United States       Air and Radiation     EPA. 420-R-96-005
           Environmental Protection              October 1996
           Agency ...
4>EPA     Benefits of Mobile
           Source NOx  Related
           Particuiate Matter
           Reductions
                                 i Printed on Recycled Paper

-------
SYSTEMS A PPUCA TIONSINTERNA TIONA L
                                  Final Report

                BENEFITS OF MOBILE SOURCE NO, RELATED
                    PARTICULATE MATTER REDUCTIONS

                                 October 1996

                                SYSAPP-96/61
                          EPA Contract No. 68-C5-0010
                              Work Assignment 1-8
                                  Prepared for

                             Mr. Christopher Lieske

                       U.S. Environmental Protection Agency
                              2565 Plymouth Road
                           Ann Arbor, Michigan 48105
                                  Prepared by

                                H. Andrew Gray
                                Aleksandr Kuklin

                         Systems Applications International
                              101 Lucas Valley Road
                           San Rafael, California 94903
966UO.doc                                                    ^'na' — October i

-------
SYSTEMS A PPUCA TIONSINTERNA TIOVA L
                                Contents
1  INTRODUCTION	         1
   Problem Statement	         1
   Project Approach	         2

II  ESTIMATION OF BASE CASE (CURRENT) NO, TO NITRATE
   CONVERSION	         3
   Methodology	         3
   Region Selection	         7
   Data Collection and Preparation	         10
   Results; and Discussion	         13

in MOBILE SOURCE ADJUSTMENT	         21
   Diurnal Emission Pattern	         22
   Emission Release Height	         23

IV FUTURE SCENARIOS	         25
   Methodology	         25
   Results and Discussion	         30

V  UNCERTAINTY ANALYSIS	         33
   Nitrate/No, Calibration Factors	         33
   SO* Emission Projections	         35
   Sulfate Neutralization Ratio	         35

VI ESTIMATION OF BENEFITS	         39

VnSUMMARY/FUTURE RESEARCH	         45

References	         49

Appendix A	         53
Appendix B	         63
966ll0.doc                                                   Final — October •

-------
SYSTEMS APPUCA TIONSINTERNA TIONAL
                                I INTRODUCTION
PROBLEM STATEMENT
The U.S. Environmental Protection Agency (EPA) is considering the proposal of a new
oxides of nitrogen plus nonmethane hydrocarbon (NO, + NMHC) emissions standard for
highway heavy-duty engines. It is recognized that the NOX emission reductions will have a
potentially positive impact on ambient paniculate matter (PM) levels due to a decrease in the
formation of secondary paniculate nitrate.  Secondary PM nitrate is produced in the atmo-
sphere when NO, is oxidized into nitric acid, and then the nitric acid is neutralized, usually by
ammonia, to form paniculate nitrate.  In some western states, ammonium nitrate can repre-
sent more than one quarter of the annual average fine ambient paniculate matter, and up to
half the total fine mass loading during peak PM concentration events. Sulfate aerosol inhibits
the formation of PM nitrate by scavenging the available ammonia. Therefore, the formation
of PM nitrate in areas with high ambient paniculate sulfur levels, such'as in the eastern states,
is inhibited. However, ambient sulfur levels in the east are expected to be reduced in the
future due to tighter restrictions on sulfur emissions. Lower ambient sulfur levels could lead
to potentially higher levels of ammonia that would then be available for paniculate nitrate
formation.

EPA was limited by the lack of information and resources available and could not adequately
assess the PM nitrate impacts for the Notice of Proposed Rule Making (NPRM).  In its draft
Regulatory Impact Analysis (R1A), EPA relied on a study of ambient concentration data
conducted by the California Air Resources Board (C ARB) and assumptions about the rest of
the United States to roughly estimate nationwide PM nitrate reductions due to the proposed
NO, emission reductions. The CARB study data were heavily weighted toward Southern
California, a region that experiences particularly high levels of ambient PM nitrate. Extrap-
olation of the CARB data set to the rest of the United States seems highly uncertain.  In
addition, that analysis could not account for changes in future sulfate levels.

The objective of the current study is to estimate the conversion of NO, to paniculate nitrate
(in terms of percentage NO, emissions convened to PM nitrate) for atmospheres  of various
regions of the United States under current and future scenarios.  It should be realized that the
rate of conversion of NO* to nitrate is not constant within an air basin, and also varies by
season and time of day. After fresh NO, emissions are injected into an air parcel, the NO,
within the pared of air has the potential to transform, first to nitric acid (through oxidation)
and then to paniculate nitrate (by neutralization). The conversion of NO, to paniculate
nitrate will therefore continue to evolve as the air parcel migrates through the .air  basin. The
objective of the current study is to approximate the integration of all such N0,-laden air
parcels within typical atmospheres (representing urban or rural conditions) to arrive at an
overall rate of conversion for all NO, emissions.
 966\ I0.doc                                                           Final — October

-------
                                                SYSTEMS A PPUCA T10NSI\TEJWA TIO\A L
PROJECT APPROACH

The objective of this work assignment will be accomplished by evaluating the oxidation rates
of N0t to nitric acid and the subsequent equilibrium with PM nitrate under various atmo-
spheric conditions, each representative of a region of the United States during one of the four
seasons.  The conversion rates will be adjusted, as necessary, to account for mobile source
NO< emissions (rather than stationary source emissions). In addition, the NOT to nitrate
conversion rates will be assessed for future scenarios. The regional estimates will be used to
determine a national average (weighted by population) conversion rate. Finally, an estimate
of the benefits resulting from decreased PM nitrate will be compared with the benefits
attained from other PM control programs.

If one were able to measure the concentrations (and depositions) of all gaseous and
paniculate nitrogen oxide species within an air parcel, then it would be (theoretically)
possible to account for the chemical transformations of NO, to all other species (including
PM nitrate). It would then be a straightforward procedure to calculate the PM nitrate yield
per unit NO* emissions as a function of place and time of emissions. Of course it is not
possible to continuously measure all the important nitrogenous end products, and air parcels
generally contain NO, emissions of different ages, so analysis of ambient data alone cannot
definitively determine the rate of conversion. However, an approximate rate of conversion
can be obtained by assuming that the NO, only transforms into nitric acid and paniculate
nitrate.  Then, the simultaneous measurements of NO,, nitric acid, and paniculate nitrate
represent the total amount of emitted NO,. By dividing the PM nitrate concentration by this
"total" emitted NO, (the sum of remaining NO, and all measured NO, end products), one
would generate an estimate of the average rate of conversion within the air parcel between
the time of emissions until the time of measurement

Unfortunately, adequate data do not exist to determine the conversion rates for most loca-
tions because nitric acid concentrations are not routinely measured. An alternative method
for estimating the NO, to PM nitrate conversion rate would be to simulate the emissions of
NO,, and then account for the transport, deposition, and chemical transformation of all
evolving air parcels within an air basin. While this method is possible in principle using state-
of-the-art atmospheric modeling tools, it is extremely resource-intensive to model the
conversion for the entire U.S. and for multiple seasons.
        i
For this study, estimation of the conversion of NO, to PM nitrate was accomplished using a
combination of ambient concentration data and computer modeling that simulates the
atmospheric conditions under consideration. The model was used to compute the rates of
oxidation of NO, to nitric acid and perform the equilibrium calculation to estimate paniculate
nitrate formation under various atmospheric conditions representing different locations,
seasons and times of the day. The model was calibrated so that the base case (1990) PM
nitrate .yield was consistent with ambient data.  Then the model was exercised using
atmospheric conditions representing future scenarios; In-this way, the model can be used to
evaluate the effects of changes in atmospheric conditions on rates of nitrate formation.
                                                                             966110iioc

-------
SYSTEMS APPUCA T10NS STERNA TIOVAL
 Q  ESTIMATION OF BASE CASE (CURRENT) NOt TO NITRATE CONVERSION

 METHODOLOGY

 Estimation of base case NO, to nitrate conversion rates was accomplished using a combina-
 tion of ambient concentration data and computer modeling that simulates the atmospheric
 conditions under consideration.  The OZIPMIV photochemical module with the updated
 version of the Carbon Bond IV (CBM-FV) chemical mechanism (Hogo and Gery, 1988) was
 used to compute the gas-phase conversion of NO, to nitric acid (HNO-j) during daylight
 hours.  The model operates as a well-mixed box model that first estimates the equilibrium
 hydroxyl (OH) radical concentration for the set of air quality and meteorological conditions
 corresponding to the specified location, season, and time of day. The equilibrium hydroxyl
 radical concentration is then used to determine the NO, oxidation rate.  During nighttime
 hours, the chemical module that simulates NO, to HNOs oxidation at night in the recently
 developed Regulatory Modeling System for Aerosols and Deposition (REMSAD; SAL 1996)
 was used. For each location modeled, input data were prepared to be representative of a
 single day within each season. NO, oxidation rates were evaluated every two hours and then
 integrated to obtain a daily average oxidation rate.  The integration was weighted by the
 diurnal NO: concentration profile to determine the overall daily production of nitric acid.

 The oxidized NO, first becomes nitric acid, however a portion of the nitric acid is neutralized
 to form PM nitrate. Therefore, the initial oxidized NO, can be considered "total nitrate,"
 defined as PM nitrate plus remaining nitric acid.  The total nitrate was apportioned into PM
 nitrate and remaining nitric acid by estimating the equilibrium between these two species.
 This was accomplished by calibrating the model  to match base case ambient concentration
 ratios of PM nitrate/ NO,. In this way, the model was forced to apportion total nitrate so
 that the base case ambient concentration ratios match modeled concentration ratios.
\
 The following input variables were required to estimate the seasonal conversion of NO, to
 nitrates:

 NO* Oxidation

 •     Geographical coordinates: latitude and longitude
 •     Meteorological parameters:  hourly average temperature (K) and humidity (%), daily
     1 avenge pressure (mb) and cloud cover (%)
 •     The total column ozone (D.U.) and surface albedo (used to calculate the set of
      location-specific seasonal photolysis rates)
 •     Air quality data: hourly average concentrations (ppm) of Oj, NMOC and NO,
 966UO.doc                                                         Final — October;

-------
                                               SYSTEMS APPUCA TIONS 1NT&WA T70.VA L
PM Nitrate/Nitric Acid Equilibrium

•    Daily average concentrations of PM nitrates and nitrogen oxides (used to calculate
     location-specific seasonal calibration ratios: PM nitrates/[PM nitrates + NO*])

Photochemical Oxidation of Nitrogen Oxides

The oxidation of nitrogen dioxide (NO:) with hydroxyl (OH) radical has been considered as a
primary pathway for daytime nitric acid generation. The photochemical box model was used
to generate steady-state OH values.  The CBM-IV chemical mechanism within the OZEPM-4
box model contains 90 reactions, including 11 photolysis reactions. The first photolysis
reaction is for nitrogen dioxide and the rate is computed as a function of solar zenith angle.
The rates for three other photolysis reactions are calculated as a product of the nitrogen
dioxide photolysis rate and a corresponding constant multiplication factor.  Rates for the
other seven photolysis reactions are known to vary with zenith angle in a fashion that is
different from that of NO?. Therefore, zenith angle dependent multiplication factors were
applied to the NO? photolysis rate to obtain the photolysis rates for these reactions.  In
OZFPM-4, all photolysis rates are computed  by scaling of the NO? photolysis rate because
most of the photolytic rate constants are reported in the literature as a ratio to the NO?
photolysis rate. The steady-state assumption between NO, NO? and 0) was used to calculate
the nitrogen dioxide fraction of NO*. Complete (100%) conversion of NO to NO? was
assumed for nighttime hours.

Within the oxidation model, the composition of volatile organic compounds (VOCs) must be
specified.  VOCs are modeled as a single species with invariant  composition.  For the current
modeling application, sufficient information was not available to develop location-specific
VOC compositions.  Therefore, the VOC composition for all locations was taken from EP A-
recommended values for transported VOC.  This standard composition agreed well with
measured regional-scale VOC compositions  from the Lake Michigan and Gulf Coast regions.
Table 1 presents the standard conditions that were used to calculate OH concentrations.
                   TABLE 1.  Standard atmospheric conditions used in the
                   box model.
Paramtttr
CH4
CO
H202
VOC fractions:
OLE 0.019
ETH 0.033
PAR 0.477
TOL 0.040,
XYL 0.025
Value
1.750ppm
0.300 ppm
0.00 Ippm

ISOP
FORM
ALD2
NR






0.050
0.070
0.070
0.261

              100*
                                                                            966ll0.doc

-------
SYSTEMS A PPUCA TIOVSINTERNA TIOSA L
Photolysis Rates

The OZIPM-4 model requires information on photolysis rates to calculate the formation of
OH radical.  A look-up table generated by the Urban Airshed Model (UAM-V) photolysis
rate preprocessor was used to define a set of photolysis rates for each location and for all
seasons.  The preprocessor incorporates a parameterized light model developed by Schipp-
nick and Green (1982) that can treat total Qi column density, surface albedo and turbidity as
variable inputs. Using wavelength-resolved absorption cross-section and quantum yield data
for each photolysis reaction, the resulting look-up table contains photolysis rates for various
solar zenith angles and altitudes as functions of albedo, haze, and ozone column density. The
surface albedo values 0.08 and 0.05 were used for urban and rural regions respectively.

An intermediate look-up table was developed to estimate ozone column density as a function
of latitude and longitude for each month of the year. Total column ozone data for 1990 from
the Nimbus-7 total ozone mapping spectrometer (TOMS) have been used to generate tables
of daily averaged values. These data were downloaded from the Distributed Active Archive
Center at NASA/Goddard Space Flight Center (ftp://daac.gsfs.nasa.gov/toms/ozone/).  The
spatial resolution of the ozone column density data is 1 degree latitude by I degree longitude.

OZIPM-4 modifications

Two modifications were incorporated into the OZIPM-4 photochemical box model.  The
model employs the UAM-V algorithm to adjust the photolysis rates for cloud cover.  The
cloud cover scaling factors applied to the NO? photolysis rates vary from  1 for clear skies to
0.4 for completely overcast conditions. Attenuation factors for other photolysis rates may be
different, although there is no information on the attenuation of photolysis rates for chemicals
other than NO}.  Thus, as a first approximation, it is assumed that the cloud cover effects for
all photolysis rates are the same as for NO*.

Previous applications of OZIPM-4 with CBM-IV have assumed a constant atmospheric
pressure of 1 atm.  Because the temperature and pressure  vary geographically and seasonally
throughout the United States, the chemical reaction rate calculation procedure was modified
to account for the effects of pressure and temperature on the gas-phase reaction rate
constants (Atkinson et ai., 1992).

Pressure Dependence of RfflctJon Rate Constants

The reaction rate constants used in CBM-IV are expressed in units of ppm"" min'1 (£*•).  These
rates are derived from absolute rate constants k, generally expressed in units of
(molecules/cmVs1. by applying a formula based upon the Ideal Gas Law:

             constant x * x (P/RTf{
 where/' is pressure (atm), T is temperature (K), R is the gas constant, and n is the order of
 the reaction (i.e., the number of reactants). It is important to note that the formula in
 Equation (1) represents a conversion of units and is independent of the calculation describing
 the Arrhenius temperature dependence of the rate constants:
                .-EK/T
 9W110.doc                                                           Final — October

-------
                                                SYSTEMS APPUCA TIONS INTERS A TIOXAL
For single-body reactions, the rate constants have units of min'1. and require no correction for
pressure and temperature.  Several of the reactions are written as single-body reactions, but
are actually two-body or three-body reactions, where the concentrations of the other
reactants (generally N2 or M) have been incorporated into the rate constant. Thus it was
necessary to determine the order of the original rate constant used for each reaction, and
apply the appropriate conversion.

The form of the conversion is:

       **.( TJP) - WSTP) * (P x 298 / f r1                                           (3)

where STP indicates standard temperature and pressure.  For reactions that also exhibit an
Arrhenius temperature dependence, the form of the rate constant conversion becomes:

       WW • -WSTP) x (P x 298 / 7T*1 e£/*"f2*- l/n                               (4)

Several reactions in the mechanism are in the transition region between second-order and
third-order kinetics.  These reactions exhibit a pressure dependence in addition to the
pressure dependence introduced by the units conversion. The rate constants for these
reactions were calculated using the formula recommended by Atkinson et al. (1992):
where kJ(T) is the temperature-dependent third-order rate constant, AT. (7) is the tempera-
ture-dependent second-order rate constant, and, in this case, [M] is the concentration of air in
ppm (i.e., [M] =  10*).  The factor Fe in Equation (5) is equal to the F? value in Table 2 in
cases when FP is not exceeded by 1 .  For F? greater than 1, the following equation was used:

       Fc = (exp(-7YF,)).                                                              (6)

The temperature-dependent constants k^T) and kr( 7) are defined by the expression:

                                                                                      (7)
The &, and &. values for the pressure-dependent reactions (cm3molecule''s"1) and the
temperature dependence of each (Atkinson et al., 1992) are given in Table 2.

 TABLE 2. Rate coBstmts and parameters for pressure-dependent reactions in the CBM-IV.
 Reactions	fc, (300)     n,	fc, (300)     n«    Ff
                      M          0.90E-31    -2.0      0.22E-10    0.     1300.
                     M          0.90E-31    -1.5      0.30E-10    0.3    1850.
 NO + OH +M •=> HNO, + M       0.70E-30    -2.6      0.32E-10    0.     0.8
 NO, + OH + M o HNO, + M       0.26E-29    -32      0.60E-10    0.     0.43
 NOi + NO, + MOPNA + M       0.18E-30    -3.2      0.47E.11    0.     0.6
 The pressure and temperature adjustments were performed using the following procedure:

 I.  Base reaction rate constants were corrected for temperature and pressure using Equation
    3.                                                   :'  ;"-';

 ~   '   r  '•    '"""'            •                             -^-.-'               9661IO.doc

-------
SYSTEMS A PPUCA TIONS INTERN A TIONA L
2.  Rate constants were calculated for the appropriate temperature using the Arrhemus
    expression. Equation 2.

3.  Rate constants for pressure-dependent reactions were calculated using Equations 5 and 7

The pressure dependent reaction of NO? with OH radical (fourth reaction in Table 2) has
been used to calculate total nitrate concentrations (sum of nitric acid and paniculate nitrates).

Equilibrium Calculation

Concentrations of oxidized NO, (total nitrate) were split into nitric acid and PM nitrate using
the following calibration ratio of ambient nitrogen oxides and PM nitrate concentrations.

          CR = PM Nitrate /(NO, + PM Nitrate)                                     (8)

The equilibrium fraction of modeled  total nitrate that was apportioned to PM nitrate was as-
sumed to be that fraction for which the modeled daily average calibration ratio would match
the calibration ratio, CR, computed from 24-hour average ambient measurements.  From this
assumption, the following relationship was developed to compute the equilibrium fraction:

          Equil. Fr. - (NO, - Totai  Nitrate)*CR / (Total Nitrate)*(l-CR)           (9)

where all concentrations are in ppm.  Note that  in Equation (9), the NO, term represents the
initial NO, concentration that was used in the oxidation calculation (therefore the value, NO,
- Total Nitrate, represents the NO, remaining after oxidation).  The modeled daily average
PM nitrate concentration was then obtained by multiplying the daily average total nitrate
concentration by the equilibrium fraction.


REGION SELECTION

The objective of this study requires that the rate of conversion of NO, to paniculate nitrate
be estimated across the entire United States.  Nine regions,  covering the 48 contiguous
states, have been selected for this analysis.  The number of regions and their boundaries were
chosen so that each region could be  represented by a single urban or rural area. The regions
were selected by considering the most important factors affecting NO,-to-nitrate conversion,
and then examining the spatial variability of these factors across the U.S. The important
factors affecting NO, conversion include: water vapor concentration (relative humidity),
temperature, solar radiation (and cloud cover),  ozone concentration (used as a surrogate
variable to represent atmospheric oxidation potential), and ambient levels of other pollutants
such as volatile organic carbon (VOC) and NO,.

Ideally, the urban or rural area chosen to represent a particular region has similar atmosphere
conditions (with respect to the significant variables affecting nitrate formation) to the other
areas within the region.  The  selected regions include seven urban groups which are
collections of all urban areas within  the geographical boundaries of each region. Two rural
regions are included, which represent ail rural areas (considered to be all areas outside the
urban areas) within the two specified geographical zones (east and west of 105° longitude)
 Figure 1 shows the nine regions selected for analysis. The larger metropolitan areas within
 each of the seven urban regions are  identified in Table 3.
 966UO.doc                                                            Final - October :

-------
                                                      SYSTEMS A PPUCA TIOSSI \TEMA TIOM L
TABLE 3  Metropolitan Statistical Areas (MSAs) by urban region.
Region 1.  Northeast
AJbany-Schenectady-Troy. NY. Allentown-Bethkhem. PA-NJ. Altoona. PA; Atlantic City, NJ; Baltimore. MD;
Bergen-Passaic. NJ: Binghamton. NY. Boston. MA; Bridgepon-Milford. CT. Brockton, MA; Buffalo-Niagara Falls.
NY. Cumberland MD-WV. Danbury. CT. Elmira. NY. Fitchburg-Leominster. MA; Hagentown. MD; Hamsburg-
Lebanon-Carlisle, PA; Hanford. CT. Jamestown-Dunkirk. NY; Jeney City, NJ; Johnstown. PA. Lancaster. PA.
Lawrence-HaverhilJ, MA-NH; Lowell. MA; Lvnchburg, VA; Manchester. NH; Middlesex-Soraerset-Hunterdon. NJ;
Middletown. CT; Monmouth-Ocean. NJ; Nashua. NH; Nassau-Suffolk. NY; Newark. NJ; New Bedford. MA;
Newburgh. NY; New Haven-Menden. CT; New London-Norwich. CT-RJ; New York. NY; Norfolk-Virginia Beach-
Newport News. VA. Philadeprua, PA-NJ: Pittsfield. MA; Portland. ME: Portsmouth-Dover-Rochester. NH-ME,
Poughkeepsie. NY; Providence. RI: Reading. PA: Richmond-Petersburg, VA; Roanoke, VA; Rochester. NY:
Scranton-Wilkes Bane, PA; Springfield. MA; Stamford, CT; Syracuse. NY; Trenton. NJ; Utica-Rome. NY: Vine-
and-Millville-Bridgeton. NJ; Washington. DC-MD-VA; Waterburv. CT; WiUiamsport. PA: Wilmington, DE-MD,
Worcester. MA: York, PA                     	
Region!.  Southeast
Anderson. SC, AsheviUe, NC, Atlanta, GA. Augusta, GA-SC; Baton Rouge, LA; Beaumont-Pon Arthur. TX.
Biloxi-Guifpon-Pascagoula, MS: Birmingham. AL: Brazoria. TX: Charleston, SC; Chariotte-Gastorua-Rock Hill.
NC-SC; Chattanooga, TN-GA; Columbia. SC: Columbus. GA-AL. Corpus Chhsti, TX: Dallas. TX: Daytona
feach. FL; Fayeneville, NC; Ft Lauderdale-Hollywood-Pompano, FL. Fort Meyen-Cape Coral, FL. Fort Pierce-
Port St Lucte, FL: Fort Worth-Arlington. TX; Galveston-Texas City, TX: Greensboro-Winston Salem-High Point.
NC, Greenville-Spananburg. SC: Hickory, NC; Houma-Thibodaux, LA; Houston. TX; Huntsville, AL, Jackson.
MS: Jacksonville. FL: Johnson City-Kingsport-Bristol. TN-VA: Killeen-Temple. TX: Knoxville. TN; Lafayette. LA:
Lake Charles. LA; Lakeland-Winter Haven. FL; Little Rock-North Little Rock. AR: Longview-ManhaU. TX.
Macon. GA: Melboume-Titusville-Palm Bay, FL; Memphis, TN-AR-MS; Miami-Hialeah, FL; Mobile. AL;
Montgomery, AL; Nashville, TN; New Orleans. LA; Oklahoma City. OK; Orlando, FL; Pensacola, FL; Raleigh-
Durham. NC; Sansou-Bradenton, FL: Savannah, GA; Shrevepon, LA; Tallahassee, FL; Tampa-SL Petersburg-
Clearwater. FL; Tula*, OK; Victoria. TX; W. Palm Beach-Boca Raton-Delrav. FL; Wilmington. NC	
Region 3.  Midwest
Akron, OH; Anderson, IN; Ann Arbor. MI; Appleton-Oshkosh-Neenah, WI; Aurora-Elgin, IL; Beaver County, PA;
Benton Harbor. MI; Canton. OH: Cedar Rapids. IA; Champaign-Urbana-Rantoui. IL: Charleston. WV, Chicago, IL;
Cincinnati. OH-KY-IN; Cleveland-Lorain-Elyria, OH; Columbus, OH; Davenport-Rock Island-Moline, LA-IL:
Dayton-Springfield. OH; Decatur. IL; Des Moines, IA; Detroit, MI; Duluth. MN-WI; Eau Claire, WI, Erie, PA;
Evansville-Henderson, IN-KY; Flint MI; Fort Wayne, IN; Gary-Hammond, IN; Grand Rapids-Muskegon-Holland,
MI; Green Bay, WI; Hamilton-Middletown, OH; HunOngton-Ashland, WV-KY-OH; Indianapolis. IN: Iowa City.
IA: Janesville-Beloit, WI; Joliet, IL; Kalamazoo. MI; Kankakee. IL; Kansas City, MO-KS; Kenosha, WI: Lafayette.
EN: Lake County, IL; Lansing-East Lansing. MI; Lexmgton-Fayette, KY; Lima, OH; Louisville, KY-IN; Madison.
WI; Milwaukee, WI; Minneapous-SC Paid. MN-WI; Owcosboro, KY; Parkentaurg-Manetta, WVXDH, Peon*, IL;
Pittsburgh, PA; Racine, WI; Rockford, IL; SL Louis. MO-IL; Sagmaw-Bay City-Midland, MI; Sharon. PA;
Sheboygan. WI; South Bend-Mishawaka. IN; Springfield, IL; Springfield, MO, SteubenvUle-Weinon. OH-WV,
Terre Haute. IN. Toledo. OH: Wheeling. WVOH: Youngstown-Warren. OH	      	
 Re«on4. Upper West
Billings, MT; Boisa, U>. Boukkr-Longmont, CO; Colorado Springs, CO. Denver, CO, Fort Collins, CO, Greeiey,
CO. Lincoln. NE; Omaha. NE-IA: Spokane. WA; Wichita. KS	
 Regions. Sogtkwest
 Albuquerque, NM; Austin, TX; Brownsville, TX; El Paso, TX; Las Crucea, NM; Las Vegas, NV; McAllen-
 Edinburg-Misaioa. TX; Phoenix AZ; Provo-Onm. UT, Reno, NV; Salt Lake City-Ogden, UT; San Antonio. TX;
 Santa Fe, NM; Tucson. AZ; Yuma, AZ	
 Region 6. Pacific Coast
 BeUingham. WA; Bremerton. WA; Chico, CA; Eugene-Springfield. OR; Fresno, CA; Medford, OR; Modesto. CA;
 Oakland, C A; Orympia, WA; Portland-Vancouver. OR-WA: Redding, CA; Sacramento. C A: Salinas-Seaside-
 Monterey, CA; Salem. OR; San Francuco, CA; San Jose, CA; Santa Cruz, CA; Santa Rosa-Petaluma. C A; Seattle.
 WA; Stockton, CA, Tacoma, WA; Vallejo-Fairfield-Napa, C A; Visaua-Tulare-Porterville, CA; Yolo County, CA,
 YubaCitv.CA	                                             	
 Region 7. Southern California
 Anaheim-Santa Ana, CA; Bakersneld, CA; Los Angeles-Long Beach, CA; Oxnard-Ventura, CA; Riverside-San
 Bernardino. CA; San Diego. CA; Santa Barbara-Santa Maria-Lompoc. CA	
 1  Primary metropolitan «t«ti«t^ ARU (PSMAS) withia the 18 consolidated metropolitan statistical areas (CMSAs) and
 MSAs from U.S Department of Commerce (1994); additional smaller MSAs (less than 220.000 pop.) from EPA (1994)

      — October 1996                                                   ;                96*iiOdoe

-------
Pacific
 Coast
 Urban
                     Upper West Urban'
                  Southwest Urban
    Southern
    California
      Urban
                                                                                         Northeast Urban
                       Rural West j Rural East
                                 FIGURE I. Regions selected for analysis.
1. North East Urban
2. South East Urban
3. Mid West Urban
4. Upper West Urban
5. South West Urban
6. Pacific Coast Urban
7. Southern California Urban
8. Rural Hast
9. Rural West

                                                                                                                   5
                             1

-------
/_£	SYSTEMS A PPUCA 77CW5 INTER*'A TIO\A L

For each region, an urban or rural area was designated to represent the atmospheric
conditions for the entire region.  The atmospheric conditions include meteorological variables
(temperature, relative humidity, pressures, cloud cover, and solar radiation) and pollutant
concentrations (ozone,  VOC, NO,, nitrate, and sulfate).  Generally, a centrally located city
(or the average of two or three cities) was selected to be representative of the typical
meteorological conditions within each region. For some regions, the same city was also
selected to represent ambient pollutant conditions, however a different location was selected
to represent air quality for many regions, either due to data availability or because the site(s)
selected for meteorology was not a good choice for representing typical air quality
conditions.  For each region, the selected locations (and therefore the data obtained from
those locations) were chosen to be representative of all other locations within the region.


DATA COLLECTION AND PREPARATION

In order to apply the chemical mechanism model, the ambient conditions for each representa-
tive location within each region must be defined. Estimates of each of the required meteor-
ological and air quality  parameters have been developed for each hour of the day and for each
of the four seasons based on actual data and engineering assumptions, where necessary. The
model input data were constructed to represent current (1990) atmospheric conditions.

Meteorological Data

For each region, meteorological data from a single location (or the average of data from two
or three locations) were selected to be representative of the entire region. Table 4 shows the
meteorological locations that were used for each region. Monthly meteorological data for each
representative location  were obtained from Rufiher et al. (1987), and include temperature
(normal maximums and minimums), average relative humidity (measured four times per day),
average cloud cover, and atmospheric pressure. The monthly average data in Ruffiier et al.
(1987) were developed from 30-year records. In addition, the latitude and longitude for each
location were used to estimate solar radiation (by time of day).  Daily temperature profiles
were constructed by assuming that the maximum and minimum temperatures occurred at 2
p.m. and 2 a.m., respectively, and then interpolating to obtain the temperatures for all other
hours (although these assumed times are not necessarily appropriate for many locations and
seasons, the effect of the discrepancies associated with this assumption are minor).  Four daily
TABLE 4 l^cationivi'

1
2
3
4
5
6
7
8
9
Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
wd for representative meteorological data.
Location(s)
New York, NY (Central Park)
Atlanta, GA
Chicago, IL
Cheyenne, WY
Albuquerque, NM
San Francisco, CA; Portland, OR
Los Angeles. CA (Civic Center)
' Atlanta, GA; Chicago, IL; New York, NY
Albuquerque. NM: Portland. OR; Salt Lake Citv, UT
               1996                                          r . .-             96«UO.doe

-------
SYSTE\fS A PPUCA 770 ,VS l\7ERNA TIOMA L
relative humidity measurements, and the times corresponding to those measurements, were
obtained, and these data were linearly interpolated to develop diurnal profiles of relative
humidity for each location. Water concentrations were then estimated for each hour modeled
based on the relative humidity, temperature, and atmospheric pressure.  The fraction of cloud
cover was assumed to be constant throughout the day.
For each of the nine regions, temperature, relative humidity, H2O concentration, and cloud
cover fraction were defined for each modeled time period (12 per day) and for each season.
The resulting meteorological input data are shown in Appendix A, by region. No changes
were made to the meteorological data for future year scenarios.


Air Quality Data

Representative base case air quality data were collected for each region for use in estimating
NO, oxidation rates.  To estimate the oxidation rates, hourly concentrations of ozone, NO,,
and non-methane organic compounds (NMOC;  used interchangeably with VOC in this
context) were required. The majority of the air quality data were obtained from EPA's
Aerometric Information Retrieval System (AIRS). Ambient data for 1994 were used to
represent current conditions because the most comprehensive set of data was available for
that year, although in a few cases, data for other recent years were extracted.  All ozone, NO,
and NMOC data were in the hourly AMP350 format (EPA, 1990).  A preprocessor was
constructed to extract the required hourly concentration data from specified monitoring sites
and generate monthly average diurnal profiles for each pollutant species. Winter, spring,
summer, and autumn were represented by monthly averaged concentration data from
February, May, August and November, respectively.

The ozone and NO, AIRS data sets were comprehensive enough so that up to eight
monitoring sites for each region were selected (see Tables 5 and 6).  For each region and
season (month), hourly ozone and NO, concentrations were computed as averages of all the
selected sites for which data were available. The resulting base case* ozone and NO, input
data are shown in Appendix A, by region.

Unfortunately, AIRS  doesn't have a very comprehensive data set for NMOCs, so a slightly
different approach was taken to develop regional hourly NMOC concentration profiles.
AIRS NMOC data included not only the hourly AMP3SO files but also 3-hourly and daily
average files. In addition, CARB data (daily maximum) were available for the Southern
California region (CARB, 1993a,b,c,d).  For most regions, data from two (or three)
monitoring sites were used to generate representative hourly NMOC concentrations for each
month. Tht daily avenge or daily maximum NMOC concentrations from one (or two) sitd s)
were combined with dairy concentration profile data from a second (or third) site. Table 7
shows the monitoring sites that were used for daily average (or maximum) NMOC
concentrations and for diurnal profiles. The resulting base case NMOC input data are shown
in Appendix A, by region.

In addition to the data required for the oxidation calculations, ambient concentration ratios of
ammonium nitrate PM to the sum of NO, plus ammonium nitrate PM were used to calibrate
the base case atmospheric equilibrium between nitric acid and paniculate nitrate in the model
 The oxidation step in the model computes the amount of total inorganic nitrate (defined as
nitric acid plus PM nitrate) formed in the atmosphere'per unit NO, emissions. A fraction of
the total nitrate is neutralized by ammonium ion (or another cation), forming PM nitrate

966iio.doc                                                          Final —October  : • ••

-------
                                                 SYSTEMS A PPUCA TIOHS STERNA TIONA L
  Ambient air quality data were used to estimate this fraction.  Seasonal average ammonium
  nitrate concentrations for each region were obtained from AIRS and Interagency Monitoring
  of Protected Visual Environments (IMPROVE) databases. In each region, concurrent 24-
  hour nitrate and daily average NO, concentrations were matched when sufficient data were

TABLE 5.  AIRS ozone monitoring sites by U.S. region used in oxidation calculation.
Region
1







2







3







4







5







6







Site ID
110010025
240053001
250092006
330130007
340130011
360470011
360551004
421010024
011011002
051190007
130890002
220330003
370630013
450790007
470370011
482010059
170310064
171630010
210670012
261630001
295100072
390811012
421250200
540291004
080050003
080310002
080410004
160050015
202090001
310550028
380171002
530630046
040130019
040190019
320030531
320310020
350010019
480290036
481410028
490110001
060010005
060190008
060670006
060771002
060792002
060850004
060990005
061072002
State
District Of C
Maryland
MimarhuMtB
New Hampshire
New Jersey
New York
New York
Pennsylvania
Alabama
Arkansas
Georgia
Louisiana
North Carolina
South Carolina
Tennessee
Texas
Illinois
Illinois
Kentucky
Michigan
Missouri
Ohio
Pennsylvania
West Virginia
Colorado
Colorado
Colorado
Idaho
Kansas
Nebraska
North Dakota
Washington
Arizona
Arizona
Nevada
Nevada
New Mexico
Texas
Texas
Utah
California
California
"California
California
California
California .
California
California
CitvName
Washington. D. C.
Essex
Lynn
Concord
Newark
New York City
Rochester
Philadelphia
Montgomery
North Little Rock
Decatur
Baton Rouge
Durham
Columbia
Nashville-Davidson
Houston
Chicago
East St Louts
I rftxinfftnft-Favttre
Allen?
St Louis
Steubenville
Washington
Weiiton
Englewood
Denver
Colorado Springs
PocateUo
Kansas City
Omaha
Fargo
Not in a Citv
Phoenix
Tucson
Las Vegas
Reno
Albuquerque
San Antonio
El Paso
Bountiful
Oakland
Fresno
Sacramento
Stockton
San Luis Obispo
San Jose
Modesto
Visalia
Description
Urban
Suburban
Urban
Urban
Urban
Urban
Suburban
Suburban
Suburban
Urban
Suburban
Urban
Suburban
Suburban
Urban
Suburban
Suburban
Suburban
Suburban
Suburban
Urban
Urban
Suburban
Suburban
Suburban
Urban
Urban
Urban
Urban
Suburban
Urban
Rural
Suburban
Suburban
Suburban
Suburban
Suburban
Suburban
Suburban
Suburban
Urban
Suburban
Suburban
Urban
Urban
Urban
Urban
Urban
Latitude
39.0
39.3
42.5
43.2
40.7
40.7
43.2
40.1
32.4
34.8
33.7
30.4
36.0
34.1
36.2
29.7
41.8
38.6
38.1
42.2
38.6
40.4
40.2
40.4
39.7
39.8
38.8
42.9
39.1
41.2
46.9
47.8
33.5
32.3
36.1
39.5
35.1
29.5
31.8
40.9
37.8
36.8
38.6
38.0
35.3
37.3
37.6
36.3
Longitude
-77.0
-76.5
-71.0
-71.5
-74.1
-73.9
-77.5
-75.0
-86.3
-92.3
-84.3
-91.2
-78.9
-81.0
•86.7
-95.3
-87.6
-90.2
-84.5
-83.2
-90.2
-80.6
-80.3
-80.6
-105.0
-105.0
•104.8
-112.5
-94.6
-95.9
•96.8
•117.3
•112.1
-111.0
-115.1
•119.8
-106.6
-98.5
-106.4
-111.9
•122.3
•119.8
-121.4
-121.3
-120.7
-121.9
-121.0
-119.3
                                                                            Continued
              .» 'nor
                                                                             966110 doc

-------
SYSTEMS APPUCA TIONS'INTERVA TIONAL
                                                                                  .'j
 TABLE 5. Concluded.
Region
7







8







9







Site ID
060370002
060370113
060374002
060590001
060658001
060719004
060730006
061112002
121091003
191530024
220110002
260770906
360410005
400870073
450110001
481830001
040052003
040190021
060290011
060530006
060710012
061070005
160230101
560391010
State
California
California
California
California
California
California
California
California
Florida
Iowa
f "uJTuna
Michigan
New York
Oklahoma
South Carolina
Texas
Arizona
Arizona
California
California
California
California
Idaho
Wyoming
Citv Name
Azusa
West Los Angeles
Long Beach
Anaheim
Rubidoux
San Bernardino
San Diego
Simi Valley
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Grand Canyon Nat P
Saguaro Ntl Mon
Mojave
Monterey
Phelan
Sequoia Nat P
Not in a City
Yellowstone Nat P
Description
Suburban
Urban
Suburban
Suburban
Suburban
Suburban
Suburban
Suburban
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Latitude
34.1
341
33.8
33.8
34.0
34.1
32.8
34.3
30.1
41.7
30.5
42.4
43.5
35.2
34.2
32.4
36.1
32.2
35.1
36.6
34.4
36.5
43.5
44.4
Longitude
-117.9
-118.5
-118.2
-117.9
-117.4
-U7.3
•117.1
-118.7
-81.3
-93 5
-93.1
-85.4
-74.5
-97.6
-81.5
-94.7
-112.2
•110.7
•118.1
-121.8
•117.6
•118.8
-113.6
-110.4
available.  The general tendency was to use NO, and nitrate data that represented the same
monitoring sites, city or county. However, for Regions 4, 8, and 9, the daily average NO,
concentrations that were used for the oxidation calculations were also used to compute the
calibration ratios (see Table 6 for the list of NO, monitoring sites that were used to generate
seasonal averages for each region).

Table 8 shows the monitoring sites that were used for estimating the PM nitrate/NO, calibra-
tion ratios for each region and season. As the notes to Table 8 explain, for some regions, the
calibration ratio was computed as an average of the ratio at multiple sites, whereas for other
regions, the calibration ratio was computed using average nitrate and NO, concentrations for
the region. Table 9 displays the PM nitrate and NO, concentration data that were used and
the resulting nitrate/NO, calibration ratios for each region and season. The tables in Appen-
dix A show, for each region, the seasonal calibration ratio (same as in Table 9) as well as the
resulting equilibrium fraction (the fraction of total nitrate that is neutralized to PM nitrate).


RESULTS AND DISCUSSION

The tables in Appendix A show all the base case results of the oxidation/equilibrium model.
For each region, four tables are presented, one for each season. Within each season, the
meteorological and air quality input data required for the oxidation calculation are shown for
each hour that the model was exercised.  The rate of NO, oxidation (percent/hour) that was
computed by the chemical box model for each time period is also shown, as well as the
 966HO.doc
                                                                   Final —October

-------
l-t
SYSTEMS APPUCA TIOHSI \TERXA TIO\'A L
 TABLE 6. AIRS NOX monitoring sites bv U.S. region used in oxidation calculation.
Region
l
1
l
l
l
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
5
5
5
5
5
" 6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
Site ID
110010025
090010113
245100040
250250002
360290005
360470011
420030031
440070012
011011002
220710012
220330003
370670022
470370011
481130045
482011037
484530017
170310037
171630010
180970073
260770905
390811012
421250200
540291004
550790041
080017015
080050003
080310002
160050015
040130019
481410027
490353001
490490002
490570001
060190008
060670006
060670010
060771002
060792002
060990005
060990006
061072002
060290010
060370113
060371301
060374002
060371002
060371103
060658001
060731007
State
D.C.
Connecticut
Maryland
Massachusetts
New York
New York
Pennsylvania
Rhode Island
Alabama
Louisiana
North Carolina
Tennessee
Texas
Texas
Texas
Illinois
Illinois
Indiana
Michigan
Ohio
Pennsylvania
West Virginia
Wisconsin
Colorado
Colorado
Colorado
Idaho
Arizona
Texas
Utah
Utah
Utah
California
California
California
California
California
Ciltfnrntm
California
California
California
California
California
California
California
Citv Name
Washington. D. C.
Bridgeport
Baltimore
Boston
Buffalo
New York City
Pittsburgh
Providence
Montgomery
New Orleans
Baton Rouge
Winston-Salem
Nashville-Davidson
Dallas
Houston
Austin
Chicago
East St Louis
Indianapolis
Steubenviile
Washington
Weinon
Milwaukee
Commerce City
Engtewood
Denver
Pocatdlo
Phoenix
El Paso
Salt Lake City
Provo
Ogden
Fresno
Sacramento
Stockton
San Luis Obispo
Modesto
Turlock
Vlsalia
Bakersfield
West Los Angeles
Lynwood
Long Beach
Burbank
Los Angeles
Rubidoux
San Diego
Description
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Suburban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Suburban
Urban
Urban
Urban
Suburban
Suburban
Urban
Suburban
Suburban
Urban
Urban
Suburban
Urban
Urban
Urban
Urban
Suburban
Suburban
Urban
Urban
Urban
Urban
Suburban
Urban
Urban
Urban
Urban
Suburban
Urban
Urban
' Suburban
Urban
Latitude
39.0
41.2
393
42.3
42.9
40.7
40.4
41.8
32.4
30.0
30.4
36.1
36.2
32.9
29.8
30.3
42.0
38.6
39.8
42.3
40.4
40.2
40.4
43.1
39.8
39.7
39.8
42.9
33.5
31.8
40.8
40.3
41.2
36.8
38.6
38.6
38.0
35.3
37.6
37.5
36.3
35.4
34.1
33.9
33.8
34.2
34.1
34.0
32.7
Lonntude
-77.0
-73.2
-76.6
-71.1
-78.8
•73.9
-80.0
-71.4
-86.3
-90.1
-91.2
-80.2
-86.7
-968
-95.4
-97.7
-87.7
-90.2
-86.1
-85.5
-80.6
-80.3
-80.6
-87.9
-104.8
-105.0
-105.0
-112.5
-112.1
-106.5
-111.9
-111.7
-112.0
-119.8
-121.4
-121.5
-121.3
-120.7
-121.0
•120.8
-119.3
-119.0
-118.5
-118.2
-118.2
-118.3
-118.2
-117.4
-117.2
                                                                           Continued
                                                                              96*110 doc

-------
SYSTEMS APPUC4 TIONSINTERN A TIOVAL
  TABLE 6.  Concluded.
Region
3
3
3
3
3
3
3
3
9
9
9
9
9
9
9
Site Id
010330044
181410012
220110002
220930002
420990301
470110004
540250001
550890009
060290011
060670011
060710012
060731006
060831010
060831014
060831016
State
Alabama
Indiana
Louisiana
Louisiana
Pennsylvania
Tennessee
West Virginia
Wisconsin
California
California
California
California
California
California
California
Citv Name
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Not in a Citv
Mojave
Elk Grove
Phelan
Alpine
Santa Maria
Los Padres Ntl Font
Gaviota
Descnouon
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Rural
Latitude
34.7
41.7
30.5
30.0
405
35.3
37.8
43.5
35.1
38.3
34.4
32.8
34.9
34.5
34.5
Loneuude
-87.8 i
•86.5
-93.1
•90.8
-77.2
-84.9
-80.5
-87.8
-118.1
-121.4
-117.6
-116.8
-120.4
-119.8
-120.2
  TABLE 7. Nonmethane organic compound (NMOC) monitoring sites by U.S. regions used  in
  oxidation calculation.'
Region
I
2"
3
4s
5*
6
r
8'
9»
Site Id
240053001
421010004
482011035
390290016
550790041
State
Maryland
Pennsylvania
Texas
Ohio
Wisconsin
Citv Name
Essex
Philadelphia
Houston
East Liverpool
Milwaukee
Description
Suburban
Urban
Suburban
Suburban
Urban
Latitude
39.3
40
29.7
40.6
43.1
Longitude
-76.5
-75.1
-95.3
•80.5
-879

481410028
060670006
060290010
060371103
060658001
391291001
510330001
550890009
061113001
Texas
California
California
California
California
Ohio
Virginia
Wisconsin
California
El Paso
Sacramento
Baktnfleld
Los Angeles
Rubidoux
Circievillt
Not in a City
Not in a Citv
El Rio
Suburban
Suburban
Urban
Urban
Suburban
Rural
Rural
Rural
Rural
31.8
386
35.4
34.1
34
39.6
38.2
43.5
34.3
-106.4
-121.4
-119
-118.2
-1174
-32.9
-77.4
-878
•119.1
    Sites in italics wen ussd only to generate daily NMOC concentration profiles.
  " Sunmisr concentration data sndntio of spring to summer daUy average ccacentxiaou for Baton Rouge, LA were
  U96Q tO BBOBsWiH Q8Oi tflf SflaTBlJ 9HflQQ»
  ' Spring aad summer NMOC diurnal profiles from Houston, TX and ratio between November daily average concen-
  tntioBS fisr El PSJO sod Houston wen used to generate spring and summer NMOC concentrations for El Puo.
  • Avenge of daily ««««™»»m concentrations for Los Angeles and Rubidoux (CARS. 1993a,b,c,d) were used with
  daily NMOC profiles from Bakenfieid.
  ' Average of dairy avenge concentrations for sites 5 10330001 , VA and 550890009 WI, were used with daily
  NMOC profiles from CirclevUle, OR
  1 A typical annual average NMOC concentration for rural areas (0.05 ppmC) was assumed, and used with seasonal
  and daily NMOC profiles fiom El Rio, C A
 966UO.doc
                                                                              Final — October

-------
16
SrSTEV/S APPUCA TlONS INTERS A TIO\A L
TABLE
Region
1*
•>°
^c
4<
5'
6'
71
8"
9'
8 Nitrate/NO, monitoring sites bv US. region used for equilibrium calibration.'
Site id
360290017
360470011
360610056
010330044
470110004
170310014
170310022
170310049
170310052
170310060
171630010
201731012
201770007
202090015
040133002
060190008
060610006
060771002
060792002
060370002
060371002
060371103
060374002
060375001
060590001
060655001
060658001
060712002
060719004
061112002
360130011
360310003
360790005
360830011
361111005
AVERAGE
AVERAGE
AVERAGE
060290011
060291001
060710013
060710017
AVERAGE
AVERAGE
AVERAGE
State-
NY
NY
NY
AL
TN
IL
IL
IL
IL
IL
IL
KS
KS
KS
AZ
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
NY
NY
NY
NY
NY
CA
CA
CA
CA
Place
Buffalo
New York
New York
Sipsey W
Gr. Smokv Mountains NP
Chicago
Chicago
Chicago
Chicago
Chicago
East St Louis
Wichita
Topefca
Kansas Citv
Phoenix
Fresno
Roseville
Stockton
San Luis Obispo
Azusa
Burk
Los Angeles
Long Beach
Hawthorne
Anaheim
Palm Springs
Rubidoux
Fontana
San Bernardino
SimiVallev
Not in a City
Not in a City
Not in a City
Not in a City
Not in a City
Appalachian Mountns
Everglades
Acadia
Mojave
China Lake
Lucerne Valley
Twenrynine Palms
Mount Rainer
Colorado Plateau
Central Rockies
Description
Urban
Urban
Urban
Rural
Rural
Suburban
Suburban
Urban
Suburban
Suburban
Suburban
Suburban
Urban
Urban
Urban
Suburban
Suburban
Urban
Urban
Suburban
Urban
Urban
Suburban
Urban
Suburban
Suburban
Suburban
Suburban
Suburban
Suburban
Rural
Rural
Rural
Rural
Rural
Nad. Park
NatLPark
Nail. Park
Rural
Rural
Rural
Urban
Nad. Park
Nad. Park
Nad. Park
Latitude
42.9
40.7
40.8
-87.3
-83.9
41.8
41.7
41.9
42.0
41.7
38.6
37.7
39.1
391
33.5
36.8
38.7
38.0
35.3
34.1
34.2
34.1
33.8
33.9
33.8
33.9
34.0
34.1
34.1
34.3
42.3
44.4
43.7
42.8
42.1
35.1
35.6
34.4
34.1
Longitude
-78.8
-73.9
-740
34.3
35.6
-87.6
-87.5
-87.6
-87.8
-876
-90.2
-97.3
-95.7
-946
-112.0
-119.8
-121.3
-121.3
-120.7
-117.9
• 118.3
-118.2
-118.2
-118.4
-117.9
-116.5
-117.4
-117.5
-117.3
-118.7
-79.6
-73.9
-75.0
-73.4
-74.5
-118.1
-117.7
-116.9
-116.1
  ' AIRS site #36290003 was used for NO, concentrations in Buffalo. NY. Region-wide nitrate and NO,
  concentrations were calculated as an average of three sues.
  b Nitrate data were obtained from IMPROVE sites.  Site ID and coordinates correspond to nearest AIRS
  monitoring sites with NO, concentrations available.                  •'.-••
  Votes continue on next page
 Final —October 1996

-------
 SYSTEMS A PPUCA TIONS INTERN A 770AM L
   *  Nitrate and NO, concentrauons were averaged indep*indentiy for Chicago. NO, data from AIRS
   monitoring sites *170310037 and #170310039 were used to calculate the average NO, concentrauons for
   Chicago.  Regiouwide nitrate and NO, concentrations were calculated as an average of Chicago and East
   St Louis.  1992 AIRS NO, and nitrate data were used for this region.
   1  NO, concentrations averaged from three AIRS monitoring sites in Colorado (see Table 6) were used for
   this region.
   '  The average 1989-90 Phoenix wintertime nitrate concentration from Watson «. al. (1994) was used for
   November. The seasonal nitrate profile for Palm Springs (AIRS # 060655001) was used to obtain nitrate
   concentrations for all others seasons.
   '  Regionwide nitrate and NO, concentrations were calculated as a average of all four sues.
   '  Regionwide nitrate and NO, concentrations were calculated as a average of all eleven sues.
   h  The average nitrate concentrations for New York (rural) were calculated as an average of five rural sites
   in the state of New York. Regionwide nitrate concentrations were obtained as an average of the New York
   rural average and three eastern U.S. NPS/Tmprove regional averages (Malm et al.. 1994). Appalachian
   Mountains represents the average of Great Smoky Mountains and Shenandoah National Parks.
   ' The average nitrate concentrauons for California (rural) were calculated as a average of four monitoring
   sites in the state of California. Regionwide nitrate concentrations were obtained as an average of the
   California rural average and three NFS/Improve regional averages (Malm. 1994). Colorado Plateau
   represents the average of Arches. Bryce Canyon. Canyonlands. Grand Canyon. Mesa Verde. Penhfied
   Forest National Parks and Bandelier National Monument Central Rodaes represents the average of
   Rocky Mountain and Yellowstone National Parks. Bridger and Wermnuche Wilderness Areas and Great
   Sand Dunes National Monument
TABLE 9. Nitrates/NO, calibration data.*
lemon


3
4
5
6



Site
Buffalo
New York
New York
Region Avenge
SipseyW
Or. Smoky Mtns.NP
Region Average
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
OucagoAvengo
EM St Louis
BflfuaAwnga
Wkfefe
KanaatCity
Region Avenge

Fresno
Roaevill*
Stockton
San Luis Obispo
Azusa
Burbank
Los Angeles .
Lena Beach "''
Ambient Concentrations
NOi(ug/mJ)
Feb. Mav Aug. Nov.
1.43 0.30 0.16 0.40
2.84 0.50 0.58 0.70
1.60 0.40 0.27 0.27
1.96 0.40 0.34 0.46
0.41 0.30 0.66
0.57 0.20 0.12 0.28
0.57 0.31 0.21 0.47
5.88 2.23 1.70 2.58
5.40 2.03 1.80 2.46
4.00 3.10 1.68 138
8.13 2.12 2.30 3.14
6.85 143 1.72 2.48
6.06 2.38 1.84 2.61
6.20 3.10 1.70 1.00
6.13 2.74 1.77 1.80
0.52 0.61 0.07 0.12
0.97 0.06 0.11
1.55 0.55 0.04 0.19
1.01 0.58 0.05 0.14
4.10 6.00 2.80 4.30
6.68 168 1,82 428
2.40 2.24 1.78 1.26
8.88 2.28 144 2.96
1.10 1.62 2.78 '1.24
4.77 2.21 2.21 2.44
4.96 5.50 4.62 503
7.71 4.50 3.73 531
8.08 4.97 4.48 534
9.19 426 3.06 5 50
NCv(pDb)
Feb. Mav Aug^ Nov.
48.82 41.61 29.88 37.50
100.31 51.32 50.20 65.86
147.82 89.25 80.50 115.51
98.98 60.73 53.53 72.96
460 2.80 580
5.68 4.30 2.60 7.10
5.68 4.45 2.70 6.45
43.68 41.05 46.39 38.89
76.62 61.58 62.61 72.27
60.15 51.31 54.50 55.58
48.81 40.15 31.33 34.24
54.48 45.73 42.92 44.91
61.00 27.00 29.00 54.00
151.20 47.30 39.50 128.90
60.12 14.30 23.35 69.94
38.86 14.22 20.03 40.42
6815 18.96 30.48 68.30
3194 11.78 14.39 34.76
5004 14.81 22.06 53.36
51.22 43.08 68.00 44.85
125.7.1-. 60.48 90.59 169.22
116.77 58.32 34.92 156.90
9550 39.08 4447 122.50
Calibration Ratio
NO}/ NO, + NO) (allppb)
Feb. Mav Aug. Nov.
0.011 0.003 0.002 0004
0.019 0.007 0.008 0007
0.007 0.003 0.002 0.002
0.013 0.004 0.004 0004
0.034 0.041 0043
0.038 0.018 0.018 0015
0.038 0.026 0.029 0029
0.038 0.018 0.013 0018
0.048 0.030 0.021 0011
0.042 0.023 0.016 0016
0.007 0.008 0.001 0001
0.011 0.048 0.027 0013
0.042 0.069 0.030 0 024
0.024 0.058 0.034 0012
0.049 0.045 0.031 0017 !
0.013 0.051 0.071 0014
0.032 0.056 0.041 OOP
0.037 0.048 0.026 OO»:
0.024 0.029 0.016 GO,:
0.027 0.032 0.020 00^
0.037 0041 0026 1 '
   966110.4*
                                                                             Finai — October

-------
                                                  SYSTEMS A PPUC4 T10NS /.VTERAM TIONA L
TABLE 9. Concluded
Reaion
7
8
9
Site
Hawthorne
Anaheim
Palm Springs
Rubidoux
Fontana
San Bernardino
Sum Valley
Region Avenfe
Run! Site
Rural Site
Rural Site
Rural Site
Rural Site
New York Average
Appalachian Mtn Av
Everglades
Acadia
Region Averaae
Mojave
China Lake
Lucerne Valley
Twentynine Pains
California Average
Mount Ramer
Colorado Plat Avg
Central Rockies Avg
Region Average
Ambtt-m Concenorauons
NCM tig/or1 >
Feb. Mav Aug. Nov.
745 3.87 3.30 487
8.39 425 300 5.21
2.83 4.14 1.93 2.97
13.41 18.33 12.83 I486
10.81 9.59 6.07 8.82
6.67 15.52 748 989
3.35 4.84 2.82 3.67
7.53 725 4.85 6.54
0.43 0.14 0.10 0.24
0.34 0.18 0.14 0.20
0.65 0.14 0.10 0.23
0.45 018 0.10 0.30
0.40 0.20 0.12 0.24
0.45 0.17 0.11 0.24
0.80 0.80 0.30 0.50
0.70 0.90 0.50 0.50
0.80 0.40 0.30 0.40
069 057 030 041
0.50 1.10 0.88 0.50
0.68 0.90 0.80 042
0.84 1.16 1.46
0.70 1.02 1.66 0.70
0.68 1.05 1.20 0.54
0.10 0.20 0.40 0.20
0.50 0.20 0.20 0.10
0.20 0.30 0.10 0.10
0.37 0.44 0.47 0.24
NO, (ppb)
Feb. Mav Aug. Nov.
122.99 26.21 39.67 149.721
83.03 34.93 41.69 107.26
29.33 15.49 17.66 36.20
70.08 30.33 48.98 75.68
52.83 44.84 70.34 55.31
54.16 46.49 49.97 73.56
15.78 24.12 35.87 37.91
7431 38.49 5383 93.56
15.00 8.00 10.00 10.00
900 5.00 8.00 11.00
Calibration Ratio
NCH/NO.-'-NOi (all ppb i
Feb. Mav Aug. Nov.
0.023 0.055 0.032 0.013
0.038 0.046 0.028 0.019
0.037 0.095 0.041 0.031
0.070 0.192 0.094 0.072
0.075 0.078 0.033 0.059
0.046 0.116 0.056 0.050
0.077 0.073 0.030 0.037
0.045 0.073 0.037 0033
0.018 0.027 0012 0016
0.016 0.033 0.023 0.008
* See Table 8 for calibration ratio procedure.
 total nitrate (PM nitrate plus nitric acid) yield for each two hour period.  The calibration ratio
 was used with the daily average total nitrate concentration to establish the equilibrium
 fraction. The equilibrium fraction was then multiplied by the daily total nitrate yield to
 estimate the amount of PM nitrate that was produced during the simulation day. Finally,
 dividing the daily PM nitrate concentration by the daily average initial NO, concentration
 produces the desired average seasonal conversion rate (in ppm/ppm). A simple mass
 conversion was performed to transform the conversion rate into the desired mass units (g/g),
 assuming that all the PM nitrate is in the form of ammonium nitrate.

