Environmental Protection Technology Series
OXYGEN-ACTIVATED SLUDGE PLANT COMPLETES
TWO YEARS OF SUCCESSFUL OPERATION
Municipal Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
-------
EPA-600/2-77-040
July 1977
OXYGEN-ACTIVATED SLUDGE PLANT COMPLETES
TWO YEARS OF SUCCESSFUL OPERATION
by
C. S. McDowell
J. Giannelli
Air Products and Chemicals, Inc.
Allentown, Pennsylvania 18105
Contract No. 68-03-0405
Project Officer
Richard C. Brenner
Wastewater Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental Research
Laboratory, U. S. Environmental Protection Agency, and approved for publication
Approval does not signify that the contents necessarily reflect the views and
policies of the U. S. Environmental Protection Agency, nor does mention of
trade names or commercial products constitute endorsement or recommendation
for use.
-------
FOREWORD
The Environmental Protection Agency was created because of increasing public
and government concern about the dangers of pollution to the health and
welfare of the American people. Noxious air, foul water, and spoiled land
are tragic testimony to the deterioration of our natural environment. The
complexity of that environment and the interplay between its components re-
quire a concentrated and integrated attack on the problem.
Research and development is that necessary first step in problem solution and
it involves defining the problem, measuring its impact, and searching for
solutions. The Municipal Environmental Research Laboratory develops new and
improved technology and systems for the prevention, treatment, and management
of wastewater and solid and hazardous waste pollutant discharges from munici-
pal and community sources, for the preservation and treatment of public drink-
ing water supplies, and to minimize the adverse economic, social, health, and
aesthetic effects of pollution. This publication is one of the products of
that research; a most vital communications link between the researcher and
the user community.
The case history documented herein makes available to the sanitary engineering
community design details and considerations, construction and startup experi-
ences, capital and operating costs, and two years of operating and perform-
ance data for the first full-scale municipal oxygen-activated sludge wastewater
treatment plant in this country.
Francis T. Mayo, Director
Municipal Environmental Research
Laboratory
11
-------
ABSTRACT
D
An OASES oxygen-activated sludge secondary wastewater treatment system has
been in operation at Fairfax County, Virginia's Westgate treatment plant since
October 1971. This report covers the two-year operating period of October
1971 through September 1973, including startup, optimization, routine opera-
tions, and operation during upsets. The Westgate plant was converted to oxy-
gen from an existing aeration-sedimentation system operated without sludge
recycle. At a cost of $1,700,000, Fairfax County upgraded Westgate from what
was essentially a 0.35-nvYsec (8-mgd) primary treatment facility achieving
approximately 50 percent BODc removal to a modern 0.61-m3/sec (14-mgd) oxygen-
activated sludge system achieving on the average 92 percent BOD5 removal
efficiency. Effluent concentrations of 10 to 15 mg/1 total BODs, less than
5 mg/1 soluble 6005, and less than 20 mg/1 total suspended solids (TSS) have
been routinely achieved. The plant has demonstrated a stability of operation
and performance not generally available with other biological treatment pro-
cesses.
This report was submitted in fulfillment of Contract No. 68-03-0405, by Air
Products and Chemicals, Inc., under the sponsorship of the U.S. Environmental
Protection Agency.
OASES is a registered trademark of Air Products and Chemicals, Inc. of
Allentown, Pennsylvania. It is used in connection with sewage treatment
plants of Air Products' designs utilizing oxygen instead of air to aerate
the sewage.
-------
CONTENTS
Foreword
Abstract
Figures
Tables
Section
I Introduction
II Conclusions
III Recommendations
IV History of Westgate Wastewater Treatment Plant
V Design Considerations for Conversion
VI Construction
VII Startup
VIII Stabilized Operations
IX Performance Evaluation
X Operating and Maintenance Requirements
XI Costs for Conversion and Operation
XII General Design Considerations for Application of
Oxygen-Activated Sludge in Wastewater Treatment Plants
XIII References
XIV Appendices
i i i
iv
vi
X
1
2
4
6
20
26
46
55
105
114
117
121
130
131
-------
FIGURES
Number Pa9
1 Wastewater Treatment Plant Locations, Fairfax County,
Virginia 7
2 Original Westgate Wastewater Treatment Plant 8
3 Original Westgate Basin Configuration - Longitudinal
Section 10
4 Percent BOD5 and TSS Removal Efficiencies for Westgate 12
5 Average Westgate Loading and Flow Rate Data 13
6 Westgate Chemical Storage Facilities and Points
of Chemical Addition 14
7 Revised Westgate Plant Schematic 18
8 Existing Concrete Basin Prior to Conversion 22
9 Westgate Plant Instrumentation Flowsheet 25
10 Aerial View Prior to Conversion 27
11 Installation of Secondary Clarifiers 28
12 Installation of Flotation Thickeners 29
13 Modifications to Existing Concrete Basin -
Longitudinal Section 30
14 Existing Aeration Equipment to be Removed 31
15 Concrete Superstructure Modifications 32
16 Part of the Original Secondary Clarifier Effluent
Weirs 33
17 Modified Effluent Weirs Prior to Flooding 34
18 Quiet Baffle Added to Part of the Old Effluent Weir 35
19 Liquid Anti-Swirl and Staging Baffles as Installed 37
vi
-------
FIGURES (Continued)
Number page
20 Installation of Aerator and Cover as a Unit 38
21 Sludge Recycle Lines at Point of Entry to the
Oxygenation Basins 39
22 Aerator Switchgear and Control Center 40
23 Completed Installation with LOX Tank and Vaporizers 41
24 AeHal View of Completed Fairfax County Oxygen-
Activated Sludge Plant 42
25 Surface Cracks in the Existing Basins 44
26 Application of Special Cocoon Materials to Basin Covers 45
27 Fluctuations in Oxygen Demand with Diurnal BODr Mass
Loading 48
28 Gravity Thickening of Oxygen-Activated Sludge 49
29 Daily Influent Flow Rate 56
30 Influent BOD,- 57
b
31 Influent Soluble BODg 58
32 Influent COD 59
33 Influent Total Suspended Solids 60
34 Influent Temperature 61
35 Influent pH 62
36 Probability of Occurrence of Influent Total
BOD5 and TSS 63
37 Probability of Occurrence of Influent COD 64
38 Probability of Occurrence of Daily Minimum,
Average, and Maximum Influent Flows 65
vn
-------
FIGURES (Continued)
Number Page
39 Effluent BOD5 67
40 Effluent Soluble BODg 68
41 Effluent COD 69
42 Effluent Soluble COD 70
43 Effluent Total Suspended Solids 71
44 Effluent pH 72
45 Biomass Loading (F/M) 73
46 Probability of Occurrence of Influent Detention Time
Based on Daily Minimum, Average, and Maximum Influent
Flows 74
47 Mixed Liquor Suspended Solids 75
48 Mixed Liquor Volatile Suspended Solids (Percent) 76
49 Recycle Flow (Percent of Q) 77
50 Secondary Clarifier Overflow Rate 78
51 Secondary Clarifier Solids Loading 79
52 Secondary Clarifier Sludge Blanket Depth 80
53 Mixed Liquor Sludge Volume Index (SVI) 81
54 Mixed Liquor Zone Settling Velocity (ZSV) 82
55 02 Supplied/BOD5 Removed 83
56 Total and Secondary Solids Wasted 84
57 Effluent TSS Versus Influent Temperature 87
58 Effluent BODr Versus Influent Temperature 88
VI
-------
FIGURES (Continued)
Number page
59 Effluent Soluble BOD5 Versus Influent Temperature 89
60 Effluent COD Versus Influent Temperature 90
61 Effluent Soluble COD Versus Influent Temperature 91
62 02 Supplied/BOD5 Removed Versus Influent Temperature 92
63 Effluent BOD5 Versus F/M 93
64 Effluent COD Versus F/M 94
65 Effluent (Total BOD5 - Soluble BOD5)/TSS Versus F/M 95
66 Secondary Solids Wasted Versus 1/(F/M) 96
67 02 Supplied/BOD5 Removed Versus 1/(F/M) 97
68 Westgate Plant Performance with One Primary Clarifier
and One Oxygenation Basin Operational 99
69 Westgate Plant Performance with One Secondary
Clarifier Operational 101
70 Probability of Occurrence of Total Plant Removal
of Total COD, Soluble COD, Total BOD., and
Soluble BOD5 104
71 Secondary Solids Wasted Versus BOD5 Removed 109
72 Sludge Volume Index Versus F/M 110
73 Zone Settling Velocity Versus Mixed Liquor
Suspended Solids 111
74 Recycle Sludge Total Suspended Solids 112
75 Types of Aerators 129
-------
TABLES
Number Page
1 Description of Original Westgate Plant Equipment 9
2 Westgate Chemical Treatment Performance - Monthly
Average Data 15
3 Bid Specifications 17
4 Equipment Description for Revised Plant 19
5 Daily Performance with Primary Clarifier No. 1 Down 51
6 Daily Performance with Secondary Clarifier No. 2 Down 52
7 Sludge Conditioning and Dewatering Summary for
Various Chemical Pretreatments 53
8 Bid Performance Specifications Versus Actual
Plant Performance 105
9 Primary Clarifier Performance Analysis 107
10 Construction Costs for Westgate Oxygen-Activated
Sludge System 118
11 Operating and Maintenance Costs for Westgate
Oxygen-Activated Sludge Plant Including Sludge
Dewatering for FY 73 119
12 Operating and Maintenance Costs for Westgate Aeration-
Sedimentation and Chemical Treatment Systems (FY 68
and FY 71) 120
-------
SECTION I
INTRODUCTION
A detailed report of the conversion to and operational performance of an
oxygen-activated sludge system at the Westgate wastewater treatment plant in
Fairfax County, Virginia, is given in this report. It is presented in the
form of a case history including the time span leading up to and following
the decision by the County to convert to oxygen-activated sludge.
Available design and performance data for the original aeration-sedimentation
system is presented as well as data for the chemical and chemical/carbo.n
systems which were employed to upgrade plant performance prior to the decision
to use oxygen-activated sludge. The need for a high efficiency wastewater
treatment system and the decision to employ oxygen-activated sludge at
Westgate are discussed and followed up with details on the design, construc-
tion, startup, operation, performance, and costs of the oxygen-activated
sludge system.
An important aspect of this report is a comprehensive presentation of startup
and performance data generated over two years of operation (October 1971
through September 1973) of the Westgate oxygen system.
-------
SECTION II
CONCLUSIONS
The OASESR system at the Westgate wastewater treatment plant of the County of
Fairfax, Virginia, was the first commercial installation of an oxygen-
activated sludge system at a municipal facility. This report is intended to
provide an opportunity to review and assess its merits under field operating
conditions.
The information contained in this report has been taken from the Fairfax
County records and has been correlated for convenient evaluation in case his-
tory form, but is otherwise unaltered. The report presents an opportunity
for interested engineers to examine and evaluate the data obtained by
Westgate plant personnel over the two-year operating period of October 1971
through September 1973. This operating period includes startup, optimization,
routine operations, and operation during upsets.
Principal conclusions emanating from the Westgate experience with oxygen-
activated sludge treatment are listed below:
1. Conversion of Fairfax County, Virginia's Westgate treatment plant to
oxygen-activated sludge permitted a timely, reliable, and cost effective
method of upgrading the plant to meet current and future treatment re-
quirements.
2. The practicability and benefits of using high purity oxygen in the acti-
vated sludge process have been demonstrated at the Westgate Treatment
Plant during the two-year operating period covered by this report.
3. Overall treatment plant BOD removal efficiencies averaging 92 percent
exceeded performance specifications over a range of biomass loadings from
0.2 to 0.8 kg BOD5/day-kg MLVSS (lb/daylb).
4. Operational integrity of the converted Westgate Plant has been out-
standing. Problems encountered such as mechanical failures associated
with primary and secondary clarifiers, sludge disposal bottlenecks
associated with vacuum filter breakdown, and the occurrence of toxicity
in the wastewater have not seriously affected the performance of the
oxygen-activated sludge process. When upset has occurred,the process
has demonstrated rapid recovery over a period of one to two days.
-------
5. Oxygen requirements for the process have been slightly lower than anti-
cipated, the normal weekly averages ranging from 0.7 to 1.0 kg Oo sup-
plied/kg BOD5 removed (lb/lb). In the extreme, values from 0.6 to 2.1
kg 02 supplied/kg BOD5 removed (Ib/lb) have been observed.
6. Sludge production from the oxygen-activated sludge process exclusive of
primary sludge and weir losses was approximately 0.42 kg TSS/kg BOD5 re-
moved (Ib/lb) during a process optimization program undertaken from
January to May 1972. Overall sludge production during the same optimi-
zation program including primary and secondary sludges, but not weir losses,
was approximately 0.7.6 kg TSS/kg BODr removed (lb/lb). However, following
the optimization program, overall sludge production, again excluding weir
losses, averaged 1.4 kg TSS/kg BOD5 removed (lb/lb) for the long-term
operating period of June 1972 to September 1973.
7- Sludge properties have been very stable. SVI values excluding startup
range from a daily low of 35 to a high of 110 ml/g TSS. ZSV values which
are sensitive to MLVSS levels varied from 0.6 to 4.2 m/hr (2.0 to 13.8
ft/hr) on a weekly average basis.
8. Sludge dewaterability of decanted waste oxygen-activated sludge combined
with primary sludge exceeded that anticipated for combined air-activated/
primary sludges. A two-year average yield of 21.5 kg/m^-hr (4.4 Ib/ft^-hr)
was achieved on Westgate's vacuum coil filters with a filter feed contain-
ing at least 6 percent solids.
9. Costs associated with the operation and maintenance of the Westgate waste-
water treatment plant were 3.3 cents/m^ (12.5 cents/1000 gallons) for the
1973 oxygen system as compared with 1.8 cents/m3 (6.8 cents/1000 gallons)
for the aeration-sedimentation system still in use in 1968 and 4.2 cents/
m3 (15.9 cents/1000 gallons) for the chemical treatment system temporarily
employed in 1971. All systems operated at a plant influent flow of approxi-
mately 0.46 m3/sec (10.4 mgd) and achieved total plant BODn removal ef-
ficiencies averaging 92 percent, 52 percent, and 71 percent for the oxygen-
activated sludge, aeration-sedimentation, and chemical treatment systems,
respectively.
10. The effects of temperature on the oxygen-activated sludge process in terms
of effluent quality, sludge properties, and secondary clarifier perform-
ance have been negligible at Westgate.
The performance record of the Westgate oxygen system has been excellent.
Although it was originally intended only to satisfy the County's interim
treatment requirements, it has substantially exceeded bid performance specifi-
cations. It stands as an example of the effluent quality and performance
reliability that can be achieved through the use of oxygen in the activated
sludge process.
-------
SECTION III
RECOMMENDATIONS
The conversion of the Westgate wastewater treatment plant to oxygen-activated
sludge represented the application of new technology to solve an existing pro-
blem as quickly as possible. The results were excellent. As in any project
of this type and size, however, there were certain aspects of the design, con-
struction, operational, and demonstration phases of the program which might
have been done differently in retrospect. The following recommendations are
intended to help the engineer who is designing a wastewater treatment plant
using an oxygen-activated sludge system avoid some of the relatively minor
problems encountered at Westgate:
1. The cocooning technique used for sealing the aeration basin at Westgate
is recommended as an effective method of sealing older porous concrete
structures when existing aeration basins are to be modified to oxygen-
activated sludge service.
2. Careful design of sludge recycle systems is recommended. Improper
sizing may lead to poor solids inventory control in the clarifier and
oxygenation basin. Recycle systems for oxygen-activated sludge systems
should be capable of pumping sludges of from 1.5 to 4.0 dry weight
percent solids at from 10 to 50 percent of the design influent flow rate.
3. Design of covers and gas seals for new oxygenation basins or for con-
version of existing basins should include careful consideration of
thermal expansion to avoid formation of oxygenation gas leaks and
shearing of holddown fixtures.
4. When it is anticipated that liquid oxygen vaporizers will receive heavy
usage in a high humidity environment such as experienced at the Westgate
plant, the use of pylon mounted vaporizers with liberal provision for
air circulation is recommended. This minimizes problems of icing and
avoids problems with galling and subsequent deterioration of a concrete
slab base.
5. The oxygen-activated sludge system at Westgate demonstrated excellent
performance even with excessive secondary clarifier sludge blanket
depths. It is recommended, however, that sludge blanket depths be
maintained between 0.3 and 0.6m (1 and 2 ft) and that excess sludge
not be stored in the clarifier unless it is impossible to waste from
the system.
-------
6. Subjects which might warrant further investigation with regard to the
overall capabilities and performance characteristics of the Westgate
oxygen-activated sludge system include more extensive studies of
sludge production and solids balances around the system, and the
potential of the Westgate system to nitrify if operated at appropriate
sludge ages.
7. Finally, a visit to the Westgate wastewater treatment plant is recommended,
if possible. Such a visit will help the design engineer or municipal
engineer appreciate the outstanding attributes of oxygen-activated sludge
systems.
-------
SECTION IV
HISTORY OF THE WESTGATE WASTEWATER TREATMENT PLANT
Fairfax County operates four wastewater treatment plants; the Westgate,
Little Hunting Creek, Dogue Creek, and Lower Potomac plants (Figure 1).
In early 1970, the treatment provided by the Westgate, Little Hunting Creek,
and Dogue Creek plants was deemed inadequate and an interim upgrading pro-
gram for these three plants was undertaken by Fairfax County as outlined in
a report to the State Water Control Board (1). The program included eventual
phase-out of all three of the above plants upon completion of upgrading the
Lower Potomac plant and expansion of a nearby facility in Alexandria,
Virginia. It also provided for interim modifications of the Westgate facil-
ity to provide the effluent quality required to avoid the imposition of a
building moratorium on portions of Fairfax County. According to the ori-
ginal program, flows from the Dogue Creek plant and Hunting Creek plant were
to be diverted to the Lower Potomac plant and flows from the Fairfax County
Westgate plant were to be diverted to the previously mentioned nearby facil-
ity in Alexandria, Virginia,by 1975.
The Westgate Treatment Plant was constructed in 1954 by Massey Engineers of
Denver, Colorado. The plant was designed for a capacity of 0.35 m-Vsec (8
mgd) or 80,000 people and was designed to remove 50 percent of the BODr
in the influent wastewater. Special features of the plant included sludge
handling facilities for drying and pelletizing sludge and a semigraphic
instrumentation panel for centralization of supervisor control. The original
plant is depicted schematically in Figure 2 and unit processes are described
in Table 1.
The basic treatment process of the original plant consisted of comminution,
bar screening, primary sedimentation, and aeration of the primary effluent
followed by secondary sedimentation. A longitudinal cross section of the
original process basin configuration is shown in Figure 3. Special scraper
chains passed along the entire bottom of the system through all three sec-
tions of the basin. The apparent intention of the scraper was to return set-
tled particles, whether grit or biological sol ids,from the secondary clarifi-
cation section to the primary section of the basin. Although Westgate was
not intended to operate as a conventional activated sludge system, some set-
tled solids were presumably resuspended in the aeration zone, thus keeping
some active biomass in the system. Installation of separate sludge hoppers
and scrapers in the secondary clarification section for capture and recycle
of settled sludge to the front of the aeration section was considered and
abandoned for lack of funds at the time of construction. The purpose of the
aeration section as finally designed in 1954 was mainly to replenish dissolved
oxygen (DO) levels in the primary effluent prior to final clarification,
chlorination, and discharge.
-------
DISTRICT OF COLUMBIA
WASHINGTON
NATIONAL
LITTLE
HUNTING CREEK
FIGURE 1. WASTEWATER TREATMENT PLANT LOCATIONS,
FAIRFAX COUNTY, VIRGINIA
-------
CC
UJ
<
LJLJ
01
I?
O "^
— m
DC CC
O H
CN
LU
CC
-------
TABLE 1. DESCRIPTION OF ORIGINAL WESTGATE PLANT EQUIPMENT
I. Sedimentation and Preaeration Tanks:
2--Tanks each 160 ft long x 40 ft wide x 12 ft SWD
Aeration Equipment:
2--Blowers and Motors, each a 60 hp and 1,500 cfm unit
12--Swinging air diffuser units
Sludge and Scum Collecting Equipment:
4--Longitudinal Link-Belt sludge collectors
2--Traverse Link-Belt sludge collectors
2--Sludge valves continuous flow adjustable weir
4--Primary and secondary scum collectors
II, Parshall Flume 36 inch throat with chlorinated control float well
III. Return Sludge Aerator:
Stored sludge could apparently be aerated in this tank prior to
return to the primary sedimentation tanks and subsequent recycle
with raw primary sludge
IV. Chlorine Control Building:
2--Wallace and Tiernan chlorinators, 1,500 Ib each, for pre-
and post--chlorination of effluent and returned sludge
V. Sludge Storage Tank:
1--65 ft diameter x 23 ft SWD tank with floating cover and gas
collecting dome. Sludge storage capacity 30 days
Reportedly never used as an anaerobic digester
VI. Sludge Drying Building:
Sludge well under floor with decanting well and weir
2--8 ft diameter Komiine-Sanderson vacuum sludge filters
"Roto Louvre" dryer
Oil-fired heater, air blast to dryer at 850°F, capacity
approximately 9,923,000 BTU
Oil Scrubber "Pease Anthony", 6 ft diameter x 20 ft high,
removing odor from Roto-Dryer exhaust air, 10,500 cfm
VII. Control and Administration Building:
Housing graphic panel and control centers "A" and "B" and machine
shop in the basement, chemical laboratories on the second floor
with administrative offices and records, and utility and locker
rooms on the first floor.
Note: 1 ft 0.305 m 1 BTU 1.055 kJ
1 in 2.54 cm 1 Ib 0.454 kg
1 cfm 0.472 I/sec
-------
p COMMINUTION
\ PRIMARY
\ CLARIFICATION
AERATION
SECONDARY
CLARIFICATION
\
SUMP--
TROUGH
BAFFLE —
+ -/-
iTT
\~\
^f=.
-BAFFLE
EFFLUENT OVERFLOW WEIR
-^
V7.
SCRAPERS-
AIR DIFFUSERS
ADAPTED FROM "OPERATIONAL EXPERIENCE AT A COMMERCIAL OXYGEN ACTIVATED SLUDGE PLANT," ROBSON ET AL.,
PRESENTED AT THE 45TH ANNUAL WPCF CONFERENCE, ATLANTA, GEORGIA.
FIGURE 3. ORIGINAL WESTGATE BASIN CONFIGURATION -
LONGITUDINAL SECTION
-------
The original system performed adequately, providing partial treatment for
0.35 md/sec (8 mgd) of wastewater for nearly 16 years. Average BODr removal
efficiencies, suspended solids removal efficiencies, and plant flows are
presented in Figure 4 for every fifth year through 1970.
Sludge handling, dewatering, and pelletizing equipment performed adequately,
but problems were encountered with odor from these operations. Eventually,
due to a lack of a market for the pelletized sludge, the system for sludge
drying and pelletizing was abandoned.
By 1970, increased flows and plant loadings led to BODr removal efficiencies
of less than 50 percent at the Westgate Treatment Plant. A record of aver-
aged flows and BOD5 loadings for every fifth year from 1955 through 1970
is shown in Figure 5. Heavy chlorination of the influent wastewater was
employed when necessary from 1954 to June 1970 to upgrade treatment effi-
ciency and to minimize odors in the plant; chlorination dosages were heavy
enough at times to give the primary sludge a bleached, whitish appearance.
In 1970, Fairfax County was faced with the choice of either upgrading the
efficiency of the Westgate plant or having a building moratorium placed on
the area served by the plant. In June of that year, Fairfax County sub-
mitted a report to the State recommending interim modifications to upgrade
treatment efficiency at the Westgate plant and eventual termination of
operations at the Westgate, Little Hunting Creek, and Dogue Creek plants.
Initially, Fairfax County decided to upgrade the Westgate Treatment Plant
with chemical treatment (2). Laboratory and plant-scale tests were con-
ducted during June and July 1970 to determine the effectiveness of chemical
treatment and the optimal points of chemical addition to the wastewater.
Points of chemical addition studied are shown in Figure 6. Dosage require-
ments established were about 3,778 kg FeCK/day (8,340 Ib/day) with about
0.001 kg anionic polyelectrolyte/m3 wastewater (8.34 Ib/mil gal).
Installation of permanent equipment for chemical treatment included a 94.6-
rri3 (25,000-gal) storage tank and a metering pump for ferric chloride and two
1.5_m3 (400-gal) steel mixing tanks, a metering pump, and two 0.56-kw (0.75-
hp) agitators for the polyelectrolyte. The performance of the Westgate
plant using ferric chloride and anionic polyelectrolyte chemical treatment
was improved over the performance of the original plant in removing BODr,
but sludge handling was made more difficult. Table 2 contains the monthly
average influent and effluent BOD^ concentrations during chemical treatment.
The resulting sludge was of different character and more difficult to de-
water than that of the original plant.
Activated carbon addition combined with chemical treatment was also employed
at Westgate in an attempt to further increase removal efficiencies. Labora-
tory-scale tests were conducted and indicated that carbon treatment could pro-
vide about 75 percent BODr, removal. As a backup for ferric chloride and poly-
electrolyte treatment, Fairfax County installed full-scale equipment for acti-
vated carbon storage and addition; this included a 189.3-m3 (50,000-gal)
storage tank, a 30-kw (40-hp) impeller mixer, and a metering pump.
11
-------
80-
> 60
E
01
DC
2
LLI
40-
LU
Q_
20
% BOD5 REMOVAL
%TSS REMOVAL
1955
1960 1965
YEAR
1970
FIGURE 4. PERCENT BOD5 AND TSS REMOVAL EFFICIENCIES FOR WESTGATE
-------
12
10-
Q
o
LJJ
DC
0
_1
LL
I-
2
Q.
4-
2 -
Q PLAN
HH PLAN
T FLOW
T LOADir
RATE
JG
TT
- -
"
I
NOTE: 1 MGD = 0.044 M3 / SEC
1 LB BOD5 / DAY = 0.454 KG BODg / DAY
I
S
5
I
"I
- 20,000
-16,000 ^
^u1
Q
O
CD
DO
-12,000 C3
Q
O
H
- 8,000 <
a.
- 4,000
1955
1960 1965
YEAR
1970
FIGURE 5. AVERAGE WESTGATE LOADING AND FLOW RATE DATA
-------
SLUDGE DRYING BLDG
SLUDGE STORAGE
TANK
POLYELECTROLYTE
STORAGE AND
FEEDING
SLUDGE
STORAGE
BINS
COOLING CHAMBER
VACUUM
FILTER
ROTO
LOUVRE
DRYER
-I
SLUDGE & GAS
CONTROL BLDG
I
RETURN
SLUDGE
AERATION
ACTIVATED CARBON
SLURRY
STORAGE & FEEDING
CONTROL &
ADMINISTRATION BLDG
FERRIC CHLORIDE
ADDITION POINT
F" STREET PUMPING STATION
FIGURE 6. WESTGATE CHEMICAL STORAGE FACILITIES
AND POINTS OF CHEMICAL ADDITION
-------
TABLE
Month
Jan 1970
Feb
Mar
April
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 1971
Feb
Mar
April
May
June
July
Aug
Sept
Oct
Nov
Dec
2. WESTGATE CHEMICAL TREATMEN'
MONTHLY AVERAGE DATA(a.
Avg. Monthly
Flow, mgd
12.5
12.3
10.9
11.7
10.6
10.0
10.1
9.3
8.9(c)
8.8(c)
8.3^
7.8^)
7.7^)
6 7^
5>>
8.5^)
11.2
12.9
11.9
10.9
6.2
8.7
10.3
12.6
BOD5
Influent,
mg/1
223
188
219
179
169
210
195
215
230
222
187
192
174
156
168
171
155
157
200
209
204
177
174
165
[ PERFORMANCE -
BOD,
Effluent,
mg/1
121
109
122
88
86
137
73
77
91
68
41
45
41
46
48
44
41
37
45
64
51
56
43
32
Percent
Removal
48
42
44
51
49
35
63^'
64
60
69
78
77
76
71
71
74
74
76
78
64(d)
75
68
75(e)
81
(a)Data taken from a report prepared by Engineering-Science, Inc. (2).
(b)Chemical addition began.
(c)Flows were purposely reduced to facilitate infiltration TV surveys and
repair of sewers.
(dfPl'ant modifications disrupted treatment.
(e)Activated sludge plant modification became operational.
Note: 1 mgd = 0.044 m /sec
15
-------
Erosion and control problems were encountered with the activated carbon
facility from the onset of its operation, and carbon addition to the Westgate
facility was abandoned on July 16, 1971, with inconclusive treatment results.
Although removal efficiencies had improved with chemical treatment, an evalu-
ation conducted by Fairfax County indicated that the capital and operational
costs associated with a biological treatment system were favorable compared
with the anticipated operational expenditure for continued chemical treat-
ment. Fairfax County and Engineering Sciences, Inc., consultant to the
County, thus considered alternatives for interim conversion and upgrading
of the Westgate Treatment Plant to biological treatment. Oxygen-activated
sludge and high-rate air-activated sludge were the two systems considered.
Because the use of oxygen-activated sludge promised low sludge production,
minimum capital costs, and high BOD,- removal efficiency, and because pro-
spects for converting the Westgate facility to oxygen within the existing
tanks were attractive (with the exception that two new secondary clarifiers
would be required), oxygen was chosen.
Having selected the oxygen process as the best practical solution to the pro-
blems facing the County, the consulting engineer recommended the following
modifications to the Westgate Plant:
A. Installation of an oxygen-activated sludge system capable of treating
0.61 m3/sec (14 mgd) at an influent concentration of 220 mg/1 BOD5 in the
1.6 hr residence time available in the existing concrete tanks, leaving
the primary clarifier section intact,
B. Installation of two secondary clarifiers each 36.6 m (120 ft) in diameter,
3.34 m (11 ft) deep, and equipped with center inlet flow and peripheral
weir effluent overflow,
C. Additional sludge handling capability in the form of two flotation
thickeners, each having a surface area of 23.2 m2 (250 ft2), and
D. Installation of a sludge recycle system consisting of two recycle
pumps having a capacity of 0.31 m^/sec (7 mgd) each and sludge wasting
pumps, flowmeters,and associated piping.
On January 23, 1971, the County of Fairfax, Virginia, received competitive
bids for conversion of the existing aeration basins at the Westgate facility
to an oxygen-activated sludge system. Previous bids had already been let
for the addition of the two 36.6 m (120 ft) diameter clarifiers, the addi-
tion of recycle piping and other piping modifications, and installation of
the two flotation sludge thickeners.
Design conditions for the oxygen-activated sludge systems as given in the bid
specifications are shown in Table 3. The successful bidder was selected on
the basis of lump sum price, time for completion, and guaranteed efficiency
of BOD,- removal.
16
-------
TABLE 3. BID SPECIFICATIONS
Item Number
Influent BOD, 220 mg/1
Influent TSS° 173 mg/1
BODc Removed in Primary 10%
Design Temperature (minimum) 15°C ,
Design Flow Rate 14 mgd (0.61 m /sec)
Overall BOD5 Removal Required 80%
Air Products and Chemicals was awarded the contract for the Westgate plant
conversion. The bid price for conversion, installation, and spare parts for
the OASESR process and equipment was $861,000. The time allowed to complete
the contract was 210 days, and a removal efficiency of 80 percent of the in-
fluent BODj- was guaranteed.
The revised Westgate schematic including the oxygen-activated sludge system
as bid is shown in Figure 7. A description of the equipment is presented in
Table 4.
17
-------
ABANDONED
ACTIVATED CARBON
^- SLURRY TANK
SLUDGE
DRYING BLDG
SCRUBBER
COOLING CHAMBER
POLYELECTROLYTE
STORAGE AND
FEEDING
/ VENTS
*
TO
VACUUM DUMPSTER
FILTER
CONTROL &
ADMINISTRATION BLDG
FERRIC CHLORIDE
STORAGE & FEEDING
PRIMARY
UNDERFLOW
RECYCLE
PUMP
FIGURE 7. REVISED WESTGATE PLANT SCHEMATIC
-------
TABLE 4. EQUIPMENT DESCRIPTION FOR REVISED PLANT
I. Primary Sedimentation and Oxygen-Activated Sludge Tanks:
2--Primary sedimentation tanks each 22 ft long x 41 ft wide x 12 ft S.WD,
volume each 10,800 ft3
4--Oxygen system trains each 138 ft long x 20-1/2 ft wide x 12 ft SWD,
volume each 33,750 ft3
36--Mechanical aerators 9 aerators per train, 2-10 hp and 7-5 hp
Liquid oxygen (LOX) supply system 9600 gal capacity
II. Secondary Clarifiers:
2--Circular clarifiers - 120 ft diameter, 11 ft SWD
center feed „
- surface overflow rate 620 gpd/ft 14 mgd flow
- overflow weir length 690 ft each clarifier
suction lift type sludge withdrawal
III. Flotation Thickeners:
2--Flotation thickening units with polyelectrolyte addition equipment,
area each 250 ft2
IV. Sludge Decant Tanks (added in an earlier construction program):
2--Sludge holding and/or decant tanks (each modified by addition
of 5 hp mixer), volume each 25,000 gal
V. Chlorine Control Building:
2--Wallace and Tiernan chlorinators, 1,500 Ib each, for pre-chlorination
and/or disinfection of effluent
VI. Sludge Drying Building:
2--8 ft diameter Komiine-Sanderson vacuum sludge filters (refurbished
and new coils added), area each 200 ft2
VII. Control and Administration Building:
Housing control centers and machine shop in the basement, chemical labora-
tories on the second floor with administrative offices and records.
Utilities and locker rooms are located on the first floor.
Note: 1 ft = 0.305 m 1 ft2 0.93 m2
1 Ib = 0.454 Kg 1 hp = 0.746 kw
1 gal = 0.0038 m 1 mgd - 0.044 m /sec „
1 ft3 0.028 m3 1 gpd/ft2 0.041 m3/day-m
-------
SECTION V
DESIGN CONSIDERATIONS FOR CONVERSION
Air-activated sludge systems have been operated for some 50 years, but have
frequently been hampered by problems of insufficient DO in the mixed liquor.
The application of oxygen to biological wastewater treatment systems has been
studied by others (3,4,5,6) but the cost of high purity oxygen and the lack
of efficient dissolution methods precluded successful economic application of
oxygen to full-scale plants at the time. Since then the cost of oxygen gener-
ation has come down substantially, and appropriate means of achieving effi-
cient utilization of oxygen in biological wastewater treatment systems have
been devised.
In converting the Westgate plant to an oxygen-activated sludge system, the
influent and primary sections of the plant were not modified. The influent
is pumped from the collector system by an isolated pumping station through a
force main to the plant. There is one other minor source of wastewater de-
rived from an apartment complex nearby. The influent originally passed
through comminutors and then a bar screen. Since initiation of the operation
with the oxygen-activated sludge system, the comminutors have been removed.
Rags are removed manually from the bar screen and deposited in a dumpster.
Influent then enters the two primary clarifiers through flow splitting chan-
nels. The primary clarifiers are equipped with surface skimmers and bottom
flight chains which were rigged from the old equipment originally running the
full length of the tank. Short detention times in the existing primaries at
0.61 nv/sec (14 mgd) promote settling of only the more dense materials and
the primaries seem to do little to change the character of the influent waste-
water as received in the secondary system. This will be discussed in more
detail in Section IX.
The wastewater flows to the oxygenation basin from the primaries through
rectangular openings in the metal baffle which isolates the primary clarifiers
from the oxygenation basin. Recycle sludge is returned to the oxygenation
basin via a single 0.25-to 0.30-m (10-to 12-in) line from the newly installed
recycle pump unit. The recycle sludge enters the basin at two points, one
for each separate tank system. The mixed liquor thus formed flows through
the oxygenation basins which are comprised of what was the aeration and
secondary sedimentation sections of the existing concrete basin of the old
plant.
20
-------
The existing basin is divided into two separate and independent tanks. Each
tank is further divided into two bays in the gas phase. Subsurface openings
are present in a longitudinal dividing wall in each tank. This promotes
mixing in the liquid phase between the two bays of each tank but segregates
the gas phases of the two bays. During construction, each of the two tanks
in the oxygenation basin was divided into four liquid stages by insertion
of Placite (epoxy-phenolic resin) coated steel baffles. The resultant liquid
stages (1-4) in each tank have volumes equal to 22, 44, 23, and 11 percent of
the total volume of each tank, respectively. The superstructure of each bay
was divided along its length into nine segments by structural members and to
some extent dictated the staging configuration.
Figure 8 provides a view of the existing tank prior to conversion. Because
the cross members of each bay were an integral part of the tank structure,
these were not disturbed and,as a consequence, the number of aerators sup-
plied equalled the number (36) of open segments in the top of the four trains.
The dissolution horsepower (220 total nameplate hp, 164 kw) is distributed
uniformly throughout the basin with the exception of the first two aerators;
the first two aerators of each bay are 7.46 kw (10 hp) units while all the
other aerators are 3.73 kw (5 hp) units. The horsepower required in the
latter segments of each train was dictated not by oxygen mass transfer re-
quirements as is the case with the first stage, but rather by mixing require-
ments for maintaining the solids in suspension. In addition, it was de-
sirable to maintain a minimum size aerator of 3.73 kw (5 hp) in these segments
because of preferable quality and reliability in eqipment sizes. Conse-
quently, the total horsepower required is higher than that which would be
required for a grass roots installation where greater flexibility in tank
structure would permit use of larger aerators in smaller numbers.
The gas-tight tank covers, which are required to achieve efficient utilization
of oxygen in an oxygen-activated sludge system such as the OASESR system, were
fabricated from carbon steel and subsequently sand blasted to bright metal
before coating with a proprietary Placite material to prevent corrosion. Each
of the open segments in the concrete basin, excluding the last one in each bay,
was covered with a separate aerator-support assembly and sealed individually
to the concrete deck with bolts and silicon caulking compound.
The last segment of nine in each bay was left open to the atmosphere because
it was anticipated that the activity in the mixed liquor of this segment,
which also comprised the entire fourth liquid stage, would be sufficiently
low that the 3.73-kw (5-hp) surface aerator with lower impelTer employed to
maintain mixing in the last segment of each oxygenation bay would be suffi-
cient to transfer the oxygen required by the biomass from the atmosphere. The
open last stage also facilitates sampling and observation of mixed liquor just
prior to secondary clarification. Quiet baffles which prevent the aerator
throw umbrella from reaching the effluent weir structure were installed in
the fourth liquid stage to provide stable liquid level control within the
covered basin.
21
-------
rv>
FIGURE 8. EXISTING CONCRETE BASIN PRIOR TO CONVERSION
-------
Upon leaving the oxygenation basins, the mixed liquor flows from the two
aeration tanks are combined and then distributed to the two secondary clari-
fiers through butterfly valves. The clarifiers are Walker units designed
with center-feed influent wells and double-edge peripheral overflow effluent
weirs. Sludge is withdrawn from the bottom of the clarifiers using suction
lift scraper arms.
Two centrifugal sludge recycle pumps (one per clarifier) operate indepen-
dently on the two clarifiers through separate return sludge lines. Early
in plant operations, some problems were encountered with the sludge recycle
system, and these will be discussed in the section on Startup.
Sludge wasted from the oxygen-activated sludge system was to be thickened in
the two new 23.2-m2 (250-ft2) flotation thickeners; however, these thickeners
were only utilized for the first few months of operation. They were taken
out of service during the optimization program because thickening beyond that
afforded by simple decant tanks was not needed. Thickening of secondary
sludge in the decant tanks is aided by the addition of polyelectrolyte at
the suction end of the secondary waste sludge pumps.
Waste secondary sludge is pumped to one of two sludge holding or decant tanks
and decanted. Primary sludge which is held in a second tank is then mixed
with the decanted thickened secondary sludge. The supernatant from the decant
tank is returned to the primary basin, and the combined sludges are then fil-
tered on two vacuum drum coil filters. These filters are part of the ori-
ginal plant equipment.
Lime and ferric chloride were added initially to improve the filtering pro-
perties of the sludge. Although some work was done with good success on de-
watering the sludges without chemicals, as discussed in Section VII, lime
and ferric chloride addition is still being practiced primarily to avoid
odor problems and prevent further dewatering of the filtered sludge during
transportation to the landfill site in dumpsters.
Oxygen supply considerations were based on interim operation of the Westgate
Treatment Plant. The oxygen supply source chosen for the Westgate facility
was liquid oxygen (LOX). Anticipated termination of operation at Westgate
within three years of startup led to the selection of LOX despite its higher
cost. The large initial investment for an on-site gaseous oxygen generator
over a short operating period was economically less favorable.
The oxygen-activated sludge system at Fairfax was designed to operate either
as a pure oxygen system or as an oxygen enriched air-activated sludge system.
Special equipment used for the enriched air mode included an air blower and
proportional air to oxygen control system. Automatic aeration basin vent
control was utilized for the oxygen/air operation and manual vent operation
for pure oxygen operation.
23
-------
A minimum of process instrumentation was required for the oxygen system.
Figure 9 is a simplified process instrumentation schematic for the system.
It concentrates primarily on the oxygen inlet control system, which includes
pressure indicating control valves, and the vent control system. Other
instrumentation supplied with the OASESRsystem including a purge blower
system, the oxygen supply system with vaporizers, the pressure relief valves,
the liquid oxygen storage tank, the sample taps for mixed liquor, and the
sample taps for the gas phase are not shown in Figure 9.
Safety considerations play an important role in influencing the design of
plants where oxygen usage and human attendance is required. Air Products and
Chemicals is concerned about safety and is well equipped to deal with safety
matters. Although there has been some concern about the possibility of an
explosion occurring within the covered basins of an oxygen-activated sludge
system, the following points lead to the conclusion that this occurrence is
highly unlikely.
Three ingredients are required for an explosion to occur: a fuel, oxygen, and
an ignition source. The existence of an ignition source is highly improbable
within the oxygen-activated sludge system. Such ignition sources as induc-
tance and electrostatic spark can be ruled out because of the effects of the
water saturated atmosphere within the tanks. Adiabatic gas compression is
avoided by design and hot surfaces or impact sparks are conceivable but
improbable because of the design criteria employed.
Combustible fuels are generally absent in oxygen-activated sludge systems;
however, spills of hydrocarbon materials will occur in domestic and industrial
situations, and these compounds may be carried into wastewater treatment
facilities. Spills of fuel oil, for example, have been received at Westgate,
but with no detrimental effects. In the event of spills, the less volatile
oils, such as fuel oil, can be kept from the basin for the most part by skim-
ming in the primary sedimentation tanks. More volatile hydrocarbons such as
gasoline or methane (sewer gas) may also enter the system. To minimize the
hazard with these fuels, purge blowers have been installed at the Westgate
facility and other oxygen-activated sludge systems. With these, hydrocarbon
vapors mixed with oxygen can be blown from the gas space within the covered
aeration basin, if required, to eliminate the hazardous mixture.
Hydrocarbon monitoring systems are generally installed in oxygen-activated
sludge systems to warn of an accumulation of hazardous mixtures within the
covered aeration basin. At Westgate,a hydrocarbon analyzer was not included
originally because of reasonable confidence that an ignition source was not
present and that a water saturated atmosphere within the tank would eliminate
chances of one ever existing. As an extra safety precaution, however, a new
hydrocarbon analyzer and warning system has more recently been installed on
the oxygen system at Westgate.
There are certain safety benefits of having the aeration basins covered. The
covered basins of an oxygen-activated sludge system such as OASESR minimize
the danger of a man falling into the operating system. Aerosols containing
potentially harmful bacteria and viruses are also minimized.
24
-------
O ANALYZER
LEGEND
(X) CONTROL VALVE
C»0 BUTTERFLY VALVE
PIC PRESSURE INDICATING
CONTROLLER
FIC FLOW INDICATING
CONTROLLER
Fl FLOW INDICATOR
INSTRUMENT AIR
LINE
Fl
4=
t — (
Fl
A
PIC
i
— D&—
| LjJ
L. -
,w
1
#
o
A
. ._ t f
B
-------
SECTION IV
CONSTRUCTION
The contract for the conversion of the Westgate Plant was awarded to Air
Products and Chemicals, Inc. on February 12, 1971. Construction of the
oxygen-activated sludge system at the Westgate Treatment Plant, shown photo-
graphically prior to conversion in Figure 10, began in March 1971. In
keeping with the County's desires to expedite the project, most of the equip-
ment added in the conversion was prefabricated off-site. On-site construc-
tion projects included the following: a) fabrication and installation of
two 36.6-m (120-ft) diameter Walker Process Equipment Company steel clari-
fiers with concrete floors (Figure 11); b) modifications and additions to
existing piping including installation of mixed liquor conduits from the
basins to the clarifiers, recycle piping and pumps, and sludge wasting equip-
ment; c) installation of the flotation thickeners in a prefabricated steel
building (Figure 12); and d) installation of the OASES^ equipment including
modification of the existing aeration and clarification basin, installation
of baffles and covers, and installation of instrumentation.
^
Installation of the OASES system was started after the piping modifications
around the new clarifiers were nearly complete. Installation involved vari-
ous additions and modifications to the existing basin shown in Figure 13.
The scraper chains were removed and the sprockets relocated, old wooden baf-
fles were removed, and the aeration portion of the basin was modified by
removal of the old aeration equipment, including headers, spargers, and com-
pressor connections (Figure 14). Removal of some small segments of the con-
crete superstructure (Figure 15) was required to accommodate installation of
the mechanical aerators and basin covers.
Part of the effluent weirs located in the second clarification section of the
existing tanks (Figure 16) had to be modified. The existing weirs had an H
configuration in plan view. The weir sections passing laterally across the
basin near the end of the covered eighth segments penetrated the gas phase baffle
between adjacent oxygenation bays and tanks. To prevent intermixing of gas
phases'in the various bays and loss of the oxygen rich gas phase through the
longitudinal collection channel, these points of penetration in the concrete
structure were sealed and the metal edges on the lateral sectionsof the old
effluent weir removed on the upstream leg of the H. Removal of these metal
edges effectively lowered the old weir structure below the mixed liquor sur-
face and minimized its influence on aerator throw patterns in the covered
eighth segments of the oxygenation bays. The old lateral weirs prior to
flooding are shown in Figure 17- The downstream leg of the original H-
shaped effluent weir structure, located in the end wall of the basin was left
intact with addition of a new metal weir plate.
26
-------
FIGURE 10. AERIAL VIEW PRIOR TO CONVERSION
-------
ro
Co
FIGURE 11. INSTALLATION OF SECONDARY CLARIFIERS
-------
ro
FIGURE 12. INSTALLATION OF FLOATATION THICKENERS
-------
CO
o
PRIMARY
CLARIFICATION
\
BAFFLED
REPLACED
' \
OLD EFFLUENT OVERFLOW WEIR
BAFFLE REMOVED
SECTIONS ABANDONED
SECTION CURRENTLY
IN USE
AIR DIFFUSERS REMOVED
SCRAPERS-lREMOVED
SPROCKETS RELOCATED
ADAPTED FROM "OPERATIONAL EXPERIENCE AT A COMMERCIAL OXYGEN ACTIVATED SLUDGE PLANT," ROBSON ET AL.,
PRESENTED AT THE 45TH ANNUAL WPCF CONFERENCE, ATLANTA, GEORGIA.
FIGURE 13. MODIFICATIONS TO EXISTING CONCRETE BASIN - LONGITUDINAL SECTION
-------
EQUIPMENT REMOVED
1 SPARGERS
2 HEADERS (BELOW DECK)
3 AIR FILTER
.
FIGURE 14. EXISTING AERATION EQUIPMENT TO BE REMOVED
-------
oo
ro
i^a
CONCRETE SECTIONS
REMOVED TRAINS A
ANDD
FIGURE 15. CONCRETE SUPERSTRUCTURE MODIFICATIONS
-------
FIGURE 16. PART OF THE ORIGINAL SECONDARY CLARIFIER EFFLUENT WEIRS
-------
FIGURE 17. MODIFIED EFFLUENT WEIRS PRIOR TO FLOODING
-------
Modifications to the last stage included addition of a quiet baffle in front
of the remaining existing overflow weir which is currently used as the exit
point for mixed liquor. The quiet baffle is shown in Figure 18.
Liquid baffles of Placite coated carbon steel were installed between the pri-
mary sedimentation and activated sludge oxygenation zones and between the
four liquid stages of the oxygenation zone. Anti-swirl baffles, also of
Placite coated carbon steel, were installed within the zone of influence of
each aerator to prevent vortexing about the rotating surface aerator blades.
The methods of installation of the liquid and anti-swirl baffles are shown in
Figure 19.
The mechanical aerators were installed as integral units with the covers as
indicated in Figure 20 for each of the 32 open superstructure segments which
received covers. The four aerators installed in the uncovered fourth stage
were supported on twin I-beams. One such support is partially visible in
Figure 19. Aerators in covered sections of the basin were similarly supported,
The pitch blade surface aerators installed were manufactured by Mixing
Equipment Company of Rochester, New York. Two sizes, both employing a hollow
quill gearbox (Mixco LAT Series), were used, including eight 7.46-kw (10-hp)
units and twenty-eight 3.73-kw (5-hp) units. The eight larger units were
installed in the first liquid stage of each train which includes the first
two open superstructure segments of each bay. All of the aerators were
equipped with up-pumping lower mixing impellers of the axial type. Lower
mixing and surface impellers as well as the shafts were Placite coated car-
bon steel.
Sludge recycle lines were installed at the front of the oxygenation basin as
shown in Figure 21. One return line was provided from the recycle pumps to
the basin area. The return sludge line branches off at the basin and separate
lines then enter each train directly through the basin cover. The electrical
switchgear control center installed for the aerators is shown in Figure 22.
After installation of the oxygen inlet and vent control equipment shown pre-
viously in the flowsheet for Westgate instrumentation (Figure 9), the oxygen
supply system (LOX tank and vaporizers), purge blower, instrument air supply,
and pressure relief valves were then installed to complete the construction
phase. The completed plant including the white cylindrical LOX tank is shown
in Figures 23 and 24.
Maintaining some treatment capacity in an existing plant during conversion
or modification is frequently required. This was required at Westgate and im-
posed tight restrictions upon the time permitted for the conversion of each of
the aeration tanks. Fortunately, the center longitudinal wall of the existing
aeration basin was a structural wall isolating two independent tank systems.
This allowed construction to proceed in one basin while treatment of the in-
fluent wastewater was continued in the other.
Minimum aeration capacity and minimum mixing levels were maintained in the
operating tank using the old air compressor and a special manifold to which
hoses were connected and then dropped into the operating tank. Chemical addi-
35
-------
OJ
CTi
1TH STAGE
DIRECTION
OF FLOW
FIGURE 18. QUIET BAFFLE ADDED TO PART OF THE OLD EFFLUENT WEIR
-------
oo
—i
LIQ-LIQ
MIXING
TRAINS A&B
FIGURE 19. LIQUID ANTI-SWIRL AND STAGING BAFFLES AS INSTALLED
-------
GO
CO
FIGURE 20. INSTALLATION OF AERATOR AND COVER AS A UNIT
-------
. " ;., ' *
•;
FIGURE 21. SLUDGE RECYCLE LINES AT POINTS OF ENTRY TO THE OXYGENATION BASINS
-------
o
FIGURE 22. AERATOR SWITCH GEAR AND CONTROL CENTER
-------
FIGURE 23. COMPLETED INSTALLATION WITH LOX TANK AND VAPORIZERS
-------
FIGURE 24.
AERIAL VIEW OF COMPLETED FAIRFAX COUNTY
OXYGEN-ACTIVATED SLUDGE PLANT
-------
tion was also continued during the construction phase in order to maintain
reasonable treatment efficiency.
To meet the tight deadlines, maximum possible use of prefabricated materials
was made for the conversion to the oxygen-activated sludge system. The
covers for the 32 oxygenation basin segments were factory prefabricated as
were all other metal components including stage and quiet baffles. The
covers were shipped to the site and the completed cover assemblies were then
swung into place over each of the 32 openings using a crane.
Few significant problems, i.e., delays or accidents, were encountered during
the construction phase of the Westgate project. There was some difficulty
encountered in relocating the idler sprocket for the old scraper chain from
the far end of the basin to the back wall of the primary clarification sec-
tion. The problem was due to discrepancies between the drawings and the
actual construction of the original basins and was quickly solved.
Five days were allowed for modification of each of the aeration tanks because
of the need to minimize the period of time that the plant operated under re-
duced efficiency. This deadline for internal conversion of the aeration tanks
was met with some safety margin for both tanks. After completion of the
internal tank modifications, the covers were installed while the plant con-
tinued to treat wastewater with chemical addition.
Some difficulty was experienced in obtaining a good seal between the steel
covers and the existing concrete basin. The basin surface was uneven and
tended to be porous to the extent that during early leak tests bubbles could
be seen in water puddles over the concrete surface. The concrete also had
some cracks on and through the surface (Figure 25). The best method of
sealing the covers was found to be a special "cocooning" technique using an
oxygen compatible sealant. After surface preparation by sand blasting and
priming, the cocoon was sprayed around all edges of the covers and over the
surface of the concrete between the covers as shown in Figure 26. This
effectively sealed the concrete surface and covers.
Some difficulty was encountered with the installation of one of the secondary
clarifiers. When construction of the clarifiers was nearly complete, a heavy
rain storm resulted in the flotation of one of the clarifiers, thus delaying
its completion beyond the startup date of the oxygen-activated sludge system.
Therefore, startup commenced with only one of the two clarifiers operational.
43
-------
FIGURE 25. SURFACE CRACKS IN THE EXISTING BASINS
-------
en
'
FIGURE 26. APPLICATION OF SPECIAL COCOON MATERIALS TO BASIN COVERS
-------
SECTION VII
STARTUP
Startup operations of the oxygen-activated sludge system at the Westgate
treatment plant began early in October 1971. The startup procedure involved
equipment checks and process control checks followed by "debugging" activities
for both mechanical and process aspects of the plant. On October 16, after
the instrumentation was checked out and calibrated, each train was pressurized
to 50.8 mm (2 in) of water with air. On October 17, plant startup at full
flow was attempted. Chemical treatment had been terminated, and there was
very little biomass present in the system at the time. During the tests, it
became apparent that some of the 6.4-mm (0.25-in) bolts holding the access
plates in the prefabricated covers had sheared causing gas leaks. These
were replaced with 9.53-mm (0.375-in) bolts.
Seed sludge was delivered to the plant from Alexandria, Virginia, on October
23-28. In total, the plant received 1716 nr (454,000 gal) of sludge providing
a mixed liquor suspended solids (MLSS) concentration of between 2,000 and
3,000 mg/1.
During initial operations, the system was operated as an oxygen enriched air
process. Oxygen was mixed with air using a proportional air flow controller
to maintain a fixed percentage of oxygen in the feed gas to the oxygenation
basin. This procedure was discontinued by the County after December 1, 1971,
because the simplicity of operating with a pure oxygen feed was more attrac-
tive than the potential savings in oxygen costs. Thereafter, only oxygen gas
was supplied to the oxygenation basin.
Initially, a few process and mechanical problems were encountered and subse-
quently solved in order to establish a smooth mode of operation. For example,
foaming in the system became a problem on October 21. An anti-foam agent was
tested in trains A and B on November 5. A considerable reduction in foaming
was observed compared to that in trains C and D. The tendency of the system
to foam disappeared in the latter part of November and was eventually attri-
buted to acclimatization of the biomass.
