iuiiiiiMMiiin IMIIlllllIIIHMII) IIIIIIII'IIKMIIIII IIIIIIUIIIIIIIPMI ii:iiiiiiinirMiii 0.0 o.o 0.0 o.o o.o 0.0 o.o o.o 2.00 0.0 o.o 0.0:- o. o- o.o:' 6.0. o.o.. o.o/ 2.00 10.0 1.00
-------
o.o :
o.o :
0-0,-
o.o-'. -
o.o ;•••
b.o
o.o .-
o.o v
;0.0 .
^,""oEV03
•snff.lt :
bi&oo'
-'.-i-oo .;•-
SHAPE :.
b'.310E-06
193.
'10.B
96.0
';T. 00 •': '
•'151. •'•'
0. 100E-02 .
;1,00
'1.00
'.:;i-op ;
:'STFO t
'•o. ioo
si ton : .
-102.
1CCRC S
0.500
OiiO
0.0
0.0.
0.0
0.0
0.051
0.051
iccpi !
29*- :/
icnil ;.
30.0
00.0
00.0
IOPI :
25.0
25.0
o.o V
o.o. V
O.o '•:'•'
o.o • .;•
.0.0
0.0
0.0
0.0
o.o : :
6. IOOE-03

0.500E-C1
0-500
•• .-/ ,. ; .:
.00
.00
.00 .
.00 ..
.00 i
iOO
-:00 .;
.00 '
w 00 •'•
0.252Et(!q

0.100

"102. .;
'•• -. : '.
0.05» '•".
0.051
0-.051 •-,-•
0.051 : :
0-051
0.051
0.051
0.051

290. :.

35.0
00.0


25.0

.0.0
0.0
0.0
0.0
b.o
o.o
0.0
1.00 '
1.00
0\.100E>03

0.500E-03
0^500.

0.270E100
C.290E«Oil
0.326E<00
0.30JEIOO '
C.390EIOO
Oi033E»00
0.165E>On
0.503E»00
• 0-SIOE'OO
0,003E»00

c. too

102. . ' .'f
'; : "
C.200E-01
0.200E^O 1
0.200E-01
0-200Erbl
0.200E-01
0.200E-01
0.200ErOI
0.200E-01

291- '

31.5
OQiO


25.0

1.00
0-.310E-06
193. .;
1 0. 0'::
96 . 0 .
i.oo
1 5 K
0. 100E-02
.1.00 .
0. IOOE-03

0.500E-03
0.500

0.290E»00
OiO .
0. 106E>20
.120.
bi 11BE-03
b.o .
7.00 ':'•
0.100
0.0
b; o




• '.
b.2ooE-bi
0.200E-01
e.o
o.o
0.0 :: .
b.-o : ~
0-0
0.0 :

29(1.

30. 5
00.0


25.0

1-00
1.00
'-.•I.OO
". t.O'J
1.00
.1.00
1.00
1.00
'.'.'1.00
• 0. IOOE-03

. 0^500E-03

••'.'•• : .
0.0
b. b -
o.o :.
• b.o v
'-0.0 ''
"••Oi-O
!0ib
OiO
'0-0 "v
-o.b ?.u .-.'
. ..; .. -
•'•/ '•


. '•'• • :.."• v '
b. o
b.o
i b.o
.0-0
0.5BBE«00
b.5BOE>0»
b.5BnE»oo
O.SSOEtOO



3.1.5
00.0


25.0

0.252E»00
0.270E»0'i
0. 290E«00
0.321K«00
0.363E»00
0.390E«00
' 0.0.?3E»OI1
0,065E»0'I
':'• 0.503E»OH
0. IOOE-03
:
:: 0.500E-03


1.00.
0.0
:.o.o •
! o.o •
2.00:
2.00
2.00
0. 100
ifl.100.
;b-100-





0.588E«0»
0.580E«0n.
298.
290.
29fl. •
0. 100E-01
0.760





0.0
0.0
0.0
0.0
0.0
0. 200E-01
0.500E-00
B.OO



50.0
00.0


25.0

0.100
I'I7.
102.
102.
0.200E-02
0. IOOE-02
0.5nOE-02
10.0
10.0
0. lOOE-O.l

0.5OOE-03

-
0-100
0.0
0.100
0.0
0.0
0.0
.0-0
o.b
0.0
0.100B-01





.B.OO
P. 00
B.OO
n.oo
B.OO
• n.oo
0.0(1
B.OO



50.0
00.0


25.0

20.0
2(1.0
20. n
6.00
r>.oo
fr.OC)
fi.no
9.00
9.00


0. 700


0.700
0. 100
0.551
0.0
0.0
0.0
0.0
0.0
0.0
0.0





B.OO -
B.OO
n.oo
0.31 IE-01
0. JI3E-01
0.313E-OI
0. 31 JE-01
0. 113E-01



30.0
on.o


25.0

1.00
1.00
1.00
1.1)0
1.00
29H.
29H.
2911-
2'Ut.


(1. 5DO

-
0. 270E-01
0.300
0.530R-01
0.0
0.0
U.O
0.0
0.0
0.0 .
0.0





0.313E-01
0.313K-01
0. 313E-01
0.313E-01
0. 3I3E-01
0.313E-01
0.3IJE-II1
1.00



30.0
00.0


25.0


-------
30.0
20.0
vnrn :
96.0
VFUnGE:
1.00
VH2C :
11.8
VTCtl :
193.
0.100E-01
0.9808-01
0. 7f>0
o.eooe-01
0.100
0.190E-P1
P.O
0.0
0.100
0.100
u.o
0.0
0.0
0.0
O.P
0.0
0.0
0.0
0^0
0.0
EFFEN :
o.soo
dflix :
0.200E-01
20.0

0.0

0. 1001-01

0.700

0. 100

0.551

0.0

0.0

0.0

0.0

0.0


0.0

0.200E-C1
30.0 ;
20.0

0.0

0.0 . \
-:. • ••'
0.270B-01

0.300

0.530E-OI

P.O :

0.0

0.0

O.P ' .'.

P.O ' ':'•

''•'.' 'f".
0.500:

C.200E-OI
30^0
; 20>0 :

0.0

0.0 ••"'

0.2706-01

P.3PO ••' "'•

0.5JOE-0!

p.p • . .. V

0.0

8.0
' . •- ;.
0.0 '

o^o ' ':


p.spp ;:_:;




o.o.

piO

0.270E-01

0.300 ,"

O.S30E.-01

O.Q

0.0

0,0

.0*0

0.0


0.500




O.P;

"0.0

0.0!

0.0

0.0

•O.P

P.O

0.0 .

0.0

0.0


o.o




o.o •-..,

0.0 '

0.0

O.P

,0.0

0.0

P.O

0.0

0.0 '

P.O.
"

P.O




0.0

0.0 .

0^0 • .

p.o- •:

o.o; ':-

P. 0 "-. '•

O.P

P.P , :

P.O , '

0. 0 '•',
:•: \

0.0 f.




.0.0

0.0

I o.o .-.-•

• ; O.P

0.0 :

:. • o. o

0.0

V .0.0

•'.o.o .

OiP


P.P




0.0

0.0

. O.P

O.P

: o.o

6.0.

0.0

P.O

"• • OiO

0.0


0.0




0 100

: 0.1 50 •

0. 100

0.0

.0..900P.-O1

O.P

0^0

0.0

0.0

0.0







0.0

P.O

0.0

n.o

0.0

0.0

0.0

0.0

0.0,

0.0
r
"



  ctcncs:
r F » f i F r r F F
fffff.fFrt

  DISICC:
  niSRHl:
  nreccs:
F f F F F F
I F F F F F


  DIItlE :

-------
JCE :
F. F
Hurtn :
20
20
0
. :'. 0

I.

2
• 0
0
0
..•'•• .; :


i
0
0
$



. « •:•. . -i •'.
; .0 3
• • 0 • 0
.'-. "° '.'. °



0
2
0
0 .



0
20
'•0 '.-
20 -



0
30
0
0
'. ":'


0
20.
0.




0
6
0

 SBMCII:
 •triRSi:
     112
    292
CIM :
1.00 .
0.0
0.0
ct»n :
219.
0.0
260.
DC2 :
5.00
0.0
0.0
DC2I :
0.0
0.0
o.o ;
FtSIII :
t-55
0.0
0.0
F1SIM1:
112.
0. 0
0.0
MSII2 :
0.910
0. 0
0.0

1.00
0.0
o.o -

226.
0.0
273.

c.oo
0.0
0.0

0.0
• o.o
0.0

0.120
0.0
0.0

; ii«. .
0.0
0;0

0.310 -
0.0
o. o • . •

c.o
0.0
0.0

233.
0.0
300.

6.00
0.0
0.0

o.o
0.0
c.o

C.tOOE-01
0.0 : ..
O.o '•;

293i
0.0
0.0 .

C.10OE-0
0.0
c.o.

.0.0
o.o ..
0.0 •

210'.
0.0
0.0 . .

''• 5-70
b. o
0.0

•'o.o
0-0
0.0 :

1.20
0.0 . .,
0-0 r
.*..
.300.! ;
O'.O : . :
0.0 /

0.750
0.0
0.0

• o.o
'•: o.o
.:;': b^o

211.
0.0
0.0

. 10. «
. 0.0
0.0

0.0
; 0.0
'; :0.fl

0-0.
0.0
0.0

:o.o
0.0
0.0

0.0
0-0
0.0

0.0 '...
0.0
0.0

259;
o.b
0.0.-.

'-. 9.60'
o.o
• o.o

0.0 '
o.b •
:OiO

• : 0.0 ,
:0.0 :
0.0 '

' 0. 0 ;'
o.o -.
,0.0 . .'

0.0 •
•0.0. '
.0.0

o.o
0.0


261.
0.0


7.50 ',
0.0


o.o
0.0


0.0
0-0


0.0
0.0


0.0
0.0


0.0 .
b.o .•
-.:- • •!'
r
268.
0.0


0.0
b.o


b.o
0.0


0-0 ;
0.0


0^.0
0.0


0.0
0.0


0.0
0.0


275.
112.


0.0
0.0


o.o'-
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

-
293.
119.


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


300.
205.


0.0 :
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


• 0.0
212.


0.0
0^0


o.o
0.0 .


0.0
0.0


0.0
0.0


0.0
0.0

: F1SII21:

-------
M2.
0.0
0; 0
fisni :
11.552
0.0
U.O
risniii
ill.
0.0
o.o
usiiu :
e.o
e.o
o.o
o.o
o.o
o.b
FIS»5 :
b.e
e.o
. . ;. 0.6
to i FISH5T:
K> ' < 0.0
0.0
0. 8
. -FISB6 :'•
0.0
OiO
OiO
flSIISI:
0.0-
Oib
0.0
MSH7 :
0.0
0.0
0.0
FISH/1::
OiO
0.0
0.0
FtSIII :
0.0 -
0.0
0.0
111.
0.0 •':
n.o

0. 7SOE-C1
0.0
0.0

I'll.
0.0
0.0

0.0
0.0
n.o
0.0
0.0
0.0

0-0
o.o-
o.o

e.o
o.o
o.o

0.8
o.e
o.o :

OiO
0.0
0.0

0-0
0.0
0.0

0.0
O.H
0.0

0.0
0.0
0.0
291.
0.0
0.0

0. inof-oi
c.o
o.u

2


o.O'
o.o


0.0
0.9


3.0
0.0


0.0
0.0-


0.0
0.0


ii. b
0.0


o;o
o.b

F1SII81:

-------
0.0
0.0
0.0
FC* :
0.0
0.0
0.0
FCHT :
2)t.
0. 0
162.
lb»'D38::,
0.0
o.o
o.o •_
IDG :
101 :
«»CRO :"•
0.0
0.0 .
0.0
0^0
0.0
o.o .

0.0
0.0
0.0

22r,.
0.0
16.7. .'

0.0
0.0
0.6,



0.0
0.0 .
0.0 '
0.0 .
0 .0
: 0.0

;' 0.0
0.0
0.0

• 23 J.
o.o:
172.

; 0.0.'
.' 0.0
.0.0


;
0.0
• o.o '
0.0''
0.0
0.0 . .
0.0

0.0
o.o
0.0 .

: 210.
0.0
•177.

6.0
0.0
' 0.0

',;

:'.-, o.o.
.:• o.o-
0.0'
0.0
o.o"
0.0 "

. 0.0
0.0
0.0

2
u>





















0.0
: . 0.0
0.0
PCtAY :
0.0
0.0
0.0
PFisill:
0.0
0.0
OiO
0.0
0.0 ..
0.0
PF1SII3:
0.0
0.0
0.0
PFisnu:
0.0
0.0
0.0
PF1SII5:
0.0
o.o
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0
o.o
0.0
0.0

0.0
0.0
0.0

o.o
0.0
0.0

0.0
• o.o
0.0
0.0

. o.o
o.o ;
0.0 :

o.o •
0.0-
o.o'
0.0
o.o
0.0

0 . 0. :
0.0
0.0

•'. o.o
0.0
0.0

0.0 '.
:'•- 0.0
0.0
o.o

"'- 0.0
0.0
0.0

" O.OV ;
o.o
o.o
0.0
0.0
: o.o
'• :':•
0.0
• o.o
.-; o. o •

o^o
0.0
0.0

0.0
0.0.
. 0.0
0.0

0.0
• o:0'
6.0

. 0.0 '
0^0
6.0^
0.0
0.0
0.0
. . -
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0

o.o
0.0
0.0
0.0
0.0
o.n

0.0
0.0
0.0

o.n
0.0
o.n

0.0
0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0 '
0.0


. 0.0
. o.o


0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


o.o
0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
n.o
n.o


0.0
0.0


0.0
0.0

0.0
o.n


0.0
0.0


0.0
0.0


0.0
0.0
n.o


0.0
0.0


0.0
0.0

0.0
0.0


0.0
n.o


0.0
n.o


0.0

-------
to
«.
0.0
o.o
PFISII6:
O.O
0.0
0.0
Pf ISII7:
0.0
0:0
0.0
rrtsHP:
0.0
0.0
o.o-
rrci :
o.o
0.0
0.0
tn :
7.10
6.20
0.0
PHI :
OlO
0. 0
0.0
P.IMTC :
0. JJ3
0.115
0.0
rimcT:
0.0
o.o
o.o
rrucfc:
o.o
o.o
o.o
ron s
0^500
o.o
o.o
PCBT :
192.
252.
170.
prune:
o.o
o.o
o.o

n.o
o.o
o.o

o.o
o.o
o.o

o.o
o.o
o.o

o.o
o.o
o.o

7.70
7.70
0.0

0.0
0.0
0.0 .

0.142
0.515
0.0

0.0
0.0
o.o

0.0
o.o
0.0

2.50
0.0
0.0

197.
2r.6-
177.

0.0
0.0
0.0

0.6
0.0
1 O.fl'

0.0
0.0
c.o

0.0 .
0.0
0.0

OwO
o.o
0.0

6.90
7.20
0.0

0.0
0.0
0.0

0.362
0.673
0.0
'
o.o
o.o
0.0

0.0
o.o
0.0

1.50
0.0
0.0

203.
262.
IU'1.

0.0
0.0
0.0

0.0
0.0
0.0

•••••:' o.o
.0.0
o.o

• •' o.o
0.0
•;. 0.0

0.0
o.o.
l ; o.o

^7.50 .
'•• 7.50
v °-° '

'• • o.o
0.0
: o.o
.' :
6.421
- 0.280
0.0

•o.o
0.0
0.0

0.0
0.0
0.6

1.00
0.0
0.0

207.
26/.
mi.

0.0
o.o
p.. o

' 0 . 0
0.0 ..
OvO

0-0
6-o :
0-0
.. :'• '• •
0.0
. o.o
0:0

0-0
0^0 .
dj.o •;-.

7.20
a. oo
o. 6 '

OiO '
0.0
0.0:

0.606
0.692
O.'O
i
0,6 •.
0.0
o.o.

0.0
0.0
0.0

0,0
0,0
0.0

212.
272.
205.

0.0
0.0
0.0 :

0.0
0.0
0.0

0.0
0.0
0.0

0.0
o.o •
o.o -

0.0
.0.0
0.0

7.50
8.50
0.0 .:'

0.0
0-0
o.o .

0.6 II 9 '
:0.193
0-0 •

: '6.6', . ;
o.o •'..
o.o •

• o.o .
o.o
o.o

o.o
o.o
.'o.o

217.
2'7.
212.

0.0
o.o .


0.0
0.0


0.0
0-0


o-o
0.0


0.0 "
0.0 .


7.50- ••".-
/Hi 30.'.-. '-..

: ;. / '-'v..;
• o;6 •'•" •'•"'...•"•
0.0 ,
", . : ' "*:• '' '

•OilOJ
Oil 27 ;-..


0 -' 0 : ; . '•'.
• o.o . .


.0^0
0.0


0.0
0.0


222.
207.


0.0
0.0


0.0
0.0


0.0
0.0


0.0 .
0.0


-o.o •'
0.0 .
• ,*••'

7.50 •
fl.">0
'••' r.' '

0.0.
0.0


0.55'6
6.206


olo '
0.0


0.0
o.o .


o.n
0.0


227.
294.


0.0
0.0


0.0
o.n


0.0
0.0


0.0
0.0


: o.o '•'.
. o.o


7.40
-. '7.80 ;-'


o.o . :
0.0


6.4IB
6.265


0.0
142.


0.0
0.0


0.0
0.0


212.
142.


0.0
(1.0


0.0
0.0


0.0
0.0


0.0
o.o


o .6 •
0.0.

• {•''•'• :'•
17.60
o.o:, ••


o.o
0.0
'

0.571
0.0


0.0
• 144. •


0.0
0.0


0.0
0.0


237.
inn.


0.0
o.o o;o


0.0 0.0
o.o . o.o


o.n ;"«•. o .
0.0 • . R.O


O.O . 0.0
n.o .o.o


.0.0 "..' 0.0 .
, 0.0 :: 6.0 •
;'.• ••' ' ': - . I;.'.'. .'

. .'-'•- 7.ftQ • •-'. ".20
. : o. o ; ':• o.'O
• 'V ' ': • '"•••. :;. • • .

-..••' o.o -..: '•': o.o:
0.0: 0.0;.'


• 0.454 : .. ]' .VO.n'22
; O.'O .-- ... ,..'0i 0 '


0.0 : 0 : 6 '
293. ; 3()0.


0.0 0.0
0.0 .' 0.0^


0.0 !. 0.0
0.0 . n;o


211. 247.
156. 11.3.


O.O 0.0

-------
o-.o '
o.o •
fret :
o.o
o.o
o.o
o.o . \
o-.o ' •"•'
o.o •
: o'.O
o.o ••:

0.0
0.0
0.0
:0.6t •
• 'o. o'. •
diO:' /
0-0
. 0.0
. °
c.o
0.0
. 0.0
: o.o
o.o
o.o
0.0
. 0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o

0:0 .;
oVo •
0.0
'o.o .
6.0 .
0.0
0.0
0.0

fl.O
0.0
0.0
0.0
0.0
0.0
O-O


0.0
0.0

0.0
0.0

0.0 :':


0.0
0.0

0.0
0.0

0.0


0.0
0.0

0.0
0.0

0.0


0.0
fl.O

0.0
o.o

0.0


0.0
0.0

0.0
0.0

0.0


0.0
0.0

0.0
o.o

0.0 '•'. '
o.o '•. .
0-. 0
F.70CPI:
0.0
0.0
0.0 .
• SOIAB :
'131. .
.500. ;•
0.0 ,
I irtt :
21.0
27.0
0.0
1EHFT :
0.0
0.0
0.0
0.0
o.o
o.o
:.- o.o.. ;.
• 0.6 '•
0.0

0-0 .
o.o
o.o

173.
'i05- • .-
0-. 0 .-.

25. 0'-
21.3
0.0

. 0.0
OiO
0.0
o'.o
o.o
OiO
0.0
0.0
-0.0

0.0
0.0
0.0

561.
•407.
0.0

25.0
25.7
0.0

0.0
c.o
0.0
0-0
o.o ;
0 . 0
•o.o
0-0
0.0

0.0
0.0
0.0

613.
am. 'i
0.0 •
.0
25. 0
21.0
0.0

:. 0.0
0.0
0.0
: o.o :•.
• o. o
0.0
0.0
o.o
"-- o .

0.0.
O'.O':
o. q

•'•• 131.
': 367.
0.0 ;
- ,' . .'
'•'25.3
26.0
0.0
'• .'
0.0 '
0.0
e.o ;
'. b.6 .
o.o -.
0.0
0.0
0.0
0.0 _

0.0
0.0
0.0

601.
37B.
0.0

29.0
21.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


0.0
0.0


619'.
371.


30.0
in.o


0.0
0.0

0.0
0.0

0.0
0.0


0.0
0.0


3B6.
170.

.*
2". i
17.0


0:0
0.0

0.0
0.0

0.0
0.0
- -

0.0
0.0


515.
271.


27.7
20.5


0.0
0.0

0.0
. 0.0

0.0
0.0
_

0.0
0.0


119.
310.


27.0
0.0


0.0
0.0

0.0
0.0

0.0
0.0
_

0.0
o.o


133.
267.


2n.o
0.0


0.0
0.0

0.0
0.1

0.0
0.0


0.0
0.0


519.
2"fl.


27.3
0.0


0.0
(1.0 -

0.0
0.0

0.0
0.0
0.0
            0.0
            o.o
0.0
0.0'
0.0
0-0
0-0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SPOHS1:
112.
6.0
0.0
KIND :
2.21
3. 13
1.17
HINDI :
0.0

•" 111.
o.o
0.0

2.6B -•!'
3. 13
2-21

0.0

2<)3.
0.0
0.0

i- n
1.31
1.02 '

o.o:

300. :
: 0.0
.' 0.0

1.71
1.31
1.79

, 0.0

0-0 •
0.0
0.0

5.81
3.13
2.21

0.0

0.0
0.0
0.0

6.71
1.02
3.13

fl.O

0.0
0.0


2.21
1.79


0.0

0.0 0.0 0.0
0.0 0.0 0.0


3. 50 3.13 3.13
1.79 2.<1B 2.21


0.0 0.0 0.0

0.0 0.0
0.0 0.0


3.5H fl.n'l'l
1.79 l.lf


0.11 0.0

-------
to
0.0
0.0
BIRD :
2.21
3. 13
1.17
HIKDT :
0.0
0.0
0.0
ZCCPt :
0.321
0. 162E-01
0.0
ZCCtlT:
142.
233.
0.0
C Tes?
0.0
0.0

2.68
3. 13
2.21

0.0
0.0
o.o

0.20BB-01
0.952E-02
0.0

119.
210.
0.0

0.0
o.o •

1.79
1 . 3 II
1.02

0.0
0.0
0.0

0.216F-OI
0.642E-02
0.0

156.
247.
0.0

0.0
.0.0

1-79
1.31
1.79

0.0
0.0
0.0 ;;

0-220E-01
0.106E-02
0.0

163;
251.
0.0 :

0.0
0.0

5.C1
3-13
2.21

0.0
0.0
0.0

0.636E-02
0-100E-02
0.0

' 170.
261.
'.0.0

0.0 0.0 0.0 OiO O.II 0.0 0.0
0.0 '

6.71 2.21 l.'.n .1.11 . 3.13 3.r.n 0. il'il
1.02 1.71 1.79 2.f.n .' 2.21 1./1 il.'i»
3.13 ' ' • . '••

0.0 0.0 .. .• 0.0 0.0 0,0 . 0.0 O.il
o.o o.o o.o ': o.o . n.o o.o , o.o
142. '- .'; . •. • ".

0.518E-01 0.271E-01 0.290R-01 0.106R-01 0.314E-01 0.131B-01 0.306
0.236E^02 0.674E-02 0.211E-02 0.163 0.0 0.0 0.0
o.o. '•" • . . : ' , -

177. 104. '. 198.. . 20'>. . 212. 219; 226.
200. 2T>. 2*»J. •' 300. 0.0 0.0 O.o
o.o : • . . ••. - . ;


-------
                14000
                              26OO
         30CLOO
Figure B.I'.
             182,00      22JUJO
            ...-    Julian Date
•  Temperature loading used"in 'simulation  of Treat-
  ment-3 pond's, ••Columbia, Missouri.  '   •   ...
               "MOJOr
2SLIH)
                                          SfflLDO
Figure -B'; 2...'
         '•'" 182JJO- '.'• •"•'  22JUIO "
          -.:;,. ^Julian.  Dat?>^;;.;.;r...';. '•'•''•  ;  _' v -,,>.;. ......
•.pH. . -loading r,:used';: in -: simul;a'.tion--of :T'rea'tment- 3
.ponds;  Columbia., -Missouri.-;:-;. .- •   :>
                                   127

-------
            •-
             x
            O
             u
             o
             to

               4MHI
2BOJTO
                301X03
Figure  B.3.
          18000     220JDO
              Julian -Date  :    ;,,
bis^olv^d .pkyg'en' loading vised In  simulation o£
Treatment-3 ponds, 'CQl"umb'ia,,.'.'Mlss'ourx.
Figure B.4.
Wind  velocity;
Treatment-3
                                                   30GJW
 g used^R^simulation of
fcolumbia^Missouri.
                                 128

-------
Figure 3.5.
          18&00     99tyfin     ?60.flO
              Julian Date
Solar radiation loading  used in simulation of
Treatment-3 ponds, Columbia, Missouri.

1-
            00
            ^v.
            •3

             cS
            QQ
             CD
            H
                        18000-.    22&OD
                             Julian Date
                                          -f-
                            ?8Q.no
 Figure's.'6".''  Phytoplankton biomass used in simulation of Treat-
              ment-3 ponds, Columbia,  Missouri.
                                129

-------
Figure B.7.
          18CJJO     TftUTP     28£Uffl     300JO
          :,.  Julian Dste
Zooplankton  biomass used--In  simulation-of'Treat-
ment-3 ponds,  Columbia')" Missouri.
            3
            to
            •8§J.
            OcT1^
Figure  B.8.
                  220.00
              Julian Date

Bluegill biomass used  in  simulation of Treatment-3
ponds,  Columbia, Missouri.
                                130

-------
                           APPENDIX C


      Loadings  used in Simulation of Treatment-2  Ponds,

                       Columbia, Missouri
     With the  exception of pentachlorophenol-induced mortality,
all the parameters  are the same as given  in  Appendix B, as are
some of the  loadings.   Only the loadings  that  differ from those
of .Appendix  B  are  illustrated here.
              I
               WCQ
1KLOO	   22tWW     ,2StUJO
    Julian DateV.
 *-••• •'
30CJK)
Figure C. 1....'.• Temperatufe.'.T6adings ..used--lii -simulation of-.
         ....   • Treatment-2'":ponds,.,Columbia/ Missouri. •;

-------
               voo
                                    30QJJO
Figure  C.2.
          18QJK)     221CO

              Julian Date

pH loadings  used in .simulation of Treatment-2

ponds, Columbia, Missouri''.'	
              §T
            n.- •
            n.
            tu
            CD


            IS

            T3  .
            CJ
            o
            tn
            ens
              142^33     1&QD     22!UIO     280JJO

                            Julian  Date
Figure C.3.
Dissolved  oxygen loadings  used in simulation of

Treatment-2  ponds,.Columbia,  Missouri.
                                132

-------
Figure C.4.
WCJB '
              Julian Date
Phytoplankton biomass used in'simulation'of
Treatment-2 ponds,  Columbia, Missouri.
                                        28CUJO
                                   333.03
Figure C.5.
         mOO     22UJO
  •        .    Julian Date.
Zooplankton biomass-.used in simulation of
Treatment-2 ponds, Columbia, Missouri.
                                133

-------
             tf)

             18
             .(O

28000
                                                    30000
Figure C. 6.
       '   18000     22n.flD

,.      '••'•.-•-•••••'.   -Julian Date...  •••>••••

Eluegill-vbiomass used- -in simulation of  Treatment- 2

ponds, Columbia, Miss.purl.'1" '        "•'"   '•'•'••
             m.
             tn*
             u.
             n.
             o.
             05
                        1SOJK)
                             Julian Date
                            270.00
         stooo
Figure C.7.
Pentachlorophenol loadings used  in simulation of

Treatment-2 ponds, Columbia,. Missouri.
                                 134

-------
                                                       APPENDIX  D

            Parameters and  Loadings  used in Simulation of Coralville Reservoir,  Iowa
        ITIHE  zropi  KPiins  CAPI-   CIIFM.O CIICKTP cn»pit
              rilTIC  HACBC  SJI1FB  ,  Ffill    tl.«t
               3CCDHIVIU E
        "intt'l:
        zccn
         1111(2:
        BBOCS
         TI1LE3:
       c»fF
         llll.tii:
         TUIE5:
       CHCA1F
I*)  '     1I1I.E6:
Cn     .CBUFIE
       ••' 1111E7:
       »»IETE .
         •M11EP:


         1111E5:
         TJltEP:
       PIIT1C
         IIItEC:
         7
       HI ER
         IIItfE:
       
         TJIlEf:
       rcr

-------
; iniEG:
; Cl lit
; 1I1LE1:
'. Tiinf
' 00001 :
miuiniiiui.'uti ouoouuunou
i 00002 :
| 0.315E-01
i ATI in :
0.151 0.151
- IIFI1* :
1.00 1.00
\ E»CB :
; 0.590F.-05 0.600E-05
i
j BBIBT :
j 0-0 0.0
!
i BOSIP :
| 0.0 0.0
j BICG2 :
• 0. 170E-03 0. 170E-03
i nil IN :
i 0.100E-03 0.100E-03
1
i 0.1COE-01 O.IOOE-OI
i BIT IK :
1 1.00 1.00
i 1.00 0.100E-02
; CCKCEH:
! o.aso 0.250
i 0.100E-05 0.0
0.250
i CICtE :
365.
D :
j i.oo
: DEI1A :
i 0.100
E :
0.300 . 0.300




0.151 0.151- .6.151 0.151 " 0.151: 0.051 • 0.151 0.151
i.oo 1.00 . : -li.oo .1.00 i-oo i.oo. i.oo i.oo lomjilniMiuiiu HIIIIIIIIUIIIIHII
E.100E-01 ' '...- .
o.o o.o o.o o.o-, o.o o.o o.o 0^0 . •• ... '.•;•
0.0 0.0 . . 6.0 0.0 • 0.0 . 0.0 0.0 . '. OiO '
O.IIOE-03 6.170B-03 0.1708-03 0. 1 70R-03 0. 1 70B-03 0.170B-03. 0.170E-03 0..170E-03. .'-'.'..
O.IOOE-03 0.100E-03 Oi 100E-03 0. 1 0OE-03 0. 100E-03^ 0.0 .0.0 0.0 .
O.IOOE-OI O.IOO'E-OII 'ip.lpOE-0'l O.IOOE-OI O.IOOE-OI O.IOOE-OI O.IOOE-OI O.IOOE-OI O.IOOE-OI O.IOOE-OI
i.oo i.oo ^1.00 -. i;pb 1.00 : i.oo i.oo i.oo i.oo . i.oo'
O.IOOE-OI b^iooE^oi O.IOOE-OI O.IOOE-OI O.IOOE-OI i.oo i.oo i.oo -
1.30 • 1.10 1.10 O.f.OOE-01 0.600E-01 0.0 0.0 0.0 O.HOO 0.300
C.100E-01 O.IOOE-OI .- . .




0.700 0.700 0.700 0.700 O.^OO 0.300 0.300 0.300 0..100 0. 100

-------

























H
U)
-J


















0.0
0.300
0.0
O.JOO
0.0
0.300
p.o .
0. 100
0.0
0.300
0-0
0.300
0;0
.0'i-JOO
O.-O
O.;300 ;
O.fl
0.300
0.0
inn :
o.'o
E« :
o.o
EBfon :
0. IOOE-02
F*1R*i:
0. 100E-07

FECSBl:
1.00
•0.600E-01
II* ':
O.p.
(IE •:
.0.0
HEBnt :
0.5II1 H-05
HKE»S:
1;00
M : -
0.0
HE :
0,0
0.2SO

KCU :

0.300 " "-'..

0.300
-.'• ' ' . •
0.300

0.300 '

0.300

0.300"..

0.300

0.300

0.300


0.0. .
' .'• '
o.o )•
'f


0.100E-07


0.0
1 . 00

0.0

0.0





o.o /

o.o
0.250
)


0.700 ;•".

0.700

0.700

0.700

cl/oo .;
• '
0.700
' ."
0.700 '; ;
. • - . ;
0.700 :'• .
, ' . '-
0. 700-'-


o.o ';- .
•• • :" ':'.. •
0.0 .V: •"•


;.' ' 'r.-:
0.300E-O3


o'.o ': .
I.'OO.. ;'. .7
' " -r''
o.o -• ; . .;
.' ' .' •
0,0 .;.'• '

'• ' -' :
*. ' •.


c.o •; .

o.p "•• •
0.250 .


... ' ' . •
0.700 0.700 0.700 0-700 6. .100 0.300

0.700 0-700 -0.700.. 0.700 0.300 0.100

0-700 6.700 0.700 0.700 O.JOO 0.300

P.7OO 0.700 0.700'. 0.700 0.300 0.300

0.700 0.700 0.700 0.700 0.300 0.300

0.700 0.700 0.700 0.700 OilQO 0.300

0.700 0.700 o.7ob;- o.'/oo 0.300 0.300

0.700 0.700.- 0.700 O.700 0.3'«0 0.300

6-700 "0.700 . "6.700^ 6-700 0.300 0.300


o.o p.o ••o'.o . o.o o.p o.o
••- ::- • •;• • "'• '•.
o.p • . •. .•'-':

'•'.- ' •' ; ' • :• ••• . : . '• .':•'.''.

0.300E-03 0.300Er03 0.300E-03 0.300B-03 1.00 1.00


0.0 ".'0.0 0.0 : O.O 0.0 0.0
ViOO. 1.00 1.00. 1.00 I.PO 1.00

0.6 -;.

0-6.





0.0
•' ' • ••'
0.0
0.250 0-250 0.750 0.250 0.250 0.250



O-.KIO 0. 100 0. 100

0.^00 0. 100 0.3DO

o.3«o o. 100 o. ino

0.300 0. JtIO . 11. 100

0.300 0.100 0.100

0.300 0.300 0. 100

0.300 0.300 0. 300

0.300 0. 10O 0..10O
_
0.100 0.300 0.100


0.0 0.0 . 0.0





1.00


0.0
1.00












0.250 0.2T.O 0.750



-------
          0.0
                      o.n
                                  o.o
U)
CO
           RDEflH:
          O.MOO
           KD1EF  :
          O.WIE-OS
           KEFF
          0.0
            1.00
                      0.0
          0.250       0.250
                                  0.0
                                  0.250       0.250
                                                         0.250
           IIEICR  :                    -   '   :             •••'
          O.tOME-OJ   0.100E-03   0-100E-03   O.IOOE-OJ  0. 10QE-OJ
          o.o         o.o         o.o      .  o.o         -

           K1HAS  :                      -   .  "          '•    '•
          0.0                              !.  •            •     ''

           RHCPT  :                    ..••'.         '    .
          0.2COE-03   0.100E-Q3   0.100E-03"'. 0. 1MOB-03. 0.860E-00
                                                          0.100


                                                          .0. 100K-03 •'• 0.'iOOE-03    1.00 .      1.00
                                   O.IOOB^-03 •j.Oi.JlOE-O*  6.0
           KC
          0.0
           KC2
           1.07
           Ren
          0.0
           (IF
          0.0
            U.U


             1.07


            0.0


            0.0
0.0


 1.07


0.0


0.0
                                              OwO
                                                        '••• 1i07
                                                                      1.07
••:';.|T°?
 i" 1 ~ ••' -
                                             0.0
           urn
           i.oo
0.1001-106   O.taOE'DS   O.IOORtOO  0.1UOEI05


             i.oo        i.oo   •'   i.oo
                                9 -


0.100E-03   0.100E-03   0.100E-01  0. 100E-03   0.:100F-03


             10.0        10.0     .              i':-


             1.00        1.00       1.00
                                                                                                                     i.oo
                                                                                                                    -0.200^011;
                                                                                                        1.07 ;>.
                                                                     0.100E-03  Oi100«!-03-"  0. 100E-03  0.100P-03  0. 100E-03
           nr;
           10.0
           HI
           1.00
           KlEflF  :
          0.100E-OI   0.100E-C1   0.100E-01   0.100E-01  0.100E-01
                                                                     0-100E-01  0.100E-01    1.00
                                                                                                         1.00
                                                                                                                    1.00

-------
            1.00
U)
V£>
           0.250

            I -If III I:
          UUnUIIUIJUl II
•.  i.oo         i.oo  '


 0.250  ;;•;.•   0.250
                                                                         0.250
                                    .
           0.1UOE-02  p.flOOE-02   C.100E-02

            HK02.  :  '. v   •  .'•
           O.IOOE-O'l  0.100E-C1   C-tOOE-01
riHGI ' .:
; 2.-00. .'
noicii:
361- -•
0.0 " ..
OCCND.':
o. o :' •
Oi 0
6,0 ;
biO. ••. .
6; 0 •' •'• .
o.o
o.o
o.o
p»B»ns-
0.0
OiO
o;o
OiO
i.oo
i.oo
OiO
i.oo •"
0.600P-OI
2.00 '
O.OOOF-02
1.00.
o.'ioo
0.0 :
0.0 ••
d-b
o.o ::
0.100E-01
o.o
6.0
6.900
o.o
0.250
I.OO
0.0
0.0
.-2.00
• •-' :• "• i
O'.O
0 '•. 0
o.o ..
o'.o ,
6.900 -
0.800E-01
0.100- •
o.O

0.0
0.0 '•' :
o'.o
o'.o . •
1 . 00
1.00
0.0 .
1.00
0^0 :
0. I70E-C1
lb.6
I.OO,
0.150
0.0 .
0.0 .
0.0
o.o
0.900E-01
0.0
0.0
O.OOO'E-OI
0.0
0.500E-OI
1.00
0.0
0.0
2.00 ;

OiiooE-oi
0.200Er01
0-0
C.O.
0.0' :
0.0
0.0
o.nooE-oi

0.0
0.0 :'•
o.o !•'
C.O • ?
1.00
1.00 •
0.0
i.oo •:•".-.
0.0
C. 1 70E-01
10.0
I.OO
0.0
0.0
o.o •.
0.0 ;
0.100E-01
0. 350
0.0
0.0
C.I 00
0-500E-01
0.0
I.OO .
I.OO
O.j) .

- . . - ;
o.o •'•• •.
o.o .-' '•-
0.500E-01:
0.2008-01,
0.0 • - "-.
o.o' •-•..•:
o.o : •:•'
o.o

o.o . ;
o.o '. "•'
o.o '
o.o •
1.00-
1.06 .'•
o.o
i.oo ;.
o.o
Oi'lTOEfOI
10.0
1.00
0.0
0.0
0.0
0.0
0.200 .
0-0
0.0
0.0
0.0
0.200E-01
0.0
1.00
0.100E-02
0.0

.' .••••.:
0.900E-01
O.BOOR-OI
0-600
0.300
0.250
0.500E-01
0:0 •
o.o ; :
f.
0.0
0.0" :
'0.0
'6.0
0.511E-05
-•; UOO
o.b
215.
0,100
1.00
.1.00
29fl.
o.b
0.0
0-0
0.0
0.350
0.0
0.0
0.0
0. IOOE-01
o.o
o.b
i.oo
0. 100F>01
0.0


0.0
0.0
o.r,oOE-6i
1.00? •'
i. oo.'
1.00' .
i . oo
1,00

o.o
o.o. .•:
0-0 .
o.b
31.1.
1.00
0.0 . '
o.ioo
0.100
1.00 :
.'.00.
29C. :
0.0
0.0
0.0
0-900E-01
0.0
0.0
o.b
0.0
0.200E-OI
0.0
0.0
0.0
0. IOOE-01
0.0


i.OO ':
. 1.00
- 1-°P. "'
' i-ob'" '
; 1.00' '
0.0
0-0
0.0

0.0
0.0
0.0
0.0
1'1-B
1.00
0.0
0.150
0.100R-05
1.00
3.00
29B.
0.0
0.0
0.100F-01
O. 100
0.0
0.0
0.0
0.0
0.0
0.0
0.600E-01
0.0
0. IOOE-01
o.o


0.0
0.0 '
.0.0
•.o.b
o.b • .
0.0.-"
1.00
0. 100E-02

0.0
0.0
0.0
0.0
96.0
I.OO
0.0 ' :
0.250
0.0
0.590E-05
.1.00
29n.
0.0
0.0
0.900B-01
o.o
0.0
0.0
o.b
0.0
o.o •
0.0
1.00
0.0
o. ioon-oi
0.0


0. IOOE-01
0. IOOE-01
0. IOOE-01
0- IOOE-01
0. IOOE-01
1.00
1.00
1.00

0.0
0.0
0.0
0.0
1.00
1.00
0.0
1.30
0.100B-01
0.600E-0'i
12.0
0. IOOE-01
0.200
O.flOOE-01
0. 100
0.0
o.o
0.0
0.6
0.0
0.0
0."»OOE-0!
1.00
0.0
0.100R-01
n.o


0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
.1 fi 5 .
innin'ioumjii
0.0
1.30
0. IOOE-01
0. IOOE-01
12.0
0. 760
0.0
0.900E-01
0.0
0.0
n.o
0.0
0.0
0.0
0.0
o.nooE-oi
I.OO
0.0
1.00
o.n


0.0
0.0
i.or
1.07
1.07
1.07
1.07
1.07

0.0
0.0
0.0
0.0
0. 100E-02
iiiinounnuoo
0.0 .
1 . .10
2.00
0.100E-02
12.0
0. 100
0.100
0. 100
0.0
0.0
0.0
0.0
o.n
0.0
0.0
O.MIO
1.00
0.0
1.00
l.m


1.07
1.07
1.117
1.01
0. 100K-01
n.o
0. IOOE-01
0. 100R-01

n.o
n.o
n.o
n.o
1.0(1
0.0
0.0
o.boor-oi
2.00
0. 10UP.-02
12.0
0. 700
0.200
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.BOOE-01
o. .mo
1.00
o.n
1.00
1.07

