-------
NOTICE
The information in this document has been
funded by the United States Environmental
Protection Agency under contract No. EPA
68-02-4106 to Aerocomp, Inc. It has been
subject to the Agency's peer and adminis-
trative review, and it has been approved
for publication as an EPA document.
Mention of trade names or commercial pro-
ducts does not constitute endorsement or
recommendation for use.
11
-------
ABSTRACT
This addendum applies to the "User's Guide for MPTER --
A Multiple Point Gaussain Dispersion Algorithm with Optional
Terrain Adjustment" of Pierce and Turner, 1980. While the cited
document describes the features of the MPTER model, its technical
basis, and applications, this addendum deals exclusively with
algorithm modifications to accommodate new knowledge and
technique as well as address recommendations of the "Guideline
on Air Quality Models." The Guideline lists MPTER as a preferred
model for calculating concentrations due to point sources at
averaging times from one hour to one year in rural or urban
areas where the terrain is flat or gently rolling and pollutant
transport distances are less than 50 kilometers.
MPTER is a Gaussian steady-state model applicable to
relatively nonreactive pollutants emitted from one or more point
sources which impact receptors in level or rolling terrain.
The model contains stability-dependent terrain-adjustment factors
to simulate the impact on nearby terrain provided the point
of impact is no higher than the elevation of the lowest stack
top. Calculations use a meteorological data set with hourly
wind direction, wind speed, temperature, stability class, and
mixing height. Meteorological conditions are assumed to remain
constant throughout each simulation hour; in particular, the
input wind vector is assumed to represent flow field throughout
the modeling region. Source input parameters include emission
rate, stack height, stack exit diameter, temperature of the
effluent, and exit velocity.
The original version of the model offered options for
stack-tip downwash, gradual plume rise, and buoyancy-induced
dispersion. Added to this release (UNAMAP Version 6) are options
that allow selection of either rural or urban dispeision
parameters and wind-profile exponents. To address model
ove r-pr edi c t i on when wind speeds are low, an algorithm for the
treatment of calms has been added. Also new in this release
is a default option to set parameters for regulatory applications
as suggested by the Guideline. These are: final plume rise,
rather than gradual rise, is used and buoyancy-induced dispersion
and momentum plume rise are considered, as are calm conditions.
111
-------
CONTENTS
i
Abstract iii
Tables vi
Acknowledgements vi
Addendum to the Source Code and User's Guide
for MPTER 1
Summary of Modifications 1
Urban and Rural Modes 1
Treatment of Calm Conditions 2
Default Option 3
Other Features 3
User's Guide Modifications 5
References 6
Appendices 7
A. Replacement Pages for User's Guide
B. Listing of FORTRAN Source Code
v
-------
TABLES
Number Page
I. Default Urban and Rural Wind Profile Exponents ... 2
II. Source Code Modifications for MPTER 8
ACKNOWLEDGEMENTS
Support of Aerocomp, Inc. by the Environmental Protection
Agency Contract No. 68-02-4106 is gratefully acknowledged.
VI
-------
ADDENDUM TO THE USER'S GUIDE FOR MPTER
MPTER (Multiple Point source model with TERrain adjustment) was developed
by the Environmental "Protection Agency (EPA) in 1979 to estimate air quality
concentrations of relatively non-reactive pollutants from multiple sources
with adjustments made for slight terrain differences (Pierce and Turner,
1980). The model was first released as part of the User's Network for Applied
Modeling of Air Pollution (UNAMAP) Version 4, and re-released with minor modi-
fications in UNAMAP Version 5. This addendum provides a complete description
of the MPTER revisions and outlines the modifications required for updating
the user's guide and the earlier versions of the FORTRAN source code to
result in the code included in UNAMAP (Version 6).
SUMMARY OF MODIFICATIONS
Important features added to the MPTER model are as follows:
o Urban and rural modes, for wind-profile exponents and
dispersion parameters,
o Treatment of calm conditions according to methods
developed by EPA (1984), and a
o Default option, primarily for regulatory application.
These features were designed to satisfy the requirements outlined in "Guide-
line on Air Quality Models (Revised)" (EPA, 1986). The default option feature
is designed as a convenience for the user to avoid inadvertent errors in
setting the appropriate options for regulatory applications. The reader is
cautioned to refer to the current regulatory guidance contained in EPA's
"Guideline on Air Quality Models" and to confer with the appropriate regional
meteorologist when this model is being used to satisfy regulatory require-
ments. With the addition of the above features, the model is acceptable for
regulatory applications and is considered a guideline model by the EPA. The
revisions are discussed in greater detail next; user's guide and computer
code modifications follow the revisions.
The numerical values in the original test case output remain unchanged.
Urban and Rural Modes
Separate urban and rural default wind-profile exponents were added to
MPTER and are presented in Table 1. These exponents are used by the model
when the user exercises the default option. The rural exponents correspond
to a surface roughness of about 0.1 meters; the urban exponents result from a
roughness of about 1 meter (plus urban heat release influences). For a more
detailed discussion of wind profiles, the reader is referred to Irwin (1979).
-------
TABLE 1. DEFAULT URBAN AND RURAL WIND-PROFILE EXPONENTS
Stability class
Mode •
A B C t
.Urban
Rural
0.15
0.07
0.15
0.07
0.20
0.10
0.25
0.15
0.30
0.35
0.30
0.55
An urban dispersion algorithm has been added to the rural scheme in the
original MPTER. The urban dispersion parameter values are those recommended
by Briggs and included in Figure 7 and Table 8 of Gifford (1976).
The urban or rural setting is indicated by the user via input variable
MUOR on card 4.
Treatment of Calm Conditions
When the default option is exercised, calm conditions are handled
according to methods developed by the EPA (1984) which are summarized here.
A calm hour is indicated by an hour with a wind speed of 1.0 m/sec and a wind
direction equal to that of the previous hour. When a calm is detected in the
meteorological data, the concentrations at all receptors are set to zero, and
the number of hours being averaged is reduced by one, except that the divisor
used in calculating the average is never less than 75 per cent of the averaging
time. For any simulation, this results in the following:
o 3-hour averages are determined by dividing the sum of the hourly
contributions by 3;
o 8-hour averages are calculated by dividing the sum of the hourly
contributions by the number of non-calm hours or 6, whichever is
greater;
o 24-hour averages are determined by dividing the sum of the hourly
contributions by the number of non-calm hours or 18, whichever is
greater; and
o Period of record averages, regardless of length, are calculated by
dividing the sum of all the hourly contributions by the number of
non-calm hours during the period of record. This is the only
exception to the 75 per cent rule.
This calms procedure is not available in MPTER outside of the default
option. The user can employ this procedure, however, through the use of the
CALMPRO postprocessor program (EPA, 1984). CALMPRO is available as part of
UNAMAP Version 6.
-------
Default Option
An option has been added to the model to facilitate compliance with regu-
latory requirements. Exercising the default option (i.e., IOPT (25) = 1)
overrides other user-input selections and results in the following:
o Final plume rise is used* (gradual or transitional plume rise is not
exercised for plume height, but is used to calculate the magnitude
of the buoyancy induced dispersion),
o Buoyancy induced dispersion is exercised,
o Terrain adjustment factors are set to zero for all stabilities,
o Stack tip downwash (Briggs, 1974) is considered,
o Default urban or rural wind profile exponents are used (See Table
1), and
o Calms are treated according to methods developed by the EPA (1984)
as noted previously.
o Decay half-life is set to 4.0 hours for S02 for the urban option,
and infinite half-life (no decay) for all other cases.
Other Features
There are several additional regulatory features that are inherent in
the UNAMAP Version 5 and later versions of MPTER. These are summarized below.
(1) Momentum plume rise is always considered.
(2) Terrain adjustments are used for receptors below stack base
elevation in the same manner as elevated receptors. The differ-
ence, defined as the receptor ground level elevation minus source
ground level elevation, is computed and subtracted from the effec-
tive plume height. This has the effect of raising the plume at
receptors below the source ground level elevation and lowering
the plume at receptors above the source ground level elevation,
(3) Mixing height is compared with the final plume height without
regard to plume height changes due to terrain.
(4) Exponential decay (half-life) is available if required by the
simulation.
-------
USER'S GUIDE MODIFICATIONS
The modifications to the User's Guide for MPTER by T. E. Pierce and
D. B. Turner (1980) (EPA-600/8-80-016) are summarized next. All the replace-
ment pages for the User's Guide are provided in Appendix A.
*
PAGES 1 — The Executive summary is modified to reflect changes made to the
and 2 MPTER source code. The urban dispersion parameter scheme and de-
fault option are included in the discussion.
PAGE 6 — An urban/rural switch is added to the control requirements.
PAGE 7 ~ The urban/rural modes and default option are added to the dis-
cussion in the first paragraph.
PAGE 9 — The urban/rural modes and the urban dispersion parameter scheme
are added to the discussion in the fourth paragraph.
PAGE 12 -- "P-G" as a modifier for "dispersion parameters" is no longer
adequate since the addition of the urban dispersion parameter
scheme (Gifford, 1976). "P-G" is deleted from the discussion
in the second paragraph.
PAGE 14 -- "P-G" is deleted from the discussion in the second paragraph.
PAGE 17 — The second paragraph and Table 1 are modified to include mention
of the urban wind profile exponents.
PAGE 19 — The urban dispersion parameter scheme is added to the discussion
in the second paragraph.
PAGE 22 — "P-G" is deleted from the discussion in the last paragraph since
it is no longer adequate.
PAGE 26 -- The last paragraph is modified to reflect changes in the MPTER
code; the executable program now requires 56 K of core memory.
Also, table 2 is deleted.
PAGE 31 — Section 6.2.1.9 is modified to reflect the code revisions (i\e:;
urban/rural modes and default option). Section 6.2.1.10 is
added to the text and discusses the urban/rural swith, MUOR. It
is now an input data requirement.
PAGE 34 -- The discussion in Section 6.2.3 is modified to reflect that
there are now five technical options.
PAGE 36 — Section 6.2.3.1.5 is added to the text and discusses the default
option.
-------
PAGE 50 — Variable MUOR (i.e., urban/rural swith) is added to Table 6.
PAGE 51 — Variable IOPT (25) (i.e., the default option) is added to Table
7.
PAGE 64 -- Variables NDAY and IHR are added to Table 23.
PAGE 145 — "Guideline on Air Quality Models (Revised)" 1986 has been added
to the list of references.
PAGES 150 — The description of the plume rise algorithm is modified to re-
through fleet changes in the code.
154
-------
REFERENCES
Briggs, G. A. 1974. Diffusion Estimation for Small Emissions. In: ERL,
ARL USAEC Report ATDL-106. U. S. Atomic Energy Commission, OaF Ridge,
TN. 59 pp.
Gifford, F. A. 1976. Turbulent diffusion-typing schemes: a review. Nucl.
Saf. 17: 68-86.
Irwin, J. S. 1979. A theoretical variation of the wind profile law exponent
as a function of surface roughness and stability. Atmos. Environ. 13:
191- 194.
Pierce, T. E. and Turner, D. B. 1980. User's Guide for MPTER A Multiple
Point Gaussian Dispersion Algorithm with Optional Terrain Adjustment.
EPA-600/8-80-016, U. S. Environmental Protection Agency, Research
Triangle Park, NC 27711. 247 pp.
U. S. Environmental Protection Agency. 1984: Calms Processor (CALMPRO)
User's Guide. EPA-901/9-84-001. U. S. Environmental Protection
Agency, Region I, Boston, MA 02203.
U. S. Environmental Protection Agency. 1986: Guideline on Air Quality
Models (Revised) EPA 450/2-78-027R, U. S. Environmental Protection
Agency, Research Triangle Park, NC 27711.
-------
APPENDIX A
REPLACEMENT PAGES FOR USER'S GUIDE
i
Portions of the original document should be replaced with the pages that
follow. Where more than one page replaces a single one, the additions have
the same page number plus a letter. With the revised pages inserted, the
user's guide is a complete and technically accurate description of the modified
MPTER model as released in UNAMAP Version 6.
All revised portions of the user's guide appear in light italic print.
-------
EXECUTIVE SUMMARY
The MPTER computer code (Multiple _Point source model with TERrain
adjustments) provides a method to estimate air pollutant concentrations from
multiple sources in rural 01 uiban environments, and can make optional
adjustments for slight terrain variations.
The algorithm is based upon Gaussian modeling assumptions and incor-
porates the Pasquill-Gifford (P-G) dispersion parameter values .£01 luial
*e.tting* and the. di*pe.i*ion pa.icune.te.* scheme ie.coime.nde.d by Riigo.* 601 uiban
*ituation*, *e.e. Pi.ciu.ie. 7 and Table. S 06 GiUoid (1976). However, several
technical options and various parameter values may also be entered as
input. MPTER may be considered a research tool for exploratory use of
various assumptions and parameter values, as well as a standardized model
for more routine impact analyses.
The. ve.iA-i.on o<< MPTER (85165) ie.le.a*e.d with UNAMAP 6 <.nc.tu.dej> a dztault
option which allow* the. u*e.i to *e.t the. mode.1 {,01 ie.aulatoiu application*.
Whe.n the. option i* e.mploue.d, the. mode.1 *ati*tiej> the. ie.ouiie.me.nt* outlined
in the. "Gu.ide.line. on Ail Quality Mode.1* (Re.vi*e.d)" (EPA, 1986) ioi mo*t
application*. The. de.6au.lt option i* oiovide.d a* a c.onve.nie.nc.e. f,oi the. u*e.i,
to he.lp avoid inadve.ite.nt e.iioi* in *e.ttinci the. apoiopiiate. option*. The.
u*e.i i* cautionzd to ie.^e.1 to the. c.u.iie.nt ie.ctu.latoiu mode.ling Guidance, in
EPA'4 "Guide-line, on Ail Quality Mode.1* (Re.vi*e.d)" and to conte.1 with the.
appiopiiate. ie.gional me.te.oiologi*t.
MPTER can estimate the resulting concentrations at a maximum of 180
receptors from a maximum of 250 point sources. Gaussian assumptions and
techniques are used to perform the estimates hourly, considering each hour
as a steady state period. Required input information consists of point
source and hourly meteorological data. Periods from one hour to one year
may be simulated, with all output controlled by the user through the
selection of options.
-------
Features of the algorithm include:
o Averaging periods of longer than 1 hour, if selected by user.
o Hourly meteorological data that may be read off punched cards
for.each hour, or from tape (or disk) containing a year's data
(same data as used for RAM or CRSTER).
o An optional terrain adjustment as a function of stability class.
o Inclusion or omission of stack downwash.
o Inclusion of gradual plume rise, or final rise only.
o Inclusion or omission of buoyancy-induced dispersion of pollutant
at the source using the method of Pasquill.
o Input of anemometer height.
o Input of wind profile power law exponents as functions of stability.
o Concentration contributions that are available per hour and/or for
the selected averaging period at each receptor from up to 25
sources.
o Concentrations available hourly and/or for the selected averaging
period at each receptor.
o Optional output of the.following information: average concentration
over length of record, plus highest five concentrations for each
receptor for four averaging times (1-, 3-, 8-, and 24-hour); and
an additional averaging time selected by the user.
o Optional output files for further processing of concentrations that
are available per hour and for each averaging period.
o Option {,01 Ae.ttinp de.tcuj.lt vo&i&a ^01 ie.pu.Za.tow a.pp£i.c.a.t<.on4.
o Cfto-cce. of, u.iha.n 01 >ui>iaJL 4e.tt4.nQ4.
5-86
-------
CONTROL DATA
The following control information is needed for a run. Some additional
information, to be discussed later, may be required depending upon options
selected. Control information needed includes:
Headings (for output)
Year
Starting Julian Day
Starting Hour
Number of averaging periods to be run
Number of hours in each averaging period
Code for selecting the pollutant for this run (sulfur
dioxide or particulate)
Mode of simulation (urban or rural)
Number of significant sources (used for contribution to
concentration from individual sources)
Additional averaging time for high-five table (explained
later)
Conversion for user > units (east and north coordinates)
Conversion for user height units
Half-life of pollutant used in this run
Values to select each option
Anemometer height
Wind profile power law exponents (one for each stability)
Terrain adjustments, if used (one for each stability)
Further discussion of input data is given in Chapter 7.
-------
SECTION 3
RECOMMENDATIONS
USES
As stated in the introduction, MPTER is a multiple point source
dispersion model for urban or rural situations. Because optional
adjustments can be made for slight terrain variations, careful study of
model inputs is required to ensure the user's problem is addressed, and
to provide proper output for the problem at hand. The model may also be
applied to -impact analyses in response to regulatory requirements by
selecting the default option which sets certain features, overriding other
user-input selections as required.
Its versatility allows ,>MPTER to function as both a tool for research
and for more routine impact analysis. In research, numerous parameter
variations can be explored for comparisons with measured air quality data,
and various sensitivities can be determined.
A frequent use of the model will be to assess air pollutant impact
to compare with National Ambient Air Quality Standards. Since the
short-term standards are not to be exceeded more than once a year, extremes
of the frequency distribution must be determined. Brute force approaches
may be required to estimate these extremes through calculation of a full
year's data, as is done by CRSTER. Receptor locations are input by the
user, except when the model's option is used for generating a polar
coordinate set of receptors centered in a specific location.
Determining appropriate receptor locations where maximum impact might
be expected is a difficult user problem. Little guidance is available
for selecting optimum receptor positions, but the following three steps
may prove helpful: 1) use screening methods to locate distances to maxima;
2) at these distances, use polar coordinate locations about each source
of significance, analyzing a year's or more meteorological data, and then
3) make estimates
7 5/Bf,
-------
ASSUMPTIONS
The foundation of MPTER, including much of its computer code, is the
point source portion of RAMR.
Gaussian Modeling
The following assumptions are made: 1) continuous plumes are diluted
upon release by the wind speed at stack top; 2) dispersion from continuous
plumes results in time averaged Gaussian distributions in both the horizontal
and vertical directions through the dispersing plume; 3) concentration
estimates may be made for each hourly period using the mean meteorological
conditions appropriate for each hour; 4) the total concentration at a
receptor is the sum of the concentrations estimated at the receptor from
each source, i.e., concentrations are additive; and 5) concentrations at a
receptor for periods longer than an hour can be determined by averaging the
hourly concentrations over the period.
The upwind distance x and the crosswind distance, y of the source from
the receptor is determined as a function of the mean hourly wind direction.
Dispersion parameter values are determined as functions of stabi1ity class
and upwind distance. Equations to estimate concentration are selected
• dependent upon stability class, and, for neutral or unstable conditions,
upon the relation of dispersion parameter value to mixing height (see
Appendix A). The location of the receptor relative to the plume position
is a dominant factor in the magnitude of the concentration.
Dispersion Parameter Values
The dispersion parameter values used for a particular run of MPTER
depend upon the mode of simulation (either urban or rural). For the rural
situations, a roughness of .approximately 0.1 meters is assumed and the
Pasquill-Cifford (P-G) parameters are employed. The urban dispersion
parameter values are those recommended by Briggs and included in Figure
7 and Table 8 of Gifford (1976).
Except for stable layers aloft, which inhibit vertical dispersion,
the atmosphere is treated as a single layer in the vertical that has the
same rate of vertical dispersion throughout. Complete eddy reflection
is assumed both from the ground and from the stable layer aloft, given
by the mixing
9 5/S6
-------
Option 2: Stack Downwash
A second optional feature of MPTER is considerations of stack tip
downwash using the methods .of Briggs. In such an analysis, a height
increment is deducted from the physical stack height before determining
momentum or buoyancy rise. This option primarily affects computations from
stacks having small ratios of exit velocity to wind speed.
Option 3: Gradual Rise
Gradual plume rise has been made an optional feature of MPTER, because
although the use of the x dependence for rising plumes will determine
average plume height with distances quite well, the plume axis is not
horizontal during the rising phase. Therefore, dispersion is taking place
perpendicular to the bent-over plume axis rather than vertically. The
dispersion parameters represent horizontal and vertical dispersion about
a horizontal plume, which may not be appropriate for estimating dispersion
of a rising bent-over plume. By making computations with and without the
gradual plume rise, at least identification is possible of potentially
high concentrations during the gradual plume rise phase. When gradual
rise is not employed, computations are made using the final 'effective plume
height.
Option 4: Buoyancy-Induced Dispersion
The final optional feature of MPTER is a method suggested by Pasquill
(1976) for determining the buoyancy-induced dispersion in both the
horizontal and vertical directions. This feature is offered because emitted
plumes undergo a certain amount of growth during the plume rise phase,
due to the turbulent motions associated with the conditions of plume release
and the turbulent entrainment of ambient air. Such dispersion, however,
will generally have little effect upon maximum concentrations unless the
stack height is small compared to the plume rise.
12 5/S6
-------
be either clockwise or counterclockwise. Although surface wind direction
may have little effect upon long-term concentrations (such as annual
average) from single plants, and may not greatly alter estimates of extreme
concentration values from such a source, use of surface wind direction
to determine plume transport direction usually causes large errors in
hour-to-hour estimates. This potential error is a very important
consideration if attempting to compare air quality measurements with the
model estimates. The error is also important in considering interactions
of several sources where actual wind directions are significant in
determining the location of a plume from a source passing over another
source.
Since the dispersion parameters are based upon P-G stability classes,
the fact should be recognized that a change of only one stability class
for input will cause large changes (factors of 5 to 10) in concentration
at a receptor. Such changes are especially likely if the receptor is closer
to the source than the distance to maximum concentration.
Other potential causes of large inaccuracies in concentration at a
given point include wind speed errors, wind speed profile power law
exponents that differ from actual variations, and nonrepresentative
stability classes. However, if the user is searching for maximum impact
and is relocating receptors in order to find such maxima, there will be
considerably less sensitivity to wind speed differences and power law
exponents, but still significant sensitivity to stability class.
Not included in this model are situations where wind speed varies
markedly within the hour, whereby the effective plume height will fluctuate,
causing increased vertical dispersion of the nlume.
Maxima even at the extreme ends of the frequency distribution will
tend to have more accuracy than hour-to-hour comparisons. Longer averaging
times, such as annual concentrations, will also have less error than short
averaging times. Background concentrations from sources not considered
in the emission inventory may become more important for the longer averaging
times.
14
-------
where u is the input wind speed for this hour, z is the anemometer height,
* 3
and the exponent p is a function of stability. If u is determined to be
-i
less than 1ms , it is set equal to 1.
Separate urban and rural default wind profile exponents are considered
by MPTER and are shown below. These exponents are used by the model when
the user exercises the default option. The rural exponents correspond
to a surface roughness of about 0.1 meters; the urban exponents result
from a roughness of about 1 meter (plus urban heat release influences).
For a more detailed discussion of wind profiles, the reader is referred
to Irwin (1979).
TABLE 1. DEFAULT WIND PROFILE POWER LAM EXPONENTS FOR THE
URBAN AND RURAL MODES.
Stability
A
B
C
D
E
F
Urban Exponent
0.15
0.15
0.20
0.25
0.30
0.30
Rural Exponent
0.07
0.07
0.10
0.15
0.35
0.55
As stated in the previous chapter, directional shear with height is
not included, which means that the direction of flow is assumed to be the
same at all heights over the region. The taller the effective height of
a source, the larger the expected error in direction of plume transport.
Although the effects of surface friction are such that wind direction
usually veers (turns clockwise) with height, the thermal effects (in
response to the horizontal temperature gradient in the region) can overcome
the effect of friction and cause backing (turning counterclockwise with
height) instead of veering.
In the program RAMMET, which processes National Weather Service hourly
observations, the wind directions (reported to the nearest 10°) are altered
by a randomly generated number from 0 to 9 used to add -4° to +5° to the
wind vector. An extreme overestimate of concentration
17
-------
In ranking the point sources by the significance of their expected
impact, only the rise due to buoyancy is processed, since it is expected
to be the dominant plume rise factor. In the computation of the effect
of each point source upon receptors for each simulated hour, however, all
three of the above mentioned effects — stack downwash, momentum plume
rise, and buoyant plume rise — can be considered . These computations are
discussed in detail in Appendix B. Of note is that since wind speeds are
not allowed to be less than 1 m s~l, the stable buoyancy plume rise for calm
conditions is not required and is therefore not included in the program code
for MPTER.
DISPERSION PARAMETERS
The. iu.iaJt. ditpe-iAion pa.i.ame.te.1 valuer in MPTER aie. the. P-G
1961; G^oid, I960], which a.ppe.a.1 cu> Qia.pn4 in Tu.ine.1 (1970)
and in Gittoid (Figuie. 2; 1976}. The. Aubioutine.* uu>e.d to de.te.imim thej>e.
ope.n-c.ou.ntw Aide, pa.iame.te.1 va.lu.ZA aie. the. Acme. cu> in the. UWAMAP piogiam
PTPLU (Pie.ic.e. e.t a£.,1982}. 'The uiban diAv
-------
HA = H for FT = 1
HA = H - AE for FT = 0
HA = H - 0.7 AE for FT = 0.3
A T
HA = H - 0.1 AE- for FT = 0.9
The manner in which the terrain adjustment is simulated is depicted
in Figure 1 for three values of the factor.
Of note to the user is that calculation of terrain adjustment is
limited to receptors whose ground-level elevation is less than the elevation
of the lowest stack top used in the run.
The terrain adjustment incorporated in MPTER is obviously simplistic.
For the estimation of plume behavior in the vicinity of a single hill,
the stable-plume fluid modeling studies of Hunt et al (1978) have shown
the importance of the Froude number, and of the location of the receptor
and the plume relative to hill base and top. None of these parameters
is considered here, but rather the relation of the receptor and source
ground-level elevations. The reader is therefore cautioned against
assigning too great a significance to results obtained using the terrain
adjustment option. >
Option 2: Stack Downwash
A second optional feature of MPTER is consideration of stack tip
downwash using the methods of Briggs. In such an analysis, a height
increment is deducted from the physical stack height before determining
momentum or buoyancy rise. Use of this option primarily affects
computations from stacks having small ratios of exit velocity to wind speed.
Option 3: Gradual Rise
Gradual plume r^se determination has been made an optional feature
of MPTER, because although the use of the x dependence for rising plumes
will determine average plume height with distance quite well, the plume
axis is not horizontal during the rising phase. Dispersion is thus taking
place perpendicular to the bent-over plume axis rather than vertically.
The dispersion parameters represent horizontal and vertical dispersion
about a horizontal plume, which may not be appropriate
22
5/86
-------
OUTHR - Subroutine which arranges and then prints tables of concentration.
Number of tables that is output depends on the option combination
specified.
RANK - Subroutine called by MPTER that ranks concentrations for four or
five averaging times so that highest five concentrations are
printed for each receptor.
ADDITIONAL COMMENTS
Figure 2 is an abbreviated flow diagram of MPTER showing its major
•loops and the relationships of the subroutines to each other and the main
program.
The main program of MPTER primarily exists for input and bookkeeping;
most technical calculations are performed by subroutine PTR. PTR calls
subroutine RCP, which in turn obtains dispersion parameter values from
subroutine PGYZ, then selects and solves the appropriate Gaussian equation.
Subroutine RANK orders the highest five concentrations for each averaging
time for each receptor.. Subroutine OUTHR essentially provides the printed
output.
The executable program for MPTER requires 58 K core on EPA's UNIVAC
1110.
26
-------
6.2.1.8 Pollutant Half-Life — HAFL
An exponential loss of the considered pollutant with travel time is
included in the model. At a travel time equal to the half-life, 50% of
the pollutant will remain. Although this view of chemical or physical
depletion processes is overly simplistic, it may be useful under certain
circumstances. Note that the half-life is entered in seconds. If the
user wants no depletion to be considered, entering zero for the half-life
will cause skipping of those portions of the code calculating pollutant
loss.
6.2.1.9 Values of Variables Related to Increase of Wind with Height—
The anemometer height in meters for the meteorological data used is
entered on CARD TYPE 6. Six values for the wind profile power law exponent,
one for each stability class, are also entered on CARD TYPE 6. Table 1
in Section 4 provides appropriate values for the urban and rural modes.
For computations submitted in response to regulatory requirements, Option
25 should be used. Current regulatory guidance should be consulted (check
with the appropriate regional meteorologist). This will automatically
utilize the values listed in Table 1.
If Option 1 is employed to make terrain adjustments, six terrain
adjustment factor values (one for each stability class) that are read in
on CARD TYPE 6 are used in subsequent computations (see 6.2.3.1.1 below).
The values must be real numbers between 0 and 1.
6.2.1.10 Urban/Rural Mode Indicator—
The urban or rural setting is indicated via input variable, ML/OR.
If MUOR = 1, then the urban dispersion parameter values recommended by
Briggs and included iv* Figure 7 and Table 8 of afford (1976) are used;
if MUOR = 2, then the P-G dispersion values are exercised. (•fhen the
regulatory option is chosen (IOPT(25) = 1), MUOR also determines the set
of wind profile power law exponents used (either urban or rural).
6.2.2 Input Data
Comments on emission, receptor, and meteorological data are made here.
31
5/S6
-------
6.2.2.1 Emission Data -- (See CARD TYPE 7)
The alphanumeric name and eight variables of point source information
are the same as used in most dispersion models. Only one of the two
emission rates will be used in a given run (see 6.2.1.3 above). If only
one pollutant is of interest, the other field may be left blank. If Option
6 to enter hourly emission rates (see 6.2.3.2.2 below) is not used, the
emission rates should provide the best estimate of the emission for the
length of record being run. If maximum or design emissions are used,
concentration estimates may be somewhat larger than actual concentrations.
However, Irwin and
31A
-------
Users who want to make a run for a significant length of simulated.
time are thus advised that when employing the terrain adjustment option,
they must first make a run for a short period (one hour — meteorological
data are unimportant) to see if double asterisks appear on the receptor
list. Then these receptors should be eliminated before making the long-.term
run.
6.2.2.3 Meteorological Data -- (See CARD TYPE 14)
Meteorological data files prepared by the CRSTER Preprocessor or by
the similar program from the RAM system, RAMMET, are acceptable by MPTER.
Proper running of these preprocessor programs results in a one-year period
of record with one record for each calendar day. Twenty-four values of
each of the following parameters are contained in this record:
Pasquill-Gifford Stability Class, wind speed (at anemometer height), ambient
air temperature, wind flow vector (wind direction ± 180°), and mixing
height. The user should be reminded that if using either of these programs
to process meteorological data, a complete set of data must be input to
either program. Any "holes" in the data set must be filled by the user.
In using this data for input to MPTER one record is read for each simulated
day. If making a run for a period of record of less than a year and
starting after Day 001 (January 1st), MPTER will skip records to arrive
at the proper day based upon the variable IDATE(2) on CARD 4 (see 6.2.1.4
above).
If using meteorological data from the preprocessed file, Option 5
will be zero. Also, the four variables on CARD TYPE 8 are to be read in
and will be checked against the data on the input file.
