-------
                  NOTICE
The information  in  this document  has  been
funded by  the  United  States  Environmental
Protection Agency  under contract  No.  EPA
68-02-4106 to  Aerocomp,  Inc.   It  has  been
subject to the  Agency's peer  and  adminis-
trative review,  and  it  has  been  approved
for publication as an EPA document.

Mention of trade  names or  commercial  pro-
ducts does  not  constitute  endorsement  or
recommendation for use.
                     11

-------
                             ABSTRACT
     This  addendum applies  to  the  "User's  Guide  for  MPTER --
A  Multiple  Point  Gaussain  Dispersion  Algorithm with  Optional
Terrain Adjustment" of  Pierce  and  Turner,  1980.   While the cited
document describes the features of the MPTER model, its technical
basis,  and  applications,  this  addendum deals  exclusively  with
algorithm  modifications   to   accommodate   new   knowledge   and
technique  as well as  address  recommendations of  the "Guideline
on Air Quality Models."  The Guideline lists MPTER as a preferred
model  for  calculating  concentrations due  to  point   sources  at
averaging  times   from  one  hour  to one  year   in  rural  or  urban
areas where  the  terrain is flat or gently  rolling and pollutant
transport distances are less than 50 kilometers.

     MPTER   is   a  Gaussian   steady-state   model  applicable  to
relatively nonreactive  pollutants  emitted  from one or more point
sources  which  impact   receptors  in  level  or  rolling  terrain.
The model contains stability-dependent terrain-adjustment factors
to  simulate   the   impact  on  nearby  terrain  provided  the  point
of  impact  is no  higher  than  the  elevation of  the  lowest  stack
top.   Calculations  use a  meteorological   data  set  with  hourly
wind  direction,  wind  speed,   temperature,  stability  class,  and
mixing height.   Meteorological conditions  are  assumed to remain
constant  throughout   each  simulation  hour;  in   particular,  the
input wind vector is  assumed  to  represent  flow field throughout
the modeling region.    Source  input parameters  include emission
rate,  stack   height,   stack  exit  diameter,  temperature of  the
effluent, and exit velocity.

     The  original  version  of  the  model  offered   options  for
stack-tip  downwash,   gradual   plume   rise,  and  buoyancy-induced
dispersion.  Added to  this release (UNAMAP  Version 6) are options
that  allow   selection   of   either   rural   or  urban  dispeision
parameters   and   wind-profile   exponents.      To   address  model
ove r-pr edi c t i on  when  wind  speeds  are  low,  an  algorithm for the
treatment  of calms has  been  added.   Also new  in  this release
is a default option to set parameters for regulatory  applications
as  suggested by   the  Guideline.  These  are:   final   plume  rise,
rather than  gradual rise, is used and buoyancy-induced dispersion
and momentum plume rise are considered, as are  calm conditions.
                               111

-------
                            CONTENTS
                                                i
Abstract	iii
Tables	vi
Acknowledgements 	  vi

    Addendum to the Source Code and User's Guide
         for MPTER	   1
    Summary of Modifications 	   1
         Urban and Rural Modes	   1
         Treatment of Calm Conditions  	   2
         Default Option  	   3
         Other Features	   3
    User's Guide Modifications 	   5
References         	   6
Appendices         	   7
    A.  Replacement Pages for User's Guide
    B.  Listing of FORTRAN Source Code
                               v

-------
                            TABLES

Number                                                   Page

  I.  Default Urban and Rural Wind Profile Exponents  ... 2
 II.  Source Code Modifications for MPTER   	 8
                       ACKNOWLEDGEMENTS

     Support of Aerocomp,  Inc.  by the Environmental Protection
Agency Contract  No.  68-02-4106  is gratefully  acknowledged.
                              VI

-------
                    ADDENDUM TO THE USER'S GUIDE FOR MPTER
     MPTER (Multiple Point source model with TERrain adjustment) was  developed
by the Environmental "Protection Agency (EPA) in  1979 to  estimate air quality
concentrations of  relatively  non-reactive pollutants  from multiple  sources
with adjustments made  for  slight  terrain  differences  (Pierce and  Turner,
1980).  The model was first released as part of the User's Network for Applied
Modeling of Air Pollution  (UNAMAP) Version 4, and re-released with minor  modi-
fications in UNAMAP Version 5.   This  addendum provides  a  complete description
of the MPTER  revisions and  outlines  the modifications required  for  updating
the user's  guide and the earlier versions  of  the  FORTRAN  source  code  to
result in the code  included in  UNAMAP (Version  6).

SUMMARY OF MODIFICATIONS

     Important features  added to the  MPTER model  are  as follows:

       o  Urban and rural  modes, for  wind-profile exponents and
          dispersion parameters,

       o  Treatment of  calm conditions according  to methods
          developed by  EPA (1984),  and a

       o  Default option,  primarily  for regulatory  application.

These features were designed to satisfy the  requirements  outlined in "Guide-
line on Air Quality  Models  (Revised)"  (EPA, 1986).  The default option feature
is designed  as a  convenience  for the  user to  avoid  inadvertent errors  in
setting the appropriate options  for  regulatory applications.   The  reader  is
cautioned to  refer  to  the  current   regulatory  guidance  contained   in  EPA's
"Guideline on Air Quality Models"  and to  confer with  the  appropriate regional
meteorologist when  this model  is  being used to  satisfy  regulatory  require-
ments.  With the addition of the above features, the model  is  acceptable  for
regulatory applications  and is  considered a  guideline  model  by the  EPA.  The
revisions are  discussed  in greater  detail  next;  user's  guide  and  computer
code modifications  follow the revisions.

     The numerical  values in the original test case  output remain unchanged.

Urban and Rural Modes

     Separate urban  and  rural  default wind-profile  exponents were  added  to
MPTER and  are presented  in Table 1.  These  exponents  are used  by the  model
when the user  exercises the  default  option.  The  rural  exponents correspond
to a surface roughness  of about 0.1  meters;  the urban exponents result from a
roughness of  about  1 meter (plus urban heat  release  influences). For a more
detailed discussion of  wind profiles, the reader  is referred to Irwin (1979).

-------
           TABLE 1.   DEFAULT URBAN AND  RURAL  WIND-PROFILE  EXPONENTS
                                   Stability  class
Mode	•   	

                    A         B         C         t
.Urban
Rural
0.15
0.07
0.15
0.07
0.20
0.10
0.25
0.15
0.30
0.35
0.30
0.55
     An urban dispersion algorithm has been added to the rural scheme in the
original MPTER.  The urban dispersion parameter values are those  recommended
by Briggs and included  in Figure 7 and Table  8  of  Gifford  (1976).

     The urban or rural  setting  is  indicated by the user via input variable
MUOR on card 4.

Treatment of Calm Conditions

     When the  default   option   is  exercised,  calm  conditions   are  handled
according to methods developed  by the EPA  (1984)  which are summarized here.
A calm hour is indicated by an  hour  with  a  wind speed  of  1.0 m/sec and a wind
direction equal to that of the  previous hour.   When  a  calm is  detected in the
meteorological data, the concentrations at  all  receptors  are set  to zero, and
the number of hours  being averaged is reduced by one,  except that the divisor
used in calculating  the average is never less  than 75 per cent of the averaging
time.  For any simulation, this results in  the  following:

       o  3-hour averages  are  determined by dividing the sum of the hourly
          contributions by 3;

       o  8-hour averages  are  calculated by dividing the sum of the hourly
          contributions by the  number of non-calm hours or  6,  whichever is
          greater;

       o  24-hour averages are  determined  by dividing the sum of the hourly
          contributions by the  number  of non-calm hours  or  18, whichever is
          greater; and

       o  Period of  record averages,  regardless of  length, are calculated by
          dividing the  sum of  all the hourly contributions  by the number of
          non-calm hours  during the  period  of  record.   This  is the  only
          exception  to  the 75  per cent rule.

     This calms procedure  is  not available in  MPTER  outside  of the default
option.  The user can  employ this procedure, however, through the use of the
CALMPRO postprocessor  program  (EPA,  1984).   CALMPRO is available as part of
UNAMAP Version 6.

-------
Default Option

     An option has been  added  to  the  model  to facilitate compliance with regu-
latory requirements.  Exercising  the default  option  (i.e.,  IOPT (25) =  1)
overrides other user-input selections and results in the  following:

       o  Final plume rise is  used* (gradual  or  transitional  plume rise is  not
          exercised for plume  height, but is used to  calculate  the  magnitude
          of the buoyancy induced dispersion),

       o  Buoyancy induced dispersion is exercised,

       o  Terrain adjustment  factors are  set  to zero  for  all  stabilities,

       o  Stack tip downwash (Briggs, 1974) is  considered,

       o  Default urban or  rural  wind profile  exponents are  used  (See Table
          1), and

       o  Calms are treated according to methods developed  by the EPA (1984)
          as noted previously.

       o  Decay half-life is  set  to  4.0 hours  for S02 for  the  urban  option,
          and infinite half-life  (no  decay) for all  other cases.


Other Features

     There are  several  additional  regulatory  features that are  inherent  in
the UNAMAP Version 5 and later versions of MPTER.  These are summarized below.

       (1)  Momentum plume rise is always considered.

       (2)  Terrain  adjustments  are  used   for  receptors   below  stack  base
            elevation in the same manner as  elevated  receptors.  The  differ-
            ence, defined as the  receptor ground level elevation minus source
            ground level elevation, is computed and subtracted from the effec-
            tive plume height.  This  has the effect of raising  the plume  at
            receptors below the  source ground  level  elevation  and  lowering
            the plume at  receptors above the  source  ground level  elevation,

       (3)  Mixing  height  is   compared  with the  final  plume height  without
            regard to plume height changes  due  to terrain.

       (4)  Exponential  decay  (half-life)  is  available if  required   by  the
            simulation.

-------
USER'S GUIDE MODIFICATIONS

     The modifications to the  User's Guide  for MPTER  by T.  E.  Pierce and
D. B.  Turner (1980)  (EPA-600/8-80-016) are summarized next.  All the  replace-
ment pages for the User's Guide are provided  in  Appendix A.
                      *

PAGES 1  —  The Executive summary  is modified to reflect  changes made to the
 and 2       MPTER source code.  The urban dispersion  parameter scheme and de-
             fault option are included in the discussion.

PAGE 6   —  An urban/rural  switch  is added to the  control  requirements.

PAGE 7   ~  The urban/rural  modes  and default option  are  added to the dis-
             cussion  in the  first paragraph.

PAGE 9   —  The urban/rural  modes  and the urban dispersion parameter scheme
             are added to the discussion in the  fourth paragraph.

PAGE 12  --   "P-G"  as a  modifier  for "dispersion  parameters"  is  no longer
             adequate since  the  addition  of the urban  dispersion parameter
             scheme (Gifford,  1976).   "P-G"  is  deleted  from the discussion
             in the second paragraph.

PAGE 14  --   "P-G"  is deleted  from  the discussion  in the second paragraph.

PAGE 17  —  The second paragraph and Table  1 are modified to  include mention
             of the urban wind profile exponents.

PAGE 19  —  The urban dispersion parameter scheme  is  added to the discussion
             in the second paragraph.

PAGE 22  —  "P-G" is deleted from  the discussion in the  last  paragraph  since
             it is no longer adequate.

PAGE 26  --  The  last paragraph is modified  to  reflect changes in the  MPTER
             code; the executable program now requires  56 K of core memory.
             Also, table 2 is deleted.

PAGE 31  —  Section 6.2.1.9 is modified to  reflect  the  code  revisions (i\e:;
             urban/rural  modes  and  default  option).   Section  6.2.1.10 is
             added to the text and  discusses  the urban/rural  swith, MUOR.  It
             is now an input data requirement.

PAGE 34  --   The discussion  in Section  6.2.3  is   modified  to  reflect  that
             there are now five technical options.

PAGE 36  —  Section 6.2.3.1.5 is added to the text  and  discusses the default
             option.

-------
PAGE 50   —  Variable MUOR (i.e.,  urban/rural  swith)  is added to Table 6.


PAGE 51   —  Variable IOPT (25)  (i.e., the default option) is added to Table
              7.

PAGE 64   --  Variables NDAY and  IHR  are  added  to Table 23.

PAGE 145  —  "Guideline on Air Quality Models  (Revised)"  1986 has been added
              to  the list of references.

PAGES 150 —  The description of  the  plume rise algorithm is modified to re-
 through      fleet  changes in the  code.
   154

-------
REFERENCES

Briggs, G. A.  1974.  Diffusion Estimation  for  Small  Emissions.   In:   ERL,
     ARL USAEC Report ATDL-106.   U.  S.  Atomic Energy Commission,  OaF Ridge,
     TN.  59 pp.

Gifford, F. A. 1976.  Turbulent diffusion-typing schemes:  a review.  Nucl.
     Saf. 17:  68-86.

Irwin, J. S.   1979.   A theoretical  variation  of the wind profile law exponent
     as a function of surface roughness and  stability.   Atmos.  Environ.  13:
     191- 194.

Pierce, T. E. and Turner, D. B.   1980.   User's  Guide for MPTER  A  Multiple
     Point Gaussian Dispersion Algorithm with Optional  Terrain Adjustment.
     EPA-600/8-80-016,  U.  S.  Environmental  Protection  Agency,  Research
     Triangle Park, NC   27711.   247  pp.

U. S.  Environmental  Protection  Agency.  1984:   Calms  Processor  (CALMPRO)
     User's Guide.  EPA-901/9-84-001.    U.  S. Environmental  Protection
     Agency,  Region I,  Boston,  MA  02203.

U. S.  Environmental  Protection  Agency.   1986:   Guideline on Air Quality
     Models (Revised)  EPA 450/2-78-027R,  U. S.  Environmental  Protection
     Agency,  Research Triangle Park, NC  27711.

-------
                               APPENDIX A
                    REPLACEMENT PAGES FOR USER'S GUIDE
                                 i

     Portions of the original  document should be replaced  with  the  pages  that
follow.  Where more than one  page  replaces  a single one, the  additions  have
the same page  number  plus a  letter.  With  the revised pages inserted,  the
user's guide is  a complete and  technically accurate description of the  modified
MPTER model as released in UNAMAP Version 6.
     All revised portions of  the user's  guide appear in  light italic  print.

-------
                               EXECUTIVE SUMMARY

     The MPTER  computer  code  (Multiple  _Point  source model  with  TERrain
adjustments) provides  a method  to estimate air pollutant concentrations from
multiple sources  in   rural  01  uiban environments,  and  can  make  optional
adjustments for slight terrain  variations.

     The algorithm  is  based  upon  Gaussian  modeling assumptions  and incor-
porates the  Pasquill-Gifford  (P-G) dispersion parameter  values .£01  luial
*e.tting* and the.  di*pe.i*ion pa.icune.te.* scheme ie.coime.nde.d by Riigo.* 601 uiban
*ituation*, *e.e.  Pi.ciu.ie. 7 and Table. S  06 GiUoid   (1976).   However,  several
technical options  and  various  parameter  values  may  also  be  entered  as
input.  MPTER  may  be  considered  a  research  tool  for exploratory use  of
various assumptions  and parameter  values, as  well  as a standardized  model
for more routine  impact  analyses.

     The. ve.iA-i.on  o<< MPTER (85165) ie.le.a*e.d with  UNAMAP 6  <.nc.tu.dej> a dztault
option which  allow* the. u*e.i to  *e.t the. mode.1 {,01  ie.aulatoiu application*.
Whe.n the.  option i* e.mploue.d, the. mode.1 *ati*tiej> the.  ie.ouiie.me.nt* outlined
in the.  "Gu.ide.line.  on  Ail Quality  Mode.1* (Re.vi*e.d)"  (EPA,  1986)  ioi mo*t
application*.  The. de.6au.lt option i* oiovide.d a* a c.onve.nie.nc.e. f,oi the. u*e.i,
to he.lp  avoid inadve.ite.nt e.iioi* in  *e.ttinci the. apoiopiiate. option*.  The.
u*e.i i*  cautionzd to  ie.^e.1  to the.  c.u.iie.nt ie.ctu.latoiu mode.ling  Guidance, in
EPA'4 "Guide-line,  on Ail Quality Mode.1*  (Re.vi*e.d)" and to conte.1  with the.
appiopiiate. ie.gional me.te.oiologi*t.

     MPTER  can  estimate the resulting  concentrations  at  a  maximum  of 180
receptors from  a maximum  of 250  point  sources.  Gaussian  assumptions and
techniques  are  used to perform the estimates  hourly,  considering each hour
as a  steady  state period.   Required  input information  consists  of  point
source and  hourly meteorological  data.  Periods  from one hour  to  one year
may be  simulated,  with  all  output  controlled  by  the  user through  the
selection of options.

-------
Features of the algorithm include:
     o   Averaging periods of longer than 1 hour,  if  selected  by  user.
     o   Hourly meteorological data that may be  read  off  punched  cards
            for.each hour, or from tape (or disk)  containing a year's data
            (same data as used for RAM or CRSTER).
     o   An optional terrain adjustment as a function of  stability  class.
     o   Inclusion or omission of stack downwash.
     o   Inclusion of gradual plume rise, or final rise only.
     o   Inclusion or omission of buoyancy-induced dispersion of  pollutant
            at the source using the method of Pasquill.
     o   Input of anemometer height.
     o   Input of wind profile power law exponents as functions of  stability.
     o   Concentration contributions that are available per hour  and/or  for
            the selected averaging period at each  receptor from up  to 25
            sources.
     o   Concentrations available hourly and/or  for the selected  averaging
            period at each receptor.
     o   Optional output of the.following information:  average concentration
            over length of record, plus highest  five  concentrations for  each
            receptor for four averaging times (1-, 3-, 8-, and 24-hour); and
            an additional averaging time selected  by  the  user.
     o   Optional output files for further processing of  concentrations  that
            are available per hour and for each  averaging period.
     o   Option {,01 Ae.ttinp de.tcuj.lt vo&i&a ^01 ie.pu.Za.tow a.pp£i.c.a.t<.on4.
     o   Cfto-cce. of, u.iha.n 01 >ui>iaJL 4e.tt4.nQ4.
                                                                       5-86

-------
CONTROL DATA
     The following control information  is  needed  for  a run.  Some additional
information, to be  discussed  later, may be required  depending  upon options
selected.  Control information needed includes:
                Headings (for output)
                Year
                Starting Julian Day
                Starting Hour
                Number of averaging periods to be run
                Number of hours in each averaging period
                Code  for selecting  the  pollutant for this  run  (sulfur
                  dioxide or particulate)
                Mode of simulation (urban or rural)
                Number  of significant  sources  (used  for  contribution  to
                  concentration from individual sources)
                Additional averaging time for high-five table (explained
                   later)
                Conversion  for  user > units   (east  and  north  coordinates)
                Conversion for user height units
                Half-life of pollutant used in this run
                Values to select each option
                Anemometer height
                Wind profile power law exponents (one for each stability)
                Terrain  adjustments,  if  used  (one   for  each  stability)
Further discussion of input data is given  in Chapter 7.

-------
                                  SECTION  3
                              RECOMMENDATIONS

USES
     As  stated  in  the  introduction,  MPTER  is  a multiple  point  source
dispersion   model  for  urban  or  rural  situations.     Because    optional
adjustments  can  be made  for slight  terrain  variations,  careful  study of
model  inputs  is  required  to ensure  the  user's  problem is  addressed,  and
to provide proper output for the problem at hand.  The  model  may  also  be
applied  to  -impact analyses in   response   to  regulatory  requirements  by
selecting  the  default  option which sets  certain features,  overriding other
user-input selections as required.
     Its versatility  allows ,>MPTER to  function as both  a  tool  for research
and  for more  routine  impact  analysis.    In  research,  numerous  parameter
variations can  be explored for  comparisons with  measured  air quality data,
and various sensitivities can be determined.
     A  frequent  use of  the model will  be  to assess   air  pollutant  impact
to  compare  with  National  Ambient  Air  Quality  Standards.    Since  the
short-term standards are not  to be exceeded  more than  once a year, extremes
of  the  frequency distribution must  be determined.  Brute  force  approaches
may  be  required  to estimate these extremes  through  calculation  of  a  full
year's  data,  as  is done  by  CRSTER.   Receptor  locations are  input  by the
user,  except  when the model's   option  is  used  for  generating a  polar
coordinate set of receptors centered in a specific  location.
     Determining  appropriate  receptor locations  where  maximum impact might
be  expected  is  a difficult  user problem.    Little  guidance  is  available
for  selecting  optimum  receptor  positions,  but  the  following  three steps
may  prove  helpful:  1)  use screening methods to  locate  distances  to maxima;
2)  at  these  distances,  use  polar coordinate  locations about  each  source
of  significance,  analyzing a year's  or  more  meteorological  data, and  then
3) make  estimates
                                      7                                  5/Bf,

-------
 ASSUMPTIONS
      The foundation of  MPTER,  including much  of its computer  code,  is the
 point source portion of RAMR.
 Gaussian Modeling
      The following assumptions  are  made:   1)  continuous plumes  are  diluted
 upon release by the wind  speed at stack top; 2) dispersion  from continuous
 plumes results in time averaged Gaussian distributions in both the horizontal
 and vertical  directions  through  the  dispersing  plume;   3)  concentration
 estimates may be  made for each hourly period using  the mean meteorological
 conditions appropriate  for  each  hour;  4)  the total   concentration  at  a
 receptor is the  sum  of  the  concentrations estimated at the receptor  from
 each source, i.e.,  concentrations are  additive; and   5)  concentrations  at  a
 receptor for periods  longer than  an  hour can  be  determined  by averaging the
 hourly concentrations  over the  period.
      The upwind  distance  x  and the  crosswind distance, y of the source  from
 the receptor is  determined as  a  function  of the mean hourly wind direction.
 Dispersion  parameter  values  are  determined as  functions of stabi1ity class
 and  upwind distance.   Equations  to  estimate  concentration  are  selected
• dependent  upon  stability class,  and,  for  neutral   or  unstable conditions,
 upon  the  relation  of  dispersion  parameter  value  to  mixing  height  (see
 Appendix A).   The  location  of the  receptor relative  to the plume position
 is a dominant factor  in the magnitude  of the concentration.
 Dispersion  Parameter  Values
      The  dispersion  parameter values  used  for a  particular  run  of  MPTER
 depend  upon the  mode  of simulation  (either urban or rural).   For the  rural
 situations,  a roughness  of .approximately 0.1  meters  is   assumed  and  the
 Pasquill-Cifford (P-G)  parameters  are  employed.     The  urban  dispersion
 parameter  values are those recommended  by Briggs  and  included in  Figure
 7 and Table 8 of Gifford  (1976).
      Except for  stable  layers   aloft, which  inhibit  vertical  dispersion,
 the  atmosphere   is  treated  as  a  single  layer  in the  vertical   that  has the
 same  rate  of vertical  dispersion  throughout.   Complete  eddy  reflection
 is  assumed both from  the  ground  and from  the  stable  layer  aloft,  given
 by  the  mixing
                                      9                                  5/S6

-------
Option 2:   Stack Downwash
     A  second  optional  feature  of  MPTER  is  considerations  of  stack  tip
downwash  using  the  methods  .of  Briggs.   In  such  an  analysis,   a  height
increment  is  deducted  from  the  physical  stack  height  before  determining
momentum or  buoyancy  rise.   This  option  primarily affects computations from
stacks having small ratios of exit velocity to wind speed.
Option 3:   Gradual Rise
     Gradual plume rise has been  made an optional  feature of MPTER, because
although the use of the x    dependence  for  rising   plumes  will  determine
average  plume  height  with distances quite  well,  the  plume  axis  is  not
horizontal during  the  rising  phase.  Therefore, dispersion  is  taking place
perpendicular  to  the  bent-over  plume  axis  rather   than  vertically.    The
dispersion  parameters  represent  horizontal  and  vertical dispersion  about
a horizontal  plume, which  may not be  appropriate  for estimating dispersion
of a  rising  bent-over plume.    By making computations  with  and without the
gradual  plume  rise,  at  least  identification  is  possible  of potentially
high  concentrations  during  the  gradual  plume  rise phase.    When  gradual
rise  is not  employed,  computations are made using  the final  'effective plume
height.
Option 4:  Buoyancy-Induced Dispersion
     The final  optional  feature of MPTER is  a  method suggested by Pasquill
(1976)  for   determining   the  buoyancy-induced   dispersion   in   both  the
horizontal and  vertical directions.  This feature  is  offered because emitted
plumes  undergo  a  certain  amount  of  growth  during  the plume  rise phase,
due to the turbulent motions associated with the conditions of  plume release
and  the  turbulent entrainment  of ambient  air.    Such  dispersion,  however,
will  generally have  little  effect  upon  maximum  concentrations  unless the
stack height  is  small  compared to  the plume rise.
                                    12                                 5/S6

-------
be either  clockwise or  counterclockwise.   Although  surface  wind direction
may  have  little  effect  upon   long-term   concentrations   (such  as  annual
average) from single plants,  and  may  not greatly alter estimates of extreme
concentration  values  from  such  a  source,  use of  surface  wind direction
to  determine  plume transport  direction  usually  causes   large errors  in
hour-to-hour  estimates.     This  potential  error   is   a  very  important
consideration  if attempting  to  compare air  quality measurements  with the
model estimates.   The error  is  also important  in  considering interactions
of   several   sources  where   actual   wind   directions  are  significant  in
determining  the location  of a  plume  from a  source passing  over  another
source.
     Since the dispersion parameters are based upon P-G  stability  classes,
the  fact should be recognized that  a  change  of  only one  stability class
for  input  will   cause  large  changes (factors of 5 to  10)  in concentration
at a receptor.   Such changes  are especially likely if the receptor is closer
to the source than  the distance to maximum concentration.
     Other  potential  causes  of  large  inaccuracies  in  concentration  at  a
given  point  include  wind  speed  errors,   wind  speed  profile  power  law
exponents   that  differ  from  actual   variations,   and  nonrepresentative
stability  classes.   However,  if the user  is searching for  maximum impact
and  is   relocating  receptors  in  order  to  find  such  maxima,  there  will  be
considerably  less  sensitivity  to  wind  speed  differences  and power  law
exponents, but  still significant  sensitivity  to  stability class.
     Not included  in  this  model  are  situations  where  wind  speed varies
markedly within  the hour, whereby the effective  plume height will fluctuate,
causing  increased vertical dispersion of the  nlume.
     Maxima  even at  the extreme  ends  of  the   frequency  distribution  will
tend to  have  more  accuracy than hour-to-hour comparisons.  Longer averaging
times,  such  as  annual  concentrations,  will  also have less error than  short
averaging  times.   Background  concentrations  from   sources  not considered
in the  emission  inventory may become more  important for the  longer averaging
times.
                                    14

-------
where u  is the input wind speed for this hour, z  is the anemometer height,
       *                                         3
and the exponent p is a function of stability.  If u  is  determined  to  be
               -i
less than 1ms  , it is set equal  to 1.

     Separate urban  and rural  default  wind profile exponents are considered
by MPTER  and are shown below.   These  exponents are used by the model when
the  user exercises  the  default  option.   The  rural  exponents correspond
to  a surface  roughness  of about  0.1  meters;  the  urban  exponents result
from  a  roughness of about  1  meter (plus  urban heat  release  influences).
For  a more  detailed discussion of wind profiles,  the reader  is  referred
to Irwin  (1979).

         TABLE 1.  DEFAULT WIND PROFILE POWER LAM EXPONENTS FOR  THE
                               URBAN AND RURAL MODES.
Stability
A
B
C
D
E
F
Urban Exponent
0.15
0.15
0.20
0.25
0.30
0.30
Rural Exponent
0.07
0.07
0.10
0.15
0.35
0.55
     As  stated in  the  previous chapter,  directional  shear with  height  is
not  included,  which means that  the  direction of flow  is  assumed  to be the
same  at  all heights  over the region.   The taller  the  effective  height  of
a  source,  the  larger the expected  error  in direction  of plume transport.
Although  the  effects  of surface  friction  are  such  that wind  direction
usually  veers  (turns  clockwise)  with  height,   the   thermal   effects  (in
response to  the horizontal  temperature gradient in the region)  can  overcome
the  effect  of friction  and  cause  backing  (turning  counterclockwise  with
height)  instead of  veering.
      In  the  program RAMMET,  which processes National Weather Service  hourly
observations,  the  wind  directions (reported to the nearest 10°) are  altered
by a randomly  generated  number from  0  to 9 used  to  add  -4°  to +5°  to the
wind  vector.   An extreme  overestimate  of concentration

                                     17

-------
     In ranking  the  point  sources by  the significance  of their  expected
impact, only the  rise due to  buoyancy is processed,  since it  is  expected
to be  the  dominant plume  rise factor.   In  the  computation  of the  effect
of each point  source  upon receptors for  each  simulated hour, however,  all
three of  the  above  mentioned  effects — stack  downwash, momentum  plume
rise, and buoyant plume rise — can be  considered .   These  computations  are
discussed in detail in  Appendix B.  Of note  is that since wind speeds  are
not allowed to be less than 1 m s~l, the stable buoyancy plume rise for calm
conditions is not required and  is  therefore not included in  the program code
for MPTER.
DISPERSION PARAMETERS
     The. iu.iaJt.  ditpe-iAion  pa.i.ame.te.1  valuer  in  MPTER aie.  the. P-G
            1961;  G^oid,  I960],  which a.ppe.a.1  cu> Qia.pn4 in  Tu.ine.1 (1970)
and in Gittoid  (Figuie. 2;  1976}.   The. Aubioutine.* uu>e.d  to  de.te.imim thej>e.
ope.n-c.ou.ntw Aide,  pa.iame.te.1  va.lu.ZA  aie. the. Acme. cu>  in the. UWAMAP piogiam
PTPLU  (Pie.ic.e.  e.t  a£.,1982}.   'The  uiban  diAv
-------
                 HA = H                  for FT = 1
                 HA = H - AE             for FT = 0
                 HA = H - 0.7 AE         for FT = 0.3
                  A                           T
                 HA = H - 0.1 AE-         for FT = 0.9
     The manner  in which  the  terrain adjustment  is simulated  is  depicted
in Figure 1 for three values of the factor.
     Of  note  to  the  user  is  that  calculation  of  terrain adjustment  is
limited to receptors whose ground-level  elevation is less than the elevation
of the lowest stack top used in the run.
     The terrain  adjustment  incorporated in MPTER  is  obviously simplistic.
For  the  estimation  of plume  behavior  in  the  vicinity  of  a  single  hill,
the  stable-plume  fluid modeling  studies of  Hunt et  al  (1978)  have  shown
the  importance  of the Froude  number, and  of  the location  of  the  receptor
and  the  plume  relative  to  hill  base and  top.    None of these  parameters
is  considered  here,  but  rather  the relation  of  the  receptor  and  source
ground-level  elevations.    The   reader  is   therefore  cautioned   against
assigning  too  great a  significance to  results  obtained using  the  terrain
adjustment option.  >
Option 2:  Stack Downwash
     A  second  optional  feature  of  MPTER  is  consideration  of  stack  tip
downwash  using the  methods  of  Briggs.    In such  an  analysis, a  height
increment  is  deducted  from the  physical  stack  height  before determining
momentum   or   buoyancy  rise.     Use  of   this   option  primarily   affects
computations from  stacks having small ratios of exit velocity to wind speed.
Option 3:  Gradual Rise
     Gradual  plume  r^se  determination  has been  made  an optional  feature
of MPTER,  because  although the use  of the x    dependence for  rising plumes
will  determine average  plume  height  with distance  quite   well, the  plume
axis  is  not horizontal during the  rising  phase.   Dispersion is thus taking
place  perpendicular  to  the bent-over  plume  axis  rather  than  vertically.
The  dispersion  parameters  represent  horizontal   and   vertical  dispersion
about  a  horizontal plume,  which may not  be  appropriate
                                    22
                                                                      5/86

-------
OUTHR  - Subroutine which arranges and then prints tables of concentration.
         Number of tables that  is output depends  on the option combination
         specified.
RANK   - Subroutine called  by  MPTER that ranks concentrations  for four or
         five  averaging  times  so that  highest  five  concentrations are
         printed for each receptor.
ADDITIONAL COMMENTS
     Figure  2  is  an  abbreviated flow  diagram of  MPTER showing  its major
•loops  and  the  relationships of  the  subroutines  to each other  and the main
program.
     The main  program  of MPTER  primarily exists  for  input and bookkeeping;
most  technical calculations  are performed  by subroutine  PTR.    PTR calls
subroutine  RCP,   which   in  turn  obtains  dispersion  parameter  values  from
subroutine PGYZ,  then  selects  and solves  the appropriate Gaussian equation.
Subroutine RANK  orders  the  highest  five concentrations for  each averaging
time  for  each  receptor.. Subroutine OUTHR  essentially provides the  printed
output.
      The  executable  program for MPTER requires  58  K core on  EPA's UNIVAC
1110.
                                     26

-------
6.2.1.8  Pollutant Half-Life — HAFL
     An exponential  loss of  the  considered  pollutant  with  travel  time  is
included  in  the model.   At a  travel  time equal  to the  half-life,  50%  of
the  pollutant  will  remain.    Although this  view  of  chemical  or physical
depletion processes  is  overly  simplistic,  it  may be useful  under certain
circumstances.    Note  that  the half-life  is  entered  in  seconds.   If the
user wants  no  depletion to  be  considered,  entering zero  for the half-life
will cause  skipping  of those  portions  of  the code  calculating pollutant
loss.
6.2.1.9  Values of Variables Related to Increase of Wind with Height—
     The  anemometer  height in  meters  for  the meteorological data  used  is
entered on CARD TYPE 6.  Six values for the wind profile power law exponent,
one  for each stability  class,  are also  entered on CARD  TYPE 6.   Table  1
in  Section  4 provides appropriate values  for  the  urban and  rural modes.
For  computations  submitted in  response  to regulatory  requirements,  Option
25  should be used.   Current regulatory guidance should  be consulted (check
with  the appropriate  regional  meteorologist).    This  will automatically
utilize the values listed in Table 1.
     If  Option   1  is  employed to make  terrain  adjustments,   six  terrain
adjustment  factor  values  (one  for each stability class)  that  are  read  in
on  CARD TYPE  6 are  used in subsequent computations  (see 6.2.3.1.1 below).
The  values must be real  numbers between 0 and  1.
6.2.1.10  Urban/Rural  Mode Indicator—
     The  urban  or  rural  setting is  indicated  via input  variable,   ML/OR.
If  MUOR =  1,   then  the  urban  dispersion  parameter values  recommended  by
Briggs  and  included  iv* Figure 7  and  Table  8 of afford (1976) are  used;
if  MUOR  =  2,   then  the P-G  dispersion  values  are  exercised.    (•fhen  the
regulatory  option  is  chosen  (IOPT(25) =  1),  MUOR  also  determines the  set
of  wind profile power  law exponents used  (either urban or  rural).
6.2.2   Input Data
     Comments on emission, receptor, and meteorological data  are  made here.
                                     31
                                                                       5/S6

-------
6.2.2.1  Emission Data -- (See CARD TYPE 7)
     The alphanumeric  name  and eight variables of  point  source information
are  the same  as used  in  most  dispersion  models.    Only one  of  the  two
emission rates  will  be used  in  a given run  (see 6.2.1.3 above).   If only
one pollutant is of  interest,  the  other  field  may be left blank.   If Option
6  to  enter hourly  emission rates  (see  6.2.3.2.2  below)  is  not  used,  the
emission rates  should provide  the best  estimate of  the emission  for  the
length  of  record  being   run.    If maximum  or design  emissions   are  used,
concentration estimates may be somewhat larger than  actual  concentrations.
However, Irwin and
                                    31A

-------
     Users who  want to  make a  run  for a  significant length  of  simulated.
time are  thus  advised  that  when employing  the terrain  adjustment  option,
they must first  make a run  for  a short period  (one  hour — meteorological
data are  unimportant)   to  see if  double asterisks  appear on  the  receptor
list.  Then these receptors should be eliminated before making the long-.term
run.
6.2.2.3  Meteorological Data -- (See CARD TYPE 14)
     Meteorological  data  files prepared  by the  CRSTER  Preprocessor  or  by
the  similar  program from the  RAM  system,  RAMMET, are  acceptable  by MPTER.
Proper running of  these preprocessor programs results  in a one-year period
of  record  with  one  record for  each calendar  day.   Twenty-four  values  of
each   of   the   following   parameters   are   contained   in   this   record:
Pasquill-Gifford Stability Class, wind speed (at anemometer height),  ambient
air  temperature,  wind  flow  vector  (wind  direction  ±  180°),  and  mixing
height.  The user  should be  reminded that  if using either of these programs
to  process  meteorological  data,  a  complete  set of  data must be  input  to
either program.   Any  "holes"  in  the data  set  must  be filled  by  the user.
In  using this  data for  input to  MPTER one  record is  read for each simulated
day.   If  making  a  run for  a period  of  record  of  less  than  a year  and
starting  after Day  001  (January 1st),  MPTER will  skip   records  to arrive
at  the  proper  day based upon  the  variable IDATE(2)  on CARD  4 (see  6.2.1.4
above).
     If  using meteorological  data  from  the  preprocessed  file,  Option  5
will be  zero.   Also,  the  four variables on CARD  TYPE 8  are  to  be  read in
and  will be checked  against the data on  the input file.
     Alternatively,  when employing  Option 5,  meteorological  data  is read
from punched  cards  (see CARD TYPE   14)  with  one record  for each simulated
hour in  the  run.  The  wind  speed  on this card  again  is  for the anemometer
height.  The wind  direction  is the direction from which the wind blows.
6.2.3  Options
     There are five  technical  options,  four  input options,  11  print  options,
and five other options  either  for control  or for  output to files.  To  employ
a  particular option,  a  1  is entered  as input to the  element of the array
IOPT with the  same number  as the  option number.   Otherwise,  a  zero  is
                                     34                                 S/S6

-------
plume  rise using  the  techniques  suggested by  Pasquill  (see  Section 4).   It
should be  pointed out  that even  if Option 3 is employed, resulting in use
of only  the final  plume height  for effective height of emission, the gradual
plume  rise is determined  internally to determine the  buoyancy -induced plume
size.   (It would  not  be  the least bit  appropriate to use the  final  plume
rise to  determine the  initial  size close to  the stack).

