tPA-670/2-73-050
September 1973
Environmental Protection Technology Series
200 MGD Activated Sludge Plant
Removes Phosphorus By Pickle Liquor
3D
O
\
O
z.
LU
c
Office of Research and Development
U.S. Environmental Protection Agency
Washington, D.C. 20460
-------
Research reports of the Office of Research and
Monitoring, Environmental Protection Agency, have
been grouped into five series. These five broad
categories were established to facilitate further
development and application of environmental
technology. Elimination of traditional grouping
was consciously planned to foster technology
transfer and a maximum interface in related
fields. The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL
PROTECTION TECHNOLOGY series. This series
describes research performed to develop and
demonstrate instrumentation, equipment and
methodology to repair or prevent environmental
degradation from point and non-point sources of
pollution. This work provides the new or improved
technology required for the control and treatment
of pollution sources to meet environmental quality
standards.
-------
EPA-670/2-73-050
September 1973
200 MGD ACTIVATED SLUDGE PLANT
REMOVES PHOSPHORUS BY
PICKLE LIQUOR
by
Raymond D. Leary
Lawrence A. Ernest
Roland S. Powell
Richard M. Manthe
Project #11010 FLQ
Program Element 1B2043
Project Officer
Dr. Robert L. Bunch
U.S. Environmental Protection Agency
National Environmental Research Center
Cincinnati, Ohio 45268
For sale by the Superintendent of Documents, TT.S. Government Printing Office, Washington, D.C. 20402 - Price $1.60
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
-------
EPA Review Notice
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names or commercial products
constitute endorsement or recommendation for use.
ii
-------
ABSTRACT
The Milwaukee Sewerage Commission's Jones Island Waste Water
Treatment Plant consists of a mutual primary treatment facility followed
by two separate activated sludge plants. To enhance phosphorus removal
in the 115 MGD East Plant, spent hot sulfuric acid pickle liquor (ferrous
sulfate) was added for a one year test period in 1970 where the 85 MGD
West Plant was operated as a control (l). In April 1971, the waste sludge
from the East Plant was added to the West Plant to provide additional iron
for phosphorus removal. This report discusses the 1971 operational period
and data collection and relates this information to the 1970 demonstration
period. Also some data is included from the first four months in 1972 to
provide data for a complete 12 months of wasting East Plant sludge to the
West Plant.
The major objective of the iron addition was to maintain an East
Plant effluent total phosphorus concentration of 0.50 mg/1 P and obtain a
total plant phosphorus removal of 85$ as required by the Wisconsin Depart-
ment of Natural Resources by December 1972. The West and East Plant ef-
fluent total phosphorus concentrations during 1971 averaged 1.3 and
0.69 mg/1 P respectively, representing an average overall 86.6$ removal.
The effluent total soluble phosphorus concentrations for the West and East
Plants averaged 0.58 and 0.22 mg/1 P.
Comparison of the efficiencies of the West and East Plants in
removing BOD, COD and suspended solids as well as microscopic examination
of the mixed liquors indicates that the addition of the unneutralized
pickle liquor apparently did not affect plant purification.
Waste Pickle liquor has been added continuously since January 1970
at the Milwaukee Jones Island Plant to enhance phosphorus removal and the
intent is to continue additions as required for control of phosphorus.
The principle operational problem in maintaining a low effluent total phos-
phorus concentration was the control of effluent suspended solids contain-
ing an average 2.2$ P.
This report was submitted in fulfillment of Project Number 11010
FLQ, by the Sewerage Commission of the City of Milwaukee, under the
partial sponsorship of the Environmental Protection Agency.
iii
-------
CONTENTS
Section Page
Abstract iii
Contents iv
Figures v
Tables vii
I Conclusions 1
II Recommendations 3
III Introduction 5
IV Objectives 9
V Sewerage Commission of the City of Milwaukee 11
Jones Island Plant
VI Jones Island Plant Operation 15
VII Iron Addition Equipment and Operation 17
VIII Sampling and Analytical Techniques 27
IX Presentation and Discussion of Data 33
Screened Sewage and Effluent Characteristics 33
Mixed Liquor and Return Sludge Characteristics H2
Miscellaneous Tests 51
1. Pickle Liquor Free Acid 51
2. Alkalinities on Sewage, Effluents and 51*
Mixed Liquors
3. Soluble Sulfates on Sewage and Effluents 5^
U. Iron Phosphorus Uptake and Release 5^
Rate of Iron Addition 58
Mixed Liquor Biota 63
Effects of Iron Addition on the Ferric Chloride 63
Demand
X Acknowledgement 65
XI References 67
XII Nomenclature and Glossary 71
XIII Appendices 73
iv
-------
FIGURES
Ho. Page
1. Jones Island Waste Water Treatment Plant 13
2. Jones Island Waste Water Treatment Plant lU
3. Automatic Pickle Liquor Addition Equipment 18
1+. Automatic Pickle Liquor Equipment and Effluent 19
Sampler as Located in East Plant Gallery
5. Transferring Pickle Liquor into Storage Tank 20
6. Pickle Liquor Layout - Isometric 23
7. Pickle Liquor Piping 2h
8. Pickle Liquor Flowing into East Plant ML Channel 25
9. Automatic Sonford Samcler in East Plant 28
10. Monthly Sewage BOD Variations 36
11. Monthly Sewage Suspended Solids Variations 37
12. Monthly Sewage Total Phosphorus Variations 38
13. Sewage Phosphorus Variation 1+0
ll+. Sewage Iron Variation 1+0
15• East and West Plant Return Sludge Iron 1+0
16. East and West Plant Return Sludge Phosphorus 1+0
17. East and West Plant Effluent Total Phosphorus 1+0
18. East and West Plant Effluent Total Soluble Phosphorus 1+0
19. 1971 Phosphorus Variation 1+1
20. 1970 - 1971 Daily Sewage Phosphorus Variation 1*3
21. 1971 Daily BOD Variation 1+1+
22. 1971 West Plant 1+7
23. 1971 East Plant 1+8
2l+. Jones Island Waste Water Treatment Plant 1+9
1970 Characteristics
-------
No_. Page
25. Jones Island Waste Water Treatment Plant 50
1971 Characteristics
26. 1970 - 1971 Solids Production per BOD Removed 52
27. Solids Production per BOD Removed 53
28. Soluble Ortho Phosphate Uptake and Release 59
29. Soluble Ortho Phosphate Release 60
30. East Plant Iron Addition 62
31. Ac tin omy e e t acejae Genus Nocardia 76
32. Actinoraycetaceae Genus Nocardia 77
33. Technicon Autoanalyzer 79
3^. Research Laboratory 80
vi
-------
TABLES
No. Title
1. Yearly Average Screened Sewage Characteristics 33
2. Monthly Average Screened Sewage and Effluent 3^-35
Characteristics 1971
3. Plant Performance Parameters ^c
It. Monthly Average Mixed Liquor and Return Sludge i^g
Characteristics 1971
5. Pickle Liquor Free Acid as
6. Total Alkalinity 55
7. Soluble Sulfate Concentration 56-57
8, Iron Addition to East Plant fa
9. Ferric Chloride Requirements for Sludge £3
Conditioning
vii
-------
SECTION I
CONCLUSIONS
1. Waste pickle liquor (ferrous sulfate) as an iron source has been
continuously and successfully added to precipitate phosphorus since
January 1970 in the 115 MGD East Plant at the Milwaukee Sewerage
Commission's Jones Island Activated Sludge Waste Water Treatment
Plant. The 85 MGD West Plant receiving the same raw screened sewage
was operated as a control for the first 15 months after which time,
East Plant waste sludge was added to the West Plant return sludge as
an iron source.
2. Based on an average 1971 screened sewage total phosphorus concen-
tration of 7.1 mg/1 P, the East Plant with iron addition, removed
90.3$ (0.69 mg/1 P effluent residual) while the West Plant removed
81.7$ (1.3 mg/1 P effluent residual). After the mixing of the
East Plant waste sludge in the West Plant, the total phosphorus
removal from May 1971 to April 1972 in the East and West Plants
averaged 90.H and 79.5$ (0.70 and 1.5 mg/1 P effluent residual),
respectively. During certain months, the total phosphorus con-
centration was high because mixed liquor suspended solids were
discharged into the effluent, therefore, the total soluble phos-
phorus concentrations are a better indication of the effective-
ness of the iron addition.
3. Based on an average 1971 screened sewage total soluble phosphorus
concentration of 2.3 mg/1 P, the East Plant effluent had a residual
concentration of 0.22 mg/1 P, while the West Plant effluent concen-
tration averaged 0.58 mg/1 P. During the May 1971 to April 1972
period when the East Plant waste sludge was added to the West Plant
return sludge, the total soluble phosphorus values for the East and
West Plant effluents averaged 0.22 and 0,6k mg/1 P.
k. An average of 8.0 mg/1 iron was added to the East Plant mixed liquor
(11,5W gallons/day at O.jk pounds/gallon) to remove phosphorus. No
minimum iron dose testing was conducted, but obviously, the 1971
minimum was below 8.0 mg/1 iron at the Jones Island East Plant.
5. The pickle liquor addition increased the return sludge phosphorus
concentration in 1970 from 2.29$ as P in the control West Plant to
2.6l$ as P in the East Plant, and also increased the iron content
from 1.86$ as Fe in the West Plant to 5.08$ as Fe in the East Plant.
-------
6. The addition of iron to the East Plant mixed liquor increased
the effluent iron concentration slightly. During the 1970
demonstration period, the West and East Plant effluent total
iron concentrations averaged 0.51 and 1.2 mg/1 Fe and the total
soluble iron concentrations averaged 0.21 and 0,2^ mg/1 Fe,
respectively. The difference in total iron concentrations vas
attributed to the increased concentration of iron in the East
Plant suspended solids. In 1971, soluble iron concentrations
averaged 0.18 and 0.15 mg/1 Fe, respectively, in the West and
East Plant effluents.
7. Comparison of the efficiencies of the West and East Plant in
removing BOD, COD and suspended solids as well as microscopic
examination of the mixed liquors indicated that the addition
of unneutralized pickle liquor apparently did not affect
purification,
8, The pickle liquor (ferrous sulfate) addition increased the
East Plant effluent soluble sulfate concentration by about 12%
(116 - 130 mg/1 SOU) during 1971 and decreased the total alka-
linity by 21% (187 to 226 mg/1 as CaC03). The two year average
mixed liquor pH values were 7.0 for the East Plant and 7.1 for
the West Plant.
9, The pickle liquor caused no apparent problems with the plant
physical facilities.
10. Initially, the pickle liquor addition did not appear to affect
ferric chloride requirements in the sludge conditioning phase
(1970). However, the 1971 data indicates a reduction in ferric
chloride requirements in the sludge conditioning phase.
-------
SECTION II
RECOMMENDATIONS
The continuous addition of waste pickle liquor as an iron
source for phosphorus precipitation and removal since January 1970,
has been economical and practical at the Milwaukee Sewerage Commis-
sion's Jones Island Activated Sludge Plant.
At the present time, 85$ phosphorus removal has been attained
and, therefore, additional modifications to increase phosphorus removal
are not necessary since State requirements have been met. Transfer of
iron containing filtrate from the vacuum filters exclusively to the
West Plant is being implemented to provide for a more stable operation
and possibly increased phosphorus removal.
Future research should be directed towards finding exactly
how phosphorus is tied up with the added cations and what other
compounds are affected by cation addition.
-------
SECTION III
INTRODUCTION
In 1967, the Sewerage Commission of the City of Milwaukee,
initiated a three year research program to evaluate the phosphorus
removal in the Jones Island Activated Sludge Plant (2). This re-
search program, funded in part by the Environmental Protection Agency,
included studying methods to enhance phosphorus removal. The theories
of biological phosphate removal as stated by Levin and Shapiro (3),
Vacker et al, (U), Borchardt and Azad (5) and Wells (6) along with the
chemical precipitation theories contended by Menar and Jenkins (7)
were reviewed and attempts were made to maximize biological precipita-
tion of phosphorus in the activated sludge plants. The 200 MOD Jones
Island Plant consisting of the 85 MGD West Plant and the 115 MOD East
Plant, operated in parallel receiving a common screened sewage, was
ideal for plant-wide variation of operating parameters to effect phos-
phorus removal.
Addition of iron directly to aeration tanks in the activated
sludge process, was investigated in Wisconsin by Scott (8) in 19^7-
Many other investigators have researched chemical addition for phos-
phorus removal (9....
In 1968, the Sewerage Commission of the City of Milwaukee and
the Water Pollution Control Corporation of Milwaukee, conducted a
plant scale study to enhance phosphorus removal by chemical addition
directly to the aeration tank using aluminum and iron salts at a small
activated sludge plant (UO-70,000 gallons per day) located in a contract
area of the Metropolitan Sewerage District (2k). This work, at a plant
receiving only domestic wastes from a small subdivision, expanded the
pilot plant work done by Barth and Ettinger (17). Following successful
phosphorus removal with both sodium aluminate and alum, iron in the form
of ferrous sulfate was added. The A, 0. Smith Corporation, which joined
the study at this point, supplied the iron in the form of a neutralized
waste pickle liquor and also furnished laboratory services. The con-
clusions of the May 1968 to January 1969 study indicated that the
aluminum or iron addition, to remove phosphorus was an effective and
economical method to enhance phosphorus removal.
Concurrent research being conducted at the Sewerage Commission's
Jones Island Plant (2) to relate operating parameters to phosphorus
removal, indicated that 60 to 90% total phosphorus removal could be ex-
pected, but control of plant operations to consistently remove 85% of
the phosphorus as required by the State of Wisconsin Department of
Natural Resources, could not be accomplished. Supplementary cationic
precipitation of phosphorus in conjunction with the activated sludge
process was, therefore, investigated,
-------
Iron was chosen as the cation to be used because:
1, Iron addition to the aeration tank would
not create an extra sludge removal problem,
2. Iron was consistent with the existing method
of sludge disposal.
3. Success was experienced at the small activated
sludge plant study.
^, Pickle liquor was available from the
A, 0, Smith Corporation which had a cooperative
attitude,
5. Iron in waste pickle liquor was inexpensive in
comparison with other chemicals (delivered free).
In September 1968, Mr. George Hubbell(35) reported on his
federal grant activities to remove phosphorus from Detroit's waste
water. He indicated that phosphorus removal was achieved through
chemical precipitation using iron in a pilot plant. In May 1969,
representatives of the Milwaukee Sewerage Commission went to Detroit
to observe the pilot operation and discuss the project with
Dr. Albert M. Shannon, Chief of Water and Sewage Treatment. The
observations and information obtained at Detroit combined with the
previous Sewerage Commission work, indicated that experimental iron
addition to a portion of the Jones Island Plant was the next logical
step.
A decline in phosphorus removal occurred in June 1969 as a
result of the Milwaukee Brewery strikes, and it was decided to add
neutralized pickle liquor from the A, 0, Smith Corporation to one
East Plant aeration tank to observe the effects upon phosphorus pre-
cipitation and on the mixed liquor biota. This test indicated that
the iron effectively reduced the effluent phosphorus concentration
with no noticeable ill effects on the treatment process or equipment.
An addition rate of 15 mg/1 of iron to the mixed liquor was found to
maximize phosphorus removal. At this dosage rate, neutralization of
the pickle liquor free acid (2-5%) was not necessary.
After the plant returned to normal operation following the
five week brewery strikes (June 9 to July 15), unneutralized waste
pickle liquor was added to the entire 115 MGD East Plant from Novem-
ber 3 to November lU, 1969. The pickle liquor was trucked to the
-------
Jones Island Plant by the A, 0. Smith Corporation and about 20,000
gallons of the liquor was added to the mixed liquor aeration tank
feed channel each day. The plant scale test confirmed the single
tank studies. At this point, the Sewerage Commission of the City
of Milwaukee applied for a federal demonstration grant to assist
in covering the cost of a one year plant scale study to add pickle
liquor to enhance phosphorus removal. It was proposed to add
pickle liquor to the 115 MOD East Plant and to operate the 85 MGD
West Plant as a control. The A. 0. Smith Corporation agreed to
construct and maintain pickle liquor storage and addition facilities
and to deliver the waste pickle liquor to the Jones Island Plant.
Findings of the one year demonstration project for 1970 have been
published (l).
-------
SECTION IV
OBJECTIVES
The 1971 objectives of the pickle liquor iron addition
at the 200 MGD Jones Island Activated Sludge Plant included:
A. Evaluate the effectiveness of continuous
iron addition to maintain an East Plant
effluent total phosphorus concentration
of 0.50 mg/1 P or less. The minimum
requirement is to remove 85% of the phos-
phorus for the total plant.
B. Compare the efficiency of the West and
East Plants in removing phosphorus, BOD,
COD and suspended solids.
C. Determine the optimum iron requirements to
maximize phosphorus removal.
D. Determine the effects of iron addition on
the mixed liquor biota and its settling
characteristics.
E. Determine the effects of iron addition on the
plant physical facilities.
F. Determine the effect of iron addition on the
requirements of ferric chloride conditioning
of waste sludge.
-------
SECTION V
SEWERAGE COMMISSION OF THE CITY OF MILWAUKEE
JONES ISLAND PLANT
The Jones Island activated sludge waste water treatment
plant (36, 37) was designed to treat 200 million gallons of sewage
daily. The plant provides conventional activated sludge treatment
in the original 85 MGD West Plant and a 115 MOD East Plant addition.
The treatment plant has a connected population of about 1,000,000
people. The service area includes about 17,000 acres of a combined
sewer system and about 83,000 acres having a separate sanitary sewer
system.
The primary treatment facilities consist of conventional
coarse screening (mechanically cleaned bar screens, 1" between bars)
to remove hair, fleshings, garbage, rags, wood, etc. Following
coarse screening, the waste water is directed to the grit chambers
consisting of eight 8 x 8 x 90 foot long compartments to reduce the
flow velocity to one foot per second. At this reduced flow rate the
grit consisting of sand, gravel, coal, ashes and some organic solids,
is deposited on the bottom.
Following this treatment, the waste water is directed to
rotary drum fine screens (3/32 inch slots - 2 inches long) to remove
additional solids before the waste water is divided between the
West and East conventional activated sludge plants for treatment.
The West Plant has a ridge and furrow-type aeration plate
arrangement in the 2k aeration tanks. The tank arrangement allows
the mixed liquor to travel through 1*72 feet of aeration tank (22 feet
wide, 15 feet deep) prior to flowing into one of the 11 - 98 foot
diameter sedimentation tanks. The East Plant has twenty aeration
tanks where the mixed liquor travels through 7^0 feet of tank length
(22 feet wide and 15 feet deep). These tanks have a longitudinal
plate arrangement (38, 39). This plant has ten sedimentation tanks
each consisting of two adjoining 8k foot diameter tanks. Each plant
has its own return sludge pumping station where the entire volume of
return sludge is pumped and mixed with the screened sewage. The
normal return sludge volume added to the screened sewage is about 25$
of the sewage volume, but periodically, the return sludge volume has
been increased to 35$ to compensate for changes in sludge settling
rates.
The aeration tanks in both plants aerate the mixed liquor
(screened sewage plus return sludge) for an average period of 7.0
hours. The aerated mixed liquor is then directed to the final
sedimentation tanks for an average of a 2.U hour detention time (the
surface settling rate for West and East Plants are, respectively,
11
-------
900 and 870 gpd/sq., ft. at design flow). The effluent is chlorinated
and directed to Lake Michigan.
Prior to April 1971, the mixed liquor solids that were wasted
from both the West and East Plants were directed to one of six
gravity thickeners located in the West Plant. At the present time,
the East Plant waste sludge is directed into the West Plant return
sludge channel and only West Plant mixed liquor is thickened with
periodic addition of the combined sludge from the West Plant return
sludge channel. The thickened waste sludge is conditioned with
ferric chloride, filtered on vacuum filters, dried in rotary dryers
and sold as a fertilizer called Milorganite. This is the only way
sludge can be removed from the plant. During 1970 and 1971, a yearly
average of 72,000 tons (dry basis) of solids were removed in the
dewatering plant. The physical layout of the Jones Island Plants
is shown in Figures 1 and 2,
12
-------
HARBOR
ENTRANCE
KINNICKINNIC
RIVER
PICKLE LIQU?R STORAGE
TANKS • SO.OOOgoU.
Jones Island Waste Wdter Treatment Plant
Figure I
-------
BAR
RAW
SEWAGE
CHLORINATION
r| EFFLUENT-
FIGURE 2
SEWERAGE COMMISSION
OF THE CITY OF MILWAUKEE
JONES ISLAND WASTE WATER TREATMENT PLANT
LAKE MICHIGAN
-------
SECTION VI
JONES ISLAND PLANT OPERATION
The Milwaukee Metropolitan area as served by the Jones
Island Waste Water Treatment Plant contains a variety of industries
and the liquid wastes vary from low strength metal -working wastes
to the concentrated organic wastes contributed by the large brewing
industries.
During 1971, the average daily waste water volume received
at the treatment plant was 176.8 mgd having a BOD content of 220 mg/1.
The average workday (Monday - Friday) flow (industrial and domestic)
was 185.2 mgd with a BOD of 251* mg/1 and the Sunday and Holiday flow
(essentially domestic) was 152.1 mgd with a BOD of 117 mg/1. Calcula-
tions from this data indicated that lh% of the weekly flow is from
industry along with 5W of the weekly BOD contribution. On a workday
basis, industry contributed 18$ of the flow and 62% of the BOD.
With this type of load on a waste water treatment plant , many
changes are necessary to maintain an efficient operation and many
problems can be experienced. The following review discusses the 1971
operational conditions and changes as separated into four, three month
periods :
January , February , March ; The average sewage flow that
entered the plant was 193.3 mgd which was divided by
directing h6% to the West Plant and ^h% to the East Plant.
During this period, the plant clarifiers periodically
became overloaded permitting mixed liquor suspended
solids to be discharged. This problem resulted from
major required maintenance on dryers in the sludge
dewatering facilities.
Actinomycetaceae Genus Nocardia as present in 19&9
1970 continued. (See Appendix A [2]). During January
and February, traces of the froth lingered in both plants
from the November 1970 outbreak. Another outbreak oc-
curred in March in the East Plant , but only traces were
noticed in the West Plant. The amount of froth on the
aeration tanks and aerated channels decreased by the
end of the month leaving a white foam.
April, May, June: The distribution of the average
179.^ mgd of sewage that entered the plant was h3%
to the West Plant and 57$ to the East Plant. On
April 7, the East Plant waste sludge was directed
into the West Plant return sludge channel to provide
an iron source for the West Plant. Prior to this,
15
-------
all the East Plant sludge was wasted directly to the
dewatering plant thickeners. The Jones Island effluent
chlorination facilities were activated June 21, initially
using temporary facilities until the construction on the
permanent facilities was finalized. Again during this
period, clarifiers were overloaded resulting in higher
effluent suspended solids. On May 7, the dryer system
was at full capacity again to reduce the solids build up
in the plant. However, on June 1 and 2 the entire de-
watering facilities were shut down for repairs.
Traces of the Nocardia froth were evident at the begin-
ning of April, but by the middle of the month the froth
coverage of the aeration tanks increased, first in the
East Plant and then in the West Plant. The froth cover-
age had decreased by the end of April but increased again
at the end of May and decreased substantially by mid-June.
July, August, September: The average 180.U mgd of sewage
that entered the plant was distributed k2% to the West
Plant and 58$ to the East Plant. A vacuum filter cake
cracking problem occurred on August 25 and the pickle
liquor dose was decreased for a short period of time.
The Nocardia froth reoccurred twice during this period,
on August 3 for a few days and again on September 29.
During the month of August, the density of the Milorganite
sharply decreased by about 15-20% in one week and then in-
creased slowly for about 10 days, until a normal density
was again obtained. A normal loose density will range from
ho to ^2 Ibs./cu. ft. and this value dropped to a low of
33.75. Special analyses were conducted during this period,
but the reason for the occurrence was not determined.
October, November, December: The average sewage flow that
entered the plant was 171.8 mgd with an average distribu-
tion of k3% to the West Plant and 57$ to the East Plant.
The plant sludge dewatering facilities were taken out of
service twice for maintenance work on the dryer exhaut gas
flume. The days out of service were November lU and 15 and
December 27, 28, 29 and 30. The Nocardia froth concentra-
tion present at the end of September decreased to a low level
by mid-October, but by the end of October, the froth increased
to a heavy concentration on the surface of the aeration tanks
and channels which remained through December.
16
-------
SECTION VII
IRON ADDITION EQUIPMENT AND OPERATION
The facilities proposed for addition of waste pickle liquor
iron for enhancement of phosphorus removal were designed to make pos-
sible a precise and reliable operation. The equipment was comprised
of two 30,000 gallon pickle liquor storage tanks insulated so that only
a 1° F. maximum temperature drop per day would occur at an ambient tem-
perature of minus 20° F. The automatic equipment would consist of an
automatic feed valve, a specific gravity column, a calculator, a re-
circulation pump-heater combination and an equipment by-pass. The
calculator would summate the mixed liquor flow from the existing meters,
determine the iron concentration from the specific gravity, and control
the iron addition to maintain the desired iron concentration. Deliveries
on equipment were the only delaying factor. The A. 0. Smith Corporation
agreed to design, construct and maintain the pickle liquor facilities
and deliver the waste pickle liquor to the Jones Island site.
On Wednesday, January 7, 1970, the first truck of pickle
liquor from the A. 0. Smith Corporation, which is 10 miles away, was
delivered to Jones Island starting the first addition during the one-year
grant period. Initially, prior to the installation of the automatic equip-
ment and storage facilities, the 125° F. pickle liquor was drained from
each truck tanker through an insulated, heated hose and a flow meter into
the East Plant sewage channel. The average temperature for January and
February 1970 was 18° F. The 15 days with below 0° F. temperatures created
many problems with crystallization of ferrous sulfate, The construction of
a shelter around the flow meter and addition of heat lamps failed to prevent
crystals from plugging the meter.
During the second seek, one truck was set up as a feed source and
was blanket insulated, covered with canvas and heaters were placed under
the covered area to prevent cooling and crystallization. Compressed air
was used to transfer the liquid from the delivery truck to the stationary
tanker. The flow meter was replaced by a calibrated plastic garbage bucket
and stop watch and this proved to be effective in maintaining the desired
flow rates.
The permanent equipment was ordered early in 1970 and the
storage tanks were available for use on June 1, 1970, but many problems
were experienced with the instrumentation which was not in satisfactory-
operating condition until August, 1971. Figure 3 is a view of the pickle
liquor control panel, and Figure h shows the equipment as located in the
East Plant Gallery. Figure 5 shows the set up for transferring pickle
liquor from the tank truck to the storage tank. At the present time, the
pickle liquor addition is automatically controlled to add a specified
concentration of iron based on the mixed liquor flow rate and the iron
content of the pickle liquor.
17
-------
h-
00
FIGURE 3
AUTOMATIC PICKLE LIQUOR ADDITION EQUIPMENT
-------
sv H3ridwvs
iuvid isva MI oaivocn
awv iwawdin'oa nonftn
oiivwoinv
-------
ro
o
FIGURE 5
TRANSFERRING PICKLE LIQUOR INTO STORAGE TANK
-------
The original equipment and materials used for the construction
of the facilities designed for pickle liquor addition to the 115 MOD
East Plant were:
1. Two 30,000 gallon steel tanks 12 feet in diameter
and 36 feet long vere rubber lined and the outside
vas insulated with a cover of urethane foam and
painted aluminum. Both tanks were equipped with a
low level alarm which actuates a red light and a
high level alarm which activates a horn. The pickle
liquor is transferred from the tanker to the storage
tanks using air pressure.
2. All the piping and valves are 3l6 stainless steel
which is resistant to the sulfuric acid pickle
liquor. The piping from the tanks is k inches in
diameter and is reduced to 2 inches as it passes
through the equipment and then returns to a k inch
diameter. The equipment by-pass line is 1 1/U
inches in diameter. An 8' x 10' heated building
was constructed to house the automatic equipment.
The piping located outside of the equipment build-
ing was insulated.
3. A Fischer & Porter Magnetic flow meter (teflon lined
with Hastelloy C electrodes) was used to measure the
pickle liquor flow rate (chart range of 0 - 50 gallons
per minute).
4. A Saunders automatic rubber lined valve with a flexible
diaphram which seats tightly against a weir in the body
was used to control the pickle liquor flow rate.
5. The 316 stainless steel specific gravity column was
used to obtain the iron content of the pickle liquor.
A differential pressure density transmitter was used
to determine the specific gravity which was recorded.
The initial recorder range was 1.00 to 1.^0.
6. A Vanton pump with a neoprene liner pumps a portion
of the pickle liquor flow (0.3 gpm) to the specific
gravity column.
7. The mixed liquor flow rate was determined by summating
the resistance output of 20 potentiometers on the exis-
ting East Plant tank metering equipment. The recorder
mixed liquor flow range was initially from 0 to 2kd mgd.
8. The Fischer & Porter equipment has the capability to
add 0 to 25 mg/1 iron to the East Plant mixed liquor.
21
-------
The cost of the equipment and, materials was:
1. Two 30,000 gallon rubber lined tanks ($23,500)
urethane insulation, painted aluminum, so that
only a 1° F, temperature drop would be realized
at a -20° F. ambient temperature ($U,000) and
the concrete foundations ($9,700) $37,200
2. Piping ($8,600), valves ($1,500), installation
($5,200), building ($850), piping installation
($750), heater ($1,800), compressor ($600),
electric power and electrical installation
($6,900) and miscellaneous ($1,100) $27,300
3, Pickle liquor flow meter, automatic valve,
specific gravity column and pump, mixed
liquor response, and Fischer & Porter control
unit equipment ($12,500), electrical installa-
tion ($6,000) $18,500
Sub Total $83,000
Cost of Engineering and Operation are extra. Pickle liquor
delivery costs of the A. 0. Smith Corporation runs between 0,7 to
l$/gallon of pickle liquor.
The original equipment has been modified to eliminate the
need for the pumping. Operational experience established that the
pump system for recirculation through the heater was not required due
to the pickle liquor delivery temperature and the insulation of the
storage tanks. The pickle liquor feed to the specific gravity column
was modified to make it a complete gravity feed at a sacrifice of some
of the head in the tanks. Figure 6 is an isometric of the modified
system. Figure 7 is a picture of the piping inside the pickle liquor
equipment building and Figure 8 shows the pickle liquor flowing into
the mixed liquor channel.
22
-------
SEWERAGE COMMISSION
OF THE CITY OF MILWAUKEE
JONES ISLAND WASTE WATER TREATMENT PLANT
PICKLE LIQUOR LAYOUT ISOMETRIC
INSULATED TANKS
30,000 GALLONS EACH
ro
TO MIXED LIQUOR
CHANNEL
FILTER-
UNLOADING
Figure 6
© SCREEN
© MAGNETIC FLOW METER
AUTOMATIC VALVE
@ SPECIFIC GRAVITY COLUMN
© RECIRCULATION HEATER
-------
I
S1
H
-------
03
O
00 (L,
O
1-1
fcn
w
K
I
-------
SECTION VIII
SAMPLING & ANALYTICAL TECHNIQUES
SAMPLING:
Sewage:
The daily sewage samples analyzed represent 2k hour
composite samples of fine screened sewage from 7:00 A. M. to 7:00 A. M.
A Phipps-Bird sampler was used to collect samples to form hourly com-
posites (30-200 ml portions per hour) which in turn, were composited
to form a 2k hour composite in proportion to the screened sewage flow
rate.
Effluents:
The West Plant effluent samples represent a 2k hour
composite of hourly grab samples. Every hour the operator would
take one dipper full of effluent from each weir channel on all of
the eleven clarifiers. Each hourly sample was mixed and a volume
in proportion to the sewage flow was added to the 2k hour sample
bottle.
During 1971, the automatic Sanford sampler was placed in
operation for sampling of the East Plant effluent. This sampler was
activated by a counter so that samples would be automatically collected
in proportion to the flow rate. A picture of the sampler is shown in
Figure 9.
Mixed Liquor:
The SDI analyses were performed on the individual mixed
liquor grab samples taken at about 9:30 A. M., 5:30 P. M. and 1:30 A. M.
each day from a feed channel to the sedimentation basins and the three
results were averaged. The mixed liquor pH was determined on the
9:30 A. M. grab sample. The MLSS analysis was performed on a 2k hour
composite mixed liquor sample. Equal volumes of mixed liquor were
collected every hour for each shift and composited on a shift basis in
proportion to the average shift flow rate variations.
Return Sludge:
Equal volumes of return sludge were collected every two hours
for each shift. At the end of the shift, the sample was mixed and a
designated volume was added to the 2k hour return sludge sample bottle.
This designated volume was proportional to the average flow variation
for each shift.
27
-------
SAMPLER COUNTER AND ACTIVATOR
SAMPLER AND REFRIGERATOR
FIGURE 9
28
-------
Milorganite:
A Milorganite sample was collected in direct proportion to
the rate of production to produce a 2k hour composite.
Phosphorus Determination:
Total, total soluble and soluble ortho phosphorus concentra-
tions were determined on liquid samples. After the filtration of the
total soluble and soluble ortho samples and the ternary acid digestion
of the total and total soluble sample, the prepared samples were intro-
duced into a Technicon Autoanalyzer for determination of the soluble
ortho phosphorus concentration using the Aminonaphtholsulfonic Acid
Method. For a detailed description of the method, refer to Appendix B.
The return sludge phosphorus analyses were a gravimetric method as out-
lined in Appendix C.
Iron Determination:
The total iron and total soluble iron (analyses on filtrate)
determination made on sewage and effluent samples were prepared by a
nitric acid digestion. The digested samples were introduced into an
Atomic Absorption instrument (instrumentation Laboratory, Incorporated,
Model No. 153) for analyses. The sewage sample for total iron was
diluted 1 to 2, but the rest of the samples were run direct. This data
is tabulated in Appendix H.
The iron concentration in the pickle liquor was determined
using a volumetric titration-dichromate process. A description of the
method is in Appendix D.
The return sludge iron was determined on dry centrifuged solids
using a volumetric dichromate method as given in Appendix E until Novem-
ber 1, 1971. Prom November 2 to November l6, 1971, the digestate as
generated by the method explained in Appendix E was analyzed using an
Atomic Absorption unit. From November l6, 1971 through April 1972, the
samples were digested using perchloric acid and analyzed using the
Atomic Absorption unit as explained in Appendix F.
Mixed Liquor and Return Sludge Suspended Solids Concentration
Determination:
A known volume of the sample was filtered through a weighed
filter paper in a Buchner funnel (100 ml of ML through a S & S Sharkskin
and 50 ml of return sludge through a Whatman No. 3). The sludge and
paper were dried at 103° C, for one hour, cooled and weighed again. The
difference in weight was used to determine the concentration.
29
-------
Sludge Density Index Determination:
A relatively fresh mixed liquor sample was used for this
analysis. The suspended solids concentration was determined on
one part and a 30 minute settling test was determined on another
part using a 1000 ml graduated cylinder.
SDI = % MLSS x 100
% Cylinder volume occupied by solids after 30 minutes
Biochemical Oxygen Demand Determinatiori :
This determination involved using the Azide Modification of the
lodometric method as given in Standard Methods, 12th Edition (l^-).
Total Solids Determination:
A 100 ml sample of sewage or effluent was placed in tared
silica dish and the liquid was evaporated to dryness on a water bath.
Then the dish was dried in an oven at 103° C. and was put in a desic-
cator to cool prior to being weighed again. The difference was the
total solid weight per 100 ml of sample. The method is from Standard
Methods, 12th Edition
Suspended Solids Determination :
The sewage (50 ml) and effluent (200 ml) sanroles were filtered
through a tared Gooch crucible with an asbestos pad. The crucible was
dried at 103° C. for one hour, cooled in a desiccator and weighed again
and the difference was the suspended solids weight. The method is from
Standard Methods, 12th Edition (lU).
Nitrogen Determination :
The total Kjeldahl nitrogen analysis on the liquid samples
(sewage and effluents) is as indicated in Standard Methods, 12th
Edition
The nitrogen analyses on the Milorganite and the dry centri-
fuge return sludge solids is a method for total nitrogen on dried
solids explained in Appendix G.
Ash Determination:
A three grain sample of the dried solids were put in a tared
crucible and ignited at 600° C. for two and one half hours, cooled in
desiccator and weighed.
30
-------
Alkalinity Determination:
A 50 ml sample vas titrated to a pH of U.3 using N/50
using the following calculation as in Standard Methods, 12th Edition
Alkalinity as mg/1 CaCC>3 = ml H2SOit x Normality J^SOij x 50,000
ml sample
Sulfates Determination:
The sewage and effluent samples (20 ml diluted to 100 ml with
distilled water) were analyzed for soluble sulfate by first filtering
the sample through a glass fiber pad and running the analyses on the
filtrate. The Turbidimetric Method in Standard Methods, 12th Edition
was used.