Alternatively, when employing Option 5, meteorological data is read
from punched cards (see CARD TYPE 14) with one record for each simulated
hour in the run. The wind speed on this card again is for the anemometer
height. The wind direction is the direction from which the wind blows.
6.2.3 Options
There are five technical options, four input options, 11 print options,
and five other options either for control or for output to files. To employ
a particular option, a 1 is entered as input to the element of the array
IOPT with the same number as the option number. Otherwise, a zero is
34 S/S6
-------
plume rise using the techniques suggested by Pasquill (see Section 4). It
should be pointed out that even if Option 3 is employed, resulting in use
of only the final plume height for effective height of emission, the gradual
plume rise is determined internally to determine the buoyancy -induced plume
size. (It would not be the least bit appropriate to use the final plume
rise to determine the initial size close to the stack).
6. 2 '3. 1.5 Option 25: Se.t Ve.6au.lti> (u*e.d (.01 inqu.ia.toiu application*} --
The. dztault oat-ion (10PT(25) = 7) automatical-Pis *e.t* *e.ve.lal input
ie.atu.iej>, ove.iiid.ina othe.1 u*e,i- input *e.le.ction* a* ie.ouiie.d. C.uiie.nt&j
the. dzAault option *e.t* {e.atuiej> ie.ou.iie.d tot ie.au.Za.toiu application*.
Ex.e,ici*ina thi* option ie.*ult* in the. tollowina.
o Final plume. ii*e. it u*e.d (aiadual 01 tian*itional pP-ume. lite, i* not
c.onAide.ie.d) , that it, IOPT{3] i* *e.t to "7").
Fo/c di^tanau teA* than the. distance, to 6ina£ lite., the. Qiadual
plume. ii*e. it uA&d to de.te.iinine. the. bu.ouanc.u-indu,c.e.d
ie.gaid£ej>A o{ the. *e.ttinQ 06 IOPT(3).
o Te.iia.in adju^tme.nt fac-toi* aie. Ait to "Q" (01 at.
o Stack tip downwoAh [RiigqA, 7974) i* c.on*ide.ie.d (i.e.., IOPT(2) i*
*e.t to "0"}.
o Ve.4au£t uiban 01 mial wind piotite. exponent aie. u*e.d de.pe.ndina on
the. value, ot MUO?; appiooiiate, mixing he.iqhtA aie. ^>e.t.
o Calmt> aie. t'\ de.ve.t.ope.d hu the. EPA (79^4)
cw di£c.uAAe.d be.-C.ou).
o Ve.c.au haf.t-f.ite. i* Ae.t to 4.0 hou.i* 601 SOf 4oi the. uiban option,
and infinite. halA-lite. (no rfecow) toi all othe.i
It i* poAAible. to ope.iate. in e.ithe.1 the. uiban 01 iuia.1 mode. whe.n the.
de.4ault option i<*> *e.fe.c.te.d.
Table. 7A contain* a litt at, the. AubAP.aue.nt Ae.ttinpA £01 othe.1 option*
and the. valuer (01 *pe.ci^ic vaiiablu that will -ie.*ult uihe.n the. de.4ault
option i* *e.le.c.te.d .
36 5-S6
-------
One. lesult 06 exeicisina the. default option is that calm conditions
handled accoiding to methods developed by the. EP: {1984}. A calm houi
can be. identified in the. model OLA an hou.1 with a wind speed of, 1.0 m/sec
and a wind diiection eoual to the. pievious houi. When a calm it detected
in the. meteoiological data, the. concentiations at all leceptois aie set
to zeio, and the. numbei of. houis being aveiaged is leduced bit one., except
that the. divisoi used in calculating the. aveiage is ne.ve.1 lej>4 than 75
pe.ice.nt oi the. ave.iagina time., foi any simulation, this le^ults in the.
following:
o 3-s/ou* ave.iaae.s aie. de.te.imine.d by alivauA dividing the. sum 06 the.
houllit contibutions bu 3;
o S^ioui ave.iagzs aie. calculate.d bu dividina the. sum of the. houilu
contiibutions by the. numbe.i oX non-cal.m houis 01 6, whiche.ve.1
is gie.atc>A;
o 24-^loui ave.iagej> aie. de.te.imine.d bu dividina the. sum of. the. houilu
contiibutions bu the. numbe.1 of non-calm houis 01 1%, whiche.ve.1
is giQ.ate.fi: and
o oe.iiod of ie.coid ave.iage.s, ie.gaidlcss of le.nath, aie. calculated
bu dividina the. sum of all the. houifjj contiibutions bu the.
numbe.1 of. non-calm houis duiina the. oe.iiod of. ie.coid.
Conce.ntiation calculations which aie. afte.cte,d hu cafms aie. flaage.d in
the. piinte.d output with the. le.tte.1 C placid ne.x.t to the. conce.ntiation value..
Wote that this tie.atme.nt of. calm case.s is alwaus use.d whe.n ine de.tiCM.lt
option is selected, but cannot be used if. the. default option is not se.le.cted.
This calms pioce.du.ie. is not available in .'{PTER outside of the default
option. The usei can employ this pioceduie, howevei, thiough the use of the
CALMPPfl postpiocessoi piogiam f:PA, 198A)\. CAUWO is available as vait oX
UNAMAP Veisio.n 6.
6.2.3.2 Input Options --
For the four following input options, specific action is taken if the
value of 1 is entered.
36A 5-55
-------
6.2.3.2.1 Option 5: Met. Data on Cards -- If IOPT(5) = 1, met data
are entered on cards with one card for each simulated hour (see 6.2.2.3
above). If Option 5 is 0, meteorological data is entered using records on
unit 11. The specification of the records on this input file are given in
the next section.
the. dzfiault option (10PT (25] *1) i* emp^ot/ed, I OPT (5) i*
e.qua£ to 0, that iej>tiic.tina the. UAC. Oi< thi* option. Thi* i* done, to avoid
c.on(£ic.t with the. calm* pioc.HM>ina p-tocedu^e. TA on-Aite. 01 othe.i than
RAMMET data cue. to be. uu>e.d, the.u mu^t c.oM£Apond to the. ioimat oi the. RAMMET
and be. x.e.ad into the. wode.t on dew-tee ( 7 / ) .
6.2.3.2.2 Option 6: Read Hourly Emissions — If IOPT(6) = 1, hourly
emissions for each point source. are read from unit 15 in the main program,
then are compared with the emissions input on the point source card for
scaling the exit velocity (see 6.2.2.1). Subroutine PTR performs these
tasks; Section 7 specifies that records on this input file.
6.2.3.2.3 Option 7: Specify Significant Sources -- The number of sig-
nificant sources, given as NSIGP on Card 4, is ranked when the emissions data
are processed according to expected ground-level impact under 8 stability,
with a wind at stack top of 3 m s~*. This option can be employed if the
contribution of a source is sought for a subsequent run that is outside
this list or too far down it to be included among the significant sources,
NSIGP on Card 4 (see 6.2.1.5 above). When IOPT(7) = 1, an additional input
card is read (CARD TYHE 9) that indicates how many sources will be specified
(NPT), then gives their source numbers (the array MPS) corresponding to the
source numbers in the printed output list. Source numbers are assigned
according to the order of the source input. For example, consider an
application having 30 sources, where a run is deemed useful that shows
contributions from 10 sources (NSIGP on CARD 4 will be set to 10). Speci-
fically, the contributions from sources 7 and 22 are desired. The 12 most
significant of the 25 sources, in order, are: 3, 8, 23, 11, 2, 15, 4, 27, 1,
5, 28, and 14. Since 7 and 22 are not among these 12, and further are not
36B 5-S6
-------
in the first 10, Option 7 is set equal to 1, and CARD TYPE 9 contains 2 for
NPT and the two numbers 7 and 22 for the two entries to MRS. Sources 7 and
22 will occupy the first two columns in the contribution table. The program
will fill the other eight positions of the significant source list (to total
10) with the first eight sources of the list of 25, i.e., 3, 8, 23, 11, 2,
15, 4 and 27.
36C 5/S6
-------
W/ien the. d^awit option (IQVT(25) = 1} i* ejnp£oue.d, WPT (7) it *e.t e.qua.1
to Q, thuA iej>t>Lic.tinQ the. u4e o£ thi* option. Thl& i*> done, to avoid con-
between e^timateA o$ ze.io c.onc.e.ntiation and hou.M with minting data
tag* aAe. not tued othe.i-than in the. high-5 tablet to identify concen-
tiationA c.alc.u£ate.d ^01 pe.n.iod* oi calm wind*.
6.2.3.2.4 ^ption 8: Input Radial Distances and Generate Polar Coordi-
nate Receptors — For the user's convenience in making computations at an
array of receptors that are positioned about a. specific source or some other
point, Option 8 provides for reading an additional input card (CARD TYPE 10)
with from one to five non-zero distances in user units. Additionally, the
east and north coordinates (also in user units) of a center position are
provided. The program generates the east and north coordinates of each
receptor in a polar coordinate array, generating 36 receptors for each non-
zero distance (one for each 10 degrees of azimuth). A five-value distance
array^is read from the card with distances entered for the number of distances
desired. Zeros are added to fill the array. For example, to produce a
receptor array with two distances, two distances and three zeros are entered.
This step will generate 72 receptors (36 for each distance). Putting non-
zero values for all five distances will generate 180 receptors, which is the
maximum number that MPTER can compute. Thus using Option 8 in this manner
will not allow the input of any additional receptor cards with positions
specified by the user.
Of note to the user is that if both Option 8 and Option 1 for terrain
adjustment are used, elevations of the polar coordinate receptors must be
read in using CARD TYPE 11. These can best be obtained by drawing 36 radials
from the designated center point on a topographical map, and drawing circles
for each distance. Then the elevations can be determined from the map by
reading elevations outward from the center, starting with the 10-degree azimuth
radial. If all five distances are used so that 180 receptors are generated,
a card with ENDREC in Columns 1-6 must be read following CARD TYPE 10 (or
the last card of CARD TYPE 11 if used).
37 5/86
-------
Variable
TABLE 6. MPTER CARD 4 - CONTROL AND CONSTANTS (1 card)
Description
Units
IDATE(1)
IDATE(2)
IHSTRT
NPER
NAVG
IPOL
MUOR
NSIGP
NAV5
CONONE
CELM
HAFL
2 digit year (see 6.2.1.4)
starting Julian day for this run
starting hour for this run
number of averaging periods to be run
(see 6.2.1.2)
number of hours in an averaging period
pollutant indicator: (see 6.2.1.3)
3 = S02
4 = suspended particulates
urban/rural mode indicator: (see 6.2.1.10)
1 = urban
2 = rural
number of significant point sources,
max = 25. (see 6.2.1.5)
number of hours in the user specified period
for which a high-five concentration
table is generated, (see 6.2.1.3)
multiplier constant, user units to km
(see 6.2.1.5)
multiplier constant, user heiaht units to m
(see 6.2.1.6)
pollutant half-life (see 6.2.1.7)
sec
All input variables are free format.
50
S/S6
-------
TABLE 7. MPTER CARD 5 - OPTIONS (1 card) - integer values: 0 or 1
Variable Format
IOPT(1) Free
IOPT(2) Format
IOPT(3)
IOPT(4)
IOPT(5)
IOPT(6)
IOPT(7)
IOPT(8)
IOPT(9)
IOPT(10)
IOPT(11)
IOPT(12)
IOPT(13)
IOPT(14)
IOPT(15)
IOPT(16)
IOPT(17)
IOPT(18)
IOPT(19)
IOPT(20)
IOPT(21)
IOPT(22)
IOPT(23)
IOPT(24)
IOPTC2S)
Description
TECHNICAL OPTIONS (see 6.2.3.1)
Use Terrain Adjustments
No Stack Downwash
No Gradual Plume Rise
Include Buoyancy-Induced Dispersion
INPUT OPTIONS (see 6.2.3.2)
Met. Data on Cards
Read Hourly Emissions
Specify Significant Sources
Input Radial Distances and Generate Polar
Coordinate Receptors
PRINTED OUTPUT OPTIONS (see 6.2.3.3)
Delete Emissions With Height Table
Delete Resultant Met. Data Summary for
Averaging Period
Delete Hourly Contributions
Delete Met. Data on Hourly Contributions
Delete Final Plume Height and Distance to
Final Rise on Hourly Contributions
Delete Hourly Summary
Delete Met. Data on Hourly Summary
Delete Final Plume Height and Distance to
Final Rise on Hourly Summary
Delete Averaging-Period Contributions
Delete Averaging-Period Summary
Delete Average Concentrations and High-Five
Table
OTHER CONTROL AND OUTPUT OPTIONS (see 6.2.3.4)
Run is Part of a Segmented Run
Write Partial Concentrations to Disk or Tape
Write Hourly Concentrations to Disk or Tape
Write Averaging-Period Concentrations to Disk
or Tape
Punch Averaging-Period Concentrations on Cards
Set Default Values (u^erf f,oi i^.Qu.la.to'iif application*]
51
S/86
-------
TABLE 7A DEFAULT OPTION - SUBSEQUENT SETTINGS
Employment of the default option (IODT (25)=1) will cause the input
option switches and specified variables to be set to the following:
IOPT (2) = 0
IOPT (3) = 1
IOPT (4) = 1
•IOPT (5) = 0
IOPT (7) = 0
IOPT (10) = 1
IOPT (11) = 1
IOPT (12) = 1
IOPT (13) = 1
IOPT (14) = 1
IOPT (15) = 1
IOPT (16) = 1
IOPT (17) = 1
IOPT (18) = 1
IOPT (19) = 0
IOPT (20) = 0
IOPT (21) = 0
IOPT (22) = 0
IOPT (23) = 0
IOPT (24) = 0
HAFL = 14400. (For IPOL = 3, MUOR = 1)
HAFL = 0. (For IPOL ? 3 or MUOR f 1)
IHSTRT = 1
NAVG = 24
NSIGP = 0
NAV5 = 0
PL = .15,.15,.20,.25,.30,.30 for MUOR = 1
= .07,.07,.10,.15,.35,.55 for MUOR = 2
CONTER = .0,.0,.0,.0,.0,.0
51A 5-86
-------
TABLE 23. MPTER OPTIONAL TEMPORARY FILE - VALUES FOR HIGH-FIVE TABLES
(unit 14) (output if option 20 = 1)
Variable
Dimensions Description
Units
ONLY RECORD
IDAY (on write)
IDAYS (on read)
SUM
NHR
DAY1A
HR1
HMAXA
NDAY
IHR
Number of days processed
Number of days previously
processed
180 Cumulation of long-term g/m3
concentration
Number of hours processed
Starting Julian day of
period of record
Starting hour of period of
record
5,180,5 Concentrations according to rank, g/m3
receptor, and averaging period
5,180,5 Associated Julian day of -
concentration
5,180,5 Ending hour of concentration -
64
5/86
-------
REFERENCES
Gifford, Franklin A., Jr., 1960: Atmospheric dispersion calculations using
the generalized Gaussian plume model. Nucl. Saf. _2 (2): 56-59.
Gifford, F. A. 1976. Turbulent diffusion-typing schemes: a review, Nucl.
Saf. 17: 68-86.
Holzworth, George C., 1972: Mixing Heights, Hind Speeds, and Potential for
Urban Air Pollution through the Contiguous United States, Office of Air
Programs Publication No. AP-101.U. S. Environmental Protection Agency,
Raleigh, NC. 118 pp.
Hunt, J. C. R.; Snyder, U. H.; and Lawson, R. E., Jr., 1978: Flow struc-
ture and turbulent diffusion around a three-dimensional hill -- Fluid
modeling study on effects of stratification.Part I. Flow structure.
EPA-6UO/4-78-041, U. STEnvironmental PTotection Agency, Research
Triangle Park, NC. 84 pp.
Irwin, J. S. 1979. A theoretical variation of the wind profile power-law
exponent as a function of surface roughness and stability. Atmos.
Environ. 13: 191-194.
Irwin, J. S.; and Cope, A. M., 1979: Maximum surface concentration of S02
from a moderate-size steam-electric power plant as a function of power
plant load. Atmos. Environ. 13: 195-197.
Pasquill, F., 1961: The estimation of the dispersion of windborne material,
Meteorol. Mag., 90 (1063): 33-49.
Pasquill, F., 1974: Atmospheric Diffusion, 2d ed., Hal stead Press, New
York. 429 pp.
Pasquill, F., 1976: Atmospheric dispersion parameters in Gaussian plume
modeling. Part II. Possible requirements for change in the Turner
Workbook values.EPA-600/4-76-03Ub,(T.STEnvironmentalProtection
Agency, Research Triangle Park, NC. 44 pp.
Pi.Htc.&, T. E. and V. R. Tmine.1, 3. A. Ca.taJta.no, and F. I/. Halt III, 19S2:
PTPLU - A Single-Source Ga.uA4J.an Vitae-IA-ion Af.QOii.thn>—UAZ-1'A Ga-irte.
EPk-600/8-X2-014, U. S. Enviionmnntal "iTfiote.c.fion Aaencw, Re.AZa.ich
"Puana£e Pa.ik, NC. 110 pp.
Turner, D. Bruce, 1970: Workbook of Atmospheric Dispersion Estimates,
Office of Air Programs Publication floT AP-26. \T. S. Environmental
Protection Agency, Research Triangle Park, NC. 84 pp.
Turner, D. 8., and Novak, J. H., 1978: User's Guide for RAM. Vol. 1.
Algorithm Description and Use, Vol. II. Data Preparation and Listings.
EPA-600/8-78-016 a and b, U. S. Environmental Protection Agency,
Research Triangle Park, NC. 60 and 222 pp.
144 5-86
-------
U. S. Env4.ionme.nta2 Piotac.ti.on Apewcf/, 19&6: Ga4.de.li.ne. on Mi Qu.af.ittJ
(Reused) EPA 450/2-78-027K, ~U. S. Envi.ionme.ntaJ. ~>Viote.c.t4.on Acjencu,
Tii.a.nple. Paik, WC.
U. S. Environmental Protection Agency, 1977: User's Manual for Single Source
(CRSTER) Model. Monitoring and Data Analysis Division, EPA-4bU/2-77-013.
Research Triangle Park, NC.
U. S. Environmental Protection Agency, 1978: User's Network for Applied
Modeling of Air Pollution (UNAMAP) (Version 3). (Computer programs on
magnetic tape for eleven air quality simulation models) NTIS PB 277-193,
National Technical Information Service, Springfield, VA.
U. S. EnviionmantaJ? P lotmtion Aoenct/, 198*: C.cJ.m* PIOC&MO*. (CALMPR0J
Guide.. EPA-901 /9-%4-n01 . U. S. Env4.ionme.ntaf ip*.ote.c.t4.on Ape.nc.u ,
I, Boston, MA 02201.
145
-------
APPENDIX B
PLUME RISE FOR POINT SOURCES
The use of the methods of Briggs to estimate plume rise and effective
height of emission are discussed below.
First, actual or estimated wind speed at stack top, u(h), is assumed
to be available.
Stack Downwash
To consider stack downwash, the physical stack height is modified
following Briggs (1974, p. 4). The h1 is found from
h1 = h + 2{[vs/u(h)] - 1.5}d for vg < 1.5u(h), (81)
h1 = h for v 2.1.5u(h),
where h is physical stack height (meters), vg is stack gas velocity (meters
per second), and d is inside stack-top diameter (meters). This h1 is used
throughout the remainder of the plume height computation. If stack downwash
is not considered, h1 = h in the following equations.
Buoyancy Flux
For most plume rise situations, the value of the Briggs buoyancy flux
parameter, F (mVs3 ) is needed. ' The following equation is equivalent to
Briggs1 (1975, p. 63) Eq. 12:
F = (gvsd2AT)/(4Ts), (B2)
where AT = T - T, T is stack gas temperature (Kelvin), and T is ambient
S S
air temperature (Kelvin).
150 S/S6
-------
Unstable or Neutral: Momentum Rise
Regardless of the atmospheric stability'3 neutral-unstable momentum
rise is calculated. The plume height is calculated from Briggs' (1969,
p. 59) Eq. -5.2:
H = h1 + 3dvs/u(h). (B3)
Briggs (1969) suggests that this equation is most applicable when v /u
is greater than 4. Since momentum rise occurs quite close to the point
of release, the distance to final rise is set equal to zero.
Unstable or Neutral: Buoyancy Rise
For situations where T >_ T, plume rise due to buoyancy is calculated.
The distance to final rise x (in kilometers) is determined from
the equivalent of Briggs' (1971, p. 1031) Eq. 7, and the distance to final
rise is assumed to be 3.5x*, where x* is the distance at which atmospheric
turbulence begins to dominate entrainment. For F less than 55,
xf = 0.049F5/8. (B4)
For F equal to or greater than 55,
xf = 0.119F2/5. ' (B5)
The plume height, H (in meters), is determined from the equivalent
of the combination of Briggs' (1971, p. 1031) Eqs. 6 and 7. For F less
than 55,
H = h1 + 21.425F3/4/u(h). (86)
For F equal to or greater than 55,
H = h1 + 38.71F3/5/u(h). (87)
If the unstable-neutral momentum rise (previously calculated from
Eq. 83) is higher than the unstable-neutral buoyancy rise calculated here,
momentum rise applies. Since momentum rise takes place near the stack
top, the distance to final rise is set equal to zero.
151 5/S6
-------
Stability Parameter
For stable situations, the stability parameter s is calculated from
the equation (Briggs, 1971, p. 1031):
s = g(39/3z)/T. (B8)
As an approximation, for stability class E (or 5), 36/3 z is taken as
0.02 K/m, and for stability class F (or 6), 36/3z is taken as 0.035 K/m.
Stable: Momentum Rise
When the stack gas temperature is less than the ambient air temperature,
it is assumed that the plume rise is dominated by momentum. A plume height
is calculated from Briggs' (1969, p. 59) Eq. 4.28:
H = h' + 1.5{(v2sd2T)/[4Tsu(h)]}1/3s''/6. (89)
This is compared uith the value for unstable-neutral momentum rise
(Eq. B3) and the lower of the two values is used as the resulting momentum
plume height.
Stable: Buoyancy Rise
i
For situations where Ts >_ T, the plume rise . due to buoyancy is
calculated. The distance to final rise (in kilometers) is determined by
the equivalent of a combination of Briggs' (1975, p. 96) Eqs. 48 and 59:
xf = 0.0020715u(h)s'^/2. (810)
The plume height is determined by the equivalent of Briggs' (1975,
p. 96) Eq. 59:
H = h' + 2.6{F/[u(h)s]}1/3. (B11)
If the stable momentum rise is higher than the stable buoyancy rise
calculated here, momentum rise applies and the distance to final rise is
set equal to zero.
152
-------
AH Conditions: Distance Less than Distance to Final Rise (Gradual Rise)
Where gradual rise is to be estimated for unstable, neutral or stable
conditions, if the distance upwind from receptor to source x (in kilometers)
is less than the distance to final rise, the equivalent of Briggs' (1971,
p. 1030) Eq. 2 is used to determine plume height:
H = h' + (160Fl/3x2/3)/u(h). (B12)
This height is used only for buoyancy-dominated conditions; should it exceed
the final rise for the appropriate condition, the final rise is substituted
instead.
153 . 5/86
-------
REFERENCES -- APPENDIX B
Briggs, Gary A., 1969: Plume Rise, USAEC Critical Review Series, TID-25075,
National Technical Information Service, Springfield, VA. 81 pp.
Briggs, Gary A., 1971: Some recent analyses of plume rise observation.
In: Proceedings of the Second International Clean Air Congress, H. M.
Englund and W. T. Beery, eds. Academic Press, New York. pp. 1029-1032.
Briggs, Gary A., 1974: Diffusion Estimation for Small Emissions. In ERL,
ARL USAEC Report ATDL-106. U. S. Atomic Energy Commission, Oak Ridge,
Tenn. 59 pp.
Briggs, Gary A., 1975: Plume rise predictions. In: Lectures on Air
Pollution and Environmental Impact Analysis, Duane A. Haugen, ed. Amer.
Meteorol. Soc., Chapter 3 (pp. 59-111). Boston, Mass. 296 pp.
154 5/86
-------
APPENDIX B
LISTING OF FORTRAN SOURCE CODE
The source code of MPTER (Version 85165) follows. The program consists
of a main module , five subroutines, and one function. These pages replace
Appendix C of the original document.
-------
c
c
c
c
c
c
MPTER (DATED 85165)
AN AIR QUALITY DISPERSION MODEL IN
SECTION 1. GUIDELINE MODELS.
IN UNAMAP (VERSION 6) JUL 86
SOURCE: UNAMAP FILE ON EPA'S UNIVAC 1110, RTF.
C->->->-> SECTION A - GENERAL REMARKS.
MPT00010
MPT00020
MPT00030
MPT00040
NC. MPT00050
MPT00060
MPT00070
MPT00080
C***********************************************************************MPT00090
C NOTE: THIS VERSION OF MPTER IS COMPILED WITH THE UNIVAC MPT00100
C ASCII FORTRAN COMPILER. THIS VERSION OF THE MODEL MPT00110
C DIFFERS SLIGHTLY FROM EARLIER VERSIONS IN THE AREAS MPT00120
C OF FORMAT STATEMENTS AND CONDITION STATEMENTS. MPT00130
C NOTE: THE CARD INPUT FOR SOURCES DIFFERS SLIGHTLY FROM MPT00140
C PREVIOUS VERSIONS. ENDP SHOULD NOW BE INPUT TO MPT00150
C INDICATE THE LAST OF THE POINT SOURCES. MPT00160
C****************************************************************#*^
C
C***
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
MPTER PROGRAM ABSTRACT.
MPTER IS A MUTIPLE POINT SOURCE CODE WITH AN OPTIONAL
DEFAULT MODE AND AN OPTIONAL TERRAIN ADJUSTMENT
FEATURE. THE ALGORITHM CODE IS PRIMARILY BASED ON THE POINT
SOURCE PORTION OF RAM WHICH IS BASED ON GAUSSIAN MODELING
ASSUMPTIONS. THIS VERSION OF MPTER ALLOWS FOR THE SELECTION
OF URBAN OR RURAL DISPERSION PARAMETERS AND IS CONTROLLED
BY THE INPUT VALUE FOR THE VARIABLE MUOR("1" FOR URBAN,
"2" FOR RURAL). THREE OTHER FEATURES OF MPTER ARE: l) TO
TURN OFF STACK DOWNWASH, 2) TO TURN OFF GRADUAL PLUME RISE,
AND 3) TO INCLUDE PLUME SIZE DEPENDENT ON PLUME RISE.
EXECUTION OF MPTER IS LIMITED TO A MAXIMUM OF 250 POINT
SOURCES AND 180 RECEPTORS. SIMULATION IS DONE HOUR-BY-HOUR
AND HOURLY METEOROLOGICAL DATA ARE REQUIRED AS INPUT. LENGTH
OF SIMULATED TIME CAN VARY FROM 1 HOUR TO 1 YEAR.
MPTER AUTHORS:
THOMAS E. PIERCE* AND D. BRUCE TURNER*
ENVIRONMENTAL OPERATIONS BRANCH
METEOROLOGY AND ASSESSMENT DIVISION, ESRL
ENVIRONMENTAL PROTECTION AGENCY
ON ASSIGNMENT FROM NATIONAL OCEANIC
DEPARTMENT OF COMMERCE.
AND ATMOSPHERIC ADMIN.
MODIFIED FOR DEFAULT OPTION AND URBAN OPTION BY:
JEROME B. MERSCH
SOURCE RECEPTOR ANALYSIS BRANCH
MONITORING AND DATA ANALYSIS DIVISION
ENVIRONMENTAL PROTECTION AGENCY
MPTER SUPPORTED BY:
ENVIRONMENTAL OPERATIONS BRANCH
MAIL DROP 80. EPA
RESRCH TRI PK, NC 27711
PHONE: (919) 541-4564, FTS 629-4564.
*************************************************************
*
*
*
*
*
*
*
*
*
*
*
*
DEFAULT OPTION DESCRIPTION
SELECTION OF THE DEFAULT OPTION CAUSES
FOLLOWING FEATURES TO BE SET:
THE
FINAL PLUME RISE IS USED; GRADUAL
(TRANSITIONAL) RISE IS NOT PERMITTED.
BUOYANCY INDUCED DISPERSION IS USED
DEFAULT VALUES OF .07,.07,.10,.15,.35,
AND .55 FOR THE RURAL AND .15..15,.20,
.25,.30, AND .30 FOR THE URBAN OPTION
*
*
*
*
*
*
*
*
*
*
*
*
MPT00180
MPT00190
MPT00200
MPT00210
MPT00220
MPT00230
MPT00240
MPT00250
MPT00260
MPT00270
MPT00280
MPT00290
MPT00300
MPT00310
MPT00320
MPT00330
MPT00340
MPT00350
MPT00360
MPT00370
MPT00380
MPT00390
MPT00400
MPT00410
MPT00420
MPT00430
MPT00440
MPT00450
MPT00460
MPT00470
MPT00480
MPT00490
MPT00500
MPT00510
MPT00520
MPT00530
MPT00540
MPT00550
MPT00560
MPT00570
MPT00580
MPT00590
MPT00600
MPT00610
MPT00620
MPT00630
MPT00640
MPT00650
MPT00660
MPT00670
MPT00680
MPT00690
MPT00700
157
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*:
Tl
HAVE BEEN SET FOR THE POWER LAW WIND
PROFILE EXPONENTS FOR STABILITY
A THROUGH F RESPECTIVELY.
- TERRAIN ADJUSTMENT FACTORS ARE SET TO
ZERO FOR ALL STABILITIES.
- STACK TIP DOWNWASH WILL ALWAYS BE
CALCULATED WHEN APPROPRIATE. BRIGGS
STACK TIP DOWNWASH IS USED.
- EXPONENTIAL DECAY (HALF-LIFE) IS
SET TO 4 HOURS FOR URBAN S02 APPLICATIONS,
OTHER SITUATIONS USE NO DECAY. THIS IS
CONSISTENT WITH REGULATORY GUIDANCE.
- CONCENTRATIONS FOR CALM HOURS ARE SET TO 0.
- FOR MULTI-HOUR AVERAGING PERIODS THE
THE CONCENTRATIONS RESULTING FROM THE
CONSIDERATION OF CALM WIND CONDITIONS
ARE TREATED AS DESCRIBED IN SECTION S
OF THIS PROGRAM.
- IN ORDER TO FACILITATE THE HANDLING OF
CALM WIND CONDITIONS, THE START HOUR
AND THE AVERAGING PERIOD HAVE BEEN
PRESET. THIS WILL AVOID CONFLICT
WITH THE CALMS PROCESSING PROCEDURE.