6. 2 '3. 1.5   Option 25:   Se.t Ve.6au.lti>  (u*e.d  (.01  inqu.ia.toiu  application*} --

     The. dztault  oat-ion  (10PT(25)  =  7)  automatical-Pis  *e.t*  *e.ve.lal input
ie.atu.iej>,  ove.iiid.ina   othe.1  u*e,i- input *e.le.ction* a* ie.ouiie.d.   C.uiie.nt&j
the.  dzAault  option  *e.t*  {e.atuiej>  ie.ou.iie.d  tot  ie.au.Za.toiu  application*.
Ex.e,ici*ina thi* option ie.*ult* in  the.  tollowina.
      o    Final plume.  ii*e. it u*e.d  (aiadual 01 tian*itional pP-ume. lite,  i* not
            c.onAide.ie.d) ,  that it, IOPT{3]  i* *e.t to  "7").
            Fo/c di^tanau teA*  than the. distance,  to 6ina£  lite., the.  Qiadual
            plume. ii*e. it uA&d  to de.te.iinine. the. bu.ouanc.u-indu,c.e.d
            ie.gaid£ej>A o{ the. *e.ttinQ  06 IOPT(3).
      o    Te.iia.in adju^tme.nt fac-toi* aie. Ait to "Q"  (01 at.
      o    Stack tip  downwoAh [RiigqA,  7974) i* c.on*ide.ie.d (i.e.., IOPT(2)  i*
            *e.t to "0"}.
      o    Ve.4au£t uiban 01 mial wind  piotite. exponent aie. u*e.d de.pe.ndina on
            the. value,  ot  MUO?; appiooiiate, mixing he.iqhtA aie. ^>e.t.
      o    Calmt> aie.  t'\ de.ve.t.ope.d hu the. EPA (79^4)
            cw di£c.uAAe.d be.-C.ou).
      o    Ve.c.au haf.t-f.ite. i* Ae.t to 4.0 hou.i* 601 SOf 4oi the. uiban  option,
            and infinite. halA-lite.  (no rfecow) toi all othe.i
      It i* poAAible. to  ope.iate. in  e.ithe.1 the.  uiban 01  iuia.1 mode.  whe.n the.
 de.4ault option  i<*> *e.fe.c.te.d.

      Table. 7A  contain* a litt at, the. AubAP.aue.nt Ae.ttinpA £01 othe.1 option*
 and the.  valuer  (01  *pe.ci^ic  vaiiablu  that  will  -ie.*ult uihe.n  the.  de.4ault
 option i* *e.le.c.te.d .

                                      36                                   5-S6

-------
     One. lesult 06  exeicisina the.  default  option is  that calm  conditions
    handled  accoiding to  methods developed  by  the. EP:   {1984}.  A calm houi
can be.  identified in  the. model  OLA  an hou.1  with a wind speed of, 1.0 m/sec
and a wind diiection  eoual to the.  pievious houi.  When a calm  it detected
in the.  meteoiological data,  the. concentiations at  all leceptois aie  set
to zeio, and the. numbei  of. houis being  aveiaged is  leduced bit one.,  except
that the.  divisoi  used in  calculating  the.  aveiage is  ne.ve.1  lej>4 than  75
pe.ice.nt oi  the.  ave.iagina  time.,   foi any simulation,  this  le^ults  in  the.
following:

     o   3-s/ou* ave.iaae.s aie.  de.te.imine.d by alivauA dividing the. sum 06 the.
           houllit contibutions bu 3;
     o   S^ioui ave.iagzs aie.  calculate.d bu dividina the. sum of the. houilu
           contiibutions by  the.  numbe.i  oX  non-cal.m houis 01 6, whiche.ve.1
           is gie.atc>A;
     o   24-^loui ave.iagej>  aie. de.te.imine.d bu dividina the. sum of. the. houilu
           contiibutions bu  the. numbe.1  of non-calm  houis  01  1%, whiche.ve.1
           is giQ.ate.fi: and
     o    oe.iiod of ie.coid  ave.iage.s, ie.gaidlcss of le.nath,  aie. calculated
           bu dividina  the.  sum  of  all  the.  houifjj  contiibutions  bu  the.
           numbe.1 of.  non-calm houis duiina the. oe.iiod  of. ie.coid.

     Conce.ntiation calculations  which aie. afte.cte,d hu cafms aie.  flaage.d in
the.  piinte.d  output with the. le.tte.1  C placid  ne.x.t  to the. conce.ntiation value..
Wote that this  tie.atme.nt  of. calm case.s is alwaus use.d  whe.n ine de.tiCM.lt
option  is  selected, but cannot be used if. the. default option  is not se.le.cted.

     This calms pioce.du.ie. is not available in .'{PTER outside of  the default
option.  The usei can employ this pioceduie, howevei, thiough  the use of the
CALMPPfl postpiocessoi piogiam f:PA, 198A)\.  CAUWO  is available as  vait  oX
UNAMAP  Veisio.n 6.

6.2.3.2  Input Options --

     For  the four  following  input  options,  specific action is taken if the
value of  1 is entered.
                                      36A                                 5-55

-------
     6.2.3.2.1  Option 5:   Met.  Data on  Cards  --  If  IOPT(5) =  1,  met  data
are entered  on  cards  with  one  card for each  simulated  hour  (see  6.2.2.3
above).  If  Option  5 is  0,  meteorological data is  entered using  records  on
unit 11.  The specification  of the  records  on  this input file  are  given  in
the next section.
          the.  dzfiault option  (10PT  (25] *1)  i*  emp^ot/ed,  I OPT  (5)   i*
e.qua£ to 0,  that  iej>tiic.tina the. UAC. Oi<  thi*  option.   Thi* i* done, to avoid
c.on(£ic.t with  the.  calm*  pioc.HM>ina  p-tocedu^e.   TA  on-Aite.  01 othe.i  than
RAMMET data cue. to  be. uu>e.d,  the.u mu^t c.oM£Apond  to the. ioimat oi the. RAMMET
     and be. x.e.ad into the. wode.t on dew-tee ( 7 / ) .
     6.2.3.2.2  Option 6:   Read Hourly Emissions  — If  IOPT(6)  =  1,  hourly
emissions for each point  source. are read  from unit 15 in  the  main program,
then are  compared with  the emissions  input  on  the point  source  card  for
scaling the  exit  velocity   (see  6.2.2.1).   Subroutine  PTR performs  these
tasks; Section 7 specifies that records on this input file.

     6.2.3.2.3  Option 7:   Specify  Significant Sources  -- The number  of sig-
nificant sources, given as NSIGP on Card 4, is ranked when the emissions data
are processed according  to  expected ground-level  impact  under  8 stability,
with a wind  at   stack  top  of 3 m s~*.  This  option can be employed  if the
contribution of  a source  is sought  for  a  subsequent run that is  outside
this list  or  too far down  it to  be included among  the significant sources,
NSIGP on Card 4  (see  6.2.1.5  above).   When IOPT(7)  = 1,  an additional  input
card is  read  (CARD TYHE  9)  that indicates  how many  sources  will  be  specified
(NPT), then gives  their  source  numbers (the array  MPS) corresponding  to the
source numbers  in the  printed  output list.   Source  numbers  are assigned
according to  the  order   of  the  source  input.    For   example,   consider  an
application having  30 sources,  where a  run is  deemed  useful that  shows
contributions from 10  sources (NSIGP  on  CARD 4 will be  set to 10).   Speci-
fically, the  contributions  from  sources  7 and 22  are  desired.   The  12 most
significant of the 25  sources,  in order,  are:  3, 8, 23,  11, 2,  15, 4, 27, 1,
5, 28, and  14.   Since 7  and  22 are not among these 12,  and further  are not

                                  36B                                   5-S6

-------
in the first 10, Option  7  is  set equal  to 1,  and CARD TYPE 9 contains 2 for
NPT and the two numbers 7 and 22  for  the  two  entries  to  MRS.  Sources 7 and
22 will occupy the first two columns  in the contribution table.  The program
will fill  the other eight positions of the significant source list  (to total
10) with the first eight sources  of  the list  of 25,  i.e.,  3,  8,  23,  11, 2,
15, 4 and 27.
                                     36C                                5/S6

-------
      W/ien the. d^awit option  (IQVT(25) = 1} i* ejnp£oue.d, WPT  (7) it *e.t e.qua.1
  to  Q, thuA iej>t>Lic.tinQ the. u4e o£ thi* option.  Thl& i*> done, to avoid con-
         between e^timateA o$ ze.io c.onc.e.ntiation and hou.M with minting data
         tag* aAe. not tued othe.i-than in the. high-5 tablet to identify concen-
  tiationA  c.alc.u£ate.d ^01 pe.n.iod* oi calm wind*.
     6.2.3.2.4 ^ption 8:   Input Radial Distances and Generate Polar Coordi-
nate Receptors — For the user's convenience in making computations at an
array of receptors that are positioned about a. specific source or some other
point, Option 8 provides for reading an additional input card  (CARD TYPE 10)
with from one to five non-zero distances in user units.  Additionally, the
east and north coordinates (also in user units) of a center position are
provided.  The program  generates the east and north coordinates of each
receptor in a polar coordinate array, generating 36 receptors  for each non-
zero distance  (one for  each 10 degrees of azimuth).  A five-value distance
array^is read from the  card with distances entered for the number of distances
desired.  Zeros  are added to fill the array.  For example, to  produce a
receptor array with two distances, two distances and three zeros are entered.
This step will generate 72 receptors (36 for each distance).   Putting non-
zero values  for  all five distances will generate 180 receptors, which is the
maximum  number  that MPTER can  compute.  Thus using Option 8 in this manner
will not allow  the input of any additional receptor cards with positions
specified by the user.
     Of  note to  the user is that if both Option 8 and Option  1  for terrain
adjustment  are  used, elevations of the polar coordinate  receptors must  be
read  in  using  CARD TYPE 11.  These can best be obtained  by drawing 36 radials
from  the designated center point on a  topographical map,  and  drawing  circles
for  each distance.  Then the elevations can be determined from the map  by
reading  elevations outward from the center, starting with the 10-degree azimuth
radial.   If all  five distances are used so  that  180  receptors are  generated,
a card with ENDREC  in  Columns  1-6 must be  read  following CARD TYPE  10  (or
 the  last card  of CARD  TYPE  11  if  used).
                                     37                                 5/86

-------
Variable
TABLE 6.  MPTER CARD 4 - CONTROL AND CONSTANTS (1 card)

                    Description
Units
IDATE(1)

IDATE(2)

IHSTRT

NPER


NAVG

IPOL



MUOR



NSIGP


NAV5



CONONE


CELM


HAFL
             2  digit year  (see  6.2.1.4)

             starting  Julian  day for  this  run

             starting  hour for  this run

             number of averaging periods  to  be  run
                  (see 6.2.1.2)

            number of hours in  an averaging  period

             pollutant indicator:   (see 6.2.1.3)
                  3 =  S02
                  4 =  suspended particulates

             urban/rural mode indicator:   (see  6.2.1.10)
                  1 =  urban
                  2 =  rural

             number of significant point  sources,
                  max  = 25.  (see 6.2.1.5)

             number of hours  in the user  specified  period
                  for  which a high-five concentration
                  table is generated,  (see  6.2.1.3)

             multiplier constant, user units to km
                  (see 6.2.1.5)

             multiplier constant, user heiaht units to m
                  (see 6.2.1.6)

             pollutant half-life (see 6.2.1.7)
 sec
All  input variables are free format.
                                     50
                                                            S/S6

-------
TABLE 7.  MPTER CARD 5 - OPTIONS (1 card) - integer values: 0 or 1
Variable Format
IOPT(1) Free
IOPT(2) Format
IOPT(3)
IOPT(4)
IOPT(5)
IOPT(6)
IOPT(7)
IOPT(8)
IOPT(9)
IOPT(10)
IOPT(11)
IOPT(12)
IOPT(13)
IOPT(14)
IOPT(15)
IOPT(16)
IOPT(17)
IOPT(18)
IOPT(19)
IOPT(20)
IOPT(21)
IOPT(22)
IOPT(23)
IOPT(24)
IOPTC2S)
Description
TECHNICAL OPTIONS (see 6.2.3.1)
Use Terrain Adjustments
No Stack Downwash
No Gradual Plume Rise
Include Buoyancy-Induced Dispersion
INPUT OPTIONS (see 6.2.3.2)
Met. Data on Cards
Read Hourly Emissions
Specify Significant Sources
Input Radial Distances and Generate Polar
Coordinate Receptors
PRINTED OUTPUT OPTIONS (see 6.2.3.3)
Delete Emissions With Height Table
Delete Resultant Met. Data Summary for
Averaging Period
Delete Hourly Contributions
Delete Met. Data on Hourly Contributions
Delete Final Plume Height and Distance to
Final Rise on Hourly Contributions
Delete Hourly Summary
Delete Met. Data on Hourly Summary
Delete Final Plume Height and Distance to
Final Rise on Hourly Summary
Delete Averaging-Period Contributions
Delete Averaging-Period Summary
Delete Average Concentrations and High-Five
Table
OTHER CONTROL AND OUTPUT OPTIONS (see 6.2.3.4)
Run is Part of a Segmented Run
Write Partial Concentrations to Disk or Tape
Write Hourly Concentrations to Disk or Tape
Write Averaging-Period Concentrations to Disk
or Tape
Punch Averaging-Period Concentrations on Cards
Set Default Values (u^erf f,oi i^.Qu.la.to'iif application*]
                                51
S/86

-------
TABLE 7A   DEFAULT OPTION - SUBSEQUENT SETTINGS

     Employment of the default  option (IODT (25)=1)  will  cause  the  input
option switches and specified variables to be set to the  following:

        IOPT (2)  = 0
        IOPT (3)  = 1
        IOPT (4)  = 1
        •IOPT (5)  = 0
        IOPT (7)  = 0
        IOPT (10) = 1
        IOPT (11) = 1
        IOPT (12) = 1
        IOPT (13) = 1
        IOPT (14) = 1
        IOPT (15) = 1
        IOPT (16) = 1
        IOPT (17) = 1
        IOPT (18) = 1
        IOPT (19) = 0
        IOPT (20) = 0
        IOPT (21) = 0
        IOPT (22) = 0
        IOPT (23) = 0
        IOPT (24) = 0

HAFL = 14400.   (For IPOL = 3, MUOR = 1)
HAFL = 0.       (For IPOL ? 3 or MUOR f 1)
IHSTRT = 1
NAVG = 24
NSIGP = 0
NAV5 = 0
PL = .15,.15,.20,.25,.30,.30 for MUOR = 1
   = .07,.07,.10,.15,.35,.55 for MUOR = 2
CONTER = .0,.0,.0,.0,.0,.0

                                  51A                                  5-86

-------
   TABLE 23.  MPTER OPTIONAL TEMPORARY FILE - VALUES FOR HIGH-FIVE TABLES
                     (unit  14)   (output  if  option  20  =  1)
Variable
Dimensions   Description
Units
ONLY RECORD

  IDAY (on write)

  IDAYS (on read)


  SUM


  NHR

  DAY1A


  HR1


  HMAXA


  NDAY


  IHR
             Number of days processed

             Number of days previously
             processed

    180      Cumulation of long-term                g/m3
             concentration

             Number of hours processed

             Starting Julian day of
             period of record

             Starting hour of period of
             record

  5,180,5    Concentrations according to rank,      g/m3
             receptor, and averaging period

  5,180,5    Associated Julian day of                -
             concentration

  5,180,5    Ending hour of concentration            -
                                    64
                                                  5/86

-------
                             REFERENCES
Gifford, Franklin A., Jr., 1960:  Atmospheric dispersion calculations using
     the generalized  Gaussian  plume  model.   Nucl. Saf.  _2  (2):  56-59.

Gifford, F. A.  1976.   Turbulent diffusion-typing schemes:  a review,  Nucl.
     Saf. 17:  68-86.

Holzworth, George C., 1972:  Mixing Heights, Hind Speeds, and Potential  for
     Urban Air Pollution through the Contiguous United States,  Office of Air
     Programs Publication No. AP-101.U. S. Environmental Protection Agency,
     Raleigh, NC.  118 pp.

Hunt, J. C.  R.;  Snyder,  U. H.;  and Lawson, R. E., Jr.,  1978:   Flow struc-
     ture and turbulent diffusion around a three-dimensional  hill -- Fluid
     modeling study on effects of stratification.Part I.  Flow structure.
     EPA-6UO/4-78-041, U.  STEnvironmental  PTotection  Agency,  Research
     Triangle Park, NC.  84 pp.

Irwin, J. S.  1979.   A theoretical  variation of  the  wind profile power-law
     exponent as  a  function  of surface  roughness  and  stability.   Atmos.
     Environ. 13: 191-194.

Irwin, J. S.; and Cope,  A. M.,  1979:  Maximum  surface concentration of S02
     from a moderate-size steam-electric power plant  as a function of power
     plant load.  Atmos. Environ. 13:  195-197.

Pasquill, F., 1961:   The estimation  of the  dispersion  of windborne material,
     Meteorol. Mag., 90  (1063):   33-49.

Pasquill, F.,  1974:   Atmospheric Diffusion,  2d  ed.,  Hal stead  Press,  New
     York.  429 pp.

Pasquill, F., 1976:  Atmospheric dispersion parameters in Gaussian plume
     modeling.  Part  II.  Possible requirements for change in the Turner
     Workbook values.EPA-600/4-76-03Ub,(T.STEnvironmentalProtection
     Agency, Research Triangle Park, NC.  44 pp.

Pi.Htc.&, T.  E.  and V.  R. Tmine.1, 3. A.  Ca.taJta.no,  and F. I/. Halt III, 19S2:
     PTPLU  - A Single-Source Ga.uA4J.an Vitae-IA-ion Af.QOii.thn>—UAZ-1'A  Ga-irte.
     EPk-600/8-X2-014, U.  S.   Enviionmnntal  "iTfiote.c.fion  Aaencw,   Re.AZa.ich
     "Puana£e Pa.ik, NC.   110 pp.

Turner, D. Bruce, 1970:  Workbook of Atmospheric Dispersion Estimates,
     Office of  Air Programs  Publication floT  AP-26.   \T.  S.  Environmental
     Protection Agency, Research Triangle Park, NC.  84 pp.

Turner, D.  8.,  and  Novak,  J.  H.,  1978:   User's Guide for RAM.   Vol.  1.
     Algorithm Description and Use,  Vol.  II.  Data Preparation and Listings.
     EPA-600/8-78-016 a  and  b,  U.  S.  Environmental   Protection  Agency,
     Research Triangle Park, NC.  60 and 222 pp.
                                     144                                  5-86

-------
U. S. Env4.ionme.nta2 Piotac.ti.on Apewcf/, 19&6:  Ga4.de.li.ne.  on  Mi Qu.af.ittJ
      (Reused)  EPA 450/2-78-027K,  ~U.  S.  Envi.ionme.ntaJ. ~>Viote.c.t4.on  Acjencu,
               Tii.a.nple. Paik, WC.
U. S. Environmental Protection  Agency, 1977:  User's Manual for  Single  Source
     (CRSTER) Model.  Monitoring and Data Analysis Division, EPA-4bU/2-77-013.
     Research Triangle  Park,  NC.

U. S.  Environmental  Protection  Agency,  1978:   User's  Network  for Applied
     Modeling of  Air  Pollution  (UNAMAP)  (Version 3).   (Computer programs  on
     magnetic tape  for  eleven air quality simulation models)  NTIS  PB  277-193,
     National Technical  Information Service, Springfield,  VA.

U. S. EnviionmantaJ? P lotmtion Aoenct/,  198*:  C.cJ.m* PIOC&MO*. (CALMPR0J
             Guide..  EPA-901 /9-%4-n01 .   U. S. Env4.ionme.ntaf ip*.ote.c.t4.on  Ape.nc.u ,
             I,  Boston,  MA  02201.
                                      145

-------
                                 APPENDIX B
                        PLUME RISE FOR POINT SOURCES

     The use of  the  methods  of Briggs to estimate  plume  rise  and effective
height of emission are discussed below.
     First, actual or  estimated wind  speed  at  stack top, u(h),  is  assumed
to be available.
Stack Downwash
     To  consider stack  downwash,  the physical  stack height  is  modified
following Briggs (1974, p. 4).  The h1 is found  from
        h1  = h + 2{[vs/u(h)]  - 1.5}d  for  vg <  1.5u(h),                (81)
                    h1  = h  for  v  2.1.5u(h),
where h  is physical  stack  height  (meters),  vg is  stack gas velocity (meters
per second), and  d  is  inside stack-top diameter (meters).  This  h1  is used
throughout the remainder of the plume height computation.   If stack downwash
is not considered, h1 = h in  the following equations.
Buoyancy Flux
     For most  plume  rise situations, the value of  the Briggs  buoyancy flux
parameter, F  (mVs3  )  is needed. '  The following  equation is  equivalent  to
Briggs1  (1975, p. 63) Eq. 12:
                     F = (gvsd2AT)/(4Ts),                               (B2)
where AT = T   -  T,  T   is stack gas  temperature  (Kelvin),  and  T is ambient
             S        S
air temperature  (Kelvin).
                                     150                                S/S6

-------
Unstable or Neutral: Momentum Rise
     Regardless  of  the  atmospheric  stability'3  neutral-unstable  momentum
rise is calculated.   The  plume height  is calculated  from  Briggs'  (1969,
p. 59) Eq. -5.2:
                         H = h1 + 3dvs/u(h).                            (B3)
Briggs  (1969)  suggests  that this  equation  is  most  applicable  when  v  /u
is  greater  than 4.   Since  momentum  rise occurs  quite close  to  the point
of release, the distance to final rise is set equal to zero.
Unstable or Neutral:  Buoyancy Rise
     For situations where  T  >_ T,  plume rise due to buoyancy is calculated.
The   distance   to final   rise x    (in kilometers)   is  determined  from
the equivalent  of  Briggs'  (1971,  p.  1031) Eq. 7,  and  the distance to final
rise is assumed to be 3.5x*, where x* is  the distance at which atmospheric
turbulence begins  to dominate entrainment.  For F less than 55,
                          xf =  0.049F5/8.                              (B4)
For F equal to or  greater than 55,
                          xf =  0.119F2/5.                      '        (B5)
     The  plume height,  H (in  meters),  is  determined from  the  equivalent
of  the  combination of  Briggs'  (1971, p.  1031)  Eqs.  6  and 7.   For  F less
than 55,
                      H = h1 + 21.425F3/4/u(h).                         (86)
For F equal to or  greater than 55,
                      H = h1 + 38.71F3/5/u(h).                          (87)
     If  the  unstable-neutral  momentum  rise  (previously calculated  from
Eq. 83)  is  higher than the  unstable-neutral  buoyancy  rise calculated here,
momentum  rise  applies.    Since  momentum  rise takes  place near  the stack
top, the distance  to final rise is set equal  to zero.
                                     151                                5/S6

-------
Stability Parameter
     For  stable  situations, the  stability parameter  s  is  calculated from
the equation (Briggs, 1971, p.  1031):
                      s = g(39/3z)/T.                                   (B8)
As  an  approximation, for  stability class  E  (or 5),    36/3 z  is  taken  as
0.02 K/m, and  for stability class  F  (or  6),   36/3z  is  taken  as 0.035 K/m.
Stable:  Momentum Rise
     When the stack gas temperature is less than the ambient air temperature,
it is assumed  that  the plume rise is dominated by momentum.   A plume height
is calculated from Briggs'  (1969,  p. 59) Eq. 4.28:
          H = h'  + 1.5{(v2sd2T)/[4Tsu(h)]}1/3s''/6.                      (89)
     This  is compared  uith the  value for unstable-neutral  momentum rise
(Eq. B3) and  the  lower of the  two  values  is  used as  the resulting momentum
plume height.
Stable:  Buoyancy Rise
                                       i
     For  situations  where  Ts >_ T,  the  plume  rise . due  to  buoyancy is
calculated.    The distance  to  final  rise  (in kilometers) is  determined by
the equivalent  of a combination  of Briggs'  (1975, p.  96)  Eqs.  48 and  59:
          xf = 0.0020715u(h)s'^/2.                                      (810)
     The  plume height  is  determined  by  the  equivalent of  Briggs'   (1975,
p. 96) Eq. 59:
          H = h'  + 2.6{F/[u(h)s]}1/3.                                   (B11)
     If  the  stable momentum rise is higher  than the  stable  buoyancy rise
calculated  here,  momentum  rise  applies and  the  distance to  final rise is
set equal to zero.
                                     152

-------
AH Conditions:  Distance Less than Distance to Final  Rise (Gradual  Rise)
     Where gradual rise  is  to be estimated for  unstable,  neutral  or stable
conditions, if the distance upwind from receptor to source x (in kilometers)
is less  than  the distance to  final  rise,  the equivalent  of  Briggs'  (1971,
p. 1030) Eq.  2 is used to determine plume height:
               H = h' + (160Fl/3x2/3)/u(h).                            (B12)
This height is used only for buoyancy-dominated conditions; should it exceed
the final  rise for the  appropriate  condition,  the  final  rise is substituted
instead.
                                     153        .                        5/86

-------
REFERENCES -- APPENDIX B
Briggs, Gary A., 1969:  Plume Rise,  USAEC Critical Review Series, TID-25075,
   National Technical Information Service, Springfield, VA.  81 pp.
Briggs,  Gary A.,  1971:    Some recent  analyses of  plume rise  observation.
   In:  Proceedings  of  the  Second  International  Clean Air  Congress,  H.  M.
   Englund and  W.  T. Beery, eds.   Academic  Press, New York.  pp. 1029-1032.
Briggs,  Gary  A.,  1974:   Diffusion  Estimation  for  Small  Emissions.   In  ERL,
   ARL  USAEC  Report ATDL-106.   U. S.  Atomic  Energy Commission,  Oak  Ridge,
   Tenn.  59 pp.
Briggs,  Gary A.,   1975:    Plume  rise predictions.   In:   Lectures    on  Air
   Pollution  and Environmental Impact Analysis,  Duane A.  Haugen, ed.   Amer.
   Meteorol. Soc., Chapter 3 (pp. 59-111).  Boston, Mass.   296 pp.
                                    154                                5/86

-------
                                APPENDIX  B

                      LISTING OF FORTRAN  SOURCE  CODE
     The source code of MPTER  (Version 85165) follows.  The program consists
of a main module  ,  five  subroutines,  and one function.  These pages  replace
Appendix C of the original  document.

-------
c
c
c
c
c
c
             MPTER      (DATED 85165)
         AN AIR QUALITY DISPERSION MODEL IN
            SECTION 1. GUIDELINE MODELS.
            IN UNAMAP (VERSION 6) JUL 86
 SOURCE:  UNAMAP FILE ON EPA'S UNIVAC 1110, RTF.
C->->->-> SECTION A -  GENERAL REMARKS.
                                                                        MPT00010
                                                                        MPT00020
                                                                        MPT00030
                                                                        MPT00040
                                                       NC.              MPT00050
                                                                        MPT00060
                                                                        MPT00070
                                                                        MPT00080
C***********************************************************************MPT00090
C        NOTE: THIS VERSION OF MPTER IS COMPILED WITH THE UNIVAC        MPT00100
C              ASCII FORTRAN COMPILER.  THIS VERSION OF THE MODEL        MPT00110
C              DIFFERS SLIGHTLY FROM EARLIER VERSIONS IN THE AREAS      MPT00120
C              OF FORMAT STATEMENTS AND CONDITION STATEMENTS.           MPT00130
C       NOTE: THE CARD INPUT FOR SOURCES DIFFERS SLIGHTLY FROM          MPT00140
C              PREVIOUS VERSIONS. ENDP SHOULD NOW BE INPUT TO           MPT00150
C              INDICATE THE LAST OF THE POINT SOURCES.                  MPT00160
C****************************************************************#*^
C
C***
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
MPTER PROGRAM ABSTRACT.
       MPTER IS A MUTIPLE POINT SOURCE CODE WITH AN OPTIONAL
  DEFAULT MODE AND AN OPTIONAL TERRAIN ADJUSTMENT
  FEATURE. THE ALGORITHM CODE IS PRIMARILY BASED ON THE POINT
  SOURCE PORTION OF RAM WHICH IS BASED ON GAUSSIAN MODELING
  ASSUMPTIONS. THIS VERSION OF MPTER ALLOWS FOR THE SELECTION
  OF URBAN OR RURAL DISPERSION PARAMETERS AND IS CONTROLLED
  BY THE INPUT VALUE FOR THE VARIABLE MUOR("1" FOR URBAN,
  "2" FOR RURAL). THREE OTHER FEATURES OF MPTER ARE: l) TO
  TURN OFF STACK DOWNWASH, 2) TO TURN OFF GRADUAL PLUME RISE,
  AND 3) TO INCLUDE PLUME SIZE DEPENDENT ON PLUME RISE.

       EXECUTION OF MPTER IS LIMITED TO A MAXIMUM OF 250 POINT
  SOURCES AND 180 RECEPTORS.  SIMULATION IS DONE HOUR-BY-HOUR
  AND HOURLY METEOROLOGICAL DATA ARE REQUIRED AS INPUT.  LENGTH
  OF SIMULATED TIME CAN VARY FROM 1 HOUR TO 1 YEAR.

MPTER AUTHORS:
  THOMAS E. PIERCE* AND D. BRUCE TURNER*
  ENVIRONMENTAL OPERATIONS BRANCH
  METEOROLOGY AND ASSESSMENT DIVISION, ESRL
  ENVIRONMENTAL PROTECTION AGENCY
    ON ASSIGNMENT FROM NATIONAL OCEANIC
    DEPARTMENT OF COMMERCE.
                                               AND ATMOSPHERIC ADMIN.
MODIFIED FOR DEFAULT OPTION AND URBAN OPTION BY:
  JEROME B. MERSCH
  SOURCE RECEPTOR ANALYSIS BRANCH
  MONITORING AND DATA ANALYSIS DIVISION
  ENVIRONMENTAL PROTECTION AGENCY

MPTER SUPPORTED BY:
  ENVIRONMENTAL OPERATIONS BRANCH
  MAIL DROP 80. EPA
  RESRCH TRI PK, NC 27711

  PHONE: (919) 541-4564,  FTS 629-4564.