Specific Gravity Determination:
A standard 60° F. hydrometer was used to measure the specific
gravity of the pickle liquor. The readings were not compensated for
temperature.
% Free Acid Determination:
Initially, in 1970, a 10 ml aliquot of the pickle liquor was
titrated with IN NaOH until the formed floe turned from green to brown
(pH about 6.0). This method was used for all the analyses on pickle
liquor from the A. 0. Smith Corporation. This method was later changed
to titrate to a pH of h.3 and all the pickle liquor from the U. S. Steel
Corporation was analyzed in this fashion. The formula used in all
determinations was:
% H2S01| = ml titrant x Normality of NaOH x .0^9
ml sample x Specific Gravity
This equation varies from the one included in the report covering the
1970 data period (l) because of a typing error in the previous report.
31
-------
SECTION IX
PRESENTATION AND DISCUSSION OF DATA
The performance of a waste water treatment plant is dependent
upon the characteristics of the waste water that enters the plant.
Some of these characteristics of the raw screened sewage entering the
secondary or biological portion of the Jones Island treatment were:
TABLE I
Yearly Average Screened Sewage Characteristics
1970 1971
Total Solids, mg/1 939
Suspended Solids, mg/1 207 197
BOD, mg/1 209 220
COD, mg/1 ^31
Kjeldahl Nitrogen, mg/1 N 28.3 23.2
Total Phosphorus, mg/1 P 8.3 7.1
Total Soluble Phosphorus, mg/1 P 3.1 2.3
Total Iron, mg/1 Fe 7-2 6.7
Total Soluble Iron, mg/1 Fe 0.6 0.^
These properties of the sewage entering the plant during 1971
are further broken down into monthly average concentrations in Table 2.
The West and East Plant operations were similar except pickle liquor was
added to the East Plant and East Plant return sludge was wasted to the
West Plant return sludge channel. Table 2 also indicated the quality of
the effluent from both plants along with the Dercent removal of the dif-
ferent properties listed. Appendix H has all the daily results of analyses.
This data highlights some very significant and interesting informa-
tion. The sewage has a relatively high percent of insoluble phosphorus,
65$ or an average 5.0 mg/1 P. The pickle liquor iron, therefore, only has
to interact and precipitate the smaller soluble portion or 35% of the phos-
phorus. Figures 10, 11 and 12 show the monthly variations in screened
sewage BOD, suspended solids and total phosphorus over the last seven years.
33
-------
TABLE 2
MONTHLY AVERAGE SCREENED SEWAGE
AND EFFLUENT CHARACTERISTICS
1971
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
BIOCHEMICAL OXYGEN DEMAND
mg/1
SS
229
214
200
234
249
220
21*1
210
229
222
231
188
220
WPE
18
IT
13
23
34
21*
18
16
14
22
20
15
20
EPE
23
25
17
17
23
Ik
12
19
17
22
17
18
19
% Removal
WPE
92.1
91.1
92.7
90.0
86.8
88.5
90.5
91.6
93.3
89.5
90.7
90.7
90.6
EPE
89.9
88.0
89.9
91.5
89.3
93.3
93.8
89.8
91. k
87.9
91.8
89.0
90.5
TOTAL SOLIDS
mg/1
SS
1042
1120
1156
1123
1044
925
879
859
854
905
959
980
987
WPE
862
933
980
971
890
792
753
713
685
729
743
819
823
EPE
874
951
987
951
878
799
766
730
717
73k
750
829
831
% Removal
WPE
17.3
16.7
15.2
13.5
14.8
Ik.k
Ik. 3
17-0
19.8
19 .k
22.5
I6.k
16.8
EPE
16.1
15.1
14.6
15.3
15.9
13.6
12.9
15.0
16.0
18.9
21.8
15-4
12.9
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
SUSPENDED SOLIDS
mg/1
SS
20k
200
197
204
218
194
174
187
194
199
214
180
197
WPE
24
28
18
45
64
32
18
19
16
21
19
17
27
EPE
39
36
31
33
45
20
17
15
13
16
11
18
25
% Removal
WPE
88.4
85.4
90.5
78.7
71.6
84.2
89.4
89.3
90.8
89.8
91.6
89-9
86.6
EPE
82.1
83.0
83.0
84.2
78.2
89.4
89.8
91.7
92.8
91.4
94.3
90.2
87.5
KJELDAHL NITROGEN
mg/1 as N
SS
31.8
27.3
25.9
27.9
30.7
26.5
25.1
26.0
27.8
30.0
32.3
26.6
28.2
WPE
13.9
10.9
9.7
10.6
13.5
6.1
5.6
8.2
8.8
11.3
10.8
9.1
9.9
EPE
12.3
9.6
9-3
8.9
11.0
3.8
3.4
5.6
5.7
6.9
5-7
8.2
7-5
-------
TABLE 2 (Cont'd.)
MONTHLY AVERAGE SCREENED SEWAGE
AND EFFLUENT CHARACTERISTICS
1971
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
TOTAL PHOSPHORUS
mg/1 as P
SS
7.9
6.8
6.3
6.2
7.U
6.8
7.1
7.1+
7.6
7.6
7.7
6.6
7.1
WPE
1.7
1.2
0.73
1.6
2.2
0.9^
0.92
1.1+
1.2
1.1+
0.96
1.1+
1.3
EPE
0.93
0.9!+
0.81+
0.75
1.1
0.51
0.1+7
0.65
0.1+7
0.58
0.39
0.6l
0.69
% Removal
WPE
79-7
81.7
88.1+
76.2
71.7
86.1+
86.8
81.0
83.1+
81.5
87.2
79.0
81.9
EPE
88.5
85.7
86.7
88.5
85.6
92.1+
93.2
91.2
93.8
92.2
9l+. 8
90.8
90.3
TOTAL SOLUBLE PHOSPHORUS
m
SS
3.1
2.7
2.6
2.2
2.2
1.9
2.0
2.1
2.2
2.0
1.8
2.7
2.3
g/1 as P
r WPE
1.1
0.69
0.38
0.33
0.27
0.18
0.3!+
0.87
0.77
0.67
0.36
0.95
0.58
EPE
0.23
0.22
0.19
0.18
0.19
0.13
0.15
0.37
0.27
0.23
0.15
0.28
0.22
% Removal
WPE
65-7
71*. 7
85.3
85.7
87.8
90.7
81+. 5
57.3
65.7
68.0
78.1
66.1+
75.8
EPE
92.6
91.0
92.5
91.7
91.1
92.3
92.1
82.3
87.8
87.9
90.6
89.6
90.1
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
TOTAL IRON
me
SS
6.11
6.67
1+.80
5.57
6.85
6.81
6.57
6.83
8.11+
8.25
9.06
1+.70
6.70
/I as Fe
WPE
0.1+3
0.75
0.1+5
1.37
3.1+7
1.23
0.96
1.03
0.91+
0.92
1.23
0.75
1.13
EPE
2.09
3.10
2.11
2.71+
3.59
1.27
1.01
1.08
0.71*
1.22
0.93
0.91
1.73
% Removal
WPE _,
93.2
88.1
90.6
75-0
1+9.1+
82.3
85.3
81+. 7
88.1+
89.0
86.5
83.7
83.0
EPE
76.2
52.1
5l+. 9
52.0
1+7-9
79.9
81+. 9
81+. 0
91.1
85.5
89.8
79.0
73.1
TOTAL SOLUBLE IRON
mg/1 as Fe
SS
0.52
0.52
0.37
0.1+6
0.51
0.1+7
0.1+6
0.1+7
o.i+o
0.1+3
0.29
0.26
0.1+3
WPE
0.15
0.18
0.16
0.30
0.33
0.21+
0.21+
0.15
0.11
0.10
0.09
0.12
0.18
EPE
0.09
0.18
0.10
0.33
0.35
0.13
0.11+
0.16
0.07
0.09
0.08
0.09
0.15
% Removal
WPE
72.7
61+. 1+
55.2
36.8
1+3.1+
50.6
1+6.8
68.2
71.7
76.2
69.0
53.2
59.0
EPE
83.1
60.1
7l+. 3
37.7
53.6
72.7
68.1
66.2
81.2
79.5
70.1+
62.8
67.5
35
-------
375 T
350--
325 --
300--
275 - •
Q
6
CD
250--
1970 X
225 --
200--
175 --
1971
150
JFMAMJ JASON
MONTH
Monthly Sewage B.O.D. Variation
Figure 10
36
-------
375-r
350--
325--
o> 300--
E
^ 275--
O
C/5
UJ
LJ
Q.
I75--
150
AVE
1965-68
H 1 1 1 1 1 h
-1 h
J F M A
M J J
MONTH
A S 0 N D
Monthly Sewage Suspended Solids Variation
Figure 11
37
-------
12 ••
10 ••
0>
E
9 -•
CO
Z>
or
o
x
a.
CO
o
x
Q_
_l
<
8 ••
7 ••
6 •-
1970 X'
AVE.
65-68'
1969
1971
H 1
J F M A
M J J
MONTH
A S 0 N p
Monthly Sewage Total Phosphorus Variation
Figure 12
38
-------
The year 1971 is similar to 1970 but different from the 1965 to 1968
period. Changes in sewage sampling techniques instituted in 1967 may
have contributed to this difference. The sewage properties in the
future may continue as in the 1970-71 period. Figures 13 and ih show
the variation of phosphorus and iron concentrations in the raw screened
sewage for the January 1970 to April 1972 period.
Initially, iron in the form of waste pickle liquor was added
to the East Plant to demonstrate iron precipitation of phosphorus in an
activated sludge plant and the West Plant, receiving the same screened
sewage, was operated as a control with the sludges from each plant kept
completely separate. After the one year demonstration grant period,
t.he waste sludge from the East Plant was added to the West Plant as an
iron source. Figures 15 and 16 show the iron and phosphorus concentra-
tion in the West and East Plant sludges.
The iron in the East Plant sludge at the start of the iron
addition and in the West Plant after addition of East Plant sludge,
more than doubled in concentration whereas a smaller increase in the
phosphorus content occurred. During the 1970 demonstration period, the
iron content of the East Plant return sludge solids was 5-08$ as compared
to 1.86$ in the West Plant and the phosphorus content of the East Plant
return sludge solids averaged 2.6l$ as compared to 2.29% in the West
Plant. Future plans call for introduction of the vacuum filter filtrate
directly to the West Plant to more effectively use this iron source for
phosphorus removal.
The increased nhosphorus concentration found in the return
sludge confirmed the lower effluent phosphorus concentration. Figure 17
indicates the monthly average TP concentration in the plant effluents.
The 1970 average East and West Plant Effluent TP averaged 0.70 mg/1 and
1.^ mg/1, respectively. Considering the 35^ day 1970 demonstration
period, the objective of 0.50 mg/1 was accomplished in the East Plant on
195 days (55.1$ of the time), while in the West Plant the objective was
met on only 60 days (l6.9$ of the time). Figure 18 shows the plant ef-
fluent total soluble phosphorus concentrations. In the 1970 demonstra-
tion period, the East Plant effluent TSP concentration averaged 0.30 mg/1
and the West Plant averaged 1.1 mg/1. During the May 1971 - April 1972
period when East Plant waste sludge was added to the West Plant return
sludge, the TSP values for the East and West Plant effluents averaged
0.22 and 0.6** mg/1. With low TSP concentrations, the problem is one of
insoluble phosphorus. As noted, the phosphorus in the mixed liquor sus-
pended solids increased resulting in a higher phosphorus content in the
effluent suspended solids. Phosphorus removal, therefore, becomes an
effluent suspended solids control problem. Figure 19 shows the monthly
phosphorus variation and indicates the difference between the West and
East Plant effluents.
39
-------
2
J^MAMJJASONDJFMAMJJASONOJFMA
1970 MONTH 1971 1972
Sewage Phosphorus Variation
Figure 13
Torol Soluble Iron
Figure 14
JFMAMJJASOND
1970 MONTH
M A M J J ASONDJFMA
197, 1972
Sewage Iron Variation
Figure 15
FMAMJJASONOJ FMAMJJASONDJ F MA
1970 MONTH 1971 1972
East and West Plant Return Sludge Iron
West Pionl Return Sludge
Figure 16
N C J FMAMJJASONDJ F M A
MONTH 1971 1972
East and West Plant Return Sludge Phosphorus
M A M J JASCNDJFMAMJ J ASONOJ FMA
1970 MONTH I97i 1972
East and West Plant Effluent Total Phosphorus
MONTH '971
East and West Plant Effluent Total Soluble Phosphorus
Figure 17
Figure 18
40
-------
0»
8.
O
\
Total Phosphorus
A,,.
.0'
\
\
O
J FMAMJ JASOND
Screened Sewage
West Plant Effluent
East Plant Effluent
cr
o
a.
o
X
Q_
Total Soluble Phosphorus
J F M
1971
A M J J
MONTH
Figure 19
Phosphorus Variation
0 N D
-------
The week day variations are expressed in Figure 20 indicating
a maximum sewage phosphorus on Mondays wash day, USA. As a result
of this Monday shock load on the plant, the effluent total soluble
phosphorus concentrations are higher in both plants. The rest of the
week is fairly uniform in terms of sewage phosphorus content except -for
Sunday. Figure 21 shows the 1971 daily BOD variation, again showing a
Monday shock load on the plant,
A review of the performance parameters of the West and East
Plant as shown in Table 3, indicates that the BOD and suspended solids
removals between the two plants were similar in 1970 and 1971.
Mixed Liquor and Return Sludge Characteristics:
The addition of iron to the East Plant return sludge changed
several properties, including the ash content. To compensate for this
higher ash, attempts were made to keep the East Plant mixed liquor
suspended solids 200 mg/1 higher than in the West Plant from July 1970
to April 1971 to equalize the biomass or volatile suspended solids-.
During 1970, the average mixed liquor suspended solids for the West and
East Plants were 26lO and 2700 mg/1 and in 1971 averaged 2750 and .2860
mg/1, respectively. Table h shows the mixed liquor and return sludge
yearly average characteristics. As previously mentioned and shown in
Figures 15 and 16>5 the return sludge iron and phosphorus concentrations
increased as expected and the ash free nitrogen values are the same.
Figures 22 and 23 relate the 1971 West and East Plant return sludge
phosphorus and iron concentrations with the effluent total soluble phos-
phorus. The West Plant results clearly indicate the concentration
changes when the East Plant sludge was wasted to the West Plant return
sludge starting in April 1971. Figures 2k and 25 show a diagram of the
plan with various chemical concentrations for 1970 and 1971. The low
iron concentration in the plant effluents indicated that the iron 'added
is precipitated and almost completely tied up in the mixed liquor solids.
During the 1970 demonstration period, the West and East Plant effluent
total iron concentration averaged 0.51 and 1.2 mg/1 and the total soluble
iron concentration averaged 0.21 and 0.2h mg/1 Fe. The low soluble 'iron
concentration indicated that lower total iron concentrations would be
obtained with a lower effluent suspended solids content.
The solids production in the mixed liquor was reviewed. A
solids production difference between the West and East Plants could not
be determined because the volume of sludge wasted from each plant in-
dividually was not accurately measured. The total sludge produced in
both plants was obtained by adding- the tons of dried solids removed and
the solids present in the effluent. It should be remembered that the
Jones Island Plant does not have conventional primary settling, only fine
screening, and therefore, the sewage BOD and suspended solids fed to the
biological process was high. This higher loading results in a greater
-------
CL
(f)
±)
cr
o
3:
o_
CO
9 T
8 ••
7 --
6 -•
5 ••
4 ••
3 ••
0
Su.
M
Total Phosphorus
1970
H97I
•1970
Total Soluble Phosphorus
1971
Tu
W
DAY
Th Fr
Sa
1970-1971 DAILY SEWAGE PHOSPHORUS
VARIATION
FIGURE 20
43
-------
300 T
250 ••
200 ••
150 ••
Screened Sewage
\
\
\
\
0>
E
100
Su
M Tu W Th Fr Sa
a
O
CD
25 T
20 ••
15 -•
East Plant Effluent
-West Plant Effluent
10 ••
Su M Tu W Th
DAY
1971 Daily BOD Variation
Figure 21
Sa
44
-------
TABLE 3
PLANT PERFORMANCE PARAMETERS
1970
BOD, MG/L
% REMOVAL
COD, MG/L
% REMOVAL
SUSPENDED SOLIDS, MG/L
% REMOVAL
TOTAL PHOSPHORUS, MG/L
% REMOVAL
BOD, MG/L
% REMOVAL
SUSPENDED SOLIDS, MG/L
% REMOVAL
TOTAL PHOSPHORUS
% REMOVAL
ED SEWAGE
209
^ 31
207
8.2
1971
220
197
7,1
WEST PLANT
EFFLUENT
12.5
93.5
68
83.it
18
90.9
l.l»
83.3
20
90.6
27
86.6
1.3
81.9
EAST PLAI
EFFLUENT
16.5
91.5
70
82.8
23
88.5
0.70
91.3
19
90.5
25
87.5
0.69
90.3
-------
TABLE k
MONTHLY AVERAGE MIXED LIQUOR AND
RETURN SLUDGE CHARACTERISTICS
1971
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
Iron Addition
to East Plant
Ibs/day
8,399
10,225
8,145
7,143
8,878
6,377
7,722
8,619
8,616
10,139
9,126
7,847
8,1*36
mg/1
8.5
10.0
7.1
6.3
8.3
5-5
7.0
8.0
8.1
10.0
9-3
7.3
8.0
MIXED LIQUOR
E.P.
MGD
118.6
122.8
136.7
136.2
125.1
138.6
133.0
128.2
127-5
121.9
120.3
129.7
128.2
\Suspended
pH \Solids
WP
_
-
-
-
7.1
7.0
7.1
7.2
7.1
7.1
7.2
7.1
7.1
EP
_
-
-
-
7.1
7.0
7.1
7.1
7.0
7-0
7.1
7.0
7.1
WP
2,6l4
2,856
2,743
2,968
2,824
2,9H
2,514
2,530
2,^96
2,638
3,379
2,523
2,750
EP
2,821
2,920
2,839
3,024
2,992
3,073
2,722
2,6^3
2,644
2,764
3,291*
2,590
2,861
S. D. I.
WP
0.88
1.11
1.12
1.07
1.01
1.16
i.o4
1.70
1.1*7
1.09
l.ll*
1.25
1.17
EP
0.80
1.03
1.03
0.99
0.89
1.19
1.05
1.61
1.1*8
l.Ol*
1.19
1.2l*
1.13
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
RETURN SLUDGE - CENTRIFUGED SOLIDS - DRY BASIS
% Total - P
WP
2.09
1.97
1.89
1.97
2.11
2.27
2.33
2.32
2.1*8
2.1*1
2.1*2
2.27
2.21
EP
2.1*1
2.17
2.02
2.06
2.16
2.29
2.35
2.33
2.53
2.39
2.38
2.32
2.28
% Total - N
WP
6.89
6.51
6.53
6.68
6.6l
6.26
6.39
6.18
6.21
6.20
6.32
6.51
6.1*1+
EP
6.63
6.20
6.35
6.1*1
6.1*8
6.15
6.25
6.10
6.08
6.05
6.13
6.36
6.26
% Total - Fe
WP
1.77
1.85
1.73
2.38
3.21+
3.56
3.75
3.91
1*.29
1+.35
5.12
i+.oi*
3.33
EP
1*.69
5.61*
4.59
1*.1*5
l*.l+9
4.57
4.97
5.14
5.39
5.81
7.18
5.79
5.23
% Total - Ash
WP
23.23
25.90
26.41
27.16
27.66
29.96
29.68
31.08
31.27
30.48
30.62
28.91
28.53
EP
27.46
30.72
29.92
30.02
29.55
31.32
30.55
32.19
32.66
32.01
32.35
30.54
30.77
46
-------
West Plant
Started Wasting Eas» Plant Return Sludge To Thfc West Plant
West Plant Return Sludge; % Fe
West Plant Return Sludge % f
West Plant Effluent Total j Soluble Phosphorus mg/l-P
1 ' ' ' A
JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER
197!
Figure 22
-------
00
JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER
1971
Figure 23
-------
RAW
SEWAGE
r|EFFLUENT-
BAR
I
SCREEN
Figure 24
GRIT
REMOVAL
JOIN
CriMT CrDCTMC 1 -
SEWERAGE COMMISSION
OF THE CITY OF MILWAUKEE
ISLAND WASTE WATER TREATMENT PLANT
FILTRATE
SMALL INTERMITTENT FLOW
226 mgFe/l
Fe
Sol Fe
TP
TSP
BOD
Susp Solids
Q
Q
Susp. Solids
BOD
TSP
TP
Sol Fe
Fe
0.51
0.21
'•4 WAS
I.I SLUt
IZ5
185
78
94
23
16.3
03 MILORG
0.7 202T°
0.24
1.2
AERATION
BASINS
RETURN SLUDGE
WEST PLANT
7o Iron os Fe 1.86
% Phosphorus os P 229
7» Ash 25.99
7o Nitrogen as N 6.65
WASTE
SLUDGE
7o Nitrogen as N 6.18
7» Ash 30.95
EASl PLAN I 7o Phosphorus os P 2.61
7o Iron os Fe 5.08
LAKE MICHIGAN
RETURN SLUDGE
AERATION
BASINS
1970
CHARACTERISTICS
SCREENED RAW SEWAGE
Q mgd 172
TP mg P/l 8.2
TSP mg P/l 3.1
Fe mg FeVI 7.2
Sol. Fe mg Fe/l 0.60
BOD mg/l 209
Susp. Solids mg/l 207
9,2741 bs Fe/day
9.2 mg/l
-------
RAW
SEWAGE
CHLORINATION
H EFFLUENT-
BAR
Figure 25
SEWERAGE COMMISSION
OF THE CITY OF MILWAUKEE
1 //////
SCREEN
GRIT
REMOVAL
JU
/ /
I FINE SCREENS!
FILTRATE V V
Nto IbLANU
^)
J
WAblh WAIt
APRIL- DEC. 1971 3.3 M.G D.
157 mg Fe/l
^ \
Fe 1 1
Sol Fe 018
TP 1.3 WAc
TSP 0.58 SLU
BOD 20
Susp Solids 27
Q 77
Q 100
Susp Solid 25
BOD 19
TSP 0.22 MILORC
TP 0.69 204T
Sol Fe 0.15
Fe 1.7
TE
X3E|
ANITE
AERATION
BASINS
RETURN SLUDGE
7olron as Fe 3.33
WEST PLANT % Ph0sphorus as p 221
7o Ash 28 57
7o Nitrogen as N 6.44
WASTE
SLUDGE
% Nitrogen as N 626
7= Ash 30.8 1
£/\ST PLANT % Phosphorus 2.28
%lron as Fe 5.23
RETURN SLUDGE
AERATION
,^I_M,M, IL.UOI- BASINS
PICKLE
^- LIQUOR
STORAGE
1971
CHARACTERISTICS
SCREENED RAW SEWAGE
Q mgd
TP mg P/l
TSP mg P/l
Fe mg Fe/l
Sol Fe mg Fe/l
BOD mg/l
Susp Solids mg/l
177
71
23
6.7
0.43
220
197
8,4361 bs Fe/doy
8.0 mg Fe/l
LAKE MICHIGAN
-------
overall production of solids. Figure 26 shovs the solids nroduced in
conjunction with the BOD removed and shows the monthly variation of
solids produced per 1000 pounds of BOD removed in 1970 and 1971. The
increase in production of solids ner BOD removed increased during
periods of low BOD content of the sewage because the dewatering facili-
ties were operated to remove as many solids as practical resulting in a
lower sludge age.
Figure 27 shows the solids production per pound of BOD removed
for the last seven years (the 1965 - 1968 data is represented as an
average). Relating this data to Figure 10 (monthly sewage BOD varia-
tion), a greater production per pound of BOD removed occurs during
periods of lower sewage BOD. During the lower BOD period, the solids
were removed fast enough to maintain a lower sludge age and greater
sludge production. In the 1965 - 1968 period, solids were not removed
fast enough causing higher mixed liquor solids, a greater sludge age and
lower solids production. Since the phosphorus content of the sludge is
virtually constant, higher solids production and removal may be the
reason for the increase noted in the ability of the West Plant to remove
phosphorus. The greater the solids production, the greater the amount
of phosphorus removed.
Miscellaneous Tests:
During the course of the project, additional tests were conducted
to obtain a better understanding of the pickle liquor, the resultant
changes in the plant, and phosphorus in general.
1. Pickle Liquor Free Acid:
The free acid in the pickle liquor from both
the A. 0. Smith Corporation and the U. S. Steel
Corporation were periodically monitored and are
shown in Table 5.
TABLE 5
Pickle Liquor Free Acid as % H2SO^
A. 0. Smith U. S. Steel
Type Sulfur!c Acid Sulfuric-Hydrochloric
Ave. It.5 7.8
Max. 5.8 9.3
Min. 2.1 6.6
NOTE: All tests for free acid were conducted in 1970 except for two on
pickle liquor from A. 0. Smith. U. S. Steel pickle was used from
November U, 1970 to December 1, 1970 because of a strike at
General Motors and the resultant slowdown at A. 0. Smith.
51
-------
U
3
XI
O
m
•o
a
I
1971
1970
M
S 0 N D
250T
•o
o>
o
3
•o
O
«0
2
"o
CO
M
I
x»
c
o
197
230"
2IO--
1971
190-
170-
O
o
m
150
M
MONTH
1971
N
1970 and 1971 Solids Production
per BOD Removed
Figure 26
52
-------
Q
UJ
>
O
2
UJ
K
O
O
CD
ID
O
Q.
\
Q
UJ
O
ID
Q
O
ir
a.
Q
O
O
O
a.
2.0 -
1.8 •
1.6
1.4 •
1.2 ••'
1.0
0.8
0.6
1971
I970X
1969
AVE
1965-68
M
M J J
MONTH
0 N
Solids Production per BOD Removed
Figure 27
53
-------
The addition of this acid to the East Plant mixed liquor has
no apparent effect on the pH with the average 1970-1971 mixed liquor pH
for the West and East plants being 7.1 and 7.0.
2. Alkalinities on Sewage, Effluents and Mixed Liquor:
Throughout the year, alkalinities were run on
samples of screened sewage, effluents and some
mixed liquor filtrates, using 2h hour composites
to determine the effect of pickle liquor acid on
the alkalinity of the system. The sewage total
alkalinity averaged 228 mg/1 as CaCO^ for the
1970-1971 period with the effluents averaging 226
in the West Plant and 187 in the East Plant (17$
difference in the effluents). The mixed liquor
filtrates averaged 208 for the West Plant and 172
for the East Plant and are shown in Table 6.
3. Soluble Sulfates on Sewage and Effluents:
Sulfate analyses were performed on weekly com-
posites made from daily 2h hour composites.
The sewage soluble sulfate concentration aver-
aged 108 mg/1 SOij with the effluents having Il6
and 130 mg/1 SOjj, respectively, for the West and
East Plants during the 1971 period. The sulfate
concentration of the East Plant effluent was,
therefore, 12% higher than that of the West Plant
effluent. The data is shown in Table 7.
k. Iron Phosphorus Uptake and Release:
Phosphorus uptake and release studies were conducted
to further understand the effect of the pickle liquor
iron addition. Samples of sewage, return sludge and
mixed liquor throughout the aeration phase, were
collected and analyzed for SOP (soluble ortho phos-
phate). The results of the uptake and release studies
indicated a definite difference between the control
West Plant and the East Plant. The 1970 data indicated
that upon mixing the sewage and return sludge, SOP was
released in both plants. In the East Plant less SOP was
released and the SOP uptake rate was faster. A sharp
drop in SOP concentrations was noted at the point of
iron addition. Laboratory phosphorus release studies
were conducted by allowing the mixed liquor, obtained
from the aeration tank outlet, to settle and then sam-
ple the different layers as a function of time. The
results indicated a much greater SOP release with the
-------
TABLE 6
TOTAL ALKALINITY
Sewage Effluents and Mixed Liquor Filtrate
DATE
Wed.
Thurs.
Sun.
Hon.
TUBS.
Wed.
Thurs .
Tues.
Mon.
Sun.
Fnri .
Sun.
Wed.
Mon .
Tues.
Sun .
Mon .
Tues.
Wed.
Thurs.
Gun.
Mon .
Tues.
Thurs .
Ave .
Max.
Min .
1-13-71
1-21-71
l_2l+-7l
2-1-71
2-9-71
2-17-71
2-25-71
3-2-71
3-8-71
3-11+-7J
3-26-71
1+-1+-71
k-lk-ll
l(_26-7l
5-U-71
5-9-71
5-11-71
11-16-71
11-17-71
11-18-71
11-21-71
11-22-71
11-23-71
11-25-71
2k Days
SEWAGE
230
21+1+
212
2l+0
23k
226
19l+
258
250
200
216
268
228
281+
276
232
210
180
198
188
236
23l*
218
220
228
28k
180
WEST
EFFLUENT
231+
208
2l+6
2l+2
2l+2
22k
222
25k
220
218
258
258
229
276
256
220
218
210
206
20k
I9k
19k
196
200
226
276
19l+
EAST
EFFLUENT
202
188
210
192
162
166
220
222
266
19k
230
220
181*
221+
212
181+
188
166
158
168
128
122
138
132
187
266
122
TOTAL
EFFLUENT
20k
210
181+
182
192
186
200
216
232
178
231*
222
190
232
260
180
190
181*
260
178
WEST
M.L. FILTRATE M.L
218
192
206
208
220
206
208
208
220
192
EAST
M.L. FILTRATE
181+
182
172
168
160
17k
166
172
181+
160
-------
TABLE 7
SOLUBLE SULFATE CONCENTRATION
Reported as mg/1 SO, in Weekly Composition
DATE
1-3
1-10
1-17
1-2 1+
1-31
2-7
2-14
2-21
2-28
3-7
3-11+
3-21
4-4
4-11
4-18
4-25
5-2
5-9
5-16
5-23
5-30
6-6
6-13
6-20
6-27
7-4
7-11
7-18
7-25
8-1
8-8
8-15
8-22
8-29
9-5
9-12
9-19
9-26
10-3
10-10
10-17
10-24
10-30
thru 1-9
thru 1-16
thru 1-23
thru 1-30
thru 2-6
thru 2-13
thru 2-20
thru 2-27
thru 3-6
thru 3-13
thru 3-20
thru 3-27
thru 4-10
thru 4-17
thru 14-21
thru 5-1
thru 5-8
thru 5-15
thru 5-22
thru 5-29
thru 6-5
thru 6-12
thru 6-19
thru 6-26
thru 7-3
thru 7-10
thru 7-17
thru 7-2 1+
thru 7-31
thru 8-7
thru 8-1 1+
thru 8-21
thru 8-28
thru 9-1*
thru 9-11
thru 9-18
thru 9-25
thru 10-2
thru 10-9
thru 10-16
thru 10-23
thru 10-30
thru 11-6
SEWAGE,
130
121*
135
130
135
112
105
118
130
* 140
110
125
135
130
130
110
112
115
108
NS
NS
NS
95
95
90
93
105
107
103
105
98
105
93
93
107
95
102
A 86
91
98
91
93
95
WEST
i EFFLUENT
138
130
125
130
124
119
103
118
131
125
118
110
131
124
* 165
145
163
148
146
NS
NS
NS
11+5
130
138
130
91
101
105
88
93
95
98
93
108
98
108
102
102
A 84
108
98
103
EAST
,, . EFFLUENT
158
158
158
15$
151+
158
11+5
l4o
146
158
140
133
148
11+5
* 165
151+
158
154
154
NS
NS
NS
139
124
130
124
103
134
139
139
121
144
A 102
108
115
116
107
115
115
114
121
122
137
TOTAL
EFFLUENT
— — —
151+
146
i4o
i4o
i4o
125
135
145
148
135
130
138
133
* 170
163
163
163
163
NS
NS
NS
146
135
133
135
125
115
108
108
112
110
107
A 101
108
108
112
108
105
110
116
110
114
56
-------
DATE
11-7 thru 11-13
11-1 U thru 11-20
11-21 thru 11-27
11-28 thru 12-U
12-5 thru 12-11
12-12 thru 12-18
12-19 thru 12-25
12-26 thru 1-1-72
Ave. k9 Weeks
Max. *
Min. A
SEWAGE
112
119
103
119
98
121
112
122
108
iko
86
WEST
EFFLUENT
98
110
98
108
99
115
lilt
117
116
165
8U
EAST
EFFLUENT
117
135
ll*0
138
125
133
133
Iko
130
165
102
TOTAL
EFFLUENT
131
121
116
115
112
122
12k
12k
122
170
101
57
-------
West Plant mixed liquor, Figure 28 is a visual idea
of the general characteristics of the system relative
to SOP uptake and release. Similar testing in 1971
confirmed the SOP release results even though iron
vas being added via East Plant waste sludge.
During August and September, the total phosphorus in
the West Plant effluent appeared to be increasing and
phosphorus release from the mixed liquor vas suspected
to be the cause. On September 23 and 27, tests were
conducted in both plants to determine the amount of
phosphorus released within one hour.
A sample was taken from the mixed liquor feed channel
to a clarifier and a portion was immediately filtered
and then brought to the laboratory. This coarse fil-
tered sample was again filtered through a glass fiber
pad and designated as zero time. Another portion of
the original sample was filtered after 15 minutes and
another after one hour. All samples were run on the
autoanalyzer and the amount of phosphorus determined
the results as shown in Figure 29.
On both days the release of phosphorus from the West
Plant was higher than in the East Plant, The Monday
sample, as expected, showed a higher concentration of
phosphorus present at zero time in the West Plant.
Phosphorus residuals on Mondays have been difficult
to maintain due to the shock on the biomass by the
sudden influx of nutrients.
Rate of Iron Addition:
At the start of the iron addition project, it was proposed to
determine the minimum, maximum and optimum iron requirements. As a result
of the delay in the activation of the automatic equipment, this study was
not initiated. At the present time, the iron addition is in proportion to
the supply and thus far, we have utilized the entire production of pickle
liquor from the A. 0. Smith Corporation. Table 8 indicates the variation
in the quantities of iron added to the East Plant and the concentrations
are shown in Figure 30. The initial high dosage for the first five months
in 1970 represents the acclimation period prior to reaching steady state
along with a slight decrease in sewage total soluble phosphorus after this
period as shown in Figure 10.
From January 1, 1971 to December 31, 1971 a total of k,206,263
gallons of waste pickle liquor were added, averaging 11,5^6 gallons per
day, or 8,1+36 Ibs. per day to the East Plant. The specific gravity ranged
from 1.095 (0.22 pounds of iron per gallon) to 1.302 (0.93 nounds of iron
per gallon), averaging 1.2U6 (O.jk nounds of iron per gallon).
58
-------
6 T
Ul
(0
Aeration Tanks
Time
Soluble -Ortho Phosphate Uptake S Retease
Figure 28
Final Sedimentation
Tanks
-------
E
i
CL
O
JC
Q.
W)
O
.£:
Q_
i
O
-Q
2
o
CO
0
1.4 --
1.2 --
1.0 --
0.8 --
j>-
0.6 --
0.4 ..
0.2 1*
0.0 -
0
September 23, I97I
Thursday
WEST PLANT
EAST PLANT
September 27, 197!
Monday
30
45
Time, Minutes
60
Soluble Ortho Phosphate Release
Figure 29
60
-------
TABLE 8
IRON ADDITION TO EAST PLANT
January
February
March
April
May
June
July
August
September
October
November
December
Average
1970
Ibs/day
11 ,778
10,1*23
12 ,192
12 ,960
12,630
8,081
7,392
7,210
7,1*27
.6,1*08
6,780
8 ,001
9,27^
mg/1
12.8
12.2
13.7
13.7
12.3
J.2
6.7
6.9
6.8
6.2
6.3
7.1*
„
1971
Ibs/day
8,399
10,225
8,11*5
7,11*3
8,878
6,377
7,722
8,619
8,616
10,139
9,126
7,81*7
8,1*36
mg/1
8.5
10.0
7.1
6.3
8.3
5-5
7.0
8.0
8.1
10.0
9.3
7.3
8.0
i UcKARY U.S. EPA
61
-------
X X
I97CT
Q
O
<
2
O
(T
10
9
8J
7
6.
5
4.
3J
2
I.
0
x-—x
J FMAMJ J ASOND
MONTH
EAST PLANT IRON ADDITION
FIGURE 30
-------
Mixed Liquor Biota:
Microscopic examinations of the mixed liquor performed at
least twice per veek, have indicated no apparent change in the types
and number of organisms as a result of iron addition.
Samples of algae from the West and East Plant sedimentation
basins were collected for analysis. Generally, the tynes of algae that
grew in the basins were the same with a much heavier concentration noted
in the East Plant. This increase in growth was attributed to the in-
creased iron content and possible greater sunlight penetration into the
clearer East Plant effluent.
