1.
1.
1.
1 .
0.
2.
14 .
2.
2.
0.
0.
1.
0.
0.
0.
0.
0.
UU
140
140
UP
70
10
50
hC
50
90
70
30
70
PO
10
IP
1C
10
10
F- 1
NO 3
2.
3.
1.
3.
3.
3.
2.
14 .
5.
M.
3.
0.
1 .
2.
0.
0.
1 .
0.
0.
20
80
80
80
60
00
20
30
70
90
60
20
90
00
10
10
20
10
10
S-1
N03
3.
5.
5.
3.
3.
2.
14 .
b.
14.
3.
1 .
1.
-1
0.
0.
1.
u .
0.
00
30
30
90
30
00
00
80
80
90
00
60
10
10
10
00
10
10
P-2
NO 3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90
30
30
30
10
20
10
20
30
10
140
30
10
20
10
10
10
10
F-2
N03
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
30
20
20
20
1C1
10
10
10
20
10
80
30
20
10
10
10
10
10
10
?-2
NO 3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
20
10
10
10
10
10
10
20
03
30
20
10
10
10
10
IP
10
10
Inf
NH3
27.
23.
23.
23.
23.
27.
22.
18.
17.
214.
21.
1 fl.
28.
20.
20.
23.
2 1.
2U.
214.
0
0
0
0
5
5
0
0
0
0
5
5
5
0
0
0
P
0
0
p-1
NH3
19. 0
12.5
12. 5
12.5
1-S.5
16. 5
1«.5
10.5
9. 5
12.0
in. 0
1«. 0
17.5
17. 5
19. 5
20. 5
17.5
23.0
22.0
F-1
NH3
20.5
1 1.C
11.0
1 1.0
12.5
114.0
12.5
8.5
5.0
10.0
12.0
17.5
16.0
15.5
18.5
20.0
17.5
22.0
21.5
S- 1
NH.f
18. P
10.5
10. 5
13.5
1U.O
13.0
8.5
5.0
9.5
11.5
U. 0
16.0
15. 0
19. C
20. 5
17.0
21.5
21.5
-------
oo
Date
of
Obsy
JAN 24
JAN 25
JAN 26
JAN 27
JAN 28
JAK 29
JAN 30
JAN 31
FBB 1
PEB 2
FEB 3
FEB 1
FEB 5
FEB 6
FEB 7
FEB 8
FEB 9
FEB 10
FEB 11
FEB 12
FEB 13
FEB 11
FEB 15
FEB 16
FEB 17
FEB 18
fEB 19
FEB 20
FEB 21
FEB 22
FEB 23
FEB 21
FEB 25
FEB 26
FEB 27
FEB 28
BAR 1
BAR 2
HAH 3
BAR 1
BAR 5
BAR 6
HAH 7
BAR 8
BAR 9
B4S 10
BAR 11
BAR 12
BAR 13
HAH 11
HAR 15
HAS 16
HAS 17
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Heek
SDK
HON
TOE
HED
THO
FBI
SAT
SON
HON
TOE
HED
THO
FBI
SAT
SON
HON
TOE
HED
THO
FBI
SAT
SON
HON
TOE
HED
TRO
FBI
SAT
SON
HON
TOE
HED
TRU
FRI
SAT
SON
HON
TOE
BED
THU
FRI
SAT
SON
BON
TOE
HED
THO
FRI
SAT
SON
HON
TOE
HED
Samp
Type
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
S-
K
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1
102
01
02
02
02
01
10
10
10
02
01
01
01
01
01
01
02
C 1
02
01
P-2
N02
0. 08
0.02
0.01
0.02
0.01
0. 10
0. 10
0. 10
0.01
0.01
0. 01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
P-2
N02
0.03
0.03
0.03
0.02
0. 02
0. 13
0. 10
0. 10
0.01
0.06
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.03
0. 01
S-2
N02
0.03
0.02
0.02
0.02
0.02
0. 10
0. 10
0. 10
0.03
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
In
N
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
f
03
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
p
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
- 1
NO 3
. 10
.20
. 10
. 10
. 10
. 10
. 10
.10
. 10
. 10
. 10
.10
. 10
. 10
. 10
. 10
. 10
. 10
. 10
F-1
N03
0. 10
0. 10
0. 10
0. 20
0. 10
0. 10
0.10
0. 10
0.20
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
S-1
N03
0. 10
0.20
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0.20
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
P-2
NO 3
0. 10
0. 10
0. 10
0.10
0. 10
0.10
0. 10
0. 10
0. 10
0.10
0.10
0. 10
0. 10
0.10
0. 10
0. 10
0. 10
0.10
0. 10
F-2
N03
0. 10
0. 10
0. 10
0.20
0. 10
0. 10
o. 10
0. 10
0.20
0. 10
0.10
0. 10
o. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
S-2
NO 3
0.10
0.10
0. 10
0.20
0.20
0. 10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0. 10
0.10
0. 10
0.10
Inf
NH3
20.5
21.0
21.5
26.5
22.5
15.0
17.0
18.5
18.0
20.0
21.5
23.0
22.5
21.0
19.0
20.0
16.0
18.9
18.7
P-1
NH3
20.5
19.5
2C.5
27.0
23.5
18.0
17. 0
19.5
16.5
19.5
21.5
23.0
21.5
22.0
19.0
18. 5
15. 5
18. 8
21.9
F-1
NH3
20.0
20.0
20.0
25. C
21.5
17.0
16.5
20.5
17.0
20.0
20.0
22.0
22.0
22.0
19. C
18.5
13.5
18.6
22.3
S-1
NH3
20.5
20.0
21.0
21.5
22. C
17.5
17.5
20.5
16.5
20.0
21.0
22.5
22.5
22.0
19.0
19.0
11. 5
19.0
22.3
-------
Date
of
Obsv
BAB
PAH
BAB
KIT
HAK
BAR
BAR
BAB
HAS
BAP
HAH
BAH
PAR
BAB
APB
APB
APB
APB
APS
APR
APR
APB
APB
APB
APB
APB
APB
APB
APB
APR
APB
APB
APB
APB
APR
APB
APR
APE)
APB
APB
APR
AP<(
APB
APR
BAY
BAT
BAY
BAY
BAY
PAY
HAY
MAY
HAY
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
•>
6
7
8
9
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
Day
of
Heek
THD
PPI
SAT
SUN
BON
TOE
HED
THU
PPI
SAT
SON
RON
TDE
RED
THO
PRI
SAT
SUN
BON
TOE
MED
THU
FBI
SAT
SON
HOH
TOE
HED
THO
PRI
SAT
SOS
BON
TOE
RED
THO
PRI
SAT
SON
BON
TOE
HED
THO
FBI
SAT
SON
BON
TOE
HED
THO
FPI
SAT
SON
Sanp 3-1 p-2 F-2 s-2 Inf P- 1 F-1 s-1 P-2 F-2 S-2 Inf P-1 F-1 S- 1
Type N02 802 N02 NO2 N03 N03 N03 N03 N03 N03 NO3 NH3 SH3 NII3 NH3
6
99
99
6
6
6 0.01 0.01 0.02 0.01 0.10 0.10 0.10 0.10 0.10 0.10 0.10 27.6 24.6 25.0 23.4
6
6
99
99
6
6
6
6
6
99
99
6
6
6 0.10 0.01 0.13 0.12 0.10 0.10 C.10 0.10 0.10 0.10 0.10 21.0 19.5 20.5 20.5
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6 0,01 0.03 0.02 0.01 0.10 0.10 0.10 0.10 0.10 0.10 0.10 32.0 28 5 29 5 29 5
99
99
6
6
6
6
6
99
99
6
6
6 0.01 0.01 0.01 0.01 0.20 0.20 0.20 0.10 0.20 0.20 0.10 25.5 27.0 27.5 28.5
99
6
99
99
6
-------
00
o
Date
of
Obsv
HAT
HAY
HUT
BAT
HAT
BAT
HAT
HAT
HAT
NAT
RAT
HAT
FIAT
HAT
HAT
CAT
HAT
HAT
HAT
HIT
HAT
HAT
JOH
JDH
JOH
JOB
JO 11
JOH
JDK
Jon
JON
JOH
JOH
JOS
JOS
JOH
JDH
JDH
JDH
JDH
JDH
JOH
JDH
JOH
JOH
JDH
JUH
JDH
JDH
JDH
JDH
JDH
JDI
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
1
7 1
71
7 1
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Da y
of
Heek
BON
IDE
WED
THO
FBI
SAT
SON
BOH
TOE
BED
THO
FBI
SAT
SDH
HOH
TDE
UED
THO
FRI
SAT
SDH
HOH
TOE
UED
THO
FBI
SAT
SDH
HOH
TOF.
HBD
THO
FHI
SAT
SOS
HOH
TOE
WED
THU
FFI
SAT
SDH
HOt!
TDE
RED
THD
FBI
S»T
SDH
NON
TDE
MED
THD
Saup S- 1 P-2 F-2 S-2 Inf P- 1 F- 1 3-1 P-2 F-2 S-2 Inf P-1 F-1 S- 1
Type N02 H02 N02 H02 H03 N03 N03 N03 HO 3 H03 N03 NH3 NH3 NH3 NH3
99
99
•59
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
-------
CO
Date
of
ObST
JDL
JOL
JOL
JPL
JOL
JUL
JOL
JDL
JUL
JUL
JDL
JOL
JHL
JDL
JDL
JPL
JOL
JOL
JOL
JOL
JDL
JDL
JOL
JOL
JOL
JOL
JOL
JDL
JOL
JOL
tOG
tOG
HOG
AUG
HOG
AOG
JOG-
HOG
AOG
AOG
AUG
AOG
AOG
AUG
AOG
AOG
AOG
ADG
AOG
AOG
AUG
AOG
AUG
2
3
U
5
6
7
8
9
10
11
12
13
in
15
16
17
18
19
20
21
22
23
2*
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
IK
15
16
17
1R
19
20
21
22
23
;i
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
7 1
71
71
7 1
71
71
71
71
71
Day
of
Veek
FBI
SAT
SOS
HON
TOE
WED
THO
FBI
SAT
SOU
SON
TOE
BED
THO
FBI
SAT
SON
HOB
TOE
WED
THO
FSI
SAT
SDN
HON
TOE
RED
THO
FBI
SAT
SON
HON
TOE
BED
THO
FSI
SAT
SUN
BOS
TOE
WED
THO
FPI
SAT
SON
NON
TOE
WED
THD
PP.I
SAT
SON
BON
Saup S-1 P-2 F-2 S-2 Inf P- 1 F-1 3-1 P-2 F-2 S-2 Inf P-1 F-1 S-1
Type N02 N02 N02 N02 N03 N03 H03 N03 H03 H03 N03 VH3 NH3 NH3 NH3
99
99
99
6
6
6
6 0.17 0.05 0.13 0.07 0.20 0.10 0.60 0.40 0.40 1.90 0.20 13.5 13.0 11.0 12.5
99
6
99
6
6
6
6 0.22 0.21 0.27 0.00 0.20 0.30 1.60 0.30 0.90 2.70 2.30 18.0 18.0 15 5 16.0
99
6
99
6
6
6
6 0.17 0.08 0.23 0.10 0.10 0.10 0.10 0.10 0.10 30.0 26.0
99
6
99
6-
6
6
6
99
99
99
6
6
6
6 0.36 0.38 0.20 0.36 0.30 0.30 1.80 0.90 0.60 K.tO 2.80 2M.5 21.5 19 0 19.0
99
9-9
99
6
6
6
6 0.23 0. DO 0.25 0.02 0.10 0.10 2.80 1.60 1.00 U.20 3.60 15.5 18.0 16.0 11.5
99
6
99
6
6 0.16 0.12 0.31 0.20 0.10 3.10 7.60 1.10 5.70 19.0 21.0 18.5 18.5
6
6 0.20 0.116 0.29 0.15 0.20 0.10 1.80 2.30 1.10 6.50 5.00 16.5 18.5 11.0 16.0
99
6
99
6
-------
oo
Date
of
ObsT
BOG
HOG
IDG
10 G
HOG
HOG
IDG
MIG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SBP
SEP
SEP
SSP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
2«
25
26
27
28
29
30
31
1
2
3
«
5
6
7
a
9
10
11
12
13
14
15
16
17
13
19
20
21
22
23
2«
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
1»
15
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Heek
TOE
BSD
TBD
FBI
SS.1
SUB
BOB
TOS
BBO
IB 0
FBI
SAT
SOB
•OR
IDS
HBO
TBD
FBI
SAT
SOB
HOB
TOE
BED
THO
FBI
SAT
SOB
HOB
TOS
BID
TOO
FBI
SAT
SOB
BOB
TOE
BED
TBD
FBI
S»T
SDB
HOB
TOE
BED
THO
FBI
SIT
SDB
HO*
TOE
RED
THO
FBI
Sanp
Type
6
6
6
99
6
99
6
6
6
6
99
99
99
99
6
6
6
99
6
99
6
99
6
6
99
6
99
6
6
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
S-1 P-2 F-2 S-2 I«t P-1 P-1 S-1 P-2 F-2 S-2 Imf P-1 F-1 S-1
•O2 BO2 BO2 BO2 BO3 BO 3 BO3 BO3 BO3 HO3 BO 3 BH3 BH3 «B3 BB3
0.2* 0.7S 0.39 0.52 0.20 0.10 4.00 3.10 1.70 5.6O 5.00 1*.S 15.5 10.5 11.0
0.22 0.10 0.12 0.38 0.20 0.2O 2.80 2.86 0.50 ». 50 2.80 19.5 19.5 19.5 15.0
0.25 0.06 0.19 0.«2 0.20 0.50 2.20 1.«0 0.1O 1.80 1.40 25. 0 26.0 20.0 20.0
0.18 0.0* 0.18 0.23 0.30 0.30 1.3O O.«0 0.40 1.40 0.50 30.5 30.0 25.0 26.0
0.02 0.16 0.27 O.91 0.10 0.10 1.40 1.20 0.10 1.70 1.«0 25. (J 24.0 2«.0 24.0
0.27 0.05 O.28 2.10 0.60 0.10 0.10 1.56 0.20 31.5 28.0 26.0 26.5
0.24 0.03 0.13 0.31 0.30 0.20 2.00 O.SO 0.20 1.20 0.50 19.0 17.0 15.0 14.0
0.25 0.03 0.11 0.18 0.10 0.20 0.70 1.50 0.2O 0.60 0.30 19.S 17.5 18.5 15.0
0.43 0.04 0.20 0.10 0.10 0.30 1.20 0.20 0.20 22.5 21.0 20.0 19.5
-------
oo
Date
of
Obsv
OCT
OCT
nCT
CCT
OCT
CCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
PCT
HP?
HOI
-HOY
HOY
NOV
HOY
HOY
HOY
HOY
HOY
HOY
HCY
NOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
NOY
HOY
HOY
1O Y
HOY
HOY
HOY
HOY
HOY
HOY
DEC
DEC
DEC
DEC
DEC
DEC
DEC
16
17
18
19
20
21
22
23
214
25
26
27
28
29
30
31
1
2
3
q
5
6
7
8
9
10
11
12
13
11
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
1
2
3
U
5
6
7
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
7 1
71
71
7 1
71
71
7 1
Day
of
Week
S»T
SDH
HON
TOE
WED
TH1
FRI
SAT
SON
HOH
TOE
WED
TPD
FP1
SAT
SON
HOH
TOE
HED
Tflrj
ttl
SAT
SDH
HON
TOE
HED
THU
FBI
SAT
SDH
MOH
TDE
HED
THU
FRT
SAT
SON
BON
TOE
HED
THU
FRI
SAT
SUN
HOH
TOE
WED
THO
FRI
SAT
SON
HON
TUB
Sanp s-1 P-2 F-2 S-2 Inf P-1 F-1 s- 1 P-2 F-2 S-2 Inf P-1 f- 1 S-1
Type N02 N02 HO2 N02 N03 N03 N03 N03 H03 H03 HO 3 NH3 NH3 NH3 KH3
6
99
6
6
6
6
99
6
99
99
99
99
99
99
99
99
6
6
6
99
99
99
99
99
99
6
6
99
6
99
6
6
6
6
99
6
99
6
6
99
99
99
6
99
6
15
15
15
99
15
99
15
15
-------
CO
Date
of
ObsT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JIN
JAR
JAN
JAR
JAR
JIH
JAM
JAH
JAR
JAH
JAN
JAR
JAN
JAR
JAH
JBN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAR
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
211
25
26
27
28
29
30
31
1
2
3
II
5
6
7
8
9
10
11
12
13
11)
15
16
17
18
19
20
21
22
23
24
71
7 1
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
Heek
IED
THD
FBT
SAT
SDR
noi
TOE
NED
FRI
SAT
SON
HON
TOE
RED
THU
FBI
SAT
SDN
HON
TOE
RED
THD
FRI
SAT
SDH
(ION
THE
BED
THO
FEI
SAT
SDN
HON
TOE
BED
THD
FRI
SAT
SDN
BON
TUB
BED
THO
FRI
SAT
SUN
HON
Saip S- 1 P-2 F-2 S-2 Inf P- 1 F- 1 S-1 P-2 F-2 S-2 Inf P-1 F-1 S- 1
Type N02 N02 H02 N02 H03 N03 N03 N03 NO 3 NO3 N03 NH3 NH3 NH3 NH3
15
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15 0.09 0.01 0.11 0.06 0.10 0.10 0.80 0.20 0.40 0.50 18.5 18.0 18.0
15
99
99
15
99
15
15 0.11 0.05 0.07 0.07 0.40 0.60 1.30 1.00 0.50 0.70 0.70 24.0 22.5 22.5 23.0
15
15 0.12 0,01 0.03 0.10 0.20 0.10 0.90 1.20 0.10 0.30 0.40 23.5 23.5 23.5 23.0
99
15
99
15
-------
00
Date
of
ObST
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
27
26
29
30
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
Day
of
Week
HED
HED
IHO
THD
FBI
FBI
SAT
SAT
SDR
SDR
ROR
BON
TOE
TOE
UED
THO
FBI
SAT
SDR
HOR
HON
TOE
TOE
RED
HED
THD
THD
FBI
F8I
SAT
SAT
SOR
SON
BON
BON
TOE
TOE
RED
RED
THD
THD
FSI
F8I
SAT
SAT
SDH
SON
BON
BON
TOE
TOE
WED
HED
Saip
Type
6
4
6
II
6
7
4
7
4
7
6
4
6
4
4
4
6
4
6
4
6
4
6
4
6
7
4
7
4
7
6
4
6
4
6
4
6
4
7
6
7
4
7
4
4
6
6
4
6
4
P-2
NH3
26.