*************************************************************
*
*
*
*
*
*
*
*
*
*
*
*
                       DEFAULT OPTION DESCRIPTION

               SELECTION OF THE DEFAULT OPTION  CAUSES
           FOLLOWING FEATURES TO BE SET:
THE
                      FINAL PLUME RISE  IS USED;  GRADUAL
                      (TRANSITIONAL)  RISE IS  NOT PERMITTED.
                      BUOYANCY  INDUCED  DISPERSION IS  USED
                      DEFAULT VALUES  OF .07,.07,.10,.15,.35,
                      AND  .55 FOR THE RURAL AND  .15..15,.20,
                      .25,.30,  AND  .30  FOR THE URBAN  OPTION
*
*
*
*
*
*
*
*
*
*
*
*
MPT00180
MPT00190
MPT00200
MPT00210
MPT00220
MPT00230
MPT00240
MPT00250
MPT00260
MPT00270
MPT00280
MPT00290
MPT00300
MPT00310
MPT00320
MPT00330
MPT00340
MPT00350
MPT00360
MPT00370
MPT00380
MPT00390
MPT00400
MPT00410
MPT00420
MPT00430
MPT00440
MPT00450
MPT00460
MPT00470
MPT00480
MPT00490
MPT00500
MPT00510
MPT00520
MPT00530
MPT00540
MPT00550
MPT00560
MPT00570
MPT00580
MPT00590
MPT00600
MPT00610
MPT00620
MPT00630
MPT00640
MPT00650
MPT00660
MPT00670
MPT00680
MPT00690
MPT00700
                                      157

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*:

Tl















                     HAVE BEEN SET FOR THE POWER LAW WIND
                     PROFILE EXPONENTS FOR STABILITY
                     A THROUGH F RESPECTIVELY.
                   - TERRAIN ADJUSTMENT FACTORS ARE SET TO
                     ZERO FOR ALL STABILITIES.
                   - STACK TIP DOWNWASH WILL ALWAYS BE
                     CALCULATED WHEN APPROPRIATE. BRIGGS
                     STACK TIP DOWNWASH IS USED.
                   - EXPONENTIAL DECAY (HALF-LIFE) IS
                     SET TO 4 HOURS FOR URBAN S02 APPLICATIONS,
                     OTHER SITUATIONS USE NO DECAY. THIS IS
                     CONSISTENT WITH REGULATORY GUIDANCE.
                   - CONCENTRATIONS FOR CALM HOURS ARE SET TO  0.
                   - FOR MULTI-HOUR AVERAGING PERIODS THE
                     THE CONCENTRATIONS RESULTING FROM THE
                     CONSIDERATION OF CALM WIND CONDITIONS
                     ARE TREATED AS DESCRIBED IN SECTION S
                     OF THIS PROGRAM.
                   - IN ORDER TO FACILITATE THE HANDLING OF
                     CALM WIND CONDITIONS, THE START HOUR
                     AND THE AVERAGING PERIOD HAVE BEEN
                     PRESET. THIS WILL AVOID CONFLICT
                     WITH THE CALMS PROCESSING PROCEDURE.
                   - IF ONSITE OR OTHER THAN RAMMET METE-
                     OROLOGICAL DATA ARE TO BE USED IT MUST
                     CORRESPOND TO THE FORMAT OF THE RAMMET
                     FILE AND BE READ INTO THE PROGRAM ON
                     DEVICE (11).
                   - OUTPUT OPTIONS 5,7 AND 10 THROUGH 18 ARE
                     SET TO 1 AND OPTIONS 20 THROUGH 24 ARE
                     SET TO 0.
                   - AVERAGE CONG. AND HI-5 TABLES ARE PRINTED.
              THERE ARE  IN ADDITION SEVERAL
          FEATURES THAT  ARE  INHERENT  IN  THE  UNAMAP  5
          LATER VERSIONS OF  MPTER. THESE ARE:
AND
                     MOMENTUM PLUME RISE  IS ALWAYS ACCOUNTED
                     FOR.
                     TERRAIN ADJUSTMENTS  ARE USED FOR
                     RECEPTORS BELOW STACK BASE  ELEVATION IN
                     THE SAME MANNER AS ELEVATED RECEPTORS
                     MIXING HEIGHT IS COMPARED WITH  FINAL
                     PLUME HEIGHT WITHOUT REGARD TO  PLUME
                     HEIGHT CHANGES DUE TO TERRAIN.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
      TWO SYSTEMS OF  LENGTH AND COORDINATES  ARE  USED  IN MPTER:
                                                                        MPT00710
                                                                        MPT00720
                                                                        MPT00730
                                                                        MPT00740
                                                                        MPT00750
                                                                        MPT00760
                                                                        MPT00770
                                                                        MPT007SO
                                                                        MPT00790
                                                                        MPT00800
                                                                        MPT00810
                                                                        MPT00820
                                                                        MPT00830
                                                                        MPT00840
                                                                        MPT00850
                                                                        MPT00860
                                                                        MPT00870
                                                                        MPT00880
                                                                        MPT00890
                                                                        MPT00900
                                                                        MPT00910
                                                                        MPT00920
                                                                        MPT00930
                                                                        MPT00940
                                                                        MPT00950
                                                                        MPT00960
                                                                        MPT00970
                                                                        MPT00980
                                                                        MPT00990
                                                                        MPT01000
                                                                        MPT01010
                                                                        MPT01020
                                                                        MPT01030
                                                                        MPT01040
                                                                        MPT01050
                                                                        MPT01060
                                                                        MPT01070
                                                                        MPT01080
                                                                        MPT01090
                                                                        MPT01100
                                                                        MPT01110
                                                                        MPT01120
                                                                        MPT01130
                                                                        MPT01140
                                                                        MPT01150
                                                                        MPT01160
                                                                        MPT01170
                                                                        MPT01180
                                                                        MPT01190
                                                                        MPT01200
              THE  FIRST  SYSTEM,  USER UNITS,  IS  SELECTED BY THE USER AND MPT01210
        NORMALLY  USES THE COORDINATE SYSTEM OF THE  EMISSION INVENTORY.  MPT01220
        ALL  LOCATIONS INPUT BY  THE  USER (SUCH  AS SOURCES AND RECEPTORS)MPT01230
        ARE  IN  THIS  SYSTEM.  ALSO  AS  A  CONVENIENCE TO THE  USER,  ALL
        LOCATIONS  ON O'TTPUT  ARE ALSO IN THIS  SYSTEM.

              THE SECOND  SYSTEM, X, Y,  IS AN UPWIND,  CROSSWIND
        COORDINATE SYSTEM RELATIVE TO  EACH RECEPTOR.   THE X-AXIS IS
        DIRECTED UPWIND  (SAME  AS  WIND  DIRECTION FOR THE HOUR).   IN
        ORDER TO DETERMINE DISPERSION  PARAMETER VALUES AND EVALUATE
        EQUATIONS  FOR CONCENTRATION  ESTIMATES,  DISTANCES  IN THIS
        SYSTEM  MUST  BE IN KILOMETERS.  THIS SYSTEM IS INTERNAL AND IS
        NOT  APPARENT TO  THE  USER.

;->->->->  SECTION B -  DATA INPUT  LISTS.
C
C***
C
C
C
       CARD  VARIABLES  AND FORMAT.
              THE  REQUIRED AND  OPTIONAL CARD  TYPES USED AS INPUT TO
         MPTER ARE DESCRIBED BELOW:
                  MPT01240
                  MPT01250
                  MPT01260
                  MPT01270
                  MPT01280
                  MPT01290
                  MPT01300
                  MPT01310
                  MPT01320
                  MPT01330
                  MPT01340
                  MPT01350
                  MPT01360
                  MPT01370
                  MPT01380
                  MPT01390
                  MPT01400
                                     158

-------
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CARDS 1 -

LINE1 -
LINE2 -
LINES -

3 ALPHANUMERIC DATA FOR TITLES. FORMAT(20A4)

80 ALPHANUMERIC CHARACTERS.
80 ALPHANUMERIC CHARACTERS.
80 ALPHANUMERIC CHARACTERS.

CARD 4 CONTROL AND CONSTANTS. FORMAT (FREE)

IDATEQ
ID ATE (2
IHSTRT
NPER
NAVG
IPOL

MUOR
NSIGP

NAV5

CONONE




CELM


HAFL



) - 2-DIGIT YEAR FOR THIS RUN.
) - STARTING JULIAN DAY FOR THIS RUN.
- STARTING HOUR FOR THIS RUN.
- NUMBER OF AVERAGING PERIODS TO BE RUN.
- NUMBER OF HOURS IN AN AVERAGING PERIOD.
- POLLUTANT INDICATOR; IS 3 FOR S02, 4 FOR SUSPENDED
PARTICULATE.
- MODEL INDICATOR: 1 FOR URBAN, 2 FOR RURAL.
- NUMBER OF SOURCES FROM WHICH CONG. CONTRIBUTIONS
ARE DESIRED (MAX =25).
- ADDITIONAL AVERAGING TIME FOR HIGH-FIVE TABLE;
MOST LIKELY EQUAL TO 2, 4, 6, OR 12.
- MULTIPLIER TO CONVERT USER UNITS TO KILOMETERS.
EXAMPLE MULTIPLIERS:
FEET TO KM 3.048E-04
MILES TO KM 1.609344
METERS TO KM l.OE-03
- MULTIPLIER TO CONVERT USER HEIGHT UNITS TO METERS.
EXAMPLE MULTIPLIER:
FEET TO METERS 0.3048
MPT01410
MPT01420
MPT01430
MPT01440
MPT01450
MPT01460
MPT01470
MPT01480
MPT01490
MPT01500
MPT01510
MPT01520
MPT01530
MPT01540
MPT01550
MPT01560
MPT01570
MPT01580
MPT01590
MPT01600
MPT01610
MPT01620
MPT01630
MPT01640
MPT01650
MPT01660
MPT01670
MPT01680
- POLLUTANT HALF-LIFE, SECONDS. AN ENTRY OF ZERO WILLMPT01690
CAUSE SKIPPING OF POLLUTANT LOSS CALCULATIONS.

******************************************************
*
* MORE
THE USER IS REFERRED TO THE USERS GUIDE FOR *
DETAILED INFORMATION ON OPTIONS. ESPECIALLY *
* IMPORTANT IS AN UNDERSTANDING OF PRINTED OUTPUT *
* AND
USE OF OPTIONS 9 THROUGH 19 TO DELETE UNNEEDED*
* INFORMATION. MPTER IS CAPABLE OF GENERATING A *
* LARGE QUANTITY OF PRINTED INFORMATION UNLESS SOME *
* OF THESE OPTIONS TO DELETE OUTPUT ARE USED *
* LIBERALLY. *
******************************************************

CARD 5.


OPTIONS. FORMAT (FREE)

1 = EMPLOY OPTION: 0 = DON'T USE OPTION.


TECHNICAL OPTIONS:
IOPT(l
IOPT(2
IOPT(3
IOPT(4

- USE TERRAIN ADJUSTMENTS.
- NO STACK DOWNWASH.
- NO GRADUAL PLUME RISE.
- USE BUOYANCY INDUCED DISPERSION.

INPUT OPTIONS:
IOPT 5
IOPT 6
IOPT 7
IOPT 8


PRINTED
IOPT 9)
IOPT 10
IOPT 11
IOPT 12
IOPT 13

- MET. DATA IS ON CARDS.
- READ HOURLY EMISSIONS.
- SPECIFY SIGNIFICANT SOURCES.
- INPUT RADIAL DISTANCES AND GENERATE POLAR
COORDINATE RECEPTORS.

OUTPUT OPTIONS:
- DELETE EMISSIONS WITH HEIGHT TABLE.
- DELETE RESULTANT MET. DATA SUMMARY FOR AVG. PERIOD
- DELETE HOURLY CONTRIBUTIONS.
- DELETE MET. DATA ON HOURLY CONTRIBUTIONS.
- DELETE FINAL PLUME HEIGHT AND DISTANCE TO FINAL
RISE ON HOURLY CONTRIBUTIONS.
IOPT (14) - DELETE HOURLY SUMMARY.
IOPTC15) - DELETE MET. DATA ON HOURLY SUMMARY.
IOPT(16) - DELETE FINAL PLUME HEIGHT AND DISTANCE TO FINAL

RISE ON HOURLY SUMMARY.
MPT01700
MPT01710
MPT01720
MPT01730
MPT01740
MPT01750
MPT01760
MPT01770
MPT01780
MPT01790
MPT01800
MPT01810
MPT01820
MPT01830
MPT01840
MPT01850
MPT01860
MPT01870
MPT01880
MPT01890
MPT01900
MPT01910
MPT01920
MPT01930
MPT01940
MPT01950
MPT01960
MPT01970
MPT01980
MPT01990
MPT02000
MPT02010
.MPT02020
MPT02030
MPT02040
MPT02050
MPT02060
MPT02070
MPT02080
MPT02090
MPT02100
159

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
  IOPT(17) -  DELETE AVERAGING-PERIOD CONTRIBUTIONS.
  IOPT(18) -  DELETE AVERAGING-PERIOD SUMMARY.
  IOPT(19) -  DELETE AVERAGE CONCENTRATIONS AND HIGH-FIVE TABLE
 OTHER CONTROL AND OUTPUT OPTIONS:
  IOPT 20  -  RUN IS PART OF A SEGMENTED LONG RUN.
  IOPT 21  -  WRITE PARTIAL CONCENTRATIONS TO DISK OR TAPE.
  IOPT 22  -  WRITE HOURLY CONCENTRATIONS TO DISK OR TAPE.
  IOPT 23  -  WRITE AVERAGING-PERIOD CONCS TO DISK OR TAPE.
  IOPT 24  -  PUNCH AVERAGING-PERIOD CONCENTRATIONS ON CARDS
 DEFAULT OPTION
  IOPT(25) -  SET
                 DEFAULT FEATURES
CARD 6.  WIND AND TERRAIN. FORMAT (FREE)

  HANE     -  ANEMOMETER HEIGHT (METERS)
  PL (I) ,1=1, 6 -  WIND SPEED POWER LAW PROFILE
                  STABILITY.
  CONTER(I),I=1,6 -  TERRAIN ADJUSTMENT FACTORS FOR EACH
                      STABILITY.

 *****DEFAULT OPTION NOTE*****

       SELECTION OF THE DEFAULT OPTION CAUSES PL AND
   CONTER TO BE SET TO THE VALUES DESCRIBED ABOVE UNDER
   DEFAULT OPTION DESCRIPTION. UNDER THIS OPTION,
   CARD 6 IS STILL REQUIRED  TO INPUT HANE.
   ALL OTHER DATA ON THE CARD WILL BE IGNORED.

CARD TYPE 7.  POINT SOURCE CARD.  FORMAT (3A4.8F8. 2, F4.0)
(UP
     TO 250 POINT SOURCE CARDS ARE ALLOWED.)
                - ~
rw/iivuii j
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
ELP(NP
. . i\r J. i j
i.NPT
2.NPT
3,NPT
4.NPT
5.NPT
6.NPT
7.NPT
8.NPT
.-i,O
—
-
—
-
—
-
_
)
CARD WITH 'ENDP'
END OF THE POIN
 (USED
  INPT
      IF OPTION
  MPS(I),I=1,NPT -
 (USED IF OPTION
  ISFCD
  ISFCYR
  IMXD
  IMXYR
  (USED IF OPTION 8 =
  RADIL(I),I= 1,5 -
                                             MPT02110
                                             MPT02120
                                             MPT02130
                                             MPT02140
                                             MPT02150
                                             MPT02160
                                             MPT02170
                                             MPT02180
                                             MPT02190
                                             MPT02200
                                             MPT02210
                                             MPT02220
                                             MPT02230
                                             MPT02240
                                             MPT02250
                                             MPT02260
                                             MPT02270
                          EXPONENTS FOR EACH MPT02280
                                             MPT02290
                                             MPT02300
                                             MPT02310
                                             MPT02320
                                             MPT02330
                                             MPT02340
                                             MPT02350
                                             MPT02360
                                             MPT02370
                                             MPT02380
                                             MPT02390
                                             MPT02400
                                             MPT02410
                                             MPT02420
                                             MPT02430
-  12 CHARACTER SOURCE IDENTIFICATION.       MPT02440
EAST COORDINATE OF POINT SOURCE (USER UNITS) MPT02450
NORTH COORDINATE OF POINT SOURCE (USER UNITS)MPT02460
SULFUR DIOXIDE EMISSION RATE (G/SEC).        MPT02470
PARTICULATE EMISSION RATE_(G/SEC).            MPT02480
PHYSICAL STACK HEIGHT (METERS).              MPT02490
STACK GAS TEMPERATURE (KELVIN).              MPT02500
STACK INSIDE DIAMETER (METERS).              MPT02510
STACK GAS EXIT VELOCITY (M/SEC).             MPT02520
SOURCE GROUND-LEVEL ELEVATION  (USER HT UNITS)MPT02530
                                             MPT02540
IN COLS 1-4 IS USED TO SIGNIFY THE           MPT02550
                                             MPT02560
                                             MPT02570
                                             MPT02580
                                             MPT02590
                                             MPT02600
                                             MPT02610
                                             MPT02620
                                             MPT02630
                                             MPT02640
                                             MPT02650
                                             MPT02660
                                             MPT02670
                                             MPT02680
                                             MPT02690
                                             MPT02700
                                             MPT02710
                                             MPT02720
                                             MPT02730
                                             MPT02740
                                             MPT02750
                                             MPT02760
                                             MPT02770
                                             MPT02780
                                             MPT02790
                                             MPT02800
CARD TYPE 8.  SPECIFIED SIGNIFICANT SOURCES.  FORMAT(26I3)
7 = 1)
   NUMBER
                          OF USER SPECIFIED SIGNIFICANT SOURCES
                   POINT SOURCE NUMBERS
                    SIGNIFICANT.
                        USER WANTS CONSIDERED
CARD TYPE 9. MET. DATA IDENTIFIERS.  FORMAT(FREE)
                5 = 0)
             SFC MET STATION IDENTIFIER
             YEAR OF SFC MET DATA
             UPPER-AIR STATION IDENTIFIER
             YEAR OF MIXING HEIGHT DATA
                              DIGITS
                              DIGITS
                              DIGITS
                              DIGITS
CARD TYPE 10.  POLAR COORDINATE RECEPTORS.  FORMAT(FREE)
                    1)
                    ONE TO FIVE RADIAL DISTANCES (REST OF FIVE
                     ARE ZEROS) EACH OF WHICH GENERATES 36
                     RECEPTORS AROUND POINT CENTX,  CENTY ON
                     AZIMUTHS 10 TO 360 DEGREES. (USER UNITS)
                      (USER UNITS)
                                      160

-------
c
c
c
c
c***
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c


c
c
  CENTX
  CENTY
                  -  EAST COORDINATE ABOUT WHICH RADIALS ARE CENTERED.
                  -  NORTH COORDINATE ABOUT WHICH RADIALS ARE CENTERED.
                           (USER UNITS)
C

c
                                                                   MPT02810
                                                                   MPT02820
                                                                   MPT02830
                                                                   MPT02840
                                                                   MPT02850
                                                                   MPT02860
                                                                   MPT02870
                                                                   MPT02880
                                                                   MPT02890
                                                                   MPT02900
                                                                   MPT02910
                                                                   MPT02920
                                                                   MPT02930
   (UP TO 180 RECEPTORS MAY BE GENERATED INCLUDING POLAR COORDINATEMPT02940
       CARD  TYPE 11.   POLAR COORDINATE RECEPTOR ELEVATIONS.

        FORMAT(12,8X.5F10.0).   (USED IF OPTIONS 1 AND 8 ARE  BOTH 1)
         IDUM     -  AZIMUTH INDICATOR (1 TO 36)
         ELRDUM(I),I=1,5  -  RECEPTOR ELEVATIONS FOR THIS AZIMUTH FOR
                              UP TO FIVE DISTANCES (USER HEIGHT UNITS),

       CARD  TYPE 12.   RECEPTOR.   FORMAT(2A4.2F10.3,2F10.0)
  ONES IF OPTION 8=1.)
  RNAME(I),I=1,2 -  8 DIGIT ALPHANUMERIC STATION IDENTIFICATION.
  RREC     -  EAST COORDINATE OF RECEPTOR (USER UNITS)
  SREC     -  NORTH COORDINATE OF RECEPTOR (USER UNITS)
  ZR       -  RECEPTOR HEIGHT ABOVE LOCAL GROUND-LEVEL (METERS)
  ELR      -  RECEPTOR GROUND-LEVEL ELEVATION (USER HT UNITS)

   CARD WITH 'ENDR' IN COLS 1-4 IS USED TO SIGNIFY THE END OF
    THE RECEPTOR CARDS.

CARD TYPE 13.  SEGMENTED RUN. FORMAT(FREE)

 (USED IF OPTION 20=1)
  IDAY     -  NUMBER OF DAYS PREVIOUSLY PROCESSED.
  LDRUN    -  LAST DAY TO BE PROCESSED IN THIS RUN.

CARD TYPE 14.  METEOROLOGY.  FORMAT(FREE)

 (ONE CARD FOR EACH HOUR OF THE SIMULATION.)
 (USED IF OPTION 5=1)
  JYR         	
                                                                        MPT02950
                                                                        MPT02960
                                                                        MPT02970
                                                                        MPT02980
                                                                        MPT02990
                                                                        MPT03000
                                                                        MPT03010
                                                                        MPT03020
                                                                        MPT03030
                                                                        MPT03040
                                                                        MPT03050
                                                                        MPT03060
                                                                        MPT03070
                                                                        MPT03080
                                                                        MPT03090
                                                                        MPT03100
                                                                        MPT03110
                                                                        MPT03120
                                                                        MPT03130
                                                                        MPT03140
                                                                        MPT03150
                                                                        MPT03160
                                                                        MPT03170
                                                                        MPT03180
                                                                        MPT03190
                                                                        MPT03200
                YEAR OF MET DATA. (2 DIGITS)
    DAY1     -  JULIAN DAY OF MET DATA.
    JHR      -  HOUR OF MET DATA.
    IKST     -  STABILITY CLASS FOR THIS HOUR.
    QU       -  WIND SPEED FOR THIS HOUR (M/SEC).
    QTEMP    -  AMBIENT AIR TEMPERATURE FOR THIS HOUR (KELVIN).
    QTHETA   -  WIND DIRECTION FOR THIS HOUR (DEGREES AZIMUTH FROM MPT03210
                 WHICH THE WIND BLOWS).                            MPT03220
    QHL      -  MIXING HEIGHT FOR THIS HOUR (METERS).              MPT03230
                                                                   MPT03240
->-> SECTION C -  COMMON, DIMENSION, AND DATA STATEMENTS.          MPT03250
                                                                   MPT03260
     /EXPOS/  BETWEEN MAIN PROGRAM AND BLOCK DATA                  MPT03270
 COMMON /EXPOS/ PXUCOF(6,9),PXUEXP(6,9),HC1(10),BXUCOF(6,9),BXUEXP(MPT03280
*6,9)                                                              MPT03290
     /MPOR/ BETWEEN MAIN, PTR, OUTHR, AND RCP                      MPT03300
 COMMON /MPOR/ IOPT(26)                                            MPT03310
     /MPO/ BETWEEN MAIN, PTR, AND OUTHR                            MPT03320
 COMMON /MPO/ NRECEP,NAVG.NBJLH,NPT,IDATE(2))RREC[180),SREC{180).ZRMPT03330
1(180),ELR(180),PHCHI(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT03340
2180) ,PSIGS(180,26).. IPOL                                           MPT03350
     /MPR/  BETWEEN MAIN, PTR, AND RCP                             MPT03360
 COMMON /MPR/ UPL,Z,H,HL,X,Y,KST,DELH,SY,SZ,RC,MUOR                MPT03370
     /MP/  BETWEEN MAIN PROGRAM AND PTR                            MPT03380
 COMMON /MP/ SOURCE(9,250J,CONTWO,PSAV(250),IPSIGS(250),U,TEMP,SINTMPT03390
         (6),ELP(250),ELHN,HANE,TLOS,CELM,CTER                     MPT03400
     1,COST,PL(
                / f U JJA \ f*\S\J / y U .U&Ui J 1-UUlU ) L UVU ) V U J-O, J J
                3ETWEEN MAIN PROGRAM AND OUTHR
                                                                        MPT03410
      COMMON /MO/ QTHETA(24).QU(24),IKST(24),QHL(24).QTEMP(24),MPS(25).NMPT03420
     1SIGP,10,LINE1(20),LINE2(20),LINE3(20),RNAME(2,180),IRANK(180),STARMPT03430
     2(5,180)                                                           MPT03440
          /MR/  BETWEEN MAIN PROGRAM AND RANK                           MPT03450
      COMMON /MR/ HMAXA(5,180,5),NDAY(5,180,5),IHR(5,180,5),CONC(180,5),MPT03460
     1JDAY.NR                                                           MPT03470
                                                                        MPT03480
      DIMENSION PNAMEC3.250), IFREQ(7), DUMB(24), HLH(2.24), IMPS(25), TMPT03490
     1ITLE(2), TABLE(2,21), CONTER(6), HADIL(5), ANAME(36),PLL(6,2)     MPT03500
                                     161

-------
      DIMENSION SUM(180), ELRDUM(5), NTIME(5), ATIME(5), MODEL(2,2)
      DIMENSION CF(5),IDUMR(24)

      DATA IFREQ /7*0/ .BLNK /' '/
      DATA TITLE /'S02 ','PART'/
     DATA MODEL /'URBA','N','RURA','L'
     DATA ENDP /'ENDP'/ ,ENDR /'ENDR'/
                                       /
     DATA MAXP /250/ ,STR /'*'/ .STAR'/900*' '/
        MAXP EQUALS SECOND DIMENSION OF THE ARRAY NAMED: SOURCE.
     DATA ANAME /' 10 '  '  20 '  '  30 '.' 40.','  50.'.' 60 '.' 70'.'
    1' ' 90 '  '100 ' 'llO '  '120 '  '130 '  '140 '  '150 '  '160 '  '170. ,  nriuooiu
    2180 '}190' J260 '!2io.'.J220 '  '230 '  !240.',!250.',!260.'.!270MPT03620
    3, ', '280,', '290,','300,','310,','320,','330,','340,','350,','360,'/MPT03630
   MPT03510
   MPT03520
   MPT03530
   MPT03540
   MPT03550
   MPT03560
   MPT03570
   MPT03580
   MPT03590
80,MPT03600
                                                                       .
                                                                       }
                                                                        MPT03610
C
C
C
     DATA NTIME /I.3.8,24,O/ .ATIME /I..3.,8.,24.,0./
     DATA ITMIN1 /9999/.IDIV8 /O/, IDIV24 /O/,  ICALM /O/
     DATA C/'C'/,ICFL3/0/,ICFL8/0/,ICFL24/0/

      DEFAULT POWER LAW EXPONENTS AND TERRAIN ADJUSTMENT FACTORS.

     DATA PLL/.15..15,.20,.25..30,.30,.07,.07,.10,.15,.35,,55/
     DATA CONTEH/6.,0!,0.,0.,6.,0!/

     WRITE (6.5432)
5432 FORMAT (}1',34X,'MPTER  (DATED 85165)'/
    1 29X,'AN AIR QUALITY DISPERSION MODEL IN'/
    1 32X,'SECTION 1. GUIDELINE MODELS.                   '/
    3 32X,'IN UNAMAP (VERSION 6) JUL 86'/
    4 22X,'SOURCE: UNAMAP FILE ON EPA"S UNIVAC 1110, RTP. NC.')
C->->->->SECTION D - FLOW DIAGRAM
C
C RELATION OF SUBROUTINES IN MPTER
C
C MPTER
C
C
C


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
rt
c
fl
c
c
p
c
/^
c
^1
c
c
	






























—




































— :



* READ INPUT DATA
- LOOP FOR CALENDAR DAYS

- LOOP FOR AVERAGING TIME

* READ MET DATA
* ANGARC

- LOOP ON HOURS

*4" ^ ^ & DT*O
* * * f rict
1


















	 	 - LOOP ON RECEPTORS
j

— - - LOOP ON SOURCES

* * RCP
i
**PGYZ

--*
	 *

* RANK

* OUTHR

c

* OUTAVG (ENTRY POINT IN
	 #
' f














OUTHR)


   MPT03640
   MPT03650
   MPT03660
   MPT03670
   MPT03680
   MPT03690
   MPT03700
   MPT03710
   MPT03720
   MPT03730
   MPT03740
   MPT03750
   MPT03760
   MPT03770
   MPT03780
   MPT03790
   MPT03800
   MPT03810
   MPT03820
   MPT03830
   MPT03840
   MPT03850
   MPT03860
   MPT03870
   MPT03880
   MPT03890
   MPT03900
   MPT03910
   MPT03920
   MPT03930
   MPT03940
   MPT03950
   MPT03960
   MPT03970
   MPT03980
   MPT03990
   MPT04000
   MPT04010
   MPT04020
   MPT04030
   MPT04040
   MPT04C5o
   MPT04060
   MPT04070
   MPT04080
   MPT04090
   MPT04100
   MPT04110
   MPT04120
   MPT04130
   MPT04140
   MPT04150
   MPT04160
   MPT04170
   MPT04180
   MPT04190
   MPT04200
                                     162

-------
(j             ——— — — — /ft
C                     !
C                    EXIT
C
C->->->->SECTION E - RUN SET-UP AND READ FIRST 6 INPUT CARDS.
C
C
C
C
C
10
20
30
40
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
50

C
C
C
C
C
C
C
C
    INITIALIZATIONS	
    THE  FOLLOWING 18 STATEMENTS  MAY BE DELETED FOR USE ON
    COMPUTERS  THAT ZERO CORE  LOCATIONS USED BY A PROBLEM
    PRIOR TO EXECUTION.
 NRECEP=0
 NP=0
 NHR=0
 NP3=0
 NP8=0
 NP24=0
 NPX=0
 DO 10  1=1.21
 TABLE(1,I)=0.
 TABLE(2,I)=0.
 DO 40  1=1,180
 SUM(I)=0.
 DO 30 J=l,5
 CONC(I,J)=0.
 DO 20 K=l,5
 HMAXA(J,I,K)=0.
 CONTINUE
 CONTINUE
    I/O DEVICE INITIALIZATIONS-
 IN=5
 10=6
    UNIT 11 - DISK INPUT OF MET DATA—USED WHEN IOPT(5)=1
    UNIT 10 - DISK OUPUT OF PARTIAL CONCENTRATIONS
     AT EACH RECEPTOR—USED WHEN IOPT(21)  = 1.
    UNIT 12 TAPE/DISK OUTPUT OF HRLY CONCENTRATIONS-IF IOPT(22)=1.  MPT04550
    UNIT 13 TAPE/DISK OUTPUT OF CONCENTRATIONS  FOR AVERAGING PERIODMPT04560
    •   USED IF IOPT(23) = 1.                                        MPT04570
    UNIT 14 TAPE/DISK STORAGE FOR SUMMARY INFO, USED IF IOPT(20)=1.MPT04580
    UNIT 15 - TAPE/DISK INPUT OF HOURLY POINT SOURCE EMISSIONS     MPT04590
      — USED IF IOPT(6) = 1.                                      MPT04600
                                                              MPT04210
                                                              MPT04220
                                                              MPT04230
                                                              MPT04240
                                                              MPT04250
                                                              MPT04260
                                                              MPT04270
                                                              MPT04280
                                                              MPT04290
                                                              MPT04300
                                                              MPT04310
                                                              MPT04320
                                                              MPT04330
                                                              MPT04340
                                                              MPT04350
                                                              MPT04360
                                                              MPT04370
                                                              MPT04380
                                                              MPT04390
                                                              MPT04400
                                                              MPT04410
                                                              MPT04420
                                                              MPT04430
                                                              MPT04440
                                                              MPT04450
                                                              MPT04460
                                                              MPT04470
                                                              MPT04480
                                                              MPT04490
                                                              MPT04500
                                                              MPT04510
                                                              MPT04520
                                                              MPT04530
                                                              MPT04540
    READ CARDS 1-3  (SEE DESCRIPTION,  SECTION B).

 READ (IN,1180) LINE1.LINE2,LINES

    READ CARD TYPE 4  (SEE DESCRIPTION,  SECTION B).

 READ (IN,*) IDATE(1),IDATE(2),IHSTRT,NPER,NAVG,IPOL,MUOR,NSIGP
1NAV5,CONONE,CELM,HAFL
    THE ABOVE FORMAT IS UNIVACS FREE FIELD INPUT.
    VARIABLES MUST BE SEPARATED BY COMMAS.
    THIS IS SIMILAR TO IBM'S LIST DIRECTED 10.
 WRITE (IO,1395)(MODEL(K,MUOR),K=1,2),LINE1,LINE2,LINE3
 IF (NSIGP.LE.25) GO TO 50
 WRITE (10,1250) NPIGP
 STOP
 IP=IPOL-2
 CONTWO=CONONE
    READ CARD TYPE 5  (SEE DESCRIPTION,  SECTION B).

 READ (IN,*) (IOPT(I),I=1,25)

 IF(IOPT(25).NE.l) GO TO 55

    DEFAULT SELECTION RESULTS IN THE FOLLOWING:
2); USE FINAL PLUME RISE (3J
4): WRITE HIGH-5 TABLES (19)
1,12, 13, 14, 15, 16, 17, IE
          IOPT(2)=0
                                                              MPT04610
                                                              MPT04620
                                                              MPT04630
                                                              MPT04640
                                                              MPT04650
                                                              MPT04660
                                                              MPT04670
                                                              MPT04680
                                                              MPT04690
                                                              MPT04700
                                                              MPT04710
                                                              MPT04720
                                                              MPT04730
                                                              NTTn4740
                                                              MPT04750
                                                              MPT04760
                                                              MPT04770
                                                              MPT04780
                                                              MPT04790
                                                              MPT04800
                                                              MPT04810
                                                              MPT04820
                                                              MPT04830
                                                              MPT04840
                                           USE STACK DOWNWASH MPT04850
                                 ,  USE BUOYANCY-INDUCED DISPERSION MPT04860
                                  BUT DELETE ALL OTHER OUTPUT (10, MPT04870
                                 i,  21, 22, 23, AND 24).            MPT04880
                                                                   MPT04890
                                                                   MPT04900
                                      163

-------
c
c
c
c
c
c
c
c
c
55
C
C
60

70

C
C
80
90
100

C
C
C
C
C
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
3) = 1
4 =1
5)=0
7)=0
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
=1
= 1
=1
= 1
=1
= 1
=1
=1
=1
=0
=0
=0
=0
=0
=0
    SET HALF-LIFE FOR DEFAULT OPTION

    IF(IPOL.EQ.3.AND.MUOR.EQ.1)HAFL=14400.
    IF(IPOL.NE.3.0R.MUOR.NE.1)HAFL=0.