When the second clarifier (see last paragraph of preceding section) was
brought on-stream, a problem developed in controlling solids distribution
between the two clarifiers. The two underflow lines from the clarifiers had
been connected by a common manifold in the recycle pump house. Under these
conditions, the two recycle pumps withdrew sludge preferentially from one of
the clarifiers,and solids inventory balance between the clarifiers could not
be maintained.
46
-------
In mid-December, a blind flange was installed in the common manifold con-
necting the two return sludge lines at the recycle pump station. Separate
pumping from each clarifier was thus possible, and sludge inventory within
the two clarifiers could be controlled. However, the solids control problem
within the basins was not solved completely because the recycle pumps were
individually too large to handle the low recycle flow rates characteristic
of oxygen-activated sludge systems.
In late January 1972, timers were installed for alternating on-off control of
each of the recycle pumps. This action stabilized solids levels in the oxy-
genation basin and sludge blanket depths in the clarifiers.
Another minor problem which developed during startup was the frosting of the
liquid oxygen vaporizer. This was due to the fact that the vaporizer was
inadequately sized to handle the abnormally high humidity in the area of the
Westgate plant. The problem was solved by doubling the surface area of the
vaporizer, thus minimizing ice buildup.
After completing plant startup operations, an optimization program was under-
taken by Air Products and Chemicals, Inc., beginning on January 24, 1972, and
lasting into May 1972. The purpose of this program was to establish a con-
sistent high level of plant performance and to evaluate various other facets
of the operations at the Westgate treatment plant. The objective of the first
phase of the program was to obtain intensive data which could be used to opti-
mize the performance of the OASES^ system.
Oxygen utilization data were obtained. Utilization efficiencies in excess of
90 percent were measured based on oxygen supplied and vent gas composition
and flow rates. Bi-hourly measurements of oxygen consumption rates were also
obtained and are plotted with a typical BOD,- diurnal loading pattern in
Figure 27. MLSS levels were varied between 3,300 and 6,600 mg/1 to determine
the optimum operating range. Sludge settling properties, sludge volume in-
dex (SVI), and floe characteristics optimized at approximately 3,600 to 3,800
mg/1 MLVSS. Data were obtained which indicated a secondary sludge production
of approximately 0.33 kg VSS/kg 8005 removed (Ib/lb) and an overall sludge
production (primary plus secondary solids)of 0.76 kg TSS/kg BODs removed (lb/
Ib). Sludge characteristics, including SVI, zone settling velocity (ZSV)
(in a 2.4 m x 0.15 m or 8 ft x 6 in column), and sludge filterability were
determined in special tests not detailed herein.
A point of interest that evolved from these studies was the ability of the
oxygenated activated sludge to compact with gravity thickening to concen-
trations sufficient to eliminate the need for flotation thickeners. These
data are presented in Figure 28. This characteristic eventually became very
useful when the flotation thickeners were taken out of service as a result
of odor problems associated with the thickener building. Thus, based on
these special test data, the County was able to save on operating costs and
eliminate an odor nuisance. Daily values of SVI and ZSV (one-liter test) are
plotted in the following section along with other performance data for the
entire report period.
47
-------
1000
NOTE: 1 LB/HR = 0.454 KG/HR
•TYPICAL PATTERNS FOR O2 AND BOD5
I I I I I I I I I I I
0000 0200 0400 0600 0800 1000 1200 1400 1600 .1800 2000 2200
(NOON)
TIME OF DAY
FIGURE 27. FLUCTUATIONS IN OXYGEN DEMAND
WITH DIURNAL BOD5 MASS LOADING *
-------
i-O
1.0
6.0
TIME FROM START OF THICKENING, HOURS
FIGURE 28. GRAVITY THICKENING OF OXYGEN-ACTIVATED SLUDGE
-------
Tests were run to determine the extent of mixing in the oxygenation basin.
The mixed liquor concentration profile was found to be uniform except for
minor sedimentary pockets in the corners of the stages. On several occa-
sions, the oxygenation tanks were drained,and no serious buildup of solids
was found on the bottom. Inspection of the oxygenation tanks while they
were drained revealed no serious corrosion of the Placite coated carbon steel
covers or aerators. Further studies on corrosion are being conducted at
Westgate as part of a larger overall program to study cprrosion in oxygen-
activated sludge systems. The two-year study is being sponsored by the
Environmental Protection Agency and conducted by the Bureau of Reclamation.
The first annual report of that project was issued in May 1974 (7).
Secondary clarifier performance was monitored during the optimization program
by measuring effluent suspended solids concentration, the clarifier underflow
solids concentration, and the distribution of sludge blankets between the two
clarifiers. Of particular interest was the underflow solids concentration
which ranged from 2 to 3 percent and the low recycle rates thus required.
Although these values were expected on the basis of laboratory and pilot plant
data, confirmation on a full-scale system was important. Effluent suspended
solids, sludge underflow solids, and sludge blanket distribution are presented
as a function of time in section VIII of this report.
The oxygen-activated sludge system operations were hampered at times during
startup and optimization by mechanical problems in other parts of the Westgate
plant. In one instance, because of the temporary breakdown of one of the
primary clarifiers,it was necessary to put the entire plant flow through one-
half of the oxygenation basin. During the period from 1:30 p.m. on November
25, 1972,through 12:00 noon on November 29, 1972, the oxygen-activated sludge
system maintained an average removal efficiency well in excess of that re-
quired. Table 5 presents data taken while operating under these conditions
for approximately 95 hours.
A breakdown in one of the secondary clarifiers also occurred when a skimmer
fell off its mounts to the bottom of the tank. This provided an opportunity
to observe plant performance when the full flow of the plant was placed
through one of the secondary clarifiers and the average overflow rate ex-
ceeded the design rate by about 45 percent. These data are shown in Table 6.
Further discussion of these upsets and the response of the oxygen-activated
sludge system can be found in the next section.
Chemicals for conditioning mixed primary and secondary waste sludges at
Westgate prior to vacuum filtration were not necessary as documented in Table
7. Table 7 indicates that moisture content was approximately the same with-
out chemical addition as with either lime plus ferric chloride and polyelec-
trolyte addition or with polyelectrolyte addition alone. Filter yield with-
out chemicals was equal to that with lime plus ferric chloride and polyelec-
trolyte addition and better than with polyelectrolyte addition alone. Lime,
ferric chloride, and polyelectrolyte were and still are added prior to filtra-
tion, however, to prevent the sludge cake from dewatering during transfer to
landfill and to mimimize odors associated with sludge handling. Appendix B
further summarizes chemical utilization for sludge dewatering at Westgate.
50
-------
TABLE 5. DAILY PERFORMANCE WITH PRIMARY CLARIFIER NO. 1
Date
11/18/72
11/19/72
11/20/72
11/21/72
11/22/72
11/23/72
11/24/72
11/25/72^
ll/26/72(b)
11/27/72^
11/28/72^
11/29/72^
11/30/72
12/1/72
12/2/72
12/3/72
12/4/72
12/5/72
12/6/72
Influent
Detention
Time, hr
2.77
2.23
2.05
2.20
2.32
2.53
2.46
1.67
1.00
1.24
1.28
1.32
2.32
2.33
2.59
2.59
2.71
3.00
2.86
Biomass
Loading,
kg BOD5/
day- kg MLVSS
0.320
0.331
0.532
0.587
0.639
0.590
0.688
0.894
0.968
0.832
0.820
0.736
0.368
0.271
0.316
0.386
0.354
0.284
0.301
MLVSS,
mg/1
3472
3896
2755
2946
2949
3611
3400
3551
3480
3860
4131
4306
4755
4163
4428
4358
4361
4488
4569
SVI,
ml/g TSS
73.4
75.7
64.2
69.3
67.8
71.2
69.7
72.4
77.0
58.0
60.3
53.8
60.4
55.9
-
59.6
56.0
60.3
66.1
Final
Effluent
TSS,
mg/1
22
15
8
9
19
16
20
35
28
20
42
39
45
23
17
12
14
23
18
Final
Effluent
Tot BOD5
mg/1
12
12
6
9
10
10
15
13
18
16
21
24
25
11
10
9
10
9
10
Final
Effluent
Fil BOD5
mg/1
-
3
2
2
2
3
3
4
_
4
6
4
5
-
-
3
3
3
3
% Total
BOD5
Removed
90.2
89.6
95.0
94.1
94.3
95.3
93.5
93.9
86.7
89.9
87.9
78.4
84.6
89.5
93.1
94.8
94.0
94.1
93.6
(a)Replacement of flight chain sprocket, only one-half of oxygenation basin utilized on dates indicated by '(b>).
(b)Dates of single primary clarifier and one-half oxygenation basin operation. Primary clarifier and oxygenation basin
were taken out of service at 1:30 p.m. 11/25/72 and returned to service on 11/29/72 at 12:00 noon.
-------
TABLE 6. DAILY PERFORMANCE WITH SECONDARY CLARIFIER NO. 2 DOWN
(a)
en
— — _—
Date
12/27/72
12/28/72
12/29/72
12/30/72
12/31/72
1/1/73
l/2/73(b)
l/3/73(b)
l/4/73(b)
l/5/73(b)
l/6/73(b)
1/7/73
1/8/73
1/9/73
1/10/73
1/11/73
1/12/73
1/13/73
1/14/73
Influent
Flow,
mgd
9.53
-
9.62
9.58
9.84
9.68
9.42
9.55
9.65
9.70
9.60
9.09
8.83
8.57
8.32
8.26
7.96
7.59
8.20
Final
Effluent
Tot BOD5,
mg/1
7
5
7
8
7
8
49
11
15
12
12
14
14
12
11
11
8
10
9
Final
Effluent
Fil BOD5,
mg/1
1
3
-
-
-
2
4
3
2
4
5
3
2
3
3
4
-
-
-
Final
Effluent
TSS,
mg/1
22
16
25
13
4
14
100
11
32
15
16
8
16
14
14
8
7
16
8
% Total
BOD5
Removed
93.9
96.2
93.6
94.4
95.4
94.1
67.3
92.8
88.6
91.0
95.0
94.4
94.7
95.3
90.9
93.9
95.3
95.0
94.4
Average
Clarifier
Overflow ?
Rate, gpd/ft
439.2
-
443.4
441.5
453.5
445.1
651.1
880.2
889.6
894.2
663.6
478.1
407.0
395.0
383.6
380.7
366.9
349.8
377.9
Average
Clarifier
Solids Loading,
Ib/ft2-day
16.5
-
17.5
18.8
18.6
19.3
27.8
24.8
13.6
18.8
15.6
12.1
12.0
11.6
10.6
12.8
14.0
13.3
12.5
SVI,
ml/g TSS
62.8
64.9
62.9
61.8
64.7
68.5
67.1
58.2
61.2
63.4
63.2
63.7
69.1
66.9
70.6
67.6
65.5
68.3
66.6
(a)Weld on effluent launders was broken.
(b)Dates of single secondary clarifier operation.
Note: 1 mgd = 0.044 m /sec ?
1 gpd/ft2 = 0.041 m3/daym
1 Ib/ft2-day = 4.88 Kg/m2-day
-------
TABLE 7. SLUDGE CONDITIONING AND DEWATERING SUMMARY FOR
VARIOUS CHEMICAL PRETREATMENTS
en
CO
*
Date
L i me , 1 b
Ferric
Chloride,
Polyelectro-
Ib lyte, Ib*
Filter Yield,
Ib/ft2-hr
%
Moi sture
Dry
Sludge, Ib
NORMAL CHEMICAL ADDITION
10/1/72
10/2/72
10/3/72
10/4/72
10/5/72
10/6/72
10/7/72
1000
1150
1250
400
800
1017
800
1017
339
349
593
339
700
1360
51
65
71
58
43
89
52
POLYELECTROLYTE ADDITION
12/14/72
12/15/72
12/16/72
12/17/72
12/18/72
12/1/72
12/24/72
1/7/73
5/19/73
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
46
61
73
83
14
NO CHEMICALS ADDED
0
0
0
0
4.2
5.8
2.1
4.8
4.3
5.8
5.8
ONLY
3.2
3.1
3.0
2.9
4.6
3.2
5.6
7.1
3.7
75
78
82
79
79
76
80
80
79
80
80
80
79
76
79
84
24,500
18,480
12,500
15,960
26,460
24,160
22,400
19,600
14,700
18,020
16,800
22,400
17,640
10,800
11 ,760
20,100
Note: 1
1
Ib = 0.454 Kg
Ib/ft2-hr = 4.
2
.88 Kg/m • hr
*A cationic polyel
ectrolyte
was used.
-------
In summary, through the optimization program, much was learned about the
operation of the Westgate treatment plant in general and about an oxygen-
activated sludge wastewater treatment plant specifically. Efficient utili
zation of oxygen was readily achieved at Westgate. Sludge properties and
overall process efficiencies and stability were equivalent..or better than
anticipated.
54
-------
SECTION VIII
STABILIZED OPERATIONS
The oxygen-activated sludge system at Westgate, Fairfax County, Virginia has
been in operation since late 1971, during which time performance has been excel-
lent. Including the optimization program and startup operations, 104 weeks
of data are available for study in this report. All the data in this section
have been obtained in Fairfax County laboratories located at the Westgate
plant. These labs have been operated by Westgate personnel and without assis-
tance from Air Products and Chemicals, Inc.
The Westgate plant influent is generally classified as a domestic wastewater.
Characteristics of the raw influent wastewater are presented in Figures 29
through 35. Note that raw influent characteristics are used throughout the
report even though there are small primary clarifiers in the system. It was
extremely difficult to get a representative sample of the primary effluent
which passes directly into the oxygenation basin through submerged openings.
Plant personnel normally obtain samples from the raw influent channel; hence,
daily primary effluent characteristics are not available. A comparison of
raw influent and primary effluent characteristics was made with difficulty
during startup operations. It showed little difference in the characteristics
of these streams. Comments and data on this comparison can be found in
Section IX.
Weekly average values for various influent characteristics are plotted in Figures
29 through 35 for each of the 104 weekly periods of operation from October 1971
through September 1973. Some data, including total BODj-, total COD, and TSS concen-
trations are presented in probability of occurrence plots to further help char-
acterize plant influent (Figures 36 and 37). The influent flow rate is presented
in a similar manner in Figure 38 with probability of occurrence plots for daily
minimum, average, and peak flows.
The data presented in the above figures indicate the moderate strength and the
nature of the wastewater received at Westgate. Variation in flow rate to the
plant is somewhat limited by the fact that the influent is pumped to the
plant. However, there is still a significant variation in flow to the plant
over a 24-hour period. This is clearly shown in Figure 38 where maximum and
minimum values have a 50 percent probability of being equal to or less than
0.55 m3/sec (12.6 mgd) and 0.29 m-Vsec (6.6 mgd), respectively.
Influent total BODr, total COD, and TSS weekly average values as plotted re-
flect a reasonable consistency in the influent strength over the entire opera-
ting period. The COD is somewhat more erratic than the BOD^ as might be ex-
pected because of the greater sensitivity of COD values to influent solids.
55
-------
on
O-i
C\l_
LU
< O.
DC ,-,
§
00
CD
WEEKLY AVERAGE VALUES
NOTE: 1 MGD = 0.044 M3 / SEC
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
RUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 29. DAILY INFLUENT FLOW RATE
-------
o
CO.
OJ
o
3*.
CM
O
O.
C\J
— o
in CD.
Q ,-.
O
CD
O
C\J
o_
OD
WEEKLY AVERAGE VALUES
OCT
71
DEC
71
FE8
72
RPR
72
JUN
72
flUG
72
OC1
72
DEC
72
FEB
.73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 30. INFLUENT BODC
-------
o.
03
WEEKLY AVERAGE VALUES
o.
r-
o.
CD
cn
CO
a
O
CO
OJ
CO
o.
OJ
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
7-2
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 31. INFLUENT SOLUBLE BOD5
-------
en
CD
o.
LO
O
in.
=?
o
o.
o
? o
Q LO.
O CO
o
o
o
en
o
in
r\i
o
o
C\J
WEEKLY AVERAGE VALUES
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 32. INFLUENT COD
-------
o
00
C\J
o
j4
OJ
o
o
<\J
z o
~ CO.
01
o
o
CM
oo
WEEKLY AVERAGE VALUES
OC7
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCf
72
DEC
72
FEB
73
fiPR
73
JUN
73
fiUG
73
OCT
73
FIGURE 33. INFLUENT TOTAL SUSPENDED SOLIDS
-------
CM_
cn
WEEKLY AVERAGE VALUES
00 _|
Q
oc c\j
K
UJ
o
UJ
cc
cv
CO
OCT
71
DEC
71
FCB
72
flPR
72
JUN
72
RUG
72
OC1
72
DEC
72
FEB
73
RPR
73
JUN
73
RUG
73
OCT
73
FIGURE 34. INFLUENT TEMPERATURE
-------
03
WEEKLY AVERAGE VALUES
CO
r-
x
a.
CM
CTi
a
ao
•
CD"
OD
•
CD"
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
RUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 35. INFLUENT pH
-------
CTl
OJ
O.I
5 10 20 30 40 50 60 70 80 90 95 98 99
% PROBABILITY
99.9
FIGURE 36. PROBABILITY OF OCCURRENCE OF INFLUENT TOTAL BODg AND TSS
-------
o v v
550
500
J5 450
5
Q"
o
CJ
o 400
i-
i-
z
UJ
3
| 350
300
250
2 O O
/
/
/
f
/
/
s
/
/
/
/
X
/
/
/
O.I 5 10 20 30 40 50 60 70 80 90 95 98 99 9S
% PROBABILITY
FIGURE 37. PROBABILITY OF OCCURRENCE OF INFLUENT COD
-------
en
I A
12
i r\
4
0
I
NOTE: 1 MGD = 0.044 M3 / SEC
^"
X
X
X'
X
/
x
X
X
X
^
X
/
x
X
^
-^
x
-^
.s*
jf
X
X
X
^
X
X
X
/
y
x
x
/
x
x
/
MAXIMUM
AVERAGE
MINIMUM
O.I 5 10 20 30 40 50 60 70 80 90 95 98 99 99
% PROBABILITY
FIGURE 38. PROBABILITY OF OCCURRENCE OF DAILY MINIMUM,
AVERAGE,AND MAXIMUM INFLUENT FLOWS
-------
Of more significance but for unknown reasons, the soluble BOD in the influent
decreased significantly over the two-year period as seen in Figure 31.
The annual pattern of influent temperature is clearly defined in Figure 34,
and slight variations of weekly influent pH are observed in"Figure 35 with a
maximum and minimum of 7.45 and 6.8, respectively.
Detailed performance information and operating data for the Westgate plant
are tabulated in Appendix A as daily values for the entire 104-week period.
Plots of weekly averages versus time reflective of plant performance are pre-
sented in Figures 39 through 44. Weekly averages of the operating variables
are presented as time plots in Figures 45 through 56.
These plots permit general observation of trends in plant performance as a
function of various^system loadings, influent temperature, influent pH, and
influent solids. System performance and stability can be seen in plots of
SVI, ZSV, oxygen consumption, and total and secondary solids wasted, as well
as in the effluent quality plots above. Observations derived from these
plots are included in the following summary of stabilized plant operations.
The plots shown in Figures 39 through 56 all contain data from October 17,
1971, through the end of the report period in September 1973. Plots of efflu-
ent quality as the plant was brought on-stream (October 1971 to January 1972),
optimized (February 1972 to May 1972), and finally brought to stable operation
(June 1972) are strongly reflective of the plant condition on a week-to-week
basis.
Total effluent BOD,-, following the initiation of operations on October 17,
1971, dropped gradually to values consistently below 20 mg/1 after June 1972,
as shown in Figure 39. Control problems associated with clarifiers and the
sludge recycle system are reflected in effluent quality during the initial
months of operation.
Only on two occasions after June 1972, and then only briefly, did the quality
of the effluent deteriorate. The first of these problems in late August of
1972 was caused by problems with solids wasting equipment, and hence, accumu-
lation of solids in the secondary clarifiers to levels which were detrimental
to effluent quality. This is indicated in Figure 43 which shows a peak in
effluent TSS, and in Figure 52 it is indicated by a rapid increase in sludge
blanket depth occurring at the time. The full extent of the problem, however,
is not evident in the weekly average value of sludge blanket depths plotted.
The daily data (Appendix A) for the dates of August 31, 1972, through Septem-
ber 3, 1972, reflect sudden and uniquely high values of TSS, BOD,,, and COD in
the effluent. Data on either side of this four-day period reflect normal ef-
fluent quality. This fact lends support to the hypothesis that the September
1972 effluent quality breakdown was one of solids inventory management and
was unrelated to oxygen reactor performance. The more modest instability in
effluent solids through early January 1973 illustrated in Figure 43 is reflec-
tive of continuing solids handling problems and high sludge blanket depths for
the four months immediately following the above four-day period.
The second occasion of deterioration in effluent quality, although relatively
mild, was May through June of 1973. During a short period, effluent total
BOD5 averaged greater than 20 mg/1. The deterioration was apparently caused
66
-------
o
C\J.
o
o.
o.
CD
CT>
00
o_
o_
OJ
WEEKLY AVERAGE VALUES
o
3CT
71
DEC
71
FEB
72
RPR
72
JUN
72
flUG
72
dCT
72
DEC
72
FEB
73
RPR
73
JUN
73
RUG
73
_LJ
3CT
73
FIGURE 39. EFFLUENT BOD5
-------
C\J
o.
C\J
CD_
CD
OD
- CM.
O
ffl
oo
WEEKLY AVERAGE VALUES
I I I I I
I I
I I
OCT
71
DEC
71
FEB
72
RPR
72
JUN
72
RUG
72
OC7
72
DEC
72
FEB
73
ftPR
73
JUN
73
RUG
73
OCT
73
FIGURE 40. EFFLUENT SOLUBLE BODt
-------
o
rr1.
CYI
WEEKLY AVERAGE VALUES
O
O.
OJ
o
CD.
Q
O
O
01
o.
00
o_
3d
71
DEC
71
FEB
72
flPR
72
JUN
72
RUG
72
on
72
DEC
72
FEB
73
RPR
73
JUN
73
flUG
73
OCT
73
FIGURE 41. EFFLUENT COD
-------
o
CYL
WEEKLY AVERAGE VALUES
o
o.
o.
CO
o.
CD
o_
O-
CM
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
fiUG
72
OCT
72
DEC
72
FEB
13
flPfi
73
JUM
73
flUG
73
OCT
73
FIGURE 42. EFFLUENT SOLUBLE COD
-------
o
=f.
C\)
WEEKLY AVERAGE VALUES
o
o.
C\J
o
UD.
(3
V)
Ui
O_
00
o_
=f
I 1
71
DEC
71
FEB
72
flPR
72
JUN
72
RUG
72
BCT
72
DEC
72
FEB
73
flPR
73
JUN
73
RUG
73
OCT
73
FIGURE 43. EFFLUENT TOTAL SUSPENDED SOLIDS
-------
OD
o
V—1
r-'
CM
O
3*
I CO
a. •_
CD
CO
00
CD
OD
r-
CD
O
r-
WEEKLY AVERAGE VALUES
CD
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FE8
73
RPR
73
JUN
73
flUG
73
OCT
73
FIGURE 44. EFFLUENT pH
-------
CJ
WEEKLY AVERAGE VALUES
*BASED ON RAW INFLUENT BODC
C/J
00
>
<
Q
Q
§
CO
CO
^f
m
o
CM
o"
o
o'
J I L
OC7
71
DEC
71
FE8
72
flPR
72
JUN
72
flUG
72
8CT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 45. BIOMASS LOADING (F/M)
-------
8.0
7.0
6 .0
cc
i
o
5.0
4.0
3.0
2.0
I .0
0.0
MINIMUM FLOW
AVERAGE FLOW
MAXIMUM FLOW
O.I
5 10 20 30 40 50 60 70 80 90 95 98 99 99.9
% PROBABILITY
FIGURE 46. PROBABLITY OF OCCURRENCE OF INFLUENT DETENTION TIME
BASED ON DAILY MINIMUN, AVERAGE, AND MAXIMUM INFLUENT
FLOWS
-------
o
o
CJ.
r-
o
o
CD
O
O
CD.
LO
O
? O
v> O
W 00.
o
o
o
o
CO
o
o
WEEKLY AVERAGE VALUES
C\J
eci
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 47. MIXED LIQUOR SUSPENDED SOLIDS
-------
O-i
00_
00
(3D
O_
o
° CO
X
CO
CO
CO
CD.
r-
u
DC
W
°- C\J.
r-
oo_
CD
3*.
CD
WEEKLY AVERAGE VALUES
I I
I I
I I I I I I
I I
1 I
OCT
71
DEC
71
FEB
12
flPR
12
JUN
12
flUG
72
OCT
12
DEC
72
FEB
73
flPR
73
JUN
73
RUG
73
OCT
73
FIGURE 48. MIXED LIQUOR VOLATILE SUSPENDED SOLIDS (PERCENT)
-------
u
LO
co_
o
3*
o
u.
o
S CNJ.
oc en
CVI
WEEKLY AVERAGE VALUES
oo
OCT
71
DEC
71
FEB
72
RPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 49. RECYCLE FLOW (PERCENT OF Q)
-------
co
WEEKLY AVERAGE VALUES
NOTE: 1 GPD/FT2 = 0.041 M3 / DAY • M2
FIGURE 50. SECONDARY CLARIFIER OVERFLOW RATE
-------
i-D
WEEKLY AVERAGE VALUES
FIGURE 51. SECONDARY CLARIFIER SOLIDS LOADING
-------
oo_
oo
o
o.
=>•
CM-
CO
C/5
LU
i
Q.
LU
O
CD_
CO
WEEKLY AVERAGE VALUES
NOTE: 1 IN = 2.54 CM
CLRRIFIER 1
CLflRIFIER 2
OCT
71
DEC
71
FEB
12
RPR
72
JUN
72
RUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 52. SECONDARY CLARIFIER SLUDGE BLANKET DEPTH
-------
o
C\J
o
o
O
00
O
CD
o
co OCT
71
WEEKLY AVERAGE VALUES
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
flUG
73
OCT
73
FIGURE 53. MIXED LIQUOR SLUDGE VOLUME INDEX (SVI)
-------
oo
ro
C\J
o
c\j
cc
I
LL.
- CM.
V)
N
OO
o OC1
71
WEEKLY AVERAGE VALUES
NOTE: 1 FT/HR = 0.305 M/HR
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
73
flUG
73
OCT
73
FIGURE 54. MIXED LIQUOR ZONE SETTLING VELOCITY (ZSV)
-------
oo
CM"
WEEKLY AVERAGE VALUES
•BASED ON RAW INFLUENT BOD5
CM
o
CM
00
CO
in
Q
O
m
Q.
a.
GO
CN
O
C3
CM
00
o~
3C1
7!
DEC
71
FEB
72
flPR
72
JUN
72
RUG
72
OCT
72
DEC
72
FEB
73
RPR
73
JUN
73
flUG
73
OCT
73
FIGURE 55. 02SUPPLIED/BOD5 REMOVED
-------
CO
NOTE: 1 LB/DAY =0.454 KG/DAY
TOTAL SOLIDS WASTED IS PRIMARY PLUS SECONDARY
EXCLUDING WEIR LOSSES
SECONDARY SOLIDS WASTED EXCLUDING WEIR LOSSES
FIGURE 56. TOTAL AND SECONDARY SOLIDS WASTING
-------
by the inflow of toxic materials identified by the plant superintendent as
chromium and copper. The character of the toxic shock as opposed to a solids
management problem is indicated by the behavior of the effluent soluble BODr
during this period,as shown in Figure 40. The toxic substances clearly had
an effect on effluent soluble BODj-.
The toxic materials, first received in appreciable amounts on approximately
May 20, 1973, upset the system with continued severe occurrence through May
24, at which time the system performance had deteriorated to a low of 74
percent total BOD^ removal. Subsequently, the toxic materials tapered off
to levels which were no longer of sufficient concentration to cause serious
problems. The system recovered very rapidly to 85 percent removal by May
25, 1973, and to 90 percent by May 31, 1973.
The occurrence of the toxic materials coincided with the introduction of some
industrial influent into the plant as a part of a program to increase flow to
the Westgate plant and utilize more fully the capabilities of the oxygen-acti-
vated sludge system. The exact source of the heavy metal contaminants was not
pinpointed. Following the onset of stabilized operations in June 1972, the
inflow of these metals was the only incident which seriously affected soluble
BODj- removal. Otherwise, through the remainder of the reporting period, efflu-
ent soluble BOD,- was typically less than 5 mg/1.
The influence of seasonal changes in temperature on the operating variables
and performance of the Westgate plant can be observed by using the plot of
influent temperature as a function of time (Figure 34) for comparison. There
were some minor trends to weaker influent strength during cold weather. This
trend was stronger in the case of TSS and total COD than for total BOD^
(Figures 33, 32, and 30, respectively). Influent flow rate or hydraulic
loading on the Westgate plant (Figure 29) was rather independent of the season
because the influent is force fed to the plant.
A central feature of the graphic presentation of flow rates at Westgate is
the drop in flow during late June through early August of 1972. This repre-
sents the effects of the severe damage done to the collector system in
Fairfax County, Virginia, when Hurricane Agnes ravaged the area on June 22,
1972. For some time afterwards, the flows to Westgate were relatively low.
The most reliable measure of the effects of seasonal variation in loading on
the plant should be the food to microorganism ratio (F/M)* which is plotted
in Figure 45. However, it is difficult to discern a defin-able trend of F/M
with influent temperature. The disruptive influence of Agnes broke the trend
in the F/M plot at a point in time (June 1972 to September 1972) when loadings
should have peaked out.
One major area of interest to engineers relative to oxygen-activated sludge
systems has been the effects of seasonal variations on sludge properties,
effluent TSS, and effluent quality as a whole. Figure 53 shows the trend in
SVI versus time. When compared with Figure 34, wastewater temperature does
*F/M is also referred to as biomass loading
85
-------
appear to have had some effect on SVI; however, the effect was opposite of
what would normally be expected, i.e., as the wastewater temperature decreased,
SVI values also decreased. Similar trends in ZSV (Figure 54) were not ob-
served with seasonal changes. A continuous trend downward in MLSS concen-
tration over a the two-year reporting period tends' to cloud the ZSV data
because ZSV is largely a function of solids level.
The effect of wastewater temperature on effluent TSS (Figures 34 versus 43)
appeared to be negligible as was the apparent effect-of SVI on effluent TSS
(Figures 53 versus 43). Figures 57 through 61 where effluent quality values
excluding startup and optimization data are plotted as weekly averages against
weekly average influent temperature further indicate that wastewater tempera-
ture had little effect on effluent BODr, COD, or TSS values. These plots
along with Figures 39 through 43 clearly show that the fully acclimatized
oxygen-activated sludge system produced a high quality effluent throughout
the 1972-1973 winter season.
The effects of wastewater temperature on oxygen consumption (Figure 62) and
sludge production were negligible relative to the effects of F/M on these
parameters. Slight but long term trends, over the period of February 1972
through September 1973, toward reduced oxygen consumption per unit of BODq re-
moved and increased sludge production can be discerned in Figures 55 and 56,
respectively, in accordance with a very subtle trend to increased F/M load-
ings in Figure 45. Wastewater temperature did affect oxygen consumption as
detected by changes in gas phase composition and vent rates, but changes in
plant loading tended to mask these effects.
Because the range of biomass loadings reported at Westgate is relatively
narrow, it is difficult to draw conclusions as to the effect of biomass
loading on system performance. Cross plots of F/M calculated using raw
influent total BOD5, as previously discussed in this section, and effluent
BOD5, COD, and the BODr exerted by the effluent suspended solids [(total
BODr-soluble BOD5/TSS] (Figures 63, 64, and 65) do reflect the response
of the system to increased loading exclusive of the startup and optimization
periods. It is apparent that the soluble BOD5 in the effluent was very
stable to loading changes within the F/M range of 0.2 to 0.8 kg total BODc
applied/day-kg MLVSS under oxygenation (Ib/day-lb). The level of biological
activity within the effluent solids generally increased (Figure 65) with in-
creasing F/M, however. Consequently, the total effluent BODs increased with
increased loading.
Correlation of sludge production in the secondary system with inverse F/M
as attempted in Figure 66 is poor. The inverse of F/M (kg MLVSS-day/kg BODr
applied) is used since it should provide a straight line according to the
relationship:
kg TSS produced/kg BOD5 applied = -b (kg MLVSS-day/kg BOD5 applied) + a
86
-------
1 1
C\J_
o
» — 1
0_
CO
5
z
V)
t- 0_
Z CD
01
oo ^
— 1 -1
LL
LL
01
=f^
o_
o
WEEKLY AVERAGE VALUES (6/72 - 9/73)
++ + ++++ ++ + *
+ +++=t=+H.-i- + ++i +
r " i i i i i i i 1 —
12 14 16 18 20 22 24 26 28
INFLUENT TEMPERATURE (CENTIGRADE)
FIGURE 57. EFFLUENT TSS VERSUS INFLUENT TEMPERATURE
-------
00
CO
LO
UD_
cn
in
D
O
CO
h- O.
2 rn
u.
UJ
C\J.
C\J
"iF
WEEKLY AVERAGE VALUES (6/72 - 9/73)
14
16
18 20 22
INFLUENT TEMPERATURE (CENTIGRADE)
24
26
28
FIGURE 58. EFFLUENT BOD5 VERSUS INFLUENT TEMPERATURE
-------
rf.
C\J
WEEKLY AVERAGE VALUES (6/72 - 9/73)
o_
C\J
CO
UD
IT)
Q
O
m
CQ
D
_I
O
CO
00
-H-
+ + +
+ .!+ +
-I-
\2
14
16
18 20 22
INFLUENT TEMPERATURE (CENTIGRADE)
24
26
28
FIGURE 59. EFFLUENT SOLUBLE BOD5 VERSUS INFLUENT TEMPERATURE
-------
10
o
o
o
C\J_
o
-.2-
0
z
Q
O
O
01 CO
o
12
WEEKLY AVERAGE VALUES (6/72 - 9/73)
14
16
18 20 22
INFLUENT TEMPERATURE (CENTIGRADE)
24
26
28
FIGURE 60. EFFLUENT COD VERSUS INFLUENT TEMPERATURE
-------
O
C\J_
WEEKLY AVERAGE VALUES (6/72 - 9/73)
O
O.
o_
00
CD
Q
8
_
8
I-
Ul
D
LU O_
o_
C\J
+1+4-
++ +
—I—
14
~Ts2022
INFLUENT TEMPERATURE (CENTIGRADE)
—T~
24
O
12
16
26
"28
FIGURE 61. EFFLUENT SOLUBLE COD VERSUS INFLUENT TEMPERATURE
-------
CD
WEEKLY AVERAGE VALUES (6/72 - 9/73)
0
UJ
I -
Ul
+
O
CO
O ~
UJ
_l
Q.
Q.
CO
(M
O oo
(3
* O
CD
*BOD5 REMOVED BASED ON RAW INFLUENT BOD5
+ + + + * +
+
+
+
+
+ +++ + + *
+ +
+
+
+
+
12 1U 16 18 20 22 24 26 28
INFLUENT TEMPERATURE (CENTIGRADE)
FIGURE 62. O2SUPPLIED/BOD5 REMOVED VERSUS INFLUENT TEMPERATURE
-------
o.
CD
O_
WEEKLY AVERAGE VALUES (6/72 - 9/73)
LEGEND
O BOD5
X BOD5 (SOLUBLE)
o_
in
Q
O
s-
O
CXI
o_
ffl
o x o
O
0.2
0.3
0.4
0.5 0.6 0.7
F/M IN KG BOD5 / DAY • KG MLVSS
0.8
FIGURE 63. EFFLUENT BOD5 VERSUS F/M
0.9
1. 0
-------
~~
o
r\j_
o
o_
-1
— .
o
Z
Q
8 o
t- CD
Z
Ul
3
li.
IL
111
0_
CO
O
=r
0
WEEKLY AVERAGE VALUES (6/72 - 9/73)
0 o
LEG
O COD
X COD (
O
0
00 O
(T)
o ^ 0
X ffl 0 C0 ° O
0 C"%>
X ® 0 ffl_. ^ m ®
^. CX!^ dj~^ ^n •
m 0 ®
K m m d x
° ^te© x
O O O ^jp 000 0 °^ X
O 000 X XX
O 0 XX iT)Xx
Ox xX^,x^^ "
x x X x
XX X
END
SOLUBLE)
T 1
l*"l 1 :"
0.2
0.3
0'. 5 0.6 0". 7 0.8
F/M IN KG BOD5 / DAY • KG MLVSS
FIGURE 64. EFFLUENT COD VERSUS F/M
-------
=>>
c\r
WEEKLY AVERAGE VALUES (6/72 - 9/73)
IT)
en
CO
CO
Q
O
m
O
co
O
co
LU
D
O
r\j
CD
O
O
°
0.16 0.24 0.32 0.40 0.48 0.56
F/M IN KG BOD5 / DAY • KG MLVSS
o. 64
D. 72
0.80
FIGURE 65. EFFLUENT (TOTAL BODg-SOLUBLE BOD5)/TSS VERSUS F/M
-------
CD
o'
in
o
Q
UJ
I
UJ
DC
(3
Q
UJ
(A
00
0
Q
O
00
§ O
O
Ul
t/5
O
+
00 f
+
4
WEEKLY AVERAGE VALUES (6/72 • 9/73)
+
-t-
-^-(- ( ! ( , ^_, , T
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4
1 / (F/M), (KG BODg / DAY • KG MLVSS) "1
FIGURE 66. SECONDARY SOLIDS WASTED VERSUS 1/(F/M)
-------
£ CO
>
o *-<
If)
Q
O
DO
o o
Q
LLJ
Q.
Q-
00
CD
O
WEEKLY AVERAGE VALUES (6/72 - 9/73)
*BOD5 REMOVED BASED ON RAW INFLUENT
+ +
V
+ +
O
0.
1.2 1.6 2.0 2.4 2.8. 3.2 3.6
1 / (F/M), (KG BOD5 / DAY • KG MLVSS)'1
FIGURE 67. O2 SUPPLIED/BODg REMOVED VERSUS 1/(F/M)
4.0
-------
to be anticipated. The accurate control and measurement of solids inventories
within operating plants is generally very difficult. Sludge wasting does not
necessarily reflect the instantaneous BOD5 loading on the plant, and a great
deal of uncertainty is, therefore, introduced into the correlation of sludge
production versus loading. The correlation of oxygen consumption per unit of
BOD removed with loading is, on the other hand, much better because the oxy-
gen demand of the activated sludge system is closely,tied to BODg loading and
the supply of oxygen to the process is automated.
The stability of the oxygen-activated sludge system, after stabilized opera-
tion was achieved in June of 1972, is readily apparent from the time plots
contained in this section. Although the plant has a relatively consistent
pumped influent loading, the operation was subjected to a number of different
shocks or types of adverse conditions during 1972 and 1973. In summary,
these included the following:
A. Hurricane Agnes (June 20, 1972) - low flows and process loadings for an
extended period.
B. Extended Delay of Sludge Wasting (August 31 - September 3, 1972) - high
solids residence time in the secondary clarifiers with deep sludge blan-
kets.
C. Primary Clarifier Outage (November 25-29, 1972) - high process loadings
and low reactor detention times.
D. Secondary Clarifier Outage (January 2-7, 1973) - high secondary clarifier
overflows and bottoms loadings relative to design.
E. Heavy metals and toxic substances shock loading (late May 1973).
Rapid system recovery was effected under all of these conditions. This has
been true in part due to the efforts of County personnel in operating the
plant, but also to the inherent stability of the oxygen-activated sludge pro-
cess.
Hurricane Agnes resulted in an extended period of extremely light loadings
on the Westgate plant. One of the most obvious changes in the system associ-
ated with Agnes was the change in SVI. The SVI.rose from circa 50 to a peak
of 90 ml/g-TSS over a period of one month. The SVI stabilized for the dura-
tion of the Agnes recovery at approximately 75 to 80 and continually improved
with increasing loading thereafter, or until June of 1973.
Other than SVI changes, the effects of Agnes can be seen in Figures 48 (Per-
cent VSS), 54 (ZSV), 55 ((L Suppl ied/BOD5 Removed), and 56 (Solids Wasted).
While these operational parameters reflected the stresses of Agnes, it is
obvious from Figures 39 through 43 that the average effluent quality did not
deteriorate significantly.
Figures 68 and 69 illustrate the response and recovery of the oxygen-acti-
vated sludge system to primary (68) and secondary (69) clarifier failures
while normal flows were maintained through the plant.
98
-------
z
o
UJ
Q
3.0
2.0
1.0
CO
oa
u
0.8
0.6
0.4
co C3
4500
4000
3500
3000
CO
70
60
I I
I I I I I I T
18 19 20 21 22 23 24 25 26 27 28 29 30 I 2 3 4 5 6
NOV. 1972 DEC. 1972
3ONE PRIMARY CLARIFIER DOWN FOR FLIGHT-CHAIN REPLACEMENT.
ONE OXYGENATION BASIN OUT OF SERVICE AT 1:30 P.M.
bBACK IN SERVICE AT 12:00 riOOn .
FIGURE 68. WESTGATE PLANT PERFORMANCE WITH ONE PRIMARY CLARIFIER
AND ONE OXYGENATION BASIN OPERATIONAL
99
-------
ID
Q
O
co
Q
O
CO
o
2
LU
cc
in
Q
O
CO
40
30
20
I 0
25
20
! 5
I O
6.0
4.0
2.0
90
80
70
i—i i i—r—i—I—i—i—i—i—i—i
J I
J I
18 19 20 21 22 23 24 25 26 27 28 29 30 I 2 34 56
NOV. 1972 DEC. 1972
"ONE PRIMARY CLARIFIER DOWN FOR FLIGHT-CHAIN REPLACEMENT.
ONE OXYGENATION BASIN OUT OF SERVICE AT 1:30 P.M.
bBACK IN SERVICE AT 12:00 flOOD .
FIGURE 68. WESTGATE PLANT PERFORMANCE WITH ONE PRIMARY CLARIFIER
AND ONE OXYGENATION BASIN OPERATIONAL (CONTINUED)
100
-------
S 10.0 -
o
9.0
LL
z
in
O
O
CO
CD
in
a
o
CO
o
3l
8.0
40
30
20
I 0
6.0
i i I I
Note: 1 MGD = 0.044 M3/SEC
2.0
80
60
40
20
27 28 29 30 31 I 23456 7 8 9 10 11 12 13 14
DEC. 1972 JAN. 1973
aONE SECONDARY CLARIFIER DOWN AT 1:00 P.M. DUE TO BROKEN
EFFLUENT LAUNDER.
bBACK IN SERVICE AT 1:10 P.M.
FIGURE 69. WESTGATE PLANT PERFORMANCE WITH ONE SECONDARY
CLARIFIER OPERATIONAL
101
-------
>
o
Q
O
CO
(-
O
o
100
90
80
70
cc
<
_J
o
Q
<
O
_j
£ >-
9 <
_i Q
o •
cc
<
o
900
700
500
30
20
10
CO
H
70
65
60h
NOTE: 1 GPD/FT2 = 0.041 M3 / DAY • M2
NOTE: 1 LB / FT2 • DAY = 4.88 KG / M2 • DAY
1 I I
27 28 29 30 31 I 2 3456 7 8 9 10 11 12 13 14
DEC. 1972 JAN. 1973
aONE SECONDARY CLARIFIER DOWN AT 1.00 P.M. DUE TO BROKEN
EFFLUENT LAUNDER.
bBACK IN SERVICE AT 1:10 P.M.
FIGURE 69. WESTGATE PLANT PERFORMANCE WITH ONE SECONDARY CLARIFIER
OPERATIONAL (CONTINUED)
102
-------
Primary clarifier failure necessitated shutdown of one complete train (ex-
cept for that train's secondary clarifier) of the system, thus forcing the
complete plant flow through the second train. Secondary clarifier failure,
which was caused by a broken skimmer, resulted in full plant flow through one
secondary clarifier yielding high average overflow rates relative to design.
The plot of sludge blanket depth for both secondary clarifiers in Figure 52
indicates the problems associated with sludge handling at Westgate. Periodi-
cally, the breakdown of sludge handling equipment prevented the wasting of
excess activated sludge on a routine basis. Sludge subsequently accumulated
in the secondary clarifiers and sludge blanket depths varied substantially
causing, in some isolated instances, a loss of solids to the effluent either
by sludge blanket overflow or floating sludge.
Plant 6005 removal efficiencies based on raw influent BOD^ are presented in
the form of probability of occurrence plots in Figure 70. These data indi-
cate average removal efficiencies of 95 percent and 92.5 percent based on
total influent versus soluble and total effluent 6005, respectively. Figure
70 reflects the operating period from June 1972 through September 1973 and
excludes startup and optimization operations.
103
-------
o
-pi
100
(6/72 - 9/73)
<
>
O
cr
65
NOTE; % Removals
Based on Influent
Total BOD and
Influent Total COD
10
20
30 40 50 60 70 80
% PROBABILITY
90 95
98 99
99.9
FIGURE 70. PROBABILITY OF OCCURENCE OF TOTAL PLANT REMOVAL OF
TOTAL COD, SOLUBLE COD, TOTAL BODg, AND SOLUBLE BODg
-------
SECTION IX
PERFORMANCE EVALUATION
The OASES system at Westgate demonstrated over the two-year period covered
in this report the stable and highly reliable performance which characterizes
oxygen-activated sludge systems. BODg removal efficiencies exceeded required
values and anticipated levels as summarized in Table 8. The high removal
efficiencies may have been due in part to somewhat lower average influent
flow and strength than were called for in the original design specifications.
Figure 63 indicates, however, that the plant maintained excellent weekly
average effjuent values over the relatively broad range of biomass loadings
of 0.2 to 0.8 kg BOD5/daykg MLVSS (Ib/daylb).
TABLE 8. BID PERFORMANCE SPECIFICATIONS VERSUS ACTUAL PLANT PERFORMANCE
Item
Specification
Requirements
Actual
(a)
Average Data
Anticipated
Performance
(b)
Influent Flow, mgd
Influent BOD, mg/1
Total BOD5 Removed, %
0- Supplied, tons/day
14
220
80
-
11-12
150-180
92
5-7
14
220
87
9.
3-9.9
0? Supplied/BODr Removed.
kg/kg b
0.69-0.96
(c)
0.83-0.89
(a)Excludes startup and optimization operating data.
(b)At anticipated average design loading.
(c)Based on an average influent flow of 11.5 mgd and an average influent BODr
of 165 mg/1.
Note: 1 mgd = 0.044 m3/day
1 ton/day = 907 kg/day
Acclimatization of biomass over a long period of time may play an important
role in achieving somewhat higher BOD5 removal efficiencies than anticipated.
Long term acclimatization in the form of continuously decreasing soluble
BQDj5 can be seen in the data presented in Figure 40. This plot reflects a
period of continuous process performance improvement of 12 months before the
105
-------
lowest effluent soluble BODS values were achieved. The trends in Figures
39 and 40 reflect, as well, a period of adjustment in achieving integrated
operation of the oxygen-activated sludge system and the plant as a whole in-
cluding sludge handling.
Oxygen requirements originally estimated for the Westgate plant at average
design loading were high relative to those actually "experienced. While a
requirement of approximately 8,160-9,070 kg (9-10 tons) oxygen/day was anti-
cipated, actual oxygen requirements have ranged only from 4,540-6,350 kg
(5-7 tons)/day. This again reflects flows and BOD5 strengths somewhat below
those anticipated in the design specifications. Variation in the amount of
oxygen required per unit of 6005 removed as a function of season has been
minimal as shown in Figures 55 and 62.
Sludge production data obtained at Westgate have been clouded to some extent
by the integral nature of the primary clarifiers and oxygenation basin. The
primary effluent enters the oxygenation basin through submerged portals in a
common wall between them. This has made it impossible to obtain samples of
primary effluent on a routine basis. Consequently, all oxygenation basin in-
fluent data in this report are based on raw wastewater characteristics.
The usefulness of reporting data for Westgate on the basis of raw influent
characteristics rather than primary effluent was studied during the startup
optimization program. An intensive monitoring effort over a two-week period
was undertaken to determine the effects of the primary clarifiers on the
characteristics of the raw wastewater. Diurnal samples were collected at
the submerged primary effluent portals and the raw influent channel. The
results of this study are shown in Table 9. It is apparent that the primary
clarifier did not significantly affect the influent total BODg and COD while
soluble BODr and COD values increased slightly. The solids levels varied
across the primary, but again not to a significant extent.
The apparent lack of change in influent characteristics across the primary
was not surprising considering the short 15 min residence time. The results
indicated, therefore, that in terms of BOD5 the use of raw influent values for
data analysis was permissible. There is an inconsistancy in the use of raw
influent data as input to the oxygenation basin in that there are significant
quantities of primary sludge produced on a daily basis at Westgate. The
source of these solids must be the influent stream,and it must be assumed that
the influent stream was not homogeneously mixed across the channel and, there-
fore, heavier solids may have been missed in sampling. To further complicate
analysis of the sludge production picture, the quantity of primary sludge
wasted is not accurately recorded, but only estimated based on secondary
solids wasting and total solids wasting data.
Extensive mass balance determinations relative to sludge production have not
been done at Westgate because of the above uncertainties. During the opti-
mization program, when a substantial effort was made to measure sludge pro-
duction, a total (primary plus secondary) average sludge production rate of
0.76 kg TSS/kg BOD5 removed (Ib/lb) was estimated. A total dry weight of
106
-------
TABLE 9. PRIMARY CLARIFIER PERFORMANCE ANALYSIS
Time
12 M
1 AM
2 AM
3 AM
4 AM
5 AM
6 AM
7 AM
8 AM
9 AM
10 AM
11 AM
12 N
1 PM
2 PM
3 PM
4 PM
5 PM
6 PM
7 PM
8 PM
9 PM
10 PM
11 PM
(c)
X
+
"l (d)
X
Influent
Flow, mgd
10.0
8.9
8.3
8.1
7.8
7.6
8.0
10.0
10.6
10.4
9.9
9.7
9.6
9.5
9.4
9.4
9.5
9.7
10.4
10.7
10.9
11.2
10.9
10.1
9.6
1 .0
COD
Unfil
306
277
204
197
151
146
88
123
169
216
284
277
321
358
328
317
312
340
304
404
349
392
390
363
276
92
282
Raw 1
COD
Fil
63
62
64
39
43
39
47
46
39
41
58
90
66
105
97
82
90
93
85
85
74
91
120
92
71
24
72
nf 1 uent ,
BODc
Unfil
153
144
123
84
72
99
90
96
90
126
108
150
150
171
153
132
135
144
132
171
162
189
177
174
134
33
137
ing/1
BOD5
Fil
30
20
24
23
17
20
18
20
24
27
24
39
26
33
45
35
38
56
45
44
56
65
72
54
36
16
37
TSS
168
156
136
86
102
74
60
82
126
122
150
154
196
192
202
232
218
164
200
246
224
274
188
200
165
58
169
ft F
COD
Unfil
314
251
269
180
149
121
87
100
135
383
205
264
263
299
334
316
314
361
343
461
390
295
377
434
277
106
283
'rimary
COD
Fil
128
116
87
67
35
41
30
28
48
55
65
84
89
102
97
102
104
152
104
163
133
163
129
159
95
43
98
Effluent,
BOD5
Unfil
153
120
82
63
55
30
24
33
51
84
90
126
144
135
177
168
153
178
172
219
162
160
216
205
125
61
129
mq/1 P2 Primary
BOD5
Fil
74
63
46
21
17
4
4
6
13
23
37
48
59
62
63
63
52
78
56
84
75
99
93
112
52
31
54
TSS
164
132
100
94
94
72
82
82
104
168
166
200
196
212
292
214
230
180
172
356
226
154
204
230
172
70
176
COD
Unfil
307
257
212
151
137
89
80
129
170
177
277
233
255
284
335
295
280
305
347
377
382
365
425
385
261
99
268
COD
Fil
111
112
79
64
48
37
41
25
50
49
66
81
95
106
128
154
120
153
90
130
115
143
154
130
95
40
97
Effluent,
BOD5
Unfil
144
141
117
90
78
57
45
45
63
87
90
111
123
162
150
138
153
153
165
189
156
183
167
131
122
44
125
mg/1 ' '
BOD5
Fil
71
57
42
36
32
17
17
17
21
32
36
42
51
59
66
86
59
90
69
65
77
90
87
63
53
24
55
TSS
156
186
110
100
88
74
26
34
38
96
74
112
112
164
170
138
150
124
130
252
168
152
162
192
125
54
127
Note 1 mgd = 0,044 m /sec
(a)Effluent samples at entry into "A" train
{b)E r f1uent sampled at entry into "D" train
(c)Anthmetic average (X) and standard deviation (i ) of all samples weighted equally.
fd)Arithnetic average (X) of all samples weighted according to flow rate - effective composite of 24 hours
-------
sludge ranging from approximately 4,500 to 10,400 kg (10,000 to 23,000 lb)/
day is wasted on a monthly average basis (Appendix B) from the Westgate treat-
ment plant and hauled to landfill in dumpsters.
The secondary sludge production rate measured during the optimization program
was 0.33 kg VSS/kg BODr removed (Ib/lb) or 0.42 kg TSS/kg BODc removed (Ib/lb)
at 78 percent volatility. In view of previous discussions related to data
scatter when attempting to correlate sludge production with biomass loading
(Figure 66), the following simple data analysis was used to confirm these
figures. The mass of secondary TSS wasted per day was estimated on the basis
of recycle sludge concentration and the volume of secondary sludge wasted per
day and plotted against BODr removed per day in Figure 71. A line constructed
through the origin with a slope of 0.42 appears to bisect the mass of data
points in Figure 71. This tends to confirm 0.33 kg VSS/kg BODg removed (lb/
lb) as an average number since the percent volatility has not changed appre-
ciably over the period of operation with the exception of the Agnes episode
in June and July of 1972.
Sludge properties at Westgate in terms of SVI and ZSV have been good. Ob-
served SVI values trend toward higher numbers at lower F/M's (Figure 72), but
scatter makes further correlation of SVI and F/M difficult. ZSV values were
obtained routinely by Westgate personnel using one-liter cylinders without
the stirrers which normally operate at 6 rph and prevent bridging. Settling
velocities followed the expected trends as a function of MLSS concentration,
ranging, on the average, from a high of about 2.6 m/hr (8.5 ft/hr) at 3000
mg/1 to a low of about 1.1 m/hr (3.5 ft/hr) at 6000 mg/1. The data as brack-
eted by lines with a slope similar to those reported in the literature (8) for
oxygen-activated sludges are illustrated in Figure 73. It is quite probable
that if the slow stirrers had been used in the one-liter settling tests, or if
the larger 2.4 m x 0.15 m (8 ft x 6 in) column had been routinely employed, the
ZSV's recorded would have been considerably higher.