Effect of the Iron Addition on the Ferric Chloride Demand:
It was hypothesized that the addition of iron in an acid solu-
tion would presatisfy some of the requirements of the sludge. The results
after the first year indicated that this iron addition apparently did not
change the ferric chloride demand, however, 1970 was an unusual year with
changing sewage characteristics from the last several years. The only
observation in the sludge dewatering facilities that could be related to
the iron addition was periodic cracking of the filter cake. This cracking
resulted in a slight loss in filter dry vacuum, but did not occur fre-
quently enough to cause serious problems.
In 1971, a significant reduction in the ferric chloride require-
ment was evident and is shown in Table 9, Extremely low requirements were
obtained, especially in the spring of the year.
TABLE 9
FERRIC CHLORIDE REQUIREMENTS FOR SLUDGE CONDITIONING
AVERAGE FERRIC CHLORIDE USE
LBS. ANHYDROUS FECL3 PER DRY
YEAR TONS RECOVERED SOLIDS
1968 222
1969 226
1970 236
1971 206
-------
SECTION X
ACKNOWLEDGEMENTS
This report was written by Raymond D. Leary, Chief Engineer
and General Manager; Lawrence A, Ernest, Director of Laboratory;
Roland S. Powell, Assistant Director of Laboratory; and Richard M.
Manthe, Laboratory Supervisor of Research.
The authors gratefully acknowledge the assistance of the
A. 0. Smith Corporation of Milwaukee, Wisconsin for their complete
cooperation, financial assistance and engineering expertise through-
out the study period and following year. We wish to acknowledge
Mr. S. K. Rudorf and other staff members of A. 0. Smith Corporation,
especially Mr. Milton Johnson whose knowledge and advice have proved
invaluable.
The assistance of laboratory technicians, Miss Gloria Alden-
hoff and Mr, Robert Vandehei, and all laboratory staff members for
their laboratory analyses as well as other Sewerage Commission per-
sonnel who have contributed to the success of this project is greatly
appreciated.
-------
SECTION XI
REFERENCES
1. Leary, R. D. , Ernest, L. A., Powell, R. S., and Manthe, R. M.,
"Phosphorus Removal with Pickle Liquor in a 115 MGD Activated
Sludge Plant," Sewerage Commission of the City of Milwaukee,
Milwaukee, Wisconsin. Grant No. 11010 FLQ, Water Quality Office,
Environmental Protection Agency, Cincinnati, Ohio (March 1971).
2. Leary, R. D., et al., "Phosphorus Removal by an Activated Sludge
Plant," Sewerage Commission of the City of Milwaukee, Milwaukee,
Wisconsin, Environmental Protection Agency, Washington, D. C.,
Project No. 17010 DXD (August 1970).
3. Levin, G. V. and Shapiro, J., "Metabolic Uptake of Phosphorus
by Wastewater Organisms," JWPCF, 37, 6, 800, June 1965.
k. Vacker, D. , Connell, C. H. and Wells, W. N., "Phosphate Removal
Through Municipal Wastewater Treatment at San Antonio, Texas,"
JWPCF, 39, 5, 750, May 1967.
5. Borchardt , J. A., and Azad, H. S,, "Biological Extraction of
Nutrients," JWPCF, kQ_, 10, 1739, October 1968,
6. Wells, W. N. , "Differences in Phosphate Uptake Rates Exhibited
by Activated Sludges," JWPCF, kl_, 765, May 1969.
7. Menar, A. B. and Jenkins, D., "The Fate of Phosphorus in Waste
Treatment Processes: The Enhanced Removal of Phosphate by
Activated Sludge," Paper presented at the 2hth Purdue Industrial
Waste Conference, Purdue University, Lafayette, Indiana, May 6-8,
1969.
8. Scott, R. H., "The Reduction of Soluble Phosphorus in Sewage
Effluent," Master's Thesis, University of Wisconsin (19^7).
9. Guggenheim Process Described by: Kiber, J. E., "Waste Disposal
for Dairy Plants," Sanitarian (Los Angeles) 16, p. 11-17 (1953).
Florida Engng. Exp. Station 7, Leaflet Series No. 51 (1953).
Moore, R. B. , "Biochemical Treatment for Anderson, Ind. ," Wat.
Works and Sew., 85.: 11 (1938).
10, Water Quality and Treatment, 2nd Ed., American Water Works
Association, New York (1951).
67
-------
11. Stone, T., "Iron and Phosphate Changes During Sewage Treatment,"
Sew. and Industrial Wastes, 31, (8), 981 (1959).
12. Sawyer, C, N., Chemistry for Sanitary Engineers, McGraw-Hill,
New York (i960).
13. Fair, G.M., and Geyer, J. C,, Water Supply and Wastewater
Disposal, Wiley and Sons, New York (l96l).
1H. McKee, J. E. , and Wolf, H. W., Water Quality Criteria, Publica-
tion No. 3-A, California Water Quality Board, Sacramento, Cali-
fornia (1963).
15. Malhotra, S. K. , Lee, G. F. , Rohlich, G. A., "Nutrient Removal
from Secondary Effluent by Alum Flocculation and Time Precipita-
tion," Inter. J. of Air and Water Pollution, 8_, U8? (196U).
16. Tenny, M. W. , and Stumm, W. J. , ''Chemical Flocculation of Micro-
organisms in Biological Waste Treatment," JWPCF, 37, 10, p. 1370
(1965).
17. Earth, E. F. , and Ettinger, M. B. , "Mineral Controlled Phosphorus
Removal in the Activated Sludge Process," JWPCF, 39, 8, 1362,
(August 1967).
18. Eberhardt, W. A., and Nesbitt, J. B., "Chemical Precipitation
of Phosphorus in a High Rate Activated Sludge System," JWPCF,
1*0, 7, p. 1239 (1968).
19. Barth, E. F., Brenner, R. C., and Lewis, R. F. , "Chemical-
Biological Control of Nitrogen and Phosphorus in Wastewater
Effluent," JWPCF, 40_, 12, p. 20^0 (1968).
20. Boggia, C., and Herriman, G. L., "Pilot Plant Operation at
Warren, Michigan," Proceedings of the ^3rd Annual Conference of
the Michigan Pollution Control Association, (1968).
21. Schmid, L. A., and McKinney, R. E., "Phosphate Removal by Time-
Biological Treatment Scheme," JWPCF, kl_, 7, 1259 (1969).
22. Recht, H. L., and Ghassemi, M., "Kinetics and Mechanism of Pre-
cipitation and Nature of the Precipitate Obtained in Phosphate
Removal from Wastewater using Aluminum (ill) and Iron (ill) Salts,"
Water Pollution Control Research Series, 17010 EKI, Contract lU-12-
158, USDI, FW2A (April 1970).
68
-------
23. Humenick, M. J., and Kaufman, W, J, , "An Integrated Biological-
Chemical Process for Municipal Wastewater Treatment," Presented
at the 5th International Water Pollution Conference, San Francisco
California (July 1970).
2k. Schmidt, F., and Ewing, L., "Phosphate Removal System for Small
Activated Sludge Plants," Presented at the Pennsylvania Water
Pollution Control Association Meeting, State College, Pennsylvania
(August 1970).
25. Mulbarger, M. C., and Shifflett, D. G., "Combined Biological and
Chemical Treatment for Phosphorus Removal," Chem. Eng. Prog. Symp.
Series, 6_7_, 107, (1970).
26. Grigoropoulos, S. G. , Vedder, R. C., and Max, D. W., "Fate of
Aluminum-Precipitated Phosphorus in Activated Sludge and Anaerobic
Digestion,1' Presented at the h3rd. Annual Conference of the Water
Pollution Control Federation, Boston, Massachusetts (1970).
27. Dean, R. B. , "Sludge Handling," Presented at the Advanced Waste
Treatment and Water Reuse Symposium, hth Session, Sponsored by
the Environmental Protection Agency, Dallas, Texas (January 12-lU,
1971).
28. Hais, A. B. , Stamberg, J. B., and Bishop, D. F., "Alum Addition
to Activated Sludge with Tertiary Solids Removal," Presented at
the 68th National Meeting of the Al Ch E, Houston, Texas (March 1971).
29. Isgard, E., "Chemical Methods in Present Swedish Sewage Purifica-
tion Techniques," Paper given at the 7th Effluent and Water Treat-
ment Exhibition and Convention, London (June 25, 1971).
30. Mulbarger, M. C. , "The Three Sludge System for Nitrogen and Phos-
phorus Removal," Presented at the khtti Annual Conference of the
Water Pollution Control Federation, San Francisco, California
(October 1971).
31. Gulp, R. L., and Gulp, G. L,, Advanced Wastewater Treatment,
Van Nostrand Reinhold Company, New York (1071).
32. Cherry, A. L. , and Schuessler, R. G., "Private Company Improves
Municipal Waste Facility," Water and Wastes Eng. 8, 3, 32 (1971).
-------
33. Ockershausen, R. W., Harriger, R, D., and Zuern, H, E, , "Phos-
phorus Removal Tests with Alum," for Buffalo Sewer Authority,
Buffalo, New York, by Technical Service Department, Allied
Chemical Corporation, Industrial Chemicals Division, Morristown,
New Jersey (1971 )•
31*. Long, D. A., Nesbitt, J. B. , and Kountz, R, R. , "Soluble Phos-
phorus Removal in the Activated Sludge Process," Department of
Civil Engineering, Pennsylvania State University, University Park,
Pennsylvania, Water Quality Office, Environmental Protection Agency,
Project No. 17010 EIP (August 1971).
35. Hubbell, George E., "Process Selection for Phosphate Removal at
Detroit," Presented at the ^Ist Annual Conference of the Water
Pollution Control, September 2h, 1968.
36. "Milwaukee Waste Water Treatment Facilities," Serving the Metro-
politan Sewerage District Under Control and Supervision of the
Sewerage Commission of the City of Milwaukee, 1968. Brochure
prepared by Sewerage Commission personnel explaining the plant
facilities.
37. Leary, R. D. and Ernest, L. A., "Industrial and Domestic Waste-
water Control in the Milwaukee Metropolitan District," JWPCF,
39, 7, 1223, July 1967. "
38. Leary, R. D., Ernest, L. A., Katz, W, J., "Effect of Oxygen-
Transfer Capabilities of Wastewater Treatment Plant Performance,"
JWPCF, Uo_, 7, 1298, July 1968.
39. Leary, R. D., Ernest, L. A., Katz, W. J., "Full Scale Oxygen
Transfer Studies of Seven Diffuser Systems," JWPCF, 1*1, 3, 1+
March 1969.
70
-------
SECTION XII
NOMENCLATURE AND GLOSSARY
Phosphorus Nomenclature
1. Total Phosphorus (TP).
All the phosphorus present in sample (whether in the
soluble or insoluble state and present as ortho, poly,
organic, etc., phosphorus compounds) which is converted
by ternary acid digestion to soluble ortho-phosphate.
2. Total Soluble Phosphorus (TSP).
All the phosphorus compounds in the sample filtrate
converted by ternary acid digestion to ortho-phosphate.
3. Soluble Ortho-Phosphate (SOP),
All phosphorus measured by direct colorimetric analysis
of sample filtrate. (Angel Reeve Glass Fiber Pad No. 93^AB)
Iron Nomenclature
1. Total Iron.
All the iron present in the sample,
2. Total Soluble Iron.
All the iron compounds in the sample filtrate.
(Filtered through Angel Reeve Glass Fiber Pad No. 93^AB)
Glossary
1. BOD - five day biochemical oxygen demand.
2. COD - chemical oxygen demand.
3. DO - dissolved oxygen.
h. EP - East Plant.
5. EPE - East Plant effluent.
6. MGD - million gallons/day.
7. ML - mixed liquor.
8. MLSS- mixed liquor suspended solids.
9. MLVSS-mixed liquor volatile suspended solids.
10. N - nitrogen.
71
-------
11, P - phosphorus.
12. SDI - sludge density index.
13. SOP - soluble ortho-phosphate.
1^. SS - screened sevage.
15. TP - total phosphorus.
16. TSP - total soluble phosphorus.
IT. WP - West Plant.
18. WPE - West Plant effluent.
72
-------
SECTION XIII
APPMDIX
Appendix Title Page
A Actinomycetaceae, Genus Nocardia 7U
B Phosphorus Determination with 78
Technicon Autoanalyzer
C Determination of Phosphorus in Sludges 82
D Determination of Ferrous Iron in 83
Pickle Liquor
E Determination of Iron in Sludges "by Qk
Volumetric Dichromate Method
F Determination of Iron in Sludges by 86
Atomic Absorption Method
G Determination of Nitrogen in Milorganite 88
and Sludges
H Plant Operating Data 90
73
-------
APPENDIX A
ACTINOMYGETACEAE, GENUS NOCAEDIA
In February, 1969 following a reduction in plant loading the
East Plant (a 115 mgd secondary portion of the 200 mgd Jones Island
activated sludge waste water treatment) operated by the Sewerage
Commission of the City of Milwaukee suddenly developed a heavy growth
of floating solids and microorganisms. Microscopic examination
of the floating material by personnel from the Robert A. Taft Sanitary
Engineering Center, Cincinnati, Ohio, Marquette University, University
of Wisconsin - Madison, and the Commission indicated that the principal
microorganism in the foam belonged to the ACTINOMYCETACEAE, Genus
NOCARDIA, The predominant species of NOGARDIA were the proteolytic
type commonly found in soils and frequently in sewage associated with
the break down of paper cellulose.
This type of floating material, which had never been noted
previously, appeared in all portions of the East Plant where mixed
liquor or return sludge were being aerated. Chemical analysis on the
floating material indicated that it contained 85 percent organic
matter and 31 percent hexane soluble material.
Attempts made to reduce the floating material with regular
defoaming agents were unsuccessful, and vacuum skimming of the aera-
tion tanks and clarifier feed channels was instituted.
Surprisingly, no floating material appeared in the heavily
loaded West Plant (85 mgd secondary portion of the 200 mgd Jones
Island Plant) which received the same screened sewage as the East
Plant. During this period (February l8th to March 10th) when the
floating material first appeared in the East Plant, the food to
microorganism ratio (ib BOD applied per day/lb mixed liquor volatile
suspended solids under aeration) averaged 0.312 in the East Plant
and 0.5^3 in the West Plant. During this period there were no reduc-
tions in the plant efficiencies as measured by the BOD and suspended
solids removal.
The settling characteristics of the mixed liquors were not
affected as indicated by the average S.D.I, of 1.11 in the East Plant
and 1.18 in the West Plant.
In an attempt to overcome this foam problem, the food to
microorganism ratio in the East Plant was gradually increased by
reducing the mixed liquor suspended solids and by increasing the
BOD applied. The quantity of air applied was reduced from an average
of 1.1*14 to 1.18 cu ft/per gal of sewage.
-------
The quantity of the floating material has been greatly
reduced by the skimming operation and/or by the changed loading and
air rates or by the weather or other conditions beyond the control
of the plant operators. Figures 31 and 32 are pictures of the froth.
75
-------
—1
ON
FIGURE 31
ACTINOMYCETACEAE, GENUS NOCARDIA
-------
MARCH 1970 HOCARDIA FROTH ON EAST PLANT AERATION TANK
MICROSCOPIC EXAMINATION (U30 X), NOCARDIA FROTH FROM
EAST PLANT, STAINED WITH MALCHITE GREEN-SAFRANIN
FIGURE 32
ACTINOMYCETACEAE, GENUS NOCARDIA
77
-------
APPENDIX B
Phosphorus Determination with Technicon Autoanalyzer
Reagents:
A. Ammonium Molybdate - Dissolve 200 gm of (NH^)6
in 10 liters of distilled water. Add 1680 ml of c.
and dilute to 20 liters.
B. ANSA Stock Solution - Dissolve 219 gm Na2S205 and 8 gra
NagSOo in TOO ml of distilled water (temperature <50° C),
add k gm of 1-amino - 2 - naphthol - It - sulfonic acid
(ANSA). Dilute to 2 liters. For daily use, prepare a
1:10 dilution.
C. Phosphorus Standard Curve - Use undigested standards from
0.1 to 1.2 mg/1 - P in increments of 0.1 mg/1 - P from a
1000 mg/1 - P stock solution.
D. Ternary Acid Mixture - Add 100 ml of 96% H2S01j to 500 ml
of 70% HN03, mix. Add 200 ml 1Q% HC101;, mix and cool.
Sample Preparation:
A. Total Phosphorus
1. Mix unfiltered sample and pipette into a 100 ml
volumetric flask (20 ml effluent, 5 ml for sewage).
2. Add 5 ml of ternary acid mixture and 3 glass beads.
3. Heat on hot plate to dense white fumes of perchloric
acid and continue heating for 5 minutes. Then remove
from hot plate and allow to cool.
h. Add 20 ml of distilled water, bring to a boil for 5
minutes and cool.
5. Add 1 drop of phenolphthalein indicator and neutralize
with 10 N NaOH to a faint pink color.
6. Just discharge the pink color with 1 N_ H2SOjj, dilute
to 100 ml and mix.
7. Transfer solution to the sampling cup of the
autoanalyzer for analysis. See Figures 33 and 3^ of
a schematic and of laboratory equipment.
78
-------
CD
SAMPLER
RATE:40 PERHR.
h2 CAM
WATER RINSE EVERY
4^ SAMPLE
TO WELL
O
TUBE SIZE
(INCHES)
O.Q9Q .WATER
-O
0.073 ANSA
S~\ 0.045 AIR
O.O56 SAMPLE
0.073 MQLYBDATE
HEATING
BATH
WASTE
PROPORTIONING
PUMP
WASTE <-
COLORIMETER
50 mm TUBULAR f/c
653mu FILTERS
Figure 33
Technicon Autoanalyzer
Schematic
RECORDER
RANGE
EXTENDER
4X
-------
OO
o
-------
8. Obtain the phosphorus concentration of the sample
from the standard curve.
B. Total Soluble Phosphorus
1. Filter aliquot through an Angel Reeves glass fiber
pad 93^ AH or Whatman GF/C glass fiber 2,k cm pad.
2. Transfer 10 ml filtered sewage sample to 100 ml
volumetric flask and proceed as in total phosphorus.
3. Transfer 50 ml filter effluent sample to 250 ml
Erlenmeyer flask and proceed as in total phosphorus
until sample is neutralized. Transfer to 50 ml
volumetric flask, bring to volume.
C. Soluble Ortho-Phosphate
1. Filter through an Angel Reeves glass fiber
pad 93U AH.
2. Dilute filtrate if needed,
3. Place in sampling cup of autoanalyzer.
81
-------
APPENDIX C
Determination of Phosphorus in Sludges
"by Gravimetric Quinoline Molybdate Method
Reagents :
A. Citric - Molybdic Acid Reagent.
1. Dissolve 5!+ gm 100% molybdic anhydride (Mo 0_)
and 12 gm NaOH in ^00 ml hot water and cool.
2. Dissolve 60 gm citric acid in 1^0 ml HC1 and
200 ml water.
3. Gradually add molybdic solution to citric acid
solution with stirring, cool, filter and dilute
to 1 liter.
B. Quinoline Solution.
1. Dissolve 50 ml synthetic quinoline with stirring
in mixture of 60 ml HC1 and 300 ml water, cool
and dilute to 1 liter.
Procedure :
Pipette a 50 ml aliquot from the remaining sample described
in the iron procedure Appendix E,Part A "Treatment of Sample", to
a 500 ml erlenmeyer flask. Add 30 ml citric molybdic acid, boil
3 minutes, remove from heat, add 10 ml of quinoline with continuous
swirling and cool. Filter through a Gooch containing a glass fiber
filter pad, and wash with 25 ml portions of water. Dry at 250 F,
cool in desiccator to constant weight. Weigh as (CQH N) H_
. 12 Mo 0
Calculation :
= ( Wt -Re agent Blk) (Gravimetric factor . Oli+OO
Wt of Sample
82
-------
APPENDIX D
Determination of Ferrous Iron in Pickle Liquor
by Volumetric Dichromate Method
Reagents:
A. Sulfuric Acid I:k
B. Phosphoric Acid l:k
C. Potassium Dichromate
D. Diphenylamine Sulfonate indicator
(See Appendix E)
Procedure:
Place a 100 ml aliquot of pickle liquor sample in a 1 liter
flask and dilute to one liter. Pipette a 10 ml aliquot into
a 250 ml beaker, add 10 ml of I:k sulfuric acid, 50 ml of
1:^ phosphoric acid and 0.3 ml of diphenylamine sulfonate
indicator. Titrate immediately with 0.1N potassium dichromate
to a permanent blue endpoint. Subtract 0.05 ml for an indicator
correction.
Calculation:
Ibs Fe/gal = ml 0.1N K Cr 0 x factor of .0^66
factor = 1000 x 3-785 x .005585
83
-------
APPENDIX E
Determination of Iron in Sludges
by Volumetric Dichromate Method
Reagents:
A. Hydrochloric Acid 1:1
B. Sulfuric Acid 1:U
C. Phosphoric Acid l:k
D. Mercuric Chloride (saturated)
E. Potassium Dichromate (standard 0.1 N)
F. Stannous Chloride solution
1. Dissolve 50 gm SnCl in 100 ml of concentrated HC1,
dilute with water to 500 ml. Store over clean
metallic tin.
G. Diphenylamine Sulfonate indicator
1. Dissolve 0.32 gms of barium diphenylamine in 100 ml
of water.
H. Magnesium Nitrate solution
1. Dissolve 950 gm P-free Mg(NO ) '6H 0 in water and
dilute to 1 liter.
Note: All reagents prepared with distilled water.
Procedure: Part A Treatment of Sample
1. Place a 1 gm sample in a silica dish, add 5 ml of Mg(NO )
solution, and evaporate. Then ignite at 500 to 600
for about 7 minutes. Add HC1 an,d evaporate to dryness
twice. Add HC1 and wash solution into a 250 ml beaker
with water, add 10 ml of HNO and boil for at least three
minutes. Cool solution in a water bath, filter into a 250 ml
volumetric flask, wash filter paper and dilute to volume.
This solution is used for both the iron and phosphorus
determinations. Take a 100 ml aliquot for the iron deter-
mination and save the remaining solution for the phosphorus
determination.
-------
2. Place the 100 ml aliquot into a 250 ml beaker, neutralize
with ammonium hydroxide and heat but do not boil. Filter
the solution, wash the precipitate, and discard filtrate.
Dissolve precipitate into a 250 ml beaker using a 1:1 HC1
solution, and wash paper thoroughly.
Procedure: Part B Volumetric Bichromate Method
Concentrate the sample prepared in Part A on a hot plate to
100 ml, add stannous chloride drop by drop until sample is decolor-
ized, cool and add 15 ml mercuric chloride solution. Let stand for
three to five minutes, add 30 ml 1:U phosphoric acid, 10 ml of 1:^
sulfuric acid, k to 5 drops of diphenylamine sulfonate indicator
and titrate with 0.1N potassium dichromate to the purple end point.
Calculation:
Total Iron = (ml of 0.1 N K Cr 0 - 0.05) (.005585)
[ x 100
wt of sample
(0.05 is indicator factor)
85
-------
APPENDIX p
Determination of Iron in Sludges
by Atomic Absorption Method
A. Perchloric Acid Digestion.
Procedure - Taken from AOAC, llth Edition, 2.016 (e).
1. Place 1.000 gm of dried sample into a 250 ml volumetric
flask.
2. Add 5 ml Mg NO and let soak 10 minutes.
3. Add 30 ml c. HNO , and bring to boil; gently boil for
30 minutes to oxidize easily oxidizable materials.
k. Cool, add 15 ml HC10, , heat gently until material turns
yellow-orange. Materials other than Milorganite turn
colorless. After color change, continue heating for
approximately 30 minutes. Heat in such a manner so that
white fumes are retained within the body and neck of the
volumetric flask, reduce heat, if necessary, to keep
fumes in flask.
CAUTION: Do not boil to dryness; during this boiling
period, never leave the sample unattended.
5. Cool, add approximately 50 ml HO and boil for five minutes,
6. Cool, dilute to mark. Filter if necessary through
S.S. No. 597 filter paper, or let settle overnight.
T. Rinse down Perchloric Hood after removing flask.
8. Use this digestate for determination of iron.
86
-------
B. Iron Determination by Atomic Absorption:
1. Atomic Absorption:
Instrumental conditions:
Burner Height
Aspiration rate ^-5 ml/min.
Hollow Cathode 62310
Lamp Current 8 mA
Photomultiplier 1P28
Hi Solids Burner 5 cm light path P.M. Voltage TOO V.
Standard Curve. Set instrument to readout following concentra-
tions. All standards are in IN HClOi matrix.
Wavelength
Slit
Scale
Fuel
Oxidant
371.
80
5
C2H2
N .0
9y
M
6-8 psig
0.5 psig
St andard
mg Fe/L
Blank
50
100
200
300
Readout
000
125
250
500
750
This curve is set with calibration set with 200 mg Fe/L
standard. Adjust curve correction to obtain desired reading
for 300 mg Fe/L standard.
With the above curve, a 1 gm sample in a final vol. of 250 ml
can be read directly from the instrument as % Fe.
87
-------
APPENDIX G
Determination of Nitrogen in Milorganite and Sludges
Reagents:
A. Sulfuric Acid 93-98$ H2SOU, N-free.
B. Mercuric Oxide, reagent grade, N-free.
C. Potassium Sulfate, reagent grade, N-free.
D. Salicylic Acid, reagent grade, N-free.
E. Thiosulfate solution
Dissolve 80 gm commercial Na2S203 * 5 H20 in 1 I, H20.
F. Sodium Hydroxide
Dissolve U50 gm solid NaOH in water and dilute to 1 L.
(sp. gr. of solution should be 1.36 or higher).
G. Methyl red indicator.
Dissolve 1 gm methyl red in 200 ml alcohol.
H. Sulfuric Acid Standard 0.1 N.
Procedure: Part A Treatment of Sample
Place a one gram sample in a Kjeldahl flask, add Uo ml
H2SOit containing 2 gm salicylic acid, swirl until well mixed and
let stand. After sample has stood for a minimum of 20 minutes,
add 5 gm Na2S20-3 • 5 H20, swirl and let stand a minimum of 10
minutes. Place on an electric heater and heat sample with occasional
swirling until in the liquid state; cool and add 15 gm K?SO^ and 0.7
gm HgO. Place back on the burner and boil briskly until"sample turns
a pale straw color. Wash down neck and sides of Kjeldahl flask with
5-10 ml cone. H2SO^ and continue burning for 2 hours.
-------
Procedure: Part B Determination
Place cooled sample in a cooling bath and add 200 ml
distilled water and let stand 10 minutes. Add 25 ml Na S 0
solution plus two porcelain bumping disks and with the
flask in an inclined position pour approximately 90 ml NaOH
solution gently down sides so as to layer the NaOH. Immedi-
ately connect the flask to the distilling apparatus, agitate
and distill into receiver containing the proper amount of
0.1N H2SO, , Collect about 150 ml of distillate and titrate
excess standard 0.1N H SQ, with standard 0.1N NaOH using
methyl red indicator.
Calculation:
% N = (ml Std. H SO, x normality - ml NaOH x normality) mol wt N
wt of sample x 1000
x 100
89
-------
APPENDIX H
PLANT OPERATIONAL DATA
JANUARY 1971
D
a
o
e
1
2
3
4
5
~T~
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 -
23
E
a
y
Fr
Sa
su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
2k !su
25 !M
26 JTu
27
28
29
W
Th
Fr
30 iSa
31 jSu
TOTAL SOLIDS
mg/1
SS
1203
888
869
1336
1179
1092
1120
1097
898
806
io4i
1122
1172
1108
1063
882
830
1043
1177
1194
J^iSlL
1145
925
849
1113
1081
1057
1091
1117
875
73«
WPE
999
1005
_J^9__
1164
1008
909
862
827
781
803
780
894
868
901
830
852
767
776
876
915
917
956
796
738
781
877 .
833
_i38_
860
855
700
EPE
949
967
802
1045
963
_8^2_
850
882
834
775
734
907
886
927
94l
836
% Removal
WPE
17,0
12,7
12.9
14.5
16.8
22. 0
24.6
13.0
0.4
25.1
20.3
25, 9_
18.7
21,9
3.4
784 1 7.6
822 125.6
897
970
_9_42 j
1095
_85fi__
746
830
848
866
_M9_
_2i9_
818
il6
25.6
23.4
23.2
i6ii_
13.9
13.1
.2JLJL_
18.9
21.2
2i£__
23.0
_2^3_
u_5*i_j
EPE
^21,1
— .
7,7
_2_L_8_
18.3
21.3
24.1
19.6
7.1
3.8
29-5
19.2
24.4
SUSPENDED SOLIDS
mg/1
SS
J_LS_
146
i£2_
178
286
242
251
251
174
102
2P5
23-9
219
16.? 1217
_JJ^-i-
5.2
—-i^S-
21.2
23.8
18.8
21, 1_
4.4
8.1
12.1
25.4
21.6
18.1
-^O^B-
-JJL*J_
224
175
112
225
WPE
_ja_
9
L_ilJ
_12__
25
17
25
23
8
13
31
22
22
35
21
13
22
27
2_9JL-L_19__
152
245
284
1?1
136
212
214
234
273
239
_j6^5JrZ2_
_JLJL_l25_-_
3
76
33
20
14
21
38
49
74
__22_J
20 _,
EPE
4
11
12
13
i2_
QJL
20
20
12
6
13
1£L
9
47
148
5^
11
4
28
53_
% Removal
WPE
/n..i.
_5i8_
U82^_
93.3
91.3
_9_i-P_
90.0
90.8
95.4
87.3
_86,2_
_2£LU_
90.0
83.9
90.6
EPE
96.6
92.5
92.9
92.7
93,4
94.6
92.0
92.0
93.1
94.1
_9Ju2.
95^4
95,9
78.3
33,9
92.6 I 69.1
80.4
BOD
mg/1 % Removal
SS
150
110
120
220
240
260
280
240
160
120
290
280
300
270
280
170
90.2U20
88.0 i 98.2
_£3^5_!_20^5_
98.0
110 | 69.0
177
33
7
91
6
6k
53
L102_
41
8 1 15
88.4
89-5
89.7
90.1
82.2
79-1
72.5__
86,6
88.4
3lL*i-
_^i
55-1
37-7
82.7
9^.9
57.1
97-2
72.6
80,6
_5I*i
76.2
88, Q
250
290
290
290
.310
170
120
300
32£L-
290
222—
210
170
130
WPE
10
8
10
10
11
12
14
10
8
12
17
17
22
24
20
9
16
17
11
16
43
19
13
12
?3
34
36
43
34
16
EPE;
_
13
13
15
14
11
14
13
10
10
JJ__
13
12
15
25
80
24
15
10
17
36
40
64
17
12
54
}0
29
22
46
21
Il3~ 18
WPE
.2I^L
92.7
91.7
95.5
95-4
95.4
95.0
95.8
95.3
90.0
94.1
93^9
92.7
91.1
92.9
94.7
86.7
93.2
96.2
94.5
85.2
L93j_9_
-22.JL
%L£-
92.3
.saj-
87.6
85.1
87.4
9.0JL
90.0
EPE
9_lii_
88.2
87.5
93.6
95.4
94,6
95.4
95.8
9~378~
8_2i.2
95. 5_
95.7
95.0
90.7
71.4
8579!
87.5
96.0
94.1
87.6
86.2
79.4
90.0
9_0,0
82.0
97. 0..
2QJ?
92.4
83.0
4Li_
®6~2~
_ . _ . _^
KJELDWJL NITROGFN
mg/i as N
SS
Q3j?
29.7
26, S
25.5
31.1
31.8
.32.6
32.2
30.1
27.6
33.2
32.6
33.3
32.3
33.5
J1.1
WPE
_jJiJl
18.3
20^2
13.3
9.9
__9_Ji
10.1
10.9
12.0
16.2
18.3
14.3
11.6
12.9
9.8
11.5
28.4. 17.5
33.9
37-0
37.1
31^0
36.1
31.4
29.8
3?. 3
33.9
34.3
35.1
33.7
18.3
14.0
13.0
15.7
__12/[
10.8
16.2
_i§^
-JJLJL
15. U
16.1
10.9
32.9| 10.6
129781 13.9
EPE
_JILu5__
15.5
15.4
11.3
8.0
6.6
5.7
6.4
8.8
12.9
13.7
9.0
8.1
9,9
15.7
i67§
13.9
14.4
11.6
14.4
15.7
17.8
21.0
12.9
22.0
9.4
10.6
9.4
14.7
11.3
15_^0_
-------
rLAWT UFKKATiUMAL DATA FEBRUARY 1971
D
a
t
e
1
2
3
It
5
6
T
8
9
10
11
12
13
ll*
15
16
17
18
19
20
21
22
23
2k
25
D
a
y
M
Tu
w
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
26 JFr
27
I28~
29
30
31
Sa
Su
TOTAL SOLIDS
mg/1
SS
1001
1081
1291
2302
1506
970
778
1051
1090
1131*
1295
1161*
876
71*0
1091
12U3
~I382
1113
828
9l*5
_ §26.
131*2
lUoo
JJJl]
1025
918
' 967
807
WPE
731*
770
81*7
1193
1827
1107
725
751*
820
861*
1001
971
821+
621
715
821
1175
10^2_
71*8
762
925
1026
1263
1052
97k
833
81 1+
r862~
EPE
690
808
875
ll*22
181+5
976
861
765
829
825
972
971
829
—
751
906
1157
J=Q62_
756
760
871
1062
1301*
__
920
81*2
838
836
% Removal
WPE
26.7
28.8
31*. 1*
1*8.2
__
—
6.8
28.3
21*. 8
23.8
22.7
16.6
5.9
16.1
3i*.5
31+.0
15.0
1.9
9.7
19.H
23.5
9.8
EPE
31.1
25.3
32.2
38.2
__
— _
—_
27.2
23.9
27.2
2l*.9
16.6
5-^
—
31.2
27.1
16.3
1*.6
8,7
19.6
20.9
6,9
10.2 1 —
5.0
9.3
15.8
—
10.2
8,3
13.3
SUSPENDED SOLIDS
mg/1
SS
19l*
251*
2.72
31 R
288
182
116
191
2l*5
217
255
271*
209
135
2l*8
255
268
P76
192
133
82
IM*
160
155
187
136
105
91*
WPE
9
20
Ik
28
1*9
21
12
19
21*
19
66
61*
21
13
11
2k
1*2
59
67
33
_20
11
22
12
20
29
27
21*
EPE
?k
37
kf
iH
L06
pa
Ik
11
23
17
23
1*1*
23
—
36
% Removal
WPE
95.1*
92.1
91*. 9
91.2
83.0
88.5
89.7
90.1
90.2
91.2
7>*.l
76.6
90.0
90.1*
95.6
67 90.6
60
1*1
53
25
_8L3_,
EPE
87.6
85.1*
82.7
61*. 2
63.2
81*. 6
87.9
9l*. 2
90.6
92.2
91.0
83.9
89.0
85.5
73.7
77.6
78.6 85.1
65.1 72.1*
75.2
21 175-6
35
26
12
1?.
15
18
1
92.6
86.3
92.3
89-3
78.7
71*. 3
7k. 5
81.2
71*. 1*
76.1*
83.8
—
_2lA
BOD
mg/1
SS
290
280
310
280
270
190
150
270
270
300
280
290
200
150
280
300
WPE
12
12
12
16
20
16
12
15
ll*
13
1*1
32
13
10
EPE
27
23
29
58
U5
27
23
26
32
27
28
31*
29
— —
8 25
2.1
21*0 125
200
90
120
80
150
230
220
190
51.2 lll*0
85-7
80.9
ll*0_
90
22
25
ll*
11
11
li*
ll*
13
16
17
17
36
% Removal
WPE
55J9__J
95.7
96.1
91*. 3
92.6
91.6
92.0
9l*. 1*
91*. 8
95.7
85.1*
89.0
93.5
93.3
97.1
93.0
22 189.6
21 189.0
18
21
18
21
1,3
12
10
10
10
!
72.2
88,3
86.3
92. 1_
93.9
93.6
93-2
88.6
87.9
81.1
EPE
90.7
91.8
90.6
79.3
83.3
85.8
81*. 7
90.1*
88.1
91.0
90.0
88.3
85.5
— _
91,1
88.0
90.8
89.5
80.0
82,5
77.5
86.0
_2k^3_
— _
_9_ivL
92.9
-2?. 9_
88.9
KJELDAHL NITROGEN
mg/1 as N
SS
32.6
33.6
33.6
29.7
30.1
29.1*
29.3
32.2
31.6
33.9
36.1
3k. k
31.9
29.1*
31*. 3
33.6
?ari*
21.7
1U.6
17.6
18.6
2l*.8
22.7
23.9
21.7
16^.
WPE
17.2
11.5
10.2
10.2
10.6
10.5
ll+.O
17.2
10.9
9.9
15- k
12.6
8.1*
13. ^
16.9
JJu2_
11. i.