      SET START HOUR AND AVERAGING PERIOD;
      SET THE NUMBER OF SIGNIFICANT POINT AND
      AREA SOURCES.

    IHSTRT=1
    NAVG=24
    NSIGP=0

 CONTINUE

       WRITE GENERAL INPUT INFORMATION
 WRITE (10,1410) TITLE(IP),NPER,NAVG,IHSTRT,IDATE(2)
10.NSIGP
 DAY1A=IDATE(2)
 HR1=IHSTRT
 IF (HAFL.GT.0.0) GO TO 60
 TLOS=0.
 WRITE (10,1420)
 GO TO 70
 WRITE (10,1430) HAFL
 TLOS=693./HAFL
 IF (IOPT(19).EQ.l)  GO TO 80
 NAVT=5
    FOR DEFAULT OPTION
    ADDITIONAL AVERAGING PERIOD SET TO ZERO.
 IF(IOPT(25).EQ.l) NAV5=0
 IF (NAV5.EQ.1.OR.NAV5.EQ.3.OR.NAV5.EQ.8.OR.NAV5.EQ.
1) NAVT=4
 NTIME(5)=NAV5
 ATIME(5)=NAV5
 WRITE (10.1440) NAVT
 IF (lOPT(I).EQ.O) GO TO
 WRITE (10,1450) CELM
 ELHN=99999.
 ELOW=99999.
 IF (NSIGP.GT.O) GO TO 100
 IOPT(11)=1
 IOPT(17)=1
 WRITE (10,1460)
 WRITE (10,1470)
        90
(I,lOPTfl),1=1.13)
(I,IOPT(I),I=14,25)
    READ CARD TYPE 6 (SEE DESCRIPTION, SECTION B).

  SWITCH TO SELECT DEFAULT POWER LAW EXPONENTS,
  TERRAIN ADJUSTMENT FACTORS.
               MPT04910
               MPT04920
               MPT04930
               MPT04940
               MPT04950
               MPT04960
               MPT04970
               MPT04980
               MPT04990
               MPT05000
               MPT05010
               MPT05020
               MPT05030
               MPT05040
               MPT05050
               MPT05060
               MPT05070
               MPT05080
               MPT05090
               MPT05100
               MPT05110
               MPT05120
               MPT05130
               MPT05140
               MPT05150
               MPT05160
               MPT05170
               MPT05180
               MPT05190
               MPT05200
               MPT05210
               MPT05220
               MPT05230
               MPT05240
               MPT05250
               MPT05260
,IDATE(1),CONTWMPT05270
               MPT05280
               MPT05290
               MPT05300
               MPT05310
               MPT05320
               MPT05330
               MPT05340
               MPT05350
               MPT05360
               MPT05370
               MPT05380
               MPT05390
               MPT05400
               MPT05410
24.OR.NAV5.EQ.OMPT05420
               MPT05430
               MPV05440
               MPT0545C
               MPT05460
               MPT05470
               MPT05480
               MPT05490
               MPT05500
               MPT05510
               MPT05520
               MPT05530
               MPT05540
               MPT05550
               MPT05560
               MPT05570
               MPT05580
               MPT05590
               MPT05600
                                     164

-------
      IF(IOPT(25).NE.O  READ(IN,*)HANE
      IF(IOPT(25).EQ.O  READ(IN.*)HANE,PL,CONTER
      IF(IOPT(25J.EQ.O   GO  TO  105
      DO  104  11=1,6
      PL(Il)=PLL(il,MUOH)
      CONTINUE
      CONTINUE

      IF  (lOPT(l).EQ.l)  GO  TO  110
      WRITE  (10,1480) HANE.PL
      GO  TO  140
      WRITE  (10.1490) HANE,PL,CONTER
      DO  120  1=1,6
      IF  (CONTER(I).LT.O..OR.CONTER(I).GT.l.)  GO TO 130
      CONTINUE
      GO  TO  140
      WRITE  (10,1260)
      STOP

         MUCH OF THE FOLLOWING PROGRAM SECTION IS BASED UPON
         RAMQ IN THE RAM SYSTEM. THIS  SECTION  IS RESPONSIBLE
         FOR  MAKING THE NECESSARY  DATA CONVERSIONS ON THE RAW
         EMISSIONS  DATA IN  ORDER TO  ESTABLISH  A STANDARD
         DATA BANK  WHICH WILL  BE ACCEPTABLE. A CONVERSION FACTOR
         FROM USER  UNITS TO KILOMETERS IS  APPLIED WHEN NECESSARY.

:->->->->SECTION F  - INPUT  AND PROCESS EMISSION INFORMATION.
104
105
C
110


120

130

C
C
C
C
C
C
C
C
C
140

C
150
C
C
C
160
C
C

C
C
C
C

C
170
C
180

C
190
C
C
      WRITE (10,1500)
      NPT=0
         BEGIN LOOP TO READ THE  POINT SOURCE  INFORMATION
      NPT=NPT+1
      IF (NPT.LE.MAXP) GO TO 160
      READ (IN,1200) DUM
      IF (DUM.EQ.ENDP) GO TO 230
      WRITE (10,1270)  MAXP
      STOP

         READ CARD TYPE 7  (SEE  DESCRIPTION,  SECTION B).
                                                                  MPT05610
                                                                  MPT05620
                                                                  MPT05630
                                                                  MPT05640
                                                                  MPT05650
                                                                  MPT05660
                                                                  MPT05670
                                                                  MPT05680
                                                                  MPT05690
                                                                  MPT05700
                                                                  MPT05710
                                                                  MPT05720
                                                                  MPT05730
                                                                  MPT05740
                                                                  MPT05750
                                                                  MPT05760
                                                                  MPT05770
                                                                  MPT05780
                                                                  MPT05790
                                                                  MPT05800
                                                                  MPT05810
                                                                  MPT05820
                                                                  MPT05830
                                                                  MPT05840
                                                                  MPT05850
                                                                  MPT05860
                                                                  MPT05870
                                                                  MPT05880
                                                                  MPT05890
                                                                  MPT05900
                                                                  MPT05910
                                                                  MPT05920
                                                                  MPT05930
                                                                  MPT05940
                                                                  MPT05950
                                                                  MPT05960
                                                                  MPT05970
                                                                  MPT05980
                                                                  MPT05990
                                                                  MPT06000
                                   STACK TOP IN INVENTORY,
                                                                  MPT06010
READ (IN,1210) (PNAME(I.NPT),1=1,3).(SOURCE(I,MPT),1=1,8),ELP(NPT)MPT06020
   CARD WITH     'ENDP1   IN COL 1-10 IS USED TO SIGNIFY END OF   MPT06030
   POINT SOURCES.
IF (PNAME(1,NPT).EQ.ENDP) GO TO 230
   ELHN, ELEVATION OF LOWEST ST.
   IN USER HEIGHT UNITS
IF (lOPT(l).EQ.O) GO TO 170
TOM=SOURCE ( 5, NPT)/CE LM-f-ELP (NPT)
IF (TOM.LT.ELHN) ELHN=TOM
   LOWPT, ELEVATION OF LOWEST SOURCE GROUND-LEVEL
    IN INVENTORY, IN USER HEIGHT UNITS.
IF (ELP(NPT).LT.ELOW) ELOW=ELP(NPT)
   CALCULATE BUOYANCY FACTOR
D=SOURCE(7,NPT)
    FOLLOWING VARIABLE IS BRIGGS' F WITHOUT TEMPERATURE FACTOR
SOURCE(9,NPT)=2.45153*SOURCE(8,NPT)*D*D
   2.45153 IS GRAVITY OVER FOUR.
TS=SOURCE(6.NPT)
IF (TS.GT.293.) GO TO 180
HF=SOURCE(5,NPT)
GO TO 200
F=SOURCE(9,NPT)*(TS-293. )/TS
IF (F.GE.55.) GO TO 190
   ONLY BUOYANCY PLUME RISE IS CONSIDERED HERE.
HF=SOURCE(5,NPT)+21.425*F**0.75/3.
GO TO 200
HF=SOURCE(5,NPT)+38.71*F**0.6/3.
   HSAV, DSAV, AND  PSAV ARE USED FOR TEMPORARY STORAGE
   (OR AS DUMMIES)  FOR THE NEXT 60 STATEMENTS.
             MPT06040
             MPT06050
IS DETERMINEDMPT06060
             MPT06070
             MPT06080
             MPT06090
             MPT06100
             MPT06110
             MPT06120
             MPT06130
             MPT06140
             MPT06150
             MPT06160
             MPT06170
             MPT06180
             MPT06190
             MPT06200
             MPT06210
             MPT06220
             MPT06230
             MPT06240
             MPT06250
             MPT06260
             MPT06270
             MPT06280
             MPT06290
             MPT06300
                                      165

-------
200   HSAV(NPT)=HF
C        DETERMINE HEIGHT INDEX.
      DO 210 IH=2,9
      IF (HF.LT.(HCl(IH)-.Ol)) GO TO 220
210   CONTINUE
      IH=10
220   IS=IH-1
      IF(MUOR.EQ.1)GO TO 221
      A=PXUCOF(2,IS)
      B=PXUEXP(2,IS)
      GO TO 222
221   A=BXUCOF(2,IS)
      B=BXUEXP(2,IS)
222   DSAV(NPT)=(A*HF**B)*SOURCE(IPOL,NPT)/3.
C        AN ESTIMATE OF THE POTENTIAL IMPACT OF EACH SOURCE IS
C         DETERMINED AND STORED IN DSAV. MAX CONCENTRATION IS
C         DETERMINED BY CHI(MAX)=(A*H**B)*Q/U WHERE
C         A IS THE COEFFICIENT AND B IS THE EXPONENT, OF
C         MAXIMUM CHI*U/Q VALUES PREDETERMINED FOR B STABILITY
C         AND A SPECIFIC EFFECTIVE HEIGHT RANGE. PLUME RISE
C         IS CALCULATED FOR B STABILITY AND 3 M/SEC WIND SPEED.
C
C        GO BACK AND READ DATA FOR ANOTHER POINT SOURCE.
      IPSIGS(NPT)=0
C        LIST POINT SOURCE INFORMATION.
      WRITE (I0.1510T NPT,(PNAME(J,NPT),J=1,3),(SOURCE(K,NPT),K
     IV(NPT).HSAV(NPT),ELP(NPT),F
      GO TO 150
230 -  NPT=NPT-1
C         CHECK FOR NPT < OR = 0
      IF (NPT.GT.O) GO TO 240
      WRITE (10,1280) NPT
      STOP
C
C->->->->SECTION G - RANK SIGNIFICANT SOURCES.
C
240
C
250
C
260
C
IF (NSIGP.EQ.O) GO TO 280
   RANK NSIGP HIGHEST POINT SOURCES.
IF (NPT.LT.NSIGP) NSIGP=NPT
DO 260 I=1.NSIGP
SIGMAX=-1.0
DO 250 J=1.NPT
IF (DSAV(J).LE.SIGMAX) GO TO 250
SIGMAX=DSAV(J)
LMAX=J
CONTINUE
   IMPS IS THE SOURCE NUMBER IN ORDER OF SIGNIFICANCE.
      IMPS(I)=LMAX
         PSAV IS THE CALC.
      PSAVfI)=SIGMAX
                     CONG. IN ORDER OF SIGNIFICANCE.
DSAV(LMAX)=-1.0
   OUTPUT TABLE OF RANKED SOURCES.
WRITE (10.1520) TITLE(IP)
DO 270 1=1.NSIGP
WRITE (10,1530) I,PSAV(I),IMPS(I)
CONTINUE
270
C
C->->->->SECTION H - EMISSIONS WITH HEIGHT TABLE.
C
280   IF  (IOPT(9).EQ.l) GO TO 340
      DO  320 1=1,NPT
      DO  290 J=l,20
      HC=J*5.
      IF  (SOURCE(5,I).LE.HC) GO TO 300
290   CONTINUE
C         POINT SOURCES WITH PHYSICAL HEIGHTS GT  100 METERS  ARE
C         SEPARATELY
      WRITE  (10,1540)  I,SOURCE(5,I),SOURCE(IPOL,I)
      GO  TO 310
C         ADD EMISSION  RATE INTO TABLE AND TOTAL.
         MPT06310
         MPT06320
         MPT06330
         MPT06340
         MPT06350
         MPT06360
         MPT06370
         MPT06380
         MPT06390
         MPT06400
         MPT06410
         MPT06420
         MPT06430
         MPT06440
         MPT06450
         MPT06460
         MPT06470
         MPT06480
         MPT06490
         MPT06500
         MPT06510
         MPT06520
         MPT06530
         MPT06540
         MPT06550
=1,8),DSAMPT06560
         MPT06570
         MPT06580
         MPT06590
         MPT06600
         MPT06610
         MPT06620
         MPT06630
         MPT06640
         MPT06650
         MPT06660
         MPT06670
         MPT06680
         MPT06690
         MPT06700
         MPT06710
         MPT06720
         MPT06730
         MPT06740
         MPT06750
         MPT06760
         MPT06770
         MPT06780
         MPT06790
         MPT06800
         MPT06810
         MPT06820
         MPT06830
         MPT06840
         MPT06850
         MPT06860
         MPT06870
         MPT06880
         MPT06890
         MPT06900
         MPT06910
         MPT06920
         MPT06930
         MPT06940
         MPT06950
LISTED   MPT06960
         MPT06970
         MPT06980
         MPT06990
         MPT07000
                                      166

-------
300
310
320
C
C
C
C

C
C
      TABLE(1,J)=TABLE(1.J)+SOURCE(IPOL,I)
      TABLE(1,21)=TABLE(I,21)+SOURCE(IPOL,I)
      CONTINUE
         OUTPUT SOURCE-STRENGTH-HEIGHT TABLE
         THIS TABLE DISPLAYS THE TOTAL EMISSIONS FOR POINT
         SOURCES AND THE CUMULATIVE FREQUENCY ACCORDING TO
         HEIGHT CLASS
      WRITE (10,1550) TITLE(IP)
         HEIGHT CLASS EMISSIONS ARE IN 1
         DETERMINE CUMULATIVE PERCENT IN 2
      IH1=0
      IH2=5
      IM1=1
      TABLE(2, 1)=TABLE(1. 1) /TABLE (1,21)
      WRITE (10,1560) IHl,IH2,(TABLE(J,l),J=l,2)
      DO 330 1=2,20
      IH2=I*5
      IHl=IH2-4
330
      TABLE(2,I)=TABLE(1,I)/TABLE(1,21)+TABLE(2.IM1)
      WRITE (io,1560) IHi,IH2,(TABLE(J,I),J=l,2J
      CONTINUE
      WRITE (10,1570) TABLE(1,21)
C
C->->->->SECTION I - EXECUTE FOR INPUT OF SIGNIFICANT SOURCE NUMBERS.
C
340
C
C
C
350
C
C
360

370
380
390
400
C
410

420
C
C->-
C

C
C
C
      WRITE (10,1580)
      IF (IOPT(7).EQ.O) GO TO 370
         READ CARD TYPE 8 (SEE DESCRIPTION, SECTION B).

                                       NPT)
                                       INPT)
      READ (IN. 1220) INPT, (MPS( I). 1=1. INPT)
      WRITE (10,1590) INPT, (MPS(I), 1=1,
      IF ? INPT. LE. NSIGP) GO TO 350
      WRITE (10,1290) INPT, NSIGP
      STOP
      IF (INPT.EQ.O) GO TO 370
      IF (MPS(INPT).EQ.O) WRITE (10,1300)
      J=INPT+1
      K=l
         ADD SIGNIFICANT SOURCES DETERMINED FROM RANKED SOURCE LIST
         IF NSIGP GREATER THAN INPT.
      IF (J.GT. NSIGP) GO TO 390
      DO 360 I=J.NSIGP
      MPS(I)=IMPS(K)
      K=K+1
      GO TO 390
      DO 380 1=1, NSIGP
      MPS(I)=LMPS(I)
      WRITE (10.1600) NPT,NSIGP.(MPS(I), 1=1, NSIGP)
      IF (IOPT(6).EQ.O) GO TO 410
         SAVE AVERAGE EMISSION RATE
      DO 400 1=1, NPT
      PS AV ( I ) =SOURCE ( IPOL , I )
         FILL IN SIGNIFICANT
      DO 420 1=1, NSIGP
      J=MPS(I)
      IPSIGS(J)=I
                             POINT SOURCE ARRAY
    •>->->SECTION J - CHECK MET DATA IF FROM FILE OF ONE YEAR'S  DATA.

      IF  (IOPT(5).EQ.l) GO TO 450

          READ CARD TYPE 9 (SEE DESCRIPTION, SECTION B).

      READ  (IN,*) ISFCD.ISFCYR.IMXD.IMXYR
          READ ID RECORD FROM PREPROCESSED MET DISK OR  TAPE  FILE.
      READ  (11) ID.IYEAR.IDM.IYM
      IF  (ISFCD.EQ.ID.AND.ISFCYR.EQ.IYEAR) GO TO 430
      WRITE (10,1310)  ISFCD.ISFCYR.ID.IYEAR
MPT07010
MPT07020
MPT07030
MPT07040
MPT07050
MPT07060
MPT07070
MPT07080
MPT07090
MPT07100
MPT07110
MPT07120
MPT07130
MPT07140
MPT07150
MPT07160
MPT07170
MPT07180
MPT07190
MPT07200
MPT07210
MPT07220
MPT07230
MPT07240
MPT07250
MPT07260
MPT07270
MPT07280
MPT07290
MPT07300
MPT07310
MPT07320
MPT07330
MPT07340
MPT07350
MPT07360
MPT07370
MPT07380
MPT07390
MPT07400
MPT07410
MPT07420
MPT07430
MPT07440
MPT07450
MPT07460
MPT07470
MPT07480
MPT07490
MPT07500
MPT07510
MPT07520
MPT07530
MP'i'07540
MPTU756U
MPT07560
MPT07570
MPT07580
MPT07590
MPT07600
MPT07610
MPT07620
MPT07630
MPT07640
MPT07650
MPT07660
MPT07670
MPT07680
MPT07690
MPT07700
                                      167

-------
      STOP
430   IF (IMXD.EQ.IDM.AND.IMXYR.EQ.IYM) GO TO 440
      WRITE (10,1320) IMXD,IMXYR,IDM,IYM
      STOP
440   WRITE (10,1610) ISFCD,ISFCYR,IMXD,IMXYR
C
C->->->->SECTION K - GENERATE POLAR COORDINATE RECEPTORS.
C
450
C
C
C
460


C

C
C

C

C

C
C


470
480

C

C

C
C
C
490
   NRECEP=0
   WRITE  (10,1620)
   IF  (IOPT(8).NE.l) GO  TO 520

      READ CARD  TYPE 10  (SEE  DESCRIPTION,  SECTION B).

   READ  (IN,*) RADIL,CENTX,CENTY
   JA=0
   DO  460 J=l,5
   IF  (RADIL(J).EQ.O) GO TO 460
   JA=JA+1
   CONTINUE
   WRITE  (10.1630) CENTX.CENTY.RADIL
   DO  480 1=1,36
       CALCULATE THE ANGLE IN RADIANS
   RADIK=FLOAT(I)*0.1745329
      0.1745329  IS 2*PI/36
   SINRAD=SIN(RADIK)
   COSRAD=COS(RADIK)
   DO  470 J=1,JA
   NRECEP=I+36*(J-1)
   RREC(NRECEP)=(RADIL(J)*SINRAD)+CENTX
       CALCULATE THE EAST-COORDINATE
   SREC(NRECEP)=(RADIL(J)*COSRAD)+CENTY  .
       CALCULATE THE NORTH-COORDINATE
   RNAME(1,NRECEP)=ANAME(I)
       ALPHANUMERIC INFORMATION WHICH INDICATES DEGREES  AZIMUTH
   ENCODE (4,1640,RNAME(2,NRECEP))  RADIL(J)
       ENCODE THE FLOATING POINT  VARIABLE OF RADIAL  DISTANCE
       TO ALPHANUMERIC  REPRESENTATION SO  INFO CAN  BE PRINTED
   ZR(NRECEP)=0.
   ELR(NRECEP)=0.
   CONTINUE
   CONTINUE
   NRECEP=36*JA

->->->SECTION L  - READ POLAR  COORDINATE  ELEVATIONS.

   IF  (lOPT(l).EQ.O) GO  TO 520

      READ 36 CARDS, TYPE 11  (SEE  DESCRIPTION,  SECTION 8).

   DO  510 1=1,36
   READ  (IN,1230) IDUM,(ELRDUM(J),J=l,JA)
   IF  (IDUM.EQ.I) GO TO  490
   WRITE  (10,1330) I,IDUM
   STOP
   DO  500 J=1,JA
   K=J-1
   L=K*36+I
   ELR(L)=ELRDUM(J)
   CONTINUE
500
510
C
C->->->->SECTION M - READ AND PROCESS RECEPTOR INFORMATION.
C
C
C
C
C
520
        NOW READ  CARD  TYPE  12  IF  NECESSARY.  MUST HAVE  A CARD  WITH
        'ENDR'IN  COLS  1-4 TO INDICATE  END  OF RECEPTOR  CARDS.
        NO MORE THAN 180  RECEPTORS  CAN BE  INPUT TO MPTER.
      START LOOP  TO ENTER RECEPTORS.
   NRECEP=NRECEP+1
   IF (NRECEP.LE.180)  GO  TO 540
   READ  (IN,1200,END=530) DUM
 MPT07710
 MPT07720
 MPT07730
 MPT07740
 MPT07750
 MPT07760
 MPT07770
 MPT07780
 MPT07790
 MPT07800
 MPT07810
 MPT07820
 MPT07830
. MPT07840
 MPT07850
 MPT07860
 MPT07870
 MPT07880
 MPT07890
 MPT07900
 MPT07910
 MPT07920
 MPT07930
 MPT07940
 MPT07950
 MPT07960
 MPT07970
 MPT07980
 MPT07990
 MPT08000
 MPT08010
 MPT08020
 MPT08030
 MPT08040
 MPT08050
 MPT08060
 MPT08070
 MPT08080
 MPT08090
 MPT08100
 MPT08110
 MPT08120
 MPT08130
 MPT08140
 MPT08150
 MPT08160
 MPT08170
 MPT08180
 MPT08190
 MPT08200
 MPT08210
 MPT08220
 MPTOC230
 KPTOG240
 MPT08250
 MPT08260
 MPT08270
 MPT08280
 MPT08290
 MPT08300
 MPT08310
 MPT08320
 MPT08330
 MPT08340
 MPT08350
 MPT08360
 MPT08370
 MPT08380
 MPT08390
 MPT08400
                                     168

-------
530

C
c
C
540

C
C
550

C
C
C
560
570
C
580

590
 IF (DUM.EQ.ENDR) GO TO 550
 WRITE (10,1340)
 STOP

    READ CARD TYPE 12 (SEE DESCRIPTION,  SECTION B).

 READ (IN.1240) (RNAME(J,NRECEP),J=l,2).RREC(NRECEP).SREC(NRECEP)
IR(NRECEP).ELR(NRECEP)
    PLACE }ENDR' IN COLS 1 TO 4 ON CARD  FOLLOWING LAST RECEPTOR
    TO END READING TYPE 12 CARDS.
 IF (RNAME(l.NRECEP).EQ.ENDR) GO TO 550
 GO TO 520
 NRECEP=NRECEP-1
 IF (lOPT(l).EQ.O) GO TO 570
    IF TERRAIN OPTION IS EMPLOYED, DETERMINE IF
     RECEPTOR ELEVATIONS REQUIRE LABELING WITH ASTERISKS
     FOR ADDITIONAL REMARKS.
 DO 560 J=1,NRECEP
 IF (ELR(J).GT.ELHN.OR.ELR(J).LT.ELOW) STAR(2,J)=STR
 IF (ELRjm.GT.ELHN) STAR(1,J)=STR
 CONTINUE
 IF ?NRECEP.GT.O) GO TO 580
 WRITE (10,1350) NRECEP
 STOP
    PRINT OUT TABLE OF RECEPTORS.  ***
 WRITE (10.1650)
 DO 590 K=i.NRECEP
 WRITE (10,1660) K.STAR(1,K),STAR(2,K),(RNAME(J,K),J=1,2),RREC(K)
1REC(K),ZR(K),ELR(K)
 IF (lOPT(l).EQ.O) GO TO 600
 WRITE (10,1670)
C
C->->->->SECTION N - POSITION FILES AS REQUIRED.
C
600   IF (IOPT(20).EQ.O) GO TO 610
C
C
C
    READ CARD TYPE 13 (SEE DESCRIPTION, SECTION B).
610
C
 READ (IN,*) IDAY.LDRUN
 WRITE (10,1680) IDAY.LDRUN
 IF (IDAY.EQ.O) GO TO 610
    READ INFO FOR HIGH-FIVE TABLE FROM LAST SEGMENT.
 READ (14) IDAYS,SUM,NHR,DAY1A,HR1,HMAXA,NDAY,IHR
 REWIND 14
 IF (IDAY.EQ.IDAYS) GO TO 610
 WRITE (10,1360) IDAY.IDAYS
 STOP
 NP=IDAY*(24/NAVG)
    IF OPTION 21 = 1, WRITE INITIAL INFO TO UNIT 10
 IF (IOPT(21).EQ.l) WRITE (10) NPER.NAVG,LINE1,LINE2,LINES
      IF
      IF
                           340
620

C
630

640

C


650

C
660
    IOPT(22).EQ.O) GO TO
    IDAY.LE.O) GO TO 630
    KIP PREVIOUSLY GENERATED HOURLY RECORDS.
ISKIP=IDAY*24+2
DO 620 I=1,ISKIP
READ (12)
GO TO 640
   WRITE LEAD TWO RECORDS ON HOURLY FILE.
WRITE (12) NPER.NAVG,LINE1.LINE2,LINES
WRITE 112) NRECEP.(RREC(I),1=1,NRECEP),(SREC(J),J=l,NRECEP)
IF (IOPT(23).EQ.orGO TO 670
IF (IDAY.LE.O) GO TO 660
   SKIP PREVIOUSLY GENERATED AVERAGING-PERIOD FILE.
ISKIP=NP+2
DO 650 I=1,ISKIP
READ (13)
GO TO 670
   WRITE LEAD TOO RECORDS ON AVERAGING PERIOD FILE.
WRITE (13) NPER,NAVG,LINE1,LINE2,LINES
WRITE (13) NRECEP,(RREC(I),1=1,NRECEP),(SREC(J),J=l,NRECEP)
  MPT08410
  MPT08420
  MPT08430
  MPT08440
  MPT08450
  MPT08460
.ZMPT08470
  MPT08480
  MPT08490
  MPT08500
  MPT08510
  MPT08520
  MPT08530
  MPT08540
  MPT08550
  MPT08560
  MPT08570
  MPT08580
  MPT08590
  MPT08600
  MPT08610
  MPT08620
  MPT08630
  MPT08640
  MPT08650
  MPT08660
  MPT08670
,SMPT08680
  MPT08690
  MPT08700
  MPT08710
  MPT08720
  MPT08730
  MPT08740
  MPT08750
  MPT08760
  MPT08770
  MPT08780
  MPT08790
  MPT08800
  MPT08810
  MPT08820
  MPT08830
  MPT08840
  MPT08850
  MPT08860
  MPT08870
  MPT08880
  MPT08890
  MPT08900
  MPT08910
  MPT08920
  MPT08930
  MPT08940
  MFT08950
  MPT08960
  MPT08970
  MPT08980
  MPT08990
  MPT09000
  MPT09010
  MPT09020
  MPT09030
  MPT09040
  MPT09050
  MPT09060
  MPT09070
  MPT09080
  MPT09090
  MPT09100
                                      169

-------
670   IF (IOPT(6).EQ.O) GO TO 690
      IF (IDAY.LE.O) GO TO 690
      ISKIP=IDAY*24
      DO 680 I=1,ISKIP
680   READ (15)
690   IDAY=IDATE(2)-1
      IF (IDAY.LE.O.OR.IOPT(5).EQ.l) GO TO 710
C        SKIP PREVIOUSLY USED HOURLY EMISSION RECORDS.
      DO 700 I=1,IDAY
      READ (11)
      CONTINUE
700
710
C
C->->->->SECTION 0 - START LOOPS FOR DAY AND AVG TIME; READ MET DATA.
C
720
      IDAY=IDAY+1
      DAY=IDAY
      NHRS=0  '
      IF (IOPT(5).EQ.l) GO TO 760
C        IF OPTION 5 EQUALS ZERO, INPUT MET DATA OFF DISK (UNIT 11)
      READ (11) JYR.IMO,DAY1,IKST,QU,QTEMP,DUMR,QTHETA,HLH
      DO 781 JM1=1,24
      IDUMR(JM1)=DUMR(JM1)+0.5
 781  CONTINUE
      IF (JYR.NE.IDATE(l)) GO TO 730
      IF (DAY1.EQ.DAY) GO TO 740
C        DATE ON MET TAPE DOES NOT MATCH INTERNAL DATE
730   WRITE (10,1370) JYR,IDATE(2),IDATE(l),IDAY
      STOP
C        MODIFY WIND VECTOR BY 180 DEGREES. SINCE FLOW VECTORS WERE
C        OUTPUT FROM RAMMET. THIS CONVERTS BACK TO WIND DIRECTIONS.
740   IDATE(2)=DAY1
      DO 750 IQ=1.24
      IF_(IKST(IQ).EQ.7) IKST(IQ)=6
      QTHETA(IQ)=QTHETA(IQ)+180.
      IF (QTHETA(IQ).GT.360.) QTHETA(IQ)=QTHETA(IQ)-360.
C       SELECT URBAN OR RURAL MIXING HEIGHTS AS APPROPRIATE.
      IF(MUOR.EQ.1)IMX=2
      IF(MUOR.EQ.2)IMX=1
750   QHL(IQ)=HLH(IMX,IQ)
760   NB=IHSTRT
      NE=NB+NAVG-1
      IF (NB.GT.O) GO TO 770
      WRITE (10,1380) IHSTRT
      STOP
C        START LOOP FOR AVERAGING PERIOD.
770   U=0.0
      TEMP=0.0
      DELN=0.0
      DELM=0.0
      DO 780 1=1,7
780   IFREQ(I)=0.0
C
C
C
C
C
C
790
             1.1
 DO 800 1=NB,NE
 JHR=I
 DAY2=IDATE(2)
 IF (IOPT(5).EQ.O) C-Q TO 790

    READ CARD TYPE 14 IF IOPT(5) =1.  (HOURLY MET DATA)
     (SEE DESCRIPTION,  SECTION B).