Recycle sludge underflow concentrations initially ranged from 2.1 to 3.0 per-
cent solids but stabilized with extended plant operations at 1.6 to 2.0 per-
cent as indicated in Figure 74. A cross-check of the mass balances around
the oxygenation tank, i.e., the MLSS and underflow solids concentrations
relative to influent flow rates and recycle flow rates, indicates that the
recycle flows, measured in a Dog Tube (Venturi) type flowmeter equipped with
a clean water purge system, were in error. Problems were encountered with
the meter electronic digital readout and corrosion in the pressure regulators
on the clean water purge system. Assuming that the measured influent flow
rates and MLSS and underflow solids concentrations were correct, calculations
indicate that the measured recycle flow rates as shown in Figure 49 may have
been as much as 50 percent lower than the true values.
The thickening properties of the oxygen-activated sludge were excellent as
previously discussed in Section VII (see Figure 28). The elimination of
intermediate sludge thickening in the flotation thickeners in favor or de-
canting the sludge in a holding basin led to considerable savings in sludge
108
-------
C\J_
CD
O_
00
CO
D
O
I
— CD
Q
VI
Q
O
CO
WEEKLY AVERAGE VALUES
NOTE: 1 LB/DAY = 0.454 KG/DAY
10 12 14
BOD5 REMOVED IN THOUSAND LB/DAY
—I—
16
20
FIGURE 71. SECONDARY SOLIDS WASTED VERSUS BODg REMOVED
-------
o
C\J-
D
O.
WEEKLY AVERAGE VALUES (6/72 - 9/73)
C/S
CO
5
z
++
+ +
o_
(D
O_
+ +
C\J
0.2 0.3
0.4 0.5 0.6 0.7
F/M IN KG BOD5 / DAY • KG MLVSS
0.8
FIGURE 72. SLUDGE VOLUME INDEX VERSUS F/M
0.9
1.0
-------
WEEKLY AVERAGE VALUES (6/72 - 9/73)
IT
I
V)
N
9
8
7
6
5
4
3
2
1
20
I
- • .
\
- \
\
•\
•\
• « . \
•
•
•• •
•
r:
N '"
\
\
•
•
•
1
\
\
\
•
•
»
• *
•
•
•
•
m •
•
x,
•
1
\
• ^v
•
\
1
1
1
1
1
_J_
1
-
-
-
-
-
-
-
_L_
00 3000 4000 5000 6000 8000 l(
MLSS, MG/L
(a) THESE ZSV VALUES WERE DETERMINED IN AN UNSTIRRED ONE
LITER GRADUATED CYLINDER.
FIGURE 73. ZONE SETTLING VELOCITY VERSUS MIXED
LIQUOR SUSPENDED SOLIDS
111
-------
CVI
•
CD
CO
c\
z
111 C\J
O
LU
CE
CL
C\J
O
_l
CO
O
O CD
oo
WEEKLY AVERAGE VALUES
I I J I I I I I
I I
I I 1
I I
I I 1
OCT
71
DEC
71
FEB
72
flPR
72
JUN
72
flUG
72
OCT
72
DEC
72
FEB
73
flPR
73
JUN
73
RUG
73
OCT
73
FIGURE 74. RECYCLE SLUDGE TOTAL SUSPENDED SOLIDS
-------
handling costs. At present, waste oxygen-activated sludge is mixed with a
cationic polyelectrolyte prior to decanting in a small holding tank. The
decanted sludge is then mixed with primary sludge in varying percentages and
filtered on the two original equipment vacuum coil filters.
The filterability of the waste oxygen-activated sludge after decanting and
combining with primary waste sludge was excellent without chemical condi-
tioning as previously discussed in Section VII. However, as also previously
noted, to minimize odors and prevent further dewatering during transit to
landfill, the combined sludges at Fairfax were treated with chemicals prior
to filtration. The expected filter yield from vacuum filtration of primary
plus waste air-activated sludge with 3.5 percent solids in the filter feed
is about 10.3 kg/m2-hr (2.1 Ib/ft2-hr) (9). At Westgate, a filter feed made
up of primary sludge plus waste oxygen-activated sludge and containing at
least 6 percent solids produced an average filter yield over the 24 months
of October 1971 through September 1973 of 21.5 kg/m2-hr (4.4 Ib/ft2-hr) using
various amounts of lime, ferric chloride, and polyelectrolyte for chemical
conditioning' as shown in Appendix B.
113
-------
SECTION X
OPERATING AND MAINTENANCE REQUIREMENTS
Operating and maintenance requirements for the Westgate oxygen-activated
sludge system per se have been minimal since the system was brought on-stream
in 1971. Minimal levels of operational attention are required because the
supply of oxygen, one of the most critical ingredients of any successful
aerobic biological treatment system, is automated. A pressure monitoring-
inlet oxygen flow control network maintains a constant vapor pressure of
several inches of water within the gas space of the oxygenation basin. This
system responds rapidly to increase or decrease oxygen flow to the oxygena-
tion basin based on oxygen demand.
Fluctuations in oxygen demand of the biology caused by diurnal fluctuations
in flow rate and wastewater strength, fluctuations in the ambient temperature,
and seasonal variations in wastewater characteristics are all automatically
compensated for by the pressure feed system.
Required maintenance of the oxygen control system has also been minimal. Once
a month, the oxygen control system is checked and the pressure set points are
readjusted,if necessary. The pneumatic oxygen feed valve is also checked for
proper control and operation. Over a two-year operating period, these systems
have functioned well, and the repair of only one controller has been required.
Control of the oxygenation basin vent rate at Westgate is straight forward.
Currently, manual vent control is used on the OASES^ system. It requires
adjustment only for seasonal changes and drastic variations in plant loading.
n
An automatic vent control system originally installed on the OASES system at
Westgate was sized for oxygen-enriched air operation rather than pure oxygen.
Control of the vent was switched to a manual mode when the decision was made
to use pure oxygen rather than oxygen-enriched air. Vent rate control is
achieved by setting four small globe valves, one located on top of the fourth
stage of each train, at some fixed flow rate. The vent gas is periodically
checked for percent oxygen, and adjustment of the valves is generally neces-
sary only on a monthly basis.
The dissolved oxygen levels maintained in an oxygen-activated sludge system
are generally on the order of 10 mg/1 in the first stage and may be tapered
over the remaining stages to approximately 2 mg/1. These levels are basically
designed into the Westgate oxygen system, and a relatively small amount of
time on the part of the plant operator is needed to maintain them. Operation
of oxygen systems at relatively high DO levels is the key to the stable per-
114
-------
formance of these systems at normal loads. It also provides an oxygen trans-
fer capacity buffer against unusually heavy organic loads.
Oxygen supply system maintenance requirements vary significantly from one
plant to another and are dependent on the nature of the supply. The required
tonnage of oxygen plays an important role in determining the type of oxygen
supply used. However, the type of financing and the longer term investment
picture will also be important. On-site generation of oxygen requires greater
capital investment initially and involves operating and maintenance expendi-
tures, but is in the long term less expensive than liquid oxygen supply for
a large permanent ( >10 years) plant.
At Fairfax, the use of liquid oxygen provides a reliable source of oxygen for
the oxygen-activated sludge system, although at a relatively high cost per ton
of oxygen. Liquid oxygen was chosen for the Fairfax Westgate facility because
of the County's plans to terminate operation at Westgate after three years.
This made the short-term cost picture for on-site generation the less attrac-
tive alternative.
The liquid oxygen storage system requires very little maintenance. Liquid
oxygen levels in the storage tank are checked daily. The liquid oxygen is sup-
plied by contract under tank truck from an industrial gas supplier either on
a routine basis or on call. The liquid oxygen vaporizers used to convert
liquid oxygen (LOX) to gaseous oxygen (GOX) also require very little mainte-
nance.
The control of solids inventories in the oxygen-activated sludge system at
Westgate is easier in some respects than it is in air-activated sludge systems.
The maintenance of high DO levels in the oxygenation basin leads to sludge
properties (SVI and ZSV) which are good and relatively consistent. The
stability of these sludge properties obtained in high DO environments has re-
sulted in consistent thickening in the sludge blanket of the clarifier, and
thus provides a very uniform recycle sludge concentration. Control of oxy-
genation basin MLSS levels requires minimum effort on the part of Westgate
personnel on a day-to-day basis since the rate of recycle does not require
frequent adjustment.
The capability of operating oxygen-activated sludge systems with a larger
inventory of sludge in the clarifiers has benefited the Westgate performance.
Thorough penetration of the sludge with oxygen in the oxygenation basin tends
to stabilize the degradable particulate matter entrapped within the floe mass
and prevents serious septic conditions from developing within the sludge blan-
ket of the clarifier. Flexibility in allowing some accumulation of solids in
the clarifier during periods when normal sludge wasting cannot be accomplished
for one reason or another permits the operator to concentrate on the problem
and not worry about degradation in plant effluent quality.
Maintenance requirements to keep the Westgate oxygenation basin operational
consist mainly of checking for oxygen leaks once a month. Leaks have been
found in the bolted panels on top of the steel prefabricated covers, and in
115
-------
the cover to concrete deck seals on occasion. These are generally not serious
leaks. They are quickly repaired, and overall oxygen consumption does not
appear to reflect their existence within the accuracy of oxygen consumption
data.
The Mixing Equipment Company surface aerators installed as part of the oxygen-
activated sludge system operated reliably over the two-year reporting
period. During this period, there were no problems with the MIXCO gear
boxes and drive units. No detrimental buildup of rags or debris on the
aerator blades has been experienced, and only one motor has been replaced.
Corrosion of covers, aerator shafts, and aerator blades has been effectively
prevented by carefully applying the Placite coating to the white metal, as
discussed earlier. When the trains were shut down and drained for work on
the primary sedimentation tanks, no corrosion was observed under the covers.
In general, overall plant maintenance requirements (including maintenance of
sludge handling equipment) have been reduced over previous operations at the
Westgate facility. This is shown in the cost data presented in the following
section.
116
-------
SECTION XI
COST FOR CONVERSION AND OPERATION
The cost to Fairfax County of converting the Westgate treatment plant to the
OASESR oxygen-activated sludge system totalled $1,671,500. A breakdown of
the capital costs is presented in Table 10.
The plant conversion was funded through Fairfax County's sewer fund; the
County did not amortize the cost of converting the Westgate Plant to the
OASESR system. The sewer fund receives money paid by household and industrial
consumers who tap into the sewer system. Charges are based on the amount of
water consumed, and new customers must pay the cost of tying into the system.
Operating and maintenance costs for the converted treatment plant totalled
$475,895 (including $66,313 for liquid oxygen) during the County's 1973 fiscal
year (July 1, 1972 through June 30, 1973). An itemized statement of these
costs is given in Table 11. Based on an average influent flow of 0.46 m^/sec
(10.4 mgd), the volumetric operating and maintenance costs over this period
were 3.3 cents/m-^ (12.5 cents/1000 gallons) treated.
For comparison, the annual costs for the aeration-sedimentation system and
the chemical treatment system are itemized in Table 12 for fiscal years 1968
and 1971, respectively. Average flows of approximately 0.46 m^/sec (10.4
mgd) were also observed during these periods, resulting in costs of 1.8 cents/
m~ (6.8 cents/1000 gallons) treated with aeration-sedimentation and 4.2 cents/
m (15.9 cents/1000 gallons) treated chemically. Operating and maintenance
costs for all three systems represented in Tables 11 and 12 include the cost
of sludge conditioning and dewatering, but not the cost of hauling the de-
watered sludge to landfill. Annual oxygen-activated sludge system costs
compare very favorably, especially in light of the BOD,- removal efficiencies
of the three systems.
The sharp jump in annual compensation between fiscal years 1971 and 1973 was
due to an increase in manpower of about 60 percent at the Westgate plant in
October 1971. Manpower was increased because of the unknowns associated
with the upgrading including operation of flotation thickeners, dewatering of
secondary sludges, and operation of the oxygen-activated sludge process.
117
-------
TABLE 10. CONSTRUCTION COSTS FOR WESTGATE OXYGEN-ACTIVATED SLUDGE SYSTEM
Item
Consultant or Contractor
Cost
cx>
Administrative and
Consultant Fees
Two New Final Clarifiers,
Anchorage and Scraper
Mechanisms
Foundations for Sludge
Recycle-Flotation
Thickening Big.,
Excavation and Grading
for Clarifiers,and
Installation of Sludge
Recycle Lines
Mechanical and
Electrical Equipment
Including Sludge
Flotation Systems and
Sludge Recycle Systems
Oxygen Supply and
Dissolution Equipment
Including Liquid
Oxygen Storage Vessel
and Vaporizers, Aerators,
Covers, Switch Gear,
Oxygen Inlet and Vent
Control Systems, and all
Baffles and Concrete
Modifications
Fairfax County Staff,
Engineering Science
Mason and Associates
A. Beiro
Construction Company
Hercules Construction
Company
Air Products and Chemicals
$ 50,000.00 (est. )
187,518.00
195,362.00
378,084.65
860,530.00
Total
$1,671 ,494.65
-------
TABLE 11. OPERATING AND MAINTENANCE COSTSFOR WESTGATE
OXYGEN-ACTIVATED SLUDGE PLANT INCLUDING SLUDGE DEWATERING FOR FY 73
Item Expenditure
Compensation^ $206,341
Operating Expenditures
Electrical Service 28,003
Chlorine 6,818
Lime 4,413
Ferric Chloride 14,259
Polyelectrolyte 51,069
Other Chemicals 2,222
System Replacement Parts 8,470
Water Service 8,812
Other Utilities
EMTA Chargesvd) 2,189
Misc. Supplies
Wearing Apparel 4,277
Safety Supplies and Equip. 1,217
Cleaning Supplies 1,242
Heating Fuel 3,089
Liquid Oxygen 66,313
Support by Maint. & Constr. 3,730
Support by Other Dept. 25,209
Misc. Expenditures 38,222
Total Expenditures $475,895
(a)Figures do not include administrative, laboratory, or loadlugger
(sludge hauling) costs.
(b)July 1, 1972-June 30, 1973.
(c)Salaries, wages, and fringe benefits.
(d)Charges for vehicle repair and maintenance.
119
-------
TABLE 12 OPERATING AND MAINTENANCE COSTS(a) FOR WESTGATE
AERATION-SEDIMENTATION AND CHEMICAL TREATMENT SYSTEMS
(FY 68 AND FY 71)
Expenditures
Aeration- Chemical
Sedimentation Treatment
System - FY 68(b) System - FY 71
Compensation(d) $149,022 $126,731
Operating Expenditures
Electrical Service
Chlorine
Lime
Ferric Chloride
Polyelectrolyte
Other Chemicals
System Replacement Parts
Water Service
Other Utilities
EMTA Charges(e)
Misc. Supplies
Wearing Apparel
Safety Supplies & Equip.
Cleaning Supplies
Heating Fuel
Liquid Oxygen
Support by Maint. & Constr.
Support by Other Dept.
Misc. Expenditures
Total Expenditures
18,401
15,867
2,797
0
0
4,155
15,260
-
5,369
23,647
15,245
-
-
-
-
-
-
-
14,681
$264,444
11,490
25,679
24,660
189,800
45,625
7,715
11,321
8,691
-
199
-
3,055
194
3,619
1,778
-
51,387
55,228
39,257
$606,429
(a)Figures do not include administrative, laboratory, or loadlugger (sludge
hauling) costs.
(b)July 1, 1967-June 30, 1968.
(c)July 1, 1970-June 30, 1971.
(d)Salaries, wages, and fringe benefits.
(e)Charges for vehicle repair and maintenance.
120
-------
SECTION XII
GENERAL DESIGN CONSIDERATIONS FOR APPLICATION OF OXYGEN-
ACTIVATED SLUDGE IN WASTEWATER TREATMENT PLANTS
To realize the full benefits of oxygenation in activated sludge systems,
whether for new or converted plants, it is essential that these systems be
properly designed. The intent of this section is to suggest some of the
factors which must be considered in planning either conversion of existing
plants to oxygen-activated sludge or in planning completely new ("grass
roots") facilities.
The economic benefits of using oxygen-activated sludge are clearly apparent
in upgrading an existing plant. The prospect of doubling or tripling the
capacity of an existing air-activated sludge system without expansion of the
aeration basin itself along with reduced time for project completion and
lower construction costs is very attractive. With "grass roots" systems,
economic and performance benefits also accrue because of reduced power costs,
smaller land requirements, reduced sludge handling costs, and greater pro-
cess stability.
Certain design objectives and criteria must be considered in contemplating
the conversion of an existing air-activated sludge system to oxygen. Although
many of these are common to air-activated sludge systems, the range of values
associated with them is markedly different. The projected capacity of the
converted activated sludge system is one of the key factors when contemplating
expansion by conversion to oxygen, as opposed to using other biological pro-
cesses.
The anticipated capacity of a converted oxygen-activated sludge system can
be estimated based on the mass of 6005 removed per day in the existing
facility. As a rule of thumb, the engineer can assume that the converted
oxygen-activated sludge plant will have from two to three times the BOD5
removal capacity of the existing air system. Using anticipated BOD5 strengths
and removal efficiencies as desired, the flow capacity of the converted
aeration system can be quickly estimated using the following equation:
3 Qn (X, - X?)
where:
Q-, = Existing average basin flow, excluding recycle
121
-------
Q = Projected average basin flow capacity for converted system,
2 excluding recycle
X-, = Existing average aerator influent BOD5
X? = Existing average system effluent BOD5
y = Anticipated average aerator influent BODg for converted system
y? = Required average system effluent BOD5 for converted system
The above equation assumes an increased BODc removal capacity factor with
oxygen of 3.0. The actual increased capacity factor will depend on the oxy-
gen transfer capabilities of different existing air aeration systems. The
utility of the equation diminishes if wastewater characteristics are anti-
cipated to change significantly after the conversion.
If the anticipated increased aeration basin flow capacity appears to satisfy
the requirements for the upgraded plant, several other factors must then be
evaluated. These factors include: 1) the amenability of the existing basin
to modification to the proper reactor configuration and installation of
covers and aerators, 2) determination of the required additional clarifier
capacity to handle the higher flow rates using conventional criteria for
clarifier sizing, 3) the compatibility of existing sludge handling equipment
with anticipated increased plant capacity and other periphery equipment and
determination of any required additional sludge handling capacity, and 4)
the best oxygen source for the converted plant.
The existing basin configuration will usually have to be modified in some
fashion to achieve the proper reactor configuration for an oxygen-activated
sludge system. Depending on the structural arrangement of the existing
aeration basin, this modification may be relatively easy or difficult to
accomplish. The configuration of the aeration basin after conversion may
be either that of discretly-staged oxygen-activated sludge system or that
of a controlled back-mix,non-1iquid baffled, oxygen-activated sludge system.
It is, of course, preferrable to avoid major modifications to the existing
basin, where possible. In the best cases, surface aerators will be com-
patible with existing concrete structures, and minimum modification will be
necessary. In many cases, the freeboard, or distance from the mixed liquid
surface to the under surface of the cover, will be sufficient for the aera-
tion basin covers to be installed directly on the existing tank surface.
In other cases, additional freeboard will be required.
The type of aerator used in any given conversion will be a function of the
particular constraints imposed by the existing basin. Selection will be a
function of five parameters:
1) The available liquid surface area within the existing concrete tanks
(i.e., the length to width ratio of the liquid surface in the full tank).
122
-------
2) The placement of existing structural members and Y walls,
3) Tank depth,
4) Oxygen transfer requirements, and
5) Mixing requirements.
Where possible, the surface aerator is highly recommended as an efficient,
simple, reliable oxygenation device. OASESR systems typically employ slow-
speed, four-paddle, axial-flow impeller type surface aerators. They are
cost effective and reliable and under standard conditions are capable of
transferring up to 2.4 kg oxygen/kw-hr (4 lb/hp-hr) from air or 9.7 kg/kw-hr
(16 lb/hp-hr) from an 80 percent oxygen atmosphere.
Submerged turbines or combination submerged turbine-surface aerators are
utilized in oxygen-activated sludge systems in some instances in which the
existing basins are very deep tanks, on the order of 9.1 m (30 ft), or
where surface area is limiting. In some cases, the combined aerator is
more reliable and efficient than the submerged turbine and provides excellent
turndown capability.
Horsepower requirements for the oxygen dissolution system can be readily
estimated by using approximate transfer efficiencies of 3.0 to 3.6 kg oxygen/
kw-hr (5.0 to 6.0 lb/hp-hr). This range of efficiencies includes general
consideration for holding minimum DO levels of 8 to 10 mg/1 in"the first
oxygenation zones and tapering these to provide an average of 4 mg/1 through-
out the total basin. It also includes gas phase composition and oxygen
utilization efficiency considerations and allowances for the lower Alpha
and Beta coefficients inherent to wastewater.
As the BODc of the influent wastewater exceeds 300 mg/1 and approaches 1,000
mg/1, the transfer efficiency will drop from 3.6 kg/kw-hr (6.0 lb/hp-hr)
toward 3.0 kg/kw-hr (5.0 lb/hp-hr). The transfer efficiency drops as the
waste strength increases due to the increasing quantities of carbon dioxide
liberated in the oxidation reactions. Carbon dioxide dilutes the oxygen.
atmosphere and, thus, reduces the driving force for dissolving oxygen.
Additional clarifier capacity will normally be necessary to handle the in-
creased hydraulic flow in the converted plant. Proper clarifier design is
essential for success with any activated sludge process, and it is important,
therefore, to review here the criteria used in sizing clarifiers with oxygen-
activated sludge systems.
123
-------
It is generally recognized that there is currently a less than complete
understanding of clarifier performance. Particularly, this includes a
lack of ability to accurately predict effluent suspended solids and, further,
to design clarifiers to take full advantage of sludge properties. Sludge
properties can actually be excellent by typical standards, e.g., an SVI of
60 ml/g TSS and a ZSV of 2.4 m/hr (8 ft/hr), and yet clarifier performance,
in particular effluent suspended solids, may actually deteriorate with
further improvement in sludge properties. The latter is really the result
of applying standard clarifier design practices to nonstandard sludges.
Currently, standard air-activated sludge criteria are applied to the design
of oxygen-activated sludge secondary clarifiers. Permissible overflow rates
and bottom loadings correspond generally to the standards being established
to meet the new effluent suspended solids criteria with air-activated sludge
systems. Overflow rates of 24.4 to 32.6 m-Vday-rr (600 to 800 gpd/ftO are
typically specified at average design flow, and bottom loadings are limited
to a maximum of 220 kg TSS/m2-day (45 Ib/ft2-day) at peak hydraulic loading.
In keeping with this practice, Air Products and Chemicals normally recom-
mends similar design criteria for OASES^ systems.
The critical design criterium for establishing clarifier diameter or surface
area may be either bottom loading or surface overflow rate. At MLSS levels
above 5,500-6,500 mg/1, the controlling parameter for clarifier diameter
shifts from surface area to bottom loading, thereby yielding larger clarifiers
than would a surface area criterium alone. High MLSS levels are not an in-
herent requirement of oxygen systems, however. Westgate has demonstrated that
high MLSS are not essential to successful operation of oxygen-activated sludge
systems. Current OASES^ systems are typically designed at MLVSS levels of
approximately 3,500 mg/1, where clarifier surface overflow rate is the major
criterium in sizing the clarifier.
With the increased plant capacity available through conversion to oxygen,
total dry weight sludge production will increase to some extent. The increase
will be a function of wastewater characteristics and plant loading. Sludge
production rates in activated sludge systems are typically so erratic that it
is difficult to generate an accurate measure of production for a given plant,
as evidenced by the data scatter in Figures 66 and 71. Therefore, no attempt
is made in this report to provide a tool for estimating sludge production in
general. In evaluating and sizing additional sludge handling equipment for
the converted plant, it should be remembered that sludge recycle concentrations
produced by a properly operated oxygen system should have a solids concen-
tration of at least 1.5 percent, and may reach 2.0 percent. A given dry
weight of sludge wasted from an oxygen-activated sludge system under these
circumstances would have considerably less volume, therefore, than normally
anticipated with an air system of the same rated capacity. Thus, require-
ments for sludge holding tanks, pumping equipment, thickeners, and chemicals
for sludge conditioning can be expected to less than those for an air system
of like capacity.
124
-------
The source of oxygen supply to be used for the converted plant will depend
to a large extent on the amount of oxygen required per day and the antici-
pated term of operation of the oxygen-activated sludge plant. It will also
depend on the cost of capital relative to municipal versus industrial finan-
cing mechanisms. For larger plants to be operated 10 years or more, and those
which will use 13,600 kg (15 tons) oxygen/day or more, cryogenic oxygen gener-
ators normally provide the lowest overall cost. These generators are reliable
and efficient. Noncryogenic adsorption oxygen generators have been specified
for treatment plants with lower oxygen requirements. Selection of cryogenic
versus noncryogenic generators in the range of 9,000-18,000 kg/day (10-20
tons/day) will depend on the particular situation.
In selecting cryogenic versus noncryogenic oxygen generation, it is important
to remember that the cryogenic oxygen generator can provide an on-site supply
of liquid oxygen to serve as a backup to the system in the event that the
oxygen generator is down for maintenance. A noncryogenic system cannot do
this.
At less than 4,500 kg/day (5 tons/day), liquid oxygen may be the most economi-
cal alternative because manpower is generally limited at smaller facilities
and operation with LOX is expedient.
In sizing the oxygen generator, several factors must be considered. The
major factor is, of course, the anticipated biological oxygen consumption.
This is generally on the order of 0.8 to 1.5 kg oxygen/kg BODr removed (Ib/lb)
and is a function of the F/M loading on the system. For preliminary esti-
mates, including oxygenation basin vent losses and effluent DO makeup, 1.2
kg oxygen feed gas/kg BODg removed (Ib/lb) should provide an adequate guide
for sizing the generator.
Requirements for liquid oxygen as a backup oxygen supply and for peak demands
(peak shaving) must be considered in the sizing of the oxygen generator.
The size of the backup LOX storage tank is usually based on a two to four day
maximum anticipated outage of the oxygen generator. Cryogenic generators
have excellent "on-stream" records based on their design and use in indus-
trial applications. They are typically "on-stream" 98 percent of the time.
Power requirements per unit mass of oxygen generated per day will vary with
the size of the oxygen generator. In the range of 13,000-45,000 kg/day
(15-50 tons/day), the cryogenic oxygen generator will require approximately
0.008 kw/kg (16 kw/ton) oxygen generated/day. Above 45,000 kg/day (50 tons/
day), the power requirement will be on the order of 0.006 kw/kg (12 kw/ton)
oxygen generated/day. Noncryogenic generators require 0.010-0.012 kw/kg
(20-23 kw/ton) oxygen generated/day.
Many of the design criteria for conversion of existing air plants to oxygen-
activated sludge systems will apply to "grass roots" facilities as well.
Design of the oxygenation system and clarifiers must, of course, be compati-
ble with the effluent quality requirements at the specified capacity.
125
-------
Ancillary facilities must also be designed for compatibility with the oxygen
system including sludge handling, thickening, disinfection, and tertiary
polishing equipment.
There are a number of approaches to sizing the oxygenation basin. These
include the use of food/biomass (F/M) loading, sludge retention time (SRT
particularly useful if nitrification is to be achieved), and minimum
detention time as specified by a state or federal regulation and verified
by pilot plant studies for given wastes.
For wastewaters which are primarily domestic in character and which have a
BODs concentration of 200 mg/1 or less, nominal reactor detention times
based on raw wastewater flow of 1.4 to 2.0 hr are normally sufficient for
oxygen-activated sludge systems. Actual detention times (including sludge
recycle flows) as low as 1.1 hr have been used for the treatment of municipal
wastewater, as for example at Detroit, Michigan, where a 13 m3/sec (300 mgd)
oxygen-activated sludge module is already in operation and a second 26 m^/sec
(600 mgd) oxygen module,now under construction, is being furnished by Air
Products and Chemicals, Inc.
In plants where the minimum detention time has been established at some
specific value, but the waste strength is low, the engineer has the flexi-
bility of designing for variable MLVSS levels. Design with low MLVSS levels
(2,000-3,500 mg/1) may be required in order to maintain a minimum desired
food/biomass loading within the oxygenation basin.
Oxygen-activated sludge systems tend to operate optimally at higher loadings.
Operation at an extremely low F/M may, as in any activated sludge system,
lead to over oxidation of sludge and floe dispersion.
For wastewaters of higher strengths (6005's above 300 mg/1), it is good prac-
tice to design the system on the basis of F/M. Typical F/M's employed in
oxygen-activated sludge systems run substantially above those generally
employed in air-activated sludge systems. The values of F/M selected for
design will depend on several factors including the order of importance to
the designer of sludge production, sludge properties, and land availability.
For municipal wastewaters, F/M values of 0.4 to 1.0 kg BOD5/day-kg MLVSS
(lb/day-lb) are commonly employed in oxygen-activated sludge design,depending
on the factors described above. For industrial wastewaters, F/M values may
be relatively high, e.g., 1.5 for a cannery wastewater, or relatively low,
e.g., 0.3 or lower for a chemicals plant wastewater. In the latter instance,
high MLVSS levels and long sludge ages are necessary to effectively treat
these difficult to degrade wastes.
The effluent total BOD5 obtained from activated sludge systems varies with
food to biomass ratio. With oxygen systems, the variation in soluble BOD,-
is minimal. Variation in total BOD5 most often stems from the biological
126
-------
activity and concentration of the effluent suspended solids and not from
breakthrough of soluble BODs. Thus, design of the secondary clarifier
plays an important role in determining effluent quality from an oxygen-
activated sludge system.
With some hard to degrade industrial wastes or highly industrialized munici-
pal wastes, the F/M may have a pronounced effect on effluent quality including
soluble BOD5 and COD. In these situations, a pilot plant study or lab study
is beneficial in establishing proper design loadings and overall optimum
system design.
A great deal of freedom is available to the engineer establishing the reactor
configuration in a "grass roots" oxygen-activated system. Because high oxygen
transfer rates can be attained with pure oxygen, it is possible to take advan-
tage of the pseudo first-order rate kinetics of the activated sludge process.
The most efficient reactor in this regard according to chemical reactor de-
sign theory is an "idealized plug flow" system wherein the food and biomass
move cocurrently and without back-mixing through the aeration system.
There are two approaches to reactor design which simulate or create in part
the environment found in an "idealized plug flow"reactor. One approach is to
design the reactor as a series of discreet completely mixed compartments or
stages. Another approach, a second generation design, has been developed by
Air Products and Chemicals and termed the controlled back-mix OASES^ system.
In this system, the basin geometry and the aerators (aeration and mixing
components) are designed and specified to create a controlled flow regime.
This eliminates the need for flow restrictive baffles and creates a more
gradual changing micro-environment.
The benefits of the controlled back-mix concept, which typically employs a
greater number of smaller aerators, compared to the discretely staged concept
include:
1) Greater oxygen utilization efficiency through increased gas staging,
2) Increased potential for power savings within the oxygenation basin by
shutting down alternate aerators under low loading conditions,
3) Continued operation of a given train with one or more aerators down for
maintenance,
4) Increased stability under hydraulic and organic shock loading situations,
5) Enhanced stability of sludge properties due to maintenance of proper
food to biomass ratios in the early phases of contact over a broader
range of hydraulic flows and influent strengths, and
6) Avoidance of dead pockets adjacent to staging baffles.
127
-------
In general, the total space and geometry requirements for the discretely
staged and controlled back-mix OASESR systems are the same. For either
system, the length and width of each train or stage will depend on the system
capacity and dissolution power requirements. Length and width dimensions
for the surface area in each aerator zone must exceed the throw diameter of
the aerator, which will increase with increasing power rating.
Concrete is the best construction material for oxygenation basins, including
the roof structures over the basins. The aerators are generally mounted on
relatively small steel cover plates on the concrete roof. The potential for
leaks is minimized with an all poured concrete construction, but prestressed
segmented covers are also utilized. Structurally, the span of the roof may
require that pillar supports be provided for the aerators within the tank.
These pillars can also function as anti-swirl baffles.
The choice of aeration device, i.e., surface aerators (with or without lower
mixing blades) submerged turbine aerators, or combined submerged turbine-
surface aerators (Figure 75), will depend on plant site constraints. For
those plants located where land is a premium, it is logical to utilize deep
tanks to save oxygenation basin area. Submerged turbines have been favored
in the past for these deep tank operations. Recently, however, surface
aerator technology has advanced to the state where they are used routinely
for liquid depths up to 6.7-7.6 m (22-25 ft) with bottom mixing impellers.
With careful design, they have been used at depths of 9.1 m (30 ft).
Where surface area begins to limit the mass transfer capacity of surface
aerators in deep tanks, the combination of a submerged turbine and a surface
aerator has been found effective.
Where land is not the most important criteria and shallower tanks can be used,
the slow-speed surface aerator because of its simplicity, efficiency,and
reliability is the preferred method of oxygen dissolution for oxygen-activated
sludge systems.
The clarifier requirements for "grass roots" systems are basically the same
as those previously specified for conversions. Similarly, sizing of sludge
handling equipment and oxygen generation equipment has also been addressed
in the previous discussion on conversion of existing air systems to oxygen.
As a final comment, the advent of oxygen-activated sludge systems has brought
with it an opportunity and a requirement for the serious application of chemi-
cal engineering concepts to wastewater treatment. Oxygen has provided an
opportunity because it is possible through chemical engineering practices to
develop the full capability of the activated sludge microorganisms. Limita-
tions are no longer imposed by oxygen deficit due to inadequate oxygen mass
transfer from air to liquid and liquid to solids. Oxygen has provided a
requirement to use chemical engineering concepts because of the need to pro-
perly account for the interactions of gas, liquid, and solid (biomass)
phases within oxygen-activated sludge systems.
128
-------
COMBINED AERATOR
SURFACE AERATOR
SUBMERGED TURBINE AERATOR
FIGURE 75. TYPES OF AERATORS
-------
SECTION XIII
REFERENCES
1. Fairfax County, Virginia, Report to the Honorable E. Blackburn Moore,
Chairman of the Virginia State Water Control Board (June 23, 1970).
2. Chemical Treatment and Other Modifications-Westgate, Little Hunting
Creek and Dogue Creek Wastewater Treatment Plants, Fairfax County,
Virginia, Engineering Science, Inc. (June 1972).
3. Okun, D. A., "System of Bio-Precipitation of Organic Matter from
Sewage," Sewage Works Journal, 21, pp. 763-792 (September 1949).
4. Okun, D. A., "Pure Oxygen in Bio-Precipitation Process May Reduce
Sewage Treatment Costs," Civil Engineering, 18, pp. 32, 33, and 84
(May 1948).
5. Pasveer, A., U.S. Patent 2,684,941 (July 27, 1954).
6. Budd, W. E., and Lambeth, G., "High Purity Oxygen in Biological Sewage
Treatment," Sewage and Industrial Wastes, 29, pp. 238-244 (March 1957).
7. Uyeda, H. K., Jones, B. V., and Bacher, A. A., "Materials for Oxygenated
Wastewater Treatment Plant Construction", U.S. Bureau of Reclamation,
Contract No. EPA-IAG-0187(D), First Year Report (May 1974).
8. Brenner, R. C., "EPA Experiences in Oxygen-Activated Sludge", Prepared
for U.S. Environmental Protection Agency Technology Transfer Design
Seminar Program (October 1974).
9. Burd, R. S., "A Study of Sludge Handling and Disposal", U.S. Department
of the Interior, Federal Water Pollution Control Administration, Water
Pollution Control Research Series Publication No. WP-20-4 (May 1968).
130
-------
SECTION XIV
APPENDICES
A. Daily Operating and Performance Data for Westgate Treatment
Plant, Fairfax County, Virginia (October 1971 - September 1973) 132
B. Monthly Average Sludge Dewatering and Chlorination Data
for Westgate Treatment Plant, Fairfax County, Virginia
(October 1971-September 1973) 185
131
-------
APPENDIX A
IG/ 1/71 10/ 2/71 10/1 3/71 10/ 4/71 10/ 5/71 1 0/ 6/71 10/ 7/71 10/ h/7\ 10/ 9/7L 10/10/71 10/11/71 10/12/71 10/13/71 10/14/71
— J
CO
ro
FLnn kflTc (Q) ,HL-D
oons , MG/ L
&nD5, SOL ,MG/L
CPD,Kf,/L
Cnn,SOL , MG/L
TSS, MG/L
VSS ,MG/L
MH3-N.MC-/L
NPS-M.PG/L
PH
£££J.Ui£I
BCD 5, MG/L
BODS, SOL ,MG/L
CCO, MG/L
COD, SOL, MG/L
TSS, MG/L
VSS, MG/L
NH3-N, MG/L
N03-N.HG/L
PH
TOTAL PEHfiVAlS
B005 REMOVED,*
COD REMOVED,?
TSS REMOVED,*
BIOMASS LCA01NG
BODS/DAY/ML vss
EE£iJIIC_Lai21!l£
5.000
242. OOG
544.000
282.000
—
—
7. 160
48.000
109. CC")
22.000
—
—
6.30P
80. 165
80.147
92.199
—
5.010
219. 001
592.000
342.000
—
7.080
43.000
103.300
40.000
—
—
7.100
80.365
83.108
83.304
—
5.000
254.000
416.000
174.000
7.290
48.000
112.000
14.000
—
—
7.210
61.102
73.077
11.954
—
3.000
1S3.000
435.000
166.000
—
53.000
113.000
18.000
—
71. 038
74.023
99.157
—
8.000
129.000
J14.000
93.003
7.240
35.000
55.000
11.000
7.190
72.868
32.484
98.775
—
e.ooo
169. OOC
351.000
If C.?00
7.360
33.000
96.000
20.000
7.280
6C.473
72.650
87.500 "
—
9. Oln
16b.nOO
353.000
188.0"?
7.360
35. 000
60.000
18.000
7.290
78.788
83.003
90.426
—
4. CO j
174. C'l '
414. OOr
169.00:
6.800
40.000
76.000
5.000
&.eo.i
77.011
81.643
97.024
—
d.10 0
165. 010
414.003
12 1.030
7.200
46.000
80.100
55.000
7.000
72.121
80.676
54.167
—
12.000
111.000
240.000
114.000
7.430
41.000
76.000
34.000
7.310
63.063
68.333
70.175
—
10.000
136.000
248.000
94.01?
7.210
32.000
81.000
36.000
7.260
76.471
67.339
61.702
6.000
1 39.000
J29.000
146.r.cc
7.170
29.000
90.000
46.000
__
7.080
79.137
72.644
68.493
8.000
238.000
51t.OOO
24T.OOO
7.200
57.000
122.000
40.000
6.500
76.050
76.357
83.333
8.650
170.000
367.000
194.00"
7.220
41.000
104.000
34.000
6.720
75.882
71.662
82.474
LB BCD5/OAY/1000 FT3
yAPOR PHASE CATA
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOD REMOVED ,L8/LB
AERATION BASIN PflTA
MIXFO LIOUOR
TSS,»'G/L
V S S , MC-/ L
SVI,"L/GTSS
ZSV,FT/HP
TEMPFKATU5.E,C **•
DETfNTION TIME,H*
4.648 4.648 4.648 2.905 2.905 2.905 2.905
230.443 231.443 230.443 368.709 368.709 368.709 368.709
2.905 2.905 1.937 2.324 2.905 2.905 2.687
368.709 363.709 553.064 460.887 368.709 366.709 398.667
SOLIDS WASTEDtLB/HP
Rf CYCL E. TSS, MG/L
RECYCLE FATIC, (?a)
** BASED ON PAH WASTFH4TFP
*** H&STTNG P.ATE. is COMBINE
PR1VARY AND SECONDARY STREtMS(£XCLUC IHG HEIR LOSi^S)
0.003 0.000 0.000 0.000
0.000 0.000
-------
APPENDIX A
10/15/71 10/16'71 10/17/71 10/18/71 10/19/71 10/20/71 10/21/71 10/22/71 10/23/71 10/24/71 10/25/71 10/26/71 10/27/71 10/28/71
CO
OJ
FLOW i- AT F(y ) ,MGO
8QD5.MG/L
BHD5, SHL,HG/L
CCO, MG/L
ceo, SOL, MG/L
TSS.MG/L
VSS.HG/L
NH3-M, MG/L
N03-N, "G/L
PH
B005,MG/L
BODS. SOL, MG/L
con, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-N.MG/L
PH
TOTAL REHGVAL5
BOD5 RFMOVFO,?;
CC IT " CMPVFO , %
TSS REf-iQVFD , ?
BIPHflSS LCAPING
BOD5/DAY/HLVSS
LB BC05/OAY/1000 FTj
*A£Gfl PHASE XAIA
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED ,LB/ L!i
MIXEO L ItU1"'0
VSS.MG/L
Z -V . FT/MB
STL IDS L1" AC , LP/FT2/TJAY
8.560 8.500 B.500 8.500 8.500 8.500 8.500
209.000 233.000 206.000 222.000 181.000 184.000 214.000
— — — — — — —
36 1. 000 432. 000 486.000 531. 000 412.000 434.000 441.000
— — — — — — —
196.000 146. OTO 252.000 396.000 243.000 156.000 208.000
— — — __ __
— — __ —
— — — — — __ __
7.190 6.270 7.110 7.200 7.410 7.300 7.170
41.000 11 4. 000 130.000 124.000 146. 000
__ — — -- — —
94.000 280,000 384.000 293. 000 312.000
— __ — -- — —
37. 000 90.000 -- 148. 000 180.000 186.000 226.000
__ — -_ — —
— -- — — — — —
— __ — — — — —
o.640 6.380 6.6PO 7.100 7. 380 7.14" 7.180
80. li-^ 51.073 36.HS3 44. 144 19.337 100. 000 100.000
73.961 35.185 20. 9 eg 44. 821 27. 778 100.000 100.000
M. 122 33.356 100.000 62. 626 25. 926
—
115.261 127.599 112.813 121.575 99.122 100.765 117,194
—
-
8.500
160.000
—
427.000
—
208.000
—
—
—
7.100
6 7.000
—
269. 00<^
—
12 9. 000
—
—
—
7.000
58.125
37.002
37.9ei
—
87.621
"
-
9.500
189.000
—
386.000
—
210.000
—
—
--
7.300
40.000
—
133.000
—
51.000
--
--
--
7.200
78.336
65.544
75.714
—
115.680
"
-
~
__
10.400 11. 600 1 1.300
170.000 135.000 114.000
— — —
269.000 364.000 266.000
— — —
216.000 108.000 144.000
— — —
— -- —
— — —
7.280 — 6. 600
44.000 39.000 36.000
— — —
123.000 138. 000 94,000
— — —
48.000 32. 000 41.000
— — —
— —
__ — —
7. ICQ — 6. BOO
74.118 71. Ill 68.421
54.275 62.098 64.662
77.778 70.370 71.528
—
113.908 100. S93 82.995
—
-
--
2.2-5 2.004 2.057
2 '
11.980
111.000
—
235.000
—
128.000
—
—
—
7.200
24.000
—
94.000
—
42.000
—
—
—
7.100
78.378
60.000
67.188
~
85.674
__
~-
—
1.940
__' 2
9.200
150.000
—
300.000
—
156.000
—
—
—
7.000
12.000
—
63.000
—
32.000
—
—
—
7.000
•52.000
72.333
79.487
~
66.910
__
—
—
~
2.526
1
SOL ITS V, ASTen,LR/HP
0.000 0.00J 0.003 0.003 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
-------
APPENDIX A
10/29/71 10/30/71 10/31/71 1 I/ 1/71 I)/ 2/71 ll/ 3/71 11/ 4/71 ll/ 'j/71 ll/ 6/71 1 I/ 7/71 ll/ B/71 ll/ 9/71 11/10/71 11/11/71
00
INFLUENT HASTF.yATF.a
FLOW RtlFIOI.IT.D
8005, MG/L
BCD5.SOL ,MG/L
COO.MG/L
CTO.SPL. MG/L
TSS, MG/L
VSS.MG/L
NH3-N.MG/L
Nf<3-N,MG/L
PH
EFFLUErT
8005, MG/L
6005. SOL, MG/L
COD. MG/L
COD. SOL, MG/L
TSS, MG/L
VSS.PG/L
NH3-N.HG/L
N03-N,MG/L
PH
TOTAL REHCWA.I S
60D5 REMOVED,?
COD REMOVED, %
TSS REMOVED,*
B10MASS LOADING
BOD5/DAY/ML VSS
ORGANIC LOADING
LB B005/OAY/1000 FT3
VAPOR PHASF DATA
02 SUPPLIED, FT3/HS
02 SUPPLIED/BOD REMOVED ,LB/L9
AFRATirN BASIN DATA
MIXED LIQUOR
TSS, MG/L
VSS, MG/L
SVI ,ML/GTSS
ZSV.FT/HR
TEMPFRSTLFE.C »»
DETENTION TIMEtHR
FINAL SETTLFP
OVERFLOW, GAL/ FT 2/ DAY
SOLIDS LCAD.LB/FT2/DAY
SLUDGE HASTED
«**
SOLIDS HASTED, LB/HR
RETURN SLUDGE
RECYCLE TSS.MG/L
RECYCLE RATIO, (%Q)
10.000 9.600 9.420 9.330
160.000 182.000 172.000 156.000
— —
382.000 384.000 378.000 391.000
130.000 164.000 114.000 112.300
112.000
— —
—
7.110 6.750 7.000 7.1TD
23.000 30.000 23.000 21.000
— — —
92.000 68.000 79.000 82.000
— — — 47.000
26.000 22.000 24.000 21.000
—
—
— — —
7.050 0.650 7.000 6.900
85.625 83.516 86.628 86.538
75.916 82.292 79.101 79.028
SO.OOr 96.565 78.947 81.250
— — — 0.507
103.084 112.566 104.388 93.773
—
— — — —
2967.274
73.000
— —
25. 0™ 25.000 25.0C3 22.000
2.324 2.421 2.467 2.491
463.887 442.451 434.155 430.007
—
—
-_
00 00 1
9.470
145.000
33.000
J44.000
150.000
150.000
7.000
36.000
9.000
113.000
74.000
60.000
__
6.900
75.172
67.151
60.000
0.539
88.469
—
—
2632.725
74.000
—
22.000
2.454
436.459
—
—
—
9.130
195.000
33. TOO
424. OOC
196.000
1 94.000
7.000
35.000
7.000
94.000
55.000
36.000
__
—
6.800
82.051
77.830
81.633
0.637
115.332
—
—
2900.911
75.000
—
21.000
2.532
423.094
—
—
—
d.960
145.000
12.000
316.000
142.000
142.000
6. 650
70.000
7.000
214.000
40.000
124.000
—
6.800
51.724
32.278
12.676
0.485
83.704
—
—
2767.274
95.000
—
15.000
2.594
412.954
—
--
--
8.620
203.000
65.00)
487.000
182.000
179.000
6.900
35.000
15.000
65.000
—
56.000
—
—
—
6.750
82. 759
86.653
69.231
0.586
112.739
—
—
3064.321
121.000
—
16.000
2.696
397.284
—
—
—
9. ISO
161.000
—
357.000
116.000
114.000
__
7.000
24.000
—
97.100
—
42.000
__
__
__
7.100
85. 093
72.829
63.793
0.536
95.222
—
--
2850.000
—
--
17.000
2.532
423.394
—
—
—
9.090
137.000
—
—
158.000
156.000
7.130
111.000
—
—
54.000
206.000
—
—
—
6.900
18.97H
—
—
0.402
80.233
—
—
3 199.999
—
—
16.000
2.557
418. 946
~
—
—
6. 900
1 51.000
52.100
399. 000
232.000
163.000
7.200
78.000
5.000
249,000
73.000
242.000
—
—
—
7.100
48.344
35.990
—
0.504
96.584
—
—
2750.912
--
—
17.000
2.611
410.189
—
—
"
9.200
173.000
60.000
441.000
195.000
194.000
6.700
33.000
17.000
98.000
—
67.000
—
—
—
6.700
80.925
77.778
65.641
0.640
102.543
—
—
2567.046
104.000
—
13.000
2.526
424.016
—
—
—
38.043
8.200
215.000
76.000
446.000
238.000
176.000
—
7.100
60.000
17.QOO
143.000
66.000
121.000
—
—
—
7.100
72.093
68.080
49.160
0.704
113.586
—
—
2584.777 -
109.000.
— *
14.000
2.834
377.927
—
—
—
38.780
9.410
191.000
72.000
486.000
208.001
170.000
—
6.700
20.000
17.000
74.000
51.000
27.000
—
—
—
6.900
69.529
84.774
87.019
0. 790
115.796
—
—
2350.000
132.000
—
17.000
2.470
433.694
—
~
—
47. 333
** RflSfD ON PAW WASTEHATER FLOW ONLY
*** HASTING RATE IS COMBINED PRIMARY AND StCCNOARY S TR E AMS ( EXCLUPING WFIR LOiSFS)
-------
APPENDIX A
11/12/71 11/13/71 11/14/71 11/15/71 11/16/71 11/17/71 11/18/71 11/19/71 11/20/71 11/21/71 11/22/71 11/23/71 11/24/71 11/25/71
co
en
OMELUfM-WSIfllAIE"
FLOW IflTFISI.MGO
BPD5.MG/L
Br05,SCL,MC/L
COD, MG/L
COD, SOL , MG/L
TSS.MG/L
VSStMG/L
NH3-N.MG/L
N03-N, MG/L
PH
EFFLU£M
8005, MG/L
B005,SOL,MG'L
COD, MG/L
COO, SOL, MG/L
TSS.HG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
TOTAL RFMOVAL-S
BODS "fMOVFO,!
COO EFMOVED,?
TSS KEMGVfD,?
S-lQM.AiS_LOAD.iN.G.
B005/OAY/MLVSS
ORGANIC LOADING
L6 BOD5/DAY/1000 F 73
VAPOR PHASE DATS
02 SUPPLIED, FT3/HR
02 SUPPL IECVBOO REMOVED ,LB/LH
AERATION BASIN O.ATA
MIXED LIUUOO
TSS, MG/L
VSS ,MG/L
SVI.ML/GTSS
2SV.FT/HH
TEMPERATURE. C **
DETENTION TIMF.HS
Eimi.. SEIIUE
OVERFLOW, GAL/FT2/DOY
STLIOS LC»D,LH'FT2'aAY
iUJfi£E_aiSJEO
SCLIPS HASTED, LB/H=
B_F,IilS H_S. LUES. B
BFCYCLF IS'., MG/L
RFCYfLF RATIO, 1*91
9.360
226.000
90.010
455.000
—
242.000
232.000
—
—
6. 900
26.000
18.000
71.000
51.000
45.000
—
6.800
88.496
84.396
81.405
0.785
136.287
—
2783.637
20.000
2.483
431. 39C
—
52.917
10.200
208.000
116.000
414.000
--
260.000
252.000
—
—
6.900
37.000
32. 000
102.000
75. 000
38.000
—
6.700
62.212
75.362
85.385
0.894
136.689
—
—
2449 . 99 9
22.010
2.279
470.104
49. -ITZ
10. 100
171.000
57.000
439.000
—
178. 10'1
153.000
—
—
7.100
19.000
20.000
78.000
8.000
35.000
—
6.900
88.889
62.232
80.337
0.594
111.273
—
_
114.500
23.101
2.301
4t 5.49a
~~
51. Oil
10.200
165.000
10.100
405.000
—
168.003
126.000
—
—
7.200
30.000
4. 000
58.000
12.000
31.000
—
7.000
81.818
85.679
81.548
0.589
108.431
—
135.000
22.001
2. 279
473. 104
51.049
9.900
135. OCO
46.100
409.000
134.000
134.000
7.150
24.000
6. 000
87.000
31.000
43.000
II
7.010
87.027
78.729
67.910
0.667
117.999
—
2 o3 3 . 75 1
144.000
22. ICO
2.348
•.56.278
52. 192
9.900
190.030
53.000
549.000
253.100
221.000
7.220
77.000
35.000
192.000
35.00C
33.00C
II
6.980
59.474
65.027
86.957
0.568
121.188
—
3417.146
95.000
22.000
2.348
454.278
39.697
10.300
185.000
40.000
423.000
158. 001
158.000
7.200
38.000
12.000
122.000
39.000
53.000
7.200
79.459
71.158
66.456
0.715
122.767
—
2750. 683
92.000
22. CIO
2.256
474.71?
__
31.689
10.7CO
165.000
60.000
580. 000
138.000
128.000
7.200
39.000
16.001
94.000
27.000
44.000
7.000
76. 364
83.793
68.116
1.189
113.747
-
1533.637
103.000
22.000
2.172
493.149
27.897
1 D.800
134.000
52.000
455.000
__
200.030
180. 000
__
7.000
47.000
14. 000
196.500
51.000
43.000
__
7.000
64.925
56.923
78.500
0.654
93.239
-
2286.601
100.000
20.000
2.152
497.758
33.917
10.900
211.000
50.000
314.000
150.000
136.000
7.200
61.000
16.000
200.000
67.000
111.000
II
6.800
61.611
36.306
26.000
0.642
148.177
-
3701.595
84.000
21.000
2.132
502.366
33.642
10.900
169.000
47.000
423.000
144.000
136.000
7.100
44.000
11.000
153.000
51.000
76.000
7. 000
73.964
63.830
47.222
0.579
118.682
—
3284. 093
68.000
21.000
2.132
502.366
—
2 7 . 8 44
10.800
188.000
55.000
392.000
291.000
140.000
7.300
38.000
16.000
133.000
43.000
93.000
7.100
79.787
66.071
67.931
0.645
130.814
-
3251.367
66.000
21.000
2.152
497.758
21.917
10.900
167.000
44.000
361.000
76.000
7.400
36. 000
14.000
129.000
67.000
7.200
78.443
64.266
14.103
0. 829
117.277
-
2268.642
66.000
20.000
2.132
502.366
—
22.073
13.200
149.000
42.000
332.000
152.100
152.000
7.100
32.000
6.000
123.000
61.000
"I
7.110
78.523
62.952
59. 868
1.934
126.716
—
1 050.001
52.000
19.000
1.761
608.370
—
18.523
0°r< g*W V/ASTFwtTFh FLOW ONLY
Illr RATF IS O~iMi*INEn PRIMARY
ECONDARY S TS E/-MS 1 E XCLUOTNG WEIR LOSSES)
-------
APPENDIX A
11/26/71 11/27/71 11/2S/71 11/29/71 11/30/71 12/ 1/71 121 2/71 121 3/71 12' 4/71 12/ 5/71 12/ 6/71 12/ 7/71 12/ 8/71 12/ 9/71
FLOW RATF 10) ,MGD
8PD? .^G/ L
BOn5»$nL , M G ' L
COO,i"Gn
Cm ,50L, MG/L
T ^ S t MG/L
VSS.HG/L
NH3-N, MG/L
N03-N.MG/L
PH
BODS MG/L
BCD5,SOL .MG/L
COD.HG/L
CrD,$OL,HG/L
TSS, MG/L
VSStMG/L
NH3-N, MG/L
N03-N.MG/L
PH
T£1TA\ pEHOVALS
BOOS REMOVED,?
CCD REMOVED,*
TSS REMOVED,*
BIQHASS LOADING
B005/OAY/HLVSS
ORGANIC LOADING
LB BOD5/OAY/1000 FT?