-------
1.07
0.1KOE-01
0.151
UIIUUII III) l;nil
0. 170P-CJ
J5iO
0. 100E-03
1,00
0. IOOE-04
0.250
U1IUI,UUUIUU
JO.O
0.300
0. JOO
0. 700
0.700
0.700
0.700
0.300
0.300
0.300
0.300
0.0
0.0
0. IOOE-01
o. ion f. -o.i
0.200
0. 1UOE-07
0. io»E-04
Oi 100F.-03
0.400
0.0
2.00
40.0
25.0
0.500F.-01
O.IOUE-OI
UUUUUUUUUIJ
UIIUUUUUUUU
UUUunilUUUU
UUIIUUIMIUUU
nuiiDuounuu
UUUUUIIUUUU
uuuuunuucu
UnUUUUUIIUC
uuiicunni.nu
UUIIUOUUUUO
uiiucuuuuiiu
UIIUUUIIUCDU
unucuuuioo
UUUUUUUIUU
unuuuiiutuu
UUUUUUIIUUII
uuuouunouu
UUUUUIIUUUU
UIIIIUUIIII. Ill
UUUUUUUIUU
unucuiiucou
UUUUUIIUIiUII
DllUUUIIUtUU
1.07
0. IOOE-01
0.451
UUIIUUUUIIIIII
0. 170F.-CJ
JO.O
0. IOOE-03
1.00
O.tCOF.-fll
0.250
uuiniiiuiiuiiu
30.0
O.JOO
O.JOO
0.700
0.700
0.700
0.700
0.300
O.JOO
0.300
0.3UO
0.0
0.0
0.100E-01
1.00
0.200
0.100E-07
0.1COE-C1
0. 1COE-03
1.00
0.0
2.00
40.0
25.0
0.0
0. IOOE-01
uonunuuuuu
UUUIIUUllllUd
UIIIIIIUUUUUU
uiinuuuuouu
UUUUUUUIIUU
oununuuuuu
UUUUIIUUIIOU
uiiuuuuuijuu
UUUUUUIIIICU
uonniiunuun
UIIUUIIUUIIIIU
UIIUIIIIUUIIIH)
UUUUUUUIIUU
U IIUII IIUUIIUU
UUIIIIUUUUUU
UUIMIUUIIUUU
CIIIIIIIIUUUUU
•JIIUIIUUIIIIUU
UUUUUUUIIIIU
UUUUUIIUUUU
UUUIIUUIIUUII
UIIUUUIIUUIIU
UUUII IIUUIIUU
i.o;
o. inor-oi
0.451
0.0
0.170E-03
JO.O
0. 100E-OJ
1.00
o. IOOE-OII
0.250
iiiiiiiiuuuunu
JO.O :
0. 11)0
0.300
o. ;oo
0.700
C. 700
0.700
Oijoo
O.JOO
o.joo
O.JOO
0.0
0.0
0. IOOE-01
1 . O'O
c.5ooE-?or
0.30UE-OJ
0. IOOE-04
0.100E-OJ
1.00
2.00
uuiiuuuuuuu
40.0
25.0 .
0.0
C.300 •'.
IIUUIIIIUUIIUU
UUUUUUUIIUH
UUUUUUUIIUU
IIUUUUUUUIIU
oounnnuuuu
UUOUUUUIIUU
Dijuuuunijuu
uuuii nununu
iiununiiauuu
UUUUUUUIIUU
uunuuuaunn
UUUUUUIIUUU
UIIUUIIUUIIUU
UUUUUUIIUUU
UUIIUIIIIUIIUU
UUIIIIUUUUIIU
UIIUUUUUUUU
UUUUUUIIUUU
linuuiiuuuuu
uuuuuunuuo
III) II II IIUII 11 III)
IIUUIIU III! 111! II
UUUUIIIIUUUO
1.07 "
6.0
.": 0.-451 '.'•..•
ovo •.-,'-••
Oil70B-03
3u.o. :
o.fiGOE-oi
1.00 :
0. IOOE-01
0:250
0.441E-05
1.00
Oi.100 V
0,700 :
0'. 700
0.700 .
0-700
0.700':
0.300.
0.300:.
0; 300
o* 3u6
0.0 '•..
JB1.
1.00
1.00
Oi 500E-01
OwJOOE-OJ
• 0. IOOE-04
0; IOOE-03
i.oo
2.00
in. o. ;
wo. o .
25.6
' OsO :'•
. o. 5ooE-bi :
IIIIUUIIIIUIIIIU
UIIUUUUUUUU
iiu (inn uii n.fi o
UUUUUIIUUUU
IIUUIIIIIIUUUU
U II IIUII IIUUUU
UIIUUUUUUUU
UUIIIIIIIIUUIIII
UIIUUUUUUUU
uuuuuuuiiuii
uunuuuuuuu
UUIIUIIUIIUIIU
IIUUIIU IIIIIIIIU
IIUUUUIIllll'.lll
uuuuuuuiiiiu
UUUUUUIIUUU
uuuiiiiiiiiiiuii
UIIUUUUUUUU
UIIUUUUUUUU
UUUUUIIUUUU
IIUIIUUUIIUUU
UIIUUIIIIUIIIIU
UUUUUIIUUUU
. 1.07
.- 0.0 -
0. IOOE-01
0.0
0-170E-03
30.0
0. 100E-03
1.00
. o'.' 'long-on
0.250
Oi-J45E-0 i
i . no
0.300
. 0.700
0. 700
0.700
0,700
O.700
0.300
0. 300
0.300
O.JOO
o.o
O.IOOKtOG
1.00.
0.200
0. 150B-OI
0.~.300E-OJ
0. IOOE-04
0, 100E-03
0.100E-OJ
. .2.00
.40.0
."-' 2.5-9
'•'• 2 5. JO
:-, Os'200 '
' i.o'o
uuiiuu'uuuuii
.lltlUUUUUIIUII
;(IltUIIUUIIUUU
•tinuuu'nunun
'uUUnUtiuUUn
IIUUIIUIIIIUUII
UIIUUUUUUUU
UUIIUUIIIIUIIII
IIUUIIUUUUUU
UIIUUUUUUUU
•Diiiin nun nuii
UUUUUUUIIUII
UUIIUIIUIIUIIU
UUUIIUUUIIUII
uuiiiiuiinuuu
UUIJUUlillUIIU
UIIUUUUUUUU
uunuununnii
UUUUUIIUUUU
UUUIII1IIIIIIUU
UUUUUUIIUUU
UUIIIIUUUUUU
IlllUUIIUtl IIUII
1.07
o.o .•:•
P. 1008-01.
:0.0 •
0. 170R-03
' lOib
•6. 130B-04
1.00
0. IOOE-04
0.250. •
0.250
.1.00
O.JOO ,
O.:700
0.700
0.700
p. 700 •:
0. 10(i :
o. jod . ;..
.6. job
0.300
O.JOO
0.0" " •
0. 100E>05
1.00
0.200
0.140'
0.300E-03
0. IOOE-04
P. lOOE-03
Oi IOOE-03
.2.00.
40.0
25.0 .•
1.00 . •".'.
0.500E-01
0.500"'
UUIIIIUUUUUU
UUUUUUUIIIJII
HUUIIIIUUIIUU:
BUIIIIUUIIIIUI)
IIUIIUUDUIIUU
UUIIUUUIIUUI)
UUIIUIIUIIUIIU
UIIUUUUUUUU
iiuuuuniiuuo
UUUUUUIIUUII
UUUII IIIMIUIIU
UUUUUUIIUUU
IIUUIIUUUIIIIII
UUUII IIUUIIUU
IIUIIUUUIIUUU
IIUUUUUUUUU
nuuuuiiiiiiuu
UUUUUIIUUUU
UUUUUIIUUUU
UUUUIJI1IIUUU
UUIIIIUUUUIIU
UUIIUUIIIIIIUU
UUUUUIIUUUU
1.07 '
0.151
0. IOOE-01
0.0
0. 170E-03
50.0
0.0
1.00
0. IOOE-04
0^250
0.0
1.00-
• 0.300
' 0-700
0.700
0.700
;o.7oo
o. loo
0.300
6.360
0.300
O.JOO
.0.0
OilflOE'05
O^lbOE-03
•' 0.200
0^'lftO.
0.300E-03
,0. 100E-00
.6.400.
6.100E-OJ
2.00
40-0
25.0 ;"
0. 500E-01
0. IOOE-01
6.500 .
uiiuuiiuuuuu
UUUUUIIUUUU
auuuuuuuiiu
nuuunuunnii
nuiiniiunuuii
UUUUIIUUIIIIII
UIIUUIIUUUUU
UIIUUUUUUUU
UUIIUIIUUUIH)
UIIUUIIUUIIUU
iliiuuuiiutiuu
UUUIIUIIIIIIIIII
UUUIIUUUIIUII
UUIIUIIIIUUIIII
UUUUUUIIUUU
UUIIIIUUUUUU
IIUIIUUUIIUUU
UUUIIUUUUIIU
IIIIUUIIUIIUIIU
UUUUUIIUUUU
UUUUUII IHIIIII
UIIUUIIUUUUU
UIIUUII II UUUII
1.07 :
0.451. .
1.00 . .
0.0
0. 170E-03
50.0
0.1)
1.00
0. lOOE^OI
0.250 ','•
15.0 . .
O.JOO "
0.300 .
0.700 :'..
o. ion .•:•
0,700 ':
0.700
0.100
0.300
0.300 '
o.jno :
0.0
0.0:
0. 100E>05
, 0. 100E-OJ
0.200
0.120
1.00
o.iooE-.oi
0.400 .
0.100E-OJ
2.00
40.0 . i
25.0
0.500E-01
0.1008-01
0.900
UUUUUII IIUII I)
UIIUUIIUUIIUU
Ullll '111 IIU IIUII
UUUIIUUUIIUII
UUUUUUUIIUU
uiiuuiiuuuun
UUIIUUIIIIIIUU
UUUUUUIIUUU
uunuuuuunn
nuuuuunuiiu
IIUUUUUUUUU
UUIIIHHIUIIUII
I1IIIIUUUUUIIII
IlllUUIIUIIUIItl
UIIUUIIUUIIUU
UUIIUIIUIIUIIU
UIIUUIIUII'IIIU
uuuuunii'inu
UUUUUUIIUUII
IIIIUUIIIIIIUUII
UIIUIIUUIIIIUU
UIIUUUUUIIUII
IIUUIIIIUIIIIIIII
.0..100E-01
.0.451
: 1.00
. :o.o
0. V'OE-0.1
50. 0 :
P.O.
1.00
- 0. HIIIE-04
'0. 250
: :- 15.0 ..'
0.300
0.300
' 6.700
0.700
0.700
6.700
0.300
0.-300
O.JOO " '
0.300
0.0
.6.0
: 6i100E-01
0.100E-OJ
0.200
.O.BOOE-Ol
1.00
0.100E-OJ.
0.400 .
o. inbE-oj
2.00
40.0
25.0
6.500E-OI
• 0. IOOE-01
uuiiuuiiuuiiii
UUUUUIIUIIUII
UUUUUIIUUUU
uuuuuuuniin
IIUUIIUUUUUU
nuuituuiiutiu
IIIIIIUUUUIIUII
UIIUUUUUUUU
UUIIIIUUUUIIU
IIUUUUUUUUU
UIIUIIIIUUIIUU
IIUUIIIIUUIIUU
UUUUUIIUUUU
nuunnnunuu
UIIUUIIUUIIIIU
iiuiiuniiuuuii
UUUIIUUIIUUII
iiuuuiiiiuuuii
UIIUUIIUUIIIIU
UUUUUIIUUUU
III! III) UUUII IIU
UUUUUIIUIIUII
IIUUIIUIIIIUIHI
uiniuuiiuuuu
0.0
. (1.151
1.00
O.I)
U. 1 'OE-03
15.0
' 0.200E-04
1.00
I). 100E-O1
0. 75(1
15.0
0.'-300
0.3110
0.700
o.7o» "•;'
0.700
0.700 .
0. 100
OiJOO
0.300
0.3PO
0.0
o.o
0.100E-OI
O.-.IOOB-OJ
0.200
. o/b '.- : :
i.'on
. 0.100E-03
; 0.400
0. 1UOE-OJ
2.00 .. .
40.0
25'. 0 ....
0.500E-01
o.iooE-ni
UUUUUUUIIUII
utinunnnuun
IIUUUUUUUUU.
IIUIIUUI1UUIIU
iiuuiniiiuiiuu
uuuuiiuiiuuu
UUIIUUIIIIIIUU
UUIIIIUUUUUU
UIIUUIIUUIIIIU
UIIUUII IIIIUIIU
IIUUUUUUUUU
IIUUIIUIIIIUIHI
UUIIUUIIIIIIUU
nuuuiiiiiiuini
UUIIUIIUUIIUII
IIUUUUUU'IIIU
UUUUUUIIUUII
UIIUUIIUUIIUU
UIIUIIIIUUIIUU
UUIIIIIIUII'IUII
UUIIUIIUIIIIUU
UIIUUIIUUIIUU
11UIIIIUIIUUUU
UUIIUIIIIIIIIUU
o. loor-ni
0.4', |
•0.400
o.o . ::
215.
.15.0 • :
0. 20l)K-0»':
1.00
0. 101) FT- 04
o./r.o
15.0 .
0. JOO '••
0. 11)0
oj''on
0. MO
' 0^700
0.700:.
. 0. .100
o. 
-------
 OUOUDIIIItiUO
" OOOUIIUUIiliU
 oo.uouuiitino
 niiooouiiunD
 n't) u u w u ii i u ii
 iiuouonouijo

  •  rcpic.:
  9.200

:   "rceti '-,-
. '215.

'••  TCFM  !
:' Oi500f-6.1
                         uoiiuiiuiiuuii
                         auiiuiiuiiuou
                         uuuiiniiiiiiiio
                         nuntiDiiiiuuu
                         iiuiiiinuiiiinii
                         UI1UIII1IMIUIIU
                          0.200
                           uowuiiM'jouu
                           uiiniiuiniuui)
                           uuuiiiiuiiciitii
                           iiuiiiiiiiiiiuini
                           IM uiiiiiiiiuiii)
                           IIUUIMIIIIIUUII
                                        0.2UO
 OJI.OUOOOtlini  I!IIII1111IIIJIIII(I UOIIIIMUUOIIU UlllllllllllHIIIII  OIIIMIIIIIIMIUU  UIIUIMI'Mlllllll  IllllliniUIIIIIIII l|imillli|i)1HIII
 oiiiiiMHitiuoti  iHMjtimnjiiuu UIIIIIMIMIIIIIIU iiiiuiiiniuiiiiii  niiiioouniini)  IIHIIIIIIOIIIKIO  nnnniHiniiiiii IIIIIIIIHIIIMIIIII
 .iioiuiuuoouo  utiiiiiniiiiiiiiii UIIIMIUIIIIIIUU uu noon mm u  iniinniiiiioiiii  iiuiiiiuiiiiiiiiii  inMiuiiiiiiiinii iiiKtiMiiiimuii
••.uiiviiimiiuui)  no u ii u mi u no anuuiiuiiiiiiii IIIIII>IIIIHIINIIJ  iiiinuiinnouii  niinmi'imiuii  umioiiiiiiiiiin IIIIIMIIIIMIIIIMI
 oini.ouuiiiiiin  UIIHUUIHIIMIU WIIIUIHIIIIHMI ntiuuiiuiinuo
                                                      0.200.
                                                                   o'.';oo
                                                                                 0.200
                                                                                              0.200
                                                                                                            0.200
                                       .0.5o6e-0    O.DOOE-flt  :_Ow'500E-01   0.500B-01   O.T>OOE-01   0.0
                                                                                                                         0.200
                                                                                                              0.0
                                                                                                                                       0.200
                                                                                                                           0.0
K ":{,
0.5'OOE-pi
'EKI<»X--S
T2.6 :' v
toHn'n :;
'.j;.00 h
,tf*tic:'
•;:298. .;
-6. iooH-oi
0-760
O.IOO: •
6.700
0.100
P'i. 1 50 . .;'.
°^P '''-':
:i,0p •";
6.500E-r01 Oi150E-OI'- O.UO'- :.'-:
'••'. "I '.'
• 12:o[ ';
:: •' -;.
u j.oo:
. ; . e
• O.o. --: ,
6.0
o.o
o.o-,-..
• o.ov
0.266: '
0.0
oiipo
,*
• • '" ' '•- ' " • , '. •' '.
'•': 12.1 01; '

;; 3?00: '

.:' 0.200' -..'
i! o.o' ;'•
o.o
• . o.o ..-::•
: 0.0 ' ''
o.o- -.
':: **••'* '-\.-

I 3/00\ •';' •
-.' ." : ,'c
"•:-. .p.'b'V ;;: ••;•
6.HOOE-01
0.900E-01
•:. o.ioov .-,
••' 0.0: ' '••:
0.0 ;; • ;
•o.,6' ••' ' -'.p. 6 " • i
:0-P'. .:• . /O.O :- I '.
;/ '•"•' :: •/ >-. V .- •••'
0. 160

-''.'•
-,V
;i .•' :-
: .•:•'• . . c
^o.o.
6.0'
6.0
0.100E-01
0.900E-01
0.100
•o.o • .
0.0
;. '• ' :-
0.120'-




', •' •
o.o ..;
"o.o
o.o •
-0.0 '.'.
o.o .-• •
0.0
0. "JOOE-01
o.ioo.'-

o.nooE-oi

'

- ' * .

o.o
0.0
0-0
0.0 .
0.0
0.0
o.o •• :
0.100E-01

0.0





6.200
6.350
0.0
Q.o
0.0
0.0
0.0
0.0

 -1.00  .

  0      :
 O.ilOO

  CIO  .  :
  2.00
IUOOUU1IUUU
                          0.100
                          . 2.00
                             0.1400



                            .2.00 ;
                                                    ^
                                                      2.00
                                                                   0.1)00


                                                                  •'; 2.00
               O.«00



                 2.00
               o.aoo


                2.00
  1.00



  2.'00
                                                                                                                         0.0
                                                                                                                         0.0
                                                                                                                         O.OOOE-01
                                                                                                                         0.900E-01
                                                                                                                         o..iso
                                                                                                                         0.0
                                                                                                                         o.o
                                                                                                                         0.0
                                                                                                                         o.o
1.00


2.00
                                                                                                                                       0.0
                                                                                                                           0.0
                                                                                                                           0.0
                                                                                                                           0.0
                                                                                                                           o.o
                                                                                                                           0.0
                                                                                                                           o.o
                                                                                                                           0.0
                                                                                                                           o.o
                                                                                                                                        2.00
                                                                                                                                          0.0
                                                                                                                                          0.0
                                                                                                                                          0.0
                                                                                                                                          o.o
                                                                                                                                          0.0
                                                                                                                                          o.o
                                                                                                                                          0.0
                                                                                                                                          o.o
                                                                                                                                                     2.00
                                                                                                 0.0
                                                                                                 0.0
                                                                                                 0.0
                                                                                                 o.o
                                                                                                 0.0
                                                                                                 o.o
                                                                                                 0.0
                                                                                                 o.o
                                                                                                                                                                   2.00
 Cl      :
o.o

 n*D    :
0.0

 RID1US:
0.0
0.0
                          0.0
                          0.0
                          o.o
                          0.0
                            0.0


                            0.0
                            0.0
                            0.0
                                           0.0:



                                           0.0
                                            1.00
                                            1.00
                                                                  .p.o.
   1.00
   1.00
                                                                                o.o
                                                                                              o.o
IIUOOUUUUUII   0-0
 0.0          O.O
                                                                                                           o.o          o.o          o.o
0^150       0.100        O.I70r-01  0.100E-02
0.2r>0       0.300        0. 1TOF.-01    10.0
                                         12.0
                                         12.0

-------
*=.
to
0-0
0.0
0.0
0.0
o.o
0-0
o.o
o.o
nn»x :
o. lont-oi
fKff.r, i
0.200
1-00
r.lUFE :
0.511E-05
311.
11.8
96.0
i.oo
365.
0. 100E-02
1.00
1.00
1.00
SU-U :
0. 170E-01
SltOH :
I.OO
TCCHD J
0. IOOE-01
O.tCOE-Ot
0. IOOE-01
0.0
0.0
0.0
Oi 15 1
0.151
1CCPT :
298.
1CHT :
35.0
THAI :
»0.0
10.0
10F1 :
25.0
25.0
TtrSH :
30.0
0.0
0-0
0.0
o-o
0.0
0.0
0.0
0.0

0.100E-OH

0.500E-C1
0-5 CO

.00
-00
.00
.00
.00
.00
.00
OOIIUUUOUOU
auunuDuouo
0.0

0.170E-C1

1.00

0.151
0;151
0.151
0.151
0.151
0-'I51
0-151
0.151

29B.

35.0

10.0


25.0


30.0
0.0
OiO
0.0
0-0
o.n
o.n
1.00
I.OO

0. IOOE-01

0;100E-01
0.500

0.0
e.o
0.0
0.0
0.0.
0.0
o.o
0.0.
0.0
0.0

0. 170E-01

1.00

0. IOOE-01
C-100E-OI
0. IOOE-01
uoo
1.00
1.00
0.100
UUUUIIUUIIUU

290.

30.0 •

10.0


25.0


30.0
O.511E-05
311-
ii.s
96.0
1.00
3f>5.
6i 1008-02
i.nn

p. IOOE-01

0. IOOB-01
fl,;noo

0.0
0.0
i.un
1.00
1.00
1.00
215.
0.100
0;150
0.250





1IUOUIIIIUOUO
uouuunnuoo
. e.o :.
0.0
0.0
0.0
0.0
0.0

298.

30.0

10.0


25.0


30.0
.00
.00
.00
. 00
^ no
:oo
.on
IIUIIIIOIIIIOIIU

0.100E-OU

0. 10QE-01


1.30
U30
: 1.30
0.600E-01
0.600E-01
0:0
0.0
0.0
OilOO
0^300





0-0
0.0
0.0
OiO
0; 170E-03
0. 170E-03
0.170B-03
0.170E-03



30.0

10.0


' 25.0



o.o
o-o
0-0
0.0
0.0
0.0
0.0
0.0

0. IOOE-01

0. IOOE-01


0-100E-05
0.0
0. IOOB-01
O.OOOE-OI
2.00.
2.00
2.00
0. 170R-01
0. 170E-01
0. 170E-01




•••. : •
0.170E-O.V-
0.170B-03"
O.nOE-03'
0-170E-03
0. 170E-03
0. 170E-03
215.
35.'0



30.0

10.0


25.0



o-o
o.o •
1.00 '•
i.oo
I.OO.
1.00
215.
0. 100

n. inoE-o«

O.lnOB-01


1.00
1-00
1.00
0-510B-05
0.600E-05
0. IOOE-01
0.100E-02
6. 100E-02
0.100E-02
10.0



- .-•

:.35.0
•30-0
30.0
30.0 •
30.0
30.0
56.0
50.0



30.0

10.0


25-0



1.30 •
1 . 7.0
1.30
o.f.noE-oi
0.600R-01
6.0
0-0
0.0

0. IOOE-01

0.10.0R-01


10.0
10.0
3.00
3 . 00
. 3-00 '.:
3.'00
12; o
'•• I2i0
12-0
12iO ,




;-
50iO
35.0
35'. 0
0.200E-03
0. 100E-03
0.100E-03
0. 100E-03
O.H60E-01



50^0

10.0 .


25.0



0.100E-05
6.0
0. IOOE-01
o.ioor-ol
2.00
2.00
2.00
o. noE-oi

0.100E-01

0. IOOE-01


1.00
i.oo
I.OO
1.00
298.
298.
298.
210.
0. IOOE-01
0. 760





0.100E-03
0.130E-01
6.0
0.0
0.0
0. 200E-01
0.200E-01
1.00



50.0

10.0


21. n



i.oo
i.. no ••
1.00
0.510B-01
0.600E-05
0. lOOE'OH
0.100F.-03 ;
0.100E-02 '

0. 100E-01

0. IOOE-01 :

.
0.100
0.700
0.100
0.150
0.0
0.0
0.0
0.0
0.0
0.0





.00
^00
.00
.00
.00
.00
iOO
.00



50.0

10.0 .


25.0



10.0
in.o
3.00
1.110
3.00
3.00
12.0
12.11



o.ioo. ••


0.200
0.0
0.000 .
0.200
-o.;o
0.0
0.0
'o.o •
0.0 .
0.6 ':





i.oo ;•
1.00
1.01)
0. IOOB-01
0. IOOB-01
•o.iooE-oi
o.ioor-nit
O. 100R-01



35.0

10^0


25- 0



- l.no
: " I.oo
1.01)
i.nn
2'mJ
2'").
2'IH.
'; >"•"• .


;: . - ' ••
•:6. '-OOE-nl


"o.o
o.o
0. IOOE-01
:.0.900R-U1
,:0. 108 '.
v 6. o
;6.0
; o.o ••.•":
\ 6.0
• 0.0 '




•:.
o. in.oE-oi
.i). IOOB'01
• 0. IOO F-01
6. ii>nr-on
0.100E-01
0. fVOK-OI
0. 1l)0r-01
n. 250



35.0
• ••
' • »OiO


25.0




-------
it mil :
. 15.0
VfFH :
96.0
VFUDGF:
.1.00
• VII20. :';'
.'/•' MCH : '
:• •
o. icoi-6i
0.900E-01
0.760
0.800E-01
0.100
0.600
0.700.: .
0. 300
6. 100
0.250.
6.150' :
0.500E-01
b.o
o.o.
0.0
0.0
o.o
o.o:
o.o
O.o'. : .
•IIFEH :
'6. 1COF.-01
• i.oo
CHUGS:

v 15.0

0. 0

0.0

0.200

0.0

0.100

0.200

o'.o

0.0

o.o

0.0


0.0
1.00


ir..o 1
• :
0.0 _.-'.;'

0.0

o.o : :

0.0. A
•-':_ •
0.100E-P1

0.900E-01

0.100 •;.' ;. .
- . ' ' '•''
0.0 .

C.O. \ '•-.

0.0 : '; :

"};._•
O.IOOE-01.
1.00


15.0

o.o _•_.

0.0

0.0

0.6 '

O.IOOE-01

diiooB-oi."

0.100-' .'

b.o

0.0 :

0.0


O.IOOE-01




.'- ' "
b.o 	

o.o

0.0

o.o

o i o •'•
•;
0.900E-01
''•' '.i'' '
0.100

0.0

0.0

0.0 .


O.IOOE-01





_ 0.0 " _

0.0

O.O '

o.o-

O.HOOE-01

O.JOO .

- 0.350

:0. o '

0.0

0.0


0.1.00K-01





0-0

0.0

0.0

0.0

O.IOOE-01

0-900E-01

0.350

0.0

0.0

0.0


O.IOOE-01





0.0

0.0

0.0

o'.e

0.0

0.0

0.0

0.0

0.0

0.0


0.0





0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0


0.0





0.0

0.0

0.0

o.o

0.0

0.0

0.0

0.0

0.0

0.0


0.0



 •DIJLCC:
                                                                                                                   0.900     .0.0.



                                                                                                                   O.nOOE-01  O.BO()F-I)1



                                                                                                                   0. 100      0.0



                                                                                                                   0.0        0.0"



                                                                                                                   O.IOOE-01  0.500E-01



                                                                                                                   o.zooE-oi  n.zoon-or



                                                                                                                   o.o        o.o



                                                                                                                   o.o     '."• o.o



                                                                                                                   o.o       -o.o



                                                                                                                   0.0        0.0
  BPFOCS:
t t f f I f

-------
ICE :
F 1
sons :
12
12
1)
0
Slip :
60
SHUCK:
0
TF1RS1:
1
TUSI :
365C
CUT :
0.500
0.0
0.0
CIAI1 :
0.0
0.0
0.0
DC2 :
11.5
7.20
6.0
BC2T :
0.0
0.0
0.0
H£l!l :
1.67
1.93
0.0
FJSIMT:
0.0
0.0
0.0
riSII2 :
2-2M
2.55
0.0
FISII21:
0.0



2
15
0
0









0.500
0.0
0.0

0.0
0.0
0.0

10.1
4.10
0.0

0.0
0.0
0.0

1.63
i.ei
0.0
\.
0.0
0.0
0.0

2.15
2.40
0.0

0.0



15
12
0
3









o.o
0.0
0.0

o.o
0.0
0.0

3.90
4.40
0.0

0.0
0.0
0.0

1.65
1.75
o.o

0.0
0.0
0.0

2.10
2.30
c.o

0.0



15
0
0
0









0.0; .
. 0.0
0.0 ''

o.-o .
0.0
0.0

3-;00 '
3.10
0.0

e.6:
0.0
OiO

1.611
0.0
0.0

0.0
0.0
0.0

2.22
0.0 .
0.0

0.0



15 15
2 2
o .0
0 0









: o.o:
0.0:
0.0

'"• 0.0
0.0
0.0

' 7v9ov
: 3.90
°-°;. "

. o.o .;
0.6
o.o •

1.78
o.o
0.0

o.o'
: o.o;
-". 0.0

2.35
0.0
0.0

0.0



15 6 0 0
21 21 • ;. 24 . 21 :
o o : :.• o 6 ••"•
0 0 •:•'.';• -. :' .





"-• . •• l • •••":.' - - •-.•-. :;--'•



'0.0 0.0 ..'•'.••• 6.0 O.;0 0;0 ' 0.0 '. OiO
o.o ... 0^0 ••••. .'•} o.o o.o ':. '-'•'• . ojo: : ,: o.o .0.0 •'"
• o.o- .•• '..-.-•• • •- '•'-. • '• '. •• i • . •• •• ,'- •-.•• :: . --,. ••••.:

0.0 0.0 6.0 0.0 0.0 ' 0.0 0.0
0.(» 0.0 0.0 0.0 0.0 0-0 O.I)
•• O.o. - '• • -: "; .'.- .'..••' - ' • • / :;• : ;:' ".

15.4 12.B ;• 5.00 3.30 2."0 4.60 J.5O
; 5.00 ^7.50 9.10 9.70 12, H' i«.5 . 12.0
. o..o • ' -.•"'• •• • ' :• '•'"•' / •'•• ' • ' • • • ' ''

o.o 0,0 •••.'. vo.o o.o Oj6\ o.o : 0^6 . '
0.0 ' OiO '.0.0 O.'o OiO 0:0 0^0
o.o ':••.'• - : '.• •••• ' - '"" • •'

1.B7 ,1.16. 2.06 2.09 2.09 2.07 2.00
0.0 . 0.0 0.0 0.0 0.0 0.0 0.0
0:0 "•.'.''. ; -;; '.; • . .' ' ' .".'.'•' • • • '':. '

0.0 OiO • < 0.0 '•' 0,0 0.0. . : OiO . 0.0
o.o o.o ••'-' o.o o.o . o.o 0.6 o.o
o. o . • ' • . : • . • '• . " . :' ' . . •

2.47 . 2.59 2.72 2.77 2.77 7.71 2.'>5
o.o o.o o.o o.o o.o o.o n.o
0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

-------
Ul
: 0.0
,0.0
FISII3 :
1.13
1.31
0.0
FISII31:
• 0^0 ,
0.0 :
• 0>0. .
FISH'l :
; 0.7li|
' ' 0.826 .
0.0
FISII'll:
0.0
: o.o
o.o ;
FIEII5 :
6.230 -
' 0.275 =.
: o.o

0.0 .
, 0.0
• 0.0

FISII6 :
0.0
6.6
;0.fl
0.0
o.o
0.0
HSH7 :
'. 040
o.o
0.0 : :
:'• nsint:'
?o.o :.
0.0
0.0
Fisim :
o.o
o.o
o.o •
FlSlini:
o.o
o.o
o.».

.f.io??
1.23
. 0.0

'•' 0.0
0.0
. 0.0

0.697
o.77n
0.0

0.0
0.0
0.0

0.232
0.259
0.0 •

0.0
0.0
0.0


0.0
0.0
0.0
0.6
0.0
0.0

0.0
o.o •
0.0

0.0
0.0
.0-0

0.0
0.0 .
0.0

. 0.0
-V b.o -:"
•; o.o

1.12
1.10
0.0
:
o.o ;
o.o ',
6.0 ..;

0.706 ,':'
: 0.715 :
o-o I

0.0
0.0
0.0

'.'. 0^235 . .
0.218 ,;
o.o
••••':
o.'o •.:•
0.0
0.0
t •
" •'
o.n
o.o •;-
0.0
0. 0
o.o ••
0.0 -',

0.0
0.0
o. q ': :
''•
o.o ;r
o.o. V
o.o' :•

0.0
0.0
0.0

"b.o
'.0.0;
:;.o.o

. l.l'l
0.0
o.n

't 0.0
".: 0-0
o.'o

-'•'0.721
/o.o
o.o .

0.0
. 6.0
•_• o.o
'/.I
•' O.'2
-------
o.o
o.o
fcr :
o.o
o.o
o.o
FCrT :
O.o
0.0
0.0
lC»D3fl:
OiO
0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
O.I)
0.0
0.0
o.n

0-0
0.0
0.0

- 0.0
0.0
0.0

0.0
0.0
0.0
o.o".
0.0 ;

o.o .
0.0
0.0

o.o
n.o
0.0

0.0 ;
0.0 '
0.0
0.0
OiO

0.0
0.0
0.0

0.0
0-0
0-0

0-0
0.0
o.o
0.0
0.0

0.0
n.o
0.0

0.0 "
0-0
o.n

0.0
n.o
0.0
0.0


0.0
0.0 . .


0. 0 \:
o.o


0.0
0.0

0.0


0.0
0.0


o.o
0.0


0.0
o.o

0.0


0.0
0.0


0.0
0.0


0.0
0.0

O.I)


0.0
n.o


0.0
0.0


OiO
0.0

o.o


0.0
n.o


0.0
. 0. 0 . .


0.0
n.o

• o.o


n. n
o.o


o.n
o.n


Oil)
n . n,'.

            tci
ri^
BBcnc :
0. 13»
0.172
0.0
«*CF01:
0.0
0.0
0.0
ret JIT :
0.0
0.0
OiO
rtlSHIs-
0.0
0.0
0.0
PF1SII2:
0.0
0.0
0.0
rrisH3:
0.0
0.0
0.0
PMSHI:
0.0
0.0
0.0
rfISII5:
0.0
0.0

0.130
0.157
0.0

0.0
0.0
OiO

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0

0.132
0.111
0.0

0-0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

o.o
0.0
0.0

0.0
0.0
0.0

0.0
o.o

0.139 .
0.0
OiO

o..o ;
6.0
o.o

.6.0 '
. o.o :
o.o •

OiO
OiO
o.o

0.0
0.0
0.0

0-0
0.0
0.0

0,0
0.0
0.0

0.0
0.0

0. 151
0.0
.0.0

0, 0
0.0
OiO

;'• o..o
: o.o
OiO

0.0
0.0
0.0

0.0
0.0
0.0

OiO
0.0
0.0

OiO
0.0
0.0

0.0
0.0

0.166
0.0
0.0 ...

. 0,0 •'•'-.
0.0 '
0.0

0.0
0.0
6. o

. 0.6 :
o.o •:•
. o.o.

o.o
o.o
o.o

0.6 :
o.o
o.o

o.o
o.o
o.o

o.o
0.0

. 6.180'-.'
. o.o .'.-•;.-.
• _•*«' *
\ - -. - - -.. . - .
•0.0 "•;= .;•
'6.0 '••


'." OiO- •"" •"'
'V 'o.o,. ;y; V
f -. ' •:' ;-.". '
'.' '. *' " -• •'. ':
,'• OiO '• '.:••
- V OiO ;• '':- - •


0.0
• o.o •.


!'• 0:0
0.0
,-

0.0
o.o


0.0
o.o
';•
0.191 :.
0.0 -,'.
"• •" '-I

0.0 •':•>
0.0


0.0V ••
°-°V: •.'

"
OiO •••
oio" •
'..;•• '"'

0.0
o.o •'


OiO :•.
0.0
';.

o.o .
o.o


0.0
0.0

• ; 6. 1 9« :
•. o.o ,;
... ;' .:..
' .
-. "0.0 v
0.0


••, - o. o . :
..OiO
'•'. :

01; 0
0.0 '
:•' •. •'".• • :.

o.o
.6.0


'o.o
o.o


o.o '
o.o


o.o
o.o
. - ••'
. 0.2DO" .-.
• "•"


0.6; .
0.0


olo .': ;
o.o : .

• . .-. • ;. .(
' o.;o ' ,'.
6.0 ' ;V


0.0
6.0'


o;6
0.0


o.n
o.o


o.o
o.o

: .Oiits
-.0.0 • v


-. o.o •.
olo :


;Oi.O J:.'
•.OJO :/..
,". •'- •••-

.010 -'
o.:.o Y:


0.0
6.o:


'o.o .:
;o.o •


•n.o :
o.o


o.n
o.n
.' . • •
":'. '•'.. O.'lHS
- ; .6.0 .'..
:'.' .''.'" J "'•/
" • . . '
. ,6.0>V:
".' o'.o;'::.

'-• :•'•'' .'.: .
;.•• i:'6.6 ;'••
V • ? ioipi '.
• i •;•.: :.;' :'%
'•• ;•:•'••• .'.; v
••• ", o.'b '.
-• '' 0.0. .;•
'• :, '••''•

;.':" o . o . : -
.;'• n;ov:
:'.'.•' .'•'.' •

: 6-0 ;.
. P-P


.. o.o.
o.o •


n.o
n.o

-------
o.o
                      o.o
                                 0.0
                                           0.0
                                                      o.n
FFISH6:
6- 0
6.0
0.0
PFISI17:
o; o
0.0 '-:
0.6 •' ',
PFISHPl

o.o ;
q.q
F/F'CH :
6.6
o.o
o.o.
P'H "•
1. 80 -•-',
8.10 •';
o.o
PUT . •"••
o.o
o.o :
o.o. • ; .
PIlITO : ;
0.111 .
O.'O ;;
0.6 ;
PHITCTS
0. 0 :
0.0
°-° : Y
fnncFCj
o.o
o.o
o.o
• icr. i;
1.00 •:•
o.o •*
o.o
PCHT :
0.0
0.0
0.0
prime:
0.0
0.0

0.0
0.0. -_:
0.0 "'..'•

0.0 '
0.6. .
O-o •':
.'•'. . '.'••:
6. a ".;'.
6.0, '.'
• Pi'" •'

0.6
o.o
o.o '

7.30 •/.'.
7-. no '-.
o.o '. •-.

.0.6 '
0. 0
o.o. .

.0.312
0.0 .'•
0.0 ••'•• •

0.6 . ..'"
o.'o
o.o . '

0.0
0.0
0.0

lloo ..
.0.0
0.0

* o.:o •
0-0 -•'
0.0 .-'.

0.0
0.0

o'.o
'o.o •
c.o

0.0
0.0
6.0

0.0
6.0
0.0

0.0
c.o
o.o

7.00
7.50
0.0

o.o •
0.0
0.0

C.231
0.0
o.o •

0.0
0.0
0.0

o.o
0.0
o.o

o.o
0.0
0.0

0.0
0.0
0.0

0.0
n.6 • .
•
.0.0
• o.o
0.0

o.o
, 0.0
0.0.

0.0 : j
. o.o •:
.0.0

0.0"
0.0
o.o •;
• • . • . ':
7.10 /
7. 20
' O.O.. '

0.0 . '-:
o.o-
o.o

0.570- .'•
V o.o ':•
-' o.o . :

o.o - .
0.0 : :
,: 0.0 ;.:

o.o :
0.0
- 0.0 . .
'••.
.'- 0.0
0.0 •':
, 0.0 ,'.
... . .
• o.o
. 0.0
0.0

0.0
o.o '•-

0.0
o.o
0.0
'
0.0
6.0
o.o

0.0
"o.o
o.o

"^o.o
. 0^6
••'•.o.o
.j> • '.
VV7.30
» .7.r>6
.': °-° ;
";
•]' 0.0 '•':
OiO
0.6 }
-.
T 1-.-76
O.o :.•
?5 °
••'., • '..
. oi o
6'. o
Oi.0

6.0
0.0
0.0

0.0
0-0
o.'o

0.0
0.0
0.0

0-0
0.0

0.0
0.0 '
0-0

0.0
0.0
0.0

. o.o'
0-0
0.0

~ -'o.o ~
0.0
o.o ••-':

B.qo
7.50
•o.o

0.0
0.0
,0.0'

0.164
0.0
0.0

:o.o
0. 0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0

0.0
' 0.0


, 0.0 .
'o.o .


0.6
0.0


0.0
0.0


8.30
7,00.
>

0- 0 "'•
0-0


" 0.316
0. 0


0^0
0,0


o.o
6.0


o-6
.. 0.0


0.0
0.0


0-0
0.0

0.0
. .0.0


o.o
n-.b
•• •

0.0
0.0

.;
0.0
n.o


7,50
: 7 90


.' o.o' .
0,0.


0.260
0.0


0.0
OiO


o.o"
0.0


0.0
0.0 •


0.0
0.0


0.0
0.0 .

0.0
0.0


0.0
0.0


0.0
0.0

-•-
0.0
0.0


7 ;' 90
7.10


. o". o
0.0


0.620
0.0


0.0
0.0


0.0
• 0.0


0.0
0.0


0.0
o.n


0.0
o.o

0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


7.60
n.30


n.o
0.0


0.910
0.0


0.0
0.0


0-0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0


0.0
0,0


0.0
o.n


0.0
0.0


7.90
7.
-------
          0.0
                      0.0
                                  0.0
                                             0.0
                                                         0.0
                                                                    0.0
CO
rrcn :
o.o
o.o
o.o
0.10r.f.-07
o.o
o.o
o.o
o.o
o.o
rfcopi:
o.o
o.o
o.o
scm :
31. e
172.
166.
itflP :
0.200
27.1
0.0
0.0
0.0
0.0
UA1EB :
0.760E>05
0.0
0.0
SEOGS !
0;200H-02
0.0
0.0
VEUGS1:
0.0
0.0
0.0
«IfO :
5.00
2.eo
0.0
IIHD1 :
0.0
0.0

0.0
0.0
0.0
O.lT.OE-08
0.0
0.0
0.0
0.0 :
0.0

0.0
0.0
0.0

11.8
191i
172.

o.ooo
. 26. B
0.0
0.0
0.6
0.0 .•

o.noE'06
o.o •
o.o •

0.200E-02
0.0
0.0

0.0
0.0
0.0

1.50
2.61
0.0

0.0
0.0

0.0
0.0
0.0
fl-T.OOE-.10-
0.0
0.0
0.0
0.0
0.0 ,

c.o
0.0
0.0

82.7
30B.
91.8 '-.:

0.800 .
25.0 ';
0.0
0.0
o.o •;• •
o.o - ".

O.ftOOE'06
0.0
0.0

0.0
c.o
0.0

0.0
0.0
0.0

1.50
2.21 •
0.0

0.0
o.o
' '. -
o.o
0-0 :
o.n .'•;
0.0
0.0
0-0 -
' 0. 0
0. 0
e.o -

o.o
o.o
OiO

121.
581.
77.7

3.60
22.1
0.0
:0.-0 ":•
0.0
:0.0 :

0.630E>06
0.0
0.0

0. 0
0.0
0.0

0.0
0.0
0;0

1.00
2.79
0.0

0.0
0.0

0.0
.0.0
o.o
o.o
0.0
0.0
0.0
0.0
: 0- 0 v

6iO
0.0
0* 0 v

110;
517.
55.8

- 1.BO.
23. 1
0.0
: 0.0 ;"
0,0 ;•'
.OvO '.

0-110E»06
Oi'O
o-:o

6.0
0.6
o.o

0.0-
OiO
0,0

3; 01
2.60
0.0

0.0
0.0

0.0
O.I)
0.0
0.0
0. n
0.0
0.0
.0.0
0.0 . .

0.0 ' .
0,0. .
0.0

-176. '
352.
31.9

6. BO
in.i
0,0
0.0
0.0
6-0

0-2fOE»OS
0.0
0-0

0.0
0-0
o.o

0. 0
0*0
o.o .

3.81
3- HO
0.0

0.0
0.0

0.0
0.0

0.0
O.o

0.0
0.0
• r-

0-6 : '.'
0.6


252. -:-.
319. .


6.50, '•••:'
•- li-5

0.0.
0.0


0.2flOE»06 .
o- o


0.0
o.o v .".


o.o : :
0.0 .


3-11
3.10.


0.0
0.0

0.0 ;; . .
0.0

0.0
o.o •"
:i-
0.0 ;'
0.0


0.0
0.0 • : :


2f>«; : ;
137; ; ;•


20.3. \
11.2

0^0
0.0


O.U30R«06
.0.0


0.0
o.o


0.0 "
0.0


3.11
3.26


0.0
0.0

0.6
0.0

0.0
0.0

0.0
6.0


o.o
0.0


156.
313,


15.9
9,10

0.0
0;0


0.5101
6-0


o.o
o.o


0.0
0.0


2.02
3.11


0.0
0.0
                                                                                                                  0.0
                                                                                                                  n.o
                                                                                                                  o.o
                                                                                                                  o.o
                                                                                                                  o.o
                                                                                                                  O.o
                                                                                                                  0:0
                                                                                                                  o.o.
                                                                                                                   313.
                                                                                                                   «2n.
                                                                                                                   22.2
                                                                                                                   2.90
                                                                                                                 .0.0
                                                                                                                 -.0.0;
                                                                                                                  0.0
                                                                                                                  0.0
                                                                                                                  0.0
                                                                                                                  0.0
                                                                                                                  o.o.:
                                                                                                                   2. 36
                                                                                                                   3.11
                                                                                                                  0.0
                                                                                                                  0.0
 0.0
 0.0
 o.n
 0.0
 0.0
 0.0
 0.0
 0.6
                                                                                                                               27:5.
  22.0
 0.800
 0.0
 0.0
                                                                                                                             0.300E»06
                                                                                                                             0.0
 0.0
 0.0
 0.0
\0.0
  3.5H
  3.53-
 0.0
 0.0
0, U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
                                                                                                                                          i.oo'
0.0
0.0
            0.
            0.0
0.0
0.0
0.0
0.0
 3.31
 1.00
0.0
0.0

-------
          1 o.o
                                  0.0
                                             0.0
                                                         o.o :
                                                                    0.0
HKO :
S.no
2.50
6'. 0 • :
V MIHD1 t
.'•OiO .?
- Oi-0 . -
'. b/o ;
•• ice Ft •
• o. IOOE-OI
. O',0
'•'•• 0:0 •- •'
•'ZCCPLIJ
OiO • • .
.0.0 '.
R • '— V » ' '-'"-'

«-">6
. 2.61
".:°-.?
•. . '• '
0.0. .
o.a
o.o.
•j; '
' O.B70E-C2
o.'o .
OU 0

o.o
.o'ia :-
0 ; tf» ;.

<1.50
2. 2 'I
0.0

0.0-
6.0
o.o

0'.5BOt-02
0.0
0.0

0.0
0.0
o.o :
• . •• '..''•
M.OO
2.T1
0.0

0 0
o o
0.0.

•0.150E-OI
0^0
o 6

'0.0
0.0
o^ o;

3. mi
2.6(3
0.0

o a :'.
o-. o
o: o. ;

O.JI50E-01
O.'O
p;o

o.o
o.a
o.o

3.B1
3. no
0.0

0.0
0-0
0.0.

0.1J20E.-02
0.0 .
0.0 _• . :

0.6 :'
0.0 .
ff. 0 .'

3.11
3.10 ,


0.0
0.0


O.BHOE-02
0.0
-

0.0
0.0


3.1'i
3.26


0.0
o.n


6.f,noE-02
0.0
-

0.0
0.0


2."2
3.
-------
            O

             «J
             o.
             OJ
Figure-'D. 1,
               0.00
                            30OO
40UK)
          IQfUBJ     .2HUB
      ;  :  '•"'•• :Julian Date	;    .  	,  / •'_
Temperkture:- loadings used'-;in' simulation of
Coralville Reservoir ,•,Iowa-.
Figure  D.2.
          UHLDD      2MUB     30CJW
              Julian Date
pH loadings used  in .simulation of  Coralville
Reservoir,  Iowa.
                                 150

-------
Figure D.3..
          10CJ30     PfflTpflO     ffif^itf)     , 400.00
               Julian Date .
Dissolved oxygen-, .loadings, used.'in simulation, of
Coralville .Reservoir,  Iowa.                   '
                         10QJO•"' '"''"•' 2CJXDO•'••.•'•=•'
                              Julian ;Date
                             330JJO
.-Figure"D.4;:.
-Wihd loadings...usedjin simulation of-, Coralville
 Reservoir,  Iowa.
                                   151-:

-------
Figure. D.5.
Particulate organic  matter loading^ used 'in
simulation of Coralville Reservoir-, : Iowa..  .
                       1EUB     202JKJ
                            Julian Date
                           300JDQ
Figure D.6.'
Clay Ibadings  used in simulation of Coralville
Reservoir,  Iowa.
                                152

-------
tOUO
                                         300,00
                                   40000
Figure -D.7.
                  200JJO
        .,...  .       (days) ...
Phytoplanktoh  bipmass used in  simulation of
Coralville  Reservoir, Iowa.
Figure D.8.
                            Julian Date
Zooplankton  biomass used in simulation,of
Coralville .Reservoir, Iowa.
                                •153'-.

-------
             6

             cn
             en
             m
             .to,
             m
            "• ex
             fe
             O
               3..
               TLOQ
48040
Figure D. 9.:'
               /•. • •:'• 2SKLOO'- ••»    3COJX)
                Julian Date ;,-:
•;Garp. biomass /us.ed. in sirfiulatipn of  Coralville
 Reservbir, "Iowa.     "• ••"^'""•'V.'-•'••'"""''""•''   '  : ' '"
                                   (days)
Figure D.10.   Water  flow loadings used  in-.simulation of
                Coralville Reservoir, Iowa.
                                  154

-------
Figure D.'ll.
                                 (days)
 Dieldrin loadings used in simulation.of
,Coralville: Reservoir, Iowa;.
                               155

-------
 A:

 ALPHA: •

 BACB :
 BCTRC :'

• BD.INT :
•BDSLP :
BIO:
 BIODEP:
 BLD02:'
 BTMAX:

 STRAINS:

 BTTIM-:;.

..CMAX:  •
 CQNCEN :
 CONS:  ..


 CPTWO :

 CRS:

 CTWO :

 D:-
   .GLOSSARY OF'  PARAMETERS- AND 'VARIABLES

  ctivity coefficient for''microbial. degradation  (unit-
 extinction coeffiC'ient for. site water .at-each wave-
.len.gth       '                ''
 fnicrobial biomass  (g/rii3j  (p.;: 39)  :.
 cohcen-tratidn' o'f : TOM that passes  through the gills in
 the blood  (g/m3 day): .(p.  42) .     '
 coefficient for biodeposition  (unitless)  (p. 47)
 coefficient for: biodeposition  (unitless)  (p. 47)
: biomass. of "each brgariism' (g/m3) "•••(.ppv..-42V  '45')
 rate, of production  of pseudofeces'; (g/g  day)  . :(p. 47)
 coefficient for oxygen! capacity of Mood  (g 02/g
 blood) .  ip." :~   •••••:'• ^-:  •"'••  -*   ''"'     '"'' •'' ''•
 BMIN-:  .  .  .the. .prey  concenjtration'• a£ which.i..predator begins  feed-
 maximum rate of bio trans formation  (g/g : biomass day)
 .(p. ..49).   -..  ,v;:^  ,;•-,-  v " 2;;;"'.;. _•••'  ••-..,.;.--
 rate of : biotransf6rmation!,o,f TOM by higher organisms
                                             ''    ''
'.'number .pf days required^ fe6'-'r^ch;..f.u:Ll.:inetabo'lic
!'cap'ac'i'ty'     ':'-:":''''-    v''"''':      "''"'" '"  "
 ma'xinruih rate of  ingestibn. (.g/g . day) :(p^  45) '.  •   :  :
 concentration of toxic iprganic. material  (g/m3)  (p..  7)
 rate of change . of TOM in organism as  a result of
 ingestion, defecation, and excretion  (g  TOM/m3 day)
 (p.  44)
 rate of ingestion of TOM by predator  (g  TOM ingested/
 m3 day) (p. 47)        .  .  ;
 rate of biomass  loss due to respiration  (g/m3 day)
 (pp. 42, 43, 48)
 total rate of consumption by each organism (g/m3 day)
 (p.  42, 45)
 median depth of  water (cm)  (pp. 17, 18)
                                 156

-------
 DEF1: t
 DEPTH:'
 DIR:

 DOCOR:

 DOMIN:

 D02:
 DPHLIM:

 DTWO:

 E:
;'£^;-:  -
 .•E5FSN :
'.y '".     "
 .EL'AM:
°v.'!-' ••••'•••
 EN:     ..
 •   •  .
 EX:
.'";:;.'
 EXP.T.:,
 EXTRA:
 FIL:
 FRACD:
  "  '"•-.:•
 FRACS":

i'GILSRP:
.HA:
 HB:  .
•••H-ENRY-:.
 rate of -defecation  of .;TOM (g/m3 day) . (p.  47)
 depth of water  (m)  tp.                    "
 IIME'AS:
 I-I.TOT:
; INT:-'  :
 difference in TOM  concentrations  in  water and blood
 (g TOM/m3 day)  (pp.  43, 44)     .,.  '
 reduction of microbial degradation due to suboptimal
 oxygen levels  (unitless)  .(p. 33)
 minimum value of oxygen reduction under anaerobic
 conditions (unitless)  (pp. 33,  35)
 dissolved oxygen concentration  (g/m3)  (pp. 35, 43, 46)
 depth at which wind  energy is unimportant for mixing
 effect on microbial  degradation (m)  (p. 38)
 total rate of defecation by each  organism  (g/m3 day)
 (p-  42)
 percentage of TOM  in prey- that  is egested  (unitless)
                                       •-1---"'      '
,-cpef f ic.ient • for -di.f;f usivityv.of .. .T.QM' through:.. gill-;-
         1  (uniifeless'j''"-(p. 44-) ••;•*•. ;--,'•.,,' •'./:-.',  . .  '  •"•;',.'  '•  .
 molar extinction  coefficient for  TOM at : each wave-
••length (I/mole cm) ; -(p. ' 17);;';>;';:;,:. ;••.•:;•: ..  ...-.'•  .  •.   .  . .  '.
 activation .energy ••"•for-:, effect of temperature  (cal/mole)
:-(p.>-7) .,.,   •.:;:,-::r;, :,:,.;'y ''^•^^'^•^••••^  •     -...v; ,...-•-
 fate of •'••excr'et-i:6n"';ro£ 'TOM .by":;each '"organism  (g/m3  day)
 '(p. "48) ;   '•• '.;,-   ••'"•"-•; '  .•• ;V:.MS:---:-^: .••;•;-••• :;V -;1 •'•••• •  :.
 time, of exposure  to TOM '(days)/ (p.. \'39:)  /.,-;•....   ....
 amount -of TOM not in .solution  (g/m3) (p.  31)         :
 rate of filtering (g/g day)  (p.  47)
 fraction of irradiattce that is direct at each wave-  '
 length (unitless)  (p.  17)
 fraction of irradiance that is indirect at each  wave-
 length (unitless)  (p. -17)
 rate of sorption  by gills  (g/m3 day) {pp. 41, 44)
 concentration of  Bronsted acid  (g/m3)   (p. 7)
 concentration of  Bronsted base  (g/m3)   (p. 7)
 Henry's Law " constant '(atm cm /mol)   (pp.  2&,"27)
 rate of -hydrolysis (g/m3 'day)  (p.  7)
 observed light intensity  (photons/cm2)  (pp. 20,  21)
 total incident light (pho-tons/cm2)   (p.  20)
 width- of wavelength interval  (jim)  (p.  17)
 rate constant for Bronsted acid Catalysis  (I/days)
                      •',15.7

-------
 KB: .