- IF ONSITE OR OTHER THAN RAMMET METE-
OROLOGICAL DATA ARE TO BE USED IT MUST
CORRESPOND TO THE FORMAT OF THE RAMMET
FILE AND BE READ INTO THE PROGRAM ON
DEVICE (11).
- OUTPUT OPTIONS 5,7 AND 10 THROUGH 18 ARE
SET TO 1 AND OPTIONS 20 THROUGH 24 ARE
SET TO 0.
- AVERAGE CONG. AND HI-5 TABLES ARE PRINTED.
THERE ARE IN ADDITION SEVERAL
FEATURES THAT ARE INHERENT IN THE UNAMAP 5
LATER VERSIONS OF MPTER. THESE ARE:
AND
MOMENTUM PLUME RISE IS ALWAYS ACCOUNTED
FOR.
TERRAIN ADJUSTMENTS ARE USED FOR
RECEPTORS BELOW STACK BASE ELEVATION IN
THE SAME MANNER AS ELEVATED RECEPTORS
MIXING HEIGHT IS COMPARED WITH FINAL
PLUME HEIGHT WITHOUT REGARD TO PLUME
HEIGHT CHANGES DUE TO TERRAIN.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
TWO SYSTEMS OF LENGTH AND COORDINATES ARE USED IN MPTER:
MPT00710
MPT00720
MPT00730
MPT00740
MPT00750
MPT00760
MPT00770
MPT007SO
MPT00790
MPT00800
MPT00810
MPT00820
MPT00830
MPT00840
MPT00850
MPT00860
MPT00870
MPT00880
MPT00890
MPT00900
MPT00910
MPT00920
MPT00930
MPT00940
MPT00950
MPT00960
MPT00970
MPT00980
MPT00990
MPT01000
MPT01010
MPT01020
MPT01030
MPT01040
MPT01050
MPT01060
MPT01070
MPT01080
MPT01090
MPT01100
MPT01110
MPT01120
MPT01130
MPT01140
MPT01150
MPT01160
MPT01170
MPT01180
MPT01190
MPT01200
THE FIRST SYSTEM, USER UNITS, IS SELECTED BY THE USER AND MPT01210
NORMALLY USES THE COORDINATE SYSTEM OF THE EMISSION INVENTORY. MPT01220
ALL LOCATIONS INPUT BY THE USER (SUCH AS SOURCES AND RECEPTORS)MPT01230
ARE IN THIS SYSTEM. ALSO AS A CONVENIENCE TO THE USER, ALL
LOCATIONS ON O'TTPUT ARE ALSO IN THIS SYSTEM.
THE SECOND SYSTEM, X, Y, IS AN UPWIND, CROSSWIND
COORDINATE SYSTEM RELATIVE TO EACH RECEPTOR. THE X-AXIS IS
DIRECTED UPWIND (SAME AS WIND DIRECTION FOR THE HOUR). IN
ORDER TO DETERMINE DISPERSION PARAMETER VALUES AND EVALUATE
EQUATIONS FOR CONCENTRATION ESTIMATES, DISTANCES IN THIS
SYSTEM MUST BE IN KILOMETERS. THIS SYSTEM IS INTERNAL AND IS
NOT APPARENT TO THE USER.
;->->->-> SECTION B - DATA INPUT LISTS.
C
C***
C
C
C
CARD VARIABLES AND FORMAT.
THE REQUIRED AND OPTIONAL CARD TYPES USED AS INPUT TO
MPTER ARE DESCRIBED BELOW:
MPT01240
MPT01250
MPT01260
MPT01270
MPT01280
MPT01290
MPT01300
MPT01310
MPT01320
MPT01330
MPT01340
MPT01350
MPT01360
MPT01370
MPT01380
MPT01390
MPT01400
158
-------
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CARDS 1 -
LINE1 -
LINE2 -
LINES -
3 ALPHANUMERIC DATA FOR TITLES. FORMAT(20A4)
80 ALPHANUMERIC CHARACTERS.
80 ALPHANUMERIC CHARACTERS.
80 ALPHANUMERIC CHARACTERS.
CARD 4 CONTROL AND CONSTANTS. FORMAT (FREE)
IDATEQ
ID ATE (2
IHSTRT
NPER
NAVG
IPOL
MUOR
NSIGP
NAV5
CONONE
CELM
HAFL
) - 2-DIGIT YEAR FOR THIS RUN.
) - STARTING JULIAN DAY FOR THIS RUN.
- STARTING HOUR FOR THIS RUN.
- NUMBER OF AVERAGING PERIODS TO BE RUN.
- NUMBER OF HOURS IN AN AVERAGING PERIOD.
- POLLUTANT INDICATOR; IS 3 FOR S02, 4 FOR SUSPENDED
PARTICULATE.
- MODEL INDICATOR: 1 FOR URBAN, 2 FOR RURAL.
- NUMBER OF SOURCES FROM WHICH CONG. CONTRIBUTIONS
ARE DESIRED (MAX =25).
- ADDITIONAL AVERAGING TIME FOR HIGH-FIVE TABLE;
MOST LIKELY EQUAL TO 2, 4, 6, OR 12.
- MULTIPLIER TO CONVERT USER UNITS TO KILOMETERS.
EXAMPLE MULTIPLIERS:
FEET TO KM 3.048E-04
MILES TO KM 1.609344
METERS TO KM l.OE-03
- MULTIPLIER TO CONVERT USER HEIGHT UNITS TO METERS.
EXAMPLE MULTIPLIER:
FEET TO METERS 0.3048
MPT01410
MPT01420
MPT01430
MPT01440
MPT01450
MPT01460
MPT01470
MPT01480
MPT01490
MPT01500
MPT01510
MPT01520
MPT01530
MPT01540
MPT01550
MPT01560
MPT01570
MPT01580
MPT01590
MPT01600
MPT01610
MPT01620
MPT01630
MPT01640
MPT01650
MPT01660
MPT01670
MPT01680
- POLLUTANT HALF-LIFE, SECONDS. AN ENTRY OF ZERO WILLMPT01690
CAUSE SKIPPING OF POLLUTANT LOSS CALCULATIONS.
******************************************************
*
* MORE
THE USER IS REFERRED TO THE USERS GUIDE FOR *
DETAILED INFORMATION ON OPTIONS. ESPECIALLY *
* IMPORTANT IS AN UNDERSTANDING OF PRINTED OUTPUT *
* AND
USE OF OPTIONS 9 THROUGH 19 TO DELETE UNNEEDED*
* INFORMATION. MPTER IS CAPABLE OF GENERATING A *
* LARGE QUANTITY OF PRINTED INFORMATION UNLESS SOME *
* OF THESE OPTIONS TO DELETE OUTPUT ARE USED *
* LIBERALLY. *
******************************************************
CARD 5.
OPTIONS. FORMAT (FREE)
1 = EMPLOY OPTION: 0 = DON'T USE OPTION.
TECHNICAL OPTIONS:
IOPT(l
IOPT(2
IOPT(3
IOPT(4
- USE TERRAIN ADJUSTMENTS.
- NO STACK DOWNWASH.
- NO GRADUAL PLUME RISE.
- USE BUOYANCY INDUCED DISPERSION.
INPUT OPTIONS:
IOPT 5
IOPT 6
IOPT 7
IOPT 8
PRINTED
IOPT 9)
IOPT 10
IOPT 11
IOPT 12
IOPT 13
- MET. DATA IS ON CARDS.
- READ HOURLY EMISSIONS.
- SPECIFY SIGNIFICANT SOURCES.
- INPUT RADIAL DISTANCES AND GENERATE POLAR
COORDINATE RECEPTORS.
OUTPUT OPTIONS:
- DELETE EMISSIONS WITH HEIGHT TABLE.
- DELETE RESULTANT MET. DATA SUMMARY FOR AVG. PERIOD
- DELETE HOURLY CONTRIBUTIONS.
- DELETE MET. DATA ON HOURLY CONTRIBUTIONS.
- DELETE FINAL PLUME HEIGHT AND DISTANCE TO FINAL
RISE ON HOURLY CONTRIBUTIONS.
IOPT (14) - DELETE HOURLY SUMMARY.
IOPTC15) - DELETE MET. DATA ON HOURLY SUMMARY.
IOPT(16) - DELETE FINAL PLUME HEIGHT AND DISTANCE TO FINAL
RISE ON HOURLY SUMMARY.
MPT01700
MPT01710
MPT01720
MPT01730
MPT01740
MPT01750
MPT01760
MPT01770
MPT01780
MPT01790
MPT01800
MPT01810
MPT01820
MPT01830
MPT01840
MPT01850
MPT01860
MPT01870
MPT01880
MPT01890
MPT01900
MPT01910
MPT01920
MPT01930
MPT01940
MPT01950
MPT01960
MPT01970
MPT01980
MPT01990
MPT02000
MPT02010
.MPT02020
MPT02030
MPT02040
MPT02050
MPT02060
MPT02070
MPT02080
MPT02090
MPT02100
159
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
IOPT(17) - DELETE AVERAGING-PERIOD CONTRIBUTIONS.
IOPT(18) - DELETE AVERAGING-PERIOD SUMMARY.
IOPT(19) - DELETE AVERAGE CONCENTRATIONS AND HIGH-FIVE TABLE
OTHER CONTROL AND OUTPUT OPTIONS:
IOPT 20 - RUN IS PART OF A SEGMENTED LONG RUN.
IOPT 21 - WRITE PARTIAL CONCENTRATIONS TO DISK OR TAPE.
IOPT 22 - WRITE HOURLY CONCENTRATIONS TO DISK OR TAPE.
IOPT 23 - WRITE AVERAGING-PERIOD CONCS TO DISK OR TAPE.
IOPT 24 - PUNCH AVERAGING-PERIOD CONCENTRATIONS ON CARDS
DEFAULT OPTION
IOPT(25) - SET
DEFAULT FEATURES
CARD 6. WIND AND TERRAIN. FORMAT (FREE)
HANE - ANEMOMETER HEIGHT (METERS)
PL (I) ,1=1, 6 - WIND SPEED POWER LAW PROFILE
STABILITY.
CONTER(I),I=1,6 - TERRAIN ADJUSTMENT FACTORS FOR EACH
STABILITY.
*****DEFAULT OPTION NOTE*****
SELECTION OF THE DEFAULT OPTION CAUSES PL AND
CONTER TO BE SET TO THE VALUES DESCRIBED ABOVE UNDER
DEFAULT OPTION DESCRIPTION. UNDER THIS OPTION,
CARD 6 IS STILL REQUIRED TO INPUT HANE.
ALL OTHER DATA ON THE CARD WILL BE IGNORED.
CARD TYPE 7. POINT SOURCE CARD. FORMAT (3A4.8F8. 2, F4.0)
(UP
TO 250 POINT SOURCE CARDS ARE ALLOWED.)
- ~
rw/iivuii j
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
ELP(NP
. . i\r J. i j
i.NPT
2.NPT
3,NPT
4.NPT
5.NPT
6.NPT
7.NPT
8.NPT
.-i,O
—
-
—
-
—
-
_
)
CARD WITH 'ENDP'
END OF THE POIN
(USED
INPT
IF OPTION
MPS(I),I=1,NPT -
(USED IF OPTION
ISFCD
ISFCYR
IMXD
IMXYR
(USED IF OPTION 8 =
RADIL(I),I= 1,5 -
MPT02110
MPT02120
MPT02130
MPT02140
MPT02150
MPT02160
MPT02170
MPT02180
MPT02190
MPT02200
MPT02210
MPT02220
MPT02230
MPT02240
MPT02250
MPT02260
MPT02270
EXPONENTS FOR EACH MPT02280
MPT02290
MPT02300
MPT02310
MPT02320
MPT02330
MPT02340
MPT02350
MPT02360
MPT02370
MPT02380
MPT02390
MPT02400
MPT02410
MPT02420
MPT02430
- 12 CHARACTER SOURCE IDENTIFICATION. MPT02440
EAST COORDINATE OF POINT SOURCE (USER UNITS) MPT02450
NORTH COORDINATE OF POINT SOURCE (USER UNITS)MPT02460
SULFUR DIOXIDE EMISSION RATE (G/SEC). MPT02470
PARTICULATE EMISSION RATE_(G/SEC). MPT02480
PHYSICAL STACK HEIGHT (METERS). MPT02490
STACK GAS TEMPERATURE (KELVIN). MPT02500
STACK INSIDE DIAMETER (METERS). MPT02510
STACK GAS EXIT VELOCITY (M/SEC). MPT02520
SOURCE GROUND-LEVEL ELEVATION (USER HT UNITS)MPT02530
MPT02540
IN COLS 1-4 IS USED TO SIGNIFY THE MPT02550
MPT02560
MPT02570
MPT02580
MPT02590
MPT02600
MPT02610
MPT02620
MPT02630
MPT02640
MPT02650
MPT02660
MPT02670
MPT02680
MPT02690
MPT02700
MPT02710
MPT02720
MPT02730
MPT02740
MPT02750
MPT02760
MPT02770
MPT02780
MPT02790
MPT02800
CARD TYPE 8. SPECIFIED SIGNIFICANT SOURCES. FORMAT(26I3)
7 = 1)
NUMBER
OF USER SPECIFIED SIGNIFICANT SOURCES
POINT SOURCE NUMBERS
SIGNIFICANT.
USER WANTS CONSIDERED
CARD TYPE 9. MET. DATA IDENTIFIERS. FORMAT(FREE)
5 = 0)
SFC MET STATION IDENTIFIER
YEAR OF SFC MET DATA
UPPER-AIR STATION IDENTIFIER
YEAR OF MIXING HEIGHT DATA
DIGITS
DIGITS
DIGITS
DIGITS
CARD TYPE 10. POLAR COORDINATE RECEPTORS. FORMAT(FREE)
1)
ONE TO FIVE RADIAL DISTANCES (REST OF FIVE
ARE ZEROS) EACH OF WHICH GENERATES 36
RECEPTORS AROUND POINT CENTX, CENTY ON
AZIMUTHS 10 TO 360 DEGREES. (USER UNITS)
(USER UNITS)
160
-------
c
c
c
c
c***
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CENTX
CENTY
- EAST COORDINATE ABOUT WHICH RADIALS ARE CENTERED.
- NORTH COORDINATE ABOUT WHICH RADIALS ARE CENTERED.
(USER UNITS)
C
c
MPT02810
MPT02820
MPT02830
MPT02840
MPT02850
MPT02860
MPT02870
MPT02880
MPT02890
MPT02900
MPT02910
MPT02920
MPT02930
(UP TO 180 RECEPTORS MAY BE GENERATED INCLUDING POLAR COORDINATEMPT02940
CARD TYPE 11. POLAR COORDINATE RECEPTOR ELEVATIONS.
FORMAT(12,8X.5F10.0). (USED IF OPTIONS 1 AND 8 ARE BOTH 1)
IDUM - AZIMUTH INDICATOR (1 TO 36)
ELRDUM(I),I=1,5 - RECEPTOR ELEVATIONS FOR THIS AZIMUTH FOR
UP TO FIVE DISTANCES (USER HEIGHT UNITS),
CARD TYPE 12. RECEPTOR. FORMAT(2A4.2F10.3,2F10.0)
ONES IF OPTION 8=1.)
RNAME(I),I=1,2 - 8 DIGIT ALPHANUMERIC STATION IDENTIFICATION.
RREC - EAST COORDINATE OF RECEPTOR (USER UNITS)
SREC - NORTH COORDINATE OF RECEPTOR (USER UNITS)
ZR - RECEPTOR HEIGHT ABOVE LOCAL GROUND-LEVEL (METERS)
ELR - RECEPTOR GROUND-LEVEL ELEVATION (USER HT UNITS)
CARD WITH 'ENDR' IN COLS 1-4 IS USED TO SIGNIFY THE END OF
THE RECEPTOR CARDS.
CARD TYPE 13. SEGMENTED RUN. FORMAT(FREE)
(USED IF OPTION 20=1)
IDAY - NUMBER OF DAYS PREVIOUSLY PROCESSED.
LDRUN - LAST DAY TO BE PROCESSED IN THIS RUN.
CARD TYPE 14. METEOROLOGY. FORMAT(FREE)
(ONE CARD FOR EACH HOUR OF THE SIMULATION.)
(USED IF OPTION 5=1)
JYR
MPT02950
MPT02960
MPT02970
MPT02980
MPT02990
MPT03000
MPT03010
MPT03020
MPT03030
MPT03040
MPT03050
MPT03060
MPT03070
MPT03080
MPT03090
MPT03100
MPT03110
MPT03120
MPT03130
MPT03140
MPT03150
MPT03160
MPT03170
MPT03180
MPT03190
MPT03200
YEAR OF MET DATA. (2 DIGITS)
DAY1 - JULIAN DAY OF MET DATA.
JHR - HOUR OF MET DATA.
IKST - STABILITY CLASS FOR THIS HOUR.
QU - WIND SPEED FOR THIS HOUR (M/SEC).
QTEMP - AMBIENT AIR TEMPERATURE FOR THIS HOUR (KELVIN).
QTHETA - WIND DIRECTION FOR THIS HOUR (DEGREES AZIMUTH FROM MPT03210
WHICH THE WIND BLOWS). MPT03220
QHL - MIXING HEIGHT FOR THIS HOUR (METERS). MPT03230
MPT03240
->-> SECTION C - COMMON, DIMENSION, AND DATA STATEMENTS. MPT03250
MPT03260
/EXPOS/ BETWEEN MAIN PROGRAM AND BLOCK DATA MPT03270
COMMON /EXPOS/ PXUCOF(6,9),PXUEXP(6,9),HC1(10),BXUCOF(6,9),BXUEXP(MPT03280
*6,9) MPT03290
/MPOR/ BETWEEN MAIN, PTR, OUTHR, AND RCP MPT03300
COMMON /MPOR/ IOPT(26) MPT03310
/MPO/ BETWEEN MAIN, PTR, AND OUTHR MPT03320
COMMON /MPO/ NRECEP,NAVG.NBJLH,NPT,IDATE(2))RREC[180),SREC{180).ZRMPT03330
1(180),ELR(180),PHCHI(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT03340
2180) ,PSIGS(180,26).. IPOL MPT03350
/MPR/ BETWEEN MAIN, PTR, AND RCP MPT03360
COMMON /MPR/ UPL,Z,H,HL,X,Y,KST,DELH,SY,SZ,RC,MUOR MPT03370
/MP/ BETWEEN MAIN PROGRAM AND PTR MPT03380
COMMON /MP/ SOURCE(9,250J,CONTWO,PSAV(250),IPSIGS(250),U,TEMP,SINTMPT03390
(6),ELP(250),ELHN,HANE,TLOS,CELM,CTER MPT03400
1,COST,PL(
/ f U JJA \ f*\S\J / y U .U&Ui J 1-UUlU ) L UVU ) V U J-O, J J
3ETWEEN MAIN PROGRAM AND OUTHR
MPT03410
COMMON /MO/ QTHETA(24).QU(24),IKST(24),QHL(24).QTEMP(24),MPS(25).NMPT03420
1SIGP,10,LINE1(20),LINE2(20),LINE3(20),RNAME(2,180),IRANK(180),STARMPT03430
2(5,180) MPT03440
/MR/ BETWEEN MAIN PROGRAM AND RANK MPT03450
COMMON /MR/ HMAXA(5,180,5),NDAY(5,180,5),IHR(5,180,5),CONC(180,5),MPT03460
1JDAY.NR MPT03470
MPT03480
DIMENSION PNAMEC3.250), IFREQ(7), DUMB(24), HLH(2.24), IMPS(25), TMPT03490
1ITLE(2), TABLE(2,21), CONTER(6), HADIL(5), ANAME(36),PLL(6,2) MPT03500
161
-------
DIMENSION SUM(180), ELRDUM(5), NTIME(5), ATIME(5), MODEL(2,2)
DIMENSION CF(5),IDUMR(24)
DATA IFREQ /7*0/ .BLNK /' '/
DATA TITLE /'S02 ','PART'/
DATA MODEL /'URBA','N','RURA','L'
DATA ENDP /'ENDP'/ ,ENDR /'ENDR'/
/
DATA MAXP /250/ ,STR /'*'/ .STAR'/900*' '/
MAXP EQUALS SECOND DIMENSION OF THE ARRAY NAMED: SOURCE.
DATA ANAME /' 10 ' ' 20 ' ' 30 '.' 40.',' 50.'.' 60 '.' 70'.'
1' ' 90 ' '100 ' 'llO ' '120 ' '130 ' '140 ' '150 ' '160 ' '170. , nriuooiu
2180 '}190' J260 '!2io.'.J220 ' '230 ' !240.',!250.',!260.'.!270MPT03620
3, ', '280,', '290,','300,','310,','320,','330,','340,','350,','360,'/MPT03630
MPT03510
MPT03520
MPT03530
MPT03540
MPT03550
MPT03560
MPT03570
MPT03580
MPT03590
80,MPT03600
.
}
MPT03610
C
C
C
DATA NTIME /I.3.8,24,O/ .ATIME /I..3.,8.,24.,0./
DATA ITMIN1 /9999/.IDIV8 /O/, IDIV24 /O/, ICALM /O/
DATA C/'C'/,ICFL3/0/,ICFL8/0/,ICFL24/0/
DEFAULT POWER LAW EXPONENTS AND TERRAIN ADJUSTMENT FACTORS.
DATA PLL/.15..15,.20,.25..30,.30,.07,.07,.10,.15,.35,,55/
DATA CONTEH/6.,0!,0.,0.,6.,0!/
WRITE (6.5432)
5432 FORMAT (}1',34X,'MPTER (DATED 85165)'/
1 29X,'AN AIR QUALITY DISPERSION MODEL IN'/
1 32X,'SECTION 1. GUIDELINE MODELS. '/
3 32X,'IN UNAMAP (VERSION 6) JUL 86'/
4 22X,'SOURCE: UNAMAP FILE ON EPA"S UNIVAC 1110, RTP. NC.')
C->->->->SECTION D - FLOW DIAGRAM
C
C RELATION OF SUBROUTINES IN MPTER
C
C MPTER
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
rt
c
fl
c
c
p
c
/^
c
^1
c
c
—
— :
* READ INPUT DATA
- LOOP FOR CALENDAR DAYS
- LOOP FOR AVERAGING TIME
* READ MET DATA
* ANGARC
- LOOP ON HOURS
*4" ^ ^ & DT*O
* * * f rict
1
- LOOP ON RECEPTORS
j
— - - LOOP ON SOURCES
* * RCP
i
**PGYZ
--*
*
* RANK
* OUTHR
c
* OUTAVG (ENTRY POINT IN
#
' f
OUTHR)
MPT03640
MPT03650
MPT03660
MPT03670
MPT03680
MPT03690
MPT03700
MPT03710
MPT03720
MPT03730
MPT03740
MPT03750
MPT03760
MPT03770
MPT03780
MPT03790
MPT03800
MPT03810
MPT03820
MPT03830
MPT03840
MPT03850
MPT03860
MPT03870
MPT03880
MPT03890
MPT03900
MPT03910
MPT03920
MPT03930
MPT03940
MPT03950
MPT03960
MPT03970
MPT03980
MPT03990
MPT04000
MPT04010
MPT04020
MPT04030
MPT04040
MPT04C5o
MPT04060
MPT04070
MPT04080
MPT04090
MPT04100
MPT04110
MPT04120
MPT04130
MPT04140
MPT04150
MPT04160
MPT04170
MPT04180
MPT04190
MPT04200
162
-------
(j ——— — — — /ft
C !
C EXIT
C
C->->->->SECTION E - RUN SET-UP AND READ FIRST 6 INPUT CARDS.
C
C
C
C
C
10
20
30
40
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50
C
C
C
C
C
C
C
C
INITIALIZATIONS
THE FOLLOWING 18 STATEMENTS MAY BE DELETED FOR USE ON
COMPUTERS THAT ZERO CORE LOCATIONS USED BY A PROBLEM
PRIOR TO EXECUTION.
NRECEP=0
NP=0
NHR=0
NP3=0
NP8=0
NP24=0
NPX=0
DO 10 1=1.21
TABLE(1,I)=0.
TABLE(2,I)=0.
DO 40 1=1,180
SUM(I)=0.
DO 30 J=l,5
CONC(I,J)=0.
DO 20 K=l,5
HMAXA(J,I,K)=0.
CONTINUE
CONTINUE
I/O DEVICE INITIALIZATIONS-
IN=5
10=6
UNIT 11 - DISK INPUT OF MET DATA—USED WHEN IOPT(5)=1
UNIT 10 - DISK OUPUT OF PARTIAL CONCENTRATIONS
AT EACH RECEPTOR—USED WHEN IOPT(21) = 1.
UNIT 12 TAPE/DISK OUTPUT OF HRLY CONCENTRATIONS-IF IOPT(22)=1. MPT04550
UNIT 13 TAPE/DISK OUTPUT OF CONCENTRATIONS FOR AVERAGING PERIODMPT04560
• USED IF IOPT(23) = 1. MPT04570
UNIT 14 TAPE/DISK STORAGE FOR SUMMARY INFO, USED IF IOPT(20)=1.MPT04580
UNIT 15 - TAPE/DISK INPUT OF HOURLY POINT SOURCE EMISSIONS MPT04590
— USED IF IOPT(6) = 1. MPT04600
MPT04210
MPT04220
MPT04230
MPT04240
MPT04250
MPT04260
MPT04270
MPT04280
MPT04290
MPT04300
MPT04310
MPT04320
MPT04330
MPT04340
MPT04350
MPT04360
MPT04370
MPT04380
MPT04390
MPT04400
MPT04410
MPT04420
MPT04430
MPT04440
MPT04450
MPT04460
MPT04470
MPT04480
MPT04490
MPT04500
MPT04510
MPT04520
MPT04530
MPT04540
READ CARDS 1-3 (SEE DESCRIPTION, SECTION B).
READ (IN,1180) LINE1.LINE2,LINES
READ CARD TYPE 4 (SEE DESCRIPTION, SECTION B).
READ (IN,*) IDATE(1),IDATE(2),IHSTRT,NPER,NAVG,IPOL,MUOR,NSIGP
1NAV5,CONONE,CELM,HAFL
THE ABOVE FORMAT IS UNIVACS FREE FIELD INPUT.
VARIABLES MUST BE SEPARATED BY COMMAS.
THIS IS SIMILAR TO IBM'S LIST DIRECTED 10.
WRITE (IO,1395)(MODEL(K,MUOR),K=1,2),LINE1,LINE2,LINE3
IF (NSIGP.LE.25) GO TO 50
WRITE (10,1250) NPIGP
STOP
IP=IPOL-2
CONTWO=CONONE
READ CARD TYPE 5 (SEE DESCRIPTION, SECTION B).
READ (IN,*) (IOPT(I),I=1,25)
IF(IOPT(25).NE.l) GO TO 55
DEFAULT SELECTION RESULTS IN THE FOLLOWING:
2); USE FINAL PLUME RISE (3J
4): WRITE HIGH-5 TABLES (19)
1,12, 13, 14, 15, 16, 17, IE
IOPT(2)=0
MPT04610
MPT04620
MPT04630
MPT04640
MPT04650
MPT04660
MPT04670
MPT04680
MPT04690
MPT04700
MPT04710
MPT04720
MPT04730
NTTn4740
MPT04750
MPT04760
MPT04770
MPT04780
MPT04790
MPT04800
MPT04810
MPT04820
MPT04830
MPT04840
USE STACK DOWNWASH MPT04850
, USE BUOYANCY-INDUCED DISPERSION MPT04860
BUT DELETE ALL OTHER OUTPUT (10, MPT04870
i, 21, 22, 23, AND 24). MPT04880
MPT04890
MPT04900
163
-------
c
c
c
c
c
c
c
c
c
55
C
C
60
70
C
C
80
90
100
C
C
C
C
C
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
IOPT
3) = 1
4 =1
5)=0
7)=0
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
=1
= 1
=1
= 1
=1
= 1
=1
=1
=1
=0
=0
=0
=0
=0
=0
SET HALF-LIFE FOR DEFAULT OPTION
IF(IPOL.EQ.3.AND.MUOR.EQ.1)HAFL=14400.
IF(IPOL.NE.3.0R.MUOR.NE.1)HAFL=0.
SET START HOUR AND AVERAGING PERIOD;
SET THE NUMBER OF SIGNIFICANT POINT AND
AREA SOURCES.
IHSTRT=1
NAVG=24
NSIGP=0
CONTINUE
WRITE GENERAL INPUT INFORMATION
WRITE (10,1410) TITLE(IP),NPER,NAVG,IHSTRT,IDATE(2)
10.NSIGP
DAY1A=IDATE(2)
HR1=IHSTRT
IF (HAFL.GT.0.0) GO TO 60
TLOS=0.
WRITE (10,1420)
GO TO 70
WRITE (10,1430) HAFL
TLOS=693./HAFL
IF (IOPT(19).EQ.l) GO TO 80
NAVT=5
FOR DEFAULT OPTION
ADDITIONAL AVERAGING PERIOD SET TO ZERO.
IF(IOPT(25).EQ.l) NAV5=0
IF (NAV5.EQ.1.OR.NAV5.EQ.3.OR.NAV5.EQ.8.OR.NAV5.EQ.
1) NAVT=4
NTIME(5)=NAV5
ATIME(5)=NAV5
WRITE (10.1440) NAVT
IF (lOPT(I).EQ.O) GO TO
WRITE (10,1450) CELM
ELHN=99999.
ELOW=99999.
IF (NSIGP.GT.O) GO TO 100
IOPT(11)=1
IOPT(17)=1
WRITE (10,1460)
WRITE (10,1470)
90
(I,lOPTfl),1=1.13)
(I,IOPT(I),I=14,25)
READ CARD TYPE 6 (SEE DESCRIPTION, SECTION B).
SWITCH TO SELECT DEFAULT POWER LAW EXPONENTS,
TERRAIN ADJUSTMENT FACTORS.