 READ (IN,*) JYR,DAY1,JHR,IKST(JHR),QU(JHR),QTEMP(JHR),QTHETA(JH
1R),QHL(JHRJ
 IF (I.NE.NB) GO TO 790
    REDEFINE START HOURS AND DATES AT FIRST HOUR OF EACH
     AVERAGING PERIOD IF READING HOURLY MET DATA.
 IDATEa)=JYR
 IHSTRT=JHR
 ISTDAY=DAY1
 IDATE(2)=ISTDAY
 DAY2=IDATE(2)
 IF (IKST(JHH).EQ.7) IKST(JHR)=6
MPT09110
MPT09120
MPT09130
MPT09140
MPT09150
MPT09160
MPT09170
MPT09180
MPT09190
MPT09200
MPT09210
MPT09220
MPT09230
MPT09240
MPT09250
MPT09260
MPT09270
MPT09280
MPT09290
MPT09300
MPT09310
MPT09320
MPT09330
MPT09340
MPT09350
MPT09360
MPT09370
MPT09380
MPT09390
MPT09400
MPT09410
MPT09420
MPT09430
MPT09440
MPT09450
MPT09460
MPT09470
MPT09480
MPT09490
MPT09500
MPT09510
MPT09520
MPT09530
MPT09540
MPT09550
MPT09560
MPT09570
MPT09580
MPT09590
MPT09600
MPT09610
MPT09620
MPT09630
MT703640
Mr"f0365G
MPT09660
MPT09670
MPT09680
MPT09690
MPT09700
MPT09710
MPT09720
MPT09730
MPT09740
MPT09750
MPT09760
MPT09770
MPT09780
MPT09790
MPT09800
                                      170

-------
      IF (lOPT(lO).EQ.l) GO TO 800                                      MPT09810
C                                                                       MPT09820
C->->->->SECTION P - CALCULATE AND STORE FOR HIGH-FIVE TABLE.           MPT09830
C                                                                       MPT09840
      IF (I.EQ.NB) WRITE (10,1690) IDATE                                MPT09850
      TRAD=QTHETA(JHR)*0.01745329                                       MPT09860
      WRITE (10,1700) JHR,QTHETA(JHR),QU(JHR),QHL(JHR),QTEMP(JHR),IKST(JMPT09870
     1HR)                                                               MPT09880
      SINT=SIN(TRAD)                                                    MPT09890
      COST=COS(TRAD)                                                    MPT09900
C        CALCULATE WIND COMPONENTS                                      MPT09910
      URES=QU(JHR)                                                      MPT09920
      UR=URES*SINT                                                      MPT09930
      VR=URES*COST                                           •           MPT09940
      DELM=DELM+UR                                                      MPT09950
      DELN=DELN+VR                                                      MPT09960
      TEMP=TEMP+QTEMP(JHR)                                              MPT09970
      U=U+URES                                                          MPT09980
      KST=IKST(JHR)'                                                     MPT09990
      IFREQ(KST)=IFREQ(KST)+1                                           MPT10000
C        END LOOP TO READ ALL MET DATA FOR AVERAGING PERIOD.            MPT10010
800   CONTINUE                                                          MPT10020
      IF (lOPT(lO).EQ.l) GO TO 860                                      MPT10030
C        CALCULATE RESULTANT  WIND DIRECTION THETA                      MPT10040
      DELN=DELN/NAVG                                                    MPT10050
      DELM=DELM/NAVG                                                    MPT10060
      THETA=ANGARC(DELM,DELN)                                           MPT10070
C        CALCULATE AVERAGE AND RESULTANT SPEED AND PERSISTENCE.         MPT10080
      U=U/NAVG                                                          MPT10090
      TEMP=TEMP/NAVG                                                    MPT10100
      URES=SQRT(DELN*DELN+DELM*DELM)                                    MPT10110
      PERSIS=URES/U                                                .     MPT10120
C        DETERMINE MODAL AND AVERAGE STABILITY                          MPT10130
      LSMAX=0                                                           MPT10140
      DO 810 1=1,7                                                      MPT10150
      LST=IFREQ(I)                                                      MPT10160
      IF (LST.LE.LSMAX) GO TO 810                                       MPT10170
      LSMAX=LST                                                         MPT10180
      LSTAB=I                                                           MPT10190
810   CONTINUE                                                          MPT10200
      IP1=LSTAB+1                                                       MPT10210
      KST=LSTAB                                                         IVIPT10220
      DO 820 I=IP1,7                                                    MPT10230
      IF (LSMAX.EQ.IFREQ(I)) GO TO 830                                  MPT10240
820   CONTINUE                                                          MPT10250
      GO TO 850                                                         MPT10260
C        IF TIE FOR MAX MODAL STABILITY CALCULATE AVERAGE STABILITY     MPT10270
830   KSUM=0                                                            MPT10280
      DO 840 J=l,7                                                      MPT10290
840   KSUM=KSUM+IFREQ(J)*J                                              MPT10300
      KST=FLOAT(KSUM)/FLOAT(NAVG)+0.5                                   MPT10310
C        PRINT RESULTANT MET DATA SUMMARY FOR AVERAGING PERIOD.         MPT10320
850   WRITE (10,1710)                                                   MPT10330
      WRITE U0.1720)  THETA,URES.U,TEMP,PERSIS,KST                      MPT10340
C        REDEFINE NB ANP NE IN CASE NON-CONSECUTIVE DAYS ARE BEING RUN  MPT10350
860   IF (IOPT(5).EQ.O) GO TO 870                                       MPT10360
      NB=IHSTRT                                                         MPT10370
      NE=IHSTRT+NAVG-1                                                 MPT10380
C                                                                       MPT10390
C->->->->SECTION Q - INITIALIZE FOR HOURLY  LOOP.                        MPT10400
C                                                                       MPT10410
C        INITIALIZE SUMS FOR CONG AND PARTIAL CONC FOR AVG  PERIOD.      MPT10420
870   DO 890 K=1,NRECEP                                                 MPT10430
      PCHI(K)=0.0                                                       MPT10440
      DO 880 1=1,26                                                     MPT10450
880   PSIGS(K,I)=0.0                                                    MPT10460
890   CONTINUE                                                          MPT10470
C        IF SAVING  PARTIAL CONCENTRATIONS,  WRITE  INITIAL RECEPTOR INFO. MPT10480
      IF (IOPT(21).EQ.O) GO TO 900                                      MPT10490
      WRITE  (10)  NRECEP,NPT,(RREC(I),I=1,NRECEP),(SREC(I),I=1,NRECEP)   MPT10500
                                      171

-------
C->->->->SECTION R - BEGIN HOURLY LOOP.
C
900   DO 1020 ILH=NB,NE
      LH=ILH
      IF (LH.LE.24) GO TO 910
      LH=MOD(ILH.24)
      IF (LH.EQ.l) IDATE(2)=DAY1
C        INITIALIZE SUMS FOR CONG AND PARTIAL CONG FOR HOURLY PERIODS.
910   DO 930 K=1,NRECEP
      PHCHI(K)=0.0
      DO 920 1=1.26
920   PHSIGS(K,I)=0.0
930   CONTINUE
C        SET MET CONDITIONS FOR THIS HOUR
      THETA=QTHETA(LH)
      U=QU(LH)
      HL=QHL(LH)
      TEMP=QTEMP(LH)
      KST=IKST(LH)
      TRAD=THETA*0.01745329
      SINT=SIN(TRAD)
      COST=COS(TRAD)
      CTER=CONTER(KST)
C        IF OPTION 6 IS 1, READ HOURLY EMISSIONS.
      IF (IOPT(6).EQ.O) GO TO 940
      IDCK=IDATE(1)*100000+IDATE(2)*100+LH
      READ (15) IDATP,(SOURCE(IPOL,I),I=1,NPT)
C        CHECK DATE
      IF (IDCK.EQ.IDATP) GO TO 940
      WRITE (10,1390) IDCK.IDATP
      STOP
C        CALCULATE POINT SOURCE CONTRIBUTIONS
940   CALL PTR
      IF (IOPT(22).EQ.O) GO TO 950
C        WRITE HOURLY CONCENTRATIONS TO TAPE
      WRITE (12) IDATE(2),LH,(PHCHI(I),I=1,NRECEP)
C
C->->->->SECTION S - CALCULATE AND STORE FOR HIGH-FIVE TABLE.
C
950   NHR=NHR+1
C        IF OPTION 19 IS 1, DELETE COMPUTATIONS FOR AVG CONG.
C         FOR LENGTH OF RECORD AND HIGH-FIVE TABLE.
      IF (IOPT(19).EQ.l) GO TO 1010
C        CUMULATE CONCENTRATIONS FOR AVG TIMES AND LENGTH OF RECORD.
C
C         FOR DEFAULT OPTION DETERMINE CALM HOURS.
C         FOR CALM HOURS, CONCENTRATIONS AT EACH RECEPTOR ARE
C          SET EQUAL TO ZERO.
C         	 A CALM HOUR IS AN HOUR WITH A WIND SPEED
C             OF 1.00 M/S AND A WIND DIRECTION THE SAME
C              AS THE PREVIOUS HOUR.
      IF(IOPT(25).EQ.1.AND.QU(LH).LT.1.009.AND.ITMIN1.EQ.
     *IDUMR(LH))THEN
      ICALM=ICALM-t-l
      DO 955 K=1,NRECEP
      PHCHI(K)=0.0
955   CONTINUE
      GO TO 971
      END IF
      DO 970 K=1,NRECEP
      DO 960 L=1,NAVT
960   CONC(K,L)=CONC(K,L)+PHCHI(K)
970   SUM(K)=SUM(K)+PHCHI(K)
C          STORE DATE FOR'WHICH CONCS. HAVE BEEN CALCULATED.
  971 JDAY=IDATE(2)
C        SUBROUTINE RANK  IS CALLED WHENEVER A COUNTER
C        INDICATES THAT ENOUGH END TO  END HOURLY CONCENTRATIONS
C        HAVE BEEN STORED OFF TO COMPLETE AN AVG TIME.
C        NP3, NP8, NP24, NPX ARE USED  AS COUNTERS FOR EACH
MPT10510
MPT10520
MPT10530
MPT10540
MPT10550
MPT10560
MPT10570
MPT10580
MPT10590
MPT10600
MPT10610
MPT10620
MPT10630
MPT10640
MPT10650
MPT10660
MPT10670
MPT10680
MPT10690
MPT10700
MPT10710
MPT10720
MPT10730
MPT10740
MPT10750
MPT10760
MPT10770
MPT10780
MPT10790
MPT10800
MPT10810
MPT10820
MPT10830
MPT10840
MPT10850
MPT10860
MPT10870
MPT10880
MPT10890
MPT10900
MPT10910
MPT10920
MPT10930
MPT10940
MPT10950
MPT10960
MPT10970
MPT10980
MPT10990
MPT11000
MPT11010
MPT11020
MPT11030
MPT11040
MPTllOoO
MPT11060
MPT11070
MPT11080
MPT11090
MPT11100
MPT11110
MPT11120
MPT11130
MPT11140
MPT11150
MPT11160
MPT11170
MPT11180
MPT11190
MPT11200
                                      172

-------
c
c
c
c
c
c
c

972
974
C
C
C

975
976
C
C
C

977
 1011

 C
 C
 C
 C
 C
 979
   AVG TIME AND ARE ZEROED AFTER EACH CALL TO RANK.

   FOR THE DEFAULT OPTION CALCULATE AVERAGE
   CONCENTRATION FOR APPROPRIATE AVERAGING PERIOD.
   SET UP CALM FLAG FOR ENTRY INTO SUBROUTINE RANK.

IF(IOPT(25).EQ.O) GOTO 979
CALL RANK(l)
NP3=NP3+1
IF(QIKLH).LT.1.009.AND.IDUMR(LH).EQ.ITMIN1)ICFL3=1
IF(NP3.NE.3) GO TO 974
   FOR 3 HOUR AVERAGING PERIOD DIVIDE SUM BY 3.0.
DO 972 LQ=1,NRECEP
CONC{LQ,2)=CONC(LQ,2)/3.0
LL2=2
IF(ICFL3.EQ.1)LL2=22
CALL RANK(LL2)
NP3=0
ICFL3=0
NP8=NP8+1
IDIV8=IDIV8+1
IF(QU(LH).LT.1.009.AND.IDUMR(LH).EQ.ITMIN1)THEN
IDIV8=IDIV8-1
ICFL8=1
END IF
IF(NP8.NE.8)GO TO 976
IF(IDIV8.LT.6)IDIV8=6
DIV8=IDIV8
   FOR 8 HOUR AVERAGING PERIOD DIVIDE THE SUM OF THE HOURLY
   CONCENTRATIONS BY THE NUMBER OF NON-CALM HOURS OR 6.0
   WHICHEVER IS GREATER.
DO 975 LQ=1,NRECEP
CONC(LQ,3)=CONC(LQ,3)/DIV8
LL3=3
IF(ICFL8.EQ.1)LL3=33
CALL RANK(LL3)
NP8=0
IDIV8=0
ICFL8=0
NP24=NP24+1
IDIV24=IDIV24+1
IF(QU(LH).LT.1.009.AND.IDUMR(LH).EQ.ITMINl)THEN
IDIV24=IDIV24-1
ICFL24=1
END IF
IF(NP24.NE.24)GO TO 1011
IF(IDIV24.LT.18)IDIV24=18
DIV24=IDIV24
   FOR 24 HOUR AVERAGING PERIOD DIVIDE THE SUM OF THE HOURLY
   CONCENTRATIONS BY THE NUMBER OF NON-CALM HOURS OR 18.
   WHICHEVER IS GREATER.
DO 977 LQ=1,NRECEP
CONC(LQ,4)=CONC(LQ,4)/DIV24
LL4=4
IF(ICFL24.EQ.1)LM=44
CALL RANK(LL4)
NP24=0
IDIV24=0
ICFL24=0
ITMIN1=IDUMR(LH)
GO TO 1010

   WHEN DEFAULT OPTION IS NOT USED, DETERMINE ENTRY INTO
   SUBROUTINE RANK FOR APPROPRIATE AVERAGING PERIOD.
   RANKING BASED ON HIGH AVERAGING PERIOD SUM.
CALL RANK
NP3=NP3+1
(1)
       IF  (NP3.NE.3)  GO  TO  980
       CALL RANK (2)
MPT11210
MPT11220
MPT11230
MPT11240
MPT11250
MPT11260
MPT11270
MPT11280
MPT11290
MPT11300
MPT11310
MPT11320
MPT11330
MPT11340
MPT11350
MPT11360
MPT11370
MPT11380
MPT11390
MPT11400
MPT11410
MPT11420
MPT11430
MPT11440
MPT11450
MPT11460
MPT11470
MPT11480
MPT11490
MPT11500
MPT11510
MPT11520
MPT11530
MPT11540
MPT11550
MPT11560
MPT11570
MPT11580
MPT11590
MPT11600
MPT11610
MPT11620
MPT11630
MPT11640
MPT11650
MPT11660
MPT11670
MPT11680
MPT11690
MPT11700
MPT11710
MPT11720
MPT11730
MPT11740
MPT11750
MPT11760
MPT11770
MPT11780
MPT11790
MPT11800
MPT11810
MPT11820
MPT11830
MPT11840
MPT11850
MPT11860
MPT11870
MPT11880
MPT11890
MPT11900
                                      173

-------
      NP3=0
980   NP8=NP8+1
      IF (NP8.NE.8) GO TO 990
      CALL RANK (3)
      NP8=0
990   NP24=NP24+1
      IF (NP24.NE.24) GO TO 1000
      GAIL RANK (4)
      NP24=0
1000  IF (NAVT.EQ.4) GO TO 1010
      NPX=NPX+1
      IF (NPX.NE.NAV5) GO TO 1010
      CALL RANK (5)
      NPX=0
C
C->->->->SECTION T - END HOURLY, AVERAGING TIME, AND DAILY LOOPS.
C
1010
C
C
1020
C
C
C
      IF (IOPT(ll).EQ.l.AND.IOPT(14).EQ.l) GO TO 1020
         IF BOTH OPTIONS 11 AND 14 CALL FOR OUTPUT DELETIONS,
          SKIP HOURLY PRINTOUT.
      CALL OUTHR
      CONTINUE
C
C
C
1030
C
C
C
C
C
1040
         END OF HOURLY LOOP

      IF (NE.GT.24) IDATE(2)=ISTDAY
         OUTPUT FINAL RESULTS
      CALL OUTAVG
      NP=NP+1
      NHRS=NHRS+NAVG
         NEXT STATEMENT IS BRANCH FOR END OF RUN.
         (NP.GE.NPER) GO TO 1050
         (NHRS.LT.24) GO TO 1030
         ,IOPT(20).EQ.O) GO TO 720
         NEXT STATEMENT CHECKS FOR END OF SEGMENTED RUN.
      IF (IDAY.GE.LDRUN) GO TO 1040
      GO TO 720

           END OF LOOP FOR CALENDAR DAYS
      NB=NB+NAVG
      NE=NE+NAVG
      IF (NB.LE.24)
      NB=MOD(NB,24)
      NE=NB+NAVG-1
      GO TO 770
                    GO TO 770
         END OF LOOP FOR AVERAGING PERIOD.

         IF SEGMENTED RUN, TEMPORARILY STORE
          HIGH-FIVE INFO ON UNIT 14 FILE.
      WRITE (14) IDAY,SUM,NHR,DAY1A,HR1,HMAXA,NDAY,IHR
      WRITE (10.1730) IDAY
      GO TO 1140
      IF (IOPT(19).EQ.l) GO TO 1140
1050
C
C->->->->SECTION U - WRITE AVERAGE CONC. AND HIGH-FIVE TABLES.
C
C
C
         IF OPTION 19 = 0, WRITE AVERAGE CONCENTRATION.
          FOR LENGTH OF RECORD AND HIGH-FIVE TABLE.
      DO 1060 J=1,NRECEP
      STAR(1,J)=BLNK
      STAR(2,J)=BLNK
1060  CONTINUE
      WRITE (IO,1400)(MODEL(K,MUOR),K=1,2), LINE1,LINE2,LINES

C        FOR DEFAULT OPTION CALCULATE AND REPORT THE
C        NUMBER OF CALMS FOR AVERAGING PERIOD.
      IF(IOPT(25).EQ.1)THEN
      NHR=NHR-ICALM
MPT11910
MPT11920
MPT11930
MPT11940
MPT11950
MPT11960
MPT11970
MPT11980
MPT11990
MPT12000
MPT12010
MPT12020
MPT12030
MPT12040
MPT12050
MPT12060
MPT12070
MPT12080
MPT12090
MPT12100
MPT12110
MPT12120
MPT12130
MPT12140
MPT12150
MPT12160
MPT12170
MPT12180
MPT12190
MPT12200
MPT12210
MPT12220
MPT12230
MPT12240
MPT12250
MPT12260
MPT12270
MPT12280
MPT12290
MPT12300
MPT12310
MPT12320
MPT12330
MPT12340
MPT12350
MPT12360
MPT12370
MPT12380
MPT12390
MPT12400
MPT12410
MPT12420
MPT12430
MPT12460
MPT12470
MPT12480
MPT 12490
MPT12500
MPT12510
MPT12520
MPT12530
MPT12540
MPT12550
MPT12560
MPT12570
MPT12580
MPT12590
MPT12600
                                      174

-------
      WRITE(6,1061)ICALM
      END IF
      SUM(1)=SUM(1)/NHR
    .  HIMAX=SUM(1)
      KMX=1
C        INITIALIZE PERIODIC CONG TO BEGIN RANKING FOR PERIODIC MAX
      DO 1070 K=2,NRECEP
      SUM(K)=SUM(K)/NHR
      IF (SUM(K).LE.HIMAX) GO TO 1070
      KMX=K
      HIMAX=SUM(K)
1070  CONTINUE
      STAR(1,KMX)=STR
C        FIND HIGHEST AVERAGE CONG. AMONG RECEPTORS.
      WRITE (10,1740) DAY1A,HR1,DAY2,HR2
      DO 1080 K=1,NRECEP
1080  WRITE (10,1750) K,(RNAME(J.K),J=1,2),HREC(K),SREC(K),ZR(K),ELH(K)
     1STAR(1,K).SUM(K)
      STAR(1,KMX)=BLNK
C        LOOP TO WRITE HIGH-FIVE TABLE FOR 4 OR 5 AVG TIMES.
      DO 1130 L=1,NAVT
C        ASTERISKS DEPICT RECEPTORS WITH HIGHEST AND
C         SECOND HIGHEST CONCENTRATIONS.
      Kl=l
      K2=l
      HI1=HMAXA(1,1,L)
      HI2=HMAXA(2,1,L)
      DO 1100 K=2,NRECEP
      IF.(miAXA(l,K,L).LE.HIl) GO TO 1090
                   > L)
1090
1100
                .LE.HI2)  GO TO 1100
      HI1=HMAXA(1,K,
      K1=K
      IF (HMAXA(2,K,L)
      HI2=HMAXA(2,K,L)
      K2=K
      CONTINUE
      STAR(1,K1)=STR
      STAR(2,K2)=STR
      IF((lOPT(25).EQ.l.AND.L.EQ.l).OR.(IOPT(25).NE.l))THEN
      WRITE  (10,1760)  NTIME(L),TITLE(IP),(I,I=1,5)
      END IF
      IF(IOPT(25).EQ.1.AND.L.NE.1)THEN
      WRITE  (10,1761)  NTIME(L),TITLE(IP),(I,I=1,5)
      END IF
      DUM=ATIME(L)
      DO 1120 K=1,NRECEP
         SET CALM FLAG FOR PRINTING.
         RESET  HOUR VARIABLE FOR CALM HOURS.
      IF(IOPT(25).EQ.1)THEN
      DO 1112 J=l,5
      CF(J)=BLNK
      IF(IHR(J,K,L).GT.24)THEN
      IHR?J,K,L)=IHR(J,K,L)-100
      CF(J)=C
      END IF
      CONTINUE
      END IF
      IF(IOPT(25).EQ.1)GO TO 1111
         CALCULATE AVERAGE CONCENTRATIONS WHEN
         DEFAULT OPTION  IS NOT ON.
      DO 1110 J=1.5
 *;.„  HMAXA(J,K,L)=HMAXA(J,K,L)/DUM
 1111 WRITE  (10,1770") K,RREC(K).SREC(K),(STAR(J,K),HMAXA(J,K,L).CF(J),
     lNDAY(J,K,i),IHH(J,K,L),J=i,2),(HMAXA(J,Kti,),CF(J),NDAY{j,K,L),
     2IHRU,K,L),J=3,5)
1120  CONTINUE
 1112
C
C

1110
 1130
 C
   INITIALIZE ASTERISK STORAGE TO BLANKS.
STAR(1,K1)=BLNK
STAR(2,K2)=BLNK
CONTINUE
 MPT12610
 MPT12620
 MPT12630
 MPT12640
 MPT12650
 MPT12660
 MPT12670
 MPT12680
 MPT12690
 MPT12700
 MPT12710
 MPT12720
 MPT12730
 MPT12740
 MPT12750
 MPT12760
.MPT12770
 MPT12780
 MPT12790
 MPT12800
 MPT12810
 MPT12820
 MPT12830
 MPT12840
 MPT12850
 MPT12860
 MPT12870
 MPT12880
 MPT12890
 MPT12900
 MPT12910
 MPT12920
 MPT12930
 MPT12940
 MPT12950
 MPT12960
 MPT12970
 MPT12980
 MPT12990
 MPT13000
 MPT13010
 MPT13020
 MPT13030
 MPT13040
 MPT13050
 MPT13060
 MPT13070
 MPT13080
 MPT13090
 MPT13100
 MPT13110
 MPT13120
 MPT13130
 MPT13140
 MFV13150
 MPT13160
 MPT13170
 MPT13180
 MPT13190
 MPT13200
 MPT13210
 MPT13220
 MPT13230
 MPT13240
 MPT13250
 MPT13260
 MPT13270
 MPT13280
 MPT13290
 MPT13300
                                      175

-------
C->->->->SECTION V - CLOSE OUT FILES.
C
1140  IF (IOPT(21).EQ.O) GO TO 1150
      END FILE 10
      END FILE 10
1150  IF (IOPT(22).EQ.O) GO TO 1160
      END FILE 12
      END FILE 12
1160  IF (IOPT(23).EQ.O) GO TO 1170
      END FILE 13
      END FILE 13
1170  STOP
C
C->->->->SECTION X - OUTLINE OF PROGRAM SECTIONS
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C***
    SECTION A - GENERAL REMARKS
    SECTION B - DATA INPUT LISTS.
    SECTION C - COMMON, DIMENSION, AND DATA STATEMENTS.
    SECTION D - FLOW DIAGRAM.
    SECTION E - RUN SET-UP AND READ FIRST 6 INPUT CARDS.
    SECTION F - INPUT AND PROCESS EMISSION INFORMATION.
    SECTION G - RANK SIGNIFICANT SOURCES.
    SECTION H - EMISSIONS WITH HEIGHT TABLE.
    SECTION I - EXECUTE FOR INPUT OF SIGNIFICANT SOURCE NUMBERS.
    SECTION J - CHECK MET. DATA IF FROM FILE OF ONE YEARS'S DATA.
    SECTION K - GENERATE POLAR COORDINATE RECEPTORS.
    SECTION L - READ POLAR COORDINATE ELEVATIONS.
    SECTION M - READ AND PROCESS RECEPTOR INFORMATION.
    SECTION N - POSITION FILES AS REQUIRED.
    SECTION 0 - START LOOPS FOR DAY AND AVERAGING TIME; READ
                   MET. DATA.
    SECTION P - CALCULATE AND WRITE MET. SUMMARY INFORMATION.
    SECTION Q - INITIALIZE FOR HOURLY LOOP.
    SECTION R - BEGIN HOURLY LOOP.
    SECTION S - CALCULATE AND STORE FOR HIGH-FIVE TABLE.
    SECTION T - END HOURLY, AVERAGING TIME, AND DAILY LOOPS.
    SECTION U - WRITE AVERAGE CONC. AND HIGH-FIVE TABLES.
    SECTION V - CLOSE OUT FILES.
    SECTION W - FORMAT STATEMENTS.
    SECTION X - OUTLINE OF PROGRAM SECTIONS.
    SECTION Y - INPUT AND OUTPUT  FILE DESCRIPTIONS.
    SECTION Z - INDEX AND GLOSSARY.


>->->  SECTION Y -   INPUT AND OUTPUT FILE DESCRIPTIONS.

    INPUT  AND OUTPUT FILE DESCRIPTIONS.

  INPUT  FILE  (UNIT  11) METEOROLOGICAL DATA  (USED  IF  IOPT(5)=0)

   RECORD 1

    ID          SFC STATION  IDENTIFIER. 5  DIGITS
    IYEAR       YEAR OF SURFACE DATA, 2 DIGITS
    IDM        MIX HT STATION  IDENTIFIER, 5  DIGITS
    IYR        YEAR OF MIX HT DATA, 2 DIGITS

   RECORD TYPE 2 (ONE FOR EACH DAY OF YEAR)

    JYR        YEAR
    IMO        MONTH
    DAY1        JULIAN DAY
    IKST(24)    STABILITY CLASS
    QU(24)     WIND SPEED, METERS PER SECOND
    QTEMP(24)   AMBIENT AIR  TEMPERATURE, KELVIN
    DUMR(24)    FLOW VECTOR  TO  10 DEC, DEGREES AZIMUTH
    QTHETA(24)  RANDOMIZED FLOW  VECTOR, DEGREES  AZIMUTH
    HLH(2,24)   MIXING HEIGHT, METERS

  INPUT  FILE(UNIT  15) EMISSION DATA  (USED IF  IOPT(6)=1)
MPT13310
MPT13320
MPT13330
MPT13340
MPT13350
MPT13360
MPT13370
MPT13380
MPT13390
MPT13400
MPT13410
MPT13420
MPT13430
MPT13440
MPT13450
MPT13460
MPT13470
MPT13480
MPT13490
MPT13500
MPT13510
MPT13520
MPT13530
MPT13540
MPT13550
MPT13560
MPT13570
MPT13580
MPT13590
MPT13600
MPT13610
MPT13620
MPT13630
MPT13640
MPT13650
MPT13660
MPT13670
MPT13680
MPT13690
MPT13700
MPT13710
MPT13720
MPT13730
MPT13740
MPT13750
MPT13760
MPT13770
MPT13780
MPT13790
MPT13800
MPT13810
MPT13820
MPT13830
MPT]3840
MKi'13850
MPT13860
MPT13870
MPT13880
MPT13890
MPT13900
MPT13910
MPT13920
MPT13930
MPT13940
MPT13950
MPT13960
MPT13970
MPT13980
MPT13990
MPT14000
                                      176

-------
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
                                                                  MPT14010
                                                                  MPT14020
                                                                  MPT14030
               DATE-TIME INDICATOR CONSISTING OF YEAR,  JULIAN DAY.MPT14040
 RECORD TYPE 1 (ONE FOR EACH HOUR OF SIMULATION)

   IDATP
                AND HOUR: YYDDDHH.
   SOURCE(IPOL,I),1=1,NPT  EMISSION RATE FOR THE POLLUTANT IPOL
                            FOR EACH SOURCE, GRAMS PER SECOND.

OUTPUT PUNCHED CARDS (UNIT 1) AVERAGE CONCENTRATIONS (PUNCHED IF
                               IOPT(24)=1)

 CARD TYPE 1 (ONE FOR EACH RECEPTOR FOR EACH AVERAGING TIME)
                                                                  MPT14050
                                                                  MPT14060
                                                                  MPT14070
                                                                  MPT14080
                                                                  MPT14090
                                                                  MPT14100
                                                                  MPT14110
                                                                  MPT14120
                                                                  MPT14130
                                                                  MPT14140
                                                                  MPT14150
                                                                  MPT14160
                                                                  MPT14170
   CC:l-4      WORD'CNTL' PUNCHED
   CC:5        BLANK
   CC:6-15     RREC  EAST COORDINATE OF RECEPTOR, USER UNITS
   CC: 16-25    SREC  NORTH COORDINATE OF RECEPTOR, USER UNITS     ™ **•«.,»
   CC:26-35    GWU   CONCENTRATION FOR AVERAGING TIME, MICROG/M**3MPT14180
   CC:36-55    BLANK                                              MPT14190
   CC:56-59    K     RECEPTOR NUMBER                              MPT14200
   CC:60-69    ZR    RECEPTOR HEIGHT ABOVE GROUND. METERS         MPT14210
   CC:70-79    ELR  RECEPTOR GROUND-LEVEL ELEVATION, USER HT UNITSMPT14220
                                                                  MPT14230
OUTPUT FILE (UNIT 10) PARTIAL CONCENTRATIONS (USED IF IOPT(21)=1) MPT14240
                                                                  MPT14250
                                                                  MPT14260
                                                                  MPT14270
               NUMBER OF PERIODS                                  MPT14280
               NUMBER OF HOURS IN AVERAGING PERIOD.               MPT14290
               80 ALPHANUMERIC CHARACTERS FOR TITLE.
               80 ALPHANUMERIC CHARACTERS FOR TITLE.
               80 ALPHANUMERIC CHARACTERS FOR TITLE.
RECORD TYPE 1

   NPER
   NAVG
   LINE1U4)
   LINE2(14)
   LINE3U4)
RECORD TYPE 2 (FROM MPTER) (ONE FOR EACH AVERAGING PERIOD)
   NRECEP
   NPT
   RREC(I),I=1,
   SREC(I),1=1,NRECEP
               NUMBER OF RECEPTORS
               NUMBER OF SOURCES
            =1,NRECEP  EAST COORDINATE OF RECEPTOR, USER UNITS
             "         NORTH COORDINATE OF RECEPTOR, USER UNITS
 RECORD TYPE 3 (ONE FOR EACH RECEPTOR FOR EACH SIMULATED HOUR,
                 FROM PTR)

   IDATE       YEAR AND JULIAN DAY
   LH          HOUR
   K           RECEPTOR NUMBER
   PAHTC(J),J=1,NPT
                     CONCENTRATION AT RECEPTOR K FROM SOURCE
                      G/M**3.
OUTPUT FILE (UNIT 12) HOURLY CONCENTRATIONS (USED IF IOPT(22)=1)
RECORD 1

   NPER
   NAVG
   LINE1<
   LINE2(
   LINE3)

 RECORD 2

   NRECEP
               NUMBER OF PERIODS
               NU?."1ER OF HOURS  IN  AVERAGING  PERIOD.
               80  ALPHANUMERIC  CHARACTERS  FOR  TITLE.
               80  ALPHANUMERIC  CHARACTERS  FOR  TITLE.
               80  ALPHANUMERIC  CHARACTERS  FOR  TITLE.
   RREC(I),I=1,
   SREC(I),1=1,NRECEP
                NUMBER OF RECEPTORS.
             =1,NRECEP  EAST  COORDINATE  OF RECEPTOR,  USER UNITS
                        NORTH COORDINATE OF RECEPTOR,  USER UNITS
 RECORD TYPE 3  (ONE FOR EACH SIMULATED HOUR)

    IDATE(2)     JULIAN DAY
    LH           HOUR
    PHCHI(I),!=!,NRECEP  HOURLY CONCENTRATION  FOR EACH RECEPTOR,
MPT14300
MPT14310
MPT14320
MPT14330
MPT14340
MPT14350
MPT14360
MPT14370
MPT14380
MPT14390
MPT14400
MPT14410
MPT14420
MPT14430
MPT14440
MPT14450
MPT14460
MPT14470
MPT14480
MPT14490
MPT14500
MPT14510
MPT14520
MPT14530
MPT14540
MPT14550
MPT14560
MPT14570
MPT14580
MPT14590
MPT14600
MPT14610
MPT14620
MPT14630
MPT14640
MPT14650
MPT14660
MPT14670
MPT14680
MPT14690
MPT14700
                                      177

-------
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
                               G/M**3.

      OUTPUT  FILE  (UNIT  13)  AVERAGING-PERIOD  CONCENTRATIONS  (USED  IF
                             IOPT(23)=1)
      RECORD  1

        NPER
        NAVG
        LINE1(14)
        LINE2(14
        LINES(14J

      RECORD  2
                NUMBER OF PERIODS
                NUMBER OF HOURS IN AVERAGING PERIOD.
                80 ALPHANUMERIC CHARACTERS FOR TITLE.
                80 ALPHANUMERIC CHARACTERS FOR TITLE.
                80 ALPHANUMERIC CHARACTERS FOR TITLE.
         NRECEP       NUMBER OF RECEPTORS.
         RREC(I),!=!,NRECEP  EAST COORDINATE  OF RECEPTOR,  USER UNITS
         SREC(I),1=1,NRECEP  NORTH COORDINATE OF RECEPTOR,  USER UNITS

       RECORD  TYPE  3  (ONE  FOR EACH SIMULATED  AVERAGING PERIOD)

         IDATE(2)     JULIAN DAY
         NB           ENDING HOUR OF PERIOD
         PCHI(K),K=1,NRECEP  AVERAGING PERIOD CONCENTRATION FOR EACH
                              RECEPTOR,  G/M**3.