 KBTRAN:

,KCAL:

 KDEPTH: ...

 KEFF: .
 KEQ:. . ••
'•KE'XG'R:

•KGAS: ..'•• '
.KH-: •
 KLEXPT:

 KLIQ:.

 KMEAS:

 KO:
 KOH:
 K02:   .;

"id? :.'•'' :,

 -KPART:  •.
'KPH:

 KRESP:

 KS:

 KSEN:

 KT:
 (pp. 1, 11;  sum o-f Wave length-sped fie, direct ''photo-
 lysis- rate constants..:;:(;l/day)  (p.  16).
 rate constant "for -:Bronsted' base:- catalysis  (l-/-days) -
     "          '' ''
 half-saturation- cbef fie ieht'.fQf:':biotrans formation  (g
 TOM/m3-) ...(p.-.':4-9');V--••"  V ••^•x-•-•••••'• ••':'"'..• '••'''''''••"•'•'
.rate.' constant' to; -account' -for "colloidal,'- metal-ion,
 and phase-transfer catalysis'  (I/days)  (pp..- 7/ 12)
.constant relating .wind: •.energy to  depth. .:;....- ,.'. ."
 rate of radical  initiation reaction (I/day)     (p.  15)
 equilibrium .dissociation constant  (not used)  (p.  2'0)
.proportionality  coefficient for  excretion as a
 function of respiration, (unitless)  (p. 48)
...ga s^pha se ma'ss -.-.tria-ns f er .epef f icien t t&m/hr ) •.  ( pp . 24,-  26.)
•acid-catalyzed "rate .constant"  (1/M days)  ..(pp. 7,. 9)  '. .'"
 correction factor ; for volatilization (unitless)
 •(P.: -;24.)-. .;,::•,;;'.,.,,;::: .-••>•:;"• \;;-;-:it '.'/   .. .  -    ,.,.     •  ,
 liquid-phase mass transfer coefficient (cm/hf)  (pp.  24',
 28) -  -  -.      v. ,       -,.,,.- •'..••
 rate constant for sensitised' photolysis  (I/day)  (pp.
 20, 21)    .    ..... -•
 uncatalyzed rate constant (I/days)  (pp.  7, 9, 11)
 base-catalyzed rate 'constant  (1/M days)  (,PP- 7, 9,  11)
-saturation -coefficient. fo,ic.- oxygen limitation -of ...
. ingestioh :'(g/m3)  ;(p.  46)  .  :  .   •,-              ..
.rate of reaction between TOM. ..and  alkoxy and peroxy
 radicals  (I/day)  (p. --15) '.'.'•  ' "-•-     -   ......
 octanol-water  partition coefficient (unitless)  (p.  40)'.'
 adaptive constant for pH effect on  microbial degrada-
 tion (unitless)  (p.  40) "•'•'..  ....            .
 proportionality  constant for respiration. as a function
 of metabolism  (unitless) (p. 42)
 half-saturation  constant for microbial metabolism
 (g/m3)  (p. 32)
 empirical rate constant for sensitized photolysis
 (I/day) (pp. 16,  20)
 rate of competing reaction ^between  two radicals re-
                                158

-------
 KTEMP:   •

•KTP:   .

 LAM:
 LD:

 LIM:  :

 LOAD:
 L.S:

 •MAX:    ::

 METCAP:   .

 METMAX:

 MK02:

 MMGT •:'  •.

 MMET:

•NEWAMT:

 NORM:

'OLDAMT:

 OXID:
 02RESP:

' PCBLD;:
 PCBLW-: ?'•
 PCFBL:  :'
,PH:
-PHCOR: ,,•;
.suiting in non-radical;-, products (I/day.) . (p.. 15)
 coefficient  relating respiratio.n rate  to temperature  •
 (i/°o'  (p. .42)   -   '••• ;..,:;;''\':: ' ,; ..,,:,,;•  ,... ...... ••,••......:;...
 adaptive constant for effect of '.temperature, on-
 microbial degradation  (unitless)  (pp .  3 7 ,  , 3<8.).
 wavelength  (nm) . (p.  17)  ,.     .'.;  '. .-.;,': '•-,...,„., .-.,-...
 effective direct underwater path length  for irradiance
.(.cm)'  (p.. i? )•••'.;  ....-,:,••: •;'•  ;:;.•  --.-  , -.:  :--':..:''-"-:.  : '•'•"•':    - •   '
 reduction in ingestion rate due to low prey concen-
 tration  (unitless) .; (pp.  45, 46)
 concentration of each carrier  (g/m^)  (pp.  40,  41)
 effective diffuse underwater path length for
 irradiance  (cm)  (p.  17)     .            .•...,.,;.:.
. maximum rate of -.biptr'ansformation- under  ambient
 environmental cond-itions....(g/g;biomass  day) (p^ : 49)  x-
.pe.rcent metaboli;c.rcapacity;. .for "degradation, .o,f-...TOM
.-'fuH-iti-ess) -I* '•••4 9)' '"'""^ ''"'";^'V-l>'.v::>:    ' •vv\-',''-'^^-;:;:   .., '
.maximxim 'rate of microbial metabqlism  (i/day:)  (pp.
-32'/'33)' '-.. ...- -v-;: .;...•;• .:v,.  •:.,',.. "^^'^  :,-^'.. -  .  '' "  •-:•.
 half-saturation constant, for effect O'f oxygen on
 :micrbbial degradation .. (g/m3) (pp.  33 ,; 35) '
 •micrbbial generation-.'. time- under ^•••botimai conditions''
 (days) -^.           '   '         "         '
 rate of  degra'dation-idue  to. micrpbiaT metabolism
 (g/m3 day)  (%. 32) '-••-.   :/ ;;;;'" ; .:.' ;'..:;;•;".;'         -."  '
 equilibrium concentration for each .carrier  (ppm)  (p.
 40)
 rate of  gill sorption" normalized  for all organisms
 (unitless)  (pr. 44).  .
 concentration of TOM in  carrier* not  affected by
 adsorption (g/m3) (p.'  41)
 rate of  oxidation (g/m3  day) (p.  15)
 .coefficient relating, oxygen uptake  to respiration (g
 02/g biomass)-. (pp.  42,  43)        ..      .       .
 perc.e'nt ;  blood (g .blopd/g- biomass); ,..(p. 43)
 :blo6d : water partition" coefficient,, ';(.p>. 43)     ...
 f at: blood 'partition coefficient ,  (p.  43-)  '•..
 ;amh)ieht .pH,.;                       "   "      '
 red.uc.tion,. f actor ror .:microbJlal.. degradation due  to pH
; (unities?), (pp. : 33, .35,..;:;37); '   '"  ,. ./.     • '•   '•.-.:,:.-.
                                 159

-------
  PHMAX :

  PHMIN- :
  PSIA: •

 .PSIBl"'
' -RAD.:
 '.RE':  '
.*/_
 RMAX:
 ^SAREA:

 SOLD:
 SOLUB :
 SORP:

 STRU:

 STTOM:
 T:   .
.,'TADPT ••!

 -T&6PT:
 TEMP: '
 TIME:
 TMAX:

 TMIX:

 TOPT :
 TOTPST
 critically  high' pH. for •micro.bial. degradation,  (pp. 36,
"w .;:'•'• •.•;•'••>•.•  - •/ ,-::;";. j;   • .  • "• •;•   " • ••'.
 criticail'y. low. pH-. fofv-rnicrobiai 'degradation',, (pp.' '3'6, •
 37);•;.,.. ;•;;_ /••;   •.,.,,.:;;V,-->C3'.':;::::;;..;:f-'Ay'.:'v';;:, •.:  ;  .: ••""  V '"
...rate of,photolysl.s,;^g/m3..-day);, :(p.':-':16') •;..,;,... ..,,:
. direct pKotolys-issguarituin .yield' for the TOM (unitless)
 (pp. 16, ''17)•.••••,-. ..-.••-":; • •' .;.:.••:  - •  .•;;' ' '. '•- .••   ;    . .  /   ••  •
 sensitized'photolysis qua'ntiim yield for/the .TOM  (unit-
 less)  (p.. 16)  '-°:  ,'"';:'.,..	;;"":': '•  '•'"...-.-. ••   .,. ,  :.,/ = ••-..•   '.••'  ...
 half-saturation1 constairit for feeding' (g/in^)  (pp. 45-47)
 rate of change per 10°C temperature change  (unitless)
•/(P. 46)";  . ;...-.   v '^ •;•';•:"••"• ••'  •  .   . . •=  .  " •
•concentration, of .radical, initiator present-,  (p.  15)
 Reynolds Number, (unitless)  Cp.: ;30)
 respiration rate at starvation (g/g day)  (p. 42)
 percentage  of  TOM at surface of carrier  (unitless)
 (p. 40)
 amount of TOM  in solution, (g/m^), (p. 31)
 solubility  (ppm)  (pp.. 26,^-31)- •
 routine for calculating, TOM  concentration due  to
 sorption,  (pp. 40,  41)
 structural  activity factor for microbial  degradation
 (unitless)  (pp." 39,  40)
 Julian date of introduction  of TOM, (pp.  39, 49)
 water temperature (°C) (= TEMP)  (p. 46)
 effective biomass of TOM-.degrading microflora  (g/m3)
. (pp; .32, 39)       ,                                   :.;;.
 temperature at which rate'constant was obtained   (°K)
"Cpcvy ,.                                ,.             ......
.Arrhehius temperature correction factor  (unitless)
 (p. .7) •••/•'                          	           .
 ambient temperature  (°C)   (pp.  7, 26, 37,  42)
 Julian'date•in simulation,  (p.  39)
 maximum temperature at which process will occur   (°C)
 (Pr 46>  '•=  •'. ..  ' ,'.  "'••  '   "'•'  .-:-               •
 reduction factor for effect  of  suboptimal mixing on
 microbial degradation (unitless)  (pp. 33, 38)
 optimum temperature  (°G)   (pp.  42,  46)
 total concentration of TOM at /site (g/m3)  (p.  40)
                                  160

-------
 TPCOR:

 .TPMAX:
:•:•,:.-'•;• •".-.
 TR3RZD':
   :•  .:/' •
 TREI)V ••' -
     ;
 VBEN:
 VH20:
 VOLAT:
 VPRESS :
:-:VTOM.:.
 W: • ":
.WCIRC-: '
   reduction' factor: ..for,. effect . of nonoptlmal  temperature
   on inicrobi;al degradatlpK. (unitiess) , .(pp.  37, 38)
   critically high temperature , for microbial  degradation
   (;°c); -(p.. .37) ' ;,;-;;; ;,:,,, ^- ; _ .-,• ;;;;>-;:.';_v:;:,,,.:; :,..,.,^.;-;;: •  -...- . : '
   reduction  factor  in; 'filtering  rate 'due  to  high.-,.  .
            ' ;(unitless')';;ip'..;-47)-   • •; ^v/fv: '-...,  '   •.-.'/•'.'..'.
 ' • reductiott' 'factor  for''';n6nfepptiinai te'mperature  (unitr •
  . less)  (pp.  46, 49)     :":..'.''
   mo.l a 1 volume of benzene (cm /rnol)   (p. 28)    :   -
   molal .volume of water , (cm /mol)  ' (p.  26)
   rate 'of  volatilization (moles/m2' hr)   (p.  24)
   vapor pressure  (Hg)  (p. 26)
  „ .molal,. volume of ; TOMr:(cm3/mol)';{pp.  26-28) •.-.•' •••••••    ;'
 ...preference  of predator,, f. or. prey (unltless)   (p.  45)
   amount ;.6f TOM ''.in. wa.t.er that ' passes, through gill  (g
: : - TOM/m3 'iwater .processed. day;);:;':(^pv.-43 ,• '44)-':-'V:.!".":-. '•
;.^ wind velocity  Cm/sep)  (pp'. .26,  3 8 )'...•.'   :   ;. :   ;   •    :
.-•• wiridspeed at bne-half-^.maximum stirring effect  (m/sec)
  '''    "             "   '   '          '
                         161

-------
                               INDEX
•'.Adaptation, 39
•Aer6bic> 35
.'Anaerobic./ ' 35
•Animals, 3
 Aromatic . Ring-,i: 35
• Ar.rheni'us Energy Equation,  7
 Attenuation Coefficients,  18
 Atrazine,  8, 12, 22, 27,  31

 Benthic., 45-
 Benzene,'28
 Bioaccumulation, 53, 54-'   '-•-•
 Biochemical Oxygen Demand,  33
 Biodeposition,- 47
 -Biotransformation, 48  •
 Blood,  42
 Bluegills, 64
 Brpristed Acid, 7, 12'
 Bronsted Base, 7, 12
 BTRANS:,- 4, 48

 Calibration,:57
;,Garbaryl,  8, 14, 22, 27,  31'
-Carnivores, 45
:Car-p>'-59
 .Channel Catfish, 65
-Clayv ;47 62
'Colloidal Catalysis, 12
;'.C.O.;lu7tib!ia National Fisheries
/.Research Laboratory, 61
:Comrao;n'Block,  76, 81
 Compound-Specific, 51
"CONS';" 3, 44
 Consumption, 44        .'.''•..
 Goralville Reservoir, 63  •

 Data Requirements, 51  •  :   '
 DEBUG,  71
.DEF> '3;> -44^ •  ••••  '   -'- •'-:•'
 Defecation, 44       ,.:  "
 Depth of Water, 18  .,  ;  . ...
 Diagnostic, 51          .    ,
 Dieldrin,  27,  31, 63
   Diffusivity,  29, 44        ..-,-.
   DISPLAY,"75
   Dissolved  Phase, 58, 61, 64,  66  .
,o  Driving'Variables, 54, 75   ••.., •'.•
   DUMP,  76

   EDIT,  68
   Electrolyte .Concentration, 8  ,.
   Evaluative, 51
   EX,  3
   EXAMS,  1-
   Excretion,* 44, 48«-   ••         -.•
              i                -....-
   Fat,  42,  48                : - :•
   Field .Verification, 57     .   .
   File ^nits,' 79    '
   Filter-Feeders, 45
   Fish Ponds, "58 "   '        '.,   / ,•
   Floating  Organic Matter  (FOM), 4

   Gas-Phase, 26
   Gill  Sorption, 41
   GILSRP, 3, 41
   Glossary,  156

   HELP,  77
   Henry's.Law Constant, 26
   Hydrolysis, 7, 51
   HYDR,  4,  51

   Ingestion, 44
   Iowa,  63
   Israel,- 58

. •;.  targe -Mouth Bas s > 6 3, 65
A;  Lip6phyllic>. 41,, 48 . ,:
   Liquid-Phase, 28
   LOADS,  4          '
 :  LOGON:;  ea   :

   Malathion,. 8, 12, .15, 22,.  27, 31
   Metal-ion  Catalysis, 13
   Methoxychlor, 8,. 9, 10, 22, 27

162

-------
Microbial, 55
Microbial Degradation, 52
Microbial Metabolism, 32
Missouri, 61
Mixing, 38    	'•
MMET, 4             .,
Molal Volume,26
Molecular Volume, 26
MORT, 3        ...   '"•• .  .
MSUM,-.4   ....    . ..  ,..  • -v':•.;
                  .'-.••>:'•;

Octanol-Water Partition  .
  Coefficient., 40 '   ;":
Organism-Specific, 54
Output, 5
OXID, 4, 15
Oxidation, 15, 52
Oxygen, 46

Parameter File,  83
Parameter Index,  80
Parameters,  51
Parathion, 8, 9,  15, '22, 27,
  31, 58
Particulate  Organic  Matter
  (POM), 4,  62.
Pentachlorophenol, 8,1 9, 10,
 . 22, 27, 31, 61
pH,  8,  11, 13         '
PHOT, 4, 16           •
Photolysis,  16,  52
Phytoplankton, 62
Plants, 4         .   •' •
PLOT, 73
Ponds,  61            . i  .
PRINT,  70
Process Name, 72
Pseudofeces,  45,  47
                      i
QUIT, .78  •'••:•'     : . ";.
                      • !
Respiration,  43

Sedimentation, 66
Sediments, 61
Sensitized Photolysis,  20
SERATRA, 2            >     .
Silver  Carp,  60
Simazine, 12         . ;
Site-Specific, 53
Solar Intensity,  18   '. <  •  .
SOLU, 4, 31
 Solubility,  31
 Solution,  31,  52
 SORP,  4,  40
 Sorption,.40,  53
 SPOO,  79,  83'
 START,  69
 State  Variables, 2
 S-triazine,  12
 Structural Activity, 39  .

 TABULATE,. 73    '•'..  ''.. "   •'..••,-
 Tape,  82
 Temperature, 37, 46     ;
 Tilapia,  60

 Uncertainties,/57
 Universal Gas Constant, 7

 Validity,  57
 Verification,  57
,VOLAT, 4,  24
 Volatilization,  24, 52

 Water  (Dissolved Phase), 4
 Whitman Two-Film, 25
; Wind,  26,  28,  30

 Zooplankton, 59, 62

 2,4-D, 8,  9, 11, 14, 22, 27,
   31
                               163

-------

                                                              PB82-254079
Modeling  the Fate of Toxic Organic
Materials  in Aquatic Environments
Rensselaer  Polytechnic Inst,
Troy, NY
Prepared  for

Environmental Research Lab.
Athens, GA
Apr  82
                     U.S. DEPARTMENT OF COMMERCE
                  National Technical Information Service

-------

-------
                     NOTICE

Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

-------
                           ABSTRACT
     Documentation is given for PEST, a dynamic simulation model
for evaluating the fate of toxic organic materials (TOM) in
freshwater aquatic environments.  PEST represents the time-vary-
ing concentration (in ppm) of a given TOM in each of as many as
sixteen carrier compartments; it also computes the percent
distribution and half life of the TOM in each of the carriers.
Possible carriers include phytoplankton, macrophytes, zooplank-
ton, waterbugs, zoobenthos, fish, particulate organic matter,
floating organic matter, clay, and water (with TOM in the
dissolved phase).

     PEST simulates TOM degradation by hydrolysis, oxidation,
photolysis, microbial metabolism, and biotransformation by high-
er organisms; it} simulates TOM transfer by solution, volatiliza-
tion, sorption, absorption onto gills, consumption, excretion,
defecation, biodeposition, mortality, and throughflow.  These
are subject to time-varying environmental factors such as pH,
temperature, dissolved oxygen, wind, solar radiation, and bio-
mass and condition of organisms.       . ,;  .
                i         .      _         i- .•.

     The model has been verified, with process-level laboratory
data and with ecosystem-level site data.  The site data for
.fish ponds in Missouri and Israel and a reservoir in Iowa con-
stitute prototype data sets that can'be used to evaluate other
compounds. •         ...         ...••••

     PEST is an interactive, user-oriented model with twelve
commands;  The user can edit parameters and driving variables,
display process-response curves for' all combinations of pro-
cesses and driving variables, run a simulation for any length
of time, print any or all -state-variable results,:debug load-
ings and rates during the simulation, tabulate the results,
obtain line-printer and graphics-device plots, dump  COMMON
block contents, and access an extensive HELP file.

     The model is written in standard FORTRAN IV and will run in
22k on a PDP11 with overlaying.  It has also been tested on an
IBM3033.  The program is well structured and highly modular and
is easy to understand. ' System-dependent features are restricted
to two optional subroutines:  one which handles operations such
as file numbering and time calls and one which provides an
interface to graphics terminals and plotters. Instructions are


                1               iv..

-------
                            FOREWORD

       Environmental  protection efforts are increasingly directed
 toward preventing  adverse health and ecological effects associa-
 ted with  specific  compounds of natural or human origin.  As part
 of this Laboratory's research on the occurrence, movement, trans-
 formation,  impact  and control of environmental contaminants, the
 Environmental  Systems Branch studies complexes of environmental
 processes that control the transport, transformation, .degrada-r
 tion,  fate,  and impact of pollutants or other materials in soil
 and water and  develops models for assessing exposure to chemical
 contaminants.

       Concern  about  environmental exposure to synthetic organic.
'compounds, has  increased'-the heed for techniques to. predict the
 behavior  of  chemicals entering the environment as a result of
 the manufacture, use, and disposal of .commercial products.  In  ...
 response  to  this need,. :a number of mathematical models  have been
 developed to provide information about the fate of these materi-
 als as an aid  to environmental researchers, planners, and mana-
 gers.  This  report describes PEST, a dynamic simulation model
 for evaluating the fate of toxic organic materials in freshwater....
 environments that  provides a particularly detailed analysis of
 bioacc.umulation.      -       ,-.;;:              .,.  .      .     •    ...

                                 David W. Duttweiler
                        :-.';'  ' :';•-;.Director _'' '
                      ••'v':;._   •Environmental Research Laboratory
                      '-'  ,.'•'.   ..''-.Athens, Georgia   , •,
                               111

-------
                            CONTENTS
FOREWORD. -..•.....'	ill
ABSTRACT	    iv
FIGURES	    ix
TABLES	•	xiv
ACKNOWLEDGEMENTS	    xv

   1.    INTRODUCTION	     1

           RELATIONSHIP TO OTHER MODELS	     1
           CHARACTERISTICS OF MODEL.  .  -. •	  .  .  .     2
                 I  .
   2.    PROCESS EQUATIONS AND PARAMETERIZATION. .....     7

           HYDROLYSIS	     7
           .  Verification. . . . .	    13
           OXIDATION	-.	    15
           PHOTOLYSIS.	    16
             Verification	'.'."'.•	    21
     •••..•   VOLATILIZATION..... ... .....'._.  .......... .•,...  ,  .  .    24
             Gas-phase Mass Transfer'Coefficient 	    26
             Liquid-phase Mass Transfer Coefficient.  ...   .28
             Verification	    30
           SOLUTION	    31
           MICROBIAL METABOLISM. .  	    32
         ,.  SORPTION.  .  ......  .;•,  ..... .  .  .'.- .    40
      •     GILL SORPTION	    41
         ....CONSUMPTION .  . . .-. . .  .  .  .  .  .  . .'.-.-,.  .-..•..    44
             Ingestion	    45
        /.  BIOTRANSFORMATION..- . .  ....... ........;•. •. •-.,.....  . ... .    48

   3.    DATA REQUIREMENTS . ; • ••":'••.  •  •  .-,.•••. -•..  .••  .  . ...    51

           COMPOUND-SPECIFIC PARAMETERS.  .........    51
             1.   Hydrolysis	    51
             2.   pxidation	    52
             3.   Photolysis	    52
             4.   Volatilization	    52
             5.   Solution	    52
             6.   Microbial Degradation ..........    52
             7.   Sorption	    53
             8.   Bioaccumulation	    53

                 i

-------
given for converting the program .and data files from the dis-
tribution tape to the user's computer-installation.

      This report was submitted in fulfillment of Grant No.
R804820-03-4 by Rensselaer Polytechnic Institute under the
sponsorship of the U.S.  Environmental Protection Agency.  This
report covers the period August 1976 to January 1981, and work
was completed as of January 1981.

-------
       SITE-SPECIFIC CONSTANTS  AND. DRIVING VARIABLES .  .  53
       ORGANISM-SPECIFIC PARAMETERS	54

4-.    VERIFICATION	57

       PARATHION IN ISRAELI  FISHPONDS	58
       PENTACHLOROPHENOL IN  MISSOURI FISHPONDS  	  61
       DIELDRIN IN AN IOWA RESERVOIR	63

5.    USER'S  MANUAL	68

       LOGON	68
         Example	68
       EDIT	'68
        . Syntax.	68
         Examples. .	 ...........  69
       START	........... ........  .  69
         Syntax. . . .  .  .  .  ..'.'...:  .  ,:..'.  . . . ..  69
    ...   Example . . ....  ....  .  .  . ... . ...,  .  .  ...-..••.••..... .  .  70
  :     -PRINT .;. . '.' .".-.'.  .  .". V ."'."".'. V..............  .  70
         Syntax	  ......  . . . ...  .....  . .. .'..'71
        ' Example ..'..'	  71
       DEBUG	  71
       •• - Syntax. . ......  .  .	72
         Example	72
       TABULATE	'	 .  73
         Syntax. ......  	  ......  73
         Example		73
       PLOT. .'..'.'.	  73
         Syntax. .	 . .	74
         Example	...............  74
       DISPLAY	75
         Syntax	."	75
         Example . . • . "•".' ",""';•-.	......  75
       DUMP. .......	76
       .  Syntax. ....;' :		76
         Example	i,  .	76
       HELP.	  77
 -.-.' ...    Syntax.	77
•  .  .  . •••• Example . .-• .	  ....  •;••'. .••..  .  77
       QUIT	78
         Syntax	  78
         Example	  78

6'.'   PROGRAMMER'S GUIDE.  ..	  79

    '   INTRODUCTION. .  .  .  ...  . . . .  :  .  .  .....  79
       FILE  UNITS.	  79
       COMMON BLOCKS 	  ........  81
       BUILDING A MODEL.  .  . .  ... .. .  ....  . . .  .  82

7.   REFERENCES	84

-------
APPENDICES	  S2

  Parameters and Loadings used in Simulation
  of Pond A-7, Dor, Israel	 .  92

  Parameters and Loadings used in Simulation
  of Treatment-3 Ponds, Columbia, Missouri	112

  Loadings used in Simulation of Treatment-2
  Ponds, Columbia, Missouri 	 131

  Parameters and Loadings used in.Simulation
  of Coralville Reservoir, Iowa	 .  . . 135

GLOSSARY OF PARAMETERS AND VARIABLES	156

INDEX	  . 162
                      Vlll

-------
                             FIGURES


Number                                                        Page

   1      Compartments in the PEST model	    3

   2      PEST process flow chart . .	    5

   3a     Hydrolysis of parathion 	    9

   3b     Hydrolysis of peritachlorophenol  .  	   10

   3c     Hydrolysis of methoxychlor.	   10

   3d     Hydrolysis of 2,4-D	   11

   .4a     Sensitized photolysis of methoxychlor  ........   23

   4b     Unsensitized photolysis of. methoxychlor  ......   23
            .1             ...
   •4c     Photolysis of pentachlorophenol  ..........   24

   5-      Two-film model of volatilization from  the
         surface of water. . . * . .... ............   25

   6      Volatilization -of 'a hypothetical li'quid-phas'e
: •-'•'.  ..   control compound* ". .*". . . ';•-/"!;.,..*- .'  .......   30

   7      Malathioh remaining vs. incubation, time  ......   34

   8      Effect of dissolved oxygen on microbial
   ....  .    degradation of pentachlorophenol..  ..  .  .  ...  . •.  .  .  .   35

   9 .     Effect of pH on microbial degradation  of
         pentachlorophenol 	  .36

  10. •.    Effect of temperature on microbial degradation
   .--..]''   of pentachlorophenol.'	   37

.. 11 ._  "Relation .between the concentration of
         methoxychlor in a fish and time  ..........   45...

  12.""'  'Relationship between -BTRANS  (g transformed/g      :,..•
   .  '   organism/day) and TOM concentration  (g TOM/g)  .  .  .. .-50

                               ix

-------
 13a     Comparison of  predicted  and observed concentra-
        tions of  Parathion  in dissolved phase  in Pond
        A-7, Dor, Israel	58

 13b     Comparison of  predicted  and observed concentra-
        tions of  Parathion  in zooplankton.in Pond .A-7,
        Dor, Israel	.	„  .  59

 13c     Comparison of  predicted  and observed concen-
        trations  of Parathion in carp in Pond  A-7,
        Dor, Israel.	59

 13d     Comparison of  predicted  and observed concen-
        trations  of Parathion in Tilapia in Pond A-7,
        Dor, Israel	  60

 13e     Comparison of  predicted  and observed concen-
        trations  of Parathion in silver carp in Pond
        A-7, Dor, Israel	.  .  60

 14a     Comparison of  predicted  and observed concen-
        trations  of Pentachlorophenol in dissolved
        phase in  Treatment-3 ponds, Columbia,  Missouri ...  61

 14b     Predicted concentrations of Pentachlorophenol
        in clay and particulate  organic material in
        Treatment-3 ponds,  Columbia, Missouri	62

 14c     Predicted concentrations of Pentachlorophenol
        in phytoplankton  and zooplankton in Treatment-
        3 ponds,  Columbia,  Missouri	62

 14d     Predicted and  observed concentrations  of
        Pentachlorophenol in large-mouth bass  in
        Treatment-3 ponds,  Columbia, Missouri	  63

 15a     Comparison of  predicted  and observed concen-
     •   trations  of Pentachlorophenol in dissolved
.  •   •   phase.in  Treatment-2 ponds, Columbia,
  .  .    Missouri  .	64

 15b     Comparison of  predicted  and observed concen-
        trations  of Pentachlorophenol in bluegills
        in Treatment-2 ponds, Columbia, Missouri 	  64

 15c     Comparison of  predicted  and observed concen-
        trations  of Pentachlorophenol in large-mouth
        bass in Treatment-2 ponds,  Columbia, Missouri. ...  65

 15d     Comparison of  predicted  and observed concen-
        trations  of Pentachlorophenol in channel
        catfish in Treatment-2 ponds, Columbia, Missouri  .  .  65

                              x

-------
16a    Comparison of predicted and observed concen-
       trations of Dieldrin in dissolved phase in
       Coralville Reservoir, Iowa from 1968 to
       1977. „	66 '

16b    Comparison of predicted and observed concen-
       trations of Dieldrin in carp in Coralville
       Reservoir, Iowa	67

16c    Comparison of predicted and observed concen-
       trations of Dieldrin in the dissolved phase
       in Coralville Reservoir, Iowa	67

 Al    Temperature loading used in simulation of
       Pond A-7, Dor, Israel	107

 A2    pH loading used  in simulation  of • Pond A-7,'
       Dor, Israel	.  . .	107

 'A3.   Dissolved oxygen loading used.in simulation.of
•'    .   Pond-A-7, Dor, Israel	........  108

 A4    Wind velocity loading used in  simulation of
       Pond A-7, Dor, Israel .	  108

 A5    Solar radiation  loading used in simulation of
       Pond A-7,1 Dor, Israel	  109

 A6    Phytoplankton biomass used in  simulation of
       Pond A-7, Dor, Israel ...........  .'"'.'  .  .  109

 A7    Zooplankton biomass used in simulation of
       Pond A-7, Dor, Israel .•	  110

 A8  :  Water bug biomass used in  simulation of
       Pond A-7, Dor, Israel .;	  .....  110

 •A9    .Carp biomass used in simulation,of  Pond A-7, •
       Dor, Israel	  .  .  Ill

 Bl    Temperature loading used in simulation of
       Treatment-3 ponds, Columbia, Missouri  .  .  .  .  ...  .  127

 B2    pH loading used  in simulation  of Treatment-
       3 ponds,iColumbia, Missouri .' 	  127

 B3    Dissolved oxygen loading used  in simulation
       of Treatment-3 ponds, Columbia, Missouri.  ......  .  128

 B4    Wind velocity loading used in  simulation of
       Treatment^3 ponds, Columbia, Missouri  .  	  128
                              XI

-------
B5    Solar radiation loading used in simulation
      of Treatment-3 ponds, Columbia, Missouri	129

B6    Phytoplankton biomass used in simulation
      of Treatment-3 ponds, Columbia, Missouri	129

B7    Zooplankton biomass used in simulation of
      Treatment-3 ponds, Columbia, Missouri ....... 130

B8    Bluegill biomass used in simulation of
      Treatment-3 ponds, Columbia, Missouri ....... 130

Cl    Temperature loadings used in simulation of
      Treatment-2 ponds, Columbia, Missouri 	 131

C2    pK loadings used in simulation of
      Treatment-2 ponds, Columbia, Missouri 	 131

C3    Dissolved oxygen loadings used in simulation
      of Treatment-2 ponds, Columbia, Missouri	132

C4    Phytoplankton biomass used in simulation of
      Treatment-2 ponds, Columbia, Missouri 	 132

C5    Zooplankton biomass used in simulation of
      Treatment-2 ponds, Columbia, Missouri 	 133

C6    Bluegill biomass. used .in simulation, of
      Treatment-2 ponds, Columbia, Missouri .  . .... .  . 133

C7    Pentachlorophenol loadings used in simulation
      of Treatment-2 ponds, Columbia, Missouri. ..... 134

Dl.    Temperature loadings used in .simulation of
      Coralville Reservoir, Iowa. ...	 150

D2    pH loadings used in simulation of
      •Coralville Reservoir^ Iowa.-. . . . . ... .  . .  ..150

D3    Dissolved oxygen loadings used in simulation
      of Coralville Reservoir, Iowa	151

D4    Wind loadings used in simulation of
      Coralville Reservoir, Iowa	151

D5    Particulate organic matter loadings used in
      simulation of Coralville Reservoir, Iowa. 	 152

D6    Clay loadings used in simulation of
      Coralville Reservoir, Iowa	152
                            xri

-------
 D7  '  Phytoplankton biomass used in simulation
       of .Coralville Reservoir, Iowa	153

 D8    Zooplankton biomass used in simulation
       of C6ralville Reservoir, Iowa	 . 153

 D9    Carp biomass used in simulation of
       Coralville Reservoir, Iowa	154

DID    Water flow loadings used in simulation of
       Coralville Reservoir, Iowa	154

Dll    Dieldrin loadings used in simulation of
       Coralville Reservoir, Iowa	155
                             XXll

-------
                            TABLES

Nuinber                                                      Page
  1      STATE VARIABLE EQUATIONS	    3

  2    ..  PARAMETERS  (1/M day) FOR SELECTED COMPOUNDS  ...    9

  3      COMPARISON OF PEST HYDROLYSIS HALF-LIVES WITH
         LITERATURE VALUES FOR VARIATIONS IN pH AT
         CONSTANT TEMPERATURE	14

  4      COMPARISON OF THE SOLAR INTENSITY BREAKDOWN
         IN PEST WITH THE RESULTS OBTAINED BY  ZEPP AND
         CLINE .(1977).	18

  5      ATTENUATION COEFFICIENTS  (AS PRESENTED BY
         HAUTALA, 1978)	   19

  6      ATTENUATION SENSITIVITY ANALYSIS OF PENTA-
         CHLOROPHENOL UNDER MIDSUMMER SUN	20

  7      COMPARISON OF PEST PHOTOLYSIS HALF-LIVES WITH
         LITERATURE VALUES	22

  8      CALCULATED HENRY'S LAW CONSTANTS. ........   27

  9      LE BAS ADDITIVE VOLUMES.'TO-CALCULATE  LIQUID
        .'.MOLAL'.VOLUME  (cc/g mole) ;-.....  ............   27

 10     'CALCULATED OR OBSERVED MOLAL VOLUMES  FOR
         SELECTED-COMPOUNDS. •...'.	28

 11      VERIFICATION OF TEMPERATURE CORRECTION.  .....   29

 12      LIQUID-PHASE MASS TRANSFER COEFFICIENTS AT
         25°C	29

 13      COMPARISON OF PEST VOLATILIZATION RATES WITH
         LITERATURE VALUES 	   31
                              xiv

-------
                        ACKNOWLEDGEMENTS
     This project has been financed with federal funds from the
Environmental Protection Agency under Grant No. R804820-03-4.
We wish to thank all the other people who contributed to this
project, including: Ronald Avery, Sipra Choudhury, Steve Cohen,
Pascal deCaprariis, Audrey Depelteau, George Estel, Shirley
Gully, Robert Haimes, Alan House, Tammy Kimmel, Donna Leung,
Diana Merchant, Phil Perry, George Pierce, Steve Plust, William
Reeves, Eric Ruff, and Corey Trench.  Also, we appreciate the
guidance provided by Ray R. Lassiter, who was the project
officer during the initial stages of the research.       .    ••

     The pentachlorophenol data were provided by Terence P.
Boyle, Everett F. Robinson-Wilson, and Foster L. Mayer of the
Columbia  (MO) National Fisheries Research Laboratory, Fish and
Wildlife Service,  The parathion data were provided by Avital
Gasith and A. S. 'Perry of Tel Aviv University, Israel.  The
dieldrin data were provided by Jerald L. Schnoor and Donald B.
MacDonald of the 'university of Iowa. The generosity of these
individuals in freely offering advice and published and un-
published data is gratefully acknowledged.
                              xv

-------
                            SECTION 1

                          INTRODUCTION
 RELATIONSHIP TO OTHER MODELS

      The PEST model has been under development  for  the  past four
 years in .response to the need for a detailed, chemically- and
 biologically-realistic model to predict the  fate  of toxic
 organic' materials in .natural 'aquatic-.environments.  ' As  such, •
 its development .has paralleled that of several  other fate,..   ••   "
•models;  however,  each model has its particular  emphasis,  and •
.PEST fulfills a need for detail and biologic realism that is
 no.t • addressed ,by other -models-. (Park et al. ,.  1980; ,A-lbane.se   .  -•
'et-al.  1981) . '    .      •       ' .           '

      PEST:'can "be considered an evaluative -model in  the  sense of
 Lassiter (1975).   As such, it is intended to be used primarily
 to indicate the relative importance of the various  processes
 under well defined environmental conditions  and to  determine
.the environmental.compatibility of .particular organic materials..
 Many"--of'the demands placed on the -.'EPA'" relative  -to -evaluating
 ..new materials can be :,ans-wered .through•• the- expediency of such a.
 process-or'ient'ed evaluative model.  -The model can-'also'as-sist'
 in the extrapolation of data from laboratory•experiments  and
 microcosms to natural, eh:vironments...,.-.(Park,'Tndyke  and Heitzman,
 in press) .       ,    ..   •	   "_,  '-'--'•  •'"

     '•PEST is often compared with the EXAMS model;, both  are
 components of the fate modeling program of the  Environmental
 Systems Branch of the Athens- Environmental Research Laboratory.
 EXAMS was developed as an in-house: effort  (Lassiter, Baughman,
 and Burns, 1978;  Baughman and Burns, 1979; Burns, Cline and
 Lassiter,  in press).  EXAMS differs from PEST in  that:   1) it
 partitions the chemical into ionic species;  2)  it represents
 bioaccumulation as a bioconcentration factor for  the ecosystem;
 and 3)  it is a steady-state model.  EXAMS is designed for use
 As'-a- quick screening tool, while PEST provides  a  more detailed
'analysis, ..especially with respect to bioaccumulation.

••••'•""-... A similar .-model,. based--in part on the SRI  model. (Smith et •
 al., 1.977), was programmed by Schnoor et ,al  (1979).  It re-
 presents' non-steady state •-. and- considers-..bioaccumulation in
.several" fish types; therefore it comes somewhat closer  to 'the
 conce'ptv.of PEST.  .A model developed at DOW Chemical Company

          "'"  """    "" ' 	•'•'•'• '• 1   ' ' '••'••"- •-•   "     '

-------
 (Neely  and  Blau,  1977;  Branson,  1978)  is simpler in concept
 but  does  distinguish between uptake and depuration in fish.

      The  SERATRA  model  (Onishi,  and Wise/  1979)  is characterized
 by good hydrodynamic resolution.   Its .-chemical and .biological
 realism is  less than PEST,  but it; is-.probably .better, than PEST
 in representing physical., transport of ...toxic" organic, materials
 in riverine and estuarine  environments.

      Another group  of fate models- emphasize bioaccumulation,  but
 ignore  chemical processes.   Thomanri '(1978)  models bioaccumula-
 tion in relation  to size'of organism.   Weini'nger '(1978)  consi-
 ders detailed bioenergetics in .simulating  the uptake of  poly-
 chlorinated biphenyls (PCBs)  by  lake trout;- 'his  approach is
 similar to  that used in modeling bioaccumulation in PEST,
 although  the extreme lipophilic   nature of PCBs. permits  some
 simplifications that are not taken in  PEST.

      Each of these  models  serves a specific purpose.   However,
 only PEST combines  detailed chemical kinetics and bioenergetics
 to permit examination and.evaluation of the behavior of  toxic
 organic materials in the context of the entire aquatic eco-
 system.   Of course,  use of such  a..complex  model  requires an
 understanding of  the many  assumptions  and  parameters;  as well
 as a knowledge of the mechanics  of 'the program.   The purpose  of
 this report is to acquaint the potential user with the details
 of PEST so  that the model  can be used-  both easily and wisely.


 CHARACTERISTICS OF  MODEL            •  .  -       '"

      PEST is capable of]simulating.the time-varying concentra-
 tion of a ;toxic organic material  (TOM)-.in  each-of as many as
 sixteen carrier compartments.  The sixteen.state variables can
 be parameterized  to represent a  variety of. TOM-carrier associa-
 tions typical of  aquatic ecosystems (for 'example Figure  1).

;'...!•   The •••s»tate-variable~ equations are .-ordinary differential
 equations with source and  sink terms for the various processes
 that result, in additions to,., and losses-from,  the-carriers
 (Table  1).   Broad categories include TOM in:   plant's,  such as
 phytoplankton and macrophytes; animals,  such as  zooplankton,
 waterbugs,  zoobenthos,  and  fish  (different species and/or age
 classes); dissolved phase,  either in the water column or in
 interstitial water;  particulate  organic matter,  either suspended
 or as bottom sediment;  floating  organic matter,  usually  as a
 surface film;  and clay, either suspended or as bottom sediment.

      The  source and sink terms for the state variables are
 represented by process  equations.   Most of the process equations
 are  non-linear, and many involve several different environmental
 factors .(Figure 2) .

-------
               \ \ ~~  ci —
Figure 1.  Compartments in the PEST model"."  FMACRO = "floating
           macrophyte, MACRO = macrophyte, FOM = floating .or-
           ganic matter, POM = particulate organic matter,
           WBUG = water bug, Z003 = zoobenthos,' ZOOP = zooplank-
           ton, PHYTO = phytoplankton.

	TABLE 1.  STATE VARIABLE EQUATIONS          	

ANIMALS(zooplankton,zoobenthos  and/or  fish)

   State Variables 1-10
      dC/dt = CONS-EX-DEF-MORT+BSORP+GILSRP-BTRANS+
              LOADS
(Eq.  1)
where
   C = concentration of toxic organic material  (TOM)
   CONS = intake of TOM through consumption
   EX = loss through excretion
   DBF = loss through defecation
   MORT = loss through mortality of carrier organisms
   BSORP = intake through passive sorption onto body
   GILSRP = intake through sorption onto gill as a consequence
            of respiratory activity

-------
    BTRANS  =  biological  transformation of TOM
    LOADS = input  of  TOM into  ecosystem segment as a result of
           movement  of  carrier  organisms

PLANTS            (phytoplankton and/or macrophytes)

    State Variables 11 and  12           .   •   '

      dC/dt  = BSORP-BTRANS-MORT-CONS+LOADS-MMET          (Eq.  2)

WATER  (DISSOLVED  PHASE)

    State Variable 13

      dC/dt  = -HYDR-OXID-PHOT-VOLAT+SOLU-BSORP-GILSRP-
              SORP+LOADS-MMET                            (Eq.  3)

where      .

   HYDR =  loss through hydrolysis
   OXID =  loss through oxidation
   PHOT =  loss through photolysis
   MMET =  loss due to microbial metabolism
   VOLAT = loss through volatilization
   SOLU =  addition through solution
   SORP = jLoss through sorption  (or gain through  desorption)
PARTICIPATE'ORGANIC MATTER '(POM)   .    •--^••—---•..

   State Variable 14  '    ':       .     '•       '  .

      dC/dt  = -HYDR-OXID+MSUM+DEF-MMET-CONS-PHOT+
              SORP+LOADS                                  (Eq.  4)

where

   MSUM =  addition of TOM due to mortality of  carrier organisms


FLOATING ORGANIC MATTER  (FOM)

   State Variable 15

      dC/dt  = -VOLAT-MMET-CONS+DEF-HYDR-OXID-PHOT+
              SORP-SOLU+LOADS                             (Eg.  5)

CLAY

   State Variable 16

      dC/dt = -MMET-CONS+DEF-HYDR-OXID-PHOT+SORP-
              SOLU+LOADS                                  (Eq.  6)

-------
                                    DEFECATION
'Figure  2.  PEST  process  flow chart.

      Output  from the model includes:  (1) the time-varying con-
centration of  the toxic  material in each carrier  (in ppm) ,••• (2) '
the  percent  distribution of the toxic material among the
carriers, and  (3)  the halflives of the toxic material in:each  "
•carrier.. One  can also obtain plots of the degradation rates,
both as they vary through time and as a function of. env.iron-
..inental  factors..    .                                      .  • '   "

      The model has been  verified with process-level laboratory
data for several compounds and with ecosystem data  from  fish  .
ponds in Missouri and Israel and from a reservoir in Iowa.  The

-------
site constants and environmental driving variables for these
ecosystems constitute useful "prototype" data sets that enhance
the value of the model for evaluative purposes.  The process-
level results from our studies and from our summarization of
the literature are used as examples in the following section.

-------
                           SECTION 2

            PROCESS EQUATIONS AND PARAMETERIZATION



HYDROLYSIS                                                  HYDR

     PEST represents the degradation of the TOM through hydro-
lysis as: ....                                  ...  ..••....

      HYDR =  (TCORR*KO+TCORR*KH*10~PH+TCORR*KOH*10PH~14
           .-  +KA*HA+KB*HB+TCORR*KCAL) *CONCEN       	   •  (Eq. 7)

This includes the temperature-correction factor for the Xth rate
constant based on the standard Arrhenius energy  equation:

                           EN               EN
      TCORR(X) =  *.              - 1.987(TCOPT)
where

   e = natural exponent
   EN = activation energy for effect of temperature on  particu-
        lar . reaction  (cal/mole)
   TEMP = ambient, temperature  (°C)
   TCOPT = temperature at which rate constant was obtained  (°K)

with 1.0R7 being the universal 'gas constant and  273 being the
conversion to °K.