26.
26.
25.
25.
22.
22.
28.
28.
31.
31.
25.
25.
25.
24.
24.
23.
23.
25.
25.
25.
2
2
2
2
2
2
2
6
6
5
5
0
0
0
8
8
2
2
1
1
1
F-2
NH3
27.9
27.9
27.9
34.6
24.6
21.6
21.6
28.8
28.8
27. 2
27.2
25.0
25.0
25.0
24.2
24.2
22. 6
23.6
25.0
25.0
25.0
S-2
HH3
26.4
26.4
26.4
24.8
24.8
22.0
22.0
28.6
28. 6
28.9
28.9
24.8
24. 8
24.8
24.4
24. 4
21.8
21.8
25.0
25.0
25.0
Inf
KJLD
R
42.0
42.0
42.0
43.5
43.5
42.6
42.6
47.3
47.3
46.3
46. 3
41.0
41 .0
41.0
47.7
47.8
48.7
48.7
36.7
36.7
36.7
P-1
KJLP
N
37.8
37.8
37.8
37.4
37.4
33.3
33.3
41.0
41.0
38.7
38.7
36.3
36.3
36. 3
38.3
38.3
34.7
34.7
32.0
32.0
32.0
F-1
KJLD
N
36.
36.
36.
33.
33.
31.
31.
38.
38.
36.
36.
33.
33.
33.
32.
37.
31.
31.
28.
28.
28.
8
8
8
a
8
0
0
3
3
7
7
P
0
0
7
7
8
8
3
3
3
S-1
KJLD
N
37.5
37.5
37.8
34.3
34.3
32.0
32.0
37.7
37.7
38.7
38.7
34.0
34.0
34.0
33.7
33.7
30.7
30.7
29. 7
29.7
29.7
P-2
KJLD
R
37.8
37.8
37.8
37.0
37.0
32.0
32.0
41.0
41.0
40.3
40.3
36.3
36.3
36. 3
36.7
36. 7
34.0
34.0
33.0
33.0
33.0
F-2
KJLD
N
35.0
35.0
35.0
35.0
35.0
29.8
29.8
36.7
36.7
36. 3
36.3
33.0
33.0
33.0
32.3
32.3
32.0
32.0
30.0
30.0
30.0
S-2 Inf P-1 F-1 3-1 P-2
KJLD Totl Totl Totl Totl lotl
R IR P IN P IN P IN P IN F
35.9
35.9
35.9
33.3
33.3
29.0
29.0
35.7
35.7
36.3
36.3
32.0
32.0
32.0
32.0
32.0
29.7
29.7
29.7
-------
00
Date
of
Obsv
DEC 18
DEC 18
DEC 19
DEC 20
DEC 21
DEC 22
DEC 23
DEC 24
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 29
DEC 30
DEC 30
JAR 1
JAJI 2
JAR 5
JAR 6
JAR 7
JAR 8
JAR 9
JAN 10
JAR 11
JAR 12
JAR 13
JAR 11
JAR 15
JAR 16
JAR 17
JAR 18
JAR 19
JAR 20
JAR 21
JAR 22
JAR 23
JAR 24
JAR 25
JAR 26
JAR 27
JAR 28
JAR 29
JAR 30
JAR 31
FEB 1
FEB 2
FEE 3
FEB H
FEB 5
FEB 6
FEB 7
FEB 8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
7C
70
70
70
70
70
70
70
70
7C
70
70
Day
of
Week
THU
THO
FBI
SAT
SON
BOH
TUB
WED
THD
FBI
SAT
SDR
HON
HOD
TDE
IDE
THO
FRI
HON
TOE
BED
THD
FBI
SAT
SOU
HOR
TOE
HED
THO
FBI
SAT
SDR
HO>i
TOE
SED
THD
FBI
SAT
SDS
HOD
TOE
HED
THO
PEI
SAT
SON
HON
TOE
HED
THO
FBI
SA?
SON
Samp
Type
6
4
6
4
6
-------
CO
Date
of
ObST
FEB 9
FEB 10
FEB 11
FF.B 12
PEB 13
FEB It
FEB 15
FEB 16
FEB 17
FEB 18
FEB 19
PEB 20
PEB 21
FEB 22
PEB 23
FEB 21
FEB 25
PEB 26
FEB 27
FEB 28
BAR 1
BAR 2
BAR 3
BAR 14
BAR 5
BAR 6
MAR 7
HAS 8
HAP 9
FAR 10
CAR 11
WAR 12
HAP 13
r«AB 14
BAR 15
HAH 16
FAR 17
BAR 18
IAS 19
BAR 20
HAR 21
HAS 22
FAB 23
FAR 24
BAR 25
TAR 26
BAP 27
BAR 28
FAH 29
MAR 30
FAR 31
APR 1
API 2
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
7C
70
Day
of
Week
BON
TOE
WED
THU
FBI
SAT
SON
BOX
TDE
WED
THO
FRI
SAT
SUN
DON
TUB
WED
THU
PRI
SAT
SON
HOF
IDE
MED
THU
FRI
SAT
SDH
BON
TDE
WED
THO
PRI
SAT
SDS
F.OH
TOE
WED
THU
PRI
SAT
SDK
BOS
TOE
WED
THU
PRI
SAT
SDS
HON
TUE
WED
THO
Samp
TV pa
It
4
4
4
7
7
7
4
4
4
4
7
7
7
4
4
4
4
4
4
4
4
7
7
7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
7-2
SH3
23.8
23.8
23. 4
23. 4
22.4
22.4
22. 4
16. 8
16. 8
17.8
17.8
21.2
21. 2
21. 2
20.8
20. 8
19. 8
19. 8
22.8
22. 8
18.0
18.0
26. 8
26. 8
26. 8
22.6
22. 6
28.0
28. 0
22. 6
22. 6
28. 6
28. 6
29. 0
29. 0
22.0
22.0
17. 2
17. 2
19. 4
19. 4
P-2
NH3
23.6
23.6
23.8
23. 8
22.8
22.8
22.8
16.6
16.6
17. 2
17.2
20.8
20. 8
20.8
21. 2
21.2
20.8
20.8
22. 2
22.2
17. 8
17.8
23. 8
23. 8
23. 8
24.6
24.6
30.0
30.0
22.6
22.6
28.0
28.0
28.6
28.6
22.0
22.0
16.4
16. 4
19.0
19.0
S-2
NH3
23.2
23.2
23.8
23. 8
22.0
22.0
22.0
16.6
16.6
17.2
17. 2
20.6
20.6
20.6
21. 6
21.6
20.4
20.4
22. 8
22. 8
17.0
17.0
22. 4
22.4
22.4
21.4
21.4
30.0
30.0
21.4
21.4
27. 4
27.4
28. 6
28.6
21.4
21.4
16, 4
16.4
20.0
20.0
Inf
KJLD
N
41.0
41.0
42. 6
42.6
42.6
42.6
42.6
32.0
32.0
30.2
30.2
34.6
34.6
34.6
38.6
38.6
36.0
36.0
46.2
46. 2
37. 2
37.2
32. 4
32.4
32.4
41.4
41.4
31.0
31.0
42.0
42.0
51.0
51.0
38.0
38.0
29.0
29.0
37.0
37.0
32.0
32.0
P-1
KJLD
N
34.8
34.8
37.6
37.6
40.4
40. 4
40.4
32.2
32.2
28.2
28.2
30.0
30.0
30.0
36.6
36.6
32.0
32.0
38.6
38.6
32.8
32.8
29.2
29.2
29.2
38.0
38.0
33.0
33.0
30.0
30.0
36. 0
36.0
36.0
36.0
32.0
32.0
34.0
34.0
31.0
31.0
F-1
KJLD
N
36.0
36.0
36.4
36.4
40.8
40.8
40. 8
30.6
30.6
27. 2
27.2
29.6
29.6
29.6
35.4
35.4
30.6
30.6
39.4
39.4
34.0
34.0
27.8
27.8
27. 8
36.2
36.2
35.0
35. C
29.0
29.0
36.0
36.0
41.0
41.0
33. C
33.0
45. C
45.0
28.0
28.0
S-1
KJLD
H
33.6
33.6
56.8
56.8
36.8
36.8
36. 8
29.6
29.6
26.0
26.0
27.4
27.4
27.4
35.4
35.4
29.4
29. 4
39. 8
39.8
32.0
32.0
27.2
27.2
27. 2
36.0
36.0
34.0
34.0
28.0
28.0
33.0
33.0
35.0
35.0
28.6
28.6
43. 0
43.0
26.0
26. 0
P-2
KJLD
N
36.4
36. 4
43.4
43. 4
41. 6
41.6
41.6
30.0
30.0
28.0
28.0
33.0
33.0
33.0
36.6
36.6
32.4
32.4
40.4
40. 4
31.6
31.6
30.4
30. 4
30. 4
37.0
37.0
36. 0
36.0
33.4
33.4
40.0
40.0
40.0
UO.O
39.0
39.0
32.0
32.0
34.0
34. 0
P-2
KJ1D
N
35.0
35.0
41. 4
41.4
39.6
39.6
39.6
27.0
27.0
26.6
26.6
30.8
30. 8
30.8
36.2
36.2
32.2
32.2
39.0
39.0
31.0
31.0
29.6
29.6
29.6
39.0
39.0
38.0
38.0
33.0
33.0
42.0
42.0
38.0
38.0
41.0
41.0
36.0
36.0
31.4
31.4
S-2
KJLD
N
33.6
33.6
41.8
41.8
37.6
37.6
37.6
26.2
26.2
25. 8
25.8
30.0
30.0
30.0
35.2
35.2
33.6
33.6
39.2
39.2
29.6
29.6
28.4
28.4
28.4
37.2
37.2
35.0
35.0
30. 0
30.0
38.0
38.0
36. 0
36. 0
38. 0
38.0
30. 0
30.0
30.0
30.0
Inf
Totl
IN P
9.2
9.2
9.5
9.S
9.5
9.5
9.5
5.6
5.6
6.9
6.9
8.7
8.7
8.7
10.3
10.3
8. 1
8. 1
8.2
8.2
9.3
9.3
8.2
8.2
8.2
9.2
9.2
7.5
7.5
7.7
7.7
10.3
10.3
8.5
8.5
7.9
7.9
8.5
8.5
6.6
8.6
P-1
Totl
IN P
9. 5
9. 5
9.9
9.9
10. 8
10.8
10. 8
6. 8
6.8
7.0
7.0
9.2
9.2
9. 2
10.0
10.0
8. 3
8. 3
9.6
9.6
7.3
7. 3
7. 6
7.6
7. 6
9.4
9. 4
9. 0
9.0
8. 4
8. 4
9.9
9. 9
9.6
9.6
8. 9
8. 9
9. 3
9. 3
8.8
8. 8
F-1
Totl
IN P
9.8
9.8
10.6
10.6
10.8
10.8
10.8
5.8
5.8
8. 1
8. 1
8.5
8.5
8.5
11.0
11.0
8.4
8.4
10.5
10.5
7.7
7.7
7.7
7.7
7.7
9.3
9. 3
9.5
9.5
8.5
8.5
9.9
9.9
10.3
10. 3
8.8
8. 8
12.7
12.7
8.7
8.7
S-1
Totl
IN P
9.7
9.7
10.0
10.0
10.7
10.7
10.7
6.6
6.6
6.7
6.7
9.2
9.2
9.2
9.8
9.8
8.4
8.4
10.7
10.7
7.9
7.9
7.7
7.7
7.7
10.1
10. 1
9.8
9.8
8.3
8.3
9.9
9.9
9.8
9.8
8.4
8.4
9.4
9.4
8.6
8.6
P-2
Totl
IN P
9.7
9.7
11.0
11.0
11.7
11. 7
11.7
6.0
6.0
7. 8
7.8
9.0
9.0
9.0
10.5
10.5
8.0
8.0
10.9
10.9
6.6
6.6
8.3
8.3
8.3
8.9
8.9
9.3
9.3
8.8
8.8
10.4
10. 4
9.4
9. 4
8. 9
8.9
8.9
8.9
8.3
8. 3
-------
00
oo
Date
of
Obsv
APB 3
APE 1
APE 5
APF 6
APR 7
APB B
APE 9
APB 10
APS 11
APB 12
APB 13
APB 14
APH 15
APB 16
APB 17
APB 18
APB 19
APB 20
APB 21
APE 22
APE 23
APB 2 U
AFB 25
APB 26
APS 27
APB 28
APB 29
APB 30
BAT 1
HAT 2
HAT 3
HAT 1
HAT 5
HAT 6
HAT 7
HAT 8
HAT 9
HAT 10
HAT 11
HAT 12
HAT 13
HAT 11
HAT 15
HAT 16
HAT 17
HAT 18
HAT 19
HAT 20
HAT 21
HAT 22
HAT 23
HAT 21
HAT 25
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
Day
of
Heek
FBI
SAT
SON
HOH
TOE
HED
THU
PBI
SAT
SDH
HOH
TOE
HED
TBD
FBI
SAT
SDH
RON
TOE
RED
THD
FBI
SAT
SDH
HOR
IDE
HED
THD
FBI
SAT
SON
RON
TOE
BED
fHD
FBI
SAT
SDN
ROM
TOE
HED
THD
FBI
SAT
SON
HOH
TOE
HED
THO
FBI
SAT
SOU
RON
Sa»p
Type
7
7
7
U
a
4
14
7
7
7
4
4
7
7
7
7
7
7
4
14
II
4
7
7
7
4
4
6
6
6
6
6
6
P-2
NH3
21. 4
21. 4
21.4
24.0
24. 0
23. 5
23.5
24. 0
24.0
24.0
28.6
28.6
28.6
28.0
28. 0
28.0
27.0
27.0
26.0
25.0
24.0
23,0
19.0
20.0
T-2
HH3
22.0
22.0
22.0
23.0
23.0
23.0
23.0
23.5
23.5
23.5
27.5
27.5
27.5
28.0
28.0
28.0
27.0
27.0
26.0
26.0
26.0
23.0
18.0
20.0
S-2
HH3
22.0
22.0
22.0
23.4
23.4
23.0
23.0
23.5
23.5
23.5
26.5
26.5
26.5
28.0
?8.0
28.0
27.0
27.0
25.0
25.0
26.0
23.0
19.0
19.0
Inf P-1
KJLD KJLD
H N
36.
36.
36.
37.
37.
35.
35.
33.
33.
33.
43.
43.
43.
39.
39.
39.
35.
35.
39.
38.
32.
32.
27.
29.
0 29.0
0 29.0
0 29.0
0 35.0
0 35.0
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0 28.0
5 31.0
0 26.5
0 25.5
F-1 S-1 P-2
KJLD KJLD KJLD
B H «
28.0 24.6 33.0
28.0 24.6 33.0
28.0 24.6 33.0
40.0 35.4 36.0
40.0 35.4 36.0
34.5
34.5
36.0
36.0
36.0
43.0
43.0
43.0
35.0
35.0
35.0
36.0
36.0
34.0
29.0
29.0 29.0 28.0
30.0 30.0 29.5
25.5 26.0 25.0
24. C 22.0 25.0
F-2
KJLD
1
36.0
36.0
36.0
39.0
39.0
32.0
32.0
39.5
39.5
39.5
«3.0
43.0
43.0
35.0
35.0
35.0
34.0
34.0
40.0
32.0
31.0
28.0
26.0
23.5
S-2
KJLD
H
32.0
32.0
32.0
35.0
35.0
37.0
37.0
36.5
36.5
36.5
38.5
38.5
38.5
39.0
39.0
39.0
33.0
33.0
31.0
31.0
31.0
27.5
24.5
22.0
Inf
Totl
IH P
7.8
7.8
7.8
8.7
8.7
7.6
7.6
7.6
7.6
7.6
9.2
9.2
9.2
6.8
6.8
6.8
6.9
6.9
8.2
7.7
7.4
8.8
8.4
8.1
P-1 F-1 S-1 P-2
Totl Totl Totl Totl
IH P IH P IH P IN P
8.5 8.7 8.6 8.4
8.5 8.7 8.6 8.4
8.5 8.7 8.6 8.4
9.7 11.0 10.4 9.6
9.7 11.0 10.4 9.6
7.8
7.8
8.8
8. 8
8.8
10.3
10.3
10.3
8.0
8.0
8.0
7.7
7.7
8.3
8.2
8.4 8.9 8.9 8.9
9.0 9.6 9.8 10.0
9. 1 9.7 9.8 9.7
9.2 8.7 8.7 9.4
-------
O3
Date
of
Obs»
HAT
HAT
PAT
HAT
HAT
HAT
JON
JON
JUN
JON
JON
JON
JON
JON
JON
JON
JON
JON
JUN
JON
JON
JON
JON
JON
JON
JON
JON
JON
JON
JON
JUN
JON
JUN
JUN
JON
JUN
JOL
JOL
JUL
JUL
JfL
J1JL
JOL
JOL
JUL
JOL
JUL
JUL
JOL
JDL
JUL
JIIL
JUL
26 70
27 70
28 70
29 70
30 70
31 70
1 70
2 70
3 7C
ft 70
5 70
6 70
7 70
8 70
9 70
10 70
11 70
12 70
13 70
1ft 70
15 70
16 70
17 70
18 70
19 70
20 70
21 70
22 70
23 70
2ft 70
25 70
26 70
27 70
28 70
29 70
30 70
1 70
2 70
3 70
ft 70
5 70
6 70
7 70
8 70
9 70
10 70
11 70
12 7C
13 70
1ft 70
15 7C
16 70
17 7C
Day
of
Ueek
TOE
BED
THO
FRI
SAT
SUN
HON
TOE
WED
THU
FPI
SAT
SON
HON
TOE
BED
THO
FRI
SAT
SON
HON
TOE
BED
THU
FSI
SAT
SON
HON
TOE
BED
THU
FRT
SAT
SON
HON
TOE
BED
THII
FRI
SAT
SON
HON
TOE
BED
THO
FRI
SAT
SON
HON
TOE
BED
THO
FSI
Saip
Type
6
6
6
6
6
6
6
9
9
6
6
6
6
b
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
P-2
NH3
21.