      TEMPORARY FILE  (UNIT 14) VALUES FOR HIGH-FIVE TABLES (USED IF
                                 IOPT(20)=1)

       ONLY  RECORD
         NDAY(ON WRITE)
         IDAYS?ON READ
         SUM(180)
         NHR
         DAY1A
         HR1
         HMAXA(3,5,180,5)
                                                          MPT14710
                                                          MPT14720
                                                          MPT14730
                                                          MPT14740
                                                          MPT14750
                                                          MPT14760
                                                          MPT14770
                                                          MPT14780
                                                          MPT14790
                                                          MPT14800
                                                          MPT14810
                                                          MPT14820
                                                          MPT14830
                                                          MPT14840
                                                          MPT14850
                                                          MPT14860
                                                          MPT14870
                                                          MPT14880
                                                          MPT14890
                                                          MPT14900
                                                          MPT14910
                                                          MPT14920
                                                          MPT14930
                                                          MPT14940
                                                          MPT14950
                                                          MPT14960
                                                          MPT14970
                                                          MPT14980
                                                          MPT14990
                                                          MPT15000
                                                          MPT15010
                                                          MPT15020
                                                          MPT15030
:->->->->SECTION W - FORMAT STATEMENTS.
C
C
C
1061
1180
1200
1210
1220
1230
1240
C
C
C
1250
1260

1270

1280

1290


1300

1310
         INPUT FORMATS

      FORMAT(5X,T98,'# CALMS FOR PERIOD:  ',14)
                      NUMBER OF DAYS PROCESSED
                      NUMBER OF DAYS PREVIOUSLY PROCESSED
                      CUMULATION OF LONG-TERM CONCENTRATION,(G/M**3MPT15040
                      NUMBER OF HOURS PROCESSED                    MPT15050
                      JULIAN DAY OF START OF LENGTH OF RECORD.      MPT15060
                      START HOUR OF LENGTH OF RECORD               MPT15070
                      HIGHEST FIVE CONCENTRATIONS (G/M**3),  AND    MPT15080
                       ASSOCIATED DAY AND HOUR, FOR EACH RECEPTOR, MPT15090
                       FOR FIVE DIFFERENT AVERAGING TIMES.          MPT15100
                                                                   MPT15110
                                                                   MPT15120
                                                                   MPT15130
                                                                   MPT15140
                                                                   MPT15150
                                                                   MPT15160
                                                                   MPT15170
                                                                   MPT15180
                                                                   MPT15190
                                                                   MPT15200
                                                                   MPT15210
                                                                   MPT15220
                                                                   MPT15230
                                                                   MPT15240
                                                                   MPT15250
 FORMAT (IX,' NSIGP (THE NO. OF SIGNF POINT SOURCES) WAS FOUND'.' TMPT15260
10 EXCEED THE LIMIT (25).  USER TRIED TO INPUT ',13,' SOURCES'/'   MPT15270
2 *********EXECUTION TERMINATED**********')                        	
 FORMAT (IHO.'CONTER VALUE IS OUTSIDE OF RANGE:
1CUTION TERMINATED.')
 FORMAT (' USER TRIED TO INPUT MORE THAN ',14  '
1 GOES BEYOND THE CURRENT PROGRAM DIMENSIONS.')
      FORMAT
      FORMAT
      FORMAT
      FORMAT
      FORMAT
      FORMAT
20A4/20A4/20A4)
A4)
3A4.8F8.2.F4.0)
2613)
I2,8X,5F10.0)
2A4,2F10.3,2F10.0)
         ERROR STATEMENT FORMATS
                                                          MPT15280
                                       ','ZERO TO ONE. EXEMPT15290
                                                          MPT15300
                                       POINT SOURCES. THISMPT15310
                                                          MPT15320
 FORMAT (IX.'NPT =  ',13,'I.E., EQUAL OR LESS THAN ZERO'/' RUN TERMMPT15330
1INATED	CHECK INPUT DATA')                                      MPT15340
 FORMAT (1H1,'***ERROR	USER TRIED TO SPECIFY ',14,' SIGNIFICANT SMPT15350
10URCES, BUT IS ONLY ALLOWING ',13 '  TOTAL SIGNIFICANT SOURCES IN TMPT15360
2HIS RUN.',/2X,'***RUN TERMINATED-CHECK INPUT DATA!***')           MPT15370
 FORMAT (' (MPS) THE INPUT SIGNIFICANT SOURCE NUMBER '/WAS FOUND TMPT15380
10 EQUAL ZERO - USER CHECK INPUT DATA.')                           MPT15390
 FORMAT (' SURFACE DATA IDENTIFIERS READ INTO MODEL (STATION=',15,'MPT15400
                                     178

-------
     1 ,YEAR=' 12,') DO NOT AGREE WITH THE PREPROCESSOR OUTPUT FILE' ./1XMPT15410
     2,'  (STATION= ',15,' ,YEAH=',I2)                                    MPT15420
1320  FORMAT (' MIXING HEIGHT IDENTIFIERS READ INTO MODEL (STATION=' . I5.MPT15430
     1' ,YEAR=',I2)') DO NOT AGREE WITH THE PREPROCESSOR OUTPUT FILE5 ./1MPT15440
     2X '  (STATION= ',15. '  ,YEAR=' 12)                                   MPT15450
1330  FORMAT (1HO,' WRONG RECEPTOR ELEVATION CARD READ.1, 'READ CARD FOR MPT15460
     1AZIMUTH '.13,' SHOULD HAVE BEEN ',13,'.')                         MPT15470
1340  FORMAT (IX, '****USER EITHER TRIED TO INPUT MORE THAN 180 '. 'RECEPTMPT 15480
     10RS OR ENDREC WAS NOT PLACED AFTER THE LAST RECEPTOR ' , 'CARD****'/MPT15490
     2'********EXECUTION TERMINATED*******')                            MPT15500
1350  FORMAT (IX. 'NO RECEPTORS HAVE BEEN CHOSEN')                       MPT15510
1360  FORMAT (1HO, '***DAYS DO NOT MATCH, IDAY = \I4,', IDAYS = ',14)    MPT15520
1370  FORMAT f' DATE ON MET. TAPE, ',12,13,' .DOES NOT MATCH INTERNAL DAMPT15530
     1TE,  ',12.13)                                                      MPT15540
1380  FORMAT (J HOUR ',13,' IS NOT PERMITTED. HOURS MUST BE DEFINED BETWMPT15550
     1EEN 1 AND 24')                                     '               MPT15560
1390  FORMAT (' DATE BEING PROCESSED IS= ', I8/1X. 'DATE OF HOURLY POINT EMPT15570
     1MISSION RECORD IS =' , I8/1X, ' ***PLEASE CHECK EMISSION RECORDS***') MPT15580
C                                                                       MPT15590
C        OUTPUT FORMATS                                                 MPT15600
C                                                                       MPT15610
 1395 FORMAT ( '0' ,T35, A4.A1, IX, 'MPTER - VERSION 85165 '/1X,20A4/1X,20A4/ MPT15620
     *1X,20A4)                                                          MPT15630
 1400 FORMAT (' 1' , T40.A4.A1, IX, 'MPTER - VERSION 85165 '/1X,20A4/1X,20A4/ MPT15640
     *1X,20A4)                                                          MPT15650
1410  FORMAT (1HO.T30, 'GENERAL INPUT INFORMATION V/2X, "THIS RUN OF MPTERMPT15660
     1-VERSION 85165 IS FOR ' 'THE POLLUTANT ',A4 ' FOR ' 13. IX. 13, '-HOUMPT15670
     2R PERIODS. '/2X,' CONCENTRATION ESTIMATES BEGIN ON HOUR-', 12,', JULIMPT15680
     SAN DAY-' 13,', YEAR-19' 12  '.'/1X,' A FACTOR OF '.F14.7,' HAS BEENMPT15690
     4 SPECIFIED TO  ', 'CONVERT USER LENGTH UNITS TO KILOMETERS. '/ IX, 13, 'MPT15700
     5 SIGNIFICANT SOURCES ARE TO BE CONSIDERED.')                      MPT15710
1420  FORMAT (1H , 'THIS RUN WILL NOT CONSIDER ANY POLLUTANT LOSS.')     MPT15720
1430  FORMAT _(1H ,2X 'A HALF-LIFE OF '.F10.2,' (SECONDS) HAS BEEN ASSUMEMPT15730
     ID BY THE USER.')                                                  MPT15740
1440  FORMAT (IX ' HIGH-FIVE SUMMARY CONCENTRATION TABLES ' , 'WILL BE OUTMPT15750
     1PUT FOR  ',13,' AVERAGING PERIODS.'/'  AVG TIMES ' , 'OF 1,3,8, AND 2MPT15760
     24 HOURS ARE AUTOMATICALLY DISPLAYED.')                            MPT15770
1450  FORMAT (1H ,2X,'A FACTOR OF '.F14.7,' HAS BEEN SPECIFIED TO CONVERMPT 15780
     IT USER HEIGHT UNITS TO METERS.')                                  MPT15790
1460  FORMAT (1HO.T3, 'OPTION  ' ,T16,' OPTION LIST' ,T46, 'OPTION SPECIFICATMPT15800
     1ION : 0= IGNORE OPTION '/1X.T68,' 1= USE OPTION '/T25 'TECHNICAL OPTMPT15810
     2IONS'/1X,T7,I2,T16,  'TERRAIN ADJUSTMENTS' ,T70, I I/ IX, T7, 12, T16  ' DO NMPT15820
     SOT INCLUDE STACK DOWNWASH CALCULATIONS' , T70.I1/1X, T7, 12, T16,' DO NOMPT15830
     4T INCLUDE GRADUAL PLUME RISE CALCULATIONS' T70, I1/1X, T7, 12. T16 'CAMPT15840
     5LCULATE  INITIAL PLUME SIZE' T70, I1/1X.T25, ' INPUT OPTIONS ' /1X. T7, I2MPT15850
     6,T16,'READ MET DATA FROM CARDS' ,T70, I1/1X.T7, 12, T16, 'READ HOURLY EMPT15860
     7MISSIONS ',T70,I1/1X,T7, 12, T16  'SPECIFY SIGNIFICANT SOURCES' , T70, I1MPT15870
     8/lX,T7,I2,T16, 'READ RADIAL  DISTANCES TO GENERATE RECEPTORS' ,T70, I 1MPT15880
     9/T25. 'PRINTED OUTPUT OPTIONS '/1X.T7. 12, T16, 'DELETE EMISSIONS  WITH MPT15890
     AHEIGHT TABLE ' ,T70, I1/1X.T7. 12. T16, 'DELETE MET DATA SUMMARY FOR AVGMPT15900
     B PERIOD ',T70,I1/1X,T7, 12, T16, DELETE HOURLY CONTRIBUTIONS' ,T70. I1/MPT15910
     C1X.T7, 12, T16, 'DELETE MET DATA ON HOURLY CONTRIBUTIONS' ,T70, I1/1X.TMPT15920
     D7. 12, T16, 'DELETE  FINAL PLUME RISE CALC ON HRLY CONTRIBUTIONS' , T70.MPT15930
     Ell)                                                               MPT 15940
1470  FORMAT  (1X.T7, 12, TI6  ' DELETE HOURLY SUMMARY' ,T70, I1/1X.T7, 12, T16, 'MPTlSy&O
     1DELBTE  MET DATA ON HRLY SUMMARY' . T70.I1/1X, T7, 12, T16,' DELETE FINALMPT15960
     2 PLUME  RISE CALC ON HRLY SUMMARY* ,T70, I1/1X.T7, 12, T16, 'DELETE AVG-MPT15970
     3PERIOD  CONTRIBUTIONS' T70.I1/1X, T7, 12, T16, 'DELETE AVERAGING PERIODMPT15980
     4 SUMMARY',T70. I1/1X.T7, 12, T16, 'DELETE AVG  CONCENTRATIONS AND HI-5 MPT15990
     STAB LES',T70, I 1/T25,' OTHER CONTROL AND OUTPUT OPTIONS '/ IX ,T7, 12, T16MPT16000
     6, 'RUN IS PART OF A SEGMENTED RUN' T70, I1/1X.T7, 12, T16, 'WRITE PARTIMPT16010
     7AL CONG TO DISK OR TAPE' ,T70, I1/1X, T7, 12, T16, 'WRITE HOURLY CONG  TOMPT16020
     8 DISK OR TAPE' ,T70, I1/1X.T7, I2.T16. 'WRITE  AVG-PERIOD CONC  TO DISK MPT16030
     90R TAPE',T70,I1/1X,T7,I2 T16. ' PUNCH AVG-PERIOD CONC ONTO CARDS' .T7MPT16040
     AO. I 1/T25,' DEFAULT  OPTION '/1X,T7, 12, T16,                         MPT16050
     B'USE DEFAULT OPTION' , T70, II)                                      MPT16060
1480  FORMAT  flHO ,2X, ' ANEMOMETER HEIGHT= ' F10.2/3X, 'WIND PROFILE WITH 'MPT16070
     1. 'HEIGHT EXPONENTS CORRESPONDING TO STABILITY  ARE AS FOLLOWS: '/8X,MPT16080
     2JFOR STABILITY A:  ' .F4.2/12X ' STABILITY B:  ' F4.2/12X, 'STABILITY CMPT16090
     3: ', F4. 2, /12X, 'STABILITY D: ', F4. 2, /12X, 'STABILITY E: ' , F4. 2/12X, 'MPT16100


                                      179

-------
     4STABILITY F:  ',F4.2)                                              MPT16110
1490  FORMAT (1HO,'ANEMOMETER HEIGHT IS:',F10.2/1X.'EXPONENTS FOR POWER-MPT16120
     1 LAW WIND INCREASE WITH HEIGHT ARE:',F4.2,5(',',F4.2)/' TERRAIN ADMPT16130
     2JUSTMENTS ARE:  ';F5.3,5(' '  F5.3)//)                              MPT16140
1500  FORMAT ('1',T40,'POINT SOURCE INFORMATION'//1X.T5,'SOURCE',T23,'EAMPT16150
     1ST',T31,'NORTH',T39,'S02(G/SEC)  PART(G/SEC)  STACK  STACK   STACKMPT16160
     2   STACK',3X,'POTEN. IMPACT',2X,'EFF',3X,'GRD-LVL BUOY FLUX'/1X.T2MPT16170
     33,'COORD'T31,'COORD','   EMISSIONS   EMISSIONS    HT(M) TEMP(K) DMPT16180
     4IAM(M)','VEL(M/SEC)(MICRO G/M**3) HT(M)', 3X.'ELEV ,6X. 'F'/1X,T24,'MPT16190
     5(USER UNITS )',T116/USER HT M**4/S**3'/1X.T117.'UNITS'/)          MPT16200
1510  FORMAT (IX.13.1X.3A4,1X.2F9.2,2F12.2,4F8.2,6PF13.2,OPF9.2.2F9.2)  MPT16210
1520  FORMAT ('0J,T3.'SIGNIFICANT ',A4,' POINT SOURCES'//1X. T8/RANK'.T2MPT16220
     12,'CHI-MAX',T33/SOURCE NO.'/1X,T17.'(MICROGRAMS/M**3)'/IX)       MPT16230
1530  FORMAT (IX,T9,I3.T18.6PF12.2,T35,13)                              MPT16240
1540  FORMAT (IX,'HEIGHT ABOVE 100M FOR POINT SOURCE'  14,3X,' HEIGHT=',FMPT16250
      A. \S1U J1X .A. y J.iV |  LAAJ J.VI1.J.4. tUJVj- T i_) J. \SWl-l L WAfc I \S JLH A. U \S U i LW l_t j J. T ) W f\ •  J.1U J.VJI.1 J. ~  • J. I'll J. ±Ol,T2,'TOTALJ,2X,Fl6.2)                                  MPT16310
1580  FORMAT
1590  FORMAT
              1H0.21X,'ADDITIONAL INFORMATION ON SOURCES.')             MPT16320
      	  1HO,'  USER SPECIFIED ',13,' (NPT) SIGNIFICANT POINT  ','SOMPT16330
     1URCES AS LISTED BY POINT SOURCE NUMBER:'/2X,2515)                 MPT16340
1600  FORMAT ('0',2X,'EMISSION INFORMATION FOR ',14,' (NPT) POINT SOUR'.MPT16350
     1'CES HAS BEEN INPUT'/2X,12,'  SIGNIFICANT POINT SOURCES(NSIGP) '.'AMPT16360
     2RE TO BE','  USED FOR THIS RUN'/2X,"THE ORDER OF SIGNIFICANCE(IMPS)MPT16370
     3 FOR 25 OR LESS POINT SOURCES USED IN THIS RUN AS LISTED BY POINT MPT16380
     4SOURCE NUMBER:'/2X,2515)                                          MPT16390
1610  FORMAT (2X,'SURFACE MET DATA FROM STATION(ISFCD) ',16 '  YEAR(ISFCMPT16400
     1YR) 19' I2/2X.'MIXING HEIGHT DATA FROM STATION(IMXD) ',16,',  YEAR(MPT16410
     2IMXYR) 19',12)                                                     MPT16420
1620  FORMAT (1HO.T21,'RECEPTOR INFORMATION')                           MPT16430
1630  FORMAT (1HO.' MPTER INTERNALLY GENERATES 36 RECEPTORS '.'ON A CIRCMPT16440
     1LE CORRESPONDING TO EACH NON-ZERO ','RADIAL DISTANCE FROM A CENTERMPT16450
     2 POINT '/1X.T10,'COORDINATES ARE (USER UNITS): (',F8.3,','F8.3.')'MPT16460
     3/1X.T10,'RADIAL DISTANCE(S) USER SPECIFIED (USER UNITS): ',5(F11.3MPT16470
     4,'  '))                                                           MPT16480
1640  FORMAT (F4.1)                                                     MPT16490
1650  FORMAT ('0'  < RECEPTOR    IDENTIFICATION  EAST     NORTH      RECEPMPT16500
     1TOR HT     RECEPTOR GROUND LEVEL'/IX.T30,'COORD',T39,'COORD   ABV  LMPT16510
     20CAL GRD LVL        ELEVATION'/1X.T31,'(USER UNITS)         (METERMPT16520
     3S)          (USER HT UNITS)'/IX)                                  MPT16530
1660  FORMAT (1X.T3.I3,2Al,8X,2A4,F13.3,F10.3.F10.1.F20.1)              MPT16540
1670  FORMAT (IHO.TS,'* ONE ASTERISK INDICATES THAT THE ASSOCIATED  ','REMPT16550
     ICEPTOR(S) HAVE A GROUND LEVEL ELEVATION LOWER '.'THAN THE LOWEST  SMPT16560
     20URCE BASE ELEVATION.'/' CAUTION SHOULD ','BE USED IN INTERPRETINGMPT16570
     3 CONCENTRATIONS FOR THESE RECEPTORS.'/' **  TWO ASTERISKS ' 'INDICMPT16580
     4ATE THAT THE ASSOCIATED RECEPTOR(S) HAVE GROUND LEVEL ','ELEVATIONMPT16590
     5S ABOVE THE LOWEST STACK TOP.'/'    CONSEQUENTLY',' NO CALCULATIONMPT16600
     6S WILL BE PERFORMED WITH THIS RECEPTOR.A ','SERIES OF ASTERISKS WIMPT16610
     7LL INSTEAD APPEAR IN THE OUTPUT.')                                MPT16620
1680  FORMAT (//IX,'  THE NUMBER OF   DAYS  PREVIOUSLY COMPLETED EQUAL  '.MPT16630
     113 ' AND THE LAST   DAY  TO BE COMPLETED IN THIS RUN IS  ',13)     MPT16640
1690  FORMAT ('IINPUT MET DATA   ' , 12.'/', I4/1X.T2.'HOUR   THETA     SPEiiDMPi'16650
     1   MIXING   TEMP     STABILITY'/IX,T9,'(DEG)    (M/S)  HEIGHT(M)  (MPT16660
     2DEG-K)  CLASSJ/1X)                                                MPT16670
1700  FORMAT (1X.T3,I2.4F9.2.6X,II)                                     MPT16680
1710  FORMAT ('0'.'RESULTANT MET CONDITIONS'/IX)                        MPT16690
1720  FORMAT (2X,'WIND DIRECTION^,F7.2,T36,'RESULTANT WIND SPEED^'.F7.2MPT16700
     1/2X,'AVERAGE WIND SPEED=',F7.2,T36,'AVERAGE TEMP=',F7.2/2X,'WIND  PMPT16710
     2ERSISTENCE='.F6.3,T36,'MODAL STABILITY=',12)                      MPT16720
1730  FORMAT (1HO,' THIS SEGMENT OF A SEGMENTED RUN HAS COMPLETED',15,' MPT16730
     1(IDAY1 DAYS.')                                                    MPT16740
1740  FORMAT ('0',T9,'      RECEPTORS'//IX,'RECEPTOR    IDENTIFICATION  MPT16750
     1EAST     NORTH     RECEPTOR HT     RECEPTOR GROUND LEVEL' T99,'AVGMPT16760
     2 CONG FOR PERIOD'/1X.T30,'COORD'T39,'COORD  ABV LOCAL GRD  LVL    MPT16770
     3   ELEVATION' T94.'DAY',F4.0'HRJ.F3.0,' TO DAY',F4.0,'HR'.F3.0/1XMPT16780
     4,T31,'(USER UNITS)         (METERS)          (USER HT UNITS)J,T100,'MPT16790
     5(MICROGRAMS/M**3)'/1X)                                            MPT16800


                                     180

-------
1750 jFORMAT (1X,T3,I3,10X,2A4,5X,F8.2,2X,F8.2,F10.1,F20.1,T110,A1,6PF7.MPT16810

1760  FORMAT (1H1.T29,'FIVE HIGHEST '.12,'-HOUR ',A4,'  CONCENTRATIONSf(EMPT168?0
     S™GT™ 4&IA?n?f ti8???! VlX.feS1, ' (MICROGRAMS/M**3) V/2xf'RECEPTMPTliilo
     ,-'..•.»
     *Jf*t\* iUJVSU* J.'
1770  FORMAT (IH
                                          ')'. 2
      END

      BLOCK DATA
                                           1X.A1 6PF9.2,A1,1X,'MMPT16900
                                           ,12,')'))               MPT16910
                                                                   MPT16920
                                                                   MPT16930
                     BLOCK DATA
                                       (VERSION.79365).PART_OF MPTER.
                                                                        MPT16950
                                                                        MPT16960
      COMMON /EXPOS/ PXUCOF(6,9),PXUEXP(6,9),HC1(10),BXUCOF(6,9),BXUEXP(MPf16970

C***
C***
C***
C***
C***
C***
C***
C***
C***COEFFICIENTS GENERATED WITH RURAL SIGMAS USING PGYZ
CORRELATIVE CONG. NORMALIZED FOR WIND SPEED FROM PT SOURCE,
C***     PXUCOF(KST,IH)*H**PXUEXP(KST,IH)
C***   IH=1 FOR H LESS THAN 20 METERS.
       IH=2 FOR H FROM 20 TO 30 METERS.
       IH=3 FOR H FROM 30 TO 50 METERS.
       IH=4 FOR H FROM 50 TO 70 METERS.
       IH=5 FOR H FROM 70 TO 100 METERS.
       IH=6 FOR H FROM 100 TO 200 METERS.
       IH=7 FOR H FROM 200 TO 300 METERS.
       IH=8 FOR H FROM 300 TO 500 METERS.
       IH=9 FOR H GREATER THAN 500 METERS.
      DATA PXUCOF /.10401E+00,.12133E+00,.14273E+00
      "  18668E+00..77533E-01  			
         34326E+00..67228E-01
         76271E+00..40484E-01
         22936E+01..28539E-01
         56943E+01..14792E-01
         40940E+03,
         23011E+05,
         46522E+06,
10
20
30
40
51
61
72
83
93;.OOOOOE+00/
12403E-01
12340E-01
12245E-Oi;.60615E-Oi;
11728E+00..14120E+00
10013E+00..13963E+00
75308E-01,
66936E-01,
65799E-01,
64321E-01,
62874E-01,
                                          13784E+00;
                                          13615E+00,
                                          13315E+00
                                          12927E+00,
                                          12546E+00,
                                                                        MPT16980
                                                                        MPT16990
                                                             CHI*U/Q, = MPT17000
                                                                        MPT17010
                                                                        MPT17020
                                                                        MPT17030
                                                                        MPT17040
                                                                        MPT17050
                                                                        MPT17060
                                                                        MPT17070
                                                                        MPT17080
                                                                        MPT17090
                                                                        MPT17100
                                                                18855E+OMPT17110
                                                                20458E+OMPT17120
                                                     19162E+00,.38998E+OMPT17130
                                                     54357E-I-00, .72550E+OMPT17140
                                                     52790E+00,.12908E+OMPT17150
                                                     74832E+00,.28818E+OMPT17160
                                                     10826E+01,.77020E+OMPT17170
                                                     15351E+00,
                                                     18239E+00,
                                                     15580E+01,.68810E+OMPT17180
                                          11952E+00; .22517E+01, .42842E+OMPT17190
                                                                        MPT17200
      DATA PXUEXP /-.19460E+01,-.19774E+01.-.20086E+01,-.20742E+01.-.218MPT17210
     122E+01,-.22176E+011-.18479E+01,-.19661E+01.-.20050E+01.-.21317E+01MPT17220
     2.-.22094E+01.-. 24209E+01.-.18060E+01.-.19196E+01.-.20017E+01,-.214MPT17230
     362E+01,-.23991E+01,-.26556E+01,-.16763E+01,-.18468E+01.-.19984E+01MPT17240
     4,-.24128E+01,-.25578E+01.-.29371E+01.-.15940E+01.-.18191E+01,-.199MPT17250
     555E+01,-.24059E+01.-.26934E+01,-.315llE+01,L-.145l3E+01,-.18153E+01MPT17260
     6.-.19907E+01,-.24817E+01.-.28678E+01,-.40795E+01.-.14181E+01,-.181MPT17270
     711E+01,-.19851E+01.-.25514E+01,-.34879E+01.-.48399E+01,-.14172E+01MPT17280
     8,-.18071E+01.-.19799E+01JL-.26152E+01>-.38719E+01,-.53670E+01.-.141MPT17290
     960E+01)-.18012E+01,-.19721E+01,-.26744E+01,-.37956E+01,-.17020E+02MPT173gg
c    A/
C***COEFFICIENTS GENERATED WITH URBAN SIGMAS USING BRSYSZ & BRSZ
C***  FROM RAM MODEL.
C***RELATIVE CONCENTRATIONS NORMALIZED FOR WIND SPEED FROM POINT
C***  SOURCE, CHI*U/Q, =BXUCOF(KST,IH)*H**BXUEXP(KST,IH)
C***   IH=1 FOR H LESS THAN 20 METERS.
C***   IH=2 FOR H FROM 20 TO 30 METERS.
C***   IH=3 FOR H FROM 30 TO 50 METERS.
C***   IH=4 FOR H FROM 50 TO 70 METERS.
C***   IH=5 FOR H FROM 70 TO 100 METERS.
C***   IH=6 FOR H FROM 100 TO 200 METERS.
C***   IH=7 FOR H FROM 200 TO 300 METERS.
       IH=8 FOR H FROM 300 TO 500 METERS.
       IH=9 FOR H GREATER THAN 500 METERS.
      DATA BXUCOF /
     10..18861E+00,
     20..21253E+00,
                    16808E+00,
                    , 15945E+00
                    14777E+00,
                                16808E+00,
                               .15945E+00,
                               , 14777E+00,
                                     .20927E+00,
                                     .20527E+00,
                                     •19871E+00,
                                 .20378E+00,
                                 .20229E+00,
                                 .20011E+00,
                                         MPT17310
                                         MPT17320
                                         MPT17330
                                         MPT17340
                                         MPT17350
                                         MPT17360
                                         MPT17370
                                         MPT17380
                                         MPT17390
                                         MPT17400
                                         MPT17410
                                         MPT17420
                                         MPT17430
                                         MPT17440
                                         MPT17450
                                         MPT17460
                                 18861E+OMPT17470
                                 21253E+OMPT17480
                                 24888E+OMPT17490
     30', .24888E+00',. 13262E+65',". 13262E+00',. 18908E+00',". 19685E+00',".36041E+OMPT17500
                                      181

-------
     40
     50
     60
     70
     80
   .30041E+00,.11745E+00,.11745E+00,.17767E+00,.19301E+00,.34521E+OMPT17510
   .34521E+00,.91943E-01,.91943E-01,.15327E+00,.18499E+00,.34368E+OMPT17520
   .34368E+00,.65533E-01,.65533E-01,.11984E+00,.17445E+00,.23640E+OMPT17530
   .23640E+00,.47345E-01,.47345E-01,.89821E-01,.16720E+00,.15537E+OMPT17540
   .15537E+00,.29993E-01,.29993E-01,.56100E-01,.16747E+00,.11009E+OMPT17550
90,~.11009E+00/                                                     MPT17560
 DATA BXUEXP /-.19722E+01,-.19722E+01,-.19896E+01,-.19965E+01.-.206MPT17570
149E+01,-.20649E+01,-.19546E+01.-.19546E+01,-.19831E+01,-.19940E+01MPT17580
2.-.21047E+01.-.21047E+01.-.19322E+01,-.19322E+01,-.19736E+01.-.199MPT17590
308E+01.-.21512E+01.-.21512E+01.-.19045E+01,-.19045E+01,-.19669E+01MPT17600
4.-.19867E+01.-.21993E+01.-.21993E+01.-.18759E+01.-.18759E4-01.-.194MPT17610
562E+01,-.19820E+01.-.22320E+01.-.22320E+01.-.18228E+01.-.18228E+01MPT17620
6,-.19142E+01,-.19728E+01.-.22310E+01.-.22310E+011-.17589E+01.-.175MPT17630
789E+01.-.18677E+01,-.19617E+01,-.21604E+01,-.21604E+01. -.17019E+01MPT17640
8,-.17019E+01,-.18172E+01.-.19543E+01,-.20868E+01.-.20868E+01.-.162MPT17650
984E+01,-.16284E+01,-.17414E+01,-.19545E+01,-.20314E+01,-.20314E+01MPT17660
A/
      DATA HC1 /10.,20.,30.,50.,70.,100.,200.,300.,500.,1000./
u
      END
C
      FUNCTION ANGARC (DELM.DELN)
C                    FlfNCTION ANGARC   (VERSION 79365), PART OF MPTER.
C        DETERMINES APPROPRIATE ANGLE OF TAN(ANG) = DELM/DELN
C        WHICH IS REQUIRED FOR CALCULATION OF RESULTANT WIND DIRECTION.
C        DELM IS THE AVERAGE WIND COMPONENT IN THE EAST DIRECTION.
C        DELN IS THE AVERAGE WIND COMPONENT IN THE NORTH DIRECTION.
C        NO COMMON REQUIREMENT, NO ARRAYS, USES LIBRARY FUNCTION ATAN
      IF (DELN) 10,40,80
10    IF (DELM1 20,30,20
20    ANGARC=57.29578*ATAN(DELM/DELN)+180.
      RETURN
30    ANGARC=180.
      RETURN
40    IF (DELM) 50,60,70
50    ANGARC=270.
      RETURN
60    ANGARC=0.
C     ANGARC=0. INDICATES INDETERMINATE ANGLE
      RETURN
70    ANGARC=090.
      RETURN
80    IF (DELM) 90,100,110
90    ANGARC=57.29578*ATAN(DELM/DELN)+360.
      RETURN
100   ANGARC=360.
      RETURN
110   ANGARC=57.29578*ATAN(DELM/DELN)
      RETURN
C
      END
C
      SUBROUTINE PTR
C                    SUBROUTINE PTR    (VERSION 81350), PART OF MPTER.
C      THE PURPOSE OF TUTS ROUTINE IS TO CALCULATE CONCENTRATIONS FROM
C      POINT SOURCES.
C
MPT17670
MPT17680
MPT17690
MPT17700

MPT17720
MPT17730
MPT17740
MPT17750
MPT17760
MPT17770
MPT17780
MPT17790
MPT17800
MPT17810
MPT17820
MPT17830
MPT17840
MPT17850
MPT17860
MPT17870
MPT17880
MPT17890
MPT17900
MPT17910
MPT17920
MPT17930
MPT17940
MPT17950
MPT17960
MPT17970
MPT17980
MPT17990
MPT18000
MPT18010

MPT18030
MP'i'18040
MPT1B050
MPT18060
MPT18070
MPT18080
MPT18090
MPT18100
C->->->->SECTION PTR.A - COMMON AND DIMENSION.
C
      COMMON /MPOR/  IOPT(25)                                            	
      COMMON /MPO/ NRECEP,NAVG.NB,LH,NPT,IDATE(2),RREC(180)iSREC(180),ZRMPT18110
     1(180),ELR(180),PHCHI(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT18120
     2180),PSIGS(180,26),IPOL                                           MPT18130
      COMMON /MPR/ UPL.Z.H.HL.X.Y.KS^DELH.SY.SZ.RC.MUOR                MPT18140
      COMMON /MP/ SOURCE{9,250),CONTWO,PSAV(250),IPSIGS(250),U,TEMP,SINTMPT18150
     1,COST,PL(6),ELP(250),ELHN.HANE.TLOS.CELM.CTER                     MPT18160
      DIMENSION UPH(250), HPR(250), FP(256), DH(250), PARTC(250)        MPT18170
                                                                        MPT18180
C->->->->SECTION PTR.B - INITIALIZE AND START RECEPTOR LOOP.
C
                                                                   MPT18190
                                                                   MPT18200
                                     182

-------
c
c
c

c
10
c
c
20
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
30
c

c
c
    ZERO EFFECTIVE STACK HEIGHT FOR EACH SOURCE

      NPT - THE NUMBER OF POINT SOURCES
 DO 10 J=1,NPT
    HSAV WILL BE USED TO STORE THE SOURCE PLUME HEIGHTS.
 HSAV(J)=0.0
    LOOP ON RECEPTORS
      NRECEP - THE NUMBER OF RECEPTORS
 DO 180 K=l.NRECEP
    IF IOPT(1)=1,  TERRAIN ADJUSTMENTS ARE MADE.
 IF (lOPT(l).EQ.O) GO TO 20
      ELR - RECEPTOR GROUND LEVEL ELEVATION
 ER=ELR(K)
      ELHN - LOWEST SOURCE STACK-TOP ELEVATION?
 IF (ER.LE.ELHN) GO TO 20
 PCHI(K)=99999.E+26
 PHCHI(K)=99999.E+26
 GO TO 180
 CONTINUE
      ZR - RECEPOR HEIGHT ABOVE GROUND
 Z=ZR(K)

->->SECTION PTR.C - START SOURCES LOOP, CALCULATE
                    UPWIND AND CROSSWIND DISTANCES.

 DO 170 J=1,NPT
 PARTC?J)=0.0
      RQ - EAST COORDINATE OF THE SOURCE
 RQ=SOURCE(l.jl
      SQ - NORTH COORDINATE OF THE SOURCE
 SQ=SOURCE(2,J)
      ELP - SOURCE GROUND LEVEL ELEVATION
 EP=ELP(J)
    DETERMINE UPWIND DISTANCE
    XDUM.YDUM IN USER UNITS. X,Y IN KM.
      RREC - EAST COORDINATE OF THE RECEPTOR
 XDUM=RQ-RREC(K)
      SREC - NORTH COORDINATE OF THE RECEPTOR
 YDUM=SQ-SREC(K)
    SINT AND COST ARE THE SIN AND COS OF THE WIND DIRECTION
    CONTWO - MULTIPLIER CONSTANT TO CONVERT USER UNITS TO KM
 X=(YDUM*COST+XDUM*SINT)*CONTWO
     X IS THE UPWIND DISTANCE  OF THE SOURCE FROM THE RECEPTOR.
    IF X IS NEGATIVE, INDICATING THAT THE SOURCE IS DOWNWIND OF
    THE RECEPTOR,  THE CALCULATION IS TERMINATED ASSUMING NO
    CONTRIBUTION FROM THAT SOURCE.
 IF (X.LE.0.0) GO TO 170

    DETERMINE CROSSWIND DISTANCE

 Y=(YDUM*SINT-XDUM*COST)*CONTWO
 H=HSAV(J)
    SKIP PLUME RISE CALCULATION IF EFFECTIVE HT. HAS ALREADY BEEN
       CALCULATED FOR THIS SOURCE
 IF (H.EQ.0.0) GO TO 30
 DELH=DH(J)

->->SECTION PTR.D - EXTRAPOLATE WIND SPEED TO STACK TOP
                    CALCULATE PLUME RISE.