The other terms in Eq. 7 are:

   KO = uncatalyzed rate constant  (I/days)
   KH = acid-catalyzed rate constant  (1/M days,  where M is
  •      molality)
   KOH = base-catalyzed rate'constant  (1/M days)
   pH = ambient pH          .    .          .
.  . KCAL = rate constant to account for colloidal, metal-ion,
        ;  and phase-transfer catalysis adjusted  for site
          conditions  (I/days)   •  ..
  " KA. = rate constant for Bronsted acid catalysis  (I/days)
   HA = concentration of Bronsted acid'(g/m3).
   KB = rate constant .for Bronsted base catalysis  (I/days)
   HB = concentration .of Bronsted base  (g/m-*)
   CONCEN = concentration of TOM  (g/m^)

-------
     Eg. 7 assumes that the activity of the hydrogen ion in
natural waters is identical to the concentration.  That is, the
activity coefficient of the hydrogen ion is taken'as 1.  This
assumption is good for natural waters containing few dissolved
electrolytes  (0 to 220 ppm), but will not apply in brackish or
salt waters, where the total electrolyte concentration can ex-
ceed 35,000 ppm.  The effect of electrolyte concentration, may
be important  (Walker 1976, .1978), although studies conducted in
support of this project show that it has little effect on the
hydrolysis .of some compounds such as atrazine  (Herbrandson,
et al., 1977).

     The uncatalyzed, acid-catalyzed, and base-catalyzed rate
constants chosen for these equations are the specific rate con-
stants that measure the contribution to the disappearance rate
due to specific types of catalysis.  These are easy to measure
in the laboratory; determination of their values does not re-
quire detailed knowledge of the reaction mechanism.  The kine-
tic data, however, may not fit for some compounds, and general
rate constants and another rate expression may be required.

     The definition of hydrolysis as the disappearance of the
TOM through reaction with water does not imply a specific
mechanism, and generally includes several chemical processes.
Eq. 7 does assume that -the rates can ,be expressed in terms of
pseudo first-order constants, meaning that the second-order
rate is made pH-dependent.  By combining these constants, as
in Eq. 7, the overall rate expression can-model several differ-
ent types of hydrogen-ion and Bronsted acid-base dependences.
For example, hydrolysis rates for atrazine, malathion, carbaryl
and methoxychlor can all be expressed in terms of these con-
stants, even though  atrazine reacts due to nucleophilic sub-
stitution of the hydroxide ion for the chloride ion, malathion
decomposes in water due to elimination arid carboxylate ester
hydrolysis, carbaryl hydrolyzes by an elimination reaction,
methoxychlor undergoes base-catalyzed elimination of HCL.

     The pH-dependence and importance of €he hydrolysis reaction
vary greatly for different compounds.  These variations are
expressed by the relative magnitudes of the KH, KO, and KOH
parameters (Table 2).  Parathion is base-catalyzed  (Figure 3a),
pentachlorophenol is slightly acid-catalyzed (Figure 3b),
methoxychlor is primarily base-catalyzed (Figure 3c),  and
2,4-D is both acid- and base-catalyzed with the minimum at a
pH of about 4.7 (Figure 3d).

     The value for KO serves as the minimum rate of hydrolysis
over the entire pH range.  This is the rate constant at neutral-
ity, where the acid and base concentrations are equal.  Because
the overall hydrolysis rate is the sum of the neutral, basic,
acidic and miscellaneous terms, it is important when choosing
hydrolysis parameters to note the overlap of KO into both acidic

                               8

-------
          TABLE 2.  PARAMETERS  (1/M day) FOR
                    SELECTED COMPOUNDS
                     KH
          KO
KOH
References
Methoxychlor


Parathion
1.9E-3  2.57E-3  31.10
       Wolfe et al., 1977
       Mabey & Mill, 1978
1.28E2  3.64E-3   2.46E3  Ketelaar & Gersmann,
                            1958
Pentachlorophenol  1.13E4  5.83E-3    3.34

2,'4-D            '  4.9E6      0
                          Akisada, 1964
                  2.61E6  Wolfe et al.,  1977a
                          Zepp et al.,  1975
              fi!.
             v
           aco      aoo
           PH
                                               tun
Figure 3'a.  Hydrolysis of parathion.

                            .9

-------
             s
            o
            X
            a
            •a
            •2*
            u
                               SJKI
                              PH
1UKI
Figure  3b.   Hydrolysis of pentachlorophenol,
            to
            •C3 -

            $
           '»
            OJ
            I
Figure 3c.   Hydrolysis of methoxychlor

                                10

-------
               £3
               X

                »s
               &
               8
               to
                                 PH
Figure  3d.  Hydrolysis of  2,4-D.
 and  basic waters.1   If  the  overall  rate  constant  (second  order)
 is  .001  at  pH=8, then  a  value  of KO  greater  than  this  will  over-
 shadow any  KOH  calculation at  that pH.
      For  example:   if  a-study  shows  that.the  overall  hydrolysis
 rate  of a compound  is  O.lrat pH=8  and  ..001  at pH=7, then K0=
 .001  and  KOH=0.l/10~b=10~J.  However,  if  the  rate  at  pH=8 is
 .0001, then  KO cannot  be  .001.   In this case  .the.user has the
 choice of selecting a  negative KOH and keeping K0=.001,  or mak-
 ing up for the rate at pH=7 by choosing a large value for KH
 (this would  be the  case if there were  a high  degree of acid
 catalysis).                            '

      In this way the three rate constants are interdependent,
 especially around the  transitions  between acid and base  cataly-
 sis.  Because most  natural waters  are  between pH=6 and pH=9,
 this  range should be considered when choosing parameters.  It
 may be necessary to sacrifice  accuracy at extreme  pH's in order
 to gain a more accurate model  over this middle range.

      Each of the'pseudo'first-order  rate  constants is easily
.obtained  by  dividing the  rate  at a given  pH by the ion concen-
tration,  giving units  of  g/m3  day  M.  In  general there are two
 forms in  which hydrolysis parameters are  available.   The first

-------
is in the form of either first- or second-order rate constants.
These can be used (after conversion to pseudo first-order con-
stants) without considering the effects at transition regions of
pH.  Secondly, the parameters can be obtained from half-life
values; however, care must be taken when calculating rate con-
stants not to allow an overlap of rates which would give in-
accurate results.  The best way to do this is to find KOH. and
KH at pH's far enough away 'from neutrality that there is no
interference.  Also, if there is a high degree of catalysis,
either acidic or basic, then there will be little effect of the
KO value at a more extreme pH.

     KA. and KB add the effects of Bronsted type acids and bases
to those of the hydronium and hydroxide ions.  Again, the
magnitude of these terms will vary with the TOM and the acids
or bases responsible for the catalysis.  For example, Wolfe et.
al. (1976) demonstrated that the degradation of malathion is
not subject to general base catalysis.  If the presence of acids
and bases other than hydronium and hydroxide ions is suspected
in natural waters, then experimentally determined rate constants
must be included as parameters in the model.  Exclusion of such
data may eliminate a significant portion of the total rate for
hydrolysis (and provide a "worst case" simulation).

     The empirical term KCAL in the rate expression accounts for
catalysis by suspended colloidal .materials, sediment organic
matter, metal ions,  phase transfer catalysis, and any other
factors which increase or decrease .the rate of TOM hydrolysis.
Such effects may make a significant contribution to the total
hydrolysis rate.  For example, Li and Felback (1972) demonstra-
ted that the presence of humic acids increases the rate of
atrazine hydrolysis 50-fold.  Khan (1978)  observed increased
hydrolysis rates for atrazine in water containing fulvic acids.
Herbrandson et al. (1977) as a part of this project have shown
that colloidal catalysis is highly dependent on the chemical
nature of the colloids, and'can vary, ..in the case of atrazine,
from significant acceleration to no effect at all.   Armstrong
et al. (1967, .1968)  concluded that sterile soil particles in-
crease the rate of atrazine hydrolysis almost 10-fold, while
White (1976)  found evidence of the hydrolysis of many S-tri-
azines on the acidic surface of montmorillonite.  On the other
hand Skipper (1978)  found no S-triazine hydrolysis in allophanic
clay colloids.  Harris (1967) correlated the rate of hydrolysis
of simazine VIII  (a chloro-S-triazine) with the percent oxidiza-
ble carbon present in the soil.

     Metal ions can accelerate, decelerate or have no effect on
pesticide hydrolysis rates in both aqueous solution and on the
surface of colloidal clays.  Copper  (II) ions accelerate hydro-
lysis of Dursban, Diazinon, Ronnel, and Zytron  (organic phos-
phorus pesticides structurally similar to malathion) at 20°C.
Acceleration is proportional to the ratio of copper ion  .  .

                               12

-------
concentration  to pesticide concentration.  The rate  increases
as this ratio  increases until  equal concentrations are present,
after which  the rate  stays constant.  Co^Caq),  Zn+"f(aq), Ni++
 (aq) , and Ca++(ag) do not catalyze the hydrolysis of these  com-
pounds, however.  First-order  kinetics are observed  for both the
accelerated  and uncatalyzed  reactions, except in the case of
Dursban, which reacts at a rate  proportional to  the-square  of
the  Dursban  concentration  (Mortland and  Raman, 1967).  Similar-
ly,  Ketelaar et al.  (1956) observed a 20-fold rate  increase in
parathion hydrolysis  when both metal ion and pesticide are  pre-
sent in milli-molar quantities.   He found only doubling of  the
rate for paraoxon present.   First-order  kinetic  behavior is
found in both  of these cases.  Copper ions bound to  soil organic
material do  not catalyze the hydrolysis  of organic  phosphorus
pesticides  (Mortland  and Raman,  1967).   These observations, and
the  low, naturally occurring concentrations of Cu++(ag)  (1.2 to
53 ppb)(Wetzel, 1975)have led  at least one group to  discount
metal-ion catalysis as being important in environmental systems
 (Mabey and Mill, 1,978).  More  research in this area  is needed,
however, before this  effect  can  be ignored or included in fate
modeling.
     KCAL has  been included  in Eq. 7 to  adjust the  overall  rate
for  these effects 'because no comprehensive theoretical express-
ion  for the  rate constant due  to these effects has  been pro-
• posed, and because the magnitude of these effects vary with
site composition and  TOM concentration.   This term  may be
determined empirically by measuring the  rate of  hydrolysis  in
natural waters, then  subtracting the known rate  constants from
the  overall  rate'constant.   Alternatively, it can be estimated
from data in the literature  for  the types of phenomena just
discussed.   Eventually, however, catalysis from  these other
sources will have to  be demonstrated and quantified if the  model
is to yield  accurate  predictions.

     Because the pH-dependence. of hydrolysis can cause orders-
of-magnitude differences in  degradation  rates within the range
of pH found  in natural aquatic environments, it  is  necessary to
pay  close attention' to the pH  loadings used in a particular
'simulation.  The pH in. .an unbuffered, highly-productive fish      .
pond can vary  by three units in  the course of a  day; this should.
be' represented by 'a carefully  weighted average because the  pre-
sent version of PEST  does not  simulate diurnal variations.

Verification      •

     The,results of the hydrolysis calculation for  several
compounds are  presented in Table 3.  The results are expressed
in terms of  half-lives and are compared  with literature values
under similar  conditions.  Without exception, the comparisons
of PEST half-lives with literature values show that the hydro-
lysis submodel is accurate-  All the values are  of  the same or-
der  of magnitude, and usually  within 30% of the  quoted literature

                               13

-------
      TABLE  3.   COMPARISON  OF  PEST  HYDROLYSIS  HALF-LIVES  WITH
  LITERATURE VALUES  FOR VARIATIONS  IN pH AT CONSTANT TEMPERATURE
   Pesticide
Conditions
PEST
Literature

1) Carbaryl




2) 2,4-D

3) Methoxychlor
4) Malathion



6) PCP


pH=5
pH=6
pH=7
pH=8
pH=9
pH=6
pH=9
pH=9
pH=6
pH=7
. -pH=8
pH=9
pH=6
pH=7
pH=7 . 5
5
6
19
1
4
39

267
228
23
. . 2

69
173
210
.2
.3

.9
.5
.4
.96


.4
.29
.234



years
months •
days
days
hours
days
hours
days
days
days
days
days
days*
days
days
3
4
13
1
3
44

270
150
15
1
0

n

.6
'.4

.3
.2

.96.


.0
.5
.15

.a.

years
months
days
days
hours
days
hours
days
days
days
days
days




 The  slight  acid  catalysis  shown  here  is  a  result  of  the  photo-
 lysis observations, of Akisada  (1964),-.in which  photolysis was
 3 times  faster under acidic  conditions.  Because  there is no
 method for  modeling ionic  influence in the photolysis program,
 any  catalysis will have  to be  accounted  for in  the hydrolysis
 calculation... .             .       ..,   •
values.  A brief  analysis  of  these  results  follows:

     Carbaryl  —  PEST  half-life  values  are  consistently  31%
'higher than  the literature numbers.   The  pH sensitivity  ir very
good, and the-fact  that the difference  in value  is  31% over  the
whole range  shows that the acid-base  relationships  are reason-
able. The discrepancy  is due  to  the choice  of parameters.  The
value chosen by Wolfe  et al.  (1976) for the pseudo  first-order,
base-catalyzed constant is 2.94  E+5,  while  that  chosen for PEST
is 4.34 E+5,  based  on Wolfe 'et al.  (1978).

     2,4-D  (methyl  ester)  —  Because  the  parameter  values for
2,4-D were calculated  directly from the half-life values in  the
literature,  the results were  fitted to  the  'correct  values.   It
is revealing to note that  a perfect fit was not  obtained at  a
pH of 6, the difference in values being about 10%.   The  accuracy
under acidic conditions was sacrificed  for  accuracy in the basic
range because: 1)  the majority  of  the  pH loadings  for the

                               14

-------
 validation site at Columbia,  Missouri,  are above 7.0,  and 2)
 from the half-life values it  appears that 2,4-D is base-cata-
 lyzed,  and it was judged more important to have greater accuracy
 where .half-lives are short.

      Parathion — Because of  the number of studies done to
 determine the rates of hydrolysis of parathion under various-
 conditions,  it is not surprising that the half-life values do
 not correlate as well as the  others.  The literature values
 quoted  here  were calculated  from the average second-order rates
 compiled by  Wolfe et al. (1976)  while the parameters were taken
 from work done by Ketelaar (1950),  which is included in the
 Wolfe compilation.  The Ketelaar values were chosen because of
 the availability of other data in that report, including the.
 activation energies for catalysis.   Also, these half-lives were
•.shorter and  varied less with  pH.  The predominant form of
 catalysis is in the basic range, and these half lives are.15%
.different from-the quoted literature values...

      Malathion — As is the  case with carbaryl, the results for
 malathion ;show the same pH relationship as their literature
 counterparts, but with different base values.  This is again due
.to the  parameterization.
 OXIDATION               '      .                              OXID

      Autooxidatioh reactions may be initiated by free radicals
 present at low concentrations in naturally occurring substances
 such as humic acids (Steellink,  1977);  Schnitzer and Khan, 1972)
 by free radicals formed thermally,  or by metal ion catalysis
 from peroxides.  Those formed from photochemical processes are
 considered as a part of photolysis'in .PEST. .The rate expression
 used is .-based on first principles:-  ••  •                      .,
       OXID = KP/KT°-5*KEFF*RAD°'5*CONCEN                 (Eq. 9)
 where
    KP = the rate of the reaction between the TOM and alkoxy and
         peroxy radicals (I/day)
    KT = the rate of the competing reaction between two radicals
         resulting in non-radical products (I/day)
   . RAD = the concentration of radical initiator present in the
          environment
   . KEFF = the rate of the radical initiation reaction
    CONCEN = the concentration of TOM (g/m^)

      In the case of carbaryl, 2,4-D, malathion, and atrazine,
 chemical' oxidation contributes little or nothing to the dis-
 appearance rate (Wolfe et al., 1976).  This may be due to the

                               15 .      '"-..

-------
presence of naturally occurring, chain-terminating compounds
such as amines and phenols, very low rates of initiator genera-
tion, or unreactivity of the TOM towards singlet oxygen.

     Methoxychlor, on the other hand, reacts with oxygen  if
hydrogen peroxide is. present' in catalytic quantities  (Wolfe, et.
al., 1976).  Mabey and Mill'(1978), however, have estimated that
the propagation step in a peroxy-radical reaction scheme  would
be so slow at concentrations expected in the environment  that
oxidation of most organics would not occur by this process.

. .    Chemical oxidation was not modeled as a part of  the  verifi-
cation of PEST.  Oxidation of a given TOM will have to be
demonstrated for the site waters being modeled if this term is
to be included.  The rate constants KT, KP, and KEFF  will, in
any case, be empirically determined.


PHOTOLYSIS                                  .                PHOT

     The degradation of the TOM due to interaction with .light
includes both direct and sensitized photolytic reactions.  Dir-
ect photolysis is treated mechanistically by PEST whereas sensi-
tized photolysis is treated empirically.  The formulation is:

      PHOT = (PSIA*KA-fPSIB*KSEN)*CONCEN(I)               (Eq. 10)

where . .

   KA = the sum of the wavelength-specific, direct photolysis
        rate constants  (I/day)
   PSIA = the direct photolysis quantum yield for the TOM
           (unitless)
   PSIB = the sensitized photolysis quantum yield for the TOM
           (unitless)                . :.  .
   KSEN = the rate constant for sensitized photolysis, deter-
          mined empirically (I/day)             ,
   CONCEN(I) = the concentration of the TOM  (g/rrr)

     The first term in Eq. 10 accounts for direct' photolysis and
is based on the work of Zepp and Cline  (1976).  Rates are com-
puted for each of twelve ultraviolet wavelengths  (297.5,  300.0,
302.5, 305.0, 307.5, 310.0, 312.5, 315.0, 317.5, 323.1, and
330.0 nanometers):

      KA = KLAM(297.5)+KLAM(300.0)+...KLAM(330.0)       (Eq. lOa)

      KLAM(I) = IILAM(I)*ELAM(I)*1NT/(6.02E20*
                ALPHA(I))                               (Eq. lOb)

      IILAM(I)  = (IDLAM(I)*(1-10**(-ALPHA(I)*LD))+
                 ISLAM(I)*(1-10**(-ALPHA(I)*LS)))/D     (Eq. lOc)

                               16

-------
       LD- = D*1.14

       LS = -D*1.2

       IDLAM(I)  = INTENS(I)*FRACD(I)                      (Eq. lOd)

       ISLAM(I)  = INTENS(I)*FRACS(I)                      (Eq. lOe)

       INTENS(I)  = INTEN*LAM(I)

 where

    ELAM(I)  = molar extinction coefficient for the compound at
              the Ith wavelength (I/mole cm)
   .INT = the width of the wavelength interval on which  the
 '	     . designated wavelengths, are centered  (nm)
 ....ALPHA(I)  = extinction coefficient for site waters at Ith
               wavelength. (I/cm)      - •.   .-.--.
•" • ..b'= median depth of water  (cm)'

    FRACD(I)  = fraction of irradiance that is direct at  Ith
               wavelength (supplied in program)  (unitless)
    FRACS(I)  = fraction of irradiance that is indirect  (sky)
               (supplied in program)  (unitless)

    LD and LS = effective direct and diffuse underwater  path
                lengths for irradiance assuming a refractive in-
                dex of 1.34 and solar inclination of 40°  (cf.
                Zepp and Cline, 1977)
    LAM = wavelength (nm)

      There are several constants in. the formulation.'   6.02E20
 is  a  factor to convert from- -photons. to mole of photons  (photons
 I/Einstein cm^).  1.14 is the secant of the refracted  angle of
 light and 1.2 is 'the correction ..for the refraction of  diffuse
 light.           ,      .        ;•  '•

    • ELAM and PSIA represent the molar extinction coefficients
 at  the twelve wavelengths, and the direct' photolysis quantum
 yield,.  There have been many studies to determine quantum
 yields, and most extinction coefficients are available  from
 spectroscopy references (such as the Sadtler series).   It is
 important to note the solvent used for the extinction measure-
.mentj as a non-organic solvent is preferred.

      The difference between the approach used in PEST  and that
 of"'Zepp.and' Cline -(19.77)  is that PEST uses loadings rather than
 calculating solar intensity as a function of latitude  and
 .season.  The values for "solar intensity are entered as  weekly
 values of Langleys/day, the most common unit of solar  irradiance;
 these data'-are available for all. U.S.-Weather Bureau stations.

                                17

-------
The intensity at each wavelength is determined by multiplica-
tion of the intensity loading by the arrays FRACS and FRACD.
These two twelve-unit arrays represent the fraction of direct
and sky (diffuse) radiation at the .wavelengths considered.
These have been calculated from data.published by Green  (1976),
and Bener (1972), and.compare reasonably well with the results
of .the Zepp and Ciine (1977) model  (Table 4)'. •
 TABLE 4.  COMPARISON OF THE SOLAR INTENSITY BREAKDOWN IN PEST
      WITH THE RESULTS OBTAINED BY ZEPP AND CLINE  (1977)

Wavelength
Direct
Diffuse
Total
W
(Zepp &
Cline)

297.
300
302.
305
307.
310
312.
315
317.
320
323.
330
5

5

5

5

5

1

.3033
.9590
.3291
.1188
.1243
.1707
.2019
.2412
.2814
.6881
.1467
.4038
E
E
E
E
E
E
E
E
E
E
E
E
12
12
13
14
14
14
14
14
14
14
15
15
.5035
.2309
.4997
.1544
.2556
.3706
.5414
.7488
.1027
.1122
.1571
.4521
'E
E
E
-E-
E
E
E
•E
E
E
E
E
12
13
13
14
14
14
14
14
15
15
15
15
.8067
.3268
.8288
.2732
.3800
.5413
.7433
.9900
.1309
.1810
;3038
.8559
E
E
E.
E
E
E
E
E
E
E
E
E
12
13
13
14
14
14
14
14
15
15
15
15
.648
.219
.657
.163
.274
.444
.643
.836
.103
.121
.226
.762
E 12
E 13
E 13
E 14
E 14
E 14
E 14
E 14
E 15
E 15
E 15
E 15

Assumptions: '                            •
  1) Midsummer sun (approximately 550 ly/day) at 40° north
     latitude       •
  2) Atmospheric Ozone content equal to .320 cm STP
  3) Index of refraction of-water equal .to "1.34
     The advantage of the loading approach used in PEST over the
computation approach is that variations in total solar intensity
due to cloud cover and elevation are accounted for.  However the
distribution over the ultraviolet range is affected by both
cloud cover and ozone variations, and this is not accounted for
in PEST.

     The site constants for direct photolysis are the depth of
the section being studied and the attenuation of the site water.
The depth (D) is the median depth of the water and has units of
centimeters.  The twelve-member array ALPHA represents the
attenuation coefficients of the site water, and has units of in-
verse centimeters.  These coefficients are an important set of
parameters for the photolysis calculation, and the overall rate
of photolysis can vary 50-fold over the reported range of values.

                               18

-------
     If no precise values for attenuation are available for the
site studied, it is helpful to have at least a qualitative
description of the clarity of the water, so that an educated
guess can be made as to which set of coefficients will be used.
Two sets of coefficients are listed in Table 5, the first for
pure water (Hautala, 1978) and the second for a sampling of
southern river waters (Zepp aidCline, 1977). For most applica-
tions a scaled-up set of coefficients could be derived.  The
values for river water should serve only as an upper limit, as
these are taken from waters that are highly colored, and may be
as much as 95%different  (by admission of the authors).  If a
set of coefficients is estimated based on qualitative observa-
tions (or Secchi disk measurements) it is important that the
relative values at the twelve wavelengths be similar to those
listed in Table 5.  Thus the attenuation in the UV region will
decrease with increasing wavelength, and will approximately
double from 297.5 to 330 nanometers.  Table 6 presents the re-
sults of a sensitivity analysis which is helpful in judging the
effect of increased attenuation on the photolysis half-life.
      TABLE 5.  ATTENUATION COEFFICIENTS (AS PRESENTED BY
  	HAUTALA,  1978,  AND ZSPP AND CLINE,  1977).	


   Wavelength             Pure .Water             River Water

297.5
300.0
302.5
305.0
307.5
••- 310.0
312.5
315.0
317.5
320.0
323.1
330.0
.0028
.0028
.0026
.0025
.0024
.0023
.0022
.0021
.0020
.0019
.0018
.0015
.123
.121
.119
.117
.116
•".114
.112
..111
.109
.107
.105
..100

     The .direct photolysis rate expression, as written, does not
include the effect of hydrogen ion concentration.  If this  .
effect has been shown to be important, as it has for 2,4-D  (Aly
and Faust, 1964), and 2,4,5-T(I)'  (Crosby and Wong, 1973), then
allowance must be1 made by changing the form of the equation
appropriately.  For example, if it can be shown that the re-
actionate for 2,4-D is proportional to the equilibrium concen-  "
tration of the 2,4-D-Chloropheroxyacelate anion  (2,4-DOO-)  (II),


                               19

-------
 TABLE 6.   ATTENUATION SENSITIVITY ANALYSIS OF PENTACHLOROPHENOL
                       UNDER MIDSUMMER SUN

ALPHA
.0025
.0050
.0100
.0250
.0500
.1000
Half-life Percent reduction
for Photolysis from ALPHA=.0025
00.539 days
00.746
01.25
02.99
05.98
11.96
« — —
38%
132%
455%
1010%
2119%

 the • concentration of which is  itself proportional to the hydro-
 gen  ion concentration,  then KA might be rewritten as
       KA=

            *KEQ/10"PH                                  (Eq.  10b)

 where KEQ is the equilibrium dissociation constant at the site
 temperature . .

       KEQ = KA = (H+(aq)) (2 , 4-DOO) /^/ (2 , 4-D)            (Eq.  lOc)

      The molar extinction  coefficients  used for each wavelength
 would then be those associated with the anion.   The rest of
 Eq.  10 remains the same in this case.

      Sensitized photolysis is calculated using  an empirically
 determined, site-specific  rate constant;  this should be modified
 at the user's discretion to  reflect the observed kinetic be-
 havior of the target compound i

      The relationship between KSENS and the incident direct  and
r-sky light' intensity also must be empirically determined.   The
 simplest model assumes a linear relationship where

       KSEN = KMEAS*IITOT/IIMEAS                        (Eq.  lOd)

 where

    IITOT =
 IIMEAS is the light intensity integrated over the same wave-
 lengths and time period as IILAM.

      LSM, LDM are experimentally measured effective path lengths
 for light in the reactor,  IDMLAM,  ISMLAM are the measured direct

                                20

-------
 and  diffuse  light intensities at a particular wavelength in
 the  reactor,  and ALPHA is the absorption coefficient of the
 water  used in the reactor at a particular wavelength.  Most
 literature gives the total incident power and some impression
 of the wavelength distribution in the reactor.  To a rough
 approximation,  then, if the reaction vessel is not too large, if
 distilled water is used in the medium, and if the wavelength
 interval of  the irradiating list is about 295nm to 330nm, the
 reported incident power IIMEAS can be used after it is converted
 to approximate units (photons/cm^).  Better equations exist in
 the  literature; see, for example, Boval and Smith (1973).

     Very few quantitative data are available in the literature
 on the kinetics of sensitized photolysis in natural waters.  The
 parameters are usually determined by back-calculation from an.
 observed half-life value.  There are few studies that provide
 the.  experimental data necessary to fit the required parameters.
 Most studies provide only a half-life observation under certain
 solar  conditions (e.g., midsummer).  The routine sums up the
'energy absorbed at each wavelength, and uses this sum as the  .  ..
 driving force for .the sensitized mechanism..  The total energy
 is multiplied by the sensitized.'rate constant (KMEAS), and.is,
 divided by the energy for which the rate was determined.  In
 this- way the rate at a given energy is corrected for the energy
 of 'the site.

     In determining values for KMEAS for half-life measurements,
 a trial and_ error method is used.  It is helpful..to. h4ave_..a .self-
 ,c^ntained version of PHOT .. so that values for KSEMS* (the pve.rai-i'-'
 se'hs'i'tized" rate) 'ciari be "read directly and compared "with 'the    .' :
 reference half-life.  The sensitized quantum yield  (PSIB) may
 be assumed equal to the direct quantum yield if no other in-
 formation is available.. .IIMEAS, the experimental energy value,
 may  be set to a standard 3 E13-  (photon/cm^s).  At this point
 KMEAS  can be varied until the half-lives obtained compare
 favorably with the reference 'values;

 Verification    .      ..........     •

  •   'The results of the photolysis calculations fd'r several
 compounds are compared with the literature values in Table 7.
 It should be noted that the sensitized half-lives for both
 Methoxychlor and Malathion are much longer than the literature
 values quoted.  This is because the literature values are taken
 froitKexperiments done in river water, which contains higher
 amounts of colored and other material which may serve as sensi-
 tizing agents.  The desired rates in lake water were judged to
 be- lower, and so smaller values for KMEAS were chosen.

 •'.-•.-. The relationship of photolysis to solar intensity and" "the
 effect of sensitized photolysis are illustrated by Figures 4a,
 4b,  and 4c.

-------
    TABLE 7.  COMPARISON OF PEST PHOTOLYSIS HALF-LIVES WITH
 	LITERATURE VALUES	

 The range of PEST half-lives corresponds to a range of in-
 tensity from 400 to 600 ly/day.  This corresponds to the
 season from inidspring to midsummer.  The conditions column
 refers to the season in which the literature value was taken.
 Pesticide
Condition
Literature
PEST
Carbaryl
• Atrazine
Methoxychlor
(sensitized)
(unsensitized)
Parathion
Malathion
(sensitized)
(unsensitized)
Pentachlorophenol
2,4-D
midsummer
artificial
midsummer

midsummer
midsummer
September



September
2.
1.
2-

4.
6.





14
04
5

5
81
15

*
t
2.9
days
days
hours

months
days
hours



days
1

8

2
9
11

5
0
28
.66
.723
.4

.13
.93
.2

.5
.86
.9
- 2
- 1
- 12

- 3
- 14
.-16

- 8
- 1
- 43
.48
.08
.5

.18
.8
.8 '

.2
.28
.3
days
days
hours

years
days
days

months
days
days

 Malathion photolysis is described as the slowest-of any pesti-
 cide studied under non-sensitized conditions by Wolfe et al.
 (1.976).  However, unlike methoxychlor sensitization, malathion
 sensitization has only been observed in one water sample.
.Therefore it-is recommended that malathion photolysis be con-
 sidered only as a direct mechanism.


 Photolysis of pentachlorophenol was"described by Crosby  (1972)
 as being complete in 5 to 7 days in natural waters.  Taking
 five half-lives as the length of time for 95 percent degrada-
 tion, ..total degradation would take. .-4.3 to 9.4 days as calcu-
 lated by PEST'.


     As with hydrolysis, photolysis proceeds at different rates
for different compounds and in different chemical environments.
Direct photolysis is probably not as important as hydrolysis for
atrazine, methoxychlor, malathion, or 2,4-D, but may be the rate-
controlling process for carbaryl degradation.  Sensitized photo-
lysis is very rapid, however, for methoxychlor and malathion
in natural river waters (Wolfe et al.f 1976).
                               22

-------
           »
          X
          ro
          •o
          \
          CO
          (0
          "
            i-
                              59&BO     78QJJQ     SStUffl
                    Solar Radiation (ly/day)
Figure  4a.   Sensitized photolysis of  methoxychlor,
           CO
           at
           GH^
           aj
           to
            •5
                      23QJO     S^LCO     78JUW
                     Solar Radiation Uy/day)
Figure 4b.  Unsensitized photolysis of methoxychlor.

                                  23

-------
           X
           >»
           (0
           •o
           OJ
           4-1
           CO
                                      TSQJU
                    Solar Radiation Cly/day)
 Figure 4C.   Photolysis of Pentachlorophenol.

 VOLATILIZATION        .    -   .      '••-/     '         ,   -    VOLAT

      The rate at which a toxic organic material  (TOM)  will
 volatize can be expressed as:

      VOLAT = CONCEN*KLEXPT/(1/KLIQ + 1/KGAS)             (Eq.  11)

 where               .                ',

    VOLAT = mass transfer rate  (moles/cm /hr)
\   COHCEN = concentration (moles/cm )
:•    KLEXPT = correction factor, where experimental  data are
             available, otherwise = 1  (unitless)
    KLIQ = liquid-phase mass transfer coefficient  (cm/hr)
    KGAS = gas-phase mass transfer coefficient  (cm/hr)

.The denominator is the sum  of the liquid- and gas-phase  mass
 transfer resistances.
                                24

-------
     Because of the difficulty in measuring interfacial condi-
tions, it is convenient to express the transfer rate in terms
of an overall driving force and the total resistance, made up
of the individual resistances in the gas and liquid films.  This
treatment is directly analogous to that used in treating con-
vective heat transfer using the Whitman two-film theory  (Whitman,
1923).            '     •

     This approach' considers the existence of a gas film and a
liquid film forming an equilibrium interface.  Within the films
transfer is by diffusion, providing a resistance to flow.  The
thickness of the films, and consequently the resistance, is
considered to be a function of the nature of the fluid and the
turbulence within the fluid.  This concept is illustrated by
Figure 5.         ,
 Figure 5.-  Two-film model of'volatilization from the surface of
            water (from Sharma,  1979) .


      The  concept of such  discontinuities  is perhaps  physically
 unrealistic.   However,  the approach has proven  useful  as  an  aid
.for visualizing  processes at the  interface  and  for simplifying
 theoretical calculations  of exchange rates.   In this appl'ica-  '
 tion,  we  are  concerned  with a TOM dissolved in  water and  diffus-
 ing into  the  air.   The  TOM will encounter resistance to transfer"
 through the water  immediately adjacent to the interface between
 the water and the  air.  This is the liquid  film.  The  TOM must
 then  diffuse  through a  gaseous  film where it again encounters
 resistance to flow.                                  .
                                25

-------
 Gas-phase Mass Transfer Coefficient KGAS

     Not mar.:/  values are available for gas-phase mass transfer
 coefficients.   An empirical relationship as a function of wind
 is  based on Liss (1973) :

      KGAS (water) = (0.1857+11 -36*WINDV*100)/100        (Eg. 13)

 where

  WINDV.= wind velocity (m/sec)

•This coefficient can then be used to obtain the gas-phase
 coefficient for the TOM,  corrected for the diffusion coefficient
 ratio   (Othmer and Thakar,  1953; cf.  p. 29 this report):

      KGAS = KGAS(water)*HENRY*(VH20/VTOM)**0.6/        (Eq. 14)
             ((TEMP+273.15)*8.206*10**-?)

 where .....       ...    ••.....' '"   •

    HENRY = Henry's  Law  Constant  (atm-cm /mol)
    VH20 = molal volume  of water  (cm3/mol)
    VTOM = molal volume  of TOM (cm3/mol)
    TEMP = ambient temperature (°C)

 The 8.206*10**-? factor is the gas constant  (cm .atm/mol  K) and
 273i15  is used, to convert °Q- to  °K.  . Henry's Law constant may
 be  calculated  as:       . .         ' -  ' .  .        '           •

      HENRY = VPRESS*MOLCWT/(760*SOLUB)                 (Eq. 15)

 where:

    MOLCWT = molecular weight (unitless)
    SOLUB'= solubility (mol/cm3)     . . :. .             .  .
    VPRESS = vapor pressure (atm)

     Table 8 lists- values  for several compounds calculated using
 this, procedure.   The molecular volume  VTOM can be calculated
 as  the  sum of  the contributions  of each element in the compound.
 Table 9 lists  the  contributions of common elements and struc-
 tural configurations (Perry,  1963).   Calculated values are given
 for water,  benzene,  and selected pesticides in Table 10.

     It  has been shown that environmental values of KGAS and
 KLIQ are such  that  KGAS/KLIQ normally  lies in the range of 50
 to  250  (Sutherland,  197"8) .  In addition, it may be noted  that
 for values of  HENRY below 5 E-6  (corresponding to relatively high
                               26

-------
          TABLE 8.  CALCULATED HENRY'S LAV7 CONSTANTS
       Compound
                                                  HENRY
     Atrazine
     Carbaryl
     Dieldrin
     Malthion
     Methoxychlor
     Parathion
     Pentachlorophenol
     2,4-D
                                                2.58 E-9
                                                1.32 E-6
                                                5.40 E-5
                                                3.74 E-7
                                                1.00 E-5
                                                6.06 E-7
                                                3.10 E-6
                                                3.15 E-8
  TABLE 9.  LE BAS ADDITIVE VOLUMES TO CALCULATE LIQUID MOLAL
'  '  '	•     	VOLUME  (cc/g mole)  • •• 	

Atomic Volumes:                           •'      • ""'

         5
As
Bi
Br
 C
Cr
30.
48.0
27.0
14.8
27.4
 F  8.7
Ge 34.5
 H  3.7
Hg 19.0
 I 37.0
 P 27.0
Pb 48.3
 S 25.6
Sb 34.2
Si 32.0
     Chlorine -
       Terminal  (as in R-C1)
       Medial (as in R-CHCL-R)
     Nitrogen -
       Double bonded / •          •.  ;•.'•'
       Triple bonded
       In primary amines  (R-NH2)
       Secondary 'amines  (R-NH-R)
       Tertiary amines (R3-N)

     Oxygen - 7.4 (except as noted below)
       In methyl ester
       In methyl ethers
       In higher esters, ethers
       In acids
       In union with S,P.N
     Deductions -
       Three member ring
       Four member ring
       Five member ring
       Six member ring (benzene)
       Naphthalene ring
     •  Anthracene ring
Sn 42.3
Ti 35.7
 V 32.0
Zn 20.4
                                              21.6
                                              24.6


                                              15.6
                                              16.2
                                              10.5
                                              12.0
                                              10.8


                                               9.1
                                               9.9
                                              11.0
                                              12.0
                                              • 8.3


                                             - 6.0
                                             - 8.5
                                             -11.5
                                             -15.0
                                             -30.0
                                             -47.5
                               27

-------
   TABLE  10.   CALCULATED  OR OBSERVED MOLAL VOLUMES FOR SELECTED
  _,	COMPOUNDS	

          Compound       ,  --                  Molal Volume
      Dissolved  Oxygen                   '        14.8
      Water                    .                  18.7
      Benzene                                    96.0
      Atrazine               .       :            229.3
      Carbaryl                            .      218.7
      2,4-D                                     239.6
      Dieldrin              .                    314.2
      Malathion                                 345.7
      Methoxychlor                              345.3
      Parathion                                 302.6
      Pentachlorophenol                  .       192.9
      Simazine                      '            207.1
 solubility or  low vapor  pressure)  the  transfer  is  gas-phase con-
 trolled.  On the other hand,  for values  above  5 E-3  the liquid
 phase controls.        '  " .    . '        "         '..'•'

 Liquid-phase Mass Transfer  Coefficient

     The computation of  the liquid-phase mass  transfer  co-
•efficient  (KLIQ) involves two equations  according  to wind
 velocity.  For velocities below 3  m/sec, where  calm  water pre-
 vails, ah empirical, linear equation is  used:

     KLIQ =  ((WINDV*100*1.287)/300+2.5)*1.016**
             (TEMP-20)*(VBEN/VTOM)**0.6                   (Eq.  16)

 where    '                           .

   VBEN = molal volume of benzene  -. (cm  /mpl)

 The temperature correction  factor  (second  line  of  the equation)
 is based on the reaeration  studies of  Streeter  et  al. (1936)  and
 was verified as a part of this  study  (Sharma,  1979). The  fit
 is quite good  for benzene,  but  only the  trend  is shown  for
 toluene  (Table 11).

     The third factor corrects  for the relative rates of the TOM
 and benzene.   Benzene is usejjd as a standard  in  PEST  because 1)
 experimental data areravail4ble for various  wind velocities,  2)
 it  is  a much  larger;.; molecule than oxygen  (the  other standard
 used in volatilization"'" studies), and 3)  it has  a ring structure
 similar to that oWinany  TOMs.


                                28

-------
	'TABLE 11.  VERIFICATION OF TEMPERATURE CORRECTION	

Compound    Temperature  (°C)    KLIQ Observed    KLIQ Predicted
Benzene
Benzene
Benzene
Toluene
Toluene
Toluene
20
25
30
20
25
30
2.9
3.14
3.4
2.91
2.92
3.18
2.9
3.13
3.39
2.91
3.15
3.41
 (20°is reference temperature)
     In a liquid with a dilute concentration of pollutant KLIQ
is. proportional • to the diffusivity of the pollutant.  Othmer
and Thakar  (1953) found that the diffusion coefficient in dilute
aequeous solutions is inversely proportionate to the 0.6 power
of the molal volume.  Therefore, the transformation factor to
permit the benzene data to be used is:

       (VBEN/VTOM)
                 i                                    .
     Table 12 gives experimental results obtained in this study
and used to calibrate the model  (Sharma, 1979).
   TABLE 12.  LIQUID-PHASE MASS TRANSFER COEFFICIENTS AT  25°C

   Compound               Temperature                   KLIQ
..-. Benzene
• Toluene
Atrazine
Methoxychlor
,.,..- Carbaryl
'.25
25
. 25
25
. 25
2.
2.
•7.
2.
2.
90
92
09
29
01


X
X
X


10-2
10-2
10~2
.- .
     At wind velocities above 3 m/sec there is turbulent  flow
With waves; under these conditions Eq. 16 becomes:
           .(VBEN/VTOM)0'6                               (Eq.  17)

The first factor 'is based on experiments by Cohen, Cocchio and
MacKay  (1978) using benzene that showed that:   -

      .KLIQ = 11.4*RE°°195-4.1                           (Eq. 17a)

                               29

-------
with turbulence or  "roughness" represented  by the dimensionless
Reynolds Number  (RE):
      RE =  (WINDV*100)0.17
(Eq.  17b)
where 0.17 is the kinematic viscosity of  air  (Sabersky et al.,
and Acosta  (1964) .

     The other two factors correct  for temperature  and the re-
lative diffusiyities.of Benzene and the TOM as  in Eq.  16.  The
effect of wind'is shown in Figure 6.
          OJ
                    SfcJSO      S4K)      HUB      17c8S
                     Wind .Velocity (i/s)
Figure 6.  Volatilization of a hypothetical liquid-phase  con-
           trolled compound.   Note the discontinuity  at  3  m/s,
Verification

     The results of volatilization calculations are compared
with reference values in Table 13.  Although no precise  values
for volatilization could be found in the literature,  the
vaporization indices published by Haque and Freed  (1975)  serve
as an indication of the accuracy of the submodel.  For all  the
compounds except 2,4-D the PEST and literature ranges of values
roughly coincide.  For 2,4-D the only literature value available
was for the acid, whereas PEST was parameterized for  the methyl
ester.
                               30

-------
    TABLE 13.  COMPARISON OF PEST VOLATILIZATION RATES WITH
 	LITERATURE VALUES	

  The PEST values represent the range of rates corresponding
  to wind velocities from 7 to 15 m/s.
Vaporization Approximate
Pesticide
Carbaryl
Malathion
Parathion
Atrazine
2,4-D*
Pentachlorophenol
Dieldrin
Index
3-4
2
3
na
1
na
T
Conversion
1.37 - 2.74E-3
.548 - 8.2E-4
.959 - 1.78E-3
	
<2.74E-5
	
.. 1.33E-3
PEST
Values
.611
.106
.118
.203
.257
.118
2.01E-4
- 8.53E-4
- 1.47E-4
- 1.58E-3
- 2.83E-5
- 3.59E-3
- 1.65E-3
- 2.79E-3

*                      •.  •
 The literature value  for 2,4-D is for the acid, while  the  PEST
 calculation is for the methyl ester.
j.                 •     •                   . • •••        •
 'This value was calculated from a half-life value  published by
 .Mackay and Leinonen  (t 1/2=1.44 years).
SOLUTION                                     .      • ''         SOLU'

     Solution is treated in a very straightforward mannerr.,.in:.-;/ •"•
PEST; the formulation is intended only to  keep  the TOM in the .
dissolved phase from exceeding the solubility:

      SOL = CONCEN(15)-EXTRA   '     '          '     '      (Eq. 18)

if    CONCEN(13)+CONCEN(15)-SOLUB*TCORR<0:              (Eq.  18a)

      EXTRA =0          '                ' •-•• ' .
                  I'       "    '      . •
otherwise:

      EXTRA = CONCEN(13)+CONCEN(15)-SOLUB*TCORR        (Eq.  18b)

where

   CONCEN(13) = concentration, of TOM  in  water
   CONCEN(15) = concentration of TOM  in  particulate form
   TCORR = temperature correction  (Eq. 8)

-------
 MICROBIAL METABOLISM                                        MMET

      The  rate  of  raicrobial  metabolism resulting in the degrada-
 tion  of TOM is computed  in  the  subprocess  routine MMET.   Micro-
 bial  metabolism is  defined  as any biochemical  conversion of the
 parent compound by  a microbial  assemblage.   PEST models  micro-
 bial  metabolism -as:
              A*TADPT*METMAX*CONCSN
                   KS+CONCEN

where

   MSTMAX  =  chemically  and photochemically corrected TOM trans-
             formation rate by an  "adapted" mixed  assemblage
             under  non-limiting conditions  of  H+,  dissolved
             oxygen,  temperature,  nutrients and mixing (I/day)
   CONCEN  =  concentration of  TOM  (g/m3)
   KS  =  constant equal  to TOM concentration of 1/2  METMAX
         (g/m3)--       -	.-    	     -	-  • -  .
   A = activity coefficient which reduces  METMAX  due to  site
       conditions  (unitless)
   TADPT - effective TOM-degrading microbial  biomass (g
           organism/m3)

     In  order to model  microbial  metabolism of TOM,  a .maximum
value  (METMAX) must  be  determined which  can be reduced by site
correction.factors (A and.TADPT)  as specified in  the above
equation.            V

     This  maximum  value ideally is the rate of degradation of
the chemical by ,a  microbial assemblage with a high  degree of
species  diversity.   This assemblage should have been exposed
to the compound for  at  least  several generation times, and be  .
'grow.ing  under optimal conditions  of  DO, temperature,  pH,  nutri-
ents' and mixing.   During this time some  enrichment  may also
occur.
     In order to provide for a wide range of biochemical activi-
 ties ,  inocula from sources  that are undergoing complex organic
 decomposition should be combined and used for the determination
 of METMAX (e.g.  soil,  marsh water, sediment).  In practice,
 the flocculant layer of a  lake sediment is well suited for
 these  determinations by virtue of its interfacial position.
 Although it  has a rather constant, or gradually changing, ther-
 mal environment,  it is  subject to random fluctuations in nu-
 trients  and  dissolved oxygen as a function of mixing.  As such,
 it is  adapted to  a variety  of intermittent environmental condi-
 tions.  This system, amended with soil and marsh inocula, can
 be used  for  TOM degradation studies.  Samples obtained at peak
 seasonal temperatures for  the .system should be used because
 this  condition would produce the most metabolically active
 assemblage.           	.„_	.	

                                32

-------
     Values for METMAX have been derived for malathion, atra-
zine, and 2,4-D.  The rates of degradation of these compounds
were measured under anaerobic and oxygen-saturated conditions
in shake flasks at 23-30°C.  Sediment was taken  from the
littoral area of a lake '(Imdepth in Lake George, New York)
during the growing season  (June and July). This  site has a
significant macrophyte cover which contributes organic matter
to the underlying sediment through sloughing and death and pro-
vides for a great deal of microbial species diversity.  Samples
were taken of the metabolically-active  surface sediments.  These
sediments were diluted to approximately 1. g  (dry weight) per
liter with lake water from the same site.  The sediments were
incubated with pesticide at concentrations of 50 and 100 mg/1.

     The time course of TOM disappearance over a period of up
to 2 weeks was followed by solvent extraction and gas chroma-
tography using established methods.  These rates were corrected
for photochemical and chemical degradation with  dark and in-
activated systems  (Kg, antibiotics, boiled).  Figure 7 is an
example of the efficiency of microbial  metabolism under ideal.
conditions.  In the absence of these detailed measurements of
TOM disappearance, the METMAX can also  be estimated from the
biochemical oxygen demand  (BOD) for the compound.