 For each of the nine regions, the oxidation calculations were performed for all four seasons,
 and for 12 hours each day, followed by seasonal equilibrium calibrations. The resulting base
 case (1990) NO, to nitrate conversion rates are shown in Table 10, by region and season.
 The values in this table represent the equivalent mass of PM nitrate (assumed to be ammoni-
 um nitrate)  that is formed from a unit mass of NO, emissions.  It can be seen that the conver-
 sion rate exhibits peaks in winter in the eastern urban regions and  during spring in the western
 and rural regions.

 The base case modeling results were examined for consistency with other study results and
  collected data. The general trends between eastern and western U.S. locations and between
  urban and rural nitrate production by season that was summarized in NAPAP (Trijonis, et al,
  1990) were reproduced by the model. The seasonal PM nitrate/nitric acid equilibrium frac-
  tions computed by the model were generally higher in western U.S.  regions, consistent with
                                                                               966110.doc

-------
SYSTEM (S A PPUCA TIONS INTERS A TIOXA L
TABLE 10. F. fraction of NOt converted to nitrates <«/a).

1
2
3
4
5
6
7
8
9


Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
"MT Average
Winter
0.0207
0.0632
0.0717
0.0109
0.0172
0.0532
0.0752
0.0290
0.0258
0.0446
0.0466
Spring
0.0064
0.0389
0.0360
0.0134
0.0759
0.0909
0.1186
0.0413
0.0512
0.0427
0.0438
Summer
0.0064
0.0436
0.0239
0.001 1
0.0409
0.0653
0.0582
0.0178
0.0329
0.0279
0.0297
Autumn
0.0071
0.0480
0.0256
0.0017
0.0212
0.0275
0.0548
0.0263
0.0134
0.0270
0.02830
Annual
0.0115
0.0498
0.0416
0.0068
0.0309
0.0499
0.0704
0.0283
0.0274
0.0349
0.0365
air quality data trends. Grosjean (1983) examined diurnal patterns of PM nitrate and nitric
acid during the autumn of 1980 in the Los Angeles air basin and found both daytime and
nighttime maxima of total inorganic nitrate, due to significant daytime nitric acid production
and nighttime PM nitrate peaks. Grosjean's data suggest that the PM nitrate/nitric acid
equilibrium fraction used in the model should exhibit a strong diurnal fluctuation, but the
model only considers a daily average fraction. However, the model results for total nitrate
are consistent with Grosjean's observations of the overall production of nitric acid.

Recently, the REMSAD modeling system was used to estimate the effects of an across-the-
board motor vehicle NO, emission reduction on ambient PM nitrate and NO? exposures
throughout the United States (Galef et al., 1996).  Five days in summer (July 1-5. 1990) and
five days in winter (December 1-5, 1990) were simulated. The east/west and summer/winter
trends produced by the base case (no controls) REMSAD modeling exercise agree with the
modeling results produced for this study (which is not surprising since both models rely on
the same chemical mechanism).  Dolislager et al. (1996) conducted an analysis of California
air quality data, collected in the South Coast Air Basin at seven monitoring sites in 1986 and
at eight sites between 1991-93, using a quantity similar to the ambient calibration ratio (see
Methodology, above) to estimate the NO, to PM nitrate conversion rate. The seasonal and
annual average basin-wide conversion rates for the South Coast Air Basin are in excellent
agreement with the base case model results for Region 7, Southern California.

For each season (and for the annual average), a population-weighted average NO, to nitrate
conversion rate for the United States was computed from the regional estimates.  Urban and
rural population data for 1990 were summarized  for each state by the U.S. Department of
Commerce (1994) from U.S. Bureau of the Census data. The 1990  populations in the larger
Metropolitan Statistical Areas (MS As;  see Table 3) were also reported. These data were
used to construct estimates of the population within each of the seven urban and two rural
regions. The total 1990 population in all nine regions was 247 million (equal to the total
population of the 48 contiguous states), of which about 186 million were in the seven urban
regions. The Northeast, Southeast, and Midwest urban regions (Regions 1, 2, and 3) each
had between 40 and 50 million; the  Southwest, Pacific Coast, and Southern California urban
regions (Regions 5, 6, and 7) each had  between 10 and  20 million; and the Upper West urban
region (Region 4) had under 8 million.  The large eastern rural region (Region 8) had 54
million, and the west rural region (Region 9) had less than 7 million.
 966110 doc
                                                                   Final — October . •

-------
                                                       A PPUCA 770.VS I \7ERNA TIOS'A L
The U.S. average NO, to nitrate conversion rate was computed as a weighted average of the
nine regional conversion rates, weighted by each region's population. As shown in Table 10,
the annual average U.S. conversion rate was estimated to be 0 0349, which means that the
average 48-state citizen in 1990 was exposed to ambiem PM nitrate concentrations
equivalent to 3 49 tons of dispersed nitrate emissions per 100 tons of actual NOX emissions.
The U.S. average conversion rate is roughly 60 percent higher in the winter and spnng
seasons relative to the summer and autumn.

As stated earlier, the proposed emission standard would reduce NO, emissions from highway
heavy-duty engines.  Because of the different levels of vehicular activity within each region,
the resulting emission reductions would be expected to vary from region to region. An
emission-based weighted average U.S. NOX to nitrate conversion rate was computed using
the nine estimated regional conversion rates. The regional NO, to nitrate conversion rates
were weighted using the level of vehicle miles travelled (VMT) within each region by heavy-
duty diesel vehicles (HDDV). Statewide VMT data for HDDV were obtained from EPA's
Intehm 1990 National Emission Inventory (48-state total HDDV VMT is approximately  132
x lO9 miles/year).  It was assumed that the fraction of VMT for urban and rural areas within
each state approximately follows the population distribution.  Total VMT for each region was
estimated by summing the urban or rural VMT for all states within the region. For the few
states that are in two urban regions, VMT was divided using population data.

The resulting U.S. VMT-weighted average for each season is shown in the last line of Table
10. The annual average VMT-weighted conversion rate of 0.0365 indicates that there are
about 3.65 tons of nitrate formed per 100 tons of NO, emissions from HDDV.  It is not
surprising that the VMT-weighted average ("VMT Average") conversion rate is close to  the
population-weighted average ("U.S. Average") because the spatial distribution of VMT
throughout the U.S. is similar to the population distribution.
                                                                           966UOd
-------
SYSTEMS A PPUCA T10HSIXTERXA TIONA L
                      01  MOBILE SOURCE ADJUSTMENT

The actual conversion rates may differ somewhat between NO, emitted by mobile sources
and NO, emitted by stationary sources, such as power plants.  The difference between a given
daily mass of emissions from various source types, with respect to air quality (concentration)
impacts in a region, can be described by three "time and place" parameters: (1) the temporal
(diurnal) pattern of emissions, (2) the spatial pattern of emissions (distribution of sources
within an air basin or region), and (3) the height of release (effective stack height).  In other
words, if one ton per day of NO, is emitted from source A and a second ton is emitted from
source B, and both sources have (nearly) identical diurnal and spatial emission patterns and
similar stack heights, then the air quality impacts (and PM conversion rates) would be
approximately the same for the two source types. The NO, to PM nitrate modeling
conducted in the previous section was performed for an "average" NO, emission source, that
is, the average of all existing NO, sources. The exception to this was that the height of
release was considered to be close to ground level, corresponding to emissions from motor
vehicles.

In order to accurately determine the NO, to PM nitrate conversion rates for different source
types, one would need to simulate the emissions from each source type using an air quality
model that can account for time and place of emissions, such as an Eulerian or Lagrangian
grid model, or a trajectory modd.  The box model used for the current analysis considers the
atmosphere to be "well mixed" and is therefore not able to effectively distinguish between
source types. However, sensitivity analyses can be conducted using the model to provide a
sense of the range of conversion rates that might be associated with  various source types.
Two such analyses were conducted: (1) to examine the difference between ground level
emissions corresponding to motor vehicle exhaust, and elevated emissions corresponding to a
large  power plant, and (2) to assess the differences between the diurnal patterns for those
same  two source types.

The spatial pattern of emissions is quite distinct from one location (air basin) to the next,
especially when considering the locations of large stationary NO, sources such as power
plants.  In some urban environments, power is generated (and distributed) at large fuel
burning utilities located within the urban area, while other cities get  much of their power from
utilities located outside the urban and suburban boundaries. Further, the type of power
generation, and hence the amount of NO, emitted, varies as well, from coal-fired power
plants that emit large amounts of NO, (per megawatt generated), to oil and natural gas
boilers that emit less NO,, to hydroelectric and nuclear power plants that emit little or no
NO,.  Even if two cities produce power using the same method, and the major utilities for
both  cities are located (as is often the case) on the fringes of the urban regions, the air quality
impacts in the populated urban areas may be markedly different if utilities for one city are
located upwind of the city while the utilities are located downwind of the second city
(considering the prevailing wind directions). Hence this parameter cannot easily be evaluated
 within the scope of this study. One consolation is that in most urban areas, mobile source
 emissions (1) are a significant NO, source and therefore contribute a major portion of the
 total NO, emissions, and (2) are spatially diverse with significant emission densities in almost

                                                                   Final — October i i-'*

-------
                                                 SYSTEMS A PPUCA TIONSI STERNA TIOXA L
all areas of the urban and surrounding suburban region. Therefore, the analysis conducted to
assess the NO, to PM nitrate conversion rate, while possibly inaccurate for some sparsely
located point sources such as utilities, should be reasonably reliable for mobile sources.


DfURNAL EMISSION PATTERN

The effect of diurnal emission patterns on NO, to PM nitrate conversion rates was assessed
by weighing the computed hourly conversion rates by typical diurnal emission strengths.  The
NO, conversion rate varies over the course of the day due to changing atmospheric
conditions, so by integrating the conversion rate multiplied by the emission strength, an
estimate of the overall nitrate yield for each source type was obtained. The base case daily
conversion rates for each season were computed assuming a diurnal weighting that
corresponds approximately to all NO, sources combined (i.e., the hourly conversion rates
were weighted by ambient NO, concentrations). The regional daily average conversion rates
for each season were recomputed using typical diurnal emission strengths for (1)  motor
vehicles, and (2) utilities. This calculation accounts for the variation in conversion rate for
NO, emitted into different atmospheric conditions occurring at different times of the day.

The twelve two-hour average conversion rates computed by the base case model per day for
each season (see Appendix A) were weighted by the relative diurnal source strengths
corresponding to motor vehicle exhaust and utilities.  For utilities, a typical diurnal emission
pattern was obtained for baseline power demand on oil-fired power plants in the South Coast
Air Basin of California (Figure A2.5 of Cass et al.,  1980).  Diurnal variations of Los Angeles
freeway and surface traffic volumes (Figures A2.26, A2.33 and A2.42 of Cass et al., 1980)
were used to develop a representative diurnal profile for motor vehicle exhaust. Motor
vehicle activity exhibits a diurnal profile consisting of sharp morning and evening peaks
corresponding to commute times. Daytime activity is considerably higher than nighttime
activity.  The diurnal profile for power plants also exhibits similar day/night variation
(peaking in mid-afternoon), but is somewhat smoother during daylight hours than the motor
vehicle profile.  For each of the two sources, a single diurnal profile was used for ail regions
and seasons.

The diurnal emission patterns for motor vehicles and utilities were used to compute daily
weighted average NO, to PM nitrate conversion rates for each region and for each season.
The annual avenge conversion rates produced by this calculation are shown in Table 11 for
each region. The base case (1990) conversion rates (identical to Table 10) are presented in
the first column of this table for comparison.  The annual average conversion rates for motor
vehicles (MV) and utilities (UTTL) are shown in the second and third columns, respectively.
Five of the regions showed an increase in conversion rate for motor vehicles relative to the
base case (ranging from 4 to 27 percentX while three regions showed a decrease (ranging
from 4 to 29 percent).  All but two of the regions showed an increase in conversion for utility
emissions relative to the base case (the range was between -19 percent and +41 percent).
When the base case NO, conversion is dominated by nighttime oxidation (e.g., Regions 1 and
 3), both source types showed decreases relative to the base case conversion rate.  Many
 regions (especially in the West) exhibited relatively large conversion rates in the mid-
 afternoon which coincides with the peak utility emissions, hence these regions showed
 significant increases for utilities relative to the base case.
               mor

-------
SYSTEMS A PPUCA 77ONSIUTERXA T10VA L
                                                                                  :j
               TABLE 11.  Sensitivity of F.
               converted to nitrates (g/g), to
               NOT source.
fraction of NO,
diurnal profile of
.Annual Average

1
2
3
4
5
6
7
8
9

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
F|9W
0.0115
0.0498
0.0416
0.0068
0.0309
0.0499
0.0704
0.0283
0.0274
0.0349
F»xv
0.0082
0.0525
0.0346
0.0065
0.0359
0.0633
0.0735
0.0283
0.0318
0.0349
F'/n
0.0093
0.0580
0.0387
0.0076
0.0416
0.0702
0.0823
0.0313
0.0350
0.0389
The U.S. population-weighted average conversion rate for motor vehicles was almost
identical to the base case estimate, whereas the U.S. average conversion rate for utilities was
about 11  percent higher than the base case. Since the method and data used for assessing
differences in diurnal patterns only approximates actual conditions, the results of this
calculation should not be considered particularly precise, but rather should be used to better
understand the range of conversion rates for different source types and the uncertainty
associated with this source parameter.

EMISSION RELEASE HEIGHT

The release height was partially accounted for by adjusting the average height that was used
in the chemical mechanism. Within the photochemical module, the NO? photolysis rate is
computed for daytime NO, oxidation. The model requires an input height which is used to
estimate the solar radiation flux For the base case simulations, the height was set to zero,
corresponding to ground level emissions of motor vehicles. Oxidation rates were
recomputed using a height of ISO meters to assess the effect of the emission height input
parameter on the conversion rates.  The effective stack height for an elevated emission
source, such as a large power plant stack, may be at about this height  As the air mass is
transported through the region (potentially transforming into nitrate), it is assumed that the
NO, will migrate downward due to vertical mixing until, at some point downwind, it will
interact with the ground layer where humans can be potentially exposed. The actual NO, to
PM nitrite conversion rate for this journey would be found by integrating the oxidation and
neutralization along the entire trajectory.

As a sensitivity test, the daytime NO, to PM nitrate conversion rates for Region 2 were
recomputed for all four seasons using a height of 150 meters. All other parameters were
unchanged, including the seasonal PM nitrate calibration ratios (no data were available to
assess elevated PM nitrate concentrations). Because the oxidation calculations were
particularly time-consuming, only one region was used for this sensitivity analysis. Region 2
was selected because the daytime oxidation was particularly high in that region, and the
 height change will have a larger effect in areas of higher oxidation.  Increasing the height
 produced an increase in oxidation, however,  since the calibration ratios and PM nitrate
 966110.doc
                                                                    Final—October !'*'<'

-------
                                                 SYSTEMS A PPUCA TIONS KJTERXA TIOVA L
equilibnum fractions were held constant the increase in oxidation resulted only in a change in
the total nitrate yield, and no change in the equilibrium between PM nitrate and nitric acid.

The increases in the average seasonal NO, to PM nitrate conversion rates (F) for Region 2
due to the increase in emission height from zero to 150 meters were 3.9, 5.4, 5.8 and 2.7
percent for winter, spring, summer, and autumn, respectively.  The annual average
conversion rate increased from 0.0498 (base case; height equals zero) to 0.05 19 (height
equals 1 50 meters), and increase of 4. 1 percent. It is expected that the increase in conversion
rate in other regions due to  a similar height change would be smaller. Considering the overall
uncertainties in the oxidation/equilibrium model (see Section V), the uncertainty due to the
height parameter is not considered to be particularly significant (although this analysis only
partially evaluated the actual adjustment necessary).
 Final —October 1996                                                            966110 doc

-------
SYSTEMS A PPLICA 770.V5 AVTEfcV/l 770.V/4 L
                            IV  FUTURE SCENARIOS
METHODOLOGY
The model developed to estimate the base case (current) conversion of NO, to PM nitrate
(see Section 2) was used to predict the conversion rate for future yean. This was
accomplished by considering the changes that are expected to occur in urban and rural
atmospheres throughout the U.S. for the years 2005, 2010, and 2020.  The air quality data
inputs to the modd were modified to reflect projected growth in emissions and improvements
in air quality due to emission control programs.  Current and projected emission data were
used to predict future NO,, NMOC and sulfate concentrations for each region. The NO,
oxidation modd was run for the same seasons and hours as in Task 2 to predict the changes
in total nitrate production for each of the three future years.

The equilibrium between nitric acid and nitrate was adjusted to account for predicted changes
in ambient sulfate levels.  By reducing sulfate concentrations,  there is the potential for
additional neutralization of nitric acid by ammonium ion (preferentially scavenged by sulfate).
 Within specific air parcels, conditions may be (1) ammonium ion-rich, in which case there
would be little (or no) change in PM nitrate due to a change in sulfate, or (2) ammonium ion-
poor, in which case a reduction in ammonium sulfate concentration would result in a
corresponding increase in PM nitrate concentration. For this  analysis, it was assumed that
reductions in sulfate would result in an increase in PM nitrate formation. This assumption
was considered to be appropriate when considering the  regional patterns of ammonium
sulfate and nitrate concentrations and the large spatial gradients exhibited by ammonia
emissions (and concentrations).

Devdopment of Base Emission Inventories and Projections

Base year emission estimates of NO,, VOC, and SO,  for anthropogenic sources were
obtained from EPA's 1990 National Paniculate Inventory, which is supplemented with
criteria pollutant emissions from the 1990 Interim Inventory.  For biogenic sources,  BEIS2
emission fflinntef prepared for the REMSAD modeling study were used.
Growth jflf* Control Factors

Area and non-deetrte utility point sources. Bureau of Economic Analysis (BEA) state-
level projections by 2-digit Standard Industrial Classification (SIC) code for point sources
and 4-digit Area Source Category (ASC) code for area sources were used to estimate activity
changes from 1990 to 2005, 2010, and 2020. Since the NPI did not include point source SIC
codes for a majority of the point sources in the state of California, point source activity levels
for California were projected based on BEA projected earnings for total industrial
manufacturing. For all areas except the California South Coast Air Basin, emission
reductions due to the implementation of Clean Air Act  (CAA) controls were estimated at the
county levd based on the nonattainment status of each  county. The control efficiency and

9641l0.doc                                                          Final —October • •-

-------
{£	SYSTEMS APPLICATIONS INTERNATIONAL

rule penetration data used were based on information obtained from the documentation of the
control scenario development for the Regional Oxidant Modeling (ROM) Study (Pechan
1992; 1993). The types of controls addressed in this analysis included national measures,
NOT and VOC RACT, CTGs, and MACT. Emission offset requirements for nonattainment
areas and additional area-specific control measures required to meet Rate of Progress plans
were not addressed.  The county-level effects of growth and control were modeled using the
CNTLEM module of the UAM Emissions Preprocessor System, Version 2.0 (EPA, 1992)
and summed to the state level.

For the South Coast Air Basin, 1990 emissions were obtained from the statewide 1990
Emission Inventory prepared by the California Air Resources Board (CARB, 1999e);
emission estimates (including the effects of both growth and control) for the future years
were obtained from Appendix HI to the draft 7997 Air Quality Management Plan prepared
by the South Coast Air Quality Management District.  These data were used in place of the
EPA emissions data for the counties of Los Angeles, Orange, Riverside,  and San Bernardino.

On-road motor vehicles. For the SUPROXA domain (OTAG, 1996), 1991 and 2007
emissions estimates were available for NO, and VOC. These data were used to develop
ratios which were applied to the 1990 emissions included in the NPI to estimate 200S
emissions for the states included in the SUPROXA domain. For the western states,
composite growth/fleet turnover effects for 2005 were estimated by assigning a surrogate
state located in the SUPROXA domain to each western state and applying the ratio
developed for the surrogate state. Changes in SO, emission rates due to fleet turnover
between 1990 and 2007 were estimated using EPA's PARTS mobile source emission factor
model, using the national average default fleet mix. Total fleet VMT projections prepared by
Argonne National Laboratory were used to project 2005 emissions for all three pollutants to
2010 and 2020, and to project 1990 SO, emissions to 2005. No additional emission
reductions due to fleet turnover were modeled after 2005.  The National Low Emitting
Vehicle (NLEV)  program was incorporated into future year projections, as mandated by the
1990 Clean Air Act Amendments.

Electric utility point sources. State-level projections of electric utility SO? and NO,
emissions for the year 2005, including the effects of anticipated emission controls, were
obtained from information developed by the Federal Energy Regulatory Commission (FERC)
for the Notice of Proposed Rulemaking EIS (FERC, 1995); the data used represented the
"Memo of Understanding" final case. For 2010 and 2020, no additional utility emission
controls were assumed. Growth in activity levels for each future year were based on the
baseline reference projections of electric utility fuel consumption (in quadrillion BTUs) by
Electricity Market Module region prepared by the  Energy Information Administration of the
U.S. Department of Energy (EIA, 1996); these data were used to project 1990 VOC
emissions to 2005 and to project 2005 emissions for ail pollutants to 2010 and 2020.

Biogenic sources.  Biogenic emissions were held constant at 1990 levels for all future  years.

 Regional Emission Inventory. Statewide NO,, VOC, and SO, emission estimates were
 summed for all source types (area and non-utility point sources, on-road motor vehicles,
 electric utilities, and biogenics) for the base year and each of the three future years.  The
 statewide totals were then aggregated to generate  emission estimates for each of the nine
 regions used in the current analysis.  Regional emission totals were obtained by assigning
 each state to one or more regions, following the region definitions described earlier (see

-------
-STSTZV/S A PPUCA 77O/VS1 INTERN A T1ONA L
Figure 1). For the few states that are in two urban regions, the emissions were assizned so
that the resulting emission dataset would most represent changes in air quality within each
region (for example, Oklahoma and Texas emissions were assigned to Region 2 although  a
portion of those states are in Region 5; Pennsylvania was assigned to Region I: and Colorado
was assigned to Region 4).  California emissions were split between Region 6 (Pacific Coast
Urban) and Region 7 (Southern California Urban) using county-level emission data.
Emission totals for the two rural regions were developed similarly.  The resulting regional
emission  inventory is shown in Table 12.  The total emissions for all seven urban regions is
equal to the sum of the two rural regions, and is shown in the table as Total U.S. (actually
48-state)  emissions.
       TABLE 12. Total emissions by region (tons/day).


1
2
3
4
5
6
7
8
9



1
2
3
4
5
6
7
8
9


Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
Total U.S.

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Run! East
Rural West
Total U.S.

NO,
10373
21620
19295
5517
3651
3482
1994
54602
11331
65932

NO,
10843
27893
19838
5843
3840
3244
1685
62172
11015
73187
1990
VOC
24317
75091
23819
5770
5047
8674
3322
126428
19615
146040
2010
VOC
22556
73653
22489
5812
5067
8083
2609
121996
18278
140270

SO,
9737
16694
26260
1988
2591
967
233
53758
4712
58470

SO,
9454
16948
19119
2493
2777
1273
236
46914
5385
52299

NO,
10101
26166
18998
5609
3692
3077
1670
58734
10580
69314

NO,
12092
29906
21075
6107
4038
3546
1792
66799
11758
78556
2005
VOC
22153
72725
21912
5678
4971
7904
2545
120008
17883
137888
2020
VOC
23127
74939
23283
6002
5211
8346
2775
124757
18930
143685

SO,
9357
16693
18916
2457
2708
1247
223
46340
5261
51602

SO,
9572
17226
19336
2536
2855
1305
249
47553
5526
53078
Air Quality Data Projections
The regional emission inventories were used to predict future ambient NO,, NMOC, and
sulfate concentrations using a simple "modified rollback" procedure, in which it is assumed
that the non-background portion of the ambient concentrations are directly proportional to
the regional emission strengths. In the case of NO, and VOC, regional background
concentrations were assumed to be zero.  Therefore, future year seasonal hourly average NO,
and NMOC concentrations were estimated by scaling the base case NO, and NMOC data tor
 96«110.dae
                                                                   Final —October

-------
                                                SYSTEMS A PPUCA TIONS INTERN A T10VA L
each region that were developed as inputs to the NO, oxidation model by the ratio of future
year regional NO, and VOC emissions, respectively, to base year (1990) regional emissions.

Ozone production (and removal) in the atmosphere is governed by a complex set of chemical
and physical processes that precludes the use of a simple emission scaling procedure to
predict future concentration levels. Therefore, future ozone concentrations were predicted
following a different process. The 1990 Clean Air Act Amendments require each ozone
nonattainmem area to meet the federal ozone standard by a certain date, according to the
degree of nonattainmem.  All nonattainmem areas are required to meet the standard by 200S
with the exception that the target date for the South Coast Air Basin (California) is 2010.
Design values for ozone nonattainmem areas were compiled from Seinfeld et al. (1991) based
on data from 1987-89. The design values within each urban region were used to estimate
region-wide average design values for use in predicting future ozone concentrations.  For an
area to be in attainment, its design value must be under 0.12 ppm. It was assumed that after
attainment of the standard, each region's design value would be equal to 0.12 ppm, so if an
urban area is currently in attainment then a design value of 0.12 ppm was assigned for
developing the base case region-wide averages (following the assumption that ozone
concentrations in attainment areas will not change). Rural ozone concentrations are not
expected to change significantly in most locations so the design values for Regions 8  and 9
were set to 0.12 ppm for all years (the assignment of base case and future design values to
0.12 ppm does not indicate actual ozone levels, but rather was done to mathematically force
the ozone concentrations to remain constant for future yean at base case levels).  Table 13
displays the regional ozone design values that were used for projecting future ozone
concentrations. It was assumed that the design value for Region 7 (Southern California)
would decrease linearly between 1990 and 2010, when the standard would be met.
                 TABLE 13. Ozone design values by region (ppm).

1
2
3
4
5
6
7
8
9
Region
Northeast
Midwest
Upper West
Soudxvwst
Pacific Coast
S. California
Rural East
Rural West
1990
0.147
0.147
0.147
0.120
0.134
0.139
0.221
0.120
0.120
2005
0.120
0.120
0.120
0.120
0.120
0.120
0.145
0.120
0.120
2010
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
2020
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
 Future year seasonal hourly average ozone concentrations were estimated by scaling the non-
 background portion of base case ozone data for each region that were developed as inputs to
 the NO, oxidation model by the ratio of future year design values to base year (1990) design
 values. If an hourly concentration was below the background level, it was not changed.
 Different background ozone concentrations were selected for each season and for daytime
 versus nighttime. For spring and summer months (May and August), daytime background
 ozone concentrations were assumed to be 0.04 ppm; nighttime background concentrations
 were assumed to be 0.02 ppm. For winter and autumn (February and November), the
 corresponding background values were 0.02 ppm (daytime) and 0.01 ppm (nighttime).
 Rnn/— October 1996
966110 doc

-------
STSTEWS A PPUC4 TIONS I.\TERNA T10NA L
The projected seasonal hourly NOt, NMOC and ozone concentrations (tabulated in Appendix
B) were input to the model to estimate future levels of NO, oxidation (i.e.. total nitrate pro-
duction) for each region.  The equilibrium between nitric acid and PM nitrate was adjusted
from (calibrated) base case levels by considering changes in PM nitrate concentrations due to
changes in ambient ammonium sulfate concentrations. The modified rollback emission
scaling procedure was used to estimate future ambient ammonium sulfate concentrations
using SOT emission data.

Representative regional base case sulfate concentrations were developed using IMPROVE
data from Malm et al. (1994).  The IMPROVE data are collected at (mostly) rural locations,
however, because sulfate is generally produced on a regional scale, it was assumed that these
seasonal average data would be reasonably representative of urban regions as well.  Annual
average ammonium sulfate concentrations were estimated based on spatial contours of three-
year average data collected between March 1988 and February 1991. Seasonal profiles were
developed using measured ammonium sulfate concentrations at 34 IMPROVE  sites during
the same three-year period. The resulting base case seasonal and annual average regional
ammonium sulfate concentrations are shown in Table 14.
              TABLE 14.  Base year (1990) sulfate concentrations by region
              (ug/m1).

1
2
3
4
5
6
7
8
9

Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
Winter
4.72
2.48
4.20
0.63
1.02
0.55
0.50
2.44
0.79
Spring
5.92
4.95
5.46
1.13
1.15
1.04
1.70
3.83
1.02
Summer
7.11
8.67
462
1.25
1.60
1.50
2.40
4.95
1.46
Autumn
5.21
4.62
3.36
1.00
1.44
0.96
1. 10
3.14
1.15
Annual
5.70
5.20
4.20
1. 00
1.30
1.00
1.40
3.55
1.10
The base case seasonal average ammonium sulfate concentrations for each region were
combined with the base case and future SO. emission data to estimate future average
ammonium sulfate levels. The modified rollback procedure assumes that non-background
sulfate concentrations change linearly with changes in SO, emissions, which for regional and
seasonal averages, should be reasonably accurate.  Background ammonium sulfate
concentrations were obtained from Trijonis et al. (1990); 0.2 ug/m3 for the eastern U.S.
(assigned to Regions I, 2,3 and 8) and 0.1 »ig/m3  for the western U.S. (assigned to Regions
4, 5, 6, 7, and 9). The resulting future-year seasonal average sulfate concentrations for each
region are presented in Table 15.

The equilibrium between nitric acid and PM nitrate for future years was assumed to be the
same as for the base case, but adjusted for the change in ammonium sulfate levels.  For a
decrease (or increase) in sulfate, PM nitrate concentrations were increased (or decreased) by
 assuming that the sulfate is fully neutralized (i.e., two additional moles of PM nitrate are
 formed for each mole of ammonium sulfate that is removed).
 9M110.doc
                                                                   Final — October .

-------
30
SYSTEMS A1JPUCA T10NS INTERS A TIOS'A L
                 TABLE IS.  Future sulfate concentration projections
                 (ug/m3).


1
2
3
4
5
6
7
8
9

I
2
3
4
5
6
7
8
9


1
2
3
4
5
6
7
8
9

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West

Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West


Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
Q Calrfivnt*
Rural East
Rural West

Winter
4.55
2.48
3.08
0.75
1.06
0.68
0.48
2.13
0.87

Winter
4.59
2.51
3.11
0.76
1.08
0.69
0.51
2.15
0.89

Winter
4.65
2.55
3.15
0.77
1.11
0.71
O.S3
2.18
0.91

Spring
5.69
4.95
3.99
1.37
1.19
1.31
1.63
3.33
1.13

Spring
5.75
5.02
4.03
1.38
1.22
1.33
1.72
3.37
1.15

Spring
5.82
5.10
4.07
1.41
1.25
1.37
1.21
3.41
1.18
2005
Summer
6.84
8.67
3.38
1.52
1.67
1.90
2.31
4.29
1.62
2010
Summer
6.91
8.80
3.42
1.54
1.71
1.94
2.43
4.34
1.66
2020
Summer
6.99
8.94
3.45
1.57
1.76
1.98
2.56
4.40
1.70

Autumn
5.02
4.62
2.48
1.21
1.50
1.21
1.06
2.73
1.27

Autumn
5.07
4.69
2.50
1.23
1.54
1.24
1.11
2.76
1.30

Autumn
5.13
4.76
2.53
1.25
1.58
1.26
1.17
2.80
1.33
RESULTS AND DISCUSSION

The tables in Appendix B show all the future year results of the oxidation/equilibrium model.
 For each region, four tables are presented, one for each season.  Within each season, the
meteorological and air quality input data required for the oxidation calculation are shown for
each hour that the model was exercised. The rate of NO, oxidation (percent/hour) that was
computed by the chemical box model for each time period is also shown, as well as the total
nitrate (PM nitrate plus nitric acid) yield for each two hour period. The daily total nitrate
yield was multiplied by the base case (1990) equilibrium PM nitrate fraction to estimate the
daily PM nitrate that would be produced if the equilibrium was held at base case levels
(designated as "Base Nit." In the tables). The PM nitrate concentration was then adjusted by
                                                                             9MUO.doc

-------
SYSTEMS A PPUCA TIOHS AVTEK.V/4 T10NA L
adding (or subtraaing) the amount of ammonium nitrate (convened from ug/W to ppm) that
would be formed due to the reduction (or increase) in ammonium sulfate concentration
relative to base case levels.

As an example, as shown in the first table in Appendix B, for the Region 1 winter season, the
base case (1990) equilibrium PM nitrate fraction (0.1662) was multiplied by the daily total
nitrate yield for 2005 (5.71 ppb) to compute the ''base" PM nitrate (0.949 ppb). Tables 14
and 15 show that for Region 1, the wintertime average ammonium sulfate concentration is
predicted to decrease from 4.72 to 4.55 ug/m3 between  1990 and 2005 (the difference was
actually 0.176 ug/m3).  Converting the difference into ppm and multiplying by two (fully
neutralized ammonium sulfate has two ammonium ions attached to each sulfate ion) gives the
predicted increase of ammonium nitrate (each nitrate ton is neutralized by one ammonium
ion) of 0.065  ppb.  Adding this to the base PM nitrate gives 1.014 ppb, the estimated 2005
PM nitrate production for the Region 1 winter season.

The adjusted PM nitrate concentration was then divided by the total nitrate concentration to
produce the revised (future) equilibrium PM nitrate fraction.  The adjusted PM nitrate
concentration was not allowed to be greater than total nitrate (i.e., the equilibrium fraction
cannot exceed 100 percent).  If sulfate was predicted to increase relative to base case levels,
then nitrate production decreased, however the PM nitrate concentration was not allowed to
be less than zero.  Finally, as in the base case analysis (Appendix A), the adjusted PM nitrate
concentration was divided by the daily average initial NO, concentration to produce the
desired average seasonal conversion rate (in ppm/ppm). A simple mass conversion was
performed to  transform the conversion rate into the desired mass units (g/g).

The resulting annual average NO, to nitrate conversion rates for base and future years are
shown in Table 16 for each region and for the population-weighted U.S. average.  As in
Table 10, the values in Table 16 represent the equivalent mass of PM nitrate (assumed to be
ammonium nitrate) that is formed from a unit mass of NO, emissions.  Table 17 shows the
same results expressed as the percentage of NO, moles that are convened to PM nitrate
(these data correspond to the ppm/ppm conversion factors in Appendices A and B).
             TABLE 16. F. fraction of NO, convened to nitrates (g/g).

1
2
3
4
5
6
7
8
9


Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
VMT Average

F,«o
0.0115
0.0498
0.0416
0.0068
0.0309
0.0499
0.0704
0.0283
0.0274
0.0349
0.0365
Annual
fyas
0.0133
0.0476
0.0621
0.0047
0.0297
0.0442
0.0677
0.0541
0.0172 •
0.0433
0.0441
Average
FJOJO
0.0126
0.0455
0.0607
0.0047
0.0294
0.0441
0.0666
0.0510
0.0157
0.0417
0.0425

FJOJO
0.0119
0.0443
0.0592
0.0047
0.0291
0.0439
0.0660
0.0477
0.0142
0.0402
0.0411
 966UO.doc
                                                                   Final — October

-------
                                                SYSTEMS A PPUCA TIOSS INTERS A TIOSA L
             TABLE 17.  F. fraction of NO, converted to nitrates (%).
Annual Average

1
2
3
4
5
6
7
8
9

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
VMT Average
Fi«o
0.66
2.86
2.39
0.39
1.78
2.87
4.05
1.63
1.58
2.01
2.10
F:OOS
0.76
2.74
3.57
0.27
1.71
2.54
3.90
3.11
0.99
2.49
2.54
F:OIO
0.73
2.62
3.49
0.27
1.69
2.53
3.83
2.93
0.90
2.40
2.45
F:OM
0.69
2.54
3.40
0.27
1.67
2.52
3.79
2.74
0.82
2.31
2.36
As can be seen from Table 16, the U.S. average NO, to PM nitrate conversion rate is
predicted to increase from 0.0349 to 0.0433 between 1990 and 200S.  This represents a 24
percent increase in conversion relative to 1990 levels. The NO, oxidation decreased slightly
in all regions due to the predicted changes in atmospheric conditions (with the exception that
Region 8 showed a negligible increase).  However, the predicted reductions in sulfate levels
increased the production of PM nitrate in urban and rural eastern regions (Regions 1, 2, 3,
and 8) and very slightly in Southern California (Region 7).  The equilibrium PM nitrate
fraction increased substantially in Region 3 (Midwest Urban) due to large predicted
reductions in ammonium sulfate concentrations. The increase in PM nitrate due to the
equilibrium adjustment was negligible in Region 2 (so that the slight decrease in oxidation
resulted in an overall decrease in F).  In the western regions (Regions 4, 5, 6, 7, and 9), the
PM nitrate equilibrium fractions were reduced (not in Region 7), and when combined with
the reductions in oxidation, result in overall reductions in the NO* to PM nitrate conversion
rate.

The NO, to PM nitrate conversion rates are predicted to decrease somewhat between 200S
and 2010, and then continue to decline between 2010 and 2020, for all regions (including
U.S. average).  The decrease for 2010 and 2020 relative to 2005 is due to the continued
growth in emissions beyond 2005 (when most control programs are assumed to have been
already implemented).

In addition to the population-weighted average (denoted by "U.S. Average" in the tables),  a
national VMT-weighted average of the regional estimates was also computed following the
procedure outlined in  Section 2.  The resulting VMT-weighted average conversion rates are
shown in the last lines of Tables  16 and  17. As expected, the VMT-weighted averages  are
close to the population-weighted averages because emissions and population density tend to
follow similar spatial patterns.
               '996
                                                                             966110 -ux

-------
SYSTEMS APPUCA TIONSINTERHA TIOXAL
                          V  UNCERTAINTY ANALYSIS

Sensitivity tests of the modeling system were conducted to determine those input parameters
that are most important to NO, oxidation and paniculate nitrate formation rates, and also to
provide a means for assessing the uncertainty associated with the results of this investigation.
 Given the large number of input parameters and the complexity of the modeling system, it
was not possible to perform a rigorous uncertainty analysis or to definitively estimate
confidence intervals for the estimated base case and future NO, to PM nitrate conversion
rates. Instead, a number of sensitivity analyses were conducted on the more important model
input parameters to assess the relative uncertainties between regions and to provide a sense
of the range of conversion rates that are associated with the variation (uncertainty) of those
input parameters.

Each of the key parameters that were used as input to the oxidation/equilibrium model were
prioritized with respect to the sensitivity of the model results to the expected uncertainty
(range) of the parameters. This was accomplished by selectively modifying the input
parameters and examining the variations in model output. The uncertainties of model inputs
were estimated by examining the input data for representativeness and by applying
engineering judgement The NO, to PM nitrate conversion rates exhibited minor sensitivity
to many of the input parameters.  When considering the uncertainty of model results due to
the expected variability of the most important input parameters, one can effectively ignore
those parameters which exert little influence on the results.

The examination of model sensitivity generated a prioritized list of input parameters, from
which the top three parameters were systematically evaluated.  These parameters are: (1) the
nitrate/ NO, calibration factors that were developed from ambient measurements, (2) the
projections of SO, emissions, and (3) the sulfate neutralization ratio assumption.


NITRATE/ NOx CALIBRATION FACTORS

The  modeling system developed for this study is particularly sensitive to the seasonal nitrate/
NO, calibration ratios (CR) that were constructed for each region from ambient
measurements. Examination of Tables 8 and 9 reveal that for a number of the regions,
available ambient data were sparse and do not represent well the range of ambient ratios one
might expect to find within the region. Hence the calibration ratios developed from these
data may not be extremely reliable indicators of the base case NO, to PM nitrate conversion.
Uncertainties were assigned to the calibration ratios for each region based on the number of
 sites for which data were available, the geographical coverage of the data, the availability of
 concurrent nitrate and NO, data, the region size, and the expected variability of the ratio
 within each region.  .For example, Region 7 is the smallest region but incorporated concurrent
 nitrate and NO, data from eleven sites representing both urban and suburban locations. The
 uncertainty of the calibration ratios for this region were considered to be much less than those
 in Region 5, where data from only one site were available, and the seasonal variability of
 nitrate concentrations from a neighboring region was used.  A high and low estimate (roughly
 corresponding to one standard deviation above and below the chosen value) was selected for

 9MUO.doc                                                           Final — October I /v*

-------
                                                 SYSTEMS A PPUCA TIOVS INTERN A T10NA L
each region, by assuming that the most accurate regional calibration ratios (Region 7) were
within 20 percent of the actual value, and the least accurate ratios (Region 5) were within 65
percent of the actual value, with all other regions assigned between these two extremes.

The results of this analysis are presented in Table 18.  The table shows, for each region, the
annual average NO, to PM nitrate conversion rate computed using the base case calibration
ratio multiplied (high case) and divided (low case) by the assigned uncertainty in calibration
ratio. As expected, the base case (1990) and predicted future conversion rates are most
uncertain in Regions 5, 2, and 8, and more certain in Regions 7, 9, and 1. The range of
variability for each region approximately echoes the assigned uncertainties in the calibration
ratio. The population-weighted (48-state) U.S. average conversion rate for the base case
(1990) was estimated to be 0.0349 (see Table 10). The range in this estimate due to
calibration ratio variability was estimated to be between 0.0249 and 0.049S,  or -29 percent
(low case) and +42 percent (high case) relative to the base case estimate. The range in future
year U.S. annual average conversion rates were approximately +35  percent (high cases) and -
23 percent (low cases) relative to the estimates shown in Table 16.
               TABLE 18. Sensitivity of F, fraction of NO, converted to nitrates
               (g/g). to calibration factor. CR.
High Case

1
2
3
4
5
6
7
8
9

Low Case

1
2
3
4
5
6
7
8
9


Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average

FI«O
0.0156
0.0760
0.0590
0.0095
0.0519
0.0656
0.0854
0.0414
0.0359
0.0495

FI9W
0.0085
0.0329
0.0294
0.0048
0.0185
0.0380
0.0582
0.0194
0.0210
0.0249
Annual
FMOS
0.0172
0.0727
0.0787
0.0072
0.0504
0.0598
0.0820
0.0672
0.0256
0.0574
Annual
Fa*
0.0104
0.0314
0.0505
0.0030
0.0175
0.0325
0.0561
0.0452
0.0109
0.0335
Average
F»io .
0.0166
0.0701
0.0774
0.0072
0.0501
0.0596
0.0808
0.0642
0.0241
0.0558
Average
F»io
0.0098
0.0296
0.0491
0.0030
0.0172
0.0323
0.0551
0.0420
0.0093
0.0320

FWM
0.0159
0.0687
0.0760
0.0072
0.0498
0.0595
0.0802
0.0610
0.0226
0.0543

F»JO
0.0090
0.0284
0.0475
0.0029
0.0169
0.0322
0.0544
0.0386
0.0078
0.0305
 Final — October 1996
9M110.doc

-------
SYSTEMS A PpUCA TIONS INTERN A TIONA L
SOx EMISSION PROJECTIONS

Statewide emission data were used to scale current pollutant concentrations to estimate
future air quality levels within each region. Base case (1990) and future year SO, projections
were shown in Table 12 for each region. Tables 14 and 15 presented the base year and future
year suifate concentrations used to represent each region. The predicted changes in
ammonium suifate concentrations for future years (relative to 1990) were used to shift the
nitrate/nitric acid equilibria, thereby affecting the amount of PM nitrate formed. Approximate
uncertainties (roughly corresponding to one standard deviation) were assigned to the base
case (1990) and future year SO, projections after consideration of the data quality and
underlying assumptions used for growth and controls. The SO, emission data uncertainties
most likely vary by region, however it was not possible to assess these regional differences
within the current project resources.  The 1990 SO, emission estimates were considered to be
accurate to within ±30 percent for all regions. Uncertainties for future year SO,  projections
were assumed to be ±50 percent for 2005, ±60 percent for 2010,  and ±80 percent for 2020
Applying these (assumed) standard deviations to the ratios between future years  and 1990
yielded emission ratio standard deviations of 15 percent for 2005/1990,  18 percent for
2010/1990, and 24 percent for 2020/1990. These emission ratio standard deviations were
then used to generate high and low estimates of the suifate concentration changes that were
predicted to occur in each region.

Table 19 shows the results of this analysis. For each region, the annual average NO, to PM
nitrate conversion rate computed by the model is shown for the high case (corresponding to
the low SO, emission ratio) and the low case (corresponding to the high SO, emission ratio).
The base case (1990) results are not affected by the changes in suifate concentrations and are
therefore identical to the model results shown in Table 10. The variability in NO, to PM
nitrate conversion rate due to SO, emission data uncertainty is quite variable by region.
Regions 5,6 and 7 (western urban regions) are much less sensitive to this parameter than
Regions 1, 2,4, 8, and 9. For example, the differences between the high case and the Table
16 (best) estimates for 2020 are between 4 and 9 percent (relative to the best estimates) for
Regions 5, 6, and 7; the differences between the low case and the best estimates  for those
same regions are between 5 and 11 percent  The range in 2020 annual average conversion
rate estimated for Region 3 (Midwest urban) due to the SO, emission uncertainty is +17
percent and -21 percent  Regions 1,2,4, and 8 were between +28 and +59 percent for the
2020 high case, and between -34 and -69 percent for the 2020 low case. The pristine rural
West (Region 9) was most sensitive to the uncertainty in SO, emission data, ranging from
4-121 percent to -89 percent in 2020. The other two future years showed slightly lower
ranges but similar regional trends.