VAPflR PHASE DATA
02 SUPPLIED, FT3/HR
02 SUPPLIFO/BDD P AMOVED ,LB/LP
A£5AJip.fl_B.ASJN OAIJ
MIXED LIOUOP
TSS.HG/L
VSS.MG/L
SVIrML/GTS's
Z SV, FT/H^
DETENTION T[ME,HP
£im.SETU£E
OVERFLOW, GAL/FT2/OAY
SCLIDS LOAD,LB/FT2/OAY
SLUDGE HASTE, D
* + *
SCLIDS WASTfD,LB/HO
o^CYCLE TSS, MG/L
RECYCLE RATIO, (»Q)
** BASED ON P AH WASTEHATER FL(?H
12.700
133. 000
32.000
322.000
147. 0^0
122.000
—
—
7.120
43.000
14.000
103.000
—
7.000
—
—
—
7.050
67.669
68.976
95.238
0.574
108. 824
—
—
3037.512
61.000
"
1.830
585.326
—
—
1S.S43
ONLY
12.200
185.000
34. TOD
332.000
1 36 .350
136.000
—
—
7.220
44.000
19.000
104.000
—
45.000
--
--
—
7.100
76.216
68.675
66.912
0.777
145.413
—
—
2999.999
58.000
20. 000
1.905
562.282
—
20.082
12.200
It 1.000
__
41 l.OOu
—
_I
—
—
7.200
36.000
14.000
123.000
69.000
26.000
—
—
—
7.000
77 . 640
70.073
72.340
0.863
126.548
—
—
2350.000
52.000
~
1.905
562.28?
—
—
__
20.09R
12 . 350
205. 000
__
329.000
—
143.000
—
—
7.000
47.000
24.000
125.000
90.000
45.000
—
—
—
7.200
62.006
70.395
0.7BO
163.114
—
—
3350.000
55.000
20. 000
1.882
569. 195
—
—
__
35.692
t 2. 350
162.000
85.000
486.000
™
_I
—
--
7.000
38.000
19.000
<:12.000
—
34.000
--
—
—
7.200
56.379
77.027
0.496
128.900
—
—
4167.043
70.000
"
1.682
569.195
—
—
43.960
12.600
180.000
79.000
311.000
—
—
—
7.000
29.000
—
82.000
—
17.000
—
—
--
7.100
73.633
75.714
0.445
146.122
—
—
5266.359
70.000
1.845
580.717
—
—
33.175
12.500
183.000
60.001
480.000
—
--
--
7.300
28.000
—
120.000
—
28.000
—
—
--
7. 100
75.000
65.000
0.562
1*7.378
—
—
4199.996
60.000
1.859
576.108
—
—
25.600
11.900 13.000
166.000 182.000
—
411.0CO
101.000 168.000
—
—
6.600 6.800
28.000 37.000
— —
111.000
—
26.000 37.000
—
—
—
6.700 6.800
72.993
75.926 77.976
0.895 0.977
127.270 152.435
—
— —
2279.533 2409.939
51.000 51.000
1.953 1.788
548.455 599.153
—
—
21.311 20.000
11.900
156.000
—
309.000
124. OOO
—
—
6.900
25.000
—
77.000
—
40.000
—
—
--
7.000
75.061
67.742
0.426
119.603
—
—
44S9.996
51.000
1.953
548.455
—
—
._
24.403
13.000
1 73. 000
34.000
386.000
154. 000
—
—
6.900
30.000
—
112.000
—
43.000
—
—
—
7.200
82. 659
70.984
72.078
0.571
144.897
—
—
4065.222
38.000
1.788
599.153
—
—
_.
21.823
13.400
106.000
79.000
262.000
142.000
—
—
7.300
25.000
—
98.000
—
35.000
—
—
—
7.100
76.415
62.595
'5.352
0.436
91.513
—
—
3364.310
46.000
1.734
617.588
—
—
„
21.955
13.900
116.000
35.000
655.000
122.000
--
—
7.100
20.000
—
86.000
—
18.000
—
—
—
7.200
82.759
86.870
85.246
0.855
103.883
—
—
1948.176
40.000
1.672
640.632
—
—
„
21.978
13.100
124.000
44.000
544.000
141. OOC
--
--
6.900
19.000
—
68.000
—
21.000
—
—
—
7.100
84. 677
67.500
85.106
0.403
104.656
—
—
4165.676
46.000
18.000
1.774
603.762
—
—
22.603
-------
APPENDIX A
12/10/71 12/11/71 I?/12/71 12/13/71 \2/ l'n/71
I?/ 16/71 12/17/ M 11/IB/11 12/19/71 12/20/71 12/21/71 12/22/71 12/2 3/71
CO
lM£llJEt!I_Jf£SI£JiaiE5
FLOW RATE(Q),MGD 12.000 12.6 00 13.503 12.bO-> 11.700 12. IOC 12.300 1 I.«00 12.500 12.4DQ 13. 130 12.400 12.600 12.700
POD5, MG/L 153.0 PO 129.00"! 146.0no 15?. 000 102.000 1 75.00C 173.000 196. 0^ 165.000 207.0uti 165.000 167.000 16d .000. 190.000
Bn05tSGL,HC/L JB.OOQ 42.000 57.0TO 68. ^10 10T.OCO 67.00? 53.000 6o.00*< 8L.OOD 55.901 69.000 59.np9 42.000 67.01?
CCO,MG/L 516.000 512.000 165.000 314.000 429.000 345.000 395.000 ~ — — 352.000 517.000 767.000 404.000
CCO,SOL,MG/L
TSS, MG/L 12o.OOO 108.000 91.000 170.00? H8.nno 182.00'J 160.000 142.000 113.000 208.000 136.000 ,115.000 138.000 18 5.0?"
V S S,MG/L
NH3-N,MG/L
N03-N,MG/L
PH ft.600 7. jOO 6.700 6. 900 7.300 7.200 — — 7.200 7.200 7.300 7.400 7.500 7.300
8005,HG/L 26.000 31.03) 30.000 30.00n ^a.OOO 29.000 26.000 38.000 32.000 28.000 25.000 28.000 31.000 36.000
BOD5»SOL,MG/L
COO, MG/L 5t>.OC3 52.??3 95.000 b4."iO? 'J 5.000 99.00? 79.000 — — — 96.000 125.000 125.00 H 113.110
COD,SOL,MG/L
TSS»MG/L 22.000 25.000 16.000 11.000 34.000 50.000 18.000 50.000 15.000 23.000 23.000 48.000 40.000 33.000
VSS,MG/L
NH3-N,MG/L
N03-N.MG/L
PH 6.700 o. t>~»0 o.ROO 7.000 O.9D9 7.100 — — 7.100 7.500 7.100 6.900 7.000 7. IOC
BOD5REHOVED,? d.-. 007 75.96 9 79.452 HO.263 d4.6l5 H3.429 84.971 80.612 80.606 S6.47J 34.848 ^3.234 81.325 81.053
CCDFEMOVED,* 8S.147 89.844 42.424 72.36R 77.855 71.633 80.000 — — — 72.727 75.822 83.703 72.031
TSS AMOVED,* 62.5<,0 76.352 82.418 93.529 75.362 72.527 88.750 64. TgQ B6.364 P8.942 83.089 77.674 71.014 82. 162
BIDMAS.5 LQAQl^G
3C05/0AY/MLVSS 0.476 0.317 0.62fa 0.607 0.589 0.497 0.676 0.567 0.532 0.646 0.842 0.787 0.887 0.617
LB BOOS/DAY/1000 FT3 127.161 104.720 126.987 122.412 137.192 136.425 137.095 149.008 132.882 165.372 139.260 133.416 - 134,757 155.464
VgE'pP PHAS£ DATA
02 SUPPLIED,FT3/HR
02 St'PPLTFD/6CD » EMDVEO ,|_B /L3
4eQATHj^_BA15JN_D^Ifl
MIXPD LIQUOR
TSS,MG/L
VSS , MG/L
SVUPL/GTSS
ZSV,FT/HR
TFMPEPATUPf,C **
OETPMICN TIME.HR
4 231.12°
47.000
11.000
1.802
5299.996 3249.999 3230.673 3735.004 4399.996 3249.999 40o6.81« 4000.no0 4099.996 2650.455 2717.P46 2434.549 3
43.000
IS. 000
1.845
38.000
18.001
1.722
43.000
18.000
1. 859
45.000
.
41.000 41.000 41.000
32.000
18.00D
1.986
17.000
1.921
18.000
1.890
17.000
1. 970
17.000
1.859
16.
1.
17.000
1.774
37.000
17.000
1. 874
16.000 17,000
1.845 1.830
CVEt'FLi?W,GAL/FT2/DAY
Sl'LTDS LGAD,L3/FT2/DAY
58T.717 622.197 576. 108 539.237 557.673 566.891 543.846 576.108 571.500 603.762 571.500 580.717 585.326
SOL1PS WASTED,LB/HR
3£IUEfJ_£LU£G.E
RrCYCLF TSS,MG/L
fiECYCL E RATIO,<*U)
BASED Cf'J R£W WASTcWATtH FLQV ONLY
WASTING i=AT£ 15 C.?MflI\'£0 PRIMARY
S£CDN'jApY S TS£ AMS ( FXCLUOING dflR LCbSFS)
-------
APPENDIX A
12/24/71 12/25/71 12/26/71 12/27/71 12/26/71 12/29/71 12/30/71 12/31/71
I/ '/72 I/ 5/72
CO
CO
J— — —
prn^'T'^M
CCD.MG/L
coo, SDL , MG/L
TSS.NG/L
VSS.MG/L
NH3-N,«C-/L
N03-N, fG/L
PH
8005, HG/L
BOD5, SOL, MG/L
COD, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-N, MG/L
PH
BOD5 REMOVED,?
COD REMOVED,?
TSS REMOVED, J
12.
176.
419.
--
17t,.
—
—
—
7.
32.
—
109.
—
34.
—
—
—
7.
81.
73.
80.
000
003
OOi
200
000
000
000
100
818
986
682
1 ? .
194.
466.
--
16 J.
--
—
—
7.
33.
—
105.
—
33.
—
—
—
7.
82.
77.
79.
00 U
000
?10
ino
000
000
000
000
065
468
375
1 J . 4-0 ~)
lhb.000
49B.OOO
—
186.000
--
—
—
7.300
30.000
—
90.000
—
28.000
—
—
—
7.100
84.043
81.925
64.946
13 . 400
215. 000
451.000
—
126. 003
—
—
—
7.300
37.000
—
101.000
—
31.000
— -
—
—
7.300
82.791
77.605
75.397
12. 200
1 73.000
i
-------
APPENDIX A
CO
DATE
INFLU^T MASTFMATFR
FLOH RATE(O) ,MGD
B005.NG/L
B005.SOL ,HG'L
COO.MG/L
COD. SOL, MGf 1
TSS.MG/l
VSS.MG/L
NH3-N.MG/L
PH
BCD5.MG/L
BCD5,SOL,HG/L
COD.MG/L
COD.SOL.MG/L
7SS.WG/L
VSS.MG.'L
NH3-N.NG/L
N03-N.HG/L
PH
TOTAL REMOVALS
8005 REMOVED,!
COD REMOVED,*
TSS REMOVED,?
B005/DSY/HLVSS
ORIj^NlLLDADlNr,
LB BPD5/OAY/ 1000 T-T3
VAPHR PHASF DATA
02 SUPPLIED. FT3/HR
02 SUPPLIED/BOP R EMOVEO .LB/LB
AfaATlgN BASIN DA1A
•"UFO LIOUCR
TSS.MG/L
V5S."G/L
SVI.KL'GTSS
7 ev.FT/HR
TFMPFRATUFE,C **
F 1NAI SiIILf.E
nvELFLCW.G*L'FT2/'3£V
SOLIDS LD«D,LB/FT2/nAY
I/ 7/72
12.770
136.000
63.000
397.000
130.000
145.000
123.000
7.270
15.000
16.000
137.000
53.000
36.000
27.000
7.080
68.971
65.491
75.172
0.609
11 1.893
-
3523.999
2942.909
35.500
13.915
16.000
5H3.552
18.936
I/ 0/72
12.280
179.000
57.000
430.000
154.000
120.001
120.010
0.970
47.000
15.000
170.000
68.000
23.000
23.000
6.860
73.743
60.465
80.833
0.755
141.619
—
5747.992
3006.999
30.050
6.740
16.000
1.893
565.969
29.440
I/ 9/12
12.231
182.000
44.030
460.000
97.000
146.000
146.000
7.201
44.000
30.000
127.000
79.000
47.000
47.0PO
7.200
75.824
72.391
67.808
0.535
143.407
—
5344.996
4297.992
31. 100
7.065
Ib.OO)
1.901
563.664
27.733
1/10/72
12. 590
145.000
53. 000
352.000
64.000
152. OOP
152.000
7.300
45.000
17. 000
132.000
64.000
47.000
42.100
7.200
68.965
62.500
69.079
0.481
117.616
~
4754.996
3923.000
36.400
5.800
16. 000
1.846
583. 256
25.477
1/11/72
12.620
111.3:0
103.000
6. 900
92.000
81.000
7.000
16.364
-
"
4062.999
3433. OCO
35. 100
7.240
16.000
1.842
i31.639
21.380
1/12/72
12.850
255.000
58.000
375.000
62.000
15(. 130
47. OOP
7.100
50.000
24.000
78.000
39.000
128.000
39.000
7.000
60.392
79.200
17.949
0.940
211.113
—
4400.996
3597.999
34. 100
8.600
14.000
1.809
592.240
23.840
1/13/72
12.260
270.000
55.000
295.000
140.000
155.100
138.000
7.000
55.000
23.000
163.000
62.000
41.000
35.000
6.900
79.630
44.746
73.548
0.755
213.268
—
5573.996
4525.996
34.400
7.255
15.000
1.696
565. P47
26.878
I/ 14/72
12. 510
256. 000
52.000
323,000
169.000
142.030
135.000
11.085
7.260
55.000
23.000
162.000
46.000
37. OOP
37.000
16.000
47.500
7.040
78.516
49. 845
73.944
1.160
206.333
-
3458. OOP
2849. 99C
33.550
15. OOP
1.858
576.569
18.008
1/15/72
12.653
189.000
48.100
350.000
198.013
m.u?
1 1 a . 0 3 3
7.233
53.000
22.000
130.010
57.000
32.000
32.110
6.940
71.958
62.857
72.661
0.410
154.036
—
7352.992
6022.992
29.650
6.240
12.000
1.837
583.121
39.017
1/16/72
12.230
165.000
52.000
272.000
94.000
153.100
119.000
7. 190
53.000
20.000
149. POO
66'.000
73.000
61.000
6.950
67.879
45.221
52.268
0.440
130.011
5667.996
4737.992
42.950
6.030
14.000
1.900
563.664
28.972
1/17/72
12.210
184.000
45.000
282.000
47.000
149.100
133.000
6.920
47.000
14.000
141.000
136.000
61.000
59.000
6. 830
74.457
50.000
59.060
0.499
144.745
"
5734.996
4652.996
35.750
7.755
15.000
1.903
562.743
29. 534
1/16/72
11.960
188.000
58.0PO
320.000
94.000
224. OC1
192.100
7.330
42.000
21.000
160.000
48.000
42.000
31.000
6.930
77.660
50.000
61.250
0.614
144.864
~
4614.996
3780.000
35.600
7.945
15.000
1.943
551.220
22.791
1/19/72
11.910
265.000
61.000
406.000
133.000
182.010
166.000
7.040
45.000
14.000
137. POO
55.000
51.000
42.000
6.780
83.019
66.422
71.976
0.931
203.343
-
4379.996
3500.000
35.900
8.765
15.000
1.951
548.916
21.661
1/20/72
12.000
146.000
41.0PP
439.000
72.000
198.101
165.000
7..210
36.000
13.000
145.000
55.000
64.000
44.000
6.950
75.676
66.970
67.677
0.574
114.423
~
4059.999
3193.000
37.750
9.530
1 5 . 00 0
1.937
553.064
20.098
STL IPS WASTED, L8/HR
353 C0r. 3lO'^>.m 3 2 9'". o . "V 1 32137, OnP
14!(533 D.02S 14.971 15.330
PFCYCLF TSS.MG'L
PECYCLF RATIO,0>
rT"BASFD OK p"AkTHASTlvAf?H"FLOV, ONLY
... HASTING P»TE IS CflMBINEn PR1KAPY ANi) SECT C".DA3Y S rs EAFS ( FXC LU^I« "HP LOSSES!
38500.000 24675.000 26475.3". 317-13.300 3045C.1.-1 38475.030 ^5710.OOP 19538.000 26150.000
14.241 14.519 12.614 13.676 13.2c2 14.301 11.898 12.527 11.792
-------
APPENDIX A
1/21/72 1/23/72 1/23/72 1/24/72 1/25/72
1/2V2 1/30/72 1/31/72 2/ 1/72 2/ 2/72 2/ 3/72
FLOH RATEIQ),HGD
BUD5,MG/L
DC?C5,SOL,*G/L
crn.Mc'L
COD,SOL,MG/L
TSS.PG/L
VSS.I-G/L
NH3-N.MG/L
Kfl3-N,«G/L
PH
B005.HG/L
6005. SOL, HG/L
COD.MG/L
COO,SOL,MG/L
TSS.MG/L
VSS,PG/l
NH3-N.MG/L
N03-N.MG/L
PH
BCD5 BEHOVED,*
COD REMOVED,!
TSS REMOVED, t
11.440
179.000
49.000
352.000
—
165.000
147.000
6.990
45.000
11.000
128.000
—
41.000
35.000
7.010
74.860
63.636
75.152
12.43T
164.000
66.000
441.000
205.000
176.000
170.000
6.970
35.000
15.000
130.003
71.000
32.000
32.000
7.030
78.659
70.522
81.818
12.490
143.000
46.000
364.000
95.000
120.000
120.000
7.230
35.000
10.000
135.000
95.000
23.000
13.000
7.290
75.524
62.912
80.833
12.660
183.000
65.000
455.000
220.000
196.003
196.000
7. 180
29.000
25.000
110. COD
99.000
29.000
29.000
6. 990
84.153
75.824
85.204
12.61,0
119.000
45.00?
J83.000
73.000
132.0C-0
132.000
7.320
37.000
14.000
122.000
58.000
19.000
19.000
7.090
80.423
69.557
35.606
11.950
21 7.1}n
71.00"
392.000
172.000
146.000
146.000
7.300
46.000
25.000
122.000
67.000
34.000
34.000
6.900
78.802
68.878
77.027
12. 524
1=5.000
72.000
314.000
204.000
153.000
153.000
7.400
38.000
14.000
74.000
82.000
25.000
25.000
7.200
80.905
76.433
83.660
12.1'OG
166. 000
52.00:
314.000
102. OOC
102. OCC
102. OOC
7.500
42. OOC
20. OOC
114. OOP
51.000
30.000
30. on?
7.100
74.699
63.694
70.588
12.500
1 70.001
37.000
2 7d. 000
lid. 000
ia'i. •)•>•-:
180.000
7.400
37.000
17.000
111.000
51.000
23.000
23.000
7.200
78.235
70.899
87.222
12.400
21 .000
e .c:i
44 .<••-:!
4? .I?"C
16 .ro-j
16 .000
7.020
70.000
35.000
250.000
95.000
131.000
127.000
6.950
67.593
43.567
19.136
11.549
ISO. 000
52. ncn
3?s. 003
109.000
141. D1T
137.000
7.090
38.000
16.000
121.000
54.000
14.000
14.000
6.890
78.889
68.695
90.071
10.520
t2«.OCO
42. 0""
J77.0CO
1 J5.000
178.0CO
159.000
7.180
43.000
15.000
106.000
36.000
39.000
32.000
6.910
81.140
71.883
73.0°0
12.360
196.000
152. OOC
437.000
117.000
163.000
145.000
7.070
42.000
24.000
129.000
66~000
36.000
36.000
6.820
78.571
70.491
77.914
11 .280
164.000
30.000
390.000
117.000
180.000
145.000
7.200
46.000
16.000
113.000
43.000
15.000
15.000
7.000
71.951
71.026
91.667
BOD5/DAY/MLVSS
ORGANIC L Dtp INC
LB BO05/OAY/1000 FT3
vApnfl PHASF n*TA
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD R EMOVED ,LB/LB
AERATION RASIN DATA
MIXED LIQUOR
TSS.CG/L
VSS,»G/L
SVI.KL/GTSS
ZSV.FT/HR
TEMPERATURE, C *»
DETENTION TIME.HR
OVERFLOW, GAL/ FT2/OAY
SCLIDS LOAD,LB/FT2'DAY
SI UDGE WASTED
***
SOLIDS WASTED, LB/HP
RFTURN SLUDGE
RECYCLE TSS.MG/L
RECYCLE RATIO, 110)
131.932 131.337 115.072
172.563 133.829 154.533 156.079 119.186
-
6843.992
5514.996
31.100
13.350
15.000
2.032
527.254
33.980
-
6614.992
5274.996
28.200
8.295
15.000
1.870
572.832
34.227
-
5351.996
4664.996
35.500
4.000
15.000
1.861
575.647
27.728
-
4254.996
3474.000
32.100
7.845
15.000
1.836
583.482
22.449
-
4139.996
3^94.999
38.480
6.080
15.000
1.831
5B4.B65
22.031
7997.000
0.946
6292.992
5167.996
31.400
7.460
15.000
1.945
550.760
31.820
B496.000
1.015
4962.996
4135.996
35.650
7.140
16.000
1.852
577.208
25.985
6497.000
1.034
6270.952
516H.5C2
38.600
5.630
16.000
1.905
562.282
32.345
--
4447.996
3'76.010
41.600
6.010
16.000
1.859
576.108
22.906
-
4344.996
3703.000
40.450
6.310
15.000
1.874
571.500
22.111
6497. 000
0.958
4833.992
3978.999
39.700
7.280
15.000
2.014
531.863
23.439
5098.000
0.708
5611.996
3^81.999
34.200
12.250
15.000
2.209
484.853
24.861
4998.000
0.635
6244.992
5154.996
36.500
5.700
15.000
1.880
569.656
31.757
4996.000
0.907
5024.992
4186.996
40.150
5.890
15.000
2.060
519.880
23.465
25913.001 34575.DOO. 29525.0:3 30625.000 30025.000 33762.000 29750.000
17.614 12.908 12.410 12.938 13.641 14.669 13.295
818.390 771.623
8225.OPO 26300.103 22913.OPO 27551.000 18125.000 33113.000 31000.000
14.574 11.648 11.213 13.865 14.116 11.497 12.190
»* BASED ON RAU yASTEuATER FLOH ONLY
«** HASTING RATE IS COMBINED PRIKABY AND SECONDARY STPCCKS(EXCLUDING WEIR LOSSES]
-------
APPENDIX A
DATE
INFIIIFNT WA.STFWATFR
6005, MG/L
BOD5,S1l,MC/L
COD, MG/L
COD,SOL,HO/L
TSS.MG/L
VSS.MG/L
NH3-N,MG/L
M03-N.MG/L
PH
EfiUJfiLI
BOD5.MG/L
BOOS, SOL, MG/L
COD, MG/L
COD, SOL. MG/L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-N.MG/L
PH
TOTAl RFMOVAI
5498.000
1.091
3823.999
3095.000
38.650
7.410
16.000
1.762
607.909
20. 560
4998. 000
0. 691
4297.992
3462.999
42. 600
7.210
15.000
1.990
538.315
20.824
7197.
1.
4484.
3580.
39.
7.
15.
1.
536.
21.
000
013
996
000
000
230
no.)
990
315
002
11991.
1.
000
760
5975. 992
<,657.992
41 . 600
3. HOO
14.000
2.237
476. 861
26.925
12995.
1.
4692.
4064.
41.
5.
14
2.
468.
21.
.000
.880
.996
.999
.800
.300
.000
.2ue
.261
. 125
3998.000
0.653
4825.992
3960.000
40.200
7.270
14.000
2.239
478.400
21.281
6197.000
0.880
6414.
5345.
41.
6.
14.
2.
489.
30.
992
992
350
080
000
191
000
416
8496.
1.
6272.
6664.
57.
0.
14.
2.
37.
000
745
992
9«2
000
970
000
441
262
7797.
1,
6990.
5709.
67.
0.
14.
2.
32.
000
317
988
992
200
670
000
348
763
5498.000
0.966
5647.996
4567.996
43.700
2.920
14.000
1.953
548.455
30.070
6197.000
1.365
4026.000
3253.000
42.800
9.440
16.000
1,871
572,421
22,762
5698.
1.
4647.
3677.
39.
7.
14.
2.
476.
22.
000
044
996
999
600
000
000
246
557
615
4796.
0.
7537.
6200.
44.
4.
15.
2.
476.
34.
500
795
988
996
050
420
000
248
557
900
4116.000
0.673
8915 .9^2
5573.996
69.000
0.750
14.000
2.301
465.496
42. 188
771.624 491.035
555.336 613.795
33938.00" 31025.000 26600.000 28568.000 ^4463.000 26713.000 29625.000 2902'.. 00 1 .22113.000 13546.000 9160.000 10973.000 28500.000 28163.000
10.57* 12.414 6.647 17.517 15.157 15.125 21.103 21.214 26.364 21.244 23,470 28.646 21.344 26.960
* BASED ON PAW wfiSTrvjftTFP FLOW ONLY
tt HOSTING >.«Tr IS COMBINED P"]"/M*Y AND SFCCN1ARY r.T»
cXCLUf ! WO ri^ [o L. SSFS )
-------
APPENDIX A
2/1S/72 2/19/72 2/20/72 2/21/72 2/22/72 2/23/72 2/24/72 2/25/7? 2/26/72 2/27/72 2/R8'72 3/ 1/72 3/ 2/72. 3/ 3/72
r\>
FLOH R»TE(OI,MGD
b005»MG/L
8C05 , SOL .MG'L
CCD.MG/L
CCD, SOL, MG/L
TSS,fG/L
VSS.WG/L
NH3-M.MG/L
N03-M.MG/L
PH
8005, MG/L
BODS, SOL, NG/L
COD,MG./L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-N.MG/L
PH
TOTAL REMOVALS
RODS REMOVED,*
COD REMOVED,*
TSS REMOVED,!
BIOMASS LEADING
BDD5/DAY/MLVSS
ORGANIC LOADING
LB BOD5/DAY/1000 FT3
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED .I.B/LB
AFRATION RASIN DATA
MIXED LIQUOR
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE, C **
DETENTION TIME, HO
FINAL SETTLER
OVERFLOW, GAL/FT2/ DAY
SOLIDS LOAD,LB/FT2/DAY
10.620
133.000
3B.OOO
351.000
143.000
116.000
115.000
—
6.840
27.000
a. ooo
112.000
88.000
24.000
20.000
—
—
6.660
79.699
68.091
79.310
0.259
91.087
2957.500
0.637
7637.992
5637.996
72.500
1.110
14.000
2.186
489.923
37.294
12.530
88.000
29.000
206.000
9b.OOO
72.001
56.000
6.920
23.000
6.000
76.000
40.000
26.000
26.100
—
6.810
73.864
63.107
63.689
0.223
71.040
4498.000
1.339
6464.992
5097.988
39.500
7.110
14.000
1.855
577.491
36.118
12.130
141.000
65-noO
2?7.000
93.000
118.000
116.000
7.080
22.000
14.000
70.000
52.000
32.000
28.000
6.800
84.397
70.464
72.861
0.307
110.192
5496.000
0.924
7477.992
5754.996
37.450
5.400
14.000
1.916
559.055
40.530
10.370
1R6. 500
67.500
372.000
124.000
124.000
22.000
7.030
16. 750
9.600
93.000
54.000
124.000
22.000
6.750
69.946
75.000
—
0.371
124.603
5759.000
0.806
6779.986
5389.996
61.450
4.350
13.000
2.241
477.939
32.554
10.690
216.000
59.500
421.000
94.000
153.000
153.000
6.980
22.600
17.400
156.000
51.000
21.000
-21.000
6.700
89.537
62.945
86.274
0.489
14B. 766
3043.000
0.357
6079.992
4B73.996
60.760
1.160
14.000
2.174
492.688
29.595
10.040
154.300
64.000
314.000
1 10.000
1(12.000
102.000
6.640
34.300
17.900
67.000
59.000
30.000
30.000
6.750
77.771
76.662
70.566
0.260
99.809
4507.000
0.910
7954.996
6147.992
72.000
0.816
13.000
2.315
462.730
36.966
10.360
156,000
50.000
202.000
109.000
102.000
102.000
7.050
40.000
10.000
129.000
43.000
24.000
24.000
__
—
74.359
36.139
76.471
0.326
104.125
5563.500
1.184
6557.986
5124.996
37.200
5.300
2.243
477.476
30.503
11.860
122.000
39.000
233.000
85.000
92.000
92.000
6.900
25.000
5.000
93.000
43.000
21.000
21.000
6.800
79.508
60.086
77.174
0.292
93.221
4996.000
1.054
6760.996
5124.996.
42.050
8.150
14.000
1.960
546.611
36.492
12.450
113.000
35.100
294.000
108.000
193.300
176.000
__
—
19.000
.8.000
81.100
54.000
21.000
21.000
—
83.896
72.449
88.947
0.325
94.650
3996.000
0.787
5874.996
4674.996
38.650
5.250
14.000
1.867
573.804
32.449
11.800
151.000
50.5-0
253.000
110.000
B9.flOO
61.000
6,. 920
24.000
12.000
63.000
40.000
26.000
24.000
6.740
64. 106
67.194
70.786
0.371
114.797
4990.000
0.807
6191.996
4965.992
43., 550
3.900
14.000
1.970
543.646
32.761
10.940
143.000
51.000
250.000
107.000
69.000
71.00.0
6.760
20.000
12.500
69.000
46.000
10.000
8.000
__
6.710
66.014
72.400
88.764
0,363
100.792
4670.000
0.842
5719.996
4453.996
43.800
5.580
14.000
2.124
504.210
28.355
10.030
159.500
59.500
^97.000
94.000
110.000
102.000
7.100
15.600
8.000
71.000
43.000
11.000
13.000
__
6.600
90.094
76.094
90.000
0.323
103.070
5685.500
0.960
6599.992
51.10.996
46.600
5.730
13.000
2.317
462.269
31.103
10.76C
156.000
52.000
299.000
63.000
96.000
•-6. 000
6.600
15.000
12.900
75.000
59.000
18.000
15.000
6.750
90.385
74.916
61.250
0.343
108.145
5034.000
0.805
6513.. 992
5048.996
44.200
5.720
14.000
2.160
495.914
32.498
10.560
165.000
44.000
304.000
96.000
86.000
85.000
7.230
30.000
16.000
68.000
56.000
331.000
32.000
6.950
62.143
77.632
61.628
0.351
114.300
4190.500
0.697
6834.992
5214.996
42.800
5.560
14.000
2.201
486.696
33.726
SLUDGE HASIED •
SOLIDS WASTED,LB/HR
RfTURN SLUDGE
RECYCLE TSS,MG/L
RECYCLE RATIO,110)
1227.583, 584.566
534.567 666.398 859.308 900.233 1075.5-95 491.032
584.565 859.316 613.787 1028.827
29925.000 25725.030 25675.000 27078.000 26000.000 29575.000 33663.000
24.478 20.830 21.088 25.477 23.396 25.428 21.670
29012.000 29237.000 26838.000 25500.000 26387.000 26050.000 29387.000
22.968 20.225 21.508 22.797 27.328 25.651 26.629
** BASED ON BAK HASTEWATER FLOH ONLY
«** WASTING RATE IS COMBINED PRIMARY AMD SECONDARY STREAMS(EXCLUDING HEIR BOSSES)
-------
APPENDIX A
u>
DATE
INFLUENT HASTFhATFR
FLOW RJTEIO),"GO
BOD5.MG/L
6005, SOL, NG/L
COD,"G/L
COD,SOL,NG/L
TSS, MG/L
VSS.MG/L
NH3-N.MG/L
N03-N, MG/L
PH
FFFLUFNT
BCD5,MG'L
BOD5,SOL ,MG/L
COO, MG/L
COD, SOL, MG/L
TSS, MG/L
VSS.MG/L
NH3-N, KG/L
N03-N,*G/L
PH
TOTAL RPMPVAL S
6005 REMOVED, t
COD REMOVED, *
TSS REMOVED, t
BIOMASS LOADING.
8005/DAY/ML VSS
ORGANir LOADING
LB B005/DAY/1000 FT3
ViPDR PHASF CATA
02 SUPPLIED, FT2/HR
02 SUPPLIED/BOD R EMCVE D , LP/L9
AFRAJtON. BAS^ DATA
MIXED LIQUOR
TSS »MG/L
VSS, MG/L
SVI.ML/GTSS
2SV, FT/HP
TEMPERATURE ,C *a
DETENTION TICF .HC
FINAL SFTTIFC
OVERFLOW, GAL 'FT2/OiY
SLUDGE hASTFD
* * *
RFCYCLC TSS,MG'L
RECYCLC PiTir, ( til
3/ 4/72
11.5?0
163. 000
50.000
320. 000
140.000
102.000
102.000
—
—
7.300
26.000
15.000
BO. 000
44.000
26.000
26.000
—
—
7.000
84.049
75.000
74.510
0.338
121.084
4498.000
0.691
752 9. 992
5746.992
57.900
2.990
14.000
2.016
531.402
23500.000
24.024
3/ 5/72
10.560
—
—
331.000
153.000
120.030
120.000
—
—
6.890
—
—
75.000
47.000
25.000
25.000
—
—
6.690
—
77.341
79.167
—
4498.000
9105.508
—
—
14.000
2.201
486.696
24475.000
25.379
3/ 6/72
10.580
138.500
38.000
320.000
195.000
154.000
104.000
—
—
6.900
9.650
9.500
64.000
53.000
16.000
10.000
—
6.900
93.032
60.000
68.312
0.290
94.407
5091.500
0.906
665 1.992
5210.996
39.700
2.800
14.000
2.197
487.618
33.555
23138.000
29.206
3/ 7/72
10. 170
143.500
53.200
282.000
110.000
79.000
—
—
~-
6.900
10.000
9.800
63.000
41.000
—
—
6.900
93.031
77.660
100.000
0.284
94.025
5137.000
0.921
-5301. 992
37.500
10. 100
13.000
2. 285
468.722
32.154
806.704
25275.000
27.729
»*» UA'TIIT •-»'- 1'- U'«MN?D POI".JRY AND SECONDARY S TREAMM EXCLU01 M~, -IEIB
J/ 8/72
9.730
135.700
50.200
233.000
93.000
124.000
124.000
—
—
6.900
11.500
7.500
58.000
16.000
26.000
26.000
7.000
91.525
75.107
79.032
0.276
85.068
4o65.000
0.980
4V31.996
47.700
9.950
13.000
2.389
448.443
28. 509
982. 069
^0520. 000
2B.880
L'jjSES)
3/ 9/7?
11.300
159.000
51.600
290.000
166.000
164.000
164.000
—
—
7.000
11.500
7.600
78.000
39.000
33.000
33.000
6.800
92.767
73.103
82.065
0.360
115.757
5056.500
0.738
6272.957
5154.996
43.600
8.800
13.000
2.057
520.602
32.939
736. 553
23062.000
25.929
3/10'72
11.910
222.500
56.000
169.000
142.000
132.000
132.000
—
—
7.100
14.500
10.000
63.000
47.000
13.000
13.000
6.900
93.483
66.667
90.152
0.636
170.731
3973.500
0.409
4303.996
47.850
10.100
—
1.951
546.916
27.996
1028 .837
31C?5.000
24.030
3/11/72
1 1.5>.n
125.000
46.000
329.000
110.000
104.000
96.000
—
—
7.000
10.000
8.000
78.000
78.000
13.000
13.000
6.eoo
9?. 000
76.252
87.500
0.324
93.259
4933.000
0. 901
4619.996
55.500
3.160
13.000
2.007
533.707
31. 747
24375.00'!
25.078
3/12/72
11.300
127.000
31.500
349.000
111.000
104. 000
96.000
_-
—
7.030
11.500
8. 500
64.000
44.000
12.000
12.000
6.103
<<0.9-,5
81.662
61.462
0.330
92.460
4356. 500
0.902
4484.996
49.600
5.500
14.000
2.057
521.3:2
30. 1 38
27238.000
24.752
3/13/72
11.720
162.000
36.500
392.000
110.000
134.000
134.000
—
—
0.900
9.500
7.000
59.000
57.000
8.000
e.ooo
6.860
94.136
84.949
94.030
0.418
122.325
5297.500
0.719
4684.996
52.000
7.270
14.000
1.963
540. 159
32.3«7
9B2.070
26125.000
25. 230
3/14/72
11.000
148.000
44. 000
378.000
95.000
110.000
96.000
—
—
7.200
15.000
6.000
83.000
67.000
19.000
18.000
7.300
89.865
78.042
62.727
0.336
104.886
4752.000
0.790
6445. S96
5000.996
59.300
9.100
13.000
2.113
506.975
34. 542
859. 305
32.018
3/15/72
10.770
178.500
64.000
462.000
123.000
154.000
152.000
—
—
6.900
15.000
7.700
89.000
50.000
26.000
25.000
6.800
91.597
60.736
83.117
0.391
123.858
5251.500
0.726
5071.992
46. 500
9.290
13.000
2.156
496.375
34.558
736.552
19527. OCO
34.253
3/16/72
11.090
220.000
66.300
434.000
200.000
182.000
138.000
—
—
7.100
16.700
9.700
96.000
58.000
29.000
22.000
6.900
92.409
77.880
84.066
0.489
157.190
4921.500
0.531
5154.996
48.000
6.920
13.000
2.096
511.123
35.297
982. 069 „
3/17/7?
12.170
143.000
40.500
308.000
65.000
80.000
60.000
—
—
6.950
15.000
8.500
77.000
43.000
6.000
6.000
6. 660
69.510
75.000
92.500
0.414
112,124
4944.500
0.770
4339.996
56.600
9.560
14.000
1.910
560. 899
32.621
=ifl4- 5AR
22312.000 23838.000
32.047
29.162
-------
APPENDIX A
3/18/72 3/19/72 3/20/7? 3/21/7?
3/23/77 3/24/72
3/27/72 VZ8/72 3/29/72 3/30/72 3/31/72
INFLU'N'T HASTFHATFB
FLTH RATEIU) ,*Gn
BOr>5,WG'L
COD.KG'l
TSS,fG/L
VSS.HG'L
NH3-N.HG/L
PH
EFFI LJEKT
BCD5.MG/L
fl005,Sr>L,MG/L
CCO.MG'L
CCO.SOL.MG'L
TSS.MG/L
VSS,»G/L
NH3-N, MG/L
N03-N.MG/L
PH
TOTAL REMOVALS
B005 REMOVED,?
COD REMOVED,*
TSS REMOVED,*
BIQHASS LOADING
BOD5/DAY/MLVSS
ORGANIC LOADING
LB BOD5/DAY/1000 FT3
T2 SUPPLIED. FT3/HB
02 SUPPLIEO/B:I? PEMOVEP.LB/LB
AERATION BASIN DATA
"IXED LIOUCP
TSS.KG/L
VSS.^G/L
SVI,"L'GTSS
ZSV.FT/HR
r>ETE"iTIO>. TIXF.HP
E1NAL SETTLE"
SOLIPS LOAC,LB/FT2/PAY
SLIJCgF HASTED
#**
SCLIDS HASTED, L3/HR
PETURN SLUDGE
RECYCLE TSS, MG/L
«=* RftSEO fr, F Ah WASTEHATER FLO*.
1 1. 600
159.000
37.000
290.000
85.000
150. OCO
150.000
7.000
42.000
12.000
120.000
56.000
21.000
21.000
6.750
73.585
58.621
86.000
0.436
121.698
3998.000
0,698
5722.992
4477.996
61.400
3.600
14.000
1.956
547.533
32.691
22575. OCD
30. 303
11.420
1 73.000
58. D10
318.030
151.050
132. -1)7
132.030
7.200
15.500
8.500
75.i:n
54.000
30.000
30.030
6.900
91.040
76.415
0.467
127.287
4932.000
0.665
5534.996
4371.996
23.800
1.850
14.000
2.035
526.333
30.718
2313J.330
ONLY
IW Y l",j 5FCONPARY STR
11.610
1C9.000
38.00)
300.000
167.000
194. Ofo
110.000
7.100
16.500
7.600
88.000
60.000
52.000
21.000
6.900
B4.862
70.667
0.270
81.532
5145.945
1.162
6073.996
4839.996
57.300
8.790
14.000
2.002
535.:-»"J
34.272
491.034
ISPSS.OM
11. 310
158.000
45.500
295.000
66. 000
166.000
166.000
7.000
17.000
6. 300
94.000
37.000
14.000
14.00(1
6.900
89.240
68. 136
0.417
115.131
5280.500
0.800
5650.992
4421.992
53.100
8.900
15.000
2.055
521.263
31.302
467.652
23412.101
•BINT, UEU
11. lt/0
i&2. 500
60.500
J76.000
137.000
122.000
122.000
7.000
18.400
12.000
103.000
90.000
28.000
28.000
6.900
88.677
72.606
0.361
117.153
6/57.500
0.941
6254.992
5207.992
53.600
6.510
14.000
2.077
315.732
34.652
id738. OCO
LOSSES)
11.060
134. OOC
61.000
318.000
100.000
100.000
100.000
7.000
49.750
14.300
205.000
67.000
70.000
70.000
6.900
62.873
35.535
30.000
0.335
95.484
5266.500
1.3B1
5619.996
4569.996
63.000
10.600
13.000
2.101
509.741
30.537
150.916
21712.000
33.137
11.190
168.000
57.000
541.000
183.000
116.000
114.000
7.000
20.000
12.000
108.000
79.000
22.000
20.000
6.900
88.095
80.037
81.034
0.357
121.118
5330.500
0.783
6389.092
5437.992
21.400
5. COO
13.000
2.077
515.732
34.857
672.250
21112.000
32.109
11. IPO
ia i.ooo
51.011
380.000
132.000
132.000
7.100
18.000
10.000
83.000
54.000
32.000
24. o™
0.900
90.055
7B.15P
83.333
0.422
130.374
5566. 5CO
0.743
6309.992
4953.996
78.700
1.100
14.000
2.079
515.271
34.551
22725.000
32.728
11.240
163.000
61.030
365. OOC
116.000
132.000
0.940
12.500
7.100
104.310
46. 000
13.000
15.000
92.331
71.507
0.371
118.039
5528.530
0.793
6480.992
5094.996
88.800
0.820
14.000
2.068
35.610
^_
22775.000
32.473
10. 900
173.000
64.500
405.000
101.000
126.000
6.930
15.800
10.000
80.000
46.000
17.000
17.000
90.867
60.247
0.418
121.491
5854.500
0.829
5924.992
4658.996
54.400
4.440
14. COO
2.1?2
5i. 2.3(6
31.065
859.310
23350.000
30.440
10.610
183.000
69.000
273.000
64.000
136.000
7.040
23.000
13.600
76.000
32.000
29.000
25.000
6.770
87. 766
72.161
83.140
0.400
130.935
6103.848
0.830
6611.992
5251.992
56.200
4.360
14.000
2.150
498.219
34.990
675.172
23825.000
32.664
10. 760
187.500
55.000
J05.000
80.000
140.000
140.000
7.220
18.500
10.600
84.000
40.000
28.000
28.000
7.190
90.133
72.459
80.000
0.396
129.982
5521.000
0.734
6685.992
5/54.992
94.900
3.980
15.000
2.160
495.914
35.303
/3088.000
32.983
10.50C
102.000
53.000
303.000
96.000
138.000
138.000
7.000
17.000
9.000
76.000
32.000
22.000
22.000
7.000
91.146
74.917
64.058
0.386
129.686
6209.000
0.819
6764.996
5358.992
83.100
2.940
14.000
2.213
483.931
34.704
876.847
23950. OOC
32.400
10.370
146.000
33.000
256.000
60.000
146.000
146.000
7.080
64.000
21.000
148.000
60.000
93.000
93.000
6.980
56.164
42.186
36.301
0.292
97.5*4
4998.000
1.425
6774.996
5354.996
69.900
1.370
14.000
477.939
26.654
643.021
23588.000
2.813
-------
APPENDIX A
4/ 2/72 4/ 3/72 <,/ 4/7Z 4/ 5/7.' 4/ 6/72 4/ 7/72
4/ 8/7Z V
4/10/72 4/11/72 4/12/72 4/13/72 4/14/72
1NFI UEfjT WASTEWATER
FLCW RATEIOI ,MGD
6005, MG/L
6C105, SOL, MG/L
CPD.MG/L
CCD, SCL, MG/L
TSS, MG/L
VSS.HG/L
KH3-N.MG/L
NC3-N, MG/L
PH
LLELUfil
Br05,MG/L
9005, SOL, HG/L
COD.MG'L
COD, SQL, MG/L
TSS, MG/L
VSS.MG'L
NH3-N.HG/L
NQ3-N.MG/L
PH
TOTAL PE.HDVALS
6Q05 REMOVED,*
COO REMOVED,*
TSS P EMOVED , %
BIOMASS LOADING
11.620
178.000
50.000
238.000
79.000
136.000
110.000
—
—
0.880
21.000
6.000
75.000
32.000
23.000
20.000
—
—
6.640
68. 202
68. 487
83.088
10.280
187.000
71.000
432.000
112.000
168.000
—
—
—
6.900
13.000
11.000
—
32.000
10.000
—
—
—
6. SOO
93.048
100.000
94. 048
10.240
175.000
66.000
375.000
139.000
134.000
110.000
—
—
7.100
27.800
14.100
139.003
96.000
57.000
50.000
—
—
6.900
84.114
62.933
10.290
187.000
71 . 3^0
417.000
159.000
173.010
149.000
—
—
6.980
17.400
12.800
83. 11?
49.000
26.000
23. COO
—
—
6. 790
90. 695
80.815
10.250
192.000
62.000
412.000
159.000
296.000
282.000
—
—
0.860
18.250
14.000
46.030
53.000
24.000
16.000
—
—
6.740
90.495
86.350
10.230
1P7.500
65.500
415.000
140.000
146.000
146.000
—
—
6.950
18.100
9.600
84.000
39.000
22.000
22.000
—
—
6.770
90.347
79.952
li;.640
150.000
55.PCO
474.000
123.000
102.000
28.000
~~
—
7.200
25.000
11.000
118.000
48.000
24.000
8.000
—
—
6.800
83.333
75.105
101. 000
36.00C
367.000
96.0CO
162.000
118.000
—
—
7.100
53.000
36.000
161.000
52.000
138.000
77.000
—
—
6.700
47.525
56.131
14.815
11. 150
17E.030
63.531
437.000
149.000
1*3.003
1 66. 003
"
—
7.000
18.000
6. 600
122.000
52.000
52.000
52.113
—
—
0.800
89.838
72.032
69. 048
10.660
182.000
57.500
402.000
262.000
168.000
167.000
—
—
7.240
14.250
8.600
83.000
46.000
30.000
30.000
—
—
6.970
92. 170
79.353
82. 143
10. 750
159.000
58.000
332.000
114.000
168.003
116.000
—
—
7.100
21.800
10.200
92.000
48.000
56.000
30.000
—
—
7.200
86.289
72.289
65.476
10.360
157.000
57.003
386.000
140.000
127.001
124.000
—
—
7.200
15.7CO
10.600
105.000
43.000
31.000
27.000
—
—
6.800
90.000
72.7 = 8
75 . 5°1
11.120
133.000
53.000
396.000
104.000
164.001
13C.OOO
—
—
7.200
19.500
8.000
87.000
43.000
44.000
37.000
—
—
6.600
85.338
TE.141
73,171
11.680
134.000
53.000
392.000
131.000
140.000
101.000
—
— —
6.940
11.000
8.000
86.000
41.000
16.000
9.000
—
—
6.980
91.791
78.061
88.571
BCOS/DAY/MLVSS
LB B005/OAY/1000 f=T3
VAPDR PHASF DATA
133.259 123.853
126.793 123.580 102.826
127.869 127.342 110.123 104.793
02 SUPPL IED.FT3/HR
02 SUPPLIED/BOD REMOVED, LB/LP
AFRATIPN RASTN DATA
MIXED LIQUOR
VSS.MG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE, C »*
DETENTION TIME.HR
SOLIDS LOAD,L8/FT2.'na Y
SCLIDS WASTED, LB/HP,
RECYCLE TSS, MG/L
7301.000
0.971
4833.992
75.400
5.370
14.000
2.000
32.612
20175.00"
' *
5998
0
5557
67
6
14
2
36
23125
nLVt AND SEtDHlUR
.000
.813
.992
.900
.560
.000
.261
.034
.003
5924.000
0.950
539f.9«?
59. 100
4.610
15.000
2.270
34.462
2245C..-1
4997.
0.
5464.
54.
4.
14.
2.
33.
876.
24562.
000
694
996
500
800
"00
259
941
347
000
,M°.
5123
0
4j>78
50
5
14
2
26
.3875
.000
.698
.996
.900
.690
.000
.267
. 500
.000
'
6168.
0.
4862.
51.
4.
14.
2.
26.
1262.
26300.
500
863
992
500
BIO
000
272
540
653
000
UJU
5285.500
0.960
4772.996
58.000
4.780
15.000
2. 184
30.507
1402.951
28363.000
6. 6
6253.
2.
4973.
58.
0.
1 5.
2.
30.
876.
25613.
25.
000
912
996
8(10
580
000
I4b
427
647
"
5576
0
5193
53
0
14
2
32
24713
.000
.758
.992
.500
.230
.000
.084
.057
.111
5474
0
4460
59
4
14
2
26
22700
.500
.729
.996
.-300
.610
.000
.140
.573
.000
5651.500
0.926
4633.996
42.500
5.640
15.000
2.162
29.164
618.393
26003. 000
5639.000
0.931
5014.992
74.900
4.940
15.000
2.243
30.596
859.310
1.7330.000
5133.500
0.983
4505.996
50.300
4.950
15.000
2.090
29.675
771.625
27500.000
5687.500
0.957
4497.992
50.900
6.660
15.000
1.990
30.400
941.149
28125.000
-------
APPENDIX A
4/15/72 4/16'72
4/20/72 4/21/72
4/22/72 4/23/72 4/24/72 4/2!>/72 4/2(,/72 4/27/72 4/28/72
IblELlJIiU-hASXEMilEB
FLO* DSTEIUI ,MGO
RODS, MG/L
8n05, SOL ,MG '(.
COD, fG/L
COO, SOL, MG/L
TSS.fG'L
VSS.PG'L
NH3-N, MG/L
N03-N, MG/L
PH
EJLEilJEt!
Rnr5,MG/L
8005, SOL, »G'L
CT1,MG/L
COO , SOL , MG 'L
TSS.CG/L
VSS,fG/L
NH3-N, MG/L
NC3-N.MG/L
PH
BODS REMOVED,?
COD FEMDVEPi*
TSS REMOVED,?
10.940
112.000
34.000
232.000
109.000
99.000
95.000
—
7.300
14.000
10.000
78.000
39.000
21.000
21.000
—
7.040
87.500
66.379
78.788
10.940
164.000
62.510
298.000
110.000
158.000
158.000
—
6.900
15.000
4.000
63.000
39.000
31.000
31.000
—
7.000
90.854
78.859
80.380
11.420
159.000
59. COO
217.000
109.000
154.000
122.000
—
6.900
21.000
12.000
47.000
43.000
31.000
25.000
—
6.900
86.792
78.341
79.870
11.131
161.000
59. in
344. 000
125.000
133.000
106.000
—
7. 200
20.000
17.000
98.000
47.000
54.000
38.100
—
6. 900
67.578
71.512
53.462
10.330
162.000
54.0CO
295.000
109.000
112.000
110.000
—
6.970
25.000
12.000
74.000
39.000
31.000
31.000
—
6.930
84.56B
74.915
72.321
1C. 15t>
159.000
54.000
333.000
158.000
158.000
112.000
—
7.020
27.000
16.000
170.000
47.000
62.000
52.000
—
6.900
83.019
48.°49
60.75=
10.130
158.000
46.000
422.000
94.000
160.000
128.000
—
7.000
20.000
12.000
86.000
35.000
25.000
16.000
—
6.900
87.342
79.621
84.375
11.360
—
—
311.000
86.000
124.000
115.000
7.100
—
89.000
43.000
30.000
30.000
6.800
71.383
75.806
12.010
126.000
43.511
423.010
78. 000
135.010
131.000
__
6.880
21.000
15.000
75.000
31.000
49.000
43.100
6.910
83.333
82.270
63.704
1 1 .360
127.500
48.001
28?. COO
63.000
112.000
112.000
6.940
18.500
9.000
94.000
39.000
47.000
47.000
6.750
85.490
66.784
58.036
11. 20)
139. 500
37.000
220.000
78.000
86.000
78.000
7.200
19.500
15. 500
71. 000
31.000
28.000
23.000
7.200
86.021
67.727
67.442
10.860
134.000
32. ID"
<:99.000
94.000
114. ?01
80.000
7. 100
20.000
12.000
78.000
39.000
28.000
18.000
6.900
85.075
73.826
75.439
10. 810
147. 500
44.510
377.000
204.000
120.000
116.000
6.980
18.000
16.500
90.000
75.000
15.000
15.000
6.970
67.797
76. 127
67.500
10.450
192.000
53 .000
311.000
93.000
110.000
92.000
7.100
23.000
12.000
78.000
51.000
15.000
12.000
6.650
68.021
74.920
66.364
ROD5/OAY/MLVSS
CEJ5A3IC.-lJlaE.IHfi
L8 er05/OAY/1000 FT3
0.273
0.372
0.427
0.406
S-Ml 116.986 115.450 107.817 103.976
93.317 100.662 93.757 102.728 129.267
SUPPLIED, FT3/HR
SUPPLIED/BOO R EMOVED ,L6/LB
- BASIN DATA
MIXED LIQUOR
TSS,"G/L
VSS.MG/L
SVI.PL/GTSS
ZSV.FT/HR
TEMPERATURE, C **
DETENTION TIHE.HR
EJ.JiAL_SEIIL£E
OVERFLOW, GAL/ FT 2/ DAY
STL IDS LOAD,LB/FT2/DAY
SLUDGE
SCLIOS HASTED, LB/HR
5498.000
1.239
5970. 992
4634.996
57.800
3.110
15.000
2.124
504.210
29.833
5498.000
0.815
6350.988
4973.996
57.300
3.430
15.000
2.124
504.210
31.825
6138.000
0.941
5643.992
4388.996
47.600
7.600
15.001
2.025
526.333
29.253
7 045.000
1.085
5830.996
4554. 992
43.600
6.420
15.010
2.088
512.967
29.958
0901.500
1.179
6302.992
4967.992
43.500
5.040
15.000
2.250
476.096
30. 103
7398.000
1.330
6447.992
5063.996
50.500
6.170
16.000
2.290
467.800
30.639
7297.000
1.261
6523.902
5365.992
45.100
4.420
15.000
2.294
466.878
30.335
6760.000
13725.070
5705.996
4315.996
48.700
0.720
14.000
2.046
523.567
29.170
6152.000
1.180
5338.992
4124.996
46.300
0.700
15.000
1.937
553.064
28.949
5749.500
1.122
5693.992
4307.996
46.300
7.500
15.000
2.046
523.567
26.644
5784.500
1.040
4463.996
3403.999
41.400
8.370
15.000
2.075
516.193
20.953
5764.000
1.125
4753.996
3594.000
41.500
8.600
15.000
2.140
500.523
21.653
6591.000
1.134
4954.996
3684. 9««
43.100-
9.000,
16.0001
2.150
496.219
22.438
6245.000
0.852
4835.992
3645.999
43.100
10.000
16.000
2.224
461.626
20.914
1262.66.1 15*3.256 1028.835 1157.438 900.233
TSS.MG/L
iFCYCLc RATIO, (%0>
26700.000 26813.000 26125. COO 27525.111
23.766 24.132 22.995 T4.034
^b975.000 25588.000 26950.000
25.2=5 26.867 24.393
1028.631 1104.827 555.333 613.789 771.626
25488.000 26550.000 29400.000 31313.000 t7763.0CO 31013.000 34275.000
21.954 22.450 20.009 13.571 14.705 13.525 12.153
FASED CN "AH WASTEHATER FLOri ONLY
« niSTING RATE IS COMBINED PRIMARY AND SECONDARY STR E AV S ( =XCLn IM HEIR
-------
APPENDIX A
4/29/72 4/30/72 5/ 1/72 5/ 2/72 5/ 3/72 5/ 4/72 5/ 5/72 5/ 6/72 5/ 7/72 5/ 6/72 5/ 9/72 5/10/72 5/11/72 5/12/72
FLOW R ATE lu 1 ,Mf,n
BPD5, WG/L
BODS, SOL, PG/L
COO.MG'l
CODt^PL ,MG/L
TSS.MG'L
VSS.MG/L
NH3-U.MG/L
N03-N.MG/L
PH
EFflUEKT
BCIOS.NG/L
8005, SOL, MG/L
COD, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/l
NH3-N.MG/L
N03-N.MG/L
PH
TOTAL RFMfWMS
BOD5 REMOVED, «
COD REMOVED,!