     The need to relate biodegradation  capability to the site
•conditions is met through the A factor.  This factor modifies
the maximum metabolic rate.of the effective biomass  (IADPT) to"
the rate possible1under site conditions.  Thus it is a reduc-
tion factor determined by the site conditions and particular
TOM.  The environmental factor that is  most restrictive to
microbial growth and decomposition of the particular TOM deter-
mines A.  For example, if the TOM is aromatic and the parti-
cular compartment being modeled is the  sediment  during summer
conditions, the limiting parameter might be DO and a correction
factor based on the influence of dissolved oxygen on the meta-
bolic rate of aromatic ring, degrading organisms  would be used -
 (DOCOR) to limit METMAX.    " "    '           : ''

""'••   A = .-min (DOCOR,PHGOR,TPCOR,TMIX). •   •,....'    -.••-•-   -(Eg. ISa)'"

where each term is a unitless' reduction factor for "suboptimal
conditions.

    •..The dependence of the microbial. assemblage  on oxygen
 (•DOCOR). can be expressed as:                     .    ... .-.-•
if DOCOR  < DOMIN then DOCOR  =  DOMI-N


                               33

-------
     ng cal/1
                       Incubation (hours)
Figure  7.   Malathion remaining vs.  incubation time.




                                  34

-------
where
   D02 = dissolved oxygen concentration  (g/m J
   DOMIN = minimum effect under anaerobic conditions  (unitless)
   MK02 = half-saturation constant  for oxygen  (g/m^)

     For aromatic compounds, no degradation of the  aromatic
ring occurs under , anaerobic conditions.  Side chains  can,  how-
ever, be degraded, e.g. the acetic  acid moiety of 2,4-D;  there-
fore, a minimum limit  (DOMIN) is  imposed on the  reduction
factor.  Aerobic metabolism is practically independent  of oxygen
tension above a critical value  (about 0.01 atm for  pure cul-
tures)  (Figure 8) .

     •Because of the environmental conditions and the  array of
metabolic types in a natural assemblage, the rate of  non-aroma-
tic degradation is probably independent of oxygen,  with anaero-
bic utilization of TOM occurring  when oxygen becomes  limiting
for aerobic metabolism.  Therefore,  DOMIN = 1.
Figure 8.
                SJD     ROD
         Dissolved Oxyoen (ppo)

Effect of dissolved oxygen on microbial degradation
of pentachlorophenol.
     Most natural  environments  have  pH values  between 5 and 9
•(.Brock,  1970).  Most  bacteria grow best under, neutral or slight-
ly alkaline  (pH 6.8-8)  conditions,, whereas  most yeasts and..fungi
.prefer  slightly acidic  environs (pH  5-6).   Under otherwise
optimal  conditions, the pH  response  curve of a natural assem-
blage  (of environmental pH  5-9)  exposed to  an  instantaneous pH

-------
shift can be represented by:

               "KpH*e(pH-PHMIN)


      ?HCOR=JKPH*e(PHMAX-PH)
if pH <_ PHMIN

if pH >_ PHMAX

otherwise
(Eq.  19c)
where
   KPH = adaptive constant for pH  (uni'tless)
   pH = pH
   PHMIN = critically low pH  .              •               .    •
   PHMAX = critically high pH

     This can be parameterized to yield a broad peak reflecting
the composite effect of many different organisms with differing
pH optima within the 5-9 range  (Figure 9).
                                           nja
                           pH
Figure 9.  Effect of pH on microbial degradation of
           pentachlorophenol.
                          •
     Given sustained conditions of pH values outside of the 5-9
range, restricted populations will develop that are tolerant of
those conditions.  Acidified lakes  (pH 3.5) and mine drainage
(pH 4.2), and alkaline lakes (pH 9.5) develop specialized
microflora.  Some of these organisms exhibit pH optima close to
the pH of the environs and others are simply tolerant of those
conditions.  The population composition will be a reflection of
the competition between the acidophilic or alkalophilic   •   .:"
                               36

-------
organisms and the tolerant organisms.  The population density  and
growth rate however will not be as high as  it would be  if  that
same system were neutralized  (e.g., dystrophic  lake) since it
is believed that microorganisms must expend energy in order to
maintain their internal neutral conditions  in an acid or basic
environment.  The overall effect is a broadening of the curve,
but a lowering of the activity and density  of the population.
The KPH, PHMIN, and PKMAX parameters can be adjusted for these
unusual conditions.

     The temperature reduction factor is formulated similarly
to that for pH to provide a plateau of adaptation  (Figure  10):
          5?
          K o
Figure  10.
                               44JO
           Tespersture CO
Effect of temperature on microbial degradation of
pentachlorophenol.
      TPCOR =
   KTP*e

   KTP*e
                     (TEMP-TPMIN)

                     (TPMAX-TEMP)
where
if -TEMP <_ TPMIN

if TEMP :> TPMAX

otherwise
(Eq.  19d)
   •KTP = adaptive  constant  for  temperature (unitless)
   TEMP =  ambient  temperature  (°C)
   TPMIN = critically  low temperature (°C)
   TPMAX = critically  high  temperature (°C)

     The usual  range of  temperature required for growth.of a

                                37  .

-------
 given organism is 30-40 degrees.  It is very rare that tempera-
 tures in nature exceed 50°C, especially in water.(with the
 exception of hot springs).   During seasonal variations in temp-
 erature, microbial populations in lake sediments maintain a
 temperature optimum -corresponding to'the maximum temperature
 attained by the lake or higher,  (Boylen-and Brock,. 1973) .  This
 may result in reduced decomposition activity during'the periods
 •when temperature is less than' 25°C. •• The- 'actual' effect, how-
 ever, will depend' upon the controlling limiting variable for
 growth,  i.e. growth may be greater .at 10°C than 15°C if there is
 limiting energy subtrate. at- 15°C. Psychrophilic---organisms that
 may develop are not abundant enough.to affect the .overall rate.
 In contrast, systems that are permanently cold or hot develop
 predominantely psychrophilic   -or thermophilic populations and
 TPMIN and TPMAX can be changed to-reflect these unusual condi-.
 tions.                      " •     -  - •

      Evidence from studies at Lake George, New York (Clesceri,
 Boylen and Park, 1977) has shown the direct effect of mixing
 on cellulose degradation.   These studies were done in filled,
 closed flasks to separate the effect of aeration from agitation.

      At the present time mixing is. represented simplistically
 as a function of wind speed in PEST:
       TMIX  = <
                 WINDV
WMIX+WINDV

0
if DPHLIM < DEPTH

if. DPHLIM < DEPTH
         DPHLIM = .KDEPTH*WINDV
                                                        (Eq. 19e)
                                          (Eq. 19f)
.•where   ..  .  ";..•• ••  ••• -  •   •  •     '••'••-.-,.•-

... •  WMI'X' =  windspeed at' 1/2 maximum stirring, effect • (m/sec)
    WINDV = windspeed (m/sec)'          ••  •"•'
    KDEPTH  = constant relating wind energy to depth
.    DPHLIM- ='p depth at which wind energy is- unimportant (m)
  •  DEPTH = depth of water . (m)  •

      The presence of other compounds has been shown to'facili-; •
tate the.metabolism of  recalcitrant molecules (Horvath,  1972;
Merkel  and Perry,  1977).   If natural inocula and associated
substrates are  used in  the METMAX determination, it is likely
that such  cosubstrates  will be present.

      It is unlikely that an aquatic sediment will be deficient
in  mineral nutrient (eg.  N,P)  for the metabolism of the avail-
able energy substrates.   Minerals are recycled within the sedi-
ment system which becomes enriched in these nutrients (Clesceri,
Boylen, and Park,  1977).   Our studies for the determination of
METMAX  for 2,4-D,  atrazine and malathion with lake sediments
                               38

-------
have revealed ho increase by the addition  of  inorganic  nitrogen
 (as  NO,"  and   NH,"1" or inorganic phosphorus (as  H^PO. ) .

     The TADPT factor allows for the development of raicrobial
biomass capable of TOM biodegradation.   Adaptation may  be gene-
tic and occur through mutation or it may be the acquisition of
new genetic elements  (transmissible plasmids, Meynell,  1972).
It may also be simply the time required  for induction of suita-
ble enzymes within the existing population.   The factor is
derived through the  use of  an adaptation potential which ex-
presses whether or not the  adaptation will occur during the time
of exposure to TOM.  If the adaptation time exceeds the exposure
time, the adaptation potential has a fractional value,  represen-
ting the fraction of potential TOM degraders  present  at that
.time..  If the adaptation time is less than the exposure time
the adaptation potential is 1.  Thus the TADPT is  determined by
the microbial biomass in the system and  the adaptive^capability
of -the organisms:       '  ... ..       '  " :        ...  ,'..',... ...
      TADPT = BACB*
                     0
       •if . [EXPT/ (MMGT*STRU*A] <;0 "  ' "-• -
1      if [EXPT/(MMGT*STRU*A]>1     (Eq. 19g)

EXPT/(MMGT*STRU*A    otherwise        :
where
   BACB  = microbial  biomass  (g organism/m )
   MMGT  = generation time  under METMAX conditions (day)
   STRU  = structural activity factor (unitless)
   EXPT  = time  of  exposure to TOM (days)
      EXPT  =  TIME-STTOM+1
                                    (Eq. 19h)
where
   TIME  =  Julian  date  in simulation
   STTOM = Julian:date of'introduction of 'TOM

      TADPT can  be determined for a specific TOM along with the
.METMAX measurement.  It can also be calculated for related com-
pounds using  the  A  term, the generation1time of the assemblage
under METMAX  conditions (MMGT)  and the structural factor
 (STRU).           .  .        '

      Mutation rate  is  dependent on generation rate under most
conditions, but observed-to be  independent of generation rate
under amino acid- or nitrogen-limited -conditions in..continuous
culture  (Kubitschek and Bendigketi, 1961).  In addition to the
mutation rate,  the'ability, to .develop .a biodegradation capa-
bility for a  certain•TOM depends on the structural factor
 (STRU) which  may  be estimated by means_of..structural, activity..
                               39

-------
relationships  (Jaffe, 1953; Kapoor et al., 1973).  Structure-
activity studies developed for mammalian systems have a great
deal of applicability to microbiological transformations.  The
concept that biological activity can be predicted from chemical
structure is very old (Crum-Brown and Fraser, 1869).  Expanding
the distribution prediction based on partition coefficients
(Leo, Hansch and Elkins, 1971) to include transformation pre-
diction based upon substructural fragments seems feasible for
ecosystems as well as animal systems.
SORPTION         .     .                                      SORP

     The adsorption of TOM to the surfaces of the organic and
inorganic components is treated with a relatively simple algor-
ithm.  However the approach is well grounded in physical chem-
istry.  The initial calculation  determines     the amount of
TOM both dissolved in the water and on the surfaces of the
various components of the system:

      TOTPST = £CONCEN(r)*SAREA(I)  •                     (Eq. 20)
•     ,         I
where

   TOTPST = the total concentration of TOM in the environment
            (grams TOM/m^)
   CONCEN(I) = the concentration of TOM in the Ith compartment
               (grams TOM/m^)  .  ,  .
   SAREA(I) = the percentage of TOM in the Ith carrier at
              the surface (unitless)

The parameter SAREA is used to indicate that of the total con-
centration of toxic material only a fraction is actually at the
surface of the organism or particle and thus available for the
physical process of adsorption.  This allows the representation
of rapid initial adsorption to the surface to be separated from
the slower migration of the TOM into the carrier, as noted by
Kenaga and Goring (1980).                 .

     The second part of the sorption routine uses the octanol-
water partition coefficient to indicate the equilibrium concen-
tration in  each carrier, assuming no limitation on the quantity
of TOM available.  This function:

      NEWAMT(I) = KPART(I)*CONCEN(13)*LOAD(I)*
                  SAREA(I)*lE-6                          (Eq. 21)

where

   NEWAMT(I) = the equilibrium concentration for the Ith
               carrier  (ppm)
   K?ART.(I) = the octanol-water partition coefficient for the ••.

                               40

-------
                TOM being modeled and the Ith carrier
    CONCEN(13)  = the concentration of TOM in the water
    LOAD(I)  = the mass  concentration of the Ith carrier
(g/m3!
 (g/m3)
 calculates  the concentrations  in units of parts per million and
 again  utilizes the  parameter SAREA to indicate only the surface
 of  the carrier is involved in  this process.

     The  final concentrations,  after adsorption has occurred is
 calculated:
       CONCEN(I)  = NEWAMT(I)*  «         +OLDAMT < I >       {Ec2- 22>
 where

    CONCEN(I)  = the new concentration of TOM in each Ith carrier
  ...       .   .  (g TOM/m3)     .        '       •     	
    OLDAMT(I)  = the concentration of TOM within the carrier, not
                affected by adsorption (g/m3)

 The middle term in this function is used to normalize the amount
'of adsorption taking place so that mass balance is maintained.

      This sorption algorithm differs from the others of the
 PEST  model in that1.it returns a concentration rather than a
 rate.  This  is because the rate at which TOM adsorbs to a sur-
 face  is at a time scale much shorter than that at which the •
 model runs (Kenaga and Goring,  1980; Kenaga,  1975;  Hague, 1974)
 and can therefore be represented as occurring instantaneously.
 GILL SORPTION                  "       ... ' '      '          GILSRP
                   !           ."""••
      The major route of uptake of TOM by fish has been consider-
 ed, to be the result of active transport through the gills
 (Macek, et al., 1977).  As the organism respires, water is
•passed over the outer surface-of the gill and blood is moved
 through the inner surface.  The exchange of TOM through the
 gill membrane is assumed to be facilitated 'by the same general
 mechanism as the uptake of oxygen and relea|e of carbon dioxide,
 following the approaches of Fagerstrom and Asell (1973, 1975)
 :and Weininger  (1978).

... ""   The formulation developed to calculate the uptake of TOM
 by the gills was. designed to represent the actual pathways of
 accumulation.  Assuming a lipophilic  material (although that
•assumption'is not necessary, non-lipophilic  materials can be
 represented as well) we can conceptualize an organism as having-'
"three areas of import to this process:  fat depots..where the    —

                                41

-------
material  is  stored,  the  gill  membrane,  and blood which provides
the link  between  the two.   The flow of  TOM can then be thought
of as  first  from  the water  through the  gill membrane and into
the blood and  then  from  the blood into  the fat where it accumu-
lates.

     To represent this process we must  know the relative con-
centrations  of toxic material in the water and in the blood and
their  variance from the  equilibrium concentrations.  The amount
of TOM transferred  would be a function  of this partitioning and
the partitioning  between the  blood and  the fat.  The rate at
which  the TOM  is  transferred  would be a function of the effici-
ency with which the material  could be passed through the gill
to the blood and  the rate of  blood circulation to move the
material  to  the fat.  To calculate the  gradient along which the
TOM will  move, the  concentrations on each side of the gill
membrane  must  be  calculated.   To find the concentration in the
blood  the.respiration rate  is calculated using a function
developed for  the MS.CLEANER  ecosystem  model (Park et al.,
• 1980) :         .       .;.-••  ;      -; -   ' . .- - —.-•:.

       CRS(J) = EXP(KTEMP(J)*(TEMP-TOPT(J))*RMAX(J)
        .  .     *BIO(J)+(KRESP(J)*(ZCTWO(J)-ZDTWO(J)))    (Eq. 23)

where      .    .     ''.••.-•         '..••."

   CRS(J) =  the rate of  biomass loss due to respiration
             (g/m3 day.) .........    .      . .         . .  .
   KTEMP(J)  =  a coefficient:describing  .rate of increase of
               respiration with temperature (1/°C)
   TEMP •= the  water temperature (°CJ
   TOPT(J) = the  optimum temperature for respiration (°C)
   RMAX(J) = the  respiration  rate at .starvation (g/g/day)
   BIO(J) =  the biomass  of  the Jth organism (g/m3)
   KRESP(J)  =  a coefficient relating respiration to metabolism
   .ICTWO(J)  =  the total  rate  of consumption by the Jth
               organism  (g/m3  day)   . •  .   •
   .-ZDTWO (J)  =  the total  rate  of defecation by the Jth organism
               (g/m3 day)

     The  concentration that passes through the gills in the
blood, BCIRC (in  g  TOM/m3 day), is calculated by:
      BCIRC(I) =
where
     CRS(I)*02RESP(I)*CONCEN(I)	
BLD02(I)*PCBLD(I)*PCFBL*BIO(J)*PCFAT(I)
                                                         (Eq.  24)
   02RESP(I) = coefficient  relating oxygen uptake to respiration
                (g 02/g  biomass)        _    	_.	
                                42

-------
   PCFBL = fat/blood partition coefficient  (assumes the TOM  is
           concentrated in the fat, i.e., lipophilic
   'CONCEN(I) = concentration of TOM in Ith organism, (g TOM/m3)
   PCFAT(I) = percent fat in the Ith organism  (g  fat/g biomass)
   3LD02(I) = coefficient for oxygen capacity of  blood  (g 02/
              g blood)
   PCBLD(I) = percent blood  (g .blood/g biomass)

     The volume of water processed is also calculated as a
function of the respiration rate, CRS, and used to determine the
amount of TOM in the water that passes through the gill.  WCIRC
(g TOM/m^ water processed day) is calculated as:
      WCIRC(I) - CRS(I)*02RESP(I)*CONCEN(13)
where
   CONCEN(13) = concentration of TOM in the water  (g TOM/m  )
   D0.2 = concentration of dissolved oxygen in the water -    •
         (g 02/m3)

The total "exposure" of the blood of the organism to the TOM
must be checked to prevent the inclusion of more TOM than -is
present in the system.• This check is necessitated because  an
organism may circulate its entire blood supply through its  gills
many times per day  (Nicol, 1960) and because gill sorption  is
assumed to occur almost instantaneously.

     To calculate the exchange of TOM the gradient between  the
concentrations in the blood and water must be established.
Since the toxic material will tend to adsorb onto organic
particles and this activity can be related to a partition co-
efficient (.Kenagal 1975;. Chiou et al., 1977), the. gradient.....
along which the material will move can be calculated using  this'-
coefficient.  The formulation is:    .;- • .....         ...  .'. .

      DIR(I) = WCIRC(I)*PCBLW-BCIRC(I,).  ....    ;   .  -  -(Eg.  2.6).

where            •             .          ...    '   ,..-......

   DIR(I) = the difference in concentrations  (g TOM/m^ day)
 .  PCBLW = the partition coefficient for blood to water for the
           particular TOM

     The blood-water partition coefficient, PCBLW, and the  fat-
blood partition coefficient, PCFBL, are used to represent the.
series of partitionings from the water to the lipid  (Kapoor et.
al., 1973)  as noted in the description of the conceptual basis
of. the function.  If the particular TOM being modeled  is not
lipophilic  the fat-blood partition coefficient is not
necessary and may be set egual to one.  The values for these

                              .43

-------
coefficients may be determined experimentally or may be calcu-
lated  (Leunq, 1978).
     The total of the differences between equilibrium and pre-
sent levels in each organism is summed and used to normalize
the rate of gill sorption:
      NORM =
ZBCIRC(I)+EWCIRC(I)
I  	I  .
     IDIR(J)
     I
This normalization insures the maintenance of mass balance and
is necessary due to the instantaneous nature of the actual pro-
cess of sorption as opposed to the sequential calculations.

     The actual rate of gill sorption, GILSRP (g TOM/m  day),
is calculated by:

      GILSRP(I) = EFFEN(I)*DIR(I)*NORM                  (Eq. 27)

wh'ere

   EFFEN(I) = a coefficient describing the 'efficiency of the
              gill membrane in the transport of the TOM through
              it (unitless)        • .   ...

The efficiency coefficient, EFFEN, is used to modify the rate to
comply with the assumption, basic tp'/the formulation:  the trans-
port of TOM is facilitated by.the same general mechanism as
oxygen.  This coefficient is similar to that of Weininger
(1978) in that it compares the diffusivity of the toxic material
being modeled with that of oxygen and modifies the predicted
rate of gill sorption to account for this difference.

     The final calculation of.this function is the subtraction
of each individual rate from the.concentration in the water to
maintain mass balance.  To illustrate the response of this pro-
cess with time of exposure, gill sorption was calculated assum-
ing a constant 3.0 ppm in the water, a basal respiration rate,
and constant biodegradation.  The response is illustrated in
Figure 11 and is compared with the data of Lockhart et al.,
(1977).


CONSUMPTION                                                 CONS

     This routine calculates the rate of change in the TOM con-
centration of an organism as the result of ingestion, defeca-
tion, and excretion.  The effects of these individual processes
are added to obtain a single rate, CONS, in units of g TOM/m3
day.

                               44

-------
Figure  11.
                  8CUJB
          TIME (HR).
Relation between the concentration of methoxychlor
in a fish and time.  Data points are averages  from
measurements of Lockhart et al., 1977.
.Ingestion  .

      The rate  of  ihgestion is calculated primarily as a func-
tion  of the  biomass  concentrations of prey I and predator J,
which are  supplied1 to the model as driving variables.  The pre-
dators may follow one of three general strategies for ingestion
as  indicated by the  parameter"FEDSWT:  FEDSWT=0 indicates
carnivores;  FEDSWT=1 indicates filter-feeders;  and FEDSWT=2
indicates  filter-feeding, benthic organisms that produce pseu-..
•dofeces.   Carnivores and non-depositing filter-feeders both
utilize a  saturation-kinetic equation, modified from CLEANER
•(Scavia and  Park, 1976) .

  . •   For carnivores  ingestion of biomass is calculated as:
       CTWO =
 CMAX(J)*W(I,J)*BIO(I)*BIO(J)*LIM*TRED*02COR
       Q(J)+Z(W(I,J)*BIO(I))*LIM
         .  . I	      .......
                                                         (Eq. 28.)
 where
    CTWO = the ingestion of prey I by predator J (g/m3 day)
    GMAX. .=•• the maximum -rate 'of ingestion (g/g day)
    W(I,J)  = the preference for prey I by predator J (unitless).,.
    BIO(I)  - the biomass concentration of the Ith prey (g/m3)	

                                45

-------
   310 (J) = the biomass  concentration of the Jth predator (g/m3)
   Q(J) = the half-saturation  constant for feeding (g/m3)

The three terms LIM, 02GOR,  and TRED are correction functions.
LIM (Leung et al. ,  1978)  is  used to  indicate reduction in
ingestion rate due  to  low prey concentrations:.

      LIM = 1.0-(BMIN(J)/EBIO(I) )  "  " ......... ..... :  .......  '   (Eq. 29)
                          I

where

   BMIN(J) = the.  prey  concentration  at which the predator
             begins feeding  (g/m3)

The reduction of  ingestion rate that results from low dissolved
oxygen concentrations  is  calculated  by the function 02COR
(Park et al . , in  prep.):

      02COR = D02/(K02.(J.)+D02)    •--•.;•.-.•, ~. :-    •• - -.       (Eq. 30)

where

   D02 = the dissolved oxygen  concentration (g/m )
   K02 ( J) = the saturation coefficient for oxygen limitation
            (g/m3)

TRED. is the .reduction, factor for non-optimal temperature, ori-
ginally developed by. O'Neill et .al.'  (1S>72)  and modified by
Scavia and Park  (1976') for application to aquatic ecosystems.
It is formulated  to reflect  the response of organisms to varia-
tions in temperature as:             •

      TRED = VX*e(X*(1~V)) '.      ."••   -               '(Eg.  31a)


         V =  TMAX-T                           .        "(Eq.  31b)
             TMAX-TOPT           ....        ...     v "
                                                             31C)
                  40CT— -


         w = In (Q10)* (TMAX-TOPT)      .                  (Eq. 31d)
where
   TMAX = the maximum temperature  at which process will
          occur  (°C)
   TOPT = the optimum temperature  (°C)
   Q10 = the rate of change  per  10°C temperature rise (unitless)
   T = the water temperature . (°C).,.._. .: ............... _ ....... ........... .  .

                               46

-------
      The  calculation of ingestion by. saturation-type filter-
feeders is  accomplished by replacing the maximum consumption
rate  parameter,  CMAX,  with a maximum filtering rate, FMAX  (g
filtered/g  day).

      The  production of pseudofeces by filtering organisms  is
calculated  in  three steps (Albanese, 1979).   First the water
processing  rate:                     	

       FIL = FMAX(J)*TRBRED*(£BIO(I)-BMIN(J))/
                             .1
             (Q(J)+IBIO(I)-BMIN(J))                        (Eq.  32)
                   I

where

   FIL =  the rate 'Of filtering (g/g day)
   TRBRED = a  reduction factor for filtering rate due to high
             concentration of inorganic particles

and the other  parameters as previously defined are calculated.  ...
The second  process, that of biodeposition, is calculated as:

   .    BIODEP = EXP(BDSLP(J)*BIO(I)-BDINT(J))             (Eq.  33)

where                         ••                 .

   BIODEP = the rate of production of pseudofeces  (g/g day)
   BDSLP(J)  and BDINT(J) = regression coefficients relating
                            biodeposition to food concentration
                  i
The rate  of ingestion is then the difference between the filter-
ing rate  and the biodeposition rate.

      The  ingestion of TOM'is calculated using the rate of  in-
gestion of  biomass and the concentration of TOM in each prey:

       CPTWO =  CTWO*CONCEN(I)/BIO(I)                     (Eq. 34)

'where    .• -•- •••••• -•  .'      ...... -., ...      ...  . .• ..... ••...=	    -

•   CPTWO  =  the rate of ingestion of TOM by each predator  (g
.  .  .      TOM ingested/m3 day)
   '••CbNCEN(I) = the concentration of TOM in prey I  (g toxic/m3)

The defecation of'TOM is then calculated:

       DEF1  = CPTWO*E(I,J)                    •  ••••    '   (Eq. 35)

where      .             •          .       •"'...•••

   DEF1 = the  rate of defecation of..TOM....(g/m_; day.)			
                                47

-------
   E(I,J) = the percentage of TOM in the Ith prey that is
            egested by the Jth predator

The TOM that is biodeposited by filter-feeders is added to that
produced by defecation and both are transferred to the parti-
culate state-variable compartment.  The rate, of ingestion of
prey I by predator J, CTWO, is also used to calculate the rate
of TOM lost by the prey as the result of grazing by summing
CPTWO by I, assuming that the total consumption must equal the
total grazing.

     The loss of TOM through excretion is calculated as a
function of the respiration rate:

     . EX('J) = CRS(J)*KEXCR(J)                           (Eq. 36)

where

   EX(J)  =_the rate of excretion of TOM by the Jth organism
           (g/m3/day)	         		  ~-  •     '	
   CRS(J) = the respiration rate  (see GILSRP)
   KEXCR(J) = a coefficient relating excretion to respiration
              (unitless)

     If the TOM being modeled is lipophilic,  the rate of re-
lease by excretion must be corrected as the fat reserves,  hav-
ing the highest TOM concentrations, would.be utilized first.
The correction factor . for .this, is based, on the ratio of the   .
predicted ingestion rate to the maximum ingestion rate,  which
is supplied as either CMAX for FMAX depending on the feeding
strategy of organism.  As this ratio increases the organism
is assumed to increase its fat content from the basal level as
given by PFTBOD at the rate, FATRAT*  In this way the condition
of the organism is accounted for ,in the calculation of .TOM re-
leased.      '•      .

     The calculated rates ,of ingestion, defecation, arid excre-
tion are then combined and passed to obtain the ..value of CONS.


BIOTRANSFORMATION                                         BTRANS

     This routine predicts the rate of biotransformation of the
TOM to its daughter products; for some compounds it is a signi-
ficant process of degradation (Khan et al., 1972).  The rate is
a function of the length of exposure to the TOM, the ambient
temperature,  and the concentration of the TOM in the organism.


             - MAX*CONCEN(I)	
             "
               KBTRAN(I)+CONCEN(I)


                               48

-------
 where

    MAX. = the maximum - rate of biotransformation under the  present
          'environmental conditions  (g  transformed/g biomass day)
    CONCEN(I) =  the  concentration of TOM in the Ith organism
                 (g TOM/m3)
    KBTRAN(I) =  the  half-saturation coefficient for biotrans-
                 formation (g TOM/m3)   	--

 The rate of biotransformation is reduced for low metabolic
 capacity and for suboptimal temperature:

       MAX = BTMAX*METCAP(I)*TRED                          (Eq. 38)

 where

    BTMAX = maximum  rate of biotransformation (g transformed/ .. ••••
 •   '        g biomass day),   .   •••••'•     ..-,••.•''
:;•!••••.-.TRED =. reduction factor .for; temperature (.see Eq.. <°3-la), . (unit-
         ' .less)   .•    •.-..• - - ••••	•-.•-•• •  ••--•>-	    •"'-•' --- •   -  •-
..__ ^ METCAP (•!,),.=„the  percent metabolic  capacity for degradation
:'•••'•••- •'    •'• '   •  of the TOM  (unitless)  .'••-.   "*          	

       METCAP(I) =  (TIME-STTOM+1)/BTTIM(I)              ''(Eq.  39)

 where-   -....-,''    •     •'.....          .

    .TIME = the day of the- year  ('Julian date)
    STTOM = the  Julian date --of • Introduction of the TOM  to  the
            environment ...,.-.•
 .   BTTIM(I) = the number..of'days required to reach full meta-
               bolic capacity              .              -;

    , 'The, relationship; of ..jthis; ,f-tincti.6ri--.to-•.concentration is    .,..
 illustrated,-in.-Figure 12.'.'.'...' ;....''"/••  •••.--:•     ••  •
                                 49

-------
                         020       0.40
                     CONCENTRATION (G/G)
                                (L60
Figure 12.
Relationship between BTRANS :-(-g  transformed/g
organism/day)' and TbM;'concentration (g TOM/g) .   Data
are for aldrin epoxidation. :in"bluegill fry (+)  and
in adult bluegills  (X)  (Stanton and Kahn,-a973).
                               50

-------
                           SECTION 3

                       DATA REQUIREMENTS
     Data requirements depend on the intended use of the model.
If PEST is to be used as an evaluative model, as originally
intended, then default data on prototype sites  (such as the
verification sites) may be sufficient to characterize the be-
havior and fate of a toxic organic material; therefore, site
data would be unnecessary.  If the model is to be applied as a
diagnostic tool in order to better understand the fate of a
compound at a particular site, then an accurate characterization
of the site is required.  If the problem involves bioconcentra-
tion in a particular group of organisms, then it will be
necessary to accurately characterize the metabolic requirements
and feeding preference of the organism.
COMPOUND-SPECIFIC PARAMETERS

     To characterize all types of compounds for simulation by
PEST, the following parameters are of interest.  However, for a
given compound some parameters., such as quantum yield for
sensitized photolysis, may not be applicable or may be unavail-
able.  The user of the model should exercise discretion in
determining what parameters are necessary for a particular
compound.  Some parameters, such as the Henry's Law constant,
can be derived from first-principle relationships and are
calculated in PEST.  For many parameters, use of a zero value
will have the effect of cancelling a term in a process equation.
The parameters for characterization of a compound include:     .-

1.  Hydrolysis •        .......         ...    .                 .

EN        activation energy for effect of temperature  (cal/mole)
          p. 7
KA ...  '•     rate constant for Bronsted acid catalysis  (I/days) pp..
  '   -   ••" 7, 11    ;            .' .         '   '  ,

KB        rate constant for Bronsted base catalysis  (I/days)
        .  PP- 7, 11    '       .        ......
KCAL      rate constant to account for colloidal, metal-ion, and
          phase-transfer catalysis (I/days)  pp. 7, 12

                               51

-------
KH        acid-catalyzed rate constant  (1/M days) pp.  7,  9
KO        uncatalyzed rate constant  (I/days) pp.  7,  9,  11
KOH       base-catalyzed rate constant  (1/M days) pp.  7,  9,  11
TCOPT     temperature at which rate constant was  obtained  (°K)
          p. 7  .....'•
2.  Oxidation
KEFF      rate of radical initiation reaction, p. 15
KP        rate of reaction between TOM and alkoxy and  peroxy
          radicals  (I/day) p. 15
KT        rate of competing reaction between two  radicals result-
          ing in non-radical products  (I/day) p.  15
3.  Photolysis
ELAM      molar extinction coefficient for TOM at each  wave-
          length: (I/mole em)- p. 17
FRACD     fraction of irradiance that is direct at each wave-
          length (unitless) p.. 17
FRACS     fraction of irradiance that is indirect at each wave-
          length (unitless) p. 17
KMEAS     rate constant for sensitized photolysis (I/day)
          pp. 20, 21.
KSEN      empirical' rate constant for sensitized  photolysis
          (I/day) pp. 16, 20
PSIA      direct photolysis quantum yield for the TOM  (unitless)
          pp. 16, 17
PSI3     L •'sensitized photolysis quantum yield for the  TOM
          (unitless) p. 16
4.  Volatilization         '         -          .                .
HENRY     Henry's Law constant(atm.cm /mol) pp. 26,  27
KLEXPT    correction factor for volatilization  (unitless) p. 24
          (an empiricism to provide greater precision where
          necessary)
VPRESS    vapor pressure  (atm) p.  26
VTOM      molal volume of TOM  (cm  /mol) pp.  26-28
5.  Solution
SOLUB     solubility  (mol/cm3) pp. 26,  31
6.  Microbial Degradation
                               52

-------
 KS        half -saturation constant for microbial  metabolism
            (g/m3)  p. 32

 METMAX -   maximum rate of microbial metabolism  (I/day)  pp. 32,
           33

 STRU      structural activity  factor for microbial degradation
            (unitless) pp. 39, 40

 7.  Sorption

 KPART     octanol-water partition coefficient  (unitless) p.  40

 8 .  Bioaccumulation

 BTMAX     maximum rate of bio trans formation  (g/g  biomass day)
        •   p.  49
 .BTTIM     number of days required to reach full metabolic
 '"""''  ':• :.     capacity  (day) p.  4'9

'•'•£•'"•-    .. .••pe±centage of"TOM""in orey • that is ••egested (uni'tless)
           pp. 47, 48 "•••'•'"      "     ••.•••.-..

 ''EFFEN    ••''coefficient -for dif fusiv.ity >:6f" TOM through gill
           membrane  (unitless)  p.  44
 EX  '      rate of excretion 'of TOM by each organism .(g/m  day)
           P.  48      ..        ... „•;  ••„.         . .   •

 KBTRA-N  ••  half-saturation coefficient for bio trans format ion  (g
  :   .-•.•;;.-; TOM/m3) p. 49" ......;.,.   •  .    '::    •  ', .  -..- •"•
 'PCBLW '    bloodrwater partition coefficient, 'p.  43 '•"•'"
      "•-'.     .      j      •        •. ,,  .    '      • -. ..   -
 PCFBL   .  £at:blood partition "coefficient , p.  43


 SITE-SPECIFIC ' CONSTANTS:,.- AN.D..-DRlVlNi3'.: VARIABLES   '  ••.''•  '..'•

  '..'...•• In. order- to. run 'the ...model- 'f or" a -particular site, .other
 than the representative. .prototype 'sit.e.s,.. it 'is  necessary to
 have values-, fo-r th'e following-.site' characteristics:

 'ALPHA.     -extinction -coefficient for . site, water at each wave-
   !        length (I/cm) pp. . 17-20 "

 CONCEN  .  'initial concentration of toxic organic  material
 "..'..'."'•'•   •• /(g/m;3)  p-. 7..;..'; •;.-,;'•'"••••  •.-• :     .   ••
 D:.,:,.;.  .   .median, depth of •water'7 (cm) .-pp... -.1.7, 18

 DEPTH-   .:•  depth of '.water  (m) p. .'"38". •

 HA  •..   ••• ..concentr'ation.-.of. .Bron'sted acid .(g/m3)  p. 7

 HB •:,:....,.   ;;;,.conc!entratibn. of- Bronsted. base-.t-;(g/m?) .p.- 7 -  .-

 RAD  •   ••  c'qncentration 'of radical .initiator- present , p. 15


                                .  5-3

-------
 STTOM
Julian date of introduction of TOM, pp.  39,  49
      Because PEST is a dynamic, time-varying model, it  is also
 necessary to have time series of data for driving variables  for
 the time period being simulated.  The driving variables are:
 BACB  .    microbial biomass  (g/m3) p. 39
 BIO   •    biomass, of each organism (g/m3) pp. 42, 45-
 D02       dissolved oxygen concentration  (g/m3) pp. 35, 43,  46
 IIMEAS    observed light intensity (photons/cm) pp. 20, 21
 LOAD      concentration of each carrier  (g/m3) pp. 40,  41  (=
           BIO)
 pH        ambient pH, pp. 7, 13, 36
 .T         water temperature  (°C)  (= TEMP) p. 46
 TEMP      ambient temperature  (°C) pp. 7, 26, 37, 42
•,WINDV   ... wind velocity  (m/sec) pp....26, 38
.ORGANISM-SPECIFIC PARAMETERS ....  ,.   ,
      The following information is desirable for adaptation of
 the  bioaccumulation submodel for particular species:
 BDINT     coefficient for biodeposition  (unitless) p. 47
 BDSLP     coefficient for biodeposition  (unitless) p. 47
 BIODEP     rate' of production of pseudofeces (g/g day) p. 47
 BLD02     coefficient for oxygen capacity of blood'  (g 02/g
 ••'  .      .blood;)' p. 43      , .     •••..'... .......  -.-•'    •..„•   -:..-
 BMIN      the prey concentration at-which 'predator,, begins f eed- •
           ing (g/m3)  pp. 46, 47    ':--  '•                '
 CMAX      maximum rate of ingestion (g/g day)  p. 45
• FIL     ;   rate'of filtering (g/g day)  p:' '47     '"•
 KEXCR     proportionality coefficient for excretion as a func-
           tion of respiration (unitless)  p. 48
 K02        saturation coefficient for oxygen limitation of
           ingestion (g/m3)  p.  46-.. ;

 KRESP     proportionality constant for respiration as a function
           of metabolism (unitless) p.  42
 KTEMP     coefficient relating respiration rate to temperature
           (1/°C)  p. 42
 LIM        reduction in ingestion rate due to low prey concen-
                                54

-------
MAX

02RZSP

PCBLD
Q
Q10

RMAX
SARSA

TMAX.

TOPT '
, TRB.RED

TRED

W
tration  (unitless)  pp. 45,. 46
maximum  rate of biotransformation under ambient en-
vironmental  conditions (g/g biomass day) p.  49
coefficient  relating oxygen uptake to  respiration
 (g  02/g  biomass)  pp. 42, 43
porcent  blood (g blood/g biomass) p. 43
half-saturation constant for feeding  (g/m3)  pp. 45-47
rate  of  change per 10°C temperature change  (unitless)
p.  46
respiration  rate at starvation  (g/g day) p.  42
percentage of TOM at surface of carrier  (unitless)
p.  40
maximum  temperature at which process will occur (°C)
p.  46        	 ...,....-             •       '
•optimum  temperature (°C) ppy'42,' 4-6
reduction factor in ^filtering..rate, due to-.high
turbidity (unitless) p. 47
reduction factor, for non-optimal temperature (unit- .
less)  pp. 46, 49
preference of predator for prey  (unitless)  p.  45
      The following is needed to adapt  the  submodel for parti-
 cular microbial assemblages:, ','   .._;,. ''•.'.''•.  "•".'••'   '  V    .
 DOCOR.-     reduction of microbial degradation due -to;suboptimal
-•'•"•'..'.  .   ..  oxygen levels .(unitless)  p.  33                .
"DOM-IN'   '..minimum value 'of "oxygen  reduction under anaerobic
           conditions  (unitiess)' :.pp.. 33,  35
 KPH •      adaptive constant- for pH effect  on..microbial degrada-
           tion (unitless) pp. 36,  37'-
 KTP       adaptive constant  for-.effect of  temperature on
          ^microbial degradation  (unitless) .pp. 37, 38
 MK02       half-saturation constant for effect of oxygen on
           microbial degradation  (g/m3)  pp.  33, 35
 MMGT       microbial generation time under  optimal conditions
         .  (days)  p.- 3'9   '  .. '.  •-  .•-••  . ... '!,
 PHMAX     critically high pH for microbial degradation, pp. 36,
           37   . .   ;.     ..•:••-.' ;     •.•••-.
 PHMIN     criti'cally lowpH  for> microBial  degradation, pp. 36,
          •"37  '   ..;   .  ;-•  .;_ ..._ .,   .-. '_,. ; .•;.;.•'
 TMIX" •'.-.-  ;.;;  reductibn factor, -for 'ef fee t.-'of .sub'bptimal mixing'on..
    ..   • -  ..-•;• microbial. degradation  .(unitless) _ pp. .33 ,: 38
                                '55

-------
TPCOR     reduction factor for effect of nonoptimal temperature
          on microbial degradation  (unitless) pp. 37, 38

TPMAX     critically high temperature for microbial degradation
          (°C) p. 37
                              56

-------
                            SECTION 4

                          VERIFICATION
      Our  philosophy of verification has been to use available
 parameter values,  confirm the  yalidity of the process equations
 by  inspecting the  process-response curves (such as are pre-
 .sented  in the previous section),  and then apply the model to
 the particular site without calibration.  If the fit to the
 observed  data was 'not acceptable  the formulations were re-
 examined  and improved, but the parameter values were not
 changed.   This approach was taken because it was felt that
 there would not 'be opportunity or rationale for "fine-tuning"
 the parameter values in PEST using observed data when it was
 used as an evaluative model for new compounds.

      However, in developing the model, this constraint proved
.to  be frustrating.   Correction'of obvious deficiencies in the
 formulations sometimes led to  worse fits to observed data.  In
 fact, the simulations presented here represent just such a
 case; we  discovered during the final stages of documentation
 that mass balance ;was not being maintained and -that the TOM
 was being "lost" due to a programming error; we corrected the
 error and now the *TOM does not disappear fast enough!  This
 discrepancy, in most of the..,.simulations may., indicate, another
 problem in the formulations; or":it" may. be a'reflection of the
 uncertainty involved in the. parameters for processes such as ....
 uptake  by organisms, biotransformation, sensitized photolysis,
 and colloidal-catalyzed hydrolysis :r— these all. tend to be
 conservative and  lead to "worst case" simulations in the sense
 that the  TOM is-more persistent.   There are"-also -uncertainties
 involved  in the driving-variable  data and residue data for the.
 sites.  Therefore,  the simulations can only.be used to suggest
 that the  model is  behaving reasonably well.  Unfortunately, the
 data are  not sufficient for either validation or invalidation
 of  PEST.

      Based on our  modeling experience, we recommend that future
...field verification studies include the following considerations:

      •  the mass  (or biomass)  of  each carrier group,

      •  time series of TOM concentrations in the carriers,
      •  some idea  of the bioenergetics of the biotic carriers

                               57

-------
         (such as consumption rates and prey  preference),  and
        enough information  so that degradation  pathways  can be
        pinpointed  (this could involve short-term use  of
        radioactive-labelled material coupled.with standard
        analytical determinations of TOM concentrations).
PARATHION IN ISRAELI FISHPONDS-         .   .

     As described by Perry and Gasith  (1978), Parathion  was
introduced as a single 0.05 ppm application  to  each  of two
eutrophic fish ponds at Dor, Israel/on March 8,  1978; the
experiment was concluded 67 days later.  The ponds were  400  m^
in area and averaged 1 m in depth.  Data were given  for  concen-
trations in phytoplankton/ zooplankton, waterbugs, benthic
invertebrates (not modeled)/ carp,  grass carp,  silver carp,
Tilapia, and water.

     The driving variables and parameters used  in the simulation
are given in Appendix A.  The principal source  of uncertainty
was in the diurnal variation of pH, which is very important  in
base-catalyzed hydrolysis of paratnion  (see  Fig. 3a, p.  9).
The .simulation results "are^ given in 'Figures  13a-e.
                                               dtnil or I no
                          77JD    87JDO    . 87JD
                             Julian Date .
                                              VJJD
Figure 13a.
Comparison of predicted and observed concentrations
of Parathion in dissolved phase in Pond A-7, Dor,
Israel.  Data from Perry and Gasith, 1978.
                              58

-------
                                                   experimental
                      B7J3
               T7JJD     87JB     87JB
                  Julian Date
                                                  V7JDO
Figure  13b.
Comparison of predicted  and observed  concentrations
of Parathion-in"zooplahkton in Pond A-7,  Dor,
Israel.   Data from Perry and Gasith,  1978.
                                              • doulstlon
                 7 JO
          77JO    87JOO    37JO
             Julian Date
                                             vnjio
Figure  13c.,
Comparison of predicted and observed  concentrations'
of Parathion in carp  in Pond;A-7,•:Dor,  Israel.
Data  from Perry and Gasith, 1978•
                                 59

-------
Figure  13d.
Figure  13e.
              3
              t-i

              fel
                                             .etuulstlan
                                             ,expBrijefrtsl
         TUB     87A)
            Julian Date
                                     87JDB
HlflO
Comparison of predicted and observed concentrations
of Parathion in Tilapia in Pond A-7, Dor, Israel.
Data  from Perry and  Gasith, 1978.
                                             .emulation
                                             * ttXptS "lAo ilkl
                 IfO
         TltB    B7JD    S7JQO
             Julian Date
                                             VTJD
Comparison of predicted and observed concentrations
of Parathion in silver carp in Pond  A-7, Dor,
Israel.   Data from Perry and Gasith, 1978.
                                 60

-------
PENTACHLOROPHENOL TN MISSOURI FISHPONDS
     Pentachlorophenol was introduced as. a  single  application
of 1.0  ppm in each.of 3 low-nutrient ponds  without macrophytes
at the  Columbia,  Missouri, National Fisheries  Research Labora-
tory on,,May 22,  1978 r the experiment was concluded 142 days
later  '(T.  P.  Boyle and E.. F. Robinson-Wilson,  personal communi-
cation).   The ponds were 297.28 m2 in area  and had an average
depth of  1.20 m.   Data were given for concentrations  in large
mouth bass and water.

     The  driving variables and parameters used in  the simula-
tion are  given in Appendix B.  The principal  source of uncer-
tainty  was in the role of pH in the sediments  as opposed to
the water column; water-column values were  used in the simula-
tion, but the more acidic sediments may have  been  quite
important due to the acid-catalyzed hydrolysis of  Pentachloro-
phenol  (see Fig.  3b, p. 10).  Also, Pentachlorophenol degrada-
tion is sensitive to the effects of light attenuation on photo-
lysis  (see" Table-6,, p....2"0') .  The simulation, was further '
.hampered, .by._the availability-of. biomass data;  the  .zooplankton
• v'ai-u'es  are':ojtly",approx-±mate---conversio'ns' ..'an'd': the fish  .values
were given only for the beginning and end of  the experiment.
The simulations••.are shown, in Figures.. 14a-d...        •    ..
                                               slnuistton
                                22BJDO
                            Julian Date
'Figure 14a'/
Comparison "of:." p'r'edicted "and' observed concentrations
of  Pentachlorophenpl .in dissolved.phase  in  Tr.eat-
:ment~i-21  ponds,"'Cbrumbia,;iMi'ssb'uri.. ..Data  from Boyle
and '•. Robinson-Wil son  (iiripub. j .
                                61

-------
                                                .•Part. OM
                                                .Clay
                              Julian Date
                                        26CUM
                                 3HJJO
Figure•14b.
Predicted concentrations of Pentacn±oropnenol in
clay and particulate  organic material^ in Treatment-
3 ponds, Columbia, .Missouri.
Figure  14c.
                                               . Zooplenkton
                                               a Phytnplanktun
                                 22DJID
                              Julian Date
                                               SffiXflO
Predicted concentrations of Pentachlorophenol in
phytoplankton and zooplankton in-Treatment-3
ponds, Columbia, Missouri.
                                 62

-------
                                                 •slnulstion.
                                                 «.experiaernsL
                               Julian Date
'Figure 14d.
Predicted  and observed concentrations of Penta-
chlorophenol  in large .mouth.bass  in Treatment-3
ponds, Columbia, •Missouri. Data/ front;. Boyle, and
Robirison-rWilson '(unpub.;•)'."iV"r'•.-••'-_•-V'' ''/.':"''v..•'.';'• ••'-.'   "
     In a concurrent treatment, Pentaehlorophenol was^introduced
 in 4 applications of ; 0..2 , , 0. 2 ,. .0,. 4  and 0.4 ppm in each of .3,.    •;
„ lowr-nutrient: ponds :without-;-macr.pphytes-.   The ponds -were 297.28
• m?;,,in .area, and had an aver age.,.depth; .of 1.4 8,:m. .. :Data  were given
 for concentrations in bluegi-lls.,  large mouth bass,  channel
 catfish, and..water.  ':  '..,..  : •'••'.  '•• '",. ':,.'"'  :- ;'''.•     .