21.
21.
17.
22.
17.
23.
19.
22.
2ft.
19.
13.
21.
18.
20.
18.
1ft.
15.
16.
12.
0
5
5
S
0
0
0
0
5
0
0
5
0
0
0
5
5
5
5
5
F-2
NH3
22.0
22.0
22.5
15.5
19.5
17.0
19. 5
22.0
23.0
18.5
1ft. 0
18. 5
18.5
20.0
17. 0
13.5
15.0
17.0
1ft. 0
S-2
NH3
21.0
22.0
22.5
17.0
20. 0
17. 5
20.5
18.5
23.0
2ft. 0
19. 0
13.5
20.0
17.5
20.5
17. 5
11. 0
16.0
16.5
12.5
Inf
KJLD
N
22.
27.
3U.
27.
39.
30.
21.
37.
39.
38.
28.
28.
38.
33.
38.
3ft.
26.
26.
ft 1.
33.
5
5
5
0
0
5
5
5
0
0
5
5
5
5
0
0
5
0
0
0
p-1
KJLD
N
21.0
26.0
2ft. 0
22.0
26.0
22.5
23.5
21.5
23.0
26.5
23.5
17.5
28.5
30.5
23.5
18.5
8.0
16.5
2ft. 0
20.0
F- 1
KJLD
N
22.
27.
22.
20.
22.
20.
20.
19.
22.
2ft.
22.
16.
21.
17.
21.
15.
7.
1ft.
20.
17.
0
0
5
5
0
0
C
5
0
0
5
5
0
5
5
5
0
5
5
0
S- 1
KJLD
N
20.
26.
22.
23.
22.
22.
16.
16.
20.
2ft.
21.
15.
19.
18.
21.
15.
15.
1ft.
19.
5
5
5
5
'0
5
5
0
5
0
0
5
0
0
0
0
0
5
5
P-2
KJLD
N
25.0
23.0
22.5
2ft.O
27.0
22.0
27.0
25.0
27.0
30.0
27.5
21.0
28.0
28.0
26.0
10.0
18.0
31.0
26.0
F-2
KJLD
N
25.5
22.5
23.5
23.5
26.0
23.0
22.5
2ft. 0
27.0
2ft. 0
21.0
23.5
20.5
27.5
23.0
8.0
17.0
28.5
2ft. 5
S-2
KJLD
N
22.0
23.0
22.5
23.0
28.5
23.0
2ft. 5
22.0
25. 5
27.5
2ft. 5
18.0
23. 5
26.0
21.5
7.0
16. 0
27.0
22.5
Inf
Totl
IN P
9. 1
10.5
8.5
8.9
9. 1
7.6
9.3
10.0
8.7
8.5
8.3
7.1
9.6
9.6
8.6
9. ft
9. 1
8. 1
8.6
7. ft
P-1
Totl
IN P
10. 0
11.0
10. ft
10. 2
10. 5
9. 7
10.6
9. ft
9. 5
9. 7
9. ft
8.5
8.6
8.0
10. 1
10.0
10. 1
8. 5
8.0
8. 6
F-1
Totl
IN P
9.1
11.1
10.7
10.1
10.2
10. ft
10.2
9.6
9.9
IP. 6
10.2
9.3
8. ft
8.8
10.6
10.3
10.0
8.8
9. 1
8.9
S-1 P-2
Totl Totl
IN P IN P
10.3 9. ft
11.1 11.3
10.7 10.3
9.9 10.5
10.3 10.9
9.5 10.3
10.2 10. ft
9.5 9.7
10.1 9.2
10.0 10. ft
9.8 9.2
9.5 9.0
8. ft 9.0
8.0 8.0
10.7 10.2
10.3 10.5
10.0
9.3 8.5
8.8 9.3
8.9 8. 8
-------
Date
of
Obs»
JOL ~TS
JDL 19
JDL 20
JOL 21
JDL 22
JOL 23
JOL 24
JOL 25
JOL 26
JOL 27
JOL 28
JDt 29
JOL 30
JOL 31
AOG 1
AOG 2
AOG 3
AOG 4
AOG 5
AOG 6
AOG 7
AOG 8
AOG 9
ADG 10
AOG 11
AOG 12
AOG 13
AOG 14
ADG 16
AOG 17
AOG 18
AOG 19
AOG 20
AOG 21
AOG 23
AOG 24
AOG 25
AOG 26
AOG 27
AOG 28
AOG 29
AOG 30
AOG 31
SEP 1
SEP 2
SEP 3
SEP 6
SEP 7
SEP 8
SEP 8
SEP 9
SEP 10
SEP 10
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Heek
SAT
SON
BON
BON
TOB
THD
THO
FBI
SOS
BON
TOE
HED
THO
FRI
SAT
SON
BON
TDE
BED
THD
FRI
SAT
SOU
RON
TOE
BED
THO
FBI
SON
BON
TOE
HED
THO
FRI
SDN
SON
TOE
HED
THO
FRI
SAT
SDN
BON
TOE
HED
THO
SON
BON
TDE
TDE
HED
THU
THO
Samp
Type
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1 1
6
6
6
6
6
6
6
6
6
6
6
6
10
6
10
P-2 F-2
HH3 NH3
16.
9.
23.
16.
14.
15.
15.
15.
17.
12.
15.
14.
18.
17.
17.
0 15.0
0 7.5
0 20. 5
0 13.5
5
5
0
5 13.0
0 14.5
5 0.1
0 13. 5
9.5
0 12.5
0 16.5
5 18.0
5 18.0
S-2
SH3
14.5
7.5
17.5
14.0
11.0
14. 0
15.5
15.5
9.5
12.5
9.5
11.5
16.0
19.0
19.0
Inf
KJLD
11
12.0
36.5
49.0
31. 5
32.5
21.5
29.0
37.5
32.5
33.0
40.0
32.0
28.5
28.0
26.0
26.0
P-1
KJLD
N
32.0
24.5
36.5
26.5
26.5
19.5
22.5
24.0
21.0
21.0
29.0
25.0
18.5
23.0
23.0
23.0
F- 1
KJLD
N
28.
21.
31.
23.
17.
21.
20.
22.
17.
25.
21.
17.
23.
18.
18.
5
C
5
5
5
5
0
0
0
5
0
5
5
0
0
S-1 P-2 r-2
KJLD KJLD KJLD
H B N
26.
20.
31.
21.
21.
19.
22.
15.
21.
16.
26.
22.
15.
20.
11.
11.
0 23.0 23.5
0 15.0 11.5
0 32.0 31.0
5 22.0 18.0
5 21.5
0 22.5
0 19.5
0 19.0 15.0
0 22.0 17.5
5 17.0 14.0
0 21.0 26.0
5 16.5
0 18.5 14.0
0 21.5 18.0
5 19.0 19.5
5 19.0 19.5
S-2
KJLD
N
19.5
15.5
25.5
18.0
18.5
18.5
18.0
19.0
18.0
13.0
19.0
17.0
14.0
19.5
20.0
20.0
Inf
Totl
IN P
8.0
9.5
9.6
8.1
7.1
6. 1
7.6
9.5
9.3
8.6
7.5
6.5
10.2
10. 1
8.9
8.9
P-1 F-1
Totl Totl
IN P IN P
8.
10.
10.
9.
8.
7.
8.
8.
9.
9.
7.
8.
11.
8.
9.
9.
8 8.4
4 9.5
0 10. 1
0 9.5
9
0 6.9
8 8.8
9 8.7
0 9.3
8 8.7
2 8.7
2 7.5
0 9.9
6 10.5
0 10.1
0 10. 1
S-1
Totl
IN P
8.3
8.4
6.2
9. 1
9.3
7.7
8.2
8.3
9.7
9.3
9.0
7.6
9.6
9.0
10.0
10.0
P-2
Totl
IN P
8.8
9.6
8.7
9. 1
9.2
8.4
8.4
8.4
9.3
9.1
7.5
9.6
9.1
9.0
9.0
-------
Data
of
Obs»
SEP Tl
SEP 12
SEP 13
SEP 13
SEP 11
SEP 15
SEP 15
SEP 16
SEP 17
SEP 17
SEP 18
SEP 19
SEP 20
SEP 20
SEP 21
SEP 22
SEP 22
SEP 23
SEP 21
SEP 21
SEP 25
SEP 26
SEP 27
SEP 27
SEP 28
SEP 29
SEP 29
SEP 30
OCT 1
CCf 1
OCT 2
OCT 3
OCT 1)
OCT 1
OCT 5
OCT 6
OCT 6
OCT 8
OCT 7
OCT 9
OCT 10
OCT 11
OCT 1 2
OCT 13
OCT 11
OCT 15
OCT 16
OCT 17
OCT 18
OCT 18
OCT 19
OCT 20
OCT 20
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
Week
FBI
SAT
SUN
SUN
HON
TUB
TUE
BED
THU
THO
FBI
SAT
SUN
SUN
HON
TUE
TOE
UED
THO
THO
F8I
SAT
SON
SON
HON
TOE
TOE
UED
THU
THD
FBI
SAT
SUN
SON
HON
TOE
TOE
THU
UED
FRI
SAT
SOI
HON
TUE
UED
THO
FBI
SAT
SUN
SON
HON
TOE
TOE
Inf P- 1
Type NH3 KH3 »H3 N N
•— — •— — •— — •_ — •_
6
12 20. 5 19.0 18.0 27.5 22.5
6
6
12 20.5 19.0 27.5 22.5
6
12 20.5 19.0 18.0 27.5 22.5
6
6
12 22.5 22.5 23.0 29.5 26.0
6
6
12 22.5 22.5 23.0 29.5 26.0
6
12 22.5 22.5 23.0 29.5 26.0
6
6
12 21.5 21.0 21.0 36.0 31.0
6
6
12 21.5 21.0 21.0 36.0 31.0
6
12 21.5 21.0 21.0 36. 0 31.0
6
1 21. 5 23. 5 23.0 31.0 21.5
13
6
6
1 21.5 23.5 23.0 31.0 21.5
6
12 25.0 26.0 25.0 32.0 23.0
6
12 25.0 26.0 25.0 32.0 23.0
6
?-1 S-1 P-2 F-2 S-2 Inf P-1 F- 1 S-1 P-2
KJLD KJLD KJLD KJLD KJLD Totl Totl Totl Totl Totl
N N N N N IN P IN P IN P IN P IN P
— •- — •- — •_ — •_ — •_ — •_ — •_ — •_ — •_
19.0 19.0 21.0 20.0 19.0 9.0 9.5 10.0 9.9 10.2
19.0 19.0 21.0 20.0 9.0 9.5 10.0 9.9 10.2
19.0 19.0 21.0 20.0 19.0 9.0 9.5 10.0 9.9 10.2
25.0 22.5 27.0 25.0 25.0 9.1 9.8 10.2 9.9 10.3
25.0 22.5 27.0 25.0 25.0 9.1 9.8 10.2 9.9 10.3
25.0 22.5 27.0 25.0 25.0 9.1 9.8 10.2 9.9 10.3
21.0 20.0 21.5 21.5 29.5 8.1 8.5 10.0 9.6 8.3
21.0 20.0 21.5 21.5 29.5 8.1 8.5 10.0 9.6 8.3
21.0 20.0 21.5 21.5 29.5 8.1 8.5 10.0 9.6 8.3
21.5 20.5 21.5 23.5 23.0 6.0 8.6 9.1 11.1) 10.8
21.5 20.5 21.5 23.5 23.0 6.0 8.6 9.1 11.1. 10.8
21.0 22.0 27.5 30.5 26.5 8.5 B. 9 9.1 9.0 9.1
21.0 22.0 27.5 30.5 26.5 8.5 8.9 9.1 9.0 9.1
-------
VO
N3
Dnts
or
0 bsv
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
oct
OCT
HOT
HOT
NOT
NOT
NOT
HOT
HOT
HOT
HOT
HOT
NOT
HOT
NOT
NOT
NOT
HOT
HOT
HOT
HOT
NOT
HOT
NOT
HOT
HOT
HOT
HOT
NOT
NOT
NOT
NOT
NOT
HOT
FOT
HOT
DEC
DEC
DEC
DEC
21
22
22
23
24
25
25
26
27
27
28
29
29
30
31
1
1
2
3
4
5
5
6
7
8
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
1
2
3
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Ueek
HED
THD
THO
FBI
SAT
SUN
SON
BON
TOB
TOE
RED
THO
THO
PRI
SAT
SON
SON
HON
TOE
UED
THO
THO
PRI
SAT
SON
SOH
BON
TOE
TOE
UED
THO
FBI
SAT
SON
DON
TOE
WED
THO
PRI
SAT
SON
BON
TOE
TRO
THO
PPI
SAT
SDK
BON
TOE
TUE
UED
THD
Inf P-1 P-1 S-1 P-2 P-2 S-2
Sa«p P-2 P-2 S-? KJLD KJLD KJLD KJLD KJLD KJLD KJLD
TTPe NH3 NH3 »H3 B H N N H V S
6
6
12 25.0 26.0 25.0 32.0 23.0 24.0 22.0 27.5 30.5 26.5
13
12 29.0 28.5 28.5 42.5 39.5 35.0 35.0 44.0 49.5 41.5
6
6
12 29.0 28.5 28.5 42.5 39.5 35.0 35.0 44.0 49.5 41.5
6
6
12 29.0 28.5 28.5 42.5 39.5 35.0 35.0 44.0 H9.5 41.5
6
10 19.5 21.0 21.5 42.0 26.5 25.0 19.5 27.5 27.0 27.5
6
6
10 19.5 21.0 21.5 «2.0 26.5 25.0 19.5 27.5 27.0 27.5
6
10 24.0 24.5 25.5 29.0 23.0 21.5 21.0 28.0 26.0 27.0
6
6
10 24.0 24.5 25.5 29.0 23.0 21.5 21.0 28.0 26.0 27.0
6
6 27.5 28.0 27.0 29.0 21.0 19.5 19.5 27.5 29.5 27.0
6
6
6
12 25.5 28.5 28.5 31.0 21.0 20.5 19.5 26.0 28.5 50.0
6
6
Inf P-1 P-1 S-- P-2
Toll totl Toll Totl Tot!
18 P IN P 18 P IB P III P
8.5 8.9 9.1 9.0 9. 1
8.5 9.3 10.1 9.3 8.9
8.5 9.3 10.1 9.3 8.9
8.5 9.3 10.1 9.3 8.9
6.1 7.4 8.4 6.0 5.8
6.1 7.4 8.4 6.0 5.8
6.9 7.7 8.3 8.5 7.5
6.9 7.7 8.3 8.5 7.5
8.0 8.1 8.2 8.4 8.4
7.4 8.6 8.7 8.8 8.7
-------
VD
Date
of
Obs»
DEC ~~3
DEC »
DEC 5
DEC 6
DEC 6
DEC 7
DBC 8
DEC 8
DEC 9
DEC 10
DEC 10
DEC 11
DEC 12
DEC 13
DEC 114
DEC 15
DEC 16
DEC 17
DEC 20
DEC 21
DEC 22
DEC 23
DEC 21
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 30
DEC 31
JAN 1
JAN 2
JAN 3
JAN 14
JAN 5
JAN 6
JAN 7
JAN 8
JAN 9
JAN 10
JAN 11
JAN 12
JAN 13
JAN 1<4
JAN 15
JAN 16
JAN 17
JAN 13
.UN 19
JAN 20
JAN 21
JAN 22
JAN 23
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
7C
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
Day
of
Week
THU
PKI
SAI
SON
SUN
HON
TOE
TOE
WED
THU
THU
FBI
SAT
SON
HON
TOE
WED
TBO
SUN
HON
TUE
WED
THU
PFI
SAT
SUN
BON
TOE
WED
THO
FBI
SAT
SUN
HON
TOE
WED
THD
FRI
SAT
SDN
HON
TOE
WED
TRD
FFI
SAT
SUN
NON
TUE
WED
THU
FBI
SAT
Saip
Type
~\2
99
99
6
12
99
6
12
6
6
12
99
99
6
6
6
11
6
6
6
99
99
99
99
99
6
6
6
6
99
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
P-2
NH3
25.