The ranges in future year population-weighted U.S. annual average conversion rates due to
SO, emission data uncertainty were estimated to be +23 percent and-26 percent for 2005;
+27 percent and -30 percent for 2010;  and +33 percent and -37 percent for 2020 (relative to
the values shown in Table 16).

 SULFATE NEUTRALIZATION RATIO

 As discussed earlier, it was assumed that all ambient suifate is fully neutralized as ammonium
 suifate and therefore the increase (or decrease) in PM nitrate was twice the decrease (or
 increase) in suifate for future years, on a molar (ppm) basis. The impact of this

 9«110.
-------
                                                 SYSTEMS A PPUCA TIONSIXTEIWA TIOVA L
              TABLE 19. Sensitivity of F. fraction of NO* converted to nitrates
              (g/g), to SO, emission ratios.
High Case

1
2
3
4
5
6
7
8
9

Low Case
(low ratio)
Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
(high ratio)
Annual Average
Fi9w FMOS FIQIO fvna
0.0115 0.0206 0.0207 0.0212
0.0498 0.0580 0.0570 0.0581
0.0416 0.0696 0.0693 0.0695
0.0068 0.0059 0.0061 0.0065
0.0309 0.0315 0.0315 0.0317
0.0499 0.0473 0.0475 0.0480
0.0704 0.0694 0.0686 0.0685
0.0283 0.0750 0.0744 0.0758
0.0274 0.0295 0.0298 0.0314
0.0349 0.0532 0.0528 0.0535
Annual Average
D A4M/V1 P I? 1? F
t\ci^imi r 1 990 r 2003 * 2010 ^ 2020
i
2
3
4
5
6
7
8
9

Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average
0.0115 0.0061 0.0054 0.0047
0.0498 0.0358 0.0320 0.0271
0.0416 0.0534 0.0507 0.0464
0.0068 0.0037 0.0035 0.0031
0.0309 0.0276 0.0269 0.0258
0.0499 0.0407 0.0400 0.0388
0.0704 0.0659 0.0643 0.0629
0.0283 0.0300 0.0233 0.0147
0.0274 0.0055 0.0040 0.0015
0.0349 0.0322 0.0292 0.0252
assumption was evaluated by computing the future year conversion rates using the extreme
assumption that all suifate was partially neutralized (as ammonium bisulfite), in which case
there would be a one-to-one ratio between suifate and PM nitrate. It should be noted that the
actual atmospheric conditions in most locations are most likely closer to the fully neutralized
case, but may in fact be somewhere between the two.  Table 20 shows the results of this
analysis. The high case corresponds to a suifate neutralization ratio of 2.0, and is therefore
identical to the best estimates (Table 16).  The low case is for a neutralization ratio of 1.0.
The effect on the conversion rate varied by region depending upon the estimated oxidation
and equilibrium changes (see discussion in Section IV). For the low case, the annual average
NO, to PM nitrate conversion rate would increase by 17 percent (for all future years) in
Region 4, and by 28 to 46 percent in Region 9 (relative to the high neutralization case).
Region 3 would decrease by 16 to 18 percent and Region 8 would decrease by 20 to 24
percent. The effect of the neutralization ratio uncertainty in the remaining regions was
predicted to be much smaller, -3 to -8 percent for Region 1; between 0 and about +2 percent
for Regions 2, 5, and 7;  and +6 percent for Region 6 (all relative to the high neutralization
case).
                                                                              964110 doc

-------
SYSTEMSAPPLICATIONS INTERNATIONAL
               TABLE 20. Sensitivity of F, fraction of NO, convened to nitrates
               (g/g), to suifate neutralization ratio.
High Case

.Annual Average
Region Fi«o F:oo5 F:OIO Fj«o
1
2
3
4
5
6
7
8
9

Low Case

I
2
3
4
5
6
7
8
9

Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S. California
Rural East
Rural West
U.S. Average

Region
Northeast
Southeast
Midwest
Upper West
Southwest
Pacific Coast
S California
Rural East
Rural West
U.S. Average
0.0115 0.0133 0.0126 0.0119
0.0498 0.0476 0.0455 0.0443
0.0416 0.0621 0.0607 0.0592
0.0068 0.0047 0.0047 0.0047
0.0309 0.0297 0.0294 0.0291
0.0499 0.0442 0.0441 0.0439
0.0704 0.0677 0.0666 0.0660
0.0283 0.0541 0.0510 0.0477
0.0274 0.0172 0.0157 0.0142
0.0349 0.0433 0.0417 0.0402
Annual Average
Fiwo FJOOS FMIO FWM
0.0115 0.0122 0.0119 0.0115
0.0498 0.0476 0.0461 0.0454
0.0416 0.0509 0.0503 0.0497
0.0068 0.0055 0.0055 0.0055
0.0309 0.0300 0.0299 0.0297
0.0499 0.0469 0.0468 0.0467
0.0704 0.0675 0.0667 0.0664
0.0283 0.0412 0.0398 0.0382
0.0274 0.0221 0.0215 0.0208
0.0349 0.0385 0.0377 0.0370
 The variability in future year population-weighted U.S. annual average conversion rates due
 to the suifate neutralization ratio uncertainty was estimated to be -11 percent for 200S; -10
 percent for 2010; and -8 percent for 2020 (relative to the high neutralization case).
  966110.

-------
j- 9                                          SYSTEMS A PPUCA T10NS INTERNATIONAL
               ?00<                                                     966MO.doc

-------
SYSTEMS A P PLICA TTOtiS LVTERVA TJONA L
                         VI  ESTIMATION OF BENEFITS

The previous sections of this report have dealt with the estimation of atmospheric NO, to PM
nitrate conversion rates. The conversion rates have been expressed in terms of the mass of
PM nitrate formed in the atmosphere per unit mass of NO, emitted. The PM nitrate air
quality benefits that would result from the proposed new emissions standard for highway
heavy-duty engines can be assessed using these estimated conversion rates, together with the
estimated NO, emission reductions, by region. One approach to evaluating the benefits is to
consider the value of a ton of PM emission reductions through examination of existing PM
control programs. The question, "how much is a ton of PM emission reductions worth?,"
can be answered by observing how much states and local agencies have been willing to spend
on measures to reduce PM emissions.

A modest survey was conducted to estimate the range of costs associated with PM control
measures that have either been implemented, adopted for implementation, or even considered
for adoption.  Air quality regulatory agencies throughout the United States have often relied
upon the efforts of California, and especially the South Coast Air Basin, to develop and
implement air pollution control measures. Therefore, particular attention was given to
control plans developed within California, including recent Air Quality Management Plan
(AQMP) revisions developed for the South Coast Air Basin (SCAQMD, 1989, 199la,
1991b, 1994; NERA, 1990). The AQMP control measures identified below have been
adopted for implementation in the South Coast Air Basin.

A recent report was prepared by the State and Territorial Air Pollution Program
Administrators and the Association of Local Air Pollution Control Officials
(STAPPA/ALAPCO, 1996) to assist state and local air pollution control officials in
developing plans for controlling paniculate matter emissions. The report identifies and
describes numerous PM control measures, some of which have been adopted or implemented
by local, state or federal agencies, and includes information on costs and cost effectiveness.

The findings of the PM control measure survey is presented below, arranged by general
source category. It should be noted that a number of additional control measures that would
reduce PM emissions were identified, however the costs for control were not determined or
documented, and therefore are not included below. Many control measures listed below also
reduce other pollutants (including NO,), so the cost effectiveness ($ per ton emission
reduction) would be different if these other pollutant emissions are considered.

Transportation/Mobile Source Controb

•    In 1993, EPA estimated that the 0.05 g/bhp-hr urban bus PM standard for new vehicles
      would cost between $21,000 and $36,000 per ton of PM removed. This estimate was
      reduced to between $10,000 and $16,000 per ton if catalyst technology could be
      employed, which appears to be the technology of choice.
 966\lO.doc                                                         Final — October : • ••

-------
JO	SYSTEMS APPUCA TIONSINTE1WA TIOXAL

•    CARB has estimated that a 20 percent reduction in marine diesel PM emissions for new
     vessels could cost from $^20 per ton (in 1991 dollars) to a high of $18,000 per ton if
     accompanying NO, is reduced. Including the PM emission reductions associated with
     the NOX reductions would improve (lower) the cost effectiveness.

•    CARB has estimated that an 80 percent reduction in NO, emissions from new
     locomotives along with a 50 percent reduction in PM emissions would cost between
     $858 and $14,688 per ton (in 1993 dollars) of NO, for line-haul, local, and switcher
     locomotives.  Unfortunately, the PM emission reductions were not included in the cost
     effectiveness estimate.  The cost effectiveness would be improved if the PM emission
     reductions were included.

•    EPA estimated that its retrofit/rebuild requirements for 1993 and earlier model year
     urban buses would cost $25,500 (in 1992 dollars) per ton of PM emissions reduced
     (implemented by EPA in 1993; effective for engines rebuilt after January 1, 1995).

•    Sierra Research (1995) has estimated that heavy-duty diesel early retirement programs
     would cost approximately $14,500 per ton of PM emissions reduced.

•    In 1988, CARB estimated that the cost for switching to low sulfur diesel fuels would
     be between $6,200 and $7,200 per ton of directly emitted PM reduced (adopted by
     CARB in 1988; effective October 1, 1993).
•    In 1990, CARB estimated that the cost for reducing emissions from small two-stroke
     non-road engines to meet the 1999 standard of 0.25 g/bhp-hr would be S920 per ton of
     combined PMto, hydrocarbons and NO, reduced. This translates to approximately
     $10,500 per ton of PM emissions (adopted by CARB in 1990).
•    The South Coast Air Quality Management District (SCAQMD) has estimated that
     controls on heavy-duty trucks would cost $7,721 per ton of PM emissions reduced
     (control no. UN2 in 1989 AQMP; NO,, ROG also controlled).
•    The SCAQMD has estimated that controls on medium and light heavy-duty trucks
     would cost $8,000 per ton of PM emissions reduced (control no. UN8 in 1989
     AQMP).

Stationary Source Pud Combustion Controb

 •    Sloat et aL (1993) estimated the cost effectiveness for high-efficiency paniculate
      controls on uncontrolled coal-fired electric utility boilers. The cost for electrostatic
      preciphators was estimated to be S13S per ton of PM emissions reduced. The cost for
      installing a reverse-gas baghouse was estimated to be $162 per ton of PM emissions
      reduced. The cost for using pulse-jet fabric filters was estimated to be S138 per ton of
      PM emissions reduced.
 •    STAPPA/ALAPCO (1996) summarized cost effectiveness estimates for improving the
      performance of existing electrostatic preciphators on coal-fired electric utility boilers.
      The range of costs were between S310 and $1,600 per ton of PM emissions reduced,
      depending upon the upgrade technology.
 •    Couch (1995) estimated that the cost for coal-cleaning technologies applied to utility
      boiler fuel would be about $800 per ton of averted PM emissions.

-------
SYSTEMS APPUCA TIOHS1VTERNA TIONAL	                                    4I
•    In 1989, EPA estimated the cost effectiveness for controlling industrial boiler
     emissions. The cost for reducing PM emissions from oil-fired boilers is over $10,000
     per ton.  For coal-fired boilers, the cost is in the range of $1,000 to $2,000 per ton, and
     for wood-fired boilers, the cost is between $1,000 and $3,000 per ton of PM emissions
     reduced.

•    The SCAQMD has estimated that control of gas-fired petroleum refinery process
     heaters would cost $12,000 per ton of PM emissions reduced (control no. B-9 in 1989
     AQMP; also appears as control no. P-B-3 in 1991 AQMP and CMB-08 in 1994
     AQMP; cost increased to $12,900 in 1994 AQMP).

•    The SCAQMD has estimated that control of petroleum refinery fluid catalytic cracking
     (FCC) units would cost $29,300 per ton of PM emissions reduced (control no. B-10 in
     1989 AQMP; also appears u control no. P-B-4 in 1991 AQMP).

•    The SCAQMD has estimated that phasing out the use of fuel oil and solid fossil fuels
     would cost $25,840 per ton of PM emissions reduced (control no. CMB-05 in 1994
     AQMP (VOC, NO,, CO, and SO, also controlled).

•    The SCAQMD has estimated that Best Available Retrofit Control Technology for all
     permitted stationary sources would cost $5,300 per ton of PM emissions reduced
     (control no. F-l in 1989 AQMP).


Industrial and Commercial Process Controls

•    STAPPA/ALAPCO (1996) estimated that the costs for installing an electrostatic
     predphator on a wood pulp mill recovery boiler would be about $470 per ton of PM
     emissions reduced (however, the cost would be offset significantly by the value of the
     collected sodium suifate).

•    The SCAQMD has estimated that commercial charbroiling controls would cost $6,200
     per ton of PM emissions reduced (control no. C-3 in 1989 AQMP; also appears as
     control no. A-C-2 in 1991 AQMP and PRC-03 in 1994 AQMP; cost decreased to
     $4,400 in 1994 AQMP).
•    The SCAQMD has estimated that control of rubber products manufacturing would cost
     $2,500 per ton of PM emissions reduced (control no. C-4 in 1989 AQMP; also appears
     as control no. P-C-1 in 1991 AQMP).
•    The SCAQMD has estimated that control of unconfined abrasive blasting operations
     would cost $37,800 per ton of PM emissions reduced (control no. C-5 in 1989 AQMP
     (NO. also controlled).
•    The SCAQMD has estimated that control of woodworking operations would cost
     $12,000 per ton of PM emissions reduced (control no. C-6 in 1989 AQMP; also
     appears as control no. P-C-3 in  1991  AQMP and PRC-01 in 1994 AQMP; cost
     increased to $12,900 in 1994 AQMP).


 Fugitive Dost (Area Source) Controls

 •     EPA has established guidelines for controls of fugitive dust emissions, and among other
      approaches, recommends that PM nonattainment areas develop controls for limiting
      mud carryout onto paved road surfaces.  An EPA study (EPA, 1977) estimated that the

 96«l I0.doc                                                      Final — October : >;"

-------
                                               SYSTEMS A PPUCA 77CW5 INTERS A T10NA L
     costs for canyout control were approximately $1,000 per |ig/m3 of PM concentration
     reduced over an area of one square inile. It is difficult to relate this cost per
     concentration reduction to a cost per PM emission reduction because the impacts of
     paved road dust emissions vary widely throughout the U.S. However, crustal
     components comprise roughly 20 percent of PM|0 concentrations in Eastern U.S. urban
     areas and 36 percent of the PMio in Western U.S. urban areas (EPA, 1996), with a
     national average assumed to be about 28 percent. The annual arithmetic mean PM10
     concentration measured at 799 sites throughout the U.S. was approximately 30 iag/m3
     in 1990 (ibid.)- Paved road dust emissions are about 17 percent of the total fugitive
     dust emissions, which contribute the overwhelming majority of ambient crustal PMio
     mass. The national total emissions for paved road dust was estimated to be 7.49
     million tons in 1990. Therefore, fugitive dust emissions are responsible for roughly 8.4
     ug/m3, of which paved roads account for about 1.4 ug/m3.  A reduction of 1 ug/m3
     throughout the U.S. would require an emissions reduction equivalent to about 5.25
     million tons of paved road dust. The area of the 48 contiguous states (assumed to
     contain almost all the fugitive dust emissions) is approximately 3 million square miles,
     so the cost associated with canyout control can be estimated to be approximately $570
     per ton of PM emissions reduced.

•    The SCAQMD has estimated that control of fugitive dust emissions from road and
     building construction would cost $4,650 per ton of PM emissions reduced (control no.
     F-4 in  1989 AQMP; also appears as control no. P-F-2 in 1991 AQMP).

•    The SCAQMD has estimated that control of fugitive dust emissions from livestock
     waste would cost $1,900 per ton of PM emissions reduced (control no. A-E-2 in 1 99 1
     AQMP; also appears as control no. WST-01 in 1994 AQMP; cost increased to $3,600
     in 1994 AQMP).
•    The SCAQMD has estimated that agricultural tilling dust control would cost $550 per
     ton of PM emissions reduced (control no. A-E-3 in 1991 AQMP).
•    The SCAQMD has estimated that wind  erosion dust control would cost between $28 1
     and $1,073 per ton of PM emissions reduced (control no. A-F-5 in 1991 AQMP).

The costs associated with the PM control measures identified above exhibited a fairly wide
range.  Interestingly, a number of the lower cost measures do not appear to have been
adopted by. state and local air quality agencies (at least within California), yet many of the
measures that have been adopted or implemented have costs exceeding $20,000 per ton of
PM emissions reduced Control measures aimed at reducing PM emissions from mobile
sources and industrial and commercial sources appear to have higher costs than measures
targeted at fugitive sources.  Of the four major source categories, stationary fuel combustion
emission controls have the widest range of costs.

Using the latest cost estimates  provided and the midpoints of given ranges for individual
control technologies, the cost effectiveness data can be summarized as follows: The cost
 effectiveness ($/ton of PM emissions) for the eight transportation/mobile source measures
 identified above range from $6,700 to $25,500, with an average of $1 1,800.  For the twelve
 stationary source fuel combustion controls identified, the range is between SI 3 5 and $29,300,
 with an average of $7,420. Controls on industrial and commercial processes range from
 $470 to $37,800, with an average cost of $1 1,610 (n=5). The costs for fugitive dust controls
 range from $550 to $4,650, with an average of $2.010 (n=5). The overall range therefore for

-------
SYSTEMS APPUCA TIONS INTERNA TIOHAL	J3

the 30 different control measures identified is between $135 and $37,800, with an average
cost of about $8,400.  Of these, the least expensive (most cost effective) control measure that
has been implemented, or adopted for implementation, is the agricultural tilling dust control
which was estimated by SCAQMD to cost SS70 per ton of PM emissions reduced.

One could argue that the value of a ton of PM emission reductions is equivalent to the cost of
the most expensive measures that have been implemented (or adopted). The 90th percentile
highest cost per ton of PM associated with the measures identified above is $25,840 (for the
phasing out of fuel oil  and solid fossil fuels).  It should be noted that many of the measures
with the highest costs are those adopted for implementation in the South Coast Air Basin, an
area with particularly high levels of ambient PM concentrations. Regions that are closer to
attainment of the ambient standards for PM would most likely seek less expensive
alternatives, and may not be willing to support such high control costs. On the other hand,
the EPA has implemented a program for all urban areas (urban bus retrofit/rebuild program)
that was estimated to cost over 525,000 per ton of PM emissions.
  9«UO.doc                                                           Final-October I

-------
JJ
                                           SYSTEMS APPLICATIONS IHTERNA TIOVAL

-------
SYSTEMS A PPUCA TIONS INTERS A TKMA L                                              J5
                         VH  SUMMARY / FUTURE RESEARCH

The rate of conversion of NO, to PM nitrate was estimated using a combination of ambient
concentration data and computer modeling.  The model was used to compute the rates of
oxidation of NO, to nitric acid and perform the equilibrium calculation necessary to estimate
paniculate nitrate formation under various atmospheric conditions representing different
locations, seasons and times of the day. The model was calibrated so that the base case
(1990) PM nitrate yield was consistent with ambient data.  Then the model was exercised
using atmospheric conditions representing future scenarios to predict changes in the
conversion rate.

The annual average population-weighted U.S. conversion rate was estimated to be 0.0349
(see Table 10), which means that the average 48-state citizen in 1990 was exposed to
ambient PM nitrate concentrations equivalent to 3.49 tons of dispersed nitrate emissions per
100 tons of actual NO, emissions.  The conversion rate exhibits peaks in winter in the eastern
urban regions and during spring in the western and rural regions. The national  average
conversion rate is roughly 60 percent higher in the winter and spring seasons relative to the
summer and autumn.

Regional conversion rates were estimated for an average NO, source. Examination of the
adjustments needed to account for mobile source emissions rather than stationary source
emissions indicated that the bias is small relative to the uncertainties in the conversion rate
estimation methodology, although only a portion of the bias could be reliably evaluated.

The U.S. average mass-based NO, to PM nitrate conversion rate is predicted to increase from
0.0349 to 0.0433 between 1990 and 2005, representing a 24 percent increase in conversion
relative to 1990 levels (see Table 16). The conversion rates are predicted to decrease
somewhat between 2005 and 2010, and then continue to decline between 2010 and 2020, for
all regions.

An analysis was conducted to assess the uncertainty associated with the results of this
investigation. The conversion rates were found to be particularly sensitive to three key input
parameters, for which approximate quantitative estimates of model uncertainty were derived.
A great deal of the uncertainty was related to data limitations, including the use of data for
which regional representativeness was suspect. The estimated conversion rates were most
certain for the Southern California region, where a wealth of pertinent data are available.
The Northwest Urban region (Region 6) also exhibited a reasonably high level of confidence
relative to other regions.  Results for the Rural East (Region 8) were considered to be the
least reliable, and Regions 2 and 4 (Southeast Urban and Upper West Urban) also produced
 less certain results.

 The most critical input parameters were determined to be the ambient PM nitrate and NO,
 data that were used to calibrate the base case (1990) model. It was estimated that the
 national annual average NO, to PM nitrate conversion rates computed by the model could be
 roughly 30 to 40 percent higher or lower due to the uncertainty in calibration ratios used.

 9WUO.doc                                                          Final— October  ••-

-------
46	SYSTEMS A PPL Q T10NS1WTERXA T10NAI

The variability in conversion rate due to SO, emission data uncertainty was found to be quite
variable by region.  However, future year national annual average conversion rates due to
SO, emission data uncertainty were estimated to be within about 20 to 30 percent of the
"best" estimated rates (shown in Table 16). The variability in future year national annual
average conversion rates due to the sulfate neutralization ratio uncertainty was estimated to
be approximately 10 percent (relative to the "best" estimates).

Finally, the PM nitrate air quality benefits that would result from  the proposed new emissions
standard for highway heavy-duty engines were evaluated by examining the costs associated
with other PM control programs.  PM control measures that have been implemented or
adopted for implementation exhibit a wide range of costs, from $135 to $37,800 per ton of
PM emissions reduced.  However, the value of reducing emissions could be considered to be
in the neighborhood of $25,000 per ton.

Subsequent to model development and application for estimating NO, to nitrate conversion
rates, a number of observations have been made regarding assumptions used in the model and
improvements that could be made to the modeling system. The following summarizes these
observations:

•    The PM nitrate and NO, data used for calibrating the base case (1990) conversion rates
     are critical to the results.  In a number of regions, the available data  were sparse and
     therefore the calibration ratios were not necessarily representative of the region.
     Obtaining more data would improve confidence in the results for these regions.
•    The method assumes that air masses containing NO, are well mixed, or in other words,
     the nitrate and NO, data are collected at locations that are not overly influenced by
     large NO, sources.  To alleviate problems (uncertainties) associated with this
     assumption, data should be collected from a number of locations within each air basin
     to insure that an "average" conversion rate is obtained (this was done effectively for
     the Southern California region).  If not possible, then an attempt should be made to at
     least collect data from suburban locations that are either upwind or downwind of large
     urban NO, sources.
•    The population-weighted U.S. average conversion rate computed by the model
     assumes that the proposed new emissions standard for highway heavy-duty engines will
     reduce NO, in constant proportion to total existing NO, emission rates (from all
     sources) throughout the United States.  In areas of the country where heavy-duty
     vehicles produce a higher proportion of emissions, the PM nitrate air quality benefit
     will be higher than for other regions where heavy-duty vehicles  are used less (for the
      same conversion rate). The proper way to  account for this would be to estimate the
      expected NO, emission reductions corresponding to heavy-duty vehicle miles travelled
      (VMT) that would occur as a result of the proposed new standard in each area of the
      U.S., and then applying the appropriate regional NO, to nitrate  conversion rate to
      determine the expected PM nitrate reduction. Finally,  a population-weighted PM
      nitrate exposure estimate could then be developed using these emission reduction-
      weighted conversion rates.
 •    For future years, it was assumed that current ozone nonattainment areas would all meet
      the standard in a timely fashion as required by the 1990 Clean Air Act Amendments.  If
      past experience is a guide, this assumption  is most likely overly optimistic, and
      therefore the ozone concentration projections for future years are probably too low.

                                                                             966HO.doc

-------
5T57ZW5 A PPUCA TIP US INTERN A TIONA L
     Within the model, lowering the ozone concentrations causes the NO, oxidation rate to
     slow down, thereby inhibiting PM nitrate formation.  The effect of this assumption on
     the model results is considered to be minor, especially when considering that (1) much
     of the PM nitrate formation occurs at night (when ozone concentrations are already
     low and do not affect oxidation), (2) only a relatively few hours of the year exhibit
     "high" levels of ozone, even in Southern California, and (3) the oxidation model is not
     very sensitive to small changes in ozone concentration (compared to other parameters
     such as relative humidity).

     The future year estimates of NOX to PM nitrate conversion rate are  very sensitive to
     projected SO, emissions. The SO, reductions (and therefore, the reductions in sulfate
     levels) that were predicted to  occur in the Northeast and Southeast  are much less than
     that for the Midwest, despite the acid rain provisions of the 1990 Clean Air Act
     Amendments.  The estimated  future SO, emission rates were developed based on one
     projected scenario of energy demand, which includes substantial movements of power
     supply throughout the eastern U.S. This scenario may not be particularly realistic and
     therefore the model should be exercised with alternative SO, emission projection
     scenarios. The uncertainty analysis (see Section V) indicates that the conversion rates
     estimated for Regions 1 and 2 (Northeast Urban and Southeast Urban) could be in
     error by as much as 40 to 60 percent due to this uncertainty.

     The AIRS data base was relied upon to provide estimates of ambient air quality levels
     throughout the United States.  For criteria pollutants (i.e.,  pollutants for which federal
     ambient standards exist), the spatial and temporal coverage is adequate for purposes of
     acquiring representative data for each region.  However, for non-criteria pollutants,
     such as NMOC, nitrate, and sulfate, the data within the AIRS data  base are extremely
     sparse.  Ambient measurements are presumably being collected at many more locations
     than are reported in AIRS, however most of the states (or regional  agencies) that are
     responsible for submitting ambient data are apparently not committed to doing so.  A
     more diligent effort on the part of these organizations (or some encouragement from
     AIRS administrators) would likely result in a much more comprehensive and usable
     data base.
     For this study, a usable tool (model) has been developed as a basis  for estimating
     current and future NO, to PM nitrate conversion rates for various regions of the United
     States.  The use of the model can be upgraded significantly by improving the quality of
     the input data, including a better set of concurrent ambient PM nitrate and NO, data
     and by ravishing the assumptions concerning SO, emission projections for future years.
 9M110.doc                                                            Final ~ October

-------
SYSTEMS A PPUCA TIONS INTERNATIONAL
                           966UO.doc

-------
SYSTEMS A PPUCA TIONS INTERN A TIOM L
                                 REFERENCES

Atkinson R., D.L. Baulch, R.A. Cox, R.F. Hampson, Jr., J.A. Kerr, and J. Troe. 1992.
       Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement
       IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric
       Chemistry. J. of Physical and Chemical Reference Data, 21:1125 -1568.
CARB.  1993a. "California Air Quality Data. January - February - March 1993." California
       Environmental Protection Agency. Air Resources Board. V.XXV, N. 1.
CARB.  1993b. "California Air Quality Data. April - May - June 1993." California
       Environmental Protection Agency. Air Resources Board. V.XXV, N.2.
CARB.  1993c. "California Air Quality Data. July • August • September 1993." California
       Environmental Protection Agency. Air Resources Board. V.XXV, N.3.
CARB.  1993d. "California Air Quality Data. October - November - December 1993."
       California Environmental Protection Agency. Air Resources Board. V.XXV, N.4.
CARB.  1993e. "Emission Inventory 1990." Report prepared by Technical Support
       Division, Air Resources Board, California Environmental Protection Agency,
       Sacramento, CA (September).
Cass, G.R., P.S. McMurray, and I.E. Houseworth.  1980.  "Methods for Sulfate Air Quality
       Management" Environmental Quality Laboratory, California Institute of
       Technology, Pasadena, California 91125 (EQL Report no. 16-3).
Couch, G.R. 199S. "Power from Coal - Where to Remove Impurities?" lEACoal
       Research, London (August).
Dolisiager, L.J., N. Motallebi, and B.E. Croes.  1996.  "Conversion Factors for Secondary
       Formation of PMt« Nitrate from NO, Emissions for California.  Report prepared by
       California Air Resources Board, Sacramento.
EPA.  1977.  "Reentntined Dust from Paved Streets."  U.S. Environmental Protection
       Agency, Research Triangle Park, NC 27711 (EPA-907/9-77-007; August).
EPA.  1990.  "Aerometric Information Retrieval System (AIRS) User's Guide." Office of Air
       Quality Planning and Standards, U.S. Environmental Protection Agency, Research
       Triangle Park, North Carolina  27711.
EPA.   1992. "User's Guide for the Urban Airshed Model,  Volume IV: User's Manual for the
       Emissions Preprocessor System 2.0; Part A: Core FORTRAN System." Report
       prepared by Systems Applications International for the Office of Air Quality Planning
       and Standards, U.S. Environmental Protection Agency, Research Triangle Park,
       North Carolina 27711 (EPA-450/4-90-007D(R).
 EPA.  1994. "Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volume
       I." Office of Research and Development, U.S. Environmental Protection Agency,
       Research Triangle Park, NC 27711 (EPA-600/AP-93/004a).
 966il0.doc                                                       Final—October i

-------
!_0	SYSTEMS A PPUCA 770MS INTER*A T10XA L

EPA.  1996  "Review of the National Ambient Air Quality Standards for Paniculate Matter:
      Policy Assessment of Scientific and Technical Information." Office of Air Quality
      Planning and Standards, U.S.  Environmental Protection Agency, Research Triangle
      Park, NC  27711 (Revised External Draft; April).
EIA.  1996.  "Assumptions for the Annual Energy Outlook 1996."  Energy Information
      Administration, Office of Integrated Analysis and Forecasting, U.S. Department of
      Energy, Washington, D.C. 20S8S.
FERC. 199S. "Promoting Wholesale Competition Through Open Access Non-
      Discriminatory Transmission Services by Public Utilities (RM95-8-000) and Recovery
      of Stranded Costs by Public Utilities and Transmitting Utilities (RM94-7-001)."
      Draft Environmental Impact Statement, Federal Energy Regulatory Commission,
      Washington, O.C. 20426  (FERC/EIS-0096D; November).
Galef, B. et al.  1996.  "Assessment of Benefits of Reducing Heavy Duty Engine NO,
      Emissions." Report (in print) prepared for Office of Mobile Sources, U.S.
      Environmental Protection Agency, Ann Arbor Michigan by ICF Incorporated, Inc.,
      Fairfax, Virginia.
Grosjean, D. 1983. "Distribution of Atmospheric Nitrogenous Pollutants at a Los Angeles
      Area Smog Receptor Site." Environ.  Sci. Techno!. 17:13-19.
Hogo, H. and M. W. Gery.  1988. "Guidelines for Using OZIPM-4 with CBM-IV or
      Optional Mechanisms." Systems Applications International, San Rafael, California
      (SYSAPP-88/001).
Malm W.C., J.F. Sisler, O. Huffinan, R.A. Eldred and T. A. CahilL 1994. Spatial and
      seasonal trends in particle concentration and optical extinction in the United States.,
      J. of Geophysical Research. 99TO1V 1347-1370.
NERA.  1990.  "Market-Based Approaches to Reduce the Cost of Clean Air in California's
      South Coast Basin." Report prepared for California Council for Environmental and
      Economic Balance by National Economic Research Associates, Inc. Cambridge, MA
      02142 (November 28).
OTAG.  1996. "Modeling Protocol, Version 3.0." Ozone Transport Assessment Group, The
      Environmental Council of the States, Washington, D.C. 20001 (February 29).
Pechan and Associates, and EC/R Incorporated. 1992.  "Regional Oxidant Modeling-
      Emission Inventory Development and Emission Control Scenarios." Report prepared
       for Office of Air Quality Planning and Standards, U.S. Environmental Protection
       Agency by Pechan and Associates,  Springfield, VA 22151 (Pechan Report No.
       92.06.04/743).
Pechan and Associates.  1993.  "Regional Oxidant Modeling of the 1990 Clean Air Act
       Amendments: Default Projection and Control Data." Report prepared for Office of
       Air Quality Planning and Standard* U.S. Environmental Protection Agency by
       Pechan and Associates, Springfield, VA 221S1 (Pechan Report No. 93.04.003/875).
 Ruffiier J.A. and F.E. Bair. 1987.  "Weather of U.S. Cities." Detroit Michigan.
 SAL 1996. "User's Guide to the Regulatory Modeling System for Aerosols and Deposition
       (REMSAD)." Report prepared by Systems Applications International, San Rafael,
       California 94903 (SYSAPP-96/42).
                                                                          9««nOdoc

-------
SYSTEMS APPUCA TIOMS LVTEJWA T10NAL
SCAQMD. 1989. "Air Quality Management Plan 1989 Revision, Appendix IV-A: Tier I and
      Tier II Control Measures."  South Coast Air Quality Management District, El Monte
      CA, 91731.

SCAQMD. 1991a. "Air Quality Management Plan 1991 Revision, Appendix IV-A:
      Stationary Source Control Measures. Point Sources." South Coast Air Quality
      Management District, Diamond Bar, CA, 91765.
SCAQMD. I991b. "Air Quality Management Plan 1991 Revision, Appendix IV-B:
      Stationary Source Control Measures, Area Sources." South Coast Air Quality
      Management District, Diamond Bar, CA, 91765.
SCAQMD. 1994. "1994 Air Quality Management Plan, Appendix IV-A: Stationary Source
      Control Measures."  South Coast Air Quality Management District, Diamond Bar
      CA, 91765.
Seinfeld, J.H. et ai.  1991. "Rethinking the Ozone Problem in Urban and Regional Air
      Pollution." National Research Council report. National Academy Press, Washington,
      D.C.
Sierra Research:  1995. "Vehicle Scrappage: An Alternative to More Stringent New Vehicle
      Standards in California."  Sierra Research Inc., Sacramento, CA 95814 (March).
Sloat, D.G., R.P.  Gaikwad, R.L. Chang.  1993.  The Potential of Pulse Jet Baghouses for
      Utility Boilers, Part 3: Comparative Economics ofPulse^fet Baghouses,
      Precipitators and Reverse-Gas Baghouses.  Air and Waste 43:120 (January).
STAPPA/ALAPCO. 1996.  "Controlling Paniculate Matter Under the Clean Air Act: A
      Menu of Options." State and Territorial Air Pollution Program Administrators
      (STAPPA) and Association of Local Air Pollution Control Officials (ALAPCO),
      Washington D.C.  20001 (July).
Trijonis J.C., W.C. Malm, M. Phchford, W.H. White, R. Charlson, and R. Husar. 1990.
      "Visibility: Existing and Historical Conditions - Causes and Effects." Report No. 24
      in NAPAP State of Science/Technology Report, National Acid Precipitation Program.
      Washington, D.C.
U.S. Department of Commerce.  1994.  Statistical Abstract of the United States, 1994.  U.S.
      Department of Commerce, Washington, DC. September 1994.
Watson J. G., J.C. Chow, F.W. Lurmann and S.P. Musarra. 1994. Ammonium Nitrate,
      Nitric Acid, and Ammonia Equilibrium in Wintertime Phoenix, Arizona. J.  Air&
      Waste Manaa^Assoc.  44: 405-412.
 96*110.doc                                                        Final — October i / •

-------
SYSTEMS A PPUCA 770MSINTERNA 770.V/1 L

-------
SYSTEMS APPUCA TIONSINTE1WA TIONAL
                               APPENDIX A
                                                            Final — October

-------
e 1 Northra-il p-«3 Latitude Longitude T. Zone Albedo 1 Year 	 1990
.w Y'.,* f>«f»l P»M 4078 7397 50 008 |
Dale
2/15/90


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winter
T^gradFT^gradF RH1 RH2 RH3 RH4 Cloud C. % p, nib
40| 266 64 68 58 59 58 10137


O3, D.U.
326
tM.,n !•*»•» '•*! *•« '•*» *•"
14 20 | 7 13 19
T.gradK RH.% H,0,ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
271.4 63.2 3132 58 0.0154 0.4646 0.0863 00863
2702 64.7 2922 58 00154 04148 00741 00741
271.4 660 3273 58 0.0141 0.4344 00725 00725
272.7 67.3 3661 58 00119 05394 00995 00995
2739 663 3950 58 00151 04535 0.1291 01020
2752 63.0 4105 58 0.0219 0.3652 0.0906 00589
2764 59.7 4250 58 00251 0.2371 0.0699 00448
277.7 58.2 4525 58 0.0265 0.1738 00651 0.0443
2764 585 4167 58 00211 02167 00753 00602
275.2 58.8 3833 58 0.0126 0.4150 0.0891 00891
273.9 59.8 3562 58 00130 04950 00931 00931
272.7 61.5 3343 58 00139 05187 00911 00911
273.9 62.3 3727.0 58.0 0.0172 0.3940 0.0863 0.0763
NO,/NO.
1.00
100
100
100
079
065
064
068
080
100
100
100
0.88




Oxid. V./hr
5.777
5.412
5.164
4.851
0.796
2.666
3.355
2.057
0.773
5.109
5.201
5.417
3.882
I1NCVNO. ppm/ppm 0.0717 | Nitr./NO« ppm/ppm 0.0119 g/g 0.0207 |
Calibr. ratio
£0/27
Tol. Nil, ppm
0.00997
0.00802
0.00748
0.00965
0.00162
0.00314
0.00300
0.00182
0.00093
0.00910
0.00969
0.00987
0.00619


PM Nit, ppm












0.001029
Equil. Frac. 0.1662
Date
5/15/90
Time
0
2
4
6
8
10
12
14
16
18
:•>

\ % 1 1 j ^ t
.VUHK:
T..»gradFT.fa,gradF RH1 RH2 RH3 RH4 Cloud C.% p.mb
715 53.3 70 71 53 60 57 ION 3
T.gradK Rll,% H,0,ppm Cloud C.% O* ppm VOC.ppmC NO., ppm NO2, ppm
286.7 68.3 9822 57 0.0232 0.2641 0.0472 00472
2850 70.2 9027 57 0.0230 0.2191 0.0432 00432
286.7 70.5 10135 57 0.0206 0.2042 0.0491 0.0491
2884 70.8 11361 57 0.0186 0.2940 0.0707 00586
290.0 68.0 12150 57 0.0280 0.3946 0.0547 00388
291.7 62.0 12320 57 0.0364 01851 00427 00303
293.4 56.0 12357 57 0.0435 0.1646 0.0312 00231
295 1 54.2 13260 57 0.0457 0.1242 0.0337 00259
293.4 565 12468 57 0.0443 0.1296 0.0343 00281
2917 588 11687 57 0.0369 0.1662 0.0327 0.0304
2900 617 11013 57 00257 0.2308 0.0429 00429
2X44 630 10422 57 00233 0.2770 OOS39 00539
2'M)0 6J.S 11)35.2 S7.0 0.0308 0.2211 0.0447 0.0393
O3, D.U.
358
NO,/NO,
1.00
1.00
100
083
071
071
0.74
077
082
0.93
1.00
100
0.88


Oxid. %/hr
10.590
10.175
9.563
0.676
5.360
6.761
9.594
6.068
2.929
0.651
11.843
10.958
7.097
IIMVNG. |>|im/ppm 0.1284 | NUr./NO. ppm/ppm 0.0037 g/g 0.0064 |
Calibr. ratio
00042
Tot. Nil, ppm
0.01000
0.00879
0.00940
0.00079
0.00416
0.00410
0.00443
0.00315
0.00165
0.00040
0.01017
0.01182
0.00574


PM Nit, ppm












0.000164
Equil. Frac 0.0285

-------
Dale
'15/90
Time
0
2
4
6
8
10
12
14
16
in
. 20
22
verage
'mmer:
T..,, grad FT.,., grad F RH1 RH2 RH3 RH4 Cloud C.% p.mb
8J7 67.1 76 78 57 66 55 10142
T, grad K RH, % H,0, ppm Cloud C. % O,, |ipm VOC, ppmC NO., ppm NO2, ppm
294.2 74.3 17192 55 O.OI6S 04493 00445 00445
2927 763 16048 55 0.0149 03798 0.0375 00375
294.2 77.0 17813 55 0.0130 0.4289 0.0404 00404
295.7 77.7 19750 55 0.0097 0.4211 0.0752 00617
2973 745 20794 55 00186 0.2457 00644 00438
2988 67 5 20647 55 00317 01972 00483 00348
300.3 60.5 20257 55 00436 0.1774 0.0402 00309
301.9 58.5 21432 SS 00482 0.1559 00398 00318
3003 61.5 20595 55 00450 0 1737 00431 00362
298.8 64.5 19722 55 0.0344 0.2406 00397 00373
297.3 67.7 18872 55 0.0200 0.4989 00481 00481
295.7 71.0 18042 55 00167 0.5276 0.0557 00557
297.3 69.3 192635 SS.O 0.0260 0.3247 0.0481 0.0419
O3, D.U.
322
NO,/NO.
1.00
1.00
1.00
082
068
072
077
080
084
0.94
100
100
0.88


Oxid. %/br
8.209
7.234
6.431
0.624
3.193
6.887
9.441
7.338
3.270
0.604
10.134
8.508
S.989
HNOj/NO. ppm/ppm 0.1020 1 Nilr/NO, ppm/ppm 0.0037 g/g 0.0064 |
Calibr. ratio
000 II
Tol. Nil, ppm
0.00731
0.00543
O.OOSI9
0.00077
0.00279
0.00479
O.OOS84
0.00467
0.00237
0.0004S
0.00976
0.00948
0.00490


PM . a, ppm












0.000177
Equil. Frac. 0.0361
Dale
///fV0
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T.», grad F Twi., grad F Rill RH2 RH3 RIM Cloud C. % p.mb
536 408 69 73 59 63 58 IUI4.5
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
279.2 68.0 5901 58 0.0104 0.4492 0.0772 00772
2780 69.7 5567 58 00121 0.3700 0.0612 00612
2792 71.0 6162 58 00127 03634 0.0527 00527
2804 723 6814 58 00088 05256 007% 007%
281.6 70.7 7218 58 0.0100 0.3638 0.1069 00780
282.8 66.0 7304 58 0.0172 0.1820 0.0737 00472
284.0 61.3 7347 58 00212 0.1545 00532 00351
285.2 59.7 7733 58 0.0211 01851 00525 00383
284.0 61.0 7307 58 00134 03085 00686 00618
282.8 62.3 6897 58 0.0092 0.5649 0.0836 00836
281.6 64.0 6535 58 0.0100 05912 0.0845 00845
2804 660 6216 58 00105 05301 00858 00858
281.6 66.0 6750.1 58.0 0.0130 0.3824 0.0733 0.0654
HNO./NO. ppm/ppm 0.0627 | Nllr/NO. ppm/ppm 0.0041 g/g 0.0071
O3, D.U.
283
NO,/NO.
1.00
100
100
100
0.73
0.64
0.66
073
090
1.00
1.00
100
0.89


Oxid. %/hr
4.623
5113
5.328
4.047
0.728
1.711
2.497
1.624
0.709
4.249
4.S76
4.788
3.333

Calibr. ratio
&.go{3
Tot. Nil, ppm
0.00714
0.00626
O.OOS62
0.00644
0.00114
0.00161
0.00175
0.00 125
0.00088
0.00710
0.00773
0.00822
0.00459


PM Nil, ppm












O.OOOJUO
Equil. Frac. 0.0652
ppm/ppm    O.OM»  | Nltr/NO.   ppm/ppm    0.0066
g/g
0.01 IS

-------
•f£ 7 Sflnlhf*«« P-M7 Latitude Longitude T. Zone Albedo 1 Yean 1990
Mlanta 3365 8442 50 008 |
Date
2/15/90


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winter.
TMI, grad FT^., grad F RHI RH2 RH3 RH4 Cloud C.% p.mb
55.3 345 69 75 54 56 62 9815


O3, D.U.
284
14 20 1 7 13 19
T.gradK RH,% HAppm Cloud C.% O,, ppm VOC,ppmC NO., ppm NO2, ppm
276.5 66.8 4940 62 0.0132 0.5662 0.0451 00451
274.5 70.0 4509 62 0.0135 0.5263 0.0392 0.0392
276.5 72.0 5323 62 00129 0.3244 00317 00317
278.4 74.0 6266 62 0.0102 0.4397 0.0485 00485
280.3 71.5 6918 62 0.0133 0.5142 0.0594 00523
2822 64 5 7115 62 00229 0.4473 00318 00223
284.2 575 7216 62 00303 03044 00242 00167
2861 543 7744 62 00327 02809 00207 00149
284.2 550 6902 62 00286 0.3136 0.0274 00208
282.2 55.7 6138 62 0.0153 0.5235 00454 00431
2803 582 5625 62 00129 0.6188 00522 00522
2784 625 5290 62 00134 0.6209 00523 00523
280.3 63.5 6165.6 62.0 0.0183 0.4567 0.0398 0.0366
HNOj/NO. ppm/ppm 0.0814 | Nltr./NO. ppm/ppm 0.0364 g/g 0.0632
NO,/NO.
1.00
1.00
1 00
100
088
070
069
072
076
0.95
100
100
0.89




Olid, %/hr
5.017
4.747
4.538
4.256
0.704
6.197
10.431
10.422
4.461
0.689
5.269
5.385
5.176

Calibr. ratio
O.Q1HI
Tot. Nit, ppm
0.00452
0.00372
0.00288
0.00413
0.00074
0.00276
0.00349
0.00311
0.00186
0.00059
0.00550
0.00564
0.00324


PM Nil, ppm












0.001448
Equil. Frac. 0.4463
Date
S/IS/9Q
Time
0
2
4
6
8
10
12
14
16
18
:o
> >
A\rr,«KC
Spring:
T.«, grad F T^, grad F RHI RH2 RIIJ RH4 Cloud C.% p.mb
79.8 58.7 78 83 54 58 56 9787
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
289.9 74.7 13705 56 00222 0.4495 0.0240 0.0240
288.0 788 12765 56 00200 0.3928 0.0233 00233
289.9 80.5 14782 56 0.0165 0.4247 0.0292 00292
291.9 822 17080 56 00151 0.6401 00553 00525
293.8 78.2 18352 56 00314 0.3319 0.0285 00225
295.8 68.5 18120 56 0.0468 0.2385 0.0195 00152
297.8 58.8 17501 56 0.0560 0.2009 00167 00132
299.7 54.7 18265 56 0.0566 0.2035 0.0174 0.0141
297.8 560 16652 56 00536 0.2452 00221 00184
295.8 57.3 15148 56 0.0437 0.3431 0.0229 0.0206
2938 61.3 14377 56 0.0259 0.4030 0.0292 00292
"19 680 14 119 56 00219 04053 0.0292 00292
29J.8 68.3 IS90S.5 56.0 0.0342 0.1565 0.0264 0.0243
HNO./NO. ppm/ppm 0.1610 | NIlr./NO. ppm/ppm 0.0224 g/g 0.0389 |
O3, D.U.
319
NO,/NO.
1.00
1.00
100
095
079
078
079
081
083
0.90
1.00
100
0.90



Olid, %/hr
9.718
8.578
7.633
0.619
5.275
15.263
23.773
22.723
10.624
2.328
11.861
10.016
10.701

Calibr. ratio
00260
Tot. Nit, ppn
0.00466
0.00399
0.00446
0.00065
0.00238
0.00464
0.00625
0.00641
0.00390
0.00096
0.00692
O.OOS84
0.00426
Equil. Frac.