 ....... The driving variables .used -in. the simulation are  given in .  .
•.Appendix C. ; .The. simulations;-are  shown: in Figures 15a-d.

.blELDRIN'lN AN IOWA RESERVOIR"     ''"'...   . '- : ''  ' .....             :
'•.'.'•  Dieldrin has been monitored  in  the Iowa River since. 1968 .•• .
 .and analyses for fish in Coralville Reservoir are available from
 1970 to present; the compound has been quite persistent,  al-
 though aldrin, its precursor, has been banned since 1975. 
-------
                                               .gliulatlan
                                               ,. experlienul
                                        aeioo
                                 82SJOO
Figure' 15a.
                   24fijDO
..._.,	       Julian Date
Comparison 6"f predicted and observed concentrations
of  Pentachlorophenol in dissolved phase  in  Treat-
ment-2 ponds, Columbia.,; .Missouri.  Data  from
Boyle  and Robinson-Wilson (unpub.).
                                               « emulation
Figure  15b.
                   24SJD
               Julian Date
Comparison  of predicted and observed concentrations
of Pentachlorophenol in bluegills in Treatment-2
ponds, Columbia,  Missouri.  Data from Boyle and
Robinson-Wilson (unpub.).
                                 64

-------
                                            m fljlffiil srlon
Figure.15c,
    .  {       . Julian Date

 Comparison of  predicted and observed concentrations
 o'f Pentachlorophenol in large mouth bass, in Treat-
 ment-2 ponds,  Columbia, Missouri.  Data from Boyle
. and: Robinson-Wilson, (unptib.,). r       ......... .
Figure 15d.
               Julln Drte;
 Comparison of predicted  and  observed concentrations
.,of Pentachlorophenol. in  channel catfish..in Treat-
 ment-? ponds, Columbia,  Missouri;   Data from Boyle
 and Robinson-Wilson  (unpub.).  ,

                  65-

-------
      The driving variables and parameters used in the simulation
- are .given in Appendix D.  Sources of uncertainty include the
 dieldrin loadings to Coralville Reservoir (downstream
 concentrations were.used) and.the biomass of organisms available:
 to take up dieldrin.  However, the simulations are clearly
 incorrect because outflow and sedimentation were not taken into"/
 consideration.  We anticipate that later releases of the code
.will facilitate simulation of these important processes.  The
 simulations are shown in Figures 16a and b.       ..
                                           .eisulHtion
                          Tiae (days)
 Figure  16a.
Comparison of predicted and observed concentra-
tions of Dieldrin in dissolved phase in Coral-
ville Reservoir, Iowa from 1968 to 1977.  Data
from Schnoor et al.  (1979).
      However,  when we used the sedimentation loss coefficient
 used  by Schnoor (1979)  the pattern of response was improved,
 but the results were still off by an order of magnitude
 (Figure 16c) .
                               66

-------
                 CJ
                                                 ,tn •nation
Figure- 16b.
                  ' ' 2DQQ<0 '' • '-'SfldBir
                 Ti« (days)
Comparison-• of > predicted ancF observed .concentrations
of Dieldr-in in  carp..;in-...Goraiville Reservoir, Iowa.
Figure 16c. • 'Comparison  o'f" predicted and observed concentrations
              >of^ieldfin;';;&                                      -
              cRes'er,yb'i-r''j'-->loWa>y-';i"s-edimieht;atlpn--l6Vs' coefficient was
              :used.-.ih tl
                                  .67

-------
                          .... SECTION .5  •

                          USER'S MANUAL
      The  PEST model is designed for interactive  use,  but can be
used  in a batch environment.  There are ten commands  in the
model, including a HELP command that provides on-line assist-
ance.  "Yes?" is the prompt for a command.
LOGON

     Having  logged on. to,-'.your" system" and begun' execution of
PEST, you will  have "to supply the name of the  data  file and
indicate whether or not., you. are on a graphics  device  (DEC VT55
or similar).        '        ....  -'     •.'         ;  . •  ...

Example       ••'•• ' ••• •-•'-••    •"" -•• ;  ••'••'•'    '.       .  ••

     Are you on a graphics device? .N  .'  •' .
     Name of parameters-file:  • PSPOP3.DAT.' ,.   •. •  •  •    ••  .
     Yes?-             '"        .   ' -•'•'•• •••   '.     '•'•"'
EDIT .   • -  -  -   •  .  ... .-,..-     •..;   . '   ''..,;, ,,,v-';. •  .    ....:.  • .-.. .-

 "•••''.;• The EDIT  command allows the user.-to edit any  of the  model's
parameters,  i/e.,. the data for;.- the program.  Because, these data
are in binary  form,  they cannot be altered using a. conventional
text editor, so this feature has been added to the model.   The
•edit mode  gives a "->" prompt to the user, after which  an edit
line may be  entered.  The EDIT mode is terminated  by a  "."..

Syntax           '.     :                .               .

  .  ..EDIT
     = [,= ...]
  where
      is any  variable listed in the parameter
     index file (I/O unit 10)

      is a list of one or more values  to be
     assigned,  or is an integer followed by an asterisk
     followed  by a value to be assigned to the next n elements --


                                68

-------
      of the parameter,, or is an  integer followed by an
      asterisk to  display the next n values  of the parameter

      brackets indicate'optional' string^O'-f, input ' .•' :.  .'

Examoles  •  .     . .  • .•'  . . .... ...  ':•• ••••...•
      Yes?' EDIT-•'•-••..::   •    	-MV:- •--.-—'-
      -> TLAST-*    "      '

      TLAST=
         91
      -> TFIRST=*

      TFIRST=       •      :
         1       •   .    .....'         .  '  -
      -> DO2=4*  .   .      , .  ..- .

     • D02= '    ' ;..-.  .   .  M '• ••   .
     ••-.  ..11.50 '" "•'  -lo.fto,-.--' . .'s'.'Sob-- -'.-3--;.ooo~
      .-> D02(2.) = 3*'.   • .  • . • — •-....„;,  '.;.:•:-

      D02-(2).= -  :--. •          ,   V '•'.        . . ..'.-.
         lO.iJO      ..3-'900'   ..^..000 :' '...

      ->D02:(3)=*J

      D02(3.:) ='".".''
          3-900'

      D02t3)=   .
          4.00 •'. .
      Yes?' '


 START    ... •.. ••.••„.•..'•. ..

 ;    .The" 'START . command; is, the. Very-;-heart of  the'.model.  .This
 command causes, a simulation .to be performed..   At the. minimum, it
 will, print a  heading and, a table of pesticide amounts according
 to day of simulation.  Other  information, may be printed out
 depending oh. what •previous.,.commands -the .-user may have .entered
•'(i.e;'; DEBUG; and. PRINT; affect. START'S, output) .   The. heading
 contains the  abbreviated state'yariable names (which may be
 altered by 'the  EDIT command)"."  A;     ^  •, :--  ••; ,  ..

 Syntax   ;.':''•

      START"-
                                 69:

-------
Example
    Yes?  '•-' I -iR.'l • .'   .   .-.;..;	V.M'.. .'•••.-".
   ..-••• Pe-sticide .* niE-LDRTN . 0CORALYIL'L'lt ''•'
TlME-'-'200:P:L''',
You did not stsrl
i: • i . 0.450- - ••;•'
i: 31. 0.743
i: 64. 0.380
1.* 94, 0.221
WBUGS' •"'""•" CARP P;_"',. •••'•'' PHYTO ' '•'. UA'TEf<
', with e-ctiJi'.Ii.briuiii conditions. . .' . '
0-«.2'5p";'.';-:..';".--l:'."00 ' - ... .;:0^400 .. ' OUOOE-05. -
0.236 "•';" ;l.01.'.'.. 0.740 -•' 0. 422E-05.
0. 220 ••;-- 0/9.92 ' •• 0.556 0 . 439:£-05 ' " '
0.2Q'i'" ... 0.936 -•• 0.376- ' - 0.451E-05
   Would you like  s  summai-y of the results ?   Y
    End of simulstion.
        Summsry  of  resultsJ

Compsrtment
ZOOPL
U BUGS-
CARP ,
BUFALQ
CHCATF' '::••••-..•'• .
CRAPIE. -" .
UA.LEYE "
'"••. '•: S .-:' •••*' ''.":'.'"- "4
-•:<• 9 » '• '..•'. •'•..''. .
«o»
PHYTO :'-: -:-• ..-,.'.
MACRO •"•••••'• ' •"".
WATER.. . ...
 :.,>•-••'--•';•'-,
POn
CLAY
Initisl -smourit
Final _smoijnt
•Finsl
PF-ITl
22092
20128 .... • -
93617
92592
97330 ".V.----.VV.
93695
99941- v-. :-'..,.,
o '• •-•••••-
-o
0 ... "
3763S "•''•-'-••-'
30561
45103,E,-''05''---
o' . . " :"
45944E-01
43615E-01
of p-esticide
of pesticide
amounts ;
• •-•••' ^x'ni^*3 . .
ii24688E-08
,:-..40255E-09
.... .15S27E-05
.20687E-05
;;-v-yi,1.165E'-05 	
,6;8054'E.-06,.
:,...23922.£-rO.<5.'.
•'•':'• i'Ci- "' -
.0 .
:. ..;0 ';:..
'•-". 16149€r06..-
.43240E-07
"•'>4'5-10oE-0.5 ,.
""f.-o ....
.45?44E-^07
.21S07E-07
in ecosystem
in ecos«stetii

%' Distrib.
1 	 .23573E-01
... • -...38436E-02- -
. 15.112 .
19.752
	 "Wl'0.660. •/..;
' 6. 4973- : -
	 n '^O A -i .-..'.
. ;. *i'» fcWT A - . . .
• .' .0
.0
••••••-.•*•'•: ' ;.
.0
16.000-- -
16.000
£/cubic meter
si/cubic meter
PRINT

      The user  may wish  to obtain output  for state variables
other than those included in the default table.   PRINT will
                                  70

-------
include or  exclude a state variable from the output;  the command
acts as a toggle,  reversing the  print status of  a  state varia-
ble.  Note  that this does not  exclude a state variable from the
simulation!   It is useful in limiting the output for  small
terminals.   The command also controls the output units
Syntax

     PRINT   
           I
   where

       is the name of  a  state variable or  ALL
If "ALL",  all state variables  are printed; ordinarily state
variables  1,2,3,11,13, and  16  are printed.

Example
   ~"T'es?~ ~ST'ARi"r-~" """	«----"--•   .  -  ..
   •  Pesticide:  JDIELDRIN U'CGRrtLUilLUI
      TIME ZQOPL
WBUGS
        CARP
                              PHYTO
WA i ER
CLAY
   iou aid not start with equilibrium conditions.
    i:   1. 0.450    0.250     l.OC    0.400
31.  0,743

(44,  0.380

94.  0.221
0,236

0.220

0.201
           1.01

          0.9*32
                                       0.740

                                       0.556

                                       0.376
 0.400E-05 0.400E-0.1

 Q.422E-05 0.410E-01

 0.439E-05 0.427E-01

 0.4S1E-05 0.436E-0:
   Would  you like s  summsry of  the results  ?  N
DEBUG

     The  DEBUG command causes values to be  printed for the
indicated processes during  the simulation,  or  it will cause
loadings,  rates or time  to  be printed during a display.  There
are eleven valid process names:
                                71

-------
Process Name

  BTRA
  CONS
  GILS
  HYDR
  MMET
  MORT
  OXID
  PHOT
  SOLU
  SORP
  VOLA
               Meaning

   Biological transformation
   Consumption
   Gill Sorption
   Hydrolysis
   Microbial  Metabolism
   Mortality
   Oxidation
   Photolysis
   Solution
   Sorption
   Volatilization
                 State Variables
                    Affected

                      1-12
                   1-12,14-16
                      1-13
                     13-16
                   '  14-16
                   1-12,15
                     13-16
                     13-16
                     13,15
                      1-16   .
                     13-14
This  command is  especially  useful for  diagnostic  purposes;  it
has the potential  for generating large amounts of output!

Syntax

      DEBUG [,...]

  where

       is  the  name .of a  process

      DEBUG [,	]

  where

       is L for  loadings,  R  for rates,  or T for time

Example
 Yes?  DEBUG GILS
 Yes?  START
  Pesticide: DIELDRIN PCORALVILLE
   TThE ZOOPL
WPUGS
                         CARP
                                 PHYTO
                                          WATER
                                                   CLAY
You  did not  start with et.-uilibriuni conditions.
 i:   l. 0.450     0.250     1.00    0.400
                           0.400E-05 0.400E-01
C-ILSRP:
   0.1029253028E-14
  -0.1156394316E-12
   0.0
WCIRC  :
   0.3409434668E-13
   0.3394711595E-11
   0,0
    0.0
    -0.2176511123E-13
    0.0

    0.572811112SE-14
    0.2115475330E-11
    0.0
-0.3319572265Z--12
 0.11S7643191E-13
 0.1089410680E-11

 0.5101936235E-11
 0.7028356S46E-12
-0.632955ci5o2E-12
 0.0
 0.<3i45307568E-ll
 0.0
                                  72

-------
 ECIRC :               	
   0.-i>97072c080E-13   0.1172730880E-14   0.3433615614E-08    0.5393749483E-C8
   0. l5«5iOS530£-OS   0, C.OS3629156E-09   0 • a733071045c-10    0 .• 0
   0,0              0.0
 JO IR   :
   0.726057668SE-11   0.1230369973E-11  -0.2341699501E-OS  . -0.4465007919E.-OS
 TABULATE

      Assuming a  simulation has already  been performed, this
 command will print  out a table of results,  with the header and
 without any debugging and blank lines.   This is especially use-
 ful if you have  debugged some processes,  run a simulation, and
 want uncluttered output.

 Syntax

-•   :" TABULATE

 Example
  Yes?  TABULATE
 DIE1.DRIH eCORALVILLE
TIriE ZOO
i: i.
i : 31 .
i: 64.
i: 94.
..Yes? '
0.
0.
0.
0.

PL
450 .
743
380
221

WBUGS
•• 0
0
0
• o

.250
*236
; 220
,201.

.CARP
1
1
0.
•'•" 0.

.00
.01 ••
.982
936

PHYTO :.
0
0
0
0

.400
.740
.556
.376

UATER . CLAY
0 .
0..
0.
0.

400E-05'
422£-05
439E-05
451E-05

0.400E-01
0.410E-01
0.427E-01
Q.436E-01

"PLOT
           command  assumes that a simulation has been done  al-
 ready, (there should  be some data in  files  attached to I/O  units
"2v and"' 3)  and' plots the simulation results  for the named  state
 variable .". XYPLOT  .subroutine can be  modified to suit the user;
 it  takes 3 -arguments:   an X vector,  a Y  vector,, and the  number
 of  points.  The state-variable name  entered must match one of
 the heading ..titles for a simulation.

 ,. -.   PLOT. -normally' provides printer  plots;  however, if at  the
 beginning of a run the question "Are you on a graphics device?"

                                 73

-------
was answered "Yes", it assumes a configuration similar to that
in the Center for Ecological Modeling:  a DEC VT55 and an HP722
plotter with proprietary software.  The XYPLTA subroutine is
used for the HP plotter; it is included as an example of how
device-dependent calls can be used.

Syntax                ' .            ......'•'     " •   '  ;

     PLOT  .                     .         .  .    • . '

• • where ""••     "•' •   •             .   •          '-

      is the name of a state variable; it must match
              one of the heading titles for the  simulation

Example
T'e<:

o
0.
0,
0.
0,
0.
0.
0.
0,
0.
0.
0.
0 <
0.
0.
0,
0 .
o;
0,
.0.
A +
0 .
0,
0.
ov
0.
0.
0.
0,
0.
0.

li
T °LOT PH'
• •• 147.00
97 ,00
44478
43217 •
41956
40695
39-<34
38173
36913
35652
34391
33.130
31869
30609
29348
23087
26826
25565-
24305
23044
21783 .....-•
20522
19261 '
160-00
16740 .
15479
14218
12957
11696
10436
91747E-01
79139E-01
147,00
97,00
r'TO , . - •
• • " . " '••.•.;.-•..- " ...... -

* "" .- ' • • -




*


'*..... 	 	

*


' * ' . -..

.*•.,., . . 	 .
* . '• •'•"•: --
•.-....•• . '• ' ..*...•...•..•.;..•;• •'•'-..-.!.:; :;•••; .•.-.••-.-•: ••'••••:• " • ••:..-..'. .-•:.-'...
* • .,.•-.....-• ' . . •'
Jjt .. . • • ' •
	 	 .-* ", ' .•.-.-:-
. . - *• .-•••• ... .. ••-••
'*
X; x.
* *
* #
* *
* * *
$*#$###


                               74

-------
DISPLAY
     This will cause a process (see DEBUG)  to  be plotted as  a
function of  an independent  variable, one of the driving varia-
bles denoted by a number:
     No.
    1-16
     17
     18
     19
     20
   21-36
     37
     Driving Variable
     carrier compartment
     temperature
     windspeed
     PH
     dissolved  oxygen
     toxic organic matter in carrier 1-1C
     solar radiation
     The  plotting is device-dependent  (see  PLOT).   On a CRT,
such as the DEC VT55, it  plots a well defined profile.  The  re-
sponse curves used in the process documentation (SECTION  2)  were
obtained  using this command with an HP plotter.  DISPLAY  uses
the LOOK  subroutine and either the XYPLOT subroutine or the
XYPLTA subroutine;•these.can..be modified for different devices.
Syntax
     DISPLAY 
where
       is a process
Examole
YEi? DISPLAY VOLft
Uhi.ch state variable number- is to be uee3 ?13
WJ-.ich loadins is to be varied (loading nuniber)?18
Eriter the Tiintmc::'values for the losdina I 1»5
Do yo-j went a helf;-life Plot ? tl
1 ,0000
0.15349E-03
C-.14927E-C3
0.14504E-03
0.14081E-03
0.13659E-03
0.;;<2JiE-03
0.12814E-03
0.12391E-03
0.11969E-03
0.11546E-03
0.11124E-03
0..10701E-03
0.10278E-03
0.98S59E-04
0.94333E--04
0.90108E-04
0 . 85882E-04
0.81657E-04
0.77431E-04
0.7320SE-01
0.689aOE-04 '
0.64754E-04
.0..60529E-04
0.56303E-04
0.520'7E-04
0.47852E-04
6.43626E-04
0.39401E-04
0.35175E-04
0.30950E-04
4.9600
*
X*
**
. • **
t*
• . ***
t*
tit
•••••• ..-.-... . / :-•• • • • . . *'»*' ' ;••"••••
-r»
'..''• • •*** •'
• •• .• • • ' *** • • '" ...
• 	 ••• . : ".."• '• ** . '•••••• "•' '••--•• '
- «**
• • ...-••• **'* . . •
***
. . ***
•*** '••'••
**
• ' ' • **-*
*** • • ' ' .'
**
• • ' • *** • ' . •
x* • ...
** '.••'•
*** • .
.** •'•... .
»» '.....•••
**
** • • '. ' . .--•'••
                  1.0000
                                                            4.9600
                                 75:

-------
          Yes? SISF'LAV (J0',f> •
          Uh:crr stste variable nuniOer is to ee nnn»*B:: vsluee for the losoina : 1>S
          Do sou usr,*, s nalf-lifg ?iot T Y.
              1.0000    ' •  ... .
                                                         4.7600 '
DUMP
This
22391..
21775.
'21136.
20542.
19"2o.
19309. .
16693.
. 18076. :
1 7460-. '
16843;
16227...
15611.
14904. .
14378.
13751.
131-15.
12528.
11912.
11296.
10679.
10063. .
9446.3 '.
8829.9
8213.5
7597.0
• o930.6 —
6364.2
5747. S
5131.3
4514.9
1 . 0000 .
command
* . ...

* .•'''•
*
X

*' • •
*
**"' : ••.••••'•'•' • . .. ..
* ' • •
* ' • • '
x-
•. *« . . • • • ' .:.....•-.-•
• * '
*
X*
**
**
a*
»*»
• • ". . . « « . . • • • .-
*«*
**x
*** •
•-.-.;• • ' . • . . •.- .,.***• . . ...
' ••'••• • -•••••••• ' ' '•" ttft-' ••'••'
• • ' »x«*
»««*««
XtXXXXtl
• • . *»»**»*»*»
.•...'... ' .... 	 4.940C
is intended for use in model developme































mt
                                                                 and
should  not.be used by the casual User.
      DUMP allows  the -user to look at  an entire common .block.
It accepts as an  argument the number  of. the common block  to be
printed:     "
     Name--- •
     MISC
     RPARMS
     DEBUG
     'TIME .
     DRIVER
                                              Description
                                         character parameters
                                        .real parameters
                                         logical parameters
                                         integer parameters
                                         loadings
Caution:  ..blocks  1 and-4 "will-usually  generate  reams of output!

Syntax         •  '              '

      DUMP   '[ n ...]..
  where
        is the number of  the common block

Example

     Yes?   DUMP 3"
                                  76

-------
 HIJriLLi :                         4      c       0      0      0      0

   '*,      0      0      0      3      2      20     30     20      6
   "(      nOOOOOOu^
           O      0      0      0      0      21   18772
 S'-IIT'.'.HJ
    ;:i

 'i FIRST:
   3<>/

 itflsr :
   1 17
HELP  •             j

     This command  provides limited on-line  assistance in running
the model.   It  is  totally query-oriented  and  is self-explana-
tory.  However, .it is intended to be used as  a refresher and
not as a substitute for this documentation.

Syntax                                        ...

     HELP

Example

    ' Yes?  HELP

     This ... is the. place to be......  •• -          -  -••
     Enter a .period to get back to command''"'mode.   *•'•'•' '  '
    :  What topic do you wish 'information  on.?   HELP	
    "'3 lihe(s)"labelled'Topics follow.      .•••••"
    •'.Continue?  (Yes or .No) YES
     .Legal topics  are:  COMMANDS, DEBUG,  DISPLAY,  DUMP, EDIT,'
      KELP INSTALL, LOADINGS, PLOT, PRINT,  PROCESSES, QUIT,
    .:  REMOVE, START, TABULATE
     'What topic do you wish information  on?  REMOVE   .  •
      3 line('s) . labelled Meaning    follow. .
     'Continue?  (Yes or No) Y                    ••••-•   -.   •   . .....,'••
        This command allows--the user, to eliminate  a  process .from,
      the simulation.  It can be used  to.  .debug nast.y processes ,.-...-
    .. or to  .see..what the system does.if a process'  is inhibited.
    '"'3"lin-e(s) 'labelled Syntax    follow.' • ••_.-. -  "     '

                                77

-------
       Continue? (Yes or No)Y .
         The syntax of this  command  is:
               REMOVE 
       where ' is a. process name.
       1 line(s) labelled Example    follow.
       Continue? • (Yes .or .No). Y     .     ...        •••• ..........  .  .
          REMOVE CONSUM removes consumption  from the model.
       What topic do you -wish information -on.	
QUIT
      This command terminates the program and  returns control to
 the  operating system.

 Syntax

•  •••':.. QUIT  •

 Example "-  -. •.• • ;

      Yes?  QUIT

      STOP' •'--'••• ••
                                78

-------
                            SECTION  6

                       PROGRAMMER'S  GUIDE
 INTRODUCTION

      This  manual  is  a  guide in bringing up PEST at a particular
 installation.   It is intended to offer the programmer an under-
 standing of the inner  structure and rationale of PEST.  PEST
 was- written in  what  we believe to be a structured and modular
 fashion.   This  design  allows a considerable amount of tampering
 without a•comparable'number of nasty'side-effects.  Thus, any
 user .seeing fit to change a process may do so without much
•grie.f.' If you  find  any inadequacies,  such as poor commenting -in
 a  portion  of  code or spaghetti code, please use the Software
 Report Form 'in  the back of this report.

      The pesticide model is written in FORTRAN IV, using reason-.
 ably standard features.  Any system dependencies, .are hopefully
 confined to the 'SPOO'subroutine, thus making'it easy for the
 programmer at. a ..particular site- to .add any system-dependent   • ••
 features  (e.g., file;openings, program profiling or timing, time
 of day printout,  etcl) according.to his sense of aesthetics.
                     i
      The adage  "Small  is Beautiful" applies to many of the com-
 ponents in PEST.   We have tried to keep the amount of code per
 subroutine down to- a-minimum.  This hopefully insures easy read-
 ing and understanding.        .
 FILE ..UNITS

   .. .PEST uses the following units for I/O:

     "'  1    Parameter index file
     .  .2    Rates of change of concentration
        .3   - Concentrations.   .    .     .
     ..... 4  ..-..Scratch file for conversions
        5    User input (terminal)
        6    User output (terminal)
        8    Help file'    •"  '  '       •
        9   .. Parameter; file (data)

      Files 1 and 8 are text files which are on your distribution

                                79  .

-------
 tape.   File 9 appears on the tape in alphanumeric form and must
 be converted into an unformatted file before use.  See the sec-
 tion "Building a Model" for a description of how to get the
 parameter file converted.      ..

      The parameter..index is used by the parameter editor, and
 each line of this file is in (Al, 6A1, 416)  format.  The first-
 column of this file is reserved for an end-of-file marker.—The
 next six characters are the names of editable parameters.  The
 four integer fields are the common block number to which the
 parameter belongs,  the row and"column sizes'of the variable (>1
 means it is an array), and the location of the parameter in its
 common block, respectively.

      Files 2 and 3  record the results of a simulation in unfor- :
 matted form for later use by the:TAB and PLOT commands, or any
 external routines the user may have.  The first record of these
 files is the pesticide name, as entered into the parameter PEST;
 the rest of the records represent values at a particular time
 during the simulation.-  Using-unformatted-FORTRAN-I/O-they con-
' tain, the .simulation'time as the first word,  and the next 16
 words are the values (rates or concentrations) for each of the
 state variables.  On some machines these values will require two
 or more words, since the term "word" is somewhat arbitrary to '•.••*'•
 begin with (specifically, DEC computers will use two words for
 these values, that  being the size of their real number).  Thus, ,
 it should be easy to save simulations for later examination
 merely by saving those files 'which were attached to FORTRAN    . :
 units, 2 and 3.  You ^should have 'enough informationnow to be    '•
 able to retrieve .the data in .these files for printing and plott-'
 ing, if you so desire.  Note that there are a varying number of •
 records .in each file, depending on the values of the STEP and
 TLAST parameters, so that any external routines you write for
 these data should.-use the "END-"  -construct.     ...  .  .....    .

      File 4 is a scratch file used by the subroutine TRVAL to
 perform translations from alphanumeric-to other modes .using
 FORTRAN I/O.   It is not an elegant way of doing things., and
 will probably be replaced. in the future.                        '••

      Files 5 and 6  should be associated with the user's terminal.

      File 8 is the  help file.  It is in the following format:    ;
        topic name              '.
        xl
        •        •               :
        xl lines of text
        •           	         J__

                               .-•80'

-------
         x2
         •
         x2 lines of text
         xn
         followed by xn lines of text
         topic name  -	   -  ;'	-
      In other words, the file starts with a topic  name.   The
 topic is divided into subtopics by putting lines in  which con-
 tain a number-of-lines-to-follow  (i2 format),  and  the subtopic
 name.  Then comes the specified number of lines, followed by
..another subtopic name, or a topic name, which  indicates  the end
.of the previous topic. "   -. '.'••'.  . . •  ••••;••.-.        "''    :"

 .-•••',•. --File 9 is..a. sequential, .access f i'le consisting'bf -5 'unfor-'•'•'
•matted records, one for each parameter common  block,  whose
 descriptions appear in the next section.  Note that  if you wish
 to change any of these unit numbers you should change the
 appropriate initializations in the. block data^  which  appears in
 p..main.. .ftn.                        • •
 COMMON SLOCKS

      The following common blocks are all declared in .the main
 program..  ' •'•'• . ''    ,'"•'"'            "  .        '

      DEBUG - contains the LOGICAL parameters  for the model,  and
 is' -read in by subroutine':PARMIO.  These parameters control- ice
 cover and debugging, of processes.  •.  :'   '• .  .:

      EATIT "- information from the CONSUM subroutine for use by
 other processes:." Contains consumption rates',  respiration rates,
..and,.grazing rates of various, .carriers.

......   DEVICE - contains one logical'variable which, if  true,  in-
 dicates • that 'the'user.wants"to produce"plots -on a graphics
 device.      !        .    '       :             .

 ', ••••  DRIVER-- is'a parameter "common..:b"Tock  read in by subroutine
 PARMIO.  It'contains'the .values of the driving variables, along
 with their times of: occurrence,., if., any:.•   •  .       .
      PFLAGS.- controls the printing of...compartment (carrier)
.pesticide, concentrations during:rsimulations.." Each, -element of
 the array in..PFLAGS is a. logica'l variable  corresponding to a  —
.particular i:state variable. __ If .its yalue_.is_ false., _ the	

-------
corresponding state variable is not reported on during  a  simu-
lation.  •        '            ... ,,.  .

     PLQADS  - in this common, block, is .stored the. .array..of load-
ings for the previous, time.. stepV :   '"..."".. •    ....  .'.......

     LODING  - contains..the ..ioadirigs" for. the' current time  step.-

    . MISC  •-  contains the alphanumeric parameters,  specifically
the titles for each ;of the .state .yariable,s,'-and. the name-of  the
pesticide.     '     .''." ••'"'-'•'"'•^""..-.'.  •"":':':'.•;•'''""•

     IOUNIT  - contains integers which dictate the  I/O units  for
various purposes..      '   ":'	

     REMSWS  - contains a set-of flags'which determine'if  a pro-
cess has been removed or not..  ; ,.

     RPARMS  - contains the .real'parameters for the model,  and  is
read.in by PARMIO;  these-are-mostly chemical-specific variables.
     SEG - reserved for expansion into multiple segments.

     SOLUTN  -  at  any one,.time ' this common block contains  the
concentrations of pesticide1,in. eachTstate:. variable.

     TIME -  the integer'parameter block,.vread in by PARMIO.  Con--
tains STEP,  TFIRST, ':TLAST, ..and: the number,s of each, of .the  load-
ings (driving  variables).'.''."•.:•. v •;,!..'':   1...^.:  //      . •'   '        i.


BUILDING A MODEL  .   •'•••• •'•••   • .}•        .,-.,.•.

     Each ..parameter file actually .defines a... different model,
since it contains chemical,  environmental, and biological  data  :
that change  from  system to system.  Any of the sixteen compart-
ments in ..PEST  can be redefined to represent another carrier  by.
resetting the  parameters for that compartment.  This makes it   •
easier to model what you want to model, as"long as. it falls  in-
to one of three categories:   ; plant," --animal, or non-living.      :

     Your distribution tape should contain a sample parameter
file for you to play with,  along with source code  for PEST,  the '
source code  for the parameter conversion program,  the"parameter
index file,  the help text file,  and the documentation.  The  tape
itself is a  1600  BPI,  EBCDIC tape formatted into fixed blocks
of 1600 bytes,  with 80-byte logical records  (FB(1600,80) is
the MTS designation),  unless otherwise requested.  Therefore, if
you're not sure of the format,  try the above.

     The very  first file on the!tape should contain an index .	
of what is on  the tape, and where it is__(in__the__form_of an_MTS  .

                            '•.;--.:% 2 •'•;.;

-------
command file, which should be documented well enough to tell you
what's going on).  As a backup, in case somebody fouled up, you
will be sent a copy of that index file along with the tape.

     The first thing you should do is get all the files off the
distribution tape.  Then, obtain the parameter file and prepare
it for use by PEST.  To do this, perform the following steps:
       1)  get the parameter file off the tape.
       2)  get the parameter conversion routine  (CONVRT.FOR).
       3)  compile and link CONVRT.FOR
       4)  execute the resulting program with unit 2 assigned
           to the formatted parameter file, and unit M assigned
           to the new unformatted file.
       5)  when the program asks "To Tape?", hit the return  key.

     The information in the new file is now usable by PEST,  and
this file should be assigned to unit 9.

• '"':•••'• At thi's point, you-can-compile -the-PEST program  (all  those
files beginning with "P" , and ending with ".FTN").  If you get
any compiler errors, call  (.518.), 270-6494 or send us-the  Software
Report Form in the back of this report.  We are striving to  make
this program as portable as possible.

     You. have a choice at this point.  The SPOO subroutine is a
program designed to make the. environment as comfortable  as the
programmer wishes. ! We use it to convert all input to upper
case, and :to assign unit numbers to files, so .that the user     .
does not have to.  If you don11. want the subroutine around, 'you •
can delete the call to .it which :occurs in-the main program.
                               83

-------
                           ••'SECTION ?•••••

                           REFERENCE'S.
 Akisada, T.  Colorimetric.Determination of  Tetrachlorophenol and
      Pentachlorophenol  in: Commercial PCP..   BUnseki Kagaku,
      13:547-553, .1964.  ..=;  •'..••      ^  ;.   :   .,-.'.

 Albanese-, J.R.  A  Simulation Model for Coastal Zoobenthic
      Ecosystems..,   Report-16 r-Center for Ecological-.Modeling,
      Rerisselaer Polytechnic institute, Troy,  New York, 45 pp,
      1979v - •••'-    ' ••'•'._' '   _ '  "': :  "    '-'.  -  ':

 Albanese, JiR., C.D.  Collins, C.  I.  Connolly, B.B.  MacLeod,
      and R.A.  Park.  The Potential ,Role..,of Ecosystem Models.  In
      H.-Gi • Stefeh  '(ed.) Reseirvoir :Management 'Surf ace Water
      Impoundments, 1:576-584,.. 1981V':-?-'  ^;vv:.--

 Aly, O.M., and S.D.  /Faus.t. .'.'Studi'es'Ion the^Fate of 2,4-D and
   .   Ester Derivatives  in Natural^Surface .Waters. .J.  Agr.
  . ./-Food Ghem.., -'12          '
 Armstrong:, D-.E-.. . and  G;   Chesters.  'Adsorption Catalyzed .
      Chemical Hydrolysis of Atrazine.  iEnvir.   Sci.   Techn.,,
 . ,.• Current,.Research.,-s2: (-9) : 68 3r6 8.9.^.^1968. '.:,,;:   v  ••-••'.   •''.,.   .  .
 .  '  "         ,•   . '• •     '    . •   ' ' i  ''   •'.,'.'•" " • "-•'•'"
      ,   ..•• > .and RVFy..-; Harris1*,; 'Atrazine;:Hydrolysis  ^in Soil.
 ' '    In:  Praceedings-.of Soil Science-..Society  of  America,
      31:61-66,  1967...  ;.'.  ....,.._  ;..--.    '"".._    .  '•'_;   .          -

 Baughman, .:G^L. " and L.A.  Burns.   Transport and Trans format ion
 . .. : .of :Chemica.ls .in  the; Environment;... .A .Perspective, ;::'Int.
'•';.'-".'  Handbook'pf," Environmental •''Chemistry,-''Vol.  2-', 'Part A:   '.•"•',
      Reactions, and Processes, pp,  .1-17, 0.  Hutzinger, ed.
    •  Springer Verlag, 1980.

 Bener, P.  Approximate Values of ^Intensity of  Natural
      Ultra-violet Radiation, for Different Amounts of Atmospheric
      Ozone.  U.S.  Army  Repor-t-DAJA :37-68-C-1017, Davos Platz,
      Switzerland, 1972.    4^11'   >

 Boval, B.  and J.M.  . Smith'£*' Photodecomposition of
      2,4-dichlorophenoxyacetic Acid.  Chemical Engineering
      Science, ;28:1661-1675, 1973.

                                'V84:

-------
 Boylen,  C.W.   and T.Do   Brock,,   Bacterial Decomposition
      Processes in Lake  Wingra Sediments during Winter.
      Limnology and Oceanography, 18:628-634, 1973.

 Branson,  D.R.   Predicting the Fate of Chemicals in the Aquatic •
      Environment from Laboratory Data.  In:  Estimating the
      Hazard of Chemical Substances to Aquatic Life, J.  Cairns,
      Jr., KoL.  Dickson, and A.W.  Maki, eds.  ASTM STP 657,
      American  Society'for Testing and Materials, 1978, pp.
      55-70o

 Brock,  T.D. High Temperature Systems.  Ann.  Rev.  Eco.
      Systems,  1:191-220, 1970.

 Burns,  L.A., D.M.  Cline and R.R.  Lassiter.  Exposure Analysis
      Modeling  System (EXAMS):  User Manual and System
  "'..'  Documentation, in  press, 443 pp.

 Chiou et al.   Partition Coefficient and Bioaccumulation of
      Selected  Organic Chemicals.  Envir.  Sci.  Techn.,
      11(5) -.475-478, May 1977.

 .Clesceri, LoS., C«,W8 Boylen and R0A0  Park.  Microdynamics of
      Detritus  Formation and Decomposition and Its Role as a
      Stabilizing Influence in Freshwater Lakes.  Rensselaer
      Fresh Water .Institute, at Lake George, Rensselaer
      Polytechnic Institute, Troy, New York, FWI Report #77-12,
      1977,  102..pp. -,             ;    .            :              '

 Cohen,  Ye,  W.   Cocchio, and D.   MacKay.  Laboratory Study of
      Liquid Phase Controlled Volatilization Rates in the
      Presence  of Wind Waves. .Envir.  Sci.  Techn.,
      12(15):553-558, 1978.   ...

"Crosby, D.G. •  The Photodecomposition of Pesticides in Water.
      Advances  in Chemistry Series Num. Ill, 1972. .

  '•".•  •.,  and .A. S.  Wong.   Phbtodecomposi-tion of
      2,4,5-Trichlorophenoxyacetic Acid  (2,4,5-T) in Water.
 • <•;   Agri.   Food-Chem. , 21-: 1052-1054 ,rT973. '"   •.--••••-  •

 Crurn-Brown, A0, and'T.   Fraser.  Trans.  Roy.  Soc.  Edinburgh,
     . 225:151r-693, ,18690
                     I     •    .*-.)•'.       .      -• •            '
 Fagerstrom, T., and B.   Asell;   Methyl Mercury Accumulation in
      an Aquatic Food Chain,.A Model and Some Implications for
   . .Research  Planning.  AMBIO, 2(5), 1973.

 Gibson, W.P.   and R.G.   Burns.   The Breakdown of Malathion in
      Soil and  Soil Components.   Microbial Ecology, 3:219-230,
      1977.  .              .                     '

                                :85

-------
Green, A.E.S.  Solar  Spectral  Irradiance Reaching the Ground.
     In;  Program  and Abstracts on Nonbiological Transport and
     Transformation of  Pollutant's on Land and'Water:  Processes
    .and Critical  Data  Required for Predictive. Description.

Haque, R.  Role\ of, Adsorption-  'in, Studying -the Dynamics of
     Pesticides.   Plenum Press, :New York, -New.Yprk>'':'19.74.-     ".;..

Hautala, R.R.  Surfactant Effects on Pesticide Photochemistry in
     Water and Soil.  Environmental Research Laboratory Office
     of Research and  Development, U.S..  Environmental Protection
     .Agency, Athens,  Georgia,  EPA-600/3-78-060,  1978, 71 pp.

Herbrandson, H.F., W.   Reeves, E.M.  Partain III, and F.H.
     Feher.  Catalysis  and Inhibition of the Hydrolysis of the
     Pesticides Atrazine and Carbaryl by Micelles.  Final Report
     on Grant No.  804820020,  Environmental Systems Branch,
     Environmental Research Laboratory.,. Athens,  Georgia, 15pp.,
     1977.         '.,'.''••••    i ' -•••• ••••••          •     '

Horvath, R.S.  Microbial Go-Metabolism and the Degradation of
     Organic Compounds,  Nature, 36(2):146-155,  1972.

Jaffe,; H.H.  'A Reexamination of Jthe Hammett Equation, Chem.
     Rev..,. 53:.;191-261,:::1953'.   '  ! .3 '  ,- -  '  .     ..-	"••   •

Kapo.or.,- I.P., R.L.  'Metcalf, A.S. "Hirwe> JiJ.   -Coats, .and .M.S.
     Khalsa.. Structure. Activity Correlations .of   ...         ,  ,
   .  .Biodegradability ;of DDT Analogs.  J.  Agr.   .Food. Chem.,
,.  . .  .21(2)5310-315, ,1973.. •.;;,,:,|V;.  -..Vv... :..;..,':.   ••         ';

Kenaga, E.E., and  C..A.I.  Goring.  Relationship .Between  Water  .
'"'"'','.' Solubility, 'Soil Sbrption,. :Octahol-Water Partitioning, and
   "' Concentration of •Chemicals ;in Biota.  In;   American Society
    ' for Testing'and  Materials, ;JiF.-  Eaton, P.R.  Parrish, and-:
     A.C.  Hendricks, eds., .1980, pp...  78-115.    .  .    .   .      ;

_^	,  Partitioning  and Uptake,of Pesticides in .Biological
     Systems.  In;  Ehvironmental'Dynamics of Pesticides, R.
     Hague and V.H.   Freed, eds;  Plenum Press,  New York, New
     York, 1975, pp.  217-273.. i

Ketelaar, J.A.A.   The Hydrolysis of  .                           •
     001-diethyl-and-dimethyl^011-p -nitrophenyl Thiophosphonate
     (Parathion and Dimethylparathion (EG 05)).   Lab .for General
     and Inorganic Chem.  of the University of Amsterdam,
     615.779:54, 1950.        .  j

	, and H.R.  Gersmann. Chemical.Studies on Insecticides VI.
     Recueil, 77:973  and Base  Catalyzed Activation Energy, Table
     I, 976, 1958.              j
                     •           f

                               86::

-------
     V       ,' and'M.M.   Beck. ""Metal-Catalysed"Hydrolysis of
     Thiophosphoric Esters, Nature, 122:392-393, 1956.

Khan, M.A.Q.,  A.   Kamal, R.J.  Wolin, and J.  Runnels.   In  Vivo
     and  In Vitro Epoxidation of Aldrin by Aquatic Food  Chain
     Organisms.   Bull,   of Environmental Contamination and
     Toxicology,  (4):219-228, 1972.

Khan, S.U.   Kinetics of Hydrolysis of Atrazine in Aqueus Fulvic
     Acid Solution.  Pestic.  Sci., 9:39-43, 1978.

Konrad, J.F.,  G.   Chesters, and D.E.  Armstrong.  Soil
     Degradation  of Malathion:  A Phosphorodithioate
     Insecticide.  Proc.  Soil Sci.  Soc.  Amer., 33:259, 1969.

Kubitschek, S.I., and H.E.  Bendigketi.  Latent Mutants  in
     Chemostats.   Genetics, 46:105-133, 1961.

.Lassiter, R.R.  Evaluative Model for the Fate of Mercury in
.   .  Aquatic Environments.--. Interim Report, AERL Task 302,	
 ...   Program Element IBA609, The Environmental Protection
.'.'".  Agency, 1975, 8 pp.             •'

______  G.L. .Baughman,  and .L;A. • Burns.  Fate of Toxic Organic
     Substances in the Aquatic Environment.  In;
•  ••'•' State-of-the-Art in Ecological Modeling, .S.E.  Jorgensen,
  • :  edo, Int.  Soc.  Ecol.  Mod.., Copenhagen, 1978, pp.
•     .219-245.. '    ..  -  ..,.,,..; • '  !... ,..,   .; ;.',=.-    ,.   .     .        ;

;Leo, A.,, G.-- :Hansch, and D: ' Elkins.  Partition  Coefficients  and;
!     -their uses,- Chem..  Rev., ••'••71:525-616, -1-971.  '•'''.'          I

•Leung, ,D.Ko.-Modeling the Bioaccumulation of Pesticides  in  Fishor
:  ...;..  Report. #5, Center for Ecological Modeling,  Rensselaer
     'Polytechnic  Institute, Troy, :New York, 1978, 18 pp.

:__	, RoA.   Park, C.J.  .Desormeau, and J.  Albanese..
     .MS.CLEANER:  .An Overview.  .Proceedings Pittsburgh Modeling
  ...,:'  and  Simulation Conference, .:8 pp., 1978.    • .... _.,      .'.'...- .•

Li,  G.Co, and G.T0  Felback, Jr..  Atrazine Hydrolysis'as
  —  Catalyzed by Humic Acids..  'Soil Sci., 114:201-209,  1972.

"Lis's'^-P." Processes of-Gas Exchange Across an- Air-Water
'./:•" •....•Interface/; Deep-Sea Res., -20 (3) :221-238, 1973..   .  .    ••

:Lockhart, ••w;Li,""D.A. 'Metner, and J.  Solomon.   Methoxychlor
    .; Residue .;.Studies in.r Caged, and Wild Fish from the Athabasca
     River,'"Alberta, Following a Single Application of Blackfly
     ..Laryicide.  J.  Fish.  Res.  Board Can.,  34:6.26-632, 1977.
                               •87

-------
 Mabey, W.   and  T.   Mill.   Critical Review of Hydrolysis of
      Organic  Compounds in Water Under Environmental Conditions.
      J.  Phys.   Chem.   Ref.   Data, 7 (2):383-415, 1978.

 MacDonald,  D.B.   Coralville  Water Quality Study, Water Year
      October  1,  1977  to September 30, 1978.  IIHR Report No..
      222, Iowa  Institute of  Hydraulic Research, The University.
      of  Iowa, 1979.'  ;        "'•"'      -——	-	 --..    	 -:

 Macek, K.J., 'M.E. .  Barrows,  R.F.  Frasny, .and B.H.  Sleight  III.
      Bioconcentration of 14C-Pesticides by Bluegill Sunfish
      during Continuous Aqueous Exposure.  .'In;
      Structure-Activity Correlations in Studies of Toxicity  and
      Bioconcentration with Aquatic Organisms,  G.D.  Veith and  D.
     . Konasewick,  eds. , 1977.   .; .

 Mackay,  D.  and .P.J.   Leinonen. j Rate.of Evaporation of Low
      Solubility  Contaminants from Waterbodies to Atmosphere.
      Envir.   Sci.   Techn., 9:1178-1180, 19750

 Merkel,  G.J.  and J.J.  Perry* .^Increase -Cooxidative
 :     Biodegradation of Malathion.  .Soil via Cosubstrate
      Enrichment,  25 (5) :1011-1012;,. 1977.    .,/  .
 Meynell, G.G. '  Bacterial Plasmide.  The MacMillan Press, London,
      1972.   ; '   .-...,-.  •;; ..'..  ••;• .;•'.....,,•. ••:..-.., •';•••

 Mortland, M.M. .  and  K.Vi^Raman,.'-.'.'Catalytic ;Hydrolysis-"of Some  ' :
      Organic Phosphate Pesticides .by Cu(.II) .  J.. . -Agr.  Food    :
      Chem., 15                          •
 Neeley, W.B. :  and  G.E.   Blau.  .The Use of Laboratory Data to
      Predict 'the bistributon of. Chlprpyritos in a .Fish Pond,
 ; ••   ,:i977.   ;   . ,• ••••••'•- •:.   •.. ' ••-.;:.•: -..-,  ., -. ••.. ••:•.-  .--.',-..-. •

. Nicol, J.A.Cv   The Biology of Marine Organisms.  .Iriterscience
      Publishers, Inc.,  New York, New York, 1960, 707 pp.