23.
23.
23.
2U.
25.
20.
20.
19.
22.
22.
17.
25.
22.
22.
21.
23.
23.
5
5
5
5
0
0
0
5
0
5
0
0
0
5
5
0
5
0
F-2
NH3
28.
26.
26.
26.
25.
26.
22.
23.
20.
23.
2?.
13.
25.
23.
20.
23.
21.
23.
22.
5
5
5
5
5
0
0
0
0
5
0
5
5
0
0
0
5
0
5
S-2
NH3
28.5
25.5
25.5
25.5
23.0
75. 5
20,0
22,0
20.5
23.0
22.5
17.5
25.0
23.5
20.0
23. 0
21. 5
25. 0
22.5
Inf
KJLD
N
31.0
39.0
39.0
39.0
38.0
U3.0
32. 5
33.0
27.0
141.0
214.5
23.5
29. 5
20. 5
28.0
31.5
29. 0
31.5
3M. 5
P-1
KJLD
N
21.0
23.5
23.5
23.5
22.0
23.5
19.5
15.5
13.5
18.0
114.0
114.5
19.0
19.0
25.5
26.0
21.0
28.0
31.0
P-1
KJLD
N
20.
21.
21.
21.
17.
19.
17.
13.
9.
114.
114.
19.
17.
16.
22.
22.
1B.
26.
26.
5
0
0
0
5
5
5
0
5
0
0
0
0
0
0
5
5
5
5
S-1
KJLD
N
1 9.
17.
17.
20.
18.
18.
13.
9.
12.
12.
13.
16.
15.
22.
214.
19.
26.
27.
5
5
5
5
5
0
0
0
c
0
0
0
0
0
0
5
0
0
P-2
KJLD
N
2b.
32.
32.
32.
37.
140.
31.
30.
25.
30.
27.
20.
26.
2H.
2b.
27.
33.
31.
0
0
0
0
5
0
5
5
5
0
5
0
5
5
5
0
5
5
F-2
KJLD
N
28. 5
38.0
38.0
38.0
<43.5
37.0
31. 5
31.0
26.5
30.0
22.0
13.5
29.0
23.0
23.5
28.0
26.0
29.5
32.5
S-2
KJLD
N
50.0
32.0
32.0
32.0
140.0
35.5
30.0
31.0
29.0
29.5
25.5
18.0
28.0
26. 5
214.0
31,0
26.5
31.0
31.0
Inf P-1 F-1 S-1 P-2
Totl Totl lotl Totl 'iotl
IN P IN P IN P IN P IN F
7.14 8.6 8.7 8.8 8. 7
9.0 9. 14 9.7 10.1 9.8
9.0 9. 14 9.7 10.1 9.8
9.0 9.14 9.7 9.8
7.3 9.1 9.6 10.3 8.0
7.9 8.3 8.9 9.0 8.7
6.5 6.14 6.9 7.0 6. 9
6.7 7.14 7.5 8.5 7.8
5. 1 6.8 6.9 6.5 5.1|
6.8 6.3 6.0 5.9 6. 5
6.7 7. 5 7.5 7.3 7.2
3.9 5.9 5.0 6.14 14. 5
5.5 6.5 7.0 6.9 7.14
5.2 7.0 6.9 6.8 6. 3
6.1 7.0 7.2 7.M
7. 2 8.1 8.2 8.1 8.3
6.14 7.8 8.1 8.14 7.2
7.2 7.7 8.1* 8. 1 8. 3
7.7 8.9 8.8 8.7 fl.2
-------
Date
of
Obsr
JAH
JAR
JAR
JAR
JAR
JAR
JAB
JAR
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
f FEB
2 FEB
FEB
FEB
FBB
FEB
VO PEB
Jfr. «B
FEB
FEB
FEB
FEB
FBB
HAR
HAB
HAH
HAH
HAS
HAB
HAE
HAS
MAR
HAS
HAS
HAR
HAB
HAP
HAR
HAS
HAR
2*
2S
26
21
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2«
25
26
27
28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Dai
of
leek
SDR
ION
TOE
HED
THO
FBI
SAT
SOR
HOM
TUB
IED
THO
FSI
SAT
SOR
HOB
TOE
HED
THO
FBI
SAT
SDH
• OR
TOE
HED
TBO
FRI
SAT
SOD
BOS
TOE
HED
TRO
FBI
SAT
SOR
HOR
TOE
HED
THO
FRI
SAT
SOR
10H
TOE
HED
THO
FP.I
SAT
SOR
HON
TDK
HED
Sanp
Type
~6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
P-2
HH3
20.
20.
21.
27.
22.
18.
18.
18.
17.
19.
21.
24.
22.
20.
19.
18.
15.
18.
22.
5
5
0
0
5
0
0
5
0
5
0
0
5
5
5
5
5
5
0
F-2
RH3
20.5
21.5
26.5
28.5
23.5
19.0
18. 5
20.0
17.5
19.5
22.0
24.5
22.5
22.0
19.0
19.0
15.5
18.4
22.4
S-2
RH3
21.0
21.0
27.0
29.0
23.5
19.0
18. 0
20.0
18.0
19.5
22.0
24.5
21.5
21.5
19.0
19.0
14.5
18.8
22.2
Inf
KJLD-
R
32. 5
30.0
30.5
32.5
27.0
18.5
21.5
26.5
30.0
31.0
26.5
33.5
31.5
33.5
26.0
27.5
22.5
26.0
33.5
P-1
KJLD
N
26.5
26.0
26.0
29.5
30.0
21.0
21.5
26.5
26.0
29.0
25.5
33.5
31.5
30.5
26.5
25.5
21.0
26.5
29.5
P-1
KJLD
N
25.5
23. 5
23.5
28.0
29.5
18. 5
21.0
27.5
23.0
30.5
26.5
33. 5
31.5
31.0
25.0
26.5
21.5
26.0
28.0
S-1
KJLD
R
23.0
25.0
23.5
28.0
26.5
19.0
21.5
28.5
22.0
30.0
26.0
32.5
31.5
32.5
25.0
27.0
20.5
26.0
30.0
P-2
KJLD
I
29.5
27.5
29.0
35.0
25.5
24.0
24.0
26.5
26.5
31.0
27.0
34.5
31.0
26.5
26.5
28.0
21.0
26.0
29.5
F-2
KJLD
R
26.5
28.5
27.0
32.5
29.5
24.5
22.5
29.0
25.0
27.5
28.0
32.0
31.5
26.0
25.5
27.0
20.0
25.5
29.5
S-2
KJLD
N
27.0
26.0
28.0
32.5
26.0
21.5
22.0
26.0
23.5
27.0
27.0
33.0
28.0
26.0
24.0
24.5
21.0
24.0
27.5
Lnf
Totl
IN P
7.1
6.9
7.1
8.2
5.4
3.4
4.0
5.3
4.8
5.7
7.1
6.8
6.4
7.2
7.1
8.2
5.3
3.9
4.3
P-t
Totl
is p
7.9
7.6
7.9
8. 2
6.8
5. 3
5.2
6.6
4.9
6.5
7.7
8. 3
6.7
7.6
8.4
7.5
5.4
4. 8
5.2
F- 1
Totl
IR P
8.4
7.9
8.3
8.5
7.7
5.1
4.7
7.1
5.1
7.1
7.7
8.0
7.6
7.9
8.7
7.6
5.4
5.2
5.2
S-1
Totl
IR P
8.4
7.8
8.4
8.4
6.8
5.3
5.4
7.1
5.2
7.2
7.8
8.3
7.0
7.9
8.6
7.8
5.3
5.2
4.9
P-2
Totl
IN P
6.9
7.7
8.2
7.9
6.3
4.5
5.1
6.9
5.1
7.2
7.6
8. 1
6.9
8.0
8.9
7.8
5.8
4.9
4.8
-------
Date
of
ObST
BAR
BAR
BAR
»AF
BAH
CHS
BAR
BAB
HAD
PAH
CAB
BAB
BAR
HAH
APE
»°B
APR
APB
APS
APP
APR
APR
APR
APR
APB
APB
APR
APB
APB
APB
APS
APB
AP*
APR
APB
APB
APR
APR
APS
APR
APB
APR
API
APB
BAT
BAT
BAY
BAT
BAT
BAT
BAT
BAT
BAT
18
19
20
21
22
23
2it
25
26
27
28
29
30
31
1
2
3
a
5
6
7
8
9
10
11
12
13
111
15
16
17
18
19
20
21
22
23
2a
25
26
27
26
29
30
1
2
3
It
5
6
7
8
9
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
D»T
of
Keek
THU
FBI
SAT
SDH
B01
TUB
BED
THtl
PRI
SAT
SON
BON
TOE
(ED
THD
PRI
SAT
SON
RON
TOE
WED
THO
FRI
SAT
SON
HON
TOE
KED
THO
FBI
SAT
SON
BON
TOE
MED
THD
FBI
SAT
SON
HON
TOE
MED
THO
FHI
SAT
SON
HON
TOE
WED
THO
FRI
SAT
SON
Inf P-1 F-l S-1 P-2 F-2 S-2 Inf P- 1 F- 1 S- 1 P-2
Samp P-2 F-2 S-2 KJ1D KJLD KJ!D KJLD K.ILD KJLD KJLD Totl Totl Tot 1 Totl Totl
Type MH3 NH3 NH3 N N N N H N N 11 P IN P IN P IN P IN F
6
99
99
6
6
6 24.8 21.6 21.0 34.5 31.0 32.5 33.0 J2.5 31.5 31.5 7.5 9.9 9.6 8.8 9.2
6
6
99
99
6
6
6
6
6
99
99
6
6
6 19.5 19.0 20.5 26.0 25.5 24.5 24.0 26.0 24.5 23.5 6.0 6.6 6.1 6.2 6.6
6
b
99
99
99
6
6
6
6
99
99
6
6
6
6
6 29.0 31.0 30.0 36.5 32.5 31.5 31.5 34.5 35.0 33.0 7.7 8.1 8.2 7.8 8.2
99
99
6
6
6
6
6
99
99
6
6
6 27.5 26.5 27.5 30.0 28.0 28.5 29.5 2H.O 27.5 28.5 5.8 7.5 7.6 7.5 7.0
99
6
99
99
6
-------
VO
CT>
Date
of
ObsT
HAT
I«AT
HAT
BAT
HAT
HAT
HAT
RAT
BAT
HAT
HAT
nut
HAT
HAT
RAT
HAT
HAT
HAT
HAT
RAT
MAY
HAT
JOR
JOR
JOR
JOR
JOR
JPR
JDR
JDS
••n v
_XJ»
JDR
JDN
JDR
JON
JBS
JON
JO*
JDS
JDR
JOR
JOS
JDR
JON
JDN
JDN
JON
JHN
JPR
JON
jnx
10
11
12
13
It
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
«
5
6
7
8
9
lO
11
12
13
14
15
16
•n
18
19
20
21
22
23
21
25
26
27
28
29
ir>
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
1
Day
of
Reek
HOB
'OB
RED
THD
FBI
SAT
SON
RON
TOE
RED
THD
PRI
SAT
SDR
BOH
TUB
WED
THD
mi
S"
SON
HON
TOE
VED
THO
FBI
SAT
SDR
RON
TOE
RED
THO
FBI
SAT
SDR
HOR
TOE
RED
THO
FRI
SAT
SON
HON
TOE
RED
THD
FHI
SAT
SON
HON
TOE
WED
THO
Inf P-1 F-1 S-1 P-2 F-2 S-2 Inf P-1 P-1 S-1 P-2
Samp P-2 F-2 S-2 KJLD KJLD KJLD KJLD KJLD KJLD KJLD Totl Totl Totl Totl Totl
Type NH3 NH3 NH3 N H N H B H N IN P IN P IN P IH P IV P
99
99
99
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
-------
I-1
VO
Date Day
of of
Obsv Beek
JDL
JDL
JD1
JHL
JDL
JDL
JOL
JDL
JOL
JDL
JDL
JPL
JOL
^JOL
JOL
JDL
JDL
JDL
JDL
JOL
JDL
JUL
JDL
JPL
JOL
JDL
JDL
JOL
JOL
JUL
AOG
AOG
ADG
AOG
AOG
ADG
ACG
AOG
ADG
AOG
AOG
ADG
ADG
ADG
AOG
ADG
M1G
AOG
ADG
AUG
AOG
»"G
AOG
2 71
3 71
4 71
5 71
6 71
7 71
8 71
9 71
10 71
11 71
12 71
13 71
14 71
15 71
16 71
17 71
18 71
19 71
20 71
21 71
22 71
23 71
24 71
25 71
26 71
27 71
28 71
29 71
30 71
31 71
1 71
2 71
3 71
4 71
5 71
6 71
7 71
8 71
9 71
10 7 1
11 71
12 71
13 71
14 71
15 71
16 71
17 71
18 7 1
19 71
20 71
21 71
22 71
23 71
FEI
SA^
SOS
HO*
TDE
NED
THO
FBI
SAT
SOU
BON
TOE
MED
THD
FBI
SAT
SON
HON
TOE
MED
THD
FSI
SAT
SDH
BON
TOE
HED
THO
FSI
SAT
SOU
(ION
TUB
WED
THO
FEI
SAT
SON
HOD
TOE
WED
TRO
FPI
SAT
SON
NO*
TOE
HBD
THU
FPI
SAT
SOS
MON
Inf P-1 F-1 S-1 t-2 F-2 S-2
Samp P-2 F-2 S-2 KJLD KJLD KJLD KJLD KJLD KJLD KJLD
Tyoa NH3 NH3 NH3 N N N N » » »
99
99
99
6
6
6 12.5 12.5 11.0 29.0 24.5 17.0 20.0 22.0 20.5 11.0
99
6
99
6
6
6 13.0 12.0 11.5 26.5 21.5 21.0 19.0 17.5 16.0 11.5
99
6
99
6
6
6 16.5 14.5 13.5 35.0 28.0 20.5 20.0 19.5 16.0 16.5
99 28.0 20.5 20.0 19.5 16.0 16.5
6
99
6
6
6
6
99
99
99
6
f,
6 15.0 12.5 12.5 26.5 21.5 19.0 19.0 15.5 13.0 14.0
99
99
99
6
6
6 11.5 10.5 10.5 28.0 27.5 22.0 27.5 25.0 16.0 19.5
99
6
99
6 16.0 13.0 24.0 22.5 19.0 18.5 16.0 13.5
6 14.0 14.5 12.0 30.0 24.0 12. C 16.5 15.0 16.0 12.5
99
6
99
6
Inf P-1 F-1 S-1 P-2
Totl Totl Totl Totl Totl
IS P IN P IN P ID P I» T
7.7 7.6 7.1 8.0 8.0
8.0 8.9 8.8 8.6 8.7
8.7 8.8 8.9 8.7 8.8
7.1 7.0 7.0 7.1 7.3
7.7 9.0 8.6 8.2 8.1
5.7 7.0 7.5 8.0 7.7
7.3 8.3 7.0 8.0 7.3
-------
VO
co
Date
of
ObsT
AOG
»UG
»PG
»DG
AOG
DUG
AOG
RUG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
21
25
26
27
28
29
30
31
1
2
3
«
5
6
7
8
9
10
11
12
13
11
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
1
2
3
4
5
6
7
a
9
10
11
12
13
11
15
7 1
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
yaek
TOE
WED
THO
PHI
SAT
SOU
HON
TOE
WED
THO
FBI
SAT
SON
BON
TOE
MED
THD
FPI
SAT
SON
HOB
TOE
IED
THO
F8I
SIT
SOU
HOD
TOE
VED
THO
FBI
SAI
SOD
RON
TOE
WED
THO
FPI
SAT
SON
(ION
TOE
HED
THO
FBI
SAT
SOU
HON
TOE
BED
THO
FE1
Inf P-1 F-1 S-1 t-2 F-2 S-2 Inf P- 1 F- 1
Sa«p P-2 F-2 S-2 KJLD KJLD KJLD KJLD KJLD KJLD KJLD Totl Totl Totl
Type NH 3 NH3 HH3 N N N N 8 N HIHPTNPINP
6 9.0 8.5 7.5 21.5 20.0 13.5 1*4.0 11.5 12.5 11.5 7.3 7.5 7 . 1|
6
6 13.0 12.5 12.0 21.5 21.0 17.0 17.0 16.0 18.0 11.0 6.U 7.2 7.1
99
6
99
6
6 20.0 18.5 18.0 25.0 25.0 20.0 19.0 19.0 18.0 17.0 7.» 7.8 7.7
6
6 25.0 22.5 25.0 28.5 27.0 22.5 22.5 22.5 20.0 22.0 6.8 7.« 7,0
99
99
99
99
6 27.5 2U. 5 26.5 29.5 26.5 25.5 21.5 32.0 25.5 28.5 7.5 8.0 8.1»
6
6 32.5 27.5 35.5 29.0 28.0 29.5 U1.5 29.5 7.0 7.8 8.7
99
6
99
6
99
6
6 21.5 18.5 17.0 26.5 25.5 21.5 19.5 29.5 2».5 25.0 6.2 7.6 7.2
99
6
99
6
6 17.0 18.0 15.5 20.5 19.5 19.5 17.5 21.5 21.0 18.0 5.7 5.8 6.6
6
6 22.5 21.5 28.0 23.0 22.5 21.5 25.5 23.5 6.8 7.1 7.2
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
S-1 P-2
Totl Totl
IN P IN P
7.9 7.5
7.6 7.6
7.7 8.0
7.3 7.5
8.1 8.7
8.7 8.1
7.2 7.7
6.2 6.0
7.2 7.2
-------
vo
Date
of
ObsT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
HOT
DO?