MPT04910
MPT04920
MPT04930
MPT04940
MPT04950
MPT04960
MPT04970
MPT04980
MPT04990
MPT05000
MPT05010
MPT05020
MPT05030
MPT05040
MPT05050
MPT05060
MPT05070
MPT05080
MPT05090
MPT05100
MPT05110
MPT05120
MPT05130
MPT05140
MPT05150
MPT05160
MPT05170
MPT05180
MPT05190
MPT05200
MPT05210
MPT05220
MPT05230
MPT05240
MPT05250
MPT05260
,IDATE(1),CONTWMPT05270
MPT05280
MPT05290
MPT05300
MPT05310
MPT05320
MPT05330
MPT05340
MPT05350
MPT05360
MPT05370
MPT05380
MPT05390
MPT05400
MPT05410
24.OR.NAV5.EQ.OMPT05420
MPT05430
MPV05440
MPT0545C
MPT05460
MPT05470
MPT05480
MPT05490
MPT05500
MPT05510
MPT05520
MPT05530
MPT05540
MPT05550
MPT05560
MPT05570
MPT05580
MPT05590
MPT05600
164
-------
IF(IOPT(25).NE.O READ(IN,*)HANE
IF(IOPT(25).EQ.O READ(IN.*)HANE,PL,CONTER
IF(IOPT(25J.EQ.O GO TO 105
DO 104 11=1,6
PL(Il)=PLL(il,MUOH)
CONTINUE
CONTINUE
IF (lOPT(l).EQ.l) GO TO 110
WRITE (10,1480) HANE.PL
GO TO 140
WRITE (10.1490) HANE,PL,CONTER
DO 120 1=1,6
IF (CONTER(I).LT.O..OR.CONTER(I).GT.l.) GO TO 130
CONTINUE
GO TO 140
WRITE (10,1260)
STOP
MUCH OF THE FOLLOWING PROGRAM SECTION IS BASED UPON
RAMQ IN THE RAM SYSTEM. THIS SECTION IS RESPONSIBLE
FOR MAKING THE NECESSARY DATA CONVERSIONS ON THE RAW
EMISSIONS DATA IN ORDER TO ESTABLISH A STANDARD
DATA BANK WHICH WILL BE ACCEPTABLE. A CONVERSION FACTOR
FROM USER UNITS TO KILOMETERS IS APPLIED WHEN NECESSARY.
:->->->->SECTION F - INPUT AND PROCESS EMISSION INFORMATION.
104
105
C
110
120
130
C
C
C
C
C
C
C
C
C
140
C
150
C
C
C
160
C
C
C
C
C
C
C
170
C
180
C
190
C
C
WRITE (10,1500)
NPT=0
BEGIN LOOP TO READ THE POINT SOURCE INFORMATION
NPT=NPT+1
IF (NPT.LE.MAXP) GO TO 160
READ (IN,1200) DUM
IF (DUM.EQ.ENDP) GO TO 230
WRITE (10,1270) MAXP
STOP
READ CARD TYPE 7 (SEE DESCRIPTION, SECTION B).
MPT05610
MPT05620
MPT05630
MPT05640
MPT05650
MPT05660
MPT05670
MPT05680
MPT05690
MPT05700
MPT05710
MPT05720
MPT05730
MPT05740
MPT05750
MPT05760
MPT05770
MPT05780
MPT05790
MPT05800
MPT05810
MPT05820
MPT05830
MPT05840
MPT05850
MPT05860
MPT05870
MPT05880
MPT05890
MPT05900
MPT05910
MPT05920
MPT05930
MPT05940
MPT05950
MPT05960
MPT05970
MPT05980
MPT05990
MPT06000
STACK TOP IN INVENTORY,
MPT06010
READ (IN,1210) (PNAME(I.NPT),1=1,3).(SOURCE(I,MPT),1=1,8),ELP(NPT)MPT06020
CARD WITH 'ENDP1 IN COL 1-10 IS USED TO SIGNIFY END OF MPT06030
POINT SOURCES.
IF (PNAME(1,NPT).EQ.ENDP) GO TO 230
ELHN, ELEVATION OF LOWEST ST.
IN USER HEIGHT UNITS
IF (lOPT(l).EQ.O) GO TO 170
TOM=SOURCE ( 5, NPT)/CE LM-f-ELP (NPT)
IF (TOM.LT.ELHN) ELHN=TOM
LOWPT, ELEVATION OF LOWEST SOURCE GROUND-LEVEL
IN INVENTORY, IN USER HEIGHT UNITS.
IF (ELP(NPT).LT.ELOW) ELOW=ELP(NPT)
CALCULATE BUOYANCY FACTOR
D=SOURCE(7,NPT)
FOLLOWING VARIABLE IS BRIGGS' F WITHOUT TEMPERATURE FACTOR
SOURCE(9,NPT)=2.45153*SOURCE(8,NPT)*D*D
2.45153 IS GRAVITY OVER FOUR.
TS=SOURCE(6.NPT)
IF (TS.GT.293.) GO TO 180
HF=SOURCE(5,NPT)
GO TO 200
F=SOURCE(9,NPT)*(TS-293. )/TS
IF (F.GE.55.) GO TO 190
ONLY BUOYANCY PLUME RISE IS CONSIDERED HERE.
HF=SOURCE(5,NPT)+21.425*F**0.75/3.
GO TO 200
HF=SOURCE(5,NPT)+38.71*F**0.6/3.
HSAV, DSAV, AND PSAV ARE USED FOR TEMPORARY STORAGE
(OR AS DUMMIES) FOR THE NEXT 60 STATEMENTS.
MPT06040
MPT06050
IS DETERMINEDMPT06060
MPT06070
MPT06080
MPT06090
MPT06100
MPT06110
MPT06120
MPT06130
MPT06140
MPT06150
MPT06160
MPT06170
MPT06180
MPT06190
MPT06200
MPT06210
MPT06220
MPT06230
MPT06240
MPT06250
MPT06260
MPT06270
MPT06280
MPT06290
MPT06300
165
-------
200 HSAV(NPT)=HF
C DETERMINE HEIGHT INDEX.
DO 210 IH=2,9
IF (HF.LT.(HCl(IH)-.Ol)) GO TO 220
210 CONTINUE
IH=10
220 IS=IH-1
IF(MUOR.EQ.1)GO TO 221
A=PXUCOF(2,IS)
B=PXUEXP(2,IS)
GO TO 222
221 A=BXUCOF(2,IS)
B=BXUEXP(2,IS)
222 DSAV(NPT)=(A*HF**B)*SOURCE(IPOL,NPT)/3.
C AN ESTIMATE OF THE POTENTIAL IMPACT OF EACH SOURCE IS
C DETERMINED AND STORED IN DSAV. MAX CONCENTRATION IS
C DETERMINED BY CHI(MAX)=(A*H**B)*Q/U WHERE
C A IS THE COEFFICIENT AND B IS THE EXPONENT, OF
C MAXIMUM CHI*U/Q VALUES PREDETERMINED FOR B STABILITY
C AND A SPECIFIC EFFECTIVE HEIGHT RANGE. PLUME RISE
C IS CALCULATED FOR B STABILITY AND 3 M/SEC WIND SPEED.
C
C GO BACK AND READ DATA FOR ANOTHER POINT SOURCE.
IPSIGS(NPT)=0
C LIST POINT SOURCE INFORMATION.
WRITE (I0.1510T NPT,(PNAME(J,NPT),J=1,3),(SOURCE(K,NPT),K
IV(NPT).HSAV(NPT),ELP(NPT),F
GO TO 150
230 - NPT=NPT-1
C CHECK FOR NPT < OR = 0
IF (NPT.GT.O) GO TO 240
WRITE (10,1280) NPT
STOP
C
C->->->->SECTION G - RANK SIGNIFICANT SOURCES.
C
240
C
250
C
260
C
IF (NSIGP.EQ.O) GO TO 280
RANK NSIGP HIGHEST POINT SOURCES.
IF (NPT.LT.NSIGP) NSIGP=NPT
DO 260 I=1.NSIGP
SIGMAX=-1.0
DO 250 J=1.NPT
IF (DSAV(J).LE.SIGMAX) GO TO 250
SIGMAX=DSAV(J)
LMAX=J
CONTINUE
IMPS IS THE SOURCE NUMBER IN ORDER OF SIGNIFICANCE.
IMPS(I)=LMAX
PSAV IS THE CALC.
PSAVfI)=SIGMAX
CONG. IN ORDER OF SIGNIFICANCE.
DSAV(LMAX)=-1.0
OUTPUT TABLE OF RANKED SOURCES.
WRITE (10.1520) TITLE(IP)
DO 270 1=1.NSIGP
WRITE (10,1530) I,PSAV(I),IMPS(I)
CONTINUE
270
C
C->->->->SECTION H - EMISSIONS WITH HEIGHT TABLE.
C
280 IF (IOPT(9).EQ.l) GO TO 340
DO 320 1=1,NPT
DO 290 J=l,20
HC=J*5.
IF (SOURCE(5,I).LE.HC) GO TO 300
290 CONTINUE
C POINT SOURCES WITH PHYSICAL HEIGHTS GT 100 METERS ARE
C SEPARATELY
WRITE (10,1540) I,SOURCE(5,I),SOURCE(IPOL,I)
GO TO 310
C ADD EMISSION RATE INTO TABLE AND TOTAL.
MPT06310
MPT06320
MPT06330
MPT06340
MPT06350
MPT06360
MPT06370
MPT06380
MPT06390
MPT06400
MPT06410
MPT06420
MPT06430
MPT06440
MPT06450
MPT06460
MPT06470
MPT06480
MPT06490
MPT06500
MPT06510
MPT06520
MPT06530
MPT06540
MPT06550
=1,8),DSAMPT06560
MPT06570
MPT06580
MPT06590
MPT06600
MPT06610
MPT06620
MPT06630
MPT06640
MPT06650
MPT06660
MPT06670
MPT06680
MPT06690
MPT06700
MPT06710
MPT06720
MPT06730
MPT06740
MPT06750
MPT06760
MPT06770
MPT06780
MPT06790
MPT06800
MPT06810
MPT06820
MPT06830
MPT06840
MPT06850
MPT06860
MPT06870
MPT06880
MPT06890
MPT06900
MPT06910
MPT06920
MPT06930
MPT06940
MPT06950
LISTED MPT06960
MPT06970
MPT06980
MPT06990
MPT07000
166
-------
300
310
320
C
C
C
C
C
C
TABLE(1,J)=TABLE(1.J)+SOURCE(IPOL,I)
TABLE(1,21)=TABLE(I,21)+SOURCE(IPOL,I)
CONTINUE
OUTPUT SOURCE-STRENGTH-HEIGHT TABLE
THIS TABLE DISPLAYS THE TOTAL EMISSIONS FOR POINT
SOURCES AND THE CUMULATIVE FREQUENCY ACCORDING TO
HEIGHT CLASS
WRITE (10,1550) TITLE(IP)
HEIGHT CLASS EMISSIONS ARE IN 1
DETERMINE CUMULATIVE PERCENT IN 2
IH1=0
IH2=5
IM1=1
TABLE(2, 1)=TABLE(1. 1) /TABLE (1,21)
WRITE (10,1560) IHl,IH2,(TABLE(J,l),J=l,2)
DO 330 1=2,20
IH2=I*5
IHl=IH2-4
330
TABLE(2,I)=TABLE(1,I)/TABLE(1,21)+TABLE(2.IM1)
WRITE (io,1560) IHi,IH2,(TABLE(J,I),J=l,2J
CONTINUE
WRITE (10,1570) TABLE(1,21)
C
C->->->->SECTION I - EXECUTE FOR INPUT OF SIGNIFICANT SOURCE NUMBERS.
C
340
C
C
C
350
C
C
360
370
380
390
400
C
410
420
C
C->-
C
C
C
C
WRITE (10,1580)
IF (IOPT(7).EQ.O) GO TO 370
READ CARD TYPE 8 (SEE DESCRIPTION, SECTION B).
NPT)
INPT)
READ (IN. 1220) INPT, (MPS( I). 1=1. INPT)
WRITE (10,1590) INPT, (MPS(I), 1=1,
IF ? INPT. LE. NSIGP) GO TO 350
WRITE (10,1290) INPT, NSIGP
STOP
IF (INPT.EQ.O) GO TO 370
IF (MPS(INPT).EQ.O) WRITE (10,1300)
J=INPT+1
K=l
ADD SIGNIFICANT SOURCES DETERMINED FROM RANKED SOURCE LIST
IF NSIGP GREATER THAN INPT.
IF (J.GT. NSIGP) GO TO 390
DO 360 I=J.NSIGP
MPS(I)=IMPS(K)
K=K+1
GO TO 390
DO 380 1=1, NSIGP
MPS(I)=LMPS(I)
WRITE (10.1600) NPT,NSIGP.(MPS(I), 1=1, NSIGP)
IF (IOPT(6).EQ.O) GO TO 410
SAVE AVERAGE EMISSION RATE
DO 400 1=1, NPT
PS AV ( I ) =SOURCE ( IPOL , I )
FILL IN SIGNIFICANT
DO 420 1=1, NSIGP
J=MPS(I)
IPSIGS(J)=I
POINT SOURCE ARRAY
•>->->SECTION J - CHECK MET DATA IF FROM FILE OF ONE YEAR'S DATA.
IF (IOPT(5).EQ.l) GO TO 450
READ CARD TYPE 9 (SEE DESCRIPTION, SECTION B).
READ (IN,*) ISFCD.ISFCYR.IMXD.IMXYR
READ ID RECORD FROM PREPROCESSED MET DISK OR TAPE FILE.
READ (11) ID.IYEAR.IDM.IYM
IF (ISFCD.EQ.ID.AND.ISFCYR.EQ.IYEAR) GO TO 430
WRITE (10,1310) ISFCD.ISFCYR.ID.IYEAR
MPT07010
MPT07020
MPT07030
MPT07040
MPT07050
MPT07060
MPT07070
MPT07080
MPT07090
MPT07100
MPT07110
MPT07120
MPT07130
MPT07140
MPT07150
MPT07160
MPT07170
MPT07180
MPT07190
MPT07200
MPT07210
MPT07220
MPT07230
MPT07240
MPT07250
MPT07260
MPT07270
MPT07280
MPT07290
MPT07300
MPT07310
MPT07320
MPT07330
MPT07340
MPT07350
MPT07360
MPT07370
MPT07380
MPT07390
MPT07400
MPT07410
MPT07420
MPT07430
MPT07440
MPT07450
MPT07460
MPT07470
MPT07480
MPT07490
MPT07500
MPT07510
MPT07520
MPT07530
MP'i'07540
MPTU756U
MPT07560
MPT07570
MPT07580
MPT07590
MPT07600
MPT07610
MPT07620
MPT07630
MPT07640
MPT07650
MPT07660
MPT07670
MPT07680
MPT07690
MPT07700
167
-------
STOP
430 IF (IMXD.EQ.IDM.AND.IMXYR.EQ.IYM) GO TO 440
WRITE (10,1320) IMXD,IMXYR,IDM,IYM
STOP
440 WRITE (10,1610) ISFCD,ISFCYR,IMXD,IMXYR
C
C->->->->SECTION K - GENERATE POLAR COORDINATE RECEPTORS.
C
450
C
C
C
460
C
C
C
C
C
C
C
470
480
C
C
C
C
C
490
NRECEP=0
WRITE (10,1620)
IF (IOPT(8).NE.l) GO TO 520
READ CARD TYPE 10 (SEE DESCRIPTION, SECTION B).
READ (IN,*) RADIL,CENTX,CENTY
JA=0
DO 460 J=l,5
IF (RADIL(J).EQ.O) GO TO 460
JA=JA+1
CONTINUE
WRITE (10.1630) CENTX.CENTY.RADIL
DO 480 1=1,36
CALCULATE THE ANGLE IN RADIANS
RADIK=FLOAT(I)*0.1745329
0.1745329 IS 2*PI/36
SINRAD=SIN(RADIK)
COSRAD=COS(RADIK)
DO 470 J=1,JA
NRECEP=I+36*(J-1)
RREC(NRECEP)=(RADIL(J)*SINRAD)+CENTX
CALCULATE THE EAST-COORDINATE
SREC(NRECEP)=(RADIL(J)*COSRAD)+CENTY .
CALCULATE THE NORTH-COORDINATE
RNAME(1,NRECEP)=ANAME(I)
ALPHANUMERIC INFORMATION WHICH INDICATES DEGREES AZIMUTH
ENCODE (4,1640,RNAME(2,NRECEP)) RADIL(J)
ENCODE THE FLOATING POINT VARIABLE OF RADIAL DISTANCE
TO ALPHANUMERIC REPRESENTATION SO INFO CAN BE PRINTED
ZR(NRECEP)=0.
ELR(NRECEP)=0.
CONTINUE
CONTINUE
NRECEP=36*JA
->->->SECTION L - READ POLAR COORDINATE ELEVATIONS.
IF (lOPT(l).EQ.O) GO TO 520
READ 36 CARDS, TYPE 11 (SEE DESCRIPTION, SECTION 8).
DO 510 1=1,36
READ (IN,1230) IDUM,(ELRDUM(J),J=l,JA)
IF (IDUM.EQ.I) GO TO 490
WRITE (10,1330) I,IDUM
STOP
DO 500 J=1,JA
K=J-1
L=K*36+I
ELR(L)=ELRDUM(J)
CONTINUE
500
510
C
C->->->->SECTION M - READ AND PROCESS RECEPTOR INFORMATION.
C
C
C
C
C
520
NOW READ CARD TYPE 12 IF NECESSARY. MUST HAVE A CARD WITH
'ENDR'IN COLS 1-4 TO INDICATE END OF RECEPTOR CARDS.
NO MORE THAN 180 RECEPTORS CAN BE INPUT TO MPTER.
START LOOP TO ENTER RECEPTORS.
NRECEP=NRECEP+1
IF (NRECEP.LE.180) GO TO 540
READ (IN,1200,END=530) DUM
MPT07710
MPT07720
MPT07730
MPT07740
MPT07750
MPT07760
MPT07770
MPT07780
MPT07790
MPT07800
MPT07810
MPT07820
MPT07830
. MPT07840
MPT07850
MPT07860
MPT07870
MPT07880
MPT07890
MPT07900
MPT07910
MPT07920
MPT07930
MPT07940
MPT07950
MPT07960
MPT07970
MPT07980
MPT07990
MPT08000
MPT08010
MPT08020
MPT08030
MPT08040
MPT08050
MPT08060
MPT08070
MPT08080
MPT08090
MPT08100
MPT08110
MPT08120
MPT08130
MPT08140
MPT08150
MPT08160
MPT08170
MPT08180
MPT08190
MPT08200
MPT08210
MPT08220
MPTOC230
KPTOG240
MPT08250
MPT08260
MPT08270
MPT08280
MPT08290
MPT08300
MPT08310
MPT08320
MPT08330
MPT08340
MPT08350
MPT08360
MPT08370
MPT08380
MPT08390
MPT08400
168
-------
530
C
c
C
540
C
C
550
C
C
C
560
570
C
580
590
IF (DUM.EQ.ENDR) GO TO 550
WRITE (10,1340)
STOP
READ CARD TYPE 12 (SEE DESCRIPTION, SECTION B).
READ (IN.1240) (RNAME(J,NRECEP),J=l,2).RREC(NRECEP).SREC(NRECEP)
IR(NRECEP).ELR(NRECEP)
PLACE }ENDR' IN COLS 1 TO 4 ON CARD FOLLOWING LAST RECEPTOR
TO END READING TYPE 12 CARDS.
IF (RNAME(l.NRECEP).EQ.ENDR) GO TO 550
GO TO 520
NRECEP=NRECEP-1
IF (lOPT(l).EQ.O) GO TO 570
IF TERRAIN OPTION IS EMPLOYED, DETERMINE IF
RECEPTOR ELEVATIONS REQUIRE LABELING WITH ASTERISKS
FOR ADDITIONAL REMARKS.
DO 560 J=1,NRECEP
IF (ELR(J).GT.ELHN.OR.ELR(J).LT.ELOW) STAR(2,J)=STR
IF (ELRjm.GT.ELHN) STAR(1,J)=STR
CONTINUE
IF ?NRECEP.GT.O) GO TO 580
WRITE (10,1350) NRECEP
STOP
PRINT OUT TABLE OF RECEPTORS. ***
WRITE (10.1650)
DO 590 K=i.NRECEP
WRITE (10,1660) K.STAR(1,K),STAR(2,K),(RNAME(J,K),J=1,2),RREC(K)
1REC(K),ZR(K),ELR(K)
IF (lOPT(l).EQ.O) GO TO 600
WRITE (10,1670)
C
C->->->->SECTION N - POSITION FILES AS REQUIRED.
C
600 IF (IOPT(20).EQ.O) GO TO 610
C
C
C
READ CARD TYPE 13 (SEE DESCRIPTION, SECTION B).
610
C
READ (IN,*) IDAY.LDRUN
WRITE (10,1680) IDAY.LDRUN
IF (IDAY.EQ.O) GO TO 610
READ INFO FOR HIGH-FIVE TABLE FROM LAST SEGMENT.
READ (14) IDAYS,SUM,NHR,DAY1A,HR1,HMAXA,NDAY,IHR
REWIND 14
IF (IDAY.EQ.IDAYS) GO TO 610
WRITE (10,1360) IDAY.IDAYS
STOP
NP=IDAY*(24/NAVG)
IF OPTION 21 = 1, WRITE INITIAL INFO TO UNIT 10
IF (IOPT(21).EQ.l) WRITE (10) NPER.NAVG,LINE1,LINE2,LINES
IF
IF
340
620
C
630
640
C
650
C
660
IOPT(22).EQ.O) GO TO
IDAY.LE.O) GO TO 630
KIP PREVIOUSLY GENERATED HOURLY RECORDS.
ISKIP=IDAY*24+2
DO 620 I=1,ISKIP
READ (12)
GO TO 640
WRITE LEAD TWO RECORDS ON HOURLY FILE.
WRITE (12) NPER.NAVG,LINE1.LINE2,LINES
WRITE 112) NRECEP.(RREC(I),1=1,NRECEP),(SREC(J),J=l,NRECEP)
IF (IOPT(23).EQ.orGO TO 670
IF (IDAY.LE.O) GO TO 660
SKIP PREVIOUSLY GENERATED AVERAGING-PERIOD FILE.
ISKIP=NP+2
DO 650 I=1,ISKIP
READ (13)
GO TO 670
WRITE LEAD TOO RECORDS ON AVERAGING PERIOD FILE.
WRITE (13) NPER,NAVG,LINE1,LINE2,LINES
WRITE (13) NRECEP,(RREC(I),1=1,NRECEP),(SREC(J),J=l,NRECEP)
MPT08410
MPT08420
MPT08430
MPT08440
MPT08450
MPT08460
.ZMPT08470
MPT08480
MPT08490
MPT08500
MPT08510
MPT08520
MPT08530
MPT08540
MPT08550
MPT08560
MPT08570
MPT08580
MPT08590
MPT08600
MPT08610
MPT08620
MPT08630
MPT08640
MPT08650
MPT08660
MPT08670
,SMPT08680
MPT08690
MPT08700
MPT08710
MPT08720
MPT08730
MPT08740
MPT08750
MPT08760
MPT08770
MPT08780
MPT08790
MPT08800
MPT08810
MPT08820
MPT08830
MPT08840
MPT08850
MPT08860
MPT08870
MPT08880
MPT08890
MPT08900
MPT08910
MPT08920
MPT08930
MPT08940
MFT08950
MPT08960
MPT08970
MPT08980
MPT08990
MPT09000
MPT09010
MPT09020
MPT09030
MPT09040
MPT09050
MPT09060
MPT09070
MPT09080
MPT09090
MPT09100
169
-------
670 IF (IOPT(6).EQ.O) GO TO 690
IF (IDAY.LE.O) GO TO 690
ISKIP=IDAY*24
DO 680 I=1,ISKIP
680 READ (15)
690 IDAY=IDATE(2)-1
IF (IDAY.LE.O.OR.IOPT(5).EQ.l) GO TO 710
C SKIP PREVIOUSLY USED HOURLY EMISSION RECORDS.
DO 700 I=1,IDAY
READ (11)
CONTINUE
700
710
C
C->->->->SECTION 0 - START LOOPS FOR DAY AND AVG TIME; READ MET DATA.
C
720
IDAY=IDAY+1
DAY=IDAY
NHRS=0 '
IF (IOPT(5).EQ.l) GO TO 760
C IF OPTION 5 EQUALS ZERO, INPUT MET DATA OFF DISK (UNIT 11)
READ (11) JYR.IMO,DAY1,IKST,QU,QTEMP,DUMR,QTHETA,HLH
DO 781 JM1=1,24
IDUMR(JM1)=DUMR(JM1)+0.5
781 CONTINUE
IF (JYR.NE.IDATE(l)) GO TO 730
IF (DAY1.EQ.DAY) GO TO 740
C DATE ON MET TAPE DOES NOT MATCH INTERNAL DATE
730 WRITE (10,1370) JYR,IDATE(2),IDATE(l),IDAY
STOP
C MODIFY WIND VECTOR BY 180 DEGREES. SINCE FLOW VECTORS WERE
C OUTPUT FROM RAMMET. THIS CONVERTS BACK TO WIND DIRECTIONS.
740 IDATE(2)=DAY1
DO 750 IQ=1.24
IF_(IKST(IQ).EQ.7) IKST(IQ)=6
QTHETA(IQ)=QTHETA(IQ)+180.
IF (QTHETA(IQ).GT.360.) QTHETA(IQ)=QTHETA(IQ)-360.
C SELECT URBAN OR RURAL MIXING HEIGHTS AS APPROPRIATE.
IF(MUOR.EQ.1)IMX=2
IF(MUOR.EQ.2)IMX=1
750 QHL(IQ)=HLH(IMX,IQ)
760 NB=IHSTRT
NE=NB+NAVG-1
IF (NB.GT.O) GO TO 770
WRITE (10,1380) IHSTRT
STOP
C START LOOP FOR AVERAGING PERIOD.
770 U=0.0
TEMP=0.0
DELN=0.0
DELM=0.0
DO 780 1=1,7
780 IFREQ(I)=0.0
C
C
C
C
C
C
790
1.1
DO 800 1=NB,NE
JHR=I
DAY2=IDATE(2)
IF (IOPT(5).EQ.O) C-Q TO 790
READ CARD TYPE 14 IF IOPT(5) =1. (HOURLY MET DATA)
(SEE DESCRIPTION, SECTION B).
READ (IN,*) JYR,DAY1,JHR,IKST(JHR),QU(JHR),QTEMP(JHR),QTHETA(JH
1R),QHL(JHRJ
IF (I.NE.NB) GO TO 790
REDEFINE START HOURS AND DATES AT FIRST HOUR OF EACH
AVERAGING PERIOD IF READING HOURLY MET DATA.
IDATEa)=JYR
IHSTRT=JHR
ISTDAY=DAY1
IDATE(2)=ISTDAY
DAY2=IDATE(2)
IF (IKST(JHH).EQ.7) IKST(JHR)=6
MPT09110
MPT09120
MPT09130
MPT09140
MPT09150
MPT09160
MPT09170
MPT09180
MPT09190
MPT09200
MPT09210
MPT09220
MPT09230
MPT09240
MPT09250
MPT09260
MPT09270
MPT09280
MPT09290
MPT09300
MPT09310
MPT09320
MPT09330
MPT09340
MPT09350
MPT09360
MPT09370
MPT09380
MPT09390
MPT09400
MPT09410
MPT09420
MPT09430
MPT09440
MPT09450
MPT09460
MPT09470
MPT09480
MPT09490
MPT09500
MPT09510
MPT09520
MPT09530
MPT09540
MPT09550
MPT09560
MPT09570
MPT09580
MPT09590
MPT09600
MPT09610
MPT09620
MPT09630
MT703640
Mr"f0365G
MPT09660
MPT09670
MPT09680
MPT09690
MPT09700
MPT09710
MPT09720
MPT09730
MPT09740
MPT09750
MPT09760
MPT09770
MPT09780
MPT09790
MPT09800
170
-------
IF (lOPT(lO).EQ.l) GO TO 800 MPT09810
C MPT09820
C->->->->SECTION P - CALCULATE AND STORE FOR HIGH-FIVE TABLE. MPT09830
C MPT09840
IF (I.EQ.NB) WRITE (10,1690) IDATE MPT09850
TRAD=QTHETA(JHR)*0.01745329 MPT09860
WRITE (10,1700) JHR,QTHETA(JHR),QU(JHR),QHL(JHR),QTEMP(JHR),IKST(JMPT09870
1HR) MPT09880
SINT=SIN(TRAD) MPT09890
COST=COS(TRAD) MPT09900
C CALCULATE WIND COMPONENTS MPT09910
URES=QU(JHR) MPT09920
UR=URES*SINT MPT09930
VR=URES*COST • MPT09940
DELM=DELM+UR MPT09950
DELN=DELN+VR MPT09960
TEMP=TEMP+QTEMP(JHR) MPT09970
U=U+URES MPT09980
KST=IKST(JHR)' MPT09990
IFREQ(KST)=IFREQ(KST)+1 MPT10000
C END LOOP TO READ ALL MET DATA FOR AVERAGING PERIOD. MPT10010
800 CONTINUE MPT10020
IF (lOPT(lO).EQ.l) GO TO 860 MPT10030
C CALCULATE RESULTANT WIND DIRECTION THETA MPT10040
DELN=DELN/NAVG MPT10050
DELM=DELM/NAVG MPT10060
THETA=ANGARC(DELM,DELN) MPT10070
C CALCULATE AVERAGE AND RESULTANT SPEED AND PERSISTENCE. MPT10080
U=U/NAVG MPT10090
TEMP=TEMP/NAVG MPT10100
URES=SQRT(DELN*DELN+DELM*DELM) MPT10110
PERSIS=URES/U . MPT10120
C DETERMINE MODAL AND AVERAGE STABILITY MPT10130
LSMAX=0 MPT10140
DO 810 1=1,7 MPT10150
LST=IFREQ(I) MPT10160
IF (LST.LE.LSMAX) GO TO 810 MPT10170
LSMAX=LST MPT10180
LSTAB=I MPT10190
810 CONTINUE MPT10200
IP1=LSTAB+1 MPT10210
KST=LSTAB IVIPT10220
DO 820 I=IP1,7 MPT10230
IF (LSMAX.EQ.IFREQ(I)) GO TO 830 MPT10240
820 CONTINUE MPT10250
GO TO 850 MPT10260
C IF TIE FOR MAX MODAL STABILITY CALCULATE AVERAGE STABILITY MPT10270
830 KSUM=0 MPT10280
DO 840 J=l,7 MPT10290
840 KSUM=KSUM+IFREQ(J)*J MPT10300
KST=FLOAT(KSUM)/FLOAT(NAVG)+0.5 MPT10310
C PRINT RESULTANT MET DATA SUMMARY FOR AVERAGING PERIOD. MPT10320
850 WRITE (10,1710) MPT10330
WRITE U0.1720) THETA,URES.U,TEMP,PERSIS,KST MPT10340
C REDEFINE NB ANP NE IN CASE NON-CONSECUTIVE DAYS ARE BEING RUN MPT10350
860 IF (IOPT(5).EQ.O) GO TO 870 MPT10360
NB=IHSTRT MPT10370
NE=IHSTRT+NAVG-1 MPT10380
C MPT10390
C->->->->SECTION Q - INITIALIZE FOR HOURLY LOOP. MPT10400
C MPT10410
C INITIALIZE SUMS FOR CONG AND PARTIAL CONC FOR AVG PERIOD. MPT10420
870 DO 890 K=1,NRECEP MPT10430
PCHI(K)=0.0 MPT10440
DO 880 1=1,26 MPT10450
880 PSIGS(K,I)=0.0 MPT10460
890 CONTINUE MPT10470
C IF SAVING PARTIAL CONCENTRATIONS, WRITE INITIAL RECEPTOR INFO. MPT10480
IF (IOPT(21).EQ.O) GO TO 900 MPT10490
WRITE (10) NRECEP,NPT,(RREC(I),I=1,NRECEP),(SREC(I),I=1,NRECEP) MPT10500
171
-------
C->->->->SECTION R - BEGIN HOURLY LOOP.