 :: O'Neill, R.V.,  R.A.  . Goldstein,  H.H.  Shugart and'J.B.  Mankin.
      Terrestrial Ecosystem Energy Model.  Eastern Deciduous
      Forest Biome  Memo  Report.#72-19, -1972.
      . •      ' ,    " .•      '     -• '  I '' "••' " - •   •'"•"•'  -  •     •    ' '
 :0nishi, Y.  and S.E.  Wise.  Mathematical Model, SERATRA, for.
      Sediment  Contaminant Transport .in Rivers,  and  Its
      Application to Pesticide Transport in Four Mile and Wolf
      Creeks in Iowa.   1979. .  .-|    .        '

 Othmer, D.F.,  and  M.S.   Thakar.  : Correlating Diffusion
      Coefficients  in Liquid.  Ind.  Eng.  Chem., 45:589,. 1953.

 Park, R.A., C.D.   Collins,  C.I.-Connolly, J.R.  Albanese, .and—-

-------
       B.B.   MacLeod..  Documentation of the Aquatic Ecosystem
       Model MS.CLEANER.  A Final Report on Grant No.   R80504701,
       U.,S.  Environmental Protection Agency,  Athens,  Georgia,
      "112 pp.  1980.

 Park, R.A., B.H0   Indyke, and G.W.  Heitzman.   Predicting the
       Fate  of Coal-derived Pollutants in Aquatic Environments.
  ~" " "jEn:Mitsch, W.J., Proceedings, International Symposium 	
       Energy and Ecological Modelling, in press.

 Park, R.A., B.B.   MacLeod, C.D.  Collins, C.I.   Connolly, and
       J.R.   Albanese.   An Aquatic Ecosystem  Modeling Package for
       Minicomputers.  A Final Report on Grant  No.  R806299010,
       U.S.   Environmental Protection Agency, in  prep.

 Perry, J.H., ed.   Chemical Engineering Handbook, 4th Edition.
... ...   McGraw Hill, New York, New York, 1963.

 Perry, A.S., and A.  Gasith.  An Integrated Study of
'••"•'»".'.'V:'.. Substrate-Biological. Species Interaction in an ..Aquatic ""
'•"- ''  ':' '"Ecosystem.  I.  Fate of..,Para.thioh in' Fish  Pond Ecosystem.
       and  Its Impact on Food-?Chain Organisms.  Working Paper No.
:       16,  Internal, Research Contract No.  1724/RB, IAEA, Vienna,
    '•'". ' 1978.     .             /. .„' ": •  -.'.' '

 Sabersky,''R.H.   and A.JY  Acosta. -Fluid Flow,  a First Course in
       Fluid Mechanics o  MacMillan Co.:> New York, New York-, 1964,-
    • ...393  pp. . • ..   .'..,. ..;,.-.; -;,..),	.;,:•• ...•. .....:,-,... -,  .-...   .  . :.   .

 Scavia, D.  and R.A1.   .Park.  Documentation  of Selected
       Constructs and Parameter Values in the Aquatic Model
       CLEANER.  Ecological Modelling, 2 (1):33-58, 1976. .      .

 •Schnitzer, M. and S.U.  Khan. ••••Humic Substances  in the  .
      . .Environmento  Marcel .Dekker, New York, New York, 1972.

 Schnoor,  J.L.,  D.C.  McAvoy, C.E.  Rviz-Calzada, and M.R.
       Wiesner.  Verification of a .Pesticide  Transport, and
 •  .    Bioaccumulation Model.- -U-.S.  Environmental Protection
 -•••:•-••••..Agency>.•••• Off.ice of Research and Development, Athens,
   ;...-.  Georgia, 60 pp,   1979.   .   '   '  •.;.'•'•"'.;

 . Sharma, D.D.. , .Evaporation Rate of Toxic Materials.  M.S.
 '..  '.-'Thesis, Rensselaer "Polytechnic Institute,  Troy, New York,
 "";';; .  68;'pp../ i. 197-9, ,   '  . . .' ..    .-  .   ' .....' .. .'.

 •Skipper,  H.Dj,  V.V.  Volk, M.M.  Mortland,  and  K.V.  Raman.
   ': ;'  HydroTys'is of Atrazine on Soil Colloids.  Weed -Science,
       26:46-51, January 1978. ..
                                89

-------
 Smith,  J.H.,  W.R.   Mabey, N.  Bohonos,. B.R^  Holt, S.S.  Lee,
      T.K.   Chou,. D.C Bomberger, ..and T.  Mill.  Environmental
      Pathways of  Selected Chemicals in Freshwater Systems.  Part
     . I:   Background and Experimental Procedures.  Envir.
      Research Lab., EPA-600/7-77-rll3, Athens, Georgia, 1977.

 Smith,  W.F.,  Jr.>  J. "Amer."  Chem.  Soc., 94:186, 1$72.

 Stanton,  R.H., and M.A.Q.  Kahn.  Mixed-Function Oxidase
      Activity'Toward Cycldiene Insecticides  in Bass and Bluegill
      Sunfish.  Pesticide Biochemistry and Physiology, 3:351-357,
 - •    .1973 ;••"• : •• -    • •.--.; . •-..       •	...-••  .  .•-•• '  '"'

 Steelink,  C.   Humates and .Other'Natural Organic Substances in
      the  Aquatic  Environment.  University of Arizona-,• Tucson,
    .  54(10} :599-603_, 1977.     ..'...,           .

 Streeter,  H.W., C.T.  Wright'and R.W.  Kehr.  Sewage Works
      Journal, 8(2), March 1936.1.'.".  .      .  .  ,

.Sutherland,  R.P. .  Determintaion:-of Henry'-s Law Constants.  M.A.
      Thesis,  University of Toronto, Toronto, Canada.  1978.

 Thomann,  R.V.1  Size Dependent Model of Hazardous Substances in
      Aquatic Food  Chain.  Final :';Report on Contract No.
    ,  R803680030,  EPA-600/3-78-036, U.S.  Environmental
      Protection Agency, Duluth,.Minnesota, 39 pp., 1978.

 Walker, W.W.;  Chemical.and Microbiological Degradation of     •
      Malathion and Parathion. an an Estuarine.Environment.  J.
      Environ.  Qual..,' 5 (2) :210-216, 1976. :     .   ;

 •	r  Insecticide . Persistence" in Natuif'al .Seawater' as Affected
 • .    by Salinity,  Temperature, .and ^Sterili-ty.  EPA-600/3—78-044,
     : Env.   Res^ .Lab.,  Office of Research and Development, U.S.
.. .. •,   Environmental -Protection•-Agency';-. Gulf of Breeze, Florida,  :
      25 pp.,  1978. .  .'-.'•  -.;.',{•••. ; •  -.'•-•• -.-.  .... •:. _•• .

 Weininger,  D!  Accumulation of PCB's by Lake Trout in'Lake
      Michigan. Ph.D.  Thesis,'.University of Wisconsin-Madison,
      1978. .  ,    '•.•;.-  .•-.!•..:••;:•.••            •      •

 Wetzel, R.G.'  Limnology.  W.B.  Saunders Co.; Philadelphia,
      Pennsylvania, 743  pp.,  1975.    ...

 White,  J.L.   Determination of Susceptibility of S-triazine
      Herbicides to Protonation and Hydrolysis by Mineral
      Surfaces. Arch.  Environ.  Contam.  Toxicol., 3:461-469,
      1976.             •  :

 Whitman,  W.G.  The Two-Film Theory of Gas Absorption.  Chem.  --


                               90'

-------
      Metall.  Eng.,  29:146-148, 1923.

 Wolfe, N.L., R.Gc   Zepp,  L.   Baughman, R.C.  Fincher,  and J.  A.
      Gordon.  Chemical and Photochemical Transformation of
      Selected Pesticides  in Aquatic Systems.   EPA-600/3-76-067,
      U.S.  Environmental  Protection Agency, Environmental
      Research Laboratory, Athens, Georgia,_JL976.

       	, and  DoFo Paris.  Carbaryl, Propham and  -
      Chlorpropham:   A Comparison of the Rates-of  Hydrolysis and
      Photolysis with the  Rate of Biolysis.  Water Res., 12:565,
      1978.

 	, 	,       , RoL.  Baughman, and R.C.   Hollis.
      Methoxychlor  and DDT Degradation in Water:   Rates and
      Products„  Environmental Research Laboratory, UoS.
      Environmental Protection Agency, Athens,  Georgia, 1976„

 	,      ,       ,  	, and :	_.  Methoxychlor and DDT
.  ••   Degradation  in Water: " Rates and Products." "Envir.  Sci." ••
,'"'   'Techn., 11:1077, 1977.  -..,.,..•:     .....

 Ydshida, T:, andT:.F... .Castro...'..,Degradation of 2,4-D, 2,4,5-T,
      and Picloram in Two  Phillipine Soils.  Soil  Sci.  Plant
      Nutr., 21(4) :397-404., 1975.    ......•.,  .

 Zepp, E.G.  and D.Mo  Cline.  Rates-of Direct  Photolysis in
      Aquatic .'Environment e:  .Envir. -Sci.  -Techn.,  11:359-366,
;'. .,'-1977..  ..-'.•'.•.-.:. •V-:--;'^...-"'v'/i;  :'VX^'-.-^/ .-.-s" •':>•••': -•'• •  '''' '-. ':

;.  '."  , N.L.;:- :Wolfe, ..J..Ai-, Gordon, andv.G..L..,.. Baughman.  Dynamics
• .  . . .of 2,.4-D Esters in .Surf ace "Waters,..Hydrolysis, Photolysis,
|. ."'.' and:^ Vaporizat'ionv'''Envir i-'7Sci':e':':;'- Techn.,:'9 :1144',- 1975.:   "•'

                 l.L.  Baughman-.'.and :R..C:;.  Hollis.   Singlet Oxygen
      _
      .in Natural  Waters,.;Nature,::1267:421-423,  1977
                                 91:

-------
                                                 APPENDIX.A  .        '               .:/"•;

           Parameters  and  Loadings  used in Simulation of  Pond  A~l,  Dor,  Israel
     HE»OIP:
    TIDE  rocpi  «noas  C»BP   sicusp cue sup tmri   Pen   CLM
     PEST  :       ,
            J»7,13B»Il
     tltLEl:
    TOOt I
     111112:
    8BDGS
     111111:
    CHRP
     TI1LE1:
    SICABP
     UitE5:
it    TI1LE6:
   .rum

Si    TMlEl!
fi   «7»

Si    IMLIB:
     tltttl:
      tflLEB:
    FHI1C
      T11LIC:
    nucnc
      TlltEC:
    BUI IB
      IITLEE:
    
      tllLEf:
    FOR

-------
     -•'iiitioiv' ••;"• •-. -; -'i '•'-.   '•
     ct»f  '     vvT-:  .-•-••  •'  ••'-••
    Ct»f
    •tint

      pooiil  :  •-,    '  :'-  >'
     0.20'OE-flt.. '0.20QE-01

      00002. ':' ;.  ••'."  :'   •;•   :
      i.oo'   •  '-•.  ...  '    !
     0.151  .  ;  O..fl51  '.   '. O.'.«5l      0.1(51    .   O.»5l      0-151 •     O.«51    .   0.151      0.951      0.151


     0.280E-02   0.280E-C2  C.260E-02  0.250E-02   0.2HOE-02  0.230R-02  0.220E-02  0.210E-02  0.200E-02  O.I^OE-02   0.1SOE-02  0.152K-02

      B»CB   :
     0.200E-02   0.100R-C2  C.500E-02
8DIN1 :
0.0
BDSI.P :
0.0
0.0
0.0
0.0
• o.'.o
0.0
0.0
. "o.o
• o.o
0.0
0.0
0.0
•0.0
0.0
0.0
0.0
0.0
0.0
0.0
      BIDC2  1                        ,                    :  .
 .I;  O.SROE'CH   0.588E«C
-------
vo
0.300
0.0
0.300
0.0
8.300
0.0
0.300
0.0
0.300
0.0
0.300
o.o
- .00
- .00
- .00
- .00
- -00
- .00
-1.00
-1.00
ElAH :
0.480E>04
EH :
OiU7E»05

ESfCF :
0. 1001-02
OilOOE-07
FEDSRIt
1,00
FB»I :
0-600E-01
n» :
0.0
HE :
0.0
nERPt c
0.607(-05
IlflEftS:
0.300EH4
Kit :'
0.0
KB :
0.0
KBTBIR:
6.00
1.00 • KOO V-'- 1.00 ' 1.00
..**•• • .
0.300 . C.300 - ".0.300 . 0. 30O

0.100 1.00 1.00 1.00

0.100 1.00 .. 1.00 ,1iOO

0.100 1.00 '•'. 1.00 1.00
• '.- •_• • .
0.100 1.00 .' - -1.00 . 1.00
. '- «'• •
-i.oo -i.oo i'-.-i.ob;. •M.QO
;'•-- •'.'-'•
-1.00 -1.00 ' "^I.OQ7 -1,00.

-i.oo -i.oo . . -i.oo -i.oo

-i.oo -i.oo ; .--LOO -KPO
. . - '
• ;.: ' •
0-»50B»01 0.125E»01 0.375I!>04 0.325E>

o.i67E«05 o. i67e»os .p. isojefos •'.'.;'
- • •' . -.'.-• •;• • •" • .
	 _ - • . t .
• . ' '.'.•'•. ... .':
p".ibOE-07 0. JOOE703 . Oi300E^03 .'0. J~PBC->
' ' -. :' '.- " .: - '• • •." ^
o.o o.o :: .0.0 ! OiO ;.'

1.00 1.00 :' 1.PP ••••.' .|ii)0
: ' - V. "- '":"'
o.o o.o p.O ' : ';.'"

0.0 0.0 OiO .

•:.-.•• ••;•- . ••
* t- •. . ,'

•' ;'• .
o.o o.o o.o '• . 'i

0.0 0.0 0.0

6.00 6.00 6.00:. 6.00
i.oo -i.oo -i.oo -i.no .-i.oo o.fl i.oo

0.300 ,-1.00 -1.00 -1.00 -1.00 0.0 O.O

uoo -uno -i.oo -i.oo -i.on o.o o.o.

i.oo -LOO -i.oo -i.on ri.oo o^o o.o

1.00 -1.00 -1.00 v '-IwOO- :-1.00 0.0 0.0

1.00 .-1iOO -UOO —1.0Q -1.00 . 0.0 0.0

-i.oo -i.oo -.U'oo. • '.-i.oo - -.-i.oo : -T.OO . Ti.no

-i.oo . -i.oo -liflo . . -i.oo -1,00 ' -i.oo -i.oo

-i.oo " -!l.oo- -l.bb '• ' -i.oo ' -i.oo -1:06 . -1.6.0

-1.00 : -1.00: . -1.0P :.;: -1.00 . -1.00 : -V.OO.' -1.00
• • : .-.' •'• '• : -';- .'.-''.'' :'•-••''••' :•- '" '" • ' •••• .-' •. •
.- . . '••" • .'•• '• '• • \:. :- • '• • •• -. ' ' '• v • " • ' • : ' •••'' . '.'. .'
01 0.275B»0 '••' " '•'• ' '• ; • ' '••';'•*•"••''•'•




6.00 6. OP A. 00; 6.00 6.00 6.00 . 6.00

-------
   ncn   !••••'•••.
 O.p.    '  •  0.0   /     0.732   .    0.201E-OI
  o.joot-or  •"
  0. 157E-05 .      .:'.              . •

   iilt'r ':''•'.;'-.'  '   ' '   •''•:.
  0^0  '   '.'   0.0  :.:'•  .:  0.0      f; 0.0

   '     '•.   . '  ;•    '...'.   :  •'•
             '       ••'      -     '  •   :  •
   RIFO .::     .:  •   .-         :  ;• '                '          :             .
   6.00.'  .   6.00. •':   ;•  6.00   .':    6.00,  ;     6.00       0.100', . _.  „._/'                   .

   KEicn :
  0.300,.  •  0.300      V 0.300   ;.  ' 0.300  ,•    0.300       0.300       ! 1.00        1.00        1.00        1.00

   MI  .'• :* '"•";  :•   ;  ••    •.  •     •'•:•': ..  •    '•'''••    ••"'.   •     -        .      . •.
•  o.'    •  ••'. •  o.- •.;•••   o.o              '          '
•;0.0
V0..;  j'-  p.500E-C  ;.   -   -     '•'•  ••'•='..  •:  f  V '.':.-.          '.-•-..
          KO    :
         0.302E-02   p.36/IE-p2   C-361E-02  0.36«Erp2              '.''....
KC2 ' :: '
0.100- ;>,;
•', :' .-(
FOH ' S: '
Kt . • J
o. o ' -:
ieb.
i.oo '"
KRtSE I
0.250
Its :
• 20.0
KT :
1.00
o.p- •;-...•' o.tooB-oV 6.«ooB-oi' O.HOOE-OI b.iboi
H3.2. ] . «3.2 •:' .«3. 2
0.0 . ' : 0.0. : 0.0
70.0 70.0 6.51
1.00 1.00 1.00
0.100 0.350 0.350 0.350 0,350
20.0 20.0 . '
1.00 1.00 1.00
                                                                                     0.0         0.0        0.0         0. 200E-01  0.500B-00
                                                                                     o.o         o.o        o.o
                                                                          1.00        1.00        t.OO        1.00
 0.10UE-0)  O.IOOE-C1   0.100E-01   0.100E-01   0.100E-01   0.100R-01    1.00        1.00        1.00       1.00

-------
vo
KTf :
1.00
KTMIIP :
6.00
I milt:
0.200E-01
(IEin*I:
10.0
HKC2 :
0.200E-01
nnot :
2.00
KGlCd:
291.
HOED :
0.0
CCCRD :
-1.00
-1.00
-1.00
-1.00
-UOO
-UOO
-1.00
-1.00
0. 302E-02
0*0
0.0
0.0
UOO
0-2BOS-02
0-150£»01
0.3001 Ml
0.0
2.00
10.0
uoo
0*100
-uoo
-uoo
0.0
0.0
-uoo
-uoo
-uoo
0.600
0.200
0.100
t.oo
0.0
1.00
6.00
10.0
O.ZOOE-01
2.00

-1.00
-1.00
-1.00
-uoo
0.600
0.100
0.100
o.ioo
0.3611-02
0.0
0.0
0.0
uoo
0.260C-02
0.125E>0«
100.
0.0
0.313Er01
20.0
UOO
0.100
-uoo
-uoo
0.250E-01
0.0
-t.oo
-uoo
-uoo
0.100
0.200
0.100
uoo
0.0
uoo . •;"-
10.0
0.200B-01
2.00

C. 1 00
o.ioo
-uoo
-uoo
-1.00
-uoo
0.0
0. 1 30 ,••
0.361E-02
0.732
0.0
0.0
1.00
. 0.250F-02
0.375B101
0. 1IOE-03
0.0
0.33IE-01
20.0
1.00
-UOO
-1.00
0.0
C-0
0.0
-1.00
-uoo
-uoo
o. too
0.200
-uoo •
1.00
I.OO
uoo .
6.00

0. 200 •"•;
0..200 •"•
6.200 -
0. 200:
-1.00 ":
-1.00 :
-uoo: :•..-.
-UOO . .
0. 361B-02--
0. 201E-.OK
o.o •
0.0 -"•-
1*00; •
0.210t-r02
0.325B»0»
0.0 ,
0.0
0.'J33Br'01
20.0 :•".
Uoo ; •
-uoo . :
-UOO '
0. 230F>01
0.0
0.0
-uoo- .: -
-uoo •;••": .
-uoo
0.100
0.200
-1.00
uoo
0. 100E-02
6.00

0.390
0*250
0.100
0.100
0.100
6.100
-uoo
.'tf.06
%J: '!''-
6.167E»05
6.o:: .:
Oi'O
0.607E-05
6. 2308-02
0.:275E»0*
7.00
0.0
67.0
6'. 00 .
290.
•rUOO-
oio •'•
o.o
o.o'
-i.oo
-i.oo
-i.oo
-uoo
0.100
-uoo
-uoo
uoo
0.900E-02
6.00 .

-uoo'-
-uoo
0.600B-01
,1.00 ':
1.00
1.60
•1.06 -•
1.00
o.o •'---•'
0.1678*05
O.o
0.0 • .
. 303. . :
0.2208-02
0.23r.B»0«
0.100
0.0
0-0
6.00
298.
-UOO
0.250E-01
0.0
0.0
-UOO
-1.00
-1.00
-1.00
o.ioo
-uoo
-uoo
0.0
0.900E-02


uoo
uoo
UOO
uoo
uoo
0.0
0.0
0.0
;6.0 .- •'• '••
0.157E»05
0.0
0.0 " ;
1».8 '
0.210E-02
0.200E>04
0.0
0.910ErOl
0.0 .
6.00
29B.
0.0
0.0 ': .
O.O
- .60
- .60 .
- .00
- .00
- .00
- .00
- .00
0.600E-01
0.0
o.'04
0.0
0.0
0.200E-02
6.00.
29B. •
0.250
0.0
0.0 .
- .00
- .00
- .00 ;
- .00
- .00
- .00
- .00
.00
0.0
0.900E-02


0.9008-02
0.900B-02
0.900E-02
0.900E-02
1.00
UOO
.1.00.. ..
1.00
; »3.2 . ;
o.o
0: 0 :.-
0^ 0
i.oo
0. 190B-02
0. 155E«0«
0.0 '
0.0-
0. 100E-02
9.00 '
0.100B-OI
0:200
0.0
-i.oo
-1.00
-1.00
-uoo
-1.00
-1.00
-1.00
0. 390
1.00
0.0
1.00


0.0
0.0
O.'O
o.o
o.o"
0.0
o.o-
o.o'
13.2
0*0 .
0.0 :
o.-o
11"'.-
0. 1BOB-02
0.110B>01
o.o
O.o
0.500E-02
9.00
0.150
0.200
0.0
- .00 .
- .no ;
•'•- iOO
•- .00
- .00
- .00
- .00
0* 250
uoo
0.0
1.00 .


0.0
0*0 .
0*100
'0.0 . .:
6.100E-01
o.nooE-Oi
0. 100E-01 -
O.nooE-or
13.2! .
0.0
0.0
.0.0
.0. 100E-02
•0.1528-02
no.
0.0
2.00
10.0 ..
9. 00
o.ioo :
0,200
-uoo
-UOO:
.0.0
-1.00
-1.00
-uoo
-uoo
0.0
O.'IOO
uoo
0.0
uoo


0.0
0.0
'o.o
' 0.0
0.336
0.316
0.336:
0.336
13.2
. o.o
0.0
. 0. 0
0. 210E-02
•O.iBOE'01
0.0
o.'o
2.00
10.0
.9.00
0. 100
0.200
* .00 .
•- .00
0 2'iOE-OI
- .00
- .00
.- .00
- .00
o.no
0.100
uoo
0.0
uoo

-------
vo
0.0
0-400E-01
0.500 •
0.451
0.2001-01
0.58ni->04
35.0
0. 2508-04
8-00
0.313E-OI
'1.00
0.100
30.0
0.600
0.600
0.600
0.600 •
0.600 -
0.600
0.600
0.600
0.600
••0.600
0.600
0.0
0.1QOI-01
1.00
1.00
0. 100E-07
0. 100E-03
0.100E-02
1.00
1.00
2.00
40.0
25.0
0.0
.0.500E-03
00(10000000
uonouououu
onoucootoo
uuoounuuuu
OUUOOUUUOO
onoooouooo
ooooooooou
ooonunooan
ouoooooboa
ouaooouuoo
DOOOOUOOOO
ououpooooa
nuuunoucuo
oouuouuuuu
OOOUDOODOO
ounuaniKioo
UUIIOUUUOtU
ouuooauDoo
ooouuuaooo
oooooooonu
oooooodcnu
OUUOOUdCUO
•o.-o :
OilflOE-01
o.o •
0.451
0.200E-OI
0.5fl1t»04
31.5
0.110
fl.OO
0.313E-01
1.00
0.100
30.0
0.600
o.r.oo
0.609
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.0
1.00
1.00
1.00
0. 100E-07
0.100E-03
0. 100C-02
1.00
1.00
2.00
40.0
25.0
0.0
0.500E-03
OOUDUOIIUOD
ooouiinuooo
oauunoooDO
oonnuuunuu
oouuuoduoo
outiuuauooo
aonuuuuuoo
uouououuuo
ouiiuunouoo
oououuouoo
UUHUUUUOOI)
(IUOOUOOOOU
uunuuaouRo
auunuuuono
oouiinuoouo
oonououooo
oauunoaiiuu
0000000000
oaouoououB
oauouuoonn
ouuiionuuou
oouduuuuou
o.o
0.400E-01
o.o
0.451
0-0
0.5iaK>04
31.5
0.700B-01
• fl.oo
0.313E-01
1.00 .
o.ioo .
30.0
0.0"0
0.600
0.600
0.600
0.600 '
0.600
0.600
0.600
0.600
0.600
0.600
0.0
1.00
1.00
C.500B-01
0.310B-03
0.1008-03
O.tOOf-07
1.00
2.00
2.00 ;
40.0
25.0
0,0
0.700
OOUUUOUUUO
oaunnouooo
ucuuuaonno
nuuuuoouno
ouuuuuuuuu
ouuuuunuua
oounnouooo
uoiwDouuua
OUtlUIIOIlUUU
uuauuuiioou
DOUHOOUOOO
oaiidniiuQun
UOUIIOUOUUU
uuunonuuuu
oouuiiuauua
OOUOIIUUOOO
uuuuoouoou
uonuoouuoo
oounuuoaoo
OOUIIUUOUUU
unuuuoooao
nouuuouuuu
o.o •
o.o
o.o .
0.451
0.0 -
O.TllflE'04
33.5
0.400E-01
9.00 ••
0.11JB-01
1.00
0.596E-05
1.00
0.600
0-600
0-600
0.600
0.600 "
0.600
0.600
0.600
' 0.600
0.600 '
o.eoo;
266. ;• .-'-,
i.oo'
1.00 ,'
0.50rt B^-Oli
-0.340B-04:
0. 1008-03
0. 100E-02
. 1.00
2.00
40.0
40.0
25.0
0.0
0.500
OUOUDOIIOUU
uuunuoo'juu
Doaoiinoaiin
dunuauouuu
onouuuomiu
unnunuuuna
uuuounnoou
noon nuuonu
onoouonnuu
ouoonouuuu
oonououooo
uuaonuiinnu
ouunuaonno
uauoonunno
uauouounuo
ouonuuunoa
uuuuououno
oooouououu
ououuonauu
uouououuuu
uoouoouuno
ununuiiuuuu
.0.0
o.o
o.o
0.200E-01
0.0
0.5BBE«04
50.0
0.0
: 8^00
:'P.313E-01
1.00
•'••• i-oo
1.00
0.600
0.600
•0.600
o.fioo
0.600
o.r.oo
0.600
0.600
.0.600
. .0.600
< 0.600 •
•".-• 630. :
: i.oo
0.200
.0.250B-01
.6.950E-04
/: Qw 1UQB-03
' P.100E-02
. 0.150
2.00
40.0
••25.0
: 25.0
0.600
1.00
aounanoooo
oonoitunniio
onuauuonao
quouuuuonu
ouunuiiuuuo
IMIUOOOUOIIU
D1IOUODUUIID
ounn'ioumio
oodiiuuuaun
oouunuunuo
OUOOUUUUIIO
uduoduuonu
oounoddouu
uuouuununu
0011(1 IIUOOUU
UDOOUUOIIUU
uuoumiuoou
ouunouootiu
onuiivnunuo
uuunuuuoou
nnuuuunouo
UUUUUUOIIUU
O.o
o.o
o.o
0.200B-01
o.o
0.58flB»04
50.0
0.0
P. no
0.313B-0)
i.oo
H.O
1.00
O.fiOO
0.600
0.600
0.600 _
0.600
U.600
0.600
0.600
0.600
0.600
6.0
90.0
1.00
0.200
0.240E-0?
0.300E-03
0. 100E-03
0.100E-02
0.300E-02
2.00
40.0
25.0
0.316E-04
O.'JOOE-OI
0.500
nouiiouuuuo
ODUOOUOUOO
oaonoonuun
OUOOUUUUIIO
DUOIIUODUOO
oonoouoooo
ooouaunuou
ooouoouoou
UOOOOOIIOUd
OOUOOOddUO
ouunoonnoo
uounouuuuo
OOUDUUIIII'IO
OOOUOUIIOOO
UllUUOUUUUlf
ouuuuuuuoo
uonuuouoou
ouuooouuno
ononniiuduo
uuaooonuuu
ooooomiuuu
UUdUUOUUUD
o.o'
0.0
0.1)51
0.200E-01
0.0
0.5DOE»04
50.0
0.0
n.oo
0.313B-01
1.00
0.0
1.00
0.600
0-600
o.r.oo
0.600
0.800
0.600
0.600
0.600
0.600
0.600
0.0
90.0
0.300
0.151
0.220B-01
1.00
0. 100B-03
0.400
0.300B-OI
2.00 .
40.0
25.0
0.500B-01
0.500E-03
0.500
ooooooooon
auoouuuuua
aonnnuudua
uonunounuo
ouuuuouuuu
Udunnuaudo
DIIUUUOUOUO
oiinouoouuD
ouuduiinniia
OHunoooano
ouuuuoaoao
oonnunaouu
onounniinun
no'iuoouonn
uunnnanouo
UUUUUdUUUO
ouoouuuiiun
atioouuuuou
nuiiuuuaunu
OlltlOllUUUOU
ODOailUOODII
nooiittunnuu
o.o ••
o.o
0.151
0.200E-01
0.0
0.5nRE>04
50.0
0.0
n.oo
0.313R-01
1-00
20.0
0.600
0.600
o.r.oo
O.GOO
0.600 -
0.600
0.600
O.fiOO
0.600
0.600
0.600
0.0
7.46
0.300
0.102
1.00
1.00
0.100R-03
0.400
0.300E-01
2.00
40.0
25.0
0.500B-01
0.500E-03
0.500
uuiioounnoo
nnooadiiooo
uuuauonaun
nuntiunnonu
uiiunnauddn
unnunuuunii
nnuuoouuuo
oounnuuuuo
aonnuuuoun
ounouudduo
uuouoauuoo
Pniinununuo
aiiiidiidnnuu
uiiuuuuouon
oooudiiunuu
unuunouuoo
uunuuimtiou
nououuuuoo
UU1IUUUOUDII
uunnuuuunn
noiinnuuoon
oniiiiuunuou
o.o
0.500
0.451
0.200R-01
0.0
0.5nOE»04
50.0
0.0
R.OO
0.313E-01
1.00
20.0
0.600
0.600
0.600
0.600
0.600
0.600
o.r.oo
0.600
0.600
0.600
0.600
0.0
0.100B-01
0.300
0.147
1.00
1.00
0.100B-02
0.400
0.300R-01
2.00
40.0
25.0
0. 5008-01
0.500E-03
uoonuuonoa
UOODOODDUO
uuunouooua
uiiuunoonoo
uunununauo
uuuuuuuoan
nuuunnnnqu
unuonunonii
auunnuuiioa
ouununuiinu
nnuuiiuniiKu
uaouniiuiiDo
onnuunnooo
uuuunnnouo
uodiiunuuun
uuuiiiiuiinuii
oudiinoouuo
uunuunnuoo
unundununn
ouounnuuiiii
OOOUUUHdUU
unnnonuouu
udunuuuo'io
o.o
o.o
0.451
n.jooR-oi
o.o
O.5»OR»04
30.0
0.200R-OI1
n.oo
0.313E-01
1.00
20.0
0.600
0.600
0.600
0.600
Ov600
0.600
0.600
0.601)
0.600
0.600
0.600
0.0
0.100B-01
0.300
• 1.00
1.00
1.00
0.100E-02
0.400
1.00
2.09
40.0
25.0
0.5UOE-01
0.500E-03
onnnndiiddo
Ddnodunaua
oiiddunudun
ononnuauuo
ounnuuuoun
ouuduoniinu
ennuniiiiouo
uuuuiiuunun
nududduouo
UUOU'ldllddd
unoiidunudii
unnunnannn
uouuniidudd
oiiddnnunno
nKiinnnnuini
ouDOuniiuna
nuudiiuuonu
0000000000
nunndOduiiH
nnuonuuunu
dllUDUUUUdlf
OOUOIIUUIIOU
00000011000
t.oo
0.500
0.451
0.2nOK-01
0.0
216.
39.0
0.500E-04
n.oo
0.31JE-01
1.00
2U.O
0.600
0.600
0.600
0.600
0.600
0.600
o.r.oo
0.600
O.F.OO
0.600
0.600
0.0
0. 100E-01
0.300
1.00
1.UO
0. 100E-03
0. IOOB-02
0.400
1.00
2.00
40. U
25.0
0.500E-01
0.500R-03
OIIUIMIdOlind
oiMiimiioooo
UOUIIUdUOUU
odiianiiudnn
ddnuuiiunun
diiuuunudun
nnuudiiadiin
oiidiiunauoo
nuiinnnnuod
u IMMI on on on
nounununna
nonuouuano
uuiinuuuuun
dunnnunudu
ddiiuuuiidnu
nnadU'joniiii
onuoouiioun
UUUIIOdllUOU
ounnnudund
uunnnuuiiuu
uniidiiduunn
unuddnnqnn
nnunuuuudu
1.00
().5«0
0.451
0-2DOE-01
0.0
34.0
O.SOOR-04
H.OO
IK31 )E-01
1.00
I'. 100
30.0
0.600
0.600
n. r.oo
0.600
O.600
0.600
0.61)0
O.I.OU
o.r.on
0.600
0.600
0.0
0. IOOK-01
1.00
i.oo
1.00
0. IOng-03
0. 100E-02
1.00
1.00
2.00
4U.O
25.0
0.0
0. 500 T, -03
u'luuuniiiiun
onnunuuunn
udnniitmiinn
unniinuiniiin
UIIUdlKIIIIMIII
nniidonuuiTU
OlltlOOllilOOO
unoununuun
unoddiinniin
nniinounnnii
nnnuuunimu
uoiiooniuiou
diidnuuoniin
unnnuniinnn
ununnniKidn
ddnouiiuuna
uuuunuiidiiu
oiinudodunn
nnnnounnnn
iiiinddoiiddn
oooonouoiio
ninidDdunuti
uiiduduuiiiin

-------
ooooouncDB
uooouumcu
uuuuouotuo
UDuuouuonu
cunuuunotiu
(lUUUUUUUnil
uouuuuucvo
FCBLC :
0.200
PCEIM :
7.00
FCM1 :
0. 500K-01
. K.tf.1 :
216.
PMBOE:
0.500E-01
taunt :
9.00
piinm :
6.00
AO tj mile:
OO i 296.
0.1001-01
0.150
0.100
o.ioo
0.100
0.100
-1.00
PSI» :
0. 1701-03
PS10 : .
0.0
C :
0.100
0.10 :
2.00
2.00
CT :
0.0
BIO :
0.0
BADIOS:
0.0
auuuunoiino
uuiiuauonno
uouanuntttiD
ououuuunuo
onuuDuouuo
oouunniiiinu
oouuuuuaao
0.200

0.500E-C1

0.5001-01
9.00
6.00
-1.00
-1.00
-1.00
0.0
0.250
0.200
0.200
0.200


0.100 '
2.00
0.0
0.0 ,
0.0
oouuiiomiiiu
anuuuDUuOn
ouunuunuuu
uuiiiiuiiunoa
uuonuuiiuun
oonuunnuua
oouipuiiuniio
0.151

0.5008-01

0.250B-01
9.00
6.00
0.200
-1.00
-1.00
-1.00
-UOO .
0.0
0.250E-01
0.0


0.400
2.00
0.0
0.0
0.0
noumiuiiuuu
nouuuuuiiiiB
tiuiruun'uunn
auuuiinutiiiu
uuntiiioiiuuu
nunHuuuuuu
aDuuntinunu
0.1H2 .

0.500E-01

0.2IIOE-01
9.00
6.00 "
0.0
0.0
0.0
-i.oo
•si. oo •;- '
-i.oo1
-i.oo
o.o


o.»oo
.2.00
b . o
0.0
1.00
euoiinuoono
ounuuuouun
onunnuunud
unnuuuuunu
uiiuuniinoon
nuonuuuuuu
unuuunuunn
O.W

0;500E-01

0.220B-01


0. 2508-01
0.0
0.0
'0*0 '. -'i
-1.00
-1.00
• -i.oo


O.ilOO • .
2.00
0.0

0.280B-02
o u ii ii (iii IMIII u
uuumiii'iiiuu
ouuiiiiununu
uuniinuiinnti
nauuiiuuuuu
Ullllllllllllllllll
auiiauuuuuo
1.00

o.o

.0.2508-01
-; •'•". : ••'
•••''-" '. • '
' -1.00
. ;o.o ',-. •
0.250B-01
0.0 .
o.o" : .
o.o
o.o .;-
..-i.oo .;
"•'-.'' '•• .

o.«6o
. 2:00 •'-
b.o

0.152E-02
uituuiiuuuau
ouuuuniinno
ounniiuiiiiiin
DiDMiuniMinii
uiiuunununn
ounuiiuunon
onuuooouitu
i.-oo

OiO

'-'; 1,00

.'•:' '• .-:.-.'-
-1-00
-iioo ;••••.
; .-i.oo, '.-•
.--0/0 >V; .:"
v°-° !•'.: •.*
•'•:- ''':' '''••.' :'•
•* - '- " '/ "
i.oo .;.
; 2.007
0.0 '• ._

0.155E»0.
uouiiununiiu
nuunuuiiuiin
uuuuouuuun
nauiinuiHiun
onuunuuiina
nuDnuiinntiu
ouuuuuuuun
1.00

o.o

1.00


0.6
- .00
.'- -oo ;
.-- -.00-
:..- -oo
• - .00. :
- >bo. .


1.00 :
2.00
0.0

0.0
miuiiuuiiuiiii
ouuuuniinua
IHIII UIIIHI mi n
aiiiiuuuouuu
uuuuiiuunnu
nuuuunuuuu
1.00

o.o

1.00
-'

- .00
- .00
- .00
- .00
V .00
:r- .00 •-
.- .00
- .00


I.OO
2.00
0.0

0.0
u ii ii ini ii tin nil unnitniinuiiu nunnuniiuiiu
ii n n ii n n u u u ii unniiunuuuu. iiiuiiiuuiiinni
nunnnniinun uiiiiiiuiiniiiMi iinnnnnini'in
Dtmiiunmtuii IIIMIIIIMIIIUUU niiininuiiiini)
Diiuunuiiiinn iiiiuiiiiiiiiniiii nuniiunn'fii'i
uuuuniniuui) tiiiiiiiniiuurM) .nniiuunijiniii
i.oo. ;:
-• '• ' •' i
0.0 '. -. ' : - -'• . ':

.". i.oo • ';= ; :', •[ •-•• '-sr •' ;
• ; . -'-• • ." • -" ; . ; ,'.
:• ':'• : ;':; .'••'_ .!;•'. :-•• .r . :. •
- .00 . - -ob \ - ."bo
- .00 . , . - .00. .-' .'- .00
- .00 • ':'- ;00 >:-.:' •• - ;00
- .00 .-' • - .00 .•• •:•'-- .00 -
:- .00 " - , 'r -OOt. j.. '- -O'O
•- ibo . '.f .00:-: "?-'•- .00
. r .00; ;•'- - .00 •'.-' :=..'. - .00 .
r *00 .- rlwpp.,- •'.•'; 7 .bb .-.
' ' , "" •-.. ; •' ' •'-.' ;.'' -, ".••' '. ;••
'.•- '• •'' •'•:• -.-., ('. :
•'*«» °; :'": V^A^.-"; ".
. 2.00 .2.00 ."; :-; 2.00
0.0 •;'

0.333P-01 lp.0 o.OO

-------
0-0
0.0
o.o ...
0.0
0.0
o.o
0.0
0.0
0.0
mm :
0.100F-OI
0.2 CO
1-00
SIMPF :
0. 607E-D5
30.1-
11. fl
96.0 '
1. 00
10 >.
0. IOOE-02
0.280E-C2
0.2001-02
0.260E-C2
Stftt :
0. J33f-01
S1TOH :
67.0 ' :
TCCND J
0.3.3fi
0. 336
0.0
0.0
0.0
0.0
0.151 '
; 0,151
ICCPT :
298.
TCflT •••"
31.0
THSI :
40.0
10.0
10PT :
25.0
. 25.0
0.0
0.0
0.0
0.0 ;:
0.0
0.0
0.0
0.0
O. 0

0.100E-01.
0.5COE-Q1
0.100

0. 250E-02
0.21HF.-02
0.230E-02
0.220E-02
0.210E-02
0-200E-02-
0. 190F-02
0. 180E-02
0. I52B-02
o.inoE'Ci

0.333E-01

0.0

0,151
0.151.
0-151
0.151
0.151
0.151
O.U51
0.151

298.

. 35.6

10.0


25.0

0.0
o.o -': .
fl'io" '••.:
o.o . ;"
0-0" ':'-
c.o -:
0.0
1.00
1-00

o. idOE-oi
0. IOOB-01
C.100

O.ISOE'O'Q
U.12'>F.»01
C. 175E»01
O.J25E10*
0.2 75E»01
C.2r.E>01
0-200E«01
0. 160E»01
0-155E«01
C. 1'IOE«C1
- •"::
' 0.3331-01

0.0

0.200E-01
0.200E-01
0.200E-OI
0.200E-01
0.200E-01
0.200E-01
0.200B-01
• 0.200E-01

270.

31.5 v

10.0 ..:


25.0 ;

1.00
0.607E-05
. : 3oi. •
•: 11. n
9f>.()
1.00
117.
0. 100E-02
0.2BOF.-02

0.100E-OI
:0. 100E-01
i1 0.900

950.
0.0
0.300E»11
100.
0. 170E-03
• .0.0
•'•• 7.110 '••'
•o. 106
.-. Oi'O :
^•0.0.

';' .;•



:6.200E-01
0.200E-01
0.0
0.0
.0.0
'.0.0
.;0.0
0.0

. 298.

31.5

> 10.0


25.0

0.260B-02
0.2'.flE-02
0.2'«)E-02
0.2JOE-02
0.2JOR-02
0.2IOH-02
0.200K-02
0. 190E-02
0. 1HOR-02

6. 100E-01
O- 100E-01


0.0
0.0
0.0 ..
0.0
o . o ••••
6-0
6.0
o.o .
-0.0
0.0 ••





0.0 ,
0.0
0.0 .
0.0
0.5B8E>01
0.588B«01
0.5B9B«C1
0.5BBE>01



33.5

10.6


25.0

0.t?OE*0'l
0.1 50'E * 01
0. 1 25R'01
II. 2 7'JE • 01
0. 325E'0'I
0. 2'TIEiO'l
0. I fiE'O'l
0. 200P.t01
0. IGOK»01

0.10OE-01
0. 100F-01


0.910E-01
0.0 - - -
0-0
0.0
2.00
2.00
2.01)
0.333E-OI
0. 33JK-01
0.333B-OI





0.58AR>01
0.588B»01
0.5PBB»01
0.5flBK»OI|
0. 5BBR»01
0.580E«01
216.
•31.0



50.0

10.0


25.0

O. IIOFtOI
9 1 0 .
0.0
0.300Ci|«
100.
0- 170E-03
o.n
7.00
0.100

O.100E-01
0. 100E-01


f,7.0
o.n
o.o
0.200E-02
0- IOOE-02
0.500B-02
. 10.0
10.0
10.0
20.0





35.0
31.5
31-5
33.5
50.0
50.0
50.0
50.0



50.0

10.0


25.0

n.o
o.o :
o.o
0-0
0.6
• o.o -
o.n
n.o
o.o

0. IOOB-01
0. 100E-01


20.0
20.0 -
6.00
6.00
6.00
6.00
9.00
9.00:
9.00
9.00





50.0
30.0
30.0
0.5008-01
0.250B-04
0.100B-02
0.100B-02
0- IOOE-02



50.0

10.0


25.0

0.0
0-911)15-01
0.0
0.0
0.0
2.00
2 . (Ml
2.110
0. 3.1.1 P.-01

0. 100PI-01
0. KIOE-01


1.00
1.00
1.00
1.00
29B.
298.
29(1.
291.
0. 100B-01
0. 150





0.100E-02
0.0
0.0
0.0
0.0
0.200B-01
0.500P-01
8.00



50.0

10.0


25.0

0.3.11R-01
67.0
0.0
0.0
0.200F-02
o. l()(ir;-(>2
0. 500P.-02
10.0
10.0

o. loor-oi
o. loOF-ni


0. 100
o.ioo -
0. 10(1
0.100
-1.00
-1-00
-1.00
- 1.00
0.0
0.250





B.OO
8.00
fl.OO
B.OO
B.OO
B.OO
B.OO
8.00



50.0

10.0


25.0

20.0
20.0
20.0
6.00
ft. 00
6.00
fi.OO
'J.OO
9.00


0. .300


0.200
0.200
0.200
0. 200
-1.0!)
-1.00
-1.00
-1.00
0.0
0.250E-01





B.OO
B.OO
B.OO
0. 1I2F-03
0. 112B-OI
0. 3I2B-03
0.3I2B-03
0. 1I2E-OJ



30.0

10.0


2%. 0

9.DO
1.00
1.110
1 . on
1.00
2911.
2'* it.
2'in.
2'tn.