HOI
ROT
ROT
ROT
SOT
!«OT
HOT
NOT
ROT
ROT
ROT
ROT
ROT
ROT
HOT
ROT
ROT
NOT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
ROT
HOT
ROT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
31
1
2
3
I)
5
6
7
a
9
10
11
12
13
1»
15
16
17
18
19
20
21
22
23
2 R H N H R R IR P IR P IR P IR P IR F
99
6
6
6
6
99
6
99
99
99
99
99
99
99
99
6
6
6
99
99
99
99
99
99
6
6
99
6
99
6
6
6
6
99
6
99
6
6
99
99
99
6
99
6
15
15
15
99
15
99
15
15
-------
N5
O
O
Date
of
ObST
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DSC
DEC
DEC
DEC
DEC
DEC
DEC
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAN
JAR
JAR
JAR
8
9
10
11
12
13
11
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
1
5
6
7
a
9
10
11
12
13
U
15
16
17
18
19
20
21
22
23
2*
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
Reek
MED
THU
PHI
SAT
SOS
MOB
IDE
HED
FBI
SAT
SDK
HON
TOE
NED
THO
FBI
SAT
SDK
HOR
TOE
HED
THO
FEZ
SAT
SOD
HOH
TOE
RED
THD
FBI
SAT
SDR
DOR
TOE
I ED
THU
FBI
SAT
SOU
HOR
TOE
RED
THO
FBI
SAT
SOR
DOR
Sanp
Type
Ts
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15
15
99
99
15
99
15
15
15
15
99
15
99
15
Inf P-1 F-1 S-1 P-2 F-2 S-2 Inf P-1 F-1 S-1 P-2
P-2 F-2 S-2 KJLD KJLD KJLD KJ1D KJLD KJLD KJLD Totl Totl Totl Totl Totl
NH3 SH3 RH3 11 H N N H H II IS P IN P IN P IS P IN P
— "- — *— — *— — "— — *- — "— — *- — '— — "— — "— — "— — " — — "— — "— — "-
19.0 19.5 19.5 23.5 22.0 20.0 21.0 22.0 22.0 6.4 5.7 5.8 5.7
2U. 5 25.0 25.5 35.0 31.5 29.0 27.0 31.5 32.0 32.0 8.4 7.8 7.8 7.5 8.0
26.0 25.0 25.0 37.5 31.5 31.5 30.0 36.0 35.5 32.5 8.8 7.8 7.9 7.5 8.7
-------
ro
o
Data
of
ObST t
NOT 19 69
SCV 19 69
SOT 20 69
VOV 20 69
HOT 21 69
»0 7 21 69
NOV 22 69
HOY 22 69
NOT 23 69
00V 23 69
HOT 2U 69
HOT 2M 69
HOV 25 69
NOV 25 69
>IOT 26 69
HOT 27 69
NOV 28 69
HOT 29 69
NOV 30 69
DEC 1 69
DEC 1 69
DEC 2 69
DEC 2 69
DEC 3 69
DEC 3 69
DEC 14 69
DEC H 69
DEC 5 69
DEC 5 69
DEC 6 69
DEC 6 69
DEC 7 69
DEC 7 69
DEC 8 69
DEC 8 69
DEC 9 69
DEC 9 69
DEC 10 69
DEC 10 69
DEC 11 69
DEC 11 69
DEC 12 69
DEC 12 69
DEC 13 69
DEC 13 69
DEC 11 69
DEC 11 69
DEC 15 69
DEC 15 69
DEC 16 69
DEC 16 69
DEC 17 69
DEC 17 69
Day
of
leek
WED
WED
TH1
THC
FBI
FEI
SAT
SAT
SDN
SHI
HOI
BOS
TOE
TOE
IED
THU
FEI
SA?
SON
HON
DON
TOF
TOE
WED
RED
THO
THO
FRI
FBI
SAT
SAT
SON
SUN
HOM
noH
TOE
TOE
IED
WED
THO
TRO
FRI
FBI
SAT
SAT
SON
SUN
(ION
«ON
TOE
TOE
HED
WED
F-2 S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2
Samp Totl Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
Type T1PINP p p p p p p p Turb Turb Turb Turb Turb Turb Turb
6
14
6
1
6
7
11
7
U
7
6
14
6
14
4
11
6
1|
6
4
6
U
6
U
6
7
U
7
II
7
6
1
6
U
f,
a
6
II
7
6
7
II
7
a
4
6
6
4
6
4
-------
O
NJ
Date
of
Obav
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DBC
DEC
DEC
DEC
DEC
JAN
JAR
JAR
JAR
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAN
JAR
JAN
JAR
JAR
JAN
JAN
JAN
JAR
JAN
JAN
JAN
JAN
FEB
PEB
FEB
FEB
FEB
FEB
FEB
FEB
18
18
19
20
21
22
23
21
25
26
27
28
29
29
30
30
1
2
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Meet
THD
THO
FEI
SAT
SUM
non
TOE
MED
THO
FFI
SAT
SON
HON
RON
TOE
TOE
THO
FSI
RON
TOE
BED
THO
PRI
SAT
SON
HON
TOE
iED
THO
FBI
SAT
SON
HON
TOE
RED
THO
FEI
SAT
SON
HON
TOE
WED
THO
FEI
SAT
SON
BON
TOE
WED
THO
FBI
SAT
SOB
Saap
Type
6
4
6
4
6
4
4
4
4
4
4
4
7
7
7
4
4
4
4
7
7
7
4
4
4
4
4
U
F-2
Totl
IN P
9.
9.
8.
8.
9.
9.
9.
11.
11.
10.
10.
8.
8.
8.
6.
6.
8.
8.
9.
9.
0
0
6
6
U
4
4
9
9
3
3
7
7
7
4
4
2
2
4
4
S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2
Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F~2 S-2
IN p p p p p p r f Torb Turb Tarb Turb Turb Turb Turb
9.
9.
8.
8.
10.
10.
10.
10.
10.
9.
9.
8.
8.
8.
6.
6.
8.
8.
10.
10.
5
5
2
2
2
2
2
2
2
6
6
8
B
a
6
6
1
1
4
4
-------
10
o
Date
of
Obsr 1
PEB 9 70
PEB 10 70
P1B 11 70
FEB 12 70
FEB 13 70
PEB 11 70
PEB 15 70
PEB 16 70
FEB 17 70
PEB 18 70
PEB 19 70
PEB 20 70
FEB 21 70
PEB 22 70
PEB 23 7C
PEB 2» 70
PEB 25 70
PEB 26 70
PEB 27 70
FEB 28 70
BAB 1 70
BAB 2 70
BAB 3 70
BAB 4 70
HAR 5 70
CAB 6 70
RAH 7 70
BAB 8 70
HAR 9 70
HAH 10 70
HAS 11 70
BAB 12 70
CAR 13 70
MAR 14 70
HAR 15 70
PAR 16 70
BAR 17 70
BAR 18 70
BAR 19 70
HAR 20 70
HAR 21 70
BAR 22 70
HAB 23 70
HAB 24 7C
HAR 25 70
HAB 26 70
HAR 27 70
HAS 28 70
HAR 29 70
HAR 30 70
HAR 31 70
APR 1 70
APS 2 70
Day
Of
leek
HON
TOE
RED
THD
FBI
SAT
SOH
HOH
TDE
KED
TRO
P?I
SA1-
SOS
HO*
TOE
HED
THO
PBI
SAT
son
BOX
TDE
BED
THO
PPI
SAT
SDR
(ION
THE
HED
THO
PHI
SAT
SOH
BOH
IDE
HED
THO
FBI
SAT
SOU
BOH
TOE
HED
THO
FPI
SAT
SOH
BOH
TDE
WED
THO
Smp
TYPB
q
4
4
V
7
7
7
4
4
4
4
7
7
7
4
4
4
4
4
4
4
II
7
7
7
4
4
4
4
14
U
4
4
14
4
4
4
4
4
4
4
F-2
Totl
IN P
10. 1
1". 1
9. 6
9.6
10.7
10.7
10.7
6.6
6.6
6.7
6.7
9.3
9. 3
9.3
10. 1
10. 1
9.0
9.0
9.7
9.7
7.0
7.0
7.6
7.6
7.6
9.7
9.7
9. 8
9.8
8.8
8.8
10.8
10. 8
9. 7
9.7
9.7
9.7
9.0
9.0
8.2
8.2
S-2 Inf P-1 F-1 S-l P-2 F-2 S-2
Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 P-1 S-1 P-2 F-^ S-2
INP P P P P P P p Tnrb Turb Turb Turb Turb Tucb Turb
10. 1
10. 1
9.5
9.5
11.5
11.5
11. 5
5.4
5.4
7. 7
7.7
9. 1
9. 1
9. 1
11.1
11. 1
7.8
7.8
10.3
10.3
6.5
6.5
8.0
8.0
8.0
9. 1
9. 1
9.5
9.5
8.5
8.5
10.5
10.5
9.5
9.5
9.3
9. 3
8.8
8.8
8.3
8.3
-------
N>
O
Date
of
ObST
APB
APR
APR
APB
APR
APR
APB
APT)
APB
APS
APB
APB
APB
APB
APB
APB
APB
APB
APB
APR
APB
APB
APR
*• APB
£ APB
APB
APB
APB
HAT
HAT
DAT
HAT
BAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
3
14
5
6
7
8
9
10
11
12
13
1<4
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
HI
15
16
17
18
19
20
21
22
23
21
25
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
Day
of
Meek
PRT
SAT
SDH
HOH
TDE
RED
THD
PRI
SA111
SON
HON
TOE
RED
THO
FBI
SAT
SDH
HON
TDE
RED
THO
FBI
SAT
SON
HON
TDE
UED
THD
FBI
SAT
SON
HON
TDE
BED
THO
FBI
SAT
SDN
HON
IDE
RED
THD
FBI
SAT
SDN
HON
TOE
RED
THU
FBI
SAT
SDH
HOH
Sanp
Type
~7
7
7
U
"4
It
LI
7
7
7
4
4
7
7
7
7
7
7
4
1*
4
14
7
7
7
4
It
6
6
6
6
6
6
F-2
Totl
IN P
~8. 6
8. 6
8. 6
9. 6
9.6
6.9
6.9
9.7
9.7
9.7
10. 3
10. 3
10.3
8.0
8.0
8.0
8. 1
8. 1
10. 2
9. 2
9.8
10. 1
6.2
9. 6
S-2
Totl
IH P
~8. 5
8.5
8.5
9.6
9.6
8.5
8.5
9. 0
9.0
9.0
9. 8
9.8
9.8
7.7
7.7
7.7
7. it
7. U
8.2
9. 1
9.0
9.2
9.9
10. 1
Inf
Totl
P
10. 1
10. 1
12.1
12.1
12. «
10.1
10. 1
10.
-------
Date
of
Obsv
BAY 26
BAY 27
BAY 28
HAY 29
BAY 30
BAY 31
JDS 1
JDS 2
JDN 3
JOS t
J0» 5
JDS 6
JDN 7
JDN 8
JDS 9
JDN 10
JON 11
JUS 12
JON 13
JDN It
JOS 15
JOB 16
JON 17
., *• JOS 18
0 S •">" 19
l_n JOS 20
JOS 21
JOS 22
JON 23
JON 2t
JDS 25
JOS 26
JOS 27
JDS 28
JOS 29
JOB 30
JOL 1
JOL 2
JDL 3
JDL M
JDL 5
JOL 6
JOL 7
JDL 8
JOL 9
JOL 10
JOL 11
JDL 12
JOL 13
JOL It
JCJL 15
J1L 16
JUL 17
Day
of
Keek
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
TOE
WED
THU
FPI
SAT
SUN
BPN
TOE
HED
THO
PEI
SAT
SUH
BON
TOE
HBD
THO
PEI
SAT
SON
BOH
TOE
HED
THO
FBI
SAT
SON
BON
TOE
HED
THO
PHI
SAT
SUN
BON
TUE
HED
THO
PHI
SAT
SON
BON
TOE
HED
THU
PEI
SAT
SUN
BON
TUE
HED
THO
FBI
Samp
Type
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
P-2
Totl
IN P
10
11
10
10
10
9
10
10
10
9
8
8
S
10
10
10
B
9
S
.6
. 1
. 8
. 1
. 9
.2
.3
. 8
.0
.9
.7
. 7
.0
.6
. 6
.0
.9
. 6
.0
S-2
Totl
IN P
10.2
10.9
10.6
10. 7
11.1
9.9
10.5
8.9
10. 0
10.7
9.9
9.0
8. 8
7.t
10.5
10. 3
10.0
8.7
9.6
8. 9
Inf
Totl
P
12. t
13. 1
10.6
11. 3
11. 9
9.7
12.2
It.O
11. t
11. t
10. 3
9.5
12.6
12. t
11.2
11. 1
10. 2
10. t
9. 3
12.0
P-1
Totl
P
11. 5
12. t
11.3
11.2
12.0
11. t
13.9
12. 3
11. 5
11. 3
10.2
9.6
10.2
10.2
11. 3
10.9
11.1
9. 5
8. 1
12. 2
P-1
Totl
P
12.
13.
11.
11.
11.
11.
12.
12.
11.
11.
10.
10.
10.
10.
11.
10.
10.
9.
13.
13.
0
2
6
3
8
6
6
3
8
8
9
0
2
2
1
8
5
6
0
1
S-1 P-2
Totl Totl
P P
11.8 12
12. 6 11
11.5 12
11.5 11
1 1.
-------
Date
of
Obs»
JDL
JDL
JDL
JUL
JDL
JOL
JDL
JDL
JDL
JOL
JOL
JOL
JOL
JOL
ADG
AOG
ADG
ADG
AOG
ADG
AOG
ADG
ADG
AOG
• AOG
" AOG
ADG
0 ADG
ON ADG
AOG
ADG
ADG
ADG
ADG
AOG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
ADG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
1)
5
6
7
a
9
10
11
12
13
14
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
1
2
3
6
7
8
8
9
10
10
70
70
70
7C
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Week
S»T
SON
NOS
RON
TOE
THD
THO
FBI
SOS
DON
TOE
WED
THD
FBI
SAT
SOD
HOH
TOE
NED
THO
FHI
SAT
SOS
HOB
TDE
WED
THO
FHI
SDH
HOH
TOE
BED
THO
FBI
SOB
NO!)
TOE
RED
THD
PHI
SAT
SDH
HOD
TOE
IED
THD
SON
RON
TDE
TOE
IED
THO
THD
Samp
Type
6
6
6
6
6
6
6
6
6
6
6
6
6
6
11
6
6
6
6
6
6
6
6
6
6
6
6
10
6
10
P-2 S-2
Totl Totl
IN P IH P
10. 1 8.
9.7 9.
8.9 9.
8.4 9.
9.
8.
9.
8. 4 8.
8.9 9.
8.7 9.
9. 3 8.
9.5 9.
10.4 10.
9. 1 8.
9. 1 9.
9. 1 9.
3
0
6
0
6
3
0
4
4
2
7
5
4
7
5
5
Inf P-1 F-1
Totl Totl Totl
P P P
10.7 10.
10.8 10.
10.
10.4 10.
9.5 10.
9.9 10.
10.8 10.
12.1 10.
11.2 10.
10.5 10.
2 10. 1
8 11.3
5 10.6
1 10.0
0
S 10.3
3 10.4
6 10.2
9 10.7
5 10.3
9.4 9.9 9.8
9.2 9.
11.7 11.
11.4 9.
12. 1 11.
12.1 11.
9 10.0
0 10.9
5 11.4
3 11.3
3 11.3
S-1
Totl
P
10.
10.
10.
9.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
1 1.
1 1.