 GO TO 110
     MODIFY WIND SPEED BY POWER LAW PROFILE IN ORDER TO TAKE INTO
    ACCOUNT THE INCREASE OF WIND SPEED  WITH HEIGHT.
    ASSUME WIND MEASUREMENTS ARE REPRESENTATIVE FOR HEIGHT = HANE,
     THT  IS THE PHYSICAL STACK HEIGHT
 THT=SOURCE(5,J)
    POINT SOURCE HEIGHT NOT ALLOWED TO BE LESS THAN 1 METER.
 IF (THT.LT.l.) THT=1.
      U - WIND  SPEED AT HEIGHT  'HANE'
      PL -  POWER FOR THE WIND PROFILE
MPT18210
MPT18220
MPT18230
MPT18240
MPT18250
MPT18260
MPT18270
MPT18280
MPT18290
MPT18300
MPT18310
MPT18320
MPT18330
MPT18340
MPT18350
MPT18360
MPT18370
MPT18380
MPT18390
MPT18400
MPT18410
MPT18420
MPT18430
MPT18440
MPT18450
MPT18460
MPT18470
MPT18480
MPT18490
MPT18500
MPT18510
MPT18520
MPT18530
MPT18540
MPT18550
MPT18560
MPT18570
MPT18580
MPT18590
MPT18600
MPT18610
MPT18620
MPT18630
MPT18640
MPT18650
MPT18660
MPT18670
MPT18680
MPT18690
MPT18700
MPT18710
MPT18720
MPT18730
MPT18740
MPT18750
MPT18760
MPT18770
MPT18780
MPT18790
MPT18800
MPT18810
MPT18820
MPT18830
MPT18840
MPT18850
MPT18860
MPT18870
MPT18880
MPT18890
MPT18900
                                      183

-------
c
c
c
c
c
40
C
     UPL - WIND AT THE PHYSICAL STACK HEIGHT
UPL=U*(THT/HANE)**PL(KST)
   WIND SPEED NOT ALLOWED TO BE LESS THAN 1 METER/SEC.
IF (UPL.LT.l.) UPL=1.
   STORE THE STACK TOP WIND FOR THE JTH SOURCE FOR THIS HOUR
UPH(J)=UPL
VS=SOURCE(8,J)
BUOY=SOURCE(9.J)
TS=SOURCE(6,J)
   TEMP- THE AMBIENT AIR TEMPERATURE FOR THIS HOUR
DELT=TS-TEMP
F=BUOY*DELT/TS
    IOPT(6) HOURLY EMISSION INPUT FROM TAPE/DISK?  0=NO, 1=YES.
IF (IOPT(6J.EQ.O) GO TO 40
   MODIFY EXIT VELOCITY AND BUOYANCY BY RATIO OF HOURLY EMISSIONS
   TO AVERAGE EMISSIONS
SCALE = SOURCE(IPOL,J)/PSAV(J)
VS = VS*SCALE
F = F*SCALE
D=SOURCE(7,J)
C*****PLUME RISE AND STACK TIP DOWNWASH CALCULATIONS
C
C
C
C
C
C
C
50

C
C
C
C
C
C
C
C
C
60
C
C
C
70
C
C
C
C
   CALCULATE  H PRIME WHICH TAKES INTO ACCOUNT STACK DOWNWASH
   BRIGGS(1973) PAGE 4
HPRM=THT
   IF IOPT(2)=1, THEN NO STACK DOWNWASH COMPUTATION
IF (IOPT_(2).EQ.l) GO TO 50
DUM=VS/UPL
IF (DUM.LT.1.5) HPRM=THT+2.*D*(DUM-1.5)
   'HPRM' IS BRIGGS' H-PRIME
IF (HPRM.LT.O.) HPRM=0.

   CALCULATE PLUME RISE
    MOMENTUM RISE EQUATION

DELHM=3.*VS*D/UPL
IF(KST.GT.4)GO TO 70

   PLUME RISE FOR NEUTRAL - UNSTABLE CONDITIONS

IF(TS.LT.TEMP)GO TO 80
IF(F.GE.55.)GO TO 60

   COMBINATION OF BRIGG'S(1971) EQNS. 6&7, PAGE 1031, FOR F<55.

DELH=21.425*F**0.75/UPL
IF(DELHM.GT.DELH)GO TO 80
DISTF=0.049*F**0.625
GO TO 100

   COMBINATION OF BRIGG'S(1971) EQNS. 6&7, PAGE 1031, FOR F>=55.

DELH=38.71*F**0.6/UPL
IF(DELHM.GT.DELH)GO TO 80
DISTF=0.119*F**0.4
GO TO 100

   PLUME RISE FOR STABLE CONDITIONS

DTHDZ=0.02
IFfKST.GT.5)DTHDZ=0.035
S=9.80616*DTHDZ/TEMP

   MOMENTUM RISE EQUATION
   BRIGG'S(1969) EQUATION 4.28, PAGE 59

DHA=1.5*(VS*VS*D*D*TEMP/(4.*TS*UPL))**0.333333/S**0.166667
IF(DHA.LT.DELHM)DELHM=DHA
IF(TS.LT.TEMP)GO TO 80
MPT18910
MPT18920
MPT18930
MPT18940
MPT18950
MPT18960
MPT18970
MPT18980
MPT18990
MPT19000
MPT19010
MPT19020
MPT19030
MPT19040
MPT19050
MPT19060
MPT19070
MPT19080
MPT19090
MPT19100
MPT19110
MPT19120
MPT19130
MPT19140
MPT19150
MPT19160
MPT19170
MPT19180
MPT19190
MPT19200
MPT19210
MPT19220
MPT19230
MPT19240
MPT19250
MPT19260
MPT19270
MPT19280
MPT19290
MPT19300
MPT19310
MPT19320
MPT19330
MPT19340
MPT19350
MPT19360
MPT19370
MPT19380
MPT19390
MPT19400
MPT19410
MPT19420
MPT19430
MPT19440
MFT19450
MPT19460
MPT19470
MPT19480
MPT19490
MPT19500
MPT19510
MPT19520
MPT19530
MPT19540
MPT19550
MPT19560
MPT19570
MPT19580
MPT19590
MPT19600
                                     184

-------
c
c
c
80

100
105
C
C
110

C
C
C
C
C
C
C
C
C
c

c
c
120
C
C->
C
C
c
130
C
C
140
C
C

C
C

C
C
C
C
150
C
    STABLE, BUOYANT  RISE  (WITH WIND)

 DELH=2.6*(F/(UPL*S))**0.333333
 IF(DELHM.GT.DELH)GO TO 80
 DISTF=0.0020715*UPL/SQRT(S)
 GO TO 100
 DEIH=DEIHM
 DISTF=0.
 H=HPRM+DELH
 HSAV(J)=H
 DH(J)=DELH
 DSAV(J)=DISTF
 UPH(J)=UPL
 HPR(J)=HPRM
                                                                  MPT19610
                                                                  MPT19620
                                                                  MPT19630
                                                                  MPT19640
                                                                  MPT19650
                                                                  MPT19660
                                                                  MPT19670
                                                                  MPT19680
                                                                  MPT19690
                                                                  MPT19700
                                                                  MPT19710
                                                                  MPT19720
                                                                  MPT19730
                                                                  MPT19740
   4 .                                                             MPT19750
FP(J)=F                                                           MPT19760
   IF SOURCE-RECEPTOR DISTANCE IS GREATER OR EQUAL TO DISTANCE TO MPT19770
   FINAL RISE,  SKIP PLUME RISE CALCULATION AND USE FINAL RISE.    MPT19780
IF (X.GE.DSAV(J)) GO TO 120           _   _                       MPT19790
 IF  (IOPT(4).EQ.O.AND.IOPT(3).EQ.l) GO  TO  120
                                                                  MPT19800
    CALCULATE  GRADUAL  PLUME  RISE  IF  (1)  THE  USER  SPECIFIES  SO,      MPT19810
    OR  (2)  USER EMPLOYS CALCULATION  OF INITIAL  DISPERSION	      MPT19820
    IN  THIS CASE,  USE  OF  FINAL  EFFECTIVE HEIGHT IN THE  CALCULATION MPT19830
   OF DISPERSION COEFFICIENTS COULD  LEAD TO  MISLEADING  VALUES  SINCEMPT19840
     SIGMA-Y.-Z =  DELTA-H/3.5                                    MPT19850
 DELH=160.*FP(J)**0.333333*X**0.666667/UPH(J)                       MPT19860
    PLUME  RISE FOR DISTANCE  X(160 IS 1.6*1000**.67 BECAUSE  X IN KM)MPT19870
    fDELH.GT.DH(J))  DELH=DH(J)                                      MPT19880
    *IOPT(3).EQ.l) GO  TO  120                                       MPT19890
    tF  SPECIFYING  CALCULATION OF  INITIAL DISPERSION BUT ARE NOT    MPT19900
    SPECIFYING CALCULATION OF GRADUAL PLUME  RISE,  THEN  DO NOT       MPT19910
    ADD THE NEW GRADUAL DELTA-H TO THE EFFECTIVE  HEIGHT.  OTHERWISE,MPT19920
    CHECK  THE  GRADUAL  RISE PLUME  HEIGHT  WITH FINAL EFFECTIVE HEIGHTMPT19930
    AND SET THE PLUME  HEIGHT TO THE  SMALLER  OF  THE TWO  VALUES.      MPT19940
 H=HPR(J)+DELH                                                     MPT19950
    ADD PLUME  RISE TO  STACK  HEIGHT FOR TOTAL EFFECTIVE  STACK HT.    MPT19960
    END PLUME  RISE CALCULATION                                      MPT19970
 UPL=UPH(J)                                                        MPT19980
                                                                   MPT19990
->->SECTION PTR.E  -  CALCULATE THE CONTRIBUTION  OF                  MPT20000
                    ONE SOURCE  TO ONE RECEPTOR.                    MPT20010
                                                                   MPT20020
 IF(KST.GT.4)GOT0130                                               MPT20030
 IF (H.LT.HL)  GO TO  130                                             MPT20040
 PROD=0.                                                            MPT20050
 GO TO  150                                                         MPT20060
    IF  IOPT(1) =  1,  TERRAIN  ADJUSTMENTS  ARE  MADE                    MPT20070
 IF (lOPT(l).EQ.O) GO  TO  140                                       MPT20080
 DUM=ER-EP                                                         MPT20090
 H=H+CELM*(CTER*DUM-DUM)                                            MPT20100
    RCP RETURNS THE DISPERSION PARAMETERS,  SY  AND SZ (METERS)     MPT20110
    AND THE RELATIVE CONCENTRATION VALUES CHI/Q (SEC/M**3)          MPT20120
 CALL RCP                                                           MPT20130
    CALCULATE  TRAVEL TIME IN KM-SEC/M TO INCLUDE  DECAY  RATE OF     MPT20140
    POLLUTANT.                                                      MPT2C150
 TT=X/UPL                                                           MPT20160
    TLOS IN METERS/KM-SEC, SO TT*TLOS IS DIMENSIONLESS              MPT20170
    INCLUDE THE POLLUTANT LOSS                                      MPT20180
 PROD=RC*SOURCE(IPOL,J)/EXP(TT*TLOS)                               MPT20190*
    IF  HAFL IS ZERO, TLOS WILL  START AS  ZERO AND                    MPT20200
    RESULT IN NO COMPUTATION OF POLLUTANT LOSS.                    MPT20210
    INCREMENT CONCENTRATION  AT  K-TH  RECEPTOR(G/M**3)               MPT20220
     PCHI - SUM  FOR THE  AVERAGING TIME  AT RECEPTOR K              MPT20230
 PCHI(K)=PCHI(K)+PROD                                               MPT20240
     PHCHI - CONCENTRATION  FOR THIS HOUR AT RECEPTOR K            MPT20250
 PHCHI(K)=PHCHI(K)+PROD                                             MPT20260
 KSIG=IPSIGS(J)                                                     MPT20270
 IF (KSIG.EQ.O) GO TO  160                                          MPT20280
    STORE CONCENTRATIONS  FROM SIGNIFICANT SOURCES.(G/M**3)          MPT20290
 PSIGS(K,KSIG)=PSIGS(K,KSIG)+PROD                                  MPT20300
                                      185

-------
      PHSIGS(K.KSIG)=PHSIGS(K,KSIG)+PROD
      PSIGS(K,26)=PSIGS(K,26)+PROD
      PHSIGS(KI26)=PHSIGS(K,26)+PROD
160   PARTC(J)=PROD
C
C->->->->SECTION PTR.F - END SOURCE AND RECEPTOR LOOPS.
C
170   CONTINUE
C        END OF LOOP FOR SOURCES
C        WRITE PARTIAL CONCENTRATIONS ON DISK(G/M**3)
      IF (IOPT(21).EQ.O) GO TO 180
C        USER PLEASE NOTE: PARTIAL CONG. IN G/M**3, NOT MICROGRAM/M**3
      WRITE (10) IDATE,LH,K,(PARTC(J),J=1,NPT)
180   CONTINUE
C        END OF LOOP FOR RECEPTORS
      RETURN
                                                       IF IOPT(21) = 1.
C
C***
C
C
C
C
C
C
C
C
C
C
       SECTIONS OF SUBROUTINE PTR.
          SECTION PTR.A
          SECTION PTR.B -
          SECTION PTR.C -

          SECTION PTR.D -

          SECTION PTR.E -

          SECTION PTR.F -
COMMON AND DIMENSION.
INITIALIZE AND START RECEPTOR LOOP.
START SOURCES LOOP; CALCULATE UPWIND AND
 CROSSWIND DISTANCES.
EXTRAPOLATE WIND SPEED TO STACK TOP;
 CALCULATE PLUME RISE.
CALCULATE CONTRIBUTION FROM A SOURCE TO ONE
 RECEPTOR.
END SOURCE AND RECEPTOR LOOPS.
      END

      SUBROUTINE RCP
                     SUBROUTINE RCP     (VERSION 79365), PART OF MPTER.
C
C
C->->->->SECTION RCP.A - COMMON.
      COMMON /MPOR/ IOPT(25)
      COMMON /MPR/ UPL.Z.H.HL.X.Y.KST.DELH.SY.SZ.RC.MUOR
C
C***   MODIFICATIONS:
C
C
C
                                      MPT20310
                                      MPT20320
                                      MPT20330
                                      MPT20340
                                      MPT20350
                                      MPT20360
                                      MPT20370
                                      MPT20380
                                      MPT20390
                                      MPT20400
                                      MPT20410
                                      MPT20420
                                      MPT20430
                                      MPT20440
                                      MPT20450
                                      MPT20460
                                      MPT20470
                                      MPT20480
                                      MPT20490
                                      MPT20500
                                      MPT20510
                                      MPT20520
                                      MPT20530
                                      MPT20540
                                      MPT20550
                                      MPT20560
                                      MPT20570
                                      MPT20580
                                      MPT20590

                                      MPT20610
                                      MPT20620
                                      MPT20630
                                      MPT20640
                                      MPT20650
                                      MPT20660
                                      MPT20670
                                      MPT20680
         11/27/79 BY K.W.BALDRIDGE, C.S.C., CONVERTED CODE FROM FIELDATAMPT20690
                  LJ 1 X\ • FT * UZTJJJL/H.LX/VJW J V> • tJ • V • j V\XI'I VZJlL^Uiy VyV/JL*U 1 1LV/I

                  TO ASCII FORTRAN AND MADE CODE MORE STANDARD
                         EXPLANATIONS AND COMPUTATIONS
                         COMMON TO ALL CONDITIONS.
C->->->->SECTION RCP.B -
C
C
C  RCP DETERMINES RELATIVE CONCENTRATIONS, CHI/Q, FROM POINT SOURCES.
          IT CALLS UPON  PGYZ TO OBTAIN STANDARD DEVIATIONS.
         THE INPUT VARIABLES ARE	
          UPL  WIND SPEED (M/SEC)
               RECEPTOR HEIGHT (M)
               EFFECTIVE STACK HEIGHT (M)
               MIXING HEIGHT- TOP OF NEUTRAL OR UNSTABLE LAYER(M).
               DISTANCE RECEPTOR IS DOWNWIND OF SOURCE (KM)
               DISTANCE RECEPTOR IS CROSSWIND FROM SOURCE  (KM)
               STABILITY CLASS
          DELH PLUME HI??!(METERS)
         THE OUTPUT VARIABLES ARE	
           SY HORIZONTAL DISPERSION PARAMETER
           SZ VERTICAL DISPERSION PARAMETER
          RC   RELATIVE CONCENTRATION (SEC/M**3)
         10 IS CONTROL CODE FOR WARNING OUTPUT.
      10=6
         THE FOLLOWING EQUATION IS SOLVED —                            	
         RC = (1/(2*PI*UPL*SIGMA Y*SIGMA Z))* (EXP(-0.5*(Y/SIGMA  Y)**2))MPT20930
            (EXP(-0.5*((Z-H)/SIGMA Z)**2) + EXP(-0.5*((Z+H)/SIGMA Z)**2)MPT20940
              PLUS THE SUM OF THE FOLLOWING 4 TERMS K  TIMES  (N=1,K)  —  	
                   FOR NEUTRAL OR UNSTABLE CASES:
          Z
          H
          HL
          X
          Y
          KST
                                             MPT20700
                                             MPT20710
                                             MPT20720
                                             MPT20730
                                             MPT20740
                                             MPT20750
                                             MPT20760
                                             MPT20770
                                             MPT20780
                                             MPT20790
                                             MPT20800
                                             MPT20810
                                             MPT20820
                                             MPTP0830
                                             MPT20840
                                                  ,CHI/Q
C
C
C
C
C
C
C
C
C
                                             MPT20860
                                             MPT20870
                                             MPT20880
                                             MPT20890
                                             MPT20900
                                             MPT20910
                                             MPT20920
               TERM 1- EXP
               TERM 2- EXP
               TERM 3- EXP
               TERM 4- EXP
-0.5*
-0.5*
-0.5*
-0.5*
Z-H-2NL
Z+H-2NL
Z-H+2NL
Z+H+2NL
/SIGMA Z
/SIGMA Z
/SIGMA Z
/SIGMA Z
**2
**2
**2
**2
MPT20950
MPT20960
MPT20970
MPT20980
MPT20990
MPT21000
                                      186

-------
C NOTE THAT MIXING HEIGHT- THE TOP OF THE NEUTRAL OR UNSTABLE LAYER-    MPT21010
C HAS A VALUE ONLY FOR STABILITIES 1-4, THAT IS, MIXING HEIGHT,         MPT21020
C THE HEIGHT OF THE NEUTRAL OR UNSTABLE LAYER,  DOES NOT EXIST FOR STABLEMPT21030
C LAYERS AT THE GROUND SURFACE- STABILITY 5 OR 6.                       MPT21040
         THE ABOVE EQUATION IS SIMILAR TO EQUATION (5.8) P 36 IN        MPT21050
          WORKBOOK OF ATMOSPHERIC DISPERSION ESTIMATES WITH THE ADDITIONMPT21060
C
C
C
C
20

40

C
C
50
C

C
C
C
C
C
C
70
    OF THE EXPONENTIAL INVOLVING Y.
  IF STABLE. SKIP CONSIDERATION OF MIXING HEIGHT.
IF (KST.GE.5) GO TO 50
   IF THE SOURCE IS ABOVE THE LID, SET RC = 0.,  AND RETURN.
IF (H.GT.HL) GO TO 20
IF (Z-HL) 50,50,40
IF (Z.LT.HL) GO TO 40
WRITE (10,470)
RC=0.
RETURN
   IF X IS LESS
                                    SET RC=0. AND RETURN.
                                       NEAR THE SOURCE.
THIS AVOIDS
                                                                   THE
100

C
C
C
C
120

C
C
                THAN 1 METER,
    PROBLEMS OF INCORRECT VALUES
IF (X.LT.0.001) GO TO 40
   CALL PGYZ TO OBTAIN VALUES FOR SY AND SZ
CALL PGYZ
    SY = SIGMA Y, THE STANDARD DEVIATION OF CONCENTRATION IN THE
    Y-DIRECTION (M)
    SZ = SIGMA Z, THE STANDARD DEVIATION OF CONCENTRATION IN
    Z-DIRECTION (M)
  IF IOPT(4j=l, CONSIDER BUOYANCY INDUCED DISPERSION OF PLUME
    TO TURBULENCE DURING BUOYANT RISE.
IF (IOPT(4).EQ.O) GO TO 70
DUM=DELH/3.5
DUM=DUM*DUM
SY=SQRT(SY*SY+DUM)
SZ=SQRT(SZ*SZ+DUM)
01=1.
IF (Y.EQ.0.0) GO TO 100
YD=1000.*Y
   YD IS CROSSWIND DISTANCE IN METERS.
DUM=YD/SY
TEMP=0.5*DUM*DUM
IF (TEMP.GE.50.) GO TO 40
C1=EXP(TEMP)
IF (KST.GT.4) GO TO 120
IF (HL.LT.5000.) GO TO 200
   IF STABLE CONDITION OR UNLIMITED MIXING HEIGHT,
    USE EQUATION 3.2 IF Z = 0, OR EQ 3.1 FOR NON-ZERO Z.
    (EQUATION NUMBERS REFER TO WORKBOOK OF ATMOSPHERIC DISPERSION MPT21450
    ESTIMATES.)                                                   MPT21460
C2=2.*SZ*SZ                                                       MPT21470
IF (Z) 40,130,150                                                 MPT21480
                              Z WILL RESULT IN ZERO CONCENTRATIONSMPT21490
                                                                  MPT21500
    MPT21070
    MPT21080
    MPT21090
    MPT21100
    MPT21110
    MPT21120
    MPT21130
    MPT21140
    MPT21150
    MPT21160
    MPT21170
    MPT21180
    MPT21190
    MPT21200
    MPT21210
    MPT21220
    MPT21230
    MPT21240
    MPT21250
DUE MPT21260
    MPT21270
    MPT21280
    MPT21290
    MPT21300
    MPT21310
    MPT21320
    MPT21330
    MPT21340
    MPT21350
    MPT21360
    MPT21370
    MPT21380
    MPT21390
    MPT21400
    MPT21410
    MPT21420
    MPT21430
    MPT21440
        r  (Z) 40,130,150
        NOTE: AN ERRONEOUS NEGATIVE
C->->->->SECTION RCP.C - STABLE OR UNLIMITED MIXING, Z  IS ZERO.
C
130   C3=H*H/C2
      IF  (C3.GE.50.) GO TO 40
      A2=I./EXP(C3)
C         WADE EQUATION 3.2.
      RC=A2/(3.14159*UPL*SY*SZ*C1)
      RETURN
C->->->->SECTION
C
                 RCP.D - STABLE OR UNLIMITED MIXING, Z  IS  NON-ZERO.
 150   A2=0.
      A3=0.
      CA=Z-H
      CB=Z+H
      C3=.CA*CA/C2
      C4=CB*CB/C2
      IF  (C3.GE.50.) GO  TO  170
      A2=I./EXP(C3)
 170   IF  (C4.GE.50.) GO  TO  190
                                                                  MPT21510
                                                                  MPT21520
                                                                  MPT21530
                                                                  MPT21540
                                                                  MiJT2i5fc>0
                                                                  MPT21560
                                                                  MPT21570
                                                                  MPT21580
                                                                  MPT21590
                                                                  MPT21600
                                                                  MPT21610
                                                                  MPT21620
                                                                  MPT21630
                                                                  MPT21640
                                                                  MPT21650
                                                                  MPT21660
                                                                  MPT21670
                                                                  MPT21680
                                                                  MPT21690
                                                                  MPT21700
                                      187

-------
      A3=1./EXP(C4)
C        WADE EQUATION 3.1.
190   RC=(A2+A3)/(6.28318*UPL*SY*SZ*C1)
      RETURN
C
C->->->->SECTION RCP.E - UNSTABLE, ASSURED OF UNIFORM MIXING.
C
C
C
C
C
200
C
    IF SIGMA-Z  IS GREATER THAN  1.6 TIMES THE MIXING HEIGHT,
     THE  DISTRIBUTION BELOW  THE MIXING HEIGHT  IS  UNIFORM WITH
     HEIGHT REGARDLESS OF SOURCE HEIGHT OR RECEPTOR HEIGHT BECAUSE MPT21800
     OF REPEATED EDDY REFLECTIONS FROM THE GROUND AND  THE MIXING  HTMPT21810
                                                                  MPT21710
                                                                  MPT21720
                                                                  MPT21730
                                                                  MPT21740
                                                                  MPT21750
                                                                  MPT21760
                                                                  MPT21770
                                                                  MPT21780
                                                                  MPT21790
                         220
C
C
C
220
C
C
C
C
C
C
C
C
C
230
250

270

280
300

320

340

360
IF (SZ/HL.LE.1.6) GO TO
   WADE EQUATION 3.5.
HC=1./(2.5066*UPL*SY*HL*C1)
RETURN
   INITIAL VALUE OF AN SET =
    AN - THE NUMBER OF TIMES
          AND ADDED IN.
AN=0.
IF (Z) 40,380,230
                              0.
                              THE
SUMMATION TERM IS EVALUATED
->->SECTION RCP.F  - UNSTABLE,  CALCULATE MULTIPLE  EDDY
                   REFLECTIONS,  Z  IS  NON-ZERO.

   STATEMENTS  220-260 CALCULATE RC.  THE RELATIVE  CONCENTRATION,
     USING  THE EQUATION  DISCUSSED ABOVE.   SEVERAL INTERMEDIATE
     VARIABLES ARE USED  TO  AVOID  REPEATING CALCULATIONS.
     CHECKS ARE MADE TO  BE  SURE THAT THE ARGUMENT OF  THE
     EXPONENTIAL FUNCTION IS NEVER  GREATER THAN 50 (OR LESS THAN
     -50).
   CALCULATE  MULTIPLE EDDY REFLECTIONS FOR RECEPTOR  HEIGHT Z.
 Al=l./(6.28318*UPL*SY*SZ*C1)
 C2=2.*SZ*SZ
 A2=0.
 A3=0.
 CA=Z-H
 CB=Z+H
 C3=CA*CA/C2
 C4=CB*CB/C2
 IF 7C3.GE.50.) GO TO 250
 A2=1./EXP(C3)
 IF (C4.GE.50.) GO TO 270
 A3=1./EXP(C4)
 SUM=0.
 THL=2.*HL
 AN=AN+1.
 A4=0.
 A5=0.
 A6=0.
 A7=0.
 C5=AN*THL
 CC=CA-C5
 CD=CB-C5
 CE=CA+C5
 CF=CB+C5
 C6=CC*CC/C2
 C7=CD*CD/C2
 C8=CE*CE/C2
 C9=CF*CF/C2
 IF (C6.GE.50.) GO TO 300
 A4=1./EXP(C6)
 IF (C7.GE.50.) GO TO 320
 A5=1./EXP(C7)
 IF (C8.GE.50.) GO TO 340
 A6=1./EXP(C8)
 IF (C9.GE.50.) GO TO 360
 A7=1./EXP(C9)
 T=A4+A5+A6+A7
 SUM=SUM+T
 IF (T.GE.0.01) GO TO 280
MPT21820
MPT21830
MPT21840
MPT21850
MPT21860
MPT21870
MPT21880
MPT21890
MPT21900
MPT21910
MPT21920
MPT21930
'MPT21940
MPT21950
MPT21960
MPT21970
MPT21980
MPT21990
MPT22000
MPT22010
MPT22020
MPT22030
MPT22040
MPT22050
MPT22060
MPT22070
MPT22080
MPT22090
MPT22100
MPT22110
MPT22120
MPT22130
MPT22140
MPT22150
MPT22160
MPT22170
MPT22180
MPT22190
MPT22200
MPT22210
MPT22220
MPT22230
MPT22240
MPT22250
MPT22260
MPT22270
MPT22280
MPT22290
MPT22300
MPT22310
MPT22320
MPT22330
MPT22340
MPT22350
MPT22360
MPT22370
MPT22380
MPT22390
MPT22400
                                      188

-------
c
c
c
c
380
400

410
      RC=A1*(A2+A3+SUM)
      RETURN

    >->->SECTION RCP.G - UNSTABLE. CALCULATE MULTIPLE EDDY
                         REFLECTIONS, Z IS ZERO.
         CALCULATE MULTIPLE EDDY REFLECTIONS
         HEIGHT.
      A1=1./(6.28318*UPL*SY*SZ*C1)
      A2=0.
      C2=2.*SZ*SZ
      C3=H*H/C2
      IF (C3.GE.50.) GO TO 400
      A2=2./EXP(C3)
      SUM=0.
      THL=2.*HL
      AN=AN+1.
      A4=0.
      A6=0.
      C5=AN*THL
      CC=H-C5
      CE=H+C5
      C6=CC*CC/C2
      C8=CE*CE/C2
      IF (C6.GE.50.) GO TO 430
      A4=2./EXP(C6)
      IF (C8.GE.50.) GO TO 450
      A6=2./EXP(C8)
      T=A4+A6
      SUM=SUM+T
      IF (T.GE.0.01) GO TO 410
      RC=A1*(A2+SUM)
      RETURN
:->->->->SECTION RCP.H - FORMAT
                                             FOR GROUND LEVEL RECEPTOR
430

450
C
C***
C
c
c
c
c
c
c
c
c
c
c
c
470
C
C
C
C
C
C
C
       SECTIONS OF SUBROUTINE RCP.
          SECTION RCP.A
          SECTION RCP.B -

          SECTION RCP.C -
          SECTION RCP.D -
          SECTION RCP.E -
          SECTION RCP.F -

          SECTION RCP.G -

          SECTION RCP.H -
                           COMMON.
                           EXPLANATIONS AND COMPUTATIONS COMMON TO ALL
                            CONDITIONS.
                           STABLE OR UNLIMITED MIXING, Z IS ZERO.
                           STABLE OR UNLIMITED MIXING, Z IS NON-ZERO.
                           UNSTABLE, ASSURED OF UNIFORM MIXING.
                           UNSTABLE, CALCULATE MULTIPLE EDDY
                            REFLECTIONS; Z IS NON-ZERO.
                           UNSTABLE, CALCULATE MULTIPLE EDDY
                            REFLECTIONS; Z IS ZERO.
                           FORMAT.
      FORMAT (1HO 'BOTH H AND Z ARE ABOVE THE MIXING HEIGHT SO
     IE COMPUTATION CAN NOT BE MADE.')