PM Nil, ppm












0.000591
0.1390

-------
Date
f/5/90
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
•umnten
TM., grad FT.*, grad F RHI BH2 RH3 RH4 Cloud C. % p.mb
87.6 68.7 85 90 61 67 58 9815
T, grad K RH, % HiO, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
295 3 820 20994 58 0.0147 0.6041 00261 00261
2935 858 19730 58 00121 0.5280 0.0287 00287
295.3 87.5 22415 58 0.0102 0.5708 0.0333 00333
297.0 89.2 25423 58 00092 08604 00593 00593
298.8 85.2 26972 58 0.0251 0.4461 00331 00261
300.5 75.5 26501 58 0.0442 0.3205 0.0199 00157
3023 658 2SS72 58 00541 02700 0.0159 00127
304.0 620 26637 58 00535 02735 00167 00135
302.3 64.0 24853 58 00483 0.3296 0.0218 00181
300.5 660 23135 58 00357 04612 00235 00212
298.8 700 22126 . 58 0.0219 0.5417 00275 00275
297.0 760 21636 58 0.0159 05447 00309 00309
298.8 75.8 23833.0 58.0 0.0287 0.4792 0.0281 0.0261
O3, D.U.
312
N0,/N0.
1.00
1.00
1.00
100
079
079
0.80
081
083
090
100
100
0.91


Olid, %/hr
7.09S
5.878
5.100
4.869
4.950
18.108
28.475
27.130
13.921
2.543
10.695
7.841
11.384
HNO./NO. ppm/ppm 0.1662 | Nitr/NO. ppm/ppm 0.02SI g/g 0.0436 |
Calibr. ratio
0,0292
Tol. Nit, ppm
0.00371
0.00338
0.00339
0.00517
0.002S9
0.00570
0.00722
0.0073S
0.00504
0.00108
0.00589
0.00484
0.00466


PM Nil, ppm












0.000704
Equil. Frac. 0.1510
Date
H/IS/VO
Time
0
t
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T...., grad F T_ta, grad F RHI R1I2 R1I3 RH4 Cloud C. % p.mb
626 413 76 82 55 63 54 9825
T, grad K RH, •/• H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
280.3 73.8 7123 54 0.0112 0.4605 0.0306 00306
2783 770 6480 54 00119 03453 00333 00333
280.3 790 7623 54 001 II 0.3744 00290 00290
282.3 81.0 8944 54 0.0083 0.5356 0.0448 00448
284.2 77.5 9769 54 00117 04765 00553 00459
286.2 68.5 9833 54 0.0216 0.3792 0.0302 0.0208
288.2 S9.5 9706 54 00277 0.2866 0.0233 0.0163
290.2 56.3 10426 54 00291 02881 00230 00168
288.2 590 9624 54 00205 03489 00332 00266
286.2 61.7 8848 54 0.0099 0.5837 00627 00627
284.2 65.2 8209 54 00107 05223 00593 00593
282.3 69.5 7670 54 00107 0.5116 00521 00521
284.2 69.0 8688.0 54.0 0.0154 0.4261 0.0397 0.0365
IINO^NO. ppm/ppm 0.0797 | Nllr./NO. ppm/ppm 0.0276 g/g . 0.0480 j
O3, D.U.
279
NO,/NO.
1.00
100
1.00
1.00
0.83
0.69
0.70
073
0.80
100
1.00
1.00
0.90


Oxid. %/hr
4.350
4.563
4.360
3.718
0.673
6.021
9.502
7.723
1.947
4.644
4.923
4.738
4.764

Calibr. ratio
0.0291
Tot. Nit, ppm
0.00266
0.00304
0.00253
0.00333
0.00062
0.00251
0.00310
0.00259
0.00103
O.OOS82
0.00583
0.00494
0.00317


PM Nit, ppm












0.001097
Equil. Frac. 0.3463
IUNO./NO.    ppm/ppm    0.1144   |  NUr/NO.    ppm/ppm    0.0286        g/g
0.0498

-------
re 1 Nnrthf afl P -«* Latitude Longitude T. Zane Albedo 1 Yean 2005
^ v^Mr,n,ral Park! 4078 7397 50 008 |
Dale
2/1 5 /OS


Time
0
2
•/
6
8
10
12
14
16
18
20
22
Average
Winter:
T_.,,sradFT.ta,gradF Rill RH2 RH3 RH4 Cloud C.'/. p.mb
40| 266 64 68 58 59 58 10137
t..,,b I.U., b t,*| I.U IrkJ 1*4
14 2.0 1 .7 13 19
T.gradK RH,% HaO,ppn Cloud C. % O,, ppm VOC.ppmC NO., ppm NO2, ppm
271.4 63.2 3132 58 0.0143 0.4232 0.0841 00841
270.2 64.7 2922 58 0.0143 0.3779 0.0721 00721
271.4 66.0 3273 58 0.0133 0.3957 0.0706 00706
272.7 67.3 3661 58 0.0115 0.4914 0.0969 00969
273.9 663 3950 58 00151 0.4131 0.1257 00993
275.2 630 4105 58 0.0215 0.3327 00882 00573
276.4 59.7 4250 58 0.0240 02160 0.0681 00429
277.7 582 4525 58 00251 0.1584 00634 00431
276.4 58.5 4167 58 0.0209 0.1974 0.0733 00587
275.2 58.8 3833 58 0.0121 0.3781 0.0868 00868
273.9 59.8 3562 58 0.0124 0.4510 0.0907 00907
272.7 61.5 3343 58 0.0131 0.4726 0.0887 00887
273.9 62.3 3727.0 58.0 0.0165 0.3590 0.0840 0.0743


O3, D.U.
326


NO,/NO.
1.00
1.00
100
1.00
0.79
065
063
0.68
0.80
1.00
1.00
100
0.88




Olid, %/hr
5.358
5.018
4.847
4.681
0.796
2.557
3.231
1.966
0.773
4.882
4.944
5.096
3.679
liNOt/NO. ppm/ppm 0.0679 | NHr./NO. ppm/ppm 0.0121 g/g 0.0210 |
Base Eq.
0 1662
Tol. Nit, ppm
0.00901
0.00724
0.00684
0.00907
0.00158
0.00293
0.00277
0.00169
0.00091
0.00847
0.00897
0.00904
0.00571
Base Nil.
0.000949
PM Nit, ppm












0.001014
Equil. Frac. 0.1776
Dale
5//5/0S
Time
0
2
4
6
8
W
12 .
14
16
in
.11

\\l I J(T
bjiiing:
T...,gradFT^.,gradF RH1 RH2 . RIU RH4 Cloud C. •/• p.mb
71.5 53.3 70 71 53 60 57 10113
T, grad K RH, % H,0, ppm Cloud C. •/• O,, ppm VOC, ppmC NO., ppm NO2, ppm
286.7 68.3 9822 57 0.0225 0.2406 0.0460 0.0460
285.0 70.2 9027 57 0.0224 0.1996 0.0421 00421
286.7 70.5 10135 57 0.0205 0.1860 0.0478 0.0478
288.4 70.8 II 361 57 0.0186 0.2678 0.0688 00571
290.0 68.0 12150 57 0.0280 0.3595 0.0532 00378
291.7 62.0 12320 57 0.0364 0.1686 0.0415 00295
293.4 56.0 12357 57 0.0426 0.1500 0.0304 00225
295.1 54.2 13260 57 0.0443 0.1132 0.0328 00252
293.4 56.5 12468 57 0.0432 0.1180 0.0334 00270
2917 588 11687 57 00333 0.1514 00318 00293
2'JOO 617 11013 57 00245 02102 0.0418 00418
2««4 6SO 10422 57 00226 02523 00525 00525
i'JO.O 63 5 HJ35.2 57.0 0.0299 0.2014 0.0435 0.0382
UNO./NO. ppm/ppm 0.1242 | Nilr./NO. ppm/ppm 0.0054 g/g 0.0095 |
O3, D.U.
358
NO,/NO,
1.00
1.00
1.00
083
0.71
071
074
077
081
0.92
1.00
1.00
0.87



Olid, %/hr
10.245
9.851
9.464
0.676
5.147
6.539
9.210
5.918
2.789
0.651
11.246
10.598
6.861

Base Eq.
002 Hi
Tot. Nil, ppm
0.00942
0.00829
0.00906
0.00077
0.00389
0.00386
0.00415
0.00299
0.00151
0.00038
0.00940
0.01 113
0.00540
EquiL Frac.
Base Nil.
0.00(1154
PM Nil, ppm












0.000237
0.0438

-------
Date
/IS/05
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
ummer.
T..., grad FT.*, grad F Rill RII2 RH3 RII4 Cloud C.% |>, mb
837 671 76 78 57 66 55 10142
T, grad K RH, '/• H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
294.2 74.3 17192 55 0.0165 0.4094 0.0433 0.0433
292.7 76.3 16048 55 0.0149 0.3460 0.0366 0.0366
294.2 77.0 17813 55 0.0130 0.3908 0.0393 00393
295.7 777 19750 55 0.0097 0.3836 0.0732 00600
297.3 74.5 20794 55 0.0186 0.2238 0.0627 00420
298.8 67.5 20647 55 0.0317 0.1797 0.0470 00339
300.3 60.5 20257 55 0.0427 0.1616 0.0391 00297
301.9 58.5 21432 55 0.0461 0.1420 0.0387 00306
300.3 61.5 20595 55 0.0437 0.1583 00420 00348
298.8 64.5 19722 55 0.0344 0.2192 0.0386 00363
297.3 67.7 18872 55 00200 0.4545 00469 00469
29S.7 71.0 18042 55 0.0167 04807 0.0543 00543
297.3 69.3 19263.S SS.O 0.02S7 0.29S8 0.0468 0.0406
03. D 11.
322
NO>/NO.
1.00
1.00
1.00
0.82
0.67
0.72
0.76
0.79
0.83
094
1.00
100
0.88


Otid. %/hr
8.188
7.212
6.414
0.624
3.033
6.609
9.132
7.127
3.127
0.604
10.112
8.491
S.889
I1NO./NO, ppm/ppm 0.1002 | NHr./NO. ppm/ppm 0.0058 g/g 0.0100 |
Base Eq.

-------
SYSTEMS A PPUCA TIONf l.VTERNA TIONA L	                          63
                                APPENDIX B
                                                               »/i/ — Drtnhff

-------
3 Midwrtt P34' Latitude Loneilude T. Zone Albedo I Yean 1990 j
Chicago 4198 879 60 008 |
Dale
2/15/90


Time
0
2
4
6
8
10
.12
14
16
18
20
it
Average
Winter:
T^gradFT^cradF RH1 RH2 RII3 R1I4 Cloud C. % p.mD
33.9 18.1 75 77 66 69 68 9934


O3, D.U.
345
!_., b t^»h t*i Ua t^i ICM
14 2.0 0 6 12 18
T.gradK RH.% HAppoi Cloud CV. O,, ppm VOC.ppmC NO., ppm NO2. ppm
266.9 7S.O 2102 68 O.OISS 0.2337 0.0430 0.0430
265.4 7S.7 2434 68 O.OISS 0.2724 00401 00401
266.9 76.3 2750 68 O.OISI 0.2977 0.0408 00408
268.4 77.0 3102 68 00123 0.2096 00503 00503
269.8 73.3 3299 68 00142 0.2357 0.0501 00391
271.3 69.7 3495 68 00217 0.2382 00374 00243
272.7 66.0 3687 68 0.0258 0.2489 00322 0.0209
274.2 67.0 4163 68 0.0276 0.2308 0.0334 00234
272.7 68.0 3799 68 0.0254 0.2579 0.0357 00300
271.3 69.0 3461 68 0.0171 0.2410 0.0421 0.0421
269.8 71.0 3194 68 0.0155 0.2585 0.0457 00457
2684 730 2941 68 00145 02392 0.0475 00475
269.8 71.8 3252.1 68.0 0.0184 0.2470 0.0415 0.0373
NO,/NO.
1.00
1.00
1.00
1.00
078
0.65
0.65
070
084
100
100
100
0.89




Olid, %/hr
4.441
4.078
4.291
4.025
0.810
3.517
5.663
3.752
0.798
5.476
4.927
4.499
3.856
HNOjSNO, ppm/ppm 0.0702 | NIlr./NO, ppm/ppm 0.0412 g/g 0.0717 |
Calibr. ratio
ft££Zf
Tot. Nit, ppm
0.00382
0.00327
0.00350
0.00405
0.00063
0.00171
0.00237
0.00175
0.00048
0.00461
0.00450
0.00427
0.00291


PM Nit, ppm












O.DOI7I3
Equil. Frac. 0.5877
Date
5/15/90
Time
0
2
4
6
8
10
12
14
16
18
20
2}
Avn j^c
Spring:
Tetrad FT.toiradF RH1 RH2 RHJ RH4 Cloud C % p.mb
70 481 73 77 54 54 63 9895
T.gradK RH,% HjO.ppm Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppm
284.1 73.0 9066 63 0.0195 0.1199 0.0397 0.0397
282.1 74.3 8055 63 0.0182 0.1193 0.0372 0.0372
284.1 75.7 9399 63 00168 0.1195 0.0393 00393
286.2 77.0 10940 63 0.0157 0.1319 0.0451 0.0357
288.2 69.3 11237 63 00250 0.1346 0.0332 00229
290.2 61.7 11377 63 0.0373 0.1218 0.0220 00158
292.2 54.0 113 16 63 0.0429 O.I 113 0.0200 00148
294.3 54.0 12837 63 0.0458 0.1160 0.0202 0.0157
292.2 54.0 11316 63 0.0459 0.1099 0.0204 0.0170
290.2 54.0 9957 63 0.0410 0.1082 0.0210 0.0197
2882 60.3 9773 63 0.0280 0.1169 0.0360 0.0360
2862 66.7 9466 63 00213 0.1199 0.0423 00423
2M8.2 64.5 10395.0 63.0 0.0298 0.1191 0.0314 0.0280
UNO./NO. ppm/ppm 0.1247 | Nllr./NO. ppm/ppm 0.0207 g/g 0.0360 |
O3.D.U.
357
NO,/NO.
1.00
1.00
1.00
0.79
0.69
0.72
0.74
0.78
0.83
0.94
1.00
1.00
0.87


Olid, %/hr
8.S1S
7.632
7.393
0.671
3.663
8.425
9.9«9
8.373
3.614
0.64)2
12.185
9.4t!4
6.718

Calibr. ratio
0.0231
Tot. Nit, ppm
0.00675
0.00568
0.00581
0.00048
0.00168
0.00267
0.00296
0.00264
0.00124
0.00025
0.00878
0.00802
0.00391


PM Nit, ppm












0.000649
Equil. Frac. 0.1659

-------
Dale '
VIS/90
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
-ummer:
TM1, grad FT.*, grad F RH1 RH2 RH3 RH4 Cloud C. V. |i,mb
821 617 81 85 57 62 57 992.6
T, grad K RH, % HiO, ppm Cloud C. % O,, ppm VOC, pproC NO., ppro NO2, ppm
291.5 810 16235 57 0.0187 0.2703 0.0326 0.0326
289.7 82.3 14637 57 0.0175 0.2589 0.02% 00296
2915 83.7 16773 57 00155 02652 00318 00318
293.4 85.0 19184 57 0.0124 0.2628 0.0430 00357
295.3 75.7 19175 57 0.0187 0.2669 0.0381 00255
297.2 66.3 18840 57 0.0341 0.3604 0.0255 00186
299.1 57.0 181 11 57 00433 0.2919 0.0194 00148
3010 58.7 20850 57 0.0457 02988 0.0185 00146
299.1 60.3 19179 57 0.0449 02695 00189 00159
2972 62.0 17600 57 0.0372 0.2872 00180 00171
29S.3 68.3 17303 57 0.0246 . 02478 0.0279 00279
293.4 74.7 16836 57 00188 02547 00334 00334
29S.3 71.3 17893.5 57.0 0.0276 0.2779 0.0281 0.0248
O3. D.U.
319
NO./NO.
1.00
1.00
1.00
083
0.67
073
076
079
084
095
100
100
0.88
,•

Oiid. %/hr
8.923
8.064
7.427
0.620
S.191
15.564
21.989
19.867
7.863
O.S96
II. 589
9.068
9.730
HNOj/NO. ppm/ppm 0.1S36 | Nltr/NO. ppm/ppm 0.0138 g/g 0.0239 |
Calibr. ratio
00160
Tol. Nit, ppm
0.00581
0.00478
0.00472
0.00044
0.00265
0.00580
0.00650
0.00579
0.00249
0.00020
0.00646
0.00606
0.00431


PM Nit, ppm












O.OOOJH6
Equil. Frac. 0.0896
Dale
1 /// f/90
Time
0
2
4
6
8
W
12
14
16
18
20
22
Average
Fall:
TM>, grad FT^, grad F RHl RH2 RH3 RH4 Cloud C. V. p.mlt
482 314 77 81 64 70 72 992.5
T, grad K RH, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2. ppm
274.4 77.0 4847 72 0.0125 0.2078 0.0389 00389
272.8 - 78.3 4405 72 00124 0.1774 0.0348 00348
2744 79.7 5016 72 0.0117 0.2099 0.0309 00309
27S.9 81.0 5702 72 0.0104 0.2605 0.0380 00380
2775 75.3 5919 72 0.0117 04803 00423 00326
279.0 69.7 6102 72 0.0173 0.2465 0.0276 0.0180
280.6 64.0 6240 72 0.0210 • 0.2317 0.0250 00168
282.2 66.0 7155 72 0.0226 0.2018 0.0254 0.0196
280.6 68.0 6631 72 00182 0.1573 0.0328 00312
279.0 70.0 6131 72 00115 0.2452 0.0461 00461
277.5 72.3 5683 72 0.0115 03155 0.0483 00483
275.9 74.7 5255 72 00118 03313 00485 00485
277.S 73.0 S7S7.0 72.0 0.0144 0.2SS4 0.0366 0.0336
03, D.U.
281
NO,/NO.
1.00
100
100
100
077
0.65
067
077
0.95
100
100
100
0.90


Oiid. %/hr
4.S18
4.170
4.017
3.979
0.992
4.116
S.I58
2.485
0.714
4.713
4.662
4.638
3.680
HNO/NO. ppm/ppm 0.0696 1 Nltr/NO. ppm/ppm 0.0147 g/g 0.0256 |
Calibr. ratio
0.0156
Tot. Nit, ppm
0.00352
0.00290
0.00248
0.00302
0.00065
0.00148
0.00173
0.00097
0.00045
0.00435
0.00451
0.00449
0.00255


PM Nil, ppm












O.OU05J-J
Equil. Frac. 0.2117
Y.ar:   |UNO>/NO.   ppm/ppm    0.0995     Mir./NO.   ppm/ppm    0.0139       g/g
0.0416

-------
p"i llnnrrWrtt P IP? Latimde Longitude T. Zone Albedo 1 Yean 	 1990 |
bcycnpe 4I l5 l04 82 70 °08 '
Dale
2/15/90


Time
0
t
4
6
8
10
12
14
16
18
20
22
Average
Winter
T^grtdFT^gradF RH1 RH2 RHJ RH4 Cloud L.% p,mt>
407 17.9 60 44 46 60 62 8088


O3, D.U.
352
tM.,b ««•..• ••« IAI U» t*4
14 20 S II 17 23
T.gradK RH,% H,0,ppo. Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppm
" 267.4 60.0 2766 62 0.0118 0.3927 0.0362 0.0362
265.3 600 2350 62 00119 0.3655 00370 00370
267.4 60.0 2766 62 001 IS 0.3040 00338 00338
269.5 57.3 3102 62 0.0091 02841 0.0522 00522
271.7 52.0 3292 62 0.0115 03264 0.0778 00622
273.8 46.7 3447 62 0.0199 0.3251 00607 00412
275.9 443 3811 62 0.0243 0.2560 00707 00488
278.0 450 4491 62 00252 0.2394 0.0988 00721
275.9 45.7 3926 62 00197 0.2706 00959 00786
273.8 48.3 3571 62 001 IS 0.3739 0.0768 00768
2717 53.0 3356 62 0.0112 0.4226 0.0643 00643
2695 577 3120 62 00118 04146 00485 00485
271.7 51.5 3333.4 62.0 0.0150 0.3312 0.0627 0.0543
NO2/NO.
1.00
1.00
1.00
100
080
068
069
073
082
1.00
100
100
0.89




Olid, %/hr
3.240
3.004
3.074
3.033
0.580
2.183
2.296
1.229
0.552
4.431
4.062
3.819
2.625
HNOj/NO. ppm/ppm 0.0438 | Nitr/NO. ppm/ppm 0.0063 g/g 0.0109 |
Calibr. ratio
0,0065
Tot. Nit, ppm
0.00235
0.00222
0.00208
0.00317
0.00072
0.00180
0.00224
0.00177
0.00087
0.00681
0.00523
0.00371
0.00275


PM Nil, ppm












0.000393
Cquil. Frac. 0.1430
Dale
5/15/90
Tune
0
2
4
6
8
10
12
14
16
18
:<*
^ _*
An i «KC
b|iiiug:
TM.,gr«dFT.fa,tradF RH1 RH2 RH3 RJI4 Cloud C.% p,mb
646 397 70 41 43 66 67 810
T.gradK RH,% H,0,ppin Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
279.7 66.7 7SII 67 0.0224 01256 00261 00261
277.4 68.0 6523 67 0.0212 0.1226 0.0210 00210
279.7 69.3 7812 67 00169 01268 00271 00271
282.0 65.2 8597 67 0.0146 0.1344 0.0588 0.0488
284.3 55.5 8544 67 0.0262 0.1264 0.0442 0.0327
286.7 45.8 8210 67 0.0382 0.1156 0.0239 0.0182
289.0 41.3 8593 67 0.0457 0.1147 0.0140 00110
291.3 42.0 10113 67 0.0475 0.1190 0.0177 00143
289.0 42.7 8872 67 0.0444 0.1196 0.0235 0.0198
2867 46.8 8390 67 00390 0.1223 0.0255 00239
2H43 545 8390 67 00272 0.1267 0.0267 00267
2*20 622 8199 67 00231 01256 0.0220 00220
J«4J S5.0 8312.7 67.0 0.0305 0.1233 0.0275 0.0243
IINO./NO. ppm/ppm 0.0887 | Nlir./NO. ppm/ppm 0.0077 g/g 0.0134 |
03, D.U.
344
NOj/NO.
1.00
1.00
1.00
083
0.74
0.76
0.79
081
084
094
1.00
1.00
0.89


Olid, %/hr
8.362
6.988
6.506
O.S1S
1.847
S.40S
9.866
6.970
2.626
0.490
10.570
8.452
5.717

Calibr. ratio
00064
Tot. Nit, ppm
0.00436
0.00294
0.00352
0.00050
0.00121
0.00196
0.00218
0.00200
0.00104
0.00023
0.00564
0.00371
0.00244


PM Nil, ppm












0.000212
Equil. Frac. 0.0868

-------
Dale
/1 5/90
Time
0
2
4
6
8
10
12
14
16
IS
20
22
Average
jminen
T^gnidFT^gradF RHI RH2 RH3 RH4 Cloud C.% p.mb
808 328 68 35 37 6| SI 8153
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppraC NO., ppm NO2, ppm
287.3 62.2 11555 SI 0.0219 0.3351 0.0259 00259
284.7 645 101 10 SI 00213 0.3211 00229 00229
287.3 66.8 12426 SI 00180 03367 00282 00282
2899 625 13731 SI 00123 03397 00551 00479
2925 5I.S 13315 51 00233 03135 00463 00347
295.1 40.5 12279 SI 0.0401 0.3469 00266 00211
297.7 35.3 12529 51 00496 0.3352 00180 00146
300.3 36.0 14897 SI 00503 03351 00210 00174
297.7 36.7 13005 SI 0.0449 0.3348 00256 00220
2951 410 12431 SI 00362 03513 00269 00255
2925 49.0 12665 SI 0.0253 0.3316 0.0306 00306
2899 570 12516 SI 00221 03274 00281 00281
292.S 503 12621.6 Sl.O 0.0304 0.3340 0.0296 0.0266
03, D.U.
295
NO,/NO.
100
1.00
100
087
075
079
081
083
086
0.95
100
100
0.91


Oiid. %/hr
9.3SS
8.502
7.980
0.473
3.431
10.411
16.680
14.215
5.752
0.519
11.359
9.765
8.203
HNOJNO. ppm/ppm 0.1282 | Nitr/NO. ppm/ppm 0.0006 g/g 0.0011 j
Calitir. ratio
00007
Tol. Nit, ppm
0.00485
0.00390
0.00450
0.00045
0.00238
0.00438
0.00487
0.00496
0.00253
0.00026
0.00696
0.00548
0.00379


PM Nil, ppm












0.000019
Equil. Frac. 0.0050
Dale
i/nvo
TV/in
0
2
4
6
a
10
12
14
16
18
20
22
Average
Fall:
T..., grad F T.u, grad F RHI RH2 RII3 RH4 Cloud C. % p.mb
465 231 60 43 49 59 56 810
T, grad K RH, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2704 59.2 3403 56 0.0119 0.3119 0.0487 00487
2682 595 2907 56 00124 02627 00443 00443
2704 59.8 3441 56 00127 02430 00380 00380
272.5 572 3859 56 00098 0.2842 00507 00507
274.7 51.5 4068 56 0.01 10 0.4042 0.0651 00508
276.9 45.8 4224 56 0.0173 0.2210 0.0470 0.0315
279.0 44.0 4719 56 0.0202 0.2019 0.0465 00316
281.2 46.0 5728 56 00213 0.1829 0.0443 00337
279.0 48.0 5149 56 OOI35 0.1946 0.0661 00595
276.9 507 4670 56 0.0098 0.4166 00897 00897
274.7 54.0 426S 56 00104 04978 00545 OO545
272.5 57.3 3870 56 OOI07 0.4596 00500 00500
274.7 S2.8 4191.9 56.0 0.0134 0.3067 0.0537 0.0486
O3, D.U.
274
NO,/NO.
100
1.00
100
100
0.78
0.67
068
0.76
090
100
1.00
1.00
0.90


Oiid. %/hr
3.988
3.751
3.938
3.525
0.559
2.074
2.514
1.383
0.533
4.217
3.935
3.844
2.855
HNOt/NO. ppm/ppm O.OS3S | Nilr./NO. ppm/ppm 0.0010 g/g 0.0017 |
Calibr. ratio
0,0010
Tot. Nit, ppm
0.00389
0.00333
0.00299
0.00357
0.00057
0.00131
0.00159
0.00093
0.00063
0.00756
0.00429
0.00385
0.00287


PM Nil, ppm












0.000053
Equil. Frac 0.0184
[HNO./NO.    ppm/ppm    0.0683  I  NUr./NO.   ppm/ppm     0.0019        g/g
0.0068

-------
r 1 Sonlhwrsl p"« Latitude Loneilude T. Zone Albedo 1 Yean mmm*M* \
.uaucrque 3505 10662 70 008 |
Dale
2/15/90


Time
0
2
4
6
8
10
12
N
16
18
20
22
Average
Winter:
T..., grad FT.*, grad F RHI RH2 R1I3 RH4 Cloud C.% p.mb
52.9 259 65 44 32 52 49 8379
tMI,h ».»•. h «t*i Ui t.u *
A»«-i jgc
Spring:
T«.,gradFT(llta,gradF RHI RHI RH3 RH4 Cloud C.% p.mb
799 486 48 25 18 34 41 836
T, grad K RH, % HA ppm Cloud C. •/• O,, ppro VOC, ppmC NO., ppm NO2, ppm
28S.3 36.3 5755 41 0.0243 0.36S8 0.0369 0.0369
282.4 41.0 5353 41 0.0210 03198 00312 00312
28S.3 45.7 7238 41 0.0168 0.3457 0.0319 0.0319
288.2 44.2 8458 41 00135 0.521 1 0.0624 00530
291.1 36.5 8406 41 0.0286 02702 0.0445 00338
294.0 28.8 7951 41 00447 0.1941 0.0250 00197
296.9 23.8 7839 41 0.0520 0.1635 0.0193 0.0154
299.8 21.5 8404 41 0.0527 01656 00196 00161
296.9 19.2 6300 41 0.0499 0.1996 0.0229 0.0194
294.0 20.7 5694 41 0.0438 0.2793 0.0202 0.0191
291 1 260 5982 41 0.0277 0.3281 0.0455 00455
2882 313 5995 41 00260 0.3299 0.0522 00522
2') I.I 31.3 6947.7 41.0 0.0334 0.2902 0.0343 0.0312
IINCVNO. ppm/ppra 0.1284 | Nllr./NO. ppm/ppm 0.0436 g/g 0.07S9 |
03, D.U.
326
NO,/NO.
1.00
1.00
1.00
0.85
0.76
0.79
0.80
0.82
0.85
0.95
1.00
100
0.90


Oxid. •/•/hr
9.078
7.288
6.S98
0.508
3.732
8.928
12.747
10.808
5.067
0.74S
11.005
10.655
7.263

Calibr. ratio
Mill
Tol. Nit. ppm
0.00669
0.00455
0.00421
O.OOOS4
0.002S2
0.003S2
0.00394
0.00347
0.00197
0.00029
0.01001
0.01113
0.00440


PM Nit, ppm












0.001496
EquiL Frac. 0.3397

-------
Dale
'IS/90
Time
0
2
4
6
8
It)
12
14
16
18
20
22
vciage
jointer:
T..., grad FT_« grad F RHI RH2 RH3 RH4 Cloud C. % p.mb
894 628 65 39 30 52 43 8408
T, grad K RH, •/• H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
292.7 542 13787 43 0.0209 04917 0.0296 00296
290.3 585 12753 43 00194 0.4298 0.0226 00226
292.7 62.8 16007 43 0.0162 0.4646 0.0275 00275
295.2 60.7 17998 43 00091 0.7004 0.0623 00554
297.7 52.0 17199 43 0.0226 03631 0.0467 00355
300.1 43.3 I72S4 43 0.0433 02609 00251 00201
3026 37.5 17230 43 0.0550 02198 00182 00151
305.0 34.5 18252 43 00550 0.2226 00184 00155
3026 31.5 I44S7 43 00506 02683 00231 00201
3001 337 13384 43 00403 03754 0.0234 00223
297.7 41.0 14091 43 0.0290 0.4409 00469 00469
2952 48.3 14318 43 0.0252 04434 00443 00443
297.7 46.5 15619.2 43.0 0.0322 0.3901 0.0323 0.0296
03, D.U.
292
NO,/NO.
1.00
1.00
1.00
089
0.76
0.80
083
084
087
0.95
100
100
0.91


Oiid. %/hr
9.519
8.244
7.513
0.471
4.089
12.668
21.364
18.830
7.462
0.609
14.082
12.207
9.755
HNOVNO. ppm/ppn 0.1587 | NUr./NO. ppm/ppm 0.0235 g/g 0.0409 |
Calibr. ratio
0.0272
Tot. Nit, ppm
O.OOS64
0.00373
0.00413
0.00052
0.00290
0.00510
0.00645
0.00583
0.00299
0.00027
0.01321
0.01081
O.OOSI3


PM Nil, ppm












0.000760
Equil. Frac. 0.1482
Dale
i/is/vo
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T..., grad FT.,., grad F RHI RH2 RH3 RH4 Cloud C. % p.mb
572 30.7 65 42 36 55 40 8388
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, pproC NO., ppm NO2. ppm
274.9 56.7 4378 40 0.0123 0.1129 00974 00974
272.4 60.0 3879 40 00123 02751 00753 00753
274.9 63.3 4894 40 00113 01956 0.0661 00661
277.3 612 5627 40 00086 0.6368 0.0937 00937
2798 53.5 5839 40 0.0113 07745 0.1281 00948
282.2 45.8 S9I3 40 00236 0.1712 0.0667 00473
284.7 41.0 6233 40 00319 0.1686 00442 00331
287.2 39.0 6965 40 0.0337 0.1361 0.0378 00303
284.7 37.0 5624 40 00276 0.2462 00519 00477
282.2 39.2 5051 40 0.0123 0.8027 0.0956 00956
279.8 45.5 4964 40 0.0116 02333 0.1316 01316
2773 518 4767 40 00115 0.3158 0.1259 01259
279.8 49.5 5344.5 40.0 0.0173 0.3391 0.0845 0.0782
IINO./NO. ppm/ppm 0.0743 | NIlr/NO. ppm/ppm 0.0122 g/g 0.0212
O3, D.U.
270
NO,/NO.
100
100
100
100
0.74
071
075
080
092
100
1.00
1.00
0.91


Oiid. %/br
5.256
4.848
4.663
3.897
0.780
1.745
3.217
2.033
0.527
5.411
5.307
5.173
3.571

Calibr. ralio
00 HO
Tot. Nit, ppm
0.01024
0.00730
0.00616
0.00730
0.00148
0.00165
0.00213
0.00123
0.00050
0.01035
0.01397
0.01303
0.00628


PM Nit, ppm












0.001029
Equil. Frac 0.1639
[UNO./NO.    ppm/ppm    0.0537  |  NHr/NO.   ppm/ppm     0.0178        g/g       0.0309  |

-------
£ * Parifir r") 795 10417 72 00223 0.1314 0.0178 00178
}*<•» 7J.I 10491 J 72.0 0.0298 O.I27S 0.0168 0.0149
umVNO. ppm/ppm 0.1 195 | Nlir./NO. ppm/ppm O.OS22 g/g 0.0909 |
O3, D.U.
363
NO,/NO.
1.00
1.00
1.00
0.84
071
072
0.75
078
082
0.91
1.00
1.00
0.88


Osid. %/hr
7.221
6.424
S.4S2
0.701
4.206
9.849
15.508
14.798
6.499
I.OS8
10. US
8375
7.517

Calibr. ratio
00560
Tot. Nit, ppm
0.00210
0.00171
0.00275
0.00031
0.00118
0.00207
0.00274
0.00265
0.00134
0.00028
0.00406
0.00299
0.00201


PM Nil, ppm












0.000880
Equil. Frac. 0.4371

-------
Dale
'IS/90
Time
0
2
4
6
8
10
12
14
16
18
20
->•>
verage
uniner:
T«.,gr.4FT.tt,gradF RH1 RII2 R1I3 RH4 Cloud C. % p,mb
718 i50 88 685 595 80 52 10152
T, grad K KH, % H»0, ppra Cloud C •/• O,, ppm VOC, ppmC NO., ppm NO2, ppm
287.S 82.7 12493 52 00133 04000 0.0207 0.0207
2839 853 11650 52 00123 03833 00222 00222
287.5 880 13303 52 00072 0.4083 0.0281 00281
289.0 81.5 13619 52 0.0074 04167 0.0451 00365
2906 75.0 13836 52 00197 03600 0.0286 00194
292.2 68.5 13934 52 0.0364 0.3333 00206 0.0149
293.7 65.5 14677 52 00517 0.3786 00147 00115
2953 62.5 15410 52 00575 03714 0.0116 00094
2937 59.5 13325 52 00541 04000 00132 001 II
292.2 663 13491 52 0.0374 04154 00195 00179
290.6 732 13496 52 0.0195 0.4154 00258 00258
289.0 800 13367 52 00153 0.4000 00226 00226
290.6 74.0 13550.1 52.0 0.0276 0.3902 0.0227 0.0200
O3, D.U.
315
NO,/NO,
1.00
100
100
081
0.68
0.72
078
081
084
092
100
100
0.88


Olid. %/hr
5.536
5.111
3.235
0.673
6.643
16.162
24.302
22.240
12.503
1.457
8.649
6.602
9.426
HNOj/NO. ppm/ppm 0.1274 | NUr./NO. ppm/ppm 0.0376 g/g 0.0653 |
Calibr. ratio
0.0413
Tot. Nil, ppm
0.00229
0.00227
0.00182
0.00049
0.00258
0.00480
O.OOSS7
0.00418
0.00278
O.OOOS2
0.00446
0.00298
0.00290


PM Nil, ppm












0.000854
Equil. Frac. 0.2949
Date
/// f /Vtf
Time
0
2
•1
6
8
10
12
14
16
18
20
22
Average
Fall:
T..., grad F T.t., grad F RHI RH2 RH3 RH4 Cloud C % p.rob
576 451 85 755 685 80 82 1016 1
T, grad K RU, •/• H,0, ppm Cloud C. •/• O,, ppm VOC, ppmC NO., ppm NO2, ppm
2816 81.7 8314 82 0.0083 0.4160 0.0624 0.0624
280.4 83.3 7836 82 0.0092 0.3480 00466 00466
281.6 85.0 8655 82 0.01 II 0.2760 0.0243 0.0243
282.7 81.8 9014 82 00065 03080 00565 00565
283.9 78.7 9367 82 00085 0.3280 00638 00498
285.0 75.5 9712 82 0.0177 0.1955 0.0343 0.0244
286.2 73.2 10160 82 0.0239 0.1720 0.0256 00187
287.4 708 10611 82 00256 0.1640 00224 00177
286.2 68.5 9509 82 0.0164 0.2320 00351 00316
285.0 72.3 9303 82 00078 0.5880 00914 00914
283.9 76.2 9069 82 0.0080 06800 0.1044 0.1044
282.7 80.0 8811 82 00078 0.5880 0.0868 00868
283.9 77.3 9196.6 82.0 0.0126 0.3580 0.0544 0.0512
IINO./NO. ppm/ppm 0.0623 | Nllr/NO. ppm/ppm 0.0158 g/g 0.0275
O3, D.U.
272
NO,/NO.
100
100
1 00
1.00
0.78
071
0.73
0.79
0.90
1.00
100
100
0.91


Oxid. %/br
3.868
4.010
4.313
3.037
0.712
2.560
3.985
2.769
0.694
3.819
3.946
3.779
1m
1
Calibr. ratio
00166
Tot. Nit, ppm
0.00483
0.00374
0.00209
0.00343
0.0007 1
0.00 125
0.00149
0.00098
0.00044
0.00698
0.00823
0.00656
0.00339


PM Nit, ppm












0.000862
Equil. Frac 0.2540
ppm/ppm0.0820   |  Nlir./NO.ppm/ppm     0.0287
t/g
0.0499

-------
g. 7,Soulh
>s Angeles
Dale
2/15/90

Time
0
2
4
6
8
It)
12
14
16
18
20
22
Average
Winter:
rrn Calif. p. 173 Latitude Longitude T. Zone Albedo 1 Yean 1990
(Civic Center) 3393 1184 80 008 |
T.^gradFT^gradF RHI RH2 RII3 RH4 Cloud C. % p,mb
685 492 71 54 52 70 47 10141

O3, D.U.
317
14 2.0 4 10 16 22
T.gradK RH,% HtO,p|MM Cloud C% O), ppm VOC.ppmC NO,, ppm NO2, ppm
284.5 70.3 8734 47 0.0089 0.6705 0.1355 01355
282.7 70.7 7716 47 0.0096 04547 01195 01195
284.5 71.0 8817 47 0.0136 0.4170 0.0465 00465
2863 65.3 9128 47 00069 04007 01590 01590
2881 59.7 9362 47 00099 0.5192 01702 01157
2899 540 9499 47 00233 0.3884 0.0852 00571
2916 53.3 10506 47 0.0314 0.2658 00564 00400
2934 527 11599 47 00348 0.2295 00449 00341
2916 520 10242 47 00304 0.2373 0.0465 00390
289.9 58.0 10206 47 0.0148 0.4986 0.0708 00708
288.1 640 10044 47 0.0093 0.7755 01053 01053
2863 700 9782 47 00075 07992 0.1477 01477
288.1 61.8 9642.1 47.0 0.0167 0.4714 0.0990 0.0892
IINO^NO. ppm/ppm 0.0728 | NUr./NO, ppm/ppm 0.0433 g/g 0.0752
NO,/NO.
1.00
100
100
1.00
068
067
071
076
084
100
100
100
0.89

Olid, %/hr
4.468
4.698
6.075
3.514
0.692
4.017
5.610
4.645
1.305
7.182
4.676
3.847
4.227


Calibr. ratio
0.0446
Tot Nit, ppm
0.01211
0.01123
0.00565
0.01118
0.00160
0.00459
0.00449
0.00317
0.00102
0.01017
0.00984
0.01137
0.00720

PM Nit, ppm












0.004281
Equil. Frac. 0.5945
Dale
5/75/90
Time
0
2
4
6
8
10
n
14
16
IS
20
1 ^
Avi-i j£c
S|>iing:
T...,gradFTJ^.,tradF RHI RH2 RHJ RH4 Cloud C. % p.mb
73.2 56.6 81 56 55 75 48 10102
T.gradK RH,% H,0,ppm Cloud C.*/« O,, ppm VOC.ppmC NO., ppm NO2, ppm
288.4 77.0 12369 48 0.0190 04644 00515 00515
286.8 79.0 11485 48 0.0207 0.5055 0.0469 00469
2884 810 13015 48 0.0215 ' 05493 00217 00217
2899 72.7 12880 48 0.0176 06047 00672 00564
291.4 64.3 12563 48 0.0294 0.4535 0.0486 0.0345
293.0 56.0 12033 48 00466 0.3074 00444 00333
294.5 55.7 13156 48 0.0582 0.1721 0.0387 00302
296.0 55.3 14367 48 0.0614 0.1860 0.0364 00295
294.5 55.0 12998 48 0.0571 0.1768 0.0362 00308
293.0 61.7 13258 48 0.0440 0.1907 0.0368 0.0354
2914 683 13348 48 00291 0.4094 00407 00407
289 9 750 13296 48 00212 0.4140 00489 00489
291.4 66.8 12897.3 48.0 0.0355 0.3695 0.0432 0.0383
O3, D.U.
333
NO,/NO.
1.00
1.00
1.00
084
071
0.75
078
081
085
0.96
1.00
1.00
0.89


Olid, %/hr
9.152
9.739
9.103
1.010
7.296
10.662
9.931
9.011
3.808
0.643
13.777
10.295
7.869
"NO./NO. ppm/ppm 0.1374 | Nllr./NO. ppm/ppm 0.0682 g/g 0.1186 |
Calibr. ratio
0.0733
Tot. Nit, ppm
0.00942
0.00913
0.00395
0.00114
0.00504
0.00710
0.00599
0.00531
0.00234
0.00045
0.01121
0.01006
0.00593


PM Nit, ppm












0.002944
Equil. Frac. 0.4965

-------
Dale
&/I5/90
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer
TM., grad FT_, grad F RH1 RH2 RH3 RH4 Cloud C % p.mb
84.1 65.3 84 56 55 79 26 10096
T, grad K RH, % H,0, ppm Cloud C. % Oj, ppm VOC, ppmC NO,, ppm NO2, ppm
293.4 80.7 17849 26 0.0083 1.1269 0.0632 0.0632
291.7 82.3 16338 26 0.0077 0.9642 00658 00658
293.4 84.0 18592 . 26 0.0075 1.0975 0.0249 00249
295.1 74.7 I838S 26 00074 1.2095 0.1186 00902
296.9 65.3 I7S7S 26 0.0260 0.7081 0.0845 00600
298.6 56.0 1699S 26 0.0592 0.6136 0.0571 00457
3004 55.7 11733 26 0.0759 0.3009 00395 00328
3021 55.3 20621 26 00779 0.2478 0.0333 00283
3004 550 18507 26 00644 0.2715 0.0341 00294
298.6 63.0 19135 26 00438 0.2891 00407 00390
296.9 71.0 19437 26 00225 1.0030 0.0491 00491
295.1 79.0 19464 '26 0.0105 1.2804 0.0578 00578
296.9 68.S 18494.4 26.0 0.0342 0.7594 O.OSS7 0.0488
O3, D.U.
309
NO,/NO.
1.00
100
100
0.76
0.71
0.80
083
085
086
0.96
too
100
0.90


Olid, %/hr
4.2S6
3.961
3.S38
0.666
6.724
15.408
18.224
16.718
6.697
0.606
11.459
5.415
7.806
HNOj/NO. ppm/ppm . 0.1182 | Nltr/NO. ppm/ppm 0.0334 g/g O.OS82 j
Calibr. ratio
0.0365
Tot Nit, ppm
O.OOSJ8
0.00521
0.00176
0.00120
0.00806
0.01408
0.01196
0.00948
0.00393
0.00047
0.01126
0.00626
0.00659


PM Nil, ppm












0.001863
Equil. Frac. 0.2828
Dale
/ I/I ^/90
Time
0
•)
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T..., grad F T.*,, grad F RJ11 RH2 RH3 RH4 Cloud C. % p.mb
72 7 52 7 61 45 49 62 37 1013 1
T, grad K RH, % HiO, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2865 61.7 8749 37 0.0101 I.S97I 0.1734 01734
2847 613 7701 37. 00122 1.0405 01448 01448
2865 61.0 8654 37 00158 09343 0.0595 00595
288.4 55.7 8904 37 00080 1.0940 0.1834 01834
290.2 50.3 9061 37 0.0123 1.0904 0.1682 0 1161
292.1 45.0 9102 37 0.0263 0.6279 0.0749 0.0524
293.9 463 10518 37 0.0348 0.4870 00501 00376
295.8 47.7 12124 37 00349 0.3718 00452 00361
293.9 49.0 11126 37 00240 0.4870 00596 00542
292.1 53.3 10795 37 0.0111 1.1419 01141 01141
290.2 57.7 10387 37 00090 1.5492 01680 01680
2884 620 9921 37 00092 1.6290 01913 01913
290.2 54.3 9753.5 37.0 0.0173 1.0042 0.1194 0.1109
O3, D.U.
276
N
-------
pg H, Rural East p.297:p.349:p. Latitude Longitude T. Zone Albedo 1 Yean 1990 |
'hua,.o.NcwYork 3880 8210 53 005 |
Dale
2/15/90


Time
0
2
4
6
8
10
12
14
16
18
20
22
Ave r.tge
Winter:
T...,gradFT^.,gradF RH1 RH2 RII3 RH4 Cloud C. % p.mb | O3, D.U.
431 26.4 69.3 733 593 61.3 627 9962 312
.....tl t.ta.b Ul <^1 Irfcl »A4
14 20 | 7 13 19
T.gradK RH,% 11,0. ppm Cloud C. % O,, ppm VOC.ppmC NO., ppm NO2, ppm NO,/NO.
271.6 68.0 3479 62.7 0.0233 00410 00144 00144 1.00
2700 700 3193 62.7 00216 00400 00159 00159 100
2716 71.3 3650 62.7 0.0206 00443 00166 00166 100
2731 727 4165 62.7 00195 00553 00159 00159 100
2747 710 4551 627 00212 00553 00170 00156 092
2762 66.3 4749 62.7 0.0285 0.0623 00150 001 II 0.74
277.8 61.7 4924 62.7 00334 00451 0.0128 00092 072
2793 59.7 5306 62.7 0.0361 00467 0.0123 00091 074
2778 60.3 4817 62.7 00365 00537 0.0142 00116 082
276.2 61.0 4367 62.7 00306 0.0463 0.0170 00170 100
2747 627 4016 627 00267 00514 0.0177 00177 100
273 1 65.3 3744 627 00250 00500 00158 00158 100
274.7 65.8 4246.6 62.7 0.0269 0.0493 0.0154 0.0142 0.91




Olid, %/hr
4.520
4.206
4.497
4.515
0.768
2.323
3.927
3.771
1.423
7.362
6.294
5.323
4.077
HNOt/NO, ppm/ppm 0.0785 | Nitr./NO. ppm/ppm 0.0167 g/g 0.0290 1
Calibr. ratio
00178
Tot. Nil, ppm
0.00130
0.00134
0.00150
0.00143
0.00024
0.00052
0.00073
0.00068
0.00033
0.00251
0.00223
0.00168
0.00121


PM Nit, ppm












0.000257
Equil. Frac. 0.2125
Dale
5/15/90
Time
0
2
4
6
8
10
12
14
16
Ifi
?u

AMI..,;.-
Spring:
T..., grad F T.ta, trad F RHI RH2 RH3 RH4 Cloud C. % p, mb | OJ, D.U.
738 53.4 73.7 77.0 53.7 57.3 587 993.2 345
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm NO,/NO.
2869 70.9 10550 58.7 0.0273 0.0298 0.0092 00092 1.00
285.0 74.2 9750 58.7 0.0243 0.0327 0.0092 0.0092 1.00
286.9 75.3 11206 58.7 0.0211 0.0344 0.0109 0.0109 1.00
2888 76.4 12854 58.7 0.0207 0.0381 0.0127 00118 0.93
290.7 73.1 13868 58.7 0.0320 00392 00090 00070 0.78
292.6 65.3 13950 58.7 00419 0.0311 00069 00052 0.76
294.5 57.6 13808 587 0.0479 0.0280 0.0064 00049 0.77
296.4 543 14612 58.7 0.0491 0.0261 0.0057 00045 0.79
294.5 55.5 13312 58.7 0.0497 0.0247 0.0064 00052 0.82
292 6 56.7 12102 58.7 0.0470 0.0290 0.0067 00061 0.91
2<>07 601 11380 58.7 0.0386 0.0377 0.0092 00092 1.00
2KK8 655 11006 587 00323 00402 0.0101 00101 100
290.7 65.4 12366.5 58.7 0.0360 0.0326 0.0085 0.0078 0.90
HWVNO. ppm/ppm 0.1504 | Nitr./NO. ppm/ppm 0.0237 g/g 0.0413 |


Oiid %/hr
8.015
6.871
6.869
0.655
3.695
12.811
22.029
19.756
8.563
1.131
11.638
10.036
9.339

Calibr. ratio
0.0272
Tot. Nit, ppm
0.00147
0.00126
0.00149
0.00015
0.00052
0.00134
0.00215
0.00178
0.00089
0.00014
0.00215
0.00203
0.00128


PM Nit, ppm












0.000202
Equil. Frac 0.1579

-------
Dale
H/IS/90
Time
0
. 2
4
6
K
10
n
14
16
18
20
22
Average
Summer
T_.., grad FT.*, grad F RHI RH2 RH3 RH4 Cloud C. % ,,,mb | O3,D.U.
845 65.8 80.7 843 583 650 567 996.1 316
T, grad K Rll, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2. ppra NO,/NO.
293.7 78.1 17811 567 0.0186 0.0281 0.0106 00106 1.00
291.9 81.3 16655 567 0.0159 00328 0.0108 00108 1.00
293.7 82.5 18833 567 0.0135 0.0330 0.0129 .00129 100
295.4 837 21263 56.7 0.0124 0.0457 0.0139 00134 097
297.1 800 22S62 567 00230 00501 00099 00075 076
298.8 71.3 22296 56.7 0.0352 0.0277 0.0086 00064 0.75
300.6 627 21675 567 00414 0.0287 00080 00061 076
302.3 59.4 22739 56.7 0.0429 0.0178 0.0068 00053 0.78
300.6 61.7 21327 56.7 0.0425 0.0182 0.0066 00053 0.81
298.8 63.9 19950 56.7 0.0372 0.0241 00067 00061 0.91
297.1 67.6 19041 56.7 0.0286 0.0336 00100 00100 100
295.4 72.8 18477 567 00223 0.0316 001 II 001 II 100
297.1 72.1 20219.0 56.7 0.0278 0.0309 0.0096 0.0088 0.90


Olid, %/hr
7.205
6.070
S.6I6
0.610
3.462
11.211
20.595
20.488
8.574
0.965
11.048
8.818
8.755
HNOi/NO. ppm/ppm 0.1412 | NHr./NO. ppm/ppm 0.0103 g/g 0.0178 j 111
Calibr. ratio
0.0118
Tot. Nil, ppm
0.001 S3
0.00131
0.00144
0.00016
0.00052
0.00144
0.002S6
0.00216
0.00091
0.00012
0.00221
0.00196
0.00136


PM Nit, ppm












0.0(10099
Equil. Frac. 0.0727
Dale
II/IIVO
Time
0
i
4
6
8
10
12
14
16
18
2d •
22
Average
Fall:
TB... grad F T.ln grad F RHI RH2 RH3 RH4 Cloud C. % p.mb | O3, D.U.
548 378 740 787 593 65.3 613 9965 278
T, grad K Rll, •/• H,0, ppm Cloud C. % O), ppm VOC, pproC NO., ppm NO2, ppm NO,/NO.
278.0 72.6 5872 61.3 0.0170 0.0578 0.0094 00094 1.00
2764 748 5417 613 00160 0.0605 00094 00094 100
2780 76.3 6178 61.3 00149 0.0588 0.0081 00081 100
279.5 77.9 7033 61.3 00138 0.0777 0.0101 00101 100
281.1 75.4 7589 61.3 0.0164 0.0810 0.0118 0.0104 0.88
282.7 690 7720 61.3 00237 00545 0.0106 00078 0.74
2842 626 7774 61.3 00284 0.0397 00081 00058 0.72
285.8 603 8319 61.3 0.0307 0.0364 0.0080 0.0062 0.77
284.2 623 7747 61.3 00291 0.0479 00093 00083 089
282.7 64.3 7196 61.3 0.0220 0.0651 0.0120 0.0120 100
281.1 66.8 6715 61.3 00)92 0.0701 0.0121 00121 100
2795 697 6289 613 00186 00638 00109 00109 100
281.1 69.3 6987.4 61.3 0.0208 O.QS94 0.0100 0.0092 0.92


Oxid. %/hr
3.689
3.292
3.063
3.488
0.713
2.817
5.000
3.451
0.689
6.041
5. IIS
4.553
3.492
HNO>/NO, ppm/ppm 0.0660 | NIlr./NO, ppm/ppm 0.0151 g/g 0.0263 |
Calibr. ratio
0.0159
Tol. Nil, ppm
0.00070
0.00062
0.00050
0.00070
0.00015
0.00044
0.00058
0.00043
0.000 II
0.00145
0.00124
0.00099
0.00066


PM Nit, ppm












0.000151
Equil. Frac. 0.2291
|    Vc...:   IUNO/NO.    ppm/ppm    0.1036  | NIlr./NO.   ppm/ppm    0.0163        g/g
0.0283

-------
eg, 9, Rura
Ibuquerqui
Dale
2/15/90

Time
0
t
4
6
8
10
12
14
16
18
20
22
Average
Winter
IWest p.tf9;p.809:p.l Latitude Longitude T. Zone Albedo | Year 1990
:. Portland, Salt LaUeCi 4047 11373 73 005 |
T«., trad FT.*, trad F RHI RH2 RH3 RH4 Cloud C% p,mb
49 28.8 76 62.67 53 69.67 6767 909.13

O3. D.U.
349
"M 20 5 11 17 23
T.tradK RH,% HApfm Cloud C% O,, ppm VOC,ppmC NO,, ppm NO2, ppm
273.2 70.7 4474 67.67 0.0280 0.0459 0.0069 00069
271.4 728 4015 67.67 0.0274 0.0345 0.0087 00087
273.2 74.9 4741 67.67 0.0277 0.0417 0.0053 00053
275.1 73.8 5344 67.67 0.0266 0.0495 0.0130 00130
277.0 69.3 5738 67.67 0.0282 0.0551 0.0118 00113
2788 64.9 6123 67.67 0.0330 0.0449 0.0070 0.0057
280.7 61.1 6556 67.67 0.0349 0.0389 0.0060 00046
282.6 57.8 7053 67.67 0.0365 0.0247 0.0059 00047
280.7 54.6 5862 67.67 0.0352 0.0463 0.0065 00055
278.8 55.8 5261 67.67 0.0290 0.0593 0.0127 0.0127
277.0 61.3 5075 67.67 0.0259 00586 0.0131 00131
275.1 66.9 4844 67.67 0.0240 0.0484 0.0102 00102
277.0 65.3 5424.0 67.7 0.0297 0.0457 0.0089 0.0085
NO,/NO.
1.00
100
1.00
1.00
0.96
0.81
077
0.79
085
1.00
1.00
1.00
0.93

Osid. %/hr
4.064
4.276
3.479
6.345
0.651
2.357
5.039
3.933
1.933
6.781
6.035
4.754
4.137
HNO./NO. ppm/ppm 0.0846 | NiuJNO. ppm/ppm 0.0148 g/8 0.0258 |

Calibr. ratio
Tot Nit, ppm
0.00056
0.00074
0.00037
0.00164
0.00015
0.00027
0.00046
0.00037
0.00021
0.00173
0.00158
0.00097
0.00075