8.0
6.0
10.1
12.0
9.9
6.1*
5.0
20.3! 7.3
18.1
11.6
EPE
17.2
11.5
9.1*
12.2
13.1*
8.1
11.2
13.3
8.5
7.6
8.0
6.6
7.7
___.
JULJL__
JL2.JL
10.6
8.3
7.1
1*.7
_2^2_
11.2
9.1
—
k.6
3.5
5.9
8.8
-------
jTu^inx urr.rvni-Luiirtij ut±±i\ MARCH 1 071
D
a
t
e
1
2
3
It
5
6
7
8
9
10
11
12
13
14
15
16
IT
18
19
20
21
22
23
2k
25
26
27
28
29
30
D
a
y
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
^
ru
31 |W
TOTAL SOLIDS
mg/1
SS
1118
JJ222.
111*7
1145
1126
1165
973
1134
1160
1410
1260
1224
1012
912
_Jj£S_
1215
1278
1363
12 QO
1173
957
1202
1182
1197
1172
Il6l
996
939
ink
1247
1240
WPE
841
893
975
960
946
1030
1062
909
887
1220
1073
984
983
858
864
962
1025
1029
96s
1082
977
1011
1021
1030
1013
1003
988
867
835
1014
1062
EPE
855
847
930
936
981
1002
1013
952
926
1109
1119
1040
1024
890
812
920
10?8
Jufl&L.
1062
1196
1005
969
1035
io4g
1018
932
949
865
990
1016
1063
% Removal
WPE
24.8
18.2
15.0
16.2
16.0
11.6
19.8
23.5
13.5
14.8
19.6
2.9
5-9
26.0
20.8
19.8
EPE
2^.5
22.4
18.9
18.3
12.9
14.0
__.
16.0
20.2
21.3
11.2
15.0
—
2.4
?0.5
24.^!
18.8
24.5 122.1
2S.2
7.8
15.9
13.6
17.7
___
19.4
12.4
14.0 Il2.4
13.6 J13.1
13.6
0.8
7.7
28.9
18.7
14.4
19.7
4.7
7.9
15.7
18.5
14.3
SUSPENDED SOLIDS
mg/1
SS
202
?05
PI 9
221
216
134
108
185
217
215
190
256
177
182
211
P38
Pfll
P9P
?80
178
91
154
202
192
170
184
134
112
197
234
224
WPE
17
18
?k
Ifi
18
21
17
24
22
21
5
. 22
7
4
?i
12
Pfi
in
16
16
11
11
22
8
15
43
26
18
10
23
18
EPE
16
9
13
13
52
57
19
15
13
21
17
L01
63
44
% Removal
WPE
91.6
91.2
89.0
91.9
91.7
84.3
84.3
87.0
89.9
90.2
97.4
91.4
96.0
97.8
EPE
92.1
95.6
94.1
94.1
75.9
57.5
82.4
91.9
94.0
90.2
91.1
60.5
64.4
75.8
PO 190.0 190.5
Tfi 195.0 J92.4
38 190.0
P6 196.6
46
99
3fi
Pfi
58
18
22
23
11
20
17
20
21
86.5
91.1
94.3 83.6
91.0
87.9
92.9
89.1
95.8
91.2
76.6
30.6
43.9
?4.9
J0.2
?2.0
44.4
58.2
81.8
71.3
90.6
87.1
87.5
91.8
82.1
91.4
?1.5
90.6
BOD
mg/1
SS
230
210
240
250
240
130
80
230
270
260
240
250
160
100
210
210
250
250
250
l4o
80
200
210
240
230
210
100
70
200
230
220
WPE
12
12
12
11
11
12
14
13
12
14
15
17
14
8
18
12
11
15
12
10
10
13
12
15
17
30
15
9
9
10
EPE
10
8
8
11
23
21
12
10
10
13
20
35
34
24
15
15
16
16
21
42
19
24
20
16
17
11
9
13
16
11
10 14
% Removal
WPE
94.8
94.3
95.0
95.6
95.4
90.8
J£+5-
94.3
95.6
94.6
93.8
93.2
91.3
92.0
91.4
94.3
95.6
94.0
95.2
92.9
87.5
93.5
94.3
93.8
92.6
85.7
"857cT
87.1
95.5
95.7
95.5
EPE
95.7
96.2
96.7
95.6
90.4
83.8
85.0
95.7
96.3
95.0
91.7
86.0
78.8
76.0
92.9
92.9
93.6
93.6
91.6
70.0
76.3
88.0
90.5
93.3
92.6
94.8
91.0
81.4
92.0
95.2
193.6
KJELDAHL NITROGEN
mg/1 as N
SS
=7.6
'6.3
'8.3
'8.7
?7 4
20.7
22LJ,
29.5
29. 4
29.0
30,1
31,6
?7.3
L8.9
25.1
28.1
30.2
39.1
30.7
23.2
L7.2
'4.6
26.0
57.?
»6.6
33.9
>1.1
J.4
>4.2
?7.4
WPE
12.9
10.2
8.7
8.1
7.8
10.1
12.6
J.5.3
11.8
9,7
10.4
9.8
— _
10.5
9.4
8.0
6._2__
6.0
4.9
6.2
10.4
!i^2_
8.7
13.6
17.6
7.4
7.7
_1^5_
10.2
8.0
!5.1 I 6.4
EPE
10.8
7.1
6.4
6.0
9.5
8.3
12.0
13.7
9.8
8.4
9.4
11.6
21.7
12.5
5-uP__
_8^
7.4
7.1
7.7
12.6
10.9
11.8
9.9
7.0
6.3
5.5
6.7
9.5
9.4
6.7
5.0
-------
PLANT OPERATIONAL DATA
APRIL 1971
D
a
t
e
1
2
3
1*
5
£
7
8
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
D
a
y
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
TOTAL SOLIDS
mg/1
SS
-125JL
1196
101*8
921
970
1181*
1179
1218
—
993
81*8
962
1U6
1256
1214
-likx
1211*
982
11 1*1*
1162
1251
1212
1195
1119
887
n 0n
iol*7
1235
1121.
1193
WPE
1025
1025
1021
81*8
916
915
956
1096
1002
933
851
872
816
1023
973
991
1152
101*9
922
929
1009
963
1081*
986
808
1012
9Q2
1026
EPE
997
1008
1029
855
906
956
1016
1007
1031
91*7
831
8ll*
837
1038
982
957
1032
1020
9U6
9l*7
9ll*
981*
102^
967
853
Q87
873
907
918
% Removal
WPE
18.1
Ut. 3
2.6
7.9
5.6
22.7
18.9
10.0
—
6.0
—
9.1*
28.8
18.6
19.9
20.5
5.1
—
19.1*
20.1
19.3
20.5
EPE
20.3
15.7
1.8
7.2
6.6
19.3
J.3.8
17.3
—
It. 6
2.0
15.1*
27.0
I7.it
19-1
23.3
15.0
—
17.3
18.5
26.9
18.8
9.3 il1*.!
11.9 113.6
8.9
lit. 2
19.7
8.5 _
3.8
16.1*
16.6
19.1
23.1
SUSPENDED SOLIDS
mg/1
SS
230
232
166
115
192
127
215
236
—
108
99
193
209
251
195
WPE
25
3.3
25
13
17
11
20
137
13
9
5
17
11*
17
2l*5 19
263
226
197
226
250
2l*0
231
215
110
??k
?07
215
213
^03
182
1*1*
15
Ik
85
12
183
93
16
107
16
126
EPE
15
21
16
Ik
lit
Ik
23
1*0
kl
30
r 11
20
?S
27
13
% Removal
WPE
89.1
85.8
81*. 9
88.7
91.1
91.3
90.J
1*1.9
—
91.7
95.0
91.2
93.3
93.2
97.U
23192.2
60
69
2k
30.8
fln.s
EPE
93.5
90.9
90.1*
87.8
92.7
89.0
89.3
83.1
—
72.2
88.9
89.6
88.0
89.2
93.3
90.6
77.2
6Q.S
Q? h 87.8
32 193.8
20
1*1
97
19
20
fill
?l
1*2
91*
1
66.0
\2ZiO-.
20.8
56.7
85.5
52.2
—
92.6
1*0.8
—
85.8
92.0
82,9
58.0
91.2
81.8
62.5
89.9
—
80.3
69.0
BOD
mg/1
SS
250
220
— —
130
2l*0
250
25_0
280
—
120
100
180
210
21*0
260
280
190
130
270
250
290
300
270
280
130
300
2l*0
300
2$0
290
WPE
16
18
1?
9
18
11
12
56
9
10
8
7
5
8
13
EPE
13
10
12
13
15
11
15
18
10
21
21
18
13
13
Ik
11* | 11
58
in
11
11
30
11
71
1*9
16
56
16
70
—
•
1> Removal
WPE
93.6
-9JU8
93-1
92.5
95.6
95.2
80.0
—
91-7
92.0
96.1
97.6
96.7
95-0
95.0
EPE
91*. 8
_25. ,5.
— _
90.0
93.8
95.6
91*. o
93.6
—
82.5
79.0
90.0
93.8
9>*. 6
KJELDAIIL NITROGEN
mg/1 as N
SS
28.0
PR 1
25.8
?3.8
29.1*
29.1*
28.8
28.7
—
25.2
23.1
Pl.fl
20.2
?6,3
9k. 6 J27.3
96.1
13 | 69.5)93.2
10
15
18
1?
19
1*2
15
19
11
20
—
18
36
Q?.^
95. 9
95.6
89.7
96.3
73.7
82.5
87.7
81.3
9^.7
75-9
—
fiS.li
91*. 1*
92.8
95.9
93.7
MJL.
91*, 6
85,1*
89-7
91-7
93.8
87.6
WPE
6.0
6.2
6.6
11.8
1U.3
9.9
8.0
13.1*
k.5
9.1
lit. 2
15.0
8.0
6.0
6.1*
28. 8| 5-7
25. 9| 12. 5
23,7
27.0
29.3
30.8
33.5
30,1*
3?.l
25,2
30,8
?6.3
30.5
11.6
36.0
13.6
_8J*_
11^6
TiTi
19.3
13.2
11.1
21.0
8.5
16.0
—
I
EPE
1*.S
It. 9
6.1*
17.1
12.0
7.1*
6.U
7.0
7.8
10.9
—
12.2
6.6
6.2
It. 8
1*.8
672
in, R
12.7
8.1*
6.3
7.8
11.9
7.7
11.2
18.1
9.2
8.1*
12.6
-------
PLAFT OPERATIONAL DATA
1
D
a
t
e
1
2 n
3
4
5
6
7
8
9
10
11
12
13
i4
15
16
17
18
19
20
21
22
23
pOt'l
D
a
y
Sa
sll
M
Tu
W
Th
Fr
Sa
Su
M
Tu.
W
Th
Fr
Sa
Su
TOTAL SOLIDS
mg/1
SS
995
788
1136
1181
11 42
1138
1137
993
807
1127
1118
1208
1175
1210
1076
837
M | 1148
WPE
c>6o
711
827
963
—
—
1086
985
764
780
790
907
ll6o_
1010
969
860
881
Tu Tlo62| 914
W
Th
Fr
Sa
Su
M
25 !TU
26 [W
27 i
Th
Fr
29 |Sa |
ToT
Su 1
31 |M
1066
1123
-1021.
1046
833
901
1017
1151
1101
1091
979
789
1013
__
1043
859
787
697
EPE
956
789
863
954
929
892
1012
964
835
799
803
913
979
956
911
765
881
883
903
.970_
933
851
737
725 1 754
910
915
1012
918
729
759
869
874
859
784
84l 753 804
% Removal
WPE
3.5
9.8
27-2
18.5
—
—
4.5
0.8
5.3
30.8
29.3
24.9
1.3
16.5
EPE
3.9
—
24.0
19.2
18.7
21.6
11.0
2.9
£9.1
28,2
24.4
16.7
SUSPENDED SOLIDS
mg/1
SS
156
l4i
223
216
242
228
202
180
120
265
272
262
282
WPE
31
21
17
17
—
—
147
88
8
13
15
64
258
T5.0 1 304 1 128
9.9 111. 2
23.3
33.4
13.9 17.0
256 [ 157
13_8_
261
271
5.0 J17.2 1215
4.4
17.9
19,6 1252
11.1
10.8
10.9 3.6
22.6 il8.2
28.7 125.9
20.9 134.1
16.9
7.2
6.2
7.6
10.5
21.1
19.9
12.3
210
244
22
EPE
64
1.03
27
22
29
42
75
64
54
17
?4
23
72
126
102
% Removal
WPE
80.1
85.1
92.4
92.1
—
—
27.2
51.1
93.3
95.1
94.5
75.6
8.5
57.9
38.7
66 88.1+
38191.6
62 33
184
189
16
!H_L_ia_
243
190
237
221
242
198
0.6 154
4.4 Il43
13
7
28
51
202
22
12
6
61
78
77-1
l4.4
—
10.0
93.4
32 I 89.3
19
24
16
23
28
24
94.7
96.3
88.2
76.9
16.5
88.9
13 192.2
2 195.8
EPE
59.0
27.0
87.9
89.8
88.0
81.6
62.9
64.4
55.0
93.6
91.2
91.2
74.5
58.6
60.2
BOD
mg/1
SS
170
120
280
300
290
310
280
190
120
300
320
320
330
360
260
52.2|120
"8778"
J36.5
7578~
62.9
290
270
290
320
330
77.9(210
81.9
_22.2
130
210
87.4 1260
93.2 1290
89.6
88.4
87.9
91.6
98.6
300
290
200
120
140
WPE
17
12
13
15
__
—
63
35
11
13
10
36
110
52
68
10
20
29
92
—
96
14
13
13
15
16
28
102
16
15
14
EPE
23
25
16
13
15
21
24
26
22
13
17
19
34
36
36
27
27
25
19
21
28
30
29
30
28
20
13
20
19
24
20
% Removal
WPE
_9_CL-Q
90.0
95.4
95.0
—
—
77.5
81.6
90.8
95.7
96.9
88.8
66.7
85.6
73.8
EPE
86.5
79.2
94.3
95.7
94.8
93.2
91.4
86.3
81.7
95-7
94.7
94.1
89.7
90.0
86.2
91-71 79^21
93.1| 90.7
89.3
68.3
—
70.3
93.3
93.8
Q]I p
Oil ^
90.7
64.8
92.0
87.5
90.0
90.7
93.4
93.4
91.5
85.7
77.7
81/L
89.2
-9^.1
95.6
93 . 1
90.5'
80.0
85.7
f
KJELDAIIL NITROGEN
mg/1 as N
SS
.2JLJ.
24.5
28.7
31.9
31.6
32.1
27.6
26.6
34.0
32.1
35.6
32.8
34.6
32.6
WPE
9.4
13.3
16.7
9.9
—
—
17.4
11.6
11.8
15.4
10.2
11.5
23.1
14.0
15.0
28.8) 11.5
32.3J 17.5 '
EPE
9.9
16.2
16.7
8.4
7.8
9.7
12.0
11.1
14.0
15.3
9.4
7.7
10.4
12. J
11.5
13.9 1
17.5
30. q 9.7 i 7.7
31.6
34.0
32.9
33,0
30.2
25.2
27.2
31.9
32.2
32*2
30.1
26.6
29.7
20.2
—
21.3
15.7
16.2
"6.6
9.4
18.5
8.7
13.0
16.5
7.7
9.9
10.6
17 .Y _
16.8
6.4
5.0
_i^6__
10.8
13.3
-------
i'JjAUT UHr'.t.KATJ.UflA.b UATA JUNE 1971
D
'a
t
e
1
2
3
It
5
6
7
8
9
10
.11
12
13
l4
15
16
17
18
19
20
21
22
fi
a
y
Tu
W
Th
Fr
Sa
Su
M
ru
V
rh
Fr
Sa
Su
M
PU
W
Th
Fr
Sa
Su
M
Til
23 iw
2k
25
Th
Fr
26 |SaH
27
28
29
30
31
Su
V
Iu
rf
TOTAL SOLIDS
mg/1
SS
91+8
1031
1053
1051
863
758
936
1014
1034
1057
1000
821
827
1014
1003
1021
1032
897
775
829
969
892
92J,
919
868
782
798
879
917
830
WPE
7^7
786
1007
877
85^
730
669
789
759
848
971
81*6
689
812
8?7
814
956
8?9
71*1
6l4
795
798
713
81+6
715
670
808
692
785
765
EPE
78?
765
908
81*1
772
835
77^
771
85!*
858
876
81*2
723
871
850
831
81 4
778
800
655
772
861
679
836
707
71+5
832
761
830
761
% Removal
WPE
21.2
23.8
U.l*
16.6
1.0
3.7
28.5
22.2
26.6
19.8
2.9
__
16.7
19.9
16.6
20.3
7,4
6.5
4,1*
25.9
18.0
10.5
22.8
EPE
17.4
25.8
13.8
20.0
10.5
—
17.3
24.0
17.4
18.8
12.4
-.—
12.6
lU.l
15.?
18.6
ZLO_
1?.?
__
21.0
20.?
3.5
26.4
7.9 1 9.0
17.6
14.3
21.3
14,4
7.8
18.5
4.7
13.1*
9.5
8.3
SUSPENDED SOLIDS
mg/1
SS
18.6
226
193
230
175
149
194
215
245
252.
243
182
_12Q_
206
_2l_4_
WPE
4
12
158
20
14
10
6
7
12
12
138
21
10
2?
1?
244 ! _22
218
24?
170
109
169 20
103
197
183
189
194
186
190
125
181
179
183
1?
17
26
26
22
16
1
1?
14
9
20
EPE
4
?5
69
104
38
30
7
7
18
10
25
i?
14
12
1?
11
IP
4?
43
17
IP
11
8
19
4
1
15
6
?
5
% Removal
WPE
97.8
94.7
18.1
91.?
92.0
93.3
96.9
96.7
95.1
95.2
43.2
88.5
91.7
fifl.fi
9?.Q
-S1.J2
?P,Q
EPE
97.8
84.5
64, P
54.8
78.3
79.9
96,4
96.7
92.7
96.0
89 .J_
92.9
88.3
94,?
Q?.9
BOD
mg/1
SS
230
270
270
270
190
100
230
280
280
290
260
130
90
?8o
P80
95.5 25CL
94.5 l??0
55,3 82.?l25Q
88.2
87.4
91.4
85.8
86.?
88.7
91.4
99.5
84.8
92.3
95-0
89.1
74.6
a?. 5
Q?.Q
94-0
95.8
90.2
97.8
99.5
88.0
96.7
98.9
?7.3
160
??n
?4o
200
P.PQ
??0
220
150
100
200
260
210
WPE
13
1,3
69
12
9
17
15
9
7
14
69
20
14
34
?1
19
on
66
?4
15
18
?4
17
15
16
a
22
19
13
21
:
EPE
26
25
?6
35
23
23
16
10
11
10
24
8
7
1 1
8
10
g
?6
?0
11
7
7
7
a
5
5
11
7
7
5
% Removal
WPE
94.3
95.2
74,4
95.6
95.3
83.0
93.5
96.8
97.5
95.2
73.5
84.6
84.4
87.9
92.5
92.4
EPE
88.6
90.7
90.4
37.0
87.9
77. -0
93.0
96.4
96.1
96.6
90.8
93.8
92.2
96.1
97. r
96.0
60. 9i 96.1
7?. 6
85.0
9?. 5
9?. 5
88.0
92.?
9?. 2
92.7
_94.7
78.0
90.5
95.0
90.0
89.6
87.5
95.2
97.1
96-5
-£6_JL
06,4
97.7
97.?
89.0
96.5
97.3
97.6
KJELDAHL NITROGEN
mg/1 as N
SS
?8,4
29.7
?R.3
30.2
26.2
23. d
27.9
29.8,
32.2
31.4
29.5
23.7
23.4
59^4
30.0
?9,4
?7,6
?4,1
19,7
17,9
?6 n
?3 ?
?4.5
?3,7
P3,fl
P5..9
?4T?
?4t9
??.7
32.8
WPE
14.6
7.4
14.7
3.6
2.5
8.1
8.1
2.9
2.8
2.9
10.8
2.0
4.9
10^6
5-0
^3^8_
14.8
9^0
3.8
^5
5.?
5»0
?.9
4.3
3.8
3.6
6.6
6.3
2.9
4.3
EPE
10.2
3-5
6.3
8.4
3.5
4.6
3.2
2.7
3.8
3.4
2.8
3.9
2.9
4.1
.2^0,
£x8
5-9
4.2
?.6
2.5 ,
~2JL
5.3
2.2 __
2.4
2.1
?.6
4.2
2.9
1.7
1.8
-------
i ±jfu.v j. ur r/ru\i iun^u_i UH.xj-i TUT Y 1 071
D
a
t
e
1
2
3
4
5
6
7
8
9
10
11
12
13
i4
15
D
a
y
Th
Fr
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
16 iFr
17
18
19
20
21
22
23 1
Sa
Fin
M
Tn
W
Th
Fr
24 JSa
25 (Su
26
27
28
29
M
Tu
W
Th
30 |Fr
31 |Sa
TOTAL SOLIDS
mg/1
SS
960
_9J?4
784
715
708
909
907
772
816
687
791
910
943
979
986
909
859
745
913
963
926
854
824
615
932
1027
1001
1034
991
838
WPE
793
845
779
755
737
722
779
653
655
766
821
770
816
772
806
729
744
777
697
773
737
778
762
637
701
635
782
771
827
792
746
EPE
746
862
735
799
736
8o4
792
624
687
690
774
800
799
783
—
863
811
852
601
802
600
817
696
793
732
683
781
776
816
827
706
% Removal
WPE
17.4
15.0
0.6
—
—
20.6
14.1
15-4
19.7
—
15.4
13.5
21.1
18.3
19.8
13-4
EPE
22,3
13.3
6.3
__
—
11.6
12.7
19,2
15.8
_ 2.1
12.1
11.3
20.0
—
5-1
5.6
23.7 124.3
10.7
23.1
16.0
16.7
27 -_P
1U3
10.8 Il8.5
22.7
—
31.9
23.9
23.0
20.0
20.1
11.0
3-8
—
26.7
24.0
22.5
21.1
16.5
15.8
SUSPENDED SOLIDS
mg/1
SS
196
261
151
118
107
202
203
144
111
106
125
176
JL90
225
202
166
159
108
?01
-2J3-
171
2.06
208
174
79
178
PI 3
218
195
171
WPE
21
23
17
3
14
10
13
85
7
14
17
25
25
21
14
6
__ 2Z_
_J-J_
12
22
18
23
11
10
19
22 j
11
13
15
EPE
6
32
25
25
5
3
5
1
6
4
5
10
27
31
__
96
27
40
22
__LL_
- 0
19
15
22
7
14
4
1 3_
8
6
% Removal
WPE
89.3
91.2
88.7
...27 : 5
86.9
95.0
93.6
4l.O
93.7
88.8
90.3
86.8
88.9
EPE
96.9
8f.7
83.4
78.8
95-3
98.5
97-5
99.3
J94.6
96.2
96.0
94.3
85.8
86.2
89.61 -
BOD
mg/1
SS
260
330
140
100
100
240
230
180
180
150
100
240
240
280
280
94.6142.2 270
91.21 83.0
94.4 63.0
86.6189.1
92.0
23,0.
91.3
86.8
_8&j_
04.4
91.2
80.7
95.0
23.3
91.2
94.8
94.7
-20JL
92.8
87.4
01 .1
02.1
94^4
08.1
98.6
95.9
96,5
220
100
230
190
230
270
210
150
100
jPZQ_
300
310
290
.250..
.180
WPE
21
14
15
14
20
19
11
53
24
—
10
23
27
26
20
18
16
16
19
22
17
21
12
12
_L3
?1
17
19
7
10
,15
EPE
6
18
14
17
8
7
6
5
7
5
6
6
29
8
— _
60
15
16
9
7
10
12
6
6
a
16
13
8
9
8
11
% Removal
WPE
91-9
95.8
_89_!_3_
86.0
80.0
92.1
95-2
70.6
86.7
—
90.0
90.4
88.8
90.7
92.9
93.3
92.7
84.0
91.7
88.4
92.6
92.2
94.3
92.0
87.0
02.2
03.0
97.6
96.0
91.7
EPE
97-7
94.5
J2Q.O
83.0
92.0
97.1
97-4
97.2
_96.1
96.7
94.0
97.5
87.^
93.6
JTL.8
-23_JL
84.0
96.1
_9_6.3
25.7
-QJLJL
_2jLJ=_
o|Lp_
9P o
-SLJL
-9JLuZ_
97.4
96.9
96.8
93.0
KJELDAHL NITROGEN
mg/1 as N
SS
26.6
29 . 4
24. S
23.2
24. 5_
27.3
23.1
17-1
22.3
23.7
21.7
23.4
23.9
25.8
28,4
25.3
21.7
24.5
26.2
26.3
25.2
25.1
24.2
22-3
?6 3
27.7
28.7
28.7
27.3
WPE
5.0
4.8
5.9
10.2
7.4
5.6
3.5
7.0
12.5
10.9
4.1
5-5
4 9
4.9
5,3
4.5
5.6
. 5.0
5-5
6.0
5.5
3.9
4.5
4.1
\\ O
^ . U
3.0
4.6
3-8
4.?
EPE
3.2
4.9
3.9
6.7
3.4
2.5
2.1
1.3
4.9
2.7
2.8
2.4
3.5
3.1
_=_
9.1
3.2
5.5
2.1
2.1
2.9
2.5
2.7._
2.8
3 ^
2.7
2.0
2.4
3.6
, 4. ,9.
-------
PLANT OPERATIONAL DATA AUGUST 1971
D
a
t
e
1
2
3
It
5
6
1
8
9
10
11
12
13
lit
15
16
17
18
19
D
a
y
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
It}
Fr
Sa
Su
TOTAL SOLIDS
mg/1
SS
688
889
9ltlt
1073
1013
10lt2
861
732
910
869
972
971
851
613
764
M L_9_OJL
Tul 986
W
Th
20 | Fr
21
22
23
Sa
Su
M
2k \ Tu
25 1 W
26
27
28
29
Nol
31
Th
Fr
RP
Su
M
Tu
982
923
878
7>t9
617
83^
821
839
QOH
r_M8_
736 '
670
__8IO_
WPE
752
631+
630
807
769
835
821
758
705
_61tO_
7U9
777
697
..5.5?
723
681t
758
801
753
719_
707
661
589
712
693
.713
_lM_
693
689
668
. 852 j 672 .
EPE
826
605
1^
792
795
829
786
76l
7itO
638
755
76l
819
576
786
% Removal
WPE
__
28.7
33.3
2U.8
2U.1
19.9
It. 6
— —
22.5
26.3
22,9
20.0 1
18.1
9.5
5. It
EPE
__
31.9
20.1
26.2
21.5
20.lt
8.7
__
18.7
_26.5_
^21 ,5
21.6
. J3.8
6.0
719 J2lt.lt 1 20.6
790 J23.1 1 12 -_9
820
771
693
587
687^
685
756
723
_Jlk_
L_I2_9_
697
7^0
680
625
I8.lt
l8.lt
18.1
5.6
—
29. k
16.5
16.5
21.1
21.6
—
17.9
13.3 1 7-9
17.1*
21.1
ilt.^
5.8
— .—
23.2
21.1
13.8
21.0.
16.0
5.3
21.8
26.6
SUSPENDED SOLIDS
mg/1
SS
123.
167
200
252
266
2U6
216
170
P,Pfi
201
195
222
25.lt
90
129
201
212
208
211
198
129
99
llt2_,
168
189
?07
?03
155
L17
?03
199
WPE
26
6
21
30
35
36
37
1*6
^7
10
15
21
12
11
20
20
21
19
20
lit
lit
29
6
?
6
11
22
13
8
EPE
21
7
12
18
36
33
29
30
16
IP
10
7
Ik
8
19
% Removal
WPE
78.9
96.lt
89.5
88.1
86.8
85.lt
82.9
72.9
83.8
95.0
92.3
-2£L^_
95^3
87,8
81^5
19 90.0
17
lit
23
32
90.1
90.9
^o^_
92.9
lit 189.1
6
5
?
8
fl
10
9
lit
JPVL_
95-8
97.0
^8
9lt. 7
89.2
92.3
88.9
__5_|96.1
11 12 \9k. 5 .
EPE
82.9
95.8
9lt.O
92.9
86.5
86.6
86.6
82.lt
93.0
9^.0
9lt. 9
[96-8
-2LJL
_£LJJ
85.3
_2i._5_
_22-0
93.3
89.1
83.8
89.1
93-9
96.5
97-0
95-8
96.1
95.1
9^.2
88.0
97.5
9lt.O
BOD
mg/1
SS
110
220
310
290
290
280
180
130
250
220
260
£5Q
220_
110
120
210
250
230
220
220
180
100
210
220
200
250
250
130
LOO
550
250
WPE
18
13
18
15
15
16
lit
23
21
16
17
?k
15
15
??
19
11
15
16
19
12
17
12
11
7
9
18
16
12
15
10
EPE
22
-21
Ik
17
21
23
25
36
33
21
19
17
19
13
PI
2k
13
15
22
23
20
2lt
16
8
7
6
18
22
17
11
8
% Removal
WPE
83.6
9lt.l
9k. 2
9lt.8
9lt.8
9lt.3
92.2
82.3
91.6
92.7
93.5
90.lt
^3.2
86, U
81.7
95.6
93.5
92.7
91.lt
93-3
83.0
9lt.3
95-0
96.5
96.lt
_92.8
87.7
88.0
9^.0
J96-0
EPE
80.0
90.5
95._5_
°.lt.l
92.8
91.8
86.1
72.3
86.8
90.5
92.7
93.2
91.lt
88,?
82.5
88,6
9M
93.5
90.0
89-5
88.9
76.0
_9_2.1t
96.lt
96.5
97-6
-22^.8
83.1
83.0
95^6,
KJELDAHL NITROGEN
mg/1 as N
SS
23.7
25,2
?8.1t
31.8
30.9
29.5
28.lt
25.5
26.6
25.2
28.1
,2£LQ_
23.2
19,?
23,0
25.9
27,3
26^5
26.2
2lt.8
23-5
20.2
2lt.9
2JL-0
26.6
28.3
26.2
26.5
23.9
27.3
9678126. 7
WPE
9.5
8.0
6.3
8,0
7.1
9.8
11.6
17-2
17.1*
8.8
5-9
7.7
7.1
if, 9
10.6
™9^8_
It.l
5.3
5.5
6.7
6.0
io,,,it
8. it
1-k
11.6
5.2
7.3
_2il
8.5
5.7
3.8
EPE
8.7
6.6
5.5
5.9
6.0
6.9
9.0
lit. 3
9.5
It. 9
It. 6
3.1
3.9
3.9
6.0
2/7
3,6
It. 9
7. It
6.3
8. It
5.6
..2.8
2.1
3. It
k.3
5.9
_ 5.3
2.8
2.1
-------
D
a
t
e
1
2
3
1*
5
6T
7
8
9
10
11
12 j
13
lit
15
16
17
18
19
20
21
22
~23~l
24
25
26
27
28
29
D
a
y
w
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Pa,
Su
M
Tu
W
Tjfel_
PLAM1 OPERATIONAL DATA SEPTEMBER 1971
TOTAL SOLIDS
mg/1
SS
982
_3fi9_
796
680
61+6
I17_
870
911
930
915
7l+6
651
_J5A
861
9U2
959
880
81+0
533
Q78
_21£.
91+7
_9_5.6_
Fr 1 1009
Sa.
Su
M
Tu
W
30 iTh
31 T
730
663
9^3
929
963
992
>WPE
801
£26_
675
651
625
66s
7161
681+
_IlL
61*8
691
601
__S87
61+6
_6£6_
771*
729
72k
560
666
661
719
695
713
703
621
708
703
739
789
EPE
8.27
803
_£X6_
701
618
721
_7_5_J__
JL3_Q__
681
1*703"
f_Lk5__
1693
678
677
695
787
7_50
712
556
686
_I35_J
756
750
71+1+
688
638
793
678
7^9
783
% Removal
WPE
18.1+
21.7
15.2
1+.3
3.3
7.3
17-7
21+.9
23.2
29.2
7.1+
7.7
31.6
EPE
15.8
9.7
15.1
—
»*.3
13.0
19.9
26.8
23.2
0.1
—
21.0
25.0 i 21.1+
29.? 26.2
19. 3
17,2
17.9
lU.8
13.8 15.2
31.9
27.5
21+.1
27.3
29.3
3.7
6-3
2k. 9
21+.3
23.3
20.5
__
29.9
19.1+
20.2
21.5
26.3
5.8
3.8
15.9
27.0
22.2
21.1
SUSPENDED SOLIDS
.. .
mg/1
SS
217
228
172
120
121+
136
157
216
222
201+
11+5
118
205
175
WPE
9
21+
2
6
20
13
7
8
11
8
12
8
18
5
2l+ll 21+
509 22
206
2l+0
EPE
1+
10
2
5
20
17
6
7
13
6
8
8
ll+
1+
18..
% Removal
WPE
-9JLJL.
.82^5-.
_29_/L_
_9J^P-_
83.9
90.1+
95.5
96.?
95.0
96-1
.91. 7_
9?. 2
_9JU2
97.1
EPE
98.2
95.6
_9^J_
95.8
83.9
87.5
96.2
96.8
91+.1
97.1
91+.5
93.2
^&^
97.7
90.0 92.5
9 89.5 ! 95.7
_JL£ 8
29
90i 30
2] 8
239
_25l+
222
263
161
111
217
226
232
21+9
15
H
13
3
1?
6
^3
36
19
30
28
18
10
11
10
22
2
13
13
39
32
16
21
21
9k. 2 96.1
87.9 92.5
66.7
9.3.1
95.1+
91+.9
98.6
93.5
96.3
61.3
83.1+
91.6
87.1
88^8
88.9
95.0
95-8
91.3
99.1
95.1
91.9
61+. 9
85.3
92.9
90.9
91.6
BOD
mg/1
SS
230
210
21+0
ll+O
100
250
2l+0
270
280
260
160
120
270
27Q_
250
260
2l+0
150
100
300
280
290
29_0__
320
170
110
250
280
260
280
WPE
12
18
8
8
12
10
ll+
13
_13_
11
11
9
15
_12L_
13
ll+
_13__
12
25
16
15
12
15
10
11
lit
19
19
17
18
'• . __. _.
EPE
9
10
9
7
8
13
8
8
9
6
8
7
9
10
9
10
15
17
25
21+
20
30
2l+
10
30
1+7
39
29
28
in
% Removal
WPE
91+.8
91.8
_9JLl
9^.3
88.0
96.0
9l+. 2
95.2
95.1*
95.8
93.1
92.5
91+.1+
96.3
9!+. 8
91+.6
EPE
96.1
95.2
96.3
95-0
92.0
91+.8
96.7
97.0
96.8
97.7
95.0
9l+. 2
96.7
96.3
^6JL
^96.2
91+.6! 93.8
92.0
75.0
9l+. 7
9U.6
95.9
9!+. 8
96.9
93.5
_8li3
92.1+
93.2
93.5
93.6
flfi.7
75.0
92.0
92.9
89.7
91.7
96.9
82.1+
57.3
81+. 1+
89.6
89.2
85.1+
KJELDAHL NITROGEN
mg /I as N
SS
28.8
27.1+
?6.6
23.5
21+.1
26.2
26.6
27,6
29.5
27.9
26,6
26.3.
28.0
2.7.3
22. k
28.3
29. n
28,0
20.2
30.1
29.1+
30.1
32. ll
32.5
26.2
21+.2
27.1+
29.0
31.1
31 ,1
WPE j EPE
U.5
7.1*
-i^
6.3
6.2
1+.2
k.5
3-9
1+.6
6.3
5.5
__7.3
9.5
J5..7
l+.l
^8*1.