      END
                                                                   MPT22410
                                                                   MPT22420
                                                                   MPT22430
                                                                   MPT22440
                                                                   MPT22450
                                                                   MPT22460
                                                                   MPT22470
                                                                   MPT22480
                                                                   MPT22490
                                                                   MPT22500
                                                                   MPT22510
                                                                   MPT22520
                                                                   MPT22530
                                                                   MPT22540
                                                                   MPT22550
                                                                   MPT22560
                                                                   MPT22570
                                                                   MPT22580
                                                                   MPT22590
                                                                   MPT22600
                                                                   MPT22610
                                                                   MPT22620
                                                                   MPT22630
                                                                   MPT22640
                                                                   MPT22650
                                                                   MPT22660
                                                                   MPT22670
                                                                   MPT22680
                                                                   MPT22690
                                                                   MPT22700
                                                                   MPT22710
                                                                   MPT22720
                                                                   MPT22730
                                                                   MPT22740
                                                                   MPT22750
                                                                   MPT22760
                                                                   MPT22770
                                                                   MPT22780
                                                                   MPT22790
                                                                   MPT22800
                                                                   MPT22810
                                                                   MPT22820
                                                                   MPT22830
                                                                   MPT22840
                                                                   MPT22850
                                                                   MPT22860
                                                                   MPT22870
                                                                   MPT22880
                                                                   MPT22890
                                                          A RELIABLMPT22900
                                                                   MPT22910
                                                                   MPT22920
                                                                   MPT22930
 SUBROUTINE PGYZ
                SUBROUTINE PGYZ   (VERSION 79365),  PART OF MPTER.
    VERTICAL DISPERSION PARAMETER VALUE,  SZ DETERMINED BY
     SZ = A * X ** B WHERE A AND B. ARE FUNCTIONS OF BOTH STABILITY
     AND RANGE OF X.
    HORIZONTAL DISPERSION PARAMETER VALUE. SY DETERMINED BY
     LOGARITHMIC INTERPOLATION OF PLUME HALF-ANGLE ACCORDING TO
     DISTANCE AND CALCULATION OF 1/2.15 TIMES HALF-ARC LENGTH.
 COMMON /MPR/ UPL,Z,H.HL,X,Y,KST,DELH,SY,SZ,RC,MUOR
 DIMENSION XA(7), XB(2), XD(5), XE(8), XF(9}, AA(8),  BA(8),  AB(3),
1BB(3), AD(6), BD(6)' AE(9). 6E(9), AF(10), BF(10)
 DATA XA /.5,.4,.3,.25,.2,.15,.I/
 DATA
 DATA
           XB
           XD
                   1Q-.3..1,,.:
 DATA XE /40.,20.,10.,4.,2.,!.,.3,.I/
 DATA XF /60.,30.,15.,7.,3.,2.,1.,.7,,
                                           2/
                                                                        MPT229SO
                                                                        MPT22960
                                                                        MPT22970
                                                                        MPT22980
                                                                        MPT22990
                                                                        MPT23000
                                                                        MPT23010
                                                                        MPT23020
                                                                        MPT23030
                                                                        MPT23040
                                                                        MPT23050
                                                                        MPT23060
                                                                        MPT23070
                                                                        MPT23080
                                                                        MPT23090
                                                                        MPT23100
                                     189

-------
c
c
c
c
c
c
5

6

C
c
10
20

30

C
40



50

60

C
70
C
80
90

100

C
  DATA AA 7453.85,346.75,258.89,217.41,179.52,170.22,158.08,122.8/
  DATA BA /2.1166,1.7283,1.4094,1.2644,1.1262,1.0932,1.0542,.9447/
  DATA AB /109.30,98.483,90.673/
  DATA BB /I.0971,0.98332.0.93198/
  DATA AD /44.053.36.650,33.504,32.093.32.093,34.459/
  DATA BD /O.51179,0.56589,0.60486,0.64403,0.81066,0.S6974/
  DATA AE /47.618,35.420,26.970,24.703,22.534,21.628,21.628,23.331,
 14.26/
  DATA BE /O.29592,0.37615,0.46713,0.50527,0.57154,0.63077,0.75660,
 1.81956,0.83667
  DATA AF /34.219.27.074,22.651,17.836,16.187,14.823,13.953,13.953,
 14 457 15 209/  »•'''''•
  DATA BF /O.21716,0.27436,0.32681,0.41507,0.46490,0.54503,0.63227,
 1.68465,0.78407,0.81558/

  IF (MUOR.EQ.2)  GO TO 9

        MCELROY-POOLER URBAN DISPERSION PARAMETERS FROM ST. LOUIS
          EXPERIMENT AS PUT IN EQUATION FORM BY BRIGGS.
           X IS DISTANCE IN KM.
           KST IS PASQUILL STABILITY CLASS.
           SY AND SZ ARE IN METERS.
  GO 10(2.2,3.4,5.5).  KST
  SY=320.*X/S6RT(1.+0.4*X)
  SZ=240.*X*SQRT(1-+X)
  GO TO 6
  SY=220.*X/SQRT(1.+0.4*X)
  SZ=200.*X
  GO TO 6
  SY=160.*X/SQRT(1.+0.4*X)
  SZ=140.*X/SQHT(1.+0.3*X)
  GO TO 6
  SY=110.*X/SQRT(1.+0.4*X)
  SZ=80.*X/SQRT(1.+1.5*X)
  IF (SZ.GT.5000.) SZ=5000.
  RETURN

9 XY=X
  GO~TO (10,40,,70,80,110,140), KST
     STABILITY A
  TH=(24.167-2.5334*ALOG(XY))/57.2958
  IF (X.GT.3.11) GO TO 170
  DO 20 ID=1.7
  IF (X.GE.XA(ID)) GO TO 30
  CONTINUE
  ID=8
  SZ=AA(ID)*X**BA(ID)
  GO TO 190
     STABILITY B
  TH=718.333-1.8096*ALOG(XY))/57.2958
  IF (X.GT.35.) GO TO 170
  DO 50 ID=1,2
  IF (X.GE.XB(in)) GO TO 60
  CONTINUE
  ID=3
  SZ=AB(ID)*X**BB(ID)
  GO TO 180
     STABILITY C
  TH=£12.5-1.0857*ALOG(XY))/57.2958
  SZ=61.141*X**0.91465
  GO TO 180
     STABILITY D
  TH=(8.3333-0.72382*ALOG(XY))/57.2958
  DO 90 ID=1,5  '
  IF 7x.CE.XD(ID}) GO TO 100
  CONTINUE
  ID=6
  SZ=AD(ID)*X**BD(ID)
  GO TO 180
     STABILITY E
 MPT23110
 MPT23120
 MPT23130
 MPT23140
 MPT23150
 MPT23160
2MPT23170
 MPT23180
OMPT23190
 MPT23200
1MPT23210
 MPT23220
OMPT23230
 MPT23240
 MPT23250
 MPT23260
 MPT23270
 MPT23280
 MPT23290
 MPT23300
 MPT23310
 MPT23320
 MPT23330
 MPT23340
 MPT23350
 MPT23360
 MPT23370
 MPT23380
 MPT23390
 MPT23400
 MPT23410
 MPT23420
 MPT23430
 MPT23440
 MPT23450
 MPT23460
 MPT23470
 MPT23480
 MPT23490
 MPT23500
 MPT23510
 MPT23520
 MPT23530
 MPT23540
 MPT23550
 MPT23560
 MPT23570
 MPT23580
 MPT23590
 MPT23600
 MPT23610
 MPT23620
 MPT23630
 MPT23640
 MPT23650
 MPT23660
 MPT23670
 MPT23680
 MPT23690
 MPT23700
 MPT23710
 MPT23720
 MPT23730
 MPT23740
 MPT23750
 MPT23760
 MPT23770
 MPT23780
 MPT23790
 MPT23800
                                      190

-------
110
120

130

C
140
150

160

170

180
190
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
10
C
C
C
C
20
30
C
C
 TH=(6.25-0.54287*ALOG(XY))/57.2958
 DO 120 ID=1,8
 IF (X.GE.XE(ID))  GO TO 130
 CONTINUE
 ID=9
 SZ=AE(ID)*X**BE(ID)
 GO TO 180
    STABILITY F
 TH=(4.1667-0.36191*ALOG(XY))/57.295S
 DO 150 ID=1.9
 IF (X.GE.XF(ID))  GO TO 160
 CONTINUE
 ID=10
 SZ=AF(ID)*X**BF(ID)
 GO TO 180
 SZ=5000.
 GO TO 190
 IF (SZ.GT.5000.)  SZ=5000.
 SY=465.116*XY*SIN(TH)/COS(TH)
    465.116 = 1000.  (M/KM)  / 2.15
 RETURN

 END

 SUBROUTINE RANK (L)
                SUBROUTINE RANK   (VERSION 79365). PART OF MPTER.
    CALLED BY MPTER TO ARRANGE CONCENTRATIONS OF VARIOUS AVG
    TIMES INTO HIGH-FIVE TABLES...THAT IS. ARRAYS STORING
    THE HIGHEST FIVE CONCENTRATIONS FOR EACH RECEPTOR FOR
    EACH AVG TIME.
    VARIABLES OUTPUT:
         HMAXA(J,K,L)   CONCENTRATIONS ACCORDING TO
              "J"  'RANK OF CONG.  (1-5)
               K   RECEPTOR NUMBER
               L   AVG TIME
         NDAY(J.K.L) :  ASSOCIATED DAY OF CONG.
         IHR(J,K,L) :  ENDING HOUR OF CONG.
 COMMON/MR/HMAXA(5,180,5),NDAY(5>180,5),IHR(5,180,5),CONC(180,5)
1          JDAY.NR
 COMMON /MPO/ NRECEP,NAVG,NB,LH,NPT,IDATE(2).RRECf180).SRECf180),ZRMPT24200
1(180),ELR(180),PHCHl(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT24210
2180),PSIGS(180 26),IPOL                                           MPT24220
 10=6                                                              MPT24230
    RESET AVERAGING PERIOD FLAG AND SET CALM FLAG. LL.
    CALMS ACCOUNTED FOR ONLY WHEN DEFAULT OPTION ON.
 LL=0
                                                                  MPT23810
                                                                  MPT23820
                                                                  MPT23830
                                                                  MPT23840
                                                                  MPT23850
                                                                  MPT23860
                                                                  MPT23870
                                                                  MPT23880
                                                                  MPT23890
                                                                  MPT23900
                                                                  MPT23910
                                                                  MPT23920
                                                                  MPT23930
                                                                  MPT23940
                                                                  MPT23950
                                                                  MPT23960
                                                                  MPT23970
                                                                  MPT23980
                                                                  MPT23990
                                                                  MPT24000
                                                                  MPT24010

                                                                  MPT24030
                                                                  MPT24040
                                                                  MPT24050
                                                                  MPT24060
                                                                  MPT24070
                                                                  MPT24080
                                                                  MPT24090
                                                                  MPT24100
                                                                  MPT24110
                                                                  MPT24120
                                                                  MPT24130
                                                                  MPT24140
                                                                  MPT24150
                                                                  MPT24160
                                                                  MPT24170
                                                                  MPT24180
                                                                  MPT24190
      IF
      IF
      IF
      IF
      DO
    L.GT.4)LL=1
    L.EQ.22)L=2
    L.EQ.33)L=3
    L.EQ.44)L=4
    50 K=l,NRECEP
 IF (CONC(K,L).LE.HMAXA(5>K,L)) GO TO 50
 DO 10 J=l,5
 IF (CONC(K,L).GT.HMAXA(J,K,L)) GO TO 20
       CONCENTRATION IS ONE OF THE TOP FIVE
 CONTINUE
 WRITE (10,70)
 GO TO 50
    THE FOLLOWING DO-LOOP HAS THE EFFECT OF INSERTING A NEW
    CONCENTRATION ENTRY INTO ITS PROPER POSITION WHILE SHIFTING
    DOWN THE 'OLD' LOWER CONCENTRATIONS THUS ESTABLISHING THE
    'HIGH-FIVE' CONCENTRATION TABLE.
    (J.EQ.5) GO TO 40
 _. 30 IJ=4,J,-1
 IJP1=IJ+1
 HMAXA(IJP1,K,L)=HMAXA(IJ,K,L)
 NDAY(IJP1,K,L) = NDAY(U.K.L)
 IHR(IJP1,K,L) = IHR(IJ,K,L)
       INSERT LATEST CONG, DAY AND ENDING HR INTO THE
       PROPER RANK IN THE HIGH-FIVE TABLE
IF
DO
MPT24240
MPT24250
MPT24260
MPT24270
MPT24280
MPT24290
MPT24300
MPT24310
MPT24320
MPT24330
MPT24340
MPT24350
MPT24360
MPT24370
MPT24380
MPT24390
MPT24400
MPT24410
MPT24420
MPT24430
MPT24440
MPT24450
MPT24460
MPT24470
MPT24480
MPT24490
MPT24500
                                     191

-------
40
50
60

C
70
C
C
C
C
C
C
C
C
C
C
HMAXA(J.K,L)=CONC(K,L)
NDAY(J,K,L) = JDAY
IHR(J.K.L) = LH
   ADD 100 TO HOUR TO SET CALM FLAG FOR MAIN.
IF(LL.EQ.1.AND.L.NE.1)IHR(J,K,L)=IHR(J,K,L)+100
CONTINUE
DO 60 K=1,NRECEP
CONC(K,L)=0.
CONTINUE
RETURN

FORMAT (IX,'   ****ERROR IN FINDING THE MAX CONCENTRATION***')

END

SUBROUTINE OUTHR
               SUBROUTINE OUTHR  (VERSION 79365), PART OF MPTER.
   THIS SUBROUTINE PROVIDES OUTPUT CONCENTRATIONS IN
   MICROGRAMS PER CUBIC METER FOR EACH HOUR IN TWO WAYS:
      1) CONTRIBUTIONS FROM SIGNIFICANT SOURCES, AND
      2) SUMMARIES.
   BEYOND ENTRY POINT OUTAVG THE SUBROUTINE PROVIDES
   CONCENTRATION OUTPUT FOR EACH AVERAGING PERIOD AGAIN
   IN THE ABOVE MANNER.
MPT24510
MPT24520
MPT24530
MPT24540
MPT24550
MPT24560
MPT24570
MPT24580
MPT24590
MPT24600
MPT24610
MPT24620
MPT24630
MPT24640

MPT24660
MPT24670
MPT24680
MPT24690
MPT24700
MPT24710
MPT24720
MPT24730
MPT24740
MPT24750
MPT24760
MPT24770
MPT24780
C->->->->SECTION OUTHR.A - COMMON, DIMENSION, AND DATA.
C
      COMMON /MPOR/ IOPT(25)
      COMMON /MPO/ NRECEP,NAVG.NB,LH,NPT,IDATE(2),RREC(180),SREC(180),ZRMPT24796
     1(180),ELR(180),PHCHI(1805,PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT24800
     2180),PSIGS(180,26),IPOL                                           MPT24810
      COMMON /MO/ QTHETA(24),QU(24),IKST(24),QHL(24),QTEMP(24),MPS(25),NMPT24820
AD J.VJF , j.w, jjiiiii j. \£.\j j , 4jj.LiCi£,i t.\j ] , ij j. ii d o i £,u j , ruim'Lc- \£. , j.ou ; , j.iuunn.1 lou ; , o
2(5,180)
DIMENSION IPOLT(2)
DATA IPOLT /'S02 VPART'/
IPOLU=IPOLT(1)
IF (IPOL.EQ.4) IPOLU=IPOLT(2)
C OPTION(ll): PRINT ONLY THE HOURLY SUMMARIES.
IF (lOPT(ll).EQ.l) GO TO 100
C
C->->->->SECTION OUTHR. B - WRITE HOURLY CONTRIBUTION TITLE.
C
WRITE (10,350) LINE1.LINE2, LINES
WRITE (IO,360)IPOLU,IDATE,LH
C
C->->->->SECTION OUTHR. C - WRITE HOURLY MET DATA.
C
IF (IOPT(12).EQ.l) GO TO 10
WRITE (10,450)
WRITE (10,460) LH,QTHETA(LH),QU(LH),QHL(LH),QTEMP(LH),IKST(LH)
C
C->->->->SECTION OUTHR. D - WRITE FINAL PLUME HEIGHT AND DISTANCE
C FINAL RISE.
C
10 IF (IOPT(13).EQ.l) GO TO 20
WRITE (IO,470T (1,1=1,10)
C HSAV ARE THE CALCULATED PLUME HEIGHTS FOR THIS HOUR
WtflTE (10,480) (HSAV(I),I=1,NPT)
WRITE (10,490) (DSAV(I),I=1,NPT)
C
C->->->->SECTION OUTHR. E - WRITE HRLY SIGNIFICANT SOURCE CONTRIB.
C
20 IF (NSIGP.GT.10) GO TO 40
C PRINT FIRST PAGE OF OUTPUT AND TOTALS FOR 10 OR LESS SIGNIF
WRITE 10,370
WRITE 10,380 (I,I=1,NSIGP)
WRITE 10,390
WRITE 10,380 (MPS(I),I=1,NSIGP)
WRITE 10,400
i mu'ir L £. t o o u
MPT24840
MPT24850
MPT24860
MPT24870
MPT24880
MPT24890
MPT24900
MPT24910
MPT24920
MPT24930
MPT24940
MPT24950
MPT24960
MPT24970
MPT24980
MPT24990
MPT25000
MPT25010
MPT25020
MPT25030
MPT25040
Mri'25U5U
MPT25060
MPT25070
MPT25080
MPT25090
MPT25100
MPT25110
MPT25120
MPT25130
MPT25140
SOUMPT25150
MPT25160
MPT25170
MPT25180
MPT25190
MPT25200
                                      192

-------

c

30

C
40




50

C








60

C
70






80



C





90
C
100
C
DO 30 K=1,NRECEP
WRITE (10,410) K,STAH(1,K),STAH(2,K),(PHSIGS(K,I)>I=1,NSIGP)
PRINT TOTALS
WRITE (10,420) PHSIGS(K,26),PHCHI(K)
CONTINUE
GO TO 100
PRINT FIRST PAGE FOR MORE THAN 10 SIGNIFICANT SOURCES.
WRITE
WRITE
WRITE
WRITE
10,370
10,380
10,430
10.400

(1,1=1.10)
(MPS(l) , 1=1, 10)

DO 50 K=1,NRECEP
WRITE (10,410) K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=1,10)
IF (NSIGP.GT.20) GO TO 70
PRINT SECOND PAGE AND TOTALS FOR 11 TO 20 SIGNIFICANT SOURCES
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
DO 60
10,350
10,360
10,370
10,380
10,390
10,380
10,400
LINE1.LINE2, LINES
IPOLU.IDATE.LH

(I,I=11,NSIGP)

(MPS(I),I=11,NSIGP)

=1,NRECEP
WRITE (I0",410) K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=11,NSIGP)
WRITE (10,420) PHSIGS(K,26),PHCHI(K)
GO TO 100
WRITE SECOND PAGE FOR MORE THAN 20 SIGNIFICANT SOURCES.
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
10,350
10,360
10,370
10,380
10,430
10,400
LINE1.LINE2, LINES
IPOLU.IDATE.LH

(1,1=11,20)
(MPS(I),I=11,20)

DO so K=I;NRECEP
WRITE
WRITE
WRITE
WRITE
10,410
10,350
10,360
10.370
K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=11,20)
LINE 1.LINE2, LINES
IPOLU.IDATE.LH

WRITE LAST PAGE AND TOTALS FOR MORE THAN 20 SIGNIF. SOURCES.
WRITE
WRITE
WRITE
WRITE
10,380
10,390
10,380
10,400
(I,I=21,NSIGP)

(MPS(I),I=21,NSIGP)

DO 90 K=1,NRECEP
WRITE (10,410) K,STAR(1,K).STAR(2,K),(PHSIGS(K,I),I=21,NSIGP)
WRITE (10.420) PHSIGS(K,26),PHCHI(K)
OPTION(14): SKIP OUTPUT OF THE HOURLY SUMMARIES.
IF (IOPT(14).EQ.l) GO TO 170

C->->->->SECTION OUTHR.F - WRITE HOURLY SUMMARY TITLE.
C


C

WRITE (10,350) LINE1.LINE2, LINES
WRITE (IO,440)IPOLU,IDATE,LH

C->->->->SECTION OUTHR.G - WRITE HOURLY MET DATA.
C



C

IF (IOPT(15).EQ.l) GO TO 110
WRITE (10,450)
WRITE (10,460) LH,QTHETA(LH),QU(LH),QHL(LH),QTEMP(LH),IKST(LH)

C->->->->SECTION OUTHR.H - WRITE FINAL PLUME HEIGHT AND
C
C
110

C


C
DISTANCE TO FINAL RISE.

IF (IOPT(16).EQ.l) GO TO 120
WRITE (10,470) (1,1=1,10)
HSAV ARE THE CALCULATED PLUME HEIGHTS FOR THIS HOUR
WRITE (10,480) (HSAV(I),I=1,NPT)
WRITE (10,490) (DSAV(I).I=liNPT)

C->->->->SECTION OUTHR.I - WRITE HOURLY SUMMARY TABLE.
MPT25210
MPT25220
MPT25230
MPT25240
MPT25250
MPT25260
MPT25270
MPT25280
MPT25290
MPT25300
MPT25310
MPT25320
MPT25330
MPT25340
MPT25350
MPT25360
MPT25370
MPT25380
MPT25390
MPT25400
MPT25410
MPT25420
MPT25430
MPT25440
MPT25450
MPT25460
MPT25470
MPT25480
MPT25490
MPT25500
MPT25510
MPT25520
MPT25530
MPT25540
MPT25550
MPT25560
MPT25570
MPT25580
MPT25590
MPT25600
MPT25610
MPT25620
MPT25630
MPT25640
MPT25650
MPT25660
MPT25670
MPT25680
MPT25690
MPT25700
MPT25710
MPT25720
MPT25730
MPT25740
MPT25750
MPT25760
MPT25770
MPT25780
MPT25790
MPT25800
MPT25810
MPT25820
MPT25830
MPT25840
MPT25850
MPT25860
MPT25870
MPT25880
MPT25890
MPT25900
193

-------
c
120
C

C
C
130
C
140
150
160
170
C
 WRITE (10,500)
    CALCULATE GRAND TOTALS AND RANK CONCENTRATIONS
 DO 130 K=1,NRECEP
    HSAV IS USED AS A DUMMY VARIABLE FOR THE REMAINDER OF THIS
    SUBROUTINE.  IT IS ZEROED AGAIN IN PTR BEFORE ITS NORMAL USE.
 HSAV(K)=PHCHI(K)
    DETERMINE RANKING ACCORDING TO CONCENTRATION
 DO 150 I=1,NRECEP
 CMAX=-1.0
 DO 140 K=1.NRECEP
 IF (HSAV(K).LE.CMAX) GO TO 140
 CMAX=HSAV(K)
 LMAX=K
 CONTINUE
 IRANK(LMAX)=I
 HSAV(LMAX)=-1.0
 CONTINUE
 DO 160 K=1,NRECEP
 WRITE (10,510)  K,STAR(1,K),STAR(2,K),(RNAME(J,K).J=1,2),RREC(K)
lEC(K),ZR(K),ELR(K),PHSIGS(K,26),PHCHI(K).IRANK(K)
 CONTINUE
 RETURN
C->->->->SECTION OUTHR.J - ENTRY POINT FOR AVERAGING TIME
C
      ENTRY OUTAVG
C            AT THIS ENTRY POINT, CONCENTRATION OUTPUT
C        IN MICROGRAMS PER CUBIC METER ARE PRINTED FOR THE
C        AVERAGING PERIOD. CONTRIBUTIONS AND/OR SUMMARY
C        INFORMATION IS AVAILABLE.
C        AVERAGE CONCENTRATIONS OVER SPECIFIED TIME PERIOD
      DO 190 K=1,NRECEP
      PCHI(K)=PCHI(K)/NAVG
      HSAV(K)=PCHI(K)
      DO 180 1=1,26
180   PSIGS(K,I)=PSIGS(K,I)/NAVG
190   CONTINUE
C        OPTION(17): SKIP OUTPUT OF THE AVERAGED CONTRIBUTIONS.
      IF (IOPT(17).EQ.l) GO TO 270
C->->->->SECTION OUTHR.K - WRITE AVERAGING-TIME SIGNIFICANT
C                  SOURCE CONTRIBUTIONS.
      WRITE (10,350) LINE1.LINE2,LINES
      WRITE (10,520) NAVG.IPOLU.IDATE.NB
      IF ?NSIGP.GT.10) GO TO 210
         PRINT FIRST PAGE OF OUTPUT AND TOTALS FOR 10 OR LESS SIGNIF
             10,380
             10,390
             10,380
             10,400
                (I,I=1,NSIGP)

                (MPS(I),I=1,NSIGP)
             K=1,NRECEP
200

C
210
220
WRITE
WRITE
WRITE
WRITE

WRITE (l6!"4lbTK',STAR(l,K),STAR(2,K),(PSIGS(K,I),I=l,NSIGP)
   PRINT TOTALS
WRITE (10,420) PSIGS(K,26),PCHI(K)
CONTINUE
GO TO 270
   PRINT FIRST PAGE FOR MORE THAN 10 SIGNIF SOURCES
 WRITE (10,380) (1,1=1.10)
 WRITE  10,430  (MPS(l5,I=l,10)
 WRITE (10.400)
 DO 220 K=1.NRECEP
 WRITE (10,410) K,STAR(1,K),STAR(2,K),(PSIGS(K,I),I=1,10)
 IF ?NSIGP.GT.20) GO TO 240
    PRINT SECOND PAGE AND TOTALS FOR 11 TO 20 SIGNIF SOURCES
      WRITE   10,350
      WRITE   10,520
      WRITE   10,380
      WRITE   10,390
      WRITE  (10,380
      WRITE  (10,400
                LINE1.LINE2,LINES
                NAVG.IPOLU.IDATE.NB
                (I,I=11,NSIGP)

                (MPS(I),I=11,NSIGP)
   MPT25910
   MPT25920
   MPT25930
   MPT25940
   MPT25950
   MPT25960
   MPT25970
   MPT25980
   MPT25990
   MPT26000
   MPT26010
   MPT26020
   MPT26030
   MPT26040
   MPT26050
   MPT26060
   MPT26070
   MPT26080
   MPT26090
.SRMPT26100
   MPT26110
   MPT26120
   MPT26130
   MPT26140
   MPT26150
   MPT26160
   MPT26170
   MPT26180
   MPT26190
   MPT26200
   MPT26210
   MPT26220
   MPT26230
   MPT26240
   MPT26250
   MPT26260
   MPT26270
   MPT26280
   MPT26290
   MPT26300
   MPT26310
   MPT26320
   MPT26330
   MPT26340
   MPT26350
SOUMPT26360
   MPT26370
   MPT26380
   MPT26390
   MPT26400
   MPT26410
   MPT26420
   MPT26430
   MFT2644G
   i«fr''T26450
   MPT26460
   MPT26470
   MPT26480
   MPT26490
   MPT26500
   MPT26510
   MPT26520
   MPT26530
   MPT26540
   MPT26550
   MPT26560
   MPT26570
   MPT26580
   MPT26590
   MPT26600
                                      194

-------
230

C
240
250
      DO 230 K=1,NRECEP
      WRITE (10,410) K,STAR(1,K),STAR(2.K),(PSIGS(K,I),I=11,NSIGP)
      WRITE (10,420) PSIGS(K,26)>PCHI(K)
      GO TO 270
         WRITE SECOND PAGE FOR MORE THAN 20 SIGNIF SOURCES
      WRITE
      WRITE
      WRITE
      WRITE
      WRITE  AWi~rwi
      DO 250 K=I,NRECEP
       10,350) LINE1.LINE2.LINES
       10,520) NAVG.IPOLU.IDATE.NB
               (1,1=11,20)
               (MPS(I),1=11,20)
             10,380
             10,430
             10,400
      WRITE (10,410
      WRITE (10,350
      WRITE (10,520
               K,STAR(l,K),STARjf2,K),(PSIGS(K,I),I=ll,20)
               LiNEl,LINE2 LINES
   IB v^^w/ NAVG,IPOLU,IDATE,NB
   WRITE LAST PAGE AND TOTALS FOR MORE THAN 20 SIGNIF SOURCES
WRITE (10,380
WRITE (10,390
       10,380
       10,400
      WRITE
      WRITE
                     (I,I=21,NSIGP)

                     (MPS(I),I=21,NSIGP)
                iT W V
                .NRECEP
      WRITE (10,410) K,STAR(1,K),STAR(2.K)
      WRITE (10,420) PSIGS(K,26),PCHI(K
                                           (PSIGS(K,I),1=21,NSIGP)
260
C
C->->->->SECTION OUTHR.L - WRITE AVERAGING-TIME SUMMARY.
C
C        OPTION(18): SKIP OUTPUT OF THE AVERAGED SUMMARIES.
270   IF (IOPT(I8).EQ.l) GO TO 310
      WRITE (10,350) LINE1.LINE2,LINES
      WRITE (10,530) NAVG.IPOLU.IDATE.NB
      WRITE (10,500)
C        CALCULATE GRAND TOTALS AND RANK CONCENTRATIONS
      DO 290 1=1,NRECEP
      CMAX=-1.0
      DO 280 K=l.NRECEP
      IF (HSAV(K).LE.CMAX) GO TO 280
      CMAX=HSAV(K)
      LMAX=K
280   CONTINUE
      IRANK(LMAX)=I
      HSAV(LMAX)=-1.0
290   CONTINUE
      DO 300 K=1,NHECEP
MPT26610
MPT26620
MPT26630
MPT26640
MPT26650
MPT26660
MPT26670
MPT26680
MPT26690
MPT26700
MPT26710
MPT26720
MPT26730
MPT26740
MPT26750
MPT26760
MPT26770
MPT26780
MPT26790
MPT26800
MPT26810
MPT26820
MPT26830
MPT26840
MPT26850
MPT26860
MPT26870
MPT26880
MPT26890
MPT26900
MPT26910
MPT26920
MPT26930
MPT26940
MPT26950
MPT26960
MPT26970
MPT26980
MPT26990
MPT27000
MPT27010
MPT27020
      WRITE (10,510) K,STAR(1,K),STAR(2,K),(RNAME(J,K),J=1,2),RREC(K),SRMPT27030
     lECfKl,ZR(K),ELR(K),PSIGS(K,26),PCHI(K),IRANK(K)                   	
300   CONTINUE
310   IF (IOPT(24).EQ.O) GO TO 330
C        PUNCH CONCENTRATIONS FOR CONTOURING(MICROGRAMS/CUBIC METER)
C        RECEPTOR COORDINATES IN USER UNITS.
      DO 320 K=l.NRECEP
      GWU=PCHI(K)*1.0E+06
      WRITE (10,540) RREC(K),SREC(K),GWU,K,ZR(K),ELR(K)
      WRITE (1,540) RREC(K),SREC(K),GWU,K,ZR(K),ELR(K)
      CONTINUE
      IF (IOPT(23).EQ.O) GO TO 340
         WRITE PERIODIC CONC. TO DISK/TAPE - FOR LONG-TERM APPLICATION
         FOR EACH RUN, THIS WRITE STATEMENT WILL GENERATE
         'NPER' RECORDS.
      WRITE (13) IDATE(2),NB,(PCHI(K),K=1,NRECEP)
      RETURN
320
330
C
C
C

340
C
C->->->->SECTION OUTHR.M - FORMATS.
C
       SECTIONS OF SUBROUTINE OUTHR.
                                                                  MPT27040
                                                                  MPT27050
                                                                  MPT27060
                                                                  MPT27070
                                                                  MPT27080
                                                                  MPT27090
                                                                  MPT27100
                                                                  MPT27110
                                                                  MPT27120
                                                                  MPT27130
                                                                  MPT27140
C***
C
C
C
C
C
C
C
          SECTION OUTHR.A
          SECTION OUTHR.B
          SECTION OUTHR.C
          SECTION OUTHR.D

          SECTION OUTHR.E
          SECTION OUTHR.F
                       COMMON, DIMENSION,  AND DATA.
                       WRITE HOURLY CONTRIBUTION TITLE.
                       WRITE HOURLY MET.  DATA.
                       WRITE FINAL PLUME  HEIGHT AND DISTANCE  TO
                         FINAL  RISE.
                       WRITE HOURLY SIGNIFICANT SOURCE CONTRIB.
                       WRITE HOURLY SUMMARY TITLE.
MPT27160
MPT27170
MPT27180
MPT27190
MPT27200
MPT27210
MPT27220
MPT27230
MPT27240
MPT27250
MPT27260
MPT27270
MPT27280
MPT27290
MPT27300
                                      195

-------
c
c
c
c
c
c
c
c
c
c
350
510
520
530

540
C
          SECTION OUTHH.G
          SECTION OUTHH.H

          SECTION OUTHH.I
          SECTION OUTHR.J
          SECTION OUTHR.K

          SECTION OUTHR.L
          SECTION OUTHR.M
                        WRITE HOURLY MET. DATA.                    MPT27310
                        WHITE FINAL PLUME HEIGHT AND DISTANCE TO   MPT27320
                         FINAL RISE.                               MPT27330
                        WRITE HOURLY SUMMARY TABLE.                MPT27340
                        ENTRY POINT FOR AVERAGING TIME.            MPT27350
                        WRITE AVERAGING-TIME SIGNIFICANT SOURCE    MPT27360
                         CONTRIBUTIONS.                            MPT27370
                        WRITE AVERAGING-TIME SUMMARY.              MPT27380
                        FORMATS.                                   MPT27390
                                                                   MPT27400
      FORMAT ('!',20A4/1X.20A4/1X.20A4)                                 MPT27410
360   FORMAT^ 0',T30,A4' CONTRIBUTION(MICROGRAMS/M**3) FROM  SIGNIFICANTMPT27420
     1 POINT SOURCES ' 5X,12,'/',14,'  : HOUR  M2//)                    MPT27430
370
380
390
400
410
420
430
440
450
460
470
480
490
500
FORMAT
FORMAT
FORMAT
1X.T113,
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (
15X.I2, V
FORMAT
11X.T9 '
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
              1HO.T5  'RANK')
              '+',T12,10(13.7X))
              '+',T113,'TOTAL
              POINT
                                  TOTAL'/1X,T113,'SIGNIF
                        SOURCES'/IX,'SOURCE #')
              IX.'RECEP #')
              1X.I3.2A1.6P10F10.3)
              '+' Tl09,6P2F10.3)
              IX,'SOURCE #',T12,10(13,7X))                               MrrzYtULU
              0',T25,A4,' SUMMARY CONCENTRATION TABLE(MICROGRAMS/M**3)  'MPT27520
              '14,'  : HOUR  '  I2/1X)                                     	
              IX,T2,'HOUR    THETA     SPEED
                                                                   MPT27440
                                                                   MPT27450
                                                       ALL POINT'/1MPT27460
                                                                   MPT27470
                                                                   MPT27480
                                                                   MPT27490
                                                                   MPT27500
                                                                   MPT27510
              DEG|     (M/S) HEIGHT(M)
              lX,T3,I2.4F9.2,6X,n//)
              ISX.lOIllj
              ' FINAL  HT  (M)  '.10F11.2)
              ' DIST FIN  HT (KM)',10F11.3)
              '0',T7 'RECEPTOR',T23,'EAST',T33,'
                                             MIXING    TEMP
                                                CLASS'/IX)
                                                                   MPT27530
                                                        STABILITY'/MPT27540
                                                                   MPT27550
                                                                   MPT27560
                                                                   MPT27570
                                                                   MPT27580
                                                                  }MPT27590
 t" \si.u'm j.   w j A i •  iuuvyiJi J. vxxi. j i.t**j) LJULJ ±  y j. \j\j y INv/riiri  j 1 '-tO j rLtlOlli IC/iL  HI IVIi i £ IDvJU
1.T61,'RECEPTOR',T78,'TOTAL FROM',T93,'TOTAL FROM',T106,'CONCENTRATMPT27610
2ION'/' ',T7,'NO.  NAME' T22,'COORD',T33,'COORD',T44,'ABV GRD  (M)',TMPT27620
359,'GRD-LVL ELEV,T77,'SIGNIF POINT',T93,'ALL SOURCES'.Till,'RANK'MPT27630
4/' ',T58 '(USER HT UNITS)' T80,'SOURCES'//)                       MPT27640
 FORMAT (1H ,I8,2A1,2X,2A4,2F10.2,F12.1,F20.1,6P2F15.4,I15)        MPT27650
 FORMAT ('0',T22,12,'-HOUR AVERAGE ',A4,' CONTRIBUTION(MICROGRAMS/MMPT27660
1**3) FROM SIGNIFICANT POINT SOURCES',5X,12,'/',13,'   START  HOUR: "MPT27670
2.I2//1X.T5 'RANK')                                                MPT27680
 FORMAT ('0J,T25,I2 '-HOUR AVERAGE ',A4,' SUMMARY CONCENTRATION  TABMPT27690
1LE(MICHOGRAMS/M**3)'.5X.I2,'/',I3,'  START HOUR:  ',I2//1X)        MPT27700
 FORMAT ('CNTL',1X,3F10.3,20X,I4,2F10.1)                           MPT27710
                                                                   MPT27720
 END                                                               MPT27730
                                      196

-------