PM Nit, ppm












0.000132
EquU. Frac 0.1753
Dale
5/15/90
Time
0
2
4
6
8
10
12
14
16
in
. , i

\>i 1 .i^c
Spring:
TM.. trad FT.*, trad F RHI RH2 RH3 RH4 Cloud C% p.mb
73.1 46.7 66 43.33 34.67 55 56.67 907.3
T.tradK RH,% 0,0, ppm Cloud C.% OJf ppm VOC.ppmC NO., ppm NO2, ppm
283.8 56.8 7516 56.67 0.0380 0.0496 0.0050 0.0050
281.3 60.5 6787 56.67 0.0366 0.0532 0.0045 0.0045
283.8 64.2 8489 56.67 0.0327 0.0543 0.0048 0.0048
286.2 62.2 9675 56.67 0.0353 0.0602 0.0072 0.0069
288.7 54.7 9955 56.67 0.0422 0.0536 0.0055 00046
291.1 47.1 10017 56.67 0.0463 0.0417 0.0044 00035
293.5 41.9 10370 56.67 0.0496 0.0313 0.0043 00034
296.0 39.0 11212 56.67 0.0515 0.0300 0.0046 0.0037
2935 36.1 8935 5667 0.0533 0.0312 0.0050 00042
"1 1 38 1 8086 5667 00501 00301 0.0059 00054
2K» 7 44 » 1159 56 67 00440 0.0348 0.0067 00067
J»'» J 316 8020 5667 00380 00432 0.0062 00062
JH»7 49.8 893S.O 56.7 0.0431 0.0428 O.OOS3 0.0049
HNO./NO. ppm/ppm 0.14S6 | Nlir./NO. ppm/ppm 0.0294 g/g 0.0512
O3, D.U.
349
NO,/NO.
1.00
1.00
1.00
0.96
0.84
0.79
0.80
081
0.84
0.91
1.00
100
0.91


Olid, %/br
6.371
5.284
S.8SS
0.587
4.627
16.192
23.105
18.745
8.446
1.302
f.299
7.630
8.954

Calibr. ratio
0.0333
Tot Nit, ppm
0.00063
0.00047
0.00056
0.00008
0.00043
0.001 13
0.00158
0.00139
0.00071
0.00014
0.00125
0.00094
0.00078


PM Nit, ppm












0.000157
Equil. Frac. 0.2021

-------
Dale
4/75/90
T7m«
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer
T_., grad FT.*, grad F RH1 RH2 RH3 RB4 Cloud C % p.mb
86 594 67.67 44.33 33 5S.67 4367 909.17
T, grad K RH, % HA ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
290.8 37.7 12064 43.67 0.0367 0.0661 0.0064 0.0064
288.4 61.7 11026 43.67 0.0354 0.0818 0.0056 00056
290.8 65.7 13746 43.67 0.0286 0.0838 0.0074 00074
293.3 638 15578 43.67 0.0328 0.1185 0.0131 00129
295.8 560 15904 43.67 0.0389 0.0755 0.0089 00076
298.2 48.2 15177 43.67 0.0433 0.0466 0.0063 00051
300.7 42.4 16158 43.67 0.0492 0.0371 00058 0.0046
303.2 38.7 16979 43.67 0.0542 0.0342 00055 00045
300.7 34.9 13267 43.67 0.054S 0.0252 00058 0.0050
298.2 368 12091 43.67 0.0508 0.0262 0.0077 00072
295.8 443 12S75 43.67 0.0447 0.0438 0.0100 00100
293.3 51.9 12660 43.67 0.0385 0.0562 00089 00089
295.8 50.2 13993.8 43.7 0.0423 0.0579 0.0076 0.0071
O3, D.U.
301
NOi/NO.
1.00
1.00
1.00
0.99
0.8S
0.80
0.80
0.83
0.8S
0.93
1.00
1.00
0.92


Olid, %/hr
9.625
8.277
8.679
0.543
4.108
17.214
27.095
29.916
10.464
1.053
14.514
12.048
11.961
HNOj/NO, ppm/ppm 0.1904 | NttrJNO. ppm/ppm 0.0189 g/g 0.0329 "j
Calibr. ratio
0.0229
Tot Nit, ppm
0.00123
0.00093
0.00129
0.00014
0.00062
0.00175
0.002S1
0.00271
0.00104
0.00015
0.00289
0.00214
0.00145


PM Nit, ppm












0.000144
Equil. Frac. 0.0995
Dale
////5/ytf
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T..., grad F T.U., grad F RH1 RB2 RH3 RB4 Cloud C. % p,mb
532 328 75.67 60.67 56.33 70.67 61.33 909.33
T, grad K RH, % H,0, ppm Cloud C % Oj, ppm VOC, ppmC NO., ppm NO2, ppm
275.S 71.5 S328 61.33 0.0235 0.0504 0.0130 00130
273.6 73.2 4758 61.33 0.0236 0.0483 0.0105 0.0105
275.5 748 5577 61.33 0.0237 0.0481 0.0053 00053
277.4 73.2 6234 61.33 0.0221 0.0571 0.0142 00142
279.3 68.2 6627 61.33 0.0255 0.0528 0.0135 0.0128
281.2 63.2 6992 61.33 0.0308 0.0283 0.0082 00066
283.1 59.9 7540 61.33 00331 0.0275 0.0066 00052
284.9 58.5 8347 61.33 0.0336 0.0307 0.0072 00058
283.1 57.1 7175 61.33 00296 0.0387 0.0112 00101
281.2 58.7 6498 61.33 0.0234 0.0615 0.0172 00172
279.3 63.5 6172 61.33 0.0239 0.0556 0.0131 00131
277.4 68.3 5817 61.33 00203 00498 00125 00125
279.3 65.8 642X0 61 J 0.0261 0.0457 0.0110 O.OIOS
O3, D.U.
273
NOj/NO.
1.00
1.00
100
1.00
0.95
0.81
0.78
0.81
090
100
100
too
0.94


Olid, %/hr
5.647
4.685
3.415
6.082
0.634
1.824
3.791
3.082
0.608
7.104
6.284
5.053
4.017
HNO/NO. ppm/ppm 0.0843 | Nllr/NO. ppm/ppm 0.0077 g/C 0.0134 1
Calibr. ratio
O.OOM
Tot Nit, ppm
0.00147
0.00098
0.00036
0.00173
0.00016
0.00024
0.00039
0.00036
0.00012
0.00244
0.00165
0.00126
0.00093


PM Nit, ppm












0.000085
Equil. Frac. 0.0915
Y.jr:
{HNO>/NO.   ppm/ppm    0.1189   | Nltr-THO.   ppm/ppm    0.0158       g/g      0.0274  |

-------
,f£ 7 <;->.., h,.,v, p.197 Latitude Longitude T. Zone Albedo 1 Year. 2005
A,,an.a 3365 8442 50 008 |
Dale
2/15/05


Time
0
2
4
6
8
,0
12
14
16
18
20
22
Average
Winter:
T«.,gradFT^.,gradF RHI RII2 RH3 RH4 Cloud C.% p.mb
35.3 345 69 75 54 56 62 9815


O3, D.U.
284
"l4 20 | 7 13 19
T.gradK RH,% HAPf* Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2. ppm
276.5 66.8 4940 62 0.0126 0.5484 0.0546 00546
274.5 700 4509 62 0.0128 0.5097 0.0475 00475
2765 720 S323 62 0.0123 0.3142 00)84 00)84
278.4 74.0 6266 62 0.0102 0.4258 00587 00587
280.3 71 5 6918 62 0.0133 0.4980 00719 0063)
282.2 645 7115 62 0.0223 0.4332 0.0)85 00266
2842 575 7216 62 00281 0.2948 00293 00199
286) 543 7744 62 00300 02720 00251 00175
284.2 55.0 6902 62 0.0268 0.3037 00)) 1 00248
282.2 557 6138 62 00143 0.5070 00550 00522
280.) • 582 5625 62 0012) 0.599) 006)1 006)1
2784 625 5290 62 00127 0.601) 006)) 006))
280.3 63.5 6165.6 62.0 0.0173 0.4423 0.0482 0.0442
IINO./NO. ppm/ppm 0.0783 | Nilr./NO. ppm/ppm 0.0349 g/g 0.0608
NOj/NO.
1.00
100
100
1.00
088
069
068
0.70
075
095
1.00
100
0.89




Olid, %/hr
5.002
4.759
4.591
4.392
0.704
5.426
9.138
9.169
3.881
0.689
5.229
5.320
4.858

Base Eq.

-------
l»alc
H//S/0S
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer:
T«., grad FT.*, grad F "HI W« Rli3 **** Cloud C V. |i, mb
876 687 85 90 61 67 58 981 5
T, grad K RH, •/. HiO, ppm Cloud C. •/. O,, ppm VOC, ppnC NO., ppm NO2. ppm
2953 820 20994 58 0.0147 0.5851 0.0316 0.0316
293.5 858 19730 58 00121 0.5114 00348 00348
295.3 875 224IS 58 00102 0.5528 0.0402 00402
297.0 89.2 25423 58 0.0092 0.8333 0.0717 00717
298.8 85.2 26972 38 0.0251 0.4320 0.0401 00316
300.5 75.S 26501 51 0.0431 0.3104 0.0241 00191
302.3 65.8 2SS72 SS 00505 0.2615 0.0192 00152
304.0 62.0 26637 SI 0.0501 0.2649 0.0202 00162
302.3 64.0 24153 5* 0.0462 0.3192 0.0264 00217
300.5 66.0 21135 58 0.0357 0.4467 0.0285 00256
298.8 70.0 22126 48 0.0215 0.5246 00333 00333
297.0 760 21636 58 0.0159 0.5275 00373 00373
298.8 75.8 23833.* 5S.O O.M79 14641 0.0340 00315
O3, D.U.
312
NO>/NO.
1.00
100
1.00
100
0.79
0.79
0.79
0.80
0.82
0.90
100
100
0.91


Olid, %/br
7.256
6.007
5. Hi
4.913
4.17S
15.565
26.033
24.415
11.867
2.272
10.722
7.990
10.534
HNO^NO. ppn/ppm O.IS6S | NUr./NO. ppm/ppn M236 g/g 0.0411 |
Base Eq.
0/5/0
Tot. Nil, ppm
0.00459
0.00418
0.00418
0.00705
0.00264
O.OOS93
0.00789
0.00790
0.00514
0.00116
0.00715
0.00597
0.00531
Base Nit.
0.000802
PM Nil, ppm












0.000802
Equil Frac, O.I 5 10
Dale
////5/Wf
Time
0
2
4
6
8
10
12
14
16
18
20
. 22
Average
fr*ll:
T.,.., grad FT.*, grad F RHI RH2 RH3 RIM Cloud C. % p.mb
62.6 413 76 82 55 63 54 9825
T, grad K RH, % H,0, ppm Cloud C. •/• O,, ppm VOC, ppmC NO., ppm NO2, ppm
280.3 73.8 7123 54 0.01 10 0.4460 0.0371 00371
278.3 77.0 6480 54 0.0115 01114 0.0403 00403
280.3 790 7623 54 0.0109 Oj,,_., 00351 00351
282.3 810 8944 54 00083 0.5187 0.0542 00542
284.2 77.5 9769 54 00117 0.4615 00669 00555
286.2 68.5 9833 54 0.0213 0.3673 0.0366 0.0252
288.2 59.5 9706 54 0.0261 0.2776 0.0282 00192
290.2 56.3 10426 54 0.0272 0.2790 0.0278 00200
288.2 59.0 9624 54 00204 0.3379 0.0402 00321
286.2 61.7 8848 54 00099 0.5653 00758 00758
284.2 65.2 8209 54 00106 0.5058 0.0717 00717
2823 695 7670 54 00105 04955 00631 00631
284.2 69.0 8688.0 54.0 0.0149 0.4126 0.0481 0.0441
O3, D.U.
279
NO,/NO.
1.00
1.00
100
1.00
0.83
0.69
0.68
0.72
080
1.00
1.00
100
0.89


Oild. %/hr
4.463
4.636
4.475
3.826
0.673
5.218
8.226
6.726
1.663
4.746
4.977
4.815
4.537
IINO^NO. ppm/ppn •.•781 | NIlr/NO. ppm/ppm 10270 g/g 0.0470 1
Base Eq.
0,3463
Tol. Nit, ppm
0.00331
0.00374
0.00314
0.00415
0.00075
0.00263
0.00316
0.00269
0.00107
0.00720
0.00714
0.00608
0.00375
Base Nil.
0.001300
PM Nil, ppm












0.001300
Equil. Frac. 0.3463
[Mrt»yno.    ppm/ppa    O.iOM  | Nlir/NO.   ppm/pppi     O.M74
g/g
0.0476

-------
,'j MM""' p-349 Latitude Longitude T. Zone Albedo I Yean 2005 j
^n 4198 879 60 008 |
Dale
•/; vof


Time
0
2
4
6
«
10
12
14
16
IS
20
22
tvcrage
Vinicr:
T...,gradFT..,.,gradF RHI RH2 RII3 RIM CkwdC.% p.mb
3J9 |8| 75 77 66 69 68 9934
t...,h 1^.1 h Ul IfU IcM IrM
14 2.0 0 6 12 18
T.gradK RH,% HAppa Cloud C. % O,, ppra VOC.ppmC NO., ppm NO2, ppm
2669 750 2702 68 0.0144 02150 00423 00423
2654 757 2434 68 00144 0.2506 00195 00395
2669 763 2750 68 00141 0.2739 00402 00402
2684 77.0 3102 68 0.0119 0.1928 0.0495 00495
269.8 73.3 3299 68 0.0142 0.2168 0.0493 00385
2713 69.7 3495 68 0.0213 0.2192 0.0369 0.0236
272.7 66.0 3687 68 0.0246 0.2290 0.0317 00203
274.2 67.0 4163 68 00260 0.2123 0.0329 00227
272.7 680 3799 68 00243 0.2372 00352 002%
2713 690 3461 68 00157 0.2217 0.0415 00415
269.4 ' 71.0 3194 68 0.0144 0.2378 00450 00450
2684 730 2941 68 00136 0.2201 00467 00467
269.8 71.8 3252.1 68.0 0.0174 0.2272 0.0409 O.OJ66


03, D.U.
345


NO,/NO.
1.00
100
1.00
1.00
078
064
0.64
069
0.84
1.00
100
100
0.88




Oiid. %/hr
4.120
3.783
3.993
3.860
0.810
3.358
5.490
3.629
0.782
5.018
4.571
4.212
3.636
IINtVNO. ppm/ppm 0.0658 | Niir/NO. ppm/ppm 0.0488 g/g 0.0848 |
Base Lq.
o.mi
Tot. Nit, ppm
0.00349
0.00299
0.00321
0.00382
0.00062
0.00158
0.00223
0.00165
0.00046
0.00416
0.00411
0.00394
0.00269
Base Nil.
0.00 1580
PM Nit, ppm












0.001995
Equil. Frac. 0.7418
If .He
t//V05
Time
0
i
4
6
8
IU
12
•14
l(>
C.


A\( 1.1 KC
Sjmng:
T...,gradFT^.,gradF RHI RH2 RH3 R1I4 Cloud CV. p.mb
70 48.1 73 77 54 54 63 9895
T.gradK Rll,% H,0,ppm Cloud C. % O,, ppm VOC.ppmC NO., ppm NO2, ppm
284.1 73.0 9066 63 0.0195 0.1103 0.0390 0.0390
282.1 74.3 8055 63 00182 0.1097 0.0367 0.0367
284.1 75.7 9399 63 0.0168 0.1099 0.0387 0.0387
286.2 77.0 10940 63 0.0157 0.1213 0.0444 00347
2882 69.3 11237 63 00250 0.1238 00327 00225
290.2 61.7 11377 63 0.0373 0.1120 0.0216 00156
2922 54.0 H3I6 63 00422 0.1024 0.0197 00146
294.3 540 12837 63 00443 01067 00199 00153
2922 540 11316 63 00444 0.101) 00201 00165
2W2 S40 99S7 63 00365 0.0995 0.0207 00(92
?**2 603 9773 63 00263 0.1075 0.0355 00355
•'h'>2 667 9466 6) 00210 01103 00416 00416
2hH 2 64.5 IOJ9S.O 63.0 0.0289 0.1096 0.0309 0.0275
O3, D.U.
357
NO,/NO.
1.00
1.00
100
0.78
069
072
074
077
082
093
100
100
0.87


Oiid. %/hr
8.491
7.607
7.373
0.671
3.453
8.130
9.687
8.016
3.443
0.642
11.422
9.342
6.523
HNO>/NO. ppm/ppm 0.1214 | Nlir./NO. ppm/ppm 0.0378 g/g 0.0657 |
Base Eq.
0,1659
Tot. Nit. ppm
0.00663
0.00558
0.00570
0.00047
0.00156
0.00253
0.00283
0.00245
0.00114
0.00025
0.00810
0.00778
0.00375
Base Nil.
0.000622
PM Nil, ppm












0.001167
EquiLFrac. 0.3112

-------
l»ate 1
'IS/05
Time
0
2
•1
t>
8
10
12
14
16
18
20
22
verage
»mmcn
Date
/// V0S
Time
0
2
4
6
8
10
12
14
16
18
20
22
Fall:
Vr.ii:
r.M.cnMlFT.ta.tn" **" RH2 *"* RH4 Cloud C.% p.mb
821 617 81 85 57 62 57 9926
T, grad K RH, •/• H,0, ppm Cloud C. % Olf ppm VOC, ppmC NO., ppm NO2, ppm
2«JI.5 81.0 1623S 57 0.0187 0.2486 0.0321 00321
289.7 82.3 14637 57 00175 02381 0.0292 00292
291.5 83.7 16773 57 0.0155 0.2440 0.0313 00313
293.4 850 19184 57 0.0124 0.2417 0.0423 00351
295.3 75.7 19175 57 0.0187 0.2455 0.0375 00251
297.2 66.3 18840 57 0.0341 03316 00251 00183
299.1 57.0 Hill 57 0.0425 0.2685 0.0191 00145
301.0 587 20850 57 00443 02749 00182 00144
2991 60.3 19179 57 0.0436 02479 0.0186 00156
297.2 620 17600 57 0.0372 02642 0.0177 00168
29S.3 68.3 17303 57 0.0236 0.2280 00274 00274
293.4 74.7 16836 57 00188 0.2343 00329 00329
295.3 71.3 17193.3 57.9 0.0272 V.Z33* O.QZ/t U.UZ44
IINOv/NO. ppm/ppa 0.1505 | NUr./NO. ppWppm 0.§MI (/( &OS23
T..., grad F T.!., trad F RHI RH2 RH3 RH4 Cloud C.% p.mb
442 314 77 81 64 70 72 9925
T, grad K RH, •/• H,0, ppm Cloud C % Oj, ppm VOC, pproC NO., ppm NO2, ppm
274.4 77.0 4847 72 0.0120 0.1912 0.0383 0.0383
272.8 78.3 4405 72 0.0119 0.1632 0.0343 00343
274.4 79.7 5016 72 0.0114 0.1931 0.0304 0.0304
2759 810 5702 72 0.0103 0.2396 0.0374 00374
277.5 75.3 5919 72 0.0117 0.4419 00417 00321
279.0 69.7 6102 72 0.0173 0.2268 00272 00177
280.6 64.0 6240 72 00208 0.2132 0.0246 00165
282.2 66.0 7155 72 0.0221 0.1857 0.0250 00190
280.6 68.0 6631 72 0.0182 01447 0.0323 00307
279.0 70.0 6131 72 0.0112 0.2256 0.0454 00454
277.5 72.3 5683 72 00112 0.2903 0.0476 00476
275.9 74.7 5255 72 0.0114 0.3048 0.0477 00477
277.S 73.0 S7S7.0 72.0 0.0141 0.2350 0.0360 0.0331
HNO./NO. ppm/ppm 0.0473 | Nltr/NO. ppm/ppm 0.0233 fit 0.0406
IHNO/NO. ppm/ppm O.OM* | NIlr./NO. ppm/ppm 0.0357 g/g 0.0621
OJ, D.U.
319
Nft./NO
1.00
100
1.00
083
067
0.73
076
079
084
095
1.00
100
0.88
Olid. V./hr
8.905
8.044
7.412
0.620
4.972
15.314
21.171
19.687
7.630
0.596
11.106
9.050
9.492
1
O3. D.U.
281
NO,/NO.
1.00
100
1.00
1.00
0.77
0.65
067
076
095
1.00
100
100
0.90
1

Olid, %/hr
4.326
3.997
3.883
3.934
0.948
3.956
4.958
2.359
0.714
4.577
4.526
4.488
3.SSS

Base Eq.
0_0»96
Tot. Nit, ppm
0.00571
0.00469
0.00464
0.00044
0.00250
0.00562
0.00616
0.00548
0.00238
0.00020
0.00610
0.00596
0.00416
Base Nit.
0.00(1372
PM Nit, ppm
0.000830
Equil. Frac. 0.1998
Base Eq. 	
021/7
Tot. Nil, ppm
0.00332
0.00274
0.00236
0.00294
0.00061
0.00140
0.00164
0.00090
0.00044
0.00416
0.004JI
0.00428
0.00242
Base Nil.
0.000513
PM Nil. ppm
0.000841
n ij*i
Equil. rrac »..»••««

-------
,E j il(i|ipr\V<-«i p.1121 Latitude Longitude T. Zone Albedo 1 Yean 2005
htyt.nne 4115 KM82 70 008 |
Dale
2/1 VOS


Time
0
2
4
6
8
10
12
14
16
18
20
22
Avrrage
Winter:
T...,gradFT.ll.,gradF RHI RH2 KIIJ RH4 Cloud C. % p.mb
407 17.9 60 44 46 60 62 8088
t..., b t«ta, b 1^1 t,fcj t,M 1,44
14 20 5 II 17 23
T.gradK RH,% HApM* Cloud C. % OJt ppm VOC.ppmC NO., ppm NO2, ppm
267.4 60.0 2766 62 0.0118 0.3864 0.0368 00368
26S.3 60.0 2330 62 0.0119 03597 0.0376 00376
2674 60.0 2766 62 001 IS 02992 00343 00343
2695 573 3102 62 00091 0.279S 00531 00531
2717 520 3292 62 00115 03212 00791 00633
273.8 467 3447 62 00199 03199 00617 00419
275.9 443 3811 62 0.0243 0.2519 00718 00496
278.0 45.0 4491 62 0.0252 0.2356 0.1004 00733
2759 457 3926 62 00197 0.2663 00974 00799
2738 483 3571 62 00115 03679 00781 00781
271.7 530 3356 62 0.0112 0.4158 0.0654 00654
2695 577 3120 62 00118 0.4080 00493 00493
271.7 S2.S 3333.4 62.0 00150 0.32S9 0.0638 0.0552


OJ, D.U.
352


N0,/N0.
1.00
100
100
100
080
068
069
073
082
1.00
100
100
0.89




Olid, %/hr
3.262
3.026
3.095
3.048
0.580
2.127
2.241
1.196
0.552
4.446
4.079
3.840
2.624
IINOt/NO. ppm/ppm 0.0438 | NIlr./NO. ppm/ppm 0.0055 g/g 0.0096 |
Base Eq.
o.uw
Tol. Nil, ppm
0.00240
0.00228
0.00212
0.00324
0.00073
0.00178
0.00222
0.00175
0.00088
0.00695
0.00534
0.00379
0.00279
Base Nit.
0.000399
PM Nit, ppm












0000353
Equil. Frac. 0.1265
Dale
J//5/05
Time
0
2
4
6
8
10
12
14
16
IH
:n
•'•'
AMI .ij;e
SIHIIIR:
T_.,gradFT.fa,gradF RHI RH2 RII3 RH4 Cloud C % p.mb
646 397 70 41 43 66 67 810
T.gradK RH,% H,0,ppm Cloud C. % Oj, ppm VOC.ppmC NO., ppm NO2. ppm
279.7 66.7 7511 67 0.0224 0.1236 0.0265 00265
2774 680 6523 67 0.0212 . 01206 0.0214 00214
279.7 69.3 7812 67 00169 0.1248 00275 00275
282.0 65.2 8597 67 00146 01322 0.0598 00490
2843 555 8544 67 00262 0.1244 00450 00333
286.7 45.8 8210 67 00382 0.1138 0.0243 00185
289.0 41.3 8593 67 0.0457 0.1129 00142 00112
291.3 42.0 10113 67 00475 01 171 00180 00146
289.0 42.7 8872 67 0.0444 0.1177 0.0239 0.0201
286.7 46.8 8390 67 00390 0.1204 0.0259 00243
2843 545 8390 67 00272 01246 00271 00271
2«0 622 8199 67 00231 0.1236 00223 00223
2843 53.0 8312.7 67.0 0.0305 0.1213 0.0280 0.0247
O3. D.U.
344
NO,/NO.
1.00
1.00
100
082
074
076
0.79
0.81
084
0.94
100
1.00
0.89


Olid, %/hr
8.402
7.030
6.S35
0.515
1.787
5.287
9.684
6.905
2.607
0.490
10.616
8.495
5.696
HNO./NO. ppm/ppni 0.0885 | Nilr./NO. ppm/ppra 0.0045 g/g 0.0078 |
Base Eq.
OOH6H
Tot. Nit, ppm
0.00445
0.00301
0.00360
0.00051
0.00119
0.00195
0.00217
0.00201
0.00105
0.00024
0.00576
0.00379
0.00248
Base Nit.
0.000215
PM Nil. ppm












0.000125
Equil. Frac. 0.0506

-------
Dale 1
i// »/0S
Time
0
2
4
6
8
10
n
u
16
18
20
22
Average
iummer:
Dale
;///f/0s
Time
0
2
4
6
8
10
12
14
16
18
20
22
Kail:
\. *,
rM.,gradFT_,gradF RHI RH2 RH3 RH4 OoudC.% p.mb
808 52.8 68 35 37 61 SI 8153
T pradK RH. % HiO.Dpm Cloud C. % Oi, ppm VOC, ppmC NO,, ppm NO2, ppm
287.3 62.2 11555 SI 00219 0.3298 00264 00264
284.7 64.5 10110 SI 00213 0.3160 0.0233 00233
287.3 668 12426 . SI 00180 0.3314 0.0287 00287
289.9 62.S 13711 SI 0.0123 0.3343 00560 00487
292.S SIS 13)13 SI 0.0233 0.3084 0.0470 00353
29S.1 40.S 12279 SI 0.0401 0.3413 0.0271 00214
297.7 3S.3 I2S29 31 0.0496 0.3299 0.0183 00148
300.3 36.0 14197 31 0.0303 0.3297 0.0214 00177
297.7 36.7 13003 31 0.0449 0.3294 0.0260 00224
2951 410 12431 SI 00362 03457 00273 00259
292.S 49.0 I266S 31 0.02S3 0.3263 0.0311 00311

292.5 50.3 12621.6 SI.O 0.0304 O.J287 Q.OJOI 0.0270
HNOv/NO. ppm/pp* 0.1277 | NttrJNO. pp*/pp» O.MM g/g 0000°

T,..., grad F T_u, grad F RHI RH2 RH3 RU4 Cloud C% p.mb
465 231 60 43 49 59 56 810
OJ, D.U.
295
NO,/NO.
1.00
1.00
100
0.87
0.73
0.79
0.81
083
0.86
093
1.00
100
0.91
J
O3, D.U.
274
i NO./NO.
T.gradK RH,% H,0,ppm Cloud C.V. O,, ppm VOC.ppmC NO., ppm NO2, ppn. 	
270.4 59.2 3403 56 0.0119 0.3069 0.0495 0.0495 1.00
268.2 59.5 2907 56 . 0.0124 0.258S 00451 00451 1.00
270.4 S9.8 3441 56 00127 0.2391 0.0386 00386 1.00
272.S S7.2 3839 56 0.0098 0.2797 O.OSIS 00515 1.00
274.7 SI.S 4068 36 0.0110 0.3977 0.0662 00516 0.78
276.9 4S.8 4224 36 0.0173 0.2 175 0.0478 00320 0.67
279.0 44.0 4719 36 0.0202 0.1986 0.0472 00321 0.68
281.2 46.0 3721 36 0.0213 0.1800 0.04SI 00342 0.76
2790 48.0 3149 56 00133 01915 0.0672 0.0611 0.91
276.9 507 467Q 36 00098 0.4100 0.0912 00912 100
2747 340 4263 36 00104 04898 0.0554 00554 1.00
272.S 37.3 3870 S6 00107 0.4S23 0.0509 00509 1.00
274.7 S2.I 4191.9 56.0 0.0134 0.3018 0.0544 0.0494 0.90
HNO/NO. ppn/ppM 0.0535 | NUrJNO. ppm/ppu 0.0000 g/g 0.0000 '
UNO./NO. ppm/ppoi 0.0(82 | NUr/NO. ppm/ppm 0.0027 g/g 0.0047
1


Olid, %/hr
9.188
8.537
•.004
0.473
3.330
10.295
16.593
14.003
5.699
0.510
11.391
9.795
8.168

Oiid. %/hr
4.008
3.772
3.961
3.541
0.559
2.008
2.428
1.341
0.533
4.227
3.951
3.861
2.849

Base Eq.
0.0050
Tot. Nil, ppm
0.00-195
0.00398
0.004S9
0.00046
0.00235
0.00441
0.00492
0.00496
0.002SS
0.00026
0.00709
O.OOSS9
0.00384
Bate Nit
0.000019
PM Nil, ppm

0.000000
Equil. Frac. 0.0000
Base Eq.
g.O/j/
Tot. Nil, ppm
0.00397
0.00340
0.00306
0.00365
O.OOOS8
0.00129
0.00 IS6
0.00092
O.OQ06S
0.00771
0.00437
0.00393
0.00292
Base Nit.
0.00(1054
PM Nil, ppm
0.000000
niuuM


-------
c «i s«"«h^«i p.669 Latitude Longitude T. Zone Albedo j Year. 2005
,u,,Hcrq,.c 3505 10662 70 008 |
Dale
2/15/05


Time
0
2
4
6
8
.10
n
14
16
18
20
22
\vci4ge
Winter:
TM.,eniaFT-.,8radF Rill RH2 RII3 RII4 Cloud C.% p.mb
529 259 65 44 32 52 49 8379
t..., b t.h, b IA| *•« If** tiM
14 20 5 II 17 23
T.gradK RH,% HAppai Cloud C.% O,. ppm VOC.ppmC NO., ppm NO2, ppm
272.3 54.2 1463 49 0.0108 0.4539 0.0900 00900
2691 58.5 3107 49 0.0113 0.4219 00684 00684
272.3 62.8 4018 49 0.0103 0.2601 0.0610 00610
274.8 61.5 4716 49 00080 0.3525 00858 00858
277.3 545 4992 49 00096 0.4122 0.1309 00969
2798 475 5178 49 0.0214 0.3586 0.0722 00491
282.3 420 5430 -49 0.0305 0.2440 0.0428 00308
284.8 380 5807 49 0.0340 0.2252 0.0374 00288
282.3 34.0 4394 49 0.0329 0.2514 0.0474 00403
279.8 353 3850 49 0.0163 0.4197 0.0829 0.0829
2773 42.0 3845 49 0.0129 0.4961 0.1136 01136
2748 487 3730 49 001 II 04978 0.0993 00993
277.3 48.3 4377.4 49.0 0.0174 0.3661 0.0776 0.0706


03. D U.
330


NO,/NO.
1.00
1.00
100
100
074
068
072
0.77
085
100
100
1.00
0.90




Olid, %/hr
4.259
4.028
3.946
3.428
0.573
2.864
4.606
3.869
1.160
6.482
5.449
4.SS7
3.76834
MNO./NO. ppm/ppn 0.0708 | Nilr./NO. ppm/ppm 0.0095 g/g 0.0166 |
Base Eq.
0.1375
Tot Nit, ppm
0.00767
O.OOS5I
0.00481
O.OOS88
0.001 II
0.00281
0.00284
0.00223
0.00093
0.01075
0.01 2 J8
0.0090S
O.OOSSO
Base Nit.
0.000 7S6
PM Nit, ppm












0.000740
Equil. Frac. 0.1347
Dale
5//5/05
Time
~
2
4
6
8
10
12
14
16
18
.•ii
' *
A vi-i jjje
S|»mig:
T«.,,gradFT_fc,,tradF RHl RU2 RII3 RH4 Cloud C.% p.mb
799 486 48 25 18 34 41 836
T.gradK RH,% H,0.ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
2SS.3 36.3 5755 41 0.0238 0.3603 0.0373 00373
282.4 41.0 5353 41 0.0209 0.3149 0.0316 00316
285.3 45.7 7238 41 0.0168 0.3404 0.0322 0.0322
288.2 44.2 8458 41 0.0135 0.5132 0.0631 00536
291.1 36.5 8406 41 0.0286 0.2661 0.0450 00342
294.0 28.8 7951 41 0.0440 0.1912 0.0252 00197
296.9 23.8 7839 41 0.0502 0.1610 00195 00156
299.8 21.5 8404 41 0.0508 0.1631 0.0198 00162
296.9 192 6300 41 0.0484 0.1966 0.0231 00197
2940 207 5694 41 00409 0.2751 0.0204 0.0192
291 1 260 5982 41 00268 03231 0.0460 00460
2H8 2 311 3995 41 00252 0.3249 00528 00528
2<" 1 31.3 6947.7 41.0 0.0325 0.28S8 0.0347 0.0315
IINO./NO. ppra/ppm 0.1259 | Nltr./NO. ppm/ppm 0.0423 g/g 0.073S |
O3. D.U.
326
N0,/N0.
1.00
1.00
1.00
085
076
0.78
0.80
082
085
094
100
too
0.90


Olid, %/hr
8.914
7.274
6.617
0.508
3.633
8.813
I2.2S6
10.745
5.002
0.773
10.668
10.387
7.133

Base Eq.
0.3397
Tot. Nil. ppm
0.00665
0.00459
0.00427
0.00054
0.00248
0.00347
0.00383
0.00349
0.00197
0.00030
0.00981
0.01097
0.00436
Base Nil.
0.001 48 J
PM Nit. ppm












0.001465
Equil. Frac. 0.33S7

-------
!>.«-
/m>.    ppm/ppm    0.0919  |  Nltr/NO.   ppm/ppm    0.0171
til
0.0297

-------
• (. Pai-idr O««» pl93;p.809 Latitude Longitude T. Zone Albedo 1 Year: 20415 1
; P., nrUrn, Poland |,img:
T..,. grad F T.O., grad F RHI RH2 RH3 RH4 Cloud C. •/. p,mb
647 486 87 65.5 60.5 79.5 72 10168
T, grad K RH, % 11,0, ppm Cloud C % O,, ppm VOC, pproC NO., ppm NO2, ppm
283.8 82.0 9729 72 0.0209 0.1197 0.0128 00128
282.3 84.5 9067 72 0.0200 0.1147 0.0117 00117
283.8 87.0 10325 72 0.0132 0.1222 0.0223 0.0223
28S.3 79.8 10461 72 0.0154 0.1247 0.0236 00198
286.8 72.7 10501 72 0.0253 0.1077 0.0175 00124
283:3 - 65.5 10427 72 0.0361 0.0998 0.0129 00093
289.8 63.8 II 184 72 0.0440 0.1076 0.0104 0.0078
291.3 62.2 11974 72 00473 O.I 1 12 0.0101 00079
2898 60.5 10597 72 0.0453 0.1178 0.01 II 00091
?883 668 10640 72 00352 0.1243 00128 00116
?»6i 732 10574 72 00250 0.1243 0.0177 00177
•'«•>! 795 10417 72 00219 01197 00158 00158
•'«<•» 7J 1 10491. J 72.0 0.0291 0.1162 0.0149 0.0132
O3, D.U.
363
NO,/NO.
1.00
100
100
0.84
0.71
072
075
0.78
0.82
091
100
100
0.88


Olid, %/br
6.843
6.110
5.291
0.701
4.399
10.568
16.789
15.166
6.980
1.058
9.412
7.929
7.604
HNO./NO. ppm/ppm 0.1189 | Nlir/NO. ppin/ppm 0.0452 g/g 0.0786 |
Base Eq.
0./J7I
Tol. Nil, ppm
0.00176
0.00143
0.00236
0.00028
0.00109
0.00196
0.00262
0.00240
0.00127
0.00025
0.00334
0.00250
0.00177
Base Nil.
0.000774
PM Nil, ppm












0.000674
Equil. Frac. 0.3802

-------
Dale
i/IS/05
Time
0
•>
4
6
8
10
12
14
16
18
'20
'M
Vverage
'ummen
T^eradFT^t""** KUt RH2 RIU RH4 Cloud C.% p.mb
718 550 88 685 S9.S 80 52 10152
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
287.S 82.7 12493 52 0.0133 0.3645 00183 00183
185.9 85.3 11650 52 00123 0.3493 0.0196 00196
287.5 88.0 13303 52 00072 0.3721 0.0248 00248
289.0 81.5 13619 52 0.0074 0.3797 0.0399 00327
290.6 75.0 13836 52 0.0197 0.3281 0.0252 0.0172
292.2 68.5 13934 52 0.0364 0.3037 0.0182 00133
293.7 655 14677 52 0.0494 0.3450 0.0130 00100
295.3 62.5 15410 52 0.0541 0.3384 0.0103 0.0082
293.7 59.5 13325 52 0.0514 0.3645 0.0117 00097
292.2 66.3 13491 52 0.0374 0.3785 0.0172 0.0158
290.6 73.2 13496 52 0.0195 0.3785 0.0228 0.0228
289.0 80.0 13367 52 0.0153 0.3645 0.0199 0.0199
290.6 74.0 13554.1 Sit 10269 0.3554 0.0201 0.0177
O3, D.U.
315
NO,/NO.
1.00
100
1.00
0.82
0.68
0.73
0.77
0.80
083
0.92
1.00
100
0.8*


Olid, %/hr
5.371
4.9S9
3.164
0.67)
6.921
17.125
24.967
22.643
12.682
1.S23
1.440
6.426
9.575
HNO./NO. ppm/ppm •.12S3 | NltrJNO, ppm/ppn OJ304 t/I O.OS28 |
Base Eq.
0.29/9
Tot. Nit, ppm
0.00197
0.00194
0.00 157
0.00044
0.00238
0.00456
0.00500
0.00372
0.00246
0.00048
0.00384
0.00256
0.002S8
Base Nit.
0.000760
PM Nit. ppm












0.000610
EquiL Frac. 0.2367
Dale
f ;/; vt/s
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
fall:
T..., grad F T^., grad F RHI RH2 RH3 RH4 Cloud C % p.mb
576 45.1 85 755 68.5 80 82 1016 1
T.gradK RII.V. H,0. ppm Cloud C % O,, ppm VOC.ppmC NO., ppm NO2. ppm
281.6 81.7 8314 82 0.0083 0.3791 0.0551 0.0551
280.4 83.3 7836 82 0.0092 0.3171 0.0412 00412
281.6 85.0 865S 82 0.0109 0.2515 0.0214 00214
282.7 81.8 9014 82 0.0065 0.2807 0.0499 00499
283.9 78.7 9367 82 0.0085 0.2989 0.0564 00445
285.0 75.5 9712 82 0.0177 0.1782 0.0303 00215
286.2 73.2 10160 82 0.0233 0.1567 0.0226 00163
287.4 70.8 10611 82 00247 0.1494 0.0198 00154
286.2 68.5 9509 82 0.0164 0.2114 00310 0.0282
285.0 723 9303 82 0.0078 0.5358 0.0808 00808
283.9 76.2 9069 82 00080 0.6197 00922 00922
282.7 80.0 8811 82 0.0078 0.5358 00767 00767
283.9 77.3 9196.6 82.0 0.0124 0.3262 0.0481 0.04S3
O3, D.U.
272
NO,/NO.
1.00
1.00
1.00
1.00
0.79
071
0.72
0.78
091
100
100
100
0.91


Oild. %/hr
3.803
3.920
4.107
2.985
0.712
2.630
4.207
2.S3I
0.694
3.777
3.906
3.733
3.110
IINO./NO, ppm/ppa M617 | NltrJNO. ppm/ppm OJ137 ffe 0.0239 |
BaseEq.
0.2*40
Tot. Nit, ppm
0.00419
0.00323
0.00176
0.00298
0.00063
0.00113
0.00137
0.00087
0.00039
0.00610
0.00721
0.00573
0.00297
Base Nit.
O.OOU7S4
PM Nit, ppm












0.000661
EquiL Frac 0.2228
i:   IMMO./NO.   pp«/PPai    Q.OtlS  | NUr./NO.   ppm/ppa     0.0254
t/f
0.0442  |

-------
g. 7,Southe
i Anpcics (
D;iie
I/I V05
Time
0
2
4
6
8
10
12
14
16
IH
20
2 >
\vt-ijge
Winter:
Dale
J//V/0S
Titnc
0
2
4
6
8
ID
12
14
16
/.S
. i '
A v i i a j;c
Spiing:
_ t-Mt .111 latitude Loneilude T. Zone Albedo 1 Year. 2005 |
Pivir rrntrrl ' VI 91 1184 8.0 008 1
r-..,gr«IFT.-.,tr.dF RHI RH2 RII3 RH4 Cloud C % p.mb
685 492 71 54 52 70 47 10141
l.«.b t«to.l» till *'M 1*» I'M
14 20 4 10 16 22
T.gradK RH,% HA PR* CkwdC. •/. O,, ppn VOC.ppmC NO., ppm NO2, ppm
284.S 70.3 1734 47 0.0089 O.SI37 01135 01135
282.7 707 7786 47 00096 03483 0 1001 0)001
284.5 710 8817 47 00123 03195 0.0389 00389
286.3 653 9128 47 00069 03070 01332 01332
2881 59.7 9362 47 00099 03977 0.1425 00969
289.9 54.0 9499 47 0.0221 0.2976 00714 00471
2916 53.3 10506 47 00271 02036 00472 00316
293 4 527 11599 47 00292 0 1758 00376 00270
2916 520 10242 47 00265 01818 0.0389 00323
2899 580 10206 47 0.0131 0.3819 0.0593 00593
288 1 • 640 10044 47 0.0093 0.5941 0.0882 00882
2863 700 9782 47 0.0075 0.6122 0.1237 01237
288.1 61.8 9642.1 47.0 0.0152 0.3611 0.0829 0.0743
IINO^NO. ppm/ppm 0.0697 | Nilr./NO. ppm/ppm 0.04IS g/g 0.0722
TM., grid FT.*, grad F RHI RII2 RH3 RH4 Cloud C % p.mb
73.2 56.6 81 56 55 75 48 10102
T.gradK RH,% H,0,pPm Cloud C. % O,. ppm VOC.ppmC NO., ppm NO2. ppm
288.4 77.0 12369 48 0.0190 0.3558 0.0431 0.0431
286.8 79.0 II48S 48 0.0204 0.3873 0.0393 00393
2884 81.0 13015 48 0.0209 0.4208 0.0182 00182
289.9 72.7 12880 48 00176 0.4632 0.0562 00467
291.4 64.3 12563 48 0.0294 0.3474 0.0407 00293
293.0 56.0 12033 48 00438 0.2355 00372 00275
2945 55.7 13156 48 0.0505 0.1318 0.0324 00246
296.0 55.3 14367 48 00524 0.1425 0.0305 00241
2945 55.0 12998 48 00499 0.1354 00303 00252
';•>> o 61 7 I32S8 48 00349 0 1461 0.0309 00290
2'JI 4 68 3 13348 48 00257 0.3136 0.0341 00341
2X99 750 13296 48 00208 03171 00409 00409
2'' 1.4 66.8 12897.3 48.0 0.0321 0.2831 0.0361 0.0318
iimvnu. ppm/ppm 0.1302 | Nlir./NO. ppm/ppm O.O63.1 g/g o.iuo

OJ, D.U.
317
NO. /NO
1.00
100
100
100
068
066
0.67
072
083
100
1.00
1.00
0.88
1 	 	
O3. D.U.
333
NOj/NO,
1.00
100
100
0.83
072
074
0.76
079
083
094
100
100
0.88
|

Oiid %/hr
4.4 IS
4.629
S.340
3.480
0.678
3.831
S.SOS
4.SS6
1.239
6.229
4.614
3.809
4.027

Oiid. %/hr
8.956
9.382
8.501
0.944
7.009
10.404
10.007
8.862
3.681
0.643
11.860
9.858
7.509
Base Eq.
0.5V/5
0.01002
0.00927
0.00416
0.00927
0.00131
0.00361
0.00348
0.00246
0.00080
0.00739
0.00813
0.011942
O.OUS78
Equil. Frac
Base Eq.
fL4V6S
Tot. Nil, ppm
0.00772
0.00737
0.00309
0.00088
0.00411
O.OOS72
0.00492
0.00426
0.00185
0.00037
0.00808
0.00807
000470
Base Nit.
O.OOJ43S
PM Nil, ppm
0.003441
0.5955
Base Nil.
0.002336
PM Nil, ppm

0.002360
EquiL Krae. 0.5017
1 . — - 	 	

-------
Date
fl/M/Oi
Time
0
2
4
6
8
10
.-
14
16
18
10
22
Average
iummen
T..., trad FT_u, trad F RH1 RU2 RUJ RH4 Cloud C % p.mb
84 | 65 3 84 56 55 79 26 10096
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC. ppmC NO., ppm NO2, ppm
2934 80.7 17849 26 00083 08633 O.OS29 00529
29|.7 82.3 16338 26 00077 07386 00551 00551
293.4 84.0 I8S92 26 0.0075 0.8408 0.0209 00209
295.1 74.7 I838S 26 0.0074 0.9266 0.0994 00765
296.9 65.3 17875 26 0.0260 0.5425 0.0707 00502
298.6 56.0 I699S 26 0.0511 0.4701 0.0478 00368
3M.< 55.7 11733 26 0.0609 0.2305 0.0331 00262
302.1 55.3 20621 26 0.0620 0.1899 0.0279 00226
300.4 550 18507 26 00541 0.2080 0.0286 00240
2986 63.0 19135 26 0.0422 0.2215 0.0341 00327
296.9 71.0 19437 26 00216 07684 00411 00411
295.1 79.0 19464 26 0.0105 0.9809 0.0484 00484
296.9 68.S 18494.4 26.0 0.0299 0.5817 0.0467 0.0406
HNO>/NO. ppu/ppM 0.1121 | Nit r /NO. ppWppn •••324 t>t O.OS64
O3, D.U.
309
NO,/NO.
1.00
1.00
1.00
0.77
071
077
079
0.81
0.84
096
1.00
100
0.89


Olid, %/hr
4.203
3.909
3.440
0.628
6.390
14.972
17.879
1S.971
6.483
0.606
10.814
5.346
7.553

Base Eq.
0.2828
Tot. Nil, ppm
0.0044S
000431
0.00143
0.00096
0.00642
0.01103
0.00935
0.00722
0.00311
0.00040
0.00890
0.00517
0.00523
Base NiL
0.001479
PM Nil, ppm












0.001514
Equil. Frac. 0.2895
Dale
////f/WS
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Pill:
T..., grad F T.,., trad F RHI RH2 RH3 RH4 Cloud C.% p,mb 1 OJ, D.U.
727 527 61 45 49 62 37 1013 1 | 276
T,gradK RH, % H,0,ppm Cloud C. % O,, ppm VOC.ppraC NO., ppm NO2, ppm NOi/NO.
286.5 61.7 8749 37 0.0101 I.223S 0.1452 0.1452 1.00
284.7 61.3 7701 37 00114 0.7971 0.1213 0.1213 100
2865 61.0 86S4 37 0.0137 0.7157 0.0498 00498 1.00
2884 S5.7 1904 37 0.0080 0.8381 0.1536 0.1536 1.00
290.2 50.3 9061 37 0.0123 0.8354 0.1409 00986 0.70
292.1 45.0 9102 37 0.0239 0.4810 0.0627 0.0426 0.68
293.9 46.3 10518 37 0.0292 0.3731 0.0420 00298 0.71
295.8 47.7 12124 37 0.0292 0.2848 0.0378 00288 0.76
293.9 49.0 II 126 37 00225 0.3731 00499 00454 0.91
292.1 -53.3 I079S 37 0.0107 0.8748 00955 00955 1 00
290.2 V57.7 10387 37 0.0090 1.1868 0.1407 01407 1.00
288.4 62.0 9921 37 0.0092 1.2479 0.1602 01602 1.00
290.2 54.3 97S3.S 37.0 0.01S8 0.7693 0.1000 0.0926 0.90


Oxid. %/br
S.082
5.574
6.189
4.062
1.550
6.182
8.364
4.781
0.637
5.389
4.629
4.740
4.765
IINO./NO. ppm/ppm 8.0851 | Nllr/NO. ppn/ppm 0.0303 tit 0.0528 |
Base Eq.
0.3548
Tot. Nil, ppm
0.01476
0.01352
0.00617
0.01248
0.00306
0.00527
0.00499
0.00275
0.00058
0.01030
0.01302
0.01519
0.00851
Base Nil.
0.00 JO 19
PM Nil, ppm












0.0030J4
Equil. Frac. 0.3566
,,    Q.Q»H
ppm/ppa
t/C
0.0477

-------
>. 8, Rura
lirauo, Ne
Dale
/IS/05


Time
0
2
4
6
8
10
12
14
16
IS
20
22
Average
.Vinlcr:
I Fast p_l97;p.349:D. Latitude (Longitude T. Zone Albedo 1 Yean 2UUS |
wVork 3880 8210 53 005 |
T...,gr«dFT^.,tradF RH1 RH2 RIU RH4 Cloud C. % p.mb j O3.D.U.
43 I 264 69.3 733 593 613 621 9962 312
t..«,b I.*., n 1*1 l,kj t,u 1^4
14 20 1 "7 13 19
T.gradK RH.% HAtf« Ctai4C% OJt ppm VOC.ppmC NO., ppm NO2, ppm NO,/NO.
271.6 68.0 3479 62.7 0.0233 0.0389 00155 00155 1.00
2700 70.0 3193 62.7 0.0216 00380 0.0171 00171 1.00
271.6 71.3 3650 62.7 0.0206 0.0420 00179 00179 1.00
2731 72.7 4165 62.7 00195 00525 0.0171 00171 100
274.7 710 4551 62.7 00212 00525 00182 00168 092
2762 66.3 4749 62.7 00285 00591 00162 00120 074
2778 61.7 4924 62.7 0.0334 00428 0.0138 00099 0.72
279.3 59.7 5306 62.7 00361 0.0444 0.0132 00098 0.74
2778 603 4817 62.7 0.0365 0.0510 0.0153 00125 0.82
2762 610 4367 62.7 0.0306 0.0440 0.0183 00183 1.00
2747 627 4016 62.7 00267 0.0488 00191 00191 100
273.1 65.3 3744 62.7 0.0250 0.0475 0.0170 00170 100
274.7 6S.8 4246.6 62.7 0.0269 0.0468 0.0166 O.OIS2 0.91


Olid. %/br
4.710
4.381
4.672
4.686
0.768
2.097
3.542
3.436
1.289
7.627
6.523
5.533
4.105
IINtVNO. ppm/ppm 0.0798 | Nilr./NO. pp«/ppm 0.0239 g/g 0.04 IS j

Base Eq.
02125
Tot. Nil, ppm
0.00146
0.00 ISO
0.00167
0.00160
0.00026
O.OOOSO
0.00070
0.00067
0.00032
0.00279
0.00249
0.00188
0.00132
Base Nit.
0.00028 1
PM Nil, ppm












0.00039S
EquiL Frac. 0.2991
Dale
J//5/05
Time
0
2
4
6
8
10
12
.14
lf>
n
1 1

*...., ,;r
Sjniiig:
T...,gradFT^.,|radF RHl RH2 RIU RH4 Cloud CV. p.mb | O3.D.U.
738 53.4 73.7 77.0 53.7 57.3 587 9932 345
T.gradK RH,% H,0,ppm Cloud C.% O,, ppm VOC.ppnC NO., ppm NO2, ppm NO,/NO.
286.9 70.9 10550 58.7 0.0273 0.0283 0.0099 00099 1.00
285.0 74.2 9750 58.7 0.0243 0.0311 0.0098 0.0098 1.00
286.9 75.3 11206 58.7 0.0211 00327 0.0117 00117 1.00
288.8 76.4 12854 58.7 0.0207 0.0362 0.0137 0.0126 0.92
290.7 73.1 13868 58.7 0.0320 0.0372 0.0097 0.0076 0.78
292.6 65.3 13950 58.7 0.0419 0.0295 0.0074 00056 0.76
294.5 57.6 13808 58.7 0.0479 0.0266 0.0068 00053 0.77
296.4 54.3 14612 587 00491 00248 00061 00049 0.79
2945 555 13312 587 00497 00234 00068 00056 082
2926 567 12102 587 00470 00275 0.0072 00065 091
2'>07 601 11380 587 00386 0.0358 00099 00099 1.00
•'««« 65) 11006 587 00323 00382 00109 00109 100
!•'«) 7 654 123665 58.7 O.OJ60 0.0309 0.0092 0.0084 0.90
UNO./NO. ppm/ppm 0.1474 | NKr./NO. ppm/ppm 0.043S g/g 0.07S7 |