O.r,00f-01


o.o
o.o
o.o
0.0
-1.00
-1.00
-1.00
-1.00
0.0
0.250E-01





•0.312B-03
(I. H2f-0 \
0.312B-03
0. 1I2E-01
0..112E-03
o.iur-oi
0. 312E-n.l
6.00



30.0

10.0


25.0

irr«i

-------
30.0
           30.0
                      30.0
                                 30. 6
20.0
           20.0
                      20.0
                                 20.0












H. ! '
O '•
.0 il
. * '


















VOEI! :
96.0
vroocE:
1.00
TII20 :
14. H
Tien :
303.
0.1001-01
. 0.390
0.150
0.250
0.100
0.400
0.100
0.400
o.ioo
0.400
0.100
0.400
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
crrEii :
0.336
BH1I :
0.200E-01
CEEOGS:
r F r F f r
. DIMCC:
f
DISBA1:
r
OPFCCS:



0.0 0.0 ..0.0 0.0 • 0-0 ... ; -1.00 . -1.00 -KOO -1.00

0.250 0.2508-01 0.250B-01 0.250K-01 0.250E-01 .-1.00 : -1.00 \ . -jl-OO -1.00

0.200 0.0 0.0 0.0 .0.0 -UOO -1.00 -i.V.OO :• -I.OO

0.200 o.o . o.o o.o o.o . -i.oo -i.oo . -'i-oo •" -i.oo
': • • • '.-'•' •''-•'
0.200 C.O '0.0 .' .0.0 ~ • 0^0 ..;.•' • -1.00 -1.00 . 4l.OO -1.00

0-200 o.o . o.o o.o b.o ; . -i.oo -i.oo ;• -liiOO -uoo
v '-•'.'. . '. •
-I.OO -1.00 -1.00 -I.OO ' -iiOO -1.00 -1.00 -1.00 -1-00

-1.00 -1.00 ' H.OO ..-1.00 -1.00 . -1.00 . -1.00 -KOO -1.00

-1.00 -1.00 . :-1iOO' ' .-1.00 -1.00 • . -1.00 ; -1.00 -1.00 .• -1.00

-1.00 -1.00 ,-1-00' .': . -1.00 -1.00.- -1.00 -1.00 -1.00 -1.00
-.'•.. ' - • ^ • . '; .• - . - '

0.336 0.336 -6.336 ' 0.336 - . 0.336 0.0 0.0 . 0.0 0.0

0.200E-01 0.200E-01
r*
t
r r r








0.600 ; 0.0

0. 100 0.150

o.ioo : 0.200

: o.ioo 0.200

o. too 0.200

0.100 . 0.200

-1.00 ; -1.00

-1.00 -1.00

-1.00 -i.oo

^1.00 . -1.00













DIIHE :

-------
          r
          . '- let -    :'   ".    ••  -
          I  II F f 1 :t  t t.t
          t  I   •   '•'•'   '
Him 1C :
     15 :
     »<
 .    -(j
 ."    b
    11
:-'    2
:   • o .
'.    'o
                                        2
                                        0
                                        0 •
                                        0..
           'SUP
         .••;• ssiicB:.
         .-  •'.  '  37
            TUBS!:
            "       '
               ;-103  '•>
o •
.b.soo.'::
' b.o •,•-" -'
.• _. p.p: ..••' •
' o.o
0.0 .
'.; o. o '•;
.'002 :?i '
. 16.1.
it. 6
;'o.b :.;.
V. DC2T ••' J
b-o '
"o.o • ..
-•o.o
F1SII1 5
. 1J.O
0.0
o.o
FIEIIIT:
;-87.o
0.0
0.0
F1SII2 :
5.21
0.0
o.b
OV50:0 "
6.O.1' '"
o.o.' ;•';'
o.o
: 0-0 ... ,
:.o.'o ..-.; ••'-.
. • ; ;.' /-;•-;
'1619 •'•'
b.o". •
o.o. .-'• -
: .- ;':' ;•
o.o . :.
b.o
o.o

.' 30.5
0.0
0.0 . -

103.
0.0
0.0

7. SO
0.0
0.0
• ' • «
•• o-o ; •
': 6:0 : ;
0:0 ; •
o.o
. 0.0
•0.0 •: V;

19\'o '
OwU ' "• •
°-°
• . '• •' :
o.o'
:C.O ..'
• 0.0 -;•

b.o
b.o
o.o .

o.o
o.o
o.o

o.o
o.o
0.0
b'- o "-
o'.ff .
V ?'*••
0.0
. 0.0
••'•'•. OiO-v'.
.': ' •• '•:- -
'• :fl-6''
' •', '0. 0 -•
•'i -P'O'.
•••: ;: .-••:;
• 6.0;
0.0 .
-'••OiO •'

o.b ".
0.0 -
-o.o •-:
•. ' •
0.0
. 0.0.
0. 0 '•

0.0
0.0
0.0 :
•'? •' o.o
.'..• ;o.p.,
,/ ;;'o;?.;'
o.o
..:0.6.
'•'';•'• -:;.9-'!-
;';. -:>: ;.. -
'•; -••; olo'.-
'. ••"-d-.o.
;••"''.'••••' o.o •'

:'• : o. o
.•'•• -;0.0
••" :6.o
.. .
•' o.tf-
b.o
; :0.0
* . \ ' '•
o.o
O.'O
;• -. o.o

0. 0
0.0
0.0
o.o :
o.o
o.o . :
o.o
o.o
0-0 •

o.o
o.o
. 0.0 :

0.0
0.0
0.0 '

o.o
0.0
0.0

6.0.
0.0
o.o

o.o
0.0
o.o
o.o
0.0 •

0.0
0.0


0-0
. 0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.6

0.0
0.0.


0.6
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0

0.0
64.0


0.0
0.0


o.o
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0

0.0
71.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
o.o

0.0
0.0

0.0
103.


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
o.o


0.0
0.0


0.0
0.0

            F1SH21:

-------
-B7.0
0.0
0.0
FISIU :
0.150
0.0
0.0
FISD31:
-87.0
0.0
0.0
FISH1 I
9. no
OiO
0.0
FISHHT:
-97. 0
0.0
0.0
FISHS :
0.0
0.0
0.0
FISH51:
0.0
0.0
0.0
FISHG !
0.0
0.0
0.0
FISI161:
0.0
0.0
0.0
FISII7 :
0.0
0.0
0.0
FISB71:
0.0
0.0
0.0

FISIIO :
0.0
0.0
0.0
103.
0.0
o.o

0.500
0.0
0.0

103.
0.0
0.0

2. tO
0.0
0.0

10).
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0 . i .
0.0

0.0
0.0
0.0

0.0
OiO
0.0


0.0
0.0
0.0
0.0
o.o
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0 .

o.o
0.0
0.0

0.0
0.0
0.0

0.0
c.o
0.0

0.0
0.0
0.0


0.0
0.0
0.0
'• ' 0.'0
6
-------
0.0
o.o
o.o
0.0
6.6
0-0
c.o
o.o
c.o
 0.0
 o.o
 o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
O.O..
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0

:-FOM '•• :
6-o
o.o    :
OiO   •' .

 '10*038:
0.0

o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
o.o
0.0
o.o
o.o
o.o
 o.o
 0.0
 o.o
•OiO
•0.0
 0.0
•0.0
 o.o
 6.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 .
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
 61.0
0.0
0.0
0.0
0.0
0.0
 79.0
0.0
0.0
0.0
0.0
0,0
 102.
0.0
0.0
II. (I
0.0
0.0
0.0
0.0
0.0
LOG :
ID1 :
H»CPC :
2.00
0.0
0.0
0.0
o.o
OiO
PCIM ! .
0.0
0. 0
0.6 •
FFisnis
OiO
o.o
; o.o
PFISH2:
o.o
0.0
. 0.0
FFISIU:
0.0
0.0 •
0.0
PF1SH1:
0.0
0.0
0.0
PFISII5:
0.0


2.00
0.0
0.0
0.0
0.0
0.0.

0.0 :• .
0.0
0.0

0.0
0.0
0.0

0.0
0.0
p. o

0.0
0.0
0.0

0.0
o.o
o.o

0.0 ••' :

f * •
o.o •'.'.'•'
0.6 : ••:
•p.6 , '.;
. o.o / •
0.0
0.0.

O.o .• :. -
0.0 •'. :V
."• 0.0 .-.".;

o.o ••'•
o.o : '•":;
0.0 .-::..

0.0
0.0
o.o •;

o.o '.-'I
o.o •;:
o.o

o.o
0-0
o.o

0.0


0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0

o.o
0.0
o.o •

o.o
0.0
0.0

0.0
0.0
0.0

0.0
0-0
0.0

0-0


0.0
0.0
0.0
o.o :
o.o
0.0

o.o
0.0
o.o
. •;
0.0
o.o ••
0.0

o.o
o^o
0.6

0.0
0.0
0.0

0.0
0.0
0.0

0.0


:0.0
0.0
0.0
0.0
0.0
•0.0

'o.o- .
0.0 .
0.0 -.'

. 6.6 •'•
0.0 :
o.o . •
: -• •-'/.,
o.o
0.0 -
o.o ..

o.o
o.o
0.0

0.0
0.0
0.0

0.0


: o.o
0.0

0.0
0.0


0.0
0.0


o.o
' 0.0


0.0
: o.o


0.0
o.o


0.0
o.o


0.0


o.o
o.o

o.o
o.o


o.o
o.o '


o.o
o.o


0.6
0.0


0.0
0.0


0.0
0.0


0.0


0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
0-0


0.0
0.0


0.0
0.0


0.0


o.o
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0


0.0
0.0

0.0
. o.o


0.0
o.o


0.0
o.o


0.0
0.0


0.0
0.0


0.0
0.0


o.n


o.o
0.0

0.0
0.0


0.0
0.0


6.0
0.0


o.o
0.0


0.0
0.0


0.0
0.0


0.0

-------























I—I .. > I
o ' v i
*• : • !
' ' ! '
I ]
I i
1 '
! •
i :
i i

! ,1
i
• \
I |
; :
i'i
j ;
i ".
I ;
! ;
c
i •
i '
i :
!
'. i
J •
1 :

0.0
0.0
PMSII6:
0.0
0.0
• o.o
priSH7r.
0.0
0.0
0.0
PIISH8:
0.0
0.0
0.0
fftn :
0.0
0.0
0.0
PH !
7.10
0.0
0.0
pin :
0.0
0.0
0.0
PIUTC :
16*8
9.00
0.0
PBItClS
0.0
0.0
0.0
tHACBC:
0.0
0.0
0.0

per :
1.50
0.0
0.0
rent :
0.0
0.0
0.0

PPimc:
o.o
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

8.50
0.0
0.0

0.0
0.0
0.0

1B.O
9.00
0.0

0.0
0.0
0.0

0.0
0.0
0.0


1.50
0.0
0.0

0.0
0.0
0.0


0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0 :
0.0
0.0

0.0
0.0
0.0

8.55
0.0
0.0
••
0.0
0.0
0.0

8.10
0.0
0.0

o.o
0.0
0.0

0.0
o.o
0.0


c.o
o.o
0.0

0.0
0.0
0.0


0.0
0.0
0.0 ; j.

0.0
0.0
0*0

o.o
0.0
0.0

0.0 ';
0.0
0,0

0.0
o.o .
• 0.0

o.o
0.0
0*0

O.O.:
o.o .
o.o

10.5
0*0
0.0

0.0
o.o
0.0

.0.0
.0-0
0.0


0.0
0.0
0.0

0.0
. 0. 0
0.0


0.0
0.0
0. 0 •

0*0
0.0
0.0

0.0
0.0
0*0

o.o
0.0
p. o

0*0 ;
0.0
. o.o,'

0. 0 •
0. 0
.0.0

0.0
o.o
0.6 •

• 3*36
0.0:
0.0

0.0 .
. 0.0
. o.o : .

0.0
0.0
0.0


o.o .
O.o
0.0

0.0
0.0
0.0


0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0 .
..0.0

0.0
0.0
0.0

o.o
0.0 .
0.0

o.o • •'
0.0
0.0; •'.

3.30
0.0
0.0 .

o.o -
o.o
0.0 ,

0.6 .
0.0
.0.0


0.0 .
0.0
• 0.0

0.0
0.0
0.0


0.0
.0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
- 0.0


0.0
0.0


5.10
0.0 .


0.0
0.0 .


0.0
0.0



.0.0
.0.0


0.0
0.0



0.0
. 0.0


. 0.0
0.0


0.0
0.0


0.0
0.0


0,0
0.0


0,0
o.o


0.0
0.0


6.00
0,0
- ••*

0.0
0.0


0.0
o.o



0.0
0.0


0.0
0*0



0.0
0.0


6.0 •
0.0


0.0
0*0


0.0
o.o .


0.0
6.0


0*0
o.o


0*0
0.0


1'Z.o
0.0


0.0
0.0


0.0
0.0



0.0
o.o


0.0
61.0



0.0
0.0


0.0
0.0


0.0
0.0


0.0
0-0


0.0
0.0


0.0
0.0


0.0.
0.0


9.90
o.o


0.0
0.0


0.0
0.0



0.0
0.0


0.0
79.0



0.0
• 0.0'


0.0 .
0.0


0.0
0.0


0.0
0.0


0.0
0.0


. o.o :
0.0


0.0
0.0


9.30
0.0


0.0
0.0


o.o
0.0



. 0.0
0.0


0.0
10J.



o.o
0.0


o.o
0.0


0.6
n.n


0.6.
0.0:


0.0
o.o;


0.0
o.o


0.0
o.o •


«i.»l
0.0


0.0
0.0


o.o
0.0



0.0
0.0


0.0
0.0



0.0

-------























I-1
0
01




















0.0
q.o
r ten :
o.o
o.o
o.o
riimn:
0.0 •.
o.o .'
o.o
FVCUGS:
• • O. 0 :
0.0
o.o
pzocri:
0.0
0.0
0*0
SCI*H :
J50.
0.0
0.0
. Mr.r :
24.0
0.0
0.0
IEBPT :
0.0
0.0
0.0
0.0
0.0
0.0
6.18Ut-02
0.0
0.0 .
HBUGST:
si.o
o.o '
0.0.
VlbD :
2.32
0.0
0.0
HINDI :
0.0
0^6 >
o.o :. .

0.0
0.0
o.o

o.'o :.
o.o
0.0

o.'o : ••
0.0
o.o . -

0.0
0.0
0.6 .
: ,:
ooo. :
o . o : •-•'
o.o : '•
.'
19. •>
0.0 '- .'• ''•
C.O .' -:'.;:
0.0 ' 7
0.f,OOE-02
o.o . •;
0.0 ' ';

67.0 , -:' '•'
0.0
0.0 : .';

2. is :•
0.0
0.0

0.6 . .
o,'o
0.0 .

0.0
0.0
0-0 . .;

0.0
0.0
0.0
^~
o.o
0:0
o.o t _

o.o •
o.o
0.0

0:o
0.0
0*0

0.0
o.o
0.0

o.o
0.0
0:0
0.0
0^0
0. 6 .
0. 6008-03
0.0
0.0

6(1.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
o.o
0.0

0.0
0.0
0.0.

0.0
0.0
0.0

0.0
0.0
0.6^

0.0
0.0
0.0

0.0
0.0
0.0
0.0 :
o.o
0-6
0.0
0.0
0.0

711.0
0.0
0.0

0.0
0.0
o.o

0.0
0.0
0.0

0.0
0.0
0.0

o.o
0.0
0.0

0.0
0.0
0.0.

o.o
0.0 .
o.o

0.0
0.0
0.0

0.0
0.0
6.0 .

0.0
0.0 -
0.0
o.o
0.0
0.0
0.600R-03
0.0
0.0

71.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


o.o
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0

0.0
0.0


nci.o
0.0


0.0
0.0


0^0
;.: o.o- •'.


o.o.
0.0


o.o .
0.0


o.o
0.0


0.0
0.0


0.0
0.0 ' :,
-•

6.6
0.0


0.0
0.0 .

0.0
0.0

0.0
0.0


ni.o
0.0


o.o
0.0


0.0
0.0


.0. 0
.0.0


0.0
0.0


0.0
•o.o


o.o
-.0.0


o.o
0.0


o.o
o.o


0.0
0.0

0.0
0. 0

0.900R-03
0.0


""1.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
o.o


0.0
0.0


o.o
0.0


0.0
0.0

.^
0.0
0.0


0.0
0.0

0.0
0.0

0.300E-03
0.0


•>6.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0

0.0
0.0

0.750E-03
0.0


101.
0.0


O.I)
0.0


0.0
0.0


0. 0
0.0


0.0
(1.0


0.0
0.0


0.0
0.0


0.0
0.0


0.0
0.0


0.6
0.0

0.0
0.0

0.0
0.0


0.0
0.0


0.0
0.0


0.0

-------
0.0
0.0
iiliso :
2.32
0.0
0.0
VIDDt 1
0.0
0.0
0.0
ZOCPl 8
o.nst
0.5631-01
0.0
zcctil:
61.0
9».0
0.0
e ICE?
0.0
0.0

2. I/
o.o
0.0

0.0
0.0
0.0

0.7J2
0.t23E-G1
0.0

6«.D
<*6.o
0.0

0.0
0.0

2.51)
0.6
0.0

0.0
0.0
0.0

0.710
0.113
0.0 .

67.0
103.
0.0 .

0.0.'
0.0
0.0 . -
o.o •••
0.0
0.0
0.0
0-0 :
•.Vi.oo .
0.40AB-02
0.0
\68iO
0^0
OiO
0*0
0,0
0.0
0.0
0.0
0.0
0.0
OiO
1.85
Oi900E-02
o;o
69.6 •'•
6iD :
0.0
0. 0-.
0.0
o.o
0^0 '' •
0. 0 ;
0.0
0-«
ea^. o .
' ''i.29/. •
6.236B-02
O-O
' ; 7.2.0 "
-O'-O.^t .-•-
o. o ••••"..,':
o.o
o.o
o.o
0.0
o.o
U27
Oi67ilB-02
: 7n.o "•
.0.0
0,0
0.0
0.0
0.0
0.0
1.17
0.2HBr02
76.0
o.o :.
0.0
n.o
o.o
0.0
0.0
1.0»
'0.0
79.0
0.0
                                                                                                              0.0
                                                                                                              0.0
                                                                                                              0.0
                                                                                                              0.0
                                                                                                              o.o
                                                                                                             O.B03
                                                                                                             o.o
                                                                                                              01 .6 •
                                                                                                                         0.0
 0.0
 0.0
 0.0
.0.0
 o. mi.
 o.o
                                                                                                                          06.Q-
                                                                                                                         0.0 ':'
                                                                                                                                    fl.O
    a.n
    0.0
.   .0-0
   •o.o
    OiBllSK-01
    o.'o •
o
ov

-------
                         TJJOD      87JO      87.00
                               Tiae (days)
                                                      torn
Figure A.L.
               Temperature loading "used Tri 'simulation "of P.ohd  A-7 ,
               Dor, .Israel..•:•:.•••••'•••••. •••.  •/.   •"•-.'-'.•'.
                               ;  ;-87JJO
                               Time (days)
                                                      107JO
Figure A. 21"."
  "'
               pH. loading used -in: simulation' ;of. .Pond-rA-7 ,'  Dor,:
               Israel.  '  '•• •   .-••-.  .•'. '  '  ' ;; ' "";'Vi"    •        '
                                   107

-------
                                                   1D7JJO
                        77M     87JO      87JJQ
          		__.:.____,. _;Tiae (days) __
Figure  A.3v  •Dissoiyed 'Oxygen:;,Toading used "in "simulation  of
              Pond A-7, .Dor, 'Israel"..
                        TIM      87JD      97JO
                             Tiffle (days)
                                                   107JJD
Figure  A.4.
              Wind  velocity loading used in  simulation  of Pond
              A-7,  Dor, Israel.  :_

                                108

-------
'•••-/.•Figure A. 5.
   7,00      77J8      67,00   •    97JJO       187JOO '
                 Tine (days)
Soiar radiation idading  us'ed\.i~ri"simulation"'of Pond
A-7, '';Dor./.' Israel.  ;   •;,•.•.'••••'•'•'  '    -
  '.Figure A'. 6...> ...Phytoplahktoii-^bibina^s u'se'd.;iri:''simulafionr of Pond
  -•;  • ..  -•  "...-.-  .v.A-7>;.Dor., -Israel;.-;.-.::'...;.• '  ••-• "'•-•v-•-         ••   ;-
                                       L0'9

-------
Figure A.7.
                             Tiae
                                                   107.00
                        ,,, ..         .. ____________
Zooplanktbh biomass .used.. .ijn/. simulation of Pond
A-7, Dor,                    '         '     '
                                 S7JOB
                             Tiie (days)
Figure  A.8.
Water  bug biomass used in simulation of Pond A-7,
Dor, Israel._      -	_._.._....;	.		
               :  . .110 •"••;•

-------
                                          97.00
107.00
Figure A.9.
                   87JO
               Tiae (days)
Carp:biomass used  in  simulation of  Pond A-7,
Israel.      ....
            Dor,
                                 111!

-------
                                                 APPENDIX B
Parameters and  Loadings  Used in Simulation of Treatmentr-3 Ponds, Columbia,  Missouri
    REUDFF:          .     .      •'..•-'
   Tir.E  rccpi  unoos  BIOCU incftss cncAir «e» «7»  «8»  «?»
   «o» mite    SHIER .   -tan •••''•  ci./ti  .

    PfST  S                     • :   '' '-;  ' •       '
   ICC  STBT-3,COLUnBI»

    1I1LE1:
   zccri
   BDOGS
    IlllfJ:
   PtOGlt
    Till!*:
   inotss
    TIlLESt
   CHCATF
    1111E7:
   «7»

    TlltEB:
   «B»

    TI1LE9:
   «9»

    TlllEl:
    TIltEE:
   rune
    IIIIEC!
   <«»c>

    TI1LEC:
    1I1LEI:
   
    TI1LEF:
   rcn

-------
cim




•
T"
• r
*i
j
i
i
|
|
1
1
•|
s
i
i
',.
i
I
1
i,
i:
Till Hi. .
Hue
00001 : .
0.200E-OI 0.200E-01
00002 • '
1.00 - ":.
• rut •: : •.• • • •. :.
0.051 . . O.»51 0.151 •'• 0.151 0.151 O.«5i 0.151 0.151 0.»M 0.151
•1.00 " 1.00 1.00 " 1.00 : 1.00 i.OO 1.00 1.0O . 1.00 I.OO
: eiCO ••:'.'
0.200E-02 0.100E-02 C.500E-02
BOINt i . - .
o.o ; ; o.o o.o • /o.o o.o o.o o.o , o.o o.o o.o
tesit j. . '- . ..; ..-.;.''. -'. •"•'.'•
.0.0 ' ; 0.0 . O.o: ;> ';0.0: . ;= 0.0. 0.0 6-0 0.0 ' 0.0 0.0
BIBC2 : '. " •.'':' -" : •/. >- . •; •'. '} • -'. ' . •' '•
0.150 ' 0.300E-02 0.300E-01 0.300E-01 0.300E-01 1.00. 1.00 1.00 1.00 1.00
0".3t3I-01 0.313E-01 0.313f-6l "• 0.3138-01 -0.3138-01 0.313E-01 0.313E-01 0. 313E-01 '. 0.313R-01 0.313E-01
: '•'•-'-*..
stun s '• ' •'.-'•'•'••'.'• '-.- ': r- '•- • ' '• ":''.•'' . '
8.00 8.00 8.00 v • 8.00 -4.00 • H. 00 8.00 8.00 8.00 8.OO
.1.00 •" O.ioOErOJ 6.900F-02 J.0.900E-02 0.900E-02 1.00 . 1.00 1.00 1.00 1.00
cdicim "''.•"• ' • . ."• v' • '
o.o • .'OsO o.o . o.o -:• 6wO o.o • • o.o o.o o.o o.o
i.oo o.o o.o . o.o
CS»t '!••'' ''•"•' '
17.0. :;
CTCLf 4
'•o. : ;
120.- '
Drill i:
0.100




1.00 1.00





0.313E-C1 0.313E-01
8.00 1.00
0.0 .0.0





-------
O.AOO
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.60U
0.600
0.600
0.600
0.600
0.600
run :
0.252 El 01
11 :
0.970E«C5
JHFOP :
0.1001-02
0. 1CQE-G7

t EESK1 S
1.00
m* :
0.6001-01
HI :
o.o
HE :
0.0
ntitHY :
0.3IOJ-06
IlflEHJ:
0. 1061*20
I* :
0.0
KB :
0.0
0.600

0.600

0.600

0.600

0.600

O.AOO

0.600

0.600

0.600

0.600


0.2?OE*OI>

Oi970B*C5


0.100E-07


0.0

i.eo

o.o

o.o





o.o

o.o
0.600 '

0.600

O.fiOO
;
0.600

0.600

0.600
.'^'.
0.600 < '•

0.600. .

0.600

C.AOO '


G.290g*0<)

C."»70B*05
.

0.310E;;03


0.0 ;": ;

1.00:'. ..:

c.o :V

c.o •
'
•• • ;•
'• ;.

6
o.o '••-..

o.o .
0.600 ' 0.600 O.AOO . 0.600 0.600 0.600 0.600 . 0.600

0.600 O.COO O.AOO O.AOO O.AOO fl.AOO 0.600 O.AOO

0.600 O.A09 0.600 O.AOO 0.600 -. O.AOO O.fiOO O.AOO

0.600 O.COO O.COO 0.600 O.AOO 0.600 . O.AOO 0.600
, • . '
p. 600 0.600 O.AOO o-6oo • O.AOO O.AOO O.AOO O.AOO
".-•*-•. •
;• 0.600; " 6.60O 0.600 O.AOO 0.600 . . 0*600 0.600 O.f.OO

',0.600.. O.AOO 0.600 .0.600 0.600 '. 0.600 O.AOO O.AOO

.0.600 0.600 O.AOO 0.600 . 0.600 . 0.600 0.600 O.fiOO

0.600 0.600 0.600 0.600 . 0.600 j. 0.600 0.600 0.600

0.600 . 0.600 0.600 0.600 . ..O.fiOO .-,' 0.600 • 0.600- 0..600
•'. •. '.-••••• ' •-•-•' • -: ••' " :'-'.-'"' -: ';'" v i'; . '.'.'•' .- '; •• >'
"-'.'' • •• •"'•.•'•-•'.*. ; . ' .".'..'
i>i326B«0» 0.363E>01 0.i390E»0» 0."l33E».6il 0^«65E»0'I ;0.503EiO« 0.r»10B«01 O^iniR*
V : ' - ': ' .' '.- : ' ' .-. : .••''• :'.'• '•"• °'-:' \ '' .• ' •":. '. ,
'V0.97oi*'05 ; '. ." •' '-:. "•' •{•'. •'. •-//'.:: "' :"' C V ''. ' •'- . ' •
" ' • • "• -• « . - -. . ' i -".'•. '- -" '. •- . ; • •**.-•
-•_• • '.. : -._.*...•• - - • ' • :• •-•';" " • -•'

4-3).3»'6i*0».>: 0;950B^O« 0.3008-03.* 1.00 '!'\.. i.OO .: 1*00 .- ' - 1.00
^ ; -: :'• ; "-.'. '' •:' '•:..'" i'i: -"'^ -'" :- -'• •'. " •; v ;• :" '•; ~K. :';';• •-.'
3. ; ' v -' ....; • • - '-, - :; ;::'. ;/•• -: \ • . " •"- .;. : ;:> ! .- ;. ;-: -
j'0.0 ^ 0.0 0;0 • '. Oi 0' - * •' : ": OiO - 0.0. -.- 'OiO '. '••
• ' — i'~ . ; ' • '.• •'•'• .' '\ ''•'.. ' •* ""'• •' • '. • ''•"" - * ' •" '- - '.'
• **i.oo';': - liiOO •"•'. 1.00 . 'v-t.op X .. ':."'•• i»ocTv ;.;.-• i . po; .' \ • i.oo- '
l. . ' . \V •" • '• • • V '"«• . * '• " * .. *: "•
o'.o 'S' - •'•:• • . -:'-- '••': •'•_'- ••'••• '•' ••'• ••'• ' •' ; "•

.0.0" - .-..'. V ' - '•.'.;• ;'' •"'•• '•;•,- '.-." ' '/ ''/.•'..- ' .v--

"•; • " ' '•'• ':'•• '.''.: •" •"•• '•',' 'V' '' '.' '••/•. - • •••'
:: '• • '• :. : • ' • ' .. -• ' ' •
• '. . " ••' ''.•'•''..•.!. '•'•; -:;- ':'•:•'•''• • •' ' .
.'. > • ".'..,'.••'.-
'•; OiO - .•

o.o .
0.600

0.600

0.600

0.600

U.600

0.600

0. 600 :

0.60P

: o.eoo
. ' ,-'
. ;0i6qo-p


°>. ".'•2?.'"!






















1.00
           1.00
                      1.00
                                 i.oo'
                                            1:00
                                                       i.oo
                                                                             i.oo
                                                                                         i.on
                                                                                                    i.no
                                                                                                               i.oo
                                                                                                                          i.oo

-------
 0.0        '0^0          0.0       •   n.O

  KEf. Fill:    •':  ."•"*.
 0.20UE-01                 . .    .'   .

  KClff: :'.--.    .   •    •'     : .            -• -
;0.5Vf.E-05  ".', ' ,   ; ••;     ••:.     ." .  v   •',      -

  MFF;  :'•'  :'' . -' .  .     ••     •   ';•     •
 OiO;   :  .j   0.0          0.0      .    0.0

"-• REC '  ::   '•  . ' "    -            ".-•••    '.  '
:o,i:3 let-on  -.;  :                  ;}

.•'- KEFD ;  t'._ :••"•.;_• ..•_'_:   :-_  •:  --,.:.-••__;•    _/.._•_,.
  1.00  '••'•'    1.00        1.00        1.00        ;1.00       0.100
                                   .
 0.300 .  •    0.300.       0.300.  :    0.300  -    .'0.300         KOO    \    1.00        1.00         1.00         1.00

 •••••nil'. -••?':•'.  •..'"'  :"           •  - :'.-•-  ' '•   •  ;'•• ••;-:;  ':?.•   :.      -.      '•-'"    •'.'•  •'   •.  • ••       •'.' •   '.'.
 0.113E«05   0^113E«05   0^113E»05   0.113|»OS  V   ^,     ''•      ,V ,     :       --..;'
 q.p',-

 '••-nac                   .            .              .
-.'O.SOOt-O.i)   P.250E-01   0.110       0.700B-01 .O-HOOE-01   0.0      •.'..  OvO          0.0  :       0.0         0.0          0-200E-Oa  0.500F-0*

 -.*c  .V:----    ,.:.   •' '          •:•••.. ..•      ^:-.-:-:, -.:        -   ",-, ••'- :,.   --;.  •:   ' '•   .•    "•                                   '                •  '
 0.583E-P2   0.583E-02   0. 583E-02 . O.'SBIE^OJ. .              ::     .•'•/                    :                 ;

 -;>C2;'  V:'.''-  -V :     :.     '.    . '; \  \ ,'    "•;-;;: -/>;  '.   •:.  .  -\'i.';;1-    -.\    '••'-.    ':'''•.••  -  "'     •  '                 .  •
 .1.00  •••-:.     uoo        e.«ooE-o1  O.HOOB-OI  O.IOOE-OI   o.p  , ;       o.d      .    O.P         o.o         o.o

                                 "•  ••       •'..  •  :'- •'-    '•:'-            '-.'•   "•  -' ;•.     "••  .''"•."      '     .
                            3.3M   ;-.   .3.3« .";-.'•.-•       .     ;,:-• :  .:'•' .:    •.'-''•      ;•.

                              --''':'.    '  ' •-  ''--' ''    •       '    -v- .-'   '.1     ••"-•-:'  •  .'•!     -^ , •  ' •   >   '  .  .'.
                           0.0  •: !  '   -0.0 .  -";     -.- :  .• .-        .   .'.;'•  % .   •••':.     •..     ••.: •' '

                                        •          -".  -•              '"  - .  '~   '               •.
                            90.0 .;  ,    7.16   .      - :;.                 •:,:'               •-  '••                              .

                              ;     '"• .     '   ••'•'••    -            . '  .':   '        -    •• -:'     • '.  '   .••   ••  .
                            LOO;  ; ;    i.oo,                        ."=  .:,.'•  .••.'••:•    :":.    •••;.• ,'    .     •     •
r*cn ,'•:
•'3.3« '-'• .
6.6' ,:
• r
-630.
IvOO -S
3.3,
0.0
90.0
1.00
                                                                .
 ..O.IPPI'rOT   0.100E-02   0. 100F-02.  0. 10OE-02   0-100E-02   O.lflOE-02   0.100E-02   0.100E-02  0.100F-02   0.100E-02

  KS •  •• :  •     •••••'.       ••''...          •   •            ..       •  •:.•'     -..'-....-'..
 '20vo         20.0         20.0                    ;                   .   •      .:...•     -

  FT     :      . '   •        •  •     .'.'"•.'     -:•.'.•.•    -...-•••.            • .  .
  i.oo         i.oo    :.    i.po        1.00           .                   •;..                      :

  RIEHP  :    .      :'.".'..      :  -  ..                                 '•••.'•
 0.100E-01   O.IOOE-OI   C.100E-01   0.100E-01   0, 100E-01    1.00     .    1.00         1.00        1.00        1.00

-------
fit :
1.00
HtBRE :
1.00
limit:
0.200E-01
10.0
KII02 :
0.200E-01
BBOT :
2.00
HOlCSIs
266.
nune :
0.0
OCCIIB S
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.5B3E-02
0.0
0.0
0.0
1.00
1.00
0.270E«01
0. 106E>20
0.0
2.00
10.0
1.00
0.100
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.900
0.0
0.100
1.00
0.0
1.00
1.00
10.0
0.200E-C1
2.00

0-0
o.o
0.0
0.0
0.900
0. ISO
0.100
o.o
0.583E-02
0.0
0.0
0.0
1.00
1.00
0.290E«0<1
120.
0.0
0.100
20.0
1.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 150
0.0
0.0
1.00
0.0
i.oo
1.00
10.0
0.200B-01
2.00

0.9001-01
0.0
0.0
0.0
o.o •
0.0
0.0
0.0
0.583B-02
0.0
0.0
0.0
1.00
i.oo
0.32ftE»0'l
C- 1108-03
0.0
0.100
20.0
1.00
0.0
0.0
0.0
0.270E-OI
0.0
0.0
0.0
0.0
G.100
o.o
0.0
1.00
1.00
hi. 00 '•':•'

0^0
6.0
0.0
0.0
OiO
0.0
0^0
0.0
0.583t-02
0.0
0.0
6.0 ...
• KOO- -
1.00
0.363B«04
0.0
0.0
o.ioo
20.0
1.00
6.0
0. 0
0.0
0.300
0.0 .
0.0
0.0
0.0
0.0
0.0
0.0 -
1.00
0. 100B-02
1.60

- 0.900B-01
Oi 8008-01
0.1908-01
0.0 .
o.ioo
0.0
0.0
O.o
.0."113E»05
•0.970E»05
0.6
6.6
.0.3106-06:
; 1.00
0. 190E»0»
7.00
0.0
112.
6.00
298.
0.0
:o.o
0.270E-01
6.530E-01
0.0 '.
. 0.0
0.0
0.0
0.900B-01
0.0
0.0
1.00
0.900B-02
1..00

0.0
OiO
0. 600E-01
1.00 '••,
1.00
1.00 :
1.00
1.00 •.
0.113E»05
C..970E«05
o.o ::
0.0 ::
193. '
1.00 ...-'.'•
0.«I33B»0
-------
0.6
0.100E-01
0.500
0.151
0.200E-01
o.r.nnt «oi
35.0
0.250f-00
0.06
0.313E-01.
1.00 •.' ,'
0. 100 :'••
• 30.0 :,
0. 600 .:".
0.600 ••"••
.0.600
.0.600 ;
L0.600-.'
0.600
0.600
0.600
0.600
0.600 -
0.600
0.0
O..100£-01
1.00
KOO ."•'
0. 100E-07
: 0. 100E-03
•0.100E-02
- 1.00
-1.00
.2.00 .
-; oo-o v
': 25.0
.0.0
; 0.500K-03
0110(101111(1(10
OUUUHUUtUO
OIIU(llllOt,(JU
auuuuuuuua
onuuoiiutoo
: UttUUUUUOUO
OUOUUIIUOUU
II II II DO (Ml DUO
ouiiouounbo
tlUUUOnillJUU
•tiuuouuoouu
uououuijuiiu
UlJOOUOUtUU
.Oduuuduiniii
ouucouuu'uo
uuouuuutiiiu
OOOUDUOCVU
IIOOIIUIIIIUOU
ouuuuuuuuo
UOOOOOIIUUO
OOOOOUUOUII
•ooouuoutou
0.0
.- o.oeoE-ci
.' o.o "'•. - '.
O.'t5t
•O.ZOOE-CI-
0.5fl9F«6l
31.5
0. 110
n.oo
. o-.iije-'oi
1.00 :
. Oil 00
'. 30.6.
. 0.600 .
0-600 .
0.600 '-.
0.600
0.600- .
0.600
. 0.600
0.600
0.600
0.600 V
.0.600,'
0.0 .
LOO,;.'
1.00 :
1.00 •' .
0. 100E-07
OilOOE-03
0. 100H-02
1.00
1.00
. . 2.60 ".
; OOi.0 .
25iO
;0.0
0-500E-03
ouunnonnun
OUUUIIOUUUU
uonooutiuuo
tiiiuiiuooiiiio
UdUdUdUUUD
umioniiuiioo
UUHIMIUUU.IIU
uuuuuuouuu
vnuouduuRU
uuuiiodduuu
UdUUaUOUUU
ddUOIIOIIIlOU
uudiiuuuoad
UUUUUO'IIUUU
aiidiiuuuouu
uouuudnuau
dUIIIMKIUdnu
fliintiduduuu
ouiiddnnuuG
UUIIUdUUUdd
OOUOUIIOUOO
CllUIIIIUOnUO
o.o. '":
0.100E-OI
O-.O '.' • '
6-. 051 •
6.0 ' "• '
o.5noE>6o
3H-5
0.700E-01
8.00 •'•'..
•-~0.31Je.-6l
1.00
O.KIO.
;• 30.6'. ;• -,
Ow600
Oi6o6 .'..
• 0; 600 . '
0.600.' .
6.600.'. .
0.600
0.600
0.600'
.6.600". - •
:0.60O '
- -0.600 . :
:Vo.o •"...-• :.:
1.00; •:
. l.o 6V •'..
C.500'E-01
C.310E-03
Oiiooe-03
0.100E-02
1.06
2.00.'.;
2.00'-.
00.07 ,
25. o: : •
0.0 •',. ..'
0.700'. :
ODIIIIIIUUdUd
uuoii 001111011"
ucniiouunuti
oduoiidiidiin
OUUIIIIIIIIIHKI
UUIIIIUd'IIIUU
(IllllUllddOIIU
UUUIIUIIlilJUU
niioiiiiuiiduu
UddllUIIIIUdd
UUUOUODOdO
uuuniidiiuui)
UUIIdUlfduilU
uiiiniiinfidiiu
nuuoiio'uouu-
uiiiiudodddu
Dunuoiioddu
UUIIUUUIIddU
nuiiddiidoiid
llUUUdUUIIdO
ouiiuuooiiuo
UdDUUdUIIUU
0.0
0.0
o'.o
0.151
0.0
n.5nnEioi
31.5
O.OOOE-01
o.oo.
!ff.-313B.-01
1.00 ' .
. 0.5'>6E-05
1.00
0.600 : .
ff. 600
0^600.
6;600-
0.600' .
0.600
0.600
. 6-600
: 0.600
• 0.600;
Oi.60*- '
266. -:
; l.oo -.
i-o6; ••'.-.
0^ 500E-0 1
-0.'3iOE-6a
: 0". 100B-03
6. 100E-02
1.00
2.00 .
16.0
.00.0 '
25.6";
OiO .••'.'.
0-500
0(100000000
UUIIdllUII.IIUU.
onuuiinuddit
ouiioiHiiiouo
iiiiononoooo
uniniudbiidn
iiouoooiiiino
OIIIIIIIMMIOOO
UUdHUIIIIIIUII
UOUIIUIIUddU
II UUIIOO 0110(1
onoiioooiioo
uuiiniiudiiun
ooiiiiiiinitioii
UOOOOOIIIIIIU
uiinnonuono
uuuouiiiiiiiia
uoduiiudiiuii
uouuiiuuuiia
uuuuuduuou
UUUddddddll
UOOOIMIUOIIII
0.0
0.0
0; 6
0-200E-01
0.0
o.5nnE'Oi
:50.0
0.0
n.oo
0..113E-01
1.00
1 . 00
1.00
0.600
o.«oo
0.600
0-600
-=0.600 -
'0.600
1 0.600
fl-600
• 0.600
.0.600
o;6oo
> 630.
• 1.00
0.200 .:••
:0.250E-01
,-0.950E-01
: o. iooE-oi
0. 100E-02
6. 150
. 2.00
.110.0
25.0 • •
25.0
0.600
-;. 1.00
ntioiiodoouii
OIIOOUOOIIOO
OIIOOIIIIIHIOO
nuiiuuiidodu
iiiiouuiinodu
odiiuuuuuiin
UOIIOOIIIIIIIIO
ouiiuuuuniin
UUdUIIUUIIUU
onoiinoiiuiio
UHUIIUdUddd
minuonuoou
OUUIIUddlldd
UllllllUddllllll
UdiiniidiioiiU
OUddUdUdUU
UIIOOIIOIII1IIO
dOddllllUUdU
UddllUIIUIIdd
UUIIddUUUdU
uoouououuo
UUUUIIddlldU
0.0-
. o.o •
0.0
:).200F.-Ot
0.0
o.5nnRio"i
50.0
0.0 .
n. oo
0.313R-01
1.00
17. a
, 1.00
: 0.600.
Oi600
0.600
0.600 .
0.600..- .
0.600
0.600
0.600
0.600
-0.600
- o.o-- .-'
90.6
r. 06
0.200
0.200Er01
0.300E-03
O.IOOE.^OJ
0. 100E-02
0.300E-02
2.00 •;.- -
oo.o :
: 25.0 '
0.3I6B-01
. 0.500B-01
0:500
nduiiddddno
uuddiidodud
Odunudddun
UddUOOddlJd
•OdddUOddUU
no on OIPU OHO
aiiuiiniMidiio
UUIIIIOUdUOU
uouniiuiiduu
dUdUUOHUUII
ddUdddddUU
UUIIdUUIIUdd
ddunuudiiuo
UUdddllddUd
uddddduumi
niiuuoiiuduu
dddddUddUd
dUIMIUdddUd
onudoiiiiniid
UdddUIIUdOU
UUUUUUUUIIII
oiinii (minion
o.o . '
0.0
o.i5i ,;
0.200E-.01
0.0
o.5nnn»oi
50.0
0.0
B.OO -
0.3I3E-OI
• . l.oo ';
0.0 •
1.00
. 0.600
' 0.600
0.600
0.600 =
- 0.600
.0.600
0.600
0.600
0.600
• 0.600
0.0
90.0 '
6.100
0.151
0.220E-01-
1.00
0. 100E-03
0.000
0.300E-01
.2.00
00.0
. 25.0
: 0.500E-01
0.500E-03
0.500 ':
UUUddddUIIO
uniinnouiiiiii
nuoooooooH
llnUIIIIOIMHIO
UlIddllDdllUU
dllUIIHUIIddll
UildlKIUIIIMIU
aOHUHHUUdd
UdUHIIIIHUdU
nonnuniHino
oiiduiiiidiiuo
OUIKIUUddUd
fiuuiidndiiiiu
UIIIIUdOIIUIMI
UHHUIIdUdllU
(lUIIOIIOOOOO
UUUUdddddd
UlldOlldUHUll
oduniiuuuiio
IMIOIIOOOOIIU
OddUHUUddU
IKIdlldUIIHdll
0 = 6 '•;• ;
0.0-' • •
O.'l51 ' '
0.200E-0.1
o.o •«-• ..
o.5nnF.>oo
50.0
0.0
n.oo
0.:3;13F-01
1.00 .
20iO
0.600 :'
0.600
0.6.00
0.600
0.600 •:
0.600 '
0.600
0.600 .
0.600
0.600
0.600;
0.0,.
7. i6:.-- .'. n
ff;3oo i ':
Oil'BZ": '
t.oo -'; -
,t.6o -
0. 100B-03
0.006 .
0.300E-01:
2.00 -.,
10.0 •
25.0
0.500K-01
0.500E-03
0.500
dudiioonniin
ouiiuniioooo
ouiinoonuoo
(IlldllUllddUd
onoiiuoooon
diidiKHinudn
UddDUdddllO
UlldddUUIIdd
UUUItHUIIOUd
1IIIIIIIIIIIIMIIIU
Ulldlld'llUUUd
UUdllddUDIIU
dnnddduddu
d'llldUHdOUd
iniiiou ii iinoo
uoouiMinuiio
iidnuiiuniidii
diiiiiinuuiidii
noiiiiouiinon
iioooiionniio
HUlldUddddd
dlKMtUUIIdUll
0.0
0.500
0.151
0.200E-01
0.0
o.5nnE>oo
50.0
0.0
n.oo
0. 3I3E-01
1.00
20.0
0.600
0.600
0.600
0.600
0.600
0.600
0.600
.0.600
0.600
0.600
0.600
0.0
0.100E-01
0.300
0.107
1.00
1.00
0.100E-02
0.000
0. 300E-01
> 2 . 00
oo.o
25.0
0.500E-01
0.500E-03
UUddlldlldlld
uiidnoiiniiiio
ooundiiiiddd
UOdlldlldddd
00 II II Illl 00 00
ouduniiiiuun
dddllddddllll
odoonuiiiiiid
ununiioiiuod
dOddddUtllld
UHdddlJIIIIdd
iiiiniinoiinoii
ii ii no nun mm
uiidddniiniin
dHUUIKIIIUdd
onii'iiiunoiiii
Udddddduun
UddUOIIdOdd
oiidiiiiiiiidun
uiiiiiiniiiiiiiid
dUdiidnuddu
unoiiiiniiuoo
uoudddddnd
0.0
0.0
0.051
0.2001
n.oo
0.313E-01
1.OO
20.0
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.0
0. 100E-01
0.300
1.00
1.0(1
6. IOdE-03
d. 100E-D2
0.1(00
1.00
2.00
Id.O
25.0
d.500E-01
0.500E-03
on on ii ii n on ii
dlllldllddlllld
0011011000(111
iliinnoiinnno
nnnoiinonijn
niiuddddiidd
niiniiooniMio
iiniiddiiuudd
iidiidiiiindiiii
'iiiiiiiddiiniiii
dddlllldddllll
dllllddddddd
oiHiononiinn
IIOII'IIMIIIdlld
dlldllllllHOIId
nniiiMidiiiiiid
ddUUddddHII
HlldlldlldUllll
dlllldddHIIIIII
(iiinnniidudM
iiiiiiiiiiniiniin
dddlld'UIUUII
ddlMIHUIIdlld
1.00
0. 50O
0.151
o. 2cor-oi
0.0 r
31.0
u.ioor— IK
R.OO
0. I13E-01
1.HO
O.llld
30.0
0.600
0.600
11.600
0.600
0.6110
0.600
0.6OO
0.600
0.600
0.600.
0.666
o.o ;
0. IddE-dl
t.ou .
1.00
1.00
o. inoE-o.i
0. 1OOK-d2
1.08
1.00
2-00
00. 0
25.0
0.0 '•:
0.500E-03
iloniinno'ion
iiiidtiniiHiiiid
oiiniiiionnno
ddddddddda
onnnoooiinn
iinnnoniiiioo
ii'iiiiiniioiioo
nnnnoonnon
UHdlldllHdllll
d mini) ii d ii ud
iiiiiinddiiiiiid
IIHIKKMIdlldd
onoonuoiiMii
Uddiiuniidiid
ddd mi mm tin
ifiinuannmin
iiuiiniiuddiid
onoonoooon
iiniidiKidniin
H'llllKIUIIHIIU
inioniiooinio
ononnoooiin
nnoniiooniio

-------
H
00
miiiouiHioon
imnnniiunou
II II Illl II II II III] II
nuuuouiioon
tin mm UHI; ON
nuiinuuuiiou
1IUHUUI1UCUII
FCRID :
0.200
rcftB :
7.00
refill :
0.500E-01
fCFlU :
2H.
prince:
0.500E-01
fHPAX :
9.00
Plinin :
6.00
fBAtIC:
296.
0. 100E-OI
0.760
0.100
0.6
0.100
0.0
0.0
(SI» :
0.11BE-03
TSIB :
0.0
C :
O.ttOO
CIO :
2.00
2.00
01 :
0.0
0.0
RADIUS:
0.0
OUUUHmiOGU
UUUMUUIHItlU
OIIIMMIIIIIUOU
uonuiiounou
uauuuuiMiuu
oniiiMiuiiuuu
nuoiiuuuuuu
0.200



0.500E-01


0.500E-01
9.00-
6.00


0.0
0.0
0.0
0.0
0.100E-01
0.700
o.ioo
0.551


0.100
2.00
0.0
0.0
0.0



-



eouwiuuunu
iiuumiiiiHiiin
uuuuutruuuu
UUUUIMIUUUO
uuuiiiiuiiiHin
II II Illl HI) II II II 11
1) U II IMI II 11 U II II
0.151
•
0.500E-01

0.250E-01
9.00
6.00
o.o
0.0
0.0
o.o
0.0 ;
o.o
0.0
0.270E-OI


0.100'
2.00
0.0
0.0
0.0
UUUUUUII 1)110
1) II II 1) II II II II II I)
iiuuiiiiiiOnuii
IlildnilllUimo
UlllllinniHIUli
illllllJIIIIIIIIUU
uiiuuounuuu
o. 1B2 •

0.500E-OI

0-2UOB-01
9.oo -•;
". 6.00 .
0.300
0, 530E-01
0*0 ,
.0.0;' r .
• o.o: 1' •'.
O.ov: *.-.•
0-0 :-;.-
o;"o
;• :'• :.V;. ':

O.iiOO '..••
,i.oo
.0-0
0.0
1.00 '
liuaniiiMiuan
DfiniiiiiMiiinu
'unnnnuunnn
imninjuiiiimi
uiiiiiniiiiiiiiin
oiiuuuiiiinuu
UUUIMIIIUUUII
o. \