2
5
7
8
1
2
0
1
6
1
0
1
6
9
6
6
P-2 F-2 S-2
Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
P P P Turb Tarb Turb Turb Turb Turb Tarb
10.0 10.2 10.1
10.7 11.0 11.0
11.5 14.8 12.0
10.0 9.5 9.5
10.1 10. »
10.3 9.1
10.2 10.7
10.5 9.7 10.5
10.7 10.7 ?0.3
10.4 10.0 10.0
10.2 11.5 9.8
JO.* 10.1
11.1 11.4 10.6
11.6 11.0 10.9
10.8 11.2 11.8
10.8 11.2 11.8
-------
Date
of
0 bsv
SEP 11
SEP 12
SEP 13
SEP 13
SEP 1U
SEP IS
SEP 1i
SEP 16
SEP 17
SEP 17
SEP 18
SEP 19
SEP 20
SEP 20
SEP 21
SEP 22
SEP 22
SEP 23
SEP 21
SEP 21
SEP 25
SEP 26
SEP 27
SEP 27
SEP 28
SEP 29
SEP 29
SEP 30
OCT 1
OCT 1
OCT 2
OCT 3
OCT «
OCT 1
OCT 5
OCT 6
OCT 6
OCT 8
OCT 7
OCT 9
OCT 10
OCT 11
OCT 12
OCT 13
OCT 1<4
OCT 15
OCT 16
OCT 17
OCT 18
OCT 18
OCT 19
OCT 20
OCT 20
1
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Meek
FSI
SAT
SON
SUN
noo
TOE
TOE
WED
THD
THO
FBI
SAT
SON
SON
noN
TOE
TOE
NED
THO
THO
FSI
SAT
SON
SON
RON
TOE
TOE
BED
THO
THO
FBI
SAT
SON
SON
HON
TOE
TOE
THO
RED
FBI
SAT
SON
MON
TOE
WED
THO
FBI
SAT
SOI
SON
HON
TOE
TOE
F-2 S-2 Inf
Samp Totl Totl Totl
Type IV p IN p p
6
12 9. 8 10.0 11. 1
6
6
12 9.8 11.1
6
12 9. 8 10.0 11. 1
6
6
12 8.5 8.6 11.0
6
6
12 8. 5 8.6 11.0
6
12 8.5 8.6 11.0
6
6
12 8.0 9.6 10.6
6
6
12 8.0 9.6 10.6
6
12 8.0 9.6 10.6
6
14 9.5 9.5 9.8
13
6
6
t 9.5 9.5 9.8
6
12 10.2 9.2 10.3
6
12 10.2 9.2 10.3
6
P-1 F-1 S-1 P-2 F-2 S-2
Totl Totl Totl lotl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
11.0 10.8 10.8 11.3 11.3 10.8
11.0 10.8 10.8 11.3 11.3
11.0 10.8 10.8 11.3 11.3 10.8
10.7 11.7 11.0 11.« 11.5 11.1
10.7 11.7 11.0 11.14 11.5 11.1
10.7 11.7 11.0 11.4 11. S 11.1
10.3 10.2 10.1 10.7 10.3 10.2
10.3 10.2 10.1 10.7 10.3 10.2
10.3 10.2 J0.1 10.7 10.3 10.2
10.3 11.6 11.6 10.9 11. » 10.7
10.3 11.6 11.6 10.9 11.14 10.7
9.8 9.9 10.1 10. H 11.7 10.3
9.8 9.9 10.1 10. « 11.7 10.3
-------
O
00
Date
of
Obs»
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
BOY
HOY
MOV
HOY
HOY
HOY
BOY
HOY
HOY
HOY
HOY
ROY
NOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
DEC
DEC
DEC
DEC
21
22
22
23
24
25
25
26
27
27
28
29
29
30
31
1
1
2
3
4
5
5
6
7
8
8
9
10
10
11
12
13
11
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
1
2
3
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Heek
RED
THD
THD
FBI
SAT
SDH
SOU
HOH
IDE
TOE
RED
THO
TBD
PPI
SAT
SON
SOU
HOH
TOE
HED
THD
THD
FBI
SAT
SOR
SDR
HOH
IDE
TOE
HED
THO
?RI
SAT
SDH
DON
TDE
RED
THO
PRI
SAT
SDH
HOH
TDE
THD
THD
PRI
SAT
SDH
HOH
TOE
TOE
HED
THO
r-2
Saap Totl
Type IN P
6
6
12 10.2
13
12 9. 2
6
6
12 9. 2
6
6
12 9. 2
6
10 5. 8
6
6
10 5. 8
6
10 7.9
6
6
10 7. 9
6
6 8.4
6
6
6
12 8.7
6
6
S-2 Inf P-1 P-1 S-1 p-2 F-2 S-2
Totl Totl Totl Totl Totl Totl Totl lotl Inf P-1 F-1 S-1 P-2 r-2 S-2
IHP P P P P P P P Tnrb Turb Turb Tarb Turb Turb Turb
9.2 10.3 9.8 9.9 10.1 10.4 11.7 10.3
8.1 12.0 12.8 13.9 12.5 13.5 13.8 12.9
8.1 12.0 12.8 13.9 12.5 13.5 13.8 12.9
8.1 12.0 12.8 13.9 12.5 13.5 13.8 12.9
5.7 10.2 9.3 9.5 9.1 8.0 9.9 9.4
5.7 10.2 9.3 9.5 9.1 B.O 9.9 9.*
8.2 11.6 11.4 11.8 11.3 10.7 10.9 11.1
8.2 11.6 11.4 11.8 11.3 10.7 10.9 11.1
8.6 11.7 10.7 11.2 11.1 11.7 11.5 11.6
8.6 11.5 11.6 11.7 10.5 11.1 11.0 10.9
-------
O
VO
Date
of
Obs»
DEC 3 70
DEC 4 70
DEC 5 70
DEC 6 70
DEC 6 70
DEC 7 70
DEC 8 70
DEC 8 70
DEC 9 70
DEC 10 70
DEC 10 70
DEC 11 70
DEC 12 70
DEC 13 70
DEC 14 70
DEC 15 70
DEC 16 70
DEC 17 70
DEC 20 70
DEC 21 7C
DEC 22 70
DEC 23 7C
DEC 24 70
DEC 25 70
DEC 26 70
DEC 27 70
DEC 28 70
DEC 29 70
DEC 30 70
DEC 31 70
JAN 1 71
JAN 2 71
JAN 3 71
JAN 4 71
JAN 5 71
JAN 6 71
JAN 7 71
JAN 8 71
JAN 9 71
JAN 10 71
JA» 11 71
JAB 12 71
JAN 13 71
JAN 14 71
JAN 15 71
JAN 16 71
JAN 17 71
JAN 18 71
JAN 19 71
JAN 20 71
JAN 21 71
JAN 22 71
JAN 23 71
Day
of
Week
THD
FBI
SAT
SON
SON
BON
TOE
TOE
USD
THO
THO
FEI
SAT
SON
MOM
TOE
HEP
THO
SON
HON
TOE
IED
THO
PEI
SAT
SDN
BON
TOE
RED
THO
FBI
SAT
SDH
HOS
TOE
RED
THO
FBI
SAT
SUN
HON
TOE
RED
THU
FBI
SAT
SON
HON
TOE
HED
THO
FHI
SAT
Sanp
Type
12
99
99
6
12
99
6
12
6
6
12
99
99
6
6
6
11
6
6
6
99
99
99
99
99
6
6
6
6
99
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
F-2
Totl
IN P
8.7
9. 4
9. 4
9.4
a. i
8.0
6. 3
7.4
5.6
5.5
8.0
6. 1
8.3
6.5
7.7
8.0
7.6
8.0
8.4
S-2
Totl
IN P
8.6
9,6
9.6
9.6
8. 8
9.0
6.5
7.2
6.7
6.4
8.0
4. 8
8. 1
7.0
7.6
8.2
7.7
8.4
8.6
Inf
Totl
P
11.5
12.9
12.9
12.9
11.0
11.9
11.2
11. 3
9.8
11. 1
11. 2
7.5
9.7
10.0
8.8
9.9
12. 2
15.0
14.0
P-1
Totl
P
11.6
12.2
12. 2
12.2
12. 1
11.8
9. 8
10.9
10.0
10.6
10.7
8. 1
10.0
9.8
8.8
9.2
13. 5
14. 1
13.6
F-1
Totl
P
11.7
12.3
12.3
12. 3
12.3
11.4
9.8
11.5
9.8
9.8
10.6
7.6
8.7
10. 1
8.7
9.0
13. 1
13.7
13.4
S-1
Totl
P
10.5
12.5
12.5
12.4
11.5
9.4
11.9
9.4
9.9
10.3
9.2
9.2
8.7
8.8
8.7
13.3
13.3
13.2
P-2
Totl
P
11.1
12.9
12.9
12.9
11.4
12.3
10. 5
11.0
9.2
11.1
10.9
6. 4
10.6
9.4
10. 3
13.6
13. 5
14. 0
F-2
Totl
P
11.0
12.5
12.5
12.5
10.7
11.5
9.3
11.5
9.1
10.6
10,7
9. 1
11.9
10.6
8.8
9.8
13.4
13.6
12.9
S-2
Totl Inf P-1 F-1 S-1 P-2 P-2 S-2
P Turb Turb Turb Turb Turb Turb lurb
10.9
12.7
12.7
12.7
11.8
11.9
10.6
12.2
9.8
10.5
10.9
7.2
11.2
10.9
8.8
10.2
12.6
12.6
14.4
-------
Date
of
Obsr
JAR 24
JAR 25
JAR 26
JAR 27
JAR 26
JAR 29
JAR 30
JAR 31
FEB 1
FEB 2
PEB 3
FEB 4
FEB 5
PEB 6
FEB 7
FEB 8
PEB 9
FEB 10
PEB 11
FEB 12
PEB 13
PEB 14
PEB 15
PEB 16
PEB 17
PEB 18
PEB 19
PEB 20
PEB 21
PEB 22
PEB 23
FEB 24
FEB 25
FEB 26
PEB 27
PEB 28
BAR 1
HAB 2
BAB 3
HAB 4
RAB 5
BAR 6
HAB 7
BAR 8
FAB 9
HAB 10
HAB 11
HAH 12
HAB 13
HAB 14
HAB 15
HAR 16
HAS 17
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Heek
SDH
HON
TOE
RED
THtJ
FRI
SAT
SOD
HOM
TOE
IED
THO
FBI
SAT
SOD
HOR
TOE
HED
THO
FBI
SAT
SOR
RON
TOE
RED
THO
FBI
SAT
SOR
HOI
TOE
HED
THO
FBI
SAT
SOR
BOH
TOE
NED
THO
FBI
SAT
SDR
BOH
TOE
HED
THO
FPI
SAT
SOR
NOD
TOE
HED
Sanp
Type
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
F-2
Totl
IS P
7.
8.
a.
8.
6.
5.
6.
7.
5.
7.
8.
8.
7.
8.
8.
8.
5.
4.
4.
5
0
3
1
5
0
3
8
5
4
0
1
2
2
8
0
2
7
6
S-2
Totl
IN P
7.5
7.8
8.0
8.0
6.4
5. 1
5.9
7.6
5.5
7.3
7.7
8.7
6.7
7.9
8.5
8. 1
5.2
4.5
4.9
Inf
Totl
P
13.4
12.9
13.8
12.3
7. 7
5.5
6.8
8.4
9.0
8.3
9.7
10. 5
8.8
9.6
9. 1
9.7
7. 1
7.9
9.5
P-1
Totl
P
12.9
12.7
13.5
10.7
8.0
7.0
7.2
8.9
8. 1
8.7
9.7
11. 5
8.4
10.0
10.0
8.8
6.9
8.8
9.0
F-1
Totl
P
12.7
12.4
12.5
10.3
9. 1
5.7
6.4
9.2
7. 1
9.2
9.9
10.9
10.4
10. 1
10.4
9. 1
6.5
8.6
9.4
S-1
Totl
P
13. 1
12.1.
12.6
10.6
7.9
6.2
7.2
9. 1
6.8
9. 1
9.7
11.0
9.2
10. 2
10. 1
8.8
6.2
8.6
9.0
P-2
Totl
P
12. 3
12.9
14. 8
10. 8
8.3
6. 1
7.5
8.3
7.6
9.7
10.2
11.0
9.0
9. 8
10. 8
9.2
7.2
9.0
9.8
F-2
Totl
P
12.6
13.4
14. 1
10.3
8.3
6.6
7.3
9.6
7.5
9. 1
10.3
10.6
9.2
10. 1
11.0
9.3
6.2
9.4
9.6
S-2
Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
P Tarb Turb Tnrb Turb Tarb Turb Turb
12.5
12.9
13.8
9.7
7.9
6.3
6.8
9.0
7.3
9.1
10.1
10.9
8.4
9.8
9.8
8.8
6.0
8.4
9.4
-------
Date
of
ObsT
HAB
HAB
HAB
HAB
HAR
HAB
HAB
HAB
RAR
HAR
HAB
RAB
HAR
HAB
APB
APB
APB
APB
APP
APB
APB
APB
APB
APB
APB
APB
APB
APB
IPB
APB
APB
APR
APP
APP
APB
APR
APR
APB
APB
APB
APB
APS
APB
APR
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
HAY
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
13
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7JL
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Week
THO
FBI
SAT
SOU
HOD
TOE
WED
THO
FRI
SAT
SOD
HOD
TOE
IED
THO
FRI
SAT
SOU
HOH
TOE
WED
THD
FRI
SAT
SON
RON
TOE
WED
THD
FBI
SAT
SON
JION
TOE
WED
THO
FBI
SAT
SON
RON
TOE
WED
THO
FRI
SAT
SON
MOO
TOE
WED
THD
FRI
SAT
SON
F-2
Sa»p Totl
Type IV P
6
99
99
6
6
6 9.6
6
6
99
99
6
6
6
6
6
99
99
6
6
6 6. 1
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6 8. 5
99
99
6
6
6
6
6
99
99
6
6
6 7.4
99
6
99
99
6
S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2
Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
IN P P P P p p p p Turb Turb Tnrb Turb Turb Turb Turb
8.9 8.9 10.6 10.6 10.3 10.4 10.6 10.4
6.0 7.7 7.4 7.2 6.6 8.0 7.3 6.9
8.2 10.2 8.9 9.6 9.1) 9.9 10.4 9.8
7.4 9.7 9.5 10.3 10.5 9.6 10.3 9.6
-------
to
!-•
NJ
Date
ot
Obsi
HAT
HAT
RAT
RAT
RAT
HAT
RAT
RAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
RAT
HAT
RAT
HAT
HAT
HAT
HAT
JOI
JDR
JOR
JOR
JOR
JO I
JDR
JOR
JDS
JDR
JDR
JOB
JOR
JDR
JDR
JO I
JDR
JOR
JDR
JOR
JDK
JOR
JOR
JOR
JDR
JOR
JOI
JDR
JOR
JDR
JOL
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
D«T
of
leek
HOI
TUB
• ED
THO
FBI
SIT
SOI
HOR
TOE
• ED
THO
FBI
SAT
SOW
HOI
TOE
• ED
TBO
FBI
SAT
SDI
HOR
TOE
BID
THO
FBI
SIT
SOI
BOB
TDE
RED
THO
FBI
SAT
SO*
HOI
TOE
RED
THO
FBI
SAT
SOR
HOR
TOE
RED
THO
FBI
SAT
SDR
HOR
TOE
BED
THO
F-2 S-2 I»f P-1 F-1 S-1 P-2 F-2 S-2
Snip Totl Totl Totl Totl Totl Totl Totl Totl Totl !•£ P-1 F-1 S-1 P-2 F-2 S-2
Type II P II P P P f P r V P Tub Tarb Tarb Tarb Tarb Tarb Tnrb
_
99
99
99
99
99
6
6
6
99
6
99
99
6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
-------
Date
of
ObsT
JUL 2 1 1
JDL 3 71
JHL 1 7 1
JDL 5 71
JOL 6 7 1
JUL 7 71
JOL 871
JUL 9 71
JDL 10 71
JUI 11 71
JDL 12 71
JOl 13 71
JtlL 11 71
JDL 15 71
JUL 16 71
JUL 17 71
JUL 18 71
JtIL 19 71
JOL 20 71
JDL 21 71
JDL 22 71
JDL 23 71
JUL 2« 71
JOL 25 71
JOL 26 71
JDL 27 71
JDL 28 71
JOL 29 71
JOL 30 71
JOL 31 71
AOG 1 71
AOG 2 7 1
AOG 3 71
ADG 1 71
80G 5 71
AOG 6 71
ADG 7 71
ADG 8 71
AOG 9 71
AOG 10 71
AOG 11 71
ADG 12 71
ADG 13 71
AOG It 71
AOG 15 71
APG 16 71
ADG 17 71
ADG 18 71
AUG 19 71
AOG 20 71
ADG 21 71
ADG 22 71
ADG 23 71
Day
Of
Keek
FBI
EAT
SOU
NON
TOE
NED
THU
FPI
SAT
SDK
BOH
TOE
NED
TBD
FBI
SAT
SDR
BOH
TOE
NED
TBO
FPI
SAT
SDH
PIOH
TUB
NED
THD
FSI
SAT
SON
nos
TOE
NED
TBD
FBI
SAT
SON
RON
TOE
NED
THO
FBI
SAT
SDH
BOH
TDE
BED
THU
FBI
SAT
SON
BOH
f-2 S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2
Sa«p Totl Totl Toll Tctl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
Type IN P IN P P F p p p p p Turb Turb Turb Turb Turb Turb Turb
99 - - - - _
99
99
6
6
6
6 7.9 7.0 10.0 9.2 8.7 9.5 9.5 9.2 8 2
99
6
99
6
6
6
6 8-1* 8.0 11.3 11.1 10.1* 10.0 10.3 10.2 9.6
99
6
99
6
6
6
6 8.1 8.3 11.2 9.6 9.5 9.2 9.3 9.2 9 2
99
6
99
6
6
6
6
99
99
99
6
6
6
6 6.8 6.8 9.5 8.5 8.3 7.9 9.0 8.1 7.8
99
99
99
6
6
6
6 7.9 7.8 1U.O 11.3 9.7 9.2 10.0 9.3 8.6
99
6
99
6
6 7.8 8.3 10.0 8.5 8.5 9.1 8.1
6
6 7.1 7.3 9.0 9.3 7.8 9.2 9.7 9.1 8.1
99
6
99
6
-------
Date
of
ObST
AOG
A BG
AOG
HUG
AOG
AOG
AOG
AOG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
24
25
26
27
28
29
30
31
1
2
3
U
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
71
7 1
71
71
71
71
7 1
71
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Reek
TOE
RED
THO
FBI
SAT
SDH
BOD
TOE
1ED
TBD
FBI
SAT
SOU
BON
TOE
RED
TBO
FBI
SAT
SOD
KOI)
IDE
RED
THD
FBI
SAT
SDK
HOR
TOE
RED
IHO
FBI
SiT
SOD
HOD
TOE
RED
THO
FBI
SAT
SDH
BOH
TOE
RED
THO
FBI
SAT
SOH
(ION
TOE
RED
THD
FBI
P-2
Sa»p Tot!