Olid, %/hr
8.274
7.103
7.063
0.65S
3.374
11.956
19.281
19.261
7.454
1.069
12.002
10.330
8.986

Base Eq.
0.1579
Tot. Nit, ppm
0.00163
0.00140
0.00165
0.00016
0.00051
0.00134
0.00203
0.00187
0.00083
0.00014
0.00238
0.00225
0.00135
Base Nil.
0.000213
PM Nit, ppm












0.000399
Cquil. Frac. 0.2954

-------
Dale
K//5/0S
Time
0
2
4
6
8
10
12
14
16
13
;:
22
Average
Summer.
T_... trad FT,*., 8rad F RHI RII2 KII3 RH4 Cloud C % p.mb | O3.D.U.
845 658 807 843 583 650 567 9961 316
T. grad K Rll, % H,0, ppm Ooud C. •/• O,, ppm VOC, ppmC NO., ppm NO2, ppm NO,/NO.
293.7 781 17811 56.7 0.0186 0.0267 0.0114 0.0114 1.00
291.9 813 16655 56.7 0.0159 00312 0.0116 00116 100
293.7 82.5 18833 567 00135 0.0313 0.0138 00138 100
295.4 83.7 21263 56.7 0.0124 0.0434 0.0149 0.0145 0.97
297.1 80.0 22562 S6.7 0.0230 0.0475 0.0106 0.0081 0.76
298.8 71.3 22296 S6.7 0.0352 0.0263 0.0092 00070 0.76
300.6 62.7 2167S S6.7 0.0414 0.0272 0.0086 0.0067 0.77
302.3 59.4 22739 56.7 0.0429 0.0169 0.0073 00057 0.78
300.6 61.7 21327 56.7 00425 00172 0.0071 00058 082
2988 639 19950 56.7 00372 00229 00072 00065 091
291,1 676 19041 567 00286 00319 00107 00107 100
295.4 728 18477 56.7 00223 0.0300 0.0120 00120 1.00
297.1 7X1 20219.* 54.7 0.0278 0.0294 0.0104 0.0095 0.90


Olid, %/hr
7.358
6.203
S.716
0.610
3.162
10.799
19.354
19.444
8.423
0.918
11.286
8.996
8.522
HNO./NO. ppm/ppn •.1395 | Nltr/NO. fpmlffm 0.0335 t/C O.OSttJ |
Base Eq.
0.0727
Tot. Nit, ppm
0.00168
0.00144
0.00 IS8
0.00018
0.00051
0.00152
0.00258
0.00221
0.00098
0.00012
0.00242
0.002 IS
0.00145
Base Nit.
0000 105
PM Nil, ppm












0.000348
Equil. Frac. 0.2403
IKile
II/IWS
Time •
0
->
4
6
S
10
12
14
16
18
20
22
Average
Kail:
T..., ftrad F T.,., cnid F Rill RH2 RH3 HIM Cloud C% p,mb | O3.D.U.
54JJ 378 740 787 59.3 65.3 61.3 9% 5 278
T.gradK Rll.% 11)0, ppm Cloud C. % O,. ppm VOC.ppmC NO., ppm NO2, ppm NO,/NO.
278.0 72.6 5872 61.3 0.0170 0.0549 0.0101 0.0101 1.00
2764 748 5417 613 00160 0.0574 00101 00101 100
278.0 76.3 6178 61.3 0.0149 0.0559 0.0087 00087 100
279.5 77.9 7033 61.3 0.0138 0.0737 0.0108 00108 1.00
281.1 754 7589 61.3 00164 0.0769 0.0127 00113 0.89
282.7 69.0 7720 61.3 0.0237 0.0518 0.0114 00083 0.73
284.2 626 7774 61. 0.0284 0.0377 0.0087 00063 072
285.8 60.3 8319 61. 0.0307 0.0345 0.0086 0.0066 0.77
2842 623 7747 61. 00291 0.0455 00100 00089 0.89
282.7 643 7196 61. 00220 00618 00129 00129 100
281.1 668 6715 61 0.0192 00665 0.0130 00130 1 00
279.5 697 6289 61 0.0186 00606 00117 00117 100
281.1 69.3 6987.4 61.3 0.0208 0.0564 0.0107 0.0099 0.92
IINO./NO. ppm/ppa •.•449 | NUr./NO. ppm/ppm 0.0293 t/t O.OSIO |


Oiid. %/hr
3.842
3.434
3.196
3.618
0.713
2.635
4.504
3.167
0.689
6.246
5.293
4.725
3.505

Base Eq.
0.2291
Tot. Nit, ppm
0.00078
0.00069
0.00056
0.00078
0.00016
0.00044
0.00056
0.00042
0.00012
0.00162
0.00138
0.001 II
0.00072
Equil. Frac.
Base NiL
0.000165
PM Nit, ppm












0.0003 IS
0.4379
W..I.
ppm/ppa     0.1033   |  NUr./NO.   ppm/pp«     0.0311
                                                                                            O.OS4I

-------
B •», Rural West p.669:p.809;p.l Latitude Longitude T. Zone Albedo 1 Year. 2005
m,,..erqiie. Portland. Suit Lake Ci 40.47 11373 73 005 |
Date
wvo*


Time
0
2
4
6
8
10
12
14
16
18
20
22
ivcrage
Vinicr:
T...,eradFT^..fradr RHI RH2 RII3 RH4 Cloud C.% p,mb
49 .218 76 6267 53 6967 67.67 90913
l..,,b ti»b I*, t*, U, 1*,
14 20 S 11 17 23
T.gradK Rfl,% HA if* Cla«IC% O*. ppm VOC.ppmC NO., ppm NO2, ppm
273.2 70.7 4474 67.67 0.0280 0.0419 0.0065 0.0065
271.4 72.8 4015 67.67 0.0274 00315 0.0081 00081
273.2 74.9 4741 67.67 0.0277 0.0381 0.0049 00049
275.1 73.8 5344 67.67 00266 0.0451 0.0121 00121
2770 693 S738 67.67 0.0282 00502 001 10 00105
2788 649 6123 67.67 0.0330 0.0409 00065 00053
2807 61 1 6556 67.67 0.0349 0.0355 0.0056 00043
2826 57.8 7053 67.67 0.0365 00225 00055 00044
2807 546 5862 67.67 0.0352 00422 0.0061 00052
2788 558 5261 67.67 0.0290 0.0541 0.0119 00(19
2770 61.3 5075 67.67 0.0259 0.0534 0.0122 00122
275 1 669 4844 67.67 0.0240 00441 00095 00095
277.0 65.3 5424.0 67.7 0.0297 0.0416 0.0083 0.0079


03, D.U.
349


NO,/NO.
1.00
1.00
100
100
0.96
081
077
0.79
085
100
100
100
0.93




Olid, %/hr
3.877
4.087
3.309
6.122
0.6SI
2.370
5.101
4.006
1.921
6.540
5.821
4564
4.031
I1N(VNO. ppm/ppm 0.0820 | NltrJNO. ppm/ppn 0.0108 t/g 0.0188 |
Base Eq.
0.17ft
Tot Nit, ppm
0.00050
0.00066
0.00033
0.00148
0.00014
0.00025
0.00044
0.00035
0.00020
0.001 56
0.00142
0.00087
0.00068
Base NiL
0.000120
PM Nit, ppm












0.000090
Equil. Frac. 0.1318
Dale
t//5/05
Time
0
2
4
6
8
10
12
14
16
IH
:<>
> *
Average
Spring:
T...,gradFT.*>,tradF RHI * RH2 RH3 RH4 Cloud C% p.mb
731 467 66 43.33 34.67 55 56.67 9073
T.gradK RH,% H,0,ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2. ppm
2838 56.8 7516 56.67 0.0380 0.0452 0.0046 00046
281.3 60.5 6787 5667 00366 0.0485 0.0042 00042
283.8 64.2 8489 56.67 0.0327 0.0495 0.0045 00045
286.2 62.2 9675 56.67 0.0353 0.0549 0.0067 00064
288.7 54.7 9955 5667 0.0422 0.0489 00051 00043
291.1 47.1 10017 56.67 0.0463 0.0380 0.0041 00033
293.5 41.9 10370 56.67 00496 0.0285 0.0040 00032
296.0 39.0 11212 56.67 0.0515 0.0274 0.0043 00035
293.5 36.1 8935 56.67 0.0533 0.0284 0.0047 00039
3911 381 8086 56.67 00501 00275 0.0055 00050
2887 448 8159 5667 00440 00317 0.0063 00063
J»62 516 8020 56.67 00380 0.0394 0.0058 00058
288.7 49.S 8935.0 56.7 0.0431 0.0390 0.0050 0.0046
O3, D.U.
349
NO./NO.
1.00
100
1.00
096
084
08
079
081
084
0.91
100
100
0.91


Olid, %/hr
6.088
5.036
S.S99
0.587
5.016
15.646
22.801
20.679
8.685
1.347
8.935
7.321
8.978
IINOJNO. ppm/ppm 0.1452 | NIlr./NO. ppm/ppm 0.0214 g/g 0.0372 |
Base Eq.
0.2021
Tot. Nil, ppm
0.00057
0.00042
0.00050
0.00008
0.00043
0.00103
0.00144
0.00143
0.00068
0.00014
0.00112
0.00084
0.00072
Base Nil.
0.000146
PM Nit, ppm












0.000106
EquiL Frac. 0.1471

-------
Dale 1

0
2
•1
6
8
10
12
l-l
16
18
20
22
tverage
Summer:
n. ue
1 I/IS'0%

0
2
4
6 *
8
10
12
U
16
18
20
22
Average
Fall:
rM.,gradFT.to,gradF RHI RH2 RII3 R1I4 Cloud C. % |i,mb
86 594 6767 4433 33 5567 4367 90917
T, grad K RH, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2908 57.7 12064 43.67 0.0367 0.0603 00060 00060
2884 61.7 11026 43.67 0.0354 0.0746 0.0053 00053
290.8 65.7 13746 43.67 0.0286 0.0764 0.0069 0.0069
2933 638 1S578 4367 0.0328 0.1081 0.0122 00121
295.8 560 15904 43.67 0.0389 0.0689 00083 00071
298.2 48.2 ISS77 43.67 0.0433 00425 0.0059 00047
300.7 424 16158 43.67 00492 0.0338 0.0054 00043
303.2 38.7 16979 43.67 00542 0.0312 0.0051 00042
300.7 34.9 13267 43.67 0.0545 0.0230 0.0054 00046
298.2 36.8 12091 43.67 00508 00238 0.0072 00067
2958 44.3 12575 * 43.67 00447 00399 00093 00093
293.3 51.9 12660 43.67 0.0385 O.OSI2 0.0083 00083
295.8 50.2 13999.8 43.7 0.0423 0.0521 0.0071 00066
HNO^NO. ppm/ppn t.1899 | NltiJNO. ppm/pp* 0.0106 g/g 0.0185
Y..., grad F T_*, grad F RHI RH2 RH3 RH4 Cloud C. % p.mb
5)2 328 75.67 6067 56.33 70.67 61.33 90933
T.gradK Rll.% 11,0. ppm Cloud C •/• O,, ppm VOC.ppmC NO., ppm NO2, ppm
27S.5 71.5 5328 61.33 0.0235 0.0459 0.0121 00121
2736 73.2 4758 61 33 . 00236 0.0441 00098 00098
275.5 74.8 5577 61.33 00237 0.0438 00050 00050
277.4 732 6234 6133 00221 0.0521 0.0133 00133
279.3 68.2 6627 61.33 0.0255 00482 00126 00120
281.2 63.2 6992 61.33 0.0308 0.0258 0.0076 00062
283.1 59.9 7540 61.33 0.0331 00250 00062 00048
284.9 58.5 8347 61.33 0.0336 0.0280 0.0067 0.0054
283.1 57 1 7175 61.33 00296 0.0353 00104 00094
281.2 58.7 6498 61.33 0.0234 0.0561 0.0160 00160
279.3 63.5 6172 61.33 00239 00507 00122 00122
277.4 683 5817 6133 00203 00454 00117 00117
279.3 65.8 4422.0 61.3 0.0261 0.0417 0.0103 0.0098
HNO^NO. ppm/ppa 0.0811 | Nltr/NO. ppm/ppm 0.0031 g/g 0.0054
O3, D.U.
301
NO,/NO.
1.00
1.00
100
0.99
0.85
080
0.80
083
085
093
100
100
0.92
!
1
03, D.U.
273
NO,/NO.
100
100
1.00
1.00
095
081
0.78
081
090
100
1.00
100
0.94

Oiid. %/hr
9.294
7.966
8.418
0.543
4.172
17.038
28.946
29.415
11.359
1.104
14.122
11.704
12.007

Oiid. %/hr
5.450
4.499
3.254
5.891
0.634
1.837
4.083
3.058
0.608
6.905
6.077
4.879
3.931

Base Eq.
OOV95
Tot. Nit, ppm
0.001 11
0.00084
0.00117
0.00013
0.00059
0.00161
0.002SO
0.00249
0.00105
0.000 IS
0.00263
0.00194
0.00135
Equil. Frac.
Base Eq.
ft0v|S
Tot. Nit, ppm
0.00132
0.00088
0.00032
0.00156
0.000 IS
0.00023
0.00039
0.00033
0.000 II
0.00221
0.00149
0.00 IN
0.00085
Base NiL
0.000134
PM Nit, ppm
0.000076
0.0559
Base NiL
0.000077
PM Nit, ppm
0.000032
Equil. Frac. U.UJ/B
l...i.   JUMO./NO.   ppm/ppm    0.1173  j NUr/NO.   ppm/pp»     0.9O99
III
0.0172

-------
e i pnrihrati p.693 Latitude Longitude T. Zone Albedo 1 	 Yean 2010 J
-.IWI^roni^lPark) 4078 7397 SO 008 I
Dale
2/1 VI 0


Time
0
2
J
6
8
10
12
14
16
18
20
22
Average
Winlcr:
T«.,gr«dFT^:,«rtdF RH1 RHZ RII3 RIM Cloud C. % |i,mb
40.1 266 64 68 58 59 58 10137
1.... b I.4.. b 1*1 <•« '1*1 tfM
14 20 1 7 13 19
T.gradK RH,% H,t,npB CtoudC. •/. O,, ppm VOC.ppmC NO., ppm NO2, ppm
271.4 632 1132 58 0.0143 0.4309 0.0902 00902
270.2 647 2922 58 00143 03847 0.0774 00774
271.4 660 3273 58 0.0133 04029 00758 00758
272.7 67.3 3661 58 00115 0.5004 0.1040 01040
2739 663 3950 58 00151 0.4207 01350 01066
275.2 630 4105 58 00215 0.3388 00947 00615
276.4 597 4250 58 00240 0.2200 00731 00461
277.7 582 4525 58 0.0251 0.1613 00681 00463
276.4 585 4167 58 0.0209 0.2010 00787 00630
275.2 58.8 3833 58 0.0121 0.3850 0.0931 00931
273.9 59.8 3562 58 0.0124 0.4592 00974 00974
2727 615 3343 58 0.0131 0.4812 00952 00952
273.9 62.3 3727.0 S8.0 O.OI6S 0.36SS 0.0902 0.0797


03, D.U.
326


N0,/N0.
1.00
100
1.00
1.00
0.79
065
0.63
068
080
1.00
1.00
100
0.88




Oiid. %/hr
S.441
S.I09
4.929
4.738
0.796
2.431
3.076
1.874
0.773
4.944
S.009
S.168
3.691
IINO./NO. ppm/ppm 0.0684 | NIlr./NO. ppm/ppm 0.0119 g/g 0.0207 |
Base Eq.
0,1662
Tot Nil, ppm
0.00982
0.00791
0.00747
0.0098S
0.00170
0.00299
0.00283
0.00173
0.00097
0.00921
0.0097S
0.00984
0.00617
Base Nil.
0.001026
PM Nil, ppm












0.00 1075
Equil. Frac. 0.1740
Date
5/15/10
Time
0
2
4
6
8
10
12
14
16
IX
:<>

AMI jj;r
Spiing:
TM.,gradFT^.,gradF RHl RH2 RHJ RH4 Cloud C% p.mb
71.5 53.3 70 71 53 60 57 101 13
T.gradK RH,% H,0,ppni Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
286.7 68.3 9822 57 0.0225 0.2450 0.0493 00493
285.0 70.2 9027 57 0.0224 0.2033 0.0452 00452
286.7 70.5 10135 57 0.0205 0.1894 0.0514 00514
288.4 70.8 11361 57 00186 0.2727 00739 00613
290.0 68.0 12150 57 00280 03660 0.0571 00406
291.7 62.0 12320 57 0.0364 0.1717 0.0446 00317
293.4 56.0 12357 57 0.0426 0.1527 0.0326 00242
295.1 54.2 13260 57 00443 0.1152 00352 00271
293.4 56.5 12468 57 0.0432 0.1202 0.0358 00290
^'7 588 11687 57 00333 01541 00341 00314
2">0 617 11011 57 00245 02141 00449 00449
?XH4 650 10422 57 00226 02569 0.0564 00564
2'JOO 63.S 113352 S7.0 0.0299 0.20S1 0.0467 0.0410
HNO./NO. ppm/ppm 0.1236 | Nltr./NO. ppm/ppm 0.0048 g/g 0.0084 }
03, D.U.
358
NO,/NO.
1.00
1.00
1.00
083
071
0.71
074
0.77
081
092
100
1.00
0.87


Oiid. %/hr
10.353
9.971
9.SS8
0.676
4.935
6.213
8.763
S.603
2.648
0.651
11.364
10.693
6.786

Base Eq.
00285
Tot. Nil, ppm
0.01022
0.00901
0.00982
0.00083
0.00400
0.00394
0.00423
0.00304
0.00154
0.00041
0.01020
0.01206
0.00577
Base Nil.
OOOOI&S
PM Nil, ppm












0.000226
Equil. Frac. 0.0392

-------
Dale
a/ivio
Time
0
2
4
6
8
10
n
14
16
18
20
22
Average
Summer
TM.,gradFT.*,tradF RH1 RH2 RH3 RII4 Cloud C V. p.mb
837 67.1 76 78 57 66 55 10142
T, grad K RH, % H,0, ppn Cloud C. •/• O,, ppm VOC, ppmC NO., ppm NO2. ppm
294.2 74.3 17192 55 O.OI6S 0.4168 0.046S 0.046S
292.7 76.3 16048 SS 0.0149 0.3S23 0.0392 00392
294.2 770 17SI3 SS 0.0130 0.3979 00422 00422
29S.7 77.7 19750 SS 00097 0.3906 0.0786 00644
297.3 74.S 20794 SS 00186 0.2279 0.0673 0.04SI
298.8 67.S 20647 SS 0.0317 0.1829 00505 00363
300.3 605 202S7 SS 0.0427 0.1646 0.0420 0.0319
301.9 S8.S 21432 SS 0.0461 0.1446 0.0416 00329
300.3 6I.S 20S9S SS 0.0437 0.161 1 0.04SI 00374
298.8 645 19722 SS 00344 0.2232 0.04 IS 00390
297.3 67.7 18872 SS 0.0200 0.4628 00503 00503
29S.7 71.0 18042 SS 0.0167 0.4894 00582 00582
297.3 69.3 19243.5 55.0 0.0257 0.3012 0.0503 0.0436
O3, D.IJ.
322
NO,/NO.
1.00
100
1.00
0.82
067
072
0.76
0.79
083
0.94
1.00
1.00
0.88


Olid, %/hr
11.243
7.272
6.459
0.624
2.886
(.259
8.421
(.717
2.961
0.604
10.170
8.S3S
5.779
HNO,SNO. ppM/ppM O.t98t | NUr/NO. ppM/pp* •.0050 g/g 0.0088 |
Base Eq.
00361
Tot. Nil, ppm
0.00767
0.00571
0.00545
0.00080
0.00260
0.00455
0.00550
0.00441
0.00222
0.00047
0.01024
0.00994
0.00496
Base Nit
0.000179
PM Nit, ppm












0.000254
Equil. Frac. 0.0511
Dale
It/IVIO
Time
0
L
4
6
8
10
12
H
16
18
20
22
Average
Fall:
T..., grad FT.,., trad F RHI RH2 RH3 RH4 Cloud C% p.mb
536 408 69 73 59 63 58 10145
T.gradK RH.% 11,0, ppra Cloud CV. O,, ppm VOC.ppmC NO., ppm NO2, ppm
279.2 68.0 5901 58 0.0103 0.4166 0.0807 00807
i'.GG 69.7 5567 58 0.0117 0.3432 0.0640 00640
279.2 71.0 6162 58 0.0121 0.3371 O.OSSI 00551
2804 72.3 6814 58 0.0088 0.4875 0.0832 0.0832
281.6 70:7 7218 58 0.0100 0.3375 0.1117 0.0816
282.8 66.0 7304 58 0.0172 . 0.1688 0.0771 0.0493
284.0 61.3 7347 58 0.0210 0.1434 0.0557 0.0367
285.2 59.7 7733 58 0.0209 0.1717 0.0549 0.0401
284.0 61.0 7307 58 0.0134 0.2862 00717 0.0646
282.8 -62.3 6897 58 0.0092 0.5240 0.0874 00874
281.6 * 64.0 6535 58 00100 0.5484 00883 00883
280.4 ..,66.0 6216 58 00104 0.4917 0.0897 00897
281.6 66.0 6750.1 58.0 0.0129 0.3547 0.0766 0.0684
03, D.U.
283
NO./NO.
1.00
1.00
1.00
1.00
0.73
0.64
0.66
0.73
0.90
1.00
100
100
0.89


Olid, %/hr
4.618
4.977
5.152
4.069
0.728
1.538
2.241
1.484
0.709
4.270
4.600
4.769
3.263
HNO./NO, ppaWp|M 0.0619 | NttrJNO. ppn/ppn 0.0047 g/g 0.0082 1
Base Eq.
0. 0652
Tot. Nil, ppm
0.00745
0.00637
0.00568
0.00677
0.00119
0.00152
0.00165
0.00119
0.00092
0.00746
0.00813
0.00856
0.00474
Base Nit
0.000309
PM Nil, ppm












O.OOOJ63
Equil. Frac. 0.0766
Yr-,n
IHNO./HO.   ppm/ppm   0.0821
••••73
                                                                           l/t

-------
lre 7 S">-'t"-«i p.297 Latitude Longitude T. Zone Albedo | Yean 2010
A.I™,. 3365 8442 50 008 |
Dale
2/15/10


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winter:
T.... |rad FT.I., trad F RH1 RH2 RH3 RJU Cloud C% p.mb
55.3 34.5 69 75 54 56 62 981.5
l-«,b <•*.. l» Ul Ui LA» ttM
14 20 I 7 13 19
T.gradK RH,% HAM* Cta*C% O,, ppm VOC,pp«C NO., ppm NO2, ppm
276.5 66.S 4*0 62 0.0126 0.5554 0.0582 0.0582
274.5 70.0 4509 62 0.0128 0.5162 0.0506 00506
276.5 72.0 5323 62 0.0123 0.3182 00409 00409
27S.4 74.0 6266 62 0.0102 0.4313 0.0626 00626
280.3 71.5 6918 62 0.0133 0.5044 0.0766 00674
282.2 64.5 7115 62 0.0223 0.4387 0.0410 0.0283
284.2 575 7216 62 0.0281 0.2986 00313 00213
286.1 543 7744 62 00300 0.2755 00267 00187
284.2 550 6902 62 00268 0.3076 0.0353 00265
282.2 557 6138 62 0.0143 0.5135 O.OS86 00557
280.3 582 5625 62 00123 0.6069 00673 00673
2784 625 5290 62 0.0127 0.6090 0.0675 00675
280.3 63.5 6165.6 62.0 0.0173 0.4479 O.OSI4 0.0471
HNO^NO. ppm/ppm 0.0783 | NIlr./NO. ppm/ppm 0.0347 g/g 0.0603


03, D.U.
2X4


NO./NO.
1.00
1.00
1.00
1.00
0.88
0.69
0.68
0.70
0.75
0.95
100
100
0.89




Oild. %/br
S.07I
4.837
4.669
4.440
0.704
5.233
8.801
8.852
3.733
0.689
S.288
5.383
4.808

Base Eq.
0.//6J
Tot Nit, ppm
0.00590
0.00490
0.00382
O.OOSS6
0.0009S
0.00296
0.00374
0.00331
0.00198
0.00077
0.00712
0.00727
0.00402
Base NiL
0.001795
PM Nit. ppm












0.001782
EquiL Frac. 0.4431
Date
S/IS/IO
Time
0
2
4
6
8
10
12
14
16
in
.()

A> i l «gc
Spring:
TM..gradFT.,.,gradF RH1 RH2 RH3 RH4 Cloud C % p.mb
79.8 58.7 78 83 54 58 56 9787
T.gradK RH,% HA ppm Cloud C% O,, ppm VOC.ppnC NO., ppm NO2. ppm
289.9 74.7 13705 56 0.0217 0.4408 0.0309 0.0309
288.0 78.8 12765 56 0.0200 0.3853 0.0300 0.0300
289.9 80.5 14782 56 0.0165 04165 00377 00377
291.9 82.2 17080 56 0.0151 0.6279 0.0713 00713
293.8 78.2 18352 56 0.0314 0.3255 0.0368 0.0324
295.8 68.5 18120 56 0.0451 0.2339 00252 0.0174
297.8 58.8 17501 56 0.0519 0.1970 0.0215 00146
299.7 547 18265 56 00524 0.1996 00225 00157
297.8 560 16652 56 00502 0.2405 00286 00214
2958 573 15148 56 00387 0.3366 0.0295 00280
291 • 613 14)77 56 00247 0.3953 0.0377 0.0377
">9 680 H||9 56 00215 0.3975 00376 00376
293 i 68.3 15903.5 56.0 0.0324 0.3497 0.0341 0.0312
KNO./NO. ppm/ppa 0.1307 | NIlr/NO. ppm/ppm 0.0174 g/g 0.0302
O3, D.U.
319
NO,/NO.
1.00
1.00
1.00
1.00
0.88
0.69
0.68
0.70
0.75
0.95
1.00
100
0.89


Olid, %/hr
9.9S8
9.006
7.913
7.803
0.606
4.514
7.S98
7.650
3.223
O.S94
11.722
10.208
6.733

BaseEq.
0.1390
Tot. Nil, ppm
0.00616
O.OOS4I
O.OOS96
0.01113
0.00039
0.00 157
0.00222
0.00241
0.00138
0.00033
0.00883
0.00768
0.00446
Base Nil.
0.000619
PM Nit. ppm












0.000592
EquiL Frac. 0.1330

-------
Dale
wn/io
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer:
TM.,fradFT.*,ir»dF M« Wl2 RIU ""« Cloud C.% p.mb
876 68.7 85 90 61 67 58 9815
T, trail K RH,% H,0,ppin Cloud C.% O,, ppm VOC.pp«C NO., ppm NO2, ppm
295.3 82.0 20994 58 0.0147 0.5925 0.0337 0.0337
293.5 85.8 19730 58 00121 0.5179 00371 00371
29S.3 87.5 22415 58 0.0102 0.5599 00429 00429
297.0 S9.2 25423 58 0.0092 0.8439 0.0765 0.0765
298.8 85.2 26972 58 0.0251 0.4376 0.0427 0.0337
300.5 75.5 26501 51 0.0431 0.3144 0.0257 00203
302.3 65.8 2S572 58 0.0505 0.2648 0.0204 00162
304.0 62.0 26637 58 0.0501 0.2683 0.0216 00173
302.3 64.0 24853 51 0.0462 0.3233 00281 00231
300.5 660 23135 58 0.0357 0.4524 0.0304 00273
298.8 700 22126 58 0.0215 05313 00355 00355
297.0 760 21636 58 0.0159 0.5343 00398 00398
29S.I 75.8 23933.% 58.0 •.•279 MTOO 0.0362 0.0336
O3, D.U.
312
N0,/N0.
1.00
100
100
1.00
0.79
0.79
0.79
0.80
082
090
1.00
1.00
0.91


Oiid. %/hr
7.305
6.046
5.214
4.925
4.006
14.864
25.078
23.334
11.346
2.204
10.7119
8.036
10.262
HNOWNO. ppp/piMi i.1539 | Nltr/NO. ffmlffm M2I9 t/f 0.0381 |
Base Eq.
OHIO
Tot. Nil, ppm
0.00493
0.00448
0.00447
0.00753
0.00270
•.00604
0.00810
0.00805
0.00524
0.00120
0.00766
0.00640
0.00557
Bate Nit
0.000841
PM Nil, ppm












0.000793
Equil. Frac. 0.1424
Dale
u/n/io
Time
0
2
4
6
8
in •-••
12
14
16
is
20
22
Average
Fall:
T..., grad F T_i« trad V Mil RH2 RH3 RH4 Cloud CV. p. rob
626 41.3 76 82 55 63 54 9825
T, grad K RH, % 11,0, ppm Cloud C •/• O,, ppm VOC. ppmC NO., ppm NO2. ppm
280.3 73.8 7123 54 0.01 10 0.4517 0.0395 0.0395
2783 77.0 6480 54 0.0115 0.3387 0.0429 00429
280.3 79.0 7623 54 0.0109 0.3672 0.0374 00374
282.3 81.0 8944 54 0.0083 0.5253 00578 00578
284.2 77.5 9769 54 0.0117 04674 0.0713 00592
286-2 685 9833 54 0.0213 0.3719 0.0390 00269
288.2 59.5 9706 54 0.0261 0.2811 0.0301 00205
290.2 56.3 10426 54 00272 0.2826 00297 00213
288.2 59.0 9624 54 0.0204 0.3422 0.0428 00343
286.2 61.7 8848 54 0.0099 0.5725 00808 00808
284.2 65.2 8209 54 0.0106 0.5123 0.0765 00765
282.3. 69.5 7670 54 00105 0.5018 00673 00673
284.2 69.0 8688.0 54.0 0.0149 0.4179 0.0512 0.0470
03, D.U.
279
N0,/N0.
1.00
1.00
100
100
0.83
0.69
068
0.72
080
1.00
1.00
100
0.89


Oiid. %/hr
4.526
4.703
4.539
3.859
0.673
5.033
7.916
6.474
1.599
4.777
5.014
4.857
4.497
HNO./NO. ppm/ppoi «.0780 | Nitr./NO. ppm/ppm 0.0265 f/8 0.0462 1
Base Eq.
0.3J61
Tot. Nil. ppm
0.00358
0.00404
0.00339
0.00446
0.00080
0.00271
0.00324
0.00276
0.001 10
0.00772
0.00767
0.00653
0.00400
Base Nil.
0.001385
PM Nil, ppm



.








0.001360
Equil. Frac. 0.3401
|MN
-------
: i M"i~"' p.349 Latitude Loagilude T. Zone Albedo 1 Yean 2010 1

Dale
/1 5/10
--.-•

Time
0
2
4
6
8
10
12
14
16
IS
20
2?
.vcrage
Vinicr.
TM,gradFT.u,gradF RH1 RH2 RII3 RH4 Cloud C% p.mb
339 18 1 75 77 66 69 68 993 4


O3, D.U.
345
14 2.0 0 6 12 18
T.gradK RH,% HApfwi OoudC% O,, ppm VOC.ppmC NO., ppm NO2, ppm
266.9 75.0 2102 68 0.0144 0.2207 0.0442 00442
265.4 75.7 2434 68 0.0144 0.2572 0.0412 00412
266.9 76.3 2750 68 00141 0.2811 0.0420 00420
268.4 77.0 3102 68 0.0119 0.1979 0.0517 00517
2698 73.3 3299 68 0.0142 0.2225 0.0515 00402
271.3 69.7 3495 68 0.0213 0.2249 0.038S 00246
272.7 66.0 3687 68 00246 0.2350 0.0331 00212
274.2 67.0 4163 68 00260 0.2179 0.0343 00237
272.7 68.0 3799 68 0.0243 0.2435 0.0367 00309
271.3 690 3461 68 0.0157 0.2276 0.0433 00433
269.8 . 710 3194 68 00144 0.2441 0.0470 00470
2684 730 2941 68 00136 0.2259 0.0488 00488
269.8 71.8 3252.1 68.0 0.0174 0.2332 0.0427 0.0382
NO,/NO.
1.00
100
100
100
078
064
064
069
084
100
100
100
0.88




Olid, %/hr
4.187
3.8SI
4.060
3.913
0.810
3.310
5.397
3.568
0.782
5.091
4.637
4.274
3.657
IINCVNO. ppm/ppm 0.0664 | Nllr./NO. ppm/ppm 0.0484 g/g 0.0842 |
Base Lq.
0.5H77
Tot. Nil, ppm
0.00370
0.00318
0.00341
0.00405
0.00065
0.00163
0.00229
0.00169
0.00048
0.00441
0.00436
0.00417
0.00283
Base Nit.
0.001666
PM Nil, ppm












0.002069
Equil. Frac. 0.7298
Dale
»//Vfg
Time
0
2
4
6
8
10
12
14
16
/.f
.11

A\4 1 JJJC
Spring:
^...gradFT^MgradF RHI RH2 RH3 RH4 Cloud C% p.mb
70 481 73 77 54 54 63 9895
T.gradK RH.% H,0.pp» Cloud C% Q,, ppm VOC,ppmC NO., ppm NO2, ppm
284.1 73.0 9066 63 0.0195 0.1132 0.0408 00408
282.1 74.3 8055 63 0.0182 0.1126 0.0383 00383
284.1 75.7 9399 63 00168 0.1128 0.0404 00404
2862 77.0 10940 63 00157 0.1245 00464 00362
2882 69.3 11237 63 00250 01271 00341 00235
2902 61.7 11377 63 00373 01150 0.0226 00163
2922 54.0 113 16 63 00422 01051 00206 00)52
294.3 54.0 12837 63 00443 01095 0.0207 00160
292.2 540 11316 63 00444 0.1038 00210 00172
2N.2 540 9957 63 00365 01022 00216 00201
2»82 603 9773 63 00263 01104 00370 00370
?K'>2 667 9466 63 00210 01132 00435 00435
2*8.2 64.5 10395.0 63.0 0.0289 0.1125 0.0322 0.0287
IINO./NO. ppm/ppm 0.1216 | Nllr./NO. ppm/ppm 0.0366 g/g 0.0637 |
03, D.U.
357
NO./NO.
1.00
1.00
1.00
0.78
069
072
074
0.77
082
093
100
100
0.87


Olid, %/hr
8.558
7.676
7.429
0.671
3.401
7.950
9.449
7.8S6
3.367
0.642
11.516
9.410
6.494

Base Eq.
01659
Tot. Nit, ppm
0.00698
0.00588
0.00600
0.00049
0.00160
0.00259
0.00288
0.00251
0.00116
0.00026
0.00853
0.00818
0.00392
Base Nil.
0.000650
PM Nil, ppm












0.001180
EquiLFrae. 0.3011

-------
Dale
S//5//0
Time
0
•>
4
6
8
10
12
14
16
18
20
22
itverage
iummen
T...,gradFT.u.,gradF RH1 RH2 RHJ RH4 Cloud C.% p.ub
821 617 81 85 57 62 57 9926
T.gradK RH,% H,0,ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2. ppm
291.5 81.0 16235 57 0.0187 0.2552 0.0335 00335
289.7 823 14637 57 0.0175 02444 0.0304 00304
291.5 837 16773 57 00155 0.2504 0.0327 00327
293.4 85.0 19184 57 00124 0.2481 00442 00367
295.3 75.7 1*175 57 0.0187 0.2520 0.0392 00263
297.2 66.3 18840 57 00341 0.3403 0.0262 00191
299.1 570 181 II 57 00425 0.2756 0.0200 00152
301.0 58.7 20850 57 00443 0.2821 00190 00150
2991 603 19179 57 0.0436 0.2545 00194 00163
297.2 62.0 17600 57 00372 0.2712 0.0185 00176
295.3 68.3 17303 57 0.0236 0.2340 00287 00287
2934 747 16836 57 0.0188 0.2405 00344 00344
295.3 71.3 I7S93.5 S7J 0.0272 0.2624 0.0288 0.0255
O3, D.U.
319
NO,/NO.
1.00
1.00
1.00
083
067
0.73
0.76
079
0.84
0.95
1.00
100
0.88


Olid, %/hr
8.956
8.098
7.454
0.620
4.875
15.004
20.681
18.732
7.501
0.596
11.175
9.099
9.399
HNO>/NO. ppm/pp* 0.14H | NMr./NO. ppo/pp* Oi2tt ft 0.0502 |
Base Eq.
OOK96
Tot. Nit, ppm
0.00600
0.00493
0.00487
0.00046
0.00256
0.00575
0.00628
0.00561
0.00245
0.00021
0.00641
0.00626
0.00431
Base NIL
0.000387
PM Nil, ppm












0.000832
Equil. Frac. 0.1928
Dale
II/IVIO
Time
0
2
4
6
8
10
12
14
16
I* .
20
22
Average
¥•»:
T..., grad F T.U, grad F RH1 RH2 RH3 RH4 Cloud C.% p. rob
482 314 77 81 64 70 72 9925
T, grad K RH. % H,0. ppm Cloud C. •/• O,, ppm VOC. ppmC NO., ppm NO2. ppm
274.4 77.0 4847 72 0.0120 0.1962 0.0400 0.0400
2728 783 4405 72 0.0119 0.1675 0.0358 00358
274.4 79.7 5016 72 0.0114 0.1982 0.0318 00318
275.9 81.0 5702 72 0.0103 0.2459 0.0390 0.0390
277.5 75.3 5919 72 0.0117 0.4535 0.0435 00335
279.0 69.7 6102 72 0.0173 0.2328 0.0284 00185
280.6 64.0 6240 72 0.0208 0.2188 0.0257 0.0172
282.2 66.0 7155 72 0.0221 0.1906 0.0261 00199
280.6 680 6631 72 0.0182 0.1485 0.0337 00321
. 2790 70.0 6131 72 0.0112 0.2315 00474 00474
2775 72.3 5683 72 00112 02979 0.0497 00497
2759 74.7 5255 72 00114 03128 00498 00498
277.5 73.0 5757.0 72.0 0.0141 0.2412 0.0376 0.0346
O3, D.U.
281
N0,/N0.
1.00
100
1.00
100
0.77
0.65
0.67
076
0.95
100
100
100
0.90


Olid, %/hr
4.380
4.053
3.938
3.978
0.933
3.898
4.873
2.331
0.714
4.619
4.569
4.532
3.568
HNO./NO. ppm/ppm 0.0678 | Nlir/NO. ppm/ppn 0.0228 g/g °0397 |
Base Eq.
0.2117
Tot Nit, ppm
0.00351
0.00290
0.002SO
0.00311
0.00063
0.00144
0.00168
0.00093
0.00046
0.00438
0.00454
0.00452
0.00255
Base NIL
0.000540
PM Nit, ppm












0.000858
Equil. Frac. 0.3366
I I
|iif.o./No.
                                00»43  |  NUr./NO.    ppm/ppm     0.0349
t/t
0.0607

-------
L"ilude
Albe*»
Dale
Z//5//0


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winter:
T«., trad FT^., trad F RHl RH2 RH3 RH4 Cloud C% p.mb
407 17.9 60 44 46 60 62 8088
l...,b <*to,b l*| .*f« 'rU (>M
14 20 5 11 17 23
T.gradK RH,% HApp* Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppm
2674 60.0 2766 62 00118 0.3956 0.0384 00384
2653 600 2350 62 0.0119 0.3682 00392 00392
267.4 60.0 2766 62 0.0115 0.3062 0.0358 00358
269.5 573 3102 62 00091 0.2861 0.0553 00553
2717 520 3292 62 00115 0.3288 00824 00659
273 8 467 3447 62 00199 0.3275 0.0642 00437
2759 443 3811 62 00243 0.2578 0.0748 00516
2780 45.0 4491 62 00252 0.2412 0.1046 00763
275.9 45.7 3926 62 0.0197 0.2725 01015 00832
273.8 48.3 3571 62 0.0115 0.3766 0.0814 00814
27)7 530 3356 62 00112 0.4257 0.0681 00681
269.5 57.7 3120 62 0.0118 0.4176 0.0514 00514
271.7 52.5 3333.4 62.0 0.0150 0.3337 0.0664 0.0575
IINOj/NO. ppm/ppm 0.0441 | Nlir/NO. ppm/ppm 0.0056 f/t 0.0097 |
O3, D.I).
352


NO,/NO.
1.00
1.00
1.00
1.00
080
068
069
073
082
100
1.00
100
0.89




Olid, %/hr
3.316
3.079
3.148
3.085
0.580
2.104
2.197
1.175
0.552
4.484
4.120
3.889
2.644

Base Eq.
0. 1410
Tot Nit, ppm
0.00254
0.00241
0.00225
0.00341
0.00076
0.00184
0.00227
0.00179
0.00092
0.00730
0.00561
0.00400
0.00293
Base Nil.
0.000418
PM Nil, ppm












0.000369
EquiL Frac. 0.1261
Dale
5//Mi ing;
T«., t"d FT.*, trad F RH1 RH2 RH3 RH4 Cloud C% p.rab
646 39.7 70 41 43 66 67 810
T. trad K RH, % H,0, ppm Cloud C. % O», ppm VOC, ppmC NO., ppm NO2. ppm
279.7 66.7 7511 67 0.0224 O.I26S 0.0276 0.0276
277.4 68.0 6523 67 0.0212 0.1235 0.0223 00223
279.7 69.3 7812 67 0.0169 0.1277 0.0287 00287
2820 6S.2 8597 67 0.0146 0.1354 0.0623 00511
2843 55.5 8544 67 0.0262 0.1273 0.0469 00347
2867 45.8 8210 67 0.0382 0.1165 0.0253 00192
2890 41.3 8593 67 00457 0.1155 0.0148 00117
291.3 42.0 10113 67 0.0475 0.1199 0.0187 00152
2890 42.7 8872 67 0.0444 0.1205 0.0249 00209
2«67 468 8390 67 00390 0.1232 0.0270 00254
?»4 3 J4J 8190 67 00272 0.1276 0.0282 00282
?>"0 622 ||99 67 00231 01265 00233 00233
2N-».J 55.0 8JI2.7 67.0 0.0305 0.1242 0.0292 0.02S7
HNO./NO. ppro/ppoi 0.0887 | NHr./NO. ppm/ppm 0.0044 t/t 0.0076 |
O3, D.U.
344
NO,/NO.
1.00
1.00
1.00
0.82
0.74
076
079
081
084
094
100
100
0.89


Olid, %/hr
8.499
7.IJI
6.606
O.SIS
1.747
S.I80
9.484
6.784
2.560
0.490
10.728
8.598
5.691

Base Eq.
QOH69
Tot Nit, ppm
0.00469
0.00318
0.00379
O.OOOSJ
0.00121
0.00199
0.00222
0.00206
0.00107
0.00025
0.00406
0.00400
0.00259
Base Nil.
0.00022S
PM Nit, ppm












0.000128
EquiL Free 0.0496

-------
Dale
«//5//0
Time
0
2
•i
6
8
10
12
14
16
18
20
22
Average
Summer
T....gradFT.u,8radF RH1 RH2 RIIJ RH4 Cloud C % p,mb
808 528 68 33 37 61 51 8153
T, grad K RH, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2X7.3 62.2 11555 SI 0.0219 0.3376 0.027S 0.027S
284.7 64 5 101 10 SI 0.0213 03234 0.0243 00243
287.3 66.8 12426 SI 0.0180 0.3392 0.0299 0.0299
289.9 625 117)1 SI 0.0123 0.3422 O.OS83 00507
292.S Sl.S IDIS SI 0.0233 03157 0.0490 00367
29S.I 40.S 12279 SI 0.0401 0.3494 0.0282 00223
297.7 3S.3 I2S29 SI 0.0496 03377 0.0191 00154
300.3 36.0 14897 SI 0.0503 0.337S 0.0222 00185
297.7 36.7 13005 SI 0.0449 0.3372 0.0271 00233
29S.I 41.0 12431 SI 00362 03539 00284 00270
2925 49.0 I266S SI 00253 0.3340 0.0324 00324
289.9 570 12516 SI 00221 0.3297 0.0297 00297
292.5 50.3 12(21.6 SIJ ««304 13365 0.«3I3 10282
O3, D.U.
295
NO,/NO.
1.00
100
100
087
0.7S
0.79
081
0.83
086
0.9S
100
1.00
0.91


Olid, %/hr
9.467
S.62S
S.06J
0.473
J.275
10.107
16.392
13.799
5.404
O.S46
11.470
9.867
8.141
HN
-------
g. 5, Soull
iiiiiicrque
Dale
VIS/10


Time
0
2
4
6
8
!!'
12
14
16
IS
20
22
Average
•Vinier:
,«,.i p.669 . Latitude Looeilude T. Zo.c Albedo 1 Year. 2010
3505 10662 70 008 |
T...,gradFT^.,gradF RHI RH2 RH3 RH4 Cloud C. % p.mb
529 25.9 65 44 32 52 49 8379
t«.,k (.mil t*i U» IrM I.M
14 2.0 5 II 17 23
T.gradK RH,% HA If* Ctaud C.% O,, ppm VOC.pp.C NO., ppm NO2, ppm
272.3 54.2 3463 49 0.0108 0.4627 0.0936 00936
269.8 58.5 3107 49 00113 0.4301 0.0711 00711
272.3 62.8 4018 49 00103 0.2651 0.0634 00634
274.8 61.5 4716 49 00080 0.3593 0.0893 00893
277.3 54.5 4992 49 0.0096 0.4202 0.1361 01007
2-198 47.5 5178 49 0.0214 0.3655 00751 00510
282.3 42.0 5430 49 0.0305 0.2487 0.0445 00321
284.8 38.0 5807 49 00340 0.2295 00389 00300
282.3 340 4394 49 00329 0.2563 0.0493 00419
279.8 35.3 3850 49 0.0163 0.4278 0.0863 00863
277.3 42.0 3845 49 00129 0.5056 O.I 181 O.I 181
2748 487 3730 49 001 1 1 05074 0.1033 01033
277.3 48.3 4377.4 49.0 0.0174 0.3732 0.0808 0.0734

O3, D.U.
330


N0,/N0.
1.00
100
100
1.00
074
068
072
0.77
085
1.00
1.00
100
0.90



Oiid. %/br
4.291
4.068
3.982
3.449
0.573
2.808
4.519
3.805
1.149
6.531
5.481
4.587
3.77028
IINOi/NO. ppm/ppm 0.0711 | NIlr./NO. ppm/ppm 0.0095 g/g 0.0165 |

Base Eq.
0.137J
Tot Nit, ppm
0.00803
0.00579
0.00505
0.00616
0.001 IS
0.00287
0.00290
0.00228
0.00096
0.01127
0.01295
0.00948
0.00574
Base NiL
0.000789
PM Nil, ppm












0.000765
Equil. Frac. 0.1332
Bale
S//5//g
Time
0
2
4
6
8
10
12
14
16
18
:o
'i i
Av4-rjj>e
Spring:
T...,gradFT_te,tradF RHI RH2 RII3 RH4 Cloud C% p,mb
799 48.6 48 25 18 34 41 836
T.gradK RU,% H,0.ppm Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppro
285.3 36.3 5755 41 0.0238 0.3673 0.0388 00388
282.4 41.0 5353 41 0.0209 ' 0.3210 0.0328 00328
285.3 45.7 7238 41 0.0168 0.3470 0.0335 00335
288.2 44.2 8458 41 0.0135 0.5231 0.0656 00558
291.1 36.5 8406 41 0.0286 0.2712 0.0468 00356
294.0 288 7951 41 00440 0.1948 0.0262 00205
296.9 23.8 7839 41 00502 0.1641 0.0203 0.0162
299.8 215 8404 41 00508 0.1663 0.0206 00169
296.9 19.2 6300 41 0.0484 0.2004 0.0241 00205
2940 20.7 5694 41 0.0409 0.2804 0.0212 00199
291 1 26.0 5982 41 00268 0.3293 0.0478 00478
2"8 2 313 5995 41 0.0252 0.3312 O.OS49 00549
M«-l 31.3 6947.7 41.0 0.0325 0.2913 0.0361 O.OJ28
O3, D.U.
326
NO,/NO.
1.00
1.00
1.00
0.85
0.76
078
0.80
0.82
085
094
1.00
100
0.90


Oiid. %/hr
9.008
7.363
6.682
0.508
3.574
8.641
11.932
10.466
4.891
0.735
10.763
10.470
7.086
HNO./NO. ppm/ppm 0.1258 | Nlir/NO. ppm/ppm 0.0420 g/g 0.0730 |
Base Eq.
0,3397
Tot. Nit, ppm
0.00699
0.00484
0.00448
0.00057
0.00254
0.00354
0.00388
0.00353
0.00200
0.00029
0.01030
0.01150
0.00454
Base Nit.
0.001542
PM Nil, ppm












O.OOISI4
Equil. Frac. 0.3336

-------
Dale
S//V/0
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer:
T^gradFT^gradF RH1 R1I2 RJI3 RH4 Cloud C % p.mb
894 628 65 39 30 52 4) 8408
T. grad K RH, % H,0, ppm Cloud C % O,, ppm VOC, ppnC NO., ppm NO2, ppm
292.7 54.2 13787 43 0.0208 0.4936 0.0312 0.0312
290.3 585 12753 43 00194 0.4314 0.0238 00238
292.7 62.8 16007 43 0.0162 0.4664 0.0289 00289
295.2 60.7 1799* 43 0.0091 0.7031 0.0655 00583
297.7 52.0 |Uf9 43 0.0226 0.3645 0.0491 00373
300.1 43.3 11254 43 0.0428 0.2619 0.0264 00212
302.6 37.5 17230 43 0.0528 0.2206 0.0191 0.0157
305.0 34.5 18252 43 00528 0.2235 0.0194 00163
302.6 31.5 14457 43 0.0490 0.2693 0.0243 0.0211
300.1 33.7 13384 43 0.0403 0.3769 0.0247 00234
297.7 41.0 14091 . 43 0.0279 0.4426 0.0494 00494
295.2 48.3 14318 43 0.0246 0.4451 00466 00466
297.7 46.S 15419.2 43.0 0.031S 0.1916 0.0340 0.0311
O3, D.U.
292
N0,/N0.
1.00
1.00
1.00
0.89
0.76
0.80
0.82
0.84
087
095
1.00
1.00
0.91


Oiid. %/hr
9.548
8.334
7.S71
0.471
3.970
12.055
20.298
17.670
7.165
0.672
13.625
11.968
9.449
HNO./NO. ppm/ppat 0.1543 | Nltr/NO. ppM/ppm 0.0217 g/f 0.0377 |
Base Eq.
0. I4S2
Tot. Nit, ppm
0.00595
0.00397
0.00437
0.00055
0.00296
0.00512
0.00637
0.00575
000302
0.00031
0.01345
0.01115
0.00525
Base Nit.
0.000778
PM Nit, ppm