C
900 DO 1020 ILH=NB,NE
LH=ILH
IF (LH.LE.24) GO TO 910
LH=MOD(ILH.24)
IF (LH.EQ.l) IDATE(2)=DAY1
C INITIALIZE SUMS FOR CONG AND PARTIAL CONG FOR HOURLY PERIODS.
910 DO 930 K=1,NRECEP
PHCHI(K)=0.0
DO 920 1=1.26
920 PHSIGS(K,I)=0.0
930 CONTINUE
C SET MET CONDITIONS FOR THIS HOUR
THETA=QTHETA(LH)
U=QU(LH)
HL=QHL(LH)
TEMP=QTEMP(LH)
KST=IKST(LH)
TRAD=THETA*0.01745329
SINT=SIN(TRAD)
COST=COS(TRAD)
CTER=CONTER(KST)
C IF OPTION 6 IS 1, READ HOURLY EMISSIONS.
IF (IOPT(6).EQ.O) GO TO 940
IDCK=IDATE(1)*100000+IDATE(2)*100+LH
READ (15) IDATP,(SOURCE(IPOL,I),I=1,NPT)
C CHECK DATE
IF (IDCK.EQ.IDATP) GO TO 940
WRITE (10,1390) IDCK.IDATP
STOP
C CALCULATE POINT SOURCE CONTRIBUTIONS
940 CALL PTR
IF (IOPT(22).EQ.O) GO TO 950
C WRITE HOURLY CONCENTRATIONS TO TAPE
WRITE (12) IDATE(2),LH,(PHCHI(I),I=1,NRECEP)
C
C->->->->SECTION S - CALCULATE AND STORE FOR HIGH-FIVE TABLE.
C
950 NHR=NHR+1
C IF OPTION 19 IS 1, DELETE COMPUTATIONS FOR AVG CONG.
C FOR LENGTH OF RECORD AND HIGH-FIVE TABLE.
IF (IOPT(19).EQ.l) GO TO 1010
C CUMULATE CONCENTRATIONS FOR AVG TIMES AND LENGTH OF RECORD.
C
C FOR DEFAULT OPTION DETERMINE CALM HOURS.
C FOR CALM HOURS, CONCENTRATIONS AT EACH RECEPTOR ARE
C SET EQUAL TO ZERO.
C A CALM HOUR IS AN HOUR WITH A WIND SPEED
C OF 1.00 M/S AND A WIND DIRECTION THE SAME
C AS THE PREVIOUS HOUR.
IF(IOPT(25).EQ.1.AND.QU(LH).LT.1.009.AND.ITMIN1.EQ.
*IDUMR(LH))THEN
ICALM=ICALM-t-l
DO 955 K=1,NRECEP
PHCHI(K)=0.0
955 CONTINUE
GO TO 971
END IF
DO 970 K=1,NRECEP
DO 960 L=1,NAVT
960 CONC(K,L)=CONC(K,L)+PHCHI(K)
970 SUM(K)=SUM(K)+PHCHI(K)
C STORE DATE FOR'WHICH CONCS. HAVE BEEN CALCULATED.
971 JDAY=IDATE(2)
C SUBROUTINE RANK IS CALLED WHENEVER A COUNTER
C INDICATES THAT ENOUGH END TO END HOURLY CONCENTRATIONS
C HAVE BEEN STORED OFF TO COMPLETE AN AVG TIME.
C NP3, NP8, NP24, NPX ARE USED AS COUNTERS FOR EACH
MPT10510
MPT10520
MPT10530
MPT10540
MPT10550
MPT10560
MPT10570
MPT10580
MPT10590
MPT10600
MPT10610
MPT10620
MPT10630
MPT10640
MPT10650
MPT10660
MPT10670
MPT10680
MPT10690
MPT10700
MPT10710
MPT10720
MPT10730
MPT10740
MPT10750
MPT10760
MPT10770
MPT10780
MPT10790
MPT10800
MPT10810
MPT10820
MPT10830
MPT10840
MPT10850
MPT10860
MPT10870
MPT10880
MPT10890
MPT10900
MPT10910
MPT10920
MPT10930
MPT10940
MPT10950
MPT10960
MPT10970
MPT10980
MPT10990
MPT11000
MPT11010
MPT11020
MPT11030
MPT11040
MPTllOoO
MPT11060
MPT11070
MPT11080
MPT11090
MPT11100
MPT11110
MPT11120
MPT11130
MPT11140
MPT11150
MPT11160
MPT11170
MPT11180
MPT11190
MPT11200
172
-------
c
c
c
c
c
c
c
972
974
C
C
C
975
976
C
C
C
977
1011
C
C
C
C
C
979
AVG TIME AND ARE ZEROED AFTER EACH CALL TO RANK.
FOR THE DEFAULT OPTION CALCULATE AVERAGE
CONCENTRATION FOR APPROPRIATE AVERAGING PERIOD.
SET UP CALM FLAG FOR ENTRY INTO SUBROUTINE RANK.
IF(IOPT(25).EQ.O) GOTO 979
CALL RANK(l)
NP3=NP3+1
IF(QIKLH).LT.1.009.AND.IDUMR(LH).EQ.ITMIN1)ICFL3=1
IF(NP3.NE.3) GO TO 974
FOR 3 HOUR AVERAGING PERIOD DIVIDE SUM BY 3.0.
DO 972 LQ=1,NRECEP
CONC{LQ,2)=CONC(LQ,2)/3.0
LL2=2
IF(ICFL3.EQ.1)LL2=22
CALL RANK(LL2)
NP3=0
ICFL3=0
NP8=NP8+1
IDIV8=IDIV8+1
IF(QU(LH).LT.1.009.AND.IDUMR(LH).EQ.ITMIN1)THEN
IDIV8=IDIV8-1
ICFL8=1
END IF
IF(NP8.NE.8)GO TO 976
IF(IDIV8.LT.6)IDIV8=6
DIV8=IDIV8
FOR 8 HOUR AVERAGING PERIOD DIVIDE THE SUM OF THE HOURLY
CONCENTRATIONS BY THE NUMBER OF NON-CALM HOURS OR 6.0
WHICHEVER IS GREATER.
DO 975 LQ=1,NRECEP
CONC(LQ,3)=CONC(LQ,3)/DIV8
LL3=3
IF(ICFL8.EQ.1)LL3=33
CALL RANK(LL3)
NP8=0
IDIV8=0
ICFL8=0
NP24=NP24+1
IDIV24=IDIV24+1
IF(QU(LH).LT.1.009.AND.IDUMR(LH).EQ.ITMINl)THEN
IDIV24=IDIV24-1
ICFL24=1
END IF
IF(NP24.NE.24)GO TO 1011
IF(IDIV24.LT.18)IDIV24=18
DIV24=IDIV24
FOR 24 HOUR AVERAGING PERIOD DIVIDE THE SUM OF THE HOURLY
CONCENTRATIONS BY THE NUMBER OF NON-CALM HOURS OR 18.
WHICHEVER IS GREATER.
DO 977 LQ=1,NRECEP
CONC(LQ,4)=CONC(LQ,4)/DIV24
LL4=4
IF(ICFL24.EQ.1)LM=44
CALL RANK(LL4)
NP24=0
IDIV24=0
ICFL24=0
ITMIN1=IDUMR(LH)
GO TO 1010
WHEN DEFAULT OPTION IS NOT USED, DETERMINE ENTRY INTO
SUBROUTINE RANK FOR APPROPRIATE AVERAGING PERIOD.
RANKING BASED ON HIGH AVERAGING PERIOD SUM.
CALL RANK
NP3=NP3+1
(1)
IF (NP3.NE.3) GO TO 980
CALL RANK (2)
MPT11210
MPT11220
MPT11230
MPT11240
MPT11250
MPT11260
MPT11270
MPT11280
MPT11290
MPT11300
MPT11310
MPT11320
MPT11330
MPT11340
MPT11350
MPT11360
MPT11370
MPT11380
MPT11390
MPT11400
MPT11410
MPT11420
MPT11430
MPT11440
MPT11450
MPT11460
MPT11470
MPT11480
MPT11490
MPT11500
MPT11510
MPT11520
MPT11530
MPT11540
MPT11550
MPT11560
MPT11570
MPT11580
MPT11590
MPT11600
MPT11610
MPT11620
MPT11630
MPT11640
MPT11650
MPT11660
MPT11670
MPT11680
MPT11690
MPT11700
MPT11710
MPT11720
MPT11730
MPT11740
MPT11750
MPT11760
MPT11770
MPT11780
MPT11790
MPT11800
MPT11810
MPT11820
MPT11830
MPT11840
MPT11850
MPT11860
MPT11870
MPT11880
MPT11890
MPT11900
173
-------
NP3=0
980 NP8=NP8+1
IF (NP8.NE.8) GO TO 990
CALL RANK (3)
NP8=0
990 NP24=NP24+1
IF (NP24.NE.24) GO TO 1000
GAIL RANK (4)
NP24=0
1000 IF (NAVT.EQ.4) GO TO 1010
NPX=NPX+1
IF (NPX.NE.NAV5) GO TO 1010
CALL RANK (5)
NPX=0
C
C->->->->SECTION T - END HOURLY, AVERAGING TIME, AND DAILY LOOPS.
C
1010
C
C
1020
C
C
C
IF (IOPT(ll).EQ.l.AND.IOPT(14).EQ.l) GO TO 1020
IF BOTH OPTIONS 11 AND 14 CALL FOR OUTPUT DELETIONS,
SKIP HOURLY PRINTOUT.
CALL OUTHR
CONTINUE
C
C
C
1030
C
C
C
C
C
1040
END OF HOURLY LOOP
IF (NE.GT.24) IDATE(2)=ISTDAY
OUTPUT FINAL RESULTS
CALL OUTAVG
NP=NP+1
NHRS=NHRS+NAVG
NEXT STATEMENT IS BRANCH FOR END OF RUN.
(NP.GE.NPER) GO TO 1050
(NHRS.LT.24) GO TO 1030
,IOPT(20).EQ.O) GO TO 720
NEXT STATEMENT CHECKS FOR END OF SEGMENTED RUN.
IF (IDAY.GE.LDRUN) GO TO 1040
GO TO 720
END OF LOOP FOR CALENDAR DAYS
NB=NB+NAVG
NE=NE+NAVG
IF (NB.LE.24)
NB=MOD(NB,24)
NE=NB+NAVG-1
GO TO 770
GO TO 770
END OF LOOP FOR AVERAGING PERIOD.
IF SEGMENTED RUN, TEMPORARILY STORE
HIGH-FIVE INFO ON UNIT 14 FILE.
WRITE (14) IDAY,SUM,NHR,DAY1A,HR1,HMAXA,NDAY,IHR
WRITE (10.1730) IDAY
GO TO 1140
IF (IOPT(19).EQ.l) GO TO 1140
1050
C
C->->->->SECTION U - WRITE AVERAGE CONC. AND HIGH-FIVE TABLES.
C
C
C
IF OPTION 19 = 0, WRITE AVERAGE CONCENTRATION.
FOR LENGTH OF RECORD AND HIGH-FIVE TABLE.
DO 1060 J=1,NRECEP
STAR(1,J)=BLNK
STAR(2,J)=BLNK
1060 CONTINUE
WRITE (IO,1400)(MODEL(K,MUOR),K=1,2), LINE1,LINE2,LINES
C FOR DEFAULT OPTION CALCULATE AND REPORT THE
C NUMBER OF CALMS FOR AVERAGING PERIOD.
IF(IOPT(25).EQ.1)THEN
NHR=NHR-ICALM
MPT11910
MPT11920
MPT11930
MPT11940
MPT11950
MPT11960
MPT11970
MPT11980
MPT11990
MPT12000
MPT12010
MPT12020
MPT12030
MPT12040
MPT12050
MPT12060
MPT12070
MPT12080
MPT12090
MPT12100
MPT12110
MPT12120
MPT12130
MPT12140
MPT12150
MPT12160
MPT12170
MPT12180
MPT12190
MPT12200
MPT12210
MPT12220
MPT12230
MPT12240
MPT12250
MPT12260
MPT12270
MPT12280
MPT12290
MPT12300
MPT12310
MPT12320
MPT12330
MPT12340
MPT12350
MPT12360
MPT12370
MPT12380
MPT12390
MPT12400
MPT12410
MPT12420
MPT12430
MPT12460
MPT12470
MPT12480
MPT 12490
MPT12500
MPT12510
MPT12520
MPT12530
MPT12540
MPT12550
MPT12560
MPT12570
MPT12580
MPT12590
MPT12600
174
-------
WRITE(6,1061)ICALM
END IF
SUM(1)=SUM(1)/NHR
. HIMAX=SUM(1)
KMX=1
C INITIALIZE PERIODIC CONG TO BEGIN RANKING FOR PERIODIC MAX
DO 1070 K=2,NRECEP
SUM(K)=SUM(K)/NHR
IF (SUM(K).LE.HIMAX) GO TO 1070
KMX=K
HIMAX=SUM(K)
1070 CONTINUE
STAR(1,KMX)=STR
C FIND HIGHEST AVERAGE CONG. AMONG RECEPTORS.
WRITE (10,1740) DAY1A,HR1,DAY2,HR2
DO 1080 K=1,NRECEP
1080 WRITE (10,1750) K,(RNAME(J.K),J=1,2),HREC(K),SREC(K),ZR(K),ELH(K)
1STAR(1,K).SUM(K)
STAR(1,KMX)=BLNK
C LOOP TO WRITE HIGH-FIVE TABLE FOR 4 OR 5 AVG TIMES.
DO 1130 L=1,NAVT
C ASTERISKS DEPICT RECEPTORS WITH HIGHEST AND
C SECOND HIGHEST CONCENTRATIONS.
Kl=l
K2=l
HI1=HMAXA(1,1,L)
HI2=HMAXA(2,1,L)
DO 1100 K=2,NRECEP
IF.(miAXA(l,K,L).LE.HIl) GO TO 1090
> L)
1090
1100
.LE.HI2) GO TO 1100
HI1=HMAXA(1,K,
K1=K
IF (HMAXA(2,K,L)
HI2=HMAXA(2,K,L)
K2=K
CONTINUE
STAR(1,K1)=STR
STAR(2,K2)=STR
IF((lOPT(25).EQ.l.AND.L.EQ.l).OR.(IOPT(25).NE.l))THEN
WRITE (10,1760) NTIME(L),TITLE(IP),(I,I=1,5)
END IF
IF(IOPT(25).EQ.1.AND.L.NE.1)THEN
WRITE (10,1761) NTIME(L),TITLE(IP),(I,I=1,5)
END IF
DUM=ATIME(L)
DO 1120 K=1,NRECEP
SET CALM FLAG FOR PRINTING.
RESET HOUR VARIABLE FOR CALM HOURS.
IF(IOPT(25).EQ.1)THEN
DO 1112 J=l,5
CF(J)=BLNK
IF(IHR(J,K,L).GT.24)THEN
IHR?J,K,L)=IHR(J,K,L)-100
CF(J)=C
END IF
CONTINUE
END IF
IF(IOPT(25).EQ.1)GO TO 1111
CALCULATE AVERAGE CONCENTRATIONS WHEN
DEFAULT OPTION IS NOT ON.
DO 1110 J=1.5
*;.„ HMAXA(J,K,L)=HMAXA(J,K,L)/DUM
1111 WRITE (10,1770") K,RREC(K).SREC(K),(STAR(J,K),HMAXA(J,K,L).CF(J),
lNDAY(J,K,i),IHH(J,K,L),J=i,2),(HMAXA(J,Kti,),CF(J),NDAY{j,K,L),
2IHRU,K,L),J=3,5)
1120 CONTINUE
1112
C
C
1110
1130
C
INITIALIZE ASTERISK STORAGE TO BLANKS.
STAR(1,K1)=BLNK
STAR(2,K2)=BLNK
CONTINUE
MPT12610
MPT12620
MPT12630
MPT12640
MPT12650
MPT12660
MPT12670
MPT12680
MPT12690
MPT12700
MPT12710
MPT12720
MPT12730
MPT12740
MPT12750
MPT12760
.MPT12770
MPT12780
MPT12790
MPT12800
MPT12810
MPT12820
MPT12830
MPT12840
MPT12850
MPT12860
MPT12870
MPT12880
MPT12890
MPT12900
MPT12910
MPT12920
MPT12930
MPT12940
MPT12950
MPT12960
MPT12970
MPT12980
MPT12990
MPT13000
MPT13010
MPT13020
MPT13030
MPT13040
MPT13050
MPT13060
MPT13070
MPT13080
MPT13090
MPT13100
MPT13110
MPT13120
MPT13130
MPT13140
MFV13150
MPT13160
MPT13170
MPT13180
MPT13190
MPT13200
MPT13210
MPT13220
MPT13230
MPT13240
MPT13250
MPT13260
MPT13270
MPT13280
MPT13290
MPT13300
175
-------
C->->->->SECTION V - CLOSE OUT FILES.
C
1140 IF (IOPT(21).EQ.O) GO TO 1150
END FILE 10
END FILE 10
1150 IF (IOPT(22).EQ.O) GO TO 1160
END FILE 12
END FILE 12
1160 IF (IOPT(23).EQ.O) GO TO 1170
END FILE 13
END FILE 13
1170 STOP
C
C->->->->SECTION X - OUTLINE OF PROGRAM SECTIONS
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C***
SECTION A - GENERAL REMARKS
SECTION B - DATA INPUT LISTS.
SECTION C - COMMON, DIMENSION, AND DATA STATEMENTS.
SECTION D - FLOW DIAGRAM.
SECTION E - RUN SET-UP AND READ FIRST 6 INPUT CARDS.
SECTION F - INPUT AND PROCESS EMISSION INFORMATION.
SECTION G - RANK SIGNIFICANT SOURCES.
SECTION H - EMISSIONS WITH HEIGHT TABLE.
SECTION I - EXECUTE FOR INPUT OF SIGNIFICANT SOURCE NUMBERS.
SECTION J - CHECK MET. DATA IF FROM FILE OF ONE YEARS'S DATA.
SECTION K - GENERATE POLAR COORDINATE RECEPTORS.
SECTION L - READ POLAR COORDINATE ELEVATIONS.
SECTION M - READ AND PROCESS RECEPTOR INFORMATION.
SECTION N - POSITION FILES AS REQUIRED.
SECTION 0 - START LOOPS FOR DAY AND AVERAGING TIME; READ
MET. DATA.
SECTION P - CALCULATE AND WRITE MET. SUMMARY INFORMATION.
SECTION Q - INITIALIZE FOR HOURLY LOOP.
SECTION R - BEGIN HOURLY LOOP.
SECTION S - CALCULATE AND STORE FOR HIGH-FIVE TABLE.
SECTION T - END HOURLY, AVERAGING TIME, AND DAILY LOOPS.
SECTION U - WRITE AVERAGE CONC. AND HIGH-FIVE TABLES.
SECTION V - CLOSE OUT FILES.
SECTION W - FORMAT STATEMENTS.
SECTION X - OUTLINE OF PROGRAM SECTIONS.
SECTION Y - INPUT AND OUTPUT FILE DESCRIPTIONS.
SECTION Z - INDEX AND GLOSSARY.
>->-> SECTION Y - INPUT AND OUTPUT FILE DESCRIPTIONS.
INPUT AND OUTPUT FILE DESCRIPTIONS.
INPUT FILE (UNIT 11) METEOROLOGICAL DATA (USED IF IOPT(5)=0)
RECORD 1
ID SFC STATION IDENTIFIER. 5 DIGITS
IYEAR YEAR OF SURFACE DATA, 2 DIGITS
IDM MIX HT STATION IDENTIFIER, 5 DIGITS
IYR YEAR OF MIX HT DATA, 2 DIGITS
RECORD TYPE 2 (ONE FOR EACH DAY OF YEAR)
JYR YEAR
IMO MONTH
DAY1 JULIAN DAY
IKST(24) STABILITY CLASS
QU(24) WIND SPEED, METERS PER SECOND
QTEMP(24) AMBIENT AIR TEMPERATURE, KELVIN
DUMR(24) FLOW VECTOR TO 10 DEC, DEGREES AZIMUTH
QTHETA(24) RANDOMIZED FLOW VECTOR, DEGREES AZIMUTH
HLH(2,24) MIXING HEIGHT, METERS
INPUT FILE(UNIT 15) EMISSION DATA (USED IF IOPT(6)=1)
MPT13310
MPT13320
MPT13330
MPT13340
MPT13350
MPT13360
MPT13370
MPT13380
MPT13390
MPT13400
MPT13410
MPT13420
MPT13430
MPT13440
MPT13450
MPT13460
MPT13470
MPT13480
MPT13490
MPT13500
MPT13510
MPT13520
MPT13530
MPT13540
MPT13550
MPT13560
MPT13570
MPT13580
MPT13590
MPT13600
MPT13610
MPT13620
MPT13630
MPT13640
MPT13650
MPT13660
MPT13670
MPT13680
MPT13690
MPT13700
MPT13710
MPT13720
MPT13730
MPT13740
MPT13750
MPT13760
MPT13770
MPT13780
MPT13790
MPT13800
MPT13810
MPT13820
MPT13830
MPT]3840
MKi'13850
MPT13860
MPT13870
MPT13880
MPT13890
MPT13900
MPT13910
MPT13920
MPT13930
MPT13940
MPT13950
MPT13960
MPT13970
MPT13980
MPT13990
MPT14000
176
-------
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
MPT14010
MPT14020
MPT14030
DATE-TIME INDICATOR CONSISTING OF YEAR, JULIAN DAY.MPT14040
RECORD TYPE 1 (ONE FOR EACH HOUR OF SIMULATION)
IDATP
AND HOUR: YYDDDHH.
SOURCE(IPOL,I),1=1,NPT EMISSION RATE FOR THE POLLUTANT IPOL
FOR EACH SOURCE, GRAMS PER SECOND.
OUTPUT PUNCHED CARDS (UNIT 1) AVERAGE CONCENTRATIONS (PUNCHED IF
IOPT(24)=1)
CARD TYPE 1 (ONE FOR EACH RECEPTOR FOR EACH AVERAGING TIME)
MPT14050
MPT14060
MPT14070
MPT14080
MPT14090
MPT14100
MPT14110
MPT14120
MPT14130
MPT14140
MPT14150
MPT14160
MPT14170
CC:l-4 WORD'CNTL' PUNCHED
CC:5 BLANK
CC:6-15 RREC EAST COORDINATE OF RECEPTOR, USER UNITS
CC: 16-25 SREC NORTH COORDINATE OF RECEPTOR, USER UNITS ™ **•«.,»
CC:26-35 GWU CONCENTRATION FOR AVERAGING TIME, MICROG/M**3MPT14180
CC:36-55 BLANK MPT14190
CC:56-59 K RECEPTOR NUMBER MPT14200
CC:60-69 ZR RECEPTOR HEIGHT ABOVE GROUND. METERS MPT14210
CC:70-79 ELR RECEPTOR GROUND-LEVEL ELEVATION, USER HT UNITSMPT14220
MPT14230
OUTPUT FILE (UNIT 10) PARTIAL CONCENTRATIONS (USED IF IOPT(21)=1) MPT14240
MPT14250
MPT14260
MPT14270
NUMBER OF PERIODS MPT14280
NUMBER OF HOURS IN AVERAGING PERIOD. MPT14290
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
RECORD TYPE 1
NPER
NAVG
LINE1U4)
LINE2(14)
LINE3U4)
RECORD TYPE 2 (FROM MPTER) (ONE FOR EACH AVERAGING PERIOD)
NRECEP
NPT
RREC(I),I=1,
SREC(I),1=1,NRECEP
NUMBER OF RECEPTORS
NUMBER OF SOURCES
=1,NRECEP EAST COORDINATE OF RECEPTOR, USER UNITS
" NORTH COORDINATE OF RECEPTOR, USER UNITS
RECORD TYPE 3 (ONE FOR EACH RECEPTOR FOR EACH SIMULATED HOUR,
FROM PTR)
IDATE YEAR AND JULIAN DAY
LH HOUR
K RECEPTOR NUMBER
PAHTC(J),J=1,NPT
CONCENTRATION AT RECEPTOR K FROM SOURCE
G/M**3.
OUTPUT FILE (UNIT 12) HOURLY CONCENTRATIONS (USED IF IOPT(22)=1)
RECORD 1
NPER
NAVG
LINE1<
LINE2(
LINE3)
RECORD 2
NRECEP
NUMBER OF PERIODS
NU?."1ER OF HOURS IN AVERAGING PERIOD.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
RREC(I),I=1,
SREC(I),1=1,NRECEP
NUMBER OF RECEPTORS.
=1,NRECEP EAST COORDINATE OF RECEPTOR, USER UNITS
NORTH COORDINATE OF RECEPTOR, USER UNITS
RECORD TYPE 3 (ONE FOR EACH SIMULATED HOUR)
IDATE(2) JULIAN DAY
LH HOUR
PHCHI(I),!=!,NRECEP HOURLY CONCENTRATION FOR EACH RECEPTOR,
MPT14300
MPT14310
MPT14320
MPT14330
MPT14340
MPT14350
MPT14360
MPT14370
MPT14380
MPT14390
MPT14400
MPT14410
MPT14420
MPT14430
MPT14440
MPT14450
MPT14460
MPT14470
MPT14480
MPT14490
MPT14500
MPT14510
MPT14520
MPT14530
MPT14540
MPT14550
MPT14560
MPT14570
MPT14580
MPT14590
MPT14600
MPT14610
MPT14620
MPT14630
MPT14640
MPT14650
MPT14660
MPT14670
MPT14680
MPT14690
MPT14700
177
-------
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
G/M**3.
OUTPUT FILE (UNIT 13) AVERAGING-PERIOD CONCENTRATIONS (USED IF
IOPT(23)=1)
RECORD 1
NPER
NAVG
LINE1(14)
LINE2(14
LINES(14J
RECORD 2
NUMBER OF PERIODS
NUMBER OF HOURS IN AVERAGING PERIOD.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
80 ALPHANUMERIC CHARACTERS FOR TITLE.
NRECEP NUMBER OF RECEPTORS.
RREC(I),!=!,NRECEP EAST COORDINATE OF RECEPTOR, USER UNITS
SREC(I),1=1,NRECEP NORTH COORDINATE OF RECEPTOR, USER UNITS
RECORD TYPE 3 (ONE FOR EACH SIMULATED AVERAGING PERIOD)
IDATE(2) JULIAN DAY
NB ENDING HOUR OF PERIOD
PCHI(K),K=1,NRECEP AVERAGING PERIOD CONCENTRATION FOR EACH
RECEPTOR, G/M**3.
TEMPORARY FILE (UNIT 14) VALUES FOR HIGH-FIVE TABLES (USED IF
IOPT(20)=1)
ONLY RECORD
NDAY(ON WRITE)
IDAYS?ON READ
SUM(180)
NHR
DAY1A
HR1
HMAXA(3,5,180,5)
MPT14710
MPT14720
MPT14730
MPT14740
MPT14750
MPT14760
MPT14770
MPT14780
MPT14790
MPT14800
MPT14810
MPT14820
MPT14830
MPT14840
MPT14850
MPT14860
MPT14870
MPT14880
MPT14890
MPT14900
MPT14910
MPT14920
MPT14930
MPT14940
MPT14950
MPT14960
MPT14970
MPT14980
MPT14990
MPT15000
MPT15010
MPT15020
MPT15030
:->->->->SECTION W - FORMAT STATEMENTS.
C
C
C
1061
1180
1200
1210
1220
1230
1240
C
C
C
1250
1260
1270
1280
1290
1300
1310
INPUT FORMATS
FORMAT(5X,T98,'# CALMS FOR PERIOD: ',14)
NUMBER OF DAYS PROCESSED
NUMBER OF DAYS PREVIOUSLY PROCESSED
CUMULATION OF LONG-TERM CONCENTRATION,(G/M**3MPT15040
NUMBER OF HOURS PROCESSED MPT15050
JULIAN DAY OF START OF LENGTH OF RECORD. MPT15060
START HOUR OF LENGTH OF RECORD MPT15070
HIGHEST FIVE CONCENTRATIONS (G/M**3), AND MPT15080
ASSOCIATED DAY AND HOUR, FOR EACH RECEPTOR, MPT15090
FOR FIVE DIFFERENT AVERAGING TIMES. MPT15100
MPT15110
MPT15120
MPT15130
MPT15140
MPT15150
MPT15160
MPT15170
MPT15180
MPT15190
MPT15200
MPT15210
MPT15220
MPT15230
MPT15240
MPT15250
FORMAT (IX,' NSIGP (THE NO. OF SIGNF POINT SOURCES) WAS FOUND'.' TMPT15260
10 EXCEED THE LIMIT (25). USER TRIED TO INPUT ',13,' SOURCES'/' MPT15270
2 *********EXECUTION TERMINATED**********')
FORMAT (IHO.'CONTER VALUE IS OUTSIDE OF RANGE:
1CUTION TERMINATED.')