Type IK P
~6 ~B.~i
6
6 8.3
99
6
99
6
6 7.9
6
6 7.2
99
99
99
99
6 4.6
6
6
99
6
99
6
99
6
6 7.6
99
6
99
6
6 6.7
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
S-2 Inf P-1 F-1 S-1 P-2 F-2 S-2
Tot! Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
IBP p t P P P P P Torb Turb Tnrb Turb Turb Turb Turb
"B.II ~9.T ~8.9 ~8.8 ~8.2 ~8.2 ~8.8 ~8.5 ~~
~
7.8 8.9 8.6 8.6 8.1 8.3 9.7 8.1
7.1 9.2 9.9 9.4 8.8 9.7 9.4 8.8
6.9 9.9 9.7 9.1 9.1 9.2 9.2 9.9
9.0 10.3 10.0 10.0 10.0 10.6 10.4
8.5 9.7 10.7 11.2 10.3 10.9 9.8
8.1 9.3 9.4 9.0 8.7 9.4 9.0 9.8
6.2 8.2 7.8 8.2 7.8 7.6 8.2 7.6
7.3 9.0 8.4 8.2 8.5 9.4 8.8
-
-------
ho
Date
of
obsv
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
ROY
ROY
HOY
HOY
HOY
HOY
HOY
SOY
HOY
HOY
HOY
ROY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
HOY
SOY
HOY
HOY
ROY
ROY
HOY
ROV
HOY
HOY
DEC
DEC
DEC
DEC
DEC
DEC
DEC
16
17
18
19
20
21
22
23
2H
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2t
25
26
27
28
29
30
1
2
3
it
5
6
7
Day
of
Reek
Tl
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
SAT
SDH
HOD
TOE
WED
THD
FBI
SAT
SOD
HOH
TOE
RED
THO
FBI
SAT
SOR
SON
TOE
NED
THO
FBI
SiT
SDH
DON
TOE
RED
THO
FBI
SAT
SOH
BOH
TOE
RED
THO
FBI
SAT
SOH
BON
TOE
BED
THO
FBI
SAT
SON
BON
TOE
RED
THO
FBI
SAT
SOH
MOH
TUB
F-2 S-2 Inf P-1 F-1 S-1 P-2 F-2 S- 2
3a«p Toll Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
Type IN P IN P P P P p p P p Turb Turb Turb TUrb Turb Turb Turb
6
99
6
6
6
6
99
6
99
99
99
99
99
99
99
99
6
6
6
99
99
99
99
99
99
6
6
99
6
99
6
6
6
6
99
6
99
6
6
99
99
99
6
99
6
15
15
15
99
15
99
15
15
-------
Date
of
Obs»
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DBC
DEC
DEC
DEC
DBC
DBC
DEC
DEC
DEC
DBC
DEC
DEC
DEC
DEC
DEC
DEC
JAB
JAH
JAB
JAR
JAH
JAN
JAR
JAH
JAR
JAR
JAS
JAB
JAH
JAR
JAR
JAR
JAR
JAR
JAR
JAN
JAH
JAH
JAR
JAR
8
9
10
11
12
13
11
15
17
18
19
20
21
22
23
2«
25
26
27
28
29
30
31
1
2
3
it
5
6
7
8
9
10
11
12
13
11
IS
16
17
18
19
20
21
22
23
21
71
71
71
1 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
Keek
MED
IHD
FRI
SAT
SDR
NOR
TOE
BED
FBI
SAT
SDR
HOI
TOE
RED
THD
FBI
SAT
301
• OR
TUB
MED
ISO
FRI
SAT
SDR
DOR
TOE
RED
THO
FSI
SAT
SOR
BOH
TOE
IBD
THO
FFI
SAT
SOS
HOR
TOB
BED
THU
FBI
SAT
SOR
RON
F-2 S-2 Inf P-1 F-1 S-1 P-2 P-2 S-2
Sa«p Totl Totl Totl Totl Totl Totl Totl Totl Totl Inf P-1 F-1 S-1 P-2 F-2 S-2
TTpe INPIRP p p p p p p t Turb Turb Tucb Turb Turb Turb Torb
15
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15 6.3 6.1 7.1 6.3 6.1 6.5 6.5 6.7
15
99
99
15
99
15
15 8.5 8.4 13.5 12.0 11.7 11.0 11.9 12.7 12.7
15
15 8.8 8.2 15.8 12.0 13.9 11.7 1«.5 1
-------
Date
of
ObST
NO?
NO?
no?
HOT
NOV
NO?
HOT
NO?
SO?
no?
no?
NO?
NO?
NO?
NO?
»0?
NO?
NO?
NO?
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
27
28
29
30
1
1
2
2
3
3
4
It
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12
13
13
ID
IK
15
15
16
16
17
17
Day
of
Heek
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
»ED
BED
THO
THD
FBI
FRT
SAT
SIT
SDH
SON
(ION
BOS
TUB
TOE
WED
THO
PHI
SAT
SON
DON
BON
TOE
TOE
RED
VED
THO
THO
PHI
PHI
SAT
SAT
SON
SON
BON
BON
TOE
TOE
VED
VED
THO
THO
FBI
FBI
SAT
SAT
SON
SON
MON
BON
TOE
TOE
WED
BED
Saap Tnf P-1 F- 1 S- 1 P-2 F-2 S-2
Type PH PH PH PH PH PH PH
6
It
6
4
6
7
4
7
4
7
6
4
6
4
4
4
6
4
6
4
6
4
6
4
6
7
4
7
4
7
6
4
6
4
6
4
6
4
7
6
7
4
7
4
4
6
6
4
6
4
-------
00
Data
of
ObsT
DSC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JAR
JAR
JAM
JAR
JAR
JAI
JAI
JAI
JAI
JAI
JAI
JAR
JAI
JAN
JAR
JAI
JAI
JAI
JAI
JAI
JAR
JAI
JAR
JAI
JAR
JAI
JAI
JAI
JAI
FEB
FBB
FEB
FEB
FBB
FEB
FEB
FEB
18
18
19
20
21
22
23
24
25
26
27
28
29
29
30
30
1
2
5
6
7
8
9
10
11
12
13
1»
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
n
5
6
7
8
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Ueek
THO
THD
FBI
SAT
SDR
HOI
TOE
»ED
THO
FBI
SAT
SDR
HOR
NOR
TOE
TOE
THD
FBI
DOR
TOE
RED
THD
FBI
SAT
SDH
BOI
TOE
RED
THO
F8I
SAT
SDR
HOI
TOE
RED
THD
FBI
SAT
SDR
HOI
IDE
RED
THD
FBI
SAT
SDR
HOB
TDE
WED
THD
FBI
SAT
SDH
Sa«p Inf P-1 F-1 S-1 P-2 r-2 s-2
Type PH PH PH PH PH PH PH
__ _ _ _
4
6
4
6
4
4
4
4
4
4
4
7
7
7
it
4
4
4
7
7
7
4
4
4
4
4
4
-------
Date
of
Obs»
FEB
FEB
FEB
FEB
FBB
FEB
FEB
FFB
FEB
FFB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FFB
BAB
BAR
BAB
MAR
BAB
BAP
BAR
BAR
BAP
BAB
1»F
RAD
BAR
BAE
BAP
BAR
BAR
BAR
BAR
BAR
BAR
BAR
BAR
BAP
HAP
BA
-------
Date
of
ObsT
APB 3 70
APB K 70
APS 5 70
APB 6 70
APB 7 70
APB 8 70
UPS 9 70
APB 10 70
APB 11 70
APB 12 70
APB 13 70
APB 11 70
APB 15 70
APB 16 70
APB 17 70
APB 18 70
APB 19 70
APB 20 70
APB 21 70
APB 22 70
APB 23 70
APB 2» 70
APR 25 70
APB 26 70
APB 27 70
APB 28 70
APB 29 70
APB 30 70
HAT 1 70
HAT 2 70
HAT 3 70
HAT 4 70
HAT 5 70
HAT 6 70
HAT 7 70
HAT 8 70
HAT 9 70
HAT 10 70
HAT 11 70
HAT 12 70
HAT 13 70
HAT 14 70
HAT 15 70
HAT 16 70
HAT 17 70
HAT 18 70
HAT 19 70
HAT 20 70
HAT 21 70
HAT 22 70
HAT 23 70
HAT 24 70
HAT 25 70
Day
of
Reek
FBI
SAT
SOD
RON
TOE
RED
IHD
FBI
SAT
SOU
ROM
TOE
RED
TBO
FBI
SAT
SDK
HOW
TOE
RED
THO
FBI
SAT
SDR
• ON
TOE
RED
THD
FBI
SAT
SOU
HOH
TOE
• ED
THO
FBI
SAT
SDH
HOR
TDE
RED
THO
FBI
SAT
SON
HOtf
TDE
RED
THU
FBI
SAT
SDN
HON
Sanp Inf P-1 F-1 S-1 P-2 r-2 5-2
Type PH PH PH PH PH PH PH
7
7
7
4
14
4
4
7
7
7
4
4
7
7
7
7
7
7
4
4
4
4
7
7
7
4
4
6
6
6
6
6
6
-------
KJ
N>
Date
of
Obs»
HAT
PAT
P.AT
PAT
PAT
I'M
jn«
JOH
Jan
JDM
JOH
JON
JOB
JOH
JON
JDH
JOH
JDH
JOH
JDH
JO II
JON
JON
JON
JOB
JDK
JDH
JOH
JON
JDH
JDW
JOH
J01
JOH
JDH
JDH
JOL
JOL
JOL
JOt
JOL
JOL
JDL
JOL
JOL
JDL
JOL
JDL
jnL
,1"^
JUL
JOL
JOL
26
27
28
29
30
31
1
2
3
a
5
6
7
8
9
10
11
12
13
114
15
16
17
18
19
20
21
22
23
21!
25
26
27
28
29
30
1
2
3
14
5
6
7
8
9
10
11
12
11
114
15
16
17
Day
of
Heek
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
TOE
WED
THO
fFI
S»T
SON
BOH
TOE
UED
THO
FSI
SAT
SON
NOH
TOE
1ED
THO
FBI
SAT
SDH
HOH
TOE
WED
THO
PHI
SST
SDH
BOH
TOE
HED
THO
PS I
SAT
SON
HDH
TOE
WED
TBO
PBI
SAT
SDH
HOH
TOE
»ED
THO
PHI
SAT
SON
BON
TUB
BED
THB
FBI
Sa«p Inf P-1 F-1 S-1 P-2 F-2 S-2
Type PH PH PH PH PH PH PH
6
6
6
6
6
6
6
9
9
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-------
Data
of
Obs»
JDL
JOL
JDl
JOL
JOL
JO I
JDL
JDL
JDL
JOL
JDL
JDL
JOL
JDL
IDG
AOG
AOG
JOG
AOG
«OG
IDG
AOG
AOG
AOG
ADG
AOG
AOG
AOG
AOG
ADG
HOG
AOG
AOG
HOG
HOG
ADG
ADG
AOG
AOG
AOG
ADG
ADG
AOG
SIP
SEP
SEP
SEP
SBP
SEP
SEP
S'P
SEP
SEP
18
19
20
21
22
23
2*
25
26
27
28
29
30
31
1
2
3
«
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
23
29
25
26
27
28
29
30
31
1
2
3
6
7
8
8
9
10
10
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Dar
of
leek
SAT
SON
HOD
BOH
TOE
THD
THO
FBI
SOB
SON
TOE
RED
TBD
F8I
SAT
SOD
BOH
TOE
IED
THO
FBI
SAT
SDK
HOI
TDK
IBD
THO
FBI
SOI
BON
TOE
MED
THO
FBI
SOU
BOD
TOE
WED
THO
FBI
SAT
SON
BON
TDK
BED
THO
SOU
BO*
TOE
TOE
HED
THU
THO
Sa«p Inf P-1 P-1 S- 1 P-2 P-2 S-2
Type PR PB PH PB PH PH PH
6
6
6
6
6
6
6
6
6
6
6
6
6
b
11
6
6
6
6
6
6
6
6
6
6
6
6
10
6
10
-------
KJ
I-O
Date
of
Obsv
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SE?
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SE°
SEP
SEP
SEP
SEP
net
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
ncT
OCT
OCT
OCT
11
12
13
13
14
15
15
16
17
17
18
19
20
20
21
22
22
23
21
24
25
26
27
27
28
29
29
30
1
1
2
3
4
4
5
6
6
8
7
9
10
11
12
13
14
15
16
17
18
18
19
20
20
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Day
of
Ueek
FBI
S»T
SUN
SON
HON
TOE
TOE
BED
THD
THU
PHI
S»T
SDH
SON
HON
TOE
TOE
WED
THU
THO
FPI
SAT
SON
SON
RON
TOE
TOE
BED
TRU
THO
FEI
S&T
SON
SON
(ION
TOE
TOE
THO
BED
PPI
S»T
SON
BON
TOE
WED
THO
FBI
SiT
StlN
SON
HON
TOE
TOE
Sanp Tnf P-1 V- 1 S- 1 P-2 F-2 S-2
Type PH PH PH PH PH PH PH
— *-
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
6
12
6
6
12
6
12
6
4
13
6
6
4
6
12
6
12
6
-------
ro
Data
of
Obsv
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
SOT
HOT
HOT
HOT
COT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
DEC
DEC
DEC
DEC
21
22
22
23
2»
25
25
26
27
27
28
29
29
30
31
1
1
2
3
H
5
5
6
7
9
8
9
10
10
11
12
13
11
15
16
17
18
19
20
21
22
2-1
21
25
26
27
28
29
30
1
1
2
3
7C
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
Da?
of
BED
THO
THO
FBI
SAT
SOH
SOH
• OH
TOE
TOIS
IED
THO
THD
FBI
SAT
SDH
SOH
HOI
TOE
USD
TBO
THO
FBI
SAT
SOH
SOH
SOB
TOE
TOE
BSD
THO
FBI
SAT
SON
HOH
TOE
RED
THO
FBI
SAT
SDH
BOH
TOE
THO
THO
FBI
SAT
SOH
HOH
TOE
IDE
BED
THO
Saap Inf P- 1 F- 1 S- 1 P-2 F-2 S-2
Typ« PH PH PH PH PH PR PB
6
6
12
13
12
6
6
12
6
6
12
6
10
6
6
10
6
10
6
6
10
6
6
6
6
6
12
6
6
-------
N>
Date
of
Obsr
DEC ~1
DEC 4
DEC 5
DEC 6
DEC 6
DEC 7
DEC 8
DEC 8
DEC 9
DEC 10
DEC 10
DEC 11
DEC 12
DEC 13
DEC 11
DEC 15
DEC 16
DEC 17
DEC 20
DEC 21
DEC 22
DEC 23
DEC 24
DEC 25
DEC 26
DEC 27
DEC 28
DEC 29
DEC 30
DEC 31
JAN 1
JAN 2
JAN 3
JAN V
JAN 5
JAR 6
JAB 7
JAB 8
JAN 9
JAN 10
JAN 11
JAN 12
JAN 13
JAN 14
JAN 15
JAN 16
JAN 17
JAN 18
JAN 19
JAN 20
JAN 21
JAN 22
JAN 23
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
7C
70
7€
70
70
70
70
70
70
71
71
7 1
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
Day
of
Heelc
THD
FBI
SAT
SUN
SDH
flON
TDE
TOE
HED
THU
THD
PRI
SAT
SDN
BON
TOE
HED
THO
SDN
HOD
TOE
HED
THU
P8I
SAT
SON
MON
TOE
HED
THU
FBI
SAT
SDN
HON
TOE
RED
THD
FBI
SAT
SON
HON
TOE
HED
THO
PRI
SAT
SDN
MON
TDE
HED
THO
PP1
SAT
Sa op
Tvne
^2
99
99
6
12
99
6
12
b
6
12
99
99
6
6
6
11
6
6
6
99
99
99
99
99
6
6
6
5
99
99
99
£
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
Tn
P
6.
7.
7.
7.
7.
7.
7.
7.
•j f
-j
7.
7.
7.
7.
7.
7.
7.
f
H
7
0
3
4
4
5
6
5
Q
O
2
4
6
4
7
14
5
P-
P
6.
7.
7.
7.
7.
7.
7.
7.
•j ^
-t
7!
7.
7.
7.
7.
7.
7.
1
H
8
1
5
3
3
3
4
5
-t
4
4
6
6
6
4
7
P-
E
6.
7.
7.
7.
7.
7.
7.
7.
•J
-J
7.
7.
7.
7.
7.
7.
7.