0.000738
EquiL Frac. 0.1406
Dale
n/ivio
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Kail:
T..., grad F T.U, grad F RH1 RH2 RH3 RH4 Cloud CV. p.mb
57.2 30.7 65 42 36 55 40 8388
T.gradK RH, % H,0,ppm Cloud C. % O,, ppm VOC.ppmC NO., ppm NO2, ppm
274.9 56.7 4378 40 00120 0.1133 0.1025 01025
272.4 60.0 3879 40 0.0120 0.2762 00792 00792
274.9 63.3 4894 40 00112 0.1964 00695 00695
277.3 61.2 5627 40 00086 0.6393 0.0985 00985
279.8 53.5 5839 40 0.0113 0.7775 0.1348 00997
282.2 45.8 5913 40 0.0231 0.1719 0.0701 0.0498
284.7 41.0 6233 40 0.0304 0.1693 0.0465 0.0344
287.2 39.0 6965 40 00320 0.1366 0.0398 0.0314
284.7 37.0 5624 40 00266 0.2472 0.0545 00496
282.2 .39.2 5051 40 0.0120 0.8058 0.1006 0.1006
279.8 455 4964 40 0.0114 0.2342 0.1384 01384
277.3 518 4767 40 0.0113 03170 0.1325 01325
279.8 49.5 S344.S 40.0 0.0168 0.3404 0.0889 0.0822
O3, D.U.
270
NO,/NO.
1.00
100
100
100
0.74
0.71
0.74
0.79
0.91
100
1.00
100
0.91


Oiid. %/hr
5.186
4.796
4.647
3.921
0.746
1.702
J.09I
1.972
0.527
5.336
5.253
5.128
3.525
HNO./NO. ppn/ppa t.t734 | NttrJNO. ppm/ppm OJ116 g/f 0.0202 1
Base Eq.
0.1619
Tot. Nit, ppm
0.01063
0.00760
0.00646
0.00773
0.00149
0.00169
0.00213
0.00124
0.00052
0.01074
0.01454
0.01359
0.00653
Base NiL
0.001070
PM Nit, ppm












0.001035
EquiL Frac 0.1585
pp»/ppai    0.09IQ  I  Nltr/NO.   ppm/ppm
8/C
0.0294

-------
j. 6, Pacil
i Francis*
Date
'SIS/10


Time
0
2
4
6
8
.10
12
14
16
18
20
22
Vvrrage
rVinier:
ieC
-------
Dale
A/1S/IO
Time
0
2
4
6
8
10
n
14
16
18
20
22
Average
Mimmen
T...,gradFT_te,cradF RHI RH2 RIIJ RH4 Cloud C.% p.mb
718 550 88 685 595 80 52 10152
T.gradK RH,% H.O.ppm OoudC.% O,. ppm VOC.ppmC NO., ppm NO2, ppm
287.5 82.7 12493 52 0.0133 0.3728 0.0193 0.0193
285.9 85.3 11650 52 00123 0.3572 0.0207 0.0207
287.5 88.0 13303 52 0.0072 0.3805 0.0262 00262
289.0 81.5 13619 52 0.0074 0.3883 0.0420 0.0345
290.6 75.0 I3SJ6 52 0.0197 0.3355 0.0266 00181
292.2 68.5 13934 52 00364 0.3106 0.0192 00140
293.7 65.5 14677 52 0.0494 0.3528 00137 00105
295.3 62.5 15410 52 0.0541 0.3461 00108 00087
293.7 59.5 13325 52 0.0514 0.3728 0.0123 00102
292.2 66.3 13491 52 0.0374 0.3871 0.0182 00167
290.6 73.2 13496 52 0.0195 0.3871 00240 00240
289.0 800 13367 52 00153 0.3728 00210 00210
290.6 74.0 13556.1 S2.6 0.0269 0.3636 0.0212 0.0187
O3, D.U.
315
NO./NO.
1.00
1.00
1.00
0.82
0.68
0.73
0.77
0.80
0.83
0.92
100
1.00
0.88


Olid, %/hr
S.44J
S.02S
31*5
0.67)
6.776
16.669
24.7)7
22.568
12.605
1.496
S.531
4503
9.518
HNOiMO. pp«/pp« t.l27t | NUrJWO. ppaWppsa lUM ffe O.OS2I |
Base Eq.
02919
Tot. Nil, ppm
0.00210
0.00208
0.00167
0.00046
0.00245
0.00468
O.OOS22
0.00391
0.00258
0.00050
0.00410
0.0027)
0.00271
Base NIL
0.000798
PM Nil, ppm












0.000635
Equil. Frac. 0.2344
Dale
II/IV10
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Full:
TM., grad F T.U., trad F RHI RH2 RH3 RH4 Cloud C % p,mb
376 451 85 755 68.5 80 82 10161
T.gradK KH,% H.O.ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
281.6 81.7 8314 82 0.0083 0.3877 0.0581 0.0581
280.4 83.3 7836 82 0.0092 0.3243 0.0434 00434
2816 850 8655 82 0.0109 0.2572 0.0226 0.0226
282.7 818 9014 82 00065 0.2870 00526 00526
283.9 78.7 9367 82 0.0085 0.3057 0.0594 00470
285.0 75.5 9712 82 0.0177 . 0.1822 00320 00227
286.2 73.2 10160 82 00233 0.1603 0.0238 00172
287.4 70.8 10611 82 00247 0.1528 0.0208 00163
286.2 68.5 9509 82 0.0164 0.2162 0.0327 00297
285.0 72.3 9303 82 00078 0.5480 00852 00852
283.9 76.2 9069 82 00080 06337 0.0972 00972
282.7 80.0 8811 82 0.0078 0.5480 0.0809 00809
283.9 77.3 9196.6 82.0 0.0124 0.3336 0.0507 0.0477
0), D.U.
272
NO,/NO.
1.00
100
100
1.00
0.79
0.71
0.72
0.78
091
100
100
100
0.91


Osid. %/hr
3.832
3.959
4.170
3.008
0.712
2.540
4.096
2.71)
0.694
3.796
3924
3.753
3.107
HNOJNO. ppn/ppm 0.0619 | NUr/NO. ppa/ppm 0.01)7 t/t 0.02)9 |
Base Eq.
tf.25jg
Tot Nit. ppm
0.00445
0.00344
0.00188
0.00317
0.00067
0.00116
0.00141
0.00090
0.00041
0.00646
0.00763
0.00607
0.00314
Base Nil.
o 4100797
PM Nil. ppm












0.000696
Equil. Frac. 0.2218
Yrjr:
JUNO./NO.   ppa/ppa    0.0815  I Nllr/NO.   ppaa/ppm     •.•153
                                                                              t/t
0.0441

-------
fg 7 Southern CaUf. p.173 Latitude Longitude T. Zone Albedo I Yean 2010 J
n.A«Pel«tCivicCenlert 3393 1184 80 008 |
Dale
2/1 5 f 10


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Wimer:
T....gr»dFT^.,g»dF Rill RH2 RH3 RH4 Cloud C. % p.mb
685 492 71 54 52 70 47 10141


O3, D.U.
317
~M 20 4 10 16 22
T.gradK RH,% HApf* Cloud C. % O,, ppm VOC,ppmC NO., ppm NO2, ppm
284.5 70.3 1714 47 0.0089 0.5266 0.1146 01146
282.7 70.7 7716 47 00096 0.3571 0 1010 0.1010
284.5 71.0 8117 47 0.0119 0.3275 0.0393 00393
286.3 65.3 9121 47 00069 0.3147 0.1344 01344
2881 597 9362 47 00099 0.4078 0.1438 00978
2899 540 9499 47 0.0216 0.3051 0.0720 00475
291.6 533 10506 47 0.0257 0.2087 00477 00315
2934 527 11599 47 00274 0.1802 00379 00269
2916 520 10242 47 00252 0.1864 00393 00322
289.9 580 10206 47 0.0125 0.3916 0.0599 00599
288 1 640 10044 47 00093 0.6091 00890 00890
2863 700 9782 47 00075 0.6277 0.1249 01249
288.1 61.8 9642.1 47.0 0.0147 0.3702 0.0836 0.0749
NO,/NO.
1.00
1.00
1.00
1.00
068
066
0.66
071
082
100
1.00
100
0.88




Oiid. %/hr
4.418
4.633
5.168
3.482
0.678
3.897
5.623
4.671
1.252
5.967
4.617
3.811
4.018
IIN
-------
Dale
g/IVIO
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer
T«., trad F T^., grad F RHI RH2 RIIJ RH4 Cloud C. % p.mb
841 65.3 84 56 55 79 26 10096
T, grad K Rll, % H,0, ppm Cloud C. •/• O,, ppm VOC, ppraC NO., ppm NO2, ppm
293.4 80.7 17849 26 00083 0.8851 0.0534 00534
291.7 82.3 16338 26 00077 0.7573 0.0556 0.0556
293.4 840 18S92 26 0.0075 0.8620 0.0210 00210
295.1 74.7 II3IS 26 0.0074 0.9500 0.1003 0.0772
296.9 65.3 17175 26 0.0260 O.S562 0.0714 0.0507
298.6 560 I699S 26 0.0485 0.4819 0.0483 00367
300.4 557 IS733 26 O.OS59 0.2363 00334 00261
302.1 55.3 20621 26 0.0567 0.1946 0.0282 00225
300.4 550 18507 26 00508 0.2132 0.0288 0.0242
2986 630 19135 26 0.0417 0.2271 0.0344 00330
296.9 710 19437 26 0.0212 0.7878 0.0415 00415
295.1 790 19464 26 0.0105 1.0056 00488 00488
296.9 68.S 18494.4 26.0 0.02SS 0.5944 0.0471 0.0409
O3, D.U.
309
NO,/NO.
1.00
1.00
1.00
0.77
0.71
0.76
0.78
0.80
0.84
0.96
1.00
1.00
0.89


Oiid. %/hr
4.206
3.912
3.446
0.628
6.452
15.032
17.581
15.632
6.542
0.606
10.66*
5.350
7.505
HNO./NO. ppm/ppm •.lift | Ntte/NO. ppm/ppm 0.1311 g/t «•«*« |
Base Eq.
02*28
Tot. Nit, ppm
0.00449
0.00435
0.00 MS
0.00097
0.00654
0.01103
0.00917
0.0070S
0.00317
0.00040
0.00886
O.OOS23
O.OOS23
Base Nil.
0.001478
PM Nil, ppm












0.001467
Equil. Frac. 0.2807
Dale
////f//tf
Time
0
2
•1
6
8
10
12
14
16
18
20
22
Average
Full:
T...,gradFT.ta,gradF Kill RH2 RH3 RH4 Cloud C % p.mb
727 527 bl 45 49 62 37 10)31
T.gradK RH,% H,0,ppra Cloud C% Olt ppm VOC.ppmC NO., ppm NO2, ppm
286.5 61.7 8749 37 0.0101 1.2544 0.1466 01466
2847 61.3 7701 37 0.01 11 0.8172 0.1224 0.1224
286.5 61.0 8654 37 00130 0.7338 00503 00503
2884 557 8904 37 00080 0.8593 O.I Hi) 01550
290.2 50.3 9061 37 0.0123 0.8564 0.1422 00995
292.1 450 9102 37 0.0231 0.4931 0.0633 00430
293.9 46.3 10518 37 0.0274 0.3825 0.0424 00297
295.8 47.7 12124 37 0.0274 02920 0.0382 00286
293.9 49.0 II 126 37 0.0220 0.3825 0.0504 00458
2921 533 10795 37 0.0106 08969 00964 00964
290.2 57.7 10387 37 00090 1.2167 0.1420 01420
288.4 62.0 9921 37 0.0092 1.2794 0.1617 01617
290.2 • 54.3 9753.5 37.0 0.0153 0.7887 0.1009 0.0934
IINO^O. ppm/ppm t.0846 | NIlr/NO. ppm/ppm 0.8300 g/g 0.0521
03, D.U.
276
NO,/NO.
1.00
1.00
1.00
1.00
0.70
0.68
0.70
0.75
091
100
100
100
0.90


Oiid. %/hr
5.077
5.454
5.890
4.064
1.564
6.286
8.543
4.868
0.637
5.326
4.631
4.742
4.757

Base Eq.
03548
Tot. Nil, ppm
0.01488
0.01335
0.00592
0.01260
0.00311
O.OOS4I
O.OOS07
0.00279
0.00058
0.01027
0.01JIS
0.01534
0.00854
Base Nit
0.003030
PM Nit, ppm












0.003026
Equil. Frac. 0.3543
ppm/ppm     0.0906   | Ntlr./NO.   ppm/ppm     0.0313
g/g
0.0666

-------
', « Rural Fan p 7«7;p ™«;i^ Latitude Loneilude T. Zone Albedo 1 Year 2010 |
iTicaeo, New York 3» «> « I0 53 °05 I
Date
2/15/10


Time
0
2
4
6
8
10
12
n
16
18
20
22
Avtiage
Winter:
T .gradFT^gradF RH1 RH2 RH3 RH4 Cloud C.% p.mb | O3.U.U.
43 | 264 69.3 73.3 59.3 61.3 627 9962 312
iMlth •«»..• Ui *•** *•»» *•*«
14 20 | 7 13 19
T.gradK RH,% HApffW Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm NO,/NO.
2716 68.0 3479 62.7 0.0233 0.0396 00164 00164 1.00
2700 70.0 3193 62.7 0.0216 0.0386 00182 00182 100
27|.6 71.3 3650 62.7 0.0206 0.0427 0.0189 0.0189 1.00
273.1 727 4165 62.7 0.0195 0.0534 0.0181 00181 100
2747 710 4551 627 00212 00534 00193 00178 092
2762 663 4749 62.7 0.0285 00601 0.0171 00127 074
277.8 617 4924 62.7 00334 0.0435 0.0146 00105 072
279.3 59.7 5306 62.7 0.0361 0.0451 0.0140 0.0103 0.74
2778 603 4817 62.7 00365 0.0518 0.0162 00133 082
276.2 610 4367 62.7 0.0306 0.0447 0.0194 00194 100
2747 627 4016 62.7 0.0267 0.0496 0.0202 00202 100
2731 65.3 3744 62.7 0.0250 0.0483 0.0180 00180 100
274.7 65.8 4246.6 62.7 0.0269 0.0476 0.0175 0.0161 0.91





Oiid. %/br
4.859
4.518
4.810
4.819
0.768
2.022
3.409
3.291
1.230
7.834
6.703
S.698
4.163
UNO/NO. ppm/ppm 0.0813 | Nltr./NO. ppm/ppm 0.0233 g/g 0.0405 |

Base Eq.
£2/25
Tot. Nil, ppm
0.00159
0.00164
0.00182
0.00174
0.00027
0.0005 1
0.00072
0.00068
0.00033
0.00304
0.00271
0.00205
0.00142
Base Nil.
0.000303
PM Nil, ppm












0.000408
EquiL Frac. 0.2866
Dale
J//5//0
Time
n
2
4
6
8
10
12
N
16
in
:i>
'
A . . I 4 g<
Spnitg:
T«..,gradFT.(MgradF RU1 RH2 RHJ RH4 Cloud C% p.mb | O3.D.U.
73.8 53.4 73.7 77.0 53.7 57.3 58.7 9932 345
T.gradK RH,% H,0,ppn Cloud C. % O,, ppm VOC,ppmC NO., ppm NO2, ppm NO,/NO.
.286.9 709 10550 58.7 0.0273 0.0288 0.0105 0.0105 1.00
285.0 74.2 9750 58.7 0.0243 0.0316 0.0104 00104 1.00
286.9 75.3 11206 58.7 00211 0.0332 0.0124 00124 100
2888 764 12854 58.7 00207 00368 0.0145 00133 . 092
290.7 73.1 13868 587 0.0320 0.0378 0.0103 0.0080 0.78
292.6 65.3 13950 587 0.0419 0.0300 0.0078 0.0059 0.76
294.5 57.6 13808 587 0.0479 0.0270 0.0072 00056 077
296.4 54.3 14612 587 00491 0.0252 0.0065 00051 079
294.5 55.5 13312 58.7 0.0497 0.0238 00072 00059 082
292.6 567 12102 58.7 00470 0.0280 0.0076 00069 091
2907 601 11380 58.7 00386 0.0364 0.0105 0.0105 100
7KS8 655 H006 587 00323 0.0388 00115 00115 100
r>07 654 123*4.3 58.7 0.0360 0.0314 0.0097 0.0088 0.90


Olid, %/hr
8.475
7.282
7.213
0.6SS
3.233
11.403
18.283
18.174
7.084
1.031
12.283
10.571
8.807
UNO./NO. ppra/ppm 0.1462 1 NIlr./NO. ppm/ppm 0.0408 g/g 0.0709 j
BaseEq.
0.1579
Tat. Nil, ppm
0.00177
0.00152
0.00178
0.00017
0.00052
0.00136
0.00204
0.00187
0.00084
0.00014
0.00258
0.00244
0.00142
Base Nil.
0.000224
PM Nil, ppm












0.00039S
EquiL Fnc. 0.2787

-------
|>'4«»
I/1 1/10
Time
0
1
4
6
8
10
12
14
16
18
20
22
kverage
ummcn
Tro,,iradF Tetrad* RHI RH2 RI13 RH4 Cloud C % p.nb | O3.D.U.
84.S 658 80.7 843 583 65.0 567 9%.l 316
T.gradK RH.V. HA ppm Cloud C.% O,, ppm VOC.ppnC NO., ppn NO2, ppm NO,SNO.
293.7 78.1 17811 567 0.0186 0.0271 0.0121 00121 1.00
291.9 813 16655 56.7 0.0159 00317 0.0123 00123 1.00
293.7 82.5 18833 56.7 0.0135 00318 00146 0.0146 1.00
295.4 837 21243 56.7 0.0124 0.0441 0.0158 00153 0.97
297.1 800 21562 S6.7 0.0230 0.0483 0.0112 0.0085 0.76
298.8 71.3 22296 S6.7 0.0352 0.0267 0.0098 00074 076
300.6 62.7 21675 567 0.0414 0.0277 0.0091 0.0070 0.77
302.3 59.4 22739 36.7 0.0429 0.0171 0.0077 00060 0.78
300.6 61.7 21327 S6.7 0.0425 00175 0.0075 00061 0.82
298.8 63.9 19950 S6.7 0.0372 00232 0.0076 00069 091
297.1 67.6 19041 56.7 0.0286 0.0325 0.0114 00114 100
295.4 728 18477 56.7 0.0223 0.0305 0.0127 00127 100
297.1 72.1 2t2l9.« 56.7 t.027S O.t299 0.0110 0.0100 0.90


Olid. V./br
7.475
6.305
5.791
0.610
3.031
10.164
18.349
18.448
8.007
0.882
11.466
9.131
8.307
HNO./NO. ppn/ppm t.1373 | NIlr/NO. ppa/pp* O.t3§4 |/f 0.0528 |
Base Eq.
0.0727
Tot. Nil, ppm
0.00181
0.00 ISS
0.00169
0.00019
0.00052
0.00151
0.002S8
0.00222
0.00098
0.00012
0.00261
0.00232
0.00151
BMC NIL
0.0001 10
PM Nit. ppm












0.000333
Equil. Frac. 0.2211
Dule
/// f//tf
Time
0
2
4
6
8
10
12
14
16
18
20
. 22
Average
Pall:
TMI, trad FT.,., Crad P RHI RHI RH3 RH4 Cloud C.% p,mb | O3.D.U.
348 37.8 74.0 78.7 59.3 653 613 9% 5 278
T.gradK RH.V. HjO.ppm Cloud C.% O,. ppn VOC.ppmC NO., ppm NO2, ppm NO,/NO.
278.0 72.6 5872 61.3 0.0170 0.0558 0.0107 00107 1.00
276.4 74.8 5417 61.3 0.0160 0.0584 0.0107 00107 100
278.0 76.3 6178 61.3 0.0149 0.0568 0.0092 00092 100
279.5 77.9 7033 61.3 0.0138 00750 0.0115 00115 1.00
281.1 754 7589 61.3 0.0164 0.0781 0.0135 00120 089
282.7 69.0 7720 61.3 0.0237 0.0526 0.0121 0.0088 0.73
284.2 62.6 7774 61.3 0.0284 0.0383 0.0092 00066 072
285.8 60.3 8319 61.3 00307 0.0351 0.0091 0.0070 0.77
284.2 62.3 7747 61.3 0.0291 00463 0.0106 00094 089
282.7 64.3 7196 61.3 0.0220 0.0628 0.0137 00137 1 00
281.1 66.8 6715 61.3 0.0192 00676 0.0138 00138 100
279.5 69.7 6289 61.3 00186 00616 0.0124 00124 1 00
281.1 69.3 6987.4 61.3 0.0208 0.0574 0.0114 00105 0.92


Olid, %/hr
3.962
3.545
3.301
3.720
0.713
2.537
4.325
3.045
0.689
6.405
5.432
4.860
3.544
HNO./NO. pp«/ppai 11680 | NIlr/NO. ppw/ppm 0.0278 g/| 0.0483 |
Base Eq.
g?!£!
Tot. Nil, ppm
0.00085
0.00076
0.00061
0.00085
0.00017
0.00045
0.00057
0.00043
0.00013
0.00176
0.00150
0.00121
0.00077
Base Nil.
0.000177
PM Nil, ppm












0.000316
Equil. Frac. 0.4082
»   «.IU4
ppm/ppai
0.0510

-------
;.9, Rura
uniierqui
Dale
/IS/20


Time
0
2
4
6
8
10
12
14
16
18
20
22
ivcrage
Vinlcr.
ju/«i r_4£9;p.809:p.l Latitude Uwgitude T. Zone Albedo I Yean 2020 |
:. Portland. Salt Lake Ci 4047 113.73 73 005 |
T..,,gradF Tetrad* RHI RH2 RHJ RH4 doudC% p.mb
49 28.8 76 62.67 53 69.67 67.67 909.13

03, D.U.
349
~4 20 5 II 17 23
T.gradK RH,% HApfM CtaidC.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
273.2 70.7 4474 67.67 0.0280 0.0443 0.0072 0.0072
2714 72.8 4015 67.67 0.0274 0.0333 0.0090 00090
273.2 74.9 4741 67.67 0.0277 0.0403 00055 00055
275.1 73.8 5344 67.67 0.0266 0.0477 0.0134 00134
277.0 69.3 5738 67.67 0.0282 00532 00122 00117
2788 64.9 6123 67.67 0.0330 0.0433 0.0073 00059
280.7 61.1 6556 67.67 0.0349 0.0376 0.0062 00048
2826 578 7053 67.67 00365 0.0239 00061 00048
280.7 546 5862 67.67 0.03S2 0.0447 00067 00057
278.8 558 5261 67.67 00290 0.0572 0.0132 00132
2770 61.3 5075 67.67 0.0259 00565 0.0136 00136
2751 66.9 4844 67.67 0.0240 00467 0.0106 00106
277.0 65.3 5424.0 67.7 0.0297 0.0441 0.0093 0.0088
NOt/NO.
1.00
1.00
100
1.00
096
081
077
079
085
1.00
1.00
100
0.93


Oild. %/hr
4.167
4.380
J.57J
6.465
0.651
2.230
4.839
J.762
1.846
6.911
6.152
4.857
4.153
llNOi/NO. ppm/ppm 0.0855 | NIlr/NO. ppm/ppm 0.0182 g/g 0.0178 ]

Base Eq.
Q.I 753
Tot Nit, ppm
0.00060
0.00079
0.00039
0.00174
0.000 IS
0.00026
0.00046
0.00036
0.00021
0.00183
0.00167
0.00103
0.00079
Base Nit
0.000139
PM Nit, ppm












0.000095
Equil. Frac. 0.1198
Dale
S/75/20
Time
0
2
4
6
2
10
12
14
16
1*
. it

A tri jge
Spring:
Tw.,gradFT.fa,tra4P RHI RH2 RHJ RH4 Cloud C% p,mb
73 1 46.7 66 43.33 3467 55 5667 907.3
T.gradK RH,% H,0,ppM Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppm
283.8 56.8 7516 56.67 0.0380 0.0479 0.0052 0.0052
2813 60.5 6787 56.67 0.0366 0.0513 0.0046 00046
283.8 64.2 8489 56.67 0.0327 00524 0.0049 0.0049
286.2 62.2 9675 56.67 0.0353 0.0581 0.0074 00071
223.7 54.7 9955 56.67 0.0422 0.0517 0.0057 00048
291.1 47.1 10017 56.67 0.0463 0.0403 0.0046 00037
293.5 41.9 10370 56.67 00496 0.0302 0.0044 00035
296.0 39.0 112 12 56.67 0.0515 0.0290 0.0047 00038
2935 36.1 8935 56.67 00533 0.0301 0.0052 00043
2911 381 8086 56.67 00501 0.0291 0.0062 00056
2H»7 448 8159 56.67 00440 0.0336 0.0070 00070
i«<>2 SI 6 8020 5667 00380 00417 0.0064 00064
288.7 49.8 W35.0 56.7 0.0431 0.0413 0.0055 0.0051
UNOj/NO. ppm/ppm 0.1443 1 NltrJNO. ppm/ppm 0.0185 g/g 0.0322
O3, D.U.
349
NO,/NO.
1.00
1.00
100
0.96
084
0.8
079
081
084
0.91
100
100
0.91


Olid, %/hr
6.527
5.422
5.995
0.587
4.764
14.678
21.598
19.591
8.153
1.269
9.498
7.800
8.823

Base Eq.
0.2
-------
        T«i, trad F T.J., t«d
 Time
  ~0
  2
  4
  6
  8
  10
  n
  14
  16
  18
  20
  22_
 Averaj
Summer
T.yadK
  2908
  2884
  2908
  293.3
  295.8
  2982
  300.7
  303.2
  300.7
  2982
  295.8
  2933
  255.8
HNtVNO.
RH,%
 57.7
 617
 657
 638
 560
 482
 424
 387
 34.9
 368
 44.3
HiO. ppni
  12064
  11026
  13746
  ISS78
  15904
  15877
  16151
  16979
  13267
  12091
  12575
  12660
  D993.S
  0.1845
Dale
/ /// f/20
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
VM:
.... g«d F T.I., trad F
532
T.gradK
275.5
2736
275.5
2774
2793
281.2
283.1
284.9
283.1
2812
279.3
277.4 <
279.3
ItNOi/NO.
328
Rll, •/•
715
732
748
732
68.2
63.2
599
58.5
57.1
58.7
63.5
68.3
65.8
ppa/ppa
RH1
75.67
H,0, ppm
5328
4758
5577
6234
6627
6992
7540
8347
7175
6498
6172
5817
6422.0
0.0853
Cloud C. */.
   43.67
   4367
   4367
   4367
   4367
   4367
   4367
   43.67
   43.67
   43.67
   43.67
   43.67
    43.7
  HHr./NO.

    RH2
    6067
 Cloud C.  %
    61.33
    6133
    61.33
    61.33
    61.33
    61.33
    61.33
    61.33
    61.33
    61.33
    61.33
    61.33
      61.3
   Nllr/NO.
Oi. pp"_
 0.0367
 0.0354
 0.0286
 00328
 0.0389
 0.0433
 0.0492
 00542
 0.0545
 0.0508
 0.0447
 0.0385
 •.0423
 ppm/ppa

   RH3
   56 33
     j»pm
   0.0235
   0.0236
   0.0237
   0.0221
   0.0255
   0.0308
   00331
   0.0336
   0.0296
   0.0234
   00239
   0.0203
   0.0261
  ppm/ppa
0.0638
0.0789
0.0809
0.1144
0.0729
0.0449
0.0358
0.0330
0.0243
0.0252
0.0422
00542
•.0559
 •.0075
NO.. ppn»
  00066
  00059
  00077
  0.0136
  0.0093
  00066
  00060
  0.0057
  00060
  0.0080
  00103
  0.0092
                                                                    RH4
                                                                    7067
                                                                   Cloud C%
                                                                      61 33
                                                                 VOC, ppmC NO.,
                                                                   0.0486
                                                                   0.0466
                                                                   0.0464
                                                                   00551
                                                                   00510
                                                                   0.0273
                                                                   0.0265
                                                                   0.0297
                                                                   0.0373
                                                                   0.0594
                                                                    0.0536
                                                                    0.0480
                                                                    0.0441
                                                                    0.0019
                                                                      00135
                                                                      00108
                                                                      00055
                                                                      00147
                                                                      00140
                                                                      0.0085
                                                                      0.0069
                                                                      0.0074
                                                                      00116
                                                                      00178
                                                                      0.0136
                                                                      00129
                                                                      0.0114
                                                                         /c
00066
00059
00077
00134
0.0079
00053
0.0048
00047
00051
00075
00103
00092
0.0074
0.0131
NOi/NO.
  1.00
  100
  1.00
  099
  085
  080
  080
  083
  085
  093
   100
   100
   0.92
— 1

Oiid. %/hr
9.804
8.446
8.818
0.543
3.854
15.594
26.843
17.286
10.293
1.001
14.723
12.233
11.620

Base Eq.
O.OV9*
Tot. Nil, ppm
0.00 1 JO
0.00099
0.00136
0.00015
0.00061
0.00164
0.00258
0.00257
0.00106
0.00015
0.00305
0.00226
0.00147
Base Nit.
0.0041 M7
PM Nit, ppm












0.000060
Equil. Frac. 0.0404

909 33


0.0135
00108
00055
00147
00133
00069
0.0054
0.0060
0.0104
00178
00136
00129
0.0109
0.0034
O3, D.ll.
273
NO}/NO.

1.00
100
1.00
100
095
081
0.78
081
090
100
100
100
0.94
1


Oiid. %/hr
5.755
4.787
3.504
6.185
0.634
1.675
3.755
2.832
0.608
7.211
6.395
5.147
4.041
Base Eq.
0.0915
Tot. Nit, ppm
0.00155
0.00104
0.00039
0.00182
0.00017
0.00023
0.00040
0.00034
0.00013
0.00257
0.00174
0.00133
0.00098
Equil. Frac.
Base Nit.
0.000089
PM Nil, ppm












0.000022
0.0226
           lllN
-------
j i N«rthr.«i p.493 Latitude Longitude T. Zone Albedo 1 Year. 2020
. v,,rL /reniral Park) 4078 7397 50 008 |
Dale
VI 5/20


Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winter:
T^gradFT^gradF RH1 RH2 RH3 RIM Cloud C% p.mb
40| 26.6 64 . 68 58 59 58 1013.7


03, D.U.
326
"|4 To 1 7 13 19
T.gradK RB,% HAfP* CtMdC% O,, ppm VOC.ppmC NO., ppm NO2, ppm
271.4 63.2 3132 38 0.0143 0.4418 0.1006 01006
270.2 64.7 2922 58 0.0143 0.3945 0.0864 00864
271.4 66.0 3273 58 0.0133 0.4131 0.0845 00845
272.7 67.3 3661 58 00115 0.5130 0.1160 01160
273.9 66.3 3950 58 0.0151 0.4313 0.1505 0 1189
27S.2 630 4105 58 00215 0.3474 0.1056 00686
276.4 59.7 . 4250 58 0.0240 0.2255 0.0815 00514
277.7 58.2 4525 58 00251 0.1653 0.0759 00516
2764 585 4167 58 0.0209 02061 0.0878 00702
275.2 58.8 3833 58 0.0121 0.3947 0.1039 0.1039
2739 59.8 3562 58 0.0124 0.4708 0.1086 01086
2727 615 3343 58 0.0131 0.4934 01062 01062
273.9 62.3 3727.0 58.0 0.0165 0.3747 0.1006 0.0889
NO,/NO.
1.00
1.00
1.00
100
079
0.65
063
068
080
1.00
100
100
0.88




Olid, %/br
5.562
5.243
5.050
4.820
0.796
2.259
2.845
1.737
0.773
5.036
5.104
5.272
3.708
IINOj/NO. ppm/ppm 0.0692 | Nllr./NO. ppm/ppm 0.0118 g/g 0.0205 |
Base Eq.
0. 1662
Tot Nit. ppm
0.01 119
0.00906
0.00853
0.01 118
0.00189
0.00310
0.00292
0.00179
0.00109
0.01046
0.01108
0.0 II 19
0.00696
Base Nit
0.001156
PM Nil, ppm












0.001185
Equil. Frac. 0.1702
Dale
VIS/20
Time
0
2
4
6
8
10
12
14
16
iii
2(1
^ i
Avrragc
Spring:
TM.,cradFT^.,|radF RHI RH2 RH3 RH4 Cloud C% p,mb
715 53.3 70 71 53 60 57 101 1 3
T.gradK RH,% HApp* Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2. ppm
286.7 68.3 9822 57 0.0225 0.2512 0.0550 0.0550
28S.O 70.2 9027 57 0.0224 ' 0.2084 0.0504 0.0504
286.7 70.5 10135 57 0.0205 0.1942 0.0573 0.0573
2884 70.8 11361 57 00186 0.2796 00824 00675
290.0 68.0 12150 57 0.0280 0.3753 0.0637 0.0452
291.7 62.0 12320 57 0.0364 0.1761 0.0497 00353
293.4 56.0 12357 57 0.0426 0.1566 0.0364 0.0269
295.1 54.2 13260 57 0.0443 0.1181 0.0392 00302
293.4 56.5 12468 57 0.0432 0.1232 0.0399 00324
•Al.'i 3fcl 11687 57 00333 0.1580 00381 00350
2900 61.7 11013 57 0.0245 0.2195 0.0500 0.0500
2K84 650 10422 57 00226 0.2634 0.0629 00629
290.0 63.S 11335.2 57.0 0.0299 0.2103 0.0521 0.0457
IINO^NO. ppm/ppm 0*1229 | Nltr/NO. ppm/ppm 0.0042 g/g 0.0073 |
O3. D.U.
358
NOj/NO.
1.00
1.00
1.00
082
071
071
074
0.77
0.81
092
100
100
0.87


Olid, %/br
10.510
10.146
9.693
0.676
4.630
5.771
8.110
5.189
2.469
0.651
11.534
10.830
6.684

Base Eq.
002 US
Tot. Nil, ppm
0.01157
0.01022
0.01 110
0.00091
0.00419
0.00408
0.00437
0.00314
0.00160
0.00046
0.01155
0.01362
0.00640
Base Nil.
0.000183
PM Nil, ppm












0.000219
Equil. Frac. 0.0341

-------
bale
1/15/20
Time
0
2
4
6
8
10
* *
14
16
18
20
22
\vcraft
tummcr
TMI, trad F T_, grad V Rill • RH2 RH3 RH4 Cloud C % |t, nb
837 671 76 78 57 66 55 10142
T.gradK RH,% 11,0, ppm Cloud C.% O,, ppra VOC.ppmC NO., ppm NO2, ppm
294.2 74.3 17192 53 0.0165 0.4274 0.0519 0.0519
292.7 763 16048 55 00149 0.3613 0.0438 00438
294.2 77.0 17113 55 0.0130 0.4080 0.0471 00471
295.7 77.7 1*750 55 0.0097 0.4005 0.0876 00719
297.3 74.5 207f4 55 0.0116 0.2337 0.0750 0.0503
2988 67.5 Mtff 55 0.0317 0.1876 0.0563 00405
3CC.3 60.5 20257 55 0.0427 O.I6S7 00468 00356
301.9 58.5 21432 55 0.0461 0.1483 0.0464 00366
300.3 61.5 20595 55 0.0437 0.1652 0.0503 00422
298.8 64.5 19722 55 0.0344 0.2289 0.0462 00439
297.3 67.7 18872 55 0.0200 0.4745 0.0561 00561
295.7 71.0 18042 '55 00167 0.5018 00649 00649
297.3 69.3 19263.5 55.0 0.02S7 0.3088 O.OS60 0.0487
03, D.U.
322
NO,/NO.
1.00
100
1.00
082
0.67
0.72
0.76
0.79
0.84
095
1.00
1.00
0.88


Olid, %/hr
8.322
7.358
6.S24
0.624
2.640
S.739
7.871
6.097
2.687
0.604
10.254
8.599
5.610
HNO./NO. ppm/ppM 0.0966 | NttrJNQ. pp*/pp» 0.0043 ffe 0.0074 |
Base Eq.
0.0361
Tot. Nit, ppm
0.00863
0.00644
0.00614
0.00090
0.00265
0.00465
0.00560
0.00447
0.00227
O.OOOS3
0.01 1SI
0.01117
0.00541
Base Nit
0.000196
PM Nit, ppm












0.000239
EquiL Frac. 0.0441
Dale
II /I MO
Time
0
2
4
6
8
10
n
14
16
18
20
22
Average
Pall:
TM1, grad F T^., grad F RHI RH2 RH3 RH4 Cloud C.% p.mb
536 408 69 73 59 63 58 10145
T.gradK RH,% H,0,ppm Cloud C.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
279.2 68.0 5901 58 0.0103 0.4272 0.0900 0.0900
2780 69.7 5567 58 . 00117 0.3519 0.0713 00713
2792 71.0 6162 58 0.0121 0.3456 0.0614 00614
280.4 72.3 6814 58 0.0088 0.4999 0.0928 00928
281.6 70.7 7218 58 0.0100 0.3460 0.1246 0.0922
2828 660 7304 58 0.0172 0.1731 0.0859 00559
284.0 613 7347 58 0.0210 0.1470 0.0621 00410
285.2 59.7 7733 58 00209 0.1760 00612 00447
284.0 61.0 7307 58 00134 0.2934 0.0800 00720
282.8 62.3 6897 58 0.0092 0.5373 00974 00974
281.6 64.0 6535 58 0.0100 0.5623 0.0985 0.0985
2804 66.0 6216 58 0.0104 05042 0.1000 01000
281.6 66.0 6750.1 58.0 0.0129 0.3637 0.0854 0.0764
03, D.U.
283
NO,/NO.
1.00
100
1.00
100
0.74
065
0.66
073
0.90
1.00
100
1.00
0.89


Oxid. %/hr
4.685
5.070
5.253
4.120
0.728
1.394
2.043
1.358
0.709
4.321
4.657
4.830
3.264
HNOJNO. ppaVppav 0.0623 | Nttr/NO. ppaWppoi 0.8044 f/c 0.0077 1
Base Eq.
0.0652
Tot. Nil, ppm
0.00843
0.00723
0.0064S
0.00765
0.00134
0.00 IS6
0.00167
0.00121
0.00102
0.00842
0.00918
0.00966
O.OOS32
Base Nit.
0.00(1347
PM Nit, ppm












0.000378
EquiL Frac. 0.0711
MUrJNO.
t/C
0.0119

-------
:eg. 2, Soutl
Atlanta
Dale
2/15/20


Time
0
2
4
6
8
. 10
12
14
16
18
20
22
Average
Winter
tr.ii p.297 Latitude Loagitude T. Zone Albedo 1 Yean 2020 |
3365 84.42 5.0 0.08 |
TM.,cradFT.infradF RHI RH2 RH3 RH4 Cloud C. % p.mb
553 345 69 75 54 56 62 9815

O3, D.U.
284
14 20 1 7 13 19
T.tradK RH,% HA ppm Cloud C% O,, ppm VOC.ppmC NO., ppm NO2, ppm
276.5 66.8 4940 62 0.0126 0.5651 0.0624 0.0624
274.5 700 4509 62 0.0128 0.5252 0.0543 00543
276.5 720 5323 62 0.0123 0.3237 0.0438 00438
278.4 740 6266 62 0.0102 0.4388 00671 00671
280 3 71 5 6918 62 00133 0.5132 00822 00723
282.2 645 7115 62 00223 0.4464 0.0440 00304
284.2 57.5 7216 • 62 0.0281 0.3038 0.0335 00228
286.1 543 7744 62 0.0300 0.2803 00286 00200
284.2 55.0 6902 62 0.0268 0.3130 0.0378 00284
282.2 557 6138 62 0.0143 0.5224 0.0628 00597
2803 582 5625 62 00123 0.6176 0.0721 00721
2784 625 5290 62 00127 0.6196 00724 00724
280.3 63.5 6165.6 62.0 0.0173 0.4558 0.0551 O.OSOS
NO,/NO.
1.00
100
1.00
100
088
0.69
0.68
0.70
0.75
0.95
100
1.00
0.89



Olid, %/br
5.144
4.919
4.752
4.489
0.704
5.054
8.477
S.S22
3.598
0.689
5.349
5.448
4.762
IINO./NO. ppm/ppm 0.0783 | NIlrJNO. ppm/ppm 0.0345 f/t 0.0600 |

Base Kq.
04461
Tot Nit, ppm
0.00642
0.00534
0.00417
0.00603
0.00102
0.00307
0.00386
0.00342
0.00204
0.00082
0.00772
0.00789
0.00432
Base Nil.
0.001926
PM Nit, ppm












0.001899
Equil. Frac. 0.4401
Dale
V1V20
Time
0
2
4
6
8
10
12
14
16
in
.0
> >
Aifujje
Siii-mg: s
TMI,tradFT.te,fradF RHI RH2 RH3 RH4 Cloud C. •/• p,mb
79.8 58.7 78 83 54 58 56 9787
T, grad K RH, % H,0, ppm Cloud C % O,, ppm VOC, ppmC NO., ppm NO2, ppm
289.9 74.7 13705 56 0.0217 0.4485 0.0331 00331
288.0 78.8 12765 56 0.0200 0.3920 00322 00322
289.9 80.5 14782 56 0.0165 0.4238 0.0404 0.0404
291.9 822 17080 56 00151 0.6388 00765 00765
293.8 78.2 18352 56 0.0314 0.3312 0.0394 00347
295.8 685 18120 56 00451 0.2380 00270 00186
297.8 58.8 17501 56 OQ5I9 0.2005 0.0230 00157
299.7 547 18265 56 00524 0.2031 00241 00169
297.8 560 16652 56 00502 0.2447 0.0306 00230
2958 573 15148 56 00387 0.3424 0.0317 00301
2918 613 14)77 56 00247 0.4022 0.0404 00404
2919 680 141 19 56 00215 0.4044 00403 00401
293.8 68.3 15905.5 56.0 0.0324 0.3SS8 0.0366 0.0335
ll.rtOi/po, ppm/ppm 0.1307 | Nllr./NO. ppm/ppm 0.0166 gfe 0.0289 |
O3, D.U.
319
NO./NO.
1.00
100
1.00
1
0.88
0.69
068
0.7
0.75
0.95
1.00
100
0.89


Olid, %/hr
10.068
9.113
7.980
7.836
0.606
3.908
7.040
7.479
3.340
0.594
11.827
10.301
6.674

Base Eq.
01390
Tot Nil, ppm
0.00667
0.00587
0.00644
0.01199
0.00042
0.00145
0.00221
0.00252
0.00153
0.00036
0.00955
0.00831
0.00478
Base Nil.
0.000664
PM Nil, ppm












0.000608
EquiL Frac. 0.1272

-------
Dale
A//V20
Time
0
2
4
6
8
10
12
14
16
18
->o
22
Average
Summer
T..., grad K Tetrad F RHI RH2 RII3 RH4 Cloud CV. p.mb
87.6 687 85 90 61 67 58 9815
T, grad K RH, % H,0, ppm Cloud C. V. O,, ppm VOC, ppnC NO., ppm NO2. ppm
295.3 82.0 20994 58 0.0147 0.6029 0.0362 00362
293.5 858 19730 58 00121 0.5269 00397 00397
295.3 87.5 22415 58 0.0102 0.5696 0.0460 00460
297.0 89.2 2S423 58 0.0092 0.8587 0.0820 00820
298.8 85.2 26972 58 0.0251 0.4452 0.0458 00362
300.5 755 26501 58 0.0431 0.3199 0.0276 00218
302.3 658 2)572 58 00505 0.2695 0.0219 00173
304.0 62.0 26637 58 0.0501 0.2729 0.0231 00185
3023 640 24853 58 0.0462 0.3289 00302 00247
300.5 660 23135 58 0.0357 0.4603 00326 0029)
.?9M 700 22126 58 00215 0.5406 0.0381 00381
297.0 760 21636 58 00159 0.5436 00427 00427
298.8 75.8 23833.* 58.0 0.0279 0.4782 0.0388 0.0360
O3, D.U.
312
NOi/NO.
1.00
100
100
1.00
0.79
079
0.79
080
082
090
100
100
0.91


Olid, %/hr
7.3S6
6.086
S.241
4.939
3.799
14.073
23.857
22.180
10.702
2.069
10.85*
8.082
9.937
HNOj/NO. ppmJppm t.lStS | NUr/NO. ppn/ppm 0.0201 g/g 0.0350 |
Base Eq.
0.IS/0
Tot. Nil, ppm
O.OOS32
0.00484
0.00482
0.00810
0.00275
0.00613
0.00826
0.00821
0.00530
0.00121
0.00827
0.00690
0.00584
Base Nit
0.000882
PM Nil. ppm












0.000782
Equil. Frac. 0.1338
Dale
H/IV20
Time
0
2
4
6
8
ID
12
14
16
18
20
22
Average
Fall:
T..., grid F T.U, trad F RHI RH2 RH3 RH4 Cloud C % p.mb
626 413 76 82 55 63 54 9825
T, grad K RH. % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
280.3 . 73.8 7123 54 0.0 110 0.4596 00424 0.0424
2783 77.0 6480 54 00115 0.3446 0.0460 00460
280.3 790 7623 54 0.0109 0.3736 0.0401 00401
282.3 81.0 8944 54 00083 0.5345 0.0619 00619
284.2 77:5. 9769 54 00117 0.4755 0.0764 00634
286.2 68.5 9833 54 0.0213 • 6.3784 0.0418 00288
288.2 59.5 9706 54 0.0261 0.2860 0.0323 00219
290.2 56.3 10426 54 00272 0.2875 00318 00229
288.2 59.0 9624 54 0.0204 0.3482 0.0459 00367
286.2 . 61.7 8848 54 00099 0.5825 00867 00867
284.2 65.2 8209 54 00106 0.5212 0.0820 0.0820
282.3 69.5 7670 54 00105 0.5106 0.0721 00721
284.2 69.0 8488.0 54.0 0.0149 0.42S2 O.OS49 0.0504
03. D.U.
119
NOi/NO.
1.00
1.00
1.00
1.00
0.83
069
0.68
072
080
1.00
100
100
0.89


Olid, %/hr
4.593
4.772
4.60S
3.89)
0.673
4.770
7.S30
6. 158
1.S09
4.809
S.OSI
4.901
4.439
HNO»/NO. ppm/ppa* It/nt | NltrJNO. ppm/ppm 0.0260 g/g 0.04S2 1
Base Eq.
0.3463
Tot. Nit, ppm
0.00389
0.00439
0.00369
0.00482
0.0008S
0.00275
0.00330
0.00282
0.001 II
0.008J4
0.00828
0.00707
0.00428
Base Nil.
0.001481
PM Nil, ppm












0.001429
EquiL Frac. 0.3341
Vrir
IHNO./NO.   ppm/ppm   0.1036  j NltiJNO.   ppm/ppm    Q.«1S4       t/C      0.0443  "|

-------
c i M^-"«« P*4» Ulilude looeitude T. Zoic Albed* 1 Y«ar. 2020 |
:hUago 4198 879 60 008 |
Dale
VI 5/20


Time
0
2
4
6
8
ID
12
14
16
18
20
22
Ivor age
Vinlcr:
T_..,gr*dFT.,.,KradP RHI RH2 RH3 RH4 Cloud C% p,mb 1 O3.D.U.
33.9 18.1 75 77 66 69 68 9934 | 345
t..., h l«i»tfc (AI *•*» *•** ••*«
14 2.0 0 6 12 18
T.gradK RH,% HA|f» CU«dC% O,, pp. VOC.pp.iC NO., ppn NO2, ppm NO,/NO.
266.9 75.0 2702 68 0.0144 0.2285 0.0470 0.0470 1.00
265.4 75.7 2434 68 0.0144 0.2663 0.0438 0.0438 1.00
266.9 76.3 2750 68 0.0141 0.2910 0.0446 0.0446 1.00
268.4 77.0 3102 68 0.0119 0.2048 0.0550 00550 1.00
2698 73.3 3299 68 0.0142 0.2304 0.0547 00427 0.78
271.3 69.7 3495 68 0.0213 0.2329 0.0409 0.0262 0.64
2727 660 3687 68 0.0246 02433 00352 00225 064
274.2 67.0 4163 68 0.0260 0.2256 0.0365 0.0252 0.69
272.7 680 3799 68 00243 0.2521 00390 00328 084
271.3 690 3461 68 0.0157 0.2356 0.0460 00460 1.00
2698 71.0 3194 68 0.0144 0.2527 0.0499 0.0499 1.00
2684 730 2941 68 00136 02338 00518 00518 100
269.8 71.8 32S2.1 68.0 0.0174 0.2414 0.04S4 0.0406 0.88





Olid, %/hr
4.281
3.944
4.IS2
3.986
0.810
3.246
5.287
3.491
0.782
S.I9I
4.728
4.360
3.688
IINfVNO. ppm/ppn 0.0673 | Nitr/NO. ppra/ppm 0.0481 c/8 0.0837 |

Base Eq.
0. SB 77
Tot. Nit. ppm
0.00402
0.00346
0.00370
0.00438
0.00069
0.00170
0.00238
0.00176
0.00051
0.00478
0.00472
0.00452
0.0030S
Base Nit
0.001793
PM Nit. ppm












0.002184
Equil. Frac. 0.7157
Dale
VIS/20
Time
0
2
4
6
8
10
12
N
16
;.i
. ,i

Atrugc
Spring;
TM..gradFT.u.iradF RHI RH2 RH3 RH4 Cloud C % p.mb
70 48.1 73 77 54 54 63 9895
T.gradK RH,% HjO.ppm Cloud C% O,, ppm VOC,ppmC NO., ppn NO2, ppm
284.1 73.0 9066 63 0.0195 0.1172 0.0433 0.0433
282.1 74.3 8055 63 0.0182 0.1166 0.0407 0.0407
284.1 75.7 9399 63 0.0168 0.1168 0.0429 00429
2862 77.0 10940 63 0.0157 0.1289 0.0493 00385
2882 69.3 11237 63 00250 0.1316 00362 00250
290.2 61.7 11377 63 0.0373 0.1191 0.0240 0.0173
2922 54.0 11316 63 0.0422 0.1088 0.0219 00162
2943 540 12837 63 00443 0.1134 0.0220 00170
2922 540 11316 63 00444 01074 00223 00183
2902 340 99S7 63 00365 0.1058 00229 00213
2882 60} 9773 63 00263 0.1143 0.0393 00393
2»<' 2 667 9466 63 00210 01172 00462 00462
2882 64.3 10395.0 63.0 0.0289 0.1164 0.0343 0.0305
IINO/NO. ppm/ppa 0.1218 | NIlr./NO. ppm/ppm 0.0352 g/g 0.0612 |
O3. D.U.
357
NOj/NO.
1.00
1.00
1.00
0.78
0.69
072
074
0.77
0.82
0.93
100
100
0.87


Olid, %/br
8.648
7.770
7.S06
0.671
3.33S
7.744
9.172
7.623
3.305
0.642
11.642
9.501
6.463

Base Eq.
0.1659
Tot. Nit, ppm
0.00749
0.00632
0.00644
0.00052
0.00167
0.00268
0.00297
0.00259
0.00121
0.00027
0.00916
0.00877
0.00417
Base Nit.
0000693
PM Nit. ppm












0.001206
Equil. Frac. 0.2890

-------
Dale
//S/20
Time
0
2
4
6
8
to
12
14
16
18
20
22
Average
ummen
T^gradFT^cradF RHI RII2 RII3 RH4 CtoudC. V. p. rob
821 61.7 81 85 57 62 57 9926
T.tradK RH,% IM.ppn Cloud C.% O,, ppm VOC.ppraC NO., ppm NO2. ppm
291.5 81.0 16235 57 0.0187 0.2642 00356 00356
289.7 82.3 14637 57 0.0175 0.2530 0.0323 00323
291.5 83.7 16773 57 0.0155 0.2592 0.0347 00347
293.4 85.0 19114 57 0.0124 0.2569 0.0470 00394
295.3 75.7 19175 37 0.01S7 0.2609 0.0416 00279
297.2 66.3 18840 57 0.0341 03523 0.0279 00203
299.1 57.0 If 111 57 0.0425 02853 0.0212 00161
301.0 58.7 20150 57 0.0443 0.2920 0.0202 00159
299.1 60.3 19179 57 0.0436 0.2634 0.0206 00173
297.2 62.0 17600 57 0.0372 0.2808 0.0196 00187
295.3 68.3 17303 -57 0.0236 0.2423 0.0304 00304
293.4 74.7 16836 57 00118 0.2490 0.0365 00365
295.3 71.3 I7S93.S 57J 0.0272 0.2716 0.0306 0.0271
O3, D.U.
319
NO,/NO.
1.00
100
1.00
0.84
0.67
0.73
0.76
0.79
084
0.95
100
1.00
0.88