FORMAT (' USER TRIED TO INPUT MORE THAN ',14 '
1 GOES BEYOND THE CURRENT PROGRAM DIMENSIONS.')
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
20A4/20A4/20A4)
A4)
3A4.8F8.2.F4.0)
2613)
I2,8X,5F10.0)
2A4,2F10.3,2F10.0)
ERROR STATEMENT FORMATS
MPT15280
','ZERO TO ONE. EXEMPT15290
MPT15300
POINT SOURCES. THISMPT15310
MPT15320
FORMAT (IX.'NPT = ',13,'I.E., EQUAL OR LESS THAN ZERO'/' RUN TERMMPT15330
1INATED CHECK INPUT DATA') MPT15340
FORMAT (1H1,'***ERROR USER TRIED TO SPECIFY ',14,' SIGNIFICANT SMPT15350
10URCES, BUT IS ONLY ALLOWING ',13 ' TOTAL SIGNIFICANT SOURCES IN TMPT15360
2HIS RUN.',/2X,'***RUN TERMINATED-CHECK INPUT DATA!***') MPT15370
FORMAT (' (MPS) THE INPUT SIGNIFICANT SOURCE NUMBER '/WAS FOUND TMPT15380
10 EQUAL ZERO - USER CHECK INPUT DATA.') MPT15390
FORMAT (' SURFACE DATA IDENTIFIERS READ INTO MODEL (STATION=',15,'MPT15400
178
-------
1 ,YEAR=' 12,') DO NOT AGREE WITH THE PREPROCESSOR OUTPUT FILE' ./1XMPT15410
2,' (STATION= ',15,' ,YEAH=',I2) MPT15420
1320 FORMAT (' MIXING HEIGHT IDENTIFIERS READ INTO MODEL (STATION=' . I5.MPT15430
1' ,YEAR=',I2)') DO NOT AGREE WITH THE PREPROCESSOR OUTPUT FILE5 ./1MPT15440
2X ' (STATION= ',15. ' ,YEAR=' 12) MPT15450
1330 FORMAT (1HO,' WRONG RECEPTOR ELEVATION CARD READ.1, 'READ CARD FOR MPT15460
1AZIMUTH '.13,' SHOULD HAVE BEEN ',13,'.') MPT15470
1340 FORMAT (IX, '****USER EITHER TRIED TO INPUT MORE THAN 180 '. 'RECEPTMPT 15480
10RS OR ENDREC WAS NOT PLACED AFTER THE LAST RECEPTOR ' , 'CARD****'/MPT15490
2'********EXECUTION TERMINATED*******') MPT15500
1350 FORMAT (IX. 'NO RECEPTORS HAVE BEEN CHOSEN') MPT15510
1360 FORMAT (1HO, '***DAYS DO NOT MATCH, IDAY = \I4,', IDAYS = ',14) MPT15520
1370 FORMAT f' DATE ON MET. TAPE, ',12,13,' .DOES NOT MATCH INTERNAL DAMPT15530
1TE, ',12.13) MPT15540
1380 FORMAT (J HOUR ',13,' IS NOT PERMITTED. HOURS MUST BE DEFINED BETWMPT15550
1EEN 1 AND 24') ' MPT15560
1390 FORMAT (' DATE BEING PROCESSED IS= ', I8/1X. 'DATE OF HOURLY POINT EMPT15570
1MISSION RECORD IS =' , I8/1X, ' ***PLEASE CHECK EMISSION RECORDS***') MPT15580
C MPT15590
C OUTPUT FORMATS MPT15600
C MPT15610
1395 FORMAT ( '0' ,T35, A4.A1, IX, 'MPTER - VERSION 85165 '/1X,20A4/1X,20A4/ MPT15620
*1X,20A4) MPT15630
1400 FORMAT (' 1' , T40.A4.A1, IX, 'MPTER - VERSION 85165 '/1X,20A4/1X,20A4/ MPT15640
*1X,20A4) MPT15650
1410 FORMAT (1HO.T30, 'GENERAL INPUT INFORMATION V/2X, "THIS RUN OF MPTERMPT15660
1-VERSION 85165 IS FOR ' 'THE POLLUTANT ',A4 ' FOR ' 13. IX. 13, '-HOUMPT15670
2R PERIODS. '/2X,' CONCENTRATION ESTIMATES BEGIN ON HOUR-', 12,', JULIMPT15680
SAN DAY-' 13,', YEAR-19' 12 '.'/1X,' A FACTOR OF '.F14.7,' HAS BEENMPT15690
4 SPECIFIED TO ', 'CONVERT USER LENGTH UNITS TO KILOMETERS. '/ IX, 13, 'MPT15700
5 SIGNIFICANT SOURCES ARE TO BE CONSIDERED.') MPT15710
1420 FORMAT (1H , 'THIS RUN WILL NOT CONSIDER ANY POLLUTANT LOSS.') MPT15720
1430 FORMAT _(1H ,2X 'A HALF-LIFE OF '.F10.2,' (SECONDS) HAS BEEN ASSUMEMPT15730
ID BY THE USER.') MPT15740
1440 FORMAT (IX ' HIGH-FIVE SUMMARY CONCENTRATION TABLES ' , 'WILL BE OUTMPT15750
1PUT FOR ',13,' AVERAGING PERIODS.'/' AVG TIMES ' , 'OF 1,3,8, AND 2MPT15760
24 HOURS ARE AUTOMATICALLY DISPLAYED.') MPT15770
1450 FORMAT (1H ,2X,'A FACTOR OF '.F14.7,' HAS BEEN SPECIFIED TO CONVERMPT 15780
IT USER HEIGHT UNITS TO METERS.') MPT15790
1460 FORMAT (1HO.T3, 'OPTION ' ,T16,' OPTION LIST' ,T46, 'OPTION SPECIFICATMPT15800
1ION : 0= IGNORE OPTION '/1X.T68,' 1= USE OPTION '/T25 'TECHNICAL OPTMPT15810
2IONS'/1X,T7,I2,T16, 'TERRAIN ADJUSTMENTS' ,T70, I I/ IX, T7, 12, T16 ' DO NMPT15820
SOT INCLUDE STACK DOWNWASH CALCULATIONS' , T70.I1/1X, T7, 12, T16,' DO NOMPT15830
4T INCLUDE GRADUAL PLUME RISE CALCULATIONS' T70, I1/1X, T7, 12. T16 'CAMPT15840
5LCULATE INITIAL PLUME SIZE' T70, I1/1X.T25, ' INPUT OPTIONS ' /1X. T7, I2MPT15850
6,T16,'READ MET DATA FROM CARDS' ,T70, I1/1X.T7, 12, T16, 'READ HOURLY EMPT15860
7MISSIONS ',T70,I1/1X,T7, 12, T16 'SPECIFY SIGNIFICANT SOURCES' , T70, I1MPT15870
8/lX,T7,I2,T16, 'READ RADIAL DISTANCES TO GENERATE RECEPTORS' ,T70, I 1MPT15880
9/T25. 'PRINTED OUTPUT OPTIONS '/1X.T7. 12, T16, 'DELETE EMISSIONS WITH MPT15890
AHEIGHT TABLE ' ,T70, I1/1X.T7. 12. T16, 'DELETE MET DATA SUMMARY FOR AVGMPT15900
B PERIOD ',T70,I1/1X,T7, 12, T16, DELETE HOURLY CONTRIBUTIONS' ,T70. I1/MPT15910
C1X.T7, 12, T16, 'DELETE MET DATA ON HOURLY CONTRIBUTIONS' ,T70, I1/1X.TMPT15920
D7. 12, T16, 'DELETE FINAL PLUME RISE CALC ON HRLY CONTRIBUTIONS' , T70.MPT15930
Ell) MPT 15940
1470 FORMAT (1X.T7, 12, TI6 ' DELETE HOURLY SUMMARY' ,T70, I1/1X.T7, 12, T16, 'MPTlSy&O
1DELBTE MET DATA ON HRLY SUMMARY' . T70.I1/1X, T7, 12, T16,' DELETE FINALMPT15960
2 PLUME RISE CALC ON HRLY SUMMARY* ,T70, I1/1X.T7, 12, T16, 'DELETE AVG-MPT15970
3PERIOD CONTRIBUTIONS' T70.I1/1X, T7, 12, T16, 'DELETE AVERAGING PERIODMPT15980
4 SUMMARY',T70. I1/1X.T7, 12, T16, 'DELETE AVG CONCENTRATIONS AND HI-5 MPT15990
STAB LES',T70, I 1/T25,' OTHER CONTROL AND OUTPUT OPTIONS '/ IX ,T7, 12, T16MPT16000
6, 'RUN IS PART OF A SEGMENTED RUN' T70, I1/1X.T7, 12, T16, 'WRITE PARTIMPT16010
7AL CONG TO DISK OR TAPE' ,T70, I1/1X, T7, 12, T16, 'WRITE HOURLY CONG TOMPT16020
8 DISK OR TAPE' ,T70, I1/1X.T7, I2.T16. 'WRITE AVG-PERIOD CONC TO DISK MPT16030
90R TAPE',T70,I1/1X,T7,I2 T16. ' PUNCH AVG-PERIOD CONC ONTO CARDS' .T7MPT16040
AO. I 1/T25,' DEFAULT OPTION '/1X,T7, 12, T16, MPT16050
B'USE DEFAULT OPTION' , T70, II) MPT16060
1480 FORMAT flHO ,2X, ' ANEMOMETER HEIGHT= ' F10.2/3X, 'WIND PROFILE WITH 'MPT16070
1. 'HEIGHT EXPONENTS CORRESPONDING TO STABILITY ARE AS FOLLOWS: '/8X,MPT16080
2JFOR STABILITY A: ' .F4.2/12X ' STABILITY B: ' F4.2/12X, 'STABILITY CMPT16090
3: ', F4. 2, /12X, 'STABILITY D: ', F4. 2, /12X, 'STABILITY E: ' , F4. 2/12X, 'MPT16100
179
-------
4STABILITY F: ',F4.2) MPT16110
1490 FORMAT (1HO,'ANEMOMETER HEIGHT IS:',F10.2/1X.'EXPONENTS FOR POWER-MPT16120
1 LAW WIND INCREASE WITH HEIGHT ARE:',F4.2,5(',',F4.2)/' TERRAIN ADMPT16130
2JUSTMENTS ARE: ';F5.3,5(' ' F5.3)//) MPT16140
1500 FORMAT ('1',T40,'POINT SOURCE INFORMATION'//1X.T5,'SOURCE',T23,'EAMPT16150
1ST',T31,'NORTH',T39,'S02(G/SEC) PART(G/SEC) STACK STACK STACKMPT16160
2 STACK',3X,'POTEN. IMPACT',2X,'EFF',3X,'GRD-LVL BUOY FLUX'/1X.T2MPT16170
33,'COORD'T31,'COORD',' EMISSIONS EMISSIONS HT(M) TEMP(K) DMPT16180
4IAM(M)','VEL(M/SEC)(MICRO G/M**3) HT(M)', 3X.'ELEV ,6X. 'F'/1X,T24,'MPT16190
5(USER UNITS )',T116/USER HT M**4/S**3'/1X.T117.'UNITS'/) MPT16200
1510 FORMAT (IX.13.1X.3A4,1X.2F9.2,2F12.2,4F8.2,6PF13.2,OPF9.2.2F9.2) MPT16210
1520 FORMAT ('0J,T3.'SIGNIFICANT ',A4,' POINT SOURCES'//1X. T8/RANK'.T2MPT16220
12,'CHI-MAX',T33/SOURCE NO.'/1X,T17.'(MICROGRAMS/M**3)'/IX) MPT16230
1530 FORMAT (IX,T9,I3.T18.6PF12.2,T35,13) MPT16240
1540 FORMAT (IX,'HEIGHT ABOVE 100M FOR POINT SOURCE' 14,3X,' HEIGHT=',FMPT16250
A. \S1U J1X .A. y J.iV | LAAJ J.VI1.J.4. tUJVj- T i_) J. \SWl-l L WAfc I \S JLH A. U \S U i LW l_t j J. T ) W f\ • J.1U J.VJI.1 J. ~ • J. I'll J. ±Ol,T2,'TOTALJ,2X,Fl6.2) MPT16310
1580 FORMAT
1590 FORMAT
1H0.21X,'ADDITIONAL INFORMATION ON SOURCES.') MPT16320
1HO,' USER SPECIFIED ',13,' (NPT) SIGNIFICANT POINT ','SOMPT16330
1URCES AS LISTED BY POINT SOURCE NUMBER:'/2X,2515) MPT16340
1600 FORMAT ('0',2X,'EMISSION INFORMATION FOR ',14,' (NPT) POINT SOUR'.MPT16350
1'CES HAS BEEN INPUT'/2X,12,' SIGNIFICANT POINT SOURCES(NSIGP) '.'AMPT16360
2RE TO BE',' USED FOR THIS RUN'/2X,"THE ORDER OF SIGNIFICANCE(IMPS)MPT16370
3 FOR 25 OR LESS POINT SOURCES USED IN THIS RUN AS LISTED BY POINT MPT16380
4SOURCE NUMBER:'/2X,2515) MPT16390
1610 FORMAT (2X,'SURFACE MET DATA FROM STATION(ISFCD) ',16 ' YEAR(ISFCMPT16400
1YR) 19' I2/2X.'MIXING HEIGHT DATA FROM STATION(IMXD) ',16,', YEAR(MPT16410
2IMXYR) 19',12) MPT16420
1620 FORMAT (1HO.T21,'RECEPTOR INFORMATION') MPT16430
1630 FORMAT (1HO.' MPTER INTERNALLY GENERATES 36 RECEPTORS '.'ON A CIRCMPT16440
1LE CORRESPONDING TO EACH NON-ZERO ','RADIAL DISTANCE FROM A CENTERMPT16450
2 POINT '/1X.T10,'COORDINATES ARE (USER UNITS): (',F8.3,','F8.3.')'MPT16460
3/1X.T10,'RADIAL DISTANCE(S) USER SPECIFIED (USER UNITS): ',5(F11.3MPT16470
4,' ')) MPT16480
1640 FORMAT (F4.1) MPT16490
1650 FORMAT ('0' < RECEPTOR IDENTIFICATION EAST NORTH RECEPMPT16500
1TOR HT RECEPTOR GROUND LEVEL'/IX.T30,'COORD',T39,'COORD ABV LMPT16510
20CAL GRD LVL ELEVATION'/1X.T31,'(USER UNITS) (METERMPT16520
3S) (USER HT UNITS)'/IX) MPT16530
1660 FORMAT (1X.T3.I3,2Al,8X,2A4,F13.3,F10.3.F10.1.F20.1) MPT16540
1670 FORMAT (IHO.TS,'* ONE ASTERISK INDICATES THAT THE ASSOCIATED ','REMPT16550
ICEPTOR(S) HAVE A GROUND LEVEL ELEVATION LOWER '.'THAN THE LOWEST SMPT16560
20URCE BASE ELEVATION.'/' CAUTION SHOULD ','BE USED IN INTERPRETINGMPT16570
3 CONCENTRATIONS FOR THESE RECEPTORS.'/' ** TWO ASTERISKS ' 'INDICMPT16580
4ATE THAT THE ASSOCIATED RECEPTOR(S) HAVE GROUND LEVEL ','ELEVATIONMPT16590
5S ABOVE THE LOWEST STACK TOP.'/' CONSEQUENTLY',' NO CALCULATIONMPT16600
6S WILL BE PERFORMED WITH THIS RECEPTOR.A ','SERIES OF ASTERISKS WIMPT16610
7LL INSTEAD APPEAR IN THE OUTPUT.') MPT16620
1680 FORMAT (//IX,' THE NUMBER OF DAYS PREVIOUSLY COMPLETED EQUAL '.MPT16630
113 ' AND THE LAST DAY TO BE COMPLETED IN THIS RUN IS ',13) MPT16640
1690 FORMAT ('IINPUT MET DATA ' , 12.'/', I4/1X.T2.'HOUR THETA SPEiiDMPi'16650
1 MIXING TEMP STABILITY'/IX,T9,'(DEG) (M/S) HEIGHT(M) (MPT16660
2DEG-K) CLASSJ/1X) MPT16670
1700 FORMAT (1X.T3,I2.4F9.2.6X,II) MPT16680
1710 FORMAT ('0'.'RESULTANT MET CONDITIONS'/IX) MPT16690
1720 FORMAT (2X,'WIND DIRECTION^,F7.2,T36,'RESULTANT WIND SPEED^'.F7.2MPT16700
1/2X,'AVERAGE WIND SPEED=',F7.2,T36,'AVERAGE TEMP=',F7.2/2X,'WIND PMPT16710
2ERSISTENCE='.F6.3,T36,'MODAL STABILITY=',12) MPT16720
1730 FORMAT (1HO,' THIS SEGMENT OF A SEGMENTED RUN HAS COMPLETED',15,' MPT16730
1(IDAY1 DAYS.') MPT16740
1740 FORMAT ('0',T9,' RECEPTORS'//IX,'RECEPTOR IDENTIFICATION MPT16750
1EAST NORTH RECEPTOR HT RECEPTOR GROUND LEVEL' T99,'AVGMPT16760
2 CONG FOR PERIOD'/1X.T30,'COORD'T39,'COORD ABV LOCAL GRD LVL MPT16770
3 ELEVATION' T94.'DAY',F4.0'HRJ.F3.0,' TO DAY',F4.0,'HR'.F3.0/1XMPT16780
4,T31,'(USER UNITS) (METERS) (USER HT UNITS)J,T100,'MPT16790
5(MICROGRAMS/M**3)'/1X) MPT16800
180
-------
1750 jFORMAT (1X,T3,I3,10X,2A4,5X,F8.2,2X,F8.2,F10.1,F20.1,T110,A1,6PF7.MPT16810
1760 FORMAT (1H1.T29,'FIVE HIGHEST '.12,'-HOUR ',A4,' CONCENTRATIONSf(EMPT168?0
S™GT™ 4&IA?n?f ti8???! VlX.feS1, ' (MICROGRAMS/M**3) V/2xf'RECEPTMPTliilo
,-'..•.»
*Jf*t\* iUJVSU* J.'
1770 FORMAT (IH
')'. 2
END
BLOCK DATA
1X.A1 6PF9.2,A1,1X,'MMPT16900
,12,')')) MPT16910
MPT16920
MPT16930
BLOCK DATA
(VERSION.79365).PART_OF MPTER.
MPT16950
MPT16960
COMMON /EXPOS/ PXUCOF(6,9),PXUEXP(6,9),HC1(10),BXUCOF(6,9),BXUEXP(MPf16970
C***
C***
C***
C***
C***
C***
C***
C***
C***COEFFICIENTS GENERATED WITH RURAL SIGMAS USING PGYZ
CORRELATIVE CONG. NORMALIZED FOR WIND SPEED FROM PT SOURCE,
C*** PXUCOF(KST,IH)*H**PXUEXP(KST,IH)
C*** IH=1 FOR H LESS THAN 20 METERS.
IH=2 FOR H FROM 20 TO 30 METERS.
IH=3 FOR H FROM 30 TO 50 METERS.
IH=4 FOR H FROM 50 TO 70 METERS.
IH=5 FOR H FROM 70 TO 100 METERS.
IH=6 FOR H FROM 100 TO 200 METERS.
IH=7 FOR H FROM 200 TO 300 METERS.
IH=8 FOR H FROM 300 TO 500 METERS.
IH=9 FOR H GREATER THAN 500 METERS.
DATA PXUCOF /.10401E+00,.12133E+00,.14273E+00
" 18668E+00..77533E-01
34326E+00..67228E-01
76271E+00..40484E-01
22936E+01..28539E-01
56943E+01..14792E-01
40940E+03,
23011E+05,
46522E+06,
10
20
30
40
51
61
72
83
93;.OOOOOE+00/
12403E-01
12340E-01
12245E-Oi;.60615E-Oi;
11728E+00..14120E+00
10013E+00..13963E+00
75308E-01,
66936E-01,
65799E-01,
64321E-01,
62874E-01,
13784E+00;
13615E+00,
13315E+00
12927E+00,
12546E+00,
MPT16980
MPT16990
CHI*U/Q, = MPT17000
MPT17010
MPT17020
MPT17030
MPT17040
MPT17050
MPT17060
MPT17070
MPT17080
MPT17090
MPT17100
18855E+OMPT17110
20458E+OMPT17120
19162E+00,.38998E+OMPT17130
54357E-I-00, .72550E+OMPT17140
52790E+00,.12908E+OMPT17150
74832E+00,.28818E+OMPT17160
10826E+01,.77020E+OMPT17170
15351E+00,
18239E+00,
15580E+01,.68810E+OMPT17180
11952E+00; .22517E+01, .42842E+OMPT17190
MPT17200
DATA PXUEXP /-.19460E+01,-.19774E+01.-.20086E+01,-.20742E+01.-.218MPT17210
122E+01,-.22176E+011-.18479E+01,-.19661E+01.-.20050E+01.-.21317E+01MPT17220
2.-.22094E+01.-. 24209E+01.-.18060E+01.-.19196E+01.-.20017E+01,-.214MPT17230
362E+01,-.23991E+01,-.26556E+01,-.16763E+01,-.18468E+01.-.19984E+01MPT17240
4,-.24128E+01,-.25578E+01.-.29371E+01.-.15940E+01.-.18191E+01,-.199MPT17250
555E+01,-.24059E+01.-.26934E+01,-.315llE+01,L-.145l3E+01,-.18153E+01MPT17260
6.-.19907E+01,-.24817E+01.-.28678E+01,-.40795E+01.-.14181E+01,-.181MPT17270
711E+01,-.19851E+01.-.25514E+01,-.34879E+01.-.48399E+01,-.14172E+01MPT17280
8,-.18071E+01.-.19799E+01JL-.26152E+01>-.38719E+01,-.53670E+01.-.141MPT17290
960E+01)-.18012E+01,-.19721E+01,-.26744E+01,-.37956E+01,-.17020E+02MPT173gg
c A/
C***COEFFICIENTS GENERATED WITH URBAN SIGMAS USING BRSYSZ & BRSZ
C*** FROM RAM MODEL.
C***RELATIVE CONCENTRATIONS NORMALIZED FOR WIND SPEED FROM POINT
C*** SOURCE, CHI*U/Q, =BXUCOF(KST,IH)*H**BXUEXP(KST,IH)
C*** IH=1 FOR H LESS THAN 20 METERS.
C*** IH=2 FOR H FROM 20 TO 30 METERS.
C*** IH=3 FOR H FROM 30 TO 50 METERS.
C*** IH=4 FOR H FROM 50 TO 70 METERS.
C*** IH=5 FOR H FROM 70 TO 100 METERS.
C*** IH=6 FOR H FROM 100 TO 200 METERS.
C*** IH=7 FOR H FROM 200 TO 300 METERS.
IH=8 FOR H FROM 300 TO 500 METERS.
IH=9 FOR H GREATER THAN 500 METERS.
DATA BXUCOF /
10..18861E+00,
20..21253E+00,
16808E+00,
, 15945E+00
14777E+00,
16808E+00,
.15945E+00,
, 14777E+00,
.20927E+00,
.20527E+00,
•19871E+00,
.20378E+00,
.20229E+00,
.20011E+00,
MPT17310
MPT17320
MPT17330
MPT17340
MPT17350
MPT17360
MPT17370
MPT17380
MPT17390
MPT17400
MPT17410
MPT17420
MPT17430
MPT17440
MPT17450
MPT17460
18861E+OMPT17470
21253E+OMPT17480
24888E+OMPT17490
30', .24888E+00',. 13262E+65',". 13262E+00',. 18908E+00',". 19685E+00',".36041E+OMPT17500
181
-------
40
50
60
70
80
.30041E+00,.11745E+00,.11745E+00,.17767E+00,.19301E+00,.34521E+OMPT17510
.34521E+00,.91943E-01,.91943E-01,.15327E+00,.18499E+00,.34368E+OMPT17520
.34368E+00,.65533E-01,.65533E-01,.11984E+00,.17445E+00,.23640E+OMPT17530
.23640E+00,.47345E-01,.47345E-01,.89821E-01,.16720E+00,.15537E+OMPT17540
.15537E+00,.29993E-01,.29993E-01,.56100E-01,.16747E+00,.11009E+OMPT17550
90,~.11009E+00/ MPT17560
DATA BXUEXP /-.19722E+01,-.19722E+01,-.19896E+01,-.19965E+01.-.206MPT17570
149E+01,-.20649E+01,-.19546E+01.-.19546E+01,-.19831E+01,-.19940E+01MPT17580
2.-.21047E+01.-.21047E+01.-.19322E+01,-.19322E+01,-.19736E+01.-.199MPT17590
308E+01.-.21512E+01.-.21512E+01.-.19045E+01,-.19045E+01,-.19669E+01MPT17600
4.-.19867E+01.-.21993E+01.-.21993E+01.-.18759E+01.-.18759E4-01.-.194MPT17610
562E+01,-.19820E+01.-.22320E+01.-.22320E+01.-.18228E+01.-.18228E+01MPT17620
6,-.19142E+01,-.19728E+01.-.22310E+01.-.22310E+011-.17589E+01.-.175MPT17630
789E+01.-.18677E+01,-.19617E+01,-.21604E+01,-.21604E+01. -.17019E+01MPT17640
8,-.17019E+01,-.18172E+01.-.19543E+01,-.20868E+01.-.20868E+01.-.162MPT17650
984E+01,-.16284E+01,-.17414E+01,-.19545E+01,-.20314E+01,-.20314E+01MPT17660
A/
DATA HC1 /10.,20.,30.,50.,70.,100.,200.,300.,500.,1000./
u
END
C
FUNCTION ANGARC (DELM.DELN)
C FlfNCTION ANGARC (VERSION 79365), PART OF MPTER.
C DETERMINES APPROPRIATE ANGLE OF TAN(ANG) = DELM/DELN
C WHICH IS REQUIRED FOR CALCULATION OF RESULTANT WIND DIRECTION.
C DELM IS THE AVERAGE WIND COMPONENT IN THE EAST DIRECTION.
C DELN IS THE AVERAGE WIND COMPONENT IN THE NORTH DIRECTION.
C NO COMMON REQUIREMENT, NO ARRAYS, USES LIBRARY FUNCTION ATAN
IF (DELN) 10,40,80
10 IF (DELM1 20,30,20
20 ANGARC=57.29578*ATAN(DELM/DELN)+180.
RETURN
30 ANGARC=180.
RETURN
40 IF (DELM) 50,60,70
50 ANGARC=270.
RETURN
60 ANGARC=0.
C ANGARC=0. INDICATES INDETERMINATE ANGLE
RETURN
70 ANGARC=090.
RETURN
80 IF (DELM) 90,100,110
90 ANGARC=57.29578*ATAN(DELM/DELN)+360.
RETURN
100 ANGARC=360.
RETURN
110 ANGARC=57.29578*ATAN(DELM/DELN)
RETURN
C
END
C
SUBROUTINE PTR
C SUBROUTINE PTR (VERSION 81350), PART OF MPTER.
C THE PURPOSE OF TUTS ROUTINE IS TO CALCULATE CONCENTRATIONS FROM
C POINT SOURCES.
C
MPT17670
MPT17680
MPT17690
MPT17700
MPT17720
MPT17730
MPT17740
MPT17750
MPT17760
MPT17770
MPT17780
MPT17790
MPT17800
MPT17810
MPT17820
MPT17830
MPT17840
MPT17850
MPT17860
MPT17870
MPT17880
MPT17890
MPT17900
MPT17910
MPT17920
MPT17930
MPT17940
MPT17950
MPT17960
MPT17970
MPT17980
MPT17990
MPT18000
MPT18010
MPT18030
MP'i'18040
MPT1B050
MPT18060
MPT18070
MPT18080
MPT18090
MPT18100
C->->->->SECTION PTR.A - COMMON AND DIMENSION.
C
COMMON /MPOR/ IOPT(25)
COMMON /MPO/ NRECEP,NAVG.NB,LH,NPT,IDATE(2),RREC(180)iSREC(180),ZRMPT18110
1(180),ELR(180),PHCHI(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT18120
2180),PSIGS(180,26),IPOL MPT18130
COMMON /MPR/ UPL.Z.H.HL.X.Y.KS^DELH.SY.SZ.RC.MUOR MPT18140
COMMON /MP/ SOURCE{9,250),CONTWO,PSAV(250),IPSIGS(250),U,TEMP,SINTMPT18150
1,COST,PL(6),ELP(250),ELHN.HANE.TLOS.CELM.CTER MPT18160
DIMENSION UPH(250), HPR(250), FP(256), DH(250), PARTC(250) MPT18170
MPT18180
C->->->->SECTION PTR.B - INITIALIZE AND START RECEPTOR LOOP.
C
MPT18190
MPT18200
182
-------
c
c
c
c
10
c
c
20
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
30
c
c
c
ZERO EFFECTIVE STACK HEIGHT FOR EACH SOURCE
NPT - THE NUMBER OF POINT SOURCES
DO 10 J=1,NPT
HSAV WILL BE USED TO STORE THE SOURCE PLUME HEIGHTS.
HSAV(J)=0.0
LOOP ON RECEPTORS
NRECEP - THE NUMBER OF RECEPTORS
DO 180 K=l.NRECEP
IF IOPT(1)=1, TERRAIN ADJUSTMENTS ARE MADE.
IF (lOPT(l).EQ.O) GO TO 20
ELR - RECEPTOR GROUND LEVEL ELEVATION
ER=ELR(K)
ELHN - LOWEST SOURCE STACK-TOP ELEVATION?
IF (ER.LE.ELHN) GO TO 20
PCHI(K)=99999.E+26
PHCHI(K)=99999.E+26
GO TO 180
CONTINUE
ZR - RECEPOR HEIGHT ABOVE GROUND
Z=ZR(K)
->->SECTION PTR.C - START SOURCES LOOP, CALCULATE
UPWIND AND CROSSWIND DISTANCES.
DO 170 J=1,NPT
PARTC?J)=0.0
RQ - EAST COORDINATE OF THE SOURCE
RQ=SOURCE(l.jl
SQ - NORTH COORDINATE OF THE SOURCE
SQ=SOURCE(2,J)
ELP - SOURCE GROUND LEVEL ELEVATION
EP=ELP(J)
DETERMINE UPWIND DISTANCE
XDUM.YDUM IN USER UNITS. X,Y IN KM.
RREC - EAST COORDINATE OF THE RECEPTOR
XDUM=RQ-RREC(K)
SREC - NORTH COORDINATE OF THE RECEPTOR
YDUM=SQ-SREC(K)
SINT AND COST ARE THE SIN AND COS OF THE WIND DIRECTION
CONTWO - MULTIPLIER CONSTANT TO CONVERT USER UNITS TO KM
X=(YDUM*COST+XDUM*SINT)*CONTWO
X IS THE UPWIND DISTANCE OF THE SOURCE FROM THE RECEPTOR.
IF X IS NEGATIVE, INDICATING THAT THE SOURCE IS DOWNWIND OF
THE RECEPTOR, THE CALCULATION IS TERMINATED ASSUMING NO
CONTRIBUTION FROM THAT SOURCE.
IF (X.LE.0.0) GO TO 170
DETERMINE CROSSWIND DISTANCE
Y=(YDUM*SINT-XDUM*COST)*CONTWO
H=HSAV(J)
SKIP PLUME RISE CALCULATION IF EFFECTIVE HT. HAS ALREADY BEEN
CALCULATED FOR THIS SOURCE
IF (H.EQ.0.0) GO TO 30
DELH=DH(J)
->->SECTION PTR.D - EXTRAPOLATE WIND SPEED TO STACK TOP
CALCULATE PLUME RISE.
GO TO 110
MODIFY WIND SPEED BY POWER LAW PROFILE IN ORDER TO TAKE INTO
ACCOUNT THE INCREASE OF WIND SPEED WITH HEIGHT.
ASSUME WIND MEASUREMENTS ARE REPRESENTATIVE FOR HEIGHT = HANE,
THT IS THE PHYSICAL STACK HEIGHT
THT=SOURCE(5,J)
POINT SOURCE HEIGHT NOT ALLOWED TO BE LESS THAN 1 METER.