_LJ_
13.3
13.3
12.9
8.7
_JLJL
iU7T
10.8
11.5
16.1+
16.0
10.1+
11.3
12.7
2.5
2.1*
3 A
3.2
3.1
3.8
2.2
2.1
2.1+
2.9
1+.5
3.8
1+.2
2.9
JL9_
"6^6
9.2
9.1
9.U
6.3
6.0
7.3
7.7
9.8
12.2
9.8
5.6
6.6
8.8
-------
PLANT OPERATIONAL DATA OCTOBER 1971
D
a
t
e
1
2
3
1*
5
t
1
8
9
10
11
12
13
14
D
a
y
Fr
Sa
3u
M
ru
wr
rh
?r
Sa
Su
M
TU
w
Th
15 [Fr
16 !sa
117
18
19
20
21
22
23
24
25
26
27
28
29
Su
TOTAL SOLIDS
mg/1
SS
959
811
-5JLL
986
958
1019
1012
973
707
668
920
10Q8
987
1018
1009
840
713
M [1042
Tu
970
W |l0^3
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
hf6~]Sa~
31 |Su
1012
1022
754
6o9_
963
1000
982
1043
1011
796
675
WPE
720
716
633
533
653
820
791
708
670
601
628
755
775
810
848
789
713
677
878
767
868
844
71 4
576
670
742
71*6
856
— —
731
644
EPE
777
681
618
663
692
769
818
715
669
—
725
769
728
791
837
741
655
723
742
738
827
812
715
638
667
732
719
752
825
743
732
% Removal
WPE
2k. 9
11.7
—
45.9
31.8
19.5
21.8
2J.2
5.2
10.0
31.7
25.1
21.5
20.1*
16.0
6.1
— —
EPE
19,0
16.0
—
32.8
27.8
24.5
19.2
26.5
5.4
__
21.2
23.7
26.2
22.3
17.0
11.8
8.1
35.0 30.6
9.5 i 23.5
25.8
14.2
17.1*
5.3
5.4,
-22.JL-.
25.8
24.0
17-9
— _
8.2
4.6
28.6
18.3
2CU5.
5.2
30 ..7.
26.8
26.8
2J.9
18.1+
6.7
SUSPENDED SOLIDS
mg/1
SS
?k?
166
128
21*1
259
246
233
190
132
11?
154
232
225
202
2^6
WPE
1Q
15
31*
11
6
7
9
5
7
6
4
8
Ik
13
?6
198! 18
139
173
^
18
263 1 67
P71
229
195
-l&L
13
1*6
19
16
131 1 18
208
209_
204
231
219
173
156
15
12
16
12JL
—
18
22
EPE
15
17
16
13
15
7
8
17
10
k
3
R
11
ll*
?Q
_-3
% Removal
WPE
Q?.l
91.0
73.1*
92.9
97.7
97.2
96.1
97.1*
9l*. 7
Ql*.6
r97.1*
96.6
h93.8
93.6
EPE
Q^.8
89.8
87.5
91*. 6
91*. 2
97.2
L96.6
91.1
92.1*
___
97.1*
98.7
96.4
91*. 6
89.0 1 9l*. 1
90.9 190.0
97.8.
10 189.6
— —
20
97-8
9l*. 2
74.5 ! --
95.2
92.6
26 179.9 188.6
16
37
37
3Q
7
2
3
23
19
38
.2P_.._3_
90.0
86.3
9_2.8
9l*. 3
92.2
1*5-9
—
89.6
3J.9
-2ii8_
76.9
J1.8
81.3
BOD
mg/1
SS
250
170
80
270
280
310
260
260
150
130
270
280
280
2l*0
250
ll*0
130
300
220
250
260
270
ll*0
100
250
96.7 1250
99.0
98.7
89.5
89.0
75.6
280
290
270
J-bO
L10
WPE
19
1.8
17
17
11
12
12
8
7
10
U
15
ll*
17
21
10
EPE
31
2k
33
32
20
10
19
ll*
29
20
ll*
ll*
Ik
15
27
ll* I 20
25
39
18
34
32
13
17
21
20
28
BO
TO
25
;23
30
31
17
25
27
28
33
25
13
13
19
24
25
24
% Removal
WPE
52.1*
89.1*
78.8
93.7
96.1
_96.l
95.4
96.9
95.3
92.3
94.8
Q4. 6
95.0
92.9
91.6
92.9
89.2
91.7
82.3
92.8
86.9
88.1
90.7
83.0
91.6
92.0
90.0
Y2.1*
74.1
83.3
79.1
EPE
87.6
85.9
58.7
88.1
92.9
96.7
92.7
94.6
80.7
92.6
95.0
95.0
94.2
_9j*iO_
sbTTl
84.6
90.0
85.9
93.2
90.1*
KJELDAIIL NITROGEN
mg/1 as N
S3
29.5
28.0
20.6
31.4
30.0
32.1
33.6
32.8
29. 3
?8.8
30.9
32.5
33.5
31^-
31.5
30.5
30.1
33.2
27.6
30.8
SO. 5
90.0 J29.0
80.0
67.0
_90.0
94.8
95.4
93.4
91.1
L§3JL
78.2
25.3
22.4
29.7
29.4
30.7
33.3
31.8
29.0
30.0
WPE
11.7
11.6
16.7
Ik. 8
9-7
5.7
9.4
7-8
9.1
15.7
16.2
10.5
7.7
9.5
_JL_I_
JL-8
18.9
17.9
_!2^3_
7.0
9.2
9.2
9.0
11.3
9.8
-^. i • I —
9.1
16.8
17.9
10.5
12.5
EPE
7.3
9.8
10.5
8.5
4.2
4.2
6.2
8.0
9.0
11.8
5.3
6.3
5.5
_l-2
^LJL__
11.5
12.2
4.1
4.3
_^3_
6.0
6.9
8.1
6.3
3.2
_L^___
4.9
5.6
6.2
6.9
-------
PLANT
DATA
D
a
t
e
1
2
3
1*
5
6
7
8
9
10
11
12
13
ll*
15
16
17
18
19
20
21
22-J
23
21*
25
D
a
y
IVf
Tw
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W~~
TOTAL SOLIDS
mg/1
SS
771
963
1107
1086
1038
829
730
1013
1021*
111*1*
1051
lOll*
87!*
763
IQltO
1Q&3—
IQQl
miJiQii_
Fr Ill20
fin
Su
M
Ty
W
Th
26 |FV
27
28
29
30
31
Sa
Su
A
ru
873
-iki-
1010
1Q7JL
1107
81*2
787
709
1039
1082
WPE
670
689
787
801
761
732
681*
681*
767
820
789
768
635
719
871
837
778
721
8llt
723
722
762
711
865
739
668
600
668
702
813
EPE
61*6
626
7l*3
765
735
686
727
710
755
820
793
782
709
723
711
780
8l6
723
067
7l*2
_._722
781*
7i5_
861*
701
7l*0
662
765
8l6
837
% Removal
WPE
13.1
28.5
28.9
26.2
26.7
11.7
6.3
32.5
25.1
28.3
2l*.9
2l*.3
27.3
5. 8
EPE
16.2
35.0
32.9
29.6
29.9
JL7.2
o.i*
29.9
26.3
28.3
2l*.5
22 ._9_
18.9
5.2
.16.3 ! 31.6
.21.7 L27.Q
28.0 1 2l*.5
28.7
.2.7.3
17.2
3.0
21*. 6
28.5
22.6
15.0
. 3,Q
33.8 1 29.7
21.9 122.0
1*.5 1 9.1*
20.7 Il2.1
23.8
5.8
32.1*
2l*.9
15.9
—
21.5
22.6
SUSPENDED SOLIDS
mg/1
SS
232
202
21*8
252
2l*l
159
133
228
202
331
170
218
139
_29-9_
WPE
8
11
7
8
8
P6
15
12
11
1*3
10
10
16
10
130
279 51 1
282
251*
252
218
_1.25
10
1*
12
19
1*
212L__°_
262
251*
Ill*
203
177
130
153
209
__3JL
EPE
9
8
5
ll*
13
18.
3
7
2
15
5
7
6
5
3
% Removal
WPE
96.9
91*. 6
97.?
96.fi
96.7
8^.6
88.7
9l*. 7
91*. 6
87.0
95.9
9l*. 1
92.7
92.8
EPE
96.1
96.0
98. n
91*. It
9l*.6
88.7
97.7
96.9
99.0
95.5
97.9
95.9
97.2
96.1*
56.51.99.0
6 8l_7_
10
7
3l*
29
,12
-iii
97.8
97 -~2
95.2 86.5
91.3.
96.8
221 95.8
Ik
2 It 1 13
1*
22
20
10
19
6
5
10
20
15
21*
2
1
86.3
90.6
86.7
.20.1*
89.6
9l*. 7
9^.9
96.5195.6
8_9.2
88.7
92.3
87.6
97.1
95.1
88.7
88.5
81*. 3
99.0
BOD
mg/1
SS
ll*0
_22£L
P90
300
-LXD_
_1£0_
280
270
320
260
290
220
ll*0
290
280
WPE
20
1 ^
lit
17
31
?7
18
26
21
16
16
13
12
66
35
EPE
16
JJ3 _
1,0-
n
12
15
17
12
9
12
12
12
22
ll*
IT
280 | 12 i 23
310
300
180
150
270
300
300
160
170
130
100
180
230
20
10
9
20
15
22
16
13
21
12
17
23
22
1*0
26
19
18
ll*
13
12
18
23
18
18
30
16
% Removal
WPE
85.7
,93.6
95.0
9l*. 3
LS1.A
77.5
93.6
.9-QjjL
93.1*
93.8
9l*. 5
9k. I
91. 1*
"87 !5~
95.7
93.5
96.7
86.7
91+.1*
9^.7
91-9
87.6
90.8
83.0
87.2
90.lt
EPE
88.6
-25.JL
96.6
96,1
96.3
92.9
87.5
£1.9
95.6
_97.2
95.1*
95.9
91*. 5
81*. 3
j^) _• £—
JT61
-9JL-8
87.1
91.3
_8£.l*
88.0
91*. 8
^/ ^) A L
96.0
88.8
86.5
86.2
82.0
83.3
93. 0
KJELDAHL NITROGEN
mg/1 as N
SS
?S.?
25.9
32.3
31.8
33,6
30.7
28.7
35.6
3!*, 6
36,8
35.6
33.9
33.7
22JL
37-5
36.0
36.8
3k. £
35.1
3?. 5
32.1
31*. o
33.6
33.3
30.7
29.1*
Xj_^_ — »
21.8
39.7
WPE
11.8
5.0
5.2
6.3
5.6
10.5
11.2
12.2
10.1
10.2
9-7-
11.3
12.0
16.2
JL1JL
16.5
11.8
~8~!lT
11.2
15.3
13.2
EPE
5,9
2.1*
3.k
5.2
k.3
6.6
5.7
k.l
k.5
k.Q
6.0
_5_i2___
7.6
JLJ
6.7 1
6.3
LtP
6.0
6.2
9.5
8.3
9.1 1 3.8
_JL/L-
8.3
1JU3_
10.2
12.2
10.1
8*3_
t
3.1
1*. 8
-£f—
6.1*
It. 5
k.l
-------
FLAM1 OPERATIONAL DATA
DECEMBER 1971
D
a
t
e
1
2
3
k
5
6
7
8
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
D
a
y
w
Th
FT
Sa
Su
M
Tu
W
Th
Fr
fin
fin
M
Tu
W
Th
Fr1
Sa
Su
M
Tu
W
Th
Fr
Sa
fill
M
Tu
W
30 | Th
31
Fr
TOTAL SOLIDS
mg/1
SS
1151
ii4o
1048
938
771*
1005
1037
109JD
994
748
865
81?
1044
979
781*
iQi3_
1023
972
959
1105
107!+
1077
iQIO_
88J_
776
813
978
1011
1101
1011
1089
WPE
Q27
928
752
802
T36
680
757
822
863
668
.816
842
717
852
536
831
816
848
928
884
882
932
825
856
743
757
851
820
848
882
l_26l_
EPE
854
910
809
789
691
735
83?
846
—
—
779
817
766
844
5M
830
880
861
910
901
856
922
860
832
_m.
766
813
794
__8_22_
lo4o
074
% Removal
WPE
1Q.6
18.6
28.2
14,5
4.9
32.3
27.0
25.6
13.2
10.7
5-7
—
31.3
13.0
31.6
2.Q.3
18.3
12.8
3.2
20.0
17.9
13.5
22.9
3.5
4.3
6.9
13.0
18.9
23.0
12.8
11.1
EPE
25. q
20.2
22.8
15.9
10.7
26.9
19.5
22.4
—
—
^_2-_9
—
26.6
13.8
31.0
20.4
JLLJ2_
11.4
5.1
18.5
20.3
14.4
19.6
6.2
8.1
5.8
16.9
21.5
19.0
—
10.5
SUSPENDED SOLIDS
mg/1
SS
26?
256
245
210
124
210
209
223
208
156
112
63
178
193
175
177
131
163
146
190
210
184
201
186
119
152
175
V58
208
260
104
WPE
19
29
29
30
6
8
5
9
15
39
11
4
12
4
31
13
7
31
28
21
16
6
11
28
28
29
9
3
19
21
19
EPE
?fi
?4
30
35
11
4
6
11
—
—
1
2
6
5
30
15
% Removal
WPE
Q2.7
88.7
88.2
85.7
95.2
56.2
97.6
Q6.0
92.8
75.0
90.2
93.7
93.3
97.9
EPE
89.3
90.6
87.8
83.3
91.1
98.1
97.1
95.1
99.1
96,8,
96.6
97.4
82.31 82.9
92.7
11L94.7
22
.30
81.0
91.5
BOD
mg/1
SS
290
290
280
180
130
250
24o
230
220
120
90
80
190
180
110
230
J31.6 | 220
86.5
80.8! 70. 5
£j_8JLa
14
9
13
32
25
23
10
4
35
_8^
92.4
96.7
94.5
84,9
,,76.5
80.9
9A-9
93.1
90.9
91.9
7l 81.7
96.fi
93.3
95.1
93.5
82,8
79,0
84.9
9^-3
97-5
83.2
67.3
93-3
150
10Q_
230
200
270 1
250
130
70
130
200
230
230
190
130
WPE
21
23
18
10
16
16
14
15
20
20
I1*
22
13
11
12
9
14
13
12
?4
15
_13_
14
11
14
17
18
13
14
15
jJJL_
EPE
19
16
13
14
25
16
18
20
— — .
— _
13
15
18
18
16
13
12
10
16
14
15
16
16
13
16
15
19
18
26
62
27
% Removal
WPE
92,, 3.
92.1
93.6
94.4
87.7
93,6
94.2
93^5
90.9
83.3
84.4
72.5
93.2
93.9
-JSLi
96 ._!
93.6"
91.3
-as^a
89.6
92.5
95.2
94,4
91.5
80.0
-86^5.
91.0
54.3
_93,9
92.1
50.8
EPE
93.4
95.5
95.4
92.2
80.8
93.6
92.5
91.3
— ...
85.6
81.3
90.5
90.0
85.5
"94731
94.5
93.3
84.0
93.9
92^5
94.1
.23^
90,0
77.1
88.5
_90.5
92.2
88.7
67.4
79.2
KJELDAIIL NITROGEN
mg/1 as N
SS
31.6
32.9
16.5
29-5
25.8
32.6
32.1
32.2
?8,4
16.7
18,9
20T2
28.4
24.4
16.1
23.0
?5,1
23.4
21.7
2Z-9-
30.0
22^0-
31 r6
?8,3
25.9
30.9
29,3,
3IL.2.
31.4
22.4
WPE
3.4
6.7
_JL_o_J
4.5
11.1
12.7
8.4
i_JLH_
9.0
5.0
5.0
9.7
10.8
6.2
2.4
3.4
-SAL-
T'S
-14,. 3
13. 3
9.4
7-6
_2^i_
9.2
-L£^_
mjL_
JJlA_
J^X
11.3
9.0
27.31 9/L
EPE
7-7
3.4
3.5
4.1
7.7
8.1
^.9
6.0
— —
_,__
5.0
6.7
8.0
5.2
2.8
2^9
5.0
10.4
11-5
aA_
_JLQ_
9, 5
HJEL6_
11.8
_HJ_ _
_jiJ^_J
12.9_l
— — — * — —
10.2
-------
PLANT OPERATIONAL DATA
JANUARY 1971
D
a
t
e
1
2
3
It
5
6
7
8
9
10
11
12
13
Ik
15
16
17
18
19
20
21
22
23
2k
25
261
27
28
29
30
31
D
a
y
_Er_
_£a_
Fu
M
Til
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
F
Sa
Su
TOTAL PHOSPHORUS
mg/1 as P
ss
5,6
7.5
$,3
6,5
7-3
7.2
7.1
7-7
7-5
6.7
8.1+
8.5
7-7
7.9
7.8
8.0
7.0
10.8
9-k
8.8
8,3
9-2
8,8
7-3
9.2
8.9
8.2
8. if
8.1+
8A
WPE
Q.kO
0.65
1.8
2.1
1.2
0.62
0.63
0.61+
0.51
0.66
2.6
2.5
1.6
1.8
1.1
0.58
0.97
2.7
2.7
2.6
3,1+
1.8
1.0
0.63
2.4
l+.l
3/L_
EPE
0,73
0.37
0.66
0.88
0.1+3
0.33
0.33
0.1+7
0.39
0.29
0.1+1+
0.1+8
0.1+6
1.2
2.9
1.2
0.35
0.50
0.92
2.3
2.1+
2.0
0.92
o.i+o
2.6
J2DU
1.5
3.1 1.1
L.6 0.1+7
3.93
JL^L2i^
0.90
d.6o|
% Removal
WPE
9?.Q
91.3
71.1+
67.7
83.6
91.1+
91.1
91.7
93.2
90.1
69.0
70.6
79.2
77.2
85.9
92.8
86.1
75.0
71.3
70.5
59.0
80.1+
_8JL6_
91.1+
73.9
53.9
51*. 9
63.1
81.0
88.9
93.3
EPE
87.0
95.1
89.5
86.5
9k. i
95.1+
95.1+
93.9
9l+. 8
95.7
9l+. 8
91+.1+
91+.0
81+. 8
62.8
85.0
95.0
95.1+
90.2
73.9
71,1
78.3
89.5
9l+. 5
_IiiI_
95.1
81. ^
86.9
91+.1+
89.3
92.1
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
L_ SS
?,k
3,8
£^_9
3.2
2,6
2.7
2.9
2,8
2.5
2.7
l+.O
3,8
3.2
2,6
2tQ
2.5
3,2
M
3.9
3.1+
3.1
2.0
3.0
2.6"
3.7
3-7
3.2
2.8
2.1+
3.9
3.3
WPE
0.21
0.1+1
1.5
1.8
JLJ>5_
0.32
0.26
0.32
0.26
0.32
2.0
1.9
.Hu9_3_
0.90
0.53
0.32
0,^2
2.0
2.1+
2.2
1.6
1.2
0.65
0.25"
1.7
,2^_2_
2.2 1
iipi
0.9!+
EPE
0.17
0.20
0.1+5
0.63
0.31
0.13
0.09
0.21
0.16
O.ll+
0.27
0.35
H.29_
0.21+
&.JJL
0.09
ILi6_
0.30
0.28
0.23
0.22
0.22
0.20
0.20
0.23
0.22
0.19
£.18
O.lU
JL52J2ii7
0.25 JO. 17"
% Removal
WPE
91.3
89.2
1+8.3
1+3.8
75.0
88.1
91.0
88.6
89.6
88.1
50.0
50.0
HL^9_
65,1}
73.5
87.2
86,9
13^5_
38.5
35.3
1+8.1+
1+0.0
78.3
90.0
TO"
21.6
31.3
32.1
60.8
81+. 9
92.1+
EPE
92.9
91+.7
81+. 5
80.3
'88.1
95.2
96.9
92.5
93.6
9k. Q
93.3
90.8
90.9
90.8
9-2. .,0.
L2£Jl_
95.0
93.0
92.8
93.2
92 .3
89.0
J>3.3
92.3
93.8
91+.1
91+.1
JL2.-6
JZfbJL
_2UL
J?L.8
East
Plant
MGD
103.5
100.7
118.8
131.1
121+.9
125.2
128.2
121+.5
lll+.l
101.7
12k. 6
123.3
ri?6.1+
127.1+
135.0
111.5
97.5
119.0
123.8
12J.8
126.3
132.2
111.6
91.6 j
12372~1
lliJL
116.1+
OiiJL.
f_I20juQ_
^2278~
109.0
MI
pH
WP
7-3
EP
7-1
r
1
XED LIQUOR
Suspended 1
/--! -t - -1 /, \ Oi/X
Solids mg/j. 1
V7P
2810
21+10
2050
2020
21+10
2580
2620
2550
2560
2290
2190
21+50
271+0
2860
2880
2690
21+30
221+0
2600
2720
2790
2850
~28TcT
_?52IL
i
EP j WP
2750
2720
2380
2250
2620
2830
2950
2810
2760
2670
2l+8o
2620
2660
2860
3030
3170
2990
2670
2810
2820
2870
0.91+
0.87
0.97
1.22
1.09
1.08
0.95
0.96
0,89
0.88
0.97
0.91+
0.90
0.81+
0.79
0.86
0.85
0.87
0.92
0,86
0.80
3000 | 0.73
3090 0.73"
.295 0_
2430 2810
_27l+0
2890
mQ_-222Q .
smo_
-3JJO_
301+0
r2560~
00-10-
-282CL_
3190
T29l+0~
0-15
Lo^5
.JLJLL
^J^..
r< £>•?
J_J^aJ=i&_
LlUl2_
10775
ToTTs"
EP
0.85
1.00
0.98
1.16
1.23
1.08
1.0k
1.05
0.97
0.95
1.02
0.96
0.59
0.63
0.62
0/68
0.79
0.79
0.73
0.55
0.57
roTTT
o.5T
51^1
LoImJ
JL^£_
10*52..
\ 0.53.
1 0.6J
THTTT
0.78
-------
D
a
t
e
1
2
3
4
5
6
7
8
9
10
11
12
13
lit
15
16
IT
18
19
20
21
22
23
2k
25
26
27
?8
29
30
31
D
a
y
M
Tl?
W
Th
FT
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
TOTAL PHOSPHORUS
mg/1 as P
ss
9,3
8.8
8.4
7.0
7.8
7.6
7.0
9-2
8.1
8.^
8.2
8.6
8.2
7.3
M 10.0
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
8.8
6.6
4.8
3.2
4.0
4,3
6.?
5.5
5.6
5.1
4.2
4.9
4.4
WPE
l.S
1.2
1.7
1.6
i.k
0.8o
0.57
l.l
1.4
1.3
3.2
2.1
0.76
0.51
0.85
2.7
2.7
1.3
1.3
0.6^1
0.51
0.64
0.76
0.92
0.70
OJ5
0.7_6
0.67
EPE
O.Q2
1.1
1.3
2.5
1.5
0.68
0.60
0.56
0.59
0.66
0.82
1.2
0.64
—
1.1
2.1
1.7
0.84
1.3
0.6l
0.48
0.97
0.88
0.26
0.35
0.4l
0.39
% Removal
WPE
83. g
86.4
79-8
77.1
82.1
89.5
91.9
88.0
82.7
84.7
61.0
75.6
90.7
93.0
91-5
69.3
59.1
72.9
59.4
83.8
88.1
89.7
86.2
81.6
86.3
82.1
84.5
84.8
EPE
90.1
87.5
84.5
64.3
80.8
91.1
91.4
93.9
92.7
92.2
90.0
86.0
92.2
—
89.0
76.1
74.2
82.5
59. ^
84.8
88.8
84.4
84.0
—
9^-9
91.7
91.6
91.1
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
4.4
3.6
3.0
2.5
2,7
2,7
2,6
b,l
2,8
3.2
2.6
2.6
2-5
2.6
4.2
3-7
2.5
1.8
0.80
1.7
2.2
2.5
2.4
2.4
2.0
1.2
2.4
2.6
WPE
1.1
0.85
1.4
1.3
0.88
JkiL
0.25
0.6l
1.0
0.99
1-7
0.82
0.35
0.22
0.59
2.0
1.8
0.52
0.19
0.13
0.15
0.21
0.26
0.56
0.34
0.22
0.18
0.21
EPE
0.23
0.28
0.32
0.26
0.14
0.18
0.2?
0.30
0,30
0.27
0.28
0.26
0.32
—
0.23
0.21
0.24
0.23
0.21
0.15
0.16
0.22
0.23
—
0.09
0.11
0.12
0.13
% Removal
WPE
7.1.0
76.4
53.3
48.0
67.4
81,1
90.4
85.1
64.3
69.1
34.6
68.5
86.0
91.5
86.0
45-9
28.0
71.1
76.3
92.4
93.2
91.6
89.2
7^T
83.0
81.7
92.5
91.9
EPE
94.8
92.2
89.3
89.6
Qk^a.
9?. 3
91.2
92.7
89.3
91.6
89.2
90.0
87.2
—
94.5
L^.3
_20.4
JlLJL
73.8
91.2
92.7
_§l-2
90.4
—
95.5
90.8
95.0
95-0
East
Plant
MOD
116.6
117.1
123.9
144.8
12^.8
IDS. 8
Q3.5
117.6
116.8
117.6
126.8
119.4
99.6
90.4
116.5
122.0
133.9
143.4
146.5
136.7
110.0
139-5
136.3
132.6
138.7
139.9
122.3
107.0
MI
PH
WP
EP
XED LIQUOR
Suspended
Solids mg/1
WP
?psn
2480
2750
2670
2990
3100
2660
2590
2940
2920
3430
3350
3320
2870
2720
2930 n
3280
EP
2B2D
2980
2880
2900
2760
3280
2960
2710
2950
3010
3050
3120
2930
2950
2220
3250
3150
3290 (2990
3050 |28lO
2870 J2790
2640
2410
2490
2650
2850
2820
=920
2720
: 1
2850
2710
2810
2840
2930
2850
2790
2760
SDI
WP
0 . 8-5 -
0.98
0.99
1.03
1.12
1.01
1.01
1.05
1.09
1.02
0.98
0.82
0.77
Q..^4
1.02
1.00
1.11
1.12
1.23
1.28
1.29
1. 45
L.43
1.32
L.28
[726~~
L.29
..26
EP
n.f\4
0.89
0.98
0.84
1.00
0.99
0.99
1.01
1.02
0.99
1.00
0.8,8
O._8j)
0.89
0.93
JLJO_
^J5_
1.02
1-JL3_
1.16
1.13
1.36
-1-35
fl.31
1.20
1.22
1.25
1.19
-------
PLANT OPERATIONAL DATA
MARCH 1971
D
a
t
e
1
2
3
1+
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
261
27
28
29
30
31
D
a
y
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
^
Pn
M
Til
W
TOTAL PHOSPHORUS
mg/1 as P
ss
6,6
6.1
6.6
6.5
6.2
5.3
5-4
7.2
6.9
6.4
6.7
7.4
7-1
6.6
6,9
6.9
7,4
8.?
7,4
6.0
4,1
6.3
6.1
6.7
5.5
s,B
_5-^5_
4,4
6,6
6.0
5.6
WPE
0,64
0.69
0.68
0.65
0.62
0.63
0.5JD
0.94
0.81
0.95
1.4
1.5
JL£4_
o,46
0.80
0.76
0,68
0.75
0.63
0.46
0.39
0.54
0.55
0.85
0.80
1.2
_Q_JiQ
0,44
0.34
0.66
0.73
EPE
0.36
0.30
0.33
0.30
1.1
1.1
0.55
0.38
0.33
0.58
1.0
1.9
1-9
1.3
0.73
0.821
0.77
0.87
1.3
2.3
0.8£
1.2
0.8C
0.9£
1.1
0.5£
0.44
o.W
o.4s
OJi]
o.4^
% Removal
WPE
90.3
88.7
89.7
90.0
90.0
88.1
90.7
86.9
88.3
8U. 5
79.1
79-7
88.2
93.0
88.it
.39 ,,,0
90.8
90.9
91.5
92.3
90.5
91.4
_2!±o_
87.3
85.5
79. 3_
85.5
90.0
94.8
89.0
87.0
EPE
94.5
95.1
95.0
95. 4
82.3
79.2
81.8
94.7
95-2
90.9
85.1
74.3
73.2
80.3
89.4
88,1
89.6
89. 4
82. k
61.7
_JJL5__
81.0
86.9 ,
85.4
80.0
90.3
92.0
90.0
92.6
92.2
92.0
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
2,8
3-0
2.6
2-5
2.6
2-5
3~L
3n6
3.4
3,0
2.4
2.9
3.0
1.6
2.8
2,8
2.6
2,6.
?.7
2.2
2.0
2.2
2.6
3.0
2.4
2.4
2.6
2.3
2.7
2.4
2.0
WPE
0,29
0.33
0.33
0.43
0.42
0.31
Q..21
0.57
0.45
SL&L
0.87
0.99
0.51
0.24
0.23
0,46
ILJiL
hPJ_32_
0,27
0.23
0.18
rbTir
0.26
0.45
0.35
0,36
0.25
0.19
0.19
0.38
0.53
EPE
0.15
0.15
0.15
0.16
0.16
0.15
o.i4
LO_2Q
ILJJL
0.??
0.21
0.17
0.19
0.23
0.20
Or 35
0.29
0.22
0,24
0.15
0.17
0.15
0.22
0.15
0.18
0.19
0.17
0.11
0.17
0.22
0.20
% Removal
WPE
89,6
89.0
87.3
82.8
83.8
87.6
Q3.?
_a4_2J
86,8
.80.0
63.8
65.9
83.0
85.0
91.8
83-6
82.7
EPE
94.6
95.0
_94.2
93.6
'93.8
94.0
95-5.
Q4.4
95.9
.85,3
91.3
94.1
93.7
85.61
92.9
87,5
88.8
85.0)91.5
90, 0| 91.1
89-5
91.0
90.5
_2°<°
_8_L_o
85.4
85,0
90.4
91.7
93-0
84.2
73-5
.iUL
91.5
23.2
91-5
95.0
92.5
92.1
9.3.51
95.2
93-7
90.8
90.0
East
Plant
MGD
136..3
130.1
132.5
128.9
137.3
130.4
106. Q
^L23^-7
130.7
133.3
131.9
137.9
131.2
138.9
142.2
_144_2
142.3
142.9
141^6
131.8
132.5
142.7
138.3
137.6
14~0.1
147,5 .
134.6
138.7
148.7
145.8
153.2
MI
pH
WP
EP
XED LIQUOR
Suspended
Solids mg/1
WP
P44o
2570
2870
2870
2810
2650
2480
2480
2800
2830
2860
3010
3040
2590
2590
2650
EP
?6?n
264o
2850
2810
2^20
284o 1
2590
2630
2650
2750
2770
3110
3080
2760
2790
2830
2830 12900
2970
3120
2880 12890
2840
2610
2400
2540
2800
2850
2850
3030
2610
2710
_212_P
2860
3050
2880
2690
2650
2800
2880
2880
2830
2660
2770
2970
3000
SDI
W
i .11
1.33
1.28
1.22
1.19
1.16
1.13
1.15
1.17
1.16
1.09
1.01
1.00
1.02
1.20
1.13
1.19
1.12
1.08
1.00
1.10
1.12
1.10
1.07
0.95
0.97
1.04
1.07
1.10
1.11
1.13
EP
i-p.a
1.17
1.22
1.16
1.08
1.10
1.07
1.03
1.03
1.11
0.93
0.84
0.79
0.95
1.00
1.03
0.97
0.99
0.92
0.86
0.97
1.05
1.05
0^92
0.96
0.92
1.01
1.10
1.13
1.08
1.14
-------
PLANT OPERATIONAL DATA
APRIL 1971
D
a
t
e
I
2
3
4
5
6
1
8
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
24
25
26
27
?8
29
30
31
D
a
y
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Tli
Fr
Sa
Su
M
Tu
W
Th
rr
TOTAL PHOSPHORUS
mg/1 as P
ss
6,0
6.3
6.4
5.5
7-9
7.2
6.4
6.8
__
6.6
it, 9
4,4
4,6
5,o
5.5
5,6
5, ^
•5.1*
7,1
6.8
7.0
5.6
7.6
7.3
5.4
6.6
5.9
6.0
7.1
R 3
WPE
0.87
0.80
0.49
0.42
0.76
0.91
1.3
3.2
0.86
0.46
0.33
o.4i
0.27
0.22
0.32
0.43
2.0
0.45
0.54
0.60
2.1
0.97
4.3
2.2
0.49
3.1
6.2
0.81
3.3
8.2
EPE
0.37
0.36
0.35
0.34
0.37
0.38
0.48
0.81
1.4
0.55
0.98
0.55
0.35
0.39
0.45
0.37
0.37
0.49
0.75
0.81
0.46
1.1
1.8
0.53
0.81
1.2
1.3
—
1.4
2.2
% Removal
WPE
85.5
87.3
92.3
92.4
90.4
87.4
79.7
52.9
_._. .
93,0
93.3
90.7
9b_.l_
95.6
94.2
92.3
63.0
91.7
92.4
91.2
70.0
82.7
43.4
69.9
90.9
53.0
—
86.5
53-5
1.2
EPE
93.8
94.3
94.5
93.8
95.3
94.7
92.5
88.1
__
91.7
80.0
87.5
92.4
92.2
91.8
93.4
93.1
90.9
89.4
88.1
93,4
80.4
76.3
_92.7
85.0
81.8
78.0
—
80.3
73.5
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
1.3
1-5
2-5
3.0
3.1
3.0
2.6
2.8
—
3.0
1.9
1.6
1.6
1-9
1.6
2.2
2.4
2.2
2.6
1-7
2.1
2.6
2.4
2.9
1.8
2.7
1,8
2.0
2.0
2.1
WPE
0.51
0.36
0.19
0.16
0.38
0.63
0.95
1.0
0.64
0.24
0.17
0,23
0.19
0.13
0.13
0.17
0.17
0.13
0.23
0.30
0-35
0.58
0.38
0.17
0.11
0.19
P.21
0.26
0.27
0.33
EPE
O.l4
0.15
0.12
0.11
0.16
0.17
0.23
0.26
0.21
0.18
0.20
0,15
0.13
0.13
0.15
0.14
0.12
0.11
0.23
0.23
0.20
0.17
0.16
0.23
0.20
0,18
0.24
—
0.26
0.24
% Removal
WPE
60.8
76.0
92.4
94.7
87.7
79.0
63.5
64.3
—
92.0
91.1
85.6
88.1
93,2
91.9
92.3
92.9
94.1
91.2
82.4
83.3
77-7
84.2
94.1
93.9
93.0
88.3
87,0
86,5
84.3
EPE
89.2
90.0
95.2
.9i^_
94.8
94.3
91.2
90.7
—
94.0
89.5
90.6
91.9
93,?..
90.6
.SQJL
95.0
95.0
91.2
86.5
90,5
93-5
93-3
92.1
88.9
93.3
86,7
—
87,0
88T6
MIXED LIQUOR
East
Plant
MGD
147.7
145.6
129.5
115.4
138.1
141.3
137-0
143.2
127.9
120.3
120.4
146.9
147.8
147.7
143.6
142.6
134.8
124.9
l4o.2
_13_8.2
.139 ..6. .
139.7
136.5
115-7 ,
113.7
134.5
144.3.
136.7
143.7
147.2
pH
WP
EP
Suspended
Solids mg/1
WP
2980
2960
3000
2910
2660
2730
^120
3210
3210
3120
2800
2700
2840
_2_96o
2610
3070
3240
3000
3150
3120
2950
3510
2950
2910
2940
_2900
2790
2J_9_0
2870
3030
EP
2990
2910
2850
2770
2700
3100
3430
3240
3340
3200
2560
2680
2840
2810
3080
3350
3270
2730
2870
3120
2960
3320
3340
3330
2870
2800
2930
2950
3130
3260
SDI
WP
1.10
1.04
0.98
1.02
1.03
1.03
0.93
0.88
0.83
0.98
1.11
l.lU
1.34
1.28
1.4l
1.22
1.19
1.08
1.18
1.22
1.14
i.o4
0.95
1.00
1.01
1.02
1.01
1.04
1.05
0.92
EP
1.12
1.02
1.00
1.06
1.07
1.01
0.95
0.94
0.92
1.00
0.96
1.27
1.27
1.36
1.10
0.87
0.93
1.08
1.09
0.97
0.95
0.81
0.64
oTBT"
0.94
0.98
0.97
0.79
0.84
0.80
-------
FLAM1 OPERATIONAL DATA MAY 1971
D
a
4-
u
e
i
2
3
4
s
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
2S
26
27
28
29
I 30
31
D
a
y
Pa
M
Tu
W
Th
Fr
RR
Ru
M
Tu
W
Th
Kr
Sa
Ru
M
Til
¥
Th
Fr
Sa
Su
M
Tu
¥
Th
Fr
Sa
Su
M
TOTAL PHOSPHORUS
mg/1 as P
ss
"LJL.
_5_JL
8.1*
6.2
1-5
7,6
I-?
JT-9
6.1
9.3
8,2
7.9
8.6
8.9
7.9
6.1
9.2
7-1
7-3
JLJL
7,6
7.B
_£JL
6,4
5,9
7-1
7.6
7.9
7-1
5.9
VPE
QJ3.Q.
o. so
°--2!
1.1
_LQ_
1Q_^
?,fi
_2_^3_
0.53
-PJi
_0ili
1.8
-5*01
2,8
2,8
O.U5
1.1
1.8
4.9
6,1
4,9
ILJO
IL5Q
JLJI
0.61
-O^SI
L
isJ-
4,4
0.58
0.44
_ULL2iM
EPE
J^^_
L^9__
0.71
0.60
0.84
JL-9JL-
_L,1
_LJL^
0.59
JLSL.