1
'H
7
0
2
2
2
0
2
2
4
4
5
6
6
3
7
S- 1
PH
6.7
7.0
7.2
7. 2
7.2
7.0
7.3
7.2
7^
. j
7.2
7.4
7.4
7.5
7.6
7.7
7.3
7.8
P-2
PH
6. 7
7.0
7. 3
7. 4
7.4
7.3
7.5
7.5
7.4
7.4
7. 4
7.4
7.6
7.5
7.2
7.7
F-2
PH
6. 7
7.0
7. 2
7.4
7. 3
7.4
7.6
7.4
7.4
7.4
7.4
7.U
7.7
7.6
7.7
7.5
7. 4
S-2
PH
6.8
7. 2
7. 4
7.4
7. 4
7.3
7.6
7.4
7.3
7. 4
7.4
7.4
7.6
7.6
7. 7
7.6
7.4
-------
Date
of
ObST
JAR
11 •
VIA H
JAR
JAR
JAR
JAR
JAR
JAR
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FEB
FBB
FEB
FEB
FEB
FEB
FEB
FEB
FBB
FEB
FBB
FEB
FEB
FSB
FBB
BAB
HAS
RAB
RAB
RAB
HAS
RAB
BAB
BAR
BAB
BAB
BAB
RAB
BAR
RAB
RAB
BAB
2«
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
1*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
71
7 1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
71
71
71
71
71
D«T
of
leek
SOI
TOE
• ED
THO
FBI
SAT
SOR
BOR
TOE
• ED
THO
FBI
SAT
SOR
HOR
TOE
• ED
THO
FBI
SAT
SOR
BOR
TOE
• ED
THO
FBI
SAT
SDR
ROR
TOE
• ED
THO
FBI
SAT
SOR
BOR
TOE
• ED
THD
FBI
SAT
SOR
HOR
TOE
• ED
THO
FBI
SAT
SOR
HOR
TOE
HEO
Samp
Type
~6
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
6
99
99
6
&
6
6
99
99
6
6
6
6
Inf P-r F-1 S-1 P-2 F--2 S-2
PH PH PH PH PH PH PH
— * — _._• — — * _ — • _ . __• _ __•_ __•_
6.9 7.2 7.3 7.0 7.3 7.0 7.1
6.9 7.1 6.9 6.9 6.9 7.0 6.9
7.2 7.2 7.1 7.1 7.1 7.1 7.0
6.9 6.9 6.9 7.0 7.0 7.0 6.9
7.0 7.1 7.1 7.1 7.0 7.1 7.1
7.1 6.9 6.9 7.0 6.9 7.1 6.9
7.2 7.0 7.1 7.1 7.1 7.2 7.1
6.7 6.8 6.8 7.0 6.8 7.0 6.9
6.6 6.8 6.8 6.8 6.7 6.8 6.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0
6.9 6.9 6.9 6.9 6.9 6.9 7.0
6.7
7.2 7.4 7.4 7.5 7.5 7.4 7.5
-------
Date
of
Obsy
RAR 18 71
HAH 19 71
HAR 20 71
HAH 21 71
HAH 22 7 1
WAS 23 71
HAB 21) 71
HAS 25 71
HAH 26 71
HAH 27 71
HAR 28 71
H&B 29 71
HAH 30 71
H1B 31 71
APB 1 71
APE 2 71
APB 3 71
APR « 71
ID O *i T "1
ArK 3 / I
APB 6 71
APS 7 71
APB 871
APR 9 71
APR 10 71
APR 11 71
APB 12 71
APB 13 71
APR 11 71
APB 15 71
APR 16 71
APB 17 71
APR 18 71
APR 19 71
APR 20 71
APR 21 71
APR 22 71
APB 23 71
APR 2U 71
APR 25 71
APB 26 7 1
APR 27 71
APR 28 71
APR 29 7 1
APR 30 71
HAY 1 71
HAY 2 71
HAT 3 71
HAY "4 71
HAT 571
HA! 6 71
HAY 7 71
HAY 8 71
HAT 971
Day
of
Ueek
TBD
FBI
SAT
SDH
HON
TOE
MED
THD
FBI
SAT
SON
HON
TOE
iBD
THD
FBI
SAT
SOS
MflH
HUH
TOE
BED
TBO
FBI
SAT
SOD
MOM
TOE
BED
THD
FBI
SAT
SDR
MOD
TOE
VED
THD
FHI
SAT
SON
HON
TDE
BED
THU
FPI
SAT
SON
HOB
TOE
USD
THD
FBI
SAT
SDN
Samp Inf P- 1 r- 1 S-1 P-2
Type PH PH PH PH PH
6 8. 14
99
99
6 7.« 7.11 7.5 7.5 7.1
6 7.0 7.1 7.2 7.2 7.2
6
6
6
99
99
6
6 6.8 6.9 6.9 6.9 6.8
6
6 6.9 7.0 7.0 7.0 7.0
6
99
99
6
6
6
6
99
99
99
6 7.2 7.2 7.2 7.2 7.3
6
6 7.1 7.2 7.2 7.3 7.2
6
99
99
6
6 7.2 7.3 7.3 7.3 7.3
6
6 7.0 7. 1 7. 1 7. 1 7.2
6
99
99
6
6
6 7.2 7.2 7.3 7.3 7.2
6
99
99
6
6 7.2 7.5 7.11 7.3 7.4
6
99
6
99
99
6
F-2 S-2
PH PR
7.5 7.5
7.2 7.2
6.9 6.9
7.0 7.0
7T f f|
• J / . 1
7.3 7.3
7.2 7.2
7.3 7. II
7.1 7. 1
7.3 7.2
7.3 7. U
-------
00
Date
of
ObST
HAT
HIT
HUT
HAT
HIT
HAT
MAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
HAT
JO*
JOB
JDI
JOS
JOB
JDK
JOB
.inn
^.11
JOB
JOB
JOS
JOB
JOB
JOB
JOS
JOS
JOB
JOB
JOB
JON
JON
JOB
JOB
JOB
JOB
JOS
JON
JOS
Obi,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30
31
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2U
25
26
27
28
->?
l
1
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Keek
HOB
TOE
BED
THO
FRI
SAT
SOD
HOB
TOE
11 ZD
THO
FBI
SAT
SOB
HOB
TOE
RED
THO
FBI
SAT
SOB
HOD
TOE
BED
THO
FBI
SAT
SOB
HOB
TOE
WED
THO
FBI
SAT
SOU
HOB
TOE
UED
THO
FSI
SAT
SON
RON
TOE
MED
THO
FRI
SAT
SON
HOH
TOE
WED
THO
Samp Inf P-1 F- 1 S- 1 P-2 P-2 S-2
Type PH PH PH PH PH PH PH
_ — •_ — •_ •_ -_
99
99
99
99
99
6
6 7.1 7.2 7.1 7.3 7.2 7.2 7.1
6
99
6
99
99
f,
6
6
6
6
99
99
99
6
6
6
6
99
99
6
6
6
6
6
99
99
6
6
6
6
99
99
99
99
99
6
99
6
99
6
99
6
6
6
6
-------
NJ
Is3
VO
Data
of
Obsv 1
JOL 2 71
JOL 3 71
JPL 14 71
JDL 5 71
JDL 6 71
JDL 7 71
JUL 8 71
JDl 9 71
JOL 10 71
JDL 11 71
JOL 12 71
JDL 13 71
JOL 1» 71
JDL 15 71
JDL 16 71
JDL 17 7 1
JDL 18 71
JOL 19 71
JDL 20 71
JDL 21 71
JOL 22 71
JOL 23 71
JOL 2« 71
JOL 25 71
JDL 26 71
JDL 27 71
JDL 28 71
JDL 29 7 1
JDL 30 7 1
JOL 31 71
HOG 1 71
HOG 2 71
HOG 3 71
AOG H 71
IDG 5 71
HOG 6 71
HOG 7 71
HOG 8 71
AOG 9 71
JOG 10 71
AOG 11 71
»OG 12 71
ADG 13 71
HOG 1» 71
AOG 15 71
»OG 16 71
AOG 17 71
AOG 18 71
ADG 19 71
AOG 20 71
AOG 21 71
ADG 22 71
AOG 23 71
Day
of
Jeek
FHI
SAT
SON
nos
TOE
WED
THU
FBI
SAT
SOS
BOS
TOE
RED
THO
FBI
SAT
SDH
nos
TOE
WED
THU
FBI
SAT
SOB
MOM
TOE
HBD
TBO
FRI
SAT
SOS
MOD
TOE
RED
THO
FBI
SAT
SON
BOS
TOE
8ED
THO
FPI
SAT
SON
nos
TOE
RED
THO
FBI
SAT
SUN
HOI
Saip Inf P-1 F- 1 S-1 P-2 F-2 S-2
Type ?H PH PH PH PH PH PR
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
6
6
6
99
99
99
6
6
6
6
99
99
99
6
6
6
6
99
6
99
6
6
6
6
99
6
99
6
-------
N>
CO
O
Date
of
Obsr
IDG
IDG
AOG
AOG
IDG
AOG
ADG
IDG
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
SEP
fCt
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
B
9
10
11
12
13
1«
15
16
17
18
19
20
21
22
23
2*
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
Day
of
Meek
TOE
RED
TBO
FBI
SIT
SOI
HOI
TOE
• ED
TBO
FBI
SAT
SOI
HOB
TOE
BED
TBO
FBI
SIT
SOI
HOI
TOE
• ED
TflO
FBI
SIT
SO*
BOX
TOE
• ED
TBO
FBI
SAT
SOI
MOR
TOE
• ED
THO
FBI
SAT
SOI
HOI
TOE
BED
THO
FBI
SAT
SOB
RON
TOE
iED
THD
FBI
Sa«p Inf P-1 F-1 S-1 P-2 r-2 S-2
Type PB PB PH PB PB PR PH
— •_ •_
6
6
99
6
99
6
6
6
6
99
99
99
99
6
6
6
99
6
99
6
99
6
6
99
6
99
6
6
6
6
99
6
99
6
99
99
6
99
6
99
6
6
6
99
99
99
6
6
6
6
6
99
-------
NJ
UJ
Date
of
Obs?
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
oct
OCT
OCT
OCT
HOT
NOT
HOT
HOT
HOT
HOT
NOT
HOT
HOT
WOT
HOT
HOT
HOT
ROT
HOT
HOT
NOT
HOT
HOT
ROT
NOT
NOT
HOT
NOT
HOT
HOT
HOT
HOT
HOT
NOT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
7 1
71
71
71
71
7 1
71
Day
of
Meek
SAT
SDH
RON
TOE
HED
THO
FBI
SAT
SDH
HOH
TDE
HED
THO
FBI
SAT
SDH
HOH
TOE
HED
TBD
FBI
SAT
SDH
HOD
TDE
HED
THD
FFI
SAT
SON
HON
TDE
WED
THO
FSI
SAT
SOI
HOH
TOE
WED
THO
FBI
SAT
SON
RON
TOE
HED
THO
PRI
SAT
SON
RON
TOE
Sa«p laf
Type PH
6
99
6
6
6
6
99
5
99
99
99
99
99
99
99
99
6
6
6
99
99
99
99
99
99
6
6
99
6
99
6
6
6
6
99
6
99
6
6
99
99
99
6
99
6
15
15
15
99
IS
99
15
15
PH PH PH PH
-------
t-o
US
Date
of
ObST
DSC
DEC
DEC
DEC
DBC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
JAR
JAR
JAR
JAW
JAB
JAM
JAN
JAN
JAR
JAR
JAR
JAI
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAR
JAM
JAN
JAR
8
9
10
11
12
13
1«
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
D
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
Day
of
Week
BED
THO
FBI
SAT
SDH
HOR
TOE
«ED
FBI
S»T
SDR
RON
TOE
1ED
THO
FBI
SAT
SOR
HOR
TOE
• ED
THO
FBI
SAT
SOH
RON
TOE
1ED
THO
FBI
SAT
SOR
HOR
TOE
SED
THO
FEI
SAT
SON
HOD
TOE
BED
THD
FBI
SAT
SON
Sa«p Inf P-1 F-1 S- 1 P-2 P-2 S-2
Type PH PH PH PB PH PH PH
15
15
99
15
99
15
15
15
99
15
99
15
99
99
99
99
99
99
99
15
15
15
99
99
99
15
15
15
15
99
15
99
15
15
15
99
99
15
99
15
15
15
15
99
15
99
JAN 21 72 HOR 15
-------
APPENDIX B
ABSTRACTS OF PUBLICATIONS RESULTING FROM PROJECT
233
-------
VARIATIONS IN CHARACTERISTICS OF WASTEWATER INFLUENT AT THE MASON FARM
WASTEWATER TREATMENT PLANT, CHAPEL HILL, NORTH CAROLINA.
University of North Carolina, Chapel Hill, Wastewater Research Center.
Robert L. Hanson, William C. Walker, and James C. Brown.
Wastewater Research Center Report No. 13, December, 1970. 47 pp. EPA-
WQO Contract No. 14-12-505.
Variations in characteristics of wastewater from the Town of Chapel Hill
(N. C.) were studied. Composite samples of domestic wastewater influent
were collected at 2-hr intervals over 24-hr periods on each of the seven
days of the week so that diurnal variations in flow and constituent con-
centrations and loadings could be observed. Samples were analyzed for
BOD, COD, TOC, nitrogen, phosphorus, MBAS, and specific solids and
metal constituents. Influent flow was found to vary from 30 to 144 %
of average with the maximum flow occurring between 1000-1200 hours and
the minimum flow between 0400-0600 hours. Wastewater constituents
showed a wide range of concentrations and loadings. Generally maximum
concentrations and loadings occurred between 1000-1400 hours and the
minimum values between 0600-0800 hours. The ratio of maximum to minimum
concentrations for the constituents varied from 4-12 to one; for load-
ings, from 10-20 to one.
NITRIFICATION AND DENITRIFICATION - A SELECTED BIBLIOGRAPHY.
University of North Carolina, Chapel Hill, Wastewater Research Center.
Ronald C. Sims and Linda W. Little.
Wastewater Research Center Report No. 14, February, 1971. 19 pp. EPA-
WQO Contract No. 14-12-505.
Descriptors: *Bibliographies, *Water pollution sources, *Water pollu-
tion effects, *Water pollution control, *Nitrogen, Soils, Effluents,
Sewage treatment.
This report comprises a selected bibliography on nitrification, and de-
nitrification pertinent to the microbiological processes involved;
transformations of nitrogen in water, wastewater, and soil; sources of
nitrogen in water and wastewater; and methods for removing nitrogen
from wastewater.
234
-------
ACTIVATED SLUDGE MODIFICATIONS FOR ENHANCEMENT OF TRICKLING FILTER
PLANT PERFORMANCE. I. Design, Operation, and BOD Removal in the Units.
II. Nitrification.
University of North Carolina, Chapel Hill, Wastewater Research Center.
Donald E. Francisco, Linda W. Little, and James C. Lamb III.
Wastewater Research Center Report No. 15, April, 1971. 43 pp. EPA-WQO
Contract No. 14-12-505.
Presented at the 20th Annual Southern Water Resources and Pollution
Control Conference, Chapel Hill, North Carolina, April 2, 1971.
Enhancement of trickling filter plant performance by subsequent activa-
ted sludge treatment was investigated. Five activated sludge pilot
plants, each consisting of aeration tank and settling tank with air lift
sludge return, were fed trickling filter effluent at a constant rate
(300 m£/min).
Hydraulic detention times in the aeration units were 0.4, 1.7, 4.0 and
9.2 hrs. Temperature was maintained at 25°C. Effects of pH control,
sludge wasting, and detention time were evaluated. Results indicated
that activated sludge treatment substantially increased overall BOD,
COD, organic carbon, and MBAS removals. At detention times of at least
1 hr significant nitrification was achieved. Control of pH with NaHCO^
improved nitrification efficiency; however, substantial nitrification
was achieved at pH levels below 7. Control of wasting and of return
sludge was necessary for optimum BOD, COD, and organic carbon removals
and for optimum nitrification.
235 «U.S. GOVERNMENT PRINTING OFFICE: 1973 546-310/78 1-3
-------
SELECTED WATER
RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
.?. JSentttttfo.
w
"? 'Titif 5, F. "WfB'-'f
' METHODS FOR IMPROVEMENT OF TRICKLING FILTER PLANT
PERFORMANCE. PART I. MECHANICAL AND BIOLOGICAL OPTIMA 5t
A.uejic<:
Janes C. Brown, Linda W. Little, Donald E. Francisco,
and James C.
UNC Wastewater Research Center
University of North Carolina
Chapel Hill, North Carolina 27514
Rt,
11010 DGA
14-12-505
13. Type r ' Rtpo-.~ »ml
Period Covtftd
Environmental Protection Agency
Environmental Protection Agency report
number. EPA-670/2-73-047a. August 1973.
••16.- • ; The Chapel Hill high rate trickling filter plant which consists of two paral-
lel and equal lines of treatment units was operated in parallel as two separate plants
over a period of 26 months. Each side was operated with various fractions of influent
flow and recirculation flow rates. Statistical analysis of operating results Indicated
that the common mathematical models are not reliable in predicting daily performance at
the Chapel Hill plant. They are, however, useful in predicting long term average perfor-
mance. Recirculation ratios as high as 3.0 proved beneficial at total hydraulic loadings
of less than 20 mgad. Operation above this loading is not currently feasible at Chapel
Hill.
The hydraulic surface loading of the final settling tanks was found to have a significant
effect on overall plant performance. A surface loading of 500 gpd/ft2 is recommended for
the design of final tanks in new plants.
Pilot plant studies using 4-foot diameter rock filters indicate a significant advantage
for two-stage filtration even though the hydraulic loading on each stage may be double
that for single-stage operation.
Pilot plant studies of activated sludge treatment of trickling filter effluents were con-
ducted. The process proved effective in improving removal of BOD, if effective final
solids removal facilities are provided.The process also proved effective in reducing
ij&, Jj€lic'jJ|/iOjrs
nitrogenous oxygen demand.
17b. Identifiers
''' " v™"t""'-y ' (&ep0ft) ~ '
26. Security. Class,
•n,
'22.
James C. Brown Instituit,
Sages
235
Send To:
WATER RESOURCES SCIENTIFIC INFORMATION CENTER
U.S. DEPARTMENT OF THE INTERIOR
WASHINGTON, D. C. 2O24O
- UNC Hastewater Rfs. Ctr. , UNC-Chapel Hill
------- |