TSS REMOVED,*
BIOMASS LOADING
BOD5/DAY/MLVSS
ORGANIC LOADING
LB B005/DAY/1000 FT3
VflpciR PHASE PMA
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOO R 6HOVED .LB/LB
AF_R«TlPtj_RASlN DATA
MIXED LIOUPR
T S S , f> G / L
V S S , KG ' L
SVI.ML/GTSS
ZSV, FT'HP
TFMPFPOTURE ,C **
OET^TION TIME.HR
"V=PFLPJ,GAL/FT2/DAY
SPLir-S LOAD.LB/FT2/DAY
10.640
121.000
32.000
226.000
145.000
95.000
80.000
—
—
6.890
20.000
11.000
77.000
48.000
20.000
18.000
—
—
6.820
83.471
65.929
78.947
0.351
84.506
6221.000
1.373
5064. 992
3360. 000
41.300
7.000
15.000
2.144
499.601
22.884
9.870
145.000
48.500
337.000
96.000
152.000
152.000
—
—
7.100
•18.000
11.500
68.000
44.000
12.000
12.000
—
—
6.900
87.586
79.822
92.105
0.344
92.205
6634.500
1.279
5677.996
42 89 .996
42.300
6.560
15.000
2.355
454.895
23.341
11.030
159.500
53.500
414.000
112.000
180.000
180.000
—
7.300
16.500
12.500
63.000
60.000
17.000
17.000
—
—
7.000
8 6 . 40 1
84.783
90.556
0.507
113.346
7335.000
1.136
4584.996
3562 .999
9. 1 30
16.000
2.107
508.358
20.744
10.990
134.500
52.000
207.000
46.000
132.000
132.000
—
7.200
17.500
13.500
64.000
40.000
24.000
24.000
—
—
7.000
66.909
69. 082
81.818
0.465
95.234
7297.500
1.367
4144. 996
41.000
10.130
16.000
2.115
506.514
18.339
11.110
127.000
49.000
315.000
126.000
134.000
134.000
7.000
11.000
8.000
67.000
39.000
17.000
17.000
7.100
9 1.339
78.730
87.313
0.444
90.905
6965.500
1.302
4084.999
41.000
9.100
16.000
2.092
512.045
18.218
11.960
157.000
36.000
26G.OOC
110.000
176.000
176.000
—
7.100
12.500
10.500
63.000
55.000
16.000
16.000
6.900
92.038
76.493
90.909
0.595
120.977
7177.000
0.997
3945.999
3257.999
11.000
17.000
1.943
551.220
18.676
11.440
134.000
44.000
318.000
142.000
142.000
124.000
—
7.200
12.000
12.000
67.000
55.000
16.000
15.000
—
—
6.900
91.045
78.931
88.732
0.498
98.765
7400.000
1.27T
3643.999
44.900
9.150
16.000
2.032
527.254
18.019
1 1 . 1 40
137.000
44.00C
286.000
80.000
166.000
102.000
—
—
7.000
13.000
13.000
48.000
36.000
24.000
20.000
6.900
90.511
83.333
65.542
0.369
98.326
6523.000
1. 137
5360.996
4055. 000
46.500
4.290
16.000
2.086
513.428
25.602
lO.BiO
161.000
59.530
329.000
110.000
158. 030
124.000
—
—
6.900
16.500
11.000
71.000
47.000
27.000
22.000
6.600
68.509
78.419
82.911
0.355
112.338
7016.000
1.095
5918.992
5064.992
42.600
4.660
16.000
2.146
499.145
21. Tie
10. BIO
184.000
77.000
345.000
•i4.000
176.000
144.000
—
—
7.000
18.000
12.500
75.000
46.000
26.000
19.000
6.770
90.217
78.261
65.227
0.465
128.149
8940.000
1.200
5810.992
4414.996
47.300
4.400
16.000
2.150
496.219
27.232
11.690
143.000
56.500
336.000
128.000
156.000
126.000
—
—
7.100
16.500
11.500
76.000
46.000
26.000
20.000
6.600
66.851
77.381
83.333
0.426
111.467
6810.500
1.067
5559.996
41 94. 996
49.100
4.800
16.000
1.988
538.776
27.874
11.250
187.500
64.000
340.000
ai.ooo
152.000
126.000
—
—
7.100
14.000
11.000
77.000
36.000
22.000
19.000
—
—
6.800
92.533
77.353
85.526
0.499
135.902
7684.000
0.945
5755.992
4360.996
46.200
5.350
17.000
2.066
518.496
28.071
11.040
206. 500
70.000
400.000
80.000
200.000
74.000
—
—
7.000
19.500
11.000
92.000
44.000
47.000
24.000
—
—
6.800
90.557
77.000
76.500
0.621
146.879
6607.000
0.791
5098.992
3788.999
51.400
5.840
17.000
2.105
508.819
23.807
11.010
137.000
53.000
319.000
126.000
126.000
126.000
—
—
7.000
11.000
7.000
77.000
48.000
8.000
8.000
—
—
6.700
91.971
75.862
93.651
0.411
97.180
T393.500
1.279
5039.996
3791.000
45. 100
5.900
17.000
2.111
507.436
23.411
SOLIDS HASTED,LB/HR
EfUjaU-SLUCfif
ocCYfLF TSS.HG/L
RFCYCLF PATIO,(%QI
95.226 1367.882 982.065 1198.385 876.847 859.314
30713.000 27400.000 35880.OOU 27625.000 29750.000 23363.00" 28563.000
12.952 12.667 11.160 9.099 8.785 7.241 11.040
876.647 — 1169.123 1063.905 982.077 759.934 1215.894
27525.000 26938.000 26400.0^0 2S68B.03" ,.4300.000 25925.000 25375.OOO
16.176 17.433 17.4<". 16.219 17.476 14.611 14.332
PASFn Of" CAH HASTEHATER FLOW ONLY
» hiSTING RATE IS COHSINEn PRIMARY AND SECONDARY STREAKS(FXCLUOING HEIP LOSSES)
-------
APPENDIX A
00
DfiT r
INFLUENT t.ASTr>'AISa
EL:MV H'T e(u) , VGD
PC05,nr,'L
[Jnn5 ,SnL ,*G 'L
Cm,»G'L
COD,^TL,»G'L
TSS.MG'L
VSS.KG/L
NH3-N,MG/L
NC3-N, MG/l
Ph
FFFLUEr'T
BPD5.MG/L
BC105,S1L,MG'L
COD.KG'L
CCO, SOL, MG/L
TSS,"G/L
VSS,»C,/L
NH3-N. MG/L
NC3-N.MG/L
PH
TOTAL REMOVALS
8005 REMOVED,*
COD REMOVED,*
TSS PEMOVEO.I
RIDMASS LOADING
8005/DAY/HLVSS
ORGANIC LOADING
LB 80D5/OAY/1000 FT3
VAPOR PHASF DATA
02 SUPPLIED, FT3'HR
02 SUPPLIED/BOO REMOVED, U
AERATION BASIN DATA
MIXED LIQUOR
TSS, MG/L
VSS.MG/L
SVI.ML'GTSS
ZSV, FT/HP
TEMPERATURE.C **
DETENTION TIHE.HR
OMJ.-Sf.IJ.LEB
OVFtFLOH, GAL/FT 2.' DAY
SOLIDS LOAD.LB/FT2/DAY
SIUPGE HASTg 0
***
SOLIDS WASTED, LB/HR
RETURN SLUDGE
RECYCLE TSS.MG'L
RECYCLE RATIO,(*0)
** BASED ON RAW HASTEHATEP F
5/13/72
11.040
146. 000
45.000
265.000
63.000
136.000
112.000
7.130
13.000
6.000
67.000
28.000
28.000
23.000
—
—
6.940
91.216
76.491
79.412
0.487
105.269
7205.500
1/LB 1.164
4783.992
3462.999
50.400
7.500
16.000
2.105
508.819
22.275
—
23138. COT
14. 21? 3
LCH ONLY
Vlo/72
10.850
170.000
51.000
361.000
110.000
220.000
__
__
7.000
16.000
12.500
71.000
56.000
48.000
—
—
7.000
90. 588
80.332
78.182
0.429
118.837
7214.000
1.040
5855.996
4440.992
49.700
4.500
16.000
2.142
500.062
26.903
—
31233.000
14.747
5/15/72
10.92J
164.503
51.000
394.000
142.003
224.031
24.000
7.200
16.500
14.000
98.003
79.000
44.000
4.000
6.800
89.970
75.127
80.357
0.532
115.734
7027.000
1.043
4693.996
3484.000
51.300
5.040
17.000
2.128
503.288
21.816
806.697
27638.00)
15. 339
5/ 16/72
12.680
180.000
52.5-1
315. 000
79. 000
153.000
150.000
7. 100
15.000
10.500
79. 000
11.000
23.000
23.000
7.100
91.667
74.921
84.667
0.851
147.049
7287. C03
0. 839
4380. 996
2768. V99
47. 800
5.700
17.000
1.833
584.434
23.101
1169. 131
27250.000
12. 697
5/17/72
11.360
195.500
42.0'M
J61. 000
141 .000
128.003
128.000
7.123
19.000
14.000
67.000
43.000
24.000
24.003
6.780
90.281
81.440
61.250
0. 606
143.086
7dl3.500
0.863
4785.996
J785.999
47.800
5.940
17.000
2.046
523.567
22.817
935.300
25150.000
13.732
5/19/72
11.030
170.500
47.500
298.000
78.000
158.000
158.000
—
18.000
12.000
94.000
51.000
11.000
11.000
—
89.443
68.456
93.038
0.515
121.163
7084.000
1.011
4813.996
3773.999
59.000
6.040
17.000
2.107
508.358
21.770
935.307
22538.000
11.106
5/19/72
11.550
146.000
43.000
320.000
96.000
120.000
102.000
6.900
13.000
13.000
72.000
60.000
17.000
16.000
6.900
91.096
77.500
85.833
0.446
108.644
6539.500
1.022
4^78.996
3901.000
—
6.250
17.000
2.012
532.324
24.118
771.631
24763.000
13.654
5/20/72
12. 330
140.000
42.00~
288.000
80. 000
168.000
128.000
7.000
16.000
1 5.000
60.030
24.000
25.000
24.000
6.900
88.571
79.167
85.119
0.511
111.215
6415.000
1.007
4633. 996
3436.000
51.000
6.020
17.000
1.885
568.273
23.642
1315.275
26175.000
1 2. 133
5/21/72
11. '•go
152.000
7). 103
267.000
96. 000
109.000
90.000
6.900
12.000
9.300
72.000
68.000
13.000
11.030
__
6. 930
92.105
80.381
87.963
0.506
114.480
5705.000
0.837
4847.992
3627.999
49.000
5.780
17.000
1.988
538.776
23.905
75.859
24525.303
14.311
5/22/72
11.860
125.000
41.000
302.000
111.000
128.000
114.000
7.100
15.000
7.000
79.000
48.000
22.000
2 1.000
6.900
88.000
73.841
82.813
0.416
95.514
6356.000
1.169
4953.996
3676.000
45.600
6.000
17.000
1.960
546.611
24.498
771.624
25913.000
12. 9"3
5/23/72
11.070
152.000
42.000
286.000
79.000
122.000
100.000
—
—
7.000
9.000
8.000
48.000
36.000
10.000
10.000
—
6.900
94.079
83.217
91.803
0.524
10S.408
6759.000
1.025
4468.996
3313.000
46.800
6.980
17.000
2.099
• 510.202
20.592
1169. 134
28213. POO
12. 800
5/24/72
11.230
150.000
50.000
^26.000
93.000
126.000
114.000
—
—
7.100
9.000
7.000
39.000
31.000
7.000
7.000
—
—
6.900
94.000
88.037
94.444
0.438
108.528
6226.000
0.944
5368.992
3975.000
49.100
6.740
17.000
2.070
517.576
25.454
1U63.913
t4i25.300
14.408
5/25/72
10.730
145.000
35.000
351.000
112.000
100.000
96. 000
—
—
7.100
6.000
5.000
56.000
44.000
9.000
9.000
—
—
6.900
95.862
84.046
91.000
0.404
100.240
4996.000
0.604
5329.992
3980.000
47.900
5.830
17.000
2.166
494.531
24.219
676.842
26538.000
14.762
5/26'7?.
10.570
144.000
30.0CO
268.000
63.000
106.00"
106.000
—
—
7.200
5.000
4.000
28.000
32.000
5.000
5.000
—
—
6. 900
96.528
89.552
95.283
0.387
98.064
6226.000
1.021
5369.996
4056.999
51.300
5.550
16.000
2.199
487.157
23.997
1063.905
24663.000
14.570
«** wa$TING RATE IS COMBINED P3I«4P¥ SNn SrCDHDAPY STR E AM^ ( ?XC LU01NG WMe
-------
APPENDIX A
5/27/72 5/J8/72 5/29/72 5/30/72 5/31/72 6/ 1/72
6/ 3/72
4/72 6/ 5/72 6/ 6/72 6/ 7,72 6/ S'72 tl 9/72
F 1 0 K R a T E 1 0 1 , -1 r. ~
BC'DS.MC.'L
80D5,SnL,MC 'I
cno ,*T./L
CC'D,S1L,«C.'l
TS S i *G 'L
VSS.KG.'L
KH3-K, MC.'L
NC 3-f- ,MG 'L
Ph
8005, MG'L
BP15,S?L,MG/L
CCD.CG'L
CC3, JCL.HG/k
TSS.MG/l
VSS.MG/L
NH3-N, MG/l
HC3-N.MG/L
PH
50D5 REMOVED,?
CPD REMOVED, S
TSS REMOVED,?
BIOHASS LOADING
1C.
172.
4°.
329.
78.
112.
112.
7.
9.
6.
47.
20.
9.
9.
—
—
6.
65.
400
000
000
000
000
000
000
000
000
000
000
000
000
000
900
767
714
064
1J.030
150. 010
28.111
315.001
79. 001
148.110
146. 010
—
__
7.C03
9.000
5.000
63.010
24.000
14.000
14 .000
—
—
7.000
80. 000
90.541
10.
175.
52.
343.
109.
184.
147.
7.
9.
6.
47.
31.
11.
8.
—
__
7.
fb.
94.
320
000
''. (. 1
OCO
000
OC1
000
100
000
000
000
000
000
000
000
2 = 7
022
11.
197.
45.
278.
118.
171.
155.
__
7.
9.
6.
43.
7.
9.
9.
7.
84.
94.
C30
000
010
000
000
000
000
200
000
000
000
000
000
100
000
532
737
10.
190.
51.
262.
92.
128.
128.
7.
9.
5.
42.
46.
10.
10.
6.
R3.
92.
no
000
000
000
000
000
000
200
001
000
000
000
000
000
9no
263
969
168
10.470
184. 000
50.000
337.000
31.000
176.001
159.000
7.11 =
14.000
6. 000
4t .000
19.00C
23.000
15. 100
6.900
92.391
86.350
87. 079
10.
206.
52.
4G3.
104.
162.
150.
7.
12.
a.
56.
30.
14.
14.
7.
94.
86.
91.
190
000
"00
000
noo
"00
000
000
ooc
000
000
000
000
nco
000
175
104
358
i ;.
142.
•76.
7^
14 1.
12 2.
7.
13.
1 1.
56.
4 1.
32.
28.
7.
90.
82.
77.
-
ynn
01'
001
onr
010
OOP
000
900
000
coo
000
000
000
100
211
822
143
H?.010
47. )31
403.011
11 3.000
16 >.13,1
1?6.000
__
7.100
10.000
8.000
55.010
50.000
10.010
10.000
__
7.000
94. 792
86.352
93.750
IC'.oOil
196.000
58.000
377.000
1C7.000
2C8.001
176.000
7.000
12.000
7.000
45.000
36.000
18.000
14.000
7.000
93.878
88.064
91.346
10.020
193.000
51.000
407.000
106.000
152.000
138.000
7.000
11.000
7.000
62.000
44.000
11.000
11.000
6.900
94.301
84.767
92.763
9. 730
220.000
50.000
363.000
86.000
166.000
164.000
7.100
19.000
8.000
43.000
35.000
Z3.000
23.000
—
—
6.800
91.364
88. 154
86.1-45
10.570
195. 000
53.000
427.000
65.000
156.000
112.000
—
7.200
10.000
5.000
64.000
3$. 000
10.000
7.000
—
—
0.900
65.012
93.671
10.520
185.000
44.000
494.000
96.000
138.000
138.000
—
—
7.200
10.000
5.000
56.000
52.000
4.000
4.000
—
—
6.900
68.664
97.101
BODS/D4»/«LV5S
LOADING
8PD5/DAY/1000 FT3
90.931 116.356 139.995 131.104 124.11B 135.242
100.544 123.525 137.138
137.913 132.795 125.369
H2 SUPPLIED, FT3 'HR
02 SUPPLIEn/BQO R EMOVED ,L3/LH
AERATJDN BASIN. DAT A
MXEO LKU«
TSS.MG'L
VSS.PG/L
SVl,HL'CTSr
ZSV, FT'HR
TEMPERATURE ,C *'
DETFfTlnN TJMF.HC
n* *
otryur ,»T1-,|1,)I
6705. 000
1.940
5533.996
4 '. 9 c,. c ~f
—
—
17.000
2.235
479. 322
24.497
15.34t.
OM Y
5498. 000
1.933
5?33 .992
4382 . 996
64.810
h. 610
1 7. Ill
2.317
23.920
"""^
5748.
0.
5277,
4029.
53.
5,
17,
2,
475.
23
1 5
OCO
, 805
.996
, 0,'; 3
.000
.270
.000
.252
.635
. 114
.!-••>
5748,
0.
5070.
3799.
50,
7.
17.
2.
,000
, 665
. 992
,999
.000
. 640
.011
. 107
23.274
1 2.
.765
6397
0
4750
J!>90
55
7
18
2
21
1 2
.000
.789
. 996
.000
.900
.650
.000
.170
.090
.325
7156.
0.
5317.
4033.
53.
5.
18.
2.
23.
1 2.
250
962
199
463
850
460
COC
22U
152
703
7633.
0.
5484.
4157.
50.
6.
18.
2.
23.
13.
596
924
445
809
3CO
190
000
281
423
582
6202.
1.
4869.
3711.
53.
6.
13.
2.
22.
1 =.
297
054
277
201
650
625
COC
115
761
dlld.699
1.
5086.
383^.
53.
4.
18.
2.
22.
1 3.
026
133
239
350
395
oil
23 ;
113
397
6679. 398
0.797
5170.172
3914.272
53.800
5.610
19.000
2. 140
23.518
13. 5C°
8492
1
5407
4119
50
5
19
2
22
1 3
.398
.110
.223
.473
.750
. 565
.000
.319
. 784
.962
7156.
0.
5080.
j 007.
53.
4.
19.
2.
21.
500
872
B55
671
150
200
OCO
389
411
369
8587
1
5010
3873
51
5
19
2
22
13
.797
.047
.844
.656
.050
.915
.000
.190
.118
.169
7633.
0.
4783.
3627.
49.
7.
16.
2.
20.
1052.
10.
,598
.992
164
770
600
345
000
209
432
222
038
"
-------
APPENDIX A
fi/11/72 6/12/72 6/13/72 6/14/72 6/15/72 6/16/72
6/17/72 6/13/72 6/1V72 6'20/72 6/21/72 (,/22/72
on
O
INFLUgM. jjASTEWATFR
FLOW RATE 10) ,MGD
PC05.MG/L
BCD5, SOL ,MG/L
CHD, MG/L
COD,SOL,MG/L
TSS.HG/L
VSS.HG/L
NH3-N.MG/L
N03-N.MG/L
PH
EtLUIitsT.
R005,MG/L
BOOS, SOL, MG/L
CCO.MG/L
COO,SOL,MG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
NC3-N.MG/L
PH
iciai FEHdVfti.1
PG05 REMOVED, %
COO REMOVED,*
TSS REMOVED,?
BIOMASS LOADING
BnD5/DAY/HLVSS
PRGANIC LOADING
LB B005/DAY/1000 FT3
02 SUPPLIED, FT3/HR
G2 SUPPLIED/BOO REMOVED ,L6/L9
AERATION BASIN DATA
MIXED LIQUOR
TSS ,HG/L
SVI,»M_/GTSS
ZSV, FT/HR
TEMPERATURE, C **
DETENTION TIME,HR
Flutj SETTLFB
OVFRFLOH»GAL/ FT2/DAY
SCLIDS LOAO.LB/FT2/DAY
SL1JD.G.F HASIfD
***
SPLIDS WASTEO,LB/HR
RECYCLE TSS.MG/L
RECYCLE RATIO, UQ)
** BASED ON R 6W WAST=WATEF FLOvi
*** W.^TTNiC, RATF IS COMBINED pp I
1 0. bCO
193. OOC
45.000
50t.OOO
158.000
166.000
154.000
—
—
7.300
9.000
3.000
67.000
47.000
9.000
9.000
—
—
6.900
95. 37.7
86.759
94.57B
0.532
134.29?
7633.598
0.91<7
5256.465
4042. 1 54
52. 000
5. 660
ii.oc-o
2.152
23.313
1104.827
21737. 5!V
11.267
ONLY
10.740 10.710 10.820 10.820 10.840 10.580
183.000
49.010 -- — -- — —
329.000
94.000
176.000
152.000
— — __ — — —
— — — — —
7.200 7.300 7.200 7.300 7.100 7.000
9.000 — — — —
3.000
47.000
39.000
17.000
15. OOC -- — — —
— — — — — —
— __ — — — —
6.900 7.000 6.900 7.000 7.000 6.900
95.000
85.714
10.341
0.476
119.912
658?. 977 7156.500 4961.797 7633.598 10496.199 1431.300
O.S91 14266.215 9872.500 15240.754 20956.047 2838.146
5257.019
4 T4 1.34 8
51.900
5.880
1-3.000 18.000 19.000 18.000 18.000 20.000
2.248 2.170 2.148 2.148 2.144 2.197
22.572
935.307 631.333 701.482 771.623 941.144
22137.57.1
12.534 12.i?5 11.710 10.9PO 10.775 15.028
04iicT 5 Tf r&sS ( ^yc Lor [NG ^ E 1 =< L-JjSES)
10.680 10.400 11.310
— — 157.000
— — 41.n^:1
409. OCO
126. OUO
— — 159. nro
125.000
—
— — —
7.000 7.000 7.100
— — 11.000
— — 5.000
— — 67.000
51.000
— — 9.000
— — 9.000
— — —
— — —
6.900 7.000 6.900
— — 92.994
63.619
— — 94.340
— — 0.467
— — 114.402
7156.500 8110.699
14239.313 16137. B33
— — 5157.253
— — 3927.607
— — 54.600
— — —
19.000 19.000 20.000
2.176 2.235 2.055
492.227 479.322 521.263
24.302
859.306 — 982.062
20365.000
13.577 12.885 12.909
10.060
155.000
47.000
315.000
110. 000
120.000
105.000
—
—
7. 100
14.000
6.000
59.000
24.000
13.000
11.000
—
—
7.100
90.966
61.270
89.167
0.477
100.462
5725.199
0.959
4446.355
3375.515
54.200
8.295
20.000
2.310
463 . 652
16.753
736.551
21125.000
13.618
1 1.4bO
164. 000
21.000
J 76. 000
JlO.OOO
196.001
156.000
—
—
7.100
9.000
4.000
63.000
35.000
21.000
21.000
—
—
6.900
94.512
63.245
89.286
0.507
121.299
5725.199
0.764
5020.254
3835.170
56.000
5.780
20.000
2.024
529. 098
23.969
555.331
•UJ12.500
12.709
12.480
65.000
18.000
158.000
95.000
226.000
36.000
—
—
7.000
12.000
4.000
40.000
24.000
21.000
11.000
—
—
6.600
81.538
74.684
90.708
0.316
52.264
7633.596
2.151
3760.^36
2631.477
45.750
9. ~JtK
19.000
1.662
575.187
19.177
~
23712.500
10.737
10.850
63.000
20. OOC
110.000
47.000
66.000
60.000
—
6.800
6.000
2.000
39.000
12. OCO
22.000
10.00"
__
6.700
67.302
64.545
75.000
0.236
44.039
7633.598
3.049
453».141
2991.847
44.500
8.585
19.000
2.142
500. 062
20.765
455.056
24050.000
14.286
-------
APPENDIX A
»ATE
6/24/72 6/25/72 6/26/72 6/27/72 6/2B/72 6/29/72
7/ 4/72 7/ 5/72 7/ 6/72
Cn
PLOW RATE(OI,MGD
60r>5,MG/L
BQP5, SOL, MG/L
Cgo, MG/L
COD, SOL, MG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
N03-N,*1G/L
PH
EFFLUENT
BOD5, MG/L
60D5, SOL ,MG/L
COD, MG/L
CCD, SOL,HG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
NC3-N, HG/L
PH
TOTAL REMOVALS
BOD5 REMOVED,?
COD FEMOVEO.S
TSS REMOVED,!
8.860
125.000
36.000
189.000
79.000
112.000
99.000
—
6.900
14.000
6.000
42.000
16.000
21.000
19.000
—
—
6.600
88.800
77.776
81.250
6.310
116.000
32.000
191.000
48.000
93.000
72.000
—
6.900
10.000
5.000
40.000
16.000
12.000
10.000
—
—
6.700
91.379
79.058
87.097
4.670
152.001
49. OM
317.000
95.000
141.000
104.001
—
5.900
12.000
7.000
48.000
26.000
11.000
a. ooo
—
—
6.700
92.105
84.858
92.199
4.330
167.000
44. 001
266.000
111.000
113.111
38.000
—
6.800
13.000
6.000
56.100
40.000
11.000
11.010
—
—
7.010
92.216
80.420
89.000
4. 561
169.001
46.001
2? 3. 000
110.000
i23.0"0
114.000
—
7.000
11.000
6.000
43.000
24.000
15.000
15.000
—
—
6.800
93.491
94.606
67.605
4.760
12ft. 000
40-110
220.000
76.000
119. "00
6t .000
—
7.100
10.000
4.000
47.000
27.000
14.000
13.000
—
—
6.900
92.063
76.636
88.235
3.870
133.000
40.100
267.000
110. 100
91.100
82.000
—
7.000
II. 000
4.000
47.000
39.000
II. 000
10.000
—
—
6.800
91.729
82.397
87.776
4.950
1 1 0- 000
31.100
236.010
157.000
HO. OC1
89.000
—
7.100
10.000
5.000
43.000
31.000
11. OOP
11.000
—
6.800
90.9BC
81. 7eO
90.000
4.320
120.000
28J.OOO
79.000
130-000
119.000
—
7.000
11.000
3.000
55.010
35.000
28.000
24.000
—
6. 900
90.833
80.565
78.462
4.160
16C.OOO
93.001
329.000
78.000
110.000
98.000
—
7.1TO
8.000
4.000
59.00U
43.000
5.000
5.000
—
—
c.900
95.000
82.067
95.455
4.800
188. 000
43.000
345.010
110.000
162.000
124. 000
19. 400
7.000
9.000
5.000
47. 001
31.000
6.000
6.001
16.900
—
6.900
95.213
86.377
96.296
6.060
119.000
27.0C1
J09.000
77.000
116.000
92.000
23.100
7.100
13.000
5.000
62.0CO
35.000
12.000
10.000
21.700
—
6.900
89.076
79.935
89.655
6.020
158.000
32.000
261.000
94.000
132.000
104.000
20.400
7.100
7.000
4.000
35.000
31.000
9.000
9.000
16.100
—
6.900
95.570
87.544
93.182
6.400
173.000
36.000
423.000
110.000
148.000
100.000
—
7.000
8.000
3.000
51.000
20.000
6.000
—
_ —
6.900
95.376
87.943
94.595
BIONASS LOADIHG
BPD5/OAY/HLVSS
LB BOP5/OAV/1000 FT3
uarpp PHASE DATA
02 SUPPLIED,FT3/HR
§2 SUPPLIED/BOO REMOVED,LB/LB
AFatTir^ BASIN DATA
H\ XEP LIQUOR
TSS,*G/L
VSS.VG/L
SV1.ML/GTSS
ZSV,FT/HP
TEMPERATURE,C **
DETENTION TIHE.HR
45.733 46.588
OVERFLOW,GAL/FT2/DAY
SCLIDS LOAO.LB/FT2/OAY
7156.500
1.734
5746.215
3778.868
46.000
5.415
19.000
2.623
408.345
21.859
6679.398
2.360
7062.773
4689.453
49.950
5.810
19.000
3.683
290.819
21.152
4771.000
1.733
7066.668
4566. 156
71.950
1.400
20.00')
4.977
215.234
16.67!
10019.
3.
8078.
5225.
Q.
20.
5.
199.
17.
096
569
730
965
, 150
. 465
.11".
. 267
:»:
3ol6.
1.
799
25B
4-,95.855
1 > 17. 133
51. 100
6.365
20.000
5.097
ilO
11.
. 164
.465
524t
2
5021
3279
50
7
20
4
21"
11
.098
.256
.973
.272
.950
.530
.000
. 883
.382
.895
4771.000
2.400
4 25 1 . 87 5
2724.379
51.750
8.835
20.000
6.005
178.363
8.675
2767
1
3465
2269
56
4
20
4
228
6
.000
.328
.391
.918
.700
.680
.000
.695
.139
.330
3912.
1.
3104.
2012.
82.
1.
21.
5.
199.
4.
000
967
465
978
200
300
000
380
113
949
3148.799
1.173
3179.185
2120.826
81.200
1.080
21.000
5.560
192.651
4.904
5247.898
1.446
3000. 591
1967.531
93.200
0.650
21.000
4.842
221.226
5.315
5057.000
1.876
5644.438
3754.644
56.500
5.200
19.000
3.835
279.297
24.848
3816.699
0.997
5842.486
3864.933
67.000
4.600
20.000
3.861
277.454
15.311
3816.699
0.856
5630.480
3905.336
64.700
4.120
21.000
3.631
294.966
15.858
SCLIPS MASTED, LB/HR
1102.631 581.4:5 641.740 495.691 122.518
700.122 350.030
. TSS.WG/L
PATIO, (SQ)
26512.500 21937.503 204rC.G01 1SH25.101 ZZOOO.OOO 1J912.500 19437.500
16.354 26.621 36.516 3H.314 36.3P2 34.853 42.868
•. RAW WASTEWATER FLOW ONLY
TE IS COMBINED PRIMARY AND SECONDARY STP E AMS ( EXCLLID1NG WHS
22201.OOC 21853.000 19850.000 21538.000 17663.000 17788.000 20738.000
0.000 0.000 0.000 0.000 96.869 17.973 15.172
-------
APPENDIX A
7/ 9/72 7/10/72 7/11/72 7/12/72 7/13/72
7/15/72 7/16/72 7/17/72 7/18/72 7/19/72 7/20/72 7/21/72
en
ro
INFLUPrT tjflSTFuaTFg
FLOW eATE(C) ,MGD
PC 05, MG/L
BOH5, SOL, MG/L
CCO.MG'L
CCf), SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
EFFLUENT
ROD5, MG/L
B005, SOL, MG/L
cco, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS,MG/L
NH3-N.MG/L
N03-N.MG/L
PH
TQT.A.L RfMOVfllS
BOOS REMOVED, %
COD REMOVED, J
TSS REMOVED, J
BIGMA5S. LOADING
B005/DAY/MLVSS
ORGANIC LOADING
LB BOD5/DAY/1000 FT3
VAPOR PHASE CATA
02 SUPPLIED, FT3/HR
02 SUPPLIED/600 R EMOVED ,LB/LB
AERATION BASIN DATA
MIXED LIOUOR
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE. C **
DETENTION TIME.HR
F1MAL SFJTLFP.
OVERFLOW, GAL/FT2 /DAY
SOLIDS LOAD,LB'FT2.'DAY
6.560
154.000
37.000
312.000
63.000
130.000
108.000
—
—
7.200
7.000
4.000
39.000
31.000
4. 000
4.000
—
—
7.000
95.455
87.500
96.923
0.255
65.087
4293.797
1.058
5893.551
4093.290
60.500
3.750
20.000
3.543
302.342
16.502
6.260
137.000
36.000
312.000
109.000
144.000
112.000
—
7.000
8.000
5.000
55.000
47.000
10.000
10.000
—
—
6.800
94.161
82.372
93.056
0.216
55.254
..
—
6163.125
4106.285
80.100
1.160
21.000
3.713
288.515
16.502
6.560
140.000
38.000
308.000
77.000
114.000
102.000
5.500
7.100
8.000
4.000
50.000
39.000
7.000
7.000
6.300
6.600
94.286
63.766
93.860
0.232
59.170
_
—
6119.281
4068.056
76.700
2.160
21.000
3.543
302.342
17.071
6.260
160.000
35.000
348.000
95.000
232.000
162.000
—
7. 100
7.000
5.000
44.000
44.000
30.000
13.000
—
—
6.900
95.625
87.356
87.069
0.244
64.531
4293.598
1.061
6318.563
4237.301
80.950
1.650
21.000
3.713
288.515
16.927
8.990
182.000
43.000
399. 000
80.000
122.000
108.000
—
7.000
9.000
6.000
64.000
48.000
4.000
4.000
—
- —
7.100
95.055
63.960
96.721
0.388
105.415
3016.6S9
0.577
6376.859
4349.945
99.400
0.060
23.000
2.585
414.337
23.507
10.350
141.000
25.000
281.000
94.000
96.000
96.000
3.700
7.000
10.000
5.000
43.000
39.000
6.000
8.000
4.700
—
7.000
92.906
64.697
91.837
0.547
94.022
2662.500
0.496
4121.824
2754.339
57.150
10.760
23.000
2.246
477.019
17.263
6.450
140.000
36.000
279.000
78.000
94.000
94.000
—
6.900
8.000
6.000
39.000
27.000
7.000
7.000
—
—
7.000
94.286
66.021
92.553
0.342
76.218
1908.300
0.404
5077.078
3574.375
65.300
13.810
22.000
2.750
389.449
18.446
7.430
201.000
42.000
427.000
95.000
138.000
114.000
—
—
6.900
7.000
6. 000
55.000
36.000
11.000
11.000
—
—
6.900
96.517
87.119
92.02V
0.414
96.218
3625.799
0.593
5440.715
3724.155
65.350
3.710
22.000
3.128
342.439
17.926
6.900
163.000
48.000
313.000
110.000
120.000
108.000
6.800
—
6.900
8.000
6.000
43.000
27.000
6.000
6.000
10.100
6.000
6.600
95.092
86. 262
95.000
0.279
72.462
4293.797
0.947
6076.430
4157.813
79.900
2.460
22.000
3.368
Jld.012
19.079
8.180
192.000
62.000
251.000
95.000
132.000
112.000
5.400
—
6.900
11.000
10.000
39.000
16.000
8.000
7.000
5.700
—
6.800
94.271
84.462
93.939
0.488
101.167
3816.699
0.605
4846.969
3324.223
60.950
6.940
23.500
2.841
377.005
17.376
9.370
184. 000
58.000
569.000
79.000
132.000
112.000
6.800
—
6.900
7.000
4.000
47.000
24.000
6.000
7.000
5.300
—
6.900
96.196
91.740
93.939
0.499
111.076
6202.098
0.878
5239.688
3567.200
61.750
5.770
23.600
2.480
431.851
20.464
7.830
185.000
64.000
408.000
125.000
116.000
94.000
10.400
—
6.600
8.000
5.000
51.000
6.000
9.000
8.000
4.300
—
7.900
95.676
87.500
92.241
0.424
93.326
5534.199
0.937
5089.172
3524.807
59.250
6.340
23.600
2.968
360.874
16.854
3.720
190.000
63.000
413.000
111.000
134.000
110.000
5.100
C.300
6.800
8.000
5.000
56.000
24.000
10.000
8.000
6.600
0.100
6.800
95.789
86.441
92.537
0.134
45.537
^4770.797
1.657
7950.016
5458.289
99.800
0.330
23.000
6.248
171.450
14.219
3.750
215.000
78.000
349.000
64.000
164.000
150.000
—
—
6.700
7.000
7.000
36.000
24.000
17.000
15.000
—
—
6.700
96.744
89.685
89.634
0.168
51.945
3339.600
0.998
7176.477
4949.117
90.550
1.100
25.600
6.198
172.833
12.023
SLUDGF WASTE0
SCLIDS HASTED,LB/HR
420.050 437.552
D12.573 367.543
RECYCLE TSS.MG'L
5FCYCLE RATIO,1%0>
21875.000 20288.000 19125.000 21788.000 ^2o50.000 21738.000 21235.000
15.671 15.911 15.244 15.974 11.123 9.662 16.521
700.083 805.095
21886.600 21583.00* 19863.000 19163.000
20.175 23.319 18.765 12.956
012.572 466.721 536.731
100 17088.000 19113.000
14.623 30.296 21.067
** BASFD OK PAh WAST?KATEP FLPH ONLY
*** HASTING RATE IS COMBINED PPIMAPY AND SrCPMOARV STREAMS (EXCUSING KETR
-------
APPENDIX A
7/26/72 7/27/72
61 2/72 8/ 3/72 6/ 4/72
CJ1
GO
Fl p'< RATECOl.MGP
prD5,Mr,/L
8015, SOL, MG/L
COD, MG/L
COO,SOL,HG/L
T S S , M.G / L
VSS.HG/L
NH3-N»HG/L
N03-N,CG/L
PH
EfELUHsI
8005, 1G/L
BCD5, SOL, MG/L
CPO ,MG/L
COD, SOL, MG/L
TSS, MG/L
VSS.MG/L
NH3-N.MG/L
N03-N, MG/L
PH
TGTAI PFMGVALS
BTD5 3 CMOVE D, i
TSS FEMCivED,*
3.650
201.000
54.000
41 1.000
12 7.000
130.000
128.000
—
—
6. 800
9.000
7.000
28.000
14.000
12.000
—
—
6. 600
88. 564
89.231
3.420
195.000
20.000
373.000
78.000
156.000
128.000
5.700
0.250
6. 900
10.000
7.000
27.000
12.000
10.000
8.000
0.100
6.700
87. 399
92.308
3.690
161.000
42.000
327.000
109.000
142.000
122.000
6.200
0.300
7.000
9.000
3.000
31.000
11.000
1 1.000
8.000
0. 150
7.000
85.627
92.254
3.290
259.000
53.000
464.000
112.000
144.000
140.000
6. 800
0. 300
6.800
10.000
5.000
36. 000
10.000
7.000
7.300
0. 100
6.700
91.379
93.056
5.570
168.000
38.000
432.000
144.000
154.000
136.000
—
0.300
7.000
9.000
3.000
56.000
48.000
13.000
12.001
—
0.150
7.001
97. 037
91.558
8.500
144.000
13.000
466.000
31.000
220.000
208.000
19.600
0.020
6.900
11.000
3.000
12.000
29.000
14.000
23.100
—
6.900
93.348
86.8 16
8.690
164.000
34.000
422.000
63.000
170.000
152.000
—
—
6.900
10.000
5.000
51 .001
27.000
11.000
11.001
-~
-~
6.900
94 . 565
87.915
93.529
9.2(11
204. 000
30.000
481.000
93.000
200.000
146.000
—
—
6.900
7.010
4.000
31.001
1 0.000
10.00C
—
—
6.900
87.110
95.000
0.770
145.100
34. 301
371.130
124. 000
154.313
144.010
22.500
1.051
7.010
10.030
3.000
31.000
25.000
23.000
20.500
--
6.700
93 .103
85.445
83.766
9.550
1S4.000
40.1:1
386.000
P9.000
148.000
r-6.000
--
—
6.900
18.000
5.000
43.000
31.000
24.000
—
—
6.800
90.722
79.016
79.054
9.780
204.000
32.010
490.000
307.000
188. 000
128. 000
25. 100
0.230
6.900
12.000
5.000
65.000
17.000
13.000
23. 100
0.200
6.800
94. 118
82.041
90.957
9.740
164.000
37.001
425.000
106.000
174.000
150.000
—
—
6.600
18.000
5.000
95 »000
34.000
33.000
29.000
—
—
6.600
69. 024
77.647
81.034
9.790
200.000
44.030
354.000
77.000
167.000
129.000
—
—
A. 900
11.000
3.000
42. 000
42.000
21.000
15.000
—
—
6.600
94.500
88.136
87.425
9.950
177.000
57.00C
411.000
107.000
202.000
144.000
—
—
6.600
12.000
5.000
61 .000
42.000
29.000
19.000
—
6.700
93.220
85.158
85.644
6005/DAY/MLVSS
ORGANIC LOADING
LB BOD5/DAY/1000 F73
UAPOR PHASF DATA
02 SUPPLIED,FT3/HR
02 SUPPLIEC/BOD REMOVEO,LB/L6
0.370 0.476
47.267 42.967 38.276 54.899 6Q.289 78.859 105.388
7633.297 3dl6.699 4293.797
2.540 1.404 1.778
5725.000 4580.000 4580.000
1.521 0.956 0.699
8969.199
1.164
81.929 119.365 128.541 102.914 126.149 113.466
4961.699
0.991
7347.098
1.033
4771.000 7o33.598 5248.098 6870.238
0.599 1.266 0.667 0.987
MIXED LIQUOR
TSS, MG/L
VSS.MG/L
SVI .HL/GTSS
ZSV.FT/HR
TEMPERATURE ,C *
DETENTION TIME.HR
_
OVEPFLOW.GAL/FT2/DAV
SOLIDS LOAD,LB'FT2/D«Y
7548.109 7860.316 3466.287 6954.391 6081.207 5012.945 5144.520 5110.156 5502.621 5217.363 5351.668 5155.441 4796.250 3460.015
5257.016 5366.731 2425.973 5296.863 4282.004 3414.177 3548.764
94.150 93.700 107.800 104.500 109.100 69.450 74.400
0.930 0.110 0.288 0.360 O.B30 4.750 3.480
25.500 26.010 26.600 24.000 22.600 22.100 22.000
^.'•^,^ 6.796 6.298 7.064 4.173 2.734 2.614
16U.224 157.623 170.067 151.632 t56.714 391.754 409.726
12.612 12.716 5.977 10.886 15.275 16.361 19.762
3560.433
90.900
2.200
21.000
2.510
426.781
20.535
3846.
90.
2.
21.
2.
404.
21.
118
600
270
400
650
198
229
3669.
109.
1 .
21.
2.
440.
21.
968
495
130
600
434
147
453
3611.
103.
1.
22.
2.
450.
22.
714
635
150
000
376
747
363
3o55
87
2
22
2
448
20
.682
.110
.070
.000
.386
.904
.996
3396.
65.
2.
23.
2.
451.
19.
553
450
430
000
374
208
485
2522.801
17.250
2.640
22.000
2.336
458.562
14.238
ZLUBSt HAS1E.O
SPLIDS WASTED, LB/HP
612.573 605.095 005.092
805.095 122.514
670.913 804.261 641.742 770.091 756.423
_
PFCYCLE TSS, MG/L
RECYCLE PAT 10, ( ?Q)
17939.0^'" 17788.133 17813.000 16575.000 16313.100 20038.000 19475.000
26.027 2M.1B7 25.S08 2.S.936 22.206 16.776 17.098
16675.010 1731,3.0.00 197J7.500 ?04 S 7. 50" Jj<7 5.000 17425.000 17637.500
17.624 19.213 I<.fc
15.767 13.326 12.411 12.080
tfiSEO OK' PAW WASTEWATEF FLCVJ Of\LY
* WASTING RAT? IS COMBINED PPIMAPY AND SFCO.N^ARY S TP E AMS < CXC LUD] NG WFIP LUSSCSI
-------
APPENDIX A
8/ b/72 a/ 6/72
8/ 7/72 b/ 8/72 U/ 9/72 8/10/72
8/12/72 8/13/72 8/14/72
01
FLOW P AT E10) ,MGD
PODS, MG/L
BOD5, SOL ,MG /L
COD, MG/L
COD ,SOL, MG/L
TSS.MG/L
VSS,MG/L
NH3-N, MG'L
N03-S.KG/L
Ph
BOD5.MG/L
BOD5, SDL, MG/L
CCD,MG/L
COD, SOL, MG/L
TSS.HG/L
VSS, VG/L
NH3-N, MG/L
N03-f. ,MG/L
Ph
HCD5 REMOVED,*
CPD REMOVED,*
1SS REMOVED,*
IQMASS LOADING.
B005/DAY/MLVSS
9.310
142.000
32.000
358.000
62.000
242.000
108.000
—
6.800
10.000
4.000
55.000
35.000
30.000
10.000
—
6.700
92.956
84.637
87.603
0.385
9.050
173.000
45.000
353.000
77.000
183.000
151.000
—
6.900
8.000
5.000
31.000
18.000
14.000
6.700
—
6.700
95.376
91.218
92.350
0.429
9.750
200.000
46.000
451.000
78.000
226.000
118.000
—
6.900
9.000
6.000
47.000
35.000
20.000
4.000
—
6.700
95.500
69.579
91.150
0.607
9.820
220.000
53.000
487.000
167.000
228.000
156. 000
—
6.900
16.000
6.000
65.000
49.000
44.000
29.000
—
6.800
92.727
86.653
80.702
0.589
9.250
210.000
65.000
411.000
91.000
238.000
148.000
8.250
0.220
6.900
16.000
7.000
65 .000
27.000
42.000
18.000
13.200
0.160
6.80^
92.381
84.185
82.353
0.549
9.430
246.000
63.000
547.000
243. OOC
28C.009
144.000
22.000
0.220
7.100
15.000
7.000
68.000
57.000
41.000
14.000
12.650
0. 180
6.800
93.902
87.569
85.357
0.626
8.450
220.000
50.000
422.000
106.000
172.000
154.000
6.800
13.000
6.000
49.000
34.000
9.000
8.000
—
6.700
94.091
88.369
94.767
0.526
6.220
196.000
59.000
377.000
121.000
234.000
212.000
6.900
10.000
5.000
42.000
38.000
28.000
20.000
6.600
94.949
88.659
88.034
0.475
7.760
206.000
51.001
342.000
134.000
174.000
162.000
6.800
7.000
5.000
37.000
30.000
7.000
7.000
6.700
96.635
89.181
95.977
0.397
8.400
186.000
44.00D
453.000
63.000
184.000
158.000
7.100
7.000
5.000
39.000
31.000
16.000
13.000
7.100
96.237
91.391
91.304
0.430
8.990
178.000
34.000
372.000
109.000
160.000
134.000
13. 500
0.220
7.200
8.000
2.000
47.000
47.000
13.000
11.000
1 4. 300
7. 100
95.506
67.366
91.875
0.464
9.540
206.000
35.000
494.000
140.000
160.000
166.000
7.300
9.000
3.000
70.000
15.000
14.000
14.000
7.000
95.631
85.830
92.222
0.614
9.880
216.000
67.000
487.000
304.000
162.000
146.000
7.100
19.000
11.000
84.000
53.000
17.000
14.000
7.200
91.204
82.752
8°. 506
0.667
10.490
154.000
35.000
292.000
61 .000
108.000
102.000
7. 100
17.000
8.000
61.000
42.000
23.000
21.000
7.000
88.961
72.260
78.704
0.48?
L6 BOD5/DAY/1000 FT3
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED, LB/L6
AERATION RASIN DATA
MIXED LIQUOR
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE ,C **
DETENTION TIME.HR
FINAL SETTLER
OVERFLOW, GAL/ FT2/ DAY
SOLIDS LOAO,LB'FT2'DAY
65.174 100.871 125.634 139.189 '125.150 149.458 119.771
104.860 103.991
126.615 137.493
5725.199
1.103
4950.109
3543.162
87.300
2.570
21.000
2.496
429.085
19.307
5725.199
0. 908
5350.688
3772.395
97.750
1.760
21.000
2.568
417.102
20.311
5725.199
0.725
4557.387
3317.848
97.000
2.690
22.000
2.384
449.365
18.415
3816.799
0.450
5022.000
3790.816
95.250
1.950
22.000
2.367
452.591
20.433
7o33.598
1.004
5006.586
3053.314
89.700
2.200
22.000
2.513
426.323
19.265
11450.398
1.236
5247.926
3826.626
77.750
2.940
23.000
2.465
434.616
20.409
7633.596
1.030
5055.816
3632.817
84.400
2.470
22.0CC
2.750
389.449
18.096
6011.457
0.921
5024.906
3530.685
75.500
3.620
21.000
2.827
378.849
17.363
7633.598
1.159
5771.387
4200.559
68.200
3.010
21.000
2.995
357.648
19.107
5248.098
0.823
5216.477
3755.882
73.050
3.670
22.000
2.767
387.145
16.462
7156.500
1.105
5021.078
3558. 135
73.400
4.080
22.000
2.585
414.337
18.680
6102.297
0.781
4066.766
3304.79")
78.000
4.770
21.000
2.436
439.666
18.466
6679.398
0.812
454~4.594
3304.305
75(700
5.100
21.000
2.352
455.356
18.586
6488.559
1.065
4663.516
3457.969
76.200
4.980
22.000
2.216
463.470
20.630
SOLIDS WASTED, LB/HR
_.
RECYCLE TSS.MG'L
RFCYCLF PATIO, {*U
833.432 704.250
533.402 1029.289 1101.310
17737.500 19500.000 19362.500 19975.000 iUy7j.:OJ 21712.500 23012.500
13.534 13.669 12.308 12.281 12.735 11.760 14.793
1050.125
816.764 979.282 645.933 895.939 612.573
16700.0-'. 19412.505 17875.000 20050.000 ^12.500 18600.000 l^.MO
13.917 15.619 14.262 13.348 12.400 12.176 14.280
** 6ASFO ON PAH WASTEWATER FLOW ONLY
*+* WASTING PATE IS COMBINED PRIMARY AND S^CQ'JOARY
r AM5 ( CXCLUOI NR WEIR LuSScSt
-------
APPENDIX A
cn
in
DATE
1BE1LIFNT WASTFHATER
FLO* R4TEIOI.HGO
BOOS, HG/L
6005. SOL. HG/L
COO. HG/L
COP. SOL, HG/L
TSS.HG.'L
VSS .HG/L
NH3-N.HG/L
NP3-N, HG/L
PH
EFFLUEUT
B005.MG/L
6005, SOL, HG/L
CrD.HG/L
CCO, SOL, HG/L
TSS.HG/L
VSS, HG/L
NH3-N.HG/L
N03-N.HG/L
PH
TflTtl RFHOVALS
BPD5 REHOVED.J
CCO BEHOVED, J
TSS PEHOVEP.S
610HAS? LOADING
8005/OAY/HLVSS
pRi-.Afne LOADING
LB B005/OAV/1000 FT3
32 SUPPLIED. FT3/HR
02 SU°PL1EO/BOD BEHOVED. L8/L8
H1XE" LIOU06
Tss,rr,/L
vss, HG/L
SVI,HL/GTSS
ZSV.FT/HR
DETENTION TIHE.HP
fINflL SFTTLFR
OVERFLOW, G1L/FT2/D AY
SCL IDS L04P,LB/FT2/D«Y
6/19/72
10.030
217.000
44.000
365.000
46.000
182.000
150.000
—
—
7.100
8.000
4.000
19,000
15.000
15.000
10,000
—
—
7. 100
96.313
94.795
91.758
0.529
140.227
5582.066
0.628
5892.059
4245.262
76.650
2.370
22.000
2.317
462.269
25.271
6/20/72
6.870
229.000
44.000
421.000
60.000
132.000
123.000
—
—
7.100
7.000
3.000
30.000
26.000
8.000
8.000
—
—
7.200
96. 943
92.874
93.939
0.501
130.867
4293.898
0.513
5623.063
4188.125
107.300
1.800
23. 000
2.620
40iJ.806
21.756
6/21/72
9.570
206.000
47.000
373.000
90.000
152.000
146.000
—
—
7.200
10.000
5.000
49.000
4.000
11.000
11.000
—
—
7.100
95.146
P6.863
92.763
0.582
127.014
6536.270
0.819
4722.305
3500. 9C5
65.100
2.940
23.000
2.429
441.069
19.490
8/22/72
9.410
237.000
42. 000
355.000
65.000
188.000
174.000
—
7.200
9.000
5.000
60.000
28.000
13.000
11. ODD
—
7.200
96.203
83.099
93.085
0.653
143.684
5820.617
0.640
4815.645
3524.334
80.750
3.530
22. 000
2.470
433.694
19.579
8/23/72
9.330
^60.000
63.000
436.000
61.000
214.070
200.000
14.600
0.300
7.200
16.000
8.000
65.000
20.000
13.000
12.000
15.400
0.030
7.200
93.846
85.092
93.925
0.662
156.288
4770.000
0.493
5024. 199
3786.341
85.600
2.890
23 .000
2.491
430.007
20.190
6/24/72
9.350
?06.000
55.000
321.000
48.000
152.000
118.000
—
—
7.000
11.000
6.000
4C.OOO
28.000
13.000
7.000
—
—
7.000
94.660
87.539
91.447
0.544
124.094
5560.698
0.720
4617. 766
3653.236
75.350
4.530
23.000
2.466
430.929
19.415
6/25/72
9.610
244.000
60.000
430.000
64.000
162.000
146.000
—
——
7.200
12.000
6.000
52.000
44.000
14.000
14.000
—
—
6.900
95.082
67.907
91.356
0.645
151.M2
7013.367
0.740
5011.227
3752.046
61.900
3.000
23 000
2.416
442.912
20.481
8/26/72
8.720
194. 000
34.000
411.000
63.000
192.000
160.000
7, 100
10.000
4.000
51.000
43.000
21.000
19.000
—
6. "00
94.845
87.591
69.063
0.469
108.991
5725.199
0.839
4923.352
3727.123
81.500
2.700
23. 000
2.665
401.893
18.342
8/27/72
8.700
230.000
36.030
455.000
78.000
184.110
164.010
7.030
8.000
5.000
47.110
31.000
13.000
13.011
-_
6.810
96.522
89.670
92.935
0.552
U8.919
4771.000
0.581
4969.158
3743.655
78.350
3.360
23 .000
2.671
410.971
18.261
J/28/I2
9.260
142.000
36.010
327.000
62.000
134.000
110.000
12.900
0.190
7.200
7.000
5.000
57.000
33.000
19.000
15.800
14.300
0.080
6.800
95.070
62.569
85.821
0.378
64.900
4961.840
0.931
4788,641
3599,680
79.550
3.000
23.000
2,504
427.703
18.552
8/29/72
8.210
204.000
42.000
392.000
114.000
218.000
166.000
—
7.000
7.000
3.000
49.000
33.000
19.000
14.000
6.800
96.569
67.500
91.284
0.464
107.906
—
4778.203
3573.625
72.350
3.100
23.000
2.831
378.388
16.716
8/30/72
8.940
175.000
52.000
371.000
129.000
162.000
128.000
—
7.200
7.000
3.000
36.000
28.000
17.000
11.000
6.900
96.000
90.296
89.506
0.485
100.797
—
4505.043
3329.585
79.000
4.000
23.000
2.600
412.032
16.976
8/31/72
9.030
127.000
—
210.000
—
118.000
90.000
—
6.600
147.000
255.000
116.000
95.000
7.100
1.695
0.367
73.886
—
4259.352
3222.470
76.500
5.150
22.000
2.574
416.181
16.192
9/ 1/72
9.060
212.000
—
353.000
—
138.000
118.000
—
__
7.200
10.000
56.000
10.000
9.000
7.100
95.283
64.136
92.754
0.668
123.747
1.046
5112.375
2971.222
71.150
6.710
22.000
2.565
417.563
19.491
SPLIOS HASTED,LB/HR
afU'Eii-SLUCfi11
&6CYCLF TSS,"G'L
R£CYfLF BAT I O.ItOI
900.107 554.232
20825.000 20300.001 16587.500 18112.500 18J87.500 18625.000 19437.500
15.882 18.207 16.676 17.089 16.720 16.802 15.255
857.601 630.074 657.602
18875.000 18087.500 19650.000 19112.500 19025.000 16637.500 14950.000
15.780 14.471 13.136 15.493 14.228 • 14.086 14.040
n«Sf9 0«J 'Ah U4STCHJTER FLOH ONLY
UDItvG HEIR LOSSES!