IF (THT.LT.l.) THT=1.
U - WIND SPEED AT HEIGHT 'HANE'
PL - POWER FOR THE WIND PROFILE
MPT18210
MPT18220
MPT18230
MPT18240
MPT18250
MPT18260
MPT18270
MPT18280
MPT18290
MPT18300
MPT18310
MPT18320
MPT18330
MPT18340
MPT18350
MPT18360
MPT18370
MPT18380
MPT18390
MPT18400
MPT18410
MPT18420
MPT18430
MPT18440
MPT18450
MPT18460
MPT18470
MPT18480
MPT18490
MPT18500
MPT18510
MPT18520
MPT18530
MPT18540
MPT18550
MPT18560
MPT18570
MPT18580
MPT18590
MPT18600
MPT18610
MPT18620
MPT18630
MPT18640
MPT18650
MPT18660
MPT18670
MPT18680
MPT18690
MPT18700
MPT18710
MPT18720
MPT18730
MPT18740
MPT18750
MPT18760
MPT18770
MPT18780
MPT18790
MPT18800
MPT18810
MPT18820
MPT18830
MPT18840
MPT18850
MPT18860
MPT18870
MPT18880
MPT18890
MPT18900
183
-------
c
c
c
c
c
40
C
UPL - WIND AT THE PHYSICAL STACK HEIGHT
UPL=U*(THT/HANE)**PL(KST)
WIND SPEED NOT ALLOWED TO BE LESS THAN 1 METER/SEC.
IF (UPL.LT.l.) UPL=1.
STORE THE STACK TOP WIND FOR THE JTH SOURCE FOR THIS HOUR
UPH(J)=UPL
VS=SOURCE(8,J)
BUOY=SOURCE(9.J)
TS=SOURCE(6,J)
TEMP- THE AMBIENT AIR TEMPERATURE FOR THIS HOUR
DELT=TS-TEMP
F=BUOY*DELT/TS
IOPT(6) HOURLY EMISSION INPUT FROM TAPE/DISK? 0=NO, 1=YES.
IF (IOPT(6J.EQ.O) GO TO 40
MODIFY EXIT VELOCITY AND BUOYANCY BY RATIO OF HOURLY EMISSIONS
TO AVERAGE EMISSIONS
SCALE = SOURCE(IPOL,J)/PSAV(J)
VS = VS*SCALE
F = F*SCALE
D=SOURCE(7,J)
C*****PLUME RISE AND STACK TIP DOWNWASH CALCULATIONS
C
C
C
C
C
C
C
50
C
C
C
C
C
C
C
C
C
60
C
C
C
70
C
C
C
C
CALCULATE H PRIME WHICH TAKES INTO ACCOUNT STACK DOWNWASH
BRIGGS(1973) PAGE 4
HPRM=THT
IF IOPT(2)=1, THEN NO STACK DOWNWASH COMPUTATION
IF (IOPT_(2).EQ.l) GO TO 50
DUM=VS/UPL
IF (DUM.LT.1.5) HPRM=THT+2.*D*(DUM-1.5)
'HPRM' IS BRIGGS' H-PRIME
IF (HPRM.LT.O.) HPRM=0.
CALCULATE PLUME RISE
MOMENTUM RISE EQUATION
DELHM=3.*VS*D/UPL
IF(KST.GT.4)GO TO 70
PLUME RISE FOR NEUTRAL - UNSTABLE CONDITIONS
IF(TS.LT.TEMP)GO TO 80
IF(F.GE.55.)GO TO 60
COMBINATION OF BRIGG'S(1971) EQNS. 6&7, PAGE 1031, FOR F<55.
DELH=21.425*F**0.75/UPL
IF(DELHM.GT.DELH)GO TO 80
DISTF=0.049*F**0.625
GO TO 100
COMBINATION OF BRIGG'S(1971) EQNS. 6&7, PAGE 1031, FOR F>=55.
DELH=38.71*F**0.6/UPL
IF(DELHM.GT.DELH)GO TO 80
DISTF=0.119*F**0.4
GO TO 100
PLUME RISE FOR STABLE CONDITIONS
DTHDZ=0.02
IFfKST.GT.5)DTHDZ=0.035
S=9.80616*DTHDZ/TEMP
MOMENTUM RISE EQUATION
BRIGG'S(1969) EQUATION 4.28, PAGE 59
DHA=1.5*(VS*VS*D*D*TEMP/(4.*TS*UPL))**0.333333/S**0.166667
IF(DHA.LT.DELHM)DELHM=DHA
IF(TS.LT.TEMP)GO TO 80
MPT18910
MPT18920
MPT18930
MPT18940
MPT18950
MPT18960
MPT18970
MPT18980
MPT18990
MPT19000
MPT19010
MPT19020
MPT19030
MPT19040
MPT19050
MPT19060
MPT19070
MPT19080
MPT19090
MPT19100
MPT19110
MPT19120
MPT19130
MPT19140
MPT19150
MPT19160
MPT19170
MPT19180
MPT19190
MPT19200
MPT19210
MPT19220
MPT19230
MPT19240
MPT19250
MPT19260
MPT19270
MPT19280
MPT19290
MPT19300
MPT19310
MPT19320
MPT19330
MPT19340
MPT19350
MPT19360
MPT19370
MPT19380
MPT19390
MPT19400
MPT19410
MPT19420
MPT19430
MPT19440
MFT19450
MPT19460
MPT19470
MPT19480
MPT19490
MPT19500
MPT19510
MPT19520
MPT19530
MPT19540
MPT19550
MPT19560
MPT19570
MPT19580
MPT19590
MPT19600
184
-------
c
c
c
80
100
105
C
C
110
C
C
C
C
C
C
C
C
C
c
c
c
120
C
C->
C
C
c
130
C
C
140
C
C
C
C
C
C
C
C
150
C
STABLE, BUOYANT RISE (WITH WIND)
DELH=2.6*(F/(UPL*S))**0.333333
IF(DELHM.GT.DELH)GO TO 80
DISTF=0.0020715*UPL/SQRT(S)
GO TO 100
DEIH=DEIHM
DISTF=0.
H=HPRM+DELH
HSAV(J)=H
DH(J)=DELH
DSAV(J)=DISTF
UPH(J)=UPL
HPR(J)=HPRM
MPT19610
MPT19620
MPT19630
MPT19640
MPT19650
MPT19660
MPT19670
MPT19680
MPT19690
MPT19700
MPT19710
MPT19720
MPT19730
MPT19740
4 . MPT19750
FP(J)=F MPT19760
IF SOURCE-RECEPTOR DISTANCE IS GREATER OR EQUAL TO DISTANCE TO MPT19770
FINAL RISE, SKIP PLUME RISE CALCULATION AND USE FINAL RISE. MPT19780
IF (X.GE.DSAV(J)) GO TO 120 _ _ MPT19790
IF (IOPT(4).EQ.O.AND.IOPT(3).EQ.l) GO TO 120
MPT19800
CALCULATE GRADUAL PLUME RISE IF (1) THE USER SPECIFIES SO, MPT19810
OR (2) USER EMPLOYS CALCULATION OF INITIAL DISPERSION MPT19820
IN THIS CASE, USE OF FINAL EFFECTIVE HEIGHT IN THE CALCULATION MPT19830
OF DISPERSION COEFFICIENTS COULD LEAD TO MISLEADING VALUES SINCEMPT19840
SIGMA-Y.-Z = DELTA-H/3.5 MPT19850
DELH=160.*FP(J)**0.333333*X**0.666667/UPH(J) MPT19860
PLUME RISE FOR DISTANCE X(160 IS 1.6*1000**.67 BECAUSE X IN KM)MPT19870
fDELH.GT.DH(J)) DELH=DH(J) MPT19880
*IOPT(3).EQ.l) GO TO 120 MPT19890
tF SPECIFYING CALCULATION OF INITIAL DISPERSION BUT ARE NOT MPT19900
SPECIFYING CALCULATION OF GRADUAL PLUME RISE, THEN DO NOT MPT19910
ADD THE NEW GRADUAL DELTA-H TO THE EFFECTIVE HEIGHT. OTHERWISE,MPT19920
CHECK THE GRADUAL RISE PLUME HEIGHT WITH FINAL EFFECTIVE HEIGHTMPT19930
AND SET THE PLUME HEIGHT TO THE SMALLER OF THE TWO VALUES. MPT19940
H=HPR(J)+DELH MPT19950
ADD PLUME RISE TO STACK HEIGHT FOR TOTAL EFFECTIVE STACK HT. MPT19960
END PLUME RISE CALCULATION MPT19970
UPL=UPH(J) MPT19980
MPT19990
->->SECTION PTR.E - CALCULATE THE CONTRIBUTION OF MPT20000
ONE SOURCE TO ONE RECEPTOR. MPT20010
MPT20020
IF(KST.GT.4)GOT0130 MPT20030
IF (H.LT.HL) GO TO 130 MPT20040
PROD=0. MPT20050
GO TO 150 MPT20060
IF IOPT(1) = 1, TERRAIN ADJUSTMENTS ARE MADE MPT20070
IF (lOPT(l).EQ.O) GO TO 140 MPT20080
DUM=ER-EP MPT20090
H=H+CELM*(CTER*DUM-DUM) MPT20100
RCP RETURNS THE DISPERSION PARAMETERS, SY AND SZ (METERS) MPT20110
AND THE RELATIVE CONCENTRATION VALUES CHI/Q (SEC/M**3) MPT20120
CALL RCP MPT20130
CALCULATE TRAVEL TIME IN KM-SEC/M TO INCLUDE DECAY RATE OF MPT20140
POLLUTANT. MPT2C150
TT=X/UPL MPT20160
TLOS IN METERS/KM-SEC, SO TT*TLOS IS DIMENSIONLESS MPT20170
INCLUDE THE POLLUTANT LOSS MPT20180
PROD=RC*SOURCE(IPOL,J)/EXP(TT*TLOS) MPT20190*
IF HAFL IS ZERO, TLOS WILL START AS ZERO AND MPT20200
RESULT IN NO COMPUTATION OF POLLUTANT LOSS. MPT20210
INCREMENT CONCENTRATION AT K-TH RECEPTOR(G/M**3) MPT20220
PCHI - SUM FOR THE AVERAGING TIME AT RECEPTOR K MPT20230
PCHI(K)=PCHI(K)+PROD MPT20240
PHCHI - CONCENTRATION FOR THIS HOUR AT RECEPTOR K MPT20250
PHCHI(K)=PHCHI(K)+PROD MPT20260
KSIG=IPSIGS(J) MPT20270
IF (KSIG.EQ.O) GO TO 160 MPT20280
STORE CONCENTRATIONS FROM SIGNIFICANT SOURCES.(G/M**3) MPT20290
PSIGS(K,KSIG)=PSIGS(K,KSIG)+PROD MPT20300
185
-------
PHSIGS(K.KSIG)=PHSIGS(K,KSIG)+PROD
PSIGS(K,26)=PSIGS(K,26)+PROD
PHSIGS(KI26)=PHSIGS(K,26)+PROD
160 PARTC(J)=PROD
C
C->->->->SECTION PTR.F - END SOURCE AND RECEPTOR LOOPS.
C
170 CONTINUE
C END OF LOOP FOR SOURCES
C WRITE PARTIAL CONCENTRATIONS ON DISK(G/M**3)
IF (IOPT(21).EQ.O) GO TO 180
C USER PLEASE NOTE: PARTIAL CONG. IN G/M**3, NOT MICROGRAM/M**3
WRITE (10) IDATE,LH,K,(PARTC(J),J=1,NPT)
180 CONTINUE
C END OF LOOP FOR RECEPTORS
RETURN
IF IOPT(21) = 1.
C
C***
C
C
C
C
C
C
C
C
C
C
SECTIONS OF SUBROUTINE PTR.
SECTION PTR.A
SECTION PTR.B -
SECTION PTR.C -
SECTION PTR.D -
SECTION PTR.E -
SECTION PTR.F -
COMMON AND DIMENSION.
INITIALIZE AND START RECEPTOR LOOP.
START SOURCES LOOP; CALCULATE UPWIND AND
CROSSWIND DISTANCES.
EXTRAPOLATE WIND SPEED TO STACK TOP;
CALCULATE PLUME RISE.
CALCULATE CONTRIBUTION FROM A SOURCE TO ONE
RECEPTOR.
END SOURCE AND RECEPTOR LOOPS.
END
SUBROUTINE RCP
SUBROUTINE RCP (VERSION 79365), PART OF MPTER.
C
C
C->->->->SECTION RCP.A - COMMON.
COMMON /MPOR/ IOPT(25)
COMMON /MPR/ UPL.Z.H.HL.X.Y.KST.DELH.SY.SZ.RC.MUOR
C
C*** MODIFICATIONS:
C
C
C
MPT20310
MPT20320
MPT20330
MPT20340
MPT20350
MPT20360
MPT20370
MPT20380
MPT20390
MPT20400
MPT20410
MPT20420
MPT20430
MPT20440
MPT20450
MPT20460
MPT20470
MPT20480
MPT20490
MPT20500
MPT20510
MPT20520
MPT20530
MPT20540
MPT20550
MPT20560
MPT20570
MPT20580
MPT20590
MPT20610
MPT20620
MPT20630
MPT20640
MPT20650
MPT20660
MPT20670
MPT20680
11/27/79 BY K.W.BALDRIDGE, C.S.C., CONVERTED CODE FROM FIELDATAMPT20690
LJ 1 X\ • FT * UZTJJJL/H.LX/VJW J V> • tJ • V • j V\XI'I VZJlL^Uiy VyV/JL*U 1 1LV/I
TO ASCII FORTRAN AND MADE CODE MORE STANDARD
EXPLANATIONS AND COMPUTATIONS
COMMON TO ALL CONDITIONS.
C->->->->SECTION RCP.B -
C
C
C RCP DETERMINES RELATIVE CONCENTRATIONS, CHI/Q, FROM POINT SOURCES.
IT CALLS UPON PGYZ TO OBTAIN STANDARD DEVIATIONS.
THE INPUT VARIABLES ARE
UPL WIND SPEED (M/SEC)
RECEPTOR HEIGHT (M)
EFFECTIVE STACK HEIGHT (M)
MIXING HEIGHT- TOP OF NEUTRAL OR UNSTABLE LAYER(M).
DISTANCE RECEPTOR IS DOWNWIND OF SOURCE (KM)
DISTANCE RECEPTOR IS CROSSWIND FROM SOURCE (KM)
STABILITY CLASS
DELH PLUME HI??!(METERS)
THE OUTPUT VARIABLES ARE
SY HORIZONTAL DISPERSION PARAMETER
SZ VERTICAL DISPERSION PARAMETER
RC RELATIVE CONCENTRATION (SEC/M**3)
10 IS CONTROL CODE FOR WARNING OUTPUT.
10=6
THE FOLLOWING EQUATION IS SOLVED —
RC = (1/(2*PI*UPL*SIGMA Y*SIGMA Z))* (EXP(-0.5*(Y/SIGMA Y)**2))MPT20930
(EXP(-0.5*((Z-H)/SIGMA Z)**2) + EXP(-0.5*((Z+H)/SIGMA Z)**2)MPT20940
PLUS THE SUM OF THE FOLLOWING 4 TERMS K TIMES (N=1,K) —
FOR NEUTRAL OR UNSTABLE CASES:
Z
H
HL
X
Y
KST
MPT20700
MPT20710
MPT20720
MPT20730
MPT20740
MPT20750
MPT20760
MPT20770
MPT20780
MPT20790
MPT20800
MPT20810
MPT20820
MPTP0830
MPT20840
,CHI/Q
C
C
C
C
C
C
C
C
C
MPT20860
MPT20870
MPT20880
MPT20890
MPT20900
MPT20910
MPT20920
TERM 1- EXP
TERM 2- EXP
TERM 3- EXP
TERM 4- EXP
-0.5*
-0.5*
-0.5*
-0.5*
Z-H-2NL
Z+H-2NL
Z-H+2NL
Z+H+2NL
/SIGMA Z
/SIGMA Z
/SIGMA Z
/SIGMA Z
**2
**2
**2
**2
MPT20950
MPT20960
MPT20970
MPT20980
MPT20990
MPT21000
186
-------
C NOTE THAT MIXING HEIGHT- THE TOP OF THE NEUTRAL OR UNSTABLE LAYER- MPT21010
C HAS A VALUE ONLY FOR STABILITIES 1-4, THAT IS, MIXING HEIGHT, MPT21020
C THE HEIGHT OF THE NEUTRAL OR UNSTABLE LAYER, DOES NOT EXIST FOR STABLEMPT21030
C LAYERS AT THE GROUND SURFACE- STABILITY 5 OR 6. MPT21040
THE ABOVE EQUATION IS SIMILAR TO EQUATION (5.8) P 36 IN MPT21050
WORKBOOK OF ATMOSPHERIC DISPERSION ESTIMATES WITH THE ADDITIONMPT21060
C
C
C
C
20
40
C
C
50
C
C
C
C
C
C
C
70
OF THE EXPONENTIAL INVOLVING Y.
IF STABLE. SKIP CONSIDERATION OF MIXING HEIGHT.
IF (KST.GE.5) GO TO 50
IF THE SOURCE IS ABOVE THE LID, SET RC = 0., AND RETURN.
IF (H.GT.HL) GO TO 20
IF (Z-HL) 50,50,40
IF (Z.LT.HL) GO TO 40
WRITE (10,470)
RC=0.
RETURN
IF X IS LESS
SET RC=0. AND RETURN.
NEAR THE SOURCE.
THIS AVOIDS
THE
100
C
C
C
C
120
C
C
THAN 1 METER,
PROBLEMS OF INCORRECT VALUES
IF (X.LT.0.001) GO TO 40
CALL PGYZ TO OBTAIN VALUES FOR SY AND SZ
CALL PGYZ
SY = SIGMA Y, THE STANDARD DEVIATION OF CONCENTRATION IN THE
Y-DIRECTION (M)
SZ = SIGMA Z, THE STANDARD DEVIATION OF CONCENTRATION IN
Z-DIRECTION (M)
IF IOPT(4j=l, CONSIDER BUOYANCY INDUCED DISPERSION OF PLUME
TO TURBULENCE DURING BUOYANT RISE.
IF (IOPT(4).EQ.O) GO TO 70
DUM=DELH/3.5
DUM=DUM*DUM
SY=SQRT(SY*SY+DUM)
SZ=SQRT(SZ*SZ+DUM)
01=1.
IF (Y.EQ.0.0) GO TO 100
YD=1000.*Y
YD IS CROSSWIND DISTANCE IN METERS.
DUM=YD/SY
TEMP=0.5*DUM*DUM
IF (TEMP.GE.50.) GO TO 40
C1=EXP(TEMP)
IF (KST.GT.4) GO TO 120
IF (HL.LT.5000.) GO TO 200
IF STABLE CONDITION OR UNLIMITED MIXING HEIGHT,
USE EQUATION 3.2 IF Z = 0, OR EQ 3.1 FOR NON-ZERO Z.
(EQUATION NUMBERS REFER TO WORKBOOK OF ATMOSPHERIC DISPERSION MPT21450
ESTIMATES.) MPT21460
C2=2.*SZ*SZ MPT21470
IF (Z) 40,130,150 MPT21480
Z WILL RESULT IN ZERO CONCENTRATIONSMPT21490
MPT21500
MPT21070
MPT21080
MPT21090
MPT21100
MPT21110
MPT21120
MPT21130
MPT21140
MPT21150
MPT21160
MPT21170
MPT21180
MPT21190
MPT21200
MPT21210
MPT21220
MPT21230
MPT21240
MPT21250
DUE MPT21260
MPT21270
MPT21280
MPT21290
MPT21300
MPT21310
MPT21320
MPT21330
MPT21340
MPT21350
MPT21360
MPT21370
MPT21380
MPT21390
MPT21400
MPT21410
MPT21420
MPT21430
MPT21440
r (Z) 40,130,150
NOTE: AN ERRONEOUS NEGATIVE
C->->->->SECTION RCP.C - STABLE OR UNLIMITED MIXING, Z IS ZERO.
C
130 C3=H*H/C2
IF (C3.GE.50.) GO TO 40
A2=I./EXP(C3)
C WADE EQUATION 3.2.
RC=A2/(3.14159*UPL*SY*SZ*C1)
RETURN
C->->->->SECTION
C
RCP.D - STABLE OR UNLIMITED MIXING, Z IS NON-ZERO.
150 A2=0.
A3=0.
CA=Z-H
CB=Z+H
C3=.CA*CA/C2
C4=CB*CB/C2
IF (C3.GE.50.) GO TO 170
A2=I./EXP(C3)
170 IF (C4.GE.50.) GO TO 190
MPT21510
MPT21520
MPT21530
MPT21540
MiJT2i5fc>0
MPT21560
MPT21570
MPT21580
MPT21590
MPT21600
MPT21610
MPT21620
MPT21630
MPT21640
MPT21650
MPT21660
MPT21670
MPT21680
MPT21690
MPT21700
187
-------
A3=1./EXP(C4)
C WADE EQUATION 3.1.
190 RC=(A2+A3)/(6.28318*UPL*SY*SZ*C1)
RETURN
C
C->->->->SECTION RCP.E - UNSTABLE, ASSURED OF UNIFORM MIXING.
C
C
C
C
C
200
C
IF SIGMA-Z IS GREATER THAN 1.6 TIMES THE MIXING HEIGHT,
THE DISTRIBUTION BELOW THE MIXING HEIGHT IS UNIFORM WITH
HEIGHT REGARDLESS OF SOURCE HEIGHT OR RECEPTOR HEIGHT BECAUSE MPT21800
OF REPEATED EDDY REFLECTIONS FROM THE GROUND AND THE MIXING HTMPT21810
MPT21710
MPT21720
MPT21730
MPT21740
MPT21750
MPT21760
MPT21770
MPT21780
MPT21790
220
C
C
C
220
C
C
C
C
C
C
C
C
C
230
250
270
280
300
320
340
360
IF (SZ/HL.LE.1.6) GO TO
WADE EQUATION 3.5.
HC=1./(2.5066*UPL*SY*HL*C1)
RETURN
INITIAL VALUE OF AN SET =
AN - THE NUMBER OF TIMES
AND ADDED IN.
AN=0.
IF (Z) 40,380,230
0.
THE
SUMMATION TERM IS EVALUATED
->->SECTION RCP.F - UNSTABLE, CALCULATE MULTIPLE EDDY
REFLECTIONS, Z IS NON-ZERO.
STATEMENTS 220-260 CALCULATE RC. THE RELATIVE CONCENTRATION,
USING THE EQUATION DISCUSSED ABOVE. SEVERAL INTERMEDIATE
VARIABLES ARE USED TO AVOID REPEATING CALCULATIONS.
CHECKS ARE MADE TO BE SURE THAT THE ARGUMENT OF THE
EXPONENTIAL FUNCTION IS NEVER GREATER THAN 50 (OR LESS THAN
-50).
CALCULATE MULTIPLE EDDY REFLECTIONS FOR RECEPTOR HEIGHT Z.
Al=l./(6.28318*UPL*SY*SZ*C1)
C2=2.*SZ*SZ
A2=0.
A3=0.
CA=Z-H
CB=Z+H
C3=CA*CA/C2
C4=CB*CB/C2
IF 7C3.GE.50.) GO TO 250
A2=1./EXP(C3)
IF (C4.GE.50.) GO TO 270
A3=1./EXP(C4)
SUM=0.
THL=2.*HL
AN=AN+1.
A4=0.
A5=0.
A6=0.
A7=0.
C5=AN*THL
CC=CA-C5
CD=CB-C5
CE=CA+C5
CF=CB+C5
C6=CC*CC/C2
C7=CD*CD/C2
C8=CE*CE/C2
C9=CF*CF/C2
IF (C6.GE.50.) GO TO 300
A4=1./EXP(C6)
IF (C7.GE.50.) GO TO 320
A5=1./EXP(C7)
IF (C8.GE.50.) GO TO 340
A6=1./EXP(C8)
IF (C9.GE.50.) GO TO 360
A7=1./EXP(C9)
T=A4+A5+A6+A7
SUM=SUM+T
IF (T.GE.0.01) GO TO 280
MPT21820
MPT21830
MPT21840
MPT21850
MPT21860
MPT21870
MPT21880
MPT21890
MPT21900
MPT21910
MPT21920
MPT21930
'MPT21940
MPT21950
MPT21960
MPT21970
MPT21980
MPT21990
MPT22000
MPT22010
MPT22020
MPT22030
MPT22040
MPT22050
MPT22060
MPT22070
MPT22080
MPT22090
MPT22100
MPT22110
MPT22120
MPT22130
MPT22140
MPT22150
MPT22160
MPT22170
MPT22180
MPT22190
MPT22200
MPT22210
MPT22220
MPT22230
MPT22240
MPT22250
MPT22260
MPT22270
MPT22280
MPT22290
MPT22300
MPT22310
MPT22320
MPT22330
MPT22340
MPT22350
MPT22360
MPT22370
MPT22380
MPT22390
MPT22400
188
-------
c
c
c
c
380
400
410
RC=A1*(A2+A3+SUM)
RETURN
>->->SECTION RCP.G - UNSTABLE. CALCULATE MULTIPLE EDDY
REFLECTIONS, Z IS ZERO.
CALCULATE MULTIPLE EDDY REFLECTIONS
HEIGHT.
A1=1./(6.28318*UPL*SY*SZ*C1)
A2=0.
C2=2.*SZ*SZ
C3=H*H/C2
IF (C3.GE.50.) GO TO 400
A2=2./EXP(C3)
SUM=0.
THL=2.*HL
AN=AN+1.
A4=0.
A6=0.
C5=AN*THL
CC=H-C5
CE=H+C5
C6=CC*CC/C2
C8=CE*CE/C2
IF (C6.GE.50.) GO TO 430
A4=2./EXP(C6)
IF (C8.GE.50.) GO TO 450
A6=2./EXP(C8)
T=A4+A6
SUM=SUM+T
IF (T.GE.0.01) GO TO 410
RC=A1*(A2+SUM)
RETURN
:->->->->SECTION RCP.H - FORMAT
FOR GROUND LEVEL RECEPTOR
430
450
C
C***
C
c
c
c
c
c
c
c
c
c
c
c
470
C
C
C
C
C
C
C
SECTIONS OF SUBROUTINE RCP.
SECTION RCP.A
SECTION RCP.B -
SECTION RCP.C -
SECTION RCP.D -
SECTION RCP.E -
SECTION RCP.F -
SECTION RCP.G -
SECTION RCP.H -
COMMON.
EXPLANATIONS AND COMPUTATIONS COMMON TO ALL
CONDITIONS.
STABLE OR UNLIMITED MIXING, Z IS ZERO.
STABLE OR UNLIMITED MIXING, Z IS NON-ZERO.
UNSTABLE, ASSURED OF UNIFORM MIXING.
UNSTABLE, CALCULATE MULTIPLE EDDY
REFLECTIONS; Z IS NON-ZERO.
UNSTABLE, CALCULATE MULTIPLE EDDY
REFLECTIONS; Z IS ZERO.
FORMAT.
FORMAT (1HO 'BOTH H AND Z ARE ABOVE THE MIXING HEIGHT SO
IE COMPUTATION CAN NOT BE MADE.')
END
MPT22410
MPT22420
MPT22430
MPT22440
MPT22450
MPT22460
MPT22470
MPT22480
MPT22490
MPT22500
MPT22510
MPT22520
MPT22530
MPT22540
MPT22550
MPT22560
MPT22570
MPT22580
MPT22590
MPT22600
MPT22610
MPT22620
MPT22630
MPT22640
MPT22650
MPT22660
MPT22670
MPT22680
MPT22690
MPT22700
MPT22710
MPT22720
MPT22730
MPT22740
MPT22750
MPT22760
MPT22770
MPT22780
MPT22790
MPT22800
MPT22810
MPT22820
MPT22830
MPT22840
MPT22850
MPT22860
MPT22870
MPT22880
MPT22890
A RELIABLMPT22900
MPT22910
MPT22920
MPT22930
SUBROUTINE PGYZ
SUBROUTINE PGYZ (VERSION 79365), PART OF MPTER.
VERTICAL DISPERSION PARAMETER VALUE, SZ DETERMINED BY
SZ = A * X ** B WHERE A AND B. ARE FUNCTIONS OF BOTH STABILITY
AND RANGE OF X.
HORIZONTAL DISPERSION PARAMETER VALUE. SY DETERMINED BY
LOGARITHMIC INTERPOLATION OF PLUME HALF-ANGLE ACCORDING TO
DISTANCE AND CALCULATION OF 1/2.15 TIMES HALF-ARC LENGTH.
COMMON /MPR/ UPL,Z,H.HL,X,Y,KST,DELH,SY,SZ,RC,MUOR
DIMENSION XA(7), XB(2), XD(5), XE(8), XF(9}, AA(8), BA(8), AB(3),
1BB(3), AD(6), BD(6)' AE(9). 6E(9), AF(10), BF(10)
DATA XA /.5,.4,.3,.25,.2,.15,.I/
DATA
DATA
XB
XD
1Q-.3..1,,.:
DATA XE /40.,20.,10.,4.,2.,!.,.3,.I/
DATA XF /60.,30.,15.,7.,3.,2.,1.,.7,,
2/
MPT229SO
MPT22960
MPT22970
MPT22980
MPT22990
MPT23000
MPT23010
MPT23020
MPT23030
MPT23040
MPT23050
MPT23060
MPT23070
MPT23080
MPT23090
MPT23100
189
-------
c
c
c
c
c
c
5
6
C
c
10
20
30
C
40
50
60
C
70
C
80
90
100
C
DATA AA 7453.85,346.75,258.89,217.41,179.52,170.22,158.08,122.8/
DATA BA /2.1166,1.7283,1.4094,1.2644,1.1262,1.0932,1.0542,.9447/
DATA AB /109.30,98.483,90.673/
DATA BB /I.0971,0.98332.0.93198/
DATA AD /44.053.36.650,33.504,32.093.32.093,34.459/
DATA BD /O.51179,0.56589,0.60486,0.64403,0.81066,0.S6974/
DATA AE /47.618,35.420,26.970,24.703,22.534,21.628,21.628,23.331,
14.26/
DATA BE /O.29592,0.37615,0.46713,0.50527,0.57154,0.63077,0.75660,
1.81956,0.83667
DATA AF /34.219.27.074,22.651,17.836,16.187,14.823,13.953,13.953,
14 457 15 209/ »•'''''•
DATA BF /O.21716,0.27436,0.32681,0.41507,0.46490,0.54503,0.63227,
1.68465,0.78407,0.81558/
IF (MUOR.EQ.2) GO TO 9
MCELROY-POOLER URBAN DISPERSION PARAMETERS FROM ST. LOUIS
EXPERIMENT AS PUT IN EQUATION FORM BY BRIGGS.