0.81
1.8
2.5
2.1
1.4
_P_i25_
0,59
0.65
— *U.a_=5— —
^U8_
i.^o__
a.79_
JLf3_
0,76
_0^5_8_
0.19
JLJi5_
0.48
0.35
0.23
i
% Removal
WPE
_aa.7_j
_9_U2_J
89.2
82.3
^LJ
_6JLJL
70 L9
21.. 31
_22^_Q
_23^3J
_IL. 2j
41.2.1
68.5
64.6
192. 6
88.0
_liL6
-SgvLJ
_Ifi*T.
_,3ii,
_^1,^_
22.* 4
_fi§I£
8Q.7
oo^o
8Q^J_
44.J_
_2iii_
12.5
^9474
EPE
_Z2~S_
66.7
91-5
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
?,6
2_0
?,0
90.3 2.1
89.4
88.0
84.7
65.8
_15.4
93, 7_
_82JlI
17971
uli.^
_I3^L_
_IL:JL_
89.7
91.7
,.91^
,^2^1-
T^ 3
L£2^_
884^_
_2Q*.2
87.1
_2lJ_
-^4_i5
_9_l^8
93.2
94.1
97.1
P,3
^>2
,2^0 '
i.a
2.0
2.3 I
^o_
2_ii_
12_.l
2«0
2.1
1.8
¥PE
0.20
n.i4
o,46
\SL,&L
^u3Q-
0.45
0.20
LOJJ.
0,11
LO^-25
0.37
0.28
^3A.
10.36
0,13
0,12
2-P ^0^66.
1.8 10.43.
2.0
2.3
2.4
2.2
2.3
1.7
0.25
0.29
O.l6
0.17
O.l4
0.39
l.b [0^20
2.0 |o.iT
2.5
0.21
2jJ_jOA5^
1.9
3,5
0,18
EPE
0.27
JUJL
0.21
SL.ZL
0.23
0.21
JLu£0_
0.20
0.18
^ui8_
0.19
0.21
0.28
0.24
0.28
JLJJL
0.25
0.21
0.18
ThiS
0.14
0,19
CLTL
0.19
oTIB
0.13
o.i4
0.16
0.13
0.12 0.09
0 • jJEELJLL
% Removal
¥PE
92^3
93-0
76.0
£a^5_
_87_0_
J3^..
90.0
22^.
94.5
84.8
87.7
87.8
83.8
82.0
93.8
L2i_3_
r767iT
76.1
iL.l_
87.4
93.3
EPE
89.6
91.0
89.5
M^L
^CLJL
90.5
90.0
88,9
91.0
,^2,^2,
93.7
90.9
86.7
88.0
86.7
L89-4J
91.1
_8£L3_
91.0
^92.2
_£4i2_
92._3_L2lA.
93.9
77.1
87.5
93.0
91.6
£4.4
21-8
93.7
9_4i9_
92.6
88.8
88.8
93.5
94.4
-2ibi-
9^.^
95.3
96.6
East
Plant
MOD
_1?JL^_
_n^£_
_13^S_
_J2^9_
,I3S,j3..
_13J.^6_
.j^a^
116.5
107.4
128.1
137.5
130.0
133.3
128.6
116.8
101.4
127.1
131.3
133.0
132.2
133.2
116 . 5
102.5
|_I4~4.0
138.3
130TT"
13^3_
13k, 0
111.9
91^J_
108.8
MI
pH
V7P
7,0
6,9
1,1
7,1
ft
EP
XED LIQUOR
Suspended
Solids mg/1
W
_28lp__
264o
2630
_2_8JO_
3010
2910
_30SO_
2960
2780
2590
2810
2860
2780
2880
2910
_2J10___
2630
2820
__L2120_
6,9
6,9
7,?
7,1
7,0
7-1*
2870
2830
EP
_3_26o
2880
SDI
¥P
0._26
0..97
2860 ] 1.01
2^80 j
3220
3250
3340
3380
2900
2770
2820
2900
2970
3130
_1300_
2810
12.640
3020
2980
3110
3180
2940 3230
2900
2360
2660
|2930~
loScT"
3150
3120
IFpBo"
2420
1 ., 02
o^23_
_P_ilP
0.84
0.80
oTsHT"
i.o4
1.07
JLJ2i_
i._Qi_
iTool
o._9_4_
0.94
i.o4
1.02
1.00
0.90
0,98
0.99
_273p_J1.03
_28lp__jl.l4
313£jl.28
3270 IT7IT
3240 ]1.15
EP
^83_
^89 ]
o^i 1
0.89 j
0.82 1
OtIL.
0.66
0.66
0.85
0.80
0.99
JL£2_.
rJltSL-
0.£4_
P,l4...
0,82
1.00
£i2I__
0.80
0.73
P^li_
-------
PLANT OPERATIONAL DATA
JUNE 1971
D
a
t
e
1
2
3
k
5
6
7
8
9
10
11
12
13
1U
15
16
17
18
19
20
21
??
23
2k
^
26
27
28
29
30
31
D
a
y
Tn
w
Tin
Fr
Sa
Su
M
TU
W
Th
Fr
Sa.
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Ra
Ru
M
Tu
W
TOTAL PHOSPHORUS
mg/1 as P
ss
7,3
7.1*
6.9
7.8
6.6
5-5
7.8
7-3
7-3
8.0
1-9
6-3
^
8.1
7-8
7.?
7.2
6.0
5.0
3.7
7,3
6,5
6.8
7.0
6.1t
6.1*
5.5
8.9
6.8
6. U
WPE
0,65
0.1*9
U.I
0.4l
0.30
0.38
0.36
0.37
0.28
0.33
3.2
0.62
0.32
0.90
0.67
0.58
l+.l
2.6
0.58
0.1*3
0.68
0.85
0.68
0.1*9
0.50
0.29
0.1*8
1.0
0.68
0.75
EPE
0,31
0.85
1.7
2.5
0.66
0.76
0.36
0.36
0.37
0.1*9
0.32
0.23
0.29
0.28
0.32
0.30
0.91
0.92
0.1*6
0.16
0.3l*
0.29
0.23
0.21
0.21
0.22
0.28
0.15
0.20
% Removal
WPE
91,1
93.1*
1*0.6
91*. 7
95.5
93.1
95.1*
91*. 9
96.2
95.9
59.5
_9_0.2
9l*. 1
38.9
91.1*
92.3
1*3.1
56.7
88.1*
88.1*
90.7
86.9
90.0
93.0
92.2
95.5
91.3
88.8
90.0
88.3
EPE
95,8
88.5
75.1*
67.9
90.0
86.2
95.1*
—
95.1
95.1*
93.8
91*. 9
95.7
96.1*
96.1*
95.7
95.8
81*. 8
81.6
87.6
97.8
91*. 8
95.7
96.7
96.7
96.7
96.0
96.9
97-8
96.9
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
3 1*
•^.?
?.?
P,l
2.0
1.6
3,8
2.1
1-9
1.8
1.8
1.2
0.60
2.3
2-5
1.2
1.1*
1.0
1,1
1.2
?,6
2.0
1.8
2.0
1.1*
1.6
1.8
2.1
1.9
1.9
WPE
n.liO
o ?6
o.?5
0.16
0.12
0.08
0.16
0.20
0.15
0.11
0.18
0.10
0.08
0.29
0.20
0.16
0.10
0.10
0.08
0.07
JLu£L
0.17
0.1^
0.11
0.10
0.10
0.12
0.63
0.30
0.17
EPE
n.i?
0 ?1
O.?l
0.21
0.18
0.15
oai*_
__
0.16
0.13
0.12
0.11
0.11
O.ll*
0.12
0.13
0.11
0.12
0.11
0.10
O.ll*
O.ll*
0.11
0.09
0.11
0.09
0.12
0.13
0.10
0.10
% Removal
WPE
88 ?
01 Q
Rq.l
Q2.1*
91*. o
95.0
9l*. 3
90.5
92.1
93. _9
90.0
91.7
86.7
87.1*
92.0
86.7
92.9
90.0
02.7
91*. 2
91. Q
,91^i
92.8
9^-5
92.9
93-8
93-3
70.0
81*. 2
91.1
EPE
o£ ^
Q^i h
qp.o
90.0
'^LJL
90.6
95.0
__
91.6
92.8
93.3
90.8
81.7
93-9
95.2
-8JL.2
92.1
J8.6
00.0
01.7
OU.6
93.0
93.9
95-5
92.1
9l*. 1*
93-3
93.8
9^.7
91*. 7
MIXED LIQUOR
East
Plant
MGD
il*o.B
i 16 ?
i ?6.7
ll*0.7
125.2
117.7
138.7
132.1
133.3
135.1*
139.7
13l*. 1
113.1*
131*. 7
131*. 7
ll*0_^5
ll*6.9
152.8
151 .0
131.6
ll*6.8
155,1*
152.8
151*. 3
150.8
12l*.0
121.6
ll*l*.9
1U6.0
ll*6.l*
pH
WP
7 3
6 9
7,?
7 0
7- 0
7.0
7-2
6,9
6,8
7 1
7.2
__.
7.2
7-1
6.8
6.9
6-9
—
—
7.6
7.0
7.0
7.0
6.9
—
—
6.9
7.0
ff.O
EP
7 ?
1 1
7,1
6 Q
7.0
7,0
7-2
6.8
6,8
6 8
6,9
_ —
_ —
7.3
7.0
6.8
6.9
6.8
—
—
7-1
7.0
7.0
7.0
7.0
__
—
5.9
5.9
5.9
Suspended
Solids mg/1
WP
2750
3170
3310
3130
3030
2780
2700
3060
3060
3350
3370
3320
3110
2930
2950
3180
3150
29^0
2800
2620
2780
2890
2890
2920
2610
2680
251*0
2290
2l*l*0
2530
EP
_321H_
3250
3290
3390
3220
2530 '
2970
2990
3600
3610
3500
31*1*0
3320
3130
3200
3070
3030
3ll*0
3190
2970
2770
2850
2900
3010
2920
2950
29l*0
2600
2660
2530
SDI
WP
l.ll*
If 07
1,13
1.12
1.09
1.10
1.22
1.10
1.19
1.18
1.15
1.06
1.16
1.20
1.22
1.10
1.07
1.07
1.18
1.28
1.33
1.3l*
1.32
1.23
1.18
1^!5__
1.21
1.19
1.08
0.97
EP
1.08
1.16
1,05
1.08
1.08
1.21
1.19
1.19
1.26
1.12
1.11
1.15
1.17
1.31
1.33
1.2l*
1.25
1.19
O6~~
1.26
1.1*0
1.38
1.38
1.2l*
1.17
1.26
1.19
1.09
L.08
0.95
-------
PLANT OPERATIONAL DATA
JULY 1971
D
a
t
e
1
2
3
1+
5
6
7
8
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
2k
25
2£
27
28
29
30
31
D
a
y
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
TOTAL PHOSPHORUS
mg/1 as P
ss
7,6
8,3
6.8
5,1+
7.0
8.9
7.8
*,k
7.2
6,?
5.^
7.3
6.1*
7-1
7.3
7.1+
8.0
5.1+
7.1+
7.1+
6.8
9.1
6.1+
6,8
5.2
7.9
7,B
7.8
0,1
7.?
7.2
WPE
0.56
0.58
0.1+8
o.i+o
1.1+
2.3
0.91+
2,6
1.1
2.5
0.1+7
1.3
_ij-3_
0.78
0.66
0.6l
0.1+7
0.1+9
O._8j
0.7£
0.62
0.67
0.55
0,1*3
0,1*1*
1.1
1.1
1.0
0.73
0.59
0.69
EPE
0.20
0.70
0.1+8
0.1+1+
0.37
o.i+o
0.20
0.17
0.28
0.21
0.19
0.16
0.97
0.93
2.6
0.68
1.0
0.33
0.32
0.31+
0.32
0.27
0.33
0.32
0.55
0.35
0.25
0.26
0.26
0.31+
% Removal
WPE
92.6
93.0
92.9
92.6
80 .JL
7l+. 3
87.9
51.9
81+. 7
59.7
91.3
82.2
79.7
89.0
91.0
91.8
91+.1
90.9
88.5
89.5
90 .j?
92.6
91.1+
_9_3_il_
91.5
86.1
85.9
87.2
91.0
91.8
90.1+
EPE
97.!+
91.6
92.9
91-9
9k. 1
95.5
97-*+
96.9
96.1
96.6
96.5
97.8
81+. 8
86.9
—
61+. 9
91.5
81.5
95.5
95.7
95.0
96.5
95.8
-2^1^.
93.8
93.0
95.5
96.8
96.8
96.1+
95.3
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
2.1
2.9
2^3-A
1,6
3+2^
3,0
2.0
1.1
1,8
1,1+
1.2
*t,2
3.0
2.7
1.5
2.0
1.6
1-3
1.8
1-9
1.7
?,1
Q.9&
0.92
1.0
2.6
2.5
2.1
2.0
2.2
2.1
WPE
0.19
0.21+
0.12
0.18
,LJ2_
1.5
0,51
_Q^2H
0.15
0.10
0.12
0.95
0.69
0.21
0.22
0.25
0.11+
0.12
0.31
0.33
0.21
.0.10
JLJJL
0.12
0.11+
0.63
0.58
0.1+7
0.21
0.19
[0.20
EPE
0.12
0.22
0.11+
0.13
0.28
0.33
0.13
0.11
JLJX
SLUL.
0.09
0.13
0.16
0.15
—
0.16
0.15
0.15
0.12
0.13
0.15
0.1-5
0.13
12*11
o.iU
0.19
0.16
0.13,
0.11
0.12
0.16
% Removal
WPE
91.0
91-7
91+.8
88. R
68.8
50.0
7!+., 5
_&L_8
91.7
92.9
90.0
77.1+
77.0
92.2
85.3
87.5
91.3
90.8
82.8
82.6
87.6
. 95.2
__8JLj£
87.0
86.0
75.8
76.8
77.6
89.5
91.1+
90.9
EPE
9l+. 3
92.U
93.9
91. q
'91.3
89.0
93.5
90.0
93.9
92.1
92.5
96.9
9l+. 7
-£i+Aj
—
.22.0
90.6
88.5
93.3
93.2
91.2
92.9
8£J1
85^5_
86.0
92.7
93.6
93.8
91+. 5
9l+. 5
92.1+
MIXED LIQUOR
East
Plant
MOD
11+2.6
11+1+.2
121.7
106.5
108.0
11+0.1+
150.6
151.2
155.2
131.1+
121+.0
ll+l+.l
11+1.9
11+3.6
11+5.1
11+3.2
125.6
120.7
135.2
137.8
J.fcL.6
139.1+
135.6
..iiaa
110.8
130.3
130.1
129.9
131 . 6
132.7
109.8
PH
WP
7,1
—
—
7,1
7,1
7,2
7.1
7-3
—
—
7.1+
7-1
7.2
7.2
6.8
—
—
7.2
7.1
7.0
7.1
7.1
—
—
7.1+
7.0
7.2
7-1
7.0
—
EP
7,0
—
—
—
7.0
7.0
7,2
7-1
7-3
__
—
7.3
7.0
7-1
T.I
6.9
—
—
7.1
7.1
7.1
7.0
7.0
—
—
7-1
7.0
7.2
T-o
6.9
—
Suspended
Solids mg/1
V7P
261+0
2560
251+0
2380
2150
2270
251+0
2520
2510
2520
2600
231+0
2500
2780
2££o
__252IL
Z61+0
21+50
2360
__2£00_
2690
271+0
2780
2590
21+30
2160
2190
251+0
2710
21+1+p
2580
EP
2690
2570
_2720
2690
21+1+0
21+20
2580
2550
21+70
2610
2860
2650
2590
2930
r_29_OJL_
281+0
3050
_221Q__
2689
2650
2660
2810
2800
2880
2980
2630
267_0
2620
2700
2910
2930
SDI
WP
0.85
0,58
0.72
0.71
0.90
0.92
0.79
0.82
0.82
0.80
0.87
1.02
0.93
0.91
_£L&3
0.79
0.89
lt_9P
1,20
_j,o£
1.12
1.17.
1.12
1.21+
1.39
1.1+8
1.52
1.1+1
1.31+
1.39
1.68
EP
0.83
0.77
0.70
0.79
0.86
0.88
0.81
0.81*
0.85
O.J5_
0.77
Jlu25_
0.96
0.91+
0,91
_QJil
0.91
0.99
1,22
1.16
1.26
1.21+
1.27_
1.27
1.1+1
1.1+3
1.1+0
1.38
1.1+1
.J..33
1.37
-------
PLANT OPERATIONAL DATA
AUGUST 1971
D
a
t
e
1
2
3
1+
5
6
7
8
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
2^
25
26
27
28
29
30
31
D
a
y
Su
M
Til
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Vr
fin
Pll
M
Til
TOTAL PHOSPHORUS
mg/1 as P
ss
5,8
8,6
7.8
8.5
8.8
9.0
7-9
7-1
8.7
7-1
7.3
8.0
6.6
5.3
5.8
7.6
7.3
6.7
7,6
jS,j8_
7,1
6,1*
8.2
6.0
7.0
8.8
7.3
7.1*
6.1
8.7
7.0
WPE
1.2
2.2
1.9
1.2
1.0
1.1*
1.1*
2.7
3.2
2.2
1.3
1.1*
0.91
0.81
1.6
2.1*
1.2
0.79
0.83
a. 95
0.73
1.5
1 ,5
i.l*
0.55
0.56
0.89
0.68
1.3
2.3
1.3
EPE
0,1+8
1.1
0.75
0.56
0.77
0.92
0.92
1.1*
1.3
0.83
0.57
0.63
0.51
0.60
0.69
0.89
0.1*5
% Removal
WPE
79.3
71*. 1*
75.6
85.9
88.6
81*. U
82.3
62.0
63.2
69.0
82.2
82.5
86.2
81*. 7
72.1*
68.1*
83.6
0.33 1 88.2
0.72
0.87
0.1*0
0.1*7
0.53
0.36
0.37
0.30
0.1*1*
0.1*3
0.1*8
0.71
0.31
89.1
86.0
89.7
76.6
81.7
76.7
92.1
93.6
87.8
90.8
78.7
73.6
81.4
EPE
91.7
87.2
90.1*
93.1*
91.3
89.8
88.1*
80.3
85.1
88.3
92.2
92.1
92.3
88.7
88.1
88.3
93.8
95.1
QO.S
87.2
91*. 1*
92.7
93.5
91*. o
91*. 7
96.6
91*. o
9l*. 2
92.1
91.8
95.6
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
1,6
3,0
2,8
1,8
2,6
2,9
3.1
?,6
3-1
2-3
2.1
2.2
1-5
1.5
1-7
2.0
1.1*
1-5
1.3
1.5
1.8
1.6
3,0
1-5
1.9
3,],
1,6
2.2
1.9
2.1*
1.3
WPE
Q.63
1.5
1.0
0.1*8
0.1*1*
0.67
0.7l*
1.6
2.0
1.6
0.62
0.57
0.56
0.51
1.3
1-9
0.75
0.1*2
O.Ul
0.1*1
0.1+1
1.1
1.2
0.9l*
0.29
0,28
0,1*9
0,32
0.89
1.9
1.1
EPE
0.28
0.65
0.37
0.26
0.30
0.38
0.1*9
0.99
1.0
0.51
0.32
0.28
0.23
0.23
0.1*7
0.6l
0.21*
0.19
0.32
0.1*1
0.20
0.29
0,37
0.22
0.18
0.19
0,22
0,18
0.36
0.57
0.19
% Removal
WPE
60.6
50.0
61*. 3
73.3
83.1
76.9
76.1
38.5
35.5
30.1*
70.5
7l*.l
62.7
66.0
23.5
5.c
1*6.1*
72.0
68.5
72.7
77.2
^31.2
60. C
..37,::
81*. 7
91. 0
69.it
85,5
.^1*2
20.8
15.1*
EPE
82.5
78.3
86.8
35.6
88.5
86.9
81*. 2
61.9
67.7
77.8
81*. 8
87.3
81*. 7
_81*VL
72.1*
69. 5_
82.9
87.3
75.1+
72.7
88.9
81.9
87.7
85-3
90.5
.93.9
36,3
91.8
81.1
76.3
85,1*
MIXED LIQUOR
East
Plant
MGD
113.6
135.5
129.9
128.8
128.8
130.9
111.7
97.1*
133.7
133.6
132.2
133.1
ll*l*.0
135.8
106.0
133.2
132.1*
133.9
136.7
11*3.8
117.2
115.0
133.8
136.3
139.7
136.0
138.7
116,1*
98.9
133.9
133.1*
pH
WP
__
7-0
7.0
7fl
7.0
__
—
—
—
7-3
7-3
7.3
7.3
—
—
7-3
7.2
7,2
7,2
7.2
— _
7,3
7-1
7.2
7.2
7.2
—
—
7.1
7.2
EP
__
6.9
6.9
7.0
7-1
—
—
—
__
7.2
7-1
7-2
7.2
—
—
7.2
7.1
7,1
7,2
7,1
__
7.2
7.2
7.1
7.1
7.1
—
—
7.0
7.0
Suspended
Solids mg/1
WP
2190
1990
2070
2380
2350
21*80
281*0
2630
2070
2060
21*70
2760
2760
2720
2360
2210
2370
261*0
EP
26lp__
223Q__
231*0
2520
2800
281*0
281*0
21*90
2l*70
251*0
2760
2730
2540
2720
eLZkP_
2570
L5J30
?630
271*0 IP 810
2680 fe850
2790
2320
2290
2720
2750
2700
2750
271*0
2510
2530
2560
?9l*0
'690
?300
?390
?560
?520
?7l*0
?870
'910
B^o
?670
SDI
WP
1.96
2.2l*
_2-58_
EP
1,89
2,23
2.55
2.2l* J2.36
2.37 12.21
2.1*7
2.12
2.18
2.25
1.90
1.80
1.68
1.1*5
lj.6l
1.79
1.63
1.69
1.58
1^50
1-3JL
1.21
1.32
1.3J?
1.31*
1.36
1.18
1.17
1.16
1.3l*
1.1*8
1.1*8
2.01
2.02
2.09
2.30
1.78
1.77
1.51*
1.31
1.1*9
1.1*9
1.59
1.57
1.52
l-32_
1.15
1.26
1.31
1.33
1.25
1.21
1.15
1.05
1.12
1.22
1.1*1
1.36
-------
i'LJUIT Um.KATlUWAi, DATA SE_PTEJffiER 1971
D
a
t
e
1
2
3
U
5
6
7
8
9
10
11
12
13
lU
15
16
17
18
19
20
21
22
23
2**
2?
2£
27
28
29
30
31
D
a
y
w
Th
Fr
_£a_
Su
J*
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
TOTAL PHOSPHORUS
mg/1 as P
S3
7,
7.
8.
6,6
5.7
7.8
8.1
7.U
7.8
7-3
7.7
6.6
8.1*
7.5
7.1
8.0
7.5
7.3
U.8
8.6
7,8
7.3
7.6
10.9
8.7
5.8
7-9
7-2
7.U
9.9
WPE
0.62
1.1
0.59
0.50
1.2
2.2
2.5
1.2
0.66
0.56
0.55
0.63
2.6
l.U
1.1
0.86
0.79
0.90
1.7
2-JLJ
l.U
1.5
1.3
0.79
0.75
1.1
1.5
l.U
l.U
1.9
EPE
0.21
0.17
0.27
0.28
0,39
1.8
0.81
0.3!+
0.31
0.2U
0.23
0.1+2
0.71
0.3U
0.31
0.3U
0.31
0.3U
O.U5
0.73
0,55
O.U5
0.36
0.52
0.60
O.U8
0.53
0.50
0.1*7
0.58
% Removal
WPE
Q1.6
85.1
93.3
92.1*
JQ,9
71.8
69 ..1 .
83.8
91.5
92.3
92.9
90.U
J>9.0
81.3
81*. 5
89.3
89.5
87.7
6U. 6
68.6
J}2^jL,
-UL.-5_
82.9
92.8
_9JLiU_
81.0
81.0
80.6
81.1
80.8
EPE
97.2
97.7
96.9
95.8
93.2
76.9
90.0
95.1*
96.0
96.7
97.0
93.6
91.5
95.5
95.6
95.8
95.9
95.3
90.6
91.5
92. 0
93.8
95.3
95.2
93.1
91.7
93.3
93.1
93.6
9U.1
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
2.2
1-8
1-7
2.3
0.86
2.6
2.3
1.9
1.9
1.2
2,2
2,7
[U_
2.5
1.6
P,l*
2.5
2.5
1.6
3.1
2J5
2.1
2.0
2.1
2.0
?.o
?.7
2.0
2.3
2.9
WPE
£L29_
0.1*9
0.39
0.33
0.58
1.8
2.0
0_._9_6_
0.31
0.26
0.35
0.1*9
2.2
1.1
0.71
0.35
0.1*5
0.38
0.1*0
1.9
0.93
0.95
0.77
0.38
0.35
0.56
0.7^!
0.80
0.73
1.2
EPE
0.15
O.lU
0.15
0.15
0.22
1.2
0.63
0.32
0.17
0.15
^ja.
£LJ1P_
Q_,_50
0.21
0.17
0.17
0.2U
0.19
0.31
0.60
0.29
IO.JJL
0.17
O.lU
0.12
0.20
0.29
0.20
0.17
0.17
% Removal
WPE
86.fi
72.8
77.1
85.7
32-6
30.8
13.0
Jiiii
83.7
78.3
81*, 1
81.9
1*0.5
56.0
55.6
85.1*
82.0
81*. 8
_7_5_^0,
38.7
62.8
_SU-8
61.5
81.9
82.5
7?.o
_L3^0_
60.0
68.3
58.6
L EPE
Q3.2
92.2
91.2
93-5
71*. 1*
53.8
72.6
83.2
91.1
87.5
9l*. 1
88.9
86.5
91.6
89.1*
22*3..
_29_A-
,9JLJ+_
80.6
80.6
88. U
90.0
91.5
_93.3
9U.O
90.0
,aa.v
90.0
92.6
9l*. 1
East
Plant
MGD
11?. 0
lUO.l
11*5.2
131.0
108.8
101.1
13U.1
132.2
135-5
J^8.3
107.1
100.2
135.1
131.2
13U.5
131*. 9
121*. 7
117.3
126.2
129. U
128.8
130.5
131.0
130.1
122.2
115.9
136.1
13U.5
132.5
131*. 5
MI
pH
WP
7,?
7-"1
7-1
—
—
— .
7-9
7.0
—
—
—
—
6.9
—
7.1
7.1
7.2
—
—
7.0
7.1
6.9
7.0
M
— •
—
r-2
r.o
r.o
3.9
EP
7 1
7 n
7.1
—
—
—
7.8
7-1
—
—
—
—
6.9
—
7.1
6.9
7.0
—
—
S.8
b.9
3.9
M
r.o
—
—
r-i
r.o
3.9
3.9
XED LIQUOR
Suspended
Solids mg/1
WP
2570
2670
2770
2730
21*50
2070
1970
2130
2510
^25-OQ
2750
231Q
2i£o
_£29J2_
2660
261*0
_26lO
261*0
2290
2120
^2370
.2510
2690
2660
2980
2710
21*30
21*80
2570
261*6
EP
_2£ZP
2700
23JO
2780
261*0
2520
2250
2520
2610
2600
2790
28^0
2530
2l*6o
_2I20_
279Q
-£8_7_0_
2900
21+30
2290
2360
21*90
2790
2920
3070
27UO
2560
2560
2800
2750
SDI
WP
_lA9_
1.21
Ijl9_
1.25
1.1*1
1.57
1.52
1.1*8
1.1*1*
l-35_
_L^38_
__L.55_
1.62
^-jMuSO.
1.1*5
.1.38
Ju2S
1.J2
0^
_i^2_
Ll^2_
_i^29__
"l°.36~
1.62
l.§9_
J^TL
1.65
1.1*9
EP
1.39
-Ui
-iJJ.
1.22
1.31
1.51*
1.1*2
1.38
1.1*0
_j_Ji7_
1,1*1*
_-UiL
J^te
^JiJ_
_^s£
^L^L-
-JU21.
1,33
.J,^5_
..UM.
_1^£5_
.iJia.
1-.40_
1.1*8
l.j*J_
— --- — i —
IJii
_i^9J_
1.88
.J^I2_
l^ST
-------
PLANT OPERATIONAL DATA OCTOBER 1971
D
a
t
e
1
2
3
4
5
6
7
8
9
10
n
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
2£
27
28
29
30
31
D
a
y
Fr
Sa
Fll
M
Til
W'
Th
Fr
Sa
Su
M
Tu .
W
Th
Fr
Sa
Su
M
T
W
Th
Fr
Sa
Su
M
T
W
Th
Fr
Ra
Ru
TOTAL PHOSPHORUS
mg/1 as P
ss
9.0
8,0
5.1
9,7
9,3
7-1
ll.l
8.0
7.2
6.4
8.4
8.0
7.2
7.1*
7.6
7.3
6.8
9,?.
6,6
7.0
6.7
7-6
7-7
5-3
7-7
7.8
7.3
7.8
8.0
7.5
6.9
WPE
1.5
0.92
1.8
1.9
2.3
0.91
1.0
0.55
0.50
1.3
2.7
1.4
0.71
1.3
0.92
O.H9
0.66
1,6
2.7
0.55
1.3
1.3
0.79
O.Ik
1-7
1.4
1.1
3.5
4.2
0.89
0.81
EPE"
0,58
0.69
0.66
0.92
0.46
0.33
0.24
0.29
0.46
—
0.74
0.38
0.32
0.27
o.4o
0.52
0.32
0.1*1
1.3
0.48
0.83
0.74
0.84
0.68
1.3
0.4l
0.34
0.33
0.72
0.52
0.78
% Removal
WPE
83,3
88. 5
64.7
80.4
75.3
87.2
91.0
93.1
93.1
79.7
67.9
82.5
90.1
82.4
87.9
93.3
90.3
82.6
59.1
92.1
80.6
82.9
89.7
86.0
77.9
82.1
84.9
55-1
47.5
88.1
88.3
EPE
en. 6
91.4
87.1
90.5
95.1
95.4
97.8
96.4
93.6
—
91.2
95.3
95.6
9_6.4
94.7
92-9
95.3
Q5.5
80.3
93.1
87,6
90.3
89.1
87.2
83.1
94.7
95.3
95.8
91.0
93.1
88.7
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
1,7
?,6
1.6
3.6
3>
2.5
2.3
],6
2.3
2.2
3.1
2.2
1.9
2.5
1.8
2-3
1.4
2.4
1.0
1.5
1 .3
1.8
1,4
1,4
2.3
1.9
1.5
1.2
1.6
1-7
1.6
WPE
0.74
0L28
1.1
1.3
2.0
0.56
0.71
0.35
0.28
0.52
2,4
1.2
0.43
0.72
0.4l
0.30
0.4l
1.4
0.65
0.24
0.15
0.24
0,18
0,26
1.2
0,82
0.50
0.28
0.46
0.29
0.35
EPE
0.18
0.21
0.41
0.35
0.34
Q.20
0 14
0.17
0.17
__
0.72
0,34
0.26
0.16
0.17
0.16
0.18
0.29
0.38
0.14
0.17
0.17
0,15
0.18
D.29
3,19
D.14
D.14
0.14
10.18
3.15
% Removal
WPE
56.5
89.2
31.3
63.9
41.2
77.6
69.1
78.1
87.8
76.4
22.6
45,5
77.4
71.2
77.2
87.0
70.7
41.7
35.0
84.0
8,8.5
36.7
_ax^L
81,4
47.8
56,8
66.7
76.7
.11*3.
82.9
78.1
-EPE
89.4
91.9
74.4
90.3
90.0
92.0
93.9
8g.4
92.6
— ,—
76.8
84.5
86.3
93.6
90.6
13_._0
87.1
87.9
62.0
90.7
86. Q
Q0.6
89.3
87.1
87.4
90.0
90,7
88,3
91.3
89.4
90.6
MIXED LIQUOR
East
Plant
MGD
131.8
113.8
114.3
112.2
124.2
123.0
11Q.8
117.3
103.1
92.4
119.5
119.2
123.0
124.7
126.8
107.0
94.9
125.4
139.5
139.1
140.5
133.5
131.2
128,2
128.3
129.9
132,4
132.3
137.4
120.0
95.4
-PH
WP
f\ P
7-0
7,0
7,1
7 1
7,1
___
— _
7.2
7rfi
7.0
6.9
—
—
7.3
7.3
7.2
7.0
—
—
7.2
7.1
7-1
7.0
7,1
—
—
EP
fi F
6,c,
7i<"
7,C
7 f
7,1"
_ —
__
7.1
7.r
6.9
7.0
—
—
7.3
7.2
7.1
7-1
—
—
7.1
7.1
7.0
7.0
7,2
Suspended
Solids mg/1
WP
2420
2410
?000
1930
2420
.2650
_2780
2420
2430
2480
2170
2500
2490
2720
2800
2940
3000
2750
2880
2870
2920
2800
2780
—
2550
2570
2660
3010
2890
2860
3040
EP
2630
2620
2340
2150
2320
2500
2750
2730
2740
2710
2420
2690
2720
2780
2730
2980
2770
2690
2830
2930
2990
3090
2860
2750
2790
2840
2800
2960
3130
3380
3070
SDI
WP
1.44
1.48
1..66
1.75.
1.70.
1.29
1.19
1.06
0.95
1.11
1.17
1.14
1.04
0.^1
0.81
0.74
0.88
0.93
0.94
1.05
1.03
—
0.96
1.02
1.10
1.11
0.98
0.82
0.78
0.81
0.97
EP
1.43
1.53
1.58
1.68
1.49
1.29
1.13
1.02
1.00
1.16
1.14
1.12
0.88
0.8l
0.70
0.57
0.78
0.91
0.96
0.90
0.80
—
0.92
1.05
1.01
1.05
0.92
0.77
0.80
0.77
0.94
-------
FLAM1 OPERATIONAL DATA
NOVEMBER 1971
D
a
t
e
1
2
3
It
5
6
7
8
9
10
11
12
13
ll*
15
16
D
a
y
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
17 |W
18 |Th
19
20
21
22
23
2k
25
26
27
28
29
30
31
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
TOTAL PHOSPHORUS
mg/1 as P
ss
6,8
6.3
8.0
7,6
8,3
7.6
6,7
8.2
7.5
6.6
8.2
8.6
7-5
6.9
9.8
Q.k
8.0
7-9
8.6
8.6
7.8
9.6
8.3
9A
6.2
6.1
7.0
6.3
5-7
7.2
WPE
] .2
0.6k
0.61
0.60
0.59
0.97
0.85
0.99
0.95
0.20
0.68
0.69
_0_i5_£
0.1*0
3.7
2.0
0.58
0.79
0.50
0.1*51
0.85
0.80
0.92
0.69
0.68
0.98
0.76
1.5
2.3
l.k
EPE
0.1*?
0.2Q
0.26
0.2l*
0.26
0.2l*
0,33
0.37
0.31
0.1*2
0.22
0.29
0.19
0.23
0.29
0.33
0.1*5
0.70
0.70
0.26
0.58
0.59
0.1*0
0.38
0.1*5
0.1*5
0.1*9
0.51
0.52
0.59
% Removal
WPE
RP.li
89.8
92.1*
92.1
92.9
87.2
87.3
87.9
87.3
97.0
91.7
92.0
_92.1
9l*. 2
62.2
76.2
92.8
90.0
91*. 2
9l+. 8
89.1
91.7
88.9
92.7
89.0
83.9
89.1
76.2
59.6
80.6
EPE
93.8
9S.li
96.8
Q6.8
96.9
96.8
95.1
95.5
95.9
93.6
97.3
96.6
97.5
96.7
97-0
96.1
91*. 1*
91.1
91.9
97.0
92.6
93.9
95.2
96.0
92.7
92.6
93.0
91-9
90.9
91.8
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
1.0
1,1
l,k
l,k
1.5
1.6
1.3
2.0
1.6
1-7
1.9
2.1
1-9
2.8
3-7
1.1*
1.5
1.0
2.3
2.0
1.2
2^5_
1.9
2.1
0.90
1.3
1.6
1.9
2.1
2.0
WPE
0.81
0.30
0.21
0.20
0,20
0.17
0.23
O._5j±.