-------
APPENDIX A
9/ 3/72 II 4/72
91 6/7?
Jfl3/72 9/14/72 9/15/72
en
CTi
1NELUENT HASTEHATEC
FLOW RATEIOI.MOtt
PrD5,MG/L
BTD5, SnL , M^L.
Cr , MC./L
CT t SOL t ^0 'L
T $ tMQ/l
VS ,"G.'L
MH -ri.HG/l
NO -N'.MG'l
PH
BCD5.HG/L
6005, SOL, MG'L
COO.HG/L
COO,SOL,HG/L
TSS.HG/L
VSS.KG'L
NH3-N, MG/L
N03-1,Mr,/L
PH
TPTAL PFMOVALS
COt' REMOVED,*
TSS REMOVED,*
8.420
144.000
—
272.000
—
138.000
114.000
—
—
7. 200
31.000
—
132.000
—
70.000
59.000
—
—
6.900
78. 472
51.471
49.275
8.730
80.000
—
285.000
—
108.000
94.000
—
—
7.600
119.000
—
209.000
—
116.000
94.000
—
—
7.400
26.667
—
8. 7fa1
202. OCO
_-
395.000
—
212. OCO
160.000
—
—
7.100
14.000
—
63.000
—
32.000
27.000
—
—
6.900
93. 069
84.051
84.906
8.430
166.000
—
413.000
—
150.000
128.000
12.650
0.100
7.200
8.000
—
58.000
—
14.000
12.000
7.430
—
7.100
95. 181
85.608
90.667
8.670
^41.000
—
432.000
—
210.000
178.000
—
—
7.200
13.000
—
61.000
—
21.000
19.000
—
—
7.100
94. 606
85.880
90.000
8.550
248.000
63.000
369.000
92.000
188.010
158.000
—
—
7.200
8.000
8.000
31.000
27.000
14.000
10.000
—
—
7.000
96. 774
91.599
92.553
8.170
237.000
49.000
488.000
122.000
187.000
151.000
—
—
7.100
10.000
3.000
69.000
42.000
16.000
13.000
—
—
7.000
95 . 78 1
B5.861
91.444
8.420
166.000
32.000
394.000
45.000
162.000
126.000
—
—
7.100
7.000
1.000
49.000
26.000
13.000
9.000
—
—
7.100
87.563
91.975
8.140
199.000
43.000
432.000
139.000
191.010
172.000
--
—
7.000
1 1 . 00 0
4.000
69.000
39.000
14.000
10.000
—
—
6.800
84.028
92.632
6. 490
206.000
45.000
483.000
106.000
228.000
202.000
—
—
7.100
10.000
2.000
64.000
30.000
28.000
24.000
—
—
6.900
86.749
87.719
8.220
217.000
41.000
548.000
76.000
236.000
218.000
18.900
0.230
7. 100
10.000
2.000
72.000
19.000
36.000
33.000
15.300
—
7.000
86.861
84.746
7.910
241.000
50.000
485.000
135.000
214.000
190.000
—
—
7. 100
11.000
4.000
64.000
49.000
24.000
21.000
—
—
6.900
86.804
88.785
6.100
207.000
51.000
508.000
164.000
182.000
164.000
—
—
7.300
8.000
2.000
67.000
26.000
21.000
18.000
—
—
7.000
86.811
88.462
6.920
213.000
40.000
413.000
138.000
170.000
128.000
—
—
7.100
15.000
4.000
61.000
31.000
26.000
14.000
—
—
7.100
65.230
84.706
LOADING
BOD5/DAY/MLVSS
ORGANIC LOADING
LB BP05/DAY/1000 FT3
78.117 44.996 11*.006 90. 153 134.619 136 = 612 124.750
90.052 104.36* 112.680 114.922 122.819
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED ,L8/LB
AERATION BASIN DATA
NIXED LIQUOR
TSS,I"G/L
VSS.NG/L
SVI.NL/GTSS
ZSV.FT/HR
TEMPERATURE, C **
DETENTION TIME.HR
FINAL SETTLER
OVERFLOH.GAL/FT2/DAY
SOLIDS LOAD.LB/FT2/D4Y
SLUDGE HASTED
***
SOL IPS HASTED, LB/HP
RECYCLE TSS.HG'L
6202.098
1.538
4627.328
3488.424
81.100
5.270
22.000
2.760
388.066
17.152
612.563
15263.000
6202.098
4648.383
3499.274
80.500
4.010
22.001
2.662
402.354
17.755
700.083
15838.010
6679.199
0.967
4527.686
3494.106
84.400
3.890
19.000
2.653
4C3.737
17.255
694. 248
15413.000
4293. 797
0. 766
4559.652
3421.934
75.450
4.810
21.000
2.757
338.527
16.519
665.079
15738.001
6o79. 199
0.803
4590.656
3481.198
79.150
4.610
20.000
2.681
o99.589
17.246
065.079
.6J50.0CO
7156.297
0.826
4922.559
373C.096
66.100
5.410
21.000
2.718
394.058
18.253
490. 05 U
17975.000
7347.098
0.941
4847.129
3699.895
75.200
4.070
20.000
2.845
376.544
17.326
791.761
16213.000
6679. 199
1.185
5054.828
3851.086
88.900
2.350
20.000
2.760
388.066
16.356
513.394
14525.000
5915.797
0.925
5089.117
3828.820
99.950
1.820
19.000
2.855
375.162
17.851
997.619
15975.000
7156.297
1.025
5166.535
3869.388
84.000
3.270
19.000
2.737
391.293
18.693
256.696
18875.001
6202.098
0.866
4912.637
3715.009
88.800
3.110
20.000
2.827
378.849
16.931
770.092
16625.000
8587.500
1.114
4770.590
3341.964
80.500
4.470
22.000
2.938
364.561
15.826
710.084
17000.000
5247.898
1.020
4526.195
3413.711
77.050
5.470
22.000
3.810
281.141
11.584
977.615
19000.000
8110.398
1.095
4369.523
3338.056
78.150
4.950
19.000
2.606
411.111
16.449
916.776
17350.000
** 6ASFO ON FAh HASTEWATFP FLOW ONLY
*** HASTING RATF IS CTMBINtO PR I HAP Y AND SECONDARY STP EiKS I tXCLUOIW; W "H R
-------
APPENDIX A
en
DATE
INFLUENT WASIEtitlCK.
FLOW RATEIOI ,HnB
B005.MG/L
BODS, SOL, MC./L
COD, HG/L
COD,SOL,MG/L
TSS.MG/L
V S S , MG/ L
NH3-N.MG/L
N03-N,MG/L
PH
ffELUfffl
BODS, HG/L
B005,SOL,HG/L
COO, HG/L
COO, SOL, HG/L
TSS, HG/L
VSS ,HG/L
NH3-N, HG/L
N03-N.HG/L
PH
TOTAL REHOVALS
6005 REMOVED,?
COD REMOVED,?
TSS REMOVED,?
fltOHASS LOADING
BOD5/OAY/HLVSS
ORGANIC. LOADING
LB BOD5/OAY/1000 FT3
VAPOR. PHASE DATA
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED ,LB/LB
AERATION BASIN DATA
MIXED LIQUOR
TSS, HG/L
VSS.MG/L
SVI ,ML/GTSS
ZSV,FT/HR
TEMPERATURE ,C **
DETENTION TIME,HD
FINAL SETTLER
OVERFLOW, GAL/FT2/ DAY
SOLIDS LOAD.LB/FTZ'DAY
SL UC£ f_H4ilE 0
SOLIDS HASTED, LB'HR
i£Iliaa_5UiCCE
FECYCLE TSS,MG/L
RECYCLE PATIO, (SOI
9/16/72
9.020
193.000
47.000
437.000
91.000
172.000
132.000
7.100
9.000
4.000
64.000
26.000
17.000
12.000
6.900
95.337
85.355
90.116
0.548
112.159
6202.098
0.891
4640. 094
3278.569
77.400
4.610
1.9.000
2.577
415.720
18.492
770.092
17250.000
19.734
9/17/72
9.060
210.000
47. DOO
443. 000
89.000
244.000
162.000
7.000
8.000
3.000
66.000
30.000
16.000
7.000
6.900
96.190
85.102
93.443
0.535
122.580
5725.000
0.741
5008.152
3670.623
76.650
3.890
21.000
2.565
417.563
19.874
522.561
18200.000
18.698
9/ 18/72
9.CUO
196.000
48.0^0
446.000
104.000
170.000
126.000
7.000
9.000
2.000
52.000
30.000
25.000
16.000
0.900
95.408
88.341
85.294
0.570
114.660
5725.000
0.798
4240.070
3225.039
78.400
5.180
21.000
2.560
418.485
16.818
875. 103
15613.00i)
18.3B1
9/ 19/ 72.
8.660
211.000
41.000
520.000
142.000
276.000
220.000
14. 230
0. 400
7.200
11.000
2.000
75.000
35.000
30. 000
16.000
14. 790
0. 100
7.000
94.787
85.577
69. 130
0.577
120.445
7633.297
1.020
4400. 984
3345.851
68.350
6.300
21.000
2.623
408.345
17.451
9 H 0 . 1 1 6
1 7 VS. T"P
21. 2H7
9/20/72
8.680
250.000
50.000
531.000
156.000
^24.000
146.000
7.200
12.000
2.000
90.000
43.000
44.000
22.000
7.000
95.200
83.051
80.357
0.774
139.806
8387.500
0.987
4154.621
2d94.706
82.300
4. 860
20.000
2.678
400.049
15.832
700. 08 3
^ 3U75. 000
18.975
9/21/72
8.980
227.000
58.000
570. 000
188.000
218.000
158.000
7.100
13.000
2.000
112.000
59.000
34.000
18.000
7.100
94.273
80.351
84.404
0.661
131.333
6011.199
0.743
4281. 809
3183.188
79.100
5.340
20.000
2.588
413.876
17.100
939. 278
16975.000
20.523
9/22/72
6.060
156.000
28.000
438.000
188.000
176.000
128.000
__
7.100
9.000
2.000
43.000
35.000
19.000
11.000
7.100
94.231
90.163
89.205
0.406
81.210
6202.098
1.240
4202.301
3192.903
83.900
4.030
20.000
2.876
372. ?96
15.066
1365. 161
16538. 000
20.260
9/23/72
6.700
170.000
35.000
44 3.000
79.000
162.000
132.000
__
7.200
10.000
2.000
75.000
36.000
19.000
16.000
6.900
94.118
83.070
88.272
0.478
95.288
4293.797
0.730
4224. 109
3192.777
76.800
5.020
21.000
2.671
400.971
15.997
554.233
1761 3. Pi"
17.96t
9/24/72
8.770
196.000
46.000
412.000
84.000
180. OOD
138.000
__
7.200
11.000
3.000
69. 003
34.000
20.000
8.000
7.100
94.388
83.252
88.889
0.548
110.746
6202.098
0.905
4215.547
3236.966
73.050
8.670
21.000
2.650
404. 198
15.946
735.087
17^66.110
16.887
W 25' 72
9.230
210.000
42.000
427.000
99.000
230.000
174.000
15.620
0.240
7.200
11.000
4.000
61.000
28.000
28.000
17.000
14.230
7.100
94.762
85.714
87.826
0.765
124.880
5725.000
0.740
3318.138
2549.779
75.050
8.280
20.000
2.518
425.398
12.857
857. (01
IBbOO.O^i
13.770
9/26/72
6.600
186.000
40.000
455.000
118.000
236.000
174.000
14. 790
0.230
7. 100
I'.OOO
2.000
71.000
27.000
31.000
20.000
14.510
0. 050
7. 100
94.086
84.396
86.664
0.629
103.058
9541. 699
1. 501
3397.315
2626.900
74.250
8.150
21.000
2.702
396.363
12.268
735.087
19688. 000
13.791
9/27/72
8.780
214.000
43.000
551.000
142. OGO
178.000
13 7.000
__
7. 100
14.000
5.000
47.000
31.000
27.000
19.0CO
7.300
93.458
91.470
84.831
0.691
121.054
5725.000
0.772
3621.240
2808.699
72.400
7.440
21.000
2.647
404.658
13.47 5
933. 443
19JOO.OOO
14.852
9/26/72
8.780
204.000
41.000
409.000
94.000
196.000
174.000
7.200
10.000
2.000
47.000
31.000
12.000
11.000
7.100
95.098
88.509
93.878
0.608
115.397
6679.199
0.928
3970.616
3040.908
71.650
5.830
21.000
2.647
404.658
14.847
670.913
16467.000
15.410
9/29/72
9.870
212.000
51.000
478.000
112.000
190.000
186.000
7.100
9.000
2.000
56.000
32.000
21.000
15.000
6.900
95.755
88.285
88.947
0.648
134.811
5725.000
0.676
370°. 184
3333.470
77.650
6.510
21.000
2.355
454.895
15.334
433.634
17463.000
13.506
BASFO ON PAW H&STfHiTFP FLOW ONLY
HASTING RATE 15 CC'MH 1 f'^i") PRIMARY AND SECONDARY S TR E AMS ( c XT
WF ]P LOSSES)
-------
APPENDIX A
ICy 1/72 1C'/ 2/72 10/ 3/72 1 u/ 4/7,! 1 O/ 5/72 1
617.781 1020.955 770.092 520.896 665.078 1102.632 1006.766
19938.OtO 13112.000 19825.000 17760.000 19240.000 21610.000 16925.000
14.298 14.891 14.546 14.321 14.788 15.554 14.553
933.444 700.034 583.403 500.059 1,61.746 536.730 770.092
15450.00« 16206.000 18750.000 16900.000 lSilO.000 17910.000 10240.000
13.662 16.513 15.736 17.720 19.169 17.535 14.923
** BASFO ON PAW MASTFWATER FLOW ONLY
*** WASTING FAT f$ COMBINED PRIMARY AND ^ECONPARY STREAM5(FXCLUDING HEIR LOSSES)
-------
APPENDIX A
en
DATF
1NFI UFKT UA-STFWATER
FIOK RATE(0),HGD
B005.HG/L
B005.SOL.HG/L
CTO.HG/L
CCO.SOL.HG/L
TSS.MG/L
VSS.KG/L
NH3-N.HG/L
N03-N.HG/L
PH
f££Lll£U
BOD5.HG/L
BOOS, SOL, HG/L
COO.HG/L
CCO,SOL,HG/L
TS S.HG/L
VS S.HG/L
NH3-N, HG/L
N03-N.MG/L
PH
TOTAL RFMOVAI S
8005 BEHOVED, *
COD REMOVED, Z
TSS REMOVED,*
BIDHASS LOADING
10/14/72
9.400
195.000
54.000
444.000
127.000
248.000
190.000
—
7. 100
10.000
2.000
56.000
28.000
25.000
16.000
—
6.900
94.872
87.387
89. 919
10/15/72
9.360
181.000
50.000
444.000
189.000
152.100
126.000
—
7.000
20.000
5.000
87.000
43. 000
20.000
16.000
—
6.800
88.950
BO. 405
86.842
10/16/72
9.430
183.000
47.000
370.000
63.000
200.000
158.000
—
7.200
11.000
3.000
59.000
31.000
22.000
2C.O")
—
7.000
93.989
84.054
69.000
lO'l7/72.
9.210
260.000
64.000
404.000
124.000
250.000
180.000
30.910
0.400
7.200
12.000
4.000
58.0CO
23.000
26.000
14.000
18.680
0.230
7.000
95.385
85. 644
69.600
10/18/77
9. 190
225.000
52.001
472.000
157.000
166.000
120.000
15.780
0.230
7.300
11.000
4.000
71.000
47.000
23.000
14.000
13.520
0.050
7.000
95.111
84.958
86.145
10/19/72
9.610
206.000
54.000
422.000
125.000
208.000
179.000
14.490
0.180
7.200
9.000
2.000
62.000
31.000
36.000
32.000
13.650
0.100
7.100
95.631
65.308
82.692
10/20/72
9.020
156.000
500.000
144.000
126.000
7.200
5.000
70.000
11.000
11.000
7.200
96.795
86.000
92.361
10/21/72
9.260
174.000
404.000
150.000
130.000
7.200
8.000
5 3. 000
9.000
9.000
__
7.000
95.402
65.644
94.000
10/22/72
8.980
151.000
18.000
281.000
78.000
136.000
113.000
_3
7.200
9.000
2.000
45.000
39.000
12.000
10.000
7.000
94.040
63.986
91.176
10/23/72
9. ISO
276.000
66.000
529.000
156.000
232.000
2G4.000
7.000
12.000
3.000
62.000
35.000
12.000
11.000
7.400
95.652
68. 280
94.826
10/24/72
8.960
190.000
34.000
435.000
124.000
190.000
152.000
20. 290
0.230
7.200
11.000
2.000
85.000
43.000
32.000
25.000
1 4. 490
7. 100
94.211
80.460
83.158
10/25/72
a.eto
2 17.000
48.000
441.000
91.000
212.000
169.000
7.100
10.000
2.000
53.000
23.000
17.000
14.000
7.100
95.392
87.962
91.981
10/26/72
8.560
179.000
56.000
342.000
92.000
170.000
130.000
7.100
12.000
3.000
51.000
23.000
26.000
20.000
—
6.900
93.296
85.068
63.529
10/27/72
7.960
178.000
48. 000
587.000
95.00C
198.000
164.000
—
7.000
11.000
2.000
71.000
36.000
35.000
29.000
—
6.900
93.820
67.905
62.323
B005/DAY/HLVSS
ORGANIC LflADlNG
LB BOD5/DAY/1000 FT3
VAPHR PHASF DATA
02 SUPPLIEP.FT3/HR
02 SUPPLIED/BCD aEMOVED,LB/LB
HIXED LIQUOR
TS S.HG/L
VSS,MG/L
SVI.ML'GTSS
ZSV.FT/HR
TEMPERATURE,C **
DETENTION TIME.HR
FINAL SFTTLER
OVERFLOW,GAL/FT2/04V
SOLIDS LOAD.LB/FT2/DAV
SLUDGE WASTED
**
SOLIDS WASTED,LB'HR
118.096 109.150 111.182 154.278 133.220 127.544 90.657
0.460 0.345 0,699 0.495 0.553 0.419 0.369
104.032 87.362 163.416 109.681 124.149 96.718 91.286
4293.797
0. 587
4254.668
3321.359
79.900
4.530
20.000
2.472
433.233
16. H60
6679.
1.
4502.
3451.
80.
4.
20.
2.
431.
13.
199
053
777
315
450
130
000
483
390
427
7633.
1.
3962.
3047.
81.
5.
17.
2.
434.
16.
297
129
956
613
850
270
000
465
616
539
10018.797
1.046
4171.957
3270. 102
86.300
4. 440
19.000
2.523
424.477
16.953
5725
0
4659
3585
88
3
18
2
423
19
.000
.696
. 14U
.161
. 100
.480
.000
.529
. 555
.572
5725.000
0.723
4092.275
3222.795
61.550
4.660
18.000
2.418
442.912
17.822
5247.
0.
4072.
3195.
62.
4.
19.
2.
415.
16.
898
918
971
534
950
060
000
577
720
988
9732.
1.
4437.
3475.
82.
3.
18.
2.
427.
18.
500
511
297
027
450
670
000
504
703
881
5725.000
1.066
5174.516
4055.496
83.300
3.200
20.000
2.588
413.876
21.557
8110.398
0.797
4773.887
3746.890
81.600
3.080
19.000
2.529
423.555
20.337
6679.199
0.993
4591.797
3552.011
76.050
4.200
19.000
2. 594
412.954
19. 116
7156.297
0.925
4627.043
3599.017
83.350
3.620
20.000
2.617
409.267
19.094
5438.797
0.904
4829.1*8
3780.013
92.000
3.410
20.000
2.715
394.519
19.579
5534.199
0.989
5 160.668
3966.300
90.250
5.790
20.000
2.920
366.866
19.923
939.279 700.083 630.075 733.838
6.773 525.062
933.445 775.926 665.079 735.087 816.764
895.940 612.573
RFTURN SLUDGE
RECYCLE TSS.HG'L 1455
RECYCLE RATIO, 1 %QI 1
«** WASTING PAT IS CnMPI".'tO P*M'<^Y A
C.01^ 15363.005 13950.
4.245 18.433 19.
N^ SFCONOflHY STREAMS)!
."0 15425.
. CI36 19.
rXCLI'n!tvG *
1TJ ^5510. 000
,566 23,874
<^I= |_USSCSI
15160.000
22.810
14720.000
25.310
14525.000 14725.
24.256 25.
000 16260.000
724 25.626
16420.
25.
100 15U10.000
915 25.935'
15060.000
28.353
15480.000
31.432
-------
APPENDIX A
10/2R/7? 1V.N/72 10/30/72 10/31/72 11/ 1/7? 1 I/ 2/72 11/ 3/72 1 \J V72 ll/ 5/72 ll/ 6/72 ll/ 7/72 11/ 8/72 1 I/ 9/72 11/10/72
cr>
o
— 1-*^*^
P005,fG/L ''
6T05 « SiL ,MG 'L
COD.MG.'L
COD, SOL, MG/L
TSS, MG/L
VSS.KG'L
NH3-N, HG/L
ND3-N, MG/L
PH
iELULhl
8005, MG/L
e005,SOL,MG'L
COD, MG/L
CCO, SOL, HG/L
TSS, MG/L
VSS, MG/L
NH3-N, MG/L
N03-N,MG/L
PH
!TAL FEMDVALS
Rro b c c^ OVE o , i
CCD PROVED, T
TSS REMOVED,?
161.
32.
422.
141.
324.
144.
—
—
7.
B.
2.
96.
55.
27.
13.
—
—
6.
79.
91.
000
009
000
000
000
000
000
000
000
000
000
000
000
800
621
667
191.000
37.000
364.000
95.000
152.010
116.000
—
—
7. 100
6.000
2.000
51.000
28.000
11.000
9.000
—
—
6.900
85.999
92.763
212.000
42.003
4(.7.000
109.000
240.009
168.000
—
—
7.000
7.000
2.000
62.000
43.000
30.000
24.000
—
—
6.800
86.724
87.500
176.000
45. 090
371.000
93.000
142.00-
129.000
--
--
6.900
9.000
2.000
54.000
27.000
40.000
34.090
—
—
6.603
85.445
71.831
176.000
45.009
J71.000
93.000
234.090
178.000
—
—
7.209
9.000
2.000
54.000
27.000
29.000
19 .000
—
—
6.900
85.445
87.607
1°6.000
49.000
508.000
77.000
192. OOC
152.000
- —
7.200
10.000
2.000
69.000
35.000
15.000
12.000
- —
—
7.000
86.417
92.188
190.000
--
492.000
—
178.090
161.000
—
—
7.200
10.000
—
79.000
—
19.000
17.000
—
—
7.000
83.943
89.326
195.000
—
472.000
--
190.000
138.000
—
—
6. 800
10.000
—
63.000
—
19.000
16.000
—
—
6.900
86.653
89.444
203.000
56.091
521.000
125.000
232.000
182.000
—
—
7.200
13.000
2.000
13.000
2.000
45.000
29.000
—
—
7.000
97.543
80.603
197.000
<. 7 . r.r 9
389.000
125.000
176.009
140.000
—
--
7.200
11.000
2.000
66.000
27.000
20.000
14.000
—
—
7.000
83.033
68.636
135.000
39. 000
395.000
126.000
178.000
162.000
—
—
7.300
11.000
4.000
63. 000
51.000
20.000
19.000
—
—
6.900
94.054
84.051
83.764
10.610
111.000
21.0CC
315.000
63.000
144.009
110.000
—
—
7.300
10.000
2.000
63.000
31.000
36.000
24.000
—
—
6.900
80.000
75.000
14F.OOC
2F..090
362.000
71.000
166.000
130.000
—
—
7.200
10.000
2.000
59.000
28.000
25.000
17.000
—
—
6.900
83I702
84.940
16". 000
-_
365.000
79.000
156.000
144.000
—
--
7.200
11.000
—
44.000
28.000
16.000
13.000
—
—
7.000
93 .452
87.945
89.744
6005/DAY/HLVSS
ORGANIC LOADING
LB BOD5/OAY/1000 FT?
VAPCR PHASF CATA
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOD REMOVED,L3/LB
AERATION BASIN DATA
MIXED LIQUOR
TSS,KG'L
VSS,MG/L
SVI.ML/GTSS
ZSV,FT/HP
TEMPFRATU^F,C **
£JN,AL ?f.IJ.l£E
OVFPFLTh,GAL/FT2,'OiY
SOLIDS LOAO,LB'FT2 CAY
0.574 0.419 0.344 0.327 0.366 0.465 0.473
107.117 99.355 66.732 81.076 9,1.281 116.807 111.028
111. til8 112.755 77.307 102.409
5725.000
0.857
3907.490
2989.443
73.600
5.790
21.000
2.279
470.104
18.297
6679.199
1.064
5152.898
3 rf 04. 09 3
85.60C
2.170
20.000
2.728
392.675
20.750
4770
0
5417
4C38
80
3
20
3
292
17
.797
.871
.113
.593
.650
.160
.009
.660
.663
.289
5152.500
1.025
5338.605
3978.522
82.700
3.065
20.909
3.251
329. 534
18.492
6297.500
1.113
5253.242
3^79.584
87.550
2.560
20.0CO
2.687
371.014
20.240
6679.199
0.922
5051.152
4024.527
76.500
4.030
20.000
2.513
426.320
21.416
5247.898
0.764
4627.703
3758.976
82.400
5.150
20.000
2.562
418.024
20.203
5725.000
0.614
4753.773
3624.605
81.300
5.850
20.000
2.574
416.181
19.901
5247
0
5095
3816
82
4
21
2
387
20
. 898
. 77 7
.176
.760
.400
.390
.000
.764
.696
.159
6297
0
4965
3716
79
4
20
2
496
20
.500
.913
.930
.773
.200
.060
.POO
.638
.041
.388
5725.000
0.826
4830.887
3657.589
20.000
2.457
435.999
20. 684
3616.699
0.830
2883.973
2250.861
75.150
10.600
20.000
2.150
498.219
13.312
5247.898
0.841
3433.686
2625.155
74.600
8.560
20.000
2.164
494.992
15.799
4770.797
0.767
3449.901
2648.356
72.400
8.500
19.000
2.462
435.077
14.213
SOLIDS HASTED, LR/HK
.
S'-CYCL": TSS.MG'L
»KYCLF RATIO, (SOI
655.911 1061.794 670.914 980.117 980.117 734.254 770.091
16690.000 17425.990 17112.000 16912.SOD 18075.000 17525.000 18087.500
24.412 2R.087 36.205 31.287 29.702 24.216 25.039
775.925 771.759 857.603 980.117 O63.413 770.092 781.926
15775.009 15637.500 17450.090 17037.509 10J25.0CO 17387.500 18187.500
25.637 27.467 26.288 22.653 15.717 16.099 18.273
** BASED CN1 PAH WflSTEHATER FLOW ONLY
*** WASTING RATE IS CCM8INFO PPTMA°Y AND SECONDARY STR E AMS < EXCLUDING
-------
APPENDIX A
11/11/72 11'
'72 11/13/72 11/14/72 11/15/72 11/16/72 11/17/72 11/18/72 11/19/72 11/20/72 11/21/72 11/22/72 11/23/72 11/24/72
u^ai^ou^!*
FLOW R AT EU>) ,HGO
BOD5,MG/L
BCD5, SOL »HG 'L
COD, HG/L
COO, SOL, HG/L
TSS.HG/L
VSS tHG/L
NH3-N.MG/L
N03-N, MG/L
PH
EEfLUEU
BP05.HG/L
BP05, SOL ,HG/L
COD, HG/L
COD, SOL, HG/L
TSS,HG/L
VSS, HG/L
NH3-N.MG/L
N03-N,MG/L
PH
JJllAI PEHDVALS
BOD5 REMOVED,*
COD PEMCVEO,%
TSS REMOVED, %
9. 6?0
140.000
367.000
97.000
140.000
104.000
7.300
10.000
54.000
46.000
16.000
11.000
0.900
92.857
85. 2fi6
88.571
9. 870
1 39.000
26.000
474.000
190.000
1 94 .OtO
120.000
__
7.200
10.000
2.000
87.000
59. 000
22.000
16.000
7.000
92. 806
81.646
88.660
9.530
176.000
41.0"0
439.0f,0
94.000
184.000
152.000
7.200
9.000
2.000
63.000
43.000
13.000
11.000
__
7.100
94.886
65.649
92.935
10. 700
111.000
13.000
287.000
64. 000
154.000
112.000
—
7.300
9.000
2.000
56. 000
36.000
15.000
12.000
—
6.900
91.892
80.488
90.260
10.630
122.000
28.000
299.000
63.000
124.000
108.000
14.000
0.180
7.200
10.000
2.000
59.000
12.000
19.000
17.000
11.500
0.400
6.900
91.603
80.268
84.677
9. 190
1 16. 000
25.000
267.000
48.000
112.000
82.000
12.600
0.230
7.300
9.000
2.000
64.000
20.000
18.000
15.000
14.600
0.400
6.900
92.241
77.700
83.929
8.820
113.000
—
220.000
—
98.000
98.000
—
7.300
10.000
51.000
21.000
18.000
—
7.000
91. 150
76.618
76.571
8.740
123.000
—
332.000
—
148.000
120.000
7.200
12.000
67.000
22.000
19.000
6.900
90. 244
79.619
65.135
10.
115.
23.
378.
47.
232.
148.
__
7.
12.
3.
51.
20.
15.
14.
__
6.
89.
660
000
013
000
000
0"0
000
200
000
000
000
000
000
000
100
504
534
1 1.830
120.000
25.000
222.000
32.00')
136.000
120.000
__
7.000
6.000
2.000
40.000
24.000
8.000
8.000
6.700
95.000
i I. '-,-.?
94.118
11.020
152.000
40.000
267.000
31.000
140.000
106.000
13.700
0.200
7.000
9.000
2.000
40.000
12.000
9.000
3.000
11. 500
0. 300
6.800
94.079
85.019
93.571
10.430
175.000
49.000
383.000
128.000
132. OCO
112.000
7.100
10.000
2.000
52.000
36.000
19.000
16.000
7.000
94. 266
86.423
85.606
9.590
215.000
63.000
376.000
118.000
168.000
136.000
7.000
10.000
3.000
35.000
27.000
lfc.000
15.000
7.300
95.349
90.691
91.489
9.850
230.000
54.000
474.000
174.000
208.000
176.000
7.200
15.000
3.000
51.000
36.000
20.000
19.000
6.900
93.478
89.240
90.385
B005/DAY/MLVSS
0.486 0.511
LB BOD5/DAY/1000 FT3
Y_flPnR PHASE DAI.A
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOO REMOVED,LB/L6
/ifRATinN BASIN DATA
MIXED LIQUOR
TSS,MG/L
VSS,MG/L
SVI,ML/GTSS
ZSV.FT'HR
TEKPFP.ATUPE.C *«
DETENTION TIME,HR
8.390 108.063
91.461 107.919 117.596 132.840 145.960
OVERFLOW,GAL/FT2/DAY
SOLIDS LOAD,L6/FT2/OAY
6202. 098
1. 177
3691. 182
2866. 171
74.750
6.515
20.000
2.413
443.634
1 5. 4M
0.
3673.
2773.
74.
8.
20.
2.
454.
15.
,797
,801
, 186
,686
.000
590
000
355
895
820
1
3636
2834
73
7
19
2
439
1 5
. 199
.000
.237
.012
.050
.420
.000
. 4 ?9
.2, 5
.2(,0
4961.
1.
3243.
2505.
65.
11.
19.
2.
493.
15.
699
084
226
505
050
450
000
172
149
188
3816.
0.
JU57.
67.
10.
18.
2.
14.
699
.767
.453
.256
,800
.950
.000
. 1B6
239
5247.
1.
J609.
2725.
70.
8.
19.
2.
42:.
14.
89P
209
793
bOO
510
000
529
555
980
4293.
1.
3977.
3009.
70.
8.
19.
2.
406.
15.
797
127
469
015
700
000
000
635
502
866
5247.
1.
4585,
3471,
73.
5.
2.
402.
IP.
^
,74<
.76'
,4C"
560
OOD
4b7
4102.
0.
5175.
75.
1 °.
2.
500.
23.
893
674
S59
-»73
700
7oO
000
140
523
345
4770
0
3662
2754
64
9
18
1
545
19
.797
.846
.403
.736
.200
.360
.003
.965
.229
.053
3816
0
3872
2946
69
7
19
2
5:7
18
. 699
.577
.466
.172
.350
.660
.000
. 109
. B97
. 835
4293
0
3922
2948
67
7
19
2
480
18.
.797
.595
.730
.755
.850
.880
.000
.228
.705
.092
4293.797
0.521
4695.391
3610.592
71.200
6.710
19.000
2.423
441.990
19.974
3816.699
0.431
4525.984
3400.552
69.700
5.815
18.000
2.360
453.973
19.372
SOLIDS WASTED,LB/HR
fFTURM SLUDGE
PfCYCLE TSS.MG'L
RECYCLE RATIO,(ZQI
662.579 1102.631
tT/'.S^i ^"'137.5)0 19612.501 2^555.000 idtO^.QOO 16062.500 17025.000
17.871 l'J.257 1^.3Vv M.607 IS.730 22. 394 22.562
945. 112 775.926 1073.462 466.722 983.868 1541.851 1430.170
17950.00"*' 168?5.01^ 195?5.nr;0 18337.50C J7y37.5Ci Ic5?7.500 1S537.500
25.000 12.551 14.172 19.610 19.837 20.209 17.756
HflSFO ON RAW WASTEHATER FLOW 'If L Y
* WiSTlNG PATE IS COMBINED PM^fi^Y
' 1 t.r, w[ IP LUSS^S )
-------
APPENDIX A
11/25/72 11/26/7,' \l/27/l2 ll/2j/72 11/29/7? 11/30/7? 1 2/ 1/72
IV 4/72 I//
6772 12/ 7/72 12/ 8/72
FL1H PATFIOJ.NGD
RC 15 , MG/L
Br'05,SOL .MG/L
Cri,MG/L
COO, SOL, MG/L
TSS,MG/L
VSS.MG/L
NH3-N, MG/L
NC3-N.MG/L
PH
EmuitL'1
6005, MG/L
60D5, SOL, MG/L
COD, MG/L
COO, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N. MG/L
N03-N, MG/L
PH
Rt]D5 RFMOVED,?
COD PCMCVEO,%
TSS FFMOVEO,?
9.
212.
54.
540.
143.
228.
166.
—
—
7.
13.
4.
64.
48.
35.
28.
—
-f t
93.
68.
84.
670
000
000
000
000
000
000
200
000
000
000
000
000
000
100
866
143
649
12.
135.
—
287.
—
182.
110.
—
6.
18.
—
71.
—
28.
21.
—
—
86.
75.
84.
090
000
000
100
000
900
000
030
000
010
900
667
261
615
9.
159.
31.
333.
48.
126.
102.
—
—
7.
16.
4 .
36.
32.
20.
17.
—
~
69.
69.
84.
7'/0
000
013
000
000
000
000
000
000
001
r1 J
003
000
010
900
537
1P9
127
9.4^0
174. 001
41.001
472.000
79.000
224. 10A
184. 000
--
--
7. 101
21.000
6. 000
91. 000
67.000
42.000
40.000.
_-
—
87.931
"0.720
11.250
9.210
111, 000
2 1 . 1 r "J
j 16,000
95.000
i?0 . Oni
8fl . Onn
12.600
1.250
7. 200
24.000
4.000
103.00 1
67. 000
39.000
29.000
14.600
0.100
78. 378
67.405
67. 500
1C.460
162. 100
26.000
362.000
94.000
210.000
202.000
—
—
7.100
25.000
5.000
1 10.000
51.000
45.000
37.000
—
—
84.568
6<=.613
78.571
10.420
105.000
--
277.000
--
122.000
98.000
—
--
7. 100
11. 000
__
50.000
--
23.000
19.000
—
6 . 900
89. 524
81.949
81.146
9. 340
145. 000
—
323. OOC
—
160. 01C
134.000
—
—
7. 100
10.000
—
60.20C
—
17.000
15.000
—
—
93. 102
81.362
89.375
1 74.
26.
406.
62.
15i.
144.
—
—
7.
9.
3.
62.
27.
12.
12.
—
—
94.
84.
92.
131
111
-33
100
111
noo
300
000
000
111
000
000
010
828
721
105
t.'. vO
It 7.0'JO
38.1-1^
375.000
125.000
152. "10
116.000
—
—
7.200
10.000
3.000
70.000
59.000
14.000
12.000
—
7.100
94.012
6 1.333
90.789
8.060
153.000
33. COO
354.000
97. 000
180.000
144.000
14.600
0.500
7.200
9. 000
3.000
44.000
28.000
23.000
18.000
23.000
0.200
7.100
94.118
87.571
87.222
8.4bO
157.000
43.001
320.000
64.000
142.000
126.000
—
—
7. 100
10.000
3.000
52.000
40.000
18.000
15.000
--
~
93.631
83.750
87.324
8.500
140.000
34.000
411.000
95.000
172.000
150.000
—
—
7.100
10.000
2.000
55.000
20.000
14.000
13.000
—
7.100
92.857
66.616
91.660
6.460
123.000
35. OOC
252.000
63.000
152.001
140.000
—
—
7.100
6.000
3.000
43.000
16.000
16.000
16.000
—
6. 900
93.496
62.936
69.474
BCD5/DAY/HLVSS
-LOifliafi
Lti BOD5/DAY/JOOO FT3
UAPC1R PHASE DATA
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOO REMOVED ,LB/L,B
AERATION BASIN DATA
MIXED LIQUOR
TSS.MG/L
VSS.MG/L
SV1.ML/GTSS
ZSV.FT/HR
TEMPERATURE,C **
DETENTION TIME,HR
13U79 105.155 100.288 105.714 65.865 109.174 70.490
67.254 105.041 96.297
nvFPFLOH,GAL/FT2/DAY
SOLIDS LTAD,LB/FT2/DAY
4293.797
0.534
4691.500
3551.296
72.400
5.215
18.000
2.403
445.677
19.626
4770
0
4772
3479
38
4
18
1
557
24
.797
.807
.426
.976
.500
.560
.000
.922
.212
.567
3816. c°9
0.652
5323.270
3860. 164
29.000
4.950
18.000
2.374
451.208
22. 303
3616.699
0.633
5696.258
4131.051
30.150
6. 800
18.000
2.465
434.616
22.346
3dl6.699
1.139
6219.414
4^05.629
26.900
5.890
18.000
2.523
424.477
23.659
4770.797
0.799
6498.473
4754.957
54.950
6.335
17.000
2.222
482.087
28.490
4770.
1.
5661.
4163.
57.
6.
17.
2.
480.
25.
797
169
340
324
200
175
000
230
244
537
4102. B98
0.776
6023.766
4428. 547
18.000
2.486
430.468
24.571
4293.797
0.667
5913. 648
4357.875
69.550
3.695
17.000
2.480
431.651
23.876
4770.797
0.812
5897. 5P2
4360. 594
56.050
5.040
16.000
2.597
412.493
22.914
4293.797
0.685
6020.387
4488.156
60.300
4.470
18.000
2.684
371.475
21.311
3.J39.600
0.641
6191.344
4568.766
66.100
3.060
16.000
2.741
390. 6?2
22.837
4293.797
0.933
5960.977
4459.359
65-050
3.'B10
17.000
2.734
391.754
21.660
4770.797
1.177
5429.436
4049.061
57.200
5.510
17.000
2.747
389.910
18.705
SOLIDS HASTED, LB/HR
RfcCYCLF TSS.MG/l
RECYCLE PATIO,(?QI
466.722 840.100 443.386 770.092 641.743 641.743
20437.500 19162.510 2G675.C1? 21612.530 26762.500 23300.000 23400.000
17.239 15.385 16.445 12.736 11.933 13.585 17.313
500.050 437.552 O30.075 670.914 700.083 665.079 672.663
19812.500 21387.51C 19875.000 23350.001 22o75.000 20125.000 21737.500
18.351 16.766 17.S42 19.020 17.877 16.918 10.355
*» P4SF" CN tJu HASTEHATER FLOW ONLY
aa* ACTING pftTE IS COMBINED PRIMARY ANP SFCON1AHY
S INCLUDING KFIP LLIiSFSI
-------
APPENDIX A
12/ 9/72 12MO/72 12/11'72 12/17/72 12/13/72. 12/14/72 12/15/72
12/16/7? 12/17/72
12/19/72 12/20/72 12/21/72 12/22/72
CO
^^1^
FLOW RATF IQI f*GD
BODStMG/L
6rD5iSOLi^G L
COO.KG/L
CCO.SOl.KG/L
T^S.HG/L
VSS.HG'L
NH3-N,Hf,/L
NC3-N.MG/L
PH
EiEiUfMI
6005, HG/L
8005, SOL, MG/L
COO,HG/L
COO,SOL,NG/L
TSS,MG/L
VSS.PG/L
NH3-N.HG/L
N03-KiHG/L
PH
BC05 REHOVEO,*
CPD REMOVED, »
TSS REMOVED,!
fljnMASS IDADISG
B005/DAY/HL VSS
(]Rf:AN^ ( HADING
IB B005/DAY/1000 FT3
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOO REMOVED ,LB/L(
flFPftTltlN FI'SIN OATA
MIXFD LIOUOR
TSS MG /L
SVlifL'GTSS
ZSV, FT/HP
TFf PERATUSF ,C *"
DETENTION TIWFiHR
f_I£J£J S.E.IILIE
rvF6FLOU,G«L/FT2/DAY
SPL IPS Lnr,LB'FT2/DAY
SLMMf hflSItD
SOLIDS HASTED, LB/HR
pFTURN SLUDGE
PECYCLF TSS.KG/L
PECYCLF RiT in, (SOI
11.600
87.000
21.000
125.000
47.000
52.000
32.000
7.100
9.000
2.000
39.000
39.000
15.000
14.000
7.000
89.655
68.800
71.154
0.346
65.020
4770.797
) 1.265
4052.052
2994.620
49.625
10. 160
17.000
2.004
534.629
18.226
620.490
22137.500
5.095
OMY
1 0. 910
63.000
21.000
207.000
112.000
94.000
86.000
7.100
6.000
2.000
48.000
28.000
19.000
17.000
—
0.900
90.361
76.912
79. 767
0.33 1
58.715
4293.797
1.256
38 16.644
2840.020
50.450
9.465
16.000
2.117
506. 053
16.o31
1312.656
29125.000
7. 550
10.690
130.000
27.000
309.000
66.000
120.000
118.000
—
—
7. 100
10.000
1.000
42.000
27.000
17.000
16.000
—
—
7.100
92.30d
86.40S
85.633
0.391
89.535
5725.000
1.075
4904.133
3674.529
51.650
7.750
16.000
2.174
492. 6BU
22.134
396.714
21100.000
14.415
' A-' 1 f-l'ili
9.580
102.000
23.000
267.000
79.000
110.000
94.000
12.600
7.100
7.000
2.000
43.000
31.000
15.000
14.000
12.600
—
7.000
93.137
83.695
86. 364
0.257
62.956
4770.797
1.262
5218.391
3922.396
56. 350
7. 105
16.000
2.426
441.529
21.582
H 75. 104
2100. 000
16.994
'] IN'. UEIP
9.330
97.000
20.000
^83.000
95.000
122.000
104.000
—
—
7.200
8.000
1.000
43.000
47.000
10.000
9.000
—
—
7.000
91.753
84.606
91.803
0.224
5,6.307
4075.398
1.356
5557.570
4169.719
56.750
5.800
16.000
2.491
430. OC7
22.249
700.084
17950.000
16.281
LOSSESI
9.680
160. 000
30.000
352.000
96.000
178.000
129.000
—
—
7.200
9.000
2.000
48.000
40.000
19.000
1.000
—
—
6.900
94.375
86.364
89.326
0.394
99.785
4560.000
0.757
5446.207
4064. 120
59.900
5.605
15.000
2.401
446. 138
22.291
816.764
19987.500
14.587
9.760
104.000
—
223.000
—
118.000
102.000
—
—
7.100
4.000
—
20.000
—
3.000
3.000
—
—
7.000
96.154
91.031
97.458
0.267
65.530
3816.699
0.940
5268.496
3934.190
60. 150
5.945
16.000
2.376
450.747
21.457
612.573
21687.500
12.853
10.980
90.000
—
175.000
—
80.000
74.000
—
—
7.100
7.000
—
24.000
—
11.000
9.000
—
—
6. BOO
92.222
86.286
66.25C
0.283
63.667
3816.699
1.009
4846.039
3603.779
56.200
8.220
16.000
2.117
506.053
22.006
750.923
18712.500
12.076
10.140
133.000
36.000
320.000
112.000
124.000
108.000
—
—
7.100
10.000
2.000
52.000
28.000
18.000
13.000
—
7.000
92.411
63.750
85.484
0.404
86.B88
9541.699
1.842
4612.281
3447.209
57.850
8.400
16.000
2.292
467.339
19.748
700.083
17800.000
14.428
9.670
143.000
38.000
316.000
126.000
144.000
124.000
—
—
7.100
9.000
2.000
51.000
12.000
20.000
16.000
—
6.700
93.706
63.S61
86.111
0.370
69.091
4293.797
0.798
5119.133
3654.698
55.600
6.435
16.000
2.403
445.677
20.348
933.445
18825.00'*
10.010
182.000
36.000
266.000
52.000
178.000
164.000
31.400
0.100
7.200
14.000
3,000
63.000
8.000
26.000
24.000
12.000
0. 200
6.800
92.308
77.972
85.393
0.468
117.375
4293.797
0.617
5188.852
3856.236
58.500
6.580
15.000
2.322
461.347
22.119
933.445
18375.000
15.405
9.510
175.000
37.000
JOO.OOO
111.000
202.000
122.000
7.100
7.000
2.000
43.000
36.000
28.000
10.000
^
7.200
96.000
85.667
86.139
0.407
107.223
3U16.699
0.575
5525.574
4.-21.441
59.350
5.555
16.000
2.444
438.303
21.085
816.763
9.220 9.600
164.000 90.000
38.000 20.000
329.000 220.000
188.000 76.000
144.000 722.000
668.000
— __
7.200 7.100
31.000 6.000
7.000 3.000
98.000 47.000
67.000 35.000
35.000 25.000
11.000
6.500 7.000
81.098 91.111
70.213 78.636
75.694 96.537
0.450 0.426
97.419 55.665
4484.598 4293.797
0.884 1.31P
4706.930 2805.342
3473.609 2095.273
59.300 57.700
7.430 1.375
15.000 15.000
2.521 2.421
424. 9?7 442.451
19.806 10.782
495.892 650.911
16267.500 15862.500 13575.000
8.738 23.677 8.500
-------
APPENDIX A
out
1NFL LIFNT WASTEWATER
FLflH RATE<0>,MGO
BPD5.MG/L
BC'D5,SOL,HG/L
COD.MG/L
COD,SOL,MG/L
TSS.MG/l
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
EFFLUENT
B005.MG/L
B005, SOL ,HG/L
COD.MG/L
COD.SOL.MG/L
TSS.MG/L
VSS.KG/L
NH3-N.MG/L
N03-N.MG/L
PH
TflTAL REMOVALS
BGD5 REMOVED, I
COO REMOVED.*
TSS REMOVED, *
12/23/72
9.420
110.000
32.000
234.000
93.000
91.000
64.000
—
—
7.100
7.000
7.000
27.000
4.000
11.000
11.000
—
—
7.000
93.636
86.462
87.912
12/24/72
9.560
110.000
—
286.000
—
146.000
98.000
—
—
—
9.000
—
52.000
—
27.000
14.000
—
—
—
91.818
81.618
81.507
12/25/72
9.600
143.000
—
286.000
—
152.000
136.000
—
—
7. 100
8.000
—
44.000
—
17.000
15.000
—
—
6.900
94.406
84.615
86.816
12/26/72
9. 520
137.000
22.000
316.000
111. 000
140. 000
126.000
—
—
7.200
6.000
2.000
36.000
32.000
8.000
7.000
—
—
6.900
95.620
88.608
94.286
12/27/72
9. 530
115.000
19.000
299.000
63.000
144.000
106.000
—
—
7. 200
7.000
1.000
51.000
20.000
22.000
15.000
—
—
6.900
93.913
82.943
84.722
12/2S/7?
„
132.700
27.000
332.000
1 10.000
150.000
120.000
—
—
7. 100
5.000
3.000
47.000
40.000
16.000
13.000
—
—
7.000
96.232
85.643
89.333
1 2/29/72
9.620
110.000
—
331.000
—
144.000
122.000
—
—
7.100
7.000
—
51.000
—
25.000
15.000
—
—
6.900
93.636
84.592
82.639
12/30/72
9. 580
143. 000
—
345.000
—
148.000
144.000
—
—
7. 100
8.000
—
5 1.000
—
13.000
13.000
—
--
7.000
94.406
85.217
91.216
12/31/72
9. 640
151.000
—
329.000
—
109.000
98.000
—
—
7.200
7.000
—
43.101
—
4. 000
3.000
—
—
7.100
95. 364
86.930
96.330
I/ 1/73
9.680
136.000
35.000
344.000
78.000
134.000
94.000
—
—
7.100
e.ooo
2.000
55.000
23.000
14.000
9.000
—
—
6.900
94.118
84.012
89.552
I/ 2/73
9.420
150.000
11.000
341.000
78.000
129.000
1 15.000
—
—
r.300
49.000
4.000
149.010
46. 000
100.000
90-C'OO
—
—
7.000
67.333
56.305
22.481
I/ 3/73
9.550
153.000
36.000
321.000
76.000
120.000
102.000
—
—
7.200
1 1.000
3.000
46.000
34.000
11.000
e.oco
—
—
7.000
92.810
85.670
90. 833
I/ 4/73
9.650
132.000
22.000
288.000
61.000
128.000
102.000
—
—
7.100
15.000
2.000
57.000
27.000
32.000
19.000
—
—
7.100
88.636
80,208
75.000
I/ 5/73
9. 700
133. JOO
26.00H
314.000
94.000
112.000
68.000
—
__
7.100
12.000
4.000
59.000
31.000
15.000
10.000
—
—
7.000
90.977
81.210
86.607
B1QHASS LOADING
BOD5/OAY/ML VSS
PRGANlf, LOADING
LB BfD5/DAY/1000 FT3
VAPOR PHASE DA7A
D2 SUPPL IED,FT3/HR
02 SUPPLIED/BOD REMOVED ,LB/LB
AERAT IPN BASIN DATA
MIXED LIOUOP
TSS.MG/L
VSS.MG/L
SVF.CL'GTSS
ZSV.FT/HR
TEMPERATURE, C **
DETENTION TIME.HR
flNAL SETTLER
OVERFLnw,GAL/FT2/DAY
SOLIDS LOAD,L8/FT2/OAV
SLUDGF HASTED
***
SOLIDS HASTED, LB/HR
RETURN SLUDGE
RECYCLE TSS.MG'L
RECYCLC PtTIP, ( SQ)
66.760 67.752 88.446 84.029
4770.797 4007.500 3339.600 4389.199
1.168 1.003 0.621 0.648
3816,693
O.M93
4770.797
9657.742
3912.100
0.954
0.422 0.448
88.262 95.729
4198.297 2862.500
0.782 0.487
5725.000
1.113
3339.600
0.845
4484.596
0.799
4770.797
1.021
4770.797
0.982
3737.999
2669.794
54.900
9.630
15.000
2.467
434.155
14.626
4459.297
3344.070
57.400
6.695
15.000
2.431
440.608
17.962
4342.523
3273.956
—
—
16.000
2.421
442.451
17.416
4435.637
3385.455
57. 200
8. 665
16. 000
2.4', 1
438. 764
17.630
4195.162
3<;14.t-22
62.850
8. 290
16.00C-
2.43«
4?9.T2'i
16.546
4506.676
3431.932
64.900
8.060
14.000
2.932
4156.586
3201.455
62.950
8.330
15.000
2.416
443.373
17.530
4446.688
3352.638
61.800
6.570
16.000
2.426
441.529
18.776
4326.414
3421.198
64.750
6.830
16.000
2.362
453.512
ly .62 1
4494.836
3345.373
68.550
5.610
16.000
2.401
446.138
19.329
4452.180
3348. 166
67.100
5.900
16.000
2.467
434.155
18. 504
2975.502
2187.762
58.250
9.600
15.000
2.434
440. 147
12.385
1530.391
1220.314
61.200
37.400
15.000
2.408
444.755
6.803
2170.501
1649.396
63.400
21.000
15.000
2.396
447.060
9.414
550.065 450.054 595.071 420.050 a!6.764 775.928
15475.000 13925.000 1255C.OOO 14625.000
12.569 14.164 13.229 13.141
.3950.000 13637.500
12.141
14287.500
18.605
735.067 700.083 700.083 857.603 y!6.776
1Z550.00'' 14625.000 17975.000 15260.000 6880.000
19.447 13.537 20.3V3 19.565 18.115
7638.000
24.839
6963.000
21.175
iW WASTEHATER FLOW
ftT? IS COMBINED PR
ONLY
IMASY AND SECONOSRY STREABSI EXCLUDING WEIR
-------
APPENDIX A
I/ 6/73 I/ 7/73 I/ 8/7-i I/ 9/73 1/10/73 1/11/73 1/12/73 1/13/73 l/l',/73 1/15/73 1/16/7'. 1/17/73 1/18/73 1/19/73
CTl
FLPU P4TEIOI ,«GD
BOD5,SOL,"G/L
COD, MG/L
COD, SOL, MG/L
TSS , MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
£££U1£UI
B005.MG/L
BOD5, SOL, MG/L
CPD, MG/L
CCO, SOL, MG/L
TSS , MG/L
VSS,MG/L
NH3-N.MG/L
NP3-N,MG/L
PH
HU_ai PE.M.QV6LS
BODS REMOVED,?