Olid, %/hr
9.02S
S.I72
7.S10
0.620
4.729
14.468
19.991
18.048
7.221
O.S96
11.269
9.165
9.236
HNO./NO. ppm/ppai «.I4M | NUr./NO. p|Na/pp« •••274 f/( 0.0476 |
Base Eq.
OOK96
Tot. Nil, ppm
0.00642
0.00529
0.00521
0.00049
0.00264
0.00589
0.00645
O.OOS7S
0.00250
0.00022
0.00686
0.00669
0.00453
Base Nit.
0.000406
PM Nit, ppm












0.000838
Equil. Frac. 0.1848
DJIC
/// 5/2tf
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Pall:
T..., grad F T.ta, grad F RHI RH2 RH3 RH4 Cloud C% p.mb
482 31.4 77 81 64 70 72 9925
T.gradK RH,% H,0,ppoi Cloud C.% O,, ppm VOC.pproC NO., ppm NO2, ppm
274.4 77.0 4847 72 0.0120 0.2032 0.0425 00425
272.8 78.3 4405 72 0.0119 0.1734 0.0380 00380
274.4 79.7 5016 72 0.0114 0.2052 0.0338 00338
275.9 81.0 5702 72 00103 0.2546 0.0415 00415
277.5 75.3 5919 72 0.0117 0.4695 0.0462 00356
279.0 69.7 6102 72 0.0173 0.2410 0.0302 0.0199
280.6 64.0 6240 72 0.0208 0.2265 0.0273 00183
282.2 66.0 7155 72 0.0221 0.1973 0.0278 00211
280.6 68.0 6631 72 00182 0.1537 0.0358 00340
279.0 700 6131 72 0.0112 0.2397 0.0504 00504
277.5 72.3 S683 72 0.0112 0.3084 0.0528 00528
2759 74.7 5255 72 00114 0.3238 00529 00529
277.S 73.0 S7S7.0 72.0 0.0141 0.2497 0.0399 0.0367
O3, D.U.
281
NOj/NO.
1.00
1.00
1.00
1.00
0.77
066
0.67
0.76
095
1.00
100
1.00
0.90


Olid, %/hr
4.4S3
4.131
4.013
4.038
0.874
3.738
4.701
2.232
0.714
4.676
4.627
4.593
3.566
UNO /NO, ppnt/pp* ••483 | Nltr/NO. ppm/ppm 0.0222 t/f 0.0386 |
Base Eq.
0.2117
Tot. Nit, ppm
0.00379
0.00314
0.00271
0.00335
0.00062
0.00149
0.00172
O.Q0094
0.00049
0.00471
0.00488
0.00486
0.00273
Base Nil.
0.000577
PM Nit, ppm












0.000886
Equil. Frac. 0.3249
W..i:
|UNO/NoT
M     •.0*44  I  NUrJNO.   ppm/ppa    t.034t
                                                                               l/f
0.0592  I

-------
c 1 llpptrWfvl p-iili . Latitude Looeitudc T. Zone Albedo I Vear._ 2020 |
hcycnne 4115 10482 70 008 |
Dale
2/15/20


Time
0
2
4
6
8
10
12
14
16
18
20
2?
\vcritj;e
Winter:
T..,gradFT^.,gradF RHI RH2 RH3 RH4 Cloud t. % p,mD
407 179 60 44 46 60 62 8088


O3, D.U.
352
l«.,b t^.,b Ui 1*1 t^i t+4
14 2.0 5 II 17 23
T.gradK RH.% HAlfM OoudC. % O,, ppm VOC.ppmC NO,, ppm NO2, ppm
267.4 600 2766 62 0.0118 0.4085 0.0401 00401
265.3 600 2350 62 0.0119 0.3802 00410 00410
267.4 60.0 2766 62 0.0115 03162 00374 00374
269.5 573 3102 62 0.0091 0.2955 00578 00578
271.7 520 3292 62 00115 0.3395 00861 00689
273.8 46.7 3447 62 00199 0.3382 0.0671 00457
2759 443 3811 62 00243 0.2662 00782 00540
2780 45.0 4491 62 0.0252 0.2491 0.1093 00798
275.9 45.7 3926 62 0.0197 0.2814 0.1061 00870
2738 483 3571 62 0.0115 0.3889 0.0850 0.0850
2717 • 530 3356 62 00112 0.4396 00712 0.0712
2695 577 3120 62 00118 04313 00537 00537
271.7 52.5 3333.4 62.0 0.0150 0.3445 0.0694 0.0601
NO,/NO.
1.00
1.00
1.00
1.00
080
0.68
069
073
082
100
1.00
100
0.89




Olid, %/hr
3.373
3.136
3.205
3.125
0.580
2.081
2.175
1.153
0.552
4.524
4.164
3.942
2.667
IINO./NO. ppm/ppm 0.0444 | Nllr/NO. ppm/ppm 0.0056 g/g 0.0097 |
Base Eq.
0. 1-ltO
Tot Nit, ppra
0.00270
0.00257
0.00240
0.00361
0.00080
0.00190
0.00235
0.00184
0.00096
0.00769
0.00593
0.00423
0.00308
Base Nit
0.000441
PM Nit, ppm












0.000387
Equil. Frac. 0.1256
Dale
5/15/20
Time
0
2
4
6
8
10
12
14
16
IH
.'!'

A » «• i 4 t;c
Spring:
TM..gradFT.lMtradF RHl RH2 RH3 RH4 Cloud C% p,mb
646 397 70 41 43 66 67 810
T.gradK RH,% H,0,ppn Cloud C.% O,, ppm VOC.pproC NO., ppm NO2, ppm
279.7 66.7 7511 67 0.0224 0.1307 0.0289 0.0289
2774 680 6523 67 00212 01275 00233 00233
279.7 69.3 7812 67 0.0169 0.1319 0.0300 0.0300
282.0 65.2 8597 67 00146 0.1398 0.0651 0.0534
284.3 55.5 8544 67 00262 0.1315 0.0490 0.0362
286.7 45.8 8210 67 00382 0.1203 00265 00201
289.0 41.3 8593 67 00457 0.1193 00155 00122
2913 420 101 13 67 00475 01238 00196 00158
2890 42:7 8872 67 00444 0.1244 00261 00219
2867 468 8390 67 00390 0.1272 0.0282 00265
784 J 54 5 8390 67 00272 0.1317 00295 00295
2820 622 8199 67 00231 0.1307 00243 0.0243
284.3 SS.O 8312.7 670 0.0305 0.1282 0.0305 0.0268
HNO./NO. ppm/ppm 0.0891 | NUr./NO. ppm/ppm 0.0043 g/g 0.0075 |
IO3, D.U.
344
NO./NO.
1.00
1.00
100
0.82
074
0.76
0.79
081
084
0.94
1.00
100
0.89


Osid. %/hr
8.602
7.240
6.681
0.515
1.737
5. 101
9.321
6.663
2.531
0.490
10.848
8.709
5.703

Base Eq.
QOS68
Tot. Nit, ppm
0.00496
0.00337
0.00401
0.00055
0.00126
0.00205
0.00228
0.00211
0.001 II
0.00026
0.00641
0.00424
0.00272
Base Nit
0.000236
PM Nil, ppm












0.0001 31
EquiL Free. 0.0483

-------
Dale
VI 5/20
Time
0
2
4
6
8
10
12
14
16
18
20
22
average
uminen
T..., grad F T.O., trad F RHI RUZ KII3 RH4 Cloud C. % p.mb
808 328 68 35 37 61 SI 8153
T, grad K RH, % H,0, ppm Cloud C. % O)( ppm VOC, ppmC NO., ppm NO2, ppm
287.3 622 11555 SI 00219 03486 00287 00287
2847 645 10110 SI 00213 03340 00254 00254
2873 668 12426 SI 00180 03503 0.0312 00312
289.9 625 13731 SI 00123 03534 00610 00536
292.S SIS 13315 SI 00233 0.3260 O.OSI2 0.0384
295.1 40.5 12279 SI 00401 0.3608 00295 00233
297.7 353 I2S29 SI 00496 0.3487 0.0199 00161
300.3 36.0 I4S97 SI 00503 0.3415 0.0233 00193
297.7 36.7 13005 SI 0.0449 0.3482 00283 00244
295.1 41.0 12431 SI 0.0362 0.3654 00297 00282
292.5 490 12665 SI 00253 03449 00339 00339
289.9 57.0 12516 51 0.0221 0.3405 0.0311 00311
292.S 50.3 12621.6 SI.O 0.0304 0.3474 0.0328 0.029S
03, D.U.
295
NOi/NO.
1.00
100
1.00
0.88
0.7S
079
0.81
083
086
0.9S
100
100
0.91


Oiid. %/hr
9.SSI
8.717
8.126
0.473
3.201
9.910
16.148
13.459
S.464
0.492
11.553
9.944
8.087
HNO./NO. ppm/ppn 0.1270 | NIlr/NO. ppm/ppm 0.0000 t/t 0.0000 |
Base Eq.
00050
Tot Nit, ppm
0.00549
0.00442
0.00507
0.0005 1
0.00246
0.00462
0.00521
0.00519
0.00266
0.00028
0.00783
0.00618
0.00416
Base Nil.
0.000021
PM Nit, ppm












0.000000
EquiL Frac. 0.0000
Dale
///f/2tf
Tim*
0
2
4
6
8
10
12
14
16
18
20
22
Average
Kail:
r_., grad F T.U., grad F RHI RH2 RH3 RH4 Cloud C. % p.mb
465 231 60 43 49 59 56 810
T, grad K RH, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2704 592 3403 56 0.0119 03244 0.0539 00539
268.2 59.5 2907 56 0.0124 0.2732 0.0491 00491
2704 598 3441 56 00127 0.2527 0.0420 00420
2725 57.2 3859 56 00098 0.2956 00561 00561
274.7 SI.S 4068 56 0.0110 0.4204 0.0720 00569
276.9 458 4224 56 0.0173 02299 0.0521 00354
279.0 44.0 4719 56 0.0202 0.2100 0.0514 00350
2812 460 S728 56 00213 0.1903 0.0491 00373
279.0 48.0 SI49 56 0.0135 02025 0.0731 00665
276.9 50.7 4670 56 0.0098 0.4333 0.0993 00993
274.7 54.0 4265 56 0.0104 0.5177 00603 00603
272.5 57.3 3870 56 00107 0.4781 00554 00554
274.7 52.8 4191.9 56.0 0.0134 0.3190 O.OS9S 0.0539
O3, D.U.
274
NO,/NO.
1.00
100
1.00
100
0.79
0.68
0.68
0.76
0.91
100
1.00
100
0.90


Oiid. %/hr
4.109
3.884
4.078
3.620
O.SS9
1.921
2.322
1.279
0.533
4.280
4.029
3.949
2.880
HNO./NO, ppm/ppm •.0543 | Nltr/NO. ppm/ppm 0.0000 g/g 0.0000 j
Base Eq.
0.0184
Tot. Nit, ppm
0.00443
0.00381
0.00343
0.00406
0.00064
0.00136
0.00162
0.00095
0.00071
0.00850
0.00486
0.00437
0.00323
Base Nit.
0.000059
PM Nit. ppm












0.000000
EquiL Frac 0.0000
•_•_    ]M*«»./NO.    ppim/ppa     0,0484   |  NUrVHO.   ppm/ppm     0.0027
t/t
0.0047

-------
. * Snuthweit p.669. Latitude IxMgilude T. Zone Albedo I Year; 2020 |
uqHcrquc 3505 106.62 70 008 |
Dale
VI 5/20


Time
0
2
4
6
8
10
12
U
16
18
20
22
.vcrage
Vinicr
T_, trad FT^., trad F RH1 RH2 R1I3 RH4 Cloud C% p,mb
52.9 25.9 65 44 32 52 49 837 9


O3, D.U.
330
Ti 20 5 II 17 23
T.tradK RH.% HAffM Cloud C.% O,, ppm VOC,ppmC NO., ppm NO2, ppm
272.3 54.2 3463 49 0.0108 0.4759 0.0984 00984
269.8 58.5 3107 49 0.0113 0.4423 0.0748 00748
272.3 62.8 4018 49 0.0103 0.2727 0.0667 00667
274.8 61.5 4716 49 0.0080 03696 00938 00938
277.3 54.5 4992 49 0.0096 0.4322 0.1431 01059
279.8 47.5 5178 49 0.0214 0.3759 0.0789 00537
282.3 42.0 5430 4) 0.0305 0.2558 0.0468 00337
2848 380 5807 49 00340 0.2361 0.0409 00315
282.3 34.0 4394 49 00329 0.2636 0.0518 00440
279.8 35.3 3850 49 0.0163 0.4400 0.0907 00907
277.3 42.0 3845 49 0.0129 0.5201 0.1242 01242
2748 487 3730 49 001 II 0.5219 01086 01086
277.3 48.3 4377.4 49.0 0.0174 0.3838 0.0849 0.0772
NO,/NO.
1.00
1.00
1.00
1.00
0.74
0.68
0.72
0.77
085
100
1.00
100
0.90




Olid, %/hr
4.331
4.111
4.027
3.475
O.S73
2.764
4.432
3.732
1.127
6.592
S.S20
4.624
3.77614
HNO./NO. ppm/ppm 0.07IS | NHr./NO. ppm/ppm 0.0094 g/C 0.0164 |
Base Eq.
0.1375
Tot. Nit, ppm
0.00852
0.00616
0.00537
0.00652
0.00121
0.00297
0.00299
0.00235
0.00099
0.01196
0.01371
0.01004
0.00607
Base Nit
0.000834
PM Nit, ppm












0.000799
EquiL Frac. 0.1318
Dale
>/IS/20
Time
0
2
4
6
8
10
12
~M
16
IH
.ii

\» r i j(-c
Spmig:
T-., Crad FT.*, trad F RHI RU2 RH3 RH4 Cloud C% p.mb 1 O3.D.U.
79.9 48.6 48 25 18 34 41 836 | 326
T.gradK RH.% H,0.ppui Cloud C% O,, ppm VOC.ppmC NO., ppm NO2. ppm NO,/NO.
285.3 36.3 5755 41 0.0238 0.3778 0.0408 0.0408 1.00
282.4 41.0 5353 41 0.0209 0.3302 0.0345 00345 1.00
285.3 45.7 7238 41 0.0168 0.3569 0.0353 00353 100
288.2 44.2 8458 41 0.0135 0.5380 0.0690 0.0587 0.85
291.1 36.5 8406 41 0.0286 0.2790 0.0492 00374 0.76
294.0 28.8 7951 41 0.0440 0.2004 0.0276 0.0215 0.78
2969 23.8 7839 41 00502 0.1688 0.0213 00171 0.80
299.8 21.5 8404 41 0.0508 0.1710 0.0216 00178 0.82
296.9 19.2 6300 41 0.0484 0.2061 0.0253 00215 0.85
2940 207 5694 41 00409 0.2884 0.0223 00209 0.94
291 | 260 5982 41 00268 0.3387 0.0503 00503 1.00
2882 113 5995 41 00252 0.3406 00578 00578 1.00
J-M 1 JI.3 6947.7 41.0 0.0325 0.2997 0.0379 0.0345 0.90


Olid, %/hr
9.I2S
7.475
6.762
0.508
3.51S
8.460
11.617
10.205
4.808
0.735
10.881
10.573
7.055
HNO./NO. ppm/ppm 0.1261 1 Nlir./NO. ppm/ppm 0.0418 g/g 0.0727 |
Base Eq.
g.JJ£?
Tot. Nit, ppm
0.00744
0.00516
0.00477
0.00060
0.00263
0.00364
0.00397
0.00362
0.00207
0.00031
0.01094
0.01221
0.00478
Base Nit.
0.001624
PM Nil. ppm












O.OOIS84
EquiL Frac. 0.3314

-------
Dale
l/M/20
Time
0
2
4
6
8
10
12
U
16
18
20
22
tverage
ummer.
TM1, grad F T.,., grad F RHI RII2 RIIJ RH4 Cloud C % p.mb
894 628 65 39 30 52 43 8408
T, grad K RH, % H,0, ppra Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
292.7 54.2 13787 43 0.0208 0.5077 00328 00328
2903 58.5 12753 43 00194 0.4438 0.0250 00250
292.7 62.8 16007 43 0.0162 0.4797 0.0304 00304
295.2 607 17991 43 0.0091 0.7232 0.0689 00620
297.7 52.0 17199 41 0.0226 0.3749 0.0516 00393
300.1 43.3 17254 43 0.0428 02694 00278 0.0222
302.6 37.5 17230 43 0.0528 0.2269 00201 00165
305.0 34.5 18252 43 0.0528 02299 0.0204 0.0171
302.6 31.5 14457 43 0.0490 0.2770 0.0255 00222
3001 33.7 13384 43 0.0403 0.3876 0.0259 00249
297.7 41.0 14091 43 0.0279 0.4553 0.0519 00519
295.2 483 14318 43 00246 0.4578 0.0490 00490
297.7 46.5 15619.2 43.0 0.0315 0.4028 0.035* 0.0328
03. D.U.
292
NO,/NO.
1.00
100
1.00
0.9
0.76
0.80
0.82
0.84
087
0.96
100
100
0.91


Oiid. %/hr
9.623
8.420
7.626
0.471
3.859
11.692
19.642
17.091
6.938
0.609
13.697
12.032
9.308
HNOJNO. ppn/ppm 0.153ft | NltrJNO. ppm/ppn 0.0211 g/g 0.0367 |
Base Eq.
0.14*2
Tot. Nil, ppm
0.006 JO
0.00421
0.00463
0.00058
0.00303
O.OOS20
0.00648
0.00585
0.00308
0.00030
0.01421
0.01178
O.OOS47
Base Nit.
0.000811
PM Nit, ppm












0.000754
Equil. Frac. 0.1378
Dale
'//M/2tf
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T-. ., grad FT.*, grad F RHI RH2 RH3 RH4 Cloud C% p.mb
572 307 65 42 36 55 40 8388
T, grad K RH, % 11,0, ppm Cloud C. % O,. ppm VOC. ppmC NO., ppm NO2, ppm
2749 56.7 4378 40 0.0120 0.1166 0.1077 01077
2724 60.0 3879 40 00120 0.2841 0.0832 00832
274.9 633 4894 40 0.0112 0.2020 0.0731 00731
277.3 61.2 5627 40 00086 0.6575 0.1036 01036
279.8 53.5 5839 40 0.0113 0.7997 0.1417 01063
2822 458 5913 40 00231 0.1768 0.0737 00524
2847 410 6233 40 00304 0.1741 0.0489 00362
2872 39.0 6965 40 0.0320 0.1405 0.0418 00330
284.7 37.0 5624 40 0.0266 0.2542 0.0573 0 0522
2822 39.2 5051 40 0.0120 0.8288 0.1058 01058
2798 455 4964 40 00114 0.2409 0.1455 01455
277.3 51.8 4767 40 00113 03261 0.1393 01393
279.8 49.5 5344.5 40.0 0.0168 0.3501 0.0935 0.0865
O3. D.U.
270
NOj/NO.
1.00
1.00
100
1.00
0.75
071
0.74
0.79
091
1.00
1.00
100
0.91


Oiid. V./hr
5.223
4.843
4.689
3.945
0.702
1.637
2.985
1.910
0.527
5.371
5.279
5. 156
3.522
IINO./NO. ppm/ppm 0.0736 | Nltr/NO. ppm/ppm 0.0115 g/g 0.0201 1
Base Eq.
AI619
Tot. Nit, ppm
0.01126
0.00806
0.00686
0.00817
0.00149
0.00171
0.00216
0.00126
O.OOOSS
0.01136
0.01536
0.01436
0.00688
Base Nit.
0.001129
PM Nil, ppm












0.001078
Equil. Frac. 0.1566
\tit-.
I UNO ./NO.   ppm/ppm   •Mil  |  Nilr/NO.   ppm/ppm    0.0167
                                                                          8/8
0.0291

-------
c 6, Pacific Coast p.l93;o.809 Latitude Longitude T. Zone Albedo I Ye«n 2020
n Francisco. Portland 41.68 122.52 80 008 |
Dale
2/15/20
-

Time
0
2
4
6
8
10
12
14
16
18
20
22
Vvtrage
Winter:
T^gradFT^gradF RHI RH2 RH3 RH4 Cloud C.% p.mb
54.9 42.2 84 5 75 65.S 79.5 83 1016. 1
<«...• tmtn* <•»! *•»! IfM liM
U 20 4 10 16 22
T.gradK RH,% HAppai Ch»dC% O,, pp» VOC.ppnC NO., ppm NO2, ppm
280.0 SI.2 7420 tl 0.0102 05309 0.0633 0.0633
278J 828 6981 S3 0.0101 0.4413 0.0498 0.0498
280.0 84.5 7726 S3 0.0071 0.2916 0.0311 0.0311
281.2 11.3 8061 13 0.0071 0.3451 0.0670 0.0670
282.3 78.2 1391 13 0.0083 0.40IS 0.0800 00640
283.) 730 1713 13 O.OI7S 0.3964 00375 00255
284.7 718 9023 13 0.0239 0.2331 00274 0.0191
285.9 68.7 9323 83 0.0267 0.2387 0.0240 0.0178
284.7 65.5 1227 S3 0.0233 0.2726 0.0281 0.0233
283.5 702 8150 83 0.0107 0.4876 0.0613 0.0613
282.3 748 8032 83 00094 0.3646 00828 00828
2812 79.5 7878 83 00091 0.3677 0.0776 00776
282.3 76.1 8160.5 83.0 0.0137 0.3998 O.OS2S 0.0485


03, D.U.
350


NO./NO.
1.00
1.00
100
1.00
0.80
068
0.70
0.74
0.83
1.00
1.00
100
0.90




Olid, %/hr
4.617
4.332
3.136
3.28S
0.72S
3.963
5.719
4.850
1.426
4.948
4.490
4.280
3.814
IINOt/NO. , ppm/ppm 0.0702 | NUr./NO. ppm/ppm 0.0293 g/g O.OSIO |
Base Eq.
0.4340
Tot Nil, ppm
0.005*4
0.00432
0.00195
0.00440
0.00093
0.00202
0.00219
0.00172
0.00066
0.00606
0.00743
0.0066S
0.00368
Baae Nit
0.001598
PM Nit, ppm












0.001539
Equil. Frac. 0.4181
Dale
5//5/2g
Time
0
2
4
6
8
10
12
14
16
18
20
2 1
Average
Spring:
TM.,gradFT^ngr«dF RHI RH2 RH3 RH4 Cloud C.% p,*»
64.7 48.6 87 63.3 60.5 79.5 72 1016.8
T.gradK RH,% Hi0.ppm Cloud C.% OJf ppm VOC.ppmC NO., ppm NO2, ppm
283.8 82.0 9729 72 0.0209 0.1264 0.0148 0.0148
282.3 84.5 9067 72 0.0200 • 0.1211 0.0135 00135
283.8 87.0 10325 72 0.0132 0.1290 0.0257 00257
285.3 79.8 10461 72 0.0134 0.1317 0.0272 0.0228
286.8 72.7 10301 72 0.0253 0.1138 0.0201 0.0143
288.3 65.5 10427 72 0.0361 0.1053 0.0148 0.0107
289.8 63.8 1 1 184 72 0.0440 0.1136 0.0120 00090
291.3 62.2 11974 72 0.0473 0.1174 0.0117 00091
289.8 60.5 10597 72 00453 0.1244 0.0128 00105
2883 66.8 10640 72 0.0352 0.1313 00147 00134
2868 73.2 10574 72 0.0250 0.1313 0.0204 00204
2853 795 10417 72 00219 0.1264 0.0182 00182
286.8 73.1 10491.3 72.0 0.0291 0.1226 0.0172 0.0152
IINOi/NO. ppm/ppm 0.1174 | Nlir./NO. ppm/ppm 0.0442 g/g 0.0770 |
O3, D.U.
363
NO,/NO.
1.00
1.00
1.00
0.84
071
072
0.75
078
082
0.91
1.00
1.00
0.88


Olid, %/br
7.210
6.471
5.475
0.701
4.096
9.794
15.241
13.787
6.499
1.017
9.801
8.286
7.365

Base Eq.
0.4371
Tot. Nit. ppm
0.00213
0.00175
0.00281
0.00032
0.00117
0.00209
0.00274
0.00251
0.00137
0.00027
0.00401
0.00 30 1
0.00202
Base Nit
0.000881
PM Nil. ppm












0.000759
Equil. Frac. 0.3768

-------
Dale
/IS/20
Time
0
2
4
6
8
10
n
14
16
18
20
22
vcrage
immen
T_., trad F T.,., trad F RUI RII2 RH3 RH4 Cloud C, % p.mb
718 550 88 68.S 595 80 52 10152
T, grad K Rll, % H,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppra NO2, ppm
2875 82.7 12493 52 0.0133 03849 0.0211 0.0211
285.9 85.3 11650 52 00123 03688 0.0226 00226
287.5 88.0 13303 52 0.0072 0.3929 0.0286 0.0286
289.0 81.5 13619 52 0.0074 0.4010 0.0460 00377
290.6 75.0 13836 52 0.0197 0.3464 0.0291 00198
292.2 68.5 13934 52 0.0364 0.3207 0.0210 00153
293.7 65.5 14677 52 0.0494 0.3643 00150 00115
295.3 62.5 15410 52 0.0541 0.3574 0.0118 00095
293.7 59.5 13325 52 0.0514 0.3849 0.0135 00112
2922 66.3 13491 52 0.0374 0.3997 0.0199 0.0183
2906 73.2 13496 52 0.0195 0.3997 0.0262 00262
289.0 80.0 13367 52 0.0153 0.3849 0.0230 00230
290.6 . 74.0 13550.1 52.0 0.0269 0.3755 0.0231 0.0204
03, D.U.
315
NOj/NO.
1.00
100
100
082
0.68
0.73
0.77
0.80
083
092
1.00
100
0.88


Oiid. %/hr
5.560
5.133
3.246
0.673
6.44S
15.798
24.212
22.291
12.285
1.327
8.478
6.627
9.356
HNCVNO. ppm/ppn 0.1262 | Nllr/NO. ppw/ppoi 0.0294 gfe O.OSI1 |
Base Eq.
0.1949
Tol. Nil, ppm
0.00235
0.00232
0.00186
0.00051
0.00255
0.00485
0.00558
0.00422
0.00274
0.00048
0.00455
0.00305
0.00292
Base NiL
0.000862
PM Nit, ppm












0.000681
Equil. Frac. 0.2329
Dale
/// f/2tf
Time
0
2
4
6
8
10
12
14
16
18
J.V
22
tverage
Fall:
T...., grad F T.U., t«d F RHI RII2 RH3 RH4 Cloud C, % p.mb
576 451 85 755 685 80 82 1016 1
T, grad K RH, % 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm
2816 81.7 8314 82 0.0083 0.4003 0.0635 0.0635
2804 83.3 7836 82 00092 0.3349 0.0475 00475
281.6 85.0 8655 82 0.0109 0.2656 0.0247 0.0247
2827 81.8 9014 82 0.0065 0.2964 0.0575 00575
283.9 78.7 9367 82 0.0085 0.3156 0.0650 0.0520
285.0 75.5 9712 82 00177 0.1881 0.0350 00248
286.2 73.2 10160 82 0.0233 0.1655 0.0261 00190
287.4 70.8 10611 82 0.0247 0.1578 0.0228 0.0180
286.2 68.5 9509 82 0.0164 0.2232 0.0357 00325
285.0 72.3 9303 82 0.0078 0.5658 0.0931 00931
2*3.9 76.2 9069 82 00080 0.6543 0.1063 01063
282.7 800 8811 82 0.0078 0.5658 0.0884 00884
283.9 77.3 9196.6 82.0 0.0124 0.3444 0.0555 0.0523
O3, D.U.
272
NO,/NO.
1.00
100
100
1.00
080
0.71
073
079
0.91
1.00
100
100
0.91


Oiid. %/hr
3.878
4.022
4.273
3.044
0.712
2.391
3.832
2.605
0.694
3.825
3.951
3.785
3.084
IINO./NO. ppm/ppa 0.0621 | NIlr/NO. ppm/ppm 0.0138 tit 0.0239 1
Base Eq.
0.2540
Tol. Nil, ppm
0.00493
0.00382
000211
0.00350
0.00074
0.00119
0.00146
0.00094
0.00045
0.00712
0.00840
0.00669
0.00345
Base Nil.
0.000875
PM Nil, ppm












0.000763
Equil. Frac. 0.2215
ppm/pp
0.0*14  I Nlir./NO.
0.0252
~*Jt       0.0439  ]

-------
.t 7 ^..h,™ r.lif. . p.173 Latitude Lootitude T. Zone Alkcd* 1 Year. 2020 "J
..AntclM 'Civic Center! 3393 1184 80 008 |
Dale
2/15/20
-

Tune
0
2
4
6
8
10
12
14
16
18
20
22
Average
Winlcn
T^cradFT^fradF M" RH2 RH3 Ml4 Cloud C% p.«>b O3.D.U.
68 5 492 71 54 52 70 47 1014 1 | 317
!...,• t^.,h Ui Ua U> t*4
14 2.0 4 10 16 22
T.tradK RH,% HAff* OwdC.% O,, ppn. VOC.ppmC NO., ppm NO2, ppm NO,SNO.
284.5 70.3 8134 47 0.0089 0.5601 0.1218 0.1218 1.00
282.7 70.7 7786 47 0.0096 0.3798 0.1074 0.1074 1.00
284.5 71.0 1817 47 0.0119 0.3483 0.0418 0.0418 1.00
286.3 65.3 9128 47 0.0069 0.3347 0.1429 0.1429 1.00
288.1 59.7 9362 47 0.0099 0.4337 0.1S29 0.1040 068
289.9 54.0 9499 47 0.0216 0.3245 0.0766 0.0505 0.66
291.6 53.3 10506 47 0.0257 0.2220 0.0507 00334 0.66
293.4 52.7 11599 47 0.0274 0.1917 0.0403 00286 0.71
2916 52.0 10242 47 0.0252 0.1982 00418 0.0342 082
289.9 580 10206 47 0.0125 0.4165 0.0636 0.0636 1.00
288.1 64.0 10044 47 0.0093 0.6478 0.0946 0.0946 1.00
2863 700 9782 47 0.0075 0.6676 0.1328 0.1328 1.00
288.1 61.8 9642.1 47.0 10147 0.3937 0.0889 0.0796 0.88




Olid, %/hr
4.437
4.6S8
S.22S
3.494
0.678
3.884
S.S84
4.633
1.2S2
6.008
4.639
3.82S
4.026
HN2
Average
Spring:
T^.tradFT^jradF RHI RH2 RH3 RH4 O«MlC% p,«b
73.2 56.6 81 56 55 75 48 1010.2
T.eradK RH,% H|t,ppa Cloud C% O,, po- VOC,pp»C NO., ppm NO2, ppm
288.4 77.0 12369 48 0.0190 0.3879 0.0463 0.0463
286.8 79.0 11485 48 0.0203 0.4223 0.0421 0.0421
288.4 81.0 13015 48 0.0207 0.4588 0.0195 0.0195
289.9 72.7 12880 48 0.0176 0.5051 0.0604 0.0501
291.4 64.3 12563 48 0.0294 0.3788 0.0437 0.0315
293.0 56.0 12033 48 0.0429 0.2568 0.0399 0.0295
294.5 55.7 13156 48 0.0480 0.1438 0.0347 00261
296.0 55.3 14367 48 0.0495 0.1554 0.0327 00255
294.5 55.0 12998 48 0.0475 0.1477 0.0325 0.0267
2930 617 13258 48 0.0319 0.1593 0.0331 00311
2914 68.3 13348 48 0.0245 0.3420 0.0366 00366
2899 750 13296 48 00206 0.3458 0.0439 0.0439
291.4 46.8 12897.3 48.0 0.0310 0.3084 0.0388 0.0341
IINOj/NO. ppn/ppm 0.1295 | NIlr./NO. ppm/ppm 0.0432 g/t 0-1 100 |
O3, D.U.
333
NOi/NO.
1.00
100
1.00
0.83
0.72
074
0.75
0.78
082
0.94
100
1.00
0.88


Olid, %/br
9.037
9.442
8.S74
0.971
7.074
10.417
9.8SS
8.737
3.494
0.643
11.461
9.874
7.482

BaseEq.
0.4965
Tot. Nit, ppm
0.00834
0.00796
0.00334
0.00097
0.00445
0.00615
O.OOSI4
0.00446
0.00197
0.00040
0.008J8
0.00847
0.00502
Base Nil.
0.002493
PM Nit. ppm












0.0024S2
Equil. Frac. 0.4884

-------
Dale
8/15/20
Tune
0
2
4
6
8
10
12
14
16
18
20
22
Average
Summer
T..., tradFT^.trrndF RHI KH2 RII3 RH4 CkwdC.% p.mb
84.1 65.3 84 56 55 79 26 1009.6
T.gradK RH,% H,0,ppm Cloud C % O,, ppm VOC.ppmC NO., ppm NO2, ppra
293.4 80.7 17849 26 0.0083 0.9414 0.0568 00568
291.7 82.3 16338 26 00077 08054 0.0591 00591
2934 840 18592 26 0.0075 09168 0.0224 0.0224
2951 747 18388 26 0.0074 1.0104 0.1066 00832
296.9 653 17875 26 0.0260 05915 0.0759 00539
298.6 560 I699S 26 0.0485 0.5126 0.0513 0.0390
300.4 55.7 117)3 26 0.0559 0.2513 0.0355 00277
302.1 55.3 20621 26 0.0567 0.2070 0.0300 0.0240
300.4 55.0 18507 26 0.0508 0.2267 0.0307 00258
2986 63.0 19135 26 0.0417 0.2415 0.0366 0.0351
296.9 71.0 19437 26 0.0212 0.8379 0.0441 00441
295.1 79.0 19464 26 O.OIOS 1.0696 0.0519 0.0519
296.9 68.5 18494.4 24.0 0.028S 0.634) 0.0501 0.0436
03, D.U.
309
NO,/NO.
1.00
1.00
100
0.78
0.71
0.76
0.78
080
084
0.96
1.00
100
0.89


Oxid. %/hr
4.22S
3.931
3.480
0.628
6.390
14.814
17.082
15.129
6.376
0.606
10.726
5.375
7.397
HNO.ANO. ppm/ppm 0,10*8 | Nttr/NO. ppm/ppm M299 g/g « 0520 |
Base Eq.
0,2828
Tot. Nil, ppm
0.00480
0.00465
0.00 156
0.00105
0.00689
0.01156
0.00947
0.00725
0.00329
0.00043
0.00947
0.00558
0.00550
Buc Nil
0.00 1555
PM Nit, ppm












0.001496
Equil. Frac. 0.2721
Dale
////5/2tf
Time
0
2
4
6
8
10
12
14
16
18
20
22
Average
Fall:
T«., grad F T.U., grad F RHI RH2 RH3 RB4 Cloud C. % p.mb
727 52.7 61 45 49 62 37 1013 1
T.gradK RH,% 11,0, ppm Cloud C. % O,, ppm VOC.ppmC NO., ppm NO2, ppm
2865 61.7 8749 37 0.0101 1.3341 0.1559 0.1559
2847 61.3 7701 37 0.0111 0.8692 0.1301 0.1301
2865 61.0 8654 37 0.0130 0.7804 0.0535 0.0535
2884 55.7 8904 37 0.0080 0.9139 0.1648 0.1648
2902 50.3 9061 37 0.0123 0.9109 0.1512 0.1058
292.1 45.0 9102 37 0.0231 0.5245 0.0673 0.0458
293.9 46.3 10518 37 0.0274 ' 0.4068 0.0451 0.0315
2958 47.7 12124 37 0.0274 0.3106 0.0406 0.0305
293.9 49.0 11126 37 0.0220 0.4068 0.0535 0.0487
292.1 53.3 10795 37 0.0106 0.9539 01025 01025
290.2 57.7 10387 37 0.0090 1.2941 0.1510 01510
2884 62.0 9921 37 0.0092 1 3607 0.1719 0 1719
290.2 54.3 9753.5 37.0 0.0153 0.8388 0.1073 0.0993
HNOJNO. ppm/ppm 0.0847 | Nltr/NO. ppm/ppm 0.8298 g/g 0.0518 |
O3, D.U.
276
NO,/NO.
1.00
1.00
1.00
1.00
0.70
0.68
0.70
0.75
0.91
100
1.00
100
0.90



Oiid. %/hr
5.094
5.480
5.945
4.077
1.524
6.195
8.403
4.793
0.637
5.348
4.645
4.755
4.741

Base Eq.
0,3548
Tot. Nit, ppm
0.01588
0.01426
0.00636
0.01344
0.00322
0.00567
0.00530
0.00292
0.00062
0.01097
0.01403
0.01635
0.00908
Equil. Frac.
Base Nit
O.OOJ224
PM Nit, ppm












0.003198
0.3520
{HNO./NO.   ppm/ppm   0.0905  | NUr/NO.   ppm/ppm    0.0379       g/g       0.0660   |

-------
c. 8. Rural East p.297:p.349;p. Latitude Umtitude T. Zone Albedo 1 Yean 2020 J
hica,;o. New York 38 80 8210 53 005 |
Date
2/15/20


Time
0
2
4
6
8
10
12
14
16
18
20
22
\vcrage
Winter:
TM.,cr»dFf.h,cr*'r Mil KH2 RHJ KH4 Cloud C% p,mb | O3.D.U.
43.1 26.4 693 * 73.3 59.3 61.3 62.7 996.2 312
t~»k l^b Ui Ua U> U«
14 2.0 1 7 13 19
T.tradK RH,% HAff* CtMdC.% O,. ppat VOC,ppmC NO., ppm NO2, ppro NO,/NO.
271.6 610 J479 62.7 0.0233 0.0405 0.0176 0.0176 1.00
270.0 70.0 3193 62.7 0.0216 0.039S 0.0195 0.0195 1.00
271.6 71.3 3630 62.7 0.0206 0.0437 0.0204 0.0204 1.00
273.1 72.7 4165 62.7 0.0195 0.0546 0.0194 0.0194 1.00
274.7 71.0 4551 62.7 0.0212 0.0546 0.0207 0.0191 0.92
276.2 66.3 4749 62.7 0.0215 0.0614 O.OIS4 0.0136 0.74
277.1 61.7 4924 62.7 0.0334 0.0445 0.0157 0.0113 0.72
279.3 59.7 5306 62.7 0.0361 0.0461 0.0150 001 11 0.74
277.8 60.3 4817 62.7 0.0365 0.0530 0.0174 0.0142 0.82
276.2 • 61.0 4367 62.7 0.0306 0.0457 0.0201 0.0208 1.00
274.7 62.7 4016 62.7 0.0267 0.0508 0.0217 0.0217 1.00
273.1 65.3 3744 62.7 0.0250 0.0494 0.0193 0.0193 1.00
274.7 65.8 4246.6 62.7 0.0269 0.0486 0.0188 0.0173 0.91




Osid. %/hr
5.050
4.693
4.983
4.987
0.768
1.931
3.246
3.130
1.186
8.095
6.929
5.907
4.242
IlIMOj/NO. ppm/ppm 0.0833 | NUrJNO. ppm/ppm 0.0228 f/f 0.0396 ]

Base Eq.
02125
Tot Nil, ppm
0.00178
0.00183
0.00203
0.00194
0.00029
0.00053
0.00073
0.00069
0.00034
0.00337
0.00301
0.00228
0.00157
Base Nit
0.000333
PM Nit, ppn












0.000429
Equil. Frac. . 0.2735
Dale
5//S/2g
Time
0
2
4
6
8
10
12
14
16
18
:o

^
-------
Dale
/1 5/20
Time
0
2
4
6
8
10
n
14
16
18
20
22
Uerage
untmen
T_, trad FT.h. end F RHI Rill RH3 RH4 Cloud C.% p.mb | O3.D.IL
845 658 807 84.3 583 65.0 56.7 996.1 316
T, grad K RH, % H,0, ppm Cloud C. V. O», ppm VOC, ppmC NO., ppm NO2, ppm NO,/NO.
2937 781 1781 1 S6.7 0.0186 0.0278 00130 00130 1.00
2919 81.3 16655 56.7 00159 00324 00132 00132 100
293.7 825 18833 56.7 0.0135 0.0325 0.0157 00157 1.00
2954 83.7 21263 56.7 0.0124 0.0451 0.0169 00164 0.97
297.1 80.0 22562 56.7 0.0230 0.0494 0.0121 0.0092 0.76
298.8 713 22296 56.7 00352 00274 0.0 105 00080 076
3006 627 2I67S 56.7 0.0414 0.0283 0.0098 0.0076 077
302.3 59.4 22739 56.7 0.0429 00175 00083 00065 0.78
3006 61.7 21327 56.7 0.042S 0.0179 0.0080 0.0066 082
2988 63.9 19950 56.7 0.0372 0.0238 0.0082 0.0074 0.91
297.1 67.6 19041 56.7 0.0286 0.0332 0.0122 00122 1.00
295.4 72.8 18477 56.7 0.0223 0.0312 0.0136 00136 1.00
297.1 72.1 20219.0 56.7 0.027S 0.0305 0.0118 0.0108 0.90


Olid, %/hr
7.618
6.430
S.882
0.610
2.8IS
9.482
17.008
17.049
7.441
0.800
11.687
9.296
8.010
HNCMNO. ppm/pp« 0.134) | NHr/NO. ppm/ppm 0.0270 g/t 0.0469 |
Base Eq.
(LS221
Tot. Nil, ppm
0.00198
0.00170
0.00185
0.00020
0.00052
0.00151
0.00257
0.00220
0.00098
0.00012
0.00285
0.00253
0.001 59
Bate NiL
0.000 US
PM Nil, ppm












0.000 J IK
Equil. Frac. 0.2007
Dale
1/11/20
Time
0
2
4
6
8
10
12
14
16
18
20
22

Fill:
T..., grad F T.ta, grad F RHI RH2 RH3 RH4 Cloud C% p.mb | O3.D.U.
548 378 740 787 59.3 653 613 9965 278
T, gi ad K RH, V. 11,0, ppm Cloud C. % O,, ppm VOC, ppmC NO., ppm NO2, ppm NO,/NO.
2780 72.6 5872 61.3 0.0170 0.0571 0.0115 0.0115 1.00
2764 748 5417 613 00160 0.0597 001 IS 001 IS 100
2780 76 3 6178 61.3 00149 0.0581 0.0099 00099 1.00
279 5 77.9 7033 613 0.0138 0.0767 0.0123 0.0123 1.00
281 1 75.4 7589 61.3 0.0164 0.0799 0.0145 00129 0.89
282.7 690 7720 61.3 00237 00538 00130 00095 0.73
2842 626 7774 61.3 0.0284 0.0391 00099 00072 073
285.8 60.3 8319 61.3 0.0307 0.0359 0.0098 0.0075 0.77
2842 62.3 7747 61.3 0.0291 0.0473 0.0114 00101 089
282.7 64.3 7196 61.3 0.0220 00643 00147 00147 100
281.1 66.8 6715 61.3 0.0192 0.0692 00148 00148 1.00
279.5 69.7 6289 61.3 0.0186 0.0630 0.0134 00134 1.00
281.1 69.3 6987.4 61.3 0.0208 0.0587 0.0122 0.0113 0.92


Olid, %/hr
4.115
3.686
3.434
3.848
0.713
2.369
4.049
2.842
0.689
6.604
5.607
5.030
3.582
HHO./NO. ppm/ppm 0.0693 | NUr/NO. ppm/ppm 0.0262 g/g 0.04SS |
Base Eq.
0.2291
Tot. Nil, |i|im
0.00095
0.00085
0.00068
0.00095
0.00018
0.00045
0.00058
0.00043
0.00014
0.00194
0.00166
0.00134
0.00085
Base Nit
0.000194
PM Nil, p|im












0.000319
Equil. Frac 0.3774
[IIMO./NO.   ppm/ppm    0.1035  |  NIlr./NO.    ppm/ppm     0.0274
fJt
0.0477

-------
c ., u..ruiw,,t p.669;p.809:p.l Latitude Longitude T. Zone Albedo 1 Year. 2010 |
bu.|..erquc, Portland. Sail LakeCi 4047 11373 73 005 |
Dale
2/15/10


Time
0
2
4
6
8
10
12
14
16
18
20
22
\ver*ge
Winter.
T...,8radFT^.,t«dF RHI RH2 RII3 RH4 Cloud C.% p.mb
49 288 76 6267 53 6967 67.67 90913


O3, D.U.
349
!«••,• t«i« b t«*i *»u *i*>» *«*«
14 2.0 5 II 17 23
T.gradK RH,% HAppa CtaidC.% O,, ppm VOC.ppmC NO., ppm NO2, ppm
273.2 70.7 4474 67.67 0.0280 0.0428 0.0067 0.0067
271.4 72.8 4015 67.67 0.0274 0.0322 00085 00085
273.2 74.9 4741 67.67 00277 0.0389 0.0051 00051
273.1 73.8 5344 67.67 0.0266 0.0461 0.0126 00126
277.0 69.3 5738 67.67 0.0282 0.0513 0.0114 001 10
278.8 649 6123 67.67 0.0330 0.0418 00068 00055
280.7 61.1 6556 67.67 0.0349 0.0363 0.0058 00045
2826 57.8 7053 67.67 00365 0.0230 0.0057 00045
280.7 54.6 5862 67.67 00352 0.0431 0.0063 00054
278.8 55.8 5261 67.67 0.0290 0.0552 0.0124 00124
2770 . 61.3 5075 67.67 00259 00546 00127 00127
275.1 66.9 4844 67.67 0.0240 0.0451 0.0099 00099
277.0 65.3 5424.0 67.7 0.0297 0.0425 0.0087 0.0082
NO,/NO.
1.00
1.00
1.00
100
0.96
081
0.77
0.79
085
100
1.00
1.00
0.93




Olid. V./hr
3.987
4.197
3.408
6.253
0.651
3.682
5.276
4.446
1.310
6.681
5.947
4.675
4.209
ItNO^NO. ppm/ppm 0.0849 | Nilr./NO. ppm/ppm OJI07 g/g 0.0186 |
Base Eq.
0.1753
Tot. Nil, ppm
0.00054
0.00071
0.00035
0.00157
0.00014
0.00041
0.00047
0.00040
0.00014
0.00165
O.OOISI
0.00093
0.00074
Base Nil.
0.000129
PM Nil, ppm












0.000093
Equil. Frac. 0.1259
Dale
5/1 VI 0
Time
0
2
4
6
8
10
12
,14
16
/.S
.'(»
f- *
Avri 4j;c
Spnng:
TM.,gradFT.i.,cradF RHI RH2 RH3 RH4 Cloud C% p,mb
73.1 46.7 66 43.33 3467 55 56.67 9073
T.gradK RH,% HAppm Cloud C% O,, ppm VOC.ppraC NO., ppm NO2. ppm
283.8 56.8 7516 56.67 00380 0.0462 0.0048 00048
281.3 60.5 6787 56.67 0.0366 0.0496 0.0043 00043
283.8 64.2 8489 56.67 00327 0.0506 0.0046 0.0046
286.2 62.2 9675 56.67 0.0353 0.0561 0.0070 0.0067
288.7 54.7 9955 56.67 00422 0.0499 0.0053 00045
291.1 47.1 10017 56.67 00463 0.0389 0.0043 00034
293.5 41.9 10370 56.67 00496 0.0291 0.0042 00033
2960 390 11212 5667 00515 00280 00044 00036
293.5 36.1 8935 56.67 0.0533 0.0291 0.0048 00041
291 1 381 8086 56.67 00501 0.0281 0.0058 00053
2887 448 8IS9 56.67 0.0440 0.0324 0.0065 00065
2862 516 8020 56.67 00380 0.0402 0.0060 00060
288.7 49.8 8935.0 56.7 0.0431 0.0398 0.0052 0.0048
IIN
-------
DJ(C
I//I//0
Time
0
->
4
6
8
10
12
H
16
18
20
22
\verage
lummen
T_., cmd F T.^., trad F RBI RH2 RII3 RH4 Cloud C% p.mb 1 OJ.D.U.
86 594 67.67 4439 33 5567 4367 90917 | 301
T, grad K RH, % H,0, ppm Cloud C % O,, ppm VOC, ppmC NO., ppm NO2, ppm NO,/NO.
290.8 57.7 12064 43.67 00367 0.0616 0.0062 0.0062 1. 00
2884 617 11026 4367 00354 0.0762 0.0055 00055 100
290.8 65.7 13746 43.67 0.0286 0.0781 0.0072 00072 100
293.3 63.8 15578 43.67 0.0328 0.1105 0.0127 0.0126 0.99
295.8 56.0 15904 43.67 0.0389 0.0704 0.0087 00074 0.85
2982 48.2 15877 43.67 0.0433 0.0434 0.0062 00049 0.80
300.7 42.4 16151 43.67 0.0492 0.0345 0.0056 0 0045 0 80
303.2 38.7 16979 43.67 0.0542 0.0318 0.0053 00044 0.83
300.7 34.9 13267 43.67 0.0545 00235 0.0057 00048 085
298.2 36.8 12091 43.67 0.0508 0.0244 0.0075 00070 0.93
295.8 44.3 12S75 43.67 0.0447 0.0408 00097 00097 1.00
293.3 51.9 12660 43.67 0.0385 0.0523 0.0086 00086 1.00
29S.8 50.2 13993.8 43.7 0.0423 O.OS40 0.0074 0.0069 0.92

Oiid. %/br
9.488
8.148
8.572
0.543
4.055
16.419
28.282
28.758
10.866
1.084
14.353
11.907
11.873
HNO./NO. ppm/ppm 0.1888 | NUrJNO. ppm/ppm O.M91 t>t 0.01S7 |
Base Eq.
0.0995
Tot Nil, ppm
0.00118
0.00089
0.00124
0.00014
0.00060
0.00162
000255
0.002S3
0.00105
0.00015
0.00278 .
0.00206
0.00140
Base NiL
0.000139
PM Nit, ppm












0.000067
Equil. Krac. 0.0480
Dace
n/nno
Time
0
2
•/
6
8
10
12
14
16
18
20
22
Average
K»ll.
T..., grad F T.*,, grid P Mil RH2 RH3 RH4 Cloud C% p.mb
532 328 7567 6067 5633 7067 6133 90933
T, grad K RH, % H,0, ppro Cloud C. % O,, ppm VOC, ppmC NO,, ppm NO2, ppm
275.5 71.5 5328 61.33 0.0235 0.0470 0.0126 0.0126
273.6 73.2 4758 61.33 00236 0.0450 0.0102 00102
275.5 74.8 5577 61.33 00237 0.0448 0.0052 0.0052
277.4 73.2 6234 61.33 0.0221 0.0532 00138 0.0138
279.3 68.2 6627 61.33 0.0255 0.0492 0.0131 0.0125
281.2 63.2 6992 61.33 0.0308 0.0264 0.0080 0.0064
283.1 59.9 7540 61.33 0.0331 0.0256 0.0065 0.0050
284.9 58.5 8347 61.33 00336 0.0286 0.0070 0.0056 .
283.1 57.1 7175 61.33 0.0296 0.0360 0.0109 00098
281.2 58.7 6498 61.33 00234 0.0573 00167 00167
2793 63.5 6172 6133 00239 0.0518 0.0127 00127
2774 683 5817 61.33 00203 00464 00121 00121
279.3 65.8 6422.0 61.3 0.0261 0.0426 0.0107 0.0102
O3, D.U.
273
NO,/NO.
1.00
l.oo
1.00
1.00
0.95
0.81
0.78
081
0.90
1.00
100
100
0.94


Oiid. %/hr
5.566
4.608
3.348
6.004
0.634
1.775
3.961
2.963
0.608
7.022
6.198
4.981
3.972
UNO./NO. ppm/ppoi 0.0833 | NHrJNO, ppm/ppm 0.0024 g/f 4.0042 |
Base Eq.
0.0915
Tot. Nit, ppm
0.00140
0.00094
O.OQ03S
0.00166
0.00016
0.00023
0.000-10
0.00033
0.00012
0.00234
0.00158
0.00121
0.00089
Base Nil.
0.000082
PM Nit, ppm












0.000026
EquiL Frac. 0.0293
IHMO./NO.   ppWppai    •.1181  ] NlirVNO.    ppm/ppm    0.0094)
ft
0.0157

-------