0.3l*
0.12
0.26
0.30
0.19
0.15
0.1*5
0.51
0.35
0.26
0.17
0.15
0.12
0.33
0.26
0.16
0.20
0.19
0.28
1.0
1-5
0.87
EPE
0.21
0,13
0.11
0.11
0.13
0.12
0.20
0.25
O.ll*
0.25
0.12
0.18
0.11
0.11
0.17
O.ll*
0.12
0.12
0.13
0.12
0.13
Q^l£
0.13
0.08
0.13
O.ll*
0.18
0.20
0..2JL
0.17
'. _
% Removal
WPE
19.0
72.7
85.0
85.7
L 86 J
89.1*
82.3
73.0
78.8
92.9
36.3
85.7
90.0
91*. 6
87.8
63.6
76.7
EPE
79.0
88. p
92.1
_92O^
'91.3
92.5
81*. 6
87.5
91.3
85.3
93.7
91.1*
9l*. 2
96.1
95.1*
90.0
92.0
7l*. 0[ 38.0
92.6| 91*. 3
92.5| 9l*. 0
90.0
H&6-J1
86,3
^r-SZA
77.8
85.1*
82.5
1*7-1*
28.6
56.5
89-2
93.6
93.2
96.2
85.6
89.2
88.8
89.5
88.6
91.5
MIXED LIQUOR
East
Plant
MGD
138.8
133.9
131.1*
130.0
120.8
107.0
99.8
127.6
127.8
127.2
123.9
123.7
100.9
90.0
123.7
125.1*
129.5
131.7
131.5
102.6
97.9
123.8
126.2
121.5
90.9
130.0
108.8
111*. 7
131*. 6
13k. 3
pH
WP
7-2
7.2
7.2
7-2
7.2
—
—
7.2
7.1
7.0
—
7.2
—
—
7.3
7.1
7.1
7-3
7.2
—
—
7.2
7.1
7.0
—
7.1
—
—
7,?
7-9
EP
7.c
7.1
7-1
7.2
7-i
—
—
7.1
7.1
7.0
—
7.1
—
—
7.2
7.1
7.1
7.1
7.1
—
7-1
7.0
6.9
—
5.9
__
7.0
6,9
Siispended
Solids mg/1
WP
251*0
261*0
2910
3050
3120
3220
3220
2850
2960
3310
3560
3710
3730
3670
3780
1*110
1*020
3950
EP
2780
2790
2930
3090
3090
3190
3010
291*0
3030
3200
3280
321*0
3560
3790
3630
377cP
3620
3780
1*060 | 3690
l*ll*0
1*010
3910
391*0
380Q
3630
3270
3230
279Q
2110
2120
i-
3900
3690
3U60
3710
3700
3780
J3l*30
2990
261*0
21*90
2610
SDI
WP
1.0k
1.16
1.16
l.ll*
1.08
1.06
1.05
1.13
1.13
i.oU
0.96
Or 7.0
0.72
i_i*03_
1.02
0.93
1.02
0.96
0.80
0.9k
l.lk
1 .25
1,17
1*21*
1.26
1.38
1.50
1.59
1.66
1.80
EP
0.98
1.15
l.ll*
l,i_13
1.09
0.97
1.05
1.11
1.01+
0.87
1.00
J..03
0.91
1^07
1.05
l.ll*
1.19
0.96
1.02
1.13
1.28
1 . ?9
1, 33
1 .28
1.28
1.37
L.l*6
1.66
L.68
L.95
-------
PLANT OPERATIONAL DATA
DECEI4BER_12I1
D
a
t
e
1
2
3
4
5
6
7
8
9
10
11
12
13
Ik
15
16
17
D
3,
y
w
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
18 |Sa
19
20
21
22
23
2U
25
261
?7
?8
29
30
31
Su
M
Tu
W
Th
Fr
Sa
Ru
M
Tu
W
Th
Fr
TOTAL PHOSPHORUS
mg/1 as P
SS
7 *
8.0
7.3
6,9
6.1
8.9
7,6
7.2
6.9
4.2
^3
it. 9
7.7
7-9
4.3
5.0
6.2
6.0
5.0
TQ
.8
6.8
6,4
6,8
7.0
4.2
6.1
7-7
8.7
8.9
6.0
fU
WPE
0.81
0.87
0.68
0.50
0.86
1.8
1.3
0.76
1.2
0.89
0.1^9
1.2
1.7
1.2
O.J2
0.46
0.95
0.87
1.2
2.4
1.8
1.5
1.5
1.5
1.9
2.1
2.1
2.9
2.9
2.1
1.7
EPE
0.68
0.40
0.40
o.4i
0,39.
0.4l
0.37
0.31
—
—
0.25
0.30
0.48
0.45
0.47
0.30
0.33
0.31
0.36
0.70
0.50
0.35
0.39
0.45
0.4l
0.71
0.96
% Removal
WPE
8Q.3
89.1
90.7
92.8
85.9
79-8
F82.Q
89.4
82.6
78.8
88.6
75,5..
77.9
84.8
83.3
90.8
84.7
85.5
76.0
69.2
73-5
76.6
77. g
78.6
54.8
65.6
72.7
1.1 : 66.7
1.4
3.1
0.94
67.4
65.0
73.4
EPE
91.1
95.0
94.5
94,1
93.6
95.4
95,1
95.7
—
—
94.2
93.9
93.8
94.3
89.1
94.0
94.7
94.8
92.8
91.0
92.6
94.5
94.3
93.6
_20.2
88.4
87.5
87.4
84.3
48.3
85.3
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS
1.4
2,]
2,3
?»5
2.8
3-2
2,4
2.9
2.0
1-5
2.0
2.0
3.1
3-^
1.3
1.4
2.2
2.6
2.7
3.5
3.Z
2,8
3,0
3.1
1.4
3.0
4.0
4.4
k.6
2.4
3.0
WPE
0.27
0.35
0,17
0.25
0,5.3
1.4
0,87
0.40
0.52
0.17
0.18
0.53
1.3
1.0
0.45
0.26
0.4o
0.44
0.77
2.1
1.5_
1.2
0.86
0.84
1-5
1.5
2.0
2.5
2.5
1.5
1.1
EPE
0.23
0.14
0.15
O.i4
0,17
0,27
0,??
0.16
—
__
0.13
0.14
0.28
0.32
0.21
0.15
0.09
0.14
0.23
JD.53
0.35
0.??
0.17
0.17
0.27
0.39
0.59
0.77
0.68
0.57
0.38
% Removal
WPE
80.7
83,3
92.6
90.0
81.1
_.56.3
63,8
86.2
74.0
38.7
91.0
.73. 5.
58.1
70.6
65.4
81.4
81.8
83-1
71.5
EPE
83.6
93.3
93.5
^4,4_.
'93.9
91.6
90.8
_9_4^5
— _
— .—
93.5
.9.3.^1
91.0
.90.6
83.8
32^3_
_9-5^2_
94.6
91.5
4o.ol 84.9
5_3.JL
57.1
_ri^a
_I.2.x2.
50.0
50.0
43.2
45-7
37-5
63.3
89.1
9?.l
94.3
Q4.5
80.7
87.0
85.3
82,5
85.2
76-3
87.3
MIXED LIQUOR
East
Plant
MGD
129.1
126.0
120.1
109.8
99.2
123.7
127.0
137.4
145.6
152.5
135.1
127.1
136.7
151.5
143.2
142.3
142.2
125.8
125.6
137.S
1 36.3
131.5
130.. 4
112.6
98.4
98.1
125.1
135,9
145.1
142.7
126.8
PH
WP
7,1
7-1
7-1
_._
7.?
7-1
7.0
7-0
7.0
—
7-1
_ —
6.9
^7.2
7.1
—
—
7.3
7.0
7.1
—
—
—
7.1
—
7-3
7-2
M
—
EP
7,0
6.9
7.0
7,0
7.0
7-0
7.0
6.9
___
—
7.0
7.0
7.2
7.1
—
7.2
7.0
7.0
—
—
—
7.0
—
7-2
f.l
M
— ]
Suspended
Solids mg/1
WP
2180
2450
2SQO
2660
2500
2340
2460
2750
2860
2880
2810
2490
2650
2650
2700
2380
2360
2560
2380
2280
2200
2260
2420
2200
1970
1740
2330
3040
3170
3080
2970
EP
26iO
2640
2630
2680
2560
2470
2680
270Q
2710
2770
2790
2750
2550
2800
2630
2560
2580
2340
2200
2130
2440
2600
2660
2570
2300
1940
2050
2670
3070
3030
3180
SDI
WP
1.46
1.50
I_i29
1.18
1.32
1.39
1.37
1.2.6
1.26
1-17
1.22
1.31
1.49
1.^1
1.35
1.33
1.27
1.18
1.24
1.28
1.28
1.16
1.08
1.10
I7l4
1.19
1.16~
..18
1.19
1.08
J..11
EP
1.6?
1.49
1.45
l._25
Ir32
1,39
1.34
1.28
1.28
1,22
1.23
1-3JL
1.24
1.31
1.31
1.23
1.20
1.13
1.18
1.27
1.16
1.15
L.12
1.01
1.13
L.19
L.13
..14
L.09
_.ll
..10
-------
D
a
t
e
1
2
3
k
5
6
7
8
9
LO
II
12
L3
ll*
15
16
1-7
18
!•?
20
21
122
23
2l+
25
26
27
28
29
30
31
J. J-IJ-UN -L v-/r .U1V.H.J. J.VJH.BJJ UJ-I.J-.M. JAHUARY 1971
D
a
y
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
Iron Addition
to East Plant,
Mixed L.iquor
Ibs/day
6081*
5512
5522
71*76
6967
626k
7680
6852
5982
5178
6676
. 9kh2
10ll*8
10028
12830
11059
...2556,
9385
897*1
11*1-52
12695
8525
_ 71*59 ..
71*59
13392
9562
861*9
6728
8087
68k!
— 5_2JJL__
mg/1
7.0
6.6
5.6
6.8
6.7
6.0
7.2
6.6
6.3
6.1
6.1*
9.2
9.6
9.1*
11.1*
11.9
OluS—
9.5
8.7
13.5
12.1
7.7
8.0
9.8
13.0
9-8
8.9
7.1
7.5
6.7
...5., 7....
Milorganite
as Received Basis
Tons/
Day
189.0
190.7
185.7
J33JL-
189.1*
185.1*
_20JLZ_
223.9
210.0
201*. 6
153.9
_2£ia_
188.5
219.7
231.6
211.3
180.9
175.9
176.9
176.7
203.2
188.6
209.1*
230.3
178.2
183.7
211.1
199-5
210.8
211.1*
230.7
Nitrogen
% N
6.58
6.75
6.68
£,52
6.26
6.21*
6.35
6.51*
6.69
6.75
6.58
6.57
6.51
6.58
6.78
^M^
6.78
6^_3_
6.52
6J*6
6.1*7
6.61
6.62
6.73
6.60
6.1*2
6.39
6.35
6.1*2
6.1*6
6.62
Ash
%
26.10
25.61
26, .25
26.78
26.72
26.38
25.99
25.1*3
25.01
2l*.93
25.80
26^2.
25.68
125. lit
2k, 53
2k. kk
2_i^Q3_
25.89
=6. 61
&*fll.
25.82
25_.61*
21*. 81*
21*. 73
25.71*
26.09
26.51*
?6.26
?67bY
IZjjL.
?6.06
Average Ferric Chloride Use
PH
3-1
3.1
3.1
3,1
3-1
3,1
3.1
3-1
3nl
3,1
3,1
3,1
3.1
3,1
3,1
3-1
3,1
3,1
3.1
3-1
3.1
3.1
3.0
3.0
3.1
3.1
3.1
3.1
3.1
3-1
3-1
Waste Sludge
% Solids
1.1*7
1.1*1
1.^8
1.55
1.76
1.80
1.68
1.51
i.in
1.1*2
1.1*5
1.59
1.56
1.51*
1.1*7
1.31*
1.32
1.1*0
1.52
1.55
1.58
1.1*8
1.39
1.37
1.32
lj*9_
1.55
1.1*1*
1.1*2"
1.1*0
- -1^
Ibs. Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
229.5
—
Sli-Q,
202.2
218.3
177.3
183.2
195.3
_212^_6
217.1*
222.1*
232.1
231.3
208.6
221.2
21*7.7
21 1*. 7
216.8
216.8
207.9
227.2
226.7
1?3.8
209.1
213.5
218.1*
22k. h
189.1*
193.1
188.7
20i^3_
19b9
238.8
21*0.6
p?n.9
220.6
231*. 1*
— —
239.1*
211.5
285.3
20l*.7
206^6
219.1
216.1
220.0
199.7
_199.3_
206.7
209.9
197.6
223.8
218.2
215.1
183.0
186.5
205.2
21*2.1
233.1*
229.1*
2ll*.9
217.3
1970
278.7
261*. 6
p6s. 3
_._
__
256.1
257.6
251. p
270.5
218.1*
222.6
207.5
227.1
215.1
210.8
225.5
228.1*
201*. 2
213.0
202.1
208.1*
207.2
225.5
230.9
223.6
213.9
213.1
219.2
216.1*
1971
223.1
221.3
2ll*.l
233.7
220.0
21*0.1*
239.1*
223.5
21*1.6
220.7
251.7
217.2
238.5
-gSJLJ.
236.9
jJiiJ,.
217.8
2l*0.9
236.7
2l*5.9
225.0
263.5
252.3
236.8
251*. 7
228.7
215-9
223.1
208.1*
188.1*
181*. 9
Precipitation
ater Equivalent
Inches
0.06
0.73
0.23
TR
0.03
0.01
TR
0.11
0.03
TR,
TR
TR
0.06
0.01
TR
0.10
TR
-------
PLANT OPERATIONAL DATA FEBRUARY 1971
D
a
t
e
1
2
3
It
5
6
7
8
9
LO
LI
12
L3
Lit
15
0.6
17
18
L9
20
21
22
23
2l+
25
26
?7
28
29
30
31
D
a.
y
VI
Tu
W
Fr
Sa
Su
M
ru
w
Th
Fr
Sa
Su
1
Tu
W
Til
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
Iron Ad
to East
Mixed L
Ibs/day
11287
7831+
8035
13312
12261
10350
8052
11560
121*61*
11573
121*32
12168
8927
771*2
13260
15150
15039
9882
9030
9690
6916
9870
972Q
101*12
1092Q
7980-
551+8
1*899
cut ion
Plant
mg7T~
11.6
8.0
7.8
11.0
11.9
11.7
10.3
11.8
12.8
11.8
11.8
12.2
10.7
10.3
13.6
ll*.9
13. 5_
8.3
7.1+
8.5
8.5
8.5
9.1+
9.1+
6.8
5.1+
5.5
Milorganite
as Received Basis
Tons/
Day
2l+Q^2_
236.0
211.5
203.8
231*. 5
230.0
161*. 1*
187.0
216.1
189.9
195.5
22l*.5
236.0
203.5
211.5
197.1
208.2
203.5
221.5
2.3P_.JD
1226.1*
181.7
211.2
200.9
173. 8__
183.0
178.9
206.3
Nitrogen
% N
6.65
6.1*8
6.33
6.38
6.32
6.12
6.35
6.30
6.23
6.20
6.16
6.33
6.50
6.1*1*
6.53
6.1*1
6.37
6.21*
6.06
5.81*
5-72
5.68
5.67
5.72
5.8l
6.01*
6.00
6,12
Ash
26.39
26.29
25.99
25.67
26.11+
26.92
27.77
28.1+3
28.76
28.28
27.53
27.71
27.38
26.87
27.69
27.87
27.57
28.11+
29.36
30.1+0
31.58
3j_Ji2_
30.50
}Q e J_T
30 In
59.98
30.10
Average Ferric Chloride Use
PH
3.1
3.1
3.1
3.1
3.1
3-1
3.1
3,1
3,1
3.1
3.1
3.1
3.1
3,2
3.2
,3.2
3.2
3-2
3-2
3.2
3.6
3.6
3-7
3-7
3,6
3-6
3-7
Waste Sludge
% Solids
1.36
1.1*5
1.1*8
1.1*7
1.51
1.55
1.57
1.56
1.50
1.1*9
1.1*2
1.1+2
1.38
1.32
1.31+
1.39
1.1+3
1.51
1.51
1.55
1.60
1.65
1.80
1.76
1.71
1.56
1.59
1,,50
Ibs. Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
201.9
199-3
pl+0.7
P7P.5
206.5
236.3
222.3
238.1
23l*.l
226.2
213.9
209.9
200.7
202.5
207.7
209.2
206.3
203.1+
193-7
202.7
218.5
229.0
196.0
193.1+
190.9
21+6.1+
181+.9
19l+. 1
1969
220.1+
217.0
PP1+.9
203.6
203.1*
179.7
201.9
211.0
228.1
22U.5
198.3
192.3
181*. 6
18J.7
189.3
209.1
209.5
206.0
207.1*
206.8
223.7
212.9
2ll*.l+
215.9
219,7
181+.9
202.3
1970
210.1*
217.0
201.7
P1+8.P
231.6
229.3
223.3
237.9
233.1*
222.9
206.1
210.7
218.5
200.3
233.1+
25!+. 8
231.6
21*9.0
2l*1.7
238.8
21*6.1*
272.2
2l*.6.6
231.6
22l*.7
21 It. 9
222.7
2.37-8
1971
188.8
197.9
PP7.0
207.1
213.5
306.1*
199.3
200.0
226.8
210.1
206.2
200.9
225.5
189.8
200.1+
195.8
181.6
167.5
151.6
152.0
152.2
11+1.9
11*5.1+
138.2
135.1+
132.6
132.6
Precipitation
Water Equivalent
Inches
0.03
n.m
n.17
0.08
TR
TR
0.01
0.01
TR
TR
o.oi*
TR
0.7k
0.61+
0.06
TR
0.65
TR
0.06
TR
-------
FLAKT OF ^RATIONAL DATA MARCH 1971
D
a
t
e
1
2
3
4
5
6
7
8
9
10
11
12
13
ik
15
16
17
18
L9
?0
21
22
23
24
25
2£
27
28
29
30
31
D
a
y
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M j
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Iron Addition
to East Plant,
Mixed Liquor
Ibs/day
9690
8256
6764
6622
7^62
72214
5848
12136
9243
8100
9095
10234
8170
8148
8856
8?Q5
8760
67??
8840
8944
9044
11899
81*32
8260
8281+
_lili—
r6lla
5796
8662
6106
5168
mg/l
8.5
7.6
6.1
6.2
_6^_
6.6
6.6
11.4
8.5
7.3
3.3
8.9
7.5
7.0
7r 5
7-0
^JLJ*__
5.6
7-5
8.1
8.2
10.0
L___Iii™
r~7.2
7.1
5.8
5.5
JLL°
j7o~^
4.3
— 47o~
Mil'
as Rec
Tons/"
Day
190.1
187.6
197.8
203.1*
207.1
208.5
187.1*
183.8
163.2
206.2
190.9
188.1*
18U.6
T73.8
187.2
1QQ.S
202.6
198.8
JJ3^8__
199.2
181.6 .
180.8
197.3
202.2
196.6
_i22xi_
181.5
193.1
208.3
215.5
208.1
^rganite
sived Basis
Nitrogen
% N
6.16
6.13
6.16
6.22
6.36
6.47
6.59
6.65
6.1*9
6.1*1
6.1*5
6.1*1
6.52
6.61*
6.1*6
_.£.lfi__._
6.13
6.12_
$.15
. 6.42 .
6,50
6.41*
6.29
6.26
6.33
6.49
6.60
6769
6.71
6.50
6H*9
Ash
%
30.74
30.69
29.78
28.58
27.08
27.00
27.57
29.31
28.98
27.64
26.70
26.43
26.41
2£u23-
2&J16_
30.55
22^3n
29,01
27,93
27.98
2iLl6_
29^36
29.28
28.24
26.99
27.22
27.06
27.20
28.15
27.47
27.^4
Average Ferric Chloride Use
pH
3-6
3.8
3.8
3-6
3-5
3.4
3-4
3-6
3-6
3-4
3.3
3.3
3.2
3,P
3.4
3.5
3.5
3.5
3.3
3,P
3,P
3-5
3-5
3-4
3-^
3-5
3.5
3.5
3.5
3.7
3.7
Waste Sludge
% Solids
1.47
1.49
1.55
1.44
1.33
1.25
1.21
1.24
1.31
1.35
1.28
1.23
1.23
1.22
1 .31
1.^6
1.?Q
] .3S
1.31
1.25
1.28
1.29
1.34
1.31
1.27
1.15
1.21
1.17
1.22
1.26
1.36
Its. Anhydrous FeCl^ Per
Dry Tons Recovered Solids
1968
224.0
228.0
209.3
217.0
219.4
236.1
236.6
213.9
216.6
221.0
192.6
198.0
194.9
225.7
-215-u2_
?^4.7
212.5
193.8
206.8
219.5
221.4
210.9
182.5
171.4
176.8
125..JL
177.7
182.3
168.3
194.8
203.7
1969
210.6
207.5
202.6
192.9
182.9
194.8
182.9
201.1
203.8
248.2
229.8
205.0
204.9
216.?
205.2
21Q.8
224.4
241.5
219_L3
212.7
208.4
211.0
224.4
239.2
219.8
203.4
220.2
218.4
187.7
186.7
155.9
1970
251.8
232.2
219.7
224.1
234.4
244.8
241.2
260.9
265.7
249.4
230.3
233.7
228.9
264.6
26Q.1
247.2
240.2
245.8
236.4
234.5
337.1
_25_0.1
265.9
257.4
220.8
216.6
207.4
215.9
220.8
237.5
210.3
1971
149.4
150.2
150.3
160.6
164.3
173.2
168.2
J^M.
174.3
164.1
170.4
163.6
183.8
-132*2.
JL69.1
,2&2*£L
161.3
157,1
188.8
^L£2_jl
J.91.8
163.8
162.7
167.0
159.8
158.8
J^5_
155.8
152.8
165.6
,165.6
Pr ec i pit at i on
tfater Equivalent
Inches
TR
0.02
0.21
0.03
0.09
0.10
0.05
..... _.. Q.54
0.01
TR-
1.15
0.53
TR
0.02
TR
0.08
TR
-------
FLANT OFEKATiUNAL DATA APRIL 1971
D
a
t
e
1
2
3
It
5
6
7
8
9
10
11
12
L3
ll*
15
16
J-7
ifl
!?
20
21
22
23
2l*
25
26
?7
26
29
30
31
D
a
y
Th
fr
Sa
su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
51*51
871+8.
69Q2
6n68
9861*
10212
5688
5776
5776
6232
5016
.8736
691(2
6278
5865
5621*
5106
1*1*61*
10138
6791*
9196
7081
6201*
7935
721*5
_-9_QjQ£U
8103
9975
61*08
7358
mg/1
l*.l*
7-?
6.5
6.1
8.6
8.7
5.0
1*.8
5.1;
6.2
5.0
7.1
5.6
5.1
5,Q
_JLJ__
J*^2__
It, 3
8.7
5,9
7.9
6.1
5.1*
8.2
7.6
8.0
6.7
8.7
5.3
6.0
Milorganite
as Received Basis
Tons/
Day
213.3
200. 5
196.2
2Q9.8
212.3
212.0
205.0
192.3
225.6
226.2
230.0
218.2 .
256.8
21*6.8
212.7
229.2
21.7.7
2^.5.1*
200.3
222.5
21U.5
210.6
197.8
203.9
201.1*
201.7
212.0
20^,0
201.3
206.0
Nitrogen
% N
6.65
...,.6 Ji3 . .
6.76
6.86
6.81*
6.70
6.60
6.1*8
6.70
6.71
6.73
6.66
6.08
5.71*
5.89
6.01
6.30
6.53
6.53
6.33 .._
6.31
6.1*8
6.51
6.53
_iul£__
6.77
6.60
6.50
6.56
6.6l
Ash
%
27.1*3
P7-13.
27,22
27J1
28.32
27.19
26.80
26.1*9
25.80
26. IS
26.39
2^12-
30.57
31.50
30.73
59.73
29.61
XLJLL
29_J3l_
29.10
28.1*1*
27.56
26.87
26.69
26,1*2
?7T02
27.01*
26,8i
26.1*5
26.69
1
Average Ferric Chloride Use
pE
3,7
3,6
3.7
3.7
3,6
3,6
3,6
3-5
3,3
3.3
3.3
3.3
3.^
.3. ^
3,1*
3- ^
3,1*
3,1*
3.1*
.3-5
3.1*
3.3
3.2
3.2
3,2
3.?
3.2
3,2
3,2
3.2
Waste Sludge
% Solids
1.29
i .P7
1.26
1.22
1.26
1.1*3
1.1*1*
1.1*2
1.37
1 .11
-[.16
•\ .si
1.80
1.83
1.75 .
1.55
1.1*2
1.33
1.37
1.1*9
1.1*1*
1.51
1.30
1.20
1.16
1 .22
1.31
.. i,^ ..-
1.32
1.25 ..
Ibs. Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
188. S
2m .li
218.7
222. S
210.8
20l*.2
215.8
226.8
221.1
?Ql*.6
197.1*
199.9
23JLJL.
217.5
215.1
223.9
212.5
197.1
200.2
205.2
179.7
198.3
210.6
192.6
206.3
227.9
226.6
231.2
196.2
217-9
1969
18.1.7
iqp.n
175.3
173.5
189.6
191.9
200.9
202.2
189.0
Ijh.R
171.2
172.7
190.8
191*. 2
r19_3_i3__
206.6
186.3
195.2
191*. 3
2ll*.8
229.5
235.0
208.9
199-6
213.5
2^.1*
2l*l*.2
208.3
206.1
210.2
1970
179.1*
17li.fi
159.5
183.2
197.1*
212.9
207.5
181.8
179.6
181 .0
20?. 1
197.5.
191*. 8
178.2
189.1
198.9
202.1*
201.3
183.9
187.7
195.7
182.9
199.2
195.0
200.1*
205. 1
212.3
202.7
219.9
226.7
1971
15^9
-l6l.Ci
166.0
166.9
171.9
181.3
186.9
196.0
195.6
209.8
200.Q
205,9
171.1
171.1*
188.8
178.2
175.9
178.8
195.1*
178.2
189.0
188.2
197.1*
188.7
199.1*
199.0
O22.JL
198,2,
209.1
192.1
Precipitation
Water Equivalent
Inches
TR
D.QS
TR
TR
o.m
0.72
0.06
0.03
TR
TR
0.1*2
0.02
TR
-------
FLAKT UFttKA.TJ.UM.AJLi DATA f4Ay 1971
D
a
t
e
1
2
3
1+
5
6
1
8
9
10
LI
12
13
lit
15
16
L7
18
L?
20
21
22
23
2*+
25
?ri
27
28
29
30
31
D
a
y
Sa
Su
M
Tu
W
Th
Fr
_Sa_
Su
M
Tu
W
JTtL
Fr
Sa
Su
M
Tp
W
Th
Fr
J3a
Su
M
Tu
W
Th
Fr
Sa
Su
M
Iron Addition
to East Plant,
Mixed Liquor
Ibs/day
£129
6238
9959
81+27
9828
10835
9792
9006
8179
13536
10381
6912
8755
9911+
7989
7111+
10561*
12388
11388
9648
9906
8960
6290
901+7
9462
81+21+
8906
8978
8107
1+602
5561
mg/1
5.9
6.5
9.1
7.8
8.5
9.1+
8.8
9.3
9.1
12.7
9.1
6.1+
7.9
9.2
8.2
8.1+
10.0
11.3
10.3
8.7
8.9
9.2
7.1+
7.5
8.2
7.7
8.0
8.0
8.7
5.2
6.1
Milorganite
as Received Basis
Tons/
Day
199.1+
196.0
205.0
206.6
196.3
207.8
206.0
228.5
215.1+
215.3
201.8
210.3
231.3
229.2
211+.7
209-7
210.6
217.8
236.2
206.1
209.8
227.6
211.9
211.5
195.1
236.3
232.7
252.9
J25J+.1
238.6
123.1
Nitrogen
% N
6.73
6.89
6.71+
6.60
6.1+9
6.57
6.60
6.75
6.8l
6.71
6.52
6.1+7
6.1+5
6.1+2
6.61
6.82
6.71
6.58
6.55
6.61
6.69
6.69
6.75
6.50
6.22
6.13
6.30
6.1+0
6.1+6
6.58
Ash
%
26.61
26.98
27.1+1
27.1(7
26.85
26.82
26.28
26.58
26.75
27.78
27.62
27.76
27.78
27.1+1
27.35
26.92
27.1+7
27.67
SltlL
27.1+1
27.26
27.10
27.96
28.11
29.31
29.31+
29.23
Average Ferric Chloride Use
PH
3,1
3,1
3.1
3-1
,3-1
3-1
3-1
3-1
3.1
3-1
3.2
3.2
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.9
2.9
3.1
3rP
3.1
3.2
3-2
3-2
28.5213.3
28.32
28.82
6.57 (29.1+1
3.3
3.3
3.3
I
Waste Sludge
% Solids
1.28
1.32
1.32
1.1+6
1.1+1+
1.35
1.35
1.26
1.21+
1.38
1.51
1.58
1.61
1.57
1.53
1.1+7
1.50
1.59
1.58
1.50
1.1+6
1.1+3
1.52
1.59
1.77
1. 89
1.76
1.59
1.63
1.55
1.53
Ibs. Anhydrous FeCl^ Per
Dry Tons Recovered Solids
1968
220.2
202.2
182.1+
185.3
187.8
203.9
216.6
19l+. 1+
203.5
19l+. 1+
197.0
200.7
215.7
202.1
200.3
225.1
201.8
232.1+
199.5
151.5
192.3
201+.5
210.6
215.2
229.0
1£_6.9_
201+.6
SPJLl.
213.5
211.9
203.2
1969
209.6
223.3
226.6
221+ . 3
250.0
21+6.7
227.3
209-1
193.7
193.6
215.8
209.9
219.3
23l+. 5
222.5
192.2
199.5
192.3
196.3
213.0
202.3
196.0
187.1
202.6
190.7
211+.1
205.5
226.3
227.1+
210.2
193.1
1970
21+3.7
225.3
21+1.3
255.1
21+3.7
229.0
222.5
220.8
213.0
213.8
228.2
196.5
205.9
192.9
1971
212.0
226.8
202.2
199.7
200.0
202.3
199.3
186.7
199.0
221+.8
1J36.1
196.2
220.5
219.5
178.6 221+.0
173.2
181.0
179-6
195-3
197.1+
198.7
213.8
203.1
209.0
239.6
223.2
219 .6.
222.1
226.1
21+3.5
21+5.9
216.6
208.0
220.0,
190.3
216.0
228.1
181+.1
198.7
219.7
227.6
181+.1
217.1+
199.1
186.2
205.0
.211.7
Precipitation
Water Equivalent
Inches
0,01
0.12
TR
TR
0.18
0.02
TR
TR
0.05
TR
o.i+o
0.06
TR
0.06
-------
PLANT OPERATIONAL DATA
JUNE 1971
D
a
t
e
1
2
3
k
5
6
7
8
9
LO
11
12
13
lit
15
16
IT
18
19
20
21
3 2
23
2l+
?5
2£
27
P8
29
30
D
a
y
Tu
W
Th
FJT
Sa
Su
M
Tu
W
Th
Fr
$$
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
§y.
J4 f
Tu
W
31 [
Iron Addition
to East Plant,
Mixed Liquor
Ibs/day
51+12
JL§M.
6175 1
8701+
7200
7280
5180
6840
31+27 I
381+0
1+512
351+2
1109
7^39
7392
10800
7986
1061+0
L_688_2__
1*897
_5ji_2__H
5931+
701+0
711+0
_£L&L
_5Q£8_^
1+830
3636
771+2
7392
mg/1
1+.6
1+.3
5.1+
7.1+
6.9
7.1+
1+.5
6.2
3.1
3.1+
3.9
3.2
1.2
6.6
6.6
9.2
6.5
8.1+
5-5
1+.5
1+.3
1+.6
5.5
5j5
L_6^__
5.7
1+.8
6.1+
6.1+
6.1
Milorganite
as Received Basis
Tons/
Day
__
57,6
21*6.5
21+0.5
21+1.5
233.5
163.1
21+0..6
266.0
255.0
21+6.5
21+2.5
267.0
269.9
182.2
259.5
21+5.9
218.9
317.5
.273.3..
217-2
2i+8.0
21+0,6
21+5.6
252JL-.
_23£L3_
239.2
220,5
229.7
2l9_-_2
Nitrogen
% N
6.29
6.33
6.22
6.1+5
6.51+
6.38
6.19
6.21
6.31
6.30
6.3_7
, 6.1+3
6.33
6.17
6.21
6.2$
6.25
6.31+
6.27
5.97
5.80
5.80 .
5.99
__6JJ_—
^22—
6.17
6.30
6.19
6.33
Ash
%
__
29.01
22.L3&1
2JL1Q.
27.70
27.87
29.11
29.90
29.38
28.71+
28.1+7
28.12
2 8., 8 2
30.30
29_L^2.
28,95
28^61
28J£.
29-52
31.07
33.51
32.82
21*21.
^0.1+6
30J-1
13^3
Average Ferric Chloride Use
pH
3-3
3,2
3,P
3tl
3,1
3.1
3rl
3-1
3.1
3.1
3.1
3,1
3-1
3.2
3-1
3-1
3-1
3-2
3-2
3.1+
3.5
3,5
3,5
3,5
^,5
29,52 l3- ^
2Q*5lJbLi
59.99
i9_:_lL
3-3
3.3
Waste Sludge
i Solids
__
1.75
... 1-.72
1.69
1.57
1.5U
1.57
1.65,
1.71
1.6l
1.59
1.62
1.62
1.66
1.71
1.72
1.61
1.50
1.56
1.61
1.80
1.90
, 1,87,
___1JJ5
1.71 . ....
___1^2___
1.62
-LJ&—
1.71
1.51+
Ibs. Anhydrous FeClg Per
Dry Tons Recovered Solids
1968
195-5
203.!+
-221^_
225.0
218.6
21+6.0
21+1.7
233.2
23l+. 5
208.0
23l+. 1+
21+0.3
21+5.6
221+.5
218.7
201+.9
220.6
228.3
226 ._!_
206.6
218.0
196.6
188.0
212,2
222.JL.
2g8,2
1969
217.3
— _
211+.9
211.6
207.1+
212.1+
198.9
205.9
239.6
256.7
21+9.1+
21+8.3
252.6
260.0
275.6
282.7
253.2
J51+6..2
263.8
261 . 3
275. U
2^9,1
25Q,7
21+8,6
236.0
206.2 I201+.1
207.5
221.5
218.6
213.3
229.7
262.1
1970
25JL-6
_2_|+1^,
J^JL^_
212.8
236.8
220.6
205.1
205.1
199.2
216.9
228.3
220.9
225.1+
212.8
231.3
21+0.8
218.5
218.7
L200.9
222.8
231.3
237-1
222,1
Zk2i£_
2^5,8
239,0,
239.8
235.5
21+1.1
262.1+
1271
— —
__
2Q1+.3
208.3
206.1
222.2
297.9
209.3
197.3
208.8
212.5
207.0
183.7
l6l.5
-2m_
JJijJ
202.7
239-6
ll+l+.l
_15JL^J
129,0
170.8
162.0
171,6
163.5
J.69.0
JJi^Q.
185.1+
181*. 7
18U.1
Pr eel pit, at ion
Water Equivalent
Inches
0.1+7
0.07 1
0.05
0.02
0.05
0.11
0.09
0.1+9
0.53
0.5.-5
0.09
0,15
TR
TR
-------
PLANT OPERATIONAL DATA
JULY 19T1
D
a
t
e
1
2
3
4
5
6
7
8
9
10
LI
12
13
14
15
16
L7
L8
L?
20
21
22
23
24
25
26
27
28
29
30
31
D
a
y
Th
Fr
Sa
fill
M
Tu
W
HI
fr
Sa
Su
ff
Tu
W
Th
Fr
Sa
Su
M
Tu
_W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
77^
76hh
6942
6205
7?OQ
9010
9047
8424
9040
5767
5624
88?2
5896
5984
6552
7584
6966
5548
7268
6794
6800
7Q56
9047
7^87
6804
7885
7740
7695
1158?