COD PEMOVED,?
TSS PFMOVED.t
ptflHJSS LOMJIMG.
BC05/PAY/^L VSS
9.
147.
35.
312.
62.
128.
94.
7.
12.
5.
62.
27.
18.
8.
7.
9 1.
80.
85.
0.
600
000
000
000
000
000
000
100
000
000
000
000
000
000
000
837
128
938
715
9.090
214.000
47.000
390.000
94.000
168.000
122.000
7. 100
14.000
3.000
59.000
31.000
24.000
10.000
7.000
93.458
84.872
87.234
O.B47
8.
238.
46.
374.
125.
214.
12d.
7.
14.
2.
62.
3 1 .
36.
11.
—
7.
94.
83.
83.
0.
b 30
OuiJ
000
Ofl J
C'C'1
000
200
000
000
000
000
000
000
100
118
422
178
898
8.570
1B5.000
44. 000
406. 000
141.000
158.000
1 38. 000
7.400
12.000
3.000
47. 003
12.000
14.000
13.000
—
0.900
93.514
68.424
91. 139
0.630
8.320
186.000
148.000
379.000
76.000
162.000
134. ODO
—
7. 100
1 1 .003
"i . 0 D 0
67.000
16.000
17.000
14. OCO
—
6.900
94. 149
82.322
69.506
0.611
8.260
200.000
45.000
425.000
126.000
154.000
132.000
12.300
7.200
11.000
4.000
67.000
28.000
67.000
28.000
12.000
6.800
94.500
84.235
56.493
0.567
7.960
200.000
453.000
212.000
186.000
—
7.100
8.000
62.000
14.000
12.000
—
7.000
96.000
86.313
93.39t
0.500
200.000
470.000
222. OOC
178.000
—
7.200
10.000
63.000
16.000
13.000
6.900
95.000
86.596
92.793
0.454
8. 200
160.000
470.010
1 36.000
116.000
—
7.100
9.000
71.000
8.000
6.000
7. 100
94.375
84.894
94. 118
0.449
C . 17 0
17C.OOO
53.05/DAY/1000 FT3
90.920 125.328 135.397 102, 147 1O0.775 106.434 102.569
84.529 89.483 107.493 64.067 84.769 113.966
H2 SUPPLIFOtFTS/HR
02 SUPPLIED/BOO REMOVFD, IB'LP
HIXFD LIOUOP
TSS.^G/L
VSS.HG/1
SVI ,^L/GTSS
I SV,f T/HP
Tf MPFPATUPF .C **
DFTENTION T!MC,HP
FIHtL SETTLE?
OVEPFLOW»G£L'FT2/oav
SCLIDS LOao.LB'FTZ/nsY
4770.797
0. 890
2640.227
2036.897
63.250
9.410
15.000
2.421
442.451
10.392
4770.
0.
3041.
2370.
63.
9.
15.
2 .
418.
12.
797
634
823
517
750
280
000
55 7
946
079
4293.
0.
3077.
2415.
69.
8.
14.
2.
4C6.
12.
797
526
255
574
150
060
OPO
6^2
963
054
4293.
0.
3273.
2597.
66.
8.
15.
2 .
394.
11.
797
700
755
439
950
740
OOT
712
983
625
4293
0
3247
2645
70
8
14
2
j>83
10
.797
.707
.354
.099
.600
.320
.000
.793
.458
.629
6202.098
0.963
3699.008
3007.579
67.600
7.690
14.000
2.814
380.692
12.768
4293.797
0.681
3972.938
3265.319
65.550
6.580
14.000
2.920
366. 866
14.015
4770.797
0.802
3892.596
3454.612
68.300
6.210
14.000
3. 062
349.813
13.271
-:
3436.324
3014.703
66.600
8.140
14.000
2.834
377.927
1 2. 494
3339.600
0.614
3539.678
2913.021
68.300
7.750
15.000
2.845
376. 544
12.606
4293. 797
0.653
4005.631
3300.764
70.000
6.540
15.000
2.953
362.718
14. 066
4293. 797
1. 148
3676.756
3020.535
62.350
7.230
15.000
2.571
•.16.641
15.284
4293.
0.
3214.
2974.
88.
6.
15.
409.
10.
797
640
935
961
950
210
000
728
546
4770.797
0.684
3567.107
3067.588
73.500
6.530
1 5 . 00 0
429.085
12.255
SOLIDS HJSTED.LB/HP
BFTURN SLUDGE
RECYCLE TSS.MG'L
PEC YCL F PAT IP, [ TO)
TO.C""'" 9^00.'"HO 937e>.r'rJ 11 112. C"! 1
11.115 1ft.3H3 20. 215 12. ^87
525.062 221.693
25."HO 1290C.OOO 12450.000 13 887. Onn J 1 ^75. 000 14800.DOT 14800.000 15712.OCO 12338.000 14900.000
6.611 13.245 20.100 21.726 20.159 20.000 20.915 18.1b6
4W WiSTFWiTFR FLO^ ONLY
XC LUPINf, WF 11=1
-------
APPENDIX A
cr>
DaTf
JNFLUEM HAETrhATER
FLTW f iT r 1 L 1 .CGD
B n n t , *• c. .' L
ROC5 , rrH ,MG/L
COO.PG'L
CDO.SDL.MG'L
T S S , MG ' L
VSS.MG/L
NH3-N, MG/L
N03-N, MG/L
PH
BOD5, MG/L
B005, SOL ,MG/L
COD.MG'L
COD, SOL, MG/L
TSS.MG'L
VSS.MG/L
NH3-N, MG/L
N03-N.HG/L
PH
BC05 REMOVED,?
COD REMOVED, %
TSS REMOVED,?
BlfiyASS LOADING
BOD5/D1Y/MLVSS
OpGANIC LO.AD.irJG
LB BOD5/OAY/1000 FT3
VAPOR PHASE DATA
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED, LB/LB
AFSATICT BASIN DATA
MIXFO LIOUOR
TSS, MG/L
VSS.KG/L
SVI.ML'GTSS
ZSV.FT/HR
TEMPERATURE ,C **
OFTFMTION TIME.HR
EWi. SETTIEE
OVERFLOW, GAL/FT2/OAY
SOLIDS LOAD.LB/FT2/DAY
1/20/7J
9.530
313.000
51.000
470.000
47.000
268.000
252.000
—
—
7.100
9.000
3.000
27.000
8.000
13.000
13.000
—
—
6.900
97. 125
95. 14<=
1.007
192.180
3816. 699
0.318
3818.385
3059.162
69.950
6.080
15.000
2.439
439.225
13.428
1/21/73
•). 4oO
194. 000
44.010
462.000
90.000
140.100
1 1 0.000
13.800
—
7.200
10.000
3.000
56.010
40.000
9.000
4.000
11.700
—
7.000
94. 845
93.571
0.594
118.240
3816.699
0.530
390-3.922
3192.062
74.950
5.250
15.000
2.457
435.999
13.628
I/ 22/73
9.790
160.000
40.000
349.000
127.000
172.000
138.000
—
--
7.000
8.000
4.000
40.000
28.000
10.000
7.000
—
—
6.900
95.000
94. 186
0.451
100.919
3816.699
0.622
4416.739
3586.362
92.000
1.910
14.000
2.374
451.208
15.963
1/21'73
12.880
140.000
36. 000
348.000
63.000
144.000
130.000
14. 500
—
"
8.000
3.000
47.000
36.000
12.000
10.000
—
—
"
94.286
91.667
0.652
116.176
—
3526. 182
2857.796
—
—
2.900
1.804
593.622
16.759
1/24/73
8.410
155.000
46.000
418.000
129.000
132.000
110.000
12.200
—
7.200
1 1.000
3.000
60.000
36.000
11.000
8.000
1 1.900
—
7.201
92.903
91.667
0.422
83.964
4293.797
0.904
3964.552
Jl.8a.929
73.150
5.730
—
2.764
387.606
12.303
1/25/73
£.320
15t.OOO
35.000
387.000
145.000
166.000
132.000
—
—
7.200
6.000
2.000
52.000
44.000
12.000
8.000
—
—
7.000
94. 872
92.771
0.394
83.622
3816.699
0.752
4275.055
3398.089
73.300
4,190
14.000
2.793
383.458
13.125
l/26'73
9.450
153.000
—
365. 000
—
206.000
148.000
—
—
7.100
8.000
—
48.000
—
15.000
14.000
—
—
7.100
94.771
92.718
0.455
93.152
3816.699
0.675
4059.885
3284.579
72.150
5.040
14.000
2.459
435.538
18.115
1/27/7J
9. 570
148.000
—
364.000
—
224.000
172.000
—
—
7.100
8.000
—
47.000
—
18.000
16.000
—
—
7.000
94.595
87. 088
01.964
0.574
91.253
3816.699
0.726
2892.176
2548. 1B1
67.450
10.030
2.429
441.069
11.456
1/20/73
0.620
1 1.000
0.000
3 4.000
5.000
156.300
100.000
—
--
7.100
10.000
4.000
51.001
36.000
14.000
3.000
—
—
7. 200
93.377
85.989
91.026
0.459
103.317
3530.398
0.572
4310.098
3605.997
77.300
4.460
14.000
2.188
489.462
20.138
1/^/73
10.960
105.000
16.000
234.000
70.000
144.000
108.000
--
—
7.200
14.000
2.000
59.000
43.000
29.000
19.001
—
—
7.200
66.667
74.786
79.661
0.493
74.143
4293.797
1.051
3155.996
2412.795
66.050
9.320
12.000
2.121
505.132
15.142
1/30/73
9.310
115.000
25.000
252.000
126.000
118.000
98. 000
—
—
7.000
9.000
2.000
55.000
28.000
21.000
13. 000
—
—
o. 800
92.174
76 . 175
82.203
0.345
68.979
4293.797
1.059
4094.339
3203.827
68.450
6.320
13.000
2.496
429.085
16.933
1/31/73
9.360
120,000
27.000
282.000
78.000
114. OCO
86.000
—
—
7.000
6.000
2.000
43.000
20.000
10.000
4.000
—
—
6.900
95.000
84.752
91.226
0.437
72.365
4770.797
1.086
3402.781
2656.867
62.650
7.880
13.000
2.483
431.390
13.794
2/ 1/73
9.150
133.000
37.000
314.000
94.000
100. OOC
56.000
—
—
7.300
8.000
3.000
43.000
27.000
6. 000
1.000
—
—
7.000
93.985
86.306
94.000
0.435
78.405
6202.098
1.320
3042.807
2891.545
66.850
71050
13.000
2.540
421.711
15.238
21 2/73
11.560
64.000
16.000
142.000
95.000
93.000
90.000
--
--
7. 100
6.000
2.000
32.000
6.000
6.000
1.000
—
—
6.900
92.857
77. 465
93.548
0.396
62.562
3816.699
1.030
3337.427
2531.528
63.050
8.460
13.000
2.010
532.785
16.190
SOLIDS bASTED,LB/HR
RETURN SHJDO,C
OECYCLE TSS,MG/L
RECYCLE RATIO,(»OI
840.933 787.594 670.913 1260.150 1102.632 1120.134 933.444
14475.000 15425.000 15940.000 17525.000 16151.000 16812.000 39725.000
27.958
980.117 933.444 675.104 735.087 630.075
17913.OOC 17200.100 17688.000 17750.000 16625.000 19025.000 17012.500
12.164 19.228 16.631 20.387 17.372 17.443 13,720
** BASFD ON RAH WASTFWATFP FLOW ONLY
*** WASTING F-ATT IS COMBINED PRIMARY AND SECONDARY STP EAMS t EXCLUDING HEIR LOSSES)
-------
APPENDIX A
2/ 3/71 2/ 4/7
2/ 7/73 2/ 8/73 2/ 9/73
2/10/73 2/11/73 2/12/73 2/13/73 2/14/73 2/15/73
cr>
^^MI^
FLOW R»'FIOI,'"^r
B005,"f.,'L
60(15, SiL.KG'L
CCFI.MG 'L
COntS^t , MG/L
TSS.MG'L
VSStPG 'L
NH3-I* , «G/L
PH
tlfUJEJil
BOD5.HG/L
BOD5,SOL,HG/L
CCO.HG/L
COO,SOL,HG/L
TSS,"G/L
VSS,HG/L
NH3-N.HG/L
N03-NiMG/L
PH
ICl/jl REMOVALS
BOD5 REMOVED, «
CHD PfWOVEO,!
TSS REMOVED, t
MC"5' .yTyss
flPfiANIC LQ/rPIHG
LB 6005/OAY/1000 FT3
02 SUPPLIED. FTVHS
02 SUPPLIED/BOD R EMQVED ,LB/L8
AFRfUIDN ^*MN DATA
MIXED LIQUOR
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV, FT'HP
TEMPERATURE , C **
DETENTION TJHE.HR
FI*.AL SETTLER
OVERFLOW, GiL/FTp/DAY
SPLIPS LOflD.LB'FTZ 'DAY
* * *
££JUB£L_ilUDiF
pFCYCLr TS^.FG'L
PFCYCL c PAT 10, ( *0)
9. 290
104. 000
32. 000
220.000
142. 000
70.000
51.000
7.000
9.000
2.000
12.000
a. ooo
7.000
6.000
6.700
91.346
94.545
90. 000
0.340
62.247
3339. 600
0. 924
3767. 146
2933.461
67.050
6.810
12.000
2.502
428.164
15.365
19662.50"
18.977
nuLY
1 3. 161
101.000
32.000
23D.OOO
77.000
94.000
57.000
—
7.000
7.000
2.000
51.010
34.100
3.010
3.011
__
1.000
93.069
78.261
96.809
0. 300
66. 113
' 4293.797
1.094
4570.254
3531.921
73.650
3.940
13.000
2.288
468. 26 1
19.900
770. 092
2t'33 7.5J1
Ib. 142
6 .660
120.000
2 1.000
306.000
48.000
122.001
112.000
—
7.100
6.000
2.000
20.000
12.000
7.000
7.000
—
__
7.000
95.000
93.464
94.262
0.336
66.953
4293.797
1.055
4195.273
3191. P63
66.550
5. 190
14.000
2.684
399. 12M
15.690
1 20 7 . 64 4
1 H OK 7. 100
17.032
9.270
93.000
23.010
220.000
63.000
60.000
60.000
9.700
0.300
7.100
11.000
3.000
51.000
24.000
8.000
8.000
9. 600
0.700
7. 100
an. 172
76.818
86.667
0.259
55,544
3625.799
1. 165
4559.871
3436. 626
64.900
4.710
12.100
2.507
427.242
17.778
700 .083
17575.000
13.981
9.300
143.000
35.001
265.000
62.000
1 14.000
100.000
--
—
7.200
8.000
2.000
39.000
19.000
24.000
11.000
—
—
7.300
94.406
85.2B3
78.947
0.445
,85.682
3816.699
0.742
3938.732
3U86.576
69.200
5.870
12.001
2.499
428.625
15.015
a 3 7 . 60 1
18712.500
11.086
1 0.220
1 18.100
29.000
2 79.000
—
134.000
80.000
—
—
7.000
2.000
50.000
—
19.000
6.000
—
—
~~
94.068
82.079
85.821
0.406
77.697
3339.600
0.716
3985.429
3063.875
67.650
6.090
13.000
2.274
471.026
17.383
775. 926
19487.500
15.656
10.220
109.000
—
279.000
—
99.000
98.000
—
—
7.000
6.000
--
54.000
—
11.000
10.000
—
—
6.900
94.495
80.645
88.889
0.349
71.771
3339.600
0.775
4366.191
3293.755
63.850
5.160
12.000
2.274
471.026
18.565
793.429
18662.500
12.750
9.910
127.000
—
327.000
—
160.000
108.000
—
—
7.200
6.000
—
43.000
—
12.000
2.000
—
—
6.800
95.276
86.850
92.500
0.361
81.087
4314.758
3600.250
69.000
5.260
12.000
2.345
456.739
17.856
816.764
17412.500
13.169
9.420
120.000
26.000
?40.000
62.000
136.000
100.010
—
—
7.000
3.000
46.000
31.000
9.000
3.000
—
—
94.167
86.471
93.382
0.329
72.829
—
4451.785
3548.659
—
—
12.000
2.467
434.155
17.758
396.714
17237.500
14.756
9.050
140.000
39.001
340.001
62.000
144.000
124.000
—
—
7.000
6.000
3.000
39.000
27.000
3.000
3.000
6. BOO
95.714
88.529
97.917
0.430
61.630
2862.500
0.574
4018.574
3041.605
—
5.240
13.000
2.568
417.102
15.394
945. 1 1 3
16337.500 1
14.707
8.410 8.520 8.420 8.740
133.000 119.000 144.000 120.000
35.000 33.000 34.000
258.000 286.000 387.000 320.000
97.000 80.000 81.000
138.000 146.000 164.000 130.000
118.000 108.000 132.000 102.000
13.200
0.410
7.000 7.200 7.000 7.100
6.000 9.000 7.000 8.000
3.000 3.000 2.000
41.000 32.000 48.000 52.000
32.000 40.000 16.000
5.000 16.000 14.000 23.000
2.000 6.000 11.001 14.000
13.500
0.600
7.100 7.000 7.000 7.000
95.489 92.437 95.139 93.333
84.496 88.8B9 87.597 83.750
96.377 89.041 91.463 82.308
0.332 0.312 0.349 0.398
72.064 65.322 78.117 47.572
4293.797 6011.297 2767.100 3816.699
0.982 1.561 0.586 0.949
4545.113 4357.793 4683.008 3538.312
3477.573 3351.856 3586.947 2722.567
69.150 66.800 64.950 61.950
4.300 5.430 5.600 7.590
12.000 13.000 12.000 13.000
2.764 2.728 2.760 2.659
387.606 392.675 388.066 402.815
16.426 15.936 16.914 13.166
1458.507 040.100 1050.124 840.100
7262.500 16312.500 .18212.500 18262.500
16.468 16.315 16.247 15.549
rj u c AMS ( f XCLUDING WEIR LOSSFS)
-------
00
APPENDIX A
DftTE
1NFL UFNT WASTf h/JTr p
FLOW
-------
APPENDIX A
V 5/71 3/ 6/73 3/ 7/73 3/ fl/77. ',/ v/7 )
-VH/73 i/12'73 3/13/73 3/14/73 3/15/73 3/16/73
cr>
FLCW RATEIOI ,»
BOP5,MG/L
BrD5,SOl,«G'L
COO.NG/L
COO, SQL, MG/L
TSS.HG/L
VSS.HG/L
NH3-N.MG/L
N03-N,«G/L
PH
B005.HG/L
BOD5.SOL,HG'L
COO,MG/L
COO, SOL, MG/L
TSS.HG/L
VSS.MG/L
NH3-N, MG/L
N03-N,MG/L
PH
8Cn5 REMOVED, %
CCO fcE^OVED,?
TSS PEMTVED,;
BCD5/DSY/ML VSS
ORGANIC LOADING
LB BfDS/DAY'lOOO FT3
VAPCR PHASE .rtTA
02 SUP»LIFO, FT3/HR
02 SUPHIFO'BOP P EMOVED ,L9/LB
AEEAIiCUJASIM-flAlA
MIXED L10UOP
TSS ,NG/L
VSS.HG/L
SVI ,CL/C.TS<
ZSV.FTVHf
TCP PFRATUf- F ,C °*
_
-.aoi
10.240
107.000
--
323.000
110.000
102.000
—
7. 100
9.000
53.000
a. ooo
7.000
~~
—
6.900
91.589
83.591
92.727
0.287
70. 592
4770.797
1.157
4569.953
3945 .565
61.650
4.462
13.000
2.270
471. 94fl
21.530
942.612
IB POO. 100
10.430
144.000
—
36B.OOO
170.000
118.000
—
7.000
8.000
52.000
1 1.000
6.000
—
—
6.701
94. 444
85. 870
93.52C
0.346
4293.797
0.734
5215.793
4478. 1 Oc
65.000
3.980
14.000
2.22R
4'1 0.705
22.9H
1 155. 1'7
19712.50L
10.250
165.000
40.030
384.000
144.000
144.000
122.000
--
—
l>.900
11.000
3.000
63.010
48.000
13.000
1 5.030
--
—
7.000
93.939
82.292
90.972
0.403
108 . 96 3
5247.898
0.804
5252. 793
4332 . 906
65. 100
4.475
13.000
2.267
472.409
22.775
886. 773
H-.12.513
10.520
155.000
38.000
348.000
95.000
154.000
116.000
12.000
0.053
6.900
6.000
3.000
47.000
16.000
8.000
3.000
10.300
0.050
6.700
96.129
8 6 . 4 94
94.805
0.433
105.055
5725.000
0.886
4904.457
3892. 387
62.500
4.775
14.000
2.209
484.653
21.753
840. 100
U075.-11
14.259
10.070
177.000
37.000
423.000
94.000
19'J.OOO
136.000
13. 800
6.900
12.000
4.000
59.000
31.000
17.000
6.000
12.900
7.000
93.220
86.052
91.053
0.451
114.835
5534.199
0.608
5273. 655
4192. 614
61.950
4. 155
14.000
2.308
464. 113
22.905
942.195
9.910 10.070 10.440
185.000 193.000 145.000
35.000 46.000 —
267.000 453.000 321.000
125.000 125.000 209.000
126.003 198.000 168.000
102.000 150.000 108.000
—
6.900 6.900 7.100
9.000 10.000 7.000
3.000 3.000
35.000 59.000 64.000
24.000 39.000 56.000
10.000 21.000 14.000
6.000 12.000 3. OOC
6.900 6.800 7.000
95.135 94.819 95.172
86.891 86.976 80.062
92.063 89.394 91.667
0.445 0.461 0.396
118.118 125.215 97.530
4770.797 4770.797 4770.797
0.663 0.628 0.800
3310.371 5571.109 5060.215
4t.52.160 4356.285 3950.180
62.150 66.550 60.950
4.235 4.065 4.470
14.000 14.000 15.000
2.345 2.308 2.226
456.739 464.113 481.166
24.555 24.196 22.758
V42.196 933.445 828.849
19487.500 19262.500 16787.500 16687.500
16.882 21.857 16.882 16.284
-------
APPENDIX A
3/24/73 3/25/73 3.T6/73 3/27/73
M ~)H F flT E(O) ,HGD
o in^jKf.,' L
[*°05. SOL tHG/L
Cr D . MG' I
CQO, SUL, MG/L
TSS.HG/L
VSS ,MG'L
NH3-r., MP./L
N03-N.MG/L
PH
^^"r-'L
RPP5 , SOL ,MG 'L
CPD ,MC/L
fPD,SOL,MG/L
TSS,«G/L
VSS, Wl
NH3-r>.', MG/L
N03-N.MG/L
PH
R005 REMOVED,?
CPD PFMOVED.t
TSS REMOVED,?
BIOMASS LOADING
9GD 5/0 AY/ML VSS
ORGANIC LOADING
IB BPH5/Df Y/ > IPO FT3
P2 SOPPL IEP,FT3'HR
n2 SUOPLIEO-'BGO R EMOVED ,Lfl/LB
AERATION BASIN DATA
"IXFD LIOUOR
•VSS,"G/L
VSS.MG/L
SVI.KL/GTSS
ZSV, FT/MB
OFTENTIP": T]HF,HB
SOLIDS LOAD.L8/FT2/DAY
17}. Qr_V
'•O'.OOO
--
1'4.000
96.000
—
—
6. 700
9.000
—
52.000
—
7.000
--
—
—
6.901
87.065
95. °77
0.475
112.68<;
5725. 000
0. 830
5041.512
3838.580
57.200
4.350
2.279
22.13R
145.000
33.000
336.030
160.000
1 38.000
112.000
12.500
--
6.900
6. 000
3. 000
60.030
45. 000
11.000
6.000
12. 600
0.500
6.700
H2.143
92. 029
0.387
101.267
4770. 797
0.782
5597.625
4198.066
70. 500
2.345
2.144
25.902
10.490
175.000
41.000
402.000
209.000
162.000
112.000
--
—
7.100
21 .000
3.000
76.000
40.000
15.000
13.000
—
—
7.100
81.095
90.741
0.467
118.273
4770.797
0.716
5266.555
4062.890
63.450
4.740 '
2.216
23.699
10.44'-
162.000
38.01-,
416.030
64.000
173.000
134.003
—
--
6. 900
10.000
3.000
64. 000
48.000
13.000
8.000
—
—
6. BOO
84.615
92.697
0.437
108.965
3616.699
0.583
5209.223
3995.665
65.300
4.310
2.226
23.336
13. 760
IS 3.000
31. 3"3
jb 1.000
1 12.000
174.000
120.000
11.500
--
7.000
10.000
3.000
60.000
36.000
20.000
8.000
10.300
—
7.000
93.333
82.906
88.506
0.521
105.986
4770.797
0.768
4131.563
3196.642
58.000
6.920
2.160
19.226
1C. 500
160.000
35.000
315.000
79.000
182.000
126.000
—
—
7.000
8.000
3.000
55.000
39.000
20.000
11.000
—
— -
7,000
62.540
89.011
108. 23b
4293.797
0.652
4095.005
3168.956
56.050
7.580
2^213
18.435
10.540
124.000
—
395. 000
—
170.000
116.000
—
--
7.200
15.000
—
75.000
--
22.000
14.000
—
—
7.200
81.013
87.059
0.369
84.204
4293.797
0.906
4707.813
3654.560
63.250
3.690
2.205
21.263
10. 16P
170. OOP
—
316. OOP
—
162.000
126.000
—
—
r.200
9.000
—
47.000
—
11.000
9.000
—
—
7. 10P
85. 127
93.210
111.279
770.797
0.707
4190. 90t
3234. 44^
57.000
6.830
2.288
18.341
9.610
224.000
51 .000
455.000
157.000
192.000
172.000
15.000
—
7. 100
10.000
4.000
63.000
43.000
11.000
5.000
15.000
—
7.100
86.154
94.271
139.699
4293.797
0.503
4244.559
3339.447
56.050
6.980
2.401
17.824
10.903
140.000
30.030
249.000
62.000
112. COO
90.0CO
_-
--
7.100
9.000
3.000
54.000
i5.000
10.000
7.000
—
--
7. 100
78.313
91.071
98.316
*293.797
0.727
3756.838
2919.989
56.550
7.920
2.132
17.477
9.980
166.000
34.003
395.000
79.000
150.000
130.000
—
—
7. 100
7.000
3.000
51.000
36.000
10.000
9.000
—
—
7.100
87.089
93.333
106.736
4293.797
0.656
4064.943
3189.217
51.100
7.660
2.:-29
17.606
9.900
154.000
34.000
411.000
79.000
156. OOC
130.000
--
--
7.100
8.000
3.000
51.000
36.000
5.000
5.000
—
—
7. 100
87.591
96. 795
98.226
6488.297
1.085
4t83.613
3333.649
51.600
7.760
2.349
456.278
IS. 336
10.460
140.000
31 .010
329.000
78.000
148.000
126.000
14.300
0.200
7.100
6.000
2.000
55JOOO
31.000
10.000
10.000
11.600
0. 160
7.200
83.263
93.243
94.346
4293.797
0.740
4062.40.6
3190.456,
51.050
7.800"
2.222
16.078
10.460
130.000
26.000
266.000
63.000
148.000
124.000
—
—
7.000
2.000
2.000
47.000
39.000
9.000
2.000
—
—
7.100
62.443
93.919
87.776
4293.797
0.77*
4134.070
3251.967
50.050
7.700
2.218
IB. 580
RETURN SLUDGE
RECYCLE TSS,MG/L
"FCYCIF RATIO,1SQ1
16025.00? 18225.003 1755''.003 17412.530
I6.6t,7 15.6S3 16.206 16.234
^45.114 886.773
0151.003 17750.000 20237.500
15.799 16.190 16.129
788.010 466.721 972.616 930.116 892.606 735.087 69*.250
18562.5CC 16725.030 16287.5CO 21553.000 16750.000 20825.000 19750.000
16.732 17.562 15.596 17.034 17.172 15.296 16.221
•* BASED CN FAK HASTEHATES FLOW ONLY
*»* CASTING RATE IS COMBINED PRIMARY AND SECONDARY STR 5AMS ( CXCLI'OIN(', WCIR
-------
APPENDIX A
J/31/73 4/ 1/73 4/ 2/73 4/ 3/73 4' 4/73 4/ 5/73 4/ 6/73
4/ 7/73 4/ fi/1 I './ 9/7i 4/10/73 4V1I/7) 4/l?/73 4/13/73
INHUmi-WilJ-WIte.
FLOW FATF(Ol,^GO
8HD5 , MG ' L
6005 i SOL i Mli /L
COO, HG/L
COO,SOL,MC./L
TSS, MG/L
VSS, MG/L
NH3-N, MG/L
N03-N.MG/L
PH
FFFI Uf NT
6.005, MG/L
6005, SOL, MG/l
COD.MG/L
TC^'MP/I'
VSS, MG/L
NH3-N»MG/L
PH
IpTfll REMOVALS
6005 PFMOVEO,*
COO REMOVED, t
TSS PEMOVFO.t
6IOM/ISS LMD1MO.
6005/OAY/ML VSS
DfiGJlUC_L.a6CJ.;iC
LB RCFJ5/DAY/ 1010 FT3
VAED£_EbASf_L^I^
02 SUPPL IFD,FT3'HR
02 SUPPLtFO/BOn REMfwro ,lH/Lrt
AERATIPN BASIN — D AT A.
M 1 XCD L ! OUOfl
TSS, MG/L
VSS, HG/L
SVI,HL/GTSS
ZSV, FT/HP
TEMPERAT IJC F , f ••
DETENT ION T IMF ,Hn
FINJI SETTIFP
OVEPFLOW,CAL'FTt''r| '
SOL IDS L HAD , L I-, f T .' ' i A r
SLL)pGF HASTEO
SOL IDS WASTFF'.L H/HH
FT
PFCYCLF TSS,M(,/L
RECYCLE PAT in, ( IQI
**» HA'TINH fATt IS ClJMHINFI) PR 1
10.740
126.000
25.000
298.000
78.000
170.000
135.000
7.100
9.000
3.000
59.000
51.000
20. 000
16.000
—
o.ooc.
80. 201
0. 461
88.570
4770. 7s 1
0.902
4613.477
307n.n04
4 9. 400
7. 120
1 5.000
.'.164
4V4 .99,'
2 \ . 1 7 H
695.08"*
IBM 2.50H
1-..B2"
M AfJ Y ANO jt (
11.310
109. 000
1 9.000
267.000
47.000
140.000
92.000
7. 000
6.000
2. 000
2 7.010
24.000
U. .000
7.000
—
7. 100
89. fl M •<
0 . 4 1' 4
4 770. 648
0. 990
4135. 176
2'I99.376
50. ",00
d. 100
15.0J3
2.055
•j.M.263
19. 852
420. 049
2.'41 ?. 50 J
15.011
10.660
110.000
21.000
250.000
55.000
1 1 4.000
66.000
7.000
5.000
2.000
39.000
35.000
1 1.000
2.000
--
7.000
H4.400
0. 196
75. 54 8
4770. 64R
1.030
4007.302
3041.058
49.550
8.370
1 5.000
2.180
4', 1.305
1 H. 35 1
595.070
19475.0 00
16.417
10. 480
1 31.000
J l.OH
250.000
94. 000
90.010
76.000
12. 600
0. <'00
7. 100
6.000
2. 000
4 3. UOO
»5. 000
3.000
1.000
10. 600
0. 400
6. 90Q
H2. floo
0.424
86.451
4 770. 848
0.863
4398. 680
3347. 173
51.250
7.025
1 4.000
2.216
483. 000
19.770
991.783
20125. 0"1
16. 221
()':l)ASY S Tu : AMM F XCLUniN'. H c 1 "
11. A, i
1 19.000
21.K 0
J26. 000
I.1 4. UOO
l.'ll.OOO
106. 000
7.000
7.000
2.0OO
50.000
43.000
1 l.OOU
9.000
—
7.000
84.663
91. 406
0.424
8,6. 329
4866.270
0.933
4192.805
J262.477
49.650
6.650
15.000
2.064
516.958
20.051
030.075
<;Uo25.000
15.098
LOjSESI
1 0. '»70
1 12.000
2H.OOO
2 19.000
143.000
iin.ooo
04. 000
7.000
6.000
2.000
40.000
32.000
5.000
4.000
—
7.000
94 .643
83.264
0.407
76.272
3816.680
0.826
3697.956
3000.705
49.200
10.550
14.000
2.199
467.157
17.649
945.111
20362.500
16.083
10. 720
129.000
--
253.000
128.000
104.000
7. 100
6.000
32.000
11.000
4.000
—
7.000
95 . 349
67.352
0.465
89. 095
3816.660
0.702
3960.622
3066.926
51.950
9.560
14.000
2.168
494.070
18.152
793.427
21162.500
15.858
1 0. ?liO
12 5. 000
/4.000
26 3. 000
51.000
140.000
120.000
7.000
7.000
2.000
! I. 000
16.000
6.000
4.000
—
7.000
89.046
95.714
0.471
4293. 756
0. 65K
3695.755
2606.090
53.500
9.460
15.000
2.267
472.409
16.297
735.067
18025.0 i'
10.770
134.000
25.000
331.000
173.000
1 34.000
100.000
12. 100
0.200
7.000
6.000
3.000
55.010
47.000
14.000
7.000
10.600
0.300
7.000
95.522
63.384
89.552
0.528
92 . 98 0
4464.598
0.766
3662.935
2821.340
53.650
8.670
15.000
2.158
496.375
16.855
350.042
161 10. 110
10.340
134.000
37.0C'0
211 ?.nOO
7U.OC 0
146.00,3
i; 2.003
7.100
6.000
2.000
39.000
35.000
5.000
4.000
—
6.900
95.522
P6. 170
96.575
0.471
69.266
3816.680
0.697
3946.394
3040.347
50.500
9.055
15.000
2.248
476.557
17.533
945.112
19550.000
1! .',<>.)
lOIi.noj
l'>. ''0"
24'J. 000
93.000
102. 000
86.000
7. 000
9.000
2.000
47.000
39.000
11.000
7.000
—
6.800
91 . 000
81. 124
B9 . 2 1 6
0.424
74.092
3623.636
2603.905
50.450
6.995
14.000
2.021
530.020
17.651
1039. 290
20387. 500
10. (.40 11.860
120.000 127.000
8.000 12.000
265.000 26b.OOO
109.000 60.000
144.0^0 136.000
124.000 120.000
12.300 12.900
C.600
7.000 7.200
7.000 1 1.000
2.000 4.000
39.000 44.000
35.000 36.000
9.000 10.000
8.000 1C. 000
11.200 10.100
0.400
6.900 7.000
94.167 91.339
65.263 64.722
93.750 92.647
0.454 0.579
82.261 97.042
iul6.660 3339.600
0.770 0.569
3783.000 3446.834
2905.191 2666.603
49.650 50.350
9.195 10.555
14.000 14.000
2.184 1.960
490.364 546.611
17.226 17.257
991.784 1050.124
19987.500 17050.000
12.260
132.000
26.000
323.000
65.000
132.000
100.000
13.200
0.400
7.100
10.000
5.000
60.0CO
48.000
10.000
6.000
11.200
0. 300
6.900
92.424
61.424
92.424
0.637
104.434
4770.648
0.770
3329.881
2626.579
52.400
11.000
15.000
1.693
565.969
17. 178
793.427
17025. 003
-------
APPENDIX A
ro
FIPU 0£TF(Q),M
flno5,MG/L
BC'P5,snL .MG/L
COD,MG/L
COD.SOL.CG/L
TSS.MG/L
VSS.MG/L
NH3-N.MG/L
N03-N,MG/L
PH
EJE_EJ.U£M
BOD5.MG/L
6CD5,SPL,MG/L
Crtl,MG/l
COD,SPL,MG/L
TSS.MC'L
VSS,MG/L
NH3-N,MG/L
N03-N.MG/L
PH
6005 REMOVED,*
COD BEHOVED, %
TSS REMOVED,*
B005/DAY/HLVSS
ORGANIC LOADING
LB BC05/DAY/1000 FT2
VAPOR PH£SE CtTA
4/14/73
12.700
115.000
27.000
319.000
96.000
128.000
100.000
—
—
7.000
9.000
3.000
48.000
36.000
9.000
9.000
—
—
6.900
92.174
84.953
92.969
4/15/73
13.500
129.000
25.000
351.000
143.000
122.030
112.000
11.600
0.200
7.100
7.000
3.000
44.000
40.000
5.000
5.000
9.300
0.300
7.100
94. 574
87.464
95.902
4/16/73
12.760
143.000
30.000
239.000
96.000
116.000
106.000
—
—
7.100
7.000
2.000
24.000
24.000
6.000
6.000
—
—
6.900
95. 105
89.958
94.828
4/17/73
12.510
160.000
24.000
328.000
47.000
126.000
106.000
12.600
0.500
7.000
18.000
5.000
55.000
27.000
31.000
26.000
12.900
0.400
6.200
88.750
83.232
75.397
4 1 1 8 ,' 7 3
13.060
142.000
28.000
358.000
109.000
114.000
96.000
15.800
0.100
7.000
8.000
3.000
62.000
43.000
7.000
6.000
12.300
0.200
7.100
94.366
82.682
93.860
4/ 19/73
13.060
138.000
31.000
341.000
62.000
120.000
108.000
14.900
0.600
7.100
11.000
4.000
47.000
31.000
9.000
8.000
13.900
0.500
7.000
92.029
86.217
92.500
4/20/73
13.690
122.000
25.000
375.000
74.000
138.000
114.000
—
—
7.100
8.000
3.000
62.000
31.000
16.000
10.000
—
—
7.000
93.443
83.467
68.406
4/21/73
13.090
138.000
33.000
341.000
81.000
120.000
108.000
—
—
7.100
11.000
2.000
54.000
31.000
16.000
7.000
—
—
6.900
92.029
84.164
86.667
4/22/73
12.550
130.000
25.000
308.000
62.000
132.000
112.000
13.200
0.200
7.100
9.000
3.000
54.000
23.000
9.000
6.000
12.100
0.500
6.900
93.077
82.468
93.182
4/23/73
12.750
168.000
41.000
462.000
eo.ooo
158.000
134.000
14.400
0.200
7.000
11.000
4.000
80.000
36.000
10.000
7.000
12.600
0.100
7.200
93.452
82.684
93.671
4/24/73
13.550
168.000
32. 000
346.000
31.000
182.000
134.000
16.700
0.800
7.100
13.000
5.000
67. 000
35.000
26.000
14.000
13.200
0.700
7.000
92.262
80.636
85.714
4/25/73
12.710
154.000
36.000
360.000
109.000
150.000
140.000
18.600
0.200
7.300
11.000
3.000
63.000
35.000
14.000
13.000
13.600
0.200
6.900
92.857
82.500
90.667
4/26/73
12.520
136.000
25.000
342.000
94.000
164.000
134.000
16.600
0.200
7.200
14.000
13.000
71.000
35.000
29.000
17.000
14.400
0.400
7.100
89.706
79.240
82.317
4/27/73
11.810
108.000
22.000
253.000
95.000
114.000
90.000
11.600
0.800
7.300
10.000
3.000
51.000
36.000
21.000
14.000
10.500
0.900
7.000
90.741
79.84;
81.579
94.096 112.201 117.560 128.958 i!9.482 116.116 107.605
116.38? 105.113
02 SUPPL IFD,F^3 'HP
02 SUPPLIED/BC'f « EM.OVED ,LB/LB
AFRAT10N BASIN DATA
MIXED LIOUPP
TSS, G'L
VSS, G'L
SVI, L/GTSS
ZSV, T'HC
DETE TION TIME, HP
FINAL SETTLEP
OVERFLOW, GAL/FT2/DAY
SOLIDS LOAO,LB'FT2/OAY
.MJLU3£E_HASIED
***
SOLIDS MASTED, LB/HP
B-F.ULB.tLil.UBCE
RFCYCLF TSS.MG'L
OFCYCLF RATIO, i«oi
** BA5EP PN "A* hAST;WATER FLOW
4770.848
0.856
3610.696
2938.741
51.450
8.405
1.830
585.326
20.249
775.925
17487.50"
13.3B6
ONLY
4770.848
0.700
3896.355
3029.721
54.800
8.495
1.722
622.197
21.865
18325.000
12.593
5247.938
0.731
3645.500
2884.189
52.000
9.205
1.621
588.091
19.452
17562.500
13.323
5247.938
0.711
3883.641
3065.992
50.000
8.960
1.858
576.569
20.364
17400.000
13.589
4770.848
0.657
3e90. 385
3J56. 310
51.300
7.630
16 .000
1.780
t.01.918
21.189
iBzOO. 000
13.017
3625.850
0.526
3733.434
2955.056
53.000
9.085
1.780
601 .918
20.334
17567.500
13.017
4484. 598
0.692
3756.625
2994.116
52.150
10.750
1.698
630. 954
21.334
19875.000
12.418
5247.938
0.760
4015.791
3349.431
52.600
8.030
1.775
603.3^1
21.916
630.074
18050. 0"0
12.987
5725.
0.
4422.
3656.
53.
7.
16 .
1.
578.
23.
816.
20575.
11.
020
908
363
772
700
270
000
852
413
254
76 3
546
5915.848
0.709
3328.601
2696.004
53.650
7.905
1.623
587.631
17.750
840. 100
22200.000
13.333
5247.938
0.600
4262.922
3399. 324
52.850
6.905
1.715
624.501
23.989
20050.000
12.546
5247.938
0.695
4554.992
3592.276
56.400
5.745
1.829
585.787
24.221
<.JJ87.500
13.375
7156.277
1.128
4282.004
3378.656
54.000
6.760
16. 000
1.656
577.030
22.469
700. 083
20387.500
13.578
5725.020
1.195
3819.845
3009.034
53.300
7.565
1.968
544.307
19.043
22700.000
14.395
-------
APPENDIX A
4/28/73 4/?«'73 4/30/73 5/ l/?3
5/ 3/73 5' 4/73
7/73 ^1 8/73
i> 9/73 5/10/73 5/11/73
CO
FLTW R4TEI Q J ."GTi
BOP5, f^G/L
BOD5.SOL ,%/L
COO,MG/L
COO,SOL,MG/L
TSS.NG/L
VSS.HG/L
NH3-N.HG/L
N03-M. HG/L
PH
£F_ElU£ta
B005,HG/L
BOr5,SOL,MG/L
COD,MG/L
COO,SOL,MG/L
TSS.MG/L
VSS.MG/L
NH3-N.HG/L
N03-N.MG/L
PH
BC05 REMOVED,?
COD REMOVED, %
TSS REMOVED,?
BTOMAS.S LQfiDItjfi
B015/0«Y/MLVSS
11.420
116.000
—
288.000
64.000
142.000
109.000
—
—
7.400
7.000
—
48.000
32.000
15. 000
11.000
—
—
7.000
93.965
83.333
89.437
0.403
11 .670
1 05. 000
25. 101
299.000
67.000
99.000
9?. 000
11. 100
0.500
7.300
8.000
5.000
39.000
35.000
13.000
9.000
10.100
0.300
7.100
92.381
86.957
86.735
0.374
12.730
117.000
25.0(10
299.000
63.000
128.000
116.000
11.500
0.300
7.300
9.000
2.000
39.000
28.000
13.000
12.000
11.100
2.100
7.200
92.308
86.957
89. 844
0.486
13. 150
156.000
33.000
330.000
78. 000
152.000
120.000
10.300
0.300
7.300
10.000
3.000
59.000
43.000
12.000
6.000
14.700
0.200
7.200
93.590
82. 121
92. 105
0.695
13.060
126.000
22.000
J15.000
110.000
122.000
104.000
13.900
0.100
7.200
9.000
3.000
59.000
35.000
14.000
12.000
12.200
0.700
7.000
92.857
81.270
88.525
0.5"3
12.850
130.000
27.000
314.000
78.000
130.000
120.000
12.500
0.200
7.200
6.000
3.000
51.000
35.000
8.000
7.000
13. 100
0.200
7.000
95.385
83.758
93.846
0.582
11.730
150.000
--
338. 000
—
156.000
136.000
—
—
7.200
12.000
—
51.000
--
15.000
12.000
—
--
6.800
92.000
84.911
90.385
0.634
1 1.650
134.000
--
296.000
—
154.000
134.000
—
--
7.200
17.000
—
54.000
—
20.000
17.000
—
—
6.900
87.313
81.757
67.013
0.467
I 1.750
155.000
30.001
376.000
110.000
132.000
124.000
14.700
0. 200
7.000
18.000
4. 000
59.000
39.000
16.000
15.000
13.000
0.200
6.900
88. 387
84.392
87. 879
0.573
12.230
165.000
30.000
376.000
79.000
178.001
145.000
15.500
0.200
7.200
14.000
4.000
63.000
39.000
9.000
6.001
13.300
0.200
7.000
91.515
63.245
94.944
0.694
13.100
107.000
21.000
585.000
241.000
124. DOO
110.000
15. 100
0. 100
7.300
13.000
4.000
145.001
42.000
14. 000
11.001
13.900
0. 100
7.000
67.650
75.214
88.710
0.464
13.860
134.000
—
J85.000
—
J36.000
120.000
11.900
0.200
7.300
11.000
—
58.000
13.0CJ
10.001
12.000
0.200
7. 100
91.791
64.935
90.441
0.590
12.800
136.000
—
319.000
—
140.000
122.000
—
—
7.300
12.000
—
59.000
13.000
12.000
—
—
7.300
91.176
81.505
90.714
0.644
12.630
147.000
29.000
282.000
80.000
148.000
142.000
—
—
7.100
10.000
3.000
53.000
35.000
6.000
6.000
—
—
7.000
93.197
81.206
95.946
0.674
LB BOD5/DAY/1000 FT3
VAPOR PHtSF CATA
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOD REMOVED ,LB/LR
AFRaTIPN BASIN DATA
MIXFn LICJUOP
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV,FT/HR
TFMPEPATUPE,C **
DETENTION TIME,HP
85.348 78.946 95.959 132.167 106.019 107.626 113.360
5725.020 4770.848 5247.938 4475.000 6679.199 8110.398 6679.199
1.111 1.015 0.919 0.561 1.053 1.226 0.994
100.578 117.339 130.011 90.308 119.657 112.155 119.617
7516.199 7156.199 6202.098 5725.000 5725.000 5247.896 5247.898
1.333 1.074 0.809 1.120 0.806 C.794 0.728
SrilDS LOAD. L6/FT2/DA Y
4380.402
3397.971
57.950
5.630
15.000
2.035
526.333
? 1 . ?f!7
4683.820
3386 . 565
53.400
7.030
16.000
1 .992
537.855
73.108
4067.191
3163.789
55.850
6.615
16.000
1.826
586. 709
21.657
3911.607
3048. 770
55.450
7.750
16. OOP
1.767
606. Q66
21.434
3655.394
53.350
7.700
16.000
1.780
611.918
3762.171
53.900
8.510
16.000
1.809
592.240
20.199
3644. 370
56. 300
8.300
16.000
1.981
540.620
16. 061
4008. 846
3 309. 931
54.950
7. 200
15. OOC
1.995
536.933
17. 2 34
4031.893
54.100
7.800
15.000
1.976
541 . 542
20.011
3816.912
49.250
8.500
It. 000
1.900
563. 664
19.620
3610.743
55.550
8. 000
16.000
1.774
603.762
20.811
4U87.167
47. 150
9.000
17.000
1.677
636.789
23. 166
3486. 952
49. 800
9.100
17.000
1.816
589.935
18.400
3617.651
2 644. 668
44.150
10.000
17.000
1.840
562.100
18.863
STLIPS WASTED,LR'HP
"RFCYCLE TSS.MG'L
892.606 315.035 692.606 775.925 1108.465 1106.466 1219.113
20101.000 21101.000 20562.5^0 20175.001 t!787.5CO 21312.500 19887.500
14.886 14.567 13.354 12.92fl 13.017 13.230 14.493
694.249 630.076 6b6.771 1166.806 O94.250 1050.125 991.786
111387.5".* 11137.510 23737.500 21925.000 ^0587.500 20825.000 21762.500
14.468 13.900 12.977 10.623 11.719 11.676
paSFn PN f»u HASTEHSTER FLOh ONLY
* liSTHf- RATF IS cnMPU.'FD PMMt'Y ANT SFCO-IDARY STP F4CSI EXCLUP1NC, WEIR LuiSE?)
-------
APPENDIX A
5/12/73 5/13/73 5/14/73
5/23/73 5/24/73
F| "
-------
APPENDIX A
5/27/73 5/28/73 5/29/73 5/30/73 5/31/73 6/ 1/73 6/ 2/73 6/ 3/73 6/ 4/73 6/ 5/73 «/ 6/73 6/ 7/73 6/ 8/73
IdEUlFNT MASTEHftlLB.
FIOH R4TEIO) ,"KV
BOD5.HG/L
BOD5,SOL,MG 'L
COD.MG/L
COn,SOL,MG,'L
TSS.MG/L
VSS,"G'L
NH3-N.1G/L
PH
BP95.MG/L
PTT5 ,S^L , MG 'L
CPO.^G'L
CPD,S1L,KG'L
TfS .MG'L
VSS.HG/L
NH3-N.MG/L
Nr3-M,HG/l.
PH
TPT/II pFHOytLS
BP05 REMQVF1,^
CPP ICMtVEO,?
T55 FFupvED,?
13.420
174.000
42.000
365.000
67.000
162.000
140.000
16.400
7.200
21.000
7.000
75.000
58.000
12.000
10.000
14.400
—
7.000
87.931
79.452
92.593
14.140
149.000
—
267.000
—
164.010
152.000
—
7.100
17.000
—
65.000
—
20.000
19.000
—
—
7.000
88.591
75.655
87.805
14. 160
103.000
24.00"
300.000
159.000
110.000
62.000
—
7.200
16.000
6.000
70.000
60.000
16.000
15.000
—
—
7.000
84.466
76.667
83.636
14.160
132.000
23.000
300.000
116.000
138.001
106.000
12.900
7.100
16.000
5.000
85.000
55.000
18.000
13.000
11.700
—
7.100
87.879
71.667
86.957
13.560
137.000
24.000
283.000
94.000
114.000
98.000
13.300
7.100
14.000
5.000
75.000
39.000
14.000
13.000
12.500
—
7.000
89.781
73.498
87.719
13.590
179.000
31.000
391.000
109.000
170.000
142.000
20.800
7.200
15.000
7.000
82.000
51.000
15.000
10.000
20.100
—
7.000
91.620
79.028
91.176
13.230
166.000
--
327.000
—
134.000
128.000
—
7.100
16.000
—
74.000
—
18.000
16.000
—
—
6.800
90.361
77.370
86. 567
13.080
190.000
—
388.000
—
188.000
164.000
—
7.200
17.000
—
66.000
—
18.000
18.000
—
—
6.900
91.053
62.990
90.426
12.650
172.000
—
365.000
—
163.000
142.000
—
7.200
15.000
—
67.000
—
20.000
19.000
__
7.100
91.279
81. 644
87.730
11.950
168.000
—
362.000
—
146.000
liO.OOO
—
7.100
16.000
—
67.000
-~
18.000
16.000
—
6.700
90.476
75.967
67.671
11.760
196.000
44.111
441.000
126.000
154.000
145.000
15.800
7.200
17.000
8.000
94.000
79.000
18.000
17.000
13. 100
7.100
91.327
78.685
68.312
11.590
^08.000
42.100
438.000
102.000
164.000
156.000
14.700
7.200
20.000
6.000
98.000
51.000
17.000
16.000
14.200
—
7.100
90.385
77.626
69.634
11.570
166.000
27.000
332.000
79.000
164.000
143.000
15.600
7.200
12.000
5.000
75.000
51.000
14.000
14.000
13.800
—
7.100
92.771
77.410
91.463
12.020
164.000
—
346.000
—
130.000
124.000
—
7.200
13.000
—
83.000
—
15.000
13.000
_»
7.000
92.935
76.012
88.462
Bnn5/9flY/ML VSS
LF &OD5/Oi Y' 1001 F T3
0.608 0.540
135.740 93.966
0.614 0.635 0.816 0.710
120.423 119.865 156.727 141.494
160.115 140.161 129.345 148.503 155.317 123.741 142.493
02 SUPPLIf D.FT3/HR
12 SUPPLIEO/BOD REMOVED, LB/L8
MIXED LIQUPR
TSS.-G/L
VSS,«G'L
SVI ,ML /GTSS
ZSV.FT/HR
TEMPFRATLIFF «C **
OETEhTinN TIHE.HR
SPLITS LP«r,LB'FT2/D«Y
iLUD£F._M4SI£0
***
S9LIPS HSSTEO.LB/HR
PECYCLF TSS,MG/L
SFCYCLF RATIO, ItQ)
5247.898
0.616
4341.500
3038. 167
46.150
8.300
16.001
1.732
2 3.902
886.772
26900. 0"1
11.177
5247
0
4999
3576
43
8
18
1
28
420
20787
10
.898
.672
.395
.083
.000
.900
.000
.644
.853
.150
.608
4770.797
0.926
3667.746
2791.505
42.200
12.400
16.000
1.641
21.194
717.565
22412.500
10.593
4770.797
0.695
4110.094
3145.986
42.500
10.300
18.000
1.641
23.751
816. 764
21887.500
10.593
5725.000
0.620
3983.434
3023.170
41.500
10.800
18.0C1
1.711
2 2 . 1 f . 6
735.067
^0925.000
11.046
5247.
0.
3986.
3079.
41.
10.
18.
1.
22.
933.
16787.
11.