X IS DISTANCE IN KM.
KST IS PASQUILL STABILITY CLASS.
SY AND SZ ARE IN METERS.
GO 10(2.2,3.4,5.5). KST
SY=320.*X/S6RT(1.+0.4*X)
SZ=240.*X*SQRT(1-+X)
GO TO 6
SY=220.*X/SQRT(1.+0.4*X)
SZ=200.*X
GO TO 6
SY=160.*X/SQRT(1.+0.4*X)
SZ=140.*X/SQHT(1.+0.3*X)
GO TO 6
SY=110.*X/SQRT(1.+0.4*X)
SZ=80.*X/SQRT(1.+1.5*X)
IF (SZ.GT.5000.) SZ=5000.
RETURN
9 XY=X
GO~TO (10,40,,70,80,110,140), KST
STABILITY A
TH=(24.167-2.5334*ALOG(XY))/57.2958
IF (X.GT.3.11) GO TO 170
DO 20 ID=1.7
IF (X.GE.XA(ID)) GO TO 30
CONTINUE
ID=8
SZ=AA(ID)*X**BA(ID)
GO TO 190
STABILITY B
TH=718.333-1.8096*ALOG(XY))/57.2958
IF (X.GT.35.) GO TO 170
DO 50 ID=1,2
IF (X.GE.XB(in)) GO TO 60
CONTINUE
ID=3
SZ=AB(ID)*X**BB(ID)
GO TO 180
STABILITY C
TH=£12.5-1.0857*ALOG(XY))/57.2958
SZ=61.141*X**0.91465
GO TO 180
STABILITY D
TH=(8.3333-0.72382*ALOG(XY))/57.2958
DO 90 ID=1,5 '
IF 7x.CE.XD(ID}) GO TO 100
CONTINUE
ID=6
SZ=AD(ID)*X**BD(ID)
GO TO 180
STABILITY E
MPT23110
MPT23120
MPT23130
MPT23140
MPT23150
MPT23160
2MPT23170
MPT23180
OMPT23190
MPT23200
1MPT23210
MPT23220
OMPT23230
MPT23240
MPT23250
MPT23260
MPT23270
MPT23280
MPT23290
MPT23300
MPT23310
MPT23320
MPT23330
MPT23340
MPT23350
MPT23360
MPT23370
MPT23380
MPT23390
MPT23400
MPT23410
MPT23420
MPT23430
MPT23440
MPT23450
MPT23460
MPT23470
MPT23480
MPT23490
MPT23500
MPT23510
MPT23520
MPT23530
MPT23540
MPT23550
MPT23560
MPT23570
MPT23580
MPT23590
MPT23600
MPT23610
MPT23620
MPT23630
MPT23640
MPT23650
MPT23660
MPT23670
MPT23680
MPT23690
MPT23700
MPT23710
MPT23720
MPT23730
MPT23740
MPT23750
MPT23760
MPT23770
MPT23780
MPT23790
MPT23800
190
-------
110
120
130
C
140
150
160
170
180
190
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
10
C
C
C
C
20
30
C
C
TH=(6.25-0.54287*ALOG(XY))/57.2958
DO 120 ID=1,8
IF (X.GE.XE(ID)) GO TO 130
CONTINUE
ID=9
SZ=AE(ID)*X**BE(ID)
GO TO 180
STABILITY F
TH=(4.1667-0.36191*ALOG(XY))/57.295S
DO 150 ID=1.9
IF (X.GE.XF(ID)) GO TO 160
CONTINUE
ID=10
SZ=AF(ID)*X**BF(ID)
GO TO 180
SZ=5000.
GO TO 190
IF (SZ.GT.5000.) SZ=5000.
SY=465.116*XY*SIN(TH)/COS(TH)
465.116 = 1000. (M/KM) / 2.15
RETURN
END
SUBROUTINE RANK (L)
SUBROUTINE RANK (VERSION 79365). PART OF MPTER.
CALLED BY MPTER TO ARRANGE CONCENTRATIONS OF VARIOUS AVG
TIMES INTO HIGH-FIVE TABLES...THAT IS. ARRAYS STORING
THE HIGHEST FIVE CONCENTRATIONS FOR EACH RECEPTOR FOR
EACH AVG TIME.
VARIABLES OUTPUT:
HMAXA(J,K,L) CONCENTRATIONS ACCORDING TO
"J" 'RANK OF CONG. (1-5)
K RECEPTOR NUMBER
L AVG TIME
NDAY(J.K.L) : ASSOCIATED DAY OF CONG.
IHR(J,K,L) : ENDING HOUR OF CONG.
COMMON/MR/HMAXA(5,180,5),NDAY(5>180,5),IHR(5,180,5),CONC(180,5)
1 JDAY.NR
COMMON /MPO/ NRECEP,NAVG,NB,LH,NPT,IDATE(2).RRECf180).SRECf180),ZRMPT24200
1(180),ELR(180),PHCHl(180),PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT24210
2180),PSIGS(180 26),IPOL MPT24220
10=6 MPT24230
RESET AVERAGING PERIOD FLAG AND SET CALM FLAG. LL.
CALMS ACCOUNTED FOR ONLY WHEN DEFAULT OPTION ON.
LL=0
MPT23810
MPT23820
MPT23830
MPT23840
MPT23850
MPT23860
MPT23870
MPT23880
MPT23890
MPT23900
MPT23910
MPT23920
MPT23930
MPT23940
MPT23950
MPT23960
MPT23970
MPT23980
MPT23990
MPT24000
MPT24010
MPT24030
MPT24040
MPT24050
MPT24060
MPT24070
MPT24080
MPT24090
MPT24100
MPT24110
MPT24120
MPT24130
MPT24140
MPT24150
MPT24160
MPT24170
MPT24180
MPT24190
IF
IF
IF
IF
DO
L.GT.4)LL=1
L.EQ.22)L=2
L.EQ.33)L=3
L.EQ.44)L=4
50 K=l,NRECEP
IF (CONC(K,L).LE.HMAXA(5>K,L)) GO TO 50
DO 10 J=l,5
IF (CONC(K,L).GT.HMAXA(J,K,L)) GO TO 20
CONCENTRATION IS ONE OF THE TOP FIVE
CONTINUE
WRITE (10,70)
GO TO 50
THE FOLLOWING DO-LOOP HAS THE EFFECT OF INSERTING A NEW
CONCENTRATION ENTRY INTO ITS PROPER POSITION WHILE SHIFTING
DOWN THE 'OLD' LOWER CONCENTRATIONS THUS ESTABLISHING THE
'HIGH-FIVE' CONCENTRATION TABLE.
(J.EQ.5) GO TO 40
_. 30 IJ=4,J,-1
IJP1=IJ+1
HMAXA(IJP1,K,L)=HMAXA(IJ,K,L)
NDAY(IJP1,K,L) = NDAY(U.K.L)
IHR(IJP1,K,L) = IHR(IJ,K,L)
INSERT LATEST CONG, DAY AND ENDING HR INTO THE
PROPER RANK IN THE HIGH-FIVE TABLE
IF
DO
MPT24240
MPT24250
MPT24260
MPT24270
MPT24280
MPT24290
MPT24300
MPT24310
MPT24320
MPT24330
MPT24340
MPT24350
MPT24360
MPT24370
MPT24380
MPT24390
MPT24400
MPT24410
MPT24420
MPT24430
MPT24440
MPT24450
MPT24460
MPT24470
MPT24480
MPT24490
MPT24500
191
-------
40
50
60
C
70
C
C
C
C
C
C
C
C
C
C
HMAXA(J.K,L)=CONC(K,L)
NDAY(J,K,L) = JDAY
IHR(J.K.L) = LH
ADD 100 TO HOUR TO SET CALM FLAG FOR MAIN.
IF(LL.EQ.1.AND.L.NE.1)IHR(J,K,L)=IHR(J,K,L)+100
CONTINUE
DO 60 K=1,NRECEP
CONC(K,L)=0.
CONTINUE
RETURN
FORMAT (IX,' ****ERROR IN FINDING THE MAX CONCENTRATION***')
END
SUBROUTINE OUTHR
SUBROUTINE OUTHR (VERSION 79365), PART OF MPTER.
THIS SUBROUTINE PROVIDES OUTPUT CONCENTRATIONS IN
MICROGRAMS PER CUBIC METER FOR EACH HOUR IN TWO WAYS:
1) CONTRIBUTIONS FROM SIGNIFICANT SOURCES, AND
2) SUMMARIES.
BEYOND ENTRY POINT OUTAVG THE SUBROUTINE PROVIDES
CONCENTRATION OUTPUT FOR EACH AVERAGING PERIOD AGAIN
IN THE ABOVE MANNER.
MPT24510
MPT24520
MPT24530
MPT24540
MPT24550
MPT24560
MPT24570
MPT24580
MPT24590
MPT24600
MPT24610
MPT24620
MPT24630
MPT24640
MPT24660
MPT24670
MPT24680
MPT24690
MPT24700
MPT24710
MPT24720
MPT24730
MPT24740
MPT24750
MPT24760
MPT24770
MPT24780
C->->->->SECTION OUTHR.A - COMMON, DIMENSION, AND DATA.
C
COMMON /MPOR/ IOPT(25)
COMMON /MPO/ NRECEP,NAVG.NB,LH,NPT,IDATE(2),RREC(180),SREC(180),ZRMPT24796
1(180),ELR(180),PHCHI(1805,PHSIGS(180,26),HSAV(250),DSAV(250),PCHI(MPT24800
2180),PSIGS(180,26),IPOL MPT24810
COMMON /MO/ QTHETA(24),QU(24),IKST(24),QHL(24),QTEMP(24),MPS(25),NMPT24820
AD J.VJF , j.w, jjiiiii j. \£.\j j , 4jj.LiCi£,i t.\j ] , ij j. ii d o i £,u j , ruim'Lc- \£. , j.ou ; , j.iuunn.1 lou ; , o
2(5,180)
DIMENSION IPOLT(2)
DATA IPOLT /'S02 VPART'/
IPOLU=IPOLT(1)
IF (IPOL.EQ.4) IPOLU=IPOLT(2)
C OPTION(ll): PRINT ONLY THE HOURLY SUMMARIES.
IF (lOPT(ll).EQ.l) GO TO 100
C
C->->->->SECTION OUTHR. B - WRITE HOURLY CONTRIBUTION TITLE.
C
WRITE (10,350) LINE1.LINE2, LINES
WRITE (IO,360)IPOLU,IDATE,LH
C
C->->->->SECTION OUTHR. C - WRITE HOURLY MET DATA.
C
IF (IOPT(12).EQ.l) GO TO 10
WRITE (10,450)
WRITE (10,460) LH,QTHETA(LH),QU(LH),QHL(LH),QTEMP(LH),IKST(LH)
C
C->->->->SECTION OUTHR. D - WRITE FINAL PLUME HEIGHT AND DISTANCE
C FINAL RISE.
C
10 IF (IOPT(13).EQ.l) GO TO 20
WRITE (IO,470T (1,1=1,10)
C HSAV ARE THE CALCULATED PLUME HEIGHTS FOR THIS HOUR
WtflTE (10,480) (HSAV(I),I=1,NPT)
WRITE (10,490) (DSAV(I),I=1,NPT)
C
C->->->->SECTION OUTHR. E - WRITE HRLY SIGNIFICANT SOURCE CONTRIB.
C
20 IF (NSIGP.GT.10) GO TO 40
C PRINT FIRST PAGE OF OUTPUT AND TOTALS FOR 10 OR LESS SIGNIF
WRITE 10,370
WRITE 10,380 (I,I=1,NSIGP)
WRITE 10,390
WRITE 10,380 (MPS(I),I=1,NSIGP)
WRITE 10,400
i mu'ir L £. t o o u
MPT24840
MPT24850
MPT24860
MPT24870
MPT24880
MPT24890
MPT24900
MPT24910
MPT24920
MPT24930
MPT24940
MPT24950
MPT24960
MPT24970
MPT24980
MPT24990
MPT25000
MPT25010
MPT25020
MPT25030
MPT25040
Mri'25U5U
MPT25060
MPT25070
MPT25080
MPT25090
MPT25100
MPT25110
MPT25120
MPT25130
MPT25140
SOUMPT25150
MPT25160
MPT25170
MPT25180
MPT25190
MPT25200
192
-------
c
30
C
40
50
C
60
C
70
80
C
90
C
100
C
DO 30 K=1,NRECEP
WRITE (10,410) K,STAH(1,K),STAH(2,K),(PHSIGS(K,I)>I=1,NSIGP)
PRINT TOTALS
WRITE (10,420) PHSIGS(K,26),PHCHI(K)
CONTINUE
GO TO 100
PRINT FIRST PAGE FOR MORE THAN 10 SIGNIFICANT SOURCES.
WRITE
WRITE
WRITE
WRITE
10,370
10,380
10,430
10.400
(1,1=1.10)
(MPS(l) , 1=1, 10)
DO 50 K=1,NRECEP
WRITE (10,410) K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=1,10)
IF (NSIGP.GT.20) GO TO 70
PRINT SECOND PAGE AND TOTALS FOR 11 TO 20 SIGNIFICANT SOURCES
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
DO 60
10,350
10,360
10,370
10,380
10,390
10,380
10,400
LINE1.LINE2, LINES
IPOLU.IDATE.LH
(I,I=11,NSIGP)
(MPS(I),I=11,NSIGP)
=1,NRECEP
WRITE (I0",410) K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=11,NSIGP)
WRITE (10,420) PHSIGS(K,26),PHCHI(K)
GO TO 100
WRITE SECOND PAGE FOR MORE THAN 20 SIGNIFICANT SOURCES.
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
10,350
10,360
10,370
10,380
10,430
10,400
LINE1.LINE2, LINES
IPOLU.IDATE.LH
(1,1=11,20)
(MPS(I),I=11,20)
DO so K=I;NRECEP
WRITE
WRITE
WRITE
WRITE
10,410
10,350
10,360
10.370
K,STAR(1,K),STAR(2,K),(PHSIGS(K,I),I=11,20)
LINE 1.LINE2, LINES
IPOLU.IDATE.LH
WRITE LAST PAGE AND TOTALS FOR MORE THAN 20 SIGNIF. SOURCES.
WRITE
WRITE
WRITE
WRITE
10,380
10,390
10,380
10,400
(I,I=21,NSIGP)
(MPS(I),I=21,NSIGP)
DO 90 K=1,NRECEP
WRITE (10,410) K,STAR(1,K).STAR(2,K),(PHSIGS(K,I),I=21,NSIGP)
WRITE (10.420) PHSIGS(K,26),PHCHI(K)
OPTION(14): SKIP OUTPUT OF THE HOURLY SUMMARIES.
IF (IOPT(14).EQ.l) GO TO 170
C->->->->SECTION OUTHR.F - WRITE HOURLY SUMMARY TITLE.
C
C
WRITE (10,350) LINE1.LINE2, LINES
WRITE (IO,440)IPOLU,IDATE,LH
C->->->->SECTION OUTHR.G - WRITE HOURLY MET DATA.
C
C
IF (IOPT(15).EQ.l) GO TO 110
WRITE (10,450)
WRITE (10,460) LH,QTHETA(LH),QU(LH),QHL(LH),QTEMP(LH),IKST(LH)
C->->->->SECTION OUTHR.H - WRITE FINAL PLUME HEIGHT AND
C
C
110
C
C
DISTANCE TO FINAL RISE.
IF (IOPT(16).EQ.l) GO TO 120
WRITE (10,470) (1,1=1,10)
HSAV ARE THE CALCULATED PLUME HEIGHTS FOR THIS HOUR
WRITE (10,480) (HSAV(I),I=1,NPT)
WRITE (10,490) (DSAV(I).I=liNPT)
C->->->->SECTION OUTHR.I - WRITE HOURLY SUMMARY TABLE.
MPT25210
MPT25220
MPT25230
MPT25240
MPT25250
MPT25260
MPT25270
MPT25280
MPT25290
MPT25300
MPT25310
MPT25320
MPT25330
MPT25340
MPT25350
MPT25360
MPT25370
MPT25380
MPT25390
MPT25400
MPT25410
MPT25420
MPT25430
MPT25440
MPT25450
MPT25460
MPT25470
MPT25480
MPT25490
MPT25500
MPT25510
MPT25520
MPT25530
MPT25540
MPT25550
MPT25560
MPT25570
MPT25580
MPT25590
MPT25600
MPT25610
MPT25620
MPT25630
MPT25640
MPT25650
MPT25660
MPT25670
MPT25680
MPT25690
MPT25700
MPT25710
MPT25720
MPT25730
MPT25740
MPT25750
MPT25760
MPT25770
MPT25780
MPT25790
MPT25800
MPT25810
MPT25820
MPT25830
MPT25840
MPT25850
MPT25860
MPT25870
MPT25880
MPT25890
MPT25900
193
-------
c
120
C
C
C
130
C
140
150
160
170
C
WRITE (10,500)
CALCULATE GRAND TOTALS AND RANK CONCENTRATIONS
DO 130 K=1,NRECEP
HSAV IS USED AS A DUMMY VARIABLE FOR THE REMAINDER OF THIS
SUBROUTINE. IT IS ZEROED AGAIN IN PTR BEFORE ITS NORMAL USE.
HSAV(K)=PHCHI(K)
DETERMINE RANKING ACCORDING TO CONCENTRATION
DO 150 I=1,NRECEP
CMAX=-1.0
DO 140 K=1.NRECEP
IF (HSAV(K).LE.CMAX) GO TO 140
CMAX=HSAV(K)
LMAX=K
CONTINUE
IRANK(LMAX)=I
HSAV(LMAX)=-1.0
CONTINUE
DO 160 K=1,NRECEP
WRITE (10,510) K,STAR(1,K),STAR(2,K),(RNAME(J,K).J=1,2),RREC(K)
lEC(K),ZR(K),ELR(K),PHSIGS(K,26),PHCHI(K).IRANK(K)
CONTINUE
RETURN
C->->->->SECTION OUTHR.J - ENTRY POINT FOR AVERAGING TIME
C
ENTRY OUTAVG
C AT THIS ENTRY POINT, CONCENTRATION OUTPUT
C IN MICROGRAMS PER CUBIC METER ARE PRINTED FOR THE
C AVERAGING PERIOD. CONTRIBUTIONS AND/OR SUMMARY
C INFORMATION IS AVAILABLE.
C AVERAGE CONCENTRATIONS OVER SPECIFIED TIME PERIOD
DO 190 K=1,NRECEP
PCHI(K)=PCHI(K)/NAVG
HSAV(K)=PCHI(K)
DO 180 1=1,26
180 PSIGS(K,I)=PSIGS(K,I)/NAVG
190 CONTINUE
C OPTION(17): SKIP OUTPUT OF THE AVERAGED CONTRIBUTIONS.
IF (IOPT(17).EQ.l) GO TO 270
C->->->->SECTION OUTHR.K - WRITE AVERAGING-TIME SIGNIFICANT
C SOURCE CONTRIBUTIONS.
WRITE (10,350) LINE1.LINE2,LINES
WRITE (10,520) NAVG.IPOLU.IDATE.NB
IF ?NSIGP.GT.10) GO TO 210
PRINT FIRST PAGE OF OUTPUT AND TOTALS FOR 10 OR LESS SIGNIF
10,380
10,390
10,380
10,400
(I,I=1,NSIGP)
(MPS(I),I=1,NSIGP)
K=1,NRECEP
200
C
210
220
WRITE
WRITE
WRITE
WRITE
WRITE (l6!"4lbTK',STAR(l,K),STAR(2,K),(PSIGS(K,I),I=l,NSIGP)
PRINT TOTALS
WRITE (10,420) PSIGS(K,26),PCHI(K)
CONTINUE
GO TO 270
PRINT FIRST PAGE FOR MORE THAN 10 SIGNIF SOURCES
WRITE (10,380) (1,1=1.10)
WRITE 10,430 (MPS(l5,I=l,10)
WRITE (10.400)
DO 220 K=1.NRECEP
WRITE (10,410) K,STAR(1,K),STAR(2,K),(PSIGS(K,I),I=1,10)
IF ?NSIGP.GT.20) GO TO 240
PRINT SECOND PAGE AND TOTALS FOR 11 TO 20 SIGNIF SOURCES
WRITE 10,350
WRITE 10,520
WRITE 10,380
WRITE 10,390
WRITE (10,380
WRITE (10,400
LINE1.LINE2,LINES
NAVG.IPOLU.IDATE.NB
(I,I=11,NSIGP)
(MPS(I),I=11,NSIGP)
MPT25910
MPT25920
MPT25930
MPT25940
MPT25950
MPT25960
MPT25970
MPT25980
MPT25990
MPT26000
MPT26010
MPT26020
MPT26030
MPT26040
MPT26050
MPT26060
MPT26070
MPT26080
MPT26090
.SRMPT26100
MPT26110
MPT26120
MPT26130
MPT26140
MPT26150
MPT26160
MPT26170
MPT26180
MPT26190
MPT26200
MPT26210
MPT26220
MPT26230
MPT26240
MPT26250
MPT26260
MPT26270
MPT26280
MPT26290
MPT26300
MPT26310
MPT26320
MPT26330
MPT26340
MPT26350
SOUMPT26360
MPT26370
MPT26380
MPT26390
MPT26400
MPT26410
MPT26420
MPT26430
MFT2644G
i«fr''T26450
MPT26460
MPT26470
MPT26480
MPT26490
MPT26500
MPT26510
MPT26520
MPT26530
MPT26540
MPT26550
MPT26560
MPT26570
MPT26580
MPT26590
MPT26600
194
-------
230
C
240
250
DO 230 K=1,NRECEP
WRITE (10,410) K,STAR(1,K),STAR(2.K),(PSIGS(K,I),I=11,NSIGP)
WRITE (10,420) PSIGS(K,26)>PCHI(K)
GO TO 270
WRITE SECOND PAGE FOR MORE THAN 20 SIGNIF SOURCES
WRITE
WRITE
WRITE
WRITE
WRITE AWi~rwi
DO 250 K=I,NRECEP
10,350) LINE1.LINE2.LINES
10,520) NAVG.IPOLU.IDATE.NB
(1,1=11,20)
(MPS(I),1=11,20)
10,380
10,430
10,400
WRITE (10,410
WRITE (10,350
WRITE (10,520
K,STAR(l,K),STARjf2,K),(PSIGS(K,I),I=ll,20)
LiNEl,LINE2 LINES
IB v^^w/ NAVG,IPOLU,IDATE,NB
WRITE LAST PAGE AND TOTALS FOR MORE THAN 20 SIGNIF SOURCES
WRITE (10,380
WRITE (10,390
10,380
10,400
WRITE
WRITE
(I,I=21,NSIGP)
(MPS(I),I=21,NSIGP)
iT W V
.NRECEP
WRITE (10,410) K,STAR(1,K),STAR(2.K)
WRITE (10,420) PSIGS(K,26),PCHI(K
(PSIGS(K,I),1=21,NSIGP)
260
C
C->->->->SECTION OUTHR.L - WRITE AVERAGING-TIME SUMMARY.
C
C OPTION(18): SKIP OUTPUT OF THE AVERAGED SUMMARIES.
270 IF (IOPT(I8).EQ.l) GO TO 310
WRITE (10,350) LINE1.LINE2,LINES
WRITE (10,530) NAVG.IPOLU.IDATE.NB
WRITE (10,500)
C CALCULATE GRAND TOTALS AND RANK CONCENTRATIONS
DO 290 1=1,NRECEP
CMAX=-1.0
DO 280 K=l.NRECEP
IF (HSAV(K).LE.CMAX) GO TO 280
CMAX=HSAV(K)
LMAX=K
280 CONTINUE
IRANK(LMAX)=I
HSAV(LMAX)=-1.0
290 CONTINUE
DO 300 K=1,NHECEP
MPT26610
MPT26620
MPT26630
MPT26640
MPT26650
MPT26660
MPT26670
MPT26680
MPT26690
MPT26700
MPT26710
MPT26720
MPT26730
MPT26740
MPT26750
MPT26760
MPT26770
MPT26780
MPT26790
MPT26800
MPT26810
MPT26820
MPT26830
MPT26840
MPT26850
MPT26860
MPT26870
MPT26880
MPT26890
MPT26900
MPT26910
MPT26920
MPT26930
MPT26940
MPT26950
MPT26960
MPT26970
MPT26980
MPT26990
MPT27000
MPT27010
MPT27020
WRITE (10,510) K,STAR(1,K),STAR(2,K),(RNAME(J,K),J=1,2),RREC(K),SRMPT27030
lECfKl,ZR(K),ELR(K),PSIGS(K,26),PCHI(K),IRANK(K)
300 CONTINUE
310 IF (IOPT(24).EQ.O) GO TO 330
C PUNCH CONCENTRATIONS FOR CONTOURING(MICROGRAMS/CUBIC METER)
C RECEPTOR COORDINATES IN USER UNITS.
DO 320 K=l.NRECEP
GWU=PCHI(K)*1.0E+06
WRITE (10,540) RREC(K),SREC(K),GWU,K,ZR(K),ELR(K)
WRITE (1,540) RREC(K),SREC(K),GWU,K,ZR(K),ELR(K)
CONTINUE
IF (IOPT(23).EQ.O) GO TO 340
WRITE PERIODIC CONC. TO DISK/TAPE - FOR LONG-TERM APPLICATION
FOR EACH RUN, THIS WRITE STATEMENT WILL GENERATE
'NPER' RECORDS.
WRITE (13) IDATE(2),NB,(PCHI(K),K=1,NRECEP)
RETURN
320
330
C
C
C
340
C
C->->->->SECTION OUTHR.M - FORMATS.
C
SECTIONS OF SUBROUTINE OUTHR.
MPT27040
MPT27050
MPT27060
MPT27070
MPT27080
MPT27090
MPT27100
MPT27110
MPT27120
MPT27130
MPT27140
C***
C
C
C
C
C
C
C
SECTION OUTHR.A
SECTION OUTHR.B
SECTION OUTHR.C
SECTION OUTHR.D
SECTION OUTHR.E
SECTION OUTHR.F
COMMON, DIMENSION, AND DATA.
WRITE HOURLY CONTRIBUTION TITLE.
WRITE HOURLY MET. DATA.
WRITE FINAL PLUME HEIGHT AND DISTANCE TO
FINAL RISE.
WRITE HOURLY SIGNIFICANT SOURCE CONTRIB.
WRITE HOURLY SUMMARY TITLE.
MPT27160
MPT27170
MPT27180
MPT27190
MPT27200
MPT27210
MPT27220
MPT27230
MPT27240
MPT27250
MPT27260
MPT27270
MPT27280
MPT27290
MPT27300
195
-------
c
c
c
c
c
c
c
c
c
c
350
510
520
530
540
C
SECTION OUTHH.G
SECTION OUTHH.H
SECTION OUTHH.I
SECTION OUTHR.J
SECTION OUTHR.K
SECTION OUTHR.L
SECTION OUTHR.M
WRITE HOURLY MET. DATA. MPT27310
WHITE FINAL PLUME HEIGHT AND DISTANCE TO MPT27320
FINAL RISE. MPT27330
WRITE HOURLY SUMMARY TABLE. MPT27340
ENTRY POINT FOR AVERAGING TIME. MPT27350
WRITE AVERAGING-TIME SIGNIFICANT SOURCE MPT27360
CONTRIBUTIONS. MPT27370
WRITE AVERAGING-TIME SUMMARY. MPT27380
FORMATS. MPT27390
MPT27400
FORMAT ('!',20A4/1X.20A4/1X.20A4) MPT27410
360 FORMAT^ 0',T30,A4' CONTRIBUTION(MICROGRAMS/M**3) FROM SIGNIFICANTMPT27420
1 POINT SOURCES ' 5X,12,'/',14,' : HOUR M2//) MPT27430
370
380
390
400
410
420
430
440
450
460
470
480
490
500
FORMAT
FORMAT
FORMAT
1X.T113,
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (
15X.I2, V
FORMAT
11X.T9 '
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1HO.T5 'RANK')
'+',T12,10(13.7X))
'+',T113,'TOTAL
POINT
TOTAL'/1X,T113,'SIGNIF
SOURCES'/IX,'SOURCE #')
IX.'RECEP #')
1X.I3.2A1.6P10F10.3)
'+' Tl09,6P2F10.3)
IX,'SOURCE #',T12,10(13,7X)) MrrzYtULU
0',T25,A4,' SUMMARY CONCENTRATION TABLE(MICROGRAMS/M**3) 'MPT27520
'14,' : HOUR ' I2/1X)
IX,T2,'HOUR THETA SPEED
MPT27440
MPT27450
ALL POINT'/1MPT27460
MPT27470
MPT27480
MPT27490
MPT27500
MPT27510
DEG| (M/S) HEIGHT(M)
lX,T3,I2.4F9.2,6X,n//)
ISX.lOIllj
' FINAL HT (M) '.10F11.2)
' DIST FIN HT (KM)',10F11.3)
'0',T7 'RECEPTOR',T23,'EAST',T33,'
MIXING TEMP
CLASS'/IX)
MPT27530
STABILITY'/MPT27540
MPT27550
MPT27560
MPT27570
MPT27580
}MPT27590
t" \si.u'm j. w j A i • iuuvyiJi J. vxxi. j i.t**j) LJULJ ± y j. \j\j y INv/riiri j 1 '-tO j rLtlOlli IC/iL HI IVIi i £ IDvJU
1.T61,'RECEPTOR',T78,'TOTAL FROM',T93,'TOTAL FROM',T106,'CONCENTRATMPT27610
2ION'/' ',T7,'NO. NAME' T22,'COORD',T33,'COORD',T44,'ABV GRD (M)',TMPT27620
359,'GRD-LVL ELEV,T77,'SIGNIF POINT',T93,'ALL SOURCES'.Till,'RANK'MPT27630
4/' ',T58 '(USER HT UNITS)' T80,'SOURCES'//) MPT27640
FORMAT (1H ,I8,2A1,2X,2A4,2F10.2,F12.1,F20.1,6P2F15.4,I15) MPT27650
FORMAT ('0',T22,12,'-HOUR AVERAGE ',A4,' CONTRIBUTION(MICROGRAMS/MMPT27660
1**3) FROM SIGNIFICANT POINT SOURCES',5X,12,'/',13,' START HOUR: "MPT27670
2.I2//1X.T5 'RANK') MPT27680
FORMAT ('0J,T25,I2 '-HOUR AVERAGE ',A4,' SUMMARY CONCENTRATION TABMPT27690
1LE(MICHOGRAMS/M**3)'.5X.I2,'/',I3,' START HOUR: ',I2//1X) MPT27700
FORMAT ('CNTL',1X,3F10.3,20X,I4,2F10.1) MPT27710
MPT27720
END MPT27730
196
------- |