J.2236
10184
mg/1
6.5
6.4
6.8
7.0
8.0
7.7
7.2
6.7
7.0
5. ^
5.4
7.3
5.0
5.0
5.5
6.4
6.6
5r5
6.4
5.9
5.8
6.8
8.0
7.5
7.4
7.3
7.1
1.1
10.5
11.1
11,1
Milorganite
as Received Basis
Tons/
Day
?l4 . 0
20Q.3
254.1
L2^u5_
_22aJL-
140.4
158.8
J.65.3
171.8
1Q0.2
215,1
203.8
202.9
187.6
^204.0
211.9
205.3
2P8.2
185.6
231.2
218.5
224.8
J235.4
232.8
206.4
186.9
204.0
226.5
235.5
218.9
226.0
Nitrogen
% N
6.4Q
6.62
6.68
6.69
6.6s
6.45
6.25
6.31
6.22
6.15
6.04
6.12
6.12
6.22
^_6.3k
6.56
6.56
6.66
6.J>0
6.17
6.26
6.^7
6.46
6.47
6.47
6r?4
6.15
6.16
6.35
6.41
6.46
Ash
%
28.54
28.78
28.01
28.25
29.22
29.56
29.18
29.07
30.20
•^0.81
31.27
30.95
3l*lk
30.35
29.31
28.72
2£L5_0_
28.50
29.78
29.80
29.11
£&u5&
?7.67
28.44
2ik9_Q_
30, p6
29.77
29.49
28.56
?8.38
?9.12
Average Ferric Chloride Use
pH
3.3
3.3
3t3
3,3
3,3
3,3
3,p
3.2
3,1
3.1
3,1
3,1
3,],
3-1
3,1
3-1
3,0
3,Q
3-0
3.0
3-0
3.0
3,0
3,0
3,0
3,p
3.2
3r5
3.2
3-1
3-1
Waste Sludge
% Solids
1.45
1.28
1.24
1.29
1.35
1.47
1.63
1.50
1.63
l.6o
1.52
1.51
1.58
1.50
1.46
1.46
1.36
1.49
1.52
1.66
1.66
1.64
1.58
1.59
1.63
1.74
1.88
1.65
1.59
1.55
1.57
Ibs . Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
217.3
254.7
229.0
229.3
219.6
221.0
235.9
237.8
253.4
26^.9
245,3
240.7
221.2
250.1
240.9
263.3
260.7
241.7
25_3_i3_
212.4
222.3
212.0
226.2
232.7
212.4
206.3
221.5
216.3
227.9
234.3
247.0
1969
229.6
254.7
200.8
224.6
277.8
216.3
276.9
267.2
275.2
24Q.O
241.3
26^.9
236.5
262.0
285.4
227.5
189.5
184.9
199.2
195.6
195.7
194.6
218.2
229.5
243.5
244.2
255.4
235.4
215.6
217.1
208.2
1970
244.2
231.8
253.7
255.2
293.1
—
—
—
3.60.2
246.9
335.4
282.7
256.8
242.2
297.6
284.4
223.7
227.3
230.6
210.7
209.7
291.5
335.4
2.63.1
277.6
260.9
230.9
235.2
226.1
237.7
232.9
1971
194.2
194.1
143.7
139.2
146.6
223.6
239.7
237.9
246.8
244.7
213,2
2?0.0
220.5
244.8
220.6
215.9
225.2
216.8
J242.4
205.7
224.1
244.9
233.7
240.1
221.4
210.8
2.09.8
203.5
191.7
206.6
.205.4
Precipitation
feter Equivalent
Inches
0.03
0.01
1.80
TR
TR
0.10
0.01
0.38
TR
0.11
TR,
0.16
TR
TR
TR
TR
-------
rjjAWJ. Ur.bttfla.lUH AL LIATA AUGUST 1971
D
a
t
e
1
2
3
k
?
6
7
8
9
LO
LI
L2
L3
Lit
L5
16
1-7
L8
L9
20
21
p?
23
24
25
26"
27
26
29
30
31
D
a
y
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
J4
TU
W
Til
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
7300
9860
8352
9000
6435
7140
6580
5\QO
7600
6720
RliPk
9200
10270
9006
7663
9483
9222
9240
122^5
1^19?
7P902
10033
11534
10212
5688
6840
6552
6734
5616
i02j_g
10498
mg/1
7-7
8.7
7.7
8.4
6.0
6.5
6.0
4.Q
6.fl
fi.n
7-6
8.3
8.6
7.9
8.7
8.5
8.4
8.3
10.7
UrO
31.2
10.5
10.3
9.0
4.9
6.0
5.7
6.9
6.8
9.2
9.4
Milorganite
as Received Basis
Tons/
Day
185.4
163.8
150.3
187.2
166.7
159.7
190.1
178.8
1Q0.5
?07.5
1Q5.0
177.5
218.5
205.0
197.5
171.2
186.9
214.0
203.1
2l4.0
2^7.0
187.0
153.0
157.3
164.3
200.8
202.9
215.7
190.5
176.2
201.1
Nitrogen
% N
6.48
6.19
5.80
5.86
5.99
6.21
6.25
6.25
6.06
5.87
6rm
6.08
6.19
6.30
6.23
6.13
5.97
6.14
6.27
6.28
6.29
6.59
6.01
5.88
5.87
6.04
6.18
6.34
6.37
6.17
6.13
Ash
%
29._24
30.68
30.61
29.82
29.58
30.29
30.25
^0.02
^0.74
28.9?
20. Q6
29.86
29.59
29.52
31.61
32.29
31.51
30.53
30.01
29.42
?9.47
30.06
31.59
31.88
31.57
31.37
30.61
30.21
30.50
30.80
30.30
Average Ferric Chloride Use
pE
3.?
3-4
3-5
3-5
3-5
3-5
3.5
?.5
3.5
3 4
?.?
3-3
3.2
3.2
3.2
3.2
3.2
3.3
3.3
3.3
3,3
3,3
3-5
3-6
3-9
3.9
3-7
3.6
3.6
3.6
3.5
Waste Sludge
% Solids
i .6s
1.98
2.26
2.27
2.12
2.06
1.94
] .Q6
?.o^
?.m
1 .86
1.67
1.51
1.56
1.61
1.70
1.78
1.71
1.60
1-57
1.56
1.54
1.66
1.67
1.57
1.60
1.51
1.52
1.60
1.73
1.87
Ibs. Anhydrous Fed 3 Per
Dry Tons Recovered Solids
1968
?l 7. i
216.3
211.9
212.0
216.6
238.5
231.6
PPQ. 1
??4.8
21 0.0
?^6.0
237.0
242.9
228.4
221.4
215.8
197.0
196.7
217.7
208,9
209 „ 3
227.9
220.0
224.9
241.3
216.2
2Yl. T
232.0
221.0
225.7
252.4
1969
21 1 .4
218.9
235.8
231.4
247.5
276.6
247.5
P?8T8
253.8
?47.4
_p?6.0
243.6
218.5
208.0
222.6
201.1
192.8
211.6
211.2
207,1
222.8
208.9
238.9
198.6
221.0
206.3
190.1
188.8
201.2
185.5
191.2
1970
255.8
237.6
246.4
242.2
249.7
262.1
204.0
P27.1
24^.?
267.?
?50.^
229.0
223.9
215-5
220.0
221.5
239.3
208.3
242.5
222.1
216.1
217.7
213.2
214.6
243.2
231.1
220.4
214.2
209.6
218.1
260.4
1971
225.8
210.1
229.7
234.1
240.6
201.2
172.1
196.1
192.9
195.4
209.?
212.7
195.1
199.6
195.1
228.8
234.3
210.1
234.5
214.4
2Q5-4
206.6
210.5
201.2
183.1
176.1
193.3
180.8
202.8
235.0
.226.5
Precipitation
Water Equivalent
Inches
0.00
0.36
0,72
0.04
0.44
TR
0.04
0.43
0.16
TR
TR
-------
FLANT UFKKATiOHAL DATA SEPTEMBER 1211
D
a
t
e
1
2
3
k
5
6
1
8
9
LO
LI
12
L3
ik
15
16
17
18
!?
20
21
22
23
25
25
26
27
28
29
30
31
D
a
y
w
Th
Fr
ffa
Su.
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
£U-H
W
Th
Fr
Sa
Su
M i
Tu
W
Th
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
11520
1221*7
10627
9328
6765
6121*
8201*
9^35
7857
7862
6621+
5062
86n
88-n
7600
7921
801P
_.6ito8 ..
6653
_679Q
7358
7291
9308
9556
9196
8986
11275
\102kk
10287
10823
mg/l
10. h
10.5
8.8
8.5
7.5
7.3
7.3
8.6
7.0
7.3
7.U
7-"1
7.6
8.1
6.9
7.0
7,7
6.6
6.3
6.3
6.9
6.7
8.5
8.8
9.0
__2-L_
9.9
9.8
9-3
9.6
Milorganite
as Received Basis
Tons/
Day
206.8
203.3
200. h
193.6
189.9
18^3
165.7
183.1
198.6
17^.6
208.^
102.^5
202,9
201.6
201 .5
229.3
216,9
225.3
207. h
165,9
170.9
192.0
207.2
215.7
201+.7
211.5
190.0
232. h
21*2.7
21*0.7
Nitrogen
% N
6.17
6.23
6.22
6.28
6.22
6.16
5.81+
5.80
5.92
6.05
6,29
6.?6
6.28
6.16
6.21+
6.T*
6.31+
6.36
6.27
6.15
5.89
5.98
6.17
6.10
6.21*
6.23
5.87
5.77
5.98
"5.09
Ash
%
29.57
29.1*8
29.90
29.82
30.51*
31.85
32.37
31.66
30.32
30.19
29. 6l
|?q . 38
?0.51
30.18
?9.82
30.05
5^6JL
22^22_
30.31
31.19
20^25_
30.29
>9..£5
29_.6^
29.21
30.23
31.23
31.25
30.72
29. B5
Average Ferric Chloride Use
PH
3.5
3,^
3,5
3,5
3,5
3,5
3T7
3,8
.3.5
3-7
3.6
3.7
3.8
3,8
3.8
3,8
3,8
3,7
3-6
3-5
3-5
3-5
3-5
3-5
3.5
3.1*
3.1*
3.1*
3.6
3.6
Waste Sludge
% Solids
l .77
1.76
1.6S
1.68
1.70
1.76
1.95
2.00
1.69
1.1*7
l.U
1 .llO
1.58
1.55
1.U8
1.1*7
1.1*9
1.55
1.71*
2.01*
2.0l*
1.81*
1.70
• 1.55
1.69
1.80
2.03
,_2_^06_____
1.88
1.82
Ibs . Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
215.lt
221.1+
237.2
2U.7
21*1.1
233.1
§25.1
227.7
22k. k
237.2
239.1
PlU.Q
2.1k. 2
219.8
251.0
226.3
230.6
228.2
21*7.5
220.7
233.5
21*0.9
22l*.8
226.2
175-7
199.1
219.8
22l*.5
217.3
236.7
1969
207.6
^62.3
230.9
205.6
218.3
208.7
213.8
238.6
253.1
230.0
21+3.7
236.2
268.8
235.8
292.7
21*3.9
236.9
26.6,1
273.0
279.7
273.1
269.3
263.8
232.0
276.1*
269.9
286.1
296.2
271.8
"^BTTf"
1970
257.6
253.1+
238.1
251+.6
255.9
265.2
269.1
327.1*
21+6.9
237.2
209.5
23l*. 1*
222.7
21*0.3
230.8
21+1+.2
231.0
21U.U
232.7
21*3.9
253.0
261+ . 5
250.2
225.8
221.6
21+3.2
251.1+
21*1.1+
21+1.6
260.6
1971
211 .8
225.2
230.3
?P8.^!
226.2
190.9
211.6
190.3
2.11.6
212.1
181.1
189.9
18U.3
192.1
192.1
181.7
183.1
185.6
180.2
217.5
223.5
208.3
205.1*
201.6
200.6
jJlJL
219.1
193.0
185.7
185.8
Precipitation
Water Equivalent
Inches
TR
0.09
TR
TR
TR
0.03
0.6l
0.01
0.31*
TR
0.17
0.05
-------
rj-iAMx urJMtH.J-j.UH.HJj UKLJ\ OCTOBER 1971
D
a
t
e
1
2
3
k
5
6
7
8
9
LO
LI
12
13
ik
15
16
1-7
18
L?
20
21
22
23
2l*
25
b9.97
59.72
>9.72
30.38
?9T99
>9.49
50.03
>9.l4
?9-02
L8_i2P_
Average FejrriG Chloride Use
pE
3,6
3-6
3.6
3,7
3.9
,3-9
3.7
3.6
3-5
3-5
3.?
3.6
3.6
3,5
3*3,
3.2
3.2
^--2
3.2
3.2,
3.2
3-2
3., 2
3-3
3-3
3.3
,3-3
3.1
3.1
3.1
3.1
Waste Sludge
% Solids
1.86
1.91
1.97
2.06
2.01+
1.93
1.71+
1.65
1.57
1.55
1.57
i .64
i . S8
1.1+8
1 .39
1.36
1.^9
1 .1+2
1.1+1+
1.51
1.51+
- 1.1+5
1.37
1.31+
1.1+1
1.55
1.51+
1.1+6
1.1+1
1-39
1.1+0
Ibs. Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
230.5
237.9
231.5
235.0
227.1+
21+6.0
278.6
262.3
21+9.2
230.7
236.9
219.7
222.2
221+.6
2?9.2
21+3.9
2l+?.l+
25l|fO^
260,3
21+3.0
21+9.2
257.2
231.3
223.8
221+.9
21+2.9
231+. o
21+0,1+
220.6
21+7.7
21+3.7
1969
266.3
301.1+
298.9
320.6
301+.7
271.0
292.1+
301.1
310.6
331.7
325.3
^12.0
2Rla.l
267.1+
_2?5.?
?1+6.1
2?8.^i
217.8
229.5
208,0
200.9
201+.3
210.5
222.8
231+.6
226.9
213.7
223.5
235.3
236.2
211.5
1970
232.3
231+. o
229.5
235.5
263.5
237.6
211.3
23^.6
21+0.0
252.7
21+9.6
268.1
269.1
288.2
2^6.7
25^.?
29^.5
295.8
281+.1+
297.3
288.0
250.6
278.4
317.5
295.2
260.5
251.9
256.5
21+1.3
281.2
295.5
1971
190.0
194.6
195.9
202.7
211.1+
195.9
185.2
198.5
214.0
228.6
216.1
199.1+
198.7
211+.2
222.2
21+6.6
263.1+
261+.1+
267.2
257-7
-260.2
229.8
21+2.5
210.7
204.2
229.9
21+8.6
258.9
265.1+
273.0
276.2
Precipitation
Water Equivalent
Inches
0.71
TR
0.03
TR
0.01+
TR
TR
0-02
0.69
0.06
0.03
0.07
0.17
TR
TR
TR
0.08
-------
r^AJNT UFJiKATlUWAL DATA NOVEMBER 1971
D
a
t
e
1
2
3
4
5
6
7
8
9
10
LI
L2
L3
Lit
15
16
1-7
18
L?
20
21
22
23
2l»
25
?6
27
28
29
30
31
D
a
y
M
Tu
W
Th
Fr
Sa
Su
M
TU
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Sa
5u
M
Tu
Iron Addition
to East Plant
Mixed L,iquor
Ibs/day
12320
22500
11J. 3 6
12238
9200
5808
7520
6660
101*98
1282U
11772
119 1*8
12288
7987
6996
7505
8;Uo
7392
8512
7052
751*8
1+070
1061*0
10960
81+21*
6396
7176
61*78
7222
1*576
mg/1
3 5.2
20.1
10.2
11 -r 3
9.1
6.5
9.0
6.3
9.8
12.1
11.1*
11.6
ll*.6
10.6
6.8
7.2
7.5
6.7
7.8
8.2
9.3
3.9
10.1
10.8
11.1
5.9
7.9
6.8
6.1*
l+.l
Milorganite
as Received Basis
Tons/
Day
187.1+
203.7
198.1*
203.7
195.5
189.8
188.1
188.1+
181*. 0
176.1+
191*. 3
189.2
181+.5
87.8
55.5
196.9
192.5
201.0
190.1
197.2
203.6
188.7
206.3
232.0
239.1
219.1
229.1+
217-5
201.0
197.9
Nitrogen
% N
6.27
6.15
5.85
5.90
6.03
6.22
6.35
6.22
6.16
6.11+
6.21
6.21
6.25
6.1+0
—
6.21+
6.21+
6.30
6.13
6.29
6.1+1+
6.1+2
6.21+
6.21
6.29
6.37
6.23
6.18
6.17
5-77
Ash
%
30.09
30.71+
27.75
31.16
30.26
30.53
30.32
30.70
30.71+
30.60
29.70
29.17
29.81+
29.58
—
29.1+0
29.28
29.21
28.67
28.80
29.16
29.85
29.39
29.28
28.59
29.17
29.37
29.1+7
29.95
29.82
Average Ferric Chloride Use
pH
3.1
3,1
3.1
3,p
3,2
3,1
3,0
3,0
3,0
3,0
3.-0
2.9
2.9
2.9
3.2
3.0
3-0
3.0
3-0
3-o
3.0
3.0
3,1
3-1
3.1
3-1
3-3
3.3
3-5
3.6
Waste Sludge
% Solids
1.1*5
1.61
1.69
1.61*
1.61
1.1*9
1.1*0
1.1+8
1.53
1.51+
1.53
1.1+8
1.1+9
1.51
1.55
1.69
1.69
1.67
1.66
1.69
1.72
1.32
1.91
2.01
2.03
2.01
2.ll*
2.19
2.33
2.55
Ibs. Anhydrous FeCl3 Per
Dry Tons Recovered Solids
1968
?U6.?
257.8
25U. 8
266.6
277.1
235.3
195.8
195.1*
226.1*
237.2
229.1
238.7
253.3
230.9
238.5
2l*3.2
21*1.8
270.0
290.5
260.9
262.7
267.9
271.5
282.1
258.8
259.0
268.8
265.9
266.0
21+1.1
1969
181*. 5
197.6
196.1
198.1
191.1+
221 T 5
189.8
202.1+
211+.1+
230.7
233.2
232.0
21+1+.5
255.6
250.7
259.5
265.1+
251+.5
21*0.2
21*1.6
251.1+
267.1+
281.2
280.1
__
238.3
277.6
251+.0
21+2.5
27l+. 6
1970
267.9
255.1+
211.1
209.3
2Q1+.9
229.8
225.1+
237.5
266.6
261.0
21+1.6
261+.1+
269.9
305.9
258.9
260.1+
286.5
21+9.2
261.7
309.2
235.1
278.0
285.8
283.1+
267.0
273.8
298.5
260.9
23l+. 2
235.7
1971
236.5
215.3
221+.6
236.2
21+6.8
261+.8
262.2
261.6
261+.6
261*. 6
21+3.3
258.2
27!*. 3
303.6
385.2
256.9
268.2
256.7
27l+. 3
270.7
261.2
266.2
269.5
238.5
237.7
250.6
216.6
195.1
182.5
203.3
Precipitation
'ater Equivalent
Inches
0.90
TR
TR
TR
0.08
TR
TR
0.18
TR
0.01
TR
0.05
TR
0.01
0.1+7
o.oi+
0.12
0.59
-------
rijAWT UVUKATlUNAJj DATA DECEMBER 1911
D
a
t
e
1
2
3
1*
5
6
7
8
9
LO
11
L2
L3
1.1+
15
16
17
18
L?
20
21
22
23
2l+
25
26"
27
28
29
30
11
D
a
y
w
Th
FT
SA
Ru
M
Tii
W
Th
Fr
Sa
fiii
M
Tu
w
Th
Fr
Sa
Su
M
Tu_
W
Th
Fr
Sa
Su
M
Tu
W
Th
Fr
Iron Addition
to East Plant.
Mixed Liquor
Ibs/day
1*382
7139
711+0
7U71*
7H*1*
10033
1001+1*
10168
11288
11172
8875
81+36
9660
6750
6199
9559
751+8
7752
71+00
8208
8122
788U
9539
7361
6381+
J>6$Li
7569
102U9
5396
i+il+o
^
mg/1
l*.l
6.8
7.1
8.2
8.6
9.7
9.5
8.9
9.3
8.8
7.9
8.0
8.5
5.3
5.2
8.1
6.1+
7.H
7.1
7.2
7.7
7.2
8.8
7.8
7.8
7.0
7.3
9-0
1*. 5
3-5
1+-3
Milorganite
as Received Basis
Tons/
Day
2l*6.7
21+9.0
218.0
212.5
200.2
196.6
189.1
173.2
187.8
185.7
190.5
212.9
206.8
212.0
203.5
195-3
206.6
205.1*
200.1*
201.8
208.0
209.6
217.3
222-3
198.1
115.1
—
—
119.6
211+.5
Nitrogen
% N
5.87
6.01
6.15
6.1*9
6.66
6.60
6.52
6.52
6.58
6.57
6.1*7
6.1*3
6.28
6.17
6.11*
6.16
6.28
6.1*0
6.59
6.59
6.1*5
6.51
6.1+9
6.72
6.76
6.78
—
—
—
6.69
6.73
Ash
%
29.11+
2&J&L
28.52
27.85
27.67
28.2U
27.80
27.37
27.78
28.33
29.00
30.35
30.79
30.59
29-73
30.59
31.19
30.20
?9.71
?9.63
>8.75
?7-82
>7.29
>7.0i+
11. lit
>8.10
—
—
—
?6.92
>5.95
Average Ferric Chloride Use
pH
3,7
3,8
3,9
3,8
3,6
3,6
3,6
3,6
3-5
3-5
3-3
3-3
3-3
3.3
3.3
3-3
3.7
3.8
3-7
3.7
3.7
3.6
,3-5
3-5
3-1*
3.^
—
—
3-^
3.1+
Waste Sludge
% Solids
2.38
2.21
1.71+
1.1+9
1.31+
1.35
1.37
1.31+
1.31
1.27
1 29
1.33
1.1+9
1.59
1.55
1.5^
1.50
1.1*6
1.1+1+
1.1+7
1.61
1.55
1.1+3
1.1+1
1.1+1
1.37
—
—
1-.50
1.56
Ibs . Anhydrous FeCl^ Per
Dry Tons Recovered Solids
1968
21+2.0
250.2
256.1
228.2
21*5.0
21+1.7
21+1.3
233.9
207.5
201+.5
222.8
219.7
237.3
207.8
221.9
21+1+.0
266.1
21+2.1
236.8
210.0
207.6
215-3
176.2
201.9
208.9
230.3
222.7
197.0
202.0
211+.5
203.1+
1969
289.2
273.3
272.2
21+8.1
236.1
221.5
233.1+
222.1+
207.9
228.0
235 . 8
195.1+
207.0
211+.5
208.1+
187.0
186.7
193.2
203.9
190.5
201.2
196.8
220.9
21+3.7
263.6
261+.0
21+8.2
267.6
225.1
266.7
257.0
1970
226.8
236.2
21+1+.7
252.8
21+6-0
250.5
232.1+
21+7.6
21+1+.2
255.7
21+1+.1
219-7
220.3
211.1
233.5
229.7
207.3
232.2
216.8
235.6
262.8
237.9
2U1+.3
225.9
260,3
301*. 2
270.9
229.2
21+1.1
205.1+
209-9
1971
179.7
166.1+
160.6
156.6
166.7
3.77.3
181.1
192.7
186.6
170.3
183.2
193.3
211+.3
208.3
185.9
193.7
177-1
175-5
178.9
190.3
183.0
186.5
197.1
203.8
230.5
22,5.0
__
—
—
259-9
182.8
Precipitation
Water Equivalent
Inches
0.01
0.07
0.02
TR,
0.10
1.33
0.22
1.32
TR
0.06
TR
TR
0.06
TR
0.30
0.85
-------
ri.iHiNj. ur£,rmij.uiM.a.Li UHO..R 1971
Week
lA - 1/9
1/10- 1/16
1/17- 1/23
1/24- 1/30
1/31- 2/6
2/7 - 2/0,3
2/14- 2/20
2/21- 2/27
2/28- 3/6
3/7 - 3/13
3/l4- 3/20
3/21- 3/27
3/28- 4/3
4/4 - 4/io
It/11- 4/17
U/18- 4/24
4/25- 5/1
5/2 - 5/8
5/9 - 5/15
5/16- 5/22
5/23- 5/29
5/30- 6/5
6/6 - 6/12
6/13- 6/19
6/20- 6/26
6/27- 7/3
7 A - 7/10
7/11- 7/17
TOTAL IRON
mg/1 as Fe
SS
6.47
7.16
7,1+0
7.74
7.52
7.92
6.30
4,94
5.26
5.15
4,75
4.01*
4.84
it. 66
5.62
6.34
6.4o
6.59
7.02
7.11
6.69
5.48
7.50
8.32
5-94
5.77
6.37
6,89
WPE
0.39
0.60
0.54
0.76
o.4o
0.77
0.96
0.86
0.45
0.48
0.42
0.45
0.45
2.11
1.33
2.17
0.80
4.96
2.75
4.50
1.66
1.12
1.15
1.92
0-72
0.64
1.65
1.00.
EPE
0,60
2.06
3.43
3,?6
2., 85.
2.13
5.36
2.07
1.60
2.50
1.58
2.75
0.98
2.85
1.98
3.83
4.04
3.83
3.97
5.05
1.51
?.37
1.04
0.97
Q.70
0.51
0,54
?.4T
% Removal
, WPE
94.0
91.6
92.7
90.2
94.7
90.3
84.8
82.6
91.4
90.7
91.2
88.9
90.7
54.7
76.3
65.8
87.5
24.7
60.8
36.7
75.2
79.6
84.7
76.9
87.9
88.9
74.1
85.5
EPE
90.7
71.2
53.. 6
57.9
62.1
73.1
14.9
58,1
69.6
51,5
66,7
31.9
79 -B
38,8
64, ft
39,6
36,9
l"4l.9
43,4
29, Q
77,4
56,8
86,1
88.3
88.2
91.2
91-5
64.2
TOTAL SOLUBLE IKON
mg/1 as Fe
SS
0,5'
0,6£
0,5^
n.sf
Q,6l
0.5C
0,17
0,5C
0,46
3.42
3.30
3,31
3.29
3-34
D.81
3.39
3.48
WPE
0.10
0.14
0,17
o.4i
0.12
0.18
0.17
0.23
0.20
0.13
0.15
0.17
0.23
0.49
0.45
0.26
0.07
3.4ol0.l6
3.33
3.82
3.48
3.39
3.60
3.48
3.42
b.37
3.36
3.59
0.14
0.77
0.24
0.20
p. 32
0.27
0.15
JL.24
0.24
0.29
EPE
0.07
0.15
9, 11
0.09
0,Q8
0.07
0.26
0.32
0.11
0.11
0.09
0.07
0.07
0.24
% Removal
WPE
81,0,
79.4
70.7
29.3
80.3
-6£^0.
54.1
54.0
56.5
69.0
50. n
45.?
20.7
___
0.88144,4.
0.39
33.3
0,08185,4
0.10
0.09
EPE
86,8
77.9
81.0
84.5
86.9
87.9
29.7
36.0
76.1
73.8
70.0
77.4
75.9
29.4
—
RETURN SLUDGE (DRY BASIS)
#Total P
WP
2.0,0
2.08
2,14
2.09
2.03
2,Q4
2.07
1.96
1.82
1.87
1.97
1.80
1.90
1.91
1.99
EP
2_.4o
r2.45
2,42
2.40
2.36
2.33
2.28
2.16
1.91
1.96
2.06
2.01
2.02
2.03
?.]?
— |l. 9412.03
83.3
60.0 175.0
57,6
1.061 6.1
0.16
0.19
0,18
0.06
0.07
0.08
0.20
0.19
50.0
47,4
46.7
43.8
64.3
3JLL.
33.3
50.8
12,7
_ —
66.7
50.0
70.0
87.5
83.3
78.4
44.4
67.8
2.01
2.02
?,09
?,08
2,2.2
?J5
2,26
2.27
2,2$
2.21
2.36
2.39
?,06
2,08
2^L£
?,13
2.16
?.?3
-2^29.
2.31
2.30
2.20
2.37
2.43
#Total N
WP
6.96
6.98
7-03
6.86
6.63
6.79
6,64
6,43
6,16
6,49
6.58
6,36
6.70
6,86
6.88
6.40
6.56
6.68
6.74
6.53
6.72
6.39
6.37
6.35
6.28
6.04
6.42
6.36
EP
6.71
6.63
6.58
6.65
6.58
6.44
6,49
6.08
5.80
6.28
6,44
6,?3
6,44
6.58
6.57
6.09
6.4o
6.56
6.64
6.46
6.56
6.16
6.23
6.22
6.14
6.01
6.29
.6.16
$Total Fe
. WP
i .6?
i .76
1 .83
l .76
1.90
JLJi3_
1.97
1.76
1.83
.Ui9_
2.18
1.62
1,6?
1.55
1.76
2.68
2.89
3.03
3.03
3.45
3.03
3.45
3-17
3.45
3.38
4.02
3.80
3.87
EP
4.37
4.51
_4_J2_
4.58
5.23
5.14
5.71
5.85
5.85
5.00
4.09
4.58
4,65
4.65
4.65
4.44
4.37
4.16
4.30
4,i6
4.65
4.86
4.58
4.30
4.72
4.51
4.72
5.00
^Total Ash
WP
23.37
23.34
22.78
P2.90
23,77
24.50
25. 2Q
26.16
P7.72
26.82
25.96
27.06
25.79
25.51
25.41
29.78
27.94
26.99
26.98
28.03
27.42
28.90
28.88
29.38
29.57
31.99
29.51
29.92
EP
26.99
27.60
27.06
27. 36
28.31
28.95
30.13
30,83
32.95
31.07
28.32
30.79
29.48
29.16
28.97
31.53
30.40
28.85
28.79
29.63
29.46
31.02
30.83
30.88
31.05
32.50
30.68
31.27
-------
rj.iRJ.MJ. Ur£,«HlJ.UiMKij JJAXA 1971
Week
7/18- 7/24
7/25- 7/32
8/1 - 8/7
8/8 - 8/14
8/15- 8/23
8/2?- S/2f
8/29- 9/4
9/5 - 9/11
9/12- 9/l£
9/19- 9/25
_9/26-10/2
LO/3 -10/9"
LO/10-10/16
LO/17-10/23
LO/24-10/30
LO/31-11/6.
11/7 -11/13
11/14-11/20
11/21-11/27
Ll/28-12/4
12/5 -12/11
L2/12-12/18
12/19-12/25
L2/26- 1/1
TOTAL IRON
mg/1 as Fe
SS
7.03
6.80
7.14
6.15
6,48
7.55
8.06
8.39
7.19
7.92
9.15
7.95
7.81
8.97
8.26
9-73
8.24
5-21
8.95
6.99
4.12
4.73
It. 10
3.54
WPE
0.75
0.76
1.32
1.32
0.81
0.66
0.74
0.80
1.03
0 9?
1 .??
0.69
0.80
1.46
0.74
0.94
0.89
1.90
1.18
0.98
0.74
0.72'
0.65
0.66
EPE
nLQ?
0,63
1.37
1,26
0.96
0.71
0.42
0.69
0.57
0.75
1.25
0.73
p. 65
1.79
1.71
0.87
0.1*1
1.18
L.27
D.93
D.46
0.70
0.39
1.55
% Removal
WPE
Ro.3
88.8
8l.5
78.5
8J.5
91.3
90.8
90.5
85.7
88.U
86.7
91.3
89.8
83.7
91.0
EPE
86.9
90.7
80.8
79.5
85.2
90.6
9l*.8
91.8
92.1
90.5
86.3
90.8
91.7
80.0
79.3
90.3 191.1
89.2
79.6
86.8
86.0
82.0
81*. 8
8U. l
81.1*
TOTAL SOLUBLE IRON
mg/1 as Fe
SS
0.1+9
0.1*7
0.59
0.1*3
0.1*5
0.1*1
0.38
0.33
p. 35
D.l*2
3.52
3.37
D.64
D.39i
D.33
D.25
95.0 b.251
WPE
0.23
0.13
o.ii*
0.17
0.20
0.08
0.09
0.11
0.07
0;15
0.15
0.08
0.07
0.15
0.08
0.05
o.ii*
87.3 0.351 0.08
85.8
86.7
88.8
85.2
78.3
D.32
D.25
D.28
D.23
D.31
56.2 0.22
1
1
0.08
0.08
0.15
0.13
0.13
0.11
EPE
0.11
0.13
0.17
0.18
0.18
0.10
0.06
0.10
0.06
0.09
0.05
0.06
0.12
0.09
0.08
% Removal
WPE
53. i
6l.7
76,3
60.5
55.6
80.5
76.3
66.7
80.0
61*. 3
71.2
78.1*
89.1
61.5
75-8
0.02180.0
0.0911* 4.0
0.10
0.11
77.1
75.0
0.09l68.0
0.09
0.11
0.09
0.09
1*6.1*
1*3.5
58.1
50.0
EPE-
77.6
72.3
71.2
58.1
60.0
75.6
31*. 2
69.7
82.9
78 6
90.1*
83.8
31,3
76. 9
75.8
92-0
61*. 0
£P_JL
65.6
6^,0
67.9
52.2
71.0
59.1
RETURN SLUDGE (DRY BASIS)
#Total PJ #Total N
WP
2.28
2.29
?.36
2.1*0
2.27
2.28
2.31*
2.1*3
2.57
? 5?
? 1*7
?,4l
?.4p
2.33
2^29
P. 34
27331
. EP
2.33
2.30
2.34
2,36
2.31
2.30
2.34
2,47
2.58
2.6l
2.54
2.43
2.44
2.39
2.29
2.38
2.31
2.3712.31
2.1*3
2.54
P,4l
2,27
2.17
2.19
2.36
2.54
2.44
b.20
2.16
2.29
WP
_6_.4o
6,39
6,43
6.00
6.21
6.15
6,1?
6.22
6.08
6.28
6.26
6.00
6.00-
6.38
6.32
6.30
6.15
6.26
6.46
6.39
6.23
6.58
6.33
6.67
EP
6.?8
6.?6
6.30
6.01
6.11
6.04
6.02
6.15
5.95
6.16
6.04
5.37
5.94
6.26
6.08
6.08
5.93
6.14
6.21
6.23^
6.14
6.39
6.22
6.49
iTotal Fe
. WP
3.45
3.66
4.02
4.44
3.66
3.36
4.19
4.28
4.80
4.44
3.61
4.34
4.57
4.10
4.08
4.65
5.69
5.43
4.4i
4.95
4.40
3.85
4.4l
3.79
EP
4.72
4.86
5.28
5.56
4.79
4 91
5.31
5.12
6.10
5.70
L_l*.7_l
5.31
5.76
5.35
5.96
6.66
8.32
7.14
6.39
6.85
6.61
5.88
6.39
5.06
#Total Ash
WP
29.90
29.38
29.65
30.91
30.81
31.77
32^.2^8
30.89
31.98
31.31
30.90
31.53
31.52
29.00
29.89
30.45
31.87
30.37
30.09
30.13
29.76
28.82
30.48
28.53
EP
31,33
28.90
30.81
32.19
31^6?
33T20
33.3.5
32,.4l_
33. £7
32_L_6Q_
32.35
32.62
32.55
30.34
32.06
32.47
33.93
31.90
31.85
31.70
31.28
30.76
31.93
30.11
-------
SELECTED WATER
RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
Rep >t ffo
w
200 MOD Activated Sludge Plant Removes Phosphorus
by Pickle Liquor
Leary, Raymond D; Ernest, Lawrence A;
Powell, Roland S; Manthe, Richard M.
Sewerage Commission of the City of Milwaukee
Milwaukee, Wisconsin
.?, R.
8. Pfformie • Org»r.' vt
RtuortNo.
11010 FLQ
12. Sponsoring Q r sr&oizitfi on
13. Type <''' Repot" .tad
Period Covered 05D
1971 Operation
Environmental Protection Agency report number,
EPA-670/2-73-050, September 1973.
The Milwaukee Sewerage Commission's Jones Island Waste Water Treatment Plant
consists of a mutual primary treatment facility followed by two separate activated
sludge plants. To enhance phosphorus removal in the 115 MOD East Plant, hot spent
sulfuric acid pickle liquor (ferrous sulfate) was added for a one year test period
in 1970 while the 85 MOD West Plant was operated as a control. This follow up
report covers the 1971 operational period in detail and the first four months in
1972.
An average of 8.0 mg, Fe/1 of pickle liquor iron (81*36 Ibs. Fe/day) was added
in 1971 to the East Plant mixed liquor, producing an effluent total phosphorus con-
centration of 0.69 mg P/l and a total soluble phosphorus concentration of 0.15
mg P/l. This performance is based upon a raw screen sewage total and total soluble
phosphorus concentration of 7.1 and 2.3 mg P/l, respectively. In an attempt to
enhance phosphorus removal in the West Plant, East Plant waste sludge containing a
higher iron content was added to the West Plant return sludge starting in April 1971
This procedure increased the iron content of the West Plant but did not substan-
tially increase the West Plant phosphorus removal. During the 12 month period from
May 1971 to April 1972, the West Plant effluent total and total soluble phosphorus
concentrations averaged 1.5 and 0.61* mg f/lt respectively.
lla. De
"Activated Sludge, *Biological Treatment, *Chemical Precipitation, *Iron,
*Phosphorus, *Waste Treatment, Ferrous Sulfate, Pickle Liquor,
Phosphorus Removal, Sewerage Commission of the City of Milwaukee
19. S, -urity C'tss.
(Report)
20. Sfcurny Class,.
21. A'o. of
Pages
22. Price
Send To:
WATER RESOURCES SCIENTIFIC INFORMATION CENTER
U.S. DEPARTMENT OF THE INTERIOR
WASHINGTON, D. C. 2O240
Manthe, Richard M.
Sewerage Commission of the City of Milwauke
------- |