B98
563
511
605
450
500
000
710
198
444
500
038
5725.000
0.690
4143.125
3193.120
42.100
10.500
18.000
1.757
24.409
570.066
20125.000
20.680
6202.098
0.656
4382.906
3685.387
44.300
6.615
18.000
1.777
25.654
642. 160
22775.000
21.269
5438. 79 7
0.655
4590.844
3657.434
47.400
8.360
18.000
1 .837
583.02 1
26.159
466.722
21225.000
22.071
5725.000
0.754
4243.434
3349.035
44.900
10.225
18.000
1.945
550.760
22.880
583.403
2215C.OOO
22.276
7156.297
0.813
4291.980
3395.653
46.100
8.945
18.000
1.976
542.003
23.189
367.543
24412.503
24.507
7156.297
0.783
4370.375
3478.982
46.200
10.065
19.000
2.005
534.167
23.250
1283.486
t2362.500
24.392
5247.698
0.702
4340.895
3431.279
46.300
9.505
19.000
2.009
533.246
23.079
816.763
21412.500
24.529
6202.098
0.719
4204.277
3369.198
46.500
10.355
19.000
1.934
553.986
23.145
640. 100
20787.500
24.118
OW PAH W4STEWATEF FLOW ONLY
ING PATE IS COMBINED P&IMAPY ANP SfCONnAFY S TO £ AMS ( FXCLUDING HF1R
-------
APPENDIX A
6/9/73 6/10/73 6/11/73 fc/1^/7 3 (^13/73 b/K/73 t/15/7 3
/17/7 3 b/lb/73 6/19/73 C/ 20/73 6/21/73 fc/2?/73
cr>
— --"—
80051*101 ,Mr /L
COO.MG/L
COn.SOL.WG/l
TSS.Pf, 'I
VSS.fT, 'L
N'H3^ t *c / L
Mr 3-r., Mr./L
PH
prn5,MG/L
BCOS.SOL ,HG/L
COO.HG/L
COO,SOL,HG/L
TSS.MG/L
VSS.PG/L
NH3-K, MG/L
N03-N.MG/L
PH
TPTAL PEMDVAI 29.000
157.000
138.000
16.700
7.700
12.000
4.000
67.000
27.000
14.000
12.000
16.200
7.000
92.771
79.635
90.667
0.489
11.570
176.000
37.000
335.000
128.000
16C.OOO
130.000
16.000
7.500
19.000
7.000
22.000
IB. 000
22.000
18.000
15.400
—
7.100
89.205
93.433
86.250
0.658
11.410
188.000
365.000
170.000
146.000
7.500
17.000
—
63.000
19.000
17.000
—
7.100
90.957
82.740
88.824
0.666
1 1. 12G
165.000
331.000
166.000
144.000
7.500
19.000
59.000
17.000
16.000
—
7.000
88.485
82.175
89.759
0.570
11.010
210.000
45.000
405. 000
140.000
202.000
190.000
16.400
7.200
14.000
5.000
70.000
58.000
19.000
19.000
15.800
7.100
93.333
82.716
90.594
0.678
1 1,050
160.000
_-
441.000
__
172.000
156.000
—
7.300
11.000
—
83.000
—
20.000
18.000
—
—
7.100
93.125
81.179
8 8 . 37 2
0.538
11.610
156.000
—
362. 000
—
166.000
144.000
—
7.300
12.000
—
63.000
—
16.000
14.000
—
—
7.200
92.306
82.597
90. 361
0.636
12.050
217.000
—
388.000
—
190.000
166.000
—
—
7.300
12.000
—
66.000
—
14.000
14.000
—
—
7.100
94. 470
82.990
92.632
0.929
12.860
104.000
—
262.000
—
116.000
104.000
—
—
7.300
34.000
—
108.000
—
57.000
36.000
—
—
7.100
67.308
58.779
50.862
0.459
8.650
142.000
29.000
309.000
77.000
194.000
150.000
—
—
7.400
9.000
4.000
54.000
31.000
15.000
10.000
—
—
7.100
93.662
82.524
92.268
0.308
LB BOD5/DAY/1000 FT3
VARQR PHASE OflTfl
02 SUPPLIED,FT3/HR
02 SUPPLIED/BOD REMOVED,LB/LB
AFBAT^GN BASIN nATA
MIXED LIOUOP
TSS.MG/L
VSS.HG/L
SVI.HL/GTSS
2SV,FT/HR
TEMPERATURE,C *•
DETENTION TIHE,HR
4.399 127.056 172.107 104.445 1-24.703 131.195
118.212 146.963 113.908 116.688 168.468 86.168 79.136
OVERFLOW,GAL/FT2/DAY
SOLIDS LOAO.LB/FT2/OAY
5725.000
0.839
4566.676
3815.524
43.600
8.270
19.000
2.016
22.242
6202.098
0.847
4809.223
4145.133
50.050
8.290
19.000
1.956
23.952
6202.098
0.590
4702.016
3570.324
39.950
8.785
19.000
1.966
24.308
6202.098
0.989
5551.461
4353.277
33.750
8.940
20.000
1.950
29.056
0488
0
5419
4090
34
a
20
1
27
.297
.858
.336
.658
.700
.845
.000
.993
.807
5247.898
0.686
4008,652
3194.871
50,050
9.440
20.000
2.009
20.366
3816.699
0.465
4195.145
3328.347
53.450
8.720
20.000
2.037
21.165
5725.000
0. 838
3983.024
3322.155
53.050
8.355
20.000
2.090
19.520
6583. 797
0.725
4237.297
3524.042
51.350
7.995
20.000
2.111
20.724
5343.297
0.771
4218.020
3395.813
59.350
6.795
20.000
2.103
20.567
6202.098
0.881
3696.212
2939.685
51.850
9.315
20.000
2.002
18.691
6679. 199
0.642
3624.683
2906.353
55.200
7.890
20.000
1.929
16.839
6679.199
1.756
3741,562
3007,699
54,500
9.Q9C
2] .000
1,80?
20.577
5725.000
1.178
5229.070
4122.832
56.250
5.635
21.000
2.687
396. 667
20.687
STLinS WASTED,L8/HR
-
"ECYCLF TSS.MG'L
RECYCLE RATIO, (%OI
958.446 857.603 816.765 BB6.773 735.Ob 8 980.116 900.108
24225.000 22687.500 18987.5TO 21762.500 ^1^75.003 20612.500 19850.000
14.475 13.611 16.528 18.993 19.254 Id.997 19.825
866.770 316.764 583.402 735.068
?045?.000 17687.500 19312.500 22162.500
19.433 20.381 19.701 18.036
d16.764 664.454 933.445
.1)662.500 20350.000 22425.000
16.888 15.894 23.942
** BASED ON PAW HiSTfcrtATER FLOW ONLY
*** WASTING RATE IS COMBINED PRIMARY AND SECONDARY STREAMS(EXCLUDING WFIP LUiScS)
-------
APPENDIX A
6/25/7? 6/2
COD REMOVED, %
TSS REMOVED,*
11.
170.
20.
253.
142.
166.
146.
—
—
7.
9.
5.
43.
28.
9.
6.
—
—
7.
94.
63.
94.
670
000
000
000
000
000
000
500
000
000
000
000
000
000
000
706
004
578
11.030
172.000
—
364.000
—
116.000
86.000
—
--
7.400
10.000
—
63.000
—
9.000
7.000
—
—
7.200
94.186
82.692
92.241
11.740
172.000
36.000
439.000
133.000
162.000
106.000
12.400
—
7.500
12.000
3.000
51.000
39.000
10.000
3.000
15.500
—
7.200
93.023
88. 383
93.627
11.000
144.000
36.000
343.000
142.000
144.000
114.000
—
—
7.400
11.000
4.000
79.000
36.000
11.000
7.000
—
—
7. 100
92.361
77.299
92.361
11.130
158.000
39.000
269.000
111.000
152.000
132.000
—
—
7.300
11.000
4.000
55.000
43.000
14.000
12.000
—
—
7.200
93.036
79.554
90. 789
11.920
164.000
—
204.000
—
170.000
140.000
16.000
—
7.500
11.000
—
59.000
—
16.000
11.000
16.600
—
7.200
93.293
71.078
90.588
12.220
158.000
—
346.000
—
156.000
142.000
—
—
7.400
14.000
—
83.000
—
25.000
22.000
—
—
7.000
91.139
76.012
83.974
11.750
128.000
—
346.000
—
156.000
128.000
—
—
7.400
9.000
—
63.000
—
10.000
9.000
—
—
0.900
92.969
81.792
93.590
10.960
144.000
—
450.000
—
142.000
110.000
—
—
7.400
16.000
—
89.000
—
22.000
19.000
—
—
6.900
88.889
60.222
64.507
11.120
158.000
—
299.000
—
154.000
132.000
—
—
7.500
13.000
—
59.000
—
15.000
10.000
—
—
6.600
91.772
60.266
90.260
11.660
146.000
45.000
328.000
109.000
18S.OOO
134.000
—
7.300
13.000
3.000
63.000
47.000
21.000
16.000
7.300
91.096
80.793
88. 830
8.310
166.000
32.000
266.000
135.000
174.000
138.000
—
7.500
12.000
4.000
61.000
43.000
20.000
14.000
6.800
92.771
77.066
68.506
9.610
176.000
34.000
363.000
132.000
160.000
152.000
7.400
10.000
4.000
52.000
41.000
12.000
11.000
6.900
94.316
85.675
92.500
10.580
156.000
33.000
435.000
113.000
156.000
132.000
7.300
9.000
4.000
60.000
32.000
19.000
15.000
6.900
94.231
66.207
67.821
BOD5/DAY/MLVSS
DPGAMC IflAnTNG
LB B005/DAY/1000 FT3
VAPOR PHASE CAI4
02 SUPPLIED, FTVHR
02 SUPPLIEO/BOO R EMQVED .LB/LP
125.948 124.394
8.671 iOt.970 106.336
MIXED LIQUCF
TSS.NG/l
VSS.HG'L
SVI .ML/GTSS
ZSV, FT/HP
TEMPFP ATUPE ,C *
DETECTION TIMF,HP
_.
PVEPFl ~'w,r,AL>FT2/DAY
SPLIT'S I PAD,LP'FT2'DAY
5725.
0.
4262.
3286.
48.
7.
21.
1.
537.
2 1.
000
721
195
506
250
990
000
992
855
547
5725.000
0.758
4445.660
3533.689
50. 950
6.180
21.000
2.107
508. 35 8
21.377
5725.000
0.722
3946. 119
3136.739
55.900
7.790
21.000
1.980
541.081
20.015
6011.297
0.973
3849. 868
2971.331
61.750
7.640
21.000
2. 113
506.975
18.471
5725.000
0.828
3889.271
3U21.423
59. 400
7.380
21.000
2.068
512.967
18.831
8015.
1.
3454.
2729.
67.
6.
21.
1.
17.
000
040
940
836
600
540
000
950
797
6392.
0.
3709.
2880.
68.
7.
21.
1.
563.
19.
698
860
993
036
400
270
000
902
203
586
6297. 500
1. 066
401 4. 231
3 170. 231
69.800
6.160
21.000
1.978
541.542
20.511
6297.
1.
5200.
3931.
70.
3.
21.
2 .
505.
500
063
141
370
500
680
000
121
132
6965.398
1.019
4691.344
3703.086
69.650
5.460
22.000
2.090
512.506
23.086
5725.000
0.669
4013.429
3168.566
69.100
6.650
22.000
1 * 990
538.315
20.292
5247.699
0.97i
4308.836
3J22.865
66.650
5.700
21.000
382.997
15.898
tOll. 199
0.692
4375.066
3353.346
70.150
5.820
21.000
442.912
18.548
5247.898
0.796
3266.555
2562.517
67.600
9.070
22.000
487.618
15.005
775.927 500.060 886.772 997.61^ 1^30.15° 997.619 720.066 826.765 840.100 616.764 975.115 1050.125 866.772 636.409
.,.-,. 10050 000 22112.500 21213.000 21025.0"0 i«DO.OOO 22850.000 17175.000
PECYCLF PATin,(SO> 1?!395 16.141 17.078 18.200 17.889 17.114 17.087
**~b^SEQ~nK"svi~uIlTfkI7?R~FLOU ONLY
*•* VESTING FATE IS COMBINED PRIMARY AND SECONDARY STREAMS I EXCLUDING HEIR LOSSES)
16575.000 1^212.010 16412.500 19637.500
17.647 lii.513 19.S2H 17.312
387.500 17812.500 21337.500
JO.325 19.553 17.590
-------
APPENDIX A
DATE
INFLUFNT WASTFWATFP
FLOW RATE(O) ,MGD
BODS, MG/L
6005, SOL ,MG 'L
COD, MG/L
COD, SOL , MG/L
TSS.T./L
VSS ,^G/L
NH3-K, MG/L
Nn3-N. MG/L
PH
FFFI JFNT
B005.MG/L
B005, SOL, MG/L
COD, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-M.MG/L
PH
TOTAL REMOVALS
BOD5 REMOVED,?
COD REMOVED,?
TSS REMOVED,?
7/ 7/73
10.660
152.000
31.000
355.000
81.000
176.000
112.000
—
—
7.500
10.000
3.000
52.000
28.000
8.000
6.000
—
—
6.800
93.421
85.352
95.455
7/ a/73
10.310
132.000
27.000
336.000
112.000
130.000
98.000
—
—
7.400
11.000
5.000
72.000
44.000
17.000
11.000
—
—
7.000
91.667
78.571
86.923
7/ 9/73
10.980
160.000
31.000
476.000
143.000
152.000
118.000
—
—
7.400
12.000
3.000
87.000
56.000
8.000
6.000
—
—
7.000
92.500
81.723
94.737
7/10/73
11.660
198.000
33.000
382.000
143.000
186.000
156.000
16.000
—
7.300
13.000
4.000
81.000
28.000
16. 000
13.000
16.500
- —
7.000
93.434
78.796
91.398
7/11/73
10.980
148.000
31.000
459.000
221.000
240.000
164.000
—
7.400
11.000
4.000
103.000
47.000
17.000
15.000
—
—
7.100
92.568
77.560
92.917
7/12/73
10.080
148.000
28.000
376.000
94.000
144.000
136.000
—
—
7.400
13.000
4.000
86.000
47.000
25.000
24.000
—
—
6.900
91.216
77.128
82.639
7/13/73
10.060
134.000
30.000
341.000
62.000
126.000
120.000
—
—
7.400
12.000
4.000
70.000
31.000
17.000
16.000
—
—
6.900
91.045
79.472
86.508
7/14/73
10.360
158.000
35.000
400.000
96.000
180.000
148.000
—
—
7.400
10.000
3.000
68.000
44.000
17.000
16.000
—
—
6.900
93.671
83.000
90.556
7/15/73
10.140
175.000
27.000
376.000
106.000
178.000
162.000
—
7.400
13.000
3.000
46.000
32.000
20.000
14.000
—
—
7.000
92.571
87.766
88.764
7/16/73
10.460
145.000
36.000
428.000
160.000
184.000
164.000
—
—
7.400
16.000
3.000
78.000
38.000
33.000
29.000
—
—
6.900
88.965
81.776
82.065
7/17/73
11.550
150.000
31.000
332.000
111.000
1 84.000
142.000
14.000
—
7.300
14.000
5.000
75.000
43.000
25.000
19.000
14.000
—
7.000
90.667
77.410
66.413
7/18/73
11.150
124.000
32.000
359.000
—
146.000
126.000
14.300
—
7.300
3.000
5.000
80.000
52.000
26.000
24.000
13.700
—
7.000
97.581
77.716
82.192
7/19/73
11.030
140.000
35.000
427.000
111.000
180.000
152.000
16.500
—
7.300
7.000
e.-ooo
63.000
47.000
11.000
9.000
13.400
—
7.200
95.000
65.246
93.869
7/20/73
11.200
100.000
25.000
364.000
90.000
100.000
98.000
—
—
7.400
7.000
4.000
56.000
27.000
8.000
6.000
—
—
7.200
93.000
84.615
92.000
CO BlflHASS LOADING
BOD5/DAY/MLVSS
LB BOD5/DAY/1000 FT3
VAPOR PHASE DATA
02 SUPPLIED.FT3/HR
02 SUPPLIED/BOD RENOVEO,LB/L8
AERATION BASIN DATA
MIXED LIQUOR
TSS.MG/L
VSS.HG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE,C **
DETENTION TIME.HR
87.681 113.186 148.742 104.697
0.62B 0.462
105.460 114.327 97.717 111.621 89.077 ~B9.4»9 72.159
_
OVERFLOW, GAL/FT2/DAY
SOLIDS LOAO,LB/FT2/OAY
SLUDGE HASTE 0
SOLIDS HASTED, LB/HR
5247.898
0.818
3618.968
2767.600
68.300
7.820
22.000
2.180
491.305
16.675
5725.000
1.083
3818.407
2924.946
70.750
6.540
22.000
2.254
475.174
17.136
4770.797
0.690
3690.393
2866.691
71.650
7.000
23.000
2.117
5C6.053
17.030
5725.000
0.626
3454.031
2582.202
68.900
8.630
22.000
1.993
537.394
16.437
5247.898
0.823
4196.492
3129.482
71.600
6.500
22.000
2.117
506.053
19.933
4770.797
0.830
3661.350
2771.107
65.950
8.470
21.000
2.306
464.573
15.302
5247.898
1.010
3596.951
2707.654
70.950
8.100
21.000
2.306
464.573
15.690
5247.898
0.808
3407.575
2563.256
63.650
9.450
22.000
2.243
477.478
15.083
4580.000
0.658
3732.909
2816.414
70.200
6.320
22.000
2.292
467.339
16.067
5725.000
1.001
3487.026
2690.780
68.250
8.630
22.000
2.222
482.067
15.343
5725.000
0.860
3763.254
2650.177
63.850
6.290
22.000
2.012
532.324
13. 165
5629.598
0.981
4095.041
3092.829
61.600
6.970
23.000
2.084
513.886
19.535
5755.000
0.918
4111.699'
3139.441
63.650
7.120
23.000
2.107
506.358
18.967
6965.396
1.572
3975.156
3060.996
49.450
9.460
23.000
2.075
516.193
18.472
857.602 945.113 775.926 775.926 1219.312 1050.125 438.603 1050.125 816.764 933.444 1166.805 886.771 816.763 686.773
-
RECYCLE TSS.MG'L
RECYCLE BATIO.UOI
18412.500 21787.500 16125.000 15475.000
17.139 17.963 13.953 10.600
,6j87.500 18150.000 20400.000
17.231 12.361 17.272
18087.500 22525.000 17563.OCO 17988.000 ^OolO.OOO 21600.000 17968.000
15.782 15.030 13.996 13.255 15.946 13.336 12.437
** BASFD ON RAW WASTEWATER FLOW ONLY
**« WASTING PATE IS COMBINED PRIMARY AND S^COMDARY STsFAMSI EXCLUDING HEIR
-------
APPENDIX A
TfltTS 7/22/73 7/23/73 7/24/73 7/25/73 7/26/73 7/27/73
7/28/73 7/29/73 7/30/73 7/31/73 O/ 1/73 8/ 2/73 P/ 3/73
vo
FLOW RAT E10I ,MGP
BPD5.MG/L
B005,SDL,>T-'L
COD.MG/L
CnO,S(lL,Mr..'L
TSS.MG/L
VSS.MG/L
NH3-N, MG/L
N03-^,MG/l
Ph
F££UJ£[.I
BTDS.^G/L
B005, SOL, MG/L
COO, MG/L
COD. SQL, MG/L
TSS.BG/L
VSS,MG/L
NH3-N.HG/L
N03-N,Hr,/L
Ph
TP7AI REMOVALS
6005 RFMCVFD,?,
COO REMOVED, S
TSS REMOVED,?
12.000
146.000
26.000
314.000
111.000
170.000
130.000
—
—
7.400
10.000
3.000
79.000
40.000
18.000
12.000
—
—
7.000
93.151
74.841
89.412
9.800
134.000
27.000
355.000
—
154.030
114.000
13.400
—
7.300
9.000
2.000
52.030
31.000
18.000
13.000
11.200
--
7.200
93.284
85.352
88.312
10.960
216.000
31.000
400.000
99.00U
228.000
192.000
--
—
7.400
7.000
2.000
38.000
19.000
13.000
11.000
—
—
7.200
96.759
90.500
94.298
10.770
133. GOD
22. IOC
366. 000
113.001
144.000
120.000
—
—
7.500
9.000
2.000
34.000
21.000
15.000
13.000
—
—
7.000
93.233
90.710
89.583
10.570
168.000
3b.HO
43V.1CO
78. 000
152.111
136.000
16.000
—
7.400
8.000
2.000
55.000
51.000
9.000
6.000
13.400
—
7.200
95.238
67.472
94.079
10.720
140.000
25.000
359.000
94.000
156.000
134.000
15.500
—
7.600
6.000
2.000
59.000
27.000
12.000
11.000
16.100
—
7.200
94.286
83.565
92.308
12.150
150.000
28.000
346.000
71.000
140.000
128.000
—
—
7.400
10.000
3.000
63.000
47.000
11.000
11.000
—
—
7.100
93.333
61.792
92.143
10.340
156.000
21.000
408.000
78.000
146.000
142.000
—
—
7.500
9.000
3.000
51.000
47.000
7.000
7.000
—
—
7.200
94.231
87.500
95.205
10.610
154.000
36.000
319.000
161.000
148.000
134.000
14.000
—
7.500
38.000
3.000
196.010
86.000
23.000
21.000
15.500
—
6.800
75.325
36.558
84.459
11.030
174.000
36.100
413.000
106.000
166.000
156.000
17.400
—
7.500
12.000
3.000
62.000
36.000
21.000
20.000
14.600
—
7.000
93.103
84.988
67.500
11.050
150.000
34.000
400.000
100.000
164.000
156.000
14.500
—
r.300
14.000
5.000
26.000
27.000
28.000
27.000
12.700
—
7.200
90.667
93.000
82.927
11.320
132.000
37.000
381.000
111.000
162.000
146.000
17.100
—
7.400
16.000
6.000
79.000
48.000
26.000
23.000
14.000
—
7.000
87.679
79.265
82.716
10.260
146.000
32.000
379.000
111.000
146.000
124.000
15.600
—
7.300
14.000
6.000
79.000
51.000
26.000
17.000
13.500
—
7.200
90.411
79.156
62.432
10.800
126.000
30. 000
328.000
63.000
152.000
120.000
15.500
—
7.300
13.000
4.000
59.000
39.000
18.000
14.000
17.000
—
7.000
69. 844
62.012
66.158
B005/DAY/PLVSS
LB BOD5/OAY/1000 FT3
VtPOR PHASE CATA
O2 SUPPL1 EH,FT3/HR
02 SUPPLIED/BOD REMOVED,LB/LB
92.287 114.406 96.693 117.419
5725.000 5725.000 5247.898 5247.898 6202.098 4770.797 5247.696
0.825 1.099 0.541 0.924 0.862 0.790 0.723
103.924 105.271 123.651 106.789
96.510 69.065
5247.696 5725.000 4866.199 4293.699 6202.098 4770.797 4293.797
0.606 1.090 0.640 0.670 1.111 0.828 0.613
MIXFn LIOUPP
TSS.MG/L
VSS.MG'L
SVI .HL/GTSS
ZSV, FT/HP
TEHPFRATUPF,C *
DETENT ION T IMP ,HP
4329.559
3339.661
65.400
6.840
23.000
1.937
2 1 . fr "< 5
4678.465
3534.387
56.150
7.200
23.000
2.372
18.572
3729. 1P4
2876.722
57.850
10.100
22.000
2.121
16.114
3757.737
2903.534
60.250
6.950
23.000
2. 158
15.905
3967.490
J055.456 .
63.000
7.650
23.000
2. 199
17.078
3902.553
3046.661
68.500
5.080
24.000
2.168
16.159
3595.608
2746.960
65.200
8.680
24.000
1.913
559. 977
17.860
3746.203
2919.396
75.850
7. 190
25.000
2.248
476.557
16.526
3774.438
2935.785
74.300
6.990
24.000
2.191
17.006
3311.181
2606.090
60.450
6.510
23.000
2.107
15.432
3171. 458
2484.176
62.150
7.230
24.000
2.103
14.604
3160.711
2505.952
82.050
7.450
23.000
2.053
521.724
15.419
3301.931
2591.805
72.600
6.300
23.000
2.265
4 72 .870
17.181
3223.756
2554.964
75.150
7.600
23.000
2.152
497. 756
17.273
886.772 700.033 9^7
25? 1 155.13B 840.101
R40.097 997.619 686.773 735.087 1050. 126 640.101 (HO. 100
--
RFCYCLF TSS,M(,'L
PECYCLF HTjn.UOl
20738.000 22211.000
12.tibO 9.776
21150.non iV>75.0-iO 21388.000 16612.000
to.509 16. I7e 4.674 10.790
10288.OTO 17063.000 17200.nco 16325.000
15.629 15.080 14.506 14.480
16 J25.000 16825.000 15750.000
16.784 • 37.437 34.444
RlSfD ON fAw H6STEHATER FLO* ONLY
* WAITING RfiTr I * C'mHINEn PojMftfY AND SEC
ST"CfiMsiEXCLUDING HEI° LUSHES)
-------
APPENDIX A
5/73 8/ 6/73
8/11/73 0/12/73 8/13/73 8/14/73 8/15/T3 6/16/73 6/17/73
OD
O
FLOW RATEIQl.MGD
BOD5,MG/L
8005, SOL, MG/L
COD.MG/L
COD, SOL, MG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
NO3-N.MG/L
PH
EFFLUFMT
BOD5.MG/L
B005, SOL, MG/L
COO, MG/L
COO, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
TnTAl RFNOVAI S
B005 REMOVED,!
COO REMOVED, I
TSS REMOVED.*
BOD 57D AY/ML VSS
18 »OO»/0»Y/1000 FT3
02 SUmi6D,FT3/HR
02 SUPPIIED/BOD REMOVED .LB/LB
MIXED LI8UOR
TSS.MG/L
VSS.MG/L
SVI,Hl/GTSS
ZSV.FT/HR
TEMPERATURE, C **
DETENTION TIME.HR
FINAI SFTTL.ER
OVERFLOW, GAL/FT2/DAY
SOLIDS LOAO.LB/FT2/OAY
SI llpGF WASTED
***
SOLIDS WASTED, LB/HR
RETURN- SLUDGE
RECYCLE TSS.HG/L
RECYCLE RATIO.<«ai
10.800
142.000
27.000
372.000
124.000
188.000
132.000
15.900
—
7.400
12.000
4.000
62.000
31.000
16.000
12.000
15.100
—
7.000
91.549
83.333
91.489
0.601
98.806
5725.000
0.959
3395.131
2636.679
70.450
7. 8OO
23.000
2.152
497.756
18.047
1166,807
15812.500
33.380
10.400
155.000
35.000
362.000
79.000
134.000
104.000
15.300
—
7.400
11.000
2.000
59.000
31.000
8.000
6.000
9.100
—
7.300
92.903
63.702
94.030
0.616
103.857
4770.797
0.749
3486.220
2701.644
69.050
7.100
23.000
2.235
479.322
17.457
793.428
16337.500
30.481
11.500
166.000
42.000
422. OCO
109.000
184.000
156.000
14.500
—
7.300
11.000
3.000
63.000
43.000
12.000
6.000
13.200
—
7.200
93.452
65.071
93.476
0.727
124.474
5247.898
0.683
3470.138
2742.637
64.650
8.000
23.000
2.021
530.020
19.567
816.765
17637. 5C3
32.676
11. 500
192.000
45.000
423.000
165.000
186.000
152.000
29.600
7.300
15.000
3.000
66.000
35.000
19.000
15.000
15.900
—
7.200
92.188
64.397
89.7S5
0.890
142.256
5725.000
0.659
3390.896
2562.517
67.250
7.700
24.000
2.021
530.020
19.073
857.603
lt.062.500
32.546
~
12.100
158.000
42.000
354.000
92.000
192.000
162.000
15.000
7.500
13.000
4.000
62.000
46.000
26.000
21.000
14.300
—
7.000
91.772
82.486
86.458
0.790
123.173
5247.896
0.703
3160.473
2498.228
76.500
8.000
23.000
1.921
557.673
16.465
H57.602
15*87.500
30.992
11.260
158.000
43.000
414.000
112.000
184.000
146.000
13.700
7.300
14.000
8.000
68.000
48.000
24.000
22.000
14.100
—
7.700
91.139
83.575
86.957
0.658
114.825
5247.896
0.757
3530.635
2797.338
75.650
6.600
24.000
2.060
519.880
19.561
960.117
14912.500
33.245
11.370
146.000
33.000
443.000
174.000
172.000
150.000
7.400
13.000
3.000
79.000
55.000
15.000
14.000
—
—
7.000
91.216
62.167
91.279
0.680
108.416
5247.898
0.804
3211.352
2556.510
76.100
7.900
23.000
2.044
524.028
17.873
960.117
17737.500
32.656
1 1.430
160.000
42.000
457.000
157.000
226.000
192.000
7.300
13.000
4.000
79.000
55.000
24.000
22.000
—
—
7.000
91.675
82.713
89.474
0.739
117.825
5725.000
0.601
3252.726
2554.152
78.150
6.900
23.000
2.033
526.793
18.222
495.892
14700.000
32.826
10.650
164.000
46.000
409.000
126.000
184.000
156.000
19.900
7.200
11.000
4.000
20.000
47.000
14.000
11.000
15.300
—
7.100
93.293
95.110
92.391
0.745
112.529
4484. 598
0.647
3374.115
2421.363
71.950
7.400
23.000
2.182
490.844
17.855
630.075
17162.500
34.657
11.040
156.000
40.000
425.000
157.000
168.000
156.000
7.200
11.000
3.000
79.000
51.000
15.000
13.000
—
—
7.200
92.949
61.412
91.071
0.664
110.960
5725.000
0.838
3569.762
2596.637
71.650
7.300
24.000
2.105
508.619
19.667
420.050
1675C.no.}
34.620
11.030
132.000
35.000
371.000
176.000
164.000
146.000
—
7.300
14.000
4.000
32.000
18.000
17.000
10.000
—
—
7.100
89.394
91.375
89.634
0.536
93.804
5247.698
0.945
3562.056
2796.140
67.500
6.000
24.000
2.107
508.358
19.552
1050.126
19212.500
34.107
""
11.350
160.000
40.000
357.000
174.000
152.000
134.000
...
7.500
13.000
4.000
48.000
24.000
20.000
16.000
—
—
7.000
91.875
86.555
86.842
0.613
117.000
5725.000
0.804
3900.557
3059.973
64.050
6.900
24.000
2.046
523.106
21.249
1166.806
17962.500
30.070
11.990
152.000
9.000
371.000
168.000
160.000
138.000
—
7.600
16.000
6.000
71.000
34.000
25.000
23.000
—
—
7.000
88.158
80.863
84.375
0.584
117.418
5247.898
0.765
4142.805
3220.872
65.450
6.600
24.000
1.938
552.603
21.035
1283.466
19425.000
14.762
10.600
118.000
29.000
332.000
158.000
206.000
130.000
—
7.400
15.000
5.000
63.000
55.000
24.000
15.000
—
—
6.900
87.268
81.024
68.350
0.392
80.566
5247.896
1.126
4231.211
3290.961
64.800
5.800
24.000
2.193
486.540
19.281
1106.465
22200.000
16.500
«• BASED ON RAN WASTEWATER FLOW ONLY
**« MASTING RATE IS COMBINED
NO SECmn«RY STREAHSIEXCLUOTNG WEIR LOSSES)
-------
APPENDIX A
B/1S/73 S'19/73 8/20/73 8/21/73
8/23/73 8/23/73
8/25/7: fl/26/73
8/2-1/73 6/29/73 8/30/73 6/31/73
OO
— — —
ains.NC./L
BCD5.SOL ,MG/L
COP, WG/L
COD.SPL.WG/L
TSS.T./L
VSS , MG/L
NH3-N, MG/L
PH
Srr^,»G/L
PP05 , SCI , ",G 'L
C 00 , MG ' L
CCO,SOL,MG/L
TSS.HG'l
Vc S , fG/L
NH3-N, PG/L
N03-N.MG/L
PH
IDIAl._EEHDJ(il.i
80D5 REMOVED,?
COD PFfPVED,?
BTQH355 LOADING
BP05/DAY/MLVSS
-^z^r° FT3
02 SUPPLlFn/ppp P F V Ov ^ n , L'i/LB
TSS.I-'G/L
V 5 S , "t, ' L
SVI ,WL/GTS<
ZSV.FT/Hh
OeTFNlTIr'N TIME, HP
SPLITS L P.'f , L Vp^2' OflY
SLUUI-lifiilf."
* * *
SPLICS WASTFD,L8/HR
'PFCYCLF TSS.HG/L
PFCYCLF PiT in, CEO)
133.000
33.000
368.000
144.000
164.000
128.000
—
7.200
12.000
6.000
76.000
60.000
19.000
15.000
—
—
7.000
90.977
79. 348
0.436
1.216
4453.004
3348.130
62.250
,6.600
2. 184
25.354
2 125 C.CO:
1 6. 288
ONLY
125.000
29.000
304.000
160.000
128.030
112.000
—
7.400
11.000
3.000
61.000
36.000
18.000
15.000
—
—
7.100
91.200
79. 934
0.403
0.826
4563.531
3427.696
66, 750
5.100
24 . 000
2.174
20.636
221 75.000
15.744
11.010
210.000
29.000
376.000
168.000
196.000
168.000
--
7.500
13.000
3.000
48.000
32.000
20.000
17.000
--
—
7.200
93.610
87.302
0.722
0.464
4207.473
3305.625
6 3.750
5.600
24 . 000
2.111
1 <- . HO.1
19762. 5P 0
15.640
79.000
19.000
188. 000
94.000
96.000
76.000
12.400
7. 300
15. 000
5. 000
63.000
23.000
14. 000
11.030
9.400
—
7.100
81.013
66.489
0.364
2.000
3636. 946
2782.471
68. 500
6. 100
24. 000
1.774
?0. 06-,
22612.501
14. 122
122.000
28.000
311.000
109.000
142.000
104. 000
13.700
7.500
8.000
3.000
51.000
39.000
15.000
12.000
11.000
—
7.100
93.443
83.601
0.316
1.601
b 169.980
3913.767
66. 750
5.500
2 4 .OOP
2.372
:2..'l7
..12.5,0
18.939
10.540
126.000
29.000
286.000
103.000
128.000
98.000
15. 100
7. 500
17.000
5.000
83.000
40.000
28.000
22.000
18.300
—
7.100
86.509
70.979
0.392
85.562
0.973
4535.773
3501.060
39.850
4.200
24.000
2.205
20. 639
lo55C.OOO
18. 131
10.820
148.000
33.000
362.000
103.000
148.000
142. 000
—
7.400
9.000
3.000
67.000
39.000
16.000
16.000
--
—
7.200
93.919
81.492
0.578
0. 892
3763.342
2861.102
68.600
6.000
24.000
2.148
17.761
19812. 500
16.207
150.000
29.000
375.000
86. 000
150.000
148.000
—
7.400
8.000
4.000
66.000
47.000
1 7. 000
17.000
—
—
7.000
94.667
82.400
88.667
0.466
100.024
0.913
4492.051
3442.477
73.650
4. 600
2. 246
20.347
18925.010
18.599
146.000
33.
356.
109.
164.
138.
14.
7.
6.
4.
74.
54.
15.
12.
10.
--
7.
94.
79.
0.
102.
1.
4294.
3303.
69.
5.
2.
20.
18162.
16.
,000
,000
000
,000
,000
600
200
000
000
000
000
000
000
800
000
521
330
854
495
045
363
149
650
100
000
142
090
500
848
140.000
32.000
468.000
255.000
168.000
126.000
13.000
7.500
6.000
2.000
53.000
29.000
12.000
10.000
10.500
--
7.100
95.714
R8.675
92.657
0.374
96 . 152
0.939
54P4.215
4124.578
60.300
5.500
2.180
24. 967
17937.500
17.448
182.000
39.000
406.000
246.000
158.000
138.000
13. 700
7.400
11.000
6.000
54.000
31.000
14. 000
13.000
11.600
—
7.200
93.956
86.699
91. 139
0.665
120.541
0. 761
3784. 317
2906. 612
70.200
6. 000
2. 261
16.735
17825.000
16.576
10. 470
144.000
34.000
237.000
104.000
140.000
132.000
—
7.500
15.000
6.000
44.000
24.000
17.000
16.000
__
—
7.200
89.563
81.435
87.657
0.549
97. 136
0.993
3659.106
2d37.996
71.650
6.600
2.220
16. 366
17912.500
15.769
11. 800
153.000
36.000
379.000
190.000
166.000
146.000
—
7.300
7.000
3.000
51.000
28.000
16.000
15.000
—
—
7.300
95.425
86.544
90.361
0.662
1 16. 317
0.918
3642.407
2816.691
69.550
7.400
1.970
18.145
19325.000
14.407
12. 000
136.000
30.000
408.000
125.000
144.000
134.000
—
7.300
9.000
3.000
67.000
59.000
11.000
10.000
—
—
7.000
93.478
83.578
92.361
0.617
106 . 692
5 247. 898
0.794
3568.974
2772.212
72.350
6.500
24 . 000
1.937
553. 064
17.916
15575.000
13.367
N'G PfTF I $ C-'MBINED PRIMARY ANP SFCONPflRY S TK F A^S I ^XCL UH 1 NG W c I R
-------
APPENDIX A
-)/ 5/73 9/ 6/73 9/ 7/73
CO
ro
FLOW s fi T E 1 C 1 , M C,n
B005,MG/L
80D5.SOL ,MG/L
COD, MG/L
COO, SOL, MG/L
TSS.MG/L
VSS,MG/L
NH3-N, MG/L
N03-N, MG/L
PH
EFFLUEM
SrD5,MG/L
BOOS, SOL, MG/L
COD, MG/L
COD, SOL, MG/L
TSS.MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
BCD5 REMOVED,?
COD REMOVED,?
TSS REMOVED,?
B!DMASS LOADING.
B005/OAY/HLVSS
ORGANIC LOADING,
LB B005/OAY/1000 FT3
VAPflR PHASE DATA
02 SUPPLIED, FT3/HR
02 SUPPLIED/600 REMOVED, LB/LB
A£EAI1GM_BASIN DATA
MIXED LIQUOR
TSS.MG/L
VS S, MG/L
SVI.ML/GTSS
2SV.FT/HR
TEMPERATURE, C *«
DETENTION TIME.HR
OVFRFLOH.GAL/FT2/DAY
SOLIDS LOAD.LB/FT2/OAY
SI IIDGE HASTg D
***
SPLICS MASTED. LB/HR
RECYCLF TSS.MG'L
RECYCLF RATIO (?0)
1 2.000
150.000
34.000
401.000
124.000
178.000
154.000
—
—
7.300
10.000
3.000
77.000
39.000
20.000
18.000
—
—
7. 100
93.353
80.79R
68.764
0.653
115.970
524 7.898
0.727
3644. 954
79.650
6.150
26. OOQ
1.937
51)3. C64
18.334
991.766
16650.00?
'
** BASED 019. 000
80.000
178. OCO
160.000
7.300
16.000
4. 000
68.000
28.000
34.000
29.000
7.100
89.169
78.683
80. 899
0.673
107.749
6202.098
0.971
3271.691
85.900
6.150
25.000
2.057
520.802
16.164
1^19.313
16dOO.OOO
18.487
LOSSES!
11.010
I4e.ooo
40.000
255.000
80.000
156.000
128.000
7.300
10.000
5.000
44.000
17.000
12.000
7.100
93.243
62.745
89.103
0.678
104.983
5915.797
0.912
3175.207
64.150
7.710
24.000
2.111
507.436
15.325
702.731
16538.000
18.801
10.500
154.000
30.000
362.000
94.000
160.000
126.000
7.300
13.000
3.000
63.000
35.000
18.000
13.000
7.100
91.558
82.597
68.750
0.644
104.179
6679. 199
1.054
3340.567
92.400
5.610
25.000
2.213
463.931
15.327
500.059
16613.000
18.419
10.620
170.000
49.000
369.000
109. COO
172.000
148.000
7. 300
13.000
4.000
66.000
31.000
18.000
14.000
6.900
92.353
83.033
89.535
0.679
116.317
5725.000
0.605
3570.540
60.450
5.420
24.000
2.166
489.462
16.656
500.059
14650.000
19.040
10.620
194.000
52.000
41U.OOO
168.000
156.000
7.200
15.000
4.000
63.000
35.000
17.000
17.000
7.200
92.268
34.928
89.881
0. 709
132.739
5725.000
0.706
3866.731
300 1 . 009
85.700
4.400
24.000
2.188
499.462
18.092
750.923
14525.000
'
10.510
174.000
40.000
400.000
112.000
146.003
1?4.000
7.500
16.000
3.000
64.000
48.000
2 1.000
19.003
—
7.000
90.805
84.000
P5.616
0.712
117.821
5725.000
0.805
3386.515
2650. 763
90.500
5.060
25.000
2.211
464.392
15.659
735.088
15525.000
"
11.200
160.000
35.000
372.000
81.000
130.000
122.000
7.500
15.000
.000
6 . 000
4 .000
2 . 000
2 .000
—
7.000
90.625
82.527
79.231
0.661
115.454
7633.297
1.098
3602.702
2800.911
85.700
5.420
25.000
2.075
516.193
17.559
630.075
16000.000
'
11.300
150. 000
43. OCO
367. 000
112.000
128. 0"0
122.000
17.900
7.400
10.000
6.000
60,000
40.000
8.000
7.000
18.500
—
7.100
93.333
83.651
93.750
0.673
109.205
5725.000
0.846
3348.547
2600. 5 19
62.850
6.150
24.000
2.057
520.802
16.244
443.386
,.5813.000
'
11.750
157.000
35.000
478.000
143.000
166.000
154.000
19.300
7.300
25.000
5,. 000
112.000
60.000
37.000
36.000
17.400
—
7.100
84.076
76.569
77.976
0.781
118. 853
5247.698
0.793
3099.575
2439.630
76.25p
6.310
24.000
1.976
541.542
15.358
771.759
16336.000
14. 261
11.430
100.000
21.000
288.000
64.000
150.000
122.000
__
T.400
17.000
4.000
92.000
60.000
26.000
22.000
—
—
7.000
83.000
68.056
82.667
0.474
7?.**l
6*02.098
1.532
3161.677
2492.445
76.900
7.620
24.000
2.033
526.793
15.226
420.050
18875.000
14. 173
-------
APPENDIX A
9/15/73 9/16/73 9/17/73 9/18/73 9/19/73 9/20/73 9/21/73
9/22/73 9/23/73 9/24/73 9/25/73 9/26/73 9/27/73
00
OJ
TNFL.IJE.NT WASTFHATER
FLOW RATE10) ,MGD
BOOS, MG/L
BOOS, SOL ,MG'L
COD, MG/L
COD, SOL. MG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
FFFLUFNT
8005, MG/L
8005, SDL, MG/L
COO, MG/L
COD, SOL, MG/L
TSS,MG/L
VSS.MG/L
NH3-N.MG/L
N03-N.MG/L
PH
TOTAL PEM.DVAI S
BOD5 REMOVED,!
COD REMOVED,?
TSS REMOVED,?
BIOHASS LOADING
BOD5/DAY/MLVSS
ORGANIC 1 OADING
L6 BOD5/DAY/1000 FT3
VAPOR PHASE DATA
02 SUPPLIED, FT3/HR
02 SUPPLIED/SCO REMOVED .LB/LB
AERATION BASIN DATA
MIXED LIQUOR
TSS.MG/L
VSS.MG/L
SVI.ML/GTSS
ZSV.FT/HR
TEMPERATURE ,C *"
DETENTION TIME, HO
FINAL SFTTLFR
OVERFLOW, GAL/FT2/OAY
SOLIDS LDAO,LB'FT2/DAY
Sl-UDGF WASTED
***
SOLIDS WASTED, L8/HP
RECYCLE TSS.MG'L
PFCYCLE RATI^.ISGI
10.810
110.000
36.000
303.000
72.000
124.000
106.000
—
—
7.300
18.000
6.000
84.000
44.000
43.000
38.000
—
—
7.100
83.636
72.277
65.323
0.413
76.611
4770.797
1.124
3922.537
2974.388
67.800
6.690
24.000
2.150
498.219
18.010
886.772
17712.000
15.106
ONLY
12.040
139.000
26.000
316.000
32.000
124.000
108.000
—
—
7.400
12.000
2.000
63.000
28.000
19.000
12.000
—
—
7.100
91.367
80.063
84.677
0.619
107.823
6202.098
0.951
3567.165
2791.561
77.700
6.140
24.000
1.930
554.907
17.923
630.076
15625.000
12.458
12.650
147.000
40.000
395.000
67.000
174.000
124.000
—
—
7.400
11.000
8.000
75.000
47.000
10.000
2.000
—
—
7.000
92.517
81. OH
94.253
0.769
119. 806
5725.000
0.788
3233.353
2497.369
82.800
7.470
21.000
1.837
583.021
16.768
662.579
17112.000
11.099
11.700
150.000
34.000
397.000
143.000
146.000
104.000
—
—
7.400
22.000
6.000
83.000
63.000
31.000
22.000
—
—
7.100
65.333
79.093
78.767
0.824
113.070
6679. 199
1.045
2963.150
2198.063
101.750
7.230
24.000
1.986
539.237
14.316
816.765
19025.000
11.906
12. IfcO
156.000
49.000
J95.000
158.000
164.000
120.000
20.400
—
7.300
13.000
4.000
67.000
43.000
26.000
20.000
16.300
—
7.200
91.667
83.038
84.146
0.770
122.417
5725.000
0.770
3283.956
2546.725
84.900
5.780
24.000
1.908
561.360
16.746
837.601
15500.000
13.456
12.280
162.000
26.000
362.000
94.000
178.000
136.000
18.200
—
7.500
15.000
4.000
75.000
43.000
25.000
18.000
14.100
—
7.200
90.741
79.282
65.955
0.935
128.170
5725.000
0.743
2904.078
2196.217
65.650
10.100
24.000
1.893
565.969
14.754
735.088
15913.000
12.117
12.110
170.000
40.000
486.000
110.000
184.000
150.000
—
—
7.300
15.000
4.000
71.000
43.000
25.000
21.000
—
—
7.100
91.176
85.391
86.413
0.826
132.637
9.550
0.001
3361.468
2574.580
77.800
7.230
1.919
558. 134
16.727
221.693
18700.000
11.354
12.590
1H8.000
38.000
436.000
86.000
274.000
202.000
—
—
7.400
16.000
3.000
66.000
43.000
25.000
20.000
—
—
7.200
91.489
84.862
90.876
0.893
152.495
6*02.098
0.671
3463.856
2735.791
79.150
6.690
24.00C
1. 646
580. 256
17.681
1050.125
15313.000
9.873
12.330
109.000
25.00?
327.000
70.000
139.000
118.000
—
—
7.300
14.000
4.000
66.000
39.000
30.000
21.000
—
—
7.200
87.156
79.816
78.261
0.489
86.589
6202.098
1.241
3599.196
2837.681
86.200
5.420
24.000
1 .885
568.273
in. 332
1050.125
16463.000
11.946
11.960
153.000
35.000
414.000
104.000
178.000
148.000
7.400
22.000
4.000
88.000
44.000
25.000
21.000
7.200
85.621
78.744
65.955
0.685
117.895
6202.098
0.928
3546. 262
2758.952
78.550
6.510
24.000
1.943
551.220
17.519
420.050
16638.000
11.940
11.710
115.000
26.000
317.000
87.000
162.000
136.000
—
—
7.300
15.000
4.000
71.000
56.000
36.000
31.000
—
7.100
86.957
77.603
77.778
0.483
86.761
4866.297
0.974
3668.506
2877.828
65.450
5.420
24.000
1.985
539.698
17.755
640.100
17238.000
12.007
12.100
173.000
46.000
455.000
141.000
208.000
172.000
7.400
15.000
4.000
71.000
51.000
31.000
23.000
7.200
91.329
84.396
85.096
0.781
134.866
0011.297
0.737
3552.531
2767.013
72.500
7.590
24.000
1.921
557.673
17.629
775.925
18^13.000
11.140
11.130
165.000
42.000
402.000
112.000
216.000
174.000
7.400
13.000
8.000
72.000
48.000
24.000
19.000
7.200
92.121
82.090
88.889
0.639
116.318
—
3811.297
2968.360
80.350
5.420
25.000
2.088
512.967
17.549
—
18750.000
12.111
10.850
215.000
45.000
506.000
126.000
260. 70C
206.000
7.400
14.000
4.000
79.000
51.000
25.000
17.000
7.100
93.488
84.387
90.385
0.847
150.293
—
3642.500
2843.471
76.700
6.500
25.000
2.142
500.062
16.395
—
19438.000
12.424
-------
00
CAT6
i!8LUlEt.l_WSI£MlEE
FLOH RATEIOI.MGO
BCC5,MG/I.
BC05,SCL,MG/L
COD.MG/L
CCO, SOI .MG/L
VSS.MG.'L
NH3-K,HG/L
NC3-N.HG/1
PH
BOD5.MG/L
6005, SOL, MG/l
COO,F-G/L
CCO,SOL,NG/L
TSS.HG/L
VSS.MG/L
NH3-K.HG/L
N03-N.MG/L
PH
TOTAL PFHOVflLS
BOOS REMOVED, T
COO REMOVED, %
TSS CEHOVED.t
BinMA« LOADING
BOD5/DAY/HLVSS
LB BOD5/DAY/1000 FT3
02 SUPPLIED, FT3/HR
02 SUPPLIED/BOD REMOVED ,L8/LB
HIKED LIOUOR
TSS.MG/L
VSS.NG/L
SVI.ML/GTSS
ZSV.FT/HR
TFMPERATUFE.C **
DETENTION TIHE.HR
FlfUli S£TH£E
OVERFLOW .GAL/FT2/OAY
SCLICS LOAD.LB/FTE/DAY
SLUpGF tfASTFn
***
SOI IDS WASTED, LB/HR
RFCYCLF TSS.MG'L
"ECYfLF RATIO, (201
** PASFO CN FAH WASTFWATER FLOH
APPENDIX A
9/29/73 9/30/73
11.500
170.000
42.000
427.000
142.000
172.000
150.000
7.300
14.000
5.000
87.000
59.000
18.000
14.000
7.000
91.765
79.625
89.535
0.681
125.956
3793.763
2965.990
80.100
5.600
24.000
2.021
530.020
16.099
—
17525. OOC
0.000
ONLV
11.200
185.000
49.000
468.000
157.000
170.000
160.000
7.300
13.000
4.000
B7.000
47.000
20.000
19.000
7.000
92.973
82.172
88.235
0.694
133.494
3444.395
3083.717
88.400
5.060
23.000
2.075
516.193
14.235
—
17275.000
0.000
*** HASTING PATE IS COMBINED PRIMARY i\C SFCQN9APY STREAHS1EXCLUDING HETR LUiSES)
-------
APPENDIX B
Sludge Processing (Primary and
Month
Oct. 71
Nov. 71
Dec. 71
Jan. 72
Feb. 72
Mar. 72
Apr. 72
May 72
June 72
July 72
Aug. 72
Sept. 72
Oct. 72
Nov. 72
Dec. 72
Jan. 73
Feb. 73
Mar. 73
Apr. 73
May 73
June 73
July 73
Aug. 73
Sept. 73
Filtration
Time, hr/day
Filter No.
1
9.4
7.6
10.9
11.0
11.8
7.9
8.4
8.9
8.0
6.4
11.5
12.1
13.5
14.3
11.0
7.6
9.5
10.9
9.6
8.1
12.2
16.2
15.7
2
7.5
7.4
10.6
11.2
11.9
9.0
8.6
8.8
8.1
6.4
12.1
12.9
12.7
14.3
10.9
8.0
10.9
11.7
9.6
8.8
12.4
13.1
16.4
Moisture
82
75
77
78
79
78
78
66
79
80
77
78
79
79
82
74
81
82
82
81
81
81
81
82
Filter
Yield,
Ib/ft2/hr
5.2
3.5
3.0
4.1
4.1
4.3
6.3
5.3
5.1
4.8
3.7
3.7
4.0
3.3
4.1
4.5
4.5
4.5
5.2
5.3
5.9
4.6
4.2
3.0
Lime,
Ib/day
1,840
715
2,733
1,815
2,029
1,877
310
1,249
1,220
754
1 ,088
1 ,228
760
965
248
295
643
635
421
450
860
1,116
1,480
1,388
Secondary Sludges Combined)
Ferric
Chloride,
Ib/day
7,576
-
-
1,027
781
1,091
826
1,250
1,091
579
1,472
589
707
410
372
255
476
672
1 ,012
1,152
668
1,098
1,348
1,049
Polyelec-
trolyte,
Ib/day
131
-
-
257
197
84
33
21
33
15
58
60
59
41
42
29
42
48
53
66
67
76
79
43
Dry
Sludge,
Ib/day
-
-
20,646
-
-
-
-
16,135
10,410
17,475
17,745
18,349
19,537
16,545
15,296
18,325
19,516
18,664
20,403
19,296
21,211
22,591
18-.009
Number
Dumpster
Loads/Day
5
3
4
5
5
5
7
6
6
4
6
6
5
6
6
5
7
8
8
8
7
8
8
7
Disinfection
Chlorine,
Ib/day
700
587
475
532
553
484
477
492
433
296
349
321
313
346
315
303
271
276
314
315
326
313
313
316
Avg. Residual
Chlorine in
Effluent, mg/1
1.7
1.9
2.0
1.8
2.1
2.4
2.4
2.4
2.3
2.4
2.0
2.1
1.9
1.8
2.1
1.8
2.1
2.2
2.2
1.5
1 .9
2.2
1 .9
1.5
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO. 2.
EPA-600/2-77-040
4 TITLE AND SUBTITLE
OXYGEN -ACTIVATED SLUDGE PLANT COMPLETES TWO YEARS OF
SUCCESSFUL OPERATION
7. AUTHOR(S)
C. S. McDowell
J. Giannelli
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Air Products and Chemicals., Inc.
Box 538
Allentown, Pennsylvania 18105
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory- -C in. ,, OH
Office of Research and Development
U. S. Environmental Protection Agency
Cincinnati, Ohio 45268
3. RECIPIENT'S ACCESSIOI>NO.
5. REPORT DATE
July 1977 (Issuing Date)
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1BC611
11. CONTRACT/GRANT NO.
Contract #68-03-0405
13. TYPE OF REPORT AND PERIOD COVERED
Final, Oct. 1971 - Sept. 1973
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
16. ABSTRACT
An OASES^ oxygen-activated sludge secondary wastewater treatment system has
been in operation at Fairfax County, Virginia's Westgate treatment plant since
October 1971. This report covers the two-year operating period of October
1971 through September 1973, including startup, optimization, routine operations,
and operation during upsets. The Westgate plant was converted to oxygen from
an existing aeration-sedimentation system operated without sludge recycle.
At a cost of $1,700,000, Fairfax County upgraded Westgate from what was
essentially a 0.35-m-^/sec (8-mgd) primary treatment facility achieving
approximately 50 percent BOD5 removal to a modern 0.61-m3/sec (14-mgd) oxygen-
activated sludge system achieving on the average 92 percent BOD5 removal
efficiency. Effluent concentrations of 10 to 15 mg/1 total BOD5, less than
5 mg/1 soluble BOD5, and less than 20 mg/1 total suspended solids (TSS) have
been routinely achieved. The plant has demonstrated a stability of operation
and performance not generally available with other biological treatment pro-
cesses .
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
COS AT I Field/Group
Sewage treatment, *Activated sludge
process, *0xygenation, Aeration tanks,
Sedimentation tanks, *Liquid Oxygen,
Upgrading
*0xygen-activated sludge
system, *0xygen disso-
lution, Surface aerator
13B
Release tc Public
19. SECURITY CLASS {This Report)
Unclassified
21. NO. OF PAGES
196
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
-•US GOVERNMENT PRINTING OFFICE: 1977-757-056/6463
186
------- |